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Preface

This book will discuss basic statistical analysis methods through a series of bio-
logical examples using R and R-Commander as computational tools. The book is
intended for a wide range of readers, from people with relatively strong analyti-
cal background who want to learn about statistics and its application in biology, to
nonstatistician scientists who use statistical methods in their research.

While the theoretical aspects of statistics are intriguing and interesting on their
own, we believe that what separates statistics from other branches of mathematics is
its intimate relationship with other fields, such as biology, economics, and social sci-
ences, and its widespread application in these areas. In statistics, a theoretical work
is usually inspired by applied problems, and new theories usually find immediate
applications in real-world problems. This interweaving of theory and application
has put statistics in a special place in the scientific world.

In this book, most topics are motivated by real examples first. We believe that
learning a new topic becomes easier if it is motivated by interesting and engaging
applied problems. We also hope that this approach helps students to improve their
critical thinking and problem-solving skills for situations where they are presented
with new problems. To this end, we motivate each new topic with a relevant problem
from biology. We then try to reach the solution intuitively before discussing the
related statistical methods. For example, when discussing Bayes’ theorem, we first
present a biological problem (finding the probability of lung cancer for smokers)
and find the answer to that problem intuitively based on what we already know.
Then, we introduce Bayes’ theorem as a general form of our solution for this type
of problem.

While discussing statistical methods and their applications, our goal is to keep
a balance between mathematical rigor and readability. To accomplish this, we have
moved concepts that tend to be more complex with limited applications in everyday
analysis to the end of each chapter in “Advanced” sections. For the most part, these
sections could be skipped in the first reading of this book.

Throughout the book, we use R-Commander, a free and publicly available com-
puter program, to show how statistical methods can be used in practice. We believe
that using these methods while learning them could help with the learning process.
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viii Preface

Most of the examples discussed in this book are based on scientific studies whose
data are publicly available. For each example, we provide the step-by-step applica-
tion of R-Commander. Readers are encouraged to follow these steps while reading
the book so that they can learn statistics through hands-on experience.

For some examples, the data are available through R and R-Commander. For
these examples, we provide the steps required to obtain the data. For some
other examples, the data are available online and can be downloaded from
http://extras.springer.com. Appendix A shows the steps for installing and using
R-Commander. Before reading the chapters, readers should follow these steps to
install R-Commander on their computer.

The chapters are arranged according to what a typical statistical analysis in-
volves. We usually start with some specific scientific questions in mind. Then, we
design a scientific study to answer those questions. In Chap. 1, we very briefly dis-
cuss different types of studies and their objectives. We also present an overview of
typical steps we take from raising a scientific question to answering it through sta-
tistical methods. These steps always involve identifying a target population, which
is the group of individuals we want to study (e.g., population of humans, orange
trees, cells).

Because the target populations are usually very large, we conduct our studies
on a relatively small number of individuals randomly sampled (i.e., selected) from
the population. From these individuals we collect information in the form of mea-
surements of some specific characteristics such as age, size, and counts. We refer
to the information obtained from these individuals as data collectively. In Chaps. 2
and 3, we discuss several data exploration techniques, which involve summarizing
and visualizing data to obtain a high-level understanding of the data and the target
population.

We want to generalize what we learn from the individuals participating in our
study (i.e., the randomly selected individuals) to the whole population. This gener-
alization should always be accompanied by our acknowledgement that we are not
completely certain about our findings since our knowledge of the population is based
on a relatively small sample of individuals from that population. Specifically, we al-
ways present our findings along with some measurements that reflect the extent of
our uncertainty. To this end, we use probability as a powerful mathematical tool to
measure uncertainty. We discuss probability in Chaps. 4 and 5.

The process of analyzing data to learn about the whole population is referred to as
statistical inference. This usually involves guessing some unknown values, drawing
conclusions, and making decisions. Chapters 6, 7, and 8 discuss some basic meth-
ods of inferential statistics. Chapters 9, 10, and 11 provide slightly more advanced
statistical inference methods, which for the most part could be considered as the
generalization of topics covered in Chap. 8.

Finally, Chap. 12 discusses clustering methods, and Chap. 13 discusses Bayesian
analysis very briefly. These topics are not traditionally included in introductory
books on statistics. We decided to include these topics due to their immense impor-
tance in scientific studies. While this book does not do justice to these two topics,
we hope that it serves as an introduction for interested readers.

http://extras.springer.com


Preface ix

As mentioned above, we use R-Commander to show how statistical methods
can be used for real problems. Using R-Commander does not require any computer
programming. For readers who are comfortable with learning a programming lan-
guage, we discuss the equivalent R programs at the end of each chapter in Advanced
sections. These readers should start from Appendix B, where we provide a brief in-
troduction to R programming.

The methods discussed in this book have been developed by many researchers
over many years. To avoid overburdening the reader, we provide only a small num-
ber of references, mainly for related books that go beyond what we have covered
here, and also for real problems that we have used as examples.

Writing this book has helped me to improve my teaching, and the feedback I
have received from my students has helped me to improve the book during the past
several years. I would like to thank all my students who challenged me with their
questions; they have been my toughest critics.

I would like to thank John Fox for developing R-Commander. This is an ex-
tremely useful tool for teaching basic statistics to students without programming
background.

I would also like to thank Jessica Utts, Michael Phelan, Sam Behseta, and Wesley
Johnson for reviewing the book and providing thoughtful comments and construc-
tive criticisms to improve the quality of this book. I am very grateful to have such
good friends and supportive colleagues.

A very special thanks goes to Laura Balzer, who is currently a graduate student at
UC Berkeley. She has been extremely helpful in the process of preparing the initial
draft and editing the book.

Finally, I would like to thank my family for being patient and supportive through-
out the process of writing this book; it would not have been possible without their
love and support.

Babak ShahbabaIrvine, CA
November 11, 2011
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Chapter 1
Introduction

1.1 Statistical Methods in the Context of Scientific Studies

This book discusses statistical methods from the application point of view. More
specifically, we focus on biostatistical methods, which involve applying statistical
methods to biological and health-related problems. Each section poses one or more
practical problems and then presents the statistical tools related to solving these
problems. The materials presented in this book cover basic and essential steps in-
volved in analysis of biological and health-related data.

The overall objective of statistical methods is to use empirical evidence in order
to improve our knowledge about the target population, which includes the entire
group of individuals and objects (e.g., people, plants, cells) we want to study. As
a result, statistics helps us to make more informed decisions. We study the popu-
lation of interest by measuring a set of characteristics (e.g., age, size, weight) that
are related to our study. We refer to these characteristics, whose values can change
from one member of the population to another one, as variables. The objective of
many scientific studies is to learn about the variation of a specific characteristic
(variable) in the population of interest. For example, we might be interested in the
range of normal body temperature among healthy people, or tumor size in breast
cancer patients, or growth rate of walnut tress, or BMI (body mass index) in the US
population. In many studies, we want to explain or predict how a variable changes
with respect to some other variables. That is, we want to identify possible relation-
ships among different variables. For example, we might want to study the effects of
different diets on early growth of chicks, or ask how heart rate changes with body
temperature, or whether a higher BMI is associated with higher blood pressure, or
whether survival of breast cancer patients depends on the type of treatments (mas-
tectomy vs. breast conservation therapy) they receive. We refer to the variables that
are the main focus of our study as the response (or target) variables. In contrast,
we call variables that explain or predict the variation in the response variable as
explanatory variables or predictors.

Statistical analysis begins with a scientific problem usually presented in the form
of a hypothesis testing or a prediction problem. Hypothesis testing refers to the
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process of examining a scientific statement that explains a phenomenon. In gen-
eral, hypothesis testing problems can be regarded as decision problems, where we
need to decide to accept or reject the proposed explanation for the phenomenon.
For example, Mackowiak et al. (1992) [19] asked whether the average normal body
temperature is the widely accepted value of 98.6°F. Their hypothesis was that the av-
erage normal body temperature is less than the accepted value. A hypothesis might
also be expressed in terms of possible relationships between two or more charac-
teristics. For example, we might hypothesize that the normal body temperature is
different between men and women. This means we believe that the body tempera-
ture and gender are related. For breast cancer patients, we might hypothesize that
mastectomy leads to longer survival of patients compared to those who are treated
with breast conservation therapy (lumpectomy, nodal dissection, and radiation).

Statistical methods are used to evaluate a hypothesis based on empirical data.
Using these methods, we can decide whether we should reject a hypothesis or not.
Such decisions in turn help us to make more informed decisions with respect to the
scientific problem that inspired our study. For example, at the conclusion of their
study, Mackowiak et al. argue that the average normal body temperature seems to
be lower than previously believed, and a new upper limit for the range of normal
body temperature should be considered. This recommendation has important con-
sequences for deciding the body temperature set point and whether someone has a
fever that requires medication. For treating breast cancer patients, several studies
[27] have shown that there is no evidence of difference in survival between mastec-
tomy and breast conservation therapy, at least for patients with less severe situations
(e.g., small tumors, node negative). Based on these results, The US National Cancer
Institute (NCI) recommended breast conservation operations, especially for the type
of patients who participated in these studies (i.e., with less sever cancer), instead of
mastectomy, which was the standard treatment in the 1960s.

In recent years, high-throughput scientific studies without any clear hypothe-
sis have become very common. For example, scientists may examine thousands of
genes with respect to their relationship to a disease without hypothesizing that any
specific gene is responsible for the disease. In these studies, the objective is to ex-
plore a large number of possible factors (e.g., genes) in order to identify a small
number of them for follow-up studies that tend to be more thorough with much
smaller scales. Therefore, the initial large-scale studies are not designed for hypoth-
esis testing rather generating a small number of hypotheses, which can be the focus
of follow-up studies and tested properly in future.

Scientific problems are sometimes presented as prediction problems. Prediction
refers to the process of guessing the value of the response variable using a set of pre-
dictors. For example, we might want to predict percent body fat using abdomen cir-
cumference, or predict the survival time for cancer patients using tumor size. A large
body of the literature in biostatistics is devoted to developing statistical methods for
predicting the risk of different diseases such as cancer, Alzheimer’s disease, dia-
betes, and Parkinson’s disease. Kahn et al. (2009) [13] developed statistical models
for finding the risk of diabetes mellitus in US adults age 45 to 64 years using demo-
graphic, anthropometric, and clinical risk factors. Little et al. (2008) [17] showed
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that statistical methods can be used to identify patients with Parkinson’s disease by
detecting dysphonia (an impairment in the normal production of vocal sounds). Pre-
dicting unknown outcomes and future events using statistical methods can help us
with making better decisions. For example, people with high risk of diabetes might
decide to follow preventing measures (e.g., diet).

1.2 Sampling

To answer our scientific questions, we would, ideally, study the entire population of
interest (e.g., all breast cancer patients). However, this is usually impossible either
physically, ethically, or economically. For example, to test the hypothesis about the
average normal body temperature, it is not feasible to record the temperature of all
healthy people. Instead, a sample of representative members is selected from the
population. Then with the methods of statistical inference, the conclusions based
on the sample can cautiously be attributed to the whole population. Mackowiak et al.
(1992) selected n = 148 people, took their oral temperature, and then made conclu-
sions about the body temperature of the whole population. To compare the effects of
different treatments, one of the studies discussed in [27] includes 74 women treated
by breast conservation therapy and 67 women treated by mastectomy.

Note that we should generalize our findings only to the population from which the
sample is obtained. Mackowiak et al. recruited healthy individuals only. Therefore,
their findings can only be applied to healthy people. In the study of different breast
cancer treatments discussed above, patients with sever conditions were excluded.
Therefore, we should not generalize our findings to this group of patients.

The samples are selected randomly (i.e., with some probability) from the pop-
ulation. Unless stated otherwise, these randomly selected members of populations
are assumed to be independent. Informally, this means that the selected members
are not related to each other, and selecting one of them does not affect the selection
of another one. In the study by Mackowiak et al., the 148 randomly selected people
were unrelated and selected independently from each other.

The selected members (e.g., people, households, cells) are called sampling units.
In our sample, the individual entities from which we collect information are called
observation units, or simply observations. (We sometimes refer to an observed
value of a variable as observation and refer to the collection of these observations
as sample.) In the above example, the sampling units are the same as the observa-
tional units. These are the individuals Mackowiak et al. selected from the population
in order to measure their body temperature. In some cases, the sampling units are
not the same as the observational units; rather, each sampling unit includes multiple
observation units. For example, we might take a sample of households and mea-
sure some characteristics of the individuals in those households. In this case, the
sampling units are households, whereas the observational units are the individuals.

Our sample must be representative of the population, and their environments
should be comparable to that of the whole population. For example, to study normal
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body temperature of healthy people in the US, our sample would not be a good rep-
resentative of the population if 80% of people participating in our study are men, or
some of the participants are ill, or all the measurements are taken early in the morn-
ing. (Body temperature fluctuates over the day.) Using the appropriate sampling
techniques (i.e., sampling design) is crucial to making valid conclusions.

1.3 Observational Studies and Experiments

After obtaining the sample, we collect information relevant to our study from the
selected members. We typically do this either through an observational study or
an experiment. In observational studies, researchers are passive examiners trying
to have the least impact on the events and data collection process. They may simply
measure the current values of all relevant characteristics (e.g., body temperature,
heart rate, gender) for the sample, or observe how these characteristics change over
time.

The study conducted by Mackowiak et al. is an observational study. Not only this
study helped them to evaluate their hypothesis (i.e., normal body temperature is less
than the commonly accepted value), but it also helped them to detect relationships
among characteristics. For example, they found that body temperature and heart rate
tend to increase and decrease together. In this case, we say that the two variables are
associated with each other.

In general, observational studies can help us to discover association, which refers
to situations where changes in one characteristic tend to coincide with changes in
another one. However, we should not interpret the observed association as causa-
tion. The relationship is causal if one characteristic influences the other one. Unfor-
tunately, it is difficult to establish causality based on observational studies. There
is always the possibility that the observed relationship could be due to the effect
of some confounding (lurking) factors. That is, the effect of the exploratory vari-
able on the response variable is confounded with the effect of other factors, which
may or may not be known, so we cannot distinguish the effect of the confounding
factor from the effect of the explanatory variable. This usually happens when a con-
founding factor influences both the explanatory variable and the response variable.
For example, we might observe that high consumption of soft drinks is associated
with heart disease, and may be tempted to conclude that consumption of soft drinks
causes heart disease. However, it is possible that high consumption of soft drinks
is associated with a poor diet and eating of fatty foods, which contribute to heart
disease. Factors such as diet, age, gender, ethnicity, and genetics are typical con-
founding factors in many scientific studies.

In general, we attempt to establish causal relationships by using randomized ex-
periments, where researchers try to control the process as much as possible. In a
randomized experiment, the sampling units (also referred to as experimental units
or subjects) are randomly assigned to different treatments. For instance, to inves-
tigate the effect of dietary consumption on blood pressure, Sacks [28] studied 412
subjects who were randomly assigned to eat either a control diet typical of intake in
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the US or the DASH (Dietary Approaches to Stop Hypertension) diet. They found
that the DASH diet lowers blood pressure substantially.

Randomization, which refers to the random assignment of subjects to different
treatments, is a key concept in designing experiments. It helps control the influence
of confounding factors. The assumption is that randomization makes the groups as
similar as possible with respect to any possible confounding factor. Then the only
difference between these groups is the type of treatment imposed by researchers.

1.4 Data Exploration and Analysis

After selecting the sample and collecting the data, the next step toward statistical
inference and decision making is to perform data exploration, which involves vi-
sualizing and summarizing the data. The objective of data visualization is to obtain
a high-level understanding of the observed data. For example, we might realize that
the observed values of heart rate in our sample are clustered around 75, and most of
them fall within 60 and 90. Using data visualization techniques, we can learn about
the distribution of a variable. Informally, the distribution of a variable tells us the
possible values it can take, the chance of observing those values, and how often we
expect to see them in a random sample from the population. Using data visualiza-
tion, we can also learn about possible relationships between variables. For example,
we might find that heart rate increases with high body temperature.

Through data visualization, we might detect previously unknown patterns and
relationships that are worth further investigation. Visualization can also help us to
identify possible data issues, such as unexpected or unusual measurements, known
as outliers.

While visualization makes the task of understanding the data easier, the amount
of information might still be overwhelming. To make the data more manageable,
we need to further reduce the amount of information in some meaningful ways
so that we can focus on the key aspects of the data. Summary statistics are used
for this purpose. For example, the average (mean) of observed values is a statistic
which is commonly used as a single value representation for the entire sample. It
represents typical values we expect to see for a specific variable. Note that the mean
of a variable is not the same as its typical values. It is merely a representation of
such values. If we find that the average heart rate in our sample is 73.7, we expect
most of the observed values for heart rate to be close to (but in general not equal to)
73.7. We will discuss data exploration in more detail in Chaps. 2 and 3.

1.5 Statistical Inference

We collect data on a sample from the population in order to learn about the whole
population. For example, Mackowiak et al. (1992) measure the normal body tem-
perature for 148 people to learn about the normal body temperature for the entire
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population. More specifically, they wanted to make comments about the average
normal body temperature in the whole population. However, since we do not have
access to the whole population, the best we can do is to guess its average using
the observed data. We say we are estimating the unknown population average. We
discuss estimation in Chap. 6. Note that the exact value of the population average re-
mains unknown and our estimate of it can change depending on our sample. There-
fore, there is always some uncertainty associated with our estimations. The same is
true when we are estimating the strength of association between two variables (e.g.,
body temperature and heart rate) or the effect of a treatment on the response variable
(e.g., the effect of the DASH diet on blood pressure). In statistics, the mathematical
tool to address uncertainty is probability. We discuss probability in Chaps. 4 and 5.

The process of using the data to draw conclusions about the whole population,
while acknowledging the extent of our uncertainty about our findings, is called sta-
tistical inference. Our conclusions (the knowledge we acquire from data through
statistical inference) allow us to make decisions with respect to the scientific prob-
lem that motivated our study and our data analysis. As discussed above, decision
problems are sometimes presented in the form of hypothesis testing problems or
prediction problems. Chapters 7 to 13 are mainly devoted to statistical inference
methods.

1.6 Computation

To perform statistical inference, we usually rely on computer programs to pre-
pare, explore, and analyze the data. Frequently used statistical programs include
MINITAB, MATLAB, R, SAS, SPSS, and STATA. Because R [34] (http://www.
r-project.org/) is free and arguably the most common software among statisticians,
we will be using it in this book. R is readily available for all operating systems and
can be installed from http://www.r-project.org/. While R provides a powerful tool
for statistical analyses, it requires programming skills. Instead of using R directly,
throughout this book, we mainly focus on using R-Commander [7], which is a user-
friendly interface created by John Fox for basic practice of statistical methods in
R without any programming. However, you still need to install R in order to use
R-Commander. Appendix A provides step-by-step instructions for installing R and
R-Commander.

1.6.1 Using R-Commander

R-Commander allows us to run basic statistical analysis without necessarily learning
the programming language. It can be installed by opening R (double clicking on the
R icon to open the R Console) and entering the following command:

install.packages("Rcmdr", dependencies=TRUE)

http://www.r-project.org/
http://www.r-project.org/
http://www.r-project.org/
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Fig. 1.1 The R-Commander window. Notice the menu bar, Data set box, Edit data set
button, View data set button, Script window, Submit button, and Output window

Once R-Commander is installed, it can be used by typing library(Rcmdr) in
the command line. (More information on how to install R and R-Commander are
provided in Appendix A.)

Now take the time to familiarize yourself with the R-Commander window
(Fig. 1.1). In the menu bar, there is a Data set box that will display the name
of the active (current) data set. The subsequent two buttons allow the data set to be
edited and viewed, respectively. When commands are executed via the menu bar in
R-Commander, their corresponding R codes appear in both the Script window and
the Output window. You can enter these commands directly in the Script window or
R Console itself and obtain the exact same results as using the menu bar. If you are
not interested in programming, however, you can ignore these codes for the most
part and focus on the outputs appearing in the Output window. In that case, the only
commands you need to know are install.packages and library, which
you already used to install and open R-Commander. In general, these commands
are used to install and load R packages. These are user contributed programs that
are created for specific statistical techniques. (For example, the Rcmdr package is
created to provide a user-friendly interface for routine statistical analysis.)

Many of these packages include interesting data sets related to biology and health
sciences. While the statistical techniques discussed in this book are all available in
R-Commander, we will occasionally load some additional R packages in order to



8 1 Introduction

Fig. 1.2 Importing the
Pima.tr data from the
MASS package. Select the
appropriate package and data
set

Fig. 1.3 Viewing the
Pima.tr data in
R-Commander. Each row
corresponds to a Pima Indian
woman in our sample, and
each column corresponds to a
variable

have access to their data sets. One of these packages is the MASS package created
by Venables and Ripley [37]. This package is installed automatically when you in-
stall R, and it is loaded automatically when you run R-Commander.

To see the list of data sets available in MASS, in the menu bar click on Data →
Data in packages → Read data set from an attached pack-
age. Under Package, you will see the name of several packages (e.g., car,
datasets, and MASS). These packages are loaded automatically when you open
R-Commander.

As an example, we will use the Pima.tr data set. Select Pima.tr under the
Data set option (Fig. 1.2) and click OK. Now Pima.tr is the active data set.
Click the View data set button to examine it (Fig. 1.3). The data, which are
collected by the US National Institute of Diabetes and Digestive and Kidney Dis-
eases, includes 200 women of Pima Indian heritage living near Phoenix, Arizona
[31]. The women are at least 21 years old and are tested for diabetes. You can learn
more about this data set by clicking on Data → Active data set → Help
on active data set (if available).

In the Pima.tr data set, each row corresponds to an individual in the sample
and is regarded as one observation. Each column corresponds to a characteristic
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Fig. 1.4 Importing the
BodyTemperature data
into R-Commander. Enter
“BodyTemperature” as the
name of the data set. Accept
all other defaults

(variable) of interest measured for each individual. The list of these characteristics
is as follows:

• npreg: number of pregnancies.
• glu: plasma glucose concentration in an oral glucose tolerance test.
• bp: diastolic blood pressure.
• skin: triceps skin fold thickness (mm).
• bmi: body mass index.
• ped: diabetes pedigree function.
• age: age in years.
• type: disease status; Yes for diabetic and No for nondiabetic.

In this study, type (i.e., disease status) is the variable of interest. Therefore, we
refer to it as the response or target variable. The other variables in the study (e.g.,
npreg and bmi) are believed to be related to the response variable and may explain
its variation (e.g., Yes or No), or they can be used to predict the response variable
(e.g., whether a woman would be affected by diabetes). Consequently, we refer to
them as the explanatory variables or predictors.

If the data set you would like to analyze is available as a text file, you first need
to import it into R-Commander. As an example, download the BodyTempera-
ture.txt file from book website (http://extras.springer.com) and save it in your
local directory. This file includes gender, age, heart rate, and normal body temper-
ature of 100 adults between the age of 20 and 50. In order to read the data set into
R-Commander, click Data → Import data → from text file, clip-
board, or URL. Name the data set “BodyTemperature” and accept all other
defaults (Fig. 1.4). Click OK and then select the BodyTemperature.txt you
saved in your local directory. Notice that the name of the active data set changes

http://extras.springer.com
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Fig. 1.5 Viewing the
BodyTemperature data in
R-Commander

to BodyTemperature. You can always switch back to Pima.tr by clicking on
the name of active data sets. For now, click the View data set button to exam-
ine BodyTemperature (Fig. 1.5). The data set includes 100 observations and 4
variables.

When importing BodyTemperature, we kept all the options (shown in
Fig. 1.4) as their default values except the name of the data set. We kept the option
Variable names in file checked since the first row of the data includes
the names of variables. If this is not the case for your data, you should uncheck this
option. This way, R-Commander will choose generic names for the variables. The
default value for Missing data indicator is “NA”. This means that in the
data set, “NA” (Not Available) is recorded whenever the value of a variable is miss-
ing (not known). If missing values are identified by a different indicator, you should
change this option accordingly. Since the BodyTemperature.txt was saved as
a text file in our local directory, we kept the option Local file system under
Location of Data file. We always recommend this option. However, we
can also import the data after copying it to clipboard and choosing the Clipboard
option. If the data set is available online, we can import it directly by choosing
the Internet URL option and specifying the internet address when prompted.
When reading a data set into R-Commander, it is very important to specify the
Field separator correctly. This refers to the character that separates the vari-
ables (columns) in the data. For BodyTemperature, the variables are separated
by white spaces, which is the default value for this option.

1.6.2 Using R

While R-Commander can be conveniently used for basic application of statistical
methods, using R directly (i.e., using the R programming language) allows for more
control over the analysis and leads to a deeper understanding of statistical methods.
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In Appendix B, we provide a brief introduction to R programming for those who
are interested in learning R. Also, in the “Advanced” section of most chapters, we
discuss some R programming techniques related to the topics covered in the corre-
sponding chapter.

1.7 Advanced

In the Advanced section at the end of each chapter, we discuss some topics that
are intended for more advanced readers and can be disregarded in the first reading
of this book. Here, we provide more discussion on sampling, observational studies,
and experiments.

1.7.1 More on Sampling

The sampling strategy (a.k.a. sampling design) is an important factor affecting the
results of scientific studies. Here, we briefly discuss some of the most widely used
sampling designs.

Simple Random Sampling Simple random sampling (SRS) is the most straight
forward sampling procedure. Suppose that the population of interest has N mem-
bers, and we want to select n of them for our sample. If the chance of being selected
is the same for any group of n members in the population, we refer to the sampling
strategy as simple random sampling. For example, we could assign a unique number
1, . . . ,N to each member of the population and randomly select n of these numbers.
For this, we could write the numbers on pieces of paper (equal sizes), put them in
a hat and select n without looking, or use random number generator computer pro-
grams to generate n distinct numbers from 1 through N . (The latter approach is
obviously more feasible when the population size N is large.)

Stratified Sampling Suppose that we want to find average normal body tempera-
ture in the US population. Some studies have shown that body temperature varies
between different races. In the study conducted by McGann et al. [20], African-
Americans had higher average body temperature compared to Caucasians. To make
sure our findings based on the sample are generalizable to the whole population,
we should make sure that our sample is comparable to the whole population with
respect to the key subpopulations. In this case, we should make sure that neither of
these two subpopulations, African-Americans and Caucasians, is overrepresented
in our sample. Suppose that 72% of the US population are Caucasian, 12% are
African-American, and the remaining 16% belong to other races. If we intend to se-
lect n = 150 people for our study, we can randomly sample 150 × 0.72 = 108 from
the Caucasian population, 150 × 0.12 = 18 from the African-American population,
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and 150 × 0.16 = 24 people from other races. This way, our sample would be com-
parable to the whole population with respect to the proportions of different races.
This is an example of stratified random sampling. In this approach, the population
is first partitioned into subpopulations, a.k.a. strata, and sampling (usually simple
random sampling) is performed separately within each subpopulation. In the above
example, we stratify the population by race.

Cluster Sampling Suppose that we want to find the average length of stay (LOS)
in hospital for patients suffering from acute appendicitis from 2009 to 2010 in the
US. Sampling directly from the population of patients could be difficult; we might
not have access to the list of all patients treated during 2009–2010. Instead, we can
sample from the population of all hospitals in the US, and for each hospital, we can
subsample some or all (e.g., using SRS) of the appendicitis patients admitted to that
hospital. Note that in this case, the observation units (patients) are different from the
sampling units (hospitals). This sampling design is known as cluster sampling. We
start the sampling process by first grouping observations units into clusters. Then,
we sample from these clusters and subsample some or all members of the selected
clusters. When analyzing data from clustering sample, we should take the clustering
of the observed data into account. In the above example, it is perceivable that obser-
vations coming from the same hospital are more similar compared to observations
from different hospitals. For example, a hospital may tend to keep patients longer.
As a result, patients sampled from that hospital would have relatively higher LOS
compared to patients sampled from a hospital whose policy is to release patients as
soon as possible.

1.7.2 More on Observational Studies

Observational studies can be classified into retrospective and prospective studies.
In retrospective studies, researchers look into the histories of the participants. For
example, to investigate the effect of smoking on lung cancer, a group of patients with
lung cancer can be surveyed to determine if they smoked in the past. In prospective
studies, the researchers identify different groups and observe them over time (with-
out disturbing and influencing the natural processes of the event). For example, we
might observe a sample of smokers over time to see what percentage of them would
develop lung cancer.

In general, conducting prospective studies is more difficult compared to retro-
spective studies, since we might have to follow participants for a long time. How-
ever, they tend to produce more reliable data compared to retrospective studies (e.g.,
people might not remember their past very accurately). In the above example, our
data might not be very reliable if we ask smokers how long they have been smoking.

In the above example, to make a reasonable conclusion about the relationship be-
tween smoking and lung cancer, the smoking habits of patients should be compared
to that of another group who do not have lung cancer but are similar in all other
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respects (age, gender, etc.). To this end, we can select a sample of patients along
with a sample of people who do not have lung cancer and investigate the smoking
habits of all participants (with or without lung cancer). We refer to the group of pa-
tients as the case group. The group of participants without lung cancer is called the
control group. If there is a substantial difference between the two groups in terms
of smoking (assuming that everything else is similar between the two groups), we
may conclude that lung cancer is related to smoking. This type of study is called a
case-control study.

In the above example, we assume that the individuals in the cases group are not
related to those in the control group. In some case-control studies, however, we
pair each individual in the control group with a related individual from the case
group. For example, instead of randomly sampling a group of people without lung
cancer, we can pair each lung cancer patient in the case group with a sibling who
is not suffering from lung cancer. This way, we hope to make the two groups as
comparable as possible (especially, with respect to hereditary factors). Note that in
these situations, the usual assumption that samples are independent does not hold
anymore, and the pairing of observations should be into account in our data analysis.
We will discuss these situations in Chap. 8.

1.7.3 More on Experiments

We mentioned that randomization is a key concept in designing experiments. An-
other key concept is replication, which refers to the assignment of multiple subjects
to each treatment. Replications allow us to observe the variability of treatment ef-
fects. For example, if we are interested in investigating the effect of aspirin on heart
attack, we could randomly assign some subjects to the treatment group, who would
take aspirin regularly, and some subjects to the control group, who would receive
the placebo, which is similar to the actual drug but missing the main or active ingre-
dients. Of course, the effect of treatment would not be the same for all subjects; not
everyone taking aspirin will become immune from heart disease, and not everyone
taking placebo would suffer from heart disease. In the study conducted by Sack et
al., not everyone following the DASH diet would have a lower blood pressure than
those in the control group. The observed variability in the response variable (e.g.,
disease status, blood pressure) contributes to our uncertainty regarding the treatment
effect. In a proper statistical inference, the extent of our uncertainty should be ex-
pressed along with our conclusion regarding the effectiveness of the treatment. The
simplest design using randomization and replication is called a complete random-
ized design.

In experiments, we want the subjects assigned to different treatments to be as
comparable as possible, so the only difference between them would be the type of
treatment they receive. In some experiments, however, the treatment groups might
be different (due to chance) with respect some factors that are known to influence
the results but are not the main focus of the study. We refer to them as nuisance
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factors. For example, when studying the effect of aspirin on heart disease, age might
be an important factor but is not of main interest. It is quite possible that when we
randomly assign subjects to one of the two treatments, they might not be comparable
with respect to age (e.g., participants in one group tend to be older). To avoid this
issue, a common approach is to use blocking, which refers to the division of subjects
into subgroups such that subjects within a block are considered to be similar in
terms of the nuisance factors. The design of such experiments is called randomized
block design. In these experiments, subjects are first divided into blocks, and then
randomization (assigning subjects to different treatments randomly) is performed
within each block. For the above example, we could first group the subjects into
several age blocks (e.g., below 55, 55–65, and above 65) and then randomly assign
the subjects within each block to one of the possible treatments (i.e., aspirin or
placebo).

A common randomized block design is when each block is comprised of a pair
of related subjects. For example, each block may include two siblings, who are ran-
domly assigned to one of the two possible treatments (e.g., aspirin or placebo). Such
design is referred to as matched pairs design. Occasionally, the pairs that create a
block are the same subject, who receives both treatments one after each other. (The
order of treatments are decided randomly.) For example, we can select a sample of
people from the population, assign each person to one of the two possible diets (e.g.,
high sodium vs. low sodium) for one week, measure the blood pressure, then switch
them to the other diet for another week, and measure their blood pressure again.
This way, each person acts as his or her own control, so the two treatment groups
are quite comparable. Such experiments are known as crossover experiments.

When assigning subjects to different treatments, the researchers may not tell the
subjects their assignments to avoid prejudice and unintentional influence on the re-
sults. These experiments are called single-blind studies. The assignments of sub-
jects may be hidden from the researchers (to avoid bias) as well as subjects. These
experiments are double-blind.

1.7.4 Cross-Sectional, Longitudinal, and Time Series Data

In some studies, we collect data at some fixed time. We refer to such data, which
represent a snapshot of our samples, as cross-sectional data. In some other studies,
we follow the samples over time and repeatedly collect information and take mea-
surements. The resulting data are called longitudinal data. These studies tend to be
more complex but can provide a better understanding of patterns and relationships
in the population. They are especially helpful for understanding how these patterns
and relationships change over time. Time series data are also collected over a pe-
riod of time. However, compared to longitudinal data, time series data are usually
collected more frequently, but on smaller samples (e.g., one or two individuals).
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1.8 Exercises

1. Read the paper entitled “A Critical Appraisal of 98.6°F, the Upper Limit of the
Normal Body Temperature, and Other Legacies of Carl Reinhold August Wun-
derlich” by Mackowiak et al. [19]. What is the scientific question that motivated
this study? Comment on the type of study, its sampling design, and its findings.
(The paper is available online at http://jama.ama-assn.org/cgi/reprint/268/12/
1578.)

2. Read the paper entitled “Chocolate consumption in relation to blood pressure
and risk of cardiovascular disease in German adults” by Buijsse et al. [4]. What
is the objective of this study? Comment on the type of the study, its sampling
design, and its findings. Could we use this study to conclude that chocolate con-
sumption reduces the risk of cardiovascular disease? (This paper is available on-
line at http://eurheartj.oxfordjournals.org/content/early/2010/03/18/eurheartj.
ehq068.abstract.)

3. In another study, Taubert et al. [33] also studied the relationship between choco-
late and blood pressure. Read their paper entitled “Effects of Low Habitual
Cocoa Intake on Blood Pressure and Bioactive Nitric Oxide”. (This paper
is available online at http://jama.ama-assn.org/content/298/1/49.full.) Compare
this study to the study [4]. Comment on the advantages and disadvantages of
each study.

4. Read the paper entitled “A July Spike in Fatal Medication Errors: A Possible
Effect of New Medical Residents” by Phillips et al. [26]. What is the scientific
question? Comment on the type of study, the sample that was used in this study,
and the conclusion. What kind of decision can be made based on the findings
of this study? (The paper is available online at http://www.springerlink.com/
content/n502614282p9266t.)

5. In the paper entitled “The Role of Estrogen in Schizophrenia”, Seeman [30]
reviewed three different studies related to the role of estrogen in Schizophrenia.
Provide a summary for each of the three studies she reviewed and comment
on the type of these studies, their samples, and their findings. (The paper is
available online at http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1188751.)

6. Read the paper entitled “An Acute Effect of Cigarette Smoking on Platelet
Function: A Possible Link Between Smoking and Arterial Thrombosis” by
Levine [16]. What is the scientific question this study attempts to answer? Com-
ment on the approach used in the study to answer the scientific question. (This
paper is available online at http://circ.ahajournals.org/cgi/reprint/48/3/619.)

7. Kettunen et al. [14] study the effect of arthroscopy in patients with chronic
patellofemoral pain syndrome. Discuss their approach, the sample they used,
and their findings. What would be a reasonable decision based on the results of
their study? (This paper is available online at http://www.biomedcentral.com/
1741-7015/5/38.)

8. In an article published in the July 2010 issue of the journal of Pediatrics, Nafiu
et al. [23] argue that measuring children’s neck circumference could provide a

http://jama.ama-assn.org/cgi/reprint/268/12/1578
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http://eurheartj.oxfordjournals.org/content/early/2010/03/18/eurheartj.ehq068.abstract
http://eurheartj.oxfordjournals.org/content/early/2010/03/18/eurheartj.ehq068.abstract
http://jama.ama-assn.org/content/298/1/49.full
http://www.springerlink.com/content/n502614282p9266t
http://www.springerlink.com/content/n502614282p9266t
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1188751
http://circ.ahajournals.org/cgi/reprint/48/3/619
http://www.biomedcentral.com/1741-7015/5/38
http://www.biomedcentral.com/1741-7015/5/38


16 1 Introduction

simple way to identify possible weight problems. Read the report by Reuters
(http://www.reuters.com/article/idUSTRE6653R320100706) about this study
and comment on its objective, its sampling design, and its findings. (The full
article is available online at http://pediatrics.aappublications.org/cgi/content/
abstract/peds.2010-0242v1.)

9. Read the article entitled “Caloric restriction improves memory in elderly hu-
mans” by Witte et al. [39]. This article was published in January 2009 in the Pro-
ceedings of the National Academy of Sciences (PNAS). Comment on the scien-
tific question that motivated this study, the population of interest, and how the
study was designed. What would be a reasonable decision based on the results
of this study? (This paper is available online at http://www.pnas.org/content/
106/4/1255.full.)

10. In an article entitled “Thought for Food: Imagined Consumption Reduces
Actual Consumption”, which was published in Science in December 2010,
Morewedge et al. [21] study the effect of imaginary eating on the actual con-
sumption of imagined food. (The article is available online at http://www.
sciencemag.org/content/330/6010/1530.full.html.) Read this article and provide
a summary of their study design.

http://www.reuters.com/article/idUSTRE6653R320100706
http://pediatrics.aappublications.org/cgi/content/abstract/peds.2010-0242v1
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http://www.sciencemag.org/content/330/6010/1530.full.html
http://www.sciencemag.org/content/330/6010/1530.full.html


Chapter 2
Data Exploration

2.1 Data Visualization and Summary Statistics

After clearly defining the scientific question we try to answer, selecting a set of
representative members from the population of interest and collecting data (either
through observational studies or randomized experiments), we usually begin our
analysis with data exploration. This chapter focuses on data exploration for one
variable at a time. (Data exploration techniques aimed at identifying possible rela-
tionship between two or more variables are discussed in the next chapter.) Our ob-
jective is to develop a high-level understanding of the data, learn about the possible
values for each characteristic, and find out how a characteristic varies among indi-
viduals in our sample. In short, we want to learn about the distribution of variables.
Recall that for a variable, the distribution shows the possible values, the chance of
observing those values, and how often we expect to see them in a random sample
from the population.

The data exploration methods allow us to reduce the amount of information so
that we can focus on the key aspects of the data. We do this by using data visualiza-
tion techniques and summary statistics. The visualization techniques and summary
statistics we use for a variable depend on its type. Therefore, before we continue
with data exploration methods, we briefly discuss different variable types. (More
discussion is provided in Chap. 4.)

2.2 Variable Types

Let us revisit the Pima.tr data discussed in the previous chapter (Fig. 2.1). For
each individual, there are eight measurements for eight different variables. In this
book, variables will be represented by capital letters, such as X, Y , Z. Each obser-
vation in our sample has an index i, where i = 1,2, . . . , n, and n is the total sample
size. Here, the term observation refers to an observed value of a variable, and the
term sample refers to the collection of these observations. We denote by xi the ith
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Fig. 2.1 Viewing the
Pima.tr data in
R-Commander

observed value of variable X. For example, if the variable age is denoted by X, then
x5 = 23 means that the 5th individual in our sample is 23 years old. (Try checking
this by viewing the Pima.tr data set.)

Based on the values a variable can take, we can classify it into one of two groups:
numerical variables or categorical variables. In Pima.tr, variables npreg, age,
and bmi in the Pima.tr data set are numerical variables since they take numerical
values, and the numbers they take have their usual meaning. For example, we say
that the second individual in our sample is older than the first individual since x2 =
55 is bigger than x1 = 24. We can also subtract their ages to find their age difference:
55 − 24 = 31. For numerical variables, we can talk about the distance between two
values.

If the values of a numerical variable are counts (e.g., number of pregnancies,
number of physician visits), we refer to the variable as a count variable to dis-
tinguish it from other types of numerical variables. Often, the statistical methods
we choose for count variables are different from the method we choose for other
numerical variables.

The type variable in Pima.tr is categorical since the set of values it can
take consists of a finite number of categories; here, Yes (for diseased) and No (for
nondiseased). In other words, a categorical variable assigns one of the possible cat-
egories to each individual in our sample.

It is common to use numerical codings for categorical variables. Let us denote the
type variable Y . We can use Y = 1 for nondiabetic individuals (i.e., type=No),
and Y = 2 for diabetic women (i.e., type=Yes). Note, however, that these numbers
merely represent different categories (disease status) and do not have their usual
meaning. For example, we cannot talk about the distance between two values of
the type variable or say that the value of this variable for diabetic women is two
times more than that of nondiabetic women. Indeed, the assignment of numbers to
different categories in this case is quite arbitrary. For the type variable, we could
have decided to represent diabetics by Y = 1 and nondiabetics by Y = 2.
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Fig. 2.2 Viewing the
birthwt data in
R-Commander

Categorical variables are either nominal or ordinal, depending on the extent
of information the numerical coding provides. For nominal variables, the numbers
are simply labels, which are chosen arbitrarily. Therefore, they do not provide any
information. The type variable in Pima.tr is nominal. For ordinal variables, al-
though the numbers do not have their usual meaning, they preserve a rank ordering.
Therefore, they provide information about the ordering of categories. For example,
we would use an ordinal variable to denote the severity of a disease as Y = 1 for
low, Y = 2 for medium, and Y = 3 for high. Although these numerical values do not
suggest that medium is two times more severe than low, we can say that medium is
more severe than low.

Now let us consider another data set called birthwt, which is also available
from the MASS package. This data set includes the birth weight (in grams) of 189
newborn babies along with some characteristics (e.g., age, smoking status) of their
mothers. The data were collected at Baystate Medical Center, Springfield, MA, dur-
ing 1986. To load this data set, click Data → Data in packages → Read
data set from an attached package. Select MASS under Package
and birthwt under Data set.

View the data set by clicking the View data set button (Fig. 2.2). The data
set includes the following variables:

• low: indicator of birth weight less than 2.5 kg (0 = normal birth weight, 1 = low
birth weight).

• age: mother’s age in years.
• lwt: mother’s weight in pounds at last menstrual period.
• race: mother’s race (1 = white, 2 = African-American, 3 = other).
• smoke: smoking status during pregnancy (0 = not smoking, 1 = smoking).
• ptl: number of previous premature labors.
• ht: history of hypertension (0 = no, 1 = yes).
• ui: presence of uterine irritability (0 = no, 1 = yes).
• ftv: number of physician visits during the first trimester.
• bwt: birth weight in grams.
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Variables age, lwt, ptl, ftv, and bwt are numerical variables. Among these
variables, ptl and ftv are count variables. The variables low, race, smoke,
ht, and ui are all categorical. Note that all categorical variables are coded with
numerical values. In these situations, R and R-Commander cannot automatically
recognize them as categorical variables. In fact, they are considered as numeri-
cal variables by default. Therefore, we need to convert them to categorical vari-
ables. To do this, make sure birthwt is the active data set, then click on Data
→ Manage variables in active data set → Convert numeric
variables to factors. (In R, categorical variables are usually stored as fac-
tors.) Under Variables, select low, race, smoke, ht, and ui. Under Factor
Levels, check the Use numbers option (unless you would like to provide spe-
cific names for each category). Click OK and accept the overwrite option when
prompted. The data set is now ready for exploration and analysis.

2.3 Exploring Categorical Variables

In this section, we discuss visualizing and summarizing categorical data. Consider
the type variable in Pima.tr data set. A simple way for summarizing the data is
to create a table that shows the number of times each category has been observed.

The number of times a specific category is observed is called frequency. We
denote the frequency for category c by nc.

Table 2.1 shows that in this sample, the number of women not affected by dia-
betes (type=No) is n1 = 132, and the number of diabetic (type=Yes) women is
n2 = 68. Here, 1 represents “No”, and 2 represents “Yes” for the type variable. To
obtain the frequencies for this variable, click Statistics → Summaries →
Frequency distributions and select type as the Variable. The results
are displayed in the Output window (Fig. 2.3).

The sum of the frequencies for all categories is equal to the total sample size,

∑

c

nc = n,

Table 2.1 Frequency table
for the type variable in the
Pima.tr data set

Type Frequency

No 132

Yes 68

Total 200
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Fig. 2.3 Using
R-Commander to obtain and
view the frequency table for
type from the Pima.tr
data set

where
∑

c means the sum over all categories. For the type variable, we have

∑

c

nc = n1 + n2 = 132 + 68 = 200.

2.3.1 Relative Frequency and Percentage

Follow the above steps to create the frequency table for the race variable in the
birthwt data set. For this variable, the frequencies are n1 = 96, n2 = 26, and
n3 = 67 for “White”, “African-American”, and “Other” categories, respectively. The
sum of these frequencies is equal to the sample size n = 189.

Now suppose that we want to ensure that the racial make up of our sample is
similar to that of the whole US population. To do this, we use relative frequencies
or percentages as summary statistics.

The relative frequency is the sample proportion for each possible category.
It is obtained by dividing the frequencies nc by the total number of observa-
tions n:

pc = nc

n
. (2.1)

Relative frequencies are sometimes presented as percentages after multiplying
proportions pc by 100.

The relative frequencies and percentages for the race variable in birthwt are

p1 = 96/189 = 0.508 = 50.8%,

p2 = 26/189 = 0.138 = 13.8%,

p3 = 67/189 = 0.354 = 35.4%.

Therefore, 50.8% (almost half) of the women in the sample were white, 13.8% were
African-American, and the remaining 35.4% were from other races. We can now
compare these relative frequencies with their corresponding proportions in the US
population.
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Fig. 2.4 Using R-Commander to obtain and view the frequencies and percentages of the race
variable in the birthwt data set

In R-Commander, make sure birthwt is the active data set, then click
Statistics → Summaries → Frequency distributions, and select
race as the Variable. The frequencies and percentages are given in the Output
window, as shown in Fig. 2.4. Note that R-Commander automatically multiplies the
proportions by 100 to obtain the percentages.

For race, the category “1” (i.e., white women) has the highest frequency. In this
case, we say that the mode of the variable race is “1”.

For a categorical variable, the mode of is the most common value, i.e., the
value with the highest frequency.

For the type variable, if we use 1 for “No” (i.e., nondiabetic) and 2 for “Yes” (i.e.,
diabetic), the mode of the variable is 1.

Since the relative frequencies are proportions of the sample size, their sum is 1,
∑

c

pc = 1,

where pc is the relative frequency of category c. For the race variable, we have
∑

c

pc = 0.508 + 0.138 + 0.354 = 1.

Similarly, the sum of the percentages for different categories is 100%. Table 2.2
shows the frequencies and relative frequencies of the three categories for race.

2.3.2 Bar Graph

For categorical variables, bar graphs are one of the simplest ways for visualizing
the data. Using a bar graph, we can visualize the possible values (categories) a cat-
egorical variable can take, as well as the number of times each category has been
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Table 2.2 Frequency table
for the race variable in the
birthwt data set

Race Frequency Relative frequency

White 96 0.508

African-American 26 0.138

Other 67 0.354

Total 189 1

Fig. 2.5 Using
R-Commander to create and
view a frequency bar graph
for type in the Pima.tr
data set. The heights of the
bars sum to the sample size n.
Overall, bar graphs show us
how the observed values of a
categorical variable in our
sample are distributed

observed in our sample. The bar graph for variable type (Fig. 2.5) shows that the
possible values are “No” (nondiseased) and “Yes” (diseased). The height of each
bar in this graph shows the frequency of the corresponding category. Therefore, the
bar heights (frequencies) add up to the total sample size (in this case, n = 200).

In R-Commander, make sure Pima.tr is the active data set. (If you have loaded
Pima.tr, but it is not currently the active data set, click on the name of the active
data set and select Pima.tr from the list of available data sets.) Then, create a
bar graph for type by clicking Graphs → Bar graph and then selecting type
as the Variable. (Notice how bar graphs can only be created for categorical vari-
ables.) On the resulting plot shown in Fig. 2.5, the horizontal axis represents the pos-
sible values of the variable, and the height of each bar represents the number of ob-
servations in that category. Indeed, a quick glance at the graph reveals that the num-
ber of nondiabetic women in our sample is almost two times more than the number
of diabetic women. You can save this graph by clicking Graphs → Save graph
to file and choosing either as bitmap or as PDF/Postscrip/EPS for
the file format.
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Fig. 2.6 Bar graph for
mother’s race in the
birthwt data set, where 1,
2, and 3 represent the
categories “white”,
“African-American”, and
“other”, respectively

Fig. 2.7 Pie charts for the
type variable from
Pima.tr and the race
variable from birthwt,
where 1, 2, and 3 represent
the categories “white”,
“African-American”, and
“other”, respectively

Follow the above steps to create the bar graph for the variable race in
birthwt. The resulting graph is shown in Fig. 2.6.

2.3.3 Pie Chart

We can use a pie chart to visualize the relative frequencies of different cate-
gories for a categorical variable. In a pie chart, the area of a circle is divided into
sectors, each representing one of the possible categories of the variable. The area of
each sector c is proportional to its frequency. To create pie charts in R-Commander,
click Graphs → Pie chart. Figure 2.7 shows the pie charts for the type vari-
able from Pima.tr and the race variable from birthwt.



2.4 Exploring Numerical Variables 25

Fig. 2.8 Three separate
samples for variable X.
Observations in Sample 1 are
gathered around 2, whereas
observations in Sample 2 and
Sample 3 are gathered
around 4. Observations in
Sample 3 are more dispersed
compared to those in
Sample 1 and Sample 2

2.4 Exploring Numerical Variables

In this section, we discuss visualization and summarization of numerical data. As a
running example, we consider a numerical variable, X, for which we have collected
three sets (samples) of observations denoted as Sample 1, Sample 2, and Sample 3.
(You can assume that each set of observations are collected from a distinct group in
the population.) Figure 2.8 shows the dot plots for these three sets of observations.
Here, each point represents one observation in the corresponding sample.

As before, we use data visualization techniques and summary statistics to learn
about the distribution of variables. For numerical variables, we are especially inter-
ested in two key aspects of the distribution: its location and its spread. The location
of a distribution refers to the central tendency of values, that is, the point around
which most values are gathered. The spread of a distribution refers to the disper-
sion of possible values, that is, how scattered the values are around the location.
In Fig. 2.8, we can see that the observed values in Sample 1 are gathered around
X = 2; whereas, the observations in Sample 2 and Sample 3 are gathered around
X = 4. Therefore, Sample 2 and Sample 4 have roughly the same location. On the
other hand, Sample 1 and Sample 2 have roughly the same spread, which is smaller
than the spread in Sample 3. The individual observations in Sample 3 tend to be
further away from the location compared to those in Sample 1 and Sample 2. This
might not be very clear from dot plots, where we show all the observed values.
In what follows, we present more effective visualization techniques and summary
statistics that reduce the amount of information in order to make it easier to learn
about the distribution of numerical variables.
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Fig. 2.9 Histograms for the three samples shown in Fig. 2.8

2.4.1 Histograms

Histograms are commonly used to visualize numerical variables. A histogram is
similar to a bar graph after the values of the variable are grouped (binned) into a
finite number of intervals (bins). For each interval, the bar height corresponds to the
frequency (count) of observation in that interval. That is, we treat each interval as a
category. Similar to bar graphs, the heights sum to sample size n. Figure 2.9 shows
the histograms for Sample 1, Sample 2, and Sample 3. For Sample 1, observations
are grouped into six intervals. Most observed values are around 2. Sample 2 and
Sample 3 have roughly the same locations. However, the histogram for Sample 3 is
more spread out compared to that of Sample 2.

As an example, we use the variable bmi in the Pima.tr data set and create
its histogram. In R-Commander, click Graphs → Histogram and select bmi
for the Variable. (Now we can only select from the numerical variables in our
data set.) The resulting histogram is shown in Fig. 2.10. The x-axis represents bmi,
where its observed values are divided into seven equal bins of width w = 5. The
height of each bar shows the frequency (count) in the corresponding interval. In-
deed, a quick glance of the plot suggests that the age interval (30,35] has the highest
frequency. The notation (30, 35] is the interval greater than 30 and less than or equal
to 35. By default, each interval includes the right-hand point (here, 35) but not the
left-hand point (here, 30). For the bmi variable, Fig. 2.11 shows that most obser-
vations are gathered around 32.5, and the observed values spread roughly from 15
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Fig. 2.10 The frequency
histogram for the numerical
variable bmi in the
Pima.tr data set. The
height of the rectangles
represent the frequency of the
interval and sum to the total
sample size n. Here, the
values of the variable are
divided into seven bins

Fig. 2.11 The density
histogram for bmi from the
Pima.tr data set. Here, the
scale on the y-axis is density
(not frequency). Once again,
the values of bmi are divided
into seven bins of width
w = 5

to 50. (Later, we use summary statistics to describe these features of data more pre-
cisely.) As before, you can save this graph by clicking Graphs → Save graph
to file and choosing either as bitmap or as PDF/Postscrip/EPS for
the file format.

In the above example, the bar height for each interval, c, is equal to its fre-
quency, nc. Alternatively, the bar height for each interval could be set to its relative
frequency pc = nc/n, or the percentage pc × 100, of observations that fall into that
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interval. For histograms, however, it is more common to use the density instead of
the relative frequency or percentage.

The density is the relative frequency for a unit interval. It is obtained by di-
viding the relative frequency by the interval width:

fc = pc

wc

. (2.2)

Here, pc = nc/n is the relative frequency with nc as the frequency of interval
c and n as the total sample size. The width of interval c is denoted wc.

Let us try calculating the density of the interval (30, 35], which is the fourth
interval. There are n4 = 67 observations in this interval. Therefore, the relative fre-
quency is p4 = 67/200 = 0.335. The interval width is w4 = 5. The density for the
this interval is therefore

f4 = 0.335/5 = 0.067.

To create the density histogram for bmi in R-Commander, click Graphs →
Histogram, select bmi as the Variable, and choose Densities for the
Axis Scaling. The resulting histogram (Fig. 2.11) is similar to that of Fig. 2.10.
However, the height of each bar in this histogram shows the density of the corre-
sponding interval (as opposed to its frequency).

For each interval c, the area of the corresponding bar in the density histogram is
calculated as follows (hight × width):

ac = fc × wc

= pc

wc

× wc

= pc.

Therefore, the area of each bar (rectangle) is the relative frequency for the corre-
sponding interval. Since the sum of relative frequencies is 1, the total area of bars in
a density histogram is 1.

Number of Bins We typically use the same width, denoted as w, for all bins. When
creating a histogram, it is important to choose an appropriate value for w. This is
equivalent to choosing an appropriate number of bins. In R-Commander, by default,
the number of bins is selected automatically using Sturges’ formula [32].

You can set the number of bins manually. In R-Commander, click Graphs →
Histogram, select bmi for the Variable, and set Number of bins to 3.
Compare the resulting histogram to Fig. 2.10.
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Fig. 2.12 An example of a
symmetric histogram

Shapes of Histograms Besides the location and spread of a distribution, the shape
of a histogram also shows us how the observed values spread around the location.
Consider the histograms shown in Fig. 2.12. We say that this histogram is sym-
metric around its location (here, zero) since the densities are the same for any two
intervals that are equally distant from the center. In reality, we rarely see perfectly
symmetric histograms such as the one shown in Fig. 2.12. However, we usually con-
sider a histogram as symmetric if the densities are almost the same for intervals that
are equally distant from the location. For example, we can consider the histogram
of bmi in Fig. 2.11 as symmetric.

In many situations, we find that a histogram is stretched to the left or right. We
call such histograms skewed. More specifically, we call them left-skewed if they
are stretched to the left, or right-skewed if they are stretched to the right. For in-
stance, the histogram of Y in Fig. 2.13 is left-skewed. The majority of observations
are around 102, but the decrease in densities is slower on the left of the location than
on the right. This gives the histogram a long left (lower) tail. On the other hand, the
histogram of variable Z in Fig 2.13 is right-skewed. The histogram is stretched
to the right and has a long right (upper) tail. In the birthwt data set, the his-
togram of lwt (mother’s weight in pounds at last menstrual period) is right-skewed
(Fig. 2.14).

The above histograms, whether symmetric or skewed, have one thing in common:
they all have one peak (or mode). The overall pattern (disregarding minor details)
for these histograms can be described as rising to a single peak and then declining.
We call such histograms (and their corresponding distributions) unimodal. Some-
times histograms have multiple modes. For example, the histogram of variable W

in Fig. 2.15 is said to be bimodal, since it has two peaks. (Here, a smooth curve has
been superimposed to show the overall pattern.)
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Fig. 2.13 Left panel: Histogram of variable Y whose histogram is left-skewed. Right panel: His-
togram of variable Z whose histogram is right-skewed

Fig. 2.14 Histogram of
variable lwt in the
birthwt data set. The
histogram is right-skewed

The bimodal histogram appears to be a combination of two unimodal histograms.
Indeed, in many situations bimodal histograms (and multimodal histograms in gen-
eral) indicate that the underlying population is not homogeneous and may include
two (or more in case of multimodal histograms) subpopulations. For example, the
variable W in Fig. 2.15 represents blood pressure, and the sample might have been
obtained from a population comprised of two groups: a healthy group, whose blood
pressure is normal (around 120), and a hypertensive group, who suffer from high
blood pressure (around 150).

As another example, suppose that we want to study the protein consumption of
European countries [9]. Download the Protein data set from http://lib.stat.cmu.
edu/DASL/Datafiles/Protein.html. In R-Commander, import the Protein data set

http://lib.stat.cmu.edu/DASL/Datafiles/Protein.html
http://lib.stat.cmu.edu/DASL/Datafiles/Protein.html
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Fig. 2.15 Histogram of a
bimodal distribution.
A smooth curve is
superimposed so that the two
peaks are more evident

Fig. 2.16 Histogram of
protein consumption in 25
European countries for white
meat. The histogram is
bimodal, which indicates that
the sample might be
comprised of two subgroups

and view it. This data set was collected in 1973 and includes the consumption mea-
surements of nine food groups: RedMeat, WhiteMeat, eggs, Milk, Fish, Ce-
reals, Starch (starchy foods), nuts (pulses, nuts, and oil-seeds), and Fr.Veg
(fruits and vegetables). Use the steps described above to plot the density histogram
of WhiteMeat. Figure 2.16 shows that the resulting histogram is bimodal. It seems
that European countries are divided into two subgroups with respect to the amount
of protein consumption from white meat.
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Fig. 2.17 Plotting the three
samples from Fig. 2.8 along
with their means (short
vertical lines)

2.4.2 Mean and Median

Histograms are useful for visualizing numerical data and identifying their location
and spread. However, we typically use summary statistics for more precise specifica-
tion of the central tendency and dispersion of observed values. A common summary
statistic for location is the sample mean.

The sample mean is simply the average of the observed values. For observed
values x1, . . . , xn, we denote the sample mean as x̄ and calculate it by

x̄ =
∑

i xi

n
, (2.3)

where xi is the ith observed value of X, and n is the sample size.

For Sample 1, Sample 2, and Sample 3, the means are 2.1, 3.9, and 4.1, respec-
tively. The means are shown as short vertical lines in Fig. 2.17.

The sample mean for bmi in Pima.tr is 32.3. In Fig. 2.18, the mean is shown
by a solid line. In this case, the mean 32.3 appropriately represents the location
(center) of the distribution and the central tendency of the observed values.

While sample mean is a very useful summary statistic for location, it is sensitive
to very large or very small values, which might be outliers (unusual values). For
instance, suppose that we have measured the resting heart rate (in beats per minute)
for five people. The five measurements are {74, 80, 79, 85, 81}. We can calculate



2.4 Exploring Numerical Variables 33

Fig. 2.18 Histogram of bmi
with the mean (solid line) and
the median (dashed line) are
shown as vertical lines. The
mean and median are nearly
equal since the histogram is
symmetric

the sample mean as

x = {74,80,79,85,81}, x̄ = 74 + 80 + 79 + 85 + 81

5
= 79.8.

In this case, the sample mean is 79.8, which seems to be a good representative of
the data.

Now suppose that the heart rate for the first individual is recorded as 47 instead
of 74. Compared to other four people, this is a much smaller number, which is either
due to a data recording mistake, or the first person is in fact a well-trained athlete
with low resting heart rate. In this case, the sample mean is heavily affected by this
observation, which is regarded as an outlier, and it is drastically reduced to 74.4:

x = {47,80,79,85,81}, x̄ = 47 + 80 + 79 + 85 + 81

5
= 74.4.

Now, the sample mean does not capture the central tendency of the observed data
since four out of five measurements are much larger than x̄ = 74.4.

The sample median is an alternative measure of location, which is less sen-
sitive to outliers. For observed values x1, . . . , xn, the median is denoted x̃ and
is calculated by first sorting the observed values (i.e., ordering them from the
lowest to the highest value) and selecting the middle one. If the sample size n

is odd, the median is the number at the middle of the sorted observations. If
the sample size is even, the median is the average of the two middle numbers.
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Fig. 2.19 Histogram of lwt
with the mean (solid line) and
the median (dashed line)
shown as vertical lines. The
mean is shifted to the right of
the median because the
histogram is skewed to the
right

The sample medians for the above two scenarios are

x = {74,79,80,81,85}, x̃ = 80;
x = {47,79,80,81,85}, x̃ = 80.

In this example, the median remains equal to 80, which properly captures the central
tendency of the observed values. In general, the median is not heavily influenced by
outliers. We say that the median is more robust against outliers.

When there are no outliers and the histogram is almost symmetric, such as the
histogram of bmi in Fig. 2.18, both the mean (solid line) and the median (dashed
line) are close to each other, and both reasonably represent the location of data.
However, when there are outliers, or when the histogram is skewed, such as the
histogram of lwt in Fig. 2.19, the mean (solid line) moves toward the outliers or
the direction of skewness in the histogram more than the median.

Occasionally, we might find situations in which neither the mean nor the median
is a good representative of the central tendency. For example, Fig. 2.20 shows that
the mean (solid line) and the median (dashed line) for the WhiteMeat variable
do not capture the central tendency of the data. Most observed values in this case
are clustered away from the mean and median. This is usually true for bimodal
distributions.

2.4.3 Variance and Standard Deviation

While summary statistics such as mean and median provide insights into the central
tendency of values for a variable, they are rarely enough to fully describe a distribu-
tion. We need other summary statistics that capture the dispersion of the distribution.
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Fig. 2.20 Histogram of
WhiteMeat in the
Protein data set with the
mean (solid line) and the
median (dashed line) shown
as vertical lines. Neither
mean nor median is a good
measurement for central
tendency since the histogram
is bimodal

For example, consider Sample 2 and Sample 3 in Fig. 2.17. The two samples have
similar locations, but Sample 3 is more dispersed than Sample 2. The deviations
(differences) of observations from the center (e.g., mean) tend to be larger in Sam-
ple 3 compared to Sample 2.

As a further example, consider the following measurements of blood pressure (in
mmHg) for two patients:

Patient A: x = {95,98,96,95,96}, x̄ = 96, x̃ = 96.

Patient B: y = {85,106,88,105,96}, ȳ = 96, ỹ = 96.

While the mean and median for both patients are 96, the readings are more dispersed
for Patient B. Suppose that we choose 96 as the representative value of systolic
blood pressure for both patients. For Patient A, there is a good chance that the next
reading of blood pressure would be close to 96, for example, in the [95,97] range.
For Patient B, the chance of seeing a blood pressure value close to 96 (e.g., in the
[95,97] range) would be relatively smaller. For a better description of a variable, we
need summary statistics that measure the dispersion (i.e., variability) of its observed
values.

Two common summary statistics for measuring dispersion are the sample vari-
ance and sample standard deviation. These two summary statistics are based on
the deviation of observed values from the mean as the center of the distribution.
For each observation, the deviation from the mean is calculated as xi − x̄. It is easy
to show that the sum of these deviations over all observed values is always zero.
(Note that x̄ = n

∑
xi .) Therefore, we cannot simply use the sum of the deviations

as a measure of dispersion. However, the sum would not be zero in general if we
ignore the sings of these deviations (i.e., focus on the distances from the mean). For
this, we can either take the absolute value of deviations, |xi − x̄|, or square them,
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(xi − x̄)2. Either way, the sign of deviations becomes irrelevant. Taking the squares
of the deviations is a more popular choice. We can then use the average of these
squared deviations over all observations as a measure of dispersion:

∑n
i=1(xi − x̄)2

n
. (2.4)

Instead of dividing by n, it is more common to divide by n − 1. (This increases the
above dispersion measurement by a small amount.) The result is called the sample
variance.

The sample variance is a common measure of dispersion based on the squared
deviations. The variance, denoted s2, is calculated as

s2 =
∑n

i=1(xi − x̄)2

n − 1
. (2.5)

If we take the square root of the variance,

s =
√∑n

i=1(xi − x̄)2

n − 1
, (2.6)

the result is called the sample standard deviation:

Table 2.3 shows the steps for calculating the sample variance and sample stan-
dard deviation of blood pressure readings for Patient A and Patient B in the above
example. In comparison, the standard deviation for Patient A is much smaller than
the standard deviation for Patient B. Thus, we can conclude that the observed blood
pressure values are less dispersed for Patient A compared to Patient B.

Table 2.3 Calculating the
sample variance and sample
standard deviation for
Patient A and Patient B in the
blood pressure example

Patient A Patient B

xi xi − x̄ (xi − x̄)2 yi yi − ȳ (yi − ȳ)2

95 −1 1 85 −11 121

98 2 4 106 10 100

96 0 0 88 −8 65

95 −1 1 105 9 81

96 0 0 96 0 0

Σ 0 6 Σ 0 366

s2 = 6/4 = 1.5 s2 = 366/4 = 91.5

s = √
1.5 = 1.22 s = √

91.5 = 9.56
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Fig. 2.21 Obtaining the
five-number summary
(minimum, maximum, and
quartiles) along with the
mean and standard deviation
for bwt in R-Commander

2.4.4 Quantiles

Informally, the sample median could be interpreted as the point that divides the
ordered values of the variable into two equal parts. More precisely, the median is
the point that is greater than or equal to at least half of the values and smaller than
or equal to at least half of the values. Therefore the median is called the 0.5 quantile,
which, as we discussed above, provides a measure of location. Similarly, the 0.25
quantile is the point that is greater than or equal to at least 25% of the values and
smaller than or equal to at least 75% of the values. In general, the q quantile is the
point that is greater than or equal to at least 100q% of the values and smaller than or
equal to at least 100(1 − q)% of the values. Sometimes, we refer to the q quantile
as the 100qth percentile. For example, the 0.25 quantile is the 25th percentile, and
the median is the 50th percentile.

We can divide the ordered values of a variable into four equal parts using 0.25,
0.5, and 0.75 quantiles. The corresponding points are denoted Q1, Q2, and Q3,
respectively. Note that Q2 is the 0.5 quantile and is therefore the same as the median.
Q1 is the point that divides the lower half of the data (i.e., below the median) into
two equal parts. Q3 is the point that divides the upper half of the data into two
equal parts. We refer to these three points as quartiles, of which Q1 is called the
first quartile or the lower quartile, Q2 (i.e., median) is called the second quartile,
and Q3 is called the third quartile or upper quartile. The interval from Q1 (0.25
quantile) to Q3 (0.75 quantile) covers the middle 50% of the ordered data.

The minimum (min), which is the smallest value of the variable in our sample, is
in fact the 0 quantile. On the other hand, the maximum (max), which is the largest
value of the variable in our sample, is the 1 quantile. The minimum and maximum
along with quartiles (Q1, Q2, and Q3) are known as five-number summary. These
are usually presented in the increasing order: min, first quartile, median, third quar-
tile, max. This way, the five-number summary provides 0, 0.25, 0.50, 0.75, and 1
quantiles.

We can use R-Commander to obtain the five-number summary along with mean
and standard deviation. Make sure birthwt is the active data set. Click Statis-
tics → Summaries → Numerical summaries (Fig. 2.21). Now select
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Fig. 2.22 Summary statistics for bwt from the birthwt data set. Here, sd denotes standard
deviation

bwt. (You can select multiple variables by holding down the “control” key.) Make
sure Mean, Standard Deviation, and Quantiles are checked. The default
for quantiles are the five-number summary. The resulting summary statistics are
shown in Fig. 2.22.

The five-number summary can be used to derive two measures of disper-
sion: the range and the interquartile range. The range is the difference be-
tween the maximum observed value and the minimum observed value. The
interquartile range (IQR) is the difference between the third quartile (Q3) and
the first quartile (Q1). Compared to the range, the IQR is less sensitive to
outliers, which usually fall below Q1 or above Q3.

Using the results in Fig. 2.22, the range for bwt is 4990 − 709 = 4281 grams,
while the IQR is 3487 − 2414 = 1073 grams. For this variable, 50% of the birth
weight values fall within the [2414,3487] interval. The birth weight for 25% of
babies is above 3487 grams, and for 25% of babies is below 2414 grams.

2.4.5 Boxplots

To visualize the five-number summary, the range and the IQR, we often use a box-
plot (a.k.a. box and whisker plot). Figure 2.23 shows the boxplot for bwt along
with the plot of actual observed values. The thick line at the middle of the “box”
shows the median x̃ = 2977. The left side of the box shows the lower quartile
Q1 = 2414. Likewise, the right side of the box is the upper quartile Q3 = 3487.
Therefore, the box stretches from the lower quartile to the upper quartile and rep-
resents the middle 50% of the values of the ordered data. The length of the box is
therefore the IQR, which in this case is equal to 1073. 25% of the observations are
to the left of this box, and 25% are to the right of it.

The dashed lines extending from the box are known as the whiskers. The whisker
on the right of the box extends to the largest observed value or Q3 + 1.5 × IQR,
whichever it reaches first. The whisker on the left extends to the lowest value or
Q1 − 1.5 × IQR, whichever it reaches first. Data points beyond the whiskers (i.e.,
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Fig. 2.23 Horizontal boxplot
along with the actual
observed values of birth
weight from the birthwt
data set. The gray box shows
the middle 50% of ordered
observed values. The thick
line in the middle of the box
is the median (Q2) of 2977

Fig. 2.24 Vertical boxplot
for bwt using R-Commander

either less than Q1 − 1.5 × IQR or greater than Q3 + 1.5 × IQR) are shown as
circles and considered as possible outliers. For bwt, the right whisker extends to
the maximum value 4990 since it reaches to this value before 3487 + 1.5 × 1073 =
5096.5. The left whisker extends to 2414 − 1.5 × 1073 = 804.5 since it reaches this
point before it reaches the minimum value 709. There is one observation to the left
of this whisker, which is shown as a circle. This is, in fact, the minimum observed
value, 709, which in this case is considered as a potential outlier.

Very often, boxplots are drawn vertically. This is the default option in
R-Commander. To create a boxplot for bwt in R-Commander, make sure birthwt
is the active dataset, click Graphs → Boxplot, and select bwt. The resulting
boxplot is shown in Fig. 2.24. This is the same as the boxplot shown in Fig. 2.23
after 90° rotation.



40 2 Data Exploration

Fig. 2.25 Vertical boxplot of
lwt. This plot reveals that
the variable lwt is
right-skewed and there are
several possible outliers,
whose values beyond the
whisker on the top of the box

Now, consider the boxplot of lwt (Fig. 2.25), whose is distribution is right-
skewed. The sample median (x̃ = 121) is closer to the bottom (Q1 = 110) than to the
top (Q3 = 140) of the box. This is an indication of skewed distribution. Moreover,
the upper whisker extends substantially further than the lower whisker. There are
several possible outliers, whose observed values fall beyond the whisker on the top
of the box.

2.5 Data Preprocessing

Many of the data sets we have been using as examples have been collected in sci-
entific studies. Typically, such data are not ready for immediate analysis. The most
common issues are missing values and outliers. For example, the original data on
women of Pima Indian Heritage (collected by US National Institute of Diabetes
and Digestive and Kidney Diseases) included many observations with missing val-
ues. The data set we have been using so far (Pima.tr) was obtained after re-
moving these observations. We refer to data in their original form (i.e., collected
by researchers) as the raw data. Before using the original data for analysis, we
should thoroughly check them for missing values and possible outliers. Data explo-
ration techniques we discussed in this chapter can help us to identify data issues that
need to be addressed before further analysis. Collectively, we refer to the process of
preparing the raw data for analysis as data preprocessing. Here, we discuss some
simple preprocessing steps.

2.5.1 Missing Data

For our first example, we look at the Pima.tr2 data set, which includes
the Pima.tr data set plus many other observations with missing values. The
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Fig. 2.26 Viewing the
Pima.tr2 data set in
R-Commander. Many
observations in this data set
have missing values (NA)

Pima.tr2 is available in the MASS package. Follow the steps described in the
previous chapter to load the MASS package and select Pima.tr2 (which is located
right after Pima.tr in the list) as the active data set. Figure 2.26 shows a part of
this data set. Here, missing values are denoted NA (Not Available).

In general, it is up to the researcher to decide whether to remove the observa-
tions with missing values or impute (guess) the missing values in order to keep the
observations. If we choose to remove all observations with missing values (this is
how the Pima.tr data set was created based on Pima.tr2), we can do so by
clicking Data → Active data set → Remove cases with missing
data. Under Name for new data set enter Pima.complete. This cre-
ates a data set, which does not include any observation with missing values. (Notice
that Pima.complete becomes the active data set.) Indeed, this data set is exactly
the same as Pima.tr, which we have been using so far.

While simply removing observations with missing values is an easy approach for
handling missing data, it is quite wasteful and inefficient. On the other hand, missing
data imputation techniques, i.e., using statistical methods to fill-in missing values,
tend to be complex. However, if done properly, they can improve our analysis. For an
overview of statistical methods for analyzing data with missing values, refer to [18].

Sometimes we can temporarily ignore missing values if the variable whose val-
ues are missing is not the focus of our analysis at the moment. In the above example,
if we are focusing on the bp (blood pressure) variable, we do not need to remove
observations 201, 202, 203, 205, . . . . Of course, we still need to either remove or
impute the observation 204 and any other observation whose blood pressure read-
ing is missing. To remove individual observations, click Data → Active data
set → Remove row(s) from active data and enter the row numbers
(the leftmost number in the data set) for observations you want to remove.

2.5.2 Outliers

Dealing with missing values is not the only challenge of working with raw data.
Sometimes, an observed value of a variable is suspicious since it does not follow the
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Fig. 2.27 Frequency table
for gender from the
AsthmaLOS data set. The
value of gender for two
observations are entered as
“4”, while gender can only
take 0 or 1

overall patterns presented by the rest of the data. We refer to such observations as
outliers. Suppose, for example, that almost all BMI values in our sample are between
20 and 40. Observing a BMI value of 50 would be suspicious. Further investigation
might reveal that in fact this is the correct value of BMI for an individual in our
sample. In this case, this outlier is a legitimate value. However, a BMI value of 500
or –50 is clearly an erroneous observation, which is possibly due to a data entry
mistake.

We could identify outliers using data exploration techniques. As an example, we
use the AsthmaLOS data collected by [12] to study the length of stay in hospital
for asthmatic children in the USA. Download the data set from the book website
(http://extras.springer.com) and import it to R-Commander. The variables in this
data sets are:

• los: length of stay in hospital (in days).
• hospital.id: hospital ID.
• insurer: the insurer, which is either 0 or 1.
• age: the age of the patient.
• gender: the gender of the patient; 1 for female, and 0 for male.
• race: the race of the patient; 1 for white, 2 for Hispanic, 3 for African-American,

4 for Asian/Pacific Islander, 5 for others.
• bed.size: the number of beds in the hospital; 1 means 1 to 99, 2 means 100 to

249, 3 means 250 to 400, 4 means 401 to 650.
• owner.type: the hospital owner; 1 for public, 2 for private.
• complication: if there were any treatment complication; 0 means there were

no complications, 1 means there were some complications.

Before working with this data set, follow the steps discussed in Sect. 2.2 to
convert the variables hospital.id, insurer, gender, race, owner
type, and complication to factors (categorical). Next, obtain the frequency ta-
bles for gender. The resulting tables are shown in Fig. 2.27. Notice that while the
gender variable can take only two values, 1 for female and 0 for male, the data
include two observations whose values for gender is “4”. These values are entered
by mistake and should be either removed (as described above) or corrected if pos-
sible. If we know the correct values for these observations (e.g., by examining the
medical records), we can edit the data and keep the observations. To edit a data set,
click Edit data set button in front of its name on the menu bar. This opens the
R Data Editor window, where you can find the erroneous values and correct them.

http://extras.springer.com
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Fig. 2.28 The boxplot of
los with two extremely large
values

Now consider the variable los (length of stay) in the AsthmaLOS data set. Fig-
ure 2.28 shows the boxplot for this variable. As we can see, there are two children
whose length of stay is extremely large (50 and 58). These values are not consistent
with the rest of data. (All other values are less than 10.) However, if we find that
they are legitimate and correctly recorded values, we should keep them in our data
since they provide important information on the distribution of the variable (e.g.,
how extreme could be). Of course, such observations can drastically affect our re-
sults. For analyzing such data, we could use statistical methods that are more robust
against outliers (e.g., median, IQR).

2.5.3 Data Transformation

Occasionally, we rely on data transformation techniques (i.e., applying a function
to the variable) to reduce the influence of extreme values in our analysis. Two of
the most commonly used transformation functions for this purpose are logarithm
and square root. The logarithm function, log(x), is usually used to transform right-
skewed variables with positive values. The square root function is usually used for
right-skewed count variables. We use these transformations to reduce the skewness,
i.e., to make it more symmetric, and reduce the influence of extreme values.

Consider the lwt variable in the birthwt data set. As shown in the left panel
of Fig. 2.29, the variable is right-skewed. To use log-transformation, click Data →
Manage variables in active data set → Compute new vari-
able. Under New variable name, enter log.lwt, and under Expression
to compute, enter log(lwt). (If we want to use the square root transformation,
we use sqrt instead of log.) This creates a new variable log.lwt whose values
are the natural logarithm of lwt. Next, create the density histogram for this newly
created variable. As shown in the right panel of Fig. 2.29, the resulting variable is
less skewed compared to the original variable.
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Fig. 2.29 Left panel: Histogram of variable lwt in the birthwt data set. Right panel: Histogram
of variable log(lwt), log-transformation of lwt

The transformation techniques discussed so far are used commonly in statistical
analysis. You can of course use the above approach to transform a variable in many
other ways. For example, suppose that you want to apply the square transformation
to a variable X. (This is also a common transformation in regression analysis.) To
do this, you can follow the above steps and simply enter X^2 under Expression
to compute. (Here, symbol “^” is used for exponentiation.)

2.5.4 Creating New Variable Based on Two or More Existing
Variables

In the previous chapter, we discussed creating new variables based on existing ones
as a common data preprocessing step. Here, we show how we can create a new
variable based on two or more existing variables. Consider the bodyfat data set,
which includes weight and height. Using these two variables, we can calculate BMI
for each person in the sample using the equation

BMI = weight × 703

(height)2
,

where weight is in pounds, and height is in inches.
To create BMI, click Data → Manage variables in active data

set → Compute new variable. Under New variable name, enter
BMI, and under Expression to compute, we enter (Fig. 2.30)

(weight * 703)/(height^2)

This will create a new variable called BMI. You can now investigate the linear re-
lationship between this variable and percent body fat by calculating their sample
correlation coefficient. Pearson’s correlation coefficient between siri and BMI is
0.72, which indicates a strong positive linear relationship as expected.
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Fig. 2.30 Creating a new
variable BMI based on weight
and height for each person in
the bodyfat data set

Table 2.4 Standard weight
status based on BMI
according to CDC

BMI Weight Status

Below 18.5 Underweight

18.5–24.9 Normal

25.0–29.9 Overweight

30.0 and Above Obese

2.5.5 Creating Categories for Numerical Variables

Another common preprocessing technique is to create categorical variables based
on numerical variables. This could help us to see the patterns more clearly and
identify relationships more easily. Recall that histograms are created by dividing
the range of a numerical variable into intervals. Instead of using arbitrary intervals,
we might prefer to group the values in a meaningful way. This way, we can create
a categorical variable based on a numerical variable. For example, according to
the Centers for Disease Control and Prevention (CDC), the standard weight status
categories associated with BMI ranges for adults are as in Table 2.4.

In R-Commander, let us divide subjects based on their bmi (from the Pima.tr)
into four groups: Underweight, Normal, Overweight, and Obese. Click Data →
Manage variables in active data set → Recode variables.
Select bmi as the Variable to recode and enter “weight.status” as the New
variable name (Fig. 2.31). Then in the Enter recode directives box,
type

0:18.5 = "Underweight"

18.5:24.9 = "Normal"

25.0:29.9 = "Overweight"

30.0:100 = "Obese"

Now view the Pima.tr data set. The newly created variable weight.status
is added to the data set. This variable is categorical. More specifically, it is an or-
dinal variable. To specify the order of categories in R-Commander, click Data
→ Manage variables in active data set → Reorder factor
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Fig. 2.31 Recoding the
numerical variable bmi to be
categorical
(weight.status)

Fig. 2.32 Reordering the
categories for the variable
weight.status such that
“Underweight” is the first
category, “Normal” is the
second category,
“Overweight” is the third
category, and “Obese” is the
fourth category

levels. Then select weight.status. R-Commander will open a window to
reorder levels of the categorical variable. Change the order according to Fig. 2.32.
(Note that the default order is alphabetical.) Now you can create the barplot
for weight.status (Fig. 2.33). The graph of the weight.status variable
clearly indicates that the “Obese” category has the highest frequency.

2.6 Advanced

In this section, we discuss some data exploration and data transformation techniques
that are slightly more advanced. We also discuss some commonly used R functions
for data exploration.

2.6.1 Coefficient of Variation

Suppose that we want to compare the dispersion of bwt to that of lwt using their
standard deviations. Use R-Commander to obtain the means and standard deviations
for bwt and lwt in the birthwt data set. Based on the results shown in Fig. 2.34,
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Fig. 2.33 The bar graph for
bmi after converting the
numerical variable to a
categorical variable

Fig. 2.34 Summary statistics
for bwt and lwt from the
birthwt data set

Fig. 2.35 Creating a new
variable bwt.lb (birth
weight in pounds) and
obtaining its summary
statistics

it seems that bwt is more dispersed than lwt since it has higher standard deviation
compared to lwt. However, the two variables are not comparable; they have differ-
ent units. Let us change the unit of bwt from grams to pounds. For this, we need
to divide its values by 453.6. In R-Commander, click Data → Manage vari-
ables in active data set → Compute new variable. This opens
a window (Fig. 2.35), where we create new variable for birth weight in pounds.
Under new variable name, enter bwt.lb. Under Expression to com-
pute, enter bwt/453.6. The newly created variable bwt.lb, whose values are
birth weight in pound, will be added to the birthwt data set. (View the data set to
make sure that this is done correctly.)
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Fig. 2.36 Creating a new
variable bwt.lb (birth
weight in pounds) and
obtaining its summary
statistics

Now, use R-Commander to find the mean and standard deviation of bwt and
bwt.lb. The results are shown in Fig. 2.36. After changing the measurement unit
from grams to pounds, the standard deviation changes from 729.2 to 1.6. Now, this
is much smaller than the standard deviation of lwt, which is 30.6 (see Fig. 2.34).
This is of course expected since the values of lwt are much larger than the values
of bwt.lb. As a result, lwt has much larger sample mean and larger deviations
around the mean compared to bwt.lb.

The above results illustrate how difference in measurement units and large differ-
ences in sample means make it difficult to compare variables based on their standard
deviations. In many situations, we can avoid these issues by using another measure
of variation called the coefficient of variation instead of standard deviation.

To quantify dispersion independently from units, we use the coefficient of
variation, which is the standard deviation divided by the sample mean (as-
suming that the mean is a positive number):

CV = s

x̄
. (2.7)

The coefficient of variation for bwt (birth weight in grams) is 729.2/

2944.6 = 0.25 and for bwt.lb (birth weight in pounds) is 1.6/6.5 = 0.25. There-
fore, the coefficient of variation is the same, even though bwt has a larger stan-
dard deviation compared to bwt.lb. Comparing this coefficient of variation to
30.6/129.8 = 0.24, which is the coefficient of variation for lwt, suggests that the
two variables have roughly the same dispersion in terms of CV. In general, the
coefficient of variation is used to compare variables in terms of their dispersion
when the means are substantially different (possibly as the result of having different
measurement units).

2.6.2 Scaling and Shifting Variables

To see why the coefficient of variation (CV = s/x̄) is independent of measurement
units in the above example, we need to learn about how the mean and standard
deviation change when we change the scale of a variable. For example, we changed
the scaled of bwt by multiplying it by the constant 1/453.6 (i.e., dividing it by
453.6).
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In general, when we multiply the observed values of a variable by a constant a, its
mean, standard deviation, and variance are multiplied by a, |a|, and a2, respectively.
That is, if y = ax, then

ȳ = ax̄,

sy = |a|sx,
s2
y = a2s2

x ,

where x̄, sx , and s2
x are the sample mean, standard deviation, and variance of the

original observations x, and ȳ, sy , and s2
y are the sample mean, standard deviation,

and variance of scaled observations y.
In the above example, the mean and standard deviation of bwt (denoted x) were

x̄ = 2944.6 and sx = 729.2, respectively (Fig. 2.22). To convert the measurement
unit to pounds, we multiplied bwt by a = 1/453.6 to create a new variable bwt.lb
(denoted y). The mean and standard deviation of bwt.lb are therefore as follows:

ȳ = 1

453.6
× 2944.6 = 6.5,

sy = |a|sx = 1

453.6
× 729.2 = 1.6,

which are the same values as what we obtained by using R-Commander (Fig. 2.36).
When the measurement units are changed by multiplying the observed values by

a positive constant (e.g., multiplying by 1/453.6 in the above example to convert
grams to pounds), the coefficient of variation is not affected since both mean and
standard deviation will be multiplied by that number. If y = ax (where a is a positive
constant), then

CVy = sy

ȳ
= asx

ax̄
= sx

x̄
= CVx.

What happens if instead of scaling the observed value, we shift them by a con-
stant b (which can be negative): y = x + b? For example, suppose after researchers
collected the birthwt data set, they realized that the weighting scale they used to
measure birth weight was not calibrated properly, and they need to add 20 grams
to the weight of each child, i.e., y = x + 20. Therefore, all the observed values for
bwt will be shifted upwards by 20 points. Intuitively, this shifts the sample mean
by 20 points. However, since the difference between observed values and the mean
do not change, the standard deviation and variance remain unchanged. In general, if
we shift the observed values by b, i.e., y = x + b, then

ȳ = x̄ + b,

sy = sx,

s2
y = s2

x .
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If we multiply the observed values by the constant a and then add the constant b to
the result, i.e., y = ax + b, then

ȳ = ax̄ + b,

sy = |a|sx,
s2
y = a2s2

x .

Therefore, when changing measurement units involved adding a constant (e.g.,
adding 273.15 to convert Celsius to Kelvin), the coefficient of variation will change.
If y = ax + b (assuming a > 0 and b �= 0), then

CVy = sy

ȳ
= asx

ax̄ + b
�= sx

x̄
.

2.6.3 Variable Standardization

Variable standardization is a common linear transformation, where we subtract
the sample mean x̄ from the observed values and divide the result by the sample
standard deviation s, in order to shift the mean to zero and make the standard devi-
ation 1:

yi = xi − x̄

s
.

Using such transformation is especially common in regression analysis (Chap. 11)
and clustering (Sect. 12.1). Following the rules we discussed above, subtracting
x̄ from the observations shifts the sample mean to zero. This, however, does not
change the standard deviation. Dividing by s, on the other hand, changes the sample
standard deviation to 1. The mean is also divided by s. However, since the sam-
ple mean has become zero after subtracting x̄, it remains zero. Therefore, variable
standardization creates a new variable with mean 0 and standard deviation 1.

Suppose that we want to standardize lwt using R-Commander. For this, we can
follow the steps for computing a new variable (Sect. 2.6.1), enter std.lwt under
New variable name, and (lwt−129.8)/30.6 under Expression to com-
pute. This creates the standardized version of lwt called std.lwt. Now, find
the mean and standard deviation of std.lwt. Alternatively, we can standardize a
variable by clicking Data → Manage variables in active data set
→ Standardize variables. Select lwt under Variables. This will cre-
ate a new variable called Z.lwt, which will be added to the data set. View the
birthwt data set and find the mean and standard deviation of the newly created
variable Z.lwt.
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2.6.4 Data Exploration with R Programming

Writing your own R commands (as opposed to using R-Commander) gives you more
control over the output and a deeper understanding of the material. In Appendix B,
we provide a brief introduction to R programming. Here, we review the functions
that are commonly used for data exploration. We start by loading the Pima.tr data
set, which is available from the MASS package.

> library(MASS)
> data(Pima.tr)

The library() command loads the MASS package, and the data() command
loads the Pima.tr data set. Note that the package should be loaded first before we
can access its data sets.

Type Pima.tr to view the entire data set. If the data set is large, it is better to
use the head() function, which shows only the first part (few rows) of the data
set.

> head(Pima.tr)

npreg glu bp skin bmi ped age type
1 5 86 68 28 30.2 0.364 24 No
2 7 195 70 33 25.1 0.163 55 Yes
3 5 77 82 41 35.8 0.156 35 No
4 0 165 76 43 47.9 0.259 26 No
5 0 107 60 25 26.4 0.133 23 No
6 5 97 76 27 35.6 0.378 52 Yes

When you obtain a data set from a package, you can use the help() function to
view the description on the data available in the package.

> help(Pima.tr)

Bar Graphs and Frequencies A common summary statistic for categorical vari-
ables is its frequencies, nc. Use the table() function to obtain the frequencies for
the categorical variable type from the Pima.tr data set.

> type.freq <- table(Pima.tr$type)
> type.freq

No Yes
132 68
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Note that the $ symbol is being used to access the type variable in the Pima.tr
data set.

Now, use the type.freq table to create the bar graph. Bar graphs show us how
observations categorical variables are distributed in the sample.

> barplot(type.freq, xlab = "Type", ylab = "Frequency",
+ main = "Frequency Bar Graph of Type")

The first parameter to the barplot() function is the frequency table. The options
xlab and ylab label the x and y axes, respectively. Likewise, the main option
puts a title on the plot.

Often it is more informative to report the relative frequencies. The relative
frequency is the percentage or proportion in each category and is calculated by
pc = nc/n as in Eq. 2.1. Therefore, we need the frequencies nc (stored in the
type.freq table) and the total sample size n. Since the sum of the frequencies is
the total sample size,

∑
c nc = n, we can use the sum() function to add the entries

in the frequency table:

> n <- sum(type.freq)
> n

[1] 200

Now create a table of relative frequencies by dividing the frequency table by the
sample size:

> type.rel.freq <- type.freq/n

Use the round() function to limit the output to 2 decimal places:

> round(type.rel.freq, 2)

No Yes
0.66 0.34

We can also multiply the relative frequencies by 100 to get the percentages:

> round(type.rel.freq, 2) * 100

No Yes
66 34

Finally, you can create a relative frequency barplot with

> barplot(type.rel.freq, xlab = "Type",
+ ylab = "Relative Frequency",
+ main = "Relative Frequency Bar Graph of Type")
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If the levels of a categorical variable in the data set is coded as numbers, we need
to convert the type of variable to factor using the factor() function, so that R
recognizes it as categorical. You can use the function is.factor() to examine
whether a variable is a factor. For example, the smoke variable (smoking status)
in birthwt is coded as 0 for mothers who did not smoke during their pregnancy
and 1 for mothers who smoked during their pregnancy. R automatically considers
this variable as numerical. To convert the variable to categorical, use the following
code:

> data(birthwt)
> is.factor(birthwt$smoke)

[1] FALSE

> birthwt$smoke <- factor(birthwt$smoke)
> is.factor(birthwt$smoke)

[1] TRUE

> table(birthwt$smoke)

0 1
115 74

Histograms Histograms are commonly used to visualize numerical variables. To
create a frequency histogram for age, use the hist() function with the freq
option set to “TRUE” (which is the default):

> hist(Pima.tr$age, freq = TRUE,
+ xlab = "Age", ylab = "Frequency",
+ col = "grey", main = "Frequency Histogram of Age")

Then create a density histogram of age by setting the freq option to “FALSE”:

> hist(Pima.tr$age, freq = FALSE,
+ xlab = "Age", ylab = "Density",
+ col = "grey", main = "Density Histogram of Age")

Summary Statistics We can obtain the mean and median of numerical data with
the mean() and median() functions. Find these statistics for numerical variables
in Pima.tr:

> mean(Pima.tr$npreg)
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[1] 3.57

> median(Pima.tr$bmi)

[1] 32.8

The quantile() function with the probs option returns the specified quantiles:

> quantile(Pima.tr$bmi, probs = c(0.1, 0.25, 0.5, 0.9))

10% 25% 50% 90%
24.200 27.575 32.800 39.400

Here, the desired quantiles are specified as a vector using the combine c() function.
The five-number summary along with the mean can simply be obtained with the
summary() function:

> summary(Pima.tr$bmi)

Min. 1st Qu. Median Mean 3rd Qu. Max.
18.20 27.58 32.80 32.31 36.50 47.90

We can present the five-number summary visually with a boxplot:

> boxplot(PIma.tr$bmi, ylab = "BMI")

While the default is to create vertical boxplots, we can also create horizontal box-
plots by specifying the horizontal option to true:

> boxplot(Pima.tr$bmi, ylab = "BMI", horizontal = TRUE)

Find the interquartile range (IQR) with the IQR() function:

> IQR(Pima.tr$bmi)

[1] 8.925

The smallest and largest observations can be obtained with the range() function
(the functions min() and max() could also be applied):

> minMax <- range(Pima.tr$bmi)
> minMax

[1] 18.2 47.9
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Here, we created a vector object minMax with the minimum as the first element
and the maximum as the second element. Obtain the range by subtracting the first
element from the second:

> minMax[2] - minMax[1]

[1] 29.7

The variance and standard deviation are also easily calculated with var() and
sd():

> var(Pima.tr$bmi)

[1] 37.5795

> sd(Pima.tr$bmi)

[1] 6.130212

Creating Categories for Numerical Variables The hist() function automati-
cally divides the range of possible values into several intervals. Instead, as discussed
above, we can create more meaningful intervals, which will be treated as categories.
To create a categorical variable weight.status based on the bmi variable in
Pima.tr, we can go through each observation one by one and assign each ob-
servation to one of the four categories: “Underweight”, “Normal”, “Overweight”,
and “Obese”. To do this, we can use loops and conditional statements, which are
discussed in Appendix B.

First, we start by creating an empty vector of size 200 within the Pima.tr data
frame:

> Pima.tr$weight.status <- rep(NA, 200)

Next, we set the values of weight.status for all observations by using if-
else() statements within a for() loop:

> for (i in 1:200) {
+ if (Pima.tr$bmi[i] < 18.5) {
+ Pima.tr$weight.status[i] <- "Underweight"
+ }
+ else if (Pima.tr$bmi[i] >= 18.5 &
+ Pima.tr$bmi[i] < 24.9) {
+ Pima.tr$weight.status[i] <- "Normal"
+ }
+ else if (Pima.tr$bmi[i] >= 24.9 &
+ Pima.tr$bmi[i] < 29.9) {
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+ Pima.tr$weight.status[i] <- "Overweight"
+ }
+ else {
+ Pima.tr$weight.status[i] <- "Obese"
+ }
+ }

Here, the loop counter goes from 1 to 200. Use the head() function to view the
result:

> head(Pima.tr)

npreg glu bp skin bmi ped age type weight.status
1 5 86 68 28 30.2 0.364 24 No Obese
2 7 195 70 33 25.1 0.163 55 Yes Overweight
3 5 77 82 41 35.8 0.156 35 No Obese
4 0 165 76 43 47.9 0.259 26 No Obese
5 0 107 60 25 26.4 0.133 23 No Overweight
6 5 97 76 27 35.6 0.378 52 Yes Obese

Before we use the newly created variable weight.status in statistical analysis,
we should convert its type to factor.

> Pima.tr$weight.status <- factor(Pima.tr$weight.status)

While the above code makes weight.status a factor variable, it does not take
into account the ordering of levels. The levels are ordered alphabetically and can be
examined using the levels() function:

> levels(Pima.tr$weight.status)

[1] "Normal" "Obese"
[3] "Overweight" "Underweight"

We can provide the right ordering when we use the factor() function to convert
the variable:

> Pima.tr$weight.status <- factor(Pima.tr$weight.status,
+ levels = c("Underweight", "Normal",
+ "Overweight", "Obese"))
> levels(Pima.tr$weight.status)

[1] "Underweight" "Normal"
[3] "Overweight" "Obese"
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Handling Missing Data in R To find missing values of a variable, we can use the
is.na() function, which returns “TRUE” when the value is missing and “FALSE”
otherwise. Consider the Pima.tr2 data set from the MASS library (the Pima.tr
data set is obtained from Pima.tr2 by removing observations with missing val-
ues):

> data(Pima.tr2)
> is.na(Pima.tr2$bp)

To obtain the indices of observations whose values are missing, we can use the
which() function along with the is.na() function. In general, which() can
be used to find the indices of “TRUE” values for a logical vector:

> which(is.na(Pima.tr2$bp))

The complete.cases() function returns a logical vector indicating which
cases (observations) in the data set are complete, i.e., have no missing values:

> complete.cases(Pima.tr2)

To remove cases with missing values, we can use the na.omit() function:

> Pima.complete <- na.omit(Pima.tr2)

Here, the newly created Pima.complete data set includes only the complete
cases from Pima.tr2.

2.7 Exercises

1. Download the calcium data set from the Data and Story Library: http://lib.stat.
cmu.edu/DASL/Datafiles/Calcium.html. The data were collected to investigate
whether increasing calcium intake reduces blood pressure. 21 people partici-
pated in this experiment, where ten of them took a calcium supplement for 12
weeks, while the remaining 11 received a placebo. The blood pressure of each
subject was measured before and after the 12-week period. Plot the histogram
of the variables Begin and End. Compare the two histograms in terms of their
central tendency and the form of their histogram.

2. Download the “Survival.txt” data set from the book website (http://extras.
springer.com). This data set appeared in Haberman (1976) and was obtained
from the UCI Machine Learning Repository. The dataset contains cases from a
study that was conducted between 1958 and 1970 at the University of Chicago’s
Billings Hospital on the survival of patients who had undergone surgery for
breast cancer. The variables are:

http://lib.stat.cmu.edu/DASL/Datafiles/Calcium.html
http://lib.stat.cmu.edu/DASL/Datafiles/Calcium.html
http://extras.springer.com
http://extras.springer.com
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Table 2.5 Height (in inches)
and weight (in pounds) for
five newborn babies

Observation Height Weight

1 18 7.8

2 21 9.1

3 17 8.2

4 16 6.4

5 19 8.8

Fig. 2.37 Boxplot of
variable X

• Age: Age of patient at time of operation.
• Nodes: Number of positive axillary nodes detected.
• Status: Survival status.

Plot the boxplot for Age and the bar graph for Status. Plot the histograms
for Nodes and

√
Nodes. Which one is more skewed?

3. Show that the total area of rectangles in a density histogram is 1.
4. We have measured the height (in inches) and weight (in pounds) for five new-

born babies. Manually calculate the mean and standard deviation of height and
weight; show all the steps (Table 2.5).

5. Based on the boxplot in Fig. 2.37, write down the five-number data summary,
range and IQR of variable X.

6. Download the “BodyTemperature.txt” from the book website (http://extras.
springer.com), and find the five-number data summary for all numerical vari-
ables. For numerical variables, provide the histograms and boxplots. Comment
on the central tendency and the form of the histograms. Are there any outliers
in the data?

7. For the previous question, find the coefficient of variation for Age and Tem-
perature variable. Show that the coefficient of variation remains the same
if we change the units of Age to months (i.e., multiplying by 12). Change the
body temperature scale to Celsius and recalculate the coefficient of variation.
Comment on your findings.

8. The coefficient of variation for variable X is 2. If the sample mean of this vari-
able is 3, what is the sample variance?

http://extras.springer.com
http://extras.springer.com
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9. Download the “AsthmaLOS.txt” data from the book website (http://extras.
springer.com). Read the description of variables provided in Sect. 2.5. Using R-
Commander, identify data entry errors for race and owner.type. Remove
the corresponding observations (i.e., rows) from the data set. Plot the histogram
age and comment on its shape. For this variable, find the mean, variance, range,
and IQR.

10. Upload the Animals data from the MASS package. This data set includes aver-
age brain and body weights for 28 species of land animals. Plot the histograms
of the two numerical variables. Next, use the log transformation for both vari-
ables and plot the histograms again. Comment on the shapes of these new his-
tograms.

http://extras.springer.com
http://extras.springer.com


Chapter 3
Exploring Relationships

3.1 Visualizing and Summarizing Relationships Between
Variables

In the previous chapter, we focused on using graphs and summary statistics to ex-
plore the distribution of individual variables. This chapter is dedicated to using
graphs and summary statistics to investigate relationships between two or more vari-
ables. Our objective is to develop a high-level understanding of the type and strength
of relationships between variables. Note that at this point, we are not making for-
mal conclusions regarding the existence of relationship or whether the relationship,
if exists, is strong or not. We do that formally later in this book. Here, we explore the
observed data to detect possible relationships and use summary statistics to measure
the strength of relationships.

As before, the appropriate tools for exploring data depend on the types of vari-
ables. Therefore, this chapter is organized as follows. We start by discussing some
techniques for exploring relationships between two numerical variables. Next, we
look at some statistics that are commonly used to capture the relationship between
two categorical variables. Mainly, we focus on cases where both categorical vari-
ables are binary (i.e., variables can take only two possible values). More general
situations are discussed later in the book. Finally, we discuss some common tech-
niques for exploring relationships between a categorical variable and a numerical
variable.

3.2 Relationships Between Two Numerical Random Variables

We start our discussion of relationships between numerical variables by looking
at a data set based on a study conduced by Dr. Fisher from Human Performance
Research Center at Brigham Young University [25]. This observational study in-
volved measuring percent body fat as the target variable, along with several ex-
planatory variables such as age, weight, height, and abdomen circumference for
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a sample of 252 men. The collected data set bodyfat is available online at
http://lib.stat.cmu.edu/datasets/bodyfat.You can also obtain this data set from the
mfp package in R. To install this package, enter the following command in R Con-
sole (the same way you installed R-Commander):

install.packages("mfp", dependencies=TRUE)

Once the package is installed, it can be loaded into R using the following command
(the same way you loaded the Rcmdr package):

library(mfp)

Now you can access bodyfat by clicking Data → Data in packages
→ Read data set from an attached package and selecting (double-
clicking) mfp under packages. You can learn more about this data set by looking
at its accompanying help file. In R-Commander, click Data → Active data
set → Help on active data set.

Suppose that we are interested in examining the relationship between percent
body fat and abdomen circumference among men. Load the bodyfat set from the
mfp package. Make sure bodyfat becomes the active data set and then view it. For
now, we are focusing on two variables, siri and abdomen. The siri variable
shows the percent body fat measurements derived based on body density using Siri’s
equation (percent body fat = 495/density−450). The abdomen variable shows the
abdomen circumference in centimeters.

Both siri and abdomen are numerical variables. A simple way to visu-
alize the relationship between two numerical variables is with a scatterplot.
In R-Commander, click Graphs → Scatterplot and select abdomen for
the x-variable (to be represented by the horizontal axis) and siri for the
y-variable (to be represented by the vertical axis). Under Options, uncheck
Marginal boxplots and Smooth line.

On the resulting scatterplot, shown in the left panel of Fig. 3.1, the x-axis repre-
sents possible values of abdomen circumference, and the y-axis represents possible
values of percent body fat. Each point on the graph represents one individual in the
sample. The plot suggests that the increase in percent body fat tends to coincide
with the increase in abdomen circumference. Therefore, the two variables seem to
be related with each other. In this case, the relationship is simply an association
and should not be regarded as causation since the data come from an observational
study.

As the second example, we examine the relationship between the annual mor-
tality rate due to malignant melanoma for US states and the latitude of their geo-
graphical centers. The data, which are discussed in Fisher and van Belle (1993), are
collected from the population of white males in the US during 1950–1969. You can
obtain this data set, called USmelanoma, from the HSAUR2 package. (Follow the
above steps to install and load the package.) The right panel in Fig. 3.1 shows the
scatterplot for mortality rate for different states and the latitude. (Each point rep-
resent a US state.) The two variables are clearly associated since the increase in
latitude tends to coincide with the decrease in mortality rate.

http://lib.stat.cmu.edu/datasets/bodyfat
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Fig. 3.1 Left panel: The scatterplot of percent body fat by abdomen circumference. There is a
clear positive linear relationship between the two variables. Right panel: The scatterplot of annual
mortality rate (per 100,000,000 population) and latitude in degrees. There is a clear negative linear
relationship between the two variables

Using scatterplots, we could detect possible relationships between two numeri-
cal variables. If a relationship exists, we could also learn about its type. From the
scatterplots shown in Fig. 3.1 we can see that changes in one variable coincides with
substantial systematic changes (increase or decrease) in the other variable. There-
fore, the two variables seem to be related. (We make a formal judgement regarding
the existence of relationship later.) In these examples, the systemic changes are cap-
tured by the straight lines passing through the data points on the graphs. (Around the
lines, there are also random changes in observed values without any clear patterns.)
When two variables are related, and the overall relationship can be presented by a
straight line, we say that the two variables have linear relationship. More specifi-
cally, we say that percent body fat and abdomen circumference have positive linear
relationship since increase in one variable tends to coincide with increase in the
other one. In contrast, we say that annual mortality rate due to malignant melanoma
and latitude have negative linear relationship since increase in one variable tends
to coincide with decrease in another one. Note that the directions (positive or neg-
ative) of these two linear relationships correspond to the slope of the straight lines
presenting the overall patterns.

Compare the scatterplots in Fig. 3.1 with the scatterplot in the left panel of
Fig. 3.2 for two variables X and Y . Here, changes in one variable, X, also coin-
cide with systematic changes in the other variable, Y . Therefore, the two variables
seem to be related. However, we could not use a straight line to capture the overall
pattern properly. Instead, the dashed curve seems to provide a better representation
for the overall pattern. In this case, as X increases, Y tends to increase first, then it
starts decreasing systematically (i.e., ignoring random variations around the dashed
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Fig. 3.2 Left panel: Scatterplot for two numerical variables with nonlinear relationship. Right
panel: Scatterplot for two numerical variables that seem to be unrelated

Fig. 3.3 Left panel: The scatterplot of percent body fat by height from the bodyfat data set.
The isolated point at the left of the graph is an outlier, which has a drastic influence on the overall
pattern. Right panel: The scatterplot of percent body fat by height after removing the outlier. The
two variables seem to be unrelated

curve), and finally it tends to increase again. When two variables are related, but
we cannot use a straight line to capture the overall relationship, we say that the two
variables have nonlinear relationship.

Finally, compare the scatterplots in the right panel of Fig. 3.2, with the scatter-
plots in Fig. 3.1 and the one in the left panel of Fig. 3.2. In this case, changes in
one variable, W , does not coincide with substantial systematic changes in the other
one, Z. In this case, the overall pattern can be properly represented by a straight
line that is almost horizontal. The two variables, W and Z, do not seem to be re-
lated.

Now let us examine the relationship between the height variable (height in
inches) and siri. Follow the above steps, but this time select height for the
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x-variable. Figure 3.3 (left panel) shows the resulting scatterplot. The isolated
leftmost point is an outlier: a person whose height is around 30 inches, and his
percent body fat is relatively hight. In this sample, everyone else’s hight is above
60 inches. This is possibly a data entry mistake. Looking at the straight line that
represents the overall pattern, there seems to be a negative linear relationship be-
tween the two variables. However, the overall pattern (represented by the straight
line) is heavily influenced by the outlier. Here, for the illustration purpose, we as-
sume that this is in fact a data entry mistake. Further, we assume that we cannot
find the correct values for this subject. Therefore, we remove the outlier from the
sample.

In practice, we should never remove an outlier just simply because it does not
follow the overall pattern. Some outliers are due to rare events, which provide
important information about the distribution of the corresponding variable.
Even when we identify a data entry mistake, we should try to correct the
mistake and keep the observation if possible.

The right panel in Fig. 3.3 shows the scatterplot after removing the outlier. (Re-
moving cases from a data set was discussed in the previous chapter.) Now, the two
variables seem to be unrelated since the straight line, which properly captures the
overall pattern, is almost horizontal. (Its slope is almost zero.) In this case, there is
no substantial systematic changes (increase or decrease) in percent body fat as hight
increases.

Using R-Commander, we can also create pairwise scatterplots of multiple nu-
merical variables. This is useful when we are investigating possible relationships
among several variables. To illustrate this, we use the Protein data set discussed
in the previous chapter. Unlike the above two examples, where there was a single
target variable (percent body fat or mortality rate), in this example, we are inter-
ested in possible relationships between multiple sources of food. In R-Commander,
make sure Protein is the active data set, then click Graphs → Scatterplot
matrix, and select Cereals, Eggs, RedMeat, and Fish (as shown in Fig. 3.4).
Uncheck Smooth lines and for the On Diagonal, select Histograms.

The resulting output, shown in Fig. 3.4, is a matrix of plots. The diagonal plots
are histograms of the respective variable. The off-diagonals are the scatterplots of
the ith row variable and j th column variable. The 1st row and column correspond to
Cereals; the 2nd row and column correspond to Eggs; the 3rd row and column
correspond to RedMeat, and the 4th row and column correspond to Fish. Con-
sumption of eggs seems to be negatively related to consumption of cereals. That is,
in European countries, high consumption of eggs tends to coincide with low con-
sumption of cereals. On the other hand, consumption of eggs has a positive linear
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Fig. 3.4 Obtaining and viewing a scatterplot matrix in R-Commander. The diagonal elements are
histograms, and the off-diagonals are scatterplots with a trend line

relationship with consumption of red meat. While consumption of fish seems to
have a negative linear relationship with consumption of cereals, it does not seems to
be linearly related to consumptions of eggs and red meat.

Correlation As shown in Fig. 3.4, consumption of cereals has negative linear re-
lationships with consumption of eggs, red meat, and fish. Which linear relationship
seems to be stronger? To quantify the strength and direction of a linear relationship
between two numerical variables, we can use Pearson’s correlation coefficient,
r , as a summary statistic. The values of r are always between −1 and +1. When
r is close to zero, the linear relationship between the two variables is weak. As r

moves away from zero either toward −1 or 1, it indicates that the linear relation-
ship is relatively strong. The sign of r shows the direction (negative or positive)
of the linear relationship. A positive correlation coefficient means that when one
variable increases, the other variable tends to increase too. A negative correlation
coefficient, on the other hand, indicates that when one variable increases, the other
variable tends to decrease.

Consider a set of observed pairs of values, (xn, yn), (xn, yn), . . . , (xn, yn), for
a sample of n observations. For these data, Pearson’s correlation coefficient is
calculated as follows:

rxy =
∑n

i=1(xi − x̄)(yi − ȳ)

(n − 1)sxsy
. (3.1)
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Table 3.1 Height (in inches)
and weight (in pounds) for
five individuals

Index Height Weight

1 62 160

2 71 198

3 65 173

4 73 182

5 60 143

Mean 66.2 171.2

Standard deviation 5.6 21.0

Here, xi is the observed value of the variable X for the ith observation, and
yi is the observed value of the variable Y for the same observation. For the
two variable, x̄ and ȳ denote the sample means, and sx and sy denote the
sample standard deviations. If the standard deviations are removed from the
denominator, the statistic is called the sample covariance,

vxy =
∑n

i=1(xi − x̄)(yi − ȳ)

n − 1
. (3.2)

Therefore,

rxy = vxy

sxsy
. (3.3)

For example, suppose that we have measured the height in inches and weight in
pounds for five people. We denote height as X and weight as Y . In the following
pairs of observations, the first element is the hight of an individual, and the second
element is his or her weight:

(62, 160), (71, 198), (65, 173), (73, 182), (60, 143).

We typically present such data in a tabular format (see Table 3.1). Now we can
calculate r as in Table 3.2. Therefore, the sample correlation coefficient between
height and weight is

rxy =
∑n

i=1(xi − x̄)(yi − ȳ)

(n − 1)sxsy
= 421.8

4 × 5.6 × 21.0
= 0.89.

Here, the numerator 421.8 is obtained by adding up the last column of Table 3.2.
Based on our data, height and weight seem to have a strong positive correlation.

We can use R-Commander to calculate the sample correlation coefficient. To cal-
culate r for percent body fat and abdomen circumference, make sure bodyfat is
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Table 3.2 Calculating
Pearson’s correlation
coefficient for height and
weight

Index x x − x̄ y y − ȳ (x − x̄)(y − ȳ)

1 62 −4.2 160 −11.2 47.04

2 71 4.8 198 26.8 128.64

3 65 −1.2 173 1.8 −2.16

4 73 6.8 182 10.8 73.44

5 60 −6.2 143 −28.2 174.84

Fig. 3.5 Obtaining and viewing the correlation between percent body fat and abdomen circumfer-
ence in R-Commander

Fig. 3.6 Correlation matrix for most of the numerical variables in the Protein data set

the active data set, then click Statistics → Summaries → Correlation
matrix. Select both abdomen and siri. (You need to hold the control key.) The
output is in the form of a symmetric matrix called the correlation matrix, where the
value in row i and column j is the correlation coefficient between the ith and j th
variables. As shown in Fig. 3.5, the correlation coefficient for abdomen and siri
is r = 0.81, indicating a strong positive linear relationship. The diagonal elements
in the correlation matrix are always 1, since a variable is perfectly and positively
correlated with itself. Likewise, correlation matrices are symmetric since the order
of the variables does not matter: rxy = ryx .

We can obtain the correlation matrix for multiple variables following the same
steps as described above. Figure 3.6 shows the correlation matrix for Cere-
als, Eggs, Fish, and RedMeat. There is a strong negative linear relationship
(r = −0.71) between Cereals and Eggs. The sample correlation coefficient be-
tween Cereals and Fish is also negative (r = −0.52). However, the negative
linear relationship between Cereals and Fish is not as strong as the negative lin-
ear relationship between Cereals and Eggs. The correlation coefficient between
Fish and RedMeat is close to zero (r = 0.06), which indicates that the linear
relationship between these two variables is weak.
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Table 3.3 Contingency table
of heart attack status by the
type of treatment (aspirin
versus placebo)

Heart attack No heart attack Total

Placebo 189 10845 11034

Aspirin 104 10933 11037

Total 293 21778 22071

All the studies discussed in this section are observational studies. Therefore, if
there is a relationship between two variables, it should not be considered as causa-
tion. All we can say in such cases is that the two variables are associated with each
other.

3.3 Relationships Between Categorical Variables

In the previous section, we focused on the relationship between two numerical vari-
ables. Here, we discuss techniques for exploring relationships between categorical
variables. For example, consider the five-year study to investigate whether regu-
lar aspirin intake reduces the risk of cardiovascular disease. The results of this study
were published as “Findings from the aspirin component of the ongoing Physicians’
health study” in New England Journal of Medicine in 1988 [36]. In this randomized
experiment, 22071 physicians were randomly divided into two groups: 11037 physi-
cians took an aspirin every other day, while 11034 physicians took a placebo. The
investigators then recorded the number of people who suffered a heart attack within
the five-year follow-up period.

For each individual in the study, a binary categorical variable indicates whether
that person was assigned to the aspirin group or the placebo group. Another bi-
nary categorical variable indicates whether the person had a heart attack during
the follow-up period. We usually use contingency tables to summarize such data.
Contingency tables help us to investigate possible relationships between categorical
variables. Here, we mainly focus on contingency tables for two categorical vari-
ables, each with two possible values (i.e., binary variables). More general forms
of contingency tables are discussed in Chap. 10. For the above example, Table 3.3
summarizes the observed data for investigating the relationship between taking as-
pirin (a binary variable indicating whether a person has been taking aspirin or not)
and heart attack (a binary variable indicating whether the person has suffered from
heart attack).

Each cell shows the frequency of one possible combination of disease status
(heart attack or no heart attack) and experiment group (placebo or aspirin). For ex-
ample, according to this table, 189 people took placebo and suffered from heart
attack. Using these frequencies, we can calculate the sample proportion of peo-
ple who suffered from heart attack in each experiment group separately. There
were 11034 people in the placebo group, of which 189 had heart attack. The pro-
portion of people suffered from a heart attack in the placebo group is therefore
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p1 = 189/11034 = 0.0171. On the other hand, 104 people out of 11037 in the as-
pirin group had heart attack. Therefore, the proportion of people suffered from heart
attack in the aspirin group is p2 = 104/11037 = 0.0094. This is lower than the cor-
responding sample proportion in the placebo group. We say that the risk (here, the
sample proportion is used to measure risk) of heart attack is smaller for those who
took aspirin.

Recall that the sample proportion is a commonly used summary statistic for ex-
ploring the distribution of categorical variables. For the above example, substantial
difference in the sample proportions of heart attack between the two experiment
groups indicates that the distribution of heart attack changes from one group to an-
other. This is interpreted as a possible relationship between the two binary variables,
one indicating the experiment group, and the other one indicating the disease status.
Since the study is designed as a randomized experiment, we can regard the rela-
tionship, if exists, as causation. That is, we can conclude that taking aspirin affects
the risk of heart attack. Here, of course, we are simply exploring possible relation-
ship between two categorical variables. Later, we formally evaluate whether such
relationship exists through hypothesis testing methods.

As mentioned above, substantial difference between the sample proportion of
heart attack between the two experiment groups could lead us to believe that the ex-
periment group and disease status are related. Therefore, one way of measuring the
strength of the relationship is to calculate the difference of proportions, p2 − p1.
Here, the difference of proportions is p2 − p1 = −0.0077. The proportion of peo-
ple suffered from heart attack reduces by 0.0077 in the aspirin group compared to
the placebo group. We can present this difference as a percentage using the sample
proportion (risk) in the placebo group as the baseline:

p2 − p1

p1
× 100% = −0.0077

0.0171
× 100% = −45%.

Note that the negative sign here indicates the decrease in the risk of heart attack
from first group (placebo) to the second group (aspirin). In this example, the risk of
heart attack reduces by 45% in the aspirin group compared to the placebo group.

Another common summary statistic for comparing sample proportions is the rel-
ative proportion p2/p1. Since the sample proportions in this case are related to the
risk of heart attack, we refer to the relative proportion as the relative risk. Here, the
relative risk of suffering from heart attack is p2/p1 = 0.0094/0.0171 = 0.55. This
means that the risk of a heart attack in the aspirin group is 0.55 times of the risk in
the placebo group.

If the two sample proportions are equal, the relative proportion (risk) is equal
to 1, which is interpreted as no relationship between the two categorical variables.
Values of the relative proportion away from 1 (either below 1 or above 1) indicate
that the relationship is strong.

Instead of comparing sample proportions, p, to measure the strength of relation-
ship between two binary categorical variables, it is more common to compare the
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sample odds,

o = p

1 − p
, (3.4)

where p is the sample proportion for the event of interest (e.g., heart attack). The
odds of a heart attack in the placebo group, o1, and in the aspirin group, o2, are

o1 = 0.0171

(1 − 0.0171)
= 0.0174,

o2 = 0.0094

(1 − 0.0094)
= 0.0095.

We usually compare the sample odds using the sample odds ratio

OR21 = o2

o1
. (3.5)

The index “21” shows that we are dividing the odds in the second group (here,
the aspirin group) by the odds in the first group (here, the placebo group).
An odds ratio equal to 1 means that the odds are equal in both groups and is
interpreted as no relationship between the two categorical variables. Values of
the odds ratio away from 1 (either greater than or less than 1) indicate that the
relationship is strong. Note that the odds ratio cannot be negative. Therefore,
its smallest possible value is zero.

The odds ratio in the above example is

OR21 = o2

o1
= 0.0095

0.0174
= 0.54.

The odds of a heart attack for those taking aspirin regularly is 0.54 times of the odds
of heart attack for the placebo group. In other words, taking aspirin regularly seems
to reduce the odds of heart attack.

In general, instead of OR21, we could use OR12, i.e., dividing the odds in the first
group by the odds in the second group, for comparing the odds. For the above ex-
ample, however, the interpretation of the results based on OR21 is more meaningful
since we can talk about the effect of taking aspirin.

As another example, we investigate the relationship between the variable low,
indicating whether the baby’s birth weight was less than 2.5 kg, and the vari-
able smoke, indicating the mother’s smoking status during pregnancy, using the
birthwt data set. In R-Commander, load the birthwt data set and make sure
the variables low and smoke are converted to factors (categorical) variables.
(R-Commander automatically considers these variables as numerical since they
have numerical codings.) Now, create a 2 × 2 (two rows and two columns) con-
tingency table. Click Statistics → Contingency tables → Two-way
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Fig. 3.7 Creating the
contingency table for smoke
and low

Fig. 3.8 Contingency table
for smoke and low

table. Select smoke for the Row variable and low for the Column vari-
able, as in Fig. 3.7. For now, uncheck Chi-square test of indepen-
dence under Hypothesis Tests.

The output is the 2 × 2 contingency table shown in Fig. 3.8. The proportion
of low weight babies (low=1) among nonsmoking (during pregnancy) mothers
is p1 = 29/(86 + 29) = 0.25, whereas the proportion among smoking mothers
is p2 = 30/(44 + 30) = 0.41. Therefore, the proportion of low weight babies is
p2 − p1 = 0.16 higher for smoking mothers. There is a 64% increase in the risk of
having low-weight babies for mothers who smoke during pregnancy compared to
those who do not smoke.

0.41 − 0.25

0.25
× 100 = 64.

The relative risk of having a low-weight baby is p2/p1 = 0.41/0.25 = 1.64,
which means that the risk of having a low-weight baby is 1.64 times higher among
smoking mothers compared to nonsmoking mothers. Furthermore, the odds of hav-
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ing a low-weight baby for the two groups are

nonsmoking: o1 = 0.25

(1 − 0.25)
= 0.33,

smoking: o2 = 0.41

(1 − 0.41)
= 0.69.

Therefore, the odds ratio is

OR21 = o2

o1
= 0.69

0.33
= 2.1,

which means the odds of having low-weight baby is 2.1 times higher when mothers
smoke during pregnancy.

3.4 Relationships Between Numerical and Categorical Variables

Very often, we are interested in the relationship between a categorical variable and a
numerical random variable. When the sample size is small, we can visualize the re-
lationship by simply creating dot plots of the numerical variable for different levels
of the categorical variable. As an example, we use the cabbages data set available
from the MASS package. Figure 3.9 shows the dot plots of ascorbic acid (one form
of vitamin C) content (numerical) by cultivar (categorical). The categorical variable
has two possible categories: c39 and c52.

Figure 3.9 shows that the distribution of vitamin C content is different between
the two cultivars. More specifically, the central tendency for the observed values
in the c39 group is around 50, whereas the central tendency for the c59 group is
around 65.

In general, we say that two variables are related if the distribution of one of
them changes as the other one varies.

In the above example, the two variables, vitamin C content and cultivar, seem to
be related. We can use R-Commander to create a dot plot (a.k.a. strip chart) similar
to the one presented in Fig. 3.9. Of course, R-Commander uses the horizontal axis
for the categorical variable and the vertical axis for the numerical variables. Make
sure the data set cabbages from MASS is the active data set, then click Graphs
→ Strip chart. For the Factors, choose Cult (cultivar of the cabbage), and
for the Response Variable, choose VitC (vitamin C content). The resulting
plot is shown in Fig. 3.10. Here, multiple observations with the same value of the
numerical variable are stacked toward the right. Overall, vitamin C content tends to
be higher in the c52 group compared to the c39 group.
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Fig. 3.9 Dot plots of
vitamin C content (numerical)
by cultivar (categorical) for
the cabbages data set from
the MASS package

Fig. 3.10 Strip chart (dot
plot) for vitamin C content
(VitC) by cultivar (Cult)
from the canbbages data
set using R-Commander

A more common way of visualizing the relationship between a numerical vari-
able and a categorical variable is to create boxplots, as opposed to dot plots, of the
numerical variable for different values of the categorical variable. This is especially
useful when the sample size is large. By focusing on some key aspects of the dis-
tributions, namely the five-number summaries, boxplots make the patterns easier to
detect. In R-Commander, click Graphs → Boxplot; select VitC as the Vari-
able. Then click on Plot by groups button and in the resulting window, select
Cult as the Groups variable. The resulting plot is shown in Fig. 3.11, which
suggests that vitamin C content tends to be higher in the c52 group compared to the
c39 group. This is indicative of a possible relationship between these two variables.

We can measure changes in the distribution of the numerical variable by ob-
taining its summary statistics for different levels of the categorical variable. In
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Fig. 3.11 Boxplot of
vitamin C content for
different cultivars

Fig. 3.12 Summary statistics
of vitamin C content (VitC)
by cultivar (Cult) from the
cabbages data set

R-Commander, click Statistics → Summaries → Numerical sum-
maries and select VitC as the Variable. Then click on the Summarize by
groups button and choose Cult as the Groups variable. This way, the sum-
mary statistics will be calculated for the two groups (c39 and c59) separately. The
results are shown in Fig. 3.12. As we can see, the sample mean and the sample
median are substantially different between the two groups.

As mentioned above, we consider two variables as related when the distribu-
tion of one variable changes for different values of the other variable. Distribution
change could refer to the change of location, spread, or in general, form of a distribu-
tion. However, it is more common to focus on the change of location. Especially, it is
common to use the difference of means when examining the relationship between
a numerical variable and a categorical variable. In the above example, the difference
of means of vitamin C content is 64.4 − 51.5 = 12.9 (see Fig. 3.12) between the
two cultivars. Later, we will use this measure to formally evaluate our hypothesis
regarding the relationship between cultivar of the cabbage and its vitamin C content.

When the categorical variable has multiple levels (categories), it is easier to com-
pare the means across different levels using the plot of means. For example, in the
previous chapter, we created a categorical variable called weight.status based
on BMI values in the Pima.tr data set. This variable had four categories: “Un-
derweight”, “Normal”, “Overweight”, and “Obese”. Here, we would like to inves-
tigate how blood pressure bp changes with weight.status, which is an ordi-
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Fig. 3.13 Plotting the means
of bp for different weight
groups (which are defined
based on BMI). The
relationship between these
two variables is nonlinear

nal variable. In R-Commander, click Graphs → Plot of means and select
weight.status as the Factors and bp as the Response Variable. For
now, choose no error bars. The resulting graph (Fig. 3.13) shows the plot of
the mean blood pressure for each group. This plot shows that compared to the Nor-
mal group, the average blood pressure increases for both Underweight and Over-
weight group. The Obese group has the highest blood pressure average. Also, note
that as we move toward higher levels of weight group, average blood pressure first
decreases and then increases. The issue of high blood pressure among underweight
people is a well-studied phenomenon (see, for example, [22]).

3.5 Advanced

In this section, we discuss some useful R functions for examining the relationship
between two variables.

Two Numerical Variables We start by installing and loading the mfp package,
which includes the bodyfat data set:

> install.packages("mfp", dependencies = TRUE)
> library(mfp)
> data(bodyfat)

An easy way to visualize the relationship between two numerical variables is
to use scatterplots. In R, you can use the plot() function for this purpose. For
example, the following code creates the scatterplot of percent body fat (siri) by
abdomen circumference (abdomen):
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> plot(bodyfat$abdomen, bodyfat$siri,
+ xlab = "Abdomen", ylab = "Percent Body Fat")

The first parameter to the plot() function is the variable to be represented by the
x-axis, and the second parameter is variable to be represented by the y-axis.

Next, we use Pearson’s correlation coefficient to measure the strength and direc-
tion of the linear relationship between the two numerical variables. For this, we use
the cor() function:

> cor(bodyfat$abdomen, bodyfat$siri)

[1] 0.8134323

The resulting correlation coefficient of r = 0.81 along with the scatterplot suggests
that there is evidence of a strong positive linear relationship between percent body
fat and abdomen circumference. Likewise, the cor function can be used to obtain
the correlation matrix for multiple variables:

> cor.matrix <- cor(bodyfat[, c("siri", "weight",
+ "height", "abdomen")])
> round(cor.matrix, 2)

siri weight height abdomen
siri 1.00 0.61 -0.09 0.81
weight 0.61 1.00 0.31 0.89
height -0.09 0.31 1.00 0.09
abdomen 0.81 0.89 0.09 1.00

Here, we are using the combine function c() to specify that we want the correlation
matrix for the columns labeled “siri”, “weight”, “height”, and “abdomen”. Then, the
round() function is used to round the output to 2 decimal places.

Two Categorical Variables To examine possible relationship between two cate-
gorical variables, we usually use contingency tables. From contingency tables we
can obtain the proportions, relative proportions (risk), odds, and odds ratio. For in-
stance, try creating the contingency table for smoke by low from the birthwt
data set with the table() function:

> library(MASS)
> data(birthwt)
> table(birthwt$smoke, birthwt$low)

0 1
0 86 29
1 44 30

The first parameter to the table() is the row variable, and the second parameter
is the column variable.
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Relationship Between a Numerical Variable and Categorical Variable To visual-
ize the relationship between a numerical variable, we can simply create a dot plot
using the plot() function. The following code plots the dot plot of birthweight
(bwt) by the smoking status (smoke) of mothers:

> plot(birthwt$smoke, birthwt$bwt)

The plot() function, however, shows the levels of the categorical variable as in-
tegers.

Using dot plots is usually recommended for data sets with a small sample size. In
general, it is better to use boxplots to visualize the relationship between a numerical
variable and categorical variable. For instance, create a boxplot of bwt for each
level of smoke:

> boxplot(bwt ~ smoke, ylab = "Birthweight",
+ data = birthwt, xlab = "Smoking Status",
+ main = "Birthweight by Smoking Status")

The first parameter is a formula, using the ∼ symbol to plot bwt (the response
variable) by smoke (the explanatory variable). Note that boxplot shows the actual
levels of the categorical variable as opposed to their corresponding numerical val-
ues.

The summary statistics for bwt can be calculated for each level of smoke. Using
the which() function, we can find the indices of smoking mothers (smoke=1) in
the birthwt data set:

> smoke.ind <- which(birthwt$smoke == 1)

Now, obtain the summary statistics of this group:

> summary(birthwt$bwt[smoke.ind])

Min. 1st Qu. Median Mean 3rd Qu. Max.
709 2370 2776 2772 3246 4238

> sd(birthwt$bwt[smoke.ind])

[1] 659.6349

A more convenient way to obtain summary statistics by group is to use the by
function.

> by(birthwt$bwt, birthwt$smoke, summary)

birthwt$smoke: 0
Min. 1st Qu. Median Mean 3rd Qu. Max.
1021 2509 3100 3056 3622 4990

-------------------------------------
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birthwt$smoke: 1
Min. 1st Qu. Median Mean 3rd Qu. Max.
709 2370 2776 2772 3246 4238

The general form of the by function is by(data, group, function). The
first parameter of this function specifies the numerical variable (here, bwt), the sec-
ond parameter specifies the indicator variable to identify the groups (here, smoke),
and the last parameter (here, summary) specifies the function we want to apply to
different groups. The following code returns the standard deviation of birthweight
for different levels of ht (hypertension history):

> by(birthwt$bwt, birthwt$ht, sd)

birthwt$ht: 0
[1] 709.4418
-------------------------------------
birthwt$ht: 1
[1] 917.3617

3.6 Exercises

1. Using the measurements (see Table 3.4) of height (in inches) and weights (in
pounds) for 5 newborn babies, calculate the sample covariance and sample Pear-
son’s correlation coefficient between height and weight; show all the steps.

2. Using the “BodyTemperature.txt” data set, create the scatterplot for body tem-
perature by heart rate. Describe the pattern and comment on possible relation-
ship between the two variables. Find the correlation coefficient between body
temperature and heart rate. Finally, create boxplots of body temperature for men
and women separately. Which one tends to be higher? Which one has higher
dispersion?

3. In an article published in the July 2010 issue of the journal Pediatrics, Dr. Nafiu
and colleagues argue that children’s neck circumference instead of BMI should
be used as a simple proxy for percent body fat. For the bodyfat data set,
use graphs and summary statistics to investigate the relationship between BMI

Table 3.4 Height (in inches)
and weight (in pounds) for
five newborn babies

Observation Height Weight

1 18 7.8

2 21 9.1

3 17 8.2

4 16 6.4

5 19 8.8
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Table 3.5 Frequencies of
people with heart disease for
different levels of snoring
based on a sample of 2484
subjects

Snoring Severity Heart Disease Total

Never 24 1379

Occasionally 35 638

Nearly every night 21 213

Every night 30 254

and percent body fat (siri), and the relationship between neck circumference
(neck) and percent body fat among adult men. Which one seems to have a
stronger relationship with percent body fat?

4. Consider the data (Table 3.5) based on an epidemiological survey of 2484 peo-
ple to investigate snoring as a risk factor for heart attack. The data set is col-
lected by Norton and Dunn [24] and is discussed in Categorical Data Analy-
sis by Agresti [1]. The first column shows “snoring severity” as reported by
the spouses of subjects. The second column shows the number of people suffer
from heart disease for each level of snoring severity, and the third column shows
the total number of people for each snoring severity level. Create two groups
based on snoring severity: Group 1 are those who never snore, and Group 2
are those who snore. Write down the contingency table and calculate the pro-
portion of people with heart disease for each group. Then, find difference of
proportions, relative risk, and odds ratio for heart disease in order to compare
the two groups.

5. Follow the steps described at the beginning of this chapter to load the GBSG
from the mfp package. Make sure GBSG is the active data set, then click Data
→ Active data set → Help on active data set to see the de-
scription of random variables. Using this data set, we want to investigate the
effect of hormonal treatment on recurrence free survival of breast cancer pa-
tients. Here, htreat is a binary categorical variable, which indicates whether
the subject has received hormonal therapy (htreat = 1) or not (htreat
= 0). The cens variable is also binary indicating whether the patient had at
least one recurrence of the disease or died. For patients who had at least one
recurrence and/or did not survive, cens=1 and rfst shows their actual sur-
vival time (in days). For patients who survived recurrence free during the study,
cenc=0, create a new random variable called rfs (recurrence free survival)
such that rfs=“No” if the patient had at least one recurrence or died (i.e.,
cenc=1) and rfs=“Yes” otherwise. Obtain the frequency table for the rfs
variable. Next, create a 2 × 2 contingency table for htreat (hormonal treat-
ment) and rfs (recurrence free survival). Find the relative risk, odds, and odds
ratio for the two treatment groups.

6. For the birthwt data set, investigate the relationship between the history of
hypertension (ht) and the risk of having low birthweight babies.

7. Layman et al. (1986) [15] investigated the effect of iontophoretic treatment with
the nerve conduction-inhibiting chemical vincristine on elderly patients com-
plaining of post-herpetic neuralgia. There were eighteen patients in the study.
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The patients were interviewed six weeks after the initial treatment and were
asked if the pain had been reduced. The data set, “neural.txt”, for this study was
obtained from [9] and is available online from the book website (http://extras.
springer.com). There are five variables in this data:

• Pain: A binary variable indicating whether the pain was eased or not.
• Treatment: A binary variable indicating whether the patient underwent

treatment.
• Age: The age of the patient in completed years.
• Gender: The gender of the patient: M (male) or F (female).
• Duration: The pretreatment duration of symptoms (in months).

Use contingency tables to examine the relationship between Pain and Treat-
ment.

8. Use boxplots to investigate the relationship between type and three numerical
variables, bmi, bp, glu, from the Pima.tr data set. Comment on your
findings.

9. Using a plot of means, show how mean birthweight (bwt) changes among dif-
ferent races (race) in the birthwt data set. Find the sample mean and sample
standard deviation of bwt for each race separately.

10. In R-Commander, load the chickwts data set from the datasets pack-
age. (Click Data → Data in packages → Read data set from
an attached package.) The chickwts data set was collected based on
an experiment to measure the effectiveness of various feed supplements (feed)
on the growth rate (weight) of chickens. Find the five-number summary statis-
tics for each feed type separately. Use boxplots and a plot of means to visualize
the difference between feed types. Which feed type results in the lowest growth
rate on average?

http://extras.springer.com
http://extras.springer.com


Chapter 4
Probability

4.1 Probability as a Measure of Uncertainty

In the previous chapters, we used plots and summary statistics to learn about the
distribution of variables and to investigate their relationships. In the birthweight ex-
ample, from a sample of 189 newborn babies, we found that average birthweight
is 2944 grams. Also, we found that the risk of having a low-weight baby is 1.64
times higher among smoking mothers compared to nonsmoking mothers. In scien-
tific studies, we would like to generalize our findings from a sample of observations
to the whole population (here, all newborn babies). For example, we would like
to comment on the average birthweight for all newborn babies. More generally,
we would like to comment on the distribution of birthweight (e.g., its location, its
spread, and its form) in this population. Also, we want to know whether our findings
about the relationship between smoking and birthweight can be generalized to the
whole population.

As discussed earlier, we always remain uncertain about the true distributions
and relationships in the population since we almost never have access to all of its
members. Furthermore, our findings based on the observed sample can change if
different samples from the population were obtained. Therefore, when we generalize
our findings from a sample to the whole population, we should explicitly specify the
extent of our uncertainty.

The focus of this chapter is the use probability as a measure of uncertainty. In
what follows, we use coin tossing, die rolling, and genetic variation as running ex-
amples. Since the latter involves some terminologies that might not be familiar to
all readers, we provide a brief review of some common terms in statistical genetics
in the next section.

4.2 Some Commonly Used Genetic Terms

A gene is a segment of double-stranded DNA, which itself is made of a sequence of
four different nucleotides: adenine (A), guanine (G), thymine (T), or cytosine (C).
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A DNA segment can be specified as a sequence of these four letters; for exam-
ple, {TAGCAAT}. Genetic variation is caused by changes in the DNA sequence
of a gene. Single Nucleotide Polymorphisms (SNPs) are the most common type
of genetic variation. SNPs (pronounced “snips”) occur when a single nucleotide
is replaced by another one. An example of a SNP would be replacing “G” in the
sequence {TAGCAAT} by “T” to create {TATCAAT}.

The alternate forms of a gene ares called alleles. In the above example, the alleles
could be denoted as T and G. Alleles are responsible for variation in phenotypes.
Phenotypes, in general, are observable traits, such as eye color, disease status, and
blood pressure, due to genetic factors and/or environmental factors (e.g., diet, smok-
ing, sun exposure). Throughout this book, we only consider genes that are bi-allelic
(two possible alleles). We denote the genes with bold face letters (e.g., A) and the
two different alleles as capital and small letters (e.g., A and a).

Genetic materials are stored on chromosomes. Human somatic cells have two
copies of each chromosome (one inherited from each parent); hence, they are called
diploid. Each pair of similar chromosomes are called homologous chromosomes.
The genotype (i.e., genetic makeup) of an individual for the bi-allelic gene A can
take one of the three possible forms: AA, aa, or Aa. The first two genotypes, AA
and aa, are called homozygous, which means the same version of the allele was
inherited from both parents. That is, both homologous chromosomes have the same
allele. The last genotype, Aa, is called heterozygous, which means different alleles
were inherited.

The presence of a specific allele does not always result in its corresponding trait
(a characteristic such as eye color). Some alleles are recessive, producing their trait
only when both homologous chromosomes carry that specific variant. On the other
hand, some alleles are dominant, producing their traits when they appear on at least
one of the homologous chromosomes. For example, suppose that the allele a for
gene A is responsible for a specific disease. Furthermore, assume that a is a reces-
sive allele. Then, only a person with genotype aa will be affected by the disease.
Individuals with genotype AA or Aa will not have the disease. For example, Cystic
Fibrosis (CF) is an inherited chronic disease affecting the lungs and digestive sys-
tem. The gene causing CF is recessive, which means a person can carry the gene
without having the disease. That is, if we denote the allele causing CF as a and the
normal allele as A, only people with aa genotype have CF. People with Aa genotype
are carriers.

4.3 The Sample Space

We begin our discussion of probability with the concept of randomness. A phe-
nomenon is called random if its outcome (value) cannot be determined with cer-
tainty before it occurs. For example, when a coin is tossed, the outcome is either
heads H or tails T , but unknown before the coin is tossed. Die rolling is also a ran-
dom phenomenon, whose outcome is an integer from 1 to 6, unknown before the die
is rolled. Likewise, for a bi-allelic gene A, the possible alleles are A and a, and the
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Fig. 4.1 Tree diagram of
possible outcomes for the
combination of genotype and
smoking status. Genotypes
(AA, Aa, and aa) are
represented by the first set of
branches and smoking status
(Y for smokers and N for
nonsmokers) is represented
by the second set of branches

possible corresponding genotypes are AA, Aa, and aa. The collection of all possible
outcomes is denoted S and is called the sample space. The sample spaces for the
above random phenomena are:

Coin tossing: S = {H,T },
Die rolling: S = {1,2,3,4,5,6},
Bi-allelic gene: S = {A,a},
Genotype: S = {AA,Aa,aa}.

The sample space might include an infinite number of possible outcomes. For ex-
ample, the value of blood pressure is random since it cannot be determined with
certainty before measuring it. The corresponding sample space for blood pressure
values is (theoretically) the set of positive real numbers, which is infinite. In this
chapter, we focus on random phenomena with finite number of possible outcomes.

For a complex random phenomenon that is a combination of two or more other
random phenomena, it might be easier to view the sample space with tree diagrams.
For example, suppose that we suspect that gene A is related to a specific disease,
but genetic variation alone does not determine the disease status. Rather, it affects
the risk of the disease. Further, we suspect that smoking (an environmental factor)
is also related to the disease. In this case, the random phenomenon we are interested
in is the combination of genotype and smoking status (“Y” for smoking and “N” for
not smoking). All possible combinations (i.e., sample space) are identified using the
tree diagram in Fig. 4.1. The tree starts at left from its root. The first set of branches
(originating from the root) represents possible genotypes (AA, Aa, and aa), and the
second set represents the smoking status. Following each branch from root to tip,
we obtain the sample space S = {AA−Y,AA−N,Aa−Y,Aa−N,aa−Y,aa−N}.
For example, Aa − Y represents the outcome of having heterozygous genotype and
smoking.
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4.4 Probability Measure

To each possible outcome in the sample space, we assign a probability P ,
which is a number between 0 and 1, and it represents how certain we are
about the occurrence of the corresponding outcome. As the probability of
an outcome increases, we become more certain that it will occur. The total
probability of all outcomes in the sample space is always 1.

For an outcome o, we denote the probability as P(o), where 0 ≤ P(o) ≤ 1. For the
above examples, we have:

Coin tossing: P(H) + P(T ) = 1,

Die rolling: P(1) + P(2) + P(3) + P(4) + P(5) + P(6) = 1,

Bi-allelic gene: P(A) + P(a) = 1,

Genotype: P(AA) + P(Aa) + P(aa) = 1.

Probability is not defined for outcomes outside of the sample space. For example,
the probability of rolling a 7 is not defined for a normal die.

Because the total probability of all outcomes in the sample space is always
1, if the outcomes are equally probable, the probability of each outcome is
1/nS , where nS is the number of possible outcomes, i.e., the size of sample
space.

If we believe that the coin is balanced (fair, symmetric) so that heads and tails
are equally probable, then P(H) = P(T ) = 1/2. When rolling a balanced die (i.e.,
we believe all the 6 possible numbers are equally probable), P(1) = P(2) = · · · =
P(6) = 1/6. Likewise, if we believe the two alleles are equally probable, we have
P(A) = P(a) = 1/2. We do not however assume equal probabilities for the geno-
types. To find the probability of each genotype, we first need to define events.

An event is a subset of the sample space S. A possible event for die rolling is
E = {1,3,5}. This is the event of rolling an odd number. For the genotype example,
E = {AA,aa} is the event that a person is homozygous.

For the coin tossing example, E1 = {H }, E2 = {T }, E3 = {H,T }, and E4 = {}
are all the possible events. Note that these include the sample space E3 = {H,T } = S

and the empty set E4 = {}, which we denote ∅. In general, the sample space S and
the empty set are possible events for any random phenomenon.

An event occurs when any outcome within that event occurs. For instance, if a
person’s genotype is AA, the homozygous event, E = {AA,aa}, has occurred. For
die rolling example, define E1 = {1,2,3} (the outcome is less than 4) and E2 =
{1,3,5} (the outcome is an odd number). If we roll the die and the outcome is 1,
then both E1 and E2 have occurred. (The outcome is less than 4 and is an odd
number.)
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Fig. 4.2 Tree diagram of
possible genotypes for a
bi-allelic SNP. The first set of
branches represents possible
alleles for chromosome 1
(Ch1) and the second set of
branches represents possible
alleles for chromosome 2
(Ch2). Since the labels on
homologous chromosomes
are arbitrary, we can write the
sample space as
S = {AA,Aa,aa}

We denote the probability of event E as P(E), where 0 ≤ P(E) ≤ 1. The proba-
bility of an event is the sum of the probabilities for all individual outcomes included
in that event. For instance, when rolling a symmetric die, the probability of event
E = {1,3,5} is P(E) = 1/6 + 1/6 + 1/6 = 1/2. The probability of the sample
space is one, P(S) = 1, since it includes all the possible outcomes, and the total
probability of all outcomes is 1. On the other hand, the probability of the empty set
is P(φ) = 0 since it does not include any of the possible outcomes.

Now let us apply these principles to determine the genotype probabilities for the
bi-allelic gene A. So far, we have treated the genotype as a random phenomenon
with three possible outcomes. Alternatively, we can treat the genotype as the com-
bination of alleles on homologous chromosomes (one inherited from each parent).
This way, the allele type on each chromosome is regarded as a random phenomenon
by itself, and the genotype is regarded as the combination of two random phenom-
ena. In the tree diagram in Fig. 4.2, the first set of branches represents the possible
alleles for chromosome 1 (Ch1). Likewise, the second set represents the possible
alleles for chromosome 2 (Ch2). By following the branches from the root to the
tip, we can obtain the possible genotypes. Now, if we assume that all outcomes in
the sample space are equally probable, then P(A1A2) = P(A1a2) = P(a1A2) =
P(a1a2) = 1/4.

The labels for homologous chromosomes are arbitrary; we do not distinguish
between genotypes A1a2 and a1A2. Therefore, we can create three new events:
AA = {A1A2}, Aa = {A1a2, a1A2}, and aa = {a1a2}. The probabilities for these
events are then P(AA) = 1/4, P(Aa) = 1/4 + 1/4 = 1/2, and P(aa) = 1/4. We
can now treat AA, Aa, and aa as possible outcomes for the genotype events. The
probabilities for these three outcomes are 1/4, 1/2, and 1/4, respectively.

4.5 Complement, Union, and Intersection

In this section, we discuss some common operations on random events along with
some general rules of probability. For this, we use two running examples. First,
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we consider the die rolling example presented in the form of a Venn diagram in
Fig. 4.3. All the possible outcomes are contained inside the sample space S, which
is represented by the rectangle. We define two events. The event M (shown as
a triangle) occurs when the outcome is less than 4. The event N (shown as an
oval) occurs when the outcome is an odd number. In this example, P(M) = 1

2 and
P(N) = 1

2 .
For the second example, we consider a bi-allelic gene A with two alleles A and a.

We assume that allele a is recessive and causes a specific disease. Then only people
with the genotype aa have the disease. We can define four events as follows:

The heterozygous event: HM = {AA,aa},
The heterozygous event: HT = {Aa},
The no-disease event: ND = {AA,Aa},
The disease event: D = {aa}.

A schematic representation of these events is provided in Fig. 4.4. The shaded area
shows the disease event (D); whereas the unshaded area shows the no-disease event
(ND). The area with shaded border lines shows the homozygous event (HM). The
remaining part of the sample space, which includes the outcome Aa only, corre-
sponds to the heterozygous event. Assume that the probabilities for different geno-
types are P(AA) = 0.49, P(Aa) = 0.42, and P(aa) = 0.09. (The sum of probabili-

Fig. 4.3 A schematic
representation for the die
rolling example. M is the
event that the outcome is a
number less than 4, and N is
the event that the outcome is
an odd number

Fig. 4.4 A schematic representation for a bi-allelic gene with a recessive allele a that causes a
specific disease. The shaded area shows the disease event (D). The unshaded area shows the
no-disease event (ND). The area with shaded border lines shows the homozygous event (HM).
The remaining part of the sample space, which includes the outcome Aa only, corresponds to the
heterozygous event
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ties is 1.) Then,

P(HM) = 0.49 + 0.09 = 0.58,

P (HT ) = 0.42,

P (ND) = 0.49 + 0.42 = 0.91,

P (D) = 0.09.

4.5.1 Complement

For any event E, we define its complement, Ec, as the set of all outcomes that are
in the sample space S but not in E. Schematically, the complement is the set of
outcomes outside the region defined for the event but inside the sample space. In
the die rolling example, the complement of M is Mc = {4,5,6} (i.e., the outcome
is greater than or equal to 4). This is the set of all outcomes inside the rectangle but
outside of the triangle. The complement of N is Nc = {2,4,6} (i.e., the outcome is
an even number). This is the set of all outcomes inside the rectangle but outside of
the oval.

For the gene-disease example, the complement of the homozygous event HM =
{AA,aa} is the heterozygous event {Aa}; we show this as HMc = HT . Likewise,
the complement of the disease event, D = {aa}, is the no-disease event, ND =
{AA,Aa}; we show this as Dc = ND.

The complement of an event is an event by itself so we can talk about its proba-
bility.

The probability of the complement event is 1 minus the probability of the
event:

P
(
Ec

) = 1 − P(E). (4.1)

For the event that the outcome is an odd number, we have

P
(
Nc

) = 1 − P(N) = 1 − 1

2
= 1

2
,

which is equal to the probability that the outcome is an even number. In the gene-
disease example, the probability of the complement of the homozygous event is
P(HMc) = 1 − P(HM) = 1 − 0.58 = 0.42. This is, of course, equal to the prob-
ability of the heterozygous event P(HT ) = 0.42. Likewise, the probability of the
complement of the disease event is P(Dc) = 1−P(D) = 1−0.09 = 0.91 and equal
to the probability of the no-disease event, P(ND) = 0.91.
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The odds of an event shows how much more certain we are that the event
occurs than we are that it does not occur. For event E, we calculate the odds
as follows:

P(E)

P (Ec)
= P(E)

1 − P(E)
.

For the gene-disease example, the odds for ND (i.e., not having the disease) are

P(ND)

P (NDc)
= P(ND)

1 − P(ND)
= 0.91

1 − 0.91
= 10.11.

Therefore, it is almost 10 times more likely that a person is not affected by the
disease than it is for having the disease. In this case, we say that the odds for not
having the disease are 10 to 1.

4.5.2 Union

For two events E1 and E2 in a sample space S, we define their union E1 ∪ E2 as
the set of all outcomes that are at least in one of the events. The union E1 ∪E2 is an
event by itself, and it occurs when either E1 or E2 (or both) occurs. Schematically,
the union E1 ∪ E2 includes outcomes that are inside the regions defined for either
E1 or E2 (or both). This description can be generalized to the union of more than
two events.

The union of M and N in the above example is

M ∪ N = {1,2,3,5}.

The union of the two events in this case includes outcomes that are either less than 4
or odd or both. In Fig. 4.3, these are outcomes that are either inside the triangle or
oval or both. The union of the heterozygous event, HT , and the disease event, D, is
{Aa} ∪ {aa} = {Aa,aa}.

Since the union of two events is an event by itself, we can talk about its proba-
bility. When possible, we can identify the outcomes in the union of the two events
and find the probability by adding the probabilities of those outcomes. For the die
rolling example,

P(M ∪ N) = P
({1,2,3,5}) = 4

6
= 2

3
.

Note that in general this is not equal to the sum of the probabilities of the two events:
P(M ∪N) �= 1

2 + 1
2 . Only under a specific condition (discussed below), we can write
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the probability of the union of two events as the sum of their probabilities. For the
union of the heterozygous event, HT , and the disease event, D,

P(HT ∪ D) = P
({Aa,aa}) = 0.42 + 0.09 = 0.51.

In this special case, the probability of the union of the two events is equal to the sum
of their individual probabilities.

4.5.3 Intersection

For two events E1 and E2 in a sample space S, we define their intersection E1 ∩E2

as the set of outcomes that are in both events. The intersection E1 ∩ E2 is an event
by itself, and it occurs when both E1 and E2 occur. Schematically, the intersection
E1 ∩ E2 includes outcomes that are inside the regions defined for both E1 and E2.
This description can be generalized to the intersection of more than two events.

The intersection of M and N in the above example is

M ∩ N = {1,3}.

In this case, the intersection of the two events includes outcomes that are less
than 4 and odd. In Fig. 4.3, these are outcomes that are in both the triangle and
oval. The intersection of the heterozygous event and the no-disease event is HM ∩
ND = {AA}.

The intersection of two events is an event by itself, so we can talk about its
probability:

P(M ∩ N) = P
({1,3}) = 2

6
= 1

3
,

P (HM ∩ ND) = P(AA) = 0.49.

Now consider the intersection of the heterozygous event and the disease event.
There is no common element between HT and D. Therefore, the intersection is the
empty set HT ∩ D = {}, and its probability P(HT ∩ D) = P(∅) = 0.

4.5.4 Joint vs. Marginal Probability

We refer to the probability of the intersection of two events, P(E1 ∩ E2), as their
joint probability. Occasionally, we show this probability as P(E1E2). In contrast,
we refer to probabilities P(E1) and P(E2) as the marginal probabilities of events
E1 and E2.
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For any two events E1 and E2, we have

P(E1 ∪ E2) = P(E1) + P(E2) − P(E1 ∩ E2). (4.2)

That is, the probability of the union P(E1 ∪ E2) is the sum of their marginal
probabilities minus their joint probability.

For the above die rolling example, we have

P(M ∪ N) = 1

2
+ 1

2
− 1

3
= 2

3
,

which is what we found before. Intuitively, adding their individual probabilities
P(M) = P({1,2,3}) and P(N) = P({1,3,5}) counts their common elements {1,3}
twice. We correct this by subtracting P({1,3}), which is P(M ∩ N).

The union of the heterozygous event and the no-disease event is

P(HM ∪ ND) = P(HM) + P(ND) − P(HM ∩ ND)

= 0.58 + 0.91 − 0.49 = 1.

This was of course expected since the union of HM and ND is the entire sample
space: HM ∪ ND = {AA,Aa,aa} = S.

4.6 Disjoint Events

Two events are called disjoint or mutually exclusive if they never occur together:
if we know that one of them has occurred, we can conclude that the other event
has not. Disjoint events have no elements (outcomes) in common, and their inter-
section is the empty set. For the above die rolling example, M and N are not disjoint.
The outcomes 1 and 3 are shared by the two events. Therefore, both events happen
simultaneously when either 1 or 3 occurs. On the other hand, M = {1,2,3} and
Q = {5,6} are two disjoint events. When rolling a die, the outcome cannot be less
than 4 and greater than 4 at the same time. In the gene-disease example, the het-
erozygous event and the disease event are disjoint; they cannot occur at the same
time. If a person is heterozygous, we know that he does not have the disease. If a
person has the disease, we know that he cannot be heterozygous. The intersection of
these two events is the empty set, HT ∩ D = {}; hence, P(HT ∩ D) = P(∅) = 0.

For two disjoint events E1 and E2, the probability of their intersection (i.e.,
their joint probability) is zero:

P(E1 ∩ E2) = P(∅) = 0.
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Therefore, according to Eq. 4.2, the probability of the union of two disjoint
events is simply the sum of the their marginal probabilities:

P(E1 ∪ E2) = P(E1) + P(E2). (4.3)

In general, if we have multiple disjoint events, E1, E2, . . . , En, then the prob-
ability of their union is the sum of their marginal probabilities:

P(E1 ∪ E2 ∪ · · · ∪ En) = P(E1) + P(E2) + · · · + P(En). (4.4)

Accordingly, the probability of the union of the heterozygous and disease events
is P(HT ∪D) = 0.42+0.09 = 0.51. Likewise, when we roll a die, the events {1,2},
{4}, and {5,6} are disjoint. The occurrence of one event prevents the occurrence of
the others. Therefore, the probability of their union is

P
({1,2} ∪ {4} ∪ {5,6}) = 1/3 + 1/6 + 1/3 = 5/6.

Now consider the three events {1,2,3}, {4}, and {5,6}. These events are disjoint,
and their union is the sample space S.

When two or more events are disjoint and their union is the sample space S,
we say that the events form a partition of the sample space.

Two complementary events E and Ec always form a partition of the sample space
since they are disjoint and their union is the sample space.

4.7 Conditional Probabilities

In this section, we discuss possible changes in the probability of one event based on
our knowledge regarding the occurrence of another event.

The conditional probability, denoted P(E1|E2), is the probability of event
E1 given that another event E2 has occurred.

In contrast, the marginal probability P(E1) is the unconditional probability of
E1 regardless of the occurrences of other events. Consider the die rolling example.
Recall that P(M) = 1/2. Now suppose that we are told that N has occurred, that is,
the outcome is in fact an odd number. Then, the set of possible outcomes reduces
to S∗ = N = {1,3,5}. This new sample space is shaded in Fig. 4.5. Since the three
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Fig. 4.5 A schematic representation of the die rolling example. Here, M (triangle) is the event that
the outcome is less than 4, and N (oval) is the event that the outcome is an odd number. Assuming
that M has occurred (the outcome is an odd number) reduces the number of possible outcomes
(a new sample space) to N

possible outcomes, 1, 2, and 3, are still equally probable, the probability of each of
them is now 1/3. Within this smaller space, the event M occurs if the outcome is
either 1 or 3. (The outcome of 2 is no longer a possibility.) These are two out of
three equally probable outcomes. Therefore, the probability of M given that N has
occurred (i.e., the conditional probability of M given N ) is P(M|N) = 2/3. In this
case, knowing that the outcome is an odd number increased the probability of E1

from 1/2 to 2/3.

The conditional probability of event E1 given event E2 can be calculated as
follows: (assuming P(E2) �= 0)

P(E1|E2) = P(E1 ∩ E2)

P (E2)
. (4.5)

This is the joint probability of the two events divided by the marginal proba-
bility of the event on which we are conditioning.

In the die rolling example, the intersection of the two events is M ∩ N = {1,3}
with probability P(E1 ∩E2) = 2/6 = 1/3. Therefore, the conditional probability of
an outcome less than 4, given that the outcome is an odd number, is

P(M|N) = P(M ∩ N)

P (M)
= 1/3

1/2
= 2

3
.

Now consider the gene-disease example. Suppose we know that a person is ho-
mozygous and are interested in the probability that this person has the disease,
P(D|HM). The probability of the intersection of D and HM is P(D ∩ HM) =
P({aa}) = 0.09. Using Eq. 4.5, the conditional probability of having the disease
knowing that the genotype is homozygous can be obtained as follows:

P(D|HM) = P(D ∩ HM)

P (HM)
= 0.09

0.58
= 0.16.
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In this case, the probability of the disease has increased from P(D) = 0.09 (the
unconditional probability) to P(D|HM) = 0.16 (the conditional probability).

Now let us find the conditional probability of not having the disease knowing
that the person has a homozygous genotype: P(ND|HM). The joint probability of
ND and HM is P(ND ∩ HM) = P({AA}) = 0.49. The conditional probability is
therefore

P(ND|HM) = P(ND ∩ HM)

P (HM)
= 0.49

0.58
= 0.84.

The information that the person is homozygous decreases the probability of no-
disease from its 0.91 to 0.84.

Note that the two events ND and D are complementary, and the conditional
probability of ND given HM is 1 minus the conditional probability of D given
HM ,

P(ND|HM) = 1 − P(D|HM) = 1 − 0.16 = 0.84.

In general, all the probability rules we discussed so far apply to conditional prob-
abilities. Conditioning on an event only reduces the sample space (e.g., from the
large rectangle to the shaded oval in Fig. 4.5). Within this shrunken sample space,
all probability rules are valid. For example,

P
(
Ec

1

∣∣E2
) = 1 − P(E1|E2),

P (E1 ∪ E2|E3) = P(E1|E3) + P(E2|E3) − P(E1 ∩ E2|E3).

4.8 The Law of Total Probability

By rearranging Eq. 4.5 (i.e., moving P(E2) to the other side), we obtain the follow-
ing useful equation:

P(E1 ∩ E2) = P(E1|E2)P (E2). (4.6)

Therefore, the probability that both E1 and E2 occur, i.e., their joint probability, is
the product of the conditional probability of E1 given E2 and the marginal proba-
bility of E2. We will use this rule in the following sections.

Now suppose that a set of K events B1,B2, . . . ,BK forms a partition of the
sample space. (See Fig. 4.6, where K = 6.) In other words, the events are disjoint
(mutually exclusive), and their union is the entire sample space. For any event A

(shown as a shaded area in Fig. 4.6) in the sample space, we can use Eq. 4.6 to write
the probability of A ∩ Bk as follows:

P(A ∩ Bk) = P(A|Bk)P (Bk),

where Bk is one of the partitioning events. In Fig. 4.6, the event (A ∩ Bk) is the
intersection of the shaded area and Bk ; this corresponds to the shaded area that
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Fig. 4.6 A Venn diagram illustrating a set of partitioning events, B1,B2, . . . ,B6. We can use
the law of total probability to find the probability of any other event A, shown as a shaded
area. Here, the probability of A given the conditional probabilities is P (A) = P (B1)P (A|B1) +
P (B2)P (A|B2) + · · · + P (B6)P (A|B6)

falls inside Bk . The events (A ∩ B1), . . . , (A ∩ BK) themselves are disjoint. Using
Eq. 4.4, we can write the union of these events as

P
(
(A ∩ B1) ∪ · · · ∪ (A ∩ BK)

) = P(A ∩ B1) + · · · + P(A ∩ BK)

= P(A|B1)P (B1) + · · · + P(A|BK)P (BK).

From Fig. 4.6 it is clear that the union of (A ∩ B1), . . . , (A ∩ BK) is equal to the
whole shaded area A. Therefore, the marginal probability of A can be calculated as
follows:

P(A) = P(A|B1)P (B1) + · · · + P(A|BK)P (BK).

The above rule is known as the law of total probability, which can be written
as

P(A) =
K∑

k=1

P(A|Bk)P (Bk), (4.7)

where B1,B2, . . . ,BK form a partition of the sample space, and A is an event
in the sample space.

For die rolling example, consider the three events B1 = {1,2}, B2 = {3,4}, and
B3 = {5,6}, whose probabilities are P(B1) = P(B2) = P(B3) = 1/3. These events
form a partition of the sample space. The conditional probabilities of M (outcome
less than four) given either of these three events are

P(M|B1) = 1, P (M|B2) = 1/2, P (M|B3) = 0.

If we know that the event B1 = {1,2} has occurred, we know for sure that the out-
come is less than 4. Given B2 = {3,4}, the possible outcomes are now 3 and 4. One
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of two possible outcomes corresponds to the event M , that is, the conditional prob-
ability of M given B2 is 1/2. If we know that the event B3 = {5,6} has occurred,
then the probability that the number is less than 4 is zero: P(M|B3) = 0. Using the
law of total probability, we have

P(M) = P(M|B1)P (B1) + P(M|B2)P (B2) + P(M|B3)P (B3)

= 1 × 1

3
+ 1

2
× 1

3
+ 0 × 1

3
= 1

2
,

which is the same as the probability we found directly based on the outcomes in-
cluded in M .

4.9 Independent Events

Two events E1 and E2 are independent if our knowledge of the occurrence of one
event does not change the probability of occurrence of the other event. That is, if
E1 and E2 are independent, then the conditional probability of E1 given E2 (i.e.,
probability of E1 knowing E2 has occurred) is the same as the unconditional (or
marginal) probability of E1 (i.e., probability of E1 regardless of E2). Therefore, for
two independent events,

P(E1|E2) = P(E1).

Likewise,

P(E2|E1) = P(E2).

For example, suppose that we toss two dice simultaneously. Knowing that the out-
come of one of them is less than 4 does not change the probability that the outcome
of the other one is an odd number. In this case, we say that the two events, “less
than 4” for one die and “odd number” for the other one, are independent.

For our running example, where we are rolling one die only, the two events M

and N are not independent. In this case, as we showed above, knowing that the out-
come is an odd number, i.e., event N has occurred, increases the probability of M

from 1/2 to 2/3. For the gene-disease example, we also showed that our knowl-
edge that the genotype is homozygous increased the probability of the disease from
P(D) = 0.09 (the unconditional probability) to P(D|HM) = 0.16 (the conditional
probability). Therefore, the two events are dependent. This is of course consistent
with our assumption that the disease is caused by gene A.

Equation 4.6 provides a general rule for the probability of the intersection of
two events. However, if E1 and E2 are independent, then P(E1|E2) = P(E1). Sub-
stituting P(E1) for P(E1|E2) into Eq. 4.6, we obtain the following rule for the
probability that two independent events occur at the same time.
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When two events E1 and E2 are independent, the probability that E1 and
E2 occur simultaneously, i.e., their joint probability, is the product of their
marginal probabilities:

P(E1 ∩ E2) = P(E1) × P(E2). (4.8)

In general, if events E1,E2, . . . ,En are independent, then

P(E1 ∩ E2 ∩ · · · ∩ En) = P(E1) × P(E2) × · · · × P(En).

For example, if we toss two fair coins simultaneously, then the probability of
observing heads on both coins is P(H1 ∩ H2) = 1/2 × 1/2 = 1/4.

Using the above rule along with Eq. 4.2, we obtain the probability of the union
of two independent events as follows:

P(E1 ∪ E2) = P(E1) + P(E2) − P(E1) × P(E2).

For the above coin tossing example, the probability that at least one of the two coins
is heads is

P(H1 ∪ H2) = 1/2 + 1/2 − 1/4 = 3/4.

4.10 Bayes’ Theorem

In some situations, we know the conditional probability of E1 given E2, but we are
interested in the conditional probability of E2 given E1. For example, suppose that
the probability of having lung cancer is P(C) = 0.001 and that the probability of
being a smoker is P(SM) = 0.25. Further, suppose we know that if a person has
lung cancer, the probability of being a smoker increases to P(SM|C) = 0.40. We
are, however, interested in the probability of developing lung cancer if a person is a
smoker, P(C|SM). Using Eq. 4.5, this conditional probability is

P(C|SM) = P(SM ∩ C)

P (SM)
.

From Eq. 4.6 the probability of being a smoker and having lung cancer at the same
time is

P(SM ∩ C) = P(SM|C)P (C).

Since P(C) and P(SM|C) are known, we can calculate the conditional probability
of developing lung cancer for smokers:

P(C|SM) = P(SM|C)P (C)

P (SM)
= 0.4 × 0.001

0.25
= 0.0016.
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Therefore, the probability of lung cancer for smokers increases from 0.001 to
0.0016. That is, the probability becomes 60% higher than the overall probability
of lung cancer.

In general, for two events E1 and E2, the following equation shows the rela-
tionship between P(E2|E1) and P(E1|E2):

P(E2|E1) = P(E1|E2)P (E2)

P (E1)
. (4.9)

This formula is known as Bayes’ theorem or Bayes’ rule.

Now suppose that a set of K events B1,B2, . . . ,BK forms a partition of the
sample space. We can write the Bayes’ theorem for each of the partitioning events
as follows:

P(Bi |A) = P(A|Bi)P (Bi)

P (A)
.

Here, Bi is one of the partitioning events, and A is an event in the sample space.
Using the law of total probability (Eq. 4.7), we have

P(A) =
K∑

k=1

P(A|Bk)P (Bk).

Therefore, we can write the general form of Bayes’ theorem as

P(Bi |A) = P(A|Bi)P (Bi)∑K
k=1 P(A|Bk)P (Bk)

. (4.10)

In what follows, we use the above general form of Bayes’ theorem for analyzing the
results of medical tests.

4.10.1 Application of Bayes’ Theorem in Medical Diagnosis

As an example, we use the “sweat test” to diagnose Cystic Fibrosis (CF). It is well
known that patients with CF have a high concentration of chloride in their sweat.
The sweat test is a simple procedure to detect CF by measuring the concentration
of salt in a person’s sweat. A high level of salt above a certain cutoff indicates CF.
The possible outcomes from this medical test are shown schematically in Fig. 4.7.
The vertical line represents the boundary between the disease event D (i.e., people
with CF) and its complementary event H (i.e., people without CF). The shaded
area represents the positive test results T +, while the unshaded area represents the
negative test results T −.
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Fig. 4.7 A Venn diagram illustrating a typical medical diagnosis test. Here, the following abbre-
viations are used S for sample space, H for healthy, D for diseased, T − for negative test result,
T + for positive test result. The shaded area to the right of vertical line is the true positive T P , the
shaded area to the left of the vertical line is the false negative FN , the unshaded area to the left of
the vertical line is the true negative T N , and the unshaded area to the right of the vertical line is
the false negative FN for the test

The sweat test successfully diagnoses many of the CF patients as positive. These
cases are called true positives, T P , and represented by the shaded area (T +) within
the disease D region (right of the vertical line) in Fig. 4.7. The conditional proba-
bility of a positive diagnosis for CF patient, P(T +|D), is called the sensitivity of
the test. The sweat test also successfully diagnoses most healthy people as neg-
ative for CF. These cases are called true negatives, T N , and represented by the
unshaded area within H (left of the vertical line). The conditional probability of
a negative result for a healthy person, P(T −|H), is called the specificity of the
test.

Of course, there is always a chance of misdiagnosis. Cases where healthy people
are diagnosed as positive are called false positives, FP . These cases are represented
by the part of the shaded area that falls within the H region (left of the vertical line).
The conditional probability of a positive result for a healthy person is P(T +|H).
Likewise, some CF patients are misdiagnosed as negative. These cases are called
false negatives, FN , and represented by the unshaded area (T −) within the disease
region D (right of the vertical line). The conditional probability of a negative result
for a CF patient is P(T −|D).

The probability of the CF disease for a child whose parents are both carriers
is P(D) = 0.25. Note that the gene causing CF is recessive. Therefore, if we de-
note the allele causing CF as a and the normal allele as A, only people with aa
genotype have CF. People with Aa genotype are carriers. If both parents are car-
riers, the chance of transmitting a is 0.5 for each parent. Assuming that chro-
mosomes from two parents are transmitted independently, there is the probability
P(D) = 0.5 × 0.5 = 0.25 that the child becomes affected (i.e., aa genotype). Then,
the probability of being healthy is P(H) = 1 − 0.25 = 0.75.

Suppose that we use the sweat test and the child tests positive for the disease.
Of course, this does not mean that he has CF for sure. Medical tests usually have
nonzero false positive and false negative probabilities. Assume that the probability
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of false positive for the sweat test is P(T +|H) = 0.04 and the probability of false
negative is P(T −|D) = 0.07. As discussed in Sect. 4.7, we can use all probability
rules for conditional probabilities. Because T + and T − are complementary events,
we have

P
(
T −∣∣H

) = 1 − P
(
T +∣∣H

) = 1 − 0.04 = 0.96,

P
(
T +∣∣D

) = 1 − P
(
T −∣∣D

) = 1 − 0.07 = 0.93.

Now we can calculate the updated probability of the disease knowing that the
outcome of the test is positive. Notice that the two events D and H form a parti-
tion of the sample space (Fig. 4.7). Using the general form of Bayes’ theorem, the
conditional probability of the disease given a positive test result is

P
(
D

∣∣T +) = P(T +|D)P (D)

P (T +|D)P (D) + P(T +|H)P (H)

= 0.93 × 0.25

0.93 × 0.25 + 0.04 × 0.75
= 0.89.

Therefore, the positive test result increases the probability of having the disease
from P(D) = 0.25 to P(D|T +) = 0.89.

4.10.2 Bayesian Statistics

In the CF diagnosis example discussed in this section, we assigned the probability
of 0.25 to the disease event before seeing any new empirical data (i.e., test results).
This probability is called the prior probability. In this case, the prior probability
of disease was P(D) = 0.25. After obtaining new evidence, namely positive test
results, we updated the probability of the disease from P(D) to P(D|T +). We call
this updated probability the posterior probability. In this case, the posterior prob-
ability of the disease was P(D|T +) = 0.89. Therefore, based on the test result, we
become more certain that the child is affected by the disease.

The above concept is the basis of Bayesian Statistics, which provides a frame-
work to combine prior probability with new empirical data in order to perform sta-
tistical inference based on posterior probabilities.

4.11 Interpretation of Probability as the Relative Frequency

The random phenomena we have been discussing so far can be observed repeatedly.
A coin can be tossed or a die can be rolled many times. Likewise, we can observe the
genotypes of many people. These repeated experiments or observations are called
trials. For such random phenomena, the probability of an event can be interpreted



102 4 Probability

Fig. 4.8 Simulation study of
the relative frequency of AA
genotype for different sample
size values. As n increases,
the sample relative frequency
nAA/n approaches 1/4

in terms of the relative frequency. The above view of probability is the basis of
Frequentist Statistics.

As an example, suppose that the probability of genotype AA is P(AA) = 1/4.
This probability could be interpreted as 1 out of 4 people in the population have
genotype AA. Suppose that we take a simple random sample of size n from the
population. If the genotype AA is observed nAA times in the sample, the relative
frequency of AA in the sample is nAA/n. If our probability assumption is true (i.e.,
P(AA) = 1/4), this sample relative frequency would be approximately 1/4. In this
case, as our sample size n increases, the sample relative frequency becomes closer
to the probability of 1/4; that is, it reaches the probability P(AA) = 1/4.

For illustration, we simulate (using computer programs) sampling people from
the population. The plot in Fig. 4.8 shows how the sample relative frequency of AA
genotype approaches the probability P(AA) = 1/4 as the sample size increases.

Note that the above interpretation of probability requires two important assump-
tions. First, we assume that the probability of events does not change from one trial
to another. For example, the probability of AA must remain 1/4. If the population
changes as we are sampling people (e.g., genotype AA becomes more prevalent),
then the sample relative frequency will not converge to 1/4. We also assume that
the outcome of one trial does not affect the outcome of another trial.

4.12 Advanced

In this section, we discuss the application of tree diagrams for obtaining joint prob-
abilities and making decisions under uncertainty.
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Fig. 4.9 Using a tree diagram to find the probability of genotypes assuming the alleles on homol-
ogous chromosomes are independent. The first set of branches represents possible alleles for one
chromosome (Ch1), and the second set represents possible alleles for the other chromosome (Ch2)

4.12.1 Using Tree Diagrams to Obtain Joint Probabilities

Previously, we used tree diagrams to find the sample space for the combination
of two random phenomena. Here, we extend the application of tree diagrams for
calculating their joint probabilities. As an example, assume that the alleles on the
homologous chromosomes are independent (i.e., the allele inherited from the mother
has no influence on the allele inherited from the father). Also assume that for a bi-
allelic gene A, the allele probabilities are P(A) = 0.7 and P(a) = 0.3. Then to find
the genotype probabilities, we can use the tree diagram shown in Fig. 4.9. Note
that this tree is similar to tree presented in Fig. 4.2, but this time we have put the
probability of each possible outcome on its corresponding branch. The first set of
branches represents possible alleles for one chromosome (Ch1), and the second set
represents possible alleles for the other chromosome (Ch2). Since these events are
independent, knowing the allele on the first chromosome has no influence on the
probability of the allele on the second chromosome.

As before, the sample space is obtained by following a branch from root to
tip: S = {A1A2,A1a2, a1A2, a1a2}. Since these events are independent, their joint
probabilities are obtained by multiplying their marginal probabilities: P(A1A2) =
0.7 × 0.7 = 0.49 (Eq. 4.8). Likewise, the probability of having a on the first chro-
mosome and allele A on the second chromosome is P(a1A2) = 0.3 × 0.7 = 0.21.
Following similar approach, we can find the probability of each possible combi-
nation of two chromosomes. These probabilities are given in the column after the
sample space in Fig. 4.9.

The labeling of the chromosomes is arbitrary. Therefore, we can drop the in-
dices for A1A2 and a1a2 and write them as genotypes AA and aa, respectively. The
genotype Aa can be considered as an event that includes two outcomes, A1a2 and
a1A2. Therefore, P(Aa) = 0.21 + 0.21 = 0.42. This probability is shown in the last
column in Fig. 4.9.

We can generalize the above example. Assume that the probability of observing
the A allele is P(A) = p and the probability of observing the a allele is P(a) = q .
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Fig. 4.10 Tree diagram to
find probabilities when events
are dependent. Note that the
probabilities of the second set
of branches can change given
the outcomes on the first set
of branches

Then the genotype probabilities are

Homozygous AA: P(A1A2) = p × p = p2,

Heterozygous Aa: P(A1a2 ∪ a1A2) = p × q + q × p = 2pq,

Homozygous aa: P(a1a2) = q × q = q2.

Suppose, for example, that the allele probabilities for gene B are P(B) = 0.8 and
P(b) = 0.2 and that the alleles on homologous chromosomes are independent (i.e.,
they are transmitted from parents independently). Then the genotype probabilities
are P(BB) = 0.82 = 0.64, P(bb) = 0.22 = 0.04, and P(Bb) = 2×0.8×0.2 = 0.32.

This concept can be used to predict the genotype probabilities of children given
the allele probabilities of their parents in a population. However, this approach
requires that the population follows a very strict principle known as the Hardy–
Weinberg law (which assumes random mating, no selection, no mutation, no genetic
drift, no migration, and an infinite population size). A population adhering to this
law is said to be in Hardy–Weinberg equilibrium.

Now we discuss the use of tree diagrams to find probabilities when the outcomes
are not independent. Suppose that gene B in above example is related to a specific
disease, but it is not the only factor to determine the disease status. In particular, the
probability of having the disease is 0.2 for the bb genotype, whereas this probability
is 0.1 for the other two genotypes, BB and Bb. Therefore, the probability of the
disease depends on the genotype.

In Fig. 4.10, the first set of branches represents the genotype, and the second set
represents the disease status. The probabilities on the first set of branches are for
different genotypes: P(BB) = 0.64, P(Bb) = 0.32, and P(bb) = 0.04. The proba-
bilities on the second set of branches are conditional probabilities for the disease
status given the genotype: P(D|BB) = 0.1, P(D|Bb) = 0.1, and P(D|bb) = 0.2.
Since the healthy (H) and disease (D) events are complementary, the remaining
conditional probabilities are P(H |BB) = 1 − 0.1 = 0.9, P(H |Bb) = 1 − 0.1 = 0.9,
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and P(H |bb) = 1 − 0.2 = 0.8. Therefore, unlike the tree for independent events
(Fig. 4.9), the probabilities on the second set of branches depend on the outcomes
on the first set of branches.

As before, we follow the branches from the root to tip and obtain the sample
space:

S = {BB − D,BB − H,Bb − D,Bb − H,bb − D,bb − H }.
To find their probabilities, which are in fact the joint probabilities of genotype and
disease status, we multiply the probabilities on the corresponding branches accord-
ing to Eq. 4.6. For example, the probability of Bb − D is the product of the condi-
tional probability P(D|Bb) and the marginal probability P(Bb):

P(Bb − D) = P(Bb)P (D|Bb) = 0.32 × 0.1 = 0.032.

4.12.2 Making Decisions under Uncertainty

Probability helps to quantify our uncertainty with respect to possible outcomes of a
random phenomenon. However, probability alone is not enough to make decisions.
For example, suppose that we have a choice between 1) winning $10 with probabil-
ity 0.9 and 2) winning $1,000 with probability 0.8. While there is a higher proba-
bility of winning with the first option, we would be inclined to choose the second
option after considering the potential (expected) gain for each possible outcome. As
another example, suppose that medical tests show that a person might have cancer
with probability 0.3. Although there is a probability of 0.7 for not having cancer, it
is not reasonable to decide not to take any action just because the probability of the
disease is lower compared to the alternative.

In the above examples, there is an explicit (in the first example) or implicit (in the
second example) utility function, through which we attempt to quantify our gain or
joy if a specific outcome occurs (win the money, recover from the disease). For the
gambling example, the utility function assigns 10 to the winning event and 0 to the
losing event (which has 0.1 probability) for the first option. Alternatively, we could
use a loss function that assigns a value to the amount of loss due to any specific
outcome (losing money, becoming more ill).

When making decisions, our goal is to maximize the expected utility (using a
utility function) or minimize the expected loss (using a loss function). For simple
cases, where the set of possible outcomes is finite (e.g., gambling), we can find
the expected utility (or loss) for each option by multiplying the probability of each
possible consequence (outcome) for that option by its corresponding utility (or loss)
value and then summing over all possible consequences. For the first option in the
gambling example, there are two possible consequences: winning with probability
of 0.9 and utility of 10, or losing with probability of 0.1 and utility of 0. Our expected
utility for this option is

EU1 = 0.9 × 10 + 0.1 × 0 = $9.
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Fig. 4.11 Decision tree illustrating the expected loss for the flu example. The tree shows alterna-
tive actions, all possible outcomes with their corresponding probabilities and losses

For the second option, we either win probability of 0.8 and utility of 1000, or we
lose with probability of 0.2 and utility of 0. Our expected utility in this case is

EU2 = 0.8 × 1000 + 0.2 × 0 = $800.

The expected utility is much higher for the second option. Therefore, we choose the
second option.

As another example, consider whether to vaccinate against the seasonal flu. Sup-
pose if we catch the flu, we spend $50 on medication and lose $300 in income from
missing work. (There is also some amount of discomfort, which is not considered
for simplicity.) Further suppose that the probability of catching the flu F without
vaccination, NV , is 0.1, while the probability of the flu with vaccination V is 0.02.
The cost of the vaccine is $20. Should we vaccinate?

To answer this question, we use the decision tree in Fig. 4.11. The first branches
represent our decision: vaccination or no vaccination. The second set of branches
represent the potential consequences of our decision. The probabilities of possible
consequences are given on the branches. The “loss” column in Fig. 4.11 shows the
loss due to the corresponding outcome when occurs. If we do not vaccinate and catch
the flu, we lose $350 in the cost of medication and missed work. However, if we do
not vaccinate and do not catch the flu, there would be no loss, $0. On the other hand,
if we vaccinate and still catch the flu, our loss would be $20 + $350 = $370, since
we have to pay for the vaccine and medication, and we miss work. Lastly, if we
vaccinate and do not catch the flu, our loss is the $20 paid for the vaccination.

The last columns show our expected loss. If we decide not to vaccinate, our
expected loss is 0.1 × $350 + 0.9 × $0 = $35. However, if we decide to vaccinate,
our expected loss is 0.02 × $370 + 0.98 × $20 = $7.4 + $19.6 = $27. Therefore,
we should vaccinate since its expected loss ($27) is less than the expected loss as
the result of not vaccinating ($35).
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4.13 Exercises

1. Consider two events E1 and E2, where P(E1) = 0.3 and P(E2) = 0.5. Calculate
the following probabilities:
(a) P(E1 ∪ E2) if the events are disjoint. In this case, are these two events par-

titioning the sample space?
(b) P(E3), where E3 = (E1 ∪ E2)

c , and E1 and E2 are disjoint.
(c) P(E1 ∩ E2) if the events are independent.
(d) P(E1 ∪ E2) if the events are independent.
(e) P(E2|E1) if P(E1|E2) = 0.35. In this case, are these two events indepen-

dent?
2. In a population that is in Hardy–Weinberg equilibrium, P(a) = 0.1 and

P(A) = 0.9. Find the probability of each possible genotype.
3. Assume that the probability of having the disease is 0.4 and that the disease is

not genetic (i.e., it is independent from the genotype of individuals). Also assume
that the gene A has two alleles A and a such that P(A) = 0.3 and P(a) = 0.7. If
the population is in Hardy–Weinberg equilibrium, write down the sample space
for the combination of the disease status (D for diseased and H for healthy) and
different genotypes along with the probability of each possible combination.

4. For the above question, find the probabilities for all possible combinations of
genotypes and the disease status assuming that the disease is related to the gene A
such that P(D|aa) = 0.5 and P(D|Aa) = P(D|AA) = 0.3.

5. Suppose that a pregnant woman is going to give birth to a girl or a boy with equal
probabilities. However, if the baby is a boy, the probability that he has black (Bk)
hair is 0.7, whereas this probability is 0.4 if the baby is a girl. Alternatively, the
baby could have blond (Bd) hair. Using a tree diagram, find the sample space and
the corresponding probabilities for all possible combinations of gender and hair
color for the baby.

6. Suppose that the probability of being affected by H1N1 flu is 0.02. We found that
among people who are affected by H1N1, the probability that a person washes
her hands regularly is 0.3. If the probability of washing hands regularly in general
(regardless of whether the person has the H1N1 flu or not) is 0.6. What is the
probability of getting the H1N1 flu if a person washes her hands regularly?

7. A person has received the result of his medical test and realized that his diag-
nosis was positive (affected by the disease). However, the lab report stated that
this kind of test has false positive probability of 0.06 (i.e., diagnosing a healthy
person, H , as affected, D) and that the probability of false negative is 0.038 (i.e.,
diagnosing an affected person as healthy). Therefore, while this news was devas-
tating, there is a chance that he was misdiagnosed. After some research, he found
out that the probability of this disease in the population is P(D) = 0.02. Find the
probability that he is actually affected by the disease given the positive lab result.



Chapter 5
Random Variables and Probability Distributions

5.1 Random Variables

In the previous chapter, we discussed random events and their probabilities. We used
the possible genotypes of a bi-allelic gene A as an example. We defined its sample
space, S = {AA,Aa,aa}, and various events, such as the homozygous event HM =
{AA,aa}. We then discussed such concepts as the complement, union, intersection,
conditional probability, and independence.

The focus of this chapter is random variables and their probability distributions.
Formally, a random variable X assigns a numerical value to each possible out-
come (and event) of a random phenomenon. For instance, we can define X based on
possible genotypes of a bi-allelic gene A as follows:

X =
⎧
⎨

⎩

0 for genotype AA,

1 for genotype Aa,

2 for genotype aa.

In this case, the random variable assigns 0 to the outcome AA, 1 to the outcome Aa,
and 2 to the outcome aa. The way we specify random variables based on a specific
random phenomenon is not unique. For the above example, we can define another
random variable Y as follows:

Y =
{

0 for genotypes AA and aa,

1 for genotype Aa.

In this case, Y assigns 0 to the homozygous event and assigns 1 to the heterozygous
event. When the underlying outcomes are numerical, the values the random variable
assigns to each outcome can be the same as the outcome itself. For the die rolling
example, we can define a random variable Z to be equal to 1,2, . . . ,6 for outcomes
1,2, . . . ,6, respectively. Alternatively, we can define a random variable W and set
W to 1 when the outcome is an odd number and to 2 when the outcome is an even
number.

The set of values that a random variable can assume is called its range. For the
above examples, the range of X and Z is {0,1,2}, and the range of Z is {1,2, . . . ,6}.
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After we define a random variable, we can find the probabilities for its possi-
ble values based on the probabilities for its underlying random phenomenon. This
way, instead of talking about the probabilities for different outcomes and events,
we can talk about the probability of different values for a random variable. Assume
that the probabilities for different genotypes are P(AA) = 0.49, P(Aa) = 0.42, and
P(aa) = 0.09. Then, instead of saying P(AA) = 0.49, i.e., the genotype is AA with
probability 0.49, we can say that P(X = 0) = 0.49, i.e., X is equal to 0 with proba-
bility of 0.49. Likewise, P(X = 1) = 0.42 and P(X = 2) = 0.09. Note that the total
probability for the random variable is still 1. For the die rolling example, instead of
saying that the probability of observing an odd number is 1/2 when rolling a die,
we can say P(W = 1) = 1/2, i.e., W is equal to 1 with probability of 1/2.

In what follows, we write P(X) to denote the probability of a random variable X

in general without specifying any value or range of values. Since the probability
of a random variable is defined based on the probability of its underlying random
phenomenon, the probability rules we discussed in the previous chapter also apply
to random variables. Specifically, concepts such as independence and conditional
probability are defined similarly for random variables as they are defined for ran-
dom events. For example, when two random variables do not affect each other’s
probabilities, we say that they are independent.

As mentioned above, this chapter focuses on random variables and their proba-
bility distributions.

The probability distribution of a random variable specifies its possible values
(i.e., its range) and their corresponding probabilities.

For the random variable X defined based on genotypes, the probability distribution
can be simply specified as follows:

P(X = x) =
⎧
⎨

⎩

0.49 for x = 0,

0.42 for x = 1,

0.09 for x = 2.

Here, x denotes a specific value (i.e., 0, 1, or 2) of the random variable.
Probability distributions are specified differently for different types of random

variables. In the following section, we divide the random variables into two ma-
jor groups: discrete and continuous. Then, we provide several examples for each
group.

5.2 Discrete vs. Continuous

The grouping of random variables into discrete and continuous is based on their
range. Discrete random variables can take a countable set of values. These variables
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can be categorical (nominal or ordinal), such as genotype, gender, disease status,
or pain level. They can also be counts, such as the number of patients visiting an
emergency room per day, or the number of lymph nodes containing evidence of
cancer. For all these examples, we can count the number of possible values the
random variable can take. In the above genotype examples, X is a discrete random
variable since it can take 3 possible values only.

Continuous random variables can take an uncountable number of possible values.
Examples include weight, body temperature, BMI, and blood pressure. Consider
the random variable Y for birthweight, which is a random phenomenon. In this
case, the values of the random variables (i.e., numbers it assigns to each possible
outcome) are the same as the corresponding outcomes; Y = 7.9 if the birthweight is
7.9 pounds. In this example, we cannot count the possible values of Y . For any two
possible values of this random variable, we can always find another value between
them. Consider 7.9 pounds and 8.0 pounds as two possible values for Y . We can
find another number such as 7.95 between these two values. Now consider 7.9 and
7.95 as possible values; we can still find another number between them, such as
7.93. For continuous random variables, we can continue this process for any two
possible values no matter how close they are. This is not the case for discrete random
variables. While you can find another possible value between 70 heart beets per
minutes and 75 heart beats per minute, you cannot do so for 70 and 71; there is no
other possible value between them.

5.3 Probability Distributions

The probability distribution of a random variable provides the required information
to find the probability of its possible values. Recall that the total probability of all
possible values is equal to 1. Therefore, probability distribution specifies how the
total probability of 1 is allocated among all possible values.

While the focus of earlier chapters was on exploring observed data and their dis-
tribution, here, we are concerned about all the possible values a random variable can
take and their corresponding probabilities (i.e., the chance of observing those val-
ues) as opposed to a sample of observations. Although we do not necessarily need to
think about a population when talking about probability distributions, it is easier to
discuss this concept with a population in mind. Therefore, throughout this book, we
usually discuss random variables and their probability distributions in the context of
a population. That is, a random variable represents a specific random characteristic
of a population and the possible values for that characteristic, even though we might
not see many of those values in our sample. The probability distribution of a random
variable specifies its range of possible values and how often we expect to see those
values in the population. In that sense, our discussion of random variables and their
distributions in this chapter remains at population level and theoretical (since we
almost never have access to the whole population).

The probability distributions discussed here are characterized by one or two pa-
rameters. (In general, probability distributions can depend on more than two pa-
rameters.) These are values that define the form of a probability distribution. The
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parameters of probability distributions we assume for random variables are usually
unknown. Typically, we use Greek alphabets such as μ and σ to denote these pa-
rameters and distinguish them from known values.

While the probability distribution of a random variable is treated as the theoret-
ical distribution of that random variable in the population, our study of probability
distributions involves some analogous concepts as those discussed in earlier chap-
ters regarding the distribution of observed data. More specifically, we are interested
in specifying the mean and variance (or standard deviation) of a random variable as
its measures of location and dispersion, respectively. Note, however, that the mean
and variance here refer to the population mean and population variance, as op-
posed to sample mean and sample variance; hence, they remain theoretical, which
means that we never know their true values. The mean of a random variable is also
called its expected value even. (Note that the mean of a random variable is not its
typical value in general.) We usually use μ to denote the mean of a random variable
and use σ 2 to denote its variance; the standard deviation of a random variable is
therefore σ . For a population of size N , the mean and variance are calculated as
follows:

μ =
∑N

i=1 xi

N
,

σ 2 =
∑N

i=1(xi − μ)2

N
,

where xi is the value of the random variable for the ith member of the population.
In the remaining parts of this chapter, we discuss probability distributions for

discrete and continuous random variables separately. We also discuss some com-
monly used discrete and continuous probability distributions. For each probability
distribution, we provide the mean and variance and interpret them as the population
mean and population variance for the corresponding random variable. Further, we
use R-Commander and R to plot probability distributions.

5.4 Discrete Probability Distributions

For discrete random variables, the probability distribution is fully defined by the
probability mass function (pmf). This is a function that specifies the probability
of each possible value within range of random variable. For the genotype example,
the pmf of the random variable X is

P(X = x) =
⎧
⎨

⎩

0.49 for x = 0,

0.42 for x = 1,

0.09 for x = 2.

The probabilities for all possible values of the random variable sum to one.
As another example, suppose Y is a random variable that is equal to 1 when a

newborn baby has low birthweight, and is equal to 0 otherwise. We say Y is a binary
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random variable. Further, assume that the probability of having a low birthweight
for babies is 0.3. Then the pmf for the random variable Y is

P(Y = y) =
{

0.7 for y = 0,

0.3 for y = 1.

Note that in this case, the random variable can take two values only. Since P(Y = 1)

= 0.3 and the total probability of all possible values is 1, then we know that
P(Y = 0) = 0.7.

In the following sections, we introduce some of the most commonly used proba-
bility mass functions for distributions of discrete random variables. For each distri-
bution, we will provide the mean and variance as measures of location and spread,
respectively. Moreover, with R-Commander we will visualize these distributions,
obtain probabilities, and simulate data (i.e., artificially generate a set of observed
values).

5.4.1 Bernoulli Distribution

Binary random variables are abundant in scientific studies. Examples include dis-
ease status (healthy and diseased), gender (male and female), survival status (dead,
survived), and a gene with two possible alleles (A and a). We usually regard one of
the values as the outcome of interest and denote it as X = 1. The other outcome is
denoted as X = 0. As before, the probabilities for all possible values sum to one:
P(X = 0) + P(X = 1) = 1.

The binary random variable X with possible values 0 and 1 has a Bernoulli
distribution with parameter θ , where P(X = 1) = θ and P(X = 0) = 1 − θ .
We denote this as X ∼ Bernoulli(θ), where 0 ≤ θ ≤ 1.

Here, θ is the unknown parameter. If θ were known, we could fully specify the
probability mass function:

P(X = x) =
{

1 − θ for x = 0,

θ for x = 1.

Sometimes we use the notation P(X|θ) to emphasize the dependence of the proba-
bilities on the value of θ (i.e., given θ ). Here, we simply show these probabilities as
P(X = 0) and P(X = 1), where the dependence on θ is implied.

For example, let X be a random variable representing the five-year survival status
of breast cancer patient, where X = 1 if the patient survived and X = 0 otherwise.
Suppose that the probability of survival is θ = 0.8: P(X = 1) = 0.8. Therefore, the
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Fig. 5.1 Plot of the pmf for
Bernoulli(0.8) distribution

probability of not surviving is P(X = 0) = 1 − θ = 0.2. Then X has a Bernoulli
distribution with parameter θ = 0.8, and we denote this as

X ∼ Bernoulli(0.8).

The pmf for this distribution is

P(X = x) =
{

0.2 for x = 0,

0.8 for x = 1.

Alternatively, we can plot pmf for visualizing the distribution. Figure 5.1 shows
the plot of pmf for the Bernoulli(0.8) distribution. The height of each bar is the
probability of the corresponding value on the horizontal axis. The height of the bar
is 0.2 at X = 0 and 0.8 at X = 1. Since the probabilities for all possible values of
the random variable add to 1, the bar heights also add up to 1.

The mean of a binary random variable, X, with Bernoulli(θ) distribution
is θ . We show this as μ = θ . In this case, the mean can be interpreted as
the proportion of the population who have the outcome of interest. Further-
more, the variance of a random variable with Bernoulli(θ) distribution is
σ 2 = θ(1 − θ) = μ(1 − μ). The standard deviation is obtained by taking the
square root of variance: σ = √

θ(1 − θ) = √
μ(1 − μ).

In the above example, μ = 0.8. Therefore, we expect 80% of patients survive.
The variance of the random variable is σ 2 = 0.8 × 0.2 = 0.16, and its standard de-
viation is σ = 0.4. This reflects the extent of variability in survival status from one
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person to another. For this example, the amount of variation is rather small. There-
fore, we expect to see many survivals (X = 1) with occasional death (X = 0). For
comparison, suppose that the probability of survival for bladder cancer is θ = 0.6.
Then, the variance becomes σ 2 = 0.6× (1−0.6) = 0.24. This reflects a higher vari-
ability in the survival status for bladder cancer patients compared to that of breast
cancer patients.

5.4.2 Binomial Distribution

A sequence of binary random variables X1,X2, . . . ,Xn is called Bernoulli trials
if they all have the same Bernoulli distribution (i.e., the same probability θ for the
outcome of interest) and are independent (i.e., not affecting each other’s probabili-
ties). For example, suppose that we plan to recruit a group of 50 patients with breast
cancer and study their survival within five years from diagnosis. We represent the
survival status for these patient by a set of Bernoulli random variables X1, . . . ,X50.
(For each patient, the outcome is either 0 or 1.) Assuming that all patients have the
same survival probability, θ = 0.8, and the survival status of one patient does not
affect the probability of survival for another patient, X1, . . . ,X50 form a set of 50
Bernoulli trials.

Now we can create a new random variable Y representing the number of patients
out of 50 who survive for five years. The number of survivals is the number of 1s
in the set of Bernoulli trials. This is the same as the sum of Bernoulli trials, whose
values are either 0 or 1:

Y =
n∑

i

Xi,

where Xi = 1 if the ith patient survive and Xi = 0 otherwise.
Since Y can be any integer number from 0 (no one survives) through 50 (every-

one survives), its range is {0, 1, . . . , 50}. The range is a countable set. Therefore,
the random variable Y is discrete. The distribution of Y is a binomial distribution,
shown as

Y ∼ Binomial(50,0.8).

The random variable representing the number of times the outcome of in-
terest occurs in n Bernoulli trials (i.e., the sum of Bernoulli trials) has a
Binomial(n, θ) distribution, where θ is the probability of the outcome of inter-
est (a.k.a. the probability of success). A binomial distribution is defined by the
number of Bernoulli trials n and the probability of the outcome of interest θ

for the underlying Bernoulli trials.

The pmf of a binomial(n, θ ) specifies the probability of each possible value (in-
tegers from 0 through n) of the random variable. For the breast cancer example,
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Fig. 5.2 Plot of the pmf for
Binomial(50, 0.8) distribution

the pmf of Binomial(50,0.8) distribution specifies the probability of 0 through 50
survivals.

The mathematical form of the pmf for binomial distributions are provided in Ad-
vanced section at the end of this chapter. Here, we use R-Commander to visualize
this function and obtain the probability of each possible value. Click Distri-
butions → Discrete distributions → Binomial distribution
→ Binomial probabilities and then set the number of Binomial tri-
als (Bernoulli trials) to 50 and the Probability of success to 0.8. In the
Output window, the result is shown as a table, where the first column shows the
possible values for Y , and the second column shows their corresponding probabil-
ities. For example, based on this table, the probability of 40 patients surviving is
P(Y = 40) = 0.14.

We can also use R-Commander to plot the pmf for discrete distributions. Click
Distributions → Discrete distributions → Binomial dis-
tribution → Plot binomial distribution. Specify the parameters of
the distribution by entering 50 as the Binomial trials and 0.8 as the Prob-
ability of success (i.e., outcome of interest). Make sure the option Plot
probability mass function is checked. The resulting graph illustrates the
probabilities for different possible value of Y (Fig. 5.2). As before, the height of
each bar is the probability of the corresponding value on the x-axis. For example,
the probability of 35 survivals (out of 50) is 0.03, and the probability of 36 survivals
is 0.05. Also, since the probabilities for all possible values of the random variable
add to 1, the bar heights add up to 1. Note that even though Y can take integer
values from 0 to 50, the plot does not show numbers below 30 and above 48 since
the probability of these values is almost zero. For example, for the given survival
probability, it is extremely unlikely to have only 10 survivals.
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Now suppose that we are interested in the probability that either 34 or 35 or 36
patients survive. Since the underlying event include three possible outcomes, 34,
35, and 36, we obtain the probability by adding the individual probabilities for these
outcomes:

P
(
Y ∈ {34,35,36}) = P(33 < Y ≤ 36)

= P(Y = 34) + P(Y = 35) + P(Y = 36)

= 0.02 + 0.03 + 0.05 = 0.1.

This is the same as adding the bar heights for Y = 34, Y = 35, and Y = 36. Further,
suppose that we want to find the probability that the number of survivals (out of 50)
is less than or equal to 36. That is, we are interested in the probability that either no
one survives, or 1 patient survives, or 2 patients survive, . . . , or 36 patients survive.
This is shown as P(Y ≤ 36) and is called the lower tail probability of 36. As
before, we can add up the individual probabilities to obtain

P(Y ≤ 36) = P(Y = 0) + P(Y = 1) + · · · + P(Y = 36).

This is equivalent to adding the bar heights from Y = 0 through Y = 36. We can ob-
tain the lower tail probability directly in R-Commander. Click Distributions
→ Discrete distributions → Binomial distribution → Bino-
mial tail probabilities. Now enter 36 for the Variable values, 50
for the Binomial trials, 0.8 for the Probability of success, and make sure the
option Lower tail is checked. The result, given in the Output window, is the
probability that 36 or fewer patients survive: P(Y ≤ 36) = 0.11.

We can also obtain the upper tail probability of 36, which is the probability
that more than 36 patients survive: P(Y > 36). In R-Commander, repeat the above
steps, but this time select the Upper tail option. The result is P(Y > 36) = 0.89.
Since the lower tail and upper tail probabilities represent complementary events (i.e.,
either 36 people or fewer survival, or more than 36 people survive), we can obtain
the upper tail probability by P(Y > 36) = 1 − P(Y ≤ 36) = 1 − 0.11 = 0.89.

In general, we use P(Y ≤ y) to denote the lower tail probability for any
specific value y. The upper tail probability can be obtained as P(Y > y) =
1 − P(Y ≤ y).

In the above example, we add the individual probabilities for outcomes 34, 35,
and 36 to obtain the interval probability P(33 < Y ≤ 36). Note that by convention,
the intervals include the upper limit (here 36) but not the lower limit (here 33). We
can write this probability as follows:

P(33 < Y ≤ 36) = P(Y ≤ 36) − P(Y ≤ 33).
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Here, we are subtracting the probability that Y is less than or equal to 33 from the
probability that Y is less than or equal to 36. For this example, P(Y ≤ 36) = 0.11
and P(Y ≤ 33) = 0.01. Therefore,

P(33 < Y ≤ 36) = 0.11 − 0.01 = 0.1.

In general, the probability of any interval from x1 to x2, where x1 < x2, can be
obtained using the corresponding lower tail probabilities for these two points
as follows:

P(x1 < X ≤ x2) = P(X ≤ x2) − P(X ≤ x1). (5.1)

The above examples show that the pmf of a binomial distribution provides the
required information to calculate all different probabilities. For a given pmf, we can
also find the mean (expected value) and variance of the random variable.

The theoretical (population) mean of a random variable Y with Binomial(n, θ )
distribution is μ = nθ . The theoretical (population) variance of Y is σ 2 =
nθ(1 − θ).

For the breast cancer example, the mean of the random variable is 50× 0.8 = 40.
(Note that in general the mean might not be an integer.) If we recruit 50 patients, we
expect 40 people survive over five years. Of course, the actual number of survivals
can change from one group to another (e.g., if we take another group of 50 patients).
The variance of Y in the above example is 50 × 0.8 × 0.2 = 8, which shows the
extent of the variation of the random variable around its mean.

While in practice it is difficult to repeatedly recruit groups of 50 cancer patients,
we can use computer programs such as R-Commander to simulate the sampling
process. Click Distributions → Discrete distributions → Bino-
mial distribution → Sample from binomial distribution. As
in Fig. 5.3, name the simulated data set “BinomialSample1”. Then specify the pa-
rameters n and θ by entering 50 for the Binomial trials and 0.8 for the
Probability of success. Suppose that want to repeat the sampling pro-
cedure 10 times (i.e., 10 groups of 50). Enter 10 for the Number of sam-
ples. Lastly, set the Number of observations to 1, and uncheck Sample
means. R-Commander then creates the data set BinomialSample1, which auto-
matically becomes the active data set. This data set contains 10 randomly generated
values for the random variable Y with Binomial(50,0.8) distribution. An example
of the resulting data set is shown in Fig. 5.3. (Your simulated sample would be dif-
ferent.) In this simulated data set, 42 patients survive in the first group, 41 patients
survive in the second group, and so forth. As expected, the number of survivals are
generally close to the mean of the distribution, μ = 40.
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Fig. 5.3 Left panel: Simulating a random sample from the Binomial(50, 0.8) distribution in
R-Commander. Name the data set and specify the number of trials n, the success probability θ ,
the number of samples, and the number of observations. Right panel: Viewing the simulated data
set BinomialSample1, which was generated from the Binomial(50, 0.8) distribution

5.4.3 Poisson Distribution

So far, we have discussed the Bernoulli distribution for binary variables, and the
binomial distribution for the number of times the outcome of interest (one of the
two possible categories of the binary variable) occur within a set of n Bernoulli tri-
als. While a random variable with a Binomial(n, θ ) distribution is a count variable
(e.g., number of people survived), its range is restricted to include integers from 0
through n only. For example, the number of survivals in a group of n = 50 cancer
patients cannot exceed 50. Now, suppose that we are investigating the number of
physician visits for each person in one year. Although very large numbers such as
100 are quite unlikely, there is no theoretical and prespecified upper limit to this
random variable. Theoretically, its range is the set of all nonnegative integers. As
another example, consider the number of trees per square mile in a certain region.
Again, although spatial limits make very large numbers unlikely, there is no theo-
retical and prespecified limit for the possible values of the random variable.

Random variables representing counts within temporal and/or spacial limits
but without prespecified upper limits are often assumed to have Poisson dis-
tributions. The range of these variables is the set of all nonnegative integers
(i.e., the lower limit is zero, but there is no upper limit). A Poisson distribution
is specified by a parameter λ, which is interpreted as the rate of occurrence
within a time period or space limit. We show this as X ∼ Poisson(λ), where λ

is a positive real number (λ > 0). The mean and variance of a random variable
with Poisson(λ) distribution are the same and equal to λ. That is, μ = λ and
σ 2 = λ.
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Fig. 5.4 Plot of the pmf for a
Poisson(2.5) distribution

The pmf of a Poisson distribution specifies the probability of its possible values
(i.e., 0, 1, 2, . . . ). The mathematical form of this function is provided in Advanced
section. Here, we use R-Commander to visualize the pmf and obtain the probability
of each possible value.

As an example, assume that the rate of physician visits per year is 2.5: X ∼
Poisson(2.5). The population mean and variance of this variable is therefore 2.5.
We can use R-Commander to plot the corresponding pmf for this distribution. Click
Distributions → Discrete distributions → Poisson distri-
bution → Plot Poisson distribution and then enter 2.5 for the Mean.
The resulting plot of the pmf shows the probability of each possible value, which is
any integer from 0 to infinity (Fig. 5.4). In this case, the probability of values above
8 becomes almost 0. According to this distribution, the probability of one visit per
year is P(X = 1) = 0.21. Also, the plot of pmf shows that it is very unlikely that a
person visits her physician 10 times per year.

To obtain the probability of specific values, click Distributions →
Discrete distributions → Poisson distribution → Poisson
probabilities and enter 2.5 as the Mean. The resulting probability table ap-
pears in the Output window. As before, the first column shows the possible values
of the random variable, and the second column shows their corresponding proba-
bilities. For this example, the probability that a person does not visit her physician
within a year is P(X = 0) = 0.08, while the probability of one visit per year in-
creases to P(X = 1) = 0.21.

Now suppose that we want to know the probability of up to three visits per year:
P(X ≤ 3). This is the probability that a person visit her physician 0, or 1, or 2,
or 3 times within one year. As before, we add the individual probabilities for the
corresponding outcomes:

P(X ≤ 3) = 0.08 + 0.21 + 0.26 + 0.21 = 0.76.
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This is the lower tail probability of x = 3. (Again, we use lower case for specific
values of the random variable.) We can use R-Commander to obtain this prob-
ability. Click Distributions → Discrete distributions → Pois-
son distribution → Poisson tail probabilities. Enter 3 for the
Variable value, 2.5 for the Mean, and make sure the option Lower tail is
checked. The resulting probability, given in the Output window, matches the value
calculated manually. The probability of more than three visits (i.e., the upper tail
probability) is therefore P(X > 3) = 1 − P(X ≤ 3) = 1 − 0.76 = 0.24.

If the random variable representing the number of physician visits per year
has in fact Poisson(2.5) distribution, its mean and variance are both 2.5. Use
R-Commander to simulate (and plot) samples from this distribution. For exam-
ple, we can sample the number of physician visits per year from Poisson(2.5) for
n = 1000 people. Click Distributions→ Discrete distributions→
Poisson distribution → Sample from Poisson distribution.
Then specify the parameter λ by setting the Mean to 2.5. Enter 1000 for the
Number of samples, 1 for the Number of observations, and uncheck
Sample means. View the newly created data set PoissonSamples. Now, find
the sample mean and variance for this data set. They both should be close to 2.5,
which is the theoretical mean and variance of the Poisson(2.5) distribution.

5.5 Continuous Probability Distributions

For discrete random variables, the pmf provides the probability of each possible
value. For continuous random variables, the number of possible values is uncount-
able, and the probability of any specific value is zero. Intuitively, you can think
about allocating the total probability of 1 among uncountable number of possible
values. Therefore, instead of talking about the probability of any specific value x

for continuous random variable X, we talk about the probability that the value of
the random variable is within a specific interval from x1 to x2; we show this proba-
bility as P(x1 < X ≤ x2). By convention, the interval includes the upper end of the
interval but not the lower end.

For continuous random variables, we use probability density functions (pdf) to
specify the distribution. Using the pdf, we can obtain the probability of any interval.
As an example, consider the continuous random variable X representing the body
mass index of the US population. Figure 5.5 shows the assumed probability density
function for this variable. The mathematical form of this function is presented in
the Advanced section. We refer to the corresponding curve shown in Fig. 5.5 as the
probability density curve.

Note that the height of this curve at any specific value gives the density at that
point. While we will use the density function to find probabilities for continuous
random variables (discussed below), the value of the density function is not proba-
bility. Informally, however, the density curve shows the regions with high and low
probability. In Fig. 5.5, for example, the region around 25 (e.g., between 20 to 30)
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Fig. 5.5 The assumed
probability distribution for
BMI. The density curve
shown in this figure can be
used to find the probability
that the value of the random
variable falls within an
interval

Fig. 5.6 The assumed
probability distribution for
BMI, which is denoted as X,
along with random sample of
100 values, which are shown
as circles along the horizontal
axis

has relatively higher density compared to the region above 35 or below 15. If we ob-
serve a large number of values for this random variable, we expect many of them to
be around 25 (e.g., between 20 to 30). In Fig. 5.6, we show a random sample of 100
values for the random variable X. As we can see, many of these values fall within
the high-density region from 20 to 30. Only few observations fall in low-density
regions (e.g., the regions above 35 or below 15).

As mentioned above, for continuous random variables, the probability of any
specific value is zero. For the above example, using the probability density curve
in Fig. 5.5, we can find the probability of that a person’s BMI is between 25 and
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Fig. 5.7 The shaded area is
the probability that a person’s
BMI is between 25 and 30.
People whose BMI is in this
range are considered as
overweight. Therefore, the
shaded area gives the
probability of being
overweight

30: P(25 < X ≤ 30). (This is the probability of being overweight but not obese
according to the Centers for Disease Control and Prevention.)

The total area under the probability density curve is 1. The curve (and its
corresponding function) gives the probability of the random variable falling
within an interval. This probability is equal to the area under the probability
density curve over the interval.

In Fig. 5.7, this probability is shown as the shaded area under the probability
density curve between 25 and 30. Now suppose that we shrink the interval from
25 < X ≤ 30 to 28 < X ≤ 30. The shaded area under the curve would decrease,
and the probability of the interval becomes smaller. If we continue shrinking the
interval by moving the lower limit closer to 30, in limit the interval becomes a single
number 30, and the shaded area, which is the probability of the interval, reduces to
zero. Therefore, for this continuous random variable, the probability of 30 is zero:
P(X = 30) = 0. In general, the probability of any specific value for continuous
variables is zero: P(X = x) = 0. Note that the probability of zero for a specific
value does not necessarily make it impossible. After all, the BMI of any person in
the population is a specific value.

Similar to the discrete distributions, the probability of observing values less than
or equal to a specific value x, is called the lower tail probability and is denoted
as P(X ≤ x). This probability is found by measuring the area under the curve
to the left of x. For example, the shaded area in the left panel of Fig. 5.8 is the
lower tail probability of having a BMI less than or equal to 18.5 (i.e., being under-
weight), P(X ≤ 18.5). Likewise, the probability of observing values greater than x,
P(X > x), is called the upper tail probability and is found by measuring the area
under the curve to the right of x. For example, the shaded area in the right panel
of Fig. 5.8 is the upper tail probability of having a BMI greater than 30 (i.e., being
obese).
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Fig. 5.8 Left panel: The lower tail probability of 18.8, P (X ≤ 18.8). Right panel: The upper tail
probability 30, P (X > 30)

As before, the probability of any interval from x1 to x2, where x1 < x2, can be
obtained using the corresponding lower tail probabilities for these two points as
follows:

P(x1 < X ≤ x2) = P(X ≤ x2) − P(X ≤ x1). (5.2)

For example, suppose that we wanted to know the probability of a BMI between 25
and 30. This probability P(25 < X ≤ 30) is obtained by subtracting the lower tail
probability of 25 from the lower tail probability of 30:

P(25 < X ≤ 30) = P(X ≤ 30) − P(X ≤ 25).

Again, we follow the general convention, where the intervals contain their upper
limit (here, 30) but not their lower limit (here, 25).

In the following sections, we discuss some of the most common probability dis-
tributions for continuous random variables. These distributions depend on one or
two unknown parameters and are specified by their probability density functions.
As before, we will provide the mean μ and variance σ 2 of each distribution as mea-
sures of location and dispersion (spread), respectively. We also use R-Commander
to plot the density curves and to obtain the probability of a given interval.

5.5.1 Probability Density Curves and Density Histograms

In the previous chapter, we discussed the interpretation of probability in terms of
relative frequency. An analogous comparison can be made between density curves
for probability distributions and density histograms for data.

Consider the density curve for the probability distribution of BMI shown Fig. 5.5.
Now suppose that we observe the BMI values of 500 people selected from the popu-
lation through simple random sampling. The left panel of Fig. 5.9 shows the density
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Fig. 5.9 Left panel: Histogram of BMI for 1000 observations. The dashed line connects the height
of each bar at the midpoint of the corresponding interval. The smooth solid curve is the density
curve for the probability distribution of BMI. Right panel: Histogram of BMI for 5000 observa-
tions. The histogram and its corresponding dashed line provide better approximations to the density
curve

histogram of the observed data. Here, we have super-imposed a dashed line con-
necting the height of each bar at the midpoint of the corresponding interval. Recall
that the height of each bar is the density for the corresponding interval, and the area
of each bar is the relative frequency for that interval. We have also super-imposed
the probability density curve for the random variable for comparison. As we can
see, the density histogram and the dashed line, which shows the density for each in-
terval based on the observed data, provide reasonable approximations to the density
curve. Also, the area of each bar, which is equal to the relative frequency for the
corresponding interval, is approximately equal to the area under the curve over that
interval. The right panel of Fig. 5.9 shows the density histogram and the dashed line
based on 5000 observations. The approximation to the density curve becomes much
better as the sample size increases. If the assumed probability distribution for the
random variable is in fact true, we expect that the dashed line reaches the density
curve as the sample size n goes to infinity. (Note that as the sample size increases,
we can increase the number of bins and decrease the bin width.)

5.5.2 Normal Distribution

Consider the probability distribution function and its corresponding probability den-
sity curve in Fig. 5.5 we assumed for BMI in the above example. As we move from
left to right, the height of the density curve increases first until it reaches a point
of maximum (peak), after which it decreases toward zero. We say that the proba-
bility distribution is unimodal. Because the height of the density curves reduces to
zero symmetrically as we move away from the center, we say that the probability
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Fig. 5.10 Examples of
density curves for the normal
distribution. The distribution
shown by the solid curve has
a mean of 1 and variance of 4.
The distribution shown by the
dashed curve has a mean of
−1 and variance of 1

distribution is symmetric. We can use similar unimodal and symmetric probabil-
ity distribution for many continuous random variables representing characteristics
such as blood pressure, body temperature, atmospheric carbon dioxide concentra-
tion change, and so forth. This distribution is known as normal distribution, which
is one of the most widely used distributions for continuous random variables. Ran-
dom variables with this distribution (or very close to it) occur often in nature.

Figure 5.10 shows two examples of density curves for the normal distribution.
Each curve is symmetric around its point of maximum. For normal distributions,
the point where the density curve reaches its maximum is in fact the mean, denoted
as μ. The mean is 1 for the distribution shown with the solid curve and −1 for the
distribution shown with the dashed curve. The variance of a normally distributed
random variable is denoted as σ 2 and determines the spread of the density curve; a
higher variance means a more spread out curve. (The standard deviation is the square
root of the variance and is denoted as σ .) The variance for the random variable with
solid density curve is 4, whereas the variance of the random variable with dashed
density curve is 1. Therefore, the former random variable is more dispersed than the
latter one.

A normal distribution and its corresponding pdf are fully specified by the
mean μ and variance σ 2. A random variable X with normal distribution is
denoted X ∼ N(μ,σ 2), where μ is a real number, but σ 2 can take positive
values only. The normal density curve is always symmetric about its mean μ,
and its spread is determined by the variance σ 2.

The range (set of possible values) for any normally distributed random variable is
the set of real numbers from −∞ to +∞. However, it is not uncommon to assume
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a normal distribution for a random variable that has only positive values. This is
a reasonable assumption as long as the typical values of the random variable are
far enough from zero, so that the probability of negative values (the area under the
curve on the left hand side of zero) becomes negligible. For example, we can safely
assume systolic blood pressure (SBP) is normally distributed since typical values
are far from zero.

The 68–95–99.7% Rule For normally distributed random variables, there is a sim-
ple rule, known as the 68–95–99.7% rule, for finding the range of typical values.

The 68–95–99.7% rule for normal distributions specifies that

• 68% of values fall within 1 standard deviation of the mean:

P(μ − σ < X ≤ μ + σ) = 0.68.

• 95% of values fall within 2 standard deviations of the mean:

P(μ − 2σ < X ≤ μ + 2σ) = 0.95.

• 99.7% of values fall within 3 standard deviations of the mean:

P(μ − 3σ < X ≤ μ + 3σ) = 0.997.

For example, suppose we know that the population mean and standard deviation
for SBP are μ = 125 and σ = 15, respectively. That is, X ∼ N(125,152), where
X is the random variable representing SBP. Therefore, the probability of observing
an SBP in the range μ ± σ is 0.68:

P(125 − 15 < X ≤ 125 + 15) = P(110 < X ≤ 140) = 0.68.

This probability corresponds to the central area shown in the left panel of Fig. 5.11.
Likewise, the probability of observing an SBP in the range μ ± 2σ is 0.95:

P(125 − 2 × 15 < X ≤ 125 + 2 × 15) = P(95 < X ≤ 145) = 0.95.

This probability is shown in the right panel of Fig. 5.11. Lastly, the probability of
observing an SBP is in the range μ ± 3σ is 0.997:

P(125 − 3 × 15 < X ≤ 125 + 3 × 15) = P(80 < X ≤ 170) = 0.997.

Therefore, we rarely (probability of 0.003) expect to see SBP values less than 80 or
greater than 170.

Now suppose that we want to know the probability of being hypotensive, which
is defined as a systolic blood pressure less than or equal to 90. Then we are interested
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Fig. 5.11 Illustrating the 68–95–99.7% Rule for systolic blood pressure, which is assumed to have
a normal distribution: X ∼ N(125,152). According to the rule, we would expect 68% of the obser-
vations to fall within 1 standard deviation of the mean (left panel) and 95% of the observations to
fall within 2 standard deviations of the mean (right panel). Likewise, nearly 99.7% of observations
to fall with in 3 standard deviations of the mean (not shown here)

in the lower tail probability P(X ≤ 90), which is equal to the area under the density
curve to the left of x = 90. To obtain this probability in R-Commander, click Dis-
tributions → Continuous distributions → Normal distribu-
tion → Normal probabilities. Then enter 90 for Variable value
and specify the parameter values as before. The result is given in the Output window.
In this case, if SBP is normally distributed with μ = 125 and σ = 15, the probability
of being hypotensive is P(X ≤ 90) = 0.01.

On the other hand, we can examine the probability of being hypertensive, which
is defined as a systolic blood pressure over 140. In R-Commander, follow the same
steps but now enter 140 for the Variable value and check the Upper tail
option. The resulting upper tail probability is P(X > 140) = 0.16.

Using Eq. 5.1, we can find the probability of any given interval. For example,
suppose that we consider a blood pressure from 110 to 130 as normal. The proba-
bility of having a normal blood pressure is

P(110 < X ≤ 130) = P(X ≤ 130) − P(X ≤ 110) = 0.63 − 0.16 = 0.47.

R-Commander can be used to plot probability density curve for a normal distri-
bution. Click Distributions → Continuous distributions → Nor-
mal distribution → Plot normal distribution. Set the mean (μ)
to 125 and the standard deviation (σ ) to 15. Make sure the option Plot density
function is checked. This creates a unimodal and symmetric probability density
curve similar to those shown in Fig. 5.11. If the N(25,152) is in fact a good prob-
ability model for the distribution of BMI, then a large sample from the population
would have a density histogram similar to this probability density curve, with the
sample mean and sample standard deviation close to 125 and 15, respectively.
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Fig. 5.12 Simulating 1000
observations from
N(125,152) distribution for
SBP and viewing the
resulting NormalSamples
data set

Fig. 5.13 Plots of the pdf for
the standard normal
distribution, N(0,1)

In R-Commander, let us try simulating 1000 values from X ∼ N(125,152),
which we used for the distribution of SBP in the population. Click Distribu-
tions → Continuous distributions → Normal distribution →
Sample from normal distribution. Then specify the parameters by en-
tering 125 for the mu (mean) and 15 for sigma (standard deviation),
as in Fig. 5.12. Set the Number of samples to 1000 and the Number of ob-
servations to 1. Lastly, uncheck the Sample means option. The first 10 ob-
servations (your sample will be different) of the resulting data set NormalSam-
ples is shown in Fig. 5.12.

Plot the density histogram for the simulated data set and compare it to the proba-
bility density curve you previously created. They should be similar. Find the sample
mean and sample standard deviation for this simulated data. They should be close
to 125 and 15, respectively.
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The Standard Normal Distribution

A normal distribution with a mean of 0 and a standard deviation (or variance)
of 1 is called the standard normal distribution and denoted N(0,1).

Use R-Commander to plot density curve (i.e., the probability density function) of
the standard normal curve N(0,1). The resulting plot is shown in Fig. 5.13. As
expected, the density curve is symmetric around the mean of 0. Using the 68–95–
99.7% rule, we expect 68% of the values to be between −1 and 1, 95% of values to
be between −2 and 2, and nearly all (99.7%) of the values to be between −3 and 3.

5.5.3 Student’s t-distribution

Another continuous probability distribution that is used very often in statistics is
the Student’s t-distribution or simply the t-distribution. As we will see in later
chapters, the t-distribution especially plays an important role in testing hypotheses
regarding the population mean. For example, testing the hypothesis that whether the
average body temperature of healthy people is the widely accepted value of 98.6°F
involves the t-distribution.

A t-distribution is specified by only one parameter called the degrees of free-
dom df. The t-distribution with df degrees of freedom is usually denoted as
t (df ) or tdf , where df is a positive real number (df > 0). The mean of this
distribution is μ = 0, and the variance is determined by the degrees of free-
dom parameter, σ 2 = df/(df − 2), which is of course defined when df > 2.

Similar to the standard normal distribution, the probability density curve for
a t-distribution is unimodal and symmetric around its mean of μ = 0. However,
the variance of a t-distribution is greater than the variance of the standard nor-
mal distribution: df/(df − 2) > 1. As a result, the probability density curve for
a t-distribution approaches zero more slowly than that of the standard normal. We
say that t-distributions have heavier tails than the standard normal.

Figure 5.14 compares the pdf of a standard normal distribution to the t-distribu-
tion with 1 degree of freedom and then the t-distribution with 4 degrees of freedom.
Both t-distributions have heavier tails than the standard normal distribution. How-
ever, as the degrees of freedom increase, the t-distribution approaches the standard
normal. Try using R-Commander to plot the probability density function for various
degrees as freedom. The steps to plot the pdf and obtaining probability of intervals
based on a t-distribution is very similar to those of a normal distribution, except that
we choose t-distribution under Continuous distributions.
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Fig. 5.14 Comparing the pdf
of a standard normal
distribution to t -distributions
with 1 degree of freedom and
then with 4 degrees of
freedom. The t -distribution
has heavier tails than the
standard normal; however,
as the degrees of freedom
increase, the t -distribution
approaches the standard
normal

5.6 Cumulative Distribution Function and Quantiles

We saw that by using lower tail probabilities, we can find the probability of any
given interval (see Eq. 5.1). This is true for all probability distributions (discrete or
continuous). Indeed, all we need to find the probabilities of any interval is a function
that returns the lower tail probability at any given value of the random variable.
This function is called the cumulative distribution function (cdf) or simply the
distribution function. For the value x of the random variable X, the cumulative
distribution function returns P(X ≤ x).

Previously, we saw how we can use R-Commander to obtain lower tail prob-
abilities. We can also use R-Commander to plot the cdf for all possible val-
ues of a random variable. Let us plot the cdf of the standard normal distribu-
tion, N(0,1). Click Distributions → Continuous distributions →
Normal distribution → Plot normal distribution. The default
parameters correspond to the standard normal. (By changing these parameters, we
can plot the pdf of any normally distributed variable.) Check the option Plot
distribution function. The resulting curve is shown in Fig. 5.15 and can
be used to find the lower tail probability for all possible values of the random vari-
able. For instance, in the left panel of Fig. 5.15, following the arrows starting from
x = 0 gives us the lower tail probability of P(X ≤ 0) = 0.5. Since the lower tail
probability is a number between zero and one, the vertical axis of the cdf plot ranges
from zero to one. Also, since the lower tail probability either remains the same or
increases as we increase x, the cdf plot is always a nondecreasing function as x

increases.
For the standard normal distribution in Fig. 5.15, we used the cdf plot to find the

lower tail probability of zero: P(X ≤ 0) = 0.5. For this, we followed the direction
of arrows from the horizontal axis to the vertical axis. We can use the cdf plot in
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Fig. 5.15 Left panel: Plot of the cdf for the standard normal distribution, N(0,1). The cdf plot
of the cdf can be used to find the lower tail probability. For instance, following the arrow from
x = 0 (on the horizontal axis) to the cummulative probability (on the vertical axis) gives us the
probability P (X ≤ 0) = 0.5. Right panel: Given the lower tail probability of 0.5 on the vertical
axis, we obtain the corresponding quantile x = 0 on the horizontal axis

the reverse direction to find the value of a random variable for a given lower tail
probability. This is shown in right panel of Fig. 5.15. Here, we follow the direction
of arrows from the vertical axis to the horizontal axis at the lower tail probability
of 0.5 in order to find the value of the random variable whose lower tail probability
is 0.5. In this case, the arrows start from 0.5 and points toward the value 0 on the
horizontal axis (which represents the values of the random variable). We say zero is
the 0.5 quantile of the random variable X. In general, the 0.5 quantile of a random
variable is called its median. For a normally distributed random variable, mean and
median are the same.

As another example, suppose that we are interested in the probability of being
underweight (BMI ≤ 18.5) assuming that the distribution of BMI is N(25,52). We
can use R-Commander to find the lower tail probability 18.5 based on the normal
distribution with mean 25 and standard deviation 5. This probability is 0.1. We could
say that the BMI values of the 10% of the population are 18.5 or less. Now if we
want to find the value of BMI that 10% of population fall below that, the answer is
the 0.1 quantile, which is 18.5 in this case.

In R-Commander, we can obtain the quantiles for normal distribution (or other
available distributions) by choosing Distributions → Continuous dis-
tributions → Normal distribution → Normal quantiles. We
need to specify the parameters of the distribution (e.g., μ = 25 and σ = 5 for
the BMI example) and then input Probabilities (e.g., 0.1). This is shown
in Fig. 5.16. Make sure that the option Lower tail is checked, so that R-
Commander regards the given probability as a lower tail probability. The result is
given in the Output window.

We can also use R-Commander to plot the cdf of discrete distributions and obtain
the quantiles for a given lower tail probability. For the number of physician visits
per year, we assumed that the random variable has Poisson(2.5) distribution. To
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Fig. 5.16 Obtaining the
normal quantile function in
R-Commander. Here, we are
finding the value
corresponding to the lower
tail probability of 0.1 (i.e.,
0.1 quantile) for the standard
normal distribution

Fig. 5.17 Plot of the cdf for
a Poisson distribution with
μ = 2.5. By following the
arrows from x = 3 to the
cumulative probability, we
can obtain the lower tail
probability of observing three
or fewer physician visits per
year: P (X ≤ 3) = 0.75

plot the corresponding cdf, click Distributions → Discrete distribu-
tions→ Poisson distribution→ Plot Poisson distribution;
then enter “2.5” for the Mean and select Plot distribution function.
The resulting graph is shown in Fig. 5.17. Since this variable can only take non-
negative integers, the cdf is a step function (i.e., its plot looks like a set of steps).
Indeed, the cdf for all discrete distributions is a step function, whereas the cdf for
all continuous distributions is a smooth curve. Note, however, that similar to the cdf
of continuous distributions, the cdf plot of discrete distributions is a nondecreasing
function as x increases.

As before, we can use the cdf plot to find the lower tail probability of each pos-
sible value. For example, the lower tail probability of three physician visits or fewer
per year is obtained in Fig. 5.17 by following the arrows from x = 3 to the cumu-
lative probability P(X ≤ 3) = 0.75. Note that the vertical arrow falls between two
steps. However, to find the lower tail probability for discrete random variables, we
always use the step on the right as shown in Fig. 5.17. We can use R-Commander
to find the quantiles of discrete random variables by following similar steps as de-
scribed for normal distributions above.
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5.7 Scaling and Shifting Random Variables

In Chap. 2, we saw that if we multiply the observed values of a random variable by
a constant a, its sample mean, sample standard deviation, and sample variance will
be multiplied by a, |a|, and a2, respectively. We also saw that if we add a constant
b to the observed values of a random variable, that constant value will be added
to the sample mean, but the sample standard deviation and sample variance remain
unchanged. Similar rule applies to the theoretical (population) mean and variance
of random variables. If Y = aX + b, then

μY = aμX + b,

σ 2
Y = a2σ 2

X,

σY = |a|σX.

Here, μX , σ 2
X , and σX are the mean, variance, and standard deviation of the random

variable X, and μY , σ 2
Y , and σY are the mean, variance, and standard deviation of

the random variable Y . Note that subtracting a constant b is the same as adding −b,
and dividing by a is the same as multiplying by 1/a.

For example, we assumed that the mean and variance of the random variable X

representing SBP are μX = 125 and σ 2
X = 152 = 225, respectively. (The standard

deviation is 15.) Now if we create a new random variable Y = X − 125, which is
the original random variable minus its mean, we have

μY = μX − 125 = 125 − 125 = 0,

σ 2
Y = σ 2

X = 225,

σY = σX = 15.

Further, suppose that we create a new variable Z = Y/15, which is obtained by
dividing the random Y by its standard deviation (i.e., multiplying by 1/15). The
mean, variance, and standard deviation of this new variable are

μZ = μY /15 = 0/15 = 0,

σ 2
Z = σ 2

Y /152 = 225/225 = 1,

σZ = σY /|15| = 15/15 = 1.

Therefore, the newly created random variable Z has mean 0 and variance 1.

The process of shifting (changing the mean) and scaling (changing the vari-
ance) a random variable to create a new random variable with mean zero and
variance one is called standardization. For this, we first subtract the mean μ

and then divide the result by the standard deviation σ .
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It can be shown that if a random variable has normal distribution, it will remain
normally distributed if we add a constant to it or multiply it by a constant. For
the above example, suppose that the distribution of the original variable is normal:
X ∼ N(125,152). Therefore, the distribution of Y and Z are also normal. More
specifically, since the mean and variance of Z are 0 and 1, the distribution of Z is
N(0,1), i.e., the standard normal distribution. In general,

Z = X − μ

σ
.

By standardizing a normally distributed random variable (i.e., subtracting μ

and dividing the result by σ ), we obtain a new random variable with the stan-
dard normal N(0,1) distribution.

5.8 Sum of Two Random Variables

Consider two random variables X and Y . By adding these two random variables, we
obtain a new random variable W = X +Y . Regardless of the distribution of random
variables X and Y , we can find the mean of W as follows:

μW = μX + μY.

If the random variables are independent (i.e., they do not affect each other probabil-
ities), then we can find the variance of W as follows:

σ 2
W = σ 2

X + σ 2
Y .

The above results are true regardless of the distributions of the two random vari-
ables. If the two random variables have normal distributions, finding the mean and
variance of W fully specifies its distribution. Therefore, we can use the following
rules to find the distribution of W :

If X ∼ N(μX,σ 2
X) and Y ∼ N(μY ,σ 2

Y ), then assuming that the two random
variables are independent, we have

W = X + Y ∼ N
(
μX + μY ,σ 2

X + σ 2
Y

)
.

In general, if two random variables are normally distributed, their sum is also
normally distributed with the mean equal to the sum of the means and variance
equal to the sum of the variances.

As an example, suppose that the distribution of weight for a population of peo-
ple suffering from anorexia is X ∼ N(80,52). Now suppose that a new treatment
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(e.g., supplement plus diet) has shown promising results in helping patients gain
weight. Of course, the effect of this treatment varies from one person to another.
For illustration purposes, we assume that the amount of weight gain, denoted Y , is
itself a normally distributed random variable with mean 5 and standard deviation 2:
Y ∼ N(5,22). If we apply this treatment to the population, we expect that it results
in a healthier weight distribution. Denote the post-treatment weight of people in this
population W , where W = X + Y . (The new weight is the pretreatment weight plus
the weight gain due to the treatment.) The mean of this new variable is

μW = μX + μY = 80 + 5 = 85.

If the two variables are independent (i.e., the treatment effect Y does not depend on
the original weight X), then the variance of W is

σ 2
Z = σ 2

X + σ 2
Y = 25 + 4 = 29.

Since we assumed that X and Y are normally distributed, W itself has normal dis-
tribution with mean 85 and variance 29: W ∼ N(85,29).

If we subtract Y from X, then

W = X − Y.

Subtracting Y from X is the same as multiplying the random variable Y by −1 and
adding the result to X. When we multiply Y by −1, its mean is multiplied by −1.
Therefore,

μW = μX − μY .

If the two variables are independent,

σ 2
W = σ 2

X + σ 2
Y .

Note that we still add the variances, since multiplying a random variable Y by −1
does not change its variance; the variance is multiplied by (−1)2 = 1.

As before, if the two random variables have normal distributions, finding the
mean and variance of W fully specifies its distribution. Therefore,

W = X − Y ∼ N
(
μ1 − μ2, σ

2
1 + σ 2

2

)
.

Again, notice that the variances are added even though we are subtracting the two
random variables.

As an example, suppose that there is a diet that helps people lose 10 pounds on
average in one month. Of course, the results vary among different people. We denote
the amount of weight reduction due to the diet Y and assume that Y has the normal
N(10,2) distribution. We denote the initial weight (i.e., before starting the diet) X

and assume that for the population of interest, X ∼ N(250,15). For individuals in
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this population, weight after one month of dieting is W = X − Y , which has the
following distribution:

W = X − Y ∼ N(250 − 10,15 + 2).

That is, the population mean reduces to 240, but the population variance increases
to 17.

5.9 Advanced

In this section, we continue our discussion of probability distributions. We provide
the mathematical form of some of the distributions discussed in previous sections,
and introduce some other important probability distributions. We also show a simple
approach for comparing the assumed probability distribution of a random variable
with the distribution of its observed values. Finally, we provide some useful R func-
tions for working with probability distributions.

5.9.1 More on Probability Distributions

Thus far, we have studied several probability distributions for discrete and contin-
uous random variables. While we showed how to plot the pmf for discrete random
variables and the pdf for continuous random variables, and use them to obtain prob-
abilities, we did not explicitly specified the mathematical forms of these functions.
Here, we specify the corresponding mathematical forms of pmf and pdf for four
widely used distributions.

The mathematical form of the probability mass function for the Bernoulli(μ)
distribution is

P(X = x) = μx(1 − μ)1−x.

If, for example, μ = 0.8, the probability of observing X = 1 and the probability of
observing X = 0 are

P(X = 1) = 0.81(1 − 0.8)0 = 0.8,

P (X = 0) = (0.8)0(1 − 0.8)1 = 0.2.

The mathematical form of the probability mass function for the Binomial(n,μ)
distribution is

P(X = x) =
(

n

x

)
μx(1 − μ)n−x,

where

(
n

x

)
= n!

x!(n − x)! .
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For any positive integer a, a! = a × (a − 1) × · · · × 2 × 1 and 0! = 1. We can use
the above formula to answer questions such as “what is the probability that 6 out of
10 patients survive when the probability of the survival is 0.8?” Plugging in x = 6,
n = 10, and μ = 0.8, we find

P(X = 6) =
(

10

6

)
0.86(1 − 0.8)10−6 = 0.09.

The mathematical form of the probability mass function for a random variable
with a Poisson(μ) distribution is

P(X = x) = μxe−μ

x! ,

where e ≈ 2.72 is the base of the natural logarithm. For example, if the rate of
physician visits is μ = 2.5 per year, the probability of three visits per year is

P(X = 3) = 2.53e−2.5

3! = 0.21.

For continuous random variables, we denote the density function as f (x). For
the N(μ,σ 2) distribution, the probability density function, denoted as f (x), is

f (x) = 1

σ
√

2π
e
− (x−μ)2

2σ2 .

For the standard normal distribution, where μ = 0 and σ 2 = 1, the density simplifies
to

f (x) = 1√
2π

e− x2
2 .

Plugging a specific value of x into the density function gives us the height of the
probability density curve at that point. This is NOT the probability P(X = x), which
is always 0 for any specific value of x. The pdf f (x) only specifies the function that
can be used to calculate the probability of any given interval.

5.9.2 Some Other Commonly Used Probability Distributions

The discrete and continuous probability distributions we discussed in previous sec-
tions are by far the most commonly used probability distributions. Later, we will
discuss two other important distributions (especially for hypothesis testing), namely,
the F -distribution in Chap. 9 and the χ2-distribution (chi-square distribution) in
Chap. 10. Here, we discuss some other important probability distributions, which
are also commonly used in statistical analysis of data.
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Discrete Uniform Distribution Suppose a random variable X can take one of k

integers 1, . . . , k with equal probabilities such that

P(X = x) =
{

1
k

if x ∈ {1, . . . , k},
0 otherwise.

We say that X has the discrete uniform distribution on integers 1, . . . , k. For
example, the probability distribution for the outcome of rolling a fair die is a discrete
uniform distribution on integers 1, . . . ,6,

P(X = x) =
{

1
6 if x ∈ {1, . . . ,6},
0 otherwise.

The sequence of integers could represent k distinct categories (e.g., 50 states, dif-
ferent flu viruses). In general, the distribution can be defined for any finite sequence
of integers (e.g., {−5,−4, . . . ,1,2}).
Hypergeometric Distribution For the Binomial(n,μ) distribution, we mentioned
that the random variable can be considered as the sum of n independent Bernoulli
variables, where the probability for the outcome of interest is the same, μ, for each
Bernoulli variable. Now we consider situations where the Bernoulli variables are
dependent; that is, they affect each others’ probabilities. More specifically, we con-
sider situations where the dependency among Bernoulli variables is due to sampling
without replacement from a finite population of size N .

As an example, suppose we have performed medical tests on N = 200 people
and found m = 10 of them are affected by a specific disease, and the remaining
n = 190 people are not affected. We decide to repeat the tests again, but this time on
a smaller sample of size k = 50, who are randomly selected one-by-one and without
replacement from the finite population of 200 people. To this end, we randomly
select the first person. The outcome of a test is a Bernoulli variable with two possible
values: zero for non-diseased, and one for diseased. The probability of having the
disease is 10/200 for this person. After performing the medical test, we remove the
person from the population. (Note that the sampling is without replacement.) If the
person had the disease, the probability of having the disease for the next person
randomly selected from the population of 200 people is 9/199 because there are 199
people left in the population, where 9 of them have the disease. However, if the first
person did not have the disease, the probability of having the disease for the second
person is 10/199. The outcome for the second person is also a Bernoulli variable.
Unlike the Bernoulli variables for binomial distributions, the Bernoulli variables in
this case are dependent since the outcome of the first Bernoulli variable affects the
probability of the outcome of interest for the second Bernoulli variable. Following
the same logic, all k = 50 Bernoulli variables are dependent.

We use the random variable X to denote the number of people who are affected
by the disease within the sample of size k = 50 randomly selected (without replace-
ment) from the finite population of size N = 200. The probability distribution of X

is called the hypergeometric distribution. In general, a hypergeometric distribu-
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tion has the following probability mass function:

P(X = x) =
(
m
x

)(
n

k−x

)
(
m+n

k

) , max(0, k − n) ≤ x ≤ min(m, k).

Here, m is the number of cases with the outcome of interest, n is the number of
cases that do not have the outcome of interest, and k is the number of Bernoulli
trials (i.e., sample size). (We use these notations to be consistent with R functions.)
The hypergeometric distribution is usually explained in terms of drawing k balls
without replacement from an urn with m white balls and n black balls. In this case,
the random variable X represents the number of while balls among the k drawn
balls. Note that the specific value x for the random variable must be greater than or
equal to zero. Further, x cannot exceed m (the total number of white balls in the urn)
or k (the sample size). Therefore, x ≤ min(m, k). Also, the number of black balls
in our sample, k − x, cannot exceed n the total number of black balls in the urn.
Therefore, k − x ≤ n, which means k − n ≤ x. The mean and variance of a random
variable with hypergeometric distribution are as follows:

μ = km

m + n
,

σ 2 = kmn

(m + n)2

m + n − k

m + n − 1
.

Using R-Commander, we can plot hypergeometric distributions, find the proba-
bility of a specific value of the random variable, generate random samples, find the
quantile for a given lower tail probability, and find the lower tail probability for a
given value of the random variable. (The steps are similar to those we discussed for
other probability distributions.) For example, suppose we want to find the probabil-
ity of x = 4 diseased people (white balls) when we take a sample of size k = 50 from
a population (urn) of size N = 200, which includes m = 10 diseased people and
n = 190 non-diseased people (black balls). In R-Commander, click Distribu-
tions → Discrete distributions → Hypergeometric distri-
butions → Hypergeometric probabilities. Then, set m = 10, n =
190, and k = 50. In the Output window, R-Commander provides the probabilities
for values from 0 to 7. Theoretically, x could be any integer from 0 to 10 for this
example. In this case, however, the probabilities are almost zero for numbers from
8 to 10 so they are not provided by R-Commander. From the table provided in the
Output window, we find P(X = 4) = 0.146.

The Uniform Distribution Similar to the discrete uniform distribution on a se-
quence of integers, we can define a continuous uniform distribution on an interval
[α,β], which is shown as Uniform(α,β). This is in fact one of the simplest continu-
ous distributions, where the probability density function is a straight horizontal line
over the interval [α,β],

f (x) =
{

1
β−α

if α < x < β,

0 otherwise.
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Note that the value of the density function is constant (i.e., it does not depend on x).
Within all possible uniform distributions, Uniform(0,1) is the most widely used.

For this probability distribution, the pdf has the following form:

f (x) =
{

1 if 0 < x < 1,

0 otherwise.

According to this distribution, the probability of any interval is equal to the length of
the interval. (Since the hight of the pdf for this distribution is equal to one, the area
under the line for each interval is the same as the length of that interval.) There-
fore, P(0.1 < X ≤ 0.2) = P(0.7 < X ≤ 0.8) = 0.1. That is, while the first inter-
val includes small values of the random variable, and the second interval includes
large values of the random variable, both intervals are equally probable since they
have the same length. To plot uniform distributions, in R-Commander click Dis-
tributions → Continuous distributions → Uniform distri-
butions → Plot uniform distribution and specify the interval limits
α and β . The default values these parameters are 0 and 1 for Uniform(0,1). Use
R-Commander to plot the pdf of Uniform(0,1).

The Beta Distribution The beta distribution is commonly used as the probability
distribution of random variables whose range is the set of real numbers from 0 to 1.
As we discuss in Chap. 13, this distribution is often used in Bayesian statistical
inference.

A beta distribution is specified by two parameters, α, which is called shape 1,
and β , which is called shape 2. We should a beta distribution with parameters α

and β as Beta(α,β). Both parameters must be positive. If X ∼ Beta(α,β), then the
mean and variance of X are as follows:

μ = α

α + β
,

σ 2 = αβ

(α + β)2(α + β + 1)
.

To plot beta distributions, in R-Commander click Distributions → Con-
tinuous distributions → Beta distributions → Plot beta
distribution and specify Shape1 and Shape 2. As an example, plot the
probability density function for Beta(1,1) by setting both parameters to 1. Com-
pare the resulting pdf with that of Uniform(0,1) you plotted previously. Indeed, the
Beta(1,1) distribution is the same as the Uniform(0,1) distribution.

The Lognormal Distribution Using normal distributions could be problematic
for random variables that can take positive real numbers only. (Theoretically, nor-
mally distributed random variables can take negative and positive values.) This is
especially true if the possible values of the random variable tend to be close to
zero and/or the distribution of observed values is heavily right-skewed. For ex-
ample, assuming normal distribution for tumor size (in millimeter) might not be
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appropriate since the values for this variable are positive and typically close to
zero. For such random variables, we often use the log-transformation, Y = log(X),
and assume a normal distribution for the log-transformed variable, Y . That is,
Y = log(X) ∼ N(μ,σ 2). While X can be positive only, Y can take negative and
positive values.

When we assume N(μ,σ 2) for log(X), we say that X itself has a lognormal
distribution with parameters μ and σ 2. Note that in this case, while the mean and
variance of Y (i.e., the random variable after log-transformation) are μ and σ 2 re-
spectively, the mean and variance of X (i.e., the original random variable before
log-transformation) are eμ+0.5σ 2

and (eσ 2 − 1)e2μ+σ 2
respectively. To plot log-

normal distributions, in R-Commander click Distributions → Continuous
distributions → Lognormal distributions → Plot lognormal
distribution.

5.9.3 Quantile–Quantile Plots

When we assume a distribution for a random variable, we should evaluate the ap-
propriateness of our assumption. We do this by assessing how well the theoretical
distribution with its estimated parameters fits the observed data. That is, how close
the two distributions are. The statistical methods used for this purpose are called
the goodness-of-fit tests. A common approach for assessing the assumption of a
specific probability distribution is based on the quantile–quantile (Q–Q) plots. In
general, Q–Q plots compare two distributions by plotting the quantiles of one dis-
tribution against the quantiles of the other distribution. Therefore Q–Q plots can
be used to compare the theoretical distribution of a random variable to the data dis-
tribution (i.e., distribution of observed values). Specifically, if the quantiles of the
data distribution exactly match those of the theoretical distribution, the points on the
Q–Q plot will fall in straight line.

Figure 5.18 shows the Q–Q plot to test the normality assumption for the
BMI variable in the Pima.tr data set. To create this plot using R-Commander,
make sure Pima.tr is the active data set, then click Graphs → Quantile-
comparison plot. Choose bmi as the Variable and Normal for the Dis-
tribution. For each point, the horizontal axis represents the quantile value for
the standard normal distribution, and the vertical axis represents the quantile values
based on the observed data. Notice that the points are very close to the straight line
confirming the appropriateness of the normal assumption. As we move further from
the center, the points tend to deviate from the line. However, the points remain be-
tween the dashed lines, which indicates that the deviations from the straight solid
line remain within an acceptable range.

For comparison, repeat the above steps to create the Q–Q plot for the age vari-
able in the Pima.tr data set. The resulting plot is shown in the right panel of
Fig. 5.18. The assumption of normal distribution is clearly not appropriate for this
variable: the points do not follow a linear trend and very often fall outside of the
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Fig. 5.18 Using the quantile–quantile plot to evaluate the normality assumption for the distribu-
tion of BMI (left panel) and the distribution of age (right panel). Each point represents a quantile.
The horizontal axis represents the quantile value for the theoretical distribution (normal), and the
vertical axis represents the quantile values based on the observed data

dashed lines. This was expected since the distribution of observed values for age is
right skewed.

5.9.4 Probability Distributions with R Programming

As in R-Commander, it is possible to plot probability distributions and obtain prob-
abilities directly from the command line.

Binomial Distribution Assume that we want to examine 10 people for a disease
that has probability of 0.2 in the population of interest. The number of people (out
of 10) who are affected, denoted as Y , has Binomial(10, 0.2) distribution. Let us
first simulate five random samples from this distribution (i.e., examine five groups
each with 10 people):

> rbinom(5, size = 10, prob = 0.2)

[1] 0 0 1 2 3

where the first argument to the rbinom() functions specifies the number of ran-
dom samples. The size option is the number of Bernoulli trials (here, n = 10),
and the prob option is the probability for the outcome of interest. Each randomly
generated number represents the number of people affected by the disease out of 10
people. If we set size=1, we will be simulating random samples from the corre-
sponding Bernoulli distribution. For example, we can simulate the disease status for
a group of 10 people:
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> rbinom(10, size = 1, prob = 0.2)

[1] 1 0 0 0 0 0 1 1 0 0

Now suppose that we want to know the probability of observing 3 out of 10
people affected by the disease: P(X = 3). Then we need probability mass function
dbinom(), which returns the probability of a specific value:

> dbinom(3, size = 10, prob = 0.2)

[1] 0.2013266

Along with the value of the random variable, 3, the other arguments of the dbi-
nom() function are the number of Bernoulli trials (size=10) and the probability
(prob=0.2) for the event of interest.

We can also create a vector x of the possible values of X and then use this vector
as input to dbinom() function:

> x <- 0:10
> Px <- dbinom(x, size = 10, prob = 0.2)
> round(Px, 2)

[1] 0.11 0.27 0.30 0.20 0.09 0.03 0.01 0.00
[9] 0.00 0.00 0.00

Using vectors x and Px, we can plot the probability mass function (pmf), similar
to the one shown in Fig. 5.2:

> plot(x, Px, type = "h", xlab = "Number of Successes",
+ ylab = "Probability Mass",
+ main = "Binomial(10, 0.2)")
> points(x, Px, pch = 16)
> abline(h = 0, col = "gray")

In the plot() function, the first argument provides the values for the horizontal
axis, and the second argument provides the values for the vertical axis. We use the
type="h" option to create “histogram-like” vertical lines. The points at the top
of the lines are added with the points() function, whose option pch=16 gives
filled-in circles. Similar to the plot() function, the first and second arguments
provide the coordinates of points. Lastly, the gray horizontal line at 0 is added with
abline(h=0, col="gray").

The functions points() and abline() only add points and lines to an ex-
isting plot; they cannot be used alone. The abline() function can be used to
add a straight line to an existing plot. (You first need to create a plot before using
abline.) For example, abline(h=2) draws a horizontal line two units above
the origin, abline(v=-1) draws a vertical line one unit to the left of origin, and
abline(a=-5, b=2) draws a line with intercept −5 and slope 2. By default,
abline() draws a solid line. We can set the line type to dashed line by using the
option lty=2:
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> abline(h = 0, lty = 2)

Try other values, such as 3 and 4, for the lty option. To add additional points to
an existing plot, you can use the points() function. To learn more about this
function, enter the command ?points or help(points).

Now suppose that we are interested in the probability of observing three or
fewer affected people in a group of 10. We could of course sum the values of pmf:
P(Y ≤ 3) = P(Y = 0) + P(Y = 1) + P(Y = 2) + P(Y = 3). However, it is easier
to use the cumulative distribution function for a binomial random variable, pbi-
nom(), to obtain the lower tail probability:

> pbinom(3, size = 10, prob = 0.2, lower.tail = TRUE)

[1] 0.8791261

As before, the arguments size=10 and prob=0.2 specify the parameters of the
binomial distribution. The option lower.tail=TRUE tells R to find the lower tail
probability. By changing the lower.tail option to false (FALSE), we can find
the upper tail probability P(Y > 3).

On the other hand, to obtain the 0.879 quantile, we use the qbinom() function:

> qbinom(0.879, size = 10, prob = 0.2,
+ lower.tail = TRUE)

[1] 3

Poisson Distribution Suppose that on average 4 people visit the hospital each
hour. Then we can represent the hourly number of hospital visitation as X ∼
Poisson(4) and simulate 12 samples from this distribution:

> rpois(12, 4)

[1] 3 3 3 3 3 1 2 5 5 4 3 5

These randomly generated numbers can be regarded as the number of people vis-
iting the hospital at different hours. Similar to the rbinom() function, the first
parameter to the rpois() function is the number of samples, and the remaining
argument specifies the distribution parameter.

Suppose that we want to know the probability that six people visit the hospital in
an hour. Then we would use the probability mass function dpois():

> dpois(6, 4)

[1] 0.1041956

Here, 6 is the specific value of the random variable, and 4 is the distribution param-
eter. As before, we can create a plot of the pmf by first creating a vector of possible
values and finding their corresponding densities.
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To find the probability of six or fewer people visiting the hospital (as opposed to
the probability that exactly six people visit), we need to find the lower tail probabil-
ity of x = 6. For this, we use the ppois() function:

> ppois(6, 4)

[1] 0.889326

The 0.889 quantile of the distribution is

> qpois(0.889, 4)

[1] 6

Normal Distribution Suppose that BMI in a specific population has a normal dis-
tribution with mean of 25 and variance of 16: X ∼ N(25,16). Then we can simulate
5 values from this distribution using the rnorm() function:

> rnorm(5, mean = 25, sd = 4)

[1] 26.71568 32.66739 26.99269
[4] 30.27329 29.58406

These numbers can be regarded as BMI values for five randomly selected people
from this population. In the rnorm() function, the first parameter is the number of
samples, the second parameter is the mean, and the third parameter is the standard
deviation (not the variance).

Now let us plot the pdf of this distribution. A normal random variable can take
any value from −∞ to ∞. However, according to the 68–95–99.7% rule approxi-
mately 99.7% of the values fall within the interval [13,37] (i.e., within 3 standard
deviations of the mean). Therefore, the interval [10,40] is wide enough to plot the
distribution:

> x <- seq(from = 10, to = 40, length = 100)

Here, vector x is a sequence of length 100 from 10 to 40. We can then find and plot
the density for each point in the vector x:

> fx <- dnorm(x, mean = 25, sd = 4)
> plot(x, fx, type = "l", xlab = "BMI",
+ ylab = "Density", main = "N(25, 16)")
> abline(h = 0, col = "gray")

The dnorm() function returns the height of the density curve at a specific point and
requires the parameters of the mean and the standard deviation sd. In the plot()
function, we are using type="l" to plot the points as a continuous line (curve).
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Recall that for continuous variables, the probability of a specific value is always
zero. Instead, for continuous variables, we are interested in the probability of ob-
serving a value in a given interval. For instance, the probability of observing a BMI
less than or equal to 18.5 is the area under the density curve to the left of 18.5. In R,
we find this probability with the cumulative distribution function pnorm():

> pnorm(18.5, mean = 25, sd = 4,
+ lower.tail = TRUE)

[1] 0.05208128

Once again, we can find the upper tail probability P(X > 22) by setting the option
lower.tail=FALSE. The qnorm() returns the quantile for normal distribu-
tions is. For example, the 0.05 quantile for the above distribution is

> qnorm(0.05, mean = 25, sd = 4,
+ lower.tail = T)

[1] 18.42059

We can find the probability of a BMI between 25 and 30 by subtracting their
lower tail probabilities, P(25 < X ≤ 30) = P(X ≤ 30) − P(X ≤ 25):

> pnorm(30, mean = 25, sd = 4) -
+ pnorm(25, mean = 25, sd = 4)

[1] 0.3943502

We can also create a plot of the cdf by using vector x as input to pnorm()
function:

> Fx <- pnorm(x, mean = 25, sd = 4)
> plot(x, Fx, type = "l", xlab = "BMI",
+ ylab = "Cumulative Probability",
+ main = "N(25, 16)")
> abline(h = 0, col = "gray")

In general, for each distribution, the random number generating function starts
with r , the probability mass function or probability density function starts
with d , the distribution function (i.e., cdf) starts with p, and the quantile func-
tion starts with q .

For the t-distribution, these functions are rt(), dt(), pt(), and qt().
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Fig. 5.19 Left panel: Probability mass function of random variable X. Right panel: Probability
density function of variable Y

5.10 Exercises

1. What would be the most appropriate probability distribution for each of the
following random variables:
(a) Whether a tumor is benign or malignant.
(b) Number of people with a malignant tumor out of 10 patients with tumor.
(c) Size of tumors.
(d) Number of people diagnosed with malignant tumor in California every year.

2. Consider the two plots of Fig. 5.19. In the right panel, the dark-gray area is
0.45, and the light-gray area is 0.20. Write down these probabilities:
(a) P(X < 3).
(b) P(1 < X ≤ 4).
(c) P(Y > 5).

3. Consider Binomial(10, 0.3) distribution. Do the following tasks:
(a) Plot the probability mass function and cumulative distribution function.
(b) Write down the mean and standard deviation of each distribution.
(c) Find the lower tail probability of 4.
(d) What is the probability that the value of the random variable is 2?
(e) What is the probability that the value of the random variable is greater than

2 and less than or equal to 4?
4. Consider N(3,2.1) distribution. Do the following tasks:

(a) Plot the probability density function and cumulative distribution function.
(b) Write down the mean and standard deviation of each distribution.
(c) Find the lower tail probability of 4.
(d) What is the probability that the value of the random variable is 2?
(e) What is the probability that the value of the random variable is bigger than

2 and less than or equal to 4?
5. For the probability distributions Binomial(100, 0.3) and N(30,21), find the

lower tail probability of 35 and the upper tail probability of 27. Compare the
results based on the two distributions.

6. Suppose that X has the t-distribution with 6 degrees of freedom.
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(a) Find the lower tail probabilities of −1 and 1.5.
(b) Find the 0.95 and 0.9 quantiles.

7. National Heart, Lung, and Blood Institute defines the following categories
based on Systolic Blood Pressure (SBP):

• Normal: SBP ≤ 120.
• Prehypertension: 120 < SBP ≤ 140.
• High blood pressure: SBP > 140.

If SBP in the US has a normal distribution such that SBP ∼ N(125,152),
(a) Use R-Commander to find the probability of each group.
(b) Find the intervals that include 68, 95, and 99.7% of the population.
(c) What are the lower and upper tail probabilities for SBP equal to 115?

8. Assume that BMI in US has the N(27,62) distribution. Following the recom-
mendation by National Heart, Lung, and Blood Institute, we define the follow-
ing BMI categories:

• Underweight: BMI ≤ 18.5.
• Normal weight: 18.5 < BMI ≤ 25.
• Overweight: 25 < BMI ≤ 30.
• Obesity: BMI > 30.

(a) Use R-Commander to find the probability of each group.
(b) Find the intervals that include 68, 95, and 99.7% of the population.
(c) What is the probability of being either underweight OR obese?
(d) What are the lower and upper tail probabilities for BMI equal to 29.2?

9. For the above question, we denote BMI as X. Find the value x such that
P(X ≤ x) = 0.2. Next, find the value x such that P(X > x) = 0.2.

10. If the height (in inches) of newborn babies has the N(18,1) distribution, what is
the probability that the height of a newborn baby is between 17 and 20 inches?
What is the distribution of height in centimeters (1 inch = 2.54 cm)? Using
this distribution, what is the probability that the height of a newborn baby is
between 43.18 cm (17 inches) and 50.80 cm (20 inches)?

11. Suppose that the distribution of systolic blood pressure, X, among people suf-
fering from hypertension is N(153,42). Further, suppose that researchers have
found a new treatment that drops systolic blood pressure by 4 points on average.
The effect of drug, Y , varies among patients randomly and does not depend on
their current blood pressure level. If the variance of Y is 1, what is the mean
(expectation) and variance of systolic blood pressure if every person in the pop-
ulation starts using the drug? What is the distribution of systolic blood pressure
in this case if we assume that Y has a normal distribution?



Chapter 6
Estimation

6.1 Parameter Estimation

In the previous chapter, we discussed using random variables to represent character-
istics of a population (e.g., BMI, disease status). Furthermore, we discussed some
commonly used probability distributions for discrete and continuous random vari-
ables. As we mentioned, we are specifically interested in population mean and pop-
ulation variance of a random variable. These quantities are unknown in general. We
refer to these unknown quantities as parameters. Here, we use parameters μ and
σ 2 to denote the unknown population mean and variance respectively. Note that for
all the distributions we discussed in the previous chapter, the population mean and
variance of a random variable are related to the unknown parameters of probabil-
ity distribution assumed for that random variable. Indeed, for normal distributions
N(μ,σ 2), which are widely used in statistics, the population mean and variance are
exactly the same parameters used to specify the distribution.

In this chapter, we discuss statistical methods for parameter estimation. Estima-
tion refers to the process of guessing the unknown value of a parameter (e.g., pop-
ulation mean) using the observed data. For this, we will use an estimator, which
is a statistic. A statistic is a function of the observed data only. That is, it does not
depend on any unknown parameter, and given the observed data, we should be able
to find its value. For example, the sample mean is a statistic. Given a sample of data,
we can find the sample mean by adding the observed values and dividing the result
by the sample size. No unknown parameter is involved in this process.

Sometimes we only provide a single value as our estimate. This is called point
estimation. The point estimate for μ is denoted μ̂, and the point estimate for σ 2

is denoted σ̂ 2. (In general, we use the “hat” notation for point estimates.) Point
estimates do not reflect our uncertainty when estimating a parameter. We always
remain uncertain regarding the true value of the parameter when we estimate it using
a sample from the population. To address this issue, we can present our estimates
in terms of a range of possible values (as opposed to a single value). This is called
interval estimation.

Unless stated otherwise, we assume that the population size N is large, so we
can consider the number of individuals in the population as infinite for all prac-
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tical purposes. Suppose that the random variable X represents a specific popula-
tion characteristic we are investigating (e.g., BMI, height, blood pressure). We use
X1,X2, . . . ,Xn to denote n possible values of X obtained from a sample randomly
selected from the population. The values of X1,X2, . . . ,Xn themselves cannot be
determined with certainty before they are observed, and they can change every
time we take a different sample of size n from the population. Therefore, we treat
X1,X2, . . . ,Xn themselves as n random variables, and hence we reserve the use of
capital letters for random variables. We typically assume that the samples are taken
independently from each other and that they all have the same probability distribu-
tion, which is the probability distribution we assume for X. In this case, we say that
the samples are independent and identically distributed (IID).

While theoretically we can have many different samples of size n, we usually
have only one such sample in practice. We use x1, x2, . . . , xn as the specific set of
values we have observed in our sample. That is, x1 is the observed value for X1, x2
is the observed value X2, and so forth.

6.2 Point Estimation

In this section, we discuss the point estimations for the population mean, μ, and the
population variance, σ 2. As mentioned above, the point estimate for μ is denoted μ̂,
and the point estimate for σ 2 is denoted σ̂ 2.

6.2.1 Population Mean

For a population of size N , μ is calculated as

μ =
∑N

i=1 xi

N
,

where xi is the value of the random variable for the ith member of the population.

Given n observed values, X1,X2, . . . ,Xn, from the population, we can esti-
mate the population mean μ with the sample mean:

X̄ =
∑n

i=1 Xi

n
.

In this case, we say that X̄ is an estimator for μ.

As our sample (the n representative members from the population) changes, the
value of this estimator (sample mean) can also change. Therefore, the estimator
itself is considered as a random variable and is denoted X̄ in accordance to the
general convention of capital letters for random variables we follow in this book.
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We usually have only one sample of size n from the population x1, x2, . . . , xn.
Therefore, we only have one value for X̄, which we denote x̄:

x̄ =
∑n

i=1 xi

n
,

where xi is the ith observed value of X in our sample, and x̄ is the observed value
of X̄.

As an example, consider the study by Mackowiak et al. [19] aimed at estimating
the population mean for body temperature among healthy people. From a sample of
n = 148 people, they estimated the unknown population mean with the sample mean
μ̂ = x̄ = 98.25. This estimate is lower than the commonly believed value of 98.6°F.

The sample size for this study was relatively small. We would expect that as the
sample size increases, our point estimate based on the sample mean would become
closer to the true population mean.

The Law of Large Numbers (LLN) indicates that (under some general con-
ditions such as independence of observations) the sample mean converges to
the population mean (X̄n → μ) as the sample size n increases (n → ∞). In-
formally, this means that the difference between the sample mean and the pop-
ulation mean tends to become smaller and smaller as we increase the sample
size. The LLN provides a theoretical justification for the use of sample mean
as an estimator for the population mean.

As an illustrative example, suppose that the true population mean for normal
body temperature is 98.4°F. As we gradually increase the sample size from 100
to 5000, the plot of the sample means (i.e., the point estimates of the population
mean) might look like Fig. 6.1. Here, the estimate of the population mean is plotted
as a function of the sample size. As the sample size increases, the sample means
converge to the true (but unknown) population mean μ = 98.4.

The Law of Large Numbers is true regardless of the underlying distribution of
the random variable. Therefore, it justifies using the sample mean X̄ to estimate
the population mean for continuous random variables, discrete random variables,
whose values are counts (i.e., nonnegative integers), and for discrete binary vari-
ables, whose possible values are 0 and 1 only. For count variables, the mean is
usually referred to as the rate (e.g., rate of traffic accidents). For binary random
variables, the mean is usually referred to as the proportion of the outcome of in-
terest (denoted as 1). Hence, we sometimes use the notation p instead of x̄ for the
sample mean of binary random variables.

As an example, suppose that we are interested in estimating the rate of physician
visits during the first trimester for pregnant women. Using the birthwt data set
discussed in previous chapters, our estimate of this rate is μ̂ = x̄ = 0.79.

We can also use this sample to estimate the proportion of mothers who smoke
during their pregnancy. The sample proportion of smoking mothers is 0.39: μ̂ =
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Fig. 6.1 Illustrating the Law
of Large Numbers. As the
sample size is increased, the
sample mean X̄ converges to
the population mean μ. For
the temperature example, by
increasing n, X̄ → μ = 98.4

x̄ = p = 0.39. (The current estimate is much smaller according to CDC.) Now sup-
pose that we want to estimate the number of smoking mothers in the whole popu-
lation assuming that there are currently N = 4 million pregnant women in the US.
To estimate this number, we can simply use our point estimate for the population
proportion p = 0.39 as follows:

estimated number of smoking pregnant women = pN

= 0.39 × 4,000,000

= 1,560,000.

6.2.2 Population Variance

The population variance is denoted as σ 2 and calculated as

σ 2 =
∑N

i=1(xi − μ)2

N
.

This is the average of squared deviations of each observation xi from the population
mean μ.

Given n randomly sampled values X1,X2, . . . ,Xn from the population and
their corresponding sample mean X̄, we can estimate the variance. A natural
estimator for variance is
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∑n
i=1(Xi − X̄)2

n
.

However, this estimator tends to underestimate the population variance. (On
average, the values obtained by the above estimator are smaller than the true
value of σ 2.)
To address this issue, a more commonly used estimator for σ 2 is the sample
variance,

S2 =
∑n

i=1(Xi − X̄)2

n − 1
.

This is the sum of squared deviations from the sample mean divided by n − 1
instead of n. Dividing by n − 1 instead of n increases the value of the estima-
tor by a small amount, which is enough to avoid underestimation associated
with the more natural estimator. Therefore, the sample variance is the usual
estimator of the population variance. Likewise, the sample standard deviation
S (i.e., square root of S2) is our estimator of the population standard devia-
tion σ .

Again, we regard the estimator S2 as a random variable (hence the capital-letter
notation) since it changes as we change the sample. However, in practice, we usually
have one set of observed values, x1, x2, . . . , xn, and therefore, only one value for S2,
which we denote as s2:

s2 =
∑n

i=1(xi − x̄)2

n − 1
.

For example, using the Pima.tr data set, our estimate of the population variance
for BMI among Pima Indian women is σ̂ 2 = s2 = 37.6.

For binary random variables with 0 and 1 values, we can show that the population
variance σ 2 is equal to μ(1 − μ), where μ is the population mean (proportion).
(See the Bernoulli distribution discussed in the previous chapter.) Therefore, after
we estimate the population mean μ using the sample mean (proportion) x̄ = p, we
can use it to estimate the population variance instead of estimating σ 2 separately:

s2 = p(1 − p).

For example, using the birthwt data set, we estimated that the proportion of moth-
ers who smoke during their pregnancy is p = 0.39. Our estimate for the population
variance is therefore

s2 = 0.39 × 0.61 = 0.24.
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6.3 Sampling Distribution

As we emphasized, the value of estimators discussed so far (and all estimators in
general) depend on the specific sample selected from the population. Indeed, if we
repeat our sampling, we are likely to obtain a different value for an estimator. There-
fore, we regard the estimators themselves as random variables. As a result, similar
to any other random variable, we can talk about their probability distribution. Proba-
bility distributions for estimators are called sampling distributions. In this section,
we focus on the sampling distribution of the sample mean X̄. (For binary random
variables, this is the same as the sample proportion.)

We start by assuming that the random variable of interest, X, has a normal
N(μ,σ 2) distribution. Further, we assume that the population variance σ 2 is known,
so the only parameter we want to estimate is μ. To this end, we use the sample
mean X̄ as our estimator for μ. We need to find the sampling distribution of X̄ un-
der these assumptions. Later, we discuss situations when σ 2 is not known and the
random variable of interest is not normally distributed. As a running example, con-
sider the random variable X ∼ N(125,152) representing systolic blood pressure,
whose population mean μ = 125 is unknown to us, but we know the population
variance σ 2 = 152. (The population standard deviation is σ = 15.)

Suppose that we take a sample of size n = 2 from the population. We denote
the corresponding values obtained from this sample as X1 and X2. Following our
general assumption, X1 and X2 are identically distributed. We write this as

X1,X2 ∼ N
(
μ,σ 2).

Further, we assume that X1 and X2 are independent; That is, they are independent
and identically distributed (IID). In the previous chapter, we mentioned that for two
independent and normally distributed random variables, their sum is also normally
distributed, and its mean and variance are obtained by adding the means and vari-
ances of the two original random variables. Therefore,

X1 + X2 ∼ N
(
μ + μ,σ 2 + σ 2) = N

(
2μ,2σ 2).

We can easily generalize this to the sum of n random variables:

X1 + X2 + · · · + Xn ∼ N
(
nμ,nσ 2).

We can rewrite this as
n∑

i=1

Xi ∼ N
(
nμ,nσ 2).

That is, the sum of n IID random variables with N(μ,σ 2) distribution is itself nor-
mally distributed with mean nμ and variance nσ 2.

If we divide
∑n

i=1 Xi by n, we obtain the sample mean

X̄ =
∑n

i=1 Xi

n
.

This is the same as multiplying
∑n

i=1 Xi by 1/n. From the previous chapter we
know that when we multiply a random variable by a constant (here, 1/n), its mean
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Fig. 6.2 Left panel: The (unknown) theoretical distribution of blood pressure, X ∼ N(125,15).
Right panel: The density curve for the sampling distribution X̄ ∼ N(125,152/100) along with the
histogram of 1000 sample means. The distribution of sample means is centered on the population
mean (shown with the a vertical line), but its variance is much less than that of blood pressure
itself. Note the different scales on the x-axis

is multiplied by that constant, and its variance is multiplied by the square of that
constant. When we multiply

∑n
i=1 Xi by 1/n to obtain the sample mean X̄, the

mean becomes nμ/n = μ, and the variance becomes nσ 2/n2 = σ 2/n:

X̄ ∼ N
(
μ,σ 2/n

)
.

This is the sampling distribution of X̄. The standard deviation of X̄ can be obtained
by taking the square root of its variance:

√
σ 2/n = σ/

√
n. The standard deviation

of the sampling distribution in this case reflects the extent of the variability of the
sample mean as an estimator for the population mean.

For the above blood pressure example, if we take a sample of size n = 100 from
the population and use X1,X2, . . . ,X100 to denote the 100 possible values obtained
from this sample, we have

X1,X2, . . . ,X100 ∼ N
(
125,152),

X̄ ∼ N
(
125,152/100

)
.

Figure 6.2 (left panel) shows the (unknown) theoretical probability distribution
of blood pressure: X ∼ N(125,152). The density curve in the right panel shows the
probability distribution of the sample mean X̄. The distribution of sample means is
centered on the population mean (shown with the a vertical line), but its variance is
much less (n = 100 times smaller) than that of blood pressure itself. Suppose that
we could repeat this process (selecting 100 people randomly, measuring their blood
pressure) many times. Each time, we obtain a different value for the sample mean. If
we were to repeat this process one thousand times, we would obtain 1000 different
values for the sample mean. The right panel of Fig. 6.2 shows the histogram of 1000
sample means for blood pressure. As we can see, the histogram is very similar to
the sampling distribution of X̄.
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Fig. 6.3 Using
R-Commander for simulating
samples from the population,
measuring X, and calculating
x̄. Here, we are generating
1000 samples of size n = 100
from N(μ = 125, σ = 15)

distribution

While in practice it is difficult to perform the above procedure 1000 times, we
can simulate it using R-Commander. Click Distributions → Continuous
distributions → Normal distribution → Sample from normal
distribution. Then enter 125 for the mu (mean), 15 for sigma (stan-
dard deviation). Set the Number of samples to 1000 and the Number
of observations (i.e., n) to 100, as in Fig. 6.3. This creates 1000 different
samples, where the size of each sample is n = 100. Keep the option Sample
means checked; this will store the sample means in a variable called mean.

We can now plot the histogram of the 1000 sample means. (NormalSamples
should be the active data set.) Click Graphs → Histograms; choose mean as
the Variable and check Densities. The resulting histogram will be similar to
the one shown in the right panel of Fig. 6.2.

6.4 Confidence Intervals for the Population Mean

It is common to express our point estimate along with its standard deviation to show
how much the estimate could vary if different members of population were selected
as our sample. Alternatively, we can use the point estimate and its standard deviation
to express our estimate as a range (interval) of possible values for the unknown
parameter.

Consider the estimation of the population mean μ in the systolic blood pressure
example. We know that X̄ ∼ N(μ,σ 2/n). Since the sampling distribution is normal,
the 68–95–99.7% rule applies. Therefore, approximately 95% of the values of X̄ fall
within the 2 standard deviations of the mean. We assumed that the variance of X

is σ 2 = 152 and sample size is n = 100. The standard deviation of X̄ is therefore
σ/

√
n = 1.5. Following the 68–95–99.7% rule, with 0.95 probability, the value of X̄

is within 2 standard deviations from its mean, μ,

μ − 2 × 1.5 ≤ X̄ ≤ μ + 2 × 1.5.
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Fig. 6.4 This graph shows
the 95% confidence intervals
obtained from 20 different
samples (indexed on the
vertical axis) each of size
n = 100. We expect
19/20 = 0.95 of these
intervals to include the true
population mean of μ = 125

In other words, with probability 0.95,

μ − 3 ≤ X̄ ≤ μ + 3.

We are, however, interested in estimating the population mean μ (instead of the
sample mean X̄). By rearranging the terms of the above inequality (see Sect. 6.9),
we find that with probability 0.95,

X̄ − 3 ≤ μ ≤ X̄ + 3.

This means that with probability 0.95, the population mean μ is in the interval
[X̄ − 3, X̄ + 3].

The sample mean X̄ is itself a random variable and changes from one sample
to another. Therefore, the above interval is not fixed. With every new sample, we
have a new value for X̄, and as the result, we have a new interval. Theoretically,
we could repeatedly sample n = 100 people, find the sample mean, and determine
the interval. Then, the true population mean μ would fall within these intervals with
probability 0.95.

Suppose, for example, that we repeated this process twenty times to obtain
twenty such intervals, as shown in Fig. 6.4. In this figure, each sample mean is
shown as a circle and the true (but unknown) population mean μ = 125 as the
dashed vertical line. Of twenty intervals, nineteen (i.e., 95%) include (cover) the
true mean.

In reality, however, we usually have only one sample of n observations, one sam-
ple mean x̄, and one interval [x̄ − 3, x̄ + 3] for the population mean μ. For the
blood pressure example, suppose that we have a sample of n = 100 people and that
the sample mean is x̄ = 123. Therefore, we have one interval as follows:

[123 − 3,123 + 3] = [120,126].
We refer to this interval as our 95% confidence interval for the population mean μ.
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In general, when the population variance σ 2 is known, the 95% confidence
interval for the unknown population mean μ is obtained as follows:

[
x̄ − 2 × σ/

√
n, x̄ + 2 × σ/

√
n

]
,

where x̄ is the specific value of the sample mean (i.e., observed sample mean)
we obtain based on our sample. Alternatively, we say that the confidence level
or confidence coefficient for the above interval is 0.95.
Note that the above interval is only one of many possible intervals we could
see. (In reality, we usually do not see more than one.) While we could assign
a probability to all possible intervals based on X̄ and say that 95% of them
include the true value of the population mean, we cannot say the same thing
for this specific interval based on x̄. This specific interval is either one of the
those intervals that includes the true value of the population mean, or it is one
of those intervals that do not. However, we are 95% confident that it belongs to
the former set of intervals and includes the true value of the population mean.
The 95% confidence refers to our degree of confidence in the procedure that
generated this interval. If we could repeat this procedure many times, 95% of
intervals it creates would include the true population mean.

The multiplier 2 we used to obtain the above interval was derived from the
68–95–99.7 rule for normal distributions, which states that for a normally dis-
tributed random variable (in this case, X̄), 95% of the observations fall within 2 stan-
dard deviations of the mean. If we want to increase our confidence level to 0.997,
we use the multiplier 3 since 99.7% of observations fall within 3 standard deviations
of the mean. Therefore, our 99.7% CI for the population mean is

[
x̄ − 3 × σ/

√
n, x̄ + 3 × σ/

√
n

]
.

For the blood pressure example, the 99.7% CI is

[123 − 3 × 1.5,123 + 3 × 1.5] = [118.5,127.5].
Note that in this case, we have expanded the interval in order to be more confident
about our estimate.

For estimates at lower confidence level of 0.68, we use the multiplier 1 instead.
Our 68% CI for the population mean is

[
x̄ − σ/

√
n, x̄ + σ/

√
n

]
.

For the blood pressure example, the 68% CI is

[123 − 1.5,123 + 1.5] = [121.5,124.5].
Note that the length of this interval is smaller than the two previous interval esti-
mates.
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Fig. 6.5 Finding the
z-critical value for 0.8
confidence level.
Approximately 80% of the
values of the random variable
fall between −1.28 and 1.28

z-critical Values We now discuss the process of finding the interval for any con-
fidence level other than 0.68, 0.95, and 0.997. For this, we need to find the corre-
sponding multiplier for a given confidence level. Recall that the multipliers 1, 2,
and 3 we previously used are the number of standard deviations we need to move
from the mean of a normally distributed random variable (here, X̄) on each side to
find intervals whose probabilities are 0.68, 0.95, and 0.997, respectively. Also, recall
that these rules apply to all normal distributions regardless of the mean and standard
deviation. It is easier to work with the standard normal distribution, N(0,1). For
this distribution, the standard deviation is 1. So we can simplify the above rules as
follows. The multipliers 1, 2, and 3 are the numbers of units we need to move from
the mean zero on each side to find intervals whose probabilities are 0.68, 0.95, and
0.997, respectively.

Suppose that we want to set the confidence level of our interval estimate for the
population mean to 0.8. To find the corresponding multiplier, we need to find the
number of units we need to move from 0 on each side so that the probability of the
resulting interval becomes 0.8 based on the standard normal distribution. Figure 6.5
shows the probability density curve of N(0,1), which is known as the Z-curve. The
shaded area is 0.8, which is the probability of the corresponding interval on the x-
axis. The upper end of this interval is shown as z. Here, z is the number of units
we need to move away from 0 so that the probability of the resulting interval is
0.8. That is, z is the multiplier needed to use to obtain 80% confidence intervals for
population mean.

Since the total area under the curve is 1, the unshaded area is 1 − 0.8 = 0.2.
Moreover, because of the symmetry of the curve around the mean, the two unshaded
areas on the left and the right of the plot are equal, which means that the unshaded
area on the right-hand side is 0.2/2 = 0.1. Therefore, the upper-tail probability of z

is 0.1, which is equal to (1 − 0.8)/2.
Now we can use R-Commander to find the value of z. Click Distribu-

tions → Continuous distributions → Normal distribution →
Normal quantiles. Enter 0.1 for the Probabilities and select Upper
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tail. (The default parameters correspond to the standard normal.) The result,
shown in the Output window, is 1.28. Therefore, we need to move z = 1.28 stan-
dard deviations from the mean on each side so that the probability of the resulting
interval becomes 0.8. The 80% confidence interval for the for the population mean
is

[
x̄ − 1.28 × σ/

√
n, x̄ + 1.28 × σ/

√
n

]
.

For the systolic blood pressure example, where x̄ = 123 and σ/
√

n = 1.5, we are
80% confident that the true mean blood pressure is in the interval

[123 − 1.28 × 1.5,123 + 1.28 × 1.5] = [122.8,123.2].
We call the multiplier 1.28 the z-critical value, denoted as zcrit, for the 80% con-

fidence interval. We can follow similar steps to find the z-critical values for any
other confidence level. For 0.9 confidence level, for example, zcrit = 1.64. For 0.95
confidence level, so far we have been using zcrit = 2. Following the above steps, you
will find that a more accurate value is zcrit = 1.96, which is sometimes used instead
of 2 to be more precise.

In general, for a given confidence level, c, we use the standard normal distri-
bution to find the value whose upper tail probability is (1 − c)/2. We refer to
this value as the z-critical value for the confidence level of c. Then with the
point estimate x̄, the confidence interval for the population mean at c confi-
dence level is

[
x̄ − zcrit × σ/

√
n, x̄ + zcrit × σ/

√
n

]
.

6.5 Confidence Interval When the Population Variance Is
Unknown

So far, we have assumed the population variance, σ 2, of the random variable is
known. Hence, we assumed that σ/

√
n, i.e., the standard deviation of the sample

mean, is known. This is an unrealistic assumption. Almost always, we need to es-
timate σ 2 along with the population mean μ. For this, we use our sample of n

observations to obtain the sample variance s2 and sample standard deviation s. As
a result, the standard deviation for X̄ is estimated to be s/

√
n. We refer to s/

√
n as

the standard error of the sample mean X̄ to distinguish it from σ/
√

n. In general,
we refer to the standard deviation of an estimator (e.g., X̄) as its standard error if
we have to use the data to estimate it. We use SE to denote the standard error of an
estimator.

To find confidence intervals for the population mean when the population vari-
ance is unknown, we follow similar steps as described above, but instead of σ/

√
n

we use SE = s/
√

n, and instead of zcrit based on the standard normal distribution,
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we use tcrit obtained from a t-distribution with n − 1 degrees of freedom. The con-
fidence interval for the population mean at c confidence level is

[
x̄ − tcrit × s/

√
n, x̄ + tcrit × s/

√
n

]
,

where tcrit is the value with an upper tail probability of (1 − c)/2 based on a t-
distribution with n − 1 degrees of freedom.

For example, suppose that we have randomly selected seven newborn babies and
recorded their heights (in inches) at the time of birth as follows:

Height: 18,22,19,17,20,18,15.

We use X to denote the height of newborn babies and assume that X ∼ N(μ,σ 2).
Based on the above observed data, the point estimates for μ and σ are x̄ = 18.4
and s = 2.2, respectively. The standard error (estimated standard deviation) for the
sample mean is SE = 2.2/

√
7 = 0.83.

Suppose that we want to find the 90% confidence interval for the population
mean, μ. Then, using the t-distribution with 7 − 1 = 6 degrees of freedom, we need
to find the t-critical value, tcrit, whose upper tail probability is (1 − 0.9)/2 = 0.05.

In R-Commander, click Distributions → Continuous distribu-
tions → t distribution → t quantiles. Set the Probabilities
to 0.05, the Degrees of Freedom to 6, and check Upper tail option. The
result, shown in Output window, is tcrit = 1.94, which is greater than zcrit = 1.64
based on the standard normal distribution. The 90% CI, therefore, is

[
18.4 − 1.94 × 2.2√

7
, 18.4 + 1.94 × 2.2√

7

]
= [16.8, 20.0].

That is, at 0.9 confidence level, we estimate the mean of height for newborn babies
to be between 16.8 and 20.0 inches.

In this example, if we knew σ = 2.2 instead of estimating it to be s = 2.2, we
would have used zcrit = 1.64 instead of tcrit = 1.94, and the interval would have been
smaller. Everything else the same, using t-distribution instead of the standard nor-
mal leads to wider intervals. This is the price we pay for the additional uncertainty
due to the estimation of population variance (and standard deviation) from the data.

As discussed previously, the t-distribution approaches the standard normal distri-
bution as the sample size increases (i.e., the degree of freedom increase). Therefore,
the difference between the z-critical values and the t-critical values becomes negli-
gible for very large sample sizes.

6.6 Using Central Limit Theorem for Confidence Interval

So far, we have assumed that the random variable has normal distribution, so the
sampling distribution of X̄ is normal too. If the random variable is not normally
distributed, the sampling distribution of X̄ is still approximately normal as long as
the sample size is large. The larger the sample size, the better the approximation.
This concept is known as the central limit theorem (CLT) in statistics.
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For large sample sizes, the CLT indicates that (under certain conditions such
as independence of observations) if the random variable X has the population
mean μ and the population variance σ 2, then the sampling distribution of X̄

is approximately normal with mean μ and variance σ 2/n:

X̄ ∼ N
(
μ, σ 2/n

)
.

As before, the mean of the sampling distribution of X̄ is the population
mean μ of the random variable, and its variance is the population variance
σ 2 of the random variable divided by the sample size n

The CLT is applicable regardless of the random variable’s distribution. Therefore,
even if the random variable has other distributions such as Bernoulli, binomial, or
Poisson, the sampling distribution of its mean will be approximately normal and
will be centered on the true population mean if the sample size is large.

For example, suppose that we are investigating the number of physician visits per
year. Further, suppose that the true but unknown population mean (rate) is μ = 2.5.
For illustrative purposes, we assume that the random variable has a Poisson(2.5)
distribution. The pmf of this distribution is shown in the left panel of Fig. 6.6.
Recall that the variance of a Poisson distribution is the same as its mean. There-
fore, the theoretical variance of the random variable is σ 2 = 2.5. To estimate μ, we
can randomly select 200 people, record the number of times they have visited their
physicians last year, and calculate the average number of visits. If we repeat this
process a thousand times, the distribution of the sample means will be similar to
Fig. 6.6. (Follow the above steps for simulating data in R-Commander, but this time

Fig. 6.6 Left panel: Plot of the pmf for a Poisson(2.5) distribution. Right panel: Histogram of
sample means for the number of physician visits per year. This distribution was generated from
1000 groups each with 200 people. While the distribution of the random variable itself is not
normal, the sampling distribution of the mean is approximately normal and is centered on the
population mean 2.5 (shown with the dashed vertical line)
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Fig. 6.7 Left panel: Plot of the pmf for a Bernoulli(0.8) distribution. Right panel: Histogram of
sample mean (proportion) for survival of breast cancer patients. This distribution was generated
from 1000 groups each with 220 people. While the distribution of the random variable itself is
not normal, the sampling distribution of the mean is approximately normal and is centered on the
population mean 0.8 (shown with the dashed vertical line)

use Poisson distribution instead of normal and set the number of observations
to 200.)

While the distribution of the random variable itself is not normal, the sampling
distribution of the sample mean X̄ is approximately normal and is centered on the
population mean μ = 2.5. Since the variance of the random variable is 2.5, the
standard deviation of X̄ in this case is

√
2.5/200 = 0.11. The right panel in Fig. 6.6

shows the density curve of N(2.5,0.112) along with the histogram of 1000 sample
means, each based on 200 people. As we can see, the distribution presented by the
histogram is closely approximated by the normal distribution.

As the second example, suppose that the 5-year survival status, X, of breast
cancer patients has Bernoulli(0.8) distribution. That is, the probability of survival
(X = 1) is 0.8. Recall that the population variance for Bernoulli distributed random
variables is μ(1−μ). In this case, the population variance is σ 2 = 0.8× (1−0.8) =
0.16. The left panel in Fig. 6.7 shows the plot of the pmf for the Bernoulli(0.8) dis-
tribution. Now suppose that we take a sample of n = 220 from the population to
obtain the sample mean, X̄. The right panel shows approximate normal distribution
for X̄ with mean 0.8 (i.e., the population mean) and variance 0.16/220 = 0.0007.
The right panel also shows the histogram of 1000 sample means (i.e., sample pro-
portions) for survival of breast cancer patients. To obtain each sample mean, 220
patients were randomly selected and the proportion of people who survived within
five years was calculated. (We used R-Commander to simulate data.) While the dis-
tribution of the random variable itself is not normal, the sampling distribution of the
mean is approximately normal and is centered on the population mean (shown with
the dashed vertical line).

We can use the central limit theorem to find confidence intervals for the popula-
tion mean of a random variable without assuming that it is normally distributed. In
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this case, since the sample mean is still approximately normal when the sample size
is large (e.g., at least 15 if there are no outliers and the distribution is roughly sym-
metric), we can still use the methods we discussed above to find confidence intervals
for the population mean. For example, we want to estimate the population mean of
BMI (denoted as X) among Pima Indian women without making any assumption
about the probability distribution of X. Using a data set with n = 200 observations
(available from the MASS package), our point estimates for the distribution param-
eters are μ̂ = x̄ = 32.3 and σ̂ 2 = s2 = 6.12. We are interested in 90% confidence
interval for μ.

The standard error for the sample mean is 6.1/
√

200 = 0.43, and the t-critical
value for 0.9 confidence level (obtained from a t distribution with n − 1 = 199
degrees of freedom) is 1.65. Therefore, the 90% CI for μ is

[32.3 − 1.65 × 0.43,32.3 + 1.65 × 0.43] = [31.6,33.0],
which means that at 0.9 confidence level, the mean of the distribution (population
mean of the BMI) falls between 31.6 and 33.0.

Note that when the sample size is large, the t distribution reaches the standard
normal distribution, and t-critical values become very close to z-critical values. In
the above example, tcrit = 1.65 is almost the same as zcrit = 1.64 for 0.9 confidence
level.

6.7 Confidence Intervals for the Population Proportion

Suppose that we want to find the 95% CI for the population proportion of mothers
who smoke during their pregnancy in the year 1986. Using the birthwt data set
with n = 189, our estimate for this proportion is x̄ = p = 0.39. (Note that the data
are collected during 1986.) Using p, we estimate the population variance p(1−p) =
0.39 × 0.61 = 0.24.

For binary random variables, we use the sample proportion to estimate the
population proportion as well as the population variance. That is, the sample
variance depends on the data through p and n only. Therefore, estimating the
population variance does not introduce an additional source of uncertainty to
our analysis, so we do not need to use a t-distribution instead of the standard
normal distribution.

The standard error (i.e., estimated standard deviation) for the sample mean is

SE = √
p(1 − p)/n = √

0.39 × 0.61/189 = 0.03.

The 95% CI is then

[p − zcrit × SE,p + zcrit × SE].
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For 0.95 confidence level, zcrit = 1.96, which we usually round off to 2. Therefore,
the 95% CI for the population proportion is

[0.39 − 2 × 0.03,0.39 + 2 × 0.03] = [0.33,0.45],
which means that we are 95% confident that the true population proportion is be-
tween 0.33 and 0.45. (The current estimate provided by CDC is much lower than
this.)

From the above confidence interval, we can find the confidence interval for the
number of smoking pregnant women in the US during 1986. As before, we suppose
that there are currently N = 4 million pregnant women in the US. We find the 95%
confidence interval for the number of smoking pregnant women as follows:

[0.33 × 4000000,0.45 × 4000000] = [1320000,1800000].

6.8 Margin of Error

For the above example, we can write the 95% CI for the population proportion of
women who smoke during their pregnancy as follows:

0.39 ± 2 × 0.03.

In this case, the term 2 × SE = 2 × 0.03 = 0.06 is called the margin of error for
0.95 confidence level. In general, it is common to present interval estimates for c

confidence level as

Point estimate ± Margin of error.

That is, the margin of error of an estimate is the half-width of the confidence interval.
For the smoking during pregnancy example, our interval estimate can be written as

0.39 ± 0.06.

When the population variance σ 2 is known, the margin of error e is calculated
as follows:

e = zcrit
σ√
n
.

Here, zcrit is the multiplier obtained for the given confidence level c from the
standard normal distribution. When the population variance is not known and
we need to use the data to estimate it using the sample standard deviation, s,
the margin of error is calculated as follows:

e = tcrit
s√
n
.
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Here, tcrit is the multiplier obtained for the given confidence level c from the
t distribution with n − 1 degrees of freedom.
If the variable is binary so we can use the sample proportion p to estimate
σ̂ = √

p(1 − p), then the margin of error is

e = zcrit

√
p(1 − p)

n
.

Often, the media reports a margin of error to accompany the results of a poll.
Generally, what they report is the margin of error for a 95% CI, although they do
not specify that.

6.9 Advanced

In this section, we show the derivation of confidence interval and discuss finding the
required sample size for a given margin of error.

6.9.1 Deriving Confidence Intervals

In Sect. 6.4, we derived confidence intervals for the sample mean based on the Cen-
tral Limit Theorem and the 68–95–99.7% rule for normal distributions. Specifically,
we saw that the sampling distribution of X̄ is approximately normal with mean μ

and standard deviation σ/
√

n. Using the 68–95–99.7% rule, we know that with
probability 0.95, X̄ falls within 2 standard deviations from its mean,

P

(
μ − 2

σ√
n

≤ X̄ ≤ μ + 2
σ√
n

)
= 0.95.

(Note that since the normal distribution is continuous, using ≤ instead of < , which
is what we usually use for the lower end of the interval, doses not change the prob-
ability.) Therefore, 95% of the values of X̄ fall in the interval

μ − 2
σ√
n

≤ X̄ ≤ μ + 2
σ√
n
.

To produce a range of possible values for the population mean μ, we subtract μ

from all three terms of the inequalities:

μ − 2
σ√
n

− μ ≤ X̄ − μ ≤ μ + 2
σ√
n

− μ,

−2
σ√
n

≤ X̄ − μ ≤ 2
σ√
n
.

Now, subtract X̄ from all terms:
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−X̄ − 2
σ√
n

≤ −X̄ + X̄ − μ ≤ −X̄ + 2
σ√
n
,

−X̄ − 2
σ√
n

≤ −μ ≤ −X̄ + 2
σ√
n
.

Lastly, multiply all three terms by −1 (multiplying by −1 changes the directions of
inequalities) to obtain the interval for the population mean μ:

X̄ + 2
σ√
n

≥ μ ≥ X̄ − 2
σ√
n
,

X̄ − 2
σ√
n

≤ μ ≤ X̄ + 2
σ√
n
.

Therefore, the true value of μ falls within the following interval with the probability
of 0.95: [

X̄ − 2
σ√
n
, X̄ + 2

σ√
n

]
.

Given a specific value x̄ for the sample mean X̄, we can construct the 95% confi-
dence interval as follows: [

x̄ − 2
σ√
n
, x̄ + 2

σ√
n

]
.

For the above confidence interval, 0.95 represents our confidence level in the proce-
dure that produced this interval.

6.9.2 Sample Size Estimation

Suppose that we want to estimate the population mean. Further, suppose that we
have an acceptable margin of error e in mind and want to find the required sam-
ple size so that the margin of error for our estimate is e. In this situation, since
empirical data is not yet available, we should either know what σ is or make a
conservative guess. For latter, if the variable is numerical, we can guess its range.
Then, assuming that the distribution is approximately normal, we know that 4 stan-
dard deviations (2 standard deviations on each side of the mean) includes the values
for 95% of the population. Therefore, we use range/4 as a rough estimate for σ .
If the variable is binary, we can use the standard deviation for μ = 0.5, which is
σ = √

0.5(1 − 0.5) = 0.5, as our guess. This is a quite conservative guess since 0.5
is the highest possible standard deviation for a binary random variable. (Try using
other values for μ to see that this is true; remember that μ must be between 0 and 1.)

Using the following equation for the margin of error:

e = zcrit
σ√
n
,
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we can estimate the required sample size n for the assumed acceptable margin
of error e as follows:

n =
(

zcritσ

e

)2

.

For example, let us find the appropriate sample size to estimate population mean
for BMI. Suppose that we decide that the acceptable margin of error at confidence
level 0.95 is 3. That is, we want to be confident (at 0.95 level) that the true population
mean falls within 3 units from its point estimate. We want the population mean) Fur-
ther, suppose that, based on previous experience, we know that the BMI is roughly
between 10 to 50. Therefore, we assume that σ is approximately (50 − 10)/4 = 10.
Then the required sample size is

n =
(

2 × 10

3

)2

≈ 45.

Therefore, we need to measure the BMI of 45 people.
As another example, suppose that we want to test a new drug for breast cancer,

and we would like to estimate the 5-year survival mean (proportion) with the mar-
gin of error of 0.1 at 0.8 confidence level. (We want the true survival rate to fall
within 10% from its point estimate.) Using R-Commander, the z-critical value for
0.8 confidence level is 1.28. Then we need

n =
(

1.28 × .5

0.1

)2

= 41.

Note that we set σ to 0.5 to be conservative since 0.5 is the highest possible standard
deviation for binary random variable, and the above equation results in the highest
value of n for the given margin of error and confidence level. Therefore, we need
to test the drug on 41 people to achieve the required margin of error at the given
confidence level.

6.10 Exercises

1. We assume that the probability distribution of blood pressure, X, is N(μ,σ 2)

distribution. Suppose we know that σ = 6. To estimate μ, we randomly selected
9 people and measured their blood pressure. The sample mean is x̄ = 110.
(a) Write down the sampling distribution of the sample mean X̄ and find its

standard deviation.
(b) Find the 80% confidence interval estimation for μ.

2. For the above question, suppose that we did not know σ and estimated it using
the sample standard deviation s = 6.



6.10 Exercises 171

(a) Find the standard error for the sample mean as the estimator of the population
mean.

(b) Find the 80% confidence interval estimation for μ based on this sample.
3. Using the birthwt data set, find the point estimate and the 85% confidence

interval estimate for the population proportion of babies with low birthweight
and the population proportion of mothers who have hypertension history.

4. Using the birthwt data set, find the point estimate and the 90% confidence
interval estimate for the population mean of the number of physician visits during
the first trimester.

5. Using the “BodyTemperature.txt” data set, find the point estimate and the 80%
confidence interval estimate for the population means of heart rate and normal
body temperature.

6. Suppose that we want to estimate the population mean of birthweight. The ac-
ceptable margin error at 0.9 confidence level is 0.5 pounds. If the range of birth-
weight is from 2 pounds to 11 pounds, what is the required sample size?

7. We would like to estimate the proportion of people who smoke regularly. For this,
we decide to interview a sample of people from the population. If the accepted
margin of error at 0.95 confidence level is 0.02, how many people should we
interview?

8. Suppose that we interviewed a random sample of 2000 people and found that 320
of them smoke regularly. Find the 90% confidence interval for the population
proportion of smokers.

9. Read the paper “A Critical Appraisal of 98.6°F, the Upper Limit of the Normal
Body Temperature, and Other Legacies of Carl Reinhold August Wunderlich” by
Mackowiak et al. [19]. (The paper is available online at http://jama.ama-assn.org/
cgi/reprint/268/12/1578.) What is their point estimate along with its margin of
error for the population mean of normal body temperature?

http://jama.ama-assn.org/cgi/reprint/268/12/1578
http://jama.ama-assn.org/cgi/reprint/268/12/1578


Chapter 7
Hypothesis Testing

7.1 Introduction

In the previous chapter, we focused on estimating parameters such as the population
mean and variance. In this chapter, we rely on estimators, their sampling distribu-
tions, and their specific values from observed data to evaluate hypotheses.

In general, many scientific investigations start by expressing a hypothesis. For ex-
ample, Mackowiak et al. [19] hypothesized that the average normal (i.e., for healthy
people) body temperature is less than the widely accepted value of 98.6°F. If we
denote the population mean of normal body temperature as μ, then we can express
this hypothesis as μ < 98.6.

When we state our hypothesis, we are mainly proposing an explanation for an
observed phenomenon. For the above example, we might have observed that the
body temperature of many healthy people is less than 98.6°F. Typically, we can
find another explanation, also expressed as a hypothesis, that invalidates (annuls)
our proposed hypothesis. For this example, one might hypothesize that μ ≥ 98.6.
We refer to this hypothesis as the null hypothesis and denote it as H0. The null
hypothesis usually reflects the “status quo” or “nothing of interest”. In contrast, we
refer to our hypothesis (i.e., the hypothesis we are investigating through a scientific
study) as the alternative hypothesis and denote it as HA.

It is common to express the null hypothesis in the simplest form possible. For
the above example, to annul the alternative hypothesis, HA : μ < 98.6, it suffices
to show that H0 : μ = 98.6. This makes the task of evaluating a hypothesis eas-
ier.

The procedure for evaluating a hypothesis is called hypothesis testing, and it
rises in many scientific problems. A common approach for hypothesis testing is to
focus on the null hypothesis, which is usually simpler than the alternative hypothe-
sis, and decide whether or not to reject it. To this end, we examine the evidence that
the observed data provide against the null hypothesis H0. If the evidence against H0

is strong, we reject H0. If not, we state that the evidence provided by the data is not
strong enough to reject H0, and we fail to reject it.

B. Shahbaba, Biostatistics with R, Use R!,
DOI 10.1007/978-1-4614-1302-8_7, © Springer Science+Business Media, LLC 2012
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With respect to our decision regarding the null hypothesis H0, we might make
two types of errors:

• Type I error: we reject H0 when it is true and should not be rejected.
• Type II error: we fail to reject H0 when it is false and should be rejected.

We denote the probability of making type I error as α and the probability of
making type II error as β .

We hope to avoid both type I and type II errors as much as possible. However,
there is a trade-off between them. To minimize α (the probability of making type I
error), we might be tempted not to reject H0 unless there is extremely strong evi-
dence against it. This, however, increases the probability β of failing to reject H0
when it is false. Likewise, to reduce β (the probability of making type II error), we
might be tempted to reject H0 based on weak evidence against it. This, of course,
increases the probability α of rejecting H0 by mistake.

Now suppose that we have a hypothesis testing procedure that fails to reject the
null hypothesis when it should be rejected with probability β . This means that our
test correctly rejects the null hypothesis with probability 1 − β . (Note that the two
events are complementary.) We refer to this probability (i.e., 1 − β) as the power
of the test. In practice, it is common to first agree on a tolerable type I error rate α,
such as 0.01, 0.05, and 0.1. Then try to find a test procedure with the highest power
among all reasonable testing procedures.

In this chapter, we discuss some commonly used testing procedures when the
hypothesis is related to the population mean, μ, without explicit discussion of type I
and type II errors. Throughout this chapter, we follow similar assumptions we used
for estimation in the previous chapter; namely, we assume that X1, . . . ,Xn (i.e.,
values of the random variable obtained from a random sample of size n) are IID
(unless stated otherwise) and that the sample size n is large enough for the CLT to
hold.

7.2 Hypothesis Testing for the Population Mean

To decide whether we should reject the null hypothesis, we quantify the empiri-
cal support (provided by the observed data) against the null hypothesis using some
statistics. Recall that a statistic is what we calculate based on the observed data only
(i.e., it does not depend on any unknown parameter). Since these statistics are used
to evaluate our hypotheses, we refer to them as test statistics. To evaluate hypothe-
ses regarding the population mean, we use the sample mean X̄ as the test statistic.

For a statistic to be considered as a test statistic, its sampling distribution must be
fully known (exactly or approximately) under the null hypothesis. That is, we should
know the distribution of the test statistic if we assume that the null hypothesis is true.
For the sample mean, the CLT states that the sampling distribution is approximately
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normal when the sample size is large. (The distribution is exactly normal if the
variable itself is normal and the population variance is known.)

Now consider the body temperature example, where we want to examine the
null hypothesis H0 : μ = 98.6 against the alternative hypothesis HA : μ < 98.6. To
start, suppose that σ 2 = 1 is known. (Later, we will discuss situations where σ 2 is
unknown.) Further, suppose that we have randomly selected a sample of 25 healthy
people from the population and measured their body temperature.

Using the Central Limit Theorem, the sampling distribution of X̄ is approxi-
mately normal as follows:

X̄ ∼ N
(
μ,σ 2/n

)
.

In this case,

X̄ ∼ N(μ,1/25).

Now, suppose that the null hypothesis is true and the population mean is
μ = 98.6. By setting μ to 98.6, the sampling distribution of X̄ becomes

X̄|H0 ∼ N(98.6,0.04).

Note that the distribution of X̄ is obtained conditional (hence the notation for con-
ditional probability) on the assumption that the null hypothesis is true. The distribu-
tion is fully specified if we assume that H0 is true. Therefore, we can use the sample
mean X̄ as a test statistic for the population mean μ.

In what follows, we refer to the distribution of test statistics under the null hy-
pothesis as the null distribution. For the above example, the null distributions is
N(98.6,0.04). Use R-Commander to plot this distribution. (Note that you need to
enter the standard deviation instead of the variance in R-Commander). The left panel
in Fig. 7.1 shows this distribution.

Fig. 7.1 For the normal body temperature example, we are examining the hypotheses
H0 : μ = 98.6 against HA : μ < 98.6. Left panel: The shaded area shows the lower-tail proba-
bility of the observed sample mean, x̄ = 98.4. This is the observed significance level, p-value,
which is denoted as pobs. Right panel: After standardizing, the p-value corresponds to the lower
tail probability of z = −1 based on the standard normal distribution
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7.3 Statistical Significance

The test statistic X̄ is itself a random variable, so its value can change every time we
take a new sample of size n from the population. However, if the null hypothesis is
indeed true, then we would expect to see these values to be close to the mean of the
null distribution (here, 98.6). In contrast, if the null hypothesis is false, then the null
distribution does not represent the sampling distribution of the test statistics, and we
would expect to see the values of X̄ to be far from the mean of the null distribution.
In reality, we have only one value, x̄, for the sample mean. We can use this value to
quantify the evidence of departure from the null hypothesis. The further x̄ is from
the value stated by the null, the stronger the evidence against it.

Suppose that from our sample of 25 people we find that the sample mean is
x̄ = 98.4. A very common method to measure the amount of evidence for the de-
parture from the null hypothesis H0 : μ = 98.6 versus the alternative HA : μ < 98.6
is the lower tail probability of this value from the null distribution. This probability
is highlighted in the left panel of Fig. 7.1. Note that as the observed sample mean
moves away from 98.6 (e.g., x̄ = 98.3), the lower tail probability decreases. For val-
ues of the sample mean far away from 98.6 (the population mean according to H0)
we would be more inclined to reject the null hypothesis. In contrast, as the observed
sample mean moves closer to 98.6 (e.g., x̄ = 98.5), the lower tail probability in-
creases. In this case, we would be more reluctant to reject the null hypothesis. That
is, values close to 98.6 make the null hypothesis that μ = 98.6 more believable.

For the observed sample mean x̄ = 98.4, the lower tail probability is the probabil-
ity of observing values equal to or less than 98.4. The values less than 98.4 provide
more evidence, compared to 98.4, against the null hypothesis, and are considered
more extreme than 98.4 if we were to believe the null hypothesis. Therefore, the
lower tail probability at 98.4 is the probability of observing values as or more ex-
treme than 98.4. We refer to this probability as the observed significance level for
the test statistic.

The observed significance level for a test is the probability of values as or
more extreme than the observed value, based on the null distribution (i.e., the
sampling distribution of the test statistic assuming the null hypothesis is true),
in the direction supporting the alternative hypothesis. This probability is also
called the p-value and denoted pobs.

For the above example

pobs = P(X̄ ≤ x̄|H0),

since the alternative is HA : μ < 98.6. That is, the direction of the alternative hypoth-
esis is towards values smaller than what is specified by H0. Note that the probability
is found conditional on the assumption that the null hypothesis is true, hence the
conditional probability notation. In what follows, we drop H0 for simplicity, but we
should always remember that p-value is obtained conditional on H0.
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Fig. 7.2 Left panel: Obtaining the lower tail probability P (X̄ ≤ 98.4) where the null distribution
is N(98.6,0.2). The resulting probability is the observed significance level for testing the hypoth-
esis about the population mean of body temperature: H0 : μ = 98.6. Right panel: Obtaining the
p-value using the z-test using the standard normal, N(0,1), distribution. Here, the z-score (i.e.,
the standardized value of x̄ = 98.4) is −1

We can regard pobs as a measure of agreement between the observed data and
the null hypothesis. As pobs becomes smaller, we would be more confident to reject
the null hypothesis.

Given the observed sample mean x̄ = 98.4, we calculated the p-value for the
above example as follows:

pobs = P(X̄ ≤ 98.4).

To find the p-value in R-Commander, click Distributions → Continuous
distributions → Normal distribution → Normal probabili-
ties. Then set the Variable value to 98.4 and the parameters for the null
distribution (μ = 98.6 and σ = √

0.04 = 0.2), as in the left panel of Fig. 7.2. Make
sure the option lower tail is selected since we are interested in P(X̄ ≤ 98.4).
The result, given in the Output window, is the probability of seeing as or more
extreme values than x̄ = 98.4 (in the lower direction) under the null hypothesis:
pobs = 0.16.

7.3.1 z-Tests of the Population Mean

In practice, it is more common to use the standardized version of the sample mean as
our test statistic. For the body temperature example, we standardize the test statistic
X̄ by subtracting the mean μ = 98.6 (under the null) and dividing the result by the
standard deviation

√
0.04 = 0.2. We denote the resulting random variable Z:

Z = X̄ − 98.6

0.2
.

In Chap. 5, we saw that if a random variable is normally distributed (as it is the
case for X̄), subtracting the mean and dividing by standard deviation creates a new
random variable with standard normal distribution. Therefore,

Z ∼ N(0,1).

This way, the null distribution becomes the standard normal distribution.
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The observed value of X̄ in the body temperature example was x̄ = 98.4. To find
the corresponding value for the random variable Z, we standardize x̄ in the same
way we standardized X̄. We denote this value as z:

z = 98.4 − 98.6

0.2
= −1.

Now, instead of finding the p-value based on the lower tail probability of x̄ = 98.4,
we can find it based on the lower tail probability of z = −1:

pobs = P(Z ≤ −1).

This probability is shown as the shaded area in the right panel of Fig. 7.1. The
p-value obtained based on the standardized test statistic Z is exactly the same as
the p-value obtained based on the original test statistic X̄. That is, the shaded areas
in the left and right panels of Fig. 7.1 are the same. To see this, we can start by the
definition of p-value based on X̄ and show that it is equivalent to its definition based
on Z. For the above example,

pobs = P(X̄ ≤ 98.4).

We can subtract 98.6 from both sides of the inequality and divide the results by 0.2:

pobs = P

(
X̄ − 98.6

0.2
≤ 98.4 − 98.6

0.2

)
= P(Z ≤ −1).

We can use R-Commander to find the p-value based on Z. See the right panel of
Fig. 7.2. As expected, the result would be the same as before: pobs = 0.16. There-
fore, using either the unstandardized version or the standardized version, we will
reach the same conclusion.

We refer to the standardized value of the observed test statistic as the z-score
and the corresponding hypothesis test of the population mean as the z-test,
or more specifically, single-sample z-test. In a z-test, instead of comparing
the observed sample mean x̄ to the population mean according to the null
hypothesis, we compare the z-score to 0. Therefore, the p-value becomes the
probability of seeing values as extreme or more extreme than the observed
z-score under the standard normal distribution.

One advantage of using the z-test is that the null distribution remains the same
for different tests (e.g., different null values and different σ 2), and we can easily
compare z-scores from two different tests. Using the z-test to find p-values was
crucial when computer programs such as R-Commander were not widely available,
and statisticians needed to use probability tables to calculate probabilities.

7.3.2 Interpretation of p-value

The p-value is the conditional probability of extreme values (as or more extreme
than what has been observed) of the test statistic assuming that the null hypothesis
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is true. When the p-value is small, say 0.01 for example, it is rare to find values as
extreme as what we have observed (or more so). This means that the observed value
of the test statistic is quite extreme if we were to believe the null hypothesis. As
the p-value increases, it indicates that there is a good chance to find more extreme
values (for the test statistic) than what has been observed. Then, the observed value
does not seem that extreme any more. In this case, we think it is quite reasonable to
believe that what we have observed was generated according to the null hypothesis,
so we would be more reluctant to reject the null hypothesis.

Based on the above description of the p-value, we can interpret it as a measure
of agreement between the observed data and the null hypothesis. Smaller p-values
mean less agreement and provide stronger evidence against the null hypothesis.

A common mistake is to regard the p-value as the probability of the null
hypothesis given the observed value of the test statistic: P(H0|x̄). This is
because intuitively it makes more sense to evaluate the null hypothesis by
finding its probability given the data we have observed. However, this is not
what the p-value provides.

In order to use the p-value to decide whether we should reject the null hypothesis,
a convenient approach is to prespecify a cutoff for the p-value and reject the null
hypothesis if pobs is below the cutoff (i.e., when the measure of agreement between
the null hypothesis and observed data is less than an acceptable level). This cutoff
is called the significance level or the size of the test. This is the acceptable type
I error probability, i.e., the probability of rejecting the null hypothesis when it is
true. As mentioned above, we denote this probability α. The common significance
levels are 0.01, 0.05, and 0.1. If pobs is less than the assumed cutoff, we say that the
data provides statistically significant evidence against H0, and we call the results
statistically significant; that is, the difference between the observed value of the test
statistic (here, 98.4) and the value specified by the null hypothesis (here, 98.6) is
statistically significant. When we find the observed difference between the sample
mean and the population mean according to the null as statistically significant, we
believe that it is unlikely that the difference is due to chance alone. In practice, it is
common to interpret p-values close to 0.1 as small amount of evidence against H0,
p-values around 0.05 as modest evidence against H0, and p-values below 0.01 as
strong evidence against H0.

Note that while the above approach provides a convenient framework for test-
ing a hypothesis, one should be always cautious against relying on such sig-
nificance tests as the only tool for making decisions regarding acceptance or
rejection of a hypothesis [5].

For the body temperature example where pobs = 0.16, if we set the significance
level at 0.05, we say that there is not significant evidence against the null hypothesis
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H0 : μ = 98.6 at the 0.05 significance level, so we do not reject the null hypothesis.
It is clear that when we cannot reject the null hypothesis at 0.05, we cannot reject
it at 0.01 or any other lower significance level since for lower significance levels, it
becomes even harder to reject H0 (i.e., we need stronger evidence against it). On the
other hand, when we can reject the null hypothesis at 0.05 level, we can reject it at
higher significance levels such as 0.1.

When there is not significant evidence to reject H0 at any acceptable level,
we fail to reject the null hypothesis. This could happen because the null hy-
pothesis is in fact true. However, it is also possible that the null hypothesis is
false but we do not have enough evidence to reject it. For example, this could
happen when the sample size is too small. When we fail to reject the null
hypothesis, the result of our test is inconclusive since we do not know which
one of the above two possible scenarios is true.

In the above example, if we had set the cutoff at 0.05 and we had observed x̄ =
98.25 instead of 98.4, then pobs = 0.04, and we could reject the null hypothesis. In
this case, we say that the result is statistically significant and the data provide enough
evidence against H0 : μ = 98.6. However, if we had set the cutoff at 0.01, we would
fail to reject the null hypothesis and say that the result is not statistically significant.
One simple solution to resolve this issue, i.e., profoundly different conclusion based
on arbitrary cutoff, is to choose several reference levels (e.g., 0.01, 0.05, 0.1) as
opposed to one and comment on the significance of the data with respect to these
reference levels [5]. In this example, when x̄ = 98.25 and pobs = 0.04, we could say
that the amount of evidence is statistically significant at 0.05 level but not at 0.01
level. (When the result is significant at 0.05 level, it is also significant at 0.1 level or
any other larger levels, and so we do not need to mention them.)

We should be cautious about interpreting the results when they are statistically
significant leading to the rejection of H0. In general, a statistically significant
result might not be considered as significant in practice. In the above exam-
ple, if we obtain x̄ = 98.25 and pobs = 0.04, we can reject the null hypothe-
sis at 0.05 level and conclude that the difference between 98.25 and 98.6 is
statistically significant. However, for some practical purposes, we might not
consider the 0.35 difference as biologically significant. In general, even an
extremely small difference between the observed sample mean and the pop-
ulation mean according to H0 could eventually result in z-scores far away
from zero (hence, leading to statistically significant results) as we increase
the sample size n (i.e., decrease the denominator of z-score).

Finally, we should emphasize that the interpretation of p-values and their cutoffs
discussed throughout this book is specific to the classical hypothesis-testing frame-
work, where we evaluate only one hypothesis at a time. Situations where we need



7.3 Statistical Significance 181

to test multiple hypotheses simultaneously (i.e., using the same data) require more
advanced statistical inference methods, which are not discussed in this book.

7.3.3 One-Sided Hypothesis Testing

For the body temperature example, we tested the null hypothesis H0 : μ = 98.6
against the alternative HA : μ < 98.6. We refer to such tests as one-sided hypothesis
testing, where the departure from the null is in one direction (here, in the direction
of lower values than 98.6).

Let us denote the population mean according to the null hypothesis as μ0. Then,
for the above examples, we can express our alternative hypothesis that the popula-
tion mean is less than a certain value as HA : μ < μ0. Likewise, our null hypothesis
is H0 : μ = μ0. In this case, we quantified the support for the null hypothesis by
finding the probability of test statistic values as small or smaller than the observed
value if the null hypothesis is true. The values more extreme than x̄ (here, smaller
than the observed mean 98.4) represent a larger departure from μ0 and provide
stronger evidence against the null.

In some situations, we might hypothesize that the population mean is greater than
a specific value and express our hypothesis as HA : μ > μ0. Our null hypothesis is
still H0 : μ = μ0. This is also a one-sided test since the departure from the null is
still in one direction: toward values larger than μ0.

For example, suppose that we have observed that many Pima Indian women suf-
fer from diabetes. We know that obesity and diabetes are related; we might there-
fore hypothesize that this population is obese on average, where obesity is defined
as BMI higher than 30. If we denote the population mean of BMI for Pima Indian
women, we can then express our hypothesis as μ > 30. In this case, the null hypoth-
esis is H0 : μ = 30; that is, μ0 = 30.

As before, we use the sample mean as the test statistic. For illustrative purposes,
suppose that we have obtained a sample of size n = 100 from the population of Pima
Indian women. Further, suppose we know that the population variance is σ 2 = 62.
If the null hypothesis is true and the population mean is μ = 30, then the sampling
distribution is

X̄|H0 ∼ N
(
30,62/100

)
.

This distribution is shown in the left panel of Fig. 7.3. If the null hypothesis is in-
deed true, then we would expect to see the value of sample mean near the population
mean according to the null distribution (here, 30). In contrast, if the null hypothesis
is false, then the null distribution does not represent the sampling distribution of
the test statistics, and we would expect to see the value of the sample mean away
from 30, in this case, larger than 30 according to the alternative hypothesis.

Suppose that from our sample of 100 Pima Indian women we find that the sample
mean is x̄ = 31. As before, we find the observed significance level, p-value, to
measure the amount of evidence provided by the data in support for H0. Recall
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Fig. 7.3 Left panel: The sampling distribution for the test statistic X̄ under the null hypothesis
H0 : μ = 30. The p-value, which is the probability of values as or more extreme than the observed
value of the test statistic x̄ = 31, is shown as the shaded area. Right panel: Obtaining the upper tail
probability using one-sided z-test

that we defined p-value as the probability of values as or more extreme than the
observed value of the test statistic (here, x̄ = 31) based on the null distribution, in
the direction specified by the alternative hypothesis. If the null distribution is in fact
true and μ = 30, then values larger than x̄ = 31 would seem more extreme than
what we have observed. Therefore,

pobs = P(X̄ ≥ x̄|H0),

since HA : μ > μ0. Again, we drop H0 for simplicity. For the above example,

pobs = P(X̄ ≥ 31).

This probability is shown as the shaded area in the left panel of Fig. 7.3.
As before, we can standardize the test statistic by subtracting the mean and di-

viding the result by the standard deviation:

Z = X̄ − 30

0.6
∼ N(0,1).

The corresponding z-score is obtained as follows:

z = 31 − 30

0.6
= 1.67.

Now, to find the p-value, we can find the upper tail probability of z = 1.67 from the
null distribution N(0,1):

pobs = P(Z ≥ 1.67).

This probability is shown as the shaded area in the right panel of Fig. 7.3. We can
use R-Commander to find this probability. This is the upper tail probability at 1.67
based on the standard normal distribution. Note that the upper tail probability is



7.3 Statistical Significance 183

by convention P(Z > 1.67). However, as discussed previously, for continuous ran-
dom variables, P(Z > 1.67) = P(Z ≥ 1.67) since the probability of any specific
value (here, 1.67) is zero. For this example, pobs = 0.048. We can reject the null
hypothesis at 0.05 level but not at 0.01 level. At 0.05 level, we can conclude that the
population mean of BMI for Pima Indian women is higher than 30 and the difference
is statistically significant.

In general, for one-sided hypothesis testing, we evaluate the null hypothesis
H0 : μ = μ0 by using the following standardized test statistic:

Z = X̄ − μ0

σ/
√

n
.

To this end, we find the sample mean x̄ and calculate the observed value of Z

called z-score (assuming σ is known):

z = x̄ − μ0

σ/
√

n
.

We then use the standard normal distribution to find the p-value. If the al-
ternative hypothesis regarding the population mean is HA : μ < μ0, we use
the standard normal distribution to find lower tail probability of the z-score:
P(Z ≤ z). If the alternative hypothesis regarding the population mean is
HA : μ > μ0, we use P(Z ≥ z) instead. The resulting probability, pobs, is the
observed significance level, which can be compared to several significance
levels such as 0.01, 0.05, and 0.1.

7.3.4 Two-Sided Hypothesis Testing

For many hypothesis testing problems, we might be indifferent to the direction of
departure from the null value. In such cases, we can express the null and alternative
hypotheses as H0 : μ = μ0 and HA : μ �= μ0, respectively. Then we consider both
large positive values and small negative values of z-score as evidence against the
null hypothesis, and our alternative hypothesis is referred to as two-sided.

For example, suppose we believe that the average normal body temperature is
different from the accepted value 98.6°F, but we are not sure whether it is higher or
lower than 98.6. Then the null hypothesis remains H0 : μ = 98.6, but the alterna-
tive hypothesis is expressed as HA : μ �= 98.6. As before, we calculate the sample
mean x̄ = 98.4 and standardize it to obtain the z-score, which is −1. The p-value
is still calculated as the probability of values as or more extreme than the observed
z-score. However, in this case, extreme values are those whose distance from 0 is
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Fig. 7.4 Illustrating the
p-value for a two-sided
hypothesis test of average
normal body temperature,
where H0 : μ = 98.6 and
HA : μ �= 98.6. After
standardizing, pobs =
P (Z ≤ −1) + P (Z ≥ 1) =
2 × 0.16 = 0.32

more than the distance of −1 from zero. These are values that are either less than
−1 or greater than 1. Therefore, to find the observed significance level, we need to
add the probabilities for Z ≤ −1 and Z ≥ 1:

pobs = P(Z ≤ −1) + P(Z ≥ 1).

This probability is equal to the shaded area in Fig. 7.4.
To obtain the p-value for this example, we can use R-Commander to find the

lower tail probability of −1 and the upper tail probability of 1, and then add the
two probabilities. However, because of the symmetry of the standard normal distri-
bution, these two probabilities are equal. Therefore, we can just find the upper tail
probability of 1 and multiply the results by 2 to obtain the p-value:

pobs = 2 × P(Z ≥ 1) = 2 × 0.16 = 0.32.

The p-value is greater than typical significance levels such as 0.01, 0.05, and 0.1,
so we cannot reject it at these levels. Therefore, we conclude that the observed
difference is not statistically significant, and could be due to chance alone.

In general, when we are evaluating the null hypothesis H0 : μ = μ0 against
the alternative hypothesis is HA : μ �= μ0, the p-value for the two-sided hy-
pothesis test is calculated as follows (assuming σ is known):

1. Determine the observed z-score: z = x̄−μ0
σ/

√
n

.
2. Take the absolute value of the z score: |z|.
3. Obtain the upper tail probability: P(Z ≥ |z|).
4. Double the resulting probability: pobs = 2 × P(Z ≥ |z|).

7.4 Hypothesis Testing Using t-tests

So far, we have assumed that the population variance σ 2 is known. Therefore, eval-
uating a hypothesis regarding the population mean did not involve estimating σ 2.
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In reality, σ 2 is almost always unknown, and we need to estimate it from the data.
As before, we estimate σ 2 using the sample variance S2. We would be of course
uncertain about our estimate of σ 2, and our hypothesis testing procedure should
take this additional source of uncertainty into account. Similar to our approach for
finding confidence intervals, we account for this additional source of uncertainty
by using the t-distribution with n − 1 degrees of freedom instead of the standard
normal distribution. The hypothesis testing procedure is then called the t-test.

To perform a t-test , we use the following test statistic (instead of Z):

T = X̄ − μ0

S/
√

n
,

where X̄ is the sample mean, n is the sample size, S is the sample standard deviation,
and μ0 is the null value. The test statistic, T , has a t-distribution with n − 1 degrees
of freedom under the null.

T ∼ t (n − 1).

Using the observed values of X̄ and S, the observed value of the test statistic is
obtained as follows:

t = x̄ − μ0

s/
√

n
.

We refer to t as the t-score.
Suppose we hypothesize that the population mean of BMI among Pima In-

dian women is above 30: HA : μ > 30. The corresponding null hypothesis is
H0 : μ = 30. To test this hypothesis, we use the Pima.tr data set from the MASS
package. (Follow the steps described in earlier chapters to upload this data set into
R-Commander.) The sample size is n = 200. The sample mean and standard devia-
tion are x̄ = 32.31 and s = 6.13, respectively. The t-score is

t = 32.31 − 30

6.13/
√

200
= 5.33.

To assess the null hypothesis H0 : μ = μ0 using the t-test, we first calculate
the t-score based on the observed sample mean x̄ and sample standard devia-
tion. We then calculate the corresponding p-value as follows:

if HA : μ < μ0, pobs = P(T ≤ t),

if HA : μ > μ0, pobs = P(T ≥ t),

if HA : μ �= μ0, pobs = 2 × P
(
T ≥ |t |),

where T has a t-distribution with n − 1 degrees of freedom, and t is our
observed t-score. This is known as the single-sample t-test.

For the above example, pobs = P(T ≥ 5.33), which we obtain from the
t-distribution with 200 − 1 = 199 degrees of freedom. To obtain this probability
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Fig. 7.5 Single-sample t -test using R-Commander of the null hypothesis H0 : μ = 30 against the
alternative hypothesis HA : μ > 30. Based on a sample of n = 200 people, the observed t -score is
5.33 and p-value is pobs = P (T > 5.33) = 1.33 × 10−7

in R-Commander, click Distributions→ Continuous Distributions
→ t distribution→ t probabilities. Then enter 5.33 for Variable
value and 199 for Degrees of freedom, and select Upper tail. The re-
sulting probability is 1.33 × 10−07, which is shown as 1.33e–07. This is quite small
and leads us to conclude that the result is statistically significant. At any reasonable
significance level, there is strong evidence to reject the null hypothesis and conclude
that the population mean of BMI among Pima Indian women is in fact greater than
30. Therefore, on average, the population is obese.

We can use R-Commander to perform a t-test directly. For example, let us
consider the Pima.tr data set and test the hypothesis that H0 : μ = 30 against
HA : μ > 30 for the BMI of Pima Indian women.

In R-Commander, make sure that Pima.tr is the active data set, then click
Statistics → Means → Single-sample t-test. Select bmi as the
Variable, select Population mean > mu0 for the Alternative Hy-
pothesis, and enter the value 30 for the Null Hypothesis as shown in
Fig. 7.5. Note that for a two-sided test, we would have used the option Popu-
lation mean != mu0, where the sign “!=” means not equal.

The results are given in the Output window in Fig. 7.5. Based on the sample of
n = 200 people, the t-score is 5.33 and the degrees of freedom are df = 200 -
1 = 199. Therefore, the p-value is P(T > 5.33) = 1.33 × 10−7, which is exactly
the same as what we found before.

7.5 Hypothesis Testing for Population Proportion

For a binary random variable X with possible values 0 and 1, we are typically inter-
ested in evaluating hypotheses regarding the population proportion of the outcome
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of interest, denoted as X = 1. As discussed before, the population proportion is
the same as the population mean for such binary variables. So we follow the same
procedure as described above. More specifically, we use the z-test for hypothesis
testing. Note that we do not use t-test, because for binary random variable, popula-
tion variance is σ 2 = μ(1 − μ). Therefore, by setting μ = μ0 according to the null
hypothesis, we also specify the population variance as σ 2 = μ0(1 − μ0) so we do
not need to estimate the population variance separately.

Now, if we assume that the null hypothesis is true, we have

X̄|H0 ∼ N
(
μ0,μ0(1 − μ0)

)
.

This means that

Z = X̄ − μ0√
μ0(1 − μ0)/n

∼ N(0,1).

As a result, we obtain the z-score as follows:

z = p − μ0√
μ0(1 − μ0)/n

,

where p is the sample proportion (mean).
Consider the Melanoma example. The data set Melanoma is available from the

MASS package. Suppose that we hypothesize that less than 50% of cases ulcerate:
μ < 0.5. Then the null hypothesis can be expressed as H0 : μ = 0.5. Using the
Melanoma data set, we can test the above null hypothesis. The number of obser-
vations in this data set is n = 205, of which 90 patients had ulceration. Therefore,
p = 90/205 = 0.44.

Next, we can find the z-score for our test statistic as follows:

z = 0.44 − 0.5√
0.5(1 − 0.5)/205

= −1.72.

Because HA : μ < 0.5, the observed significance level based on this z-score is the
lower tail probability P(Z ≤ −1.72). Using R-Commander, we find the p-value to
be pobs = 0.043. Therefore, we can reject the null hypothesis at 0.05 level but not at
0.01 level.

In general, to assess the null hypothesis H0 : μ = μ0, where μ is the popula-
tion proportion (mean) of a binary random variable, we first calculate z-score
based on the observed sample proportion p:

z = p − μ0√
μ0(1 − μ0)/n

.

Then we determine the support for the null hypothesis as:

if HA : μ < μ0, pobs = P(Z ≤ z),

if HA : μ > μ0, pobs = P(Z ≥ z),

if HA : μ �= μ0, pobs = 2 × P
(
Z ≥ |z|),

where Z has the standard normal distribution, and z is the observed z-score.
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7.6 Advanced

In statistics, it is often convenient to assume normal distributions for random vari-
ables. In this section, we discuss a formal test of normality. We also discuss some
useful R functions for hypothesis testing.

7.6.1 Test of Normality

Previously, we used Q–Q plots to visually assess the appropriateness of normality
assumption for random variables. The appropriateness of the normality assump-
tion can be evaluated formally using a testing procedure such as the Shapiro–Wilk
test of normality. More specifically, this test evaluates the null hypothesis that the
distribution of the random variable is normal. As usual, we then either reject this
hypothesis and conclude that the normality assumption is not appropriate, or fail to
reject it and conclude that there is no strong evidence of deviation from normality.

Suppose we assume that the bmi variable in Pima.tr has normal distribution.
Let us now evaluate this assumption. In R-Commander, click Statistics →
Summaries→ Shapiro-Wilk test of normality, then select the bmi.
The p-value for this test is 0.25. Therefore, we do not reject the null hypothesis
(which states that the distribution is normal) and conclude that the deviation of the
distribution from normality is not statistically significant.

For comparison, repeat the above steps to test the normality assumption for the
age variable in the Pima.tr data set. Using the Shapiro–Wilk test, the p-value is
1.853 × 10−12, which is quite small. Therefore, we can comfortably reject the null
hypothesis and conclude that the deviation from normality is statistically significant.

7.6.2 Hypothesis Testing with R Programming

To perform the z-test in R, we can use the function pnorm() in order to find the
p-value. For the body temperature example discussed at the beginning of this chap-
ter, the z-score was −1. For the one-sided hypothesis of the form H0 : μ < μ0, we
find the lower tail probability of −1 as follows:

> pnorm(-1, mean = 0, sd = 1, lower.tail = TRUE)

[1] 0.1586553

For the two-sided hypothesis, we multiply the above probability by 2. Similar ap-
proach is used for testing one-sided or two-sided hypothesis regarding population
proportion.

For the BMI example, z-score was 1.67. For the one-sided hypothesis of the form
H0 : μ > μ0, we need to find the upper tail probability of 1.67 as follows:
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> pnorm(1.67, mean = 0, sd = 1, lower.tail = FALSE)

[1] 0.04745968

Remember to specify the option lower.tail=FALSE to get the upper tail prob-
ability.

When σ 2 is unknown and we need to use the data to estimate it separately, we
use the t-test to evaluate hypotheses regarding the mean of a normal distribution.
For the BMI example in Sect. 7.4, we found t-score was t = 5.33. For the one-sided
hypothesis of the form H0 : μ > μ0, we need to find the upper tail probability of
5.33 from a t distribution with n − 1 degrees of freedom, where n = 200 in this
example. We use the pt() function:

> pt(5.33, df = 199, lower.tail = FALSE)

[1] 1.324778e-07

Alternatively, instead of calculating the t-score and finding the appropriate tail
probabilities to obtain the p-value, we can use the function t.test(). For the
BMI example, we use this function as follows:

> t.test(x = Pima.tr$bmi, mu = 30,
+ alternative = "two.sided")

One Sample t-test

data: Pima.tr$bmi
t = 5.3291, df = 199, p-value = 2.661e-07
alternative hypothesis: true mean is not equal to 30
95 percent confidence interval:
31.45521 33.16479
sample estimates:
mean of x

32.31

Here, the argument x is a (nonempty) numeric vector of data values, and mu is
the population mean according to the null hypothesis. For one-sided t-tests, set the
argument alternative to either “greater”, or “less”. Notice that the output pro-
vides the t-score (t), the degrees of freedom (df), and the p-value. Additionally,
it provides the sample mean x̄ = 32.31 and the 95% confidence interval for the pop-
ulation mean, [31.46,33.16]. We can estimate the interval at other confidence levels
(instead of 0.95) by using the option conf.level:

> t.test(x = Pima.tr$bmi, mu = 30, conf.level = 0.9)

One Sample t-test
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data: Pima.tr$bmi
t = 5.3291, df = 199, p-value = 2.661e-07
alternative hypothesis: true mean is not equal to 30
90 percent confidence interval:
31.59367 33.02633
sample estimates:
mean of x

32.31

Note that only the confidence interval estimate changes; the parts that are related to
hypothesis testing remain as before.

Finally, to perform the Shapiro–Wilk test of normality in R, we use the func-
tion shapiro.test(). For example, if we assume that BMI among Pima Indian
women is normally distributed, we can evaluate our assumption as follows:

> shapiro.test(x = Pima.tr$bmi)

Shapiro-Wilk normality test

data: Pima.tr$bmi
W = 0.991, p-value = 0.2524

In this case, the p-value is large, so we do not reject the null hypothesis, which states
the distribution is normal, at commonly used significance levels. In other words, the
test confirms our normality assumption.

7.7 Exercises

1. Suppose that the population mean of systolic blood pressure in the US is 115.
We hypothesize mean systolic blood pressure is lower than 115 among people
who consume a small amount (e.g., around 3.5 ounces) of dark chocolate every
day. Assume that systolic blood pressure, X, in this population has a N(μ,σ 2)

distribution. To evaluate our hypothesis, we randomly selected 100 people, who
include a small amount of dark chocolate in their daily diet, and measured their
blood pressure. If the sample mean is x̄ = 111 and the sample variance is s = 32,
can we reject the null hypothesis at 0.1 confidence level?

2. Use the Pima.tr data set to evaluate the hypothesis that the population mean
of diastolic blood pressure for Pima Indian women is not 70.

3. Consider the problem of estimating the proportion of people who regularly
smoke. We use X to denote smoking status and μ to denote the population pro-
portion of people who smoke. We hypothesize that the population proportion is
less than 0.2. Write down the null and alternative hypotheses. Suppose that we
interview 150 people and find that 27 of them smoke regularly. Evaluate the null
hypothesis.
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4. We believe that the population mean of normal body temperature is less than the
widely accepted value of 98.6°F. Write down the null hypothesis and evaluate it
using the “BodyTemperature.txt” data.

5. Download the “BodyTemperature.txt” data set from the book website (http://
extras.springer.com). For the heart rate variable, we want to evaluate the follow-
ing hypotheses. We set the significance level (cutoff) to 0.01.

• Evaluate the hypothesis that the population mean is less than 75. Write down
the null and alternative hypotheses and discuss your findings.

• Evaluate the hypothesis that the population mean is different from 75. Write
down the null and alternative hypotheses and discuss your findings.

6. We hypothesize that more than 5% of pregnant women have history of hyper-
tension. Write down the null and alternative hypotheses. Use the birthwt data
set (available from the MASS package) to evaluate this hypothesis (with discus-
sion). We set the significance level (cutoff) to 0.05. (In birthwt data set, the
variable ht shows the hypertension history: ht=1 when women have history of
hypertension, ht=0 otherwise.)

http://extras.springer.com
http://extras.springer.com


Chapter 8
Statistical Inference for the Relationship
Between Two Variables

8.1 Introduction

In the previous two chapters, we discussed estimation and hypothesis testing re-
garding the population mean of a random variable. For instance, using sample data,
we estimated the population mean of normal body temperature and tested the hy-
pothesis that the population mean is less than the accepted value of 98.6°F. Of-
ten, however, the goal of scientific studies is to investigate the relationship between
two (or more) variables. For example, we might be interested in investigating the
relationship between gender and body temperature. In this chapter, we discuss es-
timation and hypothesis testing with respect to the relationship between two ran-
dom variables. We start by discussing problems where we are investigating the re-
lationship between one binary categorical variable (e.g., gender) and one numerical
variable (e.g., body temperature). (More general situations where the categorical
variable could take more than two possible values are discussed later.) We then dis-
cuss some statistical inference methods to examine relationship when both random
variables are binary. Finally, we review situations where both random variables are
numerical.

Throughout this chapter, we assume that the individuals from which we collect
data are sampled randomly and independently from the population (unless stated
otherwise). This will be the case if we use simple random sampling. Also, we as-
sume that the sample size n is large enough for the CLT to hold.

8.2 Relationship Between a Numerical Variable and a Binary
Variable

In this section, we discuss situations where we investigate possible relationship be-
tween a binary random variable and a numerical random variable. In these situations,
the binary variable typically represents two different groups (e.g., smoking vs. non-
smoking, male vs. female, cancer cells vs. normal cells) from the population or two
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different experimental conditions (e.g., treatment A vs. treatment B). In this section,
we treat the binary variable as the explanatory variable in our analysis. The binary
variable is also known as the factor. The numerical variable, on the other hand, is
regarded as the response (target) variable (e.g., body temperature).

As a running example, suppose that we believe that gender and normal body
temperature are related. That is, we believe that healthy men and women are dif-
ferent with respect to their body temperature. We can interpret this as difference in
the distributions of body temperature between men and women. The two distribu-
tions (for men and women) can of course be different in many ways. (For example,
one distribution could have higher variance than the other one.) For simplicity, we
focus on the means of the two distributions. If we denote the population mean of
body temperature μ1 for women and μ2 for men, the hypothesis that the two groups
are different in terms of their body temperature can be specified as HA : μ1 �= μ2.
In other words, HA states that gender is an important factor with respect to body
temperature and that the two characteristics are related. The corresponding null hy-
pothesis is that the two means are equal: H0 : μ1 = μ2.

In general, we can denote the means of the two groups as μ1 and μ2. The
null hypothesis indicates that the population means are equal, H0 : μ1 = μ2.
In contrast, the alternative hypothesis is one the following:

HA : μ1 > μ2 if we believe the mean for group 1 is greater
than the mean for group 2.

HA : μ1 < μ2 if we believe the mean for group 1 is less than
the mean for group 2.

HA : μ1 �= μ2 if we believe the means are different but we do
not specify which one is greater.

We can also express these hypotheses in terms of the difference in the means:
HA : μ1 − μ2 > 0, HA : μ1 − μ2 < 0, or HA : μ1 − μ2 �= 0. Then the corre-
sponding null hypothesis is that there is no difference in the population means,
H0 : μ1 − μ2 = 0.
More generally, we can express the null hypothesis in terms of the difference
between the population means as H0 : μ1 −μ2 = μ0. However, in most cases,
μ0 = 0.

Previously, we used the sample mean X̄ to perform statistical inference regarding
the population mean μ. To evaluate our hypothesis regarding the difference between
two means, μ1 − μ2, it is reasonable to choose the difference between the sample
means, X̄1 −X̄2, as our statistic. Here, X̄1 is the sample mean of the random variable
of interest (e.g., body temperature) in the first group, and X̄2 is the sample mean
in the second group. We use μ12 to denote the difference between the population
means μ1 and μ2, and use X̄12 to denote the difference between the sample means
X̄1 and X̄2:
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μ12 = μ1 − μ2,

X̄12 = X̄1 − X̄2.

A specific value of the test statistic X̄12 based on a sample of data is denoted x̄12

and calculated as

x̄12 = x̄1 − x̄2,

where x̄1 and x̄2 are the observed sample means for group 1 and group 2, respec-
tively. In this case, x̄12 is our point estimate for μ1 − μ2, the difference between
population means.

For the above example, suppose that our sample includes n1 = 25 women and
n2 = 27 men. The sample mean of body temperature is x̄1 = 98.2 for women and
x̄2 = 98.4 for men. Then, our point estimate for the difference between population
means is x12 = −0.2.

As discussed before, point estimates do not reflect our uncertainty of our guess
for unknown values (here, the difference between population means). To address
this issue, we use interval estimates. Finding confidence intervals for the difference
between two means is quite similar to steps we followed to find confidence intervals
for one population mean. To start, we suppose that the sample variances for both
groups are known. For the above example, we assume that σ 2

1 = 0.8 and σ 2
2 = 1.

Now, we need to find the sampling distribution of X̄12. By the Central Limit The-
orem, the sampling distributions of X̄1 and X̄2 are approximately normal (exactly
normal if the random variable itself is normally distributed) as follows:

X̄1 ∼ N
(
μ1, σ

2
1 /n1

)
,

X̄2 ∼ N
(
μ2, σ

2
2 /n2

)
,

where n1 and n2 are the number of observations, and σ 2
1 and σ 2

2 are the population
variances for body temperature in group 1 and group 2, respectively.

The statistic X̄12 is the difference between the two normally distributed vari-
ables X̄1 and X̄2. As discussed in Sect. 5.8, if two random variables are normally
distributed, their difference is also normally distributed with the mean equal to the
difference of the means and variance equal to the sum of the variances. Therefore,
the sampling distribution of X̄12 is also approximately normal as follows:

X̄12 ∼ N
(
μ1 − μ2, σ 2

1 /n1 + σ 2
2 /n2

)
.

That is, the sampling distribution of X̄12 is normal with mean μ12 = μ1 − μ2 and
variance σ 2

1 /n1 + σ 2
2 /n2. We use SD12 to denote the standard deviation of the sam-

pling distribution of X̄12,

SD12 =
√

σ 2
1 /n1 + σ 2

2 /n2.

Therefore, we can write the sampling distribution of X̄12 as follows:

X̄12 ∼ N
(
μ12, SD2

12

)
.
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For our example, the variance of the sampling distribution is 0.8/25 + 1/27 = 0.07,
and the standard deviation is SD12 = √

0.07 = 0.26.
As before, we can use our point estimate and the corresponding standard devi-

ation to find confidence intervals. In this case, the confidence interval for μ12 =
μ1 − μ2 is obtained as follows:

[x̄12 − zcrit × SD12, x̄12 + zcrit × SD12],
where zcrit is obtained for a given confidence level c as before. For example, the
95% confidence interval for the difference between the population means of body
temperature for women and men is

[−0.2 − 2 × 0.26,−0.2 + 2 × 0.26] = [−0.72,0.32].
Therefore, at 0.95 confidence level, we believe that the true difference between the
two means falls between −0.72 and 0.32.

Note that the above confidence interval shows that the difference could be neg-
ative or positive. More specifically, the interval includes 0, which is interpreted as
no difference between the two means, i.e., no difference between women and men
in terms of mean body temperature. Therefore, even though our point estimate for
the difference between the means is negative (lower mean body temperature among
women compared to men), our confidence interval shows that the true difference
(i.e., between population means) is quite likely to be positive (i.e., higher mean
body temperature among women compared to men). As a result, we cannot say with
confidence that mean body temperature among women is lower than that of men,
even though our point estimate indicates that. In what follows, we discuss this more
formally in the context of hypothesis testing.

We now return to our hypothesis that HA : μ12 �= 0 (i.e., the difference between
the two means is not zero) against the null hypothesis that H0 : μ12 = 0. To use X̄12
as a test statistic, we need to find its sampling distribution under the null hypothesis
(i.e., its null distribution). We found that the sampling distribution of X̄12 is

X̄12 ∼ N
(
μ12,SD2

12

)
.

If the null hypothesis is true, then μ12 = 0. Therefore, the null distribution of X̄12 is

X̄12 ∼ N
(
0,SD2

12

)
.

For the body temperature example, the null distribution of X̄12 is N(0,0.262).
Because we can find the distribution of X̄12 under the null (even though it is an

approximate distribution when the random variable is not normally distributed), we
can use it as a test statistics to examine hypotheses regarding the difference between
the means of two groups, μ12. As before, however, it is more common to standardize
the test statistic by subtracting its mean (under the null) and dividing the result by
its standard deviation. In this case, of course, the mean of the X̄12 under the null
hypothesis is zero. Therefore,

Z = X̄12

SD12
,
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where Z is called the z-statistic, and it has the standard normal distribution: Z ∼
N(0,1). Similarly, we standardize the observed value of the test statistic, x̄12:

z = x̄12

SD12
.

We refer to z as the z-score. For the body temperature example, the z-score is

z = −0.2

0.26
= −0.76.

To test the null hypothesis H0 : μ12 = 0, we determine the z-score. Then,
depending on the alternative hypothesis, we can calculate the p-value, which
is the observed significance level, as:

if HA : μ12 > 0, pobs = P(Z ≥ z),

if HA : μ12 < 0, pobs = P(Z ≤ z),

if HA : μ12 �= 0, pobs = 2 × P
(
Z ≥ |z|).

The above tail probabilities are obtained from the standard normal distribu-
tion. This hypothesis testing procedure is known as the two-sample z-test.

For our example, HA : μ12 �= 0 and z = −0.76. Therefore, pobs = 2P(Z ≥
|−0.76|) = 2 × 0.22 = 0.44.

As before, we use the p-value to measure the amount of evidence against the null
hypothesis. To decide whether we should reject the null hypothesis, we compare
pobs with predefined significance levels (cutoffs) such as 0.01, 0.05 and 0.1. For a
given cutoff, we reject the null hypothesis and conclude that the result of our test is
statistically significant if pobs is less than the cutoff.

For the body temperature example, pobs = 0.44 is greater than the commonly
used significance levels (e.g., 0.01, 0.05, and 0.1). Therefore, the test result is not
statistically significant, and we cannot reject the null hypothesis (which states that
the population means for the two groups are the same) at these levels. That is, any
observed difference could be due to chance alone. Recall that when we cannot reject
the null hypothesis, our test remains inconclusive since our failure to reject the null
could be either due to the fact that the null hypothesis is true, or it could be the case
that the null hypothesis is false, but we do not have enough evidence to reject it.

8.2.1 Two-Sample t-tests for Comparing the Means

So far, we have assumed that the population variances σ 2
1 and σ 2

2 for the two groups
are known, so we could find the standard deviation, SD12, of the sampling distribu-
tion of X̄12. In general, this is not a realistic assumption. In this section, we discuss
statistical inference regarding population means for two groups where population
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variances σ 2
1 and σ 2

2 are unknown. As before, we can use the sample variances S2
1

and S2
2 to estimate σ 2

1 and σ 2
2 , and take this additional source of uncertainty into

account by using t-distributions instead of the standard normal distribution. We use
s2

1 and s2
2 to denote the specific values of S2

1 and S2
2 based on the observed data. We

regard s2
1 and s2

2 as our point estimates for population variances σ 2
1 and σ 2

2 and use
them to estimate the standard deviation, SD12, of the sampling distribution of X̄12.

Recall that the standard deviation of X̄12 is SD12 =
√

σ 2
1 /n1 + σ 2

2 /n2. We refer

to our estimate of this standard deviation as the standard error of X̄12 and denote it
as SE12,

SE12 =
√

s2
1/n1 + s2

2/n2.

For the body temperature example, suppose that the sample variances based on our
sample of n1 = 25 women and n2 = 27 men are s2

1 = 1.1 and s2
2 = 1.2, respectively.

Then the standard error of X̄12 is

SE12 = √
1.1/25 + 1.2/27 = 0.30.

Using the specific value of X̄12, which is denoted x̄12, as our point estimate for
the difference between the two population means, μ12 = μ1 − μ2, along with the
standard error SE12 of X̄12, we find confidence intervals for μ12 as follows:

[x̄12 − tcrit × SE12, x̄12 + tcrit × SE12],
where tcrit is the t-critical value from a t-distribution for the desired confidence
level c.

Previously, when we discussed statistical inference regarding one population
mean with unknown variance, we used a t-distribution, whose degrees of freedom
parameter df was set to n − 1. When comparing the population means for two
groups, the formula for finding the degrees of freedom is as follows:

df = (s2
1/n1 + s2

2/n2)
2

1
n1−1 (s2

1/n1)2 + 1
n2−1 (s2

2/n2)2
. (8.1)

For our example,

df = (1.1/25 + 1.2/27)2

1
25−1 (1.1/25)2 + 1

27−1 (1.2/27)2
= 49.9.

Note that the degrees of freedom is not necessarily a whole number anymore as it is
the case for inference regarding one population mean.

To find the corresponding tcrit, we follow similar steps as before. Suppose that we
are interested in 95% confidence interval for μ12. We find tcrit from the t-distribution
with df = 49.9 degrees of freedom. In R-Commander, click Distributions
→ t distribution → t quantiles. Then enter (1 − 0.95)/2 = 0.025 for
Probabilities, 49.9 for Degrees of freedom, and check the option Up-
per tail. The corresponding t-critical value is 2.01. Therefore,
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[−0.2 − 2.01 × 0.30,−0.2 + 2.01 × 0.30] = [−0.80,0.40].
Therefore, at 0.95 confidence level, we believe that the true difference between the
two means falls between −0.80 and 0.40.

The formula for finding the degrees of freedom is slightly complex. As we will
see later, for this type of hypothesis testing, we usually employ statistical software
such as R-Commander. Therefore, we rarely need to calculate the degrees of free-
dom manually. Alternatively, we could use a conservative approach and set df to
min(n1 − 1, n2 − 1), i.e., the smaller of n1 − 1 and n2 − 1. This leads to slightly
wider confidence intervals since it uses a slightly larger t-critical value. For the
above example, we could set df = min(25 − 1,27 − 1) = 24 to be conservative.
The corresponding tcrit for 0.95 confidence level is 2.06. This results in the follow-
ing 95% confidence interval:

[−0.2 − 2.06 × 0.30,−0.2 + 2.06 × 0.30] = [−0.82,0.42],
which is slightly wider than what we found previously based on a more exact calcu-
lation of the degrees of freedom.

For testing a hypothesis regarding μ12 = μ1 −μ2 when the population variances
are unknown, we follow similar steps as above, but we use SE12 instead of SD12 and
use the following t-statistic instead of the z-statistic to account for the additional
source of uncertainty involved in estimating the population variances:

T = X̄12√
S2

1/n1 + S2
2/n2

,

where X̄12 = X̄1 − X̄2 as before. Using the observed data, we obtain x̄12 = x̄1 − x̄2
as the observed value of X̄12. We also use the observed data to obtain s1 and s2 as
the observed values of sample variances. Then, we calculate the observed value of
the test statistic T as follows:

t = x̄12√
s2

1/n1 + s2
2/n2

= x̄12

SE12
,

which is called the t-score.
Depending on the alternative hypothesis, we calculate pobs as

if HA : μ12 > 0, pobs = P(T ≥ t),

if HA : μ12 < 0, pobs = P(T ≤ t),

if HA : μ12 �= 0, pobs = 2 × P
(
T ≥ |t |),

where T has a t-distribution with the degrees of freedom obtained as above
(Eq. 8.1). The hypothesis testing process is then called the two-sample t-test.

For the body temperature example,

t = −0.2

0.30
= −0.67.
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Fig. 8.1 Using R-Commander to perform two-sample t -test for the body temperature example.
The binary variable Gender is selected as the factor, and the variable Temperature as the
response variable. Notice that when you click on Gender, the Difference changes to F - M
indicating that the mean of male group is subtracted from the mean of female group

The alternative hypothesis is HA : μ12 �= 0. Using the t-distribution with df = 49.9
degrees of freedom, the upper tail probability of |−0.67| = 0.67 is
P(T > 0.67) = 0.25. The observed significance level is pobs = 2 × 0.25 = 0.50,
which is considered to be large (compared to commonly used significance levels).
Therefore, the result is not statistically significant, and we cannot reject the null hy-
pothesis, which indicates that the two populations (men and women) have the same
mean body temperature.

For the above examples, we followed several steps to obtain the confidence inter-
val and perform two-sample t-test. Next, we will show how to perform statistical in-
ference regarding the difference between two population means more conveniently
in R-Commander.

From the book website (http://extras.springer.com), download the “BodyTem-
perature.txt” data and upload it into R-Commander. To use R-Commander for two
sample t-test, click Statistics → Means → Independent samples t-
test (Fig. 8.1). Select Gender as the Groups variable. When Gender is se-
lected, the Difference changes to F - M. This means that R-Commander is
considering the null and alternative hypotheses in terms of the population mean in
the female group minus the population mean in the male group. Now select Tem-
perature as the Response Variable and Two-sided for the Alterna-
tive Hypothesis. Lastly, keep the confidence level at 0.95 and option Assume
equal variances? as No.

The resulting t-score, the degrees of freedom df , the 95% confidence interval,
and the p-value are all provided in the Output window (Fig. 8.2). Based on the
observed data, the 95% confidence interval is [−0.12,0.64], which as before in-
cludes negative and positive values. We are 95% confident that the true value of
μ12 = μ1 −μ2 is between −0.12 and 0.64. Note that this range includes 0, which is
the value of the difference between the two population means according to the null
hypothesis.

The t-score is 1.35, the degrees of freedom for the t-distribution (i.e., the null
distribution) is 92.26, and the corresponding p-value is 0.18. Because the p-value

http://extras.springer.com
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Fig. 8.2 The results of two-sample t -test for the body temperature example. The t -score is 1.35,
the degrees of freedom for the t -distribution (i.e., the null distribution) is 92.26, and the corre-
sponding p-value is 0.18. The 95% confidence interval is [−0.12,0.64]

Fig. 8.3 The balance data
sets that includes
measurements of mean sway
range (in millimeters) in the
forward/backward plane and
side/side plane for two groups
of subjects: elderly and young

is 0.18, we cannot reject the null hypothesis that μ12 = 0 at commonly used signif-
icance levels (0.01, 0.05, 0.1). We say the result is not statistically significant, and
any observed difference could be due to chance alone.

As the second example, we consider an experiment where the amount of mean
sway range (in millimeters) in the forward/backward plane and side/side plane were
recorded for two groups of subjects, young and elderly, while taking part in a re-
action time test [35]. The data set includes n1 = 9 elderly subjects and n2 = 8
young subjects. Each subject was asked to stand barefoot on a “force platform”
and maintain a stable upright position. Then, they were supposed to react as quickly
as possible to an unpredictable noise by pressing a hand-held button. The noise
was produced randomly. The platform automatically measured how much a sub-
ject swayed in millimeters in both the forward/backward and the side-to-side direc-
tions.

Obtain the data set from http://lib.stat.cmu.edu/DASL/Datafiles/Balance.html,
save it as a text file and load it into R-Commander under the name balance. The
data set is shown in Fig. 8.3.

We are interested in the relationship between the age group and the sway range
in the forward/backward plane. Denote the variable for sway range in the for-

http://lib.stat.cmu.edu/DASL/Datafiles/Balance.html
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Fig. 8.4 The results of two-sample t -test for the balance example. The t -score is 2.3, the degrees
of freedom for the t -distribution is 10.97, and the corresponding p-value is 0.042. The 95% confi-
dence interval is [0.36,16.05]

ward/backward plane as X. The population mean and variance of X among the
elderly subjects are denoted as μ1 and σ 2

1 . For the young subjects, we denote the
population mean and variance of X as μ2 and σ 2

2 . We set μ12 = μ1 − μ2. We hy-
pothesize that the age group and the sway range in the forward/backward plane are
related so the population means of X for young and old subjects are different. We
specify this hypothesis as HA : μ12 �= 0. In contrast, we specify the null hypothesis
as H0 : μ12 = 0.

We can use R-Commander to estimate confidence intervals and perform hy-
pothesis testing. Click Statistics → Means → Independent samples
t-test. Select Age_Group as the Groups variable. When Age_Group is se-
lected, the Difference changes to elderly - young. This means that R-
Commander is considering the null and alternative hypotheses in terms of the popu-
lation mean in the elderly group minus the population mean in the young group.
Now select forward_backward as the Response Variable and Two-
sided for the Alternative Hypothesis. Lastly, keep the confidence level
at 0.95 and option Assume equal variances? as No.

The resulting t-score, the degrees of freedom df , the 95% confidence interval,
and the p-value are all given in the Output window (Fig. 8.4). The t-score is t = 2.3.
Based on the df = 10.97, the 95% confidence interval is [0.36, 16.05]. Therefore,
we are 95% confident that the true value of μ12 = μ1 − μ2 is between 0.36 and
16.05. Note that the values in this range are all positive. More specifically, the value
0 stated by the null hypothesis for μ12 is not included in this range. We investigate
this more formally through hypothesis testing.

The results in Fig. 8.4 show that the p-value is 0.042. Consequently, at the 0.05
significance level (but not at 0.01 significance level), the data provide enough evi-
dence to reject the null hypothesis that μ12 = 0, i.e., the population means are equal
for elderly people and young people. Therefore, at the 0.05 significance level we
conclude that the difference between the two groups in terms of the sway range in
the forward/backward plane is statistically significant. That is, the observed differ-
ence x12 = 8.2 between the two groups is not likely to be due to chance alone.
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8.2.2 Pooled t-test

When we used R-Commander to perform two-sample t-tests, we kept the option
Assume equal variances? at its default value No. This means that we do
not assume that the variances for the two groups are the same. Assuming σ 2

1 = σ 2
2

is not reasonable in general and should be avoided. Statisticians used to make this
assumption for convenience when computer programs for statistical analysis were
not available.

If we assume σ 2
1 = σ 2

2 = σ 2, we need to estimate only one (instead of two) vari-
ance parameter, σ 2, which is the common variance between the two groups. We
estimate σ 2 using the pooled sample variance, s2

p , as follows:

s2
p = (n1 − 1)s2

1 + (n2 − 1)s2
2

n1 + n2 − 2
, (8.2)

where n1 and n2 are the sample sizes and s1 and s2 are sample variances for the
two groups. Note that the pooled sample variance is in fact the weighted average of
group-specific sample variances, where the n1 − 1 and n2 − 1 are the weights (i.e.,
the group with larger sample size is weighted higher).

To obtain the t-score, the t-critical value, and p-value, we follow a similar pro-
cedure as the standard two-sample t-test discussed above, but this time, we use s2

p

instead of s2
1 and s2

2 , and set the degrees of freedom to df = n1 + n2 − 2. In this
case, the standard error (for X̄12) and t-score are calculated as follows:

SE12 =
√

s2
p/n1 + s2

p/n2 = sp
√

1/n1 + 1/n2,

t = x̄12

sp
√

1/n1 + 1/n2
,

where x̄12 is the difference between the observed sample means as before.
Repeat the steps for using R-Commander to perform two sample t-test in order

to compare body temperature between male and female groups, but this time set the
option Assume equal variances? to Yes. Compare your results with those
from the standard two sample t-test.

8.2.3 Paired t-test

When using two-sample t-test to investigate the relationship between a binary vari-
able that defines the grouping of the individuals (e.g., gender) and the response
variable (e.g., body temperature), we hope that the individuals in the two samples
are quite comparable except for the characteristic that defines the groups. In our
body temperature example, the two groups (female and male) should be similar
with respect to other possibly important factors affecting body temperature, such as
age and ethnicity, so the only factor that separates the two groups is gender. This
way, if the observed difference in mean body temperature between the two groups
is significant, it is likely to be related to gender. (Of course, even if we establish that
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there is a relationship between gender and body temperature, we cannot define it as
causation since the data are obtained from an observational study.)

While we hope that the two samples taken from the population are compara-
ble except for the characteristic that defines the grouping, this is not guaranteed
in general. For the body temperature example, one group might include relatively
older participants. To mitigate the influence of other important factors (e.g., age)
that are not the focus of our study, we sometimes pair each individual in one group
with an individual in the other group so that the paired individuals are very similar
to each other except for the characteristic that defines the grouping. For example,
when we are investigating the relationship between gender and body temperature
and we are concerned that the two samples might not be comparable with respect to
factors such as age and ethnicity, we can recruit twins with different genders for our
study so that each individual in the female group is paired by her twin in the male
group. This way, we make sure that the two samples are exactly the same in terms of
age and ethnicity, and they are comparable with respect to other possibly important
characteristics such as genetic factors.

Often, not only are the two samples related, they in fact include the same indi-
viduals. For example, suppose that we are investigating the effect of a specific diet
on blood pressure. We could of course recruit a sample of subjects and ask them to
follow that specific diet for six months. For comparison, we recruit another sample
of subjects who do not follow our prescribed diet. At the end of the study period,
we compare the two groups in terms of their blood pressure using the two-sample
t-test described previously. However, it is possible that just by chance the subjects
in the diet group tend to have lower blood pressure even before our experiment
starts. For example, they might be relatively younger than the control group, or they
might exercise more. To avoid such issues, we can design our experiment so that
the same individuals participate in both groups. To this end, we can recruit subjects
that are not following our prescribed diet, measure their blood pressure, ask them
to follow the diet for six months, and measure their blood pressure again at the end
of the study. This way, the two groups include the same subjects under different
conditions: before the diet and after the diet.

The two-sample t-test we described previously is based on the assumption that
the two groups are unrelated (independent). When the individuals in the two groups
are paired, we use the paired t-test to take the pairing of the observations be-
tween the two groups into account. In what follows, we use the study of the ef-
fect of tobacco smoke on platelet function by Levine [16] to describe this method.
In his study, Levine hypothesized that the higher frequency of arterial thrombosis
in cigarette smokers could be partially explained by increased platelet aggregation
caused by smoking. To test this hypothesis, Levine conducted an experiment where
he selected a group of eleven people and measured platelet aggregation before and
after smoking a cigarette for each individual. Therefore, observations in the “Be-
fore” sample and “After” sample are from the same subjects. For each subject, an
observation in the “Before” sample is paired with an observation in the “After” sam-
ple. The data set Platelet for this experiment is available from the book website
(http://extras.springer.com). Load the Platelet data set in R-Commander and try
viewing it (Fig. 8.5).

http://extras.springer.com
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Fig. 8.5 Viewing the
Platelet data set in
R-Commander. For 11
people, there are observations
on platelet aggregation before
smoking (Before) and
platelet aggregation after
smoking (After)

Fig. 8.6 Computing the
difference variable D in
R-Commander

To account for the dependency between the observations in the two groups,
we use the paired t-test instead of the independent two-sample t-test discussed
above. Specifically, we compare each observation in the first group to its cor-
responding observation in the second group. Using the difference between the
paired observations, the hypothesis testing problem reduces to a single sample
t-test problem (Sect. 7.4).

For the Platelet data, we want to compare platelet aggregation measurements
for the same person before and after smoking. Let us define a new random vari-
able D, which represents the difference in platelet aggregation from before to af-
ter. In R-Commander, we can create the difference variable D and then conduct a
single sample t-test. Click Data → Manage variables in active data
set → Compute new variables. Under New variable name enter D
and under Expression to compute enter Before - After, as in Fig. 8.6.
Now try viewing the data set. The values of D are the differences in platelet aggre-
gation measurements from Before to After.

Because we believe that platelet aggregation before smoking tends to be less
than after, we expect D to be negative on average. Therefore, we could express
the alternative hypothesis as HA : μ < 0, where μ is the population average of the
random variable D. However, to be conservative, we consider the possibility that μ

could also be positive and specify the alternative hypothesis as HA : μ �= 0. Then the
null hypothesis is that the mean of change in platelet aggregation due to smoking
is zero, H0 : μ = 0. We can use the methods discussed in the previous chapter for
inference regarding one population mean to find confidence intervals for μ and test
the null hypothesis. As before, we use the sample mean, D̄, for this purpose.
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Using the Platelet data, the observed value of D̄ is d̄ = −10.27. Using the
sample standard deviation s = 7.98 for D and the sample size n = 11, the standard
error (i.e., estimated standard deviation) of D̄ is

SE = 7.98√
11

= 2.41.

Suppose that we are interested in 95% confidence interval estimate for μ (i.e.,
population mean of the difference between before and after smoking). Using the
t-distribution with n−1 = 10 degrees of freedom, we obtain tcrit = 2.23. Therefore,
the 95% confidence interval is

[d̄ − tcrit × SE, d̄ + tcrit × SE] = [−10.27 − 2.23 × 2.41,−10.27 + 2.23 × 2.41]
= [−15.64,−4.90].

At 0.95 confidence level, we believe that the true mean of the difference in platelet
aggregation measurements before and after smoking is between −15.64 and −4.90.
Note that this range includes negative values only. More specifically, it does not
include the value 0 specified by the null hypothesis.

To perform hypothesis testing, we find the t-score (here, μ0 = 0 according to the
null hypothesis) as follows:

t = −10.27

2.41
= −4.26.

To find the p-value, we find the upper tail probability of |−4.26| = 4.26 from the
t-distribution with 10 degrees of freedom, and multiply the results by 2 for two-
sided hypothesis testing:

pobs = 2P(T > 4.26) = 2 × 0.0008 = 0.0016.

At 0.01 confidence level, we can reject the null hypothesis and conclude that the
test result is statistically significant. In this case, we interpret this as a statistically
significant relationship between smoking and platelet aggregation.

Now suppose that we had ignored the pairing and treated the two groups Before
and After as unrelated (independent). Then we would erroneously conduct a two-
sample t-test. The value of the t-score in this case would be t = −1.42, the degrees
of freedom would be df = 19.52, and the resulting p-value for two-sided hypothe-
sis testing would be pobs = 0.17.Then, we would fail to reject the null hypothesis at
commonly used significant levels and conclude that the relationship between smok-
ing and platelet aggregation is not statistically significant.

When performing t-tests, ignoring the dependence between the two groups is
inappropriate and possibly results in the wrong conclusion.

In general, we perform the paired t-test as follows. Suppose that there are n

observations in the first sample and n observations in the second sample. Therefore,
there are n pairs of observations and 2n observations in total. Now consider the ith
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pair of observations, xi1 and xi2, where xi1 is the observation in the first sample, and
xi2 is the corresponding observation in the second sample. We find the difference
di = xi1 − xi2 between the paired observations. We assume that di is an observation
for the random variable D. We will have n observed values for D, where each value
is the difference between a pair of observations from the original data. We now
use the single sample t-test (Sect. 7.4) to evaluate the null hypothesis H0 : μ = μ0,
where μ is the population mean of D, and μ0 is usually zero (i.e., the difference
between paired observations is zero on average). As before, the alternative is either
one sided or two sided.

Using the observed sample mean of D, which we denote as d̄ , and the observed
sample standard deviation s, we find confidence intervals for μ:

[d̄ − tcrit × SE, d̄ + tcrit × SE],
where tcrit is the factor obtained for the desired confidence level c from the
t-distribution with n − 1 degrees of freedom, and SE = s/

√
n is the standard er-

ror for the statistic D̄.
To test the null hypothesis H0 : μ = 0, we calculate the T statistic,

T = D̄

S/
√

n
,

where D̄ is the sample mean of the paired differences, S is the sample standard
deviation of D, and n is the number of pairs. If the null hypothesis is true, then the
test statistic T has the t-distribution with n − 1 degrees of freedom. We calculate
the corresponding t-score as follows:

t = d̄

s/
√

n
.

Then the p-value is the probability of having as extreme or more extreme values
than the observed t-score:

if HA : μ > 0, pobs = P(T ≥ t),

if HA : μ < 0, pobs = P(T ≤ t),

if HA : μ �= 0, pobs = 2 × P
(
T ≥ |t |).

Instead of creating the variable D and performing the single-sample t-test, we
can use R-Commander to perform a paired t-test directly. Click Statistics →
Means → Paired t-test. Select Before as the First variable and
After as the Second variable as in Fig. 8.7. Then select Two-sided as the
Alternative Hypothesis. The difference variable D is automatically calcu-
lated as the first variable minus the second variable. (If we had specified the alterna-
tive hypothesis as HA : μ < 0, we would have set the option to Difference < 0.)
The results shown in the Output window (Fig. 8.8) are identical to those found by
the single sample t-test for D.
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Fig. 8.7 Paired t -test in
R-Commander. We are
testing the null hypothesis
that the mean difference in
platelet aggregation Before
and After smoking is 0
against the alternative
hypothesis that HA : μ �= 0,
where μ is the mean of the
paired differences

Fig. 8.8 The output of the paired t -test for evaluating the null hypothesis that the mean differ-
ence in platelet aggregation Before and After smoking is 0 against the alternative hypothesis
that HA : μ �= 0. The results are similar to those based on creating the difference variable D and
performing the single sample t -test

8.3 Inference about the Relationship Between Two Binary
Variables

In this section, we discuss statistical inference methods for evaluating the relation-
ship between two binary random variables. As an example, suppose that we want
to investigate whether smoking during pregnancy increases the risk of having a low
birthweight baby. We use the birthwt data set from the MASS package for this
purpose. The random variable of interest (i.e., response variable) is low, indicating
whether the baby’s birthweight was less than 2.5 kg. The explanatory variable is
smoke, indicating the mother’s smoking status during pregnancy. Since these vari-
ables are recorded as 0 and 1, first make sure that they are converted to categorical
variables. (Click Data → Manage variables in active data set →
Convert numeric variables to factors.)

A common way to analyze the relationship between binary (in general, categor-
ical) variables is to use contingency tables. Contingency tables are a tabular rep-
resentations of the frequencies for all possible combinations of the two variables.
To obtain the contingency table in R-Commander, click Statistics → Con-
tingency tables → Two-way table. Select smoke as the Row vari-
able (i.e., X) and low as the Column variable (i.e., Y ), as in Fig. 8.9. Check
Row percentages and uncheck Chi-square test of independence
for now.
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Fig. 8.9 Creating the
contingency table for the
mother’s smoking status (the
row variable) by the baby’s
birthweight status (the
column variable)

Table 8.1 Contingency table
of low by smoke Frequency low Total

0 1

smoke 0 86 29 115

1 44 30 74

Table 8.2 Sample
proportions of babies with
normal birthweight (low=0)
and babies with low
birthweight (low=1) for each
smoking status

Proportion low Total

0 1

smoke 0 0.75 0.25 1

1 0.60 0.40 1

The resulting tables shown in the Output window (see Tables 8.1 and 8.2). Ta-
ble 8.1 provides the frequency of each cell. The first row in this table shows non-
smoking mothers, and the second row shows smoking mothers. The first column
shows the number of babies of normal birthweight, and the second column shows
the number of babies of low birthweight. We regard nonsmoking mothers as the first
group, with n1 = 115, and smoking mothers as the second group. with n2 = 74.

To perform statistical inference in this section, we rely on the CLT and assume
that the distributions of sample proportions (i.e., sample means for n binary ran-
dom variables) are approximately normal. For this assumption to be reasonable, the
frequencies in each cell of the contingency table should be at least 5.
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Table 8.2 (row percentages) provides the relative frequencies or sample propor-
tions for each row separately. For example, the proportion of babies with low birth-
weight among nonsmoking mothers (i.e., first row and second column) is 0.25.

We are interested in the relationship between the two binary variables. If hav-
ing low-birthweight babies is related to smoking during pregnancy, we expect the
population means of low-birthweight babies to be different between smoking and
nonsmoking mothers. Of course, for binary random variables, population mean is
the same as the population proportion for the outcome of interest (denoted as 1). We
denote the population proportion of low-birthweight babies for nonsmoking moth-
ers as μ1, and the population proportion of low-birthweight babies for smoking
mothers as μ2. We use μ12 to denote the difference between these two proportions:
μ12 = μ1 − μ2.

If smoking and low birthweight are related, we expect the two population propor-
tions to be different and μ12 to be away from zero. Therefore, we can express our
hypothesis regarding the relationship between the two variables as HA : μ12 �= 0. We
could of course be more specific and specify our hypothesis as HA : μ12 < 0 if we
believe that the population proportion of low-birthweight babies among nonsmok-
ing mothers, μ1, is less than the population proportion of low-birthweight babies
among smoking mothers, μ2. However, to be conservative, we use the two-sided
alternative. The corresponding null hypothesis is then H0 : μ12 = 0.

To find the confidence intervals for μ12, we use the difference between sample
proportions, X̄12 = X̄1 − X̄2, as the statistic. According to the CLT, the sampling
distribution of X̄12 is approximately normal,

X̄12 ∼ N
(
μ1 − μ2, σ 2

1 /n1 + σ 2
2 /n2

)
.

As before, we use SD12 to denote the standard deviation of the sampling distribution
of X̄12. Recall that for binary random variables, the population variance is σ 2 =
μ(1 − μ). Therefore, we can write SD12 as follows:

SD12 = √
μ1(1 − μ1)/n1 + μ2(1 − μ2)/n2.

Then, we write the sample distribution of X̄12 as

X̄12 ∼ N
(
μ12,SD2

12

)
.

The observed value of this statistic for the sample data is x̄12 = x̄1 − x̄2. For
binary random variables, it is common to use p1 and p2 for observed sample
proportions. Therefore, we denote the observed difference between sample pro-
portions as p12. For our example, p1 = 0.25 and p2 = 0.40. These are the point
estimates for μ1 and μ2, respectively. As a result, the point estimate of μ12 is
p12 = 0.25 − 0.40 = −0.15.

We also use p1 and p2 to estimate the standard deviation SD12. We refer to our
estimate of SD12 as the standard error and denote it as SE12:

SE12 = √
p1(1 − p1)/n1 + p2(1 − p2)/n2.

For the above example,

SE12 = √
0.25(1 − 0.25)/115 + 0.40(1 − 0.40)/74 = 0.07.
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Using the point estimate p12 along with the standard error SE12, we can find
confidence intervals for μ12 as follows:

[p12 − zcrit × SE12,p12 + zcrit × SE12],
where zcrit is obtained for a given confidence level c as before. Note that we use
zcrit even though the population variances were unknown. This is because we did
not use the data to estimate them separately; rather, we used our point estimates for
the population proportions.

For the birthweight example, the 95% confidence interval of μ12 is

[−0.15 − 2 × 0.07,−0.15 + 2 × 0.07] = [−0.29,−0.01].
Therefore, we are 95% confident that the difference between the two population
proportions falls between −0.29 and −0.01. Note that all the values in this range
are negative. The value of μ12 is negative when μ1 (i.e., population proportion of
low-birthweight babies among nonsmoking mothers) is less than μ2 (i.e., population
proportion of low-birthweight babies among smoking mothers). More specifically,
the interval does not include 0, which is the value specified by the null hypothesis.

More formally, we test the null hypothesis, H0 : μ12 = 0, using the two-sample
z-test as follows. First, we obtain the z-score,

z = p̄12

SE12
.

Then, we calculate the p-value, which is the observed significance level:

if HA : μ12 > 0, pobs = P(Z ≥ z),

if HA : μ12 < 0, pobs = P(Z ≤ z),

if HA : μ12 �= 0, pobs = 2 × P
(
Z ≥ |z|).

The above tail probabilities are obtained from the standard normal distribution.
For our example,

z = −0.15

0.07
= −2.14.

Because we specified the alternative hypothesis as H12 : μ12 �= 0, the p-value is
two times the upper tail probability of |−2.14| = 2.14 from the standard normal
distribution, that is, pobs = 2 × 0.016 = 0.032.

At 0.05 level (but not at 0.01 level), we can reject the null hypothesis and con-
clude that the observed difference in the proportion of low-birthweight babies is
statistically significant and is probably not due to the chance alone. Therefore, at
0.05 level, we can conclude that the two variables, smoking during pregnancy and
having low-birthweight babies, are related.

8.4 Inference Regarding the Linear Relationship Between Two
Numerical Variables

In this section, we discuss statistical inference methods for investigating possible
linear relationship between two numerical variables. As an example, suppose that
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we believe that percent body fat is related to the abdomen circumference measure-
ment among men. Let us denote abdomen circumference as X and percent body fat
as Y .

A simple approach to quantify the strength and direction of a linear relation-
ship between two random variables is Pearson’s correlation coefficient, also
known as Pearson’s product-moment correlation. For a population, we de-
note this measure as ρ (Greek letter “rho”) and calculate it as

ρ =
∑N

i=1(xi − μx)(yi − μy)

Nσxσy

.

Here, μx and μy are the population means of X and Y , σx and σy are the
population standard deviations, and N is the population size.

Therefore, ρ is the average of the product of deviations (each observation from
its population mean) scaled by the standard deviations. It is a number between −1
and 1, and as the linear relationship becomes stronger, ρ moves away from zero and
approaches 1 for positive relationships and −1 for negative relationships.

As usual, we cannot measure ρ directly, because we do not have access to all
members of the population. Therefore, we need to estimate ρ by obtaining a sample
of size n from the population.

The usual estimator for the population correlation coefficient ρ is the sam-
ple correlation coefficient R. Given n pairs of values, (X1Y1), (X2, Y2), . . . ,

(Xn,Yn), randomly sampled from the population, we obtain R as

R =
∑n

i=1(Xi − X̄)(Yi − Ȳ )

(n − 1)SXSY

.

Here, X̄ and Ȳ are the sample means, and Sx and Sy are the sample standard
deviations for X and Y , respectively. Note that similar to the sample variance,
we use n − 1 instead of n in the denominator. We denote the specific value of
R based on our sample as r ,

r =
∑n

i=1(xi − x̄)(yi − ȳ)

(n − 1)sxsy
.

Here, (xn, yn), (xn, yn), . . . , (xn, yn) are n pairs of observed values in our
data.

To examine the relationship between percent body fat and abdomen circumfer-
ence, we use the bodyfat data set (discussed in Chap. 3) in order to calculate r as
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Fig. 8.10 Viewing the
correlation matrix for
abdomen and siri. Each
element is the sample
correlation coefficient
between the row variable and
column variable

our point estimate for ρ. (Follow the steps discussed in Chap. 3 to load the data in R-
Commander.) In this data set, siri shows the percent body fat for each person, and
abdomen shows the measurements for abdomen circumference in centimeters. To
calculate r , click Statistics → Summaries → Correlation matrix.
Select abdomen and siri (hold down the control key) as the Variables and
Pearson product-moment for Type of Correlations.

The result, shown in Fig. 8.10, has a matrix format. Each element of the matrix
provides the sample correlation coefficient between the corresponding row and col-
umn variables. The top right element, r = 0.81, is the sample correlation coefficient
between abdomen and siri based on a sample of n = 252 men. This is the same
as the bottom left element, which shows the correlation coefficient between siri
and abdomen, since the order of the two random variables does not affect their
correlation. The sample correlation coefficient in this case is away from zero and
close to 1. This indicates that there is a strong positive linear relationship between
the two variables: as one increases, the other one also tends to increase.

Now repeat the above steps to find the sample correlation coefficient between
height and siri. This time, r = −0.09. While the estimate of correlation coef-
ficient is negative, it does not indicate a strong linear relationship between the two
variables because it is very close to zero. In what follows, we discuss a simple sta-
tistical method for evaluating the strength of the linear relationship captured by the
correlation coefficient.

We can express our hypothesis about the linear relationship between two random
variables in terms of their correlation coefficient. For example, we might believe
that as abdomen circumference increases, percent body fat also increases (i.e., there
is a positive relationship between the variables). Then the alternative hypothesis
can be formalized as HA : ρ > 0. Likewise, we might believe that as the height
increases, percent body fat decreases: HA : ρ < 0. On the other hand, we might
believe that percent body fat is related to height, but we are unsure of the direction:
HA : ρ �= 0. In all cases, the null hypothesis is that these variables are not linearly
related, H0 : ρ = 0.

Note that we emphasize the word “linear” since the correlation coefficient cap-
tures the linear relationship between two variables; when it is close to zero, it means
that either the two variables are not related, or they are related, but the relation-
ship is not linear. Therefore, we should be cautious about interpreting a correlation
coefficient close to zero as no relationship between the random variables.
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To evaluate the null hypothesis that the two variables are not linearly related
(H0 : ρ = 0), we could use a correlation test based on the following test
statistic:

T = R√
(1 − R2)/(n − 2)

,

where R is the sample correlation coefficient, and n is the sample size. If the
null hypothesis is true, then the distribution of T (i.e., its null distribution) is
the t-distribution with n − 2 degrees of freedom.
The observed value of the test statistic is denoted t and calculated as

t = r√
(1 − r2)/(n − 2)

,

where r is the observed correlation coefficient based on our sample. Then we
determine the amount of support against the null hypothesis as:

if HA : ρ > 0, pobs = P(T ≥ t),

if HA : ρ < 0, pobs = P(T ≤ t),

if HA : ρ �= 0, pobs = 2 × P
(
T ≥ |t |).

As an example, suppose that we want to examine the linear relationship between
height and siri. We hypothesize that the two variables are related, but we are
reluctant to specify the direction of the relationship. Therefore, we want to test H0 :
ρ = 0 versus HA : ρ �= 0.

Previously, we found that the sample correlation coefficient between these two
variables is r = −0.09 based on a sample of size n = 252 men. Therefore, the ob-
served value of the test statistic is

t = −0.09√
(1 − (−0.09)2)/(252 − 2)

= −1.42.

Since the alternative hypothesis is HA : ρ �= 0, the p-value is obtained by calcu-
lating the upper tail probability of |−1.42| = 1.42 based on a t-distribution with
252 − 2 = 250 degrees of freedom and multiplying the results by 2. Using R-
Commander, the observed significance level is pobs = 2P(T ≥ 1.42) = 0.16. At
commonly used significance levels (0.01, 0.05, and 0.1), this is not a statistically
significant result, and we cannot reject the null hypothesis. That is, we cannot re-
ject the possibility that the observed negative correlation coefficient could have been
due to the chance alone, and we cannot conclude that the two variables are linearly
related.

Alternatively, in R-Commander, we can directly test our hypotheses regarding
the linear relationship between two numerical variables. For the height and percent
body fat example, the null and alternative hypotheses were H0 : ρ = 0 and HA :
ρ �= 0. To evaluate the null hypothesis, click Statistics → Summaries →
Correlation test. Again, select height and siri as the Variables and



8.5 Advanced 215

Fig. 8.11 Correlation test in
R-Commander. Here, we are
testing the null hypothesis
H0 : ρ = 0 against the
alternative HA : ρ �= 0 for the
relationship between
height and siri in the
bodyfat data set

Fig. 8.12 Output for the hypothesis test regarding the linear relationship between height and per-
cent body fat. Based on a sample of n = 252 men, the observed test statistic is t = −1.42, and
p-value is pobs = 2P (T > |−1.42|) = 0.16 based on the t -distribution with 250 degrees of free-
dom

Pearson product-moment for the Type of Correlation, as shown in
Fig. 8.11. Then choose the Two-sided as the Alternative Hypothesis.

The results are given in the Output window (Fig. 8.12). The value of the observed
test statistic shown as t= −1.42, and the degrees of freedom are 250. The observed
significance level is pobs = 2P(T > 1.42) = 0.16.

As we can see in Fig. 8.12, R-Commander also provides the 95% confidence
interval for the population correlation coefficient ρ. For this example, the 95% con-
fidence interval is [−0.21,0.03]. Therefore, we are 95% confident that the true value
of the correlation coefficient is between −0.21 and 0.03. Note that the interval in-
cludes negative and positive values. More specifically, it includes 0, which is the
value of ρ according to the null. This is consistent with the result of our hypothesis
testing, where we failed to reject the null hypothesis.

8.5 Advanced

In this section, we review some useful R functions for testing hypotheses related to
the relationship between two variables.
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8.5.1 Two-Sample t-test Using R

For two-sample t-test, we use the function t.test(). For example, using the
birthwt data set, we can examine whether smoking during pregnancy and birth-
weight are related:

> t.test(bwt ~ smoke, mu = 0, alternative = "two.sided",
+ data = birthwt)

Welch Two Sample t-test

data: bwt by smoke
t = 2.7299, df = 170.1, p-value =
0.007003
alternative hypothesis: true difference in means is not
equal to 0
95 percent confidence interval:
78.57486 488.97860

sample estimates:
mean in group 0 mean in group 1

3055.696 2771.919

The first argument to the t.test() function is the “formula” specifying the re-
sponse variable and the factor (explanatory) variable in the form of response ∼
factor. In this case, the response variable is bwt, and the factor is smoke. We
are using the data=birthwt option to avoid having to write birthwt$bwt ∼
birthwt$smoke. The mu option is used to specify the difference in the popula-
tion means according to the null hypothesis.

When the observations in the two groups are related (paired), we need use the
paired t-test. For example, suppose our alternative hypothesis is that platelet aggre-
gation is lower before smoking than after, HA : μ < 0 versus H0 : μ = 0. In R, we
still use the function t.test() to examine the support for these hypotheses, but
this time, we set the argument paired to TRUE:

> t.test(Platelet$Before, Platelet$After,
+ alternative = "less", paired = TRUE)

Paired t-test

data: Platelet$Before and Platelet$After
t = -4.2716, df = 10, p-value =
0.0008164
alternative hypothesis: true difference in means is
less than 0
95 percent confidence interval:

-Inf -5.913967
sample estimates:
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mean of the differences
-10.27273

The first argument to the t.test() function provides the first group of observa-
tions, and the second argument provides the second group of observations.

Removing the paired=TRUE option would ignore the dependence between the
observations in the two groups (in other words, we would use the independent two-
sample t-test):

> t.test(Platelet$Before, Platelet$After,
+ alternative = "less")

Welch Two Sample t-test

data: Platelet$Before and Platelet$After
t = -1.4164, df = 19.516, p-value =
0.08621
alternative hypothesis: true difference in means is
less than 0
95 percent confidence interval:

-Inf 2.251395
sample estimates:
mean of x mean of y
42.18182 52.45455

The results are very different. Ignoring the dependence between observations is in-
appropriate and might result in wrong conclusions.

8.5.2 Correlation Test Using R

To test hypotheses about a linear relationship between two numeric variables, we
use Pearson’s correlation coefficient and the cor.test() function in R. The fol-
lowing code examines whether percent body fat and abdomen circumference from
the bodyfat data set are positively correlated, HA : ρ > 0 versus H0 : ρ = 0:

> cor.test(bodyfat$siri, bodyfat$abdomen,
+ alternative = "greater")

Pearson’s product-moment correlation

data: bodyfat$siri and bodyfat$abdomen
t = 22.1117, df = 250, p-value <
2.2e-16
alternative hypothesis: true correlation is greater
than 0
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Table 8.3 Contingency table
of heart attack by the type of
treatment

Heart attack No heart attack

Placebo 189 10845

Aspirin 104 10933

95 percent confidence interval:
0.77505 1.00000
sample estimates:

cor
0.8134323

The arguments to the cor.test() function are the two random variables, and
the alternative="greater" option specifies the HA : ρ > 0. As before, the
other options are “two.sided” and “less”.

8.6 Exercises

1. Use the Pima.tr to find the difference between the sample means of diastolic
blood pressure for diabetic and nondiabetic Pima Indian women. Is the differ-
ence between the means of diastolic blood pressure statistically significant at
0.01 level?

2. Answer the above question for the number of pregnancies and BMI.
3. In Sect. 3.4, we discussed a study comparing ascorbic acid (one form of vita-

min C) content between two different cultivars, c39 and c52, of cabbage. The
data set cabbages is available from the MASS package. Use an appropriate
hypothesis testing procedure to examine the relationship between the vitamin C
content and cultivars.

4. Charles Darwin (1809–1882), the author of The Origin of Species (1859) in-
vestigated the effect of cross-fertilization on the size of plants. The Data and
Story library (http://lib.stat.cmu.edu/DASL/Stories/student.html) has the results
of one of his experiments (given by R.A. Fisher). In this experiment, pairs of
plants, one cross- and one self-fertilized, were planted and grown in the same
plot. The following table gives the difference in height (eighths inches) for
15 pairs of plants (cross-fertilized minus self-fertilized Zea mays) raised by
Charles Darwin. Use this data to evaluate the null hypothesis that the two meth-
ods are not different.

Difference: 49,−67,8,16,6,23,28,41,14,29,56,24,75,60,−48

5. Consider the contingency table (Table 8.3) based on the study conducted to
investigate whether taking aspirin reduces the risk of heart attack. Evaluate the
null hypothesis that there is no relationship between taking aspiring and the risk
of heat attack.

http://lib.stat.cmu.edu/DASL/Stories/student.html
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6. Use the birthwt data set to examine the relationship between hypertension
history (ht) and the risk of having low-birthweight baby (low).

7. In Sect. 3.6, we used the GBSG (German Breast Cancer Study Group) data set
from the mfp package to create a new variable called rfs (recurrence-free
survival) such that rfs=“No” if the patient had at least one recurrence or died
(i.e., cenc=1) and rfs=“Yes” otherwise. Use the data to investigate whether
recurrence-free survival is related to hormonal therapy. (In GBSG, the variable
htreat indicates whether a patient has received hormonal therapy or not.)

8. For the Pima Indian women population, find the sample correlation coefficient
between BMI and diastolic blood pressure. Is the correlation between these two
variables statistically significant at 0.01 level?

9. Use the “BodyTemperature.txt” to estimate the correlation coefficient between
normal body temperature and heart rate. Is the correlation between these two
variables statistically significant at 0.01 level? How about the correlation be-
tween age and normal body temperature?

10. Read the article “Caloric restriction improves memory in elderly humans” by
Witte et al. [39]. (This paper is available online at http://www.pnas.org/content/
106/4/1255.full.) What was their estimate of the correlation coefficient between
memory score and insulin level? Was the correlation statistically significant at
0.1 level?

11. Read the paper “A Critical Appraisal of 98.6°F, the Upper Limit of the Nor-
mal Body Temperature, and Other Legacies of Carl Reinhold August Wunder-
lich” by Mackowiak et al. [19]. (The paper is available online at http://jama.
ama-assn.org/cgi/reprint/268/12/1578.) What method they used to evaluate the
relationship between gender and body temperature? What did they find? What
was their conclusion about the relationship between race and body temperature?

12. Read the paper by Kettunen et al. [14] on the effect of arthroscopy in patients
with chronic patellofemoral pain syndrome. (This paper is available online at
http://www.biomedcentral.com/1741-7015/5/38.)
(a) What is the point estimate and 95% confidence interval for the mean im-

provement in the Kujala score for each treatment group.
(b) Was the difference between the two group in terms of mean improvement

in the Kujala score statistically significant?
(c) Based on the results published in this paper, create a contingency table,

where the row variable is the treatment group, and the column variable is
an indicator that is equal to 1 if the patient reports at least moderate im-
provement at the end of follow-up period and 0 otherwise. Investigate the
relationship between the type of treatment and reporting at least moderate
improvement.

http://www.pnas.org/content/106/4/1255.full
http://www.pnas.org/content/106/4/1255.full
http://jama.ama-assn.org/cgi/reprint/268/12/1578
http://jama.ama-assn.org/cgi/reprint/268/12/1578
http://www.biomedcentral.com/1741-7015/5/38


Chapter 9
Analysis of Variance (ANOVA)

9.1 Introduction

In Chap. 8, we discussed how two-sample t-tests can be used to evaluate hypothe-
ses regarding the difference between the means of two groups. We mentioned that
we typically use this approach to investigate the relationship between a binary cat-
egorical (factor) variable, which specifies the two groups, and a numerical variable,
which is regarded as the response variable. In this chapter, we discuss Analysis of
Variance (ANOVA) models that generalize the t-test and are used to compare the
means of multiple groups identified by a categorical variable with more than two
possible categories. As before, the categorical variable is called the factor and is
typically considered as the explanatory variable. In contrast, the numerical variable,
whose means across different groups are compared, is regarded as the response vari-
able.

In this chapter, we mainly focus on ANOVA models with only one factor. These
models are known as one-way ANOVA. In Advanced section, we briefly discuss
two-way ANOVA models that include two factors (i.e., two categorical explanatory
variables) in the analysis.

9.2 Analysis of Variance (ANOVA)

As an example, we analyze the Cushings data set [2], which is available from
the MASS package. Cushing’s syndrome is a hormone disorder associated with high
level of cortisol secreted by the adrenal gland. The Cushings data set includes 27
observations (n = 27). For each individual in the sample, the urinary excretion rates
of two steroid metabolites are recorded. These are urinary excretion rate (mg/24 hr)
of Tetrahydrocortisone and urinary excretion rate (mg/24 hr) of Pregnanetriol. The
Type variable in the data set shows the underlying type of syndrome, which can
be one of four categories: adenoma (a), bilateral hyperplasia (b), carcinoma (c), and
unknown (u).
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Fig. 9.1 Viewing the
Cushings data set in
R-Commander. For 27
individuals, the urinary
excretion rates of two steroid
metabolites and the
underlying type of syndrome
are recorded

To load the data in R-Commander, click Data → Data in packages
→ Read data set from an attached package. Select MASS under
Package and Cushings under Data set. Figure 9.1 shows a small part of
the data. The highlighted observation in row “c4” is an outlier with Tetrahy-
drocortisone = 53.8, which is much higher than typical values observed
for the variable Tetrahydrocortisone. We should further investigate this ob-
servation and remove it only if we are convinced that it was recorded by mistake
and we cannot recover the correct values. In what follows, we assume that this is
a legitimate observation, so we include it in our analysis. (If we decide to remove
an outlier that is recorded by mistake, we can do so by clicking Data → Active
data set→ Remove row(s) from active data set and entering the
row name, e.g., ‘c4’ (with quotations), under Indices or quoted names
of row(s) to remove.)

Our objective is to find whether the four groups are different with respect to
urinary excretion rate of Tetrahydrocortisone. We denote by Y the urinary excretion
rate of Tetrahydrocortisone and by X the Type variable, where X = 1 for Type=a,
X = 2 for Type=b, X = 3 for Type=c, and X = 4 for Type=u. Then, our objec-
tive could be defined as investigating whether the mean of the response variable Y

differs for different values (levels) of the factor X.
Denote the individual observations as yij : the urinary excretion rate of Tetrahy-

drocortisone of the j th individual in group i. The total number of observations is
n = 27, and the number of observations in each group is n1 = 6, n2 = 10, n3 = 5,
and n4 = 6. The overall (for all groups) observed sample mean for the response
variable is ȳ = 10.46. We also find the group specific means, which are ȳ1 = 3.0,
ȳ2 = 8.2, ȳ3 = 19.7, and ȳ4 = 14.0. You can find the group specific means by
clicking Statistics → Summaries → Numerical summaries. Then se-
lect Tetrahydrocortisone under Variables, and select Type by clicking
Summarize by groups.

Now, consider the dot plot of Y by X in Fig. 9.2. Here, each observation is repre-
sented by a point, and the overall average ȳ of the response variable is represented
by the dashed horizontal line at 10.46. Likewise, the sample average (ȳ1, . . . , ȳ4) for
each group is shown as a small horizontal line.

Across the four groups, there appears to be considerable variation in the group
means (i.e., deviations of the small solid lines from the dashed line). Likewise,
within groups, there are different degrees of variation of the observations from their
specific mean (i.e., variation of points around the corresponding small horizontal
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Fig. 9.2 Strip chart of
Tetrahydrocortisone
by syndrome type. The
overall sample mean ȳ of
Tetrahydrocortisone
for all groups is shown as the
dashed horizontal line, and
the sample average ȳi for
each group is shown as the
small horizontal line

line). Both sources of variation contribute to the total variation of the observations
around the overall mean (dashed line).

In general, the between-groups variation is denoted as SSB and calculated
by

SSB =
k∑

i=1

ni(ȳi − ȳ)2, (1)

where k is the number of groups (here, 4).

To find SSB , we first find the squared difference between each group mean (i.e.,
the solid short lines) and the overall mean (i.e, the dashed line). In order to account
for varying sample sizes, the squared distance is then multiplied by the number
of observations in that group, ni . (Therefore, groups with more observations are
weighted more heavily.) The sum of these squared and weighted differences is the
between-groups variation.

The within-groups variation is denoted as SSW and calculated by

SSW =
k∑

i=1

ni∑

j=1

(yij − ȳi )
2.
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To find SSW , we first calculate the sum of squared deviations of each observation
(i.e., the point) from the group mean (i.e., the short horizontal line) for each group
separately. Then we add the results over all groups.

We measure the total variation in Y by

SS =
k∑

i=1

ni∑

j=1

(yij − ȳ)2 .

To find SS, we find the sum of squared distances of each observation to the overall
average (i.e., the dashed line). It seems intuitive and can be shown that the total
variation SS is equal to the sum of the between-groups variation SSB and the within-
groups variation SSW ,

SS = SSB + SSW .

In other words, the total variation can be attributed partly to the variation within
groups and partly to the variation between groups. SSB is interpreted as the part
of total variation SS that is associated with (and can be explained by) the factor
variable X (e.g., syndrome type). In contrast, SSW is regarded as the unexplained
part of total variation and is regarded as random.

In our example, if Tetrahydrocortisone does not depend on the type of
syndrome, we expect the group-specific averages to be the same. That is, we ex-
pect the solid lines to lie on the dashed line and any observed variation of solid
lines around the dashed line to be due to chance alone. On the other hand, if there
is a substantial difference in Tetrahydrocortisone depending on the type of
syndrome, then we would expect the variation between groups to be large. We exam-
ine the amount of between-groups variation relative to the variation within groups
(which occurs randomly).

Let us denote the overall population mean of Y as μ and group-specific popula-
tion means as μ1, . . . ,μ4. Then we can express the null hypothesis of no difference
in means between the groups as

H0 : μ1 = μ2 = μ3 = μ4 = μ.

That is, if we had data for the whole population, the small solid lines would lie on
the dashed line. The alternative hypothesis HA is that at least one of the group means
μi is different from the overall mean μ.
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Fig. 9.3 Comparing the plots
of the probability density
function for an F -distribution
with various degrees of
freedom. The solid line
represents the pdf of F(1,1),
the dashed line represents the
pdf of F(2,5), and the dotted
line represents the pdf of
F(10,20)

The process of evaluating hypotheses regarding the group means of mul-
tiple populations is called the Analysis of Variance (ANOVA). Since we
are only considering one factor only, this method is specifically called one-
way ANOVA. The test statistic for examining the null hypothesis is called
F -statistic (more specifically, ANOVA F -statistic) and is defined as

F = SSB/(k − 1)

SSW/(n − k)
,

where n is the total sample size, and k is the number of groups. The numerator
is called the mean square for groups, and the denominator is called the mean
square error (MSE).
Note that the above test statistic is based on comparing the variation between
groups (which is explained by the factor) and the variation within groups
(which is unexplained and random). When the group means are substantially
different, and their variation is relatively large compared to the random varia-
tions within groups, the value of the F statistic becomes large.
We denote the observed value of the F -statistic as f . If the null hypothesis is
true, then the test statistic F has an F -distribution.

The F -distribution, which is a continuous probability distribution, is very im-
portant for hypothesis testing. It is specified by two parameters, df1 and df2, and
is denoted as F(df1, df2). We refer to df1 and df2 as the numerator degrees of
freedom and denominator degrees of freedom, respectively. Both parameters must
be positive. Figure 9.3 shows the pdf of F -distribution for different values of df1
and df2.
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For the one-way ANOVA, the F -statistic has F(df1 = k − 1, df2 = n − k)

distribution under the null hypothesis (i.e., assuming that the null hypothesis
is true). Here, df1 = k − 1, which is the number of groups minus 1, is called
the numerator degrees of freedom, and df2 = n − k, which is the sample size
minus the number of groups, is called the denominator degrees of freedom.
The underlying assumption here is that the observations in each group are IID
(e.g., obtained through SRS) and have a normal distribution. The results are
not sensitive to the normality assumption as long as the sample sizes are large
enough for the CLT to hold.
Additionally, the underlying assumption of the ANOVA method discussed
here is that all groups have the same population variance, σ 2, which is un-
known.

For the above example, the degrees of freedom parameters are df1 =
4 − 1 = 3 and df2 = 27 − 4 = 23. Try plotting the F(3,23) distribution using
R-Commander. Click Distribution → Continuous distributions
→ F distribution Plot F distribution. Set the Numerator de-
grees of freedom to 3 and the Denominator degrees of freedom
to 23.

When the group means are very different from each other, the between-groups
variation SSB is high. As a result, the F -statistic is large. Therefore, large values of
the F -statistic are considered as extreme if the null hypothesis is true. Therefore,
large values of F provide strong evidence against the null hypothesis. To find the
observed significance level pobs, we find the probability of values as or more ex-
treme than the observed value of the test statistic, f . For this, we calculate the upper
tail probability of f based on an F(df1 = k − 1, df2 = n − k) distribution. For the
above example, the observed value of the test statistic is f = 3.2. Therefore, the
p-value is pobs = P(F ≥ 3.2), which is shown as the shaded area in Fig. 9.4.

To calculate the p-value in R-Commander, click Distributions → Con-
tinuous distributions→ F distribution→ F probabilities.
Then enter 3.2 for Variable value, 3 for Numerator degrees of free-
dom, and 23 for Denominator degrees of freedom. Also make sure the
Upper tail option is selected. The result, given in the Output window, sug-
gests that there is moderate evidence against the null hypothesis: pobs = P(F ≥
3.2) = 0.04. Therefore, we can reject H0 at 0.05 significance level (but not at 0.01)
and conclude that the differences among group means for urinary excretion rate of
Tetrahydrocortisone are statistically significant (at 0.05 level).

Using R-Commander, we can directly perform the Analysis of Variance. Click
Statistics → Means → One-way ANOVA. Select Tetrahydrocorti-
sone as the Response Variable. (Notice how R-Commander correctly iden-
tifies Type as the Factor.) The results of the analysis of variance are presented
as a table called the ANOVA table (Fig. 9.5). The first row of this table is for the
group variable (Type) and shows the explained part of the total variation (i.e., be-
tween groups). The last row (Residuals) shows the unexplained part (i.e., ran-
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Fig. 9.4 The density plot of
F(3,23)-distribution. This is
the distribution of F -statistic
for the Cushings data
assuming that the null
hypothesis is true. The
observed value of the test
statistic is f = 3.2, and the
corresponding p-value is
shown as the shaded area
above 3.2

Fig. 9.5 The ANOVA table resulting from the hypothesis test regarding the mean Tetrahy-
drocortisone of various syndrome types. Specifically, the null hypothesis is that there is no
difference in the group means. The first row corresponds to the factor, and the second to the resid-
uals

dom variations within groups) of the total variation in the data . The first column
shows the degrees of freedom (Df), which are k − 1 = 3 and n − k = 23, respec-
tively. The values of the second column, labeled Sum Sq, are the between-groups
and within-groups variations: SSB = 893.5 and SSW = 2123.6. The observed value
of F -statistic is f = 3.2 given under the column labeled F value. The resulting
p-value is then 0.04. Below the ANOVA table, R-Commander provides the group-
specific means, the group-specific standard deviations, and the number of observa-
tions in each group, ni .

In Fig. 9.7, we showed the dot plot of Tetrahydrocortisone by syndrome
type. Alternatively, we can use R-Commander to create the plot of means as de-
scribed in Chap. 3. For this, click Graphs → Plot of means and select Type
as the Factors and Tetrahydrocortisone as the Response Variable
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Fig. 9.6 Creating a plot of
means for the
Tetrahydrocortisone
by syndrome type from the
Cushings data set. Here,
we choose Confidence
intervals at 0.95 level of
confidence for Error
Bars. This way,
R-Commander shows the
95% confidence interval
around the sample mean for
each group

Fig. 9.7 Plot of means for
Tetrahydrocortisone
by syndrome type. The points
show the location of the
sample mean for the
corresponding syndrome
type. The bars show the 95%
confidence intervals around
the sample means

(Fig. 9.6). In Sect. 3.4, we chose No error bars. Now that we learned about
confidence intervals, we can choose the option Confidence intervals in-
stead. This way, R-Commander uses dashed horizontal lines to show the corre-
sponding confidence interval around the sample mean of each group as shown in
Fig. 9.7. Based on this graph, the type “a” syndrome has the lowest sample mean.
The sample means increase from type “a” to type “c”, and then it slightly drops for
type “u”.

9.3 The Assumptions of ANOVA

To use ANOVA models, we assume that the samples are selected randomly from
the population and independently from each other (e.g., by using simple random
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Fig. 9.8 Plot of means for
the log of
Tetrahydrocortisone
by syndrome type

sampling). Further, we assume that the response variable in each group has a normal
distribution. While the means of these normal distributions can change from one
group to another, we assume that they all have the same variance. This is the same
assumption we used for pooled t-tests.

Violation of these assumption could lead to wrong inference. The independence
assumption is violated, for example, if we obtain multiple observations (e.g., over a
period of time) for each subject in our sample. In this case, we need to use repeated-
measures ANOVA (not discussed in this book), which can be regarded as a gener-
alization of paired t-tests. The consequence of violating the normality assumption
is not very severe as long as the sample sizes for all the groups are large enough so
the distributions of the sample means are approximately normal due to the central
limit theorem. Finally, the assumption of equal variance among all groups is usually
unrealistic and is often violated in practice. This is clearly the case for the example
discussed in this chapter (Fig. 9.2). In practice, you are likely to see problems more
similar this example (maybe not ad sever) that problems where the assumption of
equal variance holds. Similar to the normality assumption, the results of ANOVA
are not severely affected if the group variances moderately differ from each other.
Alternatively, we could use ANOVA models without the equal variance assumption.
See Weerahandi (2003) [38] for example.

Sometimes, we can stabilize the variance (i.e., making it approximately constant)
by using simple data transformations such as log or square root. For the example
discussed above, using the log-transformation of Tetrahydrocortisone (instead of the
original variable) makes the equal variance assumption more reasonable (Fig. 9.8).
In R-Commander, create a new variable by taking the log of Tetrahydrocortisone.
Then, repeat the steps discussed above to perform analysis of variance for this newly
created variable. In this case, the observed value of F -statistic is f = 7.6, and the
corresponding p-value is 0.001.
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9.4 Advanced

In this section, we briefly discuss ANOVA with two factors. We also provide some
useful R functions to perform ANOVA.

9.4.1 Two-Way ANOVA

Consider the study by Bailey (1953) to investigate the inheritance of maternal in-
fluences on the growth of the rat [29]. In this study, rat litters were separated from
their natural mothers, and they were nurtured by foster mothers. Mothers and litters
can have four different genotypes: A, B, I, and J. In R-Commander, load the geno-
type data set from the MASS library. Suppose that we want to investigate whether
weight gain (Wt) of the litter (in grams) at age 28 days is related to foster mother’s
genotype (Mother). (Rat litters were separated from their natural mothers at birth
and given to foster mothers.) For this, we could use the one-way ANOVA procedure
to compare the means of weight gain across different groups (genotypes). That is,
we regard Wt as the response variable and Mother as the factor. For this example,
however, we might want to take into account the genotype of rat litters (Litter) as
well. The litter’s genotype is itself a factor, and even though it is not the main factor
in this study, it should be included in the analysis since we believe that it could influ-
ence the relationship between the main factor, mother’s genotype, and the response
variable, weight gain.

An ANOVA with two factors is called a two-way ANOVA. (In general, we can
have a multi-way ANOVA by including multiple factors.) In many two-way ANOVA
procedures, one of the two factors is the main explanatory variable of interest. The
other factor is included since it is believed to be important in the study of the rela-
tionship between the main factor and the response variable. This is the case for the
“rat genotype” example. In this example, we are mainly interested in the variation
of weight gain across different genotypes of mothers. However, we need to account
for possible weight gain variation due to the genotype of the litters. By including
both factors Mother and Litter, we are dividing the total variation, SS, into
three sources: (1) variation explained by the mother’s genotype, SSM , (2) variation
explained by the litter’s genotype, SSL, and (3) the random variation, SSE , of weight
gain not explained by either mother’s genotype or litter’s genotype. (Note that we
have switched our notation from SSW to SSE .) So,

SS = SSM + SSL + SSE.

This type of two-way ANOVA is commonly used for experiments with a ran-
domized block design discussed in Sect. 1.7. For these experiments, the treatment
variable is the factor whose effect on the response variable is of main interest. The
categorical variable used for blocking is the factor which is believed to be important,
but its relationship with the response variable is not the focus of the experiment.

In the next subsection, we show how two-way ANOVA models can be imple-
mented in R. Here, we discuss how R-Commander can be used for two-way ANOVA
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Fig. 9.9 The output of two-way ANOVA for “rat genotype”. Here, the weight gain is the response
variable; the two factors are mother’s genotype and litter’s genotype

problems, where both factors are considered to be important, and we are interested in
learning how the relationship between one factor with the response variable changes
depending on the value of the other factor. For example, we might be interested in
the effect of three different diets, A,B , and C, on blood pressure, but we believe
that the diet effect varies between male and female groups. In this case, we say that
there is an interaction between the two factors diet and gender.

For the “rat genotype” example, suppose we believe that the relationship between
mother’s genotypes and weight gain changes depending on litter’s genotype. There-
fore, we need to consider possible interaction between Mother and Litter. We
use M ×L to denote this interaction. Including the interaction between the two fac-
tors in a two-way ANOVA means that we believe a part of the total variation SS
is explained by the combination of the two factors. That is, we can write the total
variation as follows:

SS = SSM + SSL + SSM×L + SSE.

The variation in the response variable due to specific combinations of the two
factors is usually referred to as the interaction effect. In contrast, the variation in
the response variable due to one of the factors alone (i.e., regardless of the values of
the other factor) is called the main effect.

Now we use R-Commander to perform two-way ANOVA for the “rat genotype”
example. Make sure genotype (available from the MASS package) is the active
data set and then click Click Statistics → Means → Multi-way ANOVA.
Under Factors, select both Mother and Litter. The response variable Wt is
automatically selected since it is the only numerical variable in this data set. The
ANOVA table appears in the Output window and is shown in Fig. 9.9.

By default, R-Commander includes the interaction between the two factors into
the ANOVA model. You can use R directly to perform two-way ANOVA without
including interaction. This is discussed in the next subsection.

The interpretation of sum of squares, degrees of freedom, F -statistic, and p-value
is similar to one-way ANOVA. In this example, SSM = 775.08, SSL = 63.63, and
SSM×L = 824.07. Based on these results, only the relationship between mother’s
genotype and weigh gain is statistically significant at 0.05 level (pobs = 0.006).
The interaction effect (shown as Litter:Mother) and the main effect of litter’s
genotype are not statistically significant at 0.05 level.
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9.4.2 ANOVA Using R

After we obtain f , the observed value of the F -statistic, we can use the F -distribu-
tion to obtain the corresponding p-value by calculating the upper tail probability
of f . The functions df (), pf (), and qf () provide the density, tail probability, and
quantiles from the F -distribution with given degrees of freedom. For the Cushings
examples, f = 3.2, and the degrees of freedom are df1 = 3 and df2 = 23. The upper
tail probability of 3.2 is obtained as follows:

> pf(3.2, df1 = 3, df2 = 23, lower.tail = FALSE)

[1] 0.04226148

Note that we need to set the lower.tail to “FALSE” to obtain the upper tail probabil-
ity. (The default is lower.tail=TRUE.)

Alternatively, we can use the function aov() to perform ANOVA directly. For
this, we specify the response and factor variables using the same formula nota-
tion we used for the t-test: response ∼ factor. Here, the response variable
is Tetrahydrocortisone, and the factor is Type:

> library(MASS)
> data(Cushings)
> aov1.out <- aov(Tetrahydrocortisone ~ Type,
+ data = Cushings)

The output of ANOVA is assigned to the object aov.out. We can create the
ANOVA table by applying the summary() function to this object:

> summary(aov1.out)

Df Sum Sq Mean Sq F value Pr(>F)
Type 3 893.52 297.840 3.2257 0.04122 *
Residuals 23 2123.65 92.332

---
Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1
’ ’ 1

For two-way ANOVA, we use also use aov(), but the right side of the formula
includes both factors. We separate the two factors by the “+” sign if we do not want
to include their interaction. For the “rat genotype” example discussed in Sect. 9.4.1,
we use the formula Wt ∼ Mother + Litter:

> library(MASS)
> data(genotype)
> aov2.out <- aov(Wt ~ Mother + Litter,
+ data = genotype)
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> summary(aov2.out)

Df Sum Sq Mean Sq F value Pr(>F)
Mother 3 771.6 257.202 4.2540 0.009055 **
Litter 3 63.6 21.211 0.3508 0.788698
Residuals 54 3264.9 60.461

---
Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1
’ ’ 1

To include the interaction of the two factors in the ANOVA model, we use “*”
instead of “+”.

> library(MASS)
> data(genotype)
> aov2.int.out <- aov(Wt ~ Mother * Litter,
+ data = genotype)
> summary(aov2.int.out)

Df Sum Sq Mean Sq F value Pr(>F)
Mother 3 771.61 257.202 4.7419 0.005869 **
Litter 3 63.63 21.211 0.3911 0.760004
Mother:Litter 9 824.07 91.564 1.6881 0.120053
Residuals 45 2440.82 54.240

---
Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1
’ ’ 1

9.5 Exercises

1. We would like to investigate the effectiveness of various feed supplements
(feed) on the growth rate (weight) of chickens. In R-Commander, load the
chickwts data set from the datasets package. (Click Data → Data in
packages → Read data set from an attached package.) Use
boxplots and a plot of means to visualize the difference between feed types. Use
ANOVA to examine the effectiveness of feed supplements. Comment on your
findings and appropriateness of your assumptions.

2. We believe that mean urinary excretion rate of Pregnanetriol changes based on
the underlying type of Cushing’s syndrome. In R-Commander, load the Cush-
ings data set from the MASS library and investigate whether there is statistically
significant mean difference for this steroid metabolites.

3. For the “rat genotype” data discussed in Sect. 9.4.1, use one-way ANOVA to
investigate whether weight gain (Wt) of the litter (in grams) at age 28 days is
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related to mother’s genotype (Mother). Repeat the analysis for the relationship
between weight gain (Wt) and genotype of the litter (Litter). Compare the
plot of means for the first analysis to that of the second one.

4. Load the anorexia data set from the MASS package. This data set was col-
lected to investigate the effectiveness of different treatments (Treat) on in-
creasing weight for young female anorexia patients. Create a new variable called
Difference by subtracting the weight of patient before study period (Prewt)
from her weight after the study period (Postwt): Difference = Postwt
- Prewt. Use a plot of means to visualize how this variable changes depend-
ing on the type of treatment. Use ANOVA to investigate whether the type of
treatment makes a difference in the amount of weight gain.

5. In Sect. 3.4, we discussed a study comparing ascorbic acid (one form of vita-
min C) content between two different cultivars (c39 and c52) of cabbage. The
data set cabbages for this example is available from the MASS package. In this
data set, the two different cultivars were planted on three different dates, denoted
as d16, d20, or d21. The variable Data is a factor that specifies the planting date
for each cabbage. Use two-way ANOVA to evaluate the relationship between the
vitamin C content and cultivars while controlling for the effect of planting dates.

6. Obtain the “Stepping and Heart Rates” data set from the Data and Story Li-
brary (http://lib.stat.cmu.edu/DASL/Datafiles/Stepping.html). The data are ob-
tained based on an experiment conducted by students at the Ohio State Univer-
sity to investigate possible relationship between a person’s heart rate and the
frequency at which that person stepped up and down on steps of various heights.
Create a new variable called diffHR whose values are the increase in heart rate
of the subjects after a trial compared to their resting heart rate before a trial. Use
two-way ANOVA to evaluate effect of the rate of stepping (Frequency) and
the height of the steps (Height) on diffHR.

http://lib.stat.cmu.edu/DASL/Datafiles/Stepping.html


Chapter 10
Analysis of Categorical Variables

10.1 Introduction

In Chap. 7, we talked about hypothesis testing regarding population proportions.
There, we used the central limit theorem (for large enough sample sizes) to obtain
an approximate normal distribution of the sample proportion, which we used as the
test statistic. We followed a similar approach in Chap. 8 in order to test hypotheses
regarding the relationship between two binary random variables.

In this chapter, we discuss Pearson’s χ2 (chi-squared) test for testing hypothe-
ses regarding the distribution of a categorical variable or the relationship between
two categorical variables. Pearson’s test evaluates whether the probabilities for dif-
ferent categories are equal to the values specified by the null hypothesis. Although
it is not necessary, we can think of the probability of each category as its population
proportion. This makes the discussion easier to follow. For example, when we talk
about the probability of heart attack survival being 0.7, we can interpret this as 70%
of heart attack patients (i.e., 70% of the entire population of people suffered from
heart attack) survive. As before, we use the sample proportion of each category as a
point estimate for its probability (i.e., its population proportion).

Pearson’s χ2 test uses a test statistic, which we denote as Q, to measure the
discrepancy between the observed data and what we expect to observe under the null
hypothesis (i.e., assuming the null hypothesis is true). Higher levels of discrepancy
between data and H0 results in higher values of Q. We use q to denote the observed
value of Q based on a specific sample of observed data. As usual, we need to find
the null distribution of Q (i.e., its sampling distribution assuming that H0 is true)
and measure the observed significance level pobs by calculating the probability of
values as or more extreme than the observed value q .
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10.2 Pearson’s χ2 Test for One Categorical Variable

10.2.1 Binary Variables

We start our discussion of Pearson’s method by focusing on binary random vari-
ables first. Then, we show how we can extend this approach for situations where
categorical variables have more than two possible values.

Let us denote the binary variable of interest as X, based on which we can di-
vide the population into two groups depending on whether X = 1 or X = 0. Further,
suppose that the null hypothesis H0 states that the probability of group 1 (i.e., the
probability that an individual belongs to the group 1) is μ01 and the probability of
group 2 is μ02. Of course, because the sum of probabilities adds up to one, μ02 =
1 − μ01. As a running example, we use the heart attack survival rate (i.e., the prob-
ability of survival after heart attack) within one year after hospitalization. Suppose
that H0 specifies that the probability of surviving is μ01 = 0.70 and the probability
of not surviving is μ02 = 0.30.

If we take a random sample of size n = 40 from the population (people who
suffer from heart attack), we expect that 70% of them survive and 30% of them die
within one year from the time of hospitalization if in fact the null hypothesis is true.
That is, we expect that 0.70×40 = 28 of subjects belong to the first group (survived)
and 0.30 × 40 = 12 of subjects belong to the second group (nonsurvived).

If the null hypothesis is true, we expect that, out of n randomly selected indi-
viduals, E1 = nμ01 belong to the first group, and E2 = n(1 − μ0) belong to
the second group. We refer to E1 and E2 as the expected frequencies under
the null.

In our example, E1 = 28 and E2 = 12.
Now suppose that we randomly select 40 people who have suffered from heart

attack. After one year from the time of hospitalization, we find that 24 of them have
survived and 16 of them did not survive. We refer to the observed number of people
in each group as the observed frequencies and denote them O1 and O2 for group 1
and group 2, respectively. In our example, O1 = 24 and O2 = 16.

Pearson’s χ2 test measures the discrepancy between the observed data and
the null hypothesis based on the difference between the observed and expected
frequencies as follows:

Q = (O1 − E1)
2

E1
+ (O2 − E2)

2

E2
.

We use q to denote the observed value of the test statistic Q.
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Fig. 10.1 The plot of the pdf
for a χ2 distribution with
various degrees of freedom

For the heart attack survival example, the observed value of the test statistic is

q = (24 − 28)2

28
+ (16 − 12)2

12
= 1.90.

The value of Q will be zero only when the observed data matches our expectation
under the null exactly. When there is some discrepancy between the data and the null
hypothesis, Q becomes greater than zero. The higher discrepancy between our data
and what is expected under H0, the larger Q and therefore the stronger the evidence
against H0.

To evaluate the null hypothesis, we need to find the p-value, which is, as usual,
the probability of observing as or more extreme values compared to the observed
value of the test statistic. For this, we first need to find the sampling distribution of
the test statistic Q under the null and calculate the probability of observing as large
or larger values than q .

If the null hypothesis is true, then the approximate distribution of Q is χ2. Like
the t-distribution, the χ2-distribution is commonly used for hypothesis testing. Also,
similar to the t distribution, the χ2 distribution is defined by its degrees of freedom
df (which is a positive number) and is denoted χ2(df ). The pdf of the χ2 distribu-
tion for various degrees of freedom is given in Fig. 10.1.

For binary random variables (i.e., when there are two possible groups), the
approximate distribution of Q is χ2(1) distribution. Try plotting this distribu-
tion using R-Commander. Click Distribution → Continuous distri-
butions → Chi-squared distribution Plot chi-squared dis-
tribution. Set the Degrees of freedom to 1. The resulting distribution is
shown in Fig. 10.2.

To evaluate the null hypothesis regarding the probabilities of two groups, we
determine the observed significance level pobs by calculating the probability of Q



238 10 Analysis of Categorical Variables

Fig. 10.2 The sampling
distribution for Q under the
null hypothesis: Q ∼ χ2(1).
The p-value is the upper tail
probability of observing
values as extreme or more
extreme than q = 1.90

Fig. 10.3 Obtaining the
p-value from a χ2

distribution with 1 degree of
freedom. In this example,
pobs = P (Q ≥ 1.90) = 0.17

values as or more extreme than the observed value q using the χ2 distribution with
1 degree of freedom. This corresponds to the upper tail probability of q from the
χ2(1) distribution. For the heart attack survival example, where q = 1.90, this prob-
ability is shown as the shaded area in Fig. 10.2.

To obtain this probability in R-Commander, click Distributions →
Continuous Distributions → Chi-squared distribution →
Chi-squared probabilities. Then enter 1.90 for Variable value and
1 for Degrees of freedom, and select Upper tail (as in Fig. 10.3). The re-
sult, shown in the Output window, is the probability of observing values as extreme
or more extreme than 1.90 based on a χ2 distribution with 1 degree of freedom. This
probability is pobs = 0.17. Therefore, the results are not statistically significant, and
we cannot reject the null hypothesis at commonly used significance levels (e.g.,
0.01, 0.05, and 0.1). In this case, we believe that the difference between observed
and expected frequencies could be due to chance alone.
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10.2.2 Categorical Variables with Multiple Categories

Pearson’s χ2 test can be generalized to situations where the categorical random
variable can take more than two values. Let us reconsider the heart attack example.
This time, suppose that we monitor heart attack patients for one year and divide
them into three groups:

1. patients who did not have another heart attack and survived,
2. patients who had another heart attack and survived,
3. and finally patients who did not survive.

Now suppose that the probabilities of these three groups according to the null is
μ01 = 0.5, μ02 = 0.2, and μ03 = 0.3. That is, among 70% of patients who survive,
20% of them have another heart attack within a year from their first hospitalization.
As before, we can find the expected frequencies of each category for a sample of
n = 40 patients assuming that the null hypothesis is true:

E1 = 0.5 × 40 = 20, E2 = 0.2 × 40 = 8, E3 = 0.3 × 40 = 12.

This time, suppose that the actual observed frequencies based on a sample of size
n = 40 for the three groups are

O1 = 13, O2 = 11, O3 = 16.

Again, we measure the amount of discrepancy between the observed data and the
null hypothesis based on the difference between the observed and expected frequen-
cies:

Q = (O1 − E1)
2

E1
+ (O2 − E2)

2

E2
+ (O3 − E3)

2

E3
.

For the heart attack survival example, the observed value of this test statistic is

q = (13 − 20)2

20
+ (11 − 8)2

8
+ (16 − 12)2

12
= 4.91.

In general, for a categorical random variable with I possible categories, we
calculate the test statistic Q as

Q =
I∑

i=1

(Oi − Ei)
2

Ei

.

The approximate distribution of Q is χ2 with the degrees of freedom equal
to the number of categories minus 1: df = I − 1. Therefore, to find pobs, we
calculate the upper tail probability of q (the observed value of Q) from the
χ2(I − 1) distribution.

For the above example, the p-value is the upper tail probability of 4.91 for a
χ2(2) distribution. Using R-Commander, we find pobs = P(Q ≥ 8.67) = 0.086 us-
ing the χ2 distribution with 2 degrees of freedom. Therefore, we can reject the null
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hypothesis at 0.1 level but not at 0.05 level. At the 0.1 significance level, we can con-
clude that the difference between observed and expected frequencies is statistically
significant, and it is probably not due to chance alone.

10.3 Pearson’s χ2 Test of Independence

We now discuss the application of Pearson’s χ2 test for evaluating a hypothesis
regarding possible relationship between two categorical variables. As before, we
measure the discrepancy between the observed data and the null hypothesis. More
specifically, we measure the difference between the observed frequencies and ex-
pected frequencies under the null. The null hypothesis in this case states that the
two categorical random variables are independent. Recall that two random variables
are independent if they do not affect each other’s probabilities. For two independent
random variables, the joint probability is equal to the product of their individual
probabilities. In what follows, we use this rule to find the expected frequencies. As
a running example, we investigate the relationship between smoking and low birth-
weight.

When investigating the relationship between two categorical variables, we typ-
ically start by creating a contingency table to summarize the data. In Chap. 3, we
showed how to use R-Commander to create contingency tables. In R-Commander,
load the birthwt data set and make sure that the variables low and smoke are
converted to factors (categorical) variables. Then, create a contingency table by
clicking Statistics → Contingency tables → Two-way table. Se-
lect smoke for the Row variable and low for the Column variable. For
now, uncheck Chi-square test of independence under Hypothesis
Tests but make sure that Percentages of total and Print expected
frequencies are selected (Fig. 10.4). R-Commander provides Table 10.1, which
shows the observed frequency of each cell (i.e., each combination of mother’s smok-
ing status and baby’s birthweight status). We denote the observed frequency in row
i and column j as Oij .

Because we checked the options Percentages of total and Print
expected frequencies, R-Commander also provides Table 10.2, which
shows the proportion of observations, out of the total number of observations, that
fall within each cell (i.e., each possible combination of smoking status and birth-
weight status). Table 10.3 shows the expected frequency of each cell if the null
hypothesis was true and the two random variables were independent. We denote the
expected frequency in row i and column j as Eij .

Table 10.1 Contingency
table of low by smoke Observed frequency low

0 1

smoke 0 86 29

1 44 30
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Fig. 10.4 Creating the
contingency table along with
the expected frequencies for
the mother’s smoking status
(the row variable) by the
baby’s birthweight status (the
column variable)

Table 10.2 Sample
proportions for each
combination of low and
smoke

Proportion low Total

0 1

smoke 0 0.455 0.153 0.608

1 0.233 0.159 0.392

Total 0.688 0.312 1

Table 10.3 Expected
frequencies for different
combinations of low and
smoke assuming the null
hypothesis is true

Expected frequency low

0 1

smoke 0 79.1 35.9

1 50.9 23.1

To see how the expected frequencies are calculated, recall that for two indepen-
dent variables, the probability of the intersection of events is the product of their
individual probabilities. Therefore, for example, the probability that the mother is
smoker (i.e., smoke=1) and the baby has low birthweight (i.e., low=1) is the
product of smoker and low-birthweight probabilities. We use sample proportions
to estimate these probabilities. The proportion of observations with smoke=1 ac-
cording to Table 10.2 is 0.392, and the proportion of observations with low=1
is 0.312. Therefore, our estimate of the joint probability (under the null) is 0.392 ×
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Table 10.4 Comparing the
observed and expected (under
the null hypothesis)
frequencies for different
combinations of birthweight
status and smoking status

Observed Expected

Normal Low Normal Low

Nonsmoking 86 29 Nonsmoking 79.1 35.9

Smoking 44 30 Smoking 50.9 23.1

0.312 = 0.122. Consequently, out of 189 babies, we expect 0.122 × 189 = 23.1 ba-
bies to have smoker mother and have low birthweight if the null hypothesis is true
and the two variables are in fact independent. This value is shown in the second
row and second column of the expected frequency table (Table 10.3). We find the
expected frequency of other cells under the null hypothesis similarly.

If the null hypothesis is true, the observed frequencies would be close to the
expected frequencies under the null. We therefore use the difference between the
observed and expected frequencies as a measure of disagreement between the ob-
served data and what we expected under the null. This would be interpreted as ev-
idence against the null hypothesis. For this, we use the following general form of
Pearson’s χ2 test, which summarizes the differences between the expected frequen-
cies (under the null hypothesis) and the observed frequencies over all cells of the
contingency table:

Q =
∑

i

∑

j

(Oij − Eij )
2

Eij

,

where Oij and Eij are the observed and expected values in the ith row and j th
column of the contingency table. The double sum simply means that we add the
individual measures of discrepancies for cells by going through all cells in the con-
tingency table.

As before, higher values of Q provide stronger evidence against H0. For I × J

contingency tables (i.e., I rows and J columns), the Q statistic has approximately
the χ2 distribution with (I − 1)× (J − 1) degrees of freedom under the null. There-
fore, we can calculate the observed significance level by finding the upper tail prob-
ability of the observed value for Q, which we denote as q , based on the χ2 distri-
bution with (I − 1) × (J − 1) degrees of freedom.

For the baby weight example, we can summarize the observed and expected fre-
quencies in the contingency tables (Table 10.4).

Then Pearson’s test statistic is

Q = (O11 − E11)
2

E11
+ (O12 − E12)

2

E12
+ (O21 − E21)

2

E21
+ (E22 − E22)

2

E22
,

q = (86 − 79.1)2

79.1
+ (29 − 35.9)2

35.9
+ (44 − 50.9)2

50.9
+ (30 − 23.1)2

23.1
= 4.9.

Because the table has I = 2 rows and J = 2 columns, the approximate null distri-
bution of Q is χ2 with (2 − 1)× (2 − 1) = 1 degrees of freedom. Consequently, the
observed p-value is the upper tail probability of 4.9 using the χ2(1) distribution.
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Fig. 10.5 Results from χ2 test of independence regarding the association between the mother’s
smoking status and the baby’s birthweight. The observed test statistic Q (called X-squared)
is 4.9, and the p-value is 0.026

In R-Commander, click Distributions → Continuous distribu-
tions → Chi-squared distribution → Chi-squared probabilities.
Enter 4.9 as the Variable value and 1 as the Degrees of freedom, and
select Upper tail. We find pobs = P(Q ≥ 4.9) = 0.026. Therefore, at the 0.05
significance level (but not at 0.01 level), we can reject the null hypothesis that the
mother’s smoking status and the baby’s birthweight status are independent.

So far, we showed how to test a hypothesis regarding the relationship between
two categorical variables by summarizing the observed and expected frequencies in
contingency tables, calculating the value of Pearson’s test statistic, and then finding
pobs from χ2 distribution. Alternatively, we could use R-Commander to perform
Pearson’s χ2 test of independence directly. In R-Commander, click Statistics
→ Contingency tables→ Two-way table. As before, choose smoke as
the Row variable and low as the Column variable. Now under Hypoth-
esis Tests, select Chi-square test of independence.

In the Output window, R-Commander provides the results of Pearson’s χ2 test
(Fig. 10.5). As calculated manually, the observed test statistic Q (which is called
X-squared) is 4.9, and the p-value is 0.026.

As the second example, suppose that we would like to investigate whether the
race of mothers is related to the risk of having babies with low birthweight. In
R-Commander, make sure birthwt is the active data set and variables low and
race are converted to factors (i.e., categorical variables).

The race variable can take three values: 1 for white, 2 for African-American,
and 3 for others. As before, the low variable can take 2 possible values: 1 for
babies with birthweight less than 2.5 kg and 0 for other babies. Therefore, all
possible combinations of race and low can be presented by a 3 × 2 contin-
gency table. (Each observation falls into one cell of this table.) In R-Commander,
click Statistics→ Contingency tables→ Two-way table. Choose
race as the Row variable and low as the Column variable, check the op-
tions Percentage of total, Chi-square test of independence,
and Print expected frequencies as shown in Fig. 10.6. The contingency
tables (Tables 10.5 and 10.6) appear in the Output window.

Table 10.5 provides the observed frequency of each cell, Table 10.6 provides the
expected frequency of each cell if the null hypothesis is true. For example, there
are 73 babies in the first row and first column. This is the number of babies in
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Fig. 10.6 Obtaining the
contingency table of race by
low from the birthwt data
set

Table 10.5 Contingency
table of birthweight status by
race

Observed frequency low

0 1

race 1 73 23

2 15 11

3 42 25

Table 10.6 Expected
frequencies for different
combinations of low and
race assuming the null
hypothesis is true

Expected frequency low

0 1

race 1 66 30

2 18 8

3 46 21

the intersection of race = 1 (mother is white) and low=0 (having a baby with
normal birthweight). If the null hypothesis is true, the expected number of babies in
this cell would have been 66.

For this example, the observed value of the test statistic Q is q = 5.0, and the
distribution of Q under the null hypothesis is (approximately) χ2 with (3 − 1) ×
(2 − 1) = 2 degrees of freedom. (Use R-Commander to plot the pdf of this dis-
tribution.) To find the corresponding p-value, we need to find the probability of
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Fig. 10.7 Results from the χ2 test of independence for the relationship between race and low.
The test statistic is q = 5.0, and using the χ2 distribution with 2 degrees of freedom, the resulting
p-value is 0.08

observing values as or more extreme (i.e., greater) than 5.0. This is the upper-tail
probability of 5 from the χ2(2) distribution: pobs = P(Q ≥ 5).

We can use R-Commander to obtain the p-value. Click Distributions
→ Continuous distributions → Chi-squared distribution →
Chi-squared probabilities. Then enter 5 for Variable value and 2
for Degrees of freedom. Also make sure the Upper tail option is se-
lected. The value of pobs, which is 0.08, appears in the Output window. We can
reject the null hypothesis at 0.1 level but not at 0.05 level. At 0.05 level, the rela-
tionship between the two variables (i.e., race of mothers and birthweight status) is
not statistically significant. This means that either the null hypothesis is in fact true
(the two variables are independent), or it is false, but we do not have enough em-
pirical evidence to reject it at 0.05 level. In this case, we believe that the difference
between observed and expected frequency could be due to chance alone.

While it is a good exercise to follow the above steps in order to find Q and its
corresponding p-value, R-Commander has provided these values when we selected
the Chi-square test of independence option above. Figure 10.7 shows
the R-Commander output.

10.4 Entering Contingency Tables into R-Commander

In R-Commander, we can enter and analyze contingency tables without import-
ing individual observations. For example, let us consider the study for investigat-
ing whether regular aspirin intake reduces the mortality from cardiovascular dis-
ease [36]. In this case, the null hypothesis is that the heart attack is independent
of aspirin intake. Based on the contingency table (Table 10.7) of the observed fre-
quencies, we can evaluate the strength of relationship between these two binary
variables.

Table 10.7 Contingency
table of heart attack status by
the type of treatment

Heart attack No heart attack

Placebo 189 10845

Aspirin 104 10933
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Fig. 10.8 Entering and
analyzing a contingency table
in R-Commander. The default
table size is 2 × 2 and can be
changed with the Number
of Rows and Number of
Columns buttons. Here, we
are testing the null hypothesis
of no relationship between
aspirin intake and the
probability of a heart attack

To enter this contingency table in R-Commander, click Statistics →
Contingency tables → Enter and analyze two-way table.
R-Commander then opens a blank table. Enter the row and column labels and fre-
quencies for each cell as shown in Fig. 10.8. Then select Chi-square test of
independence and Print expected frequencies under Hypothesis
Tests.

In the Output window, R-Commander provides contingency tables for the ob-
served and expected frequencies. The results of Pearson’s χ2 test of independence
are also given. In this case, the observed value of the test statistic Q is q = 25.01,
and the p-value is pobs = 5.69 × 10−7, which is quite small. Consequently, at any
reasonable level of significance, we can reject the null hypothesis of independence
between the variables and conclude that the results are statistically significant, and
so the observed departure from the null hypothesis is quite unlikely to be due to
chance alone.

10.5 Advanced

In this section, we discuss Fisher’s exact test for analyzing contingency tables from
small data sets. We also provide some commonly used R functions for analyzing
categorical data.

10.5.1 Fisher’s Exact Test

For Person’s χ2 test to be valid, the expected frequencies (Eij ) under the null should
be at least 5, so we can assume that the distribution of Q is approximately χ2 under
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Table 10.8 Contingency
table of diabetes status by
weight status

Frequency type Total

No Yes

weight.status

Underweight 2 0 2

Normal 21 2 23

Overweight 35 8 43

Obese 74 58 132

Total 132 68 200

Fig. 10.9 When examining the relationship between weight.status and type, R-Comman-
der gave the warning message: “2 expected frequencies are less than 5.” Therefore, Fischer’s exact
test is more appropriate for analyzing the contingency table

the null. Occasionally, this requirement is violated (especially when the sample size
is small, or the number of categories is large, or some of the categories are rare),
and some of the expected frequencies become small (less than 5).

Recall that in Sect. 2.5, we created a categorical variable called weight.
status based on BMI values in the Pima.tr data set. This variable had four
categories: “Underweight”, “Normal”, “Overweight”, and “Obese”. After you cre-
ate this new variable, follow the above steps to perform Pearson’s χ2 test in order to
investigate the relationship between weight.status and type (disease status).
You should obtain a 4 × 2 contingency table, similar to Table 10.8, by selecting
weight.status as the row variable and type as the column variable. Note that
there are only two underweight women in this sample. (This seems to be a rare event
in the population.)

Based on the above table, the expected frequencies E1,1 = 1.32 and E12 = 0.68.
(The remaining expected frequencies are above 5.) Therefore, when we use the χ2

test, R-Commander gives a warning message indicating that “2 expected frequencies
are less than 5” (Fig. 10.9). In this case, instead of using Pearson’s χ2 test (which
assumes that Q statistic has an approximate χ2 distribution), we should use Fisher’s
exact test (which is based on the exact distribution of a test statistic that captures the
deviation from the null).

In R-Commander, follow the above steps to create the contingency table for
weight.status and type, but this time, select Fisher’s exact test,
instead of the default option Chi-square test of independence, under
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the Hypothesis tests. The resulting p-value is 0.0002, which is slightly lower
than the p-value of 0.0004 based on χ2 test. At 0.01 level, we can reject the null
hypothesis, which indicates that the disease status is independent from the weight
status, and conclude that the relationship between the two variables is statistically
significant.

10.5.2 Pearson’s χ2 Test Using R

To test a hypothesis regarding the probabilities (population proportions) of different
categories for a categorical variable, we can use the chisq.test() function to
perform Pearson’s χ2 test in R:

> chisq.test(x = c(24, 16), p = c(0.7, 0.3))

Chi-squared test for given
probabilities

data: c(24, 16)
X-squared = 1.9048, df = 1, p-value =
0.1675

The first argument to the chisq.test() function provides the observed frequen-
cies for each possible category. (Here, there are two categories.) The second argu-
ment, p, specifies the corresponding probabilities under the null hypothesis. In the
output, X-squared provides the observed value of the test statistics (which we
denoted Q).

We can also use the chisq.test() function for categorical variables with
multiple categories. For the heart attack example discussed previously, the null hy-
pothesis was H0 : μ01 = 0.5, μ02 = 0.2, μ03 = 0.3. The observed frequencies were
O1 = 13, O2 = 11, and O3 = 16. Therefore, we can perform Pearson’s χ2 test as
follows:

> chisq.test(x = c(13, 11, 16), p = c(0.5, 0.2, 0.3))

Chi-squared test for given
probabilities

data: c(13, 11, 16)
X-squared = 4.9083, df = 2, p-value =
0.08593

As before, x provides the number of observations in each group, and p provides the
corresponding probability of each group under the null hypothesis.

To test the relationship between two binary random variables, we use the χ2 test
to compare the observed frequencies to the expected frequencies based on the null
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hypothesis. To use chisq.test() for this purpose, we first create the contin-
gency table using the table function and then pass the resulting contingency table
to chisq.test().

For example, the following code creates the contingency table for smoke by
low from the birthwt data set and then performs the χ2 test to examine their
relationship:

> birthwt.tab <- table(birthwt$smoke, birthwt$low)
> birthwt.tab

0 1
0 86 29
1 44 30

> chisq.test(birthwt.tab, correct = FALSE)

Pearson’s Chi-squared test

data: birthwt.tab
X-squared = 4.9237, df = 1, p-value =
0.02649

Note that we have set the option correct to FALSE to obtain the same results as
we obtained in earlier sections. By default, the function chisq.test() performs
continuity correction (not discussed in this chapter) for analyzing 2×2 contingency
tables.

If we only have the summary of the data in the form of a contingency table
as oppose to individual observations, we can enter the contingency table in R and
perform the χ2 test as before. For example, consider the study investigating the
relationship between aspirin intake and the risk of a heart attack [36]. We can enter
the given the contingency table directly in R.

> contTable <- matrix(c(189, 10845, 104, 10933),
+ nrow = 2, ncol = 2, byrow = TRUE)
> rownames(contTable) <- c("Placebo", "Aspirin")
> colnames(contTable) <- c("No heart attack",
+ "Heart attack")
> contTable

No heart attack Heart attack
Placebo 189 10845
Aspirin 104 10933

Here, the first parameter to the matrix() function is a vector of values. We
also specify the number of rows (nrow) and the number of columns (ncol). The
byrow option tells R to fill the matrix by rows. We then use the rownames() and
colnames() to add names to the rows and columns, respectively.
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To examine the relationship between heart attack and aspirin intake, we use the
chisq.test() function as before:

> output <- chisq.test(contTable, correct = FALSE)
> output

Pearson’s Chi-squared test

data: contTable
X-squared = 25.0139, df = 1, p-value =
5.692e-07

The argument to the chisq.test() function is the contingency table of observed
values. We have assigned the output of the function to a new object called output.
From this object, we can obtain the observed and expected frequencies with the $
operator:

> output$observed

No heart attack Heart attack
Placebo 189 10845
Aspirin 104 10933

> output$expected

No heart attack Heart attack
Placebo 146.4801 10887.52
Aspirin 146.5199 10890.48

10.6 Exercises

1. Consider the problem of estimating the proportion of people who smoke. Sup-
pose that we interview 150 people and find that 27 of them smoke. Use Pearson’s
χ2 test to evaluate the null hypothesis stating that the probability of smoking
is 0.2.

2. Use the birthwt data set to evaluate the relationship between having low-
birthweight babies and mother’s hypertension history. (In birthwt data set, the
variable ht shows the hypertension history: ht=1 when women have history of
hypertension, ht=0 otherwise.)

3. In Sect. 3.6, we used the GBSG (German Breast Cancer Study Group) data set
from the mfp package to create a new variable called rfs (recurrence-free sur-
vival) such that rfs=“No” if the patient had at least one recurrence or died (i.e.,
cenc=1) and rfs=“Yes” otherwise. Use the χ2 test to investigate the relation-
ship between this newly created variable and the tumor grade (tumgrad). Make
sure you convert tumgrad to a categorical (factor) variable first.
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Table 10.9 Frequencies of
people with heart disease for
different levels of snoring
based on a sample of 2484
people

Snoring Severity Heart Disease Total

Never 24 1379

Occasionally 35 638

Nearly every night 21 213

Every night 30 254

4. Consider the data (see Table 10.9) collected to investigate snoring as a risk factor
for heart disease [24]. Use Pearson’s χ2 test to examine whether the relationship
between snoring severity and the risk of heart disease is statistically significant.

5. In R-Commander, click Data → Data in pacakges → Read data
set from an attached package, then select the HairEyeColor
data from the datasets package. The data include hair and eye color and sex
for 592 statistics students at the University of Delaware reported by Snee (1974).
The first column shows different hair colors (Black, Brown, Red, Blond), the
second column shows different eye colors (Brown, Blue, Hazel, Green), and the
third column shows genders (Male, Female) of students. For each row, the last
column shows the number of students with a specific hair color, eye color, and
gender.
(a) Use Pearson’s χ2 test to evaluate the null hypothesis that different hair colors

have equal probabilities. Use Pearson’s χ2 test to evaluate the null hypothesis
that different eye colors have equal probabilities.

(b) Create a 4 × 4 contingency table where the rows represent different hair
colors and the columns represent different eye colors. Is there a relationship
between hair color and eye color?

(c) Enter the contingency table in R-Commander and use Chi-square test
of independence to evaluate the relationship between hair color and
eye color.



Chapter 11
Regression Analysis

11.1 Introduction

In Chap. 8, we discussed testing a hypothesis regarding the relationship between
a binary explanatory variable (referred to as the factor) and a numerical response
variable using two-sample t-tests. We also discussed situations where we investi-
gate the linear relationship between two numerical variables (e.g., percent body fat
and abdomen circumference). In this case, we typically consider one of the two nu-
merical variables (e.g., percent body fat) as the response (or target) variable and the
other one (e.g., abdomen circumference) as the explanatory variable. The common
theme for both methods is that we investigate the relationship between an explana-
tory variable (either categorical or numerical) and a numerical random variable. In
this chapter, we discuss an alternative approach for analyzing such problems. This
approach use linear regression models for either testing a hypothesis regarding the
relationship between one or more explanatory variables and a response variable, or
predicting unknown values of the response variable using one or more predictors.
Note that we use the terms “explanatory variables” and “predictors” to distinguish
the role of variables (other than the response variable) in the model.

Occasionally, we might want to use linear regression models for both hypoth-
esis testing and prediction. However, in most cases, our objective is either
examining the relationship between the response variable and a set of ex-
planatory variables, or predicting the unknown values of the response variable
using a set of predictors. It is very important to specify our objective clearly
before starting the analysis. As we discuss later in this chapter, our strategy to
build a linear regression model depends on our objective.

Throughout this chapter, we use X to denote explanatory variables and Y to de-
note response variables. We start by focusing on problems where the explanatory
variable is binary. As before, the binary variable X can be either 0 or 1. We then
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Fig. 11.1 The dot plot for
systolic blood pressure for 25
elderly people, where 15
people follow a low sodium
chloride diet (X = 0), and 10
people follow a high sodium
chloride diet (X = 1)

continue our discussion for situations where the explanatory variable is numerical.
Finally, we discuss linear regression problems where there are more than one ex-
planatory variable (possibly, a combination of binary and numerical variables).

11.2 Linear Regression Models with One Binary Explanatory
Variable

Suppose that we want to investigate the relationship between sodium chloride (salt)
consumption and blood pressure among elderly people (e.g., above 65 years old).
We take a random sample of 25 people from this population and find that 15 of
them keep a low sodium chloride diet (less than 6 grams of salt per day) and 10
of them keep a high sodium chloride diet (more than 6 grams of salt per day). We
use the variable X for the sodium chloride intake level, where X = 0 means low
sodium chloride intake (group 1), and X = 1 means high sodium chloride intake
(group 2). For people in our sample, we measure systolic blood pressure, which
we denote as Y . Therefore, for each individual i in our sample, we have a pair of
observations (xi, yi), where the first element shows the group (low or high sodium
chloride diet), and the second element shows the blood pressure measure. You can
find the data for this example from the book website (http://extras.springer.com).
(These are simulated data for illustrative purposes.)

Figure 11.1 shows the dot plot for the observed data. As we can see, blood
pressure tends to be higher among people with high sodium chloride diet. Fig-
ure 11.2 shows the dot plot along with sample means, shown as black circles,

http://extras.springer.com
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Fig. 11.2 The dot plot for
systolic blood pressure for 25
elderly people. Here, the
sample means among the low
and high sodium chloride diet
groups are shown as black
circles. A straight line
connects the sample means.
The line intercepts the
vertical axis at a = 133.17
and has slope b = 6.25

for each group. In this graph, the difference between the two sample means is de-
noted as b. Recall that the difference between the sample means was what we used
to perform the two-sample t-test. By connecting the two sample means, we can
show the overall pattern for how blood pressure changes from one group to an-
other.

The sample mean among the first group (the black point in the left) is regarded
as our point estimate for population mean of systolic blood pressure among people
with low sodium chloride diet (X = 0). If we do not know someone’s blood pressure
measure, y, but we know that she belongs to the first group (i.e., x = 0), the sam-
ple mean provides a reasonable point estimate of her blood pressure. We show this
as ŷx=0 and interpret it as the estimate of the response variable among individuals
whose value of the explanatory variable is x = 0. Similarly, we can use the sample
mean for the second group (the black point in the right) as our point estimate of the
response variable (i.e., blood pressure) among people whose value of the explana-
tory variable (sodium chloride intake level) is x = 1. We denote this estimate as
ŷx=1.

For the above example, the sample means of blood pressure for the first and
second groups are 133.17 and 139.42, respectively. Therefore, ŷx=0 = 133.17 and
ŷx=1 = 139.42.

Now consider the straight line that connects the two point estimates ŷx=0

and ŷx=1. This line contains both point estimates (black points); hence, for any
value of x (i.e., whether x = 0 or x = 1), the line can be used to find the estimate
of the response variable (blood pressure). We denote this estimate as ŷ. Because the
horizontal difference between the two points is 1 unit, and the vertical difference
between the two points is b = ŷx=1 − ŷx=0, the slope of this line is b/1 = b. The
line intercepts the vertical axis at a. In this case, a = ŷx=0. For the above example,
a = 133.17 and b = 139.42 − 133.17 = 6.25.
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Using the intercept a and slope b, we can write the equation for the straight
line (Fig. 11.2) that connects the estimates of the response variable for differ-
ent values of X as follows:

ŷ = a + bx.

The above equation specifies a straight line called the regression line. The
regression line captures the linear relationship between the response variable
(here, blood pressure) and the explanatory variable (here, “low” versus “high”
sodium chloride diet).
The slope of the regression line has a central role in capturing the linear re-
lationship between the response variable and the explanatory variable: the
slope b is interpreted as our estimate of the expected (average) change in the
response variable associated with one unit increase in the value of the explana-
tory variable. Note that in general, we cannot interpret this as the amount of
increase in the response variable caused by one unit increase in the explana-
tory variable unless the data are obtained through a randomized experiment,
where the value of the explanatory variable is changed by intervention.

For the blood pressure example, the regression line is

ŷ = 133.17 + 6.25x.

Based on the slope of b = 6.25, we expect that on average the blood pressure in-
creases by 6.25 units for one unit increase in the value of the explanatory variable.
In this case, one unit increase in X from 0 to 1 means moving from low sodium
chloride diet group to high sodium chloride diet group.

We can use the regression line to estimate the blood pressure of a subject given
his or her sodium chloride intake level. For an individual with x = 0 (i.e., low
sodium chloride diet), the estimate according to the above regression line is

ŷ = a + b × 0 = a

= ŷx=0,

which is the sample mean for the first group. For an individual with x = 1 (i.e., high
sodium chloride diet), the estimate according to the above regression line is

ŷ = a + b × 1 = a + b

= ŷx=0 + ŷx=1 − ŷx=0

= ŷx=1.

Note that in this case, where the explanatory variable is binary with 0–1 values, we
can evaluate the equation for the regression line at x = 0 and x = 1 only.

Now consider the observed data for our sample of 25 people. For each individual
in this sample, there is a difference between the actual observed blood pressure and
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the estimate we obtain from the regression line. For individual i, whose values of
the explanatory variable and the response variable are xi and yi , respectively, the
estimated value of the response variable, denoted as ŷi , is

ŷi = a + bxi.

We refer to the difference between the observed and estimated values of the
response variable as the residual. For individual i, we denote the residual ei

and calculate it as follows:

ei = yi − ŷi .

By rearranging the terms in the above equation, we can write the observed
value yi in terms of the estimate obtained from the regression line and the
corresponding residual,

yi = ŷi + ei

= a + bxi + ei .

For the blood pressure example, ŷ = a for all individuals in the first group, and
ŷ = a + b for all individuals in the second group. For instance, if an individual i

belongs to the first group, xi = 0, her estimated blood pressure is ŷi = a = 133.17.
Now if the observed value of her blood pressure is yi = 135.08, then the resid-
ual is

ei = 135.08 − 133.17 = 1.91.

In Fig. 11.2, the residuals ei and ej are shown as vertical arrows for two indi-
viduals (one from each group). For individual i (in the first group), the residual is
positive since yi is greater than ŷi = a. For individual j (in the second group), the
residual is negative since yj is less than ŷj = a + b. The directions of the arrows
show the sign of the residuals: upward for positive residuals and downward for neg-
ative residuals.

When the explanatory variable is binary, the residuals are in fact deviations from
the corresponding group sample means. As mentioned in Chap. 2, the sum of the
deviations from the sample mean over all observed values is always zero. Therefore,
the sum (hence, the mean) of all the residuals is zero. The sum of the squares of the
residuals, however, is not zero in general (it is a positive value) and is commonly
used as a measure of overall discrepancy between observed values and estimates
from the regression line. This is analogous to the within-group sum of squares mea-
sure, SSW , we used for ANOVA.
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As a measure of discrepancy between the observed values and those estimated
by the line, we calculate the Residual Sum of Squares (RSS):

RSS =
n∑

i

e2
i . (11.1)

Here, ei is the residual of the ith observation, and n is the sample size. The
square of each residual is used so that its sign (i.e., the direction of the arrows
in Fig. 11.2) becomes irrelevant.

To capture the overall change in blood pressure from one group to another, we de-
cided to draw a line by connecting the sample means. We could have of course cho-
sen different lines between the two groups; for example, we could have connected
the sample medians. For any possible line, we can define the residuals as before (i.e.,
the vertical difference between the observed values and the line) and calculate RSS.
It turns out that among all possible straight lines we could have drawn, the linear
regression line discussed above provides the smallest value of RSS. Therefore, the
above approach for finding the regression line is called the least-squares method,
and the resulting line is called the least-squares regression line.

Using R-Commander for Finding Regression Lines For the blood pressure
example, we can simply find the regression line by calculating a and b us-
ing the sample means of blood pressure for the two groups separately. Down-
load the “saltBP.txt” data from the book website (http://extras.springer.com)
and load it into R-Commander. In this data set, BP shows the observed sys-
tolic blood pressure, salt shows the amount of sodium chloride intake per
day, and saltLevel is a binary variable indicating whether sodium chloride
intake per day is less than 6 grams (saltLevel = 0) or above 6 grams
(saltLevel = 1).

To find the sample means for each group, convert saltLevel to fac-
tor, then click Statistics → Summaries → Numerical summaries.
Select BP under Variables. Next, click Summarize by group and se-
lect saltLevel. You will find the sample mean for the first group
(saltLevel = 0) to be 133.17 and for the second group (saltLevel = 1)
to be 139.42. Using these sample means, you can find a and b for the regression
line as described above.

R-Commander can be used to find a and b directly without calculating the sample
means. For this, click Statistics → Fit models → Linear regres-
sion. Then under Model Formula, enter BP ∼ saltLevel, as in Fig. 11.3.
The variable on the left of the ∼ sign is always the response variable, and the vari-
able (or variables as we will see later) on the right side of the ∼ sign is the explana-
tory variable. Instead of typing the name of the response variable and explanatory
variable, we can first double click on BP and then double click on saltLevel.

http://extras.springer.com
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Fig. 11.3 Using
R-Commander to find the
least-squares regression line
with BP as the response
variable and saltLevel as
the explanatory variable

Fig. 11.4 Output of R-Commander for finding the regression line for the blood pressure example.
The first column of the Coefficients table provides the intercept and the slope

R-Commander automatically fills the space under Model Formula. Also, notice
that R-Commander has assigned a name, here LinearModel.1, to the regression
line. You can specify a different name if you want. When you press OK, Linear-
Model.1 (or any other name you specify) appears under the menu bar in front of
Model.

When we press OK, R-Commander provides a table with the title Coeffi-
cients, where the first column, called Estimate, includes the intercept 133.17
and the slope 6.25 (Fig. 11.4). The output, of course, includes more information re-
garding statistical inference using regression analysis, which is the focus of the next
section.

11.3 Statistical Inference Using Simple Linear Regression
Models

In the previous section, we discussed finding regression lines with binary explana-
tory variable. We showed how we can find the intercept and slope of the regression
line and discussed how we can use regression lines to estimate the values of the
response variable. As usual, we would like to extend our findings to the entire pop-
ulation. This is the topic of this section.

Using the regression line, we can estimate the unknown value of the response
variable for members of the population who did not participate in our study. In
this case, we refer to our estimates as predictions. For example, we can use the
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linear regression model we built in the previous section to predict the value of blood
pressure for a person with high sodium chloride diet (i.e., x = 1),

ŷ = 133.17 + 6.25x

= 133.17 + 6.25 × 1

= 139.42.

Next, we want to use the linear regression model to comment on the type and
strength of the relationship between Y and X. Using the observed data, the regres-
sion line captures the linear relationship between the response variable and the ex-
planatory variable as follows:

ŷ = a + bx.

Based on this line, we can write the value of the response variable for individual i

in terms of the above regression line and the residual:

yi = a + bxi + ei .

The linear relationship between Y and X in the entire population can be pre-
sented in a similar form,

Y = α + βX + ε, (11.2)

where α is the intercept, and β is the slope of the regression line if we had
used the entire population to find the regression line. Here, ε is called the
error term, representing the difference between the estimated (based on the
regression line for the entire population) and the actual values of Y in the pop-
ulation. We refer to the above equation as the linear regression model. More
specifically, we call it the simple linear regression model since there is only
one explanatory variable. We refer to α and β as the regression parameters.
More specifically, β is called the regression coefficient for the explanatory
variable. The process of finding the regression parameters is called fitting a
regression model to the data.

As usual, the regression parameters for the population remain unknown. We es-
timate these parameters using a random sample from the population. Suppose that
we have a sample of size n: (X1, Y1), (X2, Y2), . . . , (Xn,Yn). In this case, we have
a pair of values (one for the explanatory variable and one for the response variable)
for each individual in our sample. Using this sample, we can estimate the regression
parameters by fitting a linear regression model to the observed data as described
above:

Ŷ = A + BX.

Here, A and B are statistics (i.e., calculated based on the observed data only), which
are used as estimators. We used capital letters since A and B themselves are random
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variables and their values can change every time we take a new sample of size n from
the population.

Of course, as before, we only have one such sample, (x1, y1), (x2, y2),

. . . , (xn, yn). Using the observed data, we find the point estimates a and b (i.e.,
the specific values of estimators A and B) for α and β , respectively, following the
steps discussed in the previous chapter. For blood pressure example, the point esti-
mates for α and β were a = 133.17 and b = 6.25. These estimates are provided in
the first column of the Coefficients table under Estimate in Fig. 11.4.

As discussed in earlier chapters, the point estimates do not reflect our uncertainty;
we always remain uncertain about the actual values of α and β , and our estimates for
these parameters can change when we take a different sample from the population.
Therefore, we use the point estimates a and b obtained from the observed data along
with the sampling distribution of the estimators A and B to find confidence interval
estimates for α and β . This is similar to what we had for the population mean.
Because the slope parameter β has a central role in capturing the linear relationship
between Y and X, we focus on finding its confidence intervals. (Similar approach
can be used for the intercept α.)

11.3.1 Confidence Interval for Regression Coefficients

Finding confidence intervals for β is quite similar to the approach we used to find
confidence intervals for the population mean. First, we need to find the standard
error (i.e., estimated standard deviation of the sampling distribution of B) of our
estimate. We denote this as SEb . Next, we need to specify the required confidence
level, c, and find its corresponding factor, tcrit. Then, we can find the confidence
interval for β as follows:

[b − tcrit × SEb, b + tcrit × SEb].
For simple linear regression models, SEb is obtained as follows:

SEb =
√

RSS/(n − 2)√∑
i (xi − x̄)2

, (11.3)

where xi are the observed values of the explanatory variable, which takes either 0
or 1, and x̄ is the sample mean (which is the same as the sample proportion for a
binary variable). When we fit a linear regression model using R-Commander, it pro-
vides the standard error of the regression coefficient. From the Coefficients ta-
ble in Fig. 11.4, the Std. Error column provides the standard error for intercept
as SEa = 1.01 and the standard error for the regression coefficient as SEb = 1.59.

The steps to find tcrit are the same as the steps discussed in Chap. 6 for the pop-
ulation mean. Here, however, tcrit is obtained from the t-distribution with n − 2 de-
grees of freedom. In our example, the sample size is n = 25. Therefore, we use the
t-distribution with 25 − 2 = 23 degrees of freedom. If we set the confidence level
to 0.95, then tcrit = 2.07, which is obtained from the t-distribution with 23 degrees
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Fig. 11.5 Least-squares
regression line (solid line)
and its 95% confidence
interval (dashed curves) for
the relationship between
blood pressure and sodium
chloride intake level

of freedom by setting the upper tail probability to (1 − 0.95)/2 = 0.025. Therefore,
the 95% confidence interval for β is

[6.25 − 2.07 × 1.59,6.25 + 2.07 × 1.59] = [2.96,9.55].
At 0.95 confidence level, the slope of the regression line is between 2.96 and 9.55. In
other words, by moving from the low sodium chloride diet to high sodium chloride
diet, the expected (average) amount of increase in blood pressure is estimated to be
somewhere between 2.96 and 9.55 units.

Alternatively, we can use R-Commander to obtain the confidence intervals.
Make sure that the current model shown under the menu bar is LinearModel.1
(or any other name you gave to the regression model). Then click Models →
Confidence intervals and set the confidence level. (The default is 0.95.)
R-Commander provides the point estimates along with the confidence intervals for
α and β in the output window.

As our estimates for α and β change, the least-squares regression line changes.
Therefore, we can obtain confidence intervals for the regression line and predictions
we obtain based on this line. To obtain the 95% confidence interval of the regression
line for the blood pressure example, make sure that LinearModel.1 (or any other
name you specified) is the active model in R-Commander and then click Models
→ Graphs → Effect plots. The resulting plot is shown in Fig. 11.5. In this
plot, the solid straight line is the least-squares regression line for the observed data,
and the dashed curves show the 95% confidence interval for the regression line. The
curves show how much the regression line can change as we take different samples
from the population.
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11.3.2 Hypothesis Testing with Simple Linear Regression Models

Linear regression models can be used for testing hypotheses regarding possible lin-
ear relationship between the response variable and the explanatory variable. For this,
the regression coefficient β , its estimator B , and its point estimate b play a central
role. For linear regression models with a binary explanatory variable, we found the
regression line by connecting the sample means of the two groups. In these models,
the slope b is the difference between the two sample means. Similarly, the regres-
sion coefficient β captures the difference between the population means for the two
groups. If the response variable is not related to the binary explanatory variable,
the two population means are the same, and the slope of the regression line for the
whole population will be zero. That is, the null hypothesis stating no relationship
between the two variable can be written as H0 : β = 0.

This is analogous to the application of the two-sample t-test for hypothesis test-
ing regarding the relationship between a numerical variable and a binary variable.
Similar to the two-sample t-test, we need to obtain the t-score as the observed value
of the test statistic. Recall that we obtained the t-score by dividing the observed
difference between the sample means by its standard error. Similarly, we find the
t-score for linear regression models as follows:

t = b

SEb

.

Then, we find the p-value (i.e., the observed significance level) by calculating the
probability of as or more extreme values than t-score under the null hypothesis.

To assess the null hypothesis H0 : β = 0, which is interpreted as no linear
relationship between the response variable and the explanatory variable, we
first calculate the t = b/SEb and find the corresponding p-value as follows:

if HA : β < 0, pobs = P(T ≤ t),

if HA : β > 0, pobs = P(T ≥ t),

if HA : β �= 0, pobs = 2 × P
(
T ≥ |t |),

where T has the t-distribution with n − 2 degrees of freedom.

In the blood pressure example, the estimate of the regression coefficient was
b = 6.25, and the standard error was SEb = 1.59. Therefore,

t = 6.25

1.59
= 3.93.

If HA : β �= 0 (which is the common form of the alternative hypothesis), we find
the p-value by calculating the upper tail probability of |3.93| = 3.93 from the
t-distribution with 25 − 2 = 23 degrees of freedom and multiplying the result by
2. For this example, pobs = 2 × 0.00033 = 0.00066.
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Because pobs for this example is quite small and below any commonly used con-
fidence level (e.g., 0.01, 0.05, 0.1), we can reject the null hypothesis and conclude
that blood pressure is related to sodium chloride diet level.

When we use R-Commander to fit a linear regression model, the output provides
the t-score and its corresponding p-value. In Fig. 11.4, the column with the title
t value provides the t-scores for α and β , and the last column, Pr(>|t|),
provides the corresponding p-values.

11.4 Linear Regression Models with One Numerical
Explanatory Variable

In the previous section, to study the relationship between blood pressure and daily
salt intake, we used a binary variable that indicates whether the amount of daily
sodium chloride intake for each individual is above a certain cutoff (6 grams per
day). The data would be more informative of course if we use the actual amount
of sodium chloride intake per day. By doing so, the explanatory variable becomes
numerical (quantitative) as opposed to binary.

In this section, we discuss simple linear regression models (i.e., linear regression
with only one explanatory variable), where the explanatory variable is numerical.
For the most part, we use the same concepts for explaining the model, follow the
same steps to fit the model, and interpret the output of the model same way. Here,
of course, the explanatory variable can take more than two values. In fact, in many
cases (e.g., sodium chloride intake per day), it can take an uncountable number of
possible values.

We start our analysis by creating the scatter plot of the response variable and
the explanatory variable. As before, upload the “saltBP.txt” data set (available from
the book website) into R-Commander. Then, click Graphs → Scatterplot.
Choose salt, which is the actual amount of sodium chloride intake per day, under
x-variable and choose BP under y-variable. Under Options, make sure
that all the options are unchecked. When you press OK, R-Commander creates a
scatter plot for blood pressure vs. sodium chloride intake similar to the one shown
in Fig. 11.6.

As we can see, there is a clear upward trend indicating that increase in sodium
chloride intake tends to coincide with increase in blood pressure. Moreover, the
trend seems to be linear, so a straight line can capture the overall pattern. Indeed,
the process of fitting a linear regression model to the data involves finding a straight
line that can be considered as the best representation of the overall relationship be-
tween blood pressure and sodium chloride intake. The left panel of Fig. 11.7 shows
the scatterplot of blood pressure by daily sodium chloride intake along with some
candidate lines for capturing the overall relationship between the two variables.

To choose a line, we need to explain what we mean by the “best representation”
of the data. Similar to the approach we used earlier in this chapter, we measure the
discrepancy between each line and the observed data in terms of the residual sum of
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Fig. 11.6 The scatterplot of
blood pressure by sodium
chloride intake

Fig. 11.7 Left panel: Scatterplot of blood pressure by daily sodium chloride intake along with
some candidate lines for capturing the overall relationship between the two variables. The black
line is the least-squares regression line. Right panel: The least-squares regression line for the rela-
tionship between blood pressure and sodium chloride intake. The vertical arrows show the resid-
uals for two observations. The stars are the estimated blood pressure for daily sodium chloride
intakes from 0 to 14 grams

squares (RSS), and choose the line with the smallest value of RSS. As before, we
refer to the resulting model as the least-squares linear regression model and to the
corresponding line as the least-squares regression line. In the left panel of Fig. 11.7,
the black line is the least-squares regression line. As we can see, this line follows
the overall pattern more closely compared to any other line. You can obtain this line
by following the above steps to create the scatter plot, but this time check the option
Least-squares line under Options.
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As before, the regression line is specified by its intercept a and its slope b and
can be used to estimate the value of the response variable. Given a and b, we can
obtain the point estimate ŷi for the value of the response variable for individual i,
whose value of the explanatory variable is xi ,

ŷi = a + bxi.

In general, this estimated value is different from the observed value yi of the re-
sponse variable for the individual i. We use ei to denote the residual, which is the
difference between the estimated and observed value of the response variable,

ei = yi − ŷi .

The right panel of Fig. 11.7 shows the residuals (vertical arrows) for two obser-
vations in the blood pressure data. For a sample of n individuals, the discrepancy
between the linear regression model and the observed data is measured using the
residual sum of squares,

RSS =
n∑

i

e2
i . (11.4)

As mentioned above, the least-squares regression line provides the smallest possible
value of RSS among all candidate straight lines.

For each individual in our sample, we can write the observed value of the re-
sponse variable in terms of the estimated value according the linear regression model
and the corresponding residual as follows:

yi = ŷi + ei

= a + bxi + ei .

Here, a and b are the point estimates for α and β , which are the parameters of the
linear regression model for the entire population,

Y = α + βX + ε.

For simple linear regression model with binary explanatory variables, we found
a and b quite simply by using the sample means for the two groups. For simple
linear regression models with numerical explanatory variables, we find a and b as
follows.

First, we find the slope of regression line using the sample correlation coeffi-
cient r between the response variable Y and the explanatory variable X,

b = r
sy

sx
.
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Here, sy is the sample standard deviation of Y , and sx is the sample standard
deviation of X. Note that since sx and sy are always positive, the sign of
b is the same as the sign of the correlation coefficient: b > 0 for positively
correlated random variables, and b < 0 for negatively correlated variables.
When r = 0 (i.e., the two variables are not linearly related), then b = 0.
After finding the slope, we find the intercept as follows:

a = ȳ − bx̄,

where ȳ and x̄ are the sample means for Y and X, respectively. Then the
least-squares regression line with intercept a and slope b can be expressed as

ŷ = a + bx.

For the blood pressure example, the sample correlation coefficient is r = 0.84;
the sample standard deviation of blood pressure is sy = 4.94, and the sample stan-
dard deviation of sodium chloride intake is sx = 3.46. Therefore,

b = 0.84 × 4.94

3.46
= 1.20.

For the observed data, the sample means are ȳ = 135.68 and x̄ = 5.90. Therefore,

a = 135.68 − 1.20 × 5.90 = 128.60.

The linear regression model can be written as

ŷ = 128.60 + 1.20x.

We can now use this model to estimate the value of the response variable. For
the individual i in the right panel of Fig. 11.7, the amount of daily sodium chloride
intake is xi = 3.68. The estimated value of the blood pressure for this person is

ŷi = 128.60 + 1.20 × 3.68 = 133.02.

The actual blood pressure for this individual is yi = 128.3. The residual therefore is

ei = yi − ŷi = 128.3 − 133.02 = −4.72.

In the right panel of Fig. 11.7, the arrow that represents the residual for observation i

starts from 133.02 (i.e., estimated value according to the regression model) and
ends at 128.3 (i.e., the observed value of the blood pressure variable), and its length
is 4.72; the negative sign corresponds to a downward arrow.

We can also use our model for predicting the unknown values of the response
variable (i.e., blood pressure) for all individuals in the target population. For ex-
ample, if we know the amount of daily sodium chloride intake is x = 7.81 for an
individual, we can predict her blood pressure as follows:

ŷ = 128.60 + 1.20 × 7.81 = 137.97.

Of course, the actual value of the blood pressure for this individual would be differ-
ent from the predicted value. The difference between the actual and predicted values
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of the response variable is called the model error and is denoted as ε. In fact, the
residuals are the observed values of ε for the individuals in our sample.

In the right panel of Fig. 11.7, stars show the predicted values of the response
variable for values of the explanatory variable from 0 to 14. These are the expected
blood pressure values for people in the population of interest with 0,1,2, . . . ,14
grams of daily sodium chloride intake. Note that in general, we should be cautious
about using a regression model for prediction outside the population from which the
sample is obtained. For this example, we obtained the data from the population of
the elderly people (above 65 years old). Using our model for predicting blood pres-
sure of young people based on their daily amount of sodium chloride consumption
would not be appropriate since the relationship between blood pressure and sodium
chloride intake might not be the same among the young population. For example,
the relationship might be much weaker.

We should also be cautious about using the regression line for prediction outside
the range of observed values of the explanatory variables. For the above example,
the observed values of X in our sample are between 1 and 13. Using the regres-
sion line for prediction outside of this range is called extrapolation. As we move
away from this range, the overall relationship between the response variable and the
explanatory variable may change. In general, extrapolation far beyond the range of
observed values for the explanatory variable is not recommended.

The predicted value for an individual with x = 0 (i.e., zero gram sodium chloride
intake) is equal to the intercept:

ŷi = 128.60 + 1.20 × 0 = 128.60 = a.

This is the point where the regression line intercepts the vertical axis. Therefore,
the intercept is interpreted as the expected value of the blood pressure among peo-
ple with zero sodium chloride diet. Of course, setting the value of the explanatory
variable to zero does not always make sense. For example, if we use the weight of
individuals as the explanatory variable for blood pressure, we cannot interpret the
intercept as the expected value of the blood pressure among people whose weight is
zero.

The interpretation of slope b for the above model is similar to the interpretation
of slope for simple linear regression models with a binary explanatory variable: the
slope represents the expected (average) amount of change in the response variable
for one unit increase in the value of the explanatory variable. For binary variables,
one unit increase in X meant moving from the group with X = 0 to the group with
X = 1. For a numerical variable such as daily sodium chloride intake, one unit
increase could mean increasing the daily amount of sodium chloride intake from 6
to 7 or from 10 to 11. For the above model, people whose daily sodium chloride
intake is 7 grams are expected (i.e., on average) to have b = 1.20 units higher blood
pressure compared to those whose daily intake is 6 grams. The same comment can
be made for comparing people with 11 grams of daily intake to those with 10 grams
of daily intake.

Finding confidence intervals for regression parameters α and β also remains as
before. More specifically, the confidence interval for regression coefficient is ob-
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Fig. 11.8 Using
R-Commander to fit a linear
regression for investigating
the relationship between
blood pressure (BP) and
sodium chloride intake
(salt)

tained as follows:

[b − tcrit × SEb, b + tcrit × SEb].
Here, SEb is the standard error of the regression coefficient and is calculated accord-
ing to Eq. 11.3. We obtain tcrit from the t-distribution with n−2 degrees of freedom
for the given confidence level.

The steps for performing hypothesis testing regarding the linear relationship be-
tween the response and explanatory variables also remain the same. The null hypoth-
esis is H0 : β = 0, which indicates that the two variables are not linearly related.
This corresponds to a horizontal regression line, whose slope is zero. To evaluate
this hypothesis, we need to find the t-score first,

t = b

SEb

.

Then, we find the p-value (i.e., the observed significance level) by calculating the
probability of as or more extreme values than the t-score under the null hypothesis,
in the direction of the alternative hypothesis. To this end, we use the t-distribution
with n − 2 degrees of freedom to find the lower tail probability of the t-score if
HA : β < 0, or its upper tail probability if HA : β > 0, or two times the upper tail
probability of its absolute value if HA : β �= 0.

The steps for using R-Commander to find the points estimates and confi-
dence intervals of regression parameters, and performing hypothesis testing based
on linear regression models are the same as what we discussed for simple lin-
ear regression models with binary explanatory variables. For the blood pres-
sure example, click Statistics → Fit models → Linear regres-
sion. Then under Model Formula, enter BP ∼ salt, as in Fig. 11.8, and
press OK. Note that the name of the linear regression model is Linear-
Model.2.

Figure 11.9 shows the output provided by R-Commander for LinearModel.2.
In the Coefficients table, the first column (Estimate) provides the point
estimates for the regression parameters: a = 128.6 and b = 1.2. The next column
shows the corresponding standard errors. Dividing b = 1.2 by its standard error
SEb = 0.16 gives the t-score,
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Fig. 11.9 Output of fitting a
linear regression using
R-Commander for
investigating the relationship
between blood pressure (BP)
and sodium chloride intake
(salt)

t = 1.2

0.162
= 7.4,

which is the same as the value given in the third column under t value. Finally,
the observed significance level pobs is given in the last column. Here, pobs is equal to
the upper tail probability of |7.4| multiplied by 2. Because the p-value is extremely
small, we conclude that the observed association between the two variables, blood
pressure and daily amount of sodium chloride intake, is statistically significant. As a
result, we would feel comfortable to reject the null hypothesis, which indicates that
the two variables are not linearly related.

11.5 Goodness of Fit

When we fit a least-squares regression model to the observed data, R-Commander
provides some other important information about our model besides the
Coefficients table. Here, we focus on R-squared, which measures how well
the regression model fits the observed data. We denote this measure as R2.

Recall that the residual sums of squares (RSS) quantifies the discrepancy between
the observed data and the regression line used to represent the data: the higher RSS,
the higher discrepancy. Therefore, we can interpret RSS as the unexplained varia-
tion in the response variable using the regression model.

Alternatively, we can interpret RSS as the lack of fit of the linear regression
model. In contrast, R2 is a measure of goodness of fit; that is, how well our model
represents the observed data and explains the variation in the response variable. The
value of R2 is between 0 and 1, and the better the model fits the data, the higher its
R2 is.

The total variation in the response variable before we fit the regression line is
called the Total Sum of Squares (TSS) and is calculated as the squared deviations
of each observed value of the response variable, yi , from its sample mean ȳ:

TSS =
n∑

i

(yi − ȳ)2.

The fraction RSS/TSS can be interpreted as the percent of total variation that was
not explained by the regression model.
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Fig. 11.10 Measures of goodness of fit provided by R-Commander for linear regression models.
Here, our model uses salt as the explanatory variable for BP. For this model, R2 = 0.70

In contrast, 1 − RSS/TSS is fraction of total variation explained by the model.
This fraction is R2, which measures the goodness of fit for the regression
model,

R2 = 1 − RSS

TSS
.

In Fig. 11.10, the value of R2 provided by R-Commander is highlighted for
the linear regression model with blood pressure as the response variable and daily
sodium chloride intake as the explanatory variable. For this model, R2 = 0.70.
Therefore, 70% of the total variation in blood pressure can be explained by the
daily amount of sodium chloride a person consumes. The remaining 30% of the
total variation cannot be explained by this model and is regarded as random.

For simple linear regression models with one numerical explanatory variable,
R2 is equal to the square of the correlation coefficient r .

For the above blood pressure example, the sample correlation coefficient between
blood pressure and daily sodium chloride intake is r = 0.84. Therefore, the R2 is

R2 = 0.842 = 0.70.

This is the same value provided by R-Commander in Fig. 11.10.
While R2 provides useful information about the fit of the regression model, one

should be cautious about overstating its importance. Having a large R2 only means
that the model provides estimates close to the observed values for individuals in our
sample. This may or may not translate to better predictions for other individuals that
are not included in our sample. Moreover, even when the value of R2 is small, the
model could still be useful for predicting unknown values of the response variable,
especially when we consider the alternative option of not using the model (and the
explanatory variable) for prediction.



272 11 Regression Analysis

11.6 Model Assumptions and Diagnostics

Statistical inference using linear regression models is based on several assumptions.
Violating these assumptions could lead to wrong conclusions.

Linearity The most important assumption of linear regression model is that the re-
lationship between the explanatory variable X and the response variable Y is linear.
For simple problems discussed in this book, we can visually evaluate the appropri-
ateness of this assumption using the scatterplot of Y versus X such as the one shown
in Fig. 11.6.

When the linearity assumption does not hold, we might still be able to use linear
regression models after transforming the original variables. Common transforma-
tions are logarithm (usually for the response variable), square root, and square (usu-
ally for predictors). For example, we can create a new variable X2 = X2

1 and include
it in the regression model to account for possible nonlinear (in this case, parabolic)
relationship between the response variable Y and the predictor X1,

Y = α + β1X1 + β2X
2
1 + ε.

We should be cautious about interpreting the model parameters. Note that the role of
the quadratic term X2

1 is to capture possible nonlinearity in the relationship between
Y and X1. In this case, the null hypothesis H0 : β2 = 0 indicates that the relationship
is not quadratic. Fitting such models is discussed in the next section.

Finding the right transformation is not trivial. Additionally, variable transforma-
tions make the interpretation of the results difficult. Therefore, these techniques are
usually more appropriate when our objective is predicting the unknown values of the
response variables as opposed to explaining its relationship with a set of explanatory
variables. For more discussion, refer to Harrell (2001) [10].

Independence Another important assumption is that the observations are inde-
pendent, which is a reasonable assumption if we use simple random sampling to
select individuals that are not related to each other and if we do not obtain multi-
ple observations from the same individual. However, we sometimes sample related
subjects (e.g., siblings) in groups. Also, we sometimes select unrelated subjects, but
obtain multiple measurements (e.g., over a period of time) of the response variable
for each subject. For example, when evaluating the effect of different diets on blood
pressure, we might obtain multiple measurements of blood pressure for each per-
son repeatedly over six months. For such data, we need to use regression models
that take the dependencies among observations into account. When multiple obser-
vations are obtained over time, we typically use a class of statistical models called
longitudinal models.

Constant Variance and Normality Using linear regression models also involves
some assumptions regarding the probability distribution of the response variable Y ,
which is the main random variable in regression analysis. However, because of the
connection between the response variable and the error term, ε, according to the
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linear regression model (Eq. 11.2), it is common to treat ε as a random variable
(its values change from one individual to another) and specify these assumptions in
terms of the probability distribution of ε.

To make the statistical inference methods we discussed earlier in this chapter
valid, it is common to assume that the error term is normally distributed with mean 0,

ε ∼ N
(
0, σ 2).

Minor deviations from normality will not have a substantial impact on the results
as long as the sample size is relatively large. The important aspects of this assump-
tion are its specifications of the population mean and variance of ε. The population
mean is assumed to be zero, so we expect the errors based on the regression line
for the whole population to be centered on zero. The population variance of ε is
σ 2, which is of course unknown. What we actually mean by this assumption is that
whatever the value of this parameter, it does not change for different values of the
explanatory variable, e.g., σ 2 remains the same for x = 5 and x = 10. Informally,
this means that we expect that the variation of the actual values of the response
variable around the regression line remains the same regardless of the value of the
explanatory variable. This is called the constant variance assumption, which is also
known as the homoscedasticity assumption. (Heteroscedasticity refers to situations
where the constant variance assumption is violated.) To check the validity of these
assumptions, we examine the residuals e that are observed values of the random
variable ε.

To illustrate how we check the assumptions regarding ε, we use the blood pres-
sure example with daily amount of sodium chloride intake as the explanatory vari-
able. In R-Commander, make sure RegModel.2 is the active model, then click
Models → Graphs Basic diagnostic plots. This creates several model
diagnostic plots.

The residual plot in the left panel of Fig. 11.11 shows the residuals e versus the
estimated (fitted) values of the response variable ŷ. The horizontal line represents
the regression line. The plot shows that the residuals are scattered randomly around
the horizontal dashed line at zero without any detectable pattern. In this figure, the
solid line shows the overall pattern of the residuals. This line should remain close
to the horizontal dashed line. Moreover, it is important that we do not see any non-
random pattern in the residual plot. For example, we should not see small variations
around the horizontal line in one region and high variations in another region. For
illustration purposes, the right panel of Fig. 11.11 shows a residual plot where the
variability of the residuals around the horizontal line changes from one region to an-
other. More specifically, for this example, residuals become more dispersed around
the horizontal line as we move from small to large fitted values. In this case, the
constant variance assumption is violated.

When the constant variance assumption does not hold, we can sometimes stabi-
lize the variance using simple transformations of the response variable so the vari-
ance becomes approximately constant. For example, instead of Y , we could use

√
Y

(usually when Y is a count variable), or log(Y ) in the regression model. Another
strategy is to use weighted least squares (not discussed in this book) instead of the
standard least squares approach.
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Fig. 11.11 Left panel: The residual plot for the blood pressure example (with daily amount of
sodium chloride intake as the explanatory variable) to assess the assumptions of linear regression
models related to the error term. Here, the scatter plot of residuals vs. the estimated (fitted) values
is shown. The horizontal axis represents the regression line. The solid line on the plot shows the
overall pattern of the residuals. The plot shows that the residuals are scattered randomly around the
horizontal dashed line at zero without any detectable pattern. Right panel: An illustrative example,
where the constant variance assumption is violated. Here, the residuals become more dispersed
around the horizontal line as we move from small to large fitted values

In Fig. 11.11, the observations with large residuals (in absolute value) are iden-
tified by their row numbers. For these observations, the relationship between the
response variable and the explanatory variable does not follow the overall pattern
closely. We usually regard such observations as outliers and investigate them further
to make sure that they are measured and recorded correctly. Again, we should not
remove outliers from the data unless we are absolutely sure that they are recorded
by mistake. (Occasionally, we remove outliers temporarily and refit the model to
examine the extent of their influence on the regression model.)

We use the residuals as the observed values of the error terms, ε, to estimate
its unknown population standard deviation σ as follows:

SEe = √
RSS/(n − 2).

We refer to SEe as the regression standard error. This is in fact the numer-
ator in Eq. 11.3 for the standard error of the regression coefficient. Therefore,
we can rewrite Eq. 11.3 as follows:

SEb = SEe√∑
i (xi − x̄)2

. (11.5)
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The regression standard error for the blood pressure example with the daily
sodium chloride intake as the explanatory variable is SEe = 2.745. This value is

shown in Fig. 11.10. Divide this value by
√∑

i (xi − x̄)2 to see that the result is
equal to 0.162, the standard error of the regression coefficient.

11.7 Multiple Linear Regression

So far, we have focused on linear regression models with only one explanatory vari-
able. In most cases, however, we are interested in the relationship between the re-
sponse variable and multiple explanatory variables. Even if we are interested in the
relationship between the response variable and only one explanatory variable, very
often we need to account for the effect of other important variables that might in-
fluence our inference. If our objective is to predict unknown values of the response
variable, we might be able to improve prediction accuracy by including multiple pre-
dictors in the linear regression model. Models with multiple explanatory variables
or predictors are called multiple linear regression models.

As an example, suppose that we want to examine the relationship between the
birthweight of babies and the smoking status of their mothers during pregnancy.
We might however believe that mother’s age at the time of pregnancy is an impor-
tant factor that should be taken into account. To this end, we need to evaluate the
relationship between birthweight and smoking status among mothers with similar
age.

Alternatively, suppose that our objective is to predict birthweight given age and
smoking status of mothers; that is, we are interested in predicting birthweight if, for
example, we are told that the mother has been smoking during pregnancy and she is
30 years old. Again, we need to include both age and smoking status in our model.

In practice, we need to specify our objective for building linear regression
models clearly. If our objective is to examine possible relationships between
the response variable and one or more explanatory variables, we should spec-
ify our hypothesis prior to our analysis. In this case, our decision to include
an explanatory variable in the model must be hypothesis-driven and based on
our domain knowledge. When testing a hypothesis, we should avoid finding
our model through exploring all possible combinations of variables available
to us. On the other hand, if our objective is to predict the unknown values of
the response variable, we could use our domain knowledge to identify a set
of promising predictors and then explore all possible combinations of these
variables until we find a model that provide the best predictions.

Note that our criterion for finding the best regression model for prediction should
be based on how the model predicts unknown values of the response variable (e.g.,
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for the part of the population not included in our sample). To this end, a common cri-
terion is the mean squared error (MSE), which measures how close the predicted
values are to the actual values,

MSE = 1

N

N∑

i=1

(yi − ŷi )
2.

When used for evaluating predictions, MSE is sometimes called the Expected Pre-
diction Error (EPE) [11] or the Mean Squared Error of Prediction (MSEP) [3]. Note
that the sum is over all unknown values (i.e., the whole population). In practice,
we cannot calculate MSE directly since the actual values of the response variable
are unknown. We can however estimate it using a subset of our sample as the test
set. These are observations we remove from our sample before fitting the regression
model and treat them as future observations. That is, we pretend that we do not know
the value of the response variable for these observations. We then use the remaining
observations, called the training set, in our sample to fit the regression model and
use the resulting model to predict the response variable for the test set. Suppose we
have m observations in the test set, we estimate MSE as follows:

̂MSE = 1

m

m∑

i=1

(yi − ŷi )
2.

Here, ŷi is our prediction for the ith observation in the test set, and yi is the actual
value of the response variable for this observation. When we use regression models
for prediction, we prefer models with small ̂MSE.

While fitting a multiple linear regression model to the data follows the same prin-
ciple (namely, minimizing the residual sum of squares) as what we used for simple
linear regression model, estimating regression parameters and performing statisti-
cal inference using multiple linear regression models is slightly more complex than
what we discussed for simple linear regression models. Here, we focus on using
R-Commander to find parameter estimates and interpret the results.

A multiple linear regression model with p explanatory variables can be presented
as follows:

Y = α + β1X1 + β2X2 + · · · + βpXp + ε.

Here, Y is the numerical response variable, X1, . . . ,Xp are the explanatory vari-
ables, α is the intercept, β1, . . . , βp are the corresponding regression coefficients,
and ε is the error term.

Using the observed data, we estimate the regression parameters α,β1, . . . , βp . To
this end, we use the least-squares method as before. We denote the point estimates
for these parameters a, b1, . . . , bp , respectively. Using the point estimates, we can
predict the value of the response variable for an individual whose measurements for
the explanatory variables are x1, . . . , xp:

ŷ = a + b1x1 + b2x2 + · · · + bpxp.
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For the ith observed data, the difference between the actual value of the response
variable, yi , and its estimate according to the above linear regression model, ŷi , is
the residual ei ,

ei = yi − ŷi .

As before, we measure the discrepancy between the model and the observed data
using RSS, which is the sum of the square of the residuals. As before, R2 measures
the goodness of fit for the regression model,

R2 = 1 − RSS

TSS
.

Using RSS, we can find the regression standard error (i.e., the estimate of σ ) as
follows:

SEe = √
RSS/(n − p − 1),

where n is the sample size, and p is the number of explanatory variables in the
model.

For each regression coefficient βj (i.e., the coefficient of the explanatory vari-
able Xj ), we find the standard error SEbj

along with its point estimate bj . Similar
to simple linear regression models, confidence intervals for βj are obtained as fol-
lows:

[bj − tcrit × SEbj
, bj + tcrit × SEbj

].
Here, however, we obtain tcrit from the t-distribution with n − p − 1 degrees of
freedom for the given confidence level c.

The steps for performing hypothesis testing regarding the βj is also similar to
what we discussed for simple linear relationship models; the null hypothesis is H0j :
βj = 0; we evaluate the null hypothesis by finding the t-score,

tj = bj

SEbj

.

However, for multiple linear regression models, we obtain p-values (i.e., the ob-
served significance level) using the t-distribution with n−p−1 degrees of freedom.

As mentioned above, we use R-Commander to estimate the parameters of
multiple linear regression models and use them to perform statistical inference.
For the birthweight example, make sure birthwt is the active data set, then
click Statistics → Fit models → Linear model. Then under Model
Formula, enter bwt ∼ age + smoke, as in Fig. 11.12. (You can either type
the model formula or double click on bwt, age, and smoke in that order; R-
Commander then enters the first variable on the left-hand side of the ∼ symbol
and the rest on its right-hand side.) By doing so, we specify the following multiple
linear regression model:

bwt= α + β1age+ β2smoke+ ε.

Notice that the intercept is added to the model automatically. If, for some reason,
you want to suppress the automatic addition of the intercept in the regression model
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Fig. 11.12 Fitting a multiple
linear regression model in
R-Commander. Here,
birthweight (bwt) of babies
is the response variable.
Mother’s age and smoking
status (smoke) are used as
explanatory variables

Fig. 11.13 Output of R-Commander for fitting a multiple linear regression model to the birthwt
data to examine the linear relationship between birthweight (bwt) of babies and two characteristics
of their mother, age and smoking status (smoke)

(this is not recommended in general), you can enter the model as bwt ∼ 0 + age
+ smoke.

The results of the multiple linear regression model are given in the Output
window and in Fig. 11.13. The Coefficients table provides the estimates
(Estimate), standard errors (Std. Error), t-scores (t value), and p-values
(Pr(>|t|)) for the intercept and the regression coefficients of mother’s age and
her smoking status (smoke). Using the point estimates for regression parameters,
we can predict birthweight for a baby by knowing her mother’s age and smoking
status as follows:

b̂wt= 2791 + 11 × age− 278 × smoke.

Therefore, if the mother is 30 years old (age=30) and she has been smoking during
the pregnancy (smoke=1), our estimate (prediction) for the birthweight of her baby
is

b̂wt= 2791 + 11 × 30 − 278 × 1

= 2843.

This can be interpreted as our estimate of the expected birthweight for babies whose
mothers are 30 years old and smoke during pregnancy. That is, for these mothers,
the expected (average) birthweight of babies is 2843 grams.
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The intercept in multiple linear regression model is the expected (average) value
of the response variable when all the explanatory variables in the model are set
to zero simultaneously. In the above example, the intercept is a = 2791, which is
obtained by setting age and smoking to zero. We might be tempted to interpret this
as the average birthweight of babies for nonsmoking mothers (smoke=0) with age
equal to zero. In this case, however, this is not a reasonable interpretation since
mother’s age cannot be zero.

For multiple linear regression models, we use bj to denote the point esti-
mate of the regression coefficient βj . We interpret bj as our estimate of the
expected (average) change in the response variable associated with a unit in-
crease in the corresponding explanatory variable Xj while all other explana-
tory variables in the model remain fixed.

For the above birthweight example, the point estimate of the regression coeffi-
cient for age is b1 = 11 (Fig. 11.13). Therefore, we expect that the birthweight
of babies increase by 11 grams as the mother’s age increases by one year among
mothers with the same smoking status. If we select two groups of mothers with the
same smoking status from the population where the first group includes mothers
who are, for example, 27 years old, and the second group includes mothers who are
28 years old, the average birthweight for the second group is 11 grams higher than
the average birthweight in the first group according to our model.

For this model, the estimate of the regression coefficient for smoke is b2 = −278.
Therefore, the expected birthweight decreases by −278 grams associated with
one unit increase in the value of the variable smoke among mothers with the
same age. In this case, because smoke is a binary variable, one unit increase in
its value means changing the smoking status from nonsmoking (smoke=0) to
smoking (smoke=1). Note that the age of mothers should remain fixed to make
this interpretation valid. For example, if we divide mothers who are 32 years old
into two groups according to their smoking status, the expected weight of birth-
weight for smoking mothers is 278 grams less than that of nonsmoking moth-
ers.

Figure 11.14 shows the above multiple linear regression model, where the lin-
ear relationship between birthweight and age is captured by a separate regression
line for each smoking status. In this plot, nonsmoking mothers are shown as cir-
cles, while smoking mothers are shown as squares. The dashed line shows the
regression line among nonsmoking mothers, and the solid line shows the regres-
sion line among the smoking mothers. Note that the slopes of the two lines are
the same and are equal to 11. Therefore, the expected change in birthweight asso-
ciated with one unit increase in age remains the same regardless of smoking sta-
tus. On the other hand, the vertical distance between the two lines remains equal
to 278 over all possible values of age. Therefore, for any given age, we expect the
same difference in birthweight between children of smoking and nonsmoking moth-
ers.
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Fig. 11.14 Presenting the
multiple linear regression
model fitted to the birthwt
data. Here, nonsmoking
mothers are shown as circles,
while smoking mothers are
shown as squares. The dashed
line shows the regression line
among nonsmoking mothers,
and the solid line shows the
regression line among the
smoking mothers

In multiple linear regression models, we usually assume that the effects of
explanatory variables on the response variable are additive. This means that
the expected change in the response variable corresponding to one unit in-
crease in one of the explanatory variables remains the same regardless of the
values of other explanatory variables in the model. As a result, when two
(or more) explanatory variables change simultaneously, their overall effect on
the response variable is the sum of their individual effects. For example, if we
change mother’s age from 27 to 28 and change smoking status from 0 to 1, the
expected value of birthweight (in grams) changes by 11 + (−278) = −267.

The coefficient table in Fig. 11.13 provides the standard errors along with the
point estimate of the each regression coefficient. For this example, the standard er-
rors are roughly SEb1 = 10 and SEb2 = 107. Suppose that we are interested in the
95% confidence intervals for β1 and β2. To this end, we first need to find tcrit for
0.95 confidence level from the t-distribution with df = 189 − 2 − 1 = 186. (Note
that the sample size is n = 189 and the number of explanatory variables is p = 2.)
Using R-Commander, we find tcrit = 1.97 for 0.95 confidence level. (The process of
finding tcrit is the same as what we discussed for the population mean in Chap. 6.)
Therefor, the 95% confidence interval for regression coefficient of age is

[11 − 1.97 × 10,11 + 1.97 × 10] = [−8,31].
Likewise, the 95% confidence interval for the regression coefficient of smoke is

[−278 − 1.97 × 107,−278 + 1.97 × 107] = [−489,−67].
As before, we could obtain confidence intervals for regression parameters in R-

Commander by clicking Models → Confidence intervals and setting the
confidence level. (The default is 0.95.)
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According to the above results, at 0.95 confidence level, our expected change
in birthweight associated with one year increase in mother’s age among mothers
with the same smoking status is somewhere between −8 and 31 grams. Note that
this range includes zero, which is the value specified by the null hypothesis. More
formally, considering the p-value of 0.25 provided in Fig. 11.13 for the regression
coefficient for age, we cannot reject its corresponding null hypothesis at commonly
used significant levels (0.01, 0.05, and 0.1). The null hypothesis in this case states
that birthweight and age are not linearly related (β1 = 0). We can, however, reject
the null hypothesis for the regression coefficient for the smoking status at 0.05 level
and conclude that the result of this test is statistically significant.

For the above example, suppose we remove the variable age from the model and
fit a new linear regression model with the variable smoke only. By doing so, our
inference regarding the linear relationship between birthweight and smoke changes.
In this case, by including smoke as the only explanatory variable, the estimate of
the regression coefficient for this variable changes from −278 to −283, and the
p-value changes from 0.010 to 0.009.

For the above example, including and removing age did not have a substantial im-
pact on our inference regarding the relationship between birthweight and smoking
status. In some situations, the impact of adding or removing an explanatory variable
could be drastic. As an example, suppose we want to examine the relationship be-
tween height and percent body fat among men. To do this, we use the bodyfat
data set (discussed in Chap. 3), which consists of measurements of percent body
fat, age in years, weight in pounds, height in inches, and abdomen circumference
in inches for 252 men. (Follow the steps discussed in Chap. 3 to load the data in
R-Commander.)

We build two linear regression models. In the first model, we only include
height as the explanatory variable. In the second model, we include height
and abdomen both. The steps for fitting linear regression models are the same as
before.

Figure 11.15 shows the results for the first model, where we only include
height as the explanatory variable in the model. As we can see, the p-value for
testing the hypothesis regarding the linear relationship between percent body fat and
height is 0.15, so the result is not statistically significant at 0.1 level. However, when
we include abdomen along with height in the model (Fig. 11.16), the linear rela-
tionship between percent body fat and height becomes statistically significant at any

Fig. 11.15 The results of fitting a simple linear regression model to predict percent body fat with
height as the only explanatory variable
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Fig. 11.16 The results of fitting a multiple linear regression model to predict percent body fat by
using both height and abdomen as explanatory variables

commonly used significance level; the p-value in this case reduces to an extremely
small number (7.95 × 10−6), and the estimate of the regression coefficient changes
from −0.20 to −0.37.

The above results show that the importance and significance of one explanatory
variable can be affected by presence or absence of other explanatory variables in
the model. In this example, while height by its own does not have a statistically
significant linear relationship with percent body fat, the relationship becomes quite
significant among men with the same abdomen circumference. (Recall that when
interpreting regression coefficient of one explanatory variable in multiple linear re-
gression, we assume that all other explanatory variables are fixed at some specific
values.)

Our inference regarding the relationship between the response variable and
an explanatory variable could depend on what other variables we include in
the model. Therefore, we should choose the set of explanatory variables very
carefully when we perform statistical inference using multiple linear regres-
sion models.

11.8 Advanced

In this section, we discuss linear regression models with interaction terms. We also
discuss some commonly used R functions for linear regression analysis.

11.8.1 Interaction

In the previous section, we mentioned that the usual assumption in multiple linear
regression models is that the effects are additive. If we believe that the effects are
not additive (i.e., the effect of one explanatory variable X1 on the response variable
depends on the value of another explanatory variable X2 in the model), we can still
use linear regression models by including a new variable X3 = X1X2,

Y = α + β1X1 + β2X2 + β12X1X2 + ε.
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The term X1X2 is called the interaction term. We refer to β1 and β2 as the main
effects, and refer to β12 as the interaction effect.

As before, we use the least-squares method to estimate the model parameters,

ŷ = a + b1x1 + b2x2 + b12x1x2.

When we include an interaction term in our model, we should be cautious about
how we interpret model parameters. For simplicity, we assume that X2 in the above
model is binary so the value of x2 can be either 0 or 1. When x2 = 0, our estimate
of the response variable is as follows:

ŷ = a + b1x1.

The slope of the least-squares regression line is b1. Therefore, our estimate of the
response variable changes by b1 units for one unit increase in x1, when we fix x2 at
zero.

On the other hand, when x2 = 1, our estimate of the response variable is

ŷ = a + b1x1 + b2 + b12x1.

We can rewrite the above equation as follows:

ŷ = (a + b2) + (b1 + b12)x1.

In this case, the slope of the least-squares regression line is b1 + b12, which means
that our estimate of the response variable changes by b1 + b12 units for one unit
increase in x1, when we fix x2 at one. Notice that the effect of X1 on the response
variable Y depends on the value of X2.

As an example, we fit a multiple linear regression model to the birthweight data
with bwt as the response variable. As before, we include both age and smoke as
explanatory variables, but this time we include their interaction effect in the model,

bwt= α + β1age+ β2smoke+ β12age× smoke+ ε.

Repeat the steps for using R-Commander to fit multiple linear regression
models, but this time enter bwt ∼ age * smoke under Model Formula
(Fig. 11.17). When you use “*” instead of “+” to separate the explanatory variables,
R-Commander includes the main effects automatically along with the interaction ef-
fect in the model. The results are shown in Fig. 11.18. Note that the interaction term
is shown as age:smoke. For this model, the point estimates of model parameters
are b0 = 2406, b1 = 28, b2 = 798, and b12 = −47. Therefore, we use the following
equation to estimate birthweight:

b̂wt= 2406 + 28 × age+ 798 × smoke− 47 × age× smoke.

Because smoke is a binary variable, the interpretation of model parameters
are similar to what we discussed above. When smoke = 0 (i.e., for nonsmok-
ing mothers), the estimate of birthweight changes by b1 = 28 grams for one year
increase in mother’s age. When smoke = 1 (i.e., for smoking mothers), the esti-
mate of birthweight changes by b1 + b12 = 28 − 47 = −19 for one year increase in
mother’s age. That is, for smoking mothers, the estimate of birthweight decreases
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Fig. 11.17 Fitting a multiple
linear regression model with
an interaction term in
R-Commander. Here,
birthweight (bwt) of babies
is the response variable.
Mother’s age and smoking
status (smoke) are used as
explanatory variables. Note
that unlike the additive
model, we use “*” (instead of
“+”) to separate the two
explanatory variables

Fig. 11.18 Output of R-Commander for fitting a multiple linear regression model with an inter-
action term to the birthwt data to examine the linear relationship between birthweight (bwt) of
babies and two characteristics of their mother, age and smoking status (smoke). The interaction
term is shown as age:smoke

as mother’s age increases. This is illustrated in Fig. 11.19. In this plot, nonsmoking
mothers are shown as circles and smoking mothers are shown as squares. The dashed
line shows the regression line for nonsmoking mothers, and the solid line shows the
regression line for the smoking mothers. While the slope is positive among non-
smoking mothers, it becomes negative among smoking mothers. Compare this plot
to Fig. 11.14, which we obtained for the additive (no interaction) model.

For the above model, although the estimate of the main effect for smoke is 798,
we cannot interpret this as our estimate of the expected increase in birthweight for
smoking mothers (smoke = 1) compared to nonsmoking mothers (smoke = 0)
regardless of mother’s age. The interpretation of smoking effect is slightly complex
because it depends on mother’s age, which can take many different values. Let us
focus on mothers who are 23 years old at the time of pregnancy. This is the average
age of mothers in our data. For nonsmoking mothers who are 23 years old, our
estimate of birthweight (in grams) is

b̂wt= 2406 + 28 × 23 + 798 × 0 − 47 × 23 × 0

= 3050.
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Fig. 11.19 Presenting the
multiple linear regression
model with an interaction
term fitted to the birthwt
data. Here, nonsmoking
mothers are shown as circles,
while smoking mothers are
shown as squares. The dashed
line shows the regression line
among nonsmoking mothers,
and the solid line shows the
regression line among the
smoking mothers

In contrast, our estimate of birthweight (in grams) for smoking mothers at the same
age is

b̂wt= 2406 + 28 × 23 + 798 × 1 − 47 × 23 × 1

= 2767.

Therefore, the estimated birthweight reduces by 3050 − 2767 = 283 grams for 23-
year old smoking mothers compared to 23-year old nonsmoking mothers. Note that
this estimate changes depending on mother’s age.

11.8.2 Linear Regression Models in R

Fitting a linear regression model in R is straightforward. As an example, we model
the relationship between percent body fat, siri, and height, using a simple lin-
ear regression model. The following commands install the mfp package using the
install.packages() function, load it into R using the library() function,
and make the data bodyfat available for analysis using the data() function:

> install.packages("mfp", dependencies = TRUE)
> library(mfp)
> data(bodyfat)

We set the dependencies to TRUE to install other packages that are related to
mfp along with it.

To fit the least-squares regression model, use the lm() function:
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> fit <- lm(siri ~ height, data = bodyfat)

The first argument of the function is the formula of the form of “response ∼ explana-
tory variable”. The second argument specifies the data set. By giving the name of
the data set this way, we avoid witting the equation as bodyfat$siri ∼ body-
fat$height.

The fit object now stores all the output from the linear regression model. Type
fit to get the estimates of the estimates of α and β (i.e., regression parameters):

> fit

Call:
lm(formula = siri height, data = bodyfat)

Coefficients:
(Intercept) height

33.4945 -0.2045

Using the summary() function, we can obtain the output similar to what R-
Commander provides in above examples:

> summary(fit)

Call:
lm(formula = siri height, data = bodyfat)

Residuals:
Min 1Q Median 3Q Max

-19.5902 -6.7124 0.3966 6.0716 27.0919

Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) 33.4945 10.1096 3.313 0.00106 **
height -0.2045 0.1439 -1.421 0.15664

---
Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’
0.1 ’ ’ 1

Residual standard error: 8.352 on 250 degrees
of freedom Multiple R-squared: 0.008009,
Adjusted R-squared: 0.004041
F-statistic: 2.019 on 1 and 250 DF, p-value: 0.1566

With the names() function, we can view all the information contained in the
fit object:

> names(fit)
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[1] "coefficients" "residuals"
[3] "effects" "rank"
[5] "fitted.values" "assign"
[7] "qr" "df.residual"
[9] "xlevels" "call"
[11] "terms" "model"

Now we can use the $ operator to access information. For instance, suppose that
we wanted the point estimates of α and β:

> fit$coefficients

(Intercept) height
33.4944938 -0.2044753

Likewise, the estimated response values for all people in our sample are stored in
the fitted.values object within fit. Suppose that we wanted the estimates
for the first five people:

> fit$fitted.values[1:5]

1 2 3 4 5
19.64129 18.72115 19.94800 18.72115 18.92563

The differences between actual and estimated response values are stored in the
residuals object within fit. The following command returns the residuals of
the first five people:

> fit$residuals[1:5]

1 2 3 4 5
-7.341291 -12.621152 5.351996 -8.321152 9.774373

Adding the least-squares line to the scatterplot is easy with the abline() func-
tion:

> plot(bodyfat$height, bodyfat$siri,
+ main = "Scatterplot for Percent Body Fat

by Height",
+ xlab = "Height", ylab = "Percent Body Fat")
> abline(fit)

By default, abline() draws a solid line. We can set the line type to dashed line
by using the option lty=2. The lty obtain defines the line type. In general, the
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abline() function can be used to add a straight line to an existing plot. (You first
need to create a plot before using abline.) For example, abline(h=2) draws
a horizontal line two units above the origin, abline(v=-1) draws a vertical line
one unit to the left of origin, and abline(a=-5, b=2) draws a line with inter-
cept −5 and slope 2.

We can also fit a multiple linear regression model to the bodyfat data using
abdomen circumference and height as explanatory variables. As before, we use the
lm() function, but now we include both explanatory variables on the right-hand
side of the formula. We separate the explanatory variables with plus signs:

> multReg <- lm(siri ~ height + abdomen, data = bodyfat)
> summary(multReg)

Call:
lm(formula = siri height + abdomen, data = bodyfat)

Residuals:
Min 1Q Median 3Q Max

-18.8513 -3.4825 -0.0156 3.0949 11.1633

Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) -14.31075 6.04265 -2.368 0.0186 *
height -0.37053 0.08122 -4.562 7.95e-06 ***
abdomen 1.64707 0.07074 23.283 < 2e-16 ***

---
Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’
0.05 ’.’ 0.1 ’ ’ 1

Residual standard error: 4.695 on 249 degrees
of freedom Multiple R-squared: 0.6878,
Adjusted R-squared: 0.6853
F-statistic: 274.2 on 2 and 249 DF, p-value: < 2.2e-16

To include the interaction term between height and abdomen in the model,
we can specify the regression model as siri ∼ height * abdomen. In this
case, R includes the main effects of the two variables automatically.

11.9 Exercises

1. We want to examine the relationship between body temperature Y and heart
rate X. Further, we would like to use heart rate to predict the body temperature.
(a) Use the “BodyTemperature.txt” data set to build a simple linear regression

model for body temperature using heart rate as the predictor.
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(b) Interpret the estimate of regression coefficient and examine its statistical sig-
nificance.

(c) Find the 95% confidence interval for the regression coefficient.
(d) Find the value of R2 and show that it is equal to sample correlation coeffi-

cient.
(e) Create simple diagnostic plots for your model and identify possible outliers.
(f) If someone’s heart rate is 75, what would be your estimate of this person’s

body temperature?
2. We believe that gender might also be related to body temperature and could help

us to predict its unknown values.
(a) Use the “BodyTemperature.txt” data set to build a multiple linear regression

model for body temperature using heart rate and gender as predictors.
(b) How much R2 did increase compared the above simple linear regression

model?
(c) Explain the estimates of regression coefficients in plain language.
(d) Find the 95% confidence intervals for regression coefficients.
(e) If a woman’s heart rate is 75, what would be your estimate of her body tem-

perature? What would be your estimate of body temperature for a man whose
heart rate is 75.

3. We would like to predict a baby’s birthweight (bwt) before she is born using her
mother’s weight at last menstrual period (lwt).
(a) Use the birthwt data set to build a simple linear regression model, where

bwt is the response variable and lwt is the predictor.
(b) Interpret your estimate of regression coefficient and examine its statistical

significance.
(c) Find the 95% confidence interval for the regression coefficient.
(d) If mother’s weight at last menstrual period is 170 pounds, what would be

your estimate for the birthweight of her baby?
4. For the above problem, use both mother’s weight at last menstrual period (lwt)

and her smoking status (smoke) to predict birthweight.
(a) Interpret the estimates of regression coefficients and comment on their sta-

tistical significance.
(b) Find the 95% confidence interval for regression coefficients.
(c) If mother’s weight at last menstrual period is 170 pounds and she was smok-

ing during her pregnancy, what would be your estimate for the birthweight
of her baby?

5. We want to predict percent body fat using the measurement for neck circumfer-
ence.
(a) Use the bodyfat data set to build a simple linear regression model for

percent body fat (siri), where neck circumference (neck) is the predictor.
In this data set, neck is measured in centimeters.

(b) What is the expected (mean) increase in the percent body fat corresponding
to one unit increase in neck circumference.

(c) Create a new variable, neck.in, whose values are neck circumference in
inches. Rebuild the regression model for percent body fat using neck.in
as the predictor.
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(d) What is the expected (mean) increase in the percent body fat for one unit
(1 inch = 2.54 centimeter) increase in neck.in.

(e) Compare the estimates of regression coefficient tobs values and R2 values
between the two models.

6. Read the paper “A Critical Appraisal of 98.6°F, the Upper Limit of the Normal
Body Temperature, and Other Legacies of Carl Reinhold August Wunderlich” by
Mackowiak et al. [19]. (The paper is available online at http://jama.ama-assn.org/
cgi/reprint/268/12/1578.) They used a linear regression model to investigate the
relationship between age and temperature. What did they find? They also used
a linear regression model for the relationship between heart rate (response vari-
able) and temperature. What was their conclusion? What was their point estimate
of the regression coefficient for temperature?

http://jama.ama-assn.org/cgi/reprint/268/12/1578
http://jama.ama-assn.org/cgi/reprint/268/12/1578


Chapter 12
Clustering

12.1 Introduction

Linear regression models discussed previously are used to predict the unknown val-
ues of the response variable. In these models, the response variable has a central
role; the model building process is guided by explaining the variation of the re-
sponse variable or predicting its values. Therefore, building regression models is
known as supervised learning. In contrast, building statistical models to identify
the underlying structure of data (without focusing on a specific variable) is known
as unsupervised learning. An important class of unsupervised learning is cluster-
ing, which is commonly used to identify subgroups within a population. In general,
cluster analysis refers to the methods that attempt to divide the data into subgroups
such that the observations within the same group are more similar compared to the
observations in different groups.

For example, suppose that we believe that while European countries are differ-
ent with respect to their protein consumption, they could be divided into several
groups such that countries within the same group can be considered similar to each
other in terms protein consumption. Here, we use the Protein data set we dis-
cussed earlier. Recall that this data set includes numerical measurements of the pro-
tein consumption from 9 different sources: RedMeat, WhiteMeat, eggs, Milk,
Fish, Cereals, Starch (starchy foods), nuts (pulses, nuts, and oil-seeds), and
Fr.Veg (fruits and vegetables). To start, suppose that we want to group countries
according to their consumption of red meat (redMeat) and fish (Fish). More
information about the data can be found at http://lib.stat.cmu.edu/DASL/Datafiles/
Protein.html.

The core concept in any cluster analysis is the notion of similarity and dissim-
ilarity. It is common to quantify the degree of dissimilarity based on a distance
measure, which is usually defined for a pair of observations.
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Fig. 12.1 Viewing the Protein data set in R-Commander. For 25 countries, there observations
on the consumption of 9 different food groups

Table 12.1 Red meat and
fish consumption in Albania
and Austria

Countries RedMeat Fish

Albania 10.1 0.2

Austria 8.9 2.1

The most commonly used distance measure is the squared distance,

dij = (xi − xj )
2,

where dij refers to the distance between observations i and j , xi is the value
of random variable X for observation i, and xj is the value for observation j .

In the Protein data set (Fig. 12.1), the first two countries are Albania and Aus-
tria. Suppose we want to measure their degree of dissimilarity (i.e., their distance)
in terms of their consumption of red meat and fish (see Table 12.1). The squared
distance between these two countries is (10.1 − 8.9)2 = 1.44 in terms of red meat
consumption and is (0.2 − 2.1)2 = 3.61 in terms of fish consumption.

To find the overall distance between the two countries, we add the distances based
on different variables:

d = 1.44 + 3.61 = 5.05.

In general, if we measure p random variables X1, . . . ,Xp , the squared dis-
tance between two observations i and j in our sample is

dij = (xi1 − xj1)
2 + · · · + (xip − xjp)2.

This measure of dissimilarity is called the squared Euclidean distance.
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12.2 K-means Clustering

K-means clustering is a simple algorithm that uses the squared Euclidean dis-
tance as its measure of dissimilarity. We start by specifying the number of clusters
(groups) K . This is the number of groups we believe exist in the population. Our
goal is then to group the n observations in our sample into K clusters such that the
overall measure of dissimilarity is small within groups and large between groups.
Initially, we divide the observations into K groups randomly. Then the algorithm
iteratively improves the clusters.

Let us define the center or centroid of each cluster as an imaginary observation
whose measurements are the sample average of all observations in that cluster. For
the food consumption example, suppose that the first cluster includes Albania and
Austria only. The center of this cluster, denoted as Center1, can be regarded as a
fictitious country, whose red meat consumption is 9.50 (average of 10.1 and 8.9)
and whose fish consumption is 1.15 (average of 0.2 and 2.1).

After randomly partitioning the observations into K groups and finding the
center of each cluster, the K-means algorithm finds the best clusters by itera-
tively repeating these steps [11]:

1. For each observation, find its squared Euclidean distance to all K centers,
and assign it to the cluster with the smallest distance.

2. After regrouping all the observations into K clusters, recalculate the K

centers.

These steps are applied until the clusters do not change (i.e., the centers re-
main the same after each iteration).

Suppose that we want to cluster the countries into K = 3 groups based on
their consumption of red meat and fish. In R-Commander, click Statistics →
Dimensional analysis → Cluster analysis → k-means
cluster analysis. Under Variables, select Fish and RedMeat. (Hold
the control key and click on the name of variables.) Then use the slider to specify
the Number of clusters as 3. Check the options Print cluster sum-
mary and Assign clusters to the data set. Finally, in the Assign-
ment variable box, type ClusterId (Fig. 12.2).

R-Commander then creates a new variable ClusterId with the assignment of
each country: 1, 2 or 3. (Try viewing the data set.) The number of countries assigned
to the clusters is given in the Output window (Fig. 12.3). The sizes of Cluster 1,
Cluster 2, and Cluster 3 are 11, 8, and 6, respectively. There is also a table showing
the centroids of these cluster.

We can use a scatterplot to visualize the results of K-means. Use R-Commander
to create a Scatterplot. Choose Fish under x-variable and RedMeat under
y-variable. Uncheck all the options. Then click on Plot by groups and
choose the newly created variable ClusterId. The resulting graph is shown in
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Fig. 12.2 K-means
clustering in R-Commander.
Here, we want K = 3 clusters
of the 25 countries based on
Fish and RedMeat
consumption. R-Commander
will then provide a summary
of each group in the Output
window and create a new
variable ClusterId with
the observation’s assignment

Fig. 12.3 Interpreting the
results from K-means
clustering. In the Output
window, R-Commander
provides the size and centers
of the best K = 3 clusters,
based on Fish and
RedMeat consumption

Fig. 12.4 Visualizing the
results of K-means clustering
with a scatterplot. The three
clusters are represented by
red circles, green triangles,
and blue crosses. They clearly
partition the countries into a
group with a low
consumption of fish and red
meat, a group with a high
consumption of fish, and a
group with a high
consumption of red meat

Fig. 12.4. The first cluster is represented by circles and contains countries whose
consumption of both fish and red meat is relatively low. The second cluster is rep-
resented by triangles and includes countries whose consumption of both fish and
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red meat is relatively high compared to the first group. Finally, the third cluster is
represented by crosses and includes countries whose consumption of red meat tends
to be higher compared to the other two groups.

12.3 Hierarchical Clustering

There are two potential problems with the K-means clustering algorithm. First, it is
a flat clustering method. After observations are assigned to their clusters, they are
all considered to be similar within the same cluster. That is, the observations are
not further separated based on dissimilarity within a cluster. Secondly, we need to
specify the number of clusters K a priori. Finding the appropriate number of clusters
is not trivial, and the selected number has a substantial impact on the results.

An alternative approach that avoids these issues is hierarchical clustering. The
result of this method is a dendrogram (a tree). The root of the dendrogram is its
highest level and contains all n observations. The leaves of the tree are its lowest
level and are each a unique observation.

There are two general algorithms for hierarchical clustering [11]:

• Agglomerative (bottom-up): We start at the bottom of the tree, where every
observation is a cluster (i.e., there are n clusters). Then we merge two of the
clusters with the smallest degree of dissimilarity (i.e., the two most similar
clusters). Now we have n − 1 clusters. We continue merging clusters until
we have only one cluster (the root) that includes all observations.

• Divisive (top-down): We start at the top of the tree, where all observations
are grouped in a single cluster. Then we divide the cluster into two new
clusters that are most dissimilar. Now we have two clusters. We continue
splitting existing clusters until every observation is its own cluster.

Of the above two strategies, agglomerative algorithm is more common. Both
algorithms, however, require a measure of dissimilarity between two clusters. In
other words, we need to specify a distance measure for two clusters analogous to the
distance measure we defined for two observations. For every pair of observations,
where one is from cluster i, and the other one is from cluster j , we can find the
squared Euclidean distances dij . Then we can use one of the following methods to
calculate the overall distance between two clusters:

• Single linkage clustering uses the minimum dij among all possible pairs as the
distance between the two clusters. This is the distance between two observations,
one from each cluster, that are closest to each other.

• Complete linkage clustering uses the maximum dij as the distance between the
two clusters. This is the distance between two observations, one from each cluster,
that are furthest apart.
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Fig. 12.5 Illustrating the
difference between the single
linkage method, the complete
linkage method, and the
centroid linkage method to
determine the distance dij

between the two clusters
shown as circles and squares

• Average linkage clustering uses the average dij over all possible pairs as the dis-
tance between the two clusters.

• Centroid linkage clustering finds the centroids of the two clusters and uses the
distance between the centroids as the distance between the two clusters.

As an illustration of these methods, consider Fig. 12.5, which shows two clusters
shown as circles and squares. The solid line shows the single linkage distance be-
tween the two clusters, the dashed line shows the complete linkage distance, and the
dotted line shows the centroid linkage distance. Note that the dotted line connects
the centers (as opposed to observations) of the two clusters. There are of course other
ways for defining the distance between two clusters. However, the above measures
are the most commonly used.

For example, let us perform complete linkage clustering to create a dendrogram
of countries based on their protein consumption. Click Statistics → Dimen-
sional analysis → Cluster analysis → Hierarchical clus-
ter analysis. Select all nine food groups (hold the control key) for the Vari-
ables. Next, choose Complete Linkage as the Clustering Method and
Squared-Euclidean as the Distance Measure. Lastly, make sure the op-
tion Plot Dendrogram is checked.

R-Commander then creates a dendrogram similar to the one shown in Fig. 12.6.
The clusters seemed to be defined by geographic location: Balkan countries (Ro-
mania, Bulgaria, and Yugoslavia), Scandinavian countries (Finland, Norway, Den-
mark, and Sweden), Western European countries (UK, Belgium, France, Austria,
Ireland, Switzerland, Netherlands, and West Germany), Eastern European coun-
tries (East Germany, Hungary, Czechoslovakia, Poland, Albania, USSR) and the
Mediterranean countries (Portugal, Spain, Greece, Italy). (This data set was col-
lected in 1973. Since then, some of these countries have changed or no longer exist.)

Using the results from hierarchical clustering, we can group observations into
K clusters by cutting the dendrogram through K branches. For example, cutting
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Fig. 12.6 The dendrogram
resulting from complete
linkage clustering of the 25
countries based on their
protein consumption. The
dashed line shows where to
cut the dendrogram to create
three clusters

the dendrogram in Fig. 12.6 at the dashed line would create three clusters. The first
cluster includes three of Balkan countries. The second cluster includes Scandina-
vian countries and mostly Western countries, and the last cluster mostly consists of
countries from Eastern Europe and the Mediterranean.

To create K distinct clusters based on the result of hierarchical clustering, you
can click Statistics → Dimensional analysis→ Cluster analy-
sis → Summarize hierarchical clustering. Next, follow the same
steps, but this time choose Add hierarchical clustering to data
set in order to create a new variable that identifies the clusters. In both cases,
you need to specify the number of clusters.

12.4 Advanced

In this section, we discuss standardization of variables before clustering. We also
discuss some useful commands to perform clustering in R.

12.4.1 Standardizing Variables Before Clustering

For distance-based clustering methods discussed in this chapter, it is common to
standardize variable prior to clustering so that all variables contribute equally to the
overall distance measure and have the same influence on the results. To this end, we
divide each variable by its standard deviation as discussed in Sect. 2.6. This way, all
variables have standard deviations of 1, so they become comparable.

As mentioned in Sect. 2.6, to standardize variables in R-Commander, click
Data → Manage variables in active data set → Standardize
variables and choose the variables you want to standardize. This will create a
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new set of standardized variables, which have similar names to the original vari-
ables, but they all start with the prefix Z.

In general, not all variables have the same degree of importance in grouping
observations into clusters. In some situations, giving all variables the same influ-
ence by standardizing them could lead to obscuring the patterns and misleading the
clustering methods. Possible pitfalls of standardizing variables before clustering is
illustrated in Fig. 14.5 of “The Elements of Statistical Learning” by Hastie et al.
[11].

12.4.2 Clustering in R

In this section, we discuss some R functions for clustering. We start by importing
the Protein data into R. Make sure that the file “Protein.txt” (available from the
book website) is in your current directory, then enter the following command:

> Protein <- read.table("Protein.txt",
+ header = TRUE, sep = "")

Suppose that we want to cluster these European countries into three clusters ac-
cording to their consumption of red meat and fish. We create a new object, x, that
contains the columns RedMeat and Fish from the Protein data:

> x <- Protein[, c("RedMeat", "Fish")]

It is common to standardize the data prior to clustering so that the variables be-
come comparable. We can standardize the data using the scale() function:

> x <- scale(x)

To use the K-means clustering, we use the kmeans() function:

> clus <- kmeans(x, centers = 3)

The first argument of the kmeans() function specifies the matrix that contains the
data. Each row of this matrix corresponds to one of the observations (here, a Eu-
ropean country), and each column corresponds to one of the variables. The second
argument, centers, specifies the number of clusters. The output is assigned to a
new object called clus.

The object clus is a list that contains the cluster ids, which is labeled as clus-
ters, and the centroids, which are labeled as centers.

> clus$cluster

[1] 3 3 1 3 3 2 2 2 1 2 3 1 3 3 2 3 2 3 2 2
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[21] 1 1 3 1 3

> clus$centers

RedMeat Fish
1 1.4107826 -0.1618402
2 -0.2735221 1.1435597
3 -0.5705926 -0.7434033

We can append the cluster ids to the original data as follows:

> Protein$ClusterId <- clus$cluster

To visualize the three clusters, we can create the scatterplot of RedMeat by
Fish and distinguish the clusters by using different symbols/colors similar to
Fig. 12.4. We first create the plot frame without the observations as follows:

> plot(Protein$Fish, Protein$RedMeat,
+ type = "n", xlab = "Fish", ylab = "Red Meat",
+ xlim = c(0, 15), ylim = c(0, 20))

Note that we have used the option type=’n’, so the observations are not plotted;
only the plot frame is created this way. The argument xlim and ylim are used
to define the range of values for x (Fish) and y (Red Meat) axes to make sure that
when we plot the observations, they do not fall outside of the plot frame. You can
use the function range() for RedMeat and Fish to find the required limits.

Now we can use the function points() to add the observations to the plot. We
add each cluster separately to the plot:

> points(Protein$Fish[Protein$ClusterId ==
+ 1], Protein$RedMeat[Protein$ClusterId ==
+ 1], pch = 1, cex = 1.5)
> points(Protein$Fish[Protein$ClusterId ==
+ 2], Protein$RedMeat[Protein$ClusterId ==
+ 2], pch = 2, cex = 1.5)
> points(Protein$Fish[Protein$ClusterId ==
+ 3], Protein$RedMeat[Protein$ClusterId ==
+ 3], pch = 3, cex = 1.5)

The first line plots those observations whose clusters id are equal to 1. For these
observations the option pch=1 specifies the symbol (circles), and the option
cex=1.5 specifies the size of the symbol. The second and the third lines add the
second and third clusters to the plot with different symbols.

We can use the function legend() to add a legend to the plot in order to identify
the clusters:

> legend("topright", legend = c("Cluster 1",
+ "Cluster 2", "Cluster 3"), pch = c(1,
+ 2, 3))
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The first argument provides the location (here, top right) of the legend in the plot.
The second argument, legend, provides the names of the three clusters as a vec-
tor, and the third argument, pch, specifies the symbols used for each cluster. Use
?legend to learn more about this R function. Your final plot should be similar to
Fig. 12.4.

To use hierarchical clustering, we use the function dist() to obtain the distance
between observations (in a form of a matrix) and use the function hclust() to
cluster the observations:

> d <- dist(x)
> clus.h <- hclust(d, method = "centroid")

The object d is a matrix that contains the Euclidean distances (note that we used
squared Euclidean distances previously) of observations in x. (Recall that x itself
was a matrix of standardized values of Red meat and Fish consumption.) The func-
tion hclust takes the distance matrix d as an input and performs hierarchical
clustering. The argument method specifies the agglomeration method. Here, we
use the centroid linkage method, where the distance between two clusters is calcu-
lated based on the distance between their centroids. For the complete list of options,
enter the command ?hclust.

We have assigned the output of hierarchical clustering to a new object called
clus.h. We can plot the dendrogram by simply using the plot() function with
clus.h as its argument:

> plot(clus.h, labels = Protein$Country)

Here, the argument labels provides the name of each observation, and so they are
identified on the dendrogram.

Now suppose that we want to use the result of the above hierarchical clustering
and divide the observations into three clusters. We can first identify these clusters
on the dendrogram by using the function rect.hclust():

> rect.hclust(clus.h, k = 3)

This function draws rectangles around the branches of a dendrogram highlighting
the clusters. We can then obtain the cluster ids for the observations using the func-
tion cutree():

> clus.h.id <- cutree(clus.h, k = 3)

As before, we can add the cluster ids to the Protein data:

> Protein$HClusterId <- clus.h.id
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12.5 Exercises

1. Use the K-means clustering method to divide Pima Indian women into three
groups based on their age and BMI. Provide the centroid for cluster. Create a
scatter plot, where each cluster is identified by a different symbol. How these
three groups are different from each other based on their age and BMI?

2. In Sect. 3.6, we used the GBSG (German Breast Cancer Study Group) data
set from the mfp package to create a new variable called rfs (recurrence-
free survival) such that rfs=“No” if the patient had at least one recurrence
or died (i.e., cenc=1) and rfs=“Yes” otherwise. Use the K-means cluster-
ing method to divide the patients into two groups based on their age, the size
of tumor (tumsize), and the number of positive nodes (posnodal). Make
sure the options Print cluster summary and Assign clusters to
the data set are checked. Explain how the two groups are different us-
ing cluster specific summaries. R-Commander creates a new variable, which is
called KMeans by default, to identify the two groups. Use this variable along
with rfs to create a 2 × 2 contingency table where the rows show different clus-
ters and the columns shows different values rfs. What are the sample proportion
of recurrence-free survivals for the two groups. Compare the odds of recurrence-
free survival between the two groups.

3. In R-Commander, click Data → Data in pacakges → Read data
set from an attached package, then select the iris data from the
datasets package. The data include the measurements in centimeters of the
variables sepal length and width and petal length and width, respectively, for
50 flowers from each of three species of iris. Use these measurements to divide
the flowers into three groups. Make sure the options Print cluster sum-
mary and Assign clusters to the data set are checked. Use the
centroids to explain how the three identified clusters are different. Between sepal
and petal, which one seems to be more important in distinguishing the three
clusters? Use the newly created variable that identifies the clusters (by default,
R-Commander assigns the name KMeans to this variable) to create a contin-
gency table where the rows are different clusters and the columns are different
species. What is the connection between clusters and the type of flowers?

4. Repeat the above example, but this time use the hierarchical clustering approach
with complete linkage as a measure of distance between clusters. Create three
clusters (i.e., K = 3) based on your hierarchical cluster analysis and add a new
variable to the data-identifying cluster ids. Using a contingency table, explain
how the three identified clusters are related to the three species of flowers.



Chapter 13
Bayesian Analysis

13.1 Introduction

In Chap. 4, we discussed Bayes’ theorem and mentioned that it is the basis of the
Bayesian Statistics. In this chapter, we discuss Bayesian inference regarding the
population proportion as an example for the application of Bayesian methods. To
learn more about Bayesian data analysis, refer to Christensen et al. [6] or Gelman
et al. [8].

13.2 A Simple Case of Bayesian Analysis for Population
Proportion

We start our discussion with a simple illustrative example. Suppose that we are
interested in finding the five-year survival rate (i.e., population proportion of sur-
vival) among breast cancer patients. We denote this unknown population propor-
tion μ. For simplicity, we assume that the survival rate is either 0.75 or 0.85.
Without any data, we think that both of these values are equally probable; that is,
P(μ = 0.75) = P(μ = 0.85) = 0.5. Alternatively, we can write this as follows:

P(μ = 0.85)

P (μ = 0.75)
= 1.

Now suppose that we take a random sample of n = 20 breast cancer patients from
the population. We use Y to denote the number of survivals out of 20. From Chap. 5
we know that Y has a Binomial(n,μ) distribution (assuming that the patients are se-
lected independently and they all have the same probability of survival). Therefore,
if μ = 0.75, the distribution of Y is Binomial(20, 0.75). If μ = 0.85 on the other
hand, the distribution of Y is Binomial(20, 0.85).

For our sample, we find that 18 of patients are still alive after five years: Y = 18.
Our point estimate for the survival rate μ is therefore p = 18/20 = 0.9, where p is
the sample proportion. Let us see how this information changes our mind about the
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value of the population proportion, μ. For this, we use Bayes’ theorem. Recall that
Bayes’ formula for two events E1 and E2 is

P(E2|E1) = P(E1|E2)P (E2)

P (E1)
.

For our example, we can write Bayes’ formula in terms of μ and Y , so E1 corre-
sponds to the event that Y = 18, and E2 corresponds to the event that μ = 0.85:

P(μ = 0.85|Y = 18) = P(Y = 18|μ = 0.85)P (μ = 0.85)

P (Y = 18)
.

Here, P(μ = 0.85|Y = 18) is the probability that the true value of the survival rate is
0.85 given the information that 18 people have survived (out of 20), P(Y = 18|μ =
0.85) is the probability that 18 people survive assuming that the true survival rate
is 0.85, P(μ = 0.85) is the probability that the survival rate is in fact 0.85 (we
assumed this probability is 0.5), and P(Y = 18) is the probability that 18 people
survive regardless of the what the probability of survival is (0.85 or 0.75).

As mentioned above, Y has Binomial(20,0.85) distribution given that μ = 0.85.
Using R-Commander, we can find the probability of 18 survivals assuming that μ =
0.85. Click Distributions → Discrete distributions → Bino-
mial distribution → Binomial probabilities. Then, set Bino-
mial trials to 20 and Probability of success to 0.85. R-Commander
provides the probabilities for all possible values of Y . The probability for 18 sur-
vivals assuming that μ = 0.85 is P(Y = 18|μ = 0.85) = 0.23.

To find P(Y = 18), we use the law of total probability (Eq. 4.7):

P(Y = 18) = P(Y = 18|μ = 0.85)P (μ = 0.85)

+ P(Y = 18|μ = 0.75)P (μ = 0.75).

Here, P(Y = 18|μ = 0.75) is the probability of 18 survivals assuming that the true
value of the survival rate is μ = 0.75. We find this probability using R-Commander
by following the above steps, but this time we set Probability of success
to 0.75. By doing so, we find P(Y = 18|μ = 0.75) = 0.07. Therefore,

P(Y = 18) = 0.23 × 0.5 + 0.07 × 0.5

= 0.15.

Now we have all the information we need to find P(μ = 0.85|Y = 18):

P(μ = 0.85|Y = 18) = P(Y = 18|μ = 0.85)P (μ = 0.85)

P (Y = 18)

= 0.23 × 0.5

0.15
= 0.76.

At the beginning (before observing any data), we believed that μ = 0.85 with prob-
ability of 0.5. Knowing that 18 out of 20 people have survived, we increase this
probability to 0.76.
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By following similar steps, we find that P(μ = 0.75|Y = 18) = 0.24. Given the
observed data, we have reduced the probability of μ = 0.75 from 0.5 to 0.24. There-
fore, while we gave equal probabilities to both values 0.75 and 0.85 at the beginning,
based on the new empirical evidence we observed, we increased the probability of
μ = 0.85 and decreased the probability of μ = 0.75. This is intuitive, of course,
because our point estimate for the survival rate is 0.9 (18 out of 20), which is closer
to 0.85 than 0.75. We can use these updated probabilities and write

P(μ = 0.85|Y = 18)

P (μ = 0.75|Y = 18)
= 0.76

0.24
= 3.2.

Therefore, given the observed data, the value 0.85 is 3.2 times more likely than 0.75.

13.3 Prior and Posterior Probabilities

The above example illustrates a simple application of Bayesian inference. For the
population proportion μ, we refer to P(μ = 0.75) and P(μ = 0.85) as prior prob-
abilities. These are probabilities we assign to possible values of μ before observing
any data. Note that in practice, we might obtain these probabilities from previous
studies. For example, two other research groups might have conducted similar stud-
ies in the past; one group estimated μ to be 0.75, and the other group estimated it
to be 0.85, and we do not have any reason to prefer one estimate over the other.
In this case, we want to conduct a new study, collect new empirical evidence, and
estimate μ, but we want to take the available information regarding the value of μ

into account.
We refer to P(Y = 18|μ = 0.85) as likelihood, i.e., how likely it is to see this

specific data (18 survivals out of 20) if μ is in fact 0.85. We can express the proba-
bility of the specific data we have observed (i.e., 18 survivals out of 20) as a function
of different values of μ. We refer to this function as the likelihood function. For
the above example, the likelihood function is

P(Y = 18|μ) =
{

0.07, μ = 0.75,

0.23, μ = 0.85.

We refer to the updated probability of μ after we observe the data as the pos-
terior probability of μ. The posterior probabilities in the above example are
P(μ = 0.75|Y = 18) = 0.24 and P(μ = 0.85|Y = 18) = 0.76, which are obtained
after we observed 18 survivals among 20 patients. As mentioned above, we can use
these posterior probabilities to write

P(μ = 0.85|Y = 18)

P (μ = 0.75|Y = 18)
= 0.76

0.24
= 3.2.

This is known as the posterior odds (here, we find the odds of 0.85 over 0.75).
Of course, based on what we discussed above, we can find the posterior odds as
follows:
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P(μ = 0.85|Y = 18)

P (μ = 0.75|Y = 18)
= P(Y = 18|μ = 0.85)P (μ = 0.85)/P (Y = 18)

P (Y = 18|μ = 0.75)P (μ = 0.75)/P (Y = 18)

= P(Y = 18|μ = 0.85)P (μ = 0.85)

P (Y = 18|μ = 0.75)P (μ = 0.75)
.

By canceling out the term P(Y = 18) from the numerator and denominator, we have

P(μ = 0.85|Y = 18)

P (μ = 0.75|Y = 18)
= P(Y = 18|μ = 0.85)

P (Y = 18|μ = 0.75)
× P(μ = 0.85)

P (μ = 0.75)
.

The term P(μ = 0.85)/P (μ = 0.75) on the right-hand side of the above equation
is called prior odds (here, we find the odds of 0.85 over 0.75). In our example, the
prior odds is 1. The posterior odds is obtained by multiplying the prior odds by the
following term:

P(Y = 18|μ = 0.85)

P (Y = 18|μ = 0.75)
= 0.23

0.07
.

This term is in fact the ratio of two possible values for the likelihood function and
is known as the likelihood ratio.

The posterior odds is the product of the prior odds by the likelihood ratio.

13.4 The General Form of Bayesian Analysis for Population
Proportion

For the example we have discussed so far, we have focused on a simple case where
the population proportion could take one of two possible values, 0.75 and 0.85.
Consequently, we specified the prior distribution by assigning probabilities to these
two values only; that is, we used a discrete probability distribution with only two
possible values. In general, the population proportion could take values from 0 to 1.
Therefore, we need a continuous prior distribution whose range is from 0 to 1.

The beta distribution, whose range is from 0 to 1, is commonly used as the
prior distribution for the population proportion μ. The beta distribution is
specified by two parameters, α and β , and is denoted as Beta(α,β). We refer
to α and β as shape 1 and shape 2, respectively. Both parameters must be
positive numbers.

We can use R-Commander to plot different beta distributions by setting α and β

to different values. For example,suppose that we want to plot Beta(8,2). In R-
Commander, click Distributions → Continuous distributions →
Beta distribution → Plot beta distribution and set Shape 1
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Fig. 13.1 Comparing the
plots of the probability
density function for a beta
distribution with different
parameter values. The solid
line represents the pdf of
Beta(1,1). This distribution
is known as the Uniform(0, 1)
distribution. The dashed line
represents the pdf of
Beta(8,2), and the dotted line
represents the pdf of
Beta(2,8)

and Shape 2 to 8 and 2, respectively. Make sure the option Plot density
function is checked and press OK.

Figure 13.1 shows the probability density curves for three beta distributions. The
dashed curve represents the probability density function for Beta(8,2). Notice that
the density for this distribution is large around 0.8. In fact, 0.8 is the mean of this
distribution.

In general, for a beta distribution with parameters α and β , the mean is
α/(α + β).

For example, the mean of the Beta(2,8) distribution (shown with a dotted curve
in Fig. 13.1) is 2/(2 + 8) = 0.2.

Now let us reconsider the breast cancer survival example. This time, instead of
assuming that only two values are possible, we assume that the true population
proportion could be any value from 0 to 1. In general, we always recommend to
avoid making overly restrictive assumptions such as the one we used for illustrative
purposes in earlier part of this chapter. That is, even if previous studies estimated
the population proportion to be either 0.75 and 0.85, we still should consider all
other feasible values. We could of course use the results from previous studies and
assume that while the survival rate could be any value from 0 to 1, it is more likely
to be around 0.8 (e.g., between 0.75 to 0.85) than, for example, around 0.2 (e.g.,
between 0.15 and 0.25). When specifying the prior distribution, we can use a beta
distribution that reflects this assumption.

For the Beta(8,2) distribution (shown as a dashed curve in Fig. 13.1), the prob-
ability (i.e., the area under the density curve) is high for values around 0.8, whereas
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the probability is almost zero for values around 0.2. Therefore, we use Beta(8,2) as
the prior distribution for the survival rate of breast cancer patients.

Note that this prior probability distribution reflects our knowledge (based on
previous studies) regarding the possible values of survival rate before we obtain
new data. We update our knowledge after we observe new empirical evidence.
Our updated knowledge is expressed as the posterior probability distribution, which
could be drastically different from the prior probability distribution. Therefore, even
though we believe in prior that the survival rate is around 0.8, a new empirical ev-
idence could overwhelmingly change this belief. We might be even convinced that
values around 0.2 are more probable than values around 0.8 if the observed data
strongly suggest that. (We will illustrate this later.)

To find the posterior probability distribution, we use Bayes’ theorem as before.
When the prior probability distribution is continuous, as it is the case here, find-
ing the posterior probability distribution tends to be complicated in general. For the
population proportion, however, using beta prior distributions simplifies the prob-
lem of finding the posterior probability. In this case, it turns out that the posterior
probability itself is a beta distribution with updated parameters.

If we assume that the prior knowledge of the population proportion μ, can be
expressed using a Beta(α,β) distribution, then the posterior distribution of μ

is Beta(α + y,β + n − y), where n is the sample size, and y is the number of
times the event of interest has been observed.

In our example, we obtained a sample of 20 patients from the population and
found that 18 of them survived after 5 years. Assuming that the prior probability
distribution for the breast cancer survival rate is Beta(8,2), the posterior proba-
bility distribution for the survival rate is Beta(8 + 18,2 + 20 − 18). We can use
R-Commander to plot the probability density function for this distribution by fol-
lowing the steps described earlier, but this time we set Shape 1 and Shape 2 to
26 and 4, respectively.

Figure 13.2 shows the density curve for the posterior probability distribution,
Beta(26,4). We have included the prior probability density (dashed curve) for com-
parison. For this example, Beta(26,4) reflects our updated knowledge about the
survival rate among cancer patients. In the Bayesian framework, statistical infer-
ence is mainly performed based on the posterior probability distribution. This is the
topic of the next section.

Before we discuss how we use posterior probability distributions for statistical
inference, we use an illustrative example to show a possible (but not very common)
scenario where the observed data are in extreme disagreement with our prior knowl-
edge. For the above example, the prior probability distribution we chose was based
on previous studies indicating that the survival rate is around 0.8. Now suppose that
out of 20 patients we randomly sampled from the population only 4 have survived.
That is, the sample proportion of survival is 0.2, which is far from 0.8. The posterior
probability distribution in this case becomes Beta(8+4,2+20−4) = Beta(12,18).
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Fig. 13.2 The prior
probability distribution
(dashed curve) for breast
cancer survival rate and the
resulting posterior probability
distribution (solid curve) after
observing 18 survivals among
20 patients

The probability density curve for this distribution is shown in Fig. 13.3. As we
see, the posterior probability distribution, which reflects our updated knowledge, is
substantially different from our prior knowledge. In this case, the distribution has
shifted toward 0.2, which is the sample proportion of survivals based on our new
data.

Posterior probability distributions combine the new observed evidence with the
results of previous studies. In the above example, the posterior probability distri-
bution Beta(12,18) reflects a compromise between what we knew before collecting
data and what we learned from the new observed data. If the actual survival rate is in
fact 0.2, the posterior distribution would shift even further toward 0.2 as we obtain
more data by increasing the sample size, until the prior becomes completely over-
whelmed by the new empirical evidence. Until then, however, we cannot completely
ignore the knowledge we have accumulated through previous studies.

In practice, it is possible that we might not have strong prior knowledge about
the population proportion. For example, we might be the first group studying the
survival rate of breast cancer patients. We can still use a prior probability distribution
that reflects our lack of knowledge and ignorance. For the population proportion,
Beta(1,1) is a typical distribution used in such situations. This distribution is shown
as the solid horizontal line from zero to one in Fig. 13.1. This is also known as the
Uniform(0, 1) distribution (i.e., uniform from 0 to 1). Informally, this distribution
states that all values from 0 to 1 are equally probable. More formally, the uniform
distribution indicates that the probability of any interval is equal to the length of the
interval. (Since the height of the pdf for this distribution is equal to one, the area
under the line for each interval is the same as the length of that interval.) Therefore,
the probability that the population proportion is between 0.1 and 0.2 is the same as
the probability that the population proportion is between 0.8 and 0.9. In other words,
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Fig. 13.3 An illustrative example, where the observed data are in extreme disagreement with our
prior knowledge about the survival rate of breast cancer patients. The prior probability distribution
(dashed curve) assigns high probabilities to the range of values around 0.8. The new data however
show that only 20% of patients have survived in our sample. The resulting posterior probability
distribution (solid curve) reflects our updated knowledge, which is substantially different from our
prior knowledge

while the first interval includes small values, and the second interval includes large
values, both intervals are equally probable since they have the same length.

If we decide to choose Beta(1,1) for the population proportion of breast cancer
survival and if we observe 18 survivals among 20 patients, the posterior probability
distribution becomes Beta(1 + 18,1 + 20 − 18) = Beta(19, 3).

13.5 Bayesian Inference

In Bayesian analysis, our inference about unknown parameters (e.g., the popula-
tion proportion) is based on the posterior probability distribution. Here, we discuss
how we can use the posterior distribution to obtain point estimates and interval esti-
mates. Also, we discuss some possible methods for performing hypothesis testing.
As before, we focus on statistical inference regarding the population proportion.

13.5.1 Estimation

In the previous section, we used Beta(8,2) as the prior probability distribution for
the population proportion of breast cancer survival. After observing 18 survivals
among 20 patients, we obtained the posterior probability distribution, Beta(26,4).
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We typically use the mean of the posterior distribution, which is known as the
posterior expectation, as our point estimate for unknown population param-
eters.

As mentioned above, the mean of Beta(α,β) distribution is α/(α + β). In our
example, α = 26 and β = 4 for the posterior distribution. Therefore, our point esti-
mate for the survival rate is 26/(26 + 4) = 0.87. This posterior expectation is close
to the sample proportion 18/20 = 0.9, and it approaches the sample proportion as
we increase the sample size.

While working with point estimates is convenient, they do not reflect the uncer-
tainty regarding our estimates. As discussed in earlier chapters, interval estimates
are recommended instead. Finding interval estimates based on posterior probability
distributions is quite simple. For example, suppose that we want to find an interval
that includes the true value of the population proportion μ with probability 0.95.
We show this interval as [L,U ], where L is the lower limit, and U is the upper limit
of the interval. The easiest way to find such an interval is to use the 0.025-quantile
as the lower limit of the interval and the 0.975-quantile as the upper limit of the
interval from the posterior probability distribution. Recall that the 0.025-quantile is
the value whose lower tail probability is 0.025, and the 0.975-quantile is the value
whose lower tail probability is 0.975. Therefore, the probability between these two
values is 0.975 − 0.025 = 0.95.

We can use R-Commander to find these quantiles for the Beta(26,4). Click
Distributions → Continuous distributions → Beta distri-
bution → Beta quantiles. Set the probabilities to 0.025 0.975
(use white space to separate the two probabilities; alternatively, you can find the
quantiles one at a time) and set Shape 1 and Shape 2 to 26 and 4, respectively.
The 0.025 and 0.975 quantiles, which are 0.73 and 0.96, respectively, will be printed
in the Output window. Therefore, μ (population proportion of survival among breast
cancer patients) falls within [0.73,0.96] interval with probability 0.95. We call this
interval the 95% probability interval or credible interval for μ. We can follow sim-
ilar steps to find other credible intervals. For example, we can set L to the 0.05-
quantile and U to the 0.95-quantile to obtain the 90% credible interval.

Note that a credible interval is obtained directly from a probability distribution,
and we can interpret it as the range of possible values that include the true value of
the unknown parameter with specified probability (e.g., 0.95). In contrast, we do not
use the term “probability” in our interpretation of a confidence interval, unless we
are referring to the procedure used to create that specific interval.

13.5.2 Hypothesis Testing

Formally, hypothesis testing in the Bayesian frameworks is regarded as a decision
problem. Here, however, we discuss some simple methods for conducting hypothe-
sis testing analogous to those methods we discussed in earlier chapters.
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For the breast cancer survival example, suppose that we hypothesize that the
population proportion is above 0.8; that is, HA : μ > 0.8. We can use the poste-
rior probability distribution to find the probability of HA. In this case, HA is true
when the population proportion is above 0.8. Therefore, to find the probability that
HA is true, we can find the upper tail probability of 0.8 from Beta(26,4). In R-
Commander, click Distributions → Continuous distributions →
Beta distribution → Beta probabilities. Then, set Variable
value(s) to 0.8, Shape 1 to 26, and Shape 2 to 4. Make sure the option
upper tail is checked. The upper tail probability of 0.8 is then 0.86. Now, we
need to decide whether this probability is large enough so that we can accept HA.
This of course depends on the specific problem at hand. In general, our decision
might depend on other factors (e.g., loss function) not discussed here.

Note that in Bayesian statistics, we directly evaluate the hypothesis that has in-
spired our study by finding its probability. This is typically the alternative hypoth-
esis. Of course, if we want, we can find the probability of the null hypothesis. For
the above example, if we specify the null hypothesis as H0 : μ ≤ 0.8, we can cal-
culate its probability by finding the lower tail probability of 0.8 from the posterior
probability distribution. In this case, the probability that the null hypothesis is true
is 0.14. Consequently, we can conclude that the posterior odds of HA compared
to H0 is 0.84/0.14 = 6.1. That is, the alternative hypothesis is about 6 times more
likely to be true compared to the null hypothesis given the observed data.

Now suppose that we want to perform a two-sided hypothesis test, where HA :
μ �= 0.8. This hypothesis states that the population proportion is different from 0.8.
Of course, the probability that μ is exactly 0.8 is zero (since the probability distribu-
tion of μ is continuous), which means that the hypothesis is true with probability 1.
Therefore, we need to be clear about what we mean by saying that the population
proportion is different from 0.8. That is, how far away we should move from 0.8
until we consider μ different from 0.8 for all practical purposes. For the specific
hypothesis testing problem we are working on, we might, for example, consider a
difference of 0.02 large enough so that we consider values below 0.78 and above
0.82 different from 0.8. This corresponds to a difference we consider important in a
practical sense. Recall that for significance testing methods we discussed earlier, we
emphasized the importance of distinguishing between practical significance and sta-
tistical significance. In Bayesian statistics, we do not need to make such distinction;
we can specify and evaluate a hypothesis based on what we consider significant in
practice.

For the above example, the alternative hypothesis states that the difference be-
tween the true value of the population proportion and 0.8 is at least 0.02. Now, we
can use the posterior probability distribution, Beta(26,4), to examine this hypoth-
esis. To this end, we can find the probability of [0.78, 0.82] interval and subtract
the results from 1 to find the probability of its complement, which in this case is
the probability of values outside the interval. Using R-Commander, we find that the
probability of [0.78, 0.82] is 0.12 using the Beta(26,4) distribution. (We subtract
the lower tail probability of 0.78 from the lower tail probability of 0.82.) As a re-
sult, the probability of the alternative hypothesis (i.e., the difference between μ and
0.8 is at least 0.02) is 1 − 0.12 = 0.88.
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13.6 Advanced

As we saw in this chapter, the beta distribution plays an important role in Bayesian
analysis of binary data. The prior for the population proportion μ is specified as a
beta distribution; the posterior distribution is also a beta distribution with different
parameters.

When choosing a beta distribution to express our knowledge regarding the likely
values of the population proportion, we should plot the probability density function
to make sure it properly reflects our knowledge. Suppose that we have decided to
use Beta(8,2) as our prior for μ, where μ is the survival rate among breast cancer
patients. An easy approach to plot the probability density function is to find the
values of the density function using dbeta() for a set of μ values:

> mu <- seq(from = 0, to = 1, length.out = 100)
> f <- dbeta(mu, shape1 = 8, shape = 2)

Note that μ only takes values between 0 and 1. The seq function returns a se-
quence of numbers from 0 to 1 and assigns them as a vector to the object mu. The
length.out = 100 option in seq specifies the length of the sequence; in this
case, there are 100 values in the sequence. For each value, the function dbeta()
returns the value of the density function. Here, shape1 and shape2 specify the
parameter values for the beta distribution.

We can now plot the probability density function:

> plot(mu, f, type = "l", xlab = expression(mu),
+ ylab = "Density")

We have set the option type to “l”, so the points are connected by lines. The points
themselves are not shown. If we want to show both the points and the lines that con-
nect them, we use the option type=’b’ (for both). For the label of the x-axis, we
have used expression(mu) to create a mathematical annotation so that the label
reads as μ instead of mu similar to Fig. 13.1. You can use expression() for
other Greek letters, e.g., expression(sigma) adds the annotation σ (instead of
sigma). You can also use expression() to produce subscript or superscript. For
example, expression(x[2]) generates x2, and expression(x^2) gener-
ates x2.

After we make sure that the prior appropriately represents our knowledge regard-
ing the possible values of μ, we can update the prior based on the observed data to
obtain the posterior probability distribution, which is another beta distribution in this
case. In the example discussed above, we obtained a sample of 20 patients from the
population and found that 18 of them survived after 5 years. Assuming that the prior
probability distribution for the breast cancer survival rate is Beta(8,2), the poste-
rior probability distribution for the survival rate is Beta(8 + 18,2 + 20 − 18). We
can plot the posterior distribution, Beta(26,4), the same way we plotted the prior
distribution.
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To find the 95% credible interval based on the posterior probability distribution,
we usually use the 0.025- and 0.975-quantiles. For this, we use the qbeta() func-
tion:

> qbeta(c(0.025, 0.975), shape1 = 26, shape2 = 4)

[1] 0.7264848 0.9611052

Note that we have given 0.025 and 0.975 as a vector, so the output is a vector too.
To use the posterior probability distribution for hypothesis testing, we need to

find the lower and upper probabilities for values specified by the hypothesis. For ex-
ample, if the alternative hypothesis states that HA : μ > 0.8, we can find its posterior
probability by calculating the upper tail probability for 0.8 based on Beta(26,4). For
this, we use the pbeta() function:

> pbeta(0.8, shape1 = 26, shape2 = 4,
+ lower.tail = FALSE)

[1] 0.8596195

By default, the pbeta() function returns the lower tail probability. We can obtain
the upper tail probability by setting the argument lower.tail to FALSE.

To obtain the probability of a given interval, we subtract their corresponding
lower tail probabilities as before. For example, if the null hypothesis, H0, states that
μ is in the interval [0.78,0.82] (i.e., within 0.02 from 0.8), we can find the posterior
probability of H0 as follows:

> p.78 <- pbeta(0.78, shape1 = 26, shape2 = 4,
+ lower.tail = TRUE)
> p.82 <- pbeta(0.82, shape1 = 26, shape2 = 4,
+ lower.tail = TRUE)
> p.82 - p.78

[1] 0.1159820

Therefore, the posterior probability of H0 is 0.12. Consequently, the posterior prob-
ability that μ is outside of the interval [0.78,0.82] is 1 − 0.12 = 0.88.

13.7 Exercises

1. Suppose that the smoking status, X, has Bernoulli(μ) distribution, where the
prior distribution for μ is Beta(1,10). We have interviewed a random sample of
50 people and found that 8 of them smoke regularly. Find the posterior distri-
bution of μ given the observed data. Plot the posterior distribution and find the
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95% credible interval for μ. What is the point estimate for μ based on this dis-
tribution? Compare this point estimate to the sample proportion, which is also
commonly used as a point estimate for the population proportion. Suppose that
we hypothesize that less than 20% of the population smoke. Use the posterior
probability distribution to find the probability that our hypothesis is true.

2. For the above example, suppose that we want to conduct another study so that
we can obtain more data. Use the beta distribution you found as the posterior
probability distribution in the above example as your prior. This reflects what we
know about μ before conducting the next study. Now suppose that in our next
study, we have interviewed 30 people and found that 6 of them smoke regularly.
Use the new data to obtain the posterior probability distribution. What are the
mean and the 95% credible interval for μ?

3. For the above examples, suppose that we use Beta(1,10) as our prior probabil-
ity distribution for μ, but this time we wait to obtain the posterior probability
distribution at the end of the second study. In this case, we have interviewed a
total sample of 50 + 30 = 80 people, where 8 + 6 = 14 of them are identified
as smokers. Compare the posterior probability distribution to what you found by
updating your knowledge of μ gradually (i.e., after each study).

4. Suppose that we are interested in the proportion of population affected by dia-
betes among Pima Indian women. Let us represent the diabetes status of each
person by random variable X, where X = 1 if the person has diabetes and X = 0
if the person does not. Then we can assume that X has a Bernoulli distribution
with parameter μ. We know that the population proportion of diabetic women
in the whole US is about 10%. We want to use this information to specify our
prior for μ. Use R-Commander to find a beta distribution that has relatively high
probability density values around 0.1. For this, plot different beta distribution by
changing the parameters until you find a distribution for which the area under
the probability density curve is large over the interval from 0.05 to 0.15. Then
use the Pima.tr data (available from the MASS package) to find the posterior
probability distribution of μ. Use the posterior probability distribution to obtain
the point estimate and 95% credible interval for μ.

5. For the above question, repeat your analysis with Beta(1,1) prior, which reflects
our ignorance about the possible values of μ.

6. Suppose that we believe that the population proportion of newborn babies with
low birthweight is around 0.3. Use R-Commander to find a beta probability dis-
tribution that reflects our knowledge. Use the birthwt data (available from the
MASS package) to update our prior knowledge. Now suppose that someone hy-
pothesizes that the population proportion of low birthweight babies is different
from 30%, and she defines a difference of 5% as significant. What is the proba-
bility that this hypothesis is true?
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Installing R and R-Commander

This appendix gives detailed instructions for installing R and R-Commander.

A.1 Installing R

1. Go to http://www.r-project.org/.
2. Click on the download R link.
3. Then select a location closest to you.
4. Click on your operating system (Linux, MacOS X, Windows) and follow direc-

tions.

If you are a Mac user, download the latest .dmg file and follow the instructions.
Once installed, R will appear as an icon in the Applications Folder. After you in-
stall R, you should go back to the same webpage (where you obtained the latest
.dmg file), click on “tools”, which is located under “Subdirectories”, and install the
universal build of Tcl/Tk for X11. The file name contains “tcltk”, three numbers
representing the current version, and “x11.dmg”. (Currently, the file name is “tcltk-
8.5.5-x11.dmg”.) This file includes additional tools necessary for building R for
Mac OS X.

If you are running Windows, click on base and then on the link that downloads
R for Windows. (In the link, the current version number appears after “R”.) When
the dialog box opens, click Run, and a “Setup Wizard” should appear. Keep clicking
Next until the Wizard is finished. Now, you should see an icon on your desktop,
with a large capital R.

A.2 Installing R-Commander

A.2.1 From the Command Line

You can download R-Commander from the command line by following these steps:
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Fig. A.1 Installing R-Commander by entering the command install.packages
("Rcmdr", dependencies=TRUE) in R Console

1. Once you have installed R, open it by double-clicking on the icon.
2. A window called “R Console” will open.
3. Make sure you have a working internet connection. Then, at the prompt (the >

symbol), type the following command exactly and then press enter (Fig. A.1):

> install.packages("Rcmdr", dependencies = TRUE)

4. R may respond by asking you to select a mirror site and listing them in a pop-up
box. Choose a nearby location.

5. Depending on your connection speed, the installation may take awhile. Be patient
and wait until you see the prompt again before you do anything.

A.2.2 From the Menu Bar

Alternatively, you can download R-Commander from the menu bar by following
these steps:

1. Open R by clicking on its icon.
2. Click “Packages & Data” from the menu bar and then click “Package Installer”.

This opens a window similar to Fig. A.2.
3. Click “Get List”.
4. Scroll down and select “Rcmdr”.
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Fig. A.2 Installing R-Commander using “Package Installer” from the menu bar

5. Check “Install dependencies” and click “Install Selected”.
6. R may respond by asking you to select a mirror site and listing them in a pop-up

box. Choose a nearby location.
7. The installation may take awhile. Wait until you see the prompt again before you

do anything.

A.3 Starting R-Commander

If R is not already open, open it by clicking on its icon. To open R-Commander, at
the prompt enter the following command (Fig. A.3):

> library(Rcmdr)
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Fig. A.3 Opening R-Commander by entering the command library(Rcmdr) in R Console

Fig. A.4 The “Package Manager” window
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Fig. A.5 The R-Commander window

Alternatively, you can load R-Commander by clicking “Packages & Data” from
the menu bar and then clicking “Package Manager”. This will open a window similar
to Fig. A.4. Scroll down to find R-Commander (“Rcmdr” package) and check its box
to change the status from “not loaded” to “loaded”.

You should see a large new window pop-up, labeled R-Commander (Fig. A.5).
You are now ready to analyze your data. If you close this window while R is still
open, you can start R-Commander again by entering the command Commander()
in R Console. (Entering library(Rcmdr) in this situation will not work unless
you close R and open it again.) Alternatively, you can use the “Package Manager”
window to unload and reload R-Commander.

If you are a Mac user and your OS version is 10.4.11 or lower, you might need to
open X11 manually before entering the command library(Rcmdr) in R Con-
sole. To do this, under Misc from the top bar menu choose Run X11 Server. If
you do not have X11, you can install it from your install DVD or find it online.
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Basic R

This appendix gives a brief introduction to R language for those who want to use R
(instead of R-Commander) for data analysis. The introduction given here is meant
to help with the initial steps toward this goal. To use R more broadly and more
effectively, one needs to refer to more advanced references for R programming as
well as reading the advanced sections in this book.

B.1 Starting with R

In the R Console, you can type commands directly at the prompt, >, and execute
them by pressing enter. Commands can also be entered in the Script window in R-
Commander and executed by pressing the “Submit” button. Both the R Console and
R-Commander provide an interactive environment where the results are immedi-
ately shown similar to a calculator. In fact, R can be used as a calculator. The basic
arithmetic operators are + for addition, - for subtraction, * for multiplication, and
/ for division. The ^ operator is used to raise a number (or a variable) to a power.
Try executing the following commands:

> 65 + 32

[1] 97

> 3 * 1.7 - 2

[1] 3.1

> 4 * 3 + 6/0.2

[1] 42

> 5^2

[1] 25
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There are also built in functions for finding the square root sqrt(), the expo-
nential exp(), and the natural logarithm log():

> sqrt(430)

[1] 20.73644

> exp(-1.3)

[1] 0.2725318

> log(25)

[1] 3.218876

Here, the numbers in the parentheses serve as input (parameters or arguments) to
the functions. Most functions have multiple parameters and options. For example,
to take the base-10 logarithm of 25, we include the option base=10:

> log(25, base = 10)

[1] 1.39794

In general, you can always learn more about a function and its options (arguments)
by writing its name after a question mark (e.g., ?log).

We can combine two or more functions such that the output from one function
becomes the input for another function. For example, the following code combines
the above log() function with the round() function, which is used to specify
the number of decimal places (here, two digits):

> round(log(25, base = 10), digits = 2)

[1] 1.4

In the above code, the output of log(25, base=10) becomes the first argument
of the function round(). The second argument, digits=2, specifies the number
of decimal places.

B.2 Creating Objects in R

Instead of directly entering commands such as 2+3, we can create objects to hold
values and then perform operations on these objects. For example, the following set
of commands creates two objects x and y, adds the values stored in these objects,
and assigns the result to the third object z:
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> x <- 2
> y <- 3
> z <- x + y

In general, we use left arrow <- (i.e., type < and then -) to assign values to an
object. Almost always, we can use the equal sign “=” instead of <- for assignment.
For example, we could use y = 3 to assign the value 3 to y, and use z = x+y to
set z equal to the sum of x and y. The two options, “=” and <-, have some small
differences, which are not discussed here.

Simply typing the name of an object displays its contents. We could also use the
function print():

> x

[1] 2

> print(y)

[1] 3

> print(z)

[1] 5

Object names are case sensitive. For example, x and X are two different objects.
A name cannot start with a digit or an underscore _ and cannot be among the list
of reserved words such as if, function, NULL. We can use the period . in a
name to separate words (e.g., my.object).

The objects are created and stored by their names. We can obtain the list of
objects that are currently stored within R by using the function objects():

> objects()

[1] "x" "y" "z"

The collection of these objects is called the workspace. (Note that although we are
not specifying the values of arguments, we still need to type parentheses when us-
ing functions.) When closing an R session, you have the opportunity to save the
objects permanently for future use. This way, the workspace is saved in a file called
.RData, which will be restored next time you open R. If you want to save only few
objects, as opposed to the entire workspace, you can use the function save(). For
example, suppose that we only want to save the objects x and y:

> save(x, y, file = "myObjects.RData")

The above command saves x and y in a file called myObjects.RData in the
current working directory. You can see where the current working directory is by
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entering the command getwd(). If you want to save your objects in another direc-
tory, either enter the full path when specifying the file name in the save() function
or use the menu bar to change the directory. (For Mac, this option is located under
“Misc”. For Windows, it is located under “File”.)

After you save the x and y in myObjects.RData, you can load these objects
for future use with the load() function:

> load("myObjects.RData")

Give the full address for the file if it is not located in the current working directory.
Alternatively, you can change the working directory from the menu bar.

B.3 Vectors

Using objects allows for more flexibility. For example, we can store more than one
value in an object and apply a function or an operation to its contents. The following
commands create a vector object x that contains numbers 1 through 5 and then apply
two different functions to it:

> x <- c(1, 2, 3, 4, 5)
> x

[1] 1 2 3 4 5

> 2 * x + 1

[1] 3 5 7 9 11

> exp(x)

[1] 2.718282 7.389056 20.085537 54.598150
[5] 148.413159

The c() function is used to combine its arguments (here, integers from 1 to 5) into
a vector. Since 1,2, . . . ,5 is a sequence of consecutive numbers, we could simply
use the colon “:” operator to create the vector:

> x <- 1:5
> x

[1] 1 2 3 4 5

To create sequences and store them in vector objects, we can also use the seq()
function for additional flexibility. The following commands create a vector object y
containing a sequence increasing by 2 from −3 to 14:
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> y <- seq(from = -3, to = 14, by = 2)
> y

[1] -3 -1 1 3 5 7 9 11 13

If the elements of a vector are all the same, we can use the rep() function:

> z <- rep(5, times = 10)
> z

[1] 5 5 5 5 5 5 5 5 5 5

The following function creates a vector of size 10 where all its elements are un-
known. In R, missing values are represented by NA (Not Available):

> z <- rep(NA, times = 10)
> z

[1] NA NA NA NA NA NA NA NA NA NA

This way, we can create a vector object of a given length and specify its elements
later.

To find the length of a vector (i.e., number of elements), we use the length()
command:

> length(x)

[1] 5

> length(y)

[1] 9

Functions sum(), mean(), min(), and max() return the sum, average, min-
imum, and maximum for a vector:

> x

[1] 1 2 3 4 5

> sum(x)

[1] 15

> mean(x)

[1] 3
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> min(x)

[1] 1

> max(x)

[1] 5

The elements of a vector can be accessed by providing their index using square
brackets [ ]. For example, try retrieving the first element of x and the 4th element
of y:

> x[1]

[1] 1

> y[4]

[1] 3

The colon : operator can be used to obtain a sequence of elements. For instance,
elements 3 through 6 of y can be accessed with

> y[3:6]

[1] 1 3 5 7

To select all but the 4th element of a vector, we use negative indexing:

> y[-4]

[1] -3 -1 1 5 7 9 11 13

The above objects are all numerical vectors. A vector can also hold character
strings delimited by single or double quotations marks. For example, suppose that
have a sample of 5 patients. We can create a character vector storing their gender
as

> gender <- c("male", "female", "female", "male",
+ "female")

(The plus sign means that the second line is the continuation of the command in the
first line. You should not type it when trying the above command in R.) Retrieving
the elements of the vector is as before:

> gender[3]

[1] "female"
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A vector could also be logical, where the elements are either TRUE or FALSE
(NA if the element is missing). Note that these values must be in capital letters and
can be abbreviated by T and F (not recommended). For example, create a vector
storing the health status of the five patients:

> is.healthy <- c(TRUE, TRUE, FALSE, TRUE, FALSE)
> is.healthy

[1] TRUE TRUE FALSE TRUE FALSE

When used in ordinary arithmetic, logical vectors are coerced to integer vectors,
0 for FALSE elements and 1 for TRUE elements. For example, applying the sum()
function to the above logical vector turns the TRUE and FALSE values to ones and
zeros, and returns their sum, which in this case is equivalent to the number of healthy
subjects:

> sum(is.healthy)

[1] 3

Use the as.integer() function to see the equivalent integer vector for
is.healthy:

> as.integer(is.healthy)

[1] 1 1 0 1 0

Logical vectors are usually derived from other vectors using logical operators.
For example, with the gender vector, we can create a logical vector showing which
subjects are male:

> gender

[1] "male" "female" "female" "male" "female"

> is.male <- (gender == "male")
> is.male

[1] TRUE FALSE FALSE TRUE FALSE

Here, == (i.e., two equal signs) is a relational operator that returns TRUE if the two
sides are equal and returns FALSE otherwise. As the second example, we create a
numerical vector for the age of the five subjects and then check to see which person
is 60 years old:

> age <- c(60, 43, 72, 35, 47)
> is.60 <- (age == 60)
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> is.60

[1] TRUE FALSE FALSE FALSE FALSE

The != operator, on the other hand, returns a TRUE value when the two sides are
not equal:

> is.female <- (gender != "male")
> is.female

[1] FALSE TRUE TRUE FALSE TRUE

> not.60 <- (age != 60)
> not.60

[1] FALSE TRUE TRUE TRUE TRUE

The other relational operators commonly applied to numerical vectors are “less
than”, <, “less than or equal to”, <=, “greater than”, >, “greater than or equal to”:
>=

> age < 43

[1] FALSE FALSE FALSE TRUE FALSE

> age <= 43

[1] FALSE TRUE FALSE TRUE FALSE

> age > 43

[1] TRUE FALSE TRUE FALSE TRUE

> age >= 43

[1] TRUE TRUE TRUE FALSE TRUE

We can also use Boolean operators to create new logical vectors based on existing
ones. The logical NOT, !, negates the elements of a logical vector (i.e., changes
TRUE to FALSE and vice versa). For example, create a is.female vector from
the is.male vector:

> is.female <- !is.male
> is.female

[1] FALSE TRUE TRUE FALSE TRUE

The logical AND, &, compares the elements of two logical vectors and returns TRUE
only when the corresponding elements are both TRUE:
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> is.male

[1] TRUE FALSE FALSE TRUE FALSE

> is.healthy

[1] TRUE TRUE FALSE RUE FALSE

> is.male & is.healthy

[1] TRUE FALSE FALSE TRUE FALSE

The logical OR, |, also compares the elements of two logical vectors and returns
TRUE when at least one of the corresponding elements is TRUE:

> is.male | is.healthy

[1] TRUE TRUE FALSE TRUE FALSE

We can use combinations of two or more logical operators. The following com-
mands check to see which subjects are male and less than 45 years old:

> is.young.male <- is.male & (age < 45)
> is.young.male

[1] FALSE FALSE FALSE TRUE FALSE

Using the which() function, we can obtain the indices of TRUE elements for a
given logical function:

> ind.male <- which(is.male)
> ind.male

[1] 1 4

> ind.young <- which(age < 45)
> ind.young

[1] 2 4

We can then use these indices to obtain their corresponding elements from a vector:

> age[ind.male]

[1] 60 35

> is.male[ind.young]

[1] FALSE TRUE
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We can combine the two steps:

> age[is.male]

[1] 60 35

> age[gender == "male"]

[1] 60 35

> is.male[age < 45]

[1] FALSE TRUE

> gender[age < 45]

[1] "female" "male"

B.4 Matrices

In the above examples, we used one vector for each characteristic (e.g., age, health
status, gender) of our five subjects. It is easier, of course, to store the subject in-
formation in a table format, where each row corresponds to an individual and each
column to a characteristic. If all these measurements are of the same type (e.g., nu-
merical, character, logical), a matrix can be used. For example, besides age, assume
that for our five subjects, we have also measured BMI (body mass index) and blood
pressure:

> BMI = c(28, 32, 21, 27, 35)
> bp = c(124, 145, 127, 133, 140)

Now create a matrix with the cbind() function for column-wise binding of age,
BMI, and bp:

> data.1 = cbind(age, BMI, bp)
> data.1

age BMI bp
[1,] 60 28 124
[2,] 43 32 145
[3,] 72 21 127
[4,] 35 27 133
[5,] 47 35 140

If we had wanted a matrix where each row represented a characteristic and each col-
umn a subject, we would have used the rbind() function for row-wise binding:
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> data.2 = rbind(age, BMI, bp)
> data.2

[,1] [,2] [,3] [,4] [,5]
age 60 43 72 35 47
BMI 28 32 21 27 35
bp 124 145 127 133 140

We could obtain data.2 by transposing (e.g., interchanging the rows and columns)
data.1 using the t() function:

> t(data.1)

[,1] [,2] [,3] [,4] [,5]
age 60 43 72 35 47
BMI 28 32 21 27 35
bp 124 145 127 133 140

In general, matrices are two-dimensional objects comprised of values of the same
type. The object data.1 is a 5 × 3 matrix. The function dim returns the size (i.e.,
the number of rows and columns) of a matrix:

> dim(data.1)

[1] 5 3

When creating the matrix data.1, R automatically uses the vector names as the
column names. They can be changed or accessed with the function colnames():

> colnames(data.1)

[1] "age" "BMI" "bp"

Likewise, we can obtain or provide the row names using the function row-
names():

> rownames(data.1) <- c("subject1", "subject2",
+ "subject3", "subject4", "subject5")
> data.1

age BMI bp
subject1 60 28 124
subject2 43 32 145
subject3 72 21 127
subject4 35 27 133
subject5 47 35 140
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To access the elements of a matrix, we still use square brackets [ ], but this
time, we have to provide both the row index and the column index. For instance, the
age of the third subject is

> data.1[3, 1]

[1] 72

If only a row number is provided, R returns all elements of that row (e.g., all the
measurements for one subject):

> data.1[2, ]

age BMI bp
43 32 145

Likewise, if only a column is specified, R returns all elements of that column (e.g.,
all the measurements for one characteristic):

> data.1[, 2]

subject1 subject2 subject3 subject4 subject5
28 32 21 27 35

A matrix can also be created by rearranging the elements of a vector with the
matrix function:

> matrix(data = 1:12, nrow = 3, ncol = 4)

[,1] [,2] [,3] [,4]
[1,] 1 4 7 10
[2,] 2 5 8 11
[3,] 3 6 9 12

Here, the argument data specifies the numbers (vector), whose rearrangement
creates the matrix. The arguments nrow and ncol are the number of rows and
columns, respectively. By default, the matrix is filled by columns. To fill the matrix
by rows, we must use the argument byrow=TRUE:

> matrix(data = 1:12, nrow = 3, ncol = 4, byrow = TRUE)

[,1] [,2] [,3] [,4]
[1,] 1 2 3 4
[2,] 5 6 7 8
[3,] 9 10 11 12

The length of data is usually equal to nrow × ncol. If there are too few elements
in data to fill the matrix, then the elements are recycled. In the following example,
all elements of the matrix are set to zero:
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> mat <- matrix(data = 0, nrow = 3, ncol = 3)
> mat

[,1] [,2] [,3]
[1,] 0 0 0
[2,] 0 0 0
[3,] 0 0 0

We can obtain or set the diagonal elements of a matrix using the diag() function:

> diag(mat) <- 1
> mat

[,1] [,2] [,3]
[1,] 1 0 0
[2,] 0 1 0
[3,] 0 0 1

Similar to vectors, we can create a matrix with missing values (NA) and specify the
elements later:

> mat <- matrix(data = NA, nrow = 2, ncol = 3)
> mat

[,1] [,2] [,3]
[1,] NA NA NA
[2,] NA NA NA
> mat[1, 3] <- 5
> mat

[,1] [,2] [,3]
[1,] NA NA 5
[2,] NA NA NA

B.5 Data Frames

In general, we use matrices when all measurements are of the same type (e.g.,
numerical, character, logical). Otherwise, the type of measurements could change
when we mix different types. In the following example, we show this by using the
mode() function that returns the type for a given object:

> mat <- cbind(age, gender, is.healthy)
> mode(mat)

[1] "character"
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In the above example, the matrix type is character, although age is numeric and
is.healthy is logical. Note that their values will be printed in quotation marks,
which is used for character strings, if you enter mat.

To avoid this issue, we can store data with information of different types in a table
format similar to the format of spreadsheets. The resulting object (which includes
multiple objects of possibly different types) is called a data frame object. For this,
we use the function data.frame():

> data.df = data.frame(age, gender, is.healthy,
+ BMI, bp)
> data.df

age gender is.healthy BMI bp
1 60 male TRUE 28 124
2 43 female TRUE 32 145
3 72 female FALSE 21 127
4 35 male TRUE 27 133
5 47 female FALSE 35 140

To create a data frame this way, all vectors must have the same length. You may
notice that while gender is a character vector, its elements are not printed with
quotation marks as before. The reason is that character vectors included in data
frames are coerced to a different type called factors. A factor is a vector object
that is used to provide a compact way to represent categorical data. Each level of
a factor vector represents a unique category (e.g., female or male). We can directly
create factors using the factor() function:

> factor(gender)

[1] male female female male female
Levels: female male

To access elements of a data frame, we use the square brackets [ , ] with the
appropriate row and column indices. For example, the BMI of the 3rd subject is

> data.df[3, 4]

[1] 21

As before, we can access an entire row (e.g., all the measurements for one subject)
by only specifying the row index and an entire column (e.g., all the measurements
for one variable) by only specifying the column index. We can also access an entire
column by providing the column name:

> data.df[, "age"]

[1] 60 43 72 35 47
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The $ operator also retrieves an entire column from the data frame:

> data.df$age

[1] 60 43 72 35 47

This column can then be treated as a vector and its elements accessed with the square
brackets as before. For instance, try obtaining the BMI for the 3rd subject and the
gender of the 2nd subject:

> data.df$BMI[4]

[1] 27

> data.df$gender[2]

[1] female
Levels: female male

B.5.1 Creating Data Frames Using a Spreadsheet-Like
Environment

We can create a data frame by invoking a spreadsheet-like environment in R. For
this, we start by creating an empty data frame object:

> new.df <- data.frame()

Then, we use the function fix() to edit the newly created data frame new.df.

> fix(new.df)

This way, R opens a window for data editing similar to Fig. B.1. You can use the
four icons at the top of the editor to add or delete columns or rows. (Hover your
mouse pointer over each icon to see its function.) For new.df, we have created
four columns and three rows. The column names and the content of the data frame
can be edited the same way we edit spreadsheets.

B.5.2 Importing Data from Text Files

Data are usually available in a tabular format as a delimited text file. We can import
the contents of such files into R using the function read.table(). For instance,
let us try importing the BodyTemperature data set (this data set is available
online from the book website http://extras.springer.com):

http://extras.springer.com
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Fig. B.1 R window for data editing invoked by applying the function fix() to an empty data
frame object

> BodyTemperature <- read.table(
+ file = "BodyTemperature.txt",
+ header = TRUE, sep = " ")

Here, we are using the read.table() function with three arguments. The first
argument, file="BodyTemperature.txt", specifies the name and location
of the data file. If the file is not in the current working directory, you need to give
the full path to the file or change the working directory. The header=TRUE option
tells R that the variable names are contained in the first line of the data. Set this
option to FALSE when this is not the case. The sep option tells R how the columns
are separated in the text file. In this example, the columns are separated by white
spaces. If the columns were separated by commas, for example, we would have used
sep=",".

The BodyTemperature object is a data frame holding the contents of the
“BodyTemperature.txt” file. Type BodyTemperature to view the entire data set.
If the data set is large, it is better to use the head() function, which shows only
the first part (few rows) of the data set:

> head(BodyTemperature)

Gender Age HeartRate Temperature
1 M 33 69 97.0
2 M 32 72 98.8
3 M 42 68 96.2
4 F 33 75 97.8
5 F 26 68 98.8
6 M 37 79 101.3

In the BodyTemperature data frame, the rows correspond to subjects and the
columns to variables. To view the names of the columns, try
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> names(BodyTemperature)

[1] "Gender" "Age" "HeartRate"
[4] "Temperature"

Accessing observations in the BodyTemperature data frame is the same as be-
fore. We can use square brackets [ , ] with the row and column indices or the $
operator with the variable name:

> BodyTemperature[1:3, 2:4]

Age HeartRate Temperature
1 33 69 97.0
2 32 72 98.8
3 42 68 96.2

> BodyTemperature$Age[1:3]

[1] 33 32 42

B.6 Lists

The data frames we created above (either directly or by importing a text file) include
vectors of different types, but all the vectors have the same length. To combine
objects of different types and possibly with different length into one object, we use
lists instead. For example, suppose that we want to store the above body temperature
data along with the name of investigators and students who have been involved in
the study. We can create a list as follows:

> our.study <- list(data = BodyTemperature,
+ investigators = c("Smith", "Jackson",
+ "Clark"), students = c("Steve", "Mary"))
> length(our.study)

[1] 3

We have created a list with three components: data, investigators, and stu-
dents. Each component has a name, which can be used to access that component:

> our.study$investigator

[1] "Smith" "Jackson" "Clark"

The components are ordered, so we can access them using double square brackets
“[[ ]]”:
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> our.study[[2]]

[1] "Smith" "Jackson" "Clark"

If the component is a matrix or a vector, we can access its individual elements as
before:

> our.study[[2]][3]

[1] "Clark"

> our.study[[1]][2:4, ]

Gender Age HeartRate Temperature
2 M 32 72 98.8
3 M 42 68 96.2
4 F 33 75 97.8

B.7 Loading Add-on Packages

A package includes a set of functions that are commonly used for a specific appli-
cation of statistical analysis. R users have been creating new packages and making
them publicly available on CRAN (Comprehensive R Archive Network). To use a
package, you first need to download it from CRAN and install it in your local R
library. For this, we can use the install.packages() function. For example,
suppose that we want to perform Biodemographic analysis. The “Biodem” package,
which is created by Boattini et al., provides a number of functions for this purpose.
The following command downloads the Biodem package:

> install.packages("Biodem", dependencies = TRUE)

The first argument specifies the name of the package, and by setting the option
dependencies to “TRUE”, we install all other packages on which “Biodem” de-
pends. The reference manual for this package is available at http://cran.r-project.org/
web/packages/Biodem/Biodem.pdf.

After we install a package, we need to load it in R in order to use it. For this, we
use the library() command:

> library(Biodem)

Now we can use all the functions available in this package. We can also use all the
data sets included in the package. For example, the Biodem package includes a data
set called valley where every row corresponds to a different marriage record. To
use this data set, we enter the following command:

http://cran.r-project.org/web/packages/Biodem/Biodem.pdf
http://cran.r-project.org/web/packages/Biodem/Biodem.pdf
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> data(valley)

The data set becomes available in the workspace as a data frame.
One of the most widely used packages in R is the MASS package. This package is

automatically installed when you install R. However, you still need to load it before
you can use it. Enter the command library(MASS) to load this package. One
of the data sets available in the MASS package is the birthwt data set, which
includes the birthweight, bwt, of newborn babies.

B.8 Conditional Statements

The birthwt data set from the MASS package includes a binary variable, low,
that indicates whether the baby had low birthweight. Low birthweight is defined as
having birthweight lower than 2500 grams (2.5 kilograms). Suppose that we did not
have this variable and we wanted to create it. First, let us load the birthwt data
set into R:

> data(birthwt)
> dim(birthwt)

[1] 189 10

The data set includes 189 cases and 10 variables.
We now create an empty vector, called low, of size 189:

> low <- rep(NA, 189)

Alternatively, we could use create an empty numerical vector without specifying its
length using the numeric() function:

> low <- numeric()

Note that this way we specify the type of the object. We would have used charac-
ter(), or data.frame(), or list(), if we wanted to create an empty object
of the type character, or data frame, or list.

Now we want to examine the birthweight of each baby, and if it is below 2500,
we assign the value of “1” to the low variable; otherwise, we assign the value “0”.
The general format for an if() statement is

> if (condition) {
+ expression
+ }

If the condition is true, R runs the commands represented by expression.
Otherwise, R skips the commands within the brackets { }.

Try an if() statement to set the low of the first observation:
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> if (birthwt$bwt[1] < 2500) {
+ low[1] <- 1
+ }

Check the result:

> birthwt$bwt[1]

[1] 2523

> low[1]

[1] NA

Since the condition was not true (i.e., bwt is not below 2500), the expres-
sion was not executed. To assign the value “0”, we can use an else statement
along with the above if statement. The general format for if-else() statements
is

> if (condition) {
+ expression1
+ } else {
+ expression2
+ }

If the condition is true, R runs the commands represented by expression1;
otherwise, R runs the commands represented by expression2. For example, we
can use the following code to decide whether the first baby in the birthwt data
has low birthweight or not:

> if (birthwt$bwt[1] < 2500) {
+ low[1] <- 1
+ } else {
+ low[1] <- 0
+ }
> birthwt$bwt[1]

[1] 2523

> low[1]

[1] 0

Conditional statements can have multiple else statements to test multiple condi-
tions:

> if (condition1) {
+ expression1
+ } else if (condition2) {
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+ expression2
+ } else {
+ expression3
+ }

B.9 Loops

To apply the above conditional statements to all observations, we can use a for()
loop, which has the general format

> for (i in 1:n) {
+ expression
+ }

Here, i is the loop counter that takes values from 1 through n. The expression
within the loop represents the set of commands to be repeated n times. For example,
the following R commands create the vector y based on the vector x one element at
a time:

> x <- c(3, -2, 5, 6)
> y <- numeric()
> for (i in 1:4) {
+ y[i] <- x[i] + 2 * i
+ }
> y

[1] 5 2 11 14

For the example discussed in the previous section, we use the following loop:

> for (i in 1:189) {
+ if (birthwt$bwt[i] < 2500) {
+ low[i] <- 1
+ }
+ else {
+ low[i] <- 0
+ }
+ }

The counter starts from 1 (i.e., the first row), and it ends at 189 (i.e., the last row). At
each iteration, evaluate the conditional expression birthwt$bwt[i] < 2500. If
the expression is true, it sets the value of low for that row to 1, otherwise, it sets it
to 0. The variable low you created using the above loop and conditional statements
will be exactly the same as the existing variable low in the data frame birthwt.
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B.10 Creating Functions

So far, we have been using R to perform specific tasks by creating objects and apply-
ing functions to them. If we need to repeat the same task over and over again under
different settings, a more efficient approach would be to create a function which can
be called repeatedly. The function we create is itself an object and is similar to ex-
isting functions in R, such as sum(), log(), and matrix(), that we have been
using. The general form of creating a function is as follows:

> fun.name <- function(arg1, arg2, ...) {
+ expression1
+ expression2
+ ...
+ return(list = c(out1 = output1,

out2 = output2, ...))
+ }

For example, suppose that we routinely need to find the min and max for a given
numerical vector and print the sum of its elements. Also, we need to round the
elements of the vector. However, the number of decimal places could be different
for different vectors. Instead of writing the codes to create the function in R Console,
it is better to write it in a file using a text editor so that we can modify it later. For
this, click File → New Document from the menu bar. This will open a text
editor. Now we can type the following commands in the text editor to create our
function (Fig. B.2):

> my.fun <- function(x, n.digits = 1) {
+ min.value <- min(x)
+ max.value <- max(x)
+ print(sum(x))
+ y <- round(x, digits = n.digits)
+ return(list(min.value = min.value,

max.value = max.value, rounded.vec = y))
+ }

The above function takes two inputs: a numerical vector x and the number of
decimal places n.digits. For the number of decimal places, we set the default
to 1. If the user does not specify the number of decimal points, the function uses the
default value. For x, there is no default value, so we need to provide its value every
time we use this function.

The function then creates two objects, min.value and max.value, that store
the min and max of x, respectively. Next, the function prints the sum of all elements.
Finally, the function creates a new vector called y, which contains the rounded val-
ues of the original vector to the number of decimal place specified by n.digits.

Using return(), we specify the outputs of the function as a list. In this case,
the list has three components. The first component is called “min.value”, and it
contains the value of the object min.value. The second component is called
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Fig. B.2 Creating a function called my.fun() using the text editor in R

“max.value”, and it contains the value of the object max.value. The last com-
ponent is called “rounded.vec”, and it contains the new vector y, which was created
by rounding the values of the original vector.

Note that in Fig. B.2, we wrote some comments in the text editor to explain what
the function does. The comments should be always preceded by the symbol “#”.
R regards what we write after “#” as comments and does not execute them.

When we finish typing the commands required to create the function, we save
the file by clicking File → Save As. When prompted, choose a name for your
file. For example, we called our file “CreateMyFun.R”. The file will have the “.R”
extension.

So far, we have just created a file that contains the command necessary to create
the function. The function has not been created yet. To create the function, we need
to execute the commands. For this, we can use the source() function to read
(evaluate) the codes from the “CreateMyFun.R” file:

> source("CreateMyFun.R")

Again, give the full address for the file if it is not located in the current working
directory. We can now use our function the same way we have been using any other
function. The following is an example:

> out <- my.fun(x = c(1.2, 2.4, 5.7), n.digits = 0)

[1] 9.3

> out

$min.value
[1] 1.2

$max.value
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[1] 5.7

$rounded.vec
[1] 1 2 6

When we run the function, it prints the sum of all elements, which is 9.3, as we re-
quested. The outputs will be assigned to a new object called “out”. Since the output
was a list, out will be a list, and we can print its contents by using their names.
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