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Foreword

Targeted Learning, by Mark J. van der Laan and Sherri Rose, fills a much
needed gap in statistical and causal inference. It protects us from wasting
computational, analytical, and data resources on irrelevant aspects of a prob-
lem and teaches us how to focus on what is relevant – answering questions
that researchers truly care about.

The idea of targeted learning has its roots in the early days of econometrics, when Ja-
cob Marschak (1953) made an insightful observation regarding policy questions and
structural equation modeling (SEM). While most of his colleagues on the Cowles
Commission were busy estimating each and every parameter in their economic mod-
els, some using maximum likelihood and some least squares regression, Marschak
noted that the answers to many policy questions did not require such detailed knowl-
edge – a combination of parameters is all that is necessary and, moreover, it is of-
ten possible to identify the desired combination without identifying the individual
components. Heckman (2000) called this observation “Marschak’s Maxim” and has
stressed its importance in the current debate between experimentalists and struc-
tural economists (Heckman 2010). Today we know that Marschak’s Maxim goes
even further – the desired quantity can often be identified without ever specifying
the functional or distributional forms of these economic models.

Until quite recently, however, Marschak’s idea has not attracted the attention
it deserves. For statisticians, the very idea of defining a target quantity not as a
property of a statistical model but by a policy question must have sounded mighty
peculiar, if not heretical. Recall that policy questions, and in fact most questions
of interest to empirical researchers, invoke causal vocabulary laden with notions
such as “what if,” “effect of,” “why did,” “control,” “explain,” “intervention,” “con-
founding,” and more. This vocabulary was purged from the grammar of statistics by
Karl Pearson (1911), an act of painful consequences that has prevented most data-
driven researchers from specifying mathematically the quantities they truly wish to
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viii Foreword

be targeted. Understandably, seeing no point in estimating quantities they could not
define, statisticians showed no interest in Marschak’s Maxim.

Later on, in the period 1970–1980, when Donald Rubin (1974) popularized and
expanded the potential-outcome notation of Neyman (1923) and others and causal
vocabulary ascended to a semilegitimate status in statistics, Marschak’s Maxim met
with yet another, no less formidable, hurdle. Rubin’s potential-outcome vocabulary,
while powerful and flexible for capturing most policy questions of interest, turned
out to be rather inept for capturing substantive knowledge of the kind carried by
structural equation models. Yet this knowledge is absolutely necessary for turning
targeted questions into estimable quantities. The opaque language of “ignorabil-
ity,” “treatment assignment,” and “missing data” that has ruled (and still rules) the
potential-outcome paradigm is not flexible enough to specify transparently even the
most elementary models (say, a three-variable Markov chain) that experimenters
wish to hypothesize. Naturally, this language could not offer Marschak’s Maxim
a fertile ground to develop because the target questions, though well formulated
mathematically, could not be related to ordinary understanding of data-generating
processes.

Econometricians, for their part, had their own reasons for keeping Marschak’s
Maxim at bay. Deeply entrenched in the quicksands of parametric thinking, econo-
metricians found it extremely difficult to elevate targeted quantities such as policy
effects, traditionally written as sums of products of coefficients, to a standalone sta-
tus, totally independent of their component parts. It is only through nonparametric
analysis, where targeted quantities are defined procedurally by transformational op-
erations on a model (as in P(y | do(x)); Pearl 2009), and parameters literally disap-
pear from existence, that Marschak’s Maxim of focusing on the whole without its
parts has achieved its full realization.

The departure from parametric thinking was particularly hard for researchers
who did not deploy diagrams in their toolkit. Today, as shown in Chap. 2 of this
book, students of graphical models can glance at a structural equation model and
determine within seconds whether a given causal effect is identified while paying
no attention to the individual parameters that make up that effect. Likewise, these
students can write down an answer to a policy question (if identified) directly in
terms of probability distributions, without ever mentioning the model parameters.
Jacob Marschak, whom I had the great fortune of befriending a few years before his
death (1977), would have welcomed this capability with open arms and his usual
youthful enthusiasm, for it embodies the ultimate culmination of his maxim in al-
gorithmic clarity.

Unfortunately, many economists and SEM researchers today are still not versed
in graphical tools, and, consequently, even authors who purport to be doing non-
parametric analysis (e.g., Heckman 2010) are unable to fully exploit the potentials
of Marschak’s Maxim. Lacking the benefits of graphical models, nonparametric re-
searchers have difficulties locating instrumental variables in a system of equations,
recognizing the testable implications of such systems, deciding if two such systems
are equivalent, if two counterfactuals are independent given another, whether a set
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of measurements will reduce bias, and, most importantly, reading the causal and
counterfactual information that such systems convey (Pearl 2009, pp. 374–380).

Targeted learning aims to fill this gap. It is presented in this book as a nat-
ural extension to the theory of structural causal models (SCMs) that I intro-
duced in Pearl (1995) and then in Chaps. 3 and 7 of my book Causality (Pearl
2009). It is a simple and friendly theory, truly nonparametric, yet it subsumes
and unifies the potential outcome framework, graphical models, and structural
equation modeling in one mathematical object. The match is perfect.

I will end this foreword with a description of a brief encounter I recently had
with another area in dire need of targeted learning. I am referring to the analysis
of mediation, also known as “effect decomposition” or “direct and indirect effects”
(Robins and Greenland 1992; Pearl 2001).

The decomposition of effects into their direct and indirect components is of both
theoretical and practical importance, the former because it tells us “how nature
works” and the latter because it enables us to predict behavior under a rich vari-
ety of conditions and interventions. For example, an investigator may be interested
in assessing the extent to which an effect of a given exposure can be reduced by
weakening one specific intermediate process between exposure and outcome. The
portion of the effect mediated by that specific process should then become the target
question for mediation analysis.

Despite its ubiquity, the analysis of mediation has long been a thorny issue in
the social and behavioral sciences (Baron and Kenny 1986; MacKinnon 2008) pri-
marily because the distinction between causal parameters and their regressional sur-
rogates have too often been conflated. The difficulties were amplified in nonlinear
models, where interactions between pathways further obscure their distinction. As
demands grew to tackle problems involving categorical variables and nonlinear in-
teractions, researchers could no longer define direct and indirect effects in terms
of sums or products of structural coefficients, and all attempts to extend the linear
paradigms of effect decomposition to nonlinear systems, using logistic and probit
regression, produced distorted results (MacKinnon et al. 2007). The problem was
not one of estimating the large number of parameters involved but that of combin-
ing them correctly to capture what investigators mean by direct or indirect effect
(forthcoming, Pearl 2011).

Fortunately, nonparametric analysis permits us to define the target quantity in
a way that reflects its actual usage in decision-making applications. For example,
if our interest lies in the fraction of cases for which mediation was sufficient for
the response, we can pose that very fraction as our target question, whereas if our
interest lies in the fraction of responses for which mediation was necessary, we
would pose this fraction as our target question. In both cases we can dispose of
parametric analysis altogether and ask under what conditions the target question
can be identified/estimated from observational or experimental data.
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Taking seriously this philosophy of “define first, identify second, estimate last”
one can derive graphical conditions under which direct and indirect effects can
be identified (Pearl 2001), and these conditions yield (in the case of no unmea-
sured confounders) simple probability estimands, called mediation formulas (Pearl
2010b), that capture the effects of interest. The mediation formulas are applicable to
both continuous and categorical variables, linear as well as nonlinear interactions,
and, moreover, they can consistently be estimated from the data.

The derivation of the mediation formulas teaches us two lessons in targeted learn-
ing. First, when questions are posed directly in terms of the actual causal relations
of interest, simple probability estimands can be derived while skipping the painful
exercise of estimating dozens of nonlinear parameters and then worrying about how
to combine them to answer the original question.

Second, and this is where targeted learning comes back to parametric analysis,
the expressions provided by the mediation formulas may demand a new param-
eterization, unrelated to the causal process underlying the mediation problem. It
is this new set of parameters, then, that need to be optimized over while posing
the estimation accuracy of the mediation formula itself as the objective function
in the maximum likelihood optimization. Indeed, in many cases the structure and
dimensionality of the mediation formula would dictate the proper shaping of this
reparametrization, regardless of how intricate the multivariate nonlinear process is
that actually generates the data.

I am very pleased to see the SCM serving as a language to demonstrate the work-
ings of targeted learning, and I am hopeful that readers will appreciate both the
transparency of the model and the power of the approach.

Los Angeles, January 2011 Judea Pearl



Foreword

Mark J. van der Laan and Sherri Rose both describe their “journey” to this wonder-
ful book in their preface. As an epidemiologist, I too have a journey with respect
to this book. In 2001, I approached Mark about collaborating with me on a very
difficult project. I brought with me my applied training in “traditional” statistical
applications that I had learned as a master’s student and over many years as a prac-
ticing epidemiologist. During our discussions, Mark opened up a new world for me
regarding how one uses statistical methods to answer causal questions. I have spent
the years since then continuing to collaborate with Mark on questions related to
the epidemiology of aging and the effects of air pollution on children’s respiratory
health. I have learned a great deal (conditioned, of course, by my somewhat lim-
ited background in formal mathematics and statistics) about these approaches and
their tremendous value as tools for the formulation of hypotheses and the design and
analysis of observational data. My collaboration with Mark has radically changed
my approach to teaching master’s and doctoral students in epidemiology about the
theoretical concepts related to epidemiological studies and their analysis.

Having made this journey myself along with many of my students, I want to
share some of my excitement about this book with scientists from all disci-
plines who conduct studies in the hopes that many of them will use this book
to take a journey of their own.

For those who are faint of heart when it comes to more in-depth biostatistical
treatises, do not fear; the authors’ clear writing and extremely helpful examples will
carry you along the way or allow you to skip over fine details without missing the
forest for the trees. What I have tried to do in this foreword is to provide a preview to
each introductory chapter in the hopes that these previews will stimulate the reader’s
interest in seeing what van der Laan and Rose have to say.

To quote the authors, Chap. 1 “was intended to motivate the need for causal
inference, highlight the troublesome nature of the traditional approach to effect
estimation, and introduce important concepts such as the data, model, and target
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xii Foreword

parameter.” They have achieved their goal with clear exposition, easily understood
examples, and well-defined notation. The chapter should be accessible to anyone
with a basic course in biostatistics and some practical experience. The case for an
alternative approach to traditional parametric statistical models and modeling has
a strong logic behind it, and the reader is primed to open herself to learning how
to see things in a different light. That light has three important elements. (1) Those
who carry out observational studies need to be absolutely clear about what they ac-
tually know about the distributions that generate their observed data. (2) Statistical
models, at their heart, are models for the true data-generating distribution that pro-
duced the observed data. (3) The parameters of interest in observational studies are
not simply the regression coefficients in front of an exposure (or treatment) variable;
instead, they are expressions of a specific research question.

Chapter 2 takes the reader from nonparametric structural equation models through
counterfactuals, the definition of the parameter of interest, and the problem of esti-
mation. It asks more of the nonstatistician reader than does Chap.1: (1) familiarity
with basic concepts of causal graphs, although this is not absolute, since the basic
concepts are presented in a lucid but abbreviated manner; and (2) patience to stick
with the notation and the logic that is built into it. If the reader brings these requi-
sites, particularly the second one, the presentation is logical and lucid, with simple
examples to guide the way. It is easy to miss the forest for the trees in the chap-
ter on the first read; therefore, several reads will be needed. For those who have
patience for only one read, several important messages are encoded in the jargon;
look for them. (1) Uncertainty (unmeasured or mismeasured exogenous variables,
also known as unmeasured confounders) is integral to the data-generating distri-
bution and all attempts to define a parameter of interest must be prepared to make
assumptions of more or less strength about them. (2) “Models” are statistical models
augmented with nontestable assumptions that encode assumptions that make iden-
tifiability possible. (3) Target parameters can have statistical and causal interpreta-
tions, the major distinction being that causal interpretations are based on models that
must encode some untestable assumptions. One brief comment for nonstatisticians,
particularly epidemiologists: failure of the positivity assumption across any stratum
of covariates makes statistical (and thereby causal) inference a fantasy. Pay close
attention!

“Since a parametric statistical model is wrong...we want an estimator that is able
to learn from the data using the true knowledge represented by the actual statistical
model...” for the unknown data-generating distribution. So begins Chap. 3 and the
exploration of “super learning.” However, how are we to know which estimator
to use a priori? This chapter takes the reader through the answers to a series of
questions related to how we find the “best” estimator of the true target parameter,
given our limited knowledge about the true data-generating distribution for our data
as represented by the statistical model. The questions are simple and the answers
complicated. However, the concept is clear: Having defined our data, model and
target parameter, we need to “learn” from our data what the “maximally unbiased
and semiparametric efficient normally distributed estimator” of our target parameter
is. What do van der Laan and Rose mean by “learn” from the data, and what is a
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super learner? “Learning,” in this context, is being open to the possibility that your
favorite parametric model (e.g., logistic regression), or semiparametric model in the
more frequent use of the term (e.g., Cox proportional hazards model), just does not
represent any of the possible data-generating distributions from which your data
could have been derived. In other words, you made a bad guess! “Learning” is the
process that attempts to provide the best estimate of our target parameter from a
library of guesses. What is the best? It is the estimator that is closest to that which
we would have derived had we known the true data-generating distribution. What
is the library of guesses? It is the collection of “models” that we think might be
consistent with the true data-generating function. What is the super learner? It is
the loss-function-based tool that allows us to obtain the best prediction of our target
parameter based on a weighted average of our guesses. Thus, we “learn” what our
data have to say about this parameter based on the true knowledge that we have
about the data and any causal assumptions that we made to assure identifiability!

Chapter 4 provides an introduction to targeted maximum likelihood estimators
(TMLEs). The key message is that a TMLE is a semiparametric method that pro-
vides an optimal tradeoff between bias and variance in the estimation of the tar-
get parameter (e.g., difference between treated and untreated in the example in the
chapter). The introductory material of the chapter expresses these ideas clearly and
concisely. The highlight of the chapter is Sect. 4.2, which is a step-by-step exam-
ple based on real data that illustrates the TMLE. The example is linked to the more
detailed theoretical presentation in the next chapter. The sections on the TMLE in
randomized controlled trials and observational studies are particularly relevant for
epidemiologists. Chapter 5 provides the theoretical support for the implementation
described in Chap.4 and really is targeted at statisticians. Nonstatisticians will just
need to follow along, perhaps reading only the gray summary boxes, to get the gen-
eral idea.

Chapter 6 provides comparisons between TMLEs and other estimators. Some
of the material requires statistical knowledge that is beyond many epidemiologists.
However, the tables provide summaries that contain the take-away messages. The
conclusions about the desirability of unbiased efficient estimators is obvious. How-
ever, the authors highlight one important property of the TMLE that is particularly
desirable – good performance with respect to bias and efficiency in finite samples.

The remaining chapters in the book delve into additional data structures, param-
eters, and methodological extensions of the TMLE. You may wish to jump imme-
diately to the chapters relevant to your work, such as case-control data, genomics,
censored data, or longitudinal data, once you have a firm understanding of the core
material presented in Part I. Readers who plan to implement these methods will ben-
efit from reading all of the chapters in Part II, which include: continuous outcomes,
direct effects, marginal structural models, and the positivity assumption. However,
there are two chapters that warrant careful reading by everyone. Chapter 8 deals with
estimation of direct effects when covariates are hypothesized as causal intermedi-
ates and distinguishes the assumptions for this estimation from the situation where
covariates are considered confounders. The key concepts are found in the gray box
at the end of Sect. 8.2 and the first paragraph of the discussion. Investigators who
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carry out observational studies need to pay special heed to these concepts. Chap-
ter 10 deals with the concept of positivity – the concept, to quote the authors, that
“[t]he identifiability of causal effects requires sufficient variability in treatment or
exposure assignment within strata of confounders.” This is a concept that is all but
ignored in most published epidemiologic studies. The introductory material states
the issues clearly and identifies the choices one has when faced with this problem.
This chapter provides methods to address the problem and is a must read!

In summary, this book should be on the shelf of every investigator who con-
ducts observational research and randomized controlled trials. The concepts
and methodology are foundational for causal inference and at the same time
stay true to what the data at hand can say about the questions that motivate
their collection. The methods presented provide the tools to remain faithful
to the data while providing minimally biased and efficient estimators of the
parameters of interest. To my epidemiologic colleagues, the message is: the
parameters of exposure that interest us are not simply regression coefficients
derived from statistical models whose relevance to the data-generating distri-
bution is unknown! This book really does provide super learning!

Berkeley, January 2011 Ira B. Tager



Preface

The statistics profession is at a unique point in history. The need for valid statistical
tools is greater than ever; data sets are massive, often measuring hundreds of thou-
sands of measurements for a single subject. The field is ready for a revolution, one
driven by clear, objective benchmarks under which tools can be evaluated.

Statisticians must be ready to take on this challenge. They have to be dynamic
and thoroughly trained in statistical concepts. More than ever, statisticians need to
work effectively in interdisciplinary teams and understand the immense importance
of objective benchmarks to evaluate statistical tools developed to learn from data.
They have to produce energetic leaders who stick to a thorough a priori road map,
and who also break with current practice when necessary.

Why do we need a revolution? Can we not keep doing what we have been doing?
Sadly, nearly all data analyses are based on the application of so-called parametric
(or other restrictive) statistical models that assume the data-generating distributions
have specific forms. Many agree that these statistical models are wrong. That is,
everybody knows that linear or logistic regression in parametric statistical models
and Cox proportional hazards models are specified incorrectly. In the early 1900s,
when R.A. Fisher developed maximum likelihood estimation, these parametric sta-
tistical models were suitable since the data structures were very low dimensional.
Therefore, saturated parametric statistical models could be applied. However, today
statisticians still use these models to draw conclusions in high-dimensional data and
then hope these conclusions are not too wrong.

It is too easy to state that using methods we know are wrong is an acceptable
practice: it is not!

The original purpose of a statistical model is to develop a set of realistic assump-
tions about the probability distribution generating the data (i.e., incorporating back-
ground knowledge). However, in practice, restrictive parametric statistical models
are essentially always used because standard software is available. These statistical
models also allow the user to obtain p-values and confidence intervals for the tar-
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get parameter of the probability distribution, which are desired to make sense out
of data. Unfortunately, these measures of uncertainty are even more susceptible to
bias than the effect estimator. We know that for large enough sample sizes, every
study, including one in which the null hypothesis of no effect is true, will declare a
statistically significant effect.

Some practitioners will tell you that they have extensive training, that they are
experts in applying these tools and should be allowed to choose the statistical models
to use in response to the data. Be alarmed! It is no accident that the chess computer
beats the world chess champion. Humans are not as good at learning from data and
are easily susceptible to beliefs about the data.

For example, an investigator may be convinced that the probability of having a
heart attack has a particular functional form – a function of the dose of the studied
drug and characteristics of the sampled subject. However, if you bring in another
expert, his or her belief about the functional form may differ. Or, many statistical
model fits may be considered, dropping variables that are nonsignificant, resulting
in a particular selection of a statistical model fit. Ignoring this selection process,
which is common, leaves us with faulty inference.

With high-dimensional data, not only is the correct specification of the paramet-
ric statistical model an impossible challenge, but the complexity of the parametric
statistical model also may increase to the point that there are more unknown pa-
rameters than observations. The true functional form also might be described by a
complex function not easily approximated by main terms.

For these reasons, allowing humans to include only their true, realistic knowl-
edge (e.g., treatment is randomized, such as in a randomized controlled trial, and
our data set represents n independent and identically distributed observations of a
random variable) is essential. That is, instead of assuming misspecified parametric
or heavily restrictive semiparametric statistical models, and viewing the (regression)
coefficients in these statistical models as the target parameters of interest, we need
to define the statistical estimation problem in terms of nonparametric or semipara-
metric statistical models that represent realistic knowledge, and in addition we must
define the target parameter as a particular function of the true probability distribu-
tion of the data. This changes the game in a dramatic way relative to current practice;
one starts thinking about real knowledge in terms of the underlying experiment that
generated the data set and what the real questions of interest are in terms of a feature
of the data-generating probability distribution.

The concept of a statistical model is very important, but we need to go back to
its true meaning. We need to be able to incorporate true knowledge in an effective
way. In addition, we need to develop and use data-adaptive tools for all parameters
of the data-generating distribution, including parameters targeting causal effects of
interventions on the system underlying the data-generating experiment. The latter
typically represent our real interest. We are not only trying to sensibly observe, but
also to learn how the world operates.

What about machine learning, which is concerned with the development of black-
box algorithms that map data (and few assumptions) into a desired object? For ex-
ample, an important topic in machine learning is prediction. Here the goal is to
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map the data, consisting of multiple records with a list of input variables and an
output variable, into a prediction function that can be used to map a new set of
input variables into a predicted outcome. Indeed, this is in sharp contrast to using
misspecified parametric statistical models. However, the goal is often a whole pre-
diction function, and the machines are tailored to fit this whole prediction function.
As a consequence, these methods are too biased (and not grounded by efficiency
theory) for a particular effect of interest. Typical complexities in the data such as
missingness or censoring have also received little attention in machine learning. In
addition, statistical inference in terms of assessment of uncertainty (e.g., confidence
intervals) is typically lacking in this field.

Even in machine learning there is often unsupported devotion to beliefs, in this
case, to the belief that certain algorithms are superior. No single algorithm (e.g.,
random forests, support vector machines, etc.) will always outperform all others in
all data types, or even within specific data types (e.g., SNP data from genomewide
association studies). One cannot know a priori which algorithm to choose. It’s like
picking the student who gets the top grade in a course on the first day of class.

The tools we develop must be grounded in theory, such as an optimality theory,
that shows certain methods are more optimal than others and, in addition, should be
evaluated with objective benchmark simulation studies. For example, one can com-
pare methods based on mean squared error with respect to the truth. It is not enough
to have tools that use the data to fit the truth well. We also require an assessment
of uncertainty (e.g., confidence intervals), the very backbone of statistical learning.
That is, we cannot give up on the reliable assessment of uncertainty in our estimates.

Examples of new methodological directions in statistical learning satisfying these
requirements include (1) the full generalization and utilization of cross-validation as
an estimator selection tool so that the subjective choices made by humans are now
made by the machine and (2) targeting the fitting of the probability distribution of the
data toward the target parameter so that the mean squared error of the substitution
estimator of the target parameter with respect to the target parameter is optimized.
Important and exciting statistical research areas where new developments are taking
place in response to the nonvalidity of the previous generation of tools are: adaptive
designs in clinical trials and observational studies, multiple and group sequential
testing, causal inference, and Bayesian learning in realistic semiparametric statisti-
cal models, among others.

Statisticians cannot be afraid to go against standard practice. Remaining open to,
interested in, and a developer of newer, sounder methodology is perhaps the one
key thing each statistician can do. We must all continue learning, questioning, and
adapting as new statistical challenges are presented.

The science of learning from data (i.e., statistics) is arguably the most beautiful
and inspiring field – one in which we try to understand the very essence of human
beings. However, we should stop fooling ourselves and actually design and develop
powerful machines and statistical tools that can carry out specific learning tasks.
There is no better time to make a truly meaningful difference.1

1 A version of this content originally appeared in the September 2010 issue of Amstat News, the
membership magazine of the American Statistical Association (van der Laan and Rose 2010).
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The Journey

Mark: I view targeted maximum likelihood estimation (TMLE), presented in this
book, as the result of a long journey, starting with my Ph.D. research up to now. We
hope that the following succinct summary of this path towards a general toolbox
for statistical learning from data will provide the reader with useful perspective and
understanding.

During my Ph.D. work (1990–1993) under the guidance of Dr. Richard Gill,
I worked on the theoretical understanding of the maximum likelihood estimator
for semiparametric statistical models, with a focus on the nonparametric maxi-
mum likelihood estimator of the bivariate survival distribution function for bi-
variate right-censored survival times and a nonparametric statistical model for the
data-generating distribution. This challenging bivariate survival function estimation
problem demonstrated that the nonparametric maximum likelihood estimator easily
fails to be uniquely defined, or fails to approximate the true data-generating distri-
bution for large sample sizes. That is, for realistic statistical models for the data-
generating distribution, and even for relatively low-dimensional data structures, the
maximum likelihood estimator is often ill defined and inconsistent for target param-
eters, and regularization through smoothing or stratification is necessary to repair it.
It also demonstrated that, for larger dimensional data structures, the repair of max-
imum likelihood estimation in nonparametric statistical models through smoothing
comes at an unacceptable price with respect to finite sample performance.

Right after completing my Ph.D., I met Dr. James M. Robins, whose research
focused on estimation with censored data and, in particular, estimation of causal ef-
fects of time-dependent treatment regimens on an outcome of interest based on ob-
serving replicates of high-dimensional longitudinal data structures in the presence of
informative missingness and dropout and time-dependent confounding of the treat-
ment. This was an immensely exciting time, and a whole new world opened up for
me. Instead of working on toy extractions of real-world problems, Robins and his
colleagues worked on solving the actual estimation problems as they occur in prac-
tice, avoiding convenient simplifications or assumptions. The work of Robins’ group
made clear that statistical learning was far beyond the world of standard software
and the corresponding practice of statistics based on restrictive parametric statisti-
cal models, and also far beyond the world of maximum likelihood estimation for
semiparametric statistical models.

Concepts such as coarsening at random, orthogonal complement of the nuisance
tangent space of a target parameter, estimating functions for the target parameter
implied by the latter, double robustness of these estimating functions and their cor-
responding estimators, locally efficient estimators of the target parameter, and so on,
became part of my language. As a crown on our collaborations, in 2003 we wrote a
book called Unified Methods for Censored Longitudinal Data and Causality. This
book provided a comprehensive treatment of the estimating equation methodol-
ogy for estimation of target parameters of the data-generating distribution in semi-
parametric statistical models, demonstrated on complex censored and longitudinal
(causal inference) data structures.
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From a person trying to repair maximum likelihood estimation, I had become
a proponent for estimating equation methodology, a methodology that targets the
parameter of interest instead of the maximum likelihood estimation methodology,
which aims to estimate the whole distribution of the data. When writing the book in
2003, some nonnatural hurdles occurred and we proposed no solutions for them. To
start with, the optimal estimating function for the target parameter might not exist
since the efficient influence curve, though a function of the distribution of the data on
the unit, cannot necessarily be represented as an (estimating) function in the target
parameter of interest and a variation-independent nuisance parameter. If we ignored
this first hurdle, we were still left with the following hurdles. Estimators defined by
a solution of an estimating equation (1) might not exist, (2) might be nonunique due
to the existence of multiple solutions, (3) are not substitution estimators and thus
do not respect known statistical model constraints, and (4) are sensitive to how the
nuisance parameter (that the estimating function depends on) is estimated, while a
good fit of the nuisance parameter itself is not a good measure for its role in the
mean squared error of the estimator of the target parameter.

These hurdles, which also affect the practical performance and robustness of the
estimators, made it impossible to push this impressive estimating equation method-
ology forward as a general statistical tool to replace current practice. It made me
move back towards substitution estimators using methods based on maximizing or
minimizing an empirical criterion such as the maximum likelihood estimator, and
plugging in the resulting estimator in the target parameter mapping that maps a
probability distribution of the data into the desired target parameter.

Specifically, additional research we conducted in 2003 proposed a unified loss-
based learning methodology (van der Laan and Dudoit 2003). The methodology
was based on defining a (typically infinite-dimensional) parameter of the probability
distribution of the data as a minimizer of the expectation of a loss function (e.g.,
log-likelihood or squared error loss function) and the aggressive utilization of cross-
validation as a tool to select among candidate estimators. The loss function for the
desired part of the probability distribution of the data was also allowed to be indexed
by an unknown nuisance parameter, thereby making this methodology very general,
including prediction or density estimation based on general censored data structures.

The general theoretical optimality result for the cross-validation selector among
candidate estimators generated a new concept called “loss-based super learning,”
which is a general system for fitting an infinite-dimensional parameter of the proba-
bility distribution of the data that allows one to map a very large library of candidate
estimators into a new improved estimator. It made it clear that, given some global
bounds on the semiparametric statistical model, humans should not choose the esti-
mation procedure for fitting the probability distribution of the data, or a relevant part
thereof, but an a priori defined estimator (i.e., the super learner) should fully utilize
the data to make sound informed choices based on cross-validation. That is, the the-
ory of super learning allows us to build machines that remove human intervention
as much as possible.

Even though the theory teaches us that the super learner of the probability dis-
tribution does make the optimal bias–variance tradeoff with respect to the prob-
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ability distribution as a whole (i.e., with respect to the dissimilarity between the
super learner and the truth, as implied by the loss function), it is too biased for
low-dimensional target features of the probability distribution, such as an effect of
a variable/treatment/exposure on an outcome. The super learner is instructed to do
well estimating the probability distribution, but the super learner was not told that
it was going to be used to evaluate a one-dimensional feature of the probability
distribution such as an effect of a treatment. As a consequence, the substitution esti-
mator of a target parameter obtained by plugging in the super learner into the target
parameter mapping is too biased.

By definition of an efficient estimator, it was clear that the efficient influence
curve needed to play a role for these substitution estimators to become less biased
and thereby asymptotically linear and efficient estimators of the target parameter.
But how? The current literature on efficient estimation had used the efficient influ-
ence curve as an estimating function (van der Laan and Robins 2003), and one either
completely solved the corresponding estimating equation or one used the first step
of the Newton–Raphson method for solving the estimating equation (e.g., Bickel
et al. 1997) in case one already had a root-n-consistent initial estimator available. A
new way of utilizing the efficient influence curve within the framework of loss-based
learning needed to be determined.

The super learner had to be modified so that its excess bias was removed. The
idea of the two-stage targeted maximum likelihood estimator was born: (1) use, for
example, the super learner as the initial estimator, (2) propose a clever parametric
statistical working model through the super learner, providing a family of candidate
fluctuations of the super learner and treating the super learner as fixed offset, (3)
choose the fluctuation that maximizes the likelihood (or whatever loss function was
used for the super learner), and (4) iterate so that the resulting modified super learner
solves the efficient influence curve estimating equation. This resulted in the original
TMLE paper with Daniel B. Rubin (van der Laan and Rubin 2006), which provides
a general recipe for defining a TMLE for any given data structure, semiparametric
statistical model for the probability distribution, and target parameter mapping, and
thereby served as the basis of this book.

TMLEs can also be represented as loss-based learning. Here, the loss function is
defined as a targeted version of the loss function used by the initial estimator, where
the nuisance parameter of this targeted loss function plays the role of the unknown
fluctuation parameters in the TMLE steps. TMLEs are a special case of loss-based
learning.

TMLEs solved the above mentioned remaining issues that the estimating equa-
tion methodology suffered from: a TMLE does not require that the efficient influence
curve be an estimating function, a TMLE solves the efficient influence curve esti-
mating equation but is not defined by it (just like a maximum likelihood estimator
solves a score equation but is uniquely defined as a maximum of the log-likelihood),
a TMLE is a substitution estimator and thus respects the global constraints of the
statistical model, a TMLE naturally integrates loss-based super learning (i.e., gen-
eralized machine learning based on cross-validation) and can utilize the same loss
function to select among different TMLEs indexed by different nuisance parameter



Preface xxi

estimators that are needed to carry out the targeting update step. That is, even the
choice of nuisance parameter estimator can now be tailored toward the target param-
eter of interest (van der Laan and Gruber 2010). Finally, under conditions that allow
efficient estimation of the target parameter, a TMLE is an asymptotically efficient
substitution estimator. ��

Sherri: My methodological contributions have largely focused on adapting TMLE
for case-control studies. Additionally, I’ve spent significant time with Mark formu-
lating a general framework for teaching TMLE, with comprehensive notation and
language, in a way that is accessible for researchers and students in fields such as
epidemiology.

I received my B.S. in statistics in 2005 with the goal of going to graduate school
for a career in medical research. Thus, I thought this meant I would be an “applied”
statistician using existing tools. Then I took one of Mark’s upper division courses
during the first year of my Ph.D. program at UC Berkeley. Even though I didn’t
immediately understand all of the technical aspects of what he was teaching, the
concepts made complete sense. I contacted him and projects took off immediately.

My point in this addendum to Mark’s journey is that you need not be a fully
trained theoretical statistician to start understanding and using these methods. The
work is driven by real-world problems, and thus is immediately applicable in prac-
tice. It is theoretical because new methods needed to be developed based on effi-
ciency theory, but it is also very applied. You see this in the many examples that
permeate this text. We don’t present anything that isn’t based on a real data set that
we’ve encountered. In short, this book is not meant to sit on a shelf. ��

The book: The book itself also went through a journey of its own. We started seri-
ously writing for the book in January 2010 and for many months went back and forth
debating the level we were trying to target. Should we generate a textbook that was
more like an epidemiology text and would be broadly accessible to a greater number
of applied readers with less formal statistical training? Should we develop a purely
theoretical text that would mostly be of interest to a certain subset of statisticians?
Ultimately, we struck a level that is somewhere in between these two extremes.
Since there is no other book on targeted learning, we could not escape the inclusion
of statistical formalism. However, we also did not want to lose all accessibility for
nontheoreticians.

This led to a book that begins with six chapters that should be generally readable
by most applied researchers familiar with basic statistical concepts and traditional
data analysis. That is not to say many topics won’t be new and challenging, but
these chapters are peppered with intuition and explanations to help readers along.
The book progresses to more challenging topics and data structures, and follows a
recognizable pattern via a road map for targeted learning and the general description
of each targeted estimator. Thus, applied readers less interested in why it works and
more interested in implementation can tease out those parts. Yet, mathematicians
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and theoretical statisticians will not get bored, as extensive rigor is included in many
chapters, as well as a detailed appendix containing proofs and derivations.

Lastly, this book is unique in that it also contains wonderful contributions from
multiple invited authors, yet it is not a traditional edited text. As the authors of
Targeted Learning, we have spent significant time crafting and reworking each of
the contributed chapters to have consistent style, content, format, and notation as
well as a familiar road map. This yields a truly cohesive book that reads easily as
one text. ��

Intended Readership

We imagine a vast number of readers will be graduate students and researchers in
statistics, biostatistics, and mathematics. This book was also written with epidemiol-
ogists, medical doctors, social scientists, and other applied researchers in mind. The
first six chapters of the book, which comprise Part I, are a complete introduction to
super learning and TMLE, including related concepts necessary to understand and
apply these methods. Part I is designed to be accessible on many levels, and chap-
ters that deal with more advanced statistical concepts feature guides that direct the
reader to key information if they’d rather skip certain details. Additionally, these
chapters could easily be used for a one-semester introductory course. The remain-
ing chapters can be digested in any order that is useful to the reader, although we
attempted to order them according to ease and subject matter. Parts II–IX handle
more complex data structures and topics, but applied researchers will immediately
recognize these data problems from their own research (e.g., continuous outcomes,
case-control studies, time-dependent covariates, HIV data structures).

Outline

Introduction. The book begins with an introduction written by Richard J.C.M. Star-
mans titled “Models, Inference, and Truth: Probabilistic Reasoning in the Informa-
tion Era.” This introduction puts the present state of affairs in statistical data analyis
in a historical and philosophical perspective for the purpose of clarifying, under-
standing, and accounting for the current situation and to underline the relevance of
topics addressed by TMLE for both the philosophy of statistics and the epistemol-
ogy/philosophy of science. It identifies three major developments in the history of
ideas that provide a context for the emergence of the probabilistic revolution and
it discusses some important immanent developments in the history of statistics that
have led to the current situation or at least may help to understand it.
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Part I – Targeted Learning: The Basics

The chapters in Part I of the book can stand alone as material for a complete intro-
ductory course on super learning and TMLE in realistic nonparametric and semi-
parametric models. They cover essential information crucial to understanding this
methodology, encapsulated in the convenient road map for targeted learning. We
present in detail the TMLE of an additive causal effect of treatment on a binary or
continuous outcome based on observing n independent and identically distributed
random variables defined by the following type of experiment: randomly sample a
subject from a population, measure baseline covariates, subsequently assign a treat-
ment, and finally measure an outcome of interest. This TMLE is demonstrated in
the estimation of the effect of vigorous exercise on survival in an elderly cohort.

Chapter 1. This chapter introduces the open problem of targeted statistical learn-
ing. We discuss, in general terms, the traditional approach to effect estimation as
well as the concepts of data, data-generating distribution, model, and the target pa-
rameter of the data-generating distribution. We also motivate the need for estimators
that are targeted and present the road map for targeted learning that will be explained
in depth in Chaps. 2–5.

Chapter 2. In this chapter, readers will learn about structural causal models
(SCMs), causal graphs, causal assumptions, counterfactuals, identifiability of the
target parameter, and interpretations of the target parameter (i.e., causal or purely
statistical). This material is essential background before moving on to the estima-
tion steps in the road map for targeted learning. The chapter is based on the methods
pioneered by Judea Pearl and are given thorough treatment in the recently published
second edition of Causality (Pearl 2009).

Chapter 3. The first step in the TMLE is an initial estimate of the data-generating
distribution P0, or the relevant part Q0 of P0 that is needed to evaluate the target pa-
rameter. Estimation of Q0 incorporating the flexible ensemble learner super learner
is presented in this chapter. Cross-validation is an essential component of super
learning and is also presented. Simulation studies and multiple data analysis exam-
ples illustrate the advantages of super learning.

Chapters 4 and 5. In these two chapters, the TMLE methodology is presented
in detail, including a conceptual overview, implementation, and theory. TMLE is a
two-step procedure where one first obtains an estimate of the relevant portion Q0
of P0. The second stage updates this initial fit in a step targeted toward making an
optimal bias–variance tradeoff for the parameter of interest (i.e., target parameter),
instead of the overall density P0. It does this by proposing a parametric submodel
through the initial fit of Q0, and estimating the unknown parameter of this submodel
that represents the amount of fluctuation of the initial fit. The submodel typically
depends on a fit of a nuisance parameter such as a treatment or censoring mecha-
nism. Finally, one evaluates the target parameter of this TMLE fit of Q0, which is
called the TMLE of the target parameter. The TMLE of the target parameter is dou-
ble robust and can incorporate data-adaptive likelihood-based estimation procedures
to estimate Q0 and the nuisance parameter. Inference (i.e., confidence intervals) and
interpretation are also explained, concluding the road map for targeted learning.
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Chapter 6. The many attractive properties of TMLE include the fact that it pro-
duces well-defined, loss-based, consistent, efficient substitution estimators of the
target parameter. These topics are explained in depth, and the TMLE is compared
to other estimators of a target parameter of the data-generating distribution, with
respect to these properties.

Part II – Additional Core Topics

Part II delves deeper into some core topics: the choice of submodel and loss function
that defines the TMLE, causal parameters defined by marginal structural working
models, and an in-depth coverage of methods dealing with violations of the posi-
tivity assumption. It focuses on experiments involving the measurement of baseline
covariates, a treatment, possibly an intermediate random variable, and a final out-
come.

Chapter 7. The TMLE of a parameter of a data-generating distribution, known
to be an element of a semiparametric statistical model, involves constructing a para-
metric statistical working model through an initial density estimator with parame-
ter ε representing an amount of fluctuation of the initial density estimator, where
the score of this fluctuation model at ε = 0 equals or spans the efficient influence
curve/canonical gradient. The latter constraint can be satisfied by many parametric
fluctuation models, since it represents only a local constraint of its behavior at zero
fluctuation. However, it is very important that the fluctuations stay within the semi-
parametric statistical model for the observed data distribution, even if the parameter
can be defined on fluctuations that fall outside the assumed observed data model. In
particular, in the context of sparse data, a violation of this property can heavily affect
the performance of the estimator. We demonstrate this in the context of estimation
of a causal effect of a binary treatment on a continuous outcome that is bounded. It
results in a TMLE that inherently respects known bounds and, consequently, is more
robust in sparse data situations than the TMLE using a naive fluctuation model. The
TMLE is based on a quasi-log-likelihood loss function and a logistic regression
fluctuation model.

Chapter 8. In this chapter we consider estimation of a direct effect of treatment
on an outcome in the presence of an intermediate variable. The causal model, the
direct effect, the estimand defined by the identifiability result for the direct effect,
and the TMLE of the target parameter are presented. As an illustration we estimate
the direct effect of gender on salary in a gender-inequality study. It is shown that
the same TMLE can be used to estimate the estimand defined by the identifiability
result for the causal effect of a treatment on an outcome among the treated within
an appropriate (different) causal model.

Chapter 9. One is often interested in assessing how the effect of a treatment is
modified by some baseline covariates. For this purpose, we present marginal struc-
tural models that model the causal effect of treatment as a function of such effect
modifiers. The TMLE of the unknown coefficients in the marginal structural model
is presented. The marginal structural models are used as working models to define
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the desired effect modification parameters, so that they do not make unrealistic as-
sumptions in the causal model and thereby on the data-generating distribution. As
an example, we assess the effect of missing doses on virologic failure as a function
of the number of months of past viral suppression in an HIV cohort.

Chapter 10. The estimand that is defined by the identifiability result for the
causal quantity of interest defines the target parameter of the data-generating dis-
tribution. The definition of the estimand itself often requires a particular support
condition, which is called the positivity assumption. For example, the estimand
that defines the additive causal effect of treatment on an outcome is only defined
if for each value of the covariates (representing the confounders) there is a posi-
tive probability on both treatment and control. This chapter provides an in-depth
discussion of the positivity assumption, and the detrimental effect of the practical or
theoretical violation of this assumption on the statistical inference, due to the sparse-
data bias induced by this violation. In addition, this chapter presents a parametric
bootstrap-based diagnostic tool that allows one to diagnose this sparse-data bias. Its
performance is demonstrated on simulated data sets and in assessing the effect of
a mutation in the HIV virus on drug resistance in an HIV data application. Finally,
the chapter presents common approaches to dealing with positivity violations and
concludes with the presentation of a systematic general approach.

Part III – TMLE and Parametric Regression in Randomized Controlled Trials

Part III still considers an experiment that generates baseline covariates, treatment,
and a final outcome, as highlighted in Parts I and II, but it delves deeper into the
special case where treatment is randomized. In this case, the TMLE is always con-
sistent and asymptotically linear, thereby allowing the robust utilization of covariate
information. We demonstrate that a TMLE that uses as initial estimator a maximum
likelihood estimator according to a parametric regression model does not update the
initial estimator, proving a remarkable robustness property of maximum likelihood
estimation in randomized controlled trials (RCTs). In addition, we show how the fit
of the parametric regression model (i.e., the initial estimator in the TMLE) can be
optimized with respect to the asymptotic variance of the resulting TMLE, thereby
guaranteeing improvement over existing practice.

Chapter 11. The TMLE of a causal effect of treatment on a continuous or binary
outcome in an RCT is presented. It is shown that the TMLE can be based on a
maximum likelihood estimator according to a generalized linear working model,
where the maximum likelihood estimation fit is inputted in the target parameter
mapping defined by the so-called g-formula for the desired causal effect.

Chapter 12. As in Chap.11, the TMLE in this chapter is based on a parametric
regression model, but the coefficients of the initial estimator in the TMLE are fit-
ted so that the resulting TMLE has minimal asymptotic variance. This results in a
TMLE that is guaranteed to outperform current practice (i.e., unadjusted estimator),
even if the parametric model is heavily misspecified. Other estimators presented in
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the literature are also discussed, and a simulation study is used to evaluate the small
sample performance of these estimators.

Part IV – Case-Control Studies

The data-generating experiment now involves an additional complexity called bi-
ased sampling. That is, one assumes the underlying experiment that randomly sam-
ples a unit from a target population, measures baseline characteristics, assigns a
treatment/exposure, and measures a final binary outcome, but one samples from the
conditional probability distribution, given the value of the binary outcome. One still
wishes to assess the causal effect of treatment on the binary outcome for the target
population. The TMLE of a causal effect of treatment on the binary outcome based
on such case-control studies is presented. Matched case-control studies are consid-
ered as well. It is also shown how to apply super learning to risk prediction in a
nested case-control study.

Chapter 13. Case-control study designs are frequently used in public health and
medical research to assess potential risk factors for disease. These study designs
are particularly attractive to investigators researching rare diseases, as they are able
to sample known cases of disease, vs. following a large number of subjects and
waiting for disease onset in a relatively small number of individuals. Our proposed
case-control-weighted TMLE for case-control studies relies on knowledge of the
true prevalence probability, or a reasonable estimate of this probability, to eliminate
the bias of the case-control sampling design. We use the prevalence probability in
case-control weights, and our case-control weighting scheme successfully maps the
TMLE for a random sample into a method for case-control sampling.

Chapter 14. Individually matched case-control study designs are commonly im-
plemented in the field of public health. While matching is intended to eliminate
confounding, the main potential benefit of matching in case-control studies is a gain
in efficiency. This chapter investigates the use of the case-control-weighted TMLE
to estimate causal effects in matched case-control study designs. We compare the
case-control-weighted TMLE in matched and unmatched designs in an effort to de-
termine which design yields the most information about the causal effect. In many
practical situations where a causal effect is the parameter of interest, researchers
may be better served using an unmatched design.

Chapter 15. Using nested case-control data from a large Kaiser Permanente
database, we generate a function for mortality risk prediction with super learning.
The ensemble super learner for predicting death (risk score) outperformed all single
algorithms in the collection of algorithms, although its performance was similar to
several included algorithms. Super learner improved upon the worst algorithms by
17% with respect to estimated risk.
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Part V – RCTs with Survival Outcomes

In Part V we consider the following experiment: one randomly samples a unit from
a target population, measures baseline characteristics, randomly assigns a treatment,
and follows the subject to the minimum of dropout, the time to event of interest, and
time to the end of study. The dropout time is allowed to be affected by the baseline
covariates. We present the TMLE of the causal effect of treatment on survival, and
we also consider effect modification by discrete baseline factors.

Chapter 16. In most RCTs, the primary outcome is a time-to-event outcome
that may not be observed due to dropout or end of follow-up. The dropout or right
censoring time may depend on the baseline characteristics of the study subject. The
TMLE of a causal effect of treatment on the survival function of such a time-to-event
outcome requires estimation of the conditional failure time hazard as a function
of time, treatment, and the baseline covariates. The super learner of this hazard
function is presented and is demonstrated with a lung cancer RCT.

Chapter 17. The TMLE of a causal effect of treatment on a survival function in
an RCT is presented. This requires an update of the initial estimator of the condi-
tional hazard function (e.g., super learner), where the update relies on an estimator
of the right censoring mechanism and the treatment assignment mechanism (where
the latter is known in an RCT). The statistical properties of the TMLE are dis-
cussed showing that it provides a superior alternative to current practice in terms of
unadjusted Cox proportional hazards estimators or multiple imputation (maximum
likelihood estimation)-based estimators.

Chapter 18. It is often of interest to assess if the causal effect of treatment on sur-
vival is modified by some baseline factors. In this chapter, we define the appropriate
causal model and the target parameters that quantify effect modification by a dis-
crete baseline factor. We present the TMLE of these effect modification parameters.
The TMLE is demonstrated on an HIV clinical trial to assess effect modification by
gender and by baseline CD4 in an HIV study. The results are contrasted with current
practice, demonstrating the great utility of targeted learning.

Part VI – C-TMLE

Collaborative TMLE (C-TMLE) provides a further advance within the framework of
TMLE by tailoring the fit of the nuisance parameter required in the TMLE-step for
the purpose of the resulting TMLE of the target parameter. That is, the C-TMLE in-
troduces another level of targeting beyond a regular TMLE. This part demonstrates
the C-TMLE for the causal effect of treatment on an outcome, including time-to-
event outcomes that are subject to right censoring. Simulation studies as well as
data analyses are provided to demonstrate the practical utility of C-TMLE.

Chapter 19. The C-TMLE of the additive causal effect of treatment on an out-
come is presented, allowing an a priori-specified algorithm to decide what covariates
to include in the treatment mechanism fit, where the decisions are based on a loss-
function that measures the fit of the corresponding TMLE instead of the fit of the
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treatment mechanism itself. The TMLE and C-TMLE are compared in simulation
studies. The C-TMLE is also applied to assess the effect of all mutations in the HIV
virus on drug-resistance, controlling for the history of the patient, dealing with the
many strong correlations between mutations resulting in practical violations of the
positivity assumption.

Chapter 20. The C-TMLE of the causal effect of treatment on a survival time that
is subject to right censoring is developed. A simulation study is used to evaluate its
practical performance in the context of different degrees of violation of the positivity
assumption.

Chapter 21. This chapter uses simulation studies proposed in the literature to
evaluate a variety of estimators for estimating the mean of an outcome under miss-
ingness, and the additive effect of treatment when treatment is affected (i.e., con-
founded) by baseline covariates. These simulations are tailored to result in serious
practical violations of the positivity assumption, causing a lot of instability and chal-
lenges for double robust efficient estimators such as the TMLE. These simulations
have been extensively debated in the literature. This chapter includes TMLE and C-
TMLE in the debate. We contrast the C-TMLE to the TMLE and other estimators,
showing that the C-TMLE is able to deal with sparsity (i.e., violations of positivity)
in a sensible and robust way, while still preserving the optimal asymptotic properties
of TMLE.

Part VII – Genomics

In Part VII we consider the experiment in which one randomly samples a unit from
a target population, one measures a whole genomic profile on the unit, beyond other
baseline characteristics, one possibly measures a treatment, and one measures a fi-
nal outcome. In such studies one is often interested in assessing the effect of each
genomic variable on the outcome or on the effect of the treatment. TMLE targets
the effect of each genomic variable separately, contrary to current practice in vari-
able importance analysis. These genomic variables are often continuous, so that
one needs to define an effect of a continuous marker on the outcome of interest.
For that purpose we employ semiparametric regression models. The TMLE of the
effect measures defined by these semiparametric regression models are presented,
and demonstrated in genomic data analyses.

Chapter 22. The TMLE for assessing the effect of biomarkers is presented and
compared with other methods for variable importance analysis, such as random for-
est, in a comprehensive simulation study, and a breast cancer gene expression study.

Chapter 23. We present the TMLE and C-TMLE for assessing the effect of a
marker on a quantitative trait, across a very large number of markers along the whole
genome. Simulations and genomic data analyses are used to demonstrate the TMLE
and C-TMLE.
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Part VIII – Longitudinal Data Structures

In Part VI, we consider experiments that generate the full complexity of current
day longitudinal data structures: one randomly samples a unit from a target popula-
tion, measures baseline characteristics, and at regular or irregular monitoring times
collects measurements on time-dependent treatments or exposures, time-dependent
covariates, and intermediate outcomes, until the minimum of right-censoring or time
to the event of interest. Observing such longitudinal data structures on a unit allows
the identification of causal effects of multiple time point treatment regimens as well
as individualized treatment rules. In this part, we demonstrate the roadmap for ad-
dressing the scientific questions of interest and the corresponding TMLE for three
such longitudinal case studies. Technically-inclined readers may first wish to read
the longitudinal sections of Appendix A before digesting these chapters.

Chapter 24. A longitudinal HIV cohort is presented and three scientific ques-
tions of interest are formulated. The road map is applied. It starts out with the def-
inition of the causal model, the definition of the target causal parameters that rep-
resent the answers to the scientific questions, and the identifiability result resulting
in the estimand of interest. The statistical model and the estimand/target parameter
of the data-generating distribution define the estimation problem. Different meth-
ods for estimation are reviewed and presented: maximum likelihood estimation,
inverse probability of censoring weighted estimation (IPCW), targeted maximum
likelihood estimation, and inefficient practically appealing TMLEs referred to as
IPCW reduced-data TMLEs.

Chapter 25. A longitudinal study is presented which involves the follow up of
women going through an in vitro fertilization (IVF) program. One is interested in
assessing the probability of success of a complete IVF program. The road map is
applied as in all chapters. The TMLE of the probability of success of a complete
IVF program is developed, and applied to the study. Simulations are also presented.

Chapter 26. In this chapter, targeted maximum likelihood learning is illustrated
with a data analysis from a longitudinal observational study to investigate the ques-
tion of “when to start” antiretroviral therapy to reduce the incidence of AIDS defin-
ing cancer in a population of HIV infected patients. Two treatment rules are con-
sidered: (1) start when CD4 count drops below 350, and (2) start when CD4 count
drops below 200. The TMLE of the corresponding causal contrast is developed and
applied to the database maintained by Kaiser Permanente.

Part IX – Advanced Topics

We deal with the following explicit questions. Is the utilization of machine learning
in the TMLE a concern for establishing asymptotic normality? Can we develop a
TMLE for group sequential adaptive designs in which the treatment assignment
probabilities are set in response to the data collected in previously observed groups?
What are the asymptotics of this TMLE for such a complex experiment in which all
subjects are correlated due to treatment assignment being a function of the outcomes
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of previously observed subjects? Does sequential testing still apply? Since Bayesian
learning is nontargeted and suffers from the same drawbacks as maximum likelihood
based estimation, can we employ the principles of TMLE to construct a targeted
Bayesian learning method?

Chapter 27. The cross-validated TMLE (CV-TMLE) is presented where asymp-
totic linearity and efficiency can be established under minimal conditions. A formal
theorem is presented for the CV-TMLE of the additive causal effect, demonstrating
that it is able to fully utilize all the machine learning power in the world while still
allowing, and, in fact, enhancing, valid statistical inference.

Chapter 28. It is shown that the TMLE procedure naturally lends itself to tar-
geted Bayesian learning in which a prior probability distribution on the target pa-
rameter of interest is mapped into a posterior distribution of the target parameter of
interest. The frequentist properties of the mean and spread of the posterior distri-
bution are established showing that the proposed procedure is completely valid: the
mean of the posterior distribution is a double robust efficient estimator of the target
parameter, and the posterior distribution yields valid credible intervals.

Chapter 29. We consider targeted group sequential adaptive designs that adapt
the randomization probabilities in response to all the data collected in previous
stages. The TMLE of the desired causal effect of the treatment is developed and
presented. Asymptotics of the TMLE are based on martingale central limit theo-
rems. It is shown that sequential testing can still be naturally embedded in such
adaptive group sequential designs.

Part X – Appendices

Part X consists of two appendices providing important supplementary material in
support of the central text. The core of the first appendix is a theoretical guide cov-
ering essential topics, derivations, and proofs. This is followed by a brief introduc-
tion to R code for super learning and TMLE. Additional R code is available on the
book’s website: www.targetedlearningbook.com.

Appendix A. This appendix provides a succinct but comprehensive review of
the empirical process, asymptotic linearity, influence curves, and efficiency theory.
This theory establishes the theoretical underpinnings of TMLE, C-TMLE, and CV-
TMLE. In addition, Appendix A provides a generic approach that allows one to
compute a TMLE on a new estimation problem in terms of the definition of the data
structure, data-generating distribution, the statistical model, and the target parame-
ter mapping that maps a probability distribution in its target parameter value. The
TMLE for general longitudinal data structures is presented. A variety of examples
are used to demonstrate the power of this generic machinery for computing a TMLE.
Appendix A can be used to teach an advanced class about the theory of estimation
and, in particular, of TMLE.

Appendix B. This brief appendix provides R code and links to R code for each
of the implementations of the TMLE as presented in this book.

http://www.targetedlearningbook.com
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Abbreviations and Notation

Frequently used abbreviations and notation are listed here.

TMLE Targeted maximum likelihood estimation/estimator
C-TMLE Collaborative targeted maximum likelihood estimation/estimator
SL Super learner
SCM Structural causal model
MLE Maximum likelihood substitution estimator of the g-formula

Not to be confused with nonsubstitution estimators using maximum
likelihood estimation. MLE has been referred to elsewhere as g-
computation

IPTW Inverse probability of treatment-weighted/weighting
A-IPTW Augmented inverse probability of treatment-weighted/weighting
IPCW Inverse probability of censoring-weighted/weighting
A-IPCW Augmented inverse probability of censoring-weighted/weighting
RCT Randomized controlled trial
MSE Mean squared error
SE Standard error
i.i.d. Independent and identically distributed
O Observed ordered data structure
W Vector of covariates
A Treatment or exposure
Y Outcome
Y1, Y0 Counterfactual outcomes with binary A
C Censoring
P0 True data-generating distribution; O ∼ P0
P Possible data-generating distribution
Pn Empirical probability distribution; places probability 1/n on each

observed Oi, i . . . , n
p0 True density of data-generating distribution P0
p Possible density of data-generating distribution P0
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xlviii Abbreviations and Notation

Uppercase letters represent random variables and lowercase letters are a specific
value for that variable. P0(O = o) for a particular value o of O can be defined
as a probability if O is a discrete random variable, or we can use the concept of
probability density if O is continuous. For simplicity and the sake of presentation,
we will often treat O as discrete so that we can refer to P0(O = o) as a probability.
For a simple example, suppose our data structure is O = (W, A, Y) ∼ P0. Thus, for
each possible value (w, a, y), P0(w, a, y) denotes the probability that (W, A, Y) equals
(w, a, y).

M Statistical model; the set of possible probability distributions for P0
P0 ∈ M P0 is known to be an element of the statistical modelM

In this text we often use the term semiparametric to include both nonparametric and
semiparametric. When semiparametric excludes nonparametric, and we make addi-
tional assumptions, this will be explicit. A statistical model can be augmented with
additional nonstatistical (causal) assumptions providing enriched interpretation. We
refer to this as a model (seeMF andMF∗).

X = (Xj : j) Set of endogenous variables, j = 1, . . . , J
U = (UXj : j) Set of exogenous variables
PU,X Probability distribution for (U, X)
Pa(Xj) Parents of Xj among X
fXj A function of Pa(Xj) and an endogenous UXj for Xj

f = ( fX j : j) Collection of fX j functions that define the SCM
MF Collection of possible PU,X as described by the SCM; includes non-

testable assumptions based on real knowledge;M augmented with
additional nonstatistical assumptions known to hold

MF∗ Model under possible additional causal assumptions required for
identifiability of target parameter

P→ Ψ (P) Target parameter as mapping from a P to its value
Ψ (P0) True target parameter
Ψ̂ (Pn) Estimator as a mapping from empirical distribution Pn to its value
ψ0 = Ψ (P0) True target parameter value
ψn Estimate of ψ0

Consider O = (L0, A0, . . . , LK , AK , LK+1) ∼ P0.

Lj Possibly time-varying covariate at t = j; alternate notation L( j)
Aj Time-varying intervention node at t = j that can include both treat-

ment and censoring
Pa(Lj) =(Ā j−1, L̄ j−1)
Pa(Aj) =(Ā j−1, L̄ j)
PL j,0 True conditional distribution of Lj, given Pa(Lj), under P0
PL j Conditional distribution of Lj, given Pa(Lj), under P
PL j,n Estimate of conditional distribution PL j,0 of Lj

PAj,0 True conditional distribution of Aj, given Pa(Aj), under P0
PAj Conditional distribution of Aj, given Pa(Aj), under P
PAj,n Conditional distribution of Aj, given Pa(Aj), under Pn
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Ψ (Q0) Alternate notation for true target parameter where it only depends
on P0 through Q0

g0 Treatment/exposure/censoring mechanism
gn Estimate of g0
g Possible treatment mechanism
ε Fluctuation parameter
εn Estimate of ε
H∗ Clever covariate
H∗n Estimate of H∗

L(O, Q̄) Example of a loss function where it is a function of O and Q̄; alter-
nate notation L(Q̄)(O) or L(Q̄)

D(ψ)(O) Estimating function of the data structure O and parameters; short-
hand D(ψ)

D∗(ψ) Estimating function implied by efficient influence curve
D∗(P0)(O) Efficient influence curve; canonical gradient; shorthand D∗(P0) or

D∗(O)
IC(O) Influence curve of an estimator, representing a function of O

In several chapters we focus on a simple data structure O = (W, A, Y) ∼ P0. In this
example, the following specific notation definitions apply:

QY,0 True conditional distribution of Y given (A,W)
QY Possible conditional distribution of Y given (A,W)
QY,n Estimate of QY,0
Q̄0 Conditional mean of outcome given parents; E0(Y | A,W)
Q̄ Possible function in the parameter space of functions that map par-

ents of the outcome into a predicted value for the outcome
Q̄n Estimate of Q̄0

Q̄0
n Initial estimate of Q̄0

Q̄1
n First updated estimate of Q̄0

Q̄k
n kth updated estimate of Q̄0

Q̄∗n Targeted estimate of Q̄0 in TMLE procedure; Q̄∗n may equal Q̄1
n

QW,0 True marginal distribution of W
QW Possible marginal distribution of W
QW,n Estimate of QW,0
Q0 = (Q̄0,QW,0)
Qn Estimate of Q0
Q∗n Targeted estimate of Q0
Q Possible value of true Q0
Ψ (Q0) Alternate notation for true target parameter when it only depends

on P0 through Q0
Ψ (Q0)RD Additive causal risk difference; E0Y1 − E0Y0 = EW [E0(Y | A =

1,W) − E0(Y | A = 0,W)]





Models, Inference, and Truth:

Probabilistic Reasoning in the Information Era

Richard J.C.M. Starmans

Targeted maximum likelihood estimation (TMLE) strongly criticizes current prac-
tice in statistical data analysis as pervasively manifest in the sciences, medicine,
industry, and government, if not in all segments of society. For the most part, analy-
ses conducted in these fields rely heavily on incorrectly specified parametric models
with assumptions that do not use realistic background knowledge and in no way
contain the (optimal approximation of the) data-generating function. Especially in
large and complex, highly dimensional data sets this may cause biased estimators,
uninterpretable coefficients, and, in the end, wrong results. In addition, TMLE chal-
lenges the customary approaches to statistical learning, as developed in the field
of computational intelligence (machine learning, data mining, knowledge discovery
in databases), which usually do not treat missing or censored data in a statistically
sound way, neglect the importance of confidence intervals, and are often not rooted
in efficiency theory whatsoever. They are also habitually unnecessarily biased be-
cause the algorithms are not targeted but developed to fit the full (prediction) dis-
tribution. And all too often the choice of algorithms is determined by subjective,
human preferences, rather than by objective and rational criteria.

From a methodological point of view TMLE establishes a new “learning from
data” paradigm by offering an integrative approach to data analysis or statistical
learning. It combines mathematical statistics with techniques derived from the field
of computational intelligence to overcome the drawbacks of current approaches to
statistical data analysis or learning, providing analysts and scientists with a sound
research methodology, enabling them to cope with increasingly complicated, high-
dimensional data structures, which are currently prevalent in the sciences, industry,
government, and health care.

First and foremost, TMLE reassigns to the very concept of estimation, canonical
as it has always been in statistical inference, the leading role in any theory of or ap-
proach to “learning from data,” whether it deals with establishing causal relations,
classifying or clustering, time series forecasting, or multiple testing. This remark
may seem rather trivial from a statistical perspective, but it is far from insignificant
from a historical and philosophical point of view and – perhaps more importantly
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– will appear to be even crucial in understanding the situation in research practice
today. Secondly, TMLE reaffirms or rather reestablishes the concept of a statisti-
cal model in a prudent and parsimonious way, allowing humans to include only
their true, realistic knowledge (e.g., data are randomized, representing n indepen-
dent and identically distributed observations of a random variable) in the model.
Rather than assuming misspecified parametric or highly restrictive semiparametric
statistical models, TMLE defines the statistical estimation problem in terms of non-
parametric or semiparametric statistical models that represent realistic knowledge,
i.e., knowledge in terms of the underlying experiment that generated the data at
hand. Thirdly, TMLE rethinks the relation between research questions and analy-
sis by adhering to estimating equation methodology. The obvious methodological
maxim that the analysis must “be guided by” the research problem should not pre-
vent the researcher from relating the question of interest in the analysis to features
of the data-distributing function. TMLE defines the target parameter as a particu-
lar function of the true probability distribution of the data and estimates the target
parameter accordingly with a plug-in estimator; it refrains from estimating the en-
tire probability distribution. Finally, TMLE integrates statistics and computational
intelligence techniques by the development of the super learning theory, which un-
intentionally and ironically helps to restore the old ideal of artificial intelligence
(AI) by further reducing human intervention in the very process of automatic rea-
soning. It therefore marks an important step in the convergence between the world
of algorithms of computer science (including AI) on the one hand and the world of
mathematical statistics on the other.

Clearly, controversy and debate are not unusual in science, and many disciplines
lack uniformity or even embrace a pluralism of methods or paradigms. In this re-
spect, the current situation in statistical data analysis seems rather peculiar. From a
foundational perspective the field consists of several competing schools with some-
times incompatible principles, approaches, or viewpoints. Simultaneously, the bur-
geoning statistical textbook market offers many primers and even advanced studies
that wrongly suggest a uniform and united field with foundations that are fixed and
on which full agreement has been reached, while we rather experience a striking
piece of philosophical eclecticism.

Against the background of this somewhat paradoxical situation we will reflect
on TMLE in this philosophical essay. Indeed, there are many important implica-
tions, not only for the philosophy of statistics in particular but also for the epis-
temology/philosophy of science in general. Obviously, in exploring these we must
restrain ourselves. TMLE is a rather new, rapidly developing field, and there are
many ramifications in philosophy, only a few of which can be touched upon here.
We will put the present state of affairs in a historical and philosophical perspective
so as to clarify, understand, and account for the current situation in statistical data
analysis and to underline the relevance of topics addressed by TMLE for both the
philosophy of statistics and the epistemology/philosophy of science. This historical
and philosophical perspective involves:
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• taking an externalist stance and identifying three major developments in the his-
tory of ideas that provide a context for the emergence of the probabilistic revolu-
tion and define the arena where it receives its relevance;

• taking an internalist stance and identifying some major immanent developments
in the history of statistics that have led to the current situation or at least may
help to understand it;

• providing a prelude to a conceptual analysis of some key notions, focusing on
the nature and status of the very concepts of statistical model and probability
distribution, on the role of statistical inference and estimation, and on the notion
of truth and its relation to reality.

This approach unavoidably implies deftly navigating between the Scylla of the
archaeologist and the Charybdis of the futurologist, thus trying to avoid both plain
historical excursions and mere speculation. But it also means dragging the concepts
at stake into the philosophical triangle, built up by the notions of reality, thoughts,
and language, and evoking classical questions like: What is reality? Does it exist
mind-independently? Do we have access to it? If yes, how? Can we make true state-
ments about it? If yes, what is truth and how is it connected to reality? These ques-
tions, which are pivotal in the philosophy of the empirical sciences, will appear to
be of equal relevance here. Answering these questions always involves taking or at
least considering certain philosophical positions, and it is shown that specific philo-
sophical ideas, embraced by the main protagonists who shaped the field of statistics
can help to account for the current state of affairs.

Informational Metaphysics and the Science of Data

No doubt this is the information era and our exploration only gets its full re-
lief against a background where the concept of information dominates our entire
world(view). It plays a fundamental role in all the sciences and therefore in episte-
mology as well. Some philosophers even stipulate its metaphysical importance. For
example, when the digital revolution was barely launched, the American philoso-
pher, mathematician, and founder of cybernetics Norbert Wiener (1894–1964) pos-
tulated in a famous quote from 1961 that the concept of information is more funda-
mental than matter and energy. In his renowned “It from Bit” doctrine, the physi-
cist John Archibald Wheeler (1911–2008) did more or less the same, claiming that
all things in nature have an immaterial source and explanation and are essentially
information-theoretic in origin.

Unsurprisingly, such informational descriptions of reality have been embraced by
many antimaterialist philosophers, suffering under the yoke of the currently prevail-
ing naturalism or physicalist reductionism. And they were a prelude to the modest
rise of the current informational metaphysics in which man inhabits an informa-
tion space, his mind is regarded as an information-processing system, physical re-
ality is presented as a massive computer, and physical processes are regarded as
calculations or state transitions. But these considerations on information are also
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warranted by current foundational research in the various empirical sciences. Here
information and information processes are essential, underlie many theories, and are
formalized and simulated from different perspectives and with different objectives.
Salient examples, which have also proved their relevance in contemporary philos-
ophy of science, are mainly found in mathematics (classical information theory of
Shannon), computer science (Kolmogorov complexity), physics (Gibbs entropy),
biology (DNA coding) and economics (game theory). It goes without saying that
the very idea of semantic information, which dominates the humanities, can easily
be added to this list as well.

Philosophers disagree whether a unified theory of information, covering all these
approaches and perspectives, is feasible or even desirable. However, as a starting
point for our conceptual analysis, and to proceed in a more down-to-earth way, we
adhere to the traditional point of view that information is just data plus interpre-
tation, or at least presupposes a concept of data, a “medium,” that should be con-
sidered at a symbolic, semiotic, or physical/acoustic level and that is assumed to
represent, enable, convey, or even materialize information. This shifts the focus in a
conceptual analysis to the nature and status of these data, and especially to their re-
lationship with reality, from which – in one way or another – they have been “taken,”
or from which they have been generated, or which they are supposed to represent,
access, encrypt, simulate, replace, or perhaps even build up, depending on the philo-
sophical position one is willing to embrace. These data must be collected, stored,
and analyzed, and they give rise to at least three fundamental questions:

• How do the phenomena in all their complexity and dynamics, and their postulated
underlying structures and mechanisms relate to variation, change, relationships,
and hidden patterns in data?

• How can complex analyses and manipulations of data, and computational models
based on these manipulations, yield reliable knowledge of reality?

• How can systems that store and manipulate data to change or control reality
be validated in the sense that it is evaluated whether they helped to create the
proposed changes?

Both statistics and computer science scrutinize these interrelated questions,
where the division of tasks is not always clear in advance. For a long time both have
been continuing their own institutionalized role despite some recent rapprochements
between the statistics and the computational intelligence community. Yet from an
external or functional perspective they both build up – each in their own way – a
“science of data” and are together eligible for the title “Queen and Servant of Sci-
ence,” a label once famously assigned by E.T. Bell to mathematics in general.

Both help the aforementioned information-oriented disciplines with their keen
interest in informational descriptions of nature to answer these questions, laying
(or at least partially explaining) the foundations on which these sciences can build.
Interestingly, it appears that the analyses that are performed (in answering these
questions) are usually intrinsically probabilistic, i.e., they are based on or derived
from probability theory and statistics. In manipulating these data, all aforementioned
information-oriented sciences perform probabilistic reasoning; their key notions are
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probabilistic, and their research methods, indeed entire theories if not the underlying
wordview are probabilistic.

When the probabilistic revolution emerged in the late nineteenth century, this
transition became recognizable in old, established sciences like physics (kinetic gas
theory, the statistical mechanics of Boltzmann, Maxwell, and Gibbs), but especially
in new emerging disciplines like the social sciences (Quetelet and later Durkheim),
biology (evolution, genetics, zoology), agricultural science, and psychology. Biol-
ogy even came to maturity due to its close interaction with statistics. Today, this
trend has only further strengthened, and as a result there is a plethora of fields
of application of statistics ranging from biostatistics, geostatistics, epidemiology,
and econometrics to actuarial science, statistical finance, quality control, and op-
erational research in industrial engineering and management science. Probabilistic
approaches have also intruded upon many branches of computer science; most no-
ticeably they dominate AI, having supplanted the once mighty logical tradition in
this field. Indeed, all too often scientific reasoning seems nearly synonymous with
probabilistic reasoning. It therefore comes as no surprise that in contemporary phi-
losophy of science, the “probabilistic approach” strongly dominates when it comes
to the aforementioned classical questions regarding reality, knowledge, and truth.
This is reflected in the following list of key issues and controversies, deemed rele-
vant in and consistently addressed by the vast majority of contemporary textbooks
in this field:

• The scientific realism debate, the Quine–Duhem thesis/underdetermination;
• The structure of scientific theories;
• The search for unity of science;
• Rationality and progress in science;
• (Bayesian) confirmation theory;
• The role of causality, models of explanation, and natural laws;
• Evolution of scientific practices/dissemination of knowledge.

It would demand another couple of essays to demonstrate how these key issues
in the philosophy of science are all dominated or at least influenced by probabilistic
approaches, incorporating probability theory or statistics. As a result, many classical
questions brought forward in epistemology, regarding reality, truth, and obtaining
knowledge, can only be dealt with or interpreted in a probabilistic way. In view
of the fact that scientific inference increasingly depends on probabilistic reasoning
and that statistical analysis is not as well founded as might be expected, the issue
addressed in this essay is of crucial importance for epistemology, especially for
those who want to safeguard the rationality of science and pursue truth in an era
where scientism seems dominant and many people believe that science is the only
valid source of knowledge.

However, before these speculations on the metaphysics of information could be
launched, and before the new science of data could address the questions listed
above, an even more essential revolution was needed, invoking a change in world-
view, a new view of reality. This happened in the nineteenth century when a histori-
cizing of the world took place, when 2000 years of substance thinking came under
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pressure, and when, according to the philosopher Ian Hacking, an “erosion of deter-
minism” became visible. In this process the concepts of variation and change played
a pivotal role, after they went through an emancipation process that took about 2500
years.

From Parmenides to Pearson

For a long time the related concepts of variation and change had a rather pejorative
connotation in philosophy and science. It all began with the ancient Greek philoso-
phers, who sought an explanation for the different aspects of change: change of
location (motion), growth and decay, change in quality and quantity. Its existence
was often denied or deemed impossible and reduced to nonchange. Variation was
regarded as a deviation from a rule or standard, which at best should be explained.
Both were indications of imperfection and unpredictability.

The Eleatic philosopher Parmenides was the most radical advocate of the im-
mutability of being. Backed by the famous paradoxes of his apprentice Zeno, he ar-
gued that motion was impossible on logical and metaphysical grounds. Changes are
nothing but effects on the senses; reality is unified, indivisible, and unchangeable.
Plato pursued this idea from Parmenides and placed against the imaginary world of
phenomena a “real” transcendental world, timeless and unchanging. Atomists like
Leucippus and Democritus did not deny the reality of perception, but tried to reduce
change to nonchange. Movement, growth and decay, and changes in quantity and
quality were considered nothing more than a rearrangement of elementary particles.
Aristotle disputed both the atomists and Plato by respectively introducing the poten-
tial being and his hylomorphism, where form and matter are bound together and the
essential forms lay hidden in the things themselves. But although he was a biologist
par excellence, Aristotle also struggled with the variation in the sublunary world.
The variety and changeability of matter constituted an obstacle to formulating laws
and raised serious problems for his axiomatic-deductive ideal of knowledge. Put
roughly, despite the work of Heraclitus, and due to the vision of the aforementioned
thinkers and especially the influence of Aristotle’s substance thinking, the notions
of variation and change long remained problematic in the Western history of ideas.

In the seventeenth century, many “dynamic” theories such as Descartes’ vortex
theory and Leibniz’s monadology were proposed, but, especially owing to the de-
velopment of calculus by Newton and Leibniz, science finally got a grip on the
phenomenon of change. However, variation in nature remained problematic, even
after the general acceptance of classical mechanics and the improvement of mea-
surement techniques. Pierre-Simon Laplace (1749–1827) developed his famous er-
ror function, in this context a noteworthy, perhaps ominous, name. In his celestial
mechanics he “explained” the deviations from the planetary orbits, showing they
were normally distributed, and thus he “rescued” the deterministic worldview, of
which he was the principal exponent. Laplace’s student Adolphe Quetelet (1796–
1874) took a significant step forward by applying the normal distribution to human
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qualities: he introduced his abstraction of “l’homme moyen,” claiming the mean to
be the “essence.” He did not deny the relevance of spread and variation, but these
“deviations” were bound to the Procrustean bed of the normal distribution; they had
to be corrected or at least restrained.

The volatility of (living) nature and her many appearances were thus an obsta-
cle to a deterministic world in which causal laws prevail, and they foiled a mathe-
matical approach to the phenomena. Even great pioneers of statistics like Laplace
and Quetelet could bring only limited change, notwithstanding straightforward ap-
plication of Queteletian ideas by physicists (statistical mechanics). The conceptual
breakthrough came no earlier than with the theory of evolution of Wallace and Dar-
win. Aristotelian essentialism and the alleged invariability of species were replaced
by the idea that variation is inherent in nature and that the Earth has a long history
of genesis and change. The implications were soon understood by Darwin’s cousin
Francis Galton (1822–1911), an amateur scientist who privately funded numerous
studies and was an indefatigable advocate for the application of mathematics to the
study of living nature. However, he had to leave the decisive step in this emanci-
pation process of the concepts of variation and change to his protégé Karl Pearson
(1857–1936), eminent statistician and influential philosopher in his time. Before we
show how Pearson put the crown on this process, we must emphasize two things.

Firstly, the process whereby variation and change were no longer treated in a
pejorative way was not only recognizable in animate nature and a prerequisite for
the rise of mathematical statistics. In fact, it was not exclusively attributable to biol-
ogy/evolutionism either but shows its many faces in nineteenth century philosophy.
For example, the “historicizing of the world” was reflected in Hegel’s idealistic di-
alectics, and afterward in the materialist dialectics of Feuerbach and Marx. The rein-
forcement of Heraclitean, antisubstance philosophy was recognizable in the process
thinking of Henri Bergson and Alfred N. Whitehead. Herbert Spencer and others
made a first move toward evolutionary ethics. Also, the decline of concepts like
determinism and essentialism should be viewed in this light. Especially the strong
indeterminism of leading pragmatist philosopher C.S. Peirce influenced the intel-
lectual climate in this respect. The list could easily be extended. Secondly, it goes
without saying that ever since this change in worldview, anyone who wanted to ap-
proach reality from a scientific point of view and represent it in a formal way had to
do justice to the new situation, treating variation and change in a nonpejorative way
and act accordingly in answering the key questions mentioned in the introduction:
What is reality? Does it exist mind-independently? Do we have access to it? If yes,
how? Can we make true statements about it? If yes, what is truth and how is it con-
nected to reality? The next section shows that Pearson was the first statistician who
faced this challenge and proposed answers to all these questions.
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The Pearsonian Philosophy

Galton convinced Pearson that animate nature indeed allowed for a mathematical
treatment without deprecatory interpretations of deviations, error functions, etc.
Pearson did justice to the complex reality by identifying variation not in errors,
but in the phenomena themselves (encoded in data), and by not trying to reduce this
variation to the normal distribution but by considering all kinds of (classes of) prob-
ability distributions. Variability manifests itself in a point cloud of measurements,
and Pearson essentially looked for the best fitting “model,” the function that best
described the mechanism that generated the data. As such he was the first one to
give probability distributions a fundamental role in science, and he opened the door
to inferential statistics.

A crucial first step was Pearson’s work on skewed distributions. Studying large
numbers (biometric) data collected at the Galton laboratory, he realized that many
phenomena were not normal but intrinsically skewed and could be described using
four parameters (mean, standard deviation, skewness, and kurtosis) and be classi-
fied in families of (skewed) distributions. According to Pearson, the unity of the
sciences could be found in this constructive, albeit very labor-intensive, methodol-
ogy. He therefore employed large groups of women (the “calculatores”) in a studio,
calculating the four parameters of huge numbers of data files.

In philosophical terms, Pearson was influenced by Ernst Mach’s phenomenalism,
an extremely empiricist doctrine that states that reality consists of elements (colors,
vibrations, times) emerging in streams of sense data or immediate sensations. These
are supposed to be neutral (neither mental nor material), and both physical objects
and content of the mind are constructed from these sensations. Science has pri-
marily a “think-economic” function, describing and summarizing these streams as
economically as possible and refraining from postulating nonverifiable theoretical
constructs. Newtonian notions such as force and attraction found no favor with Ernst
Mach, who tried to rewrite classical mechanics in a “sound,” phenomenalistic way.
Unsurprisingly, Mach rejected causal explanations as well.

One of Pearson’s main achievements, his contribution to the correlation and re-
gression analysis, should be viewed in this light. Along with Bertrand Russell he
became the main anticausalist at the beginning of the twentieth century. Science
is all about correlations; causality should be radically eliminated from science and
could at best be relegated to metaphysics. But Pearson also had an idealistic view of
reality and regarded science mainly as a classification and analysis of the content of
the mind. Because of these philosophical principles, which were for the most part
already apparent in The Grammar of Science of 1892, Pearson saw the world on
another level of abstraction, where data, variation in data, data-generating mecha-
nisms, and parameters of distributions encode or build up reality: they replaced the
alleged materialist physical reality rather than representing it. Interpreting his proba-
bility distributions in an almost Pythagorean way, the clouds of measurements were
the objects of science, and the (concept of) reality was replaced by the probability
distribution, or rather the four parameters. It was an abstract world, but “observable,”
close to the data, accessible, knowledgeable through observation, and essentially a



Models, Inference, and Truth: Probabilistic Reasoning in the Information Era lix

summary of the data. Insofar as he had a concept of statistical inference, it was
mainly based on the idea of goodness-of-fit testing. Still, Pearson’s distributions
were much more than a purely mathematical notion; they were the crown of the
emancipation process sketched above. Therefore its importance truly exceeds the
history of statistics.

Material Eliminativism vs. Common Sense

By replacing the materialist world with that of a probability distribution and by
taking a strong anticausalist stance, Pearson contributed notably to a third major de-
velopment in the history of ideas, brought forward in this essay, whose relevance for
the current situation in statistical data analysis can hardly be overemphasized. This
trend, or rather tension, has a long and impressive history in Western thought, start-
ing with the pre-Socratics and reaching a (temporary) peak, showing its many faces
in contemporary science. Gradually the worldview being developed in philosophy
and science became more abstract and less tangible. It seems far removed from our
daily experiences, intuitive concepts, commonsense notions, and the natural cate-
gories we use to understand ourselves, our situatedness, and the contingencies of
being.

Already around 600 BC Ionian and Dorian philosophers advocated a strong re-
ductionism, distancing itself from everyday perceptions and reducing the multiplic-
ity of phenomena to first principles or primary elements. Thales’ solution (water)
and that of Heraclitus (fire) still had some graphic “imagery,” but Anaximander ap-
pealed to the abstract concept of “apeiron,” or the fundamental indeterminate. As
has been stated before, Eleatan philosopher Parmenides denied the variability of be-
ing and thus the primacy of the senses; the Pythagoreans put the reality of numbers
and numerical relations above alleged material and observable objects. Plato com-
bined the two ideas in his theory and had little admiration for science that focused
on the phenomena. The atomists, and in their wake, Epicurus distinguished between
“primary” (shape, size, location) and “secondary” (color, taste, sound) properties. It
was above all Aristotle who in a way championed commonsense thinking because
he put the “essential forms” in phenomena, took great interest in the analysis of
ordinary language, and at times showed a fundamentally empirical attitude.

The problem emerged differently in the eighteenth century, when Scottish philoso-
pher Thomas Reid took a position against the rationalist philosopher Descartes and
the empiricist philosophers Locke, Berkeley, and Hume. Encouraged by the suc-
cesses of science in understanding the “outside world,” these famous predecessors
and contemporaries of Reid started to investigate the “inner world” with emphasis
on perception, mental representations, and the development of “theories of ideas.”
Reid criticized them because in his opinion all, each in their own way, wrongly
“placed” perceptions and mental representations between the objects in reality and
the subjects who perceive reality, making an unnecessary rift between subject and
object, inner and outer world, resulting in paradoxes, solipsism, or skepticism. Some
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distrusted the senses, or at least a portion of the sensory input (Descartes), or labeled
experiences of color, taste, and sound as “secondary” to real or “primary” qualities
of the world (Locke). Others claimed that material objects do not exist indepen-
dently of the mind (Berkeley) or are in fact not knowable (Hume). At best, reality
was hidden behind a “veil of perception.” Reid defended a direct realism with an
external world that is knowable; rather than closing the road to our ideas “outside,”
it opens it correctly. God has given mankind a number of valid mechanisms for ac-
quiring knowledge, such as the principle of induction and the ability to see some
obvious truths. Our sensus communis is not only a precondition for reasoning, but
also a sufficiently reliable basis for philosophical analysis.

Immanuel Kant came up with a “solution” or rather a compromise. In a sense, he
created a gap by postulating a true but inaccessible noumenal reality and a knowable
phenomenal reality, formed by the knowing subject itself with Anschauungsformen
of time and (Euclidean) space, and categories such as causality, necessity, modality,
and other “conditions” for having an experience at all. Yet it is the phenomenal
world that is actually being studied in the natural sciences, and consequently the
aforementioned “commonsense” categories are necessarily valid, enabling purely
“synthetic a priori knowledge.” Kant’s solution soon proved to be problematic. In
the nineteenth century, non-Euclidean geometry was developed, at the turn of the
20th century the theory of relativity made absolute time and space problematic if not
untenable, and shortly thereafter the famous Copenhagen interpretation of quantum
mechanics cracked our intuitive notion of causality as a Kantian building block of
reality.

Indeed a dualism seems manifest between the intuitive environment of phenom-
ena, with its experiences (perceptions, impressions, sensations) and its (postulated)
material objects on the one hand and the scientific worldview on the other hand, of-
fering us abstract, often mathematical, models, representations of the “real” world,
that are supposed to lie behind these experiences, to cause or to explain these. Many
believe that our experiences and intuitive concepts, commonsense notions, and natu-
ral categories (in the Aristotelian or Kantian sense) are no longer a reliable basis for
scientific theories, describing the underlying mechanisms, abstract principles, and
laws that govern the “real” world, as described by the language and nomenclature of
science. In the course of time, many of these intuitive concepts and commonsense
notions have been banned or received a specific abstract or mathematical interpreta-
tion. This concerns concepts like space, time, motion, causality, and intentionality,
but also the notions of meaning, spirit, free will, personal identity, and conscious-
ness.

Notorious in this respect are the views of philosopher and neuroscientist Paul
Churchland, who radically rejects a tradition that is sometimes pejoratively referred
to as “folk psychology.” It exploits the idea that people typically try to understand,
explain, and predict the behavior of themselves and others in terms of (causally rel-
evant) factors such as motives, intentions, beliefs, and commitments. Churchland
argues for a radical “eliminative materialism” in relation to these propositional at-
titudes and suggests that the whole idea of folk psychology, including the concept
of consciousness, wrongly approaches the human mind and its internal processes.
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Likewise, he regrets the concerns of philosophers and AI researchers with language
and its assumed significance for the mind and for reasoning! Developments in neu-
roscience, he believes, will lead to the elimination of these errors, which according
to Churchland’s scientific worldview are equally relevant as the eighteenth-century
phlogiston theory of Stahl to modern chemistry or medieval ideas about witchcraft
to contemporary psychology. The extreme and very controversial view expressed
by Churchland is in no way the general opinion. In fact we experience an ongo-
ing dualism, a debate that is far from being passé and continues to be fueled by
developments in philosophy (e.g., the scientific realism debate) and the sciences.

It is not a mere choice between folk psychology and abstraction or a simple
black-and-white dichotomy. History shows that not only intuitive notions or (al-
legedly) vague metaphysical concepts such as Bergson’s élan vital, Whitehead’s
organism, or Heidegger’s dark neologisms fall prey to “elimination.” Highlights in
the history of science have also been targeted. We already referred to Ernst Mach
discrediting Newtonian notions of force and attraction. Conversely, many common-
sense concepts appear persistent and vital. In fact, current AI research on the “think-
ing” machine, automatic reasoning, and knowledge representation is a shining coun-
terexample. According to “Strong AI” man builds machines “in his own image,” or
is inspired by (our knowledge of) human cognition. Even stronger, the most funda-
mental concept in computing, the Turing machine was based on this idea! AI designs
working artifacts but takes into account the human mind, including concepts such
as intelligence, reasoning, consciousness, and the role that language and knowledge,
belief, and uncertainty play in this respect. Natural concepts and categories that we
use to understand ourselves and our environment are not suppressed at all but used
in intelligent systems for knowledge representation and reasoning with it. Many
subfields in AI, especially those of symbolic AI, successfully combat this elimina-
tivism, starting with McCarthy’s seminal work in 1953 on Programs with Common
Sense, Pat Hayes’ Naïve Physics Manifesto, and the field of qualitative reasoning
and reaching a peak in current multiagent research, where autonomous agents are
supposed to have high-level cognitive functions and reason with beliefs, intentions,
and desires and are even supposed to express emotions – indeed a straightforward
implementation of folk psychology.

Returning to statistics, we have already stated that Pearson made a vital con-
tribution to this debate, and although causality would make a big revival in statis-
tics after Pearson, his Pythagorean view of the world as a probability distribution
stands firmly today. In the next sections it is shown that the tension sketched above
even intensified after Pearson throughout the development of 20th-century statistics
and continues to cast its shadows on statistics today. The general problem for (phi-
losophy of) statistics is clear: How can intuitive notions on reasoning, risk, odds,
uncertainty, chance, or confidence – which are crucial in the world we experience
and from which we want to obtain knowledge – be covered, represented, or har-
monized with or replaced by notions from mathematical probability and statistics:
significance level, likelihood, testing, confidence intervals and effect size, parameter
estimation, power, and type 1 and type 2 errors. Is convergence or alignment possi-
ble? Unsurprisingly, in the many disciplines concerned with probabilistic reasoning
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this has been debated. Are humans intuitive statisticians like the psychologist C.R.
Peterson claimed in the sixties, or did famous experiments conducted by Kahne-
man and Tversky prove the opposite? Or should we perhaps pay more attention to
the strenuous objections of L.J. Cohen, who scorned what he called the “Pascalian”
tradition? Statisticians themselves have been playing their part in this debate, and
the success of the so-called Bayesian paradigm in AI and epistemology is largely
attributable to this issue. The allegory of the thinking machine in AI is exploited not
only in symbolic AI (knowledge representation), but even in subsymbolic AI, where
probabilistic reasoning has achieved immense success (e.g., in Bayesian belief net-
works and learning), and in this respect it brought statistics and computer science
closer together. This issue will be pursued a little further in a later section.

The Fisherean Turn: Estimation, Models and Causality

Pearson’s extreme phenomenalism prevented him from establishing relations other
than correlative ones and made him reluctant to accept any concept of reality or
model that went far beyond the data. In fact, Pearson considered the statistical dis-
tribution as describing the actual collection of data, a large but finite subset of the
set of all possible measurements that could only be measured in an ideal situation.
As long as the subset was big enough, the computed parameters would be the same
as those of the entire collection. Probability should not be related to some obscure,
abstract underlying reality, beyond phenomena.

Ronald A. Fisher (1890–1962), on the other hand, was not constrained by
Machean doctrines and looked deeper into the Pythagorean universe. For him real-
ity was an abstract mathematical distribution rather than a sparse, “think-economic”
description of the data at hand. These data were just a random sample, having a
distribution of their own. Truth didn’t collapse with the data, but it could only be es-
timated. As such, evaluation criteria were needed based on the characteristics of the
sampling distribution. Fisher famously came up with criteria that, although altered
by his descendants, are persistent in current practice: unbiasedness, consistency, and
efficiency. In this way he could prove Pearson “wrong” on many occasions.

He also made a big step forward in the development of the idea of significance
testing, which was in some primitive form already recognizable with John Arbuth-
not in the eighteenth century and which went no further with Pearson than the idea
of goodness of fit. Fisher achieved this by nearly single-handedly developing con-
cepts like p-values, significance level, degrees of freedom, and especially a clear
distinction between sample and population. The latter was necessary to create the
very idea of estimation, which obtained a central place in statistical inference due
to Fisher. He also worked on well-founded notions of randomization and random
samples, unlike Pearson, who rather relied on large amounts of data collected at the
Galton laboratory by convenience sampling. Thus Fisher made a definitive step to-
ward inferential statistics. He also reinstated the concept of causality in science by
giving it a central place in his methodology.
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In fact, Fisher did what Pearson initiated but failed to accomplish: establishing
a new statistical methodology, the core of which still stands today. The analysis
of variance offered a framework for experimental design, and his maximum likeli-
hood estimation has dominated scientific reasoning up to the present and has gained
an unprecedented popularity. His criteria for the assessment of estimators marked
the rise of efficiency theory and provided him with the tools to vigorously attack the
Pearsonian bastion. Last but not least we must emphasize another great achievement
that is largely attributable to Fisher: the whole idea of a statistical model. Just like
the notion of estimation, this concept was determined by the underlying philosophy
regarding reality and knowledge. The conception of a statistical model as a collec-
tion of probability distributions containing the data-generating function that could
only be estimated based on statistics with a distribution of its own was a Fisherean
concept; it was not explicitly part of the Pearsonian philosophy.

No doubt Pearson and Fisher were antipodes, and this also became apparent in
their contributions to biology: Pearson being a biometrician, Fisher a mendelian.
Both camps were involved in vicious ideological clashes for decades. Many would
be inclined to agree that in answering the epistemic key questions Fisher was an im-
provement on Pearson in many ways, and indeed he has changed the face of statistics
considerably. However, he did not refute or sweep the Pearsonean philosophy away.
In fact, it could be argued that Pearson’s statistical ideas are still influential and have
even enjoyed a revival in recent decades in computational intelligence approaches
like data mining.

This field has many powerful techniques and an underlying methodology that
rather show a greater affinity with the heritage of Pearson than demonstrate a con-
tinuation of Fisher’s work. Algorithms such as association rules, decision trees, and
tree induction have taken over the donkey work of Pearson’s calculatores. These
techniques certainly do perform probabilistic reasoning based on large amounts of
data; how the data have been collected and the underlying mechanism that would
have generated them may seem less important. This applies to the relationship be-
tween sample and population too; in computational intelligence, this is more like
Pearson than Fisher. Even more important is the role of estimation, which is in many
computational intelligence techniques no longer the guiding principle or key notion
in statistical inference, and the same applies to corresponding assessment criteria
from efficiency theory. Pearsonian goodness of fit, cross validation, and all kinds of
notions of similarity and measures for predictive success are dominant.

We therefore will defend the claim that the first factor responsible for the current
situation in statistical data analysis can be traced back to the contrast between Pear-
son and Fisher. More precisely, the fact that several elements from both philosophies
coexist while being mutually exclusive is of prime importance; the different answers
they gave to the epistemic key questions resound in their views on models, reality,
inference, and truth.
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Hypothesis Testing: The Fisher–Neyman/Pearson Controversy

Fisher’s contribution to statistics was even more controversial, and his legacy con-
tributed largely to the current situation. The reason for this was that many of his
ideas and concepts were canonized and applied before they were fully developed,
agreed upon, and understood. For example, significance testing was, according to
Fisher, a weak argument, only to be applied in randomized experiments and pow-
erful in a series of tests. Significance did not imply rejection once and for all, and
insignificance didn’t imply unimportance in the “substantial” domain.

Ironically, the confusion was partly due to one of Fisher’s magnificent perfor-
mances, his Statistical Methods for Research Workers (1925). In fact, this was the
first genuine methodology handbook in history. He accomplished what philosophers
like Aristotle, Francis Bacon, and, in the nineteenth century, J.S. Mill and Herschel
had tried but failed to achieve. It contained no hard mathematics or proofs, but prac-
tical advice and techniques to be applied by nonmathematicians and practitioners:
biologists, agricultural scientists, psychologists, and social scientists working in the
field. But Fisher was often quite unclear about the precise interpretation of concepts
like significance level, rejection and confirmation, proof, and truth.

Be that as it may, the social sciences, and especially psychology, which had just
emerged from a period dominated by positivism, were eager to enhance their scien-
tific status and desperately looking for a logic of scientific inference. This involved
drawing conclusions from data in many ways: confirming or rejecting hypotheses
concerning the “real” world, manipulating measured variables, hypothesizing about
latent constructs or unmeasured variables, dealing with positive and negative ev-
idence, “deriving” statistical laws in the Queteletian way, etc. It seemed that the
recipes could all be found in Fisher’s book. Sometimes chasing low p-values (in-
cluding the celebration of significance and not reporting nonsignificance) seemed
the royal, if not the only, road to truth.

But the whole idea of Fisherian significance testing came under real attack by
peers like Jerzy Neyman (1894–1981) and Egon Pearson (1895–1980), Karl Pear-
son’s son. Impressed as they both were with Fisher’s maximum likelihood estima-
tion and his concept of a statistical model, they could not approve Fisher’s arbitrary
criteria for a test statistic and rejection area. They argued that testing a hypothesis
only made sense if one confronted the hypothesis with a set of alternative hypothe-
ses, that one should consider two types of error that are usually of unequal impor-
tance (type 1 and type 2 errors), which gave rise to their famous theory on statistical
power and related ideas on effect size and calculations of sample size. Neyman and
Pearson gave hypothesis testing a central place in inferential statistics, next to esti-
mation. Fisher didn’t accept the criticism, overemphasizing the differences between
significance testing and hypothesis testing. According to Neyman they were con-
ceptually similar, he only intended to improve on Fisher. Again two schools seemed
to emerge. Analogous problems could be formulated with respect to confidence in-
tervals, which were also not acknowledged by Fisher, who experimented with his
own ideas on interval estimation, the so-called fiducial probabilities, that would find
little support.
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In fact, there were many more (philosophically inspired) controversies between
both Fisher and Neyman, that cannot be dealt with here. Both were frequentists at
heart, but Neyman took a behavioristic stance and accused Fisher of using concepts
that could not be dealt with in a decent frequentist way, making references to epis-
temic connotations, sometimes even acting in a semi-Bayesian way. In those days
this was a serious indictment. Still, today no definite synthesis has been achieved
and as such the controversy between Fisher and Neyman/Pearson may be regarded
as the second factor in the history of statistics that influenced current practice. Again
elements of both statistical traditions are concurrently applied in practice and some-
times used in a rather odd, ecumenist way.

Bayesianism, Indirect Probability, Knowledge Representation

The third immanent development in the history of statistics that must be identified
is no less dominant than the previous one, and has everything to do with the ten-
sion or dualism between scientific worldview and commonsense worldview that we
sketched in our discussion of material eliminativism. Also, Pearson’s successors
Fisher and Neyman contributed to this tension, albeit in a different way.

Many concepts related to probability, estimation, and testing introduced by both
are notoriously difficult to interpret and are far removed from our intuitive notions
about knowledge, uncertainty, truth, and reasoning: significance, p-values, degrees
of freedom, confidence intervals, and effect size. An interpretation is often only
possible with a frequentist approach to the concept of probability. For example,
confidence intervals serve well as an effect size but are notoriously difficult to inter-
pret and in a way presuppose a frequentist view on probability. That is precisely the
problem, because ever since the emergence of probability in the seventeenth cen-
tury, it has been clear that probability expresses not only regularity in the long run
but also has epistemic and doxastic connotations that must be accounted for.

In addressing the interpretation of probability we unavoidably enter the realm
that is arguably the most important theme in the philosophy of probability in the
twentieth century, giving rise to many different approaches: frequentist (John Venn,
Richard von Mises), logical (John Keynes), propensity (Karl Popper, inspired by
C.S. Peirce), and subjective and objective Bayesian (Jimmy Savage, Bruno de
Finetti, and Harold Jeffreys). Bayesianism can be traced back to the eighteenth cen-
tury, building upon the work of Thomas Bayes (1702–1761) on inverse probabilities
and on Laplace’s epistemic notion of probability. It led to a paradigm that attacked
the inconveniences, paradoxes, and alleged shortcomings of mainstream, “frequen-
tist” statistics and has been flourishing especially outside statistics as a dominant
paradigm for probabilistic reasoning, with applications ranging from AI, decision
theory, and epidemiology to formal epistemology and even theology, where Richard
Swinburne used Bayesian methods to make the existence of God more plausible.

It is highly questionable whether Bayes would have recognized himself in mod-
ern Bayesianism, but he did give an impetus to it in his famous posthumously
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published paper on indirect probability, sometimes referred to as the probability
of causes. In the seventeenth century Jacob Bernoulli had advocated direct proba-
bility, that is – somewhat anachronistically put – assigning a probability to a sample
based on a known distribution at the population level. Bayes asked the reversed
question: how to draw conclusions about a population based on available evidence.
He achieved this by applying conditional probabilities in his inversion rule. Thus
he became the first to link the philosophical concept of induction (addressed by
philosophers like Bacon and Hume) to probability or, rather, statistics.

Fisher and Neyman had little in common except a shared hatred of Bayesianism
and subjectivist statistics. Initially, their dominance prevented the breakthrough of
this paradigm. But the development went steadily on with the work of Jimmy Sav-
age, Bruno de Finetti, and Harold Jeffreys in decision theory, but especially due to
computational progress in the 1990s and in particular in the project of AI. In this
field, which is focused on high-level cognitive functions using human categories,
Bayesianism is in many ways attractive: knowledge and belief and their associated
concepts can be directly represented in an object language rather than informally
in a metalanguage. One can make probability statements about propositions, the-
ories, and hypotheses instead of assigning probabilities to subsets of events. The
whole idea of reasoning with new knowledge is of course encrypted in a straightfor-
ward way using posterior distributions and a straightforward application of Bayes’
rule. One can also express different degrees of confidence or belief in alternative
hypotheses or theories, thus avoiding the problems related to naive Popperian fal-
sificationism, that troubled early Fisherian significance testing, but even the more
advanced Neyman–Pearson approach.

Indeed, the differences with traditional “statistical” knowledge representation
and reasoning are considerable. For example, the interval estimators of de Finetti
and Savage are very different from Neyman’s confidence bounds. The maximum
likelihood estimation procedure is not comparable with the “update mechanism”
of the posterior distribution. Truth is no longer a fixed, but unknown, parameter
because the parameter now has a distribution. Put roughly, the case has not been
settled, and, for example, in fields like decision theory and epidemiology, classical
and Bayesian approaches are concurrently applied, while many of the concepts are
inconsistent or incompatible.

Beyond Parametric Statistics and Maximum Likelihood

Estimation: A Pragmatist Perspective

Finally, we must distinguish a fourth trend. The great popularity of maximum like-
lihood estimation and parametric statistics could not conceal its limitations; objec-
tions were raised by mathematicians, but were also expressed by (nonmathematical)
workers in the field, which traditionally have played an important role in the history
of statistics. Sometimes the conditions for application could not be met sometimes
application did not lead to useful knowledge. As a result, complementary or even
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alternative approaches to parametric statistics, and even inferential statistics, were
proposed.

In the 1930s many nonparametric techniques were developed, starting with the
work of the chemist Frank Wilcoxon, the mathematician Henry Mann, and many
others working on distribution-free tests. Today they still have a modest but solid
place in the toolkit of the statistical analyst. More important was the work of John
Tukey, whose exploratory data analysis evolved from a complement of inferential
statistics to a real alternative one, at least according to some. Data were analyzed
with a minimum of theoretical ballast, searching for patterns, finding hypotheses,
and focusing on data inspection and data visualization. In particular, the notion of a
model as introduced by Fisher, and the associated conception of truth are no longer
cherished. Intended or not, Tukey was and is often cited as a protagonist of George
Box’s view that models are by definition wrong, and may legitimately depend on
speculative assumptions or wild guesses that may lead to something.

This popular view on models has also been exploited in another important devel-
opment that does not build upon the maximum likelihood estimation approach and
its assumptions: the advent of computer-intensive techniques (e.g., resampling) and
especially the many machine learning techniques that have been developed since
the 1980s, including ensemble learning, where multiple models are used to acheive
better predictive success. As has been argued previously, the philosophical under-
pinning is Pearsonian, rather than Fisherian! Be that as it may, practice shows that
these techniques were unable to displace the parametric tradition, do sometimes
complement it, but at any rate are part of the toolbox/statistical packages.

Leaving the internalist perspective for a moment, it must be said that the under-
lying philosophy of Tukey and computational intelligence research is in the current
era epistemologically justified and even seems to be encouraged. The age of all-
encompassing and foundational epistemology ended in the 1960s. Thomas Kuhn
emphasized the importance of the social and historical context of science, Paul Fey-
erabend attacked the standard view on science as a rational process, and Bruno La-
tour even advocated purely descriptive approaches. Pluralism and relativism go hand
in hand. Postmodern thinkers like Richard Rorty even claimed that science and its
models didn’t “mirror nature” anymore and had lost their proverbial representative
function. Of course, the latter philosopher can be considered postmodern or even
antiscientific, but this cannot be said of another philosophical movement, which it
may also be claimed endorsed the current situation: the pragmatism movement that
arose in the nineteenth century with the work of C.S. Peirce and William James. It is
still vital today, has many faces, and is strongly antifoundationalist in particular with
respect to the concept of truth. Pragmatists refrain from a correspondence theory or
coherence theory of truth but interpret truth as something that works in practice and
that makes a difference in real life. For example, Peirce considered science the result
of two human interests: the removal of irritation caused by doubt and imperatives
to act decisively. It is not surprising that a pragmatist approach to truth and science
is appreciated by statisticians, who naturally seek to identify differences and have
always worked together with researchers on real-world problems. Generally speak-
ing, a pragmatic view seems to tolerate, up to a point, the present situation in data



lxviii Richard J.C.M. Starmans

analysis with respect to models, inference and truth. But it may not justify a gross
oversimplification that relegates all theoretical and fundamental principles to the
background, especially if these theoretical considerations prove themselves relevant
in practice, making a difference! Still, pragmatism reinforces the need for empiri-
cal evaluation, ranging from the ancient replication experiments to calls for serious
benchmarks, well-defined competitions, or other empirical validation procedures.

Conclusion

In this chapter, we have traversed, with seven-mile steps, the history of ideas and
highlighted crucial developments in statistics as well. What conclusions can be
drawn with respect to the current situation in statistical data analysis and how should
TMLE be viewed from this historical/philosophical perspective? Obviously, in this
exploratory essay we have only touched upon a few key issues and the most pressing
challenges for the philosophy of statistics and epistemology.

Taking an externalist stance, we first sketched three aspects of the pervasiveness
of information: its metaphysical implications and foundational role in the sciences,
its appearance at the “level” of data and the need for a science of data, incorporating
statistics and computer science, and, finally, the probabilistic turn in the sciences and
the problems it poses for epistemology. No doubt the integration, also at the foun-
dational level, of statistics and computational intelligence is one of the challenges
for contemporary philosophy of statistics. In this respect TMLE takes an important
step with the super learning methodology as it integrates the full range of machine
learning techniques (including intensive cross-validation to select the initial estima-
tors) into a statistical framework based on estimation as the key notion of inference
and confidence intervals, firmly rooted in efficiency theory. In addition, the general
problem that statistical analysis is not as well founded as we would like, given its
crucial importance for epistemology, marks a related but distinct major task for the
philosophy of statistics. TMLE may shed new light on this issue because it rethinks
crucial concepts like estimation, models, truth, and causation. TMLE reassigns to
the concept of estimation, which in some ways had lost its crucial place in proba-
bilistic reasoning, the leading role in any theory of/approach to “learning from data”,
preserving the log-likelihood as the principal criterion in estimation, and renewing
Fisherian statistics. It also reestablishes the concept of a model in a parsimonious
way. Models should only contain the genuine background knowledge of the agent,
not speculative assumptions or wild guesses that may lead to something. It does not
stick to the popular interpretation of models as mere representations of “something”
in which truth is regarded as an unnecessary and even obsolete concept, bound to
be eliminated with Occam’s razor. On the contrary, truth is a prerequisite for mean-
ingful use of models. It relates to fixed, but unknown, parameters, that are to be
estimated. It therefore needs neither the pragmatist stance, identifying truth with
“what makes a difference in reality” or “what works in practice,” nor a convention-
alist or constructivist position. No doubt its place in the current scientific realism
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debate is certainly something worth exploring. Also noticeable is the concept of
causality, abandoned by Pearson, reinstated by Fisher, but still highly problematic
in probabilistic reasoning. Analogous to the, in our view, regrettable methodolog-
ical gap between the ideal of internal vs. external validity, probabilistic reasoning
sometimes seems divided by communities working on confounding or on estima-
tion. In TMLE causal inference takes place within the “extended” model, i.e., the
statistical model expanded with possible additional nontestable causal assumptions,
under which the targeted parameter can be interpreted as a causal parameter. Be
that as it may, epistemology should realize that dealing with foundational problems
like these, requires close collaboration with statistics and its philosophy. Paradox-
ically, the strong emphasis on probabilistic reasoning in epistemology has seldom
led to a comparable interest in immanent developments in statistics. Admittedly,
the Bayesian paradigm has been embraced canonized, if not overemphasized, but
more important contributions to statistics are largely neglected. For example, Pear-
son seems now a forgotten philosopher, whose name is often not even mentioned in
mainstream textbooks on the philosophy of science. Furthermore, because TMLE
has been developed and applied in large-scale empirical domains and has to deal
with real-life questions emerging there, it may well complement the much used iso-
lated “toy examples” that have long been dominant in epistemology.

The second major development concerned the emancipation process of variation
and change as fundamental or essential characteristics of reality and the fact that sci-
ence must do justice to this in modeling reality. Paradoxically and ironically, more
than 2500 years after Parmenides, variation and chance remain problematic because,
due to progress in science (better instruments for measurement) and computer sci-
ence (better techniques for data management, storage, and retrieval), variation and
change can be identified easier: more subjects, variables ranging over larger inter-
vals, longitudinal data, and especially more variables, resulting in high-dimensional
data sets. The end of this is still nowhere in sight! Fisher did his famous studies on
crop variation at the Rothamsted Experimental Station with only a few independent
variables. A misspecified model could do less harm than in a situation with thou-
sands of variables, where error is propagated and increased through the analysis, in-
deed a notorious aspect of the curse of dimensionality. TMLE states that questions
about our infinite-dimensional, semiparametric Pythagorean universe are not well
addressed by parametric models. It pleas for utilizing methods specially designed
to estimate a relatively small-dimensional, precisely specified parameter within a
realistic semiparametric model that is identifiable from the data. The point is that
likelihood-based estimators generally are aimed at estimating the density of the dis-
tribution of the data themselves, seeking a bias–variance tradeoff that is optimal for
the whole density. Clearly the variance of an optimally smoothed density estima-
tor is typically much larger than the variance of a smooth (pathwise-differentiable)
parameter of the density estimator. As a result, substitution estimators based on den-
sity estimators involving an optimal (e.g., likelihood-based) bias–variance tradeoff
(for the whole density) are usually unnecessarily biased relative to their variance as
they are not targeted toward the parameter of interest. The ideal method to deal with
variation and change would incorporate this and would also be entirely a priori spec-
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ified without relying on ad hoc specifications, have attractive statistical properties,
and be computationally feasible.

The third development we sketched concerned the tension between our common-
sense notions and natural categories on the one hand and the scientific worldview
and nomenclature on the other. We stated that there is no simple opposition between
Reid’s sensus communis and “folk psychology” on the one hand and eliminativism
on the other. Indeed, all key problems in the philosophy of statistics can be viewed
against this background. Of course, it would require a detailed study to find out how
nomenclature developed or used in TMLE (e.g., nuisance parameter, bias–variance
tradeoff, loss-based super learning) is related to specific issues in the substantial
domain. Here we restrict ourselves to three aspects, the first of which addresses the
issue of personal or subjective elements in inference. In a way these are always man-
ifest. Fisher had to choose the test statistic and statistical model, Neyman had to de-
cide upon a set of rival hypotheses, and the Bayesians had to come up with suitable
prior distributions. TMLE further reduces subjectivity in a different way. It restores
the old ideal of AI, contributing to automatic reasoning by reducing the role of hu-
man intervention without appealing to “Fingerspitzengefühl” or skillful art. Another
aspect concerns the fact that the research question, an important aspect of the sub-
stantial domain, should be related to properties of the data-generating distribution,
which of course highly affects the interpretation of coefficients. A coefficient in a
parametric model typically fails to represent the research question, even in the unre-
alistic scenario that the model is correct, and lacks any commonsense interpretation
if the parametric model is misspecified. TMLE decouples the choice of model from
the definition of the target parameter that represents the research question, thereby
allowing the researcher’s world and knowledge to be translated into a realistic (and
thereby semiparametric) model and representative commonsense target parameter.
A third aspect involves the “two-layer” knowledge representation in TMLE, first
the statistical model, representing true realistic knowledge in a parsimonious way,
second the “extended” model, i.e., the statistical model expanded with possible ad-
ditional nontestable causal assumptions, under which the targeted parameter can be
interpreted as a causal parameter.

We also took an internalist stance, sketching four developments in the history
of statistics, that all left their mark in research practice but are quite different with
respect to such notions as models, inference, and truth. We then outlined various
aspects of TMLE, showing that there can be no question of a forced marriage with
the existing tradition or a mere addition to the “toolkit.” TMLE establishes a new
“learning from data” paradigm by offering an integrative approach to data analy-
sis or statistical learning, which in many ways marks a break with the past. In a
sense, TMLE builds on and renews the Fisherian tradition, but it also dismantles the
parametric bastion that has emerged from this tradition and its alleged universal ap-
plicability. The persistent debate between classical and Bayesian statistics has many
aspects that are less relevant from the perspective of TMLE since they both are not
targeted, facing analogous problems in high-dimensional data sets. Regarding the
computational and nonparametric tradition, TMLE shows that a pragmatic view on
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knowledge and the use of a variety of intelligent computational techniques entail
neither relativism nor a statistically less fundamental methodology.

Scientific debates as we have outlined are not solved “ex cathedra,” certainly
not by philosophical considerations. Whether or not theories are successful is de-
termined by many factors, externalist as well. But a revolution is primarily fought
in the streets, and in this respect a new “TMLE version” of “statistical methods for
research workers” would be a good start. Education is vital: people are inclined to
keep working in the tradition where they were raised, and use the same software they
have always used. Our historical and philosophical perspective was aimed not only
at clarifying, understanding, and accounting for the current situation in statistical
data analysis but also at relating topics addressed by TMLE in both the philoso-
phy of statistics and the epistemology/philosophy of science. Any epistemologist
who considers information processes to be fundamental, who wants to do justice to
variation and change in reality, and who addresses the tension between a scientific
worldview and common sense can hardly neglect debates about immanent trends
in statistics and the key problems they pose for the philosophy of statistics. This
applies even more if one takes the view that any interesting concept in epistemol-
ogy and science can only be genuinely developed by considering real-life problems
occurring in large-scale knowledge domains. The associated methodology for prob-
abilistic reasoning should be from the same mold.



Part I

Targeted Learning: The Basics



Chapter 1

The Open Problem

Sherri Rose, Mark J. van der Laan

The debate over hormone replacement therapy (HRT) has been one of the biggest
health discussions in recent history. Professional groups and nonprofits, such as the
American College of Physicians and the American Heart Association, gave HRT
their stamp of approval 15 years ago. Studies indicated that HRT was protective
against osteoporosis and heart disease. HRT became big business, with millions
upon millions of prescriptions filled each year. However, in 1998, the Heart and
Estrogen-Progestin Replacement Study demonstrated increased risk of heart attack
among women with heart disease taking HRT, and in 2002 the Women’s Health
Initiative showed increased risk for breast cancer, heart disease, and stroke, among
other ailments, for women on HRT. Why were there inconsistencies in the study
results?

Mammography gained relatively widespread acceptance as an effective tool for
breast cancer screening in the 1980s. While there was still debate, several stud-
ies, including the Health Insurance Plan trial and the Swedish Two-County trial,
demonstrated that mammography saved lives. This outweighed the minimal evi-
dence against mammography. Thus, in 2009, many medical practitioners and non-
profits were surprised by the new recommendations from the U.S. Preventive Ser-
vices Task Force. Among women without a family history, mammography was now
only recommended for women aged 50 to 74. The previous guidelines started at age
40. Why was there a seemingly sudden paradigm shift?

A political scientist examines the effect of butterfly ballots in an election, which
may in turn change local election laws. A group of economists studies the effect
of microlending on the local economy in rural areas of Africa in hopes of promot-
ing greater adoption of this practice. Public health policy decisions regarding how
frequently to perform gynecological exams await the completion of several new in-
vestigations. The question then becomes, how does one translate the results from
these studies, how do we take the information in the data, and draw effective con-
clusions?

3M.J. van der Laan and S. Rose, Targeted Learning: Causal Inference for Observational

and Experimental Data, Springer Series in Statistics, DOI 10.1007/978-1-4419-9782-1_1,
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Subject 1

Subject 3

Subject 2

Subject 1

Subject 3

Subject 2 Subject 2

Subject 1

Subject 3

IDEAL EXPERIMENT REAL-WORLD STUDY

EXPOSED UNEXPOSED EXPOSED UNEXPOSED

Fig. 1.1 Illustration of the “ideal experiment” vs. studies conducted in the real world

1.1 Learning from Data

One of the great open problems across many diverse fields of research has been
obtaining causal effects from data. Data are typically sampled from a population
of interest since collecting data on the entire population is not feasible. Frequently,
the researcher is not interested in merely studying association or correlation in this
sample data; she wants to know whether a treatment or exposure causes the outcome
in the population of interest. If one can show that the treatment or exposure causes
the outcome, we can then impact the outcome by intervening on the treatment or
exposure.

Just what type of studies are we conducting? The often quoted “ideal experi-
ment” is one that cannot be conducted in real life. Let us say we are interested in
studying the causal effect of a toxin on death from cancer within 5 years. In an ideal
experiment, we intervene and set the exposure to exposed for each subject. All sub-
jects are followed for 5 years, where the outcome under this exposure is recorded.
We then go back in time to the beginning of the study, intervene, and set all sub-
jects to not exposed and follow them under identical conditions until the end of the
study, recording the outcome under this exposure. As noted, we obviously cannot
administer such a study since it is not possible to go back in time.
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However, let’s assume in principle there is a system where this ideal experiment
could have been conducted. This experiment generates random variables. Say the
experiment is that we sample a subject (i.e., draw a random variable) from a pop-
ulation and take several measurements on this subject. This experiment is repeated
multiple times until we have sampled an a priori specified number (representing the
sample size) of subjects. These random variables also have a true underlying prob-
ability distribution. Our observed data are realizations of these random variables.
If we were to conduct our repeated experiment again, we would observe different
realizations of these random variables.

Any knowledge we have about how these observed data were generated is re-
ferred to as a model. For example, it might be known that the data consist of ob-
servations on a number of independent and identically distributed (i.i.d.) random
variables. What does i.i.d. mean? We are repeatedly drawing random variables from
the same probability distribution, but each draw is mutually independent from all
others. A common toy example used in statistics texts is the roll of a fair die. Say
the experiment is to roll a die. We perform this experiment six times, each time
rolling it following the same procedure (e.g., shaking). If we roll the die six times,
we will see one set of realizations of these random variables, e.g., we observe a 1, 5,
3, 6, 2, and then a 5. Each roll of the die (i.e., each experiment) is independent from
the previous roll. The observed unit in many cases may be the individual, where we
sample repeatedly individual subjects from a population of interest. However, the
observed unit can also be a household of individuals or a community of people.

So, our data are i.i.d. random variables, but the probability distribution of the
random variable is typically completely unknown. This is also information we in-
corporate into our model. We will refer to this as a nonparametric model for the
probability distribution of the random variable. (Do note, however, that assuming
the data vector is i.i.d. in our nonparametric model is a real assumption, although
one we will always make in this book.) Our model should always reflect true knowl-
edge about the probability distribution of the data, which may often be a nonpara-
metric model, or a semiparametric model that makes some additional assumptions.
For example, perhaps it is known that the probability of death is monotonically in-
creasing in the levels of exposure, and we want to include this information in our
model.

The knowledge we have discussed thus far regarding our model pertains to
our observed data and what we call the statistical model. The statistical model is,
formally, the collection of possible probability distributions. The model may also
contain extra information in addition to the knowledge contained in the statistical
model. Now we want to relate our observed data to a causal model. We can do this
with additional assumptions, and we refer to a statistical model augmented with
these additional causal assumptions as the model for the observed data. These addi-
tional assumptions allow us to define the system where this ideal experiment could
have been conducted. We can describe the generation of the data with nonparamet-
ric structural equations, intervene on treatment or exposure and set those values to
exposed and not exposed, and then see what the (counterfactual) outcomes would
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have been under both exposures. This underlying causal model allows us to define
a causal effect of treatment or exposure.

One now needs to specify the relation between the observed data on a unit and
the full data generated in the causal model. For example, one might assume that the
observed data corresponds with observing all the variables generated by the system
of structural equations that make up the causal model, up till background factors
that enter as error terms in the underlying structural equations. The specification of
the relation between the observed data and this underlying causal model allows one
now to assess if the causal effect of interest can be identified from the probability
distribution of the observed data. If that is not possible, then we state that the desired
causal effect is not identifiable. If, on the other hand, our causal assumptions allow
us to write the causal effect as a particular feature of the probability distribution
of the observed data, then we have identified a target parameter of the probability
distribution of the observed data that can be interpreted as a causal effect.

Let’s assume that the causal effect is identifiable from the observed data. Our
parameter of interest, here the causal effect of a toxin on death from cancer within
5 years, is now a parameter of our true probability distribution of the observed data.
This definition as a parameter of the probability distribution of the observed data
does not rely on the causal assumptions coded by the underlying causal model de-
scribing the ideal experiment for generating the desired full data, and the link be-
tween the observed data and the full data. Thus, if we ultimately do not believe
these causal assumptions, the parameter is still an interesting statistical parameter.
Our next goal becomes estimating this parameter of interest.

The open problem addressed in this book is the estimation of interesting param-
eters of the probability distribution of the data. This need not only be (causal) effect
measures. Another problem researchers are frequently faced with is the generation
of functions for the prediction of outcomes. For these problems, we do not make
causal assumptions, but still define our realistic nonparametric or semiparametric
statistical model based on actual knowledge. We view effect and prediction parame-
ters of interest as features of the probability distribution of our data, well defined for
each probability distribution in the nonparametric or semiparametric model. Sta-
tistical learning from data is concerned with efficient and unbiased estimation of
these features and with an assessment of uncertainty of the estimator. Traditional
approaches to estimation differ from this philosophy.

1.2 Traditional Approach to Estimation

We can sometimes implement one element of the ideal experiment: assigning a value
for treatment or exposure in a controlled experiment. Controlled experiments are ex-
actly what they sound like: they allow the investigator to control certain variables
in the study. Randomized controlled trials (RCTs) are one type of controlled exper-
iment where subjects are randomized to receive a specific level of treatment. For
example, if each subject was assigned to one of two levels of treatment based on
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the flip of a fair coin, the differences between the two groups would be solely due
to treatment as all other factors would be balanced, up to random error. However,
most studies are so-called observational studies where exposure or treatment is not
assigned. In many cases it may not be ethical to set the exposure of interest in an
RCT, or an RCT is cost prohibitive.

1.2.1 Experimental Studies

The randomization in RCTs suggests that we can estimate the causal effect of the
treatment. For example, the difference of means between the treatment and control
groups equals an additive causal effect. Indeed, this randomization of treatment in
RCTs allows us to go from the observed data to the causal effect of interest. The
difference in means can be estimated using a saturated regression of the outcome on
treatment in a parametric statistical model where covariates are ignored. Since the
regression is saturated (i.e., there is a parameter for each of the two observed val-
ues of treatment), this parametric statistical model is not making any unreasonable
assumptions, and is thus actually nonparametric. Therefore, this parametric statisti-
cal model is not wrong, although the resulting estimator of the causal effect of the
treatment is not the most efficient estimator. This so-called unadjusted estimator of
the treatment effect is a nonparametric maximum likelihood estimator based on the
reduced observations that only consist of the outcome and the treatment.

Suppose randomization did not occur perfectly due to chance (as is common),
and there is a single covariate that is predictive of the outcome. We now have more
subjects in the treatment or control group with a covariate that is predictive of the
outcome, and this saturated regression ignoring the covariate will potentially con-
tain a lot of residual error due to the exclusion of the covariate. Now, one might
propose conditioning on the covariate and taking the difference in means for each
stratum of the covariate. This results in a treatment effect within each stratum of
the covariate. One might now estimate the causal effect of treatment as the aver-
age over all strata of these strata-specific treatment effects. This adjusted estimator
of the treatment effect is a nonparametric maximum likelihood estimator based on
the reduced observations that consist of the outcome, treatment, and this single co-
variate. This approach is generally still not efficient, since it only uses one of the
measured covariates, but it is more efficient than the unadjusted treatment effect es-
timator. However, this strategy is not practical with multiple covariates, or even one
continuous covariate, and starts to suffer in practical performance due to strata with
a very small number of subjects.

So why not run regressions in parametric statistical models (incorporating all co-
variates) for RCTs? The short answer is simple: the Food and Drug Administration
(FDA) does not allow it. We will explain why this is so in a few sections. For now it
is sufficient to know that the FDA requires researchers to specify a priori the method
of estimation, and it must rely on a statistical model that reflects true knowledge.
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1.2.2 Observational Studies

Recall that observational studies do not involve randomization to treatment or expo-
sure. In most observational studies, standard practice for effect estimation involves
assuming a parametric statistical model and using maximum likelihood estimation
to estimate the parameters in that statistical model. Let us be very clear again about
what a statistical model is: the statistical model represents the set of possible prob-
ability distributions of the data.

In traditional practice, one assumes the actual data as observed in practice can be
represented as observations of n i.i.d. random variables, and that the goal of the tradi-
tional modeling approach is to learn the true underlying probability distribution that
generated the data. (This is different than the goal of causal effect estimation.) Max-
imum likelihood estimation uses the likelihood function to estimate the unknown
parameter(s) in the statistical model. Solutions are often found by differentiating the
log-likelihood with respect to these parameters, setting the resulting equation equal
to zero, and solving. If the score equation has multiple solutions, the solution with
the largest likelihood is selected.

This procedure is detailed in most introductory statistics books, although the per-
vasiveness of statistical software allows the user to implement maximum likelihood
estimation without the need to understand these concepts. This also means the as-
sumptions that come with the use of parametric statistical models are frequently not
well understood or ignored.

We already acknowledged in Sect. 1.1 that we usually know very little about how
our data were generated; thus the use of parametric statistical models is troublesome.
We typically know that our data can be represented as a number (representing the
sample size) of i.i.d. observations, which is an assumption in parametric statistical
models, but we do not know the underlying probability distribution that generated
the data. Parametric statistical models assume the underlying probability distribu-
tion that generated the data is known up to a finite number of parameters. It is an
accepted fact within the statistical community that nonsaturated parametric statis-
tical models are wrong. Thus, making an assumption known to be untrue is not the
best approach. When this assumption is violated and the statistical model is mis-
specified, the estimate of the probability distribution can be extremely biased, and it
is not even clear what the parameter estimates are even estimating. The bias result-
ing from statistical model misspecification cannot be overcome with a large sample
size.

This brings us to another problem that arises when using misspecified paramet-
ric statistical models. The target parameter is not defined as a parameter of the true
probability distribution for any possible probability distribution. The target parame-
ter, when defined as a coefficient in a (misspecified) parametric statistical model, is
only defined within that parametric statistical model, as if the statistical model were
true. There is only correct inference if the parametric statistical model is correct, but
we know it is wrong.

Lastly, the traditional approach does not make any explicit (untestable) causal as-
sumptions linking the observed data to a system that generated the data. Thus, there
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is no framework to make causal inference. There are also other assumptions that are
part of the statistical model that are typically not addressed, such as positivity (dis-
cussed in Chaps. 2 and 10). When this (testable) assumption is violated, you may
see groups of individuals where there is no experimentation in the treatment. For
example, all the highly educated women received HRT, or all the wealthy women
received mammograms. Since there are strata of certain covariates (e.g., level of
education, socioeconomic status) where all subjects are treated, the regression will
extrapolate what would have happened to these subjects had they not been treated,
and this extrapolation is not based on any observed information.

To summarize, the use of parametric statistical models in observational studies
is troublesome for several main reasons.

1. The statistical models are always misspecified in practice since we do not
know the underlying data-generating distribution and we handle complex
problems with many covariates.

2. The target parameter is not defined as a parameter of the true probability
distribution that generated the data.

3. The traditional approach does not typically make causal assumptions al-
lowing us to define the desired causal effect, and often neglects other key
assumptions, such as the positivity assumption, that are part of the statisti-
cal model.

1.2.3 Regression in (Misspecified) Parametric Statistical Models

In this section we discuss briefly the traditional approach to effect estimation. Let
us introduce our random variable O, which has probability distribution P0. This is
written O ∼ P0. Recall that a probability distribution P0 assigns a probability to
any possible event or set of possible outcomes for O. In particular, P0(O = o) for
a particular value o of O can be defined as a probability if O is a discrete random
variable, or we can use the concept of probability density if O is continuous. For
simplicity and sake of presentation, we will often treat O as discrete so that we can
refer to P0(O = o) as a probability.

We observe our random variable O n times, by repeating the same experiment
n times. For a simple example, suppose our data structure is O = (W, A, Y) ∼ P0.
We have a covariate or vector of covariates W, an exposure or treatment A, and a
continuous outcome Y . These variables comprise the random variable O, which we
observe repeatedly, and O has probability distribution P0. Thus, for each possible
value (w, a, y), P0(w, a, y) denotes the probability that (W, A, Y) equals (w, a, y). For
example, the random variables O1, . . . ,On might be the result of randomly sam-
pling n subjects from a population of patients, collecting baseline characteristics
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W, assigning treatment or exposure A, and following the patients and measuring
continuous outcome Y .

Suppose one poses a particular regression in a parametric statistical model, a so-
called linear regression for the conditional mean of Y given A or Y given A and W.
However, we leave the distributions of A and W unspecified. Linear regression in
a parametric statistical model has varying levels of complexity, and what variables
one includes impacts this complexity. The saturated regression for RCTs discussed
in Sect. 1.2.1 includes only a treatment variable A. (This is sometimes called a crude
regression.) For example, with a continuous outcome Y and a binary treatment A the
regression of the conditional mean of Y given A is

E0(Y | A) = α0 + α1A.

The parameter E0(Y | A) is the conditional mean of Y given A, and (α0, α1)
are the unknown regression parameters in the parametric statistical model for the
conditional mean. We are estimating the regression E0(Y | A) based on the data
(A1, Y1), . . . , (An, Yn), ignoring the covariates Wi for subject i. Fitting this regres-
sion to the data will result in an estimate of the effect of treatment given by
α1 = E0(Y | A = 1) − E0(Y | A = 0).

In the analysis of observational studies, it is commonplace to include covariates
associated with both A and Y in the regression, in an attempt to eliminate the contri-
bution of these variables and isolate the effect of A on Y . With one covariate W, an
example of such a regression in a parametric statistical model is

E0(Y | A,W) = α0 + α1A + α2W.

The effect of A is again given by α1, but α1 now represents an effect of A adjusting
for W, and is thus a different parameter of interest than the effect of A above. If
effect modification is suspected, an interaction term between the effect modifier and
A might be included:

E0(Y | A,W) = α0 + α1A + α2W + α3A ×W. (1.1)

Effect modification between A and W occurs when the effect of A differs within
strata of W. The consequence of including an interaction term in the regression is
that there is now not one summary measure of the effect of A. For every level of W
there is a different effect measure of A. For example, in the simple case where W is
binary, such as smoking status, there will be two effect measures for A. If W = 1
indicates current smoker, the effect of A among current smokers is α1 + α3. When
W = 0, α3 is equal to zero thus the effect of A among current nonsmokers is α1.
As we add covariates and interaction terms to our regression, α1 does not estimate a
marginal population-level effect. In fact, each time we add a covariate or interaction
the interpretation of the coefficients in the parametric statistical model changes.

In the situation where we only have one binary covariate, the regression speci-
fied in Eq. (1.1) is a saturated parametric statistical model. Let us also suppose the
collection of the single covariate represents the truth, and there are no other covari-
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ates that should have been measured. This parametric statistical model is therefore
suitable in that it is not misspecified. However, we still want a marginal effect es-
timate of treatment. This marginal-effect could be defined as α1 + α3E0(W), where
E0(W) denotes the true marginal mean of W. A simple nonparametric maximum
likelihood estimator will accomplish this for the simple case posed here. But what
happens when you have a continuous covariate? Or we have an increasing number
of covariates? This approach to fitting a saturated linear regression quickly becomes
problematic since the number of coefficients will grow exponentially with the num-
ber of covariates.

High-dimensional data have become increasingly common, and researchers often
have dozens, hundreds, or even thousands of potential covariates to include in their
parametric statistical model. Not only does this provide an impossible challenge to
correctly specify the parametric statistical model for the conditional mean, but the
complexity of the parametric statistical model may also increase to the point that
there are more unknown parameters than observations. A fully saturated parametric
statistical model will usually result in a gross overfit of the data. In addition, the
true functional, (A,W) → E0(Y | A,W), mapping the treatment and covariates into
the conditional mean, might be described by a complex function not easily approx-
imated by main terms or simple two-way interactions.

1.2.4 The Complications of Human Art in Statistics

We now highlight further the innate challenges of parametric statistical models and
the problematic human art component of data analysis. Returning to our toxin and
cancer study from Sect. 1.1, where an indicator of death is the outcome, let’s say that
the principal investigator (PI) asserts smoking status is the only relevant covariate
that we must control for in our analysis. The PI also says to use the following logistic
linear regression in a parametric statistical model for the probability of death, where
the αis are the unknown regression parameters in the statistical model:

P0(Y = 1 | A,W) = expit(α0 + α1A + α2W).

Another subject matter expert on the project enters the conversation and says that
one must also control for age and gender. Smoking is now denoted W1, with age as
W2 and gender W3. The covariates can be represented as a vector W = {W1,W2,W3}
and the logistic linear regression given by

P0(Y = 1 | A,W) = expit(α0 + α1A + α2W1 + α3W2 + α4W3).

A data analyst enters the picture and explains that all covariates measured at
baseline, listed in Table 1.1, should be thrown into a logistic linear regression. Using
the results of this regression fit, all Wis with coefficients that do not have a p-value
smaller than 0.05 should be removed from the list. The regression should then be fit
again in a new (different) parametric statistical model with the variables remaining
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Table 1.1 Baseline covariates from a study examining the effect of a toxin on death from cancer

Wi Covariate

W1 Smoking status
W2 Age
W3 Gender
W4 Health status
W5 Cardiac event
W6 Chronic illness

in the list. This continues until all coefficients in front of the Wis in the regression
have a p-value of less than 0.05. The regression coefficient α1 in front of A changes
with each new regression. It is highly dependent on which variables are included.

One can quickly see, even in this simplified example, the impossible challenge
involved in selecting which variables to include in the parametric statistical model,
and thereby assigning the underlying probability distribution of Y , conditional on the
treatment and covariates, that generated the data up to a finite number of unknown
parameters. The problem that we stress again here is that we do not know the true
probability distribution of the data up to a finite number of unknown parameters.

The inference made using parametric statistical models assumes that the paramet-
ric statistical model is correct and was a priori selected. If the parametric statistical
model is wrong, our estimates will approximate a noninterpretable parameter, and
thereby be biased for the true hypothesized target parameter one had in mind under
the assumption that the parametric statistical model was true. If we run several mod-
els with the full data, the statistical inference (e.g., the p-values) is meaningless, and
this statistical model should be selected before looking at the data to avoid bias.

In addition, if the parametric statistical model was not a priori specified but
data-adaptively selected as the data analyst suggests, then the statistical inference
is misleading, claiming a certainty that does not exist. The final parametric statisti-
cal model is reported as if it were the only one considered and evaluated. The data
analyst has performed a procedure that began the moment the data were used. In
other words, once you start using the data, your estimation method has also started.
Therefore, our data analyst has selected an approach that, while very common, bla-
tantly leaves us with faulty inference.

Even without the approach defined by the data analyst, the PI and the subject
matter expert might run both of their regressions and then decide between them
based on the results. It should not be overlooked that the process of looking at the
data, examining coefficient p-values, and trying multiple statistical models is not
only incredibly prevalent but is taught to students learning statistics.

This is the human art component we eluded to in Sect. 1.2. The moment we use
post-hoc arbitrary criteria and human judgment to select the parametric statistical
model after looking at the data, the analysis becomes prone to additional bias. This
bias manifests in both the effect estimate and the assessment of uncertainty for that
estimator (i.e., standard errors). One cannot even define the procedure that was used
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Do you believe 
your parametric 
statistical model 

is correct?

Well...no.

Then how do you 
interpret the 

coefficient in your 
misspecified 
parametric 

statistical model?

I'm not sure...

If I were to give you 
the true probability 
distribution of the 
data, you couldn't 

tell me what feature 
you are targeting 

with your 
misspecified 
parametric 

statistical model?

No I couldn't.  
You are right 
this doesn't 

make sense!TRADITIONAL
STATISTICIAN

as a function of the data so that more appropriate standard errors can be calculated
(e.g., by use of bootstrapping). Statistics is not an art, it is a science.

Standard practice focuses on estimating E0(Y | A,W) with an assumed para-
metric statistical model. One then extracts the coefficient in front of A as the effect
estimate, ignoring that we know that most parametric statistical models are wrong.
This criticism extends in general to estimation procedures (e.g., prediction) using
misspecified parametric regression models. There is a more natural way to think
about our parameter of interest, which we introduced abstractly in Sect. 1.1. The
definitions of the data, model, and parameter will allow us to target parameters that
are frequently of interest, such as causal effects. These concepts will be developed
more concretely in the next section, and additionally in Chap. 2, as we set aside the
traditional approach to effect estimation.

1.3 Data, Model, and Target Parameter

Our discussion of the data, model, and target parameter has been relatively abstract
up to this point. We formalize these concepts in this section using notation. We de-
fine O as the random variable with P0 as the corresponding probability distribution
of interest. We write O ∼ P0 to mean that the probability distribution of O is P0.
Our random variable, which we observe n times, could be defined in a simple case
as O = (W, A, Y) ∼ P0 if we are without common issues such as missingness and
censoring. W, A, and Y are as defined in Sect. 1.2.3.

Complex data structures. While the data structure O = (W, A, Y) ∼ P0 makes for
effective examples, data structures found in practice are frequently more compli-
cated. Suppose we have a right-censored data structure. Right censoring means that
we do not observe a particular variable or variables to the end of the study or time
period. For example, if we are following subjects for 5 years, some subjects may
drop out of the study for various reasons (e.g., relocation, death, voluntarily ending
participation). If we are planning to measure an outcome Y , such as developing liver
cancer, within 5 years of baseline, those subjects that drop out before 5 years (i.e.,
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are censored) will not have measurements across the whole time period. All subjects
will be censored at year 5 if they have not already been censored, but subjects that
are observed for the full 5 years provide us with the desired full-data structure and
are thereby referred to as uncensored.

Censoring is always defined with respect to a desired full-data structure. This
type of censoring of a desired full-data structure is referred to as right censoring
since timelines are frequently numbered from left to right, and it is some portion
of the right side that is censored. Now, for each subject we will observe their time
of censoring, and we may observe their time to event. For example, subject 1 may
develop liver cancer at year 3. Another subject may be censored at year 2 due to
dropout, and we never observe whether they develop liver cancer within the 5 years.
Thus our data structure now has added complexity. We have T representing time to
event Y , C a censoring time, T̃ = min(T,C) which represents the T or C that was
observed first, and Δ = I(T ≤ T̃ ) = I(C ≥ T ) an indicator that T was observed at
or before C. We then define O = (W, A, T̃ , Δ) ∼ P0. This is another example of a
possible data structure.

1.3.1 The Model

We are considering the general case that one observed n i.i.d. copies of a random
variable O with probability distribution P0. The data-generating distribution P0 is
also known to be an element of a statistical model M, which we write P0 ∈ M.
Formally, a statistical model M is the set of possible probability distributions for
P0; it is a collection of probability distributions. What if all we know is that we have
n i.i.d. copies of O? Well, then we’ve stated what we know, thus this can be our
statistical model, which we call a nonparametric statistical model. We don’t need to
assign a parametric form to the distribution of our data; it is simply known to be an
element of a nonparametric statistical modelM.

We might also consider a semiparametric statistical model if we have additional
information about the way our data were generated that puts restrictions on the data-
generating distribution P0. For example, we may know that the effect of exposure A
on the mean outcome is linear. Note, though, that semiparametric statistical models
can be wrong by not containing the true P0 if our “knowledge” is faulty. While we
might have additional knowledge, we do not have enough knowledge to parameter-
ize P0 by a finite-dimensional parameter. These nonparametric and semiparametric
statistical models should represent true knowledge about the underlying mechanism
generating the data, that is, they are supposed to contain the true probability distri-
bution P0 of the experimental data.

We will frequently use semiparametric to include both nonparametric and semi-
parametric, such as the phrase “semiparametric estimation” referring to estimation
in a nonparametric or semiparametric statistical model. When semiparametric ex-
cludes nonparametric and we make additional assumptions, this will be explicit.
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Statistical model vs. model. A statistical model can be augmented with additional
(causal) assumptions providing a parameterization so that M = {Pθ : θ ∈ Θ},
where the space of θ-values,Θ, is itself infinite dimensional. Even though such a pa-
rameterization does not change the statistical model, thereby providing nontestable
causal assumptions, it does allow one to enrich the interpretation of Ψ (P0) in terms
of a statement of an underlying truth θ0. We refer to the statistical model augmented
with a parameterization as a model. We will return to the issue of modeling, thereby
making (causal) assumptions that go beyond specifying a statistical model M, in
Chap. 2. The important take-home message for now is that the statistical model
is the only relevant information for the estimation problem, while the additional
(causal) assumptions will provide enriched (or misleading, if wrong) interpretations
of the target parameter.

1.3.2 The Target Parameter

What are we trying to learn from our data? Often the question of interest is related to
quantifying some difference in the probability distribution of an outcome of interest
between the treated and untreated or the exposed and unexposed groups. We want
to understand the effect of treatment or exposure on the probability distribution of
the outcome of interest. This difference could be measured on an additive scale or
multiplicative scale, such as a relative risk or odds ratio.

Either way, once an agreement is reached concerning what one wants to learn,
we can explicitly define the target parameter of the probability distribution P0 as
some function of P0: Ψ (P0) for some function Ψ that maps the probability distribu-
tion P0 into the target feature. That is, we are interested in estimating a parameter
Ψ (P0) of the probability distribution P0 ∈ M, which is known to be an element of
a nonparamteric or semiparametric statistical modelM. The parameter Ψ (P0) is a
function of the unknown probability distribution P0. We are not interested in esti-
mating an effect defined by a coefficient of a (misspecified) parametric statistical
model. Rather, we define a parameter as a feature of the true probability distribution
P0 of the data using true knowledge we have about P0 as embodied by the statistical
model M. Thus, we are explicitly confronted with the fact that we need to know
how to define our target parameter as a feature of P0: it does not suffice to grab a
parametric statistical model and just target the coefficients in that model.

First, one needs to define the parameter of interest as a function of the data-
generating distribution varying over the nonparametric or semiparametric statistical
model. Many practitioners are used to thinking of their parameter in terms of a
regression coefficient, but that is often not possible in realistic nonparametric and
semiparametric statistical models. Instead, one has to carefully think about what
feature of the distribution of the data one wishes to target. With an experimental
unit-specific data structure O = (W, A, Y) ∼ P0, the risk difference is the following
function of the distribution P0 of O:
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Ψ (P0) = EW,0[E0(Y | A = 1,W) − E0(Y | A = 0,W)],

where E0(Y | A = a,W) is the conditional mean of Y given A = a and W. Here A is
binary and therefore a takes on two values, 1 and 0. EW indicates that we take the
average over the observed distribution of our covariate(s) W. Uppercase letters rep-
resent random variables and lowercase letters are a specific value for that variable.
For example, if all variables are discrete, P0(W = w, A = a, Y = y) assigns a proba-
bility to any possible outcome (w, a, y) for O = (W, A, Y). P0 is like a calculator: we
input (w, a, y) and it returns a probability. Ψ (P0) for the risk difference can then also
be written:

Ψ (P0) =
∑

w

[∑
y

yP0(Y = y | A = 1,W = w)

−
∑

y

yP0(Y = y | A = 0,W = w)
]
P0(W = w),

where
P0(Y = y | A = a,W = w) =

P0(W = w, A = a, Y = y)∑
y P0(W = w, A = a, Y = y)

.

After obtaining an estimate of Ψ (P0) and a confidence interval, we can provide two
interpretations, one as a purely statistical parameter of P0, and one as a causal pa-
rameter under additional causal assumptions representing a causal model that goes
beyond the specification of the statistical model M. We discuss these causal as-
sumptions in detail in Chap. 2.

1.3.3 Summary of Concepts

1. Data. Our data are comprised of n i.i.d. copies of a random variable O ∼
P0. P0 is the true probability distribution for O.

2. Model. Our statistical model M is nonparametric or semiparametric and
represents only what we know about our data-generating distribution P0.
M is the set of possible probability distributions for P0. Our model includes
possible additional causal assumptions, allowing an enriched interpretation
of the parameter of interest.

3. Target parameter. Our parameter Ψ (P0) is a particular feature of the un-
known probability distribution P0. The explicit definition of this mapping
Ψ on the statistical model requires that one defines Ψ (P) at each P in the
statistical model. The parameter typically has two interpretations, one as a
parameter Ψ (P0) of a probability distribution P0 and one as a causal pa-
rameter under additional (causal) assumptions to be discussed in Chap. 2.
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1.4 The Need for Targeted Estimators

Let us step back for a moment. Suppose you were handed ten textbooks and told
you would be asked one question in 12 h. The question might require understanding
portions of several of these books. However, you are not told what the question is
going to be. How would you prepare for such a test? You do not have time to read all
ten textbooks, let alone master the material contained within them. You might read
the chapter abstracts from each book in order to learn basic summary information.

Now, suppose you were handed the same ten textbooks, but instead you were
told the question you would be asked 12 h later. Would this change your approach to
studying? Yes! Since you know what question will be asked, you can more carefully
discard books that will be completely unnecessary, keeping only those books with
relevant chapters. You are able to spend 12 h working through the pertinent chapters
and then give a thoughtful precise answer on the one question test.

This theoretical situation has a direct parallel to nontargeted learning vs. tar-
geted learning. Maximum likelihood estimation in misspecified parametric statisti-
cal models is nontargeted learning; one estimates all the parameters (coefficients)
in a parametric statistical model. One uses an empirical criterion that is only con-
cerned with the overall fit of the entire probability distribution of the data instead of
only the parameter of interest; we are trying to master all the books, spreading error
uniformly across all content, when we only care about very specific portions of each
book. The overall fit of the probability distribution based on the data set is then used
to evaluate the target parameter of the probability distribution, i.e., the question is
answered with the nontargeted fit of the distribution of the data. For a small true
parametric statistical model, containing the true probability distribution, one with
few terms or few unknown coefficients, the performance of the maximum likeli-
hood estimator of the target parameter with regard to mean squared error may be
satisfactory. However, the bigger the statistical model, the more problematic nontar-
geted learning becomes. We have no problem with maximum likelihood estimation
for relatively low-dimensional parametric statistical models if they are correct, but
this is not the case in practice, and we wish for our statistical models to represent
true knowledge. Indeed, in semiparametric statistical models, maximum likelihood
estimation breaks down completely. With targeted learning, we focus on our known
question of interest; we focus on the relevant information in the books, and rank the
information by its relevance for the question of interest.

1.5 Road Map for Targeted Learning

The first six chapters of this textbook are meant to provide the reader with a firm
grasp of the targeted learning road map and the solution to prediction and causal
inference estimation problems: super learning and targeted maximum likelihood
estimation (TMLE). For the sake of presentation, in these introductory chapters
we will focus on the data structure (W, A, Y) ∼ P0, the nonparametric statistical
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DATA
The data are n i.i.d. observations of random variable O. O has 

probability distribution P0.

MODEL
The statistical model M is a set of possible probability distributions 
of O. P0 is in M. The model is a statistical model for P0 augmented 

with possible additional nontestable causal assumptions.

TARGET PARAMETER
The parameter Ψ(P0) is a particular feature of P0, where Ψ maps the 

probability distribution P0 into the target parameter of interest.  

D
E

F
IN

IN
G

 T
H

E
 R

E
S

E
A

R
C

H
 Q

U
E

S
T

IO
N

SUPER LEARNER
The first step in our estimation procedure is an initial estimate of the 
relevant part Q0 of P0  using the machine learning algorithm super 

learner.

E
S

T
IM

A
T

IO
N

TARGETED MAXIMUM LIKELIHOOD ESTIMATION 
With an initial estimate of the relevant part of the data-generating 

distribution obtained using super learning, the second stage of TMLE 
updates this initial fit in a step targeted toward making an optimal 
bias–variance tradeoff for the parameter of interest, now denoted 

Ψ(Q0), instead of the overall probability distribution.

BEGIN

INFERENCE
Standard errors are calculated for the estimator of the target 

parameter using the influence curve or resampling-based methods 
to assess the uncertainty in the estimator.

IN
F

E
R

E
N

C
E

INTERPRETATION
The target parameter can be interpreted as a purely statistical 
parameter or as a causal parameter under possible additional 

nontestable assumptions in our model.

END

Fig. 1.2 Road map for targeted learning
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modelM, and the additive causal effect target parameter Ψ (P0) = EW,0[E0(Y | A =
1,W) − E0(Y | A = 0,W)]. Our estimator of the treatment effect will be obtained by
plugging in a (targeted) estimator of (or the relevant part of) P0 into the parameter
mapping Ψ . Such an estimator is called a plug-in or substitution estimator. Substi-
tution estimators have the advantage of fully respecting the constraints implied by
the statistical model M and respecting that the target parameter is a very specific
function of P0. As a consequence, substitution estimators are generally robust, even
in small samples.

This first chapter was intended to motivate the need for improved estimation
methods, highlight the troublesome nature of the traditional approach to estimation,
and introduce important concepts such as the data, model, and target parameter. We
develop the following concepts, as part of the road map for targeted learning, in the
remaining five introductory chapters.

Defining the model and target parameter. By defining a structural causal model
(SCM), we specify a model for underlying counterfactual outcome data, repre-
senting the data one would be able to generate in an ideal experiment. This is
a translation of our knowledge about the data-generating process into causal as-
sumptions. We can define our target parameter in our SCM, i.e., as a so-called
causal effect of an intervention on a variable A on an outcome Y . The SCM also
generates the observed data O, and one needs to determine if the target parameter
can be identified from the distribution P0 of O alone. In particular, one needs to
determine what additional assumptions are needed in order to obtain such iden-
tifiability of the causal effect from the observed data.

Super learning for prediction. The first step in our estimation procedure is an
initial estimate for the part of the data-generating distribution P0 required to eval-
uate the target parameter. This estimator needs to recognize that P0 is only known
to be an element of a semiparametric statistical model. That is, we need estima-
tors that are able to truly learn from data, allowing for flexible fits with increased
amounts of information. We introduce cross-validation and machine learning as
essential tools and then present the method of super learning for prediction with
its theoretical grounding, demonstrating that super learning provides an opti-
mal approach to estimation of P0 (or infinite-dimensional parameters thereof)
in semiparametric statistical models. Since prediction can be a research question
of interest in itself, super learning for prediction is useful as a standalone tool as
well.

TMLE. With an initial estimate of the relevant part of the data-generating distri-
bution obtained using super learning, we are prepared to present the remainder
of the TMLE procedure. The second stage of TMLE updates this initial fit in a
step targeted towards making an optimal bias–variance tradeoff for the parame-
ter of interest, instead of the overall probability distribution P0. This results in
a targeted estimator of the relevant part of P0, and thereby in a corresponding
substitution estimator of Ψ (P0).

Many of the topics we have presented in this road map may be new to you. They
will be explained in detail in the coming chapters. This brief road map is introduced
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for the reader to see where we are going, how the pieces fit together, and why we
will present material in this order.

1.6 Notes and Further Reading

We motivated this chapter with two real-world debates: HRT and screening guide-
lines for breast cancer. In a New York Times piece, Taubes (2007) discussed the
merits of epidemiology using the HRT studies as an example. For those interested
in reading more about this topic, it is an excellent comprehensive starting point
with thorough references. For the statistician and researcher, it also raises one of the
questions we seek to answer with this text. Can we estimate causal effects from ob-
servational studies? Two starting points for the mammography debate include U.S.
Preventive Services Task Force (2009) for the official recommendation statement on
breast cancer screenings, as well as Freedman et al. (2004) for a qualitative review
of breast cancer mammography studies.

For additional background on study designs and covariate adjustment we direct
readers to Rothman and Greenland (1998) and Jewell (2004). For a readable intro-
ductory statistics text on traditional regression techniques and key statistics concepts
such as the central limit theorem (CLT) we refer readers to Freedman (2005).

A popular article drawing attention to false research findings, due in part to cur-
rent statistical practice, is Ioannidis (2006). Ioannidis was also interviewed in jour-
nalist David H. Freedman’s new book, Wrong: Why Experts Keep Failing Us—And
How to Know When to Trust Them. This text focuses on problems in research fields,
including the way data are analyzed and presented to the public (Freedman 2010).

George Box famously discussed that (parametric) statistical models are wrong,
but may be useful (Box and Draper 1987). As presented in this chapter, misspeci-
fied parametric statistical models may not perform terribly for low-dimensional data
structures and small sample sizes. Over 20 years after Box’s statements, data sets
have become increasingly high dimensional, and large studies are very common.
We are also still left with the issue that the coefficients in misspecified paramet-
ric statistical models do not represent the target parameter of interest. Therefore,
the usefulness of misspecified parametric statistical models is extremely limited.
Note, however, that maximum likelihood estimators according to candidate para-
metric working statistical models can be included in the library of the super learner,
discussed in Chap. 3, and can play a useful role in that manner.

The use of data-adaptive tools can be beneficial, although we discuss in this chap-
ter (Sect. 1.2.4) a commonly used data-adaptive procedure in parametric statistical
models that provides faulty inference. Data-adaptive methods, when guided by a
priori benchmarks in a nonparametric or semiparametric statistical model, are ad-
vantageous for prediction and discussed in detail in Chap. 3. We use the terms data-
adaptive and machine learning interchangeably in this text. Targeted estimators will
be discussed in Chaps. 4–6.



Chapter 2

Defining the Model and Parameter

Sherri Rose, Mark J. van der Laan

Targeted statistical learning from data is often concerned with the estimation of
causal effects and an assessment of uncertainty for the estimator. In Chap. 1, we
identified the road map we will follow to solve this estimation problem. Now, we
formalize the concepts of the model and target parameter. We will introduce addi-
tional topics that may seem abstract. While we attempt to elucidate these abstrac-
tions with tangible examples, depending on your background, the material may be
quite dense compared to other textbooks you have read. Do not get discouraged.
Sometimes a second reading and careful notes are helpful and sufficient to illumi-
nate these concepts. Researchers and students at UC Berkeley have also had great
success discussing these topics in groups. If this is your assigned text for a course
or workshop, meet outside of class with your fellow classmates. We guarantee you
that the effort is worth it so you can move on to the next step in the targeted learning
road map. Once you have a firm understanding of the core material in Chap. 2, you
can begin the estimation steps.

This chapter is based on methods pioneered by Judea Pearl, and we consider his
text Causality, recently published in a second edition (Pearl 2009), a companion
book to our book. Causal inference requires both a causal model to define the causal
effect as a target parameter of the distribution of the data and robust semiparametric
efficient estimation, with his book covering the former and ours the latter. We start
by succinctly summarizing the open problem:

The statistical estimation problem begins by defining a statistical modelM for
P0. The statistical modelM is a collection of possible probability distributions
P of O. P0 is the true distribution of O. The estimation problem requires the
description of a target parameter of P0 one wishes to learn from the data. This
definition of a target parameter requires specification of a mapping Ψ one can
then apply to P0. Clearly, this mapping Ψ needs to be defined on any possible
probability distribution in the statistical modelM. Thus Ψ maps any P ∈ M
into a vector of numbers Ψ (P). We write the mapping as Ψ : M → R

d for a
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d-dimensional parameter. We introduce ψ0 as the evaluation of Ψ (P0), i.e., the
true value of our parameter. The statistical estimation problem is now to map
the observed data O1, . . . ,On into an estimator of Ψ (P0) that incorporates the
knowledge that P0 ∈ M, accompanied by an assessment of the uncertainty in
the estimator.

In the following sections, we will define a model that goes beyond a statistical
model by incorporating nontestable assumptions, define a parameter of interest in
that model that can be interpreted as a causal effect, determine the assumptions to
establish the identifiability of the causal parameter from the distribution of the ob-
served data, and, finally, based on this modeling and identifiability exercise, commit
to a statistical model (i.e.,M) and target parameter (i.e., Ψ ).

Recall that the data O1, . . . ,On consist of n i.i.d. copies of a random variable O
with probability distribution P0. For a data structure, such as O = (W, A, Y) with
covariates W, exposure A, and outcome Y discrete, which we use as a simple ex-
ample in this chapter, uppercase letters represent random variables and lowercase
letters are a specific value for that variable. For example, if all variables are discrete,
P0(W = w, A = a, Y = y) assigns a probability to any possible outcome (w, a, y) for
O = (W, A, Y).

2.1 Defining the Structural Causal Model

We first specify a set of endogenous variables X = (Xj : j). Endogenous variables
are those variables for which the structural causal model (SCM) will state that it
is a (typically unknown) deterministic function of some of the other endogenous
variables and an exogenous error. Typically, the endogenous variables X include the
observables O, but might also include some nonobservables that are meaningful and
important to the scientific question of interest. Perhaps there was a variable you did
not measure, but would have liked to, and it plays a crucial role in defining the sci-
entific question of interest. This variable would then be an unobserved endogenous
variable. For example, if you are studying the effect of hepatitis B on liver cancer,
you might also want to measure hepatitis C and aflatoxin exposure. However, sup-
pose you know the role aflatoxin plays in the relationships between hepatitis B and
liver cancer, but you were unable to measure it. Aflatoxin exposure is, therefore,
an unobserved endogenous variable. Liver cancer, hepatitis B, and hepatitis C are
observed endogenous variables.

In a very simple example, we might have j = 1, . . . , J, where J = 3. Thus,
X = (X1, X2, X3). We can rewrite X as X = (W, A, Y) if we say X1 = W, X2 = A, and
X3 = Y . Let W represent the set of baseline covariates for a subject, A the treatment
or exposure, and Y the outcome. All the variables in X are observed. Suppose we
are interested in estimating the effect of leisure-time physical activity (LTPA) on
mortality in an elderly population. A study is conducted to estimate this effect where
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we sample individuals from the population of interest. The hypothesis is that LTPA
at or above current recommended levels decreases mortality risk. Let us say that
LTPA is a binary variable A ∈ {0, 1} defined by the recommended level of energy
expenditure. For all subjects meeting this level, A = 1 and all those below have
A = 0. The mortality outcome is also binary Y ∈ {0, 1} and defined as death within
5 years of the beginning of the study, with Y = 1 indicating death. W includes
variables such as age, sex, and health history.

For each endogenous variable Xj one specifies the parents of Xj among X, de-
noted Pa(Xj). In our mortality study example above, the parent of A is the set of
baseline covariates W. Thus, Pa(A) = W. The specification of the parents might be
known by the time ordering in which the Xj were collected over time: the parents of
a variable collected at time t could be defined as the observed past at time t. This is
true for our study of LTPA; W = {age, sex, health history} all occur before the single
measurement of LTPA. Likewise, LTPA was generated after the baseline covariates
and before death but depends on the baseline covariates. Death was generated last
and depends on both LTPA and the baseline covariates. We can see the time ordering
involved in this process: the baseline covariates occurred before the exposure LTPA,
which occurred before the outcome of death: W → A→ Y .

We denote a collection of exogenous variables by U = (UXj : j). These variables
in U are never observed and are not affected by the endogenous variables in the
model, but instead they affect the endogenous variables. They may also be referred
to as background or error variables. One assumes that Xj is some function of Pa(Xj)
and an exogenous UXj :

Xj = fX j (Pa(Xj),UXj ), j = 1 . . . , J.

The collection of functions fX j indexed by all the endogenous variables is repre-
sented by f = ( fX j : j). Together with the joint distribution of U, these functions
fX j , specify the data-generating distribution of (U, X) as they describe a deterministic
system of structural equations (one for each endogenous variable Xj) that determin-
istically maps a realization of U into a realization of X. In an SCM one also refers
to some of the endogenous variables as intervention variables. The SCM assumes
that intervening on one of the intervention variables by setting their value, thereby
making the function for that variable obsolete, does not change the form of the other
functions. The functions fX j are often unspecified, but in some cases it might be rea-
sonable to assume that these functions have to fall in a certain more restrictive class
of functions. Similarly, there might be some knowledge about the joint distribution
of U. The set of possible data-generating distributions of (U, X) can be obtained by
varying the structural equations f over all allowed forms, and the distribution of the
errors U over all possible error distributions defines the SCM for the full-data (U, X),
i.e., the SCM is a statistical model for the random variable (U, X). An example of a
fully parametric SCM would be obtained by assuming that all the functions fX j are
known up to a finite number of parameters and that the error distribution is a mul-
tivariate normal distribution with mean zero and unknown covariance matrix. Such
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parametric structural equation models are not recommended, for the same reasons
as outlined in Chap. 1.

The corresponding SCM for the observed data O also includes specifying the
relation between the random variable (U, X) and the observed data O, so that the
SCM for the full data implies a parameterization of the probability distribution of
O in terms of f and the distribution PU of U. This SCM for the observed data also
implies a statistical model for the probability distribution of O.

Let’s translate these concepts into our mortality study example. We have the func-
tions f = ( fW , fA, fY ) and the exogenous variables U = (UW ,UA,UY ). The values of
W, A, and Y are deterministically assigned by U corresponding to the functions f .
We specify our structural equation models, based on investigator knowledge, as

W = fW (UW ),
A = fA(W,UA),
Y = fY (W, A,UY ), (2.1)

where no assumptions are made about the true shape of fW , fA, and fY . These func-
tions f are nonparametric as we have not put a priori restrictions on their functional
form. We may assume that UA is independent of UY , given W, which corresponds
with believing that there are no unmeasured factors that predict both A and the out-
come Y: this is often called the no unmeasured confounders assumption. This SCM
represents a semiparametric statistical model for the probability distribution of the
errors U and endogenous variables X = (W, A, Y). We assume that the observed data
structure O = (W, A, Y) is actually a realization of the endogenous variables (W, A, Y)
generated by this system of structural equations. This now defines the SCM for the
observed data O. It is easily seen that any probability distribution of O can be ob-
tained by selecting a particular data-generating distribution of (U, X) in this SCM.
Thus, the statistical model for P0 implied by this SCM is a nonparametric model.
As a consequence, one cannot determine from observing O if the assumptions in the
SCM contradict the data. One states that the SCM represents a set of nontestable
causal assumptions we have made about how the data were generated in nature.

Specifically, with the SCM represented in (2.1), we have assumed that the under-
lying data were generated by the following actions:

1. Drawing unobservable U from some probability distribution PU ensuring that UA

is independent of UY , given W,
2. Generating W as a deterministic function of UW ,
3. Generating A as a deterministic function of W and UA,
4. Generating Y as a deterministic function of W, A, and UY .

What if, instead, our SCM had been specified as follows:

W = fW (UW ),
A = fA(UA),
Y = fY (W, A,UY ). (2.2)
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What different assumption are we making here? If you compare (2.1) and (2.2), you
see that the only difference between the two is the structural equation for fA. In (2.2),
A is evaluated as a deterministic function of UA only. The baseline variables W play
no role in the generation of variable A. We say that (2.2) is a more restrictive SCM
than (2.1) because of this additional assumption about data generation. When might
a researcher make such an assumption? In Chap. 1, we discussed RCTs. RCTs are
studies where the subjects are randomized to treatment in the study. If our study of
LTPA had been an RCT, it would make sense to assume the SCM specified in (2.2)
given our knowledge of the study design. However, since it would be unethical to
randomize subjects to levels of exercise, given the known health benefits, our study
of LTPA on mortality is observational and we assume the less restrictive (2.1).

Causal assumptions made by the SCM for the full data:

• For each endogenous Xj, Xj = f j(Pa(Xj),UXj ) only depends on the other
endogenous variables through its parents Pa(Xj).

• The exogenous variables have a particular joint distribution PU .

The SCM for the observed data includes the following additional assumption:

• The probability distribution of observed data structure O is implied by the
probability distribution of (U, X).

After having specified the parent sets Pa(Xj) for each endogenous variable Xj,
one might make an assumption about the joint distribution of U, denoted PU , rep-
resenting knowledge about the underlying random variable (U, X) as accurately as
possible. This kind of assumption would typically not put any restrictions on the
probability distribution of O. The underlying data (U, X) are comprised of the ex-
ogenous variables U and the endogenous variables X, which is why we use the nota-
tion (U, X). In a typical SCM, the endogenous variables are the variables for which
we have some understanding, mostly or fully observed, often collected according to
a time ordering, and are very meaningful to the investigator. On the other hand, typ-
ically much of the distribution of U is poorly understood. In particular, one would
often define UXj as some surrogate of potential unmeasured confounders, collapsing
different poorly understood phenomena in the real world in one variable. The latter
is reflected by the fact that we do not even measure these confounders, or know how
to measure them. However, in some applications something about the joint distribu-
tion of U might be understood, and some components of U might be measured. For
example, it might be known that treatment was randomized as in an RCT, implying
that the error UA for that treatment variable is independent of all other errors. On
the other hand, in an observational study, one might feel uncomfortable making the
assumption that UA is independent of UY , given W, since one might know that some
of the true confounders were not measured and are thereby captured by UA.
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Relationship of X and O. Our observed random variable O is related to X, and has
a probability distribution that is implied by the distribution of (U, X). Specification
of this relation is an important assumption of the SCM for the observed data O. A
typical example is that O = Φ(X) for someΦ, i.e., O is a function of X. This includes
the special case that O ⊂ X, i.e., with O being a simple subset of X. Because of this
relationship O = Φ(X), the marginal probability distribution of X,

PX(x) =
∑

u

P f (X = x | U = u)PU(U = u),

also identifies the probability distribution of O through the functions f = ( fX j : j)
and the distribution of the exogenous errors U. [Note that the conditional probability
distribution Pf (X = x | U = u) of X, given a realization U = u, is indeed completely
determined by the functions f , which explains our notation Pf .] For example, if
X = O, then:

P(o) =
∑

u

P f (X = o | U = u)PU(U = u).

In order to make explicit that the probability distribution P of O is implied by the
probability distribution of (U, X), we use the notation P = P(PU,X). The true prob-
ability distribution PU,X,0 of (U, X) implies the true probability distribution P0 of O
through this relation: P0 = P(PU,X,0). Since the assumed SCM often does not put any
restrictions on the functions fX j , and the selection of the parent sets Pa(Xj) might
be purely based on time ordering (thereby not implying conditional independencies
among the Xjs), for many types of restrictions one would put on PU , the resulting
SCM for (U, X) would still not provide any restriction on the distribution of O. In
that case, these causal assumptions provide no restriction on the distribution of O
itself and thus imply a nonparametric statistical modelM for the distribution P0 of
O. This statistical modelM implied by the SCM for the observed data is given by
M = {P(PU,X) : PU,X}, where PU,X varies over all possible probability distributions
of (U, X) in the SCM.

Each possible probability distribution PU,X of (U, X) in the SCM for the full
data, indexed by a choice of error distribution PU and a set of deterministic
functions ( fX j : j), implies a probability distribution P(PU,X) of O. In this
manner the SCM for the full data implies a parameterization of the true prob-
ability distribution of O in terms of a true probability distribution of (U, X),
so that the statistical model M for the probability distribution P0 of O can
be represented asM = {P(PU,X) : PU,X}, where PU,X varies over all allowed
probability distributions of (U, X) in the SCM. If this statistical modelM im-
plied by the SCM is nonparametric, then it follows that none of the causal
assumptions encoded by the SCM are testable from the observed data.
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2.2 Causal Graphs

SCMs provide a system for assigning values to a set of variables from random input.
They are also an effective and straightforward means for explicitly specifying causal
assumptions and the identifiability of the causal parameter of interest based on the
observed data. We can draw a causal graph from our SCM, which is a visual way to
describe some of the assumptions made by the model and the restrictions placed on
the joint distribution of the data (U, X). However, in this text we do not place heavy
emphasis on causal graphs as their utility is limited in many situations (e.g., compli-
cated longitudinal data structures), and simpler visual displays of time ordering may
provide more insight. Causal graphs also cannot encode every assumption we make
in our SCM, and, in particular, the identifiability assumptions derived from causal
graphs alone are not specific for the causal parameter of interest. Identifiability as-
sumptions derived from a causal graph will thus typically be stronger than required.
In addition, the link between the observed data and the full-data model represented
by the causal graph is often different than simply stating that O corresponds with
observing a subset of all the nodes in the causal graph. In this case, the causal graph
itself cannot be used to assess the identifiability of a desired causal parameter from
the observed data distribution.

2.2.1 Terminology

Figure 2.1 displays a possible causal graph for (2.1). The graph is drawn based on
the relationships defined in f . The parents Pa(Xj) of each Xj are connected to each
Xj with an arrow directed toward Xj. Each Xj also has a directed arrow connecting
its UXj . For example, the parents of Y , those variables in X on the right-hand side of
the equation fY , are A and W. In Fig. 2.1, A and W are connected to Y , the child, with
directed arrows, as is the exogenous UY . The baseline covariates W are represented
with one variable. All the variables X and U in the graph are called nodes, and the
lines that connect nodes are edges. All ancestors of a node occur before that node
and all descendants occur after that node. This is a directed graph, meaning that
each edge has only one arrow.

A path is any sequence of edges in a graph connecting two nodes. An example of
a directed path in Fig. 2.1 is W → A→ Y . This path connects each node with arrows
that point in the direction of the path. In this figure there are several backdoor paths,
which are paths that start with a node that has a directed arrow pointing into that
node. The path can then be followed without respect to the direction of the arrows.
For example, the path from Y to A through W is a backdoor path. Likewise, the path
from Y to W through A is a backdoor path. These graphs are also acyclic; you cannot
start at a node in a directed path and then return back to the same node through a
closed loop. A collider is a node in a path where both arrows are directed toward the
node. There are no colliders in Fig. 2.1. A blocked path is any path with at least one
collider. A direct effect is illustrated by a directed arrow between two nodes, with
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Fig. 2.1 A possible causal graph for (2.1).
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Fig. 2.2 A possible causal graph for (2.2)
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Fig. 2.3 A causal graph for (2.1) with no assumptions on the distribution of PU
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Fig. 2.4 A causal graph for (2.2) with no assumptions on the relationship between UW and UY
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no nodes mediating the path. Any unblocked path from A to Y other than the direct
effect connecting A and Y represents an indirect effect of A on Y . One must block
all unblocked backdoor paths from A to Y in order to isolate the causal effect of A
on Y .

2.2.2 Assumptions

In Sect. 2.1, we discussed the typically nontestable causal assumptions made by
an SCM. We make the first assumption by defining the parents Pa(Xj) for each
endogenous Xj. The second is any set of assumptions about the joint distribution
PU of the exogenous variables.

The assumptions made based on actual knowledge concerning the relationships
between variables [i.e., defining the parents Pa(Xj) for each endogenous Xj] are
displayed in our causal graph through the presence and absence of directed arrows.
The explicit absence of an arrow indicates a known lack of a direct effect. In many
cases all arrows are included as it is not possible to exclude a direct effect based
on a priori knowledge. In Fig. 2.1, the direction of the arrows is defined by the
assignment of the parents to each node, including the time ordering assumed during
the specification of (2.1). There is no explicit absence of any arrows; no direct effects
are excluded. However, if we were to draw a graph for (2.2), it could look like
Fig. 2.2. The direct effect between W and A is excluded because A is evaluated as a
deterministic function of UA only.

The assumptions on the distribution PU are reflected in causal graphs through
dashed double-headed arrows between the variables U. In Figs. 2.1 and 2.2, there are
no arrows between the U = (UW ,UA,UY ). Therefore, (2.1) and (2.2) included the
assumption of joint independence of the endogenous variables U, which is graphi-
cally displayed by the lack of arrows. This is not an assumption one is usually able
to make based on actual knowledge. More likely, we are able to make few or no
assumptions about the distribution of PU .

For (2.1), with no assumptions about the distribution of PU , our causal graph
would appear as in Fig. 2.3. For (2.2), our causal graph based on actual knowledge
may look like Fig. 2.4. Since A is randomized, this implies that UA is independent
of UY and UW , and we remove the arrows connecting UA to UY and UA to UW .
However, we have no knowledge to indicate the independence of UY and UW , thus
we cannot remove the arrows between these two variables.

The causal graph encodes some of the information and assumptions described
by the SCM. It is an additional tool to visually describe assumptions encoded by
the SCM. In more complex longitudinal data structures, it may be simpler to work
with the SCM over the causal graph, as the intricacies of the causal relationships
and abundance of arrows can limit the utility of the graphic.
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2.3 Defining the Causal Target Parameter

Now that we have a way of modeling the data-generating mechanism with an SCM,
we can focus on what we are trying to learn from the observed data. That is, we
can define a causal target parameter of interest as a parameter of the distribution
of the full-data (U, X) in the SCM. Formally, we denote the SCM for the full-data
(U, X) by MF , a collection of possible PU,X as described by the SCM. In other
words, MF , a model for the full data, is a collection of possible distributions for
the underlying data (U, X). ΨF is a mapping applied to a PU,X giving ΨF(PU,X) as
the target parameter of PU,X . This mapping needs to be defined for each PU,X that is
a possible distribution of (U, X), given our assumptions coded by the posed SCM.
In this way, we state ΨF : MF → R

d, where R
d indicates that our parameter is a

vector of d real numbers. The SCMMF consists of the distributions indexed by the
deterministic function f = ( fX j : j) and distribution PU of U, where f and this joint
distribution PU are identifiable from the distribution of the full-data (U, X). Thus the
target parameter can also be represented as a function of f and the joint distribution
of U.

Recall our mortality example with data structure O = (W, A, Y) and SCM
given in (2.1) with no assumptions about the distribution PU . We can define
Ya = fY (W, a,UY ) as a random variable corresponding with intervention A = a
in the SCM. The marginal probability distribution of Ya is thus given by

PU,X(Ya = y) = PU,X( fY (W, a,UY ) = y).

The causal effect of interest for a binary A (suppose it is the causal risk difference)
could then be defined as a parameter of the distribution of (U, X) given by

ΨF(PU,X) = EU,XY1 − EU,XY0.

In other words, ΨF(PU,X) is the difference of marginal means of counterfactuals Y1
and Y0. We discuss this in more detail in the next subsection.

2.3.1 Interventions

We will define our causal target parameter as a parameter of the distribution of
the data (U, X) under an intervention on one or more of the structural equations in
f . The intervention defines a random variable that is a function of (U, X), so that
the target parameter is ΨF(PU,X). In Chap. 1, we discussed the “ideal experiment”
which we cannot conduct in practice, where we observe each subject’s outcome at
all levels of A under identical conditions. Intervening on the system defined by our
SCM describes the data that would be generated from the system at the different
levels of our intervention variable (or variables). For example, in our study of LTPA
on mortality, we can intervene on the exposure LTPA in order to observe the results
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of this intervention on the system. By assumption, intervening and changing the
functions fX j of the intervention variables does not change the other functions in f .
With the SCM given in (2.1) we can intervene on fA and set a = 1:

W = fW (UW ),
a = 1,

Y1 = fY (W, 1,UY ).

We can also intervene and set a = 0:

W = fW (UW ),
a = 0,

Y0 = fY (W, 0,UY ).

The intervention defines a random variable that is a function of (U, X), namely,
Ya = Ya(U) for a = 1 and a = 0. The notation Ya(U) makes explicit that Ya is ran-
dom only through U. The probability distribution of the (X,U) under an intervention
is called the postintervention distribution. Our target parameter is a parameter of the
postintervention distribution of Y0 and Y1, i.e., it is a function of these two postin-
tervention distributions, namely, some difference. Thus, the SCM for the full data
allows us to define the random variable Ya = fY (W, a,UY ) for each a, where Ya

represents the outcome that would have been observed under this system for a par-
ticular subject under exposure a. Thus, with the SCM we can carry out the “ideal
experiment” and define parameters of the distribution of the data generated in this
perfect experiment, even though our observed data are only the random variables
O1, . . . ,On.

Formally, and more generally, the definition of the target parameter involves first
specifying a subset of the endogenous nodes Xj playing the role of intervention
nodes. Let As denote the intervention nodes, s = 0, . . . , S , so that A = (As : s =
1, . . . , S ), which, in shorthand notation, we also denote by A = (As : s). We will de-
note the other endogenous nodes in X by L = (Lr : r). Thus, X = ((As : s), (Lr : r)).
Static interventions on the A-nodes correspond with setting A to a fixed value a,
while dynamic interventions deterministically set As according to a fixed rule ap-
plied to the parents of As. Static interventions are a subset of the dynamic interven-
tions. We will denote such a rule for assigning d to the intervention nodes, but it
should be observed that d defines a rule for each As. Thus d = (ds : s = 1, . . . , S ) is
a set of S rules. Such rules d are also called dynamic treatment regimens.

For a particular intervention d on the A nodes, and for a given realization u, the
SCM generates deterministically a corresponding value for L, obtained by erasing
the fAs functions, and carrying out the intervention d on A in the parent sets of the re-
maining equations. We denote the resulting realization by Ld(u) and note that Ld(u)
is implied by f and u. The actual random variable Ld(U) is called a postintervention
random variable corresponding with the intervention that assigns the intervention
nodes according to rule d. The probability distribution of Ld(U) can be described as
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P(Ld(U) = l) =
∑

u

P f (Ld(u) = l | U = u)PU(u) =
∑

u

I(Ld(u) = l)PU(u).

In other words, it is the probability that U falls in the set of u-realizations under
which the SCM system deterministically sets Ld(u) = l. Indicator I(Ld(u) = l) is
uniquely determined by the function specifications fX j for the Xj nodes that com-
prise L. This shows explicitly that the distribution of Ld(U) is a parameter of f and
the distribution of U, and thus a well-defined parameter on the full-data SCMMF

for the distribution of (U, X). We now define our target parameter ΨF(PU,X) as some
function of (PLd : d) for a set of interventions d. Typically, we define our target
parameter as a so-called causal contrast that involves a difference between two of
such d-specific postintervention probability distributions. This target parameter is
referred to as a causal parameter since it is a parameter of the postintervention dis-
tribution of L as a function of an intervention choice on A = (As : s) across one or
more interventions.

2.3.2 Counterfactuals

We would ideally like to see each individual’s outcome at all possible levels of
exposure A. The study is only capable of collecting Y under one exposure, the expo-
sure the subject experiences. We discussed interventions on our SCM in Sect. 2.3.1
and we intervened on A to set a = 1 and a = 0 in order to generate the outcome
for each subject under A = a in our mortality study. Recall that Ya represents the
outcome that would have been observed under this system for a particular subject
under exposure a. For our binary exposure LTPA , we have (Ya : a), with a ∈ A,
and where A is the set of possible values for our exposure LTPA. Here, this set is
simply {0, 1}, but in other examples it could be continuous or otherwise more com-
plex. Thus, in our example, for each realization u, which might correspond with an
individual randomly drawn from some target population, by intervening on (2.1),
we can generate so-called counterfactual outcomes Y1(u) and Y0(u). These coun-
terfactual outcomes are implied by our SCM; they are consequences of it. That is,
Y0(u) = fY (W, 0, uY ), and Y1(u) = fY (W, 1, uY ), where W = fW (uW ) is also implied
by u. The random counterfactuals Y0 = Y0(U) and Y1 = Y1(U) are random through
the probability distribution of U. Now we have the expected outcome had everyone
in the target population met or exceeded recommended levels of LTPA, and the ex-
pected outcome had everyone had levels of LTPA below health recommendations.
For example, the expected outcome of Y1 is the mean of Y1(u) with respect to the
probability distribution of U. Our target parameter is a function of the probability
distributions of these counterfactuals: E0Y1 − E0Y0.
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2.3.3 Establishing Identifiability

Are the assumptions we have already made enough to express the causal parameter
of interest as a parameter of the probability distribution P0 of the observed data? We
want to be able to write ΨF(PU,X,0) as Ψ (P0) for some parameter mapping Ψ , where
we remind the reader that the SCM also specifies how the distribution P0 of the
observed data structure O is implied by the true distribution PU,X,0 of (U, X). Since
the true probability distribution of (U, X) can be any element in the SCMMF , and
each such choice PU,X implies a probability distribution P(PU,X) of O, this requires
that we show that ΨF(PU,X) = Ψ (P(PU,X)) for all PU,X ∈ MF .

This step involves establishing possible additional assumptions on the distribu-
tion of U, or sometimes also on the deterministic functions f , so that we can identify
the target parameter from the observed data distribution. Thus, for each probability
distribution of the underlying data (U, X) satisfying the SCM with these possible
additional assumptions on PU , we have ΨF(PU,X) = Ψ (P(PU,X)) for some Ψ . O is
implied by the distribution of (U, X), such as O = X or O ⊂ X, and P = P(PX,U),
where P(PU,X) is a distribution of O implied by PU,X .

Let us denote the resulting full-data SCM by MF∗ ⊂ MF to make clear that
possible additional assumptions were made that were driven purely by the identifia-
bility problem, not necessarily reflecting reality. To be explicit,MF is the full-data
SCM under the assumptions based on real knowledge, and MF∗ is the full-data
SCM under possible additional causal assumptions required for the identifiability of
our target parameter. We now have that for each PU,X ∈ MF∗, ΨF(PU,X) = Ψ (P),
with P = P(PU,X) the distribution of O implied by PU,X (whereas P0 is the true
distribution of O implied by the true distribution PU,X,0).

Theorems exist that are helpful to establish such a desired identifiability result.
For example, if O = X, and the distribution of U is such that, for each s, As is
independent of Ld, given Pa(As), then the well-known g-formula expresses the dis-
tribution of Ld in terms of the distribution of O:

P(Ld = l) =
R∏

r=1

P(Lr = lr | Pad(Lr)) = Pad(lr)),

where Pad(Lr) are the parents of Lr with the intervention nodes among these parent
nodes deterministically set by intervention d.

This so-called sequential randomization assumption can be established for a par-
ticular independence structure of U by verifying the backdoor path criterion on the
corresponding causal graph implied by the SCM and this independence structure on
U. The backdoor path criterion states that for each As, each backdoor path from As

to an Lr node that is realized after As is blocked by one of the other Lr nodes.
In this manner, one might be able to generate a number of independence struc-

tures on the distribution of U that provide the desired identifiability result. That is,
the resulting model for U that provides the desired identifiability might be repre-
sented as a union of models for U that assume a specific independence structure.
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Fig. 2.5 Causal graphs for (2.1) with various assumptions about the distribution of PU

If there is only one intervention node, i.e., S = 1, so that O = (W, A, Y), the se-
quential randomization assumption reduces to the randomization assumption. The
randomization assumption states that treatment node A is independent of counter-
factual Ya, conditional on W: Ya⊥A | Pa(A) = W. You may be familiar with the
(sequential) randomization assumption by another name, the no unmeasured con-
founders assumption. For our purposes, confounders are those variables in X one
needs to observe in O in order to establish the identifiability of the target parameter
of interest. We note that different such subsets of X may provide a desired identifia-
bility result.

If we return to our mortality example and the structural equation models found
in (2.1), the union of several independence structures allows for the identifiability of
our causal target parameter E0Y1−E0Y0 by meeting the backdoor path criterion. The
independence structure in Fig. 2.3 does not meet the backdoor path criterion, but the
two in Fig. 2.5 do. Thus in these two graphs the randomization assumption holds:
A and Ya are conditionally independent given W, which is implied by UA being
independent of UY , given W. It should be noted that Fig. 2.1 is a special case of the
first graph in Fig. 2.5, so the union model for the distribution of U only represents
two conditional independence models.

2.3.4 Commit to a Statistical Model and Target Parameter

The identifiability result provides us with a purely statistical target parameter Ψ (P0)
on the distribution P0 of O. The full-data modelMF∗ implies a statistical observed
data model M = {P(PX,U) : PX,U ∈ MF∗} for the distribution P0 = P(PU,X,0) of
O. This now defines a target parameter Ψ : M → R

d. The statistical observed data
model for the distribution of O might be the same forMF andMF∗. If not, then one
might consider extending the Ψ to the larger statistical observed data model implied
by MF , such as possibly a fully nonparametric model allowing for all probability
distributions. In this way, if the more restricted SCM holds, our target parameter
would still estimate the target parameter, but one now also allows the data to con-
tradict the more restricted SCM based on additional doubtful assumptions.
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We can return to our example of the effect of LTPA on mortality and define
our parameter, the causal risk difference, in terms of the corresponding statistical
parameter Ψ (P0):

ΨF(PU,X,0) = E0Y1 − E0Y0 = E0[E0(Y | A = 1,W) − E0(Y | A = 0,W)] ≡ Ψ (P0),

where the outer expectation in the definition of Ψ (P0) is the mean across the strata
for W. This identifiability result for the additive causal effect as a parameter of the
distribution P0 of O required making the randomization assumption stating that A
is independent of the counterfactuals (Y0, Y1) within strata of W. This assumption
might have been included in the original SCMMF , but, if one knows there are un-
measured confounders, then the modelMF∗ would be more restrictive by enforcing
this “known to be wrong” randomization assumption.

Another required assumption is that P0(A = 1,W = w) > 0 and P0(A = 0,W =
w) > 0 are positive for each possible realization w of W. Without this assumption,
the conditional expectations of Y in Ψ (P0) are not well defined. This positivity as-
sumption is often called the experimental treatment assignment (ETA) assumption.
Here we are assuming that the conditional treatment assignment probabilities are
positive for each possible w: P0(A = 1 | W = w) > 0 and P0(A = 0 | W = w) > 0 for
each possible w. However, the positivity assumption is a more general name for the
condition that is necessary for the target parameter Ψ (P0) to be well defined, and it
often requires the censoring or treatment mechanism to have certain support.

So, to be very explicit about how this parameter corresponds with mapping P0
into a number, as presented in Chap. 1:

Ψ (P0) =
∑

w

[∑
y

yP0(Y = y | A = 1,W = w)

−
∑

y

yP0(Y = y | A = 0,W = w)
]
P0(W = w),

where

P0(Y = y | A = a,W = w) =
P0(W = w, A = a, Y = y)∑
y P0(W = w, A = a, Y = y)

is the conditional probability distribution of Y = y, given A = a,W = w, and

P0(W = w) =
∑
y,a

P0(Y = y, A = a,W = w)

is the marginal probability distribution of W = w. This statistical parameter Ψ is
defined on all probability distributions of (W, A, Y). The statistical modelM is non-
parametric and Ψ :M→ R.
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We note again that we use the term statistical model for the collection of pos-
sible probability distributions, while we use the word model for the statistical
model augmented with the nontestable causal assumptions coded by the un-
derlying SCM and its relation to the observed data distribution of O. In our
LTPA example, the model is the nonparametric statistical model augmented
with the nontestable SCM. If this model includes the randomization assump-
tion, and the experimental treatment assignment assumption, then this model
allows the identifiability of the additive causal effect E0Y1 − E0Y0 through the
statistical target parameter Ψ (P0) = E0(E0(Y | A = 1,W)−E0(Y | A = 0,W)).

2.3.5 Interpretation of Target Parameter

The observed data parameter Ψ (P0) can be interpreted in two possibly distinct
ways:

1. Ψ (P0) with P0 ∈ M augmented with the truly reliable additional non-
statistical assumptions that are known to hold (e.g., MF). This may in-
volve bounding the deviation of Ψ (P0) from the desired target causal effect
ΨF(PU,X,0) under a realistic causal modelMF that is not sufficient for the
identifiability of this causal effect.

2. The truly causal parameter ΨF(PU,X) = Ψ (P0) under the more restricted
SCMMF∗, thereby now including all causal assumptions that are needed to
make the desired causal effect identifiable from the probability distribution
P0 of O.

The purely statistical (noncausal) parameter given by interpretation 1 is often of in-
terest, such as EW [E0(Y | A = 1,W) − E0(Y | A = 0,W)], which can be interpreted
as the average of the difference in means across the strata for W. With this parameter
we can assume nothing, beyond the experimental treatment assignment assumption,
except perhaps time ordering W → A → Y , to have a meaningful interpretation of
the difference in means. Since we do not assume an underlying system, the SCM
for (U, X) and thereby Ya, or the randomization assumption, the parameter is a sta-
tistical parameter only. This type of parameter is sometimes referred to as a variable
importance measure.

For example, if A = age, the investigator may not be willing to assume an SCM
defining interventions on age (a variable one cannot intervene on and set in practice).
Thus, if one does not assume MF , the statistical parameter Ψ (P0) under interpre-
tation 1 can still be very much of interest. In some cases, however, these two in-
terpretations coincide. What is known about the generation of data and distribution
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PU may imply the assumptions necessary to interpret Ψ (P0) as the causal parame-
ter ΨF(PU,X): for example, in an RCT, by design, assuming full compliance and no
missingness or censoring, the causal assumptions required will hold.

2.4 Revisiting the Mortality Example

For the sake of presentation, we intentionally assumed that the exposure LTPA
was binary and worked with an SCM that generated a binary exposure A. In the
actual mortality study A is continuous valued. Consider the more realistic SCM
W = fW (UW ), A = fA(W,UA), Y = fY (W, A,UY ), where A is now continuous valued.
Let Ya(u) be the counterfactual obtained by setting A = a and U = u, so that Ya is
the random variable representing survival at 5 years under LTPA at level a. Suppose
one wishes to consider a cut-off value δ for LTPA level so that one can recommend
that the population at least exercise at this level δ. A causal quantity of interest is
now

ψF
0 =

∑
a

w1(a)E0Ya −
∑

a

w0(a)E0Ya,

where w1(a) is a probability distribution on excercise levels larger than δ, and w0(a)
is a probability distribution on exercise levels smaller than or equal to δ. This cor-
responds to E0Y1 − E0Y0, where Y1 is defined by the random intervention on the
SCM in which one randomly draws A from w1, and similarly Y0 is defined by ran-
domly drawing A from w0. This causal effect E0Y1−E0Y0 can be identified from the
probability distribution P0 of O = (W, A, Y) as follows:

ψF
0 =

∑
a

(w1 − w0)(a)E0E0(Y | A = a,W) ≡ ψ0.

2.5 Road Map for Targeted Learning

In Chap. 1, we introduced the road map for targeted learning. In this chapter we
have discussed defining the research question, which involved describing the data
and committing to a statistical model and target parameter. The estimation problem
we wish to solve is now fully defined. The next stage of the road map addresses
estimation of the target parameter, which will be covered in the next three chapters.

The statistical estimation problem. We observe n i.i.d. copies O1, ..,On from a
probability distribution P0 known to be in a statistical modelM, and we wish to
infer statistically about the target parameter Ψ (P0). Often, this target parameter
only depends on P0 through a relevant (infinite-dimensional) parameter Q0 =

Q0(P0) of P0, so that we can also write Ψ (Q0).
Targeted substitution estimator. We construct a substitution estimator Ψ (Q∗n)

obtained by plugging in an estimator Q∗n of Q0. This involves super learning and
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DATA
The data are n i.i.d. observations of random variable O. O has 

probability distribution P0.

MODEL
The statistical model M is a set of possible probability distributions 
of O. P0 is in M. The model is a statistical model for P0 augmented 

with possible additional nontestable causal assumptions.

TARGET PARAMETER
The parameter Ψ(P0) is a particular feature of P0, where Ψ maps the 

probability distribution P0 into the target parameter of interest.  
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The first step in our estimation procedure is an initial estimate of the 
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TARGETED MAXIMUM LIKELIHOOD ESTIMATION 
With an initial estimate of the relevant part of the data-generating 

distribution obtained using super learning, the second stage of TMLE 
updates this initial fit in a step targeted toward making an optimal 
bias–variance tradeoff for the parameter of interest, now denoted 

Ψ(Q0), instead of the overall probability distribution.
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The target parameter can be interpreted as a purely statistical 
parameter or as a causal parameter under possible additional 

nontestable assumptions in our model.

END

Fig. 2.6 Road map for targeted learning
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TMLE, so that we obtain, under regularity conditions, an asymptotically linear,
double robust, and efficient normally distributed estimator of ψ0 = Ψ (Q0), and,
in general, put in the maximal effort to minimize the mean squared error with
respect to the true value ψ0. In addition, we provide statistical inference about ψ0
based on the estimation of the normal limit distribution of

√
n(Ψ (Q∗n) − ψ0).

2.6 Conceptual Framework

This section provides a rigorous conceptual framework for the topics covered in this
chapter. If you find it too abstract on your initial reading, we advise you to come
back as you become more familiar with the material. It is meant for more advanced
readers.

Data are meaningless without knowledge about the experiment that generated the
data. That is, data are realizations of a random variable with a certain probability
distribution on a set of possible outcomes, and statistical learning is concerned with
learning something about the probability distribution of the data. Typically, we are
willing to view our data as a realization of n independent identical replications of the
experiment, and we accept this as our first modeling assumption. If we denote the
random variable representing the data generated by the experiment by O, having a
probability distribution P0, then the data set corresponds with drawing a realization
of n i.i.d. copies O1, . . . ,On with some common probability distribution P0.

A statistical estimation problem corresponds with defining a statistical modelM
for P0, where the statistical modelM is a collection of possible probability distri-
butions of O. The estimation problem also requires a mapping Ψ on this statistical
model M, where Ψ maps any P ∈ M into a vector of numbers Ψ (P). We write
Ψ : M → R

d for a d-dimensional parameter. We introduce ψ0, and the interpreta-
tion of ψ0 as Ψ (P0), i.e., a well-defined feature of P0, is called the pure statistical
interpretation of the parameter value ψ0. The statistical estimation problem is now to
map the data set O1, . . . ,On into an estimator of Ψ (P0) that incorporates the knowl-
edge that P0 ∈ M, accompanied by an assessment of the uncertainty in the estimator
of ψ0.

When thinking purely about the construction of an estimator, the only concern is
to construct an estimator of ψ0 that has small mean squared error (MSE), or some
other measure of dissimilarity between the estimator and the true ψ0. This does not
require any additional knowledge (or nontestable causal assumptions). As a con-
sequence, for the construction of a targeted maximum likelihood estimator, which
we introduce in Chaps. 4 and 5, the only input is the statistical model M and the
mapping Ψ representing the target parameter.

Making assumptions about P0 that do not change the statistical model, so-called
nontestable assumptions, will not change the statistical estimation problem. How-
ever, such assumptions allows one to interpret a particular parameter Ψ (P0) in a new
way. If such nontestable assumptions are known to be true, it enriches the interpre-
tation of the number ψ0. If they are wrong, then it results in misinterpretation of ψ0.
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This is called causal modeling when it involves nontestable assumptions that allow
Ψ (P0) to be interpreted as a causal effect, and, in general, it is modeling with non-
testable assumptions with the goal of providing an enriched interpretation of this
parameter Ψ (P0).

It works as follows. One proposes a parameterization θ → Pθ for θ varying over
a set Θ so that the statistical model M can be represented as M = {Pθ : θ ∈ Θ},
where θ represents PU,X in our SCM framework, but it can represent any underly-
ing structure (not necessarily causal). That is, we provide a parameterization for the
statistical modelM. In addition, since P0 ∈ M, there exists a θ0 such that P0 = Pθ0 .
Assume that this θ0 is actually uniquely identified by P0. θ0 has its own interpreta-
tion, such as the probability distribution of counterfactual random variables in the
SCM. Suddenly, the P0 allows us to infer θ0 = Θ(P0) for a mapping Θ. As a con-
sequence, with this “magic trick” of parameterizing P0 we succeeded in providing
a new interpretation of P0 and, in particular, of any parameter Ψ (P0) = Ψ (Pθ0 ) as a
function of θ0.

As one can imagine, there are millions of possible magic tricks one can carry out,
each one creating a new interpretation of P0 by having it mapped into an interpreta-
tion of a θ0 implied by a particular parameterization. The data cannot tell you if one
magic trick will provide a more accurate description of reality than another magic
trick, since data can only provide information about P0 itself. As a consequence,
which magic trick is applied, or if any trick is applied at all, should be driven by
true knowledge about the underlying mechanism that resulted in the generation of
O. In that case, the selection of the parameterization is not a magic trick but repre-
sents the incorporation of true knowledge allowing us to interpret the parameter ψ0
for what it is. Note that this modeling could easily correspond with a nonparametric
statistical modelM for P0.

Two important mistakes can occur in statistical practice, before the selection
of an estimator, given that one has specified a statistical model M and parameter
Ψ : M → R

d. The first mistake is that one specifies the statistical model M in-
correctly so that P0 � M, resulting in misinterpretation of Ψ (P0), even as a purely
statistical parameter, i.e., as a mapping Ψ applied to P0. The second mistake is that
one misspecifies additional nontestable assumptions as coded by the selected pa-
rameterization forM that were used to provide an enriched interpretation of Ψ (P0),
again resulting in misinterpretation of Ψ (P0). These two mistakes can be collapsed
into one, namely, misspecification of the model for P0. By the model we now mean
the statistical model for P0 augmented with the additional nontestable structural
assumptions, even though these do not change the statistical model.

So a model now includes the additional parameterization, such that two identical
statistical models that are based on different parameterizations are classified as dif-
ferent models. Thus, a model is defined by a mapping P· : Θ → M, θ → Pθ, and
the statistical model implied by this model is given by the range M = {Pθ : θ} of
this mapping. Regarding statistical vocabulary, we will use the word model for the
parameterization mapping P· : Θ→M, and statistical model for the set of possible
probability distributions, i.e., the range of this mapping. Note, that if the parame-
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terization is simply the identity mapping defined onM, then the model equals the
statistical model.

Even though it is healthy to be cynical about modeling and extremely aware of its
dangers and its potential to lie with data, it is of fundamental importance to statisti-
cal learning that we can incorporate structural knowledge about the data-generating
process and utilize that in our interpretation. In addition, even if these structural
assumptions implied by the model/parameterization are uncertain, it is worthwhile
to know that, if these were true, then our parameter would allow its corresponding
interpretation. One could then report both the statistical interpretation, or the reli-
able statistical model interpretation, as well as the if also, then interpretation to our
target ψ0.

In addition, this structural modeling allows one to create truly interesting param-
eters in an underlying world and one can then establish under what assumptions one
can identify these truly interesting parameters from the observed data. This itself
teaches us how to generate new data so that these parameters will be identifiable.
The identifiability results for these truly interesting parameters provide us with sta-
tistical parameters Ψ (P0) that might be interesting as statistical parameters anyway,
without these additional structural assumptions, and have the additional flavor of
having a particularly powerful interpretation if these additional structural assump-
tions happen to be true. In particular, one may be able to interpret Ψ (P0) as the best
possible approximation of the wished causal quantity of interest based on the avail-
able data. Overall, this provides us with more than enough motivation to include
(causal) modeling as an important component in the road map of targeted learning
from data.

2.7 Notes and Further Reading

As noted in the introduction, a thorough presentation of SCMs, causal graphs, and
related identifiability theory can be found in Pearl (2009). We also direct the inter-
ested reader to Judea Pearl’s Web site (http://bayes.cs.ucla.edu/jp_home.html) for
easily organized references and presentations on these topics. The g-formula for
identifying the distribution of counterfactuals from the observed data distribution,
under the sequential randomization assumption, was originally published in Robins
(1986). The simplified data example we introduce in this chapter, a mortality study
examining the effect of LTPA, is based on data presented in Tager et al. (1998). We
carry this example through the next three chapters, and in Chap. 4, we analyze this
data using super learning and targeted maximum likelihood estimation.

In our road map we utilize causal models, such as SCMs and the Neyman–Rubin
model, to generate statistical effect parameters ψ0 = Ψ (P0) of interest. The inter-
pretation of the estimand ψ0, beyond its pure statistical interpretation, depends on
the required causal assumptions necessary for identifiability of the desired causal
quantity ψF

0 (defined as target quantity in causal model for full data or counterfac-
tuals) from the observed data distribution. Such an interpretation might be further

http://bayes.cs.ucla.edu/jp_home.html
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enriched if one could define an actual experiment that would reproduce this causal
quantity. Either way, our road map poses these causal models as working models
to derive these statistical target parameters that can be interpreted as causal effects
under explicitly stated causal assumptions. The latter assumptions are fully exposed
and for anybody to criticize.

We wish to stress that the learning of these estimands with their pure statistical
interpretation already represents progress in science. In addition, the required causal
assumptions that would allow a richer interpretation of the estimand teach us how
to improve our design of the observational or RCT.

Somehow, we think that a statistical target parameter that has a desired causal
interpretation under possibly unrealistic assumptions is a “best” approximation of
the ideal causal quantity, given the limitations set by the available data. For example,
E0(E0(Y | A = 1,W) − E0(Y | A = 0,W)) is an effect of treatment, controlling for
the measured covariates, with a clear statistical interpretation, and, if people feel
comfortable talking about E0Y1 − E0Y0, then we think that this statistical estimand
represents a “best” effort to target this additive causal effect under the constraints
set by the available data.

Instead of making a hard decision regarding the causal assumptions necessary for
making the estimand equal to the causal quantity, one may wish to investigate the
potential distance between the estimand and the causal quantity. In this manner, one
still allows for a causal interpretation of the estimand (such as that the asymptotic
bias of the estimand with respect to the desired causal quantity is bounded from
above by a certain number), even if the causal assumptions required for making
the estimand equal to the causal quantity are violated. Such an approach relies on
the ability to bound this distance by incorporation of realistic causal knowledge.
Such a sensitivity analysis will require input from subject matter people such as a
determination of an upper bound of the effect of unmeasured confounders beyond
the measured time-dependent confounders. Even a highly trained statistician will
have an extremely hard time getting his/her head around such a question, making
such sensitivity analyses potentially unreliable and extremely hard to communicate.
Still, this is an important research area since it allows for a continuous range from
pure statistical interpretation of the estimand to a pure causal effect interpretation.

Either way, we should not forget that using poor methods for estimation with the
actual observed data, while investing enormous effort in such a sensitivity analysis.
makes no sense. By the same token, estimation of the estimand is a separate prob-
lem from determining the distance between the estimand and the causal quantity
of interest and is obviously as important as carefully defining and interpreting the
estimand: the careful definition and interpretation of an estimand has little value if
one decides to use a misspecified parametric model to fit it!



Chapter 3

Super Learning

Eric C. Polley, Sherri Rose, Mark J. van der Laan

This is the first chapter in our text focused on estimation within the road map for
targeted learning. Now that we’ve defined the research question, including our data,
the model, and the target parameter, we are ready to begin. For the estimation of a
target parameter of the probability distribution of the data, such as target parameters
that can be interpreted as causal effects, we implement TMLE. The first step in this
estimation procedure is an initial estimate of the data-generating distribution P0, or
the relevant part Q0 of P0 that is needed to evaluate the target parameter. This is the
step presented in Chap. 3, and TMLE will be presented in Chaps. 4 and 5.

We introduce these concepts using our mortality study example from Chap. 2 ex-
amining the effect of LTPA. Our outcome Y is binary, indicating death within 5 years
of baseline, and A is also binary, indicating whether the subject meets recommended
levels of physical activity. The data structure in this example is O = (W, A, Y) ∼ P0.
Our target parameter is Ψ (P0) = EW,0[E0(Y | A = 1,W) − E0(Y | A = 0,W)],
which represents the causal risk difference under causal assumptions. Since this tar-
get parameter only depends on P0 through the conditional mean Q̄0(A,W) = E0(Y |
A,W), and the marginal distribution QW,0 of W, we can also write Ψ (Q0), where
Q0 = (Q̄0,QW,0). We estimate the expectation over W with the empirical mean over
Wi, i = 1, . . . , n. With this target parameter, Q̄0(A,W) = E0(Y | A,W) is the only
object we will still need to estimate. Therefore, the first step of the TMLE of the
risk difference Ψ (P0) is to estimate this conditional mean function Q̄0(A,W). Our
substitution TMLE will be of the type

ψn = Ψ (Qn) =
1
n

n∑
i=1

{Q̄n(1,Wi) − Q̄n(0,Wi)},

where this estimate is obtained by plugging Qn = (Q̄n,QW,n) into the parameter
mapping Ψ .

We could estimate the entire conditional probability distribution of Y , instead of
estimating the conditional mean of Y , but then (except when Y is binary) we are
estimating portions of the density we do not need. Targeted estimation of only the
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relevant portion of the probability distribution of O in this first step of the TMLE
procedure provides us with maximally efficient and unbiased estimators. This will
be further discussed in Chaps. 4 and 5.

3.1 Background

Let’s start our discussion with studies where Y is binary, such as in our mortality
study example. When Y is binary, there is no difference between the conditional
mean or conditional probability distribution, so this distinction plays no role. Now,
what do we know about our probability distribution P0 of O? We know that the
data are n i.i.d. observations (realizations) on n i.i.d. copies O1, . . . ,On of O ∼ P0.
These realizations are denoted o1, . . . , on. In our mortality study example, we have
no knowledge about P0. Thus we have a nonparametric statistical model for P0. In
scenarios where we have some knowledge about data generation, we can include
this knowledge in a semiparametric statistical model. Our parameter of interest is
this chapter is Q̄0(A,W) = P0(Y = 1 | A,W).

How are we to estimate P0(Y = 1 | A,W) if we assume only a nonparametric
(or, in general, a large semiparametric) statistical model? We do not know anything
about the shape of Q̄0(A,W) as a function of exposure and covariates. Standard
practice would assume a parametric statistical model, making assumptions we know
are wrong, and proceeding to estimate P0(Y = 1 | A,W) under the assumptions
of the parametric statistical model, thereby forcing the shape of this function of
(A,W) to follow an incorrect user-supplied structure. Since the parametric statistical
model is wrong, the estimate of P0(Y = 1 | A,W) will be biased, and increasing the
sample size will not make it any better. What we want is an automated algorithm to
nonparametrically (or semiparametrically) estimate P0(Y = 1 | A,W), i.e., we want
an estimator that is able to learn from the data using the true knowledge represented
by the actual statistical model for P0.

In the computer science literature, this is called machine learning. In statistics,
these methods are often referred to as nonparametric or semiparametric estimators,
or data-adaptive estimators. We will use the terms data-adaptive and machine learn-
ing interchangeably in this text. The essential point is that there are nonparametric
methods that also aim to “smooth” the data and estimate this regression function
flexibly, adapting it to the data given a priori guidelines, without overfitting the data.

For example, one could use local averaging of the outcome Y within covariate
“neighborhoods.” Here, neighborhoods are bins for covariate observations that are
close in value, where these bins are defined by partitioning the covariate space. The
number of bins will determine the smoothness of our fitted regression function. Such
a regression estimator is also called a histogram regression estimator. How do you
choose the size of these neighborhoods or bins? This becomes a bias–variance trade-
off question. If we have many small neighborhoods, the estimate will not be smooth
and will have high variance since some neighborhoods will be empty or contain
only a small number of observations. The result is a sample mean of the outcome
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over the observations in the neighborhood that is imprecise. On the other hand, if
we have very few large neighborhoods, the estimate is much smoother, but it will be
biased since the neighborhoods fail to capture the complexity of the data. Suppose
we choose the number of neighborhoods in a smart way. With n large enough, this
will result in a good estimator in our nonparametric statistical model. Formally, we
say such a histogram regression estimator is asymptotically consistent in the sense
that it approximates the true regression function as sample size increases.

However, if the true data-generating distribution is very smooth, a logistic regres-
sion in a misspecified parametric statistical model might beat the nonparametric es-
timator. This is frustrating! We want to create a smart nonparametric estimator that
is consistent, but in some cases it may “lose” to a misspecified parametric model
because it is more variable. There are other ways of approaching the truth that will
be smoother than local averaging. One method, locally weighted regression and
scatterplot smoothing (loess), is a weighted polynomial regression method that fits
the data locally, iteratively within neighborhoods. Spline functions, another method,
are similar to polynomial functions, as splines are piecewise polynomial functions.
Smoothing splines use penalties to adjust for a lack of smoothness, and regression
splines use linear combinations of basis functions. There are many other potential
algorithms we could implement to estimate P0(Y = 1 | A,W). However, how are we
to know priori which one to use? We cannot bet on a logistic regression in a mis-
specified parametric statistical model, but we have the problem that one particular
algorithm is going to do better than the other candidate estimators for the particular
data-generating distribution P0, and we do not know which one is the best.

To be very explicit, an algorithm is an estimator of Q̄0 that maps a data set of
n observations (Wi, Ai, Yi), i = 1, . . . , n, into a prediction function that can be used
to map input (A,W) into a predicted value for Y . The algorithms may differ in the
subset of the covariates used, the basis functions, the loss functions, the searching
algorithm, and the range of tuning parameters, among others. We use algorithm in
a general sense to mean any mapping from data into a predictor, so that the word
algorithm is equivalent to the word estimator. As long as the algorithm takes the
observed data and outputs a fitted prediction function, we consider it a prediction al-
gorithm. For example, a collection of algorithms could include least squares regres-
sion estimators, algorithms indexed by set values of the fine-tuning parameters for
a collection of values, algorithms using internal cross-validation to set fine-tuning
parameters, algorithms coupled with screening procedures to reduce the dimension
of the covariate vector, and so on.

Effect Estimation vs. Prediction

Both causal effect and prediction research questions are inherently estimation
questions. In the first, we are interested in estimating the causal effect of A on
Y adjusted for covariates W. For prediction, we are interested in generating
a function to input the variables (A,W) and predict a value for Y . These are
separate and distinct research questions. However, many (causal) effect esti-
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mators, such as TMLE, involve prediction steps within the procedure. Thus,
understanding prediction is a core concept even when one has an effect esti-
mation research question. Effect parameters where no causal assumptions are
made are often referred to as variable importance measures (VIMs).

3.2 Defining the Estimation Problem

Our data structure is O = (W, A, Y) ∼ P0, and we observe n i.i.d. observations on
O1, . . . ,On. An estimator maps these observations into a value for the parameter it
targets. We can view estimators as mappings from the empirical distribution Pn of
the data set, where Pn places probability 1/n on each observed Oi, i = 1, . . . , n. In
our mortality study example, we need an estimator of Q̄0(A,W) = P0(Y = 1 | A,W).

Before we can choose a “best” algorithm to estimate the function Q̄0 : (A,W)→
Q̄0(A,W), we must have a way to define what “best” means. We do this in terms of
a loss function, which assigns a measure of performance to a candidate function Q̄
when applied to an observation O. That is, a loss function is a function L given by

L : (O, Q̄)→ L(O, Q̄) ∈ R.

It is a function of the random variable O and parameter value Q̄. Examples of loss
functions include the L1 absolute error loss function

L(O, Q̄) = |Y − Q̄(A,W)|,

the L2 squared error (or quadratic) loss function

L(O, Q̄) = (Y − Q̄(A,W))2,

and the negative log loss function for a binary Y

L(O, Q̄) = − log(Q̄(A,W)Y (1 − Q̄(A,W))1−Y ).

A loss function defines a function Q̄0 that has the optimal expected performance
with respect to that loss function among all candidate functions Q̄. For example, the
function Q̄0 that minimizes the expected absolute error, Q̄ → E0|Y − Q̄(A,W)|, is
the conditional median of Y , as a function of (A,W). On the other hand, the function
that minimizes the expected squared error is the conditional mean of Y , while the
function that minimizes the expected negative log loss function for a binary Y is the
conditional probability distribution of Y , as a function of (A,W). For binary Y , both
the L2 loss and negative log loss target the same function Q̄0(A,W) = P0(Y = 1 |
A,W).
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We can now define our parameter of interest, Q̄0(A,W) = E0(Y | A,W), as the
minimizer of the expected squared error loss:

Q̄0 = arg minQ̄E0L(O, Q̄),

where L(O, Q̄) = (Y − Q̄(A,W))2. E0L(O, Q̄), which we want to be small, evalu-
ates the candidate Q̄, and it is minimized at the optimal choice of Q̄0. We refer to
expected loss as the risk. Thus we have a way to define the “best” algorithm. We
want the estimator of the regression function Q̄0 whose realized value minimizes
the expectation of the squared error loss function. If we have two estimates Q̄a

n and
Q̄b

n, then we prefer the estimator for which
∑

o P0(O = o)L(o, Q̄n) is smallest.
This makes sense intuitively. We want an estimator that is close to the true Q̄0

and the difference between the risk at a candidate Q̄ and the risk at the true Q̄0
corresponds with an expected squared error between Q̄ and Q̄0 across all values of
(A,W):

E0L(O, Q̄) − E0L(O, Q̄0) = E0(Q̄ − Q̄0)2(A,W).

Minimizing the expected loss will bring the chosen candidate closer to the true Q̄0
with respect to the dissimilarity measure implied by the loss function, namely, the
difference of the risk at Q̄ and the optimal risk at Q̄0. How do we find out which
algorithm among a library of algorithms yields the smallest expected loss, or, equiv-
alently, which one has the best performance with respect to the dissimilarity implied
by the loss function?

3.3 Super (Machine) Learning

Let us return to our simplified mortality study example. The outcome Y is binary,
indicating death within 5 years of baseline, and A is also binary, indicating whether
the subject meets recommended levels of physical activity. The data structure is
O = (W, A, Y) ∼ P0. For now let us consider only the covariates W = {W1,W2,W3}.
Age (W1) is a continuous measure, gender (W2) is binary, and chronic health his-
tory (W3) is a binary measure indicating whether the subject has a chronic health
condition at baseline. While we are ultimately interested in the effect of LTPA on
death demonstrated in the next chapter, if we were strictly interested in a prediction
research question, we could also include LTPA as a covariate in vector W.

Suppose there are three subject matter experts, and they each have a different
proposal about the specification of a logistic regression in a parametric statistical
model, incorporating their subject matter knowledge. The first believes a main terms
statistical model is sufficient for the estimation of the prediction target parameter:

Q̄a
n(A,W) = Pa

n(Y = 1 | A,W) = expit (α0,n + α1,nA + α2,nW1 + α3,nW2 + α4,nW3).

The second expert proposes including all covariates W and exposure A, as well as
an interaction term between age and gender:
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Q̄b
n(A,W) = expit (α0,n + α1,nA + α2,nW1 + α3,nW2 + α4,nW3 + α5,n(W1 ×W2)).

The third expert wants to use a statistical model with main terms and age2:

Q̄c
n(A,W) = expit (α0,n + α1,nA + α2,nW1 + α3,nW2 + α4,nW3 + α5,nW2

1 ).

The investigators would ideally like to run all three of these statistical models. Now
that we’ve defined a criterion for the best estimator of Q̄0, how can we responsibly
select the optimal estimator from a collection of algorithms, such as the collection
of estimators Q̄a

n, Q̄b
n, and Q̄c

n?

3.3.1 Discrete Super Learner

We start by introducing discrete super learning, which will give us an estimate of the
cross-validated risk for each algorithm. The entire data set (learning set) is divided
into V groups of size ∼n/V . These groups are mutually exclusive and exhaustive
sets. Our mortality data set has n = 2066 subjects. If we want to perform V-fold
cross-validation in our discrete super learning procedure, using 10 folds, we will
divide our data set into groups of size ∼2066/10. (This gives us four groups with
206 subjects and six groups with 207 subjects.) We label each group from 1 to 10.

Let us focus first on understanding the procedure with just one of the regressions
in the collection of algorithms. The observations in group 1 are set aside, and the
first regression is fit on the remaining nine groups (called the training set). Then
we take the observations in group 1 (called the validation set) and obtain predicted
probabilities of death for these 206 or 207 observations using the regression fit on
the training set. It is important to note that the observations in group 1 were not in-
cluded in the fitting process and will only be used to evaluate the performance of the
predictor that was obtained on the training sample. In this way, we have succeeded
in obtaining predicted probabilities of death for approx.10% of our data, where the
prediction function used to obtain these predicted probabilities was fit based on the
remaining 90% of data. At this stage, we calculate the estimated risk within the val-
idation set using their predicted probabilities. This procedure is performed for all
of the algorithms in the collection of algorithms, so that we have, at the end of the
first fold, predicted probabilities for each of the three regressions. We also have an
estimate of risk within the validation set (group 1) for each of the three regressions,
calculated using their corresponding predicted probabilities.

We need to perform this procedure nine more times, so that each group has the
opportunity to take on the role of the validation set and obtain predicted probabilities
for each algorithm fit on the corresponding training set. Thus, the procedure contin-
ues until we have predicted probabilities of death for all 2066 subjects for each
algorithm, and also estimated risk within each validation set for each algorithm. We
then have 10 estimated risks for each of the three algorithms, and these risks are
averaged across validation sets resulting in one estimated cross-validated risk for
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each algorithm. The discrete super learner algorithm selects the algorithm with the
smallest cross-validated risk. The algorithm with the smallest cross-validated risk is
the “best” estimator according to our criterion: minimizing the estimated expected
squared error loss function. See Fig. 3.1 for a diagram of this procedure.

We have now described a new algorithm that took as input the three algo-
rithms. This new estimator is what we call the discrete super learner, and it is
indexed by this collection of three algorithms.

By incorporating a rich collection of algorithms that vary in bias and degree of
data-fitting, the cross-validation within the discrete super learner prevents overfit-
ting and it also prevents selecting a fit that is too biased. There are many forms of
cross-validation, and here we discussed V-fold cross-validation due to its low com-
putational burden while still providing the desirable finite sample and asymptotic
optimality properties, which will be discussed later. The collection of algorithms
can be large and includes other algorithms besides parametric statistical models, for
example, the collection of algorithms may include random forest algorithms and
support vector machines.
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Fig. 3.1 Discrete super learner algorithm for the mortality study example where Q̄b
n(A,W) is the

algorithm with the smallest cross-validated risk
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When the loss function is bounded, it has been shown that this discrete super
learner will, for large sample sizes, perform as well as the algorithm that is the
minimizer of the expected loss function. The latter impossible choice is called the
oracle selector, which corresponds with simply selecting the estimator that is closest
to the true Q̄0. In addition, cross-validation selection is tailored for small sample
sizes, thus one should not be misled that cross-validation requires large sample sizes.

3.3.2 Super Learner

Can we improve upon the discrete super learner? Yes! We can use our three regres-
sions to build a library of algorithms consisting of all weighted averages of these
regressions. It is reasonable to expect that one of these weighted averages might
perform better than one of the three regressions alone. This simple principle allows
us to map a collection of candidate algorithms (in this case, our three regressions)
into a library of weighted averages of these algorithms. Each weighted average is a
unique candidate algorithm in this augmented library. We can then apply the same
cross-validation selector to this augmented set of candidate algorithms, resulting
in the super learner. It might seem that the implementation of such an estimator is
problematic, since it requires minimizing the cross-validated risk over an infinite
set of candidate algorithms (the weighted averages). The contrary is true. The super
learner is not more computer intensive than the discrete super learner. If the dis-
crete super learner has been implemented, then all the work has been done! Only
the relatively trivial calculation of the optimal weight vector needs to be completed.

Consider that the discrete super learner has already been completed as described
in Sect. 3.3.1. We then propose a family of weighted combinations of the three re-
gression algorithms, which we index by the weight vector α. We want to determine
which combination minimizes the cross-validated risk over the family of weighted
combinations. The (cross-validated) probabilities of death (Z) for each algorithm are
used as inputs in a working (statistical) model to predict the outcome Y . Therefore,
we have a working model with three α = {αa, αb, αc} coefficients that need to be
estimated, one for each of the three algorithms. Selecting the weights that minimize
the cross-validated risk is a simple minimization problem, formulated as a regres-
sion of the outcomes Y on the predicted values of the algorithms (Z) according to
the user-supplied parametric family of weighted combinations. The weighted com-
bination with the smallest cross-validated risk is the “best” estimator according to
our criterion: minimizing the estimated expected squared error loss function.

The selected weighted combination is a new estimator we can now use to input
data (e.g., our complete mortality data set) to estimate predicted probabilities. Thus,
we fit each of the three algorithms on our complete data (learning set). Combining
these algorithm fits with our new estimator generates the super learner prediction
function. This prediction function is the weighted combination of the candidate al-
gorithms applied to the whole data set. See Fig. 3.2 for a full diagram of the super
learner algorithm. In order to calculate an honest risk for the super learner, the super
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Fig. 3.2 Super learner algorithm for the mortality study example

learner itself must be externally cross-validated after the procedure described above
has been implemented.

The family of weighted combinations includes only those α-vectors that have a
sum equal to one, and where each weight is positive or zero. Theory does not dic-
tate any restrictions on the family of weighted combinations used for assembling the
algorithms; however, the restriction of the parameter space for α to be the convex
combination of the algorithms provides greater stability for the final super learner
prediction. The convex combination is not only empirically motivated, but also sup-
ported by theory. The oracle results for the super learner require a bounded loss
function. Restricting oneself to a convex combination of algorithms implies that
if each algorithm in the library is bounded, the convex combination will also be
bounded.

The super learner improves asymptotically on the discrete super learner by work-
ing with a larger library. We reiterate that asymptotic results prove that in realistic
scenarios (where none of the algorithms are a correctly specified parametric model),
the cross-validated selector performs asymptotically as well as the oracle, which we
define as the best estimator given the algorithms in the collection of algorithms.
Consequently, the super learner performs asymptotically as well as the best choice
among the family of weighted combinations of estimators. Thus, by adding more
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competitors, we only improve the performance of the super learner. The asymp-
totic equivalence remains true if the number of algorithms in the library grows very
quickly with sample size. Even when the collection of algorithms contains a cor-
rectly specified parametric statistical model, the super learner will approximate the
truth as fast as the parametric statistical model, although it will be more variable.

The super learner algorithm provides a system to combine multiple estima-
tors into an improved estimator, and returns a function we can also use for
prediction in new data sets.

3.3.3 Finite Sample Performance and Applications

To examine the finite sample performance of the super learner we present a series
of simulations and data applications. (For those readers unfamiliar with simulation,
simulated data are ideal for methodology validation, as the true underlying distribu-
tion of the data is known.) We then demonstrate the super learner on a collection of
real data sets and a microarray cancer data set.

Four different simulations are presented in this section. All four simulations in-
volve a univariate X drawn from a uniform distribution in [−4, 4]. The outcomes
follow the functions described below:

Simulation 1: Y = −2 × I(X < −3) + 2.55 × I(X > −2) − 2 × I(X > 0)
+ 4 × I(X > 2) − 1 × I(X > 3) + U;

Simulation 2: Y = 6 + 0.4X − 0.36X2 + 0.005X3 + U;

Simulation 3: Y = 2.83 × sin
(
π

2
× X

)
+ U;

Simulation 4: Y = 4 × sin (3π × X) × I(X > 0) + U,

where I(·) is the usual indicator function and U, our exogenous background error, is
drawn from an independent standard normal distribution in all simulations. A sam-
ple of size 100 was drawn for each scenario. Figure 3.3 contains a scatterplot with
a sample from each of the four simulations. The true curve for each simulation is
represented by the solid line. These four simulations were chosen because they rep-
resent a diverse set of true regression functions, but all four have the same optimal
R2 = 0.80. The empirical R2 is computed as R2 = 1 − (

∑
(Yi − Yi,n)2/

∑
(Yi − Ȳ)2),

where Ȳ = 1/n
∑n

i=1 Yi and Yi,n is the predicted value of Yi reported by the algorithm
when applied to the whole data set. The optimal R2 is the value attained when the
true regression function (i.e., true conditional mean) is used and an infinite test sam-
ple is used to evaluate the mean squared errors in the numerator and denominator.
Knowledge of the true regression function and using an infinite test sample implies∑

(Yi − Yi,n)2 = var(U) × n = 1 × n. Hence the optimal R2 in all four simulations
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Fig. 3.3 Scatterplots of the four simulations. The solid line is the true relationship. The points
represent one of the simulated data sets of size n = 100. The dashed line is the super learner fit for
the shown data set

is R2
opt = 1 − (1/var(Y)). The variance of Y is set such that R2

opt = 0.80 in each
simulation.

The collection of algorithms should ideally be a diverse set. One common aspect
of many prediction algorithms is the need to specify values for tuning parameters.
For example, generalized additive models require a degrees-of-freedom value for the
spline functions and the neural network requires a size value. The tuning parameters
could be selected using cross-validation or bootstrapping, but the different values
of the tuning parameters could also be considered different prediction algorithms.
A collection of algorithms could contain three generalized additive models with
degrees of freedom equal to 2, 3, and 4. When one considers different values of
tuning parameters as unique prediction algorithms in the collection, it is easy to see
how the number of algorithms in the collection can become large.
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Table 3.1 Collection of prediction algorithms for the simulations and citations

R Algorithm Description Source

glm Linear model R Development Core Team (2010)
interaction Polynomial linear model R Development Core Team (2010)
randomForest Random forest Liaw and Wiener (2002)

Breiman (2001b)
bagging Bootstrap aggregation of trees Peters and Hothorn (2009)

Breiman (1996d)
gam Generalized additive models Hastie (1992)

Hastie and Tibshirani (1990)
gbm Gradient boosting Ridgeway (2007)

Friedman (2001)
nnet Neural network Venables and Ripley (2002)
polymars Polynomial spline regression Kooperberg (2009)

Friedman (1991)
bart Bayesian additive regression trees Chipman and McCulloch (2009)

Chipman et al. (2010)
loess Local polynomial regression Cleveland et al. (1992)

In all four simulations, we started with the same collection of 21 prediction al-
gorithms. Table 3.1 contains a list of the algorithms in the library. A linear model
and a linear model with a quadratic term were considered. The default random for-
est algorithm, along with a collection of bagging regression trees with values of the
complexity parameter (cp) equal to 0.10, 0.01, and 0.00 and a bagging algorithm ad-
justing the minimum split parameter to be 5, with default cp of 0.01, was also within
the collection of algorithms. Generalized additive models with degrees of freedom
equal to 2, 3, and 4 were added along with the default gradient boosting model.
Neural networks with sizes 2 through 5, the polymars algorithm, and the Bayesian
additive regression trees were added. Finally, we considered the loess curve with
spans equal to 0.75, 0.50, 0.25, and 0.10.

Figure 3.3 contains the super learner fit on a single simulated data set for each
scenario. With the given collection of algorithms, the super learner is able to adapt
to the underlying structure of the data-generating function. For each algorithm we
evaluated the true R2 on a test set of size 10,000. The optimal R2 is the value attained
with knowledge of the true regression function. This value gives us an upper bound
on the possible R2 for each algorithm.

To assess the performance of the super learner in comparison to each algorithm,
we simulated 100 samples of size 100 and computed the R2 for each fit of the true re-
gression function. The results are presented in Table 3.2. Negative R2 values indicate
that the mean is a better predictor of Y than the algorithm. In the first simulation,
the regression-tree-based methods perform the best. Bagging complete regression
trees (cp = 0) has the largest R2. In the second simulation, the best algorithm is
the quadratic linear regression (SL.interaction). In both of these cases, the super
learner is able to adapt to the underlying structure and has an average R2 close to
the best algorithm. The same trend is exhibited in simulations 3 and 4; the super
learner method of combining algorithms does nearly as well as the individual best
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Table 3.2 Results for four simulations. Average R2 based on 100 simulations and the correspond-
ing standard errors

Algorithm Sim 1 Sim 2 Sim 3 Sim 4

R2 SE(R2) R2 SE(R2) R2 SE(R2) R2 SE(R2)

Super learner 0.741 0.032 0.754 0.025 0.760 0.025 0.496 0.122
Discrete SL 0.729 0.079 0.758 0.029 0.757 0.055 0.509 0.132

SL.glm 0.422 0.012 0.189 0.016 0.107 0.016 −0.018 0.021
SL.interaction 0.428 0.016 0.769 0.011 0.100 0.020 −0.018 0.029
SL.randomForest 0.715 0.021 0.702 0.027 0.724 0.018 0.460 0.109
SL.bagging(0.01) 0.751 0.022 0.722 0.036 0.723 0.018 0.091 0.054
SL.bagging(0.1) 0.635 0.120 0.455 0.195 0.661 0.029 0.020 0.025
SL.bagging(0.0) 0.752 0.021 0.722 0.034 0.727 0.017 0.102 0.060
SL.bagging(ms5) 0.747 0.020 0.727 0.030 0.741 0.016 0.369 0.104
SL.gam(2) 0.489 0.013 0.649 0.026 0.213 0.029 −0.014 0.023
SL.gam(3) 0.535 0.033 0.748 0.024 0.412 0.037 −0.017 0.029
SL.gam(4) 0.586 0.027 0.759 0.020 0.555 0.022 −0.020 0.034
SL.gbm 0.717 0.035 0.694 0.038 0.679 0.022 0.063 0.040
SL.nnet(2) 0.476 0.235 0.591 0.245 0.283 0.285 −0.008 0.030
SL.nnet(3) 0.700 0.096 0.700 0.136 0.652 0.218 0.009 0.035
SL.nnet(4) 0.719 0.077 0.730 0.062 0.738 0.102 0.032 0.052
SL.nnet(5) 0.705 0.079 0.716 0.070 0.731 0.077 0.042 0.060
SL.polymars 0.704 0.033 0.733 0.032 0.745 0.034 0.003 0.040
SL.bart 0.740 0.015 0.737 0.027 0.764 0.014 0.077 0.034
SL.loess(0.75) 0.599 0.023 0.761 0.019 0.487 0.028 −0.023 0.033
SL.loess(0.50) 0.695 0.018 0.754 0.022 0.744 0.029 −0.033 0.038
SL.loess(0.25) 0.729 0.016 0.738 0.025 0.772 0.015 −0.076 0.068
SL.loess(0.1) 0.690 0.044 0.680 0.064 0.699 0.039 0.544 0.118

algorithm. Since the individual best algorithm is not known a priori, if a researcher
selected a single algorithm, they may do well in some data sets, but the overall per-
formance will be worse than that of the super learner. For example, an individual
who always uses bagging complete trees (SL.bagging(0.0)) will do well on the first
three simulations, but will perform poorly on the fourth simulation compared to the
average performance of the super learner.

In the first three simulations the super learner approaches the optimal R2 value be-
cause algorithms in the collection approximate the truth well. However, in the fourth
simulation, the collection is not rich enough to contain a combination of algorithms
that approaches the optimal value. The super learner does as well as the best algo-
rithms in the library but does not attain the optimal R2. Upon supplementation of the
collection of algorithms, the super learner achieves an average R2 = 0.76, which is
close to the optimal R2 (results not shown; see Polley and van der Laan 2010).

To study the super learner in real data examples, we collected a number of pub-
licly available data sets. Table 3.3 contains descriptions of the data sets, which can
be found either in public repositories or in textbooks, with the corresponding ci-
tation listed in the table. Sample sizes ranged from 200 to 654 observations, and
the number of covariates ranged from 3 to 18. All 13 data sets have a continuous
outcome and no missing values. The collection of prediction algorithms included
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Table 3.3 Description of data sets, where n is the sample size and p is the number of covariates

Name n p Source

ais 202 10 Cook and Weisberg (1994)
diamond 308 17 Chu (2001)
cps78 550 18 Berndt (1991)
cps85 534 17 Berndt (1991)
cpu 209 6 Kibler et al. (1989)
FEV 654 4 Rosner (1999)
Pima 392 7 Newman et al. (1998)
laheart 200 10 Afifi and Azen (1979)
mussels 201 3 Cook (1998)
enroll 258 6 Liu and Stengos (1999)
fat 252 14 Penrose et al. (1985)
diabetes 366 15 Harrell (2001)
house 506 13 Newman et al. (1998)

the applicable algorithms from the univariate simulations along with the algorithms
listed in Table 3.4. These algorithms represent a diverse set and should allow the
super learner to work well in most practical settings. For comparison across data
sets, we kept the collection of algorithms fixed for all data analyses.

In order to compare the performance of the K prediction algorithms across di-
verse data sets with outcomes on different scales, we used the relative mean squared
error, which we denote RE for relative efficiency. The denominator is the mean
squared error of a linear model:

RE(k) =
MSE(k)

MSE(lm)
, k = 1, . . . ,K.

The results for the super learner, the discrete super learner, and each individual
algorithm can be found in Fig. 3.4. Each point represents the 10-fold cross-validated
relative mean squared error for a data set, and the plus sign is the geometric mean
of the algorithm across all 13 data sets. The super learner outperformed the discrete
super learner, and both outperformed any individual algorithm. With real data, it
is unlikely that one single algorithm would contain the true relationship, and the
benefit of the combination of the algorithms vs. the selection of a single algorithm is
demonstrated. The additional estimation of the combination parameters (α) does not
cause an overfit in terms of the risk assessment. Among the individual algorithms,
the Bayesian additive regression trees perform the best, but they overfit one of the
data sets with a relative mean squared error of almost 3.0.

A common application of prediction is in microarray data. Super learning is well
suited for this setting. Microarray data are often high dimensional, i.e., the number
of covariates is larger than the sample size. We demonstrate the super learner in
microarray data using a publicly available breast cancer data set published in van’t
Veer et al. (2002). This study was conducted to develop a gene-expression-based
predictor for 5-year distant metastases. The outcome is a binary indicator that a
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Table 3.4 Additional prediction algorithms in the collection of algorithms for the real data exam-
ples to be combined with the algorithms from Table 3.1

R Algorithm Description Source

bayesglm Bayesian linear model Gelman et al. (2010)
Gelman et al. (2009)

glmnet Elastic net Friedman et al. (2010a)
Friedman et al. (2010b)

DSA DSA algorithm Neugebauer and Bullard (2009)
Sinisi and van der Laan (2004)

step Stepwise regression Venables and Ripley (2002)
ridge Ridge regression Venables and Ripley (2002)
svm Support vector machine Dimitriadou et al. (2009)

Chang and Lin (2001)

Fig. 3.4 Tenfold cross-validated relative mean squared error compared to glm across 13 real data
sets. Sorted by geometric mean, denoted by the plus (+) sign
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Table 3.5 Twentyfold cross-validated mean squared error for each algorithm and the standard error
in the breast cancer study

Algorithm Subset Risk SE

Super learner – 0.194 0.0168
Discrete SL – 0.238 0.0239

SL.knn(10) All 0.249 0.0196
SL.knn(10) Clinical 0.239 0.0188
SL.knn(10) cor(p < 0.1) 0.262 0.0232
SL.knn(10) cor(p < 0.01) 0.224 0.0205
SL.knn(10) glmnet 0.219 0.0277
SL.knn(20) All 0.242 0.0129
SL.knn(20) Clinical 0.236 0.0123
SL.knn(20) cor(p < 0.1) 0.233 0.0168
SL.knn(20) cor(p < 0.01) 0.206 0.0176
SL.knn(20) glmnet 0.217 0.0257
SL.knn(30) All 0.239 0.0128
SL.knn(30) Clinical 0.236 0.0119
SL.knn(30) cor(p < 0.1) 0.232 0.0139
SL.knn(30) cor(p < 0.01) 0.215 0.0165
SL.knn(30) glmnet 0.210 0.0231
SL.knn(40) All 0.240 0.0111
SL.knn(40) Clinical 0.238 0.0105
SL.knn(40) cor(p < 0.1) 0.236 0.0118
SL.knn(40) cor(p < 0.01) 0.219 0.0151
SL.knn(40) glmnet 0.211 0.0208
SL.glmnet(1.0) cor(Rank = 50) 0.229 0.0285
SL.glmnet(1.0) cor(Rank = 20) 0.208 0.0260
SL.glmnet(0.75) cor(Rank = 50) 0.221 0.0269
SL.glmnet(0.75) cor(Rank = 20) 0.209 0.0258
SL.glmnet(0.50) cor(Rank = 50) 0.226 0.0269
SL.glmnet(0.50) cor(Rank = 20) 0.211 0.0256
SL.glmnet(0.25) cor(Rank = 50) 0.230 0.0266
SL.glmnet(0.25) cor(Rank = 20) 0.216 0.0252
SL.randomForest Clinical 0.198 0.0186
SL.randomForest cor(p < 0.01) 0.204 0.0179
SL.randomForest glmnet 0.220 0.0245
SL.bagging Clinical 0.207 0.0160
SL.bagging cor(p < 0.01) 0.205 0.0184
SL.bagging glmnet 0.206 0.0219
SL.bart Clinical 0.202 0.0183
SL.bart cor(p < 0.01) 0.210 0.0207
SL.bart glmnet 0.220 0.0275
SL.mean All 0.224 0.1016
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patient had a distant metastasis within 5 years of initial therapy. In addition to the
expression data, six clinical variables were attained. The clinical information was
age, tumor grade, tumor size, estrogen receptor status, progesterone receptor sta-
tus, and angioinvasion. The array data contained 4348 genes after the unsupervised
screening steps outlined in the original article. We used the entire sample of 97 in-
dividuals (combining the training and validation samples from the original article)
to fit the super learner.

In high-dimensional data, it is often beneficial to screen the variables before run-
ning prediction algorithms. Screening is part of the algorithm and should thus also
be included when calculating the cross-validated risk of an algorithm in the super
learner. Screening algorithms can be coupled with prediction algorithms to create
new algorithms in the library. For example, we may consider k-nearest neighbors
using all features and k-nearest neighbors on the subset of only clinical variables.
These two algorithms are considered unique algorithms. Another screening algo-
rithm involves testing the pairwise correlations of each variable with the outcome
and ranking the variables by the corresponding p-value. With the ranked list of vari-
ables, we consider the screening cutoffs as follows: variables with a p-value less
than 0.1, variables with a p-value less than 0.01, variables in the bottom 20, and
variables in the bottom 50. An additional screening algorithm involves running the
glmnet algorithm and selecting the variables with nonzero coefficients.

The results for the breast cancer data can be found in Table 3.5. The algorithms in
the collection are k-nearest neighbors with k = {10, 20, 30, 40}, elastic net with α =
{1.0, 0.75, 0.50, 0.25}, random forests, bagging, bart, and an algorithm that uses the
mean value of the outcome as the predicted probability. We coupled these algorithms
with the screening algorithms to produce the full list of 38 algorithms. Within this
collection of algorithms, the best algorithm in terms of minimum risk estimate is
the random forest algorithm using only the clinical variables (MSE = 0.198). As
we observed in the previous examples, the super learner was able to attain a risk
comparable to the best algorithm (MSE = 0.194).

3.4 Road Maps

In previous chapters, we introduced our road map for targeted learning (Fig. 3.5),
the first steps of which involved defining our data, model, and target parameter. This
chapter dealt with obtaining the best initial estimator of the relevant portion Q0 of
the distribution P0 of O. The next stage of the road map addresses estimation of the
target parameter using TMLE, taking this initial estimator as input.

We also present a separate road map for prediction estimation questions in
Fig. 3.6. We note that inference for prediction is not covered in detail in this text
and we refer readers in Sect. 3.7 to literature using the permutation distribution for
obtaining exact tests of the null hypothesis of independence of the covariates and
the outcome, allowing the incorporation of machine learning.
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DATA
The data are n i.i.d. observations of random variable O. O has 

probability distribution P0.

MODEL
The statistical model M is a set of possible probability distributions 
of O. P0 is in M. The model is a statistical model for P0 augmented 

with possible additional nontestable causal assumptions.

TARGET PARAMETER
The parameter Ψ(P0) is a particular feature of P0, where Ψ maps the 

probability distribution P0 into the target parameter of interest.  
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The first step in our estimation procedure is an initial estimate of the 
relevant part Q0 of P0  using the machine learning algorithm super 

learner.
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TARGETED MAXIMUM LIKELIHOOD ESTIMATION 
With an initial estimate of the relevant part of the data-generating 

distribution obtained using super learning, the second stage of TMLE 
updates this initial fit in a step targeted toward making an optimal 
bias–variance tradeoff for the parameter of interest, now denoted 

Ψ(Q0), instead of the overall probability distribution.
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INFERENCE
Standard errors are calculated for the estimator of the target 

parameter using the influence curve or resampling-based methods 
to assess the uncertainty in the estimator.
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INTERPRETATION
The target parameter can be interpreted as a purely statistical 
parameter or as a causal parameter under possible additional 

nontestable assumptions in our model.

END

Fig. 3.5 Road map for targeted learning
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DATA
The data are n i.i.d. observations of random variable O. O has 

probability distribution P0.

MODEL
The statistical model M is a set of possible probability distributions 

of O. P0 is in M. 

TARGET PARAMETER
The parameter Q(P0) is a particular feature of P0, where Q maps the 

probability distribution P0 into the target parameter of interest.  
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Our estimation procedure involves an initial estimate of the relevant 
part Q0 of P0  using the machine learning algorithm super learner.
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LOSS FUNCTION
We have a uniformly bounded loss function such that Q0 minimizes 

the risk over all Q in the parameter space. 

CROSS-VALIDATED SUPER LEARNER
The super learner must be externally cross-validated in order to 

calculate an honest risk for the super learner.

INFERENCE
Carry out a test of independence between covariates and outcome 

using permutation sampling.  Use resampling to assess measures of 
variability. 

(Not covered in this text.)

Fig. 3.6 Road map for prediction
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3.5 Conceptual Framework of Loss-Based Super Learning

Suppose we observe n i.i.d. observations O1, . . . ,On on a random variable O from
a probability distribution P0 known to be an element of a statistical semiparametric
statistical model M. Our goal is to learn a particular parameter of P0, which we
will denote by Q(P0), and let Q = {Q(P) : P ∈ M} be the parameter space. We
assume that we have available a loss function L(Q)(O) such that Q0 minimizes the
risk P0L(Q) ≡ E0L(Q)(O) of Q over all Q in the parameter space Q. In addition, it is
assumed that this loss function is uniformly bounded so that P0(L(Q)(O) < M) = 1
for some universal constant M, uniformly in all Q ∈ Q. A library of candidate esti-
mators of Q0, the choice of loss function, and a choice of cross-validation scheme
now define the super learner of Q0.

Creating a better estimator from among the available estimators. If the param-
eter Q : M → Q is not pathwise differentiable (i.e., not identifiable and smooth
enough to allow central-limit-theorem-based inference), then there is no efficiency
theory. That is, even asymptotically, there is no best estimator of Q0. As a conse-
quence, the best one can do is to make sure that one is better than any competitor.
This can be done by including any competing algorithm in the super learner collec-
tion of algorithms. Thus one has a large collection of candidate estimators. These
candidate estimators should use the knowledge that P0 ∈ M. That is, each estimator
should at a minimum map the data into functions in the parameter space Q.

One particular approach might require a choice of a number of fine-tuning pa-
rameters. Such an approach would generate many members for the collection. An
estimator could be combined with different dimension-reduction approaches, so that
one estimator would result in several members in the collection. One might also
partition the outcome space for O and stratify estimators accordingly, and also con-
sider applying different estimators to different strata. In this manner, one estimation
procedure and several stratification variables would map into a whole collection of
estimators for the super learner library.

There is no point in painstakingly trying to decide which estimators to enter in
the collection; instead add them all. The theory supports this approach, and finite
sample simulations and data analyses only confirm that it is very hard to overfit the
super learner by augmenting the collection, but benefits are obtained. Indeed, for
large data sets, we simply do not have enough algorithms available to build the de-
sired collection that would fully utilize the power of the super learning principle as
established by the oracle result.

The free lunch: fully robust application-specific modeling. This is not enough. In
a particular application, there are always many experts with creative ideas. Put them
in a room and let them generate ideas about effective dimension reductions, propose
parametric statistical models they find interesting, and let them propose strategies
for approximating this unknown true target-function Q0. Translate these into new
candidate algorithms for the collection of algorithms. For example, one professor
might think that certain specific summary measures of the history of the unit at
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baseline should be particularly effective in predicting the outcome of interest. This
then translates into estimators that only use these summaries and algorithms that add
these summary measures to the existing set of (nontransformed) variables. If there
are competing theories about how the truth is best approximated, translate them all
into candidate estimators for the super learning library. The super learner will not
select an estimator that performs poorly, but even mediocre algorithms can still im-
prove the super learner. That is, there is no risk in adding candidate estimators that
are heavily model-based to the super learner; there is only benefit.

Concerned about overfitting the super learner? Indeed, let the data speak to an-
swer this question. That is why one should evaluate the performance of the super
learner itself by determining its cross-validated risk. It can then be determined if
the super learner does as well or better than any of the candidate algorithms in the
collection. In particular, one might diagnose that one has reached a point at which
adding more algorithms harms the super learner performance, but our experience
has not reached that point by any meaningful standard. If anything, it appears to
flatten out, but not deteriorate. However, it is important that one use quite high-fold
cross-validation when evaluating the super learner itself (say 20-fold), especially
when the sample size gets small. Above all, it is crucial that the family of combina-
tions respects a universal bound on the loss functions across all combinations.

Computational challenge. The super learning system of learning is perfectly tai-
lored for parallel programming. The different candidate estimators can do their job
separately, and the applications of the candidate estimators to the different training
sets can be separated as well.

Generality of super learning. Super learning can be applied to estimate an im-
mense class of parameters across different data structures O and different statisti-
cal modelsM. One can use it to estimate marginal densities, conditional densities,
conditional hazards, conditional means, conditional medians, conditional quantiles,
conditional survival functions, and so on, under biased sampling, missingness, and
censoring.

It is a matter of defining Q0 as a parameter of P0 and determining an appropriate
loss function. For example, the minus log loss function can be used for conditional
densities and hazards. However, one might come up with loss functions that are in-
dexed by unknown parameters: Lh(Q) for some unknown h. Many such examples are
now provided in the literature, such as the double robust augmented inverse proba-
bility of treatment-weighted loss function for the treatment-specific mean outcome
as a function of effect modifiers. In this case h includes a conditional distribution of
treatment as a function of the covariates. This nuisance parameter would be known
in an RCT, but it will need to be estimated in an observational study. We discuss the
statistical property of double robustness in Chap. 6.

In these situations one will need to estimate h from the data and then employ
this estimated loss function as before. The basic messsage is that one needs the
estimation of h to be easier than the estimation of Q0 in order to get the full benefit
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of super learner, as if h was known from the start. It should also be remarked that
h could represent an index that does not affect the validity of the loss function in
the sense that for each choice of h, Q0 minimizes the risk of Lh(Q) over all Q. In
these cases, the choice of h only affects the dissimilarity measure for which the
performance of the super learner is optimized. For example, h might represent a
weight function in a squared-error loss function, or it might represent a covariance
matrix for the generalized squared-error loss function for a conditional mean E(Y |
W) of a multivariate outcome:

Lh(Q)(W,Y) = (Y − Q(W))�h(W)(Y − Q(W)).

Choice of loss function. If several choices are available, the loss function that maps
into the desired dissimilarity measure dL(Q,Q0) = E0L(Q)− E0L(Q0) should be se-
lected. It should be kept in mind that the super learner optimizes the approximation
of Q0 with respect to this dissimilarity dL implied by the loss function. For example,
suppose one wishes to estimate a conditional survival function at a time point t0,
Q0 = P(T > t0 | W). Then one could still use the minus log loss function for the
conditional density of T , given W, which, by substitution, also implies a valid loss
function for Q0, since Q0 is determined by this conditional density. However, this
loss function is trying to determine an entire conditional density, and is thus not very
targeted towards its goal. Instead, we can use

L(Q)(W, T ) = [I(T > t0) − Q(W)]2 .

This loss function is minimized over all functions Q of W by Q0 = P(T > t0 | W),
and thereby targets exactly our parameter of interest. Indeed, the super learner will
now be aiming to minimize the dissimilarity:

dL(Q,Q0) = E0[Q(W) − Q0(W)]2,

i.e., the expected squared error between the candidate survival function at t0 and the
true survival function at t0.

Formal oracle result for cross-validation selector. Consider a loss function that
satisfies

sup
Q

varP0 {L(Q) − L(Q0)}
P0{L(Q) − L(Q0)}

≤ M2 (3.1)

and that is uniformly bounded:

sup
O,Q
| L(Q) − L(Q0) | (O) < M1 < ∞,

where the supremum is over the support of P0 and over all possible candidate esti-
mators of Q0 that will ever be considered. We used the notation P0 f =

∫
f (o)dP0(o)

for the expectation of f (O) under P0. The first property (3.1) applies to the log-
likelihood loss function and any weighted squared residual loss function, among
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others. Property (3.1) is essentially equivalent to the assumption that the loss-
function-based dissimilarity d(Q,Q0) = P0{L(Q)− L(Q0)} is quadratic in a distance
between Q and Q0. Property (3.1) has been proven for log-likelihood loss functions
and weighted L2-loss functions and is in essence equivalent to stating that the loss
function implies a quadratic dissimilarity d(Q,Q0) (van der Laan and Dudoit 2003).
If this property does not hold for the loss function, the rates 1/n for second-order
terms in the below stated oracle inequality reduce to the rate 1/

√
n.

Let Bn ∈ {0, 1}n be a random variable that splits the learning sample in a training
sample {i : Bn(i) = 0} and validation sample {i : Bn(i) = 1}, and let P0

n,Bn
and P1

n,Bn

denote the empirical distribution of the training and validation sample, respectively.
Given candidate estimators Pn → Q̂k(Pn), the loss-function-based cross-validation
selector is now defined by

kn = K̂(Pn) = arg min
k

EBn P1
n,Bn

L(Q̂k(P0
n,Bn

)).

The resulting estimator, the discrete super learner, is given by Q̂(Pn) = Q̂K̂(Pn)(Pn).
For quadratic loss functions, the cross-validation selector satisfies the following

(so-called) oracle inequality: for any δ > 0

EBn {P0L(Q̂kn (P0
n,Bn

) − L(Q0)} ≤ (1 + 2δ)EBn min
k

P0{L(Q̂k(P0
n,Bn

)) − L(Q0)}

+2C(M1,M2, δ)
1 + log K(n)

np
,

where the constant C(M1,M2, δ) = 2(1+δ)2(M1/3+M2/3) (van der Laan and Dudoit
2003, p. 25). This result proves [see van der Laan and Dudoit (2003) for the precise
statement of these implications] that if the number of candidates K(n) is polynomial
in sample size, then the cross-validation selector is either asymptotically equivalent
to the oracle selector (based on a sample of training sample sizes, as defined on the
right-hand side of the above inequality), or it achieves the parametric rate log n/n
for convergence with respect to d(Q,Q0) ≡ P0{L(Q) − L(Q0)}.

So in most realistic scenarios, in which none of the candidate estimators achieves
the rate of convergence one would have with an a priori correctly specified paramet-
ric statistical model, the cross-validated estimator selector performs asymptotically
exactly as well (not only in rate, but also up to the constant!) as the oracle-selected
estimator. These oracle results are generalized for estimated loss functions Ln(Q)
that approximate a fixed loss function L(Q). If arg minQ P0Ln(Q) � Q0, then the
oracle inequality also presents second-order terms due to the estimation of the loss
function (van der Laan and Dudoit 2003).

3.6 Notes and Further Reading

We’ve discussed in this chapter the notion of estimator selection. We use this termi-
nology over “model selection,” since the formal meaning of a (statistical) model in
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the field of statistics is the set of possible probability distributions, and most algo-
rithms are not indexed by a statistical model choice. The general loss-based super
learner was initially presented in van der Laan et al. (2007b). Super learner is a gen-
eralization of the stacking algorithm introduced in the neural networks context by
Wolpert (1992) and adapted to the regression context by Breiman (1996c), and its
name was introduced due to the theoretical oracle property and its consequences as
presented in van der Laan and Dudoit (2003). The stacking algorithm is examined in
LeBlanc and Tibshirani (1996) and the relationship to the model-mix algorithm of
Stone (1974) and the predictive sample-reuse method of Geisser (1975) is discussed.
Recent literature on aggregation and ensemble learners includes Tsybakov (2003),
Juditsky et al. (2005), Bunea et al. (2006, 2007a,b), and Dalalyan and Tsybakov
(2007, 2008). As noted previously, inference for prediction, such as permutation
resampling, is not covered in this text. We refer the interested reader to Lehmann
(1986), Hastie et al. (2001), Ruczinski et al. (2002), Birkner et al. (2005), and Chaf-
fee et al. (2010). The simulations and data analyses contained in this chapter were
previously published as a technical report (Polley and van der Laan 2010).

Chapter 15 uses super learning to estimate the risk score of mortality in a Kaiser
Permanente database. Additionally, Chap. 16 discusses the use of super learning in
right-censored data. We refer readers to Polley and van der Laan (2009) for a chapter
in the book Design and Analysis of Clinical Trials with Time-to-Event Endpoints that
discusses the use of super learning to assess effect modification in clinical trials.

Theory for loss-function-based cross-validation is presented in van der Laan and
Dudoit (2003), including the finite sample oracle inequality, the asymptotic equiva-
lence of the cross-validation selector, and the oracle selector. See also van der Laan
et al. (2006), van der Vaart et al. (2006), van der Laan et al. (2004), Dudoit and
van der Laan (2005), Keleş et al. (2002), and Sinisi and van der Laan (2004). A
finite sample result for the single-split cross-validation selector for the squared error
loss function was established in Györfi et al. (2002) and then generalized in van der
Laan and Dudoit (2003) and Dudoit and van der Laan (2005) for both general cross-
validation schemes and a general class of loss functions.

Other types of cross-validation beyond V-fold cross-validation include bootstrap
cross-validation, Monte Carlo cross-validation, and leave-one-out cross-validation
(Stone 1974, 1977; Breiman et al. 1984; Breiman and Spector 1992; Efron and
Tibshirani 1993; Breiman 1996a,b; Ripley 1996; Breiman 1998; Hastie et al. 2001;
Ambroise and McLachlan 2002; Györfi et al. 2002). Simulation studies (Pavlic and
van der Laan 2003) show that likelihood-based cross-validation performs well when
compared to common validity-functionals-based approaches, such as Akaike’s in-
formation criterion (Akaike 1973; Bozdogan 2000), Bayesian Information criterion
(Schwartz 1978), minimum description length (Rissanen 1978), and informational
complexity (Bozdogan 1993).

Hastie et al. (2001) covers a variety of machine learning algorithms and related
topics. Areas include stepwise selection procedures, ridge regression, LASSO, prin-
cipal component regression, least angle regression, nearest neighbor methods, ran-
dom forests, support vector machines, neural networks, classification methods, ker-
nel smoothing methods, and ensemble learning.



Chapter 4

Introduction to TMLE

Sherri Rose, Mark J. van der Laan

This is the second chapter in our text to deal with estimation. We started by defining
the research question. This included our data, model for the probability distribution
that generated the data, and the target parameter of the probability distribution of the
data. We then presented the estimation of prediction functions using super learning.
This leads us to the estimation of causal effects using the TMLE. This chapter in-
troduces TMLE, and a deeper understanding of this methodology is provided in
Chap. 5. Note that we use the abbreviation TMLE for targeted maximum likelihood
estimation and the targeted maximum likelihood estimator. Later in this text, we dis-
cuss targeted minimum loss-based estimation, which can also be abbreviated TMLE.

For the sake of demonstration, we have considered the data structure O =

(W, A, Y) ∼ P0. Our statistical model for the probability distribution P0 is nonpara-
metric. The target parameter for this example is EW,0[E0(Y | A = 1,W)− E0(Y | A =
0,W)], which can be interpreted as a causal effect under nontestable assumptions
formalized by an SCM, including the randomization assumption and the positivity
assumption. In Chap. 3, we estimated E0(Y | A,W) using super learning. With super
learning we are able to respect that the statistical model does not allow us to assume
a particular parametric form for the prediction function E0(Y | A,W). We could
have estimated the entire conditional density of the outcome Y , but then we would
be estimating portions of the density we do not need. In particular, this would mean
that our initial estimator, such as a super learner of this conditional density of Y ,
would be targeted toward the complete conditional density, even though it is better
to target it toward the conditional mean of Y . Estimating only the relevant portion
of the density of O in this first step of the TMLE procedure provides us with a
maximally efficient (precise) and unbiased procedure: the practical and asymptotic
performance of the TMLE of ψ0 only cares about how well Q̄0 is estimated.

The super learner fit can be plugged into the target parameter mapping to obtain
a corresponding estimator of the target parameter. In other words, for each subject
in the sample, one would evaluate the difference between the predicted value of Y
under treatment (A = 1) and control (A = 0) and average these differences across all
subjects in the sample.
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However, this super learner maximum likelihood (ML)-based substitution esti-
mator is not targeted toward the parameter of interest. The super learner prediction
function was tailored to optimally fit the overall prediction function E0(Y | A,W),
spreading its errors uniformly to (successfully) optimize average squared prediction
errors, and thereby suffers from a nonoptimal bias–variance tradeoff for the causal
effect of interest. Specifically, this ML-based super learner of the causal effect will
be biased.

Our TMLE procedure improves on the ML-based substitution estimator by re-
ducing bias for the target parameter of interest. The initial super learner fit for
E0(Y | A,W) is the first step in the TMLE procedure. The second stage of the TMLE
procedure is a step targeted toward modifying the initial estimator of E0(Y | A,W)
in order to make it less biased for the target parameter. That is, the second stage of
TMLE is tailored to get the best estimate of our target parameter of interest, with
respect to bias and variance, instead of a best estimate of the overall prediction func-
tion E0(Y | A,W). We cover the entire TMLE procedure in this chapter, assuming
the reader has knowledge based on the material presented in Chap. 3.

We explain the TMLE procedure in multiple ways in these two chapters, with the
goal of reinforcing the method and targeting different levels of understanding (con-
ceptual, applied, theoretical). Thus, the applied researcher may only be interested in
a thorough understanding of the conceptual and applied sections, whereas the more
theoretically inclined mathematician may wish to also read the technical derivations
and Appendix A.

TMLE Methodology Summary

TMLE is a two-step procedure where one first obtains an estimate of the
data-generating distribution P0, or the relevant portion Q0 of P0. The sec-
ond stage updates this initial fit in a step targeted toward making an opti-
mal bias–variance tradeoff for the parameter of interest Ψ (Q0), instead of the
overall density P0. The procedure is double robust and can incorporate data-
adaptive likelihood-based estimation procedures to estimate Q0 and the treat-
ment mechanism. The double robustness of TMLE has important implications
in both randomized controlled trials and observational studies, with potential
reductions in bias and gains in efficiency.

We use our mortality study example to present an application of TMLE. As a
reminder, in this study we are interested in the effect of LTPA on death. We have
binary Y , death within 5 years of baseline, and binary A indicating whether the
subject meets recommended levels of physical activity. The data structure in this
example is O = (W, A, Y) ∼ P0. While we use this basic data structure and a par-
ticular target parameter to illustrate the procedure, TMLE is a very flexible general
method for estimating any particular target parameter of a true probability distri-
bution that is known to be an element of any particular statistical model. We will
demonstrate its implementation with a variety of specific data structures through-
out this text. In Appendix A, we also present a general TMLE of causal effects of
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multiple time point interventions for complex longitudinal data structures. However,
we find introducing TMLE in the context of a simple data structure is helpful for
many people. Starting with Appendix A is often overwhelming, and that appendix
is geared toward those who desire a comprehensive and rigorous statistical under-
standing or wish to develop TMLE for unique applications encountered in practice,
corresponding with a choice of data structure, statistical model, and target parame-
ter, not previously addressed.

TMLE has many attractive properties that make it preferable to other existing
estimators of a target parameter of the probability distribution of the data. We fully
detail these properties in Chaps. 5 and 6, after introducing them in this chapter,
and compare other estimators to TMLE based on these properties. Of note, TMLE
removes all the asymptotic residual bias of the initial estimator for the target pa-
rameter, if it uses a consistent estimator of the treatment mechanism. If the initial
estimator was already consistent for the target parameter, the slight additional fitting
of the data in the targeted step will potentially remove some finite sample bias, and
certainly preserve this consistency property of the initial estimator.

As a consequence, the TMLE is a so-called double robust estimator. In addition,
if the initial estimator and the estimator of the treatment mechanism are both consis-
tent, then it is also asymptotically efficient according to semiparametric statistical
model efficiency theory. It allows the incorporation of machine learning (i.e., su-
per learning) methods for the estimation of both Q̄0 and g0 so that we do not make
assumptions about the probability distribution P0 we do not believe. In this man-
ner, every effort is made to achieve minimal bias and the asymptotic semiparametric
efficiency bound for the variance.

TMLE is also a substitution estimator. Substitution estimators are plug-in esti-
mators, taking an estimator of the relevant part of the data-generating distribution
and plugging it into the mapping Ψ (). Substitution estimators respect the statistical
model space (i.e., the global constraints of the statistical model) and respect that
the target parameter ψ0 is a number obtained by applying the target parameter map-
ping Ψ to a particular probability distribution in the statistical model. Substitution
estimators are therefore more robust to outliers and sparsity than nonsubstitution
estimators.

4.1 Motivation

Let us step back for a moment and discuss why we are here. We want to estimate
a parameter Ψ (P0) under a semiparametric statistical model that represents actual
knowledge. Thus we don’t want to use a misspecified parametric statistical model
that makes assumptions we know to be false. We also know that an ML-based sub-
stitution estimator is not targeted to the parameter we care about. While we like
this approach as it is flexible, it is still not a targeted approach. TMLE is a targeted
substitution estimator that incorporates super learning to get the best estimate of our
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Fig. 4.1 Illustration of bias for different methods

target parameter; it is tailored to be a minimally biased method while also being
tailored to fully utilize all the information in the data.

We illustrate this in Fig. 4.1. The outermost ring is furthest from the truth, and
that represents the estimate we achieve using a misspecified parametric statistical
model. The middle ring in our target improves on the misspecified parametric sta-
tistical model, but it still does not contain the truth. This ring is our nontargeted
semiparametric statistical model approach (super learning). The innermost circle
contains the true Ψ (P0), and this is what we have the potential to achieve with su-
per learning and TMLE combined. We refer to the combined two-stage approach
as TMLE, even though it is understood that the initial estimator and estimator of
the treatment mechanism should be based on super learning respecting the actual
knowledge about P0.

4.2 TMLE in Action: Mortality Study Example

In Chap. 3, we discussed the implementation of super learning for our simplified
mortality study example. In this section we analyze the actual data, updating the
super learner estimate of Q̄0 with a targeting step. This section serves as an intro-
duction to the implementation of TMLE in a concrete example: the data structure is
O = (W, A, Y) ∼ P0, the nonparametric statistical model is augmented with causal
assumptions, and the targeted parameter is Ψ (P0) = EW,0[E0(Y | A = 1,W) − E0(Y |
A = 0,W)], which represents the causal risk difference under these causal assump-
tions. The mean over the covariate vector W in Ψ (P0) is simply estimated with the
empirical mean, so that our substitution TMLE will be of the type

ψn = Ψ (Qn) =
1
n

n∑
i=1

{Q̄n(1,Wi) − Q̄n(0,Wi)},

where Qn = (Q̄n,QW,n) and QW,n is the empirical distribution for the marginal dis-
tribution of W. The second step in the TMLE will update our initial estimate of Q̄0.
We will use the superscript 0 to denote this initial estimate, in conjunction with the
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Table 4.1 SPPARCS variables

Variable Description

Y Death occurring within 5 years of baseline
A LTPA score ≥ 22.5 METs at baseline‡

W1 Health self-rated as “excellent”
W2 Health self-rated as “fair”
W3 Health self-rated as “poor”
W4 Current smoker
W5 Former smoker
W6 Cardiac event prior to baseline
W7 Chronic health condition at baseline
W8 x ≤ 60 years old
W9 60 < x ≤ 70 years old
W10 80 < x ≤ 90 years old
W11 x > 90 years old
W12 Female

‡ LTPA is calculated from answers to a detailed questionnaire where prior performed vigorous physical activities are
assigned standardized intensity values in metabolic equivalents (METs). The recommended level of energy
expenditure for the elderly is 22.5 METs.

subscript n thus we have Q̄0
n as our initial estimate of Q̄0. Information from the treat-

ment mechanism (or exposure mechanism; we use these terms interchangeably) is
used to update Q̄0

n and target it toward the parameter of interest. In this example, our
treatment mechanism is g0 = P0(A | W). Our updated estimate of Q̄0 is denoted Q̄1

n.
Data. The National Institute of Aging-funded Study of Physical Performance

and Age-Related Changes in Sonomans (SPPARCS) is a population-based, census-
sampled, study of the epidemiology of aging and health. Participants of this longitu-
dinal cohort were recruited if they were aged 54 years and over and were residents
of Sonoma, CA or surrounding areas. Study recruitment of 2092 persons occurred
between May 1993 and December 1994 and follow-up continued for approx. 10
years. The data structure is O = (W, A, Y), where Y = I(T ≤ 5 years), T is time
to the event death, A is a binary categorization of LTPA, and W are potential con-
founders. These variables are further defined in Table 4.1. Of note is the lack of any
right censoring in this cohort. The outcome (death within or at 5 years after baseline
interview) and date of death was recorded for each subject. Our parameter of inter-
est is the causal risk difference, the average treatment effect of LTPA on mortality 5
years after baseline interview. The cohort was reduced to a size of n = 2066, as 26
subjects were missing LTPA values or self-rated health score (1.2% missing data).

4.2.1 Estimator

Estimating Q̄0. In Chap. 3, we generated a super learner prediction function. This
is the first step in our TMLE procedure. Thus, we take as inputs our super learner
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Table 4.2 Collection of algorithms

Algorithm Description

glm Linear model
bayesglm Bayesian linear model
polymars Polynomial spline regression
randomForest Random forest
glmnet,α = 0.25 Elastic net
glmnet,α = 0.50
glmnet,α = 0.75
glmnet,α = 1.00
gam, degree = 2 Generalized additive models
gam, degree = 3
gam, degree = 4
gam, degree = 5
nnet,size = 2 Neural network
nnet, size = 4
gbm, interaction depth=1 Gradient boosting
gbm, interaction depth=2

prediction function, the initial estimate Q̄0
n, and our data matrix. The data matrix

includes columns for each of the covariates W found in Table 4.1, exposure LTPA
(A), and outcome Y indicating death within 5 years of baseline. This is step 1 as de-
scribed in Fig. 4.2. We implemented super learner in the R programming language
(R Development Core Team 2010), using the 16 algorithms listed in Table 4.2, re-
calling that algorithms of the same class with different tuning parameters are con-
sidered individual algorithms. Then we calculated predicted values for each of the
2066 observations in our data set, using their observed value of A, and added this as
an n-dimensional column labeled Q̄0

n(Ai,Wi) in our data matrix. Then we calculated
a predicted value for each observation where we set a = 1, and also a = 0, forming
two additional columns Q̄0

n(1,Wi) and Q̄0
n(0,Wi). Note that for those observations

with an observed value of Ai = 1, the value in column Q̄0
n(Ai,Wi) will be equal to

the value in column Q̄0
n(1,Wi). For those with observed Ai = 0, the value in column

Q̄0
n(Ai,Wi) will be equal to the value in column in Q̄0

n(0,Wi). This is depicted in step
2 of Fig. 4.2. At this stage we could plug our estimates Q̄0

n(1,Wi) and Q̄0
n(0,Wi) for

each subject into our substitution estimator of the risk difference:

ψMLE,n = Ψ (Qn) =
1
n

n∑
i=1

{Q̄0
n(1,Wi) − Q̄0

n(0,Wi)}.

This is the super learner ML-based substitution estimator discussed previously,
plugging in the empirical distribution Q0

W,n for the marginal distribution of W, and
the super learner Q̄0

n for the true regression Q̄0. We know that this estimator is not
targeted towards the parameter of interest, so we continue on to a targeting step.
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Estimating g0. Our targeting step required an estimate of the conditional distribu-
tion of LTPA given covariates W. This estimate of P0(A | W) ≡ g0 is denoted gn and
was obtained using super learning and the same algorithms listed in Table 4.2. We
estimated predicted values using this new super learner prediction function, adding
two more columns to our data matrix: gn(1 | Wi) and gn(0 | Wi). This can be seen in
Fig. 4.2 as step 3.

Determining a parametric working model to fluctuate the initial estimator. The
targeting step used the estimate gn in a clever covariate to define a parametric work-
ing model coding fluctuations of the initial estimator. This clever covariate H∗n(A,W)
is given by

H∗n(A,W) ≡
( I(A = 1)
gn(1 | W)

−
I(A = 0)
gn(0 | W)

)
.

Thus, for each subject with Ai = 1 in the observed data, we calculated the clever
covariate as H∗n(1,Wi) = 1/gn(1 | Wi). Similarly, for each subject with Ai = 0 in
the observed data, we calculated the clever covariate as H∗n(0,Wi) = −1/gn(0 | Wi).
We combined these values to form a single column H∗n(Ai,Wi) in the data matrix.
We also added two columns H∗n(1,Wi) and H∗n(0,Wi). The values for these columns
were generated by setting a = 0 and a = 1. This is step 4 in Fig. 4.2.

Updating Q̄0
n. We then ran a logistic regression of our outcome Y on the clever

covariate using as intercept the offset logitQ̄0
n(A,W) to obtain the estimate εn, where

εn is the resulting coefficient in front of the clever covariate H∗n(A,W). We next
wanted to update the estimate Q̄0

n into a new estimate Q̄1
n of the true regression

function Q̄0:
logit Q̄1

n(A,W) = logit Q̄0
n(A,W) + εnH∗n(A,W).

This parametric working model incorporated information from gn, through H∗n(A,W),
into an updated regression. One can now repeat this updating step by running a lo-
gisitic regression of outcome Y on the clever covariate H∗n(A,W) using as intercept
the offset logit Q̄1

n(A,W) to obtain the next update Q̄2
n. However, it follows that this

time the coefficient in front of the clever covariate will be equal to zero, so that sub-
sequent steps do not result in further updates. Convergence of the TMLE algorithm
was achieved in one step. The TMLE of Q0 was given by Q∗n = (Q̄1

n,Q
0
W,n). With εn,

we were ready to update our prediction function at a = 1 and a = 0 according to the
logistic regression working model. We calculated

logit Q̄1
n(1,W) = logitQ̄0

n(1,W) + εnH∗n(1,W),

for all subjects, and then

logit Q̄1
n(0,W) = logitQ̄0

n(0,W) + εnH∗n(0,W)

for all subjects and added a column for Q̄1
n(1,Wi) and Q̄1

n(0,Wi) to the data matrix.
Updating Q̄0

n is also illustrated in step 5 of Fig. 4.2.
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Fig. 4.2 Flow diagram for TMLE of the risk difference in the mortality study example

Targeted substitution estimator of the target parameter. We are at the last step!
We computed the plug-in targeted maximum likelihood substitution estimator using
the updated estimates Q̄1

n(1,W) and Q̄1
n(0,W) and the empirical distribution of W,

as seen in step 6 of Fig. 4.2. Our formula from the first step becomes

ψT MLE,n = Ψ (Q∗n) =
1
n

n∑
i=1

{Q̄1
n(1,Wi) − Q̄1

n(0,Wi)}.
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This mapping was accomplished by evaluating Q̄1
n(1,Wi) and Q̄1

n(0,Wi) for each
observation i, and plugging these values into the above equation. Our estimate of
the causal risk difference for the mortality study was ψT MLE,n = −0.055.

4.2.2 Inference

Standard errors. We then needed to calculate the influence curve for our estimator
in order to obtain standard errors:

ICn(Oi) =
(

I(Ai = 1)
gn(1 | Wi)

−
I(Ai = 0)
gn(0 | Wi)

)
(Y − Q̄1

n(Ai,Wi))

+ Q̄1
n(1,Wi) − Q̄1

n(0,Wi) − ψT MLE,n,

where I is an indicator function: it equals 1 when the logical statement it evaluates,
e.g., Ai = 1, is true. Note that this influence curve is evaluated for each of the n
observations Oi. The beauty of the influence curve of an estimator is that one can
now proceed with statistical inference as if the estimator minus its estimand equals
the empirical mean of the influence curve. Next, we calculated the sample mean
of these estimated influence curve values: ¯ICn =

1
n
∑n

i=1 ICn(oi), where we use oi

to stress that this mean is calculated with our observed realizations of the random
variable Oi. For the TMLE we have ¯ICn = 0. Using this mean, we calculated the
sample variance of the estimated influence curve values:

S 2(ICn) = 1
n
∑n

i=1

(
ICn(oi) − ¯ICn

)2
.

Lastly, we used our sample variance to estimate the standard error of our estimator:

σn =

√
S 2(ICn)

n
.

This estimate of the standard error in the mortality study was σn = 0.012.

Confidence intervals and p-values. With the standard errors, we can now calculate
confidence intervals and p-values in the same manner you may have learned in other
statistics texts. A 95% Wald-type confidence interval can be constructed as:

ψT MLE,n ± z0.975
σn√

n
,

where zα denotes the α-quantile of the standard normal density N(0, 1). A p-value
for ψT MLE,n can be calculated as:

2
[
1 −Φ

(∣∣∣∣∣∣ψT MLE,n

σn/
√

n

∣∣∣∣∣∣
)]
,
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where Φ denotes the standard normal cumulative distribution function. The p-value
was < 0.001 and the confidence interval was [−0.078,−0.033].

Interpretation

The interpretation of our estimate ψT MLE,n = −0.055, under causal assump-
tions, is that meeting or exceeding recommended levels of LTPA decreases
5-year mortality in an elderly population by 5.5%. This result was significant,
with a p-value of < 0.001 and a confidence interval of [−0.078,−0.033].

4.3 Practical Implications

The double robustness and semiparametric efficiency of the TMLE for estimating a
target parameter of the true probability distribution of the data has important impli-
cations for both the analysis of RCTs and observational studies.

4.3.1 Randomized Controlled Trials

In 2010, a panel of the National Academy of Sciences made a recommendation to
the FDA regarding the use of statistical methods for dealing with missing data in
RCTs. The panel represented the split in the literature, namely, those supporting
maximum-likelihood-based estimation, and specifically the use of multiple imputa-
tion (MI) methods, and the supporters of (augmented) inverse probability of cen-
soring weighted (A-IPCW) estimators based on solving estimating equations. As a
consequence, the committee’s report ended up recommending both methods: a split
decision.

Both camps at the table have been right in their criticism. The MI camp has
been stating that the IPCW methods are too unstable and cannot be trusted in finite
samples as demonstrated in various simulation studies, even though these methods
can be made double robust. The A-IPCW camp has expressed that one cannot use
methods that rely on parametric models that may cause severe bias in the resulting
estimators of the treatment effect.

TMLE provides the solution to this problem of having to choose between two
methods that have complementary properties: TMLE is a maximum-likelihood-
based method and thus inherits all the attractive properties of maximum-likelihood-
based substitution estimators, while it is still double robust and asymptotically effi-
cient. TMLE has all the good properties of both the MI and the A-IPCW estimators,
but it does not have the bad properties such as reliance on misspecified paramet-
ric models of the maximum-likelihood-based estimation the instability of the IPCW
estimators due to not being substitution estimator. The FDA has also repeatedly ex-
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pressed a desire for methods that can be communicated to medical researchers. As
with maximum-likelihood-based estimation, the TMLE is easier to communicate:
it is hard to communicate estimators that are defined as a solution of an estimating
equation instead of a maximizer of a well-defined criterion.

TMLE can also be completely aligned with the highly populated maximum-
likelihood-based estimation camp: TMLE can use maximum-likelihood-based es-
timation as the initial estimator, but it will carry out the additional targeting step. Of
course, we recommend using the super learner (i.e., machine learning) as the initial
estimator, but in an RCT in which one assumes that missingness is noninformative,
the use of the parametric maximum likelihood estimation as initial estimator will
not obstruct unbiased estimation of the causal effect of interest.

Consider an RCT in which we observe on each unit (W, A, Δ, ΔY), where Δ is
an indicator of the clinical outcome being observed. Suppose we wish to esti-
mate the additive causal effect E0Y1 − E0Y0, which is identified by the estimand
E0[Q̄0(0,W) − Q̄0(1,W)], where Q̄0(A,W) = E0(Y | A,W, Δ = 1) under causal as-
sumptions, including that no unmeasured predictors of Y predict the missingness
indicator. The TMLE of this additive causal effect only involves a minor modifica-
tion of the TMLE presented above, and is derived in Appendix A. That is, the clever
covariate is modified by multiplying it by 1/P0(Δ = 1 | A,W), and all outcome
regressions are based on the complete observations only.

In an RCT the treatment assignment process, g0(1 | W) = P0(A = 1 | W), is
known (e.g., 0.5), and it is often assumed that missingness of outcomes is nonin-
formative, also called missing completely at random. When this assumption holds,
the gn, comprising both the treatment assignment and the censoring or missingness
mechanism, is always correctly estimated. Specifically, one can consistently esti-
mate the missingness mechanism P0(Δ = 1 | A,W) with the empirical proportions
for the different treatment groups, thus ignoring the value of W. The TMLE will
provide valid type I error control and confidence intervals for the causal effect of
the investigated treatment, even if the initial regression estimator Q̄0

n is completely
misspecified.

The use of TMLE also often results in efficiency and bias gains with respect
to the unadjusted or other ad hoc estimators commonly employed in the analysis of
RCT data. For example, consider the additive causal effect example discussed in this
chapter. The unadjusted estimator is restricted to considering only complete cases,
ignoring observations where the outcome is missing, and ignoring any covariate in-
formation. In this particular example, the efficiency and bias gain is already apparent
from the fact that the targeted maximum likelihood approach averages an estimate
of an individual effect Q̄0(1,W) − Q̄0(0,W) over all observations in the sample,
including the observations that had a missing outcome.

TMLE can exploit information in measured baseline and time-dependent covari-
ates, even when there is no missingness or right censoring. This allows for bias
reduction due to empirical confounding, i.e., it will adjust for empirical imbalances
in the treatment and control arm, and thereby improve finite sample precision (ef-
ficiency). To get an insight into the potential gains of TMLE relative to the current
standard, we note that the relative efficiency of the TMLE relative to the unadjusted
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estimator of the causal additive risk in a standard RCT with two arms and ran-
domization probability equal to 0.5, and no missingness or censoring, is given by 1
minus the R squared of the regression of the clinical outcome Y on the baseline co-
variates W implied by the targeted maximum likelihood fit of the regression of Y on
the binary treatment and baseline covariates. That is, if the baseline covariates are
predictive, one will gain efficiency, and one can predict the amount of improvement
from the actual regression fit.

Perhaps more importantly, the TMLE naturally adjusts for dropout (missingness)
as well and can also be used to assess the effect of treatment under noncompliance,
i.e., it is unbiased when standard methods are biased. Unlike an unadjusted esti-
mator that ignores covariate information, TMLE does not rely on an assumption
of noninformative missingness or dropout, but allows that missingness and dropout
depend on the observed covariates, including time-dependent covariates.

In RCTs, including sequentially randomized controlled trials, one can still fully
respect the likelihood of the data and obtain fully efficient and unbiased estimators,
without taking the risk of bias due to statistical model misspecification (which has
been the sole reason for the application of inefficient unadjusted estimators). On the
contrary, the better one fits the true functions Q0 and g0, as can be evaluated with
the cross-validated log-likelihood, the more bias reduction and efficiency gain will
have been achieved.

Prespecification of the TMLE in the statistical analysis plan allows for appropri-
ate adjustment with measured confounders while avoiding the possible introduction
of bias should that decision be based on human intervention. Therefore, TMLEs can
be used for both the efficacy as well as the safety analysis in Phase II, III, and IV
clinical trials. In addition, just like for unadjusted estimators, permutation distribu-
tions can be used to obtain finite sample inference and more robust inference.

4.3.2 Observational Studies

At many levels of society one builds large electronic databases that keep track of
large patient populations. One wishes to use these dynamic databases to assess
safety signals of drugs, evaluate the effectiveness of different interventions, and so
on. Comparative effectiveness research concerns the research involved to make such
comparisons. These comparisons often involve observational studies, so that one
cannot assume that the treatment was randomly assigned. In such studies, standard
off-the-shelf methods are biased due to confounding as well as informative missing-
ness, censoring, and possibly biased sampling.

In observational studies, the utilization of efficient and maximally unbiased esti-
mators is thus extremely important. One cannot analyze the effect of high dose of
a drug on heart attack in a postmarket safety analysis using logistic regression in a
parametric statistical model or Cox proportional hazards models, and put much trust
in a p-value. It is already a priori known that these statistical models are misspec-
ified and that the effect estimate will be biased, so under the null hypothesis of no
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treatment effect, the resulting test statistic will reject the null hypothesis incorrectly
with probability tending to 1 as sample size increases. For example, if the high dose
is preferentially assigned to sicker people, then the unadjusted estimator is biased
high, a maximum likelihood estimator according to a misspecified parametric model
will still be biased high by its inability to let the data speak and thereby adjust for
the measured confounders.

As a consequence, the only alternative is to use semiparametric statistical models
that acknowledge what is known and what is not known, and use robust and efficient
substitution estimators. Given such infinite-dimensional semiparametric statistical
models, we need to employ machine learning, and, in fact, as theory suggests, we
should not be married to one particular machine learning algorithm but let the data
speak by using super learning. That is, one cannot foresee what kind of algorithm
should be used, but one should build a rich library of approaches, and use cross-
validation to combine these estimators into an improved estimator that adapts the
choice to the truth. In addition, and again as theory teaches us, we have to target
the fit toward the parameter of interest, to remove bias for the target parameter,
and to improve the statistical inference based on the central limit theorem. TMLE
combined with super learning provides such a robust and semiparametric efficient
substitution estimator, while we maintain the log-likelihood or other appropriate
loss function as the principal criterion.

4.4 Summary

TMLE is a general algorithm where we start with an initial estimator of P0, or a
relevant parameter Q0 of P0. We then create a parametric statistical model with
parameter ε through this given initial estimator whose score at ε = 0 spans the
efficient influence curve of the parameter of interest at the given initial estimator. It
estimates ε with maximum likelihood estimation in this parametric statistical model
and finally updates the new estimator as the corresponding fluctuation of the given
initial estimator. The algorithm can be iterated until convergence, although in many
common cases it converges in one step.

4.5 Road Map for Targeted Learning

We have now completed the road map for targeted learning depicted in Fig. 4.3.
This chapter covered effect estimation using super learner and TMLE, as well as
inference. In many cases, we may be interested in a ranked list of effect measures,
often referred to as variable importance measures (VIMs). We provided an addi-
tional road map (Fig. 4.4) for research questions involving VIMs, which are com-
mon in medicine, genomics, and many other fields. We address questions of variable
importance in Chaps. 22 and 23.
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DATA
The data are n i.i.d. observations of random variable O. O has 

probability distribution P0.

MODEL
The statistical model M is a set of possible probability distributions 
of O. P0 is in M. The model is a statistical model for P0 augmented 

with possible additional nontestable causal assumptions.

TARGET PARAMETER
The parameter Ψ(P0) is a particular feature of P0, where Ψ maps the 

probability distribution P0 into the target parameter of interest.  
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With an initial estimate of the relevant part of the data-generating 
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updates this initial fit in a step targeted toward making an optimal 
bias–variance tradeoff for the parameter of interest, now denoted 
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Fig. 4.3 Road map for targeted learning
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DATA
The data are n i.i.d. observations of random variable O. O has 

probability distribution P0.

MODEL
The statistical model M is a set of possible probability distributions 
of O. P0 is in M. The model is a statistical model for P0 augmented 

with possible additional nontestable causal assumptions.  With 
variable importance, we are often not willing to make causal 

assumptions due to violations of the (sequential) randomization 
assumption.

TARGET PARAMETERS
The parameters Ψ(P0) are features of P0, where Ψ maps the 

probability distribution P0 into the target parameters. 
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We investigate each target parameter separately. The first step in 

our estimation procedure for each parameter is an initial estimate of 
the relevant part Q0 of P0  using the machine learning algorithm 

super learner.

E
S

T
IM

A
T

IO
N

TARGETED MAXIMUM LIKELIHOOD ESTIMATION 
With an initial estimate of the relevant part of the data-generating 

distribution obtained using super learning for each target parameter, 
the second stage of TMLE updates this initial fit in a step targeted 

toward making an optimal bias–variance tradeoff for the parameter 
of interest, now denoted Ψ(Q0), instead of the overall probability 
distribution. We repeat this procedure for all target parameters.
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statistical inference for the vector of target parameters is based on 
this multivariate normal distribution (or resampling based methods) 
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The target parameters are typically interpreted as purely statistical 
parameters since causal assumptions often do not hold in common 

variable importance situations.

END

Fig. 4.4 Road map for targeted learning of variable importance measures
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4.6 Notes and Further Reading

MLE has been referred to elsewhere as g-formula and g-computation. It is a
maximum-likelihood-based substitution estimator of the g-formula parameter. The
g-formula for identifying the distribution of counterfactuals from the observed data
distribution, under the sequential randomization assumption, was originally pub-
lished in Robins (1986). We also refer readers to an introductory implementation
of a maximum-likelihood-based substitution estimator of the g-formula (Snowden
et al. 2011; Rose et al. 2011).

Estimating equation methodology, including IPTW (Robins 1999b; Hernan et al.
2000) and A-IPTW (Robins et al. 2000b; Robins 2000; Robins and Rotnitzky 2001),
is discussed in detail in van der Laan and Robins (2003). Detailed references and a
bibliographic history on locally efficient A-IPTW estimators, double robustness, and
estimating equation methodology can be found in Chap. 1 of that text. A key semi-
nal paper in this literature is Robins and Rotnitzky (1992). A-IPTW was previously
referred to as the double robust estimator in some publications. Didactic presenta-
tions of IPTW can be found in Robins et al. (2000a), Mortimer et al. (2005), and
Cole and Hernan (2008).

For the original paper on TMLE we refer readers to van der Laan and Rubin
(2006). Subsequent papers on TMLE in observational and experimental studies in-
clude Bembom and van der Laan (2007a), van der Laan (2008a), Rose and van der
Laan (2008, 2009, 2011), Moore and van der Laan (2009a,b,c), Bembom et al.
(2009), Polley and van der Laan (2009), Rosenblum et al. (2009), van der Laan
and Gruber (2010), Gruber and van der Laan (2010a), Rosenblum and van der Laan
(2010a), and Wang et al. (2010).

A detailed discussion of multiple hypothesis testing and inference for variable
importance measures is presented in Dudoit and van der Laan (2008). We also re-
fer readers to Chaps. 22 and 23. The mortality study analyzed in this chapter with
TMLE is based on data discussed in Tager et al. (1998).

Previous work related to estimators in RCTs (and in general in observational
studies with known probabilities of treatment) that are robust to model misspecifi-
cation include, for example, Robins (1994), Robins et al. (1995), Scharfstein et al.
(1999), van der Laan and Robins (2003), Leon et al. (2003), Tan (2006), Tsiatis
(2006), Moore and van der Laan (2009b), Zhang et al. (2008), Rubin and van der
Laan (2008), Freedman (2008a,b), and Rosenblum and van der Laan (2009a).

We refer readers to Bickel et al. (1997) for a text on semiparametric estimation
and asymptotic theory. Tsiatis (2006) is a text applying semiparametric theory to
missing data, including chapters on Hilbert spaces and influence curves. We also
refer to Hampel et al. (1986) for a text on robust statistics, including presentation of
influence curves. Van der Vaart (1998) provides a thorough introduction to asymp-
totic statistics, and van der Vaart and Wellner (1996) discuss stochastic convergence,
empirical process theory, and weak convergence theory.



Chapter 5

Understanding TMLE

Sherri Rose, Mark J. van der Laan

This chapter focuses on understanding TMLE. We go into more detail than the pre-
vious chapter to demonstrate how this estimator is derived. Recall that TMLE is a
two-step procedure where one first obtains an estimate of the data-generating distri-
bution P0 or the relevant portion Q0 of P0. The second stage updates this initial fit
in a step targeted toward making an optimal bias–variance tradeoff for the param-
eter of interest Ψ (Q0), instead of the overall density P0. The procedure is double
robust and can incorporate data-adaptive-likelihood-based estimation procedures to
estimate Q0 and the treatment mechanism.

5.1 Conceptual Framework

We begin the discussion of TMLE at a conceptual level to give an overall picture of
what the method achieves. In Fig. 5.1 we depict a flow chart for TMLE, and in this
section, we walk the reader through the illustration and provide a conceptual foun-
dation for TMLE. We start with our observed data and some (possibly) real valued
function Ψ (), the target parameter mapping. These two objects are our inputs. We
have an initial estimator of the probability distribution of the data (or something
smaller than that – the relevant portion). This is P0

n and is estimated semiparamet-
rically using super learning. This initial estimator is typically already somewhat
informed about the target parameter of interest by, for example, only focusing on
fitting the relevant part Q0 of P0. P0

n falls within the statistical model, which is the
set of all possible probability distributions of the data. P0, the true probability distri-
bution, also falls within the statistical model, since it is assumed that the statistical
model is selected to represent true knowledge. In many applications the statistical
model is necessarily nonparametric. We update P0

n in a particular way, in a targeted
way by incorporating the target parameter mapping Ψ , and now denote this targeted
update as P∗n. If we map P∗n using our function Ψ (), we get our estimator Ψ (P∗n)
and thereby a value on the real line. The updating step is tailored to result in values
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Fig. 5.1 TMLE flow chart.

Ψ (P∗n) that are closer to the truth than the value generated using the initial estimate
P0

n: specifically, Ψ (P∗n) is less biased than Ψ (P0
n).

TMLE provides a concrete methodology for mapping the initial estimator P0
n into

a targeted estimator P∗n, which is described below in terms of an arbitrary statistical
model M and target parameter mapping Ψ () defined on this statistical model. In
order to make this more accessible to the reader, we then demonstrate this general
template for TMLE with a nonparametric statistical model for a univariate random
variable and a survival probability target parameter. Specifically, TMLE involves
the following steps:

• Consider the target parameter Ψ :M→ R. Compute its pathwise derivative at P
and its corresponding canonical gradient D∗(P), which is also called the efficient
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influence curve. This object D∗(P), a function of O with mean zero under P, is
now available for each possible probability distribution P.

• Define a loss function L() so that P→ E0L(P) is minimized at the true probability
distribution P0. One could select the log-likelihood loss function L(P) = − log P.
However, typically, this loss function is chosen so that it only depends on P
through a relevant part Q(P) and Q → L(Q) is minimized at Q0 = Q(P0). This
loss function could also be used to construct a super-learner-based initial estima-
tor of Q0.

• For a P in our model M, define a parametric working model {P(ε) : ε} with
finite-dimensional parameter ε so that P(ε = 0) = P, and a “score” d

dε L(P(ε)) at
ε = 0 for which a linear combination of the components of this “score” equals the
efficient influence curve D∗(P) at P. Typically, we simply choose the parametric
working model so that this score equals the efficient influence curve D∗(P). If
the loss function L() only depends on P through a relevant part Q = Q(P), then
this translates into a parametric working model {Q(ε) : ε} chosen so that a linear
combination of the components of the “score” d

dε L(Q(ε)) at ε = 0 equals the
efficient influence curve D∗(P) at P.

• Given an initial estimator P0
n of P0, we compute ε0n = arg minε

∑n
i=1 L(P0

n(ε))(Oi).
This yields the first step TMLE P1

n = P0
n(ε0n ). This process is iterated: start with

k = 1, compute εkn = arg minε
∑n

i=1 L(Pk
n(ε))(Oi) and Pk+1

n = Pk
n(εkn), increase k

to k + 1, and repeat these updating steps until εkn = 0. The final update PK
n at the

final step K is denoted by P∗n and is the TMLE of P0. The same algorithm can
be directly applied to Q0

n of Q0 = Q(P0) for the case that the loss function only
depends on P through Q(P).

• The TMLE of ψ0 is now the substitution estimator obtained by plugging P∗n into
the target parameter mapping: ψ∗n = Ψ (P∗n). Similarly, if ψ0 = Ψ (Q0) and the
above loss function L() is a loss function for Q0, then we plug the TMLE Q∗n into
the target parameter mapping: ψ∗n = Ψ (Q∗n).

• The TMLE P∗n solves the efficient influence curve equation 0 =
∑n

i=1 D∗(P∗n)(Oi),
which provides a basis for establishing the asymptotic linearity and efficiency of
the TMLE Ψ (P∗n).

For further presentation of TMLE at this general level we refer the interested reader
to Appendix A.

Demonstration of TMLE template. In this section we demonstrate the TMLE tem-
plate for estimation of survival probability. Suppose we observe n i.i.d. univariate
random variables O1, . . . ,On with probability distribution P0, where Oi represents a
time to failure such as death. Suppose that we have no knowledge about this proba-
bility distribution, so that we select as statistical model the nonparametric modelM.
Let Ψ (P) = P(O > 5) be the target parameter that maps any probability distribution
in its survival probability at 5 years, and let ψ0 = P0(O > 5) be our target parameter
of the true data-generating distribution.

The pathwise derivative Ψ (P(ε)) at ε = 0 for a parametric submodel (i.e., path)
{PS (ε) = (1 + εS (P))P : ε} with univariate parameter ε is given by
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d
dε
Ψ (PS (ε))

∣∣∣∣∣
ε=0
= EP{I(O > 5) − Ψ (P)}S (P)(O).

Note that indeed, for any function S of O that has mean zero under P and is uni-
formly bounded, it follows that PS (ε) is a probability distribution for a small enough
choice of ε, so that the family of paths indexed by such functions S represents a valid
family of submodels through P in the nonparametric model. By definition, it follows
that the canonical gradient of this pathwise derivative at P (relative to this family of
parametric submodels) is given by D∗(P)(O) = I(O > 5) − Ψ (P). The canonical
gradient is also called the efficient influence curve at P.

We could select the log-likelihood loss function L(P) = − log P(O) as loss func-
tion. A parametric working model through P is given by P(ε) = (1 + εD∗(P))P,
where ε is the univariate fluctuation parameter. Note that this parametric submodel
includes P at ε = 0 and has a score at ε = 0 given by D∗(P), as required for the
TMLE algorithm. We are now ready to define the TMLE.

Let P0
n be an initial density estimator of the density P0. Let

ε0n = arg max
ε

n∑
i=1

log P0
n(ε)(Oi),

and let P1
n = P0

n(ε0n ) be the corresponding first-step TMLE of P0. It can be shown that
the next iteration yields ε1n = 0, so that convergence of the iterative TMLE algorithm
occurs in one step (van der Laan and Rubin 2006). The TMLE is thus given by
P∗n = P1

n, and the TMLE of ψ0 is given by the plug-in estimator ψ∗n = Ψ (P∗n) =
P∗n(O > 5). Since P∗n solves the efficient influence curve equation, it follows that
ψ∗n =

1
n
∑n

i=1 I(Oi > 5) is the empirical proportion of subjects that has a survival time
larger than 5. This estimator is asymptotically linear with influence curve D∗(P0)
since ψ∗n − ψ0 =

1
n
∑n

i=1 D∗(P0)(Oi), which proves that the TMLE of ψ0 is efficient
for every choice of initial estimator: apparently, all bias of the initial estimator is
removed by this TMLE update step.

Consider a kernel density estimator with an optimally selected bandwidth (e.g.,
based on likelihood-based cross-validation). Since this optimally selected band-
width trades off bias and variance for the kernel density estimator as an estimate of
the true density P0, it will, under some smoothness conditions, select a bandwidth
that converges to zero in sample size at a rate n−1/5. The bias of such a kernel den-
sity estimator converges to zero at the rate n−2/5. As a consequence, the substitution
estimator of the survival function at t for this kernel density estimator has a bias that
converges to zero at a slower rate than 1/

√
n in the sample size n. We can conclude

that the substitution estimator of a survival function at 5 years based on this optimal
kernel density estimator will have an asymptotic relative efficiency of zero (!) rela-
tive to the empirical survival function at 5 years. This simple example demonstrates
that a regularized maximum likelihood estimator of P0 is not targeted toward the
target parameter of interest and, by the same token, that current Bayesian inference
is not targeted toward the target parameter. However, if we apply the TMLE step
to the kernel density estimator, then the resulting TMLE of the survival function is
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unbiased and asymptotically efficient, and it even remains unbiased and asymptoti-
cally efficient if the kernel density estimator is replaced by an incorrect guess of the
true density.

The point is: the best estimator of a density is not a good enough estimator of
a particular feature of the density, but the TMLE step takes care of this.

5.2 Definition of TMLE in Context of the Mortality Example

This section presents the definition of TMLE in the context of our mortality ex-
ample, thereby allowing the reader to derive the TMLE presented in the previous
chapter. The reader may recognize the general recipe for TMLE as presented in
Sect. 5.1 that can be applied in any semiparametric model with any target parame-
ter. After having read this section, the reader might consider revisiting this general
TMLE presentation. Our causal effect of interest is the causal risk difference, and
the estimand is the corresponding statistical W-adjusted risk difference, which can
be interpreted as the causal risk difference under causal assumptions. The data struc-
ture in the illustrative example is O = (W, A, Y) ∼ P0. TMLE follows the basic steps
enumerated below, which we then illustrate in more detail.

TMLE for the Risk Difference

1. Estimate Q̄0 using super learner to generate our prediction function Q̄0
n.

Let Q0
n = (Q̄0

n,QW,n) be the estimate of Q0 = (Q̄0,QW,0), where QW,n is the
empirical probability distribution of W1, . . . ,Wn.

2. Estimate the treatment mechanism using super learning. The estimate of g0
is gn.

3. Determine a parametric family of fluctuations {Q0
n(ε) : ε} of the initial es-

timator Q0
n with fluctuation parameter ε, and a loss function L(Q) so that

a linear combination of the components of the derivative of L(Q0
n(ε)) at

ε = 0 equals the efficient influence curve D∗(Q0
n, gn) at any initial estimator

Q0
n = (Q̄0

n,Q
0
W,n) and gn. Since the initial estimate Q0

W,n of the marginal dis-
tribution of W is the empirical distribution (i.e., nonparametric maximum
likelihood estimator), the TMLE using a separate ε for fluctuating Q0

W,n
and Q̄0

n will only fluctuate Q̄0
n. The parametric family of fluctuations of Q̄0

n
is defined by parametric regression including a clever covariate chosen so
that the above derivative condition holds with ε playing the role of the co-
efficient in front of the clever covariate. This “clever covariate” H∗n(A,W)
depends on (Q0

n, gn) only through gn, and in the TMLE procedure it needs
to be evaluated for each observation (Ai,Wi), and at (0,Wi), (1,Wi).
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4. Update the initial fit Q̄0
n(A,W) from step 1. This is achieved by hold-

ing Q̄0
n(A,W) fixed (i.e., as intercept) while estimating the coefficient ε

for H∗n(A,W) in the parametric working model using maximum likeli-
hood estimation. Let εn be this parametric maximum likelihood estima-
tor. The updated regression is given by Q̄1

n = Q̄0
n(εn). For the risk differ-

ence, no iteration is necessary, since the next iteration will not result in
any change: that is, the next εn will be equal to zero. The TMLE of Q0 is
now Q∗n = (Q̄1

n,Q
0
W,n), where only the conditional mean estimator Q̄0

n was
updated.

5. Obtain the substitution estimator of the causal risk difference by applica-
tion of the target parameter mapping to Q∗n:

ψn = Ψ (Q∗n) =
1
n

n∑
i=1

{Q̄1
n(1,Wi) − Q̄1

n(0,Wi)}.

6. Calculate standard errors based on the influence curve of the TMLE ψn,
and then calculate p-values and confidence intervals.

There are several concepts in this enumerated step-by-step list that may be some-
what opaque for the reader: the parametric working model coding the fluctuations
of the initial estimator, the corresponding clever covariate, the efficient influence
curve, and the influence curve. We expand upon the list, including these topics, be-
low. For the nontechnical reader, we provide gray boxes so that you can read these
to understand the essential topics relevant to each step. The white boxes outlined in
black contain additional technical information for the more theoretical reader.

5.2.1 Estimating Q̄0

The first step in TMLE is obtaining an estimate Q̄0
n for Q̄0. This initial fit is achieved

using super learning, avoiding assuming a misspecified parametric statistical model.

5.2.2 Estimating g0

The TMLE procedure uses the estimate of Q̄0 obtained above in conjunction with
an estimate of g0. We estimate g0 with gn, again using super learning.
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5.2.3 Determining the Efficient Influence Curve D∗(P)

To obtain such a parametric working model to fluctuate the initial estimator Q0
n

we need to know the efficient influence curve of the target parameter mapping at
a particular P in the statistical model. This is a mathematical exercise that takes
as input the definition of the statistical model M (i.e, the nonparametric model)
and the target parameter mapping from this statistical model to the real line (i.e.,
Ψ :M→ R). We refer to Appendix A for required background material. It follows
that the efficient influence curve at P0 only depends on (Q0, g0) and is given by

D∗(Q0, g0)(W, A, Y) =
(

I(A = 1)
g0(1 | W)

−
I(A = 0)
g0(0 | W)

)
(Y − Q̄0(A,W))

+ Q̄0(1,W) − Q̄0(0,W) − Ψ (Q0).

More on the efficient influence curve. Calculation of the efficient influ-
ence curve, and of components of the efficient influence curve, requires
calculations of projections of an element onto a subspace within a Hilbert
space. These projections are defined in the Hilbert space L2

0(P) of func-
tions of O that have mean zero under P endowed with an inner product
〈S 1, S 2〉P = EPS 1(O)S 2(O), being the covariance of two functions of
O. Two elements in an Hilbert space are orthogonal if the inner product
equals zero: so two functions of O are defined as orthogonal if their cor-
relation or covariance equals zero. Recall that a projection of a function
S onto a subspace of L2

0(P) is defined as follows: (1) the projection is an
element of the subspace and (2) the difference of S minus the projection
is orthogonal to the subspace. The subspaces on which one projects are
so-called tangent spaces and subtangent spaces. The tangent space at P
is defined as the closure of the linear span of all scores of submodels
through P. The tangent space is a subspace of L2

0(P). The tangent space
of a particular variation-independent parameter of P is defined as the
closure of the linear span of all scores of submodels through P that only
vary this particular factor. We can denote the tangent spaces by T (P) and
a projection of a function S onto a T (P) by Π(S | T (P)).

5.2.4 Determining the Fluctuation Working Model

Now, can we slightly modify the initial estimator Q̄0
n to reduce bias for the addi-

tive causal effect? Let Q0
W,n be the empirical probability distribution of W1, . . . ,Wn.

We refer to the combined conditional probability distribution of Y and the marginal
probability distribution of W as Q0. Q0

n = (Q̄0
n,Q

0
W,n) denotes the initial estimator

of this Q0. We also remind the reader that the target parameter ψ0 only depends on
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P0 through Q̄0 and QW,0. Since the empirical distribution Q0
W,n is already a nonpara-

metric maximum likelihood estimator of the true marginal probability distribution
of W, for the sake of bias reduction for the target parameter, we can focus on only
updating Q̄0

n, as explained below.

We want to reduce the bias of our initial estimator, where the initial estimator
is a random variable that has bias and variance. We only need to update Q̄0

n
since the empirical distribution Q0

W,n is a nonparametric maximum likelihood
estimator (and can thus not generate bias for our target parameter).

Our parametric working model is denoted as {Q̄0
n(ε) : ε}, which is a small para-

metric statistical model, a one-dimensional submodel that goes through the initial
estimate Q̄0

n(A,W) at ε = 0. If we use the log-likelihood loss function

L(Q̄)(O) = − log Q̄(A,W)Y (1 − Q̄(A,W))1−Y ,

then the parametric working model for fluctuating the conditional probability distri-
bution of Y , given (A,W), needs to have the property

d
dε

log Q̄0
n(ε)(A,W)Y (1 − Q̄0

n(A,W))1−Y |ε=0 = D∗Y (Q0
n, gn)(W, A, Y), (5.1)

where D∗Y (Q0
n, gn) is the appropriate component of the efficient influence curve

D∗(Q0
n, gn) of the target parameter mapping at (Q0

n, gn). Formally, the appropriate
component D∗Y is the component of the efficient influence curve that equals a score
of a fluctuation of a conditional distribution of Y , given (A,W). These components
of the efficient influence curve that correspond with scores of fluctuations that only
vary certain parts of factors of the probability distribution can be computed with
Hilbert space projections. We provide the required background and tools in Ap-
pendix A and various subsequent chapters.

More on fluctuating the initial estimator. If the target parameter ψ0
depends on different variation-independent parts (QW,0, Q̄0) of the prob-
ability distribution P0, then one can decide to fluctuate the initial esti-
mators (Q0

W,n, Q̄n) with separate submodels and separate loss functions
L(QW ) = − log QW and L(Q̄), respectively. The submodels {Q0

W,n(ε) : ε},
{Q̄n(ε) : ε} and their corresponding loss functions L(QW ) and L(Q̄) need
to be chosen such that a linear combination of the components of the
derivative d

dε L(Q0
n(ε))

∣∣∣
ε=0 equals D∗(Q0

n, gn) for the sum-loss function
L(Q) = L(QW ) + L(Q̄). This corresponds with requiring that each of
the two loss functions generates a “score” so that the sum of these two
“scores” equals the efficient influence curve. If the initial estimator Q0

W,n
is a nonparametric maximum likelihood estimator, the TMLE using a
separate ε1 and ε2 for the two submodels will not update Q0

W,n.
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Following the protocol of TMLE, we also need to fluctuate the marginal distri-
bution of W. For that purpose we select as loss function of QW,0 the log-likelihood
loss function − log QW . Then we would select a parametric working model coding
fluctuations Q0

W,n(ε) of Q0
W,n so that

d
dε

log Q0
W,n(ε)

∣∣∣∣∣
ε=0
= D∗W (Q0

n, gn),

where D∗W is the component of the efficient influence curve that is a score of a
fluctuation of the marginal distribution of W.

Tangent spaces. Since QW and Q̄ represent parameters of different fac-
tors PW and PY |A,W in a factorization of P = PW PA|W PY |A,W , these compo-
nents D∗W (P) and D∗Y (P) can be defined as the projection of the efficient
influence curve D∗(P) onto the tangent space of PW at P and PY |A,W at P,
respectively. The tangent space TW of PW is given by all functions of W
with mean zero. The tangent space TY of PY |A,W is given by all functions
of W, A, Y for which the conditional mean, given A,W, equals zero. The
tangent space TA of PA|W is given by all functions of A,W, with condi-
tional mean zero, given W. These three tangent spaces are orthogonal,
as a general consequence of the factorization of P into the three factors.
The projection of a function S onto these three tangent spaces is given
by Π(S | TW ) = EP(S (O) | W), Π(S | TY )) = S (O) − EP(S (O) | A,W),
and Π(S | TA) = EP(S (O) | A,W) − EP(S | W), respectively. From
these projection formulas and setting S = D∗(P), the explicit forms of
D∗W (P) = Π(D∗(P) | TW ) and D∗Y (P) = Π(D∗(P) | TY ) can be cal-
culated as provided below, and for each choice of P. It also follows
that the projection of D∗(P) onto the tangent space of PA|W equals zero:
Π(D∗(P) | TA) = 0. The latter formally explains that the TMLE does not
require fluctuating the initial estimator of g0. It follows that the efficient
influence curve D∗(P) at P can be decomposed as:

D∗(P) = D∗Y (P) + D∗W (P).

Our loss function for Q is now L(Q) = L(Q̄) + L(QW ), and with this parametric
working model coding fluctuations Q0

n(ε) = (Q0
W,n(ε), Q̄0

n(ε)) of Q0
n, we have that the

derivative of ε → L(Q0
n(ε)) at ε = 0 equals the efficient influence curve at (Q0

n, gn).
If we use different ε for each component of Q0

n, then the two derivatives span the
efficient influence curve, since the efficient influence curve equals the sum of the
two scores D∗Y and D∗W . Either way, the derivative condition is satisfied:

〈
d
dε

L(Q0
n(ε))

∣∣∣∣∣
ε=0
〉 ⊃ D∗(Q0

n, gn), (5.2)
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where D∗(Q0
n, gn) = D∗Y (Q0

n, gn)+D∗W (Q0
n, gn). Here we used the notation 〈(h1, . . . , hk)〉

for the linear space consisting of all linear combinations of the functions h1, . . . , hk.
That is, the task of obtaining a loss function and parametric working model for fluc-
tuating Q0

n so that the derivative condition holds has been completed.

Due to this property (5.2) of the parametric working model, the TMLE has
the important feature that it solves the efficient influence curve equation
0 =

∑
i D∗(Q∗n, gn)(Oi) (also called the efficient score equation). Why is this

true? Because at the next iteration of TMLE, the parametric maximum likeli-
hood estimator εn = 0, and a parametric maximum likelihood estimator solves
its score equation, which exactly yields this efficient score equation. This is a
strong feature of the procedure as it implies that TMLE is double robust and
(locally) efficient under regularity conditions. In other words, TMLE is con-
sistent and asymptotically linear if either Qn or gn is a consistent estimator,
and if both estimators are asymptotically consistent, then TMLE is asymptot-
ically efficient.

However, if one uses a separate εW and ε for the two parametric working mod-
els through Q0

W,n and Q̄0
n, respectively, then the maximum likelihood estimator of

εW equals zero, showing that TMLE will only update Q̄0
n. Therefore, it was never

necessary to update the part of Q0
n that was already nonparametrically estimated.

If the initial estimator of QW,0 is a nonparametric maximum likelihood esti-
mator, then the TMLE does not update this part of the initial estimator Q0

n.

Of course, we have not been explicit yet about how to construct this submodel
Q̄0

n(ε) through Q̄0
n. For that purpose, we now note that D∗Y (Q0

n, gn) equals a function
H∗n(A,W) times the residual (Y − Q̄0

n(A,W)), where

H∗n(A,W) ≡
( I(A = 1)
gn(A = 1 | W)

−
I(A = 0)

gn(A = 0 | W)

)
.

Here I(A = 1) is an indicator variable that takes the value 1 when A = 1. One can see
that for A = 1 the second term disappears, and for A = 0 the first term disappears.

It can be shown (and it is a classical result for parametric logistic main term re-
gression in a parametric statistical model) that the score of a coefficient in front of a
covariate in a logistic linear regression in a parametric statistical model for a condi-
tional distribution of a binary Y equals the covariate times the residual. Therefore,
we can select the following parametric working model for fluctuating the initial es-
timate of the conditional probability distribution of Y , given (A,W), or, equivalently,
for the estimate of the probability of Y = 1, given (A,W):

Q̄0
n(ε)(Y = 1 | A,W) =

1

1 + exp
(
− log Q̄0

n

(1−Q̄0
n) (A,W) − εH∗n(A,W)

) .
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By this classical result, it follows that indeed the score of ε of this univariate logistic
regression submodel at ε = 0 equals D∗Y (Q0

n, gn). That is, we now have really fully
succeeded in finding a parametric submodel through the initial estimator Q0

n that
satisfies the required derivative condition. Since H∗n(A,W) now just plays the role
of a covariate in a logistic regression, using an offset, this explains why we call the
covariate H∗n(A,W) a clever covariate.

More on constructing the submodel. If one needs a submodel through
an initial estimator of a conditional distribution of a binary variable Y ,
given a set of parent variables Pa(Y), and it needs to have a particular
score D∗Y , then one can define this submodel as a univariate logistic re-
gression model, using the initial estimator as offset, with univariate clever
covariate defined as H∗(Pa(Y)) = E(D∗Y | Y = 1, Pa(Y)) − E(D∗Y | Y =
0, Pa(Y)). Application of this general result to the above setting yields
the clever covariate H∗(A,W) presented above.

If our goal was to target P0(Y1 = 1) or P0(Y0 = 1), then going through the same
protocol for the TMLE shows that one would use as clever covariate

H∗0,n(A,W) ≡
( I(A = 0)
gn(A = 0 | W)

)
or H∗1,n(A,W) ≡

( I(A = 1)
gn(A = 1 | W)

)
.

By targeting these two parameters simultaneously, using a two-dimensional clever
covariate with coefficients ε1, ε2, one automatically obtains a valid TMLE for pa-
rameters that are functions of these two marginal counterfactual probabilities, such
as a causal relative risk and causal odds ratio.

By computing the TMLE that targets a multidimensional target parameter,
one also obtains a valid TMLE for any (say) univariate summary measure of
the multidimensional target parameter. By valid we mean that this TMLE will
still satisfy the same asymptotic properties, such as efficiency and double ro-
bustness, as the TMLE that directly targets the particular summary measure.
The TMLE that targets the univariate summary measure of the multidimen-
sional parameter may have a better finite sample performance than the TMLE
that targets the whole multidimensional target parameter, in particular, if the
dimension of the multidimensional parameter is large.

5.2.5 Updating Q̄0
n

We first perform a logistic linear regression of Y on H∗n(A,W) where Q̄0
n(A,W) is

held fixed (i.e., used as an offset), and an additional intercept is suppressed in order
to estimate the coefficient in front of H∗n(A,W), denoted ε. The TMLE procedure
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is then able to incorporate information from gn, through H∗n(A,W), into an updated
regression. It does this by extracting εn, the maximum likelihood estimator of ε,
from the fit described above, and updating the estimate Q̄0

n according to the logistic
regression working model. This updated regression is then given by Q̄1

n:

logit Q̄1
n(A,W) = logit Q̄0

n(A,W) + εnH∗n(A,W).

One iterates this updating process until the next εn = 0 or has converged to
zero, but, in this example, convergence is achieved in one step. The TMLE of
Q0 is now Q∗n = (Q0

W,n, Q̄
1
n). Note that this step is equivalent to (ε1n, ε2n) =

arg minε1,ε2
∑

i L(Q0
n(ε1, ε2))(Oi), and setting Q1

n = Q0
n(ε1n, ε2n), where, as noted

above, ε1n = 0, so that only Q̄0
n is updated.

Given a parametric working model Q0
n(ε) with fluctuation parameter ε, and a

loss function L(Q) satisfying (5.2), the first-step TMLE is defined by deter-
mining the minimum ε0n of

∑n
i=1 L(Q0

n(ε))(Oi) and setting Q1
n = Q0

n(ε0n ). This
updating process is iterated until convergence of εkn = arg minε

∑n
i=1 L(Qk

n(ε))
to zero, and the final update Q∗n is referred to as the TMLE of Q0. In this case,
the next ε1n = 0, so that convergence is achieved in one step and Q∗n = Q1

n.

5.2.6 Estimating the Target Parameter

The estimate Q̄∗n = Q̄1
n obtained in the previous step is now plugged into our target

parameter mapping, together with the empirical distribution of W, resulting in the
targeted substitution estimator given by

ψn = Ψ (Q∗n) =
1
n

n∑
i=1

{Q̄1
n(1,Wi) − Q̄1

n(0,Wi)}.

This mapping is accomplished by evaluating Q̄1
n(1,Wi) and Q̄1

n(0,Wi) for each ob-
servation i and plugging these values into the above equation.

5.2.7 Calculating Standard Errors

The calculation of standard errors for TMLE can be based on the central limit theo-
rem, relying on δ-method conditions. (See Appendix A for an advanced introduction
to these topics.) Under such regularity conditions, the asymptotic behavior of the es-
timator, that is, its asymptotic normal limit distribution, is completely characterized
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by the so-called influence curve of the estimator in question. In our example, we
need to know the influence curve of the TMLE of its estimand.

Note that, in order to recognize that an estimator is a random variable, an esti-
mator should be represented as a mapping from the data into the parameter space,
where the data O1, . . . ,On can be represented by the empirical probability distri-
bution function Pn. Therefore, let Ψ̂ (Pn) be the TMLE described above. Since the
TMLE is a substitution estimator, we have Ψ̂ (Pn) = Ψ (P∗n) for a targeted estimator
P∗n of P0. An estimator Ψ̂ (Pn) of ψ0 is asymptotically linear with influence curve
IC(O) if it satisfies:

√
n(Ψ̂ (Pn) − ψ0) =

1
√

n

n∑
i=1

IC(Oi) + oP0 (1).

Here the remainder term, denoted by oP0 (1), is a random variable that converges to
zero in probability when the sample size converges to infinity. The influence curve
IC(O) is a random variable with mean zero under P0.

More on estimators and the influence curve. An estimator Ψ̂ (Pn) is a
function Ψ̂ of the empirical probability distribution function Pn. Specif-
ically, one can express the estimator as a function Ψ̂ of a large family of
empirical means 1/n

∑n
i=1 f (Oi) of functions f of O varying over a class

of functions F . We say the estimator is a function of Pn = (Pn f : f ∈ F ),
where we use the notation Pn f ≡ 1/n

∑n
i=1 f (Oi). By proving that the

estimator is a differentiable function Ψ̂ of Pn = (Pn f : f ∈ F ) at
P0 = (P0 f : f ∈ F ), and that a uniform central limit theorem applies
to Pn based on empirical process theory, it follows that the estimator
minus its estimand ψ0 = Ψ̂ (P0) behaves in first order as an empiri-
cal mean of IC(Oi): we write Ψ̂ (Pn) − ψ0 = (Pn − P0)IC + oP(1/

√
n).

This function IC(O) is called the influence curve of the estimator, and
it is uniquely determined by the derivative of Ψ̂ . Specifically, IC(O) =∑

f∈F
d

dP0 f Ψ̂ ((P0 f : f )( f (O) − P0 f ), where, formally, the
∑

becomes an
integral when F is not finite.

Asymptotic linearity is a desirable property as it indicates that the estimator be-
haves like an empirical mean, and, as a consequence, its bias converges to zero in
sample size at a rate faster than 1/

√
n, and, for n large enough, it is approximately

normally distributed. The influence curve of an estimator evaluated as a function
in O measures how robust the estimator is toward extreme values. The influence
curve IC(O) has mean zero under sampling from the true probability distribution
P0, and its (finite) variance is the asymptotic variance of the standardized estimator√

n(Ψ̂ (Pn) − ψ0).

In other words, the variance of Ψ̂ (Pn) is well approximated by the variance of
the influence curve, divided by sample size n. If ψ0 is multivariate, then the
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covariance matrix of Ψ̂ (Pn) is well approximated by the covariance matrix of
the multivariate influence curve divided by sample size n. More importantly,
the probability distribution of Ψ̂ (Pn) is well approximated by a normal distri-
bution with mean ψ0 and the covariance matrix of the influence curve, divided
by sample size.

An estimator is asymptotically efficient if its influence curve is equal to the ef-
ficient influence curve, IC(O) = D∗(O). The influence curve of the TMLE indeed
equals D∗ if Q∗n is a consistent estimator of Q0, and gn is a consistent estimator of g0.
A complete technical understanding of influence curve derivation is not necessary
to implement the TMLE procedure. However, we provide Appendix A for a detailed
methodology for deriving the influence curve of an estimator.

More on asymptotic linearity and efficiency. The TMLE is a consis-
tent estimator of ψ0 if either Q̄n is consistent for Q̄0 or gn is consistent
for g0. The TMLE is asymptotically linear under additional conditions.
For a detailed theorem establishing asymptotic linearity and efficiency
of the TMLE, we refer the reader to Chap. 27. In particular, if for some
δ > 0, δ < g0(1 | W) < 1 − δ, and the product of the L2-norm of
Q̄n − Q̄0 and the L2-norm of gn − g0 converges to zero at faster rate
than 1/

√
n, then the TMLE is asymptotically efficient. If gn is a consis-

tent estimator of g0, then the influence curve of the TMLE Ψ̂ (Pn) equals
IC = D∗(Q∗, g0) − Π(D∗(Q∗, g0) | Tg), the efficient influence curve at
the possibly misspecified limit of Q∗n minus its projection on the tangent
space of the model for the treatment mechanism g0. The projection term
makes D∗(Q∗, g0) a conservative working influence curve, and the pro-
jection term equals zero if either Q∗ = Q0 or g0 was known and gn = g0.

From these formal asymptotic linearity results for the TMLE it follows that if gn

is a consistent estimator of g0, then the TMLE Ψ̂ (Pn) is asymptotically linear with
an influence curve that can be conservatively approximated by D∗(Q∗, g0), where
Q∗ denotes the possibly misspecified estimand of Q∗n. If g0 was known, as in a
randomized controlled trial, and gn was not estimated, then the influence curve of the
TMLE equals D∗(Q∗, g0). If, on the other hand, gn was estimated under a correctly
specified model for g0, then the influence curve of the TMLE has a smaller variance
than the variance of D∗(Q∗, g0), except if Q∗ = Q0, in which case the influence curve
of the TMLE equals the efficient influence curve D∗(Q0, g0). As a consequence, we
can use as a working estimated influence curve for the TMLE

ICn(O) =
(

I(A = 1)
gn(1 | W)

−
I(A = 0)
gn(0 | W)

)
(Y − Q̄1

n(A,W)) + Q̄1
n(1,W) − Q̄1

n(0,W) − ψn.

Even if Q̄1
n is inconsistent, but gn is consistent, this influence curve can be used

to obtain an asymptotically conservative estimator of the variance of the TMLE
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Ψ̂ (Pn). This is very convenient since the TMLE requires calculation of D∗(Q∗n, gn),
and apparently we can use the latter as influence curve to estimate the normal limit
distribution of the TMLE.

If one assumes that gn is a consistent maximum-likelihood-based estimator
of g0, then one can (asymptotically) conservatively estimate the variance of
the TMLE with the sample variance of the estimated efficient influence curve
D∗(Q∗n, gn).

An estimate of the asymptotic variance of the standardized TMLE,
√

n(Ψ̂ (Pn)−ψ0),
viewed as a random variable, using the estimate of the influence curve ICn(O) is
thereby given by

σ2
n =

1
n

n∑
i=1

IC2
n(oi).

5.3 Foundation and Philosophy of TMLE

TMLE in semiparametric statistical models for P0 is the extension of maximum like-
lihood estimation in parametric statistical models. Three key ingredients are needed
for this extension. Firstly, one needs to define the parameter of interest semipara-
metrically as a function of the data-generating distribution varying over the (large)
semiparametric statistical model. Many practitioners are used to thinking of their pa-
rameter in terms of a regression coefficient, but that luxury is not available in semi-
or nonparametric statistical models. Instead, one has to carefully think of what fea-
ture of the distribution of the data one wishes to target.

Secondly, one needs to estimate the true distribution P0, or at least its relevant
factor or portion as needed to evaluate the target parameter, and this estimate should
respect the actual semiparametric statistical model. As a consequence, nonpara-
metric maximum likelihood estimation is often ill defined or results in a complete
overfit, and thereby results in estimators of the target parameter that are too vari-
able. We discussed this issue in Chap. 3. The theoretical results obtained for the
cross-validation selector (discrete super learner) inspired the general super learn-
ing methodology for estimation of probability distributions of the data, or factors
of other high-dimensional parameters of the probability distributions of the data.
In the sequel, a reference to a true probability distribution of the data is meant to
refer to this relevant part of the true probability distribution of the data. This super
learning methodology takes as input a collection of candidate estimators of the dis-
tribution of the data and then uses cross-validation to determine the best weighted
combination of these estimators. It is assumed or arranged that the loss function is
uniformly bounded so that oracle results for the cross-validation selector apply. The
super learning methodology results now in an estimator of the distribution of the
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data that will be used as an initial estimator in the TMLE procedure. The oracle re-
sults for this super learner teach us that the initial estimator is optimized with respect
to a global loss function such as the log-likelihood loss function and is thereby not
targeted toward the target parameter, Ψ (P0). That is, it will be too biased for Ψ (P0)
due to a bias–variance tradeoff with respect to the more ambitious full P0 (or rele-
vant portion thereof) instead of having used a bias–variance tradeoff with respect to
Ψ (P0). The targeted maximum likelihood step is tailored to remove bias due to the
nontargeting of the initial estimator.

The targeted maximum likelihood step involves now updating this initial (super-
learning-based) estimator P0

n of P0 to tailor its fit to estimation of the target ψ0, the
value of the parameter Ψ (P0). This is carried out by determining a cleverly chosen
parametric working model modeling fluctuations P0

n(ε) of the initial estimator P0
n

with a (say) univariate fluctuation parameter ε. The value ε = 0 corresponds with
no fluctuation so that P0

n(0) = P0
n. One now estimates ε with maximum likelihood

estimation, treating the initial estimator as a fixed offset, and updates the initial es-
timator accordingly. If needed, this updating step is iterated to convergence, and the
final update P∗n is called the TMLE of P0, while the resulting substitution estimator
Ψ̂ (P∗n) of Ψ (P0) is the TMLE of ψ0. This targeted maximum likelihood step thus
uses a parametric maximum likelihood estimator, accordingly to a cleverly chosen
parametric working model that includes the initial estimator, to obtain a bias reduc-
tion for the target Ψ (P0).

This is not just any parametric working model. That is, we wish to select a para-
metric working model such that the parametric maximum likelihood estimator is
maximally effective in removing bias for the target parameter, at minimal increase
in variance. So if εn is the parametric maximum likelihood estimator of ε, then we
want the mean squared error of Ψ (P0

n(εn)) − ψ0 to be as small as possible. We want
this parametric working model to really listen to the information in the data that is
relevant for the target parameter. In fact, we would like the parametric maximum
likelihood estimator to be as responsive to the information in the data that is rele-
vant for the target parameter as an estimator that is asymptotically efficient in the
semiparametric model.

To get insight into what kind of choice of parametric working model may be as
adaptive to such target-parameter-specific features in the data as a semiparametric
efficient estimator, we make the following observations. Suppose one is interested
in determining the parametric working model coding fluctuations P0(ε) of P0 so that
the maximum likelihood estimator of ψ0 = Ψ (P0(ε = 0)) according to this paramet-
ric working model is asymptotically equivalent to an efficient estimator in the large
semiparametric model. Note that this parametric working model is not told that the
true value of ε equals zero. It happens to be the case that from an asymptotic effi-
ciency perspective this can be achieved as follows. Among all possible parametric
working models that code fluctuations P0(ε) of the true P0 we chose the one for
which the Cramer–Rao lower bound for the target parameter Ψ (P0(ε)) at ε = 0 is
equivalent to the semiparametric information bound for the target parameter at P0.
The Cramer–Rao lower bound for a parametric working model P0(ε) is given by
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d
dε Ψ (P0(ε))

∣∣∣
ε=0

}2

I(0)
,

where I(0) denotes the variance of the score of the parametric working model at
ε = 0. In parametric model theory I(0) is called the information at parameter value 0.
The semiparametric information bound for the target parameter at P0 is defined as
the supremum over all these possible Cramer–Rao lower bounds for the paramet-
ric working models. That is, the semiparametric information bound is defined as
the Cramer–Rao lower bound for the hardest parametric working model. Thus, the
parametric working model for which the parametric maximum likelihood estimator
is as responsive to the data with respect to the target parameter as a semiparamet-
ric efficient estimator is actually given by this hardest parametric working model.
Indeed, the TMLE selects this hardest parametric working model, but through P0

n.
Note also that this hardest working parametric model can also be interpreted

as the one that maximizes the change of the target parameter relative to a change
P0(ε) − P0 under small amounts of fluctuations. Thus this hardest working para-
metric model through an initial estimator P0

n will maximize the change of the target
parameter relative to the initial value Ψ (P0

n) for small values of ε.
Beyond the practical appeal of this TMLE update that uses the parametric likeli-

hood to fit the target parameter of interest, an important feature of the TMLE is that
it solves the efficient influence curve equation, also called the efficient score equa-
tion, of the target parameter. We refer the reader to Sect. 5.2 and Appendix A for
relevant material on the efficient influence curve. For now, it suffices to know that an
estimator is semiparametric efficient if the estimator minus the true target parameter
behaves as an empirical mean of D∗(P0)(Oi), i = 1, . . . , n, showing the incredible
importance of this transformation D∗(P0) of O, which somehow captures all the rel-
evant information of O for the sake of learning the statistical parameter Ψ (P0). If
D∗(P)(O) is the efficient influence curve at P, a possible probability distribution for
O in the statistical model, and P∗n is the TMLE of P0, then, 0 =

∑n
i=1 D∗(P∗n)(Oi).

Just as a parametric maximum likelihood estimator solves a score equation by
virtue of its maximizing the likelihood over the unknown parameters, a TMLE
solves the target-parameter-specific score equation for the target parameter by virtue
of maximizing the likelihood in a targeted direction. This can then be used to estab-
lish that the TMLE is asymptotically efficient if the initial estimator is consistent and
remarkably robust in the sense that for many data structures and semiparametric sta-
tistical models, the TMLE of ψ0 remains consistent even if the initial estimator is in-
consistent. By using submodels that have a multivariate fluctuation parameter ε, the
TMLE will solve the score equation implied by each component of ε. In this man-
ner, one can obtain TMLEs that solve not only the efficient influence curve/efficient
score equation for the target parameter, but also an equation that characterizes other
interesting properties, such as being an imputation estimator (Gruber and van der
Laan 2010a).

In particular, in semiparametric models used to define causal effect parameters,
the TMLE is a double robust estimator. In such semiparametric models the proba-
bility distribution function P0 can be factorized as P0(O) = Q0(O)g0(O), where g0
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is the treatment mechanism and Q0 is the relevant factor that defines the g-formula
for the counterfactual distributions. The TMLE Ψ (Q∗n) of ψ0 = Ψ (Q0) is consistent
if either Q∗n or gn is consistent. In our example, gn is the estimator of the treatment
mechanism g0(A | W) = P0(A | W), and Q∗n is the TMLE of Q0.

5.4 Summary

TMLE of a parameter Ψ (Q0) distinguishes from nonparametric or regularized max-
imum likelihood estimation by fully utilizing the power of cross-validation (super
learning) to fine-tune the bias–variance tradeoff with respect to the part Q0 of the
data-generating distribution, thereby increasing adaptivity to the true Q0, and by tar-
geting the fit to remove bias with respect to ψ0. The loss-based super learner of Q0
already outperforms with respect to bias and variance a regularized maximum like-
lihood estimator for the semiparametric statistical model with respect to estimation
of Q0 itself by its asymptotic equivalence to the oracle selector: one could include
the regularized maximum likelihood estimator in the collection of algorithms for
the super learner. Just due to using the loss-based super learner it already achieves
higher rates of convergence for Q0 itself, thereby improving both in bias and vari-
ance for Q0 as well as Ψ (Q0). In addition, due to the targeting step, which again
utilizes super learning for estimation of the required g0 in the fluctuation function, it
is less biased for ψ0 than the initial loss-function-based super learner estimator, and,
as a bonus, the statistical inference based on the central limit theorem is also heav-
ily improved relative to just using a nontargeted regularized maximum likelihood
estimator.

Overall it comes down to the following: the TMLE is a semiparametric effi-
cient substitution estimator. This means it fully utilizes all the information in
the data (super learning and asymptotic efficiency), in addition to fully using
knowledge about global constraints implied by the statistical semiparametric
statistical modelM and the target parameter mapping (by being a substitution
estimator), thereby making it robust under sparsity with respect to the target
parameter. It fully incorporates the power of super learning for the benefit of
getting closer to the truth in finite samples.



Chapter 6

Why TMLE?

Sherri Rose, Mark J. van der Laan

In the previous five chapters, we covered the targeted learning road map. This in-
cluded presentation of the tools necessary to estimate causal effect parameters of a
data-generating distribution. We illustrated these methods with a simple data struc-
ture: O = (W, A, Y) ∼ P0. Our target parameter for this example was Ψ (P0) =
EW,0[E0(Y | A = 1,W) − E0(Y | A = 0,W)], which represents the causal risk differ-
ence under causal assumptions.

Throughout these chapters, the case for TMLE using super learning is com-
pelling, but many of its properties have not been fully discussed, especially in
comparison to other estimators. This chapter makes a comprehensive case for
TMLE based on statistical properties and compares TMLE to maximum-likelihood-
based substitution estimators of the g-formula (MLE) and estimating-equation-
based methodology. We continue to refer to the simple data structure O = (W, A, Y) ∼
P0 and causal risk difference as the target parameter in some comparisons, but also
discuss the performance of TMLE and other estimators globally, considering many
target parameters and data structures.

As we introduced in Chaps. 4 and 5, TMLE has many attractive properties that
make it preferable to other existing procedures for estimation of a target parame-
ter of a data-generating distribution for arbitrary semiparametric statistical models.
TMLE removes all the asymptotic residual bias of the initial estimator for the target
parameter if it uses a consistent estimator of the treatment mechanism. If the ini-
tial estimator is already consistent for the target parameter, the minimal additional
fitting of the data in the targeting step may potentially remove some finite sample
bias and certainly preserve this consistency property of the initial estimator. As a
consequence, TMLE is a so-called double robust estimator.

In addition, if the initial estimator and the estimator of the treatment mechanism
are both consistent, then it is also asymptotically efficient according to semiparamet-
ric statistical model efficiency theory. That is, under this condition, other competing
estimators will underperform in comparison for large enough sample sizes with re-
spect to variance, assuming that the competitors are required to have a bias for the
target parameter smaller than 1/

√
n across a neighborhood of distributions of the
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true P0 that shrinks to P0 at this same rate 1/
√

n. It allows the incorporation of ma-
chine learning (i.e., super learning) methods for the estimation of both the relevant
part of P0 and the nuisance parameter g0 required for the targeting step, so that we
do not make assumptions about the probability distribution P0 we do not believe. In
this manner, every effort is made to achieve minimal bias and the asymptotic semi-
parametric efficiency bound for the variance. We further explain these issues in the
pages that follow.

Portions of this chapter are technical, but a general understanding of the essential
concepts can be gleaned from reading the introduction to each of the sections and
the tables at the end of each section. For example, Sect. 6.1 explains that there are
two general types of estimators and provides a list of various estimators that may
be familiar to the reader. Similarly, Sects. 6.2–6.6 discuss properties of TMLE: it
is a loss-based, well-defined, unbiased, efficient substitution estimator of target pa-
rameters of a data-generating distribution. The introductions explain these concepts
and the closing tables summarize these properties among competing estimators and
TMLE. Therefore, a strong math background is not required to understand the basic
concepts, and some readers may find it useful to skim or skip certain subsections.

6.1 Landscape

In order to effectively establish the benefits of TMLE, we must enumerate compet-
ing estimators. For example, what are our competitors for the estimation of causal
effect parameters, such as E0Y1−E0Y0, as well as other target parameters? We group
these estimators into two broad classes: MLE and estimating equation methodology.
For each specific estimation problem, one can come up with a number of variations
of an estimator in such a class. In Chaps. 7 and 21, among others, we provide a
finite sample comparison of TMLE with a number of estimators, including estima-
tors specifically tailored for this simple data structure. Recall that the conditional
expectation of Y given (A,W) is denoted E0(Y | A,W) ≡ Q̄0(A,W). Additionally,
we let Qn = (Q̄n,QW,n) be the estimate of the conditional mean and the empirical
distribution for the marginal distribution of W, representing the estimator of the true
Q0 = (Q̄0,QW ).

6.1.1 MLE

A maximum likelihood estimator for a parametric statistical model {pθ : θ} is de-
fined as a maximizer over all densities in the parametric statistical model of the
empirical mean of the log density:

θn = arg max
θ

n∑
i=1

log pθ(Oi).
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The L(p)(O) = − log p(O) is called a loss function at candidate density p for the
true density p0 since its expectation is minimized across all densities p by the true
density p = p0. This minimization property of the log-likelihood loss function is
the principle behind maximum likelihood estimation providing the basis for estab-
lishing that maximum likelihood estimators for correctly specified statistical models
approximate the true distribution P0 for large sample size.

An estimator that is based on maximizing the log-likelihood over the whole
statistical model or submodels of the statistical model or utilizes algorithms that
involve maximization of the log-likelihood will be called a maximum-likelihood-
based estimator. We use the abbreviation MLE to refer specifically to maximum-
likelihood-based substitution estimators of the g-formula.

This chapter can be equally applied to the case where L(p)(O) is replaced
by any other loss function L(Q) for a relevant part Q0 of p0, satisfying that
E0L(Q0)(O) ≤ E0L(Q)(O) for each possible Q. In that case, we might call this
estimator a minimum-loss-based estimator. TMLE incorporates this case as well,
in which it could be called targeted minimum-loss-based estimation (still abbrevi-
ated as TMLE). In this chapter we focus our comparison on the log-likelihood loss
function and will thereby refer to MLE, including ML-based super learning.

The g-formula was previously discussed in Chaps. 1–4. Recall that uppercase
letters represent random variables and lowercase letters are a specific value for that
variable. Ψ (P0) for the causal risk difference can be written as the g-formula:

Ψ (P0) =
∑

w

[∑
y

yP0(Y = y | A = 1,W = w)

−
∑

y

yP0(Y = y | A = 0,W = w)
]
P0(W = w), (6.1)

where

P0(Y = y | A = a,W = w) =
P0(W = w, A = a, Y = y)∑
y P0(W = w, A = a, Y = y)

is the conditional probability distribution of Y = y, given A = a, W = w, and

P0(W = w) =
∑
y,a

P0(W = w, A = a, Y = y).

Recall that our target parameter only depends on P0 through the conditional mean
Q̄0(A,W) = E0(Y | A,W) and the marginal distribution QW of W; thus we can also
write Ψ (Q0).

Maximum-likelihood-based substitution estimators of the g-formula are obtained
by substitution of a maximum-likelihood-based estimator of Q0 into the parameter
mapping Ψ (Q0). The marginal distribution of W can be estimated with the non-
parametric maximum likelihood estimator, which happens to be the empirical dis-
tribution that puts mass 1/n on each Wi, i = 1, . . . , n. In other words, we estimate
the expectation over W with the empirical mean over Wi, i = 1, . . . , n. Maximum-
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likelihood-based estimation of Q̄0 can range from the use of stratification to super
learning. We introduced nonparametric estimation of Q̄0 in Chap. 3. Maximum-
likelihood-based substitution estimators will be of the type

ψn = Ψ (Qn) =
1
n

n∑
i=1

{Q̄n(1,Wi) − Q̄n(0,Wi)}, (6.2)

where this estimate is obtained by plugging in Qn = (Q̄n,QW,n) into the mapping Ψ .

MLE using stratification. The simplest maximum likelihood estimator of Q̄0
stratifies by categories or possible values for (A,W). One then simply averages
across the many categories (also called bins or treatment/covariate combina-
tions). In most data sets, there will be a large number of categories with few
or zero observations. One might refer to this as the curse of dimensionality, mak-
ing the MLE for nonparametric statistical models typically ill defined, and an
overfit to the data resulting in poor finite sample performance. One can refer to
this estimator as the nonparametric MLE (NPMLE).

MLE after dimension reduction: propensity score methods. To deal with the
curse of dimensionality, one might propose a dimension reduction Wr of W and
apply the simple MLE to the reduced-data structure (Wr, A, Y). However, such
a dimension reduction could easily result in a biased estimator of Ψ (Q0) by ex-
cluding confounders. One can show that a sufficient confounder is given by the
propensity score g0(1 | W) = P0(A = 1 | W), allowing one to reduce the dimen-
sion of W to only a single covariate, without inducing bias. A maximum likeli-
hood estimator of E0(Y | A,Wr) can then be applied, where Wr = g0(1 | W),
using stratification. For example, one creates five categories for the propen-
sity score, thereby creating a total of ten categories for (A,Wr), and estimates
E0(Y | A,Wr) with the empirical average of the outcomes within each category.
Of course, this propensity score is typically unknown and will thus first need to
be estimated from the data.

MLE using regression in a parametric working model. Q̄0(A,W) is estimated
using regression in a parametric working (statistical) model and plugged into the
formula given in (6.2).

ML-based super learning. We estimate Q̄0 with the super learner, in which the
collection of estimators may include stratified maximum likelihood estimators,
maximum likelihood estimators based on dimension reductions implied by the
propensity score, and maximum likelihood estimators based on parametric work-
ing models, beyond many other machine learning algorithms for estimation of
Q̄0. Super learning requires a choice of loss function. If the loss function is a
log-likelihood loss, L(P0)(O) = − log p0(O), then we would call this maximum-
likelihood-based super learning. However, one might use a loss function for the
relevant part Q̄0 that is not necessarily a log-likelihood loss, in which case we
should call it minimum-loss-based super learning. For example, if Y is a continu-
ous random variable with outcomes in [0, 1], then one can select as loss function
for Q̄0 the following function:
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L(Q̄0)(O) = −Y log Q̄0(A,W) + (1 − Y) log(1 − Q̄0(A,W)),

which indeed satisfies that the expectation E0L(Q̄)(O) is minimized by Q̄ = Q̄0.
This loss function is an example of a loss function that is not a log-likelihood
loss function. In this chapter we will not stress this additional important gain
in generality of loss-based super learning relative to maximum-likelihood-based
estimation, allowing us to proceed directly after the relevant parts of the distribu-
tion of P0 required for evaluation of our target parameter Ψ (P0).

6.1.2 Estimating Equation Methods

Estimating-equation-based methodology for estimation of our target parameter
Ψ (P0) includes inverse probability of treatment-weighted (IPTW) estimators and
augmented IPTW (A-IPTW) estimators. These methods aim to solve an estimating
equation in candidate ψ-values. An estimating function is a function of the data O
and the parameter of interest. If D(ψ)(O) is an estimating function, then we can
define a corresponding estimating equation:

0 =
n∑

i=1

D(ψ)(Oi),

and solution ψn satisfying
∑n

i=1 D(ψn)(Oi) = 0. Most estimating functions for ψ will
also depend on an unknown “nuisance” parameter of P0. So we might define the
estimating function as D(ψ, η), where η is a candidate for the nuisance parameter.
Given an estimator ηn of the required true nuisance parameter η0 of P0, we would
define the estimating equation as

0 =
n∑

i=1

D(ψ, ηn)(Oi),

with solution ψn satisfying
∑n

i=1 D(ψn, ηn)(Oi) = 0. The theory of estimating func-
tions teaches us that for each semiparametric statistical model and each target pa-
rameter, a class of estimating functions can be mathematically derived in terms of
the gradients of the pathwise derivative of the target parameter, and the optimal
estimating function that may yield an estimator with minimal asymptotic variance
needs to be defined by the efficient influence curve (also called canonical gradient
of the pathwise derivative) of the target parameter.

When the notation D∗(ψ0, η0) is used for the estimating function D(ψ0, η0),
D∗(ψ0, η0) is an estimating function implied by the efficient influence curve. An
efficient influence curve is D∗(P0)(O), i.e., a function of O, but determined by P0,
and may be abbreviated D∗(P0) or D∗(O). An optimal estimating function is one
such that D(ψ0, η0) = D∗(P0).
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For estimation of the causal risk difference, the following are two popular exam-
ples of estimating-equation-based methods, where the A-IPTW estimator is based
on the estimating function implied by the efficient influence curve.

IPTW. One estimates our target parameter, the causal risk difference Ψ (P0), with

ψn =
1
n

n∑
i=1

{I(Ai = 1) − I(Ai = 0)}
Yi

gn(Ai,Wi)
.

This estimator is a solution of an IPTW estimating equation that relies on an
estimate of the treatment mechanism, playing the role of a nuisance parameter of
the IPTW estimating function.

A-IPTW. One estimates Ψ (P0) with

ψn =
1
n

n∑
i=1

{I(Ai = 1) − I(Ai = 0)}
gn(Ai,Wi)

(Yi − Q̄n(Ai,Wi))

+
1
n

n∑
i=1

{Q̄n(1,Wi) − Q̄n(0,Wi)}.

This estimator is a solution of the A-IPTW estimating equation that relies on
an estimate of the treatment mechanism g0 and the conditional mean Q̄0. Thus
(g0, Q̄0) plays the role of the nuisance parameter of the A-IPTW estimating func-
tion. The A-IPTW estimating function evaluated at the true (g0, Q̄0) and true ψ0
actually equals the efficient influence curve at the true data-generating distribu-
tion P0, making it an optimal estimating function.

6.2 TMLE is Based on (Targeted) Loss-Based Learning

Suppose one is given a loss function L() for a parameter Q0 = Q(P0) while the es-
timand ψ0 of interest is determined by Q0. Thus, Q0 = arg minQ E0L(Q)(O), where
the minimum is taken over all possible parameter values of Q. One can proceed by
defining a collection of candidate estimators Q̂k that map the data Pn into an esti-
mate of Q0, where such estimators can be based on aiming to minimize the expected
loss Q→ E0L(Q)(O). This family of estimators can be used as a library of the loss-
based super learner, which will use cross-validation to determine the best weighted
combination of all these candidate estimators. The resulting super learner estimate
Qn can now be mapped into the estimate Ψ (Qn) of the estimand ψ0.

Such estimators have the following properties. Firstly, these estimators are gen-
erally well defined by being based on minimizing empirical risk and cross-validated
risk with respect to the loss function L() over the statistical model. Secondly, by def-
inition, these substitution estimators fully respect the global constraints implied by
the statistical model and the target parameter mapping Ψ . Thirdly, such estimators
can incorporate the state of the art in machine learning. Fourthly, the loss function
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L(Q) can be selected to result in good estimators of the estimand ψ0: in particu-
lar, the TMLE chooses a loss function and a cleverly chosen parametric working
model to construct a targeted loss function whose empirical risk represents the fit of
the TMLE. Finally, such estimators can be constrained to also solve a particular esti-
mating equation that might be considered to yield advantageous statistical properties
of the substitution estimator of Ψ (Qn): The TMLE enforces such a constraint by it-
eratively minimizing the empirical risk over the parametric working model through
the current initial estimate.

6.2.1 Competitors

MLE is a loss-based learning methodology based on the log-likelihood loss func-
tion L(P0) = − log P0. This explains many of the popular properties of maximum-
likelihood-based estimation. Since the log-likelihood loss function measures the
performance of a candidate probability distribution as a whole, it does not repre-
sent a targeted loss function when the parameter of interest is a small feature of P0.
The lack of targeting of the MLE is particularly apparent when the data structure O
is high dimensional and the statistical model is large.

An estimating equation method (e.g., A-IPTW) is not a loss-based learning
method. It takes as input not a particular loss function but an estimating function,
and the estimator is defined as a solution of the corresponding estimating equation.
The estimating function is derived from local derivatives of the target parameter
mapping and thereby ignores the global constraints implied by the statistical model
and by the target parameter mapping. These global constraints are important to put a
natural brake on estimators, so that it is no surprise that estimating equation methods
are often notoriously unstable under sparsity.

6.2.2 TMLE

TMLE (targeted minimum-loss-based estimation) is a targeted-loss-based learning
methodology. It is targeted by its choice of loss function L() and by the targeted
minimization over cleverly chosen parametric working models through an initial
estimate. The TMLE is driven by the global choices of the loss function and para-
metric working model, and not defined by its consequence that it solves the efficient
influence curve estimating equation, as implied by the local derivative condition. For
example, consider the data structure O = (W, A, Y), with Y continuous and bounded
between 0 and 1.

Suppose that the statistical model is nonparametric and that the estimand is the
additive treatment effect EW,0[E0(Y | A = 1,W) − E0(Y | A = 0,W)], as in our
mortality example. To define a TMLE we could select the squared error loss function
L(Q̄)(O) = (Y − Q̄0(A,W))2 for the conditional mean Q̄0, and the linear parametric
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working model Q̄(ε) = Q̄+ εH∗. Alternatively, we could define a TMLE implied by
the “quasi”-log-likelihood loss function −Y log Q̄0(A,W)−(1−Y) log(1−Q̄0(A,W)),
and the logistic linear parametric working model logitQ̄(ε) = logitQ̄ + εH∗.

Both TMLEs solve the efficient influence curve estimating equation, but they
have very different properties regarding utilization of the global constraints of the
statistical model. The TMLE with the squared error loss does not respect that it is
known that P0(0 < Y < 1) = 1, and, as a consequence, the TMLE Q̄∗n can easily
predict far outside [0, 1], making it an unstable estimator under sparsity. In fact, this
TMLE violates the very principle of TMLE in that TMLE should use a paramet-
ric submodel through the initial estimator, and the linear fluctuations of an initial
estimator Q̄0

n do not respect that 0 < Q̄0 < 1, and are thus not a submodel of the sta-
tistical model. On the other hand, the other valid TMLE uses a logistic fluctuation
of the initial estimator that fully respects this constraint, and is therefore a sensible
substitution estimator fully respecting the global constraints of the statistical model.
We refer to Chap. 7 for a full presentation of the latter TMLE for continuous and
bounded Y .

Table 6.1 Summary of loss-based estimators for a general Ψ (P0)

MLE Estimating equations

Propensity Parametric ML-based
TMLE Stratification score regression super learning IPTW A-IPTW

Loss-based
estimator of × × × × ×
Ψ (P0)

6.3 TMLE Is Well Defined

An estimator that is well defined is desirable. Well-defined estimators have one solu-
tion in the space of possible solutions. It is easy to see why a well-defined estimator
would be preferable to one that is not well defined. We seek the best estimate of
Ψ (P0), and if our estimator gives multiple or no solutions, that presents a problem.

6.3.1 Competitors

MLEs aim to maximize a log-likelihood over candidate parameter values. Thus,
MLE is often well defined, since, even if there are local maxima, the empirical log-
likelihood or cross-validated log-likelihood can be used to select among such local
maxima. Estimating equation methods are not well defined in general since the only
criterion is that it solves the equation. A maximum likelihood estimator in a para-
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metric statistical model often cannot be uniquely defined as a solution of the score
equation since each local maximum will solve the score equation. The estimating
equation methods are well defined for our target parameter with the simple data
structure O = (W, A, Y) and nonparametric statistical model for P0, as is obvious
from the definition of the IPTW and A-IPTW estimators given above. This is due to
the fact that the estimating functions happen to be linear in ψ, allowing for a simple
closed-form solution to their corresponding estimating equations.

When defining an estimator as a solution of the optimal efficient score/influence
curve estimating equation, one may easily end up having to solve nonlinear equa-
tions that can have multiple solutions. The estimating equation itself provides no
information about how to select among these candidate estimates of the target pa-
rameter. Also, one cannot use the likelihood since these estimators cannot be rep-
resented as Ψ̂ (Pn) for some candidate Pn, i.e., these solutions ψn of the estimating
equation are not substitution estimators (Sect. 6.6). This goes back to the basic fact
that estimating functions (such as those defined by the efficient score/efficient influ-
ence curve) might not asymptotically identify the target parameter, and, even if they
did, the corresponding estimating equation might not uniquely identify an estimator
for a given finite sample.

In addition, for many estimation problems, the efficient influence curve D∗(P0)
of the target parameter cannot be represented as an estimating function D∗(ψ0, η0),
so that the estimating equation methodology is not directly applicable. This means
that the estimating equation methodology can only be applied if the efficient influ-
ence curve allows a representation as an estimating function. This is not a natural
requirement, since the efficient influence curve D∗(P0) is defined as a gradient of
the pathwise derivative of the target parameter along paths through P0, and thereby
only defines it as a function of P0. There is no natural reason why the dependence
of D∗(P0) on P0 can be expressed in a dependence on two variation-independent
parameters (ψ0, η0). Indeed, in some of our chapters we encounter target parameters
where the efficient influence curve does not allow a representation as an estimating
function.

6.3.2 TMLE

Unlike estimating function methodology (e.g., A-IPTW), TMLE does not aim to
solve an estimating equation but instead uses the log-likelihood as a criterion.
The super learner, representing the initial estimator in the TMLE, uses the (cross-
validated) log-likelihood, or other loss function, to select among many candidate
estimators. Even in the unlikely event that more than one global maximum exists,
both would provide valid estimators so that a simple choice could make the super
learner well defined. The targeting step involves computing a maximum likelihood
estimator in a parametric working model of the same dimension as the target param-
eter, fluctuating the initial estimator, and is therefore as well defined as a paramet-
ric maximum likelihood estimator; again, the log-likelihood can be used to select
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among different local maxima. See Table 6.2 for a summary of well-defined estima-
tors of Ψ (P0).

Table 6.2 Summary of well-defined estimators for a general Ψ (P0)

MLE Estimating equations

Propensity Parametric ML-based
TMLE Stratification score regression super learning IPTW A-IPTW

Well-defined
estimator of × × × × ×
Ψ (P0)

6.4 TMLE Is Unbiased

An estimator is asymptotically unbiased if it is unbiased as the sample size ap-
proaches infinity. Bias is defined as follows: bias(ψn) = E0(ψn) − ψ0, where E0(ψn)
denotes the expectation of the estimator ψn viewed as a function of the n i.i.d. copies
O1, . . . ,On drawn from P0. An estimator is unbiased if bias(ψn) = 0. It is rare that
an estimator is exactly unbiased. If we restricted ourselves to using only unbiased
estimators, then in most estimation problems we would have no estimators avail-
able. Therefore, one wants to focus on estimators where bias is negligible for the
purpose of obtaining confidence intervals for ψ0 and tests of null hypotheses about
ψ0. This can be achieved by requiring that the bias converge to zero when sample
size n increases, at a rate smaller than 1/

√
n, such as 1/n. Indeed, most correctly

specified parametric maximum likelihood estimators have a bias of the order 1/n.
Why do we care about bias? In the real world, biased estimators can lead to false

positives in multimillion-dollar studies. That is, the true causal risk difference might
be equal to zero, but if the estimator is biased, then a test that ignores this bias will
interpret the bias as a deviation from the null hypothesis. This deviation from the
null hypothesis would be declared statistically significant if sample size was large
enough. In addition, bias against the null hypothesis (for example, one wishes to
test for a positive treatment effect, but the effect estimate is biased low) results in
less power to reject the null hypothesis. Overall, bias causes incorrect statistical
inference.

One might wonder why one would not aim to estimate the bias of an estima-
tor. The problem is that estimation of bias is typically an impossible goal, inducing
more error than the bias: often the best one can do is to diagnose the presence of
unusual bias, and that is indeed a task that should be incorporated in a data analysis
(Chap. 10). Again, our goal is the best estimator of the true effect, and an asymptot-
ically biased estimator is an estimator that cannot even learn the truth. We also want
the bias to be asymptotically negligible so that statistical assessment of uncertainty
based on an estimator of the variance of the estimator is reasonably valid.
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6.4.1 Competitors

MLEs using stratification, super learning, or parametric regression are asymptoti-
cally unbiased if Q̄0 is consistently estimated. In order for propensity score methods
that fit a nonparametric regression on treatment A and the propensity score to be
asymptotically unbiased, the estimator of g0 must be consistent. MLEs using strati-
fication can easily suffer from large finite sample bias in sparse data. In other words,
using a nonparametric MLE with a limited data set provides no recipe for an unbi-
ased estimator of the target parameter Ψ (P0). IPTW is asymptotically unbiased for
Ψ (P0) if the estimator of g0 is consistent, and A-IPTW is asymptotically unbiased
for Ψ (P0) if either Q̄0 or g0 is consistently estimated. The asymptotic bias of the
A-IPTW is characterized by the same expression provided in the next paragraph for
TMLE. The finite sample bias is very much a function of how g0 is estimated, in par-
ticular with respect to what covariates are included in the treatment mechanism and
how well it approximates the true distribution. Since gn is by necessity estimated
based on the log-likelihood for the treatment mechanism, its fit is not affected by
data on Y . As a consequence, covariates that have no effect on Y but a strong effect
on A will be included, only harming the bias reduction effort.

6.4.2 TMLE

Using super learning within TMLE makes our estimator of the outcome regression
Q̄0 and estimator of the treatment mechanism g0 maximally asymptotically unbi-
ased. In our flexible nonparametric statistical model, we can show that the asymp-
totic bias in our procedure involves a product of the bias of Q̄∗n and gn relative to
the true Q̄0 and g0, respectively. For example, with data structure O = (W, A, Y) in
an observational study (where g0 is unknown), our asymptotic bias of the TMLE
Ψ (Q∗n) given by

bias(ψn) = P0

{g0(1 | W) − g(1 | W)
g(1 | W)

(Q̄0 − Q̄∗)(1,W)

−
g0(0 | W) − g(0 | W)

g(0 | W)
(Q̄0 − Q̄∗)(0,W)

}
,

where Q̄∗ and g denote the limits of Q̄∗n and gn. This teaches us that the asymptotic
bias behaves as a second-order difference involving the product of approximation
errors for g0 and Q̄0. The empirical counterpart of this term plays the role of second-
order term for the TMLE approximation of the true ψ0, and thereby also drives the
finite sample bias. For reliable confidence intervals one wants

√
n times the empir-

ical counterpart of this bias term to converge to zero in probability as sample size
converges to infinity. If one wants to make this second-order term and the resulting
bias as small as possible, then theory teaches us that we should use super learning
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for both Q̄0 and g0. As we point out in the next subsection, to minimize the variance
of the first-order mean zero linear approximation of the TMLE approximation of
the true ψ0, one needs to estimate Q̄0 consistently. In other words, the use of su-
per learning is essential for both maximizing efficiency as well as minimizing bias.
For a formal theorem formalizing these statements we refer the interested reader to
Chap. 27.

From this bias term one concludes that if the estimator of g0 is correct, our es-
timator will have no asymptotic bias. This is an important scenario: consider again
O = (W, A, Y), and suppose we know the treatment mechanism, such as an RCT.
In this instance, TMLE is always unbiased. Additionally, finite sample bias can be
removed in RCTs by estimating g0. If Q̄∗n is already close to Q̄0, then the targeting
step will further reduce the bias if gn is also consistent. Finally, since running an ad-
ditional univariate regression of the clever covariate on the outcome using the initial
estimator as offset is a robust operation (assuming the clever covariate is bounded),
even if gn is misspecified, the targeting step will not cause harm to the bias.

In fact, one can show that if one replaces g0(A | W) by a true (sufficient) condi-
tional distribution gs

0 of A, given a subset W s of all covariates W, and W s is chosen
such that Q∗ − Q0 only depends on W through W s, then the TMLE using this g0
is also an unbiased estimator of the estimand ψ0. Here Q∗ represents the possibly
misspecified estimand of the TMLE Q̄∗n. That is, the TMLE already achieves its full
bias reduction by only incorporating the covariates in the treatment mechanism that
explain the residual bias of Q̄∗n with respect to Q̄0. We say that the TMLE is collabo-
rative double robust to stress that consistency of the TMLE of ψ0 is already achieved
if gn appropriately adapts to the residual bias of Q̄∗n: the TMLE is collaborative dou-
ble robust, which is a stronger type of robustness with respect to misspecification
of the nuisance parameters Q̄0 and g0 than double robustness. In particular, an esti-
mator gn of g0 used by the TMLE does not need to include covariates that are not
predictive of Y , and are thus not confounders, even if the true treatment mechanism
used these covariates. Apparently, the selection of covariates to be included in the
estimator of the treatment mechanism should not be based on how well it fits g0, but
on the gain in fit of Q̄0 obtained by fitting the parametric working model (that uses
this estimate of g0) through the initial estimator Q̄0

n, relative to the fit of the initial
estimator.

That is, TMLE naturally allows for the fine-tuning of the choice of gn based on
the fit of the corresponding TMLE of Q̄0, and can thereby data-adaptively select
covariates into the treatment mechanism that actually matter and yield effective bias
reduction in the TMLE step. For example, consider two possible estimators g1

n and
g2

n. These two choices combined with the initial estimator Q̄0
n yield two different

TMLEs, Q̄∗n1 and Q̄∗n2. These results suggest that one should select the estimator of
g0 for which the TMLE has the best fit of Q̄0. Note that this is equivalent to selecting
covariates for the treatment mechanism based on how well the resulting estimate of
the treatment mechanism improves the predictiveness of the corresponding clever
covariate in predicting the outcome Y beyond the initial regression. This insight that
the choice of gn should be based on an evaluation of the resulting TMLE of Q̄0 is
formalized by collaborative TMLE (C-TMLE), which is presented in Chaps. 19–21
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and 23. See Table 6.3 for a summary of conditions for unbiased estimation among
the estimators for a general Ψ (P0). Table 6.4 summarizes targeted estimation of the
treatment mechanism for a general Ψ (P0).

Table 6.3 Summary of conditions for unbiased estimation for a general Ψ (P0)

MLE Estimating equations

Propensity Parametric ML-based
TMLE Stratification score regression super learning IPTW A-IPTW

Consistent
estimation of × × ×
Q̄0

Consistent
estimation of × ×
g0

Consistent
estimation of × ×
Q̄0 or g0

Problems
in finite ×
samples

Table 6.4 Summary of targeted estimation of the treatment mechanism for a general Ψ (P0)

MLE Estimating

equations

Propensity Parametric ML-based
(C-)TMLE Stratification score regression super learning IPTW A-IPTW

Targeted
estimation
of treatment ×
mechanism

6.5 TMLE Is Efficient

Efficiency is another measure of the desirability of an estimator. Finite sample effi-
ciency for an estimator ψn can be defined as

efficiency(ψn) =

(
1

I(Ψ (P0))

)
nvar(ψn)

,
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where I(Ψ (P0)) is the Fisher information, defined as 1 over the variance of the effi-
cient influence curve. The variance of the efficient influence curve is also called the
generalized Cramer–Rao lower bound for the variance of locally (approximately)
unbiased estimators. Thus, efficiency(ψn) is the ratio of the minimum possible
asymptotic variance for an approximately unbiased estimator over its actual finite
sample variance. The asymptotic efficiency is defined as the limit of efficiency(ψn)
for n converging to infinity. If the estimator of Ψ (P0) is unbiased and the asymptotic
efficiency(ψn) = 1, the estimator is asymptotically efficient. Asymptotically efficient
estimators achieve the Cramer–Rao bound (i.e., the variance of an unbiased estima-
tor is, at a minimum, the inverse of the Fisher information) for large n. What we
really care about, though, is performance in finite samples. So we would like to see
that the finite sample efficiency efficiency(ψn) is close to 1. Minimally, we want an
asymptotically efficient estimator, but we also want our estimator to perform well in
realistic finite sample sizes.

Efficiency theory is concerned with an admission criterion: it is restricted to only
those estimators that have negligible bias (i.e., small bias in finite samples) along
small fluctuations of the true data-generating distribution, and among such estima-
tors it defines a best estimator as the estimator that has the smallest asymptotic
variance. This best estimator will be asymptotically linear with influence curve the
efficient influence curve D∗(O). An estimator Ψ̂ (Pn) of ψ0 is asymptotically linear
with influence curve IC(O) if it satisfies

√
n(ψn − ψ0) =

1
√

n

n∑
i=1

IC(Oi) + oP0 (1).

Here the remainder term, denoted by oP0 (1), is a random variable that converges to
zero in probability when the sample size converges to infinity. Asymptotic linearity
is a desirable property as it indicates that the estimator behaves like an empirical
mean, and, as a consequence, its bias converges to zero in sample size at a rate faster
than 1/

√
n, and, for n large enough, it is approximately normally distributed. The

influence curve of an estimator evaluated as a function in O measures how robust the
estimator is toward extreme values. The influence curve IC(O) has a mean of zero
under sampling from the true probability distribution P0, and its (finite) variance is
the asymptotic variance of the standardized estimator

√
n(ψn − ψ0). In other words,

the variance of Ψ̂ (Pn) is well approximated by the variance of the influence curve,
divided by sample size n. An estimator is asymptotically efficient if and only if its
influence curve is equal to the efficient influence curve, IC(O) = D∗(O).

If we already agree that we want unbiased estimators, why do we care about
efficiency? Given two unbiased estimators why should we choose the one that is
also efficient? An unbiased estimator that has a large spread (i.e., huge confidence
intervals) may be uninformative. A practical real-world result of this, aside from
improved interpretation, is huge potential cost savings. If we can extract more infor-
mation out of the our data with an efficient estimator, we can reduce the sample size
required for an inefficient estimator. This savings may be nontrivial. For example, in
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a large multicenter RCT with a projected budget of $100 million, reducing sample
size by 30% results in close to $30 million saved.

6.5.1 Competitors

If the covariate W is discrete, MLE using stratification is efficient asymptotically,
but falls apart in finite samples if the number of categories is large. Suppose we
have 30 discrete covariates, each with 3 levels. This gives us 330 different covariate
combinations, over 200 trillion! It is clear it becomes hopeless to wish for efficiency
in finite sample sizes.

If W also includes continuous components, and some form of smoothing is used
in the maximum likelihood estimation of Q̄0, then the maximum likelihood estima-
tor will have approximation errors of the form

∑
w E(Q̄n(1,w)− Q̄0(1,w))P0(W = w)

(minus the same term with A = 0). That is, the bias of Q̄n will translate directly into
a bias for the substitution estimator, and this bias will typically not be oP(1/

√
n).

The bias will also be larger than it would have been using super learning. In these
cases, the bias causes the MLE to not be asymptotically linear and thereby also
not achieve asymptotic efficiency. As discussed above, TMLE reduces the bias into
a second-order term, so that it can still be asymptotically linear and thus efficient
when the MLE will not (e.g., if g0 can be well estimated).

Estimating equation methodology using the optimal estimating function (implied
by the efficient influence curve) is asymptotically efficient if both Q̄n and gn are es-
timated consistently and if these estimators approximate the truth fast enough so
that the estimator of ψ0 succeeds in being asymptotically linear. This would require
using super learning to estimate the nuisance parameters of the optimal estimating
function. Due to the fact that estimating-equation-based estimators are not substitu-
tion estimators (Sect. 6.6), these estimators ignore global constraints, which harms
the finite sample efficiency, in particular in the context of sparsity.

6.5.2 TMLE

Like the optimal estimating equation based estimator (i.e., A-IPTW), TMLE is dou-
ble robust and (locally) efficient under regularity conditions. In other words, if the
second-order term discussed above is asymptotically negligible, then the TMLE is
consistent and asymptotically linear if either Q̄n or gn is a consistent estimator, and
if both estimators are asymptotically consistent, then the TMLE is asymptotically
efficient. TMLE also has excellent finite sample performance because it is driven
by a log-likelihood (or other loss function) criterion, and a substitution estimator
respecting all global constraints. The finite sample efficiency is further enhanced by
the natural potential to fine-tune the estimator of the treatment mechanism through
the predictiveness of the corresponding clever covariate, so that the treatment mech-
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anism can be fitted in a way that is beneficial to its purpose in the targeting step. As
previously noted, this is formalized by C-TMLE considered in later chapters. See
Table 6.5 for a summary of efficiency among estimators for a general Ψ (P0).

Table 6.5 Summary of efficiency among estimators for a general Ψ (P0)

MLE Estimating equations

Propensity Parametric ML-based
TMLE Stratification score regression super learning IPTW A-IPTW

Efficient
estimator of × × ×
Ψ (P0)

Problems
in finite × × × ×
samples

6.6 TMLE Is a Substitution Estimator

Substitution estimators can be written as a mapping, taking an estimator of the rel-
evant part of the data-generating distribution (e.g., Pn, P∗n, Qn, Q∗n) and plugging it
into the mapping Ψ (). The substitution estimator respects the statistical model space
(i.e., the global constraints of the statistical model). Knowing and using information
about the global constraints of the statistical model is helpful for precision (effi-
ciency), particularly in the context of sparsity. For example, a substitution estimator
of the risk difference ψ0 respects knowledge that the mean outcome regression Q̄0
is bounded between [0, 1], or that ψ0 is a difference of two probabilities.

To understand why respecting global constraints in a statistical model is impor-
tant in the context of sparsity (i.e., the data carry little information for target param-
eter), suppose one wishes to estimate the mean of an outcome Y based on observing
n i.i.d. copies Y1, . . . ,Yn. Suppose it is also known that E0Y is larger than 0 and
smaller than 0.1. This knowledge is not needed if the sample size is large enough
such that the standard error of the estimator is much smaller than 0.1, but for small
sample sizes, it cannot be ignored.

6.6.1 Competitors

MLEs using stratification, super learning, propensity scores, and parametric regres-
sion are substitution estimators. An estimator of ψ0 that is obtained as a solution of
an estimating equation is often not a substitution estimator, i.e., it cannot be written
as Ψ (Pn) for a specified estimator Pn of P0 in the statistical model. Indeed, IPTW



6 Why TMLE? 117

and A-IPTW are not substitution estimators. To be specific, suppose one wishes to
estimate the treatment-specific mean E0Y1 = E0[E0(Y | A = 1,W)] based on n i.i.d.
copies of (W, A, Y), Y being binary. In this case, the A-IPTW estimator ψn, which
solves the efficient influence curve estimating equation, can fall outside the range
[0, 1], due to inverse probability of treatments being close to zero. This proves that
it is not a substitution estimator, which results in a loss of finite sample efficiency.

6.6.2 TMLE

The TMLE of ψ0 is obtained by substitution of an estimator P∗n into the mapping
Ψ (). For the risk difference, this mapping is given in (6.1). As a consequence, it
respects the knowledge of the statistical model. TMLE for the treatment-specific
mean, discussed above, would result in E0Y1 between [0, 1]. See Table 6.6 for a
summary of substitution estimators for a general Ψ (P0).

Table 6.6 Substitution estimators for a general Ψ (P0)

MLE Estimating equations

Propensity Parametric ML-based
TMLE Stratification score regression super learning IPTW A-IPTW

Substitution
estimator of × × × × ×
Ψ (P0)

6.7 Summary

The TMLE procedure produces a well-defined, unbiased, efficient substitution esti-
mator of target parameters of a data-generating distribution. Competing estimators,
falling into the broad classes of MLE and estimating equation methodology, do not
have all of these properties and will underperform in many scenarios in comparison
to TMLE. See Table 6.7 for a summary of statistical properties among estimators
for a general Ψ (P0).

6.8 Notes and Further Reading

We refer readers to the references listed in Chap. 4. Appendix A covers further
theoretical development of TMLE. A key reference for propensity score methods is
Rosenbaum and Rubin (1983), and we also refer readers to Chap. 21.
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Table 6.7 Summary of statistical properties among estimators for a general Ψ (P0)

MLE Estimating equations

Propensity Parametric ML-based
TMLE Stratification score regression super learning IPTW A-IPTW

Loss-based:

Loss-based
estimator of × × × × ×
Ψ (P0)

Well-defined:

Well-defined
estimator of × × × × ×
Ψ (P0)

Unbiased

under:

Consistent
estimation of × × ×
Q̄0

Consistent
estimation of × ×
g0

Consistent
estimation of × ×
Q̄0 or g0

Problems
in finite ×
samples

Efficiency:

Efficient
estimator of × × ×
Ψ (P0)

Problems
in finite × × × ×
samples

Substitution

estimator:

Substitution
estimator of × × × × ×
Ψ (P0)
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Chapter 7

Bounded Continuous Outcomes

Susan Gruber, Mark J. van der Laan

This chapter presents a TMLE of the additive treatment effect on a bounded contin-
uous outcome. A TMLE is based on a choice of loss function and a corresponding
parametric submodel through an initial estimator, chosen so that the loss-function-
specific score of this parametric submodel at zero fluctuation equals or spans the
efficient influence curve of the target parameter. Two such TMLEs are considered:
one based on the squared error loss function with a linear regression model, and one
based on a quasi-log-likelihood loss function with a logistic regression submodel.
The problem with the first TMLE is highlighted: the linear regression model is not
a submodel and thus does not respect global constraints implied by the statistical
model. It is theoretically and practically demonstrated that the TMLE with the lo-
gistic regression submodel is more robust than a TMLE based on least squares linear
regression. Some parts of this chapter assume familiarity with the core concepts, as
presented in Chap. 5. The less theoretically trained reader should aim to navigate
through these parts and focus on the practical implementation and importance of
the presented TMLE procedure. This chapter is adapted from Gruber and van der
Laan (2010b).

7.1 Introduction

TMLE of a target parameter of the data-generating distribution, known to be an
element of a semiparametric model, involves selecting a loss function (e.g., log-
likelihood) and constructing a parametric submodel through an initial density esti-
mator with parameter ε, so that the loss-function-specific “score” at ε = 0 equals or
spans the efficient influence curve (canonical gradient) at the initial estimator. This ε
represents an amount of fluctuation of the initial density estimator. The latter “score”
constraint can be satisfied by many loss functions and parametric submodels, since
it represents only a local constraint of the submodels’ behavior at zero fluctuation.
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However, it is very important that the fluctuations encoded by the parametric
model stay within the semiparametric model for the observed data distribution
(otherwise it is not a submodel!), even if the target parameter can be defined
on fluctuations that fall outside the assumed observed data model.

In particular, in the context of sparse data, by which we mean situations where the
generalized Cramer–Rao lower bound is high, a violation of this property can sig-
nificantly affect the performance of the estimator. We demonstrate this in the context
of estimation of a causal effect of a binary treatment on a continuous outcome that
is bounded. It results in a TMLE that inherently respects known bounds and con-
sequently is more robust in sparse data situations than a TMLE using a naive para-
metric fluctuation working model that is actually not a submodel of the assumed
statistical model.

Sparsity is defined as low information in a data set for the purpose of learn-
ing the target parameter. Formally, the Fisher information I is defined as sample
size n divided by the variance of the efficient influence curve: I = n/var(D∗(O)),
where D∗(O) is the efficient influence curve of the target parameter at the true data-
generating distribution. The reciprocal of the variance of the efficient influence curve
can be viewed as the information one observation contains for the purpose of learn-
ing the target parameter. Since the variance of the efficient influence curve divided
by n is the asymptotic variance of an asymptotically efficient estimator, one can also
think of the information I as the reciprocal of the variance of an efficient estimator
of the target parameter. Thus, sparsity with respect to a particular target parameter
corresponds with small sample size relative to the variance of the efficient influence
curve for that target parameter.

The following section begins with background on the application of TMLE
methodology in the context of sparsity and its power relative to other semiparametric
efficient estimators since it is a substitution estimator respecting global constraints
of the semiparametric model. Even though an estimator can be asymptotically ef-
ficient without utilizing global constraints, the global constraints are instrumental
in the context of sparsity with respect to the target parameter, motivating the need
for semiparametric efficient substitution estimators, and for a careful choice of fluc-
tuation function for the targeting step that fully respects these global constraints.
A rigorous demonstration of the proposed TMLE of the causal effect of a binary
treatment on a bounded continuous outcome follows, and the TMLE using a linear
fluctuation function (i.e., that does not represent a parametric submodel) is com-
pared with the proposed TMLE using a logistic fluctuation function. In Sect. 7.3,
we carry out simulation studies that compare the two TMLEs of the causal effect,
with and without sparsity in the data. Results for other commonly applied estimators
discussed in Chap. 6 (MLE according to a parametric statistical model, IPTW, and
A-IPTW) are also presented.
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7.2 TMLE for Causal Estimation on a Continuous Outcome

We first review general TMLE so that we can clarify the important role of the choice
of parametric working model, and thereby the fluctuation function, that defines the
targeting update step of the initial estimator. Subsequently, in order to be specific,
we define TMLE of the additive causal effect of a binary treatment on a bounded
continuous outcome, which fully respects the known global bounds. Finally, we
discuss its robustness in finite samples in the context of sparsity.

7.2.1 A Substitution Estimator Respecting the Statistical Model

A TMLE is a semiparametric efficient substitution estimator of a target parameter
Ψ (P0) of a true distribution P0 ∈ M, known to be an element of a statistical model
M, based on sampling n i.i.d. O1, . . . ,On from P0. Firstly, one notes that Ψ (P0) =
Ψ (Q0) only depends on P0 through a relevant part Q0 = Q(P0) of P0. Secondly, one
proposes a loss function L(Q) such that

Q0 = arg min
Q∈Q

E0L(Q)(O),

where Q = {Q(P) : P ∈ M} is the set of possible values for Q0. Thirdly, one
uses minimum-loss-based learning, such as super learning, fully utilizing the power
and optimality results for loss-based cross-validation to select among candidate es-
timators, to obtain an initial estimator Q0

n of Q0. Fourthly, one proposes a paramet-
ric fluctuation Q0

gn,n(ε), possibly indexed by the estimator gn of nuisance parameter
g0 = g(P0), such that

d
dε

L(Q0
gn,n(ε))(O)

∣∣∣∣∣
ε=0
= D∗(Q0

n, gn)(O), (7.1)

where D∗(P) = D∗(Q(P), g(P)) is the efficient influence curve of the pathwise
derivative of the statistical target parameter mapping Ψ : M → R at P ∈ M. If
a multivariate ε is used, then the derivatives with respect to each of their compo-
nents ε j must span the efficient influence curve D∗(Q0

n, gn). Fifthly, one computes
the amount of fluctuation with minimum-loss-based estimation:

εn = arg min
ε

n∑
i=1

L(Q0
gn,n(ε))(Oi).

This yields an update Q1
n = Q0

gn,n(εn). This updating of an initial estimator Q0
n into a

next Q1
n is iterated until convergence, resulting in a final update Q∗n. Since at the last

step the amount of fluctuation εn � 0, this final Q∗n will solve the efficient influence
curve estimating equation:
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0 =
1
n

n∑
i=1

D∗(Q∗n, gn)(Oi),

representing a fundamental ingredient for establishing the asymptotic efficiency of
Ψ (Q∗n). Recall that an estimator is efficient if and only if it is asymptotically linear
with an influence curve equal to the efficient influence curve D∗(Q0, g0). Finally, the
TMLE of ψ0 is the substitution estimator Ψ (Q∗n).

Thus we see that TMLE involves constructing a parametric submodel {Q0
n(ε) : ε},

and thereby its corresponding fluctuation function ε → Q0
n(ε), through the initial

estimator Q0
n with parameter ε, where the score of this parametric submodel at ε = 0

equals the efficient influence curve at the initial estimator. The latter constraint can
be satisfied by many parametric submodels, since it represents only a local constraint
of its behavior at zero fluctuation. However, it is very important that the fluctuations
stay within the statistical model for the observed data distribution, even if the target
parameter Ψ can be defined on fluctuations of densities that fall outside the assumed
observed data model. In particular, in the context of sparse data (i.e., data that will
not allow for precise estimation of the target parameter), a violation of this property
can significantly affect the performance of the estimator.

One important strength of the semiparametric efficient TMLE relative to the alter-
native semiparametric efficient estimating equation methodology is that it respects
the global constraints of the observed data model. This is due to the fact that it
is a substitution estimator Ψ (Q∗n) with Q∗n, an estimator of a relevant part Q0 of
the true distribution of the data in the observed data model. The estimating equa-
tion methodology does not result in substitution estimators and consequently often
ignores important global constraints of the observed data model, which comes at
a price in the context of sparsity. Indeed, simulations have confirmed this gain of
TMLE relative to the efficient estimating equation method in the context of sparsity
(see Chap. 20 and also Stitelman and van der Laan 2010), which is demonstrated in
this chapter. However, if TMLE violates the principle of being a substitution estima-
tor by allowing Q∗n to fall outside the assumed observed data model, this advantage
is compromised. Therefore, it is crucial that TMLE use a fluctuation function that is
guaranteed to map the fluctuated initial estimator into the statistical model.

7.2.2 Procedure

To demonstrate the important consideration of selecting a fluctuation function in the
construction of TMLE that corresponds with a parametric submodel, we consider
the problem of estimating the additive causal effect of a binary treatment A on a
continuous outcome Y , based on observing n i.i.d. copies of O = (W, A, Y) ∼ P0,
where W is the set of confounders. Consider the following SCM: W = fW (UW ),
A = fA(W,UA), Y = fY (W, A,UY ) with the functions fW , fA, and fY unspecified,
representing a set of assumptions about how O is generated. We assume that UA

is independent of UY such that the randomization assumption (A ⊥ Ya | W) holds
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with respect to the counterfactuals Ya = fY (W, a,UY ) as defined by this SCM. In this
SCM for the data-generating distribution of the observed data O, the additive causal
effect E0(Y1 − Y0) can be identified from the observed data distribution through the
statistical parameter of P0:

Ψ (P0) = E0[E0(Y | A = 1,W) − E0(Y | A = 0,W)].

Suppose that it is known that Y ∈ [a, b] for some a < b. Alternatively, one might
have truncated the original data to fall in such an interval and focus on the causal
effect of treatment on this truncated outcome, motivated by the fact that estimating
the conditional means of unbounded, or very heavy tailed, outcomes requires very
large data sets. The SCM implies no assumptions about the statistical modelM so
that the statistical model is nonparametric. The target parameter mapping Ψ :M→
R and the estimand ψ0 = Ψ (P0) are now defined. The statistical estimation problem
is to estimate ψ0 based on observing n i.i.d. copies O1, . . . ,On.

Let Y∗ = (Y − a)/(b − a) be the linearly transformed outcome within [0, 1], and
we define the statistical parameter

Ψ ∗(P0) = E0[E0(Y∗ | A = 1,W) − E0(Y∗ | A = 0,W)],

which can be interpreted as the causal effect of treatment on the bounded outcome
Y∗ in the postulated SCM. We note the following relation between the causal effect
on the original outcome Y and the causal effect on the transformed outcome Y∗:

Ψ (P0) = (b − a)Ψ ∗(P0).

An estimate, normal limit distribution, and confidence interval forΨ ∗(P0) is now im-
mediately mapped into an estimate, normal limit distribution, and confidence inter-

val forΨ (P0) by simple multiplication. Suppose
√

n(ψn−Ψ ∗(P0))
d
→ N(0, σ2∗), then

√
n((b−a)ψn −Ψ (P0))

d
→ N(0, σ2), with σ2 = (b−a)2σ2∗. Upper and lower bounds

on the confidence interval for Ψ ∗(P0), given as (c∗lb, c
∗
ub), are multiplied by (b− a) to

obtain upper and lower bounds on Ψ (P0), clb = (b− a)c∗lb, and cub = (b− a)c∗ub. As a
consequence, for notational convenience, without loss of generality, we can assume
a = 0 and b = 1 so that Y ∈ [0, 1].

To determine a loss function and corresponding fluctuation function, and thereby
the definition of the TMLE, we need to know the efficient influence curve. The
efficient influence curve of the statistical parameter Ψ : M → R, defined on a
nonparametric statistical modelM for P0 at the true distribution P0, is given by

D∗(P0) =
2A − 1

g0(A | W)
(Y − Q̄0(A,W)) + Q̄0(1,W) − Q̄0(0,W) − Ψ (Q0), (7.2)

where Q̄0(A,W) = E0(Y | A,W) and Q0 = (QW,0, Q̄0) denotes both this conditional
mean Q̄0 and the marginal distribution QW,0 of W. Note that indeed Ψ (P0) only
depends on P0 through the conditional mean Q̄0 and the marginal distribution of
W. We will use the notation Ψ (P0) and Ψ (Q0) interchangeably. Note also that the
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efficient influence curve only depends on P0 through Q0, g0, so that we will also
denote the efficient influence curve D∗(P0) with D∗(Q0, g0). In order to stress that
D∗(P0) can also be represented as an estimating function in ψ, we also now and then
denote it by D∗(Q0, g0, ψ0).

We are ready to define a TMLE of Ψ (Q0), completely analogous to the TMLE
presented in Chaps. 4 and 5 for a binary outcome. Let Q̄0

n be an initial estimate of
Q̄0(A,W) = E0(Y | A,W) with predicted values in (0, 1). This could be a loss-based
super learner based on the squared error loss function or the quasi-log-likelihood
loss function presented below. In addition, we estimate QW,0 with the empirical dis-
tribution of W1, . . . ,Wn. Let Q0

n denote the resulting initial estimate of Q0. The tar-
geting step will also require an estimate gn of g0 = PA|W . As we will see, only the
estimate Q̄0

n of the conditional mean Q̄0 will be modified by the TMLE procedure
defined below: this makes sense since the empirical distribution of W is already a
nonparametric maximum likelihood estimator so that no bias gain with respect to
the target parameter will be obtained by modifying it.

We use as fluctuation function for the empirical distribution QW,n, QW,n(ε1) =
(1 + ε1D∗2(Q0

n))QW,n, where D∗2(Q0
n) = Q̄0

n(1,W) − Q̄0
n(0,W) − Ψ (Q0

n) is the second
component of the efficient influence curve D∗(Q0

n, gn). We use the log-likelihood loss
function, −logQW , as loss function for the marginal distribution of W. It follows that

d
dε

log QW,n(ε1)
∣∣∣∣∣
ε1=0
= D∗2(Q0

n),

showing that this fluctuation function and log-likelihood loss function for the
marginal distribution of W indeed generates the wished score at zero fluctuation.

We can represent the estimate Q̄0
n as

Q̄0
n =

1
1 + exp(− f 0

n )
,

with f 0
n = log(Q̄0

n/(1 − Q̄0
n)). Consider now the following fluctuation function:

Q̄0
n(ε2) =

1
1 + exp(−{ f 0

n + ε2H∗gn
})
,

which maps a fluctuation parameter value ε2 into a modification Q̄0
n(ε2) of the initial

estimate. This fluctuation function is indexed by a function

H∗gn
(A,W) =

2A − 1
gn(A | W)

.

Equivalently, we can write this fluctuation function in terms of fluctuations of the
logit of Q̄0

n: logitQ̄0
n(ε2) = logitQ̄0

n + ε2H∗(gn).
Consider now the following quasi-log-likelihood loss function for the conditional

mean Q̄0:

−L(Q̄)(O) = Y log Q̄(A,W) + (1 − Y) log(1 − Q̄(A,W)).
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Note that this is the log-likelihood of the conditional distribution of a binary out-
come Y , but now extended to continuous outcomes in [0, 1]. It is thus known that this
loss function is a valid loss function for the conditional distribution of a binary Y ,
but we need it to be a valid loss function for a conditional mean of a continuous
Y ∈ [0, 1]. It is indeed a valid loss function for the conditional mean of a continuous
outcome in [0, 1], as has been previously noted. See Wedderburn (1974) and McCul-
lagh (1983) for earlier uses of logistic regression for continuous outcomes in [0, 1].
We formally prove this result in Lemma 7.1 at the end of this chapter. The proposed
fluctuation function Q̄0

n(ε2) and the quasi-log-likelihood loss function satisfy

d
dε2

L(Q̄0
n(ε2))

∣∣∣∣∣
ε2=0
= H∗(A,W)(Y − Q̄0

n(A,W)),

giving us the desired first component D∗1(Q̄0
n, gn) of the efficient influence curve

D∗ = D∗1 + D∗2, where D∗2(Q0) = Q̄0(1,W) − Q̄0(0,W) − Ψ (Q0).
Our combined loss function is given by L(Q) = −logQW + L(Q̄), and, for ε =

(ε1, ε2), our parametric fluctuation function for the combined Q is given by Q(ε) =
(QW (ε1), Q̄(ε2)). With these choices of loss function L(Q) for Q0 and fluctuation
function Q(ε) of Q, we indeed now have that

d
dε j

L(Q(ε))

∣∣∣∣∣∣
ε=0
= D∗j(Q, g), j = 1, 2.

This shows that we succeeded in defining a loss function for Q0 = (QW,0, Q̄0) and
fluctuation function such that the derivatives as defined in (7.1) span the efficient
influence curve. The TMLE is now defined!

In this first targeting step, the maximum likelihood estimator of ε1 equals zero,
so that the update of QW,n equals QW,n itself. As a consequence of ε01,n = 0 being
the maximum likelihood estimator, the empirical mean of the component D∗2(Q∗n) =
Q̄∗n(1,W) − Q̄∗n(0,W) − Ψ (Q∗n) of the efficient influence curve at the final TMLE
equals zero: of course, this is trivially verified.

The maximum likelihood estimator of ε2 for fluctuating Q̄0
n is given by

ε02n = argmin
ε2

PnL(Q̄0
n(ε2)),

where we used the notation Pn f = 1/n
∑

i f (Oi). This “maximum likelihood” esti-
mator of ε2 can be computed with generalized linear regression using the binomial
link, i.e., the logistic regression maximum likelihood estimation procedure, sim-
ply ignoring that the outcome is not binary, which also corresponds with iterative
reweighted least squares estimation using iteratively updated estimated weights of
the form 1/(Q̄n(1 − Q̄n)).

This provides us with the targeted update Q1
n = Q0

n(ε0n ), where the empirical
distribution of W was not updated, but Q̄0

n did get updated to Q̄0
n(ε0n ). Iterating this

procedure now defines the TMLE Q∗n, but, as in the binary outcome case, we have
that Q̄2

n = Q̄1
n(ε1n ) = Q̄1

n since the next maximum likelihood estimator ε1n = 0, and, of
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course, the maximum likelihood estimator of ε1 remains 0. Thus convergence occurs
in one step, so that Q∗n = Q1

n. The TMLE of ψ0 is thus given by Ψ (Q∗n) = Ψ (Q1
n). As

a consequence of the definition of the TMLE, we have that the TMLE Q∗n solves the
efficient influence curve estimating equation PnD∗(Q∗n, gn, Ψ (Q∗n)) = 0.

7.2.3 Robustness of TMLE in the Context of Sparsity

We note that, even if there is strong confounding causing some large values of H∗gn
,

the resulting TMLE Q̄∗n remains bounded in (0, 1), so that the TMLE Ψ (Q∗n), which
just averages values of Q̄∗n, fully respects the global constraints of the observed
data model. An inspection of the efficient influence curve (7.2), D∗(P0), reveals
that there are two potential sources of sparsity. Small values for g0(A | W) and
large outlying values of Y inflate the variance. Enforcing (e.g., known) bounds on Y
and g0 in the estimation procedure provides a means for controlling these sources of
variance. We note that, even if there is strong confounding causing some large values
of hg0

n
, the resulting TMLE Q̄∗n remains bounded in (0, 1), so that the TMLE Ψ (Q∗n)

fully respects the global constraints of the observed data model. On the other hand,
the A-IPTW estimator obtained by solving the efficient influence curve estimating
equation, PnD∗(Q0

n, gn, ψ) = 0, in ψ yields the estimator

ψn =
1
n

n∑
i=1

H∗gn
(Ai,Wi)(Yi − Q̄0

n(Ai,Wi)) + Q̄0
n(1,W) − Q̄0

n(0,W).

This estimator can easily fall outside [0, 1] if for some observations gn(1 | Wi) is
close to 1 or 0. This represents the price of not being a substitution estimator.

It is also important to contrast this TMLE with the TMLE using the linear fluctu-
ation function. The latter TMLE would use the L(Q̄) = (Y− Q̄(A,W))2 loss function,
and fluctuation function Q̄0

n(ε) = Q̄0
n + εH

∗(gn), so that (7.1) is still satisfied. The
TMLE is defined as above, and again converges in one step. One estimates the fluc-
tuation ε with univariate least squares linear regression, using Q̄0

n as offset. In this
case, large values of H∗(gn) will result in predicted values of Q̄0

n(εn) that are out-
side the bounds [a, b]. Therefore, this version of TMLE does not repect the global
constraints of the model, i.e., the knowledge that Y ∈ [a, b]. In the next section, an
analysis of a simulated data set provides a comparison of TMLE using the logistic
fluctuation function and TMLE using this linear fluctuation.

7.3 Simulations

Two simulation studies illustrate the effects of employing a logistic vs. linear fluc-
tuation function in the definition of the TMLE. These two studies evaluate practical
performance with and without sparsity in the data, where a high degree of sparsity
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corresponds to a target parameter that is borderline identifiable. As above, the pa-
rameter of interest is defined as the additive effect of a binary point treatment on the
outcome, ψ0 = E0[E0(Y | A = 1,W) − E0(Y | A = 0,W)]. We also implement three
additional estimators: MLE, IPTW, and A-IPTW.

7.3.1 Estimators

In the simulation setting, Y is not bounded, so that we do not have an a priori a
and b bound on Y . Instead of truncating Y and redefining the target parameter as
the causal effect on the truncated Y , we still aim to estimate the causal effect on
the original Y . Therefore, in the TMLE using a logistic fluctuation function we set
a = min(Y), b = max(Y), and Y∗ = (Y − a)/(b − a). In this TMLE, the initial
estimate Q̄0,Y∗

n of E0(Y∗|A,W) needs to be represented as a logistic function of its
logit transformation. Note that logit(x) is not defined when x = 0 or 1. Therefore, in
practice Q̄0,Y∗

n needs to be bounded away from 0 and 1 by truncating at (α, (1 − α))
for some small α > 0. In the reported simulations we used α = 0.005. We also
obtained results for α = 0.001 or α = 0.01, but no notable difference was observed.

In our simulations, we also included the A-IPTW estimator of ψ0, defined as

ψA−IPTW
n =

1
n

n∑
i=1

{
2Ai − 1

gn(Ai | Wi)
(Yi − Q̄0

n(Ai,Wi)) + (Q̄0
n(1,Wi) − Q̄0

n(0,Wi))
}
.

The two TMLEs and the A-IPTW estimator are double robust so that these estima-
tors will be consistent for ψ0 if either gn or Q̄0

n is consistent for g0 and Q̄0, respec-
tively. In addition, the two TMLEs and the A-IPTW estimator are asymptotically
efficient if both gn and Q̄0

n consistently estimate the true g0 and Q̄0, respectively.
In this simulation study we will use simple parametric maximum likelihood esti-

mators as initial estimators Q̄0
n and gn, even though we recommend the use of super

learning in practice. The goal of this simulation is to investigate the performance of
the updating step under misspecified and correctly specified Q̄0

n, and for that purpose
we can work with parametric maximum likelihood estimation fits.

We also report the MLE Ψ (Q0
n) of ψ0 according to a parametric model for Q̄0,

and an IPTW estimator of ψ0 that uses gn as estimator of g0:

ψMLE
n =

1
n

n∑
i−1

{
Q̄0

n(1,Wi) − Q̄0
n(0,Wi)

}
,

ψIPTW
n =

1
n

n∑
i=1

(2A − 1)
Yi

gn(Ai,Wi)
.

The MLE of ψ0 is included for the sake of evaluating the bias reduction step carried
out by the TMLEs and the A-IPTW estimator.
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7.3.2 Data-Generating Distributions

Covariates W1,W2,W3 were generated as independent binary random variables:
W1,W2,W3 ∼ Bernoulli(0.5). Two treatment mechanisms were defined that differ
only in the values of the coefficients for each covariate. They are of the form

g0(1 | W) = expit(βW1 + δW2 + γW3).

We considered the following two settings for the treatment mechanism:

β1 = 0.5, δ1 = 1.5, γ1 = −1, and
β2 = 1.5, δ2 = 4.5, γ2 = −3.

We refer to these two treatment mechanisms as g0,1 and g0,2, respectively. The ob-
served outcome Y was generated as

Y = A + 2W1 + 3W2 − 4W3 + e, e ∼ N(0, 1).

For both simulations the true additive causal effect equals one: ψ0 = 1. Treatment
assignment probabilities based on mechanism g0,1 range from 0.269 to 0.881, in-
dicating no sparsity in the data for simulation 1. In contrast, treatment assignment
probabilities based on mechanism g0,2 range from (0.047 to 0.998). Simulation 2
poses a more challenging estimation problem in the context of sparse data.

Estimates were obtained for 1000 samples of size n = 1000 from each data-
generating distribution. Treatment assignment probabilities were estimated using a
correctly specified logistic regression model. In both simulations predicted values
for gn(A | W) were bounded away from 0 and 1 by truncating at (p, 1 − p), with
p = 0.01. In one set of results a correctly specified main terms regression model
was used to compute the initial estimate Q̄0

n, while in the other set of results the
initial estimate was defined as the least squares regression Y on A only.

7.3.3 Results

Table 7.1 reports the average estimate, bias, empirical variance, and MSE for each
estimator, under different specifications of the initial estimator Q̄0

n. In simulation 1,
when Q̄0 is correctly estimated, all estimators perform quite well, though as ex-
pected IPTW is the least efficient. However, when Q̄0 is incorrectly estimated, the
MLE is biased and has high variance relative to the other estimators. Since gn(A | W)
is correctly specified, IPTW and A-IPTW provide unbiased estimates, as do both
TMLEs: the TMLEY∗ based on the logistic regression model is similar to the TMLE
based on the linear regression model, as there is no sparsity in the data, and both are
asymptotically efficient estimators.
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Table 7.1 Estimator performance for simulations 1 and 2 when the initial estimator of Q̄0 is cor-
rectly specified and misspecified. Results are based on 1000 samples of size n = 1000, gn is
consistent,and bounded at (0.01,0.99)

Q̄0 correctly specified Q̄0 misspecified
ψn Bias Var MSE ψn Bias Var MSE

Simulation 1
MLE 1.003 0.003 0.005 0.005 3.075 2.075 0.030 4.336
IPTW 1.006 0.006 0.009 0.009 1.006 0.006 0.009 0.009
A-IPTW 1.003 0.003 0.005 0.005 1.005 0.005 0.010 0.010
TMLEY∗ 0.993 −0.007 0.005 0.005 0.993 −0.007 0.006 0.006
TMLE 0.993 −0.007 0.005 0.005 0.993 −0.007 0.006 0.006

Simulation 2
MLE 1.001 0.001 0.009 0.009 4.653 3.653 0.025 13.370
IPTW 1.554 0.554 0.179 0.485 1.554 0.554 0.179 0.485
A-IPTW 0.999 −0.001 0.023 0.023 1.708 0.708 0.298 0.798
TMLEY∗ 0.989 −0.011 0.037 0.037 0.722 −0.278 0.214 0.291
TMLE 0.986 −0.014 0.042 0.042 −0.263 −1.263 2.581 4.173

In simulation 2, all estimators except IPTW are unbiased when Q̄0 is correctly
estimated. In this case, both TMLEs have higher variance than A-IPTW, even though
all three are asymptotically efficient. All three are more efficient than IPTW but less
efficient than MLE. Though asymptotically the IPTW estimator is expected to be
unbiased in this simulation, since gn is a consistent estimator of g0,2, these results
demonstrate that in finite samples, heavily weighting a subset of observations not
only increases variance but can also bias the estimate.

When the model for Q̄0 is misspecified in simulation 2, MLE is even more bi-
ased than it was in simulation 1. The efficiency of all three double robust efficient
estimators suffers in comparison with simulation 1 as well. Nevertheless, TMLEY∗ ,
using the logistic fluctuation, has the lowest MSE of all estimators. Its superiority
over TMLE, using linear least squares regression, in terms of bias and variance is
clear. TMLEY∗ also outperforms A-IPTW with respect to both bias and variance and
performs much better than IPTW or MLE.

7.4 Discussion

For the sake of demonstration, we considered estimation of the additive causal ef-
fect. However, the same TMLE, using the logistic fluctuation, can be used to esti-
mate other point-treatment causal effects, including parameters of a marginal struc-
tural model. The proposed quasi-log-likelihood loss function can be used to define a
super learner for prediction of a bounded continuous outcome. It will be of interest
to evaluate such a super learner relative to a super learner that does not incorporate
these known bounds. The quasi-log-likelihood loss function and the logistic fluctu-
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ation function can also be applied in a TMLE of the causal effect of a multiple time
point intervention in which the final outcome is bounded and continuous. In this
case, one uses the loss function and logistic fluctuation function to fluctuate the last
factor of the likelihood of the longitudinal structure. Our simulations show that the
proposed fluctuation function and loss function, and corresponding TMLEs, should
also be used for continuous outcomes for which no a priori bounds are known. In
this case, one simply uses the minimal and maximal observed outcome values. In
this way, these choices naturally robustify the TMLEs by enforcing that the updated
initial estimator will not predict outcomes outside the observed range. TMLE using
the logistic fluctuation function can also be incorporated in C-TMLE (Chaps. 19–21
and 23) without modification.

Appendix

The following lemma proves that the quasi-log-likelihood loss function is indeed a
valid loss function for the conditional mean Q̄0 of a continuous outcome in [0, 1].

Lemma 7.1. We have that

Q̄0 = argmin
Q̄

E0L(Q̄),

where the minimum is taken over all functions of (A,W) that map into [0, 1]. In
addition, given a function H∗, define the fluctuation function

logit(Q̄(ε)) = logit(Q̄) + εH∗.

For any function H∗ we have

d
dε

L(Q̄(ε))
∣∣∣∣∣
ε=0
= H∗(A,W)(Y − Q̄(A,W)).

Proof. Let Q̄1 be a local minimum of Q̄→ E0L(Q̄)(O), and consider the fluctuation
function ε → Q̄1(ε) defined above. Then the derivative of ε → E0L(Q̄1(ε)) at ε = 0
equals zero. However, we also have

−
d
dε

L(Q̄1(ε))
∣∣∣∣∣
ε=0
= H∗(A,W)(Y − Q̄1(A,W)).

Thus, it follows that

E0[H∗(A,W)(Y − Q̄1(A,W))] = E0[H∗(A,W)(Q̄0 − Q̄1)(A,W)].

But this needs to hold for any function H∗(A,W), which proves that Q̄1 = Q̄0 almost
everywhere. The final statement follows as well. �



Chapter 8

Direct Effects and Effect Among the Treated

Alan E. Hubbard, Nicholas P. Jewell, Mark J. van der Laan

Researchers are frequently interested in assessing the direct effect of one variable
on an outcome of interest, where this effect is not mediated through a set of inter-
mediate variables. In this chapter, we will examine direct effects in a gender salary
equity study example. Such studies provide one measure of the equity of procedures
used to set salaries and of decisions in promoting and advancing faculty based on
performance measures. The goal is to assess whether gender, as determined at birth,
has a direct effect on the salary at which a faculty member is hired, not mediated
through intermediate performance of the subject up until the time the subject gets
hired. If such a direct effect exists, then that means the salary was set in response
not only to merit but also to the gender of the person, indicating a gender inequality
issue.

We will start by defining the SCM and a natural direct effect of gender on salary
controlling for the intermediate variables. In addition, we present the identifiability
assumptions under which this causal quantity can be identified from the distribu-
tion of the observed data. We commit to an estimand and nonparametric statistical
model, even though we accept that the estimand cannot be interpreted as the desired
causal direct effect in the gender inequality study. Nevertheless, it represents an ef-
fect of gender that controls for the measured intermediate variables, and thereby
represents a “best” approximation of the desired causal direct effect, given the re-
strictions of the observed data. We present TMLE for this estimand in a nonpara-
metric statistical model and apply it to our gender equity data set.

8.1 Defining the Causal Direct Effect

The observed data structure is O = (W, A, Y) ∼ P0. Here, Y represents the salary for
a specific year, A refers to gender with A = 1 for females and A = 0 for males, and W
is the set of intermediate predictive factors available. In our data these intermediate
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factors include (1) the nature of the highest degree received, (2) years since receipt
of highest degree, and (3) years since appointment at the institution.

We define the full data modeled by an SCM as (X,U) ∼ PX,U,0, where X =
(A,W,H, Y) are the endogenous nodes and U denotes the exogenous factors drawn
from some distribution PU,0. That is, given U = u, X = (A,W,H, Y) is deter-
ministically generated by a collection of functions, fA(uA), fW (A, uW ), fH(A,W, uH),
fY (A,W,H, uY ). This SCM implies a counterfactual random variable Y(a,w, h) =
Y(a,w, h)(U) corresponding with intervening on the SCM by setting A = a,W =

w,H = h, while keeping U random. H is a binary variable indicating whether or not
a person is hired.

Because we only observe subjects if they have been hired, the actual observed
data O follows the conditional distribution of (A,W, Y), given H = 1. We can now
define a definition of the “gender” effect as a weighted average of the w-specific
controlled direct effects of gender, where the weights are with respect to the prob-
ability distribution of the intermediate variables, given one is female (A = 1) and
hired (H = 1). We will refer to this causal quantity as a generalized natural direct
effect (NDE) parameter:

ΨF
NDE(PX,U,0) =

∑
w

EX,U,0[Y(1,w,H = 1) − Y(0,w,H = 1)]QW,0(w), (8.1)

with QW,0(w) ≡ P0(W = w | A = 1,H = 1). As discussed in van der Laan and
Petersen (2008), the so-called NDE of treatment A on outcome Y , controlling for
intermediate variables W, can be presented as E0[

∑
w(Y(1,w) − Y(0,w))P0(W = w |

A = 0)]. In our case the only difference is that we are averaging the counterfactual
differences within strata w with weights P0(W = w | A = 1,H = 1), so that we
should indeed use the same terminology.

Under the causal graph assumption of no unblocked backdoor path from (A,W,H)
to Y through the Us, or, equivalently, that (A,W,H) is independent of the counterfac-
tuals Y(a,w, h) = fY (a,w, h,UY ), we can identify this causal quantity ΨF

NDE(PX,U,0)
from the probability distribution of the observed data structure O. Specifically, one
can write parameter (8.1) as the following parameter mapping applied to the true
observed data distribution P0:

ΨNDE(P0) = E0[E0(Y | A = 1,W,H = 1) − E0(Y | A = 0,W,H = 1) | A = 1,H = 1]
= E0[Y − E0(Y | A = 0,W,H = 1) | A = 1,H = 1]. (8.2)

Note that the estimand defines a statistical parameter mapping ΨNDE : M → R,
whereM is the nonparametric statistical model. For notational convenience, hence-
forth we suppress the conditioning on H = 1 in all conditional distributions.

Standard practice for estimating the estimand in gender equity studies is to fit
a standard parametric regression among the men for E0[Y | A = 0,W], use the
resulting fit to predict the outcomes among the women, compute for each female the
difference between the observed outcome and this predicted outcome, and average
all these differences. This is indeed a particular method for estimation of estimand
(8.2) obtained by substitution of a parametric regression fit for E0(Y | A = 0,W),
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and the empirical distribution for the conditional distribution of W, given A = 1.
Since in truth we lack the knowledge that warrants a parametric model, we pose a
nonparametric statistical modelM for the probability distribution of O = (W, A, Y).
We now have to develop an estimator of the desired estimand in this nonparametric
statistical model.

It is understood that the causal interpretation of the estimand as an actual natu-
ral direct causal effect is very questionable as relevant variables were not collected,
such as merit, on the pathway from gender to the outcome. However, the causal
model makes explicit the desired causal quantity of interest and provides a frame-
work to understand what intermediate variables W need to be measured to make
estimand (8.2) approach the causal direct effect one desires. For example, if one
wishes to exclude certain intermediate variables due to other considerations, then
the bias resulting from such steps could be studied analytically or through Monte
Carlo simulations.

Conveniently, a causal effect among the treated defined in another SCM as W =
fW (UW ), A = fA(W,UA), Y = fY (W, A,UY ), under the randomization assumption
that UA is independent of UY , is identified by the same estimand (8.2) above (van der
Laan 2010c). In that case, W are confounders of the treatment of interest, A, instead
of being on the causal pathway.

As a consequence, the TMLE of the estimand for the effect among the treated
in one SCM is identical to the TMLE of the estimand for the NDE in our SCM.
Of course, the interpretation of the estimand is a function of the assumed
SCM. So, though we present a TMLE of an average controlled direct effect
among the treated in our causal model, we can also use this TMLE to estimate
the causal effect among the treated for another causal model. This example
nicely shows the distinct tasks of defining a causal parameter of interest in a
causal model for the full data (that is, a function of the distribution of U, X)
and developing estimators of the corresponding statistical estimand.

8.2 TMLE

We have defined a specific estimand ΨNDE(P0) as well as provided identifiability
conditions under which one can interpret the parameter value as a type of weighted-
average controlled direct effect. In this section we will now and then suppress the
NDE in the notation of this estimand since no other estimands are considered. Sup-
pressing the conditioning on hiring (H = 1), the estimand can be represented as

ΨNDE(P0) = E0[E0(Y | A = 1,W) − E0(Y | A = 0,W) | A = 1]. (8.3)

We factorize P0 in terms of the marginal distribution QW,0 of W, the conditional
distribution g0 of A, given W, and the conditional distribution QY,0 of Y , given A,W.
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We note that ψNDE,0 depends on P0 through Q̄0(A,W) = E0(Y | A,W), QW,0, and
g0. The TMLE presented below will yield a targeted estimator Q̄∗n and g∗n of Q̄0 and
g0, and the empirical distribution QW,n of the marginal distribution QW,0 of W. Let
Q0 = (QW,0, Q̄0), so that we can also present the estimand as ΨNDE(Q0, g0). The
TMLE of ΨNDE(Q0, g0) is a substitution estimator Ψ (Q∗n, g

∗
n) obtained by plugging

in this estimator (Q∗n, g
∗
n). Due to the particular form of g∗n, we show below that

this substitution estimator corresponds with using the empirical distribution for the
conditional distribution of W, given A = 1, so that the TMLE of the estimand ψNDE,0
can also be represented as

ΨNDE(Q∗n, g
∗
n) =

1∑n
i=1 I(Ai = 1)

n∑
i=1

I(Ai = 1) ∗ [Q̄∗n(1,Wi) − Q̄∗n(0,Wi)].

(8.4)

To develop the TMLE we first need an initial estimator of the outcome regression
Q̄0, and the treatment mechanism g0, while estimating the marginal distribution of
W with the empirical probability distribution of W1, . . . ,Wn. We can estimate both
Q̄0 and g0 with loss-based super learning using the appropriate loss function for Q̄0
and log-likelihood loss function for g0, respectively. If Y is binary, then we would
use the log-likelihood loss function L(Q̄)(O) = Y log Q̄(A,W) + (1 − Y) log(1 −
Q̄(A,W)) for Q̄0. This same loss function can also be used if Y ∈ [0, 1], as shown in
Chap. 7. If Y is continuous and bounded between a and b so that P0(a < Y < b) = 1,
we can either use the squared error loss function or this quasi-log-likelihood loss
function applied to a linearly transformed Y∗ = (Y − a)/(b − a). Let Q̄0

n, g
0
n be the

resulting super learner fits of Q̄0 and g0, respectively. This provides us with our
initial estimator (Q0

n, g
0
n) of (Q0, g0).

To determine the parametric submodel through the initial estimator that can be
used to encode the fluctuations in the TMLE algorithm, we need to know the effi-
cient influence curve of the target parameter ΨNDE :M→ R. This statistical target
parameter was studied in van der Laan (2010c) in the context of a causal model for
the causal effect among the treated, and the efficient influence curve at a P ∈ M was
derived as (see also Appendix A)

D∗(P) =
(

I(A = 1)
P(A = 1)

−
I(A = 0)g(1 | W)
P(A = 1)g(0 | W)

)
[Y − Q̄(A,W)]

+
I(A = 1)
P(A = 1)

[Q̄(1,W) − Q̄(0,W) − Ψ (P)], (8.5)

where Q̄ = Q̄(P) and g = g(P) are the conditional mean and probability distribution,
respecively, under P. The first component, D∗Y (P), is a score of the conditional dis-
tribution of Y , given A,W, and the second component is a score D∗A,W (P) of the joint
distribution of (A,W). The latter component of the efficient influence curve D∗(P)
can be orthogonally decomposed as D∗A,W (P) = D∗W (P) + D∗A(P), where
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D∗W (P) =
g(1 | W)
P(A = 1)

(Q̄(1,W) − Q̄(0,W) − Ψ (P)) and

D∗A(P) =
I(A = 1) − g(1 | W)

P(A = 1)
(Q̄(1,W) − Q̄(0,W) − Ψ (P))

are scores for the marginal distribution of W and the conditional distribution of A,
given W. One can represent (8.5) as a function of the parameter of interest, ψ, Q, and
g, or D∗(Q, g, ψ). The resulting estimating function is double robust, or, formally,

P0D∗(Q, g, ψ0) = 0 if Q = Q0 or g = g0,

where P f ≡
∫

f (o)dP(o). Since the TMLE Q∗n, g
∗
n solves the efficient influence

curve equation, PnD∗(Q∗n, g
∗
n, Ψ (Q∗n, g

∗
n)) = 0, this double robustness implies that

the TMLE Ψ (Q∗n, g
∗
n) is consistent for ψ0 if either Q∗n is consistent for Q0 or g∗n is

consistent for g0. Apparently, even though the estimand depends on both Q0 and g0,
we still obtain a consistent estimator if either Q0 or g0 is consistently estimated!

The next step in defining the TMLE is to select loss functions L1(Q̄) and L2(g) =
− log g for Q̄0 and g0, respectively, and construct parametric submodels {Q̄0

n(ε1) : ε1}
and {g0

n(ε2) : ε2} so that the two “scores”

d
dε1

L1(Q̄0
n(ε1)) and

d
dε2

L2(g0
n(ε2))

at ε1 = ε2 = 0 span the efficient influence curve D∗(Q0
n, g

0
n) at the initial estimator. If

we use the squared error loss function L1(Q̄)(O) = (Y − Q̄(A,W))2, then we select
the linear fluctuation working model Q̄0

n(ε1)(A,W) = Q̄0
n(A,W) + ε1C1(g0

n)(A,W),
where

C1(g)(A,W) = I(A = 1) −
I(A = 0)g(1 | W)

g(0 | W)
.

If Y is binary or continuous in [0, 1] and we select the quasi-log-likelihood loss func-
tion for L1(Q̄), then we select the logisitic fluctuation working model logit Q̄0

n(ε1) =
logit Q̄0

n + ε1C1(g0
n). In the context of theoretical or practical violations of the posi-

tivity assumption, P0(g0(0 | W) > 0) = 1, as required for a bounded variance of the
efficient influence curve, and Y being continuous, we strongly recommend the quasi-
log-likelihood loss function L1(Q̄) for Q̄0, since the resulting TMLE will then fully
respect the global bounds [a, b] of the statistical model. As parametric submodel
through g0

n, we select logit(g0
n(ε2)(1 | W)) = logit(g0

n(1 | W)) + ε2C2(g0
n,Q

0
n)(W),

where

C2(Q, g)(W) = Q̄(1,W) − Q̄(0,W) − Ψ (Q, g).

Finally, we select the log-likelihood loss function L(QW ) = − log QW for the prob-
ability distribution QW,0, and, as a parametric submodel through QW,n, we select
{QW,n(ε3) = (1 + ε3D∗W (Q0

n, g
0
n))QW,n : ε3}, where
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D∗W (Q0
n, g

0
n)(W) = g0

n(1 | W)
{
Q̄0

n(1,W) − Q̄0
n(0,W) − Ψ (Q0

n)
}
.

We note that the scores with respect to the loss functions L1(Q̄), L2(g) and L(QW )
generated by these three submodels are D∗Y (Q0

n, g
0
n) ≡ C1(g0

n)(Y − Q̄0
n), D∗A(Q0

n, g
0
n) ≡

C2(g0
n,Q

0
n)(A − g0

n(1 | W)), and D∗W (Q0
n, g

0
n), respectively, and the sum of these three

scores equals D∗(Q0
n, g

0
n) up till the scalar P0(A = 1). Thus, if we define the single

loss function L(Q0
n, g

0
n) = L1(Q̄0

n) + L(QW,n) + L2(g0
n), then

d
dε

L(Q0
n(ε), g0

n(ε))

at ε = 0 spans the efficient influence curve D∗(Q0
n, g

0
n). That is, we successfully car-

ried out the second step in defining the TMLE involving the selection of a loss func-
tion and corresponding parametric submodel through the initial estimator whose
score spans the efficient influence curve at the initial estimator. The TMLE algo-
rithm is now defined.

The maximum likelihood estimator of εn = (ε1,n, ε2,n, ε3,n), according to the work-
ing parametric submodel through (Q0

n, g
0
n), defines an updated fit (Q1

n = Q0
n(ε1,n, ε3,n),

g1
n = g0

n(ε2,n)). Since we selected QW,n to be the nonparametric maximum likelihood
estimator of QW,0, we have that ε3,n = 0, so that the empirical distribution of W is not
updated. This TMLE updating of Q̄0

n and g0
n is iterated until convergence, and we

denote the final fit with (Q∗n = (Q̄∗n,QW,n), g∗n). The TMLE of ψ0 is the corresponding
substitution estimator Ψ (Q∗n, g

∗
n).

Due to the fact that PnD∗A,W (Q∗n, g
∗
n) = 0, it follows immediately that the TMLE

equals the substitution estimator (8.4) obtained by plugging in Q̄∗n for Q̄0, and plug-
ging in the empirical probability distribution for the conditional distribution of W,
given A = 1. Suppose that we replace in the TMLE algorithm the parametric sub-
model Q̄0

n(ε1) with

Q̄0
n(ε11, ε12) = Q̄0

n + ε11C11 + ε12C12(g0
n),

where C11(A,W) = I(A = 1), and C12(g)(A,W) = I(A = 0)g(1 | W)/g(0 | W),
and thus fit ε1 = (ε11, ε12) accordingly. Then the TMLE Q̄∗n also solves the equation∑n

i=1 I(Ai = 1)(Yi − Q̄∗n(1,Wi)), so that we obtain the following representation of the
TMLE:

Ψ (Q∗n, g
∗
n) =

1∑n
i=1 I(Ai = 1)

n∑
i=1

I(Ai = 1)
{
Yi − Q̄∗n(0,Wi)

}
. (8.6)

That is, the difference between this TMLE and the standard practice in assessing
gender inequality is only in the choice of estimator of Q̄0: the TMLE uses a targeted
data-adaptive estimator, while standard practice would use a maximum likelihood
estimator according to a parametric model.

Regarding implementation of this TMLE, we make the following remark. Tech-
nically, in each TMLE update step for Q̄0 one treats the most recent updated estimate
of Q̄0 as offset, and one computes the appropriate maximum likelihood estimate of
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ε1 according to the parametric working model Q̄k
n(ε1) = Q̄k−1

n + ε1C1(gn). So if it
takes K iterations until convergence, then the final fit can be represented as

Q̄∗n = Q̄0
n +

K∑
k=1

εk1nC1(gk−1
n ),

where gk
n represents the estimated g after the kth iteration of estimation (and con-

vergence would imply that εK1n ≈ 0). Similarly, this applies to the final fit g∗n. From a
programming standpoint, this means that all one needs to save from the estimation
procedure is the sequence, (εk1n, ε

k
2n), k = 1, . . . ,K, as well as the initial fits, (Q̄0

n, g
0
n).

Finally, statistical inference can be based on the sample variance of the estimated
efficient influence curve D∗(Q0, g0), or the bootstrap.

One may also wish to employ a C-TMLE (Chaps. 19–21 and 23) approach, which
would choose among a sequence of candidate estimates of g0 in a targeted fashion.
Remarkably, the efficient influence curve also satisfies collaborative double robust-
ness results so that the C-TMLE can indeed be utilized to build a targeted regression
estimator of g0.

8.3 Simulation

To demonstrate the double robustness of the TMLE, we perform a simple simula-
tion. Specifically, we have a binary A ∈ {0, 1} with P0(A = 1) = 0.5, a simple binary
W where P0(W = 1|A = 1) = 0.27 and P(W = 1|A = 0) = 0.12, and Y is normally
distributed with a conditional mean given by 50000+4000W −1000A+3000A×W,
and constant variance 100. The NDE is given by ΨNDE(Q0, g0) = −192. We simu-
late from this same data-generating distribution for sample sizes of 10i, i = 2, . . . , 6,
and for each data set we use a correctly specified model for the conditional proba-
bility distribution g0 of A, given W, but a misspecified parametric regression model
E0(Y | A,W) = β0A + β1A for Q̄0. Thus, the MLE of the estimand will be substan-
tially biased, but the TMLE should eliminate that bias because of the correct model
used for g0. The results (Fig. 8.1) confirm the double robustness property of the
TMLE, and thus its value for rectifying bias that can result from nontargeted initial
estimates of Q̄0.

8.4 Data Analysis

We use data on 9-month faculty salaries at two schools at the University of Califor-
nia, Irvine, for the academic year 2007–08. There were 579 male and 269 female
faculty members. The W variables were as follows: Ph.D. degree, years of UC ser-
vice (in any position), years since earning highest degree, and department. From a
causal direct effect point of view, one should use other measures of performance as
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Fig. 8.1 Simulation results for the NDE. Vertical bars represent 95% confidence intervals based
on standard errors derived from the influence curve (8.5); the dotted line is the true value,
ψNDE(Q0, g0)

well, but there is great controversy in defining academic merit (which itself might be
subject to biases, including gender biases), and thus only the most noncontroversial
variables associated with salary are typically used.

8.4.1 Unadjusted Mean Difference in Salary

We first carried out a standard least squares regression analysis in which we only
have gender (females are A = 1) in the regression. Assuming our SCM, and again
suppressing the dependence on hiring, H, the coefficient on A is an estimate of the
total additive effect due to gender: ψF

0,Total ≡ E0[Y1−Y0], where now Y(a) represents
the outcome when, possibly contrary to fact, A = a, or, using our system of SCM
above, Y(a) = fY (a, fW (a,UW ),UY ). Under our SCM, and the assumption that UA is
independent of UY , this is identifiable as a mapping of P0 as ψ0,Total = E0(Y | A =
1) − E0(Y | A = 0). The corresponding plug-in estimator is simply the difference
in average salary among the women (A = 1) vs. the men (A = 0). This analysis
resulted in an estimate ψn,Total of −$13,853 and a 95% confidence interval given
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by (−$18,510,−$9,197). Thus, the salary among women is on average $13,000 less
than the average salary among men, and this difference is statistically significant.
These results are also displayed in Table 8.1.

8.4.2 Adjusted Mean Difference in Salary: ΨN DE(P0)

As is evident from representation (8.6) of the TMLE, the only distinction between
the TMLE and the standard approach is the choice of estimator of Q̄0(1,W), i.e.,
the conditional mean of the salaries among men as a function of the intermediate
variables W. This regression function is then used to predict the salary for the fe-
males, and one takes the average of the prediction errors among all the females in
the sample. The standard approach uses a simple multivariate linear regression to
fit Q̄0(1,W) among the males (A = 1). This main term linear regression includes as
main terms the indicator of having earned a Ph.D., years of service, years since high-
est degree, and nine dummy variables representing the ten departments. To obtain
robust standard errors, we used a nonparametric bootstrap. This analysis resulted
in an estimate of the estimand given by −$2,235, with a 95% confidence interval
(−$5,228, $756).

We then used a TMLE that acknowledges that the model for both Q̄0 and g0
are unknown (and thus uses a data-adaptive estimator) but targets these adaptive
estimators to optimize the estimate of ψNDE,0. However, we must start with initial
estimates Q̄0

n of Q̄0 and g0
n of g0. For Q̄0

n, we used a super learner with three linear re-
gression candidate estimators (one with all covariates entered linearly, one with only
the covariates besides the dummy variables indicating the department, and one with
only gender), polymars, and DSA. The latter two algorithms are machine learning
procedures, and for both we enforced the inclusion of gender in the model fit. As
initial estimate g0

n of the conditional distribution of gender given W, we used simple
multivariate linear logistic regression with all covariates entered as main terms. In
order to estimate the variance of the TMLE, we used both the empirical variance of
the estimated influence curve (8.5), plugging in the final fits, (Q̄∗n, g

∗
n, Ψ (Q∗n, g

∗
n)), as

well as a more conservative cross-validated empirical variance of the estimated in-
fluence curve using a 10-fold cross-validation, where the training sample was used
to estimate the influence curve, while the validation sample was used to estimate the
variance of this influence curve (van der Laan and Gruber 2010).

In Table 8.1, we display estimates of the unadjusted effect, the naive direct ef-
fect, and the TMLE direct effect. Neither estimate of the direct effect of gender is
statistically significantly different from the null value. It is of interest to note that
the TMLE had a much smaller estimate of the variability: the estimate of the vari-
ance of the TMLE was 30% smaller than the estimate of the variance of the naive
estimate. (We note that the more conservative CV-based variance of the TMLE was
approximately 1400, still reflecting a significant gain in variance.) Thus, although
the statistical model for P0 for the TMLE was much larger than the main term linear
regression model of the naive approach, and the TMLE carried out a subsequent tar-



142 Alan E. Hubbard et al.

Table 8.1 Analysis results for University of California, Irvine salary gender equity study estimates
for the average salary difference between genders, as well as estimates of ψNDE using both the naive
estimator and the TMLE

Parameter Approach Estimate SE 95% CI

ψUnad j −$13,853 2,372 (−$18,510,−$9,197)
ψNDE Naive −$2,235 1,526 (−$5,228, $756)
ψNDE TMLE −$2,212 1,336 (−$4,830, $406)

geted bias reduction as well, the variability of the TMLE was still lower. Regarding
data analysis, the bottom line is what appeared to be very strong evidence of salary
inequity based on a simple difference in average salaries; the naive and TMLE di-
rect effects of gender, controlling for some intermediate variables, show that these
data do not support the presence of salary inequality, but it can be stated that the
estimated salary gap is around $2,200, and, with a 95% confidence level, the salary
gap is at most $4,800.

8.5 Discussion

The road map for assessing a causal direct effect (1) states explicitly the causal
model and causal direct effect ψF

0 of interest, (2) states explicitly the identifiabil-
ity assumptions required to identify the causal direct effect from the observed data
distribution, P0, thereby defining a statistical target parameter mapping, Ψ (P0), (3)
defines the statistical modelM for P0 based on what is truly known about P0, (4)
estimates the required components of P0 respecting the statistical model M using
loss-based machine learning, (5) targets the estimation of these components of P0
for optimizing estimation of Ψ (P0), where this definition of optimal is based on effi-
ciency theory for estimators. This salary equity example serves as a useful exercise
in demonstrating how current ad hoc approaches are more a function of traditional
practice than a rigorous methodology used to derive as much information about a
scientific question as possible from the data at hand. As discussed, when the covari-
ates W are confounders of a treatment variable A of interest, the average treatment
effect among the treated (Heckman et al. 1997) is identified by the identical statis-
tical estimand that is the focus of this chapter. Thus, this discussion also applies to
situations where the estimand is the same, but the interpretation is different based
on a different causal model. We note that much has been written about the aver-
age treatment effect among the treated, being a common parameter of interest in
fields such as economics and political science. The approach emphasized here has
significant relevance to current practice in several disciplines.
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8.6 Notes and Further Reading

A popular class of methods for estimation of the treatment effect among the treated
is semiparametric matching methods, including propensity score matching algo-
rithms (Rosenbaum and Rubin 1983), and the more recently developed genetic
matching algorithms (Sekhon 2006). However, these methods are somewhat inef-
ficient, i.e., the stratification of the sample in clusters of matched treated and non-
treated subjects is only informed by the data on (W, A), ignoring the outcome. At-
tempts to rectify this (Hansen 2008) have failed to provide useful solutions. One can
think of such an estimator as an NPMLE that stratifies on W according to an unsu-
pervised method. Two disadvantages of such a method are the lack of smoothing in
estimation of Q̄0, and the lack of targeting of the stratification strategy with respect
to the target parameter. For example, a treated person might be considered similar
to a nontreated person based on similarity in variables that are nonpredictive of the
outcome. (C-)TMLE resolves both of these issues.

There is considerable literature on pay equity studies in the academy. In par-
ticular, the American Association of University Professors (AAUP) has published
a guidebook on implementation of pay equity studies (Haignere 2002). The naive
approach presented for ψNDE is in fact the recommended AAUP approach. Interpre-
tation of these studies is complicated by the absence of adequate measures of the
quality and quantity of an individual’s performance in terms of research, teaching,
and public and professional service despite the fact that it is these very attributes that
are presumably the predominant factors in the salary reward system in academia.
Without such factors available, gender comparisons are usually adjusted solely by
various demographic factors, largely reflecting the “academic age” of individuals.
The two principal variables of this type that are associated with current salaries are
(1) the number of years since receipt of the highest degree (usually the Ph.D.) and
(2) the number of years since appointment to the current institution. The latter vari-
able is important in capturing the influence of market forces in determining salary,
almost always at play at the time an individual is hired.

In this chapter, we postulated the existence of an underlying counterfactual salary
for an individual whose gender was different. However, this chapter was not focused
on questions of the existence of such counterfactuals, and other ontological issues,
but on defining sensible parameters of the data-generating distribution that aim to
address gender equity. For debates on defining the “causal” effect of a variable such
as gender, see, for instance, Holland (1988).



Chapter 9

Marginal Structural Models

Michael Rosenblum

In many applications, one would like to estimate the effect of a treatment or exposure
on various subpopulations. For example, one may be interested in these questions:

• What is the effect of an antidepressant medication on Hamilton Depression Rat-
ing Scale (HAM-D) score for those who enter a study with severe depression,
and for those who enter with moderate depression?

• What is the effect of a cancer therapy for those who test positive for over-
expression of a particular gene and for those who test negative for overexpression
of that gene?

• What is the impact of low adherence to antiretroviral therapy on viral load for
HIV-positive individuals who have just achieved viral suppression and for those
who have maintained continuous viral suppression for 1 year?

In this chapter, we present a method for estimating the effect of a treatment or ex-
posure in various subpopulations in an HIV treatment application. We first present
an analysis in which there are only two subpopulations of interest. Then we present
an analysis with 12 subpopulations of interest, where we use a marginal structural
model as a working model. Marginal structural models, an important class of causal
models and target parameters, were introduced by Robins (1998).

9.1 Impact of Missing Doses on Virologic Failure

For HIV-positive individuals taking antiretroviral medication, a danger in missing
doses is that the HIV virus may increase replication. A measure of the amount of
circulating virus is called “viral load.” It is of interest to understand how different
levels of missed doses (e.g., missing 20% of doses in a month or 40% of doses in a
month) are related to the probability of subsequent increases in viral load. Further-
more, we’d like to understand how the impact of missed doses on viral load may
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differ depending on patient history of viral suppression. The aspect of patient his-
tory of viral suppression we focus on is the number of consecutive months in the
past, starting just before the current month, that a subject has had viral load below
50 copies/ml (which we refer to as “duration of continuous suppression”). As an ex-
ample, we’d like to understand the impact of low adherence to antiretroviral therapy
on viral load for HIV-positive individuals who have just achieved viral suppression
and for those who have maintained continuous viral suppression for 1 year. We de-
scribe a particular data analysis that aimed to answer this question, which is fully
described in Rosenblum et al. (2009).

The population we consider is HIV-positive individuals in the Research in Ac-
cess to Care for the Homeless (REACH) cohort; subjects in the study consist of
a systematic, community-based sample of HIV-positive urban poor individuals in
San Francisco (Moss et al. 2004). Adherence to antiretroviral therapy was assessed
based on unannounced pill counts, as described in Bangsberg et al. (2001).

We consider four levels of percent adherence to therapy in a given month: 0–49%,
50–74%, 75–89%, and 90–100%. The outcome we consider is whether a patient’s
viral load is less than 50 copies/ml in a given month. We say a patient experiences
virologic failure if her viral load is at least 50 copies/ml.

Three hundred and fifty-seven subjects were monitored monthly for medication
adherence. Each subject who had a viral load of less than 50 copies/ml over 2 con-
secutive months (which is an indicator of successful suppression of the HIV virus)
was included in the study; a total of 221 subjects met this criterion. For each in-
cluded subject, we found the earliest occurrence of 2 consecutive months with viral
load less than 50 copies/ml; we let “month 0” denote the first of these two consecu-
tive months.

The goal is to produce estimates of the risk of virologic failure at the end
of a given month, under each of the four adherence levels, controlling for
variables measured prior to that month. We will get such estimates for each of
the following 12 groups:

1 Risk of virologic failure at the end of month 2 among subjects who re-
mained continuously suppressed through month 1;

2 Risk of virologic failure at the end of month 3 among subjects who re-
mained continuously suppressed through month 2;

...

12 Risk of virologic failure at the end of month 13 among subjects who re-
mained continuously suppressed through month 12.

We point out that all 221 subjects included in the study contribute data to the
estimate in group 1 above (since the inclusion criterion described above requires
that subjects be suppressed during month 1). Fewer subjects directly contribute data
to the estimates in the latter groups. We also used a nonsaturated marginal structural
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model in our analysis that “smoothed” estimates across the above 12 groups. In this
case, data from each subject indirectly contributed to the estimates for each of the
above groups. This is discussed further in Sect. 9.6.

Of special interest is to compare the relative risk of virologic failure between
the highest adherence level (90–100%) and the lowest adherence level (0–49%) for
each of the above 12 groups. We can then test for effect modification by comparing
this relative risk across the 12 groups.

9.2 Data

Longitudinal data were collected on each subject in the REACH cohort. However,
for clarity, we present a simplified data structure in which each subject contributes
only a single time point of data. The extension to longitudinal data structures is
described elsewhere (Rosenblum and van der Laan 2010a, Sect. 4.2). Longitudinal
data structures are also discussed in Chaps. 24–26 of this book.

In our simplified data structure, each subject contributes a vector of data con-
sisting of baseline variables (V,W) measured at the beginning of a month, percent
adherence to antiretroviral medication during that month (A), and virologic failure
at the end of the month (Y). The baseline variable V denotes duration of continuous
viral suppression up to the current time point. The baseline variables W include the
following potential confounders of the effect of adherence on virologic failure:

prior adherence, prior duration of HAART, prior exposure to mono/dual nucleoside therapy,
recent CD4+ T cell count (lagged 2 months), CD4+ T cell nadir (lagged 2 months), demo-
graphics (sex, ethnicity, age), years of education, past and current antiretroviral treatment
characteristics, crack cocaine and alcohol use, calendar time, and homelessness (Rosenblum
et al. 2009, p. 2).

Percent adherence A has four levels: A = {0, 1, 2, 3}, representing adherence in a
given month at 0–49%, 50–74%, 75–89%, and 90–100%, respectively. Y is a binary-
valued indicator of virologic failure. Duration of past continuous suppression V
takes levels V = {0, 1, 2, . . . , 11}. We denote this vector of data for each subject i
by (Vi,Wi, Ai, Yi). We assume that each subject’s data vector is an independent draw
from an unknown distribution P0 of a random vector (V,W, A, Y).

9.3 Statistical Model

We assume a nonparametric statistical model for P0; that is, we put no restrictions
on the true data-generating distribution except that it can be represented as a density
with respect to a known dominating measure. Since each distribution we consider
has a corresponding density, with a slight abuse of notation, we sometimes refer
to distributions such as P0 as densities. The likelihood of the data at a candidate
probability distribution P can be written
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n∏
i=1

P(Yi, Ai,Vi,Wi) =
n∏

i=1

PY (Yi | Ai,Vi,Wi)PA(Ai | Vi,Wi)PV,W (Vi,Wi).

9.4 Parameter of Interest

We are interested in the impact of percent adherence to antiretroviral therapy during
a given month on virologic failure at the end of that month. We would furthermore
like to know how this impact of adherence varies depending on duration of contin-
uous viral suppression prior to that month.

Let Ya denote the potential outcome that would have been observed had adher-
ence been at level a ∈ A. We’d like to learn the probability that Ya = 1, within strata
of duration of continuous, past suppression V , that is

P(Ya = 1 | V = v), a ∈ A, v ∈ V. (9.1)

We also would like to express the above display as a mapping from the distribution
of the observed data (since for each subject three of the four potential outcomes
{Ya}a∈A are unobserved). We make the following assumptions, described in Chap. 2,
which we use to connect the potential outcomes to the observed data:

• Time-ordering assumption: W,V precede A, which precedes Y;
• Consistency assumption: For all a ∈ A, Y = Ya on the event A = a;
• Randomization assumption (no unmeasured confounders): {Ya}a∈A ⊥⊥ A | W,V;

and
• Positivity assumption: P(A = a | W = w,V = v) > 0 for all a ∈ A and all (w, v)

in the support of P0.

Under these assumptions, we can equate function (9.1) of the potential outcomes
we are interested in with a mapping from the distribution of the observed data, as
follows:

P(Ya = 1 | V = v) = EW |V=vP(Y = 1 | A = a,V = v,W), a ∈ A, v ∈ V,

where EW |V=v is expectation with respect to the distribution of baseline variables W
given V = v.

We define our parameter of interest Ψ (P) to be the mapping from the observed
data distribution given on the right-hand side of the previous display:

Ψ (P)(a, v) = EW |V=vP(Y = 1 | A = a,V = v,W). (9.2)

If A and V each had only a couple levels, we could estimate Ψ (P0)(a, v) (where P0
is the true, unknown data-generating distribution) directly for each value of a and v.
As a stepping stone to the more complex case, we give such an estimator below in
Sect. 9.5. Then, in Sect. 9.6, we handle the case described in Sect. 9.2 where there
are 48 levels of (A,V) (that come from four possible values for A and 12 for V), and
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where we define a different parameter of interest using a marginal structural model
as a working model.

9.5 Effect Modification: Simplified Case

We consider the case where both A and V are binary valued. The goal is to esti-
mate (9.2) for all four of the possible combinations of a, v. This is a special case
of the more general situation we consider in Sect. 9.6. Here we show an estimator
for Ψ (P0)(0, 0); the estimators for the parameter at the other values of a and v are
similar. We note that it is also possible to construct an estimator of the vector of
parameter values (Ψ (P0)(0, 0), Ψ (P0)(0, 1), Ψ (P0)(1, 0), Ψ (P0)(1, 1)) using a single
iteration of the targeted maximum likelihood algorithm, but for clarity of exposition
we do not present the details here, and instead focus on estimating just Ψ (P0)(0, 0).

9.5.1 Obtaining Q0
n, an Initial Estimate of Q0

Parameter (9.2) depends on the data-generating distribution P only through the con-
ditional distribution of Y given (A,V,W), and the marginal distribution of (V,W).
We let Q = (P(Y | A,V,W), P(V,W)) denote these relevant parts of the density P.
We let Q0 denote these relevant parts of the true density P0. There are many ways
to construct an initial estimator Q0

n of Q0. For example, one could fit a parametric
statistical model. Here, for simplicity, we fit a parametric statistical model for the
conditional distribution of virologic failure Y given (A,V,W), and use the empirical
distribution for the baseline variables (V,W). We assume that for at least one subject
i in our sample, Vi = 0.

We fit a logistic regression model for P0(Y | A,V,W) such as

P(Y = 1 | A,V,W) = expit (α0 + α1A + α2V + α3W) .

Denote the model fit by Q̄n(Y = 1 | A,V,W). There are no constraints on what model
could be used, e.g., interaction terms could have been included as well. For the initial
estimator of P0(V,W), we use the empirical distribution, which we denote by QV,W,n.
Our initial estimator Q0

n is defined as the pair
(
Q̄n(Y = 1 | A,V,W),QV,W,n(V,W)

)
.

Below, in constructing the fluctuation, we will use the substitution estimator at the
initial density estimate Q0

n:

Ψ (Q0
n)(0, 0) = EQ0

n

[
Q̄n(Y = 1 | A = 0,V = 0,W) | V = 0

]
=

1∑n
i=1 I(Vi = 0)

n∑
i=1

I(Vi = 0)Q̄n(Y = 1 | A = 0,V = 0,Wi), (9.3)
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where I(S ) is the indicator function taking value 1 when S is true and 0 otherwise.
The second equality follows since in Q0

n we set the distribution of (V,W) to be the
empirical distribution, so that the corresponding expectation conditional on V = 0
is obtained by averaging over all data points with Vi = 0.

9.5.2 Calculating the Optimal Fluctuation

To compute the optimal fluctuation, we first need the efficient influence curve for
the parameter Ψ (P)(0, 0) in the nonparametric model. This can be derived using
the methods in Appendix A. The efficient influence curve is (up to a normalizing
constant)

D0,0(Y, A,V,W) = I(A = 0,V = 0)
(

Y − P(Y = 1 | A = 0,V = 0,W)
P(A = 0 | V = 0,W)

)
+I(V = 0)[P(Y = 1 | A = 0,V = 0,W) − Ψ (P)(0, 0)]. (9.4)

We now construct a parametric model {P(ε) : ε} that (1) contains the initial
estimator Q0

n at ε = 0 and (2) has a score at ε = 0 whose linear span contains
the efficient influence curve at Q0

n. To do this, we first define the clever covariate
H∗1(A,V,W) for fluctuation of the outcome-regression, and function H∗2(V,W) for
fluctuation of the distribution of (V,W):

H∗1(A,V,W) =
I(A = 0,V = 0)

gn(A = 0 | V = 0,W)

and
H∗2(V,W) = I(V = 0)[Q̄n(Y = 1 | A = 0,V = 0,W) − Ψ (Q0

n)(0, 0)],

where Ψ (Q0
n)(0, 0) is defined in (9.3) and gn(A | V,W), for example, is defined based

on fitting a logistic regression model.
Let ε = (ε1, ε2). Define the parametric model {P(ε) : ε}:

P(ε)(Y = 1 | A,V,W) = expit
(
ε1H∗1(A,V,W) + logit

(
Q̄n(Y = 1 | A,V,W)

))
, (9.5)

P(ε)(A | V,W) = gn(A | V,W),
P(ε)(V,W) = sε2 exp(ε2H∗2(V,W))QV,W,n(V,W),

where the constant sε2 = 1/[ 1
n
∑n

i=1 exp(ε2H∗2(Vi,Wi))] is chosen such that P(ε)(V,W)
integrates to 1 for each ε. It is straightforward to verify that conditions (1) and (2)
above are satisfied for the parametric model {P(ε) : ε}.



9 Marginal Structural Models 151

9.5.3 Obtaining Q∗n, a Targeted Estimate of Q0

We fit the above parametric model using maximum likelihood estimation to get esti-
mates εn = (ε1,n, ε2,n) of (ε1, ε2). We give arguments below to show that the maximum
likelihood estimate εn = (ε1,n, ε2,n) can be obtained simply as follows: to obtain ε1,n,
fit the logistic regression model (9.5), which has a single term (H∗1) and offset equal
to logit

(
Q̄n(Y = 1 | A,V,W)

)
; we show below that ε2,n must equal 0.

First, since the only term involved in the likelihood that depends on ε1 is the
term in (9.5), the ε1 component of the maximum likelihood estimator is obtained by
fitting logistic regression model (9.5). We now show that ε2,n = 0. The derivative
of the log-likelihood with respect to ε2 is zero at ε2 = 0; also, the second derivative
of the log-likelihood with respect to ε2 is everywhere strictly negative as long as
the values H∗2(Vi,Wi), for i in {1, . . . , n}, are not all equal. (If these values were all
equal, the model P(ε)(V,W) = QV,W,n for all ε.) Therefore, the maximum likelihood
estimator ε1,n, ε2,n must have ε2,n = 0. This means P(εn)(V,W) equals the initial
density estimator QV,W,n, which was chosen to be the empirical distribution of (V,W).

It is not necessary here to iterate the above steps, since a second iteration [in-
volving fitting a parametric model as above, but now with clever covariates defined
in terms of the density P(εn) instead of the initial density estimate Q0

n] would lead
to no update of the current density estimate P(εn). This follows since the covariate
H∗1(A,V,W) only depends on gn, which is not updated in the above model fitting; the
covariate H∗2(V,W) does not lead to any update of the density as argued in the pre-
vious paragraph. Thus, a single iteration of the above step suffices for convergence.
Our final estimator for the relevant part Q0 of the density of the data-generating
distribution is

Q∗n = P(εn) =
(
P(ε1,n)(Y = 1 | A,V,W),QV,W,n

)
. (9.6)

9.5.4 Estimation of Parameter

Lastly, we compute the substitution estimator Ψ (Q∗n)(0, 0):

ψn(0, 0) =
1∑n

i=1 I(Vi = 0)

n∑
i=1

I(Vi = 0)Q∗n(Y = 1 | A = 0,V = 0,Wi). (9.7)

This estimator was obtained by evaluating parameter (9.2) at the final density es-
timate Q∗n defined in (9.6). This involved first taking the estimated conditional dis-
tribution Q∗n(Y = 1 | A = 0,V = 0,W) and computing its average given V , again
according to Q∗n. Since in Q∗n we set the distribution of (V,W) to be the empirical
distribution, this is obtained by averaging Q∗n(Y = 1 | A = 0,V = 0,Wi) over all
data points with Vi = 0, as in (9.7). In summary, the above estimator involved ob-
taining initial estimators for P0(Y | A,V,W) and P0(A | V,W), then fitting a logistic
regression involving clever covariates constructed from these initial estimators, and
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finally averaging this logistic regression fit over the empirical distribution of base-
line variables as in (9.7).

A class of estimators that is a special case of the above class of estimators was
given in a previous paper (Scharfstein et al. 1999, p. 1141). To the best of our knowl-
edge, they were the first to include the inverse of the propensity score as a covari-
ate in a parametric regression-based estimator for the parameter considered in this
section. The estimators there are parametric regression estimators that include the
inverse propensity score (H∗1) as a term in the regression model; these estimators
were shown to be double robust and locally efficient.

We next consider the case where V can take 12 values, rather than just 2 values
as in this subsection. In that case, estimator (9.7) will not perform well, since for
some values of V there may be very few data points contributing to the summation.
We will use a marginal structural model to smooth across values of V .

9.6 Effect Modification: Marginal Structural Models

We consider the case introduced in Sect. 9.2, where adherence A can take four pos-
sible values, and the number of months of continuous viral suppression V can take
12 values. Here, instead of trying to estimate Ψ (a, v) defined in (9.2) for all 48 pos-
sible combinations of (a, v), we will define a different parameter Ψ ′. This involves
a working statistical model (i.e., marginal structural model as working model) for
Ψ (a, v), which can be thought of as smoothing over (a, v). This approach of using
marginal structural models as working models to define target parameters is pre-
sented in detail Neugebauer and van der Laan (2007) for general longitudinal data
structures and multiple time point treatments. The following presentation in this
section closely follows that in Rosenblum and van der Laan (2010a, Sect. 4.1).

Marginal Structural Models

For a given treatment level a and duration of past suppression v, the TMLE
above for the parameter ψ0(a, v) defined in (9.2) involves the clever covariate:

I(A = a,V = v)
gn(a | v,W)

.

As a consequence, this estimator may become unstable if there are few sub-
jects in the sample with A = a and V = v. In particular, the variance of the
estimator will depend on the number of subjects in the category defined by
A = a and V = v. We present two possible approaches for dealing with this,
both of which involve smoothing over the different values of a and v.

The first approach is to assume a statistical model for the parameter ψ0(a, v)
such as:

logit ψ0(a, v) = β0(a, v),
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indexed by a Euclidean parameter β0 of lower dimension than {ψ0(a, v), a ∈
A, v ∈ V}. Such a model allows one to focus on estimating the parameter
β0, and the TMLE of β0 will smooth across all the observations. However,
this requires making a model assumption, and if this model assumption is
incorrect (i.e., if there is model misspecification, which may be difficult to
rule out), then β0 (and thereby ψ0) is not defined.

The second approach, which we take here, is to define our target parameter
as a summary measure of the parameters {ψ0(a, v) : a, v}. For example, for a
given adherence level a, one could define our target parameter as the mini-
mizer (β0, β1) of the expectation (with respect to the true data-generating dis-
tribution) of the squared residuals (ψ0(a,V)−β0−β1V)2. In this case β0+β1V
represents the least squares projection of the true treatment-specific mean at
level a as a function of V onto a linear trend.

The choice of working statistical model, such as the linear statistical
model β0 + β1V, defines the target parameter of interest, but it does not
represent a statistical assumption.

The parameter Ψ (P) is now well defined for any probability distribution P,
including the true distribution P0. One could also define a whole collection of
such summary measures as target parameters, thereby allowing the investiga-
tion of a whole collection of features of the true response curve ψ0(a, v) as a
function of a and v.

Define the working model m as follows:

m(a, v, Ψ ′) = expit(Ψ (0)′ + Ψ (1)′a1 + Ψ
(2)′a2 + Ψ

(3)′a3 + Ψ
(4)′v),

where a1, a2, a3 are indicator variables for the first three (out of four total) adherence
levels defined in Sect. 9.2. The parameter we will estimate throughout this section,
in terms of the potential outcomes Ya, is

Ψ ′0 = arg max
Ψ ′

∑
a∈A

EP0 h(a,V) log
[
m(a,V, Ψ ′)Ya (1 − m(a,V, Ψ ′))1−Ya

]
, (9.8)

for some bounded, measurable weight function h(a,V) ≥ 0 that we specify. When
the model m is correctly specified, this can be interpreted as the maximizer of a
weighted log-likelihood, in terms of the potential outcomes Ya. When the model m
is misspecified, the parameter is still well defined.

We assume there is a unique maximizer Ψ ′ to the expression on the right-hand
side of (9.8). In this case, the parameter Ψ ′0 is the unique solution of∑

a∈A
EP0 h(a,V)(Ya − m(a,V, Ψ ′))(1, a1, a2, a3,V)′ = 0. (9.9)
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Under the assumptions in Sect. 9.4 linking potential outcomes to a mapping of the
observed data, we have that Ψ ′ is also the unique solution to∑

a∈A
EP0 h(a,V)(P0(Y = 1 | A = a,V,W) − m(a,V, Ψ ′))(1, a1, a2, a3,V)′ = 0. (9.10)

This last display involves a mapping from the distribution of the observed data,
and no reference to potential outcomes Ya; we will use it below in constructing the
TMLE for Ψ ′.

9.6.1 Obtaining Q0
n, an Initial Estimate of Q0

Just as in Sect. 9.5, parameter (9.8), which is the solution to (9.10), depends on
the data-generating distribution only through the conditional distribution of Y given
A,V,W and the marginal distribution of (V,W). We let Q = (P(Y | A,V,W), P(V,W))
denote those relevant parts of the density P, and let Q0 denote those relevant parts
of the density at the true data-generating distribution P0. There are many ways to
construct an initial estimator Q0

n of Q0. Just as in Sect. 9.5, for simplicity, here we fit
a single logistic regression model to obtain an estimator for the first component of
Q0 and use the empirical distribution as estimator for the second component of Q0.
The resulting initial estimator Q0

n is denoted by
(
Q̄n(Y = 1 | A,V,W),QV,W,n(V,W)

)
.

We fit a multinomial logistic regression model for P0(A | V,W), which we denote by
gn. Below we will use the substitution estimator at the initial density estimate Q0

n,
denoted by Ψ ′(Q0

n), which satisfies [by property (9.10) above]

∑
a∈A

n∑
i=1

h(a,Vi)(Q̄0
n(Y = 1 | A = a,Vi,Wi) − m(a,Vi, Ψ

′(Q0
n))(1, a1, a2, a3,Vi)′ = 0.

(9.11)
We assume there is a unique solution Ψ ′(Q0

n) to the above display.

9.6.2 Calculating the Optimal Fluctuation

To compute the optimal fluctuation, we need the efficient influence curve for the
parameter Ψ ′ in the nonparametric model. The efficient influence curve is (up to a
normalizing matrix) given by

D∗(P)(Y, A,V,W) =
[
h(A,V)(Y − P(Y = 1 | A,V,W))

P(A | V,W)
(1, A1, A2, A3,V)′

+
∑
a∈A

h(a,V)
(
P(Y = 1 | A = a,V,W) − m(a,V, Ψ ′)

)
(1, a1, a2, a3,V)′

⎤⎥⎥⎥⎥⎥⎦ ,
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where A1, A2, A3 are indicator variables of adherence levels A = 1, A = 2, and
A = 3, respectively. Note that the above efficient influence function reduces to its
counterpart (9.4) for the simpler case in Sect. 9.5, for the special case where the
weight function h(a, v) is the indicator that a = 0, v = 0 and the working model m
has only an intercept term.

We now construct a parametric model {P(ε) : ε} that (1) contains the initial
estimator Q0

n at ε = 0 and (2) has a score at ε = 0 whose linear span contains the
efficient influence function at Q0

n. To do this, we first define the clever covariates
H∗1(A,V,W) and H∗2(V,W):

H∗1(A,V,W) =
h(A,V)

gn(A | V,W)
(1, A1, A2, A3,V)′

and

H∗2(V,W) =
∑
a∈A

h(a,V)
(
Q̄n(Y = 1 | A = a,V,W) − m(a,V, Ψ ′(Q0

n))
)

(1, a1, a2, a3,V)′.

Here H∗1 and H∗2 are each column vectors with five components.
Let ε = (ε1, ε2), where ε1 and ε2 are each row vectors with five components (so

as to have the same length as H∗1 and H∗2, respectively). Define the parametric model
{P(ε) : ε}:

P(ε)(Y = 1 | A,V,W) = expit
(
ε1H∗1(A,V,W) + logit

(
Q̄n(Y = 1 | A,V,W)

))
, (9.12)

P(ε)(A | V,W) = gn(A | V,W),
P(ε)(V,W) = sε2 exp(ε2H∗2(V,W))QV,W,n(V,W),

where the constant sε2 = 1/[ 1
n
∑n

i=1 exp(ε2H∗2(Vi,Wi))] is chosen such that P(ε)(V,W)
integrates to 1 for each ε. It is straightforward to verify that conditions (1) and (2)
above are satisfied for the parametric model {P(ε) : ε}.

9.6.3 Obtaining Q∗n, a Targeted Estimate of Q0

We fit the above parametric model using maximum likelihood estimation to get the
estimate εn = (ε1,n, ε2,n) of (ε1, ε2). One can show (using slight extensions of the
arguments in Sect. 9.5.3) that the maximum likelihood estimate εn = (ε1,n, ε2,n) can
be obtained by fitting the logistic regression model (9.12), which has five terms (one
for each component of H∗1) and offset equal to logit

(
Q̄n(Y = 1 | A,V,W)

)
, to obtain

ε1,n; arguments as in Sect. 9.5.3 can be used to show ε2,n must equal 0 and that no
iteration is necessary, since convergence occurs in a single step. Our final estimator
for the relevant part Q0 of the density of the observed data is

Q∗n = P(εn) =
(
P(ε1,n)(Y = 1 | A,V,W),QV,W,n

)
. (9.13)
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9.6.4 Estimation of Parameter

We compute the substitution estimator Ψ ′(Q∗n), which by property (9.10) solves

∑
a∈A

n∑
i=1

h(a,Vi)(Q̄∗n(Y = 1 | A = a,Vi,Wi) − m(a,Vi, Ψ
′(Q∗n))(1, a1, a2, a3,Vi)′ = 0.

(9.14)
We assume there is a unique solution to the above equation. The solution Ψ ′(Q∗n)
to the above equation can be computed using iteratively reweighted least squares,
where the set of outcomes is Q̄∗n(Y = 1 | A = a,Vi,Wi) for each a ∈ A and
each subject i, which are regressed on the working model m(a,Vi, Ψ

′) using weights
h(a,Vi)/[m(a,Vi, Ψ

′)(1 − m(a,Vi, Ψ
′))].

This iteratively reweighted least squares solution can be implemented in the sta-
tistical programming language R with the generalized linear statistical model (glm)
function. This involves first constructing a new data set where there are four rows
for each subject, one for each possible level of adherence a ∈ A. For subject i and
adherence level a ∈ A, the following entries make up the corresponding row of this
new data set:

1. Q̄∗n(Y = 1 | A = a,Vi,Wi) (which is the “outcome” in the new data set);
2. a (the adherence level under consideration; note that this is not the subject’s

observed adherence level);
3. Vi (the number of continuous months of past viral suppression);
4. h(a,Vi) (the weight).

One regresses the first column (the new “outcome”) on the model m(a,Vi, Ψ
′) using

the glm function with family binomial and logistic link function and using weights
h(a,Vi) (from the fourth column of the new data set). Even though the new “out-
come” is not binary valued but lies in the interval [0, 1], the glm function computes
the desired iteratively reweighted least squares solution, as long as the algorithm
converges. It is shown in Rosenblum and van der Laan (2010a) that if this algorithm
converges to a value Ψ ′n, then this is the unique solution to (9.14).

We now summarize the steps in constructing the TMLE for parameter (9.8). First,
we obtained the initial estimators of the conditional densities P0(Y = 1 | A,V,W)
and P0(A | V,W). Next, we fit a logistic regression model for Y , with terms H∗1
and offset both depending on the initial density estimators and the formula for the
efficient influence function for the parameter. Lastly, we used iterated reweighted
least squares to solve Eq. (9.14), yielding the final estimate Ψ ′n.

An important special case of the class of TMLEs given above was previously
given in the Rejoinder to Comments in Scharfstein et al. (1999), on p. 1142. To the
best of our knowledge, their class of parametric regression-based estimators for the
parameter defined by (9.10) is the first to include the covariate H∗1. Their class of
parametric regression-based estimators is double robust and locally efficient.
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9.7 Constructing Confidence Intervals

We constructed separate 95% confidence intervals for m(a, v, Ψ ′), for each a ∈
A, v ∈ V, using the nonparametric bootstrap bias-corrected and accelerated (BCa)
method (Efron 1987), with 10,000 iterations. The entire procedure, including refit-
ting the initial regressions, was iterated for each bootstrap replicate. Note that these
are not simultaneous 95% confidence intervals. It is also possible to use the non-
parametric bootstrap to construct simultaneous confidence intervals. In addition, the
asymptotic multivariate normal distribution or the bootstrap distribution of the es-
timator of (m(a, v, Ψ ′) : a, v) can be used to carry out multiple testing procedures,
controlling a user-supplied type I error rate such as the familywise error rate using
methods in Dudoit and van der Laan (2008).

9.8 Results

We now apply the method from Sects. 9.6 and 9.7 to the data from the REACH
cohort described in Sect. 9.1. The analysis in Sect. 9.6 was implemented using a
working model m(a,V, Ψ ′) with main terms and interaction terms. Unlike the sim-
plified description above, in which each subject contributed a single time point of
data, in the actual analysis subjects contributed multiple time points of data. Overall
there were 1201 patient-months of data used in the analysis. The parameter of inter-
est involved a generalization of (9.8) to this setting, as described in Rosenblum and
van der Laan (2010a).

For the initial density estimator Q0
n =

(
Q̄n(Y = 1 | A,V,W),QV,W,n(V,W)

)
, we let

Q̄n be the fit of a logistic regression model, which included the following terms:

�� Intercept;
�� Indicator variables for the first three levels of adherence (A1, A2, A3);
�� Duration of continuous suppression (V);
�� Interactions of (A1, A2, A3) and V;
�� Main terms for each confounder variable from Sect. 9.2.

We let QV,W,n(V,W) be the empirical distribution of (V,W). We fit a multinomial lo-
gistic regression model for adherence level A given V,W, which included as terms:
intercept, duration of continuous suppression (V), V2, and main terms for each con-
founder variable from Sect. 9.2. We denote this by gn. Similarly, we fit a multino-
mial logistic regression model for adherence level A given just V , which included as
terms intercept, duration of continuous suppression (V), and V2, which we denote
by hn.

We chose the weight function h(a,V) in the definition of parameter (9.8) to be an
approximation to g0(a | V). The motivation behind such a choice was to help sta-
bilize the inverse weights in the clever covariate H∗1(A,V,W) defined in Sect. 9.6.2.
The approximation to g0(a | V) that we use in defining h(a,V) is the limit in prob-
ability, as n → ∞, of hn. Having thus defined h(a,V), we still need to be able to
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Fig. 9.1 “Estimates and 95% Confidence Intervals for the Risk of Virologic Failure, at Four Ranges
of Adherence, Given Duration of Continuous Viral Suppression.” This figure and caption are re-
produced from Rosenblum et al. (2009)

compute it, or at least approximate it, based on the data we have to work with. In
implementing the targeted maximum likelihood algorithm, as in Sect. 9.6, we sub-
stitute hn for h in the definition of H∗1(A,V,W). We point out that super learning
could have been used to construct density estimators in this problem.

The resulting estimate Ψ ′n corresponds to the following working model fit:

m(a, v, Ψ ′n) = expit[−0.5 − 0.04A1 + 0.6A2 − 0.13A3

− 0.4V + 0.36A1V + 0.07A2V + 2.3A3V].

We show a plot of this function of a, v, along with 95% confidence intervals com-
puted with the nonparametric bootstrap, in Fig. 9.1. The null hypothesis of no effect
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modification on the relative risk scale, comparing lowest to highest adherence levels
was tested.

H0 :
m(0, v, Ψ ′)
m(3, v, Ψ ′)

=
m(0, v′, Ψ ′)
m(3, v′, Ψ ′)

for all v, v′ ∈ V.

The test involved computing substitution estimates of the relative risks

RR(v) =
m(0, v, Ψ ′)
m(3, v, Ψ ′)

for all v ∈ V (where the final estimator Ψ ′n was substituted for Ψ ′), and then re-
gressing log RR(V) on the model α0+α1V . The hypothesis of no effect modification
on the relative risk scale is rejected if the confidence interval (based on the non-
parametric bootstrap) for the coefficient α1 excludes 0. This hypothesis was rejected
at a p-value of 0.001. This hypothesis-testing procedure relies on the consistency
and asymptotic normality of the estimator Ψ ′n. To be interpretable in terms of causal
relative risks, we additionally need the assumptions given above relating potential
outcomes to observed data, and also the assumption that the working model m is a
correctly specified marginal structural model.

9.9 Discussion

Under the assumptions given above, and under weak regularity conditions, the
TMLEs from Sects. 9.5 and 9.6 are doubly robust, locally efficient. In contrast
to this, standard propensity score methods, regression-based methods, and inverse
probability weighted methods are generally not doubly robust. Since our goal was
to look at effect modification by number of months of continuous suppression (V),
we are, by design, comparing effects across different subpopulations. These subpop-
ulations are the 12 groups listed in Sect. 9.1. Observed differences do not, therefore,
point to any causal mechanism. However, the results of our analysis are relevant in
predicting the impact of missed doses for patients, based on the number of months
of continuous viral suppression. Due to the relatively small sample size of the study,
and the set of assumptions required by the analysis (which are common to many
such analyses), any conclusions from this single study should be made with care.

9.10 Notes and Further Reading

We focused on an application in HIV treatment that can be found in Rosenblum et al.
(2009). The content of this chapter is based on work previously published in Rosen-
blum and van der Laan (2010a). The seminal paper promoting the use of marginal
structural working models to define a parameter is Neugebauer and van der Laan
(2007). As previously mentioned, a special case of the class of TMLEs presented in
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this chapter for the parameter of a marginal structural model was previously given
in the Rejoinder to Comments in Scharfstein et al. (1999), on p. 1142. A description
of the estimator of Scharfstein et al. (1999) and its relationship to the estimators in
this chapter is given in Appendix 2 of Rosenblum and van der Laan (2010a).

We started this chapter with several motivating examples for the estimation of
effects in subpopulations. Kirsch et al. (2008) found that there was a difference be-
tween the effect of an antidepressant medication on HAM-D score for those entering
a study with severe depression vs. less severe depression. An example of the effect
of a cancer therapy differing among those with and without overexpression of a
particular gene is given in Baselga (2001).



Chapter 10

Positivity

Maya L. Petersen, Kristin E. Porter, Susan Gruber, Yue Wang,
Mark J. van der Laan

The identifiability of causal effects requires sufficient variability in treatment or
exposure assignment within strata of confounders. The causal inference literature
refers to the assumption of adequate exposure variability within confounder strata
as the assumption of positivity or experimental treatment assignment. Positivity vi-
olations can arise for two reasons. First, it may be theoretically impossible for in-
dividuals with certain covariate values to receive a given exposure of interest. For
example, certain patient characteristics may constitute an absolute contraindication
to receipt of a particular treatment. The threat to causal inference posed by such
structural or theoretical violations of positivity does not improve with increasing
sample size. Second, violations or near violations of positivity can arise in finite
samples due to chance. This is a particular problem in small samples but also oc-
curs frequently in moderate to large samples when the treatment is continuous or
can take multiple levels, or when the covariate adjustment set is large or contains
continuous or multilevel covariates. Regardless of the cause, causal effects may be
poorly or nonidentified when certain subgroups in a finite sample do not receive
some of the treatment levels of interest. In this chapter we will use the term “spar-
sity” to refer to positivity violations and near-violations arising from either of these
causes, recognizing that other types of sparsity can also threaten valid inference.

Data sparsity can increase both the bias and variance of a causal effect estimator;
the extent to which each is impacted will depend on the estimator. An estimator-
specific diagnostic tool is thus needed to quantify the extent to which positivity
violations threaten the validity of inference for a given causal effect parameter
(for a given model, data-generating distribution, and finite sample). Wang et al.
(2006) proposed such a diagnostic based on the parametric bootstrap. Application
of a candidate estimator to bootstrapped data sampled from the estimated data-
generating distribution provides information about the estimator’s behavior under
a data-generating distribution that is based on the observed data. The true parameter
value in the bootstrap data is known and can be used to assess estimator bias. A
large bias estimate can alert the analyst to the presence of a parameter that is poorly
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identified, an important warning in settings where data sparsity may not be reflected
in the variance of the causal effect estimate.

Once bias due to violations in positivity has been diagnosed, the question re-
mains how best to proceed with estimation. We review several approaches. Identi-
fiability can be improved by extrapolating based on subgroups in which sufficient
treatment variability does exist; however, such an approach requires additional para-
metric model assumptions. Alternative approaches to responding to sparsity include
the following: restriction of the sample to those subjects for whom the positivity
assumption is not violated (known as trimming); redefinition of the causal effect of
interest as the effect of only those treatments that do not result in positivity violations
(estimation of the effects of “realistic” or “intention to treat” dynamic regimes); re-
striction of the covariate adjustment set to exclude those covariates responsible for
positivity violations; and, when the target parameter is defined using a marginal
structural working model, use of a projection function that focuses estimation on
areas of the data with greater support.

As we discuss, all of these approaches change the parameter being estimated by
trading proximity to the original target of inference for improved identifiability. We
advocate incorporation of this tradeoff into the effect estimator itself. This requires
defining a family of parameters whose members vary in their proximity to the initial
target and in their identifiability. An estimator can then be defined that selects among
the members of this family according to some prespecifed criterion.

10.1 Framework for Causal Effect Estimation

We proceed from the basic premise that model assumptions should honestly reflect
investigator knowledge. The SCM framework provides a systematic approach for
translating background knowledge into a causal model and corresponding statistical
model, defining a target causal parameter, and assessing the identifiability of that
parameter. We illustrate this approach using a simple point treatment data structure
O = (W, A, Y) ∼ P and a nonparametric statistical model augmented with possibly
additional causal assumptions, with the SCM given by (2.1), which we restate as
follows: W = fW (UW ), A = fA(W,UA), Y = fY (W, A,UY ). Again, let W denote a
set of baseline covariates, A denote a treatment or exposure variable, Y denote an
outcome, and U = (UW ,UA,UY ) ∼ PU denotes the set of background factors that
deterministically assign values to (W, A, Y) according to functions ( fW , fA, fY ). We
minimize notation by focusing on discrete-valued random variables.

Target parameter. A causal effect can be defined in terms of the joint distribution of
the observed data under an intervention on one or more of the structural equations in
the corresponding SCM or, equivalently, under an intervention on the corresponding
causal graph. For example, consider the postintervention distribution of Y under an
intervention on the structural model to set A = a. Such an intervention corresponds
to replacing A = fA(W,UA) with A = a in the structural model (2.1) presented in
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Chap. 2. The counterfactual outcome that a given subject with background factors
u would have had if he or she were to have received treatment level a is denoted
Ya(u). This counterfactual can be derived as the solution to the structural equation
fY in the modified equation system with fA set equal to a and with input U = u.

Let FX denote the distribution of X = (W, (Ya : a ∈ A)), where A denotes the
possible values that the treatment variable can take (e.g. {0, 1} for a binary treat-
ment). FX describes the joint distribution of the baseline covariates and counterfac-
tual outcomes under a range of interventions on treatment variable A. A causal effect
can be defined as some function of FX . For example, a common target parameter for
binary A is the average treatment effect:

EFX (Y1 − Y0), (10.1)

or the difference in expected counterfactual outcome if every subject in the popula-
tion had received vs. had not received treatment.

Alternatively, an investigator may be interested in estimating the average treat-
ment effect separately within certain strata of the population or for nonbinary treat-
ments. Specification of a marginal structural model (a model on the conditional ex-
pectation of the counterfactual outcome given effect modifiers of interest) provides
one option for defining the target causal parameter in such cases (Chap. 9). Marginal
structural models take the following form: EFX (Ya | V) = m(a,V | β), where V ⊂ W
denotes the strata in which one wishes to estimate a conditional causal effect. For
example, one might specify the following model:

m(a,V | β) = β1 + β2a + β3V + β4aV.

For a binary treatmentA ∈ {0, 1}, such a model implies an average treatment effect
within stratum V = v equal to β2 + β4v.

The true functional form of EFX (Ya | V) will generally not be known. One op-
tion is to assume that the parametric model m(a,V | β) is correctly specified, or in
other words that EFX (Ya | V) = m(a,V | β) for some value β. Such an approach,
however, can place additional restrictions on the allowed distributions of the ob-
served data and thus change the statistical model. In order to respect the premise
that the statistical model should faithfully reflect the limits of investigator knowl-
edge and not be altered in order to facilitate definition of the target parameter, we
advocate an alternative approach in which the target causal parameter is defined us-
ing a marginal structural working model. Under this approach the target parameter
β is defined as the projection of the true causal curve EFX (Ya | V) onto the specified
model m(a,V | β) according to some projection function h(a,V):

β(FX ,m, h) = argmin
β

EFX

⎡⎢⎢⎢⎢⎢⎣∑
a∈A

(Ya − m(a,V | β))2h(a,V)

⎤⎥⎥⎥⎥⎥⎦ . (10.2)

When h(a,V) = 1, the target parameter β corresponds to an unweighted projection
of the entire causal curve onto the working model m(a,V | β); alternative choices
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of h correspond to placing greater emphasis on specific parts of the curve [i.e., on
certain (a,V) values].

Use of a marginal structural working model such as (10.2) is attractive because it
allows the target causal parameter to be defined within the original statistical model.
However, this approach by no means absolves the investigator of careful considera-
tion of marginal structural working model specification. A poorly specified working
model m(a,V | β) may result in a target parameter that provides a poor summary of
the features of the true causal relationship that are of interest.

In the following sections we discuss the parameter β(FX ,m, 1) as the target of
inference, corresponding to estimation of the treatment-specific mean for all lev-
els a ∈ A within strata of V as projected onto working model m, with projection
h(a,V) = 1 chosen to reflect a focus on the entire causal curve. To simplify notation
we use β to refer to this target parameter unless otherwise noted.

Identifiability. We assess whether the target parameter β of the counterfactual data
distribution FX is identified as a parameter of the observed data distribution P under
causal model (2.1). Because the background factors U are assumed to be jointly
independent in SCM (2.1), or in other words the model is assumed to be Markov,
we have that

PFX (Ya = y) =
∑

w

P(Y = y | W = w, A = a)P(W = w), (10.3)

identifying the target parameter β according to projection (10.2) (Pearl 2009). This
identifiability result is often referred to as the g-computation formula or g-formula
(Robins 1986, 1987a,b). The weaker assumption of randomization (10.4), or the
assumption that A and Ya are conditionally independent given W, is also sufficient
for identifiability result (10.3) to hold:

A
∐

Ya | W for all a ∈ A. (10.4)

Whether or not a given structural model implies that assumption (10.4) holds can be
assessed from the graph using the backdoor criterion.

The need for experimentation in treatment assignment. The g-formula (10.3)
is valid only if the conditional distributions in the formula are well defined. Let
g(a | W) = P(A = a | W), a ∈ A denote the conditional distribution of treatment
variable A under the observed data distribution P. If one or more treatment levels
of interest do not occur within some covariate strata, the conditional probability
P(Y = y | A = a,W = w) will not be well defined for some value(s) (a,w) and the
identifiability result (10.3) will break down.

A simple example provides insight into the threat to parameter identifiability
posed by sparsity of this nature. Consider an example in which W = I(woman), A
is a binary treatment, and no women are treated (g(1 | W = 1) = 0). In this data-
generating distribution there is no information regarding outcomes among treated
women. Thus, as long as there are women in the target population (i.e., P(W = 1) >
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0), the average treatment effect EFX (Y1−Y0) will not be identified without additional
parametric assumptions.

This simple example illustrates that a given causal parameter under a given model
may be identified for some joint distributions of the observed data but not for others.
An additional assumption beyond (10.4) is thus needed to ensure identfiability. We
begin by presenting the strong version of this assumption, needed for the identifica-
tion of PFX ((Ya = y,W = w) : a, y,w) in a nonparametric model.

Strong Positivity Assumption

inf
a∈A

g(a | W) > 0, P-a.e. (10.5)

The strong positivity assumption states that each possible treatment level oc-
curs with some positive probability within each stratum of W.

Parametric model assumptions may allow the positivity assumption to be weak-
ened. In the example above, an assumption that the treatment effect is the same
among treated men and women would result in identification of the average treat-
ment effect (10.1) based on extrapolation from the treatment effect among men (as-
suming that other identifiability assumptions were met). Parametric model assump-
tions of this nature are dangerous, however, because they extrapolate to regions of
the joint distribution of (A,W) that are not supported by the data. Such assump-
tions should be approached with caution and adopted only when they have a solid
foundation in background knowledge.

In addition to being model-specific, the form of the positivity assumption needed
for identifiability is parameter-specific. Many target causal parameters require much
weaker versions of positivity than (10.5). To take one simple example, if the target
parameter is E(Y1), the identifiability result only requires that g(1 | W) > 0 hold;
it doesn’t matter if there are some strata of the population in which no one was
treated. Similarly, the identifiability of β(FX ,m, h), defined using a marginal struc-
tural working model, relies on a weaker positivity assumption.

Positivity Assumption for β(FX , h,m)

sup
a∈A

h(a,V)
g(a | W)

< ∞, P-a.e. (10.6)

The choice of projection function h(a,V) used to define the target parameter thus
has implications for how strong an assumption about positivity is needed for identi-
fiability. In Sect. 10.4 we consider specification of alternative target parameters that
allow for weaker positivity assumptions than (10.5), including parameters indexed
by alternative choices of h(a,V). For now we focus on the target parameter β in-
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dexed by the choice h(a,V) = 1 and note that (10.5) and (10.6) are equivalent for
this parameter.

10.2 Estimator-Specific Behavior Under Positivity Violations

Let Ψ (P0) denote the target parameter of the observed data distribution P0 of O,
which under the assumptions of randomization (10.4) and positivity (10.6) equals
the target causal parameter β(FX,0,m, h). Estimators of this parameter are denoted
Ψ̂ (Pn), where Pn is the empirical distribution of a sample of n i.i.d. observations
from P0. We use QW,0(w) ≡ P0(W = w), QY,0(y | A,W) = P0(Y = y | A,W),
Q̄0 = E0(Y | A,W), and Q0 ≡ (QW,0, Q̄0). Recall that g0(a | W) = P0(A = a | W).
See Chaps. 1–6 for an introductory presentation of the estimators in this section.

We focus our discussion on bias in the point estimate of the target parameter β0.
While estimates of the variance of estimators of β0 can also be biased when data are
sparse, methods exist to improve variance estimation or to provide upper bounds
for the true variance. The nonparametric or semiparametric bootstrap provides one
straightforward approach to variance estimation in settings where the central limit
theorem may not apply as a result of sparsity; alternative approaches to correct for
biased variance estimates are also possible (Rosenblum and van der Laan 2009b).
These methods will not, however, protect against misleading inference if the point
estimate itself is biased.

10.2.1 MLE

MLEs provide a mapping from the empirical data distribution Pn to a parameter
estimate β̂MLE . The estimator Ψ̂MLE(Pn) is a substitution estimator based on iden-
tifiability result (10.3). It is implemented based on an estimator of Q0 and its con-
sistency relies on the consistency of this estimator. QW,0 can generally be estimated
based on the empirical distribution of W. However, even when positivity is not vio-
lated, the dimension of (A,W) is frequently too large for Q̄0 to be estimated simply
by evaluating the mean of Y within strata of (A,W). Given an estimator Q̄n of Q̄0,
MLE can be implemented by generating a predicted counterfactual outcome for
each subject under each possible treatment: Ŷa,i = Q̄n(a,Wi) for a ∈ A, i = 1, ..., n.
The estimate β̂MLE is then obtained by regressing Ŷa on a and V according to the
model m(a,V | β), with weights based on the projection function h(a,V). When
all treatment levels of interest are not represented within all covariate strata [i.e.,
assumption (10.5) is violated], some of the conditional probabilities in the nonpara-
metric g-formula (10.3) will not be defined. A given estimate Q̄n may allow the
MLE to extrapolate based on covariate strata in which sufficient experimentation in
treatment level does exist. Importantly, however, this requires extrapolation of the
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fit Q̄n into areas not supported by the data, and the resulting effect estimates will be
biased if the extrapolation used to estimate Q̄0 is misspecified.

10.2.2 IPTW Estimator

The IPTW estimator Ψ̂IPTW (Pn) provides a mapping from the empirical data distri-
bution Pn to a parameter estimate β̂IPTW based on an estimator gn of g0(A | W). The
estimator is defined as the solution in β to the following estimating equation:

0 =
n∑

i=1

h(Ai,Vi)
gn(Ai | Wi)

d
dβ

m(Ai,Vi | β)(Yi − m(Ai,Vi | β)),

where h(A,V) is the projection function used to define the target causal parameter
β(FX ,m, h) according to (10.2). The IPTW estimator of the true value β0 can be
implemented as the solution to a weighted regression of the outcome Y on treat-
ment A and effect modifiers V according to model m(A,V | β), with weights equal
to h(A,V)/gn(A | W). Consistency of Ψ̂IPTW (Pn) requires that g0 satisfy positivity
and that gn be a consistent estimator of g0. Depending on the choice of projection
function, implementation may further require estimation of h(A,V); if one defines
the desired projection function as the estimand of the estimator hn then a consistent
estimator of h(A,V) is not required to ensure consistency of the IPTW estimator.

The IPTW estimator is particularly sensitive to bias due to data sparsity. Bias
can arise due to structural positivity violations (positivity may not hold for g0) or
may occur by chance because certain covariate and treatment combinations are not
represented in a given finite sample [gn(a | W = w) may have values of zero or
close to zero for some (a,w) even when positivity holds for g0 and gn is consis-
tent] (Wang et al. 2006; Neugebauer and van der Laan 2005; Bembom and van der
Laan 2007a; Cole and Hernan 2008; Moore et al. 2009). In the latter case, as fewer
individuals within a given covariate stratum receive a given treatment, the weights
of those rare individuals who do receive the treatment become more extreme. The
disproportionate reliance of the causal effect estimate on the experience of a few
unusual individuals can result in substantial finite sample bias.

While values of gn(a | W) remain positive for all a ∈ A, elevated weights in-
flate the variance of the effect estimate and can serve as a warning that the data may
poorly support the target parameter. However, as the number of individuals within a
covariate stratum who receive a given treatment level shifts from few (each of whom
receives a large weight and thus elevates the variance) to none, estimator variance
can decrease while bias increases rapidly. In other words, when gn(a | W = w) = 0
for some (a,w), the weight for a subject with A = a and W = w is infinity; however,
as no such individuals exist in the data set, the corresponding threat to valid infer-
ence will not be reflected in either the weights or in estimator variance.
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Weight truncation. Weights are commonly truncated or bounded in order to im-
prove the performance of the IPTW estimator in the face of data sparsity (Wang
et al. 2006; Moore et al. 2009; Cole and Hernan 2008; Kish 1992; Bembom and
van der Laan 2008). Weights are truncated at either a fixed or relative level (e.g.,
at the 1st and 99th percentiles), thereby reducing the variance arising from large
weights and limiting the impact of a few possibly nonrepresentative individuals on
the effect estimate. This advantage comes at a cost, however, in the form of increased
bias due to misspecification of the treatment model gn, a bias that does not decrease
with increasing sample size.

Stabilized weights. The use of projection function h(a,V) = 1 implies the use of
unstabilized weights. In contrast, stabilized weights, corresponding to a choice of
h(a,V) = g0(a | V) [where g0(a | V) = P0(A = a | V)] are generally recommended
for the implementation of marginal structural-model-based effect estimation. The
choice of h(a,V) = g0(a | V) results in a weaker positivity assumption by (10.6). It
is important to stress the contrast between assuming a marginal structural model vs.
using it as a working model. For example, if A is an ordinal variable with multiple
levels, V = {}, and the target parameter is defined as the true β0 of a linear marginal
structural model m(a,V | β) = β(0) + β(1)a, it is possible to identify this parameter
by using a weight function h that is only nonzero at two values of a chosen such
that g0(a | W) > 0 for these two values. The corresponding IPTW estimator will ex-
trapolate to levels of A that are sparsely represented in the data by assuming a linear
relationship between E0Ya and a for a ∈ A. However, when the target parameter β is
defined using a marginal structural working model according to (10.2) [an approach
that acknowledges that the model m(A,V | β) may be misspecified], the choice of h,
including the choice of stabilized vs. unstabilized weights, corresponds to a choice
of the target parameter (Neugebauer and van der Laan 2007).

10.2.3 Double Robust Estimators

Double robust approaches to estimation of β include the A-IPTW estimator and
the TMLE we focus on in this text. Implementation of double robust estimators
requires estimators of both Q0 and g0. Double robust estimators remain consistent
if either (1) gn is a consistent estimator of g0 and g0 satisfies positivity or (2) Qn

is a consistent estimator of Q0 and gn converges to a distribution g∗ that satisfies
positivity. Thus when positivity holds, these estimators are truly double robust, in the
sense that consistent estimation of either g0 or Q0 results in a consistent estimator.
When positivity fails, however, the consistency of the double robust estimators relies
entirely on consistent estimation of Q0. In the setting of positivity violations, double
robust estimators are thus faced with the same vulnerabilities as MLE.

In addition to illustrating how positivity violations increase the vulnerability of
double robust estimators to bias resulting from inconsistent estimation of Q0, these
asymptotic results have practical implications for the implementation of the double
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robust estimators. Specifically, they suggest that the use of an estimator gn that yields
predicted values in [0+ γ, 1− γ] (where γ is some small number) can improve finite
sample performance. One way to achieve such bounds is by truncating the predicted
probabilities generated by gn, similar to the process of weight truncation described
for the IPTW estimator.

10.3 Diagnosing Bias Due to Positivity Violations

Positivity violations can result in substantial bias, with or without a correspond-
ing increase in variance, regardless of the causal effect estimator used. Practical
methods are thus needed to diagnose and quantify estimator-specific positivity bias
for a given model, parameter, and sample. Basic descriptive analyses of treatment
variability within covariate strata can be helpful; however, this approach quickly be-
comes unwieldy when the covariate set is moderately large and includes continuous
or multilevel variables. Cole and Hernan (2008) suggest a range of informal ap-
proaches to diagnose and quantify estimator specific positivity bias when the IPTW
estimator is applied. As they note, well-behaved weights are not sufficient to ensure
the absence of positivity violations. An alternative formulation is to examine the
distribution of the estimated propensity score values given by gn(a | W) for a ∈ A.
However, while useful in diagnosing the presence of positivity violations, examina-
tion of the estimated propensity scores does not provide any quantitative estimate of
the degree to which such violations result in estimator bias and may pose a threat to
inference. The parametric bootstrap can be used to provide an optimistic bias esti-
mate specifically targeted at bias caused by positivity violations and near-violations
(Wang et al. 2006).

10.3.1 The Parametric Bootstrap as a Diagnostic Tool

We focus on the bias of estimators that target a parameter of the observed data
distribution; this target observed data parameter is equal under the randomization
assumption (10.4) to the target causal parameter. [Divergence between the target
observed data parameter and target causal parameter when (10.4) fails is a distinct
issue not addressed by the proposed diagnostic.] The bias in an estimator is the
difference between the true value of the target parameter of the observed data dis-
tribution and the expectation of the estimator applied to a finite sample from that
distribution:

Bias(Ψ̂ , P0, n) = EP0Ψ̂ (Pn) − Ψ (P0),

where we recall that Ψ (P0) is the target observed data parameter, Ψ̂ (Pn) is an es-
timator of that parameter (which may be a function of gn or Qn or both), and Pn
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denotes the empirical distribution of a sample of n i.i.d. observations from the true
observed data distribution P0.

Bias in an estimator can arise due to a range of causes. First, the estimators gn and
Qn may be inconsistent. Second, g0 may not satisfy the positivity assumption. Third,
consistent estimators gn and Qn may still have substantial finite sample bias. This
latter type of finite sample bias arises in particular due to the curse of dimension-
ality in a nonparametric or semiparametric model when gn or Qn is a data-adaptive
estimator, although it can also be substantial for parametric estimators. Fourth, esti-
mated values of gn may be equal or close to zero or one, despite use of a consistent
estimator gn and a distribution g0 that satisfies positivity. The relative contribution
of each of these sources of bias will depend on the model, the true data-generating
distribution, the estimator, and the finite sample.

The parametric bootstrap provides a tool that allows the analyst to explore the ex-
tent to which bias due to any of these causes is affecting a given parameter estimate.
The parametric bootstrap-based bias estimate is defined as

B̂iasPB(Ψ̂ , P̂0, n) = EP̂0
Ψ̂ (P#

n) − Ψ (P̂0),

where P̂0 is an estimate of P0 and P#
n is the empirical distribution of a bootstrap

sample obtained by sampling from P̂0. In other words, the parametric bootstrap is
used to sample from an estimate of the true data-generating distribution, resulting in
multiple simulated data sets. The true data-generating distribution and target param-
eter value in the bootstrapped data are known. A candidate estimator is then applied
to each bootstrapped data set and the mean of the resulting estimates compared with
the known “truth” (i.e., the true parameter value for the bootstrap data-generating
distribution).

We focus on a particular algorithm for parametric bootstrap-based bias estima-
tion, which specifically targets the component of estimator-specific finite sample
bias due to violations and near-violations of the positivity assumption. The goal is
not to provide an accurate estimate of total bias, but rather to provide a diagnostic
tool that can serve as a “red flag” warning that positivity bias may pose a threat to
inference. The distinguishing characteristic of the diagnostic algorithm is its use of
an estimated data-generating distribution P̂0 that both approximates the true P0 as
closely as possible and is compatible with the estimators Q̄n and gn used in Ψ̂ (Pn).
In other words, P̂0 is chosen such that the estimator Ψ̂ applied to bootstrap sam-
ples from P̂0 is guaranteed to be consistent unless g0 fails to satisfy the positivity
assumption or gn is truncated. As a result, the parametric bootstrap provides an op-
timistic estimate of finite sample bias, in which bias due to model misspecification
other than truncation is eliminated.

We refer informally to the resulting bias estimate as BiasET A because in many
settings it will be predominantly composed of bias from the following sources: (1)
violation of the positivity assumption by g0; (2) truncation, if any, of gn in response
to positivity violations; and (3) finite sample bias arising from values of gn close to
zero or one (sometimes referred to as practical violations of the positivity assump-
tion). The term BiasET A is imprecise because the bias estimated by the proposed
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algorithm will also capture some of the bias in Ψ̂ (Pn) due to finite sample bias of
the estimators gn and Q̄n (a form of sparsity only partially related to positivity). Due
to the curse of dimensionality, the contribution of this latter source of bias may be
substantial when gn or Qn is a data-adaptive estimator in a nonparametric or semi-
parametric model. However, the proposed diagnostic algorithm will only capture a
portion of this bias because, unlike P0, P̂0 is guaranteed to have a functional form
that can be well approximated by the data-adaptive algorithms employed by gn and
Qn. The diagnostic algorithm for BiasET A is implemented as follows.

Step 1: Estimate P0. Estimation of P0 requires estimation of QW,0, g0, and QY,0,
We define QP̂0,W = QPn,W (or, in other words, use an estimate based on the em-
pirical distribution of the data), gP̂0

= gn, and Q̄P̂0
= Q̄n. Note that the estimators

QPnW , gn, and Q̄n were all needed for implementation of the IPTW, MLE, and
double robust estimators; the same estimators can be used here. Additional steps
may be required to estimate the entire conditional distribution of Y given (A,W)
(beyond the estimate of its mean given by Q̄n). The true target parameter for the
known distribution P̂0 is only a function of Qn = (QPnW , Q̄n), and Ψ (P̂0) is the
same as the MLE (using Qn) applied to the observed data:

Ψ (P̂0) = Ψ̂MLE(Pn).

Step 2: Generate P#
n by sampling from P̂0. In the second step, we assume that

P̂0 is the true data-generating distribution. Bootstrap samples P#
n, each with n

i.i.d. observations, are generated by sampling from P̂0. For example, W can be
sampled from the empirical distribution, a binary A might be generated as a
Bernoulli with probability gn(1 | W), and a continuous Y can be generated by
adding a N(0, 1) error to Q̄n(A,W) (alternative approaches are also possible).

Step 3: Estimate EP̂0
Ψ̂ (P#

n). Finally, the estimator Ψ̂ is applied to each bootstrap
sample. Depending on the estimator being evaluated, this step involves applying
the estimators gn or Qn or both to each bootstrap sample. If Qn or gn is a data-
adaptive estimator, the corresponding data-adaptive algorithm should be rerun in
each bootstrap sample; otherwise, the coefficients of the corresponding models
should be refit. BiasET A is calculated by comparing the mean of the estimator Ψ̂
across bootstrap samples [EP̂0

Ψ̂IPTW (P#
n)] with the true value of the target param-

eter under the bootstrap data-generating distribution [Ψ (P̂0)]. Application of the
bootstrap to the IPTW estimator offers one particularly sensitive assessment of
positivity bias because, unlike the MLE and double robust estimators, the IPTW
estimator cannot extrapolate based on Q̄n. However, this approach can be ap-
plied to any causal effect estimator, including estimators introduced in Sect. 10.4
that trade off identifiability for proximity to the target parameter. In assessing the
threat posed by positivity violations, the bootstrap should ideally be applied to
both the IPTW estimator and the estimator of choice.

Remarks on interpretation of the bias estimate. We caution against using the
parametric bootstrap for any form of bias correction. The true bias of the estimator
is EP0Ψ̂ (Pn) − Ψ (P0), while the parametric bootstrap estimates EP̂0

Ψ̂ (P#
n) − Ψ (P̂0).
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The performance of the diagnostic thus depends on the extent to which P̂0 approx-
imates the true data-generating distribution. This suggests the importance of using
flexible data-adaptive algorithms to estimate P0. Regardless of estimation approach,
however, when the target parameter Ψ (P0) is poorly identified due to positivity vio-
lations, Ψ (P̂0) may be a poor estimate of Ψ (P0). In such cases one would not expect
the parametric bootstrap to provide a good estimate of the true bias. Further, the
BiasET A implementation of the parametric bootstrap provides a deliberately opti-
mistic bias estimate by excluding bias due to model misspecifcation for the estima-
tors gn and Q̄n.

Rather, the parametric bootstrap is proposed as a diagnostic tool. Even when the
data-generating distribution is not estimated consistently, the bias estimate provided
by the parametric bootstrap remains interpretable in a world where the estimated
data-generating mechanism represents the truth. If the estimated bias is large, an
analyst who disregards the implied caution is relying on an unsubstantiated hope that
first, he or she has inconsistently estimated the data-generating distribution but still
done a reasonable job estimating the causal effect of interest; and second, the true
data-generating distribution is less affected by positivity (and other finite sample)
bias than is the analyst’s best estimate of it.

The threshold level of BiasET A that is considered problematic will vary depending
on the scientific question and the point and variance estimates of the causal effect.
With that caveat, we suggest the following two general situations in which BiasET A

can be considered a “red flag” warning: (1) when BiasET A is of the same magnitude
as (or larger than) the estimated standard error of the estimator and (2) when the in-
terpretation of a bias-corrected confidence interval would differ meaningfully from
initial conclusions.

10.3.2 Simulations

Data were simulated using a data-generating distribution published by Freedman
and Berk (2008). Two baseline covariates, W = (W1,W2), were generated bivariate
normal, N(μ, Σ), with μ1 = 0.5, μ2 = 1, and

Σ =

[
2 1
1 1

]
.

Y was generated as 1 + A + W1 + 2W2 + N(0, 1), and g0(1 | W) was given by
Φ(0.5+ 0.25W1 + 0.75W2), where Φ is the CDF of the standard normal distribution.
With this treatment mechanism g0 ∈ [0.001, 1]. The target parameter was E0(Y1−Y0)
[corresponding to β(1) marginal structural model m(a | β) = β(0) + β(1)a)]. The true
value of the target parameter Ψ (P0) = 1.

The bias, variance, and mean squared error of the MLE, IPTW, A-IPTW, and
TMLE estimators were estimated by applying each estimator to 250 samples of size
1000 drawn from this data-generating distribution. The four estimators were imple-
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mented with each of the following three approaches: (1) correctly specified model
to estimate both Q̄0 and g0 (CC), (2) correctly specified model to estimate Q̄0 and
a misspecified model to estimate g0 obtained by omitting W2 from gn (CM), and
(3) correctly specified model to estimate g0 and a misspecified model to estimate
Q̄0 obtained by omitting W2 from Q̄n (MC). The double robust and IPTW estima-
tors were further implemented using the following sets of bounds for the values of
gn: [0, 1] (no bounding), [0.025, 0.975], [0.050, 0.950], and [0.100, 0.900]. For the
IPTW estimator, the latter three bounds correspond to truncation of the unstabilized
weights at [1.03, 40], [1.05, 20], and [1.11, 10].

The parametric bootstrap was then applied using the BiasET A algorithm to 10
of the 250 samples. For each sample and for each model specification, Qn and gn

were used to draw 1000 parametric bootstrap samples. Specifically, W was drawn
from the empirical distribution for that sample, A was generated given the boot-
strapped values of W as a series of Bernoulli trials with probability gn(1 | W), and Y
was generated given the bootstrapped values of A,W by adding an N(0, 1) error to
Q̄n(A,W). Each candidate estimator was then applied to each bootstrap sample. In
this step, the parametric models gn and Q̄n were held fixed and their coefficients re-
fit. BiasET A was calculated for each of the 10 samples as the difference between the
mean of the bootstrapped estimator and the initial MLE estimateΨ (P̂0) = Ψ̂MLE(Pn)
in that sample.

Table 10.1 displays the effect of positivity violations and near-violations on es-
timator behavior across 250 samples. MSE remained minimally biased when the
estimator Q̄n was consistent; use of inconsistent Q̄n resulted in bias. Given consis-
tent estimators Q̄n and gn, the IPTW estimator was more biased than the other three
estimators, as expected given the practical positivity violations present in the sim-
ulation. The finite sample performance of the A-IPTW and TMLE estimators was
also affected by the presence of practical positivity violations. The double robust
estimators achieved the lowest MSE when (1) Q̄n was consistent and (2) gn was in-
consistent but satisfied positivity (as a result either of truncation or of omission of
W2, a major source of positivity bias). Interestingly, in this simulation TMLE still
did quite well when Q̄n was inconsistent and the model used for gn was correctly
specified but its values bounded at [0.025, 0.925].

The choice of bound imposed on gn affected both the bias and variance of the
IPTW estimator, A-IPTW estimator, and TMLE. As expected, truncation of the
IPTW weights improved the variance of the estimator but increased bias. Without
additional diagnostic information, an analyst who observed the dramatic decline in
the variance of the IPTW estimator that occurred with weight truncation might have
concluded that truncation improved estimator performance; however, in this simu-
lation weight truncation increased MSE. In contrast, and as predicted by theory, use
of bounded values of gn decreased MSE of the double robust estimators despite the
inconsistency introduced into gn.

Table 10.2 shows the mean of BiasET A across 10 of the 250 samples; the variance
of BiasET A across the samples was small [results available in Petersen et al. (2010)].
Based on the results shown in Table 10.1, a red flag was needed for the IPTW es-
timator with and without bounded gn and for the TMLE without bounded gn. (The
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Table 10.1 Performance of estimators in 250 simulated data sets of size 1000; rows for each
estimator indicate the bound on gn. CC is correctly specified Q̄n and gn, CM is correctly specified
Q̄n and misspecified gn, and MC is misspecified Q̄n and correctly specified gn

CC CM MC
Bias Var MSE Bias Var MSE Bias Var MSE

MLE
0.007 0.009 0.009 0.007 0.009 0.009 1.145 0.025 1.336

IPTW
[0.000, 1.000] 0.544 0.693 0.989 1.547 0.267 2.660 0.544 0.693 0.989
[0.025, 0.975] 1.080 0.090 1.257 1.807 0.077 3.340 1.080 0.090 1.257
[0.050, 0.950] 1.437 0.059 2.123 2.062 0.054 4.306 1.437 0.059 2.123
[0.100, 0.900] 1.935 0.043 3.787 2.456 0.043 6.076 1.935 0.043 3.787

A-IPTW
[0.000, 1.000] 0.080 0.966 0.972 −0.003 0.032 0.032 −0.096 16.978 16.987
[0.025, 0.975] 0.012 0.017 0.017 0.006 0.017 0.017 0.430 0.035 0.219
[0.050, 0.950] 0.011 0.014 0.014 0.009 0.014 0.014 0.556 0.025 0.334
[0.100, 0.900] 0.009 0.011 0.011 0.008 0.011 0.011 0.706 0.020 0.519

TMLE
[0.000, 1.000] 0.251 0.478 0.540 0.026 0.059 0.060 −0.675 0.367 0.824
[0.025, 0.975] 0.016 0.028 0.028 0.005 0.021 0.021 −0.004 0.049 0.049
[0.050, 0.950] 0.013 0.019 0.020 0.010 0.016 0.017 0.163 0.027 0.054
[0.100, 0.900] 0.010 0.014 0.014 0.009 0.013 0.013 0.384 0.018 0.166

Table 10.2 Finite sample bias and mean of BiasET A across ten simulated data sets of size 1000

Bound on gn
[0.000, 1.000] [0.025, 0.975] [0.050, 0.950] [0.100, 0.900]

MLE
Finite sample bias CC 7.01e−03 – – –

Mean(BiasET A) CC −8.51e−04 – – –
Mean(BiasET A) CM 2.39e−04 – – –
Mean(BiasET A) MC 5.12e−04 – – –

IPTW
Finite sample bias CC 5.44e−01 1.08e+00 1.44e+00 1.93e+00

Mean(BiasET A) CC 4.22e−01 1.04e+00 1.40e+00 1.90e+00
Mean(BiasET A) CM 1.34e−01 4.83e−01 7.84e−01 1.23e+00
Mean(BiasET A) MC 2.98e−01 7.39e−01 9.95e−01 1.35e+00

A-IPTW
Finite sample bias CC 7.99e−02 1.25e−02 1.07e−02 8.78e−03

Mean(BiasET A) CC 1.86e−03 2.80e−03 5.89e−05 1.65e−03
Mean(BiasET A) CM −3.68e−04 −6.36e−04 2.56e−05 5.72e−04
Mean(BiasET A) MC −3.59e−04 1.21e−04 −1.18e−04 −1.09e−03

TMLE
Finite sample bias CC 2.51e−01 1.60e−02 1.31e−02 9.98e−03

Mean(BiasET A) CC 1.74e−01 4.28e−03 2.65e−04 1.84e−03
Mean(BiasET A) CM 2.70e−02 −3.07e−04 2.15e−04 7.74e−04
Mean(BiasET A) MC 1.11e−01 9.82e−04 −2.17e−04 −1.47e−03
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A-IPTW estimator without bounded gn exhibited a small to moderate amount of
bias; however, the variance would likely have alerted an analyst to the presence of
sparsity.) The parametric bootstrap correctly identified the presence of substantial
finite sample bias in the IPTW estimator for all truncation levels and in the TMLE
with unbounded gn. BiasET A was minimal for the remaining estimators.

For correctly specified Q̄n and gn (gn unbounded), the mean of BiasET A across
the ten samples was 78% and 69% of the true finite sample bias of the IPTW es-
timator and TMLE, respectively. The fact that the true bias was underestimated in
both cases illustrates a limitation of the parametric bootstrap: its performance, even
as an intentionally optimistic bias estimate, suffers when the target estimator is not
asymptotically normally distributed. Bounding gn improved the ability of the boot-
strap to accurately diagnose bias by improving estimator behavior (in addition to
adding a new source of bias due to truncation of gn). This finding suggests that
practical application of the bootstrap to a given estimator should at minimum gen-
erate BiasET A estimates for a single low level of truncation of gn in addition to any
unbounded estimate. When gn was bounded, the mean of BiasET A for the IPTW es-
timator across the 10 samples was 96 to 98% of the true finite sample bias; the finite
sample bias for the TMLE with bounded gn was accurately estimated to be mini-
mal. Misspecification of gn or Q̄n by excluding a key covariate led to an estimated
data-generating distribution with less sparsity than the true P0, and as a result the
parametric bootstrap underestimated bias to a greater extent for these model speci-
fications.

While use of an unbounded gn resulted in an underestimate of the true degree
of finite sample bias for the IPTW and TMLE, in this simulation the parametric
bootstrap would still have functioned well as a diagnostic in each of the ten samples
considered. Table 10.3 reports the output that would have been available to an ana-
lyst applying the parametric bootstrap to the unbounded IPTW and TMLE for each
of the ten samples. In all samples BiasET A was of roughly the same magnitude as the
estimated standard error of the estimator, and in most was of significant magnitude
relative to the point estimate of the causal effect.

The simulation demonstrates how the parametric bootstrap can be used to in-
vestigate the tradeoffs between bias due to weight truncation/bounding of gn and
positivity bias. The parametric bootstrap accurately diagnosed both an increase in
the bias of the IPTW estimator with increasing truncation and a reduction in the bias
of the TMLE with truncation. When viewed in light of the standard error estimates
under different levels of truncation, the diagnostic would have accurately suggested
that truncation of gn for the TMLE was beneficial, while truncation of the weights
for the IPTW estimator was of questionable benefit. The parametric bootstrap can
also be used to provide a more refined approach to choosing an optimal truncation
constant based on estimated MSE (Bembom and van der Laan 2008).

These results further illustrate the benefit of applying the parametric bootstrap
to the IPTW estimator in addition to the analyst’s estimator of choice. Diagnosis
of substantial bias in the IPTW estimator due to positivity violations would have
alerted an analyst that MLE was relying heavily on extrapolation and that the double
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Table 10.3 Estimated causal treatment effect, standard error, and BiasET A in ten simulated datasets
of size 1000; gn and Qn correctly specified, gn unbounded

IPTW TMLE

Sample β̂IPTW ŜE BiasET A β̂T MLE ŜE BiasET A

1 0.207 0.203 0.473 0.827 0.197 0.172
2 1.722 0.197 0.425 0.734 0.114 0.153
3 1.957 0.184 0.306 1.379 0.105 0.087
4 1.926 0.206 0.510 0.237 0.089 0.252
5 2.201 0.192 0.565 2.548 0.182 0.245
6 0.035 0.236 0.520 0.533 0.228 0.234
7 1.799 0.180 0.346 1.781 0.184 0.150
8 0.471 0.215 0.420 1.066 0.114 0.188
9 2.749 0.184 0.391 1.974 0.114 0.161
10 0.095 0.228 0.263 0.628 0.173 0.099

robust estimators were sensitive to bias arising from misspecification of the model
used to estimate Q̄0.

10.3.3 HIV Data Application

We analyzed an observational cohort of HIV-infected patients in order to estimate
the effect of mutations in the HIV protease enzyme on viral response to the antiretro-
viral drug lopinavir. The question, data, and analysis have been described previously
(Bembom et al. 2009). Here, a simplified version of prior analyses was performed
and the parametric bootstrap was applied to investigate the potential impact of pos-
itivity violations on results.

Baseline covariates, mutation profiles prior to treatment change, and viral re-
sponse to therapy were collected for 401 treatment change episodes (TCEs) in which
protease-inhibitor-experienced subjects initiated a new antiretroviral regimen con-
taining the drug lopinavir. We focused on 2 target mutations in the protease enzyme:
p82AFST and p82MLC (present in 25% and 1% of TCEs, respectively). The data
for each target mutation consisted of O = (W, A, Y), where A was a binary indicator
that the target mutation was present prior to treatment change, W was a set of 35
baseline characteristics including summaries of past treatment history, mutations in
the reverse transcriptase enzyme, and a genotypic susceptibility score for the back-
ground regimen (based on the Stanford scoring system). The outcome Y was the
change in log10(viral load) following initiation of the new antiretroviral regimen.
The target observed data parameter was E0[E0(Y | A = 1,W) − E(Y | A = 0,W)],
equal under (10.4) to the average treatment effect E0(Y1 − Y0).

Effect estimates were obtained for each mutation using the IPTW estimator and
TMLE with a logistic fluctuation (Chap. 7). Q̄0 and g0 were estimated with step-
wise forward selection of main terms based on the AIC criterion. Estimators were
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implemented using both unbounded values for gn(A | W) and values truncated at
[0.025, 0.975]. Standard errors were estimated using the influence curve treating the
values of gn as fixed. The parametric bootstrap was used to estimate bias for each
estimator using 1000 samples and the BiasET A algorithm.

Results for both mutations are presented in Table 10.4. p82AFST is known to be
a major mutation for lopinavir resistance (Johnson et al. 2009). The current results
support this finding; the IPTW and TMLE point estimates were similar and both
suggested a significantly more positive change in viral load (corresponding to a less
effective drug response) among subjects with the mutation as compared to those
without it. The parametric-bootstrap-based bias estimate was minimal, raising no
red flag that these findings might be attributable to positivity bias.

The role of mutation p82CLM is less clear based on existing knowledge; depend-
ing on the scoring system used it is either not considered a lopinavir resistance mu-
tation, or given an intermediate lopinavir resistance score (http://hivdb.stanford.edu,
Johnson et al. 2009). Initial inspection of the point estimates and standard errors
in the current analysis would have suggested that p82CLM had a large and highly
significant effect on lopinavir resistance. Application of the parametric-bootstrap-
based diagnostic, however, would have suggested that these results should be inter-
preted with caution. In particular, the bias estimate for the unbounded TMLE was
larger than the estimated standard error, while the bias estimate for the unbounded
IPTW estimator was of roughly the same magnitude. While neither bias estimate
was of sufficient magnitude relative to the point estimate to change inference, their
size relative to the corresponding standard errors would have suggested that further
investigation was warranted.

In response, the nonparametric bootstrap (based on 1000 bootstrap samples) was
applied to provide an alternative estimate of the standard error. Using this alternative
approach, the standard errors for the unbounded TMLE and IPTW estimator of the
effect of p82MLC were estimated to be 2.77 and 1.17, respectively. Nonparametric-
bootstrap-based standard error estimates for the bounded TMLE and IPTW estima-
tor were lower (0.84 and 1.12, respectively), but still substantially higher than the
initial naive standard error estimates. These revised standard error estimates dramat-
ically changed interpretation of results, suggesting that the current analysis was un-
able to provide essentially any information on the presence, magnitude, or direction
of the p82CLM effect. (Nonparametric-bootstrap-based standard error estimates for
p82AFST were also somewhat larger than initial estimates but did not change infer-
ence).

In this example, BiasET A is expected to include some nonpositivity bias due to
the curse of dimensionality. However, the resulting bias estimate should be inter-
preted as highly optimistic (i.e., as an underestimate of the true finite sample bias).
The parametric bootstrap sampled from estimates of g0 and Q̄0 that had been fit us-
ing the forward stepwise algorithm. This ensured that gn and Q̄n (which applied the
same stepwise algorithm) would do a good job approximating gP̂0

and Q̄P̂0
in each

bootstrap sample. Clearly, no such guarantee exists for the true P0. This simple ex-
ample further illustrates the utility of the nonparametric bootstrap for standard error
estimation in the setting of sparse data and positivity violations. In this particular

http://hivdb.stanford.edu
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Table 10.4 Point estimate, standard error, and parametric-bootstrap-based bias estimates for the
effect of two HIV resistance mutations on viral response

TMLE IPTW

β̂T MLE ŜE BiasET A β̂IPTW ŜE BiasET A

p82AFST
[0.000, 1.000] 0.65 0.13 −0.01 0.66 0.15 −0.01
[0.025, 0.975] 0.62 0.13 0.00 0.66 0.15 −0.01

p82MLC
[0.000, 1.000] 2.85 0.14 −0.37 1.29 0.14 0.09
[0.025, 0.975] 0.86 0.10 −0.01 0.80 0.23 0.08

example, the improved variance estimate provided by the nonparametric bootstrap
was sufficient to prevent positivity violations from leading to incorrect inference. As
demonstrated in the simulations, however, in other settings even accurate variance
estimates may fail to alert the analyst to threats posed by positivity violations.

10.4 Practical Approaches to Positivity Violations

Approach #1: Change the projection function h(A,V). Throughout this chapter
we have focused on the target causal parameter β(FX ,m, h) defined according to
(10.2) as the projection of the EFX (Ya | V) on the working marginal structural model
m(a,V | β). Choice of function h(a,V) both defines the target parameter by spec-
ifying which values of (A,V) should be given greater weight when estimating β0
and, by assumption (10.6), defines the positivity assumption needed for β0 to be
identifiable.

We have focused on parameters indexed by h(a,V) = 1, a choice that gives equal
weight to estimating the counterfactual outcome for all values (a, v) (Neugebauer
and van der Laan 2007). Alternative choices of h(a,V) can significantly weaken the
needed positivity assumption. For example, if the target of inference only involves
counterfactual outcomes among some restricted range [c, d] of possible values A,
defining h(a,V) = I(a ∈ [c, d]) weakens the positivity assumption by requiring
sufficient variability only in the assignment of treatment levels within the target
range. In some settings, the causal parameter defined by such a projection over a
limited range of A might be of substantial a priori interest. For example, one may
wish to focus estimation of a drug dose response curve only on the range of doses
considered reasonable for routine clinical use, rather than on the full range of doses
theoretically possible or observed in a given data set.

An alternative approach, commonly employed in the context of IPTW esti-
mation and introduced in Sect. 10.2.2, is to choose h(a,V) = g(a | V), where
g(a | V) = P(A = a | V) is the conditional probability of treatment given the
covariates included in the marginal structural model. In the setting of IPTW estima-
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tion this choice corresponds to the use of stabilizing weights, a common approach
to reducing both the variance of the IPTW estimator in the face of sparsity (Robins
et al. 2000a). When the target causal parameter is defined using a marginal struc-
tural working model, use of h(a,V) = g(a,V) corresponds to a decision to define a
target parameter that gives greater weight to those regions of the joint distribution
of (A,V) that are well supported and that relies on smoothing or extrapolation to a
greater degree in areas that are not (Neugebauer and van der Laan 2007).

Use of a marginal structural working model makes clear that the utility of choos-
ing h(a,V) = g(a | V) as a method to approach data sparsity is not limited to
the IPTW estimator. Recall that MLE can be implemented by regressing predicted
values for Ya on (a,V) according to model m(a,V | β) with weights provided by
h(a,V). When the projection function is chosen to be g0(a | V), this corresponds to
a weighted regression in which weights are proportional to the degree of support in
the data.

Even when one is ideally interested in the entire causal curve [implying a tar-
get parameter defined by choice h(a,V) = 1], specification of alternative choices
for h offers a means of improving identifiability, at a cost of redefining the target
parameter. For example, one can define a family of target parameters indexed by
hδ(a,V) = I(a ∈ [c(δ), d(δ)]), where an increase in δ corresponds to progressive
restriction on the range of treatment levels targeted by estimation. Fluctuation of δ
thus corresponds to trading a focus on more limited areas of the causal curve for im-
proved parameter identifiability. Selection of the final target from among this family
can be based on an estimate of bias provided by the parametric bootstrap. For ex-
ample, the bootstrap can be used to select the parameter with the smallest δ below
some prespecified threshold for allowable BiasET A.

Approach #2: Restrict the adjustment set. Exclusion of problematic Ws (i.e.,
those covariates resulting in positivity violations or near-violations) from the ad-
justment set provides a means to trade confounding bias for a reduction in positivity
violations (Bembom et al. 2008). In some cases, exclusion of covariates from the
adjustment set may come at little or no cost to bias in the estimate of the target
parameter. In particular, a subset of W that excludes covariates responsible for posi-
tivity violations may still be sufficient to control for confounding. In other words, a
subset W ′ ⊂ W may exist for which both identifying assumptions (10.4) and (10.5)
hold [i.e., Ya

∐
A | W ′ and g0(a | W ′) > 0, a ∈ A], while positivity fails for the full

set of covariates. In practice, this approach can be implemented by first determining
candidate subsets of W under which the positivity assumption holds, and then using
causal graphs to assess whether any of these candidates is sufficient to control for
confounding. Even when no such candidate set can be identified, background knowl-
edge (or sensitivity analysis) may suggest that problematic Ws represent a minimal
source of confounding bias (Moore et al. 2009). Often, however, those covariates
that are most problematic from a positivity perspective are also strong confounders.

As suggested with respect to the choice of projection function h(a,V) in the pre-
vious section, the causal effect estimator can be fine-tuned to select the degree of
restriction on the adjustment set W according to some prespecified rule for elim-
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inating covariates from the adjustment set, and the parametric bootstrap used to
select the minimal degree of restriction that maintains BiasET A below an acceptable
threshold (Bembom et al. 2008). In the case of substantial positivity violations, such
an approach can result in small covariate adjustment sets. While such limited covari-
ate adjustment accurately reflects a target parameter that is poorly supported by the
available data, the resulting estimate can be difficult to interpret and will no longer
carry a causal intepretation.

Approach #3: Restrict the sample. An alternative, sometimes referred to as “trim-
ming,” discards classes of subjects for whom there exists no or limited variability
in observed treatment assignment. A causal effect is then estimated in the remain-
ing subsample. This approach is popular in econometrics and social science (Crump
et al. 2006; LaLonde 1986; Heckman et al. 1997; Dehejia and Wahba 1999).

When the subset of covariates responsible for positivity violations is low- or one-
dimensional, such an approach can be implemented simply by discarding subjects
with covariate values not represented in all treatment groups. For example, say that
one aims to estimate the average effect of a binary treatment and, in order to con-
trol for confounding, one needs to adjust for W, a covariate with possible levels
{1, 2, 3, 4}. However, inspection of the data reveals that no one in the sample with
W = 4 received treatment [i.e., gn(1 | W = 4) = 0]. The sample can be trimmed
by excluding those subjects for whom W = 4 prior to applying a given causal effect
estimator for the average treatment effect. As a result, the target parameter is shifted
from E0(Y1−Y0) to E0(Y1−Y0 | W < 4), and positivity assumption (10.5) now holds
(as W = 4 occurs with zero probability).

Often W is too high-dimensional to make this straightforward implementation
feasible; in such a case matching on the propensity score provides a means to trim
the sample. There is an extensive literature on propensity score-based effect estima-
tors; however, such estimators are beyond the scope of the current review. Several
potential problems arise with the use of trimming methods to address positivity vio-
lations. First, discarding subjects responsible for positivity violations shrinks sample
size and thus runs the risk of increasing the variance of the effect estimate. Further,
sample size and the extent to which positivity violations arise by chance are closely
related. Depending on how trimming is implemented, new positivity violations can
be introduced as sample size shrinks. Second, restriction of the sample may result in
a causal effect for a population of limited interest. In other words, as can occur with
alternative approaches to improving identifiability by shifting the target of inference,
the parameter actually estimated may be far from the initial target. Further, when
the criterion used to restrict the sample involves a summary of high-dimensional
covariates, such as is provided the propensity score, it can be difficult to interpret
the parameter estimated. Finally, when treatment is longitudinal, the covariates re-
sponsible for positivity violations may themselves be affected by past treatment.
Trimming to remove positivity violations in this setting amounts to conditioning on
posttreatment covariates and can thus introduce new bias.

Crump proposes an approach to trimming that falls within the general strategy
of redefining the target parameter in order to explicitly capture the tradeoff between
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parameter identifiability and proximity to the initial target (Crump et al. 2006). In
addition to focusing on the treatment effect in an a priori specified target population,
he defines an alternative target parameter corresponding to the average treatment ef-
fect in that subsample of the population for which the most precise estimate can
be achieved. Crump further suggests the potential for extending this approach to
achieve an optimal (according to some user-specified criterion) tradeoff between the
representativeness of the subsample in which the effect is estimated and the variance
of the estimate.

Approach #4: Change the intervention of interest. A final alternative for improv-
ing the identifiability of a causal parameter in the presence of positivity violations
is to redefine the intervention of interest. Realistic rules rely on an estimate of the
propensity score g0(a | W) to define interventions that explicitly avoid positivity
violations. This ensures that the causal parameter estimated is sufficiently supported
by existing data.

Realistic interventions avoid positivity violations by first identifying subjects for
whom a given treatment assignment is not realistic (i.e., subjects whose propen-
sity score for a given treatment is small or zero) and then assigning an alternative
treatment with better data support to those individuals. Such an approach is made
possible by focusing on the causal effects of dynamic treatment regimes (van der
Laan and Petersen 2007a; Robins et al. 2008). The causal parameters described thus
far are summaries of the counterfactual outcome distribution under a fixed treat-
ment applied uniformly across the target population. In contrast, a dynamic regime
assigns treatment in response to patient covariate values. This characteristic makes
it possible to define interventions under which a subject is only assigned treatments
that are possible (or “realistic”) given a subject’s covariate values.

To continue the previous example in which no subjects with W = 4 were
treated, a realistic treatment rule might take the form “treat only those subjects
with W less than 4.” More formally, let d(W) refer to a treatment rule that de-
terministically assigns a treatment a ∈ A based on a subject’s covariates W and
consider the rule d(W) = I(W < 4). Let Yd denote the counterfactual outcome
under the treatment rule d(W), which corresponds to treating a subject if and
only if his or her covariate W is below 4. In this example E0(Y0) is identified as∑

w E0(Y | W = w, A = 0)P0(W = w); however, since E0(Y | W = w, A = 1) is
undefined for W = 4, E0(Y1) is not identified (unless we are willing to extrapolate
based on W < 4). In contrast, E0(Yd) is identified by the nonparametric g-formula:∑

w E0(Y = y | W = w, A = d(W))P0(W = w). Thus the average treatment effect
E0(Yd−Y0), but not E0(Y1−Y0), is identified. The redefined causal parameter can be
interpreted as the difference in expected counterfactual outcome if only those sub-
jects with W < 4 were treated as compared to the outcome if no one were treated.

More generally, realistic rules indexed by a given static treatment a assign a only
to those individuals for whom the probability of receiving a is greater than some
user-specified probability α (such as α > 0.05). Let d(a,W) denote the rule indexed
by static treatment a. If A is binary, then d(1,W) = 1 if g(1 | W) > α, otherwise
d(1,W) = 0. Similarly, d(0,W) = 0 if g(0 | W) > α; otherwise d(0,W) = 1. Real-
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istic causal parameters are defined as some parameter of the distribution of Yd(a,W)
(possibly conditional on some subset of baseline covariates V ⊂ W). Estimation
of the causal effects of dynamic rules d(W) allows the positivity assumption to be
relaxed to g(d(W) | W) > 0, a.e (i.e., only those treatments that would be assigned
based on rule d to patients with covariates W need to occur with positive probability
within strata of W). Realistic rules d(a,W) are designed to satisfy this assumption
by definition. When a given treatment level a is unrealistic [i.e., when g(a | W) < α],
realistic rules assign an alternative from among viable (well-supported) choices. The
choice of an alternative is straightforward when treatment is binary. When treatment
has more than two levels, however, a rule for selecting the alternative treatment level
is needed. One option is to assign a treatment level that is as close as possible to the
original assignment while still remaining realistic. For example, if high doses of
drugs occur with low probability in a certain subset of the population, a realistic
rule might assign the maximum dose that occurs with probability > α in that subset.
An alternative class of dynamic regimes, referred to as “intent-to-treat” rules, in-
stead assigns a subject to his or her observed treatment value if an initial assignment
is deemed unrealistic. Moore et al. (2009) and Bembom and van der Laan (2007a)
provide illustrations of these types of realistic rules using simulated and real data.

The causal effects of realistic rules clearly differ from their static counterparts.
The extent to which the new target parameter diverges from the initial parameter
of interest depends on both the extent to which positivity violations occur in the
finite sample (i.e., the extent of support available in the data for the initial target
parameter) and on a user-supplied threshold α. The parametric bootstrap approach
presented in Sect. 10.3 can be employed to data-adaptively select α based on the
level of BiasET A deemed acceptable (Bembom and van der Laan 2007a).

Selection among a family of parameters. Each of the methods described for es-
timating causal effects in the presence of data sparsity corresponds to a particular
strategy for altering the target parameter in exchange for improved identifiability. In
each case, we have outlined how this tradeoff could be made systematically based
on some user-specified criterion such as the bias estimate provided by the paramet-
ric bootstrap. We now summarize this general approach in terms of a formal method
for estimation in the face of positivity violations.

1. Define a family of parameters. The family should include the initial target of in-
ference together with a set of related parameters, indexed by γ in index set I,
where γ represents the extent to which a given family member trades improved
identifiability for decreased proximity to the initial target. In the examples given
in the previous section, γ could be used to index a set of projection functions
h(a,V) based on an increasingly restrictive range of the possible values A, de-
gree to which the adjustment covariate set or sample is restricted, or choice of a
threshold for defining a realistic rule.

2. Apply the parametric bootstrap to generate an estimate BiasET A for each γ ∈ I.
In particular, this involves estimating the data-generating distribution, simulating
new data from this estimate, and then applying an estimator to each target indexed
by γ.
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3. Select the target parameter from among the set that falls below a prespecified
threshold for acceptable BiasET A. In particular, select the parameter from within
the set that is indexed by the value γ that corresponds to the greatest proximity
to the initial target.

This approach allows an estimator to be defined in terms of an algorithm that iden-
tifies and estimates the parameter within a candidate family that is as close to the
initial target of inference as possible while remaining within some user-supplied
limit on the extent of tolerable positivity violations.

10.5 Discussion

The identifiability of causal effects relies on sufficient variation in treatment as-
signment within covariate strata. The strong version of positivity requires that each
possible treatment occur with positive probability in each covariate stratum; de-
pending on the model and target parameter, this assumption can be relaxed to some
extent. In addition to assessing identifiability based on measurement of and control
for sufficient confounders, data analyses should directly assess threats to identifi-
ability based on positivity violations. The parametric bootstrap is a practical tool
for assessing such threats, and provides a quantitative estimator-specific estimate of
bias arising due to positivity violations.

This chapter has focused on the positivity assumption for the causal effect of
a treatment assigned at a single time point. Extension to a longitudinal setting in
which the goal is to estimate the effect of multiple treatments assigned sequentially
over time introduces considerable additional complexity. First, practical violations
of the positivity assumption can arise more readily in this setting. Under the lon-
gitudinal version of the positivity assumption the conditional probability of each
possible treatment history should remain positive regardless of covariate history.
However, this probability is the product of time-point-specific treatment probabili-
ties given the past. When the product is taken over multiple time points, it is easy for
treatment histories with very small conditional probabilities to arise. Second, longi-
tudinal data make it harder to diagnose the bias arising due to positivity violations.
Implementation of the parametric bootstrap in longitudinal settings requires Monte
Carlo simulation both to implement the MLE and to generate each bootstrap sam-
ple. In particular, this requires estimating and sampling from the time-point-specific
conditional distributions of all covariates and treatment given the past. Additional
research on assessing the impact of positivity bias on longitudinal causal parameters
is needed, including investigation of the parametric bootstrap in this setting.

When positivity violations occur for structural reasons rather than due to chance,
a causal parameter that avoids these positivity violations will often be of substantial
interest. For example, when certain treatment levels are contraindicated for certain
types of individuals, the average treatment effect in the population may be of less
interest than the effect of treatment among that subset of the population without
contraindications, or, alternatively, than the effect of an intervention that assigns
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treatment only to those subjects without contraindications. Similarly, the effect of a
multilevel treatment may be of greatest interest for only a subset of treatment levels.

In other cases researchers may be happy to settle for a better estimate of a less
interesting parameter. Sample restriction, estimation of realistic parameters, and
change in projection function h(a,V) all change the causal effect being estimated;
in contrast, restriction of the covariate adjustment set often results in estimation of a
noncausal parameter. However, all of these approaches can be understood as means
to shift from a poorly identified initial target toward a parameter that is less ambi-
tious but more fully supported by the available data. The new estimand is not deter-
mined a priori by the question of interst, but rather is driven by the observed data
distribution in the finite sample at hand. There is thus an explicit tradeoff between
identifiability and proximity to the initial target of inference. Ideally, this tradeoff
will be made in a systematic way rather than on an ad hoc basis at the discretion
of the investigator. Definition of an estimator that selects among a family of param-
eters according to some prespecified criteria is a means to formalize this tradeoff.
An estimate of bias based on the parametric bootstrap can be used to implement the
tradeoff in practice.

In summary, we offer the following advice for applied analyses. First, define
the causal effect of interest based on careful consideration of structural positivity
violations. Second, consider estimator behavior in the context of positivity viola-
tions when selecting an estimator. Third, apply the parametric bootstrap to quan-
tify the extent of estimator bias under data simulated to approximate the true data-
generating distribution. Fourth, when positivity violations are a concern, choose an
estimator that selects systematically from among a family of parameters based on
the tradeoff between data support and proximity to the initial target of inference.

10.6 Notes and Further Reading

While perhaps less well-recognized than confounding bias, violations and near-
violations of the positivity assumption can increase both the variance and bias of
causal effect estimates, and if undiagnosed can seriously threaten the validity of
causal inference. The dangers of causal effect estimation in the absence of adequate
data support have long been understood (Cochran 1957). More recent causal infer-
ence literature refers to the need for adequate exposure variability within confounder
strata as the assumption of positivity or experimental treatment assignment (Robins
1986, 1987a, 2000). A summary of estimator behavior in the face of positivity viola-
tions is also discussed in previous work (Neugebauer and van der Laan 2005, 2007;
Bembom and van der Laan 2007a; Moore et al. 2009; Cole and Hernan 2008). Ad-
ditional simulations are discussed in Petersen et al. (2010), the article from which
this chapter was adapted.
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Chapter 11

Robust Analysis of RCTs Using Generalized

Linear Models

Michael Rosenblum

It is typical in RCTs for extensive information to be collected on subjects prior to
randomization. For example, age, ethnicity, socioeconomic status, history of dis-
ease, and family history of disease may be recorded. Baseline information can be
leveraged to obtain more precise estimates of treatment effects than the standard un-
adjusted estimator. This is often done by carrying out model-based analyses at the
end of the trial, where baseline variables predictive of the primary study outcome
are included in the model. As shown in Moore and van der Laan (2007), such analy-
ses have potential to improve precision and, if carried out in the appropriate manner,
give asymptotically unbiased, locally efficient estimates of the marginal treatment
effect even when the model used is arbitrarily misspecified.

In this chapter, we extend the results of Moore and van der Laan (2007) for lin-
ear and logistic regression models to a wider range of generalized linear models.
Our main result implies that a large class of generalized linear models, such as lin-
ear regression models (for continuous outcomes), logistic regression models (for
binary outcomes), Poisson regression models (for count data), and gamma regres-
sion models (for positive-valued outcomes), can be used to produce estimators that
are asymptotically unbiased even when the model is arbitrarily misspecified. The
estimators that we show to have this property are TMLEs that use the fits of such
generalized linear models as initial density estimators. The results hold when the
canonical link function for the family of generalized linear models is used, which is
commonly the default link function used.

In this chapter we describe (1) a class of model-based estimators particularly
useful in analyzing RCT results and (2) a relatively simple and useful applica-
tion of TMLE. We also show a new robustness property of Poisson regression
models when used in RCTs; this result is the log-linear analog to the robust-
ness to model misspecification of ANCOVA for linear models when used in
RCTs.

187M.J. van der Laan and S. Rose, Targeted Learning: Causal Inference for Observational
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© Springer Science+Business Media, LLC 2011



188 Michael Rosenblum

The TMLEs we present below are examples of parametric MLEs, double ro-
bust estimators (Scharfstein et al. 1999; Robins 2000; Robins and Rotnitzky 2001;
van der Laan and Robins 2003), and estimators in Tsiatis (2006) and Zhang et al.
(2008). The estimators we present are special cases of a class of estimators in the
Comments to the Rejoinder to Scharfstein et al. (1999, p. 1141), for RCTs. Their
arguments involving parametric generalized linear models with canonical link func-
tions imply that the estimators given in this chapter are asymptotically unbiased
under arbitrary model misspecification, and are locally efficient.

11.1 Summary of Main Result

We are interested in estimating the marginal treatment effect of a randomized treat-
ment or intervention. We want to compare the average of the outcomes for the pop-
ulation of interest under the following two scenarios: (1) had everyone in the pop-
ulation received the treatment and (2) had everyone in the population received the
control. These treatment-specific marginal means can be contrasted in many ways.
For example, we could be interested in the risk difference, the relative risk, the log
relative risk, log odds ratio, etc. Such marginal contrasts are often the goal of RCTs
and enter into the decision-making process of the FDA in approving new drugs. We
focus on estimating the marginal risk difference, but the methods can be modified
to robustly estimate any of these other contrasts, as we describe in Sect. 11.3.1.

Robustness property. We show that a class of TMLEs is robust to misspecification
of the working model.

We use the term working model to refer to a parametric statistical model that is
used in computing an estimator, but that we don’t assume to be correctly spec-
ified; that is, we don’t assume it contains the true data-generating distribution.
Here we use generalized linear models as working models.

The robustness property we demonstrate for a class of TMLEs is that these estima-
tors are asymptotically unbiased and asymptotically normal, under arbitrary mis-
specification of the working model used, under mild regularity conditions. That is,
even when the true data-generating distribution is not captured by a generalized
linear model at all, the class of estimators we present will be consistent and asymp-
totically normal. If the generalized linear model used as working model is correctly
specified, then the resulting estimator will in addition be efficient; that is, it will at-
tain the semiparametric efficiency bound. These robustness properties require that
data come from an RCT. Extensions to observational studies are discussed in Rosen-
blum and van der Laan (2010b).
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Data, statistical model, and target parameter. For each subject i, we denote their
baseline variables by Wi, treatment assignment by Ai, and outcome by Yi. We assume
that each triple (Wi, Ai, Yi) is an independent draw from an unknown data-generating
distribution P0 on the random vector (W, A, Y). [We note that this often-made as-
sumption is not guaranteed by randomization (Freedman 2008c). However, this, or
a slightly weaker assumption, is often needed in order to prove even that the stan-
dard unadjusted estimator is asymptotically unbiased and asymptotically normal.]
We also assume that A is binary, with A = 1 indicating assignment to the treatment
arm and A = 0 indicating assignment to the control arm. Additionally, we assume A
is independent of baseline variables W, which is guaranteed by randomization. The
prerandomization variables W can take various values (e.g., they may be continu-
ous, categorical, etc.). The outcome Y can also take various values. This defines the
statistical modelM for P0.

Consider estimation of the risk difference EP0 (Y | A = 1) − EP0 (Y | A = 0).
In an RCT, this target parameter identifies the additive causal effect as defined by
the SCM. Due to the independence between A and W assumed by the model M,
this statistical parameter is equivalent to the parameter Ψ : M → R defined by
Ψ (P) = EP[EP(Y | A = 1,W) − EP(Y | A = 0,W)]. There are n total subjects.

The choice of generalized linear (working) model that defines the estimators be-
low will in part depend on the possible values taken by the outcome variable Y . For
example, if Y is a count variable (nonnegative integer), then a Poisson regression
model may (but won’t necessarily) be appropriate.

Class of estimators with robustness property. We refer to the following estimator
as the unadjusted estimator of the risk difference:

1
NA

n∑
i=1

YiAi −
1

NAc

n∑
i=1

Yi(1 − Ai),

where NA =
∑n

i=1 Ai and NAc = n − NA. This is the difference in sample averages
between the treatment and control arms. No baseline variables are used.

The class of TMLEs that we will show to have the robustness property defined
above is constructed as follows. First, fit a generalized linear model m, resulting in
an estimate Q̄n(A,W) = μ(A,W, βn) for EP0 (Y | A,W). Then compute the following
estimator based on this model fit:

ψn =
1
n

n∑
i=1

μ(1,Wi, βn) −
1
n

n∑
i=1

μ(0,Wi, βn). (11.1)

This can be thought of as the difference in the average of the predicted outcomes
based on a model fit of m, using the baseline variables W, had all subjects been
assigned to the treatment arm vs. had all subjects been assigned to the control arm.
We show below that such estimators result from applying the TMLE when using the
model fit of m as initial density estimator.
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When the generalized linear model is one of the models we describe below,
estimator (11.1) will be asymptotically unbiased, even when the model is arbi-
trarily misspecified, under the mild regularity conditions given below. It will be
asymptotically unbiased regardless of whether the true data-generating distribution
P0(Y | A,W) is an element of model m. It will be asymptotically unbiased even
when P0(Y | A,W) is not in an exponential family at all.

The well-known robustness of analysis of covariance (ANCOVA) to model mis-
specification in RCTs [as described, e.g., by Yang and Tsiatis (2001) and Leon et al.
(2003)] is a special case of the results here and in Moore and van der Laan (2007).
This follows since ANCOVA is equivalent to estimator (11.1) when the generalized
linear model used is from the normal family with identity link function, and only an
intercept and main terms are included in the linear part.

Similarly, ANCOVA II has been shown to be robust to model misspecification
(Yang and Tsiatis 2001; Leon et al. 2003); this too is a special case of estimator
(11.1), using the same generalized linear model as just described for ANCOVA,
except also including an interaction term in the linear part. The definition of the
ANCOVA II estimator in Yang and Tsiatis (2001) and Leon et al. (2003) involves
ordinary least squares regression of the centered outcome on an intercept, the cen-
tered treatment indicator, the centered baseline variable, and a corresponding inter-
action term involving centered variables; the estimated coefficient of the centered
treatment indicator is the ANCOVA II estimator. This estimator is identical to esti-
mator (11.1) when the generalized linear model used is from the normal family with
identity link function, and only an intercept, main terms A and W, and an interaction
term A ×W are included in the linear part.

11.2 The Generalized Linear (Working) Models

We briefly summarize several facts we use below concerning generalized linear
models. More information can be found in, for example, McCullagh and Nelder
(1989). We then give examples of generalized linear models that can be used as
working models in constructing the estimators (11.1) that are robust to model mis-
specification in RCTs.

Generalized linear models are a special class of parametric models for the con-
ditional distribution of an outcome (or sequence of outcomes) Y conditional on pre-
dictor variables. Here, we use study arm assignment A and baseline variables W as
the predictor variables. We only consider generalized linear models with canonical
link functions below. Generalized linear models with canonical link functions relate
the density p of the outcome Y to the predictors through a linear part η and functions
b and c that depend on the generalized linear model family as follows:

P(Y | A,W) = exp(Yη − b(η(A,W)) + c(Y, φ)),
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where η(A,W) =
∑k

i=1 βihi(A,W), for some functions hi(A,W), and where φ is a
dispersion parameter. We require that h1(A,W) = 1 (which gives an intercept term)
and that h2(A,W) = A (which gives a main term A) in the linear part. (Actually, it
suffices that these two terms are in the linear span of the terms hi(A,W).) The link
function flink relates the conditional mean E(Y | A,W) under the model to the linear
part η as follows:

flink[E(Y | A,W)] = η(A,W).

A canonical link function flink satisfies ḃ(η) = f −1
link(η), where ḃ is the first deriva-

tive of b. When the above model is fit, the coefficients β, φ are estimated by max-
imum likelihood estimation. We denote the conditional mean E(Y | A,W) corre-
sponding to the model fit by μ(A,W, βn) (where, for simplicity, we suppress the fit of
the dispersion parameter φn in our notation). For ease of exposition, we sometimes
refer to the generalized linear model as the parameterization “β→ μ(A,W, β),” even
though this only represents a model for the conditional mean of Y given A,W (and
not the full conditional distribution of Y given A,W implied by the generalized linear
model). We will also use the notation μβ for the function (A,W)→ μ(A,W, β).

The results in this chapter hold for generalized linear models from the following
families: normal, binomial, Poisson, gamma, and inverse normal. We provide below
a list of example generalized linear models with canonical links that can be used
as working models to construct the TMLEs (11.1). Each example corresponds to a
particular choice of the functions b, c, and hi, 1 ≤ i ≤ k, in the definition above.

Examples of Working Models Satisfying Given Requirements

1. Least squares regression: For Y continuous, the normal model assuming
E(Y | A,W) has the form μ1(A,W, β) = β0 + β1A + β2W + β3AW + β4W2.

2. Logistic regression: For Y binary and logit(x) = log(x/(1 − x)), the fol-
lowing model for P(Y = 1 | A,W): μ2(A,W, β) = logit−1(β0 + β1A + β2W).

3. Poisson regression: For Y a “count” (that is, Y a nonnegative integer),
the Poisson (log-linear) model with mean of Y given A,W of the form
μ3(A,W, β) = exp(β0 + β1A + β2W).

4. Gamma regression: For Y positive, real valued, the gamma model with
mean of Y given A,W modeled by

μ4(A,W, β) = 1/
(
β0 + β1(1 + A) + β2 exp(W) + β3 exp(AW)

)
,

where all coefficients β j are assumed to be positive and bounded away from
0 by some δ > 0.

5. Inverse normal regression: For Y positive, real valued, the inverse normal
model with mean of Y given A,W modeled by

μ5(A,W, β) = 1/
√
β0 + β1 exp(A) + β2 exp(W),

where all coefficients β j are assumed to be positive and bounded away from
0 by some δ > 0.

The additional restrictions in the gamma and inverse normal regression examples
above are needed to ensure the corresponding μ(A,W | β) is bounded. We make two
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assumptions that, along with the assumptions above, guarantee that the maximum
likelihood estimator for the generalized linear model is well defined and converges
to a value β∗ as sample size goes to infinity. The first assumption guarantees the
design matrix will have full rank, with probability 1, as long as sample size is greater
than the number of terms in the linear part of the model. The second assumption
guarantees convergence of the maximum likelihood estimator to a value β∗.

Assumption 1: If a set of constants c j satisfies
∑

j c jh j(A,W) = 0 with probabil-
ity 1, then c j = 0 for all j.

Assumption 2: There exists a maximizer β∗ of the expected log-likelihood

EP0

[
Yη − b(η) + c(Y, φ)

]
= EP0

⎡⎢⎢⎢⎢⎢⎢⎣Y ∑
j

β jh j(A,W) − b

⎛⎜⎜⎜⎜⎜⎜⎝∑
j

β jh j(A,W)

⎞⎟⎟⎟⎟⎟⎟⎠ + c(Y, φ)

⎤⎥⎥⎥⎥⎥⎥⎦ ,
and the maximum likelihood estimator βn of the generalized linear model con-
verges in probability to β∗. In addition, we assume each component of β∗ has
absolute value smaller than some prespecified bound M.

These two assumptions imply there is a unique maximizer β∗ of the expected log-
likelihood give above, which follows by concavity of the expected log-likelihood
for these generalized linear model families when using canonical links.

11.3 TMLE Using Generalized Linear Model in Initial Estimator

We are interested in estimating the marginal effect of assignment to treatment vs.
control in an RCT. We make no assumptions on the unknown, true data-generating
distribution P0, except the following two assumptions. (1) Study arm assignment A
is independent of baseline variables and takes values 1 with probability g0(1) and 0
with probability g0(0), which is enforced by design in an RCT. (2) P0 has a smooth
density with respect to some dominating measure. The likelihood of the data at a
candidate density P can be written

n∏
i=1

P(Yi, Ai,Wi) =
n∏

i=1

PY (Yi | Ai,Wi)PA(Ai | Wi)PW (Wi)

=

n∏
i=1

PY (Yi | Ai,Wi)PW (Wi)g0(Ai).

The second equality follows by the first assumption above.
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11.3.1 Parameter as a Mapping from the Distribution of the Data

The target parameter is the risk difference. In an RCT, where study arm assignment
A is independent of baseline variables W, we have

Ψ (P0) = EP0 (Y | A = 1) − EP0 (Y | A = 0) (11.2)
= EP0

[
EP0 (Y | A = 1,W) − EP0 (Y | A = 0,W)

]
. (11.3)

We note that parameter (11.2) is a function of the data-generating distribution P0
only through the conditional mean Q̄0(A,W) = EP0 (Y | A,W) and the marginal
distribution QW,0 of W. We denote this relevant part of the data-generating distri-
bution by Q0 = (Q̄0,QW,0), and we also denote the target parameter by Ψ (Q0).
As in previous chapters, D∗(Q0, g0) denotes the efficient influence curve of the risk
difference Ψ : M → R at P0, which will also be defined below. Let D∗1(Q0, g0)
and D∗0(Q0, g0) denote the efficient influence curves of the statistical parameters
ψ(1)

0 = E0[E0(Y | A = 1,W)] and ψ(0)
0 = E0[E0(Y | A = 0,W)], respectively.

The adjusted estimator (11.1) is the substitution estimator of (11.3) at the gen-
eralized linear model fit for EP0 (Y | A,W), and using the empirical distribution
for the marginal distribution of the baseline variables. Denoting these choices for
EP0 (Y | A,W) and QW,0 by Qn, we then have the estimator ψn defined in (11.1)
equals the substitution estimator Ψ (Qn).

Note that we can also use Qn to obtain the substitution estimators ψ(1)
n = Ψ

(1)(Qn)
and ψ(0)

n = Ψ
(0)(Qn) of the two treatment-specific means. We have ψn = ψ

(1)
n − ψ(0)

n .
Normally the TMLE involves computing a substitution estimator at a density that

is an updated version (via iteratively fitting suitably chosen parametric models) of
the initial density estimator. As we show below, for the target parameter ψ0 and
model we consider in this chapter, the updating step of the TMLE always leaves
the initial density estimator unchanged. This is due to the initial density estimator
already being a maximum likelihood estimator for a parametric working model that
happens to have a score that equals the efficient influence curve (at the maximum
likelihood estimator) for our parameter of interest ψ0: that is, PnD∗(Qn, g0) = 0, and,
also PnD∗(Qn, gn) = 0 if gn(1) =

∑
i Ai/n is the empirical proportion. In fact, we also

have PnD∗1(Qn, g0) = PnD∗0(Qn, g0) = 0 so that ψ(1)
n and ψ(0)

n are also TMLEs of ψ(1)
0

and ψ(0)
0 . In other words, Qn equals the estimate of the relevant part of the data-

generating distribution obtained by the TMLE that targets the parameter (ψ(0)
0 , ψ

(1)
0 ).

This property of generalized linear models with canonical link functions was, to the
best of our knowledge, first noted in the Comments to the Rejoinder to Scharfstein
et al. (1999, Sect. 3.2.3, p. 1141). This property can be used to show the consistency,
asymptotic normality, and local efficiency of the simple estimator (11.1).

A TMLE of any smooth functions of treatment-specific means [EP0 (Y | A =
0), EP0 (Y | A = 1)] is obtained by substitution of Qn. For example, for a count
variable Y , we might be interested in the marginal log rate ratio

log
[
EP0 (Y | A = 1)/EP0 (Y | A = 0)

]
, (11.4)
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which we could estimate by the substitution estimator

log

⎡⎢⎢⎢⎢⎢⎣1
n

n∑
i=1

μ(1,Wi, βn)
/⎧⎪⎪⎨⎪⎪⎩1

n

n∑
i=1

μ(0,Wi, βn)

⎫⎪⎪⎬⎪⎪⎭
⎤⎥⎥⎥⎥⎥⎦ . (11.5)

Below we focus on estimating the risk difference (11.2), but analogous arguments
apply to other smooth functions of the treatment-specific means.

11.3.2 Obtaining Q0
n, an Initial Estimate of Q0

We set the initial estimate Q̄n(A,W) of EP0 (Y | A,W) to be the fit μ(A,W, βn) of
the generalized linear model we are using. This is the maximum likelihood estimate
based on using the generalized linear model as a parametric working model. We set
the initial density estimate QW,n of the marginal density QW,0 to be the empirical dis-
tribution of W1, . . . ,Wn. Summarizing, we have our initial estimate Q0

n = (Q̄n,QW,n),
which also implies an initial density estimate of P0, according to the generalized lin-
ear model, given by P0

n = PQ0
n
.

11.3.3 Loss Function for TMLE Step

One possible loss function to use is minus the log-likelihood L(P)(O) = − log PY (Y |
A,W)PA(A | W)PW (W). Here, however, we use a loss function that only depends on
the part Q0 of the data-generating distribution that is relevant to the parameter of
interest. We use L(Q)(O) = − log PQ̄(Y | A,W)− log QW (W) as the loss function for
Q0, where PQ̄(Y | A,W) is defined as

PQ̄(Y | A,W) = exp(Y flink(Q̄(A,W)) − b( flink(Q̄(A,W))) + c(Y)),

which is the conditional distribution of Y , given (A,W), implied by the conditional
mean function Q̄ and the generalized linear working model defined in Section 11.2
(where we omit the dispersion parameter φ). This is a valid loss function, i.e., for
any of the generalized linear working models we allow, the expected value of the
loss function is minimized at the true Q0.

11.3.4 Calculating the Optimal Fluctuation/Submodel

We now determine a parametric model {P0
n(ε) = PQ0

n(ε) : ε} that (1) equals the initial
density at ε = 0 and (2) has a score at ε = 0 whose linear span contains the efficient
influence function at the initial density estimate P0

n = PQ0
n
. Given the definition
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of the loss function L(Q) above, this is equivalent to stating that we determine a
submodel {Q0

n(ε) : ε} so that Q0
n = Q0

n(0), and d/dεL(Q0
n(ε)) at ε = 0 equals the

efficient influence curve at P0
n = PQ0

n
.

The efficient influence function for Ψ (P) defined in (11.2) is

D∗(P) = H∗g0
(A)(Y − EP(Y | A,W)) + EP(Y | A = 1,W) − EP(Y | A = 0,W) − Ψ (P),

where H∗g0
(A) = (2A − 1)/g0(A). Note that the function D∗(P) only depends on the

relevant part Q = Q(P) of the joint density P since g0 is known. We sometimes
write D(P) = D∗(Q, g0) as D(Q) below. Let ε = (ε1, ε2, ε3). Define the scalar co-
variates: H∗1 = 1, H∗2(A) = A, and H∗3(P)(W) = EP(Y | A = 1,W) − EP(Y | A =
1) − [EP(Y | A = 0,W) − EP(Y | A = 0)] . Let H∗3(Q0

n) be the covariate at the initial
estimator Q0

n. The two covariates (H∗1,H
∗
2) can be replaced by H∗1(A) = A/g0(A)

and H∗2(A) = (1 − A)/g0(A), which are the clever covariates that define the TMLE
that targets (ψ(0)

0 , ψ
(1)
0 ) in general, as in Chaps. 4 and 5. This follows since the linear

span of (1, A) is identical to the linear span of (A/g0(A), (1−A)/g0(A)), so that these
different choices do not affect the TMLE.

Recall that flink is the canonical link function for the generalized linear model
family used in the initial density estimator. For example, if the generalized linear
model family is the Poisson family, then we have flink = log. We define the follow-
ing function, which will be used to construct the parametric fluctuation:

η(ε, A,W) = ε1H∗1 + ε2H∗2(A) + flink
(
Q̄n(A,W)

)
.

Here η will be the linear part (including offset) of a generalized linear model. The
offset guarantees that at ε = 0 we have η(ε, A,W) equals flink(Q̄n(A,W)), which is
the linear part corresponding to the initial density estimator P0

n = PQ0
n
. This can also

be stated as a submodel {Q̄n(ε) : ε} defined as

flink
(
Q̄n(ε)

)
= flink

(
Q̄n(A,W)

)
+ ε1H∗1 + ε2H∗2(A).

Define the parametric model {P0
n(ε) : ε}:

P0
n(ε)(Y | A,W) = exp(Yη0

n(ε, A,W) − b(η0
n(ε, A,W)) + c(Y, φ)),

P0
n(ε)(A | W) = g0(A),

P0
n(ε)(W) = QW,n(ε)(W) = sε3 exp(ε3H∗3(Q0

n)(W))QW,n(W),

where the constant sε3 = 1/[ 1
n
∑n

i=1 exp(ε3H∗3(Q0
n)(Wi))] is chosen such that P0

n(ε)(W)
integrates to 1 for each ε. This also implies a corresponding submodel {Q0

n(ε) =
(Q̄n(ε),QW,n(ε)) : ε} that equals Q0

n at ε = 0, so that condition (1) above is satisfied.
It is straightforward to verify that condition (2) above is satisfied for the parametric
model {P0

n(ε) : ε}, or, equivalently, d/dεL(Q0
n(ε)) at ε = 0 equals D∗(Q0

n).
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11.3.5 Obtaining Q∗n, a Targeted Estimate of Q0

Consider the maximum likelihood estimator εn = arg max Pn log P0
n(ε) for the para-

metric model {P0
n(ε) = PQ0

n(ε) : ε}. Note that we also have εn = arg minε PnL(Q0
n(ε)).

The TMLE of P0 is defined by P∗n = P0
n(εn). Let Q∗n = Q0

n(εn), so that P∗n = PQ∗n . We
have εn = (ε1,n, ε2,n, ε3,n) = (0, 0, 0). The components ε1,n, ε2,n of the maximum like-
lihood estimator are found by fitting the generalized linear model P0

n(ε)(Y | A,W).
Since the initial density estimator was assumed to have an intercept term and
main term A, and was itself fit by maximum likelihood estimation, we must have
(ε1,n, ε2,n) = (0, 0). Since QW,n is the empirical distribution and thereby also a non-
parametric maximum likelihood estimator, it follows that ε3 = 0. Thus, the targeted
estimate P∗n = PQ∗n is identical to the initial density estimate P0

n, and Q∗n = Q0
n.

11.3.6 Estimation of Marginal Treatment Effect

The TMLE is the substitution estimator of the risk difference (11.2) evaluated at
the targeted density P∗n = PQ∗n . This density, as described above, consists of the
maximum likelihood estimate of the generalized linear model, and the empirical
distribution of the baseline variables W. The substitution estimator Ψ (P∗n) = Ψ (Q∗n)
is given by estimator (11.1). Since Q∗n is the final density estimate for the TMLE
that targets both (ψ(0)

0 , ψ
(1)
0 ), we also have that Q∗n maps into the TMLEs of the two

treatment specific means (ψ(0)
0 , ψ

(1)
0 ).

11.4 Main Theorem

The following theorem about the performance of estimator (11.1) under possible
misspecification of the working model is a special case of the theorem proved in
Rosenblum and van der Laan (2010b).

Theorem 1. Let μ(A,W, β) be the generalized linear regression model for E0(Y |
A,W) implied by a generalized linear model from the normal, binomial, Poisson,
gamma, or inverse Gaussian family, with canonical link function, in which the linear
part contains the treatment variable A as a main term and also contains an intercept
(and possibly contains other terms as well). Under the assumptions in the previous
sections, estimator (11.1) is an asymptotically consistent and asymptotically linear
estimator of the risk difference ψ0 defined in (11.2), under arbitrary misspecification
of the working model μ(A,W, β). Its influence curve is given by D∗(Q∗, g0), where
Q∗ = (μβ∗ ,QW,0), and Q̄∗ = μβ∗ denotes the limit of Q̄n = μβn . It is locally efficient,
meaning that if the working model is correctly specified, then its influence curve
D∗(Q∗, g0) = D∗(Q0, g0) is the efficient influence curve, so that the asymptotic vari-
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ance of estimator (11.1) achieves the semiparametric efficiency bound.

Since we showed that μβn is also the TMLE that targets both treatment-specific
means, it follows that the same theorem applies to any parameter defined as a func-
tion of (E0(Y | A = 0), E0(Y | A = 1)). See Rosenblum and van der Laan (2010b)
for the more general version of Theorem 1.

11.5 Special Robustness of Poisson Model with Only Main Terms

Consider the Poisson regression model given as the third example in Sect. 11.2:

μ3(A,W, β) = exp (β0 + β1A + β2W) . (11.6)

Denote the maximum likelihood estimator for coefficient β1 at sample size n by
β1,n. This can be found by simply fitting the above Poisson regression model using
standard statistical software. It follows from the generalization of Theorem 1 that
β1,n is an asymptotically consistent and linear estimator for the marginal log rate
ratio (11.4), under arbitrary misspecification of the working model (11.6). To see
this, note that the generalization of Theorem 1 discussed above implies that

log

⎧⎪⎪⎨⎪⎪⎩1
n

n∑
i=1

μ3(1,Wi, βn)

⎫⎪⎪⎬⎪⎪⎭
/⎧⎪⎪⎨⎪⎪⎩1

n

n∑
i=1

μ3(0,Wi, βn)

⎫⎪⎪⎬⎪⎪⎭
is an asymptotically consistent and asymptotically linear estimator for the marginal
log rate ratio (11.4). But in the special case here, where the Poisson model has only
main terms, we have that the above display simplifies to coefficient estimate β1,n.
This can be seen from the following chain of equalities:

log

⎧⎪⎪⎨⎪⎪⎩1
n

n∑
i=1

μ3(1,Wi, βn)

⎫⎪⎪⎬⎪⎪⎭
/⎧⎪⎪⎨⎪⎪⎩1

n

n∑
i=1

μ3(0,Wi, βn)

⎫⎪⎪⎬⎪⎪⎭
= log

⎧⎪⎪⎨⎪⎪⎩1
n

n∑
i=1

exp
(
β0,n + β1,n + β2,nWi

)⎫⎪⎪⎬⎪⎪⎭
/⎧⎪⎪⎨⎪⎪⎩1

n

n∑
i=1

exp
(
β0,n + β2,nWi

)⎫⎪⎪⎬⎪⎪⎭
= log exp(β1,n)

⎧⎪⎪⎨⎪⎪⎩1
n

n∑
i=1

exp
(
β0,n + β2,nWi

)⎫⎪⎪⎬⎪⎪⎭
/⎧⎪⎪⎨⎪⎪⎩1

n

n∑
i=1

exp
(
β0,n + β2,nWi

)⎫⎪⎪⎬⎪⎪⎭
= β1,n,

where βn = (β0,n, β1,n, β2,n) is the maximum likelihood estimator for β at sample
size n. Thus, β1,n is an asymptotically unbiased estimator for the marginal log rate ra-
tio (11.4). This is the log-linear analog of the ANCOVA estimator (discussed briefly
in Sect. 11.1) being robust to arbitrary model misspecification. This result for the
above Poisson model was shown by Gail (1986) under stronger model assumptions
than used here.
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11.6 Standard Errors and Confidence Intervals

The asymptotic variance σ2 of the estimator ψn defined in (11.1) can be estimated
based on its influence curve evaluated at the limit Q∗ of Q∗n. Let β∗ be the probability
limit of βn, where βn is the maximum likelihood estimator for the generalized linear
model being used. Then Q̄∗ = μβ∗ . The variance of

√
n(ψn − ψ0) converges to σ2 =

EP0 {D(Q∗, g0)(O)}2.We can estimate σ2 by replacing EP0 with the empirical mean
EPn and substituting D(Q∗n, g0) for D(Q∗, g0) to get

σ2
n = EPn

(
D(Q∗n, g0)(O)

)2

=
1
n

n∑
i=1

{
Hg0 (Ai)(Yi − μ(Ai,Wi, βn)) + μ(1,Wi, βn) − μ(0,Wi, βn) − ψn

}2
.

The standard error of ψn can then be approximated by σn/
√

n and 95% confidence
intervals can be constructed as (ψn − 1.96σn/

√
n, ψn + 1.96σn/

√
n), which has cov-

erage probability that converges to 95% as sample size tends to infinity.
For parameters other than the risk difference, it is just as easy to compute the

asymptotic variance σ2 of the corresponding TMLE defined above. This follows
since, in general, the efficient influence curve of a parameter f (ψ(0)

0 , ψ
(1)
0 ) for some

real-valued function f is given by d/dψ(0)
0 f (ψ(0)

0 , ψ
(1)
0 )D∗0 + d/dψ(1)

0 f (ψ(0)
0 , ψ

(1)
0 )D∗1,

where D∗j is the efficient influence curve of ψ( j)
0 , j = 0, 1. The influence curve of

f (ψ(0)
n , ψ

(1)
n ) is determined with the delta method accordingly as a linear combination

of the influence curves D∗j(Q
∗, g0) of ψ( j)

n , j = 0, 1. For example, the asymptotic
variance σ2 of estimator (11.5) of the marginal log rate ratio can be derived from its
influence curve (Rosenblum and van der Laan 2010b, Sect. 4) and can be estimated
by

σ2
n =

1
n

n∑
i=1

⎛⎜⎜⎜⎜⎝− 1

ψ(0)
n

{
1 − Ai

g0(Ai)
(Yi − μ(0,Wi, βn)) + μ(0,Wi, βn) − ψ(0)

n

}

+
1

ψ(1)
n

{
Ai

g0(Ai)
(Yi − μ(1,Wi, βn)) + μ(1,Wi, βn) − ψ(1)

n

}⎞⎟⎟⎟⎟⎠2

,

where ψ(0)
n = 1

n
∑n

i=1 μ(0,Wi, βn) and ψ(1)
n = 1

n
∑n

i=1 μ(1,Wi, βn). Inference for
f (ψ(0)

0 , ψ
(1)
0 ) based on f (ψ(0)

n , ψ
(1)
n ) proceeds as above.

11.7 Discussion

We showed an application of the targeted maximum likelihood algorithm for esti-
mating marginal treatment effects in RCTs. These estimators use generalized linear
models as working models. The resulting estimators are simple to compute, and
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have the robustness property that they are asymptotically unbiased and asymptoti-
cally normal even under arbitrary misspecification of the working model used. If the
working model is correctly specified, then these estimators are also asymptotically
efficient. For the linear normal error regression model and g0(0) = g0(1) = 0.5, the
TMLE is always at least as efficient, asymptotically, as the unadjusted estimator. In
general, the TMLEs considered here may have more precision than the unadjusted
estimator for misspecified working models, but there is no guarantee of such an im-
provement, and it is possible that the TMLE given here could be less efficient than
the unadjusted estimator. In the next chapter, we will show how TMLE based on
generalized linear regression models can be constructed to provide such guaranteed
improvement.

11.8 Notes and Further Reading

The material in this chapter is based on Rosenblum and van der Laan (2010b).
Proofs of these results are given in that paper. Previous work related to estima-
tors in RCTs (and in general in observational studies with known probabilities of
treatment) that are robust to model misspecification include, for example, Robins
(1994), Robins et al. (1995), Scharfstein et al. (1999), van der Laan and Robins
(2003), Leon et al. (2003), Tan (2006), Tsiatis (2006), Moore and van der Laan
(2007), Zhang et al. (2008), Rubin and van der Laan (2008), Freedman (2008a,b),
and Rosenblum and van der Laan (2009a).

As noted in the introduction, the estimators (11.1) are special cases of the class
of parametric regression-based estimators in the Comments to the Rejoinder to
Scharfstein et al. (1999, Sect. 3.2.3, p. 1141). Scharfstein et al. (1999, Sect. 3.2.3,
p. 1141) construct simple, parametric regression-based estimators of the risk differ-
ence. These estimators are double robust and locally efficient. Some of these esti-
mators involve generalized linear models with canonical link functions, in which
certain simple functions of the inverse of the propensity score are included as terms
in the linear part of the model. These estimators take a special form for RCTs; in
this case, including the additional terms of Scharfstein et al. (1999) is equivalent
to including a treatment variable and an intercept. It follows that their estimator is
equal to ours in the special case of estimating the risk difference in an RCT. Their
arguments imply that this estimator is consistent under arbitrary model misspecifi-
cation, and locally efficient. Also, the class of estimators we give is not identical but
asymptotically equivalent to the class of estimators given in Tsiatis (2006, Sect. 5.4,
p. 132).



Chapter 12

Targeted ANCOVA Estimator in RCTs

Daniel B. Rubin, Mark J. van der Laan

In many randomized experiments the primary goal is to estimate the average treat-
ment effect, defined as the difference in expected responses between subjects as-
signed to a treatment group and subjects assigned to a control group. Linear regres-
sion is often recommended for use in RCTs as an attempt to increase precision when
estimating an average treatment effect on a (nonbinary) outcome by exploiting base-
line covariates. The coefficient in front of the treatment variable is then reported as
the estimate of the average treatment effect, assuming that no interactions between
treatment and covariates were included in the linear regression model.

In this setting, regression is actually not necessary but can lead to efficiency
gains relative to the unadjusted estimator if the covariates are predictive of sub-
ject responses, and the consistency and asymptotic normality of the estimator of the
average treatment effect does not depend on the linear model being correctly spec-
ified. However, we show that the usual least squares approach is a suboptimal way
to fit a linear model in randomized experiments for the purpose of estimating the
average treatment effect. A simple alternative linear regression fit utilizing TMLE
guarantees that the average treatment effect estimator will be asymptotically effi-
cient among a large class of popular methods. In addition, we argue and show that
this TMLE often outperforms other proposed techniques if the sample size is small
or moderate relative to the number of covariates, so that one can safely adjust for
more predictors.

For a subject in the study, let W denote a vector of such baseline covariates.
Let variable A be an indicator of treatment assignment, so that A = 0 signifies
assignment to the control group, and A = 1 signifies assignment to the treatment
group. Finally, let Y denote the primary outcome measurement that is taken on the
subject at the end of the study. For our purposes it will not matter if Y is a continuous
measurement, is restricted to some range, or even is a binary indicator.

It will be convenient to use counterfactuals, described in Chap. 2 as a conse-
quence of the SCM. For a subject in the study, let Y1 denote the response that the
subject would have realized if he or she had been assigned to treatment. Likewise, let
Y0 be the response if the subject had been assigned to control. In reality each subject
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is assigned to only one group, either treatment or control, so one of these counter-
factual outcomes will be missing. The observed response is Y = AY1 + (1 − A)Y0.
The full data we would have liked to measure about a subject are X = (W, Y0, Y1),
while what we actually measure is O = (W, A, Y). As this is an RCT, we assume the
treatment assignment indicator A is independent of the full data (W, Y0, Y1).

For defining parameters we assume a superpopulation statistical model in which
the study subjects are drawn with replacement from some larger population of sub-
jects. That is, we assume the full data (Wi, Y0,i, Y1,i), i = 1, ..., n, are independent
and identically distributed random triples. This assumption is mainly for simplicity.
Freedman (2008a) shows how regression asymptotics can be analyzed in sequences
of finite population statistical models, where the only randomness is that induced
by the random assignment of subjects to treatment or control groups. The proba-
bility distribution of the full data structure (W, Y0, Y1) is unspecified. In addition, let
g0(A | X) denote the probability distribution of treatment A, given X: by assumption,
g0(1 | X) = g0(1). Let P0 denote the probability distribution of the observed data
structure (W, A, Y = YA).

The mean of the counterfactuals can be identified as a parameter of the probabil-
ity distribution P0:

ψ(1)
0 = E0(Y | A = 1) = E0(Y1)

and
ψ(0)

0 = E0(Y | A = 0) = E0(Y0),

the expected responses of subjects assigned to treatment or control. For quantifying
the treatment effect, a parameter can then be defined as the contrast ψ0 = ψ

(1)
0 − ψ

(0)
0

between the mean responses among those assigned to the two arms (i.e., the average
treatment effect). Note that we also have ψ0 = E0(E0(Y | A = 1,W) − E0(Y | A =
0,W)).

The statistical model for the probability distribution P0 of O = (W, A, Y) is iden-
tified by the nonparametric model for the full-data distribution, and that A is in-
dependent of the full-data structure. Thus the only testable assumption is that A is
independent of W. This defines now the statistical modelM, and target parameter
mapping Ψ : M → R, Ψ (P) = EP(EP(Y | A = 1,W) − EP(Y | A = 0,W)), and
thereby the estimation problem.

The usual ANCOVA approach for using covariates to estimate this treatment
effect ψ0 on a continuous outcome is to use linear least squares to regress response
Y on the treatment assignment indicator A and covariates W and then report the
estimated coefficient in front of the treatment indicator.

In this chapter we propose an alternative to least squares fitting based on the
TMLE algorithm such that:

• The treatment effect estimator generally becomes more efficient when
g(0) � 0.5;
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• The estimator tends to perform better with small or moderate samples than
other common estimators with equivalent asymptotic efficiency, so more
covariates can safely be used for the adjustment;

• The treatment effect estimator is the coefficient in front of A of a parsi-
monious fitted linear regression model. The technique should therefore be
acceptable to nonstatistician investigators who are already familiar with
interpreting regression coefficients in textbook linear models.

Two-sample problem, or one i.i.d. sample? Suppose there are n subjects in the
study, and a randomly selected subgroup of m of them are assigned to treatment,
with the random selection not depending on covariates. Here n and m are fixed. Let
g = m/n represent the proportion assigned treatment. In many studies m = n/2, so
g will be 1/2.

In our statistical formulation above we assume that A is a Bernoulli random vari-
able. If in truth A is Bernoulli with probability (say) 0.5, then by chance the treat-
ment group will not be of the same size as the control group. However, by design,
the study often arranges the treatment and control groups to be of the same size,
showing that it is not completely accurate to state that the sample is an i.i.d. sample
from (W, A, Y) with P0(A = 1) = 0.5.

This suggests another description of the data-generating distribution of the actual
observed data structure. Suppose that O = (W, A, Y) ∼ P0 is the random variable in
which A is random with P0(A = 1) = 0.5, and the causal effect is identified byΨ (P0)
defined above, but that our observed data consist of a sample of n observations from
(W, Y), conditional on A = 1, and a sample of n observations from (W, Y), given
A = 0. That is, we took a “biased” “case-control” sample from P0, where a case is
defined as “A = 1.” (This type of sampling has been referred to in other literature as
a particular type of cohort sampling, and we note that the “case-control” terminol-
ogy we use here is not typically applied to sampling conditional on A.) The results
for semiparametric estimation based on case-control data (van der Laan 2008a; Rose
and van der Laan 2008) state that, without loss of consistency or efficiency, we can
apply an estimator developed for an i.i.d. sample from P0, but we have to assign
weights q0 = P0(A = 1) to the observations with A = 1 and 1 − q0 for the obser-
vations with A = 0 in the pooled case-control sample. We also refer the interested
reader to Chaps. 13 and 14.

As a consequence, the case-control-weighted TMLE is identical to the non-
weighted TMLE. Therefore one can simply apply the estimators developed under
i.i.d. sampling from P0 and act as if the two-sample problem was an i.i.d. sample
from O. Indeed, in this article, we proceed under our posed statistical model and
suffice with the remark that all our estimators and results apply by letting gn(1) play
the role of this set g.
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12.1 Previously Proposed Estimators

In this section we review the strengths and weaknesses of common methods for es-
timating the treatment effect previously defined.

Unadjusted estimation. The simplest approach is to ignore baseline covariates alto-
gether. Then, the obvious estimator of the expected response in the treatment group
is the empirical mean of responses for subjects assigned to treatment, and analo-
gously for the control subjects. Estimators for ψ(0)

0 , ψ(1)
0 , and ψ0 become

ψ(0)
n =

1
n

n∑
i=1

(1 − Ai)
gn(0)

Yi,

ψ(1)
n =

1
n

n∑
i=1

Ai

gn(1)
Yi,

and ψn = ψ
(1)
n − ψ(0)

n .
The unadjusted estimator of treatment effect is consistent, and it is also asymp-

totically normal, in that
√

n(ψn − ψ0) will converge in law to an N(0, σ2) distribu-
tion (e.g., Yang and Tsiatis 2001). The influence curve of this estimator is given by
IC(Q, g0) = hg0 (A)(Y−Q̄(A)), where Q̄(A) = E0(Y | A) and hg0 (A) = (2A−1)/g0(A),
so that σ2 = P0IC(Q, g0)2 is the variance of this influence curve.

The asymptotic variance σ2 of this limiting normal distribution can be used to
gauge the precision of this estimator, and compare it to other estimators. Unfor-
tunately, it is known that the unadjusted estimator can be much less efficient than
other techniques when covariates are predictive of the response. This is because only
one of the two counterfactual responses can be measured for a subject, while the co-
variates may contain information about what the missing response would have been.

ANCOVA. As noted earlier, the most popular way to adjust for covariates is to use
linear least squares in fitting the regression model:

Y = α + ψ0A + γ�W + error.

The least squares fit of ψ0 then estimates the average treatment effect defined
earlier. Let Q̄I denote the limit of the linear regression ANCOVA estimator of
Q̄0(A,W) = E0(Y | A,W). This ANCOVA estimator of ψ0 will also generally be
asymptotically normal, even if E0(Y | A,W) is not actually linear in (A,W), or if
the errors are not homoscedastic or exogenous (Yang and Tsiatis 2001; Leon et al.
2003; Tsiatis et al. 2008). See the previous chapter for a more general presenta-
tion and proof of this result for RCTs based on the observation that the TMLE of
ψ0 that takes as initial estimator a maximum likelihood estimator according to a
(possibly misspecified) generalized linear regression model will result in no update
in the TMLE step. As a consequence, the ANCOVA estimator is a TMLE target-
ing (E0(Y0), E0(Y1)), corresponding with squared error loss and linear fluctuation
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Q̄0
n(ε) = Q̄0

n + ε1A/gn(1)+ ε2(1− A)/gn(0). Note that the targeting step in the TMLE
corresponds with adding ε(1, A) and that εn = 0 since (1, A) is already included in
the working linear regression model. Invoking the known asymptotics of the TMLE,
it follows that it is asymptotically linear with influence curve

IC(Q, g0)(O) = D∗(QI , g0)(O) −C(A),

where
D∗(Q, g0) = hg0 (A)(Y − Q̄(A,W)) + Q̄(1,W) − Q̄(0,W) − ψ0

is the efficient influence curve of Ψ at (Q, g0), and C is a correction term, due to gn

being an estimator of g0, defined as C(A) = E0(D∗(Q, g0)(O) | A). It is easy to verify
that, if Q is such that Ψ (1)(Q) = ψ(1)

0 , Ψ (0)(Q) = ψ(0)
0 , then it follows that C = 0. This

holds for the limit Q of a TMLE that targets both E0(Y1) and E0(Y0) such as this
ANCOVA estimator. As a consequence, the ANCOVA estimator is asymptotically
linear with influence curve D∗(Q, g0).

The only real additional assumption for the asymptotic linearity of this estimator
is that the distributions of W and Y do not have overly heavy tails. The linear model
can thus be viewed as a working model, used in an intermediate step to estimate the
average treatment effect.

However, Freedman (2008a) shows that unless g0(1) = 0.5, this ANCOVA es-
timator can be less efficient than the unadjusted estimator, in terms of asymptotic
variance. It might also be biased in finite samples under model misspecification,
although the n−1/2-scale asymptotic normality result suggests that this bias will
quickly become negligible relative to the variance.

The properties of this method are not fully understood when the number of co-
variates is large relative to the sample size, as the asymptotic approximations may
begin to break down. Therefore, the usual recommendation is to simply adjust for an
a priori specified handful of covariates that are considered to be the most important
predictors.

ANCOVA II. A simple extension of ANCOVA is to add interaction terms and fit
the model

Y = θ1 + θ2A + θT3 W + θT4 (A ×W) + error

with linear least squares. The estimate of the treatment effect is no longer a coef-
ficient fit, but the value obtained when using the fitted model Q̄n of Q̄0 to impute
missing counterfactuals, i.e.,

ψn = Ψ (Qn) =
1
n

n∑
i=1

{Q̄n(1,Wi) − Q̄n(0,Wi)}.

Again, as remarked above, this estimator of ψ0 equals the same TMLE mentioned
above, but now using as initial estimator the least squares regression fit of this para-
metric working model.
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By the same arguments as above, this estimator is asymptotically linear with in-
fluence curve D∗(QII , g0), where QII denotes the limit of this linear regression AN-
COVA II estimator of Q̄0. The ANCOVA II estimator is also asymptotically normal
under the same minimal conditions we have discussed, and its asymptotic variance
is guaranteed to be at least as small as the ANCOVA estimator and unadjusted es-
timator, while under many data-generating distributions it is asymptotically more
efficient (Yang and Tsiatis 2001).

In fact, the ANCOVA II approach possesses an optimality property (Tsiatis et al.
2008). To appreciate this optimality property, one must know about the following
alternative representation of D∗(Q, g0) for Q satisfying Ψ (Q) = ψ0:

D∗(Q, g0)(O) = hg0 (A)(Y − f (Q)(W)) − ψ0 ≡ Df (Q)(ψ0)(O), (12.1)

where
f (Q)(W) ≡ g0(1)Q̄(0,W) + g0(0)Q̄(1,W)

and hg0 (Ai) = Ai/g0(1) − (1 − Ai)/g0(0). This representation defines a class of es-
timators ψn( f ) = 1/n

∑
i hg0 (Ai)(Yi − f (Wi)) as solutions of the estimating equation

PnDf (ψ) = 0, indexed by a choice f . These estimators are consistent and asymp-
totically linear with influence curve hg0 (A)(Y − f (W)). Suppose two estimators are
asymptotically equivalent if their difference is of order o(n−1/2) in probability, under
the distribution P0 governing (W, A, Y). The asymptotic variance of the ANCOVA II
estimator is no larger than that of any regular asymptotically normal estimator that
is asymptotically equivalent to one of the form

ψn( f ) =
1
n

n∑
i=1

(
Ai

g0
−

1 − Ai

1 − g0

)
(Yi − f (Wi)) (12.2)

for f (W) = η�(1,W) linear in the components of W. The unadjusted, ANCOVA,
and ANCOVA II estimators are all asymptotically equivalent to estimators in this
class corresponding with functions f (W) that are linear in W.

However, the ANCOVA II estimator is based on a less parsimonious model than
the usual ANCOVA. It essentially fits separate linear regressions in the treatment and
control arms and thus can be less stable with small or moderate samples due to loss
of degrees of freedom. An analyst using the ANCOVA II method might therefore
adjust for fewer covariates than someone using the regular ANCOVA technique, and
thus make less use of potentially informative predictors.

Interestingly, in the special case that g0(1) = 0.5, it happens that f (QI) = f (QII),
so that the ANCOVA estimator and the ANCOVA II estimator have identical influ-
ence curves (D∗(QI , g0) = D∗(QII , g0)) (Yang and Tsiatis 2001; Leon et al. 2003;
Tsiatis et al. 2008). Apparently the simple ANCOVA estimator achieves the same
asymptotic efficiency as the more data-adaptive ANCOVA II estimator, and should
thus be favored in small samples.

Koch estimator. Koch et al. (1998) introduced the treatment effect estimator defined
by
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ψn =
1
n

n∑
i=1

(
Ai

gn(1)
−

1 − Ai

1 − gn(1)

)
Yi +

n
m(n − m)

V�U−1
n∑

i=1

(Ai − gn(1))Wi.

Here m =
∑n

i=1 Ai, V = V (0)/(n − m) + V (1)/m and U = U(0)/(n − m) + U(1)/m.
Matrices U(0) and U(1) are unbiased sample estimates of covariance matrices of W
in the control and treatment groups. Vectors V (0) and V (1) are likewise unbiased
sample estimates of covariances between elements of W and the response Y in the
control and treatment groups.

This estimator is also asymptotically normal, with the same asymptotic variance
as the ANCOVA II estimator (Tsiatis et al. 2008), although it is motivated from a
different perspective. Hence, it also has the optimality property of being asymptoti-
cally efficient among estimators asymptotically equivalent to those in (12.2).

This estimator appears to not be consistent with fitting a regression model for the
response on both covariates and treatment assignment, i.e., it is not a substitution
estimator. Additionally, like the ANCOVA II method, it requires estimating covari-
ances between the outcome and each element of the covariate vector within each of
the two treatment arms. If the sample size is small relative to the number of covari-
ates, this might lead to more instability than the unadjusted or standard ANCOVA
estimators.

Leon estimator. Leon et al. (2003) discuss a general class of estimators asymptot-
ically equivalent to those of the form of (12.2), but with f a linear combination of
given basis functions of W, and they mention using quadratic or cross product terms.
We consider the reduction of their method when f (W) must be a linear combination
of the elements of W, along with an intercept. The estimator is defined by

ψn =
1
n

n∑
i=1

(
Ai

gn(1)
−

1 − Ai

1 − gn(1)

)
Yi − n(S 1/m2 + S 2/(n − m)2)�S −1

3 S 4.

To explain the definition, let F = [1,W]� be the addition of constant 1 to a subject’s
covariate vector. Here,

S 3 =

n∑
i=1

FiF�i ,

S 4 =

n∑
i=1

(Ai − gn(1))Fi,

S 1 =

n∑
i=1

Ai(Yi − Ȳ1,n)Fi,

and

S 2 =

n∑
i=1

(1 − Ai)(Yi − Ȳ0,n)Fi,
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where Ȳ1,n and Ȳ0,n are the empirical means of response Y in the treatment and
control groups.

This estimator is asymptotically equivalent to the ANCOVA II and Koch esti-
mators. Like these two estimators, in both treatment arms it requires computing
covariances between the outcome and each element of the covariate vector. This
is not a computational issue, but it causes instability in small samples. Also, the
method does not seem to correspond with fitting a simple linear regression model
for the outcome on treatment assignments and covariates, and is thus not a substitu-
tion estimator.

12.2 Targeted ANCOVA

We now introduce a new treatment effect estimator. Recall the linear model

Y = α + ψ0A + γ�W + error

used in the ANCOVA approach. Rather than fit coefficients with linear least squares,
we proceed as follows. First, we let δn and γn minimize:

n∑
i=1

(
Ai

gn(1)
−

1 − Ai

1 − gn(1)

)2

|Yi − δ − γ�Wi|2.

This is a weighted linear least squares regression of the response on the covariates,
with an intercept, weighting subjects in the treatment group by gn(1)−2 and subjects
in the control group by (1 − gn(1))−2. We have thus fitted γ. Next, let αn and ψn

minimize the sum of squares:

n∑
i=1

|Yi − γ�n Wi − α − ψ0Ai|2.

That is, we regress response Y on an intercept and A, using the initial weighted least
squares regression as offset. The targeted ANCOVA estimate of the treatment effect
is ψ∗n. Let Q̄∗n be the targeted ANCOVA regression fit. Note that ψ∗n = Ψ (Q∗n). One
can also estimate expected responses in the treatment and control arms by using
the fitted regression model Q̄∗n to impute missing counterfactuals and obtain ψ(0)

n =

Ψ (0)(Q∗n) = n−1 ∑n
i=1(αn + γ

�
n Wi) and ψ(1)

n = Ψ
(1)(Q∗n) = ψ(0)

n + ψ
∗
n.

This estimator equals the TMLE using the squared error loss and linear regres-
sion submodel Q̄0

n(ε) = Q̄0
n + ε(1, A), with the additional feature that the initial

estimator Q̄0
n is a weighted least squares estimator according to a linear regression

model of Y in W. Specifically,

• The initial estimator Q̄0
n of Q̄0(A,W) = E0(Y | A,W) is targeted by minimiz-

ing a weighted least squares criterion, and QW,0 is estimated with the empirical
distribution QW,n. This defines the initial estimator Q0

n of Q0 = (QW,0, Q̄0). The



12 Targeted ANCOVA Estimator in RCTs 209

weighted least squares loss function Lgn (Q̄)(O) = h2
gn

(A)(Y − Q̄(A,W))2 is still
a valid loss function for Q̄0 but is tailored to correspond with minimizing the
asymptotic variance of the resulting TMLE.

• For the TMLE step, we use a squared error loss function L(Q̄)(O) = (Y −
Q̄(A,W))2 for Q̄0 and a log-likelihood loss function L(QW ) = − log QW for QW,0.
This results in a loss function L(Q) = L(Q̄) + L(QW ) for Q0 = (QW,0, Q̄0) for the
TMLE step.

• For the TMLE step, we use the linear regression submodel Q̄0
n(ε2) = Q̄0

n + ε2H∗,
where H∗(A,W) = (1, A), or, equivalently, H∗(A,W) = (A/gn(1), (1 − A)/gn(0)),
is chosen so that the score d/dε2L(Q̄0

n(ε2)) at ε2 = 0 spans the component
D∗Y (Q̄0

n, gn)(O) = (2A − 1)/gn(A)(Y − Q̄0
n(W)) of the efficient influence curve

D∗(Q0
n, gn) = D∗Y (Q̄0

n, gn) + D∗W (Q0
n). The empirical distribution of W is sepa-

rately fluctuated with a submodel QW,n(ε1) = (1 + ε1D∗W (Q0
n))QW,n with score

D∗W (Q0
n)(O) = Q̄0

n(1,W)−Q̄0
n(0,W)−Ψ (Q0

n). Since QW,n is a nonparametric maxi-
mum likelihood estimator, the maximum likelihood estimators of ε1 in the TMLE
algorithm equals zero. The score of L(Q(ε1, ε2)) at ε1 = ε2 = 0 spans the efficient
influence curve D∗(Q0

n, gn).

12.2.1 Asymptotic Optimality

What are the statistical properties of this estimator Ψ (Q∗n) of the additive causal ef-
fect of treatment ψ0? Since the targeted ANCOVA estimator is a TMLE targeting
(E0(Y1), E0(Y0)), we can refer to asymptotic linearity theorems established for such
estimators. Since Q̄∗n is a simple linear regression estimator, all the empirical pro-
cess conditions and convergence rate conditions are trivially met. As a consequence,
ψ(0)

n , ψ(1)
n , and ψ∗n will all be consistent and asymptotically normal estimators of the

respective target parameters under minimal conditions, such as W and Y not having
overly heavy tails.

Moreover, we claim that the asymptotic variance of treatment effect estimator
ψ∗n = Ψ (Q∗n) will equal that of the ANCOVA II estimator, Koch estimator, and Leon
estimator. Thus, we achieve the optimality bound discussed for estimators of the
form (12.2) with linear f (W) and are guaranteed to be at least as asymptotically
efficient as the unadjusted and standard ANCOVA techniques.

This is shown as follows. The TMLE Q∗n = (QW,n, Q̄∗n) solves the efficient influ-
ence curve estimating equation PnD∗(Q∗n, gn, ψ

∗
n) = 0, where we denoted the efficient

influence curve D∗(Q, g0) as an estimating function D∗(Q, g0, Ψ (Q)) in ψ. By (12.1)
this can also be represented as PnDf (Q∗n)(ψ∗n) = 0, and thereby

ψ∗n =
1
n

∑
i

hgn (Ai)(Yi − f (Q∗n)(Wi)).

Recall that Q̄∗n = Q̄0
n + εn(1, A), so that f (Q∗n) = f (Q0

n) + c for some constant c.
However, this constant c cancels out since Pnhgn c = Pnhgn = 0. Thus, it follows that
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ψ∗n =
1
n

∑
i

hgn (Ai)(Yi − f (Q0
n)).

Standard analysis now shows that ψ∗n is asymptotically linear with influence curve

IC(O) = Df (Q)(ψ0)(O) − E0(Df (Q)(ψ0)(O) | A),

where Df (Q)(ψ0) can also be represented as D∗(Q, g0, ψ0), Q denotes the limit of Q0
n,

and the additional projection term is due to the estimation of g0 with gn. However,
by definition of Q̄0

n as the linear regression that minimizes the empirical variance of
D∗f (ψ0) over all linear functions f (W) = η�(1,W), we know that

var Df (Q)(ψ0) = arg min
η

var{hg0 (A)(Y − η�(1,W)) − ψ0}.

The additional term in IC can only reduce the variance, which proves that the vari-
ance of IC is smaller than or equal to the variance of all the influence curves D∗f (ψ0)
with f (W) = η�(1,W) for some η. Since the additional term only changes the inter-
cept in f , it also follows that the additional term will not affect the variance relative
to the already optimal f (Q). Thus, IC = D∗f (Q)(ψ0) = D∗(Q, g0, ψ0).

12.2.2 Targeted ANCOVA Is a Substitution Estimator

A byproduct of our method is a fit of a parsimonious linear model. Hence, targeted
ANCOVA could be easier to use than the Koch or Leon methods for nonstatistician
investigators who are already used to fitting parametric linear regression models. If
the linear ANCOVA model is a good approximation to the unknown data-generating
distribution, then, like linear least squares, our fit should accurately approximate the
regression function (A,W) → E0(Y | A,W). To see this, note that by first fitting the
coefficient vector γ of covariates W and then fixing it in the next step, we are merely
implementing forward stagewise modeling with weights in one of the stages, which
is a well-known regression technique (Hastie et al. 2001, Sect. 10.3). Since A and
W are independent, the separation of the two stages does not harm the fit of Q̄0.

12.2.3 Small and Moderate Sample Performance

While we have noted that our targeted ANCOVA technique will perform similarly in
large samples to the ANCOVA II, Koch, and Leon methods, we claim that asymp-
totics will often kick in more quickly for the targeted ANCOVA estimator, so we
could safely adjust for more predictors. Simulations in the following sections will
be used to investigate this issue in more depth, but for now we give an explanation
for our confidence.



12 Targeted ANCOVA Estimator in RCTs 211

Table 12.1 Summary of ANCOVA methods and their properties

Targeted
Unadjusted ANCOVA ANCOVA II Koch Leon ANCOVA

Meets
asymptotic × × × ×
bound of (12.2)

Parametric
regression × × ×
model

Doesn’t
estimate 2p × × ×
parameters

Suppose that the covariate vector is p-dimensional. The ANCOVA II estimator
reduces to performing two linear regressions of the response on the covariate vec-
tor, one in each arm. Hence, fits in each model are based on fewer observations than
with ordinary ANCOVA. Similarly, the Koch and Leon estimators both involve es-
timating the 2p quantities corresponding to how each of the p baseline predictors
covaries with the response in each treatment arm. The optimal linear f (W) in (12.2)
involves a mixture of two p-dimensional vectors: the vector of covariances between
predictors and the response in the treatment arm, and likewise for controls (Tsiatis
et al. 2008, Eq. 11). While earlier methods attaining the efficiency bound fit both
vectors, we try to directly fit the optimal linear f (W) in (12.2) and implicitly just es-
timate the relevant mixture f (Q0)(W) = g0(1)Q̄0(0,W)+g0(0)Q̄0(1,W) according to
a linear working model. A related way of viewing targeted ANCOVA is that relative
to ANCOVA II and other techniques, we improve finite sample performance by sac-
rificing asymptotic efficiency for our separate estimators of expected responses ψ(0)

0

and ψ(1)
0 in the two arms, as the treatment effect contrast will usually be of primary

importance. There is subjectivity in these statements, just as there are many ways to
represent estimators and how many parameters they fit in intermediate steps. Still,
Table 12.1 seems to summarize the added value of our method.

12.3 Standard Error Estimation

Yang and Tsiatis (2001), Leon et al. (2003), and Tsiatis et al. (2008) give semipara-
metric representations of asymptotic variances for estimators in this problem, and
this framework can be applied to our method. Alternatively, we use that our targeted
ANCOVA estimator ψ∗n = Ψ (Q∗n) is a TMLE that solves the efficient influence curve
estimating equation 0 = PnD∗(Q∗n, g0, ψ

∗
n) = 0, so that inference can proceed ac-

cordingly. Specifically, the TMLE Ψ (Q∗n) is asymptotically linear with an influence
curve given by
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D∗(Q∗, g0)(O) =
2A − 1
g0(A)

(Y − Q̄∗(A,W)) + Q̄∗(1,W) − Q̄∗(0,W) − ψ0,

where Q∗ denotes the limit of the TMLE Q∗n.
Let αn, ψ∗n, and γn denote the fitted coefficients from targeted ANCOVA, with

α, ψ0, and γ the corresponding large sample limits. We have that Q̄∗n(A,W) = αn +

γnW+ψ∗nA, which converges to Q̄∗(A,W) = α+γ+ψ0A. The variance of ψn = Ψ (Q∗n)
can thus be estimated as

σ2
ψn,n =

1
n2

n∑
i=1

D∗(Q∗n, g0)(Oi)2.

The same variance formulas can be applied to estimate the variance of the TMLE
of E0Y1 and E0Y0. These formulas correspond with the formulas in the above refer-
enced articles.

Confidence intervals and test statistics can now be constructed based on the nor-
mal approximation of ψ∗n − ψ0. Although the consistency and asymptotic normality
properties of the standard ANCOVA estimator of the treatment effect do not depend
on the linear model’s being correctly specified, the usual nominal variance formulas
produced by the software can be incorrect (Freedman 2008a). The above standard
error estimators for targeted ANCOVA here do not depend on any parametric mod-
eling assumptions since they are based on the influence curve of the estimator in the
posed semiparametric model that only assumed the randomization assumption.

12.4 Simulations

We investigated the performance of targeted ANCOVA through simulating four
data-generating distributions studied in Yang and Tsiatis (2001). For each distri-
bution we evaluated estimators in simulated experiments with sample sizes n = 20,
n = 50, and n = 100. In addition to redoing the original Yang and Tsiatis simula-
tions, in which each subject had a single covariate W, we also considered scenarios
with more covariates. For each subject, three additional covariates were generated
from the same marginal distribution originally used, but independently of all the
subject’s other measurements. This was to simulate clinical trial settings where sub-
stantial baseline information is available yet “most covariates are not strongly re-
lated to the outcome” (Pocock et al. 2002).

For each of the four data-generating distributions, each of the three sample sizes,
and both choices of including one covariate or four covariates, we ran 100,000
Monte Carlo simulations of randomized experiments. The true treatment effect in
all cases was ψ0 = 1/2, and the Monte Carlo replications allowed us to estimate the
root mean squared errors (RMSEs) of different estimators. Although the results that
follow do not present estimates of simulation error, the number of replications was
chosen to be large enough so that this simulation error can be ignored.
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Table 12.2 Simulation 1: RMSE

Extra Targeted
covariates n Unadjusted ANCOVA ANCOVA II Koch Leon ANCOVA

No 20 0.69 0.59 0.60 0.59 0.59 0.56
50 0.43 0.37 0.38 0.37 0.37 0.37
100 0.31 0.26 0.26 0.26 0.26 0.26

Yes 20 0.69 0.65 0.69 0.65 0.62 0.53
50 0.44 0.39 0.39 0.39 0.38 0.36
100 0.31 0.27 0.27 0.27 0.27 0.26

Table 12.3 Simulation 2: RMSE

Extra Targeted
covariates n Unadjusted ANCOVA ANCOVA II Koch Leon ANCOVA

No 20 0.46 0.47 0.47 0.47 0.47 0.45
50 0.29 0.29 0.29 0.29 0.29 0.29
100 0.21 0.21 0.21 0.21 0.21 0.20

Yes 20 0.46 0.52 0.56 0.52 0.49 0.43
50 0.29 0.30 0.30 0.30 0.30 0.28
100 0.21 0.21 0.21 0.21 0.21 0.20

Table 12.4 Simulation 3: RMSE

Extra Targeted
covariates n Unadjusted ANCOVA ANCOVA II Koch Leon ANCOVA

No 50 0.51 0.42 0.43 0.43 0.43 0.42
100 0.36 0.30 0.30 0.30 0.30 0.30

Yes 50 0.51 0.44 0.47 0.45 0.45 0.42
100 0.36 0.30 0.31 0.31 0.31 0.30

Table 12.5 Simulation 4: RMSE

Extra Targeted
covariates n Unadjusted ANCOVA ANCOVA II Koch Leon ANCOVA

No 20 0.99 0.81 0.84 0.81 0.80 0.77
50 0.63 0.53 0.55 0.53 0.53 0.52
100 0.45 0.39 0.39 0.39 0.39 0.38

Yes 20 0.99 0.90 0.96 0.90 0.85 0.72
50 0.63 0.55 0.56 0.55 0.55 0.51
100 0.45 0.39 0.40 0.39 0.39 0.38
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Simulation 1. For the initial simulation the covariate followed a standard normal
distribution. Half of the subjects were assigned to treatment, meaning that g0 = 1/2.
Responses were generated through

Y = (−1/4 + ψ0A) + (β1 + β2A)W + (β3 + β4A)(W2 − var(W)) + U,

where (β1, β2, β3, β4) = (1/2, 3/5, 2/5, 3/10). The error U followed a standard nor-
mal distribution, independently of covariates. RMSEs are shown in Table 12.2. Tar-
geted ANCOVA appeared slightly more accurate than other methods, particularly
as the sample size got smaller or the number of baseline covariates got larger. The
unadjusted estimator was noticeably less efficient than all covariate-adjusted esti-
mators, as the covariate was strongly predictive of the response for this artificial
data-generating distribution.

Simulation 2. In the second simulation we took (β1, β2, β3, β4) = (1/10, 1/10, 1/10,
1/10), making the baseline covariate less predictive of the response. Recall that
in settings where three extra covariates were added, these were unrelated to the
outcome. RMSEs are reported in Table 12.3. For this distribution the unadjusted
estimator performed more favorably. All methods were mostly similar, but it was
notable that targeted ANCOVA had the best performance across each of these six
independent Monte Carlo settings.

Simulation 3. The third simulation was identical to the first, except that the propor-
tion of subjects assigned treatment was g0 = 3/10 instead of 1/2. Following Yang
and Tsiatis (2001), we don’t report results for the n = 20 sample size as too few sub-
jects were assigned treatment to make meaningful generalizations. RMSE results
are shown in Table 12.4. The unadjusted estimator appeared slightly worse than the
others. Adjusted estimators were all similar, with targeted ANCOVA consistently
having slightly smaller RMSEs than its competitors over these four settings.

Simulation 4. The final simulation was identical to simulation 1, except covariates
W and error U were drawn from t-distributions with seven degrees of freedom in-
stead of standard normal distributions. Table 12.5 shows RMSEs. Once more, we
found that targeted ANCOVA performed best, particularly when the sample size be-
came small or when the three extra covariates were added. An unusual feature of
the simulations was that, unlike the other estimators, targeted ANCOVA occasion-
ally seemed to perform better with the three extra covariates than without them, even
though they were unrelated to the treatment or response.

12.5 Discussion

We have introduced a new alternative to least squares for fitting linear models in
RCTs. Our estimator of the average treatment effect generally increases the asymp-
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totic efficiency of the usual ANCOVA approach and still produces a regression fit. It
may also often outperform estimators with similar asymptotic efficiency if the sam-
ple size is moderate relative to the number of covariates, so that one could safely
adjust for more predictors. Our work is a special case of a TMLE, which is based
on the idea that fitting a regression model isn’t always an end in itself. Rather, it is
an intermediate step in estimating the target parameter of interest, which in our case
is the average causal effect. In such circumstances it may be suboptimal to use stan-
dard parametric maximum likelihood or least squares for model fitting of the initial
estimator in the TMLE and advantageous to keep the final desired estimand in mind
while targeting the initial regression fit accordingly. This approach has beneficial
applications in a variety of problems, including RCTs. In this chapter we focused
on using a parametric regression working model. Instead, the initial estimator Q̄0

n in
the targeted ANCOVA could be replaced by a super learner based on the weighted
squared error loss function Lgn (Q̄) = (Y − f (Q̄))2h2

gn
. We also refer the interested

reader to Appendix A.19.
To summarize, in the TMLE one has the option to select a loss function for the

initial estimator, separate from the loss function selected for the targeting step in the
TMLE. For example, this loss function can be selected so that minimizing its empiri-
cal risk over candidate TMLEs Q∗n(Q0) indexed by different initial estimators Q0 (or
values such as regression functions) corresponds with minimizing the variance of
the efficient influence curve D∗(Q∗n(Q0), g0) at these TMLEs over a working model
for Q0. As a result of such a procedure, the variance of the influence curve of the
TMLE will be the variance of D∗(Q∗, g0), where Q∗ has been tailored to minimize
the variance of these influence curves over a specified set of candidate functions for
Q∗. In this chapter’s example, this loss function was the weighted least squares loss
Lgn (Q̄) = (Y − f (Q̄))2h2

gn
and the working model was linear regression functions in

W for Q̄. To conclude, we showed that TMLE can accommodate the incorporation
of additional targeting of the initial estimator through empirical efficiency maxi-
mization (Rubin and van der Laan 2008), so that additional optimality properties,
such as having an influence curve that is more optimal than a user-supplied class of
influence curves, can be guaranteed.

Disclaimer

This work concerns only the views of the authors and does not necessarily represent
the position of the Food and Drug Administration.
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Chapter 13

Independent Case-Control Studies

Sherri Rose, Mark J. van der Laan

Case-control study designs are frequently used in public health and medical research
to assess potential risk factors for disease. These study designs are particularly at-
tractive to investigators researching rare diseases, as they are able to sample known
cases of disease vs. following a large number of subjects and waiting for disease
onset in a relatively small number of individuals.

Case-control sampling is a biased design. Bias occurs due to the dispropor-
tionate number of cases in the sample vs. the population.

Researchers commonly employ the use of logistic regression in a parametric statis-
tical model, ignoring the biased design, and estimate the conditional odds ratio of
having disease given the exposure of interest A and measured covariates W.

Our proposed case-control-weighted TMLE for case-control studies relies on
knowledge of the true prevalence probability, or a reasonable estimate of this prob-
ability, to eliminate the bias of the case-control sampling design. We use the preva-
lence probability in case-control weights, and our case-control weighting scheme
successfully maps the TMLE for a random sample into a method for case-control
sampling. The case-control-weighted TMLE (CCW-TMLE) is an efficient estimator
for the case-control sample when the TMLE for the random sample is efficient. In
addition, the CCW-TMLE inherits the robustness properties of the TMLE for the
random sample.

13.1 Data, Model, and Target Parameter

Let us define a simple example with X = (W, A, Y) ∼ PX,0 as the full-data experi-
mental unit and corresponding distribution PX,0 of interest, which consists of base-
line covariates W, exposure variable A, and a binary outcome Y that defines case or
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Fig. 13.1 Case-control sampling design

control status. In previous chapters, our target parameter of interest was the causal
risk difference, which we now denote

ψF
RD,0 = Ψ

F(PX,0) = EX,0[EX,0(Y | A = 1,W) − EX,0(Y | A = 0,W)]
= EX,0(Y1) − EX,0(Y0)
= PX,0(Y1 = 1) − PX,0(Y0 = 1)

for binary A, binary Y , and counterfactual outcomes Y0 and Y1, where F indicates
“full data.” Other common parameters of interest include the causal relative risk and
the causal odds ratio, given by

ψF
RR,0 =

PX,0(Y1 = 1)
PX,0(Y0 = 1)

and

ψF
OR,0 =

PX,0(Y1 = 1)PX,0(Y0 = 0)
PX,0(Y1 = 0)PX,0(Y0 = 1)

.

We describe the case-control design as first sampling (W1, A1) from the condi-
tional distribution of (W, A), given Y = 1 for a case. One then samples J controls
(W j

0, A
j
0) from (W, A), given Y = 0, j = 1, . . . , J. The observed data structure in

independent case-control sampling is then defined by

O =
(
(W1, A1), (W j

0, A
j
0 : j = 1, . . . , J)

)
∼ P0, with
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(W1, A1) ∼ (W, A | Y = 1),

(W j
0, A

j
0) ∼ (W, A | Y = 0),

where the cluster containing one case and J controls is considered the experimental
unit. Therefore, a case-control data set consists of n independent and identically dis-
tributed observations O1, . . . ,On with sampling distribution P0 as described above.
The statistical modelMF , where the prevalence probability PX,0(Y = 1) ≡ q0 may
or may not be known, implies a statistical model for the distribution of O consisting
of (W1, A1) and controls (W j

2, A
j
2), j = 1, . . . , J.

This coupling formulation is useful when proving theoretical results for the case-
control weighting methodology (van der Laan 2008a), and those results show that
the following is also true. If independent case-control sampling is described as sam-
pling nC cases from the conditional distribution of (W, A), given Y = 1, and sam-
pling nCo controls from (W, A), given Y = 0, the value of J used to weight each
control is then nCo/nC. This simple ratio J = nCo/nC can be used effectively in
practice. We also stress that this formulation does not describe individually matched
case-control sampling, which we describe in Chap. 14.

13.2 Prevalence Probability

The population under study should be clearly defined. As such, the prevalence prob-
ability q0 is then truly basic information about a population of interest. The use of
the prevalence probability to eliminate the bias of a case-control sampling design
as an update to a logistic regression intercept in a parametric statistical model was
first discussed in Anderson (1972). This update enforces the intercept to be equal to
log(q0/(1 − q0)).

13.3 CCW-TMLE

In this section we build on the readers familiarity with the TMLE as described in
detail in Chaps. 4 and 5. We discuss a CCW-TMLE for the causal risk difference
with X = (W, A, Y) ∼ PX,0 and O =

(
(W1, A1), (W j

0, A
j
0 : j = 1, . . . , J)

)
∼ P0. The

full-data efficient influence curve DF(Q0, g0) at PX,0 is given by

DF(Q0, g0) =
(

I(A = 1)
g0(1 | W)

−
I(A = 0)
g0(0 | W)

)
(Y − Q̄0(A,W))

+ Q̄0(1,W) − Q̄0(0,W) − ΨF(Q0), (13.1)

where Q0 = (Q̄0,QW,0), QW,0 is the true full-data marginal distribution of W,
Q̄0(A,W) = EX,0(Y | A,W), and g0(a | W) = PX,0(A = a | W). The first term
will be denoted by DF

Y and the second term by DF
W , since these two terms represent
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components of the full-data efficient influence curve that are elements of the tangent
space of the conditional distribution of Y , given (A,W), and the marginal distribu-
tion of W, respectively. That is, DF

Y is the component of the efficient influence curve
that equals a score of a parametric fluctuation model of a conditional distribution of
Y , given (A,W), and DF

W is a score of a parametric fluctuation model of the marginal
distribution of W. Note that DF

Y (Q, g) equals a function H∗(A,W) times the residual
(Y − Q̄(A,W)), where

H∗(A,W) =
( I(A = 1)

g(1 | W)
−

I(A = 0)
g(0 | W)

)
.

13.3.1 Case-Control-Weighted Estimators for Q0 and g0

We can estimate the marginal distribution of QW,0 with case-control-weighted max-
imum likelihood estimation:

Q0
W,n = arg min

QW

n∑
i=1

⎛⎜⎜⎜⎜⎜⎜⎝q0LF(QW )(W1,i) +
1 − q0

J

J∑
j=1

LF(QW )(W j
2,i)

⎞⎟⎟⎟⎟⎟⎟⎠ ,
where LF(QW ) = − log QW is the log-likelihood loss function for the marginal dis-
tribution of W. If we maximize over all distributions, this results in a case-control-

0 0
on the controls in the sample.

Suppose that based on a sample of n i.i.d. observations Xi we would have esti-
mated Q̄0 with loss-based learning using the log-likelihood loss function LF(Q̄)(X) =
−log Q̄(A,W)Y (1− Q̄(A,W))1−Y . Given the actual observed data we can estimate Q̄0
with super learning and the case-control weights for observations i = 1, . . . , n, which
corresponds with the same super learner but now based on the case-control-weighted
loss function:

L(Q̄)(O) ≡ q0LF(Q̄)(W1, A1, 1) +
1 − q0

J

J∑
j=1

LF(Q̄)(W j
2, A

j
2, 0).

Let LF(Q) = LF(QW ) + LF(Q̄) be the full-data loss function for Q = (Q̄,QW ), and
let L(Q, q0) = q0LF(Q)(W1, A1, 1)+ ((1−q0)/J)

∑J
j=1 LF(Q)(W j

2, A
j
2, 0) be the corre-

0 Q EP0 L(Q, q0)(O),
so that indeed the case-control-weighted loss function for Q0 is a valid loss func-
tion. Similarly, we can estimate g0 with loss-based super learning based on the case-
control-weighted log-likelihood loss function:

L(g)(O) ≡ −q0 log g(A1 | W1) −
1 − q0

J

J∑
j=1

log g(Aj
2 | W

j
2).

We now have an initial estimator Q0
n = (Q0

W,n
¯0

n
0
n

weighted empirical distribution that puts mass q /n on the cases and (1 − q )/(nJ)

,Q ) and g .

sponding case-control-weighted loss function.We have Q = arg min
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13.3.2 Parametric Submodel for Full-Data TMLE

Let Q0
W,n(ε1) = (1 + ε1DF

W (Q0
n))Q0

W,n be a parametric submodel through Q0
W,n, and let

Q̄0
n(ε2)(Y = 1 | A,W) = expit

(
log

Q̄0
n

(1 − Q̄0
n)

(A,W) + ε2H∗n(A,W)
)

be a parametric submodel through the conditional distribution of Y , given A,W,
implied by Q̄0

n. This describes a submodel {Q0
n(ε) : ε} through Q0

n with a two-
dimensional fluctuation parameter ε = (ε1, ε2). We have that d/dεLF(Q0

n(ε)) at ε = 0
yields the two scores DF

W (Q0
n) and DF

Y (Q0
n, g

0
n), and thereby spans the full-data effi-

cient influence curve DF(Q0
n, g

0
n), a requirement for the parametric submodel for the

full-data TMLE. This parametric submodel and the loss function LF(Q) now defines
the full data TMLE, and this same parametric submodel with the case-control loss
function defines the CCW-TMLE.

13.3.3 Obtaining a Targeted Estimate of Q0

We define

εn = arg min
ε

n∑
i=1

q0LF(Q0
n(ε))(W1i, A1i) +

1 − q0

J

J∑
j=1

LF(1 − Q0
n(ε))(W j

2i, A
j
2i)

and let Q1
n = Q0

n(εn). Note that ε1,n = 0, which shows that the case-control-weighted
empirical distribution of W is not updated. Note also that ε2,n is obtained by perform-
ing a case-control-weighted logistic regression of Y on H∗n(A,W), where Q̄0

n(A,W)
is used as an offset, and extracting the coefficient for H∗n(A,W). We then update Q̄0

n
with logitQ̄1

n(A,W) = logitQ̄0
n(A,W)+ε1n H∗n(A,W). This updating process converges

in one step in this example, so that the CCW-TMLE is given by Q∗n = Q1
n.

13.3.4 Estimator of the Target Parameter

Lastly, one evaluates the target parameter ψ∗n = Ψ
F(Q∗n), where Q∗n = (Q̄1

n,Q
0
W,n), by

plugging Q̄1
n and Q0

W,n into our substitution estimator to get the CCW-TMLE of ψF
0 :

ψ∗n =

⎧⎪⎪⎪⎨⎪⎪⎪⎩1
n

n∑
i=1

⎛⎜⎜⎜⎜⎜⎜⎝q0Q̄1
n(1,W1,i) +

1 − q0

J

J∑
j=1

Q̄1
n(1,W j

2,i)

⎞⎟⎟⎟⎟⎟⎟⎠
−

⎛⎜⎜⎜⎜⎜⎜⎝q0Q̄1
n(0,W1,i) +

1 − q0

J

J∑
j=1

Q̄1
n(0,W j

2,i)

⎞⎟⎟⎟⎟⎟⎟⎠
⎫⎪⎪⎪⎬⎪⎪⎪⎭ .
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13.3.5 Calculating Standard Errors

Recall from Part I that the variance of our estimator is well approximated by the
variance of the influence curve, divided by sample size n. Let ICF be the influence
curve of the full-data TMLE. We also showed that one can define ICF as the full-
data efficient influence curve given in (13.1). The case-control-weighted influence
curve for the risk difference is then estimated by

ICn(O) = q0ICF
n (W1, A1, 1) + (1 − q0)

1
J

J∑
j=1

ICF
n (W j

2, A
j
2, 0).

Just as in Chap. 4, an estimate of the asymptotic variance of the standardized TMLE
viewed as a random variable, using the estimate of the influence curve ICn(O), is
given by σ2

n =
1
n
∑n

i=1 IC2
n(Oi).

13.4 Simulations

In the following simulation studies, we compare the CCW-TMLE to two other esti-
mators to examine finite sample performance.

CCW-MLE. Case-control-weighted estimator of Q̄0 mapped to causal effect es-
timators by averaging over the case-control-weighted distribution of W. This
is a case-control-weighted maximum likelihood substitution estimator of the
g-formula (CCW-MLE) first discussed in van der Laan (2008a) and Rose and
van der Laan (2008).

CCW-TMLE. The targeted case-control-weighted maximum likelihood substi-
tution estimator of the g-formula discussed in the chapter.

IPTW estimator. Robins (1999a) and Mansson et al. (2007) discuss, under a rare
disease assumption, the use of an “approximately correct” IPTW method for
case-control study designs. It uses the estimated exposure mechanism among
control subjects to update a logistic regression of Y on A. This estimator targets
a nonparametrically nonidentifiable parameter, which indicates strong sensitiv-
ity to model misspecification for the exposure mechanism. Estimates of the risk
difference and relative risk cannot be obtained using this method.

We limit our simulations in this chapter to the odds ratio since the IPTW estimator
can only estimate this parameter.

Simulation 1. This first simulation study was based on a population of N = 120,000
individuals, where we simulated a one-dimensional covariate W, a binary exposure
A, and an indicator Y . These variables were generated according to the following
rules: W ∼ U(0, 1), PX,0(A | W) = expit(W2 − 4W + 1), and PX,0(Y = 1 | A,W) =
expit(1.2A − sin W2 + A sin W2 + 5A log W + 5 log W − 1). The resulting population
had a prevalence probability of q0 = 0.035, and exactly 4,165 cases. We sampled the
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population using a varying number of cases and controls, and for each sample size
we ran 1,000 simulations. The true value for the odds ratio was given by OR = 2.60.

For methods requiring an initial estimator of the conditional mean of Y , it was
estimated using a correctly specified logistic regression and also a misspecified lo-
gistic regression with A and W as main terms. For methods requiring a fit for expo-
sure mechanism, it was estimated using a correctly specified logistic regression and
also a misspecified logistic regression with only the main term W.

Since we realistically generated A dependent on W, this led to substantial in-
creases in efficiency in the targeted estimator when the initial estimator was mis-
specified and sample size grew, as it also adjusts for the exposure mechanism. This
emphasizes the double robustness of the targeted estimators, and suggests that one
should always target in practice. It is not surprising that when Q̄n(A,W) was cor-
rectly specified, the relative efficiency of the targeted estimator (CCW-TMLE) was
similar to its nontargeted counterpart (CCW-MLE). One should recall that correct
specification in practice is unlikely and also note that this data structure is overly
simplistic compared to real data. Even with this simple data structure, the IPTW
estimators had the poorest overall efficiency. MSEs and relative efficiencies for the
causal odds ratio are provided in Table 13.1.

When examining bias, it is clear that the IPTW estimators had the highest level
of bias across all sample sizes, as observed in the bias plot displayed in Fig. 13.2.
The CCW-MLE and CCW-TMLE with misspecified initial Q̄n(A,W) had more bias
than their correctly specified counterparts.

Table 13.1 Simulation results for the odds ratio. M is for misspecified Q̄n(A,W) or gn(A | W) fit,
C is for correctly specified Q̄n(A,W) or gn(A | W). When two letters are noted in the “Fit” column,
the first letter refers to Q̄n(A,W) and the second to gn(A | W)

nC 250 500 500 1000 1000
Simulation 1 Fit nCo 250 500 1000 1000 2000

IPTW MSE M 1.76 1.75 3.39 1.80 3.40
IPTW RE C 0.91 0.89 1.69 0.89 1.69

C 1.27 3.65 14.64 8.44 32.12
CCW-MLE RE M 3.07 5.72 14.54 7.83 18.93

CC 1.27 3.62 14.58 8.40 32.03
CCW-TMLE RE CM 1.26 3.62 14.57 8.40 31.97

MC 1.96 4.63 16.68 9.52 31.91

nC 100 250 250 500
Simulation 2 Fit nCo 250 250 500 500

IPTW MSE M 404.40 3667.56 306.42 2433.62
IPTW RE C 1.0 1.2 1.0 1.2

CCW-MLE RE C 290 4200 570 5800

CC 280 4100 570 5700
CCW-TMLE RE CM 290 4100 570 5700
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specified Q̄n(A,W) and gn(A | W)
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Simulation 2. Our second set of simulations was based on a population of N =
80,000 individuals. The population had a binary exposure A, binary disease status
Y , and a one-dimensional covariate W. These variables were generated according
to the following rules: W ∼ U(0, 1), PX,0(A | W) = expit(−5 sin W), and PX,0(Y =
1 | A,W) = expit(2A − 25W + A × W). The resulting population had a prevalence
probability of q0 = 0.053, exactly 4,206 cases. The true value for the odds ratio was
given by OR = 3.42. The parameter was estimated using the same general methods
as in the previous section, albeit with different fits for Q̄n(A,W) and gn(A | W). The
initial fit for each method requiring an estimate of Q̄0(A,W) was estimated using
a correctly specified logistic regression. For methods requiring a fit for exposure
mechanism, it was estimated using a correctly specified logistic regression and also
a misspecified logistic regression with W as a main term.

Results across the two case-control-weighted methods for the odds ratio were
nearly identical, indicating again that when Q̄n(A,W) is correct and q0 is known,
one may be well served by either of these methods. However, the IPTW method
for odds ratio estimation was extremely inefficient in comparison. We theorized in
van der Laan (2008a), and Mansson et al. (2007) demonstrated, that the IPTW pro-
cedure has a strong sensitivity to model misspecification. This result was observed
in simulation 1, although the results in simulation 2 are more extreme. Results can
be seen in Table 13.1 and Fig. 13.3.

13.5 Discussion

Case-control weighting provides a framework for the analysis of case-control study
designs using TMLEs. We observed that the IPTW method was outperformed in
conditions similar to a practical setting by CCW-TMLE in two simulation studies.
The CCW-TMLE yields a fully robust and locally efficient estimator of causal pa-
rameters of interest. Model misspecification within this framework, with known or
consistently estimated exposure mechanism, still results in unbiased and highly ef-
ficient CCW-TMLE. Further, in practice we recommend the use of super learner for
the estimation of Q̄0. We showed striking improvements in efficiency and bias in
all methods incorporating knowledge of the prevalence probability over the IPTW
estimator, which does not use this information.

13.6 Notes and Further Reading

As previously discussed, conditional estimation of the odds ratio of disease given the
exposure and baseline covariates is the prevalent method of analysis in case-control
study designs. Key publications in the area of logistic regression in parametric sta-
tistical models for independent case-control study designs are Anderson (1972),
Prentice and Pyke (1979), Breslow and Day (1980), and Breslow (1996). Green-
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land (1981) and Holland and Rubin (1988) discuss another model-based method:
the use of log-linear statistical models to estimate the marginal odds ratio. There
are also multiple references for standardization in case-control studies, which es-
timates marginal effects with population or person-time averaging, including Roth-
man and Greenland (1998) and Greenland (2004). We also refer the interested reader
to Newman (2006) for a related IPTW-type method. This procedure builds on the
standardization approach in order to weight exposed and unexposed controls using
a regression of A on W.

Given the availability of city, state, and national databases for many diseases, in-
cluding many cancers, knowledge of the prevalence probability is now increasingly
realistic. The literature, going back to the 1950s, supports this. See, for example,
Cornfield (1951, 1956). If the prevalence probability is not known, an estimate can
be used in the CCW-TMLE, and this additional uncertainty can be incorporated into
the standard errors. In situations where data on the population of interest may be
sparse, the use of a range for the prevalence probability is also appropriate.

Other papers, in addition to Anderson (1972), discuss the use of log(q0/(1 − q0))
as an update to the intercept of a logistic regression, including Prentice and Breslow
(1978), Greenland (1981), Morise et al. (1996), Wacholder (1996), and Greenland
(2004). However, its use in practice remains limited. The adjustment is sometimes
presented as a ratio of sampling fractions: log(P(sampled | Y = 1)/P(sampled | Y =
0)), which reduces to log(q0/(1 − q0)).

This chapter was adapted from a previously published paper (Rose and van der
Laan 2008). We refer readers to this paper for additional simulations where q0 is
estimated, and for a demonstration of the use of the influence curve for standard
error estimation in a single simulated data set. We also refer readers to van der
Laan (2008a) for the theoretical development of CCW-TMLE, as well as a formal
discussion of the “approximately correct” IPTW estimator. The appendix of van der
Laan (2008a) also discusses in detail the incorporation of the additional uncertainty
from an estimated q0 into the standard errors.

The complexity of a case-control study can vary. Additional designs include indi-
vidually matched, incidence-density, and nested. Individually matched case-control
studies are discussed in the next chapter, and prediction in nested case-control stud-
ies is discussed in Chap. 15. A TMLE for general two-stage designs, including so-
called nested case-control designs, is presented in Rose and van der Laan (2011).
Adaptations for incidence-density designs are discussed briefly in van der Laan
(2008a) and will be further developed in future work.



Chapter 14

Why Match? Matched Case-Control Studies

Sherri Rose, Mark J. van der Laan

Individually matched case-control study designs are common in public health and
medicine, and conditional logistic regression in a parametric statistical model is
the tool most commonly used to analyze these studies. In an individually matched
case-control study, the population of interest is identified, and cases are randomly
sampled. Each of these cases is then matched to one or more controls based on
a variable (or variables) believed to be a confounder. The main potential benefit
of matching in case-control studies is a gain in efficiency, not the elimination of
confounding. Therefore, when are these study designs truly beneficial?

Given the potential drawbacks, including extra cost, added time for enroll-
ment, increased bias, and potential loss in efficiency, the use of matching in
case-control study designs warrants careful evaluation.

In this chapter, we focus on individual matching in case-control studies where the
researcher is interested in estimating a causal effect, and certain prevalence proba-
bilities are known or estimated. In order to eliminate the bias caused by the matched
case-control sampling design, this technique relies on knowledge of the true preva-
lence probability q0 ≡ PX,0(Y = 1) and an additional value:

q̄0(M) ≡ q0
PX,0(Y = 0 | M)
PX,0(Y = 1 | M)

,

where M is the matching variable. We will compare the use of CCW-TMLEs in
matched and unmatched case-control study designs as we explore which design
yields the most information for the causal effect of interest. We assume readers
have knowledge of the information presented in the previous chapter on independent
case-control study designs.
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14.1 Data, Model, and Target Parameter

We define X = (W,M, A, Y) ∼ PX,0 as the experimental unit and corresponding
distribution PX,0 of interest. Here X consists of baseline covariates W, an exposure
variable A, and a binary outcome Y , which defines case or control status. We can
define ψF

0 = Ψ
F(PX,0) ∈ R

d of PX,0 ∈ MF as the causal effect parameter, and for
binary exposure A ∈ {0, 1} we define the risk difference, relative risk, and odds
ratio as in the previous chapter. The observed data structure in matched case-control
sampling is defined by

O =
(
(M1,W1, A1), (M j

0 = M1,W
j

0, A
j
0 : j = 1, . . . , J)

)
∼ P0, with

(M1,W1, A1) ∼ (M,W, A | Y = 1) for cases and

(M j
0,W

j
0, A

j
0) ∼ (M,W, A | Y = 0,M = M1) for controls.

Here M ⊂ W, and M is a categorical matching variable. The sampling distribution
of data structure O is described as above with P0. Thus, the matched case-control
data set contains n independent and identically distributed observations O1, . . . ,On

with sampling distribution P0. The cluster containing one case and the J controls is
the experimental unit, and the marginal distribution of the cluster is specified by the
population distribution PX,0. The modelMF , which possibly includes knowledge of
q0 or q̄0(M), then implies models for the probability distribution of O consisting of
cases (M1,W1, A1) and controls (M1,W

j
2, A

j
2), j = 1, . . . , J.

14.2 CCW-TMLE for Individual Matching

CCW-TMLEs for individually matched case-control studies incorporate knowledge
of q0 and q̄0(M), where q̄0(M) is defined as

q̄0(M) ≡ q0
PX,0(Y = 0 | M)
PX,0(Y = 1 | M)

= q0
q0(0 | M)
q0(1 | M)

.

Implementation of CCW-TMLE in individually matched studies echos the proce-
dure for independent (unmatched) case-control studies, with the exception that the
weights now differ. We summarize this procedure assuming the reader is already
familiar with the material in the previous chapter. We focus on the risk difference
ψF

RD,0 = EX,0[EX,0(Y | A = 1,W) − EX,0(Y | A = 0,W)] as an illustrative example.

Implementing CCW-TMLE for Individually Matched Data

Step 0. Assign weights q0 to cases and q̄0(M)/J to the corresponding J
controls.
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Step 1. Estimate the conditional probability of Y given A and W using su-
per learning and assigned weights. The estimate of PX,0(Y = 1 | A,W,M) ≡
Q̄0(A,W,M) is Q̄0

n(A,W,M). Let Q0
n be the estimate of the conditional mean

and the case-control-weighted empirical distribution for the marginal dis-
tribution of W, representing the estimator of Q0 = (Q̄0,QW,0).

Step 2. Estimate the exposure mechanism using super learning and
weights. The estimate of PX,0(A | W,M) ≡ g0(A | W,M) is gn(A | W,M).

Step 3. Determine a parametric family of fluctuations Q0
n(ε) of Q0

n with fluc-
tuation parameter ε, and a case-control-weighted loss function Lq0 (Q) =
q0LF(Q)(M1,W1, A1, 1) + (q̄0(M)/J)

∑J
j=1 LF(Q)(M1,W

j
2, A

j
2, 0) such that

the derivative of LF(Q0
n(ε)) at ε = 0 equals the full-data efficient influ-

ence curve at any initial estimator Q0
n = (Q̄0

n,Q
0
W,n) and gn. Since initial

Q0
Wn is the empirical distribution (i.e., case-control-weighted nonparamet-

ric maximum likelihood estimation), one only needs to fluctuate Q̄0
n and

the fluctuation function involves a choice of clever covariate chosen such
that the above derivative condition holds. Calculate the clever covariate
H∗n(A,W,M) for each subject as a function of gn(A | W,M):

H∗n(A,W,M) =
( I(A = 1)
gn(1 | W,M)

−
I(A = 0)

gn(0 | W,M)

)
.

Step 4. Update the initial fit Q̄0
n(A,W,M) from step 1 using the covariate

H∗n(A,W,M). This is achieved by holding Q̄0
n(A,W,M) fixed while esti-

mating the coefficient ε for H∗n(A,W,M) in the fluctuation function using
case-control-weighted maximum likelihood estimation. Let εn be this case-
control-weighted parametric maximum likelihood estimator. The updated
regression is given by Q̄1

n = Q̄0
n(εn). No iteration is necessary since the next

εn will be equal to zero. The CCW-TMLE of Q0 is now Q∗n = (Q̄1
n,Q

0
Wn),

where only the conditional mean estimator Q̄0
n was updated.

Step 5. Obtain the substitution estimator of the target parameter by appli-
cation of the target parameter mapping to Q∗n:

ψ∗n =

⎧⎪⎪⎪⎨⎪⎪⎪⎩1
n

n∑
i=1

⎛⎜⎜⎜⎜⎜⎜⎝q0Q̄1
n(1,W1,i,M1,i) +

q̄0(M)
J

J∑
j=1

Q̄1
n(1,W j

2,i,M1,i)

⎞⎟⎟⎟⎟⎟⎟⎠
−

⎛⎜⎜⎜⎜⎜⎜⎝q0Q̄1
n(0,W1,i,M1,i) +

q̄0(M)
J

J∑
j=1

Q̄1
n(0,W j

2,i,M1,i)

⎞⎟⎟⎟⎟⎟⎟⎠
⎫⎪⎪⎪⎬⎪⎪⎪⎭ .

Step 6. Calculate standard errors, p-values, and confidence intervals based
on the influence curve of the CCW-TMLE ψ∗n. The influence curve can be
selected to be the case-control-weighted full-data efficient influence curve
(just as we defined the case-control-weighted full-data loss function).
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14.3 Simulations

In the following simulation studies, we compare the CCW-TMLE in independent
and individually matched study designs.

Simulation 1. Our first simulation study is designed to illustrate the differences
between independent case-control sampling and matched case-control sampling
in “ideal” situations where control information is not discarded (e.g., data col-
lection is expensive, and covariate information is only collected when a control
is a match). The population contained N = 35,000 individuals, where we sim-
ulated a 9-dimensional covariate W = (Wi : i = 1, . . . , 9), a binary exposure
(or “treatment”) A, and an indicator Y . These variables were generated accord-
ing to the following rules: PX,0(Wi = 1) = 0.5, PX,0(A = 1 | W) = expit(W1 +

W2 + W3 − 2W4 − 2W5 + 2W6 − 4W7 − 4W8 + 4W9), and PX,0(Y = 1 | A,W) =
expit(1.5A +W1 − 2W2 − 4W3 −W4 − 2W5 − 4W6 +W7 − 2W8 − 4W9).

Both the exposure mechanism and the conditional mean of Y given its parents
were generated with varied levels of association with A and Y in order to investigate
the role of weak, medium, and strong association between a matching variable Wi

and A and Y . The corresponding associations can be seen in Table 14.1. For example,
W1 was weakly associated with both A and Y . Matching is only potentially beneficial
when the matching variable is a true confounder.

Another illustration of the varied association levels can be seen in Table 14.2,
where we display the probability an individual in the population was a case given
Wi = w, all the nonmatching covariates (Z), and A. For example, let’s say matching
variable W2 is age with 1 representing <50 years old and 0 representing ≥50 years
old. In this population, it was not very likely (0.013) that someone who is <50 years
old will become a case, while someone who is ≥ 50 years old has a much higher
chance of becoming a case (0.047), given Z and A. Therefore, W2, W5, and W8
represent situations where the distribution of Wi among cases and controls is very
different. The covariates W3, W6, and W9 represent situations where this difference
is even more extreme.

The simulated population had a prevalence probability of q0 = 0.030 and exactly
1,045 cases, and the true value of the odds ratio was given by OR = 2.302. We
sampled the population using a varying number of cases nC = (200, 500, 1000)
in both matched and unmatched designs, and for each sample size we ran 1000
simulations. In each sample, the same cases were used for both designs. Controls
were matched to cases in our matched simulations based on one variable (Wi) for
both 1:1 and 1:2 designs. The causal odds ratio was estimated using a CCW-TMLE
with correctly specified case-control-weighted logistic regressions.

The matched and unmatched designs performed similarly with respect to bias for
the nine covariates (results not shown; Rose and van der Laan 2009). There were
consistent increases in efficiency when the association between Wi and Y was high
(W3, W6, and W9), when comparing matched to independent. Results when the as-
sociation with Wi and Y was medium (W2, W5, and W8) were not entirely consistent,
although covariates W5 and W8 did show increases in efficiency for the matched
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Table 14.1 Simulated covariates

Y
Association Weak Medium Strong

Weak W1 W2 W3
A Medium W4 W5 W6

Strong W7 W8 W9

Table 14.2 Simulated covariates: probabilities

Wi PX,0(Y = 1 | Wi = 1, Z, A) PX,0(Y = 1 | Wi = 0, Z, A)

W1 0.039 0.021
W2 0.013 0.049
W3 0.003 0.060
W4 0.021 0.040
W5 0.013 0.047
W6 0.003 0.061
W7 0.040 0.023
W8 0.013 0.046
W9 0.004 0.066

Table 14.3 Simulation 1: MSE is mean squared error, RE is relative efficiency, and nC is number
of cases

1:1 1:2

nC 200 500 1000 200 500 1000

W1 Matched MSE 2.67 0.77 0.30 0.98 0.32 0.14
Independent RE 1.09 1.05 1.03 0.97 0.97 1.00

W2 Matched MSE 2.63 0.70 0.33 1.07 0.40 0.15
Independent RE 1.01 0.93 1.18 1.00 1.21 1.07

W3 Matched MSE 1.95 0.59 0.23 0.93 0.29 0.13
Independent RE 0.80 0.78 0.79 0.90 0.88 1.00

W4 Matched MSE 2.20 0.64 0.30 1.05 0.32 0.14
Independent RE 0.77 1.07 1.11 1.00 0.94 0.93

W5 Matched MSE 2.10 0.61 0.28 0.98 0.30 0.14
Independent RE 0.82 0.80 0.93 0.91 0.83 1.00

W6 Matched MSE 2.28 0.61 0.24 0.92 0.27 0.12
Independent RE 0.74 0.97 0.80 0.95 0.84 0.86

W7 Matched MSE 2.55 0.69 0.30 1.08 0.32 0.16
Independent RE 1.11 0.96 1.00 0.98 1.00 1.23

W8 Matched MSE 2.00 0.61 0.22 0.86 0.25 0.11
Independent RE 0.78 0.88 0.76 0.90 0.78 0.85

W9 Matched MSE 1.77 0.58 0.24 0.71 0.24 0.12
Independent RE 0.72 0.91 0.77 0.63 0.75 0.92
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design for all or nearly all sample sizes. These results are in line with the consen-
sus found in the literature: that matching may produce gains in efficiency when the
distribution of the matching variable differs drastically between the cases and the
controls. Efficiency results for the odds ratio can be seen in Table 14.3.

Simulation 2. The second simulation study was designed to address less ideal more
common situations where control information is discarded. Controls were sampled
from the population of controls in simulation 1 until a match on covariate Wi was
found for each case. Nonmatches were returned to the population of controls. The
number of total controls sampled to find sufficient matches was recorded for each
simulation. This was the number of randomly sampled controls that was used for the
corresponding independent case-control simulation. The mean number of controls
sampled to achieve 1:1 and 1:2 matching at each sample size is noted in Table 14.4
as nCo. For example, in order to obtain 200 controls matched on covariate W1 in a
1:1 design, an average of 404 controls had to be sampled from the population. Thus,

Table 14.4 Simulation 2: MSE is mean squared error, RE is relative efficiency, nC is number of
cases, and nCo is mean number of controls for the independent case-control design

1:1 1:2

nC 200 500 1000 200 500 1000

nCo 404 1006 2010 804 2011 4026
W1 Matched MSE 2.90 0.76 0.28 1.00 0.27 0.14

Independent RE 2.89 2.24 2.14 2.12 1.70 2.16
nCo 404 1009 2016 808 2016 4031

W2 Matched MSE 2.91 0.77 0.30 1.15 0.36 0.16
Independent RE 2.91 2.72 2.13 2.32 2.21 2.49

nCo 406 1016 2033 812 2034 4065
W3 Matched MSE 1.99 0.48 0.22 0.84 0.28 0.11

Independent RE 1.82 1.43 1.65 1.81 1.78 1.85
nCo 403 1006 2010 806 2012 4023

W4 Matched MSE 2.47 0.67 0.29 1.09 0.28 0.13
Independent RE 2.38 2.09 2.20 2.29 1.91 2.03

nCo 406 1010 2019 810 2019 4040
W5 Matched MSE 2.41 0.63 0.25 0.92 0.29 0.12

Independent RE 2.24 2.00 1.92 1.95 1.89 2.10
nCo 411 1025 2046 819 2045 4094

W6 Matched MSE 2.08 0.64 0.23 0.88 0.27 0.13
Independent RE 2.13 1.99 1.69 1.92 1.70 2.23

nCo 402 1001 2000 801 1999 4000
W7 Matched MSE 2.71 0.72 0.30 1.09 0.34 0.15

Independent RE 2.54 2.42 2.18 2.19 2.25 2.18
nCo 407 1014 2028 811 2027 4055

W8 Matched MSE 2.28 0.56 0.23 0.97 0.25 0.11
Independent RE 2.35 1.76 1.71 1.99 1.59 1.68

nCo 413 1030 2059 824 2061 4121
W9 Matched MSE 1.97 0.54 0.22 0.80 0.26 0.12

Independent RE 1.91 1.77 1.69 1.62 1.69 1.84
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Fig. 14.1 Simulation 2 bias. CCD I is “Case-Control Design I” referring to the independent case-
control design and CCD II is “Case-Control Design II” referring to the matched case-control design

an average of 404 controls were used in the corresponding independent case-control
design.

CCW-TMLE was performed for both designs with correctly specified case-
control-weighted logistic regression estimators for the exposure mechanism and
conditional mean of Y given A and W. The independent design outperformed the
matched design with respect to efficiency and bias for all sample sizes and both 1:1
and 1:2 matching. This was not surprising given the mean number of controls in
each of the independent unmatched designs was, on average, about two times the
number of controls for the matched design. Additionally, as association between Wi



236 Sherri Rose, Mark J. van der Laan

and Y increased, there was a trend that the number of controls necessary for com-
plete matching also increased. A similar trend between A and Wi was not apparent.
Bias results do not vary greatly with association between Wi and A or Y . Efficiency
results can be seen in Table 14.4. Bias results are displayed in Fig. 14.1.

14.4 Discussion

The main benefit of a matched case-control study design is a potential increase in
efficiency. However, an increase in efficiency is not automatic. If one decides to im-
plement a matched case-control study design, selection of the matching variable is
crucial. In practice, it may be difficult to ascertain the strength of the association
between the matching variable, the exposure of interest, and the outcome. Our sim-
ulations confirmed the consensus in the existing literature: that in situations where
the distribution of the matching covariate is drastically different between the case
and control populations, matching may provide an increase in efficiency. Our sim-
ulations indicated that PX,0(Y = 1 | Wi = 1, Z, A), for matching variable Wi and
covariate vector Z, may need to be very small for an increase in efficiency using a
matched design. These results were true, however, only for simulations where no
control subjects were discarded; it is very common for matched study designs to
discard controls (Freedman 1950; Cochran 1965; Billewicz 1965; McKinlay 1977).
We showed that in practical situations (e.g., when controls are discarded), an un-
matched design is likely to be a more efficient, less biased study design choice.

14.5 Notes and Further Reading

There is a collection of literature devoted to the topic of individual matching in
case-control study designs, and discussion of the advantages and disadvantages of
matching goes back more than 40 years. While some literature cites the purpose of
matching as improving validity, later publications (Kupper et al. 1981; Rothman and
Greenland 1998) demonstrate that matching has a greater impact on efficiency over
validity. Costanza (1995) notes that matching on confounders in case-control studies
does nothing to remove the confounding. Similarly, Rothman and Greenland (1998)
discuss that matching cannot control confounding in case-control study designs but
can, in fact, introduce bias. Methodologists in the literature stress that it is often
possible and preferred for confounders to be adjusted for in the analysis instead of
matching in case-control designs (Schlesselman 1982; Vandenbrouke et al. 2007).

Matching has a substantial impact on the study sample; most notably, it creates
a sample of controls that is not representative of exposure in the population or the
population as a whole. The effect of the matching variable can no longer be studied
directly, and the exposure frequency in the control sample will be shifted towards
that of the cases (Rothman and Greenland 1998).
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Matched sampling leads to a balanced number of cases and controls across the
levels of the selected matching variables. This balance can reduce the variance in
the parameter of interest, which improves statistical efficiency. A study with a ran-
domly selected control group may yield some strata with an imbalance of cases and
controls. It is important to add, however, that matching in case-control studies can
lead to gains or losses in efficiency (Kupper et al. 1981; Rothman and Greenland
1998). Matching variables are chosen a priori on the belief that they confound the
relationship between exposure and disease. If controls are matched to cases based
on a variable that is not a true confounder, this can impact efficiency. For example, if
the matching variable is associated not with disease but with the exposure, this will
increase the variance of the estimator compared to an unmatched design. Here, the
matching leads to larger numbers of exposure-concordant case-control pairs, which
are not informative in the analysis, leading to an increase in variance. If the match-
ing variable is only associated with disease, there is often a loss of efficiency as well
(Schlesselman 1982). If the matching variable is along the causal pathway between
disease and exposure, then matching will contribute bias that cannot be removed in
the analysis (Vandenbrouke et al. 2007). The number of matching variables should
also be reduced to as few as possible. As the number of matching variables grows,
the cases and controls will become increasingly similar with respect to the exposure
of interest, and the study may produce a spurious result or provide no information
(Breslow and Day 1980). Additionally, when matching on more than one variable,
matching variables should not be strongly correlated with each other (Schlessel-
man 1982). This chapter was adapted from Rose and van der Laan (2009). We refer
readers to this paper for additional discussion of the implications of individually
matched designs.

Cochran (1953) demonstrates the efficiency of matched designs. However, as
noted by McKinlay (1977), Cochran’s result can be misleading. Comparisons be-
tween matched and unmatched study designs are often made with equal sample
sizes and no other method of covariate adjustment. In a matched design, controls
may be discarded if they do not match a particular case on the variable or variables
of interest. Multiple controls may be discarded per case, depending on the variables
of interest (Freedman 1950; Cochran 1965; McKinlay 1977). In many cases, if the
discarded controls were available to be rejected in the matched study, they would
be available for an unmatched design in the same investigation (Billewicz 1965;
McKinlay 1977). Therefore, it is often more appropriate to compare the efficiencies
of matched case-control studies of size n to randomly selected case-control studies
of size n+number of discarded controls.

The predominant method of analysis in individually matched case-control stud-
ies is conditional logistic regression in a parametric statistical model. The logistic
regression model for matched case-control studies differs from unmatched studies
in that it allows the intercept to vary among the matched units of cases and controls.
The matching variable is not included in the model (Breslow et al. 1978; Holford
et al. 1978; Breslow and Day 1980; Schlesselman 1982). In order to estimate an ef-
fect of exposure A with conditional logistic regression, the case and control must be
discordant on A. Rothman and Greenland (1998) and Greenland (2004) demonstrate
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the use of standardization in case-control studies, which estimate marginal effects
with population or person-time averaging.



Chapter 15

Nested Case-Control Risk Score Prediction

Sherri Rose, Bruce Fireman, Mark J. van der Laan

Risk scores are calculated to identify those patients at the highest level of risk for
an outcome. In some cases, interventions are implemented for patients at high risk.
Standard practice for risk score prediction relies heavily on parametric regression.
Generating a good estimator of the function of interest using parametric regression
can be a significant challenge. As discussed in Chap. 3, high-dimensional data are
increasingly common in epidemiology, and researchers may have dozens, hundreds,
or thousands of potential predictors that are possibly related to the outcome.

The analysis of full cohort data for risk prediction is frequently not feasible,
often due to the cost associated with purchasing access to large comprehensive
databases, storage and memory limitations in computer hardware, or other
practical considerations. Thus, researchers frequently conduct nested case-
control studies instead of analyzing the full cohort, particularly when their
prediction research question involves a rare outcome. This type of two-stage
design introduces bias since the proportion of cases in the sample is not the
same as the population. This complication may have contributed to the relative
lack of prediction studies for rare diseases.

We consider a two-stage sampling design in which one takes a random sample
from a target population and measures Y , the outcome, on each subject in the first
stage. The second stage involves drawing a subsample from the original sample,
collecting additional data on the subsample. The decision regarding selection into
the subsample is influenced by Y . This data structure can be viewed as a missing-
data structure on the full data structure X collected in the second stage of the study.
Using nested case-control data from a Kaiser Permanente database, we generate a
function for mortality risk score prediction using super learner and inverse proba-
bility of missingness weights to correct the bias introduced by the sampling design.
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15.1 Data, Model, and Parameter

Kaiser Permanente Northern California provided medical services to approximately
3 million members during the study period. They served 345,191 persons over the
age of 65 in the 2003 calendar year, and 13,506 of these subjects died the subse-
quent year. The death outcome was ascertained from California death certificate
filings. Disease and diagnosis variables, which we refer to in this paper simply as
medical flags, were obtained from Kaiser Permanente clinical and claims databases.
There are 184 medical flags covering a variety of diseases, treatments, conditions,
and other reasons for visits. Gender and age variables were obtained from Kaiser
Permanente administrative databases.

A nested case-control sample was extracted from the Kaiser Permanente database
for computational ease. All 13,506 cases from the 2003–2004 data were sampled
with probability 1, and an equal number of controls were sampled from the full
database with probability 0.041 for a total of 27,012 subjects. Approval from the in-
stitutional review board at Kaiser Permanente Northern California for the protection
of human subjects was obtained.

Formally, we define the full data structure as X = (W, Y) ∼ PX,0, with covariate
vector W = {W1, . . .W186} and binary outcome Y , indicating death in 2004. The ob-
served data structure for a randomly sampled subject is O = (Y, Δ, ΔX) ∼ P0, where
Y is included in X and Δ denotes the indicator of inclusion in the second-stage sam-
ple (nested case-control sample). The parameter of the full-data distribution of X is
given by Q̄0 = EX,0(Y | W) and the full-data statistical modelMF is nonparametric.

15.2 Loss Function

Had our sample been comprised of n i.i.d. observations Xi, we would have esti-
mated Q̄0 = EX,0(Y | W) with loss-based learning using loss function LF(X, Q̄).
Given the actual observed data, we can estimate Q̄0 with super learning and weights
Δi/PX,n(Δi = 1 | Yi) for observations i = 1, . . . , n, which corresponds with the same
super learner, but now based on the inverse probability of missingness (censoring)
weighted loss function:

L(O, Q̄) =
Δ

PX,n(Δ = 1 | Y)
LF(X, Q̄).

We define our parameter of interest as: Q̄0 = arg minQ̄E0L(O, Q̄), where Q̄ is a
possible function in the parameter space of functions that map an input W into a
predicted value for Y . E0L(O, Q̄), the expected loss, evaluates the candidate Q̄, and
it is minimized at the optimal choice of Q̄0.
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15.3 Data Analysis

We implemented super learning with observation weighting in R to obtain our es-
timate of Q̄0 using our observed data. Observation weights within the super learner
were assigned based on the inverse probability of missingness, wi = Δi/PX,n(Δi =

1 | Yi) thus cases were given observation weights equal to 1 and controls were given
observation weights of 1/0.041 = 24. One could further stabilize the weights by
standardizing them to sum to 1: in other words, we would divide the above wi by∑n

i=1 Δi/PX,n(Δ = 1 | Yi). Any algorithm that allows observation weighting can be
used with super learner in nested case-control data.

The collection of 16 algorithms included in this analysis can be found in Ta-
ble 15.1. We implemented dimension reduction among the covariates as part of each
algorithm, retaining only those covariates associated with Y in a univariate regres-
sion (p< 0.10). After screening, 135 covariates remained. Algorithms with different
options (e.g., degree, size, etc.) were considered distinct algorithms. The selection
of these algorithms was based on investigator knowledge, the ability to take obser-
vation weights, and computational speed. The super learner algorithm is explained
in detail in Chap. 3, and we refer readers to this chapter for an intuitive understand-
ing of the procedure. Demonstrations of the super learner’s superior finite sample
performance in simulations and publicly available data sets, as well as asymptotic
results, are also discussed in Chap. 3.

A summary of the nested case-control variables can be found in Table 15.2. All
187 variables, except death, were evaluated from 2003 records. The majority of
the sample is female, with 45.2% male. The age category with the largest num-

Table 15.1 Collection of algorithms

Algorithm Description

glm.1 Main terms logistic regression
glm.2 Main terms logistic regression with gender × age interaction
glm.3 Main terms logistic regression with gender × age2 interaction
glm.4 Main terms logistic regression with gender × age3 interaction
glm.5 Main terms logistic regression with age2 term
glm.6 Main terms logistic regression with age3 term
glm.7 Main terms logistic regression with age × covariate interaction

for remaining main terms
glm.8 Main terms logistic regression with gender × covariate interaction

for remaining main terms
glm.9 Main terms logistic regression with age × covariate and

gender × covariate interaction
bayesglm Bayesian main terms logistic regression
glmnet.1 Elastic net, α = 1.00
glmnet.5 Elastic net, α = 0.50
gam.2 Generalized additive regression, degree = 2
gam.3 Generalized additive regression, degree = 3
nnet.2 Neural network, size = 2
nnet.4 Neural network, size = 4
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ber of members was 70 to 79, with 41.0%. (For presentation, age is summarized
categorically in Table 15.2, although the variable is continuous and was analyzed
as a continuous variable. All other variables are binary.) The top ten most preva-
lent medical flags in the sample were: screening/observation/special exams, other
endocrine/metabolic/nutritional, hypertension, minor symptoms, postsurgical sta-
tus/aftercare, major symptoms, history of disease, other musculoskeletal/connective
tissue, cataract, and other dermatological disorders. The majority of medical flags
(47.2%) had a prevalence of less than 1%. Twenty medical flags had a prevalence
of 0%. These variables were excluded from our analysis as they provide no in-
formation. We remind the reader that these percentages do not reflect estimates of
prevalence in the population given the biased sampling design.

The super learning algorithm for predicting death (risk score) in the nested case-
control sample performed as well as or outperformed all single algorithms in the
collection of algorithms. With a cross-validated MSE (i.e., the cross-validated risk,
not to be confused with risk score) of 3.336e-2, super learner improved upon the

Table 15.2 Characteristics of Northern California Kaiser Permanente members aged 65 years and
older in nested case-control sample, 2003

Variables No. %

Death (in 2004) 13,506 50.0
Male 12,213 45.2
Age, yearsa

65 to <70 5,193 19.2
70 to <80 11,077 41.0
80 to <90 8,525 31.6
≥ 90 2,217 8.2

Most prevalent medical flags No. %

Screening/observation/special exams 23,597 87.4
Other endocrine/metabolic/nutritional 10,633 39.4
Hypertension 10,612 39.3
Minor symptoms, signs, findings 9,748 36.1
Postsurgical status/aftercare 9,447 35.0
Major symptoms, abnormalities 8,251 30.5
History of disease 7,376 27.3
Other musculoskeletal/connective tissue 7,359 27.2
Cataract 5,976 22.1
Other dermatological disorders 5,692 21.1

Medical flag prevalence No. %

Zero 20 10.8
0 < x < 1% 67 36.4
1 ≤ x < 10% 72 39.1
≥10% 25 13.6
a Age is summarized categorically although the variable
is continuous.
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Table 15.3 Results from super learner analysis

Algorithm CV MSE RE R2

SuperLearner 3.336e-2 – 0.113
glm.1 3.350e-2 1.004 0.109
glm.2 3.350e-2 1.004 0.109
glm.3 3.349e-2 1.004 0.109
glm.4 3.348e-2 1.004 0.109
glm.5 3.348e-2 1.004 0.109
glm.6 3.348e-2 1.004 0.109
glm.7 3.458e-2 1.037 0.080
glm.8 3.443e-2 1.032 0.084
glm.9 3.533e-2 1.059 0.060
bayesglm 3.778e-2 1.132 -0.005
glmnet.1 3.337e-2 1.000 0.112
glmnet.5 3.336e-2 1.000 0.112
gam.2 3.349e-2 1.004 0.109
gam.3 3.349e-2 1.004 0.109
nnet.2 3.913e-2 1.173 -0.041
nnet.4 3.913e-2 1.173 -0.041

worst algorithms by 17% with respect to estimated cross-validated MSE. MSEs in
the collection of algorithms ranged from 3.336e-2 to 3.913e-2. While the collection
of algorithms was somewhat limited, which isn’t optimal from a theoretical perspec-
tive, we see some benefits in relative efficiency. Results are presented in Table 15.3
where relative efficiency for each of the k algorithms is defined as RE=cross vali-
dated MSE(k)/cross validated MSE(super learner).

When examining R2 values, the super learner had the largest R2 compared to the
collection of algorithms with an R2 = 0.113, although ten of the algorithms ap-
proached this value. Super learner had an 11.3% gain relative to using the marginal
probability (i.e., assigning probability of death 0.039 to each observation). The al-
gorithms in the collection had R2 values ranging from 0.112 to −0.041. (Negative
R2 values indicate that the marginal prevalence probability is a better predictor of
mortality than the algorithm. Values for R2 can fall outside the range [0,1] when
calculated in cross-validated data.) See Table 15.3. While the performance of the
super learner improved upon the collection of algorithms with respect to R2 values,
it should be noted that the overall prediction power of this data set is somewhat
limited with the best R2 = 0.113.

15.4 Discussion

Alternatives to parametric approaches to risk score prediction include the flexible
approach super learning. The algorithm provides a system to combine many esti-
mators into an improved estimator and returns a function we can use for prediction
in new data sets. Cross-validation of the individual algorithms and the super learner
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prevents overfitting and the selection of a fit that is too biased. Our criterion for esti-
mator selection is based on an a priori established benchmark (e.g., cross-validated
MSE).

Super learning allows for the use of observation weighting in order to generate
prediction functions with nested case-control data, as well as data from other two-
stage sampling designs, case-control designs, and general biased sampling designs.
In our nested case-control Kaiser Permanente data, super learner performed as well
as or outperformed all algorithms in the collection of algorithms. While the overall
predictive power of this data set was limited (R2 = 0.113), the utility of super learn-
ing is still apparent. In Chap. 3, larger improvements in cross-validated MSE were
seen in other real data sets. The minimal improvement of the super learner in this
analysis is not unexpected since the outcome is rare in the population of interest.
This can be understood intuitively since any large improvement in predicting death
by an algorithm among “case” subjects is averaged over the entire sample.

It is not possible to know with certainty a priori which single algorithm will
perform the best in any given data set. Even when the result is a negligible
improvement relative to the best algorithms in the collection, the super learner
provides a tool for researchers to run many algorithms and return a prediction
function with the best cross-validated MSE, avoiding the need to commit to a
single algorithm.

For example, even in this analysis, had the logistic regression with main terms
and age covariate and gender covariate interactions for each covariate (glm.9) been
the a priori selected single algorithm, with R2 = 0.060, its performance is poor
compared to that of the super learner. Several other algorithms were considerably
worse thanglm.9 and also could have been the single a priori selected algorithm. In
other words, the use of the super learner prevents poor a priori algorithm choices.

15.5 Notes and Further Reading

Prediction has been used most notably to generate tables for risk of heart disease
(Kannel et al. 1976; Anderson et al. 1991; Ramsay et al. 1995, 1996; Wilson et al.
1998; Jackson 2000) and breast cancer (Gail et al. 1989; Costantino et al. 1999;
Tyrer et al. 2004; Barlow et al. 2006). An existing method for prediction in para-
metric statistical models with nested case-control samples is intercept adjustment.
The addition of log(PX,0(Δ = 1 | Y = 1)/PX,0(Δ = 1 | Y = 0)), or equivalently
log(q0/(1 − q0)), to the intercept in a logistic regression yields the true logistic re-
gression function PX,0(Y = 1 | W), assuming the statistical model is correctly spec-
ified. Here Δ denotes the indicator of inclusion in the nested case-control sample,
and the value q0 is the prevalence probability PX,0(Y = 1) = q0 (Anderson 1972;
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Prentice and Breslow 1978; Greenland 1981; Wacholder 1996; Morise et al. 1996;
Greenland 2004).

We introduced a more flexible method for prediction in two-stage nested case-
control data. This method is an application of the general loss-based super learner,
the appropriate loss function is selected. It corresponds with an inverse probabil-
ity of missingness full-data loss function. The method involves observation weights
wi = Δi/Pn(Δi = 1 | Yi) to eliminate the bias of the sampling design, where these
weights are determined by the inverse probability of missingness. For nested case-
control studies, this is equalivalent to using case-control weights, with cases as-
signed the weight qn (an estimate of q0 obtained from the full cohort) and controls
assigned a weight of (1− qn)/J, where J is the average number of controls per case.
Thus the choice of loss function can also be presented as the case-control-weighted
loss function presented in the preceding two chapters, van der Laan (2008a), and
Rose and van der Laan (2008, 2009).

One might also be interested in the effect of each medical flag on mortality, con-
trolling for all other medical flags. This is a variable-importance research question,
one where we can use a TMLE. In a recent paper, Rose and van der Laan (2011)
describe the TMLE for two-stage designs. We also refer readers to Appendix A.
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RCTs with Survival Outcomes



Chapter 16

Super Learning for Right-Censored Data

Eric C. Polley, Mark J. van der Laan

The super learner was introduced in Chap. 3 as a loss-based estimator of a parameter
of the data-generating distribution, defined as the minimizer of the expectation (risk)
of a loss function over all candidate parameter values in the parameter space. This
chapter demonstrates how the super learner framework can also be applied to esti-
mate parameters such as conditional hazards or survival functions of a failure time,
given a vector of baseline covariates, based on right-censored data. We strongly ad-
vise readers to familiarize themselves with the concepts presented in Chap. 3 before
reading this chapter, as we assume the reader has a firm grasp of that material.

If the outcome of interest is time-to-event, then one is often interested in the
survival function of the time-to-event. This allows one to answer questions
such as, “What is the probability of having a recurrence of cancer within 5
years?” A survival function at a time point, such as 5 years, is defined as the
probability that the survival time exceeds 5 years. Thus, the survival function
is a monotone decreasing function in time, starting at 1 at time 0 (t = 0), and
typically ending at 0 (assuming that every subject will eventually experience
the event). Since survival functions will change as a function of characteristics
of the subject, it is often of interest to understand the effect of treatment and
baseline covariates on the conditional survival function at one particular time
point, or on the whole conditional survival curve.

The hazard is defined as the instantaneous probability of the event occurring at
time t, given the event has not occurred yet by time t. One inescapable feature of
survival time data is that the time-to-event is almost always subject to right censor-
ing: some subjects will drop out before the event can occur, or, at the endpoint of
the study, a subject has not failed yet. The (conditional) hazard function provides the
(conditional) survival function, and the conditional hazard can be estimated in the
same manner as if there was no censoring. These two reasons provide an important
motivation for the construction of estimators of the (conditional) hazard. As we will
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see, indeed, we can provide convenient loss functions for the hazard that naturally
handle right censoring, without the requirement of incorporating an estimate of a
censoring mechanism.

Since many target parameters, such as causal effects of a treatment on a sur-
vival time, are functions of the conditional hazard, the TMLE requires an ini-
tial estimator of the conditional hazard, and a corresponding targeted update
of this conditional hazard, before mapping it into the desired target parameter.
As a consequence, in order to obtain a TMLE of causal effects based on right-
censored data structures, data-adaptive estimation of the conditional hazard is
needed. In some applications, one might be interested in the density or hazard
itself as well, as in this chapter.

In fact, the probability distribution of any longitudinal data structure can be ex-
pressed in terms of a product over time t of conditional probabilities of binary out-
comes/indicators at time t, given a past string of events. The TMLE of a causal effect
of a multiple-time-point intervention requires estimation of such conditional proba-
bilities (for the nonintervention nodes of the SCM). Super learner for the conditional
hazard presented here applies more generally to the estimation of such conditional
probability functions for binary indicators. Longitudinal data are handled rigorously
in Part VIII.

This provides more than enough motivation to devote a chapter to super learn-
ing of the conditional hazard in this book. As we learned in Chap. 3, the super
learner requires defining a valid loss function, building a collection of candidate es-
timators, proposing a parametric family consisting of weighted combinations of the
estimators in the collection, and computing the optimal weighted combination by
minimizing the cross-validated risk of the loss function over all candidate weighted
combinations of estimators.

16.1 Data Structure

Let T be the survival time and W = (W1,W2, . . . ,Wp) a set of p baseline covariates.
The full data structure is defined as X = (T,W), and let PX,0 denote its probability
distribution known to belong to the statistical modelMF . The survival time is pos-
sibly right censored by the censoring time C. The observed data structure is defined
as

O =
(
W, T̃ = min(T,C), Δ = I(T̃ = T )

)
.

Let P0 denote the true probability distribution of O. Note that the probability distri-
bution of O is determined by the distribution PX,0 of X = (T,W) and the conditional
distribution of C, given X.

We denote the conditional survival function of C by G0(t | X) = P0(C > t | X)
and its conditional density by g0(t | X) = P0(C = t | X). We assume that the time
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scale is discretized and we denote the time points by t = 1, . . . , τ. Let N(t) = I(T̃ ≤
t, Δ = 1) and A(t) = I(T̃ ≤ t, Δ = 0) be the counting processes that indicate if a
failure time event and censoring event is observed at time t, respectively. Note that
N(t) is a process that starts at 0 at time t = 0, and jumps to 1 at time T̃ if a failure is
observed (i.e., if Δ = 1). Similarly, A(t) jumps to 1 at time T̃ if a censoring event is
observed (i.e., if Δ = 0).

The likelihood of the data can be represented as a product over time t of the
conditional probability of events one observes at time t, conditional on all the data
observed up till time t. Thus, such a likelihood involves conditional probabilities
of observing a jump of N (or A) at time t, conditional on the history up till time t,
which we often refer to as the parents of N(t) (or parents of A(t)). We will denote
such an indicator of N (or A) jumping from 0 to 1 at time t by dN(t) (or dA(t)) and
its parents by Pa(N(t)) (or Pa(A(t))).

Let QdN(t)
(N̄(t−1), Ā(t−1),W), and let gdA(t) denote the conditional distribution of dA(t), given
its parents Pa(A(t)) = (N̄(t), Ā(t − 1),W). The true probability distribution of O fac-
torizes as

P0(O = o) = PW,0(W)
τ∏

t=1

QdN(t),0(dN(t) | Pa(N(t)))
τ∏

t=1

gdA(t),0(dA(t) | Pa(A(t))).

The conditional distribution QdN(t),0 of the binary indicator dN(t) is determined by
P0(dN(t) = 1 | Pa(N(t))) = E0(dN(t) | Pa(N(t))).

time, one refers to the instantaneous conditional probabilities E(dN(t) | Pa(N(t)),
conditional on the history right before N(t), as an intensity. Therefore, we will re-
fer to E0(dN(t) | Pa(N(t)) as a discrete intensity, since we assumed that events
only occur on a discrete time scale. Note that these discrete intensities equal zero
if Pa(N(t)) imply that N(t) cannot jump anymore, i.e., if T̃ < t. Let Q̄0(t | W) =
E0(dN(t) | W, T̃ ≥ t), and ḡ0(t | W) = E0(dA(t) | N(t) = A(t − 1) = 0,W) denote
the discrete intensities (conditioning on histories for which the counting process is
at risk of jumping) of these two counting processes N(t) and A(t).

The statistical model for P0 is implied by the statistical modelMF and a statis-
tical model G for g0. We assume coarsening at random (CAR) for the conditional
distribution of C, given X = (T,W), which will be referred to as the censoring mech-
anism. CAR is implied by the assumption that C is independent of T , given W. We
note that, under CAR, these discrete intensities equal the conditional hazard of T ,
given W, and C, given W, respectively:

Q̄0(t | W) = P0(T = t | T ≥ t,W),
ḡ0(t | W) = P0(C = t | C ≥ t,W).

Thus, under CAR we can also refer to these intensities as conditional hazards.

In the counting process literature, for counting processes that jump in continuous

denote the conditional distribution of dN(t), given its parents Pa(N(t)) =
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16.2 Parameters of Interest

For the remainder of this chapter, we consider the case that prediction is the target
parameter of interest, not a causal effect; thus we use Ψ notation to refer to this
function. We consider two common parameter of interests for survival outcomes.

1. The first is a conditional expectation of a user-supplied function of T , given the
baseline covariates, ψ0(W) = E0(m(T ) | W) for a user-supplied function m(T ).
Here possible choices for m(T ) are given by m(T ) = T , m(T ) = log T , and
m(T ) = I(T > t0) for some time point t0. Since many distributions of a survival
time T are skewed, and since T is often not observed in the tail of its distribution
due to right censoring, it is often argued that the mean of T is not as much of
interest as other location parameters such as the median of T or a truncated mean.
A truncated mean can be obtained by defining m(T ) as a truncated version of T .
One can also simply truncate T and focus on the mean of the truncated T . Since
the density of a log-survival time T is often more symmetrically distributed, the
mean of log T is often viewed as an interesting parameter, possibly transformed
back to the T -scale. The choice m(T ) = I(T > t0) is naturally of interest since it
provides the conditional survival function.

2. The second parameter of interest we consider is the conditional hazard (or con-
ditional density) ψ0(t | W) = Q̄0(t | W), even though its main application might
be to map it into its corresponding survival function.

In both cases ψ0 is a parameter of the full-data distribution PX,0, and only through
the Q0-factor, so that Ψ (P0) = ΨF(Q0). The parameter space for this parameter is
implied by the full-data model MF : Ψ = {Ψ (P) : P ∈ M} = {ΨF(Q(PX)) : PX ∈
MF}.

16.3 Cross-Validation for Censored Data Structures

Estimator selection based on cross-validation for censored data structures is exten-
sively examined in van der Laan and Dudoit (2003). Suppose the parameter ψ0 of the
full-data distribution can be defined as a minimizer of the expectation of a full-data
loss function:

ψ0 = argminψ

∫
L (x, ψ) dPX,0(x).

In order to apply loss-based cross-validation and, in particular, the loss-based super
learner, we need to construct an observed data loss function L(O, ψ) of the observed
data structure O so that E0L(O, ψ) = E0L(X, ψ).

If the parameter of interest is the conditional mean, ψ0 = E(m(T ) | W), a com-
monly used loss function is the IPCW squared error loss function:

L(O, ψ) =
Δ

Ḡ0(T | X)
{m(T ) − ψ(W)}2 , (16.1)
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where Ḡ0(T | W) = P0(C > t | W) is the conditional survival function of censoring
time C, given W. Since the censoring mechanism is often not known, Ḡ0 is an un-
known nuisance parameter for the loss function. If the parameter of interest is the
conditional hazard function, ψ0 = Q̄0(· | W), we have the following two possible
loss functions:

Lloglik(O, ψ) =
∑

t

I
(
T̃ ≥ t

)
log(ψ(t | W))dN(t) log(1 − ψ(t | W))1−dN(t),

LL2 (O, ψ) =
∑

t

I
(
T̃ ≥ t

)
{dN(t) − ψ(t | W)}2 .

In this case, neither loss function is indexed by an unknown nuisance parameter.
Given an observed data loss function, the cross-validation selector to select

among candidate estimators Ψ̂k of ψ0, k = 1, . . . ,K, is defined as before in Chap. 3,
with the only remark that, if the loss function depends on a nuisance parameter,
then one needs to plug in an estimator of this nuisance parameter. If censoring is
known to be independent, then one could estimate the marginal survivor function
Ḡ0(t) = P(C > t) with the Kaplan–Meier estimator defined as:

ḠKM,n(t) =
∏
s≤t

(
1 −

∑n
i=1 I(T̃i = s, Δi = 0)∑n

i=1 I(T̃i ≥ s)

)
.

If, on the other hand, such knowledge is not available, then one can use a machine
learning algorithm, such as a super learner, to estimate the conditional hazard ḡ0(t |
W) of C, given W, using one of the two loss functions Lloglik(O, ḡ0) or LL2 (O, ḡ0), to
construct a data-adaptive estimator of ḡ0(t | W).

To construct the super learner to estimate our parameter of interest we require
the following ingredients:

1. A collection of candidate estimators of the parameter of interest ψ0,
2. A loss function L(O, ψ),
3. A parametric statistical model for combining the estimators in the collection.

The candidate estimators are not restricted to being based on the loss function used
in the cross-validation selector. However, for the cross-validation one wishes to use
a loss function whose dissimilarity

d(ψ, ψ0) = E0L(O, ψ) − E0L(O, ψ0),

directly measures a discrepancy between the true target parameter ψ0 and candi-
date ψ. For example, if one is concerned with estimation of the conditional survival
function ψ0(W) = P0(T > t0 | W), then the IPCW loss function presented in (16.1)
provides a more direct measure of fit of ψ0 than the log-likelihood or squared er-
ror loss function for the conditional hazard, even though all three loss functions are
valid loss functions.
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This may seem like common sense, but researchers often use a hazard loss
function when the interest is on the survival probability at a specific time
point (e.g., 10-year survival). The loss function should be chosen with respect
to the problem you are trying to solve.

The oracle inequality results for the cross-validation selector, and thereby for
the super learner, assume the loss function is bounded. Therefore, the parametric
statistical model for combining the estimators in the collection needs to be chosen
to maintain a bounded loss function among all candidates that can be constructed as
weighted combinations of the candidate estimators. We propose constraints on the
parametric statistical model for combining the algorithms to maintain a bounded
loss function.

For the L2 loss function, we can use as parametric statistical model⎧⎪⎪⎨⎪⎪⎩∑
k

αkψk :
∑

k

αk = 1, αk ≥ 0

⎫⎪⎪⎬⎪⎪⎭ .
Here we constrained the space for the weight vector α to be αk ≥ 0 and

∑
k αk = 1.

In this case, it is easy to show that the loss function is uniformly bounded by the
bound on the parameter space Ψ and the number of time points τ.

For the log-likelihood loss function we propose using the logit link function:

g(x) = logit(x) = log
( x
1 − x

)
,

using the convex combination on the logit scale, and then transforming it back into
a probability with the inverse logit function. That is, given a candidate estimator of
the conditional hazard, ψk,n, we transform it into

g(ψk,n) = log
ψk,n

1 − ψk,n
,

and we consider combinations
∑

k αkg(ψk,n), which corresponds with a hazard esti-
mator g−1(

∑
k αkg(ψk,n)). The advantage of this approach is that the logit of hazards,

g(ψk,n), are not subject to any constraint, so that the α-vector does not need to be
constrained to positive weights. In addition, it has numeric advantages since the
minimizer of the cross-validated risk is now an interior point.

In our implementation of the super learner, enforcing
∑

k αk = 1 and αk ≥ 0 is an
option. In this case, the parametric family for combining the candidate estimators is
given by: ⎧⎪⎪⎨⎪⎪⎩g−1

⎛⎜⎜⎜⎜⎜⎝∑
k

αkg(ψk)

⎞⎟⎟⎟⎟⎟⎠ : with
∑

k

αk = 1 & αk ≥ 0∀k

⎫⎪⎪⎬⎪⎪⎭ .
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A problem occurs when the conditional hazard ψk approaches either 0 or 1, in which
case logit(ψ) approaches ±∞. To avoid this problem, we will use the symmetric
truncated logit link,

g∗(x, c) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
g(c) if x < c,
g(x) if c ≤ x ≤ 1 − c,
g(1 − c) if x > 1 − c,

for a small constant c. It follows that, as long as c is selected such that g(1−c) < M/τ,
the loss will be bounded by M. In current implementations, we enforce small levels
of truncations such as c = 0.01. It is of interest for future research to investigate
data-adaptive strategies for setting such global bounds on the loss function.

16.4 Super Learner for Hazard Estimation in Lung Cancer

In this censored-data demonstration, we focus on the case where the full-data statis-
tical model is nonparametric, and estimate the conditional hazard. We examined the
North Central Cancer Treatment Group lung cancer data set (Loprinzi et al. 1994),
available in the survival package in R (Therneau and Lumley 2009).

The data set contains the survival time (in days) for 228 patients with advanced
lung cancer. In addition to the survival time, information on the patient’s age, sex,
and three performance scores was included. The parameter of interest was the hazard
function given the patient’s age, sex, and performance scores. Five patients were
removed from the analysis set due to incomplete information on the covariates. With
the 223 patients in the analysis set, 63 were right censored and 160 had observed
death times. We used the squared error loss function on the hazard for the super
learner:

LL2 (O, ψ) =
∑

t

I
(
T̃ ≥ t

)
{dN(t) − ψ(W)}2 .

The first step was to convert the right-censored data structure (W, Δ, T̃ ) into a
longitudinal data structure collecting at time t the change in counting processes,
dN(t), dA(t): (W, (dN(t), dA(t) : t)). A grid of 30 time points was created using the
quantiles of the observed death times, and then dN(t) was defined as the number of
observed failures in the window containing t, and, similarly, dA(t) was defined as
the number of observed censoring events in this window.

The collection of estimators consisted of logistic regression, random forests, gen-
eralized additive models (gam), polyclass, deletion/substitution/addition algorithm
(DSA), neural networks (nnet) , and a null statistical model using only time and no
covariates. For most hazard estimation problems, time is one of the most important
variables in the estimator. We considered the variable time with a few approaches.
One was to use an indicator for each time point. Logistic regression in a paramet-
ric statistical model with an indicator for each time point will approximate the Cox
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proportional hazards model if one uses an increasingly finer grid of time points. An-
other approach added an additional step of smoothing in time using a generalized
additive statistical model. These estimators in the collection involved a two-stage
estimation procedure.

In the first step, one of the algorithms is applied to fit the hazard as a function of
time t and covariates W. This results in an estimator Q̄0

k,n(t | W) for the kth estima-
tor of the conditional hazard Q̄0(t | W). Subsequently, these predicted probabilities
Q̄0

k,n(t | W) were used as an offset in a generalized additive logistic regression statis-
tical model with m degrees of freedom for time:

logitP(dN(t) | T̃ ≥ t,W) = Q̄k,n(t | W) + s(t,m).

The degrees-of-freedom tuning parameter m for the smoothing spline s(t,m) is not
known a priori, but different values of m simply represent different estimators in
the collection of algorithms defining the super learner. The estimators in the super
learner collection of algorithms are the candidate estimators for binary outcome re-
peated measures regression, coupled with the generalized additive statistical models
estimator for the time trend.

Table 16.1 contains a list of the estimators used in the super learner. The first col-
umn is the algorithm used for the covariates (including time t as one covariate), and
the second column indicates if any additional step was taken to estimate the effect
of time. For the sake of comparison, we also report the results for a regression fit
in a parametric statistical model for the conditional hazard according to the Weibull
proportional hazards model:

P(T = t | T ≥ t,W) = αtα−1 exp(β�W).

This parametric model assumes, in particular, that the hazard function is monotone
in time t, and it includes the exponential distribution (i.e., constant hazard) as a
special case.

The honest cross-validated risks are provided for each of the estimators in the
collection of algorithms, and for the super learner algorithms. The reported risk of
the Weibull estimator of the hazard was also cross-validated. An estimate of the
standard error of this honest V-fold cross-validated risk is also provided, based on
the variance estimator

1
n2

V∑
v=1

∑
i∈Val(v)

(
L(Oi, Ψ̂ (Pn,Tr(v)) − L̄

)2
,

where Val(v) and Tr(v) are a partition of {1, . . . , n} indicating the observations in the
validation sample and training sample, respectively, for the vth split, and

L̄ =
1
n

∑
v

∑
i∈Val(v)

L(Oi, Ψ̂ (Pn,Tr(v))
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Table 16.1 Honest 10-fold cross-validated risk estimates for the super learner, each algorithm in
the collection, and the Weibull proportional hazards statistical model. All algorithms included time
as a covariate. The second column (Time) denotes if any additional smoothing for time was part of
the given estimator, and the value for the degrees of freedom, if used

Algorithm Time CV Risk SE

Super learner 0.6548 0.0258
Discrete SL 0.6589 0.0261

glm No smoothing 0.6534 0.0260
glm df = 1 0.6534 0.0260
glm df = 2 0.6541 0.0260
glm df = 3 0.6548 0.0261
glm df = 4 0.6556 0.0261
glm df = 5 0.6564 0.0261
glm Indicator 0.6700 0.0266
glm (2-way interactions) df = 5 0.6569 0.0261
randomForest No smoothing 0.7628 0.0313
randomForest df = 2 1.0323 0.0607
randomForest df = 3 1.0364 0.0627
randomForest df = 4 1.0483 0.0628
randomForest df = 5 1.0362 0.0608
gam df = 2 0.6558 0.0260
gam df = 3 0.6563 0.0260
gam df = 4 0.6570 0.0261
gam df = 5 0.6577 0.0261
gam(df = 2) No smoothing 0.6554 0.0260
gam(df = 3) No smoothing 0.6579 0.0261
gam(df = 4) No smoothing 0.6619 0.0263
gam(df = 5) No smoothing 0.6554 0.0260
gam (only time, df = 3) No smoothing 0.6548 0.0257
gam (only time, df = 4) No smoothing 0.6556 0.0257
gam (only time, df = 5) No smoothing 0.6541 0.0256
polyclass No smoothing 0.6570 0.0258
DSA No smoothing 0.6671 0.0270
DSA df = 5 0.6669 0.0269
nnet No smoothing 0.7175 0.0302

Weibull PH model 0.7131 0.0300

denotes the cross-validated risk of the estimator Ψ̂ (Dudoit and van der Laan 2005,
Theorem 3).

The estimated coefficients for the super learner were

ΨS L,n = 0.182Ψn,glm, no + 0.182Ψn,gam only time,df = 5

+0.581Ψn,polyclass, no + 0.056Ψn,glm 2-way, df = 5,

where Ψn,a,b represents the fit of algorithm a using the smoothing in time method b.
The only estimators to receive nonzero weight in the final super learner fit were
logistic regression using main terms and no smoothing, a gam statistical model us-
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ing only time and 5 degrees of freedom, polyclass with no additional smoothing,
and a logistic regression in a parametric statistical model with all two-way interac-
tion (including time) combined with smoothing time using df = 5. Thus, of the 29
estimators in the library, only 4 received a nonzero weight.

16.5 Notes and Further Reading

Selection among candidate estimators of a target parameter for survival outcomes
has received less attention compared to estimator selection for continuous and cat-
egorical (noncensored) outcomes. Notable examples of estimator selection for cen-
sored data include the cross-validation selector based on a double robust IPCW full-
data loss function (van der Laan and Dudoit 2003). In van der Laan et al. (2004),
the cross-validation selector based on the IPCW loss function is analyzed in detail.

A variety of methods have been proposed for nonparametric estimation of a
conditional hazard based on right-censored data, involving likelihood-based cross-
validation or penalized log-likelihood [e.g., LASSO in Tibshirani (1997) and Zhang
and Lu (2007), or other penalties such as Akaike’s information criterion in Akaike
(1973)] to select fine-tuning parameters. For example, Hastie and Tibshirani (1990)
proposed using additive Cox proportional hazards models with smoothing splines
for the covariates. Kooperberg et al. (1995) similarly used polynomial splines to
approximate the conditional hazard. Tree-based approximations of the conditional
hazard have also been proposed, often referred to as survival trees or survival forests
(LeBlanc and Crowley 1992; Segal 1988; Hothorn et al. 2006; Ishwaran et al. 2008).
Cross-validated Cox regression is described in the context of penalized partial like-
lihoods in van Houwelingen et al. (2006). All these algorithms can be included in
the library of the super learner to maximize its performance.



Chapter 17

RCTs with Time-to-Event Outcomes

Kelly L. Moore, Mark J. van der Laan

RCTs are often designed with the goal of investigating a causal effect of a new treat-
ment drug vs. the standard of care on a time-to-event outcome. Possible outcomes
are time to death, time to virologic failure, and time to recurrence of cancer. The
data collected on a subject accumulates over time until the minimum of the time of
analysis (end of study), the time the subject drops out of the study, or until the event
of interest is observed. Typically, for a large proportion of the subjects recruited into
the trial, the subject is right censored before the event of interest is observed, i.e., the
time of analysis or the time the subject drops out of the study occurs before the time
until the event of interest. The dropout time of the subject can be related to the actual
time to failure one would have observed if the person had not dropped out prema-
turely. In this case, the standard unadjusted estimator of a causal effect of treatment
on a survival time, such as the difference of the treatment-specific Kaplan–Meier
survival curves at a particular point in time, is not only inefficient by not utilizing
the available covariate information, but it is also biased due to informative dropout.

The TMLE can be applied to the estimation of the causal effect of the treatment
on a survival outcome in an RCT, incorporating covariates for the purpose of more
efficient estimation, without the risk of inducing bias, and reducing bias due to in-
formative dropout. In this chapter we only consider the utilization of the baseline
covariates. We present the TMLE of a causal effect of treatment on survival, as well
as a simulation study. In the next chapter, we will present an RCT data analysis,
including more complicated target parameters incorporating effect modification, but
based on the same right-censored data structure. This next data application chapter
also provides a detailed discussion of the flaws of current practice based on applica-
tions of Cox proportional hazards statistical models. We also encourage readers to
study the previous chapter, which introduces many topics related to right censoring
and time-to-event data.
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17.1 Data, Likelihood, and Model

We assume that in the study protocol, each patient is monitored at K clinical vis-
its. At each visit, an outcome is evaluated as having occurred or not occurred. Let
T represent the first visit at which the event was reported and thus can take val-
ues {1, ..., τ}. The censoring time C is the first visit when the subject is no longer
enrolled in the study. Let A ∈ {0, 1} represent the treatment assignment at base-
line and W represent a vector of baseline covariates. The observed data structure is:
O = (W, A, T̃ , Δ) ∼ P0, where T̃ = min(T,C), Δ = I(T ≤ C) is the indicator that
subject was not censored, and P0 denotes the true probability distribution of O.

Let N(t) = I(T̃ ≤ t, Δ = 1) and A(t) = I(T̃ ≤ t, Δ = 0) denote the indicators that
jumps at an observed failure time and observed censoring time, respectively. We can
represent O as the following longitudinal data structure: O = (W, A, (N(t), A(t) : t =
1, . . . ,K)). The likelihood of O can be represented accordingly, and is given by

P0(O) = QW,0(W)gA,0(A | W)

×
τ∏

t=1

QdN(t),0(dN(t) | Pa(dN(t)))
τ∏

t=1

gdA(t),0(dA(t) | Pa(A(t))),

where Pa(dN(t)) = (W, A, N̄(t − 1), Ā(t − 1)) denotes the history available before
dN(t) is realized, and similarly, Pa(A(t)) = (W, A, N̄(t), Ā(t − 1)) denotes the parent
set for the censoring indicator A(t). Here QdN(t),0 and gA(t),0 denote the conditional
probability distributions of the binary indicators dN(t) and dA(t), respectively.

The intensity of the counting process N() is defined as E0(dN(t) | Pa(dN(t))),
and can be represented as

E0(dN(t) | Pa(dN(t)) = I(T̃ ≥ t)Q̄0(t | A,W),

where Q̄0(t | A,W) = E0(dN(t) | T̃ ≥ t, A,W). Similarly, the intensity of A(t),
E0(dA(t) | Pa(dA(t))), can be represented as

E0(dA(t) | Pa(dA(t))) = I(A(t − 1) = 0,N(t) = 0)ḡ0(t | A,W),

where ḡ0(t | A,W) = E0(dA(t) | N(t) = A(t − 1) = 0,W, A). Thus, QdN(t),0 and
gA(t),0 are identified by Q̄0(t | A,W) and ḡ0(t | A,W), respectively. To conclude, the
likelihood of O is parameterized by the marginal distribution of W, the treatment
mechanism gA,0, the conditional probabilities Q̄0 for the binary indicator dN(t), and
censoring mechanism gA(t),0. Let Q0 = (QW,0, Q̄0).

The statistical model for P0 is defined by possible knowledge of the censoring
mechanism gA(t),0, a known treatment mechanism gA,0, and a nonparametric statisti-
cal model for Q0 = (QW,0, Q̄0). We assume an SCM:

W = fW (UW ),
A = fA(W,UA),
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dN(t) = fdN(t)(Pa(dN(t)),UdN(t)), t = 1, . . . ,K,
dA(t) = fdA(t)(Pa(dA(t)),UdA(t)), t = 1, . . . ,K.

This SCM allows us to define counterfactual failure times Ta = Ta,Ā=0̄ corresponding
with the intervention A = a and A(t) = 0 for all t = 1, . . . , τ. Thus T1 represent a
patient’s time to the occurrence of the failure event had the patient, possibly contrary
to fact, been assigned to the treatment group, and was also not right censored. Let
T0 likewise represent the time to the occurrence of the event had the patient been
assigned to the control group, also not right censored.

17.2 Causal Quantity, Identifiability, and Statistical Parameter

We can then define our causal effect of treatment on survival at time t0 as

ψF
0 = P0(T1 > t0) − P0(T0 > t0) ≡ S 1(t0) − S 0(t0).

We assume that treatment A is randomized in the sense that A is conditionally in-
dependent of (T0, T1), given W, and that mina gA,0(a | W) > 0 a.e., which is true
in an RCT. In addition, we assume that for each t = 1, . . . , τ, the censoring indi-
cator A(t) is conditionally independent of (T0, T1), given Pa(A(t)) (e.g., for each
t, the unobserved exogenous error UdA(t) is independent of the exogenous errors
(UdN(s) : s > t)), and the following positivity assumption holds:

Ḡ0(t0 | A,W) ≡
t0∏

t=1

(1 − ḡ0(t | A,W)) > 0 a.e.

Under these assumptions, it follows that the causal effect is identified from the true
observed data distribution P0:

ψF
0 = Ψ (Q0) ≡ EW,0[S 0(t0 | A = 1,W) − S 0(t0 | A = 0,W)],

where S 0(t0 | A,W) = P0(T > t0 | A,W) is the conditional survival function of
T , given A,W. The latter conditional survival function S 0(t0 | A,W) is identified
by the conditional hazard Q̄0(t | A,W) = P0(T = t | T ≥ t, A,W) through the
product-integral relation between a survival function and a hazard:

S 0(t0 | A,W) =
t0∏

t=1

(1 − Q̄0(t | A,W)).

Here we used that under the stated sequential independence assumption on the cen-
soring indicators, the conditional hazard of T , given (A,W), is indeed given by Q̄0.

Let Ψa(P0) = S a(t0) denote the target parameters of P0 that map into the desired
treatment-specific survival function S a(t0), indexed by treatment group a ∈ {0, 1}.
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The additive causal effect on survival at t0 is thus given by

Ψ (P0) = Ψ1(P0) − Ψ0(P0) = S 1(t0) − S 0(t0).

Similarly, the causal relative risk at t0 is given by

S 1(t0)
S 0(t0)

,

and the causal odds ratio at t0 is given by

S 1(t0)(1 − S 0(t0))
S 0(t0)(1 − S 1(t0))

,

where these parameters are all defined as simple functions of Ψa(P0). We will
present the TMLE targeting both (S 0(t0), S 1(t0)), so that this also yields the TMLE
procedure for these other causal measures of the treatment effect on survival.

Positivity

It is important to note that the TMLE, like other estimators, relies on the
assumption that each subject has a positive probability of being observed
(i.e., not censored) up till time t0+. More formally, this assumption is
Ḡ(t0 | A,W) > 0 a.e. This identifiability assumption for the target parame-
ter S 1(t0) − S 0(t0) has been addressed as an important assumption for right-
censored data (Robins and Rotnitzky 1992). One is alerted to such violations
by observing very small probabilities of remaining uncensored based on the
estimated censoring mechanism, i.e., there are patients with a probability of
censoring of almost one given their observed past at a time t < t0. We recom-
mend the parametric bootstrap method for assessing bias in the estimator due
to practical or theoretical violation of the positivity assumption, as presented
in Chap. 10.

17.3 Efficient Influence Curve

The efficient influence curve of Ψa :M→ R at P0, for any model on the treatment
mechanism and censoring mechanism, is given by

D∗a(P0) =
τ∑

t=1

I(T̃ ≥ t)H∗a(t, A,W)(dN(t) − Q̄0(t | A,W))

+ S 0(t0 | A = 1,W) − S 0(t0 | A = 0,W) − Ψa(P0),

where, for a ∈ {0, 1},
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H∗a(t, A,W) = −
(

I(A = a)
gA,0(a | W)Ḡ0(t− | A = a,W)

) (
S 0(t0 | A = a,W)
S 0(t | A = a,W)

)
I(t ≤ t0).

Note that the efficient influence curve for parameters that are a function of S 1(t0)
and S 0(t0) can be obtained by application of the δ-method to the efficient influ-
ence curves D∗1 and D∗0. For example, the efficient influence curve for the parameter
Ψ (P0) = S 1(t0) − S 0(t0) is given by D∗1 − D∗0.

This formula for the efficient influence curve is derived in van der Laan and Rubin
(2007) and Moore and van der Laan (2009a). We also refer readers to Appendix A,
and Chapter 3 in van der Laan and Robins (2003). The general formula for this
time-dependent covariate H∗0(t, A,W) to update an initial hazard fit was provided in
van der Laan and Rubin (2007) and is given by

H∗(t, A,W) =
DFULL(A,W, t | P0) − EP0 [DFULL(A,W, T | P0) | A,W, T > t)]

Ḡ0(t0 | A,W)
,

where DFULL is the efficient influence curve of the parameter of interest in the non-
parametric model for the full-data structure (W, A, T ) in which there is no right cen-
soring. For example, the full-data estimating function for Ψ1(P0)(t0) and Ψ0(P0)(t0)
is given by I(T1 > t0) − S 1(t0) and I(T0 > t0) − S 0(t0). Substitution of this full-data
estimating function for DFULL in the general formula yields the expression above.

17.4 TMLE of Additive Effect on Survival at a Fixed End Point

The first step of the TMLE involves determining an initial estimator P0
n of the P0 of

O, identified by an estimator Q̄0
n(t | A,W), an estimator gA,n(A | W) of the treatment

mechanism, an estimator ḡn(t | A,W) of the censoring mechanism, and the empirical
probability distribution QW,n of W1, ...,Wn. The second step involves defining a loss
function L(P), and a fluctuation parametric working model P0

n(ε) whose score (with
respect to the loss function) at ε = 0 equals the efficient influence curve D∗a(P0

n)
of the target parameter Ψa(Q0). As loss function we select the log-likelihood loss
function −log P. We recommend the use of super learning in the estimator Q̄n(t |
A,W) of the hazard Q̄0(t | A,W). The marginal distribution of W is estimated with
the empirical probability distribution of W1, . . . ,Wn.

In order to fluctuate Q̄0
n, we will use as fluctuation parametric working model

logitQ̄0
n(ε)(t | A,W) = logit Q̄0

n(t | A,W) + εH∗a,n(t, A,W),

where the estimated time-dependent clever covariate is given by

H∗a,n(t, A,W) =
(

I(A = a)
gA,n(a | W)Ḡn(t0 | A = a,W)

) (
S 0

n(t0 | A = a,W)
S 0

n(t | A = a,W)

)
I(t ≤ t0).
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In addition, let QW,n(ε) = (1+ εQ0
W,n)D2(Q0

n) be a parametric working fluctuation
model with score at ε = 0 equal to D2(Q0

n) = S 0
n(t0 | 1,W) − S 0

n(t0 | 0,W) −Ψa(Q0
n).

The corresponding fluctuation parametric working model for P0
n is given by

P0
n(ε)(O) = Q0

W,n(ε1)(W)gA,n(A | W)

×
∏

t

gA(t),n(A(t) | Pa(A(t)))
∏

t

Q0
dN(t),n(ε2)(dN(t) | Pa(dN(t))),

where
{Q0

dN(t),n(ε2) : ε2}

is the fluctuation working model implied by the fluctuation model {Q̄0
n(ε) : ε}

through the hazard fit Q̄0
n.

The TMLE procedure is now defined. One computes the maximum likelihood
estimator εn = (ε1,n, ε2,n), which maximizes ε → Pn log P0

n(ε). Since the empirical
distribution of W is a nonparametric maximum likelihood estimator, it follows that
ε1,n = 0. The maximum likelihood estimator ε2,n can be estimated with univariate
logistic regression software, using Q̄0

n as an offset, applied to a pooled repeated
measures sample in which each subject contributes a line of data for each time point
t with t ≤ T̃ . The univariate logistic regression software can be invoked simply
ignoring the repeated measures structure of the data. This now defines an updated
estimator P1

n = P0
n(εn), defined by the update Q1

n = Q0
n(εn) of Q0

n.
The above steps for evaluating εn, and thereby obtaining the updated hazard fit

Q̄1
n(t | A,W), correspond with a single iteration of the targeted maximum likelihood

algorithm. In the second iteration, the updated Q̄1
n(t | A,W) now plays the role of the

initial fit, and the clever time-dependent covariate H∗a(t, A,W) is then reevaluated
with the updated S 1

n(t | A,W) based on Q̄1
n(t | A,W), and εn is estimated again.

This updating process for Q̄n is iterated until ε2,n ≈ 0; let’s denote its limit
by Q̄∗n. The latter represents the TMLE of the conditional hazard Q̄0. Let Q∗n =
(QW,n, Q̄∗n) be the corresponding TMLE of Q0, and P∗n is defined as the updated
data-generating distribution corresponding with Q∗n and the initial (nonupdated) es-
timator gn = (gA,n, ḡn) of the treatment mechanism and right-censoring mechanism.
The TMLE of ψa,0 = S a(t0) is the corresponding substitution estimator

ψ∗a,n = Ψa(P∗n) = Ψa(Q∗n) =
1
n

n∑
i=1

S ∗n(t0 | A = a,Wi).

The TMLE can now be implemented separately for each treatment group a ∈
{0, 1}. The TMLE of the bivariate parameter (S 0(t0), S 1(t0)) follows the same algo-
rithm as described above for S a(t0), but one now adds both time-dependent clever
covariates H∗0,n and H∗1,n to the logistic regression working model for fluctuating Q̄0

n:

logit(Q̄0
n(ε2)(t | A,W)) = logitQ̄0

n(t | A,W) + ε2,1H∗1,n(t, A,W) + ε2,0H∗0,n(t, A,W).
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The fluctuation fit ε2,n = {ε2,1,n, ε2,0,n} is now obtained by fitting a logistic regres-
sion in the covariates logitQ̄0

n(t | A,W), H∗1,t0 (t, A,W) and H∗0,t0 (t, A,W), where the
coefficient in front of logitQ̄0

n is fixed at one, and the intercept is set to zero. Again,
the updating of QW,n does not occur. This TMLE Q∗n = (QW,n, Q̄∗n), whose hazard fit
Q̄∗n is now targeted to both treatment-specific survival functions, results in targeted
maximum likelihood substitution estimators for any function of (S 1(t0), S 0(t0)).

For example, the TMLE of ψ0 = S 1(t0) − S 0(t0) is defined as the substitution
estimator

ψ∗n = Ψ (Q∗n) =
1
n

n∑
i=1

[
S ∗n(t0 | 1,Wi)) − S ∗n(t0 | 0,Wi)

]
.

One can also target the TMLE directly toward the desired function g(S 0(t0), S 1(t0))
of (S 0(t0), S 1(t0)) by adding a single time-dependent clever covariate defined by

H∗ =
d

dS 0(t0)
g(S 0(t0), S 1(t0))H∗0 +

d
dS 1(t0)

g(S 0(t0), S 1(t0))H∗1.

All three types of TMLEs of S 1(t0) − S 0(t0) [target S a(t0) separately, target both
(S 0(t0), S 1(t0)), and target S 1(t0) − S 0(t0)] are double robust and asymptotically ef-
ficient, as stated below.

17.5 Statistical Properties

Consider the parameter Ψ (Q0). The targeted maximum likelihood estimate P∗n ∈ M
of P0 solves the efficient influence curve estimating equation, given by

n∑
i=1

D∗(gn,Q∗n, Ψ (Q∗n))(Oi) = 0,

which is the optimal estimating equation for the parameter of interest. It has been
shown that E0D∗(g,Q, Ψ (Q0)) = 0 if either the conditional hazard Q̄ and marginal
QW is correctly specified, or the treatment gA and censoring mechanism ḡ is cor-
rectly specified: (1) QW = QW,0, Q̄ = Q̄0 or (2) g = g0 (Moore and van der Laan
2009a). Since the treatment mechanism is known in an RCT and the marginal distri-
bution of W is consistently estimated with the empirical distribution, the consistency
of the TMLE ψ∗n(t0) of Ψ (Q0) in an RCT relies only on consistent estimation of ei-
ther the censoring survival function Ḡ0(· | A,W) or the conditional survivor function
S 0(· | A,W). In particular, when there is no right censoring or censoring is indepen-
dent so that Ḡ0(t | A,W) = Ḡ0(t | A) can be consistently estimated with the Kaplan–
Meier estimator, the TMLE ψ∗n is consistent, even when the estimator S ∗n(· | A,W)
of S 0(· | A,W) is inconsistent (e.g., if it relies on a misspecified statistical model).
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17.6 Variance Estimator

Let P∗n represent the TMLE of P0 and ICn = D∗(P∗n) be the corresponding estimate
of the efficient influence curve. Under the assumption that the censoring mechanism
is consistently estimated, one can conservatively estimate the asymptotic variance of√

n(ψ∗n −ψ0) with σ2
n = 1/n

∑n
i=1 IC2

n(Oi). In this case, the true influence curve of ψ∗n
is given by D∗(Q∗, g0, ψ0) minus its projection onto the tangent space of the model
used for g0. Given a specified model for g0, this influence curve can be explicitly
determined as well. The bootstrap provides an alternative method for estimating the
variance of the TMLE.

17.7 Simulations

Data were simulated to mimic an RCT in which the goal was to determine the ef-
fectiveness of a new drug in comparison to the current standard of care on survival
as measured by an occurrence of an event (e.g., particular marker falling below a
given level) at 6 months into treatment. For each recruited subject, the probability
of receiving the new treatment was 0.5. At baseline, two covariates were measured,
and both are negatively correlated with survival time with a univariate correlation
of around −0.5 and −0.6. For example, these two covariates might represent age in
years and weight gain in the year prior to baseline. Specifically, 1000 samples of
size 500 were generated based on the following data-generating distribution, where
time is discrete and takes values t ∈ {1, ..., 9}:

P(A = 1) = 0.5,
W1 ∼ U(2, 6),
W2 ∼ N(10, 10),

Q̄0(t | A,W) =
I(t < 9)

1 + exp(−(−8 − 0.75A + 0.3W2
1 + 0.25W2))

+ I(t = 9),

where Q̄0(t | A,W) is the conditional hazard of the survival time.
Censoring times were generated according to two different mechanisms, which

we will refer to as uninformative censoring and informative censoring, respectively.
The two censoring mechanisms were set such that approx. 27% and 20% of the
observations were censored, respectively.

Under the uninformative censoring mechanism, the hazard for censoring is given
by λC(t) = 0.15. Under the informative censoring mechanism, the hazard for cen-
soring depends on A and W1, where the treated subjects (A = 1) had a much higher
hazard of censoring for high levels of W1 than the untreated subjects, whereas the
untreated subjects had a much higher hazard for censoring than the treated subjects
for low levels of W1. Specifically, the hazard of censoring is defined as follows:
λC(t = 1 | A,W) = 0, and, for t ∈ 2, ..., 9
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λC(t | A,W1) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0.25 if W1 > 4.5 and A = 1,
0.20 if 4.5 ≤ W1 > 3.5 and A = 1,
0.05 if 3.5 ≤ W1 > 2.5 and A = 1,

0 if W1 > 3.5 and A = 0,
0.25 if 3.5 ≤ W1 > 2.5 and A = 0,
0.05 if W1 ≤ 2.5.

If censoring and failure times were the same, the subject was considered uncensored.
The target parameter of interest was the difference S 1(6)−S 0(6) in survival at t0 = 6.
The TMLE was applied with three types of initial estimator for the conditional haz-
ard. The first estimator was fitted with a correctly specified logistic regression. The
second estimator was fitted according to a misspecified logistic regression, by in-
cluding only a main term for A and W1. The third estimator was fitted according to a
misspecified logistic regression that only included a main term for A and W2. In the
uninformative censoring mechanism simulation, the censoring mechanism was con-
sistently estimated with the Kaplan–Meier estimator. In the informative censoring
mechanism simulation, the censoring mechanism was consistently estimated with a
logistic regression model. For comparison, these TMLEs were compared with the
the unadjusted estimator of the treatment effect defined as the difference of the two
treatment-specific Kaplan–Meier estimators at t = 6.

The estimators were compared using a relative efficiency (RE) measure based
on the MSE, computed as the MSE of the Kaplan–Meier estimates divided by the
MSE of the targeted maximum likelihood estimates. Thus a value greater than one
indicates a gain in efficiency of the TMLE over the unadjusted estimator. In addi-
tion, we report the percent bias, proportion of rejected tests (PR) for testing the null
hypothesis of no treatment effect, and the coverage of the 95% confidence intervals.

Table 17.1 Power and efficiency comparison of TMLE and Kaplan–Meier estimator of additive
causal effect on survival. The initial estimator of the failure time hazard was based on a correctly
specified logistic regression (TMLEC), misspecified logistic regression that included only a main
term for treatment and W1 (TMLEM1), and misspecified logistic regression that included only a
main term for treatment and W2 (TMLEM2). KM is unadjusted Kaplan–Meier estimate

Uninformative censoring % Bias PR 95% RE

KM 2 0.32 0.95 1.00
TMLEC 1 0.75 0.94 2.82
TMLEM1 3 0.44 0.95 1.36
TMLEM2 2 0.40 0.94 1.27

Informative censoring % Bias PR 95% RE

KM 24 0.47 0.93 1.00
TMLEC −3 0.72 0.94 2.94
TMLEM1 −3 0.38 0.94 1.45
TMLEM2 −2 0.37 0.94 1.31
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Table 17.1 provides the results for the simulations. In the uninformative cen-
soring simulation, the results show the expected gain in efficiency of the TMLE
relative to the unbiased unadjusted estimator. When the initial hazard is consistently
estimated, the gain in power for the targeted maximum likelihood estimate was as
high as 75% − 32% = 43%. Although the gains are more modest when the ini-
tial hazard is misspecified, the gain in power was still 12% for the TMLE over the
unadjusted estimator. The relative efficiency is 2.8 for the targeted maximum like-
lihood estimate using a consistently estimated hazard over the Kaplan–Meier-based
estimator, demonstrating the reduction in variance due to the full utilization of the
available covariates. In the informative censoring simulation, the unadjusted esti-
mate is severely biased (≈24%), whereas the targeted maximum likelihood estimate
remains consistent. In such a setting, one must account for the informative censoring
as the results from the unadjusted method are completely unreliable.

17.8 Discussion

The TMLE is a robust and efficient estimator of the causal effect of treatment on
survival in RCTs. Under uninformative censoring, the validity of the TMLE in an
RCT does not require any assumptions. The advantage of the TMLE relative to the
unadjusted estimator in an RCT is twofold. The first is the potential efficiency gains
over the unadjusted estimator due to utilization of covariates. The second is that
the TMLE accounts for informative censoring and is thereby a less biased estimator
than the unadjusted estimator.

The simulation results demonstrate the importance of the initial estimator of the
failure time hazard, and that, for full utilization of available covariate information,
data-adaptive machine learning algorithms should be applied as long as the algo-
rithm is specified a priori. However, even misspecified parametric regression work-
ing models for the conditional hazard of the failure time result in gains in efficiency
and power. The ideal approach includes an aggressive machine learning algorithm
such as super learning to obtain an initial estimator of the conditional hazard of the
failure time, and the subsequent targeted maximum likelihood bias reduction step
based on a data-adaptive estimator of the censoring mechanism within a realistic
model for the censoring mechanism. These two steps combined provide valid statis-
tical inference for the treatment effect with potentially large gains in power and bias
over a procedure that ignores covariates.

17.9 Notes and Further Reading

Portions of this chapter were adapted from Moore and van der Laan (2009c), and
the TMLE we present is also discussed in Moore and van der Laan (2009a). A
general approach to constructing locally efficient double robust estimators that are
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guaranteed to improve on the unadjusted estimator can be found in van der Laan
and Robins (2003), which is based on the original estimating equation methodology
(Robins 1993; Robins and Rotnitzky 1992; Rubin and van der Laan 2008), grounded
in empirical efficiency maximization. This reference also provides an overview of
the literature on development of estimators based on right-censored data structures.
In particular, we refer to Hubbard et al. (1999), who provide and implement non-
parametric locally efficient estimation of the treatment-specific survival distribution
with right-censored data and covariates in observational studies based on estimating
equation methodology.

Covariate adjustment with time-to-event outcomes using Cox proportional haz-
ards statistical models (e.g., Hernández et al. 2006), analogous to logistic linear re-
gression for fixed-endpoint outcomes, relies on parametric assumptions for asymp-
totic validity of the effect estimates. In addition, the method estimates a conditional
(on covariates W) effect rather than a marginal effect on survival. Lu and Tsiatis
(2008) demonstrated how the efficiency of the logrank test in an RCT can be im-
proved with covariate adjustment based on estimating equation methodology. Their
method, which does not make assumptions beyond those of the logrank test, is more
efficient and was shown to increase power over the logrank test. A nonparametric
method for a covariate-adjusted method that uses logrank or Wilcoxon scores was
proposed in Tangen and Koch (1999) and explored via simulation studies in Jiang
et al. (2008). Adjusting for covariates instead of using the logrank test, with respect
to power, is also discussed in Akazawa et al. (1997).



Chapter 18

RCTs with Time-to-Event Outcomes and Effect

Modification Parameters

Ori M. Stitelman, Victor De Gruttola, C. William Wester, Mark J. van der Laan

Current methods used to evaluate effect modification in time-to-event data, such
as the Cox proportional hazards model or its discrete time analog the logistic fail-
ure time model, posit highly restrictive parametric statistical models and attempt to
estimate parameters that are specific to the model proposed. These methods, as a re-
sult of their parametric nature, tend to be biased and force practitioners to estimate
parameters that are convenient rather than parameters they are actually interested
in estimating. The TMLE improves on the currently implemented methods in both
robustness, its ability to provide unbiased estimates, and flexibility, allowing practi-
tioners to estimate parameters that directly answer their question of interest.

We apply the methods presented in the previous chapter, as well as introduce two
new parameters of interest designed to quantify effect modification, to the Tshepo
study. The Tshepo study is an open-label, randomized, 3×2×2 factorial design HIV
study conducted at Princess Marina Hospital in Gaborone, Botswana, to evaluate the
efficacy, tolerability, and development of drug resistance to six different first-line
combination antiretroviral treatment (cART) regimens. We focus on the effect of
two nonnucleoside reverse transcriptase inhibitor (NNRTI)-based cART therapies to
which subjects were randomized. The two therapies of interest are efavirenz (EFV)
and nevirapine (NVP).

Three statistical questions are of interest:

1. Is there a causal effect of EFV vs. NVP on time to viral failure, death, or
treatment modification, or some combination of the three?

2. Does baseline CD4 level modify the effect of EFV vs. NVP on time to viral
failure, death, or treatment modification, or some combination of the three?

3. Does the effect of EFV vs. NVP on time to viral failure, death, or treatment
modification, or some combination of the three differ by sex?
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Wester et al. (2010) performed an analysis of the Tshepo study using Cox pro-
portional hazards analysis to address statistical questions 1 and 3 above. They con-
cluded that there was no significant difference by assigned NNRTI in time to viro-
logical failure. They also presented a slightly less than significant result that women
receiving NVP-based cART tended to have higher virological failure rates than
the EFV-treated women. Furthermore, they concluded that individuals treated with
NVP had shorter times to treatment modification than individuals treated with EFV
(this result was highly statistically significant). Using the TMLE, we will readdress
these questions as well as explore question 2. The TMLE results will be compared
to results from a Cox proportional hazards analysis, and the advantages of using
TMLE will be illustrated. This data analysis was originally presented in Stitelman
and van der Laan (2011b). We conclude with an appendix presenting extensions of
TMLE incorporating time-dependent covariates.

18.1 Data Structure

Time-to-event data capture information about the amount of time, T , it takes for a
subject to experience a particular event. Usually one is interested in assessing the
effect of a particular treatment, A, on the amount of time, T , it takes for the event of
interest to occur. For the analysis performed here we are only concerned with binary
levels of treatment, A ∈ {0, 1}, and a vector of baseline covariates W. We assume T
is discrete and takes on the values {1, . . . , τ}, where τ is the last possible time the
subjects are monitored. In the case where T is not discrete, one may discretize time
into fine enough cut points as to not lose any signal in the data. The censoring time,
C, is the last time at which a subject is observed, which might be marked by the end
of the study, or an earlier dropout.

The observed data consist of n i.i.d. replicates of O = (W, A, T̃ , Δ), where
T̃ = min(T,C) and Δ = I(T ≤ C). Thus T̃ is the last time point observed for a
particular individual and Δ is an indicator variable that denotes whether or not the
event was observed at that time point. In the observed data, each subject accounts
for one line in the data set, and we will refer to this data structure as short-form
data structure I. Data structure I in Fig. 18.1 is a sample data set displaying values
for four subjects from this observed data structure, and W1 and W2 are two sample
covariates measured at baseline.

An alternative representation of this data structure, which we refer to as long-
form data structure II, is a more appropriate way of thinking about the data for
our purposes. Define N(t) = I(T̃ ≤ t, Δ = 1) as the counting process that denotes
whether an event has occurred or not and A(t) = I(T̃ ≤ t, Δ = 0) as the counting
process that codes right-censoring events. Thus dN (t) = 0 for all time points up
until there is an observed failure time event, and at time t of the observed event,
dN (t) = 1. After a censoring event, dN (t) can never jump from 0 to 1 since the event
can no longer be observed. Similarly, dA (t) remains 0 for all times the observation
is uncensored and dA (t) = 1 at the time the observation becomes censored.
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Fig. 18.1 Data structures

Thus, the observed data may be represented in their long form as n i.i.d. ob-
servations of O = (W, A, dN (t) , dA (t) : t = 1, . . . , τ) ∼ P0, where P0 denotes the
probability distribution of the observed data structure O. In this representation of
the observed data structure, each subject contributes a line of data for each time
point at which they were observed up until their event happens, or they are cen-
sored. Furthermore, the values measured at baseline, A and W, are just repeated at
their initial values for each time point. Data structure II in Fig. 18.1 shows the exact
same observations from data structure I, but in their long form.

The subject with ID 1 has T̃ = 3 and Δ = 1. This individual was observed
for three time periods, and during the third time period the subject had the event
of interest. As a result, subject 1 contributes three lines of data to the long form,
as can be seen in data structure II in Fig. 18.1. The subject’s event process, N(t),
remains zero up until time 3 when it jumps to 1, and the subject’s censoring process,
A(t), remains 0 for all time points since the subject is never right censored. All
covariates measured at baseline remain the same for all time points. Subject 2, on
the other hand, was right censored at time point 2, so that this subject’s event was
never observed, resulting in T̃ = 2 and Δ = 0. Thus, subject 2 contributes two
lines to the data in their long form and N(t) is zero for all t, since the event was
not observed, and the censoring-counting process, A(t), jumps to 1 at time 2 since
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the subject was censored at that time. A, W1, and W2 remain constant at every time
point. Contributions from subjects 3 and 4 to the data sets in both the short and long
form are included in Fig. 18.1 as additional examples. The data in their long form
may be thought of as being conditional on the failure time event or right censoring
not having occurred before time t. So each observation contributes a line in the long
form of the data for each time point at which the subject has neither experienced the
event nor been censored. We also say that, at each time point at which the subject
is still at risk of failing or being right censored, it contributes a line of data. Data
structure III is used in estimating the treatment mechanism and data structure IV
plays a special role in the evaluation of the target parameter. Both will be discussed
further later in the chapter.

18.2 Cox Proportional Hazards and Failure Time Models

In 1972, Sir David Cox introduced the Cox proportional hazards model for the esti-
mation of survival curves. The model is based on the proportional hazards assump-
tion and assumes that the effect of treatment and covariates on a hazard follows
a particular parametric form. The proportional hazards assumption states that sur-
vival curves for different strata must have hazard functions for which their ratio is
constant in time.

Even though the Cox proportional hazards model represented a very impor-
tant breakthrough for analyzing survival data, resulted in important theory,
and beautifully generalized multiplicative intensity models for modeling in-
tensities of general counting processes (Andersen et al. 1993), its stringent
assumptions make these models susceptible to the same criticism as paramet-
ric regression models.

Over 35 years after the introduction of the model, the proportional hazards as-
sumption is still assumed to hold for the majority of data analyses in survival anal-
ysis. In fact, there seems to be a common misconception that all semiparametric
methods in survival analysis are susceptible to the shortcomings of the Cox propor-
tional hazards model. In this section we will discuss the flaws of the discrete time
analogue of the Cox proportional hazards model as well as the Cox proportional
hazards model.

It is common in analyses that intend to test whether or not a treatment or expo-
sure, A, has an effect on a particular time-to-event outcome, to assume an a priori
specified model for the conditional hazard and to test if the coefficient in front of
A in the specified model is different from zero. For continuous time, a Cox propor-
tional hazards model is typically employed, and for discrete failure times, a logistic
failure time model is used. It is common practice in both models to model the effect
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of time as flexibly as possible and to model the effect of the treatment and covariates,
if they are adjusted for, with a linear parametric model.

The following is a typical model for modeling the conditional hazard in discrete
time, P(dN(t) = 1 | N(t − 1) = 0, A(t − 1) = 0, A,W):

α1 + γ2I (t = 2) + . . . + γτI (t = τ) + β1A + β2W. (18.1)

The parameters in the above model for the conditional hazards are then esti-
mated with maximum likelihood estimation, and the p-value for the null hypothesis
H0 : β1 = 0 is examined to determine if one can conclude that β1 is significantly dif-
ferent from zero. Such parameter estimates are contingent on how well the a priori
specified model approximates the hazard. However, the model is highly restrictive,
and, as a result, the estimate of β1 may be highly biased with respect to its desired
target (presumably, the logarithm of the relative hazard). In most cases, little work is
done to assess how well the model does in approximating the true conditional haz-
ard. Even if formal tests are carried out to test the validity of the Cox proportional
hazards model, a procedure that reports the test for H0 : β1 = 0 if the null hypothesis
of the model is correct is not rejected and reports something else is still subject to
severe bias in estimation and assessment of uncertainty. The latter practice, though
common, lacks any statistical foundation.

Similarly, the Cox proportional hazards model for continuous failure times speci-
fies the effect due to A and W in terms of a linear model, while it models the baseline
hazard as a function of time t nonparametrically. If the model is correct, the coeffi-
cient in front of A in the Cox proportional hazards model is the log-relative hazard
(RH), where RH is defined as the ratio of the hazard at time t, conditional on A = 1,
and the hazard at time t, conditional on A = 0, within a stratum defined by any
particular value of W. The Cox proportional hazards model relates the hazard for a
particular subject, λi(t), with baseline data (Wi, Ai), to the baseline hazard, λ0(t), as
follows:

λi(t) = λ0(t)eβ1Ai+β2Wi ,

which may be rearranged in the following way:

log
[
λi(t)
λ0(t)

]
= β1Ai + β2Wi.

We will now show how the same parameter under the Cox proportional hazards
assumption may be recast in terms of conditional survival probabilities. Let f (t)
equal the derivative of the cumulative distribution function F(t) of a continuous
survival time:

f (t) = lim
δ→0

(
F(t + δ) − F(t)

δ

)
.

Since the survival probability, S (t), equals 1−F(t), the derivative of S (t), d/dt[S (t)],
equals − f (t). The hazard, λ, equals f (t)/S (t), which may be rewritten as
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λ(t) = −
d
dt

[log S (t)]. (18.2)

Solving Eq. (18.2) for S (t) yields

S (t) = exp(−Λ(t)), (18.3)

where Λ(t) =
∫ t

0 λ(u) du) is the cumulative hazard. It easily seen that, under the Cox
proportional hazards assumption, the ratio of the conditional hazards is equal to the
ratio of the conditional cumulative hazards, which is equal to the ratio of log survival
probabilities [by (18.3)]. Thus, β1 may be written in terms of survival probabilities
as follows: for any time point tk

β1 = log
(

log S (tk | A = 1,W)
log S (tk | A = 0,W)

)
. (18.4)

To conclude, β1 can also be represented as an average over all time points tk of
(18.4) and all covariate values W. Most would agree that it is very difficult to com-
prehend what the average of the log ratio of log survival probabilities means in terms
of the effect of A on the outcome. A parameter β1 is a parameter only defined on the
Cox model, but it can be extended as a parameter in a nonparametric model in many
possible ways. It can be represented in terms of an average over time of log hazard
ratios or the log of the ratio of the log conditional survival probabilities. These two
extensions represent very different parameters for most conditional distributions of
T , given (A,W), with very different interpretations, but they happen to be equal to
each other for distributions that satisfy the constraints of the Cox proportional haz-
ards model. If one believes the Cox proportional hazards model to be valid, then one
also needs to believe that these different representations of β1 as parameter of the
distribution of the data are equal to each other.

In RCTs, the Cox proportional hazards analysis is typically implemented with-
out adjusting for baseline covariates. In this case, the coefficient of the marginal
structural Cox proportional hazards model, λTa (t) = λ0(t) exp(βa), can also be rep-
resented, for any weight function w(t), as

β =
∑

tk

w(tk) log
(

log S 1(tk)
log S 0(tk)

)
,

where S a(tk) = P(Ta > tk) = EWS (tk | A = a,W) is the treatment-specific sur-
vival function. The rationale for using a marginal Cox proportional hazards model
E(dN(t) | T̃ ≥ t, A) = λ0(t) exp(βA) is that (1) individuals have been randomized
to treatment groups, and thus those two groups should be reasonably balanced with
respect to the levels of all covariates, and (2) censoring is independent of (T,W).
Under these assumptions, one indeed has that E(dN(t) | T̃ ≥ t, A = a) = P(Ta =

t | Ta ≥ t), so that the Cox proportional hazards model for the conditional hazard
of T , given A, is equivalent to a Cox proportional hazards marginal structural model
for the causal hazard. So under these two assumptions the coefficient β in a Cox
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proportional hazards model for the conditional hazard of T , given A, represents a
log causal relative hazard.

However, even though treatment/exposure is randomized in RCTs, dependent
censoring is often informative, so that by ignoring covariates one may end up with
a biased estimate of the causal effect of A on the event of interest. In addition, the
estimate of the relative hazard is biased if the effect of A is not constant over time
(a violation in the proportional hazards assumption). Thus these estimates can still
be very biased, even under randomization, due to dependent censoring or violations
in the proportional hazards assumption. In observational studies, practitioners may
attempt to adjust for possible confounders by adding them as linear terms in the
model. However, this is often done in an ad hoc way and many times covariates
are added and removed solely based on how their inclusion in the model affects the
estimate of the coefficient β1 of the treatment A of interest.

Extensions of these methods are also commonly used to assess whether or not
a variable V , a single baseline covariate within W, modifies the effect A on the
outcome of interest. If the effect of A differs at different levels of V , then V is termed
an effect modifier. A typical test for whether V is an effect modifier is to add an
interaction term A×V to the above model and assess whether the coefficient on that
term is significant in exactly the same way as was done above for just A.

Whether one adjusts for baseline covariates or not, these methods are usually
biased due to the fact that they are dependent on highly restrictive parametric models
that are typically not representative of the data-generating distribution. Furthermore,
the parameters in these models are difficult to interpret even if the models are correct
due to the fact that they were chosen because they are convenient to estimate, as
opposed to natural parameters that directly address the questions practitioners are
interested in answering.

18.3 Model and Parameters of Interest

We now examine the advantages of defining the parameter of interest as a function of
the data-generating distribution, as well as introduce several interesting parameters
of interest in time-to-event studies. Rather than choosing the parameter of interest
because it is convenient within the chosen model, one can define the parameter of
interest as a function of the data-generating distribution, Ψ (P0). By defining the
parameter in this fashion, one can estimate the feature of the data-generating distri-
bution that is of interest. Furthermore, by defining the parameter of interest in this
way, it has meaning absent the validity of the Cox proportional hazards model.

The treatment-specific survival curve at a particular time point tk is a simple ex-
ample of this type of parameter, Pr(Ta > tk), where Ta is the counterfactual event
time T one would have observed had an individual’s treatment been set, possibly
contrary to fact, to treatment level a. By formulating a set of causal assumptions
through the use of a SCM, as visualized by a causal graph, one may define the dis-
tribution of the counterfactual outcomes indexed by an intervention on some treat-
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Fig. 18.2 Causal assumptions (exogenous errors omitted for simplicity)

ment and censoring nodes in the SCM. Then one may define a causal parameter as
a difference between these counterfactual distributions of the outcome for different
interventions on the treatment and censoring nodes.

In order to link the SCM to the observed data, the distribution of the observed
data is assumed to be implied by the SCM. The SCM includes the distribution of the
error/exogenous nodes and the deterministic functions that define each endogenous
node as a function of its parents and a error. Typically, one assumes that the observed
data structure corresponds with a subset of the nodes, such as all the endogenous
nodes. Under certain causal assumptions one can then show that the causal effect
of interest can be identified as a parameter of the distribution of the observed data,
Ψ (P0). Figure 18.2 posits a set of causal assumptions in the form of a causal graph
in which our data structure corresponds with the displayed nodes. Exogenous nodes
are suppressed for simplicity. This is common practice for displaying that each dis-
played node has an exogenous node with an arrow going into it and no arrows going
into any other nodes.

Necessary conditions typically stated to make causal parameters identifiable may
be made through the use of this causal graph, namely, the consistency assumption
and CAR assumption. The CAR assumption is arranged by assuming the strong
sequential randomization assumption on the intervention nodes of the causal graph.
In the analysis presented below, the treatment is in fact randomized; thus there is no
arrow from W to A in the causal graph. Note, that simple unobserved nodes that only
effect A or the censoring process dA(t), but not the future outcome process dN(t), do
not violate these assumptions. This is because such nodes do not produce unblocked
backdoor paths to the future outcome process, dN(t).

Another assumption that may not be expressed within the causal graph is neces-
sary in order for a parameter of interest to be identifiable from the observed data.
This assumption is known as the positivity assumption, and was discussed in detail
in Chap. 10. Suppose that the causal quantity of interest is the additive causal effect
P(T1 > t0) − P(T0 > t0) of treatment on survival at time t0. The positivity assump-
tion states, in particular, that there is no level of W that is completely predictive of
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treatment level A. However, since treatment is randomized, this is not an issue due
to the design of the experiment in the Tshepo study. In addition, since we are only
interested in the censoring nodes set at value 0, the positivity assumption also states
that for all levels of the covariate W, at each time t ≤ t0, the conditional hazard of
being censored at time t is bounded away from 1.

The causal graph in Fig. 18.2 suggests the following likelihood factorization:

P0(O) =

QW,0︷�︸︸�︷
P0(W)

gA,0︷︸︸︷
P0(A)

τ∏
t=1

QdN(t),0︷����������������������������������������︸︸����������������������������������������︷
P0(dN(t) | N̄(t − 1), Ā(t − 1), A,W)

τ∏
t=1

P0(dA(t) | N̄(t), Ā(t − 1), A,W)︸����������������������������������︷︷����������������������������������︸
gdA(t),0

.

Thus, the likelihood is factorized into a portion Q0, corresponding to the condi-
tional distributions of the nonintervention nodes, and a portion g0, corresponding to
the conditional distributions of the censoring and treatment nodes. Q0 is composed
of the distribution of the baseline covariates QW,0, and QdN(t),0 the conditional dis-
tribution of the binary indicators dN(t), given its parents. We have that g0 is further
factorized into the treatment mechanism, gA,0, and censoring mechanism, gdA(t),0,
which involves the conditional distributions of the binary censoring indicators dA(t),
given its parents.

We note that QdN(t),0 and gdA(t),0 are identified by the discrete intensities E0(dN(t) |
A,W, N̄(t− 1), Ā(t− 1)) = I(T̃ ≥ t)Q̄0(t | A,W) and E0(dA(t) | A,W, N̄(t), Ā(t− 1)) =
I(N(t) = 0, A(t−1) = 0)ḡ0(t | A,W). Note that these two intensities of event process
N and censoring process A indeed equal an indicator of being at risk times a func-
tion of t, A,W. Under CAR, it follows that Q̄0(t | A,W) = P0(T = t | T ≥ t, A,W)
equals the conditional hazard of the failure time T , and, similarly, ḡ0(t | A,W) =
P0(C = t | C ≥ t, A,W) equals the conditional hazard of the censoring time C. Let’s
also define S 0(tk | A,W) = P0(T > tk | A,W), which is the conditional survival of
the event of interest, and can be expressed as a function of the conditional hazard
Q̄0(t | A,W) under CAR as S 0(tk | A,W) =

∏tk
t=1

(
1 − Q̄0(t | A,W)

)
.

By intervening in the SCM, as visualized by the causal graph, on A and dA(t)
by setting treatment A equal to the desired treatment a and setting dA(t) equal to
0, or, equivalently, no censoring for all t, one obtains the distribution of the event
process under the desired treatment and without censoring. This counterfactual dis-
tribution of the data structure under an intervention can be identified from the ob-
served data, under the stated assumptions, in the g-formula. All of the nodes that are
intervened upon in the causal graph are set to their intervened-upon level in the like-
lihood, and all the conditional distributions for those nodes are removed from the
likelihood since they are no longer random variables. The following is the resulting
g-computation formula, or distribution of the data (W, Ta) under the intervention:

QW,0(W)
τ∏

t=1

QdN(t),0(dN(t) | N̄(t − 1), A(t − 1) = 0, A = a,W).



280 Ori M. Stitelman et al.

We can now write the marginal treatment-specific survival probability, P0(Ta > tk),
in terms of the data-generating distribution, P0:

Ψa(P0)(tk) = Pr(Ta > tk) = E0 (S 0(tk | A = a,W)) .

Parameters that combine Ψ1(P0)(tk) and Ψ0(P0)(tk) allow one to quantify the effect
of a change of A on T . Three examples are the marginal additive difference in the
probability of survival, the log relative risk of survival, and the marginal log hazard
of survival:

ΨRD(P0)(tk) = Ψ1(P0)(tk) − Ψ0(P0)(tk),

ΨRR(P0)(tk) = log
(
Ψ1(P0)(tk)
Ψ0(P0)(tk)

)
,

ΨRH(P0)(tk) = log
(

log(Ψ1(P0)(tk))
log(Ψ0(P0)(tk))

)
.

For ease of interpretation we prefer the first two of these parameters. However, for
completeness, we show that the third parameter, which represents the parameter
targeted by a marginal structural Cox proportional hazards model P(Ta = t | Ta ≥
t) = λ0(t) exp(βa), may also be estimated through the methods presented here. One
should note that the parameter ΨRH(P0)(tk) is undefined at tk for which P0(Ta >
tk) = 1. The above parameters quantify the effect of A at a particular time point, tk;
therefore, averages of the above parameters over a set of time points may also be of
interest.

One possible method for estimating the mean counterfactual outcome as ex-
pressed in the parameters proposed above is MLE and construct the substitution
estimator Ψ (Qn) = ψMLE

n according to the mappingΨ (). Thus, it is necessary to esti-
mate QW,0 and Q̄0(t | A,W) and, consequently, its corresponding conditional survival
function, S 0(tk | A,W). This estimator is consistent when both of these distributions
are estimated consistently. We estimate QW,0 with nonparametric maximum likeli-
hood estimation. In practice, several models have been used for Q̄0(t | A,W). Many
practitioners specify a parametric model a priori, often using main terms logistic
regression, as in Eq. (18.1), and obtain the maximum likelihood estimate within this
highly restrictive model. [Obtaining the estimates of the parameters in Eq. (18.1)
can be done by using logistic regression with data structure II.]

This parametric approach almost certainly leads to biased estimates of Q̄0(t |
A,W), and thus a biased estimate of Ψ (Q0), since it is likely that the true Q̄0 is
not contained in this highly restrictive model. If the model does not contain the
true Q̄0, then the estimates of Q̄0 and Ψ (Q0) will generally not be consistent. For
this reason a nonparametric model for Q̄0 often represents the realistic knowledge
about Q̄0. Since this nonparametric model is very large, sieve-based (data-adaptive)
maximum likelihood estimation (i.e., loss-based machine learning), involving fine-
tuning of the amount of smoothing used, becomes necessary. Many different meth-
ods have been developed for estimating the effect of covariates on a binary outcome
in the nonparametric model including regression trees, DSA, and k-nearest neigh-



18 RCTs with Time-to-Event Outcomes and Effect Modification Parameters 281

1. Set A equal to 1 
for all observations in

data structure IV  

1

1

1

-4

2

3

10

12

-4

W1

1 1

1

1

1

0 1

n

12

1

1

tk

ID

1

W2

tk1

n

A

1

1

t

6

1

1

3 tk

1

10

tk2

1

6

0

1

...
...

...
...

... ... ... ... ...

... ... ... ...

... ... ... ...

... ... ... ...

... ... ... ...

2. Evaluate 
conditional

hazard at each
observation

...
...

...
...

...

3. Map conditional 
hazards to subject-

specific survival 
probabilities

}
}
}
}

...

4. Take mean of 
subject-specific 

survival 
probabilities

Q̄n(t | A,W1,W2)

Q̄n(1 | 1, 1, 12)

Q̄n(tk | 1, 1, 12)
Q̄n(1 | 1, 1, 6)

Q̄n(tk | 1, 1, 6)
Q̄n(1 | 1, 0,−4)

Q̄n(tk | 1, 0,−4)

∏tk
t=1(1 − Q̄n(t | 1, 1, 12))

∏tk
t=1(1 − Q̄n(t | 1, 1, 6))

∏tk
t=1(1 − Q̄n(t | 1, 0,−4))

Ψ1(Qn)

Q̄n(1 | 1, 1, 10)

Q̄n(tk | 1, 1, 10)
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Fig. 18.3 Mapping Q̄n and QW,n into Ψ (Qn)

bors. Rudser et al. (2008) used one of these methods, a nonparametric tree estima-
tor, for estimating the survival distribution and subsequently Ψ (Q0). Even though a
single estimator for estimating these distributions in the nonparametric model may
yield consistent estimates, super learner will converge to the true distribution at a
faster rate.

Once these estimates Qn are obtained, the MLE of the treatment-specific survival,
Ψa(Q0)(tk) is the substitution estimator obtained by plugging in Qn:

Ψa(Qn)(tk) =
1
n

n∑
i=1

S n(tk | A = a,Wi).

Figure 18.3 demonstrates how to map Q̄n and QW,n into Ψ1(Qn), an estimate of the
treatment-specific survival curve at a = 1 using data structure IV from Fig. 18.1.
The MLE of the parameters presented in this section can be generated by com-
bining MLE estimates of the treatment-specific survival curves under alternative
treatments.

18.4 Effect Modification Parameters

Parameters that quantify the level of effect modification due to another baseline
variable V may also be of interest in studies aimed at assessing the effect of a treat-



282 Ori M. Stitelman et al.

ment, A, at different levels of V . However, we must now consider an SCM with an
explicit node for the effect modifier V , instead of collapsing it into a single node
W. First, let’s consider a V that occurs after the baseline covariates W but before
treatment and the censoring and event processes. This SCM implies the following
factorization of the likelihood:

P0(O) = P0(W)P0(V | W)P0(A | V,W)

×
τ∏

t=1

P0(dN(t) | N̄(t − 1) = 0, Ā(t − 1), A,V,W)

×
τ∏

t=1

P0(dA(t) | N̄(t), Ā(t − 1) = 0, A,V,W),

and the corresponding g-formula for the intervention A = a, V = v, and all censoring
nodes equal to zero:

P0(W)
τ∏

t=1

P0(dN(t) | N̄(t − 1), Ā(t − 1) = 0, A = a,V = v,W).

As before, the MLE only requires an estimate of the marginal distribution of W,
and Q̄0(t | A,W). We will define the following parameters of interest to measure the
causal effect modification when the effect modifier occurs after W:

ΨCEM
RD (P0)=

∑
tk

w(tk)[(Ψ11(P0)(tk)−Ψ01(P0)(tk))−(Ψ10(P0)(tk)−Ψ00(P0)(tk))], (18.5)

ΨCEM
LR (P0) =

∑
tk

w(tk)
[
log

log(Ψ11(P0)(tk))
log(Ψ01(P0)(tk))

− log
log(Ψ10(P0)(tk))
log(Ψ00(P0)(tk))

]
, (18.6)

where Ψ11(P0)(tk) is counterfactual survival at tk setting V to 1 and A to 1, and so on.
That is, the first and second subscript code the level a and v for treatment and effect
modifier, respectively. Here, w(tk) are time-varying weights. These weights may be
dependent on the question of interest, or they may be set to the reciprocal of an
estimate of the variance of the parameter estimate at the particular time, or simply
be set to 1. We will weight each time-point-specific estimator by the reciprocal
of its estimated variance, to put more emphasis on those time points with more
information.

In situations where V is realized before the baseline covariates W, a different
SCM must be considered. This SCM implies the following likelihood factorization:

P0(O) = P0(V)P0(W | V)P0(A | V,W)

×
τ∏

t=1

P0(dN(t) | N̄(t − 1), Ā(t − 1), A,V,W)
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×
τ∏

t=1

P0(dA(t) | N̄(t), Ā(t − 1), A,V,W),

with the resulting g-formula

P0(W | V = v)
τ∏

t=1

P0(dN(t) | N̄(t − 1), Ā(t − 1) = 0, A = a,V = v,W).

Characteristics such as sex and gender, which are set at birth, are examples of
variables for which V is realized before W. In order to asses the level of effect
modification in these situations, an estimate of P0(W | V = v) is needed instead of
the marginal distribution P0(W) of W. The conditional hazard Q̄0(t | A,W) may be
estimated as before. The empirical distribution among V = v will be used to estimate
P0(W | V = v). We will refer to these causal effect modification parameters as
stratified effect modification (SEM) parameters, as they can be expressed as follows:

ΨS EM
RD (P0) =

⎡⎢⎢⎢⎢⎢⎢⎣∑
tk

w(tk)(S 1|1(tk) − S 0|1(tk))

⎤⎥⎥⎥⎥⎥⎥⎦ −
⎡⎢⎢⎢⎢⎢⎢⎣∑

tk

w(tk)(S 1|0(tk) − S 0|0(tk))

⎤⎥⎥⎥⎥⎥⎥⎦ , (18.7)

Ψ S EM
LR (P0) =

∑
tk

w(tk)
[
log

(
log(S 1|1(tk))
log(S 0|1(tk))

)
− log

(
log(S 1|0(tk))
log(S 0|0(tk))

)]
, (18.8)

where S 1|1(tk) denotes survival at tk for individuals with V = 1 and treatment set to 1,
and so on. These are also counterfactual survival probabilities corresponding with
setting A = a and V = v. However, we have expressed them as a counterfactual sur-
vival probability, S a|v(t0), conditional on V = v, to emphasize the fact that they are
different parameters of interest of the data-generating distribution, corresponding to
the alternative SCM where V occurs before W.

18.5 The TMLE

The TMLE of the parameters presented in the previous sections improves on the
MLE by being consistent when either g0 or Q0 is estimated consistently. Thus, the
method is double robust. In the TMLE algorithm, an initial estimator of the condi-
tional hazard is obtained, and the algorithm updates it by iteratively adding a time-
dependent clever covariate chosen to reduce bias in the estimate of the parameter
of interest. This time-dependent clever covariate is a function of time, treatment,
and the baseline covariates and requires an estimate of the treatment and censor-
ing mechanisms. The marginal distribution of the covariates is estimated with the
empirical distribution and is not updated by the TMLE.

The TMLE involves the construction of an initial estimator P0
n of the probability

distribution P0 described by initial estimates Q̄0
n(t | A,W), g0

A,n (using data structure
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III), ḡ0
n(t | A,W), and the empirical distribution QW,n. The TMLE also requires defin-

ing a loss function L(P) for P0 and a parametric working model {P0
n(ε) : ε} through

an initial estimator so that the score d/dεL(P0
n(ε)) at ε = 0 spans the efficient influ-

ence curve D∗(P0
n) at P0

n of the target parameter of interest. Our loss function will
be the log-likelihood loss function L(P) = − log P. The parametric working model
will be selected to only update Q0

n.
The target parameters Ψ1(P0)(tk) and Ψ0(P0)(tk) have the following two efficient

influence curves:

D∗1(P0) =
∑
t≤tk

H∗1(t, A,W)
[
I(T̃ = t, Δ = 1) − I(T̃ ≥ t)Q̄0(t | A = 1,W)

]
+ S 0(tk | A = 1,W) − Ψ1(P0)(tk) and

D∗0(P0) =
∑
t≤tk

H∗1(t, A,W)
[
I(T̃ = t, Δ = 1) − I(T̃ ≥ t)Q̄0(t | A = 0,W)

]
+ S 0(tk | A = 0,W) − Ψ0(P0)(tk).

We select QW,n(ε1) = (1+ε1D∗a,W (P0
n))QW,n as parametric working model for fluctuat-

ing the empirical distribution of W, where D∗a,W (P0
n) = S 0

n(tk | A = a,W)−Ψa(P0
n)(tk).

Note that D∗a,W (P0) represents the projection of the efficient influence curve D∗a(P0)
onto the tangent space of the marginal distribution of W. We select the logistic re-
gression model logit Q̄0

n(ε2) = logit Q̄0
n + ε2H∗a(P0

n) as parametric working model for
fluctuating the conditional hazard, where the clever covariate for the target parame-
ter Ψa(P0)(tk) is given by

H∗1(P0
n)(t, A,W) = −

I(A = 1)

g0
A,n(1 | W)

∏t−
i=1

(
1 − ḡ0

n(i | A,W)
) S 0

n(tk | A,W)
S 0

n(t | A,W)
I(t ≤ tk) and

H∗0(P0
n)(t, A,W) = −

I(A = 0)

g0
A,n(0 | W)

∏t−
i=1

(
1 − ḡ0

n(i | A,W)
) S 0

n(tk | A,W)
S 0

n(t | A,W)
I(t ≤ tk).

This now defines a parametric working model through the conditional distributions
Q0

dN(t),n for all t = 1, . . . , τ. These two working models through the marginal distri-
bution QW,n and the conditional hazard Q̄0

n also imply a working parametric model
{Q0

n(ε) : ε} through Q0
n = (Q0

W,n, Q̄
0
n) indexed by a bivariate ε = (ε1, ε2). The working

parametric model {P0
n(ε) = (Q0

n(ε), g0
n) : ε} through P0

n only fluctuates Q0
n:

P0
n(ε)(O) = Q0

W,n(ε1)(W)
∏

t

QdN(t),n(ε2)(dA(t) | Pa(A(t)))

×g0
A,n(A | W)

∏
t

g0
dA(t),n(dA(t) | Pa(A(t))).
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The TMLE of Ψa(P0)(tk) is now defined by the TMLE algorithm implied by the log-
likelihood loss function and this parametric working model P0

n(ε). The first step of
the algorithm computes the maximum likelihood estimator εn = arg maxε log P0

n(ε).
The maximum likelihood estimator of ε1 equals zero. In practice, the maximum
likelihood estimator of ε2 is obtained by implementing a univariate logistic regres-
sion regressing the binary outcome dN(t) on H∗a,n(t, A,W) using the initial estimate
Q̄0

n(t | A,W) as an offset, pooling across the time points t. This results in an update
logitQ̄1

n = logitQ̄0
n + ε2nH∗an. The first step TMLE of Q0 is given by Q1

n = (QW,n, Q̄1
n).

This updating process is iterated until εn ≈ 0. The final TMLE of Q0 is denoted
by Q∗n = (QW,n, Q̄∗n), and the corresponding P∗n = (Q∗n, g

0
n) is the TMLE of P0. The

TMLE of Ψa(P0)(tk) is the substitution estimators based on plugging in the targeted
estimator Q∗n:

Ψa(Q∗n)(tk) =
1
n

n∑
i=1

S ∗n(tk | A = a,Wi),

where S ∗n(tk | A = a,Wi) is the survival probability corresponding with Q̄∗n and
Ψa(Q∗n)(tk) can be constructed as previously shown in Fig. 18.3.

The update is implemented by fitting a univariate logistic regression model of
the event process, N(t), on the clever covariate H∗n,a with the initial fit Q̄0

n(t | A,W)
as an offset. Q̄0

n(ε1n ) is the first-step TMLE of Q̄0, where ε1n is the fitted regression
coefficient of the clever covariate. This defines the first-step TMLE update P1

n. Since
the time-dependent clever covariate, H∗(P1

n)(t, A,W), is different under P1
n than it is

under P0
n, due to being a function of the estimator of Q̄0, it is necessary to iterate the

updating step. The TMLE updating process is detailed in Fig. 18.4.
The above TMLE can be implemented separately for the two target parameters

Ψa(P0)(tk), resulting in a TMLE of any function of these two treatment-specific sur-
vival functions. Alternatively, one can construct a single TMLE targeting both tar-
get parameters simultaneously. In this case, we select the logistic regression model
logitQ̄0

n(ε2) = logitQ̄0
n + ε20H∗0(P0

n)+ ε21H∗1(P0
n) as the parametric working model for

fluctuating the conditional hazard. That is, we add the two clever covariates H∗1(P0
n)

and H∗0(P0
n) to the initial estimator of the conditional hazard, one clever covariate for

Ψ1(P0)(tk) and one for Ψ0(P0)(tk). The TMLE updates both components (ε20, ε21) si-
multaneously until both components have converged to zero.

The TMLE of Ψav(tk) needed for constructing the parameter estimates of target
parameters (18.5) and (18.6) may be constructed by treating A and V together as a
treatment variable. The treatment mechanism must be replaced by the joint proba-
bility of A = a and V = v, and the resulting clever covariate is

H∗(P0
n)(t, A,V,W) = −

I(A = a,V = v)

g0
A,n(A = a,V = v | W)

∏t−
i=1

(
1 − ḡ0

n(i | A,V,W)
)

×
S 0

n(tk | A = a,V = v,W)
S 0

n(t | A = a,V = v,W)
I(t ≤ tk),

and the TMLE is:
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ḡn(2 | 0, 1, 12)
ḡn(1 | 1, 1, 6)
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Fig. 18.4 One iteration of the TMLE algorithm

Ψav(Q∗n)(tk) =
1
n

n∑
i=1

S ∗n(tk | A = a,V = v,Wi),

where S ∗n is now the TMLE of the treatment-specific survival probability at A = a
and V = v.

The TMLE of S 0,a|v(tk) needed for constructing the parameter estimates of target
parameters (18.7) and (18.8) may be constructed in the same way as for one treat-
ment variable A but done separately for each level of V . So the TMLE of S 0,a|v(tk) is
the same as the TMLE for Ψa(P0)(tk) just estimated on a data set that only includes
individuals with V = v.

There are a few clear advantages of TMLE for time-to-event analysis that are a
consequence of the double robustness and local efficiency of the method. First, if



18 RCTs with Time-to-Event Outcomes and Effect Modification Parameters 287

the censoring is independent and treatment is randomized, then the estimator of the
parameter of interest is guaranteed to be unbiased since the treatment mechanism
gA,0(A | W) is known, and the required survivor function corresponding with the
censoring mechanism ḡ0(t | A,W) = ḡ0(t) can be consistently estimated with the
Kaplan–Meier estimator. However, it has also been shown that by estimating these
mechanisms, even when they are known, one can improve the efficiency of the esti-
mates by adjusting for empirical confounding. This is done by positing a model for
these mechanisms that contains the truth so that the estimates will converge to the
truth. For a general account of how estimating the treatment and censoring mecha-
nism can improve efficiency see van der Laan and Robins (2003, Sect. 2.3.7). Sec-
ond, with informative censoring or observational treatment the double robustness
allows one to reduce bias due to the initial estimate of Q̄0(t | A,W) by estimating
the treatment mechanism, gA,0(A,W), and censoring mechanism, ḡ0(t | A,W), as
well as possible.

The TMLE also improves on estimating equation-based techniques, in which
case ψ0 is estimated with the closed-form solution of the efficient influence curve
estimating equation PnD∗(Q0

n, g
0
n, ψ) = 0. This is due to the fact that TMLE is

a substitution estimator that obeys the proper bounds of a survival probability.
Estimating-equation-based results do not obey these bounds and may even result
in estimates of probabilities that don’t fall between zero and one. In cases where
the treatment mechanism gets very close to zero, or the censoring hazard approxi-
mates 1, corresponding with practical violations of the positivity assumption stated
above, the estimating-equation-based methods tend to become very unstable. When
violations in the positivity assumption are a problem, the estimating-equation-based
approaches may not only return estimates that are not a probability, but also suf-
fer drastically in efficiency and not approach the semiparametric efficiency bound.
However, the TMLE in such situations is more stable and may still achieve the
semiparametric efficiency bound. For more details on how the TMLE compares to
estimating-equation-based approaches see Stitelman and van der Laan (2010) and
Chap. 20.

Confidence intervals may be constructed by relying on the fact that the TMLE
solves the efficient influence curve estimating equation 0 =

∑n
i=1 D∗(Q∗n, gn)(Oi),

where D∗(Q0, g0) = D∗(Q0, g0, Ψ (Q0)) is the efficient influence curve for a par-
ticular parameter of interest. One can also state that Ψ (Q∗n) solves the estimating
equation in ψ0: 0 =

∑
i D∗(Q∗n, gn, Ψ (Q∗n))(Oi), as defined by this efficient influence

curve equation. Under regularity conditions, it can be shown that Ψ (Q∗n) is asymp-
totically linear with an influence curve D∗(Q, g0, ψ0) + D1 for the case where Q∗n
possibly converges to a misspecified Q, and gn converges to the true g0 (van der
Laan and Robins 2003, Sect. 2.3.7). If Qn = Q0, or gn = g0, then D1 = 0. In addi-
tion, if gn is an ML-based estimator of g0, then ignoring contribution D1 results in an
asymptotically conservative influence curve and variance estimator. So the asymp-
totic variance of n1/2(ψ∗n,a − Ψa(P0)) may be estimated by σ2

n =
1
n
∑n

i=1 D∗2a (P∗n)(Oi),
where P∗n is the TMLE of P0 and D∗a(P∗n)(Oi) the efficient influence curves for the
treatment-specific survival curve above evaluated at P∗n. Now 95% confidence in-
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tervals for the treatment-specific survival curve at a particular time point may be
constructed as ψ∗n,a ± 1.96(σn/

√
n).

Variance estimates for the parameters of interests above that combine Ψ1(P0)(tk)
and Ψ0(P0)(tk) may be estimated through the use of the delta method. The resulting
efficient influence curves for the parameters of interest presented in Sect. 18.3 are

D∗RD(P∗n)(tk) = D∗1(P∗n)(tk) − D∗0(P∗n)(tk),

D∗RR(P∗n)(tk) = −
1

1 − ψ∗n,1(tk)
D∗1(P∗n)(tk) +

1
1 − ψ∗n,0(tk)

D∗0(P∗n)(tk),

D∗RH(P∗n)(tk) = −
1

ψ∗n,1(tk) log(ψ̂∗1)
D∗1(P∗n)(tk) +

1
ψ∗n,0(tk) log(ψ∗n,0)

D∗0(P∗n)(tk).

Confidence intervals may now be constructed for these parameters at a particular
time point using the above estimates of the corresponding efficient influence curve.
Furthermore, the estimated influence curve for estimates that are means of these
parameters may be constructed by taking means of the estimated efficient influence
curves over the desired time points.

Appendix A presents an asymptotic linearity result generalized to hold for TMLE
when Q∗n converges to a possibly misspecified Q, and gn converges to a true condi-
tional censoring/treatment mechanism that adjusts for covariates that predict the
residual bias between Q and Q0. In particular, if either Q∗n converges to Q0 or gn

converges to g0, then, under appropriate regularity conditions, we have that ψ∗n is
asymptotically linear with an influence curve D(P0):

n1/2(ψ∗n − Ψ (P0)) = n−1/2
n∑

i=1

D(P0)(Oi) + op(1),

so that, by the central limit theorem,

n1/2(ψ∗n − Ψ (P0))
D
→ N(0, E(D2(P0)(O)),

as sample size n converges to infinity.

18.6 Data Application: Tshepo Study

The Tshepo study is a 3-year randomized study using a 3 × 2 × 2 factorial de-
sign comparing efficacy and tolerability among different drug regimens. For the
purpose of this analysis we focus on the randomization to two NNRTI-based cART
therapies: EFV and NVP. The Tshepo study is the first clinical trial evaluating the
long-term efficacy and tolerability of EFV- vs. NVP-based cART among adults in
Botswana. The study consists of 650 adults ranging in age from 20 to 64. Table 18.1
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Table 18.1 Baseline characteristics of Tshepo study

NVP EFV Total
Characteristic n = 325 n = 325 n = 650

Age Median [IQR] 33.2 [29.0, 38.3] 33.7 [28.8, 39.1] 33.3 [28.9, 38.7]
Male Count (%) 95 (29.2%) 104 (32.0%) 199 (30.6%)
Weight Median [IQR] 57.50 [51, 66] 57.0 [50.25, 65.50] 57.0 [51, 66]
BMI Median [IQR] 21.2 [19.2, 24.3] 21.4 [19.2, 24.1] 21.3 [19.2, 24.3]
HIV-1 RNA (1,000s) Median [IQR] 183 [63, 466] 204 [85, 499] 195 [70, 477]
CD4+ cell count Median [IQR] 199 [138, 243] 199 [131, 260] 199 [136, 252]
WHO Clinical Stage 1 Count (%) 90 (27.7%) 108 (33.2%) 198 (30.5%)
WHO Clinical Stage 2 Count (%) 84 (25.8%) 77 (23.7%) 161 (24.8%)
WHO Clinical Stage 3 Count (%) 117 (36.0%) 99 (30.5%) 216 (33.2%)
WHO Clinical Stage 4 Count (%) 25 (7.7%) 33 (10.2%) 58 (8.9%)
Pulmonary TB Count (%) 27 (8.3%) 32 (9.8%) 59 (9.1%)

displays summary statistics of the baseline characteristics, W, that were collected in
the Tshepo study. The outcome of interest is the time to loss of virological response
(TLOVR). The only censoring event for this outcome of interest is the end of study,
and thus assuming independent censoring is appropriate. The following three ques-
tions will be addressed: (1) Is there a causal effect of NNRTI-based cART therapy?
(2) Is the effect of NNRTI-based cART therapy modified by gender? (3) Is the effect
of NNRTI-based cART therapy modified by baseline CD4 count?

18.6.1 Causal Effect of NNRTI

Table 18.2 presents estimates of the causal effect of taking EFV vs. NVP. The Cox
proportional hazards estimate in the first column is the standard analysis performed
in assessing the effect of a randomized control trial on a time to event outcome.
We present two TMLEs for estimating the mean marginal additive difference in
the probability of survival and the mean marginal log relative hazard. This second
parameter is an extension of the Cox proportional hazards parameter. The mean is
taken over the first 34 months after randomization and the weights are based on
the variance of the influence curve. The marginal difference of survival at the final
time point, 34 months, is also presented. A positive mean log relative hazard and a
negative risk difference corresponds with longer times until the specified outcome
for the individuals treated with EFV compared to NVP.

For TLOVR, which includes treatment modification, there is a highly signifi-
cant causal effect of taking EFV vs. NVP. The TMLE estimates for this outcome
are known to be unbiased since treatment is randomized and there is independent
censoring (the only censoring event is end of study). Furthermore, the results are
consistent with the results presented by Wester et al. (2010), where they concluded
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Table 18.2 Causal effect of NNRTI

Parametric TMLE
Cox PH Mean RH Mean RD RD at t = 34

Estimate 0.358 0.451 −0.072 −0.060
SE 0.156 0.165 0.025 0.034
p-value 0.022 0.006 0.003 0.072
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Fig. 18.5 EFV and NVP specific survival curves

that individuals treated with NVP tended to modify treatment sooner than individu-
als treated with EFV due to the toxicity of NVP.

Figure 18.5 presents the TMLE estimates of the treatment-specific survival
curves for TLOVR. Examining the parameter estimates in conjunction with Fig. 18.5
reveals the difficulty in interpreting the Cox proportional hazards parameter (and
our TMLE analog) compared to the marginal additive difference in the probability
of survival. The mean additive difference is −0.072, which may be interpreted as: on
average the EFV specific survival probability is 7.2% higher than the NVP-specific
survival probability. A quick examination of Fig. 18.5 verifies this difference in the
survival curves. The Cox proportional hazards estimate is 0.358 and would approxi-
mate the mean of ΨRH(P0)(tk) over all time points according to the Cox proportional
hazards model. This value has no easily interpretable meaning since it is the average
of the log of the ratio of log survival probabilities. Alternatively, one could interpret
it as an average of the log relative hazards, which requires the user to fully under-
stand the definition of a conditional hazard (like a density). It is clear that when it
is positive, the EFV-specific survival curve is larger. However, there is no intuitive
meaning gained from the size of the value. In addition, we can see that the TMLE
estimates are more statistically significant than the Cox proportional hazards esti-
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mates. Efficiency theory specific to the TMLE and simulation results suggest that
this gain in significance is due to a reduction in bias from implementing TMLE
(van der Laan and Rubin 2006; Moore and van der Laan 2009a). However, it is im-
possible to validate this claim for TMLE or any other method based on one sample
of the data.

18.6.2 Causal Effect Modification by Baseline CD4

Table 18.3 presents the estimates that address whether or not there is a causal effect
modification due to CD4 level (high/low) on the effect of cART treatment. The first
column is the estimate from the Cox proportional hazards model. All main terms
for W were included in the model as well as the interaction term EFV/NVP and the
effect modifier CD4 level. The estimate presented is the estimate βn in front of the
cross term, A×V , in the Cox proportional hazards model. The TMLEs presented are
the parameters (18.5) and (18.6). The mean is taken over the first 34 months after

Table 18.3 Causal effect modification due to baseline CD4 level

Parametric TMLE
Cox PH Mean RH Mean RD RD at t = 34

Estimate 0.675 0.829 −0.115 −0.144
SE 0.317 0.356 0.051 0.071
p-value 0.033 0.020 0.023 0.043
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Fig. 18.6 Survival curves for time until viral failure, death, or treatment modification setting
NNRTI and CD4. (a) Super learner. (b) Misspecified
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randomization, and the weights are based on the variance of the influence curve. The
difference in the risk difference at the final time point, 34 months, is also presented.
A positive marginal difference in the log relative hazard (18.6), and a negative dif-
ference in the risk difference (18.5), indicates that EFV has a larger beneficial causal
effect in the high CD4 group than in the low CD4 group.

Causal effect modification by CD4 is significant for all the parameter estimates
presented. The Cox proportional hazards estimate is statistically significant; how-
ever, as was seen above, the p-value for the TMLE is more significant. These results
are consistent with a decrease in bias or increase in efficiency due to using TMLE.
Figure 18.6(b) shows the survival curves for TLOVR setting individuals to CD4
level and treatment group. The figure depicts the significant effect modification seen
in Table 18.3. Not only is the effect of treatment among setting the individuals to
high CD4 different than the effect when setting individuals to low CD4, but the
effects are in opposite directions.

Figure 18.6(a) presents the TMLE survival curves where the survival probability
at each time point is targeted and the initial estimate of the event hazard is estimated
using the super learner. Figure 18.6(b) shows the targeted survival curves when the
initial hazard is intentionally misspecified. In fact, the initial estimates for each of
the four groups of differing CD4 level and treatment level are not different at all and
a main terms logistic model that only accounts for t and t2 was used. The bolded
gray solid line in Fig. 18.6(b) shows the initial estimate of all four survival curves.
Super learner was then used to estimate the treatment distribution, and since the only
censoring event is the end of study, censoring is known to be independent of the
baseline covariates, and Kaplan–Meier was used to estimate the censoring process.
Figure 18.6(b) demonstrates that by using TMLE with a completely misspecified
initial hazard, the effect modification is recovered, depicted by the separation of the
four survival curves. This exemplifies the value of the double robustness of TMLE.

18.6.3 Causal Effect Modification Due to Gender

Table 18.4 present effect modification due to gender on the effect of cART treat-
ment. Main terms were included for A and V , and A × V was included as well in
the Cox proportional hazards model. The estimate is the βn in front of A × V . The
targeted maximum likelihood estimates presented are the stratified effect modifica-
tion parameters (18.7) and (18.8). The mean is taken over the first 34 months after
randomization, and weighting is based on the estimated variance of the influence
curve. The difference in the risk difference at the final time point, 34 months, is
also presented. A negative marginal difference in the log relative hazard (18.8), and
a positive difference in the risk difference (18.7), indicates that EFV has a larger
beneficial causal effect for females. The treatment effect modification by gender on
TLOVR is statistically significant for all three TMLE estimates and the Cox pro-
portional hazards estimate. In fact, it is highly significant for the mean difference in
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Table 18.4 Effect modification due to gender

Parametric TMLE
Cox-PH Mean RH Mean RD RD at t = 34

Estimate −0.952 −0.816 0.116 0.193
SE 0.353 0.329 0.035 0.054
p-value 0.007 0.013 0.001 0.000

Fig. 18.7 Survival curves for time to viral failure, death, or treatment modification setting NNRTI
and gender

the marginal log hazard of survival, and the difference in the marginal log hazard of
survival at tk = 34. Figure 18.7 shows the survival curves for the TLOVR outcome.

18.7 Discussion

The three statistical questions of interest presented in the introduction of this chapter
may now be answered based on the TMLE methods and results presented above:

1. Is there a causal effect of EFV vs. NVP on time to viral failure, death, or treatment
modification? There appears to be a causal effect of EFV vs. NVP on TLOVR.
This suggests that viral failure, death, treatment modification or a combination of
the three differs between individuals treated with EFV vs. NVP. The average risk
difference in survival probability over the first 34 months after randomization is
−7.2%.

2. Does baseline CD4 level modify the effect of EFV vs. NVP on time to viral failure,
death, or treatment modification? Baseline CD4 level does modify the effect of
EFV vs. NVP on time until TLOVR. EFV tends to be favorable compared to
NVP for individuals at high CD4 levels. At low CD4 levels there is not much
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of a difference in the treatment-specific survival curves (Fig. 6(a)). For TLOVR,
the average risk difference between the effect in the high CD4 group vs. the low
CD4 group is 12% (p-value = 0.023). One possible explanation for this is that
the side effects associated with taking NVP were considered more acceptable for
people with lower CD4 level so treatment was not modified. Healthier people
would modify treatment because the advantages of treatment do not offset the
risk of the side effects.

3. Does the effect of EFV vs. NVP on time to viral failure, death, or treatment mod-
ification or some combination of the three differ by sex? Gender does modify the
effect of EFV vs. NVP on the time until TLOVR. Women tend to have more fa-
vorable outcomes using EFV, while males tend to have more favorable outcomes
with NVP. For TLOVR, the average causal risk difference between the effect in
the males vs. the females is 12% (p-value = 0.001). A possible reason for this re-
sult is that female NVP users tend to modify their treatment at a higher rate than
the other groups. Based on Fig. 18.7, the major difference in the modification
rate tends to occur right after starting the NVP therapy.

In addition to answering these statistical questions, the results illustrate the ad-
vantages of using TMLE over Cox proportional hazards regression for causal ef-
fects. The parameters estimated using TMLE are much easier to interpret than the
parameter estimated using Cox regression. Furthermore, TMLE is double robust
and locally efficient resulting in advantages over Cox regression in both producing
unbiased estimates and gaining efficiency. The double robustness was illustrated by
Fig. 6(b), where the effect modification due to CD4 level was regained after starting
with an initial estimate of the four CD4/treatment-specific survival curves that was
the same for all four combinations of CD4/treatment. The overall efficiency gains
and bias reductions may not be directly exhibited through a single data analysis,
as done here, but previous theoretical results and simulations have exhibited these
advantages. Since TMLE targets the parameter of interest and, rather than relying
on an a priori specified model to estimate the conditional hazard, it produces con-
sistent estimates of a specified parameter of interest under very unrestrictive model
assumptions, whereas the Cox proportional hazards estimate is only consistent if
the Cox proportional hazards model and its restrictive parametric assumptions are
true. For these reasons, the parameter estimates and significance levels produced
by the TMLE should be considered more reliable than those produced using Cox
proportional hazards.

Appendix

TMLE incorporating time-dependent covariates. In the Tshepo study, time-
dependent measurements on viral load and CD4 count over time until end of follow-
up were collected. The analysis presented in this chapter ignored these measure-
ments. A general roadmap and algorithm for constructing TMLE based on general
longitudinal data structures has been developed in van der Laan (2010a,b), is also
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presented in Appendix A, and demonstrated in Part VIII. This type of TMLE, with
an enhanced implementation maximizing computational speed, has been fully im-
plemented and evaluated in an upcoming article by Stitelman and van der Laan
(forthcoming, 2011). The implementation can be easily adapted to handle general
longitudinal data structures and target parameters, such as the causal effect of a
dynamic treatment regimen on survival. In this upcoming article and correspond-
ing technical report (forthcoming, 2011), full simulations and data analysis of the
Tshepo study will be presented. It provides a TMLE of the causal effect of treatment
on the survival function utilizing both the baseline covariates and the measured time-
dependent covariates to improve efficiency as well as remove bias due to informative
dropout. In this chapter appendix, we present preliminary results from this upcom-
ing article, demonstrating the additional gains obtained by using a TMLE that incor-
porates the time-dependent covariates, and demonstrating the gain of TMLE relative
to current practice in terms of IPCW estimation for dealing with time-dependent co-
variates.

We present the results of simulation studies that compare the bias and efficiency
of six different estimators of the treatment specific survival curve S 1(t0): baseline
TMLE, baseline IPCW, baseline A-IPCW, time-dependent TMLE, time-dependent
IPCW, and time-dependent EE. Baseline refers to the data structure that excludes the
time-dependent covariates, and EE is an an abbreviation for an estimating equation
based estimator we developed for the complete longitudinal data structure [it can
be viewed as an A-IPCW of the type presented in van der Laan and Robins (2003),
but it is based on the representation of the efficient influence curve as used in the
TMLE].

The EE involves representing the efficient influence curve for the longitudinal
data structure as an estimating function in the target parameter ψ0 and defining the
estimator as the solution of the corresponding estimating equation, estimating the
nuisance parameters with the initial estimators as used in the TMLE. No similar
estimating equation based estimators have gained traction in the literature due to
the computational difficulties of constructing such an estimate when there are many
time points and intermediate variables. The algorithm proposed in the forthcoming
article by Stitelman and van der Laan make the estimation of such an estimator
computationally feasible. The EE is like the TMLE in that it is a double robust
locally efficient estimator, but the TMLE is also a substitution estimator, while the
EE is not. The time-dependent IPCW is defined as the empirical mean of

DIPCW (O) =
I(T > t0, A = 1,C > t0)

Ḡn(t0− | X, A = 1)gn(A | W)
,

where gn is an estimator of the treatment mechanism g0, conditional on baseline
covariates, Ḡn(t− | X, A = 1) =

∏
t<t0 (1 − λn(t | X, A = 1) is the estimator of the

survivor function of censoring, conditional on baseline treatment, baseline covari-
ates, and time-dependent covariates, and λn(t | X, A = 1) is the conditional hazard
of censoring at time t, adjusting for the observed past up to time t−.
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The goal of the first set of simulations was to illustrate the bias reduction that
occurs when one adjusts for time-dependent covariates that impact dropout beyond
the effect of the baseline covariates on time to dropout. The second set of simu-
lations show that if censoring is noninformative, a TMLE and EE incorporating
the available time-dependent covariates improve efficiency relative to an estimator
that ignores the time-dependent covariates, even though in this independent censor-
ing scenario the latter is still a valid asymptotically linear estimator. Furthermore,
our simulations also demonstrate that a locally efficient double-robust substitution
estimator (time dependent TMLE) performs better in finite samples than both a
locally efficient double-robust nonsubstitution estimator (time-dependent EE) and
the current standard for accounting for time-dependent covariates (time-dependent
IPCW). In fact, the simulations suggest that the benefit of targeted learning increases
quickly, and dramatically, when the complexity (e.g., dimension of data structure)
of the estimation problems increases.

In our simulations we simulated a longitudinal data structure

O = (W(0), A(0),N(1),W4(1),W5(1), A(1)...,N(K),W4(K),W5(K), A(K),N(K + 1)),

for t = 1, ...,K + 1. Here W(0) = (W1(0),W2(0),W3(0),W4(0),W5(0)) are the base-
line covariates, A(0) is the binary baseline treatment randomized with probability
0.5, N(t) is the indicator of observing a failure time event at time t, A(t) is the
indicator of observing a censoring event at time t, and W4(t) and W5(t) are the con-
tinuous time-dependent covariates. In each simulation, 100 simulated data sets with
sample size n = 500 were generated, the treatment specific survival curve S 1(t0) at
time point t0 = 3 was estimated using each of the six different estimators, and es-

1(t0)
for each simulation equals 0.469. All six estimators were supplied consistent esti-
mators of the hazards of censoring and failure, while the conditional distributions
of the time-dependent covariates were estimated inconsistently by discretizing the
continuous covariates (W4(t), W5(t)), coding the discretized covariates with binary
indicators, and estimating the conditional distribution of the binary indicators with
logistic parametric regression. Each estimator was evaluated using the same estima-
tors Qn and gn (for each simulation) so that any difference in their performance may
not be attributed to how Q0 and g0 were estimated.

Simulations with informative censoring. The precise data-generating mechanism
is described as follows.

the diagonal.
(2) The two time-dependent covariates W4 (t) and W5 (t) were generated as follows:

W4(t) = 0.2A(0) + 0.5W1(0) − 0.4W2(0) − 0.4W3(0) + 2W4(t − 1) + 2W5(t − 1) + U4
W5(t) = 0.1A(0) + 0.1W1(0) + 0.1W2(0) − 0.4W3(0) + 2W4(t) + 2W5(t − 1) + U5,

(1) Drawing baseline covariates W(0) involved first generating from a mean-zero
multivariate normal and truncating any component from above by 2 and from

timates of bias and MSE were recorded. The true treatment specific survival S

below by -2. The covariance matrix was defined as 1 on the diagonal and 0.2 off
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Table 18.5 Simulation results for low and highly informative censoring

Time-dependent Baseline
TMLE EE IPCW TMLE A-IPCW IPCW

Low informative
Mean of Estimates 0.471 0.471 0.451 0.469 0.469 0.469
MSE 0.00070 0.00073 0.00127 0.00082 0.00081 0.00093

Highly informative
Mean of Estimates 0.472 0.472 0.172 0.436 0.437 0.394
MSE 0.00066 0.00067 0.08864 0.00215 0.00210 0.00773

where U4 and U5 are i.i.d. N(0, σ = 0.4).

ity defined by the following conditional hazard of time to failure T :

λT (t) = expit(−3+0.3A(0)+0.3W1(0)−0.3W2(0)−0.3W3(0)+2W4(t−1)+2W5(t−1)).

highly informative censoring case, respectively:

λC(t) = expit(−4 + 0.8A(0) + 0.3W1(0)
−0.3W2(0) − 0.3W3(0) − 0.01W4(t) − 0.01W5(t − 1)),

λC(t) = expit(−4 + 0.8A(0) + 0.3W1(0)
−0.3W2(0) − 0.3W3(0) − 0.1W4(t) − 0.1W5(t − 1)).

time-dependent covariates results in an important bias reduction (and MSE) for the
TMLE and EE estimators. In the low informative censoring simulation, the time-
dependent IPCW estimator has an MSE that is 1.8 times larger than the MSE of the
time-dependent TMLE and EE estimator. In the highly informative censoring sce-
nario, the MSE of the time-dependent IPCW estimator is 134 (!) times larger than
the MSE of the time-dependent TMLE and EE estimator. The latter demonstrates a
complete breakdown of the IPCW estimator, reflecting that it is simply a very unre-
liable estimator, even though it represents current practice.

Simulations with independent censoring. The data-generating distribution was the
same as above, except the censoring mechanism was modified. The hazard of cen-
soring was only a function of time, such that censoring was independent of the
evolving processes, but three different hazards were considered, representing dif-
ferent levels of independent censoring: no censoring, medium censoring, and high
censoring. In the first scenario, each individual was left uncensored. In the second
and third scenario each subject was censored with either 20% probability (medium)
or 60% probability (high).

(3) The event indicators, N(t), were generated as Bernoulli indicators with probabil-

(4) The censoring indicators, A(t), were generated as Bernoulli indicators with prob-
ability defined by the following conditional hazard for censoring for the low and

Table (18.5) presents the results for this simulation. The incorporation of the
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Table 18.6 Simulation results for independent censoring

Time-dependent Baseline
TMLE EE IPCW TMLE A-IPCW IPCW

No censoring
Mean of Estimates 0.469 0.469 0.469 0.468 0.468 0.469
MSE 0.00047 0.00047 0.00054 0.00048 0.00048 0.00054

Medium censoring
Mean of Estimates 0.467 0.467 0.470 0.469 0.469 0.468
MSE 0.00063 0.00086 0.00203 0.00093 0.00093 0.00169

High censoring
Mean of Estimates 0.476 0.477 0.477 0.464 0.464 0.466
MSE 0.00111 0.00315 0.00566 0.00180 0.00181 0.00417

The results are presented in Table 18.6. We know that under independent cen-
soring all six estimators are consistent. Indeed, the results demonstrate that all esti-
mators are unbiased across the three simulations, so that the estimators only differ
in their efficiency (i.e., variance). Under no censoring, all estimators behave simi-
larly, with the exception of the IPCW estimators that are somewhat inefficient. Gains
in efficiency due to incorporation of the time-dependent covariates can only be ex-
pected if a significant proportion of the subjects are right censored, since an efficient
estimator treats a censored subject that is very sick at the censoring time differently
than a censored subject that was relatively healthy at the censoring time. Indeed,
the table shows that as the amount of independent censoring increases, the IPCW
estimators become increasingly inefficient relative to the efficient TMLE and EE
estimators.

It is also of interest to note that, under high censoring, the time-dependent TMLE
is 1.6 times more efficient than the baseline TMLE. This demonstrates the substan-
tial gain in efficiency one can obtain by utilizing time-dependent covariates. Fur-
thermore, under high censoring, the locally efficient double-robust nonsubstitution
estimator (time-dependent EE) has an MSE of almost three (!) times the MSE of the
locally efficient double-robust substitution estimator (time-dependent TMLE). This
demonstrates the enormous importance of being a substitution estimator. This gain
is most likely due to estimated censoring probabilities that are empirically imbal-
anced across strata of the covariates, so that the estimators behave similarly, as in a
highly informative censoring simulation. We repeatedly observed the problem with
nonsubstitution estimators when there is strong confounding in a variety of situa-
tions. Finally, it is noteworthy that the time-dependent IPCW estimator has an MSE
that is 5 times larger than the MSE of the time-dependent TMLE.
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Chapter 19

C-TMLE of an Additive Point Treatment Effect

Susan Gruber, Mark J. van der Laan

C-TMLE is an extension of TMLE that pursues an optimal strategy for estimation
of the nuisance parameter required in the targeting step. This latter step involves
maximizing an empirical criterion over a parametric working model indexed by a
nuisance parameter. For the sake of introduction and demonstration, we will focus
on C-TMLE of a causal effect:

Ψ (P0) = E0[E0(Y | A = 1,W) − E0(Y | A = 0,W)],

based on n i.i.d. observations on the random variable O = (W, A, Y) ∼ P0, with
nonparametric statistical model M for P0. This target parameter depends on P0
through the marginal distribution QW,0 of W and the conditional mean Q̄0(A,W) =
E0(Y | A,W), such that we can also write Ψ (Q0), where Q0 = (QW,0, Q̄0). We denote
the treatment mechanism P0(A = a | W) with g0(a | W), a ∈ {0, 1}, which plays the
role of the nuisance parameter in TMLE and C-TMLE. This simple target parameter
and data structure is sufficiently rich to convey the essential elements of this general
estimation procedure C-TMLE.

As with other double robust estimators, TMLE relies on external estimation
(using, for example, log-likelihood-based super learning) of the treatment mech-
anism g0(1 | W) = P0(A = 1 | W) based on the log-likelihood loss function
of a candidate g. TMLE uses the estimator gn of g0 in order to make the bias
of the TMLE Ψ (Q1

n) of ψ0 = Ψ (Q0) smaller than the bias of the initial substitu-
tion estimator Ψ (Q0

n) based on an initial estimator Q0
n = (QW,n, Q̄0

n) of Q0. Here
QW,0 is estimated with the empirical distribution and is not updated by the TMLE.
For example, if we use the squared error loss function for Q̄0, then we have that
Q̄1

n = Q̄0
n + εnH(gn), and the TMLE is defined as the substitution estimator Ψ (Q1

n),
where H(gn)(W, A) = A/gn(A | W)− (1−A)/gn(A | W) is the clever covariate used to
define the parametric fluctuation working model, and εn is the corresponding least-
squares regression estimator.

The choice of estimator gn of g0 can seriously affect the amount of bias reduction
achieved by the TMLE Ψ (Q1

n) relative to the bias of the initial estimator Ψ (Q0
n). The
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likelihood for g is the only available guide for estimation of g0, yet not all predic-
tors of treatment are necessarily also predictive of the outcome and thus should be
included in the estimator of the treatment mechanism. In addition, a covariate that
is heavily predictive of the outcome, but mildly predictive of treatment, might be
a more important covariate to include in the estimator of the treatment mechanism
than a covariate that is mildly predictive of the outcome and strongly predictive
of the treatment, but the log-likelihood of the treatment mechanism would heavily
favor the latter nonimportant covariate. As a consequence, maximum-likelihood-
based estimation of g0, though fully effective for estimation of g0 itself, is inherently
limited for the purpose of TMLE by its inability to identify true confounders of the
treatment effect.

Theory advanced in van der Laan and Gruber (2010) provides the key insight
that the TMLE step achieves full bias reduction as long as it uses a true conditional
distribution of treatment treatment that adjusts for the covariates that are predictive
of the residual bias/error Q̄0

n(a,W) − Q̄0(a,W), a ∈ {0, 1}, of the initial estimator
of the true outcome-regression Q̄0. This result is intuitively a natural consequence
of the fact that the clever covariate can only reduce bias if it is predictive of the
outcome after taking into account the initial estimator. This theoretical collaborative
double-robustness result provides the motivation and theoretical underpinning of the
C-TMLE described in this chapter. This chapter is adapted from Gruber and van der
Laan (2010a).

The C-TMLE and TMLE are both substitution estimators of the form Ψ (Q∗n),
where Q∗n is an update of Q0

n. However, they differ in the subsequent targeted bias-
reduction step applied to Q0

n, and thereby the resulting update Q∗n, and corresponding
substitution estimator Ψ (Q∗n). The TMLE applies one TMLE step to Q0

n using a
fully adjusted estimator gn of the treatment mechanism. On the other hand, the C-
TMLE builds iteratively a sequence of candidate TMLEs Q∗n,k that use a gn,k, indexed
by k = 1, . . . ,K, for which the empirical fit of both Q∗n,k and gn,k is increasing
in k, and it uses cross-validation based on the loss function for Q0 to select the
best TMLE among these candidates. The final estimator gn,K in this sequence is
as nonparametric as the gn used by the TMLE and is supposed to be a consistent
estimator of g0. The rationale of the asymptotic consistency of C-TMLE can be
phrased as follows. If, given a current running initial estimator of Q̄0, such as a
TMLE using gn,k, a next TMLE update of this initial estimator using an enlarged
adjustment set in gn,k+1, results in zero improvement in true fit (as meaured by cross-
validation) of Q̄0, then the additional covariates added to the treatment mechanism
cannot further reduce bias for ψ0 either.

Specifically, such a sequence of candidate TMLEs and corresponding C-TMLE
may be built as follows. Recall that we estimate the marginal distribution of W with
the empirical distribution, so that we only need to describe the C-TMLE of Q̄0. For
simplicity, the following algorithm is presented with a set of main terms extracted
from W. One starts with the initial estimator Q̄0

n. The first candidate is defined as the
TMLE that fluctuates the initial estimator Q̄0

n, using a logistic regression model fit
for the treatment mechanism that only includes the intercept. Next consider a TMLE
that fluctuates Q̄0

n with a logistic regression model fit of the treatment mechanism
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that includes a main term (beyond the intercept). There are several such fits, each of
which leads to a different TMLE. Focus on the TMLE that gives the best empirical
fit to the data. If this TMLE indeed improves the Q̄0 empirical fit relative to the
previous TMLE (in the sequence) using the intercept model for g0, then this TMLE
is the second candidate in the sequence of TMLEs we are building. If, on the other
hand, this TMLE does not improve the empirical fit of Q̄0, then we do not accept
this TMLE as our second candidate in the sequence of TMLEs. Instead we replace
the initial estimator by the previous TMLE and we start over. We now consider a
TMLE that fluctuates this new initial estimator with a logistic regression estimator
of the treatment mechanism that includes the main term (beyond the intercept) that
gives the best fit of the corresponding TMLE of Q̄0.

Since this TMLE is a fluctuation of the previous TMLE in the sequence, it will
now always improve the Q̄0 empirical fit relative to the previous TMLE in the se-
quence we have built so far. Therefore, we select this TMLE as our second TMLE in
the sequence. This process is iterated and results in a sequence of TMLEs Q̄∗n,k with
a corresponding estimator gn,k of the treatment mechanism, for which the empirical
fits of both Q̄∗n,k and gn,k improve in k. The estimator gn,k corresponds with a logistic
regression fit with an intercept and k − 1 main terms. Given these candidate estima-
tors Q̄∗n,k, we select k with cross-validation selector kn based on the loss function for
Q̄0, the same loss function that was used in the TMLE step. The C-TMLE of Q̄0 is
now defined as the corresponding Q̄∗n = Q̄∗n,kn

, and the C-TMLE of ψ0 is the corre-
sponding substitution estimator Ψ (Q̄∗n). Note that this sequence of TMLEs puts in
an increasing effort in targeted bias reduction (because the fit of gn,k is increasing in
k), resulting in an improved empirical fit of Q̄0 (because the fit of Q̄∗n,k is increasing
in k), and cross-validation selects the largest k for which the observed increase in
Q̄0 empirical fit is still reflective of an improvement in real fit of Q̄0.

A common misconception is that C-TMLE might not adjust for confounders as
much as the TMLE. In fact, by careful selection of covariates in the treatment mech-
anism, the C-TMLE typically carries out a more effective bias reduction, and thereby
delivers as much or more bias reduction than TMLE, at the cost of a smaller increase
in finite sample variance. In the context of sparsity, the C-TMLE may strongly out-
perform the TMLE. That said, in settings in which the initial estimator is poor, and
a thorough understanding on what covariates to include in the treatment mechanism
estimator is available, a C-TMLE that builds many candidate TMLEs to select from
may perform worse than the less adaptive TMLE.

19.1 Linear Fluctuation and Squared Error Loss

One first needs to define a valid loss function for Q̄0, such as the squared error
loss function L(Q̄)(O) = (Y − Q̄(A,W))2, and a fluctuation working model, so that,
given an initial estimator of Q̄0, an estimator of the treatment mechanism g0, a corre-
sponding TMLE is well defined. Given such a definition of the TMLE, the C-TMLE
algorithm can be described as follows:
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C-TMLE Algorithm

Step 1. Construct an initial estimator Q̄0
n of Q̄0(A,W) = E0(Y | A,W), such

as the super learner based on the squared error loss function.
Step 2. Create candidate TMLEs Q̄∗n,k, using a treatment mechanism esti-

mator gn,k, such that the empirical fits of Q̄∗n,k (based on the loss function
for Q̄0) and gn,k are increasing in k. This can be carried out with a forward
greedy selection algorithm, described below.

Step 3. Select the best candidate, Q̄∗n = Q̄∗n,kn
, using loss-based cross-

validation using the loss function for Q̄0 used in the TMLE.
Step 4. Evaluate its parameter value, ψn = Ψ (Q∗n), based on substitution of

Q̄∗n and the empirical distribution QW,n as estimator of the marginal distri-
bution of W.

Theory requires that the sequence (gn,k : k) of estimators grow toward and arrive
at a consistent estimator of the true g0. Building nested candidate estimators gn,k is
one particular approach that satisfies this requirement, and ensures that for all m < k,
gn,k is a better empirical fit for the treatment mechanism than gn,m. At each step k
in the iterative forward selection algorithm described below, it has a current initial
estimator of Q̄0 and a current gn,k as a starting point. At this step k, it considers all
the TMLE updates of the current initial estimator of Q̄0 using a gn,k+1 that augments
the current main term model gn,k with a single additional covariate Wk, among the
remaining main terms to consider. It selects the main term that maximizes the TMLE
fit of Q̄0. In this manner, for each k = 1, 2, . . ., the k step in this iterative algorithm
aims to improve the fit for g0 in a way that maximally increases the corresponding
TMLE fit of Q̄0.

Let’s be specific. We define a TMLE in terms of the squared error loss function
and linear fluctuation model. One begins with the intercept model for g0 to construct
a first clever covariate, H∗(gn,1), used to create the first targeted maximum likelihood
candidate, Q̄∗n,1 = Q̄0

n + ε1H∗(gn,1), where

gn,1(a | W) = Pn(A = a), a ∈ {0, 1},

H∗(gn,1) =
(

I(A = 1)
gn,1(1 | W)

−
I(A = 0)

gn,1(0 | W)

)
,

and ε1 is fitted by least-squares regression of Y on H∗(gn,1) with offset Q̄0
n. The

second candidate TMLE will be based on an updated model for g0 that contains
the intercept and one term. The best main term is selected based on an empirical fit
of the TMLE of Q̄0. This empirical fit is defined as the empirical sum of squared
residuals at the resulting Q̄0 fit.

Example. Consider the following example, illustrating the process of choosing the
best term to add to the intercept model for g, given W = (W1,W2,W3).
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C-TMLE Algorithm Example with W = (W1,W2,W3)

• Construct tentative candidate estimators for gn,2:
– g2a

n : regress A on W1,
– g2b

n : regress A on W2,
– g2c

n : regress A on W3.
• Obtain each corresponding tentative candidate TMLE:

Q̄2x
n = Q̄0

n + ε2xH∗
g2x

n
, x ∈ {a, b, c}.

• Select the x that minimizes the negative log-likelihood l(Q̄2x
n ).

• The best TMLE is given by Q̄2b
n , and note that l(Q̄2b

n ) < l(Q̄1
n), so that we

accept this choice as our next Q̄2
n in the sequence of TMLEs, with corre-

sponding gn,2 = g2b
n . We now have Q̄1

n, Q̄
2
n and corresponding gn,1, gn,2.

negative log-likelihood

l2b    l2c            l1     l2a

• Construct tentative candidate estimators for gn,3:
– g3a

n : regress A on W2,W1,
– g3b

n : regress A on W2,W3.
• Obtain each corresponding tentative candidate TMLE:

Q̄3x
n = Q̄0

n + ε3xH∗
g3x

n
, x ∈ {a, b}.

• Select the x that minimizes the negative log-likelihood l(Q̄3x
n ).

• The best TMLE is given by Q̄3a
n , but note that l(Q̄3a

n > l(Q̄2
n). Therefore,

we do not accept this best TMLE as our next TMLE Q̄3
n in the sequence of

TMLEs.

negative log-likelihood

l2   l3a     l3b     l1    

• Instead, we update the initial in our tentative candidate TMLEs by replac-
ing the initial Q̄0

n by Q̄2
n, and repeat our search for Q3

n with this new initial,
as follows.

• Construct tentative candidate estimators for gn,3:
– g3c

n : regress A on W2,W1,
– g3d

n : regress A on W2,W3.
• Obtain each corresponding tentative candidate TMLE:

Q̄3x
n = Q̄2∗

n + ε3xH∗
g3x

n
, x ∈ {c, d}.
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• Select the x that minimizes the negative log-likelihood l(Q̄3x
n ).

• The best TMLE is given by Q̄3c
n , and, note l(Q̄3c

n ) < l(Q̄2
n) (as it should),

so that we accept this choice as our next Q̄3
n in the sequence of TMLEs,

with corresponding gn,3 = g3c
n . We now have Q̄1

n, Q̄
2
n, Q̄

3
n and corresponding

gn,1, gn,2, gn,3.

negative log-likelihood

l3c    l3d   l2                    l1    

• Construct tentative candidate estimators for gn,4:
– g4a

n : regress A on W2,W1,W3.
• Obtain each corresponding tentative candidate TMLE:

Q̄4a
n = Q̄2∗

n + ε4aH∗
g4a

n
(only one choice).

• Select the x that minimizes the negative log-likelihood l(Q̄4x
n ): x = a.

• The best TMLE is given by Q̄4a
n , and, note l(Q̄3a

n ) < l(Q̄3
n), so that we accept

this choice as our next Q̄4
n in the sequence of TMLEs, with corresponding

gn,4 = g4a
n . The final sequence is thus given by: Q̄1

n, Q̄
2
n, Q̄

3
n, Q̄4

n, and we also
have corresponding gn,1, gn,2, gn,3, gn,4.

A penalized RSS to make the empirical fit of Q̄0 more targeted. We have pro-
posed to make the empirical fit of a candidate TMLE of Q̄0 more targeted than the
empirical risk of the squared error loss function (i.e., the RSS) by adding to the RSS
a penalty term proportional to the estimated variance of this candidate TMLE of the
target parameter. Since this penalty is asymptotically negligible relative to RSS, this
penalized RSS for a candidate TMLE of Q̄0 is still asymptotically minimized at the
true Q̄0 and thereby represents a valid loss function. The variance of the candidate
TMLE of the target parameter may be estimated using the empirical variance of the
estimated efficient influence curve D∗.

Specifically, a penalized cross-validated sum of squared residuals, and the cor-
responding cross-validation selector of k can be defined as follows. The cross-
validation selector is defined as

kn = argmin
k

cvRSSk + cvVark + n × cvBias2
k ,

where these terms are given by
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cvRSSk =

V∑
v=1

∑
i∈Val(v)

(Yi − ˆ̄Q∗k(P0
nv)(Wi, Ai))2,

cvVark =

V∑
v=1

∑
i∈Val(v)

D∗2( ˆ̄Q∗k(P0
nv), ĝk(Pn), Ψ̂ (Q̂∗k(P0

nv)))(Oi),

cvBiask =
1
V

V∑
v=1

Ψ (Q̂∗k(P0
nv)) − Ψ (Q̂∗k(Pn)).

Here v indexes the validation set Val(v) of size np and empirical distribution P0
n,v

of the training sample of size n(1 − p) for the vth fold, v = 1, . . . ,V , and p =
1/V . For any Q, g, D∗(Q, g, Ψ (Q)) denotes the efficient influence curve of our target
parameter at (Q, g):

D∗(Q, g, Ψ (Q))(O) =
I(A = 1) − I(A = 0)

g(A | W)
(Y − Q̄(A,W))

+Q̄(1,W) − Q̄(0,W) − Ψ (Q).

Note that the logistic regression models for g0 used by gn,k are not restricted to
the univariate components of W only. For example, variables can be created that
correspond to higher-order terms, such as interactions of the components of W. In
addition, a categorical or continuous univariate covariate can be split into many bi-
nary covariates, thereby allowing for more nonparametric modeling of the effect of
a single covariate. In addition, most importantly, a series of increasingly nonpara-
metric propensity score estimates using super learning can be obtained based on
different covariate sets. These super learner fits of the propensity score would then
be used as the main terms in the algorithm described above. When there are many
covariates, it might be desirable in practice to terminate the procedure before all
covariates have been incorporated into the model for g0, though care must be taken
to ensure that none of the candidates thereby excluded from the subsequent selec-
tion process potentially maximizes the empirical criterion. In this manner the total
number of candidates K is controlled without loss of practical performance of the
resulting C-TMLE.

19.1.1 Simulations: Estimator Comparison

Three simulation studies illustrate the performance of the C-TMLE under different
data-generating scenarios and are designed to provide insight into estimator per-
formance under confounding of the relationship between treatment and outcome,
complex underlying data-generating distributions, and practical violations of the
positivity assumption. Other estimators commonly used to assess causal effects are
also evaluated. A comparison of these estimators highlights the differences in their
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behavior and illustrates the importance of statistical properties such as double ro-
bustness, asymptotic efficiency, and robustness in the context of sparsity.

The unadjusted estimator is defined as

ψ
unad j
n =

1
n

n∑
i=1

(2Ai − 1)Yi.

If the covariates confound the relationship between treatment and outcome, the un-
adjusted estimator will be biased. Given an ML-based estimator Q̄0

n of Q̄0, the MLE
of ψ0 is defined as

ψMLE
n =

1
n

n∑
i=1

(Q̄0
n(1,Wi) − Q̄0

n(0,Wi)).

This estimator is consistent if Q̄0
n is a consistent estimator of Q̄0. The IPTW estima-

tor is defined as

ψIPTW
n =

1
n

n∑
i=1

(I(Ai = 1) − I(Ai = 0))
Yi

gn(Ai | Wi)
.

Large weights, practical or theoretical violation of the positivity assumption 0 <
g0(1 | W) < 1, is known to make this estimator variable and biased (Freedman and
Berk 2008). The A-IPTW estimator is defined as

ψA−IPTW
n =

1
n

n∑
i=1

I(Ai = 1) − I(Ai = 0)
gn(Ai | Wi)

(Yi − Q̄0
n(Ai,Wi))

+
1
n

n∑
i=1

(Q̄0
n(1,Wi) − Q̄0

n(0,Wi)),

and is asymptotically unbiased and efficient when both gn and Q̄0
n are asymptotically

consistent estimators of g0 and Q̄0, respectively. This estimator remains unbiased
if at least one of these estimators is asymptotically consistent. Unlike C-TMLE,
A-IPTW relies on external estimation of g0, and may therefore include covariates
that are predictive only of treatment, tending to increase both bias and variance.

The propensity score (pscore) estimator (Rosenbaum and Rubin 1983) that cal-
culates the marginal treatment effect as the mean across strata defined by the condi-
tional probability of receiving treatment is given by

ψ
pscore
n =

1
n

n∑
i=1

(Q̄0
n(1, si) − Q̄0

n(0, si)),

where Q̄0
n(a, s) is an estimator of the true conditional mean E(Y | A = a, S = s), and

si indicates a stratum of the pscore of covariate vector Wi. The pscore estimator is
asymptotically consistent if gn is a consistent estimator of g0 and if one lets the num-
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ber of strata converge to infinity as sample size increases. This will typically require
a data-adaptive method for selection of the strata and the number of strata. Contrary
to a nonparametric MLE based on the reduced-data structure (gn(1 | W), A, Y), it
is commonly recommended in the literature to ignore the outcome data in the con-
struction of these strata, even though this may heavily harm the performance of this
estimator. Estimates can suffer even when overall match quality based on the pscore
is high if only a small subset of the covariates are true confounders and these are
unevenly distributed between treatment and control groups. Like most estimators,
these are known to perform poorly when there are positivity violations (Sekhon
2008a). Because this estimator ignores covariate information and outcome data, it
is known to not be asymptotically inefficient.

The matching estimator (Sekhon 2008a), an extension of pscore estimators that
matches observations in treatment and control groups based on minimizing a dis-
tance between the covariates W of a treated and untreated unit, is defined as

ψ
matching
n =

1
n

n∑
i=1

(Q̄0
n(1,mi) − Q̄0

n(0,mi)),

where Q̄0
n(a,m) is a nonparametric estimator of the conditional mean E(Y |

A = a,M = m), and mi indicates a set of matched observations to which subject
i is assigned. The matching algorithm this estimator relies upon carefully matches
observations in the treatment and control groups an effort to evenly distribute poten-
tial confounders. The matching procedure relies on the genetic algorithm (Holland
and Reitman 1977) to achieve this goal. Candidate sets of matches are evaluated
based on a loss function and a distance metric between covariate vectors, specified
at run time, and are used to generate successive sets of candidates that achieve good
balance (Sekhon 2008a). The matching estimator can be provided with a pscore es-
timator as one of the covariates. The marginal treatment effect is the average of the
empirical effects across the strata defined by the sets of matches. As with the pscore
estimator, this one also ignores the outcome in the construction of the strata.

The C-TMLE is defined as

ψC−T MLE
n =

1
n

n∑
i=1

(Q̄∗n(1,Wi) − Q̄∗n(0,Wi)),

where Q̄∗n refers to an update of an initial estimator Q̄0
n, as described previously.

Note that the unadjusted estimator, the pscore estimator, the matching estimator, the
TMLE, and the C-TMLE are all substitution estimators based on plugging in an
estimator of Q̄0, so that these estimators only differ in the manner in which Q̄0 is
estimated.

Covariates W1, . . .W5 are generated as independent normal random variables,
while W6 is a binary variable. Specifically,

W1,W2,W3,W4,W5 ∼ N(0, 1),
P0(W6 = 1 | W1,W2,W3,W4,W5) = expit(0.3W1 + 0.2W2 − 3W3).
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We use the following two treatment mechanisms:

g1,0(1 | W) = expit(0.3W1 + 0.2W2 − 3W3)
g2,0(1 | W) = expit(0.15 × (0.3W1 + 0.2W2 − 3W3)).

We also use two conditional distributions of the outcome Y specified as follows:

Y = Q̄i,0(A,W) + ε, ε ∼ N(0, 1),

with corresponding true outcome regressions:

Q̄1,0(A,W) = A + 0.5W1 − 8W2 + 9W3 − 2W5

Q̄2,0(A,W) = A + 0.5W1 − 8W2 +W3 + 8W2
3 − 2W5.

We use three different data-generating distributions: (Q̄1,0, g1,0) in simulation 1,
(Q̄2,0, g1,0) in simulation 2, and (Q̄2,0, g2,0) in simulation 3.

Note that W6 is strongly correlated with treatment A in simulations 1 and 2
(corr = 0.54) but is not an actual confounder of the relationship between A and
Y . The true confounders are W1,W2, and W3. The linear nature of the confounding
due to W3 in simulation 1 differs from that in simulations 2 and 3, where the true
functional form is quadratic. In this way simulations 2 and 3 try to mimic realistic
data analysis scenarios in which the unknown underlying functional form is seldom
entirely captured by the regression model used in the analysis. Finally, the treat-
ment mechanism in simulations 1 and 2 leads to positivity violations. Specifically,
P(A = 1 | W) ranges between 9× 10−7 and 0.9999978, and approximately one-third
of the probabilities are outside the range (0.05, 0.95). In simulation 3 there are no
ETA violations since 0.11 < P(A = 1 | W) < 0.88. In each simulation the true value
of the parameter of interest equals 1: ψ0 = 1.

One thousand samples of size n = 1000 were drawn from each data generating
distribution. A main effects model fit for Q̄0

n was obtained using the data-adaptive
DSA algorithm restricted to main terms only for the MLE and A-IPTW estima-
tors. A main terms logistic regression model fit for the treatment mechanism gn was
also selected by DSA, using the logistic link and restricted to main terms only, and
provided as input into the IPTW, A-IPTW, pscore, and matching estimators. The
pscore method was implemented by dividing observations into strata based on the
five quintiles of the predicted conditional treatment probabilities. Any weights that
were greater than 10 were set to 10 for the IPTW estimator.

Mean estimates of the treatment effect and standard errors for each simulation
are shown in Table 19.1 and Fig. 19.1 illustrates each estimator’s behavior. As ex-
pected, the estimators relying on consistent estimation of Q̄0 are unbiased in simula-
tion 1, while those relying on consistent estimation of g0 are unbiased in simulation
3. The unadjusted estimator yields biased results in all three simulations due to its
failure to adjust for confounders. The ML-based estimator performs well in sim-
ulation 1 when the DSA estimator consistently estimates Q̄0. We understand that
misspecification of Q̄0

n (simulations 2 and 3) will often, though not always, lead to
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Fig. 19.1 Means and (0.025, 0.975) quantiles. (a) Simulation 1. (b) Simulation 2. (c) Simulation 3

Table 19.1 Means and standard errors for each estimator, 1000 iterations, n = 1000, ψ0 = 1

Simulation 1 Simulation 2 Simulation 3

ψn SE ψn SE ψn SE

Unadj −11.97 0.64 −0.98 0.91 0.29 0.86
MLE 0.99 0.09 0.76 1.22 0.95 0.68
IPTW −4.36 0.72 0.03 0.76 0.83 0.90
A-IPTW 0.99 0.09 0.94 0.62 1.03 0.80
pscore −1.09 1.27 0.42 1.38 0.93 0.59
matching −1.22 0.82 0.54 0.73 0.96 0.25
C-TMLE 0.99 0.09 1.00 0.10 1.00 0.07
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bias in the estimates. However, the plots highlight another phenomenon that is easy
to overlook. The inability of the misspecified regression fit to explain the variance
in the outcome often leads to large variance of the estimator of the treatment effect
ψ0. Truncation bias due to positivity violations causes the IPTW estimator using
truncated weights to fail in simulations 1 and 2. The estimate is not biased in sim-
ulation 3, but the variance is so large that even in this setting where we’d expect
IPTW to be reliable it fails to produce a significant result. A-IPTW estimates are
unbiased and have low variance when the DSA algorithm selects the right model
fit of Q̄0 (simulation 1). However, the variance of the A-IPTW estimator is large in
simulations 2 and 3 because, despite not being a confounder, W6, a strong predictor
of A, is always included in the estimate of the treatment mechanism, thus needlessly
increasing the variance.

The pscore has poor performance in simulations 1 and 2 when there are positivity
violations. Without using information about the outcome the fit of the pscore can be
based on the predictive power of the fit, but not on the potential bias reduction.
The pscore method does a reasonable job in simulation 3. The matching estimator
performs quite well; however, it is quite inefficient in simulation 1.

These simulation studies demonstrate the collaborative double robustness and
efficiency of C-TMLE methodology, which allows for consistent efficient estima-
tion in situations where other estimators can fail to perform adequately. In practice
these failures may lead to biased estimates and to confidence intervals that fail to
attain the correct coverage, as suggested by the IPTW results in simulations 1 and 2,
where weights depend on a variable highly predictive of treatment that is not a true
confounder of the relationship between Y and A.

As simulations 2 and 3 demonstrate, a misspecified parametric model not only
results in biased estimates, but can also easily fail to adequately explain the variance
in the outcome. Therefore maximum likelihood estimates of the parameter of inter-
est based on such misspecified parametric models may have a larger variance than
the semiparametric information bound achieved by an efficient estimator, such as a
C-TMLE.

Estimators that rely on ML-based estimators of the treatment mechanism (IPTW,
A-IPTW, TMLE, pscore) break down when there are positivity violations, failing to
reduce bias, or even increasing bias, while incurring high variance that renders esti-
mates meaningless (no statistical significance). An effort to reduce variance through
truncation introduces bias into the estimate, and requires a careful tradeoff. C-TMLE
addresses these issues, in the sense that it is able to utilize the covariates for effective
bias reduction, avoiding harmful bias reduction efforts, reflected by the inclusion of
W6 in the treatment mechanism estimator.

To summarize, the collaborative nature of the estimation of the treatment
mechanism in the C-TMLE confers three advantages:
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1. The treatment mechanism model will exclude covariates that are highly
predictive of treatment but do not truly confound the relationship between
treatment and outcome.

2. The treatment mechanism model will strongly favor inclusion of covariates
that help adjust for residual bias remaining after the initial estimator.

3. By employing the penalized RSS in the C-TMLE algorithm, the procedure
will not select a treatment mechanism model that includes a term that leads
to strong violations of the positivity assumption and thereby large variance
of the corresponding TMLE without the benefit of a meaningful bias re-
duction.

19.1.2 Simulations: Comparison of C-TMLE and TMLE

The double robust property of TMLE minimizes the need for accurate estimation
of both Q̄0 and g0 since correct specification of either one leads to consistent esti-
mates of the parameter of interest. However, accurate estimates of both are needed to
achieve the Cramer–Rao efficiency bound. Implementations of the standard TMLE
therefore strive for ideal estimates of both Q̄0 and g0.

In contrast, the collaborative nature of the second stage of the C-TMLE algo-
rithm leads to selection of an estimator, gn, that targets that portion of the treatment
mechanism needed to reduce bias not already adequately addressed by the initial es-
timator Q̄0

n of Q̄0. For example, covariates included in the model fit Q̄0
n might not be

selected into the model fit for g0 because they do not decrease the penalized RSS. At
the same time, confounders that are not adequately adjusted for in the initial estima-
tor Q̄0

n are quickly added to model for g0 unless the gain in bias reduction is offset by
too great an increase in variance. When the initial estimate Q̄0

n is a very good fit of
Q̄0, the TMLE and C-TMLE have similar performance with respect to bias, but the
C-TMLE may have a smaller finite sample variance by selecting a gn that targets a
non-fully-adjusted true conditional distribution of treatment, resulting in a possibly
super efficient estimator. When the initial fit is less good, C-TMLE makes informed
choices regarding inclusion of covariates in the treatment mechanism. As predicted
by theory, again, this might lead to lower finite sample variances and more effective
bias reduction.

The following simulation 4 illustrates these phenomena and shows the break-
down of the TMLE using the squared error loss function and linear fluctuation in
the presence sparsity. The covariates W1,W2, and W3 are generated as independent
random uniform variables over the interval [0, 1], while W4 and W5 are independent
normally distributed random variables. Specifically,

W1,W2,W3 ∼ U(0, 1),
W4,W5 ∼ N(0, 1).
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The treatment mechanism g0 is designed so that W3 is highly predictive of treatment:

g0 = P0(A = 1 | W) = expit(2W1 +W2 − 5W3 +W5).

The observed outcome Y is generated as:

Y = A + 4W1 − 5W2 + 5W4W5 + ε, ε ∼ N(0, 1).

The true causal effect ψ0 equals 1.
C-TMLE and TMLE of ψ0 were obtained for 1000 samples of size n = 1000

drawn from data-generating distribution implied by (Q0, g0). For this study we delib-
erately selected a misspecified main-terms-only model for Q̄0 by running the DSA
algorithm restricted to main terms only. The propensity score P(A = 1 | W) ranges
from 0.004 to 0.996. Approximately 17% of the propensity scores are smaller than
0.05, indicating that practical positivity violations in finite samples cause the TMLE
to be unstable.

We expect that the initial estimator of ψ0 based on the misspecified Q̄0
n (that ex-

cludes the interaction term) is biased. The targeting step for both targeted estimators
are supposed to reduce this bias. The treatment mechanism g0 is estimated with the
DSA algorithm, allowing for quadratic terms and two-way interactions. The covari-
ates that were candidates for inclusion in the model for gn in the C-TMLE algorithm
include (W1, . . . ,W5, W2

1 , . . . ,W
2
5 ) and all two-way interaction terms (Wi ×Wj) with

i � j.
Results of the simulation are shown in Table 19.2. A small number of aberrant

realizations of the TMLE were major contributors to the variance of that estimator.
The three highest TMLEs of the treatment effect were 771.91, 37.22, and 9.52. It
is likely that these high values arise from atypical samples containing observations
that presented unusually strong positivity issues. In contrast, all C-TMLEs calcu-
lated from the same samples range from 0.307 to 1.698. Both estimators’ average
treatment effect estimates are not far from the true value, ψ0 = 1. As expected, the
variance of the TMLE is many times larger than that of the C-TMLE.

Not surprisingly, W3, the strong predictor of treatment that is not a true con-
founder of the relationship between treatment and outcome, is included in every
one of the 1000 models for gn selected by the DSA algorithm, but it is included
in only 35 of the models constructed in the estimator gn selected by the C-TMLE

Table 19.2 Means and variance for each estimator, 1000 iterations, n = 1000, ψ0 = 1

Truncation # Obs
level truncated ψn Variance

C-TMLE ∞ 0 0.98 0.04
TMLE ∞ 0 1.73 597.52

40 1 1.36 162.38
10 2 0.94 1.99
5 9 0.92 1.68
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algorithm. At the same time, the interaction term W4 × W5 is included in only two
out of 1000 model fits for g0 selected by DSA but is present in 576, more than half,
of the estimators gn selected by the C-TMLE.

This demonstrates the differences between the reliance of TMLE on an external
estimate of g0 and the collaborative approach to estimating the treatment mecha-
nism used by C-TMLE. However, we note that the lack of robustness of the TMLE
performance under sparsity is due to the unboundedness of the fluctuation function,
and can be mitigated by employing the logistic fluctuation function (Chap. 7) that
respects known bounds. These results were previously demonstrated for the TMLE
and will also be demonstrated for the C-TMLE in a later section of this chapter.

19.1.3 Data Analysis

We apply the C-TMLE to an observational data set previously analyzed with the
goal of identifying HIV mutations that affect response to the antiretroviral drug
lopinavir (Bembom et al. 2008, 2009). For each analysis, which aims to assess the
effect of one mutation A among the 26 mutations, the data structure on one subject
can be represented as O = (W, A, Y), where the outcome, Y , is the change in log10
viral load measured at baseline and at follow-up after treatment has been initiated,
and W denotes the other 25 mutations and other summary measures of the history
of the patient at baseline. If follow-up viral load was beneath the limit of detection,
then Y was set to the maximal change seen in the population. Here A ∈ {0, 1} is an
indicator of the presence or absence of the mutation of interest. The covariate vec-
tor W consists of 51 covariates including treatment history, baseline characteristics,
and indicators of the presence of additional HIV mutations. Practical positivity vi-
olations stemming from low probabilities of observing a given mutation of interest,
given the other covariates, make it difficult to obtain a stable low variance estimate
of the additive effect of A on the mean of Y , defined as E0[Q̄0(1,W) − Q̄0(0,W)].

Bembom et al. used a TMLE approach incorporating data-adaptive selection of
an adjustment set (subset of W). Covariates whose inclusion in the adjustment set
introduces an unacceptable amount of estimated bias were not selected. That study
found substantial agreement with Stanford HIVdb mutation scores, values on a scale
of 0 to 20 (http://hivdb.stanford.edu, as of September 2007, subsequently modified),
where 20 indicates evidence exists that the mutation strongly inhibits response to
drug treatment and 0 signifies that the mutation confers no resistance. Because the
C-TMLE method includes covariates in the treatment mechanism only if they im-
prove the targeting of the parameter of interest without having too much of an ad-
verse effect on the MSE, we expect similar performance without having to specify
an acceptable maximum amount of estimated bias.

The data set consists of 401 observations on 372 subjects. A C-TMLE of the
additive effect of the mutation on change in viral load was carried out for each
mutation. In each, a regression estimator Q̄0

n, was obtained using the DSA algorithm
restricted to addition moves only, main terms only, and a maximum of 20 terms,

http://hivdb.stanford.edu
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where candidate terms in W include precomputed interactions detailed in Bembom
et al. The mutation itself, A, was forced into the model fit of the DSA. Influence-
curve-based variance estimates incorporating the contribution from estimating g0
were used to construct 95% confidence intervals as detailed in Gruber and van der
Laan (2010a).

Table 19.3 lists the Stanford mutation score associated with each of the HIV
mutations under consideration, as well as the C-TMLE of the adjusted effect of
mutation on lopinavir resistance. Confidence intervals entirely above zero indicate
a mutation increases resistance to lopinavir. Eight of the twelve mutations having
a mutation score of 10 or greater fall into this category. Point estimates for the
remaining four mutations were positive, but the variance was too large to produce a
significant result. Only one of the six mutations thought to confer slight resistance
to lopinavir was flagged by the procedure, though, with the exception of p10FIRVY,
point estimates were positive. Stanford mutation scores of 0 for four of the five
mutations found to have a significantly negative effect on drug resistance support the
conclusion that these mutations do not increase resistance, but are not designed to

Table 19.3 Stanford score (2007), C-TMLE estimate, and 95% confidence interval for each muta-
tion. Starred confidence intervals do not include 0

Mutation Score Estimate 95% CI

p50V 20 1.703 (0.760, 2.645)∗

p82AFST 20 0.389 (0.091, 0.688)∗

p54VA 11 0.505 (0.241, 0.770)∗

p54LMST 11 0.369 (0.002, 0.735)∗

p84AV 11 0.099 (−0.139, 0.337)
p46ILV 11 0.046 (−0.222, 0.315)
p82MLC 10 1.610 (1.377, 1.843)∗

p47V 10 0.805 (0.282, 1.328)∗

p84C 10 0.602 (0.471, 0.734)∗

p32I 10 0.544 (0.325, 0.763)∗

p48VM 10 0.306 (−0.162, 0.774)
p90M 10 0.209 (−0.063, 0.481)
p33F 5 0.300 (−0.070, 0.669)
p53LY 3 0.214 (−0.266, 0.695)
p73CSTA 2 0.635 (0.278, 0.992)∗

p24IF 2 0.229 (−0.215, 0.674)
p10FIRVY 2 −0.266 (−0.545, 0.012)
p71TVI 2 0.019 (−0.243, 0.281)

p23I 0 0.822 (−0.014, 1.658)
p36ILVTA 0 0.272 (−0.001, 0.544)
p16E 0 0.239 (−0.156, 0.633)
p20IMRTVL 0 0.178 (−0.111, 0.467)
p63P 0 −0.131 (−0.417, 0.156)
p88DTG 0 −0.426 (−0.842,−0.010)∗

p30N 0 −0.440 (−0.853,−0.028)∗

p88S 0 −0.474 (−0.781,−0.167)∗
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offer confirmation that a mutation can decrease drug resistance. However, Bembom
et al. report that there is some clinical evidence that two of these mutations, 30N
and 88S, do indeed decrease lopinavir resistance. These findings are consistent with
the Stanford mutation scores and with the results from the previous analysis using
the data-adaptively selected adjustment set TMLE approach.

19.2 Logistic Fluctuation for Bounded Continuous Outcomes

Chapter 7 described the importance of using a fluctuation working model in the
TMLE procedure that respects the global constraints of the model. We introduced
a logistic fluctuation procedure that ensures the TMLE of Q̄0(A,W) remain within
the bounds of the semiparametric model. This is especially relevant in sparse data
situations, when outlying values for Y or Q̄0(A,W) or extreme conditional treat-
ment assignment probabilities inflate the variance of the efficient influence curve of
the parameter of interest. An analysis of simulated data illustrates that employing
a logistic fluctuation of Q̄0

n in the targeting steps of the C-TMLE procedure fur-
ther robustifies the C-TMLE under sparsity relative to the C-TMLE using the linear
fluctuation function.

The targeting step of the TMLE procedure for a binary outcome uses logistic
regression of Y on H∗(A,W) with offset logit(Q̄0

n) to fit its regression parameter ε,
a parameter that dictates the magnitude of the fluctuation of the initial estimate.
This naturally constrains the updated estimate, Q̄1

n(A,W) = expit(logit(Q̄0
n(A,W)) +

εH∗(A,W)), to be between 0 and 1. If, instead, Y represents a continuous outcome
known to be bounded between (0,1), for example, a proportion, then it is equally true
that this same logistic regression updating algorithm, ignoring that Y is not binary,
yields fitted values for Y that fall between 0 and 1.

Now suppose there is instead a continuous outcome Y known to be bounded
by (a, b), with a < b. Ideally, an estimate of the conditional mean of Y given A
and W should remain within [a, b]. We’ve just seen that this is easily arranged when
(a, b) = (0, 1). For arbitrary (a, b), Y ∈ [a, b] can be mapped to Y∗ = (Y−a)/(b−a) ∈
[0, 1]. We can then define the causal effect of treatment on the bounded outcome Y∗

as Ψ ∗(P0) = E0[E0(Y∗ | A = 1,W) − E0(Y∗ | A = 0,W)]. The same C-TMLE
procedure outlined in Sect. 19.1 is applied to the data structure O∗ = (W, A, Y∗) to
obtain an estimate ψ∗n, but now using the logistic fluctuation (instead of linear) and
the (possibly penalized) log-likelihood of a binary Y∗, given (W, A), as loss func-
tion for Q̄0 (instead of squared error loss function). This C-TMLE ψ∗n immediately
maps to a ψn of the causal effect on the original scale, using the relation Ψ (P0) =
(b − a)Ψ ∗(P0). A confidence interval for ψ0 can be obtained by multiplying the
bounds on the confidence interval for Ψ ∗(P0) by (b − a). Similarly, the estimated
variance σ̂2 of ψn is obtained by multiplying the estimated variance σ̂2∗ of ψ∗n
with(b − a)2.
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19.2.1 Simulations: Logistic vs. Linear Fluctuation

The random variables were generated as follows:

W1,W2,W3 ∼ N(μ1, μ2, μ3, Σ), μ1 = μ2 = μ3 = 0, Σ =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣2 1 0
1 1 0.2
0 0.2 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦ ,
W4 ∼ Bernoulli(0.2),
W5 ∼ Bernoulli(0.6),
W6 ∼ Bernoulli(0.7).

The treatment mechanism g0 is given by g0 = P0(A = 1 | W) = expit(2W1 +

0.25W2 − 0.5W3 +W4). The observed outcome Y is generated as Y = A+ 2A×W5 +

W1 +W2 −W3 ×W5 + ε, ε ∼ N(0, 1). Notice that the covariates (W1,W2,W3,W4) are
causally related to treatment. The covariates W1,W2, and W3 are also causally re-
lated to the outcome, and therefore confound the relationship between treatment and
the outcome. Covariate W6 was measured at baseline, but has no association with
either the treatment or the outcome. Covariate W5 is an effect modifier. The effect
of treatment is larger for subjects having W5 = 1 than for subjects having W5 = 0.
Though approximately one-half of the subjects receive treatment [P0(A = 1) = 0.53
marginally], true treatment assignment probabilities vary between (0.0002, 0.9999),
and for approx. 9% of observations the conditional probability of receiving treat-
ment given the measured covariates is outside (0.05, 0.95). We drew 1000 sam-
ples of size n = 1000 from this data-generating distribution. Observed values for Y
and fitted values Q̄0

n of the conditional mean Q̄0 were truncated at the (0.01, 0.99)-
quantiles of the marginal distribution of Y , given by (−5.83, 8.48). The true value of
the marginal additive treatment effect on the bounded outcome Y is ψ0 = 2.192.

Two C-TMLEs were applied to estimate the additive causal effect: C-TMLElog,
using a logistic fluctuation, and C-TMLElin, using a linear fluctuation. In order to
demonstrate the impact the targeting step has on reducing bias, Q̄0

n was obtained in

Table 19.4 Comparison of C-TMLElog and C-TMLElin, ψ0 = 2.192

Q̄ correctly specified Q̄ misspecified
ψn Bias Var MSE ψn Bias Var MSE

gn bound = 0
C-TMLElog 2.222 0.030 0.008 0.009 2.154 −0.038 0.033 0.034
C-TMLElin 2.221 0.029 0.008 0.009 1.992 −0.200 0.349 0.389

gn bound = 0.01
C-TMLElog 2.222 0.030 0.008 0.009 2.151 −0.041 0.032 0.034
C-TMLElin 2.221 0.029 0.008 0.009 2.057 −0.135 0.297 0.315

gn bound = 0.025
C-TMLElog 2.222 0.030 0.008 0.009 2.146 −0.046 0.027 0.029
C-TMLElin 2.221 0.029 0.008 0.009 2.116 −0.076 0.054 0.060
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two ways: (1) using the correct parametric regression model and (2) using a mis-
specified parametric regression model that assumes a univariate regression of Y on
A only. Results in Table 19.4 illustrate that, as expected, when the model for Q̄0

n is
correctly specified, there is little difference between fluctuating on the logistic or
linear scale.

Differences emerge when the model for Q̄0
n is misspecified. At each level of

bound on gn, the linear fluctuation yields estimates that are much more biased and
have higher variance than the logistic fluctuation-based estimates. Increasing the
bound on gn from 0 to 0.025 reduces both bias and variance for the linear fluctuation
estimates, but imposes a bias–variance tradeoff on the logistic fluctuation estimates.
In this simulation the MSE is smaller when gn is bounded at (0.025,0.975) than
when the bounds are closer to (0,1), but this is not always the case.

19.2.2 Simulations: Estimator Comparison

We implemented the estimators discussed in Sect. 19.1.1, the TMLE, and C-TMLE,
both using the logistic fluctuation, of the additive treatment effect under the data-
generating distribution scheme for the simulation given in Sect. 19.2.1. The treat-
ment mechanism gn(A | W) was bounded from below at {0, 0.01, 0.025}. Table 19.5
displays the results.

These results indicate that when the parametric model for Q̄0 is correctly speci-
fied, estimators that rely on consistent estimation of Q̄0 perform very well. However,
estimators that rely only on consistent estimation of g0 and fail to exploit the infor-
mation from estimation of Q̄0 (i.e., IPTW, pscore, and matching) are less efficient,
in spite of being given the correct model for g0. Misspecifying the model for Q̄0
does not harm these estimators, but in situations like the one in this simulation, they
are still less efficient than TMLE and C-TMLE.

The unadjusted estimate is biased due to confounding by covariates W1,W2,W3.
The MLE has the smallest mean squared error when the ML-based estimator of Q̄0
is correctly specified, but it is not robust to misspecification. The IPTW estimator,
A-IPTW estimator, matching estimator, TMLE, and C-TMLE, all of which rely on
an estimator gn, show improvements in MSE as the bounds on gn increase from
0 to 0.025 due to a decrease in the variance at the cost of increasing bias. The
IPTW estimator is consistent but very inefficient. The A-IPTW estimator has lower
bias than IPTW but pays a high price in variance when Q̄0

n is heavily misspecified.
The pscore estimator is quite stable across all truncation levels for gn; however,
its lack of data adaptiveness yields an estimate that is quite biased in comparison
with the other methods. The matching estimator is less biased than pscore and also
quite stable with respect to changes in the bounds on gn. The MSE of the matching
estimator is slightly smaller than the MSE of TMLE when Q̄0

n is inconsistent and
approximately the same as the MSE of the C-TMLE, but the matching estimate
is more biased than either TMLE or C-TMLE. Both the TMLE and C-TMLE are
able to exploit information that is unavailable to the matching algorithm when Q̄0

n
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Table 19.5 Comparison of all estimators, ψ0 = 2.192

Q̄ correctly specified Q̄ misspecified
ψn Bias Var MSE RE ψn Bias Var MSE RE

gn bound = 0
Unadj 4.590 2.398 0.021 5.771 – 4.590 2.398 0.021 5.771 –
MLE 2.222 0.031 0.007 0.008 0.001 4.590 2.398 0.021 5.771 1.000
IPTW 2.210 0.018 0.090 0.090 0.016 2.210 0.018 0.090 0.090 0.016
A-IPTW 2.186 −0.006 0.011 0.011 0.002 2.193 0.001 0.157 0.157 0.027
pscore 2.454 0.262 0.014 0.083 0.014 2.454 0.262 0.014 0.083 0.014
matching 2.316 0.124 0.018 0.033 0.006 2.316 0.124 0.018 0.033 0.006
TMLE 2.185 −0.007 0.011 0.011 0.002 2.174 −0.018 0.049 0.049 0.008
C-TMLE 2.222 0.030 0.008 0.009 0.002 2.154 −0.038 0.033 0.034 0.006

gn bound = 0.01
Unadj 4.590 2.398 0.021 5.771 – 4.590 2.398 0.021 5.771 –
MLE 2.222 0.031 0.007 0.008 0.001 4.590 2.398 0.021 5.771 1.000
IPTW 2.225 0.033 0.063 0.064 0.011 2.225 0.033 0.063 0.064 0.011
A-IPTW 2.187 −0.005 0.011 0.011 0.002 2.216 0.024 0.092 0.093 0.016
pscore 2.454 0.262 0.014 0.083 0.014 2.454 0.262 0.014 0.083 0.014
matching 2.317 0.125 0.018 0.033 0.006 2.317 0.125 0.018 0.033 0.006
TMLE 2.185 −0.006 0.011 0.011 0.002 2.168 −0.024 0.044 0.044 0.008
C-TMLE 2.222 0.030 0.008 0.009 0.002 2.151 −0.041 0.032 0.034 0.006

gn bound = 0.025
Unadj 4.590 2.398 0.021 5.771 – 4.590 2.398 0.021 5.771 –
MLE 2.222 0.031 0.007 0.008 0.001 4.590 2.398 0.021 5.771 1.000
IPTW 2.277 0.085 0.041 0.049 0.008 2.277 0.085 0.041 0.049 0.008
A-IPTW 2.188 −0.004 0.010 0.010 0.002 2.285 0.093 0.055 0.064 0.011
pscore 2.454 0.262 0.014 0.083 0.014 2.454 0.262 0.014 0.083 0.014
matching 2.319 0.127 0.018 0.034 0.006 2.319 0.127 0.018 0.034 0.006
TMLE 2.187 −0.005 0.010 0.010 0.002 2.152 −0.040 0.031 0.032 0.006
C-TMLE 2.222 0.030 0.008 0.009 0.002 2.146 −0.046 0.027 0.029 0.005
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Fig. 19.2 Means and (0.025, 0.975)-quantiles, with gn(1 | W) bounded at (0.025, 0.975), and the
parametric model for Q̄0 correctly specified (left) and misspecified (right)
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is consistent, and thus have lower bias and variance than the matching estimator.
These results also indicate that C-TMLE may trade off a small increase in bias for a
larger reduction in variance, relative to TMLE, thereby minimizing overall MSE.

The MSE provides only one of several points of comparison for estimators. Min-
imizing MSE is an important goal, and, as we just observed, C-TMLE can make
a beneficial data-adaptive tradeoff between bias and variance, but Fig. 19.2 illus-
trates that an estimator with a significant bias relative to the standard error, but good
MSE, such as the pscore estimator, can be problematic. The plot in Fig. 19.2 shows
the mean and (0.025, 0.975)-quantiles of the estimates obtained from the 1000 gen-
erated samples. 91% of the pscore estimates were larger than ψ0. This suggests that,
though an estimate far from the null with a tight confidence interval may look con-
vincing, it might in fact be misleading, and that confidence intervals for the pscore
estimator might fail to achieve the nominal coverage rate under circumstances re-
sembling those found in this simulation. This is in marked contrast to the TMLE and
C-TMLE, double robust efficient substitution estimators that have desirable proper-
ties across a range of data-generating distributions.

19.3 Discussion

The sparsity in the data with respect to the target parameter of interest, as often in-
duced by the high dimension of covariate profiles and lack of firm knowledge about
the data-generating distribution, demands estimators that carry out a very careful
bias–variance tradeoff when making decisions. Estimators that are asymptotically
efficient under regularity conditions may still show a very different practical per-
formance under sparsity. For that purpose, it is important that an efficient estimator
also be a substitution estimator, based on substituting an estimator that respects the
global bounds on the statistical model. In addition, the estimator of the nuisance
parameter used by such an efficient estimator will need to be evaluated by its effec-
tiveness in achieving bias reduction at the cost of a reasonable increase in variance.
Using an estimator of the nuisance parameter that is blinded from this benchmark
will generally not result in good estimators of the target parameter under sparsity.
C-TMLE using the logistic fluctuation is an asymptotically efficient substitution
estimator that also targets fitting of the nuisance parameter toward its goal. Sim-
ulations demonstrate that, under sparsity, the C-TMLE indeed outperforms other
efficient estimators that either ignore global bounds or contraints or use blinded es-
timators of the nuisance parameter.



Chapter 20

C-TMLE for Time-to-Event Outcomes

Ori M. Stitelman, Mark J. van der Laan

In this chapter, the C-TMLE for the treatment-specific survival curve based on right-
censored data will be presented. It is common that one wishes to assess the effect of
a treatment or exposure on the time it takes for an event to occur based on an ob-
servational database. Chapters 17 and 18 discussed the treatment-specific survival
curve in RCTs. The TMLE presented there improves upon common methods for
analyzing time-to-event data in robustness, efficiency, and interpretability of param-
eter estimates. Observational data differ from RCTs in that the exposure/treatment
is not set according to a known mechanism. Moreover, in situations where there is
dependent censoring the censoring mechanism is also unknown. As a consequence,
in observational studies, the TMLE needs to estimate the treatment and censoring
mechanism, and this needs to be done in such a way that the resulting targeted bias
reduction carried out by the TMLE is fully effective.

The C-TMLE, introduced in the previous chapter, is an extension of TMLE spe-
cific to situations where treatment is not randomized or censoring is informative.
The C-TMLE is often more efficient for finite samples and in observational data than
a standard TMLE and all other available estimators. In fact, in some instances, the
C-TMLE is asymptotically super efficient in the sense that its asymptotic variance
improves on the semiparametric efficiency bound for regular estimators. Further-
more, the C-TMLE is a well-behaved estimator in situations where the parameter of
interest is borderline identifiable.

When exposure is not randomized there may be strata defined by baseline char-
acteristics that never experience a particular level of exposure. This phenomenon,
discussed throughout this text and in detail in Chap. 10, is a violation of the pos-
itivity assumption. Violations of the positivity assumption render the parameters
of interest as presented in Chaps. 17 and 18 unidentifiable. However, many times,
in finite samples, certain parameters are weakly identifiable due to practical viola-
tions of the positivity assumption. Practical violations occur when a certain value
of baseline covariates are almost completely predictive of a certain treatment within
the sample. C-TMLE addresses this issue and represents a stable estimator of bor-
derline identifiable parameters. Thus, the C-TMLE methodology may be applied in
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the time-to-event setting to gain efficiency as well as produce estimators of weakly
identifiable parameters of interest. Readers will benefit from reading Chaps. 17–19,
in addition to Part I before tackling this chapter, which is adapted from Stitelman
and van der Laan (2010).

20.1 Estimating Parameters Based on Coarsened Data

We briefly introduce the parameter estimation problem for a general coarsened data
structure. Coarsened data structures are data structures where the full data are not
observed. Right-censored data structures are an example of a coarsened data struc-
ture since the full data absent right censoring are not observed. Collaborative tar-
geted methods for estimating parameters with this data structure will be introduced.

Suppose one observes a censored data structure O = Φ(C, X) of the full data X
and censoring variable C, where O has a probability distribution P0. Let M be a
semiparametric model for the probability distribution P0. To minimize notation, we
will assume O is discrete so that P0(o) = P0(O = o) denotes a probability density.
By assuming that the conditional distribution of O, given X, satisfies the CAR as-
sumption, the density factorizes as P0(O) = Q0(O)g0(O | X), where Q0 is the part
of the density associated with the full data X and g0 is the conditional distribution
of the observed data O given the full data X. Here C may encode both treatment and
censoring variables, so that g0 includes both the censoring and treatment mecha-
nisms, both of which act to coarsen the full data. The factorization of the probability
density P0 implies that the modelM for P0 may be partitioned into a model Q for
Q0 and model G for g0. The probability distribution, P0, may be indexed in the fol-
lowing way: PQ0,g0 . One is typically interested in estimating a parameter, Ψ (P0),
which is a function of the true data-generating distribution. More specifically, the
parameter of interest is often a function of the true full-data-generating distribution
absent coarsening, and can thus be represented as Ψ (Q0).

Many methods have been developed to estimate Ψ (Q0). The MLE approach has
been discussed throughout this text, and its use in time-to-event data structures is
presented in Chap. 18. An alternative method for estimating Ψ (Q0) is the IPCW-
based approach, originally proposed by Koul et al. (1981) and Keiding et al. (1989).
IPCW estimators solve an estimating equation in order to yield estimates, ψIPCW

n , of
the parameter of interest, and ψIPCW

n is a consistent estimator of Ψ (Q0) if the estima-
tor of the g0-factor is consistent. However, an IPCW estimator is ad hoc and unstable
because (1) it does not solve the efficient influence curve estimating equation and is
therefore generally inefficient and (2) it is not a substitution estimator and therefore
does not respect the global restraints of the observed data model. As a result, an
IPCW estimator is highly variable, very sensitive to the choice of estimator of g0,
and may act erratically in finite samples.

Another method for estimating Ψ (Q0) is an A-IPCW estimator. As discussed
earlier in this text, Robins and Rotnitzky (1992) proposed this general estimating-
equation-based approach, which constructs estimators ψA−IPCW

n that solve the effi-
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cient influence curve estimating equation. An A-IPCW estimator is double robust
because it is consistent when either Q0 or g0 is estimated consistently. Furthermore,
an A-IPCW estimator also improves on the standard IPCW estimator in terms of
efficiency since it solves the efficient influence curve estimating equation. Thus,
under appropriate regularity conditions, the A-IPCW estimator is locally asymptot-
ically efficient. However, like the IPCW estimator, the A-IPCW estimator is not a
substitution estimator and may also be unstable.

20.2 C-TMLEs

The collaboratively double robustness property states that a TMLE Q∗n,gn
of Q0 is

consistent if the estimator gn of g0 correctly adjusts for the variables that explain
the additive residual bias of the initial estimator Qn with respect to Q0. Thus the
collaborative double robustness of TMLE teaches us that consistency of the TMLE
does not require that either the estimator of Q0 or the estimator of g0 is consistent,
but rather, one should be concerned with reducing the distance between, Q∗n,gn

and
Q0, and, gn and g0, such that the resulting estimator Ψ (Q∗n,gn

) is close to Ψ (Q0). If
Qn does a very good job estimating Q0, very little adjustment is necessary through
the estimate of g0; on the other hand, if Qn is a poor estimator of Q0, the estimator
gn will have to do a better job of approximating g0.

C-TMLE is an extension of TMLE that takes advantage of the collaborative dou-
ble robustness property of those estimators by constructing gn in collaboration with
Qn. C-TMLE uses the log-likelihood or another loss function for Q0 to choose from
a sequence of K targeted maximum likelihood estimates Qk∗

n indexed by initial esti-
mates of Q0 and g0. Recall the procedure:

1. Create Qn, an initial estimator of Q0.
2. Generate a sequence of estimates of g0: g0

n, g
1
n, . . . , g

K−1
n , gK

n , where g0
n is the least

data-adaptive estimate and gK
n is the most data-adaptive estimate of g0.

3. Generate the initial TMLE estimate, Q0∗
n , indexed by Qn and g0

n.
4. Generate a sequence of TMLE estimates: Q0∗

n ,Q
1∗
n . . . ,Q

K−1∗
n ,QK∗

n , indexed by
corresponding estimators g0

n, . . . , g
K
n , where each TMLE in this sequence has a

larger log-likelihood than the previous TMLE. This monotonicity is ensured by
defining the next TMLE as the TMLE that uses the previous TMLE in the se-
quence as initial estimator, each time the log-likelihood of the TMLE does not
increase with the same initial estimator just by virtue of using the more data-
adaptive estimate of g0.

5. Finally, choose among the sequence of TMLEs using loss-based cross-validation
with log-likelihood loss.

One adjustment to the above methodology, discussed in the previous chapter, is to
use a penalized loss function when parameters are borderline identifiable. This is
an important consideration in observational studies and the issue of choosing an
appropriate penalty is addressed in Sect. 20.5.
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The C-TMLE has two distinct advantages over the TMLE methodology:

1. C-TMLE may be used to produce stable estimators of borderline identifiable pa-
rameters while TMLE may breakdown in these situations (the estimating equa-
tion methods discussed above are even more susceptible than TMLE to breaking
down). The reason many parameters are not identifiable, or are borderline iden-
tifiable, is due to violations of ETA or the more general positivity assumption,
where a certain level of a covariate or group of covariates is completely predic-
tive of treatment/exposure/censoring. In these situations, where sparsity of the
data with respect to the target parameter is an issue, C-TMLE is able to weight
the bias–variance tradeoff of adjusting for certain covariates in estimating these
weakly identifiable parameters. C-TMLE only adjusts for covariates in estimat-
ing g0 when they appear to be beneficial to the estimate of the parameter of
interest and selects against adjusting for covariates which are detrimental to the
estimate of Ψ (Q0), weighing both bias and variance. All other methods that rely
on an estimate of g0 use a loss function that measures the fit of g0 itself, or a pri-
ori specify a parametric model, and thereby ignore the effect adjusting for certain
covariates has on the final estimate of the parameter of interest.

2. The C-TMLE is often more efficient in finite samples than the TMLE. In fact,
in some rare situations, the C-TMLE is super efficient by having an asymptotic
variance smaller than the semiparametric efficiency bound. For example, if the
initial estimator Qn is an MLE for a correctly specified parametric model. The
finite sample and asymptotic super-efficient behavior is a consequence of the col-
laborative double robustness exploited by the C-TMLE. In situations where the
initial estimate Qn is a very good estimate of Q0 in the targeted sense, little ad-
justment is needed from the estimate of g0. The more one adjusts for covariates in
the estimator of g0, the larger the variance of the final estimator of the parameter
of interest. In fact, it can be shown that once the estimator of g0 adjusts for all
covariates that explain the residual bias of the initial estimator as an estimator of
Q0, then a TMLE update of this latter TMLE will (asymptotically) estimate zero
fluctuation. In other words, the theory teaches us that more aggressive efforts for
bias reduction are fitting noise! Thus not adjusting much in gn when one doesn’t
have to provides estimators with smaller variance.

The C-TMLE exhibits all of the advantages of the TMLE discussed in previous
chapters, as well as these two major advantages. The advantages of the C-TMLE
are particularly useful in observational studies, where practical violations of the
positivity assumption are a concern. However, in studies where treatment is ran-
domized, C-TMLEs are also appropriate for two distinct reasons. First, informative
censoring may be an issue, and practical violations of the ETA assumption may be
attributed to this censoring. Second, one may adjust for covariates in the treatment
mechanism g0 in order to gain efficiency since C-TMLEs address the bias–variance
tradeoff of adjusting for particular variables. Thus, implementation of the C-TMLE
in RCTs will help ensure that one does not adjust in gn for the covariates in a way
that hinders the estimate of the parameter of interest.
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20.3 Data, Model, and Parameters of Interest

The time-to-event data structure presented in Sect. 18.1 is the data structure of in-
terest here. However, since we are now interested in observational data, there is an
additional arrow from W to A in the causal graph. This new data structure suggests
the following orthogonal factorization of the likelihood of the observed data struc-
ture O under a probability distribution P:

L(O | P) =

QW︷︸︸︷
P(W)

gA︷����︸︸����︷
P(A | W)

K∏
t=1

QdN(t)︷���������������������������������������︸︸���������������������������������������︷
P(dN(t) | N̄(t − 1), Ā(t − 1), A,W)

P(dA(t) | N̄(t), Ā(t − 1), A,W)︸���������������������������������︷︷���������������������������������︸
gA(t)

.

Thus, the likelihood of O factorizes, just as the general censored data structure pre-
sented in Sect. 20.1, into a portion corresponding to the full-data distribution Q0 and
a portion corresponding to the censoring and treatment mechanism g0. Q0 is com-
posed of the baseline covariate distribution QW,0(W) and Q̄0(t | A,W) ≡ E0(dN(t) |
N̄(t − 1) = 0, Ā(t − 1) = 0, A,W), the intensity of the event-counting process given
A and W, conditioning on “no event yet.” We further factorize g0 into the treatment
mechanism gA,0 and censoring mechanism intensity ḡ0(t | A,W) ≡ E0(dA(t) | N̄(t) =
0, Ā(t−1) = 0, A,W), which is the intensity of the censoring process given A and W,
conditioning on “no event yet.” Let’s also define S 0(tk | A,W) = P0(T > tk | A,W),
which is the conditional survival function of the event of interest and can be ex-
pressed in terms of the intensity of the event process Q̄0 under the CAR assumption:

S 0(tk | A,W) =
tk∏

t=1

[
1 − Q̄0(t | A,W)

]
.

Note that Q̄0(t | A,W) is the conditional hazard of T at t, given A,W, under CAR,
which holds if T and C are conditionally independent, given A,W (which is implied
by our causal graph). The parameters of interest depicted in Sect. 18.3, when A is
randomized, are the same parameters of interest now that we have moved to the
observational setting. Moreover, the methods in Sect. 18.5 for estimating the TMLE
of these parameters are exactly the same for the observational setting.

20.4 Estimators of the Treatment-Specific Survival Function

In this section we will briefly discuss the MLE, IPCW estimator, and A-IPCW
estimator for the treatment-specific survival curve. These three methods will then
be compared to the TMLE/C-TMLE in a simulation study. MLEs are one class
of estimators for estimating the treatment-specific survival function, discussed in
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Chap. 18, and we show in Sect. 18.3 how to map Q̄n into ψMLE
n = Ψa(Qn)(tk),

the MLE of the treatment-specific survival curve Ψa(Q0)(tk) at time tk. The IPCW
method for estimating the treatment-specific survival curve only relies on an esti-
mator of g0. This estimating-equation-based estimator may take the following form:

ψIPCW
n,a =

1
n

n∑
i=1

I(Ti > tk)I(Ci > tk)I(Ai = a)
gn,A(a|Wi)

∏t−
s=1 (1 − ḡn(s | Ai,Wi))

.

The A-IPCW estimator is a double robust estimator that solves the efficient-influence-
curve-based estimating equation. Thus, this estimator requires estimates of Q0 and
g0. The efficient influence curve for the treatment-specific survival curve at time tk
for the observed data structure is

D∗a(P0) =
∑
t≤tk

H∗0,a(t | A,W)
[
I(T̃ = t, Δ = 1) − I(T̃ ≥ t)Q̄0(t | A = a,W)

]
+S 0(tk | A = 1,W) − Ψa(P0)(tk),

where

H∗0,a(t | A,W) = −
I(A = a)

gA,0(A = a | W)
∏t−

i=1 (1 − ḡ0(i | A,W))
S 0(tk | A,W)
S 0(t | A,W)

I(t ≤ tk).

Recall that H∗0,a(t | A,W) is the time-dependent clever covariate used to define the
TMLE of the treatment-specific survival function S 0,a(tk) = P0(Ta > tk), and, by the
δ-method, it forms the building block of the time-dependent clever covariate of any
desired causal contrast in terms of such treatment-specific survival functions. Hub-
bard et al. (1999) develop the one-step A-IPCW estimator that solves the efficient
influence curve estimating equation. The resulting A-IPCW estimate is given by

ψA−IPCW
n,a =

1
n

n∑
i=1

∑
t≤tk

H∗n,a(t, Ai,Wi)
[
I(T̃i = t, Δi = 1)

−I(T̃i ≥ t)Q̄n(N1(t) = 1 | A = a,Wi)
]
+ S n(tk | A = a,Wi),

where H∗n,a(t | A,W) is Ha(t | A,W) with estimates gn,A, ḡn, and S n substituted for
gA,0, ḡ0, and S 0. It is important to note that ψIPCW

n,a and ψA−IPCW
n,a might not be written

as a substitution estimator Ψa(Qn) for a particular Qn.

20.5 C-TMLE of the Treatment-Specific Survival Function

There are two requirements for extending the TMLE to a C-TMLE. First, a se-
quence of estimates of g0 and corresponding sequence of TMLEs of Q0 must be
generated. Second, the TMLE from that sequence of TMLEs that has the mini-
mum cross-validated risk based on the initial loss function (or a loss function that is



20 C-TMLE for Time-to-Event Outcomes 329

asymptotically equivalent with that loss function) for Q0 is chosen. Thus, in order to
implement the C-TMLE, one must choose a method for sequencing the estimates of
g0, and a loss function for Q0 that is asymptotically equivalent to the log-likelihood
loss function used by the TMLE.

Since g0 factorizes into both a treatment mechanism gA,0 and censoring intensity
ḡ0, the sequence of estimates of g0 must be a sequence of estimates of both the treat-
ment and censoring mechanisms. Therefore, we propose a sequence of estimates
where, for each element in the sequence, either the censoring or treatment mecha-
nism is more nonparametric than it was in the previous step. Since main terms that
are data-adaptive fits of the covariate profile may be constructed, using main terms
regressions for these estimates is reasonable and lends itself nicely to defining a se-
quence of estimates of g0. We describe the process below for main terms, which are
simply the observed covariates.

Suppose one observes A, and K baseline covariates W1 . . .WK , and τ is the last
time point observed for any subject. First, an initial estimate Q̄n of the conditional
hazard Q̄0 is constructed using super learner based on the log-likelihood loss func-
tion. This estimate Q̄n is held fixed. Next, we present an iterative algorithm that
generates a sequence of J moves M0, . . . ,MJ , where J = 2 × K + 1. For each move,
there is a corresponding TMLE: (Q̄0∗

n , g
0
n), . . . , (Q̄J∗

n , g
J∗
n ). Note, that the superscript

now denotes the number of moves that index the TMLE. There should be no con-
fusion with the superscript before, which denoted the iteration number since the ∗

indicates a TMLE that is fully iterated. Each move Mj corresponds with two main
terms regression models: a main terms logistic regression model for gA,0, and a main
terms logistic regression model for ḡ0. M0 is the logistic intercept model for gA,0,
and a logistic regression fitting time nonparametrically for ḡ0:

M0 =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
logit [P(A = 1|W1, . . . ,WK)] = β0,
logit [P(A(t) = 1|A(t − 1) = 0,N(t) = 0, A,W1, . . . ,WK)]

= α0 + α1I(t = 2)+, . . . ,+αLI(t = L).

The next step M1 in the sequence consists of gA,M1 and ḡM1 , which are con-
structed by adding a main term to either gA,M0 or ḡM0 . So the set of possible gA,M1 is
constructed by adding a main term from the set {W1, . . . ,WK} to gA,M0 and the set of
possible ḡM1 are constructed by adding a main term from the set {A,W1, . . . ,WK} to
ḡM0 . The TMLE corresponding with such a candidate estimator of g0, and using Q̄n

as initial estimator of the hazard, is evaluated at each possible M1, and the main term
that maximizes the increase in the penalized log-likelihood of the TMLE is the next
move in the sequence. The estimate for which a main term is not added remains the
same as in the previous step in the sequence. The variable that is added is then re-
moved from the possible set of moves in the next step for that particular component
of g0 (i.e., the treatment mechanism or the censoring mechanism). This process is
continued until none of the possible steps for augmenting the fit of g0 increases the
penalized log-likelihood of the corresponding TMLE. At this point, the construc-
tion of the clever covariate H1 is complete, and the corresponding TMLE becomes
the initial estimator for the next TMLE in the sequence. The TMLE estimate based
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on Mj, where j is the last completed step in the sequence, becomes the new initial
Q̄n for the TMLE algorithm and a new clever covariate H2 is constructed. The es-
timates of g0 in Mj+1 are now chosen based on adding a main term to the previous
fit of g0 implied by Mj as before. Thus, given this choice Mj, the gA,M j , ḡM j , and
jth TMLE Q̄ j∗

n are used to construct the next TMLE, Q̄( j+1)∗
n , in the sequence. This

process is continued until all 2 × K + 1 possible moves are completed, updating the
initial estimator of Q̄0 each time, and building a new clever covariate when neces-
sary. The number of moves completed indexes the different candidate TMLEs, and
the optimal number of moves should be chosen by using V-fold (possibly penalized)
log-likelihood-based cross-validation.

Figure 20.1 presents a diagram of the sequencing algorithm for an example data
set with two baseline covariates. The top displays how an initial estimate Q̄n and
the first move M0, resulting in two fits gA,M0 and ḡM0 , map into the first TMLE of
the conditional hazard in the sequence, Q̄0∗

n . Furthermore, that TMLE has a particu-
lar penalized log-likelihood fit. In the example, the penalized log-likelihood of Q̄0∗

n
associated with M0 is −3,364. The remainder of the diagram shows how the moves
are constructed by building on M0. Each box includes, in the upper left hand cor-
ner the main terms that are available to construct the possible moves, in the upper
right hand corner the initial estimate of Q̄0 for that move, and in the bottom right
hand corner the possible moves that may be made. In the box for M1, the move
that maximizes the penalized log-likelihood is the one that adds W2 to gA,M0 (penal-
ized log-likelihood of −3,349). This move is chosen and added to the list of chosen
moves as M1 and ḡM1 is set to ḡM0 . Subsequently, the variable that was chosen is
removed from the table of available moves in the next step (W2 is crossed out in the
table of available moves for ḡM2 in the next box). This process is continued until
none of the moves increases the penalized log-likelihood from the preceding step.
This occurs at M3. Then, the initial estimate of Q̄0 is set to the previous TMLE in the
sequence, Q̄2∗

n , and the process is continued. The rest of sequence of chosen moves
is populated in this fashion.

An extension of the above sequencing procedure that uses data-adaptive methods
to estimate g0 is also possible. One may incorporate more data-adaptive techniques
by allowing the main terms to be super learning fits of both the treatment and cen-
soring mechanisms based on a growing set of explanatory variables. Furthermore,
the suggested sequencing algorithm presented here is one of many possible ways
to construct a sequence of increasingly nonparametric estimates of g0; in practice,
alternative sequencing methods may be implemented.

Chapter 19 discusses a penalty to robustify the estimation procedure in the con-
text of sparsity, specifically, in situations where the efficient influence curve has
large values for good fits of g0. The penalty term should make the criterion more
targeted toward the parameter of interest while preserving the log-likelihood as the
dominant term in situations where identifiability is not in jeopardy, as it is when
there is no practical violation of the positivity assumption. Thus, the penalty term
should be asymptotically negligible but of importance in a sparse data setting. For
this reason we choose an estimator of the variance of the Q̄0-component of the effi-
cient influence curve as our penalty, where the Q̄0-component is the sum over time
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W1 W1

W2 W2

A

LL
gM0 + β1W1 −3357
gM0 + β1W2 −3349
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Fig. 20.1 Example of sequencing algorithm for data set with two baseline covariates
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of the the time-specific clever covariate multiplied by the counting process residual.
The variance of the efficient influence curve is asymptotically negligible relative to
the log-likelihood, and in situations where there is a violation of the positivity as-
sumption, as in the case when gn,A or

∏t−
i=1 (1 − ḡn(i | A,W)) is very close to zero for

a given subject, it will severely penalize the log-likelihood. Using a standard method
for estimating the variance of a martingale, we obtain the following variance term:

1
n

n∑
i

tk∑
t

1
gn,A(a | W)

∏t−
i=1(1 − ḡn(i | a,W))

S n(tk | a,W)
S n(t | a,W)

I(t ≤ tk)Q̄n(1 − Q̄n)(t | a,W).

This penalty becomes large when the probability A = a is small, even for values of
W for which A = a is not observed in the data. Thus, this penalty is sensitive to lack
of identifiability, including theoretical nonidentifiability.

Now that a sequence of fits of g0 and a penalized loss function for Q̄0 have been
defined, the C-TMLE algorithm can be implemented:

1. Estimate QW,0 with the empirical probability distribution.
2. Generate Q̄n, an estimate of the discrete failure time hazard Q̄0, using super

learner based on the log-likelihood loss function (step 1 in Fig. 20.2).
3. Use V-fold cross-validation with the log-likelihood loss function penalized by

the variance term above to choose among the TMLE algorithms indexed by the
number of moves (steps 2–6 in Fig. 20.2).

4. Implement the sequencing algorithm on the full data set for the chosen number
of moves.

5. The resulting Q̄∗n from the TMLE indexed by the chosen number of moves is the
C-TMLE of the conditional hazard.

6. Construct the substitution estimator Ψ (Q∗n) with Q∗n = (QW,n, Q̄∗n), which is the
C-TMLE of the parameter of interest.

Several variations of this sequencing algorithm and penalized likelihood can also
be explored to see if they produce more robust estimators in sparse data situations.

Trimming. Observations that led to identifiability problems are removed from
fitting g0. This is done in order to obtain estimates that are not as influenced by
outlying values in W and were highly predictive of treatment/censoring.

Truncation. Observations that led to identifiability problems are set to a mini-
mum probability. All subjects who have a treatment mechanism that predicted
treatment less than p% of the time, where p is small, are set to p%.

Using binary covariates. Transform the continuous variables into binary vari-
ables that are indicators of the quantiles of the original variable. This allows the
C-TMLE algorithm to adjust for only the regions that do not cause positivity vi-
olations, as opposed to the entire variable. Thus, the larger the number of binary
variables constructed from an initial covariate, the more flexibility the C-TMLE
algorithm has. However, too many binary variables for a single continuous co-
variate may contribute to loss of signal and a large increase in the computation
time of the algorithm.
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Fig. 20.2 Cross-validation using penalized log-likelihood to choose among a sequence of TMLEs

Using binary covariates had the largest positive effect on producing robust esti-
mates in our simulations, and trimming and truncation had little effect on the results
in the simulations presented below. Furthermore, a dimension-reduction step in be-
tween the initial fit of Q̄0 and the C-TMLE sequencing step improved computation
time tremendously. This was done by removing all variables from the sequencing
step that fell below a certain cutoff in terms of association with the outcome of inter-
est after accounting for the initial fit. Univariate regression was performed with the
initial estimate as an offset and all variables that fell below a 0.10-FDR-adjusted p-
value were no longer considered in the sequencing step. All C-TMLEs presented in
the remainder of this chapter include the dimension-reduction step, and use binary
covariates for the secondary sequencing step.

C-TMLEs and corresponding estimates gn solve the efficient influence curve
equation, just like the TMLE. This provides the basis for the generally applicable
asymptotic linearity theorem for C-TMLE as presented in Chap. 19 and Appendix
A. Thus, confidence intervals may be constructed for C-TMLE in the same way as
they are constructed for TMLE in Chap. 18.
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20.6 Simulations

The simulations consist of data sets generated under three scenarios: no ETA vio-
lation, medium ETA violation, and high ETA violation. Within each scenario, esti-
mates are presented for each of the methods using a correct parametric model for the
conditional hazard and a purposely misspecified parametric model. The simulated
data were generated as follows:

1. Baseline covariates W = {W1,W2,W3,W4,W5} were generated from a multivari-
ate normal with mean 0, variance 1, and covariance 0.2. If any W was greater than
2 or less than −2, it was set to 2 or −2, respectively, to ensure that the treatment
and censoring mechanisms were appropriately bounded.

2. Treatment A was generated as a binomial:

P0(A = 1 | W) = expit (0.4 + 0.4W1 + 0.4W2 − 0.5W3 + log(ETAOR) ×W4),

where ETAOR is the odds ratio implied by the coefficient of W4, and W4 is the
baseline covariate responsible for violations in the ETA assumption in the simu-
lated data sets. ETAOR equals 1 for the scenario under no ETA violation, 10 for
medium ETA violation, and 15 for high ETA violation.

3. The event process was generated using the following hazard at each t:

P0(T = t | T ≥ t, A,W) = expit (0.25 − 0.6W1 − 0.6W2 − 0.6W3 − A).

4. The censoring process was generated using the following hazard at each t:

P0(C = t | C ≥ t, A,W) = expit (−3 − 0.1W1 − 0.1W2 − 0.1W3 − 0.1A).

Under each level of ETA violation, 500 data sets of 500 observations were gen-
erated. The following estimators were used to estimate the parameter of interest,
which is the treatment-specific survival curve for A = 1 at time 2: IPCW estima-
tor ψIPCW

n,1 (2), MLE ψMLE
n,1 (2), A-IPCW estimator ψA−IPCW

n,1 (2), TMLE ψT MLE
n,1 (2), A-

IPCW estimator without W4, TMLE without W4, and C-TMLE ψC−T MLE
n,1 (2) as de-

scribed in Sect. 20.5 with dimension reduction, penalized log-likelihood loss func-
tion, and binary baseline covariates split at the 33rd and 66th precentile. Each of
these methods was implemented twice for each data set: once using the correct para-
metric model for Q̄0 and once using a purposely misspecified parametric model for
Q̄0 that only included A and W5 as main terms in the logistic hazard regression.
Note that W5 is just a noise variable and does not play a role in the outcome process,
censoring process, or treatment mechanism. For estimators requiring an estimate of
gA,0 and ḡ0, they were estimated based on the correctly specified parametric model.

The A-IPCW estimator without W4 and TMLE without W4 are not estimators
one could implement based on a real data set, but were evaluated to compare the
C-TMLE algorithm to methods where the irrelevant variable causing identifiability
problems was known and removed. Furthermore, all of the estimation methods ex-
cept for C-TMLE were given the true parametric model for g0, an advantage they
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would not have when analyzing real data. In a real data analysis, model selection
that uses a loss function for fitting the treatment and censoring mechanisms would
be implemented.

The problem variable may be a confounder in some scenarios. In order to evaluate
the methods under this situation, we reran the high ETA violation scenario with a
minor change. The treatment was generated as a binomial as P0(A = 1 × W) =
expit (0.4+ log(15)×W1+0.4W2−0.5W3). Instead of varying the odds ratio for W4,
we set the odds ratio for W1, one of the variables that affects the hazard of the event
of interest, to 15.

20.6.1 Results: Point Estimates

Tables 20.1– 20.3 display the simulation results where the variable causing identifia-
bility concerns is not a confounder. The true value of the parameter being estimated
is 0.462. Table 20.1 shows that all estimators of the parameter of interest are un-
biased when the initial model for Q̄0 is specified correctly (QC). However, when
the initial model for Q̄0 is misspecified (QM), the MLE is biased. The IPCW esti-
mate is the same for the misspecified and correctly specified model for Q̄0 since this
estimate does not depend on an estimate of the conditional hazard of T .

The fact that all of the methods produce unbiased estimators of the parameter of
interest, even for the moderate sample sizes examined here, suggests that bias should
not be the standard by which these estimators are judged. Assessing the methods
in terms of MSE begins to distinguish the methods from one another. Table 20.2
presents the root mean square error, relative efficiency (on the variance scale), and
the efficiency bound for each scenario. Again, in the no ETA scenario, all estimators
have essentially the same MSE. However, as the ETA becomes larger, some of the
methods begin to demonstrate their advantages while others lose all stability.

1. The IPCW estimator is highly unstable with increasing ETA. In fact, the C-TMLE
is six times more efficient when the conditional failure time hazard Q̄0 is esti-
mated consistently and almost 3.5 times more efficient when Q̄0 is misspecified
with medium ETA. For the high ETA case, the C-TMLE is 15.5 times more ef-
ficient for a consistently estimated Q̄0 and eight times more efficient when the
parametric model for Q̄0 is misspecified. The C-TMLE is 3.5 more times effi-
cient than the A-IPCW estimator for a consistently estimated Q̄0, and 2.6 times
more efficient for a misspecified parametric model for Q̄0 with medium ETA.
For high ETA, the C-TMLE is 6.5 and 4.5 times more efficient for the respective
ways of estimating Q̄0.

2. The TMLE, regardless of ETA, tends to have an MSE that approaches the effi-
ciency bound, unlike the IPCW or A-IPCW estimator.

3. The C-TMLE shows super efficient behavior, and even as the ETA violation in-
creases, the MSE remains close to the level it was under no ETA violation. This
is true whether Q̄0 is fit well or misspecified. The MSE is lower when Q̄0 is es-
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Table 20.1 Mean estimates (ψ0 = 0.462); variable causing violation in ETA is not a confounder

No ETA Medium ETA High ETA
Method QC QM QC QM QC QM

TMLE 0.460 0.460 0.463 0.460 0.465 0.458
MLE 0.461 0.473 0.461 0.499 0.461 0.501
IPCW 0.460 0.460 0.461 0.461 0.460 0.460
A-IPCW 0.460 0.460 0.463 0.464 0.464 0.466
A-IPCW w/o W4 0.460 0.460 0.460 0.455 0.460 0.455
TMLE w/o W4 0.460 0.460 0.460 0.455 0.460 0.455
C-TMLE 0.460 0.463 0.460 0.460 0.461 0.463

Table 20.2 RMSE and relative efficiency; variable causing violation in ETA is not a confounder

No ETA Medium ETA High ETA
Method QC QM QC QM QC QM

Efficiency bound 0.028 0.046 0.060

RMSE
TMLE 0.029 0.029 0.051 0.056 0.062 0.065
MLE 0.027 0.030 0.028 0.047 0.028 0.049
IPCW 0.029 0.029 0.071 0.071 0.106 0.106
A-IPCW 0.029 0.029 0.054 0.061 0.070 0.081
A-IPCW w/o W4 0.029 0.029 0.030 0.031 0.029 0.031
TMLE w/o W4 0.029 0.029 0.030 0.031 0.029 0.030
C-TMLE 0.028 0.031 0.029 0.037 0.029 0.040

Relative efficiency
TMLE 1.0 1.1 1.2 1.5 1.0 1.2
MLE 0.9 1.1 0.4 1.0 0.2 0.7
IPCW 1.0 1.0 2.4 2.4 3.1 3.1
A-IPCW 1.0 1.1 1.4 1.8 1.3 1.8
A-IPCW w/o W4 1.0 1.1 0.4 0.5 0.2 0.3
TMLE w/o W4 1.0 1.1 0.4 0.4 0.2 0.3
C-TMLE 1.0 1.2 0.4 0.7 0.2 0.4

Table 20.3 Characteristics of C-TMLE; variable causing violation in ETA is not a confounder

No ETA Medium ETA High ETA
Method QC QM QC QM QC QM

Mean # of moves 0.1 13.4 0.1 10.5 0.1 10.1

% of time C-TMLE algorithm chose:
Zero Moves 0.98 0.00 0.98 0.06 0.99 0.08
W1 0.00 0.99 0.00 0.93 0.00 0.89
W2 0.00 0.99 0.00 0.91 0.00 0.89
W3 0.00 0.99 0.00 0.81 0.00 0.81
W4 (ETA Variable) 0.01 0.84 0.00 0.47 0.00 0.41
W5 0.01 0.00 0.01 0.00 0.01 0.00
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timated consistently; however, it still outperforms any of the other estimators in
terms of efficiency when the parametric model for Q̄0 is misspecified.

Of note, for high ETA, the A-IPCW estimates range from 17.5 to 103%, the esti-
mates generated by the TMLE range from 30.3 to 63.8%, and the C-TMLE produces
estimates ranging from 35.6 to 59.2%. Thus, it becomes immediately clear that the
A-IPCW estimator does not respect the global constraints of the model by produc-
ing an estimate that is not a probability (one of the estimates is greater than 100%).
In addition, the A-IPCW estimator is an empirical mean of an unbounded function
of the data; thus when the estimates of g0 are close to zero, the contribution from
one observation may be too large or even infinite. On the other hand, the estimates
generated by TMLE and C-TMLE are empirical means of probabilities. Since they
are substitution estimators, each observation’s contribution is bounded and may be
no larger than 1. The advantage of substitution estimators is directly observed in the
simulation results by the smaller RMSE for TMLE than A-IPCW.

Table 20.3 presents characteristics of the C-TMLE algorithm. When Q̄0 is con-
sistently estimated, the C-TMLE algorithm makes very few moves and, in almost all
cases, it makes zero moves relying on the intercept models for g0. However, when
Q̄0 is misspecified, the C-TMLE algorithm selects more moves and attempts to ad-
just in the estimator of g0 for the variables that were not adjusted for in the initial
estimate of Q̄0. Also, the algorithm resists choosing the region of the variable that
causes the ETA violations illustrated by the fact that W4 is selected fewer times as
ETA increases.

Tables 20.4–20.6 display the results where confounder W1 is also the variable
causing identifiability problems. The “No ETA” columns are the same as in the pre-
vious tables. As before, when Q̄0 is consistently estimated, all of the estimators are
unbiased. However, when the parametric model for Q̄0 is misspecified, the TMLE,
IPCW estimator, and A-IPCW estimator remain unbiased, the MLE is highly bi-
ased, and the C-TMLE is slightly biased. The bias in the C-TMLE is due to the
fact that it is not fully adjusting for W1 when regions of that variable contribute
to nonidentifiability of the parameter of interest. This bias is compensated for by
the small variance, as the C-TMLE does as well as any of the other methods in
terms of RMSE. Furthermore, the A-IPCW estimator fails to achieve the efficiency
bound and performs twice as poorly as the C-TMLE in terms of RMSE, as seen in
Table 20.5. Though the IPCW estimator behaved reasonably in terms of bias and
MSE, its potential to generate highly unstable estimates was displayed in the previ-
ous simulations.

Table 20.6 displays the characteristics of the C-TMLE algorithm. Again, when
Q̄0 is consistently estimated, very few moves are made, and when it is misspecified,
the algorithm adjusts by choosing a fuller model for g0. As expected, the C-TMLE
algorithm has a difficult time choosing what variables to adjust for now that the ETA
variable is a confounder. This can be seen by the fact that the algorithm continues
to adjust for W1 more often than it did for W4 in Table 20.3. The algorithm uses the
penalized loss function to weight whether it is better to adjust for a variable that is
associated with the outcome or remove it since it causes identifiability problems. In
this case, the algorithm has chosen to adjust for at least some region of the variable
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Table 20.4 Mean estimates (ψ0 = 0.462); variable causing violation in ETA is a confounder

No ETA High ETA
Method QC QM QC QM

TMLE 0.460 0.460 0.468 0.459
MLE 0.461 0.473 0.462 0.552
IPCW 0.460 0.460 0.461 0.461
A-IPCW 0.460 0.460 0.462 0.466
A-IPCW w/o W1 0.460 0.460 0.462 0.533
TMLE w/o W1 0.460 0.460 0.462 0.533
C-TMLE 0.460 0.463 0.462 0.482

Table 20.5 RMSE and relative efficiency; variable causing violation in ETA is a confounder

No ETA High ETA
Method QC QM QC QM

Efficiency bound 0.028 0.054

RMSE
TMLE 0.029 0.029 0.053 0.050
MLE 0.027 0.030 0.029 0.094
IPCW 0.029 0.029 0.058 0.058
A-IPCW 0.029 0.029 0.052 0.077
A-IPCW w/o W1 0.029 0.029 0.032 0.076
TMLE w/o W1 0.029 0.029 0.031 0.076
C-TMLE 0.028 0.031 0.031 0.055

Relative efficiency
TMLE 1.0 1.1 1.0 0.9
MLE 0.9 1.1 0.3 3.0
IPCW 1.0 1.0 1.2 1.2
A-IPCW 1.0 1.1 0.9 2.0
AIPW w/o W1 1.0 1.1 0.3 2.0
TMLE w/o W1 1.0 1.1 0.3 2.0
C-TMLE 1.0 1.2 0.3 1.1

Table 20.6 Characteristics of C-TMLE; variable causing violation in ETA is a confounder

No ETA High ETA
Method QC QM QC QM

Mean # of moves 0.103 13.389 0.134 8.448

% of time C-TMLE algorithm chose:
Zero Moves 0.98 0.00 0.97 0.12
W1 (ETA Variable) 0.00 0.99 0.00 0.88
W2 0.00 0.99 0.00 0.80
W3 0.00 0.99 0.00 0.59
W4 0.01 0.84 0.01 0.48
W5 0.01 0.00 0.02 0.00
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a large percentage of the time. Had the algorithm decided to remove the variable
completely from the adjustments, the estimator would have been more biased, and
the RMSE would be very large, like those seen for the TMLE without W1 estimator.
This difference in RMSE illustrates the value of generating binary variables for the
C-TMLE.

20.6.2 Results: Inference

Table 20.7 presents the coverage probabilities where the ETA variable is not a con-
founder. Ideally, a well-behaved method would produce confidence intervals that in-
clude the truth 95% of the time. Since each scenario was only simulated 500 times,
some variation from 95% is not unexpected. (The confidence intervals for the MLE
are not reported as that would require an application of a δ-method to compute the
correct influence curve based on the assumed parametric model, and no theory is
available when MLE is based on a machine learning algorithm.) The A-IPCW esti-
mator is the only method that has 95% confidence intervals over all scenarios (ex-
cluding the estimator that doesn’t adjust for the ETA variable since that estimator is
not feasible in a real data setting). The influence-curve-based confidence intervals
for the TMLE begin to deteriorate with increasing ETA. The C-TMLE coverage
probability also decreases with increasing ETA but not as quickly as for the TMLE,
and only when Q0 is misspecified. Table 20.8 displays the 95% coverage proba-
bilities when the ETA variable is a confounder. Again, the TMLE and C-TMLE
coverage probabilities are less than 95% when Q0 is misspecified. Thus, we can
conclude that the theoretically valid asymptotic influence-curve-based confidence
intervals are not producing proper coverage in finite samples when lack of identifia-
bility is an issue. Furthermore, as the parameter becomes more nonidentifiable, the
coverage probabilities further deteriorate.

Tables 20.7 and 20.8 also present the mean width of the influence-curve-based
confidence intervals for each estimator. While the A-IPCW estimator provides con-
fidence intervals with proper coverage, the width of these intervals are larger than
the intervals of both the TMLE and C-TMLE. In fact, in Table 20.7, the average
A-IPCW confidence-interval width for high ETA with inconsistent initial estimator
of Q0 is almost twice as large as the C-TMLE interval width. When the ETA vari-
able is a confounder, under high ETA and misspecified Q0, the A-IPCW intervals
are 67% larger on average than the C-TMLE intervals.

Although the A-IPCW intervals include the truth 95% of the time, in many cases
they are extremely large, rendering these estimates useless. The data sets where
A-IPCW estimates have large intervals are not the ones where TMLE/C-TMLE have
difficulty with coverage. In fact, for high ETA, the TMLE/C-TMLE influence-curve-
based confidence intervals include the truth for almost all data sets where the AIPW
estimate is below 0.35 or above 0.60. The TMLE/C-TMLE intervals that do not
include the truth are very close to including it. This suggests that a small adjustment
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Table 20.7 Coverage probabilities and mean width of confidence intervals; variable causing vio-
lation in ETA is not a confounder

No ETA Medium ETA High ETA
Method QC QM QC QM QC QM

Coverage probabilities
TMLE 0.94 0.96 0.86 0.85 0.80 0.83
IPCW 0.98 0.98 0.92 0.92 0.88 0.88
A-IPCW 0.94 0.95 0.95 0.95 0.94 0.94
A-IPCW w/o W4 0.94 0.95 0.95 0.96 0.95 0.96
TMLE w/o W4 0.94 0.96 0.96 0.95 0.95 0.96
C-TMLE 0.94 0.94 0.95 0.92 0.94 0.89

Mean width of confidence intervals
TMLE 0.11 0.12 0.19 0.21 0.21 0.24
IPCW 0.14 0.14 0.24 0.24 0.27 0.27
A-IPCW 0.11 0.12 0.18 0.22 0.20 0.25
A-IPCW w/o W4 0.11 0.12 0.11 0.12 0.11 0.12
TMLE w/o W4 0.11 0.12 0.11 0.12 0.11 0.12
C-TMLE 0.11 0.12 0.11 0.13 0.11 0.13

Table 20.8 Coverage probabilities and mean width of confidence intervals; variable causing vio-
lation in ETA is a confounder

No ETA High ETA
Method QC QM QC QM

Coverage probabilities
TMLE 0.94 0.96 0.87 0.93
IPCW 0.98 0.98 0.94 0.94
A-IPCW 0.94 0.95 0.94 0.92
A-IPCW w/o W1 0.94 0.95 0.94 0.38
TMLE w/o W1 0.94 0.96 0.94 0.38
C-TMLE 0.94 0.94 0.94 0.82

Mean width of confidence intervals
TMLE 0.11 0.12 0.18 0.20
IPCW 0.14 0.14 0.21 0.21
A-IPCW 0.11 0.12 0.17 0.25
A-IPCW w/o W1 0.11 0.12 0.12 0.12
TMLE w/o W1 0.11 0.12 0.12 0.12
C-TMLE 0.11 0.12 0.11 0.15

to the TMLE/C-TMLE influence-curve-based confidence intervals would cause the
TMLE/C-TMLE intervals to include the truth.

For high ETA, the A-IPCW confidence intervals tend to be larger than the TMLE
confidence intervals in the region of standard errors that produce useful confidence
intervals; however, in the region where the confidence intervals are not useful, the
reverse is true. The average length of the A-IPCW confidence interval is 0.255 com-
pared to 0.237 for the TMLE and 0.132 for the C-TMLE. Even though the A-IPCW
estimator produces confidence intervals with proper coverage, they are larger than
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the TMLE intervals and almost twice as large as the C-TMLE intervals, which have
only slightly less coverage. The standard errors are almost always larger for the A-
IPCW estimator vs. the C-TMLE for this simulation. In fact, none of the standard
errors for C-TMLE exceeds 0.1, while 5.4% of the A-IPCW standard errors exceed
0.15. Thus, the difference in coverage probabilities (0.94 vs. 0.89) is compensated
for by the fact that a large percent of A-IPCW confidence intervals are too large to
be practically useful.

Adjustment for targeted methods. The TMLE and C-TMLE confidence intervals
would include the truth if the intervals were slightly shifted to the left or the right.
We hypothesize that this departure from normality is the result of a distribution
of estimates that is slightly skewed in finite samples. This suggests that bootstrap
methods, which use the 0.025 and 0.975 bootstrap quantiles to construct confidence
intervals, would produce valid 95% confidence intervals. In order to test this hypoth-
esis, 500 additional data sets were generated according to the original simulation
high ETA scenario and bootstrap confidence intervals, both based on quantiles and
estimated standard error, as well as influence-curve-based confidence intervals were
compared for the TMLE. We note this was not done for the C-TMLE due to the pro-
hibitive amount of time it would take to run the bootstrap for 500 data sets; however,
for one data set it is a feasible method for inference, and the bootstrap results for the
TMLE intervals should hold for C-TMLE. These results are presented in Table 20.9.
The resulting coverage probability was 94% using quantile-based-bootstrap inter-
vals, compared to 88% for bootstrap intervals based on the estimated standard error,
and 87% using influence-curve-based confidence intervals. Furthermore, the aver-
age length of the confidence intervals was 0.21, 0.22, and 0.26, respectively. This
suggests that the quantile-based bootstrap, which naturally accounts for the skew-
ness in finite samples, is able to produce valid 95% confidence intervals. The lack of
coverage for the standard-error-based bootstrap confidence intervals confirms that
the skewness of the distribution of the estimates in finite samples contributes to the
poor influence curve based confidence intervals. This is due to the fact that both
of these methods depend on the standard normal quantiles to generate confidence
intervals. Not only do the quantile-based bootstrap confidence intervals produce the
proper coverage, but they also are 20% smaller than the influence-curve-based inter-
vals. Thus, the quantile-based bootstrap intervals should be the preferred method for
constructing TMLE and C-TMLE confidence intervals in the presence of sparsity.

Table 20.9 Bootstrap vs. influence-curve-based 95% confidence intervals for TMLE

Coverage probabilities Mean CI width

Quantile bootstrap 0.94 0.21
Wald bootstrap 0.88 0.22
Wald influence curve 0.87 0.26
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20.7 Discussion

Ultimately, a choice must be made to implement an estimator that behaves the best
across the largest number of possible scenarios. The simulations presented here il-
lustrate the advantages of the C-TMLE methodology for estimating causal param-
eters when analyzing time-to-event outcomes. The results show that the C-TMLE
does at least as well as the best estimator under every scenario and, in many of the
more realistic scenarios, behaves much better than the next best estimator in terms
of both bias and variance. Unlike other estimators that rely on an external estimator
of nuisance parameters, the C-TMLE algorithm estimates the nuisance parameters
with consideration for the parameter of interest. The C-TMLE is an entirely a priori
specified method that accounts for the fact that there are identifiability concerns in
observational data and addresses these issues uniformly, rather than handling them
on a case-by-case basis, or ignoring them completely. The C-TMLE algorithm ac-
complishes this by using a targeted (penalized) loss function to make smart choices
in determining what variables to adjust for in the estimate of g0 and only adjusts
for variables that have not been fully adjusted for in the initial estimate of Q0. This
allows the C-TMLE estimates to exhibit super efficiency and behave almost as well
as the MLE when the model for Q is specified correctly. In addition, when the ini-
tial estimator of Q0 is not specified correctly, the C-TMLE adjusts in the secondary
step only for the variables that improve the estimate of the parameter of interest
by considering the bias–variance tradeoff for each adjustment. These decisions are
always made with respect to how they affect the estimate of the parameter of in-
terest and are not dependent on a loss function designed for the prediction of the
treatment/censoring mechanism itself, as it is in the other methods presented. By
ignoring the effect of each adjustment on the estimate of the parameter of interest,
the other methods have been shown to be highly unstable in finite samples. Fur-
thermore, the TMLE and C-TMLE are substitution estimators and obey the proper
bounds of the true model contributing to their overall stability. Lastly, the bootstrap
provides a method to construct valid 95% confidence intervals for the C-TMLE that
are tighter than the intervals produced by other methods when estimating weakly
identifiable parameters.



Chapter 21

Propensity-Score-Based Estimators and

C-TMLE

Jasjeet S. Sekhon, Susan Gruber, Kristin E. Porter, Mark J. van der Laan

In order to estimate the average treatment effect E0[E0(Y | A = 1,W) − E0(Y |
A = 0,W)] of a single time-point treatment A based on observing n i.i.d. copies of
O = (W, A, Y), one might use inverse probability of treatment (i.e., propensity score)
weighting of an estimator of the conditional mean of the outcome (i.e., response
surface) as a function of the pretreatment covariates. Alternatively, one might use
a TMLE defined by a choice of initial estimator, a parametric submodel that codes
fluctuations of the initial estimator, and a loss function used to determine the amount
of fluctuation, where either the choice of submodel or the loss function will involve
inverse probability of treatment weighting. Asymptotically, such double robust es-
timators may have appealing properties. They can be constructed such that if either
the model of the response surface or the model of the probability of treatment as-
signment is correct, the estimatosr will provide a consistent estimator of the average
treatment effect. And if both models are correct, the weighted estimator will be
asymptotically efficient. Such estimators are called double robust and locally ef-
ficient (Robins et al. 1994, 1995; Robins and Rotnitzky 1995; van der Laan and
Robins 2003).

By factorization of the likelihood of O into a factor that identifies the average
treatment effect, and the conditional probability of treatment, given the covariates
W (i.e, the treatment mechanism), estimation of the propensity score g0(1 | W) =
P0(A = 1 | W) should be based solely on the log-likelihood of the treatment mech-
anism. In particular, estimation of g0 should not involve examining the data on the
final outcome Y . The double robust estimators exhibit a particularly interesting and
useful type of asymptotics with respect to the choice of estimator of the propensity
score. Due to this factorization of the likelihood, if one uses a maximum likelihood
estimator of g0 according to a particular model for g0, then the influence curve of
the double robust estimator equals the influence curve it would have had if g0 were
known and not estimated, minus a projection term whose size is implied by the size
of the model for g0 (van der Laan and Robins 2003). As a consequence of this result,
the larger the model for g0, the more efficient the double robust estimator will be. In
addition, an estimator of the variance of the double robust estimator that ignores the
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fact that g0 was estimated is asymptotically conservative, and thus provides valid
conservative confidence intervals and tests. In the special case that the estimator of
the response surface is consistent, it follows that the influence curve of the double
robust estimator is not affected at all by the choice of estimator of g0 (the above-
mentioned projection term equals zero): under this assumption, even estimators that
rely on sequential learning based on the log-likelihood of g0, will not affect the
statistical inference. Of course, such statements are not warranted if the choice of
model for g0 is based on examining the data on the final outcomes Y .

In finite samples, however, double robust estimators can increase variance and
bias for the average treatment effect, relative to the estimator of the average treat-
ment effect based on the unweighted estimator of the outcome, especially when
some observations have an extreme probability of assignment to treatment, corre-
sponding with practical or theoretical violations of the positivity assumption. Recall,
that the positivity assumption states that the conditional probability of treatment as-
signment is bounded away from 0 and 1 for all covariate values. As a result, Kang
and Schafer (2007) and Freedman and Berk (2008) warn against the routine use of
estimators that rely on IPCW, including double robust estimators. This is in agree-
ment with the past and ongoing literature defining and analyzing this issue (Robins
1986, 1987a, 2000; Robins and Wang 2000; van der Laan and Robins 2003), sim-
ulations demonstrating the extreme sparsity bias of IPCW estimators (e.g., Neuge-
bauer and van der Laan 2005), diagnosing violations of the positivity assumptions
in response to this concern (Kish 1992; Wang et al. 2006; Cole and Hernan 2008;
Bembom and van der Laan 2008; Moore et al. 2009; Petersen et al. 2010), data-
adaptive selection of the truncation constant to control the influence of weighting
(Bembom and van der Laan 2008), and selecting parameters that rely on realistic
assumptions (van der Laan and Petersen 2007a; Petersen et al. 2010).

One problem with reliance on the propensity score is that it may condition on
variables that are either unrelated to the outcome of interest or only weakly related.
Adding a pretreatment variable that is unrelated to the outcome but related to treat-
ment (i.e., an instrument) to a propensity score model may increase bias. If the
relationships between the variables are linear, bias will always be increased (Bhat-
tacharya and Vogt 2007; Wooldridge 2009). In the nonparametric case, the direction
of the bias is less straightforward, but increasing bias is a real possibility and ex-
pected (Pearl 2010a). This type of bias implied by such bias-amplifying variables
has been termed Z-bias. In the nonparametric case, bias may result even when there
are no unobserved confounders.

Including variables in a propensity score model that are unrelated to the outcomes
of interest also exacerbates the problem of small or large estimated probabilities
of treatment assignment. Such probabilities make inverse probability of treatment-
weighted estimators unstable, and may, in finite samples, appear to cause violations
of the positivity assumption. But these violations may be innocuous because the
variable causing the violation may be unrelated to the outcome, and, therefore, one
need not condition on it.

Even ignoring concerns about Z-bias, another consideration may lead one to want
to examine the outcomes in order to decide on the fit of the propensity score: It is
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often impossible to balance all of the theoretically plausible confounders in a given
sample. In such cases, one cannot estimate the treatment effect without making func-
tional form assumptions outside the support of the data. However, if the pretreatment
variables that we cannot balance are unrelated to the outcomes, it may be possible
to make progress. Of course, it would be preferable if a priori our scientific beliefs
were sufficient to exclude the problematic pretreatment variables, but that is often
unrealistic.

The foregoing paragraphs present us with a conundrum. For effective bias reduc-
tion based on the propensity score, we need to examine outcomes to include covari-
ates in the propensity score fit that are meaningful confounders, but that contradicts
the goal of fitting a propensity score, conditional on all the available covariates, and,
as a consequence, it will alter the statistical understanding of the estimator, and its
inference in a fundamental way. If we go the route of modeling the propensity score
and the response surface together, then it is essential that the stability problems cre-
ated by weighting be resolved. In addition, this will need to be done with an a priori
specified algorithm.

C-TMLEs have desirable features that help to mitigate many of the concerns re-
garding the use of double robust estimators. First, the estimation of the response
surface is automated by an a priori specified machine learning algorithm, such as
the super learner. Second, the whole procedure for selecting the propensity score
fit is automated. That is, the C-TMLE is an a priori specified estimator of the av-
erage treatment effect. Instead of giving the designer the freedom to select a fit of
the propensity score based on the orthogonal log-likelihood of the propensity score
before committing to an estimator of the average treatment effect that will use this
fit of the propensity score, the C-TMLE lets an a priori specified machine deter-
mine this choice based on all the available data. It is important to note that choices
that define the manner in which the C-TMLE fits the propensity score may still be
based on inspection of the ancillary log-likelihood of the propensity score (i.e., not
examining final outcome data).

Third, C-TMLE, by construction, only aims to include the variables in the
propensity score that are related to the outcome of interest. More precisely, C-TMLE
only includes variables in the propensity score if they are inadequately adjusted for
by the fit of the response surface. Thus, concerns about Z-bias are reduced. Fourth,
the estimated probabilities of treatment assignment are less likely to be extreme be-
cause typically fewer variables and fewer problematic variables will be included in
the propensity score model by C-TMLE than by noncollaborative methods. The the-
ory of collaborative double robustness provides the theoretical underpinning of the
C-TMLE algorithm, showing that full bias reduction is achieved by using a propen-
sity score that only adjusts for the covariates that explain the residual bias between
the initial estimator of the response surface and the true response surface (Appendix
A). Finally, as outlined in Chap. 7, both TMLE and C-TMLE can make use of a
logistic fluctuation to make sure that the fit of the response surface either respects
a priori known bounds of the continuous outcome or enforces the bounds implied
by the range of the continuous outcome observed in the data. With a logistic fluc-
tuation, the TMLE and C-TMLE will have the predicted outcome bounded to its
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observed range even in finite samples. This bounding stabilizes the estimator be-
cause the influence function of the estimator is bounded, even in finite samples, and
this controls the instability in the context of sparsity.

To summarize, Z-bias and the inability to balance all of the a priori plausible con-
founders suggests that one may want to use an a priori defined estimator that views
fitting the propensity score as a task that needs to be carried out in collaboration
with fitting the response surface. C-TMLEs have a number of desirable advantages
relative to other double robust estimators that view fitting the propensity score as
an external task based on the orthogonal log-likelihood of the propensity score that
ignores the outcome data.

Chapter Summary

Above, we made a compelling case for the C-TMLE. Statistical properties of
estimators, and thereby the comparison between different estimation proce-
dures, are not affected by the choice of causal model, only by the statistical
target parameter and the statistical model. Nonetheless, causal models repre-
sent an intrinsic component of our road map for targeted learning of causal
effects. Chapter 2 was devoted to the SCM, and this causal model was repeat-
edly invoked in this book. In this causal model, counterfactuals, and thereby
the causal quantities of interest, were derived from the SCM. An important
and popular alternative causal model directly states the existence of counter-
factuals of scientific interest as the main assumption (often defined in words
in terms of an experiment), which avoids the representation of assumptions
in terms of structural equations. This is called the Neyman–Rubin model and
is presented in the next section. The debate over which estimator to select for
estimation of a causal effect should not be concerned with the choice of causal
model.

We then reexamine prominent Monte Carlo simulations by implementing
the C-TMLE and TMLE. These estimators may overcome the more detailed,
but in some sense second-order, concerns regarding the instability of double
robust estimators under sparseness. Specifically, we reanalyze and extend the
simulations of Kang and Schafer (2007), which were designed to highlight the
limitations of double robust estimators. The outcome is a linear function of the
covariates, and the error term is small relative to the size of the coefficients.
In addition, the missingness mechanism results in many positivity violations
in finite samples. For the double robust estimators Kang and Schafer consid-
ered, the double robust weighted least squares and A-IPTW result in volatile
estimates due to the high-leverage data points generated by large weights. We
also examine the simulations of Freedman and Berk (2008). These simula-
tions were originally designed to demonstrate how weighting by the propen-
sity score can result in highly unstable estimates in conditions that are less
extreme than those of Kang and Schafer. In both simulation studies, we show
that the TMLEs, and, in particular, the C-TMLEs, perform well.
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21.1 Neyman–Rubin Causal Model and Potential Outcomes

The Neyman–Rubin causal model consists of more than simply the notation for po-
tential outcomes that was originated by Neyman (1923). Rubin and others, such as
Cochran, Holland, and Rosenbaum, have developed a general framework that helps
to clarify some important issues of inference and design. Beginning with Rubin
(1974), the model began to unify how one thinks about observational and experi-
mental studies, and it gives a central place to the treatment assignment mechanism.

The Neyman–Rubin framework has become increasingly popular in many fields,
including statistics (Holland 1986; Rubin 1974, 2006; Rosenbaum 2002), medicine
(Rubin 1997; Christakis and Iwashyna 2003), economics (Dehejia and Wahba 1999,
2002; Galiani et al. 2005; Abadie and Imbens 2006), political science (Herron and
Wand 2007; Imai 2005; Sekhon 2008b), sociology (Morgan and Harding 2006;
Diprete and Engelhardt 2004; Winship and Morgan 1999; Smith 1997), and even
law (Rubin 2002).The framework originated with Neyman’s model, which is non-
parametric for a finite number of treatments. In the case of one treatment and one
control condition, each unit has two potential outcomes, one if the unit is treated
and the other if untreated. A causal effect is defined as the difference between the
two potential outcomes, but only one of the two potential outcomes is observed.
Rubin (1974, 2006) developed the model into a general framework for causal in-
ference with implications for observational research. Holland (1986) wrote an in-
fluential review article that highlighted some of the philosophical implications of
the framework. Consequently, instead of the “Neyman–Rubin model,” the model is
often simply called the Rubin causal model (e.g., Holland 1986) or sometimes the
Neyman–Rubin–Holland model (e.g., Brady 2008) or the Neyman–Holland–Rubin
model (e.g., Freedman 2006).

The intellectual history of the Neyman–Rubin model is the subject of some con-
troversy (e.g., Freedman 2006; Rubin 1990; Speed 1990). Neyman’s 1923 article
never mentions the random assignment of treatments. Instead, the original motiva-
tion was an urn model, and the explicit suggestion to use the urn model to physically
assign treatments is absent from the paper (Speed 1990). It was left to R. A. Fisher
in the 1920s and 1930s to note the importance of the physical act of randomization
in experiments. Fisher first did this in the context of experimental design in his 1925
book, expanded on the issue in a 1926 article for agricultural researchers, and de-
veloped it more fully and for a broader audience in his 1935 book The Design of
Experiments.

This gap between Neyman and Fisher points to the fact that there was some-
thing absent from the Neyman mathematical formulation, which was added later,
even though the symbolic formulation was complete in 1923. What those sym-
bols meant changed. And in these changes lies what is causal about the Neyman–
Rubin model—i.e., a focus on the mechanism by which treatment is assigned. The
Neyman–Rubin model is more than just the math of the original Neyman model.
Obviously, it relies not on an urn model motivation for the observed potential out-
comes but, for experiments, a motivation based on the random assignment of treat-
ment. And for observational studies, one relies on the assumption that the assign-
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ment of treatment can be treated as if it were random. In either case, the mechanism
by which treatment is assigned is of central importance. And the realization that the
primacy of the assignment mechanism holds true for observational data no less than
for experimental, is due to Rubin (1974).

The basic setup of the Neyman model is simple. Let Ai be a treatment indicator: 1
when i is in the treatment regime and 0 otherwise. But an additional assumption
must be made to link potential outcomes to observed outcomes. The most common
assumption used is the one of “no interference between units” (Cox 1958, Sect. 2.4).
With this assumption, one can assume that the observed outcome for observation i is

Yi = AiY1,i + (1 − Ai)Y0,i, (21.1)

where Y1,i denotes the potential outcome for unit i if the unit receives treatment and
Y0,i denotes the potential outcome for unit i in the control regime. The treatment
effect for observation i is defined by τi = Y1,i − Y0,i. Causal inference is a missing-
data problem because Y1,i and Y0,i are never both observed.

The “no interference between units” is often called the stable unit treatment value
assumption (SUTVA). SUTVA implies that the potential outcomes for a given unit
do not vary with the treatments assigned to any other unit, and that there are not
different versions of treatment (Rubin 1978). The mapping from potential outcomes
to observed outcomes is not a primitive in the potential-outcomes framework. This
point is often missed. Equation (21.1) only follows because of the no interference
assumption. Otherwise, Yi may depend on Aj, Y0, j, and Y1, j, where j � i. Therefore,
one may argue that there is a structural model embedded in the Neyman model as
commonly used, although a simple one with clear behavioral implications.

The next key part of the Neyman–Rubin model is the assignment mechanism. It is
the process by which the potential outcomes are missing. The treatment assignment
mechanism may satisfy the no unmeasured confounding assumption:

P(A | W, Y0, Y1) = P(A | W), (21.2)

where W are some confounders. If the randomization is not conditional on W, then
P(A | W, Y0, Y1) = P(A | W) = P(A). Beyond randomization, one wishes that

0 < P(Ai = 1 | Wi) < 1. (21.3)

Equation (21.3) is also referred to as the positivity assumption, as discussed in detail
in Chaps. 2 and 10. It is a common support condition.

Equations (21.2) and (21.3) make clear that randomized experiments are free
of any dependence between the treatment and potential outcomes, conditional on
observables that were used to define the randomization probabilities. Before Rubin
(1975), the potential-outcomes framework was used by various authors to formalize
randomized experiments, but never observational studies. Freedman (2006), Rubin
(2008), and Sekhon (2010) review some of the relevant history.

It was unprecedented when Rosenbaum and Rubin (1983) used Eqs. (21.2) (ig-
norability) and (21.3) (common support) to define “strong ignorability.” Ignorability
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dates from Rubin (1976). Importantly, these concepts were applied, for the first time,
to observational data and not just experimental data. This gave a formal language to
the tradition of thinking of observational studies as broken experiments, where many
of the lessons of experimental design are maintained. This tradition goes back to at
least Cochran (1965) – also see Cochran and Rubin (1973) and Cochran (1983).
Rubin and his various co-authors formalized and extended it to become a way of
thinking about causality. There are no observed outcomes in Eqs. (21.2) and (21.3),
but they define an assumption by which the average treatment effect may be identi-
fied: selection on observables.

If the principle of defining an estimator in terms of an a priori fitted propensity
score, in which the fitting process can be flexible but is ignorant of the outcomes,
is a valid one, then the statistical properties of double robust estimators (such as
the TMLE with an externally fitted treatment mechanism) that live by this principle
should be fully competitive with a (double robust) C-TMLE that ignores this princi-
ple and lives by the principle of targeted learning that views the goal of the fit of the
propensity score as an ingredient to obtain a best estimator of the target quantity.

Three questions arise that we wish to address. First, can an automated estimation
strategy be used effectively? Second, can the TMLE and the C-TMLE overcome the
demonstrated instability problems of other double robust estimators? Third, overall,
which one wins, the TMLE, which lives by the principle of using an externally fitted
propensity score, or the C-TMLE, which fits the propensity score as an ingredient
for targeted fitting of the response surface?

21.2 Kang and Schafer Censored-Data Simulations

In this section, motivated by Kang and Schafer (2007) (hereafter, KS) and a re-
sponse by Robins et al. (2007b), we compare the performance of TMLEs to that of
estimating-equation-based double robust estimators, in the context of sparsity. This
set of simulations was originally designed by KS to highlight the stability problems
of double robust estimators. We will demonstrate that TMLEs can perform well in
these simulations. The KS simulations focus on the problem of estimating a popu-
lation mean from censored data. The data are CAR but not completely at random.
We explore the relative performance of the estimators under the original KS simula-
tion and a number of alternative data-generating distributions that involve different
and stronger types of violations of the positivity assumption. These new simulation
settings were designed to provide more diverse and challenging test cases for eval-
uating robustness and thereby finite sample performance of the different estimators.

Original Kang and Schafer simulation. KS considered n i.i.d. units of O =

(W, Δ, ΔY) ∼ P0, where W is a vector of four baseline covariates and Δ is an in-
dicator of whether the continuous outcome, Y , is observed. KS were interested
in estimating μ(P0) = E0(Y) = E0[E0(Y | Δ = 1,W)]. Let (Z1, . . . ,Z4) be inde-
pendent normally distributed random variables with mean zero and variance one.
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The covariates W we actually observe were generated as follows: W1 = exp(Z1/2),
W2 = Z2/(1+ exp(Z1))+ 10, W3 = (Z1Z3/25+ 0.6)3, and W4 = (Z2 + Z4 + 20)2. The
outcome Y was generated as Y = 210+27.4Z1+13.7Z2+13.7Z3+13.7Z4+N(0, 1).
From this one can determine that the conditional mean Q̄0 of Y , given W, which
equals the same linear regression in Z1(W), . . . ,Z4(W), where Zj(W), j = 1, . . . , 4,
are the unique solutions of the four equations above in terms of W = (W1, . . . ,W4).
Formally, Q̄0(W) = E0[E0(Y | Z) | W]. Thus, if the data analyst had been provided
the functions Zj(W), then the true regression function was linear in these functions,
but the data analyst is measuring the terms Wj instead.

The other complication of the data-generating distribution is that Y is subject to
missingness, and the true censoring mechanism, denoted by g0(1 | W) = P0(Δ = 1 |
W), is given by g0(1 | W) = expit(−Z1(W) + 0.5Z2(W) − 0.25Z3(W) − 0.1Z4(W)).
With this data-generating mechanism, the average response rate is 0.50. Also, the
true population mean is 210, while the mean among respondents is 200. These val-
ues indicate a small selection bias.

In these simulations, a linear main term model in the main terms (W1, . . . ,W4)
for either the outcome-regression or missingness mechanism is misspecified, while
a linear main term model in the main terms (Z1(W), . . . ,Z4(W)) would be correctly
specified. Note that there are finite sample violations of the positivity assumption
given in Eq. (21.3). Specifically, we find g0(Δ = 1 | W) ∈ [0.01, 0.98], and the es-
timated missingness probabilities gn(Δ = 1 | W) were observed to fall in the range
[4 × 10−6, 0.97].

Modified Kang and Schafer simulation 1. In the KS simulation, when Q̄0 or g0 is
misspecified, the misspecifications are small. The selection bias is also small. There-
fore, we modified the KS simulation in order to increase the degree of misspecifica-
tion and to increase the selection bias. This creates a greater challenge for estimators
and better highlights their relative performance. As before, let Zj be i.i.d. N(0, 1).
The outcome Y was generated as Y = 210 + 50Z1 + 25Z2 + 25Z3 + 25Z4 + N(0, 1).
The covariates actually observed by the data analyst are now given by the follow-
ing functions of (Z1, . . . ,Z4): W1 = exp(Z2

1/2), W2 = 0.5Z2/(1 + exp(Z2
1)) + 3,

W3 = (Z2
1Z3/25 + 0.6)3 + 2, and W4 = (Z2 + 0.6Z4)2 + 2. From this, one can de-

termine the true regression function Q̄0(W) = E0(E0(Y | Z) | W). The missingness
indicator was generated as follows: g0(1 | W) = expit(−2Z1 + Z2 − 0.5Z3 − 0.2Z4).
A misspecified fit is now obtained by fitting a linear or logistic main term regres-
sion in W1, . . . ,W4, while a correct fit is obtained by providing the user with the
terms Z1, . . . ,Z4, and fitting a linear or logistic main term regression in Z1, . . . ,Z4.
With these modifications, the population mean is again 210, but the mean among
respondents is 184.4. With these modifications, we have a higher degree of prac-
tical violation of the positivity assumption: g0(Δ = 1 | W) ∈ [1.1 × 10−5, 0.99]
while the estimated probabilities, gn(Δ = 1 | W), were observed to fall in the range
[2.2 × 10−16, 0.87].

Modified Kang and Schafer simulation 2. Here we made one additional change to
the modified simulation 1: We set the coefficient in front of Z4 in the true regression
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of Y on Z equal to zero. Therefore, while Z4 is still associated with missingness, it is
not associated with the outcome, and is thus not a confounder. Given (W1, . . . ,W3),
W4 is not associated with the outcome either, and therefore as misspecified re-
gression model of Q̄0 we use a main term linear regression in (W1,W2,W3). This
modification to the KS simulation enables us to take the debate on the relative
performance of double robust estimators one step further, by addressing a second
key challenge of the estimators: They often include nonconfounders in the censor-
ing mechanism estimator. This unnecessary inclusion could unnecessarily introduce
positivity violations. Moreover, this can itself introduce substantial bias and inflated
variance, sometimes referred to as Z-bias. While this problem is not presented in the
Kang and Schafer paper and responses, it is highlighted in the literature, including
Bhattacharya and Vogt (2007), Wooldridge (2009), and Pearl (2010a). As discussed
earlier, the C-TMLE provides an innovative approach for estimating the censoring
mechanism, preferring covariates that are associated with the outcome and censor-
ing, without “data snooping.”

21.2.1 Estimators

As illustrated in KS and Robins et al. (2007b), semiparametric efficient double ro-
bust estimators typically rely on IPCW. These weights will be very large when there
are violations of the positivity assumption. As a benchmark, KS compare all esti-
mators in their article to the ordinary least squares estimator:

μOLS ,n =
1
n

n∑
i=1

Q̄n(Wi),

where Q̄n is the least squares estimator of Q̄0 according to a main term linear re-
gression model mβ(W) = βW�, only using the observations with Δi = 1.

Kang and Schafer present comparisons of several double robust (and nondouble
robust) estimators. We focus on the weighted least squares (WLS) estimator and the
A-IPCW estimator. The WLS estimator is defined as

μWLS ,n =
1
n

n∑
i=1

mβn (Wi),

where mβ is a linear regression model for Q̄0 and βn is an IPCW linear regression
estimator given by

βn = arg min
β

n∑
i=1

Δi

gn(1 | Wi)
(Yi − mβ(Wi)2.

The A-IPCW estimator is defined as
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μA−IPCW,n =
1
n

∑
i

Δi

gn(1 | Wi)
(Yi − Q̄n(Wi)) + Q̄n(Wi).

We compare these estimators with the TMLE and the C-TMLE with logistic fluc-
tuation for a continuous outcome (Chap. 7). These estimators are guaranteed to stay
within the global bounds of the model, which is essential when g0(1 | W) has values
close to 0. The logistic fluctuation TMLE for continuous Y ∈ (a, b) involves defining
a normalized outcome Y∗ = (Y−a)/(b−a) ∈ (0, 1), computing the TMLE of E0(Y∗),
and transforming back this TMLE into a TMLE of E0(Y) = (b − a)E0(Y∗) + a. The
TMLE with logistic fluctuation requires setting a range [a, b] for the outcomes Y . If
such knowledge is available, one simply uses the known values. If Y is not subject to
missingness, then one would use the minimum and maximum of the empirical sam-
ple, which represents a very accurate estimator of the range. In these simulations,
Y is subject to informative missingness such that the minimum or maximum of the
biased sample represents a biased estimate of the range, resulting in a small unnec-
essary bias in the TMLE (negligible relative to MSE). We enlarged the range of the
complete observation by a factor of 1.1, which seemed to remove most of the unnec-
essary bias. We expect that some improvements can be obtained by incorporating a
valid estimator of the range that takes into account the informative missingness, but
such second order improvements are outside the scope of this chapter. The TMLE
of E0(Y∗) involves obtaining an initial estimator of E0(Y∗ | W, Δ = 1), represent-
ing it as a logistic function, and subsequently fluctuating it according to the logistic
fluctuation function. Let Q̄0

n ∈ (0, 1) be an initial estimator of E0(Y∗ | Δ = 1,W)
obtained by regressing Y∗ onto W among the observations with Δi = 1. Consider the
logistic fluctuation working model

logitQ̄0
n(ε)(W) = logitQ̄0

n(W) + εH∗gn
(W),

where H∗g,n(1,W) = 1/gn(1 | W). One estimates the amount of fluctuation ε with
maximum likelihood estimation using logistic regression software for binary out-
comes. One can use standard software for this fluctuation, ignoring that Y∗ is not
binary. (See Chap. 7 for the proof that the binary outcome log-likelihood loss func-
tion is the correct loss function in this case.) This now defines the first-step TMLE
Q̄1

n = Q̄0
n(εn), which is also the TMLE of Q̄0. The TMLE of E0(Y∗) is now given by

the corresponding substitution estimator μ∗T MLE,n =
1
n
∑

i Q̄∗n(Wi). The latter estima-
tor maps into the desired TMLE μT MLE,n = (b − a)μ∗T MLE,n + a of μ0 = E0(Y).

The C-TMLE μC−T MLE,n is defined in Chap. 20 for the mean outcome E0Y1 based
on O = (W, A, Y), but now treating A = Δ. The C-TMLE differs from the standard
TMLE above in its estimation procedures for Q̄0 and g0. The TMLE fluctuates an
initial estimator of Q̄0 using an external estimate of g0, while the C-TMLE estimate
considers a sequence of subsequent TMLE updates of this initial estimator indexed
by increasingly nonparametric estimators of g0 and, based on the “log-likelihood”
for Q̄0 of these candidate TMLEs, data-adaptively determines the desired TMLE
and, in particular, the desired fit of g0. The C-TMLE involves building an estimator
of the distribution of Δ as a function of a set of covariates that are still predictive
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of Y , after taking into account the initial estimator. That is, the C-TMLE relies on a
collaboratively estimated gn that at times only targets a true conditional distribution
of Δ, given a reduction of W, yet delivers full bias reduction.

21.2.2 Results

For the three simulations described above, the OLS, WLS, A-IPCW, TMLE, and
C-TMLE were used to estimate μ(P0) from 250 samples of size 1000. We evaluated
the performance of the estimators by their bias, variance, and MSE. We compared
the estimators of μ(P0) using different specifications of the estimators of Q̄0 and
g0. In the tables below, CC indicates that the estimators of both were specified cor-
rectly; CM indicates that the estimator of Q̄0 was correct, but the estimator for g0
was misspecified; MC indicates that the estimator for Q̄0 was misspecified, but the
estimator for g0 was correct; and MM indicates both estimators were misspecified.

For all estimators, we compared results with gn(1 | W) ∈ [0, 1] by also truncating
gn(1 | W) from below at three different levels: 0.010, 0.025, and 0.050. We note
that neither KS nor Robins et al. (2007b) included bounding gn(1 | W) from below
when applying their estimators. In any given application, it is difficult to determine
which bounds to use, but the theory teaches us that double robust estimators can
only be consistent if gn(1 | W) stays bounded away from zero, even if the true g0 is

Table 21.1 Simulation results, 250 samples of size 1000. (a) Kang and Schafer simulation. (b)
Modified simulation 1. (c) Modified simulation 2

CC CM MC MM
(a) Bias Var MSE Bias Var MSE Bias Var MSE Bias Var MSE

OLS −0.09 1.4 1.4 −0.09 1.4 1.4 −0.93 2.0 2.8 −0.93 2.0 2.8
WLS −0.09 1.4 1.4 −0.09 1.4 1.4 0.10 1.8 1.8 −3.0 2.1 11
A-IPCW −0.09 1.4 1.4 −0.10 1.4 1.5 0.04 2.5 2.5 −8.8 2e+2 3e+2
TMLE −0.10 1.4 1.4 −0.11 1.4 1.4 −0.09 2.1 2.1 −4.6 3.6 25
C-TMLE −0.10 1.4 1.4 −0.11 1.4 1.4 0.09 1.8 1.8 −1.5 2.8 5.0
(b)

OLS −0.17 4.7 4.7 −0.17 4.7 4.7 −36 17 1e+3 −36 17 1e+3
WLS −0.16 4.7 4.7 −0.16 4.7 4.7 −4.4 42 61 −35 16 1e+3
A-IPCW −0.16 4.7 4.8 −0.16 4.7 4.7 −1.8 2e+2 2e+3 −35 17 1e+3
TMLE −0.22 4.7 4.7 −0.23 4.7 4.7 −0.04 89 89 −34 6.5 1e+3
C-TMLE −0.26 4.7 4.7 −0.22 4.7 4.7 −0.64 16 16 −34 6.6 1e+3
(c)

OLS −0.06 3.9 3.9 −0.06 3.9 3.9 −34 15 1e+3 −34 15 1e+3
WLS −0.06 4.0 3.9 −0.06 3.9 3.9 −3.6 40 53 −33 15 1e+3
A-IPCW −0.05 4.0 4.0 −0.06 3.9 3.9 −1.1 2e+2 2e+3 −33 16 1e+3
TMLE −0.10 3.9 3.9 −0.11 3.9 3.9 0.15 76 76 −32 5.6 1e+3
C-TMLE −0.14 3.9 3.9 −0.11 3.9 3.9 −0.88 11 11 −33 5.8 1e+3
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Table 21.2 Kang and Schafer simulation results by truncation level of gn, 250 samples of size
1000

Bound on gn CC CM MC MM
by estimator Bias Var MSE Bias Var MSE Bias Var MSE Bias Var MSE

OLS −0.09 1.4 1.4 −0.09 1.4 1.4 −0.93 2.0 2.8 −0.9 2.0 2.8

WLS

None −0.09 1.4 1.4 −0.09 1.4 1.4 0.10 1.8 1.8 −3.0 2.1 11
0.010 −0.09 1.4 1.4 −0.09 1.4 1.4 0.10 1.8 1.8 −3.0 2.0 11
0.025 −0.09 1.4 1.4 −0.09 1.4 1.4 0.10 1.8 1.8 −2.9 2.0 11
0.050 −0.09 1.4 1.4 −0.09 1.4 1.4 0.11 1.8 1.8 −2.7 1.9 9.4

A-IPCW

None −0.09 1.4 1.4 −0.10 1.4 1.5 0.04 2.5 2.5 −8.8 2e+2 3e+2
0.010 −0.09 1.4 1.4 −0.09 1.4 1.4 0.04 2.5 2.5 −6.1 18 56
0.025 −0.09 1.4 1.4 −0.09 1.4 1.4 0.04 2.4 2.4 −4.9 6.1 30
0.050 −0.09 1.4 1.4 −0.09 1.4 1.4 0.08 2.3 2.3 −3.8 3.2 18

TMLE

None −0.10 1.4 1.4 −0.11 1.4 1.4 −0.09 2.1 2.1 −4.6 3.6 25
0.010 −0.10 1.4 1.4 −0.10 1.4 1.4 −0.09 2.1 2.1 −4.4 4.2 24
0.025 −0.10 1.4 1.4 −0.10 1.4 1.4 −0.09 2.1 2.1 −4.1 3.1 20
0.050 −0.10 1.4 1.4 −0.10 1.4 1.4 −0.06 2.0 2.0 −3.6 2.4 15

C-TMLE

None −0.10 1.4 1.4 −0.11 1.4 1.4 0.09 1.8 1.8 −1.5 2.8 5.0
0.010 −0.10 1.4 1.4 −0.10 1.4 1.4 0.09 1.7 1.7 −1.3 2.2 4.0
0.025 −0.10 1.4 1.4 −0.10 1.4 1.4 0.11 1.7 1.7 −1.4 2.3 4.2
0.050 −0.10 1.4 1.4 −0.10 1.4 1.4 0.10 1.8 1.8 −1.3 2.1 3.8

not bounded away from zero (e.g., van der Laan and Robins 2003). Therefore, only
presenting the (interesting) results for not bounding at all (but gn(1 | W) ∈ [0, 1])
provides insight about an estimator that should never be used in practice. Ideally,
the choice of bounding gn(1 | W) should depend on, among other things, the data-
generating process and the sample size, so that one desires an estimator adaptively
determines the truncation level (such as particular implementations of C-TMLE).

Table 21.1 presents the simulation results without any bounding of gn.The ta-
bles show that in all three simulations, the TMLE and C-TMLE with a logistic
fluctuation achieve comparable or better MSE than the other estimators. When Q̄n

is misspecified, TMLE performs well and C-TMLE stands out with a much lower
MSE. Together, the results from modified simulation 1 and modified simulation 2
show that the C-TMLEs have similar or superior performance relative to estimating-
equation-based double robust estimators when not all covariates are associated with
Y . At the same time, even in cases in which all covariates are associated with Y ,
the C-TMLE still performs well. Tables 21.2 and 21.3 compare results for each es-
timator when bounding gn at different levels. We see that bounding gn can improve
the bias and variability of the estimators, often substantially. However, we also see
that bounding can easily increase bias. The effect of bounding and the desired level
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Table 21.3 Simulation results by truncation level of gn, 250 samples of size 1000. (a) Modified
Kang and Schafer simulation 1. (b) Modified Kang and Schafer simulation 2

CC CM MC MM
(a) Bias Var MSE Bias Var MSE Bias Var MSE Bias Var MSE

OLS −0.17 4.7 4.7 −0.17 4.7 4.7 −36 17 1e+3 −36 17 1e+3

WLS

None −0.16 4.7 4.7 −0.16 4.7 4.7 −4.4 42 61 −35 16 1e+3
0.010 −0.16 4.7 4.7 −0.16 4.7 4.7 −4.6 39 60 −35 16 1e+3
0.025 −0.17 4.7 4.7 −0.16 4.7 4.7 −5.5 32 62 −35 16 1e+3
0.050 −0.17 4.7 4.7 −0.16 4.7 4.7 −7.3 25 78 −35 16 1e+3

A-IPCW

None −0.16 4.7 4.8 −0.16 4.7 4.7 −1.8 2e+2 2e+3 −35 17 1e+3
0.010 −0.16 4.7 4.7 −0.16 4.7 4.7 −3.7 74 88 −35 17 1e+3
0.025 −0.17 4.7 4.7 −0.16 4.7 4.7 −5.9 43 77 −35 17 1e+3
0.050 −0.17 4.7 4.7 −0.16 4.7 4.7 −8.8 28 1e+2 −35 17 1e+3

TMLE

None −0.22 4.7 4.7 −0.23 4.7 4.7 −0.04 89 89 −34 6.5 1e+3
0.010 −0.22 4.7 4.7 −0.22 4.7 4.7 0.71 53 54 −34 6.5 1e+3
0.025 −0.22 4.7 4.7 −0.22 4.7 4.7 1.0 22 23 −34 6.5 1e+3
0.050 −0.22 4.7 4.7 −0.22 4.7 4.7 −0.49 11 11 −34 6.5 1e+3

C-TMLE

None −0.26 4.7 4.7 −0.22 4.7 4.7 −0.64 16 16 −34 6.7 1e+3
0.010 −0.24 4.7 4.8 −0.22 4.7 4.7 −0.84 22 22 −34 6.7 1e+3
0.025 −0.24 4.7 4.7 −0.22 4.7 4.7 −1.5 12 14 −34 6.8 1e+3
0.050 −0.23 4.7 4.7 −0.22 4.7 4.7 −2.6 8.7 15 −34 6.8 1e+3
(b)

OLS −0.06 3.9 3.9 −0.06 3.9 3.9 −34 15 1e+3 −34 15 1e+3

WLS

None −0.06 4.0 3.9 −0.06 3.9 3.9 −3.6 40 53 −33 15 1e+3
0.010 −0.06 4.0 3.9 −0.06 3.9 3.9 −4.0 35 51 −33 15 1e+3
0.025 −0.06 4.0 3.9 −0.06 3.9 3.9 −4.9 29 53 −33 15 1e+3
0.050 −0.06 4.0 3.9 −0.06 3.9 3.9 −6.7 23 68 −33 15 1e+3

A-IPCW

None −0.05 4.0 4.0 −0.06 3.9 3.9 −1.1 2e+2 2e+2 −33 16 1e+3
0.010 −0.06 4.0 4.0 −0.06 3.9 3.9 −3.1 70 80 −33 16 1.e+3
0.025 −0.06 4.0 3.9 −0.06 3.9 3.9 −5.4 39 68 −33 16 1e+3
0.050 −0.06 3.9 3.9 −0.06 3.9 3.9 −8.3 26 94 −33 16 1e+3

TMLE

None −0.10 3.9 3.9 −0.11 3.9 3.9 0.15 76 76 −32 5.6 1e+3
0.010 −0.10 3.9 3.9 −0.10 3.9 3.9 0.95 43 44 −32 5.6 1e+3
0.025 −0.10 3.9 3.9 −0.10 3.9 3.9 1.3 18 19 −32 5.6 1e+3
0.050 −0.10 3.9 3.9 −0.10 3.9 3.9 −0.20 8.5 8.5 −32 5.6 1e+3

C-TMLE

None −0.14 3.9 3.9 −0.11 3.9 3.9 −0.88 11 11 −33 5.8 1e+3
0.010 −0.13 3.9 3.9 −0.10 3.9 3.9 −0.91 12 12 −33 6.1 1e+3
0.025 −0.12 3.9 3.9 −0.10 3.9 3.9 −1.4 8.5 10 −33 6.1 1e+3
0.050 −0.12 3.9 3.9 −0.10 3.9 3.9 −2.5 6.4 12 −33 6.0 1e+3
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Fig. 21.1 Kang and Schafer simulation, MC, truncation level 0.025
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Fig. 21.2 Modified Kang and Schafer simulation 1, MC, truncation level 0.025

of bounding varies by estimator. It is important to note C-TMLE and TMLE are
always well behaved. In no simulation do they show marked instability. C-TMLE
performs particularly well. Results from the KS simulation, modified simulation 1,
and modified simulation 2 are presented visually for MC with gn(1 | W) truncated
from below at 0.025 in Figs. 21.1–21.3.
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Fig. 21.3 Modified Kang and Schafer simulation 2, MC, truncation level 0.025

21.2.3 Super Learning and the Kang and Schafer Simulations

The misspecified formulation in KS can illustrate the benefits of coupling data-
adaptive (super) learning with the TMLE. Results for the case that both Q̄0 and
g0 are inconsistently estimated indicate that the C-TMLE, constrained to use a main
term regression model with misspecified covariates (W1,W2,W3,W4), has smaller
variance than μ̂OLS but is more biased. The MSE of the TMLE is larger than the MSE
of C-TMLE, with increased bias and variance. How would the estimation process be
affected if we chose to act, based on the widespread understanding that models are
seldom correctly specified and main term regressions generally fail to adequately
capture the true relationships between predictors and an outcome, by turning to
data-adaptive machine learning?

We coupled super learning with TMLE and C-TMLE to estimate both Q̄0 and
g0. For C-TMLE, four missingness-mechanism-score-based covariates were created
based on different truncation levels of the propensity score estimate gn(1 | W):
no truncation, and truncation from below at the 0.01, 0.025, and 0.05 percentile.
These four scores were supplied along with the misspecified main terms W1, . . . ,W4
to the targeted forward selection algorithm in the C-TMLE used to build a series
of candidate nested logistic regression estimators of the missingness mechanism
and corresponding candidate TMLEs. The C-TMLE algorithm used 5-fold cross-
validation to select the best estimate from the eight candidate TMLEs. This allows
the C-TMLE algorithm to build a logistic regression fit of g0 that selects among
the misspecified main-terms and super-learning fits of the missingness mechanism
score gn(1 | W) at different truncation levels.
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Table 21.4 Super learning simulation results, MM, gn(1 | W) truncated at 0.025

Bias Var MSE

TMLE+ SL −0.771 1.51 2.10
C-TMLE+ SL −1.047 1.54 2.64

An important aspect of super learning is to ensure that the collection of prediction
algorithms includes a variety of approaches for fitting the true function Q̄0 and g0.
For example, it is sensible to include a main terms regression algorithm in the super
learner library. Should that algorithm happen to be correct, the super learner will
behave as the main terms regression algorithm. It is also recommended to include
algorithms that search over a space of higher-order polynomials, nonlinear mod-
els, and, for example, cubic splines. For binary outcome regression, as required for
fitting g0, classification algorithms such as classification and regression trees, sup-
port vector machines (Cortes and Vapnik 1995), and k-nearest-neighbor algorithms
(Friedman 1994) could be added to the collection of algorithms. Super learning re-
lies on the oracle property of V-fold cross-validation to asymptotically select the
optimal convex combination of estimates obtained (Chap. 3).

Consider the misspecified scenario proposed by KS. The truth for both the out-
come regression and the propensity for missingness regression is captured by a main
terms linear regression of the outcome on Z1, Z2, Z3, Z4. This simple truth is virtu-
ally impossible to discover through the usual model selection approaches when the
observed data consist of misspecified covariates O = (W1,W2,W3,W4, Δ, ΔY), given
that Z1 = 2log(W1), Z2 = (W2 − 10)(1 + 2W1), Z3 = (25 × (W3 − 0.6))/(2 log(W1)),
and Z4 =

3√W4 − 20 − (W2 − 10)(1 + 2W1). This complexity illustrates the impor-
tance of including prediction algorithms that attack the estimation problem from
a variety of directions. The collection of algorithms employed included glm, step,
ipredbagg, DSA, earth, loess, nnet, svm, and k-nearest-neighbors. (We note that k-
nearest-neighbors is only for binary outcomes, and it was used to estimate g only.)

In Table 21.4 we report the results for TMLE and C-TMLE based on 250 samples
of size 1000, with predicted values for gn(1 | W) truncated from below at 0.025. The
MSE for both estimators is smaller than the MSE of μ̂OLS . The C-TMLE bias is
slightly higher than the μ̂OLS bias, and TMLE is slightly better with respect to both
bias and variance. More importantly, data-adaptive estimation improved efficiency
of TMLE by a factor of 8.5. C-TMLE efficiency improved by a factor of 1.5.

21.3 Freedman and Berk Simulations

Freedman and Berk (2008) (hereafter, FB) compared weighted and unweighted re-
gression approaches to estimating coefficients in parametric causal models. They
demonstrated that propensity score weighting can increase the bias and variance
of the estimators relative to unweighted regression, even when the true propensity
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score model is known. FB were concerned with how applied researchers were using
double robust estimators: to perform structural estimation using parametric models.
FB noted that this was far from the original intention of Robins and his collabo-
rators for double robust estimators. Robins et al. were estimating treatment effects
(contrasts) and using semiparametric model to perform the estimation. We use the
FB simulations to engage exactly that setting: we are estimating treatment effects
and we compare the performance of two semiparametric estimators, the TMLE and
C-TMLE, relative to alternative estimators. We replicated the original FB simula-
tion study and offer additional simulations based on modifications of their setup.
We should note up front that our intention is not to question the take-home point
of the FB article: Using double robust estimators to perform structural estimation is
fraught with difficulties. We explore different questions, including that of whether
nonparametric double robust estimators can be used to estimate treatment effects
without the observed instability of the usual estimators relying on the inverse prob-
ability of treatment weighting.

We examine the behavior of TMLE, C-TMLE, and A-IPTW, in addition to the
WLS and OLS estimators FB consider. The additive treatment effect in the FB sim-
ulations is defined nonparametrically as Ψ (P) = EP[EP(Y | A = 1,W) − EP(Y | A =
0,W)], where n i.i.d. copies of O = (W, A, Y) ∼ P0 represents the observed data,
with outcome Y , binary treatment assignment A, and covariates W.

FB simulation 1 presents weighted and unweighted linear regression results
based on the correct model and two misspecified parametric models, using a data-
generating distribution that has conditional treatment assignment probabilities that
come close to 0 and 1. We present results from applying each estimator discussed be-
low to FB simulation 1 as well as additional results using modified data-generating
distributions that provide additional insight into estimator performance.

21.3.1 Estimators

Given a linear regression model for E0(Y | A,W), the unweighted linear regression
(OLS) estimator is obtained with least squares regression, while the weighted lin-
ear regression (WLS) estimator is obtained with weighted least squares regression
assigning weight wi = 1/gn(Ai | Wi) to observation Oi = (Wi, Ai, Yi). The A-IPTW
estimator is given by

ψA−IPTW,n =
1
n

n∑
i=1

I(Ai = 1) − I(Ai = 0)
gn(Ai | Wi)

(Yi − Q̄0
n(Ai,Wi)) + Q̄0

n(1,Wi) − Q̄0
n(0,Wi),

where Q̄0
n(A,W) is a least squares regression estimator of Q̄0, the true conditional

mean of Y , given (A,W). The TMLE is a substitution estimator:

ψT MLE,n =
1
n

n∑
i=1

(Q̄∗n(1,Wi) − Q̄∗n(0,Wi)),
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where Q̄∗n is a targeted estimate of the true regression Q̄0(A,W) = E0(Y | A,W),
obtained by fluctuating the initial estimate, Q̄0

n, in a manner designed to reduce bias
in the estimate of the parameter of interest. A logistic fluctuation working model was
employed, guaranteeing that the TMLE Q̄∗n would remain within the bounds [a, b]
for the outcome Y , set by design, by the user, or based on the observed outcomes.
Since Y is generated from a normal distribution, the bounds were arbitrarily chosen
to be the [0.01, 0.99] quantiles of the observed values for Y in each simulated data
set, and Y was truncated by these quantiles. The truncated data set can now be
viewed as (W, A, Y), with Y ∈ [a, b] for known bounds [a, b]. The TMLE procedure
maps Y ∈ [a, b] into Y∗ = (Y − a)/(b − a) ∈ [0, 1], then regresses Y∗ onto A,W to
obtain an initial estimator of E0(Y∗ | A,W). Since the TMLE involves fluctuating the
logit of this initial estimator, the values of the initial estimator were bounded away
from 0 and 1 by truncating them from above and below at α = [0.005, 0.995]. Recall
that a TMLE is defined by a choice of submodel and loss function. Two TMLEs
were implemented. In the first TMLE, we used the logistic regression submodel
with clever covariate (2A − 1)/gn(A | W) and the quasi-log-likelihood loss function.
This TMLE of the additive effect was described in Chap. 7. The second TMLE used
the logistic regression submodel with clever covariate (2A−1), and the weighted
quasi-log-likelihood loss function, where the weights are 1/gn(Ai | Wi), i = 1, . . . , n.
We will denote this latter TMLE with TMLEw. The latter TMLE is a less aggressive
in weighting, and might therefore be more robust under violations of the positivity
assumption.

The C-TMLE is also a substitution estimator:

ψC−T MLE,n =
1
n

n∑
i=1

(Q̄∗n(1,Wi) − Q̄∗n(0,Wi)).

The C-TMLE is described in Chap. 19 and involves building a main term logis-
tic regression estimator of a conditional distribution of A in terms of a set of co-
variates that are still predictive of Y , after taking into account the initial estima-
tor. Two sets of C-TMLE results were obtained. For the first, labeled C-TMLE in
Tables 21.5–21.6, the covariate set W used to create the series of treatment mech-
anism estimators is restricted to main term covariates. In the second set, labeled
C-TMLE(augW), the set of main terms is augmented with four terms correspond-
ing to the propensity score estimate supplied to all other estimators and truncated
propensity scores, truncated at level (p, 1 − p), with p set to (0.10, 0.25, 0.50).

21.3.2 Simulations

Two data-generating distributions are defined. For each one, 250 samples of size
n = 1000 are drawn from the given data-generating distribution. The propensity
score g0 is estimated using the correct probit model for treatment, and the estimator
is denoted by gn. The correct linear regression statistical model includes A, W1, and
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W2 as main terms. Two increasingly misspecified models are defined, one with A and
W1 as main terms and one with only A as a main term. Estimates of the marginal
additive treatment effect are obtained based on an MLE fit of Q̄0 according to these
parametric models paired with the MLE gn of g0.

Freedman and Berk simulation 1. This simulation replicates FB simulation 1.
Both covariates, W1 and W2, confound the relationship between treatment and the
outcome, so one expects OLS to be biased when the regression model for Q̄0 is
misspecified. Incorporating estimated propensity scores should allow the remain-
ing estimators to be unbiased, at the cost of higher variance. Specifically, the data-
generating distribution is defined as follows:

Y = 1 + A +W1 + 2W2 + U, U ∼ N(0, 1),
P0(A = 1 | W) = Φ(0.5 + 0.25W1 + 0.75W2),
(W1,W2) is bivariate normal, N(μ, Σ),

with μ1 = 0.5, μ2 = 1, Σ =
[

2 1
1 1

]
,

where Φ is the CDF of the standard normal distribution, so that the treatment mech-
anism conforms to a probit model. These settings lead to finite sample violations of
the positivity assumption: conditional treatment probabilities g0(1 | W) = P0(A =
1 | W) range from 0.03 to 0.99995.

Freedman and Berk simulation 2. This simulation was designed to demonstrate
that weighting can introduce bias in the estimate of the additive treatment ef-
fect, even when the correct propensity score model is known. In this simulation,
P0(A = 1 | W) is between 0.0003 and 0.9997. The linear form of the relationships
between the covariates and the outcome is unchanged, but the strengths of those re-
lationships are altered to weaken the association between W1 and W2, and between
W2 and A, but strengthen the relationships between W1 and Y and W2 and Y . As in
simulation 2, W3 is associated with A, but not with the outcome Y . Specifically, the
data-generating distribution is defined as follows:

Y = 1 + A + 5W1 + 10W2 + U, U ∼ N(0, 1),
P0(A = 1 | W) = Φ(0.25W1 + 0.001W2 +W3),

(W1,W2) is bivariate normal, N(μ, Σ),with μ1 = 0.5, μ2 = 2, Σ =
[

0.1 1
1 1

]
.

21.3.3 Results

OLS, WLS, A-IPTW, TMLE, and C-TMLE were applied to each simulated data
set. In all simulations, when the model for the true conditional mean Q̄0 was cor-
rectly specified, OLS, the unweighted parametric estimator, had the smallest MSE,
but when Q̄0 was misspecified, all other estimators outperformed OLS with respect
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to both MSE and bias. Simulation 1 results suggest that TMLE and C-TMLE are
more robust than WLS and A-IPTW to practical violations of the positivity assump-
tion. C-TMLE results in simulation 2 demonstrate that performance improves under
lack of positivity by using a procedure that estimates only the necessary portion
of the treatment mechanism. C-TMLEs’ MSE and variance are superior to those
of the other estimators that incorporate propensity score estimates. Under extreme
misspecification (misspecified model 2) bias is almost entirely removed. Addition-
ally, augmenting the covariate set with truncated propensity scores improves the
performance of the C-TMLE. This augmentation confers the greatest benefit when
the parametric model for Q̄0 is most severely misspecified. The results for the two
simulations are presented in Tables 21.5 and 21.6. It is also of interest to note that
for the truncated gn setting, the TMLE that incorporates gn in the clever covariate
performs better than the TMLE that moves gn into the weight, while the opposite is
true for the unbounded gn. Since it is theoretically sound to use some bounding, this
particular simulation seems to favor the first type of TMLE.

Table 21.5 Freedman and Berk simulation 1, 250 samples of size 1000

gn unbounded gn bound = (0.025, 0.975)
Bias Var MSE RE∗ Bias Var MSE RE

Unadj 4.061 0.046 16.538 – 4.061 0.046 16.538 –

Correct model

OLS 0.010 0.009 0.010 1.000 − − − −
WLS 0.012 0.039 0.039 4.144 0.016 0.024 0.024 2.526
A-IPTW 0.019 0.058 0.059 6.153 0.014 0.017 0.017 1.766
TMLE 0.190 0.475 0.509 53.460 0.019 0.027 0.027 2.834
TMLEw 0.016 0.047 0.048 4.994 0.015 0.018 0.018 1.909
C-TMLE 0.004 0.014 0.014 1.449 0.013 0.013 0.013 1.410
C-TMLE(augW) 0.011 0.010 0.010 1.092 0.014 0.014 0.014 1.501

Misspecified model 1

OLS 1.138 0.020 1.314 1.000 − − − −
WLS 0.133 0.115 0.133 0.101 0.295 0.040 0.127 0.096
A-IPTW 0.120 0.344 0.357 0.272 0.433 0.033 0.220 0.167
TMLE −0.588 0.380 0.724 0.551 −0.001 0.048 0.048 0.037
TMLEw 0.134 0.177 0.194 0.148 0.359 0.032 0.161 0.123
C-TMLE 0.262 1.516 1.579 1.202 −0.412 0.098 0.267 0.203
C-TMLE(augW) −0.242 1.068 1.122 0.854 −0.077 0.054 0.060 0.046

Misspecified model 2

OLS 4.061 0.046 16.538 1.000 − − − −
WLS 0.431 0.660 0.843 0.051 1.070 0.091 1.234 0.075
A-IPTW 0.381 3.039 3.172 0.192 1.507 0.130 2.402 0.145
TMLE −0.451 1.392 1.590 0.096 −0.132 0.120 0.137 0.008
TMLEw 0.430 1.226 1.406 0.085 1.260 0.105 1.693 0.102
C-TMLE 1.885 5.358 8.889 0.537 0.456 0.276 0.482 0.029
C-TMLE(augW) −0.046 0.158 0.160 0.010 0.011 0.063 0.063 0.004

*Relative to OLS estimator using the same model specification



21 Propensity-Score-Based Estimators and C-TMLE 363

Table 21.6 Freedman and Berk simulation 2, 250 samples of size 1000

gn unbounded gn bound = (0.025, 0.975)
Bias Var MSE RE Bias Var MSE RE

Unadj 3.022 0.688 9.816 – 3.022 0.688 9.816 –

Correct model

OLS 0.002 0.004 0.004 1.000 − − − −
WLS 0.002 0.012 0.012 3.175 0.004 0.009 0.009 2.476
A-IPTW 0.004 0.018 0.018 4.694 0.004 0.009 0.009 2.470
TMLE 0.001 0.067 0.067 17.676 0.002 0.011 0.011 3.003
TMLEw 0.002 0.015 0.015 4.027 0.003 0.009 0.009 2.490
C-TMLE 0.002 0.004 0.004 0.991 0.002 0.004 0.004 0.989
C-TMLE(augW) 0.001 0.004 0.004 1.044 0.001 0.004 0.004 1.059

Misspecified model 1

OLS 0.024 0.447 0.446 1.000 − − − −
WLS −0.108 0.500 0.510 1.143 −0.037 0.223 0.224 0.501
A-IPTW −0.144 0.830 0.847 1.898 −0.037 0.223 0.224 0.502
TMLE −0.127 1.077 1.089 2.440 −0.053 0.291 0.293 0.656
TMLEw −0.134 0.678 0.693 1.553 −0.039 0.227 0.228 0.511
C-TMLE −0.077 0.050 0.056 0.125 −0.077 0.047 0.053 0.118
C-TMLE(augW) −0.091 0.042 0.050 0.112 −0.094 0.045 0.054 0.120

Misspecified model 2

OLS 3.022 0.688 9.816 1.000 − − − −
WLS −0.077 1.686 1.685 0.172 0.186 0.392 0.425 0.043
A-IPTW −0.167 3.727 3.740 0.381 0.232 0.406 0.459 0.047
TMLE −0.940 1.357 2.235 0.228 −0.294 0.555 0.639 0.065
TMLEw −0.120 2.181 2.187 0.223 0.180 0.400 0.430 0.044
C-TMLE 0.002 0.073 0.073 0.007 −0.005 0.021 0.021 0.002
C-TMLE(augW) −0.049 0.073 0.075 0.008 −0.033 0.045 0.046 0.005

The C-TMLE outperforms all of the other estimators except for when the correct
OLS model is used. And the performance of the C-TMLE is never poor in any sim-
ulation. The usual instability problems of weighted estimators has been minimized.
The combination of properties in the C-TMLE proved especially robust in these
Monte Carlos: it is a double robust (asymptotically efficient) substitution estimator
that respects global constraints, makes use of a logistic fluctuation to respect the
bounds even in finite samples, and performs internal collaborative estimation for g0.

Domain knowledge can be incorporated into both stages of the TMLE and
C-TMLE procedures. One example is the use of the augmented covariate set when
the true treatment assignment mechanism is known. The strength of this approach is
most clearly illustrated in simulation 2 with Q̄0 modeled with misspecified model 2,
where the right thing to do is adjust for all covariates, yet that causes strong positiv-
ity violations. In this case, the inclusion of truncated propensity scores in W offered
a more refined choice beyond simply including or excluding an entire covariate.
These additional terms can be helpful in situations where including a particular co-
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variate causes an positivity violation, but in fact, experimentation is lacking in only
some portion of the covariate values.

21.4 Discussion

Researchers spend too little time on design and too much time on analysis in an
attempt to overcome design defects. Sometimes – and in some fields, such as the
social sciences, often – the correct answer is that the data at hand cannot answer the
research question. Often new data must be gathered with a better design, ideally a
design in which the researcher exploits natural or intentional variation to mitigate
confounding instead of having to make a selection on observables assumption.

An essential goal of a scientific study is objectivity. Relying on an estimation
strategy where one adjusts the model specification or estimator after one has ob-
served estimated treatment effects cannot be considered objective. However, this
objectivity is fully addressed by any estimator of the target parameter that is a priori
specified, or at most influenced by ancillary statistics, so that the pursuit of objec-
tivity itself should not limit the choice of estimators. The utilization of an a priori
specified machine (and, specifically, super) learning algorithm to perform the mod-
eling helps to mitigate the data-snooping concerns: the estimation procedure is fully
specified before the analyst observes any final outcome data or estimated treatment
effects. Having resolved the concern for objectivity, the remaining concern then
centers on the instability of most double robust estimators when the data are sparse.
C-TMLE is more stable than the other estimators considered here, and the TMLE
and C-TMLE with logistic fluctuations perform well in these simulations.

The TMLE and C-TMLE and their accompanying technology, such as the super
learner, are powerful and promising tools that overcome some of the common ob-
jections to double robust estimators. Demonstrating that the TMLE and C-TMLE
perform well in general when the positivity assumption is violated is difficult be-
cause sparsity is a finite sample concern, and the efficiency and double robustness
of TMLE and C-TMLE are asymptotic statistical properties, but the fact that these
estimators are also substitution estimators (i.e., obtained by plugging an estimator
of the data-generating distribution into the statistical model) explains the observed
robustness. In particular, a substitution estimator puts bounds on the influence of
one observation fully implied by the statistical model and the target parameter as a
mapping on that statistical model. We hope that by showing that these estimators
perform well in simulations created by other researchers for the purposes of show-
ing the weaknesses of double robust estimators, we provide probative evidence in
support of TMLE and C-TMLE. Indeed, we also extended the original simulations
to make the estimation problems more challenging. Of course, much can happen in
finite samples, and we look forward to exploring how these estimators perform in
other settings. Of particular interest are applications of this technology to applied
problems.
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Chapter 22

Targeted Methods for Biomarker Discovery

Catherine Tuglus, Mark J. van der Laan

The use of biomarkers in disease diagnosis and treatment has grown rapidly in recent
years, as microarray and sequencing technologies capable of detecting biological
signatures have become more effective research tools. In an attempt to create a level
of quality assurance with respect to biological and more specifically biomarker re-
search, the FDA has called for the development of a standard protocol for biomarker
qualification (Food and Drug Administration 2006). Such a protocol would define
“evidentiary” standards for biomarker usage in areas of drug development and dis-
ease treatment and provide a standardized assessment of a biomarker’s significance
and biological interpretation. This is especially relevant for RCTs, where the pro-
tocol would prohibit the use of unauthenticated biomarkers to determine treatment
regime, resulting in safer and more reliable treatment decisions (Food and Drug Ad-
ministration 2006). Consequentially, identifying accurate and flexible analysis tools
to assess biomarker importance is essential. In this chapter, we present a measure
of variable importance based on a flexible semiparametric model as a standardized
measure for biomarker importance. We estimate this measure with the TMLE.

Many biomarker discovery methods only measure the association between
the marker and the biological outcome. However, a significant association is
often difficult to interpret and does not guarantee that the biomarker will be
a suitable and reliable drug candidate or diagnostic surrogate. This is espe-
cially true with genomic data, where genes are often present in multiple path-
ways and can be highly correlated amongst themselves. Applying association-
based methods to these data will often lead to a long and ambiguous listing of
biomarkers, which can be expensive to analyze.

Ideally, biomarker discovery analyses should identify markers that systematically
affect the outcome through a biological pathway or mechanism, in other words,
markers causally related to the outcome of interest. Once these markers are identi-
fied, they can be further analyzed and eventually applied as potential drug targets or
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prognostic markers. Due to the complex nature of the human genome, this is not a
straightforward task, and certain assumptions are required to identify a causal effect.

In general, causal effects are often difficult if not impossible to estimate correctly,
especially based on high-dimensional and highly correlated genomic data structures.
The required identifiability assumptions such as the time-ordering assumption, the
randomization assumption, and the positivity assumption are often only fully real-
ized in RCTs, making their utility in a standard protocol limited. However, measures
that are causally interpretable in RCTs can still be biologically interpretable based
on observational data as measures of importance.

Here, we present the typical representation of a causal effect as a potential mea-
sure of importance for a biomarker A:

Ψ (P0)(a) = E0[E0(Y | A = a,W) − E0(Y | A = 0,W)].

Given the observed data structure O = (W, A, Y) ∼ P0, this measure corresponds to
the effect of a biomarker (A) on the outcome (Y), adjusting for confounders (W).
Here, A can represent a single biomarker or set of biomarkers. This chapter will fo-
cus on the univariate case. This measure can be estimated in semiparametric models
for P0, and with formal inference, using the TMLE.

In this chapter, we present the TMLE of the variable importance measure
(VIM) above under a semiparametric regression model, which can accommo-
date continuous treatment or exposure variables often seen in biomarker anal-
yses. We will primarily focus on its application to biomarker discovery. How-
ever, this method also has important applications to clinical trial data when
the treatment is binary or continuous, and when one wishes to test for possi-
ble effect modification by baseline variables, for instance, treatment modified
by biomarkers measured at baseline.

We demonstrate the efficacy and functionality of this VIM and its TMLE in a sim-
ulation study. The simulations provide a performance assessment of our estimated
measure under increasing levels of correlation of A with W. We show the accuracy
with which the TMLE of the VIM can detect “true” variables from amongst increas-
ingly correlated “decoy” variables. Additionally, we also evaluate the accuracy of
three commonly used methods for biomarker discovery under the same conditions:
univariate linear regression, lasso regression (Efron et al. 2004), and random forest
(Breiman 1999, 2001a). We also apply the method in an application to a leukemia
data set (Golub et al. 1999).

22.1 Semiparametric-Model-Based Variable Importance

Previous chapters have focused on the TMLE of the above VIM in a nonparametric
model for variables A that are discrete; for instance, A might be an indicator for
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receiving a particular treatment or exposure. However, particularly in the worlds
of genomics and epidemiology, the variable of interest is often continuous. In this
chapter, we present a semiparametric-regression-model-based measure of variable
importance that is flexible enough to accommodate the typical data structures in
genomics, epidemiology, and medical studies.

This VIM was proposed in van der Laan (2006) and estimated with the TMLE
in van der Laan and Rubin (2006). These semiparametric regression models have
been considered in Robins et al. (1992), Robins and Rotnitzky (2001), and Yu and
van der Laan (2003). Under the semiparametric regression model, only the effect
of A on the mean outcome of Y needs to be modeled with a parametric form, while
the remainder of the conditional mean of the outcome Y remains unspecified. The
semiparametric nature can accommodate both continuous and binary variables of
interest as well as incorporate effect modification by W in a straightforward and
interpretable manner.

We assume
E0(Y | A,W) = m(A,V |β0) + r(W),

for a specified parametric model {m(A,V | β) : β} that satisfies m(0,V | β) = 0
for all β, and unspecified function r(W). Here V is a user-supplied set of ef-
fect modifiers contained in the covariate vector W. This is equivalent to assuming
E0(Y | A = a,W) − E0(Y | A = 0,W) = m(a,V | β0). For our purposes, we as-
sume a linear form for m(A,V | β0), which puts this model in the class of partial
linear regression models. Given this semiparametric form with user-supplied m(.),
the marginal variable importance of a particular A is defined generally as

μ0(a) = EW,0(m(a,V | β0)).

However, it is important to remember that the maximum likelihood estimator is
developed under the assumption that m() is correct.

Given an estimator βn of β0, an estimate of this parameter of interest at a partic-
ular A = a is defined as

μn(a) =
1
n

n∑
i=1

(m(a,Vi | βn)).

If we assume a linear model m(A,V | β) = Aβ�V , the variable importance
can be represented as a linear curve at the level a for the biomarker given by
EW,0(m(A = a,V | β0)) = aβ�0 E0V . Thus, given this linear model, the VIM is identi-
fied by a simple linear combination (i.e., β�0 E0V), and formal statistical inference is
obtained with a straightforward application of the delta method. Further details are
provided in Tuglus and van der Laan (2008). Here, we focus on the simplest linear
case m(A,V | β) = Aβ, where the marginal importance of A can be represented by
single coefficient value β.
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22.2 The TMLE

The data structure is O = (W, A, Y) ∼ P0 and the statistical model M consists of
all probability distributions P for which Q̄(P)(A,W) = EP(Y | A,W) is of the form
Aβ + EP(Y | A = 0,W) for some β. The target parameter Ψ : M → R is defined as
Ψ (P) = β(P), the β-coefficient in front of A. This target parameter has an efficient
influence curve at P that is given by D∗(P)(O) = 1/σ2(A,W)H∗(g(P))(A,W)(Y −
Q̄(P)(A,W)), where

H∗(g(P))(A,W) =
d

dβ
m(A,V | β) −

EP( d
dβm(A,V | β)/σ2(A,W) | W)

EP(1/σ2(A,W) | W)
,

g(P)(A | W) = P(A | W), and σ2(A,W) is the conditional variance of Y , given
(A,W). It is of interest to note that σ2 cancels out in the efficient influence curve if
σ2(A,W) = σ2(W) is only a function of W.

The TMLE requires selecting a loss function for Q̄, L(Q̄), and a submodel
{Q̄g(ε) : ε} ⊂ M through Q̄ at ε = 0, so that the linear span of d/dε L(Q̄g(ε)) at
ε = 0 includes this efficient influence curve 1/σ2H∗(g)(Y − Q̄(A,W)). We select the
squared error loss function, L(Q̄)(O) = (Y − Q̄(A,W))2/σ2(A,W), and the univariate
linear regression submodel, Q̄g(ε) = Q̄ + εH∗(g) with “clever covariate” H∗(g). The
TMLE is now defined as usual and the iterative TMLE algorithm converges in a
single step.

For the sake of implementation, we restrict ourselves to the choice σ2 = 1 (that
is, we are estimating the nuisance parameter σ2 with the trivial constant 1). For this
choice σ2 = 1, we have that the clever covariate H∗(g) = (A − Eg(A | W)) only
depends on g through the conditional mean of A, given W. The consistency of the
TMLE does not rely on σ2 since the efficient influence curve is an unbiased estimat-
ing function in β for each choice of σ2: the TMLE is consistent if either Q̄0 or g0 is
estimated consistently. However, as a consequence of not estimating σ2, even if both
Q̄0 and g0 are consistently estimated, the TMLE will only be efficient if σ2

0(A,W) is
only a function of W.

Implementation. In biomarker discovery analyses, one is interested in assessing
the VIM for a whole collection of biomarkers. For each biomarker, one defines a
corresponding adjustment set (e.g., all other biomarkers). We outline the TMLE
implementation below for a single biomarker A and corresponding adjustment set
W. There are three initial components necessary for applying TMLE to estimate the
parameter of interest.

1. A model m(A,V | β) satisfying m(0,V | β) = 0 for all β and V . In this case,
it is defined as m(A,V | β) = βA.

2. An initial regression estimate of Q̄0(A,W) = E0(Y | A,W) of the form
Q̄0

n(A,W) = m(A,V | β0
n) + r0

n(W). The initial regression estimate of the
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proper form may be obtained from semiparametric regression methods
such as those of Hastie and Tibshirani (1990), among others, or by using
methods like DSA, which allow the user to fix a portion of the regres-
sion model. However, we recommend a more flexible approach that allows
one to use a wider range of data-adaptive software. This approach is out-
lined as follows. (i) Obtain an initial regression estimate of Q̄0(A,W) of
general form using data-adaptive machine learning algorithms such as the
super learner, (ii) evaluate r0

n(W) = Q̄0
n(A = 0,W), and (iii) determine the

least squares regression estimate β0
n for the linear regression working model

Q̄0
n(A,W) = m(A,W | β) + αQ̄0

n(A = 0,W) + error, treating Q̄0
n(A = 0,W)

as a covariate, and α and β as unknown coefficients.
3. An estimate of the conditional mean ḡ0(W) = E0(A | W).

Given the obtained initial estimator Q̄0
n of the correct form, the TMLE is now ob-

tained as follows:

1. Estimate the “clever covariate” that will allow us to update the initial re-
gression in a direction that targets the parameter of interest. In this case,
the clever covariate is defined as

H∗(A,W) =
d

dβ
m(A,V | β) − E

(
d

dβ
m(A,V | β)|W

)
,

which for this particular form m(A,V | β) = βA simplifies to H∗(ḡ)(A,W) =
A − ḡ(W), where ḡ(W) = Eg(A | W). Let ḡn be the estimator of the true
conditonal mean ḡ0 of A, given W.

2. Use least squares regression to regress the outcome Y onto the clever co-
variate H∗(ḡn)(A,W) using Q̄0

n(A,W) as offset, and define the resulting co-
efficient in front of the clever covariate as εn.

3. Update the initial estimate β1
n = β

0
n + εn, r1

n = r0
n − εnḡn, and thereby the

corresponding regression Q̄1
n(A,W) = Q̄0

n(A,W)+εnH∗(ḡn)(A,W). Iteration
of this updating procedure does not result in further updates of Q̄1

n. As a
consequence, the TMLE of Q̄0 is given by Q̄∗n = Q̄1

n.

Statistical inference. The TMLE Q̄∗n = (β∗n, r
∗
n) solves the estimating equation 0 =

PnD∗(Q̄∗n, ḡn), where D∗(Q̄∗n, ḡn)(W, A, Y) = H∗(ḡn)(W, A)(Y −m(A,V | β∗n)− r∗n(W)).
We can represent the efficient influence curve D∗(Q̄∗n, ḡn) = D(β∗n, r

∗
n, ḡn) as an esti-

mating function for β. As a consequence, if one is willing to assume that ḡn is con-
sistent, then statistical inference can be based on the conservative influence curve
IC(O) = −c−1D(β0, r∗, ḡ0) with scale factor c = E0 (d/dβ0 D(β0, r∗, ḡ0)), and r∗

represents the possibly misspecified limit of r∗n.
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The asymptotic covariance of
√

n(β∗n−β0) can be estimated with the empirical es-
timate of the covariance matrix of this influence curve: Σn =

1
n
∑n

i=1 ICn(Oi)ICn(Oi)�.
For the sake of statistical inference we can use as working model

√
n(β∗n − β0) ∼

N(0, Σn). For example, one may test the null hypothesis H0 : β0( j) = 0, using a
standard test statistic Tn = (

√
nβ∗n( j))/

√
Σn( j, j), which is asymptotically N(0, 1) un-

der the null hypothesis. Similarly, a multiple testing methodology can be applied
based on the influence curves of the biomarker-specific variable importance estima-
tor across a large collection of biomarkers. Statistical inference can also be based
on the bootstrap, but in high-dimensional biomarker analyses it is important to have
a computational friendly method available as well.

22.3 Variable Importance Methods

In this section we compare TMLE to three other methods commonly used for de-
termining variable importance in biomarker discovery analyses: univariate linear re-
gression, lasso regression with cross-validation-based model selection (Efron et al.
2004) using R package lars (Efron and Hastie 2007), and random forest (Breiman
1999, 2001a) using R package randomForest (Liaw and Wiener 2002).

For each component of the covariate vector, using each of the methods, we assess
the variable importance of this component, controlling for all other variables. For
the univariate regression and TMLE methods that report p-values we may adjust
for multiple testing using Benjamini–Hochberg step-up FDR-controlling procedure
(Benjamini and Hochberg 1995) implemented with the mt.rawp2adjp() R function
in package multtest (Ge and Dudoit 2002), and thereby classify the biomarkers as
important or not accordingly. However, since the lasso method and random forest
method do not allow for cutoffs based on valid p-values, we will focus on comparing
the method-specific ranked lists, ranked by VIM or p-value when available.

Univariate linear regression (lm). Marginal variable importance is represented
by the coefficient and p-value resulting from the univariate linear regression fit,
En(Y | A) = βnA. P-values are calculated using a standard t-test. This method
does not account for any confounding and will often misclassify biomarkers cor-
related with the “true” biomarkers as significant.

Penalized regression (lasso). Marginal variable importance is represented by the
coefficient of A in a lasso regression main term fit of Q̄0(A,Ws) = E0(Y | A,Ws),
with Ws ⊂ W representing the subset of W found significant according to their
univariate regression on Y at p-value cutoff α = 0.05. Lasso does not provide
any formal statistical inference, therefore, p-values are not recorded. Lasso does
attempt to account for confounding, but will only allow for main term linear
regression fits with maximally n−1 nonzero coefficient values, making its ap-
plicability to high-dimensional data limited (Tibshirani 1996). Lasso is also a
maximum likelihood method that focuses on estimating the overall regression
E0(Y | A,W), and not the parameter of interest.
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TMLE. The VIM is obtained by applying a TMLE to the initial regression esti-
mator provided by the lasso fit of Q̄0(A,Ws). We estimate ḡ0(W) = E0(A | W)
using lasso regression as well. P-values are calculated using a standard t-test.

Random forest (RF1, RF2). Random forest is a tree-based algorithm commonly
used in biomarker discovery analyses, though it does not estimate the same mea-
sure as lm, lasso, or TMLE. Due to the nature of random forest, there is no
guarantee that all biomarkers will receive a measure of importance. Also, as with
lasso, no formal statistical inference is available. Two measures of importance,
RF1 and RF2, are provided by the R function randomForest(), and we used the
default setting with 500 trees. Random forest provides two measures of impor-
tance based on the perturbing effect the variable of interest has on overall classi-
fication error and node splits. The first, denoted RF1, is based on an“out-of-bag”
error rate, and the second, RF2, is based on the accuracy of the node split (both
with no p-values provided) (Breiman 1999, 2001a; Liaw and Wiener 2002).

22.4 Simulations

We simulate data to compare the four approaches for variable importance analysis
under increasing correlation levels among the biomarkers, using a diagonal block
correlation structure. The structure of the simulated data allows us to study the ef-
fects that both correlated and uncorrelated variables have on the reported impor-
tance of the true variables. For each approach, the biomarkers will be ranked by
the resulting importance measure and p-value (when available). The sensitivity and
specificity of methods will be compared based on both p-value and rank-based cut-
off values, and will be summarized using ROC plots. We will also determine the
ability of each approach to identify the true variables and each variables true im-
portance rank by comparing the length of list required to label all true variables as
“important.”

The data structure is defined as O = (W∗, Y) ∼ P0, with a 100-dimensional
covariate vector W∗ and univariate outcome Y . The sample size is set at n = 300. The
covariate vector W∗ is simulated from a multivariate normal distribution with block
diagonal correlation structure and mean vector created by randomly sampling mean
values from {0.1, 0.2, ..., 9.9, 10.0, 10.1, ......, 50}, resulting in K = 10 independent
clusters of 10 variables, each variable having unit variance, and any pair of variables
within the cluster has correlation ρTRUE . The outcome Y is simulated from a main
effect linear model using one variable from each of the K clusters. These K variables
are designated as “true variables.” The importance of a variable is determined by its
coefficient value in the linear regression of Y . Two sets of values are used: a constant
value {βk = 4 : k = 1, ..., 10} and an increasing set {βk = k : k = 1, ..., 10}. A normal
error with mean zero and variance σ2

Y is added as noise. Simulations are run for
ρTRUE = 0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, and σ2

Y = 10, using both sets of
coefficient values.
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For each setting of {ρ, σY } we simulated 100 data sets of size n = 300. The
recorded importance measures and p-values are translated into a list of ranks, and
the ranks are averaged over the 100 iterations. A rank of one is the largest im-
portance value or smallest p-value. Sensitivity and specificity calculations for each
simulation are also determined for each simulated data set and averaged across the
100 simulated data sets to produce the final estimates. Simulation results are sum-
marized here in terms of area under the curve (AUC) and length of list.

AUC. The overall performance of a ranked list is often summarized in terms of
the AUC, the area under the curve derived from the basic ROC curve, which plots
the true positive rate (sensitivity) by the false positive rate (1-specificity) as a func-
tion of the cutoff for the list.Under pure noise conditions the AUC= 0.5, indicat-
ing that at any threshold the false positive and true positive rates are equal (ran-
dom classifier). The more convex the curve becomes, the higher the AUC, and
the better the ranked list, and a perfect ranked list will have AUC = 1. The cal-
culated AUC values are plotted vs. correlation for each of the five methods using
importance measure importance rank and p-values when available for correlations,
ρTRUE ∈ {0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9}. From Fig. 22.1 we can see that

lasso

Fig. 22.1 AUC value from ROC curves by pairwise correlation ρ = 0, ..., .9, completed for ranking
by measure (top), ranking by p-value (middle), and ranking by p-value using p-value cutoff, where
σY = 10, n = 300. Plots are shown for constant β = 4, but results are comparable when β =
{1, ..., 10}
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the TMLE performs well up to ρ = 0.6, performing only marginally better than
lasso for ρ > 0.2, but with AUC visibly greater than random forest and lm as the
correlation increases. As expected, lm is most susceptible to increases in correla-
tion, performing perfectly when the correlation between biomarkers equals zero but
failing consistently as the correlation increases, reaching below 0.8 by ρ = 0.5.

Average length of list. We can also compare the method-specific ranked lists of
biomarkers based on the average cutoff for the list required to capture all “true”
variables. Having a short cutoff allows the biologist to spend money analyzing the
top genes with confidence, knowing that the most important genes are at the top of
the list. The average required list length to find all ten “true” variables is plotted vs.
correlation for all five measures and two p-value average ranked lists. These plots
are shown for both constants βtrue = 4 and βtrue = {1 . . . 10}. More detailed required
length of lists for capturing the top k true variables, k = 1, ..., 10, for each available
ranked list (rank by measure, rank by p-value) at each correlation level, as well as
plots of the average rank and importance value, can be found in Tuglus and van der
Laan (2008).

Length of list is a direct reflection of the type I error or false discovery rate
associated with different cutoffs for the ranked lists of variables. Overall, the TMLE
performs well up to correlations of 0.9, though the improvement over lasso is less
clear when βTRUE is constant (Figs. 22.2(a) and 22.2(b)). In the case where βTRUE =

{1, ..., 10}, (Figs.22. 2(c) and 22.2(d)), the improvement of TMLE over lasso is more
pronounced, but detection of the first variable (with the lowest β value) is difficult
for all methods. When ranking by measure or p-value, all methods have their lowest
list length around 20 variables. In contrast, when β was constant at 4, the lowest list
length was near its minimum at 10. The shift in list length is due to the importance
value for the variable associated with β = 1. At such a high noise level (σY = 10),
the lower importance values are more difficult to distinguish from the noise. This is
apparent by comparing the average importance rank and average importance value
for the variable with β = 1 (Tuglus and van der Laan 2008). The rank is much higher
than 10, but the value is close to one as it should be. In general, the TMLE has the
shortest list and is less affected by increases in correlation between the biomarkers
than any other methods.

Though TMLE performs better than the three other methods, it is still sensitive to
more extreme correlations (0.7–0.9). Our simulations show a small increase in bias
for the measure of the true variables at higher correlations (see Tuglus and van der
Laan 2008). However, in practice, high correlation can adversely affect the TMLE
estimate due to violation of the positivity assumption. The increased length of the
variable list when ranked by importance measure at correlations 0.8 and 0.9 indi-
cates that the TMLE cannot distinguish the true variable from among a group of
variables when the correlation is very high. Positivity violations or strong pairwise
correlations can often be avoided if the “problem” variables (the variables highly
correlated with the biomarker of interest A) are removed from the set of confounders
(W). One simple method is to apply a correlation cutoff, where all W whose corre-
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lasso

(a) VIM, βTRUE constant (b) p-value, βTRUE constant

lasso

(c) VIM, βTRUE variable (d) p-value, βTRUE variable

Fig. 22.2 Total length of list required to have all ten true variables in the list by ρ = 0, ..., 0.9
σY = 10, βTRUE = 4, (a) ranking by importance measure and (b) ranking by p-value. Then βTRUE
set at {1, ..., 10} and plotted (c) ranking by importance measure and (d) ranking by p-value

lation with A is greater than a particular correlation (ρδ) are removed from the set of
possible confounders for variable A prior to the application of the TMLE method.

The restriction of ρδ results in the algorithm’s identifying all true variables as
well as variables whose correlation with the true variables is higher than ρδ. Once
we select ρδ, we are conceding that variables with correlations greater than ρδ cannot
be teased apart to determine the true underlying (important) variable. By applying
the correlation cutoff we are redefining our parameter. It is no longer the singular
effect of A. Instead, we admit that, given the data, the true important variable can-
not be targeted when the data are highly correlated and redefine our measure as
a Wδ-adjusted importance where Wδ is a newly defined subset of W based on the
correlation cutoff. Given this new definition of the parameter, important variables
according to the Wδ-adjusted method include all important variables as well as all
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variables whose correlation to an important variable is greater than a particular delta
cutoff.

In the next section, we apply the correlation cutoff (ρδ = {0.5, 0.75}) to a leukemia
application, where the truth is unknown and the data are noisy. In practice, it is
reasonable to label all potentially relevant variables as important when their effects
cannot be disentangled. Setting a correlation cutoff explicitly specifies and acknowl-
edges the method’s threshold to detect the important variables among highly corre-
lated confounders. We recommend that future applications use a larger set of ρδ
values and provide importance measures and rankings for all variables given each
ρδ, or data-adaptively select ρδ using the methods outlined in Bembom et al. (2008).

22.5 Leukemia Data Application

Biomarker data are generally high-dimensional and highly correlated; therefore, cer-
tain prescreening is necessary prior to performing a biomarker analysis. We are pri-
marily concerned with screening the potential covariate set W. Reducing this set to
relevant biomarkers can not only decrease computation time but, also result in better
estimates from data-adaptive algorithms.

We want to reduce this set of covariates to include only potential confounders.
Potential confounders for a given A are any W that are related to both Y and A. How-
ever, it can be time consuming to screen the confounder set for every A separately.
We recommend screening only in terms of the association of the biomarkers with
Y . This can be accomplished by discounting any components of W that are not sig-
nificantly associated with Y based on simple univariate or bivariate (e.g., including
A) regression, or a combination of results from multiple methods (e.g., all variables
significant according to at least one of the following methods: linear regression,
random forest, or lasso).

The above screening can also serve to reduce the number of variables for which
we estimate variable importance (i.e., variables A). Removing these variables pre-
sumes they have insignificant importance. If the data are reduced based on the out-
come Y , this reduction must be accounted for in any subsequent multiple testing pro-
cedures. An easy way to accomplish this is, after estimating the importance measure
and calculating the associated p-values for a subset of the full variable set, automat-
ically assign all prescreened variables (i.e., variables with no estimate) a p-value of
one. Then apply the Benjamini–Hochberg step-up FDR-controlling multiple test-
ing procedure (Benjamini and Hochberg 1995) to the full set of p-values as usual.
This two-stage FDR multiple testing procedure still controls the FDR, and, if the
prescreening has only discounted variables that would have had p-values greater
than the cutoff, the procedure will also retain the type II control of the Benjamini–
Hochberg step-up FDR-controlling procedure. See Tuglus and van der Laan (2009)
for more details on the reasoning behind and performance of this procedure.

The data set from Golub et al. (1999) has been used in many papers for method-
ological comparison due to its relevance, limited gene set, and biological inter-
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pretability. One goal in the original study was to identify differentially expressed
genes in patients with acute lymphoblastic leukemia (ALL) and acute myeloid
leukemia (AML). Gene expression levels were measured using Affymetrix oligonu-
cleotide arrays with 6,817 human genes for n = 38 patients (27 ALL, 11 AML).
The gene expression set was preprocessed and reduced to 3,051 genes according to
methods described in Dudoit et al. (2002).

This analysis mirrors the procedure implemented in the previous simulations. We
first apply univariate linear regression to all genes and control for multiple testing
using Benjamini–Hochberg step-up FDR controlling procedure. This resulting set
contains 876 genes. To minimize bias due to positivity violations, a simple correla-
tion cutoff of ρc = {0.5, 0.75} is applied.

As in the simulation, we model the importance as m(A,V | β) = βA for all A.
For the initial Q̄0

n(A,W) and ḡn(Ws) we use a polynomial spline fit. We recommend
using a data-adaptive algorithm such as super learner over lars/lasso in application,
since in reality the structure of E0(Y | A,W) and E0(A | W) may have more than just
additive main effects.

In this application, the outcome is binary, ALL (Y = 0) vs. AML (Y = 1);
therefore we can interpret β0a as the excess risk P0(Y = 1 | A = a) − P0(Y =
1 | A = 0). The TMLE update presented in this chapter uses a linear regression
working model, thereby not respecting the known probability bounds. For the sake
of discovery, this limitation might not be that important. However, it is of interest
to develop VIMs and the corresponding TMLE specifically designed for binary and
bounded continuous outcomes.

The TMLEs of the VIMs and corresponding p-values are recorded and adjusted
for multiple testing using Benjamini–Hochberg step-up FDR-controlling procedure.
We selected all genes with adjusted p-values less than or equal to 0.05 and then
ranked the selected set of genes by their absolute importance measures. The same
method is used to rank genes according to the univariate regression measures, and
p-values. RF1 and RF2 importance measures are simply ranked.

Using a p-value cutoff of 0.05, TMLE results in 272 significant genes at ρc = 0.5
and 225 significant genes at ρc = 0.75, while univariate regression identifies 681
significant genes. It is difficult to determine which list is better, especially when
the lists include hundreds of genes. In this analysis, we compare the top then of
each list in an effort to compare their biological relevance. In any given list, we
include the top ten genes of the particular method along with their ranks for all
other methods. For many of the genes, these ranks vary greatly over the different
methods. By consulting the literature, we hope to gain insight on the biologically
validity of each list. The top ten genes according to their importance ranking for lm,
RF1, RF2, and TMLE (ρc = {0.5, 0.75}) are shown in Tables 22.1–22.5.

Among the top ten genes according to the univariate regression results, CSTA,
CD33, MYB, and ELA2 have all been associated with various types of cancer in the
literature in previous quantitative analyses. CSTA has been proposed as a diagnostic
and prognostic biomarker for cancer (Kos and Lah 1998). CD33 antigen has been
shown in vitro to induce apoptosis in AML cells (Vitale et al. 2001). MYB is the
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homolog of an avian viral oncogene (Clappier et al. 2007), and ELA2 has been
related to acute promyelocytic leukemia (Lane and Ley 2003).

Among the top 10 genes according to RF1 and RF2, all genes in RF1 were also
in the top 10 for RF2, except CBX1 was replaced by CSTA in the list for RF1.
CSTA was also in the top 10 of lm. Out of the top 10 the following genes have been
associated with various cancers: TCF3, TOP2B, CCND3, and CSTA. Chromosomal
abnormalities in TCF3 have been linked to T-cell and B-cell ALL (Hunger 1996).
TOP2B is a current drug target having been linked to drug resistant cancers (Nebral
et al. 2005; Kaufmann et al. 1998a). CCND3 is a cyclin D. In the absence of cyclin
Ds, cells have shown increased resistance to oncogenic transformation in mouse
models (Kozar et al. 2004).

There are marked differences and similarities between the TMLE-based results
using a correlation cutoff of 0.5 and 0.75. There are five genes that are common
between the two lists, four of which have some cancer-related association: TOP2B,
CHRNA7, BCL3, and TCF7. Directional relationships remain consistent between
the two lists, but the magnitudes shift due to the different covariate sets. TOP2B, a
current drug target (Nebral et al. 2005; Kaufmann et al. 1998a), was also identified
by random forest. BCL3 is a proto-oncogene biologically associated with B-cell
ALL (Martin-Subero et al. 2007). TCF7 is a known biomarker for T-cell ALL, and
is rarely expressed in AML cancer cells (Palomero et al. 2006). CHRNA7 was re-
cently found to inform the role of nicotine in colon cancer (Wong et al. 2007). It
is also important to note that CHRNA7 is highly correlated with CD33. Cancer-
relevant genes found only in Table 22.4 (ρc = 0.5) are PTTG1IP, MCL1, PI3K,
and CAMK2G. PTTG1IP has been consistently found overly expressed in human
tumors (Ramaswamy et al. 2003; Puri et al. 2001; Fujii et al. 2006; Zhu et al. 2006).
MCL1 is related to BCL2 and is a negative regulator of apoptosis (Kaufmann et al.
1998b). PI3K is activated by cellular agents known to stimulate B and T cells (Fru-
man et al. 1999). CAMK2G has an active role in cell growth control and has tumor-
cell-specific variants (Tombes and Krystal 1997). Cancer-relevant genes found only
in Table 22.5 (ρc = 0.75) are CAT and E2F4. CAT regulates BCL-2 and is often
underexpressed in ALL tissues (Senturker et al. 1997; Komuro et al. 2005). E2F4
has an essential role in cell proliferation and cell fate decisions (Balciunaite et al.
2005) as well as activation of tumor suppressor proteins (Leone et al. 2001).

Using simple univariate linear regression, 681 genes were significant at the 0.05
level after adjusting for multiple testing. However, we know from general knowl-
edge and our simulations that lm is highly sensitive to correlation among the vari-
ables, leading to large increases in type I error rate. Given this and a set of 681 genes,
attempting to further analyze the lists to identify and biologically verify the relevant
genes seems a nearly impossible and very expensive task. Attempting to control
type I error by adding additional covariates requires model selection methods that
are geared toward prediction.

Random forest is a prediction and classification method, and the importance mea-
sures it provides are difficult to interpret. Given an importance value of 0.612, the
relationship between the variable and the outcome is unclear – is it highly expressed
in AML or ALL? We only know that the variable is more “important” than a vari-
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Table 22.1 Top ten ranked genes according to absolute importance measures among significant
genes according to a p-value cutoff of 0.05 using lm

lm lm TMLE TMLE RF1 RF2

Gene name/symbol Mapped IDs rankp rankp rankp rank rank
(0.75) (0.5)

CST3 M27891 0.258 1 13 17 6 3
CSTA D88422 0.341 2 521 466 12 8
Zyxin X95735 0.345 3 287 534 2 2
Macmarcks HG1612-HT1612 −0.619 4 1041 1768 9 9
CD33 M23197 0.517 5 906 28 26 22
C-MYB U22376.cds2.s −0.403 6 69 99 40 28
ELA2 M27783.s 0.334 7 104 1970 15 14
DF M84526 0.262 8 175 145 96 149
P48 X74262 −0.431 9 291 266 57 31
LTC4S U50136.rna1 0.725 10 146 2110 38 60

Table 22.2 Top ten ranked genes according to their importance measures using RF1

RF1 RF1 RF2 TMLE TMLE lm

Gene name/symbol Mapped IDs rank rank rankp rankp rankp
(0.75) (0.5)

FAH M55150 0.953 1 1 588 234 52
Zyxin X95735 0.823 2 2 287 534 3
TCF3 M31523 0.718 3 6 155 400 12
ADM D14874 0.693 4 5 329 2136 57
PTX3 M31166 0.691 5 33 33 201 28
CST3 M27891 0.682 6 3 13 17 1
TOP2B Z15115 0.654 7 4 1 2 33
CCND3 M92287 0.621 8 10 481 924 19
Macmarcks HG1612-HT1612 0.613 9 9 1041 1768 4
APLP2 L09209.s 0.610 10 7 160 408 25

Table 22.3 Top ten ranked genes according to their importance measures using RF2

RF2 RF2 RF1 TMLE TMLE lm

Gene name/symbol Mapped IDs rank rank rankp rankp rankp
(0.75) (0.5)

FAH M55150 0.426 1 1 588 234 52
Zyxin X95735 0.282 2 2 287 534 3
CST3 M27891 0.218 3 6 13 17 1
TOP2B Z15115 0.208 4 7 1 2 33
ADM D14874 0.200 5 4 329 2136 57
TCF3 M31523 0.186 6 3 155 400 12
APLP2 L09209.s 0.183 7 10 160 408 25
CSTA D88422 0.171 8 12 521 466 2
Macmarcks HG1612-HT1612 0.164 9 9 1041 1768 4
CCND3 M92287 0.159 10 8 481 924 19
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Table 22.4 Top ten ranked genes according to absolute importance measures among significant
genes according to a p-value cutoff of 0.05 using TMLE with correlation cutoff ρc = 0.5

TMLE TMLE TMLE lm RF1 RF2

Gene name/symbol Mapped IDs rankp rankp rankp rank rank
(0.5) (0.75)

TOP2B Z15115 −0.973 1 2 33 7 4
CHRNA7 X70297 0.839 2 1 48 69 61
corneodesmosin L20815 0.338 3 3 1875 1846 2004
BCL3 U05681.s 0.314 4 4 477 558 821
KTN1 Z22551 −0.311 5 18 373 2967 118
CaM U81554 0.272 6 81 367 476 749
TCF7 X59871 −0.159 7 6 569 635 887
PTTG1IP Z50022 0.310 8 5 2753 2674 483
MCL1 L08246 0.293 9 2406 61 75 65
PI3K Z46973 −0.172 10 113 734 772 1009

Table 22.5 Top ten ranked genes according to absolute importance measures among significant
genes according to a p-value cutoff of 0.05 using TMLE with correlation cutoff ρc = 0.75

TMLE TMLE TMLE lm RF1 RF2

Gene name/symbol Mapped IDs rankp rankp rankp rank rank
(0.75) (0.5)

CHRNA7 X70297 1.260 1 2 48 69 61
TOP2B Z15115 −0.946 2 1 33 7 4
corneodesmosin L20815 0.327 3 3 1875 315 621
BCL3 U05681.s 0.181 4 4 477 316 622
Surface glycoprotein Z50022 0.310 5 8 2753 317 474
TCF7 X59871 −0.175 6 7 569 318 623
CAT X04085.rna1 0.163 7 21 92 56 59
E2F4 U18422 −0.256 8 42 1752 319 624
UGP2 U27460 −0.244 9 14 155 186 303
SELL M15395 0.183 10 43 340 84 316

able with a value of 0.611. Also, out of the top ten lists for RF1 and RF2 (12 genes
total), only four genes were found to be biologically associated with cancer, and
only one specifically relating to ALL/AML distinction, TCF3. Why TCF3 is rated
second for RF1 and sixth for RF2 is unclear. In comparison, lm found four related
to cancer, two of which specifically related to AML/ALL.

The TMLE measure provides directionality and is less sensitive to increases in
correlation (Sect. 22.3). Given an importance measure of −0.175, we can conclude
that this particular gene is up-regulated in ALL patients when compared to AML pa-
tients. This particular measure is for TCF7 using a correlation cutoff of 0.75. TCF7
is rarely expressed in AML and often highly expressed in ALL patients (especially
T-cell related). Out of the six cancer-related genes in the top ten list for 0.75 cutoff,
three are biologically related to the AML/ALL distinction. When the cutoff is 0.5,
there are eight cancer-related genes, three related to the AML/ALL distinction. For
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all three AML/ALL-related genes, the directionality of the relationship is biologi-
cally correct.

The TMLE results do have a greater number of cancer-related genes and a greater
number of specifically AML/ALL-related genes. However, the increase over lm
is small, and the comparison only includes the top ten genes. Further support for
TMLE is gained from the previous simulations where we demonstrated its resis-
tance to increases in correlation and its control of type I error, while still being an
interpretable and meaningful measure of importance.

22.6 Discussion

Variable importance results vary widely, leading to long lists and confusion. In this
chapter, we proposed using the statistical analogs of causal effects as VIMs and
using TMLE to statistically assess these effect measures. In simulation, this proved
resilient to increases in correlation while controlling the type I error. It also provides
an interpretable and meaningful measure of importance, which, given an appropri-
ate study design, is interpretable as a causal effect. In comparison, the commonly
employed univariate linear regression is highly susceptible to increases in type I er-
ror due to increased correlation between the biomarkers. The utilization of machine
learning algorithms, such as lasso/lars, to estimate these same target parameters is
incomplete without the targeting carried out by the TMLE update, which removes
bias and allows for statistical inference in terms of p-values, multiple testing, and
confidence intervals.



Chapter 23

Finding Quantitative Trait Loci Genes

Hui Wang, Sherri Rose, Mark J. van der Laan

The goal of quantitative trait loci (QTL) mapping is to identify genes underlying
an observed trait in the genome using genetic markers. In experimental organisms,
the QTL mapping experiment usually involves crossing two inbred lines with sub-
stantial differences in a trait, and then scoring the trait in the segregating progeny.
A series of markers along the genome is genotyped in the segregating progeny, and
associations between the trait and the QTL can be evaluated using the marker infor-
mation. Of primary interest are the positions and effect sizes of QTL genes.

Early literature (Sax 1923; Thoday 1960) focused on directly analyzing a sin-
gle marker using analysis of variance (ANOVA). The biggest disadvantage of such
marker-based analysis is its inability to assess QTL genes between markers. In 1989,
Lander and Botstein proposed the interval mapping (IM) method (Lander and Bot-
stein 1989). With IM, the genotypic value of a QTL follows a multinomial dis-
tribution, determined by the distance of the QTL to its flanking markers and the
genotypes of the flanking markers. The trait value is modeled as a Gaussian mix-
ture with the mixing proportions being the multinomial probabilities of the QTL
genotype. The significance of the QTL effect is then assessed using likelihood ratio
test. By testing positions at small increments along the genome, a whole-genome
finely scaled test statistic profile can be constructed. IM has greatly increased the
accuracy of estimating QTL parameters, and it has gained wide popularity in the
genetic mapping community. Later, Haley and Knott developed a regression method
to approximate IM (Haley and Knott 1992). This method imputes the unobserved
genotypic value of a putative QTL with its expected value.

IM methods unrealistically assume there is only one gene underlying the ob-
served trait in the entire genome, represented as testing each potential position sep-
arately (Lander and Botstein 1989) or computing the univariate association between
the expected genotypic value and the phenotypic trait in Haley–Kott regression. In
other words, IM only considers the current QTL; all other QTL genes are ignored.
When this assumption is violated, the effects of other QTL genes are contained
within the residual variance, affecting the assessment of QTL parameters.
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To handle multiple QTL genes, Jansen (1993) and Zeng (1994) developed a com-
posite interval mapping (CIM) approach. In CIM, background markers are added to
a standard IM statistical model to reduce noise and increase the precision of QTL
effect estimates. Thus, the CIM approach estimates QTL effects adjusted for con-
founding markers and can substantially improve the performance of IM when the
background markers are properly chosen. Multiple interval mapping (MIM) was
also developed to simultaneously estimate effects and positions of multiple QTL
genes (Kao et al. 1999). MIM enjoys greater power but is computationally difficult.
It also has a long-standing estimator selection problem: Which QTL genes are to be
included? Bayesian approaches have also been studied and applied in QTL mapping
(Satagopan et al. 1996; Heath 1997; Sillanpaa and Arjas 1998).

In recent years, with finely scaled single nucleotide polymorphism (SNP) mark-
ers replacing the traditional widely spaced microsatellite markers, identifying QTL
genes between markers has become less concerning. Due to the high-dimensional
nature of SNP data, the univariate marker-trait regression is widely used for its sim-
plicity and computational feasibility despite its noisy results. Machine learning al-
gorithms, such as random forests (Breiman 2001b), are also used to map QTL genes
(Lee et al. 2008).

Most of these QTL methods are fully parametric and typically assume a Gaus-
sian distribution for the phenotypic trait, as well as require specification of a para-
metric regression model. The estimation of QTL effects often relies on the method
of maximum likelihood estimation. Maximum likelihood estimation based on such
parametric regression models is widely used and well studied, with software avail-
able in many platforms. However, quite often, these parametric models represent an
over-simplified description of the underlying genetic mechanism and leads to biased
estimates. In addition, if the parametric model is data-adaptively selected among a
set of candidate parametric regression models, then the reported standard errors and
the p-values are not interpretable.

In this chapter, we address the QTL mapping problem through the use of a semi-
parametric regression model and the TMLE. The only assumption of the semipara-
metric regression model is that the phenotypic trait changes linearly with the QTL
gene. We also define the C-TMLE, which is a particularly appealing estimator for
the high-dimensional genomic data structures. Portions of this chapter were adapted
from Wang et al. (2010).

23.1 Semiparametric Regression Model and TMLE

Suppose the observed data are i.i.d. realizations of Oi = (Yi,Mi) ∼ P0, i = 1, . . . , n,
where Y represents the phenotypic trait value, M represents the marker genotypic
values, and i indexes the ith subject. Let A be the genotypic value of the putative
QTL under consideration. When A lies on a marker, A is observed. When A lies
between markers, it is unobserved. In this case, we impute A with its expected value
from a multinomial distribution computed from the genotypes and the relative loca-
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tions of its flanking markers. This is the same strategy used in Haley–Knott regres-
sion (Haley and Knott 1992), and we will thus only be estimating the effect of an
imputed A. The semiparametric regression model for the effect of A at value A = a
relative to A = 0, adjusted for a user-supplied set of other markers M−, is given by

E0(Y | A = a,M−) − E0(Y | A = 0,M−) = β0a.

Other parametric forms, such as a
∑J

j=1 β jV j incorporating effect modification by
other markers Vj, can be incorporated as well. We view β0 as our parameter of in-
terest, which also corresponds with a marginal average effect obtained by averaging
this conditional effect over the distribution of M−.

The TMLE of β0 was presented in the previous chapter and involves an initial
machine learning (e.g., super learner) fit of E0(Y | M), which yields a fit of E0(Y |
A = 0,M−), mapping the latter into an initial estimator of β0 and thereby of E0(Y |
A,M−) in the semiparametric regression model. After obtaining this initial estimator
of E0(Y | A,M−) of the semiparametric form as enforced by the semiparametric
regression model, we carry out a single targeted update step by adding an estimate of
the clever covariate A−E0(A | M−), and fitting the coefficient ε in front of this clever
covariate with univariate regression, using the initial estimator of E0(Y | A,M−) as
offset. Note that the TMLE of β0 is now simply β0

n + εn.
The estimation of the clever covariate requires an estimator of E0(A | M−). The

latter can be carried out with a machine learning algorithm regressing A on M−. In
particular, one could decide to fit this regression of the marker of interest on two
flanking markers, thereby dramatically simplifying the estimation problem, while
potentially capturing most of the confounding by the total marker set M−. The
choice of how great the distance between the flanking markers will be is a deli-
cate issue. If one selects the flanking markers right next to the marker of interest,
the data might not allow the separation of the effect of interest from the effect of
the flanking markers. That is, one is aiming to adjust for confounders that are too
predictive of the marker of interest. On the other hand, if one selects the flanking
markers too far away from the marker of interest, the flanking markers will not ad-
just well for the markers that are in between the marker of interest and the flanking
markers. Simulations in the previous chapter suggest that the TMLE shows no sign
of deterioration for correlations smaller than 0.7 between the marker of interest and
the confounders. This could be used to set the window width defined by the two
flanking markers. Subject matter considerations, such as that the scientist would be
satisfied with a claim that the targeted effect of the marker can be due to other mark-
ers in a window of a particular size, could also be used to set this window width of
the flanking markers.

An alternative approach is to let the data decide what other markers to include in
the model for E0(A | M−). For that purpose, we can employ the C-TMLE (using a
linear regression working model for fluctuation of initial estimator), first presented
in Chap. 19 for estimation of an additive effect E0(E0(Y | A = 1,W) − E0(Y | A =
0,W)) for the observed data structure O = (W, A, Y) and nonparametric model for the
probability distribution P0 of O. This C-TMLE has also been implemented for this
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estimation problem, but, obviously, now in terms of TMLEs in this semiparametric
regression model. Thus, this algorithm involves using forward selection of main
terms to build a main term linear regression fit for E0(A | M−), based on the sum
of squared residuals (i.e., MSE) of the corresponding TMLE of E0(Y | A,M−) that
uses this main term regression fit of E0(A | M−) in the clever covariate. Cross-
validation is used to select the number of main terms (i.e., the number of forward
selection steps that the algorithm carries out) that will actually be included in the
fit of E0(A | M−). The candidate main terms can include fits of E0(A | M−) such
as one based on two flanking markers defined by a choice of window width, across
a number of possible window widths. In this manner the C-TMLE algorithm can
data-adaptively decide how aggressive the targeting step should be in its effort to
reduce bias due to residual confounding.

As in Chap. 19, the C-TMLE implementation may also involve the selection of
a penalty to be added to the MSE in order to make the procedure more robust in the
context of having to adjust for highly correlated markers: for details we refer to the
technical report (Wang et al. 2011). C-TMLE allows one to data-adaptively deter-
mine the markers to include in the fit of E0(A | W). For example, one may wish to
only adjust for the two closest markers that are farther than δ-apart from the marker
A, and one can use C-TMLE to data-adaptively select this choice δ based on the
log-likelihood of the TMLE of the semiparametric regression fit. In our simulations
and data analysis we have implemented both TMLEs as well as C-TMLEs.

23.2 The C-TMLE

Let Q0
n = m(A,V | β0

n) + r(M−) be the initial estimate of Q0 contained in the same
semiparametric regression model that we also used in the TMLE. The C-TMLE is
concerned with iteratively updating this initial estimate of Q0. Firstly, we compute
a set of K univariate covariates W1, . . . ,WK from M−, which we will refer to as
main terms, even though a term could be an interaction term or a super learning fit
of the regression of A on a subset of the components of M−. Let’s refer to M− by
W = (W1, . . . ,WK). In this subsection we will suppress in the notation for estimates
of Q0 and g0 their dependence on the sample size n. Let Ω = {W1, . . . ,WK} be the
full collection of main terms. A linear regression model fit gK of g0(W) = E0(A | W)
using all main terms in Ω is viewed as the most nonparametric estimate of g0. For
a given subset of main terms S ⊂ Ω, let Sc be its complement within Ω. For a
given subset Sk, we will define gk as the least squares fit of the linear regression
model for E0(A | W) that includes as main terms all the terms in Sk. In the C-TMLE
algorithm we use a forward selection algorithm that augments a given set Sk into
a next set Sk+1 obtained by adding the best main term among all main terms in the
complement Sk,c of Sk. In other words, the algorithm iteratively updates a current
estimate gk into a new estimate gk+1, but the criterion for g does not measure how
well g fits g0; it measures how well the TMLE using this g fits Q0.
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Let L(Q)(O) = (Y − Q(A,W))2 be the squared error loss function for the true
regression function Q0 = E0(Y | A,W) = β0A+ E0(Y | A = 0,W). For a given initial
estimate Q, let Qg(ε) = Q+ε(A−g(W)) be the parametric working fluctuation model
used in the TMLE of Q0 defined in the previous section. For a given estimate g of g0
and initial Q of Q0, the corresponding TMLE (as defined in the previous section) of
Q0 is given by Qg(εn), where εn = arg minε PnL(Qg(ε)) is the univariate least squares
estimator of ε using the initial estimate Q as offset, and Pn denotes the empirical
probability distribution of O1, . . . ,On. Here we used the notation P f ≡

∫
f (o)dP(o).

That is, an initial estimate Q, an estimate g, and the data O1, . . . ,On are mapped
into a new targeted maximum likelihood estimate Q∗ = Qg(εn). Let’s refer to this
mapping as Q∗ = TMLE(Q, g), suppressing its dependence on Pn.

The C-TMLE algorithm defined below generates a sequence (Qk,Sk) and corre-
sponding TMLEs Qk∗, k = 0, . . . ,K, where Qk represents an initial estimate, Sk a
subset of main terms that defines gk, and Qk∗ the corresponding TMLE that updates
Qk using gk. These TMLEs Qk∗ represent subsequent updates of the initial estimator
Q0

n, and the corresponding main term set Sk, as used to define gk in this k-specific
TMLE, increases in k, one unit at a time: S0 is empty, | Sk+1 |=| Sk | +1, SK = Ω.
The C-TMLE uses cross-validation to select k, and thereby to select the TMLE Qk∗

that yields the best fit of Q0 among the K + 1 k-specific TMLEs that are increas-
ingly aggressive in their bias-reduction effort. This C-TMLE algorithm is defined as
follows:

Initiate algorithm: Set initial TMLE. Let k = 0. Qk = Q0
n is the initial estimate

of Q0, and Sk is the empty set so that gk is the empirical mean of A. Thus, Qk∗ is
the TMLE updating this initial estimate Qk using as clever covariate A−gk.

Determine next TMLE. Determine the next best main term to add to the linear
regression working model for g0(W) = E0(A | W):

Sk+1,cand = arg min
Sk∪Wj:Wj∈Sk,c

PnL(TMLE(Qk,Sk ∪Wj)).

If
PnL(TMLE(Qk,Sk+1,cand)) ≤ PnL(TMLE(Qk∗)),

then (Sk+1 = Sk+1,cand,Qk+1 = Qk), else Qk+1 = Qk∗, and

Sk+1 = arg min
Sk∪Wj:Wj∈Sk,c

PnL(TMLE(Qk∗,Sk ∪Wj)).

[In words: If the next best main term added to the fit of E0(A | W) yields a
TMLE of E0(Y | A,W) that improves upon the previous TMLE Qk∗, then we
accept this best main term, and we have our next TMLE Qk+1∗, gk+1 (which still
uses the same initial estimate as Qk∗ uses). Otherwise, reject this best main term,
update the initial estimate in the candidate TMLEs to the previous TMLE Qk∗ of
E0(Y | A,W), and determine the best main term to add again. This best main term
will now always result in an improved fit of the corresponding TMLE of Q0, so
that we now have our next TMLE Qk+1∗, gk+1 (which now uses a different initial
estimate than Qk∗ used).]
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Iterate. Run this from k = 1 to K at which point SK = Ω. This yields a sequence
(Qk, gk) and corresponding TMLE Qk∗, k = 0, . . . ,K.

This sequence of candidate TMLEs Qk∗ of Q0 has the following property: the
estimates gk are increasingly nonparametric in k and PnL(Qk∗) is decreasing in k,
k = 0, . . . ,K. It remains to select k. For that purpose we use V-fold cross-validation.
That is, for each of the V splits of the sample in a training and validation sample, we
apply the above algorithm for generating a sequence of candidate estimates (Qk∗ : k)
to a training sample, and we evaluate the empirical mean of the loss function at the
resulting Qk∗ over the validation sample, for each k = 0, . . . ,K. For each k we take
the average over the V-splits of the k-specific performance measure over the vali-
dation sample, which is called the cross-validated risk of the k-specific TMLE. We
select the k that has the best cross-validated risk, which we denote with kn. Our final
C-TMLE of Q0 is now defined as Qkn∗, and the corresponding updated regression
coefficient is our TMLE β∗n of β0.

Remark. The candidate main terms can also include fits of E0(A | M−) such as
one based on two flanking markers defined by a choice of window width, across
a number of possible window widths. In this manner, the above C-TMLE algo-
rithm data-adaptively decides which window width yields effective bias reduction.
C-TMLE implementation in the following data analysis involved a penalized mean
squared error as a measure of fit instead of the mean squared error, where the penalty
is defined as a variance estimator of the corresponding TMLE of β0.

Statistical Properties of the C-TMLE

To understand the appeal of the C-TMLE, we make the following remarks.
Including a main term in the fit of the clever covariate that has no effect on the
outcome will only harm the TMLE of β0 both with respect to bias and mean
squared error. If one uses the log-likelihood (i.e., MSE) of the regression of A
on M− as a criterion for selection of the main terms, then one will easily select
main terms that have a weak effect on the outcome, while truly important main
terms are not included. Therefore, it is crucial to use a main term selection
criterion for E0(A | M−) that actually measures the fit of the resulting TMLE
of the outcome regression. In addition, one can formally prove that the TMLE
achieves the full bias reduction with respect to β0 if the clever covariate uses
a true regression, E0(A | Ms), with Ms being a reduction of M− that is rich
enough so that E0(Y | A = 0,M−) is captured. In fact, the result is stronger,
since Ms only needs to capture the function of M− that is obtained by taking
the difference between the true E0(Y | A = 0,M−) and its initial estimator
En(Y | A = 0,M−) (van der Laan and Gruber 2010). Thus, theory indeed fully
supports that we should be selecting main terms in the clever covariate that
are predictive of residual bias of the initial estimator of E0(Y | A = 0,M−),
and the C-TMLE algorithm presented above indeed targets such main terms.
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23.3 Simulation

A single chromosome of 100 markers was simulated on 600 backcross subjects.
Markers were evenly spaced at 2 centimorgan (cM). A single QTL main effect was
generated at marker position 100 cM, denoted by M(100). Here, the number in the
subscript of M indicates the position of the marker. There were also four epistatic
effects on markers M(60), M(90), M(120), and M(150). Phenotypic values were gener-
ated from the data-generating distribution: Y = 5 + 1.2M(100) − 0.8M(60)M(90) −
0.8M(90)M(120) − 0.8M(120)M(150) − 0.8M(150)M(60) + U, where U is the error term
drawn from an exponential distribution scaled to have a variance of 10. We gener-
ated 500 simulated data sets of this type.

In this simulation, the density of markers is fairly high, the phenotypic outcome
follows a nonnormal distribution, and there are strong counteracting epistatic ef-
fects in linked markers. A univariate regression effect estimate of the effect of, for
example, M(100) will be biased due to the lack of adjustment for the effect of the
highly correlated markers. Indeed, the CIM estimate for the effect of M(100) is nega-
tive, far away from the true value 1.2. On the other hand, taking the CIM prediction
function as the initial estimator Q̄(0)

n , TMLE was then able to recover some of the
signal and hence improved on the CIM estimates. In TMLE, the true regression of
A on the other 99 markers, M−, was estimated with a main terms linear regression
including two flanking markers with a prespecified distance to A. We used two dis-
tances, 20 cM and 40 cM, and denote the estimators by TMLE(20) and TMLE(40).
The CIM analysis was carried out using QTL Cartographer (Basten et al. 2001),
with default settings. We analyzed markers without considering positions between
them. For CIM, the mean effect estimate for M(100) is −0.2731 and is dominated by
the epistatic effects from its nearby markers. TMLE(40) is able to correct some of the
bias, and its effect estimate is 0.5365. TMLE(20) utilizes an estimator of E0(A | M−)
with more predictive power than TMLE(40) and produced an estimate closest to the
truth. We list the averages of the effect estimates for M(100) across 500 simulations
in Table 23.1 along with their standard errors for CIM, TMLE(20), and TMLE(40).

We also used a univariate regression (UR) fit for Q̄(0)
n within TMLE, and these

results can be found in Table 23.1. The UR initial estimate was even more biased
than that of CIM. TMLE(20), using UR as Q̄(0)

n , produced very similar estimates
to TMLE(20) using CIM as initial estimator. On the other hand, TMLE(40) using
the CIM as initial estimator produced a better estimator than TMLE(40) using the

Table 23.1 Mean effect estimates of M(100) over 500 simulations

Q̄(0)
n =CIM Q̄(0)

n =UR
Estimate SE Estimate SE

Initial Estimate −0.2731 0.3273 −0.6248 0.2684
TMLE(40) 0.5365 0.4538 0.2705 0.3135
TMLE(20) 0.8478 0.4508 0.8093 0.4079
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univariate regression as initial estimator. This demonstrates the robustness of TMLE
with respect to misspecification of the initial estimator, which predicts that the more
predictive the regression of A on M−, the more robust TMLE will be to the choice
of its initial estimator. A closer look at Table 23.1 also reveals that compared to
TMLE(40), the additional bias reduction of TMLE(20), using univariate regression as
initial estimator, comes with an increase in standard error.

23.4 Wound-Healing Application

In this section, we analyze a data set published in Masinde et al. (2001). The orig-
inal study was designed to identify QTL genes involved in the wound-healing pro-
cess. A genomewide scan of 119 codominant markers was performed using 633 F2
(MRL/MP x SJL/J) mice. Each mouse was punctured with a 2-mm hole in its ear,
and the phenotypic trait was the hole closure measurement at day 21. The marginal
distribution of the phenotypic trait is bell-shaped.

We analyzed this data set with TMLE (results not shown; see Wang et al. 2011),
C-TMLE, and CIM. Based on the evaluation of a discrete super learner (Chap. 3)
that included both DSA and random forests, the DSA machine learning algorithm
was selected as initial estimator of E0(Y | M), and subsequently mapped into the
desired initial estimator for E0(Y | A,M−) satisfying the semiparametric regression
model. To lessen the computational load, we first screened additive and dominant ef-
fects of all markers with univariate regression and supplied to this machine learning
algorithm the markers with a p-value less than 0.10. In the TMLE, the conditional
mean of A, given M− is fitted with a main terms linear regression model with main
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Fig. 23.1 —The genomewide FDR-adjusted p-value profile for the additive effects in the wound-
healing data set. The solid line represents CIM, and the dashed line represents C-TMLE. Chromo-
some numbers are superimposed on top of the picture
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terms Ac, Wa
1 , Wd

1 , Wa
2 , Wd

2 , where Ac denotes the dominant effect of A when A is
additive and the additive effect of A when A is dominant, W1 and W2 are the closest
flanking markers 20 cM away from A, and the superscript a denotes the additive
effect and d the dominant effect.

Four hundred putative QTL positions were tested at 2-cM increments for both the
additive and dominant effects. The p-values were adjusted using FDR. The TMLE
and C-TMLE produced similar results, and we only present C-TMLE results in this
chapter. Figure 23.1 displays the genomewide FDR-adjusted p-value profile for the
additive effect at each tested position. The CIM p-values were computed from the
asymptotic χ2 distribution. No significant dominant effect was detected in this data
set. The (C)-TMLE essentially identified the same QTL genes as CIM, albeit with
an improved resolution. Many of these genes were also reported in Masinde et al.
(2001). However, on chromosome 6, the (C-)TMLE suggests two linked QTL genes
instead of one, as indicated by CIM.

23.5 Listeria Application

Boyartchuk et al. (2001) published a data set on the survival time of 116 age-
matched female mice following infection with Listeria monocytogenes, a Gram-
positive bacteria causing a wide range of diseases. The mice were an F2 intercross
population derived from susceptible BALB/cByJ and resistant C57BL/6ByJ strains,
and the goal of the study was to map genetic factors of susceptibility to L. mono-
cytogenes. The phenotypic trait is the recorded time to death for each mouse upon
infection with L. monocytogenes. One hundred and thirty-one codominant markers
were genotyped on the autosomal chromosomes. When a mouse survived beyond
240 h, it was considered recovered. About 30% of the mice recovered, and we refer
to them as survivors and the remaining mice as nonsurvivors. This creates a spike
in the phenotypic trait distribution, violating the normality assumption in traditional
approaches of QTL mapping.

The outcome Y was defined as the logarithm of the phenotypic trait. The first step
of TMLE is to obtain an initial estimator of E0(Y | M), which can then be mapped
into an initial estimator of E0(Y | A,M−), satisfying the semiparametric regression
model. Y can be decomposed into a binary trait of survival or nonsurvival and a
continuous trait of survival time among nonsurvivors (Broman 2003). We denote
this binary trait of survival by Z = I(Y = log 264). Then, the expected value of Y
given the marker data M can be represented as

E0(Y | M) = P0(Z = 1 | M) log 264 + P0(Z = 0 | M)E0(Y | Z = 0,M).

In the above formula, P0(Z = 1 | M) and P0(Z = 0 | M) are conditional probabilities
of whether a mouse has survived (Z = 1) or died (Z = 0) given the marker data M.
We fit this with a super learning algorithm for binary outcomes. E0(Y | Z = 0,M)
is the conditional expectation of Y on M given that the mouse has died, which can
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Table 23.2 Mean risk of candidate initial regressions in discrete super learner from the Listeria
data set

DSA RF SL 2-part SL

CV risk 0.2212 0.1581 0.1589 0.1463

be obtained by applying super learning on nonsurvivors. We refer to this machine
learning algorithm as the 2-part super learner.

The collection of algorithms in the super learner included DSA and random
forests. As before, the machine learning algorithms were only provided the addi-
tive and dominant markers that had a significant univariate effect based on a p-value
threshold of 0.10. Since we wished to evaluate if this 2-part super learner provided
a better fit than a regular super learner, we implemented a discrete super learner
whose library consisted of a total of four algorithms for estimation of E0(Y | M):
DSA, random forests, super learner, and a 2-part super learner. In Table 23.2, we
report the honest cross-validated risk of DSA, random forests, super learner, and
the 2-part super learner. In the super learning fits, more than 95% of the weight
was put on random forests, thereby strongly favoring a fit that allows for complex
interactions.

The 2-part super learner had the smallest honest cross-validated risk and was
therefore selected as the estimator of E0(Y | M). In the TMLE, we fitted the condi-
tional mean of A, given M−, with a main term linear regression model including the
main terms used Ac, Wa

1 , Wd
1 , Wa

2 , Wd
2 , where Ac denotes the dominant effect of A

when A is additive and the additive effect of A when A is dominant, W1 and W2 are
the closest flanking markers 20 cM away from A, and the superscript a denotes the
additive effect and d the dominant effect.

When inspecting Fig. 23.2, TMLE displays much less noise than the parametric
CIM. Three additive genes on chromosomes 1, 5, and 13 are clearly identified. Two
additive effects on chromosomes 15 and 18 are borderline significant. In addition,
TMLE also detected dominant effects on chromosomes 12, 13, and 15. The chromo-
some 15 QTL gene is identified as carrying both the additive and dominant effects.
The literature suggests that the chromosome 1 QTL gene has an effect on how long a
mouse can live given it will eventually die, the chromosome 5 gene has an effect on
a mouse’s chance of survival, and the genes on chromosomes 13 and 15 are involved
in both (Boyartchuk et al. 2001; Broman 2003; Jin et al. 2007). We detected all of
these genes and, in addition, an additive gene on chromosome 18 and a dominant
gene on chromosome 12. CIM also identified those major genes, however, with less
significance and many more suspicious positives. See Table 23.3. This data analysis
was first published in Wang et al. (2010).
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Fig. 23.2 The genomewide p-value profile for the additive and dominant effects in the Listeria
data set. The p-values are FDR adjusted and on a negative log10 scale. (a) p-value profile from the
CIM. (b) p-value profile from TMLE. In both panels, the solid line represents additive effects, and
the dashed line represents dominant effect. The dash-dot line indicates the 0.05 p-value threshold.
Chromosome numbers are superimposed on top of each panel

Table 23.3 The estimates of effect sizes and positions of QTL genes from CIM and TMLE in
Listeria data set. QTL genes with FDR-adjusted p-values smaller than 0.05 are reported

CIM C-TMLE
QTL ID Type Chr cM Effect size Chr cM Effect size

1 dom 1 15.0 −0.2351 − − −
2 dom 1 72.8 0.1606 − − −
3 add 1 78.8 −0.1349 1 78.1 −0.1074
4 dom 2 14.0 −0.2623 − − −
5 add 2 18.0 −0.1744 − − −
6 dom 5 0.0 −0.1468 − − −
7 dom 5 61.0 −0.1693 − − −
8 add 5 18.1 0.2764 5 26.1 0.1960
9 dom 6 33.8 −0.1235 − − −
10 dom 12 41.8 −0.2352 12 40.1 −0.1372
11 add 13 22.7 −0.3409 13 14.4 −0.1668
12 dom 13 25.9 0.3525 13 26.4 0.1458
13 add 15 25.1 0.1540 15 22.1 0.0678
14 dom 15 12.0 0.2042 15 22.1 0.1438
15 add 18 − − 18 14.1 −0.0692
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23.6 Discussion

Current practice for assessing the effects of genes on a phenotype involves the uti-
lization of parametric regression models. One of the advantages of parametric re-
gression models is that they also provide a p-value, allowing one to rank the different
estimated effects and assess their significance. However, both the effect estimates as
well as the reported statistical significance are subject to bias due to model misspec-
ification. On the other hand, machine learning algorithms such as random forests,
are not sufficient when used alone since these algorithms are tailored for prediction,
report generally poor effect estimates, and do not provide a measure of significance.
TMLE allows us to incorporate the state of the art in machine learning, without
significant computational burden (the targeting step is relatively trivial, although it
needs to be carried out for each effect), while still providing an estimate tailored for
the effect of interest and CLT-based statistical inference.
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Chapter 24

Case Study: Longitudinal HIV Cohort Data

Maya L. Petersen, Mark J. van der Laan

In this chapter, we introduce a case study based on the treatment of HIV infec-
tion. A series of scientific questions concerning how best to detect and manage
antiretroviral treatment failure in resource-limited settings are used to illustrate the
general road map for targeted learning. We emphasize the translation of background
knowledge into a formal causal and statistical model and the translation of scientific
questions into target causal parameters and corresponding statistical parameters of
the distribution of the observed data. Readers may be interested in first reading the
longitudinal sections of Appendix A for a rigorous treatment of longitudinal TMLE
and related topics.

HIV is a virus that damages the human immune system, resulting in a decline
in CD4+ T lymphocytes and increased susceptibility to opportunistic infections.
Antiretroviral drugs used in combination can suppress HIV replication to the point
that HIV becomes undetectable in the blood stream, allowing CD4+ T-cell counts
and immunologic function to recover. Unfortunately, HIV may develop resistance
to the initial combination antiretroviral regimen used, allowing viral replication to
rebound despite ongoing treatment. Failure to modify antiretroviral regimens once
resistance and viral failure have occurred results in the evolution of additional resis-
tance mutations and can compromise future treatment options. Delayed modification
can also increase morbidity and mortality as a result of both CD4+ T cell depletion
and inflammation-associated immune damage (Petersen et al. 2008; Rodger et al.
2009). In order to prevent these complications, the standard of care in resource-rich
settings is to measure plasma HIV RNA levels (viral loads) regularly and modify a
patient’s antiretroviral regimen as soon as viral failure is detected (Hammer et al.
2008).

The majority of HIV-infected individuals, however, live in settings where re-
source and infrastructure limitations currently preclude regular viral load monitor-
ing (Stringer et al. 2006). As a result, patients in much of the world may remain
for extended periods on regimens that permit ongoing viral replication at detectable
levels. The consequences of this limited monitoring capacity and resulting delays
in regimen modification remain incompletely understood. Further, less resource-
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intensive modes of effectively detecting treatment failure remain to be identified.
With this motivation, this chapter focuses on the following public health questions:
What impact does delayed regimen modification following emergence of resistance
have on long-term mortality? To what extent will use of less resource-intensive mod-
ification strategies, such as those based on CD4+ T cell measurements rather than
viral loads, result in worse patient outcomes? How can CD4+ T cell measurements
best be used to guide regimen modification? We illustrate how these questions can
be approached using a formal causal inference framework and answers estimated
using data drawn from observational HIV cohorts.

24.1 Data

Let baseline time t = 0 denote time of failing first-line antiretroviral therapy, where
first-line therapy is defined as a combination antiretroviral (cART) regimen contain-
ing two nucleoside reverse transcriptase inhibitors (NRTIs) and one nonnucleoside
reverse transcriptase inhibitor (NNRTI), and failure is defined as the second of two
consecutive plasma HIV RNA levels greater than 500 copies/ml, measured at least
6 months after starting cART. We use a discrete time scale, with t = 0, ..., τ. For
simplicity, we refer to the time scale as days for the remainder of the chapter; how-
ever, time increments could also represent months, quarters, or longer intervals. The
appropriate time scale will depend on the frequency with which treatment decisions
and measurements are made. The target population is defined as adults who are
antiretroviral-naive prior to initiating cART and who fail first-line cART a mini-
mum of τ days prior to the calendar date at which the database is administratively
closed.

We consider two types of treatment variables; A1(t) is defined as an indicator
that jumps to zero if a subject interrupts first-line therapy, and A2(t) is defined as
an indicator that jumps to zero if a subject modifies first-line therapy (or in other
words, starts second-line therapy). Modification is defined as initiation of a protease
inhibitor drug plus two new NRTIs. Interruption is defined as stopping all drugs
for at least 2 weeks. All other changes to the antiretroviral regimen are assumed to
represent substitutions due to patient preference, availability, or adverse effects and
are not coded as treatment changes.

Subjects may also leave the cohort or be “lost to follow-up.” We define a cen-
soring time C as the time point at which a subject leaves the cohort and define
C(t) ≡ I(C ≤ t) as the indicator that a subject is no longer in follow-up at time t. We
treat censoring as an additional intervention variable because we are interested in the
effect of treatment if all subjects remained in the cohort (and thus under observation)
until time τ. All intervention variables by definition jump only once; changes in an-
tiretroviral regimen after interruption or modification are not considered part of the
treatment of interest, and a subject does not return to the cohort once he or she has
been censored. Time-varying covariates can be considered under the following cate-
gories: laboratory measurements, diagnoses of new comorbidities, clinic visit dates,
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and vital status. The latter three categories, as well as the days on which laboratory
measurements are updated, can be coded as counting processes.

The most recent laboratory covariate values at a given time t are coded as W(t) =
(W1(t), ...,WJ(t)). In clinical cohort data from resource-rich settings, W(t) often in-
cludes the following J time-varying covariates: CD4+ T cell count, CD8+ T cell
count, viral load, hepatitis C virus antibody, and hepatitis B virus surface antigen. In
resource-limited settings such as Africa, W(t) may be limited to CD4+ T cell count,
complete blood count, or body mass index. Each time-dependent covariate may be
measured at different and possibly irregular time points. We denote the process
tracking when new laboratory measurements are made as Δ(t) = (Δ1(t), ..., ΔJ(t)),
where Δ j(t) denotes an indicator that covariate j is measured at time t. A covariate
Wj(t) is missing until Δ j(t) first jumps; subsequently Wj(t) is coded as the covari-
ate’s most recent value. New diagnoses made at time t are coded using a vector of
counting processes D(t) = (D1(t), ...,DK(t)). These K counting processes include
diagnosis of AIDS-defining illnesses and, in data from resource-rich settings, diag-
nosis of major non-AIDS comorbidities.

Clinic visits are coded as a separate counting process M(t). Note that only when
dM(t) = 1 (i.e., a patient visits the clinic) are any of the counting processes in D(t)
or the treatment process A2(t) at risk of jumping. In contrast, Δ(t), corresponding to
updates of the laboratory covariates, can jump on any date, as can losses to follow-up
and treatment interruptions. Finally, data are collected on vital status. Let T denote
time of death and T̃ = min(T,C, τ) be the follow-up time. In addition, let Y(t) =
I(T ≤ t) indicate whether a subject has died by time t, a counting process that can
jump on any day.

In addition to the time-varying covariates above, the data include the following
non-time varying-covariates: age at baseline, calendar year at baseline, sex, ethnic-
ity, HIV risk group, nadir CD4 count prior to baseline, and peak viral load prior to
baseline. We denote these non-time-varying covariates with B.

24.2 Causal Model

We separate variables into intervention variables A(t) = (A1(t), A2(t),C(t)), nonin-
tervention variables L(t) ≡ (M(t),D(t), Δ(t),W(t)), and the outcome Y(t) and as-
sume the following time ordering, as shown more explicitly below: (Y(t), L(t), A(t)).
Baseline variables L(0) include non-time-varying covariates and the baseline val-
ues of time-varying covariates L(0) ≡ (B,M(0),D(0), Δ(0),W(0)). We use X̄(t) =
(X(0), X(1), ..., X(t)) to denote the history of any covariate X through time t. We
define covariate values after death deterministically as their last observed value
L(t) ≡ L(T − 1) and A(t) ≡ A(T − 1) for t ≥ T . We also specify the following
set of structural equations (t = 1, ..., τ):
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L(0) = fL(0)(U0),
Y(t) = fY(t)(Y(t − 1), L̄(t − 1), Ā(t − 1),UY(t)),
M(t) = fM(t)(Y(t), L̄(t − 1), Ā(t − 1),UM(t)),
Dk(t) = fDk(t)(M(t), Y(t), L̄(t − 1), Ā(t − 1),UDk(t)); k = 1, ...,K,
Δ j(t) = fΔ j(t)(D(t),M(t), Y(t), L̄(t − 1), Ā(t − 1),UΔ j(t)); j = 1, ..., J,
Wj(t) = fW j(t)(Δ(t),D(t),M(t), Y(t), L̄(t − 1), Ā(t − 1),UWj(t)); j = 1, ..., J,
A1(t) = fA1(t)(Y(t), L̄(t), Ā(t − 1),UA1(t)),
A2(t) = fA2(t)(Y(t), A1(t), L̄(t), Ā(t − 1),UA2(t)),
C(t) = fC(t)(Y(t), A1(t), A2(t), L̄(t), Ā(t − 1),UA1(t)).

All subjects are assumed alive, on first-line therapy, and uncensored at baseline
(A1(0) = A2(0) = 1, Y(0) = C(0) = 0). Specification of the causal model also
involves specification of the joint distribution of the background factors or errors U:

U0 = (UB,UM(0),UD(0),UW(0),UΔ(0)),
U = (U0,UY(t),UM(t),UDk(t),UΔ j(t),UW j(t),UA1(t),UA2(t),UC(t) : t, k, j),
U ∼ PU .

If it were known, for example, that the decision to modify therapy (among subjects
who were alive and still on first-line therapy) was randomly assigned and perfectly
complied with, this knowledge would justify an assumption that UA2(t) is indepen-
dent of all other errors [as well as an exclusion restriction on the structural equation
model such that A2(t) = fA2(t)(Y(t), A1(t), Ā(t−1),UA2(t))]. However, given the obser-
vational nature of the data, we avoid making any assumptions at this stage regarding
the joint distribution PU .

We denote the observed history of a covariate X as X̄ ≡ X̄(T̃ ). The observed data
consist of n i.i.d. copies of O = Ō(T̃ ) = (Ȳ , L̄, Ā). These data are observed for a
given individual until he or she either leaves the cohort (is lost to follow-up), dies,
or time τ. We denote the distribution of O as P0 and corresponding density p0. We
assume that the observed data correspond to n repeated draws from the SCM. In
other words, for i = 1, ..., n, Oi is drawn by first drawing Ui from the distribution of
background factors PU (e.g., this might correspond to drawing a subject from a pop-
ulation), then generating each component of O sequentially for either τ time points
or until C(t) jumps to one. If Y(t) jumps to one, covariate values for all subsequent
time points are set equal to their last observed values.

24.3 Target Causal Parameters

In this section, we introduce a range of target causal parameters. For each, we begin
with a scientific question and describe a hypothetical randomized trial that could be
used to answer it. Each of these trials targets a distinct causal parameter. We illus-
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trate how each target parameter in turn can be expressed in terms of counterfactuals,
where the relevant counterfactuals are defined in terms of an intervention on the
causal model.

24.3.1 Standard Marginal Structural Models

In assessing how changes in the availability of viral load monitoring will impact
patient outcomes, the first question is whether delayed regimen modification fol-
lowing viral failure increases patient mortality, and if so, by how much. Previous
analyses documented an increased risk of mortality with delayed modification of vi-
rologically failing NNRTI-based regimens; however, these analyses were based on
subjects treated in resource-rich settings and included patients exposed to antiretro-
viral therapy prior to initiating cART (Petersen et al. 2008). Understanding how
mortality varies as a function of cumulative delay until modification, and whether
any increased risk of mortality resulting from delayed modification persists after
second-line therapy has been initiated, could further inform the design of alterna-
tive monitoring strategies. For example, if most of the harm of delayed modification
accrues during the first 3 months of failure, use of a semiannual vs. annual viral
load testing strategy may have a smaller benefit than if mortality increases linearly
with cumulative time spent on failing therapy. In theory, these questions could be
addressed by enrolling subjects at the time of viral failure and randomly assigning
each subject to remain on first-line failing therapy until a fixed switching time, rang-
ing from immediate switch to switch after some maximum delay. In such an ideal
trial, subjects would be prevented from interrupting therapy or leaving the cohort.
Survival could then be compared between subjects randomized to different modifi-
cation times.

In order to translate this ideal trial into a target causal parameter, we define coun-
terfactuals indexed by interventions on interruptions and modifications of first-line
therapy and on losses to follow-up. We denote counterfactual covariate and outcome
values (the values that covariates and outcome would have taken under a specific
treatment history ā) as L̄ā and Ȳā. These counterfactuals are defined as the solutions
to the corresponding structural equations under an intervention on the SCM in which
the structural equations fA(t), for t = 1, ..., τ, are replaced with the constant values
implied by ā. Our outcome of interest is counterfactual survival Ȳā(τ). We focus on
counterfactuals indexed by interventions under which first-line therapy is not inter-
rupted and is modified at a fixed time (ranging from immediate switch to no switch
during follow-up) and where no loss to follow-up occurs. The set of counterfactual
interventions of interest is thus

A ≡
⎧⎪⎪⎨⎪⎪⎩c̄ = 0, ā1 = 1, ā2 :

τ∑
t=1

a2(t) ∈ {0, τ}
⎫⎪⎪⎬⎪⎪⎭ . (24.1)
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Let
XS M =

(
Ȳā(τ) : ā ∈ A

)
denote the collection of counterfactual survival times under each possible treatment
regimen and let XS M ∼ FXS M . If we believe that the SCM accurately represents the
processes that generated our observed data, this distribution represents the distri-
bution of survival times that would have been observed if we had intervened on
the data-generating system to change the mechanism by which treatment decisions
were made (i.e., by forcing all subjects, rather than a self-selected subgroup, to fol-
low each regimen ā ∈ A), without altering any of the remaining data-generating
processes.

Multiple target parameters can be defined using the counterfactual outcomes
(Ȳā(τ) : ā ∈ A) and corresponding counterfactual survival times. For example, if
the counterfactual (discrete) hazard under every possible delay time is of interest,
one option is to smooth across time points and delay times using a marginal struc-
tural model (Robins 2000, 1998, 1999b), such as

logit (P(Tā = t | Tā ≥ t)) = mS M(t, ā | β) .

For example, one might specify the following model to investigate a linear summary
of the relationship between counterfactual hazard at time t and and cumulative time
spent on failing therapy up till time t:

mS M(t, ā | β) = β0 + β1

t−1∑
j=1

a2( j) + β2t + β3

t−1∑
j=1

a2( j) × t. (24.2)

For this particular specification, exp(β1 + β3t) is the relative (discrete) odds of death
at time t for each additional day spent on failing therapy. Alternatively, more flex-
ible model specifications could be used, such as models in which splines allow for
nonlinear changes in baseline hazard over time and nonlinear effects of delayed
modification. We refer to model (24.2), indexed by an intervention beginning at a
single time point and applied uniformly to all subjects in the population, as a “stan-
dard” marginal structural model, to contrast it with the history-adjusted and dynamic
marginal structural models described in the following sections.

At this stage in the road map, we are aiming purely to define our target parameter
and wish to avoid introducing new model assumptions. We thus define our target
causal parameter as a projection of true counterfactual hazard under different pos-
sible values for ā onto the model mS M(t, ā | β) using a marginal structural working
model (Neugebauer and van der Laan 2007). For model (24.2), the target causal
parameter is defined as

βS M = arg max
β

EFXS M

⎡⎢⎢⎢⎢⎢⎣∑
ā

∑
t

log
(
(λS M,β)I(Tā=t)(1 − λS M,β)I(Tā>t)

)⎤⎥⎥⎥⎥⎥⎦ , (24.3)

where to simplify notation we use λS M,β to refer to expit(mS M(ā, t | β)). In other
words, βS M is defined as the parameter value of β that minimizes the average of the
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Kullback–Liebler divergence between the model mS M(t, ā | β) and the distribution
FXS M across time points and possible switching times. One way to understand this
projection is to think of the target parameter as the parameter value that would have
been obtained if the investigator had access to the true counterfactual survival times
(or a perfectly executed randomized trial) for an infinite population under every
possible modification time and regressed these counterfactual outcomes on modifi-
cation time according to model m(t, ā | β). In this manner, the causal parameter βS M

is explicitly defined as a function of the distribution of the counterfactual survival
times:

βS M = ΨS M(FXS M ). (24.4)

24.3.2 History-Adjusted Marginal Structural Models

Target parameters defined using standard marginal structural models can be used
to estimate counterfactual survival if the entire population of patients failing an-
tiretroviral therapy (or subgroups defined by baseline covariate values V ⊂ L(0))
were forced to delay regimen modification. In practice, however, such a uniform
treatment pattern is unlikely to occur. When viral loads are not available, the World
Health Organization (WHO) currently recommends the use of CD4+ T cell counts
to guide regimen modification (World Health Organization 2006). Specifically, any
of the following three immunologic criteria can be interpreted as evidence of regi-
men failure and used to trigger modification to second-line therapy: (1) decline of
CD4+ T cell counts to pretherapy baseline or below, (2) ≥ 50% decline of CD4+
T cell counts from on-treatment peak value, or (3) persistent CD4+ T cell counts
< 100 cells/μl. While requiring fewer resources to implement than viral-load-based
monitoring, however, CD4-based monitoring of antiretroviral treatment is compli-
cated by the fact that in some patients CD4 counts remain stable for weeks or months
despite ongoing viral replication (Reynolds et al. 2009). As a result, immunologic
criteria have poor sensitivity for detecting virologic failure, and if used exclusively
to guide switching decisions would result in delayed regimen modification for many
patients.

The findings that (1) delayed regimen modification enforced across the entire tar-
get population would result in lower expected survival and (2) use of CD4+ T cell
counts would on average result in delayed regimen modification do not in them-
selves imply that use of CD4+ T cell counts to guide modification decisions would
necessarily increase mortality. Specifically, if CD4+ T cell counts are used to trig-
ger regimen modification, delays will be longest for those subjects who maintain
elevated CD4 counts despite ongoing viral replication and will be shortest for those
subjects whose CD4 counts are low at the time of or decline rapidly following viral
failure. This suggests an additional scientific question: Among subjects with viral
failure, is delayed modification less harmful for those subjects who maintain CD4
counts above WHO switching criteria than it is for subjects with low CD4 counts? A
CD4-based monitoring strategy would have a substantially smaller impact on mor-
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tality if delayed modification resulted in increased mortality primarily among those
subjects with low CD4 counts on failing therapy.

In order to address whether CD4 count during virologic failure modifies the ef-
fect of additional delays in regimen modification, a clinical trial could enroll subjects
who had remained on virologically failing first-line regimens for varying durations,
stratify them on the basis of their current CD4+ T cell count, and within each CD4
count stratum randomly assign each subject an additional fixed delay time. Such
a trial would allow the effect of additional delay time on survival to be compared
between subjects who did vs. did not meet WHO CD4 switching criteria in the con-
text of viral failure. Importantly, however, the effect of delayed modification within
CD4 count strata would be estimated among a selected subpopulation: those who re-
mained alive and on first-line therapy. Petersen et al. (2007a), Robins et al. (2007a),
van der Laan et al. (2007a), van der Laan and Petersen (2007b), and Petersen et al.
(2007b) provide further discussion of this issue.

We define counterfactual outcomes indexed by a series of baseline time points:
r = 1, ..., τ − m. For each baseline time point r, the counterfactual outcome is
defined as the probability of survival for at least m additional time points under
an intervention on treatment decisions beginning at time r. Treatment decisions
from time 0 through time r − 1 are left random and treatment decisions from
time r until the outcome is measured at r + m are intervened on. More formally,
the counterfactuals of interest are YĀ(r−1)a(r)(r + m) for r = 1, ..., τ − m, where
a(r) ≡ (a(r), a(r + 1), ..., a(r + m − 1)) ∈ Ar. We consider Ar (the set of possi-
ble treatment regimens beginning at time r) such that for each a(r) ∈ Ar we have
(Ā(r − 1), a(r)) ∈ A, where A (the set of possible treatments from t = 1, ..., τ)
is defined as in (24.1) to include all possible modification times and no losses to
follow-up or interruptions. To simplify notation, we use Ya(r)(r + m) to refer to
YĀ(r−1)a(r)(r + m) and Ta(r) to refer to TĀ(r−1)a(r). Let FXHM denote the distribution
of

XHM =
({

Ā(r − 1), Y(r),CD4(r),
(
Ya(r)(r + m) : a(r) ∈ Ar

)}
: r = 1, ..., τ − m

)
.

Here CD4(r) ∈ W(r) denotes the most recent CD4 measurement available at time r.
We aim to estimate how the effect of additional time spent on a failing regimen

differs depending on a subject’s most recent CD4+ T cell count among those sub-
jects who remain alive, in follow-up, and on first-line therapy. In order to define a
target parameter that addresses this question, we could estimate counterfactual sur-
vival probability m days in the future as a function of additional time spent on failing
therapy and current CD4+ T cell count using a series of standard marginal structural
working models and treating each time point 0, ..., τ−m−1 in turn as baseline. Alter-
natively, the use of history-adjusted marginal structural models (van der Laan et al.
2005; Petersen et al. 2007a) allows us to use a common working model and smooth
across baseline time points:

logit
(
P

(
Ta(r) ≤ r + m | Ā1(r − 1) = Ā2(r − 1) = 1,C ≥ r, T > r,CD4(r)

))
= mHM(r, a(r),CD4(r) | β),
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for r = 1, ..., τ − m. For example, we might define our target parameter using the
following working model:

mHM

(
r, a(r),CD4(r)|β

)
= β0 + β1

r+m−1∑
t=r

a2(t) + β2I(CD4(r) > w∗)

+β3

r+m−1∑
t=r

a2(t) × I(CD4(r) > w∗), (24.5)

where w∗ is the CD4 modification threshold recommended by the WHO. Such a
model provides a linear summary of the effect of additional delay until regimen
modification (

∑r+m−1
t=r a2(t)) on probability of survival m time points in the future and

allows this effect to differ depending on current CD4 count. An alternative model
specification could also allow this effect to differ depending on duration of time al-
ready spent on failing therapy (r). For the particular working model specification
(24.5), β3 = 0 corresponds to the null hypothesis that the effect of additional de-
lay until regimen modification is the same regardless of current CD4 count, and
exp(β1 + β3) corresponds to the discrete hazard ratio associated with an incremental
increase in delay until regimen modification for subjects with a CD4 count > w∗.
A finding that β1 > 0 while (β3 + β1) ≤ 0 would suggest that increased mortal-
ity resulting from delayed regimen modification was occurring primarily in those
subjects with CD4 counts below the WHO-recommended modification threshold.

Again, rather than assuming that equality (24.5) holds for some value of β, the
target parameter βHM can be defined using a projection as

βHM = arg max
β

EFXHM

⎡⎢⎢⎢⎢⎢⎢⎢⎣∑
a(r)

∑
r

log
(
(λHM,β)I(Ta(r)≤r+m)(1 − λHM,β)I(Ta(r)>r+m)

)⎤⎥⎥⎥⎥⎥⎥⎥⎦ , (24.6)

where to simplify notation we use λHM,β for expit(mHM(r, a(r),CD4(r) | β)). In
this manner, the history-adjusted marginal structural model target causal parameter
is explicitly defined as a function of the distribution of the counterfactual survival
times indexed by interventions beginning at time r:

βHM = ΨHM(FXHM ). (24.7)

24.3.3 Dynamic Marginal Structural Models

The target parameters defined using standard and history-adjusted marginal struc-
tural models address the scientific questions of whether delayed regimen modifica-
tion following viral failure results in increased mortality, whether the effect of ad-
ditional delay until regimen modification among subjects who remain on first-line
therapy differs depending on current CD4+ T cell count, and whether delayed mod-
ification remains detrimental to those subjects with CD4 counts above the WHO-
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recommended modification threshold. The target parameters defined thus far do not,
however, address the following questions: (1) How would patient outcomes have dif-
fered if a CD4-based rule vs. a viral load-based rule had been used to decide when
to modify therapy? (2) Which CD4 -based rule would have resulted, on average, in
optimal patient outcomes?

A clinical trial to address the latter two questions would enroll subjects at the
time of cART initiation and randomly assign them to a strategy for deciding when
to modify therapy. Random assignment of subjects to remain on failing therapy
until they met a CD4-based switching criterion vs. a viral-load-based switching cri-
terion would allow patient outcomes to be compared under these two strategies,
while random assignment of subjects to a range of different CD4-based switching
criteria would provide insight into the best choice of CD4-based rule. The random-
ized exposure in such hypothetical trials can be contrasted with the exposure in the
hypothetical trials described in Sects. 24.3.1 and 24.3.2, in which subjects were ran-
domly assigned a fixed delay time until modification rather than assigned a strategy
for deciding when to modify.

The target parameters defined in Sects. 24.3.1 and 24.3.2 focused on subjects
who were virologically failing cART. In order to focus on the larger population of
subjects starting cART, we redefine our baseline time point in the current section
such that t = 0 corresponds to time of cART initiation rather than the time of cART
failure. We define counterfactuals indexed by dynamic treatment regimens, or rules
that assign treatment decisions at each time point in response to patient character-
istics. Our focus is on dynamic rules that assign subjects to switch to second-line
therapy as soon as (and no sooner than) their CD4+ T cell count reaches a specified
threshold, and that do not allow subjects to either interrupt first-line therapy or to
leave the cohort. A similar approach could be used to define counterfactuals under
viral-load-based rules.

Let dθ(t,CD4(t), Ā(t − 1)) denote a treatment rule that deterministically assigns
values to the intervention variables A(t) = (A1(t), A2(t),C(t)) based on treatment
history and CD4 count up till time t according to the following algorithm:

• Do not interrupt first-line therapy (set A1(t) = 1 for all t).
• Remain in follow-up (set C(t) = 0 for all t).
• If most recent CD4+ T cell count is < θ and a subject is still on first-line therapy,

switch to second-line therapy (set A2(t) = 0 if A2(t − 1) = 1 and CD4(t) < θ).
• If most recent CD4+ T cell count is ≥ θ and a subject is still on first-line ther-

apy, do not switch to second-line therapy (set A2(t) = 1 if A2(t − 1) = 1 and
CD4(t) < θ).

• Once a subject has modified regimens, A2(t) = 0 by definition.

We focus on counterfactual survival times (Ȳdθ (τ) : θ ∈ Θ) under an intervention
on the SCM that assigns interruption, modification, and censoring according to the
rule dθ(t,CD4(t), Ā(t − 1)), t = 1, .., τ, where Θ is a set of CD4 switching thresholds
of interest. In other words, Ydθ (t) is defined as the solution to the structural equation
fY(t) under an intervention on the system of equations in which fA1(t), fA2(t), and fC(t)

are replaced with the treatment rule dθ(t,CD4(t), Ā(t − 1)). Let FXDM denote the
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distribution of
XDM =

(
Ȳdθ (τ) : θ ∈ Θ

)
.

We are interested in how the counterfactual survival distribution differs as a func-
tion of the CD4+ T cell count (or viral load) threshold θ used to trigger regimen
modification. A dynamic marginal structural model can be used to summarize this
relationship, smoothing over possible values of the threshold θ (Hernan et al. 2006;
van der Laan and Petersen 2007a; Robins et al. 2008). For example, one could spec-
ify a working model for the discrete counterfactual hazard as a function of θ:

logit
(
P(Tdθ = t | Tdθ ≥ t)

)
= mDM(θ, t | β).

For example, one might specify the following working model:

mDM(t, θ | β) = β0 + β1θ + β2θ
2 + h(t), (24.8)

where h(t) is some user-specified function of t. For example, if h(t) corresponds to
an indicator variable for each time point t, (24.8) approximates a Cox proportional
hazards model for fine enough time scale t. Alternative model specifications could
allow the effect of the threshold θ on the discrete hazard to vary by time (or, in other
words, relax the proportional hazards assumption). As with βS M and βHM , rather
than assuming that equality (24.8) holds for some value θ, we define βDM using a
projection:

βDM = arg max
β

EFXDM

⎡⎢⎢⎢⎢⎢⎣∑
θ

∑
t

log
(
(λDM,β)I(Tdθ=t)(1 − λDM,β)I(Tdθ >t)

)⎤⎥⎥⎥⎥⎥⎦ , (24.9)

where to simplify notation we use λDM,β to refer to expit(mDM(t, θ | β)). The dynamic
marginal structural model parameter is now defined a a function of the distribution
of the counterfactual survival times indexed by rules dθ:

βDM = ΨDM(FXDM ). (24.10)

24.4 Statistical Model and Identifiability Results

Recall that the observed data consist of n i.i.d. copies of O ∼ P0, while the target
parameters are functions of the counterfactual distributions FXS M , FXHM , and FXDM .
In order to estimate these target causal parameters, we must thus first be able to ex-
press ΨS M(FXS M ), ΨHM(FXHM ), and ΨDM(FXDM ) as parameters of the observed data
distribution P0. The sequential randomization assumption is one sufficient assump-
tion for βS M and βHM to be identified as parameters of the observed data distribution
(Robins 1986, 1987a,b):
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Yā( j)
∐

A1(t) | L̄(t) = l̄(t), Ā(t − 1) = ā(t − 1), (24.11)

Yā( j)
∐

A2(t) | L̄(t) = l̄(t), Ā(t − 1) = ā(t − 1), A1(t) = a1(t),

Yā( j)
∐

C(t) | L̄(t) = l̄(t), Ā(t − 1) = ā(t − 1), A1(t) = a1(t), A2(t) = a2(t),

for t < j ≤ τ.

For βDM the corresponding assumption is

Ydθ ( j)
∐

A1(t) | L̄(t) = l̄(t), Ā(t − 1) = ā(t − 1), (24.12)

Ydθ ( j)
∐

A2(t) | L̄(t) = l̄(t), Ā(t − 1) = ā(t − 1), A1(t) = a1(t),

Ydθ ( j)
∐

C(t) | L̄(t) = l̄(t), Ā(t − 1) = ā(t − 1), A1(t) = a1(t), A2(t) = a2(t),

for t < j ≤ τ.

In words, modification, interruption, and loss to follow-up at each time point are
assumed to be independent of counterfactual survival, given the observed past up
till that time point. In terms of the causal model, these identifiability assumptions
impose restrictions on the allowable joint distribution of the error terms PU . We re-
fer to the resulting SCM, corresponding to the model in Sect. 24.2 augmented with
the restrictions on the joint distribution of the errors needed for identifiability, as
the working SCM. We use the term “working” to refer to the SCM under which
the target causal parameter is identified, which might include assumptions not fully
supported by background knowledge and thus not part of the original SCM. We pur-
sue estimation under the working model, while emphasizing that any interpretation
of resulting estimates as causal effects is based on the plausibility of these working
model assumptions. In the current example, neither the original SCM nor the work-
ing SCM imposes restrictions on the allowable joint distributions of the observed
data. Thus for the purpose of estimation we commit to a nonparametric statistical
model for each of the target parameters.

24.4.1 Likelihood

Let QL(0),0(l(0)) ≡ P0(L(0) = l(0)) denote the conditional distribution of the baseline
covariates and

QL(t),0(l(t) | Y(t), L̄(t − 1), Ā(t − 1)) ≡ P0(L(t) = l(t) | Y(t), L̄(t − 1), Ā(t − 1))

denote the conditional distribution at time t of the nonintervention covariates (other
than vital status), given past covariates, vital status, and treatment. Let

gA(t),0(a(t) | Y(t), L̄(t), Ā(t − 1)) ≡ P0(A(t) = a(t) | Y(t), L̄(t), Ā(t − 1))
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denote the conditional distribution at time t of treatment and censoring given the
past. Let

QY(t),0(y(t) | Y(t − 1), L̄(t − 1), Ā(t − 1)) ≡ P0(Y(t) = y(t) | Y(t − 1), L̄(t − 1), Ā(t − 1))

denote the conditional distribution of vital status at time t given past covariates and
treatment, and

Q̄Y(t),0(Y(t − 1), L̄(t − 1), Ā(t − 1)) ≡ P0(Y(t) = 1 | Y(t − 1), L̄(t − 1), Ā(t − 1)).

The likelihood can be factorized as follows:

P0(O) = QL0,0(L(0))
T̃∏

t=1

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩
Q̄Y(t),0(Y(t − 1), L̄(t − 1), Ā(t − 1))Y(t)

(1 − Q̄Y(t),0(Y(t − 1), L̄(t − 1), Ā(t − 1)))1−Y(t)

QL(t),0(L(t) | Y(t), L̄(t − 1), Ā(t − 1))
gA(t),0(A(t) | Y(t), L̄(t), Ā(t − 1))

⎫⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎭ .
The components of this likelihood QL(t),0 and gA(t),0, t = 1, ..., T̃ can be further

factorized into their respective components, where each factor represents the condi-
tional distribution of a variable given its parents, those covariates on the right-hand
side of the corresponding structural equation in the SCM presented in Sect. 24.2.
For example,

gA(t),0(A(t) | Y(t), L̄(t), Ā(t − 1)) ≡ gA1(t),0(A1(t) | Y(t), L̄(t), Ā(t − 1))
×gA2(t),0(A2(t) | A1(t), Y(t), L̄(t), Ā(t − 1))
×gC(t),0(C(t) | A1(t), A2(t), Y(t), L̄(t), Ā(t − 1)).

QL(t),0 can similarly be factorized into a series of conditional distributions, corre-
sponding to QM(t),0, QD(t),0, QΔ(t),0, and QW(t),0. Finally, the likelihood for the mul-
tidimensional variables D(t), W(t), and Δ(t) can be further factorized according to
some arbitrary ordering. The data can be organized in long format, with a subject
contributing a new line of data each time at least one of the counting processes
jumps.

24.4.2 Target Parameters Ψ(P0)

When (24.11) (or its graphical counterpart) holds, the target counterfactual parame-
ters Ψ (FX) defined in Sect. 24.3 are identified (with slight abuse of notation) as pa-
rameters Ψ (P0) of the observed data distribution by the longitudinal g-computation
formula (Robins 1986, 1987a,b; Pearl 2009). The g-computation formula for the
marginal distribution of the counterfactual survival time indexed by a given inter-
vention is derived by (1) intervening on the likelihood to remove those factors that
correspond to the structural equations for the intervention variables, (2) evaluating
the resulting truncated likelihood at the value of the intervention variables used to
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index the counterfactual, and (3) integrating with respect to the distribution of all
nonintervention variables other than the outcome. The target parameters βS M and
βDM are identified as the projections of these counterfactual survival times under
each possible intervention (ā ∈ A and dθ for θ ∈ Θ, respectively) onto the corre-
sponding working model. The target parameter βHM is identified as the projection
of the joint distribution of the counterfactual survival times under each possible in-
tervention (Ya(r + m) : a(r) ∈ Ar) and (CD4(r), Y(r), Ā(r − 1)), for each baseline
time point r, onto working model mHM .

We provide the full identifiability result for the distribution of the counterfactual
survival time Tā [and thus for βS M = ΨS M(FXS M )] as an illustration:

P(Tā = t) 24.11
=

∑
l̄(t−1)

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩
Q̄Y(t),0(T ≥ t, L̄(t − 1) = l̄(t − 1), Ā(t − 1) = ā(t − 1))×∏t−1

j=1(1 − Q̄Y( j),0(T ≥ j, L̄( j − 1) = l̄( j − 1), Ā( j − 1) = ā( j − 1))×∏t−1
j=1 QL( j),0(l( j) | Y( j) = 0, L̄( j − 1) = l̄( j − 1), Ā( j − 1) = ā( j − 1))

QL(0),0(l(0))

⎫⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎭ ,
where the right-hand side of this equation is a parameter of the observed data distri-
bution P0.

This identifiability result implies that the target parameter βS M can be evaluated
by drawing repeatedly from the truncated likelihood to generate the distribution of
Yā(t) for t = 0, ...,min(T, τ) and ā ∈ A. In other words, βS M is evaluated using the
following algorithm:

1. Draw L(0) from the distribution QL(0),0 and draw Y(1) from the conditional dis-
tribution QY(1),0 given the draw of L(0). If Y(1) = 1, skip to step 6.

2. Draw L(1) from the conditional distribution QL(1),0 given L(0) (noting that QL(1),0
is itself is composed of multiple conditional distributions and thus requires mul-
tiple sequential draws).

3. Draw Y(2) from the conditional distribution QY(2),0 given L̄(1) and setting A(1) =
a(1). If Y(2)=1, skip to step 6.

4. Draw L(2) from the conditional distribution QL(2),0 given L̄(1) and setting A(1) =
a(1).

5. Repeat steps 3 and 4 to draw Y(t) and L(t) until Y(t) = 1 or t = τ, whichever
happens first.

6. Repeat steps 1–5 an infinite number of times for each treatment regimen ā ∈ A
7. Evaluate βS M by regressing the counterfactuals Yā(t) simulated in steps 1–6 on

treatment history ā and t using pooled logistic regression model mS M(t, ā|β).

The parameter βDM can be evaluated using a similar process, with the modifications
that A(t) in steps 3–5 is set by evaluating the function dθ(t,CD4(t), Ā(t − 1)), steps
1–5 are repeated for each θ ∈ Θ, and in step 7 the simulated counterfactuals Ydθ (t)
are regressed on θ and t using pooled logistic regression model mDM(t, θ | β).

Evaluation of βHM requires a modification of the algorithm such that a draw for
a given time point r involves drawing from the nontruncated likelihood up till r
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and the truncated likelihood after r. In other words, βHM can be evaluated using the
following algorithm:

1. Draw (Y(r), L̄(r), Ā(r − 1)) by first drawing L(0) from QL(0),0, then drawing Y( j)
from QY( j),0, L( j) from QL( j),0, and A( j) from gA( j),0 for j = 1, ..., r − 1, and
finally drawing Y(r) from QY(r),0 and L(r) from QL(r),0. If Y(r) = 1, C(r − 1) = 1,
A1(r − 1) = 0 or A2(r − 1) = 0, skip to step 5.

2. Draw Y(r + 1) from the conditional distribution QY(r+1),0 given draw (L̄(r), Ā(r −
1)) and setting A(r) = a(r). If Y(r + 1) = 1, skip to step 5.

3. Draw L(r+1) from the conditional distribution QL(r+1),0 given draw (L̄(r), Ā(r−1))
and setting A(r) = a(r).

4. Repeat steps 2 and 3 to draw Y(t) and L(t) until Y(t) = 1 or t = r + m, whichever
happens first.

5. Repeat steps 1–4 an infinite number of times for each a(r) ∈ Ar and each r =
1, ..., τ − m.

6. Evaluate βHM by regressing the counterfactuals Ya(r +m) simulated in steps 2–5
in those draws for which Y(r) = C(r−1) = 0 and A1(r−1) = A2(r−1) = 1 on a(r),
CD4(r), and r using pooled logistic regression model mHM(r, a(r),CD4(r) | β).

Each of these parameters β = Ψ (P0) can now be targeted for estimation, under the
additional assumption of positivity needed to ensure that the relevant conditional
probabilities are well defined (Chap. 10).

24.5 Estimation

We provide a succinct summary of MLE, IPCW estimation, TMLE, and IPCW
reduced-data TMLE. Inference can be based on the nonparametric bootstrap or the
influence curve; details are not provided in this chapter. We use the shorthand

QL̄(t),0 ≡
t∏

j=0

QL( j),0(L( j) | Y( j), L̄( j − 1), Ā( j − 1)), (24.13)

QȲ(t),0 ≡
t∏

j=1

QY( j),0(Y( j) | Y( j − 1), L̄( j − 1), Ā( j − 1)), (24.14)

and Q0 ≡ QL̄(T̃ ),0 × QȲ(T̃ ),0 to refer to the L and Y components of P0. We use

gĀ(t),0 ≡
t∏

j=1

gA( j),0(A( j) | Y( j), L̄( j), Ā( j − 1)) (24.15)

and g0 ≡ gĀ(T̃ ),0 to refer to the conditional distributions of the A components in
P0 = Q0g0.
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24.5.1 MLE

Above, each target parameter was expressed as a function of P0 and algorithms were
provided that described how each parameter could be evaluated given knowledge of
the true data-generating distribution. A substitution estimator for each parameter is
provided by plugging in an estimator of the data-generating distribution to these
algorithms. The parameters βS M and βDM are only functions of Q0; thus a substi-
tution estimator of these parameters only requires an estimator Qn of Q0. In order
to implement such an estimator, the conditional distribution of L(t) can be factor-
ized in terms of conditional distributions of the components of L(t), where many of
these components are binary indicators. The continuous or ordered discrete compo-
nents of L(t), such as the biomarkers CD4 count and viral load, can be discretized
and coded accordingly in terms of binary indicators as well. These different con-
ditional distributions can then be estimated based on the log-likelihood of the data
O1, . . . ,On, where, for each type of conditional distribution, we only have to work
with the relevant factor of the likelihood that represents the particular conditional
distribution we wish to estimate.

In estimating the t-specific conditional distribution of a given variable, one op-
tion is to pool across time or across different levels of an ordered discrete variable.
For example, we could estimate the probability of a clinic visit at time t given the
past by pooling across time points and including some function of time t as a co-
variate in a corresponding regression model. MLE according to parametric models
for these conditional distributions can be carried out with standard multivariate lo-
gistic regression software. In addition, we can utilize machine learning algorithms
such as log-likelihood-based super learning to construct data-adaptive estimators
that avoid reliance on a priori specified parametric forms of these conditional distri-
butions. This results in an initial estimator Q0

n of Q0 (where we use the 0 superscript
to differentiate this initial estimator of Q0 from targeted estimators of Q0 created
by updating this initial fit when implementing TMLE in Sect. 24.5.3). An estima-
tor Q0

n defines the maximum-likelihood-based substitution estimators ΨS M(Q0
n) and

ΨDM(Q0
n) of the target parameters βS M and βDM .

The target parameter βHM is a function of both Q0 and g0 (its evaluation accord-
ing to the algorithm defined in Sect. 24.4.2 requires gĀ(r−1),0 in addition to QȲ(r+m),0
and QL̄(r+m−1),0 for each time point r). Thus implementation of an MLE of βHM

according to this algorithm requires an estimator gn of g0. As with Q0, g0 can be
factorized into a series of conditional distributions of binary variables, and these
conditional distributions can be estimated using either parametric logistic regres-
sion models or with data-adaptive estimators. Rather than simulating data using Q0

n
and gn beginning at time t = 0, step 1 of the algorithm can alternatively be imple-
mented by drawing from the empirical distribution of the observed data at time r
(L̄(r), Y(r), Ā(r − 1)). Consistency of the MLEs of βS M and βDM requires consis-
tency of the estimator Qn

0, consistency of the MLE of βHM also requires consistent
estimation of either gĀ,0(r − 1) or the distribution of (L̄(r), Y(r), Ā(r − 1)) for each
time point r (which will be achieved if estimation of this distribution is based on
sampling from the empirical distribution of the data at time r).
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24.5.2 Inverse-Probability-Weighted Estimation

An alternative approach is to define an inverse probability of treatment and censoring-
weighted estimating function for each of our target parameters as described in previ-
ous chapters.The following estimating functions are unbiased estimating functions
for the target parameters βS M and βDM:

DS M
IPCW (g0, βS M) =

∑
t≤T̃

I(A1(t − 1) = 1) d
dβmS M(t, Ā(t − 1) | β)

gĀ(t−1),0
(Y(t) − λS M,β),

DDM
IPCW (g0, βDM) =

∑
θ

∑
t≤T̃

I(Ā(t − 1) = dθ(L̄)) d
dβmDM(t, θ | β)

gĀ(t−1),0
(Y(t) − λDM,β).

The estimating function for βHM involves a sum over those baseline time points r
for which Y(r) = C(r−1) = 0, A1(r−1) = A2(r−1) = 1, and r ≤ τ−m. To facilitate
definition of the estimating function, let R refer to this set. Further, let

W(C(r + m − 1), A1(r + m − 1),mHM , g0)

≡
I(C(r + m − 1) = 0, A1(r + m − 1) = 1) d

dβmHM(r, A(r),CD4(r) | β)∏r+m−1
j=r gA( j),0(A( j) | L̄( j), Ā( j − 1))

.

The following is now an unbiased estimating function for βHM:

DHM
IPCW (g0, βHM) =

∑
r∈R
W(C(r + m − 1), A1(r + m − 1),mHM , g0)(Y(r + m) − λHM,β).

Given an estimator gn of g0, an estimate βn is then defined as the solution of
0 =

∑n
i=1 DIPCW (gn, βn)(Oi). These estimators can be implemented with weighted lo-

gistic regression software. For example, βS M can be implemented by fitting a pooled
weighted logistic regression of the observed outcomes Y(t) on the observed modifi-
cation times implied by Ā2(t − 1) among subjects that remain alive and uncensored
and who have not interrupted therapy by time t − 1, with weights corresponding to
the inverse of the product of gA( j),0 taken up to time t − 1. Consistency of the IPCW
estimators relies on consistency of the estimator gn.

24.5.3 TMLE

In the interest of space, we focus on estimation of βS M = ΨS M(Q0), with brief
comments regarding estimation of βDM and βHM . The MLE of the parameter βS M

is implemented based on an initial estimator of the conditional distributions of bi-
nary nonintervention variables, where this estimator, Q0

n, was represented as a series
of logistic regression fits. The TMLE of βS M involves adding a clever covariate to
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each of these logistic regression fits, using the current logistic regression fit as an
offset, and fitting the coefficients ε in front of the clever covariate with parametric
logistic regression (van der Laan 2010a,b). This TMLE corresponds with using the
log-likelihood loss function L(P) = − log P and using these parametric logistic re-
gression working models with parameter ε as the parametric submodel through the
initial estimator that encodes the fluctuations of an initial estimator.

The clever covariate for the conditional distribution QB(B | Pa(B)) of a binary
indicator B given its parents Pa(B) (the variables on the right-hand side of the cor-
responding structural equation) is a function HB(Q0

n, gn) of the same dimension as
the target parameter, and it can be evaluated for each observation Oi as a function of
the parent set Pai(B) for that observation. Specifically,

HB(Q0
n, gn) = EQ0

n,gn
(DS M

IPCW (gn, β
0
n) | B = 1, Pa(B))

−EQ0
n,gn

(DS M
IPCW (gn, β

0
n) | B = 0, Pa(B)),

where DS M
IPCW (gn, β

0
n) is the inverse probability of treatment and censoring-weighted

estimating function for the target parameter as presented above (formally, any gradi-
ent of the pathwise derivative of the target parameter can be selected). The resulting
update of Q0

n is denoted by Q1
n, and this process is iterated until convergence to Q∗n,

at which point the coefficients in front of the clever covariate (i.e., the fluctuation
parameters ε) approximate zero. Current experience shows very fast convergence
of this targeted maximum likelihood algorithm, with the majority of bias reduction
achieved in the first step.

One can also use a separate ε for each factor of the likelihood, and carry out
the updates Qk

n of Q0
n sequentially, starting at the last factor of Q, each time using

the clever covariate evaluated at the most recent update Qk
n, and proceeding till the

update of the first factor. The latter closed-form TMLE has been presented in van der
Laan (2010a,b).

The TMLE for βS M is defined as the substitution estimatorΨS M(Q∗n). Consistency
of the TMLE relies on consistent estimation of Q0 or consistent estimation of g0
(as well as use of an estimator gn that converges to a distribution that satisfies the
positivity assumption). Efficiency of the TMLE requires the consistency of both
estimators.

The TMLE for the target parameter βDM = ΨDM(Q0) is implemented in the same
fashion, with Q∗n used to implement the substitution estimator ΨDM(Q∗n). A similar
approach can be used for a history-adjusted target parameter that is defined by spec-
ifying a separate working model for each time point r. In this special case of history-
adjusted parameters, the TMLE can be implemented using sequential applications
of the TMLE standard marginal structural model algorithm to estimate the param-
eters of each r-specific working model, treating covariates up till time r (including
Ā(r − 1)) as baseline nonintervention covariates. When the history-adjusted target
parameter is defined by pooling over time points r, as with βHM , the TMLE involves
additional updates of gn; however, details are beyond the scope of this chapter.
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24.5.4 IPCW Reduced-Data TMLE

Implementation of the TMLE in Sect. 24.5.3 requires fitting all conditional distribu-
tions of the Q0-factor of the likelihood and carrying out the TMLE update for each.
The need to update the fit for each conditional distribution prior to simulating from
Q∗n can make the TMLE procedure quite computer intensive. Further, the initial es-
timation step requires estimation of a very high-dimensional Q0-factor. Due to the
curse of dimensionality, Q0

n may be a highly biased estimator of Q0, resulting in a
TMLE that is inefficient and relies heavily on the consistency of gn for its consis-
tency. We provide an overview of the IPCW reduced-data TMLE (IPCW-R-TMLE)
as one response to these challenges (van der Laan 2008b). In order to simplify the
discussion, we again focus on the target parameter βS M , noting that a parallel ap-
proach could be used to estimate and βDM while estimation of βHM would require
additional steps.

We motivate development of the estimator by considering a scenario in which the
same SCM holds, but in which the observed data available to the analyst have been
reduced such that the only time-varying covariates observed are the intervention
variables (interruption, modification, and censoring), the outcome, and CD4+ T cell
count. We denote the reduced covariate set by Lr(t) ≡ CD4(t) and the corresponding
reduced observed data Or ≡

(
Ȳ , L̄r, Ā

)
. Parallel to the notation introduced for P0, we

use Pr
0 = Qr

0gr
0 to denote the distribution of Or, where Qr

0Lr(t), Qr
0Y(t) and gr

0A(t) are
defined by replacing L(t) with Lr(t) in the conditional distributions (24.13), (24.14),
and (24.15), and where Qr

0 ≡ Qr
0L̄r(T̃ )

× Qr
0Ȳ(T̃ )

.
Identifiability of the target causal parameter based on this new reduced-data

structure requires stronger assumptions; each conditional independence statement
of (24.11) needs to hold conditional on L̄r(t) rather than L̄(t). This stronger identifi-
ability assumption would impose additional restrictions on the allowed distributions
of the error terms PU and thus imply a working SCM different from that defined in
(24.4). We develop a TMLE for this reduced observed data structure, then consider
how this reduced-data TMLE can be modified such that it remains a consistent es-
timator of the target causal parameter βS M under the original SCM working model
implied by the weaker identifiability assumption (24.11) (given consistency of gn or
Q0

n and convergence of gn to an appropriate distribution).
Under the reduced-data identifiability assumption, the target causal parameter

βS M can be represented as a function of the distribution of the reduced observed
data distribution Ψ r

S M(Qr
0), where Qr

0 is much lower dimensional than Q0. We can
estimate this target parameter with TMLE as described in Sect. 24.5.3, now applied
to the reduced-data structure Or. Briefly, Qr

0 and gr
0 can be factorized into a series

of conditional distributions of binary variables, and maximum likelihood methods,
potentially combined with data-adaptive approaches, can be applied to provide an
initial estimator Qr0

n and an estimator gr
n. Updating Qr0

n until convergence provides
an estimate Qr∗

n of Qr
0.

The problem is that the stronger identifiability assumption with respect to the
reduced-data structure Or might not hold, and as a result the substitution estima-
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tor Ψ r
S M(Qr∗

n ) may be an inconsistent estimator of βS M = ΨS M(Q0), even when
Ψ r

S M(Qr∗
n ) is a consistent (and efficient) estimator of ΨS M(Qr

0). That is, condition-
ing on time-varying covariates in addition to CD4 count may be required for the
counterfactual outcome to be independent of censoring, treatment modifications,
and interruptions and thus for the causal parameter to be identified as a parameter
of the distribution of the observed data. The reduced-data TMLE can be modified to
adjust for any such residual confounding by observed time-varying covariates other
than CD4 count by using an estimator gn of the true g0 (the conditional distribution
of the intervention variables in the nonreduced observed data), and applying inverse
weights gr

n/gn to each of the estimation steps in the reduced-data TMLE procedure.
Specifically, for maximum-likelihood-based estimation of a conditional distribu-

tion QB(B | Pa(B)), where Pa(B) only depends on Ā through Ā(t), we use weights
gr

nĀ(t)
/gnĀ(t) to obtain an IPCW-R-ML-based initial estimator Qr0

n of Qr
0, and an

IPCW-R-ML estimator of the fluctuation parameter ε in the TMLE step. The re-
sulting IPCW-R-TMLE ΨS M(Qr∗

n ) is now a consistent estimator of ΨS M(Q0) if the
true treatment and censoring mechanism g0 is estimated consistently, and, in the
case where gr

n/gn converges to 1, then this estimator is double robust with respect
to misspecification of estimators of Qr

0 and gr
0 = g0. For further details we refer the

interested reader to Appendix A and van der Laan (2008b).

24.6 Discussion

An additional issue complicates the link between an SCM and the observed data.
Ideally, the exact date at which censoring occurred would be known. For example, a
subject transferring care to an alternative clinic would report the date of the transfer.
In practice, however, censoring time C must often be approximated using an opera-
tional definition. Any algorithm used to define C should be based on past covariates
in order to respect the temporal ordering in the underlying causal model. A common
approach is to define censoring time based on a minimum duration during which no
counting process for a subject has jumped. In order to maintain the link between
the observed data and the underlying SCM, any data that do become available on a
subject subsequent to C should not be used. Even when this approach is employed,
however, the link between the observed data and the SCM will remain imperfect.
For some subjects a period will exist during which a subject’s follow-up status is
incorrectly classified (e.g., a subject already died before our definition of censoring,
but we do not know), resulting in time-updated observed covariates and outcomes
that fail to reflect the true underlying processes.

In summary, SCMs are a useful tool for translating background knowledge and
scientific questions into statistical models and target parameters, and for informing
the interpretation of resulting parameter estimates by providing transparency re-
garding the assumptions needed in order for these estimates to approximate causal
effects. As our discussion makes clear, however, the steps of specifying an SCM
and its link to the observed data, defining a target causal parameter that adequately
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addresses the scientific question of interest, and implementing estimators of this pa-
rameter can each increase dramatically in complexity when applied to real clinical
cohort data. We have raised several examples of possible complications as illustra-
tions, but many more remain. Issues not addressed include the fact that the subjects
in a clinical cohort are rarely a random sample from a well-defined population,
and that many covariates will have substantial measurement error and/or potentially
informative reporting processes. Acknowledgement of these challenges is not in-
tended as a disincentive to using observational data to target causal questions, but
rather as encouragement to approach such analyses systematically, to use a road map
that clearly delineates between true causal knowledge and working models, and to
remain humble in the interpretation of resulting estimates.



Chapter 25

Probability of Success of an In Vitro

Fertilization Program

Antoine Chambaz

About 9 to 15% of couples have difficulty in conceiving a child, i.e., do not con-
ceive within 12 months of attempting pregnancy (Boivin et al. 2007). In response to
subfertility, assisted reproductive technology has developed over the last 30 years,
resulting in in vitro fertilization (IVF) techniques (the first “test-tube baby” was
born in 1978). Nowadays, more than 40,000 IVF cycles are performed each year in
France and more than 63,000 in the USA (Adamson et al. 2006). Yet, how to quan-
tify the success in assisted reproduction still remains a matter of debate. One could,
for instance, rely on the number of pregnancies or deliveries per IVF cycle. How-
ever, an IVF program often consists of several successive IVF cycles. So, instead of
considering each IVF cycle separately, one could rather rely on an evaluation of the
whole program. IVF programs are emotionally and physically burdensome. Provid-
ing the patients with the most adequate and accurate measure of success is therefore
an important issue that we propose to address in this chapter.

25.1 The DAIFI Study

Our contribution is based on the French Devenir Après Interruption de la FIV
(DAIFI) study (Soullier et al. 2008; de la Rochebrochard et al. 2008, 2009). In
France, the four first IVF cycles are fully reimbursed by the national health insur-
ance system. Therefore, as in the previous references, we conclude that the most
adequate measure of success for French couples is the probability of delivery (re-
sulting from embryo transfer) during the course of a program of at most four IVF
cycles. We will refer to this quantity as the probability of success of a program of at
most four IVF cycles, or even sometimes as the probability of success.

Data were provided by two French IVF units (Cochin in Paris and Clermont-
Ferrand, a medium-sized city in central France). All women who followed their first
IVF cycle in these units between 1998 and 2002 and who were under 42 at the start
of the cycle were included. Women over 42 were not included, unless they had a

419M.J. van der Laan and S. Rose, Targeted Learning: Causal Inference for Observational

and Experimental Data, Springer Series in Statistics, DOI 10.1007/978-1-4419-9782-1_25,

© Springer Science+Business Media, LLC 2011



420 Antoine Chambaz

normal ovarian reserve and a specific IVF indication. For every enrolled woman,
the data were mainly the attended IVF unit and the woman’s date of birth, and for
each IVF cycle, its start date, number of oocytes harvested, number of embryos
transferred or frozen, indicators of pregnancy, and successful delivery (for a com-
prehensive description, see de la Rochebrochard et al. 2009). Data collection was
discontinued after the woman’s fourth IVF cycle. Since the first four IVF cycles
are fully reimbursed, it is reasonable to assume that economic factors do not play
a role in the phenomenon of interest. Specifically, whether a couple will abandon
the IVF program mid-course without a successful delivery or undergo the whole
program does not depend on economic factors (on the contrary, if the IVF cycles
were not fully reimbursed, then disadvantaged couples would likely abandon the
program mid-course more easily). Furthermore, successive IVF cycles occur close
together in time: hence, the sole age at the start of the first IVF cycle is a relevant
summary of the successive ages at the start of each IVF cycle during the program.
Likewise, we make the assumption that the number of embryos transferred or frozen
during the first IVF cycle is a relevant summary of the successive number of har-
vested oocytes and transferred or frozen embryos associated to each IVF cycle (i.e.,
a relevant summary measure of the couple’s fertility during the program). Relaxing
this assumption will be considered in future work.

Estimating the probability of success of a program of at most four IVF cycles is
not easy due to couples who abandon the IVF program mid-course without a suc-
cessful delivery. Moreover, since those couples have a smaller probability of having
a child than couples that undergo the whole program, it would be wrong to ignore
the right censoring, and simply count the proportion of successes (Soullier et al.
2008), even if the decision to abandon the program is not informed by any relevant
factors. In addition, it seems likely that some of the baseline factors, such as base-
line fertility, might be predictive of the dropout time (measured on the discrete scale
of number of IVF cycles): in statistical terms, we expect that the right-censoring
mechanism will be informative.

Three approaches to estimating the probability of success of a program of at
most four IVF cycles are considered in Soullier et al. (2008). The most naive ap-
proach estimates the probability of success as the ratio of the number of deliveries
successive to the first IVF cycle to the total number of enrolled women, yielding a
point estimate of 37% and a 95% confidence interval given by (0.35, 0.38). This first
approach obviously overlooks a lot of information in the data.

A second approach is a standard nonparametric survival analysis based on the
Kaplan–Meier estimator. Specifically, Soullier et al. (2008) compute the Kaplan–
Meier estimate S n of the survival function t �→ P(T ≥ t), where T denotes the
number of IVF cycles attempted after the first one till the first successful delivery.
The observed data structure is represented as (min(T,C), I(T ≤ C)), with C the
right-censoring time. The estimated probability of success is given by 1 − S n(3).
This method resulted in an estimated probability of success equal to 52% and a 95%
confidence interval (0.49, 0.55). This much more sensible approach still neglects
the baseline covariates and thus assumes that a woman’s decision to abandon the
program is not informed by relevant factors that predict future success, such as those
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measured at baseline. One could argue that this method should provide an estimated
upper bound on the probability of success.

Actually, formulating the problem of interest in terms of survival analysis is a
sensible option, and indeed the methods in Part V for right-censored data can be
employed to estimate the survival function of T . In Sect. 25.6, we discuss the equiv-
alence between our approach presented here and the survival analysis approach.

In order to improve the estimate of the probability of success, Soullier et al.
(2008) finally resort to the so-called multiple imputation methodology (Schafer
1997; Little and Rubin 2002). Based on iteratively estimating missing data using
the past, this third approach leads to a point estimate equal to 46%, with a 95%
confidence interval given by (0.44, 0.48).

The three methods that we summarized either answer only partially the ques-
tion of interest (naive approach and nonparametric Kaplan–Meier analysis) or suffer
from bias due to reliance on parametric models (multiple-imputation approach). We
expose in the next sections how the TMLE methodology paves the way to solving
this delicate problem with great consideration for theoretical validity.

25.2 Data, Model, and Parameter

The observed data structure is longitudinal:

O = (L0, A0, L1, A1, L2, A2, L3 = Y),

where L0 = (L0,1, L0,2, L0,3, L0,4) denote the baseline covariates and L0,1 indicates the
IVF center, L0,2 indicates the age of the woman at the start of the first IVF cycle, L0,3
indicates the number of embryos transferred or frozen at the first IVF cycle, and L0,4
indicates whether the first IVF cycle is successful, i.e., yields a delivery, (L0,4 = 1)
or not (L0,4 = 0). For each 1 ≤ j ≤ 3, Aj−1 indicates whether the woman completes
her jth IVF cycle (Aj−1 = 1) or not (Aj−1 = 0) this also encodes for dropout, and
Lj indicates whether the jth IVF cycle is successful (Lj = 1) or not (Lj = 0). The
longitudinal data structure becomes degenerate after a time point t at which either
the woman abandons the program (At = 0) or has a successful IVF cycle (Lt = 1 for
some t). By encoding convention, the data structure O is constrained as follows. (1)
If Aj−1 = 0 for some 1 ≤ j < 3, then Aj = . . . = A2 = 0 and Lj = . . . = L3 = Y = 0.
(2) If L0,4 = 1, then L1 = . . . = L3 = Y = 1 and A0 = . . . = A2 = 1, and similarly if
Lj = 1 for some 1 ≤ j < 3, then Lj+1 = . . . = L3 = Y = 1 and Aj = . . . = A2 = 1,
too.

The true data generating distribution of O is denoted by P0. We assume that the
following positivity assumption holds: P0–almost surely, for each 0 ≤ j ≤ 2:

0 < P0

(
Aj = 1 | L1: j = 01: j, A0: j−1 = 10: j−1, L0,4 = 0, (L0,1, L0,2, L0,3)

)
,

with notation xi: j = (xi, . . . , x j) ∈ R
j−i+1 for i ≤ j, and the obvious convention

x1:0 = A1:0 = L1:0 = ∅. This assumption states that, for each 0 ≤ j ≤ 2, conditionally
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on observing a woman who already went through ( j+1) unsuccessful IVF cycles, it
cannot be certain, based on past information (L0: j, A0: j−1), that a ( j+2)-th IVF cycle
will not be attempted. As discussed in Chap. 10, positivity can be tested from the
data.

We see P0 as an element of the statistical model M of all possible probability
distributions of O (satisfying, in particular, the constraints imposed by the encoding
convention and positivity assumption). SetM is large because a model should reflect
only true knowledge and because we lack any meaningful knowledge about the true
data-generating distribution P0 that would allow us to enforce further restrictions.

The parameter mapping of interest, Ψ (P), is the following explicit functional of
a candidate data-generating distribution P:

Ψ (P) = EP

( ∑
�1:2∈{0,1}2

P (Y = 1 | A0:2 = 10:2, L1:2 = �1:2, L0)

× P (L2 = �2 | A0:1 = 10:1, L1 = �1, L0) × P (L1 = �1 | A0 = 1, L0)
)
, (25.1)

where, by convention, for each 2 ≤ j ≤ 3,

P
(
Lj = � j | A0: j−1 = 10: j−1, L1: j−1 = �1: j−1, L0,4 = �0,4, (L0,1, L0,2, L0,3)

)
= 0, (25.2)

whenever the event [(L0,4, A0, L1, A1, L2, A2, L3) = (�0,4, 1, �1, 1, �2, 1, �3)] does not
meet the encoding constraints. The objective of this chapter is to provide a point
estimate and a 95% confidence interval for the statistical target parameter ψ0 =

Ψ (P0).
The parameter of interest ψ0 = Ψ (P0) in (25.1) is a well-defined statistical pa-

rameter on the nonparametric statistical model M. Its causal interpretation is en-
lightening, and can be derived in two different frameworks. Furthermore, it is not
necessary to rely on the causal interpretation to justify the scientific interest of ψ0 as
a pure statistical estimand.

The first causal interpretation of (25.1) relies on the so-called counterfactual
framework. Let us first introduce the set A of all possible realizations of A0:2:
A = {(0, 0, 0), (1, 0, 0), (1, 1, 0), (1, 1, 1)}. By Theorem 2.1 in Yu and van der Laan
(2002), there exists an explicit construction La = fa(O, P0), a ∈ A, involving aug-
menting the probability space with an independent draw of uniformly distributed
random variables and quantile-quantile functions for discrete random variables, so
that we have consistency, P0–almost surely, O = (A, LA), and randomization, for all
0 ≤ j ≤ 2, A j, is independent of X = (La : a ∈ xA) conditionally on the observed
data history (L0: j, A0: j−1). Let Y(1,1,1) denote the last coordinate of L(1,1,1): Y(1,1,1) = 1
if and only if the woman finally gives birth after four IVF cycles (the IVF program
being interrupted if the woman gives birth mid-course).

Theorem 3.1 of Yu and van der Laan (2002), also guarantees that
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Pr(Y(1,1,1) = 1) = EP0

( ∑
�1:2∈{0,1}2

P0 (Y = 1 | A0:2 = 10:2, L1:2 = �1:2, L0)

×P0 (L2 = �2 | A0:1 = 10:1, L1 = �1, L0)

×P0 (L1 = �1 | A0 = 1, L0)
)
. (25.3)

This equality is an example of the g-computation formula. It relates the probability
distribution of Y(1,1,1) to the probability distribution of the observed data structure O.
In addition, it teaches us that ψ0 = Ψ (P0) can be interpreted (at the cost of a weak as-
sumption) as the probability of a successful outcome after four IVF cycles (the IVF
program being interrupted if the woman gives birth mid-course). Note that when
L0,4 = 1, the sum has only one nonzero term, whereas it has three nonzero terms
when L0,4 = 0.

We need to emphasize that the counterfactuals whose existence is guaranteed by
these theorems in Yu and van der Laan (2002), and Gill and Robins (2001) are not
necessarily interesting nor have an interpretation that is causal in the real world.
The structural equations framework that we present hereafter makes the definition
of counterfactuals explicit and truly causal since they correspond with intervening
on the system of equations (Chap. 2). Alternatively, as in the Neyman–Rubin coun-
terfactual framework discussed in Chap. 21, one defines the counterfactuals in terms
of an experiment, and one assumes the consistency and randomization assumption
with respect to these user-supplied definitions of the counterfactuals.

It is possible, at the cost of untestable (and stronger) assumptions, to provide
another interpretation of (25.1). This second interpretation is at the core of Pearl
(2009). It is of course compatible with the previous one. Let us assume that the
random phenomenon of interest has no unmeasured confounders. A causal graph is
equivalent to the following system of structural equations: there exist ten indepen-
dent random variables (U1

L0
, . . . ,U4

L0
,UA0 ,UL1 , . . . ,UA2 ,UL3 ) and ten deterministic

functions ( f 1
L0
, . . . , f 4

L0
, fA0 , fL1 , . . . , fA2 , fL3 ) such that⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

L0,1 = f 1
L0

(U1
L0

),
L0,2 = f 2

L0
(L0,1,U2

L0
),

L0,3 = f 3
L0

(L0,2, L0,1,U3
L0

),
L0,4 = f 4

L0
(L0,3, L0,2, L0,1,U4

L0
),

and for every 0 ≤ j ≤ 2,
Aj = fA j (L0: j−1, A0: j−1,UAj ),
Lj+1 = fL j+1 (A0: j, L0: j,UL j+1 ).

(25.4)

One can intervene upon this system by setting the intervention nodes A0:2 equal
to some values a0:2 ∈ A. Formally, this simply amounts to substituting the equal-
ity Aj = a j to Aj = fA j (L0: j, A0: j−1,UAj ) for all 0 ≤ j ≤ 2 in (25.4). This yields
a new causal graph, the so-called graph under intervention A0:2 = a0:2. The inter-
vened, new, causal graph or system of structural equations describes how Y = L3 is
randomly generated under this intervention. Under the intervention A0:2 = a0:2, this
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last (chronologically speaking) random variable is denoted by Ya0:2 , naturally using
the same notation. Moreover, it is known (see, for instance, Robins 1986, 1987a;
Pearl 2009) that the g-computation formula (25.3) also holds in this nonparametric
structural equation model framework, relating the probability distribution of Y(1,1,1)
to the probability distribution of the observed data structure O.

Finally, even if one is not willing to rely on the causal assumptions in the SCM,
and one is also not satisfied with the definition of an effect in terms of explicitly
constructed counterfactuals, there is still a way forward. Assuming that the time
ordering of observed variables L0:4 and A0:2 is correct (which it indeed is), the target
parameter still represents an effect of interest aiming to get as close as possible to a
causal effect as the data allow. In any case, ψ0 = Ψ (P0) is a well-defined effect of
an intervention on the distribution of the data, that can be interpreted as a variable
importance measure (Chaps. 4, 22, and 23).

25.3 The TMLE

It can be shown that Ψ is a pathwise differentiable parameter (Appendix A). There-
fore the theory of semiparametric models applies, providing a notion of asymptoti-
cally efficient estimation and, in particular, its key ingredient, the efficient influence
curve. The TMLE procedure takes advantage of the pathwise differentiability and
related properties in order to build an asymptotically efficient substitution estimator
of ψ0 = Ψ (P0).

Let L2
0(P) denote the set of measurable functions s mapping the set O (where the

observed data structure takes its values) to R, such that Ps = 0 and Ps2 < ∞ [we
recall that Pϕ is shorthand notation for EPϕ(O) for any ϕ ∈ L1(P)]. A fluctuation
model {P(ε) : |ε | < η} ⊂ M is a one-dimensional parametric model such that
P(0) = P. Its score at ε = 0 is s ∈ L2

0(P) if the derivative at ε = 0 of the log-
likelihood ε �→ log P(ε)(O) equals s(O):

∂
∂ε

log P(ε)(O)
∣∣∣
ε=0 = s(O).

As presented in Chap. 25 of van der Vaart (1998), the functional Ψ is pathwise
differentiable at M with respect to L2

0(P) if there exists D ∈ L2
0(P) such that, for

any fluctuation model {P(ε) : |ε| < η} with score s, the function ε �→ Ψ (P(ε)) is
differentiable at ε = 0, with

∂
∂ε
Ψ (P(ε))

∣∣∣
ε=0 = PsD.

In the context of this chapter, if such a D ∈ L2
0(P) exists, then it is called the efficient

influence curve. Remarkably, the asymptotic variance of a regular estimator of the
pathwise differentiable parameter Ψ (P) is lower-bounded by the variance of the
efficient influence curve. For that reason in particular, it is important to determine if
Ψ is pathwise differentiable and, if it is, to derive its efficient influence curve.
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Let us introduce the shorthand notation Q(L0; P) = P(L0), Q(L1 | A0, L0; P) =
P(L1 | A0, L0), Q(L2 | A0:1, L0:1; P) = P(L2 | A0:1, L0:1), Q(Y | A0:2, L0:2; P) = P(Y |
A0:2, L0:2), g(A0 | X; P) = P(A0 | L0), g(A0:1 | X; P) = g(A0 | X; P)× P(A1 | L0:1, A0),
and g(A0:2 | X; P) = g(A0:1 | X; P) × P(A2 | L0:2, A0:1). The likelihood P(O) can be
represented as

P(O) =
3∏

j=0

Q(Lj | A0: j−1, L0: j−1; P)

×
2∏

j=0

g(Aj = 1 | A0: j−1, L0: j; P)Aj (1 − g(Aj = 1 | A0: j−1, L0: j; P))1−A j

and thus factorizes as P = Qg. The parameter of interest at P = Qg can be straight-
forwardly expressed as a function of Q:

Ψ (P) = EP

( ∑
�1:2∈{0,1}2

Q(Y = 1 | A0:2 = 10:2, L1:2 = �1:2, L0; P)

×Q(L2 = �2 | A0:1 = 10:1, L1 = �1, L0; P) × Q(L1 = �1 | A0 = 1, L0; P)
)
.

Note that the outer expectation is with respect to the probability distribution Q(L0; P)
of the baseline covariates L0.

The following proposition states that Ψ is pathwise differentiable and it presents
its efficient influence curve at P ∈ M.

Proposition 25.1. The functional Ψ is pathwise differentiable at every P ∈ M. The
efficient influence curve D∗(· | P) at P ∈ M is written

D∗(· | P) =
3∑

j=0

D∗j(· | P),

where

D∗0(O | P) = EP(Y(1,1,1) | L0) − Ψ (P)
= P(L1 = 1 | A0 = 1, L0)
+P(L1 = 0 | A0 = 1, L0) × P(L2 = 1 | A0:1 = 10:1, L1 = 0, L0)
+P(L1 = 0 | A0 = 1, L0) × P(L2 = 0 | A0:1 = 10:1, L1 = 0, L0)
×P(Y = 1 | A0:2 = 10:2, L1:2 = 01:2, L0) − Ψ (P),

D∗1(O | P) =
I(A0 = 1)

g(A0 = 1 | X; P)
× (L1 − P(L1 = 1 | A0, L0))

×{EQ0 (Y(1,1,1) | L0, A0 = 1, L1 = 1) − EQ0 (Y(1,1,1) | L0, A0 = 1, L1 = 0)}

=
I(A0 = 1)

g(A0 = 1 | X; P)
× (1 − P(L2 = 1 | A0:1 = 10:1, L1 = 0, L0)
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×P(Y = 1 | A0:2 = 10:2, L1:2 = (0, 1), L0)
−P(L2 = 0 | A0:1 = 10:1, L1 = 0, L0)
×P(Y = 1 | A0:2 = 10:2, L1:2 = 01:2, L0))
× (L1 − P(L1 = 1 | A0, L0)) ,

D∗2(O | P) =
I(A0:1 = 10:1)

g(A0:1 = 10:1 | X; P)
× (L2 − P(L2 = 1 | A0:1, L0:1))

×{EQ0 (Y(1,1,1) | L0:1, A0:1 = 1, L2 = 1) − EQ0 (Y(1,1,1) | L0:1, A0:1 = 1, L2 = 0)}

=
I(A0:1 = 10:1)

g(A0:1 = 10:1 | X; P)
× (P(Y = 1 | A0:2 = 10:2, L2 = 1, L0:1)

−P(Y = 1 | A0:2 = 10:2, L2 = 0, L0:1))
× (L2 − P(L2 = 1 | A0:1, L0:1)) ,

D∗3(O | P) =
I(A0:2 = 10:2)

g(A0:2 = 10:2 | X; P)
× (Y − P(Y = 1 | A0:2, L0:2)) ,

and the latter equalities involve convention (25.2). Furthermore, the efficient influ-
ence curve D∗(· | P) is double robust: if P0 = Q0g0 and P = Qg, then

EP0 D∗(O | P) = 0 implies Ψ (P) = Ψ (P0)

if either Q = Q0 or g = g0.

The theory of semiparametric models teaches us that the asymptotic variance of
any regular estimator of ψ0 is lower-bounded by the variance of the efficient influ-
ence curve, EP0 D∗(O | P0)2. A regular estimator of ψ0 having as limit distribution
the mean-zero Gaussian distribution with variance EP0 D∗(O | P0)2 is therefore said
to be asymptotically efficient.

25.3.1 TMLE Procedure

We assume that we observe n independent copies O(1), . . . ,O(n) of the observed data
structure O. The TMLE procedure takes advantage of the pathwise differentiability
of the parameter of interest and bends an initial estimator, obtained as a substitution
estimator Ψ (P0

n), into an updated substitution estimator Ψ (P∗n) (with P∗n an update
of P0

n), which enjoys better properties.

Initial estimate. We start by constructing an initial estimate P0
n of the distribution P0

of O, which could also be used to construct an initial estimate ψ0
n = Ψ (P0

n). The ini-
tial estimator of the probability distribution of the baseline covariates will be defined
as the empirical probability distribution of L(i)

0 , i = 1, . . . , n. The initial estimate of
the other factors of P0

n is obtained by super learning, using the log-likelihood loss
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function for each of the binary conditional distributions in Q0.

Updating the initial estimate. The optimal theoretical properties enjoyed by a su-
per learner P0

n as an estimator of P0 do not necessarily translate into optimal proper-
ties of Ψ (P0

n) as an estimator of the parameter of interest ψ0 = Ψ (P0). In particular,
writing P0

n = Q0
ng0

n, due to the curse of dimensionality, Ψ (Q0
n) may still be overly

biased due to an optimized tradeoff in bias and variance with respect to the infinite-
dimensional parameter Q0 instead of Ψ (Q0) itself.

The second step of the TMLE procedure stretches the initial estimate P0
n in the

direction of the targeted parameter of interest, through a maximum likelihood step.
If the initial estimate Ψ (P0

n) is biased, then this step removes all asymptotic bias
for the target parameter whenever the g-factor of P0, g0, is estimated consistently:
in fact, it maps an inconsistent Ψ (P0

n) into a consistent TMLE of ψ0. Hence, the
resulting updated estimator is said to be double robust: it is consistent if the initial
first-stage estimator of the Q-factor of P0, Q0, is consistent or if the g-factor of P0,
g0, is consistently estimated.

Let’s now describe the specific TMLE. We first fluctuate P0
n with respect to the

conditional distribution of Y given its past (A0:2, L0:2), i.e., construct a fluctuation
model {P0

n(ε) : |ε | < η} through P0
n at ε = 0 whose score at ε = 0 is D∗3(· | P0

n).
Fit ε with maximum likelihood. This yields an intermediate update P0

n(ε0n ) of P0
n,

which we denote by P1
n. Then, iteratively from j = 2 to j = 1, we fluctuate P3− j

n
with respect to the conditional distribution of Lj given its past (A0: j−1, L0: j−1), using
a fluctuation model {P3− j

n (ε) : |ε| < η} through P3− j
n at ε = 0 whose score at ε = 0 is

D∗j(· | P
3− j
n ), and fitting ε with maximum likelihood. This produces a final estimate

P∗n of P0 that is targeted toward the parameter of interest. The TMLE of ψ0 is the
corresponding substitution estimator ψ∗n = Ψ (P∗n).

This TMLE corresponds with selecting the log-likelihood loss function L(P) =
− log P and selecting a parametric model {P(ε) : ε}, ε multivariate, a separate
ε-component for each factor of Q(· | P), no fluctuation of g(· | P), and using the
recursive backwards MLE-updating algorithm that starts at the last factor and ends
at first factor (as originally presented in van der Laan 2010a).

In this simple setting, the construction of the aforementioned fluctuations is easy.
It is, for instance, possible to select as parametric fluctuation working models simple
univariate logistic regression models. Indeed, let us introduce the so-called clever
covariate for fluctuating the conditional distribution of Y under P0

n, the last factor of
Q0

n = Q(· | P0
n), as H∗n,3 = I(A0:2 = 10:2)/g(A0:2 = 10:2 | X; P0

n). It is straightforward
to check that the fluctuation model

P0
n(ε)(O) = expit

(
logit Q(Y | A0:2, L0:2; P0

n) + εH∗n,3
)Y

×
[
1 − expit

(
logit Q(Y | A0:2, L0:2; P0

n) + εH∗n,3
)](1−Y)

× P0
n(A0:2, L0:2)

goes through P0
n at ε = 0, with a score at ε = 0 equal to D∗3(·; P0

n). Let εn,3 denote
the maximum likelihood estimate in the model, and let P1

n = P0
n(εn,3) be the up-

date of P0
n. Likewise, let us introduce the second clever covariate for fluctuating the
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conditional distribution of L2 under P1
n, the “next” factor of Q1

n = Q(· | P1
n):

H∗n,2 =
I(A0:1 = 10:1)

g(A0:1 = 10:1 | X; P1
n)

×
(
P1

n(Y = 1 | A0:2 = 10:2, L2 = 1, L0:1) − P1
n(Y = 1 | A0:2 = 10:2, L2 = 0, L0:1)

)
and the related fluctuation model

P1
n(ε)(O) = Q(Y | A0:2, L0:2; P1

n) × g(A2 = 1 | X; P1
n)A2 (1 − g(A2 = 1 | X; P1

n))1−A2

×expit
(
logit Q(L2 | A0:1, L0:1; P1

n) + εH∗n,2
)L2

×
[
1 − expit

(
logit Q(L2 | A0:1, L0:1; P1

n) + εH∗n,2
)](1−L2)

× P1
n(A0:1, L0:1).

Again, it is easy to verify that the latter fluctuation model goes through P1
n at ε = 0,

with a score at ε = 0 equal to D∗2(· | P1
n). Let εn,2 denote the maximum likelihood

estimate in the model, and let P2
n = P1

n(εn,2) be the corresponding update. Finally, let
us introduce the third clever covariate for fluctuating the conditional distribution of
L1 under P2

n, the “next” factor of Q2
n = Q(· | P2

n):

H∗n,1 =
I(A0 = 1)

g(A0 = 1 | X; P2
n)
× (1 − P2

n(L2 = 1 | A0:1 = 10:1, L1 = 0, L0)

×P2
n(Y = 1 | A0:2 = 10:2, L1:2 = (0, 1), L0) − P2

n(L2 = 0 | A0:1 = 10:1, L1 = 0, L0)
×P2

n(Y = 1 | A0:2 = 10:2, L1:2 = 01:2, L0))

and the related fluctuation model

P2
n(ε)(O) =

3∏
j=2

Q(Lj | A0: j, L0: j; P2
n)

×
2∏

j=1

g(Aj = 1 | X; P2
n)Aj (1 − g(Aj = 1 | X; P2

n))1−A j

×expit
(
logit Q(L1 | A0, L0; P2

n) + εH∗n,1
)L1

×
[
1 − expit

(
logit Q(L1 | A0, L0; P2

n) + εH∗n,1
)](1−L1)

P2
n(A0, L0).

Once again, this fluctuation model goes through P2
n at ε = 0, with its score at ε = 0

equal to D∗1(· | P2
n). Let εn,1 denote the maximum likelihood estimate in the model,

and we define P∗n = P2
n(εn,1). The first (and last) factor is the marginal distribution

of L0 under P0
n, which is thus the empirical probability distribution of L0. This is

already a nonparametric maximum likelihood estimator, so that carrying out another
updating step as above will result in an estimate of ε equal to zero. The TMLE of
ψ0 is the resulting substitution estimator Ψ (P∗n).

A closer look at the construction of P∗n finally yields the following result:

Proposition 25.2. It holds that
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(1) For each 1 ≤ j ≤ 3, D∗j(· | P
3− j
n ) = D∗j(· | P

∗
n).

(2) Q(L0; P0
n) = 1

n
∑n

i=1 I(L(i)
0 = L0) (expressed in words, the marginal distribution of

L0 is estimated with its empirical distribution), and PnD∗(· | P∗n) = 0.
(3) The TMLE of ψ0, ψ∗n = Ψ (P∗n), satisfies

ψ∗n =
1
n

n∑
i=1

∑
�1:2∈{0,1}2

Q(Y = 1 | A0:2 = 10:2, L1:2 = �1:2, L
(i)
0 ; P∗n)

×Q(L2 = �2 | A0:1 = 10:1, L1 = �1, L
(i)
0 ; P∗n) × Q(L1 = �1 | A0 = 1, L(i)

0 ; P∗n).

Item (1) in Proposition 25.2 is an example of the so-called monotonicity property of
the clever covariates, which states that the clever covariate of the jth factor in Q0
only depends on the future (later) factors of Q0. This monotonicity property implies
that the TMLE procedure presented above converges in one single step, referring to
the iterative nature of the general TMLE procedure. A typical iterative TMLE proce-
dure (Chap. 24 and Appendix A) would use the same logistic regression fluctuation
models as presented above, but it would enforce a common ε across the different
factors of Q0, and thus updates all factors simultaneously at each maximum like-
lihood update step. This iterative TMLE converges very fast: in similar examples,
experience shows that convergence is often achieved in two or three steps, and that
most reduction occurs during the first step). Item (2) is of fundamental importance
since it allows us to study the properties of Ψ (P∗n) from the point of view of the gen-
eral theory of estimating equations. Item (3) just states that ψ∗n is a plug-in estimator
Ψ (P∗n) and provides a simple formula for evaluating ψ∗n.

25.3.2 Merits of TMLE Procedure

Since the efficient influence curve D∗(· | P) is double robust and since P∗n solves
the efficient influence curve estimating equation, the general theory of estimating
equations teaches us that the TMLE ψ∗n enjoys remarkable asymptotic properties
under certain assumptions. Stating the latter assumptions is outside the scope of
this chapter. One often refers to such conditions as regularity conditions. Let P∗n =
Q∗ng∗n. The regularity conditions typically include the requirements that the sequence
(ψ∗n : n = 1, . . .) must belong to a compact set; that both Q∗n and g∗n must converge
to some Q1 and g1 with at least one of these limits representing the truth; that the
estimated efficient influence curve D(· | P∗n) must belong to a P0-Donsker class with
P0-probability tending to one; and that a second-order term that involves a product
of Q∗n − Q1 and g∗n − g1 is oP(1/

√
n). See Appendix A for more details.

The following classical result holds:

Proposition 25.3. Under regularity conditions,

(1) The TMLE ψ∗n consistently estimates ψ0 as soon as either Q∗n or g∗n consistently
estimates Q0 or g0.
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(2) If the TMLE consistently estimates ψ0, then it is asymptotically linear: there ex-
ists D such that

√
n(ψ∗n − ψ0) =

1
√

n

n∑
i=1

D(O(i)) + oP(1). (25.5)

Equation (25.5) straightforwardly yields that
√

n(ψ∗n − ψ0) is asymptotically
Gaussian with mean zero and variance consistently estimated by

1
n

n∑
i=1

Dn(O(i))2,

where Dn is a consistent estimator of influence curve D.

If Q∗n and g∗n consistently estimate Q0 and g0 (hence P∗n consistently estimates
P0), then D = D∗(·; P0), so that the asymptotic variance is consistently estimated
by

1
n

n∑
i=1

D∗(O(i) | P∗n)2. (25.6)

In this case, the TMLE is asymptotically efficient: its asymptotic variance is as
small as possible (in the family of regular estimators).

Furthermore, if g∗n is a maximum-likelihood-based consistent estimator of g0,
then (25.6) is a conservative estimator of the asymptotic variance of

√
n(ψ∗n−ψ0)

(it converges to an upper bound on the latter asymptotic variance).

Proposition 25.3 is the cornerstone of the TMLE methodology. It allows us to build
confidence intervals. We assess how well such confidence intervals perform from a
practical point of view through a simulation study in Sect. 25.4. For the estimation
of the probability of success carried out in Sect. 25.5, we resort to the bootstrap to
compute a confidence interval.

We emphasized how the TMLE benefits from advances in the theory of estimat-
ing equations. Yet, it enjoys some remarkable advantages over estimating equation
methods. Let us briefly evoke the most striking in the context of this chapter:

(1) The TMLE is a substitution estimator. Thus, it automatically satisfies any con-
straint on the parameter of interest (here that the parameter of interest is a propor-
tion and must therefore belong to the unit interval), and it respects the knowledge
that the parameter of interest is a particular function of the data-generating dis-
tribution. On the contrary, solutions of an estimating equation may fail to satisfy
such constraints.

(2) The TMLE methodology cares about the likelihood. The log-likelihood of the
updated estimate of P0, 1

n
∑n

i=1 log P∗n(Oi), is available, thereby allowing for the
C-TMLE extension (Part VII).
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25.3.3 Implementing TMLE

The TMLE procedure is implemented following the specification in Sect. 25.3.1.
Only the details of the super learning procedure are missing. We chose to rely on
a least squares loss functions, and on a collection of algorithms containing seven
estimation procedures: generalized linear models, elastic net (α = 1), elastic net
(α = 0.5), generalized additive models (degree = 2), generalized additive models
(degree = 3), DSA, and random forest (ntree = 1000).

25.4 Simulations

The simulation scheme attempts to mimic the data-generating distribution of the
DAIFI data set. We start with L0 drawn from its empirical distribution based on the
DAIFI data set and for j = 0, . . . , 2, successively, Aj ∼ Ber(q j(L0,1, L0,2, L0,3)) and
Lj+1 ∼ Ber(p j+1(L0,1, L0,2, L0,3)), where for each j = 0, 1, 2, p j+1(L0,1, L0,2, L0,3) =
expit (α1,L0,1 + α2,L0,1 log L0,2 + α3,L0,1 log(5 +min(L0,3, 5)5)), and for each j = 0, 1, 2,
qj(L0,1, L0,2, L0,3) = expit (β1,L0,1 + β2,L0,1 L0,3). The values of the α- and β-parameters
are reported in Table 25.1.

Regarding the empirical distribution of L0, the IVF unit random variable L0,1 fol-
lows a Bernoulli distribution with parameter approximately equal to 0.517. Both
conditional distributions of age L0,2 given the IVF unit are Gaussian-like, with
means and standard deviations roughly equal to 33 and 4.4. The marginal distri-
bution of the random number L0,3 of embryos transferred or frozen has mean and
variance approximately equal to 3.3 and 7.5, with values ranging between 0 and 23
(only 20% of the observed L(i)

0,3 are larger than 5). We refer to Table 25.3 in Sect. 25.5
for a comparison of the empirical probabilities that Aj = 1 and Lj = 1 computed
under the empirical distribution of a simulated data set with 10,000 observations
and the empirical distribution of the DAIFI data set.

The super learning library is correctly specified for the estimation of the cen-
soring mechanism, and misspecified for the estimation of the Q-factor. Indeed,
L0,2 plays a role in p j+1(L0,1, L0,2, L0,3) through its logarithm, and L0,3 through
log(5 + min(L0,3, 5)5). We choose this expression because x �→ log(5 + min(x, 5)5)
cannot be well approximated by a polynomial in x over [0, 23]. Furthermore, the true

Table 25.1 Values of the α- and β-parameters used in the simulation scheme

IVF cycle j
Parameters 0 1 2 3

100 × α·,0 − (61, −55, 4.5) (13, −45, 1.2) (60, −40, 1.5)
100 × α·,1 − (65, −70, 3.3) (19, −49, 1.7) (80, −50, 1)
100 × β·,0 (40, 10) (−45, 32) (−30, 5) −
100 × β·,1 (40, 9) (−50, 34) (−40, 6) −
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Fig. 25.1 MLE and TMLE empirical densities

Table 25.2 Simulation results
Empirical

Estimator Bias MSE Cover (p-value)
MLE −0.01571 0.00065 −

TMLE 0.00052 0.00027 0.958 (89%)

value of the parameter of interest for this simulation scheme can be estimated with
great precision by Monte Carlo. Using a simulated data set of one million observa-
tions under the intervention (1,1,1) yields ψsimul

0 = 0.652187, with a 95% confidence
interval equal to (0.6512535, 0.6531205).

We repeat B = 1000 times the following steps: (1) simulate a data set with sample
size n = 3001 according to the simulation scheme presented above and (2) estimate
ψsimul

0 with Ψ (P∗n,b) = ψ∗n,b, the bth TMLE based on this bth data set. In order to shed
some light one the properties of the TMLE procedure, we also keep track of the
initial maximum-likelihood-based substitution estimator Ψ (P0

n,b), based on the bth
data set.

We summarize the results of the simulation study in Table 25.2. They are il-
luminating: the MLE is biased, whereas the TMLE is unbiased. In the process of
stretching the initial MLE into the updated TMLE in the direction of the parameter
of interest, the update step not only corrects the bias but also diminishes the vari-
ance. Those key features are well illustrated in Fig. 25.1, where it is also seen that
the TMLE is approximately normally distributed.

Let us now investigate the validity of the coverage guaranteed by the 95% con-
fidence intervals based on the central limit theorem satisfied by ψ∗n, using (25.6) as
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an estimate of the asymptotic variance. Since the super learner g∗n is a consistent
estimator of g0, the latter estimate of the asymptotic variance of the TMLE is sen-
sible, and may be slightly conservative due to the misspecification of Q∗n. Among
the B = 1000 95% confidence intervals, 958 contain the true value ψsimul

0 . This is
strongly in favor of the conclusion that the confidence intervals do meet their re-
quirement. The probability for a binomial random variable with parameter (B, 95%)
to be less than 958 equals 89%.

25.5 Data Application

We observe n = 3001 experimental units. We report in Table 25.3 the empirical
probabilities of Aj = 1 (each j = 0, 1, 2) and Lj = 1 ( j = 0, 1, 2, 3) for all IVF
cycles. It is obvious from these numbers that the censoring mechanism plays a great
role in the data-generating experiment. We applied the TMLE methodology and
obtained a point estimate of ψ0 equal to ψ∗n = 0.505. The corresponding 95% confi-
dence interval based on the central limit theorem, using (25.6) as an estimate of the
asymptotic variance of

√
n(ψ∗n − ψ0), is equal to (0.480, 0.530).

However, we have no certainty of the convergence of g∗n to g0 (which would
guarantee that the confidence interval is conservative). Therefore we also carried out
a bootstrap study. Specifically, we iterated B = 1000 times the following procedure.
First, draw a data set of n = 3001 observations from the empirical measure Pn;
second, compute and store the TMLE ψ∗n,b obtained on this data set. This results
in the following 95% confidence interval (using the original ψ∗n as center of the
interval): (0.470, 0.540), which is wider than the previous one.

As a side remark, the MLE Ψ (P0
n) updated during the second step of the TMLE

procedure (applied to the original data set) is equal to 0.490. We also note that the
TMLE ψ∗n falls between the estimates obtained in Soullier et al. (2008) by multiple
imputation and the Kaplan–Meier method. The probability of success of a program
of at most four IVF cycles may be slightly larger than previously thought. In con-
clusion, future participants in a program of at most four IVF cycles can be informed
that approximately half of them may subsequently succeed in having a child.

Table 25.3 Empirical probabilities that Aj = 1 and Lj = 1 based on a simulated data set of 10,000
observations and the DAIFI data set

Simulated data set DAIFI data set

Empirical probability of Empirical probability of
IVF cycle j A j = 1 Lj = 1 Aj = 1 Lj = 1

0 73% 21% 75% 22%
1 57% 32% 59% 32%
2 46% 37% 49% 35%
3 − 40% − 37%
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25.6 Discussion

We studied the performance of IVF programs and provided the community with an
accurate estimator of the probability of delivery during the course of a program of at
most four IVF cycles in France (abbreviated to probability of success). We first ex-
pressed the parameter of interest as a functional Ψ (P0) of the data-generating distri-
bution P0 of the observed longitudinal data structure O = (L0, A0, L1, A1, L2, A2, Y).
Subsequently, we applied the TMLE. Under regularity conditions, the estimator is
consistent as soon as at least one of two fundamental components of P0 is consis-
tently estimated; moreover, the central limit theorem allowed us to construct a confi-
dence interval. These theoretical properties are illustrated by a simulation study. We
obtained a point estimate that is approximately equal to 50%, with a 95% confidence
interval given by (48%, 53%). Earlier results obtained by Soullier et al. (2008) based
on the multiple-imputation methodology were slightly more pessimistic, with an es-
timated probability of success equal to 46% and (44%, 48%) as 95% confidence
interval.

These authors also considered another approach that involves phrasing the prob-
lem of interest as the estimation of a survival function based on right-censored data.
The key to this second approach is that the probability of success coincides with
the probability P(T ≤ 3), where T is the number of IVF cycles attempted after the
first one till the first successful delivery. Our observed longitudinal data structure
O is equivalent to the right-censored data structure O′ = (W,min(T,C), I(T ≤ C)),
where W = L0 and C = min(0 ≤ j ≤ 3 : A j = 0) with the additional convention
A3 = 0. Neglecting the baseline covariates W and assuming that the dropout time
C is independent of T , Soullier et al. (2008) estimated the probability of success
by 1 − S n(3), S n being the Kaplan–Meier estimate of the survival function of T .
Although the TMLE methodology to address the estimation of P(T ≤ 3) (incorpo-
rating the baseline covariates) is well understood (Chaps. 17 and 18), we choose to
adopt the point of view of a longitudinal data structure rather than that of a right-
censored data structure. From the survival analysis point of view, our contribution
is to incorporate the baseline covariates in order to improve efficiency and to allow
for informative censoring. We finally emphasize that an extension of the TMLE pro-
cedure presented in this chapter will allow, in future work, to take into account the
successive number of embryos transferred or frozen at each IVF cycle (instead of
the sole number at the first IVF cycle), thereby acknowledging the possibility that
this time-dependent covariate may yield time-dependent confounding.
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Chapter 26

Individualized Antiretroviral Initiation Rules

Romain Neugebauer, Michael J. Silverberg, Mark J. van der Laan

In this chapter, TMLE is illustrated with a data analysis from a longitudinal obser-
vational study to investigate “when to start” antiretroviral therapy to reduce the inci-
dence of AIDS-defining cancer (ADC), defined as Kaposi sarcoma, non-Hodgkin’s
lymphoma, or invasive cervical cancer, in a population of HIV-infected patients.
A key clinical question regarding the management of HIV/AIDS is when to start
combination antiretroviral therapy (ART), defined in the Department of Health and
Human Services (2004) guidelines as a regimen containing three or more individual
antiretroviral medications. CD4+ T-cell count levels have been the primary marker
used to determine treatment eligibility, although other factors have also been con-
sidered, such as HIV RNA levels, history of an AIDS-defining illness (Centers for
Disease Control and Prevention 1992), and ability of the patient to adhere to ther-
apy. The primary outcomes considered in ART treatment guidelines described above
have always been reductions in HIV-related morbidity and mortality. Until recently,
however, guidelines have not considered the effect of CD4 thresholds on the risk
of specific comorbidities, such as ADC. In this analysis, we therefore evaluate how
different CD4-based ART initiation strategies influence the burden of ADC. We are
analyzing ADC here since it is well established that these malignancies are closely
linked to immunodeficiency.

We compare the effectiveness in delaying onset of ADC of two clinical guide-
lines regarding when to start ART. Specifically, the following research ques-
tion is addressed: Should ART be initiated when a patient’s CD4 count drops
below 350 cells/μl (current guideline) or should ART initiation be instead de-
layed until his/her CD4 count drops below 200 cells/μl (official guideline for
years 2001–2007)? The target population where this effect is of interest is
composed of all patients who are HIV-infected, aged 18 years or older, ART-
naive, never diagnosed with ADC and engaged in medical care as demon-
strated by receipt of a CD4 test.

435M.J. van der Laan and S. Rose, Targeted Learning: Causal Inference for Observational

and Experimental Data, Springer Series in Statistics, DOI 10.1007/978-1-4419-9782-1_26,

© Springer Science+Business Media, LLC 2011



436 Romain Neugebauer et al.

Addressing this research question involves the estimation of the effect of two
personalized ART intervention rules (each based on the patients’ CD4 count profile
over time) on the distribution of the resulting failure times defined as the patients’
times to cancer onset. A dynamic marginal structural model (dMSM) provides an
adequate causal model for such an effect since dMSMs are models for the distribu-
tion of rule-specific counterfactual outcomes. More precisely, each of the two deci-
sion rules of interest for when to start ART are indexed by a CD4 count threshold
denoted by θ (equal to 200 or 350) and can be described as follows: “Only initiate
ART once the patient’s CD4 count drops below θ and continue treatment with ART
without interruption thereafter.”

26.1 Longitudinal Data Structure

This analysis was conducted within Kaiser Permanente of Northern California
(KPNC), a large integrated health care delivery system that provides comprehensive
medical services to approx. 3.2 million members in a 14-county region in north-
ern California, representing 30% of the surrounding population (N. Gordon, pers.
comm.). KPNC maintains complete databases on hospitalizations, outpatient visits,
laboratory tests, and prescriptions. Numerous disease registries are maintained at
the KPNC Division of Research, including HIV and cancer. For additional details
on KPNC’s registries and members we refer readers to Selby et al. (2005) and our
accompanying technical report: Neugebauer et al. (2010).

KPNC’s databases were used to retrospectively identify a cohort of adult HIV-
infected patients within KPNC followed between 1996 and 2007 who met the fol-
lowing eligibility criteria: HIV-infected, at least 18 years old, KPNC member dur-
ing years 1996–2007, never previously treated with antiretrovirals, at least one CD4
count measurement available in the previous year, and never previously diagnosed
with an ADC. Based on these eligibility criteria, a total of 6,250 HIV-infected pa-
tients were identified. The start of follow-up for patients was the first date at which
they met all of the eligibility criteria defined above. Patients were then followed un-
til they achieved the outcome of interest, i.e., incident ADC, or until right censored
due to occurrence of a competing event: death, discontinuation of KPNC health in-
surance, or administrative censoring at the end of the study on December 31, 2007.
Small gaps in KPNC health insurance of less than 3 months were ignored, which
more likely represented administrative glitches as opposed to lack of health plan
coverage. In addition, ART discontinuation lasting less than 6 months was also ig-
nored.

The data for this analysis are viewed as realizations of 6250 i.i.d. copies of the
following random longitudinal data structure:

O = (T̃ , Δ, L(0), A(0), L(1), A(1), . . . , L(t), A(t), . . . , L(T̃ ), A(T̃ ), L(T̃ + 1)),
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where T̃ denotes the follow-up time, Δ denotes the indicator of T̃ being equal to the
time till cancer onset, L(0) denotes the baseline covariates, L(t) denotes intermedi-
ate time-dependent covariates at time t, and A(t) = (A1(t), A2(t) = I(T̃ ≤ t, Δ = 0))
denotes the indicator of receiving ART at time t (A1(t)) and the indicator of be-
ing right-censored at time t (A2(t) = I(T̃ ≤ t, Δ = 0)). Let P0 be the probability
distribution of O.

In this data analysis the time scale is discretized in the sense that t denotes a
discrete time stamp that indexes the consecutive intervals of τ = 180 d following
a patient’s study entry. In particular, t = 0 represents the first τ days of a patient’s
follow-up, and T̃ is measured in units of τ days. The right-censoring time C is
defined as the minimum time to a competing event (all expressed in units of τ days
since study entry). Thus Δ is the indicator that cancer onset occurs prior to the right-
censoring time C.

A patient was defined to initiate ART on the first day of a sequence of at least 2
consecutive months during which the patient was treated with three or more indi-
vidual antiretroviral medications. The values for all treatment variables before ART
initiation were set to 0, i.e., the value for each A1(t) such that t represents an inter-
val of τ days all of which precede ART initiation was set to 0. Values for all other
treatment variables, A1(t), were mapped to 1 except for all time points t that in-
clude or follow the first day of a sequence of 6 consecutive months when the patient
had discontinued ART (discontinuation of ART is defined as being treated with less
than three antiretroviral medications). For such time points, treatment with ART was
deemed interrupted and the value for A1(t) was set to 0 for t representing the interval
of τ days when the first discontinuation of ART was deemed to occur and was set to
NA (i.e., considered missing) for all subsequent time points. Note that this missing
treatment information could have been recovered but is irrelevant for the estimation
of the causal estimand described below and was thus left indeterminate. We also
note that L(t) represents subject-matter attributes that occur before the action A(t)
at time t and otherwise are assumed not to be affected by the actions at time t or
thereafter. In particular, the covariate L(t) contains information on the failure time
through the outcome variable Y(t) = I(T̃ ≤ t − 1, Δ = 1) ∈ L(t), which denotes the
indicator of failure at or before time t − 1 for t > 0 and Y(0) ≡ 0 by convention
since all patients are cancer free at study entry. The outcome variable, Y(T̃ + 1), is
the only covariate relevant at time T̃ + 1 for this analysis and information on other
attributes at that time is thus ignored, i.e., L(T̃ + 1) ≡ Y(T̃ + 1).

The number of time-independent (e.g., sex, race) and time-dependent (CD4
count, viral load, indicator of past clinical AIDS-defining events, indicator of past
ADC diagnosis) covariate attributes are denoted respectively by p = 15 and q = 4.
The covariates in L(t) that represent time-independent attributes are denoted by Lj(t)
for j = 1, . . . , p, where j represents an arbitrary order of the time-independent
attributes. The covariates in L(t) that represent time-dependent attributes are de-
noted by Lj(t) for j = p + 1, . . . , p + q such that j represents an order of the time-
dependent attributes, where Lp+1(t) and Lp+2(t) represent the indicator of past fail-
ure (i.e., Lp+1(t) ≡ Y(t)) and the CD4 count variable, respectively. We thus have
Lj(0) j=1,...,p+q ⊂ L(0), where Lj(0) for j = 1, . . . , p represent the time-independent
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covariates collected at baseline and Lj(0) for j = p+1, . . . , p+q represent the time-
dependent covariates collected at baseline. Similarly, we have Lj(t) j=p+1,...,p+q ⊂
L(t) for t = 1, . . . , T̃ ,where Lj(t) for j = p+1, . . . , p+q represent the time-dependent
covariates collected at time t. Finally, we have L(T̃ + 1) = Lp+1(T̃ + 1) = Y(T̃ + 1).
Table 26.1 summarizes the link between the measurements of the subject-matter at-
tributes and the notation adopted above to represent these data with the covariates in
L(t) for t = 0, . . . , T̃ +1. See the accompanying technical report for a full description
of variables.

To respect the time-ordering assumption that imposes that covariates L(t) are
not affected by actions at time t and thereafter, the daily data on time-dependent
attributes during follow-up were mapped to an observation of L j(t) for j ∈ {p +
1, . . . , p + q}. We will use the notation [a, b[ for {x : a ≤ x < b}; thus all points
between a and b, including a, but excluding b. For all time points t representing
intervals [t × τ, (t + 1) × τ[ that do not contain the day when ART is deemed to be
initiated, L j(t) represents the last measurement for attribute j available: (1) at time

Table 26.1 Mapping of the subject-matter attribute measurements into the covariates, L(t), and
actions, A(t), of the observed data process O

Attribute Variable Number of levels

sex L1(0) 2
race L2(0) 4
censusEdu L3(0) 4
censusPov L4(0) 4
censusInc L5(0) 4
riskHIV L6(0) 4
enrollYear L7(0) 12
yearsHIV L8(0) 4
ageAtEntry L9(0) 3
everSmoke L10(0) 2
everAlcohol L11(0) 2
everDrug L12(0) 2
everHepatitisB L13(0) 2
everHepatitisC L14(0) 2
everObese L15(0) 2
Y L16(t) for t = 0, . . . , T̃ + 1 n(t, 16) ≡ 2
CD4 L17(t) for t = 0, . . . , T̃ n(t, 17) ≡ 4
VL L18(t) for t = 0, . . . , T̃ n(t, 18) ≡ 4
clinicalAIDS L19(t) for t = 0, . . . , T̃ n(t, 19) ≡ 2
I.CD4 L20(t) for t = 0, . . . , T̃ n(t, 20) ≡ 2
I.VL L21(t) for t = 0, . . . , T̃ n(t, 21) ≡ 2
I.race L22(0) 2
I.censusEdu L23(0) 2
I.censusPov L24(0) 2
I.censusInc L25(0) 2
I.riskHIV L26(0) 2
ART A1(t) for t = 0, . . . , T̃ 2
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t−1 (i.e., the last measurement obtained during interval [(t−1)×τ, t×τ[) if t > 0 and
(2) within the year preceding study entry if t = 0. For the time point t representing
the interval [t × τ, (t + 1) × τ[ that contains the day when ART is deemed to be
initiated, Lj(t) represents the last measurement for attribute j available (1) at time
t − 1 or time t but always prior to the actual day when ART was initiated if t > 0
and (2) within the year preceding study entry or at time point 0 but always prior to
the actual day when ART was initiated if t = 0.

Once this mapping was implemented, some of the observations for p′ = 5 time-
independent attributes (race, censusEdu, censusPov, censusInc, and riskHIV) were
missing. Similarly, some of the observations for q′ = 2 time-dependent attributes
(CD4 and VL) were missing. Such observations were imputed (e.g., with the mode
or with the average of the nonmissing observations), and indicators of imputation
(named I.censusEdu, I.censusPov, I.censusInc, I.race, I.riskHIV, I.CD4, and I.VL,
respectively) were created. For the covariates race and riskHIV, the imputation was
implemented conditional on the covariate sex. Each of these imputation indicators
are denoted by Lj(t) such that Lj(t) for j = p + q + 1, . . . , p + q + q′ represent the
indicators of imputation for the time-dependent attributes ordered arbitrarily (CD4
and VL), and Lj(t) for j = p+q+q′+1, . . . , p+q+q′+ p′ represent the indicators of
imputation for the time-independent attributes ordered arbitrarily (race, censusEdu,
censusPov, censusInc, and riskHIV). These imputation indicators are included in the
definition of L(t).

The following forward imputation method was used for missing observations
of time-dependent covariates at any time t > 0: the missing observation for Lj(t)
was imputed with the last nonmissing and nonimputed observation of the covari-
ates (Lj(0), . . . , Lj(t − 1)) if available and otherwise with the imputed observation
for Lj(0). For additional detailed descriptions of the variables and a variety of sum-
mary statistics for the data, we refer to the accompanying technical report. Here,
we suffice with mentioning that two thirds of the patients who experienced cancer
onset before right censoring did so during the first two years of follow-up and that
from the 118 patients who experienced a cancer-onset event in the first two years of
follow-up, 13 occurred in patients who only followed the rule for starting ART in-
dexed by a CD4 count threshold of 200, 12 occurred in patients who only followed
the rule for starting ART indexed by the CD4 count threshold of 350, 51 occurred in
patients who followed both rules for starting ART, and 42 occurred in patients who
followed neither of these two when-to-start rules. This simple summary provides
an indication that the data are sparse with respect to the scientific question of inter-
est, and that the data lack a strong signal for favoring one dynamic treatment over
the other. Nevertheless, it is of interest to determine if these data imply a narrow
confidence interval around a zero treatment effect.

For conciseness, we adopt the following shorthand notation to represent the his-
tory of measurements on a given subject-matter attribute between time point 0 and
t: for a time-dependent process X(), X̄(t) ≡ (X(0), . . . , X(t)) and by convention X(t)
is nil for t < 0. Using this notation, the observed data for one subject can be sum-
marized as follows: O = (T̃ , Δ, L̄(T̃ + 1), Ā(T̃ )).
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26.2 Likelihood of the Observed Data Structure

Following the time ordering of actions and covariates encoded in the directed acyclic
graph implied by Fig. 26.1, the likelihood of the observed data under a probability
distribution P can be factorized as

P(O) =
T̃+Δ∏
t=0

P(L(t) | L̄(t − 1), Ā(t − 1))
T̃∏

t=0

P(A(t) | Ā(t − 1), L̄(t)).

Note that the first product of conditional probabilities ends with the conditional
probability of L(T̃ ) given all past actions, Ā(T̃ − 1), and past covariates, L̄(T̃ − 1),
when the patient’s data are right-censored, i.e., Δ = 0, since L(T̃ + 1) ≡ Y(T̃ + 1)
is then 0 with probability one. If the patient’s cancer onset is observed (i.e., Δ = 1),
the first product ends with the conditional probability of L(T̃ +1) given past actions,
Ā(T̃ ), and past covariates, L̄(T̃ ).

The two products of the likelihood above are referred to as the Q-factor and
g-factor of the likelihood. The Q-factor of the likelihood is composed of the prod-
uct of the conditional probabilities of covariates given past covariates and actions,
whereas the g-factor of the likelihood is composed of the product of the conditional
probabilities of actions given past actions and covariates. The g-factor of the like-
lihood is also referred to as the action mechanism. Following this terminology, the
notation for the likelihood of the observed data can be summarized as

P =
K∏

t=0

QL(t)

K∏
t=0

gA(t), (26.1)

where the conditional probability distributions P(L(t) | L̄(t−1), Ā(t−1)) and P(A(t) |
Ā(t − 1), L̄(t)) are denoted by QL(t) and gA(t), respectively, and K is the last possible
time point so that P(T̃ < K) = 1. After t > T̃ + Δ, all conditional distributions QL(t)

L(t− j) . . . L(t) L(t+ 1)

A(t− j) . . . A(t− 1) A(t)

Fig. 26.1 Template of the directed acyclic graph that encodes the time ordering of all variables of
the observed data process O. The complete graph can be derived by sequentially drawing the nodes
and arcs implied by this template for t = 0, . . . , T̃ and j ≤ t
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and gA(t) are degenerate at an arbitrarily defined value, such as the last measured
value.

At each time point t, the covariate L(t) is composed of a collection of discrete
covariates denoted by Lj(t). Specifically, L(0) ≡ (Lj(0) : j = 1, . . . , p + q + q′ + p′),
L(t) ≡ (Lj(t) : j = p+1, . . . , p+q+q′) for t = 1, . . . , T̃ , and L(T̃ +1) ≡ Lp+1(T̃ +1),
where, as described in Table 26.1, for p = 15, q = 4, q′ = 2, and p′ = 5: j =
1, . . . , p indexes the covariates that represent the time-independent attributes listed;
j = p+1, . . . , p+q indexes the covariates that represent the time-dependent attributes
listed such that p+1 represents Y and p+2 represents CD4; j = p+q+1, . . . , p+q+q′

indexes the indicators of imputations for the q′ time-dependent attributes that have
missing observations; j = p+ q+ q′ + 1, . . . , p+ q+ q′ + p′ indexes the indicators of
imputations for the p′ time-independent attributes that have missing observations.

The factors QL(t) of the likelihood for t = 1, . . . , T̃ + Δ can thus be factorized as
QL(t)(O) =

∏nT̃ (t)
j=1 QLp+ j(t)(O), where nT̃ (t) ≡ q + q′ for t = 1, . . . , T̃ , nT̃ (T̃ + 1) ≡ 1,

and QLp+ j(t)(O) ≡ P(Lp+ j(t) | Pa(Lp+ j(t))) with Pa(Lp+ j(t)) ≡ (L̄(t − 1), Lp+1(t), . . . ,
Lp+ j−1(t), Ā(t−1)). Note that the notation above makes implicit use of the convention
that (L j(t), . . . , Lj′ (t)) for j′ < j is nil.

Similarly, at each time point t, the action A(t) is composed of a treatment, A1(t),
and an indicator of right censoring, A2(t). The factors gĀ(t) of the likelihood can
thus be factorized as gA(t) = gA1(t)gA2(t), where gA1(t)(O) ≡ P(A1(t) | Pa(A1(t)),
Pa(A1(t)) = (Ā(t − 1), L̄(t), A2(t))), gA2(t)(O) ≡ P(A2(t) | Pa(A2(t)), and Pa(A2(t)) =
(Ā(t − 1), L̄(t)). This yields the following factorization of likelihood (26.1):

P(O) = QL(0)(L(0)
T̃+Δ∏
t=1

nT̃ (t)∏
j=1

QLp+ j(t)(O)
T̃∏

t=0

gA1(t)(O)gA2(t)(O). (26.2)

Since each covariate Lp+ j(t) for t = 1, . . . , T̃ + Δ and j = 1, . . . , nT̃ (t) is
discrete with n(t, p + j) categories, it can be recoded with n(t, p + j) − 1 bi-
nary variables: Lp+ j,m(t) ≡ I(Lp+ j(t) = m) for m = 1, . . . , n(t, p + j) − 1, i.e.
Lp+ j(t) = (Lp+ j,m(t))m=1,...,n(t,p+ j)−1. This recoding of the information in Lp+ j(t) leads
to the following factorization QLp+ j(t) =

∏n(t,p+ j)−1
m=1 QLp+ j,m(t), where QLp+ j,m(t) rep-

resents the conditional probability of Lp+ j,m(t) given Pa(Lp+ j(t)) and Lp+ j,l(t) for
l = 1, . . . ,m − 1. Note that this conditional probability is degenerate, i.e., equal to 1
at Lp+ j,m(t) = 0, if one of the indicators Lp+ j,l(t) in Pa(Lp+ j,m(t)) is 1. Note also that
if Lp+ j(t) is binary (n(t, p + j) = 2), then Lp+ j,1(t) = Lp+ j(t) and QLp+ j,1(t) = QLp+ j(t).
This provides us with the following factorized likelihood in terms of conditional
distributions of binary variables:

P(O) = QL(0)(L(0))
T̃+Δ∏
t=1

nT̃ (t)∏
j=1

n(t,p+ j)−1∏
m=1

QLp+ j,m(t)(O)
T̃∏

t=0

gA1(t)(O)gA2(t)(O). (26.3)
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26.3 Target Parameter

In this section, the causal effect of interest in this analysis is defined as the effect
of dynamic ART interventions on the cumulative risk of cancer in the first two
years of follow-up. Under an identifiability assumption, this causal effect is ex-
pressed as a function of the likelihood of the observed data. This latter estimand
is referred to as the target parameter. We can define an SCM for the full data (U,O)
in terms of a nonparametric structural equation model: L(0) = fL(0)(UL(0)), L(t) =
fL(t)(Pa(L(t)),UL(t)), t = 1, . . . , T̃ +Δ, A(t) = fA(t)(Pa(A(t)),UA(t)), t = 0, . . . , T̃ . This
SCM can also be defined for t = 1, . . . ,K, by defining the equations as degener-
ate for t > T̃ + Δ, and, it can also be extended to one equation for each univariate
time-dependent covariate.

Clinical practice often involves treatment decisions that are continuously ad-
justed to the patient’s evolving medical history (e.g., new diagnoses and laboratory
values) and are not set a priori at baseline. Thus, it may often be less clinically rel-
evant to compare the health effect of static treatment interventions than to compare
the effectiveness of competing medical guidelines, i.e., adaptive treatment strategies
that map the patient’s unfolding medical history to subsequent treatment decisions.
Following such treatment strategies leads to treatment interventions over time which
are referred to as dynamic interventions since the treatment experienced by each pa-
tient at any point in time is not set a priori at baseline but is rather adjusted based on
the patient’s current circumstances.

Our aim was to evaluate the comparative effectiveness between ART initiation
strategies guided by the patient’s evolving CD4 count. These adaptive treatment
strategies are referred to as individualized action rules. The individualized action
rules of interest are each indexed by a CD4 count threshold, denoted by θ ∈ Θ,
and are each defined as a vector function dθ = (dθ(0), . . . , dθ(K)) where each func-
tion, dθ(t) for t = 0, . . . ,K, is a decision rule for determining the action (treat-
ment and right censoring) to be experienced by a patient during time interval t. A
decision rule dθ(t) maps the action and covariate history measured up to a given
time interval t to an action regimen (i.e., an intervention) during time interval t:
dθ(t) : (L̄(t), Ā(t − 1)) �→ (a1(t), a2(t)). In this analysis, the decision rules of interest
are defined such that dθ(t)((L̄(t), Ā(t − 1)) is:

• (a1(t), a2(t)) = (0, 0) (i.e., no ART use and no right censoring) if and only if the
patient was not previously treated with ART [i.e. Ā(t − 1) = 0] and the previ-
ous CD4 count measurement was greater than or equal to the threshold θ (i.e.,
Lp+1(t) ≥ θ);

• (a1(t), a2(t)) = (1, 0) (i.e., ART use and no right censoring) otherwise.

The individualized action rules, dθ for θ ∈ Θ, implied by the time-specific decision
rules above, dθ(t) for t = 0, . . . ,K, are monotone in the sense that if a patient follows
one of these rules, dθ, then s/he is not treated with ART until his/her CD4 count falls
below the threshold θ for the first time and from then on the patient remains treated
with ART.
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Fig. 26.2 Percentages of patients following each of the two individualized action rules of interest
indexed by a CD4 count threshold of 200 and 350 cells per μl (reminder: t = 0 represents the first
180 d of follow-up)

The counterfactual covariate process that could be observed on a patient in an
ideal experiment where interventions on the action process according to a decision
rule dθ are carried out through time K is denoted by L̄dθ (K + 1). Note that such
dynamic treatment interventions through time K according to the adaptive treatment
strategy dθ are only functions of the observed covariate process L̄(K) and are thus
denoted by dθ(L̄(K)). Failure may occur during follow-up under any such dynamic
treatment intervention. Such counterfactual failure times are denoted by Tdθ ≤ K
and defined by (Ȳdθ (Tdθ ) = 0, Ydθ (Tdθ + 1) = 1, . . . ,Ydθ (K + 1) = 1). This random
process (Tdθ , Ldθ = L̄dθ (K+1)) is defined in terms of the postintervention distribution
of the above-stated SCM for the full-data (U,O). A causal effect can now be defined
as a target parameter for the full-data SCM:

P(Ydθ (t + 1) = 1) − P(Ydθ′ (t + 1) = 1) = P(Tdθ ≤ t) − P(Tdθ′ ≤ t)

for t = 0, . . . ,K and any two different individualized action rules dθ with θ ∈ Θ and
dθ′ with θ′ ∈ Θ.

For our research question, the comparative effectiveness between the two adap-
tive ART strategies indexed by the CD4 thresholds 200 and 350 is of interest. Fig-
ure 26.2 represents the percentages of patients following the corresponding two in-
dividualized action rules over time denoted by d200 and d350. The empirical distri-
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bution of observed events indicates that two thirds of the observed cancers occurred
in the first four time points of follow-up. To ease the computing time required for
implementation of the TMLE procedure while illustrating the computing steps in-
volved without loss of generality, we restrict the focus of this analysis to the eval-
uation of a single causal contrast between the cumulative risks of failure within 2
years of study entry under the individualized action rules d350 and d200:

ψF = P(Td350 ≤ 3) − P(Td200 ≤ 3)
= P(Yd350 (4) = 1) − P(Yd200 (4) = 1). (26.4)

Note that this parameter is a function of the full-data distribution as is made explicit
with the notation ψF = ΨF(PX,U). This target parameter would be identifiable under
this full-data SCM if we observed the full-data (U,O). However, we only observe
the O-component of the full data.

Under the sequential randomization assumption (SRA)

A(t) ⊥ (Ydθ , Ldθ ) | L̄(t), Ā(t − 1), for all t = 0, . . . ,K,

the marginal distribution of the counterfactual process (L̄dθ (t + 1)) with t ≤ K is
identified by the g-computation formula:

PL̄dθ (t+1) = QL(0)

t+1∏
t′=1

nt(t′)∏
j=1

n(t′,p+ j)−1∏
m=1

QLp+ j,m(t′),dθ , (26.5)

where the conditional probabilities QLp+ j,m(t′),dθ are the conditional probabilities
QLp+ j,m(t′) defined in Sect. 26.2 where the action values are set according to the
decision rule dθ in the conditioning events. Recall that the covariate Lp+1,dθ (t)
of Ldθ (t) corresponds with the outcome variable also denoted by Ydθ (t) and that
P(Tdθ = t) = P(Ȳdθ (t) = 0, Ydθ (t + 1) = 1). By integrating over all covariate values
that are consistent with Tdθ = t of the g-computation formula (26.5), the following
probability P(Tdθ = t) is obtained:

P(Tdθ = t) =
∑

{l̄(t+1):y(t)=0,y(t+1)=1}

QL(0)(l(0))
t+1∏
t′=1

nt(t′)∏
j=1

n(t′,p+ j)−1∏
m=1

QLp+ j,m(t′),dθ (l̄(t + 1)). (26.6)

We denote the right-hand side of equality (26.6) withΦ(Q, t, θ) to make explicit that
this parameter of P only depends on P through its Q(P)-factor. Using that P(Ydθ (t +
1) = 1) =

∑t
t′=0 P(Ȳdθ (t

′) = 0, Ydθ (t
′ + 1) = 1) and equality (26.6), the causal

estimand defined by (26.4) can be expressed as a function of the Q-factor of the
observed data likelihood under the SRA:

ψ =

3∑
t=0

Φ(Q, t, 350) −
3∑

t=0

Φ(Q, t, 200). (26.7)
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The parameter ψ = Ψ (Q), as defined by equality (26.7), is the target parameter
in this analysis. It is a mapping from the Q-part of a probability distribution P of
the observed data structure O into a one-dimensional euclidean parameter, as made
explicit by the notation ψ = Ψ (Q). We denote the true value of this target parameter
by ψ0 = Ψ (Q0) where Q0 denotes the Q-part of the likelihood of the observed data
under the true distribution P0. Note that under the SRA, the target parameter value
ψ0 can be interpreted causally since it then corresponds to the causal parameter
ψF

0 = Ψ
F(PX,U,0) from equality (26.4).

26.4 IPCW-R-TMLE

In this section, we develop an inverse probability of action-weighted reduced-
data targeted maximum likelihood estimator (IPAW-R-TMLE) for estimation of the
above-defined target parameter ψ0. Implementation of this IPAW-R-TMLE is illus-
trated with data from the KPNC electronic medical record. The IPAW-R-TMLE is
a weighted TMLE applied to so-called reduced data that corresponds to the orig-
inal data where the time-dependent covariates are ignored, with the exception of
the time-dependent CD4 count and the outcome process (van der Laan 2008b). The
weights applied to the reduced-data TMLE (R-TMLE) permit adjustment for the
other time-dependent confounders that could not be accounted for by the R-TMLE
because of this data-reduction step.

The IPAW-R-TMLE is a targeted minimum-loss-based estimator as presented in
Appendix A, where we provide detailed explanation and understanding of IPAW-R-
TMLE (see also Chap. 24). The technical report provides additional detail regard-
ing the specific implementation carried out here. It involves the following steps.
Firstly, the observed data structure is reduced by replacing the time-dependent co-
variates L in O by a reduced-data time-dependent covariate Lr, resulting in a re-
duced observed data structure Or. The causal quantity of interest is represented
as a parameter of the probability distribution Qr

0, a function of Or = (Lr, A),
where Qr

0(lr, a) =
∏

t Qr
0(lr(t) | l̄r(t − 1), ā(t − 1)) represents the probability that

the counterfactual Lr
a equals lr. Thus Qr

0 is a function of the full data distribu-
tion of the counterfactuals (La : a). A possible loss function for Qr

0 is given
by −gr/g0logQ, but more stable time-dependent weighting schemes will be em-
ployed, resulting in a specified loss function Lw0 (Q) relying on a weight function
(w0(t) : t), where w0(t) =

∏
s≤t−1 gr

0,A(s)/
∏

s≤t−1 g0,A(s) is indexed by gr and g0.
Specifically, the minus log of the conditional distribution of Lr

a(t), given L̄r
a(t − 1),

in Qr(lr, a) =
∏

t Qr(lr(t) | l̄r(t − 1), ā(t − 1)) is weighted by the corresponding w0(t)
for that time point. This loss function Lw0 (Q) is valid for each choice of gr, but it re-
lies on correct specification of the true action mechanism g0. Let wn be an estimator
of the weight function w0, thereby using the actual observed data O1, . . . ,On. We
select a parametric model (Q(ε) : ε) so that d

dε log Q(ε) at ε = 0 spans the efficient
influence curve of the target parameter for the reduced data in the special case that
there is no time-dependent confounding beyond Lr, or, equivalently, w0 = 1. This
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now defines the quantity Qr
0, the target parameter ψr

0 = Ψ (Qr
0), the loss function

Lw0 (Q) for Qr
0, and the parametric working model {Q(ε) : ε}, so that the targeted

minimum-loss-based estimator is defined, and it will solve the so-called IPAW-R-
efficient influence curve estimating equation:

0 = Pn
d
dε

Lwn (Q∗n(ε))
∣∣∣∣∣
ε=0
.

Section 26.4.1 describes the R-TMLE on which the IPAW-R-TMLE is based. The
R-TMLE is identical to the actual targeted maximum likelihood estimator applied
to the reduced data, relying on the log-likelihood loss function, using the parametric
working logistic regression models defined by clever time-dependent covariates in
order to fluctuate the conditional distributions of binary variables. This TMLE ap-
plied to reduced data would be consistent if w0 = 1, but it is biased in general, due to
ignoring the time-dependent covariates that were removed from the data structure.
Section 26.4.2 describes the implementation of the corresponding IPAW-R-TMLE
of ψ0, which simply involves applying the estimated weights wn to the R-TMLE.
The results of the application of both the R-TMLE as well as the IPAW-R-TMLE
are provided.

26.4.1 R-TMLE Implementation and Results

The R-TMLE described below corresponds with the TMLE applied to the simpli-
fied data where the only time-dependent covariates considered past baseline repre-
sent outcome and CD4 count measurements. Below, we describe the steps involved
in the implementation of this R-TMLE starting with the presentation of the IPAW-
estimating function, the corresponding derivation of the efficient influence curve,
the parametric working model used to fluctuate the initial estimator defined in terms
of logistic regression models for each binary conditional distribution, using a clever
covariate, and, finally, the implementation of the iterative TMLE algorithm as de-
fined by this parametric fluctuation model and the log-likelihood loss function.

For clarity, we abuse the notation previously introduced and associated with the
original data structure to describe the R-TMLE based on the reduced-data structure.
All reference to the covariates Lp+ j(t) for j = 3, . . . , q + q′ and t > 0 in the notation
below should thus be ignored since such variables are considered nil in this subsec-
tion.

IPAW estimating function. An IPAW estimating function for the target parame-
ter ψ is defined as

DIPAW(g, ψ) ≡
I
(
Ā(Ť ) = d350(L̄(Ť ))

)∏Ť
t=0 gA1(t)gA2(t)

Y(Ť + 1)
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−
I
(
Ā(Ť ) = d200(L̄(Ť ))

)∏Ť
t=0 gA1(t)gA2(t)

Y(Ť + 1) − ψ, (26.8)

where Ť is defined as the minimum between the follow-up time and 3, i.e., Ť =
min(3, T̃ ). Recall that the outcome variable Y(t + 1) is also denoted by Lp+1(t + 1)
and Lp+1,1(t + 1) (Sect. 26.2). We use these three notations for the same variable
interchangeably in the following sections.

Efficient influence curve and clever covariate. As described in Sect. 3.2 of van der
Laan (2010a), the IPAW estimating function can be mapped into the efficient (rela-
tive to the reduced data) influence curve for ψ, denoted by D∗(Q, g, ψ), by projecting
it onto the tangent space of Q: D∗(Q, g, ψ) = Π

(
DIPAW | TQ

)
, where DIPAW is short-

hand notation for DIPAW(g, ψ) [definition (26.8)]. Theorem 2 in van der Laan (2010a)
applied to factorization (26.3) of the likelihood of the reduced observed data leads
to the following result:

Π
(
DIPAW | TQ

)
= Π

(
DIPAW | TL(0)

)
+

∑T̃
t=1

∑2
j=1

∑n(t,p+ j)−1
m=1 Π

(
DIPAW | TLp+ j,m(t)

)
+ΔΠ

(
DIPAW | TLp+1,1(T̃+1)

)
,

where we have that Π
(
DIPAW | TL(0)

)
= E(DIPAW | L(0)) and Π

(
DIPAW | TLp+ j,m(t)

)
=

H∗Lp+ j,m(t)
(
Lp+ j,m(t)−QLp+ j,m(t)(1)

)
for t = 1, . . . , T̃ , j = 1, 2 and m = 1, . . . , n(t, p+ j)−1

or (t, j,m) = (T̃ + 1, 1, 1), with QLp+ j,m(t)(1) representing the conditional probability
of Lp+ j,m(t) defined in Sect. 26.2 and evaluated at Lp+ j,m(t) = 1. Here H∗Lp+ j,m(t) is
defined as the following function of Pa(Lp+ j,m(t)):

E
(
D′IPAW |Lp+ j,m(t)=1, Pa(Lp+ j,m(t))

)
− E

(
D′IPAW |Lp+ j,m(t)=0, Pa(Lp+ j,m(t))

)
, (26.9)

where D′IPAW(g) equals DIPAW(g, ψ) with ψ = 0. Note that D′IPAW(g) is only a function
of the observed data collected up to Ť + 1 which excludes Lp+ j,m(t) for t > Ť + 1. As
a result, equality (26.9) for t > Ť + 1 becomes H∗Lp+ j,m(t) = 0. Note also that D′IPAW(g)
can be represented as

D′IPAW(O | g) =
D1(Ā(Ť ), L̄(Ť + 1))∏Ť

t=0 gA1(t)gA2(t)

,

with D1(Ā(Ť ), L̄(Ť + 1)) defined as(
I
(
Ā(Ť ) = d350(L̄(Ť ))

)
− I

(
Ā(Ť ) = d200(L̄(Ť ))

))
Y(Ť + 1).

From Theorem 2 in van der Laan (2010a), equality (26.9) can thus be rewritten as:

H∗Lp+ j,m(t) =
1∏t−1

t′=0 gA1(t′)gA2(t′)
× (26.10)
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E
( ∑

ā(t,3)

D1 | Lp+ j,m(t) = 1, Pa(Lp+ j,m(t))
)
− E

( ∑
ā(t,3)

D1 | Lp+ j,m(t) = 0, Pa(Lp+ j,m(t))
))
,

where D1 is shorthand notation for D1(Ā(t − 1), ā(t, Ť ), L̄(Ť + 1)) and ā(t, t′) =
(a(t), . . . , a(t′)) for t′ ≥ t and nil otherwise. In addition, note that the second ex-
pectation in (26.10) is 0 when j = 1 and t = 4, and we have

H∗Lp+1,1(4) =
I
(
Ā(Ť ) = d350(L̄(Ť ))

)
− I

(
Ā(Ť ) = d200(L̄(Ť ))

)∏Ť
t′=0 gA1(t′)gA2(t′)

.

Finally, note that both expectations in (26.10) are equal when j = 2 and t = 4. We
thus have H∗Lp+2,m(4) = 0.

From all the results above, the efficient (relative to the reduced data) influence
curve for ψ, D∗(Q, g, ψ) is defined as

Π
(
DIPAW | TL(0)

)
+

Ť∑
t=1

2∑
j=1

n(t,p+ j)−1∑
m=1

Π
(
DIPAW | TLp+ j,m(t)

)
+ΔI(T̃≤3)Π

(
DIPAW | TLp+1,1(Ť+1)

)
, (26.11)

with I(T̃ ≤ 3) representing the indicator that the follow-up time T̃ is lower than or
equal to 3,

Π
(
DIPAW | TL(0)

)
= E(DIPAW | L(0)),

Π
(
DIPAW | TLp+ j,m(t)

)
= H∗Lp+ j,m(t)

(
Lp+ j,m(t) − QLp+ j,m(t)(1)

)
, where

for t = 1, 2, 3

H∗Lp+ j,m(t) =
1∏t−1

t′=0 gA1(t′)gA2(t′)
× (26.12)(

EQ
( ∑

ā(t,3)

D1 | Lp+ j,m(t) = 1, Pa(Lp+ j,m(t))
)
−EQ

( ∑
ā(t,3)

D1 | Lp+ j,m(t) = 0, Pa(Lp+ j,m(t))
))
,

and

H∗Lp+1,1(4) =
I
(
Ā(3) = d350(L̄(3))

)
− I

(
Ā(3) = d200(L̄(3))

)∏3
t′=0 gA1(t′)gA2(t′)

. (26.13)

The variables H∗Lp+1,1(t) and H∗Lp+2,m(t) are the clever covariates that are used for up-
dating the initial estimators of QLp+1,1(t) and QLp+2,m(t), respectively, during the imple-
mentation of the R-TMLE of the target parameter ψ0.

Obtain an initial estimate Q0
n of Q0. The efficient influence curve defined by equal-

ity (26.11) is a function of only a subset of the Q components of the reduced, ob-
served data likelihood [see equality (26.3) tailored to the reduced-data structure].
Specifically, the following 14 components of Q are relevant for implementation of
the R-TMLE of the target parameter and thus need to be estimated:
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• QL(0) ≡ P(L(0)).
• QLp+1,1(t) ≡ P(Y(t) | L̄(t−1), Ā(t−1)) for t = 1, 2, 3, 4 [only relevant at Ȳ(t−1) = 0,

Ā2(t−1) = 0, and nonmissing Ā1(t−1)]. Recall that treatment is coded as missing
after first ART discontinuation; see Sect. 26.1.

• QLp+2,m(t) ≡ P(I(Lp+2(t) = m) | L̄(t−1), Y(t), Ā(t−1), I(Lp+2(t) = 1), . . . , I(Lp+2(t) =
m− 1)) for t = 1, 2, 3 and m = 1, 2, 3 [only relevant at Ȳ(t) = 0, Ā2(t − 1) = 0 and
nonmissing Ā1(t − 1), and only unknown at I(Lp+2(t) = 1) = 0, . . . , I(Lp+2(t) =
m − 1) = 0].

Thus, estimation of the target parameter ψ0 = Ψ (Q0) with the R-TMLE relies on the
initial estimation of the corresponding 14 Q0-components of the true reduced-data-
generating distribution, P0. The initial estimate of Q0,L(0) is denoted by Q0

L(0),n. It is
defined based on nonparametric estimation of Q0,L(0) with the empirical distribution
of L(0). The initial estimates of Q0,Lp+1,1(t) and Q0,Lp+2,m(t) are denoted by Q0

Lp+1,1(t),n

and Q0
Lp+2,m(t),n, respectively. They are defined based on sieve estimation of Q0,Lp+1,1(t)

and Q0,Lp+2,m(t) with the DSA algorithm as described below.
The initial estimate of Q0,Lp+1,1(1) (at A2(0) = 0 and nonmissing A1(0)) is obtained

separately. The DSA algorithm was set so that it searched among main term logistic
regression fits and reports the best fit of size s, s = 1, . . . , 10, using deletion, substi-
tution, and addition moves. Cross-validation was used to determine the best choice
of size s.

This DSA algorithm was also used to obtain the remaining 12 estimates based on
the following three data-pooling schemes:

• The initial estimates of Q0,Lp+1,1(t) for t = 2, 3, 4 (at Ȳ(t − 1) = 0, Ā2(t − 1) = 0,
and nonmissing Ā1(t − 1)) are obtained simultaneously through a DSA-selected,
pooled estimator over the three time intervals, t.

• The initial estimates of Q0,Lp+2,m(1) for m = 1, 2, 3 (at Y(1) = 0, A2(0) = 0, non-
missing A1(0), and I(Lp+2(t) = 1) = 0, . . . , I(Lp+2(t) = m − 1) = 0) are obtained
simultaneously through a DSA-selected, pooled estimator over the three CD4
count levels, m.

• The initial estimates of Q0,Lp+2,m(t) for t = 2, 3 and m = 1, 2, 3 [at Ȳ(t) = 0, Ā2(t −
1) = 0, nonmissing Ā1(t− 1), and I(Lp+2(t) = 1) = 0, . . . , I(Lp+2(t) = m− 1) = 0]
are obtained simultaneously through a DSA-selected, pooled estimator over the
three time intervals, t, and the three CD4 count levels, m.

We refer to the table in our technical report that lists the variables of the reduced data
that were considered as candidate main terms in each of the four DSA estimators
described above. With the exception of the variables enrollyear and m, no categorical
variable with l > 2 levels was directly considered as a candidate main term. Instead, l
binary variables, each of which represents the indicator that X is equal to m (denoted
by I(X = m)) for m = 1, . . . , l, were considered as potential main terms. The time-
variable t was not only treated as a categorical variable but was also considered
directly as a candidate main term. The initial estimates resulting from the application
of the four DSA estimators described above are summarized in the accompanying
technical report.
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Calculate the optimal fluctuation. Estimation of the target parameter ψ0 = Ψ (Q0)
with the R-TMLE involves the fluctuation of the initial estimators of Q0,Lp+1,1(t) and
Q0,Lp+2,m(t) obtained previously. The optimal fluctuation of each of these initial es-
timators is based on the clever covariates, H∗, defined by equalities (26.12) and
(26.13). R-TMLE implementation thus requires calculation of these clever covari-
ates. They are functions of Q0,Lp+1,1(t) for t = 1, 2, 3, 4 and Q0,Lp+2,m(t) for t = 1, 2, 3
and m = 1, 2, 3 but also the following components of the action mechanism defined
in Sect. 26.2: g0,A1(t) and g0,A2(t) for t = 0, 1, 2, 3. Therefore, we first need to estimate
g0,A1(t) and g0,A2(t) prior to computing the clever covariates. These estimates, com-
bined with the initial estimates of Q0,Lp+1,1(t) and Q0,Lp+2,m(t), can then be mapped into
an estimate of the clever covariates using Monte Carlo simulations.

Obtain an estimate gn of g0. The following eight components of the action mech-
anism, i.e., the g part of the reduced, observed data likelihood [see equality (26.3)
tailored to the reduced-data structure], are relevant for implementation of the R-
TMLE of the target parameter ψ0 and need to be estimated:

• gA1(t) ≡ P(A1(t) | Ā(t − 1), L̄(t), A2(t)) for t = 0, 1, 2, 3 [only relevant at Ȳ(t) = 0,
Ā2(t) = 0, and nonmissing Ā1(t)];

• gA2(t) ≡ P(A2(t) | Ā(t − 1), L̄(t)) for t = 0, 1, 2, 3 [only relevant at Ȳ(t) = 0,
Ā2(t − 1) = 0, and nonmissing Ā1(t − 1)].

Estimation of the target parameter ψ0 = Ψ (Q0) with the R-TMLE relies on esti-
mation of the corresponding 8 g0-components of the true reduced-data-generating
distribution, P0. The 8 estimates of g0,A1(t) and g0,A2(t) are denoted by gA1(t),n and
gA2(t),n, respectively. They are obtained based on sieve estimation with the same es-
timator selection procedure adopted for initial estimation of the 14 Q0 components
described in the previous section. The following four data stratification/pooling
schemes were applied to derive each of the 8 estimates:

• The estimate of g0,A1(0) [at A2(0) = 0 and nonmissing A1(0)] is obtained sepa-
rately.

• The estimates of g0,A1(t) for t = 1, 2, 3 [at Ȳ(t) = 0, Ā2(t) = 0, and nonmiss-
ing Ā1(t)] are obtained simultaneously through a DSA-selected, pooled estimator
over the three time intervals, t.

• The estimate of g0,A2(0) is obtained separately.
• The estimates of g0,A2(t) for t = 1, 2, 3 [at Ȳ(t) = 0, Ā2(t − 1) = 0, and nonmissing

Ā1(t−1)] are obtained simultaneously through a DSA-selected, pooled estimator
over the three time intervals, t.

We refer to the table in the technical report that lists the variables of the reduced data
that were considered as candidate main terms in each of the four DSA estimators
described above. With the exception of the variables enrollyear and m, no categor-
ical variable with l > 2 levels was directly considered as a candidate main term.
Instead, l binary variables, each of which represents the indicator that X is equal to
m (denoted by I(X = m)) for m = 1, . . . , l, were considered as candidate main terms.
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The variable t was not only treated as a categorical variable but was also considered
directly as a candidate main term. The estimates resulting from the application of
the DSA estimators are presented in our technical report.

Monte Carlo simulation based on g0
n and Q0

n. The 13 clever covariates that need to
be computed are defined by equalities (26.12) and (26.13): H∗Lp+1,1(t) for t = 1, 2, 3, 4
and H∗Lp+2,m(t) for t = 1, 2, 3 and m = 1, 2, 3. Each of these clever covariates are used
to fluctuate the estimators of Q0,Lp+1,1(t) for t = 1, 2, 3, 4 and Q0,Lp+2,m(t) for t = 1, 2, 3
and m = 1, 2, 3 respectively.

By extending the definition of the observed outcome, Y(t) = I(T̃ ≤ t − 1, Δ = 1),
to time points t beyond the time of an event when it is observed, i.e., for t > T̃
when Δ = 1, the clever covariate for updating the initial estimator of Q0,Lp+1,1(t) at
Ȳ(t−1) = 0, Ā2(t−1) = 0, and nonmissing Ā1(t−1) for t = 1, 2, 3, 4 can be rewritten

H∗Lp+1,1(t) =
1∏t−1

t′=0 gA1(t′)gA2(t′)
(26.14)

×
[
I
(
Ā(t − 1) = d350(L̄(t − 1))

)(
1 − EQ

(
Yd350 (4) | L̄(t − 1), Ā(t − 1), Y(t) = 0

))
−I

(
Ā(t − 1) = d200(L̄(t − 1))

)(
1 − EQ

(
Yd200 (4) | L̄(t − 1), Ā(t − 1), Y(t) = 0

))]
.

Note that at t = 4, equality (26.14) does indeed simplify to equality (26.13). Simi-
larly, the clever covariate for updating the initial estimator of Q0,Lp+2,m(t) at Ȳ(t) = 0,
Ā2(t − 1) = 0, nonmissing Ā1(t − 1), and Lp+2,1(t) = 0, . . . , Lp+2,m−1(t) = 0 for
t = 1, 2, 3 and m = 1, 2, 3 can be rewritten as

H∗Lp+2,m(t) =
1∏t−1

t′=0 gA1(t′)gA2(t′)

[
I
(
Ā(t − 1) = d350(L̄(t − 1))

)
×
(
EQ

(
Yd350 (4) | Pa(Lp+2,m(t)), Lp+2,m(t) = 1

)
− EQ

(
Yd350 (4) | Pa(Lp+2,m(t)), Lp+2,m(t) = 0

))
−I

(
Ā(t − 1) = d200(L̄(t − 1))

)(
EQ

(
Yd200 (4) | Pa(Lp+2,m(t)), Lp+2,m(t) = 1

)
−EQ

(
Yd200 (4) | Pa(Lp+2,m(t)), Lp+2,m(t) = 0

))]
,

where Pa(Lp+2,m(t)) ≡
(
L̄(t − 1), Ā(t − 1), Y(t), Lp+2,1(t), . . . , Lp+2,m−1(t)

)
.

The above formulation of the clever covariates makes explicit how they can be
computed by first approximating each of the conditional expectations of Ydθ (4) by
Monte Carlo simulations. Following the factorization of the reduced, observed data
likelihood according to the time ordering of actions and covariates, 10,000 observa-
tions of the potential outcomes Ydθ (4) (for θ = 200, 350) were simulated by sequen-
tially generating future covariates starting at the fixed covariate and action history
specified by the conditional event in each expectation and by setting future actions
to the interventions implied by the individualized action rule dθ. This simulation
process ends when the outcome at time point 4 is simulated or earlier if the sim-
ulated event occurs before time point 4. The averages of these simulated potential
outcomes approximate the desired conditional expectations of Ydθ (4). The value of
the clever covariates needs to be calculated at each of the time points t, and for each
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of the n subjects in the sample. These values could also be computed analytically,
using the above analytical expressions instead of the reliance on simulations.

The TMLE. The optimal fluctuations of the initial estimators of Q0,Lp+1,1(t) and
Q0,Lp+2,m(t) based on the clever covariates computed previously, H∗Lp+1,1(t) and H∗Lp+2,m(t),
result in the definition of updated, one-step estimates of Q0,Lp+1,1(t) and Q0,Lp+2,m(t) de-
noted by Q1

Lp+1,1(t),n and Q1
Lp+2,m(t),n, respectively.

Specifically in this analysis, each updated estimate Q1
Lp+1,1(t),n for t = 1, 2, 3, 4

is defined by a separate, t-specific maximum likelihood regression of the outcome
at time t, Lp+1,1(t), on the clever covariate H∗Lp+1,1(t) based on a logistic model with
offset equal to the logit transformation of the initial estimate Q0

Lp+1,1(t),n and based on
the same observations at time t that contributed to the initial estimate of Q0,Lp+1,1(t),
i.e., the updated estimate is defined by

Q1
Lp+1,1(t),n =

1
1 + exp

(
− (logit(Q0

Lp+1,1(t),n) + εnH∗Lp+1,1(t))
) ,

where εn is the maximum likelihood estimate. Similarly, each updated estimate
Q1

Lp+2,m(t),n for t = 1, 2, 3 and m = 1, 2, 3 is defined by a separate, (t,m)-specific
maximum likelihood regression of the indicator of CD4 count at time t equal to
level m, Lp+2,m(t), on the clever covariate H∗Lp+2,m(t) based on a logistic model with
offset equal to the logit transformation of the initial estimate Q0

Lp+2,m(t),n and based on
the same observations at time t that contributed to the initial estimate of Q0,Lp+2,m(t).
The value of the coefficient in front of the clever covariate in each of the logistic
models defining the one-step estimates above is given in Table 26.2.

Implementation of the (iterative) R-TMLE relies on iteration of the updating pro-
cess above until a convergence criterion is met. Starting with k = 1, the clever co-
variates are first recalculated by Monte Carlo simulations based on the latest updated
estimates Qk

Lp+1,1(t),n and Qk
Lp+2,m(t),n. Second, these latest updated estimates are fluctu-

ated with the newly computed clever covariates to define newly updated estimates
Qk+1

Lp+1,1(t),n and Qk+1
Lp+2,m(t),n using the updating process above where the initial estimates

Q0
Lp+1,1(t),n and Q0

Lp+2,m(t),n are replaced with the latest updated estimates Qk
Lp+1,1(t),n and

Table 26.2 Estimates εn of the coefficients in front of the clever covariates in the logistic models
defining the one-step, updated estimates of Q0,Lp+1,1(t) for t = 1, 2, 3, 4 and Q0,Lp+2,m(t) for t = 1, 2, 3
and m = 1, 2, 3

t Lp+1,1(t) Lp+2,1(t) Lp+2,2(t) Lp+2,3(t)

1 0.114 7.544 −24.694 34.977
2 −0.005 5.061 −20.949 29.879
3 0.031 1.886 −2.207 −1.892
4 0.013
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Qk
Lp+2,m(t),n. Third, k is incremented by 1. The three-step process just described is re-

peated until a convergence criterion is met. The last updated estimates are referred
to as the targeted estimates. A sensible convergence criterion is that the εn-values
approximate zero, or that the empirical mean of the efficient influence curve at the
current update approaches a value close enough to zero, taking into account the stan-
dard error of the estimator. In this analysis, only one step was carried out, so that the
estimates Q1

Lp+1,1(t),n and Q1
Lp+2,m(t),n are deemed the targeted estimates of Q0,Lp+1,1(t) and

Q0,Lp+2,m(t) denoted by Q∗0,Lp+1,1(t),n and Q∗0,Lp+2,m(t),n, respectively. Practical evidence has
suggested that most bias reduction occurs in the first step (Chap. 18). We also refer
readers to the forthcoming Stitelman and van der Laan (2011a).

A substitution estimator of the parameter of interest. The R-TMLE estimate of
the target parameter ψ0 = Ψ (Q0) defined by equality (26.7) is derived by substitution
of the relevant distributions Q0 in the right hand-side of equality (26.7), i.e. Q0,L(0),
Q0,Lp+1,1(t) for t = 1, 2, 3, 4, and Q0,Lp+2,m(t) for t = 1, 2, 3 and m = 1, 2, 3, with the
empirical distribution QL(0),n, and the targeted estimates Q∗Lp+1,1(t),n and Q∗Lp+2,m(t),n,
respectively.

Concretely, this substitution estimate can be calculated using the following two-
step procedure. First, the conditional expectations E(Ydθ (4) | L(0)) (for θ = 200, 350
and each unique observation of L(0)) are approximated by Monte Carlo simulation
based on the targeted estimates Q∗Lp+1,1(t),n and Q∗Lp+2,m(t),n using the general simula-
tion protocol described previously for the computation of the clever covariates. The
resulting estimates of E(Ydθ (4) | L(0)) are denoted by EQ∗n (Ydθ (4) | L(0)). Second,
these estimates are mapped into the R-TMLE estimate of ψ0 denoted by Ψ (Q∗0,n)
using the formula

Ψ (Q∗0,n) =
1
n

n∑
i=1

EQ∗0,n (Yd350 (4) | L(0) = li(0)) −
1
n

n∑
i=1

EQ∗0,n (Yd200 (4) | L(0) = li(0)).

This resulted in an R-TMLE estimate ψ∗n = 1.98e−03 of ψ0.

Influence curve based inference. Under regularity conditions, and under the as-
sumption that gn is a consistent estimator of action mechanism g0, the R-TMLE
estimator is asymptotically linear with influence curve that has a variance that is
smaller than or equal to the variance (under P0) of D∗(Q∗, g0, ψ0)(O), where Q∗ de-
notes the possibly misspecified limit of Q∗n. A consistent estimator of the variance
of the R-TMLE is thus obtained as follows:

Varn(Ψ (Q∗n)) =
1
n2

n∑
i=1

{D∗n(oi) − D̄∗n}2, (26.15)

where D∗n is the estimated efficient influence curve, D̄∗n is its empirical mean [which
would equal zero if we plugged in the fully iterated TMLE (Q∗n, gn)]. The projec-
tion Π(DIPAW | L(0))-term in the influence curve was estimated using the targeted
estimates Q∗Lp+1,1(t),n and Q∗Lp+2,m(t),n, while for the other (clever covariate) terms, we
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used the initial estimator Q0
n. This simplification permits straightforward calculation

of the influence curve evaluated at each observation i using the intermediate results
from the previous computing steps, i.e., the clever covariate calculations based on
the initial estimate of Q0, and the Monte Carlo simulations based on the targeted
estimate of Q0 to derive the substitution estimator, without the need for additional
computation. Based on this approach, the estimate of the standard error associated
with the R-TMLE is σ0,n = 2.71e−03 resulting in the following 95% confidence
interval for ψ0: [−3.32e−03, 7.28e−03].

Diagnosing sparse data bias. To mitigate the higher variability of the R-TMLE
resulting from practical violation of the ETA assumption, truncation of the IPA
weights can be used as part of the R-TMLE implementation to improve the mean
squared error associated with R-TMLE estimation of the target parameter. Based on
the distributions of the IPA weights in this analysis, as presented in the accompa-
nying technical report, we used a truncation level of 20 for the implementation of
the R-TMLE, i.e., the clever covariates on which implementation of the R-TMLE
is based were computed based on IPA weights that were set to 20 if their values
implied by the estimates g0,A1(t) and g0,A2(t) were greater than 20. The point estimate
and estimate of the standard error associated with the R-TMLE based on truncated
IPA weights is Ψ (Q∗n) = 1.44e−03 and σn = 2.68e−03 respectively which results in
the following 95% confidence interval for ψ0: [−3.81e−03,6.69e−03].

26.4.2 IPAW-R-TMLE Implementation and Results

To account for potential time-dependent confounding that was ignored by the
R-TMLE as a consequence of the data-reduction step, the IPAW-R-TMLE relies on
an estimate of the true action mechanism, i.e., the components of the action mech-
anism, denoted by g0,A1(t) and g0,A2(t). These conditional distributions should not be
confused with the components of the reduced-data action mechanism that were es-
timated in the previous section as part of the R-TMLE implementation and that we
now denote by gr

0,A1(t) and gr
0,A2(t). The approach based on the DSA algorithm to de-

rive the estimates of g0,A1(t) and g0,A2(t) is described in the accompanying technical
report.

The initial estimates of Q0,Lp+1,1(t) and Q0,Lp+2,m(t) of the R-TMLE were recom-
puted, but now using weights equal to the plug-in estimator wn(t) of

w0(t) ≡
∏t−1

j=0 gr
0,A1(t)g

r
0,A2(t)∏t−1

j=0 g0,A1(t)go,A2(t)
.

Similarly, the R-TMLE of the ε-coefficients was recomputed by now using these
time-dependent weights wn(t). The resulting substitution estimate of the target pa-
rameter ψ0 is equal to 1.41e-03 and corresponds to the one-step IPAW-R-TMLE
point estimate. Note that the only difference in implementation of the R-TMLE point
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estimate vs. that of the IPAW-R-TMLE point estimate is in the use of the weights
wn(t) to obtain the initial and updated estimates of Q0,Lp+1,1(t) and Q0,Lp+2,m(t). As ex-
plained in Appendix A, the weighted log-likelihood for the reduced data actually
represents a valid loss function for the conditional counterfactual distributions of
the reduced-data components Lr

a(t) of the counterfactual La(t), if g0 is consistently
estimated (i.e., wn is consistent for w0), or if the SRA holds with respect to the re-
duced data (i.e., there is no time-dependent confounding beyond the time-dependent
covariates included in the reduced-data structure).

Inference with the IPAW-R-TMLE can be derived based on its influence curve
(26.11) evaluated at the estimator of the action mechanism g0 and the targeted
estimator of Q0 defined by the procedure above. Note that evaluation of formula
(26.11) to derive inference with the IPAW-R-TMLE involves the estimates of g0,A1(t)
and g0,A2(t) instead of the estimates of gr

0,A1(t) and gr
0,A2(t), i.e., the clever covariates

used for fluctuation of the initial estimators of Q0 in the implementation of the
IPAW-R-TMLE should be multiplied by w(t) to derive the clever covariates that
appear in (26.11). Based on this approach and the same implementation shorcut
employed earlier to simplify calculation of the R-TMLE influence curve evaluated
at each observation i, the estimate of the standard error associated with the IPAW-
R-TMLE is σ0,n = 2.48e−03 resulting in the following 95% confidence interval for
ψ0: [−3.45e−03, 6.27e−03].

A few observations are characterized by relatively large IPA weights (>20) which
suggests some practical violation of the ETA assumption. To mitigate the higher
variability of the IPAW-R-TMLE resulting from practical violation of the ETA as-
sumption, the IPAW-R-TMLE was implemented as described above with the differ-
ence that the clever covariates were computed based on reduced-data IPA weights,(∏Ť

t=0 gr
A1(t)g

r
A2(t)

)−1, that were truncated at 20. The point estimate and estimate of the
standard error associated with this truncated IPAW-R-TMLE is Ψ (Q∗0,n) = 7.6e−04
and σ0,n = 2.46e−03 respectively which results in the following 95% confidence
interval for ψ0: [−4.07e−03, 5.59e−03].

Table 26.3 summarizes the results from the application of each estimator of the
target parameter ψ0 implemented in this analysis. Note that all inferences are con-
sistent. The null hypothesis of a null effect ψ0 may not be rejected based on the data

Table 26.3 Comparison of the results for each estimator of the target parameter ψ0

Estimator Estimate SE 95% CI p-value

R-IPAW (based on gr) 1.42e−03 2.69e−03 [−3.86e−03, 6.69e−03] 0.60
R-TMLE 1.98e−03 2.71e−03 [−3.32e−03, 7.28e−03] 0.46
Truncated R-TMLE 1.44e−03 2.68e−03 [−3.81e−03, 6.69e−03] 0.59

IPAW (based on g) 6.9e−04 2.48e−03 [−4.16e−03, 5.54e−03] 0.78
IPAW-R-TMLE 1.41e−03 2.48e−03 [−3.45e−03, 6.27e−03] 0.57
Truncated IPAW-R-TMLE 7.6e−04 2.46e−03 [−4.07e−03, 5.59e−03] 0.76
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from the KPNC electronic medical record and the three assumptions the IPAW-R-
TMLE relies upon: SRA, positivity assumption, and consistent estimation of g0.

The 95% confidence intervals suggest that the absolute value of the true causal
risk difference is less than 1%. If the three assumptions on which these estimators
rely for drawing a valid causal inference indeed hold, the null result may reflect a
true null effect, a bias due to the erroneous inclusion of patients with a prevalent
ADC at study entry, or a lack of power to detect a relatively small causal risk dif-
ference. In the accompanying technical report we comment on these three possible
explanations before discussing possible reasons for potential bias due to violation
of one or more of the three assumptions the IPAW-R-TMLE relies upon.

26.5 Discussion

In order to make progress in individualized medicine and comparative effectiveness
research, one will need to understand outcome distributions under dynamic treat-
ments. This chapter represents one very important application of dynamic treat-
ments in comparative effectiveness research to inform the decision of when to start
treatment in HIV patients.

The development of robust and efficient estimation methods that allow the
data analyst to target clinically relevant causal quantities, and corresponding
user friendly software implementations, will allow these methods to become
prominent tools for analyzing longitudinal data. Furthermore, the roadmap for
causal inference allows honest and careful interpretation of the results.

In response to the need to compare dynamic treatments, sequentially randomized
controlled trials are also becoming more popular and provide a way to consistently
estimate the causal effect of dynamic treatments such as dynamic treatments indexed
by a choice of first line therapy, a cutoff for an intermediate biomarker, and a second
line therapy to be assigned if the biomarker exceeds the cut-off (Thall et al. 2007;
Bembom and van der Laan 2007b).

Possible important extensions of the analysis carried out in this chapter are to
target dose-response curves defined as the survival curves under the when-to-start
rule dθ that starts HIV-treatment when the CD4-count drops below θ for a range of
θ.By posing a working model for this dose-response curve in θ, one will be able to
obtain more precise estimators of the projection of the true dose response curve on
the working model, since all individuals will now contribute to the fit of this working
model. Such an approach still allows for a valid test of a null hypothesis of interest
about a certain contrast of this class of treatment rules as long as the working model
is valid under the null hypothesis of interest. We refer to van der Laan (2010b) for
details on formulation and the TMLE of the unknown parameters defined by this
working model.
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Chapter 27

Cross-Validated Targeted Minimum-Loss-Based

Estimation

Wenjing Zheng, Mark J. van der Laan

In previous chapters, we introduced targeted maximum likelihood estimation in
semiparametric models, which incorporates adaptive estimation (e.g., loss-based
super learning) of the relevant part of the data-generating distribution and subse-
quently carries out a targeted bias reduction by maximizing the log-likelihood, or
minimizing another loss-specific empirical risk, over a “clever” parametric working
model through the initial estimator, treating the initial estimator as offset. This up-
dating process may need to be iterated to convergence. The target parameter of the
resulting updated estimator is then evaluated, and is called the targeted minimum-
loss-based estimator (also TMLE) of the target parameter of the data-generating
distribution. This estimator is, by definition, a substitution estimator, and, under
regularity conditions, is a double robust semiparametric efficient estimator.

However, we have seen in practice that the performance of the TMLE suffers
when the initial estimator is too adaptive, leaving little signal in the data to fit the
residual bias with respect to the initial estimator in the targeting step. Moreover,
the use of adaptive estimators raises the question to what degree we can still rely
on the central limit theorem for statistical inference. Our previous theorems (e.g.,
van der Laan and Robins 2003; van der Laan and Rubin 2006; van der Laan and
Gruber 2010) show that under empirical process conditions and rate of convergence
conditions, one can indeed still prove asymptotic linearity, and thereby obtain CLT-
based inference. The empirical process conditions put some bounds on how adaptive
the initial estimator can be.

We present a version of TMLE that uses V-fold sample splitting for the initial
estimator in order to make the TMLE maximally robust in its bias reduction
step. We refer to this estimator as the cross-validated targeted minimum-loss-
based estimator (CV-TMLE). In a direct application, we formally establish its
asymptotics under stated conditions that avoid such empirical process condi-
tions.
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We refer to our accompanying technical report (Zheng and van der Laan 2010) for
the generalization of the theorem presented in this chapter to arbitrary semiparamet-
ric models and pathwise differentiable parameters.

27.1 The CV-TMLE

Let O ∼ P0. The probability distribution P0 is known to be an element of a statis-
tical model M. We observe n i.i.d. copies O1, . . . ,On of O and wish to estimate a
particular multivariate target parameter Ψ (P0) ∈ R

d, where Ψ : M → R
d and d

denotes the dimension of the parameter. Let Pn denote the empirical probability dis-
tribution of O1, . . . ,On so that estimators can be represented as mappings from an
empirical distribution to the parameter space of the parameter they are estimating.
For example, Pn → Ψ̂ (Pn) denotes an estimator of ψ0 = Ψ (P0).

We assume that Ψ is pathwise differentiable at each P ∈ M along a class of
one-dimensional submodels {Ph(ε) : ε} indexed by a choice h in an index set H :
i.e., there exists a fixed d-variate function D(P) = (D1(P), . . . ,Dd(P)) so that for all
h ∈ H

d
dε
Ψ (Ph(ε))

∣∣∣∣∣
ε=0
= PD(P)S (h),

where S (h) is the score of {Ph(ε) : ε} at ε = 0. Here we used the notation PS =∫
S (o)dP(o) for the expectation of a function S of O.
We assume that a parameter Q : M → Q is chosen so that Ψ (P0) = Ψ 1(Q(P0))

for some mapping Ψ 1 : Q → R
d. For convenience, we will refer to both mappings

with Ψ , so we will abuse the notation by using interchangeably Ψ (Q(P)) and Ψ (P).
Let g :M→ G be such that for all P ∈ M

D∗(P) = D∗(Q(P), g(P)).

In other words, the canonical gradient only depends on P through a relevant part
Q(P) of P and a nuisance parameter g(P) of P.

Let L∞(K) be the class of functions of O with bounded supremum norm over a
set of K so that P0(O ∈ K) = 1, endowed with the supremum norm. We assume
there exists a uniformly bounded loss function L : Q → L∞(K) so that

Q(P0) = arg min
Q∈Q

P0L(Q),

where, we remind the reader, P0L(Q) =
∫

L(Q)(o)dP0(o). In addition, we assume
that for each P ∈ M, for a specified d-dimensional (hardest) parametric model
{P(ε) : ε} ⊂ M through P at ε = 0 and with ”score” at ε = 0 for which the linear
combinations of its components generates D∗(P):

〈D∗(P)〉 ⊂ 〈
d
dε

L(Q(P(ε)))
∣∣∣∣∣
ε=0
〉.
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Here we used the notation 〈h〉 for the linear span spanned by the components of
h = (h1, . . . , hk).

We are now ready to define the CV-TMLE. Let Pn → Q̂(Pn) be an initial esti-
mator of Q0 = Q(P0). Let Pn → ĝ(Pn) be an initial estimator of g0 = g(P0). Given
Q̂, ĝ, let Pn → Q̂ε(Pn) be a family of estimators indexed by ε chosen so that

〈D∗(Q̂(Pn), ĝ(Pn))〉 ⊂ 〈
d
dε

L(Q̂ε(Pn))
∣∣∣∣∣
ε=0
〉. (27.1)

One can think of {Q̂ε(Pn) : ε} ⊂ M as a submodel through Q̂(Pn) with parameter
ε, chosen so that the derivative/score at ε = 0 yields a function that equals or spans
the efficient influence curve at the initial estimator (Q̂(Pn), ĝ(Pn)). Note that this
submodel for fluctuating Q̂(Pn) uses the estimator ĝ(Pn) in its definition.

Let Bn ∈ {0, 1}n be a random vector indicating a split of {1, . . . , n} into a training
and validation sample: T = {i : Bn(i) = 0} and V = {i : Bn(i) = 1}. Let P0

Bn,n
, P1

Bn,n
be the empirical probability distributions of the training and validation samples,
respectively. For a given cross-validation scheme Bn ∈ {0, 1}n, we now define

ε0n = ε̂(Pn) ≡ arg min
ε

EBn P1
Bn,nL(Q̂ε(P0

Bn,n)).

This now yields an update Q̂ε0n (P0
Bn,n

) of Q̂(P0
Bn,n

) for each split Bn.
It is important to point out that this cross-validated selector of ε equals the cross-

validation selector among the library of candidate estimators Pn → Q̂ε(Pn) of Q0
indexed by ε. As a consequence, we can apply the results for the cross-validation
selector that show that it is asymptotically equivalent with the so-called oracle se-
lector. Formally, consider the oracle selector

ε̃0n ≡ arg min
ε

EBn P0L(Q̂ε(P0
Bn,n)).

If, in addition to uniform boundedness, we assume that the loss function also satis-
fies

M2 = sup
Q∈Q

var{L(Q) − L(Q0)}
E0{L(Q) − L(Q0)}

< ∞,

then the results in van der Laan and Dudoit (2003) and van der Vaart et al. (2006)
imply that we have the following finite sample inequality:

0 ≤ EEBn P0{L(Q̂ε0n (P0
n,Bn

)) − L(Q̂ε̃0n )}

≤ 2
√

c
1
√

n

√
EEBn P0{L(Q̂ε̃0n (P0

n,Bn
)) − L(Q0)}.

Here c can be explicitly bounded by M2 and an upper bound of L. This shows
that under no conditions on the initial estimator does the selection of ε have good
consistency properties.

One could iterate this updating process of the training-sample-specific estima-
tors: define Q̂1(P0

Bn,n
) = Q̂ε0n (P0

Bn,n
), define the family of fluctuations Pn → Q̂1

ε (Pn)
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satisfying the derivative condition (27.1), and define

ε1n = arg min
ε

EBn P1
Bn,nL(Q̂1

ε (P
0
n,Bn

)),

resulting in another update Q̂1
ε1n

(P0
Bn,n

) for each Bn. This process is iterated till εkn = 0

(or close enough to zero). The final update will be denoted by Q̂∗(P0
Bn,n

) for each
split Bn. The TMLE of ψ0 is now defined as

ψ∗n = EBnΨ (Q̂∗(P0
Bn,n)).

In a variety of examples, the convergence occurs in one step (i.e., ε1n = 0 already).
In this case, we write εn ≡ ε0n and

ψ∗n = EBnΨ (Q̂εn (P0
Bn,n)).

Linear components. This TMLE can also be generalized to the case where only one
component of Q should be estimated using a parametric working fluctuation model,
while the other component can be estimated using a substitution estimator plugging
in the empirical probability distribution function (i.e., a nonparametric maximum
likelihood estimator). In this case, it is not necessary to target the second component
since it is already an unbiased estimator. Formally, consider a decomposition of Q
into (Q1,Q2), such that Q2 → Ψ (Q1,Q2) is linear and Q2(P) is linear in P itself so
that it is sensible to estimate it with an empirical probability distribution. Suppose
that the canonical gradient D∗ can be decomposed as

D∗(P) = D∗1(P) + D∗2(P),

where D∗1(P0) is the canonical gradient of the mapping

P→ Ψ (Q1(P),Q2(P0)) (27.2)

at P = P0. Assume also that D∗1(P) does not depend on Q2(P). Then we may estimate
(27.2) at P0, viewed as a function of Q1(P0), as if Q2(P0) were known, with the
above-defined CV-TMLE. In this case, the parametric fluctuation model needs to
satisfy

〈D∗1(Q̂1(Pn), ĝ(Pn))〉 ⊂ 〈
d
dε

L(Q̂1,ε(Pn))
∣∣∣∣∣
ε=0
〉.

The optimal ε at each step is selected using cross-validation as described above but
now with respect to a loss function L(Q1). The procedure ends when εkn converges
to 0. This yields a CV-TMLE Q̂∗1(P0

Bn,n
) for each sample split Bn. The resulting CV-

TMLE of ψ0 is given by

ψ∗n = EBnΨ
(
Q̂∗1(P0

Bn,n), Q̂2(P1
Bn,n)

)
.

Note that we estimate Q20 on validation samples, which allows the asymptotics of
the estimator to minimally depend on empirical process conditions, while the stated
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linearity in Q2 makes this estimator behave well (just like it is fine to estimate a
mean with the average of subsample specific empirical means over the subsamples
that partition the whole sample). We illustrate this estimator with an application to
the additive causal effect of a binary treatment on a continuous or binary outcome.

27.2 The CV-TMLE for the Additive Causal Effect

Let O = (W, A, Y), W be a vector of baseline covariates, A a binary treatment vari-
able, and Y an outcome of interest. LetM be the class of all probability distributions
for O. We consider the parameter Ψ :M→ R:

Ψ (Q(P)) = EP [EP(Y | A = 1,W) − EP(Y | A = 0,W)] .

Here, Q(P) = (Q̄(P),QW (P)), where Q̄(P)(A,W) ≡ EP(Y | A,W) and QW (P) is the
density of the marginal probability distribution of W. For convenience, we will use
Q̄(P)(W) to denote EP(Y | A = 1,W) − EP(Y | A = 0,W). The distinctions will be
clear from the arguments given to the function or from context. Let g(P)(A | W) ≡
PrP(A | W). We also adopt the notations Q̄0 = Q̄(P0) and QW,0 = QW (P0).

Our parameter of interest is Ψ evaluated at the distribution P0 ∈ M of the ob-
served O:

ψ0 = Ψ (Q0) = EW,0 [E0(Y | A = 1,W) − E0(Y | A = 0,W)] .

The canonical gradient of Ψ at P ∈ M is

D∗(Q(P), g(P))(O) =
{
H∗g(P)(A,W)

(
Y − Q̄(P)(A,W)

)}
+

{
Q̄(P)(W) − QW (P)Q̄(P)

}
≡ D∗Y (Q̄(P), g(P)) + D∗W (Q̄(P),QW (P)),

where

H∗g(A,W) =
(

A
g(1 | W)

−
1 − A

g(0 | W)

)
.

For convenience, we will also use the notation

H∗g(W) = H∗g(1,W) − H∗g(0,W).

Firstly, note that the map QW �→ Ψ (Q̄,QW ) is linear. Secondly, D∗Y (Q̄0, g0) is
the canonical gradient of the map P �→ Ψ (Q̄(P),QW (P0)) at P = P0, and does not
depend on QW (P0). In what follows we present a TMLE of Q0 where only the initial
estimator ˆ̄Q(Pn) of Q̄0 is updated using a parametric working model ˆ̄Qε(Pn), while
the marginal distribution of W is estimated with the empirical distribution, which is
not updated. Given an appropriate loss function L(Q̄) and initial estimators ˆ̄Q and
ĝ of Q̄0 and g0, respectively, the parametric working model { ˆ̄Qε(Pn) : ε} will be
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selected such that

d
dε

L( ˆ̄Qε(Pn))
∣∣∣∣
ε=0
= D∗Y ( ˆ̄Q(Pn), ĝ(Pn)).

We consider here two possible loss functions for binary outcome or continuous
outcomes Y ∈ [0, 1].

Squared error loss function. The squared error loss function is given by

L(Q̄)(O) = (Y − Q̄(A,W))2,

with the parametric working model

ˆ̄Qε(Pn) = ˆ̄Q(Pn) + εH∗ĝ(Pn).

Quasi-log-likelihood loss function. The quasi-log-likelihood loss function is given
by:

L(Q̄)(O) ≡ −
(
Y log(Q̄(W, A)) + (1 − Y) log(1 − Q̄(W, A))

)
,

with the parametric working model

ˆ̄Qε(Pn) =
1

1 + e−logit( ˆ̄Q(Pn))−εH∗ĝ(Pn )

.

We note that we would use this loss function if Y were binary or Y were continuous
with values in [0, 1]. If Y is a bounded continuous random variable with values in
[a, b], then we can still use this loss function by using the transformed outcome
Y∗ = (Y − a)/(b − a) and mapping the obtained TMLE of the additive treatment
effect on Y∗ (and confidence intervals) into a TMLE of the additive treatment effect
on Y (and confidence intervals).

It is important to point out that the TMLE of Q̄0 corresponding with both fluctua-
tion models will converge in one step, since the clever covariate H∗ĝ(Pn) in the update

of ˆ̄Q does not involve ˆ̄Q.
Let Bn ∈ {0, 1}n be a random vector indicating a split of {1, . . . , n} into a training

and a validation sample: T = {i : Bn(i) = 0} andV = {i : Bn(i) = 1}. Let P0
n,Bn

, P1
n,Bn

be the empirical probability distributions of the training and validation samples,
respectively. Given the parametric working model, the optimal εn is selected using
cross-validation:

εn = arg min
ε

EBn P1
n,Bn

L( ˆ̄Qε(P0
Bn,n)).

In particular, the one-step convergence implies that εn satisfies

0 = EBn P1
Bn,nD∗Y ( ˆ̄Qεn (P0

Bn,n), ĝ(P0
Bn,n)). (27.3)

The TMLE of ψ0 is defined as
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ψ∗n = EBnΨ
( ˆ̄Qεn (P0

Bn,n), Q̂W (P1
Bn,n)

)
.

In the theorem and proof, at each sample split Bn, we define the TMLE of Q0 at
(Pn, Bn) as

Q̂Bn (Pn) ≡
( ˆ̄Qεn (P0

Bn,n), Q̂W (P1
Bn,n)

)
.

27.3 Asymptotics of the CV-TMLE

We will now use the squared error loss example to illustrate the theoretical advan-
tages of CV-TMLE and the use of data-adaptive estimators for the initial estimators.
We will show that under a natural rate condition on the initial estimators ˆ̄Q and ĝ,
the resulting TMLE ψ∗n is asymptotically linear, and when ĝ and ˆ̄Q are consistent,
its influence curve is indeed the efficient influence curve. For a similar theorem for
the CV-TMLE using the quasi-log-likelihood loss function and its proof, we refer to
the accompanying technical report (Zheng and van der Laan 2010).

Theorem 27.1. Consider the setting above under the squared error loss function.
Let Bn ∈ {0, 1}n be a random vector indicating a split of {1, . . . , n} into a training
and validation sample. Suppose Bn is uniformly distributed on a finite support. We
will index the V possible outcomes of Bn with v = 1, . . . ,V. Let ˆ̄Q and ĝ be initial
estimators of Q̄0 and g0. In what follows, ˆ̄Q(P0) and ĝ(P0) denote limits of these
estimators, not necessarily equal to Q̄0 and g0, respectively. The CV-TMLE satisfies

ψ∗n − ψ0 = EBn

(
P1

Bn,n − P0

)
D∗

(
Q̂Bn (Pn), ĝ(P0

Bn,n)
)

+EBn P0

⎧⎪⎪⎨⎪⎪⎩ (−1)1+A

g0ĝ(P0
Bn,n

)

(
Q̄0 − ˆ̄Qεn (P0

Bn,n)
) (

g0 − ĝ(P0
Bn,n)

)⎫⎪⎪⎬⎪⎪⎭ . (27.4)

Suppose now that there exists a constant L > 0 such that P0(|Y | < L) = 1.
Consider the following definition:

ε0 ≡ arg min
ε

P0L( ˆ̄Qε(P0)).

Suppose that these minima exist and satisfy the derivative equations

0 = P0DY (P0, ε0),

where

DY (P, ε)(O) ≡
d
dε

L( ˆ̄Qε(P))(O)

=
(
Y − ˆ̄Q(P)(A,W) − εH∗ĝ(P)(A,W)

)
H∗ĝ(P)(A,W)

= D∗Y
( ˆ̄Qε(P), ĝ(P)

)
(O).
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If there are multiple minima, then it is assumed that the argmin is uniquely defined
and selects one of these minima. Suppose that ˆ̄Q and ĝ satisfy the following condi-
tions:

1. There exists a closed bounded set K ⊂ R
k containing ε0 such that εn belongs to

K with probability 1.
2. For some δ > 0, P(1 − δ > ĝ(Pn)(1 | W) > δ) = 1.
3. For some K > 0, P(| ˆ̄Q(Pn)(A,W)| < K) = 1.
4. ∫

W
(ĝ(Pn)(1|w) − ĝ(P0)(1|w))2 dQW,0(w)→ 0 in probability.

5. For a = 0, 1,∫
W

( ˆ̄Q(Pn)(a,w) − ˆ̄Q(P0)(a,w)
)2

dQW,0(w)→ 0 in probability.

Then,

ψ∗n − ψ0 = (Pn − P0)
{
D∗Y

( ˆ̄Qε0 (P0), ĝ(P0)
)
+ ˆ̄Qε0 (P0)

}
+EBn P0

⎧⎪⎪⎨⎪⎪⎩ (−1)1+A

g0ĝ(P0
Bn,n

)

(
Q̄0 − ˆ̄Qεn (P0

Bn,n)
) (

g0 − ĝ(P0
Bn,n)

)⎫⎪⎪⎬⎪⎪⎭
+oP(1/

√
n). (27.5)

Furthermore, if ĝ(Pn) = g0, the TMLE estimator ψ∗n is an asymptotically linear
estimator of ψ0:

ψ∗n − ψ0 = (Pn − P0) D∗(Q̂ε0 (P0), g0) + oP(1/
√

n), (27.6)

where Q̂ε0 (P0) = ( ˆ̄Qε0 (P0),QW,0).
If, in addition to ĝ(Pn) = g0, ˆ̄Q(P0) = Q̄0, which implies that ˆ̄Qε0 (P0) = Q̄0, then

ψ∗n is an asymptotically efficient estimator of ψ0:

ψ∗n − ψ0 = (Pn − P0) D∗(Q0, g0) + oP(1/
√

n). (27.7)

More generally, if the limits satisfy ĝ(P0) = g0 and ˆ̄Q(P0) = Q̄0, and if the conver-
gence satisfies√√√

EBn P0

⎛⎜⎜⎜⎜⎜⎝g0 − ĝ(P0
Bn,n

)

g0ĝ(P0
Bn,n

)

⎞⎟⎟⎟⎟⎟⎠2 √
EBn P0

( ˆ̄Qεn (P0
Bn,n

) − Q̄0

)2
= oP(1/

√
n), (27.8)

then ψ∗n is an asymptotically efficient estimator of ψ0:

ψ∗n − ψ0 = (Pn − P0) D∗(Q0, g0) + oP(1/
√

n).
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Consider now the case where ĝ(P0) = g0, but ˆ̄Q(P0) � Q̄0. If the convergence
satisfies√√√

EBn P0

⎛⎜⎜⎜⎜⎜⎝g0 − ĝ(P0
Bn,n

)

g0ĝ(P0
Bn,n

)

⎞⎟⎟⎟⎟⎟⎠2 √
EBn P0

( ˆ̄Qεn (P0
Bn,n

) − ˆ̄Qε0 (P0)
)2
= oP(1/

√
n), (27.9)

and
P0

{
H∗ĝ(Pn)

( ˆ̄Qε0 (P0) − Q̄0

)}
is an asymptotically linear estimator of

P0

{
H∗ĝ(P0)

( ˆ̄Qε0 (P0) − Q̄0

)}
,

with influence curve IC′, then ψ∗n is an asymptotically linear estimator of ψ0:

ψ∗n − ψ0 = (Pn − P0)
{

D∗(Q̂ε0 (P0), g0) + IC′
}
+ oP(1/

√
n).

For convenience of reference, we state several simple but useful results in the proof
of the theorem.

Lemma 27.1. If Xn converges to X in probability, and there exists A > 0 such that
P(|Xn| < A) = 1, then E|Xn − X|r → 0 for r ≥ 1.

Definition 27.1. An envelope of a class of functions F is a function F such that
| f |≤ F for all f ∈ F .

Definition 27.2. For a class of functions F whose elements are functions f that map
O into a real number, we define the entropy integral

Entro(F ) ≡
∫ ∞

0

√
log sup

Q
N(ε ‖ F ‖Q,2,F , L2(Q))dε,

where N(ε,F , L2(Q)) is the covering number, defined as the minimal number of
balls of radius ε > 0 needed to cover F , using the L2(Q)-norm when defining a ball
of radius ε.

We refer to van der Vaart and Wellner (1996) for empirical process theory.
Lemma 27.2 below is an application of Lemma 2.14.1 in van der Vaart and Wellner
(1996).

Lemma 27.2. Conditional on P0
Bn,n

, let F (P0
Bn,n

) denote a class of measurable func-
tions of O. Suppose that the entropy integral of this class is bounded and there is an
envelope function F(P0

Bn,n
) of F (P0

Bn,n
) such that EP0F(P0

Bn,n
)2 → 0. Then for any

δ > 0

EP

⎛⎜⎜⎜⎜⎜⎜⎝ sup
f∈F (P0

Bn ,n
)

∣∣∣∣√n
(
P1

Bn,n − P0

)
f
∣∣∣∣ > δ∣∣∣∣∣∣P0

Bn,n

⎞⎟⎟⎟⎟⎟⎟⎠→ 0.
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Lemma 27.3. Suppose ĝ is such that for some δ > 0, P(1 − δ > ĝ(Pn)(1 | W) > δ)

= 1. If ĝ satisfies PW,0 (ĝ(Pn) − ĝ(P0))2 P
→ 0, then we have that P0

(
H∗ĝ(Pn) − H∗ĝ(P0)

)2
,

P0

(
H∗ĝ(Pn) − H∗ĝ(P0)

)
, and P0

(
(H∗ĝ(Pn))

2 − (H∗ĝ(P0))
2
)

also converge to zero in probabil-
ity.

Lemma 27.4. Suppose ĝ and ˆ̄Q satisfy conditions 2–5 in Theorem 27.1. Then, for
any r ≥ 1:

1. EP0

(
ˆ̄Q(P0

Bn,n
)H∗

ĝ(P0
Bn ,n

)
− ˆ̄Q(P0)H∗ĝ(P0)

)r
→ 0;

2. EP0

(
(Y − ˆ̄Q(P0

Bn,n
))H∗

ĝ(P0
Bn ,n

)
− (Y − ˆ̄Q(P0))H∗ĝ(P0)

)r
→ 0;

3. EP0

(
(H∗

ĝ(P0
Bn ,n

)
)2 − (H∗ĝ(P0))

2
)r
→ 0;

4. EP0

(
H∗

ĝ(P0
Bn ,n

)
− H∗ĝ(P0)

)r
→ 0.

We are now ready to prove Theorem 27.1.

Proof. Firstly, we wish to establish that

ψ∗n − ψ0 = EBn

(
P1

Bn,n − P0

)
D∗

(
Q̂Bn (Pn), ĝ(P0

Bn,n)
)

+EBn P0

⎧⎪⎪⎨⎪⎪⎩ (−1)1+A

g0ĝ(P0
Bn,n

)

(
Q̄0 − ˆ̄Qεn (P0

Bn,n)
) (

g0 − ĝ(P0
Bn,n)

)⎫⎪⎪⎬⎪⎪⎭ ,
where Q̂Bn (Pn) =

( ˆ̄Qεn (P0
Bn,n

), Q̂W (P1
Bn,n

)
)
.

Note that

−P0D∗(Q(P), g0) ≡ −P0

{(
Y − Q̄(P)

)
H∗g0
+ Q̄(P) − QW (P)Q̄(P)

}
= −

{
P0YH∗g0

− P0Q̄(P)H∗g0
+ PW,0Q̄(P) − QW (P)Q̄(P)

}
= QW (P)Q̄(P) − P0YH∗g0

= Ψ (Q(P)) − Ψ (Q0).

Applying this result to each sample split Bn and averaging over its support, it follows
that

ψ∗n − ψ0 ≡ EBnΨ
(
Q̂Bn (Pn)

)
− Ψ (Q(P0)) = −EBn P0D∗

(
Q̂Bn (Pn), g0

)
. (27.10)

On the other hand,

EBn P1
Bn,nD∗W

(
Q̂W (P1

Bn,n), ˆ̄Qεn (P0
Bn,n)

)
≡ EBn P1

Bn,n

{ ˆ̄Qεn (P0
Bn,n) − QW (P1

Bn,n) ˆ̄Qεn (P0
Bn,n)

}
= EBn

{
QW (P1

Bn,n) ˆ̄Qεn (P0
Bn,n) − QW (P1

Bn,n) ˆ̄Qεn (P0
Bn,n)

}
= 0.
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Moreover, it follows from the definition of εn and the one-step convergence of the
chosen fluctuation model that

( ˆ̄Qεn (P0
Bn,n

), ĝ(P0
Bn,n

)
)

satisfies (27.3). Therefore, we
have

EBn P1
Bn,nD∗

(
Q̂Bn (Pn), ĝ(P0

Bn,n)
)

≡ EBn P1
Bn,nD∗Y

( ˆ̄Qεn (P0
Bn,n), ĝ(P0

Bn,n)
)
+ EBn P1

Bn,nD∗W
(
Q̂W (P1

Bn,n), ˆ̄Qεn (P0
Bn,n)

)
= 0. (27.11)

Combining (27.10), (27.11), and the robustness of D∗, P0D∗(Q0, g) = 0 for all g,
we may now rewrite ψ∗n − ψ0 as

ψ∗n − ψ0 = EBn

(
P1

Bn,n − P0

)
D∗

(
Q̂Bn (Pn), ĝ(P0

Bn,n)
)

+EBn P0

{
D∗

(
Q̂Bn (Pn), ĝ(P0

Bn,n)
)
− D∗

(
Q̂Bn (Pn), g0)

)}
−EBn P0

{
D∗

(
Q0, ĝ(P0

Bn,n)
)
− D∗ (Q0, g0))

}
.

The last two summands in this equality can be combined as

EBn P0

{
D∗

(
Q̂Bn (Pn), ĝ(P0

Bn,n)
)
− D∗

(
Q̂Bn (Pn), g0

)}
−EBn P0

{
D∗

(
Q0, ĝ(P0

Bn,n)
)
− D∗ (Q0, g0))

}
≡ EBn P0

{
D∗Y ( ˆ̄Qεn (P0

Bn,n), ĝ(P0
Bn,n)) + D∗W (Q̂Bn (Pn))

}
−EBn P0

{
D∗Y ( ˆ̄Qεn (P0

Bn,n), g0) + D∗W (Q̂Bn (Pn))
}

−EBn P0

{
D∗Y (Q̄0, ĝ(P0

Bn,n)) + D∗W (Q0)
}

+EBn P0

{
D∗Y (Q̄0, g0) + D∗W (Q0)

}
= EBn P0

(
Q̄0 − ˆ̄Qεn (P0

Bn,n)
) (

H∗ĝ(P0
Bn ,n

) − H∗g0

)
= EBn P0

⎧⎪⎪⎪⎨⎪⎪⎪⎩(
Q̄0 − ˆ̄Qεn (P0

Bn,n)
)

(−1)1+A

(
g0 − ĝ(P0

Bn,n
)
)

g0ĝ(P0
Bn,n

)

⎫⎪⎪⎪⎬⎪⎪⎪⎭ .
Therefore, we indeed have the desired expression (27.4):

ψ∗n − ψ0 = EBn

(
P1

Bn,n − P0

)
D∗

(
Q̂Bn (Pn), ĝ(P0

Bn,n)
)

(27.12)

+EBn P0

⎧⎪⎪⎨⎪⎪⎩ (−1)1+A

g0ĝ(P0
Bn,n

)

(
Q̄0 − ˆ̄Qεn (P0

Bn,n)
) (

g0 − ĝ(P0
Bn,n)

)⎫⎪⎪⎬⎪⎪⎭ . (27.13)

We now study each term separately. For convenience, we use the notation DY (P, ε) ≡
D∗Y ( ˆ̄Qε(P), ĝ(P)). Term (27.12) can be written as

EBn

(
P1

Bn,n − P0

)
D∗

(
Q̂Bn (Pn), ĝ(P0

Bn,n)
)

= EBn

(
P1

Bn,n − P0

)
D∗Y

( ˆ̄Qεn (P0
Bn,n), ĝ(P0

Bn,n)
)
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+EBn

(
P1

Bn,n − P0

) { ˆ̄Qεn (P0
Bn,n) − QW (P1

Bn,n) ˆ̄Qεn (P0
Bn,n)

}
= EBn

(
P1

Bn,n − P0

) {
DY

(
P0

Bn,n, εn
)
− DY (P0, ε0)

}
(27.14)

+ (Pn − P0) DY (P0, ε0)

+EBn

(
P1

Bn,n − P0

) { ˆ̄Qεn (P0
Bn,n) − ˆ̄Qε0 (P0)

}
(27.15)

+ (Pn − P0) ˆ̄Qε0 (P0).

It follows from the following lemma that εn converges to ε0 in probability.

Lemma 27.5. Let εn and ε0 be defined as in Theorem 27.1 and suppose they solve
the derivative equations as stated in the theorem. If ĝ and ˆ̄Q satisfy conditions 1–5
in Theorem 27.1, then εn converges to ε0 in probability.

Now consider the following lemmas

Lemma 27.6. If the initial estimators ˆ̄Q and ĝ satisfy conditions 1–5 in the theorem,
then, conditional on a sample split Bn,

√
n(P1

n,Bn
− P0)

{
DY

(
P0

Bn,n, εn
)
− DY (P0, ε0)

}
= oP(1).

Lemma 27.7. If ˆ̄Q and ĝ satisfy conditions 1–5 of the theorem, then, conditional on
a sample split Bn,

√
n(P1

Bn,n − P0)
( ˆ̄Qεn (P0

Bn,n) − ˆ̄Qε0 (P0)
)
= oP(1).

Note that Lemmas 27.5–27.7 follow from Lemmas 27.2–27.4.
Lemmas 27.6 and 27.7 imply that (27.14) and (27.15) are oP(1/

√
n). We thus

have established that (27.12) is given by

EBn

(
P1

Bn,n − P0

)
D∗

(
Q̂Bn (Pn), ĝ(P0

Bn,n)
)

= (Pn − P0)
{
D∗Y

( ˆ̄Qε0 (P0), ĝ(P0)
)
+ ˆ̄Qε0 (P0)

}
+ oP(1/

√
n).

Combining this result with (27.13), we have proved (27.5):

ψ∗n − ψ0 = (Pn − P0)
{
D∗Y

( ˆ̄Qε0 (P0), ĝ(P0)
)
+ ˆ̄Qε0 (P0)

}
+EBn P0

⎧⎪⎪⎨⎪⎪⎩ (−1)1+A

g0ĝ(P0
Bn,n

)

(
Q̄0 − ˆ̄Qεn (P0

Bn,n)
) (

g0 − ĝ(P0
Bn,n)

)⎫⎪⎪⎬⎪⎪⎭
+oP(1/

√
n).

Note that up to this point we have only used the convergence of ˆ̄Q(Pn) and ĝ(Pn)
to some limits, but we assumed neither consistency to the true Q0, g0, nor a rate of
convergence for these initial estimators to such limits.

Finally, we study the remainder term (27.13):
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EBn P0

⎧⎪⎪⎨⎪⎪⎩ (−1)1+A

g0ĝ(P0
Bn,n

)

(
Q̄0 − ˆ̄Qεn (P0

Bn,n)
) (

g0 − ĝ(P0
Bn,n)

)⎫⎪⎪⎬⎪⎪⎭ .
We consider several cases. Firstly, consider the case ĝ(Pn) = g0. In this case,

term (27.13) is exactly 0. Therefore, (27.5) now implies that ψ∗n is asymptotically
linear with influence curve D∗(Q̂ε0 (P0), g0). If, in addition, the initial estimator ˆ̄Q is
consistent for Q̄0, i.e., ˆ̄Q(P0) = Q̄0, then

ε0 ≡ arg min
ε

P0(Y − ˆ̄Q(P0) − εH∗ĝ(P0))
2

= arg min
ε

P0(Y − Q0 − εH∗ĝ(P0))
2 = 0.

This implies that ˆ̄Qε0 (P0) is simply Q0. Consequently, ψ∗n is asymptotically linear
with influence curve D∗(Q0, g0) and is thereby asymptotically efficient.

Let’s now consider the case where ĝ(P0) = g0 and ˆ̄Q(P0) = Q̄0. In this case,
ˆ̄Qεn (P0

Bn,n
) converges to Q̄0 and ĝ(P0

Bn,n
) converges to g0. In particular, these imply

that (27.13) converges to 0. However, for ψ∗n to be asymptotically linear, it is neces-
sary that the convergence of this second order term occurs at a

√
n rate, i.e.,

EBn P0

⎧⎪⎪⎨⎪⎪⎩ (−1)1+A

g0ĝ(P0
Bn,n

)

(
g0 − ĝ(P0

Bn,n)
) ( ˆ̄Qεn (P0

Bn,n) − Q̄0

)⎫⎪⎪⎬⎪⎪⎭ = oP(1/
√

n).

Applying the Cauchy–Schwartz inequality, it follows that if√√√
EBn P0

⎛⎜⎜⎜⎜⎜⎝g0 − ĝ(P0
Bn,n

)

g0ĝ(P0
Bn,n

)

⎞⎟⎟⎟⎟⎟⎠2 √
EBn P0

( ˆ̄Qεn (P0
Bn,n

) − Q̄0

)2
= oP(1/

√
n),

then ψ∗n will be asymptotically efficient.
Finally, consider the case where ĝ(P0) = g0, but ˆ̄Q(P0) � Q̄0. We reconsider

expression (27.13) to account for the limit ˆ̄Qε0 (P0) of ˆ̄Qεn (P0
Bn,n

), which does not
equal Q̄0:

EBn P0

⎧⎪⎪⎨⎪⎪⎩ (−1)1+A

g0ĝ(P0
Bn,n

)

(
g0 − ĝ(P0

Bn,n)
) ( ˆ̄Qεn (P0

Bn,n) − Q̄0

)⎫⎪⎪⎬⎪⎪⎭
= EBn P0

⎧⎪⎪⎨⎪⎪⎩ (−1)1+A

g0ĝ(P0
Bn,n

)

(
g0 − ĝ(P0

Bn,n)
) ( ˆ̄Qεn (P0

Bn,n) − ˆ̄Qε0 (P0)
)⎫⎪⎪⎬⎪⎪⎭ (27.16)

+EBn P0

⎧⎪⎪⎨⎪⎪⎩ (−1)1+A

g0ĝ(P0
Bn,n

)

(
g0 − ĝ(P0

Bn,n)
) ( ˆ̄Qε0 (P0) − Q̄0

)⎫⎪⎪⎬⎪⎪⎭ . (27.17)

Firstly, we require again that the rate of convergence for the second order term in
(27.16) be

√
n, that is,
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EBn P0

⎧⎪⎪⎨⎪⎪⎩ (−1)1+A

g0ĝ(P0
Bn,n

)

(
g0 − ĝ(P0

Bn,n)
) ( ˆ̄Qεn (P0

Bn,n) − ˆ̄Qε0 (P0)
)⎫⎪⎪⎬⎪⎪⎭ = oP(1/

√
n).

Applying the Cauchy–Schwartz inequality, it suffices that√√√
EBn P0

⎛⎜⎜⎜⎜⎜⎝g0 − ĝ(P0
Bn,n

)

g0ĝ(P0
Bn,n

)

⎞⎟⎟⎟⎟⎟⎠2 √
EBn P0

( ˆ̄Qεn (P0
Bn,n

) − ˆ̄Qε0 (P0)
)2
= oP(1/

√
n).

For (27.17) to be asymptotically linear, stronger requirements on the performance
of ĝ are needed in order to address the inconsistency of ˆ̄Q. For convenience of
notation, we recall that

EBn P0

⎧⎪⎪⎨⎪⎪⎩ (−1)1+A

g0ĝ(P0
Bn,n

)

(
Q̄0 − ˆ̄Qεn (P0

Bn,n)
) (

g0 − ĝ(P0
Bn,n)

)⎫⎪⎪⎬⎪⎪⎭
= EBn P0

{(
H∗ĝ(P0

Bn ,n
) − H∗g0

) (
Q̄0 − ˆ̄Qεn (P0

Bn,n)
)}
.

Now, for the given initial estimator ˆ̄Q and ĝ, let

Φ(P) ≡ P0

{
H∗ĝ(P)

( ˆ̄Qε0 (P0) − Q̄0

)}
.

If ĝ is such that Φ(Pn) − Φ(P0) is asymptotically linear (with some influnce curve
IC′), then (27.17) becomes

EBn P0

{(
H∗ĝ(P0

Bn ,n
) − H∗g0

) ( ˆ̄Qε0 (P0) − Q̄0

)}
≡ EBn

(
Φ(P0

Bn,n) −Φ(P0)
)

= EBn

(
P0

Bn,n − P0

)
IC′ + oP(1/

√
n)

= (Pn − P0)IC′ + oP(1/
√

n).

Therefore, if ĝ and ˆ̄Q satisfy the convergence speed condition andΦ(Pn)−Φ(P0)
is asymptotically linear, then it follows from (27.16) and (27.17) that the remainder
(27.13) becomes

EBn P0

⎧⎪⎪⎨⎪⎪⎩ (−1)1+A

g0ĝ(P0
Bn,n

)

(
g0 − ĝ(P0

Bn,n)
) ( ˆ̄Qεn (P0

Bn,n) − Q̄0

)⎫⎪⎪⎬⎪⎪⎭ = (Pn − P0) IC′ + oP(1/
√

n).

This completes the proof.
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27.4 Discussion of Conditions of the Theorem

Under no conditions we determined an exact identity (27.4) for the CV-TMLE mi-
nus its target ψ0, which already provides the main insights about the performance of
this estimator. It shows that the analysis of the CV-TMLE involves a cross-validated
empirical process term applied to the efficient influence curve and a second-order
remainder term. The cross-validated empirical process term is convenient because
it involves, for each sample split, an empirical mean over a validation sample of an
estimated efficient influence curve that is largely (up till a finite dimensional ε) esti-
mated based on the training sample. Based on this, one would predict that one could
establish a CLT for this cross-validated empirical process term without having to
enforce restrictive entropy conditions on the support of (i.e., class of functions that
contains) the estimated efficient influence curve (and thereby limit the adaptiveness
of the initial estimators). This is formalized by our second result (27.5), which re-
places the cross-validated empirical process term by an empirical mean of mean
zero random variables D∗(Q̂ε0 (P0), ĝ(P0)) plus a negligible oP(1/

√
n)-term. This re-

sult only requires the positivity assumption and that the estimators converge to a
limit. That is, under essentially no conditions beyond the positivity assumption does
the CV-TMLE minus the true ψ0 behave as an empirical mean of mean zero i.i.d.
random variables (which thus converges to a normal distribution by CLT), plus a
specified second-order remainder term.

The second-order remainder term predicts immediately that to make it negligible
we will need for the product of the rates of convergence for ˆ̄Q(Pn) and ĝ(Pn) to
their targets Q̄0 and g0 to be o(1/

√
n). In an RCT, g0 is known, and one might

set ĝ(Pn) = g0, so that the second-order remainder term is exactly equal to zero,
giving us the asymptotic linearity (27.6) of the CV-TMLE under no other conditions
than the positivity assumption and convergence of ˆ̄Q(Pn) to some fixed function.
This teaches us the remarkable lesson that in an RCT, one can use very aggressive
super learning without causing any violations of the conditions, but one will achieve
asymptotic efficiency for smaller sample sizes. In particular, in an RCT in which we
use a consistent estimator ˆ̄Q the CV-TMLE is asymptotically efficient, as stated in
(27.7). That is, in an RCT, this theorem teaches us that CV-TMLE with adaptive
estimation of Q̄0 is the way to go.

Let’s now consider a study in which g0 is not known, but one has available a
correctly specified parametric model. For example, one knows that A is only a func-
tion of a discrete variable, and one uses a saturated model. If the initial estimator ˆ̄Q
is consistent for Q̄0, then the rate condition (27.8) holds, so that it follows that the
CV-TMLE is asymptotically efficient. That is, in this scenario there is only benefit in
using an adaptive estimator of Q̄0. If, by chance, the estimator ˆ̄Q is actually incon-
sistent for Q̄0, then the rate condition (27.9) still holds, and the asymptotic linearity
condition on ĝ will also hold under minimal conditions, so that we still have that the
CV-TMLE is asymptotically linear.

Finally, let’s consider a case in which the assumed model for g0 is a large semi-
parametric model. To have a chance at being consistent for g0, one will need to uti-



474 Wenjing Zheng, Mark J. van der Laan

lize adaptive estimation to estimate g0 such as a maximum-likelihood-based super
learner respecting the semiparametric model. There are now two scenarios possible.
Firstly, suppose that ˆ̄Q converges to Q̄0 fast enough so that (27.8) holds. Then the
CV-TMLE is asymptotically efficient. If, on the other hand, ˆ̄Q converges fast enough
to a misspecified Q̄ so that (27.9) holds, then another condition is required. Namely,
we now need for ĝ to be such that the smooth functional ΦP0 (ĝ), indexed by P0, is
an asymptotically linear estimator of its limit ΦP0 (g0). This smooth functional can
be represented as ΦP0 (g) = P0H∗g(Q̄∗ − Y), where Q̄∗ = ˆ̄Qε0 (P0). A data-adaptive
estimator ĝ of g0, only tailored to fit g0 as a whole, may be too biased for this smooth
functional (the whole motivation of TMLE!). Therefore, we suggest that the estima-
tor ĝ should be targeted toward this smooth functional. That is, one might want to
work out a TMLE ĝ∗ that aims to target this parameter ΦP0 (g0). We leave this for
future research.

The goal of this chapter was to present a TMLE that allows one to learn the
truth ψ0, while also providing statistical inference based on a CLT, under as
large a statistical model as possible. For that purpose, adaptive estimation (su-
per learning), targeted minimum-loss-based estimation, and cross-validated
selection of the fluctuation parameter in the TMLE are all essential tools to
achieve this goal. The CV-TMLE combines these tools in one machine that
is able to utilize all the state-of-the-art algorithms in machine learning and
still provide proper inference in terms of confidence intervals and type I error
control for testing null hypotheses, under minimal conditions.



Chapter 28

Targeted Bayesian Learning

Iván Díaz Muñoz, Alan E. Hubbard, Mark J. van der Laan

TMLE is a loss-based semiparametric estimation method that yields a substitution
estimator of a target parameter of the probability distribution of the data that solves
the efficient influence curve estimating equation and thereby yields a double robust
locally efficient estimator of the parameter of interest under regularity conditions.
The Bayesian paradigm is concerned with including the researcher’s prior uncer-
tainty about the probability distribution through a prior distribution on a statistical
model for the probability distribution, which combined with the likelihood yields
a posterior distribution of the probability distribution that reflects the researcher’s
posterior uncertainty. Just like model-based maximum likelihood learning, Bayesian
learning is intrinsically nontargeted by working with the prior and posterior distri-
butions of the whole probability distribution of the observed data structure and is
thereby very susceptible to bias due to model misspecification or nontargeted model
selection.

In this chapter, we present a targeted Bayesian learning methodology mapping a
prior distribution on the target parameter of interest into a valid posterior distribution
of this target parameter. It relies on a marriage with TMLE, and we show that the
posterior distribution of the target parameter inherits the double robust properties of
the TMLE. In particular, we will apply this targeted Bayesian learning methodology
to the additive causal effect, but our results can be generalized to any d-dimensional
target parameter. For a general review of the proposed methodology, we refer the
interested reader to van der Laan (2008b), p. 178.

Statistical theory is concerned with deriving inferences from observations (data)
on a random variable about certain features of the probability mechanism that gen-
erates this random variable. Those features of interest are called parameters and can
be described as mappings from a set of possible distributions of the data, called a
model, to a d-dimensional real space. Models are at the core of statistical theory
because they allow a description of the main features of the underlying probabil-
ity mechanism based on prior knowledge about the experiment that generated the
random variable. A model can be classified in three main categories: parametric,
semiparametric, and nonparametric models. A parametric model is one in which
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the i.i.d. random variables O1,O2, . . . ,On are assumed to be generated by a proba-
bility distribution P0 that belongs to a set of the form {Pθ : θ ∈ Θ}, where Θ ⊂ R

k.
In a semiparametric model the parameter space Θ satisfies Θ ⊂ R

k × F, where F

is an infinite-dimensional space. A nonparametric model poses no restrictions on
P0 and assumes that P0 belongs to the set of all possible distributions. Note that a
nonparametric model is a special case of a semiparametric model.

Statistical theory has been developed under two main paradigms: frequentist and
Bayesian. In the context of inference, the main difference between these paradigms
entails a conceptual distinction of the random nature of θ: in frequentist statistics θ
is considered unknown but fixed, whereas Bayesian techniques treat it as a random
variable. Besides the model, whose elements are Pθ, Bayesian techniques incorpo-
rate a prior distribution on θ in the statistical inference, whose density is denoted
here by π. More important than the randomness of θ is the fact that Bayesian analysis
incorporates an interpretation of the densities on θ as a way to summarize the current
state of knowledge about it (Robert 2007, p. 34). Thus, π(θ) represents the certainty
about the value of θ available prior to the collection of O′ = (O1,O2, . . . ,On), and
p(θ | O) represents the certainty about it once the evidence contained in O is ex-
tracted and the prior information is updated. The latter is called the posterior density.
Bayes’s theorem allows the calculation of the posterior density as

p(θ | O) =
p(O | θ)π(θ)∫
p(O | θ)π(θ)dθ

.

Despite the revolutionary recourse of the prior and posterior distributions, para-
metric Bayesian analysis suffers from the same critical drawbacks as parametric
frequentist analysis. First of all, the models used are typically very small (e.g., ex-
ponential families), and usually there is no justifiable reason to believe that the true
probability distribution belongs to such small models. Choices of parametric models
are often made based on the convenience of their analytical properties. Inferences
about θmade according to such misspecified models are widely known to be biased.

Furthermore, the research interest usually rests in a parameter different from θ,
that can be represented as a mapping from the model to a possibly multidimen-
sional real space. In this article we analyze the particular case of the additive causal
effect whose definition we now recall. Given a data set consisting of n identically
distributed copies of O = (W, A, Y), where A is a binary treatment, Y is a binary or
continuous outcome, and W is a vector of covariates, the additive causal effect is
defined as

ψ0 = Ψ (P0) = E0[E0(Y | A = 1,W) − E0(Y | A = 0,W)], (28.1)

where P0 is the distribution of O. Any possible likelihood of O can be factorized as

P(O) = P(Y | A,W)P(A | W)P(W). (28.2)
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We define: QW (W) ≡ P(W), g(A | W) ≡ P(A | W), QY (Y | A,W) ≡ P(Y | A,W), and
Q̄(P)(A,W) ≡ EP(Y | A,W). We will occasionally use the notation g(P)(A | W), to
stress the dependence on P.

Standard Bayesian and frequentist techniques do well regarding inference for
θ if the assumed model is small enough and contains the true distribution (consis-
tency, efficiency, and central limit theorem), but, for general semiparametric models,
substitution estimators and posterior distributions of the parameter of interest (i.e.,
additive causal effect) based on those techniques are not guaranteed to have optimal
properties with respect to the target parameter.

Classical estimation techniques, such as maximum likelihood estimation or
least squares estimation, fit densities to the data by minimizing the empirical risk∑

i L(Q)(Oi) implied by some loss function L(Q). Here Q is the relevant part of
P that is required to evaluate Ψ (P) = Ψ (Q) [e.g., in the additive causal effect
example, Q = (Q̄(P),QW )]. For our parameter of interest, if Y is continuous, a
common choice of loss function for the conditional mean Q̄0 is the square loss
L(Q̄)(O) = (Y − Q̄(W, A))2. If one estimates Q̄(P0) with Q̄n, and the marginal dis-
tribution of W by its empirical counterpart, then the substitution estimator of ψ0 is
given by

1
n

n∑
i=1

[Q̄n(1,Wi) − Q̄n(0,Wi)].

In the parametric Bayesian paradigm, models for the marginal distribution of W and
conditional distribution of Y given (A,W) must be assumed in order to get a posterior
distribution of the parameter ψ0. Let {QW (W; θW ) : θW } and {QY (Y | A,W; θY ) : θY }
be such models, and let the prior densities for θW and θY be given by πθW and πθY , re-
spectively. Bayesian standard procedures can be used to compute posterior densities
πθW |O and πθY |O, which can be mapped into a posterior density on ψ0 by (28.1).

Indeed, it is very likely that (1) prior information on the treatment effect ψ0 itself
is readily available and that (2) previous studies of the same treatment were ana-
lyzed based on different sets of covariates W, and different models for QY (Y | A,W)
and QW (W), thus providing information on different parameters θ′W and θ′Y . The
Bayesian technique introduced here only requires a prior distribution on ψ0, allows
for realistic semiparametric models, and it maps it into a posterior distribution on
ψ0 with frequentist properties analogous to the TMLE.

28.1 Prior, Likelihood, and Posterior Distributions

In this section we determine the posterior distribution of ψ0 when the likelihood
of the parametric submodel employed in the TMLE is adopted as the likelihood of
the data. For notational convenience, let Q̄A(P)(W) ≡ Q̄(P)(A,W). The parameter
in (28.1) can be written as a mapping fromM to R, defined by

Ψ (P) = P{Q̄1(P) − Q̄0(P)}. (28.3)
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Treating P0
n as fixed, the fluctuation {P0

n(ε) : ε} ⊂ M used in the TMLE is just
a parametric model, and the likelihood under this parametric model can be used
together with a prior distribution on ε to define the posterior distribution of ε. The
corresponding posterior distribution of Ψ (P0

n(ε)) reflects the posterior uncertainty
about the target parameter. It can be used to proceed to point and interval estimation
of the target parameter of interest.

Firstly, we find a submodel Mε = {P0
n(ε) : ε} ⊂ M such that P0

n(0) = P0
n and

〈D∗(P0
n)〉 ⊂ 〈 d

dε log P0
n(ε)|ε=0〉, where P0

n is the initial estimator of P0 and is consid-
ered fixed. Here D∗(P) is the efficient influence curve of Ψ at P, and we used the
notation 〈S 〉 for the linear span generated by the components of the function S of
O. Secondly, we determine the prior distribution on ε yielded by the prior on the
parameter ψ0. For this purpose we define a mapping fn : ε → Ψ (P0

n(ε)). Once the
prior on ε is determined, its posterior can be computed and the mapping fn can be
used to map the posterior on ε into a posterior on ψ0.

Fluctuation model. We consider a normal working model for QY,n(ε) when Y is
continuous and a logit regression model when Y is binary. If Y is continuous, the
loss function −log QY,n(ε) corresponds with the squared error loss for the conditional
mean Q̄n(ε). As a consequence, the TMLE and the proposed targeted posterior dis-
tribution of ψ0 are not affected by the validity of this normal working model.

Consider an initial estimator P0
n of P0: estimators Q̄0

n and gn can be obtained
through standard procedures (e.g., logit or probit regression) or through more elab-
orated techniques, such as machine learning techniques. It is worth emphasizing that
the efficiency and consistency of the TMLE depend on the choice of those initial es-
timators, which must be as close as possible to the real Q̄(P0) and g0. To achieve
this goal, we encourage the use of the super learner. Let QW,n be an initial estimator
of QW (e.g., the empirical probability distribution of W). We fluctuate the initial es-
timator P0

n by finding a fluctuation of Q̄0
n and QW,n through ε, such that the score of

P0
n(ε) at ε = 0 equals the efficient influence curve of Ψ at P0

n, given by

D∗(P)(O) = (Y − Q̄(P)(A,W))
2A − 1

g(A | W)
+ Q̄(P)(1,W)− Q̄(P)(0,W)−Ψ (P). (28.4)

We use either a binomial working model (case Y binary) or a constant variance
normal working model (case Y continuous) for Q0

Y,n(ε). The fluctuations adopted
here are given by

m(Q̄0
n(ε)) = m(Q̄0

n) + εH∗1,

QW,n(ε) =
exp(εH∗2)

QW,n exp(εH∗2)
QW,n, (28.5)

where

H∗1(A,W) =
2A − 1

gn(A,W)
, (28.6)

H∗2(W) = Q̄(P0
n)(1,W) − Q̄(P0

n)(0,W) − Ψ (P0
n), (28.7)
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and m is the logit or identity link, depending on the type of outcome. It can be shown
that the model P0

n(ε) obtained by using these fluctuations has score D∗(P0
n) at ε = 0.

In contrast to the classic TMLE for this parameter, in which the fluctuations of Q̄0
n

and QW,n are done independently through ε1 and ε2, and the maximum likelihood
estimator of ε2 happens to be zero, here we fluctuate both Q̄0

n and QW,n through a
single ε. This is done in order to avoid dealing with a multivariate posterior dis-
tribution for ε∗ = (ε1, ε2)′. Ensuring that all the relevant parts of P0

n are fluctuated
so that d/dε log P0

n(ε)
∣∣∣
ε=0 = D∗(P0

n) results in a likelihood function with the right
spread, which will ultimately result in the right coverage of the credible intervals if
the initial estimator P0

n is consistent for P0.

Prior Distribution on ε. For notational convenience, let Q̄n,A(ε)(W) ≡ Q̄0
n(ε)(A,W).

The substitution estimator based on P0
n(ε) is given by

Ψ (P0
n(ε)) = QW,n(ε)[Q̄n,1(ε) − Q̄n,0(ε)] (28.8)

=

n∑
i=1

exp(εH∗2(Wi))QW,n(Wi)∑n
j=1 exp(εH∗2(Wj))QW,n(Wj)

[Q̄n,1(ε)(Wi) − Q̄n,0(ε)(Wi)].

From the Bayesian perspective, the prior knowledge of ψ0 can be incorporated into
the inference procedure through a prior distribution on the latter parameter ψ0 =

Ψ (P0) ∼ Π .
Let π be the density of Π . Note that the prior distribution of ψ0 defines a prior

distribution on ε through the mapping fn : ε → Ψ (P0
n(ε)). The fluctuation p0

n(ε)
must be chosen in a such way that this mapping is invertible. The prior on ε is given
by

π∗(ε) = π[Ψ (P0
n(ε))]J(ε),

where J(ε) is the Jacobian of the transformation, defined as

J(ε) =
∣∣∣∣∣ d
dε
Ψ (P0

n(ε))
∣∣∣∣∣ .

Based on (28.8), we obtain

d
dε
Ψ (P0

n(ε)) =
n∑

i=1

{d QW,n(ε)(Wi)
dε

(
Q̄n,1(ε)(Wi) − Q̄n,0(ε)(Wi)

)
+ QW,n(ε)(Wi)

d
dε

(
Q̄n,1(ε)(Wi) − Q̄n,0(ε)(Wi)

)}
, (28.9)

where
d QW,n(ε)(W)

dε
= QW,n(ε)(W)

[
H∗2(W) −

QW,n(H∗2 exp(εH∗2))
QW,n exp(εH∗2)

]
,

and QW,n(ε) is defined in (28.5). It can also be shown that

d Q̄n,A(ε)(W)
dε

= H∗1(A,W)
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and
d Q̄n,A(ε)(W)

dε
= H∗1(A,W) Q̄n,A(ε)(W)[1 − Q̄n,A(ε)(W)],

for continuous and binary outcomes, respectively.

Targeted posterior distribution. Operating from a Bayesian perspective under the
working fluctuation model, the conditional density of O1,O2, . . . ,On given ε equals∏n

i=1 P0
n(ε)(Oi). Therefore, in our parametric working model {P0

n(ε) : ε}, the poste-
rior density of ε is proportional to

π∗(ε)
n∏

i=1

P0
n(ε)(Oi). (28.10)

Taking into account the factorization of the likelihood given in (28.2), and noting
that the part of (28.10) corresponding to gn(A | W) does not involve ε, simulating
from (28.10) is equivalent to simulating from the density proportional to

π∗(ε)
n∏

i=1

QY,n(ε)(Yi | Ai,Wi)QW,n(ε)(Wi). (28.11)

Standard Bayesian techniques such as the Metropolis–Hastings algorithm can be
used to sample a large number of draws from this posterior distribution. Once a
posterior sample εi (i = 1, 2, . . . ,m) is drawn from (28.11), a sample from the tar-
geted posterior distribution of ψ0 can be computed as ψi = Ψ (P0

n(εi)). The estimated
posterior mean of ψ0 can be used as point estimator, and a 95% credible interval is
(ψ2.5, ψ97.5), where ψk is the kth percentile of this posterior distribution.

Note that simulating observations from this posterior distribution is just one pos-
sible way of computing the quantities of interest. Alternatively, one can use the
analytic formula of the posterior density of ε and the mapping fn to find the analyti-
cal form of the posterior distribution of ψ. Recall that fn is assumed to be invertible.
Note that ε = f −1

n (ψ). We have

P(ψ | O1, . . . ,On) ∝
∣∣∣∣∣d f −1

n (ψ)
dψ

∣∣∣∣∣π∗( f −1
n (ψ))×

n∏
i=1

QY,n( f −1
n (ψ))(Yi | Ai,Wi)QW,n( f −1

n (ψ))(Wi), (28.12)

where the constant of proportionality can be computed by using numerical integra-
tion. We can now calculate the value of the posterior distribution for any value ψ,
plot the posterior distribution, or use numerical integration to find the analytical
posterior mean or the posterior percentiles.

As a particular interesting case, the targeted posterior distribution when the
TMLE procedure is implemented, as in van der Laan and Rubin (2006, p. 21), is
presented in Appendix 2 of this chapter. In this posterior distribution, if the TMLE
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of P0 is used as initial estimator P0
n, the posterior mean is equal to

μψ0 |O =
w1ψn + w2μψ0

w1 + w2
,

where ψn is the TMLE, μψ0 is the prior mean, and w1 and w2 are weights given
in Appendix 2 of this chapter. It is important to note that w2/w1 → 0 when either
the sample size increases or the variance of the prior distribution is very large. This
means that in those situations the posterior mean reduces to the TMLE, acquiring
its double robustness and efficiency.

28.2 Convergence of Targeted Posterior Distribution

In standard Bayesian analysis, if X is a random variable distributed as the poste-
rior, and θn is the maximum likelihood estimator of the parameter of the distribution
of X, the variable

√
n(X−θn) can be shown to converge to a normal distribution with

mean zero, and variance given by the inverse of the Fisher information, whenever
the model is correct (Lindley 1980). This result is analogous to the central limit
theorem and is very useful in establishing the asymptotic properties of the Bayesian
point and interval estimators, such as their asymptotic bias and coverage probability.
It also implies that as the sample size increases, the information given by the prior is
neglected, and only the data are used to make inferences. An analogous result, pre-
sented in the next theorem, is valid in the case of the targeted posterior distribution
when the TMLE P∗n itself is used as initial estimator of P0.

Theorem 28.1. Let P∗n be the TMLE of P0, and let {P∗n(ε) : ε} ⊂ M be a parametric
fluctuation satisfying P∗n(0) = P∗n and d/dε log P∗n(ε)|ε=0 = D∗(P∗n), where D∗(P)
is the efficient influence curve of Ψ (P), defined in (28.4). Define the mapping f ∗n :
ε → Ψ (P∗n(ε)) to be invertible. Assume that there exists a distribution P∗ such that
P0[h(ψn, P∗n) − h(ψ0, P∗)]2 converges to zero, where

h(ψn, P∗n)(O) ≡
d2

dψ2 log p( f ∗−1
n (ψ))(O)

∣∣∣
ψ=ψn

and h(ψ0, P∗) is defined analogously. Assume that h(ψn, P∗n) − h(ψ0, P∗) falls in a
Glivenko–Cantelli class F . Define ψn = Ψ (P∗n) (i.e., ψn is the TMLE of ψ0). Note
that S (ψn) = 0, where

S (ψ) =
n∑

i=1

d
dψ

log P∗n( f −1
n (ψ))(Oi).

Assume that π(ψ) is a prior density on ψ0 such that π(ψ) > 0 for every possible value
of ψ. Let ψ̃n be a random variable with posterior density proportional to (28.12). The
sequence

√
n(ψ̃n − ψn) converges in distribution to T , where T ∼ N(0, σ2) and
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σ2 = −
⎛⎜⎜⎜⎜⎝P0

d2

dψ2
0

log P∗( f ∗−1(ψ0))
⎞⎟⎟⎟⎟⎠−1

=

[
P∗

(
σ2(P∗)
g2(P∗) + (Q̄∗1 − Q̄∗0 − Ψ (P∗))2

)]2

P0

(
σ2(P∗)
g2(P∗) + (Q̄∗1 − Q̄∗0 − Ψ (P∗))2

) ,
with σ2(P∗)(A,W) = VarP∗ (Y | A,W) and Q̄∗A(W) = Q̄(P∗)(A,W).

A proof is provided in Appendix 1 of this chapter. Since ψn is double robust, this
theorem teaches us that the targeted posterior distribution is also double robust in
the sense that it will be centered at ψ0 if either gn or Q̄∗n (as used by the TMLE P∗n)
is consistent. Another important consequence is that if the limit P∗ equals the true
P0, then the asymptotic variance of the posterior distribution is equal to

σ2 = P0

(
σ2(P0)
g2(P0)

+ (Q̄1(P0) − Q̄0(P0) − Ψ (P0))2
)
,

where Q̄A(P0) = Q̄(P0)(A,W). This asymptotic variance equals the variance of the
efficient influence curve D∗(P0) at P0, providing the analogue of the standard result
cited above (Lindley 1980). This means that asymptotic credible intervals are also
confidence intervals [i.e., they have coverage probability (1−α)]. A correction for
the cases in which P∗ � P0 will be provided in the next section.

28.3 Frequentist Properties of Targeted Posterior Distribution

Once the posterior sample ψi (i = 1, 2, . . . ,m) is obtained, point estimates and
(1 − α)100% credible intervals for ψ0 can be computed as ψ̄ = 1

m
∑m

i=1 ψi and
(ψ[m α2 ], ψ[m(1− α2 )]), where the limits of the interval are given by order statistics and
[ ] indicates rounding to the nearest integer. Recall that the TMLE is double robust
under certain conditions. Assume that those conditions and the conditions of Theo-
rem 28.1 hold. Then, we have that E(ψ̃n −ψ0) = E(ψ̃n −ψn)+ E(ψn −ψ0) converges
to zero. This means that the estimated posterior mean is also double robust.

As mentioned in the previous section, (1 − α)100% credible intervals only are
guaranteed to have (1 − α)100% asymptotic coverage if the initial estimator P0

n
converges to the true P0. We only wish to rely on the consistency of either gn or
Q̄n, so that the posterior mean is consistent (and asymptotically linear). We now
provide a correction factor that can be applied to the credible intervals so that they
preserve the desired (1 − α) asymptotic coverage when the TMLE is consistent and
asymptotically linear.

Under the assumptions for asymptotic linearity, the TMLE satisfies

ψn − ψ0 =
1
n

n∑
i=1

IC(Oi) + o
(

1
√

n

)
,
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where IC denotes the influence curve of ψn. Assume that the conditions of Theo-
rem 28.1 hold, so that

√
n(ψ̃n − ψn)→ N(0, σ2),
√

n(ψn − ψ0)→ N(0, σ2∗),

where σ2 is given in Theorem 28.1 and σ2∗ = varP∗ (IC(O)). Denote the β-percentile
of the distribution of ψ̃n with qβ. Then

qβ � ψn + zβ
σ
√

n
,

where zβ is the β-percentile of a standard normal distribution. This means that

P
[
(qβ, q1−β) � ψ0

]
� P

(
ψn − z1−β

σ
√

n
< ψ0 < ψn + z1−β

σ
√

n

)
= P

(
−z1−β

σ

σ∗
<

√
n(ψn − ψ0)
σ∗

< z1−β
σ

σ∗

)
.

Therefore, for the credible interval (qβ, q1−β) to have coverage probability (1 − α),
the value of β must be chosen such that

z1−β
σ

σ∗
= z1−α/2, (28.13)

hence

β = 1 −Φ−1
(
z1−α/2

σ∗

σ

)
,

where Φ is the N(0, 1) cumulative distribution function. Since P0 and P∗ are un-
known, the values of σ2 and σ2∗ cannot be computed explicitly. However, estimates
can be obtained by replacing P0 with Pn and P∗ with P0

n. The variance σ2∗ can
also be estimated by the empirical variance of the estimated influence curve values
ICn(Oi), i = 1, . . . , n.

28.4 Simulations

In order to explore additional frequentist properties of the targeted posterior distri-
bution, and, in particular, to compare the posterior mean of the targeted posterior
distribution with the TMLE itself, a simulation study was performed. We only con-
sidered the case where Y is binary. The data were generated based on the following
scheme:

1. Simulate W from N2

((
.5
2

)
,

(
2 .3
.3 .8

))
.
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ψ = − 0.1764

Fig. 28.1 Prior densities of ψ0

2. Given W = w, simulate A from a Bernoulli distribution with probability
expit (−0.2 + 0.1w1 − 0.2w2 + .05w1 × w2), where expit is the inverse of the
logit function.

3. Given W = w and A = a, draw Y from a Bernoulli distribution with probability
expit (−0.2 + 0.07a − 0.2w1 + 0.02w2 + 0.2a × w1 − 0.5a × w2 − 0.01w1 × w2 −
0.003a × w1 × w2).

This probability distribution yields a parameter value of ψ0 = −.1764. For each
of the sample sizes 30, 50, 100, 150, 200, and 250, 1000 data sets were generated.
We consider three different prior distributions on ψ0, all from the beta family in the
interval (−1, 1). The first one boils down to a uniform prior, while the second and
third ones have mean ψ0 and variances 0.1 and 0.25, respectively. The uniform prior
corresponds to the situation in which no prior information is available, and the other
two correspond to situations in which there are different levels of certainty about the
prior information. These three priors are plotted in Fig. 28.1.

Consider the following model:

W ∼ N2(μ, Σ); A | W ∼ Ber(expit (X′β1)); Y | A,W ∼ Ber(expit (M′β2)),

where X′ = (1,W1,W2,W1 × W2) and M′ = (X′, A, A × X′). Note that this model
contains the real data-generating distribution. A misspecified model (i.e., a model
that does not include true Q0) was also considered by not including interaction terms
in M′. The TMLE estimator based on these two models was used as initial estima-
tor P0

n, and the Metropolis–Hastings algorithm was used to draw 1000 observations
from the posterior distribution given by (28.11). A brief description of this algorithm
is presented in Appendix 3 of this chapter. The mean and variance of the posterior
distribution were computed numerically, and a normal distribution was used as pro-
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posal density for the Metropolis–Hastings algorithm. The average acceptance rate
of this procedure was 70%.

The estimated posterior mean was used as estimator of ψ0. Its variance and bias
were estimated for each sample size. The 2.5th and 97.5th percentiles of the poste-
rior sample were used as estimators of the limits of the 95% credible intervals; cor-
rected credible intervals based on (28.13) were also computed. The performance of
these intervals was assessed through their average length and coverage probability,
estimated by the percentage of times that the interval contained the true parameter
value ψ0. Bias, variance, coverage probability, and average length were also com-
puted for the TMLE and its confidence interval. The results are shown in Figs. 28.2
and 28.3.
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Fig. 28.2 Variance and bias of the posterior mean. (a) Variance (multiplied by n) for correctly
specified Q̄. (b) Bias for correctly specified Q̄. (c) Variance (multiplied by n) for misspecified Q̄.
(d) Bias for misspecified Q̄
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Fig. 28.3 Coverage probability and length of credible intervals. (a) Coverage probability for cor-
rectly specified Q̄0. (b) Length (multiplied by n) for correctly specified Q̄0. (c) Coverage probability
for misspecified Q̄0. (d) Length (multiplied by n) for misspecified Q̄0. (e) Coverage probability of
the corrected intervals. (f) Length (multiplied by n) of the corrected intervals
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As expected, the inclusion of additional unbiased information reduces the vari-
ance of the estimators for small sample sizes, causing a bigger impact when the
certainty about that additional knowledge is high. It is important to note that the
variance of the posterior mean seems to be unaffected by the misspecification of the
parametric model for Q̄0, though this simulation is not enough to believe that this
type of robustness applies in general. The mean of the targeted posterior distribu-
tion appears to be more biased than the TMLE, especially if Q̄0 is misspecified and
a uniform distribution is used as prior for ψ0. However, all the estimators appear to
be asymptotically unbiased.

Figure 28.3 shows the coverage probability and length of corrected and uncor-
rected credible intervals for cases in which the true and misspecified Q̄0 are used.
Although all the intervals have asymptotic correct coverage, credible intervals with
misspecified Q̄0 are somewhat conservative for some small sample sizes, having
wider lengths and a coverage probability that is barely greater than the prespeci-
fied level 95%. This means that the variance of the posterior distribution is larger
if Q̄0 is misspecified, thereby reflecting some kind of “inefficiency” of the posterior
distribution due to misspecification of Q̄0. The correction to the credible intervals
proposed in (28.13) operates, causing a slight and almost imperceptible decrease
in the coverage probability and length of the intervals for all sample sizes, thereby
providing an adjustment for the conservativeness of the intervals. The inclusion of
an unbiased prior with small variance results in a significant reduction in the length
of the credible intervals, especially for small sample sizes.

28.5 Discussion

A methodology to carry out targeted inference for an additive causal effect under
the Bayesian paradigm is now available. Prior information on the effect of a binary
treatment on an outcome can be directly used jointly with new data to update the
knowledge about such an effect. This update involves the computation of a targeted
posterior distribution of the parameter of interest whose mean has been found to be
asymptotically double robust in the same sense as the TMLE. It is a consistent esti-
mator of the parameter of interest if either the model for the conditional expectation
of the outcome or the treatment mechanism is correctly specified. The frequentist
can use the posterior mean as an estimator of the target parameter, thereby allowing
the incorporation of a prior distribution, while proceeding with frequentist statistical
inference.

The asymptotic variance of the targeted posterior distribution has been proven
to be equal to the variance under the true distribution P0 of the efficient influence
curve at P0 when the initial estimator of P0 is consistent. This implies, amongst
other characteristics, that credible intervals will also be frequentist confidence inter-
vals for the target parameter in the sense that their credibility level will also be equal
to their coverage probability. If consistency of the initial estimator is not a sensible
assumption, but credible intervals are desired to have a specified coverage probabil-
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ity, a simple adjustment has been provided that provides the desired coverage under
the assumption that the TMLE is asymptotically linear.

A simulation study showed that misspecification of the model for the expecta-
tion of the outcome leads to wider credible intervals. Moreover, it showed that in
the particular case studied (notably for binary outcome Y), the uncorrected credible
intervals based on misspecified Q̄0 also had the right asymptotic coverage probabil-
ity, suggesting the possibility that for some cases, even if P0

n is not consistent, (1−α)
credible intervals still have (1−α) coverage probability. Identification of those cases
is an interesting issue for future work. The simulation also showed that the credi-
ble intervals for a misspecified Q̄0 were conservative for small sample sizes. The
correction provided generated a slight correction of that conservativeness.

The methodology presented here is completely general, and is directly applicable
to allow the computation of targeted posterior distribution for any pathwise differ-
entiable parameter defined on any semiparametric model. Our formal asymptotic
results for the targeted posterior distribution can be straightforwardly generalized.
The targeted posterior distribution is defined by the TMLE, specifically, the loss
function and parametric submodel that defined the TMLE, and a prior distribution
on the target parameter. Future work in this area includes the determination of the
analytical form of targeted posterior distributions for other interesting parameters, as
well as simulations and formal theoretical studies that will provide a comprehensive
understanding of the frequentist properties of the targeted posterior distribution.

Appendix 1

Proof (Theorem 28.1). Let u∗n(ψ)(Oi) ≡ P∗n
(
f ∗−1
n (ψ)

)
(Oi), where f ∗n : ε → Ψ (P∗n(ε)).

Let u∗(ψ)(Oi) ≡ P∗
(
f ∗−1
n (ψ)

)
(Oi), for f ∗ : ε → Ψ (P∗(ε)). Let ψ̃n be a random

variable with distribution given by the targeted posterior distribution of ψ0:

π(ψ)
n∏

i=1

u∗n(ψ)(Oi),

and define Tn =
√

n(ψ̃n − ψn). The density of Tn is given by

pTn (t) ∝ π
(
ψn +

t
√

n

) n∏
i=1

u∗n

(
ψn +

t
√

n

)
(Oi).

We have that, for some positive constant cn independent of ψn and t,

log pTn (t) = log cn + log π
(
ψn +

t
√

n

)
+

n∑
i=1

log u∗n

(
ψn +

t
√

n

)
(Oi).

The first two terms behave for n large as a constant function in t. We will now study
the last term as a function in t for n large. A Taylor series expansion in t around zero



28 Targeted Bayesian Learning 489

yields the following asymptotic approximation for the last term:

n∑
i=1

log u∗n

(
ψn +

t
√

n

)
(Oi) =

R1
n + R2

n +
t2

2n

n∑
i=1

d2

dψ2 log u∗n(ψ)(Oi)
∣∣∣∣∣
ψ=ψn

+ R3
n, (28.14)

where

• R1
n =

∑n
i=1 log u∗n(ψn)(Oi) =

∑n
i=1 log P∗n(Oi) does not depend on t nor on ψn and

satisfies log cn + R1
n = log c′n for some constant c′n independent of t and ψn;

• R2
n = S (ψn) = 0 because

S (ψn) =
n∑

i=1

d
dψ

log P∗n( f ∗−1
n (ψ))(Oi)

∣∣∣∣∣
ψ=ψn

=
d

dψ
f ∗−1
n (ψ)

∣∣∣∣∣
ψ=ψn

n∑
i=1

d
dε

log P∗n(ε)(Oi)
∣∣∣∣∣
ε=0
= 0,

and εn = 0 is the maximum likelihood estimator of ε in the model {P∗n(ε) : ε};
• The remainder R3

n can be written as

t3

6
1

n3/2

n∑
i=1

d3

dψ3 log u∗n(ψ)(Oi)
∣∣∣∣∣
ψ=ψ1

,

for some ψ1 between zero and ψn, and is thus of order n−
1
2 . This shows that R3

n is
negligible compared with the other term in (28.14) which is of order 1.

Recall the definition of h(ψ, P) in the theorem, and note that

t2

2n

n∑
i=1

d2

dψ2 log u∗n(ψ)(Oi)
∣∣∣∣∣
ψ=ψn

=
t2

2
Pnh(ψn, P∗n).

Define hn = h(ψn, P∗n) and h0 = h(ψ0, P∗), and note that

Pnhn − P0h0 = (Pn − P0)h0 + (Pn − P0)(hn − h0) + P0(hn − h0).

The first term in this sum converges to zero by the law of large numbers, the second
term converges to zero because hn − h0 falls in a Glivenko–Cantelli class, and the
last term converges to zero because it is bounded by P0(hn − h0)2, which converges
to zero. This proves that

Pn
d2

dψ2 log u∗n(ψ)
∣∣∣∣∣
ψ=ψn

−→ P0
d2

dψ2 log u∗(ψ)
∣∣∣∣∣
ψ=ψ0

,
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which in turn proves that pTn (t) converges, up to a constant, to

exp
(
−

t2

2σ2

)
,

where

−σ2 =

(
P0

d2

dψ2 log P∗( f ∗−1(ψ))
∣∣∣∣∣
ψ=ψ0

)−1

.

This asymptotic variance satisfies:

−σ−2 = P0
d2

dψ2 log P∗( f ∗−1(ψ))
∣∣∣∣∣
ψ=ψ0

= P0

⎡⎢⎢⎢⎢⎢⎣ d2

dε2
log P∗(ε)

∣∣∣∣∣
ε=0

(
d

dψ
f ∗−1(ψ)

∣∣∣∣∣
ψ=ψ0

)2

+
d
dε

log P∗(ε)
∣∣∣∣∣
ε=0

d2

dψ2 f ∗−1(ψ)
∣∣∣∣∣
ψ=ψ0

⎤⎥⎥⎥⎥⎥⎦
= P0

⎡⎢⎢⎢⎢⎢⎣ d2

dε2
log P∗(ε)

∣∣∣∣∣
ε=0

(
d

dψ
f ∗−1(ψ)

∣∣∣∣∣
ψ=ψ0

)2⎤⎥⎥⎥⎥⎥⎦ ,
where d

dε log P∗(ε)
∣∣∣
ε=0 = 0 because PnD∗(P∗n) = 0 (a property of the frequentist

TMLE), and because of the convergence of Pn and P∗n to P0 and P∗, respectively.
Note that

−
d2

dε2
log P∗(ε)

∣∣∣∣∣
ε=0
=
σ2(P∗)
g2(P∗)

+ (Q̄∗1 − Q̄∗0 − Ψ (P∗))2,

where σ2(P∗)(A,W) = VarP∗ (Y | A,W) and Q̄∗A = Q̄(P∗)(A,W). On the other hand,
since Ψ is pathwise differentiable we know that

d
dε
Ψ (P∗(ε))

∣∣∣∣∣
ε=0
= P∗[D∗(P∗)s(P∗)],

where D∗(P∗) is the canonical gradient at P∗ and s(P∗) is the score of P∗(ε) at ε = 0,
which is precisely D∗(P∗). Therefore:(

d
dψ

f ∗−1(ψ)
∣∣∣∣∣
ψ=ψ0

)2

= (P∗D2(P∗))−2

=

[
P∗

(
σ2(P∗)
g2(P∗)

+ (Q̄∗1 − Q̄∗0 − Ψ (P∗))2
)]−2

,

and we conclude that

σ2 =

[
P∗

(
σ2(P∗)
g2(P∗) + (Q̄∗1 − Q̄∗0 − Ψ (P∗))2

)]2

P0

(
σ2(P∗)
g2(P∗) + (Q̄∗1 − Q̄∗0 − Ψ (P∗))2

) .
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Appendix 2

Posterior distribution if only Q̄ is fluctuated. If the outcome is continuous, we
can consider a linear fluctuation model:

Q̄0
n(ε) = Q̄0

n + εH
∗
1, (28.15)

where H∗1 is defined in (28.6). In this case, the mapping Ψ (P0
n(ε)) can be written as

Ψ (P0
n(ε)) =Pn

(
Q̄n,1 − Q̄n,0

)
+ εPn

(
H∗1,1 − H∗1,0

)
=Ψ

(
P0

n

)
+ εPn

(
H∗1,1 − H∗1,0

)
, (28.16)

where Qn,A(W) ≡ Q̄0
n(A,W) and H∗1,A(W) ≡ H∗1(A,W). The Jacobian of this trans-

formation is
J(ε) = |Pn(H∗1,1 − H∗1,0)|.

If a normal distribution with mean μψ0 and variance σ2
ψ0

is considered as prior on
ψ0, the prior distribution on ε is characterized by

π∗(ε) =
1
σψ0

φ

(
Ψ (P0

n(ε)) − μψ0

σψ0

)
|Pn(H∗1,1 − H∗1,0)|.

This implies that the prior on ε is a normal distribution with mean με and vari-
ance σ2

ε , where

με =
μψ0 − Ψ (P0

n)
Pn(H∗1,1 − H∗1,0)

and σε =
σψ0

|Pn(H∗1,1 − H∗1,0)|
.

Let us consider QY,n(ε)(Y | A,W) to be a normal distribution with mean Q̄0
n(A,W) +

εH∗1(A,W) and variance σ2(Q̄0
n)(A,W), and let σ2

Q̄0
n
≡ σ2(Q̄0

n). The part of the likeli-
hood corresponding to QY,n(ε)(Y | A,W) can be written as follows:

n∏
i=1

QY,n(ε)(Yi | Ai,Wi) ∝ exp

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝−nPn

(
Y − Q̄0

n − εH∗1
)2

σ2
Q̄0

n

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠ .
Thus, the posterior density of ε is

p(ε | O1, . . .On) ∝ exp

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝−nPn

(
Y − Q̄0

n − εH∗1
)2

2σ2
Q̄0

n

−
(ε − με )2

2σ2
ε

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
∝ exp

⎛⎜⎜⎜⎜⎜⎜⎝−ε2
⎛⎜⎜⎜⎜⎜⎜⎝nPn

H∗1
2

2σ2
Q̄0

n

+
1

2σ2
ε

⎞⎟⎟⎟⎟⎟⎟⎠ + ε
⎛⎜⎜⎜⎜⎜⎜⎝nPn

H∗1(Y − Q̄0
n)

σ2
Q̄0

n

+
με

σ2
ε

⎞⎟⎟⎟⎟⎟⎟⎠
⎞⎟⎟⎟⎟⎟⎟⎠ .

Now let
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σ2
ε|O =

⎛⎜⎜⎜⎜⎜⎜⎝nPn
H∗1

2

σ2
Q̄0

n

+
1
σ2
ε

⎞⎟⎟⎟⎟⎟⎟⎠−1

and με|O =

⎛⎜⎜⎜⎜⎜⎜⎝nPn
H∗1(Y − Q̄0

n)

σ2
Q̄0

n

+
με

σ2
ε

⎞⎟⎟⎟⎟⎟⎟⎠σ2
ε|O.

Then,

p(ε | O1, . . .On) ∝ exp

⎛⎜⎜⎜⎜⎜⎝− (ε − με |O)2

2σ2
ε|O

⎞⎟⎟⎟⎟⎟⎠ ,
which is the normal distribution with mean με|O and variance σ2

ε |O.
Note that the maximum likelihood estimator of ε in the model (28.15), under a

normal distribution, is given by

εn =

Pn
H∗1(Y−Q̄0

n)
σ2

Q̄0
n

Pn
H∗1

2

σ2
Q̄0

n

,

so that the posterior mean με|O is, as expected, a weighted average of the maximum
likelihood estimator εn and the prior mean με of ε.

The posterior distribution of ψ0 is also normal with mean

μψ0 |O = Ψ (P0
n) + με|OPn

(
H∗1,1 − H∗1,0

)
and variance

σ2
ψ0 |O = σ

2
ε|O

[
Pn

(
H∗1,1 − H∗1,0

)]2
.

By plugging in με|O and σ2
ε|O, and working out the algebraic details, we obtain:

μψ0 |O =
w1

[
Ψ (p0

n) + εnPn(H∗1,1 − H∗1,0)
]
+ w2μψ0

w1 + w2
=

w1ψ̂n + w2μψ0

w1 + w2
,

σ2
ψ0 |O =

w2

w1 + w2
σ2
ψ0
,

where

w1 = nPn
H∗1

2

σ2
Q0

and w2 =

[
Pn(H∗1,1 − H∗1,0)

]2

σ2
ψ0

.

Note the posterior mean of ψ0 is just a weighted average of the TMLE of ψ0 and its
prior mean. Also, if the variance of the prior is very large compared to [Pn(H∗1,1 −
H∗1,0)]2, the weight of the prior mean is very small, and the posterior mean of ψ0 is
just its TMLE.
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Appendix 3

The Metropolis–Hastings algorithm is a Markov chain Monte Carlo method for sam-
pling observations from a probability distribution whose analytic form is not easy
to handle. Assume that p(x) is the density from which observations are going to
be drawn. The Metropolis–Hastings algorithm requires only that a function propor-
tional to this density can be calculated. This is one of the most important aspects
of the algorithm, since the constants of proportionality that arise in Bayesian ap-
plications are usually very difficult to compute. The algorithm generates a chain
x1, x2, . . . , xn by using a proposal density q(x′, xi) at each step to generate a new
proposed observation, x′, that depends only on the previous state of the chain, xi.
This proposal is accepted as xi+1 if

α < min
{

p(x′)q(xi, x′)
p(xi)q(x′, xi)

, 1
}
,

where α is drawn from a uniform distribution in the interval (0, 1). If the proposal is
not accepted, the previous value is preserved in the chain, xi+1 = xi. For additional
references on the Metropolis–Hastings algorithm, we refer readers to Robert (2007),
p. 303.

For the sake of simulating observations from the targeted posterior distribution
of ε, a normal distribution was used as proposal density. The mean and variance
of the posterior were computed numerically and used as parameters of this normal
distribution. The starting value of the chain was set to zero. The acceptance rate was
computed as the proportion of times that the proposal was accepted.

The R function used to draw samples of size n from the posterior distribution of
ε is described below.

mh.epsilon <- function (n, posterior, e0, sd0){
n <- n + 1
e <- numeric(n)
e[1] <- e0
z <- rnorm(n-1)
for(i in 2:n){

cand <- z[i-1]*sd0 + e[i-1]
p <- (posterior(cand) * dnorm(e[i-1], mean = cand,

sd = sd0))/(posterior(e[i-1]) * dnorm(cand,
mean = e[i-1], sd = sd0))

pr <- min(p, 1)
e[i] <- sample(c(cand, e[i-1]), 1, prob = c(pr, 1-pr))

}
return(e[-1])}



Chapter 29

TMLE in Adaptive Group Sequential

Covariate-Adjusted RCTs

Antoine Chambaz, Mark J. van der Laan

This chapter is devoted to group sequential covariate-adjusted RCTs analyzed
through the prism of TMLE. By adaptive covariate-adjusted design we mean an
RCT group sequential design that allows the investigator to dynamically modify its
course through data-driven adjustment of the randomization probability based on
data accrued so far, without negatively impacting the statistical integrity of the trial.
Moreover, the patient’s baseline covariates may be taken into account for the ran-
dom treatment assignment. This definition is slightly adapted from Golub (2006). In
particular, we assume following the definition of prespecified sampling plans given
in Emerson (2006) that, prior to collection of the data, the trial protocol specifies
the parameter of scientific interest, the inferential method, and confidence level to
be used when constructing a confidence interval for the latter parameter.

Furthermore, we assume that the investigator specifies beforehand in the trial
protocol a criterion of special interest that yields a notion of optimal randomization
scheme that we therefore wish to target. For instance, the criterion could translate
the necessity to minimize the number of patients assigned to their corresponding
inferior treatment arm, subject to level and power constraints. Or the criterion could
translate the necessity that a result be available as quickly as possible, subject to
level and power constraints. The sole restriction on the criterion is that it must yield
an optimal randomization scheme that can be approximated from the data accrued
so far. The two examples above comply with this restriction.

We choose to consider specifically the second criterion cited above. Conse-
quently, the optimal randomization scheme is the so-called Neyman allocation,
which minimizes the asymptotic variance of the TMLE of the parameter of interest.
We emphasize that there is nothing special about targeting the Neyman allocation,
the whole methodology applying equally well to a large class of optimal random-
ization schemes derived from a variety of valid criteria.

By adaptive group sequential design we refer to the possibility of adjusting the
randomization scheme only by blocks of c patients, where c ≥ 1 is a prespecified
integer (the case where c = 1 corresponds to a fully sequential adaptive design).
The expression also refers to the fact that group sequential testing methods can be
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equally well applied on top of adaptive designs, an extension that we do not consider
here. Although all our results (and their proofs) still hold for any c ≥ 1, we consider
the case c = 1 in the theoretical part of the chapter for simplicity’s sake but the case
where c > 1 is considered in the simulation study.

The literature on adaptive designs is vast, and our review is not comprehensive.
The expression “adaptive design” has also been used in the literature for sequen-
tial testing and, in general, for designs that allow data-adaptive stopping times for
the whole study (or for certain treatment arms) which achieve the desired type I
and type II error requirements when testing a null hypothesis against its alternative.
Data-adaptive randomization schemes go back to the 1930s, and we refer the inter-
ested reader to Hu and Rosenberger (2006, Sect. 1.2), Jennison and Turnbull (2000,
Sect. 17.4), and Rosenberger (1996) for a comprehensive historical perspective.

Many articles have been devoted to the study of “response adaptive designs,” an
expression implicitly suggesting that those designs only depend on past responses
of previous patients and not on the corresponding covariates. We refer readers to
Hu and Rosenberger (2006) and Chambaz and van der Laan (2010) for a bibliog-
raphy on that topic. On the contrary, covariate-adjusted response-adaptive (CARA)
randomizations tackle the so-called issue of heterogeneity (i.e., the use of covariates
in adaptive designs) by dynamically calculating the allocation probabilities on the
basis of previous responses and current and past values of certain covariates. In this
view, this chapter studies a new type of CARA procedure. The interest in CARA
procedures is more recent, and there is a steadily growing number of articles dedi-
cated to their study, starting with Rosenberger et al. (2001) and Bandyopadhyay and
Biswas (2001), then Atkinson and Biswas (2005), Zhang et al. (2007), Zhang and
Hu (2009), and Shao et al. (2010), among others. The latter articles are typically
concerned with the convergence (almost sure and in law) of the allocation probabil-
ities vector and of the estimator of the parameter in a correctly specified parametric
model. The article by Shao et al. (2010) is devoted to the testing issue.

By contrast, the consistency and asymptotic normality results that we obtain here
are robust to model misspecification. Thus, they notably contribute significantly to
solving the question raised by the Food and Drug Administration (2006): “When is
it valid to modify randomization based on results, for example, in a combined phase
2/3 cancer trial?" Finally, this chapter mainly relies on Chambaz and van der Laan
(2010) and van der Laan (2008b), the latter technical report paving the way to robust
and more efficient estimation based on adaptive RCTs in a variety of other setting
(including the case that the outcome Y is a possibly censored time-to-event).

29.1 Statistical Framework

This chapter is devoted to the asymptotic study of adaptive group sequential designs
in the case of RCTs with covariate, binary treatment and a one-dimensional primary
outcome of interest. Thus, the experimental unit is O = (W, A, Y), where W ∈ W
consists of some baseline covariates, A ∈ A = {0, 1} denotes the assigned binary
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treatment, and Y ∈ Y is the primary outcome of interest. For example, Y can indi-
cate whether the treatment has been successful or not (Y = {0, 1}), or Y can count
the number of times an event of interest has occurred under the assigned treatment
during a period of follow-up (Y = N), or Y can measure a quantity of interest after
a given time has elapsed (Y = R). Although we will focus on the last case in this
chapter, the methodology applies equally well to each example cited above.

Let us denote by P0 the true distribution of the observed data structure O in the
population of interest. We see P0 as a specific element of the nonparametric set
M of all possible observed data distributions. Note that, in order to avoid some
technicalities, we assume (or rather impose) that all elements ofM are dominated
by a common measure. The parameter of scientific interest is the marginal effect of
treatment a = 1 relative to treatment a = 0 on the additive scale, or risk difference:
ψ0 = EP0 [EP0 (Y | A = 1,W) − EP0 (Y | A = 0,W)]. Of course, other choices such
as the log-relative risk (the counterpart of the risk difference on the multiplicative
scale) could be considered, and dealt with along the same lines. The risk difference
can be interpreted causally under certain assumptions.

For all P ∈ M, QW (W; P) = P(W), g(A | W; P) = P(A | W), and QY |A,W (O; P) =
P(Y | A,W). We use the alternative notation P = PQ,g with Q = Q(·; P) ≡ (QW (·; P),
QY |A,W (·; P)), and g = g(· | ·; P). Equivalently, PQ,g is the data-generating dis-
tribution such that Q(·; PQ,g) = Q and g(· | ·; PQ,g) = g. In particular, we de-
note Q0 = Q(·; P0) = (QW (·; P0),QY |A,W (·; P0)). We also introduce the notation
Q = {Q(·; P) : P ∈ M} for the nonparametric set of all possible values of Q, and
G = {g(· | ·; P) : P ∈ M} for the nonparametric set of all possible values of g.
Setting Q̄(A,W; P) = EP(Y | A,W) and Q̄0 = Q̄(·; P0) [with a slight abuse, we also
write sometimes Q̄(·; Q) instead of Q̄(·; PQ,g)], we define in greater generality

Ψ (P) = EP

(
Q̄(1,W; P) − Q̄(0,W; P)

)
over the whole setM, so that ψ0 equivalently can be written as ψ0 = Ψ (P0). This
notation also emphasizes the fact that Ψ (P) only depends on P through Q̄(·; P) and
QW (·; P), justifying the alternative notation Ψ (PQ,g) = Ψ (Q). The following propo-
sition summarizes the most fundamental properties enjoyed by Ψ .

Proposition 29.1. The functional Ψ is pathwise differentiable at every P ∈ M. The
efficient influence curve of Ψ at PQ,g ∈ M is characterized by

D∗(O; PQ,g) = D∗1(W; Q) + D∗2(O; PQ,g), where

D∗1(W; Q) = Q̄(1,W) − Q̄(0,W) − Ψ (Q), and

D∗2(O; PQ,g) =
2A − 1

g(A | W)
(Y − Q̄(A,W)).

The variance varPD∗(O; P)2is the lower bound of the asymptotic variance of any
regular estimator of Ψ (P) in the i.i.d. setting. Furthermore, even if Q � Q0,

EP0 D∗(O; PQ,g) = 0 implies Ψ (Q) = Ψ (Q0) (29.1)
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when g = g(· | ·; P0).

The implication (29.1) is the key to the robustness of the TMLE introduced and
studied in this chapter. It is another justification of our interest in the pathwise dif-
ferentiability of the functional Ψ and its efficient influence curve.

29.2 Data-Generating Mechanism

In order to formally describe the data-generating mechanism, we need to state a
starting assumption. During the course of a clinical trial, it is possible to recruit in-
dependently the patients from a stationary population. In the counterfactual frame-
work, this is equivalent to supposing that it is possible to sample as many inde-
pendent copies of the full-data structure as required. Let us denote the ith ob-
served data structure by Oi = (Wi, Ai, Yi). We also find it convenient to introduce
On = (O1, . . . ,On), and for every i = 0, . . . , n, On(i) = (O1, . . . ,Oi) [with the con-
vention O(0) = ∅].

By adjusting the randomization scheme as the data accrue, we mean that the nth
treatment assignment An is drawn from gn(· | Wn), where gn(· | W) is a conditional
distribution (or treatment mechanism) given the covariate W, which additionally
depends on past observations On−1. Since the sequence of treatment mechanisms
cannot reasonably grow in complexity as the sample size increases, we will only
consider data-adaptive treatment mechanisms such that gn(· | W) depends on On−1
only through a finite-dimensional summary measure Zn = φn(On−1), where the mea-
surable function φn maps On−1 onto R

d (where O is the set from which O takes its
values) for some fixed d ≥ 0 [d = 0 corresponds to the case where gn(· | W)
actually does not adapt]. For instance, Zn+1 = φn+1(On) ≡ (n−1 ∑n

i=1 YiI(Ai =

0), n−1 ∑n
i=1 YiI(Ai = 1)) characterizes a proper summary measure of the past, which

keeps track of the mean outcome in each treatment arm. Another sequence of map-
pings φn will be at the core of the adaptive methodology that we study in depth in
this chapter, see (29.4).

Formally, the data-generating mechanism is specified by the following factoriza-
tion of the likelihood of On:

n∏
i=1

(
QW (Wi; P0) × QY |A,W (Oi; P0)

)
×

n∏
i=1

gi(Ai | Wi),

which suggests the introduction of gn = (g1, . . . , gn), referred to as the design of the
study, and the expression “On is drawn from (Q0, gn).” Likewise, the likelihood of
On under (Q, gn) [where Q = (QW ,QY |A,W ) ∈ Q is a candidate value for Q0] is

n∏
i=1

(
QW (Wi) × QY |A,W (Oi)

)
×

n∏
i=1

gi(Ai | Wi),
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Fig. 29.1 A possible causal graph describing the data-generating mechanism

where we emphasize that the second factor is known. Thus we will refer with a
slight abuse of terminology to

∑n
i=1 log QW (Wi)+log QY |A,W (Oi) as the log-likelihood

of On under (Q, gn). Furthermore, given gn, we introduce the notation PQ0,gi f ≡
EPQ0 ,gi

( f (Oi) | On(i − 1)) for any possibly vector-valued measurable f defined on O.
Another equivalent characterization of the data-generating mechanism involves

the causal graph shown in Fig. 29.1. It is seen again that Wn is drawn independently
from the past On−1. Secondly, An is a deterministic function of Wn, the summary
measure Zn (which depends on On−1), and a new independent source of randomness
[in other words, it is drawn conditionally on (Wn, Zn) and conditionally indepen-
dently of the past On−1]. Thirdly, Yn is a deterministic function of (An,Wn) and a
new independent source of randomness [it is drawn conditionally on (An,Wn) and
conditionally independently of the past On−1]. Then the next summary measure Zn+1
is obtained as a function of On−1 and On = (Wn, An, Yn), and so on.

Finally, it is interesting in practice to adapt the design group sequentially. This
can be simply formalized. For a given prespecified integer c ≥ 1 (c = 1 corresponds
to a fully sequential adaptive design), going forward c-group sequentially simply
amounts to imposing φ(r−1)c+1(O(r−1)c) = . . . = φrc(Orc−1) for all r ≥ 1. Then the
c treatment assignments A(r−1)c+1, . . . , Arc in the rth c-group are all drawn from the
same conditional distribution g(r−1)c(· | W). Yet, although all our results (and their
proofs) still hold for any c ≥ 1, we prefer to consider in the rest of this section and
in Sects. 29.4 and 29.5 the case where c = 1 for simplicity’s sake. In contrast, the
simulation study carried out in Sect. 29.6 involves some c > 1.

29.3 Optimal Design

One of the most important features of the adaptive group sequential design method-
ology is that it targets a user-supplied specific design of special interest. This spe-
cific design is generally an optimal design with respect to a criterion that translates
what the investigator is most concerned about. Specifically, one could be most con-
cerned with the well-being of the target population, wishing that a result be available
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as quickly as possible and aspiring therefore to the highest efficiency (i.e., the ability
to reach a conclusion as quickly as possible subject to level and power constraints).
Or one could be most concerned with the well-being of the subjects participating
in the clinical trial, therefore trying to minimize the number of patients assigned to
their corresponding inferior treatment arms, subject to level and power constraints.
Obviously, these are only two important examples from a large class of potentially
interesting criteria. The sole purpose of the criterion is to generate a random element
in G of the form gn = gZn , where Zn = φn(On−1) is a finite-dimensional summary
measure of On−1, and gn converges to a desired or optimal fixed treatment mecha-
nism. We decide to focus in this chapter on the first example, but it must be clear
that the methodology applies to a variety of other criteria. See van der Laan (2008b)
for other examples.

By Proposition 29.1, the asymptotic variance of any regular estimator of the risk
difference Ψ (Q0) has lower bound varPQ0 ,g

D∗(O; PQ0,g) if the estimator relies on data
sampled independently from PQ0,g. We have that

varPQ0 ,g
D∗(O; PQ0,g) = EQ0 (Q̄0(1,W) − Q̄0(0,W) − Ψ (Q0))2

+EQ0

(
σ2(Q0)(1,W)

g(1 | W)
+
σ2(Q0)(0,W)

g(0 | W)

)
,

where σ2(Q0)(A,W) denotes the conditional variance of Y given (A,W) under Q0.
We use the notation EQ0 above (for the expectation with respect to the marginal
distribution of W under P0) in order to emphasize the fact that the treatment mech-
anism g only appears in the second term of the right-hand side sum. Furthermore, it
holds P0–almost surely that

σ2(Q0)(1,W)
g(1 | W)

+
σ2(Q0)(0,W)

g(0 | W)
≥ (σ(Q0)(1,W) + σ(Q0)(0,W))2,

with equality if and only if

g(1 | W) =
σ(Q0)(1,W)

σ(Q0)(1,W) + σ(Q0)(0,W)
, (29.2)

P0–almost surely. Therefore, the following lower bound holds for all g ∈ G:

varPQ0 ,g
D∗(O; PQ0,g) ≥ EQ0 (Q̄0(1,W) − Q̄0(0,W) − Ψ (Q0))2

+ EQ0 (σ(Q0)(1,W) + σ(Q0)(0,W))2,

with equality if and only if g ∈ G is characterized by (29.2). This optimal design
is known in the literature as the Neyman allocation (Hu and Rosenberger 2006,
p. 13). This result makes clear that the most efficient treatment mechanism assigns
with higher probability a patient with covariate vector W to the treatment arm with
the largest variance of the outcome Y , regardless of the mean of the outcome (i.e.,
whether the arm is inferior or superior).
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Due to logistical reasons, it might be preferable to consider only treatment mech-
anisms that assign treatment in response to a subvector V of the baseline covariate
vector W. In addition, if W is complex, targeting the optimal Neyman allocation
might be too ambitious. Therefore, we will consider the important case where V is
a discrete covariate with finitely many values in the setV = {1, . . . , ν}. The covari-
ate V indicates subgroup membership for a collection of ν subgroups of interest.
We decide to restrict the search for an optimal design to the set G1 ⊂ G of those
treatment mechanisms that only depend on W through V . The same calculations as
above yield straightforwardly that, for all g ∈ G1

varPQ0 ,g
D∗(O; PQ0,g) ≥ EQ0 (Q̄0(1,W) − Q̄0(0,W) − Ψ (Q0))2

+ EQ0 (σ̄(Q0)(1,V) + σ̄(Q0)(0,V))2,

where σ̄2(Q0)(a,V) = EQ0 (σ2(Q0)(a,W) | V) for a ∈ A, with equality if and only if
g coincides with g∗(Q0), characterized by

g∗(Q0)(1|V) =
σ̄(Q0)(1,V)

σ̄(Q0)(1,V) + σ̄(Q0)(0,V)
,

P0–almost surely. Hereafter, we refer to g∗(Q0) as the optimal design.
Because g∗(Q0) is characterized as the minimizer over g ∈ G1 of the variance un-

der PQ0,g of the efficient influence curve at PQ0,g, we propose to construct gn+1 ∈ G1
as the minimizer over g ∈ G1 of an estimator of the latter variance based on past ob-
servations On. We proceed by recursion. We first set g1 = gb, the so-called balanced
treatment mechanism such that gb(1 | W) = 1/2 for all W ∈ W, and assume that
On has already been sampled from (Q0, gn), the sample size being large enough to
guarantee

∑n
i=1 I(Vi = v) > 0 for all v ∈ V (if n0 is the smallest sample size such

that the previous condition is met, then we set g1 = . . . = gn0 = gb).
The issue is now to construct gn+1. Let us assume for the time being that we

already know how to construct an estimator Qn of Q0 based on On [hence the es-
timators Q̄n = Q̄(·; Qn) of Q̄0 and Ψ (Qn) of Ψ (Q0) = ψ0]. The reasoning is not
circular by virtue of the chronological ordering as it is summarized in Fig. 29.1, for
instance. Then, for all g ∈ G1,

S n(g) =
1
n

n∑
i=1

(
D∗1(Wi; Qn)2 + 2D∗1(Wi; Qn)D∗2(Oi; PQn,g)

g(Ai | Vi)
gi(Ai | Vi)

+ D∗2(Oi; PQn,g)2 g(Ai | Vi)
gi(Ai | Vi)

)
−

⎛⎜⎜⎜⎜⎜⎝1
n

n∑
i=1

D∗1(Wi; Qn) + D∗2(Oi; PQn,g)
g(Ai | Vi)
gi(Ai | Vi)

⎞⎟⎟⎟⎟⎟⎠2

=
1
n

n∑
i=1

(Yi − Q̄n(Ai,Wi))2

g(Ai|Vi)gi(Ai|Vi)
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+

⎧⎪⎪⎨⎪⎪⎩1
n

n∑
i=1

D∗1(Wi; Qn)2 + 2D∗1(Wi; Qn)D∗2(Oi; PQn,gi )

−
⎛⎜⎜⎜⎜⎜⎝1

n

n∑
i=1

D∗1(Wi; Qn) + D∗2(Oi; PQn,gi )

⎞⎟⎟⎟⎟⎟⎠2⎫⎪⎪⎬⎪⎪⎭
estimates varPQ0 ,g

D∗(O; PQ0,g) (the weighting provides the adequate tilt of the empir-
ical distribution; it is not necessary to weight the terms corresponding to D∗1 because
they do not depend on the treatment mechanism). Now, only the first term in the
rightmost expression still depends on g. The same calculation as above straightfor-
wardly yields that S n(g) is minimized at gn+1 ∈ G1 characterized by

gn+1(1 | v) =
sv,n(1)

sv,n(1) + sv,n(0)

for all v ∈ V, where for each (v, a) ∈ V ×A

s2
v,n(a) =

1
n
∑n

i=1
(Yi−Q̄n(Ai,Wi))2

gi(Ai |Vi)
I((Vi, Ai) = (v, a))

1
n
∑n

i=1 I(Vi = v)
.

Yet, instead of considering the above characterization, we find it more convenient to
define

g∗n+1(1 | v) =
σv,n(1)

σv,n(1) + σv,n(0)
, (29.3)

for all v ∈ V, where for each (v, a) ∈ V ×A

σ2
v,n(a) =

1
n
∑n

i=1
(Yi−Q̄n(Ai,Wi))2

gi(Ai |Vi)
I((Vi, Ai) = (v, a))

1
n
∑n

i=1
I((Vi,Ai)=(v,a))

gi(a|v)

.

Note that s2
v,n(a) and σ2

v,n(a) share the same numerator, and that the different de-
nominators converge to the same limit. Substituting σ2

v,n(a) for s2
v,n(a) is convenient

because one naturally interprets the former as an estimator of the conditional vari-
ance of Y given (A,V) = (a, v) based on On, a fact that we use in Sect. 29.4.2.
Finally, we emphasize that g∗n+1 = gZn+1 for the summary measure of the past On

Zn+1 = φn+1(On) ≡ ((σ2
v,n(0), σ2

v,n(1)) : v ∈ V). (29.4)

The rigorous definition of the design g∗n = (g∗1, . . . , g
∗
n) follows by recursion,

but it is still subject to knowledge about how to construct an estimator Qn of Q0
based on On. Because this last missing piece of the formal definition of the adaptive
group sequential design data-generating mechanism is also the core of the TMLE
procedure, we address it in Sect. 29.4.
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29.4 TMLE Procedure

We assume hereafter that On has already been sampled from the (Q0, g
∗
n)-adaptive

sampling scheme. In this section, we construct an estimator Qn (actually denoted by
Q∗n) of Q0, thereby yielding the characterization of g∗n+1 and completing the formal
definition of the adaptive design g∗n. In particular, the next data structure On+1 can
be drawn from (Q0, g∗n+1), and it makes sense to undertake the asymptotic study of
the properties of the TMLE methodology based on adaptive group sequential sam-
pling. As in the i.i.d. framework, the TMLE procedure maps an initial substitution
estimator Ψ (Q0

n) of ψ0 into an update ψ∗n = Ψ (Q∗n) by fluctuating the initial estimate
Q0

n of Q0.

29.4.1 Initial ML-Based Substitution Estimator

The working model. In order to construct the initial estimate Q0
n of Q0, we consider

a working model Qw
n . With a slight abuse of notation, the elements of Qw

n are denoted
by (QW (·; Pn),QY |A,W (·; θ)) for some parameter θ ∈ Θ, where QW (·; Pn) is the em-
pirical marginal distribution of W. Specifically, the working model Qw

n is chosen in
such a way that

QY |A,W (O; θ) =
1√

2πσ2
V (A)

exp
⎧⎪⎨⎪⎩− (Y − m(A,W; βV ))2

2σ2
V (A)

⎫⎪⎬⎪⎭ .
This implies that for any Pθ ∈ M such that QY |A,W (·; Pθ) = QY |A,W (·; θ), the condi-
tional mean Q̄(A,W; Pθ), which we also denote by Q̄(A,W; θ), satisfies Q̄(A,W; θ) =
m(A,W; βV ), the right-hand side expression being a linear combination of variables
extracted from (A,W) and indexed by the regression vector βV (of dimension b).
Defining

θ(v) = (βv, σ
2
v(0), σ2

v(1))� ∈ Θv ⊂ R
b × R∗+ × R∗+ (29.5)

for each v ∈ V, the complete parameter is given by θ = (θ(1)�, . . . , θ(ν)�)� ∈ Θ,
where Θ =

∏ν
v=1 Θv. We impose the following conditions on the parameterization:

The parameter setΘ is compact. Furthermore, the linear parameterization is identifi-
able; for all v ∈ V, if m(a,w; βv) = m(a,w; β′v) for all a ∈ A and w ∈ W (compatible
with v), then necessarily βv = β

′
v.

Characterizing Q0
n. Let us set a reference fixed design gr ∈ G1. We now character-

ize Q0
n by letting Q0

n = (QW (·; Pn),QY |A,W (·; θn)), where

θn = arg max
θ∈Θ

n∑
i=1

log QY |A,W (Oi; θ)
gr(Ai | Vi)
g∗i (Ai | Vi)

(29.6)
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is a weighted maximum likelihood estimator with respect to the working model.
Thus, the vth component θn(v) of θn satisfies

θn(v) = arg min
θ(v)∈Θv

n∑
i=1

(
logσ2

v(Ai) +
(Yi − m(Ai,Wi; βv))2

σ2
v(Ai)

)
gr(Ai | Vi)
g∗i (Ai | Vi)

I(Vi = v)

for every v ∈ V. Note that this initial estimate Q0
n of Q0 yields the initial maximum-

likelihood-based substitution estimator Ψ (Q0
n) of ψ0:

Ψ (Q0
n) =

1
n

n∑
i=1

Q̄(1,Wi; θn) − Q̄(0,Wi; θn).

Studying Q0
n through θn. For simplicity, let us introduce, for all θ ∈ Θ, the ad-

ditional notation: �θ,0 = log QY |A,W (·; θ), �̇θ,0 = ∂
∂θ
�θ,0, and �̈θ,0 = ∂2

∂θ2
�θ,0. The first

asymptotic property of θn that we derive concerns its consistency (see Theorem 5 in
van der Laan 2008b).

Proposition 29.2. Assume that

A1. There exists a unique interior point θ0 ∈ Θ such that

θ0 = arg max
θ∈Θ

PQ0,gr�θ,0;

A2. The matrix −PQ0,gr �̈θ0,0 is positive definite.

Provided that O is a bounded set, θn consistently estimates θ0.

The limit in probability of θn has a nice interpretation in terms of projection
of QY |A,W (·; P0) onto {QY |A,W (·; θ) : θ ∈ Θ}. Preferring to discuss this issue in
terms of the data-generating distribution rather than conditional distribution, let us
set Qθ0 = (QW (·; P0),QY |A,W (·; θ0)) and assume that PQ0,gr log QY |A,W (·; P0) is well
defined (this weak assumption concerns Q0, not gr, and holds for instance when
| log QY |A,W (·; P0)| is bounded). Then A1 is equivalent to PQθ0 ,g

r being the unique
Kullback–Leibler projection of PQ0,gr onto the set

{P ∈ M : ∃ θ ∈ Θ s.t. QY |A,W (·; P) = QY |A,W (·; θ),
and QW (·; P) = QW (·; P0), g(· | ·; P) = gr}.

In addition to being consistent, θn actually satisfies a central limit theorem if sup-
plementary mild conditions are met. The latter central limit theorem is embedded in
a more general result that we state in Sect. 29.4.3; see Proposition 29.5.

The cornerstone of the proof of Proposition 29.2 is to interpret θn as the so-
lution in θ of the martingale estimating equation

∑n
i=1 D1(θ)(Oi, Zi) = 0, where

Zi is the finite-dimensional summary measure of past observation On(i − 1) such
that g∗i depends on On(i − 1) only through Zi (hence the notation g∗i = gZi ) and
D1(θ)(O, Z) = �̇θ,0(O)gr(A | V)/gZ(A | V) satisfies PQ0,g∗i D1(θ0) = 0 for all i ≤ n.



29 TMLE in Adaptive Group Sequential Covariate-Adjusted RCTs 505

By relying on a Kolmogorov strong law of large numbers for martingales (see The-
orem 8 in Chambaz and van der Laan 2010), one obtains that n−1 ∑n

i=1 PQ0,g∗i D1(θn)
converges to zero almost surely. This results in the convergence in probability of
θn to θ0 by a Taylor expansion of θ �→ PQ0,gr �̇θ,0 at θ0 (hence assumption A2). The
strong law of large numbers applies because the geometry of F = {D1(θ) : θ ∈ Θ} is
moderately complex [heuristically, F can be covered by finitely many ‖·‖∞-balls be-
cause Θ is a compact set, (O, Z) is bounded, and the mapping (o, z, θ) �→ D1(θ)(o, z)
is continuous; and the number of such balls of radius η needed to cover F does not
grow too fast as η goes to zero].

Furthermore, maximizing a weighted version of the log-likelihood is a techni-
cal twist that makes the theoretical study of the properties of θn easier. Indeed, the
unweighted maximum likelihood estimator tn = arg maxθ∈Θ

∑n
i=1 log QY |A,W (Oi; θ)

targets the parameter

Tḡn (Q0) = arg max
θ∈Θ

n∑
i=1

PQ0,g∗i log QY |A,W (Oi; θ) = arg max
θ∈Θ

PQ0,ḡn�θ,0,

where ḡn =
1
n
∑n

i=1 g∗i . Therefore, tn asymptotically targets the limit, if it exists,
of Tḡn (Q0). Assuming that ḡn converges itself to a fixed design g∞ ∈ G, then tn
asymptotically targets parameter Tg∞ (Q0). The latter parameter is very difficult to
interpret and to analyze as it depends directly and indirectly (through g∞) on Q0.

29.4.2 Convergence of the Adaptive Design

Consider the mapping G∗ from Θ to G1 [respectively equipped with the Euclidean
distance and, for instance, the distance d(g, g′) =

∑
v∈V |g(1 | v) − g′(1 | v)|] such

that, for any θ ∈ Θ, for any (a, v) ∈ A ×V

G∗(θ)(a | v) =
σv(a)

σv(1) + σv(0)
. (29.7)

Equation (29.7) characterizes G∗, which is obviously continuous. Since g∗n is adapted
in such a way that g∗n = G∗(θn), Proposition 29.2 and the continuous mapping theo-
rem (see Theorem 1.3.6 in van der Vaart and Wellner 1996) straightforwardly imply
the following result.

Proposition 29.3. Under the assumptions of Proposition 29.2, the adaptive design
g∗n converges in probability to the limit design G∗(θ0).

The convergence of the adaptive design g∗n is a crucial result. It is noteworthy that
the limit design G∗(θ0) equals the optimal design g∗(Q0) if the working model is cor-
rectly specified (which never happens in practical applications), but not necessarily
otherwise. Furthermore, the relationship g∗n = G∗(θn) also entails the possibility of
deriving the convergence in distribution of

√
n(g∗n −G∗(θ0)) to a centered Gaussian
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distribution with known variance by application of the delta method (G∗ is differen-
tiable) from a central limit theorem on θn (Proposition 29.5).

29.4.3 The TMLE

Fluctuating Q0
n. The second step of the TMLE procedure stretches the initial esti-

mate Ψ (Q0
n) in the direction of the parameter of interest, through a maximum like-

lihood step over a well-chosen fluctuation of Q0
n. The latter fluctuation of Q0

n is just
a one-dimensional parametric model {Q0

n(ε) : ε ∈ E} ⊂ Q indexed by the parameter
ε ∈ E, E ⊂ R being a bounded interval that contains a neighborhood of the origin.
Specifically, we set, for all ε ∈ E, Q0

n(ε) = (QW (·; Pn),QY |A,W (·; θn, ε)), where for
any θ ∈ Θ:

QY |A,W (O; θ, ε) =
1√

2πσ2
V (A)

exp
⎧⎪⎨⎪⎩− (Y − Q̄(A,W; θ) − εH∗(A,W; θ))2

2σ2
V (A)

⎫⎪⎬⎪⎭ , (29.8)

with
H∗(A,W; θ) =

2A − 1
G∗(θ)(A | V)

σ2
V (A).

In particular, the fluctuation goes through Q0
n at ε = 0 (i.e., Q0

n(0) = Q0
n). Let P0

n(ε) ∈
M be a data-generating distribution such that QY |A,W (·; P0

n(ε)) = QY |A,W (·; θn, ε).
The conditional mean Q̄(A,W; P0

n(ε)), which we also denote by Q̄(A,W; θn, ε), is
Q̄(A,W; θn, ε) = Q̄(A,W; θn) + εH∗(A,W; θn). Furthermore, the score at ε = 0 of
P0

n(ε) equals

∂
∂ε

log P0
n(ε)(O)

∣∣∣
ε=0 =

2A − 1
G∗(θn)(A | V)

(Y − Q̄(A,W; θn)) = D∗2(O; PQ0
n,G∗(θn)),

the second component of the efficient influence curve of Ψ at PQ0
n,G∗(θn) = PQ0

n,g∗n .
Recall that g∗n = G∗(θn).

Characterizing the TMLE Q∗n. We characterize the update Q∗n of Q0
n in the fluctu-

ation {Q0
n(ε) : ε ∈ E} by Q∗n = Q0

n(εn), where

εn = arg max
ε∈E

n∑
i=1

log QY |A,W (Oi; θn, ε)
g∗n(Ai | Vi)
g∗i (Ai | Vi)

(29.9)

is a weighted maximum likelihood estimator with respect to the fluctuation. It is
worth noting that εn is known in closed form (we assume, without serious loss of
generality, that E is large enough for the maximum to be achieved in its interior).
Denoting the vth component θn(v) of θn by (βv,n, σ

2
v,n(0), σ2

v,n(1))�, it holds that
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εn =

∑n
i=1(Yi − Q̄(Ai,Wi; θn)) 2Ai−1

g∗i (Ai |Vi)∑n
i=1

σ2
Vi ,n

(Ai)

g∗n(Ai |Vi)gi(Ai |Vi)

.

The notation Q∗n for this first update of Q0
n is a reference to the fact that the

TMLE procedure, which is in greater generality an iterative procedure, converges
here in one single step. Indeed, suppose that one fluctuates Q∗n as we fluctuate Q0

n
i.e., by introducing Q1

n(ε) = (QW (·; Pn),QY |A,W (·; θn, εn, ε)) with QY |A,W (O; θ, ε′, ε)
equal to the right-hand side of (29.8), where one substitutes Q̄(A,W; θ, ε′) for
Q̄(A,W; θ). In addition, suppose that one then defines the weighted maximum like-
lihood ε′n as the right-hand side of (29.9), where one substitutes QY |A,W (Oi; θn, εn, ε)
for QY |A,W (Oi; θn, ε). Then it follows that ε′n = 0 so that the “updated” Q∗n(ε′n) = Q∗n.
The updated estimator Q∗n of Q0 maps into the TMLE ψ∗n = Ψ (Q∗n) of the risk dif-
ference ψ0 = Ψ (Q0):

ψ∗n =
1
n

n∑
i=1

Q̄(1,Wi; θn, εn) − Q̄(0,Wi; θn, εn). (29.10)

The asymptotics of ψ∗n relies on a central limit theorem for (θn, εn), which we discuss
in Sect. 29.5.

29.5 Asymptotics

We now state and comment on a consistency result for the stacked estimator (θn, εn),
which complements Proposition 29.2 (see Theorem 8 in van der Laan 2008b). For
simplicity, let us generalize the notation �θ,0 introduced in Sect. 29.4.1 by setting, for
all (θ, ε) ∈ Θ×E,�θ,ε = log QY |A,W (·; θ, ε). Moreover, let us set, for all (θ, ε) ∈ Θ×E:
Qθ,ε = (QW (·; P0),QY |A,W (·; θ, ε)).

Proposition 29.4. Suppose that assumptions A1 and A2 from Proposition 29.2 hold.
In addition, assume that:

A3. There exists a unique interior point ε0 ∈ E such that

ε0 = arg max
ε∈E

PQ0,G∗(θ0)�θ0,ε .

(1) It holds that Ψ (Qθ0,ε0 ) = Ψ (Q0);
(2) Provided that O is a bounded set, (θn, εn) consistently estimates (θ0, ε0).

We already discussed the interpretation of the almost sure limit of θn in terms
of the Kullback-Leibler projection. Likewise, the almost sure limit ε0 of εn en-
joys such an interpretation. Let us assume that PQ0,G∗(θ0) log QY |A,W (·; P0) is well
defined [this weak assumption concerns Q0, not G∗(θ0), and holds for instance
when | log QY |A,W (·; P0)| is bounded]. Then A3 is equivalent to PQθ0 ,ε0 ,G

∗(θ0) being
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the unique the Kullback–Leibler projection of PQ0,G∗(θ0) onto the set {P ∈ M : ∃ ε ∈
E s.t. Q(·; P) = Qθ0,ε and g(· | ·; P) = G∗(θ0)}.

Of course, the most striking property that ε0 enjoys is (1): Even if Q̄0 �
{Q̄(·; θ, ε) : (θ, ε) ∈ Θ×E}, it holds that Ψ (Qθ0,ε0 ) = Ψ (Q0). This remarkable equality
and the convergence of (θn, εn) to (θ0, ε0) are evidently the keys to the consistency
of ψ∗n = Ψ (Q∗n). We will also investigate how the consistency result stated in Propo-
sition 29.4 translates into the consistency of the TMLE.

The proof of (1) in Proposition 29.4 is very simple and typical of robust statistical
studies. Indeed, 0 = PQ0,G∗(θ0)

∂
∂ε
�θ0,ε |ε=ε0 , while the latter expression simplifies as

follows:

EQ0,G∗(θ0)

(
2A − 1

G∗(θ0)(A | V)
(Y − Q̄(A,W; θ0, ε0))

)
= EQ0,G∗(θ0)

(
(Q̄0(1,W) − Q̄(1,W; θ0, ε0)) − (Q̄0(0,W) − Q̄(0,W; θ0, ε0))

)
= Ψ (Q0) − Ψ (Qθ0.ε0 ).

This proves (1).
The proof of (2) in Proposition 29.4 fundamentally relies on the fact that (θn, εn)

solves the martingale estimating equation
∑n

i=1 D(θ, ε)(Oi, Zi) = 0, where

D(θ, ε)(O, Z) =
1

gZ(A | V)

(
�̇�θ,0(O)gr(A | V), ∂

∂ε
�θ,ε(O)G∗(θ)(A | V)

)�
(29.11)

satisfies PQ0,g∗i D(θ0, ε0) = 0 for all i ≤ n. We have that

D(θ, ε)(O, Z) =

⎛⎜⎜⎜⎜⎜⎝D1(θ)�(O),
∂
∂ε
�θ,ε(O)G∗(θ)(A | V)

gZ(A | V)

⎞⎟⎟⎟⎟⎟⎠�
is an extension of D1(θ)(O), which we introduced earlier when summarizing the
proof of Proposition 29.2. Here, too, the proof involves the Kolmogorov strong law
of large numbers for martingales (Chambaz and van der Laan 2010, Theorem 8),
which yields that n−1 ∑n

i=1 PQ0,g∗i D(θn, εn) converges to zero almost surely. This re-
sults in the convergence in probability of (θn, εn) to (θ0, ε0) by a Taylor expansion
of (θ, ε) �→ (PQ0,gr �̇�θ,0, PQ0,G∗(θ)

∂
∂ε
�θ,ε) at (θ0, ε0). Note that assumption A3 is a clear

counterpart of assumption A1 from Proposition 29.2 but that there is no counterpart
of assumption A2 from Proposition 29.2 in Proposition 29.4. Indeed, it automati-
cally holds in the framework of the proposition that −PQ0,G∗(θ0)

∂2

∂ε2
�θ0,ε0 > 0, while

the proof requires that the latter quantity be different from zero.
We now state and comment on a central limit theorem for the stacked estimator

(θn, εn) (van der Laan 2008b, Theorem 9). Let us introduce, for all (θ, ε) ∈ Θ × E,

D̃(θ, ε)(O) = (�̇θ,0(O)gr(A | V), ∂
∂ε
�θ,ε(O)G∗(θ)(A | V)),

so that D(θ, ε)(O, Z), defined in (29.11), can be represented as D̃(θ, ε)(O)/gZ(A | V).
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Proposition 29.5. Suppose that assumptions A1, A2 and A3 from Propositions 29.2
and 29.4 hold. In addition, assume that:

A4. Under Q0, the outcome Y is not a deterministic function of (A,W).

Then the following asymptotic linear expansion holds:

√
n ((θn, εn) − (θ0, ε0)) = S −1

0
1
√

n

n∑
i=1

D(θ0, ε0)(Oi, Zi) + oP(1), (29.12)

where

S 0 = EQ0,G∗(θ0)

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
�̈θ0,0(O) gr(A|V)

G∗(θ0)(A|V) 0

[
∂2

∂θ∂ε
�θ,ε(O)G∗(θ)(A | V)

]∣∣∣∣�
(θ,ε)=(θ0,ε0)

1
G∗(θ0)(A|V)

∂2

∂ε2
�θ0,ε(O)|ε=ε0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
is an invertible matrix. Furthermore, (29.12) entails that

√
n((θn, εn) − (θ0, ε0)) con-

verges in distribution to the centered Gaussian distribution with covariance matrix
S −1

0 Σ0(S −1
0 )�, where

Σ0 = EQ0,G∗(θ0)

⎛⎜⎜⎜⎜⎝ D̃(θ0, ε0)D̃(θ0, ε0)�(O)
G∗(θ0)(A | V)2

⎞⎟⎟⎟⎟⎠
is a positive definite symmetric matrix. Moreover, S 0 is consistently estimated by

S n =
1
n

n∑
i=1

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
�̈θn ,0(Oi)

gr (Ai |Vi)
gZi (Ai |Vi)

0

[
∂2

∂θ∂ε
�θ,ε (Oi)G∗(θ)(Ai | Vi)

]∣∣∣∣�
(θ,ε)=(θn ,εn)

1
gZi (Ai |Vi)

∂2

∂ε2
�θn ,ε (Oi)|ε=εn gZi (Ai | Vi)

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ ,
and Σ0 is consistently estimated by

Σn =
1
n

n∑
i=1

D(θn, εn)D(θn, εn)�(Oi, Zi).

We will investigate how the above central limit theorem translates into a central
limit theorem for the TMLE. The proof of Proposition 29.5 still relies on the fact
that (θn, εn) solves the martingale estimating equation

∑n
i=1 D(θ, ε)(Oi, Zi) = 0. It

involves the Taylor expansion of D(θ, ε)(O, Z) at (θ0, ε0), a multidimensional cen-
tral limit theorem for martingales and again the Kolmogorov strong law of large
numbers (Chambaz and van der Laan 2010, Theorems 8 and 10) . Assumption A4
guarantees that Σ0 is positive definite.

TMLE is consistent and asymptotically Gaussian. In the first place, the TMLE ψ∗n
is robust: It is a consistent estimator even when the working model is misspecified.

Proposition 29.6. Suppose that assumptions A1, A2, and A3 from Propositions 29.2
and 29.4 hold. Then the TMLE ψ∗n consistently estimates the risk difference ψ0.
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If the design of the RCT was fixed (and, consequently, the n first observations were
i.i.d.), then the TMLE would be a robust estimator of ψ0: Even if the working model
is misspecified, then the TMLE still consistently estimates ψ0 because the treat-
ment mechanism is known (or can be consistently estimated, if one wants to gain
in efficiency). Thus, the robustness of the TMLE stated in Proposition 29.6 is the
expected counterpart of the TMLE’s robustness in the latter i.i.d. setting: Expected
because the TMLE solves a martingale estimating function that is unbiased for ψ0
at misspecified Q and correctly specified gi, i = 1, . . . , n.

The proof of Proposition 29.6 is twofold and will now be described. Setting
Q∼n = (QW (·; P0),QY |A,W (·; θn, εn)), a continuity argument, and the convergence in
probability of the stacked estimator (θn, εn) to (θ0, ε0) entail the convergence in prob-
ability of Ψ (Q∼n ) to Ψ (Qθ0,ε0 ) = ψ0 [see (1) in Proposition 29.4]. The conclusion fol-
lows because ψ∗n −Ψ (Q∼n ) converges almost surely to zero by the Glivenko–Cantelli
theorem [which, roughly speaking, guarantees that Pn f converges almost surely to
P0 f uniformly in f ∈ F = {Q̄(1, ·; θ, ε) − Q̄(0, ·; θ, ε) : (θ, ε) ∈ Θ × E} because the
set F is moderately complex].

The TMLE ψ∗n is also asymptotically linear and therefore satisfies a central limit
theorem. To see this, let us introduce the real-valued function φ on Θ × E such that
φ(θ, ε) = Ψ (Qθ,ε). Because function φ is differentiable on the interior of Θ × E, we
denote its gradient at (θ, ε) with φ′θ,ε . The latter gradient satisfies

φ′θ,ε = EQθ,ε ,G∗(θ)

{
D∗(O; PQθ,ε ,G∗(θ))

(
∂
∂θ
��θ,ε(O), ∂

∂ε
�θ,ε(O)

)�}
.

Note that the right-hand-side expression cannot be computed explicitly because the
marginal distribution QW (·; P0) is unknown. By the law of large numbers (indepen-
dent case), we can build an estimator φ′n of φ′θ0,ε0 as follows. For B a large number
(say B = 104), simulate B independent copies Õb of O from the data-generating
distribution PQ∼n ,G∗(θn), and compute

φ′n =
1
B

B∑
b=1

D∗(Ob; PQ∼n ,G∗(θn))
(
∂
∂θ
��θ,εn (Ob)|θ=θn , ∂∂ε �θn,ε(Ob)|ε=εn

)�
.

Proposition 29.7. Suppose that assumptions A1, A2, A3, and A4 from Proposi-
tions 29.2, 29.4, and 29.5 hold. Then the following asymptotic linear expansion
holds:

√
n(ψ∗n − ψ0) =

1
√

n

n∑
i=1

IC(Oi, Zi) + oP(1), (29.13)

where
IC(O, Z) = D∗1(W; Qθ0,ε0 ) + φ′�θ0,ε0 S −1

0 D(θ0, ε0)(O, Z). (29.14)

Furthermore, (29.13) entails that
√

n(ψ∗n − ψ0) converges in distribution to the cen-
tered Gaussian distribution with a variance consistently estimated by
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s2
n =

1
n

n∑
i=1

D∗1(Wi; Q∗n)2

+
2
n

n∑
i=1

D∗1(Wi; Q∗n)φ′�n S −1
n D(θn, εn)(Oi, Zi) + (φ′�n S −1

n )Σn(φ′�n S −1
n )�.

Proposition 29.7 is the backbone of the statistical analysis of adaptive group
sequential RCTs as constructed in Sect. 29.4. In particular, denoting the (1 − α)-
quantile of the standard normal distribution by ξ1−α, the proposition guarantees that
the asymptotic level of the confidence interval[

ψ∗n ±
sn√

n
ξ1−α/2

]
, (29.15)

for the risk difference ψ0 is (1 − α).
The proof of (29.13) relies again on writing

√
n(ψ∗n − ψ0) =

√
n(ψ∗n − Ψ (Q∼n )) +√

n(Ψ (Q∼n )−ψ0). It is easy to derive the asymptotic linear expansion of the first term
[the influence function is D∗1(·; Qθ0,ε0 )]. Moreover, the delta method and (29.12) pro-
vides the asymptotic linear expansion of the second term. Thus, the influence func-
tion IC is known in closed form. A central limit theorem for martingales (Chambaz
and van der Laan 2010, Theorem 9) applied to (29.13) yields the stated convergence
and validates the use of s2

n as an estimator of the asymptotic variance.

Extensions. We conjecture that the influence function IC computed at (O, Z),
(29.14), is equal to

D∗1(W; Qθ0,ε0 ) + D∗2(O; PQθ0 ,ε0 ,G
∗(θ0))

G∗(θ0)(A | V)
gZ(A | V)

.

This conjecture is backed by the simulations that we carry out and present in
Sect. 29.6. We will tackle the proof of the conjecture in future work. Let us assume
for the moment that the conjecture is true. Then the asymptotic linear expansion
(29.13) now implies that the asymptotic variance of

√
n(ψ∗n − ψ0) can be consis-

tently estimated by

s∗2n =
1
n

n∑
i=1

(
D∗1(Wi; Q∗n) + D∗2(Oi; PQ∗n,G∗(θn))

G∗(θn)(Ai | Vi)
gZi (Ai | Vi)

)2

,

another independent argument showing that s∗2n converges toward

varQ0,G∗(θ0)D∗(O; PQθ0 ,ε0 ,G
∗(θ0)),

i.e., the variance under the fixed design PQ0,G∗(θ0) of the efficient influence curve at
PQθ0 ,ε0 ,G

∗(θ0).
Furthermore, the most essential characteristic of the joint methodologies of de-

sign adaptation and TMLE is certainly the utmost importance of the role played by
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the likelihood. The targeted maximized log-likelihood of the data

n∑
i=1

(
log QW (Wi; Pn) + log QY |A,W (Oi; θn, εn)

)
,

provides us with a quantitative measure of the quality of the fit of the TLME of
Q0 (targeted toward the parameter of interest). It is therefore possible, for example,
to use that quantity for the sake of selection among different working models for
Q0. As with TMLE for i.i.d. data, we can use likelihood-based cross-validation to
select among more general initial estimators indexed by fine-tuning parameters. The
validity of such TMLEs for the group sequential adaptive designs as studied in this
chapter is outside the scope of this chapter.

29.6 Simulations

We characterize the component Q0 = Q(·; P0) of the true distribution P0 of the
data structure O = (W, A, Y) as follows. The baseline covariate W = (U,V) where
U is uniformly distributed over the unit interval [0, 1], and the subgroup mem-
bership covariate V ∈ V = {1, 2, 3} (hence ν = 3) satisfies P0(V = 1) =
1/2, P0(V = 2) = 1/3, and P0(V = 3) = 1/6. The conditional distribution of
Y given (A,W) is the gamma distribution characterized by the conditional mean
Q̄0(Y | A,W) = 2U2 + 2U + 1 + AV + (1 − A)/(1 + V) and the conditional
standard deviation

√
varP0 (Y | A,W) = U + A(1 + V) + (1 − A)/(1 + V). The

risk difference ψ0 = Ψ (Q0), our parameter of interest, is known in closed form
ψ0 = 91/72 � 1.264, as is the variance: vb(Q0) = varQ0,gb D∗(O; PQ0,gb ) of the ef-
ficient influence curve under balanced sampling. The numerical value of vb(Q0) is
reported in Table 29.1.

We target the design that (a) depends on the baseline covariate W = (U,V) only
through V (i.e., belongs to G1) and (b) minimizes the variance of the efficient influ-
ence curve of the parameter of interest Ψ . The latter treatment mechanism g∗(Q0)
and optimal efficient asymptotic variance v∗(Q0) = varQ0,g∗(Q0)D∗(O; PQ0,g∗(Q0)) are
also known in closed form, and numerical values are reported in Table 29.1.

Table 29.1 Numerical values of the allocation probabilities and variance of the efficient influence
curve. The ratio of the variances of the efficient influence curve under targeted optimal and bal-
anced sampling schemes satisfies R(Q0) = v∗(Q0)/vb(Q0) � 0.762

Sampling scheme (Q0, g) Allocation probabilities Variance
g(1 | v = 1) g(1 | v = 2) g(1 | v = 3) varQ0 ,gD∗(O; PQ0 ,g)

(Q0, gb)-balanced 1/2 1/2 1/2 23.864
(Q0, g∗(Q0))-optimal 0.707 0.799 0.849 18.181
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Let n = (100, 250, 500, 750, 1000, 2500, 5000) be a sequence of sample sizes.
We estimate M = 1000 times the risk difference ψ0 = Ψ (Q0) based on Om

n7
(ni), m =

1, . . . ,M, i = 1, . . . , 7, under i.i.d. (Q0, gb)-balanced sampling, i.i.d. (Q0, g∗(Q0))-
optimal sampling, and (Q0, g

∗
n7

)-adaptive sampling. Finally, we emphasize that the
data structure O = (W, A, Y) is not bounded, whereas O is assumed bounded in
Propositions 29.2–29.7.

For each v ∈ V, let us denote θ(v) = (βv, σ
2
v(0), σ2

v(1))� ∈ Θv, where Θv ⊂
R

3 × R
∗
+ × R

∗
+ is compact, and βv = (βv,1, βv,2, βv,3) [b = 3 in (29.5)] is the vector

of regression coefficients. Let θ = (θ�1 , θ
�
2 , θ

�
3 )� ∈ Θ = Θ1 × Θ2 × Θ3. Following

the description in Sect. 29.4.1, the working model Qw
n that the TMLE methodology

relieson is characterized by the conditional likelihood of Y given (A,W):

QY |A,W (O; θ) =
1√

2πσ2
V (A)

exp
⎧⎪⎨⎪⎩− (Y − m(A,W; βV ))2

2σ2
V (A)

⎫⎪⎬⎪⎭ ,
where the conditional mean Q̄(Y; A,W; θ) of Y given (A,W) is modeled as

Q̄(Y; A = a,W = w; θ) = m(a,w; βv) = βv,1 + βv,2u + βv,3a,

for all a ∈ A and w = (u, v) ∈ W = R × V. As required, the parameterization
condition is met. Obviously, the working model is heavily misspecified: a Gaussian
conditional likelihood is used instead of a gamma conditional likelihood, and the
parametric forms of the conditional expectation and variance are wrong, too.

Regarding the choice of a reference fixed design gr ∈ G1 (Sect. 29.4.1), we
select gr = gb, the balanced design. The parameter θ0 only depends on Q0 and the
working model, but its estimator θn depends on gr, which may negatively affect its
performance. Therefore, we propose to dilute the impact of the choice of gr as an
initial reference design as follows. For a given sample size n, we first compute a
first estimate θ1n of θ0 as in (29.6) but with �n/4� (the smallest integer not smaller
than n/4) substituted for n in the sum. Then θn is computed as in (29.6), but this time
with G∗(θ1n)(Ai|Vi) substituted for gr(Ai|Vi). The proofs can be adapted to incorporate
this modification of the procedure. We refer the interested reader to van der Laan
(2008b, Section 8.5).

We update the design each time c = 25 new observations are sampled. In addi-
tion, the first update only occurs when there are at least 5 completed observations
in each treatment arm and for all V-strata. Thus, the minimal sample size at the
first update is 30, and it can be shown that, under the balanced design, the expected
sample size at the first sample size at which there are at least 5 observations in
each arm equals 75. Finally, as a precautionary measure, we systematically apply a
thresholding to the updated treatment mechanism: Using the notation of Sect. 29.4,
we substitute max{δ,min{1 − δ, g∗i (Ai | Vi)}} to g∗i (Ai | Vi) in all computations. We
arbitrarily choose δ = 0.01.

We now invoke the central limit theorem stated in Proposition 29.7 to construct
confidence intervals for the risk difference. Let us introduce, for all types of sam-
pling and each sample size ni, the confidence intervals
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Ini,m =

⎡⎢⎢⎢⎢⎢⎢⎢⎣ψ∗ni
(Om

n7
(ni)) ±

√
vni (O

m
n7 (ni))
ni

ξ1−α/2

⎤⎥⎥⎥⎥⎥⎥⎥⎦ , m = 1, . . . ,M,

where the definition of the variance estimator vn(Om
n7

(n)) based on the n first obser-
vations Om

n7
(n) depends on the sampling scheme. Under i.i.d. (Q0, gb)-balanced sam-

pling, vn(Om
n7

(n)) is the estimator of the asymptotic variance of the TMLE Ψ (Q∗n,iid):

vn(Om
n7

(n)) =
1
n

n∑
i=1

D∗(Om
i ; PQ∗n,iid,g

b )2. (29.16)

Under i.i.d. (Q0, g∗(Q0))-optimal sampling, vn(Om
n7

(n)) is defined as in (29.16), re-
placing gb with g∗(Q0). Lastly, under (Q0, g

∗
n)-adaptive sampling, vn(Om

n7
(n)) =

s∗2n (Om
n7

(n)), the estimator of the conjectured asymptotic variance of
√

n(ψ∗n(Om
n7

(n))−
ψ0) computed on the n first observations Om

n7
(n). We are interested in the empirical

coverage (reported in Table 29.2, top rows) cni = 1/M
∑M

m=1 I(ψ0 ∈ Ini,m) guaran-
teed for each sampling scheme and every i = 1, . . . , 7 by {Ini,m : m = 1, . . . ,M}.
The rescaled empirical coverage proportions Mcni should have a binomial distribu-
tion with parameter (M, 1−a) and a = α for every i = 1, . . . , 7. This property can
be tested in terms of a standard binomial test, the alternative hypothesis stating that
a > α. This results in a collection of seven p-values for each sampling scheme, as
reported in Table 29.2 (bottom rows).

Considering each sampling scheme (i.e., each row of Table 29.2) separately, we
conclude that the (1−α)-coverage cannot be declared defective under i.i.d. (Q0, gb)-
balanced sampling for any sample size ni ≥ n3 = 500, i.i.d. (Q0, g∗(Q0))-optimal
sampling for any sample size ni ≥ n2 = 250, and (Q0, g

∗
n7

)-adaptive sampling for any
sample size ni ≥ n1 = 100, adjusting for multiple testing in terms of the Benjamini–
Yekutieli procedure for controlling the false discovery rate at level 5%.

This is a remarkable result that not only validates the theory but also provides
us with insight into the finite sample properties of the TMLE procedure based on
adaptive sampling. The fact that the TMLE procedure behaves better under an adap-
tive sampling scheme than under balanced i.i.d. sampling scheme at sample size
n1 = 100 may not be due to mere chance only. Although the TMLE procedure based

Table 29.2 Checking the validity of the coverage of our simulated confidence intervals, values cni

(top row), p-values (bottom row, between parentheses)

Sampling scheme Sample size
n1 n2 n3 n4 n5 n6 n7

i.i.d. (Q0, gb)-balanced 0.913 0.925 0.939 0.934 0.945 0.940 0.946
(p < 0.001) (p < 0.001) (0.067) (0.015) (0.253) (0.087) (0.300)

i.i.d. (Q0, g∗(Q0))-optimal 0.894 0.941 0.940 0.953 0.954 0.947 0.947
(p < 0.001) (0.111) (0.087) (0.688) (0.739) (0.351) (0.351)

adaptive (Q0, g
∗
n7

) 0.934 0.939 0.956 0.945 0.943 0.933 0.952
(0.015) (0.067) (0.827) (0.253) (0.172) (0.011) (0.634)
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on an adaptive sampling scheme is initiated under the balanced sampling scheme
(so that each stratum consists at the beginning of comparable numbers of patients
assigned to each treatment arm, allowing one to estimate, at least roughly, the re-
quired parameters), it starts deviating from it [as soon as every (A,V)-stratum counts
5 patients)] each time 25 new observations are accrued. The poor performance of
the TMLE procedure based on an optimal i.i.d. sampling scheme at sample size
n1 is certainly due to the fact that, by starting directly from the optimal sampling
scheme (a choice we would not recommend in practice), too few patients from stra-
tum V = 3 are assigned to treatment arm A = 0 among the n1 first subjects. At
larger sample sizes, the TMLE procedure performs equally well under an adaptive
sampling scheme and under both i.i.d. schemes in terms of coverage.

Now that we know that the TMLE-based confidence intervals based on (Q0, g
∗
n)-

adaptive sampling are valid confidence regions, it is of interest to compare the
widths of the latter adaptive-sampling (Q0, g

∗
n)-confidence intervals with their coun-

terparts obtained under i.i.d. (Q0, gb)-balanced or (Q0, g∗(Q0)) optimal sampling
schemes. For this purpose, we compare, for each sample size ni, the empirical dis-
tribution of {

√
vn(Om

n7 (ni)) : m = 1, . . . ,M} as in (29.16) [i.e., the empirical distri-
bution of width of the TMLE-based confidence intervals at sample size ni obtained
under i.i.d (Q0, gb)-balanced sampling, up to the factor 2ξ1−α/2/

√
ni] to the empir-

ical distribution of {s∗n(Om
n7

(ni)) : m = 1, . . . ,M} [i.e., the empirical distribution of
the width of the TMLE-based confidence intervals at sample size ni obtained under
(Q0, g

∗
n)-adaptive sampling, up to the factor 2ξ1−α/2/

√
ni] in terms of the two-sample

Kolmogorov–Smirnov test, where the alternative states that the confidence intervals
obtained under adaptive sampling are stochastically smaller than their counterparts
under i.i.d. balanced sampling. This results in seven p-values, all equal to zero,
which we nonetheless report in Table 29.3 (bottom row). In order to get a sense of
how much narrower the confidence intervals obtained under adaptive sampling are,
we also compute and report in Table 29.3 (top row) the ratios of empirical average
widths:

1
M

∑M
m=1 s∗n(Om

n7
(ni))

1
M

∑M
m=1

√
vn(Om

n7 (ni))
, (29.17)

for each sample size ni. Informally, this shows a 12% gain in width.
On the other hand, we also compare, for each sample size ni, the empirical distri-

bution of {
√

vn(Om
n7 (ni)) : m = 1, . . . ,M}, as in (29.16), but replacing gb by g∗(Q0)

[i.e., the empirical distribution of width of the TMLE-based confidence intervals at
sample size ni obtained under i.i.d. (Q0, g∗(Q0))-optimal sampling, up to the factor
2ξ1−α/2/

√
ni] to the empirical distribution of {s∗n(Om

n7
(ni)) : m = 1, . . . ,M} [i.e., the

empirical distribution of the width of the TMLE-based confidence intervals at sam-
ple size ni obtained under (Q0, g

∗
n)-adaptive sampling, up to the factor 2ξ1−α/2/

√
ni]

in terms of the two-sample Kolmogorov–Smirnov test, the alternative stating that
the confidence intervals obtained under adaptive sampling are stochastically larger
than their counterparts under i.i.d. optimal sampling. This results in seven p-values
that we report in Table 29.3 (bottom row). In order to get a sense of how similar the
confidence intervals obtained under adaptive and i.i.d. optimal sampling schemes
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Table 29.3 Comparing the width of our confidence intervals with the ratios of average widths as
defined in (29.17) and p-values (bottom rows, between parentheses)

Comparison Sample size
n1 n2 n3 n4 n5 n6 n7

(Q0, g
∗
n7

) vs. (Q0, gb) 0.856 0.871 0.879 0.880 0.878 0.877 0.876
(0) (0) (0) (0) (0) (0) (0)

(Q0, g
∗
n7

) vs. (Q0, g∗(Q0)) 0.962 0.977 0.992 0.995 0.997 1.000 1.000
(0.144) (0.236) (0.100) (0.060) (0.407) (0.236) (0.144)

are, we also compute and report for each sample size ni in Table 29.3 (top row) the
ratios of empirical average widths as in (29.17) replacing again gb by g∗(Q0) in the
definition (29.16) of vn(Om

n7
(n)). Informally, this shows that the confidence intervals

obtained under adaptive sampling are even slightly narrower in average than their
counterparts obtained under i.i.d. optimal sampling.

Illustration. So far we have been concerned with distributional results, and we now
investigate a particular arbitrarily selected simulated trajectory of the TMLE, the
confidence intervals, and the adaptive design g∗n as a function of sample size. Some
interesting features of the selected simulated trajectory are apparent in Fig. 29.2 and
Table 29.4. For instance, we can follow the convergence of the TMLE ψ∗n toward
the true risk difference ψ0 in the top plot of Fig. 29.2 and in the fifth column of
Table 29.4. Similarly, the middle plot of Fig. 29.2 and the second to fourth columns
of Table 29.4 illustrate the convergence of g∗n toward G∗(θ0), as stated in Proposi-
tion 29.3. What these plots and columns also teach us is that, in spite of the mis-
specified working model, the learned design G∗(θ0) seems very close to the optimal
treatment mechanism g∗(Q0) for the chosen simulation scheme and working model
used in our simulation study. Moreover, the last column of Table 29.4 illustrates how
the confidence intervals [ψ∗n ± s∗nξ1−0.05/2/

√
n] shrink around the true risk difference

ψ0 as the sample size increases.
Yet, the bottom plot of Fig. 29.2 may be the most interesting of the three. It ob-

viously illustrates the convergence of s∗2n toward varQ0,G∗(θ0)D∗(O; PQθ0 ,ε0 ,G
∗(θ0)), i.e.,

toward the variance under the fixed-design PQ0,G∗(θ0) of the efficient influence curve
at PQθ0 ,ε0 .G

∗(θ0). Hence, it also teaches us that the latter limit seems very close to the
optimal asymptotic variance v∗(Q0) for the chosen simulation scheme and working
model used in our simulation study. More importantly, s∗2n strikingly converges to
v∗(Q0) from below. This finite sample characteristic may reflect the fact that the true
finite sample variance of

√
n(ψ∗n − ψ0) might be lower than v∗(Q0). Studying this

issue in depth is certainly very delicate and goes beyond the scope of this chapter.
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Fig. 29.2 Illustrating the TMLE procedure under (Q0, g
∗
n)-adaptive sampling scheme. Top plot:

The sequence ψ∗n(O1
n7

(n)), horizontal gray line indicates true value of risk difference ψ0. Mid-
dle plot: Three sequences g∗n(1 | 1) = G∗(θn(O1

n7
(n)))(1 | 1) (bottom curve), g∗n(1 | 2) =

G∗(θn(O1
n7

(n)))(1 | 2) (middle curve), and g∗n(1 | 3) = G∗(θn(O1
n7

(n)))(1 | 3) (top curve). The
three horizontal gray lines indicate the optimal allocation probabilities g∗(Q0)(1 | 1) (bottom line),
g∗(Q0)(1 | 2) (middle line), and g∗(Q0)(1 | 3) (top line). Bottom plot: The sequence s∗2n of esti-
mated asymptotic variance of

√
n(ψ∗n − ψ0), horizontal gray line indicates the value of the optimal

variance v∗(Q0). (The x-axis is on a logarithmic scale for all plots)

Table 29.4 Simulation results of the TMLE procedure under a (Q0, g
∗
n)-adaptive sampling scheme

Sample size Allocation probabilities TMLE confidence interval
n g∗n(1 | 1) g∗n(1 | 2) g∗n(1 | 3) ψ∗n (ψ∗n ± s∗nξ1−0.05/2/

√
n)

n1 0.589 0.764 0.766 1.252 (0.722,1.783)
n2 0.624 0.775 0.707 1.388 (0.974,1.802)
n3 0.679 0.767 0.795 1.361 (1.037,1.685)
n4 0.677 0.757 0.813 1.341 (1.068,1.615)
n5 0.670 0.760 0.806 1.250 (1.012,1.488)
n6 0.677 0.788 0.835 1.288 (1.126,1.451)
n7 0.694 0.793 0.834 1.273 (1.157,1.389)
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Concluding Remarks

We developed the TMLE in group sequential adaptive designs for the data structure
O = (W, A, Y). This generalizes the TMLE for the i.i.d. design for this data struc-
ture O as covered in depth by the first part of this book. In addition, we showed
that targeted learning goes beyond targeted estimation and starts with the choice of
design. Our targeted adaptive designs combined with the TMLE provides a fully
targeted methodology, including design, for statistical inference with respect to a
causal effect of interest. In the previous two chapters, we demonstrated (1) how to
fully integrate the state of the art in machine learning while fully preserving the
CLT for statistical inference and (2) the application of TMLE for the purpose of ob-
taining a targeted posterior distribution of the target parameter of interest, thereby
improving on the current standard in Bayesian learning.

This book demonstrated that targeted learning with TMLE represents a unified
optimal approach for learning from data that can be represented as realizations
of n i.i.d. random variables. However, these last three chapters provide insight
into the enormous reach of targeted learning, covering Bayesian learning, in-
tegrating the most adaptive machine learning algorithms, targeted designs,
and statistical inference for targeted adaptive designs that generate dependent
data. Further exciting research in these areas is needed, but it appears that tar-
geted learning based on super learning and TMLE provides a road map for
developing optimal tools to attack upcoming statistical challenges.
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Appendix A

Foundations of TMLE

A.1 Asymptotic Linearity: The Functional Delta Method

Summary. An estimator of a parameter is a mapping from the data set to the
parameter space. Estimators that are empirical means of a function of the unit
data structure are asymptotically consistent and normally distributed due to
the CLT. Such estimators are called linear in the empirical probability dis-
tribution. Most estimators are not linear, but many are approximately linear
in the sense that they are linear up to a negligible (in probability) remainder
term. One states that the estimator is asymptotically linear, and the relevant
function of the unit data structure, centered to have mean zero, is called the
influence curve of the estimator. How does one prove that an estimator is
asymptotically linear? One key step is to realize that an estimator is a map-
ping from a possibly very large collection of empirical means of functions of
the unit data structure into the parameter space. Such a collection of empirical
means is called an empirical process whose behavior with respect to uniform
consistency and the uniform CLT is established in empirical process theory.
In this section we present succinctly that (1) a uniform central limit theorem
for the vector of empirical means, combined with (2) differentiability of the
estimator as a mapping from the vector of empirical means into the parame-
ter space yields the desired asymptotic linearity. This method for establishing
the asymptotic linearity and normality of the estimator is called the functional
delta method (van der Vaart and Wellner 1996; Gill 1989).

Consider a sample of n i.i.d. observations O1, . . . ,On from a probability distribution
P0 that is known to be an element of a statistical modelM. Let Ψ :M→ R

d be the
parameter of interest, and let ψ0 = Ψ (P0) be the true parameter value. We assume
that the parameter Ψ is pathwise differentiable so that it is reasonable to assume
asymptotically linear estimators of ψ0 exist.
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LetMNP denote a nonparametric model that includes the empirical distribution
Pn of O1, . . . ,On. Let Ψ̂ : MNP → R

d be an estimator of ψ0 that maps the empiri-
cal distribution Pn of O1, . . . ,On into an estimate Ψ̂ (Pn). First, we will assume that
Ψ̂ (P0) = ψ0 so that the estimator targets the desired target parameter ψ0. This esti-
mator is asymptotically linear at P0 if Ψ̂ (Pn)−Ψ̂ (P0) = (Pn−P0)IC(P0)+oP(1/

√
n)

for some mean zero function IC(P0) of O: i.e., P0IC(P0) = 0. This function IC(P0)
of O is called the influence curve of the estimator Ψ̂ . Notice that (Pn − P0)IC(P0) =
1
n
∑n

i=1 IC(P0)(Oi) is thus an empirical mean of mean zero i.i.d. random variables,
so that the CLT immediately implies that this empirical mean is asymptotically nor-
mally distributed.

Instead of simply representing an estimator as a function of Pn, we need to be
more specific by representing the estimator as a function of an empirical process
(Pn f : f ∈ F ) for some class F of functions of O; that is, the estimator maps a
“vector” of empirical means into the estimate. Some simple estimators, such as the
sample variance, are only a function of a few empirical means, but most estimators
are functions of an infinite collection of empirical means, such as whole cumulative
empirical distribution functions. Similarly, ψ0 = Ψ (P0 f : f ∈ F ) is a function of
the corresponding true means P0 = (P0 f : f ∈ F ). For example, in a nonparametric
modelM for a probability distribution P0 of a multivariate Euclidean valued random
variable O, ψ0 might depend on P0I(O ≤ o) for each possible o. We will let P0
denote the “vector” (P0 f : f ∈ F ) and Pn will denote the “vector” (Pn f : f ∈ F ).

Pn and P0 will be viewed as elements in a function space �∞(F ), where the
latter space consists of all functions G : F → R, endowed with the supremum
norm ||G||∞ = sup f∈F | G( f ) |. This allows us to write Ψ̂ : �∞(F ) → R

d and
Ψ : �∞(F ) → R

d. With this framework in mind, we ask ourselves: Why would
Ψ̂ (Pn) be an asymptotically linear estimator of Ψ̂ (P0)? To start with, why would
Ψ̂ (Pn) be a consistent estimator?

Formally, consistency is proven as follows. In the space �∞(F ), for a small
enough class of functions F , one has that ||Pn − P0||∞ = sup f∈F | (Pn − P0) f |
converges to 0 in probability (as n converges to infinity). Small enough is mea-
sured by the entropy function of the class of functions, which is defined as the log-
arithm of the covering number N(ε,F , ||·||) as a function of ε. The covering number
N(ε,F , ||·||) is defined as the number of balls/spheres of size ε, with respect to norm
||·||, one needs in order to cover this setF . Specifically, if supQ N(ε ||F||∞ ,F , L1(Q)) <
∞ for all ε > 0 (supremum is taken over all probability measures Q), where the
function F = sup f∈F f is called the envelope of this class F of functions, then
||Pn − P0||∞ converges to 0 in probability. Here L1(Q) is endowed with the norm
|| f || =

∫
| f | dQ. A class F that satisfies this entropy condition is called a

Glivenko–Cantelli class of functions. Suppose now that Ψ̂ : �∞(F ) → R
d is a

continuous function at P0: i.e., if a sequence Pn converges to P0 in �∞(F ) (i.e., with
respect to the supremum norm), then Ψ̂ (Pn) → Ψ̂ (P0). This continuity property
of the mapping Ψ̂ , and the stochastic convergence ||Pn − P0||∞ → 0 in probability,
implies now that Ψ̂ (Pn) converges to Ψ̂ (P0) in probability. This is implied by the
continuous mapping theorem. That is, continuity of the estimator as a mapping and
F ’s being a Glivenko–Cantelli class imply the consistency of the estimator. This
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typically represents the first important step proving that the estimator is also asymp-
totically linear, which is a stronger and much more useful statement than stating that
the estimator is consistent.

For the purpose of proving asymptotic linearity, we view Gn =
√

n(Pn − P0) as
a random variable in �∞(F ). In this space, for a small enough class of functions F ,
one can prove that the probability distribution of Gn converges to the distribution
of a Gaussian process G0, where this Gaussian process is identified by the fact
that for any finite set of functions ( f j : j), (G0 f j : j) has a multivariate normal
distribution with covariances Σ( fk, fl) = P0( fk − P0 fk)( fl − P0 fl). Specifically, if∫ ∞

0

√
supQ log N(ε,F , L2(Q))dε < ∞, then Gn converges in probability distribution

to G0 in �∞(F ), which is also called weak convergence and denoted by Gn ⇒d G0.
A class F for which Gn ⇒d G0, such as a class satisfying this entropy condition, is
called a P0–Donsker class. Thus, whether or not F is a Donsker class is again de-
termined by its entropy function. Establishing what classes of functions constitute a
Donsker class is of utmost importance and is covered by empirical process theory.
Beyond that the Donsker class property yields convergence of Gn to the Gaussian
process G0 in probability distribution; it also implies ‖ Pn − P0 ‖F= OP(1/

√
n),

and that, for any sequence fn ∈ F so that P0 f 2
n → 0 in probability, we have

(Pn − P0) fn = oP(1/
√

n). These types of properties are fundamental ingredients
in any study of the asymptotic behavior of an estimator.

Suppose now that Ψ̂ : �∞(F ) → R
d is a differentiable function at P0. Specifi-

cally, for any sequence Pn (which can occur as a random realization of the actual
empirical distribution Pn) satisfying that

√
n(Pn − P0) → G0 in �∞(F ), we have√

n(Ψ̂ (Pn) − Ψ̂ (P0)) → Ψ̂ ′(P0)(G0), where Ψ̂ ′(P0)(G0) =
∑

f∈F
d

dP0 f Ψ̂ (P0)G0( f ) is
the directional derivative of Ψ̂ at P0 applied to direction G0. Note that d

dP0 f Ψ̂ (P0) is
just the partial derivative of a function of a vector. This differentiability property of
the mapping Ψ̂ at P0, and the stochastic convergence Gn =

√
n(Pn − P0) ⇒d G0 in

distribution as random elements in �∞(F ), implies now that
√

n(Ψ̂ (Pn)−Ψ̂ (P0))⇒d

Ψ̂ ′(P0)(G0), i.e., it implies weak convergence of the standardized estimator to a
d-variate normally distributed random variable Z = Ψ̂ ′(P0)(G0). This result is im-
plied by the generalized continuous mapping theorem as presented in van der Vaart
and Wellner (1996), applied to the functions fn(Gn) = Ψ̂ (P0+1/

√
nGn)−Ψ̂ (P0) and

its limit f (G0) = Ψ̂ ′(P0)(G0). That is, an analytic differentiability property of the es-
timator as a mapping, and F ’s being a Donsker class imply the desired convergence
in distribution of the (mean and variance-)standardized estimator to a Gaussian pro-
cess. The differentiability condition and stochastic convergence of the standardized
empirical process Gn, also implies

√
n(Ψ̂ (Pn) − Ψ̂ (P0)) = Ψ̂ ′(P0)(Gn) + oP(1),

where, by linearity of the derivative Ψ̂ ′(P0) : �∞(F )→ R
d and (linearity of)

Gn =

(
1√
n

∑n
i=1 f (Oi) − P0 f : f ∈ F

)
,
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we have
Ψ̂ ′(P0)(Gn) = 1√

n

∑n
i=1 Ψ̂

′(P0)( f (Oi) − P0 f : f ).

Thus, Ψ̂ (Pn) is asymptotically linear with d-dimensional influence curve

IC(P0)(O) = Ψ̂ ′(P0)( f (O) − P0 f : f ) =
∑

f∈F
dΨ̂ (P0)
dP0 f ( f (O) − P0 f ).

Clearly, serious mathematics/functional analysis is needed to formally prove that
an estimator is asymptotically linear, but it is beautiful to see that some pure an-
alytical properties of the estimator as a mapping, and stochastic properties of the
empirical process as established in empirical process theory, translate into the de-
sired consistency and convergence in probability distribution of the standardized
estimator to a normal distribution, providing a firm basis for statistical inference. In
addition, the mathematics also results in the influence curve of the estimator, which
has great utility in robustness analysis and estimation of the asymptotic covariance
matrix of the standardized estimator

√
n(ψn − ψ0).

A.2 Influence Curve of an Asymptotically Linear Estimator

Summary. The functional delta method also provides us with the influence
curve of the estimator. The influence curve allows robustness analysis and
provides an estimator of the variance of the estimator, and thereby construc-
tion of confidence intervals and tests of null hypotheses of interest. It is a
function of the unit data structure, indexed by the true probability distribu-
tion. If the true probability distribution is such that the influence curve is a
nicely bounded function, then the estimator will generally behave well. This
insight allows one to inspect the influence curve for necessary practical as-
sumptions in order to have a reliable and robust estimator, without the need to
formally prove mathematical theorems. One can calculate the influence curve
of an estimator without formally analyzing the estimator; the influence curve
is expressed in terms of the derivative of the estimator viewed as a mapping
from a vector of means into the parameter space. That is, the influence curve
of the estimator is expressed as a linear combination of the influence curves
of the empirical means that were inputted into the estimator.

Why are we interested in calculation of the influence curve of an estimator? Given
the asymptotic linearity of the estimator, the influence curve allows one to identify
observations Oi that have a disproportional effect on the estimator. It teaches us
under what assumptions about P0 the influence curve IC(P0) is a nicely bounded
function of O (these will be required assumptions to claim asymptotic linearity),
and its covariance matrix equals the asymptotic covariance matrix of the estimator,
thereby providing confidence intervals and tests of null hypotheses of interest. This
will be discussed in more detail below. In addition, if one has the influence curve
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IC j of an estimator ψn j of a parameter ψ0 j, for each j = 1, . . . , d, then one also
obtains the influence curve of a function f (ψn j : j) as an estimator of f (ψ0 j : j): It is
given by

∑
j d/dψ0 j f (ψ0)IC j. That is, an influence curve of an estimator is a building

block for calculating the influence curve of an estimator that uses this estimator as
an ingredient.

Recall that P0 denotes the “vector” (P0 f : f ∈ F ) and Pn will denote the “vector”
(Pn f : f ∈ F ). Since Ψ̂ is a function of a vector, one needs to define directional
derivatives of this function in a direction defined by a “vector” h = (h( f ) : f ∈ F ).
This directional derivative is defined as

Ψ̂ ′(P0)(h) ≡ d
dε Ψ̂ (P0 + εh)

∣∣∣
ε=0 .

Since we can think of Ψ̂ as a function of a vector with components indexed by
f ∈ F , we can define a partial derivative with respect to to its f th component at
(P0 f : f ):

dΨ̂ (P0)
dP0 f =

d
dε Ψ̂ (P0 + εh f )

∣∣∣
ε=0 ,

with h f ( f ) = 1 and h f ( f1) = 0 for f1 � f . This partial derivative is d-dimensional,
one for each component of Ψ̂ . The directional derivative in the direction of h can
then be presented as a gradient (one for each of the d components of Ψ̂ ) applied to
vector h:

Ψ̂ ′(P0)(h) =
d
dε
Ψ̂ (P0 + εh)

∣∣∣∣∣
ε=0

=
∑
f∈F

dΨ̂ (P0)
dP0 f

h( f ).

The influence curve of Ψ̂ (Pn) under i.i.d. sampling from P0 can be represented as the
directional derivative in direction hO defined componentwise as hO( f ) = f (O)−P0 f .
Note that hO is the centered empirical process Pn=1 − P0 of one observation O, and
(Pn − P0)( f ) = 1/n

∑n
i=1 hOi ( f ). Thus, the influence curve can be defined as

IC(P0)(O) =
d
dε
Ψ̂ (P0 + εhO)

∣∣∣∣∣
ε=0

=
∑
f∈F

dΨ̂ (P0)
dP0 f

{ f (O) − P0 f }.

To summarize what we have learned, let us restate the basic delta method argu-
ment. A first-order Taylor expansion of Ψ̂ at P0 = (P0 f : f ∈ F ) yields

Ψ̂ (Pn) − Ψ̂ (P0) ≈ Ψ̂ ′(P0)(Pn − P0),

where the additional second-order term often involves differences such as ||Pn − P0||2
or (Pn − P0) fn with a sequence of functions fn (depending on Pn) converging to 0 in
probability. Formally, as presented previously, the functional delta method and em-
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pirical process theory can be used to show that the remainder is oP(1/
√

n), which is
also the condition under which we can claim that the estimator Ψ̂ (Pn) is asymptoti-
cally linear under i.i.d. sampling from P0. Under this asymptotic linearity condition
we have

Ψ̂ (Pn) − Ψ̂ (P0) = Ψ̂ ′(P0)(Pn − P0) + oP(1/
√

n)

=
1
n

n∑
i=1

Ψ̂ ′(P0)( f (Oi) − P0 f : f ∈ F ) + oP(1/
√

n)

=
1
n

n∑
i=1

IC(P0)(Oi) + oP(1/
√

n).

The influence curve of an estimator is of great importance. Firstly, it provides us
with an estimator of the asymptotic covariance matrix of the estimator, which can be
used for testing null hypotheses, sequential testing, sample size calculations, and the
construction of confidence intervals. Specifically,

√
n(Ψ̂ (Pn) − Ψ̂ (P0)) converges in

distribution to N(0, Σ0), where Σ0 = P0IC(P0)IC(P0)�. This covariance matrix can
be estimated with the empirical covariance matrix of ÎC(Oi), i = 1, . . . , n, where ÎC
is an estimate of IC(P0). The asymptotically valid working model Ψ̂ (Pn) ∼ N(ψ0, Σ̂)
provides a basis for statistical inference. In addition, the influence curve values
ÎC(Oi), i = 1, . . . , n, provide a tool for investigating the influence of one obser-
vation Oi on the estimator, and is thus also helpful for detecting outliers (robustness
analysis).

Beyond its utility for assessing uncertainty and evaluating robustness, the theo-
retical investigation of IC(P0) allows one to determine the conditions on P0 under
which it is uniformly bounded as a function of O. These conditions will be required
assumptions under which the estimator Ψ̂ (Pn) is a reliable robust and consistent es-
timator of ψ0, and these assumptions will suggest truncations or other modifications
of the data so that these assumptions are met. As a consequence of this theoret-
ical utility, a nontheoretician is able to assess quickly the situations in which the
estimator is unreliable and the required conditions under which it is a trustworthy
estimator. In particular, it provides insight into the amount of information, or lack
of information (i.e., sparsity), in the data with respect to the target parameter ψ0.

A.3 Computation of the Influence Curve: An Example

Summary. We present two concrete examples where we demonstrate the
computation of an influence curve of an estimator. A first important step is to
represent the estimator as a function of a large collection of empirical means
(i.e., linear estimators), or, more generally, as a function of a collection of
asymptotically linear estimators with known influence curves. Given this for-
mulation of the estimator, for the sake of determining the influence curve of
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the estimator, one should only be concerned with a first-order Taylor expan-
sion of the estimator, viewed as a function of this collection of asymptotically
linear estimators, so that one can ignore all second- and higher-order terms. In
this way, the influence curve follows naturally as a linear combination of the
influence curves of the inputted estimators. That is, the influence curve equals
the (functional) derivative of the estimator applied to the vector of influence
curves of the inputted estimators.

We demonstrate the computation of an influence curve of an estimator. Let O =
(W, A, Y) ∼ P0, and let Ψ (P) = EP[EP(Y | W, A = 1) − EP(Y | W, A = 0)] be the pa-
rameter of interest, O1, . . . ,On be n i.i.d. observations of O, and Pn be the empirical
probability distribution.

Influence curve of MLE based on parametric model. Suppose that we use a
parametric model {Q̄β : β} for Q̄0, where Q̄0(A,W) = E0(Y | W, A). For example,
Q̄β(A,W) = β�(A,W) is a main term linear regression model. Let βn be an estimator
of β according to this parametric model. Such an estimator βn solves an estimating
equation such as PnDβn = 0. For example, if L(Q̄) is a loss function for Q̄0, such as
L(Q̄)(O) = (Y−Q̄(W, A))2, and βn = arg minβ PnL(Q̄β), then D(β) = d

dβL(Q̄β). Let β0
be the limit of βn satisfying P0Dβ0 = 0. Then, under regularity conditions, it follows
that βn−β0= (Pn−P0)ICβ0+oP(1/

√
n), where ICβ0 = c−1

0 Dβ0 , with c0 = − d
dβ0

P0Dβ0 .
We will also use the notation Q̃β(W) ≡ Q̄β(W, 1)− Q̄β(W, 0). Let ψ0 = PW,0Q̃β0 be

the target parameter of interest. Thus, if the parametric model is correctly specified,
we have ψ0 = E0[E0(Y | W, A = 1) − E0(Y | W, A = 0)]. Let ψn = PW,nQ̃βn be the
estimator of ψ0. We wish to determine the influence curve of ψn as an estimator of
ψ0. We have

ψn − ψ0 = PW,nQ̃βn − PW,0Q̃β0

= (PW,n − PW,0)Q̃β0 + PW,n{Q̃βn − Q̃β0 }
= (PW,n − PW,0)Q̃β0 + PW,0{Q̃βn − Q̃β0 } + (PW,n − PW,0){Q̃βn − Q̃β0 }.

The last term is a second-order term and can therefore be ignored for the pur-
pose of calculating of an influence curve. The second term can be approximated by
applying first-order Taylor expansions in β and the asymptotic linearity of βn:

PW,0{Q̃βn − Q̃β0 } ≈
{

PW,0
d

dβ0
Q̃β0

}�
(βn − β0)

≈ (Pn − P0)
{

PW,0
d

dβ0
Q̃β0

}�
ICβ0 .

We can conclude that ψn − ψ0 ≈ (Pn − P0)IC with influence curve

IC = Q̃β0 − ψ0 + PW,0

{
d

dβ0
Q̃β0

}�
ICβ0 .
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Influence curve of nonparametric MLE. Let us now consider a nonparametric
estimator ψn = PW,nQ̃n of ψ0 = PW,0Q̃0, where Q̃n(W) = Q̄n(W, 1) − Q̄n(W, 0) and
Q̃0(W) = E0(Y | W, A = 1)− E0(Y | W, A = 0). It is assumed that W is discrete. Note
that

Q̄n(w, a) =
∑

y y (Pn fy,w,a/Pn fw,a),

with fw,a(O) = I(W = w, A = a) and fy,w,a(O) = I(W = w, A = a, Y = Y). We
will focus on deriving the influence curve IC1 of ψn(1) = PW,nQ̄1,n as an estimator
of ψ0(1) = PW Q̄1,0, where Q̄1,0(W) = E0(Y | W, A = 1). Since ψn = ψn(1) −
ψn(0), this will yield the influence curve IC1 − IC0 of ψn. Note that ψn(1) can be
represented as a function Φ of (Pn f : f ∈ F ) with F = { fw,a, fy,w,a : w, a, y}. Thus
ψn(1) = Φ(Pn) = Φ(Pn f : f ). The functional delta method teaches us that we can
use the first order linear approximation Φ(Pn) − Φ(P0) = Φ′(P0)(Pn − P0), where
Φ′(P0) = ( d

dP0 fΦ(P0 f : f ) : f ) and (Pn − P0) = ((Pn − P0) f : f ). In particular, it
follows that the influence curve of ψn(1) = Φ(Pn) as an estimator of ψ0(1) is given
by

IC1 =
(

dΦ(P0)
dP0 f : f

)
(Pn=1 − P0),

where Pn=1 = ( f (O) − P0 f : f ∈ F ) is the empirical process based on a single
observation O = (W, A, Y). One can also carry out this process of determining the
linear approximation in a stepwise fashion. Firstly, we linearize Φ(Pn) in terms of
PW,n − PW,0 and Q̄1n − Q̄1,0:

PW,nQ̄1,n − PW,0Q̄1,0 ≈ (PW,n − PW,0)Q̄1,0 + PW,0(Q̄1,n − Q̄1,0).

Note that the first term equals the empirical mean of Q̄1,0(W) − ψ0(1). Secondly, we
linearize the latter term:

Q̄1,n(w) − Q̄1,0(w) ≈
∑

y y 1
P0 fw,1

(Pn − P0) fy,w,1 −
P0 fy,w,1
P2

0 fw,1
(Pn − P0) fw,1.

Thus,

∑
w

PW,0(w)(Q̄1,n−Q̄1,0)(w) ≈ (Pn − P0)

⎧⎪⎪⎨⎪⎪⎩∑
w

PW,0(w)
∑

y

y

⎧⎪⎪⎨⎪⎪⎩ 1
P0 fw,1

fy,w,1−
P0 fy,w,1
P2

0 fw,1
fw,1

⎫⎪⎪⎬⎪⎪⎭
⎫⎪⎪⎬⎪⎪⎭

≡ (Pn − P0)IC′1.

Since fy,w,1 = I(Y = y,W = w, A = a) and fw,1 = I(W = w, A = 1), the inte-
grals/sums over w, y simplify:

IC′1 =
P0(W)

P0(W, A = 1)
YI(A = 1) − P0(W)

∑
y

y
P0(y,W, 1)
P2

0(W, 1)
I(A = 1)

=
I(A = 1)
g0(1 | W)

Y −
I(A = 1)
g0(1 | W)

E0(Y | W, A = 1)

=
I(A = 1)
g0(1 | W)

(Y − E0(Y | W, A = 1)),
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where we used the notation g0(1 | W) = P0(A = 1 | W). Thus, the influence curve
IC1 of ψn(1) is given by Q̄1,0(W) − ψ0(1) + IC′1(O). The above proof also yields
the analog influence curve IC0 of ψn(0). As a consequence, we have shown that
the influence curve IC of ψn = ψn(1) − ψn(0) is given by IC1 − IC0, which can be
represented as

IC(P0)(O) =
{

I(A=1)
g0(1|W) −

I(A=0)
g0(0|W)

}
(Y − Q̄0(W, A)) + Q̃0(W) − Ψ (Q0).

We note that this influence curve equals the efficient influence curve of ψ0 in the
nonparametric model for P0. Because the nonparametric MLE is asymptotically
linear with influence curve equal to the efficient influence curve, by definition, it is
an efficient estimator. Computing the influence curve of the (nonparametric) MLE
of a target parameter in a nonparametric or semiparametric model, ignoring second-
order terms and assuming the data structure is discrete, is a general tool for deriving
the efficient influence curve of the target parameter. The resulting expression will
have a natural analog for the general (e.g., continuously valued) data structure since
each continuous data structure can be approximated by discrete data structures, and
this generalized expression will then be the efficient influence curve.

Estimation of the influence curve of the nonparametric MLE, or any other ef-
ficient estimator, requires an estimator of the treatment mechanism. If one used a
data-adaptive machine learning algorithm to estimate E0(Y | A,W) instead of a non-
parametric MLE, and claimed that the resulting MLE-based estimator of the target
parameter are still unbiased enough, then one would claim that it was asymptotically
linear with influence curve equal to the efficient influence curve. Thus, estimation
of the influence curve requires estimation of the treatment mechanism, again. Over-
all, one can conclude that statistical inference based on an MLE in a nonparametric
model still requires implicit or explicit estimation of the treatment mechanism. From
this point of view, the TMLE is not asking for more than what a nontargeted MLE
already requires; the TMLE just utilizes the estimator of the treatment mechanism
to target the estimator so that the desired asymptotic linearity is a more reasonable
assumption.

A.4 Cramer–Rao Lower Bound

Summary. We prove that the influence curve of an asymptotically linear es-
timator of a statistical parameter that also satisfies a regularity property has
a variance that is larger than the variance of the canonical gradient of the
pathwise derivative of the statistical parameter. As a consequence, we can
state that an estimator is optimal/efficient among all such asymptotically lin-
ear estimators if and only if its influence curve equals the canonical gradient.
This explains why the latter is also-called the efficient influence curve. This
result is implied by the more general convolution theorem for regular esti-
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mators (Bickel et al. 1997), but it provides a self-contained understanding
of efficiency theory for asymptotically linear estimators. Given the efficiency
theory, one should always be highly motivated to determine the efficient influ-
ence curve of the target parameter. Indeed, it provides the ingredient for the
construction of an efficient substitution estimator, such as the TMLE.

We provide a basic understanding of the result that an estimator is efficient among
regular estimators if and only if it is asymptotically linear with influence curve equal
to the efficient influence curve. We will prove a result stating that an asymptotically
linear estimator at P0 that maintains low negligible bias in local neighborhoods of
P0 has an influence curve that equals a gradient of the pathwise derivative. As a con-
sequence, the best estimator among such asymptotically linear estimators is the one
with an influence curve equal to the canonical gradient of the pathwise derivative.

Let O ∼ P0 ∈ M, and let Ψ :M→ R
d be the target parameter. For each P ∈ M,

consider a class of parametric models {Ph(ε) : ε} ⊂ M through a P ∈ M at ε = 0,
indexed by an h in an index set H , and with score S (h) = d

dε log Ph(ε)
∣∣∣
ε=0 at ε = 0.

It is assumed that these scores {S h : h ∈ H} are an element of the Hilbert space
L2

0(P) of mean 0 functions of O, endowed with the inner product 〈 f , g〉 = P f g, the
covariance operator. The set of scores generated by this class of parametric models
spans a linear subspace of L2

0(P), and by taking the closure of this linear subspace
we obtain the tangent space T (P) ⊂ L2

0(P) at P, which is itself a Hilbert space. We
state that Ψ : M → R

d is pathwise differentiable at P if there exists a D∗ in the
tangent space T (P) ⊂ L2

0(P) at P so that for each of these submodels through P we
have

d
dε Ψ (P(ε))

∣∣∣
ε=0 = PD∗(P)S .

This inner product representation of the derivative can be expected since 1) the left-
hand side is linear in d

dε P(ε)
∣∣∣
ε=0, so that at this fixed P, it should also be linear in

the score S = d
dε P(ε)

∣∣∣
ε=0 /P, and 2) by the Riesz representation theorem, a bounded

linear operator on a Hilbert space (i.e., T (P)) can be represented as an inner product
as above. One refers to D∗(P) as the canonical gradient of the pathwise derivative
of Ψ :M→R

d at P. If the inner-product representation applies for a D(P) ∈ L2
0(P),

then such a D(P) is called a gradient. We note that for any D⊥ in the orthogonal
complement of the tangent space, T (P), D∗(P)+D⊥ is a gradient: P(D∗(P)+D⊥)S =
PD∗(P)S for all S ∈ T (P). Since a gradient has to yield the same pathwise derivative
on the tangent space T (P) as the canonical gradient, it follows that any gradient can
be represented as D∗(P)+D⊥. This shows that the set of all gradients is any function
in L2

0(P) whose projection on T (P) equals the canonical gradient.
Thus the canonical gradient is the unique gradient of the pathwise derivative that

is an element of the tangent space, and it is also the gradient that has the smallest
variance among all gradients:

P{D∗(P)(O) + D⊥}2 = P{D∗(P)}2 + P{D⊥}2 ≥ P{D∗(P)}2.
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Since an asymptotically linear estimator is efficient if and only if its influence curve
equals the canonical gradient, the canonical gradient is also called the efficient in-
fluence curve.

Let us formalize the latter statement. Consider an estimator Ψ̂ :MNP → R
d that

maps the empirical distribution of the data set O1, . . . ,On into the parameter space
of Ψ . Suppose the estimator is asymptotically linear under i.i.d. sampling from P
with influence curve IC(P):

Ψ̂ (Pn) − Ψ (P) = (Pn − P)IC(P) + R(Pn, P),

where R(Pn, P) = oP(1/
√

n). We now argue that, for any parametric model {P(ε) : ε}
(one of the models used in the pathwise derivative) this linear approximation in the
data Pn should still be valid under i.i.d. sampling from P(εn) with εn = 1/

√
n. That

is, if P(εn)n is the empirical distribution of n i.i.d. observations from P(εn), then

Ψ̂ (P(εn)n) − Ψ (P) = (P(εn)n − P)IC(P) + R(P(εn)n, P),

where R(P(εn)n, P) = oP(1/
√

n). This is indeed expected since P(εn)n−P = (P(εn)n−
P(εn))+ (P(εn)−P), and, if εn = 1/

√
n, then sup f∈F | (P(εn)n−P(εn)) f |= OP(1/

√
n)

for a Donsker class F , while also ‖ P(εn) − P ‖F= O(1/
√

n). For example, to use
simplistic notation, if R(Pn, P) = ||Pn − P||2, then R(P(εn)n, P) = ||P(εn)n − P||2 will
converge to zero in probability at same rate as R(Pn, P). As a consequence, it is
reasonable to state that the linear approximation of Ψ̂ (Pn) in the data Pn at P also
holds up under sampling from P(εn), that is, under i.i.d. sampling from P(εn), we
have

Ψ̂ (P(εn)n) − Ψ (P) = 1
n
∑n

i=1 IC(P)(Oi) + Rn,

where Rn = oP(1/
√

n). Suppose we now also require that the estimator Ψ̂ (P(εn)n)
has a bias that is o(1/

√
n) under i.i.d. sampling from P(εn) for εn = 1/

√
n in the

sense that

EP(εn)Ψ̂ (P(εn)n) − Ψ (P(εn))
εn

→ 0 as n→ ∞, (A.1)

EP(εn)Rn

εn
→ 0, (A.2)

and these two statements need to hold for each of the parametric submodels. We
will now show that this requirement implies that IC(P) = D∗(P) + D⊥ for some
D⊥ ⊥ T (P), i.e., it implies that IC(P) is a gradient of the pathwise derivative at
P. This then also proves that an estimator, among the class of asymptotically linear
estimators that are locally uniformly unbiased in the above sense, is efficient if and
only if IC(P) = D∗(P). Note that if (A.1) does not hold for a particular parametric
submodel, then for this submodel

√
n(Ψ̂ (P(εn)n)−Ψ (P(εn))) will converge to a nor-

mal distribution with a bias term, possibly even a bias term of infinite magnitude,
so that statistical inference based on the CLT under sampling from P(εn) will not be
valid.
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The fact that this ”negligible bias” requirement under P(εn) implies that IC(P) is
a gradient is shown as follows. Firstly, substitute Ψ̂ (P(εn)n) = Ψ (P)+P(εn)nIC(P)+
Rn in (A.1) to obtain

EP(εn)Ψ̂ (P(εn)n) − Ψ (P(εn))
εn

=
P(εn)IC(P)
εn

−
Ψ (P(εn)) − Ψ (P)

εn
+ EP(εn)

Rn

εn

= P
P(εn) − P
εnP

IC(P) − {PD∗(P)S + o(1)} + o(1),

where we used (A.2) and the definition of the pathwise differentiability of Ψ . Note
that

P P(εn)−P
εnP IC(P) = P IC(P)S + o(1).

Thus, we obtain that the limit for εn → 0 (i.e., A.1) equals:

P{IC(P) − D∗(P)}S for each S ∈ T (P).

By assumption (A.1), this limit must equal zero for all S . This proves the statement
that the projection of the influence curve onto the tangent space at P is unique, and
equals the canonical gradient: Π(IC(P) | T (P)) = D∗(P). We will state what we just
proved as a theorem.

Theorem A.1. Let O ∼ P ∈ M, and Ψ : M → R
d. Consider a class of para-

metric submodels {Ph(ε) : ε} ⊂ M through P ∈ M at ε = 0, with score
S (h) = d

dε log Ph(ε)
∣∣∣
ε=0 at ε = 0, indexed by h in an index set H . Let T (P) ⊂ L2

0(P)
be the tangent space at P of this class of parametric submodels. Assume that Ψ is
pathwise differentiable at P with respect to this class of parametric submodels; we
have that there exists a D∗ in the tangent space T (P) ⊂ L2

0(P) at P so that for each
of these submodels through P, we have

d
dε Ψ (P(ε))

∣∣∣
ε=0 = PD∗(P)S .

Here we use the notation P f =
∫

f (o)dP(o).
Consider an estimator Ψ̂ : MNP → R

d that maps an empirical distribution Pn

of O1, . . . ,On ∼ P (for any P) into R
d. Assume that for each of the above submodels

{Ph(ε) : ε}, h ∈ H , under i.i.d. sampling from P(εn) (suppressing h) with εn = 1/
√

n,
we have

Ψ̂ (P(εn)n) − Ψ (P) = P(εn)nIC(P) + Rn,

with

EP(εn)Ψ̂ (P(ε)n) − Ψ (P(εn))
εn

→ 0 as n→ ∞, (A.3)

EP(εn)Rn = o(εn). (A.4)

Here P(ε)n is the empirical distribution of an i.i.d. sample of size n from P(ε). Then
the projection of IC(P) onto T (P) in the Hilbert space L2

0(P) equals the canonical
gradient D∗(P):
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Π(IC(P) | T (P)) = D∗(P).

In particular,
VARP{IC(P)(O)} ≥ VARP{D∗(P)(O)}.

Why the variance of the efficient influence curve is a generalized Cramer–Rao

lower bound: An informal explanation. If one assumes a parametric model {P(ε) :
ε} so that O ∼ P(ε0), and one wishes to estimate f (ε0) = Ψ (P(ε0)), where we let
ε0 = 0 (unknown to the user), then the Cramer–Rao lower bound for the variance of
an unbiased estimator of f (ε0) is given by(

d
dε0

f (ε0)
)2

PS 2 =
P2D∗(P)S

PS 2 .

Here S is the score of P(ε) at ε = 0. Since each such parametric models is a sub-
model, it makes sense to define as the Cramer–Rao bound for the actual modelM,
the worst-case bound obtained by selecting the hardest among a class of parametric
submodels. For most modelsM, if one has univariate submodels with scores S 1 and
S 2, then one can also construct a submodel with two parameters whose score is any
linear combination of S 1 and S 2. In that case, the worst-case bound is given by

sup
S∈T (P)

P2D∗(P)S
PS 2 .

By the Cauchy–Schwarz inequality, it follows that this supremum is attained at S =
D∗(P) and it equals PD∗(P)2, the variance of the efficient influence curve.

A.5 Invariance of Statistical Properties

Summary. Given the statistical model and target parameter, we emphasize
that statistical properties, such as the pathwise derivative of the target param-
eter, the gradient and canonical gradient/efficient influence curve, and robust-
ness of this efficient influence curve, are invariant to additional nontestable
assumptions that do not change the statistical model. This insight is useful,
since it allows one to borrow from previously obtained statistical results.

Consider a random variable (U, X), a model MF for its distribution PU,X , and a
mapping from PU,X ∈ MF into a probability distribution PO(PU,X) for an ob-
served data structure O (e.g., O = Φ(U, X) for some mapping Φ). We use the
notation (U, X) for the underlying random variable because we have used this no-
tation to describe the random variables modeled by an SCM. However, (U, X) can
denote any underlying random variable; for example, U might be the censoring
variable, X a full data structure, and O = Φ(U, X) the observed data structure. Let
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M = {PO(PU,X) : PU,X ∈ MF} be the corresponding observed data statistical model.
Consider a random variable (U∗, X∗), a model MF∗ for its distribution PU∗,X∗ , and
a mapping from PU∗,X∗ ∈ MF∗ into a probability distribution PO(PU∗,X∗ ) for the
observed data structure O. Let M∗ = {PO(PU∗,X∗ ) : PU∗,X∗ ∈ MF∗} be the corre-
sponding observed data statistical model. If we writeM we also refer to the actual
model assumptions coded by the parameterization PO(PU,X) and underlying model
MF , and similarly for M∗. Although models M and M∗ can be very different in
their underlying assumptions, we assume that their statistical models are identical:
M∗ =M.

In general, if one proves statistical properties that concern the probability distri-
bution of the observed data structure O under one of these models, it will also apply
to the other model. This might sound too trivial to even mention, but it is a useful
fact. In order to be concrete, let us consider a number of scenarios in which we apply
this invariance principle.

Suppose that one has proven the following double robustness results for an ob-
served data estimating function (Q, g)→ D(Q, g), with respect to nuisance parame-
ters Q(P) and g(P), based on modelM [i.e., the proof might have used the param-
eterization PO(PU,X) and assumptions PU,X ∈ MF]. For each P ∈ M and Q ∈ Q,
there is a set G(Q, P) of distributions such that EPD(Q, g)(O) = 0 for g ∈ G(Q, P).
Then, we also have for each P ∈ M∗ and Q ∈ Q, EPD(Q, g)(O) = 0 for g ∈ G(Q, P).

For example, consider the CAR missing-data model for O = (W, A, Y = YA) ∼ P0
with X = (Y0, Y1,W) nonparametrically modeled, and the treatment assignment
mechanism g0(a | X) = P0(A = a | X) = P0(A = a | W) only assumed to sat-
isfy CAR. Let D∗(P0) = D∗(Q0, g0) be the efficient influence curve of the target
parameter Ψ (P0) = E0[E0(Y | A = 1,W) − E(Y | A = 0,W)], with Q0 represent-
ing E0(Y | A,W) and the marginal distribution of W, so that both Q0, g0 represent
parameters of P0. Suppose that one has proven a desired double robustness result in
this CAR missing-data model such as P0D∗(Q, g) = 0 if either Q = Q0 or g = g0
(van der Laan and Robins 2003). Then this same double robustness result applies to
other causal underlying models that result in the same nonparametric observed data
model, including the pure statistical model for O = (W, A, Y) ∼ P0 that makes no
assumptions at all.

One possible example is that model M makes stronger assumptions than M∗
(e.g., MF ⊂ MF∗ or M∗ is a pure statistical model); apparently, proving a result
under stronger assumptions implies the result under weaker assumptions if these
stronger assumptions do not shrink the statistical model. For example, if one proves
statistical properties under the causal model for a longitudinal data structure (Ā, L̄A)
that assumes a strong SRA, A(t) ⊥ LĀ(t−1),a(t) | Ā(t−1), L̄(t), then these same statisti-
cal properties apply under the causal model that assumes the weaker randomization
with respect to the Y outcome, where the Y outcome is included in the L process. We
know the latter randomization assumption is sufficient for identification of marginal
distributions of Ya (but not for La), but it might prevent us from doing calculations
and engaging in reasoning that feels natural to us.

Similarly, suppose that one has proven that, given a loss function L(Q), for
each P ∈ M and Q(P) = arg minQ∈Q PL(Q), we have that Ψ (Q(P)) is a desired
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number Φ(P), and this proof used model M. Then this also implies that for each
P ∈ M∗, and Q(P) = arg minQ∈Q PL(Q), we have that Ψ (Q(P)) = Φ(P). For
example, consider the CAR missing-data model for O = (W, A, Y = YA) again.
Consider the loss function L(Q) = − log Q(Y | A)g0(A)/g0(A | X). Using the
CAR censored-data model, it follows that this is a valid IPTW loss function for
Q0(y | a) = P0(Y(a) = y), i.e., for the marginal distribution of the counterfactual Ya

for each a: Q0 = arg minQ E0L(Q). As a consequence, we can identify the additive
causal effect as follows: E0{Y1 − Y0} =

∑
y y{Q0(y | a = 1) − Q0(y | a = 0)}. The

right-hand side defines now a mapping Φ from P0 into a desired value Φ(P0) =
Ψ (P0) = E0[E0(Y | A = 1,W)−E0(Y | A = 0,W)]. Now, suppose we are not willing
to make any causal assumptions. Then we still haveΦ(P0) = Ψ (P0), allowing one to
construct estimators based on the mapping Φ, even though Q0 no longer represents
a counterfactual distribution.

Another application of this invariance principle is the following. Suppose we
have shown that D(P) is a gradient of a parameter Ψ : M → R at P ∈ M.
That is, for each one-dimensional submodel {P(ε) : ε} through P at ε = 0,

d
dε Ψ (P(ε))

∣∣∣
ε=0 = EPD(P)S , where S is the score of P(ε) at ε = 0. Suppose this

proof (seemingly) relied on the model M, including its nontestable assumptions.
Then, D(P) is also a gradient of the parameter Ψ :M∗ → R. Thus, the strategy for
deriving the set of all gradients or the canonical gradient might be to assume various
nontestable assumptions, such as representing the observed data structure as a CAR
censored data structure. If one determines a gradient or canonical gradient under
these assumptions, then one has also determined a gradient or canonical gradient
under another model that maps into the same statistical model for the distribution
of O.

This strategy allows us to utilize results from the literature. In particular, van der
Laan and Robins (2003) present a theory for determining the class of gradients of
a target parameter for a statistical model for the observed data structure under the
assumption that the observed data structure is a function of a full-data random vari-
able and censoring variable and that the conditional distribution of the censoring
variable, given the full-data random variable, satisfies coarsening at random. In par-
ticular, it shows how to map the gradients of an identifiable target parameter in the
full-data model into the gradients for the corresponding target parameter in the ob-
served data model. Because of the invariance principle, this provides us with the set
of gradients and the canonical gradient of the target parameter of the observed data
distribution for the statistical model for O, regardless of the nontestable underlying
assumptions one makes. This insight allows us to borrow from the rich literature
on CAR censored-data models. For example, the censored-data literature provides
us with IPCW estimating functions that were shown to be gradients of the pathwise
derivative in the observed data model in which the censoring mechanism is assumed
known. By projecting a gradient on the tangent space of the model one obtains the
canonical gradient, so that these IPTW estimating functions can be used to derive
the canonical gradient. If one does not assume that the observed data are repre-
sented as a censored-data structure, it does not make sense to use such naming or
talk about full data estimating functions, but nevertheless, we can still temporarily
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move ourselves into this world to make progress by building on theory developed in
that world, and use IPCW estimating functions (that were developed and presented
in this CAR censored data world) as functions of the observed data that are gradients
of the statistical target parameter.

In the CAR censored-data model for O = (W, A, Y = YA), with full data structure
X = (W, Y0, Y1) nonparametrically modelled, and g0 known, {I(A = 1) − I(A =
0)}/g0(A | X)Y−ψ0 represents an IPTW estimating function for ψ0 (which is verified
by showing that its conditional expectation, given X, yields a gradient in the full data
model), so that we can also use this gradient in the pure statistical model, but one
now represents g0 as the conditional distribution of A, given W.

Suppose that one assumes a time-ordering A → W → Y , where A might be
gender, W intermediate variables, and Y a final outcome of interest. One assumes an
SCM according to this time ordering, and one assumes that (A,W) is randomized.
Suppose that one is interested in a direct effect of gender on salary, controlled by the
intermediate variables W, of the type E0

∑
w{Y(1,w) − Y(0,w)}P0(w | A = 0). This

parameter can be identified from the observed data as

E0
∑

w{Y(1,w) − Y(0,w)}P0(w | A = 0) =
E0[E0(Y | A = 1,W) − E0(Y | A = 0,W) | A = 0].

Suppose one has derived the canonical gradient of this target parameter of the ob-
served data distribution, as presented in van der Laan (2010c).

Consider now a new causal model in which one wishes to estimate the effect of
treatment among the nontreated. That is, one assumes the time ordering A → W →
Y , where W are baseline covariates, A is a binary treatment, and Y is a final outcome
of interest. One assumes an SCM according to this ordering, and one assumes that A
is randomized, conditional on W. Suppose that one is interested in the causal effect
of treatment among the nontreated E0(Y1 − Y0 | A = 0). This parameter is identified
from the observed data O = (W, A, Y) as

E0(Y1 − Y0 | A = 0) = E0[E0(Y | A = 1,W) − E0(Y | A = 0,W) | A = 0].

Even though the two causal models and the causal quantities are very different, the
observed data structures are identical, the statistical models are identical, and the
statistical target parameters are identical. As a consequence, we now also have the
canonical gradient for the latter causal model and target parameter.

Finally, let us consider another kind of application of this invariance of statistical
properties under varying nontestable assumptions. Suppose that, given a parame-
ter ΨF∗ : MF∗ → R, one has shown that ΨF∗(PU∗,X∗ ) = Ψ ∗(PO(PU∗,X∗ )) for each
PU∗,X∗ ∈ MF∗ for some mapping Ψ ∗ :M→ R. In other words, one has established
the identifiability of the causal parameter ΨF∗ in modelM∗ through the statistical
parameter Ψ ∗. Suppose that one has proposed a new mapping Ψ̂ : M → R and
one is able to show: for each P ∈ M, Ψ̂ (P) = Ψ ∗(P). Thus the two parameters Ψ̂
and Ψ ∗ defined in the two modelsM andM∗ are identical as statistical parameters.
Then, ΨF∗(PU∗,X∗ ) = Ψ̂ (PO(PU∗,X∗ )) for each PU∗,X∗ ∈ MF∗: i.e., one also has the
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identifiability of the causal parameter ΨF∗ in modelM∗ through the statistical pa-
rameter Ψ̂ . This can be used to establish that a particular estimator is indeed valid
for estimating a desired causal effect; one shows that it statistically agrees with the
mapping Ψ ∗ that came out of an original identifiability result.

A.6 Targeted Minimum-Loss-Based Estimation

Summary. We present a natural generalization of targeted maximum likeli-
hood estimation, demonstrating that TMLE requires specifying an appropriate
loss function and fluctuation working model so that the derivative at zero fluc-
tuation of the loss yields the desired estimating function, such as the efficient
influence curve.

Let O be the observed data structure, and let P0 be its probability distribution. In
addition, letM be the statistical model for P0, and let Ψ : M → R

d be a pathwise
differentiable d-dimensional parameter. One observes n i.i.d. copies O1, . . . ,On of
O and one wishes to construct an estimator of Ψ (P0). Suppose that Q0 = Q(P0)
represents a parameter Q :M→ Q so that for some Ψ1 we have Ψ (P) = Ψ 1(Q(P))
for all P ∈ M. Let Q = {Q(P) : P ∈ M} be the parameter space for Q. For
notational convenience, we will use notation Ψ (P) and Ψ (Q) interchangeably. We
wish to construct a substitution estimator Ψ (Q∗n) of ψ0 obtained by substitution of an
estimator Q∗n of Q0 into the parameter mapping Ψ . Let L(Q) be a loss function for
Q0 so that Q0 = arg minQ∈Q P0L(Q). We will allow this loss function to be indexed
by a nuisance parameter: L(Q) = Lη0 (Q) for some unknown nuisance parameter
η0 = Γ(P0). Given an estimator of η0, one can use loss-based (e.g., super) learning
to construct an estimator Q0

n of Q0 (e.g., van der Laan and Dudoit 2003).
We are not satisfied with a good estimator of Q0. Instead, we wish to construct

an updated estimator Q∗n so that Q∗n and ηn solve a particular estimating equation
PnD(Q∗n, ηn) = 0 for a user-supplied target-parameter-specific estimating function
D(Q, η). The choice of this estimating function D is tailored so that solving this
equation implies good properties for the substitution estimator Ψ (Q∗n) of ψ0. For ex-
ample, D(Q0, η0) might be the canonical gradient (i.e., efficient influence curve) of
the pathwise derivative of Ψ at P0, and solving the efficient influence curve estimat-
ing equation is known to imply that Ψ (Q∗n) is asymptotically linear with influence
curve equal to the efficient influence curve under appropriate conditions.

For any possible (Q, η), let {Qη(ε) : ε} ⊂ Q be a submodel with a finite-
dimensional parameter ε that contains Q at ε = 0, typically indexed by η, that
satisfies the following local condition at ε = 0:

d
dε Lη(Qη(ε))

∣∣∣
ε=0 = D(Q, η).

The targeted minimum loss based estimator (also TMLE) is now defined by the
following iterative algorithm. Start with initial estimator Q0

n, and for k = 1, . . .,
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define Qk
n = Qk−1

n,ηn
(εkn), where εkn = arg minε PnLηn (Qk−1

n,ηn
(ε)), and stop at step k when

εkn ≈ 0. If εkn = 0 and it is a local minima at an interior point, then it follows that the
final update Q∗n = Qk

n solves 0 = PnD(Q∗n, ηn). The substitution estimator Ψ (Q∗n) is
the targeted minimum-loss-based estimator of ψ0.

Suppose d
dε j

Lη(Qη(ε))
∣∣∣∣
ε=0
= Dj(Q, η), while D(Q, η) =

∑
j D j(Q, η). One can

also select an ordering for (ε1, . . . , εJ) (e.g., starting at εJ and going backwards)
and, according to this ordering, iteratively carry out the update step Qk

n = Qk−1
n,ηn

(εkn),
but where εkn is now obtained by minimizing PnLηn (Qk−1

n,ηn
(ε)) only over the next

ε-component according to the ordering of the ε-components, using the previous
value εk−1

n for all other components. The next ε-component of the last ε-component
in this ordering is defined as the first ε-component in the ordering, so that one
keeps circling through all ε-components. At convergence, we have that εn solves
PnDj(Q∗n, ηn) = 0 for all j, and thus PnD(Q∗n, ηn) = 0 as well.

The asymptotic linearity of Ψ (Q∗n) can now be based on the fact that Q∗n solves
this estimating equation, and on statistical properties of (Q∗n, gn) as an estimator of
Q0, g0 (see the asymptotic linearity theorem in Appendix A.1). By selecting a loss
function for Q0 (e.g., log-likelihood loss function), and a fluctuation working model
so that the linear span of the derivative of L(Q(ε)) at ε = 0 includes the components
of the efficient influence curve of Ψ at P, one obtains a TMLE that is asymptotically
efficient under appropriate conditions.

A.7 Efficient Influence Curve for Longitudinal Data Structures

Summary. We demonstrate how one calculates the efficient influence curve
of a target parameter of interest for the longitudinal data structures covered
in this book. The canonical gradient is a projection of an initial gradient onto
the tangent space generated by scores of parametric submodels through the
data-generating distribution, where this projection is carried out in the Hilbert
space of mean zero functions of the unit data structure O, endowed with an
inner product equal to the covariance operator. We show that a factorization of
the likelihood of the unit data structure yields an orthogonal decomposition of
this tangent space, and thereby of this projection as a sum of projections on or-
thogonal subtangent spaces. We show that these projections on the subtangent
spaces can be represented in terms of conditional expectations.

Consider a set of variables O = (O( j) : j) and corresponding parent variables
(Pa(O( j)) : j) and suppose that the probability distribution of O is given by

P0(O) =
∏

j P0(O( j) | Pa(O( j))).

For example, O could be represented by an ordered sequence of variables, and the
jth variable O( j) in the sequence has corresponding parents Pa(O( j)) = Ō( j − 1) =
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O(1), . . . ,O( j − 1). Typically, O(0) represents the baseline covariates. Consider the
statistical model M implied by all such possible probability distributions, without
putting any constraints on P0(O( j) | Pa(O( j))). In the special case where Pa(O( j)) =
Ō( j − 1), this statistical model is completely nonparametric. We use the short-hand
notation PO( j) for the conditional distribution of O( j), given Pa(O( j)), under P.

Let Ψ : M → R
d be the d-dimensional statistical parameter of interest, so that

Ψ (P0) is the target parameter value we wish to learn from the data consisting of n
i.i.d. draws O1, . . . ,On of the random variable O. We wish to determine the efficient
influence curve/canonical gradient D∗(P) of the pathwise derivative of Ψ at P. The
canonical gradient D∗(P) equals the projection Π(D(P) | T (P)) of an initial gradient
D(P) of the pathwise derivative of Ψ at P onto the tangent space T (P).

Consider a rich class of submodels P(ε) that only vary PO( j)|Pa(O( j)), and denote
the tangent space generated by this class of submodels by TO( j)(P). We can do
this for each of the factors indexed by j = 1, . . . , J. The resulting union of para-
metric submodels generates a tangent space T (P) at P, given by the sum space
T (P) =

∑
j TO( j)(P). One can also observe that by adding parametric submodels

that simultaneously fluctuate multiple factors in the factorization of P one gener-
ates scores that are sums of scores that are thus still contained in this sum space∑

j TO( j)(P). These subtangent spaces TO( j)(P) are pairwise orthogonal due to the
factorization of the probability density in terms of these conditional distributions
PO( j). This shows that T (P) =

∑
j TO( j)(P) is an orthogonal decomposition in sub-

spaces. The tangent space of PO( j) can be generated by the following parametric
submodels through PO( j): PO( j),ε = (1 + εS (O( j) | Pa(O( j)))PO( j), where S is any
function of (O( j), Pa(O( j))) with conditional mean zero, given Pa(O( j)). The scores
S of these parametric fluctuations at ε = 0 generate the tangent space TO( j)(P), so
that we have

TO( j)(P) = {S (O( j), Pa(O( j)) : EP(S | Pa(O( j)) = 0} ⊂ L2
0(P).

The projection of a function D onto TO( j)(P) is obtained by first projecting onto all
functions of (O( j), Pa(O( j))), which is given by E(D | O( j), Pa(O( j))), and sub-
sequently projecting this projection onto all functions which also have conditional
mean zero, given Pa(O( j)), resulting in

Π(D(P) | TO( j)(P)) = E(D(P) | O( j), Pa(O( j))) − E(D(P) | Pa(O( j))).

The reader can directly verify the validity of this formula by proving that it is an
element of the space TO( j)(P), and that D(P) minus this projection is orthogonal to
TO( j)(P). We conclude that, if D(P) is a gradient of the pathwise derivative of Ψ
at P, then the canonical gradient D∗(P) can be determined as

D∗(P) =
∑

j{E(D(P) | O( j), Pa(O( j))) − E(D(P) | Pa(O( j)))}.

The efficient influence curves presented in this book have all been determined with
this recipe.
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One might now wonder, how do I obtain this initial gradient? One approach is
to come up with an ad hoc estimator of ψ0 that is regular and asymptotically lin-
ear, and derive its influence curve. As shown in Theorem A.1, this influence curve
is now a gradient and can thus be used as initial gradient D(P). We can make this
more specific by adding some additional structure by defining I as the index set that
identifies the intervention nodes (O( j) : j ∈ I), and by assuming that Ψ (P0) is only
a function of PO( j),0 for j ∈ Ic. Let Q0 =

∏
j∈Ic PO( j),0, and let g0 =

∏
j∈I PO( j),0,

and note that P0 = Q0g0. We will use the notation Ψ (Q0) for the target parameter to
stress that it only depends on P0 through Q0. For example, if our target parameter
represents a parameter of the g-computation formula for the counterfactual distribu-
tion of O under interventions on the intervention nodes, then, indeed, Ψ (P0) is only
a function of these conditional distributions PO( j),0 with j ∈ Ic.

In this case, we can use the following trick to determine a gradient. We consider
the submodel M(g0) of M, which assumes that Q0 is unspecified as in the actual
model M but that g0 is known. Due to the factorization of P0 = Q0g0 and that
Ψ is only a function of P0 through Q0, it follows that the canonical gradient of
Ψ : M → R

d is identical to the canonical gradient of Ψ : M(g0) → R
d. As a

consequence, we can now act as if M(g0) is the statistical model and determine
the canonical gradient in this smaller model, which will then also equal the desired
canonical gradient for the actual modelM. Note that the tangent space, say, Tg0 (P)
ofM(g0), is now only generated by fluctuations of the conditional distributions of
O( j), j ∈ Ic since g0 is known. Thus the tangent space Tg0 (P) at P ∈ M(g0) for this
modelM(g0) is given by Tg0 (P) =

∑
j∈Ic TO( j)(P). In this model, with g0 known, it is

often easy to determine an ad hoc regular asymptotically linear estimator of ψ0 that
utilizes the known g0, so that its influence curve gives us the desired initial gradient
D(P), whose projection onto the tangent space Tg0 (P) of model M(g0) yields the
canonical gradient. Specifically, relying on the invariance of statistical properties
under varying nontestable assumptions and the theory presented in van der Laan and
Robins (2003), one can construct the inverse probability of censoring (g0)-weighted
estimators of the type

ψIPCW,n =
1
n
∑n

i=1
h(Oi)
g0(Oi)
,

where h is chosen such that E0h(O)/g0(O) = ψ0. This estimator has influence curve
D(P) = h/g0 − ψ0. Or, more generally, one might define ψIPCW,n as a solution of an
estimating equation Pnh(ψ)/g0 = 0, so that the influence curve of ψIPCW,n is given
by

D(P0) = −
[

d
dψ0

P0h(ψ0)/g0

]−1 h(ψ0)
g0
.

One can also apply the inverse weighting to the different components of a sum
representation h =

∑
j h j, so that ψIPCW,n is defined as the solution of

0 = 1
n
∑n

i=1
∑

j
h j(Ōi( j),ψ)∏

l∈I,l< j gO(l),0
(Ōi(l)),

and its influence curve is the standardized version of
∑

j h j(ψ0)/
∏

l∈I:l< j gO(l),0.
Thus, for example, if we take the initial gradient of the form D(P) = h/g0 − ψ0,

then we obtain the following explicit representation of the canonical gradient:
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D∗(P) = E
(

h
g0
| O(0)

)
− ψ +

∑
j∈Ic E

(
h
g0
| O( j), Pa(O( j))

)
− E

(
h
g0
| Pa(O( j))

)
.

Let us assume that Pa(O( j)) includes all the intervention nodes (O(l) : l ∈ I( j)),
where, for notational convenience, we defined I( j) = {l ∈ I : l < j}. In this case,
these conditional expectations can always be factorized as 1/

∏
l∈I( j) gO(l),0, times

a conditional expectation that is determined by the Q0-factor only. For example, if
Pa(O( j)) = Ō( j − 1), then

E0(h/g0 | O( j), Pa(O( j))) = 1∏
l∈I( j) gO(l),0

EQ0

(∑
o(l):l∈I( j)c h | O( j), Pa(O( j))

)
,

where the sum sums up over all possible realizations of the intervention nodes (O(l) :
l ∈ I( j)c) after j. We used notation I( j)c = {l ∈ I : l � I( j)} for the intervention
nodes with index larger than j. The conditional expectation corresponds with taking
the expectation of h with respect to to the counterfactual distribution of (O(l) : l > j)
under which the intervention nodes l ∈ I( j)c are set to a fixed value o(l), summed
up over all possible realizations of the intervention nodes. Thus,

EQ0

(∑
o(l):l∈I( j)c h | O( j), Pa(O( j))

)
=

∑
o(l):l> j h(o)

∏
l> j Q0,O(l)(ō(l))

∏
l∈I( j)c g∗O(l)(ō(l)),

where g∗O(l)(ō(l)) = 1. The same applies to the conditional expectation of h/g0, given
Pa(L( j)). Thus, this yields the following explicit representation of the canonical
gradient:

D∗(P0)(O) = EQ0

⎛⎜⎜⎜⎜⎜⎜⎝ ∑
o(l):l∈I

h | O(0)

⎞⎟⎟⎟⎟⎟⎟⎠ − Ψ (Q0) (A.5)

+
∑
j∈Ic

1∏
l∈I( j) gO(l),0

⎧⎪⎪⎪⎨⎪⎪⎪⎩EQ0

⎛⎜⎜⎜⎜⎜⎜⎜⎝ ∑
o(l):l∈I( j)c

h | O( j), Pa(O( j)

⎞⎟⎟⎟⎟⎟⎟⎟⎠
−EQ0

⎛⎜⎜⎜⎜⎜⎜⎜⎝ ∑
o(l):l∈I( j)c

h | Pa(O( j)

⎞⎟⎟⎟⎟⎟⎟⎟⎠
⎫⎪⎪⎪⎬⎪⎪⎪⎭ .

Representation of the efficient influence curve based on factorization of the

likelihood in terms of binary conditional distributions. One can always repre-
sent a longitudinal data structure in terms of an ordered sequence of binary random
variables. Let L(k) be a particular variable measured as part of the longitudinal data
structure. One can decompose L(k) in terms of binaries (L(k, l) : l = 1, . . . , lk). For
example, for a univariate continuous covariate L(k), we could partition its range,
and set L(k, l) = I(L(k) = (al, al+1]) for the lth interval (al, al+1] in the partitioning of
its range. If L(k) consists of several univariate covariates, then one first orders these
covariates, discretizes each of them, and creates corresponding indicator variables.
It follows that, given a certain ordering for all the binary variables coding L(k), one
can parameterize the conditional distribution of L(k), given Pa(L(k)), as

PL(k)(L(k)) =
∏

l PL(k,l)(L(k, l) | Pa(L(k, l))),
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where Pa(L(k, l)) = (Pa(L(k)), L(k, 1), . . . , L(k, l − 1)).
Therefore, we will assume that this kind of preprocessing of the data has been

carried out, so that O(l) for l ≥ 1 are all binary random variables, while the baseline
covariates O(0) can be a vector of continuous and discrete covariates. Since O(l) is a
binary variable, we can represent any function S of O(l) and (O(l)) with conditional
mean zero, given Pa(O(l)), as

S = {S (1 | Pa(O(l)) − S (0 | Pa(O(l))}{O(l) − PO(l)(1 | Pa(O(l)))}.

The projection of an initial gradient D (or any other function) onto TO(l)(P) is given
by

D∗O(l)(P) = H∗O(l(Pa(O(l)))
{
O(l) − PO(l)(1 | Pa(O(l))

}
,

where the term H∗O(l) in front of the residual of O(l) plays a crucial role as the clever
covariate in the TMLE algorithm, and is given by

H∗O(l(Pa(O(l))) ≡ E(D | O(l) = 1, Pa(O(l))) − E(D | O(l) = 0, Pa(O(l))).

The efficient influence curve can thus be represented as

D∗(P) =
∑

k∈Ic D∗O(k)(P) =
∑

k∈Ic H∗O(k)(O(k) − PO(k)(1)),

where we used short-hand notation. Above we showed that

H∗O(k)(Q, g) = H∗O(k),gH∗O(k),Q

factorizes in a g-factor H∗O(k),g and a Q-factor H∗O(k)(Q) that equals a conditional
expectation with respect to

∏
l>k QO(l). It is of interest to note that H∗O(k)(Q) only

depends on Q through the “future” factors QO(l), l > k; This monotonicity property
of H∗ allows a particular convenient closed-form implementation of the TMLE,
presented in detail in next section (van der Laan 2010a,b).

A.8 Factorization in Terms of Binary Conditional Distributions

Summary. The efficient influence curve allows one to construct an efficient
estimator of the target parameter. The TMLE uses the efficient influence curve
to define a parametric submodel through an initial estimator of the data-
generating distribution, whose parametric maximum likelihood estimator de-
fines the targeted update of the initial estimator, and the iterative application
of this updating step defines the TMLE. We present such a TMLE for gen-
eral longitudinal data structures, based on a factorization of the observed data
density in terms of conditional distributions of binary random variables. The
targeted updates can be computed based on standard logistic regression soft-
ware.
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The TMLE is defined by a choice of loss function L(Q) and a submodel {Q(ε) : ε}
through Q at ε = 0, where we will require that 〈D∗(Q, g)〉 ⊂ 〈< d

dε L(Q(ε))
∣∣∣
ε=0〉 >,

where D∗(Q, g) is the efficient influence curve at P = Qg, and, for a function
f = ( f1, . . . , fK), 〈 f 〉 denotes the linear span of the components of the function
f in L2

0(P). We consider two such choices and thereby two types of TMLE that will
be asymptotically equivalent, since both will solve the efficient influence curve es-
timating equation.

TMLE I. Let
P(ε) =

∏
j∈Ic Q(ε)O( j)

∏
j∈I gO( j),

where for j ≥ 1

logitQ(ε)O( j)(1) = logitQO( j)(1) + ε jH∗O( j)(Q, g)

is a logistic regression model using the logit of PO( j)(1 | Pa(O( j))) as offset, and
H∗O( j) = H∗O( j)(Q, g) as d-dimensional covariate of the same dimension as the tar-
get parameter ψ0. Here ε j is a subvector of ε. In addition, the fluctuation model
Q(ε)O(0) for the distribution of the baseline covariates O(0) is chosen to have a
score of D∗O(0)(Q) with respect to ε0. Let L(Q) = − log Q be the log-likelihood
loss function. Indeed, the score d

dε log P(ε) of P(ε) at ε = 0 equals or spans (if ε
is multivariate) D∗(P), and the score of QO( j)(ε j) at ε j = 0 equals D∗O( j)(P). Thus,
〈D∗(Q, g)〉 ⊂ 〈< d

dε L(Q(ε))
∣∣∣
ε=0〉.

Note that the maximum likelihood estimator of ε j for a given initial P = Qg
can be determined with univariate logistic regression software regressing the binary
O( j) on the clever covariate H∗O( j)(Q, g), using the initial as offset. If one uses a
common ε, i.e., ε j = ε for j > 0, then one can fit this single ε by regressing the
binary outcome O( j) on the clever covariate H∗O( j)(Q, g) based on a pooled data set,
so that all j-specific logistic regressions with common parameter ε are fit in one run.

Consider an initial estimator P0
n = Q0

ng0
n of P0, where Q0

O(0),n is the empirical
distribution of the baseline covariates Oi(0), i = 1, . . . , n. We will use a separate
ε0 for the fluctutation of Q0

O(0),n, and it will always equal 0, so that this empirical
distribution will not be updated. Given the loss function L(P) = − log Q(P), we
determine

ε1n = arg minε PnL(P0
n(ε)).

This results in the first-step TMLE P1
n = P0

n(ε1n ). This updating process Pk
n =

Pk−1
n (εkn), k = 1, . . . ,K, is iterated to convergence defined by εkn ≈ 0. The final update

is the TMLE of P0 and is denoted by P∗n = Q∗ng0
n. We note that g0

n is not updated in
this process due to the fluctuation working model only allowing fluctuations of Q0

n.
The TMLE of ψ0 is now defined as the substitution estimator Ψ (P∗n) = Ψ (Q∗n).

One may use a separate ε j for each factor Q0
O( j),n, j ≥ 1. These maximum like-

lihood estimators of ε j can again be determined with logistic linear regression soft-
ware, as remarked above. Importantly, one may determine the maximum likelihood
estimators of these fluctuation parameters recursively, starting with the last factor
and working backward to the first factor, always using the most recent update of
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the estimator of Q0. In principle, one would start over at the last factor after having
finished the update of the first factor and iterate this updating process until conver-
gence. However, it follows that, with this recursive algorithm, the TMLE requires
only one update per factor, and thereby converges in one step (representing one
round from the last factor to the first factor, always using the most recent update
for Q0) and exists in analytic form. This algorithm is introduced and presented in
detail in van der Laan (2010a). The convergence in one round is due to the above-
mentioned monotonicity property of H∗O(k)(Q) with respect to its dependence on the
Q-factors QO(k) (van der Laan 2010a,b).

TMLE II. Let
P(ε) =

∏
j∈Ic Q(ε)O( j)

∏
j∈I gO( j),

where for j ≥ 1

logitQ(ε)O( j)(1) = logitQO( j)(1) + ε jHO( j)(Q)

is a logistic regression model using the logit of PO( j)(1 | Pa(O( j))) as offset, and
HO( j)(Q) as d-dimensional covariate of the same dimension as the target parame-
ter ψ0. Recall that HO( j)(Q, g) = HO( j)(Q)HO( j)(g) and that we now only use the
HO( j)(Q)-factor. Here ε j is a subvector of ε. In addition, the fluctuation model
Q(ε)O(0) for the distribution of the baseline covariates O(0) is chosen to have a score
of D∗O(0)(Q) with respect to ε0.

Let Lg(Q) = − log QO(0) +
∑

j∈Ic, j≥1{log QO( j)}HO( j)(g) be the weighted log-
likelihood loss function. Since HO( j)(g) is only a function of O through Pa(O( j)), it
follows that arg minQ P0Lg(Q) = Q0 and is thus always a valid loss function (even
if g is misspecified). Indeed, the score d

dε Lg(Q(ε)) of Q(ε) at ε = 0 equals or spans
(if ε is multivariate) D∗(Q, g), and the score of QO( j)(ε j) at ε j = 0 equals D∗O( j)(P).
Thus, 〈D∗(Q, g)〉 ⊂ 〈< d

dε Lg(Q(ε))
∣∣∣
ε=0〉.

Note that the weighted maximum likelihood estimator ε jn = arg minε j PnLg(Q(ε))
of ε j for a given initial P = Qg can be determined with univariate logistic regression
software regressing the binary O( j) on the clever covariate H∗O( j)(Q), using the initial
as offset, and using as weights H∗O( j)(g)(Oi), i = 1, . . . , n. If one uses a common
ε, i.e., ε j = ε for j > 0, then one can fit this single ε by regressing the binary
outcome O( j) on the clever covariate H∗O( j)(Q) based on a pooled data set, using
corresponding weights H∗O( j)(g)(Oi), so that all j-specific logistic regressions with
common parameter ε are fit in one run.

Consider an initial estimator P0
n = Q0

ng0
n of P0, where Q0

n,O(0) is the empirical
distribution of the baseline covariates Oi(0), i = 1, . . . , n. We will use a separate
ε0 for the fluctuation of Q0

n,O(0), and it will always equal 0, so that this empirical
distribution will not be updated. Given the loss function L(P) = − log Q(P), we
determine

ε1n = arg minε PnLg0
n
(P0

n(ε)).

This results in the first-step TMLE P1
n = P0

n(ε1n ). This updating process Pk
n =

Pk−1
n (εkn), k = 1, . . . ,K, is iterated to convergence defined by εkn ≈ 0. The final update
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is the TMLE of P0 and is denoted with P∗n = Q∗ng0
n. We note that g0

n is not updated in
this process due to the fluctuation working model only allowing fluctuations of Q0

n.
The TMLE of ψ0 is now defined as the substitution estimator Ψ (P∗n) = Ψ (Q∗n).

One may use a separate ε j for each factor Q0
n,O( j), j ≥ 1, and determine the

weighted maximum likelihood estimators of these fluctuation parameters recur-
sively, starting with the last factor and working backward to the first factor, always
using the most recent update. In principle, one would start over at the last factor
after having finished the update of the first factor and iterate this updating process
until convergence. However, as above for TMLE I, it follows that the TMLE re-
quires only one update per factor and thereby converges in one step (representing
one round from the last factor to the first factor) and exists in analytic form. We
refer the interested reader to the forthcoming Stitelman and van der Laan (2011a)
for implementation of TMLE II.

A.9 Efficient Influence Curve Collaborative Double Robustness

Summary. By definition, the canonical gradient is orthogonal to the scores
generated by parametric submodels through the data-generating distribution
that do not fluctuate the target parameter of interest. That is, the canonical
gradient is orthogonal to the nuisance tangent space. This property implies
that the canonical gradient at certain misspecified data-generating distribu-
tions will still have a mean of zero under the true data-generating distribution,
which is called the robustness of the efficient influence curve with respect to
misspecification of nuisance parameters. Robustness of the efficient influence
curve translates into robustness of estimators that utilize the efficient influence
curve, such as estimating-equation-based estimators and TMLEs. We prove a
so-called collaborative double robustness property of the efficient influence
curve, which is utilized in the C-TMLE.

Let us denote the intervention nodes by A( j), and the nodes in between two subse-
quent intervention nodes A( j − 1) and A( j) by L( j) so that O(0), . . . ,O(J) is repre-
sented as L(0), A(0), . . . , A(K), L(K + 1). Our last representation (A.5) of the canon-
ical gradient is then given by

D∗(P0)(O) = EQ0

(∑
ā h | L(0)

)
− Ψ (Q0)

+
∑K+1

j=1
1

g0,Ā( j−1)

{
EQ0

(∑
ā( j,K) h | L( j), Pa(L( j))

)
− EQ0

(∑
ā( j,K) h | Pa(L( j))

)}
, (A.6)

where ā( j,K) = (a( j), . . . , a(K)). We will use this last representation (A.6) of the
efficient influence curve to explicitly prove and demonstrate its collaborative dou-
ble robustness property. Collaborative double robustness of D∗(P0) = D∗(Q0, g0)
can be formulated as follows. For each Q ∈ Q, and a corresponding specified set
G(Q, P0) ⊂ G, we have that
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g→ P0D∗(Q, g)

is constant in g ∈ G(Q, P0), and it equals zero if Q is such that Ψ (Q) = Ψ (Q0).
Firstly, we note that P0D∗(Q, g0) = ψ0−Ψ (Q), which also follows from the proof be-
low. This shows that G(Q, P0) contains, at least, g0. However, we wish to determine
a richer set G(Q, P0) of conditional distributions for which P0D∗(Q, g) = ψ0−Ψ (Q).
We will prove the following result.

Result 1 We have O = (A, LA) ∼ P0 = Q0g0 is a missing-data structure on full-
data X = (La : a), where g0(A | X) =

∏K
j=0 gA( j),0(A( j) | Ā( j − 1), X) satisfies SRA.

We define a reduced collection of counterfactual random variables Xr∗ = Xr∗
Q−Q0

=

(X̄r∗
Q−Q0

( j) : j) (i.e., Xr∗ is a function of X), where

X̄r∗
Q−Q0

( j) =
{
EQ−Q0

(∑
ā( j,K) h | L̄ā( j−1)( j), Ā( j − 1) = ā( j − 1)

)
−EQ−Q0

(∑
ā( j,K) h | L̄ā( j−2)( j − 1), Ā( j − 1) = ā( j − 1)

)
: ā( j − 1)

}
.

Let G(Q, P0) be all true (i.e., under P0) conditional distributions of Ā, given a re-
duction Xr that implies Xr∗; such true conditional probability distributions are re-
lated to g0 by the relation g0(ā | Xr) = E0(g0(ā | X) | Xr). Then, for any Q and
g ∈ G(Q, P0), we have

P0D∗(Q, g) = ψ0 − Ψ (Q).

Proof. Firstly, we note that for any g, P0D∗(Q0, g) = 0, by simply conditioning on
Pa(L( j)) for each j-specific term. Therefore, it suffices to determine the set of g for
which P0{D∗(Q, g) − D∗(Q0, g)} − {ψ0 − Ψ (Q)} = 0. The left-hand side equals

P0EQ−Q0

(∑
ā h | L(0)

)
+

∑K+1
j=1 P0

1
gĀ( j−1)

{
EQ−Q0

(∑
ā( j,K) h | L( j), Pa(L( j))

)
− EQ−Q0

(∑
ā( j,K) h | Pa(L( j))

)}
.

We now utilize the missing-data-structure representation of the observed data O =
(A, LA) as a function of A and the collection of counterfactuals X = (La : a), so
that, for example, L( j), Pa(L( j)) is a function of (L̄a( j) : a) and Ā( j − 1). Thus, the
conditional expectations with respect to Q − Q0 are functions of (L̄a( j) : a) and
Ā( j − 1). Specifically, at Ā( j − 1) = ā( j − 1), the first term of the j-th term equals
EQ−Q0 (

∑
ā( j,K) h | L̄ā( j−1)( j), Ā( j − 1) = ā( j − 1)), and is thus indeed a function of the

counterfactual L̄ā( j−1)( j). Suppose that g ∈ G(Q, P0). Consider now the expectation
under P0 for the jth term, and first take the conditional expectation of Ā( j−1) under
g, thereby conditioning on a reduction Xr of X that is rich enough to make the EQ−Q0

terms fixed. This yields

P0EQ−Q0

(∑
ā h | L(0)

)
+

∑K+1
j=1 P0

∑
ā( j−1) EQ−Q0

(∑
ā( j,K) h | L̄a( j), ā( j − 1)

)
−

∑K+1
j=1 P0

∑
ā( j−1) EQ−Q0

(∑
ā( j,K) h | L̄a( j − 1), ā( j − 1)

)
.

Note that this no longer depends on g. The jth term of the first sum and the j + 1-th
term of the second sum gives the following difference:
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P0
∑

ā( j−1)

{
EQ−Q0

(∑
ā( j,K) h | L̄a( j), ā( j − 1)

)
−
∑

a( j) EQ−Q0

(∑
ā( j+1,K) h | L̄a( j), ā( j)

)}
.

By SRA we have that

EQ−Q0

(∑
ā( j+1,K) h | L̄a( j), ā( j)

)
= EQ−Q0

(∑
ā( j+1,K) h | L̄a( j), ā( j − 1)

)
.

We can now bring in the sum over a( j):∑
a( j) EQ−Q0

(∑
ā( j+1,K) h | L̄a( j), ā( j − 1)

)
= EQ−Q0

(∑
ā( j,K) h | L̄a( j), ā( j − 1)

)
.

This proves that the first term of the jth term and the second term of the j + 1-th
term cancel out. In particular, the very first term P0EQ−Q0 (

∑
ā h | L(0)) cancels out

with the second term for j = 1. This shows that we are left with a single term,
namely, the j = K + 1-th term of the first sum: P0

∑
ā(K) EQ−Q0 (h | L̄a(K + 1), ā(K)).

However, the conditioning event (both under Q and Q0) implies the value of h so
that this conditional expectation EQ−Q0 equals h − h = 0. This proves the desired
collaborative double robustness. �

A.10 Example: TMLE with the Outcome Subject to Missingness

Suppose O = (W, A, Δ,Y∗ = ΔY) ∼ P0. The model for the probability distribution of
(W, A, Y) is nonparametric so that the model for P0 is nonparametric beyond the spe-
cial structure that Y∗ equals 0 when Δ = 0. We have that the likelihood of O under
P factorizes as P = PW PAPΔPΔY∗ , using our notation for conditional distributions,
where each of these conditional distributions is unspecified, which defines the sta-
tistical modelM for P0. Let Ψ (P) = EP[EP(Y∗ | W, A = 1, Δ = 1) − EP(Y∗ | W, A =
0, Δ = 1)] be the target parameter of P defined on this modelM. We wish to deter-
mine the efficient influence curve D∗(P) of Ψ : M → R at a P, and subsequently a
TMLE of ψ0. We note that P = Q × g, with g being the conditional distribution of
(A, Δ), given W, Q = QW QY∗ , is a product of the other two factors of P, and we also
note that Ψ (P) = Ψ (Q).

As the initial gradient of the pathwise derivative of Ψ at P = Q × g in the model
with g known, we can choose DIPCW (P) = H(g)Y − Ψ (P), where H(g) = I(A =
1, Δ = 1)/g(A, Δ | W) − I(A = 0, Δ = 1)/g(A, Δ | W). This is a gradient in the
model with g known, but its projection onto the tangent space of Q will yield the
efficient influence curve in our model. One way to verify that DIPCW is a valid IPCW
gradient is to use a missing-data-structure representation of O = (W, A, Δ, ΔYA) on
full-data X = (W, Y0, Y1), use the theory for CAR censored-data models as pre-
sented in van der Laan and Robins (2003) for determining IPCW gradients, and
apply the invariance principle presented in Appendix A.7. That is, (1) assume CAR,
P(A, Δ | X) = P(A, Δ | W), (2) note that Ψ (P) = EY1 − EY0 is a parameter of
full-data distribution, (3) note that the gradient of the full-data parameter EY1 −EY0
in the full-data model for X is given by DF(X) = (Y1 − Y0 − ψ), and (4) show that
E(DIPCW | X) = DF(X). We refer to van der Laan and Robins (2003) for detailed



548 A Foundations of TMLE

theory on determining gradients for censored-data models in terms of the gradients
of the underlying full-data model.

The efficient influence curve D∗(P) equals the projection of DIPCW onto the
tangent space of Q. The projection onto the tangent space of QW is given by
E(DIPCW | W), and the projection onto the tangent space of QY∗|W,A,Δ is given by
Δ{DIPCW − E(DIPCW | W, A, Δ = 1)}. Since the sum of these two projections yields
the efficient influence curve D∗(P), we have

D∗(P) = H(g)(Y∗ − Q̄(W, A)) + Q̄(W, 1) − Q̄(W, 0) − Ψ (Q),

where Q̄(W, a) = EP(Y∗ | W, A = a, Δ = 1).

The TMLE. If Y , and thereby Y∗, is binary, then we use the fluctuation working
model logitQ̄(ε) = logitQ̄ + εH(g) and use as loss function for Q̄ the log-likelihood
for a binary distribution given by L(Q̄) = Q̄Y∗Δ(1 − Q̄)(1−Y∗)Δ. We can also pro-
pose a fluctuation working model for QW with score DW = Π(D∗ | TW ), but
since we will use as initial estimator of QW,0 the empirical distribution, the max-
imum likelihood estimator of the fluctuation parameter will be zero, so that no up-
dates of QW,n will occur. Let Q̄0

n be an initial estimator of Q̄0. One now computes
εn = arg maxε PnL(Q̄0

n(ε)), and one defines the TMLE update as Q̄1
n = Q̄0

n(εn). Fur-
ther iteration does not result in further updates, so that the TMLE Q∗n is defined as
Q∗n = (QW,n, Q̄1

n). The TMLE of ψ0 is thus given by Ψ (Q∗n). If Y is continuous with
values in (0, 1), one can use the same loss function L(Q̄) and fluctuation function
for the conditional mean Q̄. If Y is bounded in (a, b), then one can transform the
outcome into Y∗ = (Y − a)/(b − a) ∈ (0, 1) and apply this same TMLE. For contin-
uous Y , one can also use the squared error loss function and the linear fluctuation
function, but such a fluctuation function is not guaranteed to respect known bounds
on Y and is thus not generally recommended.

A.11 Example: TMLE of Causal Effect in a Two-Stage RCT

Let us denote the observed data structure on a randomly sampled patient from the
target population with O = (L(0), A(0), L(1), A(1), Y = L(2)) ∼ P0. Let Pa(L( j)) =
(Ā( j − 1), L̄( j − 1)) and Pa(A( j)) = (L̄( j), Ā( j − 1)), where we make the convention
that for j = 0, Ā( j−1) and L̄( j−1) are empty. The likelihood of O can be factorized
as P = PL(0)

∏L
l=1 PL(1,l)PY

∏1
j=0 PA( j), where the first factors will be denoted by

QL(0), QL(1,l), QY , and the latter two factors denote the treatment mechanism and are
denoted by gA( j), j = 0, 1.

Suppose our parameter of interest is the treatment-specific mean EYd for a
certain treatment rule d that assigns treatment d0(L(0)) at time 0 and treatment
d1(L̄(1), A(0)) at time 1. For example, d0(L(0)) = 1 is a static treatment assign-
ment, L(1) is binary, and d1(L̄(1), A(0)) = I(L(1) = 1)×1 + I(L(1) = 0)×0 assigns
treatment 1 if the patients responds well to the first line treatment (i.e., L(1) = 1)
and treatment 0 if the patient does not respond well to the first line treatment. We
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note that any treatment rule can be viewed as a function of L̄ = (L(0), L(1)) only,
and therefore we will use the shorter notation d(L̄) = (d0(L(0)), d1(L̄)) for the two
rules at times 0 and 1.

Note that EYd = Ψ (Q) for a well-defined mapping Ψ . Specifically, we have
Ψ (Q) = EPd Y , where the postintervention distribution Pd of (L(0), L(1), L(2)) is
defined by the g-computation formula: Pd(L̄) =

∏2
j=0 QL( j),d(L̄( j)), where, for nota-

tional convenience, we used the notation QL( j),d(L̄( j)) = QL( j)(L( j) | L̄( j − 1), Ā( j −
1) = d(L̄( j−1))). From this analytic expression it also follows that, even if Y is con-
tinuous, Ψ (Q) only depends on the conditional distribution of Y through its mean.
Using the techniques given above we obtain the following representation of the ef-
ficient influence curve.

Theorem A.2. The efficient influence curve for ψ = EYd at the distribution P = Qg
of O can be represented as D∗ = Π(DIPCW | TQ), where DIPWC(O) = I(Ā=d(L̄))∏1

j=0 gA( j)
Y − ψ,

TQ is the tangent space of Q in the nonparametric model, and Π denotes the
projection operator onto TQ in the Hilbert space L2

0(P) of square P-integrable
functions of O, endowed with inner product 〈h1, h2〉 = EPh1h2(O). We have that
TQ =

∑2
j=0 TQL( j) is the orthogonal sum of the tangent spaces TQL( j) of the QL( j)-

factors, which consists of functions of (L( j), Pa(L( j))) with conditional mean zero,
given the parents Pa(L( j)) of L( j), j = 0, 1, 2. Recall that we also denote L(2)
by Y. Let DL( j) = Π(D∗ | TQL( j) ), j = 0, 1, 2. We have DL(1) =

∑L
l=1 DL(1),l, where

DL(1),l = Π(D | TQL(1,l) ), and

DL(0)(O) = E(Yd | L(0)) − ψ,

DL(1,l)(O)) =
I (A(0) = d0(L(0)))

gA(0)

{
CL(1,l)(1) −CL(1,l)(0)

} {
L(1, l) − QL(1,l)(1)

}
,

DL(2)(O) =
I
(
Ā = d(L̄)

)
∏1

j=0 gA( j)

{
L(2) − E(L(2) | L̄(1), Ā(1))

}
,

where, for δ ∈ {0, 1}, CL(1,l)(δ) = E(Yd | Pa(L(1, l)), L(1, l) = δ). We also note that:
E(Yd | L(0), A(0) = d0(L(0)), L(1)) = E(Y | L̄(1), Ā = d(L̄)).

The TMLE. Consider now an initial estimator QL( j),n of each QL( j), j = 0, 1, 2.
We will estimate the first marginal probability distribution QL(0) of L(0) with the
empirical distribution of Li(0), i = 1, . . . , n. We use the log-likelihood loss func-
tion L(QL(0)) = − log QL(0) and consider a submodel QL(0)(ε0) with score DL(0)(Q)
defined above.

We can estimate the conditional distributions of the binary L(1, l) with loss-based
learning based on the loss function L(QL(1)) = −

∑
l log QL(1,l). For example, one

could use logistic regression machine learning algorithms, l = 1, . . . , L, where one
could also smooth in l. Similarly, we can estimate the conditional mean of Y = L(2)
with loss-based learning using the log-likelihood or squared error loss function. We
will now define fluctuations of this initial estimator QL(1),n and QL(2),n. Firstly, let

logitQ̄L(1,l),n(ε1) = logitQ̄L(1,l),n + ε1H∗L(1,l)(Qn, gn)
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be the fluctuation function of the conditional probability Q̄L(1,l),n = QL(1,l),n(1) of
L(1, l) = 1 with fluctuation parameter ε1, where we added the covariate H∗L(1,l)(Q, g) =
{I(A(0) = d(L(0)))/gA(0)}(CL(1,l)(1) −CL(1,l)(0)) defined above in Theorem A.2. This
defines a fluctuation working model QL(1),n(ε1), and we can use the log-likelihood
−log QL(1) as loss function. In the special case where L(1) is itself already a binary
variable, we have

H∗L(1)(L(0), A(0)) = I(A(0)=d0(L(0)))
gA(0)(d0(L(0))|L(0)) {CL(1)(Q)(1) −CL(1)(Q)(0)},

where CL(1)(Q)(δ) = EQ(Yd | L(0), A(0), L(1) = δ). We refer to these covariate
choices as clever covariates, since they represent a covariate choice that identifies
a least favorable fluctuation model, thereby providing the desired targeted bias re-
duction. Similarly, if Y = L(2) is binary, then let logitQ̄L(2)n(ε2) = logitQ̄L(2)n +

ε2H∗L(2)(Qn, gn), where the added clever covariate H∗L(2)(Q, g)(L̄(1), Ā(1)) = I(Ā =
d(L̄))/

∏1
j=0 gA( j). If Y is continuous with values in (0, 1), then we can use the same

“log-likelihood” loss function L(Q̄Y ) = −{Y log Q̄Y + (1− Y) log(1− Q̄Y )}, and fluc-
tuation working model as we use for binary Y , and this yields then also a TMLE
for Y bounded in (a, b). As a side remark, one may also select the squared error
loss function for Q̄Y and linear fluctuation working model Q̄L(2),n + εHL(2)(Qn, gn).
We note that the above fluctuation function and use of the loss function L(Q) =
L(QL(0)) −

∑
l log QL(1,l) + L(Q̄Y ) indeed satisfies that the score of ε = (ε0, ε1, ε2) at

ε = 0 spans the efficient influence curve D∗(Qn, gn), as presented in Theorem A.2
above.

Let εn = arg maxε
∏2

j=1
∏n

i=1 QL( j),n(ε)(Oi) be the maximum likelihood estimator
of ε according to the working fluctuation model. If one uses separate ε for different
factors of Q, then one could also obtain a separate maximum likelihood estimator
of ε j for each factor j = 1, 2, or even an ε1,l for each factor QL(1,l) indexed by l. This
process is now iterated to convergence, which defines the TMLE (Q∗n, gn), starting at
initial estimator (Qn, gn). Note that this does not involve updating of gn. The TMLE
of ψ is now given by Ψ (Q∗n).

If Y is binary or continuous in (0, 1), then a single/common εn defined above
requires applying a single logistic regression applied to a repeated measures data
set with one line of data for each of the factors of the likelihood, creating a clever
covariate column that alternates the clever covariates HL(1,l) and HL(2), and uses the
corresponding offsets. Thus, in both cases (separate or common ε), the update step
can be carried out with a simple univariate logistic regression maximum likelihood
estimator. Computing a MLE of a common ε in the case where we use the linear
fluctuation working model and squared error loss function for QY requires some
programming.

A one-step closed-form TMLE. For the sake of illustration, suppose L(1) is itself
binary. If one uses a separate εL( j) for j = 0, 1, 2, first carry out the TMLE update
for QL(2),n and use this updated Q∗L(2),n in the clever covariate required to compute
the targeted update of QL(1),n. Then we obtain a TMLE algorithm that converges
in these two simple updating steps, representing a single-step update of Q∗n and
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TMLEΨ (Q∗n). Similarly, this particular one-step TMLE involving iterative updating
(starting with the last factor of the likelihood and ending with the update of the first
factor) generalizes to general L(1) and general longitudinal data structures (van der
Laan 2010a), and was presented above.

A.12 Example: TMLE with Right-Censored Survival Time

Let O = (W, A, dN(t), dAc(t), t = 1, . . . , τ) ∼ P0, where dN(t) = I(T̃ = t, Δ = 1)
and dAc(t) = I(T̃ = t, Δ = 0), are indicators of an observed failure and observed
censoring event at time t, respectively. The likelihood of O under P factorizes as
P = QWgA

∏
t QdN(t)

∏
t gdAc(t), using our short-hand notation, where Pa(dN(t)) =

(W, A, N̄(t − 1), Āc(t − 1)), Pa(A) = W, and Pa(dAc(t)) = (W, A, Āc(t − 1), N̄(t)). The
model for P0 is nonparametric on the Q0-factor but may incorporate assumptions
about g0 = g0,A

∏
t g0,dAc(t). The efficient influence curve of a parameter of Q is the

same in any such a model. Let Ψ (P) = EP[S (t0 | A = 1,W) − S (t0 | A = 0,W)],
where S (t0 | A = a,W) =

∏t0
t=0(1 − Q̄dN(t)(t | W, A = a)), and Q̄dN(t)(t | W, A) =

EP(dN(t) | T̃ ≥ t,W, A) would be equal to the conditional hazard of an underlying
time-to-event T under a CAR-model (see below). We wish to determine the efficient
influence curve D∗(P) of this target parameter at P and define a TMLE.

As initial gradient in the model in which g is known, we can choose

DIPCW =
I(A=1,Āc(t0)=0̄(t0))−I(A=0,Āc(t0)=0̄(t0))

gA
∏

t≤t0
gdAc (t)

I(T̃ > t0) − Ψ (Q).

One way to show that this is indeed a gradient in the model with g known is (based
on van der Laan and Robins 2003) (1) to represent O as a missing-data structure on
full data structure X = (W, T0, T1) with censoring process (A, I(C = t) : t = 1, . . . , τ),
so that T = TA, dN(t) = I(TA = t,C ≥ t), and dAc(t) = I(C = t, TA > t); (2)
assuming CAR on the conditional distribution of (A, Ac), given X, so that P(A |
X) = P(A | W) and P(dAc(t) | X, Āc(t − 1), A) = P(dAc(t) | Āc(t − 1), N̄(t),W, A); (3)
noting that Ψ (P) = P(T1 > t0) − P(T0 > t0) and that the gradient of this full-data
parameter in the full data model equals DF(X) = I(T1 > t0)− I(T0 > t0)−Ψ (P); and
(4) showing that E(DIPCW | X) = DF(X). Such a CAR censored-data representation
of the observed data model provides no restrictions on the statistical model, so that
its only role is to provide a working model for carrying out calculations, such as the
calculation of an efficient influence curve (Appendix A.7).

The efficient influence curve D∗(P) equals the projection of DIPCW (P) onto the
tangent space of Q = Q(P). The projection onto the tangent space TW (P) of QW

equals EP(DIPCW | W), which equals S (t0 | A = 1,W) − S (t0 | A = 0,W) − Ψ (Q).
The projection onto the tangent space TdN(t)(P) of QdN(t) is given by H∗dN(t)(dN(t) −
Q̄dN(t)(t | W, A)), where

H∗dN(t) = EP(DIPCW | dN(t) = 1, Pa(dN(t))) − EP(DIPCW | dN(t) = 0, Pa(dN(t))).
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Since Pa(dN(t)) = (W, A, N̄(t − 1), Āc(t − 1)) and the projection onto TdN(t) equals
zero if T̃ ≤ t − 1, it follows that we can condition on T̃ ≥ t in these two conditional
expectations. For t ≤ t0 we have EP(DIPCW | W, A, dN(t) = 1, T̃ ≥ t) = 0, since
dN(t) = 1 implies T̃ ≤ t0 so that DIPCW = 0. For t > t0, this same conditional ex-
pectation reduces to (I(A = 1) − I(A = 0)) /

(
gA

∏
s≤t0 gdAc(s)(0)

)
. Regarding the first

conditional expectation in the expression for HdN(t), we conclude

EP(DIPCW | W, A, dN(t) = 1, T̃ ≥ t) = I(t > t0)
I(A = 1) − I(A = 0)
gA

∏
s≤t0 gdAc(s)(0)

.

Let us now consider the second conditional expectation in HdN(t). If t > t0, then this
term equals the first term we just displayed. For t ≤ t0, we obtain

EP(DIPCW | W, A, dN(t) = 0, T̃ ≥ t)

=
I(A=1)−I(A=0)

gA
∏

s≤t−1 gdAc (s)(0) EP

(
I(Āc(t,t0)=0,T̃>t0)∏

s∈[t,t0] gdAc (s)
| W, A, T̃ ≥ t, dN(t) = 0

)
.

In the CAR censored-data model representation, the latter conditional expectation
equals EP(I(T > t0) | W, A, T > t). Regarding the second term, we conclude:

EP(DIPCW | W, A, dN(t) = 0, T̃ ≥ t)

= I(t > t0) I(A=1)−I(A=0)
gA

∏
s≤t0

gdAc (s)(0) + I(t ≤ t0) I(A=1)−I(A=0)
gA

∏
s≤t−1 gdAc (s)(0)

S (t0 |W,A)
S (t|W,A) .

Thus, we have shown that

H∗dN(t) = −I(t ≤ t0) I(A=1)−I(A=0)
gA

∏
s≤t−1 gdAc (s)(0)

S (t0 |W,A)
S (t|W,A)

and that the efficient influence curve can be represented as

D∗(P) =
∑τ

t=1 HdN(t)(dN(t) − Q̄dN(t)) + S (t0 | A = 1,W) − S (t0 | A = 0,W) − Ψ (Q).

The TMLE. In our chapters on TMLE for time-to-event outcomes, we presented the
TMLE based on this representation of the efficient influence curve, involving TMLE
updates of an estimator of the conditional hazard Q̄dN(t) using a logistic regression
working fluctuation model with a time-dependent clever covariate H∗dN(t).

A.13 Example: TMLE of a Causal Effect Among the Treated

Suppose we observe n i.i.d. observations of O = (W, A, Y) ∼ P0, W baseline co-
variates, subsequently assigned binary treatment A, and final outcome Y of interest.
Suppose the statistical model is nonparametric and we wish to estimate the follow-
ing parameter of the data-generating distribution P0 of O = (W, A, Y):

Ψ (P0) = E0 [E0(Y | A = 1,W) − E0(Y | A = 0,W) | A = 0] .
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Another way of representing this parameter is Ψ (P0) = −E0(Y − E(Y | A = 1,W) |
A = 0), i.e., among the nontreated in the population, one evaluates the outcome
minus the predicted outcome if, contrary to fact, one would have been treated, and
one takes the population average of all these differences over all nontreated sub-
jects. Under an SCM, W = fW (UW ), A = fA(W,UA), Y = fY (W, A,UY ), and the
randomization assumption stating that UA is independent of UY , one can interpret
this parameter as a causal effect among the nontreated E(Y1 − Y0 | A = 0). Suppose
one wants to estimate the effect among the treated, given by

Ψ1(P0) = E0[E0(Y | A = 1,W) − E0(Y | A = 0,W) | A = 1],

which under the above-mentioned SCM can be represented as E(Y1 − Y0 | A = 1).
Switching the roles of A = 1 and A = 0 in the formulas below provides the efficient
influence curve and TMLE of −Ψ1(P0). We make this explicit below.

Note that a probability distribution P is determined by the marginal distribution
PW of W, the conditional distribution PA|W of A, given W, and the conditional dis-
tribution PY |A,W of Y , given A,W. The parameter Ψ (P) depends on P through both
PW , PY |A,W as well as the treatment mechanism PA|W . We will denote the treatment
mechanism by g = g(P) and the other two factors of the likelihood by QW and
QY |A,W . We will use the notation Q̄(A,W) = EP(Y | A,W) and Q̄0 for this condi-
tional mean of Y under P0.

Efficient influence curve of target parameter. Firstly, consider the parameter P→
Ψ (P)(1) = EP(EP(Y | A = 1,W) | A = 0). Using the functional delta method
technique presented in Appendix A.3, it follows that the efficient influence curve of
this parameter at P is given by

D∗1(P) = I(A=1)
P(A=0)

g(0|W)
g(1|W) (Y − Q̄(1,W)) + I(A=0)

P(A=0) (Q̄(1,W) − Ψ (P)(1)).

Similarly, the efficient influence curve of Ψ (P)(0) = EP(EP(Y | A = 0,W) | A = 0)
at P is given by

D∗0(P) = I(A=0)
P(A=0) (Y − Q̄(0,W)) + I(A=0)

P(A=0) (Q̄(0,W) − Ψ (P)(0)).

Thus the efficient influence curve of Ψ (P) = Ψ (P)(1) − Ψ (P)(0) is given by

D∗(P) =
{

I(A=1)
P(A=0)

g(0|W)
g(1|W) −

I(A=0)
P(A=0)

}
(Y− Q̄(A,W))+ I(A=0)

P(A=0)

{
Q̄(1,W) − Q̄(0,W) − Ψ (P)

}
.

The efficient influence curve of Ψ (P) = EP(EP(Y | A = 1,W) − EP(Y | A = 0,W) |
A = 1) is obtained by changing the roles of A = 1 and A = 0, and assigning a minus
sign, giving

D∗(P) =
{

I(A=1)
P(A=1) −

I(A=0)
P(A=1)

g(1|W)
g(0|W)

}
(Y− Q̄(A,W))+ I(A=1)

P(A=1)

{
Q̄(1,W) − Q̄(0,W) − Ψ (P)

}
.

Collaborative double robustness of efficient influence curve. This efficient influ-
ence curve of Ψ (P) can be represented as an estimating function D∗(Q, g, ψ), where
we suppress the dependence on the scalar P(A = 0) and use notation Q = (QW , Q̄).
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We note that this estimating function is double robust in the sense that it is an un-
biased estimating function for ψ0, if either Q is correctly specified or g is correctly
specified. Formally, this is stated as

P0D∗(Q, g, ψ0) = 0 if Q = Q0 or g = g0,

and g(1 | W) > 0, a.e. This double robustness result can be explicitly verified.
In fact, we can establish a stronger collaborative double robustness, defined as

follows. Let W(Q) be a subset/reduction of W so that conditioning on W(Q) also
fixes (Q̄ − Q̄0)(a,W) for a ∈ {0, 1}. Then, for all Q and corresponding g0(Q) =
P(A = · | W(Q)) for such a W(Q) ⊂ W, we have

P0D∗(Q, g0(Q), ψ0) = 0.

Note that this implies, in particular, P0D∗(Q0, g) = 0 for all g, since, if Q = Q0, then
we can select W(Q) as the empty set. Thus, g0 only needs to adjust for the covariates
that still play a role in Q̄− Q̄0. This can also be stated as the following collaborative
double robustness of the efficient influence curve D∗(P) = D∗(Q, g). For a given Q,
let G(Q, P0) be the set of conditional distributions under P0 of A, given W(Q) as
defined above. For each Q, and for each g ∈ G(Q, P0), we have that P0D∗(Q, g) = 0
implies Ψ (Q, g) = ψ0.

Implications for double robust efficient estimation. One could define a closed-
form asymptotically efficient double robust estimator ψDR,n as the solution of the
efficient influence curve estimating equation

0 = PnD∗(Qn, gn, ψ),

given estimators Qn of Q0 and gn of g0. We can also compute a collaborative double
robust asymptotically efficient TMLE that has various previously presented advan-
tages. In particular, it is guaranteed to be a substitution estimator, and it will only
pursue adjustment in gn that remains helpful after the adjustment carried out by Qn,
thereby resulting in more effective adjustment sets and bias reduction.

A TMLE is a substitution estimator Ψ (P∗n), where the estimated data-generating
distribution P∗n is such that it solves the efficient influence curve estimating equation

0 = PnD∗(Q(P∗n), g(P∗n), Ψ (P∗n)).

As a consequence, the substitution estimator (TMLE) Ψ (P∗n) is double robust and
efficient, and collaborative double robust if one uses the C-TMLE that builds gn

based on the loss function for Q̄0.

The TMLE. Let us now present the TMLE that maps an initial estimator P0
n into a

targeted fit P∗n. Suppose Y is binary. Given an initial estimator Q̄0
n of Q̄0, an initial

estimator g0
n of g0, and empirical distribution QW,n of W, we define the parametric

working model for fluctuating the initial estimator: logitQ̄0
n(ε1) = logit Q̄0

n+ε1C1(g0
n),
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and logit (g0
n(ε2)(0 | W)) = logit(g0

n(0 | W)) + ε2C2(P0
n)(W), where these two clever

covariates are defined as

C1(g) =
{

I(A = 1)
P(A = 0)

g(0 | W)
g(1 | W)

−
I(A = 0)
P(A = 0)

}
,

C2(P) =
1

P(A = 0)

{
Q̄(P)(1,W) − Q̄(P)(0,W) − Ψ (P)

}
.

Let QW,n(ε0) be a parametric working model with score D∗W = g(0 | W)(Q̄(1,W) −
Q̄(0,W) − Ψ (P)). These three one-dimensional working models represent a para-
metric working model {P0

n(ε) : ε} for fluctuating P0
n. We use the log-likelihood loss

function L(P) = −log P. We estimate ε with maximum likelihood. Note that ε0n = 0,
ε1 is estimated with standard linear logistic regression fixing Q̄n as an offset, and ε2
is estimated with standard linear logistic regression fixing gn(0 | W) as offset in the
logistic regression model for P(A = 0 | W).

This maximum likelihood estimator ε1n = (ε0n, ε1n, ε2n) now defines an update
P1

n = P0
n(ε1n ). The targeted maximum likelihood updating is iterated to convergence,

and the final P∗n, identified by a Q̄∗n, g
∗
n and the empirical distribution QW,n, is called

the TMLE of the distribution P0, while Ψ (P∗n) is called the TMLE of ψ0. We have
that the TMLE Ψ (P∗n) solves the efficient influence curve estimating equation, as
presented above. We can use machine learning/super learning to obtain the initial
P0

n (i.e., Q̄0
n and g0

n).
Since P∗n solves, in particular,

0 = 1
n
∑n

i=1
I(Ai=0)
P(A=0)

{
Q̄∗n(1,Wi) − Q̄∗n(0,Wi) − Ψ (P∗n)

}
,

it follows that the TMLE Ψ (P∗n) can also be evaluated as

Ψ (P∗n) = 1∑
i I(Ai=0)

∑
i I(Ai = 0)

{
Q̄∗n(1,Wi) − Q̄∗n(0,Wi)

}
,

i.e., as the empirical mean of Q̄∗n(1,W) − Q̄∗n(0,W) among the observations with
Ai = 0. Apparently, in this evaluation of Ψ (P∗n), g∗n can be ignored.

Collaborative TMLE. The collaborative double robustness of the efficient influ-
ence curve allows us to also implement the C-TMLE as presented in Chap. 19. A
TMLE requires iterative estimation of Q̄0 and g0, so that other parts of the proba-
bility distribution can be ignored. In this case, given the initial estimator Q0

n (thus
Q̄0

n and empirical distribution QW,n of W), one starts with a g0
n as an intercept model,

and one selects the main term extension g1
n of g0

n whose TMLE yields the best fit
of Q̄0 as measured by the loss function for Q̄0 used by the TMLE. This process is
iterated, thereby building a sequence of main term regression fits for g0 and corre-
sponding TMLEs Pk

n, k = 1, . . . ,K. If at a certain k, the loss-function-specific fit
of the corresponding TMLE of Q̄0 is not increasing relative to the k−1-th TMLE,
then we accept the previously selected TMLE, reject the kth TMLE, and proceed as
before but now use the k−1-th TMLE as initial estimator in the next TMLEs. These
subsequent TMLEs will still keep updating the previous g0 fit by adding main terms.
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In this manner, the algorithm generates a sequence of candidate TMLEs indexed by
the number of main terms that were included in the g0 fit. The empirical risk (with
respect to the Q̄0 loss function) of these TMLEs decreases with the number of main
terms. This number of main terms, and thereby the TMLE, is selected with (Q̄0-)
loss-function-specific cross-validation, possibly penalizing the cross-validated risk,
as proposed in van der Laan and Gruber (2010) and presented in Chap. 19. The
main terms can include propensity score dimension reductions indexed by different
adjustment sets, so that the above algorithm is still arbitrarily nonparametric in fit-
ting g0. We refer the reader to Appendix A.17 for a detailed understanding of the
C-TMLE.

A.14 Example: TMLE Based on an Instrumental Variable

Suppose we observe O = (W,R, A, Y) ∼ P0. Consider the following SCM: W =

fW (UW ), R = f (W,UR), A = f (W,R,UA), Y = fY (W,R, A,UY ). This SCM allows us
to define counterfactuals corresponding with setting R and setting simultaneously
(R, A), and corresponding postintervention distributions. It is assumed that UR is
independent of UY , given W, which means that R is randomized, conditional on W.
R plays the role of an instrumental variable that can be used to estimate the causal
effect of a treatment A on Y , even if there are unmeasured variables that affect both
A and Y (i.e., not captured by W). We consider the following causal parameter of
the distribution of counterfactuals corresponding with interventions on R:

ΨF
r (PX,0) =

E0Y(R = r) − EY(R = 0)
E0A(R = r) − E0A(R = 0)

. (A.7)

By the randomization assumption, this parameter is identifiable from P0 through the
following statistical parameter:

Ψr(P0) =
E0(E0(Y | W,R = r) − E0(Y | W,R = 0))
E0(E0(A | W,R = r) − E0(A | W,R = 0))

.

We will use the following notation: Q̄0(W, r) = E0(Y | W,R = r), ḡ0(W, r) = E0(A |
W,R = r), QW,0(w) = P0(W = w), and Q0 = (QW,0, Q̄0).

Causal interpretation of ψr,0. If the exclusion restriction given by fY (W,R, A,UY ) =
fY (W, A,UY ) holds, and fY (W, A,UY ) = fY (W, 0,UY ) + β0A, then it follows that
β0 = Ψ

F
r,1(PX,0). Since the causal interpretation of ψr,0 is constant in r, we can de-

fine as estimand a weighted average of the r-specific parameters Ψr(P0), such as
Ψ (P0) =

∑
r>0 h(r)Ψr(P0), where

∑
r>0 h(r) = 1.

Efficient influence curve. Since Ψr(P0) is a simple function of E0Y(r), E0Y(0),
E0A(r), and E0A(0), and we know the efficient influence curves of these parameters,
the delta method provides us with the efficient influence curve of Ψr at P:
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D∗r (P) =
1

E{A(r) − A(0)}
I(R = r) − I(R = 0)

g(R | W)
(Y − Q̄(W,R))

−
E(Y(r) − Y(0))
E2(A(r) − A(0))

I(R = r) − I(R = 0)
g(R | W)

(A − ḡ(W,R))

+
1

E{A(r) − A(0)}
{
Q̄(W, r) − Q̄(W, 0) − E(Y(r) − Y(0))

}
−

E(Y(r) − Y(0))
E2(A(r) − A(0))

{ḡ(W, 1) − ḡ(W, 0) − E(A(r) − A(0))} .

Again, by the δ-method, the efficient influence curve of Ψ is given by D∗ =∑
r>0 h(r)D∗r .

Double robustness of r-specific efficient influence curve. The solution of the equa-
tion P0D∗r (Q̄, ḡ, gR,0, ψr) = 0 in ψr equals

ψr =
P0

{
I(R=r)−I(R=0)

g0(R|W) (Y − Q̄(W,R)) + Q̄(W, r) − Q̄(W, 0)
}

P0

{
I(R=r)−I(R=0)

g0(R|W) (A − ḡ(W,R)) + ḡ(W, r) − ḡ(W, 0)
}

=
P0

{
Q̄0(W, r) − Q̄0(W, 0)

}
P0 {ḡ0(W, r) − ḡ0(W, 0)}

= ψr,0.

Thus this solution is correct even if both Q̄ and ḡ are misspecified. This result also
implies a robustness for D∗ =

∑
r>0 h(r)D∗r .

TMLE of Ψ . Define

CY,r(P) =
1

E{A(r) − A(0)}
I(R = r) − I(R = 0)

g(R | W)

CA,r(P) =
E(Y(r) − Y(0))
E2(A(r) − A(0))

I(R = r) − I(R = 0)
g(R | W)

.

If Y is continuous in (0, 1) or binary in {0, 1}, then we can use the quasi-log-
likelihood loss function LY (Q̄)(O) = Y log Q̄(W,R) + (1 − Y) log(1 − Q̄(W,R)) for
Q̄0. Regarding parametric submodel Q̄(ε), we use the logistic regression logitQ̄(ε) =
logitQ̄ + εCY with clever covariate CY =

∑
r>0 h(r)CY,r.

Similarly, if A is continuous in (0, 1) or binary in {0, 1}, then we can use the quasi-
log-likelihood loss function LA(ḡ)(O) = A log ḡ(W,R) + (1 − A) log(1 − ḡ(W,R)) for
ḡ0. Regarding parametric submodel ḡ(ε), we use the logistic regression logitḡ(ε) =
logitḡ+ εCA with clever covariate CA =

∑
r>0 h(r)CA,r. For the marginal distribution

of W, we use the log-likelihood loss function LW (QW ) = − log QW , and as submodel
we select (1 + εD∗W )QW , where D∗W = Π(D∗ | TW ). We can now define the loss
function L(QW , Q̄, ḡ) = LW (QW ) + LY (Q̄) + LA(ḡ) for the combined (Q, ḡ), and the
submodel above was selected so that d

dε L(QW (ε1), Q̄(ε2), ḡ(ε2)) at ε = 0 spans the
efficient influence curve D∗(Q, ḡ). Here Q = (QW , Q̄).
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The initial estimator of QW is the empirical distribution function. We can ob-
tain initial estimators of Q̄0, ḡ0, and gR,0 with loss-based learning. Let (Q0

n, ḡ
0
n, gn,R)

represent this initial estimator of (QW,0, Q̄0, ḡ0, g0,R). The TMLE is now defined:
ε1n = arg minε PnL(Q0

n(ε), ḡ0
n(ε)), set Q1

n = Q0
n(ε1n ), ḡ1

n = ḡ0
n(ε1n ), and iterate this

updating process to convergence. We note that ε1 is estimated at zero so that the
empirical distribution of W will not be updated, and gn,R is not updated either. Let
Q∗n, ḡ

∗
n denote the limit. Then the TMLE of ψ0 is given by ψ∗1n = Ψ1(Q∗n, ḡ

∗
n).

In this formulation of the TMLE, we are not providing a guarantee that ψ∗n is a
completely valid substitution estimator since the conditional means Q̄∗n(W,R) and
ḡ∗n(W,R) are not variation independent. The formal recipe of TMLE can be based on
the orthogonal factorization of the density P(O) = P(W)P(R | W)P(A | W,R)P(Y |
W,R, A) in variation-independent conditional distributions, providing a loss function
for Q̄(W,R, A) (instead of Q̄(W,R)), the required parts of the conditional distribution
of A, given W,R, and for the marginal distribution of W, and choosing working
submodels based on the corresponding orthogonal decomposition of the efficient
influence curve. We leave this exercise to the reader.

A.15 Example: TMLE of the Conditional Relative Risk

We consider n i.i.d. observations of O = (W, A, Y) ∼ P0 ∈ M, where W is a vector of
baseline covariates, A is an exposure of interest, and Y = {0, 1} is a binary outcome.
We define the statistical modelM as all probability distributions P0 satisfying

Q̄0(A,W) = emβ0 (A,V)θ0(W),

where Q̄0(A,W) ≡ P0(Y = 1 | A,W), mβ0 (A,V) is a specified function of A and effect
modifiers V ⊂ W, and θ0(W) ≡ P0(Y = 1 | A = 0,W). We will also use the notation
Q̄β0,η0 for Q̄0. For simplicity, we first consider the case where mβ0 (A,V) = β0A, but
we also provide the general formulas below.

Constructing the efficient score. The probability distribution of O in this semi-
parametric model is indexed by a finite-dimensional parameter β and infinite-
dimensional nuisance parameter η consisting of θ, the marginal distribution of W,
and the conditional distribution of A, given W. Let g0 denote the conditional distri-
bution of A, given W. The efficient influence curve D∗(P0) at P0 happens to only
depend on P0 through β0, θ0, and g0, so that we will also denote it by D∗(β0, η0) or
D∗(β0, θ0, g0). We have

D∗(β0, η0) = −
[

d
dβ0

P0S ∗(β0, η0)
]−1

S ∗(β0, η0), (A.8)

where S ∗(β0, η0) denotes the efficient score given by S (β0, η0)−Π(S (β0, η0) | Tnuis).
Here S (β0, η0)(Y | A,W) = d

dβ0
log Pβ0,θ0 (Y | A,W) is the score of the parameter

of interest β0, and Tnuis is the nuisance tangent space, viewed as a subspace of the
Hilbert space L2

0(P0) endowed with the inner product 〈h1, h2〉 = E0h1h2(O). Recall
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that a projection of a function S on a subspace Tnuis of a Hilbert space is uniquely
defined as follows: (1) the projection is an element of the subspace Tnuis, and (2)
S − Π(S | Tnuis) ⊥ Tnuis. Tnuis is the direct sum of the three orthogonal spaces
involving each of the nuisance parameters: Tnuis = TW

⊕
TA|W

⊕
Tθ. Specifically,

TW consists of all functions in L2
0(P0) of W with mean zero, TA|W consists of all

functions in L2
0(P0) of (A,W) with conditional mean zero, given W, and Tθ is the

tangent space spanned by all the scores of parametric submodels through P0 that
only fluctuate θ. Thus,

S ∗(β0, η0) = S (β0, η0)−
[
Π(S (β0, η0) | TW ) + Π(S (β0, η0) | TA|W ) + Π(S (β0, η0) | Tθ)

]
.

We have log Pβ,θ(Y = 1 | A,W) = log θ(W) + βA. It follows that

S (β0, η0)(O) = d
dβ0

log Pβ0,θ0 (Y | A,W) = A
1−Q̄β0 ,θ0

(Y − Q̄β0,θ0 (A,W)).

Since S (β0, η0) has a conditional mean, given (A,W), equal to zero, it follows that it
is orthogonal to TW and TA|W , so that its projection onto TW + TA|W equals zero.

To calculate the tangent space Tθ, we consider submodels P0(ε)(Y | A,W)
implied by log Q̄0(ε)(A,W) = log θ0(W) + β0A + εh3(W) for an arbitrary func-
tion h3. Notice that this indeed implies a submodel in our semiparametric re-
gression model. It is straightforward to show that the score of this submodel
at ε = 0 equals 1/(1 − Q̄0(A,W))h3(W)(Y − Q̄0(A,W)). This shows that Tθ =
{1/(1 − Q̄0(A,W))h3(W)(Y − Q̄0(A,W)) : h3}.

It remains to determine Π(S (β0, η0) | Tθ). As repeatedly used and shown in
van der Laan and Robins (2003), any function S (B, Pa(B)) of a binary variable B
and other variables Pa(B) that has a conditional mean of zero, given Pa(B), can be
written as (S (1, Pa(B)) − S (0, Pa(B))(B − P(B = 1 | Pa(B))). For a function V , let
hV (A,W) = (V(1, A,W)−V(0, A,W)), so that V −E0(V | A,W) = hV (A,W)(Y − Q̄0).
Thus,

Π(V | Tθ) = Π(V − E0(V | A,W) | Tθ)
= Π(hV (Y − Q̄0) | Tθ).

We need to find h∗3 such that

E0

[{
hV (A,W)(Y − Q̄0) −

h∗3(W)

1 − Q̄0
(Y − Q̄0)

}
h3(W)
1 − Q̄0

(Y − Q̄0)
]
= 0 for all h3(W),

E0

[(
hV (A,W) −

h∗3(W)

1 − Q̄0

)
h3(W)
1 − Q̄0

(Y − Q̄0)2
]
= 0 for all h3(W),

E0

[(
hV (A,W) −

h∗3(W)

1 − Q̄0

)
h3(W)
1 − Q̄0

σ2(A,W)
]
= 0 for all h3(W),

E0

[(
hV (A,W)

σ2

1 − Q̄0
−

h∗3(W)

(1 − Q̄0)2
σ2

)
h3(W)

]
= 0 for all h3(W),
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E0

[(
E0

[
hV (A,W)
1 − Q̄0

σ2 | W
]
− h∗3(W)E0

[
σ2

(1 − Q̄0)2
| W

])
h3(W)

]
= 0 for all h3(W),

where σ2(A,W) = VAR0(Y | A,W) = Q̄0(1 − Q̄0). Therefore

h∗3(W) =
E0

(
hV (A,W)σ2

1−Q̄0
| W

)
E0

(
σ2

(1−Q̄0)2 | W
) .

This provides us with the projection of V onto the nuisance tangent space Tnuis. In
particular, if V = S (β0, η0), we have V = A/(1−Q̄0)(Y−Q̄0), so that hV = A/(1−Q̄0).
This yields

Π(S (β0, η0) | Tθ) =
E0

[
AQ̄0

1−Q̄0
| W

]
E0

[
Q̄0

1−Q̄0
| W

] (Y − Q̄0)
1 − Q̄0

.

It follows that the efficient score is given by

S ∗(β0, η0) =

⎛⎜⎜⎜⎜⎜⎜⎜⎝A −
E0

[
AQ̄0

(1−Q̄0) | W
]

E0

[
Q̄0

1−Q̄0
| W

] ⎞⎟⎟⎟⎟⎟⎟⎟⎠ (Y − Q̄0)
1 − Q̄0

. (A.9)

Double robustness of efficient score. It is of interest to note that the efficient score
can also be represented as:

S ∗(β0, η0) = h∗(A | W)
(
Y Q̄0(0,W)

Q̄0(A,W) − Q̄0(0,W)
)
,

where

h∗(A | W) ≡ Q̄0
Q̄0(0,W)(1−Q̄0)

⎛⎜⎜⎜⎜⎜⎝A −
E0

[
AQ̄0

(1−Q̄0) ||W
]

E0

[
Q̄0

1−Q̄0
|W

]
⎞⎟⎟⎟⎟⎟⎠

is a function satisfying E0(h∗(A | W) | W) = 0. This representation shows that
P0S ∗(β0, θ, g) = 0 if either θ = θ0 or g = g0, thereby establishing the double robust-
ness of the efficient score as the estimating function for β0.

The derivation above assumes that mβ0 (A,V) = β0A. In general, the efficient score
is given by

S ∗(β0, η0)(O) =
1

1 − Q̄0

⎛⎜⎜⎜⎜⎜⎜⎜⎝ d
dβ0

mβ0 −
E0

[
d

dβ0
mβ0

Q̄0
(1−Q̄0) | W

]
E0

[
Q̄0

1−Q̄0
| W

] ⎞⎟⎟⎟⎟⎟⎟⎟⎠ (Y − Q̄0).

The efficient influence curve is defined as the standardized version c−1
0 S ∗(β0, η0),

where c0 = − d
dβ0

P0S ∗(β0, η0).

Constructing a parametric submodel having a score that spans the efficient

score. If we assume Q̄0 = exp(mβ0 (A,W))θ0(W), and we use as submodel log Q̄0(ε) =
mβ0+ε + log θ0 + εr, then the score equals (d/dβ0mβ0 + r)(Y − Q̄0)/(1− Q̄0). Thus, to
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arrange that this score equals the efficient score we set r equal to

r∗(Q̄0, g0) = −
E0

[
d/dβ0mβ0

Q̄0
(1−Q̄0) | W

]
E0

[
Q̄0

1−Q̄0
| W

] .

The iterative TMLE. This defines the desired ε-extension Q̄0
n(ε) of an initial fit Q̄0

n.
We use the log-likelihood loss function for Q̄0: L(Q̄) = −{Y log Q̄ + (1 − Y) log(1 −
Q̄)}. For example, if mβ(W, A) = βA, then this ε-fluctuation corresponds with adding
εC(A,W) to the initial fit log Q̄0

n(A,W) = β0
nA+ r0

n(W), where the clever covariate is
given by

C(Q0
n, g

0
n)(A,W) = A −

Eg0
n

(
Q0

n(A,W)
1−Q0

n(A,W) A | W
)

Eg0
n

(
Q0

n(A,W)
(1−Q0

n)(A,W) | W
) .

Let ε0n be the maximum likelihood estimator over ε for this parametric submodel
{Q0

n(ε) : ε}. This requires fitting a log-binomial regression model. Let Q̄1
n = Q̄0

n(ε0n )
be the updated estimate of Q̄0, which corresponds with an updated β1

n and θ1n. We
iterate this updating process until the corresponding sequence βk

n is such that βk
n −

βk−1
n no longer significantly change. We denote the selected final update by Q̄∗n and

let β∗n be the corresponding TMLE of β0.

A.16 IPCW Reduced-Data TMLE

Summary. IPCW estimators have gained popularity due to their simplicity.
However, this gain in simplicity comes at a severe cost in terms of bias and
variance. We show that by inverse probability of censoring weighting a TMLE
based on a reduction of the original observed data structure, one obtains a
valid substitution estimator of the target parameter. This estimator is a special
case of the TMLE presented in Appendix A.6, corresponding with a particular
IPCW loss function and parametric fluctuation function. These estimators are
relatively easy-to-implement substitution estimators with good efficiency and
robustness properties.

The TMLE of a target parameter ψ0 is characterized by two ingredients: a choice
of loss function for Q0 and a parametric fluctuation working model to fluctu-
ate Q. These two choices combined determine the estimating function D(Q, η) ≡

d
dε L(Qη(ε))

∣∣∣
ε=0 whose estimating equation PnD(Q∗n, ηn) = 0 will be solved by the

resulting TMLE Q∗n. If D is the efficient influence curve, then we will refer to this
TMLE as an efficient TMLE. The efficient TMLE, based on, e.g., the log-likelihood
loss function L(Q) and efficient influence curve estimating function D∗(), can be
quite involved for complex longitudinal data structures with time-dependent covari-
ates, since Q0 may be a very high-dimensional function. Therefore, it is of interest
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to also provide TMLE for which Q0 is chosen to be of lower dimension, at the cost
of having to work with a loss function Lη0 (Q) that is indexed by an unknown nui-
sance parameter, and fluctuation model that generates an inefficient estimating func-
tion D(). For that purpose we propose a general class of so-called inverse probability
of censoring-weighted reduced-data TMLEs, which modify the efficient TMLE for
a user-supplied reduced (simplified-)data structure by weighting the loss function
with inverse probability of censoring weights.

Let O = (L(0), A(0), . . . , L(K), A(K), L(K + 1)) ∼ P0. Assume an SCM A(t) =
fA(t)(Pa(A(t)),UA(t)), t = 1, . . . ,K, L(t) = fL(t)(Pa(L(t)),UL(t)), t = 1 . . . ,K + 1,
where Pa(A(t)) = (Ā(t − 1), L̄(t)), and Pa(L(t)) = (Ā(t − 1), L̄(t − 1)). Here A(t),
t = 0, . . . ,K denote the intervention nodes, which can include both treatment and
censoring actions. This SCM allows us to define counterfactuals La and Ld indexed
by static interventions a and dynamic treatments d, respectively. We assume the
SRA about the error nodes U in the SCM so that the g-computation formula provides
us with the identifiability of any parameter of the distribution of a counterfactual Ld

for a given rule d, possibly a static rule. Specifically, under this SRA, the probability
distribution of the observed data random variable O = (A, L = LA) factorizes into a
factor Q0 implied by the full-data distribution of the counterfactuals X = (La : a) and
a factor g0(· | X) =

∏K
t=0 gA(t),0(A(t) | Pa(A(t))) that corresponds with the conditional

distribution of A, given X:

PQ0,g0 (O) =
∏K+1

t=0 QL(t),0(L(t) | Pa(L(t))
∏K

t=0 gA(t),0(A(t) | Pa(A(t))).

By SRA (which implies coarsening at random), we have QL(t),0(l(t) | l̄(t − 1), ā(t −
1)) = P(La(t) = l(t) | L̄a(t−1) = l̄(t−1)) so that indeed Q0 represents the identifiable
part of the full-data distribution of the counterfactuals X.

A statistical model M for P0 can be represented as all probability distributions
PQ,g with Q ∈ Q and g ∈ G for some specified models Q and SRA model G for Q0
and g0, respectively. Given a parameter Ψ : Q → R

d, our goal is to estimate Ψ (Q0).
The basic idea of IPCW-R-TMLE is as follows. Our target parameter can also

be written as a function of the distribution of a reduction Lr
a of the counterfactual

La, obtained by removing a number of the time-dependent components of La(t).
Thus, we can write our parameter as Ψ (Q0) = Ψ r(Qr

0), where Qr
0(a, lr) represents

the distribution of Lr
a: Qr

Lr(t),0(lr(t) | l̄r(t − 1), ā(t − 1)) = P(Lr
a(t) = lr(t) | L̄r

a(t − 1) =
l̄r(t − 1)). Now, we note that the inverse-weighted log-likelihood loss function, for
any marginal probability distribution gr of A, Lg0 (Qr) ≡ −gr/g0 log Qr, is a valid
loss function for Qr

0, since

Qr → P0 log Qr gr

g0
= PQ0,gr log Qr = PQr

0,g
r log Qr,

is maximized at Qr
0. To see the last equality, use the representation O = (A, LA) and

that Q0(a, l) = P0(La = l) so that

EQ0,gr log Qr(A, Lr
A) = EQr

0

∑
a

log Qr(a, Lr
a)gr(a),
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which is indeed maximized at Qr
0. In addition, the inverse-probability-weighted

reduced-data efficient influence curve, D(Qr, gr, g0) ≡ D∗r(Qr, gr)gr/g0, is a targeted
estimating function for the target parameter Ψ (Qr

0), as discussed in detail below. We
can now apply TMLE, as described in the Appendix A.6, with this inverse-weighted
log-likelihood loss function, a fluctuation working model {Qr

gr (ε) : ε} with score at
ε = 0 equal to the reduced-data efficient influence curve Dr∗(Qr, gr), so that the
TMLE will solve PnD(Qr∗

n , g
r, gn) = 0. Our proposal below refines the choice of

IPCW log-likelihood loss function by inverse weighting each factor QLr(t),0 of Qr
0

separately with more stable weights gr(Ā(t − 1) | Xr)/g0(Ā(t − 1) | X), as described
in the procedure below.

We will use the notationM(g) = {PQ,g : Q ∈ Q} for the statistical model implied
by a modelQ for Q0 and a treatment mechanism g contained in the setG of all SRA-
conditional distributions of A, given X. We note that, since Q0 is identifiable based
on i.i.d. sampling from an element inM(g), one can also view Ψ as a parameter on
the modelM(g). The IPCW-R-TMLE is defined by the following steps.

(Optional) specify reduced-data structure. Determine a reduction Or = (A, Lr)
of O = (A, L), where Lr is a function of L and where the reduction is such that it
is still possible to identify the parameter of interest ψ0 from the probability dis-
tribution of Or = (A, Lr = Lr

A) under the SRA for the reduced full-data structure
Xr = (Lr

a : a ∈ A). In other words, Ψ (Q0) needs to depend on the distribution
of X = (La : a) only through the distribution of Xr = (Lr

a : a). For example,
O = (W = L(0), A, L̄(K), Y = L(K + 1)) consists of baseline covariates W, treat-
ment regimen A = (A(0), . . . , A(K)), time-dependent covariate process L̄(K), and
a final outcome Y , one is concerned with the estimation of EYa for some static
regimen a, and one defines Or = (W, A, Y), which is obtained from O by deleting
all time-dependent covariates.

Reduced-data model. Let Or = (A, Lr
A), Xr = (Lr

a : a), gr a conditional dis-
tribution of A, given Xr, satisfying SRA with respect to reduced-data Or. Let
Mr(gr) = {Pr

Qr ,gr = Qrgr : Qr ∈ Qr} be a statistical model for Or, where
the model Qr = {Qr : Q ∈ Q} for Qr

0 is implied by the model Q for Q0. Let
Ψ r : Qr → R

d be such that Ψ r(Qr) = Ψ (Q) for all Qr ∈ Qr, and, in particu-
lar, Ψ r(Qr

0) = Ψ (Q0). In the example with Or = (W, A, Y), gr is a conditional
distribution of A, given W, Qr is the distribution of (W, (Ya : a)) implied by the
distribution of La under Q, and Ψ r(Qr) = EQr Ya. In particular, if the data are not
reduced in the previous step, then Or = O, Qr = Q, gr = g, Mr(gr) = M(g),
Ψ r = Ψ .

Factorization of Qr. Suppose PQr
0,g

r
0
=

∏
j Qr

0 jg
r
0 factors into various terms Qr

0 j,
j = 1, . . . , J (e.g., J = K + 1). Suppose that Qr

0 j(O
r) depends on Or only through

(A(0), . . . , A( jr − 1), L̄r( jr)), j = 1, . . . , J. In a typical scenario, we have that
Qr

0 j denotes the conditional distribution of Lr( jr), given (A(0), . . . , A( jr − 1)) and
L̄r( jr − 1). For notational convenience, we used the short-hand notation jr =
jr( j), suppressing its deterministic dependence on j. In the example with Or =

(W, A, Y), Qr
0 factors as Qr

0(w, a, y) = Q0w(w)Qr
0(y | w, a), where Qr

0(y | w, a) =
P0(Y(a) = y | W = w), giving us factorization Qr(w, a, y) = Qr

1(w)Qr
2(y | w, a). In
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particular, if the data are not reduced, then PQ0,g0 =
∏

t Qt0g0, t = 1, . . . ,K + 1,
where Qt,0 denotes the conditional distribution of L(t), given L̄(t− 1), Ā(t− 1), so
that Qt,0(O) depends on O only through (A(0), . . . , A(t − 1)), t = 1, . . . ,K + 1.

Determine Qr
j-components of efficient influence curve for reduced-data model.

Let Dr(Pr) be the efficient influence curve at Pr = Pr
Qr ,gr = Qrgr for the parameter

Ψ r in the modelMr(gr) for the reduced-data structure Or. This efficient influence
curve can be decomposed orthogonally as Dr(Pr) = Dr(Qr, gr) =

∑J
j=1 Dr

j(P
r),

where Dr
j(P

r) is an element of the tangent space generated by the jth factor Qr
j of

Qr =
∏

j Qr
j at Pr, j = 1, . . . , J. In the example with Or = (W, A, Y), this efficient

influence curve for the reduced data is given by (and decomposed as):

Dr(Qr, gr)(W, A, Y) = {I(A = a)/gr(a | W)(Y − Q̄r(A,w))}+ {Q̄r(a,W)−Ψ r(Qr)},

where Q̄r(a,w) = EQr (Ya | W). This defines Dr
1 and Dr

2. In particular, if the
data were not reduced and the model for Q0 is nonparametric, then the efficient
influence curve D(P) =

∑K+1
t=1 Dt(P), with

Dt(P) = EP(D(P)(O) | Ā(t − 1), L̄(t)) − EP(D(P)(O) | Ā(t − 1), L̄(t − 1))

being the projection of D(P) on the tangent space generated by the conditional
distribution Qt of L(t), given L̄(t − 1), Ā(t − 1).

Determine hardest Qr
j-fluctuation working models. Given a Qr, construct sub-

models {Qr
j(ε) : ε} through Qr

j and loss functions L(Qr
j), such as L(Qr

j) =
− log Qr

j, so that

d
dε L(Qr

j(ε))
∣∣∣∣
ε=0
= Dr

j(Q
r, gr), j = 1, . . . , J.

In the example, [say Y is binary or bounded in (0, 1)] we can fluctuate Qr
2 using

a logistic fluctuation working model with clever covariate I(A = a)/gr(A | W)
and employ the binary-outcome log-likelihood loss function for the conditional
mean (or probability) Q̄r

2(w, a) = EQr
2
(Ya | W = w). In particular, if the data are

not reduced, then, given a Q ∈ Q construct submodels {Qt(ε) : ε} through Qt at
ε = 0, with score at ε = 0 equal to Dt(Q, g),

d
dε L(Qt(ε))

∣∣∣
ε=0 = Dt(Q, g), t = 1, . . . ,K + 1.

Construct IPCW weights for each j-specific Qr
j-factor. For each j, construct the

weight function

wj,0 =
gr

0(Ā( jr − 1) | Xr)

g0(Ā( jr − 1) | X)
, j = 1, . . . , J.

We will often denote the weights gr
0(Ā( jr − 1) | Xr)/g0(Ā( jr − 1) | X) by gr

j,0/g j,0.
We note that for each j = 1, . . . , J

Qr
j,0 = arg min

Qr
j∈Q

r
j

PQ0,g0 wj,0L(Qr
j) = arg min

Qr
j∈Q

r
j

PQr
0,g

r
0
L(Qr

j),
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such that, for each choice gr
0 (can be any function), the IPCW-R loss function

Lw0 (Qr) ≡
∑

j w j,0L(Qr
j) is a valid loss function for Qr

0 [i.e., for the true distri-
bution of (Lr

a : a)], indexed by nuisance parameter (gr
0, g0). In our example we

have w1,0 = 1 (no weighting for marginal distribution of W) and w2,0 = gr
0(A |

W)/g0(A | X), and the IPTW-R loss function for Qr is
∑2

j=1 L(Qr
j)wj,0. Note that

gr
0(A | W) =

∏K
t=0 gr

0(A(t) | Ā(t−1),W). If the data are not reduced, then wt,0 = 1,
and one could select L(Q) = − log Q as the log-likelihood loss function.

Estimate the weights. Construct estimators gr
n and gn of gr

0 and g0, respectively,
and construct the corresponding estimator wn of the weight function w0. In our
example, this requires fitting the conditional distribution of the time-dependent
treatments A(t), given past treatment, and baseline covariates (thus ignoring the
time-dependent covariates), as well as the true treatment mechanism.

IPCW-R-TMLE at specified weights. We will now compute the TMLE under
i.i.d. sampling Or

1, . . . ,O
r
n from Pr

Qr
0,g

r , but assigning the above IPCW weights

wn, as follows. Let Qr,0 be an initial estimator of Qr
0. For example, let Qr,0

j =

arg minQr
j∈Q

r
j

∑
i L(Qr

j)(O
r
i )wj,i,n be a weighted maximum likelihood estimator of

Qr
0 j according to a working model Qr

j. In general, we can use a weighted-ML-
based estimator, such as the super learner, based on this weighted log-likelihood
loss function Lw0 (Qr) =

∑J
j=1 L(Qr

j)wj,0. Subsequently, we compute the overall
amount of fluctuation with an IPCW loss-based estimation,

ε1n = arg minε
∑

i
∑

j L(Qr,0
j (ε))(Or

i )wj,i,n,

and compute the corresponding first-step targeted update Qr,1
j = Qr,0

j (ε1n ), j =
1, . . . , J, and thereby the overall update Qr,1 = Qr,0(ε1n ). Iterate this process till
convergence (i.e., εkn ≈ 0) and denote the final update by Qr∗

n = (Qr∗
j,n : j =

1, . . . , J). Let D(Qr, gr, g) =
∑

j Dr
j(Q

r, gr)
gr

j

g j
be the IPCW efficient influence

curve estimating function for the reduced-data structure Or. We have that Qr∗
n , in

conjunction with an estimate of the weights, solves the corresponding estimating
equation:

0 =
∑

i D(Qr∗
n , g

r
n, gn)(Oi) =

∑
i
∑

j Dr
j(Q

r∗
n , g

r
n)(Or

i )wj,i,n. (A.10)

In our example, the marginal empirical distribution of W would not be up-
dated (we would use separate ε for fluctuation of the marginal distribution of
W), so that only Qr,0

2 is updated, and the IPCW-R efficient influence curve
is given by Dr

1(W) + Dr
2(W, A, Y)gr

0(A | W)/g0(A | X). In particular, if the
data are not reduced, then Q∗n, gn solves the efficient influence curve equation
0 =

∑
i
∑

t Dt(Q∗n, gn)(Oi).
Substitution estimator. Our estimator of ψ0 is given by Ψ r(Qr∗

n ). In our example,
EYa is estimated as Ψ r(Qr∗

n ) =
∑

w Qr
1,n(w)

∑
y yQr∗

2,n(y | w, a). In particular, if the
data are not reduced, then ψ0 is estimated with Ψ (Q∗n).

The IPCW-R-TMLE is an estimator Qr∗
n of Qr

0 (i.e., of the true distribution of Lr
a for

each a), solving an IPCW reduced-data efficient influence curve equation (A.10).
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Firstly, we establish that this IPCW reduced-data efficient influence curve is an “es-
timating function” for the target parameter Ψ r(Qr

0) with nice robustness properties
with respect to its nuisance parameters Qr

0 and g0 (for each choice of gr
0). Subse-

quently, we discuss the corresponding implications for the statistical properties of
the IPCW-R-TMLE.

Robustness properties of IPCW reduced-data efficient influence function. Re-
call that Dr(Qr, gr) denotes the efficient influence curve for the reduced-data Or ∼
PQr ,gr for model Mr and parameter Ψ r. It follows from the general results in
van der Laan and Robins (2003) that PQr

0,g
r
0
Dr(Qr, gr) = 0 if either Qr = Qr

0
or Ψ (Qr) = Ψ (Qr

0) and gr = gr
0. This double robustness result for Dr is ex-

ploited/inherited by the estimating function D(Qr, gr, g0) ≡
∑

j Dr
j(Q

r, gr)gr
j/g0 j,

whose corresponding estimating equation is solved by our IPCW-R-TMLE, in the
following manner. If the denominator of the weights g = g0 is correctly specified,
then we have

PQ0,g0 D(Qr, gr, g0) = PQ0,g0

∑
j Dr

j(Q
r, gr)

gr
j

g j,0
= PQ0,gr

∑
j Dr

j(Q
r, gr).

This implies that if g = g0 (i.e., the action mechanism is correctly specified), then
PQ0,g0 D(Qr, gr, g0) = 0 for all choices of Qr, gr with Ψ (Qr) = Ψ (Qr

0). That is,
D(Qr, gr, g0) represents an unbiased estimating function in ψ for each choice of gr.

In a typical scenario, we have that Qr
j,0 denotes the conditional distribution of

Lr( jr), given A(0), . . . , A( jr − 1) and L̄r( jr − 1). In this case, if g j,0 is only a function

of Or, then if Qr = Qr
0, it follows that PQ0,gr Dr

j(Q
r
0, g

r)
gr

j

g j
= 0 for all g j only being

a function of Or [by using that the conditional expectation of a score Dr
j(Q

r
0, g

r) of
Qr

j0, given (A(0), . . . , A( jr − 1) and L̄r( jr − 1), equals zero], and as a consequence,
PQ0,g0 D(Qr

0, g
r, g) = 0 for such misspecified g. That is, in the case that the true g0

and its asymptotic (possibly misspecified) fit are only functions of the reduced-data
structure Or, we have the double robustness of the estimating function D(Qr, gr, g)
in the sense that, for any choice gr, PQ0,g0 D(Qr, gr, g) = 0 if Ψ (Qr) = Ψ (Qr

0) and,
either Qr = Qr

0 or g = g0. In particular, if the data are not reduced, then we have
PQ0,g0 D(Q, g) = 0 if Ψ (Q) = ψ0 and either Q = Q0 or g = g0. In fact, the efficient in-
fluence curve satisfies a stronger collaborative double robustness property presented
above.

Statistical properties of IPCW-R-TMLE. The above-mentioned robustness prop-
erty of the estimating function D(Qr, gr, g) has immediate implications for the sta-
tistical properties of a solution Ψ (Qr∗

n ) such that
∑

i D(Qr∗
n , g

r
n, gn) = 0. Firstly, under

appropriate regularity conditions, if gn consistently estimates g0, then ψn will be a
consistent and asymptotically linear estimator of ψ0. In addition, if gn(A | X) and its
target g0(A | X) are only functions of the reduced-data structure Or so that gr

n/gn con-
verges to 1, then ψn is consistent and asymptotically linear if either Qr∗

n consistently
estimates Qr

0, or gn consistently estimates g0, and if both estimates are consistent,
then the estimator ψn is more efficient than an efficient estimator based on n i.i.d.
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observations of the reduced-data structure Or ∼ Pr
Qr

0,g
r
0

only. In our example with
Or = (W, A, Y), if g0 is consistently estimated, the IPCW-R-TMLE is asymptoti-
cally more efficient and less biased than the R-TMLE (which will be biased if there
is time-dependent confounding), and if there is no time-dependent confounding so
that gr

0/g0 = 1 and the estimated weights converge to 1, then the IPCW-R-TMLE
is double robust with respect to misspecification of either gr

0 or Qr
0, just like the

R-TMLE.

A.17 Collaborative Double Robust TMLE

Summary. A TMLE of a causal effect of an intervention requires an estima-
tor of the conditional distribution of an intervention node, given its parents,
across all intervention nodes, where this combined set of intervention-node-
specific conditional distributions is called the intervention assignment mech-
anism (such as treatment mechanism). If the estimator of the intervention-
assignment mechanism converges to the truth, then the TMLE will be asymp-
totically unbiased. However, including correct parent nodes for an interven-
tion node that play no role in the g-computation formula for the target param-
eter only hurts the finite sample bias reduction and can dramatically increase
the variance of the TMLE. This suggests that the goal should not be to estimate
the true intervention-assignment mechanism but the true conditional distribu-
tions of the intervention nodes that condition on sufficient reduction of the
true parent nodes so that the desired bias reduction of the TMLE is achieved.
The collaborative double robustness of the efficient influence curve and the
TMLE formalizes this concept of a sufficient adjustment set for the interven-
tion assignment mechanism, showing that only functions of parent nodes that
explain the residual bias of the initial estimator of the g-computation factor
of the data-generating distributions need to be included. This collaborative
double robustness of the efficient influence curve implies another fundamen-
tal invariance property of the TMLE when applied to an infinite sample of the
true probability distribution: If the initial estimator is already targeted with a
sufficient intervention-assignment mechanism, then the TMLE will not further
modify the initial estimator, even when it uses another sufficient intervention-
assignment mechanism besides that used by the initial estimator. These fun-
damental insights yield the theoretical underpinnings of the C-TMLE. The
C-TMLE at infinite sample size (i.e., Pn = P0) and its properties are pre-
sented.

Let O = Φ(C, X) ∼ P0 for some many-to-one mapping Φ, and consider a CAR
censored-data model that assumes some model Q on the distribution of X, and as-
sumes, minimally, that the conditional distribution g0 of C, given X, satisfies CAR.
Let G be the model for g0. Let Ψ (Q0) be a target parameter for some Q0 = Q(P0).
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Firstly, we will consider the TMLE algorithm at infinite sample size, so that the
empirical probability distribution function Pn is replaced by P0. In the TMLE, we
require that d

dε L(Qg(ε))
∣∣∣
ε=0 = D(Q, g) for some loss function L, fluctuation working

model {Qg(ε) : ε} through an initial Q, and estimating function D. As a consequence,
if we apply the TMLE to an initial Q using a certain g, then we obtain a solution Q∗

(indexed by g used in the working fluctuation model) so that P0D(Q∗, g) = 0. These
functions D are chosen such that P0D(Q, g0) = 0 implies Ψ (Q) = Ψ (Q0) [or, mini-
mally, are such that P0D(Q, g0) = 0 if Ψ (Q) = ψ0], even if Q itself is misspecified.
In this way, using the true g0 in the TMLE, we obtain a Q∗ with Ψ (Q∗) = ψ0 that
has thereby removed all the bias of the initial Ψ (Q0) with respect to the true target
ψ0. However, the estimating functions we will use satisfy a stronger collaborative
robustness property in terms of a specified subset G(Q, P0) of the parameter space
G for g0, which includes the true g0. If g ∈ G(Q, P0), then

P0D(Q, g) = 0 implies Ψ (Q) = Ψ (Q0).

In a coarsening at random censored-data model, this set G(Q, P0) includes any true
conditional distribution of the censoring variable, conditioning on a reduction of the
full data that captures a specified difference defined in terms of Q − Q0 (Appendix
A.8). In particular, if Q converges to Q0, then the set G(Q, P0) grows to the set G
of all distributions. In particular, by applying this result at Q = 0, it follows that
G(Q, P0) includes distributions that do not condition on variables used by the true
g0 that Q0 does not depend on.

Suppose now that the TMLE Q∗n uses an estimator gn that converges to a g0(Q∗) ∈
G(Q∗, P0). In that case, the corresponding TMLE Q∗n that solves PnD(Q∗n, gn) = 0
will asymptotically solve P0D∗(Q∗, g0(Q∗)) = 0, which impliesΨ (Q∗) = ψ0. That is,
the desired asymptotic bias reduction can be obtained by using an estimator gn that
is inconsistent for the true g0 but that converges to an element g0(Q∗) ∈ G(Q∗, P0).
This suggests that we should be using collaborative estimators gn in TMLE that aim
to converge to such a g0(Q∗) that takes into account the residual bias of the initial
estimator. We state the following theorem laying out two properties of the TMLE
algorithm when applied to P0 (instead of finite data set Pn).

Theorem A.3. For a given Q and P0, let G(Q, P0) ⊂ G be such that g→ P0D(Q, g)
is constant in G(Q, P0), and that for each g ∈ G(Q, P0) P0D(Q, g) = 0 implies
Ψ (Q) = ψ0. Define f (ε) = P0L(Qg(ε)) and assume d

dε L(Qg(ε))
∣∣∣
ε=0 = D(Q, g).

Assume f has a unique local minimum satisfying f ′(ε) = 0. For a TMLE Q that
used g0 ∈ G(Q, P0) to fluctuate an initial Q0, we have P0D(Q, g0) = 0 and thereby
Ψ (Q) = ψ0. Consider a TMLE Q∗ that uses this TMLE Q as initial estimator, and
uses another g ∈ G(Q, P0). Then Q∗ = Q, and thus Ψ (Q∗) = ψ0.

Proof. By the constant property, P0D(Q, g) = P0D(Q, g0), and since P0D(Q, g0) =
0, we also have that P0D(Q, g) = 0. Recall that the TMLE update will calculate:
ε1 = arg minε P0L(Qg(ε)). By being a minimum of f (ε) ≡ P0L(Qg(ε)) at an inte-
rior point, we have that ε1 solves the derivative equation 0 = f ′(ε) ≡ d

dε f (ε). By
assumption, the derivative f ′(ε) has only one solution with f ′(ε) = 0: For example,
the fluctuation f (ε) has only one local maximum. However, ε = 0 is a solution since
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f ′(0) = P0D(Q, g), which equals zero since g ∈ G(Q, P0), as shown above. Thus,
the TMLE algorithm will set ε1n = 0 and thus not update the initial Q. �

This proves that, not only does the TMLE algorithm only require a g0(Q) ∈
G(Q, P0) in order to achieve the full asymptotic bias reduction, but, in addition, the
TMLE algorithm using such a g0(Q) will not update an initial Q that already solves
a P0D(Q, g) = 0 for a g ∈ G(Q, P0). That is, TMLE is “smart enough” to keep an
unbiased initial (TMLE) unbiased. This motivates the following C-TMLE at P0.

Theorem A.4. Suppose that we are given a sequence g1, . . . , gK of candidates sat-
isfying the following property: For any Q, there exists a k ∈ {1, . . . ,K} so that
gk ∈ G(Q, P0) (e.g., gK = g0). Consider the following C-TMLE algorithm. Start
with Q0, g1; as the first step, compute TMLE Q1∗ based on initial Q0 using g1; as
the second step, compute TMLE Q2∗ based on initial Q1∗ using g2, and, in general,
at the kth step, compute TMLE Qk∗ updating Qk−1∗ using gk, k = 1, . . . ,K. Select
k0 = arg mink P0L(Qk∗), where we select the smallest among the minima. The output
of the C-TMLE is now (Q∗ ≡ Qk0∗, gk0∗) and the corresponding C-TMLE Ψ (Q∗) of
ψ0. Assume that, for each k, if gk ∈ G(Qk∗, P0), then gk+1 ∈ G(Qk∗, P0).

Properties. This procedure generates K TMLEs (Q1∗ , g1), . . . , (QK∗ , gK). This se-
quence of candidate TMLEs has the following properties. (1) There exists a smallest
k0 ∈ {1, . . . ,K} so that Ψ (Qk0∗) = ψ0; (2) for k ≥ k0, Qk∗ = Qk0∗, and, in particular,
Ψ (Qk∗ ) = ψ0; and (3) P0L(Qk∗ ) is decreasing in k ∈ {1, . . . , k0} and constant for
k ≥ k0. The C-TMLE selects this smallest k0 and thus satisfies Ψ (Q∗) = ψ0.

The existence of a gk ∈ G(Q, P0) is guaranteed by making gK = g0. The conservation
part of this property can typically be arranged by, for each k, making gk+1 a more
nonparametric fit of g0 than gk. For example, gk+1 could be a conditional distribution
of C, adjusting for an extra binary variable beyond the k variables that gk adjusted
for. This extra binary variable could be selected from among a set of candidates
as the one that yields the maximal decrease in risk for the resulting Qk∗, thereby
allowing for algorithms that build sequences (gk : k) that are maximally effective
in bias reduction. In this way, the elements gk also approximate the true g0 when
k increases. We wish to select this smallest k0 since it corresponds with a TMLE
that uses the smallest sufficient approximation of g0. The additional efforts in bias
reduction for steps k > k0 in the C-TMLE algorithm are useless at P0, and will
induce unnecessary variance and bias for finite samples.

In the above C-TMLE algorithm the next TMLE in the sequence used the previ-
ous TMLE as initial estimator, thereby guaranteeing that the risk P0L(Q) (i.e., the
expectation of the loss function) of the candidate TMLEs decreases in k. If, just by
virtue of using the next gk+1, the next TMLE Qk+1,∗ already decreases the risk, i.e.,
P0L(Qk+1,∗) < P0L(Qk,∗), when using the same initial estimator as Qk,∗ uses, then
we do not have to update the initial estimator. With this modification of the above
C-TMLE algorithm, the updating of the initial estimator, which involves extra fitting
of the data, is preserved for when it is necessary. As a consequence, the resulting
C-TMLE algorithm can be applied with long sequences (gk : k) that slowly approx-
imate g0 in k and only now and then update the initial estimator for the TMLEs.
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The empirical counterpart of this algorithm represents the C-TMLE algorithm
one applies to a data set. That is, in the above description of C-TMLE, Q plays
the role of an initial estimator Q̂0(Pn), gk plays role of the kth estimator ĝk(Pn) of
g0, and P0 is replaced by Pn. In addition, minimizing the risk P0L(Qk∗) over the
candidates indexed by k to select the desired TMLE among the sequence of TMLEs
is replaced by minimizing the cross-validated risk of the estimator Pn → Q̂k∗(Pn), so
that k0 is replaced by the optimal cross-validation selector for which oracle results
are available.

A.18 Asymptotic Linearity of (C-)TMLE

Summary. We provide a template for proving the asymptotic linearity of the
C-TMLE and explain the conditions.

Consider a TMLE or C-TMLE Q∗n with corresponding gn, which solves the efficient
influence curve estimating equation or some other estimating equation:

0 = PnD∗(Q∗n, gn).

It is a reasonable assumption that Q∗n converges to some element Q∗ in the model for
Q0, where Q∗ is not necessarily equal to the true Q0. We assume that consistency
has been established in the sense that gn converges to a g0 ∈ G(Q∗, P0), so that
Ψ (Q∗) = Ψ (Q0) = ψ0. Recall that G(Q∗, P0) is such that for each g ∈ G(Q∗, P0)
P0D∗(Q∗, g) = 0 implies Ψ (Q∗) = ψ0. For notational convenience, we will also
denote the limit of gn by g0 even though it does not need to represent the actual
censoring mechanism of the data-generating experiment. Given the consistency of
Q∗n and gn, we will also have that P0D∗(Q∗, g0) = 0.

To derive the influence curve of Ψ (Q∗n), the asymptotic linearity theorem below
assumes that the limit g0 of the selected censoring mechanism estimator satisfies:

P0D∗(Q∗n, g0) = ψ0 − Ψ (Q∗n) + (Pn − P0)ICQ + oP(1/
√

n) (A.11)

for some ICQ ∈ L2
0(P0). The oP(1/

√
n) can be replaced by O

(∣∣∣∣∣∣Ψ (Q∗n) − ψ0
∣∣∣∣∣∣2) as

well. In the special case where ICQ = 0, the influence curve does not involve a
contribution requiring the analysis of a function of Q∗n. This potential important
simplification of the influence curve allows straightforward calculation of standard
errors for the C-TMLE. This assumption is best illustrated with an example, which
we provide after the theorem below.

Theorem A.5. Let (Q, g)→ D∗(Q, g) be a well-defined function that maps any pos-
sible (Q, g) into a function of O. Let O1, . . . ,On ∼ P0 be i.i.d. and let Pn be the
empirical probability distribution. Let Q → Ψ (Q) be a d-dimensional parameter,
where ψ0 = Ψ (Q0) is the parameter value of interest. In the following template
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for proving the asymptotic linearity of Ψ (Q∗n) as an estimator of Ψ (Q0), Q∗n and gn

represent a (C-)TMLE of Q0, coupled with an estimator gn used in the TMLE step,
but it can be any estimator. Let Q∗ and g0 denote the limits of Q∗n and gn. Make the
following assumptions.

Efficient influence curve estimating equation. 0 = PnD∗(Q∗n, gn).
Censoring mechanism estimator is nonparametric enough. P0D∗(Q∗, g0) = 0

and Ψ (Q∗) = ψ0.
Consistent estimation of D∗. P0(D∗(Q∗n, gn) − D∗(Q∗, g0))2 → 0 in probability,

as n → ∞. The same is assumed if one component of (Q∗n, gn) is replaced by its
limit (Q∗, g0).

Donsker class. {D∗(Q, g) : Q, g} is P0-Donsker, where (Q, g) vary over sets that
contain (Q∗n, gn), (Q∗, gn), (Q∗n, g) with probability tending to 1.

Asymptotic linearity condition for censoring mechanism estimator. Define the
mapping g → Φ(g) ≡ P0D∗(Q∗, g). Assume Φ(gn) − Φ(g0) = (Pn − P0)ICg0 +

oP(1/
√

n) for some mean-zero function ICg0 ∈ L2
0(P0).

Asymptotic linearity of Q0-estimator.

P0D∗(Q∗n, g0) = ψ0 − Ψ (Q∗n) + (Pn − P0)ICQ∗ + oP(1/
√

n). (A.12)

Second-order term. Define also the second-order term

Rn = P0{D∗(Q∗n, gn) − D∗(Q∗n, g0)} − P0{D∗(Q∗, gn) − D∗(Q∗, g0)},

and assume Rn = oP(1/
√

n). Note Rn is a second-order term involving the prod-
uct of the differences Q∗n − Q∗ and gn − g0.

Then ψn is an asymptotically linear estimator of ψ0 at P0 with the influence curve

IC(P0) = D∗(Q∗, g0, ψ0) + ICQ∗ + ICg0 .

In particular,
√

n(ψn −ψ0) converges in distribution to a multivariate normal distri-
bution with mean zero and covariance matrix Σ0 = E0IC(P0)IC(P0)�.

Proof. The principal equations are 0 = PnD∗(Q∗n, gn) = P0D∗(Q∗, g0), and the first
second-order-term condition P0D∗(Q∗n, g0) = ψ0−Ψ (Q∗n)+(Pn−P0)ICQ∗+oP(1/

√
n).

This yields

Ψ (Q∗n)−ψ0 = (Pn−P0){D∗(Q∗n, gn)+ICQ∗ }+P0{D∗(Q∗n, gn)−D∗(Q∗n, g0)}+oP(1/
√

n).

By the consistency condition and Donsker condition, the first term on the right-
hand side equals (Pn −P0)D∗(Q∗, g0)+oP(1/

√
n) (van der Vaart and Wellner 1996).

The second term on the right-hand-side equals Rn plus the term Φ(gn) − Φ(g) =
P0{D∗(Q∗, gn) − D∗(Q∗, g0)}. The asymptotic linearity condition on the censoring
mechanism estimator shows that this equals (Pn − P0)ICg0 + oP(1/

√
n). This com-

pletes the proof. �
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Illustration of condition (A.12). Suppose O = (W, A, Y) ∼ P0, the model for P0 is
nonparametric, and the target parameter is ψ0 = E0[E0(Y | A = 1,W)]. Suppose gn

converges to some true conditional distribution of A, given W s, for some reduction
W s of W, and we will denote the latter by g0. For any g0, we have

P0D∗(Q∗n, g0) = P0
A

g0(A | W s)
(Q̄0(1,W) − Q̄∗n(1,W)) + Q̄∗n(1,W) − Ψ (Q∗n)

= P0

{
A

g0(A | W s)
− 1

}
(Q̄0(1,W) − Q̄∗n(1,W)) + ψ0 − Ψ (Q∗n).

Verification of condition (A.12) requires showing that the first term involving the
expectation with respect to P0 is asymptotically linear with some influence curve
ICQ∗ . Firstly, consider the case that g0 is the true conditional distribution of A, given
W, i.e., W s = W. In that case, by conditioning on W, and noting that E0(A/g0(A |
W)−1) = 0, it follows that this term equals zero, so that (A.12) holds with ICQ∗ = 0.
Secondly, consider the case where Q̄0(A,W) = E0(Y | A,W) only depends on W
through W s, and that Q̄∗n is only a function of W s. In this case, the residual bias
Q̄0(1,W) − Q̄∗n(1,W) is only a function of W s. As a consequence, by conditioning
on W s, it follows again that this first term equals zero, so that (A.12) holds with
ICQ∗ = 0. However, if we only know that Q̄∗n converges to a Q̄∗ for which the
asymptotic residual bias Q̄∗(1,W)− Q̄0(1,W) is only a function of W s, then this first
term equals P0

{
A

g0(A|W s) − 1
}

(Q̄∗ − Q̄∗n)(1,W), which might potentially contribute an
influence curve term ICQ∗ . The latter term would require showing that this integrated
difference Q̄∗n−Q̄∗ is asymptotically linear. In practice, one might consider adjusting
for Q̄0

n or, using an iterative procedure, for Q̄∗n, in gn, so that W s will include this
potential dependence of Q̄∗n on covariates that do not theoretically affect Y .

To summarize, (1) if gn converges to a true conditional distribution g0(A | W s)
that conditions minimally on all relevant confounders (i.e., all variables that the
conditional mean of Y depends on), and the estimator Q̄∗n is a function of W s only
with probability tending to 1, then it follows that condition (A.12) holds with ICQ∗ =

0; (2) if, on the other hand, gn is a collaborative estimator that converges to the
true conditional distribution g0(A | W s) that conditions on a rich enough reduction
W s of W that captures the asymptotic residual bias Q̄∗(1,W) − Q̄0(1,W) (which is
sufficient for the consistency of the C-TMLE), then the estimator Q̄∗n will contribute
an ICQ∗ to the influence curve of Ψ (Q∗n) through P0

{
A

g0(A|W s) − 1
}

(Q̄∗ − Q̄∗n)(1,W) ≈
(Pn − P0)ICQ∗ .

A.19 Efficiency Maximization and TMLE

Summary. Consider estimating a pathwise differentiable parameter on a semi-
parametric model based on n i.i.d. observations. The TMLE is a consistent,
asymptotically linear, locally efficient substitution estimator of the target pa-
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rameter under appropriate regularity conditions. The asymptotic efficiency
corresponds with asymptotic optimal estimation [usually implying remarkable
robustness such as double robustness in censored-data models that satisfy the
CAR assumption, van der Laan and Robins (2003)], while being a substitu-
tion estimator guarantees that the estimator respects the global constraints on
the target parameter imposed by the statistical model and the target parameter
mapping. The latter allows the estimator to be robust under sparsity. Another
property of interest of an estimator is that it is guaranteed to asymptotically
outperform a user supplied class of asymptotically linear estimators, i.e., even
when it is not asymptotically efficient, but still asymptotically linear, it will
outperform each of the estimators in this class. That is, the estimator is guar-
anteed to asymptotically dominate a certain user-supplied class of asymptot-
ically linear estimators. This can be achieved with empirical efficiency maxi-
mization (EEM) as introduced in Rubin and van der Laan (2008) for empirical
efficiency over parametric models, refined by Tan (2008) to preserve double
robustness, and presented in terms of cross-validation to select among can-
didate C-TMLE in van der Laan and Gruber (2010). In the next sections we
demonstrate in great generality how EEM and TMLE can be combined into
a TMLE that also satisfies this dominance property. It involves an applica-
tion of loss-based super learning with the squared-efficient-influence-curve
loss function and a library of candidate TMLEs. For RCTs it guarantees that
the resulting TMLE dominates a user-supplied class of asymptotically linear
estimators.

Super learner with squared efficient influence curve loss. Let O ∼ P0 ∈ M, and
let Ψ :M→ R be the target parameter of interest. Let O1, . . . ,On be i.i.d. copies of
O. Suppose thatΨ (P0) only depends on P0 through a parameter Q0. We will also use
the notation Ψ (Q0). Let L be a loss function for Q0 so that Q0 = arg minQ∈Q P0L(Q).
Let D∗(P) be the efficient influence curve at P of the parameter Ψ : M → R,
and suppose that it depends on Q(P) and g(P) for some other (nuisance) parameter
g. In addition, for given values Q, g, let {Qg(ε) : ε} ⊂ M be a submodel with
Qg(ε = 0) = Q satisfying D∗(Q, g) ∈ 〈 d

dε L(Qg(ε))
∣∣∣
ε=0〉. A TMLE can now be defined

in terms of an initial estimator Q0
n = Q̂0(Pn) of Q0, an estimator gn = ĝ(Pn) of

g0, and an iterative TMLE-updating algorithm resulting in a TMLE Q∗n = Q̂∗(Pn)
solving PnD∗(Q∗n, gn) = 0.

Consider a collection of initial estimators Q̂ j : MNP → Q, j = 1, . . . , J, of
Q0. This provides us with a collection of candidate TMLEs Q̂∗j , j = 1, . . . , J. Let
Q̂α = fα(Q̂ j : j) be a combination of the J initial estimators indexed by a weight-
vector α. For example, Q̂α =

∑
j α( j)Q̂ j. Note that Q̂α is just another initial estimator

indexed by a vector of weights α. This family of candidate initial estimators Q̂α in-
dexed by a choice α includes the discrete choices Q̂ j, j = 1, . . . , J. This family of
candidate initial estimators Q̂α generates a corresponding family of TMLEs given
by Q̂∗α indexed by α. We wish to select among these candidate TMLEs. (The method
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below also applies for selection among candidate C-TMLEs Q̂∗α involving a collab-
orative estimator gn,α of g0.) For that purpose, we need a loss function for Q0 so
that we can use the cross-validation selector. We wish to choose a loss function that
selects the estimator with the best asymptotic efficiency among all the α-specific
candidate TMLEs of ψ0. A related goal (and equivalent goal if g0 is known) is to
choose a loss function that selects the estimator Q̂∗α that yields the best estimator
D∗(Q̂∗α, g0) of the true efficient influence curve D∗(Q0, g0). We demonstrate how
both goals can be achieved.

This is a sensible goal if one believes that all candidate TMLEs are considered
asymptotically linear estimators of ψ0. We will first consider the case where we
have available a consistent estimator gn of g0, and, in this case, we wish to make
sure that the proposed selector achieves its goal. For example, g0 might be known,
such as in an RCT, or the design provides enough knowledge about g0 (e.g., it is
known that censoring is independent) such that a good consistent estimator of g0
will be available. Either way, g0 is typically a much easier to estimate parameter
than Q0, so that utilizing an estimator of g0 in order to improve the estimation of Q0
is sensible.

We could now apply loss-based super learning, with this library of candidate
estimators Q̂∗α indexed by α, to estimate Q0 with the following targeted loss function:

Lg0 (Q) = {D∗(Q, g0)}2.

Since our candidate estimators are supposedly consistent for ψ0, this is a valid loss
function if P0{D∗(Q, g0)}2 is minimized at Q = Q0 among all Qs with Ψ (Q) = ψ0.
We now explain why this is indeed a valid loss function. The basic point is that as
long as Q correctly specifies ψ0 (and in some models one needs to correctly specify a
larger parameter of Q0), then D∗(Q, g0) is typically a gradient of the target parameter
mapping Ψ : M(g0) → R for the model M(g0) ⊂ M where g0 is known. As a
consequence, D∗(Q0, g0) = Π(D∗(Q, g0) | TQ0 (P0)), where TQ0 (P0) is the tangent
space of modelM(g0) and Π is the projection operator in the Hilbert space L2

0(P0).
This proves that ‖ D∗(Q0, g0) ‖2P0

≤‖ D∗(Q, g0) ‖2P0
. More importantly, by the theorem

of Pythagoras, this proves that for a Q that correctly specifies the desired part of Q0
(including ψ0), we have

‖ D∗(Q, g0 ‖2P0
− ‖ D∗(Q0, g0) ‖2P0

= ‖ D∗(Q, g0) − D∗(g0,Q0) ‖2 .

The left-hand side equals the loss-based dissimilarity P0{Lg0 (Q) − Lg0 (Q0)}. This
proves that indeed the loss function Lg0 is a valid loss function with a loss-based
dissimilarity equal to a squared L2(P0)-norm of D∗(Q, g0) − D∗(Q0, g0)!

This argument relies on D∗(Q, g0) being a gradient in the model where g0 is
known and Q correctly specifies ψ0. This can be further supported as follows. By
Theorem 1.3 in van der Laan and Robins (2003) for CAR censored-data models
for O = Φ(C, X) ∼ P0 with the censoring mechanism g0(C | X) being known,
a class of gradients of the pathwise derivative can typically be represented as
D∗(Q, g0) = DIPCW (Ψ (Q), θ(Q), g0) + DCAR(Q, g0) for any Q satisfying Ψ (Q) = ψ0
and θ(Q) = θ0, where in many cases the additional nuisance parameter θ0 = θ(Q0)
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is not present. Here ψ0, θ0 represent the part of Q0 that need to be consistently es-
timated, while the remaining part of Q0 is protected against misspecification in the
sense that P0D∗(Q, g0) = 0 as long as Ψ (Q) = ψ0 and θ(Q) = θ0. Here DIPCW

is an IPCW estimating function and DCAR(Q, g0) ∈ TCAR(P0) is an element in the
tangent space TCAR(P0) = {V(O) : Eg0 (V(O) | X) = 0} of g0 when only assuming
CAR on g0. The optimal choice in this set of gradients is achieved at Q = Q0 so that
D∗(Q0, g0) = DIPCW (ψ0, θ0, g0)+DCAR(Q0, g0). This shows that Q→ P0{D∗(Q, g0)}2
is minimized at Q0 over all Q with Ψ (Q) = ψ0 and θ(Q) = θ0. As a consequence,
indeed, {D∗(Q, g0)}2 is a valid loss function to select Q0 among a class of Q with
Ψ (Q) = ψ0 and θ(Q) = θ0. For the sake of presentation (and the examples covered
in this book do not have a θ0 due to our observed data models being nonparamet-
ric), we consider the case that θ0 is not present. In particular, if g0 is known, then
the TMLE Ψ (Q∗n) using the known g0 is asymptotically linear with influence curve
D∗(Q, g0) with Q being the limit of Q∗n, so that the optimal influence curve among
all these influence curves is the efficient influence curve D∗(Q0, g0). In this special
case where g0 is known, the cross-validation selector based on Lg0 (Q) corresponds
with minimizing the variance of the influence curves of the candidate TMLEs Q̂∗α.
We conclude that Q0 = arg minQ P0Lg0 (Q), where the minimum is taken over all
Q ∈ Q with Ψ (Q) = ψ0.

Given a cross-validation scheme Bn ∈ {0, 1}n with corresponding empirical dis-
tributions P1

n,Bn
, P0

n,Bn
for the Bn-specific validation and training sample, we select

the TMLE indexed by

αn = arg minα EBn P1
n,Bn

Lg0 (Q̂∗α(P
0
n,Bn

)).

The resulting estimator of ψ0 is given by

ψ∗n = Ψ (Q̂∗αn
(Pn)).

The cross-validation selector needs to be applied to estimators that are consistent
for ψ0 at a faster rate than the rate at which Q0 can be estimated with respect to the
loss-based dissimilarity. For example, if all the candidate estimators Ψ (Q̂∗α(Pn)) are
asymptotically linear, then this holds. It is also possible to use the above loss func-
tion by plugging in a separate estimator for ψ0 in a representation D∗(Q0, g0, ψ0) of
the efficient influence curve, so that both g0 and ψ0 are treated as nuisance parame-
ters of this loss function for Q0 that need to be estimated once and for all before the
selection process starts. In many examples of interest, D∗(Q, g0) = D(Q, g0) − ψ0
for some D(Q, g0), in which case, we can define the loss as

Lg0 (Q) = D(Q, g0)2,

which no longer depends on ψ0. The latter is now a valid loss function over all Q
(i.e., no need to restrict to Q with Ψ (Q) = ψ0).

Before we proceed in our discussion of the theoretical properties of this cross-
validation selector αn in the next section, we conclude this section with a few re-
marks. Firstly, one could decide not to cross-validate the candidate TMLEs, such
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that
αe

n = arg min
α

PnLg0 (Q̂∗α(Pn)).

This includes the case where Q̂α(Pn) is constant in Pn so that {Q̂α : α} represents
a parametric model, and Q̂∗α represents the TMLE that updates this particular non-
random initial Q̂α. In this special case, the empirical αe

n corresponds with empirical
efficiency as defined in Rubin and van der Laan (2008) for computing the opti-
mal parameter value of a parametric model that maximizes empirical efficiency of
the resulting double robust estimator. Even though αe

n is appropriate for parametric
models, we strongly recommend the cross-validation selector αn when Q̂α are adap-
tive estimators. Our oracle result below for the cross-validation selector αn proves
that αn will be robust against adaptive initial estimators.

We also note that in great generality D∗(Q, g0, ψ0) is linear in Q. For a smooth
parametric family {Qα : α}, this linearity makes D∗(Qα, g0, ψ0)2 a nice smooth func-
tion in α, so that the computation of αn or αe

n is computationally tractable. For exam-
ple, if Qα =

∑
j α jQ j, then D∗(Qα, g0, ψ0) =

∑
j α jD∗(Qj, g0, ψ0), so that optimizing

α → P0{D∗(Qα, g0, ψ0)}2 is equivalent with linear least squares regression, which
can be done with simple standard software.

We remark that one could also select among candidate (C)-TMLEs Q̂∗α by min-
imizing over α an estimator of the variance of Ψ (Q̂∗α(Pn)). That is, if this es-
timator has influence curve ICα(P0), then we could estimate its variance with
EBn P1

n,Bn
IC2
α,P0

n,Bn

/n, where ICα,P0
n,Bn

is an estimator of the influence curve ICα(P0)

based on the training sample P0
n,Bn

only. This is slightly different from the above
selector αn since the influence curve of the TMLE Ψ (Q̂∗α(Pn)) equals D∗(Q∗α, g0)
plus a term due to estimating g0 with gn. The latter contribution improves the in-
fluence curve relative to using the true g0. As shown in van der Laan and Robins
(2003) the influence curve of Ψ (Q̂∗α(Pn)) can still be represented as ICα(P0) =
DIPCW (ψ0, g0) + DCAR(Q∗α, g0), where the element DCAR(Q∗α, g0) ∈ TCAR(P0) is a
sum of the element in TCAR(P0) it would have been for known g0 plus another term
due to estimation of g0. As a consequence, minimizing the variance of the influence
curve ICα(P0) over choices Q∗α (all satisfying Ψ (Q∗α) = ψ0) can still be represented
as minimizing P0Lg0,1(Q∗α) for a valid loss function Lg0,1(Q∗α) that equals the square
of the influence curve of ICα(P0). However, the form of the loss-based dissimilar-
ity of Lg0 , as established in the next section, shows that the cross-validation selec-
tor αn drives the estimated efficient influence curve to the actual efficient influence
curve D∗(Q0, g0), even when g0 is estimated with a consistent estimator gn. This
suggests that, in practice, if g0 is estimated, the variance of the influence curve of
the cross-validated selected estimator Ψ (Q̂∗αn

(Pn)) will still closely approximate the
choice that would select the influence curve with the smallest variance. Therefore,
we suggest that for practical purposes no modification of the loss function Lg0 (Q) is
necessary when the TMLE uses an estimator gn of g0.

Our proposed cross-validation selector based on the square efficient influence
curve Lg0 (Q) does rely on the availability of a consistent estimator gn of g0. If one
does not want to rely on the consistency of gn as an estimator of g0 (e.g., g0 has
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similar complexity to Q0), and it is not possible to find a robust version of the loss
function Lg0 so that Lg remains a valid loss function for Q0 at misspecified g (as we
demonstrate in the example in a later section), then one might still utilize this loss
function Lg0 that targets the variance, by adding it as a penalty to a loss function L
for Q0 (that is not affected by g0). For some positive constant a, b, let

L1,g0 (Q) = aL(Q) + b
Lg0 (Q)

n
.

In this case, even if g0 is misspecified, the loss function L1,g0 (Q) remains valid. Thus,
now (say a = b = 1)

αn = arg minα EBn P1
n,Bn

{
L(Q̂∗α(P

0
n,Bn

)) + Lgn (Q̂∗α(P
0
n,Bn

))
}
.

This type of valid targeted loss function was utilized in van der Laan and Gruber
(2010) to build C-TMLE and to select among candidate TMLEs, where one should
note that P0Lg0 (Q)/n equals the asymptotic variance of the TMLE Ψ (Q∗n) of ψ0,
if gn = g0 and Q denotes the limit of Q∗n. The first loss function L(Q) drives the
selection towards Q0, regardless of the estimator gn, while the second loss Lg0/n
targets the selection toward minimizing the variance of the resulting TMLE of ψ0.
Such a robust targeted loss function can also be used to select among candidate
C-TMLEs Q̂∗α, involving a collaborative estimation procedure of g0 (van der Laan
and Gruber 2010).

A.20 Oracle Inequality of Cross-Validation Selector

Let us now present the oracle inequality for this cross-validation selector αn, as pre-
sented originally in van der Laan and Dudoit (2003). Let dg0 (Q,Q0) = P0{Lg0 (Q) −
Lg0 (Q0)} denote the loss-function based dissimilarity. Assume that the loss function
is bounded: M1 ≡ supQ | Lg0 (Q) − Lg0 (Q0) |< ∞. In addition, we assume that

P0

{
Lg0 (Q) − Lg0 (Q0)

}2
≤ M2P0{Lg0 (Q) − Lg0 (Q0)}.

As explained in van der Laan and Dudoit (2003), the latter assumption corresponds
with the loss-based dissimilarity being quadratic in the difference between Q and
Q0. Below, we show that indeed, in great generality, P0Lg0 (Q) − P0Lg0 (Q0) ≤
P0{D∗(Q, g0) − D∗(Q0, g0)}2. Thus, to prove the second property of the loss func-
tion Lg0 , it remains to show that P0{D∗2(Q, g0)−D∗2(Q0, g0)}2 ≤ M2P0{D∗(Q, g0)−
D∗(Q0, g0)}2 for some M2 < ∞. The latter trivially holds for bounded D∗:

P0{D∗2(Q, g0) − D∗2(Q0, g0)}2

= P0{D∗(Q, g0) − D∗(Q0, g0)}2{D∗(Q, g0) + D∗(Q0, g0)}2

≤ supo | {D∗(Q, g0) + D∗(Q0, g0)}2 | (o)P0{D∗(Q, g0) − D∗(Q0, g0)}2,
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which completes the proof. This allows us to apply the oracle inequality for the
cross-validation selector as presented in van der Laan and Dudoit (2003) provid-
ing us with the following result. If the cross-validation selector αn is defined as a
minimizer over a grid with K(n) α-values, then for any δ > 0,

Edg0 (Q̂αn (P0
n,Bn

),Q0) ≤ (1 + 2δ)E min
α

EBn dg0 (Q̂α(P0
n,Bn

),Q0)

+C(M1,M2, δ)
log K(n)

n
,

where C(M1,M2, δ) is a specified constant. The α̃n that attains the minimum on the
right-hand side is referred to as the oracle selector that selects the α that minimizes
the dissimilarity with Q0 for the given sample Pn. By choosing a grid with width 1/n,
we obtain a grid such that no precision is lost. In that case, the log K(n) is bounded
by a constant times log n. Theorem 1 of van der Laan and Dudoit (2003) also present
a finite sample oracle inequality for the case where g0 in the loss function Lg0 is
estimated with gn. From this finite sample inequality it follows that, if gn converges
faster to g0 than Q∗αn,n converges to Q0, then the finite sample oracle inequality is
asymptotically equivalent to the above inequality (i.e., the estimation of gn has an
asymptotically negligible effect).

A.21 Loss-Based Dissimilarity

We now want to understand the loss-based dissimilarity dg0 (Q,Q0) = P0{Lg0 (Q) −
Lg0 (Q0)} implied by this loss function, so that the oracle result for the cross-
validation selector can be interpreted accordingly. Above, we showed that this loss-
based dissimilarity is the L2

0(P0)-norm of D∗(Q, g0) − D∗(Q0, g0), but we provide
some additional detail here. Suppose Ψ (Q) = ψ0. As remarked earlier, by Theorem
1.3 in van der Laan and Robins (2003) for CAR censored-data models for the ob-
served data structure O = Φ(C, X) for some mapping Φ, full-data structure X, and
censoring variable C, it follows that D∗(Q, g0) = D(ψ0, g0) − DCAR(Q, g0), where
DCAR(Q, g0) is an element of TCAR(P0), TCAR(P0) = {V ∈ L2

0(P0) : Eg0 (V(O) |
X) = 0} is the tangent space of the conditional distribution g0 of C, given X,
when only assuming CAR, D(ψ0, g0) is an IPCW function (i.e., a gradient in the
model in which g0 is known), and DCAR(Q0, g0) is the projection of D(ψ0, g0) onto
TCAR(P0) in L2

0(P0). Thus, D∗(Q0, g0) = D(ψ0, g0) − Π(D(ψ0, g0) | TCAR(P0)),
while D∗(Q, g0) = D(ψ0, g0) − DCAR(Q, g0) with DCAR(Q, g0) ∈ TCAR(P0). Recall
Lg0 (Q) = D∗2(Q, g0). The risk P0Lg0 (Q) equals the variance of D∗2(Q, g0) and can
be denoted by ‖ D∗(Q, g0) ‖2, where ‖ · ‖ is the inner-product norm in L2

0(P0). By
the theorem of Pythagoras, we have that

P0Lg0 (Q) − P0Lg0 (Q0) = ‖ D∗(Q, g0) ‖2 − ‖ D∗(Q0, g0) ‖2

= ‖ DCAR(Q, g0) − DCAR(Q0, g0) ‖2

= ‖ D∗(Q, g0) − D∗(Q0, g0) ‖2 .
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This shows that Lg0 is a valid loss function for Q0 and that its loss-based dissim-
ilarity is a quadratic dissimilarity between Q and Q0. Moreover, it shows that the
loss-based dissimilarity is a direct L2(P0) distance between the candidate efficient
influence curve D∗(Q, g0) and the efficient influence curve D∗(Q0, g0), or equiva-
lently, between DCAR(Q, g0) and DCAR(Q0, g0).

Thus, the oracle selector α̃n selects, for the given sample O1, . . . ,On, the estima-
tor among {Q∗α : α} that yields the best estimator of the efficient influence curve
D∗(Q0, g0) with respect to the L2(P0)-norm. Since the finite sample and asymptotic
behavior of a TMLE is driven by how well the efficient influence curve is estimated
(see our asymptotic linearity theorem), this is essentially the best possible (i.e., most
targeted) dissimilarity measure, and thereby loss function, for selecting among the
candidate TMLEs.

In particular, this result teaches us that, if g0 is known, the selected TMLE
Ψ (Q̂∗αn n ˆ∗

α n

and, in case there are several candidate TMLEs that are asymptotically efficient,
it is expected to achieve the efficiency bound at a faster rate in sample size than
other asymptotically efficient candidate TMLEs. In addition, even if g0 is esti-
mated and the estimator gn approaches g0 faster than Qn approaches Q0, the se-
lected TMLE Ψ (Q̂∗αn n

TMLE Ψ (Q̂∗α̃n n 0
best selection with respect to the approximation of the true efficient influence curve
D∗(Q0, g0). As mentioned earlier, if g0 is estimated, the selector αn is not directly
concerned with selecting the α-specific TMLE of ψ0 whose influence curve is opti-
mal, since it ignores that the true influence curve of the α-specific TMLE involves a
possible contribution due to estimating gn (where this contribution equals zero if Q̂α
is consistent for Q0). However, the oracle inequality shows that, indirectly, it will
still get very close to minimizing the actual asymptotic variance.

CAR 0 CAR 0 CAR(Q0, g0)=
H1,g0 H2,Q−Q0 , the loss-based dissimilarity can be represented as a weighted L2-norm,
P0H2

1,g0
H2

2,Q−Q0
(which is also a valid norm at misspecified g0!). The latter also sug-

gests that it might be possible to find an alternative weighted-squared-error-type loss
function with the same or similar dissimilarity so that it remains a valid loss func-
tion for Q0 at misspecified g. Such a loss function preserves the double robustness
of the resulting TMLE Ψ (Q̂∗αn

(Pn)). Indeed, as in the example below, it appears that
this is sometimes possible.

A.22 Examples: Loss-Based Dissimilarity

Let us consider an example to demonstrate this last point. Consider the missing-
data example O = (W, Δ, ΔY) ∼ P0, a nonparametric statistical model, and target
parameter ψ0 = E0Y . Let g0(δ | W) = P0(Δ = δ | W) and Q̄0(W) = E0(Y | W, Δ = 1).
In this case, D∗(Q0, g0) = DIPCW (g0, ψ0) − DCAR(Q̄0, g0), where DIPCW (g0, ψ0) =
YΔ/g0(1 | W) − ψ0 and DCAR(Q̄0, g0) = Q̄0(W)

(
Δ

g0(1|W) − 1
)
, so that by our general

result

(P )) (where the oracle uses the true g !), and thereby will yield the

Since, typically, an element D

(P )) will be asymptotically at least as efficient as any of the TMLEsΨ (Q (P )),

(Q, g ) factorizes as D

(P )) will be asymptotically equivalent to the oracle selected

(Q, g )−D
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P0Lg0 (Q) − P0Lg0 (Q0) = E0(Q̄ − Q̄0)2 g0(0 | W)
g0(1 | W)

= E0(Y − Q̄(W))2 g0(0 | W)
g0(1 | W)

− E0(Y − Q̄0(W))2 g0(0 | W)
g0(1 | W)

.

This shows that the loss function Lg0 has a dissimilarity that is equivalent to the
dissimilarity implied by the weighted-least-squares full-data loss function

L2,g0 (Q̄) = (Y − Q̄(W))2 g0(0 | W)
g0(1 | W)

.

This full-data loss function could be mapped into an observed-data IPCW version
of L2,g0 :

LIPCW,g0 (Q̄) = (Y − Q̄0(W))2Δ
g0(0 | W)
g2

0(1 | W)
.

Note that this loss function LIPCW,g0 (Q̄) has the same risk, and thereby loss-based
dissimilarity, as Lg0 . However, this IPCW loss function has the property that it re-
mains a valid loss function if g0 is misspecified, so that the resulting TMLEΨ (Q∗αn,n)
remains double robust.

Let us now consider a more complex example. Consider a right-censored data
structure O = (C, X̄(C)), where X = (X(t) : t ∈ (0, τ]) is a time-dependent process
representing the full-data structure, C is a right-censoring time, and X̄(t) = (X(s) :
s ≤ t). Let R(t) = I(T ≤ t) be a component of X(t), where T denotes a time to final
event of interest, at which time X() is truncated: X(t) = X(min(t, T )). Assume the
CAR assumption: g0(c | X) is a function of (c, X̄(c)), or equivalently, λg0 (t | X) is
only a function of (t, X̄(t)), where λg0 is the conditional hazard of censoring, given
X. Let Q0 represent the factor of the density of O under P0 that only depends on the
full-data distribution: P0 = Q0g0, where Q0(c, x̄(c)) = P0(X̄(c) = x̄(c)).

Consider a particular pathwise differentiable parameter, such as a survival func-
tion ψ0 = P0(T > t0) at time t0. Chapter 3 in van der Laan and Robins (2003) teaches
us that the efficient influence curve D∗(Q0, g0) can be represented as DIPCW (g0, ψ0)−
DCAR(Q0, g0), where DIPCW (g0, ψ0) = I(T > t0)I(C > T )/Ḡ0(T | X) − ψ0,
Ḡ0(t | X) = P0(C > t | X), DCAR(Q0, g0) =

∫
HQ0,g0 (u)dMg0 (u) for a specified

function HQ0,g0 (u, X̄(u)) = E0(DIPCW (g0, ψ0) | X̄(u),C > u), and dMg0 (u) = I(C =
u)− I(C ≥ u)λg0 (u | X). Note that D∗(Q0, g0) = D(Q0, g0)−ψ0 so that we can define
the loss function as Lg0 (Q) = D2(Q, g0). By our general result, we have that the
loss-based dissimilarity for Q is given by

P0D2(Q, g0) − P0D2(Q0, g0) = P0 {DCAR(Q, g0) − DCAR(Q0, g0)}2

= E0

∫
{HQ−Q0,g0 (u, X̄(u))}2λg0 (1 − λg0 )(du | X).

Here we essentially used that TCAR(P0) allows an orthogonal decomposition in
L2

0(P0) according to the factorization of g0(C | X) =
∏

t g0(A(t) | Ā(t−), X) as a
product of conditional distributions of Bernoulli random variables A(t) = I(C = t),
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given (X, Ā(t−) = (I(C = s), s < t)), and thereby that the variance (i.e., the square of
the norm) of an element DCAR(Q − Q0, g0) in TCAR(P0) is a sum of variances. This
formula also applies to continuous C through the well-known results for martingales
of counting processes (Andersen et al. 1993). Thus, the loss-based dissimilarity is
an L2-norm of (HQ,g0 − HQ0,g0 ), where HQ0,g0 is the principle element that makes up
the efficient influence curve. This shows that the super learner Q̂∗αn

will select an es-
timator that is the best for the purpose of estimating HQ0,g0 , and thereby the efficient
influence curve D∗(Q0, g0).

The above result for the loss-based dissimilarity for the loss function Lg0 gen-
eralizes immediately to causal inference data structures (A, LA), with A a time-
dependent process representing censoring and treatment actions (i.e., the interven-
tion nodes), LA a time-dependent process including time-dependent covariates and
outcomes, and La the counterfactual corresponding with a multiple-time-point in-
tervention that sets A equal to the treatment profile a.

A.23 Example: EEM and TMLE

Let us revisit the missing outcome example with O = (W, Δ, ΔY) ∼ P0 ∈ M,M the
nonparametric model, and ψ0 = E0Y . Let Π0(W) = P0(Δ = 1 | W) = g0(1 | W). The
efficient influence curve is given by

D∗(Q0, Π0)(O) = Δ/Π0(W)(Y − Q̄0(W)) + Q̄0(W) − Ψ (Q0),

where Q̄0(W) = E0(Y | W, Δ = 1), Q0 = (QW,0, Q̄0 = E0(Y | W, Δ = 1)). Note
D∗(Q0, Π0) = D(Q̄0, Π0) − ψ0, . Given a parametric family Qw for Q̄0, as shown in
Rubin and van der Laan (2008) and above, minimizing E0D2(Q̄, g0) over Q̄ ∈ Qw

corresponds with

arg min
Q̄∈Qw

E0
Δ(1 − Π0)
Π2

0

(Y − Q̄(W))2.

TMLE is a substitution estimator and thus has advantages over other asymptotically
efficient estimators. We now want to combine TMLE with EEM, so that we can also
claim that TMLE is asymptotically linear with influence curve that is optimal among
a given class of influence curves D∗(Q̄, Π0, ψ0) with Q̄ ∈ Qw. We consider EEM for
the linear and logistic TMLE with respect to a parametric family {Q̄α : α}. The
linear TMLE provides a closed-form algebraic demonstration, but does not respect
known bounds, so that the preferred TMLE is the logistic TMLE, which follows.
Let Y ∈ [0, 1]. Let HΠ0 = H0 =

Δ
Π0

.

TMLE, squared error loss, linear fluctuation. Consider the linear fluctuation
Q̄α(ε) = Q̄α + εHΠ0 . Define

εn(α) = arg min
ε

PnL2(Q̄α(ε)),
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where L2(Q̄)(O) = Δ(Y − Q̄(W))2. Note εn(α) is the univariate linear regression
coefficient (no intercept) of (Y − Q̄α) on HΠ0 . Thus

εn(α) =
EPnΔ(Y − Q̄α)HΠ0

EPnΔH2
Π0

.

The candidate TMLEs are defined as Q̄∗α,n = Q̄α + εn(α)HΠ0 . We wish to determine
α so that

α→ E0D2(Q̄∗α,n, Π0)

is minimized. Directly minimizing the empirical counterpart

α→ PnD(Qα, g0)2 = EPn

{
Y
Δ

Π0
− Q̄∗α,n(W)

(
Δ

Π0
− 1

)}2

corresponds with an unweighted least squares regression of an inverse-weighted
outcome on an inverse-weighted corrected covariate. By the above result, this choice
can also be estimated as

αn = arg min
α

EPn

Δ(1 − Π0)
Π2

0

(Y − Q̄∗α,n(W))2.

The resulting TMLE is given by Q̄∗αn,n = Q̄αn + εn(αn)HΠ0 . Note,

αn = arg min
α

EPn

Δ(1 − Π0)
Π2

0

(Y − Q̄α − εn(α)H0)2

= arg min
α

EPn

Δ(1 − Π0)
Π2

0

⎛⎜⎜⎜⎜⎝Y − Q̄α −
EPnΔ(Y − Q̄α)H0

EPnΔH2
0

H0

⎞⎟⎟⎟⎟⎠2

= arg min
α

EPn

Δ(1 − Π0)
Π2

0

⎛⎜⎜⎜⎜⎝Y − EPnΔYH0

EPnΔH2
0

H0 − Q̄α +
EPnΔQ̄αH0

EPnΔH2
0

H0

⎞⎟⎟⎟⎟⎠2

.

If Q̄α = αW is linear, then it follows that αn is a weighted-linear-least-squares
estimator regressing Y − EPnΔYH0

EPnΔH2
0

H0 on the covariate

W′ ≡ W −
EPnΔWH0

EPnΔH2
0

H0

according to a linear model αW ′.

TMLE, quasi-log-likelihood loss, logistic fluctuation. The above TMLE behaves
poorly under violations of the positivity assumption, since the linear fluctuation
does not respect bounds, for example, Y ∈ [a, b] for some values [a, b]. Therefore,
we proposed an alternative TMLE based on the binary-log-likelihood loss func-
tion and logistic fluctuation. Let {Q̄α : α} be a logistic regression family. Consider
logitQ̄α(ε) = logitQ̄α + εH0. Define
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εn(α) = arg minε PnL(Q̄α(ε)),

where L(Q̄)(O) = Δ
{
Y log Q̄α + (1 − Y) log(1 − Q̄α)

}
. Note εn(α) is the univariate

linear logistic regression coefficient Y on H0 using logitQ̄α as intercept. We have
that εn(α) solves

0 =
∑

i ΔiH0(Wi)(Yi − Q̄α(ε)(Wi)).

Even though εn(α) is not a closed form function of α, this equation allows us to de-
termine closed-form expressions for first-order derivatives d

dαεn(α). If ε(α) is defined
as U(α, ε(α)) = 0 for an equation U, then

d
dα
ε(α) = −

{
d
dε

U(α, ε)
∣∣∣∣∣
ε=ε(α)

}−1 d
dα

U(α, ε).

The candidate TMLEs are defined as logitQ̄∗α,n = logitQ̄α + εn(α)H0. We want to
determine the minimizer of

α→ P0D2(Q̄∗α,n, Π0).

This choice can be estimated as

αn = arg min
α

EPn

Δ(1 − Π0)
Π2

0

(Y − Q̄∗α,n(W))2.

The desired TMLE is given by Q̄∗αn,n = Q̄αn (εn(αn)). Solving for αn corresponds
with a nonlinear least squares problem. Fast algorithms for solving for this αn will
require (1) fast evaluation of εn(α) and (2) closed-form expression for the derivatives
in α. Since we have closed-form derivatives of α → εn(α) this can be carried out
with available software.

TMLE logistic with linear regression family. Suppose that we want to optimize
efficiency over a linear regression model Q̄α = αW instead of the logistic linear re-
gression model above. We could use the optimal αn as defined for the linear TMLE.
This now defines an initial linear-least-squares estimator Q̄αn . We can truncate this
fit between (0, 1) and compute the logistic TMLE update.



Appendix B

Introduction to R Code Implementation

This appendix includes a brief introduction to the implementation of super learn-
ing and the TMLE in R. Packages and supplementary code are posted online at
http://www.targetedlearningbook.com. We conclude with a few coding guides for
data structures and research questions presented in Parts II–IX. The book’s Web site
will be a continually updated resource for new code, demonstrations, and packages.

Suppose you want to implement super learning. In order to include user-specified
regressions in parametric statistical models (default specification is main terms), you
must write additional wrappers for the super learner function. A sample wrapper is
included below, and more information on writing wrappers is on our Web site.

SL.glm.2 <- function(Y.temp, X.temp, newX.temp,
family, obsWeights, ...){

fit.glm <- glm(Y.temp ~ A+W1, data=X.temp,
family=family, weights = obsWeights)

out <- predict(fit.glm, newdata=newX.temp,
type="response")

fit <- list(object=fit.glm)
foo <- list(out=out, fit=fit)
class(foo$fit) <- c("SL.glm")
return(foo)}

Sample code to run the SuperLearner package in a simulated data set called “samp,”
including a small proposed collection of algorithms, is included below. (Package
author: Eric C. Polley.)

library(SuperLearner)
SL.library <- list("SL.glm.2", "SL.bayesglm",

"SL.glmnet", "SL.glmnet.alpha50", "SL.gam",
"SL.gam.3", "SL.nnet", "SL.nnet.4")

fit.SL <- SuperLearner(Y=samp$Y,X=samp[,c(1:3,5:6)],
SL.library=SL.library, family=binomial,
method="NNLS", verbose=TRUE, V=10)
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Note that there are several options available beyond the selection of the algorithms
in the super learner function. Familiarize yourself with these options in the help
file. In order to obtain the cross-validated risk of the super learner, one must run
CV.SuperLearner. Sample code is given below.

fit.SL.CV <- CV.SuperLearner(Y=samp$Y,
X=samp[,c(1:3,5:6)],SL.library=SL.library,
family=binomial,method="NNLS",
verbose=TRUE, outside.V=10, inside.V=10)

QSL.risk <- mean((samp$Y-fit.SL.CV$pred.SL)^2)

Now we give sample code to implement the R package tmle (Gruber and van der
Laan 2011) to estimate the parameter Ψ (P0) = EW,0[E0(Y | A = 1,W) − E0(Y |
A = 0,W)] in simulated data. We refer interested readers to Gruber and van der
Laan (2011) and the supplemental materials on our Web site for additional code,
explanations, and options.

run1 <- tmle(Y, A, W, family="binomial",
Q.SL.library = c("SL.glm", "SL.step",
"SL.DSA.2"), gform = A ~ W1 + W2 + W3,)

Implementation notes for other data structures and parameters of interest pre-
sented throughout the book for selected chapters are given below. This is not a com-
prehensive tutorial. As noted, additional materials are available online.

Chapters 13–15: Case-control implementation. Implementation of super learning
and TMLE for case-control studies and other biased study designs is straightfor-
ward. Using weights requires a simple weight statement within the functions, for
example, in Chapter 15, we call

fit.SL <- SuperLearner(Y=ccData$death_yn,
X=ccData[,2:167],SL.library=SL.library,
family=binomial,method="NNLS",obsWeights=weight,
verbose=TRUE, V=10)

when generating the function for risk score using super learner.

Chapter 16: Super learning for censored data structures. Required wrappers to
run super learning in censored data structures are available on our Web site. Below
we present an example of hazard estimation in the publicly available lung cancer
data set studied in Chapter 16 using these wrappers and the collection of algorithms
discussed in the chapter. (Author: Eric C. Polley.)

data(lung)
subLung <- subset(lung, select = c(time, status, age,

ph.ecog, ph.karno, pat.karno))
subLung$female <- (lung$sex - 1)
subLung <- subLung[complete.cases(subLung), ]
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## Expand subLung to Long Format
longData <- SuperLearner:::createDiscrete(time =

subLung$time, event = (subLung$status == 2),
dataX = subset(subLung, select =
-c(time, status)), n.delta = 30)

## Super Learner
fit.SL <- SuperLearner(Y = longData$N.delta,

X = data.frame(age = longData$age, ph.ecog =
longData$ph.ecog, female = longData$female,
ph.karno = longData$ph.karno, pat.karno =
longData$pat.karno, time = longData$delta.upper),
V = 10, SL.library = SL.library, shuffle = FALSE,
verbose = TRUE, id = longData$ID, family =
binomial(), method = "NNLS")

## CV Super Learner
fit.SL.CV <- CV.SuperLearner(Y = longData$N.delta,

X = data.frame(age = longData$age, ph.ecog =
longData$ph.ecog, female = longData$female,
ph.karno = longData$ph.karno, pat.karno =
longData$pat.karno, time = longData$delta.upper),
outside.V = 10, inside.V = 10, SL.library =
SL.library, shuffle = FALSE, verbose = TRUE, id =
longData$ID, family = binomial(), method = "NNLS")

Chapters 19–21: C-TMLE. A simple example using the C-TMLE code available
on our Web site is included below. (Author: Susan Gruber.)

set.seed(10)
n <-1000
W <- matrix(rnorm(n*5), ncol=5)
colnames(W) <- paste("W",1:5,sep="")
logitA <- .3*W[,1]+.2*W[,2]-3*W[,3]
pA <- plogis(logitA)
Wstar <- rbinom(n,1,pA)
pA3 <- plogis(.15*logitA)
A3 <- rbinom(n,1,pA3)
Y3 <- A3+.5*W[,1]-8*W[,2]+W[,3]+8*W[,3]^2

-2*W[,5] +rnorm(n)
d.sim3 <- data.frame(Y=Y3, A=A3, W, Wstar)
ctmle.sim3 <- ctmle(Y=d.sim3$Y, A=d.sim3$A,

W=d.sim3[,-c(1:2)])
summary(ctmle.sim3)
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Chapter 25: Longitudinal data. We include code that uses the DAIFI data and
related functions (available on our Web site) to run the analysis presented in the
corresponding chapter. (Author: Antoine Chambaz.)

source("DAIFI.extract_fun.R")
true <- 0.652187 ## based on 1e6 simulated data
obs <- getSample(3001, FALSE)
fit0 <- getInitialFit(obs, whole = TRUE, V = 10)
gcomp <- getEstimate(obs, fit0)
gcomp <- gcomp[1:4]
fit1 <- updateFit(obs, fit0)
tmle <- getEstimate(obs, fit1)
tmle <- tmle[1:4]

Chapter 29: Bayesian TMLE. We include code to run an example of Bayesian tar-
geted learning. A uniform prior on the interval (−1, 1) is used, logistic regressions
are used as initial estimators of Q̄0(A,W) and g0(A | W), and 1000 posterior ob-
servations are drawn by using the function BTL. The simulated data and required
functions are available on our Web site. (Author: Iván Díaz Muñoz.)

data <- read.csv("data.csv")
prior.psi <- list(func = debeta, args = list(a = -1,

b = 1, shape1 = 1, shape2 = 1))
Y <- data$Y
A <- data$A
W <- data.frame(W1 = data$W1, W2 = data$W2)
Q <- Y ~ A*W1*W2
g_A <- A ~ W1*W2
family <- "binomial"
output <- BTL(Y, A, W, prior.psi , Q, g_A, family)
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