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Preface

Between the first undergraduate course in probability and the first graduate course
that uses measure theory, there are a number of courses that teach Stochastic
Processes to students with many different interests and with varying degrees of
mathematical sophistication. To allow readers (and instructors) to choose their own
level of detail, many of the proofs begin with a nonrigorous answer to the question
“Why is this true?” followed by a Proof that fills in the missing details. As it is
possible to drive a car without knowing about the working of the internal combustion
engine, it is also possible to apply the theory of Markov chains without knowing
the details of the proofs. It is my personal philosophy that probability theory was
developed to solve problems, so most of our effort will be spent on analyzing
examples. Readers who want to master the subject will have to do more than a
few of the 20 dozen carefully chosen exercises.

This book began as notes I typed in the spring of 1997 as I was teaching ORIE
361 at Cornell for the second time. In Spring 2009, the mathematics department
there introduced its own version of this course, MATH 474. This started me on
the task of preparing the second edition. The plan was to have this finished in
Spring 2010 after the second time I taught the course, but when May rolled around
completing the book lost out to getting ready to move to Durham after 25 years
in Ithaca. In the Fall of 2011, I taught Duke’s version of the course, Math 216, to
20 undergrads and 12 graduate students and over the Christmas break the second
edition was completed.

The second edition differs substantially from the first, though curiously the length
and the number of problems has remained roughly constant. Throughout the book
there are many new examples and problems, with solutions that use the TI-83 to
eliminate the tedious details of solving linear equations by hand. My students tell
me I should just use MATLAB and maybe I will for the next edition.

The Markov chains chapter has been reorganized. The chapter on Poisson
processes has moved up from third to second, and is now followed by a treatment of
the closely related topic of renewal theory. Continuous time Markov chains remain
fourth, with a new section on exit distributions and hitting times, and reduced
coverage of queueing networks. Martingales, a difficult subject for students at this
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viii Preface

level, now comes fifth, in order to set the stage for their use in a new sixth chapter
on mathematical finance. The treatment of finance expands the two sections of the
previous treatment to include American options and the the capital asset pricing
model. Brownian motion makes a cameo appearance in the discussion of the Black-
Scholes theorem, but in contrast to the previous edition, is not discussed in detail.

As usual the second edition has profited from people who have told me about
typos over the last dozen years. If you find new ones, email: rtd@math.duke.edu.

Rick Durrett

rtd@math.duke.edu.
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Chapter 1
Markov Chains

1.1 Definitions and Examples

The importance of Markov chains comes from two facts: (i) there are a large number
of physical, biological, economic, and social phenomena that can be modeled in this
way, and (ii) there is a well-developed theory that allows us to do computations. We
begin with a famous example, then describe the property that is the defining feature
of Markov chains

Example 1.1 (Gambler’s ruin). Consider a gambling game in which on any turn
you win $1 with probability p D 0:4 or lose $1 with probability 1 � p D 0:6.
Suppose further that you adopt the rule that you quit playing if your fortune reaches
$N . Of course, if your fortune reaches $0 the casino makes you stop.

Let Xn be the amount of money you have after n plays. Your fortune, Xn has the
“Markov property.” In words, this means that given the current state, Xn, any other
information about the past is irrelevant for predicting the next state XnC1. To check
this for the gambler’s ruin chain, we note that if you are still playing at time n, i.e.,
your fortune Xn D i with 0 < i < N , then for any possible history of your wealth
in�1; in�2; : : : i1; i0

P.XnC1 D i C 1jXn D i; Xn�1 D in�1; : : : X0 D i0/ D 0:4

since to increase your wealth by 1 unit you have to win your next bet. Here we have
used P.BjA/ for the conditional probability of the event B given that A occurs.
Recall that this is defined by

P.BjA/ D P.B \A/

P.A/

If you need help with this notion, see Sect. A.1 of the appendix.

R. Durrett, Essentials of Stochastic Processes, Springer Texts in Statistics,
DOI 10.1007/978-1-4614-3615-7 1, © Springer Science+Business Media, LLC 2012
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2 1 Markov Chains

Turning now to the formal definition, we say that Xn is a discrete time Markov
chain with transition matrix p.i; j / if for any j; i; in�1; : : : i0

P.XnC1 D j jXn D i; Xn�1 D in�1; : : : ; X0 D i0/ D p.i; j / (1.1)

Here and in what follows, boldface indicates a word or phrase that is being defined
or explained.

Equation 1.1 explains what we mean when we say that “given the current state
Xn, any other information about the past is irrelevant for predicting XnC1.” In
formulating (1.1) we have restricted our attention to the temporally homogeneous
case in which the transition probability

p.i; j / D P.XnC1 D j jXn D i/

does not depend on the time n.
Intuitively, the transition probability gives the rules of the game. It is the basic

information needed to describe a Markov chain. In the case of the gambler’s ruin
chain, the transition probability has

p.i; i C 1/ D 0:4; p.i; i � 1/ D 0:6; if 0 < i < N

p.0; 0/ D 1 p.N; N / D 1

When N D 5 the matrix is

0 1 2 3 4 5
0 1:0 0 0 0 0 0

1 0:6 0 0:4 0 0 0

2 0 0:6 0 0:4 0 0

3 0 0 0:6 0 0:4 0

4 0 0 0 0:6 0 0:4

5 0 0 0 0 0 1:0

or the chain by be represented pictorially as

0.6 0.6 0.6 0.6
! ! ! !0 1 2 3 4 5    0.4 0.4 0.4 0.4

!
1

 1

Example 1.2 (Ehrenfest chain). This chain originated in physics as a model for two
cubical volumes of air connected by a small hole. In the mathematical version, we
have two “urns,” i.e., two of the exalted trash cans of probability theory, in which
there are a total of N balls. We pick one of the N balls at random and move it to the
other urn.
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Let Xn be the number of balls in the “left” urn after the nth draw. It should be
clear that Xn has the Markov property; i.e., if we want to guess the state at time nC1,
then the current number of balls in the left urn Xn, is the only relevant information
from the observed sequence of states Xn; Xn�1; : : : X1; X0. To check this we note
that

P.XnC1 D i C 1jXn D i; Xn�1 D in�1; : : : X0 D i0/ D .N � i/=N

since to increase the number we have to pick one of the N � i balls in the other
urn. The number can also decrease by 1 with probability i=N . In symbols, we have
computed that the transition probability is given by

p.i; i C 1/ D .N � i/=N; p.i; i � 1/ D i=N for 0 � i � N

with p.i; j / D 0 otherwise. When N D 4, for example, the matrix is

0 1 2 3 4
0 0 1 0 0 0

1 1=4 0 3=4 0 0

2 0 2=4 0 2=4 0

3 0 0 3=4 0 1=4

4 0 0 0 1 0

In the first two examples we began with a verbal description and then wrote down
the transition probabilities. However, one more commonly describes a Markov chain
by writing down a transition probability p.i; j / with

(i) p.i; j / � 0, since they are probabilities.
(ii)

P
j p.i; j / D 1, since when Xn D i; XnC1 will be in some state j .

The equation in (ii) is read “sum p.i; j / over all possible values of j .” In words the
last two conditions say: the entries of the matrix are nonnegative and each ROW of
the matrix sums to 1.

Any matrix with properties (i) and (ii) gives rise to a Markov chain, Xn. To
construct the chain we can think of playing a board game. When we are in state
i , we roll a die (or generate a random number on a computer) to pick the next state,
going to j with probability p.i; j /.

Example 1.3 (Weather chain). Let Xn be the weather on day n in Ithaca, NY, which
we assume is either: 1 D rainy, or 2 D sunny. Even though the weather is not
exactly a Markov chain, we can propose a Markov chain model for the weather by
writing down a transition probability

1 2
1 0:6 0:4

2 0:2 0:8
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The table says, for example, the probability a rainy day (state 1) is followed by a
sunny day (state 2) is p.1; 2/ D 0:4. A typical question of interest is:

Q. What is the long-run fraction of days that are sunny?

Example 1.4 (Social mobility). Let Xn be a family’s social class in the nth gen-
eration, which we assume is either 1 D lower; 2 D middle, or 3 D upper. In our
simple version of sociology, changes of status are a Markov chain with the following
transition probability

1 2 3
1 0:7 0:2 0:1

2 0:3 0:5 0:2

3 0:2 0:4 0:4

Q. Do the fractions of people in the three classes approach a limit?

Example 1.5 (Brand preference). Suppose there are three types of laundry deter-
gent, 1, 2, and 3, and let Xn be the brand chosen on the nth purchase. Customers who
try these brands are satisfied and choose the same thing again with probabilities 0.8,
0.6, and 0.4 respectively. When they change they pick one of the other two brands
at random. The transition probability is

1 2 3
1 0:8 0:1 0:1

2 0:2 0:6 0:2

3 0:3 0:3 0:4

Q. Do the market shares of the three product stabilize?

Example 1.6 (Inventory chain). We will consider the consequences of using an s; S

inventory control policy. That is, when the stock on hand at the end of the day falls
to s or below, we order enough to bring it back up to S . For simplicity, we suppose
happens at the beginning of the next day. Let Xn be the amount of stock on hand at
the end of day n and DnC1 be the demand on day n C 1. Introducing notation for
the positive part of a real number,

xC D maxfx; 0g D
(

x if x > 0

0 if x � 0

then we can write the chain in general as

XnC1 D
(

.Xn �DnC1/
C if Xn > s

.S �DnC1/
C if Xn � s
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In words, if Xn > s we order nothing and begin the day with Xn units. If the demand
DnC1 � Xn we end the day with XnC1 D Xn �DnC1. If the demand DnC1 > Xn

we end the day with XnC1 D 0. If Xn � s then we begin the day with S units, and
the reasoning is the same as in the previous case.

Suppose now that an electronics store sells a video game system and uses an
inventory policy with s D 1; S D 5. That is, if at the end of the day, the number of
units they have on hand is 1 or 0, they order enough new units so their total on hand
at the beginning of the next day is 5. If we assume that

for k D 0 1 2 3
P.DnC1 D k/ 0.3 0.4 0.2 0.1

then we have the following transition matrix:

0 1 2 3 4 5
0 0 0 0:1 0:2 0:4 0:3

1 0 0 0:1 0:2 0:4 0:3

2 0:3 0:4 0:3 0 0 0

3 0:1 0:2 0:4 0:3 0 0

4 0 0:1 0:2 0:4 0:3 0

5 0 0 0:1 0:2 0:4 0:3

To explain the entries, we note that when Xn � 3 then Xn � DnC1 � 0. When
XnC1 D 2 this is almost true but p.2; 0/ D P.DnC1 D 2 or 3/. When Xn D 1 or 0
we start the day with 5 units so the end result is the same as when Xn D 5.

In this context we might be interested in:

Q. Suppose we make $12 profit on each unit sold but it costs $2 a day to store items.
What is the long-run profit per day of this inventory policy? How do we choose
s and S to maximize profit?

Example 1.7 (Repair chain). A machine has three critical parts that are subject
to failure, but can function as long as two of these parts are working. When two
are broken, they are replaced and the machine is back to working order the next
day. To formulate a Markov chain model we declare its state space to be the parts
that are broken f0; 1; 2; 3; 12; 13; 23g. If we assume that parts 1, 2, and 3 fail with
probabilities 0.01, 0.02, and 0.04, but no two parts fail on the same day, then we
arrive at the following transition matrix:

0 1 2 3 12 13 23
0 0:93 0:01 0:02 0:04 0 0 0

1 0 0:94 0 0 0:02 0:04 0

2 0 0 0:95 0 0:01 0 0:04

3 0 0 0 0:97 0 0:01 0:02

12 1 0 0 0 0 0 0

13 1 0 0 0 0 0 0

23 1 0 0 0 0 0 0
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If we own a machine like this, then it is natural to ask about the long-run cost per
day to operate it. For example, we might ask:

Q. If we are going to operate the machine for 1,800 days (about 5 years), then how
many parts of types 1, 2, and 3 will we use?

Example 1.8 (Branching processes). These processes arose from Francis Galton’s
statistical investigation of the extinction of family names. Consider a population in
which each individual in the nth generation independently gives birth, producing k

children (who are members of generation n C 1) with probability pk . In Galton’s
application only male children count since only they carry on the family name.

To define the Markov chain, note that the number of individuals in generation
n; Xn, can be any nonnegative integer, so the state space is f0; 1; 2; : : :g. If we let
Y1; Y2; : : : be independent random variables with P.Ym D k/ D pk , then we can
write the transition probability as

p.i; j / D P.Y1 C � � � C Yi D j / for i > 0 and j � 0

When there are no living members of the population, no new ones can be born, so
p.0; 0/ D 1.

Galton’s question, originally posed in the Educational Times of 1873, is

Q. What is the probability that the line of a man becomes extinct?, i.e., the
branching process becomes absorbed at 0?

Reverend Henry William Watson replied with a solution. Together, they then wrote
an 1874 paper entitled On the probability of extinction of families. For this reason,
these chains are often called Galton-Watson processes.

Example 1.9 (Wright–Fisher model). Thinking of a population of N=2 diploid
individuals who have two copies of each of their chromosomes, or of N haploid
individuals who have one copy, we consider a fixed population of N genes that can
be one of two types: A or a. In the simplest version of this model the population at
time nC 1 is obtained by drawing with replacement from the population at time n.
In this case, if we let Xn be the number of A alleles at time n, then Xn is a Markov
chain with transition probability

p.i; j / D
 

N

j

!�
i

N

�j �

1 � i

N

�N �j

since the right-hand side is the binomial distribution for N independent trials with
success probability i=N .

In this model the states x D 0 and N that correspond to fixation of the population
in the all a or all A states are absorbing states, that is, p.x; x/ D 1. So it is natural
to ask:

Q1. Starting from i of the A alleles and N�i of the a alleles, what is the probability
that the population fixates in the all A state?



1.1 Definitions and Examples 7

To make this simple model more realistic we can introduce the possibility of
mutations: an A that is drawn ends up being an a in the next generation with
probability u, while an a that is drawn ends up being an A in the next generation
with probability v. In this case the probability an A is produced by a given draw is

�i D i

N
.1 � u/C N � i

N
v

but the transition probability still has the binomial form

p.i; j / D
 

N

j

!

.�i /
j .1 � �i /

N �j

If u and v are both positive, then 0 and N are no longer absorbing states, so
we ask:

Q2. Does the genetic composition settle down to an equilibrium distribution as time
t !1?

As the next example shows it is easy to extend the notion of a Markov chain to
cover situations in which the future evolution is independent of the past when we
know the last two states.

Example 1.10 (Two-stage Markov chains). In a Markov chain the distribution of
XnC1 only depends on Xn. This can easily be generalized to case in which the
distribution of XnC1 only depends on .Xn; Xn�1/. For a concrete example consider
a basketball player who makes a shot with the following probabilities:

1=2 if he has missed the last two times
2=3 if he has hit one of his last two shots
3=4 if he has hit both of his last two shots

To formulate a Markov chain to model his shooting, we let the states of the process
be the outcomes of his last two shots: fHH; HM; MH; MM gwhere M is short for
miss and H for hit. The transition probability is

HH HM MH MM
HH 3=4 1=4 0 0

HM 0 0 2=3 1=3

MH 2=3 1=3 0 0

MM 0 0 1=2 1=2

To explain suppose the state is HM , i.e., Xn�1 D H and Xn D M . In this case the
next outcome will be H with probability 2/3. When this occurs the next state will
be .Xn; XnC1/ D .M; H/ with probability 2/3. If he misses an event of probability
1/3, .Xn; XnC1/ D .M; M /.
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The Hot Hand is a phenomenon known to most people who play or watch
basketball. After making a couple of shots, players are thought to “get into a groove”
so that subsequent successes are more likely. Purvis Short of the Golden State
Warriors describes this more poetically as

You’re in a world all your own. It’s hard to describe. But the basket seems to be so wide.
No matter what you do, you know the ball is going to go in.

Unfortunately for basketball players, data collected by Gliovich et al (1985) shows
that this is a misconception. The next table gives data for the conditional probability
of hitting a shot after missing the last three, missing the last two, : : : hitting the last
three, for nine players of the Philadelphia 76ers: Darryl Dawkins (403), Maurice
Cheeks (339), Steve Mix (351), Bobby Jones (433), Clint Richardson (248), Julius
Erving (884), Andrew Toney (451), Caldwell Jones (272), and Lionel Hollins (419).
The numbers in parentheses are the number of shots for each player.

P.H j3M / P.H j2M / P.H j1M / P.H j1H/ P.H j2H/ P.H j3H/

0.88 0.73 0.71 0.57 0.58 0.51
0.77 0.60 0.60 0.55 0.54 0.59
0.70 0.56 0.52 0.51 0.48 0.36
0.61 0.58 0.58 0.53 0.47 0.53
0.52 0.51 0.51 0.53 0.52 0.48
0.50 0.47 0.56 0.49 0.50 0.48
0.50 0.48 0.47 0.45 0.43 0.27
0.52 0.53 0.51 0.43 0.40 0.34
0.50 0.49 0.46 0.46 0.46 0.32

In fact, the data supports the opposite assertion: after missing a player will hit more
frequently.

1.2 Multistep Transition Probabilities

The transition probability p.i; j / D P.XnC1 D j jXn D i/ gives the probability of
going from i to j in one step. Our goal in this section is to compute the probability
of going from i to j in m > 1 steps:

pm.i; j / D P.XnCm D j jXn D i/

As the notation may already suggest, pm will turn out to the be the mth power of
the transition matrix, see Theorem 1.1.

To warm up, we recall the transition probability of the social mobility chain:

1 2 3
1 0:7 0:2 0:1

2 0:3 0:5 0:2

3 0:2 0:4 0:4
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and consider the following concrete question:

Q1. Your parents were middle class (state 2). What is the probability that you are
in the upper class (state 3) but your children are lower class (state 1)?

Solution. Intuitively, the Markov property implies that starting from state 2 the
probability of jumping to 3 and then to 1 is given by

p.2; 3/p.3; 1/

To get this conclusion from the definitions, we note that using the definition of
conditional probability,

P.X2 D 1; X1 D 3jX0 D 2/ D P.X2 D 1; X1 D 3; X0 D 2/

P.X0 D 2/

D P.X2 D 1; X1 D 3; X0 D 2/

P.X1 D 3; X0 D 2/
� P.X1 D 3; X0 D 2/

P.X0 D 2/

D P.X2 D 1jX1 D 3; X0 D 2/ � P.X1 D 3jX0 D 2/

By the Markov property (1.1) the last expression is

P.X2 D 1jX1 D 3/ � P.X1 D 3jX0 D 2/ D p.2; 3/p.3; 1/

Moving on to the real question:

Q2. What is the probability your children are lower class (1) given your parents
were middle class (2)?

Solution. To do this we simply have to consider the three possible states for your
class and use the solution of the previous problem.

P.X2 D 1jX0 D 2/ D
3X

kD1

P.X2 D 1; X1 D kjX0 D 2/ D
3X

kD1

p.2; k/p.k; 1/

D .0:3/.0:7/C .0:5/.0:3/C .0:2/.0:2/ D 0:21C 0:15C 0:04 D 0:21

There is nothing special here about the states 2 and 1 here. By the same reasoning,

P.X2 D j jX0 D i/ D
3X

kD1

p.i; k/ p.k; j /

The right-hand side of the last equation gives the .i; j /th entry of the matrix p is
multiplied by itself.
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To explain this, we note that to compute p2.2; 1/ we multiplied the entries of the
second row by those in the first column:

0

@
: : :

0:3 0:5 0:2

: : :

1

A

0

@
0:7 : :

0:3 : :

0:2 : :

1

A D
0

@
: : :

0:40 : :

: : :

1

A

If we wanted p2.1; 3/ we would multiply the first row by the third column:

0

@
0:7 0:2 0:1

: : :

: : :

1

A

0

@
: : 0:1

: : 0:2

: : 0:4

1

A D
0

@
: : 0:15

: : :

: : :

1

A

When all of the computations are done we have

0

@
0:7 0:2 0:1

0:3 0:5 0:2

0:2 0:4 0:4

1

A

0

@
0:7 0:2 0:1

0:3 0:5 0:2

0:2 0:4 0:4

1

A D
0

@
0:57 0:28 0:15

0:40 0:39 0:21

0:34 0:40 0:26

1

A

All of this becomes much easier if we use a scientific calculator like the T1–83.
Using 2nd-MATRIX we can access a screen with NAMES, MATH, EDIT at the top.
Selecting EDIT we can enter the matrix into the computer as say [A]. The selecting
the NAMES we can enter ŒA� ^ 2 on the computation line to get A2. If we use this
procedure to compute A20 we get a matrix with three rows that agree in the first six
decimal places with

0:468085 0:340425 0:191489

Later we will see that as n!1; pn converges to a matrix with all three rows equal
to .22=47; 16=47; 9=47/.

To explain our interest in pm we will now prove:

Theorem 1.1. The m step transition probability P.XnCm D j jXn D i/ is the mth
power of the transition matrix p.

The key ingredient in proving this is the Chapman–Kolmogorov equation

pmCn.i; j / D
X

k

pm.i; k/ pn.k; j / (1.2)

Once this is proved, Theorem 1.1 follows, since taking n D 1 in (1.2), we see that

pmC1.i; j / D
X

k

pm.i; k/ p.k; j /

That is, the m C 1 step transition probability is the m step transition probability
times p. Theorem 1.1 now follows.
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Why is (1.2) true? To go from i to j in mC n steps, we have to go from i to some
state k in m steps and then from k to j in n steps. The Markov property implies that
the two parts of our journey are independent.

�
�
�
�

�
�
�
�

�
�
�
�

��������

��������
��������

��������
��������

��������
i

j

time 0 m m C n

Proof of (1.2). We do this by combining the solutions of Q1 and Q2. Breaking
things down according to the state at time m,

P.XmCn D j jX0 D i/ D
X

k

P.XmCn D j; Xm D kjX0 D i/

Using the definition of conditional probability as in the solution of Q1,

P.XmCn D j; Xm D kjX0 D i/ D P.XmCn D j; Xm D k; X0 D i/

P.X0 D i/

D P.XmCn D j; Xm D k; X0 D i/

P.Xm D k; X0 D i/
� P.Xm D k; X0 D i/

P.X0 D i/

D P.XmCn D j jXm D k; X0 D i/ � P.Xm D kjX0 D i/

By the Markov property (1.1) the last expression is

D P.XmCn D j jXm D k/ � P.Xm D kjX0 D i/ D pm.i; k/pn.k; j /

and we have proved (1.2). ut
Having established (1.2), we now return to computations.

Example 1.11 (Gambler’s ruin). Suppose for simplicity that ND4 in Example 1.1,
so that the transition probability is

0 1 2 3 4
0 1:0 0 0 0 0

1 0:6 0 0:4 0 0

2 0 0:6 0 0:4 0

3 0 0 0:6 0 0:4

4 0 0 0 0 1:0
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To compute p2 one row at a time we note:

p2.0; 0/ D 1 and p2.4; 4/ D 1, since these are absorbing states.
p2.1; 3/ D .0:4/2 D 0:16, since the chain has to go up twice.
p2.1; 1/ D .0:4/.0:6/ D 0:24. The chain must go from 1 to 2 to 1.
p2.1; 0/ D 0:6. To be at 0 at time 2, the first jump must be to 0.

Leaving the cases i D 2; 3 to the reader, we have

p2 D

0

B
B
B
B
B
@

1:0 0 0 0 0

0:6 0:24 0 0:16 0

0:36 0 0:48 0 0:16

0 0:36 0 0:24 0:4

0 0 0 0 1

1

C
C
C
C
C
A

Using a calculator one can easily compute

p20 D

0

B
B
B
B
B
@

1:0 0 0 0 0

0:87655 0:00032 0 0:00022 0:12291

0:69186 0 0:00065 0 0:30749

0:41842 0:00049 0 0:00032 0:58437

0 0 0 0 1

1

C
C
C
C
C
A

0 and 4 are absorbing states. Here we see that the probability of avoiding absorption
for 20 steps is 0:00054 from state 3, 0:00065 from state 2, and 0:00081 from state
1. Later we will see that

lim
n!1 pn D

0

B
B
B
B
B
@

1:0 0 0 0 0

57=65 0 0 0 8=65

45=65 0 0 0 20=65

27=65 0 0 0 38=65

0 0 0 0 1

1

C
C
C
C
C
A

1.3 Classification of States

We begin with some important notation. We are often interested in the behavior of
the chain for a fixed initial state, so we will introduce the shorthand

Px.A/ D P.AjX0 D x/

Later we will have to consider expected values for this probability and we will
denote them by Ex .
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Let Ty D minfn � 1 W Xn D yg be the time of the first return to y (i.e., being
there at time 0 doesn’t count), and let

�yy D Py.Ty <1/

be the probability Xn returns to y when it starts at y. Note that if we didn’t exclude
n D 0 this probability would always be 1.

Intuitively, the Markov property implies that the probability Xn will return to y

at least twice is �2
yy , since after the first return, the chain is at y, and the probability

of a second return following the first is again �yy .
To show that the reasoning in the last paragraph is valid, we have to introduce a

definition and state a theorem. We say that T is a stopping time if the occurrence
(or nonoccurrence) of the event “we stop at time n,” fT D ng, can be determined
by looking at the values of the process up to that time: X0; : : : ; Xn. To see that Ty is
a stopping time note that

fTy D ng D
n
X1 ¤ y; : : : ; Xn�1 ¤ y; Xn D y

o

and that the right-hand side can be determined from X0; : : : ; Xn.
Since stopping at time n depends only on the values X0; : : : ; Xn, and in a Markov

chain the distribution of the future only depends on the past through the current state,
it should not be hard to believe that the Markov property holds at stopping times.
This fact can be stated formally as:

Theorem 1.2 (Strong Markov property). Suppose T is a stopping time. Given
that T D n and XT D y, any other information about X0; : : : XT is irrelevant for
predicting the future, and XT Ck; k � 0 behaves like the Markov chain with initial
state y.

Why is this true? To keep things as simple as possible we will show only that

P.XT C1 D zjXT D y; T D n/ D p.y; z/

Let Vn be the set of vectors .x0; : : : ; xn/ so that if X0 D x0; : : : ; Xn D xn, then
T D n and XT D y. Breaking things down according to the values of X0; : : : ; Xn

gives

P.XT C1 D z; XT D y; T D n/ D
X

x2Vn

P.XnC1 D z; Xn D xn; : : : ; X0 D x0/

D
X

x2Vn

P.XnC1 D zjXn D xn; : : : ; X0 D x0/P.Xn D xn; : : : ; X0 D x0/

where in the second step we have used the multiplication rule

P.A \ B/ D P.BjA/P.A/
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For any .x0; : : : ; xn/ 2 Vn we have T D n and XT D y so xn D y. Using the
Markov property, (1.1), and recalling the definition of Vn shows the above

P.XT C1 D z; T D n; XT D y/ D p.y; z/
X

x2Vn

P.Xn D xn; : : : ; X0 D x0/

D p.y; z/P.T D n; XT D y/

Dividing both sides by P.T D n; XT D y/ gives the desired result.
Let T 1

y D Ty and for k � 2 let

T k
y D min

n
n > T k�1

y W Xn D y
o

(1.3)

be the time of the kth return to y. The strong Markov property implies that the
conditional probability we will return one more time given that we have returned
k � 1 times is �yy . This and induction implies that

Py

�
T k

y <1
�
D �k

yy (1.4)

At this point, there are two possibilities:

(i) �yy < 1: The probability of returning k times is �k
yy ! 0 as k ! 1. Thus,

eventually the Markov chain does not find its way back to y. In this case the
state y is called transient, since after some point it is never visited by the
Markov chain.

(ii) �yy D 1: The probability of returning k times �k
yy D 1, so the chain returns to y

infinitely many times. In this case, the state y is called recurrent, it continually
recurs in the Markov chain.

To understand these notions, we turn to our examples, beginning with

Example 1.12 (Gambler’s ruin). Consider, for concreteness, the case N D 4.

0 1 2 3 4
0 1 0 0 0 0

1 0:6 0 0:4 0 0

2 0 0:6 0 0:4 0

3 0 0 0:6 0 0:4

4 0 0 0 0 1

We will show that eventually the chain gets stuck in either the bankrupt (0) or happy
winner (4) state. In the terms of our recent definitions, we will show that states
0 < y < 4 are transient, while the states 0 and 4 are recurrent.

It is easy to check that 0 and 4 are recurrent. Since p.0; 0/ D 1, the chain comes
back on the next step with probability one, i.e.,
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P0.T0 D 1/ D 1

and hence �00 D 1. A similar argument shows that 4 is recurrent. In general if y is
an absorbing state, i.e., if p.y; y/ D 1, then y is a very strongly recurrent state – the
chain always stays there.

To check the transience of the interior states, 1; 2; 3, we note that starting from 1,
if the chain goes to 0, it will never return to 1, so the probability of never returning
to 1,

P1.T1 D 1/ � p.1; 0/ D 0:6 > 0

Similarly, starting from 2, the chain can go to 1 and then to 0, so

P2.T2 D 1/ � p.2; 1/p.1; 0/ D 0:36 > 0

Finally, for starting from 3, we note that the chain can go immediately to 4 and never
return with probability 0.4, so

P3.T3 D 1/ � p.3; 4/ D 0:4 > 0

In some cases it is easy to identify recurrent states.

Example 1.13 (Social mobility). Recall that the transition probability is

1 2 3
1 0:7 0:2 0:1

2 0:3 0:5 0:2

3 0:2 0:4 0:4

To begin we note that no matter where Xn is, there is a probability of at least 0.1 of
hitting 3 on the next step so

P3.T3 > n/ � .0:9/n ! 0 as n!1
i.e., we will return to 3 with probability 1. The last argument applies even more
strongly to states 1 and 2, since the probability of jumping to them on the next step
is always at least 0.2. Thus all three states are recurrent.

The last argument generalizes to the give the following useful fact.

Lemma 1.3. Suppose Px.Ty � k/ � ˛ > 0 for all x in the state space S . Then

Px.Ty > nk/ � .1 � ˛/n

Generalizing from our experience with the last two examples, we will introduce
some general results that will help us identify transient and recurrent states.

Definition 1.1. We say that x communicates with y and write x ! y if there is a
positive probability of reaching y starting from x, that is, the probability



16 1 Markov Chains

�xy D Px.Ty <1/ > 0

Note that the last probability includes not only the possibility of jumping from x

to y in one step but also going from x to y after visiting several other states in
between. The following property is simple but useful. Here and in what follows,
lemmas are a means to prove the more important conclusions called theorems. The
two are numbered in the same sequence to make results easier to find.

Lemma 1.4. If x ! y and y ! z, then x ! z.

Proof. Since x ! y there is an m so that pm.x; y/ > 0. Similarly there is an n so
that pn.y; z/ > 0. Since pmCn.x; z/ � pm.x; y/pn.y; z/ it follows that x ! z. ut
Theorem 1.5. If �xy > 0, but �yx < 1, then x is transient.

Proof. Let K D minfk W pk.x; y/ > 0g be the smallest number of steps we can
take to get from x to y. Since pK.x; y/ > 0 there must be a sequence y1; : : : yK�1

so that
p.x; y1/p.y1; y2/ � � �p.yK�1; y/ > 0

Since K is minimal all the yi ¤ y (or there would be a shorter path), and we have

Px.Tx D1/ � p.x; y1/p.y1; y2/ � � �p.yK�1; y/.1 � �yx/ > 0

so x is transient. ut
We will see later that Theorem 1.5 allows us to to identify all the transient states

when the state space is finite. An immediate consequence of Theorem 1.5 is

Lemma 1.6. If x is recurrent and �xy > 0 then �yx D 1.

Proof. If �yx < 1 then Lemma 1.5 would imply x is transient. ut
To be able to analyze any finite state Markov chain we need some theory. To

motivate the developments consider

Example 1.14 (A Seven-state chain). Consider the transition probability:

1 2 3 4 5 6 7
1 0:7 0 0 0 0:3 0 0

2 0:1 0:2 0:3 0:4 0 0 0

3 0 0 0:5 0:3 0:2 0 0

4 0 0 0 0:5 0 0:5 0

5 0:6 0 0 0 0:4 0 0

6 0 0 0 0 0 0:2 0:8

7 0 0 0 1 0 0 0

To identify the states that are recurrent and those that are transient, we begin by
drawing a graph that will contain an arc from i to j if p.i; j / > 0 and i ¤ j . We
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do not worry about drawing the self-loops corresponding to states with p.i; i/ > 0

since such transitions cannot help the chain get somewhere new.
In the case under consideration the graph is

5 3 7

1 2 4 6

�

�

�

�
�

�
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The state 2 communicates with 1, which does not communicate with it, so
Theorem 1.5 implies that 2 is transient. Likewise 3 communicates with 4, which
doesn’t communicate with it, so 3 is transient. To conclude that all the remaining
states are recurrent we will introduce two definitions and a fact.

A set A is closed if it is impossible to get out, i.e., if i 2 A and j 62 A then
p.i; j / D 0. In Example 1.14, f1; 5g and f4; 6; 7g are closed sets. Their union,
f1; 4; 5; 6; 7g is also closed. One can add 3 to get another closed set f1; 3; 4; 5; 6; 7g.
Finally, the whole state space f1; 2; 3; 4; 5; 6; 7g is always a closed set.

Among the closed sets in the last example, some are obviously too big. To rule
them out, we need a definition. A set B is called irreducible if whenever i; j 2 B; i

communicates with j . The irreducible closed sets in the Example 1.14 are f1; 5g
and f4; 6; 7g. The next result explains our interest in irreducible closed sets.

Theorem 1.7. If C is a finite closed and irreducible set, then all states in C are
recurrent.

Before entering into an explanation of this result, we note that Theorem 1.7 tells us
that 1, 5, 4, 6, and 7 are recurrent, completing our study of the Example 1.14 with
the results we had claimed earlier.

In fact, the combination of Theorems 1.5 and 1.7 is sufficient to classify the states
in any finite state Markov chain. An algorithm will be explained in the proof of the
following result.

Theorem 1.8. If the state space S is finite, then S can be written as a disjoint union
T [ R1 [ � � � [ Rk , where T is a set of transient states and the Ri; 1 � i � k, are
closed irreducible sets of recurrent states.

Proof. Let T be the set of x for which there is a y so that x ! y but y 6! x.
The states in T are transient by Theorem 1.5. Our next step is to show that all the
remaining states, S � T , are recurrent.

Pick an x 2 S � T and let Cx D fy W x ! yg. Since x 62 T it has the property
if x ! y, then y ! x. To check that Cx is closed note that if y 2 Cx and y ! z,
then Lemma 1.4 implies x ! z so z 2 Cx . To check irreducibility, note that if
y; z 2 Cx , then by our first observation y ! x and we have x ! z by definition,
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so Lemma 1.4 implies y ! z. Cx is closed and irreducible so all states in Cx are
recurrent. Let R1 D Cx. If S � T � R1 D ;, we are done. If not, pick a site
w 2 S � T � R1 and repeat the procedure. ut

The rest of this section is devoted to the proof of Theorem 1.7. To do this, it is
enough to prove the following two results.

Lemma 1.9. If x is recurrent and x ! y, then y is recurrent.

Lemma 1.10. In a finite closed set there has to be at least one recurrent state.

To prove these results we need to introduce a little more theory. Recall the time of
the kth visit to y defined by

T k
y D min

n
n > T k�1

y W Xn D y
o

and �xy D Px.Ty < 1/ the probability we ever visit y at some time n � 1 when
we start from x. Using the strong Markov property as in the proof of (1.4) gives

Px

�
T k

y <1
�
D �xy�k�1

yy : (1.5)

Let N.y/ be the number of visits to y at times n � 1. Using (1.5) we can compute
EN.y/.

Lemma 1.11. ExN.y/ D �xy=.1� �yy/

Proof. Accept for the moment the fact that for any nonnegative integer valued
random variable X , the expected value of X can be computed by

EX D
1X

kD1

P.X � k/ (1.6)

We will prove this after we complete the proof of Lemma 1.11. Now the probability
of returning at least k times, fN.y/ � kg, is the same as the event that the kth return
occurs, i.e., fT k

y <1g, so using (1.5) we have

ExN.y/ D
1X

kD1

P.N.y/ � k/ D �xy

1X

kD1

�k�1
yy D

�xy

1 � �yy

since
P1

nD0 �n D 1=.1� �/ whenever j� j < 1. ut

Proof of (1.6). Let 1fX�kg denote the random variable that is 1 if X � k and 0
otherwise. It is easy to see that

X D
1X

kD1

1fX�kg:
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Taking expected values and noticing E1fX�kg D P.X � k/ gives

EX D
1X

kD1

P.X � k/ ut

Our next step is to compute the expected number of returns to y in a different way.

Lemma 1.12. ExN.y/ DP1
nD1 pn.x; y/.

Proof. Let 1fXnDyg denote the random variable that is 1 if Xn D y, 0 otherwise.
Clearly

N.y/ D
1X

nD1

1fXnDyg:

Taking expected values now gives

ExN.y/ D
1X

nD1

Px.Xn D y/ ut

With the two lemmas established we can now state our next main result.

Theorem 1.13. y is recurrent if and only if

1X

nD1

pn.y; y/ D EyN.y/ D1

Proof. The first equality is Lemma 1.12. From Lemma 1.11 we see that EyN.y/ D
1 if and only if �yy D 1, which is the definition of recurrence. ut

With this established we can easily complete the proofs of our two lemmas.

Proof of Lemma 1.9. Suppose x is recurrent and �xy > 0. By Lemma 1.6 we must
have �yx > 0. Pick j and ` so that pj .y; x/ > 0 and p`.x; y/ > 0. pj CkC`.y; y/

is probability of going from y to y in j C k C ` steps while the product
pj .y; x/pk.x; x/p`.x; y/ is the probability of doing this and being at x at times
j and j C k. Thus we must have

1X

kD0

pj CkC`.y; y/ � pj .y; x/

 1X

kD0

pk.x; x/

!

p`.x; y/

If x is recurrent then
P

k pk.x; x/ D 1, so
P

m pm.y; y/ D 1 and Theorem 1.13
implies that y is recurrent. ut



20 1 Markov Chains

Proof of Lemma 1.10. If all the states in C are transient then Lemma 1.11 implies
that ExN.y/ <1 for all x and y in C . Since C is finite, using Lemma 1.12

1 >
X

y2C

ExN.y/ D
X

y2C

1X

nD1

pn.x; y/

D
1X

nD1

X

y2C

pn.x; y/ D
1X

nD1

1 D1

where in the next to last equality we have used that C is closed. This contradiction
proves the desired result. ut

1.4 Stationary Distributions

In the next section we will see that if we impose an additional assumption called
aperiodicity an irreducible finite state Markov chain converges to a stationary
distribution

pn.x; y/! �.y/

To prepare for that this section introduces stationary distributions and shows how to
compute them. Our first step is to consider

What happens in a Markov chain when the initial state is random? Breaking
things down according to the value of the initial state and using the definition of
conditional probability

P.Xn D j / D
X

i

P.X0 D i; Xn D j /

D
X

i

P.X0 D i/P.Xn D j jX0 D i/

If we introduce q.i/ D P.X0 D i/, then the last equation can be written as

P.Xn D j / D
X

i

q.i/pn.i; j / (1.7)

In words, we multiply the transition matrix on the left by the vector q of initial
probabilities. If there are k states, then pn.x; y/ is a k � k matrix. So to make the
matrix multiplication work out right, we should take q as a 1 � k matrix or a “row
vector.”

Example 1.15. Consider the weather chain (Example 1.3) and suppose that the
initial distribution is q.1/ D 0:3 and q.2/ D 0:7. In this case
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�
0:3 0:7

�
�

0:6 0:4

0:2 0:8

�

D �0:32 0:68
�

since 0:3.0:6/C 0:7.0:2/ D 0:32

0:3.0:4/C 0:7.0:8/ D 0:68

Example 1.16. Consider the social mobility chain (Example 1.4) and suppose that
the initial distribution: q.1/ D 0:5; q.2/ D 0:2, and q.3/ D 0:3. Multiplying the
vector q by the transition probability gives the vector of probabilities at time 1.

�
0:5 0:2 0:3

�
0

@
0:7 0:2 0:1

0:3 0:5 0:2

0:2 0:4 0:4

1

A D �0:47 0:32 0:21
�

To check the arithmetic note that the three entries on the right-hand side are

0:5.0:7/C 0:2.0:3/C 0:3.0:2/ D 0:35C 0:06C 0:06 D 0:47

0:5.0:2/C 0:2.0:5/C 0:3.0:4/ D 0:10C 0:10C 0:12 D 0:32

0:5.0:1/C 0:2.0:2/C 0:3.0:4/ D 0:05C 0:04C 0:12 D 0:21

If qp D q then q is called a stationary distribution. If the distribution at time 0
is the same as the distribution at time 1, then by the Markov property it will be the
distribution at all times n � 1.

Stationary distributions have a special importance in the theory of Markov chains,
so we will use a special letter � to denote solutions of the equation

�p D �:

To have a mental picture of what happens to the distribution of probability when one
step of the Markov chain is taken, it is useful to think that we have q.i/ pounds of
sand at state i , with the total amount of sand

P
i q.i/ being 1 pound. When a step

is taken in the Markov chain, a fraction p.i; j / of the sand at i is moved to j . The
distribution of sand when this has been done is

qp D
X

i

q.i/p.i; j /

If the distribution of sand is not changed by this procedure q is a stationary
distribution.

Example 1.17 (Weather chain). To compute the stationary distribution we want to
solve

�
�1 �2

�
�

0:6 0:4

0:2 0:8

�

D ��1 �2

�
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Multiplying gives two equations:

0:6�1 C 0:2�2 D �1

0:4�1 C 0:8�2 D �2

Both equations reduce to 0:4�1 D 0:2�2. Since we want �1 C �2 D 1, we must
have 0:4�1 D 0:2 � 0:2�1, and hence

�1 D 0:2

0:2C 0:4
D 1

3
�2 D 0:4

0:2C 0:4
D 2

3

To check this we note that

�
1=3 2=3

�
�

0:6 0:4

0:2 0:8

�

D
�

0:6

3
C 0:4

3

0:4

3
C 1:6

3

�

General two state transition probability.

1 2
1 1 � a a

2 b 1 � b

We have written the chain in this way so the stationary distribution has a simple
formula

�1 D b

aC b
�2 D a

aC b
(1.8)

As a first check on this formula we note that in the weather chain a D 0:4 and
b D 0:2 which gives .1=3; 2=3/ as we found before. We can prove this works in
general by drawing a picture:

�
1b

aC b
�
2 a

aC b

a
�! �
b

In words, the amount of sand that flows from 1 to 2 is the same as the amount
that flows from 2 to 1 so the amount of sand at each site stays constant. To check
algebraically that �p D �:

b

aC b
.1 � a/C a

aC b
b D b � baC ab

aC b
D b

aC b

b

aC b
aC a

aC b
.1 � b/ D baC a � ab

aC b
D a

aC b
(1.9)
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Formula (1.8) gives the stationary distribution for any two state chain, so we
progress now to the three state case and consider the

Example 1.18 (Social Mobility (continuation of 1.4)).

1 2 3
1 0:7 0:2 0:1

2 0:3 0:5 0:2

3 0:2 0:4 0:4

The equation �p D � says

�
�1 �2 �3

�
0

@
0:7 0:2 0:1

0:3 0:5 0:2

0:2 0:4 0:4

1

A D ��1 �2 �3

�

which translates into three equations

0:7�1 C 0:3�2 C 0:2�3 D �1

0:2�1 C 0:5�2 C 0:4�3 D �2

0:1�1 C 0:2�2 C 0:4�3 D �3

Note that the columns of the matrix give the numbers in the rows of the equations.
The third equation is redundant since if we add up the three equations we get

�1 C �2 C �3 D �1 C �2 C �3

If we replace the third equation by �1 C �2 C �3 D 1 and subtract �1 from each
side of the first equation and �2 from each side of the second equation we get

�0:3�1 C 0:3�2 C 0:2�3 D 0

0:2�1 � 0:5�2 C 0:4�3 D 0

�1 C �2 C �3 D 1 (1.10)

At this point we can solve the equations by hand or using a calculator.

By hand. We note that the third equation implies �3 D 1��1��2 and substituting
this in the first two gives

0:2 D 0:5�1 � 0:1�2

0:4 D 0:2�1 C 0:9�2

Multiplying the first equation by 0.9 and adding 0:1 times the second gives

2:2 D .0:45C 0:02/�1 or �1 D 22=47
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Multiplying the first equation by 0.2 and adding �0:5 times the second gives

�0:16 D .�:02 � 0:45/�2 or �2 D 16=47

Since the three probabilities add up to 1, �3 D 9=47.
Using the TI83 calculator is easier. To begin we write (1.10) in matrix form as

�
�1 �2 �3

�
0

@
�0:2 0:1 1

0:2 �0:4 1

0:3 0:3 1

1

A D �0 0 1
�

If we let A be the 3 � 3 matrix in the middle this can be written as �A D .0; 0; 1/.
Multiplying on each side by A�1 we see that

� D .0; 0; 1/A�1

which is the third row of A�1. To compute A�1, we enter A into our calculator
(using the MATRX menu and its EDIT submenu), use the MATRIX menu to put
ŒA� on the computation line, press x�1, and then ENTER. Reading the third row we
find that the stationary distribution is

.0:468085; 0:340425; 0:191489/

Converting the answer to fractions using the first entry in the MATH menu gives

.22=47; 16=47; 9=47/

Example 1.19 (Brand Preference (continuation of 1.5)).

1 2 3
1 0:8 0:1 0:1

2 0:2 0:6 0:2

3 0:3 0:3 0:4

Using the first two equations and the fact that the sum of the �’s is 1

0:8�1 C 0:2�2 C 0:3�3 D �1

0:1�1 C 0:6�2 C 0:3�3 D �2

�1 C �2 C �3 D 1

Subtracting �1 from both sides of the first equation and �2 from both sides of the
second, this translates into �A D .0; 0; 1/ with

A D
0

@
�0:2 0:1 1

0:2 �0:4 1

0:3 0:3 1

1

A
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Note that here and in the previous example the first two columns of A consist of the
first two columns of the transition probability with 1 subtracted from the diagonal
entries, and the final column is all 1’s. Computing the inverse and reading the last
row gives

.0:545454; 0:272727; 0:181818/

Converting the answer to fractions using the first entry in the MATH menu gives

.6=11; 3=11; 2=11/

To check this we note that

�
6=11 3=11 2=11

�
0

@
0:8 0:1 0:1

0:2 0:6 0:2

0:3 0:3 0:4

1

A

D
�

4:8C 0:6C 0:6

11

0:6C 1:8C 0:6

11

0:6C 0:6C 0:8

11

�

Example 1.20 (Basketball (continuation of 1.10)). To find the stationary matrix in
this case we can follow the same procedure. A consists of the first three columns
of the transition matrix with 1 subtracted from the diagonal, and a final column
of all 1’s.

�1=4 1=4 0 1

0 �1 2=3 1

2=3 1=3 �1 1

0 0 1=2 1

The answer is given by the fourth row of A�1:

.0:5; 0:1875; 0:1875; 0:125/ D .1=2; 3=16; 3=16; 1=8/

Thus the long run fraction of time the player hits a shot is

�.HH/C �.MH/ D 0:6875 D 11=36:

At this point we have a procedure for computing stationary distribution but it is
natural to ask: Is the matrix always invertible? Is the � we compute always � 0?
We will prove this in Sect. 1.7 using probabilistic methods. Here we will give an
elementary proof based on linear algebra.

Theorem 1.14. Suppose that the k�k transition matrix p is irreducible. Then there
is a unique solution to �p D � with

P
x �x D 1 and we have �x > 0 for all x.

Proof. Let I be the identity matrix. Since the rows of p � I add to 0, the rank of
the matrix is � k � 1 and there is a vector v so that vp D v.
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Let q D .I C p/=2 be the lazy chain that stays put with probability 1/2 and
otherwise takes a step according to p. Since vp D p we have vq D v. Let r D qk�1

and note that vr D v. Since p irreducible, for any x ¤ y there is a path from x to y.
Since the shortest such path will not visit any state more than once, we can always
get from x to y in k � 1 steps, and it follows that r.x; y/ > 0.

The next step is to prove that all the vx have the same sign. Suppose not. In this
case since r.x; y/ > 0 we have

jvyj D
ˇ
ˇ
ˇ
ˇ
ˇ

X

x

vxr.x; y/

ˇ
ˇ
ˇ
ˇ
ˇ

<
X

x

jvxjr.x; y/

To check the second inequality note that there are terms of both signs in the sum so
some cancellation will occur. Summing over y and using

P
y r.x; y/ D 1 we have

X

y

jvyj <
X

x

jvxj

a contradiction.
Suppose now that all of the vx � 0. Using

vy D
X

x

vxr.x; y/

we conclude that vy > 0 for all y. This proves the existence of a positive solution.
To prove uniqueness, note that if p�I has rank� k�2 then by linear algebra there
are two perpendicular solutions, v and w, but the last argument implies that we can
choose the sign so that vx; wx > 0 for all x. In this case the vectors cannot possibly
be perpendicular, which is a contradiction. ut

1.5 Limit Behavior

If y is a transient state, then by Lemma 1.11,
P1

nD1 pn.x; y/ < 1 for any initial
state x and hence

pn.x; y/! 0

This means that we can restrict our attention to recurrent states and in view of the
decomposition theorem, Theorem 1.8, to chains that consist of a single irreducible
class of recurrent states. Our first example shows one problem that can prevent the
convergence of pn.x; y/.
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Example 1.21 (Ehrenfest chain (continuation of 1.2)). For concreteness, suppose
there are three balls. In this case the transition probability is

0 1 2 3
0 0 3=3 0 0

1 1=3 0 2=3 0

2 0 2=3 0 1=3

3 0 0 3=3 0

In the second power of p the zero pattern is shifted:

0 1 2 3
0 1=3 0 2=3 0

1 0 7=9 0 2=9

2 2=9 0 7=9 0

3 0 2=3 0 1=3

To see that the zeros will persist, note that if we have an odd number of balls in the
left urn, then no matter whether we add or subtract one the result will be an even
number. Likewise, if the number is even, then it will be odd on the next one step.
This alternation between even and odd means that it is impossible to be back where
we started after an odd number of steps. In symbols, if n is odd then pn.x; x/ D 0

for all x.

To see that the problem in the last example can occur for multiples of any number
N consider:

Example 1.22 (Renewal chain). We will explain the name in Sect. 3.3 For the
moment we will use it to illustrate “pathologies.” Let fk be a distribution on the
positive integers and let p.0; k � 1/ D fk . For states i > 0 we let p.i; i � 1/ D 1.
In words the chain jumps from 0 to k � 1 with probability fk and then walks back
to 0 one step at a time. If X0 D 0 and the jump is to k� 1 then it returns to 0 at time
k. If say f5 D f15 D 1=2 then pn.0; 0/ D 0 unless n is a multiple of 5.

The period of a state is the largest number that will divide all the n � 1 for
which pn.x; x/ > 0. That is, it is the greatest common divisor of Ix D fn �
1 W pn.x; x/ > 0g. To check that this definition works correctly, we note that in
Example 1.21, fn � 1 W pn.x; x/ > 0g D f2; 4; : : :g, so the greatest common
divisor is 2. Similarly, in Example 1.22, fn � 1 W pn.x; x/ > 0g D f5; 10; : : :g, so
the greatest common divisor is 5. As the next example shows, things aren’t always
so simple.



28 1 Markov Chains

Example 4.4 (Triangle and square). Consider the transition matrix:

�2 �1 0 1 2 3
�2 0 0 1 0 0 0

�1 1 0 0 0 0 0

0 0 0:5 0 0:5 0 0

1 0 0 0 0 1 0

2 0 0 0 0 0 1

3 0 0 1 0 0 0

In words, from 0 we are equally likely to go to 1 or �1. From �1 we go with
probability one to �2 and then back to 0, from 1 we go to 2 then to 3 and back to 0.
The name refers to the fact that 0 ! �1 ! �2 ! 0 is a triangle and 0 ! 1 !
2! 3! 0 is a square.

� �

�	
	
	
	
	
	


��

�

-1 0 1

-2 3 2

1/2 1/2�

�

�

�

�

�

Clearly, p3.0; 0/ > 0 and p4.0; 0/ > 0 so 3; 4 2 I0. To compute I0 the following
is useful:

Lemma 1.15. Ix is closed under addition. That is, if i; j 2 Ix , then i C j 2 Ix.

Proof. If i; j 2 Ix then pi .x; x/ > 0 and pj .x; x/ > 0 so

piCj .x; x/ � pi .x; x/pj .x; x/ > 0

and hence i C j 2 Ix . ut
Using this we see that

I0 D f3; 4; 6; 7; 8; 9; 10; 11; : : :g
Note that in this example once we have three consecutive numbers (e.g., 6,7,8) in I0

then 6C 3; 7C 3; 8C 3 2 I0 and hence I0 will contain all the integers n � 6.
For another unusual example consider the renewal chain (Example 1.22) with

f5 D f12 D 1=2. 5; 12 2 I0 so using Lemma 1.15

I0 Df5; 10; 12; 15; 17; 20; 22; 24; 25; 27; 29; 30; 32;

34; 35; 36; 37; 39; 40; 41; 42; 43; : : :g
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To check this note that 5 gives rise to 10 D 5C 5 and 17 D 5C 12, 10–15 and 22,
12–17 and 24, etc. Once we have five consecutive numbers in I0, here 39–43, we
have all the rest. The last two examples motivate the following.

Lemma 1.16. If x has period 1, i.e., the greatest common divisor Ix is 1, then there
is a number n0 so that if n � n0, then n 2 Ix . In words, Ix contains all of the
integers after some value n0.

Proof. We begin by observing that it enough to show that Ix will contain two
consecutive integers: k and k C 1. For then it will contain 2k; 2k C 1; 2k C 2, and
3k; 3kC1; 3kC2; 3kC3, or in general jk; jkC1; : : : jkCj . For j � k�1 these
blocks overlap and no integers are left out. In the last example 24; 25 2 I0 implies
48; 49; 50 2 I0 which implies 72; 73; 74; 75 2 I0 and 96; 97; 98; 99; 100 2 I0, so
we know the result holds for n0 D 96. In fact it actually holds for n0 D 34 but it is
not important to get a precise bound.

To show that there are two consecutive integers, we cheat and use a fact from
number theory: if the greatest common divisor of a set Ix is 1 then there are
integers i1; : : : im 2 Ix and (positive or negative) integer coefficients ci so that
c1i1 C � � � C cmim D 1. Let ai D cC

i and bi D .�ci /
C. In words the ai are the

positive coefficients and the bi are �1 times the negative coefficients. Rearranging
the last equation gives

a1i1 C � � � C amim D .b1i1 C � � � C bmim/C 1

and using Lemma 1.15 we have found our two consecutive integers in Ix . ut
While periodicity is a theoretical possibility, it rarely manifests itself in applica-

tions, except occasionally as an odd-even parity problem, e.g., the Ehrenfest chain.
In most cases we will find (or design) our chain to be aperiodic, i.e., all states have
period 1. To be able to verify this property for examples, we need to discuss some
theory.

Lemma 1.17. If p.x; x/ > 0, then x has period 1.

Proof. If p.x; x/ > 0, then 1 2 Ix , so the greatest common divisor is 1. ut
This is enough to show that all states in the weather chain (Example 1.3), social

mobility (Example 1.4), and brand preference chain (Example 1.5) are aperiodic.
For states with zeros on the diagonal the next result is useful.

Lemma 1.18. If �xy > 0 and �yx > 0 then x and y have the same period.

Why is this true? The short answer is that if the two states have different periods,
then by going from x to y, from y to y in the various possible ways, and then from
y to x, we will get a contradiction.
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Proof. Suppose that the period of x is c, while the period of y is d < c. Let k be
such that pk.x; y/ > 0 and let m be such that pm.y; x/ > 0. Since

pkCm.x; x/ � pk.x; y/pm.y; x/ > 0

we have k Cm 2 Ix . Since x has period c; k Cm must be a multiple of c. Now let
` be any integer with p`.y; y/ > 0. Since

pkC`Cm.x; x/ � pk.x; y/p`.y; y/pm.y; x/ > 0

k C ` C m 2 Ix, and k C ` C m must be a multiple of c. Since k C m is itself
a multiple of c, this means that ` is a multiple of c. Since ` 2 Iy was arbitrary,
we have shown that c is a divisor of every element of Iy , but d < c is the greatest
common divisor, so we have a contradiction. ut

Lemma 1.18 easily settles the question for the inventory chain (Example 1.6)

0 1 2 3 4 5
0 0 0 0:1 0:2 0:4 0:3

1 0 0 0:1 0:2 0:4 0:3

2 0:3 0:4 0:3 0 0 0

3 0:1 0:2 0:4 0:3 0 0

4 0 0:1 0:2 0:4 0:3 0

5 0 0 0:1 0:2 0:4 0:3

Since p.x; x/ > 0 for x D 2; 3; 4; 5, Lemma 1.17 implies that these states are
aperiodic. Since this chain is irreducible it follows from Lemma 1.18 that 0 and 1
are aperiodic.

Consider now the basketball chain (Example 1.10):

HH HM MH MM
HH 3=4 1=4 0 0

HM 0 0 2=3 1=3

MH 2=3 1=3 0 0

MM 0 0 1=2 1=2

Lemma 1.17 implies that HH and MM are aperiodic. Since this chain is irreducible
it follows from Lemma 1.18 that HM and MH are aperiodic.

We now come to the main results of the chapter. We first list the assumptions. All
of these results hold when S is finite or infinite.

• I : p is irreducible
• A : aperiodic, all states have period 1
• R : all states are recurrent
• S : there is a stationary distribution �
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Theorem 1.19 (Convergence theorem). Suppose I; A; S . Then as n ! 1;

pn.x; y/! �.y/.

To state the next result we need a definition. We day that �.x/ � 0 is a stationary
measure if

P
x �.x/p.x; y/ D �.y/. If S is finite we can normalize � to be a

stationary distribution.

Theorem 1.20. Suppose I and R. Then there is a stationary measure with �.x/ >

0 for all x.

The next result describes the “limiting fraction of time we spend in each state.”

Theorem 1.21 (Asymptotic frequency). Suppose I and R. If Nn.y/ be the num-
ber of visits to y up to time n, then

Nn.y/

n
! 1

EyTy

We will see later that we may have EyTy D1 in which case the limit is 0. As a
corollary we get the following.

Theorem 1.22. If I and S hold, then

�.y/ D 1=EyTy

and hence the stationary distribution is unique.

In the next two examples we will be interested in the long run cost associated with
a Markov chain. For this, we will need the following extension of Theorem 1.21.
(Take f .x/ D 1 if x D y and 0 otherwise to recover the previous result.)

Theorem 1.23. Suppose I; S , and
P

x jf .x/j�.x/ <1 then

1

n

nX

mD1

f .Xm/!
X

x

f .x/�.x/

Note that Theorems 1.21 and 1.23 do not require aperiodicity.
To illustrate the use of Theorem 1.23, we consider

Example 1.23 (Repair chain (continuation of 1.7)). A machine has three critical
parts that are subject to failure, but can function as long as two of these parts
are working. When two are broken, they are replaced and the machine is back to
working order the next day. Declaring the state space to be the parts that are broken
f0; 1; 2; 3; 12; 13; 23g, we arrived at the following transition matrix:
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0 1 2 3 12 13 23
0 0:93 0:01 0:02 0:04 0 0 0

1 0 0:94 0 0 0:02 0:04 0

2 0 0 0:95 0 0:01 0 0:04

3 0 0 0 0:97 0 0:01 0:02

12 1 0 0 0 0 0 0

13 1 0 0 0 0 0 0

23 1 0 0 0 0 0 0

and we asked: If we are going to operate the machine for 1,800 days (about 5 years)
then how many parts of types 1, 2, and 3 will we use?

To find the stationary distribution we look at the last row of

0

B
B
B
B
B
B
B
B
B
@

�0:07 0:01 0:02 0:04 0 0 1

0 �0:06 0 0 0:02 0:04 1

0 0 �0:05 0 0:01 0 1

0 0 0 �0:03 0 0:01 1

1 0 0 0 �1 0 1

1 0 0 0 0 �1 1

1 0 0 0 0 0 1

1

C
C
C
C
C
C
C
C
C
A

�1

where after converting the results to fractions we have:

�.0/ D 3;000=8; 910

�.1/ D 500=8;910 �.2/ D 1;200=8;910 �.3/ D 4;000=8;910

�.12/ D 22=8;910 �.13/ D 60=8;910 �.23/ D 128=8;910

We use up one part of type 1 on each visit to 12 or to 13, so on the average we
use 82/8,910 of a part per day. Over 1,800 days we will use an average of 1;800 �
82=8;910 D 16:56 parts of type 1. Similarly type 2 and type 3 parts are used at the
long run rates of 150/8,910 and 188/8,910 per day, so over 1,800 days we will use
an average of 30.30 parts of type 2 and 37.98 parts of type 3.

Example 1.24 (Inventory chain (continuation of 1.6)). We have an electronics store
that sells a videogame system, with the ptential for sales of 0, 1, 2, or 3 of these
units each day with probabilities 0.3, 0.4, 0.2, and 0.1. Each night at the close of
business new units can be ordered which will be available when the store opens in
the morning. Suppose that sales produce a profit of $12 but it costs $2 a day to keep
unsold units in the store overnight. Since it is impossible to sell 4 units in a day, and
it costs us to have unsold inventory we should never have more than 3 units on hand.

Suppose we use a 2,3 inventory policy. That is, we order if there are � 2 units and
we order enough stock so that we have 3 units at the beginning of the next day.
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In this case we always start the day with 3 units, so the transition probability has
constant rows

0 1 2 3
0 0:1 0:2 0:4 0:3

1 0:1 0:2 0:4 0:3

2 0:1 0:2 0:4 0:3

3 0:1 0:2 0:4 0:3

In this case it is clear that the stationary distribution is �.0/ D 0:1; �.1/ D
0:2; �.2/ D 0:4, and �.3/ D 0:3. If we end the day with k units then we sold
3 � k and have to keep k over night. Thus our long run sales under this scheme are

0:1.36/C 0:2.24/C 0:4.12/ D 3:6C 4:8C 4:8 D 13:2 dollars per day

while the inventory holding costs are

2.0:2/C 4.0:4/C 6.0:3/ D 0:4C 1:6C 1:8 D 3:8

for a net profit of 9.4 dollars per day.

Suppose we use a 1,3 inventory policy. In this case the transition probability is

0 1 2 3
0 0:1 0:2 0:4 0:3

1 0:1 0:2 0:4 0:3

2 0:3 0:4 0:3 0

3 0:1 0:2 0:4 0:3

Solving for the stationary distribution we get

�.0/ D 19=110 �.1/ D 30=110 �.2/ D 40=110 �.3/ D 21=110

To compute the profit we make from sales note that if we always had enough
stock then by the calculation in the first case, we would make 13.2 dollars per day.
However, when Xn D 2 and the demand is 3, an event with probability .4=11/�0:1D
0:03636, we lose exactly one of our sales. From this it follows that in the long run
we make a profit of

13:2� .0:036/12D 12:7636 dollars per day

Our inventory holding cost under the new system is

2 � 30

110
C 4 � 40

110
C 6 � 21

110
D 60C 160C 126

110
D 3:1454

so now our profits are 12:7636� 3:1454 D 9:6128.
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Suppose we use a 0,3 inventory policy. In this case the transition probability is

0 1 2 3
0 0:1 0:2 0:4 0:3

1 0:7 0:3 0 0

2 0:3 0:4 0:3 0

3 0:1 0:2 0:4 0:3

From the equations for the stationary distribution we get

�.0/D 343=1;070 �.1/D 300=1;070 �.2/D 280=1;070 �.3/D 147=1;070

To compute our profit we note, as in the previous calculation if we always had
enough stock then we would make 13.2 dollars per day. Considering the various
lost sales scenarios shows that in the long run we make sales of

13:2� 12 �
�

280

1;070
0:1C 300

1;070
.0:1 � 2C 0:2 � 1/

�

D 11:54 dollars per day

Our inventory holding cost until the new scheme is

2 � 300

1;070
C 4 � 280

1;070
C 6 � 147

1;070
D 600C 1;120C 882

1;070
D 4;720

1;472
D 2:43

so the long run profit is 11:54� 2:43 D 9:11 dollars per day.
At this point we have computed

policy 0,3 1,3 2,3
profit per day $9.11 $9.62 $9.40

so the 1,3 inventory policy is optimal.

1.6 Special Examples

1.6.1 Doubly Stochastic Chains

Definition 1.2. A transition matrix p is said to be doubly stochastic if its
COLUMNS sum to 1, or in symbols

P
x p.x; y/ D 1.

The adjective “doubly” refers to the fact that by its definition a transition probability
matrix has ROWS that sum to 1, i.e.,

P
y p.x; y/ D 1. The stationary distribution

is easy to guess in this case:
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Theorem 1.24. If p is a doubly stochastic transition probability for a Markov chain
with N states, then the uniform distribution, �.x/ D 1=N for all x, is a stationary
distribution.

Proof. To check this claim we note that if �.x/ D 1=N then

X

x

�.x/p.x; y/ D 1

N

X

x

p.x; y/ D 1

N
D �.y/

Looking at the second equality we see that conversely, if �.x/ D 1=N then p is
doubly stochastic. ut
Example 1.25 (Symmetric reflecting random walk on the line). The state space is
f0; 1; 2 : : : ; Lg. The chain goes to the right or left at each step with probability 1/2,
subject to the rules that if it tries to go to the left from 0 or to the right from L it
stays put. For example, when L D 4 the transition probability is

0 1 2 3 4
0 0:5 0:5 0 0 0

1 0:5 0 0:5 0 0

2 0 0:5 0 0:5 0

3 0 0 0:5 0 0:5

4 0 0 0 0:5 0:5

It is clear in the example L D 4 that each column adds up to 1. With a little thought
one sees that this is true for any L, so the stationary distribution is uniform, �.i/ D
1=.LC 1/.

Example 1.26 (Tiny Board Game). Consider a circular board game with only six
spaces f0; 1; 2; 3; 4; 5g. On each turn we roll a die with 1 on three sides, 2 on two
sides, and 3 on one side to decide how far to move. Here we consider 5 to be adjacent
to 0, so if we are there and we roll a 2 then the result is 5 C 2 mod 6 D 1, where
i C k mod 6 is the remainder when i C k is divided by 6. In this case the transition
probability is

0 1 2 3 4 5
0 0 1=3 1=3 1=6 0 0

1 0 0 1=2 1=3 1=6 0

2 0 0 0 1=2 1=3 1=6

3 1=6 0 0 0 1=2 1=3

4 1=3 1=6 0 0 0 1=2

5 1=2 1=3 1=6 0 0 0

It is clear that the columns add to one, so the stationary distribution is uniform. To
check the hypothesis of the convergence theorem, we note that after three turns we
will have moved between three and nine spaces so p3.i; j / > 0 for all i and j .
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Example 1.27 (Mathematician’s Monopoly). The game Monopoly is played on a
game board that has 40 spaces arranged around the outside of a square. The squares
have names like Reading Railroad and Park Place but we will number the squares
0 (Go), 1 (Baltic Avenue), : : : 39 (Boardwalk). In Monopoly you roll two dice
and move forward a number of spaces equal to the sum. For the moment, we
will ignore things like Go to Jail, Chance, and other squares that make the game
more interesting and formulate the dynamics as following. Let rk be the probability
that the sum of 2 dice is k (r2 D 1=36; r3 D 2=36; : : : r7 D 6=36; : : : ; r12 D
1=36) and let

p.i; j / D rk if j D i C k mod 40

where iCk mod 40 is the remainder when iCk is divided by 40. To explain suppose
that we are sitting on Park Place i D 37 and roll k D 6. 37C 6 D 43 but when we
divide by 40 the remainder is 3, so p.37; 3/ D r6 D 5=36.

This example is larger but has the same structure as the previous example. Each
row has the same entries but shift 1 unit to the right each time with the number that
goes off the right edge emerging in the 0 column. This structure implies that each
entry in the row appears once in each column and hence the sum of the entries in
the column is 1, and the stationary distribution is uniform. To check the hypothesis
of the convergence theorem note that in four rolls you can move forward by 8–48
squares, so p4.i; j / > 0 for all i and j .

Example 1.28 (Real Monopoly). has two complications:

• Square 30 is “Go to Jail,” which sends you to square 10. You can buy your way
out of jail but in the results we report below, we assume that you are cheap. If
you roll a double then you get out for free. If you don’t get doubles in three tries
you have to pay.

• There are three Chance squares at 7, 12, and 36 (diamonds on the graph), and
three Community Chest squares at 2, 17, 33 (squares on the graph), where you
draw a card, which can send you to another square.

The graph gives the long run frequencies of being in different squares on the
Monopoly board at the end of your turn, as computed by simulation (Fig. 1.1). We
have removed the 9.46% chance of being In Jail to make the probabilities easier to
see. The value reported for square 10 is the 2.14% probability of Just Visiting Jail,
i.e., being brought there by the roll of the dice. Square 30, Go to Jail, has probability
0 for the obvious reasons. The other three lowest values occur for Chance squares.
Due to the transition from 30 to 10, frequencies for squares near 20 are increased
relative to the average of 2.5% while those after 30 or before 10 are decreased.
Squares 0 (Go) and 5 (Reading Railroad) are exceptions to this trend since there are
Chance cards that instruct you to go there.
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Fig. 1.1 Stationary distribution for monopoly

1.6.2 Detailed Balance Condition

� is said to satisfy the detailed balance condition if

�.x/p.x; y/ D �.y/p.y; x/ (1.11)

To see that this is a stronger condition than �p D � , we sum over x on each side
to get

X

x

�.x/p.x; y/ D �.y/
X

x

p.y; x/ D �.y/

As in our earlier discussion of stationary distributions, we think of �.x/ as giving
the amount of sand at x, and one transition of the chain as sending a fraction p.x; y/

of the sand at x to y. In this case the detailed balance condition says that the amount
of sand going from x to y in one step is exactly balanced by the amount going back
from y to x. In contrast the condition �p D � says that after all the transfers are
made, the amount of sand that ends up at each site is the same as the amount that
starts there.

Many chains do not have stationary distributions that satisfy the detailed balance
condition.

Example 1.29. Consider
1 2 3

1 0:5 0:5 0

2 0:3 0:1 0:6

3 0:2 0:4 0:4
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There is no stationary distribution with detailed balance since �.1/p.1; 3/ D 0

but p.1; 3/ > 0 so we would have to have �.3/ D 0 and using �.3/p.3; i/ D
�.i/p.i; 3/ we conclude all the �.i/ D 0. This chain is doubly stochastic so
.1=3; 1=3; 1=3/ is a stationary distribution.

Example 1.30. Birth and death chains are defined by the property that the state
space is some sequence of integers `; `C 1; : : : r � 1; r and it is impossible to jump
by more than one:

p.x; y/ D 0 when jx � yj > 1

Suppose that the transition probability has

p.x; x C 1/ D px for x < r

p.x; x � 1/ D qx for x > `

p.x; x/ D 1 � px � qx for ` � x � r

while the other p.x; y/ D 0. If x < r detailed balance between x and xC1 implies
�.x/px D �.x C 1/qxC1, so

�.x C 1/ D px

qxC1

� �.x/ (1.12)

Using this with x D ` gives �.`C 1/ D �.`/p`=q`C1. Taking x D `C 1

�.`C 2/ D p`C1

q`C2

� �.`C 1/ D p`C1 � p`

q`C2 � q`C1

� �.`/

Extrapolating from the first two results we see that in general

�.`C i/ D �.`/ � p`Ci�1 � p`Ci�2 � � �p`C1 � p`

q`Ci � q`Ci�1 � � �q`C2 � q`C1

To keep the indexing straight note that: (i) there are i terms in the numerator and in
the denominator, (ii) the indices decrease by 1 each time, (iii) the answer will not
depend on q` (which is 0) or p`Ci .

For a concrete example to illustrate the use of this formula consider

Example 1.31 (Ehrenfest chain). For concreteness, suppose there are three balls. In
this case the transition probability is

0 1 2 3
0 0 3=3 0 0

1 1=3 0 2=3 0

2 0 2=3 0 1=3

3 0 0 3=3 0
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Setting �.0/ D c and using (1.12) we have

�.1/ D 3c; �.2/ D �.1/ D 3c �.3/ D �.2/=3 D c:

The sum of the �’s is 8c, so we pick c D 1=8 to get

�.0/ D 1=8; �.1/ D 3=8; �.2/ D 3=8; �.3/ D 1=8

Knowing the answer, one can look at the last equation and see that � represents
the distribution of the number of Heads when we flip three coins, then guess and
verify that in general that the binomial distribution with p D 1=2 is the stationary
distribution:

�.x/ D 2�n

 
n

x

!

Here mŠ D 1 � 2 � � � .m � 1/ �m, with 0Š D 1, and

 
n

x

!

D nŠ

xŠ.n � x/Š

is the binomial coefficient which gives the number of ways of choosing x objects
out of a set of n.

To check that our guess satisfies the detailed balance condition, we note that

�.x/p.x; x C 1/ D 2�n nŠ

xŠ.n � x/Š
� n � x

n

D 2�n nŠ

.x C 1/Š.n� x � 1/Š
� x C 1

n
D �.x C 1/p.x C 1; x/

However the following proof in words is simpler. Create X0 by flipping coins, with
heads = “in the left urn.” The transition from X0 to X1 is done by picking a coin at
random and then flipping it over. It should be clear that all 2n outcomes of the coin
tosses at time 1 are equally likely, so X1 has the binomial distribution.

Example 1.32 (Three machines, one repairman). Suppose that an office has three
machines that each break with probability 0:1 each day, but when there is at least
one broken, then with probability 0.5 the repairman can fix one of them for use the
next day. If we ignore the possibility of two machines breaking on the same day,
then the number of working machines can be modeled as a birth and death chain
with the following transition matrix:

0 1 2 3
0 0:5 0:5 0 0

1 0:05 0:5 0:45 0

2 0 0:1 0:5 0:4

3 0 0 0:3 0:7
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Rows 0 and 3 are easy to see. To explain row 1, we note that the state will only
decrease by 1 if one machine breaks and the repairman fails to repair the one he is
working on, an event of probability .0:1/.0:5/, while the state can only increase by
1 if he succeeds and there is no new failure, an event of probability 0:5.0:9/. Similar
reasoning shows p.2; 1/ D .0:2/.0:5/ and p.2; 3/ D 0:5.0:8/.

To find the stationary distribution we use the recursive formula (1.12) to conclude
that if �.0/ D c then

�.1/ D �.0/ � p0

q1

D c � 0:5

0:05
D 10c

�.2/ D �.1/ � p1

q2

D 10c � 0:45

0:1
D 45c

�.3/ D �.2/ � p2

q3

D 45c � 0:4

0:3
D 60c

The sum of the �’s is 116c, so if we let c D 1=116 then we get

�.3/ D 60

116
; �.2/ D 45

116
; �.1/ D 10

116
; �.0/ D 1

116

There are many other Markov chains that are not birth and death chains but have
stationary distributions that satisfy the detailed balance condition. A large number
of possibilities are provided by

Example 1.33 (Random walks on graphs). A graph is described by giving two
things: (i) a set of vertices V (which we suppose is a finite set) and (ii) an adjacency
matrix A.u; v/, which is 1 if there is an edge connecting u and v and 0 otherwise. By
convention we set A.v; v/ D 0 for all v 2 V .

	
	
	

�
�
�

	
	
	

�
�
�

3 3 3 3

3 3 3 3

3
4 4 5

The degree of a vertex u is equal to the number of neighbors it has. In symbols,

d.u/ D
X

v

A.u; v/

since each neighbor of u contributes 1 to the sum. To help explain the concept, we
have indicated the degrees on our example. We write the degree this way to make it
clear that
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.�/ p.u; v/ D A.u; v/

d.u/

defines a transition probability. In words, if Xn D u, we jump to a randomly chosen
neighbor of u at time nC 1.

It is immediate from (�) that if c is a positive constant then �.u/ D cd.u/ satisfies
the detailed balance condition:

�.u/p.u; v/ D cA.u; v/ D cA.v; u/ D �.v/p.u; v/

Thus, if we take c D 1=
P

u d.u/, we have a stationary probability distribution. In
the example c D 1=40.

For a concrete example, consider

Example 1.34 (Random walk of a knight on a chess board). A chess board is an 8
by 8 grid of squares. A knight moves by walking two steps in one direction and then
one step in a perpendicular direction.

�

� �
� �

��
��

By patiently examining all of the possibilities, one sees that the degrees of
the vertices are given by the following table. Lines have been drawn to make the
symmetries more apparent.

2 3 4 4 4 4 3 2
3 4 6 6 6 6 4 3
4 6 8 8 8 8 6 4
4 6 8 8 8 8 6 4
4 6 8 8 8 8 6 4
4 6 8 8 8 8 6 4
3 4 6 6 6 6 4 3
2 3 4 4 4 4 3 2
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The sum of the degrees is 4 �2C8 �3C20 �4C16 �6C16 �8D 336, so the stationary
probabilities are the degrees divided by 336.

This problem is boring for a rook which has 14 possible moves from any square
and hence a uniform stationary distribution. In exercises at the end of the chapter,
we will consider the other three interesting examples: king, bishop, and queen.

1.6.3 Reversibility

Let p.i; j / be a transition probability with stationary distribution �.i/. Let Xn

be a realization of the Markov chain starting from the stationary distribution, i.e.,
P.X0 D i/ D �.i/. The next result says that if we watch the process Xm; 0 � m �
n, backwards, then it is a Markov chain.

Theorem 1.25. Fix n and let Ym D Xn�m for 0 � m � n. Then Ym is a Markov
chain with transition probability

Op.i; j / D P.YmC1 D j jYm D i/ D �.j /p.j; i/

�.i/
(1.13)

Proof. We need to calculate the conditional probability.

P.YmC1 D imC1jYm D im; Ym�1 D im�1 : : : Y0 D i0/

D P.Xn�.mC1/ D imC1; Xn�m D im; Xn�mC1 D im�1 : : : Xn D i0/

P.Xn�m D im; Xn�mC1 D im�1 : : : Xn D i0/

Using the Markov property, we see the numerator is equal to

�.imC1/p.imC1; im/P.Xn�mC1 D im�1; : : : Xn D i0jXn�m D im/

Similarly the denominator can be written as

�.im/P.Xn�mC1 D im�1; : : : Xn D i0jXn�m D im/

Dividing the last two formulas and noticing that the conditional probabilities cancel
we have

P.YmC1 D imC1jYm D im; : : : Y0 D i0/ D �.imC1/p.imC1; im/

�.im/

This shows Ym is a Markov chain with the indicated transition probability. ut
The formula for the transition probability in (1.13), which is called the dual

transition probability, may look a little strange, but it is easy to see that it works;
i.e., the Op.i; j / � 0, and have
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X

j

Op.i; j / D
X

j

�.j /p.j; i/�.i/ D �.i/

�.i/
D 1

since �p D � . When � satisfies the detailed balance conditions:

�.i/p.i; j / D �.j /p.j; i/

the transition probability for the reversed chain,

Op.i; j / D �.j /p.j; i/

�.i/
D p.i; j /

is the same as the original chain. In words, if we make a movie of the Markov chain
Xm; 0 � m � n starting from an initial distribution that satisfies the detailed balance
condition and watch it backwards (i.e., consider Ym D Xn�m for 0 � m � n),
then we see a random process with the same distribution. m. To help explain the
concept,

1.6.4 The Metropolis-Hastings Algorithm

Our next topic is a method for generating samples from a distribution �.x/. It is
named for two of the authors of the fundamental papers on the topic. One written by
Nicholas Metropolis and two married couples with last names Rosenbluth and Teller
(1953) and the other by W.K. Hastings (1970). This a very useful tool for computing
posterior distributions in Bayesian statistics (Tierney 1994), reconstructing images
(Geman and Geman 1984), and investigating complicated models in statistical
physics (Hammersley and D. C. Handscomb 1984). It would take us too far afield to
describe these applications, so we will content ourselves to describe the simple idea
that is the key to the method.

We begin with a Markov chain q.x; y/ that is the proposed jump distribution.
A move is accepted with probability

r.x; y/ D min

�
�.y/q.y; x/

�.x/q.x; y/
; 1

	

so the transition probability

p.x; y/ D q.x; y/r.x; y/

To check that � satisfies the detailed balance condition we can suppose that
�.y/q.y; x/ > �.x/q.x; y/. In this case
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�.x/p.x; y/ D �.x/q.x; y/ � 1

�.y/p.y; x/ D �.y/q.y; x/
�.x/q.x; y/

�.y/q.y; x/
D �.x/q.x; y/

To generate one sample from �.x/ we run the chain for a long time so that
it reaches equilibrium. To obtain many samples, we output the state at widely
separated times. Of course there is an art of knowing how long is long enough to wait
between outputting the state to have independent realizations. If we are interested in
the expected value of a particular function then (if the chain is irreducible and the
state space is finite) Theorem 1.23 guarantees that

1

n

nX

mD1

f .Xm/!
X

x

f .x/�.x/

The Metropolis-Hastings algorithm is often used when space is continuous, but
that requires a more sophisticated Markov chain theory, so we will use discrete
examples to illustrate the method.

Example 1.35 (Geometric distribution). Suppose �.x/ D �x.1 � �/ for x D
0; 1; 2; : : : . To generate the jumps we will use a symmetric random walk q.x; x C
1/ D q.x; x � 1/ D 1=2. Since q is symmetric r.x; y/ D minf1; �.y/=�.x/g. In
this case if x > 0; �.x � 1/ > �.x/ and �.x C 1/=�.x/ D � so

p.x; x � 1/ D 1=2 p.x; x C 1/ D �=2 p.x; x/ D .1 � �/=2:

When x D 0; �.�1/ D 0 so

p.0;�1/ D 0 p.0; 1/ D �=2 p.0; 0/ D 1 � .�=2/:

To check reversibility we note that if x � 0 then

�.x/p.x; x C 1/ D �x.1 � �/ � �
2
D �.x C 1/p.x C 1; x/

Here, as in most applications of the Metropolis-Hastings algorithm the choice of q

is important. If � is close to 1 then we would want to choose q.x; xCi/ D 1=2LC1

for �L � i � L where L D O.1=.1� �// to make the chain move around the state
space faster while not having too many steps rejected.

Example 1.36 (Binomial distribution). Suppose �.x/ is Binomial (N; �). In this
case we can let q.x; y/ D 1=.N C 1/ for all 0 � x; y � N . Since q is symmetric
r.x; y/ D minf1; �.y/=�.x/g. This is closely related to the method of rejection
sampling, in which one generates independent random variables Ui uniform on
f0; 1; : : : ; N g and keep Ui with probability �.Ui /=�� where �� D max0�x�n �.x/.
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Example 1.37 (Two dimensional Ising model). The Metropolis-Hastings algorithm
has its roots in statistical physics. A typical problem is the Ising model of
ferromagnetism. Space is represented by a two dimensional grid � D f�L; : : : Lg2.
If we made the lattice three dimensional, we could think of the atoms in an iron
bar. In reality each atom has a spin which can point in some direction, but we
simplify by supposing that each spin can be up C1 or down �1. The state of the
systems is a function � W � ! f�1; 1g i.e., a point in the product space f�1; 1g�.
We say that points x and y in � are neighbors if y is one of the four points
x C .1; 0/; x C .�1; 0/; x C .0; 1/; x C .0;�1/. See the picture:

C � C C C � �
� � � C C C �
C � C C � � C
C C � � y C �
C � C y x y �
� � � C y C �
C � C C � � C

Given an interaction parameter ˇ, which is inversely proportional to the tempera-
ture, the equilibrium state is

�.x/ D 1

Z.ˇ/
exp

 

ˇ
X

x;y�x

�x�y

!

where the sum is over all x; y 2 � with y a neighbor of x, and Z.ˇ/ is a constant
that makes the probabilities sum to 1. At the boundaries of the square spins have
only three neighbors. There are several options for dealing with this: (i) we consider
the spins outside to be 0, or (ii) we could specify a fixed boundary condition such as
all spinsC.

The sum is largest in case (i) when all of the spins agree or in case (ii) when all
spins are C. These configuration minimizes the energy H D �Px;y�x 	x	y but
there many more configurations one with a random mixture ofC’s and �’s. It turns
out that as ˇ increases the system undergoes a phase transition from a random state
with an almost equal number of C’s and �’s to one in which more than 1/2 of the
spins point in the same direction.

Z.ˇ/ is difficult to compute so it is fortunate that only the ratio of the
probabilities appears in the Metropolis-Hastings recipe. For the proposed jump
distribution we let q.�; �x/ D 1=.2LC 1/2 if the two configurations � and �x differ
only at x. In this case the transition probability is

p.�; �x/ D q.�; �x/ min

�
�.�x/

�.�/
; 1
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Note that the ratio �.�x/=�.�/ is easy to compute because Z.ˇ/ cancels out, as
do all the terms in the sum that do not involve x and its neighbors. Since �x.x/ D
��.x/.

�.�x/

�.�/
D exp

 

�2ˇ
X

y�x

�x�y

!

If x agrees with k of its four neighbors the ratio is exp.�2.4�2k//. In words p.x; y/

can be described by saying that we accept the proposed move with probability 1 if
it lowers the energy and with probability �.y/=�.x/ if not.

Example 1.38 (Simulated annealing). The Metropolis-Hastings algorithm can also
be used to minimize complicated functions. Consider for example the traveling
salesman problem, which is to find the shortest (or least expensive) route that allows
one to visit all of the cities on a list. In this case the state space will be lists of cities, x

and �.x/ D exp.�ˇ`.x// where `.x/ is the length of the tour. The proposal kernel
q is chosen to modify the list in some way. For example, we might move a city to
a another place on the list or reverse the order of a sequence of cities. When ˇ is
large the stationary distribution will concentrate on optimal and near optimal tours.
As in the Ising model, ˇ is thought of as inverse temperature. The name derives
from the fact that to force the chain to better solution we increase ˇ (i.e., reduce the
temperature) as we run the simulation. One must do this slowly or the process will
get stuck in local minima. For more of simulated annealing see Kirkpatrick et al
(1983).

1.7 Proofs of the Main Theorems�

To prepare for the proof of the convergence theorem, Theorem 1.19, we need the
following:

Lemma 1.26. If there is a stationary distribution, then all states y that have
�.y/ > 0 are recurrent.

Proof. Lemma 1.12 tells us that ExN.y/ DP1
nD1 pn.x; y/, so

X

x

�.x/ExN.y/ D
X

x

�.x/

1X

nD1

pn.x; y/

Interchanging the order of summation and then using �pn D � , the above

D
1X

nD1

X

x

�.x/pn.x; y/ D
1X

nD1

�.y/ D1

since �.y/ > 0. Using Lemma 1.11 now gives ExN.y/ D �xy=.1 � �yy/, so
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1 D
X

x

�.x/
�xy

1 � �yy

� 1

1 � �yy

the second inequality following from the facts that �xy � 1 and � is a probability
measure. This shows that �yy D 1, i.e., y is recurrent. ut
With Lemma 1.26 in hand we are ready to tackle the proof of:

Theorem 1.19 (Convergence theorem). Suppose p is irreducible, aperiodic, and
has stationary distribution � . Then as n!1; pn.x; y/! �.y/:

Proof. Let S be the state space for p. Define a transition probability Np on S � S by

Np..x1; y1/; .x2; y2// D p.x1; x2/p.y1; y2/

In words, each coordinate moves independently.

Step 1. We will first show that if p is aperiodic and irreducible then Np is
irreducible. Since p is irreducible, there are K; L, so that pK.x1; x2/ > 0 and
pL.y1; y2/ > 0. Since x2 and y2 have period 1, it follows from Lemma 1.16 that
if M is large, then pLCM .x2; x2/ > 0 and pKCM .y2; y2/ > 0, so

NpKCLCM ..x1; y1/; .x2; y2// > 0

Step 2. Since the two coordinates are independent N�.a; b/ D �.a/�.b/ defines a
stationary distribution for Np, and Lemma 1.26 implies that all states are recurrent
for Np. Let .Xn; Yn/ denote the chain on S � S , and let T be the first time that
the two coordinates are equal, i.e., T D minfn � 0 W Xn D Yng. Let V.x;x/ D
minfn � 0 W Xn D Yn D xg be the time of the first visit to .x; x/. Since Np is
irreducible and recurrent, V.x;x/ <1 with probability one. Since T � V.x;x/ for
any x we must have

P.T <1/ D 1: (1.14)

Step 3. By considering the time and place of the first intersection and then using
the Markov property we have

P.Xn D y; T � n/ D
nX

mD1

X

x

P.T D m; Xm D x; Xn D y/

D
nX

mD1

X

x

P.T D m; Xm D x/P.Xn D yjXm D x/

D
nX

mD1

X

x

P.T D m; Ym D x/P.Yn D yjYm D x/

D P.Yn D y; T � n/
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•

•

•

•

•

•

•

•

◦x

y

0 Tx

Fig. 1.2 Picture of the cycle
trick

Step 4. To finish up we observe that since the distributions of Xn and Yn agree on
fT � ng

jP.Xn D y/ � P.Yn D y/j � P.Xn D y; T > n/C P.Yn D y; T > n/

and summing over y gives

X

y

jP.Xn D y/� P.Yn D y/j � 2P.T > n/

If we let X0 D x and let Y0 have the stationary distribution � , then Yn has
distribution � , and Using (1.14) it follows that

X

y

jpn.x; y/ � �.y/j � 2P.T > n/! 0

proving the convergence theorem. ut
Our next topic is the existence of stationary measures

Theorem 1.20. Suppose p is irreducible and recurrent. Let x 2 S and let Tx D
inffn � 1 W Xn D xg.

�x.y/ D
1X

nD0

Px.Xn D y; Tx > n/

defines a stationary measure with 0 < �x.y/ <1 for all y.

Why is this true? This is called the “cycle trick.” �x.y/ is the expected number of
visits to y in f0; : : : ; Tx � 1g. Multiplying by p moves us forward 1 unit in time so
�xp.y/ is the expected number of visits to y in f1; : : : ; Txg. Since X.Tx/ D X0 D x

it follows that �x D �xp (Fig. 1.2).
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Proof. To formalize this intuition, let Npn.x; y/DPx.XnDy; Tx > n/ and inter-
change sums to get

X

y

�x.y/p.y; z/ D
1X

nD0

X

y

Npn.x; y/p.y; z/

Case 1. Consider the generic case first: z ¤ x:

X

y

Npn.x; y/p.y; z/ D
X

y

Px.Xn D y; Tx > n; XnC1 D z/

D Px.Tx > nC 1; XnC1 D z/ D NpnC1.x; z/

Here the second equality holds since the chain must be somewhere at time n, and
the third is just the definition of NpnC1. Summing from n D 0 to1, we have

1X

nD0

X

y

Npn.x; y/p.y; z/ D
1X

nD0

NpnC1.x; z/ D �x.z/

since Np0.x; z/ D 0:

Case 2. Now suppose that z D x: Reasoning as above we have

X

y

Npn.x; y/p.y; x/ D
X

y

Px.Xn D y; Tx > n; XnC1 D x/ D Px.Tx D nC 1/

Summing from n D 0 to1 we have

1X

nD0

X

y

Npn.x; y/p.y; x/ D
1X

nD0

Px.Tx D nC 1/ D 1 D �x.x/

since Px.Tx D 0/ D 0:

To check �x.y/ <1, we note that �x.x/ D 1 and

1 D �x.x/ D
X

z

�x.z/pn.z; x/ � �x.y/pn.y; x/

so if we pick n with pn.y; x/ > 0 then we conclude �x.y/ <1.
To prove that �x.y/ > 0 we note that this is trivial for y D x the point used

to define the measure. For y ¤ x, we borrow an idea from Theorem 1.5. Let K D
minfk W pk.x; y/ > 0g. Since pK.x; y/ > 0 there must be a sequence y1; : : : yK�1

so that

p.x; y1/p.y1; y2/ � � �p.yK�1; y/ > 0
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Since K is minimal all the yi ¤ y, so Px.XK D y; Tx > K/ > 0 and hence
�x.y/ > 0. ut

Our next step is to prove

Theorem 1.21. Suppose p is irreducible and recurrent. Let Nn.y/ be the number
of visits to y at times � n. As n!1

Nn.y/

n
! 1

EyTy

Why is this true? Suppose first that we start at y. The times between returns,
t1; t2; : : : are independent and identically distributed so the strong law of large
numbers for nonnegative random variables implies that the time of the kth return
to y; R.k/ D minfn � 1 W Nn.y/ D kg, has

R.k/

k
! EyTy � 1 (1.15)

If we do not start at y then t1 < 1 and t2; t3; : : : are independent and identically
distributed and we again have (1.15). Writing ak 	 bk when ak=bk ! 1 we have
R.k/ 	 kEyTy . Taking k D n=EyTy we see that there are about n=EyTy returns
by time n.

Proof. We have already shown (1.15). To turn this into the desired result, we note
that from the definition of R.k/ it follows that R.Nn.y// � n < R.Nn.y/ C 1/.
Dividing everything by Nn.y/ and then multiplying and dividing on the end by
Nn.y/C 1, we have

R.Nn.y//

Nn.y/
� n

Nn.y/
<

R.Nn.y/C 1/

Nn.y/C 1
� Nn.y/C 1

Nn.y/

Letting n ! 1, we have n=Nn.y/ trapped between two things that converge to
EyTy , so

n

Nn.y/
! EyTy

and we have proved the desired result. ut
Theorem 1.22. If p is an irreducible and has stationary distribution � , then

�.y/ D 1=EyTy

Proof. Suppose X0 has distribution � . From Theorem 1.21 it follows that

Nn.y/

n
! 1

EyTy



1.7 Proofs of the Main Theorems 51

Taking expected value and using the fact that Nn.y/ � n, it can be shown that this
implies

E�Nn.y/

n
! 1

EyTy

but since � is a stationary distribution E�Nn.y/ D n�.y/. ut
Theorem 1.23. Suppose p is irreducible, has stationary distribution � , andP

x jf .x/j�.x/ <1 then

1

n

nX

mD1

f .Xm/!
X

x

f .x/�.x/

The key idea here is that by breaking the path at the return times to x we get a
sequence of random variables to which we can apply the law of large numbers.

Sketch of proof. Suppose that the chain starts at x. Let T0 D 0 and Tk D minfn >

Tk�1 W Xn D xg be the time of the kth return to x. By the strong Markov property,
the random variables

Yk D
TkX

mDTk�1C1

f .Xm/

are independent and identically distributed. By the cycle trick in the proof of
Theorem 1.20

EYk D
X

x

�x.y/f .y/

Using the law of large numbers for i.i.d. variables

1

L

TLX

mD1

f .Xm/ D 1

L

LX

kD1

Yk !
X

x

�x.y/f .y/

Taking L D Nn.x/ D maxfk W Tk � ng and ignoring the contribution from the last
incomplete cycle .Nn.x/; n�

1

n

nX

mD1

f .Xm/ 
 Nn.x/

n
� 1

Nn.x/

Nn.x/X

kD1

Yk

Using Theorem 1.21 and the law of large numbers the above

! 1

ExTx

X

y

�x.y/f .y/ D
X

y

�.y/f .y/ ut
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1.8 Exit Distributions

To motivate developments, we begin with an example.

Example 1.39 (Two year college). At a local 2 year college, 60% of freshmen
become sophomores, 25% remain freshmen, and 15% drop out. seventy percent
of sophomores graduate and transfer to a 4 year college, twenty percent remain
sophomores and ten percent drop out. What fraction of new students eventually
graduate?

We use a Markov chain with state space 1 D freshman, 2 D sophomore, G D
graduate, D D dropout. The transition probability is

1 2 G D
1 0:25 0:6 0 0:15

2 0 0:2 0:7 0:1

G 0 0 1 0

D 0 0 0 1

Let h.x/ be the probability that a student currently in state x eventually graduates.
By considering what happens on one step

h.1/ D 0:25h.1/C 0:6h.2/

h.2/ D 0:2h.2/C 0:7

To solve we note that the second equation implies h.2/ D 7=8 and then the first that

h.1/ D 0:6

0:75
� 7

8
D 0:7

Example 1.40 (Tennis). In tennis the winner of a game is the first player to win
four points, unless the score is 4–3, in which case the game must continue until
one player is ahead by two points and wins the game. Suppose that the server win
the point with probability 0:6 and successive points are independent. What is the
probability the server will win the game if the score is tied 3–3? if she is ahead by
one point? Behind by one point?

We formulate the game as a Markov chain in which the state is the difference of
the scores. The state space is 2; 1; 0;�1;�2 with 2 (win for server) and �2 (win for
opponent). The transition probability is

2 1 0 �1 �2
2 1 0 0 0 0
1 0.6 0 0.4 0 0
0 0 0.6 0 0.4 0
�1 0 0 0.6 0 0.4
�2 0 0 0 0 1



1.8 Exit Distributions 53

If we let h.x/ be the probability of the server winning when the score is x then

h.x/ D
X

y

p.x; y/h.y/

with h.2/ D 1 and h.�2/ D 0. This gives us three equations in three unknowns

h.1/ D 0:6C 0:4h.0/

h.0/ D 0:6h.1/C 0:4h.�1/

h.�1/ D 0:6h.0/

Using the first and third equations in the second we have

h.0/ D 0:6.0:6C 0:4h.0//C 0:4.0:6h.0// D 0:36C 0:48h.0/

so we have h.0/ D 0:36=0:52D 0:6923.
The last computation uses special properties of this example. To introduce a

general approach, we rearrange the equations to get

h.1/ � 0:4h.0/C 0h.�1/ D 0:6

�0:6h.1/C h.0/ � 0:4h.�1/ D 0

0h.1/� 0:6h.0/C h.�1/ D 0

which can be written in matrix form as

0

@
1 �0:4 0

�0:6 1 �0:4

0 �0:6 1

1

A

0

@
h.1/

h.0/

h.�1/

1

A D
0

@
0:6

0

0

1

A

Let C D f1; 0;�1g be the nonabsorbing states and let r.x; y/ the restriction of p to
x; y 2 C (i.e., the 3 � 3 matrix inside the black lines in the transition probability).
In this notation then the matrix above is I � r . Solving gives

0

@
h.1/

h.0/

h.�1/

1

A D .I � r/�1

0

@
0:6

0

0

1

A D
0

@
0:8769

0:6923

0:4154

1

A

General solution. Suppose that the server wins each point with probability w. If
the game is tied then after two points, the server will have won with probability w2,
lost with probability .1�w/2, and returned to a tied game with probability 2w.1�w/,
so h.0/ D w2 C 2w.1 � w/h.0/. Since 1 � 2w.1 � w/ D w2 C .1 � w/2, solving
gives



54 1 Markov Chains
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Fig. 1.3 Probability the server winning a tied game as a function of the probability of winning a
point

h.0/ D w2

w2 C .1 � w/2

Figure 1.3 graphs this function.
Having worked two examples, it is time to show that we have computed the

right answer. In some cases we will want to guess and verify the answer. In those
situations it is nice to know that the solution is unique. The next result proves this.

Theorem 1.27. Consider a Markov chain with finite state space S . Let a and b be
two points in S , and let C D S � fa; bg. Suppose h.a/ D 1; h.b/ D 0, and that for
x 2 C we have

h.x/ D
X

y

p.x; y/h.y/ (1.16)

If Px.Va ^ Vb <1/ > 0 for all x 2 C , then h.x/ D Px.Va < Vb/.

Proof. Let T D Va ^ Vb . It follows from Lemma 1.3 that Px.T < 1/ D 1 for all
x 2 C . (1.16) implies that h.x/ D Exh.X1/ when x ¤ a; b. The Markov property
implies

h.x/ D Exh.XT ^n/:

We have to stop at time T because the equation is not assumed to be valid for
x D a; b. Since S is finite, Px.T < 1/ D 1 for all x 2 C; h.a/ D 1, and
h.b/ D 0, it is not hard to prove that Exh.XT ^n/ ! Px.Va < Vb/ which gives the
desired result. ut
Example 1.41 (Matching pennies). Bob, who has 15 pennies, and Charlie, who has
10 pennies, decide to play a game. They each flip a coin. If the two coins match,
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Bob gets the 2 pennies (for a profit of 1). If the two coins are different, then Charlie
gets the 2 pennies. They quit when someone has all of the pennies. What is the
probability Bob will win the game?

The answer will turn out to be 15=25, Bob’s fraction of the total supply of
pennies. To explain this, let Xn be the number of pennies Bob has after n plays.
Xn is a fair game, i.e., x D ExX1, or in words the expected number of pennies Bob
has is constant in time. Let

Vy D minfn � 0 W Xn D yg

be the time of the first visit to y. Taking a leap of faith the expected number he has
at the end of the game should be the same as at the beginning so

x D NPx.VN < V0/C 0Px.V0 < Vn/

and solving gives

Px.VN < V0/ D x=N for 0 � x � N (1.17)

To prove this note that by considering what happens on the first step

h.x/ D 1

2
h.x C 1/C 1

2
h.x � 1/

Multiplying by 2 and rearranging

h.x C 1/� h.x/ D h.x/ � h.x � 1/

or in words, h has constant slope. Since h.0/ D 0 and h.N / D 1 the slope must be
1=N and we must have h.x/ D x=N .

The reasoning in the last example can be used to study Example 1.9.

Example 1.42 (Wright–Fisher model with no mutation). The state space is S D
f0; 1; : : : N g and the transition probability is

p.x; y/ D N

y

� x

N

�y
�

N � x

N

�N �y

The right-hand side is the binomial(N; x=N ) distribution, i.e., the number of
successes in N trials when success has probability x=N , so the mean number of
successes is x. From this it follows that if we define h.x/ D x=N , then

h.x/ D
X

y

p.x; y/h.y/



56 1 Markov Chains

Taking a D N and b D 0, we have h.a/ D 1 and h.b/ D 0. Since Px.Va ^ Vb <

1/ > 0 for all 0 < x < N , it follows from Lemma 1.27 that

Px.VN < V0/ D x=N (1.18)

i.e., the probability of fixation to all A’s is equal to the fraction of the genes that
are A.

Our next topic is non-fair games.

Example 1.43 (Gambler’s ruin). Consider a gambling game in which on any turn
you win $1 with probability p ¤ 1=2 or lose $1 with probability 1 � p. Suppose
further that you will quit playing if your fortune reaches $N . Of course, if your
fortune reaches $0, then the casino makes you stop. Let

h.x/ D Px.VN < V0/

be the happy event that our gambler reaches the goal of $N before going bankrupt
when starting with $x. Thanks to our definition of Vx as the minimum of n � 0 with
Xn D x we have h.0/ D 0, and h.N / D 1. To calculate h.x/ for 0 < x < N , we
set q D 1 � p to simplify the formulas, and consider what happens on the first step
to arrive at

h.x/ D ph.x C 1/C qh.x � 1/ (1.19)

To solve this we rearrange to get p.h.x C 1/ � h.x// D q.h.x/ � h.x � 1// and
conclude

h.x C 1/� h.x/ D q

p
� .h.x/ � h.x � 1// (1.20)

If we set c D h.1/ � h.0/ then (1.20) implies that for x � 1

h.x/ � h.x � 1/ D c

�
q

p

�x�1

Summing from x D 1 to N , we have

1 D h.N / � h.0/ D
NX

xD1

h.x/ � h.x � 1/ D c

NX

xD1

�
q

p

�x�1

Now for � ¤ 1 the partial sum of the geometric series is

N �1X

j D0

�j D 1 � �N

1� �
(1.21)
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To check this note that

.1� �/.1C � C � � � �N �1/ D .1C � C � � � �N �1/� .� C �2 C � � � �N / D 1 � �N

Using (1.21) we see that c D .1� �/=.1� �N / with � D q=p. Summing and using
the fact that h.0/ D 0, we have

h.x/ D h.x/ � h.0/ D c

x�1X

iD0

� i D c � 1 � �x

1 � �
D 1 � �x

1 � �N

Recalling the definition of h.x/ and rearranging the fraction we have

Px.VN < V0/ D �x � 1

�N � 1
where � D 1�p

p
(1.22)

To see what (1.22) says in a concrete example, we consider:

Example 1.44 (Roulette). If we bet $1 on red on a roulette wheel with 18 red, 18
black, and 2 green (0 and 00) holes, we win $1 with probability 18/38 = 0.4737 and
lose $1 with probability 20/38. Suppose we bring $50 to the casino with the hope of
reaching $100 before going bankrupt. What is the probability we will succeed?

Here � D q=p D 20=18, so (1.22) implies

P50.V100 < V0/ D
�

20
18

�50 � 1
�

20
18

�100 � 1

Using .20=18/50 D 194, we have

P50.V100 < V0/ D 194� 1

.194/2 � 1
D 1

194C 1
D 0:005128

Now let’s turn things around and look at the game from the viewpoint of the
casino, i.e., p D 20=38. Suppose that the casino starts with the rather modest capital
of x D 100. (1.22) implies that the probability they will reach N before going
bankrupt is

.9=10/100 � 1

.9=10/N � 1

If we let N !1; .9=10/N ! 0 so the answer converges to

1 � .9=10/100 D 1 � 2:656 � 10�5



58 1 Markov Chains

If we increase the capital to $200 then the failure probability is squared, since to
become bankrupt we must first lose $100 and then lose our second $100. In this
case the failure probability is incredibly small: .2:656 � 10�5/2 D 7:055 � 10�10.

From the last analysis we see that if p > 1=2; q=p < 1 and letting N ! 1 in
(1.22) gives

Px.V0 D1/ D 1 �
�

q

p

�x

and Px.V0 <1/ D
�

q

p

�x

: (1.23)

To see that the form of the last answer makes sense, note that to get from x to 0 we
must go x ! x � 1! x2 : : :! 1! 0, so

Px.V0 <1/ D P1.V0 <1/x:

1.9 Exit Times

To motivate developments we begin with an example.

Example 1.45 (Two year college). In Example 1.39 we introduced a Markov chain
with state space 1 D freshman, 2 D sophomore, G D graduate, D D dropout, and
transition probability

1 2 G D
1 0:25 0:6 0 0:15

2 0 0:2 0:7 0:1

G 0 0 1 0

D 0 0 0 1

On the average how many years does a student take to graduate or drop out?

Let g.x/ be the expected time for a student starting in state x. g.G/ D
g.D/ D 0. By considering what happens on one step

g.1/ D 1C 0:25g.1/C 0:6g.2/

g.2/ D 1C 0:2g.2/

where the 1C is due to the fact that after the jump has been made 1 year has elapsed.
To solve for g, we note that the second equation implies g.2/ D 1=0:8 D 1:25 and
then the first that

g.1/ D 1C 0:6.1:25/

0:75
D 1:75

0:75
D 2:3333
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Example 1.46 (Tennis). In Example 1.40 we formulated the last portion of the game
as a Markov chain in which the state is the difference of the scores. The state space
was S D f2; 1; 0;�1;�2g with 2 (win for server) and �2 (win for opponent). The
transition probability was

2 1 0 –1 –2
2 1 0 0 0 0
1 0.6 0 0.4 0 0
0 0 0.6 0 0.4 0

–1 0 0 0.6 0 0.4
–2 0 0 0 0 1

Let g.x/ be the expected time to complete the game when the current state is x.
By considering what happens on one step

g.x/ D 1C
X

y

p.x; y/g.y/

Since g.2/ D g.�2/ D 0, if we let r.x; y/ be the restriction of the transition
probability to 1; 0;�1 we have

g.x/ �
X

y

r.x; y/g.y/ D 1

Writing 1 for a 3 � 1 matrix (i.e., column vector) with all 1’s we can write this as

.I � r/g D 1

so g D .I � r/�11.
There is another way to see this. If N.y/ is the number of visits to y at times

n � 0, then from (1.12)

ExN.y/ D
1X

nD0

rn.x; y/

To see that this is .I � r/�1.x; y/ note that .I � r/.I C r C r2 C r3 C � � � /

D .I C r C r2 C r3 C � � � /� .r C r2 C r3 C r4 � � � / D I

If T is the duration of the game then T DPy N.y/ so

ExT D .I � r/�11 (1.24)
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To solve the problem now we note that

I � r D
0

@
1 �0:4 0

�0:6 1 �0:4

0 �0:6 1

1

A .I � r/�1 D
0

@
19=13 10=13 4=13

15=13 25=13 10=13

9=13 15=13 19=13

1

A

so E0T D .15C 25C 10/=13 D 50=13 D 3:846 points. Here the three terms in the
sum are the expected number of visits to �1, 0, and 1.

Having worked two examples, it is time to show that we have computed the
right answer. In some cases we will want to guess and verify the answer. In those
situations it is nice to know that the solution is unique. The next result proves this.

Theorem 1.28. Consider a Markov chain with finite state space S . Let A � S

and VA D inffn � 0 W Xn 2 Ag. We suppose C D S � A is finite, and that
Px.VA < 1/ > 0 for any x 2 C . Suppose g.a/ D 0 for all a 2 A, and that for
x 2 C we have

g.x/ D 1C
X

y

p.x; y/g.y/ (1.25)

Then g.x/ D Ex.VA/.

Proof. It follows from Lemma 1.3 that ExVA < 1 for all x 2 C . (1.25) implies
that g.x/ D 1C Exg.X1/ when x 62 A. The Markov property implies

g.x/ D Ex.T ^ n/C Exg.XT ^nn/:

We have to stop at time T because the equation is not valid for x 2 A. It follows
from the definition of the expected value that Ex.T ^ n/ " ExT . Since S is finite,
Px.T < 1/ D 1 for all x 2 C; g.a/ D 0 for a 2 A, it is not hard to see that
Exg.XT ^n/! 0. ut
Example 1.47 (Waiting time for TT). Let TT T be the (random) number of times
we need to flip a coin before we have gotten Tails on two consecutive tosses. To
compute the expected value of TT T we will introduce a Markov chain with states
0; 1; 2 D the number of Tails we have in a row.

Since getting a Tails increases the number of Tails we have in a row by 1, but
getting a Heads sets the number of Tails we have in a row to 0, the transition matrix is

0 1 2
0 1=2 1=2 0

1 1=2 0 1=2

2 0 0 1

Since we are not interested in what happens after we reach 2 we have made 2 an
absorbing state. If we let V2 D minfn � 0 W Xn D 2g and g.x/ D ExV2 then one
step reasoning gives
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g.0/ D 1C 0:5g.0/C 0:5g.1/

g.1/ D 1C 0:5g.0/

Plugging the second equation into the first gives g.0/ D 1:5 C 0:75g.0/, so
0:25g.0/ D 1:5 or g.0/ D 6. To do this with the previous approach we note

I � r D
�

1=2 �1=2

�1=2 1

�

.I � r/�1 D
�

4 2

2 2

�

so E0V2 D 6.

Example 1.48 (Waiting time for HT). Let THT be the (random) number of times we
need to flip a coin before we have gotten a Heads followed by a Tails. Consider Xn

is Markov chain with transition probability:

HH HT TH TT
HH 1=2 1=2 0 0

HT 0 0 1=2 1=2

TH 1=2 1=2 0 0

TT 0 0 1=2 1=2

If we eliminate the row and the column for HT then

I � r D
0

@
1=2 0 0

�1=2 1 0

0 �1=2 1=2

1

A .I � r/�11 D
0

@
2

2

4

1

A

To compute the expected waiting time for our original problem, we note that after
the first two tosses we have each of the four possibilities with probability 1/4 so

ETHT D 2C 1

4
.0C 2C 2C 4/ D 4

Why is ETT T D 6 while ETHT D 4? To explain we begin by noting that EyTy D
1=�.y/ and the stationary distribution assigns probability 1/4 to each state. One can
verify this and check that convergence to equilibrium is rapid by noting that all the
entries of p2 are equal to 1/4. Our identity implies that

EHT THT D 1

�.HT /
D 4

To get from this to what we wanted to calculate, note that if we start with a H at
time �1 and a T at time 0, then we have nothing that will help us in the future, so
the expected waiting time for a HT when we start with nothing is the same.
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When we consider T T , our identity again gives

ET T TT T D 1

�.T T /
D 4

However, this time if we start with a T at time �1 and a T at time 0, then a T at
time 1 will give us a T T and a return to T T at time 1; while if we get a H at time
1, then we have wasted 1 turn and we have nothing that can help us later, so

4 D ET T TT T D 1

2
� 1C 1

2
� .1C ETT T /

Solving gives ETT T D 6, so it takes longer to observe T T . The reason for this,
which can be seen in the last equation, is that once we have one T T , we will get
another one with probability 1/2, while occurrences of HT cannot overlap.

In the Exercise 1.59 we will consider waiting times for three coin patterns. The
most interesting of these is ETHTH D ETTHT .

Example 1.49 (Duration of fair games). Consider the gambler’s ruin chain in which
p.i; i C 1/ D p.i; i � 1/ D 1=2. Let 
 D minfn W Xn 62 .0; N /g. We claim that

Ex
 D x.N � x/ (1.26)

To see what formula (1.26) says, consider matching pennies. There N D 25 and
x D 15, so the game will take 15 � 10 D 150 flips on the average. If there are twice
as many coins, N D 50 and x D 30, then the game takes 30 � 20 D 600 flips on the
average, or four times as long.

There are two ways to prove this.

Verify the guess. Let g.x/ D x.N � x/. Clearly, g.0/ D g.N / D 0. If 0 < x < N

then by considering what happens on the first step we have

g.x/ D 1C 1

2
g.x C 1/C 1

2
g.x � 1/

If g.x/ D x.N � x/ then the right-hand side is

D 1C 1

2
.x C 1/.N � x � 1/C 1

2
.x � 1/.N � x C 1/

D 1C 1

2
Œx.N � x/ � x CN � x � 1�C 1

2
Œx.N � x/C x � .N � x C 1/�

D 1C x.N � x/ � 1 D x.N � x/

Derive the answer. Equation 1.25 implies that

g.x/ D 1C .1=2/g.x C 1/C .1=2/g.x � 1/
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Rearranging gives

g.x C 1/� g.x/ D �2C g.x/ � g.x � 1/

Setting g.1/� g.0/ D c we have g.2/� g.1/ D c � 2; g.3/� g.2/ D c � 4 and in
general that

g.k/ � g.k � 1/ D c � 2.k � 1/

Using g.0/ D 0 and summing we have

0 D g.N / D
NX

kD1

c � 2.k � 1/ D cN � 2 � N.N � 1/

2

since, as one can easily check by induction,
Pm

j D1 j D m.mC 1/=2. Solving gives
c D .N � 1/. Summing again, we see that

g.x/ D
xX

kD1

.N � 1/� 2.k � 1/ D x.N � 1/� x.x C 1/ D x.N � x/

Example 1.50 (Duration of nonfair games). Consider the gambler’s ruin chain in
which p.i; i C 1/p and p.i; i � 1/ D q, where p ¤ q. Let 
 D minfn W Xn 62
.0; N /g. We claim that

Ex
 D x

q � p
� N

q � p
� 1 � .q=p/x

1� .q=p/N
(1.27)

This time the derivation is somewhat tedious, so we will just verify the guess. We
want to show that g.x/ D 1C pg.x C 1/C qg.x � 1/. Plugging the formula into
the right-hand side:

D1C p
x C 1

q � p
C q

x � 1

q � p
� N

q � p




p � 1 � .q=p/xC1

1 � .q=p/N
C q

1 � .q=p/x�1

1 � .q=p/N

�

D1C x

q � p
C p � q

q � p
� N

q � p



p C q � .q=p/x.q C p/

1 � .q=p/N

�

whichD g.x/ since p C q D 1.

To see what this says note that if p < q then q=p > 1 so

N

1 � .q=p/N
! 0 and g.x/ D x

q � p
(1.28)
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To see this is reasonable note that our expected value on one play is p � q, so we
lose an average of q�p per play, and it should take an average of x=.q�p/ to lose
x dollars.

When p > q; .q=p/N ! 0, so doing some algebra

g.x/ 
 N � x

p � q
Œ1 � .q=p/x�C x

p � q
.q=p/x

Using (1.23) we see that the probability of not hitting 0 is 1 � .q=p/x . In this case,
since our expected winnings per play is p�q, it should take about .N �x/=.p�q/

plays to get to N . The second term represents the contribution to the expected value
from paths that end at 0, but it is hard to explain why the term has exactly this form.

1.10 Infinite State Spaces�

In this section we consider chains with an infinite state space. The major new
complication is that recurrence is not enough to guarantee the existence of a
stationary distribution.

Example 1.51 (Reflecting random walk). Imagine a particle that moves on
f0; 1; 2; : : :g according to the following rules. It takes a step to the right with
probability p. It attempts to take a step to the left with probability 1 � p, but if it
is at 0 and tries to jump to the left, it stays at 0, since there is no �1 to jump to. In
symbols,

p.i; i C 1/ D p when i � 0

p.i; i � 1/ D 1 � p when i � 1

p.0; 0/ D 1 � p

This is a birth and death chain, so we can solve for the stationary distribution using
the detailed balance equations:

p�.i/ D .1 � p/�.i C 1/ when i � 0

Rewriting this as �.i C 1/ D �.i/ � p=.1 � p/ and setting �.0/ D c, we have

�.i/ D c

�
p

1 � p

�i

(1.29)

There are now three cases to consider:
p < 1=2: p=.1 � p/ < 1. �.i/ decreases exponentially fast, so

P
i �.i/ < 1,

and we can pick c to make � a stationary distribution. To find the value of c to make
� a probability distribution we recall
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1X

iD0

� i D 1=.1� �/ when � < 1:

Taking � D p=.1 � p/ and hence 1 � � D .1 � 2p/=.1 � p/, we see that the sum
of the �.i/ defined in (�) is c.1 � p/=.1 � 2p/, so

�.i/ D 1 � 2p

1 � p
�
�

p

1 � p

�i

D .1� �/�i (1.30)

To confirm that we have succeeded in making the �.i/ add up to 1, note that if we
are flipping a coin with a probability � of Heads, then the probability of getting i

Heads before we get our first Tails is given by �.i/.
The reflecting random walk is clearly irreducible. To check that it is aperiodic

note that p.0; 0/ > 0 implies 0 has period 1, and then Lemma 1.18 implies that
all states have period 1. Using the convergence theorem, Theorem 1.19, now we
see that

1. When p < 1=2; P.Xn D j /! �.j /, the stationary distribution in (1.30).
Using Theorem 1.22 now,

E0T0 D 1

�.0/
D 1

1 � �
D 1 � p

1 � 2p
(1.31)

It should not be surprising that the system stabilizes when p < 1=2. In this
case movements to the left have a higher probability than to the right, so there is
a drift back toward 0. On the other hand if steps to the right are more frequent
than those to the left, then the chain will drift to the right and wander off to1.

2. When p > 1=2 all states are transient.
(1.23) implies that if x > 0; Px.T0 <1/ D ..1 � p/=p/x .
To figure out what happens in the borderline case p D 1=2, we use results

from Sects. 1.8 and 1.9. Recall we have defined Vy D minfn � 0 W Xn D yg and
(1.17) tells us that if x > 0

Px.VN < V0/ D x=N

If we keep x fixed and let N !1, then Px.VN < V0/! 0 and hence

Px.V0 <1/ D 1

In words, for any starting point x, the random walk will return to 0 with
probability 1. To compute the mean return time, we note that if 
N D minfn W
Xn 62 .0; N /g, then we have 
N � V0 and by (1.26) we have E1
N D
N � 1. Letting N ! 1 and combining the last two facts shows E1V0D1.
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Reintroducing our old hitting time T0 D minfn > 0 W Xn D 0g and noting that
on our first step we go to 0 or to 1 with probability 1/2 shows that

E0T0 D .1=2/ � 1C .1=2/E1V0 D1

Summarizing the last two paragraphs, we have
3. When p D 1=2; P0.T0 <1/ D 1 but E0T0 D1.

Thus when p D 1=2, 0 is recurrent in the sense we will certainly return, but
it is not recurrent in the following sense:

x is said to be positive recurrent if ExTx <1.
If a state is recurrent but not positive recurrent, i.e., Px.Tx < 1/ D 1 but

ExTx D1, then we say that x is null recurrent.
In our new terminology, our results for reflecting random walk say

If p < 1=2, 0 is positive recurrent
If p D 1=2, 0 is null recurrent
If p > 1=2, 0 is transient

In reflecting random walk, null recurrence thus represents the borderline between
recurrence and transience. This is what we think in general when we hear the
term. To see the reason we might be interested in positive recurrence recall that
by Theorem 1.22

�.x/ D 1

ExTx

If ExTx D 1, then this gives �.x/ D 0. This observation motivates:

Theorem 1.29. For an irreducible chain the following are equivalent:

(i) Some state is positive recurrent.
(ii) There is a stationary distribution � .

(iii) All states are positive recurrent.

Proof. The stationary measure constructed in Theorem 1.20 has total mass

X

y

�.y/ D
1X

nD0

X

y

Px.Xn D y; Tx > n/

D
1X

nD0

Px.Tx > n/ D ExTx

so (i) implies (ii). Noting that irreducibility implies �.y/ > 0 for all y and then
using �.y/ D 1=EyTy shows that (ii) implies (iii). It is trivial that (iii) implies (i).

ut
Our next example may at first seem to be quite different. In a branching process 0

is an absorbing state, so by Theorem 1.5 all the other states are transient. However,
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as the story unfolds we will see that branching processes have the same trichotomy
as random walks do.

Example 1.52 (Branching Processes). Consider a population in which each indi-
vidual in the nth generation gives birth to an independent and identically distributed
number of children. The number of individuals at time n; Xn is a Markov chain with
transition probability given in Example 1.8. As announced there, we are interested
in the question:

Q. What is the probability the species avoids extinction?

Here “extinction” means becoming absorbed state at 0. As we will now explain,
whether this is possible or not can be determined by looking at the average number
of offspring of one individual:

� D
1X

kD0

kpk

If there are m individuals at time n�1, then the mean number at time n is m�. More
formally the conditional expectation given Xn�1

E.XnjXn�1/ D �Xn�1

Taking expected values of both sides gives EXn D �EXn�1. Iterating gives

EXn D �nEX0 (1.32)

If � < 1, then EXn ! 0 exponentially fast. Using the inequality

EXn � P.Xn � 1/

it follows that P.Xn � 1/! 0 and we have

1. If � < 1 then extinction occurs with probability 1.
To treat the cases � � 1 we will use a one-step calculation. Let � be the
probability that this process dies out (i.e., reaches the absorbing state 0) starting
from X0 D 1. If there are k children in the first generation, then in order
for extinction to occur, the family line of each child must die out, an event of
probability �k, so we can reason that

� D
1X

kD0

pk�k (1.33)

If we let �.�/ D P1
kD0 pk�k be the generating function of the distribution pk ,

then the last equation can be written simply as � D �.�/.
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Fig. 1.4 Generating function for Binomial(3,1/2)

The equation in (1.33) has a trivial root at � D 1 since �.�/ DP1
kD0 pk�k D 1. The next result identifies the root that we want:

Lemma 1.30. The extinction probability � is the smallest solution of the equa-
tion �.x/ D x with 0 � x � 1 (Fig. 1.4).

Proof. Extending the reasoning for (1.33) we see that in order for the process to
hit 0 by time n, all of the processes started by first-generation individuals must
hit 0 by time n � 1, so

P.Xn D 0/ D
1X

kD0

pkP.Xn�1 D 0/k

From this we see that if �n D P.Xn D 0/ for n � 0, then �n D �.�n�1/ for
n � 1.

Since 0 is an absorbing state, �0 � �1 � �2 � : : : and the sequence converges
to a limit �1. Letting n !1 in �n D �.�n�1/ implies that �1 D �.�1/, i.e.,
�1 is a solution of �.x/ D x. To complete the proof now let � be the smallest
solution. Clearly �0 D 0 � �. Using the fact that � is increasing, it follows that
�1 D �.�0/ � �.�/ D �. Repeating the argument we have �2 � �; �3 � � and
so on. Taking limits we have �1 � �. However, � is the smallest solution, so we
must have �1 D �. ut
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To see what this says, let us consider a concrete example.

Example 1.53 (Binary branching). Suppose p2 D a; p0 D 1 � a, and the other
pk D 0. In this case �.�/ D a�2 C 1 � a, so �.x/ D x means

0 D ax2 � x C 1 � a D .x � 1/.ax � .1 � a//

The roots are 1 and .1 � a/=a. If a � 1=2, then the smallest root is 1, while if
a > 1=2 the smallest root is .1 � a/=a.

Noting that a � 1=2 corresponds to mean � � 1 in binary branching motivates
the following guess:

2. If � > 1, then there is positive probability of avoiding extinction.

Proof. In view of Lemma 1.30, we only have to show there is a root < 1. We
begin by discarding a trivial case. If p0 D 0, then �.0/ D 0, 0 is the smallest
root, and there is no probability of dying out. If p0 > 0, then �.0/ D p0 > 0.
Differentiating the definition of �, we have

�0.x/ D
1X

kD1

pk � kxk�1 so �0.1/ D
1X

kD1

kpk D �

If � > 1 then the slope of � at x D 1 is larger than 1, so if � is small, then
�.1� �/ < 1� �. Combining this with �.0/ > 0 we see there must be a solution
of �.x/ D x between 0 and 1 � �. See Fig. 1.4. ut

Turning to the borderline case:
3. If � D 1 and we exclude the trivial case p1 D 1, then extinction occurs with

probability 1.

Proof. By Lemma 1.30 we only have to show that there is no root < 1. To do
this we note that if p1 < 1, then for y < 1

�0.y/ D
1X

kD1

pk � kxk�1 <

1X

kD1

pkk D 1

so if x < 1 then �.x/ D �.1/� R 1

x
�0.y/ dy > 1� .1� x/ D x. Thus �.x/ > x

for all x < 1. ut
Note that in binary branching with a D 1=2; �.x/ D .1C x2/=2, so if we try to

solve �.x/ D x we get

0 D 1� 2x C x2 D .1 � x/2

i.e., a double root at x D 1. In general when � D 1, the graph of � is tangent to the
diagonal .x; x/ at x D 1. This slows down the convergence of �n to 1 so that it no
longer occurs exponentially fast.
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In more advanced treatments, it is shown that if the offspring distribution has
mean 1 and variance 
2 > 0, then

P1.Xn > 0/ 	 2

n
2

This is not easy even for the case of binary branching, so we refer to reader to
Sect. 1.9 of Athreya and Ney (1972) for a proof. We mention the result here because
it allows us to see that the expected time for the process to die out

P
n P1.T0 > n/ D

1. If we modify the branching process, so that p.0; 1/ D 1 then in the modified
process

If � < 1, 0 is positive recurrent
If � D 1, 0 is null recurrent
If � > 1, 0 is transient

Our final example gives an application of branching processes to queueing
theory.

Example 1.54 (M/G/1 queue). We will not be able to explain the name of this
example until we consider Poisson processes in Chap. 2. However, imagine a queue
of people waiting to use an automated teller machine. Let Xn denote the number of
people in line at the moment of the departure of the nth customer. To model this
as a Markov chain we let ak be the probability that k customers arrive during one
service time and write down the transition probability

p.0; k/ D ak and p.i; i � 1C k/ D ak for k � 0

with p.i; j / D 0 otherwise.

To explain this, note that if there is a queue, it is reduced by 1 by the departure
of a customer, but k new customers will come with probability k. On the other hand
if there is no queue, we must first wait for a customer to come and the queue that
remains at her departure is the number of customers that arrived during her service
time. The pattern becomes clear if we write out a few rows and columns of the
matrix:

0 1 2 3 4 5 : : :

0 a0 a1 a2 a3 a4 a5

1 a0 a1 a2 a3 a4 a5

2 0 a0 a1 a2 a3 a4

3 0 0 a0 a1 a2 a3

4 0 0 0 a0 a1 a2

If we regard the customers that arrive during a person’s service time to be her
children, then this queueing process gives rise to a branching process. From the
results above for branching processes we see that if we denote the mean number of
children by � DPk kak , then
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If � < 1, 0 is positive recurrent
If � D 1, 0 is null recurrent
If � > 1, 0 is transient

To bring out the parallels between the three examples, note that when � > 1 or
p > 1=2 the process drifts away from 0 and is transient. When � < 1 or p < 1=2

the process drifts toward 0 and is positive recurrent. When � D 1 or p D 1=2, there
is no drift. The process eventually hits 0 but not in finite expected time, so 0 is null
recurrent.

1.11 Chapter Summary

A Markov chain with transition probability p is defined by the property that given
the present state the rest of the past is irrelevant for predicting the future:

P.XnC1 D yjXn D x; Xn�1 D xn�1; : : : ; X0 D x0/ D p.x; y/

The m step transition probability

pm.i; j / D P.XnCm D yjXn D x/

is the mth power of the matrix p.

Recurrence and Transience

The first thing we need to determine about a Markov chain is which states are
recurrent and which are transient. To do this we let Ty D minfn � 1 W Xn D yg
and let

�xy D Px.Ty <1/

When x ¤ y this is the probability Xn ever visits y starting at x. When x D y this
is the probability Xn returns to y when it starts at y. We restrict to times n � 1 in
the definition of Ty so that we can say: y is recurrent if �yy D 1 and transient if
�yy < 1.

Transient states in a finite state space can all be identified using

Theorem 1.5. If �xy > 0, but �yx < 1, then x is transient.

Once the transient states are removed we can use

Theorem 1.7. If C is a finite closed and irreducible set, then all states in C are
recurrent.

Here A is closed if x 2 A and y 62 A implies p.x; y/ D 0, and B is irreducible if
x; y 2 B implies �xy > 0.
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The keys to the proof of Theorem 1.7 are: (i) If x is recurrent and �xy > 0 then y

is recurrent, and (ii) In a finite closed set there has to be at least one recurrent state.
To prove these results, it was useful to know that if N.y/ is the number of visits to
y at times n � 1 then

1X

nD1

pn.x; y/ D ExN.y/ D �xy

1 � �yy

so y is recurrent if and only if EyN.y/ D 1.
Theorems 1.5 and 1.7 allow us to decompose the state space and simplify the

study of Markov chains.

Theorem 1.8. If the state space S is finite, then S can be written as a disjoint union
T [ R1 [ � � � [ Rk , where T is a set of transient states and the Ri; 1 � i � k, are
closed irreducible sets of recurrent states.

Stationary Distributions

A stationary measure is a nonnegative solution of �p D � A stationary distribution
is a nonnegative solution of �p D � normalized so that the entries sum to 1. The
first question is: do these things exist?

Theorem 1.20. Suppose p is irreducible and recurrent. Let x 2 S and let Tx D
inffn � 1 W Xn D xg.

�x.y/ D
1X

nD0

Px.Xn D y; Tx > n/

defines a stationary measure with 0 < �x.y/ <1 for all y.

If the state space S is finite and irreducible there is a unique stationary distribution.
More generally if ExTx < 1, i.e., x is positive recurrent then �x.y/=ExTx is a
stationary distribution. Since �x.x/ D 1 we see that

�.x/ D 1

ExTx

If there are k states then the stationary distribution � can be computed by the
following procedure. Form a matrix A by taking the first k � 1 columns of p � I

and adding a final column of 1’s. The equations �p D � and �1 C � � ��k D 1 are
equivalent to

�A D �0 : : : 0 1
�
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so we have

� D �0 : : : 0 1
�

A�1

or � is the bottom row of A�1.
In two situations, the stationary distribution is easy to compute. (i) If the chain

is doubly stochastic, i.e.,
P

x p.x; y/ D 1, and has k states, then the stationary
distribution is uniform �.x/ D 1=k. (ii) � is a stationary distribution if the detailed
balance condition holds

�.x/p.x; y/ D �.y/p.y; x/

Birth and death chains, defined by the condition that p.x; y/ D 0 if jx � yj > 1

always have stationary distributions with this property. If the state space is `; ` C
1; : : : r then � can be found by setting �.`/ D c, solving for �.x/ for ` < x � r ,
and then choosing c to make the probabilities sum to 1.

Convergence Theorems

Transient states y have pn.x; y/! 0, so to investigate the convergence of pn.x; y/

it is enough, by the decomposition theorem, to suppose the chain is irreducible and
all states are recurrent. The period of a state is the greatest common divisor of Ix D
fn � 1 W pn.x; x/ > 0g. If the period is 1, x is said to be aperiodic. A simple
sufficient condition to be aperiodic is that p.x; x/ > 0. To compute the period it is
useful to note that if �xy > 0 and �yx > 0 then x and y have the same period. In
particular all of the states in an irreducible set have the same period.

The three main results about the asymptotic behavior of Markov chains are:

Theorem 1.19. Suppose p is irreducible, aperiodic, and has a stationary distribu-
tion � . Then as n!1; pn.x; y/! �.y/.

Theorem 1.21. Suppose p is irreducible and recurrent. If Nn.y/ be the number of
visits to y up to time n, then

Nn.y/

n
! 1

EyTy

Theorem 1.23. Suppose p is irreducible, has stationary distribution � , andP
x jf .x/j�.x/ <1 then

1

n

nX

mD1

f .Xm/!
X

x

f .x/�.x/
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Chains with Absorbing States

In this case there are two interesting questions. Where does the chain get absorbed?
How long does it take? Let Vy D minfn � 0 W Xn D yg be the time of the first visit
to y, i.e., now being there at time 0 counts.

Theorem 1.27. Consider a Markov chain with finite state space S . Let a and b be
two points in S , and let C D S � fa; bg. Suppose h.a/ D 1; h.b/ D 0, and that for
x 2 C we have

h.x/ D
X

y

p.x; y/h.y/

If �xa C �xb > 0 for all x 2 C , then h.x/ D Px.Va < Vb/.

Let r.x; y/ be the part of the matrix p.x; y/ with x; y 2 C . Since h.a/ D 1 and
h.b/ D 0, the equation for h can be written for x 2 C as

h.x/ D r.x; a/C
X

y

r.x; y/h.y/

so if we let v be the column vector with entries r.x; a/ then the last equation says
.I � r/h D v and

h D .I � r/�1v:

Theorem 1.28. Consider a Markov chain with finite state space S . Let A � S

and VA D inffn � 0 W Xn 2 Ag. Suppose g.a/ D 0 for all a 2 A, and that for
x 2 C D S � A we have

g.x/ D 1C
X

y

p.x; y/g.y/

If Px.VA <1/ > 0 for all x 2 C , then g.x/ D Ex.VA/.

Since g.x/ D 0 for x 2 A the equation for g can be written for x 2 C as

g.x/ D 1C
X

y

r.x; y/g.y/

so if we let 1 be a column vector consisting of all 1’s then the last equation says
.I � r/g D 1 and

g D .I � r/�11:

Since .I � r/�1 D I C r C r2 C : : :, for x; y 62 A; .I � r/�1.x; y/ is the expected
number of visits to y starting from x.
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1.12 Exercises

Understanding the Definitions

1.1. A fair coin is tossed repeatedly with results Y0; Y1; Y2; : : : that are 0 or 1 with
probability 1/2 each. For n � 1 let Xn D Yn C Yn�1 be the number of 1’s in the
.n � 1/th and nth tosses. Is Xn a Markov chain?

1.2. Five white balls and five black balls are distributed in two urns in such a way
that each urn contains five balls. At each step we draw one ball from each urn
and exchange them. Let Xn be the number of white balls in the left urn at time
n. Compute the transition probability for Xn.

1.3. We repeated roll two four sided dice with numbers 1, 2, 3, and 4 on them. Let
Yk be the sum on the kth roll, Sn D Y1 C � � � C Yn be the total of the first n rolls,
and Xn D Sn .mod 6/. Find the transition probability for Xn.

1.4. The 1990 census showed that 36% of the households in the District of
Columbia were homeowners while the remainder were renters. During the next
decade 6% of the homeowners became renters and 12% of the renters became
homeowners. What percentage were homeowners in 2000? in 2010?

1.5. Consider a gambler’s ruin chain with N D 4. That is, if 1 � i � 3; p.i; i C
1/ D 0:4, and p.i; i � 1/ D 0:6, but the endpoints are absorbing states: p.0; 0/ D 1

and p.4; 4/ D 1 Compute p3.1; 4/ and p3.1; 0/.

1.6. A taxicab driver moves between the airport A and two hotels B and C

according to the following rules. If he is at the airport, he will be at one of the
two hotels next with equal probability. If at a hotel then he returns to the airport
with probability 3/4 and goes to the other hotel with probability 1/4. (a) Find
the transition matrix for the chain. (b) Suppose the driver begins at the airport at
time 0. Find the probability for each of his three possible locations at time 2 and the
probability he is at hotel B at time 3.

1.7. Suppose that the probability it rains today is 0.3 if neither of the last 2 days
was rainy, but 0.6 if at least one of the last 2 days was rainy. Let the weather
on day n; Wn, be R for rain, or S for sun. Wn is not a Markov chain, but the
weather for the last 2 days Xn D .Wn�1; Wn/ is a Markov chain with four states
fRR; RS; SR; SSg. (a) Compute its transition probability. (b) Compute the two-
step transition probability. (c) What is the probability it will rain on Wednesday
given that it did not rain on Sunday or Monday.

1.8. Consider the following transition matrices. Identify the transient and recurrent
states, and the irreducible closed sets in the Markov chains. Give reasons for your
answers.
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.a/ 1 2 3 4 5
1 0:4 0:3 0:3 0 0

2 0 0:5 0 0:5 0

3 0:5 0 0:5 0 0

4 0 0:5 0 0:5 0

5 0 0:3 0 0:3 0:4

.b/ 1 2 3 4 5 6
1 0:1 0 0 0:4 0:5 0

2 0:1 0:2 0:2 0 0:5 0

3 0 0:1 0:3 0 0 0:6

4 0:1 0 0 0:9 0 0

5 0 0 0 0:4 0 0:6

6 0 0 0 0 0:5 0:5

.c/ 1 2 3 4 5
1 0 0 0 0 1

2 0 0:2 0 0:8 0

3 0:1 0:2 0:3 0:4 0

4 0 0:6 0 0:4 0

5 0:3 0 0 0 0:7

.d/ 1 2 3 4 5 6
1 0:8 0 0 0:2 0 0

2 0 0:5 0 0 0:5 0

3 0 0 0:3 0:4 0:3 0

4 0:1 0 0 0:9 0 0

5 0 0:2 0 0 0:8 0

6 0:7 0 0 0:3 0 0

1.9. Find the stationary distributions for the Markov chains with transition matrices:

.a/ 1 2 3
1 0:5 0:4 0:1

2 0:2 0:5 0:3

3 0:1 0:3 0:6

.b/ 1 2 3
1 0:5 0:4 0:1

2 0:3 0:4 0:3

3 0:2 0:2 0:6

.c/ 1 2 3
1 0:6 0:4 0

2 0:2 0:4 0:2

3 0 0:2 0:8

1.10. Find the stationary distributions for the Markov chains on f1; 2; 3; 4g with
transition matrices:

.a/

0

B
B
@

0:7 0 0:3 0

0:6 0 0:4 0

0 0:5 0 0:5

0 0:4 0 0:6

1

C
C
A .b/

0

B
B
@

0:7 0:3 0 0

0:2 0:5 0:3 0

0 0:3 0:6 0:1

0 0 0:2 0:8

1

C
C
A .c/

0

B
B
@

0:7 0 0:3 0

0:2 0:5 0:3 0

0:1 0:2 0:4 0:3

0 0:4 0 0:6

1

C
C
A

(c) The matrix is doubly stochastic so �.i/ D 1=4; i D 1; 2; 3; 4.

1.11. Find the stationary distributions for the chains in exercises (a) 1.2, (b) 1.3,
and (c) 1.7.

1.12. (a) Find the stationary distribution for the transition probability

1 2 3 4
1 0 2=3 0 1=3

2 1=3 0 2=3 0

3 0 1=6 0 5=6

4 2=5 0 3=5 0
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and show that it does not satisfy the detailed balance condition (1.11).

(b) Consider
1 2 3 4

1 0 a 0 1 � a

2 1 � b 0 b 0

3 0 1 � c 0 c

4 d 0 1 � d 0

and show that there is a stationary distribution satisfying (1.11) if

0 < abcd D .1 � a/.1 � b/.1� c/.1 � d/:

1.13. Consider the Markov chain with transition matrix:

1 2 3 4
1 0 0 0:1 0:9

2 0 0 0:6 0:4

3 0:8 0:2 0 0

4 0:4 0:6 0 0

(a) Compute p2. (b) Find the stationary distributions of p and all of the stationary
distributions of p2. (c) Find the limit of p2n.x; x/ as n!1.

1.14. Do the following Markov chains converge to equilibrium?

.a/ 1 2 3 4
1 0 0 1 0

2 0 0 0:5 0:5

3 0:3 0:7 0 0

4 1 0 0 0

.b/ 1 2 3 4
1 0 1 0 0

2 0 0 0 1

3 1 0 0 0

4 1=3 0 2=3 0

.c/ 1 2 3 4 5 6
1 0 0:5 0:5 0 0 0

2 0 0 0 1 0 0

3 0 0 0 0:4 0 0:6

4 1 0 0 0 0 0

5 0 1 0 0 0 0

6 0:2 0 0 0 0:8 0
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1.15. Find limn!1 pn.i; j / for

p D

1 2 3 4 5
1 1 0 0 0 0

2 0 2=3 0 1=3 0

3 1=8 1=4 5=8 0 0

4 0 1=6 0 5=6 0

5 1=3 0 1=3 0 1=3

You are supposed to do this and the next problem by solving equations. However
you can check your answers by using your calculator to find FRAC(p100).

1.16. If we rearrange the matrix for the seven state chain in Example 1.14 we get

2 3 1 5 4 6 7
2 0.2 0.3 0.1 0 0.4 0 0
3 0 0.5 0 0.2 0.3 0 0
1 0 0 0.7 0.3 0 0 0
5 0 0 0.6 0.4 0 0 0
4 0 0 0 0 0.5 0.5 0
6 0 0 0 0 0 0.2 0.8
7 0 0 0 0 1 0 0

Find limn!1 pn.i; j /.

Two State Markov Chains

1.17. Market research suggests that in a 5 year period 8% of people with cable
television will get rid of it, and 26% of those without it will sign up for it. Compare
the predictions of the Markov chain model with the following data on the fraction
of people with cable TV: 56.4% in 1990, 63.4% in 1995, and 68.0% in 2000. What
is the long run fraction of people with cable TV?

1.18. A sociology professor postulates that in each decade 8% of women in the
work force leave it and 20% of the women not in it begin to work. Compare
the predictions of his model with the following data on the percentage of women
working: 43.3% in 1970, 51.5% in 1980, 57.5% in 1990, and 59.8% in 2000. In the
long run what fraction of women will be working?

1.19. A rapid transit system has just started operating. In the first month of
operation, it was found that 25% of commuters are using the system while 75%
are travelling by automobile. Suppose that each month 10% of transit users go back
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to using their cars, while 30% of automobile users switch to the transit system.
(a) Compute the three step transition probability p3. (b) What will be the fractions
using rapid transit in the fourth month? (c) In the long run?

1.20. A regional health study indicates that from 1 year to the next, 75% percent
of smokers will continue to smoke while 25% will quit. 8% of those who stopped
smoking will resume smoking while 92% will not. If 70% of the population were
smokers in 1995, what fraction will be smokers in 1998? in 2005? in the long run?

1.21. Three of every four trucks on the road are followed by a car, while only one
of every five cars is followed by a truck. What fraction of vehicles on the road are
trucks?

1.22. In a test paper the questions are arranged so that 3/4’s of the time a True
answer is followed by a True, while 2/3’s of the time a False answer is followed
by a False. You are confronted with a 100 question test paper. Approximately what
fraction of the answers will be True.

1.23. In unprofitable times corporations sometimes suspend dividend payments.
Suppose that after a dividend has been paid the next one will be paid with probability
0.9, while after a dividend is suspended the next one will be suspended with
probability 0.6. In the long run what is the fraction of dividends that will be paid?

1.24. Census results reveal that in the United States 80% of the daughters of
working women work and that 30% of the daughters of nonworking women work.
(a) Write the transition probability for this model. (b) In the long run what fraction
of women will be working?

1.25. When a basketball player makes a shot then he tries a harder shot the next time
and hits (H) with probability 0.4, misses (M) with probability 0.6. When he misses
he is more conservative the next time and hits (H) with probability 0.7, misses (M)
with probability 0.3. (a) Write the transition probability for the two state Markov
chain with state space fH; M g. (b) Find the long-run fraction of time he hits a shot.

1.26. Folk wisdom holds that in Ithaca in the summer it rains 1/3 of the time, but
a rainy day is followed by a second one with probability 1/2. Suppose that Ithaca
weather is a Markov chain. What is its transition probability?

Chains with Three or More States

1.27. (a) Suppose brands A and B have consumer loyalties of 0.7 and 0.8, meaning
that a customer who buys A 1 week will with probability 0.7 buy it again the next
week, or try the other brand with 0.3. What is the limiting market share for each of
these products? (b) Suppose now there is a third brand with loyalty 0.9, and that a
consumer who changes brands picks one of the other two at random. What is the
new limiting market share for these three products?



80 1 Markov Chains

1.28. A midwestern university has three types of health plans: a health maintenance
organization (HMO), a preferred provider organization (PPO), and a traditional
fee for service plan (FFS ). Experience dictates that people change plans according
to the following transition matrix

HMO PPO FFS
HMO 0:85 0:1 0:05

PPO 0:2 0:7 0:1

FFS 0:1 0:3 0:6

In 2000, the percentages for the three plans were HMO :30%, PPO :25%, and
FFS :45%. (a) What will be the percentages for the three plans in 2001? (b) What
is the long run fraction choosing each of the three plans?

1.29. Bob eats lunch at the campus food court every week day. He either eats
Chinese food, Quesadila, or Salad. His transition matrix is

C Q S
C 0:15 0:6 0:25

Q 0:4 0:1 0:5

S 0:1 0:3 0:6

He had Chinese food on Monday. (a) What are the probabilities for his three meal
choices on Friday (4 days later). (b) What are the long run frequencies for his three
choices?

1.30. The liberal town of Ithaca has a “free bikes for the people program.” You can
pick up bikes at the library (L), the coffee shop (C) or the cooperative grocery store
(G). The director of the program has determined that bikes move around according
to the following Markov chain

L C G
L 0:5 0:2 0:3

C 0:4 0:5 0:1

G 0:25 0:25 0:5

On Sunday there are an equal number of bikes at each place. (a) What fraction of
the bikes are at the three locations on Tuesday? (b) on the next Sunday? (c) In the
long run what fraction are at the three locations?

1.31. A plant species has red, pink, or white flowers according to the genotypes RR,
RW, and WW, respectively. If each of these genotypes is crossed with a pink (RW )
plant then the offspring fractions are
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RR RW WW
RR 0:5 0:5 0

RW 0:25 0:5 0:25

WW 0 0:5 0:5

What is the long run fraction of plants of the three types?

1.32. The weather in a certain town is classified as rainy, cloudy, or sunny and
changes according to the following transition probability is

R C S
R 1=2 1=4 1=4

C 1=4 1=2 1=4

S 1=2 1=2 0

In the long run what proportion of days in this town are rainy? cloudy? sunny?

1.33. A sociologist studying living patterns in a certain region determines that the
pattern of movement between urban (U), suburban (S), and rural areas (R) is given
by the following transition matrix.

U S R
U 0:86 0:08 0:06

S 0:05 0:88 0:07

R 0:03 0:05 0:92

In the long run what fraction of the population will live in the three areas?

1.34. In a large metropolitan area, commuters either drive alone (A), carpool (C), or
take public transportation (T). A study showed that transportation changes according
to the following matrix:

A C T
A 0:8 0:15 0:05

C 0:05 0:9 0:05

S 0:05 0:1 0:85

In the long run what fraction of commuters will use the three types of transportation?

1.35. (a) Three telephone companies A; B , and C compete for customers. Each year
customers switch between companies according the following transition probability

A B C
A 0:75 0:05 0:20

B 0:15 0:65 0:20

C 0:05 0:1 0:85

What is the limiting market share for each of these companies?
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1.36. A professor has two light bulbs in his garage. When both are burned out,
they are replaced, and the next day starts with two working light bulbs. Suppose
that when both are working, one of the two will go out with probability 0.02 (each
has probability 0.01 and we ignore the possibility of losing two on the same day).
However, when only one is there, it will burn out with probability 0.05. (i) What is
the long-run fraction of time that there is exactly one bulb working? (ii) What is the
expected time between light bulb replacements?

1.37. An individual has three umbrellas, some at her office, and some at home. If
she is leaving home in the morning (or leaving work at night) and it is raining,
she will take an umbrella, if one is there. Otherwise, she gets wet. Assume that
independent of the past, it rains on each trip with probability 0:2. To formulate a
Markov chain, let Xn be the number of umbrellas at her current location. (a) Find
the transition probability for this Markov chain. (b) Calculate the limiting fraction
of time she gets wet.

1.38. Let Xn be the number of days since David last shaved, calculated at 7:30AM
when he is trying to decide if he wants to shave today. Suppose that Xn is a Markov
chain with transition matrix

1 2 3 4
1 1=2 1=2 0 0

2 2=3 0 1=3 0

3 3=4 0 0 1=4

4 1 0 0 0

In words, if he last shaved k days ago, he will not shave with probability 1/(k+1).
However, when he has not shaved for 4 days his mother orders him to shave, and
he does so with probability 1. (a) What is the long-run fraction of time David
shaves? (b) Does the stationary distribution for this chain satisfy the detailed balance
condition?

1.39. In a particular county voters declare themselves as members of the Repub-
lican, Democrat, or Green party. No voters change directly from the Republican to
Green party or vice versa. Other transitions occur according to the following matrix:

R D G
R 0:85 0:15 0

D 0:05 0:85 0:10

G 0 0:05 0:95

In the long run what fraction of voters will belong to the three parties?
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1.40. An auto insurance company classifies its customers in three categories: poor,
satisfactory and excellent. No one moves from poor to excellent or from excellent
to poor in 1 year.

P S E
P 0:6 0:4 0

S 0:1 0:6 0:3

E 0 0:2 0:8

What is the limiting fraction of drivers in each of these categories?

1.41 (Reflecting random walk on the line). Consider the points 1; 2; 3; 4 to be
marked on a straight line. Let Xn be a Markov chain that moves to the right with
probability 2=3 and to the left with probability 1=3, but subject this time to the rule
that if Xn tries to go to the left from 1 or to the right from 4 it stays put. Find (a) the
transition probability for the chain, and (b) the limiting amount of time the chain
spends at each site.

1.42. At the end of a month, a large retail store classifies each of its customer’s
accounts according to current (0), 30–60 days overdue (1), 60–90 days overdue (2),
more than 90 days (3). Their experience indicates that the accounts move from state
to state according to a Markov chain with transition probability matrix:

0 1 2 3
0 0:9 0:1 0 0

1 0:8 0 0:2 0

2 0:5 0 0 0:5

3 0:1 0 0 0:9

In the long run what fraction of the accounts are in each category?

1.43. At the beginning of each day, a piece of equipment is inspected to determine
its working condition, which is classified as state 1 D new, 2, 3, or 4 D broken. We
assume the state is a Markov chain with the following transition matrix:

1 2 3 4
1 0:95 0:05 0 0

2 0 0:9 0:1 0

3 0 0 0:875 0:125

(a) Suppose that a broken machine requires 3 days to fix. To incorporate this into the
Markov chain we add states 5 and 6 and suppose that p.4; 5/ D 1; p.5; 6/ D 1, and
p.6; 1/ D 1. Find the fraction of time that the machine is working. (b) Suppose now
that we have the option of performing preventative maintenance when the machine
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is in state 3, and that this maintenance takes 1 day and returns the machine to state
1. This changes the transition probability to

1 2 3
1 0:95 0:05 0

2 0 0:9 0:1

3 1 0 0

Find the fraction of time the machine is working under this new policy.

1.44 (Landscape dynamics). To make a crude model of a forest we might intro-
duce states 0 = grass, 1 = bushes, 2 = small trees, 3 = large trees, and write down a
transition matrix like the following:

0 1 2 3
0 1=2 1=2 0 0

1 1=24 7=8 1=12 0

2 1=36 0 8=9 1=12

3 1=8 0 0 7=8

The idea behind this matrix is that if left undisturbed a grassy area will see bushes
grow, then small trees, which of course grow into large trees. However, disturbances
such as tree falls or fires can reset the system to state 0. Find the limiting fraction of
land in each of the states.

More Theoretical Exercises

1.45. Consider a general chain with state space S D f1; 2g and write the transition
probability as

1 2
1 1 � a a

2 b 1 � b

Use the Markov property to show that

P.XnC1 D 1/� b

aC b
D .1� a � b/

�

P.Xn D 1/� b

aC b

	

and then conclude

P.Xn D 1/ D b

aC b
C .1 � a � b/n

�

P.X0 D 1/� b

aC b

	

This shows that if 0 < aC b < 2, then P.Xn D 1/ converges exponentially fast to
its limiting value b=.aC b/.
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1.46 (Bernoulli–Laplace model of diffusion). Consider two urns each of which
contains m balls; b of these 2m balls are black, and the remaining 2m�b are white.
We say that the system is in state i if the first urn contains i black balls and m � i

white balls while the second contains b � i black balls and m � b C i white balls.
Each trial consists of choosing a ball at random from each urn and exchanging the
two. Let Xn be the state of the system after n exchanges have been made. Xn is a
Markov chain. (a) Compute its transition probability. (b) Verify that the stationary
distribution is given by

�.i/ D
 

b

i

! 
2m � b

m � i

!, 
2m

m

!

(c) Can you give a simple intuitive explanation why the formula in (b) gives the
right answer?

1.47 (Library chain). On each request the i th of n possible books is the one chosen
with probability pi . To make it quicker to find the book the next time, the librarian
moves the book to the left end of the shelf. Define the state at any time to be the
sequence of books we see as we examine the shelf from left to right. Since all the
books are distinct this list is a permutation of the set f1; 2; : : : ng, i.e., each number
is listed exactly once. Show that

�.i1; : : : ; in/ D pi1 �
pi2

1 � pi1

� pi3

1 � pi1 � pi2

� � � pin

1 � pi1 � � � �pin�1

is a stationary distribution.

1.48 (Random walk on a clock). Consider the numbers 1; 2; : : : 12 written around
a ring as they usually are on a clock. Consider a Markov chain that at any point
jumps with equal probability to the two adjacent numbers. (a) What is the expected
number of steps that Xn will take to return to its starting position? (b) What is the
probability Xn will visit all the other states before returning to its starting position?

The next three examples continue Example 1.34. Again we represent our
chessboard as f.i; j / W 1 � i; j � 8g. How do you think that the pieces bishop,
knight, king, queen, and rook rank in their answers to (b)?

1.49 (King’s random walk). A king can move one squares horizontally, vertically,
or diagonally. Let Xn be the sequence of squares that results if we pick one of king’s
legal moves at random. Find (a) the stationary distribution and (b) the expected
number of moves to return to corner (1,1) when we start there.

1.50 (Bishop’s random walk). A bishop can move any number of squares diago-
nally. Let Xn be the sequence of squares that results if we pick one of bishop’s legal
moves at random. Find (a) the stationary distribution and (b) the expected number
of moves to return to corner (1,1) when we start there.
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1.51 (Queen’s random walk). A queen can move any number of squares horizon-
tally, vertically, or diagonally. Let Xn be the sequence of squares that results if we
pick one of queen’s legal moves at random. Find (a) the stationary distribution and
(b) the expected number of moves to return to corner (1,1) when we start there.

1.52 (Wright–Fisher model). Consider the chain described in Example 1.7.

p.x; y/ D
 

N

y

!

.�x/y.1� �x/N �y

where �x D .1 � u/x=N C v.N � x/=N . (a) Show that if u; v > 0, then
limn!1 pn.x; y/ D �.y/, where � is the unique stationary distribution. There is
no known formula for �.y/, but you can (b) compute the mean � D P

y y�.y/ D
limn!1 ExXn.

1.53 (Ehrenfest chain). Consider the Ehrenfest chain, Example 1.2, with transition
probability p.i; i C 1/ D .N � i/=N , and p.i; i � 1/ D i=N for 0 � i � N . Let
�n D ExXn. (a) Show that �nC1 D 1C .1 � 2=N /�n. (b) Use this and induction
to conclude that

�n D N

2
C
�

1 � 2

N

�n

.x �N=2/

From this we see that the mean �n converges exponentially rapidly to the equilib-
rium value of N=2 with the error at time n being .1 � 2=N /n.x �N=2/.

1.54. Prove that if pij > 0 for all i and j then a necessary and sufficient condition
for the existence of a reversible stationary distribution is

pij pjkpki D pikpkj pj i for all i; j; k

Hint: fix i and take �j D cpij =pj i .

Exit Distributions and Times

1.55. The Markov chain associated with a manufacturing process may be described
as follows: A part to be manufactured will begin the process by entering step 1.
After step 1, 20% of the parts must be reworked, i.e., returned to step 1, 10% of
the parts are thrown away, and 70% proceed to step 2. After step 2, 5% of the parts
must be returned to the step 1, 10% to step 2, 5% are scrapped, and 80% emerge
to be sold for a profit. (a) Formulate a four-state Markov chain with states 1, 2, 3,
and 4 where 3 D a part that was scrapped and 4 D a part that was sold for a profit.
(b) Compute the probability a part is scrapped in the production process.
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1.56. A bank classifies loans as paid in full (F), in good standing (G), in arrears (A),
or as a bad debt (B). Loans move between the categories according to the following
transition probability:

F G A B
F 1 0 0 0

G 0:1 0:8 0:1 0

A 0:1 0:4 0:4 0:1

B 0 0 0 1

What fraction of loans in good standing are eventually paid in full? What is the
answer for those in arrears?

1.57. A warehouse has a capacity to hold four items. If the warehouse is neither full
nor empty, the number of items in the warehouse changes whenever a new item is
produced or an item is sold. Suppose that (no matter when we look) the probability
that the next event is “a new item is produced” is 2/3 and that the new event is a
“sale” is 1/3. If there is currently one item in the warehouse, what is the probability
that the warehouse will become full before it becomes empty.

1.58. Six children (Dick, Helen, Joni, Mark, Sam, and Tony) play catch. If Dick has
the ball he is equally likely to throw it to Helen, Mark, Sam, and Tony. If Helen has
the ball she is equally likely to throw it to Dick, Joni, Sam, and Tony. If Sam has the
ball he is equally likely to throw it to Dick, Helen, Mark, and Tony. If either Joni or
Tony gets the ball, they keep throwing it to each other. If Mark gets the ball he runs
away with it. (a) Find the transition probability and classify the states of the chain.
(b) Suppose Dick has the ball at the beginning of the game. What is the probability
Mark will end up with it?

1.59. Use the second solution in Example 1.48 to compute the expected waiting
times for the patterns HHH; HHT; HT T , and HTH . Which pattern has the
longest waiting time? Which ones achieve the minimum value of 8?

1.60 (Sucker bet). Consider the following gambling game. Player 1 picks a three
coin pattern (for example HTH ) and player 2 picks another (say THH ). A coin is
flipped repeatedly and outcomes are recorded until one of the two patterns appears.
Somewhat surprisingly player 2 has a considerable advantage in this game. No
matter what player 1 picks, player 2 can win with probability � 2=3. Suppose
without loss of generality that player 1 picks a pattern that begins with H:

case Player 1 Player 2 Prob. 2 wins

1 HHH THH 7/8
2 HHT THH 3/4
3 HTH HHT 2/3
4 HTT HHT 2/3
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Verify the results in the table. You can do this by solving six equations in six
unknowns but this is not the easiest way.

1.61. At the New York State Fair in Syracuse, Larry encounters a carnival game
where for $1 he may buy a single coupon allowing him to play a guessing game. On
each play, Larry has an even chance of winning or losing a coupon. When he runs
out of coupons he loses the game. However, if he can collect three coupons, he wins
a surprise. (a) What is the probability Larry will win the surprise? (b) What is the
expected number of plays he needs to win or lose the game.

1.62. The Megasoft company gives each of its employees the title of programmer
(P) or project manager (M). In any given year 70% of programmers remain in that
position 20% are promoted to project manager and 10% are fired (state X). ninety-
five percent of project managers remain in that position while five percent are fired.
How long on the average does a programmer work before they are fired?

1.63. At a nationwide travel agency, newly hired employees are classified as
beginners (B). Every 6 months the performance of each agent is reviewed. Past
records indicate that transitions through the ranks to intermediate (I) and qualified
(Q) are according to the following Markov chain, where F indicates workers that
were fired:

B I Q F
B 0:45 0:4 0 0:15

I 0 0:6 0:3 0:1

Q 0 0 1 0

F 0 0 0 1

(a) What fraction are eventually promoted? (b) What is the expected time until a
beginner is fired or becomes qualified?

1.64. At a manufacturing plant, employees are classified as trainee (R), technician
(T) or supervisor (S). Writing Q for an employee who quits we model their progress
through the ranks as a Markov chain with transition probability

R T S Q
R 0:2 0:6 0 0:2

T 0 0:55 0:15 0:3

S 0 0 1 0

Q 0 0 0 1

(a) What fraction of recruits eventually make supervisor? (b) What is the expected
time until a trainee auits or becomes supervisor?

1.65. Customers shift between variable rate loans (V), 30 year fixed-rate loans
(30), 15 year fixed-rate loans (15), or enter the states paid in full (P), or foreclosed
according to the following transition matrix:
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V 30 15 P f
V 0:55 0:35 0 0:05 0:05

30 0:15 0:54 0:25 0:05 0:01

15 0:20 0 0:75 0:04 0:01

P 0 0 0 1 0

F 0 0 0 0 1

(a) For each of the three loan types find (a) the expected time until paid or foreclosed.
(b) the probability the loan is paid.

1.66 (Brother–sister mating). In this genetics scheme two individuals (one male
and one female) are retained from each generation and are mated to give the next.
If the individuals involved are diploid and we are interested in a trait with two
alleles, A and a, then each individual has three possible states AA; Aa; aa or more
succinctly 2, 1, 0. If we keep track of the sexes of the two individuals the chain has
nine states, but if we ignore the sex there are just six: 22, 21, 20, 11, 10, and 00. (a)
Assuming that reproduction corresponds to picking one letter at random from each
parent, compute the transition probability. (b) 22 and 00 are absorbing states for the
chain. Show that the probability of absorption in 22 is equal to the fraction of A’s
in the state. (c) Let T D minfn � 0 W Xn D 22 or 00g be the absorption time. Find
ExT for all states x.

1.67. Roll a fair die repeatedly and let Y1; Y2; : : : be the resulting numbers. Let
Xn D jfY1; Y2; : : : ; Yngj be the number of values we have seen in the first n rolls
for n � 1 and set X0 D 0. Xn is a Markov chain. (a) Find its transition probability.
(b) Let T D minfn W Xn D 6g be the number of trials we need to see all 6 numbers
at least once. Find ET .

1.68 (Coupon collector’s problem). We are interested now in the time it takes to
collect a set of N baseball cards. Let Tk be the number of cards we have to buy
before we have k that are distinct. Clearly, T1 D 1. A little more thought reveals
that if each time we get a card chosen at random from all N possibilities, then
for k � 1; TkC1 � Tk has a geometric distribution with success probability .N �
k/=N . Use this to show that the mean time to collect a set of N baseball cards is

N log N , while the variance is 
N 2

P1
kD1 1=k2.

1.69 (Algorithmic efficiency). The simplex method minimizes linear functions
by moving between extreme points of a polyhedral region so that each transition
decreases the objective function. Suppose there are n extreme points and they are
numbered in increasing order of their values. Consider the Markov chain in which
p.1; 1/ D 1 and p.i; j / D 1=i � 1 for j < i . In words, when we leave j we are
equally likely to go to any of the extreme points with better value. (a) Use (1.25) to
show that for i > 1

EiT1 D 1C 1=2C � � � C 1=.i � 1/
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(b) Let Ij D 1 if the chain visits j on the way from n to 1. Show that for j < n

P.Ij D 1jIj C1; : : : In/ D 1=j

to get another proof of the result and conclude that I1; : : : In�1 are independent.

Infinite State Space

1.70 (General birth and death chains). The state space is f0; 1; 2; : : :g and the
transition probability has

p.x; x C 1/ D px

p.x; x � 1/ D qx for x > 0

p.x; x/ D rx for x � 0

while the other p.x; y/ D 0. Let Vy D minfn � 0 W Xn D yg be the time of the
first visit to y and let hN .x/ D Px.VN < V0/. By considering what happens on the
first step, we can write

hN .x/ D pxhN .x C 1/C rxhN .x/C qxhN .x � 1/

Set hN .1/ D cN and solve this equation to conclude that 0 is recurrent if and only
if
P1

yD1

Qy�1
xD1 qx=px D 1 where by convention

Q0
xD1 D 1.

1.71. To see what the conditions in the last problem say we will now consider some
concrete examples. Let px D 1=2; qx D e�cx�˛

=2; rx D 1=2 � qx for x � 1 and
p0 D 1. For large x; qx 
 .1 � cx�˛/=2, but the exponential formulation keeps
the probabilities nonnegative and makes the problem easier to solve. Show that the
chain is recurrent if ˛ > 1 or if ˛ D 1 and c � 1 but is transient otherwise.

1.72. Consider the Markov chain with state space f0; 1; 2; : : :g and transition
probability

p.m; mC 1/ D 1

2

�

1 � 1

mC 2

�

for m � 0

p.m; m � 1/ D 1

2

�

1C 1

mC 2

�

for m � 1

and p.0; 0/ D 1 � p.0; 1/ D 3=4. Find the stationary distribution � .

1.73. Consider the Markov chain with state space f1; 2; : : :g and transition
probability
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p.m; mC 1/ D m=.2mC 2/ for m � 1

p.m; m� 1/ D 1=2 for m � 2

p.m; m/ D 1=.2mC 2/ for m � 2

and p.1; 1/ D 1 � p.1; 2/ D 3=4. Show that there is no stationary distribution.

1.74. Consider the aging chain on f0; 1; 2; : : :g in which for any n � 0 the
individual gets 1 day older from n to nC1 with probability pn but dies and returns to
age 0 with probability 1 � pn. Find conditions that guarantee that (a) 0 is recurrent,
(b) positive recurrent. (c) Find the stationary distribution.

1.75. The opposite of the aging chain is the renewal chain with state space
f0; 1; 2; : : :g in which p.i; i � 1/ D 1 when i > 0. The only nontrivial part of
the transition probability is p.0; i/ D pi . Show that this chain is always recurrent
but is positive recurrent if and only if

P
n npn <1.

1.76. Consider a branching process as defined in Example 1.8, in which each family
has exactly three children, but invert Galton and Watson’s original motivation and
ignore male children. In this model a mother will have an average of 1.5 daughters.
Compute the probability that a given woman’s descendents will die out.

1.77. Consider a branching process as defined in Example 1.8, in which each family
has a number of children that follows a shifted geometric distribution: pk D p.1 �
p/k for k � 0, which counts the number of failures before the first success when
success has probability p. Compute the probability that starting from one individual
the chain will be absorbed at 0.



Chapter 2
Poisson Processes

2.1 Exponential Distribution

To prepare for our discussion of the Poisson process, we need to recall the
definition and some of the basic properties of the exponential distribution. A random
variable T is said to have an exponential distribution with rate �, or T D
exponential(�), if

P.T � t/ D 1 � e��t for all t � 0 (2.1)

Here we have described the distribution by giving the distribution function F.t/ D
P.T � t/. We can also write the definition in terms of the density function fT .t/

which is the derivative of the distribution function.

fT .t/ D
(

�e��t for t � 0

0 for t < 0
(2.2)

Integrating by parts with f .t/ D t and g0.t/ D �e��t ,

ET D
Z

t fT .t/ dt D
Z 1

0

t � �e��t dt

D �te��t
ˇ
ˇ1
0
C
Z 1

0

e��t dt D 1=� (2.3)

Integrating by parts with f .t/ D t2 and g0.t/ D �e��t , we see that

ET 2 D
Z

t2 fT .t/ dt D
Z 1

0

t2 � �e��t dt

D �t2e��t
ˇ
ˇ1
0
C
Z 1

0

2te��t dt D 2=�2 (2.4)

R. Durrett, Essentials of Stochastic Processes, Springer Texts in Statistics,
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by the formula for ET . So the variance

var .T / D ET 2 � .ET /2 D 1=�2 (2.5)

While calculus is required to know the exact values of the mean and variance, it is
easy to see how they depend on �. Let T D exponential.�/, i.e., have an exponential
distribution with rate �, and let S D exponential.1/. To see that S=� has the same
distribution as T , we use (2.1) to conclude

P.S=� � t/ D P.S � �t/ D 1 � e��t D P.T � t/

Recalling that if c is any number then E.cX/ D cEX and var .cX/ D c2 var .X/,
we see that

ET D ES=� var .T / D var .S/=�2

Lack of memory property. It is traditional to formulate this property in terms of
waiting for an unreliable bus driver. In words, “if we’ve been waiting for t units of
time then the probability we must wait s more units of time is the same as if we
haven’t waited at all.” In symbols

P.T > t C sjT > t/ D P.T > s/ (2.6)

To prove this we recall that if B � A, then P.BjA/ D P.B/=P.A/, so

P.T > t C sjT > t/ D P.T > t C s/

P.T > t/
D e��.tCs/

e��t
D e��s D P.T > s/

where in the third step we have used the fact eaCb D eaeb .

Exponential races. Let S D exponential(�) and T D exponential(�) be indepen-
dent. In order for the minimum of S and T to be larger than t , each of S and T must
be larger than t . Using this and independence we have

P.min.S; T / > t/ D P.S > t; T > t/ D P.S > t/P.T > t/

D e��t e��t D e�.�C�/t (2.7)

That is, min.S; T / has an exponential distribution with rate � C �. The last
calculation extends easily to a sequence of independent random variables T1; : : : ; Tn

where Ti D exponential(�i).

P.min.T1; : : : ; Tn/ > t/ D P.T1 > t; : : : Tn > t/

D
nY

iD1

P.Ti > t/ D
nY

iD1

e��i t D e�.�1C���C�n/t (2.8)

That is, the minimum, min.T1; : : : ; Tn/, of several independent exponentials has an
exponential distribution with rate equal to the sum of the rates �1 C � � ��n.
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In the last paragraph we have computed the duration of a race between
exponentially distributed random variables. We will now consider: “Who finishes
first?” Going back to the case of two random variables, we break things down
according to the value of S and then using independence with our formulas (2.1)
and (2.2) for the distribution and density functions, to conclude

P.S < T / D
Z 1

0

fS .s/P.T > s/ ds

D
Z 1

0

�e��se��s ds

D �

�C �

Z 1

0

.�C �/e�.�C�/s ds D �

�C �
(2.9)

where on the last line we have used the fact that .�C�/e�.�C�/s is a density function
and hence must integrate to 1.

From the calculation for two random variables, you should be able to guess that
if T1; : : : ; Tn are independent exponentials, then

P.Ti D min.T1; : : : ; Tn// D �i

�1 C � � � C �n

(2.10)

That is, the probability of i finishing first is proportional to its rate.

Proof. Let S D Ti and U be the minimum of Tj ; j ¤ i . (2.8) implies that U is
exponential with parameter

� D .�1 C � � � C �n/� �i

so using the result for two random variables

P.Ti D min.T1; : : : ; Tn// D P.S < U / D �i

�i C �
D �i

�1 C � � � C �n

proves the desired result. ut
Let I be the (random) index of the Ti that is smallest. In symbols,

P.I D i/ D �i

�1 C � � � C �n

You might think that the Ti ’s with larger rates might be more likely to win early.
However,

I and V D minfT1; : : : Tng are independent: (2.11)
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Proof. Let fi;V .t/ be the density function for V on the set I D i . In order for i to
be first at time t; Ti D t and the other Tj > t so

fi;V .t/ D �i e
��i t �

Y

j ¤i

e��j t

D �i

�1 C � � � C �n

� .�1 C � � � C �n/e�.�1C�C�n/t

D P.I D i/ � fV .t/

since V has an exponential(�1C � � � C �n) distribution. ut
Our final fact in this section concerns sums of exponentials.

Theorem 2.1. Let 
1; 
2; : : : be independent exponential(�). The sum Tn D 
1 C
� � �C
n has a gamma.n; �/ distribution. That is, the density function of Tn is given by

fTn.t/ D �e��t � .�t/n�1

.n � 1/Š
for t � 0 (2.12)

and 0 otherwise.

Proof. The proof is by induction on n. When n D 1; T1 has an exponential(�)
distribution. Recalling that the 0th power of any positive number is 1, and by
convention we set 0! = 1, the formula reduces to

fT1 .t/ D �e��t

and we have shown that our formula is correct for n D 1.
To do the induction step, suppose that the formula is true for n. The sum TnC1 D

Tn C 
nC1, so breaking things down according to the value of Tn, and using the
independence of Tn and tnC1, we have

fTnC1
.t/ D

Z t

0

fTn .s/ftnC1
.t � s/ ds

Plugging the formula from (2.12) in for the first term and the exponential density in
for the second and using the fact that eaeb D eaCb with a D ��s and b D ��.t�s/

gives

Z t

0

�e��s .�s/n�1

.n � 1/Š
� �e��.t�s/ ds D e��t �n

Z t

0

sn�1

.n � 1/Š
ds

D �e��t �ntn

nŠ

which completes the proof. ut



2.2 Defining the Poisson Process 97

2.2 Defining the Poisson Process

In this section we will give two definitions of the Poisson process with rate �.
The first, which will be our official definition, is nice because it allows us to
construct the process easily.

Definition. Let 
1; 
2; : : : be independent exponential(�) random variables.
Let Tn D 
1 C � � � C 
n for n � 1; T0 D 0, and define N.s/ D maxfn W Tn � sg.

We think of the 
n as times between arrivals of customers at a bank, so Tn D

1 C � � � C 
n is the arrival time of the nth customer, and N.s/ is the number of
arrivals by time s. To check the last interpretation, consider the following example:
and note that N.s/ D 4 when T4 � s < T5, that is, the fourth customer has arrived
by time s but the fifth has not.

Recall that X has a Poisson distribution with mean �, or X D Poisson(�), for
short, if

P.X D n/ D e�� �n

nŠ
for n D 0; 1; 2; : : :

To explain why N.s/ is called the Poisson process rather than the exponential
process, we will compute the distribution of N.s/.

Lemma 2.2. N.s/ has a Poisson distribution with mean �s.

Proof. Now N.s/ D n if and only if Tn � s < TnC1; i.e., the nth customer arrives
before time s but the .nC 1/th after s. Breaking things down according to the value
of Tn D t and noting that for TnC1 > s, we must have 
nC1 > s � t , and 
nC1 is
independent of Tn, it follows that

P.N.s/ D n/ D
Z s

0

fTn.t/P.tnC1 > s � t/ dt

Plugging in (2.12) now, the last expression is

D
Z s

0

�e��t .�t/n�1

.n � 1/Š
� e��.s�t / dt

D �n

.n � 1/Š
e��s

Z s

0

tn�1 dt D e��s .�s/n

nŠ

which proves the desired result. ut
Since this is our first mention of the Poisson distribution, we pause to derive some

of its properties.

Theorem 2.3. For any k � 1

EX.X � 1/ � � � .X � k C 1/ D �k (2.13)

and hence var .X/ D �
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Proof. X.X � 1/ � � � .X � k C 1/ D 0 if X � k � 1 so

EX.X � 1/ � � � .X � k C 1/ D
1X

j Dk

e�� �j

j Š
j.j � 1/ � � � .j � k C 1/

D �k

1X

j Dk

e�� �j �k

.j � k/Š
D �k

since the sum gives the total mass of the Poisson distribution. Using var .X/ D
E.X.X � 1//C EX � .EX/2 we conclude

var .X/ D �2 C � � .�/2 D �

ut
Theorem 2.4. If Xi are independent Poissson.�i / then

X1 C � � � CXk D Poisson.�1 C � � � C �n/:

Proof. It suffices to prove the result for k D 2, for then the general result follows
by induction.

P.X1 CX2 D n/ D
nX

mD0

P.X1 D m/P.X2 D n �m/

D
nX

mD0

e��1
.�1/

m

mŠ
� e��2

.�2/
n�m

.n �m/Š

Knowing the answer we want, we can rewrite the last expression as

e�.�1C�2/ .�1 C �2/
n

nŠ
�

nX

mD0

 
n

m

!�
�1

�1 C �2

�m �
�2

�1 C �2

�n�m

The sum is 1, since it is the sum of all the probabilities for a binomial(n; p)
distribution with p D �1=.�1C�2/. The term outside the sum is the desired Poisson
probability, so have proved the desired result. ut

The property of the Poisson process in Lemma 2.2 is the first part of our second
definition. To start to develop the second part we prove a Markov property:

Lemma 2.5. N.t C s/ � N.s/; t � 0 is a rate � Poisson process and independent
of N.r/; 0 � r � s.
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× × × × ×
0 T1 T2 T3 T4 s T5

τ1 τ2 τ3 τ4
τ5Fig. 2.1 Poisson process

definitions

Why is this true? Suppose for concreteness (and so that we can use Fig. 2.1 at
the beginning of this section again) that by time s there have been four arrivals
T1; T2; T3; T4 that occurred at times t1; t2; t3; t4. We know that the waiting time for
the fifth arrival must have 
5 > s � t4, but by the lack of memory property of the
exponential distribution (2.6)

P.
5 > s � t4 C t j
5 > s � t4/ D P.
5 > t/ D e��t

This shows that the distribution of the first arrival after s is exponential(�)
and independent of T1; T2; T3; T4. It is clear that 
6; 
7; : : : are independent of
T1; T2; T3; T4, and 
5. This shows that the interarrival times after s are independent
exponential(�), and hence that N.t C s/ �N.s/; t � 0 is a Poisson process.

From Lemma 2.5 we get easily the following:

Lemma 2.6. N.t/ has independent increments: if t0 < t1 < : : : < tn, then

N.t1/ �N.t0/; N.t2/�N.t1/; : : : N.tn/�N.tn�1/ are independent

Why is this true? Lemma 2.5 implies that N.tn/ � N.tn�1/ is independent of
N.r/; r � tn�1 and hence of N.tn�1/ � N.tn�2/; : : : N.t1/ � N.t0/. The desired
result now follows by induction.

We are now ready for our second definition. It is in terms of the process fN.s/ W
s � 0g that counts the number of arrivals in Œ0; s�.

Theorem 2.7. If fN.s/; s � 0g is a Poisson process, then

(i) N.0/ D 0,
(ii) N.t C s/ �N.s/ D Poisson(�t), and

(iii) N.t/ has independent increments.

Conversely, if (i), (ii), and (iii) hold, then fN.s/; s � 0g is a Poisson process.

Why is this true? Lemmas 2.2 and 2.6 prove (ii) and (iii). To start to prove the
converse, let Tn be the time of the nth arrival. The first arrival occurs after time t

if and only if there were no arrivals in Œ0; t �. So using the formula for the Poisson
distribution

P.
1 > t/ D P.N.t/ D 0/ D e��t

This shows that 
1 D T1 is exponential(�). For 
2 D T2 � T1 we note that

P.
2 > t j
1 D s/ D P. no arrival in .s; s C t � j
1 D s/

D P.N.t C s/ �N.s/ D 0jN.r/ D 0 for r < s; N.s/ D 1/

D P.N.t C s/ �N.s/ D 0/ D e��t
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by the independent increments property in (iii), so 
2 is exponential(�) and
independent of 
1. Repeating this argument we see that 
1; 
2; : : : are independent
exponential(�). ut

Up to this point we have been concerned with the mechanics of defining the
Poisson process, so the reader may be wondering:

Why is the poisson process important for applications? Our answer is based on
the Poisson approximation to the binomial. Suppose that each of the n students on
Duke campus flips coins with probability �=n of heads to decide if they will go to
the Great Hall (food court) between 12:17 and 12:18 . The probability that exactly
k students will go during the 1-min time interval is given by the binomial(n; �=n)
distribution

n.n � 1/ � � � .n � k C 1/

kŠ

�
�

n

�k �

1 � �

n

�n�k

(2.14)

Theorem 2.8. If n is large the binomial.n; �=n/ distribution is approximately
Poisson(�).

Proof. Exchanging the numerators of the first two fractions and breaking the last
term into two, (2.14) becomes

�k

kŠ
� n.n � 1/ � � � .n � k C 1/

nk
�
�

1 � �

n

�n �

1 � �

n

��k

(2.15)

Considering the four terms separately, we have

(i) �k=kŠ does not depend on n.
(ii) There are k terms on the top and k terms on the bottom, so we can write this

fraction as
n

n
� n � 1

n
� � � n � k C 1

n

For any j we have .n � j /=n ! 1 as n ! 1, so the second term converges
to 1 as n!1.

(iii) Skipping to the last term in (2.15), �=n! 0, so 1� �=n! 1. The power �k

is fixed so
�

1 � �

n

��k

! 1�k D 1

(iv) We broke off the last piece to make it easier to invoke one of the famous facts
of calculus:

.1 � �=n/n ! e�� as n!1:

If you haven’t seen this before, recall that

log.1 � x/ D �x C x2=2C : : :

so we have n log.1 � �=n/ D ��C �2=nC : : :! � as n!1.
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Combining (i)–(iv), we see that (2.15) converges to

�k

kŠ
� 1 � e�� � 1

which is the Poisson distribution with mean �. ut
By extending the last argument we can also see why the number of individuals

that arrive in two disjoint time intervals should be independent. Using the multino-
mial instead of the binomial, we see that the probability j people will go between
12:17 and 12:18 and k people will go between 12:31 and 12:33 is

nŠ

j ŠkŠ.n � j � k/Š

�
�

n

�j �
2�

n

�k �

1 � 3�

n

�n�.j Ck/

Rearranging gives

.�/j

j Š
� .2�/k

kŠ
� n.n � 1/ � � � .n � j � k C 1/

nj Ck
�
�

1 � 3�

n

�n�.j Ck/

Reasoning as before shows that when n is large, this is approximately

.�/j

j Š
� .2�/k

kŠ
� 1 � e�3�

Writing e�� D e��=3e�2�=3 and rearranging we can write the last expression as

e�� �j

j Š
� e�2� .2�/k

kŠ

This shows that the number of arrivals in the two time intervals we chose are
independent Poissons with means � and 2�.

The last proof can be easily generalized to show that if we divide the hour
between 12:00 and 1:00 into any number of intervals, then the arrivals are
independent Poissons with the right means. However, the argument gets very messy
to write down.

More realistic models. Two of the weaknesses of the derivation above are:

(i) All students are assumed to have exactly the same probability of going to the
Great Hall.

(ii) The probability of going in a given time interval is a constant multiple of the
length of the interval, so the arrival rate of customers is constant during the
hour. In reality there is a large influx of people between 11:30 and 11:45 soon
after the end of 10:10–11:25 classes.
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(i) is a very strong assumption but can be weakened by using a more general
Poisson approximation result like the following:

Theorem 2.9. Let Xn;m; 1 � m � n be independent random variables with
P.Xm D 1/ D pm and P.Xm D 0/ D 1 � pm. Let

Sn D X1 C � � � CXn; �n D ESn D p1 C � � � C pn;

and Zn D Poisson.�n/. Then for any set A

jP.Sn 2 A/ � P.Zn 2 A/j �
nX

mD1

p2
m

Why is this true? If X and Y are integer valued random variables then for any
set A

jP.X 2 A/ � P.Y 2 A/j � 1

2

X

n

jP.X D n/ � P.Y D n/j

The right-hand side is called the total variation distance between the two distri-
butions and is denoted kX � Y k. If P.X D 1/ D p; P.X D 0/ D 1 � p, and
Y D Poisson.p/ then

X

n

jP.X D n/� P.Y D n/j D j.1 � p/ � e�pj C jp � pe�pj C 1 � .1C p/e�p

Since 1 � e�p � 1 � p the right-hand side is

e�p � 1C p C p � pe�p C 1 � e�p � pe�p D 2p.1 � e�p � 2p2

Let Ym D Poisson.pm/ be independent. At this point we have shown kXi�Yik �
p2

i . With a little work one can show

k.X1 C � � � CXn/� .Y1 C � � � C Yn/k

k.X1; � � � ; Xn/� .Y1; � � � ; Yn/k �
nX

mD1

kXm � Ymk

and the desired result follows.

Theorem 2.9 is useful because it gives a bound on the difference between the
distribution of Sn and the Poisson distribution with mean �n D ESn. To bound the
bound it is useful to note that

nX

mD1

p2
m � max

k
pk

 
nX

mD1

pm

!
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so the approximation is good if maxk pk is small. This is similar to the usual
heuristic for the normal distribution: the sum is due to small contributions from a
large number of variables. However, here small means that it is nonzero with small
probability. When a contribution is made it is equal to 1.

The last results handles problem (i). To address the problem of varying arrival
rates mentioned in (ii), we generalize the definition.

Nonhomogeneous Poisson processes. We say that fN.s/; s � 0g is a Poisson
process with rate �.r/ if

(i) N.0/ D 0,
(ii) N.t/ has independent increments, and

(iii) N.t/ �N.s/ is Poisson with mean
R t

s �.r/ dr .

The first definition does not work well in this setting since the interarrival times

1; 
2; : : : are no longer exponentially distributed or independent. To demonstrate
the first claim, we note that

P.
1 > t/ D P.N.t/ D 0/ D e� R t
0 �.s/ ds

since N.t/ is Poisson with mean �.t/ D R t

0
�.s/ ds. Differentiating gives the

density function

P.
1 D t/ D � d

dt
P.t1 > t/ D �.t/e� R t

0 �.s/ ds D �.t/e��.t/

Generalizing the last computation shows that the joint distribution

fT1;T2 .u; v/ D �.u/e��.u/ � �.v/e�.�.v/��.u//

Changing variables, s D u; t D v � u, the joint density

f
1;
2 .s; t/ D �.s/e��.s/ � �.s C t/e�.�.sCt /��.s//

so 
1 and 
2 are not independent when �.s/ is not constant.

2.3 Compound Poisson Processes

In this section we will embellish our Poisson process by associating an independent
and identically distributed (i.i.d.) random variable Yi with each arrival. By indepen-
dent we mean that the Yi are independent of each other and of the Poisson process
of arrivals. To explain why we have chosen these assumptions, we begin with two
examples for motivation.
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Example 2.1. Consider the McDonald’s restaurant on Route 13 in the southern part
of Ithaca. By arguments in the last section, it is not unreasonable to assume that
between 12:00 and 1:00 cars arrive according to a Poisson process with rate �. Let Yi

be the number of people in the i th vehicle. There might be some correlation between
the number of people in the car and the arrival time, e.g., more families come to eat
there at night, but for a first approximation it seems reasonable to assume that the
Yi are i.i.d. and independent of the Poisson process of arrival times.

Example 2.2. Messages arrive at a central computer to be transmitted across the
Internet. If we imagine a large number of users working at terminals connected to
a central computer, then the arrival times of messages can be modeled by a Poisson
process. If we let Yi be the size of the i th message, then again it is reasonable to
assume Y1; Y2; : : : are i.i.d. and independent of the Poisson process of arrival times.

Having introduced the Yi ’s, it is natural to consider the sum of the Yi ’s we have
seen up to time t :

S.t/ D Y1 C � � � C YN.t/

where we set S.t/ D 0 if N.t/ D 0. In Example 2.1, S.t/ gives the number of
customers that have arrived up to time t . In Example 2.2, S.t/ represents the total
number of bytes in all of the messages up to time t . In each case it is interesting to
know the mean and variance of S.t/.

Theorem 2.10. Let Y1; Y2; : : : be independent and identically distributed, let N be
an independent nonnegative integer valued random variable, and let S D Y1C� � �C
YN with S D 0 when N D 0.

(i) If EjYi j; EN <1, then ES D EN �EYi .
(ii) If EY 2

i ; EN 2 <1, then var .S/ D EN var .Yi /C var .N /.EYi/
2.

(iii) If N is Poisson(�), then var .S/ D �EY 2
i .

Why is this reasonable? The first of these is natural since if N D n is nonrandom
ES D nEYi . (i) then results by setting n D EN . The formula in (ii) is more
complicated but it clearly has two of the necessary properties:

If N D n is nonrandom, var .S/ D n var .Yi /.
If Yi D c is nonrandom var .S/ D c2 var .N /.

Combining these two observations, we see that EN var .Yi / is the contribution to
the variance from the variability of the Yi , while var .N /.EYi/

2 is the contribution
from the variability of N .

Proof. When N D n; S D X1 C � � � CXn has ES D nEYi . Breaking things down
according to the value of N ,

ES D
1X

nD0

E.S jN D n/ � P.N D n/
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D
1X

nD0

nEYi � P.N D n/ D EN �EYi

For the second formula we note that when N D n; S D X1C� � �CXn has var .S/ D
n var .Yi / and hence,

E.S2jN D n/ D n var .Yi /C .nEYi /
2

Computing as before we get

ES2 D
1X

nD0

E.S2jN D n/ � P.N D n/

D
1X

nD0

˚
n � var .Yi /C n2.EYi/

2
� � P.N D n/

D .EN / � var .Yi /CEN 2 � .EYi/
2

To compute the variance now, we observe that

var .S/ D ES2 � .ES/2

D .EN / � var .Yi /C EN 2 � .EYi/
2 � .EN �EYi/

2

D .EN / � var .Yi /C var .N / � .EYi/
2

where in the last step we have used var .N / D EN 2�.EN /2 to combine the second
and third terms.

For part (iii), we note that in the special case of the Poisson, we have EN D �

and var .N / D �, so the result follows from var .Yi /C .EYi/
2 D EY 2

i . ut
For a concrete example of the use of Theorem 2.10 consider

Example 2.3. Suppose that the number of customers at a liquor store in a day has a
Poisson distribution with mean 81 and that each customer spends an average of $8
with a standard deviation of $6. It follows from (i) in Theorem 2.10 that the mean
revenue for the day is 81 � $8 D $648. Using (iii), we see that the variance of the
total revenue is

81 � ˚.$6/2 C .$8/2
� D 8;100

Taking square roots we see that the standard deviation of the revenue is $90
compared with a mean of $648.
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2.4 Transformations

2.4.1 Thinning

In the previous section, we added up the Yi ’s associated with the arrivals in our
Poisson process to see how many customers, etc., we had accumulated by time t . In
this section we will use the Yi to split one Poisson process into several. Let Nj .t/

be the number of i � N.t/ with Yi D j . In Example 2.1, where Yi is the number
of people in the i th car, Nj .t/ will be the number of cars that have arrived by time
t with exactly j people. The somewhat remarkable fact is:

Theorem 2.11. Nj .t/ are independent Poisson processes with rate �P.Yi D j /.

Why is this remarkable? There are two “surprises” here: the resulting processes
are Poisson and they are independent. To drive the point home consider a Poisson
process with rate 10 per hour, and then flip coins to determine whether the arriving
customers are male or female. One might think that seeing 40 men arrive in 1 h
would be indicative of a large volume of business and hence a larger than normal
number of women, but Theorem 2.11 tells us that the number of men and the number
of women that arrive per hour are independent.

Proof. To begin we suppose that P.Yi D 1/ D p and P.Yi D 2/ D 1 � p, so
there are only two Poisson processes to consider: N1.t/ and N2.t/. We will check
the second definition given in Theorem 2.7. It should be clear that the independent
increments property of the Poisson process implies that the pairs of increments

.N1.ti / �N1.ti�1/; N2.ti / �N2.ti�1//; 1 � i � n

are independent of each other. Since N1.0/ D N2.0/ D 0 by definition, it only
remains to check that the components Xi D Ni .t C s/�Ni .s/ are independent and
have the right Poisson distributions. To do this, we note that if X1 D j and X2 D k,
then there must have been j C k arrivals between s and s C t; j of which were
assigned 1’s and k of which were assigned 2’s, so

P.X1 D j; X2 D k/ D e��t .�t/j Ck

.j C k/Š
� .j C k/Š

j ŠkŠ
pj .1 � p/k

D e��pt .�pt/j

j Š
e��.1�p/t .�.1 � p/t/k

kŠ
(2.16)

so X1 D Poisson.�pt/ and X2 D Poisson.�.1 � p/t/. For the general case, we use
the multinomial to conclude that if pj D P.Yi D j / for 1 � j � m then
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P.X1 D k1; : : : Xm D km/

D e��t .�t/k1C���km

.k1 C � � �km/Š

.k1 C � � �km/Š

k1Š � � �kmŠ
p

k1

1 � � �pkm
m D

mY

j D1

e��pj t .�pj /kj

kj Š

which proves the desired result. ut
The thinning results generalizes easily to the nonhomogeneous case:

Theorem 2.12. Suppose that in a Poisson process with rate �, we keep a point
that lands at s with probability p.s/. Then the result is a nonhomogeneous Poisson
process with rate �p.s/.

For an application of this consider

Example 2.4 (M/G/1 queue). In modeling telephone traffic, we can, as a first
approximation, suppose that the number of phone lines is infinite, i.e., everyone who
tries to make a call finds a free line. This certainly is not always true but analyzing
a model in which we pretend this is true can help us to discover how many phone
lines we need to be able to provide service 99.99% of the time.

The argument for arrivals at the Great Hall implies that the beginnings of calls
follow a Poisson process. As for the calls themselves, while many people on the
telephone show a lack of memory, there is no reason to suppose that the duration
of a call has an exponential distribution. So we use a general distribution function
G with G.0/ D 0 and mean �. Suppose that the system starts empty at time 0.
The probability a call started at s has ended by time t is G.t � s/, so using
Theorem 2.12 the number of calls still in progress at time t is Poisson with mean

Z t

sD0

�.1 �G.t � s// ds D �

Z t

rD0

.1 �G.r// dr

Letting t ! 1 and using (A.22) we see that in the long run the number of calls in
the system will be Poisson with mean

�

Z 1

rD0

.1 �G.r// dr D ��

That is, the mean number in the system is the rate at which calls enter times their
average duration. In the argument above we supposed that the system starts empty.
Since the number of initial calls still in the system at time t decreases to 0 as t !1,
the limiting result is true for any initial number of calls X0.

2.4.2 Superposition

Taking one Poisson process and splitting it into two or more by using an i.i.d.
sequence Yi is called thinning. Going in the other direction and adding up a lot
of independent processes is called superposition. Since a Poisson process can be
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split into independent Poisson processes, it should not be too surprising that when
the independent Poisson processes are put together, the sum is Poisson with a rate
equal to the sum of the rates.

Theorem 2.13. Suppose N1.t/; : : : Nk.t/ are independent Poisson processes with
rates �1; : : : ; �k , then N1.t/C� � �CNk.t/ is a Poisson process with rate �1C� � �C�k .

Proof. Again we consider only the case k D 2 and check the second definition given
in Theorem 2.7. It is clear that the sum has independent increments and N1.0/ C
N2.0/ D 0. The fact that the increments have the right Poisson distribution follows
from Theorem 2.4. ut

We will see in the next chapter that the ideas of compounding and thinning are
very useful in computer simulations of continuous time Markov chains. For the
moment we will illustrate their use in computing the outcome of races between
Poisson processes.

Example 2.5 (A Poisson race). Given a Poisson process of red arrivals with rate
� and an independent Poisson process of green arrivals with rate �, what is the
probability that we will get six red arrivals before a total of four green ones?

Solution. The first step is to note that the event in question is equivalent to having
at least six red arrivals in the first 9. If this happens, then we have at most three
green arrivals before the sixth red one. On the other hand if there are five or fewer
red arrivals in the first 9, then we have had at least four red arrivals and at most
five green.

Viewing the red and green Poisson processes as being constructed by start-
ing with one rate � C � Poisson process and flipping coins with probability
p D �=.�C �/ to decide the color, we see that the probability of interest is

9X

kD6

 
9

k

!

pk.1 � p/9�k

If we suppose for simplicity that � D � so p D 1=2, this expression becomes

1

512
�

9X

kD6

 
9

k

!

D 1C 9C .9 � 8/=2C .9 � 8 � 7/=3Š

512
D 140

512
D 0:273

2.4.3 Conditioning

Let T1; T2; T3; : : : be the arrival times of a Poisson process with rate �, let
U1; U2; : : : Un be independent and uniformly distributed on Œ0; t �, and let V1 < : : : Vn

be the Ui rearranged into increasing order . This section is devoted to the proof of
the following remarkable fact.
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Theorem 2.14. If we condition on N.t/ D n, then the vector .T1; T2; : : : Tn/

has the same distribution as .V1; V2; : : : Vn/ and hence the set of arrival times
fT1; T2; : : : ; Tng has the same distribution as fU1; U2; : : : ; Ung.
Why is this true? We begin by finding the joint density function of .T1; T2; T3/

given that there were three arrivals before time t . The probability is 0 unless 0 <

v1 < v2 < v3 < t . To compute the answer in this case, we note that P.N.t/ D 4/ D
e��t .�t/3=3Š, and in order to have T1 D t1; T2 D t2; T3 D t3; N.t/ D 4 we must
have 
1 D t1; 
2 D t2 � t1; 
3 D t3 � t2, and 
 > t � t3, so the desired conditional
distribution is:

D �e��t1 � �e��.t2�t1/ � �e��.t3�t2/ � e��.t�t3/

e��t .�t/3=3Š

D �3e��t

e��t .�t/3=3Š
D 3Š

t3

Note that the answer does not depend on the values of v1; v2; v3 (as long as 0 <

v1 < v2 < v3 < t), so the resulting conditional distribution is uniform over

f.v1; v2; v3/ W 0 < v1 < v2 < v3 < tg

This set has volume t3=3Š since f.v1; v2; v3/ W 0 < v1; v2; v3 < tg has volume t3 and
v1 < v2 < v3 is 1 of 3Š possible orderings.

Generalizing from the concrete example it is easy to see that the joint density
function of .T1; T2; : : : Tn/ given that there were n arrivals before time t is nŠ=tn for
all times 0 < t1 < : : : < tn < t , which is the joint distribution of .V1; : : : ; Vn/.
The second fact follows easily from this, since there are nŠ sets fT1; T2; : : : Tng or
fU1; U2; : : : Ung for each ordered vector .T1; T2; : : : Tn/ or .V1; V2; : : : ; Vn/.

Theorem 2.14 implies that if we condition on having n arrivals at time t , then the
locations of the arrivals are the same as the location of n points thrown uniformly
on Œ0; t �. From the last observation we immediately get:

Theorem 2.15. If s < t and 0 � m � n, then

P.N.s/ D mjN.t/ D n/ D
 

n

m

!
� s

t

�m �
1 � s

t

�n�m

That is, the conditional distribution of N.s/ given N.t/ D n is binomial(n; s=t).

Proof. The number of arrivals by time s is the same as the number of Ui < s.
The events fUi < sg these events are independent and have probability s=t , so the
number of Ui < s will be binomial(n; s=t). ut
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2.5 Chapter Summary

A random variable T is said to have an exponential distribution with rate �, or
T D exponential(�), if P.T � t/ D 1 � e��t for all t � 0. The mean is 1=�,
variance 1=�2. The density function is fT .t/ D �e��t . The sum of n independent
exponentials has the gamma(n; �) density

�e��t .�t/n�1

.n � 1/Š

Lack of memory property. “if we’ve been waiting for t units of time then the
probability we must wait s more units of time is the same as if we haven’t waited
at all.”

P.T > t C sjT > t/ D P.T > s/

Exponential races. Let T1; : : : ; Tn are independent, Ti D exponential(�i), and
S D min.T1; : : : ; Tn/. Then S D exponential(�1C � � � C �n)

P.Ti D min.T1; : : : ; Tn// D �i

�1 C � � � C �n

maxfS; T g D S C T �minfS; T g so taking expected value if S D exponential.�/

and T D exponential.�/ then

E maxfS; T g D 1

�
C 1

�
� 1

�C �

D 1

�C �
C �

�C �
� 1

�
C �

�C �
� 1

�

Poisson(�) distribution. P.X D n/ D e���n=nŠ. The mean and variance of X

are �.

Poisson process. Let t1; t2; : : : be independent exponential(�) random variables.
Let Tn D t1 C : : :C tn be the time of the nth arrival. Let N.t/ D maxfn W Tn � tg
be the number of arrivals by time t , which is Poisson(�t). N.t/ has independent
increments: if t0 < t1 < : : : < tn, then N.t1/ � N.t0/; N.t2/ � N.t1/; : : : N.tn/ �
N.tn�1/ are independent.

Thinning. Suppose we embellish our Poisson process by associating to each arrival
an independent and identically distributed (i.i.d.) positive integer random variable
Yi . If we let pk D P.Yi D k/ and let Nk.t/ be the number of i � N.t/ with Yi D k

then N1.t/; N2.t/; : : : are independent Poisson processes and Nk.t/ has rate �pk .

Random sums. Let Y1; Y2; : : : be i.i.d., let N be an independent nonnegative
integer valued random variable, and let S D Y1 C � � � C YN with S D 0 when
N D 0.
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(i) If EjYi j; EN <1, then ES D EN �EYi .
(ii) If EY 2

i ; EN 2 <1, then var .S/ D EN var .Yi /C var .N /.EYi/
2.

(iii) If N is Poisson(�) var .S/ D �E.Y 2
i /

Superposition. If N1.t/ and N2.t/ are independent Poison processes with rates �1

and �2 then N1.t/CN2.t/ is Poisson rate �1 C �2.

Conditioning. Let T1; T2; T3; : : : be the arrival times of a Poisson process with rate
�, and let U1; U2; : : : Un be independent and uniformly distributed on Œ0; t �. If we
condition on N.t/ D n, then the set fT1; T2; : : : Tng has the same distribution as
fU1; U2; : : : ; Ung.

2.6 Exercises

Exponential Distribution

2.1. Suppose that the time to repair a machine is exponentially distributed random
variable with mean 2. (a) What is the probability the repair takes more than 2 h.
(b) What is the probability that the repair takes more than 5 h given that it takes
more than 3 h.

2.2. The lifetime of a radio is exponentially distributed with mean 5 years. If Ted
buys a 7 year-old radio, what is the probability it will be working 3 years later?

2.3. A doctor has appointments at 9 and 9:30. The amount of time each appointment
lasts is exponential with mean 30. What is the expected amount of time after 9:30
until the second patient has completed his appointment?

2.4. Copy machine 1 is in use now. Machine 2 will be turned on at time t . Suppose
that the machines fail at rate �i . What is the probability that machine 2 is the first
to fail?

2.5. Three people are fishing and each catches fish at rate 2 per hour. How long do
we have to wait until everyone has caught at least one fish?

2.6. Alice and Betty enter a beauty parlor simultaneously, Alice to get a manicure
and Betty to get a haircut. Suppose the time for a manicure (haircut) is exponentially
distributed with mean 20 (30) min. (a) What is the probability Alice gets done first?
(b) What is the expected amount of time until Alice and Betty are both done?

2.7. Let S and T be exponentially distributed with rates � and �. Let U D
minfS; T g and V D maxfS; T g. Find (a) EU . (b) E.V � U /, (c) EV . (d) Use
the identity V D S C T � U to get a different looking formula for EV and verify
the two are equal.

2.8. Let S and T be exponentially distributed with rates � and �. Let U D
minfS; T g; V D maxfS; T g, and W D V � U . Find the variances of U; V , and W .
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2.9. In a hardware store you must first go to server 1 to get your goods and then
go to a server 2 to pay for them. Suppose that the times for the two activities are
exponentially distributed with means 6 and 3 min. (a) Compute the average amount
of time it take Bob to get his goods and pay if when he comes in there is one
customer named Al with server 1 and no one at server 2. (b) Find the answer when
times for the two activities are exponentially distributed with rates � and �.

2.10. Consider a bank with two tellers. Three people, Alice, Betty, and Carol enter
the bank at almost the same time and in that order. Alice and Betty go directly into
service while Carol waits for the first available teller. Suppose that the service times
for each customer are exponentially distributed with mean 4 min. (a) What is the
expected total amount of time for Carol to complete her businesses? (b) What is
the expected total time until the last of the three customers leaves? (c) What is the
probability Carol is the last one to leave?

2.11. Consider the set-up of the previous problem but now suppose that the two
tellers have exponential service times with rates � � �. Again, answer questions
(a), (b), and (c).

2.12. A flashlight needs two batteries to be operational. You start with four batteries
numbered 1–4. Whenever a battery fails it is replaced by the lowest-numbered
working battery. Suppose that battery life is exponential with mean 100 h. Let T

be the time at which there is one working battery left and N be the number of the
one battery that is still good. (a) Find ET . (b) Find the distribution of N . (c) Solve
(a) and (b) for a general number of batteries.

2.13. A machine has two critically important parts and is subject to three different
types of shocks. Shocks of type i occur at times of a Poisson process with rate �i .
Shocks of types 1 break part 1, those of type 2 break part 2, while those of type
3 break both parts. Let U and V be the failure times of the two parts. (a) Find
P.U > s; V > t/. (b) Find the distribution of U and the distribution of V . (c) Are
U and V independent?

2.14. A submarine has three navigational devices but can remain at sea if at least
two are working. Suppose that the failure times are exponential with means 1,1.5,
and 3 years. What is the average length of time the boat can remain at sea.

2.15. Excited by the recent warm weather Jill and Kelly are doing spring cleaning
at their apartment. Jill takes an exponentially distributed amount of time with mean
30 min to clean the kitchen. Kelly takes an exponentially distributed amount of time
with mean 40 min to clean the bath room. The first one to complete their task will go
outside and start raking leaves, a task that takes an exponentially distributed amount
of time with a mean of 1 h. When the second person is done inside, they will help
the other and raking will be done at rate 2. (Of course the other person may already
be done raking in which case the chores are done.) What is the expected time until
the chores are all done?



2.6 Exercises 113

2.16. Ron, Sue, and Ted arrive at the beginning of a professor’s office hours. The
amount of time they will stay is exponentially distributed with means of 1, 1/2, and
1/3 h. (a) What is the expected time until only one student remains? (b) For each
student find the probability they are the last student left. (c) What is the expected
time until all three students are gone?

2.17. Let Ti ; i D 1; 2; 3 be independent exponentials with rate �i . (a) Show that for
any numbers t1; t2; t3

maxft1; t2; t3g D t1 C t2 C t3 �minft1; t2g �minft1; t3g
�minft2; t3g Cminft1; t2; t3g

(b) Use (a) to find E maxfT1; T2; T3g. (c) Use the formula to give a simple solution
of part (c) of Exercise 2.16.

Poisson Approximation to Binomial

2.18. Compare the Poisson approximation with the exact binomial probabilities of
1 success when n D 20; p D 0:1.

2.19. Compare the Poisson approximation with the exact binomial probabilities of
no success when (a) n D 10; p D 0:1, (b) n D 50; p D 0:02.

2.20. The probability of a three of a kind in poker is approximately 1/50. Use the
Poisson approximation to estimate the probability you will get at least one three of
a kind if you play 20 hands of poker.

2.21. Suppose 1% of a certain brand of Christmas lights is defective. Use the
Poisson approximation to compute the probability that in a box of 25 there will
be at most one defective bulb.

Poisson Processes: Basic Properties

2.22. Suppose N.t/ is a Poisson process with rate 3. Let Tn denote the time of the
nth arrival. Find (a) E.T12/, (b) E.T12jN.2/ D 5/, (c) E.N.5/jN.2/ D 5/.

2.23. Customers arrive at a shipping office at times of a Poisson process with rate 3
per hour. (a) The office was supposed to open at 8 AM but the clerk Oscar overslept
and came in at 10 AM. What is the probability that no customers came in the 2-h
period? (b) What is the distribution of the amount of time Oscar has to wait until his
first customer arrives?

2.24. Suppose that the number of calls per hour to an answering service follows a
Poisson process with rate 4. (a) What is the probability that fewer (i.e., <) than two
calls came in the first hour? (b) Suppose that six calls arrive in the first hour, what
is the probability there will be <2 in the second hour. (c) Suppose that the operator
gets to take a break after she has answered ten calls. How long are her average work
periods?
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2.25. Traffic on Rosedale Road in Princeton, NJ, follows a Poisson process with
rate 6 cars per minute. A deer runs out of the woods and tries to cross the road.
If there is a car passing in the next 5 s then there will be a collision. (a) Find the
probability of a collision. (b) What is the chance of a collision if the deer only needs
2 s to cross the road.

2.26. Calls to the Dryden fire department arrive according to a Poisson process
with rate 0.5 per hour. Suppose that the time required to respond to a call, return
to the station, and get ready to respond to the next call is uniformly distributed
between 1/2 and 1 h. If a new call comes before the Dryden fire department is ready
to respond, the Ithaca fire department is asked to respond. Suppose that the Dryden
fire department is ready to respond now. Find the probability distribution for the
number of calls they will handle before they have to ask for help from the Ithaca fire
department.

2.27. A math professor waits at the bus stop at the Mittag-Leffler Institute in the
suburbs of Stockholm, Sweden. Since he has forgotten to find out about the bus
schedule, his waiting time until the next bus is uniform on (0,1). Cars drive by the
bus stop at rate 6 per hour. Each will take him into town with probability 1/3. What
is the probability he will end up riding the bus?

2.28. The number of hours between successive trains is T which is uniformly
distributed between 1 and 2. Passengers arrive at the station according to a Poisson
process with rate 24 per hour. Let X denote the number of people who get on a train.
Find (a) EX , (b) var .X/.

2.29. Consider a Poisson process with rate � and let L be the time of the last arrival
in the interval Œ0; t �, with L D 0 if there was no arrival. (a) Compute E.t � L/

(b) What happens when we let t !1 in the answer to (a)?

2.30. Customers arrive according to a Poisson process of rate � per hour. Joe does
not want to stay until the store closes at T D 10 PM, so he decides to close up when
the first customer after time T � s arrives. He wants to leave early but he does not
want to lose any business so he is happy if he leaves before T and no one arrives
after. (a) What is the probability he achieves his goal? (b) What is the optimal value
of s and the corresponding success probability?

2.31. Customers arrive at a sporting goods store at rate 10 per hour. Sixty percent
of the customers are men and forty percent are women. Women spend an amount
of time shopping that is uniformly distributed on Œ0; 30� min, while men spend an
exponentially distributed amount of time with mean 30 min. Let M and N be the
number of men and women in the store. What is the distribution of .M; N / in
equilibrium.

2.32. Let T be exponentially distributed with rate �. (a) Use the definition of
conditional expectation to compute E.T jT < c/. (b) Determine E.T jT < c/ from
the identity

ET D P.T < c/E.T jT < c/C P.T > c/E.T jT > c/
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2.33 (When did the chicken cross the road?). Suppose that traffic on a road
follows a Poisson process with rate � cars per minute. A chicken needs a gap of
length at least c minutes in the traffic to cross the road. To compute the time the
chicken will have to wait to cross the road, let t1; t2; t3; : : : be the interarrival times
for the cars and let J D minfj W tj > cg. If Tn D t1 C � � � C tn, then the chicken
will start to cross the road at time TJ �1 and complete his journey at time TJ �1 C c.
Use the previous exercise to show E.TJ �1 C c/ D .e�c � 1/=�.

Random Sums

2.34. Edwin catches trout at times of a Poisson process with rate 3 per hour.
Suppose that the trout weigh an average of 4 pounds with a standard deviation of 2
pounds. Find the mean and standard deviation of the total weight of fish he catches
in 2 h.

2.35. An insurance company pays out claims at times of a Poisson process with
rate 4 per week. Writing K as shorthand for “thousands of dollars,” suppose that the
mean payment is 10 K and the standard deviation is 6 K. Find the mean and standard
deviation of the total payments for 4 weeks.

2.36. Customers arrive at an automated teller machine at the times of a Poisson
process with rate of 10 per hour. Suppose that the amount of money withdrawn on
each transaction has a mean of $30 and a standard deviation of $20. Find the mean
and standard deviation of the total withdrawals in 8 h.

2.37. As a community service members of the Mu Alpha Theta fraternity are going
to pick up cans from along a roadway. A Poisson mean 60 members show up for
work. Two-third of the workers are enthusiastic and will pick up a mean of ten
cans with a standard deviation of 5. One-third of the workers are lazy and will only
pick up an average of three cans with a standard deviation of 2. Find the mean and
standard deviation of the the number of cans collected.

2.38. Let St be the price of stock at time t and suppose that at times of a Poisson
process with rate � the price is multiplied by a random variable Xi > 0 with mean
� and variance 
2. That is,

St D S0

N.t/Y

iD1

Xi

where the product is 1 if N.t/ D 0. Find ES.t/ and var S.t/.

2.39. Messages arrive to be transmitted across the internet at times of a Poisson
process with rate �. Let Yi be the size of the i th message, measured in bytes, and let
g.z/ D EzYi be the generating function of Yi . Let N.t/ be the number of arrivals at
time t and S D Y1C�CYN.t/ be the total size of the messages up to time t . (a) Find
the generating function f .z/ D E.zS /. (b) Differentiate and set z D 1 to find ES .
(c) Differentiate again and set z D 1 to find EfS.S � 1/g. (d) Compute var .S/.
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2.40. Let fN.t/; t � 0g be a Poisson process with rate �. Let T � 0 be an
independent with mean � and variance 
2. Find cov .T; NT /.

2.41. Let t1; t2; : : : be independent exponential(�) random variables and let N be an
independent random variable with P.N D n/ D .1�p/n�1. What is the distribution
of the random sum T D t1 C � � � C tN ?

Thinning and Conditioning

2.42. Traffic on Snyder Hill Road in Ithaca, NY, follows a Poisson process with rate
2/3’s of a vehicle per minute. Ten percent of the vehicles are trucks, the other 90%
are cars. (a) What is the probability at least one truck passes in a hour? (b) Given
that ten trucks have passed by in an hour, what is the expected number of vehicles
that have passed by. (c) Given that 50 vehicles have passed by in a hour, what is the
probability there were exactly 5 trucks and 45 cars.

2.43. Rock concert tickets are sold at a ticket counter. Females and males arrive at
times of independent Poisson processes with rates 30 and 20 customers per hour.
(a) What is the probability the first three customers are female? (b) If exactly two
customers arrived in the first 5 min, what is the probability both arrived in the first
3 min. (c) Suppose that customers regardless of sex buy one ticket with probability
1/2, two tickets with probability 2/5, and three tickets with probability 1/10. Let
Ni be the number of customers that buy i tickets in the first hour. Find the joint
distribution of .N1; N2; N3/.

2.44. Ellen catches fish at times of a Poisson process with rate 2 per hour. Forty
percent of the fish are salmon, while 60% of the fish are trout. What is the probability
she will catch exactly one salmon and two trout if she fishes for 2.5 h?

2.45. Signals are transmitted according to a Poisson process with rate �. Each
signal is successfully transmitted with probability p and lost with probability 1�p.
The fates of different signals are independent. For t � 0 let N1.t/ be the number of
signals successfully transmitted and let N2.t/ be the number that are lost up to time
t . (a) Find the distribution of .N1.t/; N2.t//. (b) What is the distribution of L D the
number of signals lost before the first one is successfully transmitted?

2.46. A policewoman on the evening shift writes a Poisson mean six number of
tickets per hour. Two-third’s of these are for speeding and cost $100. One-third’s of
these are for DWI and cost $400. (a) Find the mean and standard deviation for the
total revenue from the tickets she writes in an hour. (b) What is the probability that
between 2 and 3 AM she writes five tickets for speeding and one for DWI. (c) Let A

be the event that she writes no tickets between 1 and 1:30 AM, and N be the number
of tickets she writes between 1 and 2 AM. Which is larger P.A/ or P.AjN D 5/?
Don’t just answer yes or no, compute both probabilities.

2.47. Trucks and cars on highway US 421 are Poisson processes with rate 40 and
100 per hour respectively. One-eight of the trucks and one-tenth of the cars get
off on exit 257 to go to the Bojangle’s in Yadkinville. (a) Find the probability that
exactly six trucks arrive at Bojangle’s between noon and 1 PM. (b) Given that there
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were six truck arrivals at Bojangle’s between noon and 1 PM, what is the probability
that exactly two arrived between 12:20 and 12:40? (c) Suppose that all trucks have
one passenger while 30% of the cars have one passenger, 50% have two, and 20%
have four. Find the mean and standard deviation of the number of customers are that
arrive at Bojangles’ in 1 h.

2.48. When a power surge occurs on an electrical line, it can damage a computer
without a surge protector. There are three types of surges: “small” surges occur at
rate 8 per day and damage a computer with probability 0.001; “medium” surges
occur at rate 1 per day and will damage a computer with probability 0.01; “large”
surges occur at rate 1 per month and damage a computer with probability 0.1.
Assume that months are 30 days. (a) what is the expected number of power surges
per month? (b) What is the expected number of computer damaging power surges
per month? (c) What is the probability a computer will not be damaged in 1 month?
(d) What is the probability that the first computer damaging surge is a small one?

2.49. Wayne Gretsky scored a Poisson mean six number of points per game. sixty
percent of these were goals and forty percent were assists (each is worth one point).
Suppose he is paid a bonus of 3 K for a goal and 1 K for an assist. (a) Find the
mean and standard deviation for the total revenue he earns per game. (b) What is the
probability that he has four goals and two assists in one game? (c) Conditional on
the fact that he had six points in a game, what is the probability he had four in the
first half?

2.50. A copy editor reads a 200-page manuscript, finding 108 typos. Suppose that
the author’s typos follow a Poisson process with some unknown rate � per page,
while from long experience we know that the copyeditor finds 90% of the mistakes
that are there. (a) Compute the expected number of typos found as a function of the
arrival rate �. (b) Use the answer to (a) to find an estimate of � and of the number
of undiscovered typos.

2.51. Two copy editors read a 300-page manuscript. The first found 100 typos, the
second found 120, and their lists contain 80 errors in common. Suppose that the
author’s typos follow a Poisson process with some unknown rate � per page, while
the two copy editors catch errors with unknown probabilities of success p1 and p2.
Let X0 be the number of typos that neither found. Let X1 and X2 be the number of
typos found only by 1 or only by 2, and let X3 be the number of typos found by
both. (a) Find the joint distribution of .X0; X1; X2; X3/. (b) Use the answer to (a) to
find an estimates of p1; p2 and then of the number of undiscovered typos.

2.52. A light bulb has a lifetime that is exponential with a mean of 200 days. When
it burns out a janitor replaces it immediately. In addition there is a handyman who
comes at times of a Poisson process at rate 0.01 and replaces the bulb as “preventive
maintenance.” (a) How often is the bulb replaced? (b) In the long run what fraction
of the replacements are due to failure?

2.53. Starting at some fixed time, which we will call 0 for convenience, satellites
are launched at times of a Poisson process with rate �. After an independent amount
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of time having distribution function F and mean �, the satellite stops working.
Let X.t/ be the number of working satellites at time t . (a) Find the distribution of
X.t/. (b) Let t !1 in (a) to show that the limiting distribution is Poisson(��).

2.54. Calls originate from Dryden according to a rate 12 Poisson process.
Three-fourth are local and one-fourth are long distance. Local calls last an average
of 10 min, while long distance calls last an average of 5 min. Let M be the number
of local calls and N the number of long distance calls in equilibrium. Find the
distribution of .M; N /. what is the number of people on the line.

2.55. Ignoring the fact that the bar exam is only given twice a year, let us suppose
that new lawyers arrive in Los Angeles according to a Poisson process with mean
300 per year. Suppose that each lawyer independently practices for an amount of
time T with a distribution function F.t/ D P.T � t/ that has F.0/ D 0 and mean
25 years. Show that in the long run the number of lawyers in Los Angeles is Poisson
with mean 7,500.

2.56. Policy holders of an insurance company have accidents at times of a Poisson
process with rate �. The distribution of the time R until a claim is reported is random
with P.R � r/ D G.r/ and ER D �. (a) Find the distribution of the number of
unreported claims. (b) Suppose each claim has mean � and variance 
2. Find the
mean and variance of S the total size of the unreported claims.

2.57. Suppose N.t/ is a Poisson process with rate 2. Compute the conditional
probabilities (a) P.N.3/ D 4jN.1/ D 1/, (b) P.N.1/ D 1jN.3/ D 4/.

2.58. For a Poisson process N.t/ with arrival rate 2 compute: (a) P.N.2/ D 5/,
(b) P.N.5/ D 8jN.2/ D 3, (c) P.N.2/ D 3jN.5/ D 8/.

2.59. Customers arrive at a bank according to a Poisson process with rate 10 per
hour. Given that two customers arrived in the first 5 min, what is the probability that
(a) both arrived in the first 2 min. (b) at least one arrived in the first 2 min.

2.60. Suppose that the number of calls per hour to an answering service follows a
Poisson process with rate 4. Suppose that 3/4’s of the calls are made by men, 1/4 by
women, and the sex of the caller is independent of the time of the call. (a) What is
the probability that in 1 h exactly two men and three women will call the answering
service? (b) What is the probability three men will make phone calls before three
women do?

2.61. Hockey teams 1 and 2 score goals at times of Poisson processes with rates
1 and 2. Suppose that N1.0/ D 3 and N2.0/ D 1. (a) What is the probability that
N1.t/ will reach 5 before N2.t/ does? (b) Answer part (a) for Poisson processes
with rates �1 and �2.

2.62. Consider two independent Poisson processes N1.t/ and N2.t/ with rates �1

and �2. What is the probability that the two-dimensional process .N1.t/; N2.t// ever
visits the point .i; j /?



Chapter 3
Renewal Processes

3.1 Laws of Large Numbers

In the Poisson process the times between successive arrivals are independent
and exponentially distributed. The lack of memory property of the exponential
distribution is crucial for many of the special properties of the Poisson process
derived in this chapter. However, in many situations the assumption of exponential
interarrival times is not justified. In this section we will consider a generalization of
Poisson processes called renewal processes in which the times t1; t2; : : : between
events are independent and have distribution F .

In order to have a simple metaphor with which to discuss renewal processes, we
will think of a single light bulb maintained by a very diligent janitor, who replaces
the light bulb immediately after it burns out. Let ti be the lifetime of the i th light
bulb. We assume that the light bulbs are bought from one manufacturer, so we
suppose

P.ti � t/ D F.t/

where F is a distribution function with F.0/ D P.ti � 0/ D 0.
If we start with a new bulb (numbered 1) at time 0 and each light bulb is replaced

when it burns out, then Tn D t1C � � �C tn gives the time that the nth bulb burns out,
and

N.t/ D maxfn W Tn � tg
is the number of light bulbs that have been replaced by time t . The picture is the
same as the one for the Poisson process, see Fig. 2.1.

If renewal theory were only about changing light bulbs, it would not be a very
useful subject. The reason for our interest in this system is that it captures the
essence of a number of different situations. On example that we have already seen is

Example 3.1 (Markov chains). Let Xn be a Markov chain and suppose that X0 D x.
Let Tn be the nth time that the process returns to x. The strong Markov property
implies that tn D Tn � Tn�1 are independent, so Tn is a renewal process.

R. Durrett, Essentials of Stochastic Processes, Springer Texts in Statistics,
DOI 10.1007/978-1-4614-3615-7 3, © Springer Science+Business Media, LLC 2012
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Example 3.2 (Machine repair). Instead of a light bulb, think of a machine that
works for an amount of time si before it fails, requiring an amount of time ui to
be repaired. Let ti D si C ui be the length of the i th cycle of breakdown and repair.
If we assume that the repair leaves the machine in a “like new” condition, then the
ti are independent and identically distributed (i.i.d.) and a renewal process results.

Example 3.3 (Counter processes). The following situation arises, for example, in
medical imaging applications. Particles arrive at a counter at times of a Poisson
process with rate �. Each arriving particle that finds the counter free gets registered
and locks the counter for an amount of time 
 . Particles arriving during the locked
period have no effect. If we assume the counter starts in the unlocked state, then
the times Tn at which it becomes unlocked for the nth time form a renewal process.
This is a special case of the previous example: ui D 
; si D exponential with rate �.

In addition there will be several applications to queueing theory.
The first important result about renewal processes is the following law of large

numbers:

Theorem 3.1. Let � D Eti be mean interarrival time. If P.ti > 0/ > 0 then with
probability one,

N.t/=t ! 1=� as t !1
In words, this says that if our light bulb lasts � years on the average then in t years
we will use up about t=� light bulbs. Since the interarrival times in a Poisson process
are exponential with mean 1=� Theorem 3.1 implies that if N.t/ is the number of
arrivals up to time t in a Poisson process, then

N.t/=t ! � as t !1 (3.1)

Proof of Theorem 3.1. We use the

Theorem 3.2 (Strong law of large numbers). Let x1; x2; x3; : : : be i.i.d. with
Exi D �, and let Sn D x1 C � � � C xn. Then with probability one,

Sn=n! � as n!1

Taking xi D ti , we have Sn D Tn, so Theorem 3.2 implies that with probability one,
Tn=n! � as n!1. Now by definition,

TN.t/ � t < TN.t/C1

Dividing by N.t/, we have

TN.t/

N.t/
� t

N.t/
� TN.t/C1

N.t/C 1
� N.t/C 1

N.t/

By the strong law of large numbers, the left- and right-hand sides converge to �.
From this it follows that t=N.t/! � and hence N.t/=t ! 1=�.
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Our next topic is a simple extension of the notion of a renewal process that greatly
extends the class of possible applications. We suppose that at the time of the i th
renewal we earn a reward ri . The reward ri may depend on the i th interarrival time
ti , but we will assume that the pairs .ri ; ti /; i D 1; 2; : : : are independent and have
the same distribution. Let

R.t/ D
N.t/X

iD1

ri

be the total amount of rewards earned by time t . The main result about renewal
reward processes is the following strong law of large numbers.

Theorem 3.3. With probability one,

R.t/

t
! Eri

Eti
(3.2)

Proof. Multiplying and dividing by N.t/, we have

R.t/

t
D
0

@ 1

N.t/

N.t/X

iD1

ri

1

A N.t/

t
! Eri � 1

Eti

where in the last step we have used Theorem 3.1 and applied the strong law of
large numbers to the sequence ri . Here and in what follows we are ignoring rewards
earned in the interval ŒTN.t/; t �. These do not effect the limit but proving this is not
trivial. ut

Intuitively, (3.2) can be written as

reward/time D expected reward/cycle

expected time/cycle

an equation that can be “proved” by pretending the words on the right-hand side are
numbers and then canceling the “expected” and “1/cycle” that appear in numerator
and denominator. The last calculation is not given to convince you that Theorem 3.3
is correct but to help you remember the result. A second approach to this is that
if we earn a reward of � dollar every 
 units of time then in the long run we earn
�=
 dollars per unit time. To get from this to the answer given in (3.3), note that the
answer there only depends on the means Eri and Eti , so the general answer must be

�=
 D Eri=Eti

This device can be applied to remember many of the results in this chapter: when
the answer only depends on the mean the limit must be the same as in the case when
the times are not random.
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To illustrate the use of Theorem 3.3 we consider

Example 3.4 (Long run car costs). Suppose that the lifetime of a car is a random
variable with density function h. Our methodical Mr. Brown buys a new car as soon
as the old one breaks down or reaches T years. Suppose that a new car costs A

dollars and that an additional cost of B dollars to repair the vehicle is incurred if it
breaks down before time T . What is the long-run cost per unit time of Mr. Brown’s
policy?

Solution. The duration of the i th cycle, ti , has

Eti D
Z T

0

th.t/ dtC T

Z 1

T

h.t/ dt

since the length of the cycle will be ti if the car’s life is ti < T , but T if the car’s
life ti � T . The reward (or cost) of the i th cycle has

Eri D AC B

Z T

0

h.t/ dt

since Mr. Brown always has to pay A dollars for a new car but only owes the
additional B dollars if the car breaks down before time T . Using Theorem 3.3 we
see that the long run cost per unit time is

Eri

Eti
D AC B

R T

0
h.t/ dt

R T

0
th.t/ dtC R1

T
T h.t/ dt

Concrete example. Suppose that the lifetime of Mr. Brown’s car is uniformly
distributed on Œ0; 10�. This is probably not a reasonable assumption, since when cars
get older they have a greater tendency to break. However, having confessed to this
weakness, we will proceed with this assumption since it makes calculations easier.
Suppose that the cost of a new car is A D 10 (1,000 dollars), while the breakdown
cost is B D 3 (1,000 dollars). If Mr. Brown replaces his car after T years then the
expected values of interest are

Eri D 10C 3
T

10
D 10C 0:3T

Eti D
Z T

0

t

10
dtC T

�

1 � T

10

�

D T 2

20
C T � T 2

10
D T � 0:05T 2

Combining the expressions for the Eri and Eti we see that the long-run cost per
unit time is

Eri

Eti
D 10C 0:3T

T � 0:05T 2
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To maximize we take the derivative

d

dT

Eri

Eti
D 0:3.T � 0:05T 2/ � .10C 0:3T /.1 � 0:1T /

.T � 0:1T 2/2

D 0:3T � 0:015T 2 � 10� 0:3T C T C 0:03T 2

.T � 0:1T 2/2

The numerator is 0:015T 2 C T � 10 which is 0 when

T D �1˙p1C 4.0:015/.10/

2.0:015/
D �1˙p1:6

0:03

We want the C root which is T D 8:83.
Using the idea of renewal reward processes, we can easily treat the following

extension of renewal processes.

Example 3.5 Alternating renewal processes. Let s1; s2; : : : be independent with a
distribution F that has mean �F , and let u1; u2; : : : be independent with distribution
G that has mean �G . For a concrete example consider the machine in Example 1.1
that works for an amount of time si before needing a repair that takes ui units
of time. However, to talk about things in general we will say that the alternating
renewal process spends an amount of time si in state 1, an amount of time ui in state
2, and then repeats the cycle again.

Theorem 3.4. In an alternating renewal process, the limiting fraction of time in
state 1 is

�F

�F C �G

To see that this is reasonable and to help remember the formula, consider the
nonrandom case. If the machine always works for exactly �F days and then needs
repair for exactly �G days, then the limiting fraction of time spent working is
�F =.�F C �G/.

Proof. In order to compute the limiting fraction of time the machine is working
we let ti D si C ui be the duration of the i th cycle, and let the reward ri D si ,
the amount of time the machine was working during the i th cycle. In this case,
Theorem 3.3 implies that

R.t/

t
! Eri

Eti
D �F

�F C �G

which gives the desired result. ut
For a concrete example of alternating renewal processes, consider

Example 3.5 (Poisson janitor). A light bulb burns for an amount of time having
distribution F with mean �F then burns out. A janitor comes at times of a rate �
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Poisson process to check the bulb and will replace the bulb if it is burnt out. (a) At
what rate are bulbs replaced? (b) What is the limiting fraction of time that the light
bulb works? (c) What is the limiting fraction of visits on which the bulb is working?

Solution. Suppose that a new bulb is put in at time 0. It will last for an amount
of time s1. Using the lack of memory property of the exponential distribution, it
follows that the amount of time until the next inspection, u1, will have an exponential
distribution with rate �. The bulb is then replaced and the cycle starts again, so we
have an alternating renewal process.

To answer (a), we note that the expected length of a cycle Eti D �F C 1=�, so
if N.t/ is the number of bulbs replaced by time t , then it follows from Theorem 3.1
that

N.t/

t
! 1

�F C 1=�

In words, bulbs are replaced on the average every �F C 1=� units of time.
To answer (b), we let ri D si , so Theorem 3.4 implies that in the long run, the

fraction of time the bulb has been working up to time t is

Eri

Eti
D �F

�F C 1=�

To answer (c), we note that if V.t/ is the number of visits the janitor has made
by time t , then by the law of large numbers for the Poisson process we have

V.t/

t
! �

Combining this with the result of (a), we see that the fraction of visits on which
bulbs are replaced

N.t/

V .t/
! 1=.�F C 1=�/

�
D 1=�

�F C 1=�

This answer is reasonable since it is also the limiting fraction of time the bulb is off.

3.2 Applications to Queueing Theory

In this section we will use the ideas of renewal theory to prove results for queueing
systems with general service times. In the first part of this section we will consider
general arrival times. In the second we will specialize to Poisson arrivals.
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3.2.1 GI/G/1 Queue

Here the GI stands for general input. That is, we suppose that the times ti between
successive arrivals are independent and have a distribution F with mean 1=�. We
make this somewhat unusual choice of notation for mean so that if N.t/ is the
number of arrivals by time t , then Theorem 3.1 implies that the long-run arrival
rate is

lim
t!1

N.t/

t
D 1

Eti
D �

The second G stands for general service times. That is, we assume that the i th
customer requires an amount of service si , where the si are independent and have
a distribution G with mean 1=�. Again, the notation for the mean is chosen so that
the service rate is �. The final 1 indicates there is one server. Our first result states
that the queue is stable if the arrival rate is smaller than the long-run service rate.

Theorem 3.5. Suppose � < �. If the queue starts with some finite number
k � 1 customers who need service, then it will empty out with probability one.
Furthermore, the limiting fraction of time the server is busy is � �=�.

Proof. Let Tn D t1 C � � � C tn be the time of the nth arrival. The strong law of large
numbers, Theorem 3.2 implies that

Tn

n
! 1

�

Let Z0 be the sum of the service times of the customers in the system at time 0 and
let si be the service time of the i th customer to arrive after time 0. The strong law
of large numbers implies

Z0 C Sn

n
! 1

�

The amount of time the server has been busy up to time Tn is � Z0C Sn. Using the
two results

Z0 C Sn

Tn

! �

�

The actual time spent working in Œ0; Tn� is Z0CSn�Zn where Zn is the amount of
work in the system at time Tn, i.e., the amount of time needed to empty the system
if there were no more arrivals. To argue that equality holds we need to show that
Zn=n! 0. Intuitively, the condition � < � implies the queue reaches equilibrium,
so EZn stays bounded, and hence Zn=n! 0. The details of completing this proof
are too complicated to give here. However, in Example 3.6 we will give a simple
proof of this. ut
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3.2.2 Cost Equations

In this subsection we will prove some general results about the GI/G/1 queue that
come from very simple arguments. Let Xs be the number of customers in the system
at time s. Let L be the long-run average number of customers in the system:

L D lim
t!1

1

t

Z t

0

Xs ds

Let W be the long-run average amount of time a customer spends in the system:

W D lim
n!1

1

n

nX

mD1

Wm

where Wm is the amount of time the mth arriving customer spends in the system.
Finally, let �a be the long-run average rate at which arriving customers join the
system, that is,

�a D lim
t!1 Na.t/=t

where Na.t/ is the number of customers who arrive before time t and enter the
system. Ignoring the problem of proving the existence of these limits, we can assert
that these quantities are related by

Theorem 3.6 (Little’s formula). L D �aW .

Why is this true? Suppose each customer pays $1 for each minute of time she is in
the system. When ` customers are in the system, we are earning $` per minute, so in
the long run we earn an average of $L per minute. On the other hand, if we imagine
that customers pay for their entire waiting time when they arrive then we earn at rate
�aW per minute, i.e., the rate at which customers enter the system multiplied by the
average amount they pay.

Example 3.6 (Waiting time in the queue). Consider the GI=G=1 queue and suppose
that we are only interested in the customer’s average waiting time in the queue, WQ.
If we know the average waiting time W in the system, this can be computed by
simply subtracting out the amount of time the customer spends in service

WQ D W � Esi (3.3)

For instance, in the previous example, subtracting off the 0:333 h that his haircut
takes we see that the customer’s average time waiting in the queue WQ D 0:246 h
or 14:76 min.

Let LQ be the average queue length in equilibrium; i.e., we do not count the
customer in service if there is one. If suppose that customers pay $1 per minute in
the queue and repeat the derivation of Little’s formula, then

LQ D �aWQ (3.4)



3.2 Applications to Queueing Theory 127

The length of the queue is 1 less than the number in the system, except when the
number in the system is 0, so if �.0/ is the probability of no customers, then

LQ D L � 1C �.0/

Combining the last three equations with our first cost equation:

�.0/ D LQ � .L� 1/ D 1C �a.WQ �W / D 1 � �aEsi (3.5)

Recalling that Esi D 1=�, we have a simple proof that the inequality in Theorem 3.5
is sharp.

3.2.3 M/G/1 Queue

Here the M stands for Markovian input and indicates we are considering the special
case of the GI=G=1 queue in which the inputs are a rate � Poisson process. The
rest of the set-up is as before: there is a one server and the i th customer requires an
amount of service si , where the si are independent and have a distribution G with
mean 1=�.

When the input process is Poisson, the system has special properties that allow
us to go further. We learned in Theorem 3.5 that if � < � then a GI=G=1 queue
will repeatedly return to the empty state. Thus the server experiences alternating
busy periods with duration Bn and idle periods with duration In. In the case of
Markovian inputs, the lack of memory property implies that In has an exponential
distribution with rate �. Combining this observation with our result for alternating
renewal processes we see that the limiting fraction of time the server is idle is

1=�

1=�C EBn

D �.0/

by (3.5). Rearranging, we have

EBn D 1

�

�
1

�.0/
� 1

�

(3.6)

Note that this is � not �a. For the fourth and final formula we will have to suppose
that all arriving customers enter the system so that we have the following special
property of Poisson arrivals is:

PASTA. These initials stand for “Poisson arrivals see time averages.” To be precise,
if �.n/ is the limiting fraction of time that there are n individuals in the queue and
an is the limiting fraction of arriving customers that see a queue of size n, then



128 3 Renewal Processes

Theorem 3.7. an D �.n/.

Why is this true? If we condition on there being arrival at time t , then the times of
the previous arrivals are a Poisson process with rate �. Thus knowing that there
is an arrival at time t does not affect the distribution of what happened before
time t .

Example 3.7 (Workload in the M/G/1 queue). We define the workload in the system
at time t; Zt , to be the sum of the remaining service times of all customers in the
system, and define the long run average workload to be

Z D lim
t!1

1

t

Z t

0

Zs ds

As in the proof of Little’s formula we will derive our result by computing the rate
at which revenue is earned in two ways. This time we suppose that each customer
in the queue or in service pays at a rate of $y when his remaining service time is
y; i.e., we do not count the remaining waiting time in the queue. If we let Y be
the average total payment made by an arriving customer, then our cost equation
reasoning implies that the average workload Z satisfies

Z D �Y

Since a customer with service time si pays si during the qi units of time spent
waiting in the queue and at rate si � x after x units of time in service

Y D E.si qi /CE

�Z si

0

si � x dx

�

Now a customer’s waiting time in the queue can be determined by looking at the
arrival process and at the service times of previous customers, so it is independent
of her service time, i.e., E.si qi / D Esi �WQ and we have

Y D .Esi /WQ C E
�
s2

i =2
�

PASTA implies that arriving customers see the long run average behavior so the
workload they see Z D WQ, so we have

WQ D �.Esi /WQ C �E
�
s2

i =2
�

Solving for WQ now gives

WQ D �E
�
s2

i =2
�

1 � �Esi

(3.7)

the so-called Pollaczek-Khintchine formula. Using formula (3.3), and
Theorem 3.6, we can now compute

W D WQ C Esi L D �W
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Example 3.8. We see a number of applications of the equations from this section
to Markovian queues in Chap. 4. Customers arrive at the CIT help desk at rate 1=6

per minute, i.e., the mean time between arrivals is 6 min. Suppose that each service
takes a time with mean 5 and standard deviation

p
59.

(a) In the long run what is the fraction of time, �.0/, that the server is idle? � D
1=6; Esi D 5 D 1=�, so by (3.5) �.0/ D 1 � .1=6/=.1=5/D 1=6.

(b) What is the average waiting W time for a customer (including their service
time)? Es2

i D 52 C 59 D 84, so (3.7) implies

WQ D �Es2
i =2

1 � �Esi

D .1=6/ � 84=2

1=6
D 42

and W D WQ C Esi D 47.
(c) What is the average queue length (counting the customer in service)?

By Little’s formula, L D �W D 47=6.

3.3 Age and Residual Life*

Let t1; t2; : : : be i.i.d. interarrival times, let Tn D t1 C � � � C tn be the time of the nth
renewal, and let N.t/ D maxfn W Tn � tg be the number of renewals by time t . Let

A.t/ D t � TN.t/ and Z.t/ D TN.t/C1 � t

A.t/ gives the age of the item in use at time t , while Z.t/ gives its residual lifetime
(Fig. 3.1).

To explain the interest in Z.t/ note that the interarrival times after TN.t/C1 will
be independent of Z.t/ and i.i.d. with distribution F , so if we can show that Z.t/

converges in distribution, then the renewal process after time t will converge to an
equilibrium.

3.3.1 Discrete Case

The situation in which all the interarrival times are positive integers is very simple
but also important because visits of a Markov chain to a fixed state, Example 3.1,
are a special case. Let

× × × × ×
0 T1 T2 TN(t) t TN(t)+1

A(t) Z(t)

Fig. 3.1 Age and residual
life
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Vm D
(

1 if m 2 fT0; T1; T2; : : :g
0 otherwise

Vm D 1 if a renewal occurs at time m, i.e., if Tn visits m. Let An D minfn � m W
m � n; Vm D 1g be the age and let Zn D minfm � n W m � n; Vm D 1g be the
residual life. An example should help clarify the definitions:

n 0 1 2 3 4 5 6 7 8 9 10 11 12 13
Vn 1 0 0 0 1 0 0 1 1 0 0 0 0 1
An 0 1 2 3 0 1 2 0 0 1 2 3 4 0
Zn 0 3 2 1 0 2 1 0 0 4 3 2 1 0

As we can see from the concrete example, values taken in an excursion away
from 0 are j; j1; : : : 1 in the residual life chain and 1; 2; : : : j in the age chain so we
will have

lim
n!1

1

n

nX

mD1

P.Am D i/ D lim
n!1

1

n

nX

mD1

P.Zm D i/

From this we see that it is enough to study one of the two chains. We choose with
Zn since it is somewhat simpler. It is clear that if Zn D i > 0 then ZnC1 D i � 1.

When Zn D 0, a renewal has just occurred. If the time to the next renewal is k

then ZnC1 D k� 1. To check this note that Z4 D 0 and the time to the next renewal
is 3 (it occurs at time 7) so Z5 D 2. Thus Zn is a Markov chain with state space
S D f0; 1; 2; : : :g and transition probability

p.0; j / D fj C1 for j � 0

p.i; i � 1/ D 1 for i � 1

p.i; j / D 0 otherwise

In this chain 0 is always recurrent. If there are infinitely many values of k with
fk > 0 then it is irreducible. If not and K is the largest value of k with fk > 0 then
f0; 1; : : : K � 1g is a closed irreducible set.

To define a stationary measure we will use the cycle trick, Theorem 1.20, with
x D 0. Starting from 0 the chain will visit a site i at most once before it returns to
0, and this will happen if and only if the first jump is to a state � i , i.e., t1 > i . Thus
the stationary measure is

�.i/ D P.t1 > i/

Using (A.20) we see that
1X

iD0

�.i/ D Et1

so the chain is positive recurrent if and only if Et1 <1. In this case
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�.i/ D P.t1 > i/=Et1 (3.8)

I0 � J0 D fk W fk > 0g so if the greatest common divisor of J0 is 1 then 0 is
aperiodic. To argue the converse note that I0 consists of all finite sums of elements
in J0 so g.c.d. I0 = g.c.d. J0. Using the Markov chain convergence theorem now
gives:

Theorem 3.8. Suppose Et1 <1 and the greatest common divisor of fk W fk > 0g
is 1 then

lim
n!1 P.Zn D i/ D P.t1 > i/

Et1

In particular P.Zn D 0/! 1=Et1.

Example 3.9 (Visits to Go). In Monopoly one rolls two dice and then moves that
number of squares. As in Example 1.27 we will ignore Go to Jail, Chance, and other
squares that make the chain complicated. The average number of spaces moved in
one roll is Et1 D 7 so in the long run we land exactly on Go in 1/7 of the trips
around the board. Using Theorem 3.8 we can calculate the limiting distribution of
the amount we overshoot Go.

0 1 2 3 4 5 6 7 8 9 10 11
1
7

1
7

35
252

33
252

30
252

26
252

21
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15
252

10
252

6
252

3
252

1
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3.3.2 General Case

With the discrete case taken care of, we will proceed to the general case, which will
be studied using renewal reward processes.

Theorem 3.9. As t !1
1

t

Z t

0

1fAs>x;Zs>yg ds ! 1

Et1

Z 1

xCy

P.ti > z/ dz

Proof. Let Ix;y.s/ D 1 if As > x and Zs > y. It is easy to see that

Z Ti

Ti�1

Ic.s/ ds D .ti � .x C y//C

To check this we consider two cases. Ignoring the contribution from the last incom-
plete cycle ŒTN.t/; t �, we have

Z t

0

Ix;y.s/ ds 

N.t/X

iD1

.ti � .x C y//C
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The right-hand side is a renewal reward process with so it follows from Theorem 3.3
that the limit is E.t1 � .x C y//C=Et1. Applying (A.22) to X D .t1 � .x C y//C
now gives the desired result. ut

Setting x D 0 and then y D 0 we see that the limiting distribution for the age
and residual life have the density function given by

g.z/ D P.ti > z/

Eti
(3.9)

which looks the same as the result in discrete time. Multiplying by z, integrating
from 0 to1 and using (A.21) the limit has expected value

Et2
i =2Eti (3.10)

Differentiating twice we see that if ti has density function fT then the limiting joint
density of .At ; Zt / is

fT .aC z/=Et1 (3.11)

Example 3.10 (Exponential). In this case the limiting density given in (3.11) is

�e��.xCy/

1=�
D �e��a � �e��z

So in the limit the age and residual life are independent exponential.

Example 3.11 (Uniform on (0,b)). Plugging into (3.11) gives for a; z > 0; a C
z < b:

1=b

b=2
D 2

b2

The margin densities given in (3.9) are

.b � x/=b

b=2
D 2

b
�
�
1 � x

b

�

In words, the limiting density is a linear function that starts at 2=b at 0 and hits 0 at
c D b.

Inspection paradox. Let L.t/ D A.t/C Z.t/ be the lifetime of the item in use at
time t . Using (3.10), we see that the average lifetime of the items in use up to time t :

E.t2
1 /

Et1
> Eti

since var .ti / D Et2
i � .Eti /

2 > 0. This is a paradox because the average of the
lifetimes of the first n items:

t1 C � � � C tn

n
! Eti
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and hence
t1 C � � � C tN.t/

N.t/
! Eti

There is a simple explanation for this “paradox”: taking the average age of the item
in use up to time s is biased since items that last for time u are counted u times.
That is,

1

t

Z t

0

A.s/CZ.s/ ds 
 N.t/

t
� 1

N.t/

N.t/X

iD1

ti � ti ! 1

Et1
�Et2

1

3.4 Chapter Summary

This chapter shows the power of the law of large numbers to give simple derivations
of useful results. The work horse of the chapter is the result for renewal reward
processes. If the times between renewals and the rewards earned in these periods
.ti ; ri / are an i.i.d. sequence then the limiting rate at which rewards are earned is
Eri=Eti . Taking ri D 1 this reduces to the law of large numbers (Theorem 3.1) for
the renewal process

N.t/=t ! 1=Eti

If the ti D si C ui with the .si ; ui / are i.i.d. representing the times in states 1 and 2
then taking ri D si we get see that the limiting fraction of time in state 1 is

Esi=.Esi C Eui /

our result (Theorem 3.4) for alternating renewal processes. Other applications of
renewal reward processes gave us results for the limiting behavior of the age and
residual life in Sect. 3.3.

A second theme here was the simple minded scheme of computing costs two
different ways to prove quantities were equal. For the GI=G=1 queue, this allowed
us to show that if:

The average interarrival time Eti D 1=�,
The average service time Esi D 1=�,
The average waiting time in the queue is L,
The long run rate at which customers enter the system is �a,
The average waiting time in the system is W ,
And the fraction of time the queue is empty is �.0/

then we have

L D �aW �.0/ D 1 � �a

�
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In the M=G=1 case, the expected duration of busy periods and the average waiting
time in the queue satisfy:

�.0/ D 1=�

1=�C EB
WQ D E.s2

i =2/

1 � �=�

The first formula is a simple consequence of our result for alternating renewal.
The more sophisticated second formula uses “Poisson Arrivals See Time Averages”
along with cost equation reasoning.

3.5 Exercises

3.1. The weather in a certain locale consists of alternating wet and dry spells.
Suppose that the number of days in each rainy spell is a Poisson distribution with
mean 2, and that a dry spell follows a geometric distribution with mean 7. Assume
that the successive durations of rainy and dry spells are independent. What is the
long-run fraction of time that it rains?

3.2. Monica works on a temporary basis. The mean length of each job she gets is
11 months. If the amount of time she spends between jobs is exponential with mean
3 months, then in the long run what fraction of the time does she spend working?

3.3. Thousands of people are going to a Grateful dead concert in Pauley Pavillion
at UCLA. They park their the foot cars on several of the long streets near the arena.
There are no lines to tell the drivers where to park, so they park at random locations,
and end up leaving spacings between the cars that are independent and uniform on
.0; 10/. In the long run, what fraction of the street is covered with cars?

3.4. The times between the arrivals of customers at a taxi stand are independent
and have a distribution F with mean �F . Assume an unlimited supply of cabs, such
as might occur at an airport. Suppose that each customer pays a random fare with
distribution G and mean �G . Let W.t/ be the total fares paid up to time t . Find
limt!1 E W.t/=t .

3.5. In front of terminal C at the Chicago airport is an area where hotel shuttle vans
park. Customers arrive at times of a Poisson process with rate 10 per hour looking
for transportation to the Hilton hotel nearby. When seven people are in the van it
leaves for the 36-min round trip to the hotel. Customers who arrive while the van
is gone go to some other hotel instead. (a) What fraction of the customers actually
go to the Hilton? (b) What is the average amount of time that a person who actually
goes to the Hilton ends up waiting in the van?

3.6. Three children take turns shooting a ball at a basket. They each shoot until
they misses and then it is next child’s turn. Suppose that child i makes a basket
with probability pi and that successive trials are independent. (a) Determine the
proportion of time in the long run that each child shoots. (b) Find the answer when
p1 D 2=3; p2 D 3=4; p3 D 4=5.
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3.7. A policeman cruises (on average) approximately 10 min before stopping a car
for speeding. Ninety percent of the cars stopped are given speeding tickets with an
$80 fine. It takes the policeman an average of 5 min to write such a ticket. The other
10% of the stops are for more serious offenses, leading to an average fine of $300.
These more serious charges take an average of 30 min to process. In the long run, at
what rate (in dollars per minute) does he assign fines.

3.8. Counter processes. As in Example 1.5, we suppose that arrivals at a counter
come at times of a Poisson process with rate �. An arriving particle that finds the
counter free gets registered and then locks the counter for an amount of time 
 .
Particles that arrive while the counter is locked have no effect. (a) Find the limiting
probability the counter is locked at time t . (b) Compute the limiting fraction of
particles that get registered.

3.9. A cocaine dealer is standing on a street corner. Customers arrive at times of a
Poisson process with rate �. The customer and the dealer then disappear from the
street for an amount of time with distribution G while the transaction is completed.
Customers that arrive during this time go away never to return. (a) At what rate does
the dealer make sales? (b) What fraction of customers are lost?

3.10. One of the difficulties about probability is realizing when two different
looking problems are the same, in this case dealing cocaine and fighting fires. In
Problem 2.26, calls to a fire station arrive according to a Poisson process with rate
0.5 per hour, and the time required to respond to a call, return to the station, and get
ready to respond to the next call is uniformly distributed between 1/2 and 1 h. If a
new call comes before the Dryden fire department is ready to respond, the Ithaca
fire department is asked to respond. What fraction of calls must be handled by the
Ithaca fire department

3.11. A young doctor is working at night in an emergency room. Emergencies come
in at times of a Poisson process with rate 0.5 per hour. The doctor can only get to
sleep when it has been 36 min (0.6 h) since the last emergency. For example, if there
is an emergency at 1:00 and a second one at 1:17 then she will not be able to get to
sleep until at least 1:53, and it will be even later if there is another emergency before
that time.

(a) Compute the long-run fraction of time she spends sleeping, by formulating a
renewal reward process in which the reward in the i th interval is the amount of
time she gets to sleep in that interval.

(b) The doctor alternates between sleeping for an amount of time si and being
awake for an amount of time ui . Use the result from (a) to compute Eui .

(c) Solve problem (b) by noting that the doctor trying to sleep is the same as chicken
crossing the road in Exercise 2.33.

3.12. A worker has a number of machines to repair. Each time a repair is completed
a new one is begun. Each repair independently takes an exponential amount of time
with rate � to complete. However, independent of this, mistakes occur according to
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a Poisson process with rate �. Whenever a mistake occurs, the item is ruined and
work is started on a new item. In the long run how often are jobs completed?

3.13. In the Duke versus Miami football game, possessions alternate between Duke
who has the ball for an average of 2 min and Miami who has the ball for an average
of 6 min. (a) In the long run what fraction of time does Duke have the ball? (b)
Suppose that on each possession Duke scores a touchdown with probability 1/4
while Miami scores with probability one. On the average how many touchdowns
will they score per hour?

3.14. Random Investment. An investor has $100,000. If the current interest rate is
i% (compounded continuously so that the grow per year is exp.i=100/), he invests
his money in a i year CD, takes the profits and then reinvests the $100,000. Suppose
that the kth investment leads to an interest rate Xk which is uniform on f1; 2; 3; 4; 5g.
In the long run how much money does he make per year.

3.15. Consider the set-up of Example 3.4 but now suppose that the car’s lifetime
h.t/ D �e��t . Show that for any A and B the optimal time T D 1. Can you give
a simple verbal explanation?

3.16. A machine tool wears over time and may fail. The failure time measured in
months has density fT .t/ D 2t=900 for 0 � t � 30 and 0 otherwise. If the tool fails
it must be replaced immediately at a cost of $1,200. If it is replaced prior to failure
the cost is only $300. Consider a replacement policy in which the tool is replaces
after c months or when it fails. What is the value of c that minimizes cost per unit
time.

3.17. People arrive at a college admissions office at rate 1 per minute. When k

people have arrive a tour starts. Student tour guides are paid $20 for each tour they
conduct. The college estimates that it loses 10 cents in good will for each minute a
person waits. What is the optimal tour group size?

3.18. A scientist has a machine for measuring ozone in the atmosphere that is
located in the mountains just north of Los Angeles. At times of a Poisson process
with rate 1, storms or animals disturb the equipment so that it can no longer
collect data. The scientist comes every L units of time to check the equipment.
If the equipment has been disturbed then she can usually fix it quickly so we
will assume the repairs take 0 time. (a) What is the limiting fraction of time the
machine is working? (b) Suppose that the data that is being collected is worth a

dollars per unit time, while each inspection costs c < a. Find the best value of the
inspection time L.

Age and Residual Life

3.19. Consider the discrete renewal process with fj D P.t1 D j / and Fi D
P.t1 > i/. (a) Show that the age chain has transition probability

q.j; j C 1/ D Fj C1

Fj

q.j; 0/ D 1 � Fj C1

Fj

D fj C1

Fj

for j � 0
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(b) Show that if Et1 <1, the stationary distribution �.i/ D P.t1 > i/=Et1. (c) Let
p.i; j / be the transition probability for the renewal chain. Verify that It should be
clear by comparing the numerical examples above that there is a close relationship
between q is the dual chain of p, i.e., the chain p run backwards. That is,

q.i; j / D �.j /p.j; i/

�.i/

3.20. Show that chain in Exercise 1.38 with transition probability is

1 2 3 4
1 1=2 1=2 0 0

2 2=3 0 1=3 0

3 3=4 0 0 1=4

4 1 0 0 0

is a special case of the age chain. Use this observation and the previous exercise to
compute the stationary distribution.

3.21. The city of Ithaca, New York, allows for 2-h parking in all downtown spaces.
Methodical parking officials patrol the downtown area, passing the same point every
2 h. When an official encounters a car, he marks it with chalk. If the car is still there
2 h later, a ticket is written. Suppose that you park your car for a random amount of
time that is uniformly distributed on .0; 4/ hours. What is the probability you will
get a ticket?

3.22. Each time the frozen yogurt machine at the mall breaks down, it is replaced by
a new one of the same type. (a) What is the limiting age distribution for the machine
in use if the lifetime of a machine has a gamma (2,�) distribution, i.e., the sum of 2
exponentials with mean 1=�. (b) Find the answer to (a) by thinking about a rate one
Poisson process in which arrivals are alternately colored red and blue.

3.23. While visiting Haifa, Sid Resnick discovered that people who wish to travel
from the port area up the mountain frequently take a shared taxi known as a sherut.
The capacity of each car is five people. Potential customers arrive according to a
Poisson process with rate �. As soon as five people are in the car, it departs for The
Carmel, and another taxi moves up to accept passengers on. A local resident (who
has no need of a ride) wanders onto the scene. What is the distribution of the time
he has to wait to see a cab depart?

3.24. Suppose that the limiting age distribution in (3.9) is the same as the original
distribution. Conclude that F.x/ D 1 � e��x for some � > 0.



Chapter 4
Continuous Time Markov Chains

4.1 Definitions and Examples

In Chap. 1 we considered Markov chains Xn with a discrete time index n D
0; 1; 2; : : : In this chapter we will extend the notion to a continuous time parameter
t � 0, a setting that is more convenient for some applications. In discrete time we
formulated the Markov property as: for any possible values of j; i; in�1; : : : i0

P.XnC1 D j jXn D i; Xn�1 D in�1; : : : ; X0 D i0/ D P.XnC1 D j jXn D i/

In continuous time, it is technically difficult to define the conditional probability
given all of the Xr for r � s, so we instead say that Xt; t � 0 is a Markov chain if
for any 0 � s0 < s1 � � � < sn < s and possible states i0; : : : ; in; i; j we have

P.XtCs D j jXs D i; Xsn D in; : : : ; Xs0 D i0/ D P.Xt D j jX0 D i/

In words, given the present state, the rest of the past is irrelevant for predicting the
future. Note that built into the definition is the fact that the probability of going from
i at time s to j at time s C t only depends on t the difference in the times.

Our first step is to construct a large collection of examples. In Example 4.6 we
will see that this is almost the general case.

Example 4.1. Let N.t/; t � 0 be a Poisson process with rate � and let Yn be a
discrete time Markov chain with transition probability u.i; j /. Then Xt D YN.t/ is a
continuous-time Markov chain. In words, Xt takes one jump according to u.i; j / at
each arrival of N.t/.

Why is this true? Intuitively, this follows from the lack of memory property of the
exponential distribution. If Xs D i , then independent of what has happened in the
past, the time to the next jump will be exponentially distributed with rate � and will
go to state j with probability u.i; j /.

R. Durrett, Essentials of Stochastic Processes, Springer Texts in Statistics,
DOI 10.1007/978-1-4614-3615-7 4, © Springer Science+Business Media, LLC 2012
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Discrete time Markov chains were described by giving their transition
probabilities p.i; j / D the probability of jumping from i to j in one step. In
continuous time there is no first time t > 0, so we introduce for each t > 0 a
transition probability

pt .i; j / D P.Xt D j jX0 D i/

To compute this for Example 4.1, we note that N.t/ has a Poisson number of jumps
with mean �t , so

pt .i; j / D
1X

nD0

e��t .�t/n

nŠ
un.i; j /

where un.i; j / is the nth power of the transition probability u.i; j /.
In continuous time, as in discrete time, the transition probability satisfies

Theorem 4.1 (Chapman–Kolmogorov equation).

X

k

ps.i; k/pt .k; j / D psCt .i; j /

Why is this true? In order for the chain to go from i to j in time s C t , it must be
in some state k at time s, and the Markov property implies that the two parts of the
journey are independent.

Proof. Breaking things down according to the state at time s, we have

P.XsCt D j jX0 D i/ D
X

k

P.XsCt D j; Xs D kjX0 D i/

Using the definition of conditional probability and the Markov property, the above is

D
X

k

P.XsCt D j jXs D k; X0 D i/P.Xs D kjX0 D i/ D
X

k

pt .k; j /ps.i; k/

ut
(4.1) shows that if we know the transition probability for t < t0 for any t0 > 0,
we know it for all t . This observation and a large leap of faith (which we will
justify later) suggests that the transition probabilities pt can be determined from
their derivatives at 0:

q.i; j / D lim
h!0

ph.i; j /

h
for j ¤ i (4.1)

If this limit exists (and it will in all the cases we consider) we will call q.i; j / the
jump rate from i to j . To explain this name we will compute the:
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Jump rates for Example 4.1. The probability of at least two jumps by time h is 1
minus the probability of 0 or 1 jumps

1 � �e��h C �he��h
� D 1 � .1C �h/

�

1 � �hC .�h/2

2Š
C : : :

�

D .�h/2=2ŠC : : : D o.h/

That is, when we divide it by h it tends to 0 as h! 0. Thus, if j ¤ i ,

ph.i; j /

h

 �e��hu.i; j /! �u.i; j /

as h ! 0. Comparing the last equation with the definition of the jump rate in (4.1)
we see that q.i; j / D �u.i; j /. In words we leave i at rate � and go to j with
probability u.i; j /.

Example 4.1 is atypical. There we started with the Markov chain and then
computed its rates. In most cases, it is much simpler to describe the system by
writing down its transition rates q.i; j / for i ¤ j , which describe the rates at which
jumps are made from i to j . The simplest possible example is:

Example 4.2 (Poisson process). Let X.t/ be the number of arrivals up to time t in
a Poisson process with rate �. Since arrivals occur at rate � in the Poisson process
the number of arrivals, X.t/, increases from n to nC 1 at rate �, or in symbols

q.n; nC 1/ D � for all n � 0

This simplest example is a building block for other examples:

Example 4.3 (M/M/s queue). Imagine a bank with s � 1 tellers that serve cus-
tomers who queue in a single line if all of the servers are busy. We imagine that
customers arrive at times of a Poisson process with rate �, and that each service time
is an independent exponential with rate �. As in Example 4.2, q.n; nC 1/ D �. To
model the departures we let

q.n; n � 1/ D
(

n� 0 � n � s

s� n � s

To explain this, we note that when there are n � s individuals in the system then
they are all being served and departures occur at rate n�. When n > s, all s servers
are busy and departures occur at s�.

Example 4.4 (Branching proceess). In this system each individual dies at rate �

and gives birth to a new individual at rate � so we have

q.n; nC 1/ D �n q.n; n � 1/ D �n

A very special case called the Yule process occurs when � D 0.

Having seen several examples, it is natural to ask:
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Given the Rates, How Do You Construct the Chain?

Let �i DPj ¤i q.i; j / be the rate at which Xt leaves i . If �i D1, then the process
will want to leave i immediately, so we will always suppose that each state i has
�i <1. If �i D 0, then Xt will never leave i . So suppose �i > 0 and let

r.i; j / D q.i; j /=�i

Here r , short for “routing matrix,” is the probability the chain goes to j when it
leaves i .

Informal construction. If Xt is in a state i with �i D 0 then Xt stays there forever
and the construction is done. If �i > 0; Xt stays at i for an exponentially distributed
amount of time with rate �i , then goes to state j with probability r.i; j /.

Formal construction. Suppose, for simplicity, that �i > 0 for all i . Let Yn be a
Markov chain with transition probability r.i; j /. The discrete-time chain Yn, gives
the road map that the continuous-time process will follow. To determine how long
the process should stay in each state let 
0; 
1; 
2; : : : be independent exponentials
with rate 1.

At time 0 the process is in state Y0 and should stay there for an amount of time
that is exponential with rate �.Y0/, so we let the time the process stays in state Y0

be t1 D 
0=�.Y0/.
At time T1 D t1 the process jumps to Y1, where it should stay for an exponential

amount of time with rate �.Y1/, so we let the time the process stays in state Y1 be
t2 D 
1=�.Y1/.

At time T2 D t1 C t2 the process jumps to Y2, where it should stay for an
exponential amount of time with rate �.Y2/, so we let the time the process stays
in state Y2 be t3 D 
2=�.Y2/.

Continuing in the obvious way, we can let the amount of time the process stays
in Yn be tnC1 D 
n=�.Yn/, so that the process jumps to YnC1 at time

TnC1 D t1 C � � � C tnC1

In symbols, if we let T0 D 0, then for n � 0 we have

X.t/ D Yn for Tn � t < TnC1 (4.2)

Computer simulation. The construction described above gives a recipe for simulat-
ing a Markov chain. Generate independent standard exponentials 
i , say, by looking
at 
i D � ln Ui where Ui are uniform on .0; 1/. Using another sequence of random
numbers, generate the transitions of Yn, then define ti ; Tn, and Xt as above.

The good news about the formal construction above is that if Tn ! 1 as n !
1, then we have succeeded in defining the process for all time and we are done.
This will be the case in almost all the examples we consider. The bad news is that
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limn!1 Tn < 1 can happen. In most models, it is senseless to have the process
make an infinite amount of jumps in a finite amount of time so we introduce a
“cemetery state” � to the state space and complete the definition by letting T1 D
limn!1 Tn and setting

X.t/ D � for all t � T1

To show that explosions can occur we consider.

Example 4.5 (Pure birth processes with power law rates). Suppose q.i; i C 1/ D
�ip and all the other q.i; j / D 0. In this case the jump to n C 1 is made at time
Tn D t1 C � � � C tn, where tn is exponential with rate np . Etn D 1=np, so if p > 1

ETn D �

nX

mD1

1=mp

This implies ET1 DP1
mD1 1=mp <1, so T1 <1 with probability one. When

p D 1 which is the case for the Yule process

ETn D .1=ˇ/

nX

mD1

1=m 	 .log n/=ˇ

as n!1. This is, by itself, not enough to establish that Tn !1, but it is not hard
to fill in the missing details.

Proof. var .Tn/ DPn
mD1 1=m2ˇ2 � C DP1

mD1 1=m2ˇ2. Chebyshev’s inequality
implies

P.Tn � ETn=2/ � 4C=.ETn/2 ! 0

as n!1. Since n! Tn is increasing, it follows that Tn !1. ut
Our final example justifies the remark we made before Example 4.1.

Example 4.6 (Uniformization). Suppose that � D supi �i <1 and let

u.i; j / D q.i; j /=� for j ¤ i

u.i; i/ D 1 � �i=�

In words, each site attempts jumps at rate � but stays put with probability 1��i=�

so that the rate of leaving state i is �i . If we let Yn be a Markov chain with transition
probability u.i; j / and N.t/ be a Poisson process with rate � then Xt D YN.t/

has the desired transition rates. This construction is useful because Yn is simpler to
simulate that X.t/ and has the same stationary distribution.
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4.2 Computing the Transition Probability

In the last section we saw that given jump rates q.i; j / we can construct a Markov
chain that has these jump rates. This chain, of course, has a transition probability

pt .i; j / D P.Xt D j jX0 D i/

Our next question is: How do you compute the transition probability pt from the
jump rates q?

Our road to the answer starts by using the Chapman–Kolmogorov equations,
Theorem 4.1, and then taking the k D i term out of the sum.

ptCh.i; j / � pt .i; j / D
 
X

k

ph.i; k/pt.k; j /

!

� pt .i; j /

D
0

@
X

k¤i

ph.i; k/pt.k; j /

1

AC Œph.i; i/ � 1� pt .i; j / (4.3)

Our goal is to divide each side by h and let h! 0 to compute

p0
t .i; j / D lim

h!0

ptCh.i; j / � pt .i; j /

h

By the definition of the jump rates

q.i; j / D lim
h!0

ph.i; j /

h
for i ¤ j

Ignoring the detail of interchanging the limit and the sum, which we will do
throughout this chapter, we have

lim
h!0

1

h

X

k¤i

ph.i; k/pt.k; j / D
X

k¤i

q.i; k/pt.k; j / (4.4)

For the other term we note that 1 � ph.i; i/ DPk¤i ph.i; k/, so

lim
h!0

ph.i; i/� 1

h
D � lim

h!0

X

k¤i

ph.i; k/

h
D �

X

k¤i

q.i; k/ D ��i

and we have

lim
h!0

ph.i; i/ � 1

h
pt.i; j / D ��i pt .i; j / (4.5)
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Combining (4.4) and (4.5) with (4.3) and the definition of the derivative we have

p0
t .i; j / D

X

k¤i

q.i; k/pt.k; j / � �ipt .i; j / (4.6)

To neaten up the last expression we introduce a new matrix

Q.i; j / D
(

q.i; j / if j ¤ i

��i if j D i

For future computations note that the off-diagonal elements q.i; j / with i ¤ j are
nonnegative, while the diagonal entry is a negative number chosen to make the row
sum equal to 0.

Using matrix notation we can write (4.6) simply as

p0
t D Qpt (4.7)

This is Kolmogorov’s backward equation. If Q were a number instead of a matrix,
the last equation would be easy to solve. We would set pt D eQt and check by
differentiating that the equation held. Inspired by this observation, we define the
matrix

eQt D
1X

nD0

.Qt/n

nŠ
D

1X

nD0

Qn � t
n

nŠ
(4.8)

and check by differentiating that

d

dt
eQt D

1X

nD1

Qn tn�1

.n � 1/Š
D

1X

nD1

Q � Q
n�1tn�1

.n � 1/Š
D QeQt

Kolmogorov’s forward equation. This time we split Œ0; t C h� into Œ0; t � and
Œt; t C h� rather than into Œ0; h� and Œh; t C h�.

ptCh.i; j / � pt .i; j / D
 
X

k

pt .i; k/ph.k; j /

!

� pt.i; j /

D
0

@
X

k¤j

pt .i; k/ph.k; j /

1

AC Œph.j; j / � 1� pt .i; j /

Computing as before we arrive at

p0
t .i; j / D

X

k¤j

pt .i; k/q.k; j / � pt .i; j /�j (4.9)

Introducing matrix notation again, we can write

p0
t D pt Q (4.10)
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Comparing (4.10) with (4.7) we see that pt Q D Qpt and that the two forms of
Kolmogorov’s differential equations correspond to writing the rate matrix on the left
or the right. While we are on the subject of the choices, we should remember that
in general for matrices AB ¤ BA, so it is somewhat remarkable that pt Q D Qpt .
The key to the fact that these matrices commute is that pt D eQt is made up of
powers of Q:

Q � eQt D
1X

nD0

Q � .Qt/n

nŠ
D

1X

nD0

.Qt/n

nŠ
�Q D eQt �Q

To illustrate the use of Kolmogorov’s equations we will now consider some
examples. The simplest possible is

Example 4.7 (Poisson process). Let X.t/ be the number of arrivals up to time t in
a Poisson process with rate �. In order to go from i arrivals at time s to j arrivals at
time t C s we must have j � i and have exactly j � i arrivals in t units of time, so

pt .i; j / D e��t .�t/j �i

.j � i/Š
(4.11)

To check the differential equation, we have to first figure out what it is. Using the
more explicit form of the backwards equation, (4.6), and plugging in our rates, we
have

p0
t .i; j / D �pt.i C 1; j / � �pt.i; j /

To check this we have to differentiate the formula in (4.11).
When j > i we have that the derivative of (4.11) is

��e��t .�t/j �i

.j � i/Š
C e��t .�t/j �i�1

.j � i � 1/Š
� D ��pt.i; j /C �pt.i C 1; j /

When j D i; pt .i; i/ D e��t , so the derivative is

��e��t D ��pt.i; i/ D ��pt.i; i/C �pt.i C 1; i/

since pt .i C 1; i/ D 0.

The second simplest example is:

Example 4.8 (Two-state chains). For concreteness, we can suppose that the state
space is f1; 2g. In this case, there are only two flip rates q.1; 2/D� and q.2; 1/ D �,
so when we fill in the diagonal with minus the sum of the flip rates on that row we
get

Q D
��� �

� ��

�
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Writing out the backward equation in matrix form, (4.7), now we have

�
p0

t .1; 1/ p0
t .1; 2/

p0
t .2; 1/ p0

t .2; 2/

�

D
��� �

� ��

��
pt .1; 1/ pt .1; 2/

pt .2; 1/ pt .2; 2/

�

Since pt .i; 2/ D 1 � pt .i; 1/ it is sufficient to compute pt .i; 1/. Doing the first
column of matrix multiplication on the right, we have

p0
t .1; 1/ D ��pt.1; 1/C �pt.2; 1/ D ��.pt .1; 1/ � pt .2; 1//

p0
t .2; 1/ D �pt .1; 1/� �pt.2; 1/ D �.pt .1; 1/� pt .2; 1// (4.12)

Taking the difference of the two equations gives

Œpt .1; 1/ � pt .2; 1/�0 D �.�C �/Œpt .1; 1/� pt .2; 1/�

Since p0.1; 1/ D 1 and p0.2; 1/ D 0 we have

pt.1; 1/ � pt .2; 1/ D e�.�C�/t

Using this in (4.12) and integrating

pt.1; 1/ D p0.1; 1/C �

�C �
e�.�C�/s

ˇ
ˇ
ˇ
ˇ

t

0

D �

�C �
C �

�C �
e�.�C�/t

pt .2; 1/ D p0.2; 1/C �

�C �
e�.�C�/s

ˇ
ˇ
ˇ
ˇ

t

0

D �

�C �
� �

�C �
e�.�C�/t

As a check on the constants note that p0.1; 1/ D 1 and p0.2; 1/ D 0. To prepare
for the developments in the next section note that the probability of being in state 1
converges exponentially fast to the equilibrium value �=.�C �/.

There are not many examples in which one can write down solutions of the
Kolmogorov’s differential equation. A remarkable exception is:

Example 4.9 (Yule process). In this model each particle splits into two at rate ˇ, so
q.i; iC1/ D ˇi . To find the transition probability of the Yule process we will guess
and verify that

pt.1; j / D e�ˇt .1 � e�ˇt /j �1 for j � 1 (4.13)

i.e., a geometric distribution with success probability e�ˇt and hence mean eˇt . To
explain the mean we note that

d

dt
EX.t/ D ˇEX.t/ implies E1X.t/ D eˇt :
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To check (4.13), we will use the forward equation (4.9) to conclude that if j � 1

then

p0
t .1; j / D � ǰpt .1; j /C ˇ.j � 1/pt.1; j � 1/ (4.14)

where pt .1; 0/ D 0. The use of the forward equation here is dictated by the fact that
we are only writing down formulas for pt .i; j / when i D 1. To check the proposed
formula for j D 1 we note that

p0
t .1; 1/ D �ˇe�ˇt D �ˇpt .1; 1/

Things are not so simple for j > 1:

p0
t .1; j / D� ˇe�ˇt .1 � e�ˇt /j �1

C e�ˇt .j � 1/.1� e�ˇt /j �2.ˇe�ˇt /

Recopying the first term on the right and using ˇe�ˇt D �.1 � e�ˇt /ˇ C ˇ in the
second, we can rewrite the right-hand side of the above as

� ˇe�ˇt .1 � e�ˇt /j �1 � e�ˇt .j � 1/.1 � e�ˇt /j �1ˇ

C e�ˇt .1 � e�ˇt /j �2.j � 1/ˇ

Adding the first two terms then comparing with (4.14) shows that the above is

D � ǰpt .1; j /C ˇ.j � 1/pt.1; j � 1/

Having worked to find pt .1; j /, it is fortunately easy to find pt .i; j /. The chain
starting with i individuals is the sum of i copies of the chain starting from 1
individual. Using this one can easily compute that

pt.i; j / D
 

j � 1

i � 1

!

.e�ˇt /i .1 � e�ˇt /j �i (4.15)

In words, the sum of i geometrics has a negative binomial distribution.

Proof. To begin we note that if N1; : : : Ni have the distribution given in (4.13) and
n1 C � � � C ni D j , then

P.N1 D n1; : : : ; Ni D ni / D
iY

kD1

e�ˇt .1 � e�ˇt /nk�1 D .e�ˇt /i .1 � e�ˇt /j �i

To count the number of possible .n1; : : : ; ni / with nk � 1 and sum j , we think of
putting j balls in a row. To divide the j balls into i groups of size n1; : : : ; ni , we will
insert cards in the slots between the balls and let nk be the number of balls in the kth
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group. Having made this transformation it is clear that the number of .n1; : : : ; ni /

is the number of ways of picking i � 1 of the j � 1 slot to put the cards or
�

j �1
i�1

�
.

Multiplying this times the probability for each .n1; : : : ; ni / gives the result. ut

4.3 Limiting Behavior

Having worked hard to develop the convergence theory for discrete time chains, the
results for the continuous time case follow easily. In fact the study of the limiting
behavior of continuous time Markov chains is simpler than the theory for discrete
time chains, since the randomness of the exponential holding times implies that
we don’t have to worry about aperiodicity. We begin by generalizing some of the
previous definitions

The Markov chain Xt is irreducible, if for any two states i and j it is possible
to get from i to j in a finite number of jumps. To be precise, there is a sequence of
states k0 D i; k1; : : : kn D j so that q.km�1; km/ > 0 for 1 � m � n.

Lemma 4.2. If Xt is irreducible and t > 0 then pt .i; j / > 0.

Proof. Since ps.i; j / � exp.��j s/ > 0 and ptCs.i; j / � pt.i; j /ps.j; j / it
suffices to show that this holds for small t . Since

lim
h!0

ph.km�1; km/=h D q.km�1; km/ > 0

it follows that if h is small enough we have ph.km�1; km/ > 0 for 1 � m � n and
hence pnh.i; j / > 0. ut

In discrete time a stationary distribution is a solution of �p D � . Since there
is no first t > 0, in continuous time we need the stronger notion: � is said to be a
stationary distribution if �pt D � for all t > 0. The last condition is difficult to
check since it involves all of the pt , and as we have seen in the previous section, the
pt are not easy to compute. The next result solves these problems by giving a test
for stationarity in terms of the basic data used to describe the chain, the matrix of
transition rates

Q.i; j / D
(

q.i; j / j ¤ i

��i j D i

where �i DPj ¤i q.i; j / is the total rate of transitions out of i .

Lemma 4.3. � is a stationary distribution if and only if �Q D 0.

Why is this true? Filling in the definition of Q and rearranging, the condition
�Q D 0 becomes

X

k¤j

�.k/q.k; j / D �.j /�j
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If we think of �.k/ as the amount of sand at k, the right-hand side represents the
rate at which sand leaves j , while the left gives the rate at which sand arrives at j .
Thus, � will be a stationary distribution if for each j the flow of sand in to j is
equal to the flow out of j .

More details. If �pt D � then

0 D d

dt
�pt D

X

i

�.i/p0
t .i; j / D

X

i

�.i/
X

k

pt .i; k/Q.k; j /

D
X

k

X

i

�.i/pt .i; k/Q.k; j / D
X

k

�.k/Q.k; j /

Conversely if �Q D 0

d

dt

 
X

i

�.i/pt .i; j /

!

D
X

i

�.i/p0
t .i; j / D

X

i

�.i/
X

k

Q.i; k/pt.k; j /

D
X

k

X

i

�.i/Q.i; k/pt.k; j / D 0

Since the derivative is 0, �pt is constant and must always be equal to � its value at 0.
ut

Lemma 4.2 implies that for any h > 0; ph is irreducible and aperiodic, so by
Theorem 1.19

lim
n!1 pnh.i; j / D �.j /:

From this we get

Theorem 4.4. If a continuous-time Markov chain Xt is irreducible and has a
stationary distribution � , then

lim
t!1 pt.i; j / D �.j /

We will now consider some examples.

Example 4.10 (L.A. weather chain). There are three states: 1D sunny, 2D smoggy,
3D rainy. The weather stays sunny for an exponentially distributed number of days
with mean 3, then becomes smoggy. It stays smoggy for an exponentially distributed
number of days with mean 4, then rain comes. The rain lasts for an exponentially
distributed number of days with mean 1, then sunshine returns. Remembering that
for an exponential the rate is 1 over the mean, the verbal description translates into
the following Q-matrix

1 2 3
1 �1=3 1=3 0

2 0 �1=4 1=4

3 1 0 �1
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The relation �Q D 0 leads to three equations:

� 1
3
�1 C�3 D 0

1
3
�1 � 1

4
�2 D 0

1
4
�2 ��3 D 0

Adding the three equations gives 0 D 0 so we delete the third equation and add
�1 C �2 C �3 D 1 to get an equation that can be written in matrix form as

�
�1 �2 �3

�
A D �0 0 1

�
where A D

0

@
�1=3 1=3 1

0 �1=4 1

1 0 1

1

A

This is similar to our recipe in discrete time. To find the stationary distribution of a
k state chain, form A by taking the first k � 1 columns of Q, add a column of 1’s
and then

�
�1 �2 �3

� D �0 0 1
�

A�1

i.e., the last row of A�1. In this case we have

�.1/ D 3=8; �.2/ D 4=8; �.3/ D 1=8

To check our answer, note that the weather cycles between sunny, smoggy, and
rainy spending independent exponentially distributed amounts of time with means
3, 4, and 1, so the limiting fraction of time spent in each state is just the mean time
spent in that state over the mean cycle time, 8.

Example 4.11 (Duke basketball). To “simulate” a basketball game we use a four
state Markov chain with four states

0 D Duke on offense 2 D UNC on offense

1 D Duke scores 3 D UNC scores

and transition rate matrix

0 1 2 3
0 �3 2 1 0

1 0 �5 5 0

2 1 0 �2:5 1:5

3 6 0 0 �6

where the rates are per minute. To explain the rates:
The Duke offense keeps the ball for an exponential amount of time with mean
1/3 min, ending with a score with probability 2/3, and turning the ball over to UNC
with probability 1/3. After a score UNC needs an average of 1/5 min to take the ball
down the court and then they are on offense.
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The UNC offense keeps the ball for an exponential amount of time with mean
2/5 min, ending with a score with probability 0.6, and turning the ball over to Duke
with probability 0.4. After a score Duke needs an average of 1/6 min to take the ball
down the court and then they are on offense.

To find the stationary distribution we want to solve

�
�0 �1 �2 �3

�

0

B
B
@

�3 2 1 1

0 �5 5 1

1 0 �2:5 1

6 0 0 1

1

C
C
A D

�
0 0 0 1

�

The answer can be found by reading the fourth row of the inverse of the matrix:

10

29

4

29

12

29

3

29

Thus in the long run the chain spends a fraction 4/29 in state 1, and 6/29 in state 3.
To translate this into a more useful statistic, we note that the average time in state 1
is 1/5 and the average time in state 3 is 1/6, so the number of baskets per minute for
the two teams are

4=29

1=5
D 20

29
D 0:6896

3=29

1=6
D 18

29
D 0:6206

Multiplying by 2 points per basket and 40 min per game yields 55.17 and 49.65
points per game respectively.

Detailed balance condition. Generalizing from discrete time we can formulate
this condition as:

�.k/q.k; j / D �.j /q.j; k/ for all j ¤ k (4.16)

The reason for interest in this concept is

Theorem 4.5. If (4.16) holds, then � is a stationary distribution.

Why is this true? The detailed balance condition implies that the flows of sand
between each pair of sites are balanced, which then implies that the net amount of
sand flowing into each vertex is 0, i.e., �Q D 0.

Proof. Summing 4.16 over all k ¤ j and recalling the definition of �j gives

X

k¤j

�.k/q.k; j / D �.j /
X

k¤j

q.j; k/ D �.j /�j
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Rearranging we have

.�Q/j D
X

k¤j

�.k/q.k; j / � �.j /�j D 0

ut
As in discrete time, (4.16) is much easier to check but does not always hold. In
Example 4.10

�.2/q.2; 1/ D 0 < �.1/q.1; 2/

As in discrete time, detailed balance holds for

Example 4.12 (Birth and death chains). Suppose that S D f0; 1; : : : ; N g with
N � 1 and

q.n; nC 1/ D �n for n < N

q.n; n � 1/ D �n for n > 0

Here �n represents the birth rate when there are n individuals in the system, and �n

denotes the death rate in that case.

If we suppose that all the �n and �n listed above are positive then the birth
and death chain is irreducible, and we can divide to write the detailed balance
condition as

�.n/ D �n�1

�n

�.n � 1/ (4.17)

Using this again we have �.n � 1/ D .�n�2=�n�1/�.n � 2/ and it follows that

�.n/ D �n�1

�n

� �n�2

�n�1

� �.n � 2/

Repeating the last reasoning leads to

�.n/ D �n�1 � �n�2 � � ��0

�n � �n�1 � � ��1

�.0/ (4.18)

To check this formula and help remember it, note that (i) there are n terms in the
numerator and in the denominator, and (ii) if the state space was f0; 1; : : : ; ng, then
�0 D 0 and �n D 0, so these terms cannot appear in the formula.

To illustrate the use of (4.18) we will consider several concrete examples.

Example 4.13 (Two state chains). Suppose that the state space is f1; 2g; q.1; 2/D �,
and q.2; 1/ D �, where both rates are positive. The equations �Q D 0 can be
written as

�
�1 �2

�
��� �

� ��

�

D �0 0
�
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The first equation says ���1 C ��2 D 0. Taking into account that we must have
�1 C �2 D 1, it follows that

�1 D �

�C �
and �2 D �

�C �

Example 4.14 (Barbershop). A barber can cut hair at rate 3, where the units are
people per hour, i.e., each haircut requires an exponentially distributed amount
of time with mean 20 min. Suppose customers arrive at times of a rate 2 Poisson
process, but will leave if both chairs in the waiting room are full. (a) Find the
equilibrium distribution. (b) What fraction of customers enter service? (c) What
is the average amount of time in the system for a customer who enters service?

Solution. We define our state to be the number of customers in the system, so S D
f0; 1; 2; 3g. From the problem description it is clear that

q.i; i � 1/ D 3 for i D 1; 2; 3

q.i; i C 1/ D 2 for i D 0; 1; 2

The detailed balance conditions say

2�.0/ D 3�.1/; 2�.1/ D 3�.2/; 2�.2/ D 3�.3/

Setting �.0/ D c and solving, we have

�.1/ D 2c

3
; �.2/ D 2

3
� �.1/ D 4c

9
; �.3/ D 2

3
� �.2/ D 8c

27

The sum of the �’s is .27C 18C 12C 8/c=27 D 65c=27, so c D 27=65 and

�.0/ D 27=65; �.1/ D 18=65; �.2/ D 12=65; �.3/ D 8=65

From this we see that 8=65’s of the time someone is waiting, so that fraction of the
arrivals are lost and hence 57=65’s or 87.7% of the customers enter service.

Example 4.15 (Machine repair model). A factory has three machines in use and one
repairman. Suppose each machine works for an exponential amount of time with
mean 60 days between breakdowns, but each breakdown requires an exponential
repair time with mean 4 days. What is the long-run fraction of time all three
machines are working?

Solution. Let Xt be the number of working machines. Since there is one repairman
we have q.i; i C 1/ D 1=4 for i D 0; 1; 2. On the other hand, the failure rate is
proportional to the number of machines working, so q.i; i � 1/ D i=60 for i D
1; 2; 3. Setting �.0/ D c and plugging into the recursion (4.17) gives

�.1/ D �0

�1

� �.0/ D 1=4

1=60
� c D 15c
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�.2/ D �1

�2

� �.1/ D 1=4

2=60
� 15c D 225c

2

�.3/ D �2

�3

� �.2/ D 1=4

3=60
� 225c

2
D 1125c

2

Adding up the �’s gives .1;125C 225C 30C 2/c=2 D 1;382c=2 so c D 2=1;480

and we have

�.3/ D 1;125

1;382
�.2/ D 225

1;382
�.1/ D 30

1;382
�.0/ D 2

1;382

Thus in the long run all three machines are working 1;125=1;382 D 0:8140 of the
time.

Example 4.16 (M/M/1 queue). In this case q.n; nC 1/D� and q.n; n � 1/Dn�

so

�.n/ D �.0/
.�=�/n

nŠ

If we take �.0/ D e��=� then this becomes the Poisson distribution with mean �=�.

Example 4.17 (M/M/s queue with balking). A bank has s tellers that serve cus-
tomers who need an exponential amount of service with rate � nd queue in a single
line if all of the servers are busy. Customers arrive at times of a Poisson process with
rate � but only join the queue with probability an if there are n customers in line.
Thus, the birth rate �n D �an for n � 0, while the death rate is

�n D
(

n� 0 � n � s

s� n � s

for n � 1. It is reasonable to assume that if the line is long the probability the
customer will join the queue is small. The next result shows that this is always
enough to prevent the queue length from growing out of control.

Theorem 4.6. If an ! 0 as n!1, then there is a stationary distribution.

Proof. It follows from (4.17) that if n � s, then

�.nC 1/ D �n

�nC1

� �.n/ D an � �

s�
� �.n/

If N is large enough and n � N , then an�=.s�/ � 1=2 and it follows that

�.nC 1/ � 1

2
�.n/ : : : �

�
1

2

�n�N

�.N /

This implies that
P

n �.n/ <1, so we can pick �.0/ to make the sumD 1. ut
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Concrete example. Suppose s D 1 and an D 1=.nC 1/. In this case

�n�1 � � ��0

�n � � ��1

D �n

�n
� 1

1 � 2 � � �n D
.�=�/n

nŠ

To find the stationary distribution we want to take �.0/ D c so that

c

1X

nD0

.�=�/n

nŠ
D 1

Recalling the formula for the Poisson distribution with mean �=�, we see that c D
e��=� and the stationary distribution is Poisson.

4.4 Exit Distributions and Hitting Times

In this section we generalize results from Sects. 1.8 and 1.9 to continuous time. We
will approach this first using the embedded jump chain with transition probability

r.i; j / D q.i; j /

�i

where �i DPj ¤i q.i; j /

Let Vk D minft � 0 W Xt D kg be the time of the first visit to x and let Tk D
minft � 0 W Xt D k and Xs ¤ k for some s < tg be the time of the first return.
The second definition is made complicated by the fact that is X0 D k then the chain
stays at k for an amount of time that is exponential with rate �k .

Example 4.18. M/M/1 queue has jump rates q.i; iC1/ D � for i � 0 and q.i; i�1/

D � for n � 1. The embedded chain has r.0; 1/ D 1 and for i � 1

r.i; i C 1/ D �

�C �
r.i; i � 1/ D �

�C �

From this we see that the embedded chain is a random walk, so the probabilities
Pi .VN < V0/ are the same as those computed in (1.17) and (1.22). Using this with
results in Sect. 1.10 we see that the chain is

positive recurrent E0T0 <1 if � < �

null recurrent E0T0 D1 if � D �

transient P0.T0 <1/ < 1 if � > �

Example 4.19. Branching process has jump rates q.i; iC1/ D �i and q.i; i�1/ D
�i . 0 is an absorbing state but for i � 1 the i ’s cancel and we have

r.i; i C 1/ D �

�C �
r.i; i � 1/ D �

�C �
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Thus absorption at 0 is certain if � � � but if � > � then by (1.23) the probability
of avoiding extinction is

P1.T0 D 1/ D 1 � �

�

For another derivation let � D P1.T0 < 1/. By considering what happens when
the chain leaves 0 we have

� D �

�C �
� 1C �

�C �
� �2

since starting from state 2 extinction occurs if and only if each individual’s family
line dies out. Rearranging gives

0 D ��2 � .�C �/�C � D .�� � �/.� � �=�/

The root we want is �=� < 1.

As the last two examples show, if we work with the embedded chain then we
can use the approach of Sect. 1.8 to compute exit distributions. We can also work
directly with the Q-matrix. Let VA D minft W Xt 2 Ag and h.i/ D Pi .X.TA/ D a/.
Then h.a/ D 1; h.b/ D 0 for b 2 A � fag, and for i 62 A

h.i/ D
X

j ¤i

q.i; j /

�i

Multiplying each side by �i D �Q.i; i/ we have

�Q.i; i/h.i/ D
X

j ¤i

Q.i; j /h.j /

which simplifies to
X

j

Q.i; j /h.j / D 0 for i 62 A: (4.19)

Turning now to hitting times, we work the first two examples using the embedded
chain:

Example 4.20 (M/M/1 queue). This is particularly simple because the time in each
state i > 0 is exponential with rate �C � so the new result follows from the one in
discrete time given in (1.28)

E1T0 D 1

�C �
� �C �

� � �
D 1

� � �
(4.20)
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Example 4.21 (Barbershop chain). (continuation of Example 4.14) The transition
rates are

q.i; i � 1/ D 3 for i D 1; 2; 3

q.i; i C 1/ D 2 for i D 0; 1; 2

so the embedded chain is

0 1 2 3
0 0 1 0 0

1 3=5 0 2=5 0

2 0 3=5 0 2=5

3 0 0 1 0

Let g.i/ D Ei V0. g.0/ D 0. Taking into account the rates at which jumps occur we
have

g.1/ D 1

5
C 2=5

g
.2/

g.2/ D 1

5
C 3

5
g.1/C 2=5

g
.3/

g.3/ D 1

3
C g.2/

Inserting the last equation in the second one:

g.2/ D 1

5
C 3

5
g.1/C 2

15
C 2

5
g.2/

or .3=5/g.2/ D .1=3/C .3=5/g.1/. Multiplying by 2/3’s and inserting this in the
first equation we have

g.1/ D 1

5
C 2

9
C 2

5
g.1/

so .3=5/g.1/ D 19=45 and g.1/ D 19=27.

To develop the analogue of (4.19) for exit times we note that if g.i/ D Ei VA

then g.i/ D 0 for i 2 A, and for i 62 A

g.i/ D 1

�i

C
X

j ¤i

q.i; j /

�i

g.j /

Multiplying each side by �i D �Q.i; i/ we have

�Q.i; i/g.i/ D 1C
X

j ¤i

Q.i; j /g.j /
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which simplifies to
X

j

Q.i; j /g.j / D �1 for i 62 A:

Writing 1 for a vector of 1’s the solution, and writing R for the part of Q with
i; j;2 Ac :

g D �R�11 (4.21)

In the barbershop example, the matrix R is

1 2 3
1 �5 2 0

2 3 �5 2

3 0 3 �3

which has

�R�1 D
0

@
1=3 2=9 4=27

1=3 5=9 10=27

1=3 5=9 19=27

1

A

Adding the entries on the first row we find g.1/ D 1=3C 2=9C 4=27 D 19=27 in
agreement with the previous calculation.

Example 4.22 (Return to office hours). With the machinery just developed we can
give a simple solution to one of the exercises in Chap. 2. Ron, Sue, and Ted arrive
at the beginning of a professor’s office hours. The amount of time they will stay is
exponentially distributed with means of 1, 1/2, and 1/3 h, i.e., rates 1, 2, and 3. What
is the expected time until all three students are gone?

If we describe the state of the Markov chain by the rates of the students that are
left, with ; to denote an empty office, then the Q-matrix is

123 12 13 23 1 2 3 ;
123 �6 3 2 1 0 0 0 0

12 0 �3 0 0 2 1 0 0

13 0 0 �4 0 3 0 1 0

23 0 0 0 �5 0 3 2 0

1 0 0 0 0 �1 0 0 1

2 0 0 0 0 0 �2 0 2

3 0 0 0 0 0 0 �3 3

Letting R be the previous matrix with the last column deleted, the first row of
�R�1 is

1=6 1=6 1=12 1=30 7=12 2=15 1=20
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The sum is 63=60, or 1 h and 3 min. The first term is the 1/6 h until the first student
leaves. The next three are

1

2
� 1

3

1

3
� 1

4

1

6
� 1

5

which are the probability we visit the state times the amount of time we spend there.
Similarly the last three are

35

60
� 1 16

60
� 1

2

9

60
� 1

3

where again these are the probability we visit the state times the amount of time we
spend there.

4.5 Markovian Queues

In this section we will take a systematic look at the basic models of queueing theory
that have Poisson arrivals and exponential service times. The arguments in Sect. 3.2
explain why we can be happy assuming that the arrival process is Poisson. The
assumption of exponential services times is hard to justify, but here, it is a necessary
evil. The lack of memory property of the exponential is needed for the queue length
to be a continuous time Markov chain. We begin with the simplest examples.

Single Server Queues

Example 4.23 (M/M/1 queue). In this system customers arrive to a single server
facility at the times of a Poisson process with rate �, and each requires an
independent amount of service that has an exponential distribution with rate �. From
the description it should be clear that the transition rates are

q.n; nC 1/ D � if n � 0

q.n; n � 1/ D � if n � 1

so we have a birth and death chain with birth rates �n D � and death rates �n D �.
Plugging into our formula for the stationary distribution, (4.18), we have

�.n/ D �n�1 � � ��0

�n � � ��1

� �.0/ D
�

�

�

�n

�.0/ (4.22)
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To find the value of �.0/, we recall that when j� j < 1;
P1

nD0 �n D 1=.1� �/. From
this we see that if � < �, then

1X

nD0

�.n/ D
1X

nD0

�
�

�

�n

�.0/ D �.0/

1 � .�=�/

So to have the sum 1, we pick �.0/ D 1 � .�=�/, and the resulting stationary
distribution is the shifted geometric distribution

�.n/ D
�

1 � �

�

��
�

�

�n

for n � 0 (4.23)

It is comforting to note that this agrees with the idle time formula, (3.5), which says
�.0/ D 1 � �=�.

Having determined the stationary distribution we can now compute various
quantities of interest concerning the queue. We might be interested, for example,
in the distribution of the time TQ spent waiting in the queue when the system is in
equilibrium. To do this we begin by noting that the only way to wait 0 is for the
number of people waiting in the queue Q to be 0 so

P.TQ D 0/ D P.Q D 0/ D 1 � �

�

When there is at least one person in the system, the arriving customer will spend a
positive amount of time in the queue. Writing f .x/ for the density function of TQ on
.0;1/, we note that if there are n people in the system when the customer arrives,
then the amount of time he needs to enter service has a gamma(n; �) density, so
using (2.12) in Chap. 2

f .x/ D
1X

nD1

�

1 � �

�

��
�

�

�n

e��x �nxn�1

.n � 1/Š

Changing variables m D n � 1 and rearranging, the above becomes

D
�

1 � �

�

�

e��x�

1X

mD0

�mxm

mŠ
D �

�
.� � �/e�.���/x

Recalling that P.TQ > 0/ D �=�, we can see that the last result says that the
conditional distribution of TQ given that TQ > 0 is exponential with rate � � �.
From this we see that

WQ D ETQ D �

�
� 1

�� �
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To compare with the Pollaczek-Khintchine formula, (3.7), we note that the service
times si have Es2

i =2 D 1=�2 to conclude:

WQ D �E.s2
i =2/

1 � �Esi

D �=�2

1 � �=�
D �

�
� 1

� � �

With the waiting time in the queue calculated, we can see that the average waiting
time in the system is

W D WQ C Esi D �

�
� 1

� � �
C 1

�
� � � �

� � �
D 1

� � �

To get this result using Little’s formula L D �W we note that the queue length in
equilibrium has a shifted geometric distribution so

L D 1

1 � �=�
� 1 D �

� � �
� �� �

�� �
D �

� � �

By our fourth queueing equation, (3.6), the server’s busy periods have mean

EB D 1

�

�
1

�.0/
� 1

�

D 1

�

�
�

� � �
� 1

�

D 1

� � �

which agrees with (4.20).

Example 4.24 (M/M/1 queue with a finite waiting room). In this system customers
arrive at the times of a Poisson process with rate �. Customers enter service if there
are < N individuals in the system, but when there are N customers in the system,
the new arrival leaves never to return. Once in the system, each customer requires
an independent amount of service that has an exponential distribution with rate �.

Lemma 4.7. Let Xt be a Markov chain with a stationary distribution � that
satisfies the detailed balance condition. Let Yt be the chain constrained to stay
in a subset A of the state space. That is, jumps which take the chain out of
A are not allowed, but allowed jumps occur at the original rates. In symbols,
Nq.x; y/ D q.x; y/ if x; y 2 A and 0 otherwise. Let C D P

y2A �.y/. Then
�.x/ D �.x/=C is a stationary distribution for Yt .

Proof. If x; y 2 A then detailed balance for Xt implies �.x/q.x; y/ D �.y/q.y; x/.
From this it follows that �.x/ Nq.x; y/ D �.y/ Nq.y; x/ so � satisfies the detailed
balance condition for Yt . ut

It follows from Lemma 4.7 that

�.n/ D
�

�

�

�n

=C for 1 � n � N
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To compute the normalizing constant, we recall that if � ¤ 1, then

NX

nD0

�n D 1 � �N C1

1 � �
(4.24)

Suppose now that � ¤ �. Using (4.24), we see that

C D 1 � .�=�/N C1

1 � �=�

so the stationary distribution is given by

�.n/ D 1 � �=�

1 � .�=�/N C1

�
�

�

�n

for 0 � n � N (4.25)

The new formula is similar to the old one in (4.23) and when � < � reduces to it
as N !1. Of course, when the waiting room is finite, the state space is finite and
we always have a stationary distribution, even when � > �. The analysis above has
been restricted to � ¤ �. However, it is easy to see that when � D � the stationary
distribution is �.n/ D 1=.N C 1/ for 0 � n � N .

To check formula (4.25), we note that the barbershop chain, Example 4.14, has
this form with N D 3; � D 2, and � D 3, so plugging into (4.25) and multiplying
numerator and denominator by 34 D 81, we have

�.0/ D 1 � 2=3

1 � .2=3/4
D 81� 54

81� 16
D 27=65

�.1/ D 2

3
�.0/ D 18=65

�.2/ D 2

3
�.1/ D 12=65

�.3/ D 2

3
�.2/ D 8=65

From the equation for the equilibrium we have that the average queue length

L D 1 � 18

65
C 2 � 12

65
C 3 � 8

65
D 66

65

Customers will only enter the system if there are <3 people, so

�a D 2.1� �.3// D 114=65

and using the idle time formula (3.5)

�.0/ D 1 � �a

3
D 1 � 114

195
D 81

195
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Using Little’s formula, Theorem 3.6, we see that the average waiting time for
someone who enters the system is

W D L

�a

D 66=65

114=65
D 66

114
D 0:579 h

To check this we note that

W D 1

1 � �.3/




�.0/
1

3
C �.1/ � 2

3
C �.2/ � 1

�

D 27

57
� 1

3
C 18

57
� 2

3
C 12

57
� 3

3
D 9C 12C 12

57
D 33

57
D 66

114

From the last computation we see that WQ D W �1=3 D 14=57. We do not compare
this result with the Pollaczek-Khintchine formula (3.7), since a key ingredient in the
derivation is false: arriving customers who enter the system do not see the time
average queue length.

By our fourth queueing equation, (3.6), the server’s busy periods have mean

EB D 1

�

�
1

�.0/
� 1

�

D 1

2

�
65

27
� 1

�

D 19

27

which agrees with the computation in Example 4.21.

Multiple Servers

Our next example is queue with s servers with an unlimited waiting room, a system
described more fully in Example 4.3.

Example 4.25 (M/M/s queue). Imagine a bank with s � 1 tellers that serve
customers who queue in a single line if all servers are busy. We imagine that
customers arrive at the times of a Poisson process with rate �, and each requires
an independent amount of service that has an exponential distribution with rate �.
As explained in Example 1.3, the flip rates are q.n; nC 1/ D � and

q.n; n � 1/ D
(

�n if n � s

�s if n � s

The conditions that result from using the detailed balance condition are

��.j � 1/ D �j�.j / for j � s;

��.j � 1/ D �j�.j / for j � s:
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From this we conclude that

�.k/ D

8
ˆ̂
<

ˆ̂
:

c

kŠ

�
�

�

�k

k � s

c

sŠsk�s

�
�

�

�k

k � s

(4.26)

where c is a constant that makes the sum equal to 1. From the last formula we see
that if � < s� then

P1
j D0 �.j / < 1 and it is possible to pick c to make the sum

equal to 1. From this it follows that

If � < s�, then the M=M=s queue has as stationary distribution.

The condition � < s� for the existence of a stationary distribution is natural
since it says that the service rate of the fully loaded system is larger than the arrival
rate, so the queue will not grow out of control. Conversely,

If � > s�, the M=M=s queue is transient.

Why is this true? An M=M=s queue with s rate � servers is less efficient than
an M=M=1 queue with 1 rate s� server, since the single server queue always has
departures at rate s�, while the s server queue sometimes has departures at rate n�

with n < s. An M=M=1 queue is transient if its arrival rate is larger than its service
rate.

Formulas for the stationary distribution �.n/ for the M=M=s queue are unpleas-
ant to write down for a general number of servers s, but it is not hard to use (4.26) to
find the stationary distribution in a concrete cases: If s D 3; � D 2 and � D 1, then

1X

kD2

�.k/ D c

2
� 22

1X

j D0

.2=3/j D 6c

so
P1

kD0 �.k/ D 9c and we have

�.0/ D 1

9
; �.1/ D 2

9
; �.k/ D 2

9

�
2

3

�k�2

for k � 2

Our next result is a remarkable property of the M/M/s queue.

Theorem 4.8. If � < �s, then the output process of the M/M/s queue in equilibrium
is a rate � Poisson process.

Your first reaction to this should be that it is crazy. Customers depart at rate 0,
�; 2�; : : : ; s�, depending on the number of servers that are busy and it is usually
the case that none of these numbers D �. To further emphasize the surprising
nature of Theorem 4.8, suppose for concreteness that there is one server, � D 1,
and � D 10. If, in this situation, we have just seen 30 departures in the last 2 h,
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then it seems reasonable to guess that the server is busy and the next departure will
be exponential(10). However, if the output process is Poisson, then the number of
departures in disjoint intervals are independent.

Proof. for s D 1. Our first step in making the result in Theorem 4.8 seem reasonable
is to check by hand that if there is one server and the queue is in equilibrium, then
the time of the first departure, D, has an exponential distribution with rate �. There
are two cases to consider.

Case 1. If there are n � 1 customers in the queue, then the time to the next departure
has an exponential distribution with rate �, i.e.,

fD.t/ D �e��t

Case 2. If there are n D 0 customers in the queue, then we have to wait an
exponential(�) amount of time until the first arrival, and then an independent
exponential(�) for that customer to depart. If we let T1 and T2 be the waiting
times for the arrival and for the departure, then breaking things down according
to the value of T1 D s, the density of D D T1 C T2 in this case is

fD.t/ D
Z t

0

�e��s � �e��.t�s/ ds D ��e��t

Z t

0

e�.���/s ds

D ��e��t

� � �

�
1 � e�.���/t

� D ��

� � �

�
e��t � e��t

�

The probability of 0 customers in equilibrium is 1�.�=�/ by (4.23). This implies
the probability of �1 customer is �=�, so combining the two cases:

fD.t/ D �� �

�
� ��

� � �

�
e��t � e��t

�C �

�
� �e��t

At this point cancellations occur to produce the answer we claimed:

��
�
e��t � e��t

�C �e��t D �e��t

We leave it to the adventurous reader to try to repeat the last calculation for the
M/M/s queue with s > 1 where there is not a neat formula for the stationary
distribution.

Proof (Proof of Theorem 4.8.). By repeating the proof of (1.13) one can show

Lemma 4.9. Fix T and let Ys D XT �s for 0 � s � T . Then Ys is a Markov chain
with transition probability

Opt.i; j / D �.j /pt .j; i/

�.i/
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Proof. If s C t � T then

P.YsCt D j jYs D i/ D P.YsCt D j; Ys D i/

P.Ys D i/
D P.XT �.sCt / D j; XT �s D i/

P.XT �s D i/

D P.XT �.sCt / D j /P.XT �s D i jXT �.sCt / D j /

�.i/
D �.j /pt .j; i/

�.i/

which is the desired result. ut
If � satisfies the detailed balance condition �.i/q.i; j / D �.j /q.j; i/, then the
reversed chain has transition probability Opt .i; j / D pt.i; j /.

As we learned in Example 4.25, when � < �s the M=M=s queue is a birth
and death chain with a stationary distribution � that satisfies the detailed balance
condition. Lemma 4.9 implies that if we take the movie of the Markov chain in
equilibrium then we see something that has the same distribution as the M=M=s

queue. Reversing time turns arrivals into departures, so the departures must be a
Poisson process with rate �. ut

It should be clear from the proof just given that we also have:

Theorem 4.10. Consider a queue in which arrivals occur according to a Poisson
process with rate � and customers are served at rate �n when there are n in the
system. Then as along as there is a stationary distribution the output process will be
a rate � Poisson process.

A second refinement that will be useful in the next section is

Theorem 4.11. Let N.t/ be the number of departures between time 0 and time t

for the M=M=1 queue X.t/ started from its equilibrium distribution. Then fN.s/ W
0 � s � tg and X.t/ are independent.

Why is this true? At first it may sound deranged to claim that the output process
up to time t is independent of the queue length. However, if we reverse time,
then the departures before time t turn into arrivals after t , and these are obviously
independent of the queue length at time t; X.t/.

4.6 Queueing Networks*

In many situations we are confronted with more than one queue. For example, when
you go to the Department of Motor Vehicles to renew your driver’s license you must
(i) take a test on the driving laws, (ii) have your test graded, (iii) pay your fees, and
(iv) get your picture taken. A simple model of this type of situation with only two
steps is:

Example 4.26 (Two-station tandem queue). In this system customers at times of
a Poisson process with rate � arrive at service facility 1 where they each require
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an independent exponential amount of service with rate �1. When they complete
service at the first site, they join a second queue to wait for an exponential amount
of service with rate �2.

λ
μ1 μ2

Our main problem is to find conditions that guarantee that the queue stabilizes,
i.e., has a stationary distribution. This is simple in the tandem queue. The first queue
is not affected by the second, so if � < �1, then (4.23) tells us that the equilibrium
probability of the number of customers in the first queue, X1

t , is given by the shifted
geometric distribution

P
�
X1

t D m
� D

�
�

�1

�m �

1 � �

�1

�

In the previous section we learned that the output process of an M=M=1 queue
in equilibrium is a rate � Poisson process. This means that if the first queue is in
equilibrium, then the number of customers in the queue, X2

t , is itself an M=M=1

queue with arrivals at rate � (the output rate for 1) and service rate �2. Using the
results in (4.23) again, the number of individuals in the second queue has stationary
distributions

P
�
X2

t D n
� D

�
�

�2

�n �

1 � �

�2

�

To specify the stationary distribution of the system, we need to know the joint
distribution of X1

t and X2
t . The answer is somewhat remarkable: in equilibrium the

two queue lengths are independent.

P
�
X1

t D m; X2
t D n

� D
�

�

�1

�m �

1 � �

�1

�

�
�

�

�2

�n �

1 � �

�2

�

(4.27)

Why is this true? Theorem 4.11 implies that the queue length and the departure
process are independent.

Since there is more than a little hand-waving going on in the proof of
Theorem 4.11 and its application here, it is comforting to note that one can simply
verify from the definitions that

Lemma 4.12. If �.m; n/ D c�mCn=.�m
1 �n

2/, where c D .1 � �=�1/.1 � �=�2/

is a constant chosen to make the probabilities sum to 1, then � is a stationary
distribution.

Proof. The first step in checking �Q D 0 is to compute the rate matrix Q. To do
this it is useful to draw a picture which assumes m; n > 0
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(m−1, n+1) (m, n+1)

(m−1, n) (m, n) (m+1, n)

(m, n−1) (m+1, n−1)

λ λ

μ

μ2

2

μ1

μ1(a)

(b)

(c)

The rate arrows plus the ordinary lines on the picture, make three triangles. We will
now check that the flows out of and into .m; n/ in each triangle balance. In symbols
we note that

(a) �1�.m; n/ D c�mCn

�m�1
1 �n

2

D ��.m � 1; n/

(b) �2�.m; n/ D c�mCn

�m
1 �n�1

2

D �1�.mC 1; n � 1/

(c) ��.m; n/ D c�mCnC1

�m
1 �n

2

D �2�.m; nC 1/

This shows that �Q D 0 when m; n > 0. There are three other cases to consider:
(i) m D 0; n > 0, (ii) m > 0; n D 0, and (iii) m D 0; n D 0. In these cases some of
the rates are missing: (i) those in (a), (ii) those in (b), and (iii) those in (a) and (b).
However, since the rates in each group balance we have �Q D 0. ut
Example 4.27 (General two-station queue). Suppose that at station i : arrivals from
outside the system occur at rate �i , service occurs at rate �i , and departures go to
the other queue with probability pi and leave the system with probability 1 � pi .

λ1 λ2

1 − p21 − p1

p1

p2

μ1 μ2

Our question is: When is the system stable? That is, when is there a stationary
distribution? To get started on this question suppose that both servers are busy.
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In this case work arrives at station 1 at rate �1C p2�2, and work arrives at station 2
at rate �2 C p1�1. It should be intuitively clear that:

(i) If �1 C p2�2 < �1 and �2 C p1�1 < �2, then each server can handle their
maximum arrival rate and the system will have a stationary distribution.

(ii) If �1 C p2�2 > �1 and �2 C p1�1 > �2, then there is positive probability
that both servers will stay busy for all time and the queue lengths will tend to
infinity.

Not covered by (i) or (ii) is the situation in which server 1 can handle her worst case
scenario but server 2 cannot cope with his:

�1 C p2�2 < �1 and �2 C p1�1 > �2

In some situations in this case, queue 1 will be empty often enough to reduce the
arrivals at station 2 so that server 2 can cope with his workload. As we will see, a
concrete example of this phenomenon occurs when

�1 D 1; �1 D 4; p1 D 1=2 �2 D 2; �2 D 3:5; p2 D 1=4

To check that for these rates server 1 can handle the maximum arrival rate but server
2 cannot, we note that

�1 C p2�2 D 1C 1

4
� 3:5 D 1:875 < 4 D �1

�2 C p1�1 D 2C 1

2
� 4 D 4 > 3:5 D �2

To derive general conditions that will allow us to determine when a two-station
network is stable, let ri be the long-run average rate that customers arrive at station i .
If there is a stationary distribution, then ri must also be the long run average rate
at which customers leave station i or the queue would grow linearly in time. If we
want the flow in and out of each of the stations to balance, then we need

r1 D �1 C p2r2 and r2 D �2 C p1r1 (4.28)

Plugging in the values for this example and solving gives

r1 D 1C 1

4
r2 and r2 D 2C 1

2
r1 D 2C 1

2

�

1C 1

4
r2

�

So .7=8/r2 D 5=2 or r2 D 20=7, and r1 D 1C 20=28D 11=7. Since

r1 D 11=7 < 4 D �1 and r2 D 20=7 < 3:5 D �2

this analysis suggests that there will be a stationary distribution.
To prove that there is one, we return to the general situation and suppose that

the ri we find from solving (4.28) satisfy ri < �i . Thinking of two independent
M=M=1 queues with arrival rates ri , we let ˛i D ri=�i and guess:
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Theorem 4.13. If �.m; n/ D c˛m
1 ˛n

2 where c D .1 � ˛1/.1 � ˛2/ then � is a
stationary distribution.

Proof. The first step in checking �Q D 0 is to compute the rate matrix Q. To do
this it is useful to draw a picture. Here, we have assumed that m and n are both
positive. To make the picture slightly less cluttered, we have only labeled half of the
arrows and have used qi D 1 � pi .

(m − 1, n + 1) (m, n + 1)

(m − 1, n) (m, n) (m + 1, n)

(m, n − 1) (m + 1, n − 1)

�
�

�
�

�

�

�

� �
�

�
�

��

�
�

�
�

��

�
�

�
�

�

(a)

(b)

(c)

λ1

μ1q1

μ2p2

λ2

μ1p1

μ2q2

The rate arrows plus the dotted lines in the picture make three triangles. We will
now check that the flows out of and into .m; n/ in each triangle balance. In symbols
we need to show that

.a/ �1�.m; n/ D �2p2�.m � 1; nC 1/C �1�.m � 1; n/

.b/ �2�.m; n/ D �1p1�.mC 1; n� 1/C �2�.m; n� 1/

.c/ .�1 C �2/�.m; n/ D �2.1 � p2/�.m; nC 1/C �1.1 � p1/�.mC 1; n/

Filling in �.m; n/ D c˛m
1 ˛n

2 and canceling out c, we have

�1˛m
1 ˛n

2 D �2p2˛
m�1
1 ˛nC1

2 C �1˛
m�1
1 ˛n

2

�2˛m
1 ˛n

2 D �1p1˛
mC1
1 ˛n�1

2 C �2˛
m
1 ˛n�1

2

.�1 C �2/˛
m
1 ˛n

2 D �2.1 � p2/˛
m
1 ˛nC1

2 C �1.1 � p1/˛
mC1
1 ˛n

2

Canceling out the highest powers of ˛1 and ˛2 common to all terms in each equation
gives

�1˛1 D �2p2˛2 C �1

�2˛2 D �1p1˛1 C �2

.�1 C �2/ D �2.1 � p2/˛2 C �1.1 � p1/˛1



172 4 Continuous Time Markov Chains

Filling in �i ˛i D ri , the three equations become

r1 D p2r2 C �1

r2 D p1r1 C �2

.�1 C �2/ D r2.1 � p2/C r1.1 � p1/

The first two equations hold by (4.28). The third is the sum of the first two, so it
holds as well.

This shows that �Q D 0 when m; n > 0. As in the proof for the tandem queue,
there are three other cases to consider: (i) m D 0; n > 0, (ii) m > 0; n D 0, and
(iii) m D 0; n D 0. In these cases some of the rates are missing. However, since the
rates in each group balance we have �Q D 0. ut
Example 4.28 (Network of M/M/1 queues). Assume now that there are stations 1 �
i � K . Arrivals from outside the system occur to station i at rate �i and service
occurs there at rate �i . Departures go to station j with probability p.i; j / and leave
the system with probability

q.i/ D 1 �
X

j

p.i; j / (4.29)

To have a chance of stability we must suppose

(A) For each i it is possible for a customer entering at i to leave the system. That is,
for each i there is a sequence of states i D j0; j1; : : : jn with p.jm�1; jm/ > 0

for 1 � m � n and q.jn/ > 0.

Generalizing (4.28), we investigate stability by solving the system of equations for
the rj that represent the arrival rate at station j . As remarked earlier, the departure
rate from station j must equal the arrival rate, or a linearly growing queue would
develop. Thinking about the arrival rate at j in two different ways, it follows that

rj D �j C
KX

iD1

rip.i; j / (4.30)

This equation can be rewritten in matrix form as r D �C rp and solved as

r D �.I � p/�1 (4.31)

By reasoning in Sect. 1.9, where unfortunately r is what we are calling p here:

r D
1X

nD0

�pn D
1X

nD0

KX

iD1

�i p
n.i; j /
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The answer is reasonable: pn.i; j / is the probability a customer entering at i is at
j after he has completed n services. The sum then adds the rates for all the ways of
arriving at j .

Having found the arrival rates at each station, we can again be brave and guess
that if rj < �j , then the stationary distribution is given by

�.n1; : : : ; nK/ D
KY

j D1

�
rj

�j

�nj
�

1 � rj

�j

�

(4.32)

This is true, but the proof is more complicated than for the two station examples, so
we omit it.

Example 4.29. At a government agency entering customers always go to server 1.
After completing service there, 30% leave the system while 70% go to server 2. At
server 2, 50% go to server 3, 20% of the customers have to return to server 1, and
30% leave the system. From server 3, 20% go back to server 2 but the other 80%
can go. That is, the routing matrix is

p D
1 2 3

1 0 0:7 0

2 0:2 0 0:5

3 0 0:2 0

Suppose that arrivals from outside only occur at server 1 and at rate �1 D 3:8 per
hour. Find the stationary distribution if the service rates are �1 D 9; �2 D 7, and
�3 D 7.

The first step is to solve the equations

rj D �j C
3X

iD1

rip.i; j /

By (4.30) the solution is r D �.I � p/�1, where

.I � p/�1 D
0

@
45=38 35=38 35=76

5=19 25=19 25=38

1=19 5=19 43=38

1

A

so multiplying the first row by �1, we have r1 D 9=2; r2 D 7=2, and r3 D 7=4.
Since each ri < �i the stationary distribution is:

�.n1; n2; n3/ D 3

16
.1=2/n1.1=2/n2.1=4/n3



174 4 Continuous Time Markov Chains

It is easy to see that Little’s formula also applies to queueing networks. In this
case the average number of people in the system is

L D
3X

iD1

1

1 � .ri =�i /
� 1 D 1C 1C 1

3
D 7

3

so the average waiting time for a customer entering the system is

W D L

�
D 7=3

19=5
D 35

57
D 0:6140:

4.7 Chapter Summary

In principle continuous time Markov chains are defined by giving their transition
probabilities pt.i; j /, which satisfy the Chapman-Kolmogorov equation.

X

k

ps.i; k/pt .k; j / D psCt .i; j /

In practice, the basic data to describe the chain are the rates q.i; j / at which jumps
occur from i to j ¤ i . If we let �i DPj ¤i q.i; j / be the total rate of jumps out of
i and let

Q.i; j / D
(

q.i; j / i ¤ j

��i i D j

then the transition probability satisfies the Kolmogorov differential equations:

p0
t .i; j / D

X

k

Q.i; k/pt.k; j / D
X

k

pt .i; k/Q.k; j /

These equations can only be solved explicitly in a small number of examples, but
they are essential for developing the theory.

Embedded Markov chain. The discrete time chain with transition probability

r.i; j / D q.i; j /

�i

goes through the same sequence of states as Xt but stays in each one for on unit of
time. Let VA D minft W Xt 2 Ag be the time of the first visit to A. Then h.i/ D
Pi .X.VA/ D a/ satisfies h.a/ D 1; h.b/ D 0 for b 2 A � fag and

h.i/ D
X

j

r.i; j /h.j / for i 62 A.
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The expected hitting time g.i/ D Ei VA satisfies g.a/ D 0 for a 2 A and

g.i/ D 1

�i

C
X

j

r.i; j /g.j / for i 62 A.

One can also work directly with the transition rates. In the first case the equation
with the same boundary conditions (h.a/ D 1; h.b/ D 0 for b 2 A � fag and for
i 62 A) is

X

i

Q.i; j /h.j / D 0 for i 62 A

In the second case, if we let R be the part of the Q-matrix where i; j 62 A then

g D �R�11

where 1 is a column vector of all 1’s.

Stationary distributions. A stationary distribution has
P

i �.i/ D 1 and satisfies
�pt D � for all t > 0, which is equivalent to �Q D 0. To solve these equations
mechanically, we replace the last column of Q by all 1’s to define a matrix A and
then � will be the last row of A�1.

If Xt is irreducible and has stationary distribution � then

pt .i; j /! �.j / as t !1

Detailed balance condition. A sufficient condition to be stationary is that

�.i/q.i; j / D �.j /q.j; i/

There may not be a stationary distribution with this property, but there is one if we
have a birth and death chain: i.e., the state space is f0; 1; : : : rg, where r may be1,
and we have q.i; j / D 0 when ji � j j > 1. In this case we have

�.n/ D �n�1 � � ��0

�n � � ��1

� �.0/

Queues provide a number of interesting examples of birth and death chains.

4.8 Exercises

4.1. A salesman flies around between Atlanta, Boston, and Chicago as follows.

A B C

A �4 2 2

B 3 �4 1

C 5 0 �5
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(a) Find the limiting fraction of time she spends in each city. (b) What is her average
number of trips each year from Boston to Atlanta?

4.2. A small computer store has room to display up to three computers for sale.
Customers come at times of a Poisson process with rate 2 per week to buy a
computer and will buy one if at least one is available. When the store has only
one computer left it places an order for two more computers. The order takes an
exponentially distributed amount of time with mean 1 week to arrive. Of course,
while the store is waiting for delivery, sales may reduce the inventory to 1 and then
to 0. (a) Write down the matrix of transition rates Qij and solve �Q D 0 to find the
stationary distribution. (b) At what rate does the store make sales?

4.3. Consider two machines that are maintained by a single repairman. Machine i

functions for an exponentially distributed amount of time with rate �i before it fails.
The repair times for each unit are exponential with rate �i . They are repaired in the
order in which they fail. (a) Formulate a Markov chain model for this situation with
state space f0; 1; 2; 12; 21g. (b) Suppose that �1 D 1; �1 D 2; �2 D 3; �2 D 4. Find
the stationary distribution.

4.4. Consider the set-up of the previous problem but now suppose machine 1 is
much more important than 2, so the repairman will always service 1 if it is broken.
(a) Formulate a Markov chain model for the this system with state space f0; 1; 2; 12g
where the numbers indicate the machines that are broken at the time. (b) Suppose
that �1 D 1; �1 D 2; �2 D 3; �2 D 4. Find the stationary distribution.

4.5. Two people are working in a small office selling shares in a mutual fund.
Each is either on the phone or not. Suppose that salesman i is on the phone for an
exponential amount of time with rate �i and then off the phone for an exponential
amount of time with rate �i . (a) Formulate a Markov chain model for this system
with state space f0; 1; 2; 12gwhere the state indicates who is on the phone. (b) Find
the stationary distribution.

4.6. (a) Consider the special case of the previous problem in which �1 D �2 D 1,
and �1 D �2 D 3, and find the stationary probabilities. (b) Suppose they upgrade
their telephone system so that a call to one line that is busy is forwarded to the other
phone and lost if that phone is busy. Find the new stationary probabilities.

4.7. Two people who prepare tax forms are working in a store at a local mall. Each
has a chair next to his desk where customers can sit and be served. In addition
there is one chair where customers can sit and wait. Customers arrive at rate �

but will go away if there is already someone sitting in the chair waiting. Suppose
that server i requires an exponential amount of time with rate �i and that when
both servers are free an arriving customer is equally likely to choose either one.
(a) Formulate a Markov chain model for this system with state space f0; 1; 2; 12; 3g
where the first four states indicate the servers that are busy while the last indicates
that there is a total of three customers in the system: one at each server and one
waiting. (b) Consider the special case in which � D 2; �1 D 3 and �2 D 3. Find
the stationary distribution.
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4.8 (Two queues in series). Consider a two station queueing network in which
arrivals only occur at the first server and do so at rate 2. If a customer finds server 1
free he enters the system; otherwise he goes away. When a customer is done at the
first server he moves on to the second server if it is free and leaves the system if it is
not. Suppose that server 1 serves at rate 4 while server 2 serves at rate 2. Formulate
a Markov chain model for this system with state space f0; 1; 2; 12g where the state
indicates the servers who are busy. In the long run (a) what proportion of customers
enter the system? (b) What proportion of the customers visit server 2?

Detailed Balance

4.9. A hemoglobin molecule can carry one oxygen or one carbon monoxide
molecule. Suppose that the two types of gases arrive at rates 1 and 2 and attach
for an exponential amount of time with rates 3 and 4, respectively. Formulate a
Markov chain model with state space fC; 0;�gwhereC denotes an attached oxygen
molecule, � an attached carbon monoxide molecule, and 0 a free hemoglobin
molecule and find the long-run fraction of time the hemoglobin molecule is in each
of its three states.

4.10. A machine is subject to failures of types i D 1; 2; 3 at rates �i and a failure
of type i takes an exponential amount of time with rate �i to repair. Formulate a
Markov chain model with state space f0; 1; 2; 3g and find its stationary distribution.

4.11. Solve the previous problem in the concrete case �1 D 1=24; �2 D 1=30; �3 D
1=84; �1 D 1=3; �2 D 1=5, and �3 D 1=7.

4.12. Three frogs are playing near a pond. When they are in the sun they get too
hot and jump in the lake at rate 1. When they are in the lake they get too cold and
jump onto the land at rate 2. Let Xt be the number of frogs in the sun at time t .
(a) Find the stationary distribution for Xt . (b) Check the answer to (a) by noting that
the three frogs are independent two-state Markov chains.

4.13. There are 15 lily pads and six frogs. Each frog at rate 1 gets the urge to jump
and when it does, it moves to one of the nine vacant pads chosen at random. Find
the stationary distribution for the set of occupied lily pads.

4.14. A computer lab has three laser printers, two that are hooked to the network
and one that is used as a spare. A working printer will function for an exponential
amount of time with mean 20 days. Upon failure it is immediately sent to the
repair facility and replaced by another machine if there is one in working order.
At the repair facility machines are worked on by a single repairman who needs an
exponentially distributed amount of time with mean 2 days to fix one printer. In the
long run how often are there two working printers?

4.15. A computer lab has three laser printers that are hooked to the network.
A working printer will function for an exponential amount of time with mean
20 days. Upon failure it is immediately sent to the repair facility. There machines
are worked on by two repairman who can each repair one printer in an exponential
amount of time with mean 2 days. However, it is not possible for two people to
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work on one printer at once. (a) Formulate a Markov chain model for the number
of working printers and find the stationary distribution. (b) How often are both
repairmen busy? (c) What is the average number of machines in use?

4.16. A computer lab has three laser printers and five toner cartridges. Each
machine requires one toner cartridges which lasts for an exponentially distributed
amount of time with mean 6 days. When a toner cartridge is empty it is sent to
a repairman who takes an exponential amount of time with mean 1 day to refill it.
(a) Compute the stationary distribution. (b) How often are all three printers working?

4.17. Customers arrive at a full-service one-pump gas station at rate of 20 cars per
hour. However, customers will go to another station if there are at least two cars in
the station, i.e., one being served and one waiting. Suppose that the service time for
customers is exponential with mean 6 min. (a) Formulate a Markov chain model for
the number of cars at the gas station and find its stationary distribution. (b) On the
average how many customers are served per hour?

4.18. Solve the previous problem for a two-pump self-serve station under the
assumption that customers will go to another station if there are at least four cars in
the station, i.e., two being served and two waiting.

4.19. Consider a barbershop with two barbers and two waiting chairs. Customers
arrive at a rate of 5 per hour. Customers arriving to a fully occupied shop leave
without being served. Find the stationary distribution for the number of customers
in the shop, assuming that the service rate for each barber is two customers per hour.

4.20. Consider a barbershop with one barber who can cut hair at rate 4 and three
waiting chairs. Customers arrive at a rate of 5 per hour. (a) Argue that this new set-
up will result in fewer lost customers than the previous scheme. (b) Compute the
increase in the number of customers served per hour.

4.21. There are two tennis courts. Pairs of players arrive at rate 3 per hour and play
for an exponentially distributed amount of time with mean 1 h. If there are already
two pairs of players waiting new arrivals will leave. Find the stationary distribution
for the number of courts occupied.

4.22. A taxi company has three cabs. Calls come in to the dispatcher at times of
a Poisson process with rate 2 per hour. Suppose that each requires an exponential
amount of time with mean 20 min, and that callers will hang up if they hear there
are no cabs available. (a) What is the probability all three cabs are busy when a call
comes in? (b) In the long run, on the average how many customers are served per
hour?

4.23 (Detailed balance for three state chains). Consider a chain with state space
f1; 2; 3g in which q.i; j / > 0 if i ¤ j and suppose that there is a stationary
distribution that satisfies the detailed balance condition. (a) Let �.1/ D c. Use
the detailed balance condition between 1 and 2 to find �.2/ and between 2 and 3 to
find �.3/. (b) What conditions on the rates must be satisfied for there to be detailed
balance between 1 and 3?
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4.24 (Kolmogorov cycle condition). Consider an irreducible Markov chain with
state space S . We say that the cycle condition is satisfied if given a cycle of states
x0; x1; : : : ; xn D x0 with q.xi�1; xi / > 0 for 1 � i � n, we have

nY

iD1

q.xi�1; xi / D
nY

iD1

q.xi ; xi�1/

(a) Show that if q has a stationary distribution that satisfies the detailed balance
condition, then the cycle condition holds. (b) To prove the converse, suppose that
the cycle condition holds. Let a 2 S and set �.a/ D c. For b ¤ a in S let x0 D
a; x1 : : : xk D b be a path from a to b with q.xi�1; xi / > 0 for 1 � i � k let

�.b/ D
kY

j D1

q.xi�1; xi /

q.xi ; xi�1/

Show that �.b/ is well defined, i.e., is independent of the path chosen. Then
conclude that � satisfies the detailed balance condition.

Hitting Times and Exit Distributions

4.25. Consider the salesman from Problem 4.1. She just left Atlanta. (a) What is the
expected time until she returns to Atlanta? (b) Find the answer to (a) by computing
the stationary distribution.

4.26. Consider the two queues in series in Problem 4.8. (a) Use the methods of
Sect. 4.4 to compute the expected duration of a busy period. (b) calculate this from
the stationary distribution.

4.27. We now take a different approach to analyzing the Duke Basketball chain,
Example 4.11.

0 1 2 3
0 �3 2 1 0
1 0 �5 5 0
2 1 0 �2:5 1.5
3 6 0 0 �6

(a) Find g.i/ D Ei.V1/ for i D 0; 2; 3. (b) Use the solution to (a) to show that
the number of Duke scores (visits to state 1) by time t has N1.t/=t ! 0:6896

as computed previously. (c) Compute h.i/ D Pi .V3 < V1/ for i D 0; 2. (d) Use
this to compute the distribution of X D the number of time UNC scores between
successive Duke baskets. (e) Use the solution of (d) to conclude that the number
of UNC scores (visits to state 3) by time t has N3.t/=t ! 0:6206 as computed
previously.
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4.28. Brad’s relationship with his girl friend Angelina changes between Amorous,
Bickering, Confusion, and Depression according to the following transition rates
when t is the time in months.

A B C D
A �4 3 1 0

B 4 �6 2 0

C 2 3 �6 1

D 0 0 2 �2

(a) Find the long run fraction of time he spends in these four states? (b) Does the
chain satisfy the detailed balance condition? (c) They are amorous now. What is the
expected amount of time until depression sets in?

4.29. A small company maintains a fleet of four cars to be driven by its workers
on business trips. Requests to use cars are a Poisson process with rate 1.5 per day.
A car is used for an exponentially distributed time with mean 2 days. Forgetting
about weekends, we arrive at the following Markov chain for the number of cars in
service.

0 1 2 3 4
0 �1:5 1:5 0 0 0

1 0:5 �2:0 1:5 0 0

2 0 1:0 �2:5 1:5 0

3 0 0 1:5 �3 1:5

4 0 0 0 2 �2

(a) Find the stationary distribution. (b) At what rate do unfulfilled requests come in?
How would this change if there were only three cars? (c) Let g.i/ D Ei T4. Write
and solve equations to find the g.i/. (d) Use the stationary distribution to compute
E3T4.

4.30. A submarine has three navigational devices but can remain at sea if at least
two are working. Suppose that the failure times are exponential with means 1, 1.5,
and 3 years. Formulate a Markov chain with states 0 D all parts working, 1,2,3 D
one part failed, and 4D two failures. Compute E0T4 to determine the average length
of time the boat can remain at sea.

4.31. Excited by the recent warm weather Jill and Kelly are doing spring cleaning
at their apartment. Jill takes an exponentially distributed amount of time with mean
30 min to clean the kitchen. Kelly takes an exponentially distributed amount of time
with mean 40 min to clean the bath room. The first one to complete their task will go
outside and start raking leaves, a task that takes an exponentially distributed amount
of time with a mean of 1 h. When the second person is done inside, they will help
the other and raking will be done at rate 2. (Of course the other person may already
be done raking in which case the chores are done.) What is the expected time until
the chores are all done?



4.8 Exercises 181

Markovian Queues

4.32. Consider a taxi station at an airport where taxis and (groups of) customers
arrive at times of Poisson processes with rates 2 and 3 per minute. Suppose that a taxi
will wait no matter how many other taxis are present. However, if an arriving person
does not find a taxi waiting he leaves to find alternative transportation. (a) Find the
proportion of arriving customers that get taxis. (b) Find the average number of taxis
waiting.

4.33 (Queue with impatient customers). Customers arrive at a single server at rate
� and require an exponential amount of service with rate �. Customers waiting in
line are impatient and if they are not in service they will leave at rate ı independent
of their position in the queue. (a) Show that for any ı > 0 the system has a stationary
distribution. (b) Find the stationary distribution in the very special case in which
ı D �.

4.34. Customers arrive at the Shortstop convenience store at a rate of 20 per hour.
When two or fewer customers are present in the checkout line, a single clerk works
and the service time is 3 min. However, when there are three or more customers
are present, an assistant comes over to bag up the groceries and reduces the service
time to 2 min. Assuming the service times are exponentially distributed, find the
stationary distribution.

4.35. Customers arrive at a carnival ride at rate �. The ride takes an exponential
amount of time with rate �, but when it is in use, the ride is subject to breakdowns
at rate ˛. When a breakdown occurs all of the people leave since they know that
the time to fix a breakdown is exponentially distributed with rate ˇ. (i) Formulate
a Markov chain model with state space f�1; 0; 1; 2; : : :g where �1 is broken and
the states 0; 1; 2; : : : indicate the number of people waiting or in service. (ii) Show
that the chain has a stationary distribution of the form �.�1/ D a; �.n/ D b�n for
n � 0.

4.36. Customers arrive at a two-server station according to a Poisson process with
rate �. Upon arriving they join a single queue to wait for the next available server.
Suppose that the service times of the two servers are exponential with rates �a and
�b and that a customer who arrives to find the system empty will go to each of
the servers with probability 1/2. Formulate a Markov chain model for this system
with state space f0; a; b; 2; 3; : : :g where the states give the number of customers
in the system, with a or b indicating there is one customer at a or b respectively.
Show that this system is time reversible. Set �.2/ D c and solve to find the limiting
probabilities in terms of c.

4.37. At present the Economics department and the Sociology department each
have one typist who can type 25 letters a day. Economics requires an average of
20 letters per day, while Sociology requires only average of 15. Assuming Poisson
arrival and exponentially distributed typing times find (a) the average queue length
and average waiting time in each departments (b) the average overall waiting time
if they merge their resources to form a typing pool.
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Queueing Networks

4.38. Consider a production system consisting of a machine center followed by an
inspection station. Arrivals from outside the system occur only at the machine center
and follow a Poisson process with rate �. The machine center and inspection station
are each single-server operations with rates �1 and �2. Suppose that each item
independently passes inspection with probability p. When an object fails inspection
it is sent to the machine center for reworking. Find the conditions on the parameters
that are necessary for the system to have a stationary distribution.

4.39. Consider a three station queueing network in which arrivals to servers i D
1; 2; 3 occur at rates 3; 2; 1, while service at stations i D 1; 2; 3 occurs at rates
4; 5; 6. Suppose that the probability of going to j when exiting i; p.i; j / is given by
p.1; 2/ D 1=3; p.1; 3/ D 1=3; p.2; 3/ D 2=3, and p.i; j / D 0 otherwise. Find the
stationary distribution.

4.40 (Feed-forward queues). Consider a k station queueing network in which
arrivals to server i occur at rate �i and service at station i occurs at rate �i . We
say that the queueing network is feed-forward if the probability of going from i to
j < i has p.i; j / D 0. Consider a general three station feed-forward queue. What
conditions on the rates must be satisfied for a stationary distribution to exist?

4.41 (Queues in series). Consider a k station queueing network in which arrivals
to server i occur at rate �i and service at station i occurs at rate �i . In this problem
we examine the special case of the feed-forward system in which p.i; i C 1/ D pi

for 1 � i < k. In words the customer goes to the next station or leaves the system.
What conditions on the rates must be satisfied for a stationary distribution to exist?

4.42. At registration at a very small college, students arrive at the English table
at rate 10 and at the Math table at rate 5. A student who completes service at the
English table goes to the Math table with probability 1/4 and to the cashier with
probability 3/4. A student who completes service at the Math table goes to the
English table with probability 2/5 and to the cashier with probability 3/5. Students
who reach the cashier leave the system after they pay. Suppose that the service times
for the English table, Math table, and cashier are 25, 30, and 20, respectively. Find
the stationary distribution.

4.43. At a local grocery store there are queues for service at the fish counter (1),
meat counter (2), and café (3). For i D 1; 2; 3 customers arrive from outside the
system to station i at rate i , and receive service at rate 4 C i . A customer leaving
station i goes to j with probabilities p.i; j / given the following matrix

1 2 3
1 0 1=4 1=2

2 1=5 0 1=5

3 1=3 1=3 0

In equilibrium what is the probability no one is in the system, i.e., �.0; 0; 0/.
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4.44. Three vendors have vegetable stands in a row. Customers arrive at the stands
1, 2, and 3 at rates 10, 8, and 6. A customer visiting stand 1 buys something
and leaves with probability 1/2 or visits stand 2 with probability 1/2. A customer
visiting stand 3 buys something and leaves with probability 7/10 or visits stand 2
with probability 3/10. A customer visiting stand 2 buys something and leaves with
probability 4/10 or visits stands 1 or 3 with probability 3/10 each. Suppose that the
service rates at the three stands are large enough so that a stationary distribution
exists. At what rate do the three stands make sales. To check your answer note
that since each entering customers buys exactly once the three rates must add up to
10C 8C 6 D 24.

4.45. Four children are playing two video games. The first game, which takes an
average of 4 min to play, is not very exciting, so when a child completes a turn on
it they always stand in line to play the other one. The second one, which takes an
average of 8 min, is more interesting so when they are done they will get back in
line to play it with probability 1/2 or go to the other machine with probability 1/2.
Assuming that the turns take an exponentially distributed amount of time, find the
stationary distribution of the number of children playing or in line at each of the two
machines.



Chapter 5
Martingales

In this chapter we will introduce a class of process that can be thought of as the
fortune of a gambler betting on a fair game. These results will be important when
we consider applications to finance in the next chapter. In addition, they will allow
us to give more transparent proofs of some facts from Chap. 1 concerning exit
distributions and exit times for Markov chains.

5.1 Conditional Expectation

Our study of martingales will rely heavily on the notion of conditional expectation
and involve some formulas that may not be familiar, so we will review them here.
We begin with several definitions. Given an event A we define its indicator function

1A D
(

1 x 2 A

0 x 2 Ac

In words, 1A is “1 on A” (and 0 otherwise). Given a random variable Y , we define
the integral of Y over A to be

E.Y IA/ D E.Y1A/

Note that multiplying Y by 1A sets the productD 0 on Ac and leaves the values on
A unchanged. Finally, we define the conditional expectation of Y given A to be

E.Y jA/ D E.Y IA/=P.A/

This is the expected value for the conditional probability defined by

P.�jA/ D P.� \ A/=P.A/

R. Durrett, Essentials of Stochastic Processes, Springer Texts in Statistics,
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Example 5.1. A simple but important special case arises when the random variable
Y and the set A are independent, i.e., for any set B we have

P.Y 2 B; A/ D P.Y 2 B/P.A/

Noticing that this implies that P.Y 2 B; Ac/ D P.Y 2 B/P.Ac/ and comparing
with the definition of independence of random variables in (A.13), we see that this
holds if and only Y and 1A are independent, so Theorem A.1 implies

E.Y IA/ D E.Y1A/ D EY �E1A

and we have

E.Y jA/ D EY (5.1)

It is easy to see from the definition that the integral over A is linear:

E.Y CZIA/ D E.Y IA/C E.ZIA/ (5.2)

so dividing by P.A/, conditional expectation also has this property

E.Y CZjA/ D E.Y jA/C E.ZjA/ (5.3)

Here and in later formulas and theorems, we always assume that all of the
indicated expected values exist.

In addition, as in ordinary integration one can take constants outside of the
integral.

Lemma 5.1. If X is a constant c on A, then E.XY jA/ D cE.Y jA/.

Proof. Since X D c on A; XY1A D cY1A. Taking expected values and pulling
the constant out front, E.XY1A/ D E.cY1A/ D cE.Y1A/. Dividing by P.A/ now
gives the result. ut

Being an expected value E.�jA/ it has all of the usual properties, in particular:

Lemma 5.2 (Jensen’s inequality). If � is convex then

E.�.X/jA/ � �.E.X jA//

Our next two properties concern the behavior of E.Y IA/ and E.Y jA/ as a
function of the set A.

Lemma 5.3. If B is the disjoint union of A1; : : : ; Ak , then

E.Y IB/ D
kX

j D1

E.Y IAj /
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Proof. Our assumption implies Y1B D Pk
j D1 Y1Aj , so taking expected values,

we have

E.Y IB/ D E.Y1B/ D E

0

@
kX

j D1

Y1Aj

1

A D
kX

j D1

E.Y1Aj / D
kX

j D1

E.Y IAj /

ut
Lemma 5.4. If B is the disjoint union of A1; : : : ; Ak , then

E.Y jB/ D
kX

j D1

E.Y jAj / � P.Aj /

P.B/

In particular when B D ˝ we have EY DPk
j D1 E.Y jAj / � P.Aj /.

Proof. Using the definition of conditional expectation, Lemma 5.3, then doing some
arithmetic and using the definition again, we have

E.Y jB/ D E.Y IB/=P.B/ D
kX

j D1

E.Y IAj /=P.B/

D
kX

j D1

E.Y IAj /

P.Aj /
� P.Aj /

P.B/
D

kX

j D1

E.Y jAj / � P.Aj /

P.B/

which proves the desired result. ut
In the discussion in this section we have concentrated on the properties of

conditional expectation given a single set A. To connect with more advanced
treatments, we note that given a partition A D fA1; : : : Ang of the sample space,
(i.e., disjoint sets whose union in ˝) then the conditional expectation given the
partition is a random variable:

E.X jA/ D E.X jAi / on Ai

In this setting, Lemma 5.4 says

EŒE.X jA/� D EX

i.e., the random variable E.X jA/ has the same expected value as X . Lemma 5.1
says that if X is constant on each part of the partition then

E.XY jA/ D XE.Y jA/



188 5 Martingales

5.2 Examples, Basic Properties

We begin by giving the definition of a martingale. Thinking of Mn as the amount of
money at time n for a gambler betting on a fair game, and Xn as the outcomes of the
gambling game we say that M0; M1; : : : is a martingale with respect to X0; X1; : : :

if for any n � 0 we have EjMnj <1 and for any possible values xn; : : : ; x0

E.MnC1 �MnjXn D xn; Xn�1 D xn�1; : : : X0 D x0; M0 D m0/ D 0 (5.4)

The first condition, EjMnj < 1, is needed to guarantee that the conditional
expectation makes sense. The second, defining property, says that conditional on
the past up to time n, the average profit from the bet on the nth game is 0.

It will take several examples to explain why this is a useful definition. In many
of our examples Xn will be a Markov chain and Mn D f .Xn; n/. The conditioning
event is formulated in terms of Xn because in passing from the random variables Xn

that are driving the process the martingale to Mn, there may be a loss of information.
E.g., in Example 5.4 Mn D X2

n � n.
To explain the reason for our interest in martingales, we will now give a number

of examples. In what follows we will often be forced to write the conditioning event,
so we introduce the short hand

Av D fXn D xn; Xn�1 D xn�1; : : : ; X0 D x0; M0 D m0g (5.5)

where v is short for the vector .xn; : : : ; x0; m0/.

Example 5.2 (Random walks). Let X1; X2; : : : be i.i.d. with EXi D �. Let Sn D
S0CX1C � � � CXn be a random walk. Mn D Sn � n� is a martingale with respect
to Xn.

Proof. To check this, note that MnC1 � Mn D XnC1 � � is independent of
Xn; : : : ; X0; M0, so the conditional mean of the difference is just the mean:

E.MnC1 �MnjAv/ D EXnC1 � � D 0

ut
In most cases, casino games are not fair but biased against the player. We say that

Mn is a supermartingale with respect to Xn if a gambler’s expected winnings on
one play are negative:

E.MnC1 �MnjAv/ � 0

To help remember the direction of the inequality, note that there is nothing
“super” about a supermartingale. The definition traces its roots to the notion of
superharmonic functions whose values at a point exceed the average value on balls
centered around the point. If we reverse the sign and suppose

E.MnC1 �MnjAv/ � 0
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then Mn is called a submartingale with respect to Xn. A simple modification of the
proof for Example 5.2 shows that if � � 0, then Sn defines a supermartingale, while
if � � 0, then Sn is a submartingale.

The next result will lead to a number of examples.

Theorem 5.5. Let Xn be a Markov chain with transition probability p and let
f .x; n/ be a function of the state x and the time n so that

f .x; n/ D
X

y

p.x; y/f .y; nC 1/

Then Mn D f .Xn; n/ is a martingale with respect to Xn. In particular if h.x/ DP
y p.x; y/h.y/ then h.Xn/ is a martingale.

Proof. By the Markov property and our assumption on f

E.f .XnC1; nC 1/jAv/ D
X

y

p.xn; y/f .y; nC 1/ D f .xn; n/

which proves the desired result. ut
The next two examples begin to explain our interest in Theorem 5.5.

Example 5.3 (Gambler’s ruin). Let X1; X2; : : : be independent with

P.Xi D 1/ D p and P.Xi D �1/ D 1 � p

where p 2 .0; 1/ and p ¤ 1=2. Let Sn D S0 CX1 C � � � CXn. Mn D
�

1�p

p

�Sn

is a

martingale with respect to Xn.

Proof. Using Theorem 5.5 with h.x/ D ..1 � p/=p/x, we need only check that
h.x/ DPy p.x; y/h.y/. To do this we note that

X

y

p.x; y/h.y/ D p �
�

1 � p

p

�xC1

C .1 � p/ �
�

1 � p

p

�x�1

D .1 � p/ �
�

1 � p

p

�x

C p �
�

1 � p

p

�x

D
�

1 � p

p

�x

which proves the desired result. ut
Example 5.4 (Symmetric simple random walk). Let Y1; Y2; : : : be independent with

P.Yi D 1/ D P.Yi D �1/ D 1=2
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and let Xn D X0 C Y1 C � � � C Yn. Then Mn D X2
n � n is a martingale with respect

to Xn. By Theorem 5.5 with f .x; n/ D x2 � n it is enough to show that

1

2
.x C 1/2 C 1

2
.x � 1/2 � 1 D x2

To do this we work out the squares to conclude the left-hand side is

1

2
Œx2 C 2x C 1C x2 � 2x C 1�� 1 D x2

Example 5.5 (Products of independent random variables). To build a discrete time
model of the stock market we let X1; X2; : : : be independent �0 with EXi D 1.
Then Mn D M0X1 � � �Xn is a martingale with respect to Xn. To prove this we
note that

E.MnC1 �MnjAv/ DMnE.XnC1 � 1jAv/ D 0

The reason for a multiplicative model is that changes in stock prices are thought to
be proportional to its value. Also, in contrast to an additive model, we are guaranteed
that prices will stay positive.

The last example generalizes easily to give:

Example 5.6 (Exponential martingale). Let Y1; Y2; : : : be independent and identi-
cally distributed with �.�/ D E exp.�Y1/ <1. Let Sn D S0CY1C� � �CYn. Then
Mn D exp.�Sn/=�.�/n is a martingale with respect to Yn. In particular, if �.�/ D 1

then �.�Sn/ is a martingale.

Proof. If we let Xi D exp.�Yi/=�.�/ then Mn D M0X1 � � �Xn with EXi D 1 and
this reduces to the previous example. ut

Having introduced a number of examples, we will now derive some basic
properties.

Lemma 5.6. If Mn is a martingale and � is a convex function then �.Mn/ is a
submartingale. If Mn is a submartingale and � is a nondecreasing convex function
then �.Mn/ is a submartingale.

Proof. Using Lemma 5.2 and the definition of a martingale, we have

E.�.MnC1/jAv/ � �.E.MnC1jAv// D �.Mn/

In the proof of the second statement, the submartingale property of Mn and the fact
that � is nondecreasing imply that theD for martingales is now �. ut

Since x2 is convex this implies that if Mn is a martingale then M 2
n is a

submartingale. The next result gives another proof of this, and provides a useful
formula that is the analogue of E.Y 2/� .EY /2 D var .Y / for martingales.
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Lemma 5.7. If Mn is a martingale then

E.M 2
nC1jAv/ �M 2

n D E..MnC1 �Mn/2jAv/

Proof. Expanding out the square on the right-hand side, then using (5.3) and
Lemma 5.3 gives

E.M 2
nC1 � 2MnC1Mn CM 2

n jAv/ D E.M 2
nC1jAv/ � 2MnE.MnC1jAv/CM 2

n

D E.M 2
nC1jAv/ �M 2

n

since E.MnC1jAv/ DMn. ut
Using ideas from the last proof we get

Lemma 5.8 (Orthogonality of martingale increments). If Mn is a martingale
and 0 � i � j � k < n then

EŒ.Mn �Mk/Mj � D 0

and EŒ.Mn �Mk/.Mj �Mi/� D 0.

Proof. The second result follows by subtracting the result for j D i from the one
for j . Let Av D fXk D xk; : : : ; X0 D x0; M0 D mg. Using Lemma 5.4 then
Lemma 5.1 and the martingale property

EŒ.Mn �Mk/Mj � D
X

x

EŒ.Mn �Mk/Mj jAv�

D Mj

X

x

EŒ.Mn �Mk/jAv� D 0

proves the desired formula. ut
The last result has the following useful corollary

E.Mn �M0/
2 D

nX

kD1

E.Mk �Mk�1/
2 (5.6)

Proof. Expanding out the square of the sum

E

 
nX

kD1

Mk �Mk�1

!2

D
nX

kD1

E.Mk �Mk�1/
2

C 2
X

1�j <k�n

EŒ.Mk �Mk�1/.Mj �Mj �1/�

and the second sum vanishes by Lemma 5.8. ut
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5.3 Gambling Strategies, Stopping Times

The first result should be intuitive if we think of supermartingale as betting on an
unfavorable game: the expected value of our fortune will decline over time.

Theorem 5.9. If Mm is a supermartingale and m � n then EMm � EMn.

Proof. It is enough to show that the expected value decreases with each time step,
i.e., EMk � EMkC1. To do this, we will again use the notation from (5.5)

Av D fXn D xn; Xn�1 D xn�1; : : : ; X0 D x0; M0 D mg

and note that linearity in the conditioning set (Lemma 5.3) and the definition of
conditional expectation imply

E.MkC1 �Mk/ D
X

v

E.MkC1 �Mk IAv/

D
X

v

P.Av/E.MkC1 �MkjAv/ � 0

since supermartingales have E.MkC1 �MkjAv/ � 0. ut
The result in Theorem 5.9 generalizes immediately to our other two types of

processes. Multiplying by �1 we see:

Theorem 5.10. If Mm is a submartingale and 0 � m < n, then EMm � EMn.

Since a process is a martingale if and only if it is both a supermartingale and
submartingale, we can conclude that:

Theorem 5.11. If Mm is a martingale and 0 � m < n then EMm D EMn.

The most famous result of martingale theory (see Theorem 5.12) is that

“you can’t beat an unfavorable game.” (5.7)

To lead up to this result, we will analyze a famous gambling system and show why
it doesn’t work.

Example 5.7 (Doubling strategy). Suppose you are playing a game in which you
will win or lose $1 on each play. If you win you bet $1 on the next play but if you
lose then you bet twice the previous amount. The idea behind the system can be
seen by looking at what happens if we lose four times in a row and then win:

outcome L L L L W
bet 1 2 4 8 16
net profit �1 �3 �7 �15 1
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In this example our net profit when we win is $1. Since 1C2C� � �C2k D 2kC1�1,
this is true if we lose k times in a row before we win. Thus every time we win our
net profit is up by $1 from the previous time we won.

This system will succeed in making us rich as long as the probability of winning
is positive, so where’s the catch? Suppose for simplicity we play six times. Let L be
the time of the last win L (with L D 0 if there were six losses) and N be the total
number of wins in the first six plays. The number of the 64 outcomes that lead to
the possible values of .L; N / are

L N D 0 1 2 3 4 5 6
6 0 1 5 10 10 5 1
5 0 1 4 6 4 1
4 0 1 3 3 1
3 0 1 2 1
2 0 1 1
1 0 1
0 1

If we lost six times in a row then our total losses are�63. If the last loss was at 1, 2,
3, 4, 5, or 6 then our losses after that win are �31;�15;�7;�3;�1 and 0. Taking
into account that N wins means a total winning of $N up to and including the last
win we see that the distribution for positive values is (omitting the denominator
which is always 64):

6 5 4 3 2 1 0
1 5 10C 1 10C 4 5C 6 1C 4C 1 3C 1

so our net winnings are �0 with probability 52=64 D 0:8125. The negative values,
though less frequent, are larger

�1 �2 �4 �5 �6 �13 �14 �30 �63

3 1 1 2 1 1 1 1 1

Adding everything up we see that our expected winningsD 145=64� 145=64D 0.

To formulate and prove (5.7) we will introduce a family of betting strategies that
generalize the doubling strategy. The amount of money we bet on the nth game, Hn,
clearly, cannot depend on the outcome of that game, nor is it sensible to allow it to
depend on the outcomes of games that will be played later. We say that Hn is an
admissible gambling strategy or predictable process if for each n the value of Hn

can be determined from Xn�1; Xn�2; : : : ; X0; M0.
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To motivate the next definition, think of Hm as the amount of stock we hold
between time m � 1 and m. Then our wealth at time n is

Wn D W0 C
nX

mD1

Hm.Mm �Mm�1/ (5.8)

since the change in our wealth from time m � 1 to m is the amount we hold times
the change in the price of the stock: Hm.Mm �Mm�1/. To formulate the doubling
strategy in this setting, let Xm D 1 if the mth coin flip is heads and �1 if the mth
flip is tails, and let Mn D X1 C � � � C Xn as the net profit of a gambler who bets 1
unit every time.

Theorem 5.12. Suppose that Mn is a supermartingale with respect to Xn; Hn is
predictable, and 0 � Hn � cn where cn is a constant that may depend on n. Then

Wn D W0 C
nX

mD1

Hm.Mm �Mm�1/ is a supermartingale

We need the condition Hn � 0 to prevent the bettor from becoming the house
by betting a negative amount of money. The upper bound Hn � cn is a technical
condition that is needed to have expected values make sense. In the gambling context
this assumption is harmless: even if the bettor wins every time there is an upper
bound to the amount of money he can have at time n.

Proof. The change in our wealth from time n to time nC 1 is

WnC1 �Wn D HnC1.YnC1 � Yn/

As in the proof of Theorem 5.9 let

Av D fXn D xn; Xn�1 D xn�1; : : : ; X0 D x0; M0 D m0g:

HnC1 is constant on the event Av, so Lemma 5.1 implies

E.HnC1.MnC1 �Mn/jAv/ D HnC1E.MnC1 �MnjAv/ � 0

verifying that Wn is a supermartingale. ut
Arguing as in the discussion after Theorem 5.9 the same result holds for
submartingales and for martingales with only the assumption that jHnj � cn.

Though Theorem 5.12 may be depressing for gamblers, a simple special case
gives us an important computational tool. To introduce this tool, we need one more
notion. We say that T is a stopping time with respect to Xn if the occurrence
(or nonoccurrence) of the event fT D ng can be determined from the information
known at time n; Xn; Xn�1 : : : X0; M0.
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Example 5.8 (Constant betting up to a stopping time). One possible gambling
strategy is to bet $1 each time until you stop playing at time T . In symbols, we
let Hm D 1 if T � m and 0 otherwise. To check that this is an admissible gambling
strategy we note that the set on which Hm is 0 is

fT � mgc D fT � m � 1g D [m�1
kD1 fT D kg

By the definition of a stopping time, the event fT D kg can be determined from the
values of M0; X0; : : : ; Xk . Since the union is over k � m�1; Hm can be determined
from the values of M0; X0; X1; : : : ; Xm�1.

Having introduced the gambling strategy “Bet $1 on each play up to time T ” our
next step is to compute the payoff we receive when W0 D M0. Letting T ^n denote
the minimum of T and n, i.e., it is T if T < n and n if T � n, we can give the
answer as:

Wn DM0 C
nX

mD1

Hm.Mm �Mm�1/ DMT ^n (5.9)

To check the last equality, consider two cases:

(i) if T � n then Hm D 1 for all m � n, so

Wn DM0 C .Mn �M0/ D Mn

(ii) if T � n then Hm D 0 for m > T , so the sum in (5.9) stops at T . In this case,

Wn D M0 C .MT �M0/ D MT

Combining (5.9) with Theorem 5.12 and using Theorem 5.9 we have

Theorem 5.13. If Mn is a supermartingale with respect to Xn and T is a stopping
time then the stopped process MT ^n is a supermartingale with respect to Xn. In
particular, EMT ^n �M0

As in the discussion after Theorem 5.9, the analogous results are true for submartin-
gales (EMT ^n �M0) and for martingales (EMT ^n D M0).

5.4 Applications

In this section we will apply the results from the previous section to rederive some of
the results from Chap. 1 about hitting probabilities and exit times for random walks.
To motivate the developments we begin with a simple example. Let X1; X2; : : : Xn

be independent with P.Xi D 1/ D P.Xi D �1/ D 1=2, let Sn D S0 CX1C � � � C
Xn, and let 
 D minfn W Sn 62 .a; b/g. To quickly derive the exist distribution it is
tempting to argue that since Sn is a martingale and 
 is a stopping time

x D ExS
 D aPx.S
 D a/C b.1� P.S
 D a//
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and then solve to conclude

Px.S
 D a/ D b � x

b � a
(5.10)

This formula is correct, but as the next example shows, we have to be careful.

Example 5.9 (Bad Martingale). Suppose x D 1, let Va D minfn W Sn D 0g and
T D V0. We know that P1.T <1/ but

E1ST D 0 ¤ 1

The trouble is that

P1.VN < V0/ D 1=N

so the random walk can visit some very large values before returning to 0.

The fix for this problem is the same in all the examples we consider. We have a
martingale Mn and a stopping time T . We use Theorems 5.13 and 5.11 to conclude
EM0 D EMT ^n then we let n!1 and argue that EMT ^n ! EMT .

Example 5.10 (Gambler’s ruin). Let X1; X2; : : : Xn be independent with

P.Xi D 1/ D p and P.Xi D �1/ D q D 1� p

Suppose 1=2 < p < 1 and let h.x/ D .q=p/x . Example 5.3 implies that Mn D
h.Sn/ is a martingale. Let 
 D minfn W Sn 62 .a; b/g. It is easy to see that 


is a stopping time. Lemma 1.3 implies that P.
 < 1/ D 1. Again if we argue
casually then

.q=p/x D Ex.q=x/S.
/ D .q=p/aP.S
 D a/C .q=p/bŒ1 � P.S
 D a/� (5.11)

Solving gives

Px.S
 D a/ D .q=p/b � .q=p/x

.q=p/b � .q=p/a
(5.12)

generalizing (1.22).
To provide a proof for (5.11), we use Theorems 5.13 and 5.11, to conclude that

.q=p/x D ExM
^n D .q=p/aP.
 � n; S
 D a/C .q=p/bP.
 � n; S
 D b/

C E..q=p/Sn I 
 > n/

Since P.
 < 1/ D 1 we have P.
 � n; S
 D c/ ! P.S
 D c/ for c D a; b. To
handle the third term, we note that since p > 1=2; .q=p/x � .q=p/a for a < x < b

and hence

E..q=p/Sn I 
 > n/ � .q=p/aPx.
 > n/

Letting n!1 we have established (5.11).

We can save ourselves some work by abstracting the last argument.
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Theorem 5.14. Suppose Mn is a martingale and T a stopping time with P.T <

1/ D 1 and jMT ^nj � K for some constant K . Then EMT D EM0.

Proof. Theorem 5.13 implies

EM0 D EMT ^n D E.MT IT � n/CE.MnIT > n/:

The second term � KP.T > n/ and

jE.MT IT � n/ �E.MT /j � KP.T > n/

Since P.T > n/! 0 as n!1 the desired result follows. ut
Example 5.11 (Duration of fair games). Let Sn D S0 C X1 C � � � C Xn where
X1; X2; : : : are independent with P.Xi D 1/ D P.Xi D �1/ D 1=2. Let 
 D
minfn W Sn 62 .a; b/g where a < 0 < b. Our goal here is to prove a close relative of
(1.26):

E0
 D �ab

Example 5.4 implies that S2
n � n is a martingale. Let 
 D minfn W Sn 62 .a; b/g.

From the previous example we have that 
 is a stopping time with P.
 <1/ D 1.
Again if we argue casually 0 D E0.S

2

 � 
/ so using (5.10)

E0.
/ D E0.S
2

 / D a2P0.S
 D a/C b2P0.S
 D b/

D a2 b

b � a
C b2 �a

b � a
D ab

a � b

b � a
D �ab

To give a rigorous proof now, we use Theorems 5.13 and 5.11 to conclude

0 D E0.S
2

^n � 
 ^ n/ D a2P.S
 D a; 
 � n/C b2P.S
 D b; T � n/

C E.S2
n I 
 > n/ �E0.
 ^ n/

P.
 < 1/ D 1 and on f
 > ng we have S2

^n � maxfa2; b2g so the third term

tends to 0. To handle the fourth term we note that by (1.6)

E0.
 ^ n/ D
nX

mD0

P.
 � m/ "
1X

mD0

P.
 � m/ D E0
: (5.13)

Putting it all together, we have

0 D a2P0.S
 D a/C b2P0.S
 D b/� E0


and we have proved the result.
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Consider now a random walk Sn D S0 C X1 C � � � C Xn where X1; X2; : : : are
i.i.d. with mean �. From Example 5.2, Mn D Sn � n� is a martingale with respect
to Xn.

Theorem 5.15 (Wald’s equation). If T is a stopping time with ET <1, then

E.ST � S0/ D �ET

Recalling Example 5.9, which has � D 0 and S0 D 1, but ST D 1 shows that for
symmetric simple random walk E1V0 D 1.

Why is this true? Theorems 5.13 and 5.11 give

ES0 D E.ST ^n/ � �E.T ^ n/

As n " 1; E0.T ^ n/ " E0T by (5.13). To pass to the limit in the other term, we
note that

EjST � ST ^nj � E

 
TX

mDn

jXmjIT > n

!

Using the assumptions ET < 1 and EjX j < 1 one can prove that the right-
hand side tends to 0 and complete the proof. However the details are somewhat
complicated and are not enlightening so they are omitted.

Our next two examples are applications of the exponential martingale in
Example 5.6:

Example 5.12 (Left-continuous random walk). Suppose that X1; X2; : : : are inde-
pendent integer-valued random variables with EXi > 0; P.Xi � �1/ D 1, and
P.Xi D �1/ > 0. These walks are called left-continuous since they cannot jump
over any integers when they are decreasing, which is going to the left as the number
line is usually drawn. Let �.�/ D exp.�Xi/ and define ˛ < 0 by the requirement
that �.˛/ D 1. To see that such an ˛ exists, note that (i) �.0/ D 1 and

�0.�/ D d

d�
Ee�xi D E.xi e

�xi / so �0.0/ D Exi > 0

and it follows that �.�/ < 1 for small negative � . (ii) If � < 0, then �.�/ �
e�� P.xi D �1/!1 as � ! �1. Our choice of ˛ makes exp.˛Sn/ a martingale.
Having found the martingale it is easy now to conclude:

Theorem 5.16. Consider a left continuous random walk with positive mean. Let
a < x and Va D minfn W Sn D ag.

Px.Va <1/ D e˛.x�a/

Proof. Again if one argues casually

e˛x D Ex.exp.˛Va// D e˛aPx.Va <1/
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but we have to prove that there is no contribution from fVa D 1g. To do this note
that Theorems 5.13 and 5.11 give

e˛x D E0 exp.˛SVa^n/ D e˛aP0.Va � n/CE0.exp.˛Sn/IVa > n/

exp.˛Sn/ � e˛a on Va > n but since P.Va D 1/ > 0 this is not enough to
make the last term vanish. The strong law of large numbers implies that on Va D
1; Sn=n ! � > 0, so the second term ! 0 as n ! 1 and it follows that
e˛x D e˛aP0.Va <1/. ut

When the random walk is not left continuous we cannot get exact results on
hitting probabilities but we can still get a bound.

Example 5.13 (Cramér’s estimate of ruin). Let Sn be the total assets of an insurance
company at the end of year n. During year n, premiums totaling c dollars are
received, while claims totaling Yn dollars are paid, so

Sn D Sn�1 C c � Yn

Let Xn D c�Yn and suppose that X1; X2; : : : are independent random variables that
are normal with mean � > 0 and variance 
2. That is the density function of Xi is

.2�
2/�1=2 exp.�.x � �/2=2
2/

Let B for bankrupt be the event that the wealth of the insurance company is negative
at some time n. We will show

P.B/ � exp.�2�S0=
2/ (5.14)

In words, in order to be successful with high probability, �S0=
2 must be large, but
the failure probability decreases exponentially fast as this quantity increases.

Proof. We begin by computing �.�/ D E exp.�Xi/. To do this we need a little
algebra

� .x � �/2

2
2
C �.x � �/C �� D � .x � � � 
2�/2

2
2
C 
2�2

2
C ��

and a little calculus

�.�/ D
Z

e�x.2�
2/�1=2 exp.�.x � �/2=2
2/ dx

D exp.
2�2=2C ��/

Z

.2�
2/�1=2 exp

�

� .x � � � 
2�/2

2
2

�

dx
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Since the integrand is the density of a normal with mean �C 
2� and variance 
2

it follows that
�.�/ D exp.
2�2=2C ��/ (5.15)

If we pick � D �2�=
2, then


2�2=2C �� D 2�2=
2 � 2�2=
2 D 0

So Example 5.6 implies exp.�2�Sn=
2/ is a martingale. Let T D minfn W Sn � 0g.
Theorems 5.13 and 5.11 gives

exp.�2�S0=
2/ D E exp.�2�ST ^n/ � P.T � n/

since exp.�2�ST =
2/ � 1 and the contribution to the expected value from fT > ng
is �0. Letting n ! 1 now and noticing P.T � n/ ! P.B/ gives the desired
result. ut

5.5 Convergence

This section is devoted to the proof of the following remarkable result and some of
its applications.

Theorem 5.17. If Xn � 0 is a supermartingale then X1 D limn!1 Xn exists and
EX1 � EX0.

The bad martingale in Example 5.9 shows that we can have X0 D 1 and X1 D 0.
The key to the proof of this is the following maximal inequality.

Lemma 5.18. Let Xn � 0 be a supermartingale and � > 0.

P

�

max
n�0

Xn > �

�

� EX0=�

Proof. Let T D minfn � 0 W Xn > �g. Theorem 5.13 implies that

EX0 � E.XT ^n/ � �P.T � n/

i.e., P.T � n/ � EX0=�. Since this holds for all n the desired result follows. ut
Proof of Theorem 5.17 Let a < b, let S0 D 0 and define stopping times for k �
1 by

Rk D minfn � Sk�1 W Xn � ag
Sk D minfn � Rk W Xn � bg
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Using the reasoning that led to Lemma 5.18

P.Sk <1jRk <1/ � a=b

Iterating we see that P.Sk < 1/ � .a=b/k. Since this tends to 0 as k ! 1 Xn

crosses from below a to above b only finitely many times. To conclude from this
that limn!1 Xn exists, let

Y D lim inf
n!1 Xn and Z D lim sup

n!1
Xn:

If P.Y < Z/ > 0 then there are numbers a < b so that P.Y < a < b < Z/ > 0

but in this case Xn crosses from below a to above b infinitely many times with
positive probability, a contradiction.

To prove EX1 � EX0 note that for any time n and positive real number M

EX0 D EXn � E.Xn ^M /! E.X1 ^M /

where the last conclusion follows from the reasoning in the proof of Theorem 5.14.
The last conclusion implies EX0 � E.X1 ^M / " EX1 as M " 1.

Example 5.14 (Polya’s urn). Consider an urn that contains red and green balls. At
time 0 there are k balls with at least one ball of each color. At time n we draw out a
ball chosen at random. We return it to the urn and add one more of the color chosen.
Let Xn be the fraction of red balls at time n. To check that Xn is a martingale note
that at time n there are nC k balls, so if Rn D .nC k/Xn is the number of red balls
then

P.RnC1 D Rn C 1/ D Xn P.RnC1 D Rn/ D 1 �Xn

Letting Av D fXn D xn; : : : X0 D x0g we have

E.XnC1jAv/ D Rn C 1

nC k C 1
� Rn

nC k
C Rn

nC k C 1

�

1 � Rn

nC k

�

D 1

nC k C 1
� Rn

nC k
C Rn

nC k
� nC k

nC k C 1
D Xn

Since Xn � 0, Theorem 5.17 implies that Xn ! X1.
Suppose that initially there is one ball of each color. To find the distribution of

X1 we note that there are two balls at time 0, : : : nC1 at time n�1 so the probability
the probability that red balls are drawn on the first j draws and then green balls are
drawn on the next n � j is

1 � � �j � 1 � � � .n � j /

2 � � �j C 1 � j C 2 � � �nC 1
D j Š.n � j /Š

.nC 1/Š
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A little thought shows that each outcome with j red and n � j balls drawn has the
same probability. (The denominator is the same, while the numerator is rearranged.)
Since there are

�
n
j

�
ways to choose the j draws on which we get red,

P

�

Xn D j

nC 2

�

D 1

nC 1
for 1 � j � nC 1

and it follows that the distribution of the limit X1 is uniform.

Example 5.15 (Branching Processes). In this system introduced in Example 1.8,
Zn is the number of individuals in generation n and each gives rise to an independent
and identically distributed number of individuals with mean 0 < � < 1 in
generation nC 1. If p.x; y/ is the transition probability of the Markov chain

X

y

p.x; y/f .y; nC 1/ D 1

�nC1

X

y

p.x; y/y D �x

�nC1
D h.x; n/

so using Theorem 5.5 we see that Wn D Zn=�n is a martingale.
Using this we can rederive some of the facts proved in Example 1.52, and prove

at least one new one.

Subcritical. If � < 1 then P.Zn > 0/ � �nEZ0 ! 0 as n!1
Proof. Since Zn=�n is a martingale, EZn D �nEZ0. Using this with P.Zn � 1/

� EZn gives the desired result. ut
Critical. Let pk be the probability an individual has k children. If � D 1 and
p1 < 1 then P.Zn > 0/! 0.

Proof. When � D 1; Zn is martingale and hence by Theorem 5.17 converges to a
limit. Since Zn is integer valued, if Zn.!/! j then we must have Zn.!/ D j for
n � N.!/ but this has probability 0 if p1 < 1. ut
Supercritical. If � > 1 then Zn=�n ! W as n!1.

If we can show that P.W > 0/ > 0 then we can conclude that the
population grows exponentially. The first step is to show that if � > 1 then
P.Zn > 0 for all n/ > 0. To approach this problem, we will consider a version
of the branching process in which at each time only one individual is chosen to
reproduce. In this case as long as the population size Sn > 0; SnC1 D Sn�1CYnC1

where P.YnC1 D k/ D pk . Since YnC1 � 0 this is a left-continuous random walk
with steps Xm D �1 C Ym run until T0 D min W Sn D 0g. EXn D � � 1 so if
� > 1, it follows from Theorem 5.16 that

P1.T0 <1/ D e˛

where ˛ < 0 is the solution of E exp.˛Xi / D 1. Letting � D e˛ this means

1 D
X

k

pk�k�1 or
X

k

pk�k D �
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which is the result we found in Lemma 1.30: the extinction probability is the fixed
point of the generating function in Œ0; 1/.

P.Zn > 0 for all n/ > 0 is necessary for P.W > 0/ > 0 but it is not sufficient.
Kesten and Stigum ( ) have shown:

P.W > 0/ > 0 if and only if
X

k�1

pk.k log k/ <1:

That result has a sophisticated proof, but it is not hard to show that

Theorem 5.19. If
P

k kpk > 1 and
P

k k2pk <1 then P.W D 0/ D �.

Proof. We begin with the easy part: if P.W D 0/ < 1 the P.W D 0/ D �. If we
have Zn=�n ! 0 then this must be true for the branching processes started by the
Z1 individuals in generation 1. Breaking things down according to the value of Z1

and letting � D P.W D 0/ we have

� D
X

k

pk�k

so � < 1 must be a fixed point of the generating function.
To show that

P
k kpk > 1 and

P
k k2pk <1 are sufficient for P.W > 0/ > 0,

we will let Wn D Zn=�n, and compute EW 2
n . Noting that Zn is the sum of

Zn�1 independent random variables with the same distribution so E.ZnjZn�1/ D
�Zn�1; E..Zn �Zn�1/

2jZn�1/ D 
2Zn�1. It follows from Lemma 5.7 that

E.Z2
njZn�1/ D 
2Zn�1 C .�Zn�1/2

Taking expected values in the last equation and dividing both sides by �2n we
conclude that

EW 2
n D EW 2

n�1 C 
2=�nC1

Iterating that we have EW 2
1 D 1C
2=�2; EW 2

2 D 1C
2=�2C
2=�3, and hence

EW 2
n D 1C 
2

nC1X

kD2

��k:

Thus if � > 1,

EW 2
N � CW D 1C 
2

1X

kD2

��k

To complete the proof now, we note that if V � 0 then

E.V IV > M / � 1

M
E.V 2IV > M / � 1

M
EV 2 (5.16)

1966
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The argument for the last inequality in Theorem 5.17 shows that

EW 2 � lim
n!1 EW 2

n � CW

Thus using (5.16)

jEWn �EW j � EjWn �W j � EjWn ^M �W ^M j C 2CW =M

As n ! 1 the first term tends to 0. If M is large the second one is < �. This
shows that

lim sup
n!1

jEWn �EW j � �

Since � is arbitrary we have 1 D EWn ! EW . ut

5.6 Exercises

Throughout the exercises we will use our standard notion for hitting times. Ta D
minfn � 1 W Xn D ag and Va D minfn � 0 W Xn D ag.
5.1. Brother–sister mating. Consider the six state chain defined in Exercise 1.66.
Show that the total number of A’s is a martingale and use this to compute the
probability of getting absorbed into the 2,2 (i.e., all A’s state) starting from each
initial state.

5.2. Let Xn be the Wright–Fisher model with no mutation defined in Example 1.9.
(a) Show that Xn is a martingale and use Theorem 5.14 to conclude that Px.VN <

V0/ D x=N . (b) Show that Yn D Xn.N �Xn/=.1� 1=N /n is a martingale. (c) Use
this to conclude that

.N � 1/ � x.N � x/.1 � 1=N /n

Px.0 < Xn < N /
� N 2

4

5.3. Lognormal stock prices. Consider the special case of Example 5.5 in which
Xi D e	i where 	i D normal.�; 
2/. For what values of � and 
 is Mn D M0 �
X1 � � �Xn a martingale?

5.4. Suppose that in Polya’s urn there is one ball of each color at time 0. Let Xn

be the fraction of red balls at time n. Use Theorem 5.13 to conclude that P.Xn �
0:9 for some n/ � 5=9.

5.5. Suppose that in Polya’s urn there are r red balls and g green balls at time 0.
show that X D limn!1 Xn has a beta distribution

.gC r � 1/Š

.g � 1/Š.r � 1/Š
xg�1.1 � x/r�1
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5.6. An unfair fair game. Define random variables recursively by Y0 D 1 and for
n � 1; Yn is chosen uniformly on .0; Yn�1/. If we let U1; U2; : : : be uniform on
.0; 1/, then we can write this sequence as Yn D UnUn�1 � � �U0. (a) Use Example 5.5
to conclude that Mn D 2nYn is a martingale. (b) Use the fact that log Yn D log
U1 C � � � C log Un to show that .1=n/ log Xn ! �1. (c) Use (b) to conclude Mn !
0, i.e., in this “fair” game our fortune always converges to 0 as time tends to1.

5.7. General birth and death chains. The state space is f0; 1; 2; : : :g and the
transition probability has

p.x; x C 1/ D px

p.x; x � 1/ D qx for x > 0

p.x; x/ D 1 � px � qx for x � 0

while the other p.x; y/ D 0. Let Vy D minfn � 0 W Xn D yg be the time of the
first visit to y and let hN .x/ D Px.VN < V0/. Let �.z/ D Pz

yD1

Qy�1
xD1 qx=px.

Show that

Px.Vb < Va/ D �.x/� �.a/

�.b/� �.a/

From this it follows that 0 is recurrent if and only if �.b/!1 as b !1, giving
another solution of 1.70 from Chap. 1.

5.8. Let Sn D X1 C � � � C Xn where the Xi are independent with EXi D 0

and var .Xi / D 
2. (a) Show that S2
n � n
2 is a martingale. (b) Let 
 D min

fn W jSnj > ag. Use Theorem 5.13 to show that E
 � a2=
2. For simple random
walk 
2 D 1 and we have equality.

5.9. Wald’s second equation. Let Sn D X1C� � �CXn where the Xi are independent
with EXi D 0 and var .Xi/ D 
2. Use the martingale from the previous problem
to show that if T is a stopping time with ET <1 then ES2

T D 
2ET .

5.10. Mean time to gambler’s ruin. Let Sn D S0CX1C� � �CXn where X1; X2; : : :

are independent with P.Xi D 1/ D p < 1=2 and P.Xi D �1/ D 1 � p. Let
V0 D minfn � 0 W Sn D 0g. Use Wald’s equation to conclude that if x > 0 then
ExV0 D x=.1 � 2p/.

5.11. Variance of the time of gambler’s ruin. Let �1; �2; : : : be independent with
P.�i D 1/ D p and P.�i D �1/ D q D 1 � p where p < 1=2. Let Sn D
S0 C �1 C � � � C �n. In Example 4.3 we showed that if V0 D minfn � 0 W Sn D 0g
then ExV0 D x=.1�2p/. The aim of this problem is to compute the variance of V0.
(a) Show that .Sn � .p � q/n/2 � n.1 � .p � q/2/ is a martingale. (b) Use this to
conclude that when S0 D x the variance of V0 is

x � 1 � .p � q/2

.p � q/3

(c) Why must the answer in (b) be of the form cx?
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5.12. Generating function of the time of gambler’s ruin. Continue with the set-up
of the previous problem. (a) Use the exponential martingale and our stopping
Theorem to conclude that if � � 0, then e�x D Ex.�.�/�V0 /. (b) Let 0 < s < 1.
Solve the equation �.�/ D 1=s, then use (a) to conclude

Ex.sV0 / D
 

1 �p1 � 4pqs2

2ps

!x

(c) Why must the answer in (b) be of the form f .s/x?

5.13. Consider a favorable game in which the payoffs are �1, 1, or 2 with
probability 1/3 each. Use the results of Example 5.12 to compute the probability
we ever go broke (i.e., our winnings Wn reach $0) when we start with $i .

5.14. A branching process can be turned into a random walk if we only allow one
individual to die and be replaced by its offspring on each step. If the offspring
distributions is pk and the generating function is � then the random walk increments
have P.Xi D k�1/ D pk . Let Sk D 1CX1C : : :CXn and T0 D minfn W Sn D 0g.
Suppose � D P

k kpk > 1. Use Example 5.12 to show that P.T0 < 1/ D �, the
solution <1 of �.�/ D �.

5.15. Let Zn be a branching process with offspring distribution pk with p0 > 0 and
� DPk kpk > 1. Let �.�/ DP1

kD0 pk�k . (a) Show that E.�ZnC1 jZn/ D �.�/Zn .
(b) Let � be the solution <1 of �.�/ D � and conclude that Pk.T0 <1/ D �k .

5.16. Hitting probabilities. Consider a Markov chain with finite state space S . Let
a and b be two points in S , let 
 D Va ^ Vb , and let C D S � fa; bg. Suppose
h.a/ D 1; h.b/ D 0, and for x 2 C we have

h.x/ D
X

y

p.x; y/h.y/

(a) Show that h.Xn/ is a martingale. (b) Conclude that if Px.
 < 1/ > 0 for all
x 2 C , then h.x/ D Px.Va < Vb/ giving a proof of Theorem 1.27.

5.17. Expectations of hitting times. Consider a Markov chain state space S . Let
A � S and suppose that C D S � A is a finite set. Let VA D minfn � 0 W Xn 2 Ag
be the time of the first visit to A. Suppose that g.x/ D 0 for x 2 A, while for x 2 C

we have
g.x/ D 1C

X

y

p.x; y/g.y/

(a) Show that g.XVA^n/C .VA ^ n/ is a martingale. (b) Conclude that if Px.VA <

1/ > 0 for all x 2 C then g.x/ D ExVA, giving a proof of Theorem 1.28.

5.18. Lyapunov functions. Let Xn be an irreducible Markov chain with state space
f0; 1; 2; : : :g and let � � 0 be a function with limx!1 �.x/ D 1, and Ex�.X1/ �
�.x/ when x � K . Then Xn is recurrent. This abstract result is often useful for
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proving recurrence in many chains that come up in applications and in many cases
it is enough to consider �.x/ D x.

5.19. GI=G=1 queue. Let �1; �2; : : : be independent with distribution F and Let
	1; 	2; : : : be independent with distribution G. Define a Markov chain by

XnC1 D .Xn C �n � 	nC1/
C

where yC D maxfy; 0g. Here Xn is the workload in the queue at the time of arrival
of the nth customer, not counting the service time of the nth customer, 	n. The
amount of work in front of the .nC1/th customer is that in front of the nth customer
plus his service time, minus the time between the arrival of customers n and nC1. If
this is negative the server has caught up and the waiting time is 0. Suppose E�<E	i

and let � D .E	i �E�i /=2. (a) Show that there is a K so that Ex.X1�x/ � �� for
x � K . (c) Let Uk D minfn W Xn � Kg. (b) Use the fact that XUk^nC �.Uk ^ n/ is
a supermartingale to conclude that ExUk � x=�.



Chapter 6
Mathematical Finance

6.1 Two Simple Examples

To warm up for the developments in the next section we will look at two simple
concrete examples under the unrealistic assumption that the interest rate is 0.

One period case. In our first scenario the stock is at 90 at time 0 and may be 80 or
120 at time 1.

90

120

80

Suppose now that you are offered a European call option with strike price 100
and expiry 1. This means that after you see what happened to the stock, you have
an option to buy the stock (but not an obligation to do so) for 100 at time 1. If the
stock price is 80, you will not exercise the option to purchase the stock and your
profit will be 0. If the stock price is 120 you will choose to buy the stock at 100 and
then immediately sell it at 120 to get a profit of 20. Combining the two cases we
can write the payoff in general as .X1 � 100/C, where zC D maxfz; 0g denotes the
positive part of z.

Our problem is to figure out the right price for this option. At first glance this
may seem impossible since we have not assigned probabilities to the various events.
However, it is a miracle of “pricing by the absence of arbitrage” that in this case
we do not have to assign probabilities to the events to compute the price. To explain
this we start by noting that X1 will be 120 (“up”) or 80 (“down”) for a profit of 30
or a loss of 10, respectively. If we pay c for the option, then when X1 is up we make

R. Durrett, Essentials of Stochastic Processes, Springer Texts in Statistics,
DOI 10.1007/978-1-4614-3615-7 6, © Springer Science+Business Media, LLC 2012
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a profit of 20 � c, but when it is down we make �c. The last two sentences are
summarized in the following table

stock option
up 30 20� c

down �10 �c

Suppose we buy x units of the stock and y units of the option, where negative
numbers indicate that we sold instead of bought. One possible strategy is to choose
x and y so that the outcome is the same if the stock goes up or down:

30x C .20 � c/y D �10x C .�c/y

Solving, we have 40x C 20y D 0 or y D �2x. Plugging this choice of y into the
last equation shows that our profit will be .�10C 2c/x. If c > 5, then we can make
a large profit with no risk by buying large amounts of the stock and selling twice as
many options. Of course, if c < 5, we can make a large profit by doing the reverse.
Thus, in this case the only sensible price for the option is 5.

A scheme that makes money without any possibility of a loss is called an
arbitrage opportunity. It is reasonable to think that these will not exist in financial
markets (or at least be short-lived) since if and when they exist people take
advantage of them and the opportunity goes away. Using our new terminology
we can say that the only price for the option which is consistent with absence of
arbitrage is c D 5, so that must be the price of the option.

To find prices in general, it is useful to look at things in a different way. Let ai;j

be the profit for the i th security when the j th outcome occurs.

Theorem 6.1. Exactly one of the following holds:

(i) There is an investment allocation xi so that
Pm

iD1 xi ai;j � 0 for each j andPm
iD1 xi ai;k > 0 for some k.

(ii) There is a probability vector pj > 0 so that
Pn

j D1 ai;j pj D 0 for all i .

Here an x satisfying (i) is an arbitrage opportunity. We never lose any money but
for at least one outcome we gain a positive amount. Turning to (ii), the vector pj is
called a martingale measure since if the probability of the j th outcome is pj , then
the expected change in the price of the i th stock is equal to 0. Combining the two
interpretations we can restate Theorem 6.2 as:

Theorem 6.2. There is no arbitrage if and only if there is a strictly positive
probability vector so that all the stock prices are martingale.

Proof. One direction is easy. If (i) is true, then for any strictly positive probability
vector

Pm
iD1

Pn
j D1 xi ai;j pj > 0, so (ii) is false.

Suppose now that (i) is false. The linear combinations
Pm

iD1 xi ai;j when viewed
as vectors indexed by j form a linear subspace of n-dimensional Euclidean
space. Call it L. If (i) is false, this subspace intersects the positive orthant
O D fy W yj � 0 for all j g only at the origin. By linear algebra we know that L
can be extended to an n � 1 dimensional subspace H that only intersects O at the
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origin. (Repeatedly find a line not in the subspace that only intersects O at the origin
and add it to the subspace.)

p

H O

Since H has dimension n � 1, it can be written as H D fy W Pn
j D1 yj pj D 0g

where p is a vector with at least one positive component. Since for each fixed i the
vector ai;j is in L � H, (ii) holds. To see that all the pj > 0 we leave it to the reader
to check that if not, there would be a non-zero vector in O that would be in H. ut

To apply Theorem 6.2 to our simplified example, we begin by noting that in this
case ai;j is given by

j D 1 j D 2

stock i D 1 30 �10

option i D 2 20 � c �c

By Theorem 6.2 if there is no arbitrage, then there must be an assignment of
probabilities pj so that

30p1 � 10p2 D 0 .20 � c/p1 C .�c/p2 D 0

From the first equation we conclude that p1 D 1=4 and p2 D 3=4. Rewriting the
second we have

c D 20p1 D 20 � .1=4/ D 5

To prepare for the general case note that the equation 30p1 � 10p2 D 0 says that
under pj the stock price is a martingale (i.e., the average value of the change in price
is 0), while c D 20p1 C 0p2 says that the price of the option is then the expected
value under the martingale probabilities.

Two-period binary tree. Suppose that a stock price starts at 100 at time 0. At time
1 (1 day or 1 month or 1 year later) it will either be worth 120 or 90. If the stock is
worth 120 at time 1, then it might be worth 140 or 115 at time 2. If the price is 90 at
time 1, then the possibilities at time 2 are 120 and 80. The last three sentences can
be simply summarized by the following tree.

100

120

140

115

90

120

80



212 6 Mathematical Finance

Using the idea that the value of an option is its expected value under the probability
that makes the stock price a martingale, we can quickly complete the computations
in our example. When X1 D 120 the two possible scenarios lead to a change ofC20

or�5, so the probabilities of these two events should be 1/5 and 4/5. When X1 D 90

the two possible scenarios lead to a change of C30 or �10, so the probabilities of
these two events should be 1/4 and 3/4. When X0 D 0 the possible price changes on
the first step areC20 and �10, so their probabilities are 1/3 and 2/3. Making a table
of the possibilities, we have

X1 X2 probability .X2 � 100/C
120 140 .1=3/ � .1=5/ 40
120 115 .1=3/ � .4=5/ 15
90 120 .2=3/ � .1=4/ 20
90 80 .2=3/ � .3=4/ 0

so the value of the option is

1

15
� 40C 4

15
� 15C 1

6
� 20 D 80C 120C 100

30
D 10

The last derivation may seem a little devious, so we will now give a second
derivation of the price of the option based on absence of arbitrage. In the scenario
described above, our investor has four possible actions:

A0. Put $1 in the bank and end up with $1 in all possible scenarios.
A1. Buy one share of stock at time 0 and sell it at time 1.
A2. Buy one share at time 1 if the stock is at 120, and sell it at time 2.
A3. Buy one share at time 1 if the stock is at 90, and sell it at time 2.

These actions produce the following payoffs in the indicated outcomes

X1 X2 A0 A1 A2 A3 option
120 140 1 20 20 0 40
120 115 1 20 �5 0 15
90 120 1 �10 0 30 20
90 80 1 �10 0 �10 0

Noting that the payoffs from the four actions are themselves vectors in four-
dimensional space, it is natural to think that by using a linear combination of these
actions we can reproduce the option exactly. To find the coefficients zi for the actions
Ai we write four equations in four unknowns,

z0 C 20z1 C 20z2 D 40

z0 C 20z1 � 5z2 D 15
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z0 � 10z1 C 30z3 D 20

z0 � 10z1 � 10z3 D 0

Subtracting the second equation from the first and the fourth from the third gives
25z2 D 25 and 40z3 D 20 so z2 D 1 and z3 D 1=2. Plugging in these values, we
have two equations in two unknowns:

z0 C 20z1 D 20 z0 � 10z1 D 5

Taking differences, we conclude 30z1 D 15, so z1 D 1=2 and z0 D 10.
The reader may have already noticed that z0 D 10 is the option price. This is no

accident. What we have shown is that with $10 cash we can buy and sell shares of
stock to produce the outcome of the option in all cases. In the terminology of Wall
Street, z1 D 1=2; z2 D 1; z3 D 1=2 is a hedging strategy that allows us to replicate
the option. Once we can do this it follows that the fair price must be $10. To do this
note that if we could sell it for $12 then we can take $10 of the cash to replicate the
option and have a sure profit of $2.

6.2 Binomial Model

In this section we consider the Binomial model in which at each time the stock
price the stock is multiplied by u (for ‘up’). or multiplied by d (for ‘down’). As in
the previous section we begin with the

One Period Case

There are two possible outcomes for the stock called heads (H ) and tails (T ).

S0

S1(H) = S0u

S1(T ) = S0d

We assume that there is an interest rate r , which means that $1 at time 0 is the same
as $.1C r/ at time 1. For the model to be sensible, we need

0 < d < 1C r < u: (6.1)

Consider now an option that pays off V1.H/ or V1.T / at time 1. This could be
a call option .S1 � K/C, a put .K � S1/

C, or something more exotic, so we will
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consider the general case. To find the “no arbitrage price” of this option we suppose
we have V0 in cash and �0 shares of the stock at time 0, and want to pick these to
match the option price exactly:

V0 C�0

�
1

1C r
S1.H/ � S0

�

D 1

1C r
V1.H/ (6.2)

V0 C�0

�
1

1C r
S1.T /� S0

�

D 1

1C r
V1.T / (6.3)

Notice that here we have to discount money at time 1 (i.e., divide it by 1 C r) to
make it comparable to dollars at time 0.

To find the values of V0 and �0 we define the risk neutral probability p� so that

1

1C r

�
p�S0uC .1 � p�/S0d

� D S0 (6.4)

Solving we have

p� D 1C r � d

u � d
1 � p� D u � .1C r/

u � d
(6.5)

The conditions in (6.1) imply 0 < p� < 1.
Taking p�.6.2/C .1 � p�/ (6.3) and using (6.4) we have

V0 D 1

1C r

�
p�V1.H/C .1 � p�/V1.T /

�
(6.6)

i.e., the value is the discounted expected value under the risk neutral probabilities.
Taking the difference (6.2) and (6.3) we have

�0

�
1

1C r
.S1.H/� S1.T //

�

D 1

1C r
.V1.H/� V1.T //

which implies that

�0 D V1.H/� V1.T /

S1.H/� S1.T /
(6.7)

To explain the notion of hedging we consider a concrete example.

Example 6.1. A stock is selling at $60 today. A month from now it will either be at
$80 or $50, i.e., u D 4=3 and d D 5=6. We assume an interest rate of r D 1=18 so
the risk neutral probability is

19=18� 5=6

4=3� 5=6
D 4

9
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Consider now a call option .S1 � 65/C. By (6.6) the value is

V0 D 18

19
� 4

9
� 15 D 120

19
D 6:3158

Being a savvy businessman you offer to sell this for $6.50. You are delighted when
a customer purchases 10,000 calls for $65,000, but then become worried about the
fact that if the stock goes up you will lose $85,000. By (6.7) the hedge ratio

�0 D 15

30
D 1=2

so you borrow $300; 000� $65; 000D $235; 000 and buy 5,000 shares of stock.

Case 1. The stock goes up to $80. Your stock is worth $400,000. You have to pay
$150,000 for the calls and (19/18) $235,000 = $248,055 to redeem the loan so
you make $1,945 (in time 1 dollars).

Case 2. The stock drops to $50. Your stock is worth $250,000. You owe nothing for
the calls but have to pay $248,055 to redeem the loan so again you make $1,945.

The equality of the profits in the two cases may look like a miracle but it is not. By
buying the correct amount of stock you replicated the option. This means you made
a sure profit of the $1,842 difference (in time 0 dollars) between the selling price
and fair price of the option, which translates into $1,945 time 1 dollars.

N Period Model

To solve the problem in general we work backwards from the end, repeatedly
applying the solution of the one period problems. Let a be a string of H ’s and
T ’s of length n�1 which represents the outcome of the first n�1 events. The value
of the option at time n after the events in a have occurred, Vn.a/, and the amount of
stock we need to hold in this situation, �n.a/, in order to replicate the option payoff
satisfy:

Vn.a/C�n.a/

�
1

1C r
SnC1.aH/ � Sn.a/

�

D 1

1C r
VnC1.aH/ (6.8)

Vn.a/C�n.a/

�
1

1C r
SnC1.aT / � Sn.a/

�

D 1

1C r
VnC1.aT / (6.9)

Define the risk neutral probability p�
n .a/ so that

Sn.a/ D 1

1C r
Œp�

n .a/SnC1.aH/C .1 � p�
n .a//SnC1.aT /� (6.10)
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A little algebra shows that

p�
n .a/ D .1C r/Sn.a/ � SnC1.aT /

SnC1.aH/ � SnC1.aT /
(6.11)

In the binomial model one has p�
n .a/ D .1 C r � d/=.u � d/. However, stock

prices are not supposed to follow the binomial model, but are subject only to the no
arbitrage restriction that 0 < p�

n .a/ < 1. Notice that these probabilities depend on
the time n and the history a.

Taking p�
n .a/.6.8/C .1 � p�

n .a//.6.9/ and using (6.10) we have

Vn.a/ D 1

1C r



p�

n .a/VnC1.aH/C .1 � p�
n .a//VnC1.aT /

�
(6.12)

i.e., the value is the discounted expected value under the risk neutral probabilities.
Taking the difference (6.8) and (6.9) we have

�n.a/

�
1

1C r
.SnC1.aH/ � SnC1.aT //

�

D 1

1C r
.VnC1.aH/ � VnC1.aT //

which implies that

�n.a/ D VnC1.aH/ � VnC1.aT /

SnC1.aH/ � SnC1.aT /
(6.13)

In words, �n.a/ is the ratio of the change in price of the option to the change in
price of the stock. Thus for a call or put j�n.a/j � 1.

The option prices we have defined were motivated by the idea that by trading
in the stock we could replicate the option exactly and hence they are the only price
consistent with the absence of arbitrage. We will now go through the algebra needed
to demonstrate this for the general n period model. Suppose we start with W0 dollars
and hold �n.a/ shares of stock between time n and nC 1 when the outcome of the
first n events is a. If we invest the money not in the stock in the money market
account which pays interest r per period our wealth satisfies the recursion:

WnC1 D �nSnC1 C .1C r/.Wn ��nSn/ (6.14)

Theorem 6.3. If W0 D V0 and we use the investment strategy in (6.13) then we
have Wn D Vn.

In words, we have a trading strategy that replicates the option payoffs.

Proof. We proceed by induction. By assumption the result is true when n D 0. Let
a be a string of H and T of length n. (6.14) implies

WnC1.aH/ D �n.a/SnC1.aH/C .1C r/.Wn.a/��n.a/Sn.a//

D .1C r/Wn.a/C�n.a/ŒSnC1 � .1C r/Sn.a/�
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By induction the first term D .1 C r/Vn.a/. Letting q�
n .a/ D 1 � p�

n .a/, (6.10)
implies

.1C r/Sn.a/ D p�
n .a/SnC1.aH/C q�

n .a/SnC1.aT /

Subtracting this equation from SnC1.aH/ D SnC1.aH/ we have

SnC1.aH/ � .1C r/Sn.a/ D q�
n .a/ŒSnC1.aH/ � SnC1.aT /�

Using (6.13) now, we have

�n.a/ŒSnC1 � .1C r/Sn.a/� D q�
n .a/ŒVn.aH/ � VnC1.aT /�

Combining our results then using (6.12)

WnC1.aH/ D .1C r/Vn.a/C q�
n .a/ŒVn.aH/ � VnC1.aT /�

D p�
n .a/Vn.aH/C q�

n Vn.aT /C q�
n .a/ŒVn.aH/ � VnC1.aT /�

D VnC1.aH/

The proof that WnC1.aT / D VnC1.aT / is almost identical. ut
Our next goal is to prove that the value of the option is its expected value under

the risk neutral probability discounted by the interest rate (Theorem 6.5). The first
step is:

Theorem 6.4. In the binomial model, under the risk neutral probability measure
Mn D Sn=.1C r/n is a martingale with respect to Sn.

Proof. Let p� and 1�p� be defined by (6.5). Given a string a of heads and tails of
length n

P �.a/ D .p�/H.a/.1 � p�/T .a/

where H.a/ and T .a/ are the number of heads and tails in a. To check the
martingale property we need to show that

E�
�

SnC1

.1C r/nC1

ˇ
ˇ
ˇ
ˇSn D sn; : : : S0 D s0

�

D Sn

.1C r/n

where E� indicates expected value with respect to P �. Letting XnC1 D SnC1=Sn

which is independent of Sn and is u with probability p� and d with probability
1 � p� we have
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E�
�

SnC1

.1C r/nC1

ˇ
ˇ
ˇ
ˇSn D sn; : : : S0 D s0

�

D Sn

.1C r/n
E�

�
XnC1

1C r

ˇ
ˇ
ˇ
ˇSn D sn; : : : S0 D s0

�

D Sn

.1C r/n

since E�XnC1 D 1C r by (6.10). ut
Notation. To make it easier to write computations like the last one we will let

En.Y / D E.Y jSn D sn; : : : S0 D s0/ (6.15)

or in words, the conditional expectation of Y given the information at time n.
A second important martingale result is

Theorem 6.5. Assume that the holdings �n.a/ can be determined from the out-
comes of the first n stock movements and let Wn be the wealth process defined
by (6.14). Under P �; Wn=.1 C r/n is a martingale, and hence the value has
V0 D E�.Vn=.1C r/n/.

Proof. The second conclusion follows from the first and Theorem 6.3. A little
arithmetic with (6.14) shows that

WnC1

.1C r/nC1
D Wn

.1C r/n
C�n

�
SnC1

.1C r/nC1
� Sn

.1C r/n

�

Since �n.a/ is an admissible gambling strategy and Sn=.1 C r/n is a martingale,
the desired result follows from Theorem 5.12. ut

6.3 Concrete Examples

Turning to examples, we will often use the following binomial model because it
leads to easy arithmetic

u D 2; d D 1=2; r D 1=4 (6.16)

The risk neutral probabilities

p� D 1C r � d

u � d
D 5=4� 1=2

2 � 1=2
D 1

2

and by (6.12) the option prices follow the recursion:

Vn.a/ D 0:4ŒVnC1.aH/C VnC1.aT /� (6.17)

Example 6.2 (Callback options). In this option you can buy the stock at time 3 at
its current price and then sell it at the highest price seen in the past for a profit of

V3 D max
0�m�3

Sm � S3
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Our goal is to compute the value Vn.a/ and the replicating strategy �n.a/ for this
option in the binomial model given in (6.16) with S0 D 4. Here the numbers above
the nodes are the stock price, while those below are the values of Vn.a/ and �n.a/.
Starting at the right edge, S3.HT T / D 2 but the maximum in the past is 8 D S1.H/

so V3.HT T / D 8 � 2 D 6.

32

8

8

2

8

2

2

.5

0

8

0

6

0

2

2

3.5

16

4

4

1

3.2

2.4

0.8

2.2

−.25

−1

−.333

−1

8

2

2.24

1.2

.0666

−.466

4

1.376
.1733

On the tree, stock prices are above the nodes and option prices below. To explain
the computation of the option price note that by (6.17).

V2.HH/ D 0:4.V3.HHH/C V3.HHT // D 0:4.0C 8/ D 3:2

V2.HT / D 0:4.V3.HTH/C V3.HT T // D 0:4.0C 6/ D 2:4

V1.H/ D 0:4.V2.HH/C V2.HT // D 0:4.3:2C 2:4/ D 2:24

If one only wants the option price then Theorem 6.5 which says that V0 D
E�.VN =.1C r/N / is much quicker:

V0 D .4=5/3 � 1
8
� Œ0C 8C 0C 6C 0C 2C 2C 2C 3:5� D 1:376

Example 6.3 (Put option). We will use the binomial model in (6.16) but now
suppose S0 D 8 and consider the put option with value V3 D .10 � S3/

C. The
value of this option depends only on the price so we can reduce the tree considered
above to:
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64

16

4

1

0

0

6

9

32

8

2

0

2.4

6

0

−1/2

−1

16

4

0.96

3.2

−0.1

−0.6

8

1.728
−0.1866

On the tree itself stock prices are above the nodes and option prices below. To
explain the computation of the option price note that by (6.17).

V2.2/ D 0:4ŒV3.4/C V3.1/� D 0:4 � Œ8C 9� D 6:8

V2.8/ D 0:4ŒV3.16/C V3.2/� D 0:4 � Œ0C 6� D 2:4 V2.32/ D 0

V1.4/ D 0:4ŒV2.8/C V2.2/� D 0:4 � Œ2:4C 6� D 3:36

V1.16/ D 0:4ŒV2.32/C V2.8/� D 0:4 � Œ0C 2:4� D 0:96

V0.8/ D 0:4ŒV1.16/C V1.40� D 0:4 � Œ0:96C 3:36� D 1:728

Again if one only wants the option price then Theorem 6.5 is much quicker:

V0 D .4=5/3 �



6 � 3
8
C 9 � 1

8

�

D 1:728

However if we want to compute the replicating strategy

�n.a/ D VnC1.aH/ � VnC1.aT /

SnC1.aH/ � SnC1.aT /

one needs all of the information generated by the recursion.

�2.HH/ D 0

�2.HT / D .0 � 6/=.16� 4/ D �0:5

�2.T T / D .6 � 9/=.4� 1/ D 1

�1.H/ D .0 � 2:4/=.32� 8/ D �0:1
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�1.T / D .2:4 � 6/=.8� 2/ D �0:6

�0.T / D .0:96� 3:2/=.16� 4/

Notice that Vn.aH/ � Vn.aT / and the change in the price of the option is always
smaller than the change in the price of the stock so �1 � �n.a/ � 0.

Example 6.4 (Put-call parity). Consider the binomial model with S0 D 32; u D
3=2; d D 2=3 and r D 1=6. By (6.5) the risk neutral probability

p� D 1C r � d

u � d
D 7=6� 2=3

3=2� 2=3
D 3=6

5=6
D 0:6

so by (6.12) the value satisfies

Vn.a/ D 1

7
.3:6VnC1.aH/C 2:4VnC1.aT //

We will now compute the values for the call and put with strike 49 and expiry 2. In
the diagrams below the numbers above the line are the value of the stock and the
ones below are the value of the option, and the replicating strategy.

81

call 32

36
0

16
0

54

115.2
7

24

0

36

414.72
49

81

put 0

36
13

16
33

54

31.2
7

24
126
7

36
414.72

49

We have written the values as fractions to make it clear that the value at time 0
of these two options are exactly the same. Once you realize this it is easy to prove.

Theorem 6.6. The values VP and VC of the put and call options with the same
strike K and expiration N are related by

VP � VC D K

.1C r/N
� S0

In particular if K D .1C r/N S0 then VP D VC .

Proof. The key observation is that

SN C .K � SN /C � .SN �K/C D K
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Consider the two cases SN � K and SN � K . Dividing by .1 C r/N , taking E�
expected value and using the fact that Sn=.1C r/n is a martingale

S0 C E� .K � SN /C

.1C r/N
� E� .K � SN /C

.1C r/N
D K

.1C r/N

Since the second term on the left is VP and the third is VC the desired result
follows. ut

It is important to note that the last result can be used to compute the value of any
put from the corresponding call. Returning to the previous example and looking at
the time 1 node where the price is 54, the formula above says

31:2

7
� 115:2

7
D 84

7
D 12 D 6

7
49 � 54

Example 6.5 (Knockout options). In these options when the price falls below a
certain level the option is worthless no matter what the value of the stock is at the
end. To illustrate consider the binomial model from Example 6.4: u D 3=2; d D
2=3, and r D 1=6. This time we suppose S0 � 24 and consider a call .S3 � 28/C
with a knockout barrier at 20, that is if the stock price drops below 20 the option
becomes worthless. As we have computed the risk neutral probability is p� D 0:6

and the value recursion is

Vn.a/ D 6

7
Œ0:6Vn.aH/C 0:4Vn.aT /� ;

with the extra boundary condition that if the price is �20 the value is 0.

81

36

16

53

8

0

54

24

30

4.114

36

16

16.839

0

24
8.660

To check the answer note that the knockout feature eliminates one of the paths to
36 so

V0 D .6=7/3Œ.0:6/3 � 53C 2.0:6/2.0:4/ � 8� D 8:660

From this we see that the knockout barrier reduced the value of the option by
.6=7/3.0:6/2.0:4/ � 8 D 0:7255.
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6.4 Capital Asset Pricing Model

In this section, we will explore an approach to option pricing which is more in
keeping with traditional economic thinking. Our hidden agenda here is to show how
ideas from Sect. 6.2 can be used to simplify a complicated looking problem.

Each investor is assumed to have a utility function that nondecreasing and
concave. If 0 � � � 1 and x < y then

U.�x C .1 � �/y/ � �U.x/C .1 � �/U.y/ (6.18)

Geometrically, the line segment from .x; U.x// to .y; U.y// lies below the graph
of the function.
In economic terms investors are risk averse. They prefer a sure pay-off of �xC
.1��/y to a lottery ticket that pays x with probability � and pays y with probability
1 � �.

Lemma 6.7. If U is smooth then U is concave if U 00 � 0.

Proof. U 00 � 0 implies that the U 0 is decreasing, so if x > y

1

�.x � y/

Z �xC.1��/y

y

U 0.z/ d z � 1

x � y

Z x

y

U 0.z/ d z

In words, the average slope over Œy; �xC .1��/y�, and interval of length �.x�y/

is larger than that over Œy; x�. Doing the integrals and a little algebra gives

U.�x C .1 � �y// � U.y/ � �.U.x/� U.y//

which after a little more algebra is (6.18). ut
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Some concrete examples of utility functions are:

Up.x/ D xp=p with 0 < p < 1 for x � 0 and U.x/ D �1 for x < 0.
U0.x/ D ln x for x > 0 and U.x/ D �1 for x � 0.
Up.x/ D xp=p with p < 0 for x � 0 and U.x/ D �1 for x � 0.

Dividing by p is useful here because in all three cases U 0
p.x/ D xp�1 and U 00

p .x/ D
.p � 1/xp�2 � 0 for x � 0. The second half of the definition is forced on us. In the
second and third cases Up.x/! �1 as x # 0, while in the first U 0

p.x/! C1 as
x # 0.

An optimal investment problem. Given a utility function U and an initial wealth,
find an admissible trading strategy �n to maximize EU.WN /, where the wealth Wn

satisfies the recursion (6.14)

WnC1 D �nSnC1 C .1C r/.Wn ��nSn/

Example 6.6. Consider now the concrete example of maximizing U.x/ D ln x for
a two-period binomial model with S0 D 4; u D 2; d D 1=2, and r D 1=4 where the
probability of up and down are 2/3 and 1/3 respectively. Note that we are optimizing
under the real world or physical measure rather than the risk neutral probabilities
p� D q� D 1=2 which are a fiction used to compute option prices.

Our wealth at time 1 satisfies

W1.H/ D 8�0 C 5

4
.W0 � 4�0/ D 5

4
W0 C 3�0

W1.T / D 2�0 C 5

4
.W0 � 4�0/ D 5

4
W0 C 3�0

Writing ı1 D �1.H/; ı2 D �1.T /, and ı0 D �0 our wealth at time 2 is

W2.HH/ D 16ı1 C 5

4
.W1.H/ � 8ı1/ D 6ı1 C 15

4
ı0 C 25

16
W0

W2.HT / D 4ı1 C 5

4
.W1.H/ � 8ı1/ D �6ı1 C 15

4
ı0 C 25

16
W0

W2.TH/ D 4ı2 C 5

4
.W1.H/ � 2ı2/ D 3

2
ı2 � 15

4
ı0 C 25

16
W0

W2.T T / D ı2 C 5

4
.W1.H/ � 2ı2/ D �3

2
ı2 � 15

4
ı0 C 25

16
W0

Let y0; y1; y2, and y3 be our wealth at time 2 under outcomes HH; HT; TH , and
T T . To see the correspondence think of binary digits H D 0 and T D 1. With this
notation we want to maximize

V D E ln W2 D 4

9
ln y0 C 2

9
ln y1 C 2

9
ln y2 C 1

9
ln y3
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Differentiating and using the formulas for the yi we have

@V

@ı0

D 15

4

�
4

9
� 1

y0

C 2

9
� 1

y1

� 2

9
� 1

y2

� 1

9
� 1

y3

�

@V

@ı1

D 6

�
4

9
� 1

y0

� 2

9
� 1

y1

�

@V

@ı2

D 3

2

�
2

9
� 1

y2

� 1

9
� 1

y3

�

The second and third equations imply that 2y1 D y0 and 2y3 D y2. The first
equation implies

4

y0

C 2

y1

D 2

y2

C 1

y3

or 4=y1 D 2=y3, i.e., 2y3 D y1. Thus if y3 D c; y1 D y2 D 2c, and y3 D 4c.
Adding the equations for the W2 we have

9c D y0 C y1 C y2 C y3 D 25

4
W0

and it follows that

y3 D 4

9
� 25

4
W0 y2 D y1 D 2

9
� 25

4
W0 y0 D 1

9
� 25

4
W0 (6.19)

Once we have the yi ’s we have

y0 � y1 D 12ı1 y2 � y3 D 3ı2 y0 C y1 � y2 � y3 D 15ı0

Turing to the two-period case for a general binomial model, the previous
calculation suggests that what we really want to solve for are the terminal values
yi . We cannot achieve any yi . Theorem 6.5 implies that our discounted wealth
Wn=.1Cr/n is a martingale under P �, so letting p�

m be the risk neutral probabilities
of outcomes m D 0; 1; 2; 3, we must have

1

.1C r/2

3X

mD0

p�
mym D W0

Conversely, given a vector that satisfies the last condition, the option with these
payoffs has value W0 and there is a trading strategy that allows us to replicate the
option. Letting pm be the physical probabilities of outcomes m D 0; 1; 2; 3, our
problem m is to

Maximize
P3

mD0 pm ln ym subject to .1C r/�2
P3

mD0 p�
mym D W0.
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Consider the unconstrained optimization problem of maximizing

L D
3X

mD0

pmU.ym/ � �

.1C r/2

 
3X

mD0

p�
mym �W0.1C r/2

!

Differentiating we have

@L

@ym

D pm

ym

� �p�
m

.1C r/2

Setting these equal to 0 we have

ym D pm.1C r/2

�p�
m

The final detail is to pick � to satisfy the constraint, i.e.,

.1C r/2

�

3X

mD0

pm D W0

or since the pm sum to 1, � D 1=W0 and

ym D W0.1C r/2 pm

p�
m

Since 1C r D 5=4; p3 D 4=9; p2 D p1 D 2=9; p0 D 1=9, and all the p�
m D 1=4

this agrees with (6.19). However from the new solution we can easily see the nature
of the solution in general.

6.5 American Options

European option contracts specify an expiration date, and if the option is to be
exercised at all, this must occur at the expiration date. An option whose owner can
choose to exercise it at any time is called an American option. We will mostly be
concerned with call and put options where the value at exercise is a function of the
stock price, but it is no more difficult to consider path dependent options, so we
derive the basic formulas in that generality.

Given a sequence a of heads and tails of length n let gn.a/ be the value if we
exercise at time n. Our first goal is to compute the value function Vn.a/ for the N -
period problem. To simplify some statements, we will suppose with essentially no
loss of generality that gN .a/ � 0, so VN .a/ D gN .a/. To work backwards in time
note that at time n we can exercise the option or let the game proceed for one more
step. Since we will stop or continue depending on which choice gives the better
payoff:
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Vn.a/ D max

�

gn.a/;
1

1C r
Œp�

n .a/VnC1.aH/C q�
n .a/VnC1.aT /�

	

(6.20)

where p�
n .a/ and q�

n .a/ D 1 � p�
n .a/ are the risk-neutral probabilities which make

the underlying stock a martingale.

64, 0

16, 0

4, 6

1, 9

32, 0

0, 0*

8, 2.4

2, 2.4*

2, 8

8*, 6

16, 0.96

0, 0.96*

4, 6

6*,4.16

8, 2.874

2, 2.784*

Example 6.7. For a concrete example, suppose as we did in Example 6.3 that the
stock price follows the binomial model with S0 D 8; u D 2; d D 1=2; r D 1=4

and consider a put option with strike 10, that is gn D .10 � sn/C. The risk neutral
probability p� D 0:5 and the recursion is

Vn�1.a/ D 0:4ŒVn.aH/C Vn.aT /�

On the drawing above, the two numbers above each line are the price of the stock
and the value of the option. Below the line are the value of the option if exercised,
and the value computed by the recursion if we continue for one more period. A star
indicates the large of the two, which is the value of the option at that time. To explain
the solution, note that working backwards from the end.

V2.2/ D maxf8; 0:4.6C 9/ D 6g D 8

V2.8/ D maxf2; 0:4.0C 6/ D 2:4g D 2:4

V2.32/ D maxf0; 0g D 0

V1.4/ D maxf6; 0:4.2:4C 8/ D 4:16g D 6

V1.16/ D maxf0; 0:4.0C 2:4/ D 0:96g D 0:96

V0.8/ D maxf2; 0:4.0:96C 6/ D 2:784g D 2:784

This computes the value and the optimal strategy: stop or continue at each node
depending on which value is larger. Notice that this is larger than the value 1.728
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we computed for the European version. It certainly cannot be strictly less since one
possibility in the American option is to continue each time and this turns it into a
European option.

For some of the theoretical results it is useful to notice that

V0 D max



E�
�

g


.1C r/


�

(6.21)

where the maximum is taken over all stopping times 
 with 0 � 
 � N . In
Example 6.7 
.T / D 1 and 
.H/ D 3, i.e., if the stock goes down on the first
step we stop. Otherwise we continue until the end.

V0 D 1

2
� 6 � 4

5
C 1

8
� 6 �

�
4

5

�3

D 2:4C 0:384

Proof. The key to prove the stronger statement

Vn.a/ D max

�n

E�
n .g
 =.1C r/
�n/

where E�
n is the conditional expectation given the events that have occurred up to

time n. Let Wn.a/ denote the right-hand side. If we condition on the first n outcomes
being a then P.
 D n/ is 1 or 0. In the first case we get gn.a/. In the second case
Wn.a/ D Œp�

n .a/WnC1.aH/C q�
n .a/WnC1.aT /�=.1C r/, so Wn and Vn satisfy the

same recursion. ut
Example 6.8. Continue now the set-up of the previous example but consider the
call option .Sn � 10/C. The computations are the same but the result is boring:
the optimal strategy is to always continue, so there is no difference between the
American and the European option.

64, 54

16, 6

4, 0

1, 0

32, 24

22, 24*

8, 2.4

0, 2.4*

2, 0

0, 0*

16, 10.56

6, 10.56*

4, 0.96

0, 0.96*

8, 4.608

0, 4.608*
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To spare the reader the chore of doing the arithmetic we give the recursion:

V2.2/ D maxf0; 0g D 0

V2.8/ D maxf0; 0:4.0C 6/ D 2:4g D 2:4

V2.32/ D maxf22; 0:4.54C 60 D 24g D 24

V1.4/ D maxf0; 0:4.0C 2:4/ D 0:96g D 0:96

V1.16/ D maxf6; 0:4.24C 2:4/ D 10:56g D 10:56

V0.8/ D maxf0; 0:4.10:56C 0:96/ D 4:608g D 4:608

Our next goal is to prove that it is always optimal to continue in the case of the
American call option. To explain the reason for this we formulate an abstract result.
We say that g is convex if whenever 0� � 1 and s1; s2 are real numbers

g.�s1 C .1 � �/s2/ � �g.s1/C .1 � �/g.s2/ (6.22)

Geometrically the line segment from .s1; g1.s// to .s2; g2.s// always lies above the
graph of the function g. This is true for the call g.x/ D .x�K/C and the put g.x/ D
.K�x/C. However only the call satisfies all of the conditions in the following result.

Theorem 6.8. If g is a nonnegative convex function with g.0/ D 0 then for the
American option with payoff g.Sn/ it is optimal to wait until the end to exercise.

Proof. Since Sn=.1C r/n is a martingale under P �

g.Sn/ D g

�

E�
n

�
SnC1

1C r

��

Under the risk neutral probability

Sn.a/ D p�
n .a/

SnC1.aH/

1C r
C .1 � p�

n .a//
SnC1.aH/

1C r

Using (6.22) with � D p�
n .a/ it follows that

g

�

E�
n

�
SnC1

1C r

��

� E�
n

�

g

�
SnC1

1C r

��

Using (6.22) with s2 D 0 and g.0/ D 0 we have g.�s1/ � �g.s1/, so we have

E�
n

�

g

�
SnC1

1C r

��

� 1

1C r
E�

n g.SnC1/
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Combining three of the last four equations we have

g.Sn/ � 1

1C r
E�

n g.SnC1/

This shows that if we were to stop at time n for some outcome a, it would be better
to continue. Using (6.21) now the desired result follows. ut

6.6 Black-Scholes Formula

Many options take place over a time period of one or more months, so it is natural
consider St to be the stock price after t years. We could use a binomial model in
which prices change at the end of each day but it would also be natural to update
prices several times during the day. Let h be the amount of time measured in years
between updates of the stock price. This h will be very small e.g., 1=365 for daily
updates so it is natural to let h ! 0. Knowing what will happen when we take the
limit we will let

Snh D S.n�1/h exp.�hC 

p

hXn/

where P.Xn D 1/ D P.Xn D �1/ D 1=2. This is binomial model with

u D exp.�hC 

p

h/ d D exp.�h � 

p

h/ (6.23)

Iterating we see that

Snh D S0 exp

 

�nhC 

p

h

nX

mD1

Xm

!

(6.24)

If we let t D nh the first term is just �t . Writing h D t=n the second term becomes



p

t � 1p
n

nX

mD1

Xm

To take the limit as n!1, we use the

Theorem 6.9 (Central Limit Theorem). Let X1; X2; : : : be i.i.d. with EXi D 0

and var .Xi / D 1 Then for all x we have

P

 
1p
n

nX

mD1

Xm � x

!

! P.� � x/ (6.25)
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where � has a standard normal distribution. That is,

P.� � x/ D
Z x

�1
1p
2�

e�y2=2 dy

The conclusion in (6.25) is often written as

1p
n

nX

mD1

Xm ) �

where ) is read “converges in distribution to.” Recalling that if we multiply a
standard normal � by a constant c then the result has a normal distribution with
mean 0 and variance 
2, we see that

p
t � 1p

n

nX

mD1

Xm )
p

t�

and the limit is a normal with mean 0 and variance t .
This motivates the following definition:

Definition. B.t/ is a standard Brownian motion if B.0/ D 0 and it satisfies the
following conditions:

(a) Independent increments. Whenever 0 D t0 < t1 < : : : < tk

B.t1/� B.t0/; : : : ; B.tk/� B.tk�1/ are independent.

(b) Stationary increments. The distribution of Bt � Bs is normal .0; t � s/.
(c) t ! Bt is continuous.

To explain (a) note that if ni D ti =h then the sums
X

ni�1<m�ni

Xm i D 1; : : : k

are independent. For (b) we note that the distribution of the sum only depends on
the number of terms and use the previous calculation. Condition (c) is a natural
assumption for the physical system which motivated this definition: the erratic
movement of a pollen grain in water as seen under a microscope by Brown in 1825.

Using the new definition, our stock price model can be written as

St D S0 � exp.�t C 
Bt / (6.26)

where Bt is a standard Brownian motion Here � is the exponential growth rate of
the stock, and 
 is its volatility. If we also assume that the per period interest rate
in the approximating model is rh, and recall that

�
1

1C rh

�t=h

D 1

.1C rh/t=h
! 1

ert
D e�rt
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then the discounted stock price is

e�rt St D S0 � exp..�� r/t C 
Bt /

By the formula for the moment generating function for the normal with mean 0
and variance 
2t , see (5.15),

E exp.�.
2=2/t C 
Bt / D 1

Since Bt has independent increments, if we let

� D r � 
2=2 (6.27)

then reasoning as for the exponential martingale, Example 5.6, the discounted stock
price, e�rt St is a martingale.

Extrapolating wildly from discrete time, we can guess that the option price is its
expected value after changing the probabilities to make the stock price a martingale.

Theorem 6.10. Write E� for expected values when � D r � 
2=2 in (6.26). The
value of a European option g.ST / is given by E�e�rT g.ST /.

Proof. We prove this by taking limits of the discrete approximation. The risk neutral
probabilities, p�

h , are given by

p�
h D

1C rh � d

u � d
: (6.28)

Using the formulas for u and d in (6.23) and recalling that ex D 1CxCx2=2C� � � ,

u D 1C �hC 

p

hC 1

2
.�hC 


p
h/2 C : : :

D 1C 

p

hC .
2=2C �/hC : : :

d D 1C �h� 

p

hC .
2=2C �/hC : : : (6.29)

so from (6.28) we have

p�
h 




p

hC .r � �� 
2=2/h

2

p

h
D 1

2
C r � � � 
2=2

2


p
h

If Xh
1 ; Xh

2 ; : : : are i.i.d. with

P.Xh
1 D 1/ D p�

h P.Xh
1 D �1/ D 1 � p�

h
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then the mean and variance are

EXh
i D 2p�

h D
.r � �� 
2=2/




p
h

var .Xh
i / D 1 � .EXh

i /2 ! 1

To apply the central limit Theorem we note that



p

h

t=hX

mD1

Xh
m D 


p
h

t=hX

mD1

.Xh
m � EXh

m/C 

p

h

t=hX

mD1

EXh
m

! 
Bt C .r � �C 
2=2/t

so under the risk neutral measure, P �,

St D S0 � exp..r � 
2=2/t C 
Bt /

The value of the option g.ST / in the discrete approximation is given by the expected
value under its risk neutral measure. Ignoring the detail of proving that the limit of
expected values is the expected value of the limit, we have proved the desired result.

ut

The Black-Scholes Partial Differential Equation

We continue to suppose that the option payoff at time T is g.ST /. Let V.t; s/ be
the value of the option at time t < T when the stock price is s. Reasoning with the
discrete time approximation and ignoring the fact that the value in this case depends
on h,

V.t � h; s/ D 1

1C rh



p�V.t; su/C .1 � p�/V .t; sd/

�

Doing some algebra we have

V.t; s/ � .1C rh/V .t � s; h/ D p�ŒV .t; s/ � V.t; su/�

C .1 � p�/ŒV .t; s/ � V.t; sd/�

Dividing by h we have

V.t; s/ � V.t � h; s/

h
� rV .t � h; s/

D p�



V.t; s/ � V.t; su/

h

�

C .1� p�/



V.t; s/ � V.t; sd/

h

�

(6.30)
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Letting h! 0 the left-hand side of (6.30) converges to

@V

@t
.t; s/ � rV .t; s/ (6.31)

Expanding V.t; s/ in a power series in s

V .t; s0/� V.t; s/ 
 @V

@x
.t; s/.s0 � s/C @2V

@x2
.t; s/

.s0 � s/2

2

Using the last equations with s0 D su and s0 D sd , the right-hand side of (6.30) is


 @V

@x
.t; s/sŒ.1 � u/p� C .1 � d/.1 � p�/�=h

� 1

2

@2V

@x2
.t; s/s2Œp�.1 � u/2 C .1 � p�/.1 � d/2�=h

From (6.28)

.1 � u/p� C .1 � d/.1 � p�/

h

 �

�

2

2
C �

�

D �r

.1 � u/2p� C .1 � d/2.1 � p�/

h

 
2

so taking the limit, the right-hand side of (6.30) is

@V

@x
.t; s/sŒ�rh�C 1

2

@2V

@x2
.t; s/s2
2h

Combining the last equation with (6.31) and (6.30) we have that the value
function satisfies

@V

@t
� rV .t; s/C rs

@V

@x
.t; s/C 1

2

2s2 @2V

@x2
.t; s/ D 0 (6.32)

for 0 � t < T with boundary condition V.T; s/ D g.s/.

6.7 Calls and Puts

We will now apply the theory developed in the previous section to the concrete
examples of calls and puts. At first glance the formula in the first result may look
complicated, but given that the value is defined by solving a PDE, it is remarkable
that such a simple formula exists.
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Theorem 6.11. The price of the European call option .St �K/C is given by

S0˚.d1/ � e�rt K˚.d2/

where the constants

d1 D ln.S0=K/C .r C 
2=2/t



p

t
d2 D d1 � 


p
t :

Proof. Using the fact that log.St=S0/ has a normal.�t; 
2t/ distribution with
� D r � 
2=2, we see that

E�.e�rt .St �K/C/ D e�rt

Z 1

log.K=S0/

.S0e
y �K/

1p
2�
2t

e�.y��t/2=2
2t dy

Splitting the integral into two and then changing variables y D �t C w

p

t ; dy D


p

t dw the integral is equal to

D e�rt S0e
�t 1p

2�

Z 1

˛

ew

p

t e�w2=2 dw � e�rt K
1p
2�

Z 1

˛

e�w2=2 dw (6.33)

where ˛ D .log.K=S0/ � �t/=

p

t . The handle the first term, we note that

1p
2�

Z 1

˛

ew

p

t e�w2=2 dw D et
2=2

Z 1

˛

1p
2�

e�.w�

p

t/2=2 dw

D et
2=2 P.normal.

p

t ; 1/ > ˛/

The last probability can be written in terms of the distribution function ˚ of a normal
(0,1) �, i.e., ˚.t/ D P.� � t/, by noting

P.normal.

p

t ; 1/ > ˛/ D P.� > ˛ � 

p

t/

D P.� � 

p

t � ˛/ D ˚.

p

t � ˛/

where in the middle equality we have used the fact that � and �� have the same
distribution. Using the last two computations in (6.33) converts it to

e�rt S0e
�t e
2t=2˚.


p
t � ˛/ � e�rt K˚.�˛/

Now e�rt e�t e
2t=2 D 1 since � D r �
2=2. As for the argument of the first normal

d1 D 

p

t � ˛ D log.S0=K/C .r � 
2=2/t



p

t
C 

p

t

which agrees with the formula given in the theorem. The second one is much easier
to see: d2 D d1 � 


p
t . ut
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Example 6.9 (A Google call options). On the morning of December 5, 2011 Google
stock was selling for $620 a share and a March 12 call option with strike K D 635

was selling for $33.10. To compare this with the prediction of the Black-Scholes
formula we assume an interest rate of r D 0:01 per year and assume a volatility

 D 0:3. The 100 days until expiration of the option are t D 0:27393 years. With
the help of a little spreadsheet we find that the formula predicts a price of $32.93.

Example 6.10 (Put-call parity). allows us to compute the value of the put-option,
VP from the value of the call option VC by the formula:

VP � VC D e�rT K � S0

In the example for March 12 Google options, exp.�rt/ D 0:9966 so we might as
well ignore that factor. As the next table shows the formula works well in practice

strike VP VC S0 C VP � VC

600 28.00 55.60 598.20
640 45.90 32.70 638.20
680 74.16 17.85 681.31

6.8 Exercises

6.1. A stock is now at $110. In a year its price will either be $121 or $99.
(a) Assuming that the interest rate is r D 0:04 find the price of a call .S1 � 113/C.
(b) How much stock �0 do we need to buy to replicate the option. (c) Verify that
having V0 in cash and �0 in stock replicates the option exactly.

6.2. A stock is now at $60. In a year its price will either be $75 or $45. (a) Assuming
that the interest rate is r D 0:05 find the price of a put .60�S1�/C. (b) How much
stock �0 do we need to sell to replicate the option. (c) Verify that having V0 in cash
and �0 in stock replicates the option exactly.

6.3. It was crucial for our no arbitrage computations that there were only two
possible values of the stock. Suppose that a stock is now at 100, but in 1 month may
be at 130, 110 or 80 in outcomes that we call 1, 2 and 3. (a) Find all the (nonnegative)
probabilities p1; p2 and p3 D 1 � p1 � p2 that make the stock price a martingale.
(b) Find the maximum and minimum values, v1 and v0, of the expected value of
the call option .S1 � 105/C among the martingale probabilities. (c) Show that we
can start with v1 in cash, buy x1 shares of stock and we have v1 C x1.S1 � S0/ �
.S1 � 105/C in all three outcomes with equality for 1 and 3. (d) If we start with v0

in cash, buy x0 shares of stock and we have v0 C x0.S1 � S0/ � .S1 � 105/C in all
three outcomes with equality for 2 and 3. (e) Use (c) and (d) to argue that the only
prices for the option consistent with absence of arbitrage are those in Œv0; v1�.
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6.4. The Cornell hockey team is playing a game against Harvard that it will either
win, lose, or draw. A gambler offers you the following three payoffs, each for
a $1 bet

win lose draw
Bet 1 0 1 1.5
Bet 2 2 2 0
Bet 3 0.5 1.5 0

(a) Assume you are able to buy any amounts (even negative) of these bets. Is there
an arbitrage opportunity? (b) What if only the first two bets are available?

6.5. Suppose Microsoft stock sells for 100 while Netscape sells for 50. Three
possible outcomes of a court case will have the following impact on the two stocks.

Microsoft Netscape
1 (win) 120 30
2 (draw) 110 55
3 (lose) 84 60

What should we be willing to pay for an option to buy Netscape for 50 after the
court case is over? Answer this question two ways: (i) find a probability distribution
so that the two stocks are martingales, (ii) show that by using cash and buying
Microsoft and Netscape stock one can replicate the option.

6.6. Consider the two-period binomial model with u D 2; d D 1=2 and interest
rate r D 1=4. and suppose S0 D 100. What is the value of the European call option
with strike price 80, i.e., the option with payoff .S2� 80/C. Find the stock holdings
�0; �1.H/ and �1.T / need to replicate the option exactly.

6.7. Consider the two-period binomial model with u D 3=2; d D 2=3, interest rate
r D 1=6. and suppose S0 D 45. What is the value of the European call option
with strike price 50, i.e., the option with payoff .50�S2/

C. Find the stock holdings
�0; �1.H/ and �1.T / need to replicate the option exactly.

6.8. The payoff of the Asian option is based on the average price: An D .S0C� � �C
Sn/=.nC 1/. Suppose that the stock follows the binomial model with S0 D 4; u D
2; d D 1=2, and r D 1=4. (a) Compute the value function Vn.a/ and the replicating
portfolio �n.a/ for the three period call option with strike 4. (b) Check your answer
for V0 by using V0 D E�.V3=.1C r/3/.

6.9. In the putback option at time 3 you can buy the stock for the lowest price seen
in the past and the sell it at its current price for a profit of

V3 D S3 � min
0�m�3

Sm

Suppose that the stock follows the binomial model with S0 D 4; u D 2; d D 1=2,
and r D 1=4. (a) Compute the value function Vn.a/ and the replicating portfolio
�n.a/ for the three period call option with strike 4. (b) Check your answer for V0

by using V0 D E�.V3=.1C r/3/.
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6.10. Consider the three-period binomial model with u D 3; d D 1=2 and r D 1=3

and S0 D 16. The European prime factor option pays off $1 for each factor in
the prime factorization of the stock price at time 3 (when the option expires). For
example, if the stock price is 24 D 2331 then the payoff is 4 D 3C 1. Find the no
arbitrage price of this option.

6.11. Suppose S0 D 27; u D 4=3; d D 2=3 and interest rate r D 1=9. The
European “cash-or-nothing option” pays $1 if S3 > 27 and 0 otherwise. Find the
value of the option Vn and for the hedge �n.

6.12. Assume the binomial model with S0 D 54; u D 3=2; d D 2=3, and r D 1=6.
and consider a put .50 � S3/

C with a knockout barrier at 70. Find the value of the
option.

6.13. Consider now a four period binomial model with S0 D 32; u D 2; d D 1=2,
and r D 1=4, and suppose we have a put .50 � S4/

C with a knockout barrier at
100. Show that the knockout option as the same value as an option that pays off
.50 � S4/

C when S4 D 2, 8, or 32, 0 when S4 D 128, and �18 when S4 D 512.
(b) Compute the value of the option in (a).

6.14. Consider the binomial model with S0 D 64; u D 2; d D 1=2, and r D 1=4.
(a) Find the value Vn.a/ of the call option .S3 � 125/C and the hedging strategy
�n.a/. (b) Check your answer to (a) by computing V0 D E�.V3=.1C r/3/. (c) Find
the value at time 0 of the put option.

6.15. Consider the binomial model with S0 D 27; u D 4=3; d D 2=3, and
r D 1=9. (a) Find the risk neutral probability p�. (b) Find value Vn.a/ of the put
option .30 � S3/

C and the hedging strategy �n.a/. (c) Check your answer to (b) by
computing V0 D E�.V3=.1C r/3/.

6.16. Consider the binomial model of Problem 6.15 S0 D 27; u D 4=3; d D 2=3,
and r D 1=9 but now (a) find value and the optimal exercise strategy for the
American put option .30� S3/

C, and (b) find the value of the American call option
.S3 � 30/C.

6.17. Continuing with the model of previous problem S0 D 27; u D 4=3; d D 2=3,
and r D 1=9, we are now interested in finding value VS of the American straddle
jS3�30j. Comparing with the values VP and VC of the call and the put computed in
the previous problem we see that VS � VP C VC . Explain why this should be true.

6.18. Consider the three-period binomial model with S0 D 16; u D 3; d D 1=2

and r D 1=3 An American limited liability call option pays minf.Sn � 10/C; 60g if
exercised at time 0 � n � 3. In words it is a call option but your profit is limited to
$60. Find the value and the optimal exercise strategy.

6.19. In the American version of the callback option, you can buy the stock at time
n at its current price and then sell it at the highest price seen in the past for a profit
of Vn D max0�m�n Sm � Sn. Compute the value of the three period version of this
option when the stock follows the binomial model with S0 D 8; u D 2; d D 1=2,
and r D 1=4.
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6.20. The payoff of the Asian option is based on the average price: An D .S0 C
� � � C Sn/=.nC 1/. Suppose that the stock follows the binomial model with S0 D 4;

u D 2; d D 1=2, and r D 1=4. Find the value of the American version of the three
period Asian option, .Sn � 4/C, i.e., when you can exercise the option at any time.

6.21. Show that for any a and b; V .s; t/ D as C bert satisfies the Black-Scholes
differential equation. What investment does this correspond to?

6.22. Find a formula for the value (at time 0) of cash-or-nothing option that pays off
$1 if St > K and 0 otherwise. What is the value when the strike is the initial value,
the option is for 1=4 year, the volatility is 
 D 0:3, and for simplicity we suppose
that the interest rate is 0.

6.23. On May 22, 1998 Intel was selling at 74.625. Use the Black-Scholes formula
to compute the value of a January 2000 call (t D 1:646 years) with strike 100,
assuming the interest rate was r D 0:05 and the volatility 
 D 0:375.

6.24. On December 20, 2011, stock in Kraft Foods was selling at 36.83. (a) Use the
Black-Scholes formula to compute the value of a March 12 call (t D 0:227 years)
with strike 33, assuming an interest rate of r D 0:01 and the volatility 
 D 0:15. The
volatility here has been chosen to make the price consistent with the bid-ask spread
of (3.9,4.0). (b) Is the price of 0.4 for a put with strike 33 consistent with put-call
parity.

6.25. On December 20, 2011, stock in Exxon Mobil was selling at 81.63. (a) Use the
Black-Scholes formula to compute the value of an April 12 call (t D 0:3123 years)
with strike 70, assuming an interest rate of r D 0:01 and the volatility 
 D 0:26.
The volatility here has been chosen to make the price consistent with the bid-ask
spread of (12.6,12.7). (b) Is the price of 1.43 for a put with strike 70 consistent with
put-call parity.



Appendix A
Review of Probability

Here we will review some of the basic facts usually taught in a first course in
probability, concentrating on the ones that are important in the book.

A.1 Probabilities, Independence

The term experiment is used to refer to any process whose outcome is not known in
advance. Two simple experiments are flip a coin, and roll a die. The sample space
associated with an experiment is the set of all possible outcomes. The sample space
is usually denoted by ˝ , the capital Greek letter Omega.

Example A.1 (Flip three coins). The flip of one coin has two possible outcomes,
called “Heads” and “Tails,” and denoted by H and T . Flipping three coins leads to
23 D 8 outcomes:

HHT HT T

HHH HTH THT T T T

THH T TH

Example A.2 (Roll two dice.). The roll of one die has six possible outcomes: 1, 2,
3, 4, 5, 6. Rolling two dice leads to 62 D 36 outcomes f.m; n/ W 1 � m; n � 6g.

The goal of probability theory is to compute the probability of various events
of interest. Intuitively, an event is a statement about the outcome of an experiment.
Formally, an event is a subset of the sample space. An example for flipping three
coins is “two coins show Heads,” or

A D fHHT; HTH; THH g
An example for rolling two dice is “the sum is 9,” or

B D f.6; 3/; .5; 4/; .4; 5/; .3; 6/g

R. Durrett, Essentials of Stochastic Processes, Springer Texts in Statistics,
DOI 10.1007/978-1-4614-3615-7, © Springer Science+Business Media, LLC 2012
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Events are just sets, so we can perform the usual operations of set theory on
them. For example, if ˝ D f1; 2; 3; 4; 5; 6g; A D f1; 2; 3g, and B D f2; 3; 4; 5g,
then the union A [ B D f1; 2; 3; 4; 5g, the intersection A \ B D f2; 3g, and the
complement of A; Ac D f4; 5; 6g. To introduce our next definition, we need one
more notion: two events are disjoint if their intersection is the empty set, ;. A and
B are not disjoint, but if C D f5; 6g, then A and C are disjoint.

A probability is a way of assigning numbers to events that satisfies:

(i) For any event A, 0 � P.A/ � 1.
(ii) If ˝ is the sample space, then P.˝/ D 1.

(iii) For a finite or infinite sequence of disjoint events P.[i Ai / DPi P.Ai /.

In words, the probability of a union of disjoint events is the sum of the probabilities
of the sets. We leave the index set unspecified since it might be finite,

P.[k
iD1Ai / D

kX

iD1

P.Ai /

or it might be infinite, P.[1
iD1Ai / DP1

iD1 P.Ai /.
In Examples A.1 and A.2, all outcomes have the same probability, so

P.A/ D jAj=j˝j

where jBj is short for the number of points in B . For a very general example of a
probability, let ˝ D f1; 2; : : : ; ng; let pi � 0 with

P
i pi D 1; and define P.A/ DP

i2A pi . Two basic properties that follow immediately from the definition of a
probability are

P.A/ D 1 � P.Ac/ (A.1)

P.B [ C / D P.B/C P.C / � P.B \ C / (A.2)

To illustrate their use consider the following:

Example A.3. Roll two dice and suppose for simplicity that they are red and green.
Let A D “at least one 4 appears,” B D “a 4 appears on the red die,” and C D “a 4
appears on the green die,” so A D B [ C .

Solution 1. Ac D “neither die shows a 4,” which contains 5 � 5 D 25 outcomes so
(A.1) implies P.A/ D 1 � 25=36D 11=36.

Solution 2. P.B/ D P.C / D 1=6 while P.B\C / D P.f4; 4g/ D 1=36, so (A.2)
implies P.A/ D 1=6C 1=6� 1=36 D 11=36.
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Conditional Probability

Suppose we are told that the event A with P.A/ > 0 occurs. Then the sample
space is reduced from ˝ to A and the probability that B will occur given that A has
occurred is

P.BjA/ D P.B \ A/=P.A/ (A.3)

To explain this formula, note that (i) only the part of B that lies in A can possibly
occur, and (ii) since the sample space is now A, we have to divide by P.A/ to
make P.AjA/ D 1. Multiplying on each side of (A.3) by P.A/ gives us the
multiplication rule:

P.A \ B/ D P.A/P.BjA/ (A.4)

Intuitively, we think of things occurring in two stages. First we see if A occurs, then
we see what the probability B occurs given that A did. In many cases these two
stages are visible in the problem.

Example A.4. Suppose we draw two balls without replacement from an urn with
six blue balls and four red balls. What is the probability we will get two blue balls?
Let A D blue on the first draw, and B D blue on the second draw. Clearly, P.A/ D
6=10. After A occurs, the urn has five blue balls and four red balls, so P.BjA/ D
5=9 and it follows from (A.4) that

P.A \ B/ D P.A/P.BjA/ D 6

10
� 5

9

To see that this is the right answer notice that if we draw two balls without
replacement and keep track of the order of the draws, then there are 10 �9 outcomes,
while 6 � 5 of these result in two blue balls being drawn.

The multiplication rule is useful in solving a variety of problems. To illustrate its
use we consider:

Example A.5. Suppose we roll a four-sided die then flip that number of coins. What
is the probability we will get exactly one Heads? Let B Dwe get exactly one Heads,
and Ai D an i appears on the first roll. Clearly, P.Ai / D 1=4 for 1 � i � 4. A little
thought gives

P.BjA1/ D 1=2; P.BjA2/ D 2=4; P.BjA3/ D 3=8; P.BjA4/ D 4=16

so breaking things down according to which Ai occurs,

P.B/ D
4X

iD1

P.B \ Ai/ D
4X

iD1

P.Ai /P.BjAi /

D 1

4

�
1

2
C 2

4
C 3

8
C 4

16

�

D 13

32
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One can also ask the reverse question: if B occurs, what is the most likely cause?
By the definition of conditional probability and the multiplication rule,

P.Ai jB/ D P.Ai \ B/
P4

j D1 P.Aj \ B/
D P.Ai /P.BjAi/
P4

j D1 P.Aj /P.BjAj /
(A.5)

This little monster is called Bayes’ formula, but it will not see much action here.
Last but far from least, two events A and B are said to be independent if

P.BjA/ D P.B/. In words, knowing that A occurs does not change the probability
that B occurs. Using the multiplication rule this definition can be written in a more
symmetric way as

P.A \ B/ D P.A/ � P.B/ (A.6)

Example A.6. Roll two dice and let A D “the first die is 4.”
Let B1 D “the second die is 2.” This satisfies our intuitive notion of independence

since the outcome of the first dice roll has nothing to do with that of the second. To
check independence from (A.6), we note that P.B1/ D 1=6 while the intersection
A\ B1 D f.4; 2/g has probability 1/36.

P.A \ B1/ D 1

36
¤ 1

6
� 4

36
D P.A/P.B1/

Let B2 D “the sum of the two dice is 3.” The events A and B2 are disjoint, so they
cannot be independent:

P.A \ B2/ D 0 < P.A/P.B2/

Let B3 D “the sum of the two dice is 9.” This time the occurrence of A enhances
the probability of B3, i.e., P.B3jA/ D 1=6 > 4=36 D P.B3/, so the two events are
not independent. To check that this claim using (A.6), we note that (A.4) implies

P.A \ B3/ D P.A/P.B3jA/ > P.A/P.B3/

Let B4 D “the sum of the two dice is 7.” Somewhat surprisingly, A and B4 are
independent. To check this from (A.6), we note that P.B4/ D 6=36 and A \ B4 D
f.4; 3/g has probability 1/36, so

P.A \ B3/ D 1

36
D 1

6
� 6

36
D P.A/P.B3/

There are two ways of extending the definition of independence to more than two
events.
A1; : : : ; An are said to be pairwise independent if for each i ¤ j; P.Ai \ Aj / D
P.Ai /P.Aj /, that is, each pair is independent.
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A1; : : : ; An are said to be independent if for any 1 � i1 < i2 < : : : < ik � n we
have

P.Ai1 \ : : : \ Aik / D P.Ai1/ � � �P.Aik /

If we flip n coins and let Ai D “the i th coin shows Heads,” then the Ai are
independent since P.Ai / D 1=2 and for any choice of indices 1 � i1 < i2 <

: : : < ik � n we have P.Ai1 \ : : : \ Aik / D 1=2k. Our next example shows that
events can be pairwise independent but not independent.

Example A.7. Flip three coins. Let A D “the first and second coins are the same,”
B D “the second and third coins are the same,” and C D “the third and first coins
are the same.” Clearly P.A/ D P.B/ D P.C / D 1=2. The intersection of any two
of these events is

A\ B D B \ C D C \A D fHHH; T T T g

an event of probability 1/4. From this it follows that

P.A \ B/ D 1

4
D 1

2
� 1

2
D P.A/P.B/

i.e., A and B are independent. Similarly, B and C are independent and C and A are
independent; so A; B , and C are pairwise independent. The three events A; B , and
C are not independent, however, since A\ B \ C D fHHH; T T T g and hence

P.A \ B \ C / D 1

4
¤
�

1

2

�3

D P.A/P.B/P.C /

The last example is somewhat unusual. However, the moral of the story is that to
show several events are independent, you have to check more than just that each pair
is independent.

A.2 Random Variables, Distributions

Formally, a random variable is a real-valued function defined on the sample space.
However, in most cases the sample space is usually not visible, so we describe
the random variables by giving their distributions. In the discrete case where the
random variable can take on a finite or countably infinite set of values this is usually
done using the probability function. That is, we give P.X D x/ for each value of
x for which P.X D x/ > 0.
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Example A.8 (Binomial distribution). If we perform an experiment n times and on
each trial there is a probability p of success, then the number of successes Sn has

P.Sn D k/ D
 

n

k

!

pk.1 � p/n�k for k D 0; : : : ; n

In words, Sn has a binomial distribution with parameters n and p, a phrase we will
abbreviate as Sn D binomial.n; p/.

Example A.9 (Geometric distribution). If we repeat an experiment with probability
p of success until a success occurs, then the number of trials required, N , has

P.N D n/ D .1� p/n�1p for n D 1; 2; : : :

In words, N has a geometric distribution with parameter p, a phrase we will
abbreviate as N D geometric.p/.

Example A.10 (Poisson distribution). X is said to have a Poisson distribution with
parameter � > 0, or X D Poisson.�/ if

P.X D k/ D e�� �k

kŠ
for k D 0; 1; 2; : : :

To see that this is a probability function we recall

ex D
1X

kD0

xk

kŠ
(A.7)

so the proposed probabilities are nonnegative and sum to 1.

In many situations random variables can take any value on the real line or in a
certain subset of the real line. For concrete examples, consider the height or weight
of a person chosen at random or the time it takes a person to drive from Los Angeles
to San Francisco. A random variable X is said to have a continuous distribution
with density function f if for all a � b we have

P.a � X � b/ D
Z b

a

f .x/ dx (A.8)

Geometrically, P.a � X � b/ is the area under the curve f between a and b.
In order for P.a � X � b/ to be nonnegative for all a and b and for P.�1 <

X <1/ D 1 we must have

f .x/ � 0 and
Z 1

�1
f .x/ dx D 1 (A.9)

Any function f that satisfies (A.9) is said to be a density function. We will now
define three of the most important density functions.
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Example A.11 (Uniform distribution on (a,b)).

f .x/ D
(

1=.b � a/ a < x < b

0 otherwise

The idea here is that we are picking a value “at random” from .a; b/. That is, values
outside the interval are impossible, and all those inside have the same probability
density. Note that the last property implies f .x/ D c for a < x < b. In this case
the integral is c.b � a/, so we must pick c D 1=.b � a/.

Example A.12 (Exponential distribution).

f .x/ D
(

�e��x x � 0

0 otherwise

Here � > 0 is a parameter. To check that this is a density function, we note that
Z 1

0

�e��x dx D �e��x
ˇ
ˇ1
0
D 0 � .�1/ D 1

In a first course in probability, the next example is the star of the show. However,
it will have only a minor role here.

Example A.13 (Normal distribution).

f .x/ D .2�/�1=2e�x2=2

Since there is no closed form expression for the antiderivative of f; it takes some
ingenuity to check that this is a probability density. Those details are not important
here, so we will ignore them.

Any random variable (discrete, continuous, or in between) has a distribution
function defined by F.x/ D P.X � x/. If X has a density function f .x/ then

F.x/ D P.�1 < X � x/ D
Z x

�1
f .y/ dy

That is, F is an antiderivative of f .
One of the reasons for computing the distribution function is explained by the

next formula. If a < b, then fX � bg D fX � ag [ fa < X � bg with the two sets
on the right-hand side disjoint so

P.X � b/ D P.X � a/C P.a < X � b/

or, rearranging,

P.a < X � b/ D P.X � b/� P.X � a/ D F.b/ � F.a/ (A.10)
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The last formula is valid for any random variable. When X has density function f ,
it says that

Z b

a

f .x/ dx D F.b/ � F.a/

i.e., the integral can be evaluated by taking the difference of the antiderivative at the
two endpoints.

To see what distribution functions look like, and to explain the use of (A.10), we
return to our examples.

Example A.14 (Uniform distribution). f .x/ D 1=.b � a/ for a < x < b.

F.x/ D

8
ˆ̂
<

ˆ̂
:

0 x � a

.x � a/=.b � a/ a � x � b

1 x � b

To check this, note that P.a < X < b/ D 1 so P.X � x/ D 1 when x � b and
P.X � x/ D 0 when x � a. For a � x � b we compute

P.X � x/ D
Z x

�1
f .y/ dy D

Z x

a

1

b � a
dy D x � a

b � a

In the most important special case a D 0; b D 1 we have F.x/ D x for 0 � x � 1.

Example A.15 (Exponential distribution). f .x/ D �e��x for x � 0.

F.x/ D
(

0 x � 0

1 � e��x x � 0

The first line of the answer is easy to see. Since P.X > 0/ D 1, we have P.X � x/

D 0 for x � 0. For x � 0 we compute

P.X � x/ D
Z x

0

�e��y dy D �e��y
ˇ
ˇx
0
D 1 � e��x

In many situations we need to know the relationship between several random
variables X1; : : : ; Xn. If the Xi are discrete random variables then this is easy, we
simply give the probability function that specifies the value of

P.X1 D x1; : : : ; Xn D xn/

whenever this is positive. When the individual random variables have continuous
distributions this is described by giving the joint density function which has the
interpretation that

P..X1; : : : ; Xn/ 2 A/ D
Z

� � �
Z

A

f .x1; : : : ; xn/ dx1 : : : dxn
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By analogy with (A.9) we must require that f .x1; : : : ; xn/ � 0 and

Z

� � �
Z

f .x1; : : : ; xn/ dx1 : : : dxn D 1

Having introduced the joint distribution of n random variables, we will for
simplicity restrict our attention for the rest of the section to nD 2. The first question
we will confront is: “Given the joint distribution of .X; Y /, how do we recover
the distributions of X and Y ?” In the discrete case this is easy. The marginal
distributions of X and Y are given by

P.X D x/ D
X

y

P.X D x; Y D y/

P.Y D y/ D
X

x

P.X D x; Y D y/ (A.11)

To explain the first formula in words, if X D x, then Y will take on some value y, so
to find P.X D x/ we sum the probabilities of the disjoint events fX D x; Y D yg
over all the values of y.

Formula (A.11) generalizes in a straightforward way to continuous distributions:
we replace the sum by an integral and the probability functions by density functions.
If X and Y have joint density fX;Y .x; y/ then the marginal densities of X and Y

are given by

fX.x/ D
Z

fX;Y .x; y/ dy

fY .y/ D
Z

fX;Y .x; y/ dx (A.12)

The verbal explanation of the first formula is similar to that of the discrete case: if
X D x, then Y will take on some value y, so to find fX .x/ we integrate the joint
density fX;Y .x; y/ over all possible values of y.

Two random variables are said to be independent if for any two sets A and B

we have

P.X 2 A; Y 2 B/ D P.X 2 A/P.Y 2 B/ (A.13)

In the discrete case, (A.13) is equivalent to

P.X D x; Y D y/ D P.X D x/P.Y D y/ (A.14)

for all x and y. The condition for independence is exactly the same in the continuous
case: the joint distribution is the product of the marginal densities.

fX;Y .x; y/ D fX .x/fY .y/ (A.15)
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The notions of independence extend in a straightforward way to n random variables:
the joint probability or probability density is the product of the marginals.

Two important consequences of independence are

Theorem A.1. If X1; : : : Xn are independent, then

E.X1 � � �Xn/ D EX1 � � �EXn

Theorem A.2. If X1; : : : Xn are independent and n1 < : : : < nk � n, then

h1.X1; : : : Xn1/; h2.Xn1C1; : : : Xn2/; : : : hk.Xnk�1C1; : : : Xnk
/

are independent.

In words, the second result says that functions of disjoint sets of independent random
variables are independent.

Our last topic in this section is the distribution of X C Y when X and Y are
independent. In the discrete case this is easy:

P.X C Y D z/ D
X

x

P.X D x/P.Y D z� x/ (A.16)

To see the first equality, note that if the sum is z then X must take on some value x

and Y must be z�x. The first equality is valid for any random variables. The second
holds since we have supposed X and Y are independent.

Example A.16. If X D binomial.n; p/ and Y D binomial.m; p/ are independent,
then X C Y D binomial.nCm; p/.

Proof by direct computation.

P.X C Y D i/ D
iX

j D0

 
n

j

!

pj .1 � p/n�j �
 

m

i � j

!

pi�j .1 � p/m�iCj

D pi .1 � p/nCm�i

iX

j D0

 
n

j

!

�
 

m

i � j

!

D
 

nCm

i

!

pi .1 � p/nCm�i

The last equality follows from the fact that if we pick i individuals from a group of
n boys and m girls, which can be done in

�
nCm

i

�
ways, then we must have j boys

and i � j girls for some j with 0 � j � i .

Much easier proof. Consider a sequence of nCm independent trials. Let X be the
number of successes in the first n trials and Y be the number of successes in the last
m. By (2.13), X and Y independent. Clearly their sum is binomial.n; p/.
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Formula (A.16) generalizes in the usual way to continuous distributions: regard
the probabilities as density functions and replace the sum by an integral.

fXCY .z/ D
Z

fX .x/fY .z� x/ dx (A.17)

Example A.17. Let U and V be independent and uniform on .0; 1/. Compute the
density function for U C V .

Solution. If U CV D x with 0 � x � 1, then we must have U � x so that V � 0.
Recalling that we must also have U � 0

fU CV .x/ D
Z x

0

1 � 1 du D x when 0 � x � 1

If U C V D x with 1 � x � 2, then we must have U � x � 1 so that V � 1.
Recalling that we must also have U � 1,

fU CV .x/ D
Z 1

x�1

1 � 1 du D 2 � x when 1 � x � 2

Combining the two formulas we see that the density function for the sum is
triangular. It starts at 0 at 0, increases linearly with rate 1 until it reaches the value
of 1 at x D 1, then it decreases linearly back to 0 at x D 2. ut

A.3 Expected Value, Moments

If X has a discrete distribution, then the expected value of h.X/ is

Eh.X/ D
X

x

h.x/P.X D x/ (A.18)

When h.x/ D x this reduces to EX , the expected value, or mean of X , a quantity
that is often denoted by � or sometimes �X to emphasize the random variable being
considered. When h.x/ D xk; Eh.X/ D EXk is the kth moment. When h.x/ D
.x �EX/2,

Eh.X/ D E.X �EX/2 D EX2 � .EX/2

is called the variance of X . It is often denoted by var .X/ or 
2
X . The variance is

a measure of how spread out the distribution is. However, if X has the units of feet
then the variance has units of feet2, so the standard deviation 
.X/ D p var .X/,
which has again the units of feet, gives a better idea of the “typical” deviation from
the mean than the variance does.
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Example A.18 (Roll one die.). P.X D x/ D 1=6 for x D 1; 2; 3; 4; 5; 6 so

EX D .1C 2C 3C 4C 5C 6/ � 1
6
D 21

6
D 3:5

In this case the expected value is just the average of the six possible values.

EX2 D .12 C 22 C 32 C 42 C 52 C 62/ � 1
6
D 91

6

so the variance is 91=6 � 49=4 D 70=24. Taking the square root we see that the
standard deviation is 1.71. The three possible deviations, in the sense of jX �EX j,
are 0.5, 1.5, and 2.5 with probability 1/3 each, so 1.71 is indeed a reasonable
approximation for the typical deviation from the mean.

Example A.19 (Geometric distribution). Starting with the sum of the geometric
series

.1 � �/�1 D
1X

nD0

�n

and then differentiating twice and discarding terms that are 0, gives

.1 � �/�2 D
1X

nD1

n�n�1 and 2.1� �/�3 D
1X

nD2

n.n � 1/�n�2

Using these with � D 1 � p, we see that

EN D
1X

nD1

n.1 � p/n�1p D p=p2 D 1

p

EN.N � 1/ D
1X

nD2

n.n � 1/.1 � p/n�1p D 2p�3.1� p/p D 2.1� p/

p2

and hence

var .N / D EN.N � 1/C EN � .EN /2

D 2.1� p/

p2
C p

p2
� 1

p2
D .1� p/

p2

The definition of expected value generalizes in the usual way to continuous
random variables. We replace the probability function by the density function and
the sum by an integral

Eh.X/ D
Z

h.x/fX .x/ dx (A.19)
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Example A.20 (Uniform distribution on (a,b)). Suppose X has density function
fX .x/ D 1=.b � a/ for a < x < b and 0 otherwise. In this case

EX D
Z b

a

x

b � a
dx D b2 � a2

2.b � a/
D .b C a/

2

since b2�a2 D .b�a/.bCa/. Notice that .bCa/=2 is the midpoint of the interval
and hence the natural choice for the average value of X . A little more calculus gives

EX2 D
Z b

a

x2

b � a
dx D b3 � a3

3.b � a/
D b2 C baC a2

3

since b3 � a3 D .b � a/.b2 C ba C a2/. Squaring our formula for EX gives
.EX/2 D .b2 C 2ab C a2/=4, so

var .X/ D .b2 � 2ab C a2/=12 D .b � a/2=12

To help explain the answers we have found in the last two example we use

Theorem A.3. If c is a real number, then

(a) E.X C c/ D EX C c (b) var .X C c/ D var .X/

(c) E.cX/ D cEX (d) var .cX/ D c2 var .X/

Uniform distribution on (a,b). If X is uniform on Œ.a � b/=2; .b � a/=2� then
EX D 0 by symmetry. If c D .aC b/=2, then Y D X C c is uniform on Œa; b�, so
it follows from (a) and (b) of Theorem A.3 that

EY D EX C c D .aC b/=2 var .Y / D var .X/

From the second formula we see that the variance of the uniform distribution will
only depend on the length of the interval. To see that it will be a multiple of .b �
a/2 note that Z D X=.b � a/ is uniform on Œ�1=2; 1=2� and then use part (d) of
Theorem A.3 to conclude var .X/ D .b�a/2 var .Z/. Of course one needs calculus
to conclude that var .Z/ D 1=12.

Generating functions will be used at several points in the text. If pk D P.X D k/

is the distribution of X then the generating function is �.x/ DP1
kD0 pkxk . �.1/ DP1

kD0 pk D 1. Differentiating (and not worrying about the detail of interchanging
the sum and the integral) we have

�0.x/ D
1X

kD1

kpkxk�1 �0.1/ D EX
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or in general after m derivatives

�.m/.x/ D
1X

kDm

k.k � 1/ � � � .k �mC 1/pkxk�1

�.m/.1/ D EŒX.X � 1/ � � � .X �mC 1/�

Example A.21 (Poisson distribution). P.X D k/ D e��k�k=kŠ. The generating
function is

�.x/ D
1X

kD0

e��k �kxk

kŠ
D exp.��C �x/

Differentiating m times we have

�.m/.x/ D �m exp.��.1 � x//

and EŒX.X � 1/ � � � .X � m C 1/� D �m. From this we see that EX D � and
reasoning as we did for the geometric

var .X/ D EX.X � 1/C EX � .EN /2 D �2 C � � �2 D �

The next two results give important properties of expected value and variance.

Theorem A.4. If X1; : : : ; Xn are any random variables, then

E.X1 C � � � CXn/ D EX1 C � � � C EXn

Theorem A.5. If X1; : : : ; Xn are independent, then

var .X1 C � � � CXn/ D var .X1/C � � � C var .Xn/

Theorem A.6. If X1; : : : ; Xn are independent and have a distribution with gener-
ating function �.x/ then the generating function of the sum is

E.xSn/ D �.x/n

To illustrate the use of these properties we consider the

Example A.22 (Binomial distribution). If we perform an experiment n times and on
each trial there is a probability p of success, then the number of successes Sn has

P.Sn D k/ D
 

n

k

!

pk.1 � p/n�k for k D 0; : : : ; n
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To compute the mean and variance we begin with the case n D 1, which is called
the Bernoulli distribution Writing X instead of S1 to simplify notation, we have
P.X D 1/ D p and P.X D 0/ D 1 � p, so

EX D p � 1C .1 � p/ � 0 D p

EX2 D p � 12 C .1 � p/ � 02 D p

var .X/ D EX2 � .EX/2 D p � p2 D p.1 � p/

To compute the mean and variance of Sn, we observe that if X1; : : : ; Xn are
independent and have the same distribution as X , then X1 C � � � CXn has the same
distribution as Sn. Intuitively, this holds since Xi D 1 means one success on the i th
trial so the sum counts the total number of success. Using Theorems A.4 and A.5,
we have

ESn D nEX D np var .Sn/ D n var .X/ D np.1 � p/

As for the generating function. When nD 1 it is .1�pCpx/ so by Theorem A.6
it is

.1 � p C px/n

in general. If we set p D �=n and let n!1 then

�

1� �

n
.1 � x/

�n

! exp.��.1 � x//

the generating function of the Poisson.

In some cases an alternate approach to computing the expected value of X is
useful. In the discrete case the formula is

Theorem A.7. If X � 0 is integer valued then

EX D
1X

kD1

P.X � k/ (A.20)

Proof. Let 1fX�kg denote the random variable that is 1 if X � k and 0 otherwise. It
is easy to see that

X D
1X

kD1

1fX�kg:
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Taking expected values and noticing E1fX�kg D P.X � k/ gives

EX D
1X

kD1

P.X � k/

which proves the desired result. ut
The analogous result which holds in general is:

Theorem A.8. Let X � 0. Let H be a differentiable nondecreasing function with
H.0/ D 0. Then

EH.X/ D
Z 1

0

H 0.t/P.X > t/ dt

Proof. We assume H is nondecreasing only to make sure that the integral exists. (It
may be1.) Introducing the indicator 1fX>tg that is 1 if X > t and 0 otherwise, we
have

Z 1

0

H 0.t/1fX>tg D
Z X

0

H 0.t/ dt D H.X/

and taking expected value gives the desired result. ut
Taking H.x/ D xp with p > 0 we have

EXp D
Z 1

0

ptp�1P.X > t/ dt (A.21)

When p D 1 this becomes

EX D
Z 1

0

P.X > t/ dt (A.22)

the analogue to (A.21) in the discrete case is

EXp D
1X

kD1

.kp � .k � 1/p/P.X � k/ (A.23)

When p D 2 this becomes

EX2 D
1X

kD1

.2k � 1/P.X � k/ (A.24)

To state our final useful fact, recall that � is convex if for all x; y and � 2 .0; 1/

�.�x C .1 � �/y/ � ��.x/C .1 � �/�.y/

For a smooth function this is equivalent to � 0 is nondecreasing or �00 � 0.
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Theorem A.9. If � is convex then E�.X/ � �.EX/.

Proof. There is a linear function `.y/ D �.EX/C c.y�EX/ so that `.y/ � �.y/

for all y. If one accepts this fact the proof is easy. Redplacing y by X and taking
expected value we have

E�.X/ � E`.X/ D �.EX/

since E.X � EX/ D 0. To prove the fact we note that for any z, as h # 0

�.zC h/ � �.z/

h
# cC

�.z/� �.z � h/

h
" c�

Taking z D EX and c 2 Œc�; cC� gives the deisred linear function. ut
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