Atoms, Molecules
and Photons

~ An Introduction
to Atomic-, Molecular- and
Quantum-Physics

@ Springer



Demtroder
Atoms, Molecules and Photons



Wolfgang Demtroder

Atoms, Molecules
and Photons

An Introduction to Atomic-, Molecular-
and Quantum-Physics

With 663 Figures and 43 Tables

@ Springer



Professor Dr. Wolfgang Demtrdder

University Kaiserslautern
Department of Physics
67663 Kaiserslautern, Germany

e-mail: demtroed@physik.uni-kl.de or demtroed@rhrk.uni-kl.de
URL: http://www.physik.uni-kl.de/w_demtro/w_demtro.html

ISBN-10 3-540-20631-0
ISBN-13 978-3-540-20631-6
Springer Berlin Heidelberg New York

Library of Congress Number: 2005936509

This work is subject to copyright. All rights are reserved, whether the whole or part of the material is concerned,
specifically the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting, reproduction on
microfilm or in any other way, and storage in data banks. Duplication of this publication or parts thereof is
permitted only under the provisions of the German Copyright Law of September 9, 1965, in its current version, and
permission for use must always be obtained from Springer. Violations are liable for prosecution under the German
Copyright Law.

Springer is a part of Springer Science+Business Media
springer.com

(© Springer-Verlag Berlin Heidelberg 2006
Printed in Germany

The use of general descriptive names, registered names, trademarks, etc. in this publication does not imply, even in
the absence of a specific statement, that such names are exempt from the relevant protective laws and regulations
and therefore free for general use.

Typesetting, Illustrations and Production: LE-TeX Jelonek, Schmidt & Vockler GbR, Leipzig, Germany
Cover design: eStudio calamar, Frido Steinen-Broo, Spain

Printing and binding: Stiirtz GmbH, Wiirzburg, Germany

Printed on acid-free paper 56/3141/YL-543210



Preface

The detailed understanding of matter, its phase transitions and its interaction with
radiation could be only reached, after its microscopic structure determined by the
kind of atoms or molecules as basic constituents of matter had been investigated.
This knowledge allowed the controlled optimization of characteristic properties of
matter. Atomic physics therefore represents not only an area of important fundamental
research, but has furthermore many applications which have essentially formed our
present technical world. The understanding of materials and their use in daily life,
has major impact of our culture and our attitude towards nature and our environment.

This textbook is aimed as an introduction to the microscopic world of atoms, mo-
lecules and photons. It illustrates how our knowledge about the microscopic structure
of matter and radiation came about and which crucial experiments forced an exten-
sion and refinement of existing classical theories, culminating in the development of
quantum theory, which is now accepted as the basic theory of atomic and molecular
physics.

The book therefore starts with a short historical review about the role of ex-
periments for correcting erroneous ideas and proving the existence of atoms and
molecules. The close interaction between experiments and theory has been one of the
reasons for the rapid development of atomic physics in the 19" and 20" centuries.
Examples are the kinetic theory of gases, which could be completely understood by
the assumption of moving atoms in the gas, or the postulation of energy quanta in the
radiation field, which could explain the discrepancy between measurements of the
spectral energy distribution of thermal radiation fields and classical electrodynamics.

The new ideas of quantum physics and their corroboration by experiments are
discussed in Chap.3 while the fundamental equations of quantum mechanics and
their applications to some simple examples are explained in Chap. 4.

A theory can be best understood by applications to a real situation. In Chap. 5 the
quantum theory of the simplest real system, namely the hydrogen atom, is presented.
Here it is again illustrated, that experiments enforced an extension of quantum me-
chanics to quantum electrodynamics in order to understand all experimental results.
The description of larger atoms with many electrons is treated in Chap. 6, which also
reduces the chemical properties of chemical elements to the structure of the electron
shells and explains why all elements can be arranged in a periodic table.

The important subject of interaction of matter with radiation is discussed in
Chap. 7. This prepares the ground for the explanation of lasers, treated in Chap. 8.

Molecules, consisting of two or more atoms, form the basis for the great variety of
our world. They are discussed in Chaps. 9 and 10. In particular the question, why and
how atoms can form stable molecules, and which kind of interaction occurs, is treated
in more detail. In Chap. 11 the different experimental techniques for the investigation
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of atoms and molecules are presented, in order to give the reader a feeling for the
inventive ideas and the necessary experimental skill for their realization. The last
chapter presents a short overview on recent developments in atomic and molecular
physics, which shall demonstrate that physics will be never a complete and finalized
field. There is still much to explore and new ideas and scientific enthusiasm is needed,
to push the border of our knowledge further ahead. Some examples in this chapter also
illustrate possible important applications of new ideas such as the quantum computer
or new techniques of frequency metrology used in the world wide global positioning
system GPS.

Many people have helped to publish this book. First of all I would like to thank
the team of LE-TeX, who have made the layout. In particular Uwe Matrisch, who has
looked after the editing process and who has taken care of many handwritten remarks
and corrections of the author with great patience. Dr. Schneider from Springer-Verlag
has always supported this project, although it took longer as anticipated.

Many thanks go to all colleagues who have given their permission to reproduce
figures or tables.

This book is an extended version of volume 3 of a German textbook consisting
of 4 volumes. The authors hopes, that it will find a comparable good acceptance as
the German version. He will be grateful for any reply of readers, giving corrections
of possible errors or hints to improvements. Any of such replies will be answered
as soon as possible. A textbook lives from the active collaboration of its readers and
the author looks foreward to a lively correspondence with his readers. He hopes that
this book can contribute to a better understanding of this fascinating field of atoms,
molecules and photons.

Kaiserslautern,
August 2005 Wolfgang Demtroder
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1. Introduction

This book deals with the microscopic building blocks
of matter: atoms and molecules. These are the smallest
particles responsible for the characteristic properties of
gases, liquids and solids. Although with modern tech-
niques they can be split into still smaller particles, such
as electrons, protons and neutrons, these latter “elemen-
tary particles” do not bear the characteristic features of
the specific macroscopic body formed by atoms or mo-
lecules. We will discuss in detail in this textbook how
the diversity of macroscopic bodies and their properties
are related to their composition of atoms and molecules.
We will, however, restrict the treatment to free atoms
and molecules because a detailed discussion of the mi-
croscopic structure of solids would increase the size of
this book beyond reason.

A very important issue of atomic physics is the in-
teraction of atoms and molecules with electromagnetic
radiation, which can be absorbed or emitted by these
particles. Photons, or “energy quanta,” are the consti-
tuents of electromagnetic radiation and are created or
annihilated by matter. They therefore form an essential
part of the microscopic world.

“Classical physics” was already a well-established
closed theory at the end of the 19th century and could
explain nearly all aspects of fields such as mechanics,
electrodynamics and optics. Only the theory of relativity
and the physics of nonlinear phenomena, leading to the
discovery of chaos, were later developed.

On the other side, most of the discoveries about
atoms and molecules were made during the 20th century
and even the last decade brought us still many surprises
in atomic and molecular physics. The reasons for this
relatively late development of atomic physics are mani-
fold. First of all, the objects in this field are very small
and cannot be viewed by the naked eye. Many sophisti-
cated experimental techniques had to be invented first
in order to gain reliable information on these micropar-
ticles. Furthermore it turned out that classical theories

were not adequate to describe atoms and molecules and
their interactions. After a new theory called “quantum
theory” was developed in the first three decades of the
20th century, a rapid progress in atomic and molecular
physics took place, and our knowledge on this field in-
creased explosively. Nevertheless there are still a large
number of open questions and poorly understood phe-
nomena that await their solutions by future generations
of researchers.

1.1 Contents and Importance
of Atomic Physics

Atomic physics deals with the structure of atoms, their
mutual interaction and their dynamics, i.e., their time-
dependent properties. The goal of experimental and
theoretical efforts in this field is the full understanding
of macroscopic properties of matter on the basis of its
microscopic composition of the constituent atoms and
a quantitative description of the relations between mi-
croscopic and macroscopic features. We will later see
that this goal has, besides its essential contribution to
fundamental physics and a new concept of nature, an
enormous influence on technical applications.

At the beginning of the 20th century, when atomic
physics started to develop as an original field, it was
regarded as pure fundamental science, with no practical
application. Lord Ernest Rutherford (1871-1937), one
of the pioneers of early atomic physics, wrote as early as
1927, after the discovery of possible transformations of
atoms through impact by energetic particles, “Anyone
who expects a source of power from transformation
of atoms is talking moonshine.” This point of view
has radically changed. Although there is quite intensive
fundamental research in atomic physics, the number
of scientific and technical applications has increased
enormously.
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The methods developed in atomic physics are mean-
while used routinely in chemistry, biology, medicine
and industry. In particular the instruments invented du-
ring research work in atomic physics, such as the X-ray
tube, the electron microscope, the oscilloscope, spectro-
meters, tomographers, lasers etc., are now indispensable
tools in other scientific fields or for the solution of
technical problems.

The importance of atomic physics is therefore
not restricted to physics. Atomic physics, together
with molecular physics, forms the foundations of che-
mistry. It explains the chemical properties of atoms
and the order of elements in the periodic table, the
binding of molecules and the molecular structure.
Chemical reactions are reduced to collisions between
atoms and molecules. Because of its importance,
a new branch of chemistry called “quantum che-
mistry” has been established, which deals with the
theoretical foundation of chemistry based on quantum
theory. The famous natural philosopher Georg Chri-
stoph Lichtenberg (1742—1799) wrote, “Someone who
only knows chemistry does not really understand it
either.”

The complex reactions in the earth’s atmosphere are
started by the interaction of sunlight with atoms and mo-
lecules leading to energy deposition in molecules, their
ionization and dissociation into fragments. Collisions
between these particles can further increase the number
of possible chemical reactions. The reaction probabi-
lity depends not only on the temperature but also on
the internal energy and structure of the collision part-
ners. A more detailed understanding of these processes
and the influence of man-made pollutant substances on
such processes is of crucial importance for the survival
of mankind [1.1-4].

During recent years the molecular basis of bio-
logical processes has been widely investigated. New
experimental techniques of atomic physics have been
applied to the studies of living cells and the reacti-
ons proceeding inside a cell. It is now possible to
follow the paths of single molecules intruding a cell
using spectroscopic methods of high spatial and spectral
resolution [1.5].

Also in medicine, many diagnostic tools are borro-
wed from atomic physics and even therapeutic methods,
such as specific laser treatment of cancer or irradia-
tion with particle beams, are based on investigations in
atomic physics.

The development of star models in astrophysics has
gained important stimulation from laboratory experi-
ments on absorption and emission of radiation by atoms
or ions, on recombination processes between free elec-
trons and ions or on lifetimes of excited atoms and on
collision processes between electrons, ions and neu-
tral atoms and molecules. Besides high-energy physics,
atomic physics has considerably contributed to a bet-
ter understanding of the formation of stars, on radiation
transport and on the structure of star atmospheres [1.6].

Atomic physics has also played an essential role
for the optimization of modern technical developments.
One famous example is the rapidly increasing manifold
of lasers and their various applications [1.7]. Mo-
dern illumination techniques with energy saving lamps,
discharge tubes or light emitting diodes are essentially
applied atomic physics [1.8]. New procedures for the
nondestructive inspection of materials or for the enhan-
cement of catalytic reactions on surfaces are based on
results of research in atomic physics. For many tech-
nical developments in the production of semiconductor
chips, such as the controlled diffusion of impurity atoms
into the semiconductor or the interaction of gases and
vapors with solid surfaces, which are processes studied
in atomic physics, play an essential role [1.9, 10]. With-
out exaggeration, one may therefore say that atomic
physics has an important share in the development of
modern technology and this will certainly increase even
more in the future.

For metrology the measuring techniques developed
in atomic physics have increased the achievable accu-
racy by several orders of magnitude [1.11]. With laser
spectroscopic methods, for example, the absolute values
of fundamental physical constants, such as the Rydberg
constant, the fine structure constant or the ratio me/m,
of electron mass to proton mass, could be measured
with such high precision that the question of whether
these “constants” are really constant or change slightly
with time over millions of years can now be attacked
experimentally with measurement times of a few years.

The central importance of atomic physics for many
other fields is schematically illustrated by the block
diagram in Fig. 1.1.

Besides its influence on the technological deve-
lopment, atomic physics and quantum theory have
essentially contributed to a modern view of nature
that replaces the former mechanistic concept of our
world [1.12]. The belief of a strict separation bet-
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Fig. 1.1. The central role of atomic physics

ween matter and energy had to be modified by the
recognition that both manifestations of nature are in-
terchangeable and the anticipation of a strict causality
for all processes in our surrounding has now been limi-
ted by the uncertainty relations in quantum mechanics.
Maxwell’s daemon of classical physics, who could ex-
actly predict the future outcome of events as long as he
knew the initial conditions sufficiently accurately, has
to be replaced by probability statements, since the exact
knowledge of all initial conditions is not possible. The
deterministic view of nature, where all future events
were already determined by the present conditions had
to undergo a critical revision. This change in the con-
cept of nature has considerably influenced philosophy
and epistemology, i.e., the theory of knowledge, and
has induced hot discussions about the question of whe-
ther objective cognition is possible independent of the
thinking subject [1.13].

These few examples should have illustrated the im-
portance of atomic physics for our modern world and
why it is therefore worthwhile to study this fascinating
field in more detail.

1.2 Molecules:
Building Blocks of Nature

In nature we find 92 different elements that correspond
to stable atoms. These atoms can form larger entities,
called molecules. The smallest molecules consist of two
atoms, such as Hp, N, O,, NaCl, etc., while large mo-

1.2. Molecules: Building Blocks of Nature

lecules (for instance proteins or DNA) are composed of
many thousands of atoms (Fig. 1.2).

The large variety and the manifold of species in na-
ture is due to the huge number of possible combinations
of these 92 stable atoms to form molecules. The che-
mical and therefore the biological properties of these
molecules depend on:

e The specific kind of atoms they are composed of.

e The spatial structure of the molecules, i. e., the way
in which the atoms are arranged within the molecule.

® The binding energy of atoms or atomic groups in
the molecule.

e The stability, depending on the heights of the energy
barrier, that has to be overcome to change the
geometrical structure of the molecule.

Only recently has it become possible to calculate
the structure and the binding energies of small- and
medium-sized molecules by ab initio methods using
fast computers. In many cases, however, experimental
methods are still indispensable because sufficiently ac-
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curate calculations surpass the capacity of even large
computers.

The goal of such investigations is a better know-
ledge of molecular structure and the potential surfaces
that determine this structure and the relevant binding
energies. In recent years the dynamics of excited mole-
cules, i.e., the way the energy, pumped into a molecule
(for example by absorption of light), is distributed wi-
thin the molecule over the course of time, has attracted
more and more interest from researchers. With a time
resolution of a few femtoseconds (1 fs = 10~!%s) ob-
tained with ultrashort laser pulses, it is now possible to
observe the motions of atoms in molecules in real-time
and to gain much information on molecular dynamics,
such as dissociation or isomerization. This allows one
to follow more closely the atomic processes in chemical
reactions. In special cases it is even possible to control
such reactions, i.e., to enhance wanted reaction chan-
nels and to suppress unwanted ones. This opens the
way for controlled synthesis of larger molecules from
smaller constituents.

Many biological processes, such as energy pro-
duction in living cells, photosynthesis, ion migration
through cell walls, signal transport in nerves or the time
sequence of the visual process from the illuminated re-
tina in the eye to the recognition of the light image in
the brain, can now be studied in more detail due to ad-
vanced experimental techniques developed in atomic
physics [1.14].

The experimental and theoretical molecular phy-
sics therefore gains increasing attention for many fields
in modern chemistry and biology. In many laborato-
ries, researchers are working on the ambitious goal of
unraveling the structure and the arrangement of dif-
ferent amino acid molecules in large biomolecules, to
understand their role in genes and to clarify the genetic
code and its relevance for the characteristic features of
life [1.15].

1.3 Survey on the Concept
of this Textbook

The goal of this textbook is to facilitate the under-
standing of the structure and dynamics of atoms and
molecules by starting from basic concepts and expe-
rimental facts in atomic and molecular physics. It is

also interesting to learn a little bit about the way our
present knowledge has developed. Therefore, a short
historical review is first provided about the successive
improvement of the atomic concept, which has led to
more and more refined atomic models. In particular,
the experimental key investigations resulting either in
the confirmation, modification or even change of exi-
sting theories are discussed in order to give a better
appreciation for the skill and imagination of earlier
researchers.

The most important theoretical approach for the de-
scription of the microworld is certainly the development
of quantum physics during the first three decades of the
20th century. We will discuss in Chap. 3 the basic ex-
perimental results that forced a correction of classical
physics. Then the basic features of quantum physics,
particle-wave duality, the uncertainty relation and its
experimental verification are presented and the probabi-
lity concept for describing processes in the microworld
is explained.

In Chap.4 we then introduce the formal repre-
sentation of quantum mechanics, in particular the
Schrodinger equation and its application to some sim-
ple problems, in order to illustrate differences to and
similarities with classical physics.

In Chap. 5 the simplest of all atoms, the hydrogen
atom is treated with the tools acquired in the foregoing
chapters. Here we can learn about many features that
are also relevant for other atoms but can be calculated
more accurately for the H atom because it is the only
system for which the Schrodinger equation can be sol-
ved exactly. Even here, new characteristic features such
as the spin of the electron, resulting in the fine structure
of the measured spectra could not immediately be ex-
plained and demanded the broadening of the quantum
theory and the development of a new branch of quantum
physics, called quantum electrodynamics.

Chapter 6 deals with atoms consisting of more than
one electron, where new phenomena occur, which are
related to the Coulomb repulsion between the electrons
and to the fact that electrons cannot be distinguished
from each other. The treatment of many-electron sy-
stems is illustrated by the example of the two-electron
helium atom and is then extended to larger atoms.

The absorption and emission of light by atoms is
a source of detailed information on the structure of
atoms, on the possible atomic energy levels and on dy-
namical processes in excited atoms. This also includes



X-rays, which are discussed in Chap. 7. After treating
the interaction of electromagnetic radiation with atoms,
we have laid the fundaments for the understanding of
lasers. Their basic principle and their various technical
realizations are presented in Chap. 8.

In Chap. 9 we start the discussion of the basic phy-
sics of molecules. The simplest stable molecules, the
H;r ion (two protons and one electron) and the H,
molecule (two protons and two electrons) serve as ex-
amples to explain the nomenclature and the principles
of theoretical approximations for the description of dia-
tomic molecules. Both examples illustrate the origin of
the chemical binding of atoms forming a stable mole-
cule. While for small atomic distances in a diatomic
molecule the quantitative treatment of chemical bin-
ding demands quantum theory, at large distances the
binding energy is small and can be treated by clas-
sical methods, which will be also discussed in this
chapter.

The most important source of information on mole-
cular structure is provided by molecular absorption and
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emission spectra, which are discussed in more detail in
Chap. 10. We start with diatomic molecules and treat
polyatomic molecules in Chap. 11.

The last chapter of this textbook is devoted to ex-
perimental techniques in atomic and molecular physics.
Here we will illustrate how all knowledge of atomic and
molecular structure discussed in the foregoing chap-
ters has been achieved by experimental results and how
experiment and theory supplement each other to effi-
ciently achieve optimum progress in our understanding
of the microscopic structure of matter.

For a more detailed study of the subjects presented
in this textbook the reader is referred to the literature
given in the corresponding sections. Besides modern
treatments, sometimes the original historical papers on
new discoveries are also cited. This provides the reader
direct access to the way new ideas came about and to the
original interpretations of experimental results, which,
although often ingenious, did not always agree with our
present point of view, since our ancestors did not have
all of facts now available to us.
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Our present knowledge about the size and internal struc-
ture of atoms is the result of a long development of ideas
and concepts that were initially based both on philo-
sophical speculations and on experimental hints, but
were often not free of errors. Only during the 19th cen-
tury did the increasing number of detailed and carefully
planned experiments, as well as theoretical models that
successfully explained macroscopic phenomena by the
microscopic atomic structure of matter, could collect
sufficient evidence for the real existence of atoms and
therefore convinced more and more scientists. However,
even around the year 1900, some well-reputed chemists,
such as Wilhelm Ostwald (1853—-1932), and physicists,
e.g., Ernst Mach (1838-1916), still doubted the real
existence of atoms. They regarded the atomic model
as only a working hypothesis that could better explain
many macroscopic phenomena, but should not be taken
as reality.

In this chapter we will therefore discuss, after
a short historical survey, the most important experimen-
tal proofs for the real existence of atoms. Furthermore,
some measurements are explained that allow the quan-
titative determination of all atomic characteristics, such
as their size, mass, charge distribution and internal
structure. These experiments prove without doubt that
atoms do exist, even though nobody has ever seen them
directly because of their small size.

2.1 Historical Development

Historically, the first concept of the atomic structure of
matter was developed by the Greek philosopher Leu-
cippus (around 440 B.C.) and his disciple Democritus
(460-370B.C.) (Fig.2.1), who both taught that all na-
tural bodies consist of “infinitely small” particles that
completely fill the volume of the bodies and are not
further divisible. They called these particles “atoms”

WNarss
Fig. 2.1. Democritus (~ 460-370 BC) (from K. FaBmann: Die
Groflen, BD I/2, Kindler-Verlag, Munich)

(from the Greek word atomos = indivisible). Outside
the atoms there is only the empty space (a vacuum).
Different atoms differ in size and shape and the charac-
teristic properties of matter are, according to this model,
due to different arrangements of equal or of differing
atoms. All observable changes in the macroscopic world
are caused by corresponding changes in atomic compo-
sition. Atom movements and collisions between atoms
create and modify matter.

We meet here for the first time the idea that the pro-
perties of macroscopic bodies can be explained by the
characteristics of their constituents. This hypothesis,
which comes close to our modern concept of ato-
mic physics, had been an extension and refinement of
former ideas by Empedocles (490—430B.C.), who be-
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lieved that everything is composed of the four elemental
constituents: fire, water, air and soil.

The concept of Democritus represents in a way
a symbiosis of the different doctrines of pre-Socratic
philosophers. First, the static hypothesis of Parmeni-
des (around 480 B.C.) about the never-changing eternal
existence of the world and secondly the dynamical doc-
trine of Heraclitus (around 480 B.C.), which stresses as
the most important point the evolution instead of the
static nature of things, since everything changes with
time (nobody can submerge twice into the same river as
the same man, because the river, as well as the man, is
changing in time).

According to Democritus, atoms represent static
nature while their movements and their changing com-
position explain the diversity of matter and its time
evolution.

The famous Greek philosopher Plato (427-
347 B.C.) pushed the abstraction of the concept further.
He used the hypothesis of the four “elements” fire,
water, air, and soil but attributed to these elements
four regular three-dimensional geometric structures,
which are formed by symmetric triangles or squares
(Fig. 2.2). Fire is related to the tetrahedron (four equila-
teral triangles), air to the octahedron (eight equilateral
triangles), water to the icosahedron (20 equilateral tri-
angles), and the soil, particularly important to mankind,
to the cube (six squares or 12 isosceles triangles). Pla-
to’s ideas therefore reduced the atoms to mathematical
structures that are not necessarily based on the real
existence of matter. These “mathematical atoms” can
change their characteristics by changing the arrange-
ment of the elemental triangles. This is, according
to Plato, equivalent to the observable evolution of
matter.

Aristoteles (384-322 B.C.), a student of Plato, did
not accept this concept of atoms since it contradicted
his idea of a continuous space filled with matter. He
also did not believe in the existence of empty space
between the atoms. His influence was so great that
Democritus’ hypothesis was almost abandoned and
nearly forgotten until it was revived and modified la-
ter by Epicurus (341-271 B.C.), who attributed atoms
not only size but also a mass to explain why bodies fell
down.

After Epicurus the atomic theory was forgotten
for many centuries. This was due to the influence of
the Christian church, which did not accept the ma-
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Fig. 2.2. The platonic bodies

terialistic view that everything, even human beings,
should be composed of atoms, because this seemed
to be in contradiction to the belief in God as the
creator of bodies and soul. There had occasionally
been attempts to revive the atomic idea, partly in-
duced by Arabic scientists, but they did not succeed
against church suppression. One example was the Prior
Nikolaus of Autrecourt in France, who was forced
in 1348 to “withdraw” his newly developed atomic
concept.

The large shortcoming of all these philosophical
hypotheses was the lack of experimental guidance and
proof. They were more speculative.

The real breakthrough of modern atomic physics
was achieved by chemists in the 18th century. They
found for many chemical reactions, by accurately weig-
hing the masses of reactants and reaction products, that
their results could be best explained by the hypothesis
that all reactants consist of atoms or molecules that can
recombine into other molecules (see below).

Besides this increasing amount of experimental evi-
dence for the existence of atoms, the atomic hypothesis
won a powerful ally from theoretical physics when
Rudolf Julius Clausius (1822—1888), James Clark Max-
well (1831-1879), and Ludwig Boltzmann (1884—1906)
developed the kinetic theory of gases, which could
derive all macroscopic quantities of gases, such as pres-
sure, temperature, specific heat, viscosity, etc., from the
assumption that the gas consists of atoms that collide
with each other and with the walls of the container. The
temperature is a measure of the average kinetic energy
of the atoms and the pressure represents the mean mo-
mentum the atoms transfer to the wall per second per
unit wall area.

Quantitative information about the size of atoms
and their internal structure, i. e., mass and charge distri-
bution inside the atoms was only obtained in the 20th
century. The complete theoretical description was pos-
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sible after the development of quantum theory around
1930 (see Chaps. 3 and 4).

In Appendix A.1 one finds a compilation of histo-
rical landmarks in the development of atomic physics.
For more detailed information on the history of ato-
mic and molecular physics the reader is referred to the
literature [2.1-6].

2.2 Experimental and Theoretical
Proofs for the Existence of Atoms

Before we discuss the different experimental techniques
developed for the proof of atoms, a general remark may
first be useful. The objects of atomic physics are not
directly visible since they are much smaller than the
wavelength of visible light, unlike bodies in the ma-
croscopic world. Therefore, indirect method for their
investigation are required. The results of such expe-
riments need careful interpretation in order to allow
correct conclusions about the investigated objects. This
interpretation is based on assumptions that are derived
from other experiments or from theoretical models.

Since it is not always clear whether these assumpti-
ons are valid, the gain of information in atomic physics
is generally an iterative process. Based on the results of
a specific experiment, a model of the investigated ob-
ject is developed. This model often allows predictions
about the results of other experiments. These new ex-
periments either confirm the model or they lead to its
refinement or even modification.

In this way, through collaboration between ex-
perimentalists and theoreticians, a successively
refined and correct model can be established that
reflects the reality as accurately as possible.

This means that it allows correct predictions for all
future experimental results. This will be illustrated by
the successive development of more and more refined
models of the atom, which will be discussed in the
following sections and in Chap. 3.

2.2.1 Dalton’s Law of Constant Proportions

The first basic experimental investigations that have
lead to a more concrete atomic model, beyond the

more speculative hypothesis of the Greek philosophers,
were performed by chemists. They determined the
mass ratios of the reactants and reaction products for
chemical reactions. The basic ideas had already been
prepared by investigations of Daniel Bernoulli (1700—
1782), who explained the experimental results of the
Boyle—Marriotte Law:

p-V =const atconstant temperature
where the movements of tiny particles in a gas with
volume V exert the pressure p onto the walls around V
through collisions with the wall. These ideas laid the
foundations of the kinetic gas theory, which was later
more rigorously developed by Clausius, Maxwell, and
Boltzmann.

Following the more qualitative findings of Joseph
Louis Proust (1754—1826) on mass ratios of reactants
and reaction products in chemical reactions, the English
chemist John Dalton (1766-1844) (Fig.2.3) recogni-
zed, after many experiments of quantitative analyses
and syntheses for various chemical compounds, that
the mass ratios of reactants forming a chemical com-
pound, are always the same for the same reaction, but
may differ for different reactions.

EXAMPLES

1. 100 g of water are always formed out of 11.1g of
hydrogen and 88.9 g of oxygen. The mass ratio of
the reactants is then 1 : 8.

Fig. 2.3. John Dalton (1766—1844)
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2. 100 g of copper oxide CuO contains 79.90 g Cu and
20.10 g oxygen with a mass ratio of about 4 : 1.

3. Some reactants can combine in different mass ra-
tios to form different products. For example, there
are five different manganese oxides where 100 g of
manganese combines either with 29.13 g, 43.69 g,
58.26 g, 87.38 g or 101.95 g of oxygen. The diffe-
rent amounts of oxygen represent the mass ratios
2:3:4:6:7.

From these experimental results Dalton developed
his atomic hypothesis in 1803, which stated that the
essential feature of any chemical reaction is the recom-
bination or separation of atoms. He published his ideas
in the paper “A New System of Chemical Philosophy,”
which contains the three important postulates:

® All chemical elements consist of very small
particles (atoms), which can not be further
divided by chemical techniques.

e All atoms of the same chemical element have
equal size, mass and quality, but they differ
from the atoms of other elements. This means
that the properties of a chemical element are
determined by those of its atoms.

® When a chemical element A reacts with
an element B to form a compound AB,
(n=1,2,...) each atom of A recombines
with one or several atoms of B and therefore
the number ratio Np/N, is always a small
integer.

Dalton’s atomic hypothesis can immediately ex-
plain the experimental results given in the above
examples:

1. Two hydrogen atoms H recombine with one oxygen
atom O to form the molecule H,O (Fig.2.4). The
observed mass ratio 11.1/88.9 is determined by the
masses of the atoms H and O. From the mass ra-
tio m(H)/m(O) = 1/16 (see Sects. 2.2.2 and 2.7),
the measured mass ratio of the reactants follows
as

m(H,)/m(0) =2/16 = 11.1/88.9 .

2. For the reaction Cu+ O — CuO the mass ratio of
the reactants corresponds to the relative masses
m(Cu)/m(0) =64/16 =4:1.

2x1AMU + 16 AMU 18 AMU

Fig. 2.4. Reaction of hydrogen and oxygen to form water
molecules as an example of Dalton’s atomic hypothesis

3. The different manganese oxides are MnO, Mn, 03,
MnO,, MnQOs3, and Mn,0O7. Therefore, the num-
ber of O atoms that combine with two Mn atoms
have the ratios 2 : 3 : 4 : 6 : 7 for the different com-
pounds, which is exactly what had been found
experimentally.

Since Dalton’s laws only deal with mass ratios
and not with absolute atomic masses, the reference
mass can be chosen arbitrarily. Dalton related all
atomic masses to that of the H atom as the ligh-
test element. He named these relative masses atomic
weights.

Note:

“Atomic weights” are not real weights but dimension-
less quantities since they represent the ratio m (X) /m (H)
of the atomic masses of an atom X to the hydrogen
atom H.

Jorg Jakob Berzelius (1779-1848) started to accu-
rately determine the atomic weights of most elements
in 1814. Nowadays this historic definition of ato-
mic weight is no longer used. Instead of the H atom

e '2C atom is defined as reference. The atomic
weight has been replaced by the atomic mass unit

(AMU)
1 AMU = (1/12) m(**C) = 1.6605 x 102" kg .

All relative atomic masses are given in these
units.

EXAMPLES

The mass of a Na atom is m(Na) = 23 AMU, that
of Uranium 238 is m(U) = 238 AMU and that of the
nitrogen molecule N is 2 x 14 =28 AMU.
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2.2.2 The Law of Gay-Lussac
and the Definition of the Mole

Joseph Louis Gay-Lussac (1778-1850) and Alexan-
der von Humboldt (1769-1859) (Fig.2.5) discovered
in 1805 that the volume ratio of oxygen gas and hydro-
gen gas at equal pressures was always 1 :2 when the
two gases recombined completely to form water vapor.
Further detailed experiments with other gases lead to
the following conclusion:

When two or more different gases completely re-
combine to form a gaseous chemical compound,
the ratio of the volumes of reactands and reac-
tion products at equal pressure and temperature
is always given by the ratio of small integer
numbers.

’

Fig. 2.5. Alexander von Humboldt (1769—-1859) (with kind
permission from the Alexander von Humboldt foundation,
Bonn)

EXAMPLES

1. 2dm? hydrogen gas H, and 1 dm? oxygen gas O, re-
combine to form 2 dm® water vapor H,O (not 3 dm?
H,O as might be naively expected!).

2. 1dm? H; and 1 dm? Cl, form 2 dm? HCl gas.

Amadeo Avogadro (1776-1856) (Fig. 2.6) explained
these results by introducing the definition of molecules:

A molecule is the smallest particle of a substance
that determines the properties of this substance. It
is composed of two or more atoms.

Referring to the experimental results of Gay-Lussac,
Avogadro concluded:

Atequal pressures and temperatures, the same vo-
lume of different gases always contains the same
number of molecules.

With this hypothesis the two preceding examples
are described by the reaction equations:

2H2+O2 — 2H203
H,+Cl, - 2HCI.

The total mass M of a gas with volume V containing
N molecules with mass m is then:

M=N-m. @2.1)

The mass ratio M /M, of equal volumes of different
gases at equal pressure and temperature therefore equals

Fig.2.6. Amadeo Avo-
gadro (1776-1856) with
kind permission from the
Deutsche Museum, Mu-
nich
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2. The Concept of the Atom

the mass ratios m /m, of the corresponding molecules,
since the number N of molecules is the same for both
gases.

It is convenient to introduce a specific reference
quantity of molecules, called one mole [1 mol]. The
volume occupied by one mole of a gas is called
the mole volume Vj;. The definition of a mole is as
follows:

1 mol is the quantity of a substance that contains
the same number of particles (atoms or molecules)
as 0.012 kg of carbon '>C.

This definition is equivalent to: 1 mol of atoms or
molecules with atomic mass number X AMU has a mass
of X grams.

EXAMPLES

1. 1mol helium He = 4 g helium

2. 1mol oxygen O, =2-16g =32 g oxygen

3. 1mol water H,O = (2-1+ 16) g = 18 g water

4. 1moliron oxide Fe;O3 = (2-56+3-16)g=160g

iron oxide

The number N of atoms or molecules contained in
1 mol is the Avogadro constant. Its experimental value
is

Na = 6.0221415(10) x 10 mol ™" .

From the hypothesis of Avogadro the statement follows:

Under standard conditions (p = 1013hPa, T =
0°C) 1 mol of an arbitrary gas always occupies
the same volume V), called the mole volume:

Vi = 22.413996(39) dm> mol ™! .

2.2.3 Experimental Methods for the Determination
of Avogadro’s Constant

Since the Avogadro constant N is a fundamental quan-
tity that enters many basic physical equations, several
experimental methods have been developed for the ac-
curate measurement of Na [2.7]. We will only present
some of them here.

a) Determination of Ny
from the general equation of gases

From the kinetic theory of gases the general equation
p-V=N-k-T 2.2)

can be derived for the volume V of an ideal gas un-
der the pressure p at a temperature 7, which contains
N molecules. Here k is the Boltzmann constant. For
1 mol of a gas with volume Va, N becomes Np and
(2.2) converts to

p~VM=NA'k~T=R‘T. (23)
The gas constant
R=Na -k 2.4)

is the product of Avogadro’s and Boltzmann’s constants.
It can be determined from (2.3) when p, V\y and T are
measured. If the Boltzmann constant k and the gas con-
stant R can be measured independently, the Avogadro
constant N can be determined from (2.3).

b) Measurements of the gas constant R

The gas constant R can be obtained from measurements
of the specific heat. The internal energy of 1 mol is

U=f JkT-Na=)f-R-T, (2.5)

where f is the number of degrees of freedom of the
atoms or molecules of the substance. For example f =3
for atoms, f =342 =5 for diatomic molecules at low
temperatures where the vibrations are not excited and
f =17 at higher temperatures.

The molar specific heat C, for a constant mole
volume of a gas is

au 1
Cv_<8T>V_2f R. (2.6)
This is the energy that increases the temperature of
1 mol of a gas by 1 K and can therefore be readily mea-
sured, giving the value of R, if the number of degrees
of freedom f is known.

Another way to measure the gas constant R is based
on the difference

R=C,—C, Q2.7)

of the molar specific heats Cj, at constant pressure and
C, at constant volume.
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Gas inlet

To pump <—

Thermal isolation

Fig. 2.7. Determination of the gas constant R from measure-
ments of the velocity of sound in argon (M = microphone, T =
thermometer, S = loudspeaker as sound source, P = pressure
meter)

The most accurate determination of R uses the
measurement of the velocity of sound waves v in an
acoustic resonator (Fig.2.7). A spherical volume is fil-
led with argon at a pressure p and temperature 7.
A small loudspeaker S produces sound waves that lead
to resonant standing waves if the sound frequency mat-
ches one of the eigenfrequencies foy, o vs/Ao, with
Ao.n = ro/n of the spherical acoustic resonator with ra-
dius rp. These resonantly enhanced sound waves are
detected by a microphone M. The frequencies fo, of
different resonances are measured. As is outlined in Pro-
blem 2.6, the gas constant is related to the measurable
acoustic eigenfrequencies fy ,, the sound velocity vy,
the molar specific heats Cy and Cy , the temperature T
and the volume V by

R M _M fon s _ M f, (3VY
T -« T «-n? T n?2 \4n ’
(2.8)
where k = C,/Cy [2.8].

¢) Measurement of the Boltzmann Constant

The Boltzmann constant k was first determined in 1906
by Jean Baptiste Perrin (1870-1942). He observed the
vertical density distribution n(z) of small latex partic-
les in a liquid within a glass cylinder (Fig.2.8). At
equilibrium the Boltzmann distribution

n(z) = n(0)- e " &/ (2.9)

is obtained, where m*g = (m — o - V},) g is the effective
weight of a particle with volume V,,, (i. e., its real weight
minus its buoyancy in the liquid with density or.). This
gives the gradient

dn m*-g

=—n-
dz k-T
The mass m of the particles can be determined by mea-
suring their size (volume) under a microscope and their
density with standard techniques.

Counting the number of n(z) yields dn/dz and the-
refore the Boltzmann constant from (2.6). The rather
tedious counting can be avoided by the following con-
sideration. Due to gravity the particles sink down. If the
gravity force

: (2.10)

Fy=(m—o.-Vp)g (2.11a)
is just compensated by the friction force
F; = —6anrv, (2.11b)
2 n(z)/m'3
n(Z): No- e—m*gz/kT

At equilib[ium z/m
jg =-ip
Fig. 2.8. Stationary distribution n(z) of small particles in
a liquid
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2. The Concept of the Atom

which spherical particles of radius r experience when
they fall with the velocity v in a medium with visco-
sity n, the net force is zero. The constant sink velocity
is then

(m —OL- Vp) -8 3
= ro .
6mnr

(2.12)

vo=14

where 3

Vg

The downward flux of particles j, = v, - 1 creates a con-
centration gradient dn/dz, which leads to an upward
diffusion flux

dn ) (m_QL‘Vp)g

Jaigg =—D-  =D-n

, 2.13
dz k-T ( )

where D is the diffusion coefficient.
Finally, stationary conditions are reached when both
fluxes just cancel. This means

6mnr- D

’ (2.14)

Jaitt+jg =0 = k=

Therefore, the Boltzmann constant £ can be de-
termined from the measurements of viscosity 7,
diffusion coefficient D, temperature 7', and the
radius r of the spherical particles.

The most accurate method to measure k will be
discussed in Sect.2.3.1.

d) Direct Determination of Avogadro’s Constant

From measurements of the absolute mass m of atoms X
(see Sect.2.7) and the molar mass My (i.e., the
mass of a gas of atoms X within the molar volume
V =22.4dm> under normal conditions p and T) the
Avogadro constant

N = Mx/mx

can be directly determined.
The molar mass Mx can be also obtained for
nongaseous substances from the definition

Myx = 0.012mx/m('*C) kg

when the absolute mass of the carbon atoms m ('>C) is
measured (see Sect. 2.7).

e) Determination of Avogadro’s Constant
from Electrolysis

Another method for the determination of N4 is based
on Faraday’s law for electrolytic process. It states that
the electric charge

F = Nj-e=96,485.3383(83) C/mol (2.15)
is transported to the electrode in an electrolytic cell,
when 1 mol of singly charged ions with mass x and
elementary charge e has been deposited at the electrode.

Therefore, weighing the mass increase of the electrode
after a charge Q has been transferred, yields Na.

EXAMPLE
In the electrolytic process
AgNO; < Ag™ +NO3

of silver nitrate the transport of charge F means a simul-

taneous deposition of the molar mass M = Ny - m(Ag)

at the negative electrode, which can be measured

by weighing the cathode before and after the charge

transport. With the atomic mass number of silver

AM(Ag) = 107.89 AMU the Avogadro number
107.89 AMU Q

N = 2.16
A Am . (2.16)

is obtained from the measured mass increase Am
of the electrode and the transported charge Q =
(Am/M)Np-e.

f) Determination of N from X-Ray Diffraction

The most accurate method for the determination of N4
is based on X-ray diffraction or X-ray interferome-
try, which are used to measure the distances between
atoms in a regular crystal [2.9]. This yields the total
number of atoms per volume if the crystal structure is
known.

Letus consider a cubic crystal, where the atoms sit at
the corners of small cubes with sidelength a (Fig.2.9).
When a plane wave with wavelength A is incident on
the crystal under an angle ¥ against a crystal plane
(Fig.2.10) the partial waves scattered by the different
atoms of adjacent planes with distance d interfere with
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Fig.2.9. Elemen-
tary cell of a cu-
bic crystal

each other. In the direction —¢, which corresponds to
the direction of specular reflection, their path difference
is As =2d-sind. If As equals an integer m of the
wavelength A, the interference is constructive and the
amplitude of the different partial waves add up. This is
expressed by the Bragg condition

2d-sin® =m-A. (2.17)

At a given wavelength A one obtains maxima of in-
tensity /(1) of the scattered radiation only for those
inclination angles ¢, for which (2.17) is fulfilled.

One sees from (2.17) that for m > 0 the wavelength

2d .
A= sin ¥ < 2d
m

has to be smaller than twice the distance d between
adjacent crystal planes. For visible light A > d, but for
X-rays of sufficient energy A < 2d can be achieved (see
Sect. 7.6).

el

Crystal
planes

N

>
N

d-sin
As=2d -sin®

Fig. 2.10. Bragg-reflection of X-rays by two crystal planes

Note:

In (2.17) ¥ is the angle of the incident radiation against
the crystal planes not against the normal to the planes,
different from the conventional definition in optics.

The distances dj between neighboring parallel pla-
nes depend on the orientation angle « of these planes
against the surface planes at the cube. For a cubic crystal
we conclude from Fig. 2.11:

dr=a-sina; for op #0

di=a for a,=0, (2.18)
where the lattice constant a gives the distance between
neighboring atoms. If the crystal is turned against the
direction of the incident beam, one obtains for different

angles ¥,,, maxima of the diffracted radiation, when

di-sintt =a-sina-sind,, =m- A
for m=1,2,3,....

If the wavelength A is known (see Sect.7.6) the
distances dj between adjacent planes and therefore the
lattice constant a can be determined from the measured
angles V.

A macroscopic crystal cube with sidelength D con-
tains N = (D/a)? atoms if one atom sits at every “lattice
point”. The Avogadro number is then

My D My

Na=N-
A M. & M,

: (2.19)

where M, is the mass of the crystal, measured by
weighing, and My, is its molar mass.

dy =a-sinag
® ® X

» g |

Fig.2.11. Examples of crystal planes perpendicular to the
drawing plane with different separations d;

15



16

2. The Concept of the Atom

Note:

There are considerations to replace the reference for
a mass unit (until present it has been a 1 kg cylinder
of platinum-iridium in Paris) by a perfectly polished
and more readily measurable spherical crystal of sili-
con, which forms a cubic-face-centered crystal. In such
a crystal each elementary cubic cell with sidelength a
contains 4 Si-atoms (One at a corner and three at the
centers of 3 side faces). A sphere with radius Rs > a
then contains

4 R, 4V

N=d-m 1= (2.20)

Si atoms. With the density ¢ (kg/m*) we obtain from
(2.11a,b) the Avogadro number

3
Ny = 4MC3 _ 167 (RS> 221)
o-a 3 o
from measurements of the lattice constant a (by X-
ray diffraction) and the density o (or the mass M and
radius R of the sphere), since the molar mass My, is
known.

The experimental results for the distance a obtai-
ned from such measurements range from 0.1—0.5 nm,
depending on the specific crystal. Since the diame-
ters d, of the atoms cannot be larger than the lattice
constant a they have to be smaller than 0.1—0.5nm
(see Sect. 2.4). This gives an upper limit for the size of
the atoms, forming the crystal.

The most accurate technique for measuring atomic
distances in crystals is X-ray interferometry which com-
bines X-ray diffraction with interferometric techniques.
Its basic principle is illustrated in Fig. 2.12. The interfe-
rometer consists of three parallel slices S;, all milled out
of one large single crystal of Si. In the first slice S; the
incident X-ray beam is split into a transmitted beam 1
and a diffracted beam 2. Diffraction at the crystal pla-
nes parallel to the xy plane (in Fig. 2.12 schematically
drawn as horizontal lines) occurs if the Bragg condition
(2.10) is fulfilled. Both beams again suffer diffraction
in the second parallel slice S> where (besides the trans-
mitted beams, not shown in Fig.2.12) the diffracted
beams 3 and 4 are generated, which overlap in the
third slice S3 where they can again be transmitted or
diffracted.

0

1.8

w
@

[TTTTTARLATTTT]

|
>
L
A

As = Asy—As,
A*Z B B=90°— 20

- Az
Q) '/ ASy = ——;AS, = As¢-Sin(90° — 29,
}/AM 1= Sing 252 = 481 ( )

Fig. 2.12. An X-ray interferometer that has been milled out of
a single crystal

The transmitted part of beam 4 now interferes with
the diffracted part 5 of beam 3 and the detector D, mo-
nitors the total intensity, which depends on the phase
difference between the partial waves 4 and 5. Detector
D\ measures the interference intensity of the superim-
posed transmitted beam 3 and the diffracted beam 6 of
beam 4.

When the slice S3, which can be moved against the
others, is shifted into the z-direction by an amount Az
the path difference As between the interfering beams is
changed by

A
Ss= “° [1—sin(90° —29)] = 2Az-sin® .
sin 6
(2.22)

The arrangement is similar to that of a Mach—Zehnder
interferometer in optics. However, since the wave-
length  of X-rays is about 10* times smaller than that of
visible light, the accuracy of the device must be corre-
spondingly higher. If the S is shifted continuously, the
detectors monitor maxima or minima of the inferference
intensity every time the path difference ds becomes an
integer multiple of A.

The maxima are counted and its total number N at
a total shift Az is

2Az-sinv
N= . (2.23)
A

The total shift Az is measured with a laser in-
terferometer to within an uncertainty of Az/z =
1076—1077 [2.10].



Table 2.1. Different methods

Avogadro’s number

general gas
equation

barometric
pressure formula
(Perrin)

universal gas
constant R

2.2. Experimental and Theoretical Proofs for the Existence of Atoms

for the determination of

diffusion Boltzmann’s Na = R/k
(Einstein) constant k
torsionsal
oscillations
(Kappler)
electrolysis Faraday’s

constant F

Np = FJe

Millikan’s oil-drop elementary
experiment charge e
X-ray diffraction distance d Nj = D? /d3
and between crystal  for cubic primi-
interferometry planes in tive crystal

a cubic crystal Na = 4M/od?
measurements of for cubic face
mole volume centered
Vm = D3 ordnr3)/3 crystal

EXAMPLE

d=02nm, Az=1mm, ©®=230°—> N=25x10°,
which allows an accuracy with a relative uncertainty
of 2 x1077.

Table 2.1 compiles the different methods for the
determination of the gas constant R, the Boltzmann con-
stant k, the Faraday constant F, the elementary charge
e and Avogadro’s number N,. The values of these con-
stants, which are regarded today as the most reliable
ones, are given on the inside cover of this book, accor-
ding to the recommendation of the International Union
of Pure and Applied Physics [UPAP (CODATA 2004).

2.2.4 The Importance of Kinetic Gas Theory
for the Concept of Atoms

The first ideas of a possible relation between the inter-
nal energy U of a gas and the kinetic energies of its

molecules were put forward in 1848 by James Pres-
cott Joule (1818-1889). Initiated by suggestions from
August Karl Kronig (1822-1879), Clausius and Max-
well put these ideas on a more quantitative basis. They
derived independently the general equation of gases
pVm = RT from the kinetic energies of the gas mole-
cules. We will here only give a simplified version of
the gas kinetic model, which assumes that the gas in-
side a container with volume V consists of atoms or
molecules that can be treated as small rigid balls with
radius rg. They can undergo elastic collisions with each
other and with the wall. For these collisions energy and
momentum are conserved. Collisions with the wall can
only occur, if the balls approach the wall within a di-
stance ry. Collisions with each other can only happen
when the distance between the ball centers becomes
d = 2ry. For larger distances the interaction between
the balls is zero. The interaction energy between two
hard spheres is therefore (Fig.2.13):

Ep(r) =0 for
Epot(r) =00 for

r>2r,

r<2rg. (2.24)

If the density of such a model gas is sufficiently small
(ro should be small compared to the mean distance (d)
between the particles) it is called an ideal gas. For an
ideal gas the eigenvolume V, = (4N/ 3)7rr8 of the N par-
ticles is small compared to the total volume V of the gas.

Epot (1)

0 2ry r

Fig. 2.13. Interaction potential between two hard spheres with
radius rg
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The particles can therefore be approximately treated as
point-like particles.

EXAMPLE

At apressure of 1 bar and room temperature 7 = 300 K,
1 cm? of a gas contains about 3 x10' atoms or mole-
cules. Their mean distance is (d) = 3 nm. For helium
atoms ro = 0.5 nm. This gives ry/(d) =0.017 < 1 and
V./V =5 x107°. Helium under these conditions can
therefore be regarded as an ideal gas.

The gas exerts a pressure p onto the wall of the con-
tainer, which is caused by momentum transfer during
collisions of the gas molecules with the wall (Fig. 2.14).
Since the pressure is equal to the force per surface A and
the force equals the time derivative of the momentum
transfer, we obtain the relation for the pressure p:

d <m0mentum transfer to A)

p (2.25)

- dr area A

If, for example, N, atoms with velocity v, hit a wall
in the yz-plane per second, the momentum transfer per
second for completely elastic collisions is 2N, mv, and
the pressure exerted onto the wall is

p=2Nmv,/A. (2.26)

The number density n of N atoms in the volume V is
n = N/V. Let us first only consider that fraction n, in
a cuboid with volume V that has velocities v, in the
x-direction (Fig.2.15). Within the time interval Af the
number of atoms Z hitting the area A of a wall in the
yz-plane is

Z =n,v,AAL . 2.27)
_Vx

|
AN

-
Ap =2mv,

v A

Vy
Vy Fig.2.14. Momentum

transfer at a particle col-

Avy=2vy, Avy=0 lision with the wall

/i
.
| o—
:
1
y : A
0o L_ ]
///
1 7’
ht det

Fig. 2.15. Illustration of (2.27)

These are just the atoms inside the blue volume
in Fig.2.15 with length v, Ar and cross section A.
Each atom transfers the momentum 2muv,. There-
fore the force acting on the surface element A is
F =2Zmv, /At = 2n,mv>A and the pressure p acting
on the wall is

p= 2mnxv)2€ . (2.28)

If an atom moves with the velocity v = {v,, vy, v.} atan
arbitrary angle against the wall, the momentum transfer
to the wall is only caused by its component v,, because
the tangential components parallel to the wall do not
transfer any momentum (Fig. 2.14).

There is another point we have to consider. Not all
atoms have the same velocity. At thermal equilibrium
the velocities of a resting gas are isotropic, i.e., each
direction is equally probable. Since the pressure of the
gas is isotropic the momentum transfer must be the
same in all directions. Therefore we obtain for the mean
square values

1
b= f Ne(wr? do, = [12) = (12}

where N is the total number of atoms or molecules in
the gas and N, (v,) is the number of molecules with

(2.29)



velocity components within the interval v, to v, + dv,.
Since on the time average the number of atoms moving
into the +x-direction equals that into the —x-direction,
the pressure on a wall in the yz-plane is

1
2m (v) = 3, 2.30
,n2m (v)=nm(v3) (2.30)
where 7 is the total number density. From the relation
V2= vi + v§ + v? we obtain with (2.29)

p:

2)= (3] = ()= 3 7). @31)
Using (2.30) this gives
— 2.1 2
pV = 3N2m(v ), (2.32)

where (Eyin) = (m/2)v? is the mean kinetic energy of
each molecule. Using the relation n = N/V this can
also be written as

2
p=,n-(Exn) . (2.33)

3

Many experiments have proved that the product pV at
a constant number N of molecules in the volume V
solely depends on the temperature 7. This means that
the mean kinetic energy of the molecules is a function
of T. One defines the absolute temperature 7' by the
relation

(2.34)

where k= 1.38054 x10"23J/K is the Boltzmann

constant.
With this definition (2.32) transfers into
pV = NkT , (2.35)

which represents a generalization of Boyle—Mariotte’s
law pV = const at constant temperature 7.

2.3 Can One See Atoms?

The spatial resolution of an optical microscope is limi-
ted by the wavelength X of the light used to illuminate an
object. With some tricks one may achieve a resolution
of Ax > ) /2. Using the special technique of near-field

2.3. Can One See Atoms?

Scattering particles

/.\ _— Laser beam

/ Scattering light

Lens
@
® @
@ e @
/ ® )
Image of the
scattering

CCD image plane microparticles

Fig. 2.16. Scattering of visible light by single atoms. Each
image point corresponds to one atom

microscopy, structures on surfaces can be resolved with
about 30 nm resolution. Since we have seen in the pre-
ceding paragraph, that the size of atoms is around
0.2—0.5nm, we cannot expect to see atoms directly
through a microscope with visible light (A = 500 nm).

However, several techniques have been developed
that allow an indirect observation of atoms and give
detailed information on atomic sizes, structure and
dynamics.

First of all, one can mark the location of atoms with
size d < A through the light scattered by the atoms.
When an atom travels through an intense beam of visi-
ble laser light, it can absorb and reemit many photons
during its flight time through the beam (Fig. 2.16). One
can then “see” the atom as a light spot, i.e., as a structu-
reless point and no information about its size or structure
can be obtained. One can only say: “It’s there.”

There are several other methods that give similar in-
formation. With computer graphics one can produce
nice pictures of such “atom images” on the screen,
which may be impressive because they appear to give
a magnified picture of the microworld of atoms and
molecules. However, one should always keep in mind
that such pictures are produced due to the interaction
of light or particles with atoms. Only if this interaction
is fully understood can the interpretation of the images
give a true model of atoms or molecules. This will be
illustrated by the different techniques discussed in the
following sections.
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2.3.1 Brownian Motion

The biologist and medical doctor Robert Brown (1773—
1858) discovered in 1827 that small particles suspended
in liquids performed small irregular movements, which
can be viewed under a microscope. Although he first
thought that these movements were caused by small
living bacteria, he soon found out that the movement
could also be observed for inorganic particles that are
definitely not alive.

The observation can be explained if one assumes
that the particles are permanently hit by fast mo-
ving atoms or molecules coming from statistically
distributed directions (Fig.2.17).

The visualization of Brownian motion is very im-
pressive. It is possible to demonstrate it to a large
auditorium when using cigarette smoke particles in
air, illuminated by a laser beam and viewed through
a microscope with a video camera.

Also here, the atoms are not directly seen but their
impact on the smoke particle can be measured and,
provided the mass of the smoke particle is known, the
atomic momentum transferred to the particle, can be
determined.

There is a nice demonstration that simulates Brow-
nian motion. A larger disk on an air table is hit by
many small discs, which simulate the air molecules. If
the large disc carries a small light bulb, its statistical
path over the course of time can be photographed and
the path lengths between two successive collisions (the
free path) can be measured (Fig. 2.18).

Micro-
partlcle

Atomi H 5

=m -V

—> —>
O<1 f

\Uﬁ \\ .

Fig. 2.17. Schematic 1llustrat10n of Brownian motion

0/

Fig.2.18. Irregular
path of a puck on
an air table, which
is hit statistically
by smaller pucks
(lecture demonstra-
tion of Brownian
motion)

The basic theory of Brownian motion was developed
independently in 1905 by Albert Einstein (1879-1955)
and Marian Smoluchowski (1872-1917). It is closely
related to diffusion [2.11]. We will only briefly outline
the basic ideas here.

Assume particles in a gas show a small gradient
dn/ dx of their number density n, described by the linear
relation (Fig. 2.19)

n(x) =n(0)— (2.36)

Under the influence of mutual collisions the particles
perform statistical movements with a probability distri-
bution f(&) where £ is the length of such a displacement
in the x-direction between two collisions. The number
density of particles with movement &, is then:

n(&) di = nf®) & with n= / n(®) de

(2.37)
\n(x) =n(0)-G-x
LN_\ X
- 5 E=x
—T™ Ipitf
0 X E>x
dx

1 1 o oo w &
; ! . | [ dédx= [ [dxdg

-X 0 X x=0 &=x §=0 0

Fig. 2.19. Illustrating drawings for the derivation of (2.45)



where the distribution function f(£) is defined as

1
f&) &= n()dE.

For a positive gradient G in (2.36) the number N, of
particles moving through a unit area in the plane x =0
into the +x-direction is larger than the corresponding
number N_ in —x-direction. Therefore, the net particle
diffusion flux through a unit area in the plane x =0 is
(Fig.2.19)

i Ne=N-, (2.38)
iff = €x . .
Jdiff At
Out of all n(x) dx particles within the volume
dV = A dx centered around the plane x = —x; with unit

area A, only those particles with an elongation & > x;
can pass through the plane x = 0. Their number is

oo

dM=/MMMEM
E=—x
Integration over all volume elements along the negative
x-axis yields with (2.36)
0 oo
vo= [ | [ o0-Gnse ] ar.

xX=—00 E=—x

(2.39)

(2.40a)
Renaming the variable x = —x’ gives
oo o
Vo= [ | [wo+ense ]| ar.
=0 \&=x'
(2.40b)

In a similar way we obtain for the rate N_ of particles
moving from right to left in Fig.2.19

N,:/ /(n(o)—GX)f(E) d¢ | dx,
x=0 \é&=—x

(2.41a)

which can be transformed by the substitution & — —&’
(note that the distribution function f(&) is symmetric

and therefore f(—&) = f(§)) into
Vo= [| [ oo -cose) e | ar.
x=0 \&'=x

(2.41b)
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Since the name of a variable is irrelevant, we can
rename x’ — x in (2.40b) and &’ — & in (2.41b). Sub-
tracting (2.41b) from (2.40b) we obtain the difference

N_—ZG/ /f(é)dé-‘ x dx
x=0 \é=x
=2G/ /xdx f(&) d&, (2.42a)
=0 \x=0

where the interchange of the integration limits does not
change the double integral since both cover the blue
area in Fig. 2.19.

Integration over x gives

AN=G / £2 (&) d& . (2.42b)

Since the distribution function f(£) is symmetric

(f(&) = f(—£&)) we can write (2.42b) as
1 +00 . 1 i
AN = 2G f £ f(§) dE = 2G($ ) (2.42¢)
E=—o00
because the average (£2) is defined as
+o00
)= [ 0 ce. (2.43)
Inserting (2.42c) into (2.38) yields the relation
1 2
Jaifr = ) i: G (2.44a2)

between particle diffusion flux density and density
gradient G.
According to (2.13) we can also write jgif as

on

Jaife = _Dax =-D.-G. (2.44b)

The comparison of (2.44a) with (2.44b) gives the
diffusion coefficient

1(&%)

_ 2.45
2 At (2:452)

expressed by the average squared elongation of the
particles on their statistical path (Fig. 2.18).

21



22

2. The Concept of the Atom

The diffusion process is due to the kinetic energy
of the particles and their collisions in a medium with
a density gradient. The influence of collisions can
be macroscopically described by the viscosity 1. For
spherical particles with radius r, where the friction
force equals 6rnrv (Stokes’ law), we obtain according
to (2.14)

kT

= (2.45b)
6mnr

and therefore the mean square deviation of a particle

from its position at time = 0 in a gas with viscosity n

is

kT

2\ _
(S )_ 3mnr
It depends on the temperature 7', the viscosity 1 and
the radius r of the particle and increases linearly with

time At.

At . (2.46)

The quantity \/ (€2), which is a measure of the
mean deviation of a particle from its original
location at time ¢ = 0 increases during the time
interval At only with the square root /At.

If the mean quadratic deviation (&%) can be mea-
sured, the Boltzmann constant £ can be determined
from (2.46).

®
Mirror With spatial
resolution
¢
Torsion Laser
wire beam
a) N b)

Fig. 2.20a—c. Determination of the Boltzmann constant k
from the Brownian torsional motion of a mirror. (a) Ex-
perimental setup. (b) Statistical path of the reflected light

Eugen Kappler (*1905) demonstrated an elegant ex-
perimental technique in 1939 [2.12]. A modern version
of it is shown in Fig.2.20a. A small mirror is suspen-
ded on a thin torsional wire. The air molecules impinge
on the mirror surface and cause, by their momentum
transfer, small statistical angular deviations Ag of the
mirror from its equilibrium position at ¢ = 0, which can
be monitored by the reflection of a laser beam, detected
with a position-sensitive CCD detector.

The system has only one degree of freedom; it can
only perform torsional vibrations around the axis defi-
ned by the torsional wire. With the deviation angle ¢
from the equilibrium position ¢ = 0, the mean potential
and kinetic energies are:

1 1

<Epot> = 2Dr <§02> = sz ’ (2.47a)
1, 1

(Exin) =, 1{¢") = KT , (2.47b)

where D is the restoring torque of the torsional wire
and / the moment of inertia of the system.

The statistical deviations of ¢ from the equili-
brium position ¢ = 0 of the mirror (Fig. 2.20b) follow
a Gaussian probability distribution (Fig. 2.20c)

P(p) = P(0)e= /7" (2.482)
The measured full half-width
Ap=2/[¢?)In2 (2.48b)

0.05f

0.04} v

0.03

0.02

0.01

c) -31 -15 0 1,5 31

beam. (c¢) Probability distribution W(g) for the torsio-
nal elongation ¢ for an averaging time of 0.55s («) and
0.27s (B)



of this distribution yields the mean square deviation (¢?)
and from (2.21) the Boltzmann constant

(Ag)?

k=(Di/D{¢*) = D/D, - -

(2.49)

2.3.2 Cloud Chamber

Charles T. Wilson (1869—1959) developed his cloud
chamber in 1911, which allowed him to view the spur
of single fast atoms, ions or electrons entering the cham-
ber. The basic principle is as follows: Incident particles
with sufficient kinetic energy can ionize the atoms or
molecules in the cloud chamber, which is filled with
supersaturated water vapor (nowadays alcohol vapor is

Fig. 2.21. Cloud chamber tracks of « particles (= He nuclei),
which are emitted from a source below the lower edge of the
photograph. One « particle collides with a (not visible) nitro-
gen nucleus at the crossing point of the two arrows, forming
an 1;0 nucleus and a proton. The O nucleus flies towards 11
o’clock (from W. Finkelnburg: Einfiihrung in die Atomphysik,
Springer, Berlin Heidelberg New York, 1976)

2.3. Can One See Atoms?

generally used). The ions, formed along the spur of the
incident particle, attract the polar water molecules and
act as condensation nuclei for the formation of small
water droplets. When the chamber is illuminated by
visible light, the droplets cause Mie-scattering which
makes the particle track visible as a thin bright spur of
tiny water droplets (Fig.2.21).

Although the observation of the different tracks in the
cloud chamber is impressive, it does not allow a direct
view of the incident particles themselves but only loca-
tes their paths through the chamber. In former times the
cloud chamber was used for the observation of nuclear
reactions (see the examplein Fig. 2.21). Nowadays a new
device, the bubble chamber, has replaced it and the cloud
chamber is mainly used for demonstration purposes.

2.3.3 Microscopes with Atomic Resolution

During the last four decades of the 20th century, new
devices have been developed that allow a spatial reso-
lution within the subnanometer range, and are therefore
capable of making single atoms “visible.” Since their
basic understanding demands the knowledge of atomic
physics and solid state physics, they can only be ex-
plained here in a more qualitative way while for their
quantitative description the reader is referred to the
literature [2.13, 14].

b) Field Emission Microscope

The oldest of these devices is the field emission elec-
tron microscope (Fig. 2.22) developed by Ernst Miiller
in 1937 [2.15]. A very sharp tip at the end of a thin
tungsten wire serves as a cathode in the middle of an
evacuated glass bulb. The anode has the form of a sphere
and is covered on the inside with a fluorescent layer (like
a television screen). When a voltage V of several kilo-
volts is applied between cathode and anode, the electric
field strength at the cathode surface is

V.
E= 7,

r
where r is the radius of the nearly spherical tip of the
tungsten wire (Fig.2.22b). With special etching tech-
niques it is possible to fabricate tips with r < 10 nm!
This means that for a moderate voltage V = 1kV the
electric field at the surface of the tungsten tip is al-
ready E > 10'"' V/m. Such high electric fields exceed
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a)

Conductive

layer
Heater aye
Barium
Tungsten
tip
ZnS
screen

Electric field
lines

b) Enlarged image
of the tip

Fig. 2.22. (a) Basic concept of the field emission microscope.
(b) Enlarged view of the tungsten tip. (¢) Image of the tungsten
surface around the tip, 10”-fold enlarged on the screen of the
field emission microscope. (d) Visualization of Ba atoms on
the tungsten tip

the internal atomic fields (see Sect.3.5) and are suffi-
ciently large to release electrons from the metal surface
(field emission, see Sect. 2.5.3). These electrons are ac-
celerated by the electric field, follow the electric field
lines, and impinge on the fluorescent screen at the anode
where every electron causes a small light flash, similar
to the situation at the screen of an oscilloscope. Most
of the electrons are emitted from places at the cathode
surface where the work function (i.e., the necessary
energy to release an electron) is minimum. These spots
are imaged by the electrons on the spherical anode (ra-

dius R) with a magnification factor M = R/r. With
R =10cm and r = 10 nm a magnification of M = 10’
is achieved (Fig. 2.22).

Even with this device, only the locations of elec-
tron emission are measured but no direct information
on the structure of atoms is obtained. If other atoms with
a small work functions are brought to the cathode sur-
face (for example by evaporating barium atoms from
an oven near the cathode) then the electron emission
mainly comes from these atoms. One can now see these
atoms and their thermal motions on the cathode surface
with 107 fold magnification (Fig. 2.22d).

b) Transmission Electron Microscope

The electron microscope, first invented by Ernst Ruska
in 1932 has meanwhile been improved so much that it
reaches a spatial resolution of 0.1 nm [2.16, 17]. The
electrons are emitted from a heated cathode wire with

Hair needle cathode

Electron
source

— \) m— Aperture
Magnetic

condensor lens

Sample
Magnetic
objective lens
Imaging
| lens

Fluorescence
screen

Fig.2.23. Principle setup of the transmission electron
microscope




asharp kink (hair needle cathode) and are accelerated by
a high voltage (up to 500kV). With specially formed
electric or magnetic fields, serving as electron optics
(see Sect. 2.6) the electrons are imaged onto the sam-
ple, which is prepared as a thin foil (Fig.2.23). While
transmitting through the sample, the electrons are de-
flected by elastic collisions or loose energy by inelastic
collisions. The transmitted electrons are imaged again
onto a fluorescent screen where a magnified image of
the absorption or scattering centers in the sample is pro-
duced, which can be viewed either through an optical
microscope or with a CCD camera and an electronic
image converting system.

The spatial resolution of the electron microscope
increases with decreasing size of the electron source.
A nearly point-like source can be realized with field
emission from a sharp edged tungsten tip (Fig.2.25)
like that in the field emission microscope. The emitted
electrons can than be imaged by the electron optics to
form a nearly parallel beam that traverses the sample.
Each point of the sample is then imaged with a large
magnification onto the screen.

The drawbacks of the transmission -electron
microscope are the following:

® Due to strong absorption of electrons by solid ma-
terials, the penetration depth is very small. One
therefore has to prepare the sample as a thin sheet.

Fig. 2.24. Image of nerve cells in a thin undyed frozen slice
taken with a transmission electron microscope (with kind
permission of Zeiss, Oberkochen)
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Field emission
tip
—_—

|
peord NP

Electron beam E

First
anode

Fig. 2.25. Field-emission electron source where the electrons
are emitted from a point-like tungsten tip and imaged by
electrostatic lenses

® The electron beam has to be intense in order to ob-
tain sufficient image quality with a high contrast.
This means a larger current density j and total elec-
tron current / = Aj, where A is the illuminated
area.
The unavoidable absorption heats the sample up,
which may change its characteristics or may even
destroy parts of the sample. This is particularly
critical for biological samples.

Most of these drawbacks can be avoided with the
scanning electron microscope.

¢) Scanning Electron Microscope

In the scanning electron microscope (Fig. 2.26) the elec-
tron beam is focused onto the surface of the sample
(which now is not necessarily a thin sheet), where it
produces light emission by excitation of the sample mo-
lecules and secondary electrons by impact ionization.
The electron beam is scanned over the surface of the sam-
ple by an appropriate deflection program for the electron
optics. This is quite similar to the situation in a TV tube.

The fluorescence light can be viewed through an
optical microscope or the secondary electrons, emitted
from the surface element dx dy of the sample, are ex-
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Fig. 2.26. Scanning electron microscope

tracted by an electric extraction field and imaged onto
a detector where a signal S(x, y, f) is produced that
depends on the intensity of the secondary electrons
emitted from the small focal area dx dy around the
point (x, y), which in turn depends on the characteristic
properties of the sample at that location [2.18, 19].

d) Scanning Tunneling Microscope

The highest spatial resolution of structures on electri-
cal conducting solid surfaces has so far been achieved
with the scanning tunneling microscope, invented at
the research laboratories of IBM in Riichlikon, Swit-
zerland [2.20,21] in 1984 by Gerd Binning (*1947)
and Heinrich Rohrer (¥1933), who were awarded the
Nobel Prize in 1986 for this invention.

Similar to the electron field microscope a tungsten
needle with a very sharply etched tip is used, which is
however, not fixed but is scanned in a controllable way
at a very small distance (a few tenths of a nanometer)
over the surface.

x

Screen

. P

Amplifier and
control feedback

Tunnel

/current
©
© 000

Fig.2.27. Scanning tunneling microscope

Tip —

If a small voltage of a few volts is applied between
the tip (cathode) and the surface (anode) the electrons
can jump from the needle into the surface by a process
called tunneling (see Sect.4.2.3). The electric current
depends exponentially on the distance between tip and
surface. When the tip is scanned over the surface by
piezo elements (these are ceramic cylinders that change
their length when an electric voltage is applied to them),
any deviation of the surface in the z-direction from the
exact xy-plane results in a change of the tunnel current
(Fig.2.27).

Generally the tunnel current is kept constant by
a controlled movement of the tip in vertical direction,
which always keeps it at the same distance Az from the
real surface and therefore reflects the topography z(x, y)
of the surface. The control current of the piezo element
for the movement in z-direction is then taken as the
signal, which is transferred to a computer where a ma-
gnified picture of the surface can be seen (Fig. 2.28). If
single atoms or molecules are adsorbed at the surface,
they can be viewed by this technique, because the di-
stance to the needle is changed at the location of the
atom.

e) Atomic Force Microscope

The tunneling microscope is restricted to the investiga-
tion of conductive surfaces because for nonconductive



single crystal, visualized by a scanning tunneling micros-
cope (image size 17 mm x 17 mm). Non-periodic structures
and steps on the surface can be resolved on an atomic scale
(with kind permission from A.J. Heinrich, W. Wenderath and
R.G. Ulbricht, University of Gottingen)

surfaces the tunnel current would result in surface char-
ges that alter the potential and therefore the voltage
between needle and surface. This limitation can be over-
come with the atomic force microscope, which uses
a similar design as the tunneling microscope [2.22].
However, here it is not the tunnel current that is mea-
sured but the force between the atoms of the tip and
those at the surface. These very small forces are mea-
sured by monitoring, through the reflection of a laser
beam, the small upwards or downwards shift of the care-
fully balanced lever carrying a small and sharp-edged
tip [2.23].

An impressive demonstration of the capabilities of
the atomic force microscope was published by scientists
at the IBM research center in San Jose [2.24]. A clean
nickel surface at low temperatures was covered by a few
Xenon atoms. With the atomic force microscope these
atoms were picked up and transported to selected places
on the surface, where they were released in such a way
that the atoms formed the letters IBM (Fig. 2.29). A si-
milar experiment was performed by Karl-Heinz Rieder
and his group at the Free University of Berlin [2.25],

2.4. The Size of Atoms

Fig. 2.29. Manipulation of single Xe atoms on a Ni(110) sur-
face with an atomic force microscope (with kind permission
of Dr. Eigler)

Fig. 2.30. Arrangement of single CO molecules on a copper
surface to form the letters FU (with kind permission of Prof.
Rieder, FU Berlin)

who wrote the letters “FU” on a copper surface using
CO molecules (Fig. 2.30).

This is probably the most impressive way to make
single atoms “visible”, since here not only the
location but also the size of the atoms or molecules
can be measured.

For a survey on these different modern techniques
the reader is referred to the literature [2.20, 25].
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2.4 The Size of Atoms

There are many experimental methods that allow the
estimation of atomic size. We will provide a brief survey
here.

In aliquid (for instance in liquid helium or argon) the
atoms can be assumed to be densely packed (otherwise
the liquid could be more readily compressed). If one
mole of a liquid with density p; occupies the volume Vy;
and has a mass My the volume of a single atom is

Va S Vm/Na = My/ (0iNA) (2.50a)
where N, is the Avogadro number. Assuming
a spherical size of the atom, its radius 7y is

ro S (3Va/4m)' (2.50b)

After discussing two further methods we will see in
Sect. 2.8 that atoms cannot be regarded as rigid balls
with a well-defined radius. The electron cloud around
the atomic nucleus can be described by a charge distri-
bution that gradually decreases with increasing radius
and differs from the mass distribution within the atom.
The definition of atomic size and atomic radius is there-
fore dependent on the interaction between the atom and
the probe used to measure these quantities. Different
methods will therefore yield slightly different atomic
sizes.

2.4.2 The Size of Atoms
in the Van der Waals Equation

While an ideal gas (point-like particles without
interactions) obeys the general equation

pVm =RT (2.51a)

between pressure p, mole volume Vy; and tempera-
ture 7', a real gas with atoms of volume V, that interact
with each other, is described by the van der Waals
equation

<p+ §2>(VM—b) _RT. (2.51b)

M
The constant b = 4N, V, equals four times the “eigen-
volume” of all Ny atoms in the mole volume Vj (see
Problem 2.10), while a/ VI\Z,I gives the “eigenpressure”
of the interacting atoms. The constant a depends on the
strength of the interaction between the atoms.

Measuring the relation between p and Vy at dif-
ferent temperatures 7 allows the determination of the
“covolume b” and therefore the volume

b

V, = 2.51
“= 4N, (2.51¢)

of a single atom.

2.4.2 Atomic Size Estimation
from Transport Coefficients

When the characteristic quantities of a gas such as
mass density, energy density or momentum are not
constant over the volume of the gas, the gradients of
these quantities cause transport phenomena that finally
lead to equilibrium at a homogeneous distribution if the
gradient is not maintained by external influences.

For density gradients, diffusion takes place where
mass is transported, for temperature gradients, heat
conduction occurs where energy is transported and for
velocity gradients, the momentum of the molecules is
transferred.

All these transport phenomena are realized on
a microscopic scale by collisions between atoms or
molecules and therefore the mean free path length A
(i.e., the mean distance an atom travels between two
collisions) plays an important role for the quantitative
description of all these phenomena.

In a gas at thermal equilibrium with atom number
density n and pressure p the mean free path length is
given by

A 1 kT

nG\/ 2  po \/ 2’

where o = 7(r; +12)? is the collision cross section. It
is defined as a circular disk around the center of atom A
with atomic radius ry, through which atoms B with
radius r, have to pass in order to touch atom A and
suffer a collision (Fig.2.31).

For the case of a gas of equal atoms, described by
rigid balls with diameter d, the collision cross section
becomes o = nd%. The factor /2 in (2.26) accounts for
the fact that the average relative velocity of equal atoms
is larger by a factor of v/2 than their average absolute
velocity. Measuring the mean free pathlength A gives
information on the collision cross section and therefore
on the size of the colliding atoms.

The above mentioned transport phenomena are
directly related to A.

(2.52)



Collision probability
b) P=n-c-Ax

Fig. 2.31. Determination of atomic size from the collision
cross section o = d>

e Diffusion:
If a density gradient drn/dz exists in a gas, there will
be a net mass transport dM/dt per second through
the area A perpendicular to the z-direction. The mass
flux density is then
1 dM dn
= =—Dm _ .
A dt dz
The diffusion coefficient D for atoms with mass m
and number density n can be calculated as
1 2 (kD)3?
VA =
3 3po (wm)l/2
because the mean velocity of the atoms is
v = (8kT/mm)'/>.
® Heat conduction
In a gas with a temperature gradient d7/ dz the heat
energy transported per second through the area A is
given by
do A dr ’
dr dz
where A is the coefficient of heat conduction. It is
related to the specific heat c, of the gas at constant

Jzm (2.53)

D= (2.54)

(2.55)

volume by
1 2 kT
A= _nmc,vA = Cv\/ " . (2.56)
3 30 b4

Measuring the coefficient A therefore yields the
collision cross section o and with it the atomic
radius.

e Viscosity of a Gas
If a velocity gradient dv,/dx exists in a gas flo-
wing in the y-direction, the momentum transfer per
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second through the unit area A = 1 m? in a plane
X = const is
d 2

Jpy = dr (nmvy) . (2.57)

The momentum transported through a unit area in
the plane x = const due to the velocity gradient is
caused by collisions between atoms in neighboring
layers dx at x =a and x = a+ dx. These collisi-
ons cause a frictional force between adjacent layers,
which depend on their difference in flow velocity v,
and is described by the viscosity 7. One obtains

djpy dvy
- , 2.58
dr T dx (2.58)
where
1 2
n=_nmvA=_" mmkT . (2.59)
3 3o

In summary:

Measurements of diffusion coefficient D or heat
conduction coefficient A or viscosity 1 yield the
corresponding collision cross sections and there-
fore the size of atoms. Since atoms are not really
hard spheres their mutual interactions do not ab-
ruptly drop at distances r; +r, but fall off only
gradually. Therefore, the different methods give
slightly different values of the atomic size.

2.4.3 Atomic Volumes from X-Ray Diffraction

In Sect.2.2.3 we have seen that the diffraction of X-
rays by periodic crystals is one of the most accurate
methods for the determination of the distances between
adjacent lattice planes. From such distances the vo-
lume Vg of the elementary lattice cell (often called a
primitive cell) (Fig. 2.32) can be obtained. In order to
derive the volume V, of the atoms of the crystal, one
has to know which fraction f of the elementary cell vo-
lume is actually filled by atoms. If there are Ng atoms
per elementary cell, we get for the atomic volume

Va= fVe/Nkg. (2.60)

The following three examples illustrate different values
of f for some simple lattice structures, assuming the
atoms to be described by hard spheres with radius ry.

29



30 2. The Concept of the Atom

s

Ve =(axb)c

Fig. 2.32. Elementary cell of a regular crystal

EXAMPLES

1. Primitive cubic crystal
It consists of atoms placed at the eight corners of
the cubic elementary cell, which touch each other
(Fig.2.33a). The figure shows that only 1/8 of the
volume of each atom is inside the elementary cell.
This means that Ng = 8 x 1/8 = 1. The side length
of the cubic primitive cell is a = 2r, and the filling

factor is
fe 4/3)mr}
(2r0)*
2. Body-centered Cubic Crystal
Here an additional atom is sitting at the center of the
primitive cubic cell, which touches the neighboring

atoms at the corners along the triad axis, so that
4ry = a+/3. With Ng = 2 we obtain

2(4/3)71r(3)
[@/v/3)ro]

—0.52. (2.61a)

fe L =068 (2.61b)

a) b)

Fig. 2.33a,b. Illustration of the determination of the volume
filling factor (a) for a primitive cubic crystal (b) for a cubic
face-centered crystal

3. Face-centered Cubic Crystal

In addition to the atoms at the eight corners of the
elementary cell one atom sits at the center of each
of the six faces (Fig.2.33b).

The atoms touch each other along the side face dia-
gonal, which has the length a~/2 = 4ry. From the
figure it is clear, that only one half of each atom
at the side faces belongs to the elementary cell.
The number of atoms per elementary cell is then:
Ng =8 x1/8+6x 1/2 =4 and therefore

4(4/3)mrg

f=
[@/v/2)r0]

, =074, 2.61¢)

This shows that the face centered cubic crystal has
the highest packing density.

The atomic volume V, can now be obtained
from (2.61), where Vg is determined by X-ray
diffraction and Ng from the crystal structure.

2.4.4 Comparison of the Different Methods

The different methods all give the same order of
magnitude for the atomic size although their values
for the atomic radii differ slightly, as can be seen
from Table 2.2. These differences have to do with
the above-mentioned difficulty in defining an exact
atomic radius as can be done for a rigid sphere.
The real atoms experience long-range attractive forces
and short-range repulsive forces when interacting with
other atoms or molecules. The interaction potential
between two atoms A and B can be fairly well

Table 2.2. Atomic radii in units of 107!'m = 1 A for a hard
sphere model as determined from a) the van der Waals equa-
tion, b) the collision cross section obtained from measured
transport coefficients, ¢) X-ray diffraction in noble gas crystals
at low temperatures

He 1.33 0.91 1.76
Ne 1.19 1.13 1.59
Ar 1.48 1.49 1.91
Kr 1.59 1.61 2.01
Xe 1.73 1.77 2.20
Hg 2.1 1.4 —



Fig. 2.34. Lenard—Jones-potential of the interaction between
two neutral atoms

described by the empirical Lenard—Jones potential
(Fig.2.34)

a b
Epoi(r) = 27 60 (2.62)

where the constants a and b depend on the kind of in-
teracting atoms. One possible definition for the atomic
radius is the value

2a\"/°
'm = ( b ) s
where the potential energy has its minimum va-
lue

(2.632)

Epou(rm) = —b*/4a = —¢ , (2.63b)
which equals the potential depth —e.
Another possible definition is
an1/6
ro= (b) , (2.63¢)

where E,;(ro) = 0. For R < r the step increase of the
repulsive part of the potential comes close to that of
arigid sphere.

In summary:

The atomic radii all lie within the range of
(0.5-5) x 1071m = 0.5—5 A. Their exact va-
Iues depend on the atomic model and different
methods for their measurement give slightly dif-
ferent values because they probe different parts of
the interaction potential.

2.5. The Electric Structure of Atoms

2.5 The Electric Structure of Atoms

Various experimental investigations had already shown
at the end of the 19th century that matter consists of
electrically charged particles. The essential evidence
came from:

e Investigations of electrolytic conductivity in polar li-
quids, which proved that molecules could dissociate
into positively and negatively charged constituents
that drift in opposite directions when in an exter-
nal electric field. They were called “ions” (from the
Greek word “tov” for “the moving”).

Michael Faraday found that the charge transpor-
ted to the electrodes was proportional to the mass
transport (see Sect.2.2.3.e).

e Experiments on gas discharges, where the observed
light emission could be drastically influenced by
electric or magnetic fields. This proves that elec-
trically charged particles are moving within the
discharge region.

® Observations of the influence of magnetic fields on
the electric current in metals and semiconductors
(Hall effect, Barlow’s wheel).

e The discovery that particles emitted from radioac-
tive substances show different deflections in magne-
tic fields. They should therefore consist of positively
charged heavy particles (called « particles) and ne-
gatively charged light particles (called B-particles,
which are identical with electrons) (Fig. 2.35).

Y

o Magnetic
< % % X _— field
X X X 5
X X X

Radioactive sample

Fig. 2.35. Different deflections of « and g particles in
a magnetic field
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These experimental findings together with the assump-
tion that matter is composed of atoms led to the
following hypothesis:

Atoms are built up of charged particles. They can
therefore not be “indivisible,” but have a substruc-
ture, which, however, was unknown at this time.
The electrically charged positive and negative
constituents have different masses.

This raises the questions:

@ What properties do these constituents have?

e What force keeps them together to form stable
atoms?

e What is the charge distribution inside the atom?

e How can the microscopic properties of matter be
explained by this model?

We can answer some of these questions immediately;
the others are discussed at the end of this chapter.

Since atoms are neutral, the amount of positive and
negative charge in an atom must be equal in order
to compensate each other. Many classical experiments
have shown that the electric Coulomb force is larger
than the gravitational force by about 20 orders of ma-
gnitude. The latter are therefore completely negligible
for the stability of atoms. Electric forces are responsible
for the interaction between the constituents of an atom.
Why the attractive Coulomb force between the positive
and negative atomic constituents does not lead to the
collapse of atoms has only been recently answered by
quantum mechanics (see Sect. 3.4.3).

2.5.1 Cathode Rays and Kanalstrahlen

Investigations of gas discharges by J. Plucker (1801—
1868), Johann Wilhelm Hittorf (1824-1914), Joseph
John Thomson (1856—-1940), Phillip Lenard (1862—
1947) (Nobel Prize 1905), and many others have all
contributed much to our understanding of the electric
structure of atoms. It is worthwhile to note that the es-
sential experimental progress was only possible after
the improvement of vacuum technology (the invention
of the mercury diffusion pump, for example, allowed
one to generate vacua down to 1076 hPa).

In a gas discharge tube at low pressures, Hittorf
observed particle rays emitted from the cathode that

followed (without external fields) straight lines, which
he could prove by the shadow that was produced on
a fluorescent screen when obstacles were put in the
path of the cathode rays. From the fact that these par-
ticle rays could be deflected by magnetic fields, Hittorf
correctly concluded that they must be charged partic-
les and from the direction of the deflection it became
clear that they were negatively charged (Fig. 2.36). The
first quantitative, although not very accurate, determi-
nation of the magnitude of their charge was obtained
in 1895 by J.B. Perrin (and with an improved appara-
tus in 1897 by Thomson, who collimated the particles
through a slit in the anode, deflected them after the an-
ode by 90° through a magnetic field and detected them
by an electrometer (Fig. 2.37a)).

With the design of Fig.2.37b, where the cathode
rays are better collimated by two slits B; and B,, thus
producing a small spot on the fluorescent screen, Thom-
son could measure the ratio e/m of charge e to mass m
of the particles by applying electric and magnetic fields
for beam deflection (see Sect.2.6). This was the first
example of a cathode ray oscilloscope. Thomson could
also show that the ratio e/m was independent of the
cathode material, but was about 10* times larger than
that for the “Kanalstrahlen” discovered in 1886 by Eu-
gen Goldstein (1850-1930) in a discharge tube, which
fly through a hole in the cathode in the opposite di-
rection of the cathode rays (Fig.2.38). Wilhelm Wien
(1864-1928) measured in 1897 the value of e/m for
the particles in the Kanalstrahlen and he proved that
they are positively charged atoms of the gas inside the
discharge tube [2.26].

-t Cathode rays
= electrons
R
Fluorescent
Anode ~~screen
Cathode
Valve

S

Fig. 2.36. Schematic drawing of the experimental setup for ob-
serving cathode rays. The deflection of the rays by an external
magnet can be observed on the screen
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Fig.2.37a,b. Experimental arrangement of Thomson for the

determination of the ratio e/m of cathode rays through their
deflection (a) in a magnetic field and (b) in an electric field
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The negative light particles of the cathode rays
were named electrons after a proposal by J. Stoney and
G. Fitzgerald in 1897. The positively charged heavy par-
ticles were named ions according to the existing name
for charged atoms or molecules in the electrolysis.

This short survey on the history of gas discharges
shows that all of these discoveries were made within the
short time span of a few years. They gave the following
picture of the charged constituents of atoms:

Possible deflection

+, - R
_| |—|:|1 /by external magnets

Anode

Fluorescent
screen

Cathode

l To pump

Fig. 2.38. Apparatus for demonstrating “channel-rays” (posi-
tive charged ions) in a discharge with a hole (channel) in the
massive cathode

Gas discharge

2.5. The Electric Structure of Atoms

Atoms consist of negatively charged electrons
and positively charged particles that just compen-
sate the negative charge to make the whole atom
neutral.

Still nothing was known about the spatial distribu-
tion of negative and positive charges within the atom
and about the sizes of the charged particles.

2.5.2 Measurement of the Elementary Charge e

The first measurement of the absolute value of the
charge of a positive ion was made in 1899 by Thom-
son and his student Charles Wilson, who had developed
his cloud chamber (see Sect. 2.3). The ions generated in
the cloud chamber by external radiation act as nuclea-
tion centers for water droplets by attraction of water
molecules in supersaturated water vapor. These small
droplets, which are made visible by illumination, sink
slowly due to gravity. They reach a constant terminal
sink velocity in air with viscosity n when the gravita-
tional force Fy = m™*g (m™ =m — p,;/V is the apparent
mass, taking into account the buoyancy) just equals
the opposite frictional force Fy = —6mnrv for spheri-
cal particles. This gives for the apparent mass m* the
equation

4
gm™ = g (Pwater — Pair) 37'”"3 =6mnrv. (2.64)
From the measured values of the sink velocity
*
v="E (2.642)
6mnr

which depends on the viscosity 7 of the gas, the radius r
of the droplets can be determined and from the total
mass, condensed at the lower plate of the cloud chamber
per unit time and the transported charge Q, the number
of particles N can be obtained. This gives the average
charge ¢ = Q/N of each particle. Assuming that each
particle carries only one elementary charge, Thomson
estimated this charge to be around 10712 C, close to the
correct value of 1.6 x1071° C.

A much more accurate value was obtained 1910 by
Robert Andrew Millikan (1868—1953) in his famous oil
droplet experiment [2.27]. With an atomizer, he blew
a fine spray of minute oil droplets into the air between
the two horizontal plates of a condenser (Fig.2.39).
These droplets could be viewed through a microscope
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Oil-droplets

Nozzle

X-ray quantum

F=qE
:Jw for a charge change Aq
E

Fo = 9(M—0gin 'Vdropl.)

by illuminating them with an arc lamp. They were char-
ged by irradiation with X-rays, which strip off a small
number n of electrons (n =0,1,2,3,...) from the
droplets, leaving them positively charged. Without an
electric field, the droplets sink down with constant ter-
minal velocity vy, if the gravitational force m*g is just
compensated for by the frictional force. From (2.64) we
then obtain

_ 8 (Poil — Pair) A3t7TF3

v
0 6mnr

9
e mwo
(oil — Pair) 28

From the measured sink velocity v, therefore, the ra-
dius r of the droplets is obtained if the viscosity 1 of air
is known.

If an electric field Ey is now applied, an additional
force F, =qkE( acts on the droplet, where ¢ = —ne
and —e is the charge of one electron. With the right field
polarity the droplet can be kept at a constant height if
the electric force just compensates for the gravitation:

(2.65a)

4
m-eEq = —g (Poil — Pair) 37"’3 . (2.65b)
This gives the charge of the droplet
4
—g=ne=— Ego 37TV3 (Poil — Pair)

where r is taken from (2.65a).

In a variation of the experiment a larger electric
field E, is applied, which moves the droplets upwards.
One droplet now experiences the total force

(2.65¢)

4
F=qE1 —8 7Tr3 (Poil — Pair) — 6TV,

2.65d
3 ( )
which becomes zero for the terminal velocity
E,— 47‘”"3 il — Pai
vy = qL1—85 (oil = Pair) . (2.65¢)

6mnr

Fig. 2.39. Principle scheme of Mil-
likan’s oil-droplet experiment for
measuring the unit of charge

Subtracting (2.65a) from (2.65¢) gives

v v_q1
1— Vo=
6nr

from which the charge

q = —ne = 6mnr(vy — vo)

361 n\3/2 Vo
= (v1 — o) ( )
E, 2 8 (Poil — Pair)

can be obtained. When the droplet changes its charge, its
terminal velocity v; will change. The smallest change
is observed for An =1. This gives the elementary
charge e.

Millikan had already noted that the results he ob-
tained scattered for droplets with different radii. The
reason for this is that Stokes’ law for the viscosity
force on moving spheres is only valid if the radius r
of the droplet is large compared with the mean free
path A of the air molecules. This was not strictly true
for the oil droplets, and particularly not for the smaller
ones.

(2.65f)

EXAMPLE

At a pressure of 1bar the mean free path length is
A~ 5x107%m = 5um. For droplets with 7 < 10 um
a correction to (2.65a) has to be made.

The presently accepted value for e is e =
1.60217653(14) x10~'° C, where the number in
parentheses gives the uncertainty of the two last
digits.

2.5.3 How to Produce Free Electrons

Free electrons can be produced in many different ways.
We will discuss the most important methods.



a) Thermal Emission from Solid Surfaces

When a metal is heated to a high temperature T
a fraction of the free conduction electrons can get a suf-
ficiently large kinetic energy to overcome the attraction
by the solid and can leave the metal (thermal emission)
(Fig. 2.40a). If these electrons are collected onto an an-
ode by an accelerating electric field one observes an
electric current / with a current density j; [A/m?] per
unit area of the emitting surfaces, which follows the
Richardson equation

jo=AT? e Wa/kT (2.66)

where W, is the work function of the metal, i.e., the
necessary minimum energy of the electrons to leave
the metal. The constant A depends on the material and
the condition of the surface (Table 2.3). For a regular
crystal, A also depends on the direction of the surface
normal against the crystal axes. In order to achieve high
current fluxes, materials with low values of W, and
high melting temperatures are needed. A commonly
used composite material is tungsten doped with barium
or cesium. At high temperatures the barium or cesium
atoms diffuse to the surface where they contribute to

Tungsten-barium LQQQ,O-J_-L
mixture e
U / R -
[ | +
o) B) Y oyl
wyy
Fig.2.40a,b. Thermal electron emission devices. (a) Arran-
gement for measuring the emission current and its saturation
value. (b) Technical realization of different thermal emis-
sion cathodes. («) Hair-needle cathode, (8) cathode hollow
cylinder heated by a current through a tungsten helix in-

side the cylinder. (y) Focusing cathode, heated by electron
bombardment on the backside
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Table 2.3. Work functions W, = eU, and electric current den-
sity emission coefficients A for some commonly used cathode
materials

barium 2.1 6 x10*
tungsten-barium 1.66 ~10*
tungsten-cesium 1.4 ~3x10*
thorium 3.35 6x10°
tantalum 4.19 5.5x10°
tungsten 4.54 (1.5—-15) x10°
nickel 491 (3—130) x10°
thoriumoxyd 2.6 (3-8) x10*

a low work function W,. The measured anode current
increases with the applied voltage until it reaches a sa-
turation value, where all electrons, emitted from the
cathode, are collected by the anode (Fig. 2.40a).

Thermal emission represents the most important
technique for the production of free electrons in oscil-
loscope tubes, TV tubes, broadcasting electron valves,
and for all instruments where high current densities
are required, such as electron beam welding or ion
sources for accelerators. In Fig.2.40b different types
of cathodes are shown.

b) Field Emission

When a voltage U is applied between an anode and a ca-
thode formed as a sharp tip with radius r on a tungsten
wire, the electric field (E) = U/r may become as large
as 10! V/m (see Sect. 2.3). Such high fields change the
potential at the surface of the tip and can extract elec-
trons. Field emission is technically used in cases where
anearly point-like electron source is required, such as in
the field emission electron microscope (Sect. 2.2.3) and
in some types of high resolution electron microscopes
(Fig.2.25).

c¢) Photoeffect at Metal Surfaces

When the surface of a metal is illuminated by UV light,

electrons with kinetic energy
Ekin =hy— Wa (267)

are emitted from the surface where v is the optical fre-
quency of the illuminating light and % is a constant
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(Planck’s constant, see Sect. 3.2), W, is the work func-
tion of the metal (i.e., the minimum energy required to
release an electron (see Table 2.3)).

d) Secondary Electron Emission

When the surface of a metal is irradiated with fast elec-
trons or ions instead of photons, so-called “secondary”
electrons are emitted (Fig.2.41). The average number
of emitted electrons per single incident particle is cal-
led the coefficient of secondary emission. It depends on
the material, the angle of incidence and on the kind of
incident particles and their energy. Some values for n
are given in Table 2.4.

Secondary emission plays an important role in
many optical and spectroscopic devices. One example
is the photomultiplier (Fig.2.42), where the incident
light releases electrons from the cathode (photoeffect),
which are then accelerated by an electric field and

impinge on a specially formed electrode. There they
release secondary electrons, which are again accele-
rated onto a second electrode, and so on. Finally an
electron avalanche arrives at the cathode with a charge
q = Me, where the magnification factor M = n™ de-
pends on the secondary emission coefficient and on
the number m of electrodes. Typical values of M are:
M = 10°—10". The electric charge pulse g(f) produces
a voltage V,(¢¥) = q(f)/C, at the exit capacitance C,,
which is discharged through a resistor R at the end of
the avalanche.

EXAMPLE

Np=1, n=4, m=10, e=1.6x10"°C, C,=

100pF = V, = #1107 — 17my.

Table 2.4. Maximum values 7pa.x of secondary emission
coefficients 1 for the optimum energy Wpax of incident
electrons

Ag 1.5 800
Al 1.0 300
C (diamond) 2.8 750
Na 0.8 300
w 1.4 650
KBr 14 1800
LiF 8.5 700
Nal 19 1300
MgO-crytal 20-25 1500
MsO-1 5-15 500—1500
Fig.2.41. Schematic illustration of secondary electron G;P +ac}jlser 120 2500
emission under ion bombardment of a metal surface
N Electrical output pulse
U ~t/(RC,)
I a<—>|At e
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Fig. 2.42. Principle of a photomultiplier. The rise time of the output pulse reflects the time spread of the electrons in the tube,

the decay time solely depends on the product RC,



If the photocathode is replaced by a metal electrode
with a high secondary emission coefficient n, single
particles (electrons or ions) that are impinging on the
cathode can be detected (electron- or ion-multiplier).

Other examples of secondary electron emission ap-
plications are image intensifier or scanning surface
electron microscopes (Sect.2.3.3).

2.5.4 Generation of Free Ions

While the techniques described above produced free
electrons emitted from solid surfaces, in the following
processes pairs of ions and electrons, generally in the
gas phase, are always being formed.

a) Electron Impact Ionization

The most important mechanism for the production of
free ion-electron pairs is the electron impact ionization,
where an electron with sufficient kinetic energy FEkin
hits an atom A and releases another electron

e (Exin) +A = AT 4e (E)) +e (Ey). (2.68a)

The final energies E;, E, of the electrons after the
reaction have to obey energy conservation

E\+ E> = Exjn — Eion - (2.68b)

Here a neutral atom looses one electron, which had
a binding energy Ej,, (also called the “ionization ener-
gy”) and is split into a positively charged ion A*
and an electron e~ (Fig.2.43). The probability of this
process depends on the kinetic energy Eji, of the inci-
dent electron, the atomic particle A and the ionization
energy FEj,, of the released electron. It is generally
described by the ionization cross section Gion(Ekin),
which gives the circular area around atom A through
which the electron has to pass in order to ionize A.
Figure 2.44 shows ionization cross sections Gion ( Exin)

e ‘ :/O o
° 0

e (Ep)
e +A= AT +2e”

Fig. 2.43. lonization of atoms by electron impact
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Fig. 2.44. Electron impact ionization cross sections o(Ekin)
for some atoms. The values for Ar and Xe are really three
times and five times larger than shown

for some atoms A as a function of the electron impact
energy Eyin.

Electron impact ionization in gas discharges re-
presents the major contribution to the generation
of charge carriers.

When ions BT instead of electrons collide with
atoms A to produce ionization

BY(Exin) +A — AT +BT +e” (2.68¢)

the relative kinetic energy Ej;, of the collision partners
must be much higher than the ionization energy Ejq, of
the electron, because only a small fraction (& m./mp)
of the kinetic energy of the heavy particle B can be
transferred during the collision to the electron of atom A
which has to be removed from the atom.

b) Photoionization of Atoms

When atoms are irradiated with light of sufficiently
short wavelengths (generally ultraviolet light), the ab-
sorbed light can excite an atomic electron to an
energy above the ionization limit (photoionization, see
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Sect. 7.6.1). This process represents the leading mecha-
nism for the production of ions in the upper atmosphere
(ionosphere). Here the UV light of the sun can ionize
nearly all atoms and molecules in this region. Since
the photoionization cross section is generally small, ef-
ficient photoionization of atoms demands high light
intensities in the UV. This process therefore gained
increasing importance after the introduction of lasers,
which can deliver intensities many orders of magnitude
larger than conventional light sources (see Chap. 8).

¢) Charge Exchange Collisions

When ions A" pass through a gas or metal vapor of
neutral atoms B, an electron can be transferred from the
atom B to the ion AT during the close passage of AT
with B

AT+B—> A+B* (2.68d)

if the ionization energy of B is smaller than that of A.

When slow electrons pass through a gas of neutral
atoms A, they may be captured by the atoms to form
negative ions

e +A—> A" (2.68e)

if the relative kinetic energy Ey;, can be transferred to
a third partner. This process plays an important role in
the earth’s atmosphere and also in the sun’s photosphere
where the process

H+e  — H +hv (2.68f)

is mainly responsible for the emission of the sun’s
continuous visible radiation. The inverse process

H +H+EgH ,H) - H+Hte (2.682)

resupplies the neutral H atoms lost by the pro-
cess (2.68f).

d) Thermal Ionization

At very high temperatures the kinetic energy of atoms
may become sufficiently large to allow ionizing atomic
collisions.
A+B—> A+BT+e”
— At +B+e”

— AT +Bt 42e” (2.69)

a) o —>O\ e (&)

e (Exin)

e (Ep)
e +A=> AT +2e”
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b) O _ / ¥_0 -
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B (Egn)+A=>B" +A" +e”
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e

Fig. 2.45a—d. Survey of the various processes for the pro-
duction of ions. (a) Electron impact ionization. (b) Ion
impact ionization. (¢) Charge exchange for grazing collisions.
(d) Photoionization

depending on the kinetic energy of the relative motion
of A and B. Such processes occur, for instance, in the
hot atmospheres of stars. The state of matter at these
high temperatures consisting of a mixture of neutral
atoms, ions and electrons, is called a plasma.

The different mechanisms for the production of ions
are summarized in Fig. 2.45.

e) Technical Ion Sources

For the practical realization of atomic or molecular io-
nization, special devices for the ion production have
been developed which are called ion sources.

The most widely spread source is the electron impact
ion source (Fig.2.46). Electrons are emitted by a hot
cathode and are accelerated by a cylindrical anode in the
form of a grid. They pass the ionization volume where
the atoms or molecules are inserted. The electrons can
be reflected by the electrode GE allowing them to pass
through the ionization volume a second time.



Cathode
B LQQQJ lon extraction
: v
1 Anode formed as !
R 1..... Cylindrical grid
1 ' 1
Gas —5- Y A @ ‘
inlet ——— ey ! ©) —E—) To
'+ @ ——> lionoptics
R l‘ _____ N :
_ - Electron :
GE reflector |~

lon _l U
repeller I

Fig. 2.46. Electron impact ion source

The ions formed by this electron impact are ex-
tracted by properly designed electrodes at a negative
potential. They are imaged by special ion optics (see
Sect. 2.6) and form a nearly parallel beam of ions, which
can then be mass selected by electric or magnetic fields
(see Sect. 2.7).

The electron impact ion sources are operated at
low pressures (1073 —107> mbar). This implies that the
achievable ion currents are relatively small. Higher ion
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Fig. 2.47. Duo plasmatron ion source

2.5. The Electric Structure of Atoms

currents can be realized with plasma ion sources, where
a gas discharge at high pressures is maintained. One ex-
ample is the duo-plasmatron source where a low voltage
gas discharge is initiated between the heated cathode
and the anode. The ions are extracted by a high vol-
tage (several kV) through the small hole in an auxiliary
electrode that compresses the plasma and therefore in-
creases its spatial density. A magnetic field keeps the
plasma away from the walls and further increases the ion
density. Even substances with low vapor pressure can
be vaporized (for example by electron- or ion impact)
and can then be ionized inside the discharge.

A more detailed discussion of different techniques
for the production of ions can be found in [2.28].

2.5.5 The Mass of the Electron

All methods for the determination of the electron mass
use the deflection of electrons in electric or magnetic
fields, where the Lorentz force

F=qg(E+vxB) (2.70a)

acts on a particle with charge ¢, which moves with
a velocity v across the fields (Fig. 2.48). Inserting New-
ton’s equation F = mji into (2.70a) we obtain the three
coupled differential equations

=" (B +v,B.—vB,) .
= 31 (Ey+v:B, —v,B.) ,

i=1 (E.+v,By—v,B,) . (2.70b)
m )

These equations show that it is not the mass m directly,

but only the ratio ¢/m that can be obtained from mea-

suring the path of a charged particle in these fields.

® ® ®

B Fig.2.48. Lorentz-force
@ F acting on an elec-
tron e~ that moves
with velocity v in
a homogeneous magne-
@ tic field B, pointing
perpendicularly into the

drawing plane
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One therefore needs an additional measurement (for in-
stance the Millikan experiment) in order to determine
the charge g seperately. The mass m can then be ob-
tained from one of the following experiments. We will
now illustrate (2.70) by several examples.

a) Fadenstrahlrohr

Electrons emitted from a hot cathode in a glass bulb are
accelerated in the y-direction and enter a magnetic field
that points into the z-direction (Fig.2.49). Since here
v=1{0,v,,0} and B = {0, 0, B}, (2.70b) reduces with
qg=—eto

. e
X=— wv,B;.
m

(2.70c)
This shows that the electrons are bent into the x-
direction and acquire a velocity component v, but
remain within the plane z = const. The Lorentz force is
always perpendicular to their velocity v = {v,, v,} and
therefore does not change the magnitude of the velo-
city. The path of the electrons is therefore a circle with
a radius R (Fig.2.50) defined by the compensation of
centrifugal and Lorentz force

2
Y _ B, . (2.71a)
This gives the radius
mv 1
R= = 2 2.71b
g = gV2vmie, (2.71b)

because the velocity v of the electrons is determined by
the acceleration voltage V according to (m/2)v> = eV.

Electron
Glass bulb path

Fig.2.49.  Experi-
mental device (“Fa-
denstrahlrohr”)  for
measuring the ra-
tio e/m

Focusing
electrode

Cathode  Neon filling

A=R

wl

s

q

Fig. 2.50. Circular path of an electron beam in a homogeneous
magnetic field perpendicular to the initial velocity vy of the
electrons

The path of the electrons can be made visible, if
the glass bulb is filled with a gas at low pressure so
that the mean free path of the electrons is comparable
to the circumference of the circle. Through collisions
with the electrons, the atoms are excited and emit light
(see Sect. 3.4). This visible circular path of the electrons

allows the measurement of its radius R and of the ratio
e 2V 2.72)
m  R2B?’ '

If the electrons enter the homogeneous magnetic field
under the angle « against the field direction, the elec-
tron velocity v = {vy, 0, v,;} can be composed of the

<l

e-B
Fig. 2.51. Helical path of electrons that enter a homogeneous
magnetic field under an angle « # 90° against the field lines
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Fig. 2.52. Wien filter

two components v, and v, (Fig.2.51). The v, compo-
nent is perpendicular to the field and leads to a circular
motion with radius R =mv,/(eB) and a circulation
time 7 =27 R /v, = 2nm /(e B) independent of the ve-
locity component v,! The v, component is parallel
to the field lines and therefore the Lorentz force is
zero. This component leads to a straight line. The
superposition of the two movements results in a he-
lical path around the field lines with a ganghthe
Az =Tv, =2nRv, /v, =2nR/tan . For @ = 90° the
electron path lies in the x-y plane and becomes a circle.

A more accurate measurement of e/m is possible
with the Wien filter of Fig. 2.52, where an electron beam
is accelerated through a voltage V and enters with the
velocity v a region where a homogeneous electric field
E ={-E,, 0,0} and a magnetic field B = {0, —B,, 0}
are superimposed in such a way that the two forces
are antiparallel. The electron beam is collimated by the
aperture S to assure that the velocity components vy, vy
become negligibly small. With the proper selection of
field strengths one can achieve that the total force F =
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Fig.2.53. Precision methods for the measurement of e¢/m
with two radio frequency deflection plates separated by the
distance L

—e(v x B) — eE acting on the electrons becomes zero.
This gives
e 2

v, RV :\/2Ve/m =E/B= " = 2VE? "
Only electrons with a velocity v that give the exact com-
pensation of the electric and magnetic forces can pass
through the second aperture S, and reach the detector.

Besides its application to the determination of the ra-
tio e/m, the Wien filter can be used as a narrow velocity
filter for electron or ion beams.

Instead of the Wien filter two condensers C; and C;
can be used (Fig.2.53). When an AC voltage with fre-
quency f is applied to the condensors the electric field
is time dependent. Electrons can only pass through
the aperture S,, if they transverse the first conden-
ser C; at a time where the voltage is zero and they
pass through the next aperture S; if they also tra-
verse the second condenser at zero voltage. With the
separation L between the two condensers their flight
time 7 = L/v =n/2 f must be an integer multiple n of

(2.73)
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the half period AT/2 =1/2f of the AC voltage. This
imposes the condition

2V
vzz\/ “—2Lfn.
m

Varying the frequency f or the acceleration voltage V
yields maxima of the signal for the different va-
lues of the integers n =1,2,3,.... This allows the
determination of n and thus of e/m.

The accuracy of ¢/m measurements has steadily in-
creased over the course of time. However, systematic
errors have often mislead experimenters and the results
of different laboratories often differed by more than the
error limits stated by the different scientists (Fig. 2.54).
The main uncertainty for the determination of the elec-
tron mass m from the measured ratio e/m stems from
the error limits in the measurement of the charge e. The
best value accepted today is

(2.74)

me = (9.1093826 4 0.0000016) x 10! kg .

2.5.6 How Neutral is the Atom?

The experiments discussed so far have shown that atoms
can be split into negatively charged electrons and posi-
tive ions. Millikan had measured the charge of positive
ions that missed one or several electrons.

The question now is how exactly the negative charge
of the atomic electrons is compensated by the positive
charge in a neutral atom. We will see later that this
positive charge is provided by the protons in the atomic
nucleus. Our question can therefore also be stated as:

Is there any difference in the absolute values of
electron and proton charges?

This question is of fundamental importance, because
a tiny difference would cause huge macroscopic effects.
For example, if there was a difference

Ag=let|—le”| >2x107B¢

the expansion of the universe could be explained by
electrostatic repulsion forces [2.29].

In order to give upper limits for such a possible dif-
ference Aq, precision experiments have been designed.
We will only discuss a few of them.

a) Gas Effusion

Through the orifice of a large, electrically isolated metal
container containing N atoms or molecules (dN/df) At
atoms effuse during the time interval At into vacuum
and are condensed at a cold wall (Fig.2.55). If there
was a net charge Ag per atom, the isolated con-
tainer would loose the charge AQ = Ag(dN/dr) At.
With a capacitance of the container C, this would lead
to a voltage V = AQ/e of the container against the
ground, which could be measured with an electrome-
ter. The experiment showed that no measurable voltage
appeared.

EXAMPLE

dN/dt =10°s~!, Ar=100s, C=10"°F =V =
10%*(Ag/e) Volt. Since the voltage can be mea-
sured with an uncertainty of 107°V, the upper
limit of a possible charge Ag per atom must be
Ag <1070 C~ 10 e.

Cooled
metal wall

Gas

AQ=N-Aq-t i)’-

[l 1solation [] AU =(NAQ/C)-t T

Fig. 2.55. Experimental arrangement for obtaining an upper
limit for a possible difference Ag = |e™| — |e™|

b) Deflection of an Atomic Beam

Out of a cold reservoir, atoms effuse and are collima-
ted by two slits S; and S; to form a well collimated
horizontal beam, which is slightly bent due to gravita-
tion. Between the two apertures, a condenser is placed
where a positive or negative voltage is alternatively ap-
plied (Fig. 2.56). If there was any charge Ag, the beam
would be deflected and the signal monitored by the de-
tector behind A, would change. No such change was
observed.
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Fig. 2.56. Measuring the neutrality of atoms in an atomic beam
experiment

EXAMPLE

The orifice of the reservoir had a diameter of 0.04 mm
and the width of the two slits is also 0.04 mm, the
distance between orifice and slit S; was 400 cm, the
length of the condenser 200cm. With a voltage of
10kV and a plate separation of 2 mm the electric field is
E =5x10°V/m and the force acting on charged par-
ticles is F' = Aq E. For Cs atoms this experiment gave
with a mean velocity of v =300m/s an upper limit of
Ag < 10732 C (see Problem 2.12).

¢) Floating Ball

This experiment has similarities with Millikan’s oil dro-
plet experiment. Here a small ferromagnetic ball with
diameter 0.1 mm is kept floating in a vacuum by an
electromagnet, where the magnetic force just cancels
the gravity force. The ball position can be monitored
by a laser beam reflected at grazing incidence by the
ball (Fig.2.57). The surfaces of the two magnetic po-
les carry the plates of a condenser, which produces an
electric field E. If the ball with N atoms each with Z
electrons carried a net charge

AQ=0Q"~ Q" =NZ(e*|~le]) 2.75)
Magnetic poleshoe
\
Condensor
11
-D- Position
Magnetic-electric %%?ggl\é?

field

Fig. 2.57. Checking the neutrality of atoms by measuring the
position of a small ferromagnetic ball in a magnetic + electric
field, monitored by reflection of a laser beam

2.6. Electron and Ion Optics

the ball would experience a force F = AQ E that would
shift the ball out of its equilibrium position. This could
be measured sensitively through the corresponding
deviation of the reflected laser beam [2.30].

In summary, all of these experiments showed that
a possible difference Ag = (e™) — (e™) between
the amounts of the charges of proton and elec-
tron has to be smaller than Ag < 1072! e & 1.6 x
10740 C.

2.6 Electron and Ion Optics

Charged particles can be deflected and imaged by pro-
perly designed electric or magnetic fields that act on
these particles in a similar way as lenses, mirrors
and prisms act on light in optics. Such field arran-
gements are therefore named electron or ion optics.
They have allowed the development of electron micros-
copes (Figs. 2.23-2.26) and mass spectrometers (see
Sect.2.7). Since electron microscopes reach a spatial
resolution down to 0.1 nm they have become indis-
pensable for the investigations of small structures in
biological cells, material and surface phenomena and
molecular structure. Mass spectrometers play an im-
portant role in analyzing the atomic composition of
compounds, in measuring isotopic abundances, deter-
mining age in geology and archeology. They are used
to measure the absolute masses of atoms and molecu-
les and to define the absolute value of the atomic mass
unit AMU (see Sect.2.2.1).

It is therefore worthwhile to study the basic
principles of electron and ion optics.

2.6.1 Refraction of Electron Beams

Anelectric field exerts a force on a particle with charge ¢

F=qE=—qgrad ¢, , (2.76)

which is always perpendicular to the equipotential
surfaces ¢ = const.

Assume a particle with mass m and charge ¢ moves
with constant velocity v; through a field-free region
and enters at an angle « the planar boundary surface of
a homogeneous electric field (Fig. 2.58).
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Fig. 2.58. Deflection of an electron beam at plane boundaries
between regions of different electric fields

Such an arrangement can be, for instance, realized
by four planar metal grids kept at constant potentials.
Between grids 2 and 3 in Fig. 2.58 a homogeneous elec-
tric field E = (¢; — ¢»)/d is maintained, while in the
regions above and below the electric field is £ =0.
Energy conservation demands

m ., m

227
while passing through the field, the x-component of the
velocity remains unchanged. From Fig.2.58 we rea-
lize the relations: sino = vi,/vy, sin 8 = vy, /vy and
because of v, = vy, we obtain the law of refraction of
a parallel electron beam

vi4qV (2.77)

sinae v
L=, (2.78)
sinf v
which corresponds to Snellius’ law of refraction
sina/sin B =ny/n; in optics, if we replace the ratio
vy /v; of the electron velocity by the ratio n,/n; of the
refractive indices.
The electrons have acquired their initial velocity v
by apotential difference Vy = ¢p9 — ¢p; where (m/ 2)v% =
g Vo. Inserting this into (2.77) gives

m 1053 Vo+V
v§=q(Vo+V):'v =\/ .

2.79
) 1 v (2.79a)

Within the homogeneous electron field E the compo-
nent v, remains constant while v, is increasing. The

path of the electrons then follows a parabola

1 gE x*
%5 ey (2.79b)

z(x) = —
2mouvy, Vi

If the distance d between the grids at z =0 and z =d is
sufficiently small, we can approximate the path of the
electron by two straight lines in the following way.

We extrapolate the straight path of the incident elec-
tron for z < 0 until the mid plane at z = d/2 and that of
the outgoing electron for z > d back to z = d/2 (das-
hed straight lines in Fig. 2.58). Then the analogy to the
optical refraction at the boundary plane between two
media with refractive indices n;, n, becomes more sug-
gestive. According to (2.74) and (2.79) we can attribute
refractive indices to the electron optics arrangement by
the relation

n2 _ s?noe =\/1+V/Vo.

v = an g (2.80)

This shows that the ratio of the refractive indices
is solely determined by the potential difference
V = ¢ — ¢ and the initial energy (m/2) v% =eV)
of the incident electron.

The direction of a parallel electron beam can be
also changed by traversing a perpendicular electric
field (Fig.2.59). When electrons enter the homoge-
neous field E, of a condenser at z = 0 with the velocity
v ={v,,0,0} the force F=¢gFE gives a parabolic
path

1g x* dz gE L
‘ 2m V2 = (dx)sz m v? an
(2.81)

In both cases (Figs. 2.58 and 2.59) the electron beam is
refracted analogously to a light beam in a prism.

\ 4

_§<____ """"
n =y
< L
X

Fig. 2.59. Deflection of an electron beam in the homogeneous
electric field between two charged parallel metal plates



2.6.2 Electron Optics in Axially Symmetric Fields

We will now look at the imaging of electron beams in

inhomogeneous electric fields with axial symmetry.
From (2.73) one obtains with E = —grad ¢ and

without magnetic field (B = 0) the basic equations:

dx  9¢ 2y  o¢ &z 9
m =e , m =e s =e s
dr? ox dr? dy dr? 0z
(2.82)

which can be solved, at least numerically, if the po-
tential ¢ is determined by the arrangement of charged
metal surfaces. If there are no space charges, the Laplace
equation becomes:

02 ¢ o
ax2 o 9y? o a2

There is no analytical solution for the general case, but
there are, of course, always numerical ones.

Most of the electro-optic lenses are realized by axial
symmetric electric or magnetic fields, where the former
can be obtained by circularly charged apertures or tubes,
which can be set at a freely selectable potential.

0. (2.83)

94 95
a) O U C
o 0@
b 7 - z
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________________ (_ I#::- F_
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Fig. 2.60a—c. Electron lens consisting of two cylindrical tubes
at different potentials. (a) Schematic representation. (b) Po-
tential ¢(z) and its second derivative d?¢/dz2. (c) Optical
analogy

2.6. Electron and Ion Optics

One example is given by Fig.2.60 where two cy-
lindrical tubes are connected with a voltage source that
sets the potentials ¢; and ¢, for the two tubes. The
equipotential surfaces are indicated by the dotted lines.
Depending on the values of ¢; and ¢, a collecting or
a diverging electron lens can be realized. The appro-
priate coordinates here are cylindrical coordinates r,
@, z. Since the system is axially symmetric, the poten-
tial cannot depend on the angle ¢, but only on r and z.
While for » = 0 the derivative d¢/0or = 0, this is not the
case for r # 0. Therefore, a force acts on those electrons
that move away from the symmetry axis. Electrons co-
ming from the left side in Fig. 2.60 are attracted towards
the axis (note that the force is always perpendicular to
the dotted equipotential lines), while they are driven
away from the axis in the right tube. For ¢, > ¢; the
electrons are accelerated when moving from the first to
the second tube. Their velocity is therefore larger at the
right side as at the left one. This means that the defocu-
sing effect on the right side is smaller than the focusing
effect on the left side. The system acts as a conver-
ging lens. For ¢, < ¢, the situation is inversed and the
system represents a diverging lens.

Let us prove more quantitatively the focusing effect
of an electric field with axial symmetry. We use as an
example the potential

¢(r,z)=a <z2 - ;r2>

shown in Fig.2.61, which is produced by two pairs
of axially symmetric hyperbolic electrodes, where the

(2.84)

Electrode

Equipotential
surfaces
¢ =const

Fig. 2.61. Hyperbolic electrostatic field with axial symmetry
around the z-axis
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z-axis is the symmetry axis. The electrodes are kept
at constant potentials ¢ =0 and ¢ = ¢y, respectively.
The general equipotential surfaces inside the system are
obtained by inserting ¢ = C into (2.84), which yields

Z2 1’2

_ =1
Cla 2CJa

This proves that the equipotential surfaces ¢ = C are
hyperboloids around the symmetry axis r = 0 (z-axis).
Their minimum distance from the origin (r, z) = (0, 0)
is zy = 4/C/aforr =0and rg = /2C/a for z = 0. The
potential at the z-axis (r = 0) is:

(2.85)

2 )
¢pr=0,2)=az"= =2a. (2.86a)
8Z2 r=0
Inserting this into (2.84) gives
1
¢(r,z) = ¢(0, 2) — 4¢”(0, re. (2.86b)

It is therefore always possible to determine the
hyperbolic potential ¢(r, z) at an arbitrary point
(r, ¢, 7) when its value ¢(0, z) and its second de-
rivative ¢ (r = 0) = (8°¢/3z%)o at the symmetry
axis are known!

The radial components E, of the electric field can
be obtained from (2.84) as
0
E, =— 0
or
Electrons away from the symmetry axis always
experience a linear force

(2.87)

=ar.

F.=—¢E, =—a-e-r, (2.88)

which drives them back to the axis. The r-component of
their movement therefore represents a harmonic oscil-
lation. Furthermore, all electrons that start from a single
point (z = z;, r = 0) on the symmetry axis are again fo-
cused into a point (z = z,, #» = 0) on the axis, as long
as their velocity components v, are equal, even if the
other components v,, v,, differ for the different electrons
(Fig.2.62). These properties of hyperbolic potentials
are used to realize ion traps.

The general axial symmetric potential will not ne-
cessarily have hyperbolic equipotential surfaces. In
order to obtain its value ¢(r, z) at points not too far

\
N

Z4 Viz=

Fr < ¢"(2)

N
<n’?‘
\J
N

Fig. 2.62a,b. Focusing in a cylindrical symmetric electric
field. (a) Hyperbolic field. (b) Arbitrary axially symmetric
field

from the axis » = O from its values on the axis, we use
the Taylor expansion

B(r, 2) = $(0, 2) + by (2)r* +by(D)r* +. ..,
(2.89)

where only terms with even powers of » can be non-
zero because of the axial symmetry (¢p(—r) = ¢(r)).
For small deviations from the axis (b,r" < ¢(0, z)) we
can neglect all higher order terms with n > 2. Inser-
ting (2.89) into the Laplace equation (2.83), which reads
in cylindrical coordinates as

Lop  0°¢*p
ror o 972
(because d¢/dp = 0), we obtain
1 (9%
$(r.2) =90, — ( 4’) .
0,z

072

0, (2.90)

2.91)

The comparison with (2.86) shows that within this
paraxial approximation (b,(z)r* < ¢(0, 7)) the same
relation exists for an arbitrary axially symmetric
potential (2.89) as for a hyperbolic potential.

This implies the remarkable fact that for all axial
symmetric potentials ¢(r, z) the potential in an
arbitrary point not too far from the axis can be
calculated from its values ¢(r = 0) and ¢” (r = 0)
at the axis.



The electron path in such fields can now be obtained
from the general equations (2.82), which reduce here to

dr 3 d’z 3¢
m_ _=e. ;m . =e_ .
dr? or dr? 0z
With the paraxial approximation (d?¢/dr?)r? <«
(d¢/ dr)r we obtain from (2.90)

ap  10% [(op\ _ (d¢
or 2092 (82),’1 B < dz>,=0 - 29

The equations of motion are then

F d*r e (d*¢ @
s =m =— -r=—a(Q)r
dZ2 r=0 -

(2.92)

dr? 2

d?z do
F, = = .
) " dr? ¢ ( dz >r:0

Close to the axis r=0, v, < v, and therefore
v= 2+ 12~ ..

The radial component of the electron motion can
now differ from a harmonic oscillator, because the
restoring force F, = a(z)r may change with z.

(2.94)

2.6.3 Electrostatic Electron Lenses

In Fig.2.63 the path of an electron is shown schema-
tically for a “thin lens,” where the extension d of the
electric field is small compared to the focal length f. As-
sume the electric field is restricted to the space between
the planes z = z; and z = z,. In the left side field-free
region the path is then a straight line, where for pa-
raxial rays, the angle «; is small. Within the field region
71 < z < 7, the path is bent, but the distance r from the
axis does not vary much within the small interval d,
which implies that r, ~ r,, & rp,. From Fig. 2.63 we can
then derive the relations

()
dZ =71

—tana; ~ " (2.95)

: :
a z Zy: 122 Zp
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Fig. 2.63. Illustration of the lens equation for an electron lens
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In the field-free region to the right we obtain

(dr) . I'm
=—tanoy; = — .
dZ =271 b

Adding (2.96) and (2.97) yields the lens equation for
thin electron lenses

1_1+1_1 <dr) <dr)
foa b |\dze)_ \de) _ |’

(2.97)

(2.96)

which exactly corresponds to the lens equation in geo-
metrical optics when the difference in the brackets
in (2.97) is defined as the ratio ,,, / f. The focal length f
of the electron lens can be derived from (2.91) as

f= 4*/?0 : (2.98)

[ 1 (d Z)) dz
2 Ve \dz? /o,
It depends on the potential ¢(z) and its second deri-
vative on the axis r = 0 and also on the initial energy
(m/ 2)v% = e¢y of the incoming electrons.

Figure 2.64 shows two possible experimental reali-
zations of such electrostatic lenses using plane grids and
apertures. The voltage V = ¢ — ¢, is applied between
the grid and a circular aperture at a distance d from
the grid. The equipotential surfaces are axially sym-
metric around the symmetry axis r = 0 (z-axis). Since
the electric field E = — grad ¢ is perpendicular to these
surfaces, the forces (F = —eE) acting on the electrons
is always perpendicular to the equipotential surfaces. If
the circular aperture is, for instance, grounded (¢, = 0)

Fig. 2.64. Electron lens consisting of an aperture and a grid
at different potentials. A parallel beam of electrons coming
from the right are focussed into the point F while the beam
diverges if it comes from the left
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and the grid is set at a positive potential (¢; > 0), a par-
allel electron beam entering from the right side into the
system, is focused into the focal point F (Fig.2.64a).
The focal length f depends on the voltage V = ¢ — ¢,
and the kinetic energy of the incoming electrons. While
a parallel electron beam entering from the left diverges
(Fig.2.64b).

The symmetrical arrangement of three apertures in
Fig.2.65, with potentials ¢y = ¢3 =0 and ¢, # 0 re-
presents a combination of collimating and diverging
lenses. Depending on the polarity of the applied voltage
between A, and A; or A, and Aj either the collima-
ting or the diverging influence dominates. For example,
with a positive voltage applied to A, (¢, > 0) the elec-
trons entering from the left are accelerated between A
and A, but decelerated between A, and Aj3. The diver-
ging effect then dominates and the whole system acts
as diverging lens, while for ¢, < 0 a collecting lens is
realized.

Electrostatic cylindrical lenses, which only focus in
one direction, can be, for instance, realized by a cylin-
drical condenser (Fig.2.66), where the two cylindrical
surfaces are set at voltages +V/2 and —V/2, respec-
tively. Electrons passing through an entrance slit Sy
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Fig. 2.65. Einzel lens realized by a symmetric arrangement of
three apertures at different potentials

-V/2

N
SN

Entrance slit

Focal plane

Fig. 2.66. Electrical cylindrical capacitor acting as cylindrical
electron lens

and entering the field region with the energy eVj,
are imaged onto a line S; in the focal plane of the
electron lens, while the image line S, of electrons
with a different energy e(Vy+ AV) is spatially shifted
from S; to S>. The cylindrical condenser can there-
fore be used as energy analyzer for electrons with
an energy distribution N(E) (see Problem 2.15). The
analogue in optics is a cylindrical lens plus prism.
The focal length of the cylindrical condenser depends
on the angle ¢ and the voltage +V/2 at the conden-
ser surfaces has to be adapted to the kinetic energy
(m/2)v2 =¢eVy of the electrons. In the solution to
Problem 2.15 it is shown that the optimum path of
the electrons through the condensor is obtained for
V =2V, In(R,/R;), where the R; are the radii of the
condenser plates.

2.6.4 Magnetic Lenses

Electrons entering a homogeneous magnetic field under
the angle « against the field lines (Fig. 2.67a) experience
the Lorentz force F = —e(v x B), which deflects their
path. For B = {0, 0, B,} we obtain F, = 0. We separate
the velocity v = {v,, vy, v;} into a component vy = v,
parallel to the field lines and a perpendicular compo-
nent vy = (v + vf,)l/z. The parallel component vy is
always perpendicular to the force F. This means that
the amount of v, remains constant, but the direction
of v changes. For v, =0, the electron path would be
a circle with radius R, given by the balance between the
Lorentz and centrifugal forces:

2
mvy muvy

=ev;B=R= . B (2.99a)
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Fig. 2.67a,b. Homogeneous longitudinal magnetic field as an
electron lens. (a) Illustration of the helical path. (b) Definition
of the focal length

The time 7 for transversing one cycle

2R 2mm
T = = (2.99b)
v e B

is independent of v, and R!

For v, # 0 the electron path is a helix with a pitch
Az =T -v,. An electron starting from the axis r =0 at
z=0and r =0 is imaged onto a point z = v, - T onto
the axis.

Any homogeneous magnetic field (which can be,
for instance, obtained by a current / flowing through
a cylindrical coil) represents an electron lens, which
focuses all electrons starting from a point z = 0 on the
z-axis into the focal point

2
o (2.99¢)
eB

independent on their angle « against the axis, if only
their velocity component v, is the same.

For practical realizations, generally v; < vj. The-
refore, electrons accelerated by a voltage V all have
approximately the same velocity v, ~ v = +/2eU. We
can then define a focal length f of the magnetic lens
according to Fig. 2.67b given by

po ] _71\/2Vm
T4 TV e

Zf:‘UZTz

(2.100)

2.6. Electron and Ion Optics

Besides such longitudinal magnetic fields transverse
fields can also be used as magnetic lenses for imaging
of electron or ion beams. A transverse sector field with
sector angle 2¢, shown in Fig.2.68 represents a cylin-
drical lens, which focuses all electrons or ions starting
from the entrance slit Sj, into a line S, parallel to S,,
where both S; and S, are located in a plane passing
through the point M, which is the center of the circular
electron or ion path in the magnetic field. This can be
seen as follows.

We divide the sector field in Fig.2.68 into two
half parts and regard in Fig.2.69 only the right half.
Ions in a parallel ion beam entering the field from the
left, traverse the fields on circular paths with a radius
R =mv/(gB) where q is the charge of the ions (or the
electrons). The center of the circular path SA for ions
in the middle of the parallel beam with width b is de-
noted by My, the center M; for ions entering on the
path 1 is shifted upwards by b/2. The ions on the cen-
ter path SA(y have been deflected by the angle ¢ when
leaving the field, while those on path S; by (¢ +«). The

AN M /s,

Fig. 2.68. Magnetic sector field as cylindrical lens for ions or
electrons
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Fig.2.69. Focusing of a parallel incident ion beam by
a magnetic sector field
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straight paths after leaving the field are always perpen-
dicular to the radius MyAg or M| Ay, respectively. This
implies that the straight lines are inclined against each
other by an angle «. They intersect at the point F.

The distance go = Ao F is then:

AoA;
80 =
tan o
MoA; — MyA
— oAt As0 (2.101)
tan o

For the triangle AM| A M, we obtain with MyAg = R
the relation

MoA, = ST o (2.102)
sin @
This yields
mApﬁ@m—Rzkcm@+m—Q
S1in o
~ R(cosa— 1 +cotgsina) . (2.103)

For small angles o the approximation cos« ~ 1 and
sina ~ tan « holds. This gives

_ AoAy

. ~ Rcoty .
sin o

80 (2.104)

The distance g is nearly independent of the width b
of the ingoing beam as long as b < R. Then all ions
in the beam are focused into the point F, which is the
focal point. From (2.104) and the rectangular triangle
AMyApF (with the 90° angle at Ag) it follows that the
angle / MyFAq equals ¢, which implies that the line
FM, is parallel to the direction of the incoming beam.

Similar to the treatment of thick lenses in geome-
trical optics we can define a principal plane DH at
x = D where the extrapolated lines of the incoming
center ray S and the outgoing straight line AgF inter-
sect. The local length fj of the magnetic sector field is
then defined as the distance fy = HF. With the relation
HD = R and sinoe = HD/HF we obtain

R
fo=

= . . (2.105)
sin ¢

The focal length of a magnetic sector field is the
ratio of radius of curvature R and sing of the
sector angle ¢.

When we now reflect the sector in Fig.2.69 at the
plane x = 0 and add this mirror image to the sector in
Fig.2.69 we obtain the arrangement of Fig. 2.68. Ions
that start as a divergent beam from the slit S; form a par-
allel beam at the symmetry plane through M in Fig. 2.68
and are therefore, according to the foregoing discussion,
imaged onto S,. From (2.104) and the rectangular trian-
gle DHF in Fig. 2.69 it follows that <AoFM, = ¢ and
that Sy, M and S, must lie on the same straight line.

In the direction perpendicular to the drawing plane
of Fig. 2.68 (i.e., parallel to the magnetic field) no focu-
sing occurs. This means that for particle paths parallel
to the plane z = 0 (z gives the direction of the magne-
tic field) every point in the entrance slit is imaged onto
its corresponding image point in S,, quite analogous to
the situation for cylindrical lenses in optics.

For more details on electron- and ion optics see the
text books [2.31, 32].

2.6.5 Applications of Electron and Ion Optics

The applications of electron optics can be illustrated by
the example of a modern transmission electron micros-
cope, shown in Fig. 2.70. The incident parallel electron
beam is transmitted through a thin slice of the sample.
The electrons suffer elastic and inelastic collision with
the atoms and molecules of the sample. Since the energy
loss by inelastic collisions depends on the kind of atoms
it can be used to analyze the atomic composition of the
sample.

In order to measure this energy loss, the transmitted
electrons are focused by an electron lens system into
a first focal plane. The focal point serves as point like
source for the following magnetic sector field, where
the electrons are deflected to the left and reflected by
an electrostatic mirror, realized by an electro-optic sy-
stem at negative potential. The reflected electrons pass
through the magnetic field again and are deflected accor-
ding to their reversed velocity. Electrons with differing
energies are imaged at different positions x in the focal
plane. A movable aperture selects only those electrons
with the wanted energy. One may select the elastically
scattered electrons or those that suffered inelastic colli-
sions with a selectable energy loss in the sample. This
selection enhances the contrast of the final magnified
image and allows one to filter selected parts of the sam-
ple, e.g., spots containing heavy atoms that cause larger
energy losses [2.33].
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Fig. 2.70. Modern electron microscope. The lenses symbolize
electron lenses not optical lenses (with kind permission from
Zeiss, Oberkochen)

Examples of applications of ion optics are the va-
rious kinds of mass spectrometers that will be discussed
in the following section.

2.7 Atomic Masses
and Mass Spectrometers

After having discussed in the previous sections experi-
mental methods for the determination of atomic sizes
and electrical properties of atoms we will now deal with
the measurement of atomic masses [2.34, 35, 36].

2.7. Atomic Masses and Mass Spectrometers

The most simple method for measuring atomic
masses is based on the knowledge of Avogadro’s con-
stant No. When the mass M of a mole of atoms x
in a gas is measured (it has a volume of 22.4dm? at
p =1033hPaand T = 0°C), the mass m, of an atom is

ny = M/NA .
If the relative atomic mass
A=12 "™
i (2c)

in AMU is known (see Sect.2.2.1) then the absolute
mass m, is directly obtained from M = A - 103 kg as
A-1073

my = Na kg
without further measurements.

The mass m, = M/N of atoms in a regular crystal
with mass M is determined from the total number N
of atoms in the crystal that can be obtained from
the geometry of the crystal and the distances bet-
ween crystal planes measured by X-ray diffraction (see
Sect.2.4.4).

The most accurate method for the determina-
tion of atomic masses is, however, based on the
deflection of ions in electric or magnetic fields.

From the measured mass m(A™) of an atomic ion,
the mass of the neutral atom is

m(A) =m(AT) +m(e”) — Clz Eg, (2.106)
where the last term (which is generally neglected) re-
presents the mass equivalent of the binding energy Ep
of the electron in the atom A.

It is quite instructive to briefly follow the historical
development and gradual improvement of mass spectro-
meters, in order to appreciate the work of our scientific
ancestors and to understand why modern devices are
more accurate.

2.7.1 J.J. Thomson’s Parabola Spectrograph

Tons with charge g are produced in a gas discharge, are
accelerated by a voltage V and pass in the z-direction
through a homogeneous magnetic field B = {B,, 0, 0},
which is superimposed by a homogeneous electric field
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Fig. 2.71. Thomson’s parabola spectrograph

E ={E,, 0,0} (Fig.2.71). The equations of motion are
then with B, = B; Ex = E
d? d? d?
N E; y_d vB; N
d2 m d2 m dr?
(2.107a)

The time 7 can be eliminated by using the relations

dx_dxdz_dx N dx
At dzdr - dz Uz
because the velocity increase of v, in the electric field
is very small compared to the initial velocity v,. This

gives:

(2.107b)

d*x q

= E 2.107
dz2 m? ( ©)
&’y ¢

= B. 2.107d
dz2  mv ( )

Integration of (2.107c) over z for values —L/2 <z <
+L /2 within the field region yields

z

dx:[ qE dZ,_qE
dz mu?

L
T m? \ 2 te

—L)2
= E (B (2.108)
M=o \2 T '
Integration of (2.107d) gives
gB (L 2
¥(2) = +z) . (2.109)
2mv \ 2

Forz > é the two fields are zero, i.e., E=0and B =0.
The total force on the ion is then zero and its path

follows a straight line with an inclination against the
x-direction, given by

(4), e
= L.
dZ L/2 mv2

The ions therefore impinge on a photoplate at the plane
z = Zp at an x-coordinate

gEL?> ¢EL L
*(z0) = o T (907 2

(2.110)

EL
=" 2.111a)
mv
while the y-coordinate is
gBL*> ¢BL L
y(zo) = + 20—
2mv mv 2
gBL
=17, (2.111b)
mv
For a given initial velocity v = (2 V/m)'/? = v, every

ion hits a point {x(z¢), y(z0)} at the photo plate, which
depends on the ratio g/m. In the original mass spec-
trograph by Thomson, the ions were produced in a gas
discharge and had a broad velocity distribution. In or-
der to find a relation between x(z¢) and y(zo) one has
to eliminate v. Solving (2.111b) for v and inserting this
expression into (2.111a) gives the relation

xzo) =" 2.112)

2 2
=am .
quLZOy (m)y

This represents a separate parabola x = ay” for every
value of m/q (Fig.2.72a). Measuring this parabola al-
lows the determination of the factor a and therefore the



a)

ratio ¢/m. Figure 2.72b shows for illustration that such
parabolas are obtained for different isotopes of neon
ions from a gas discharge, where water vapor and ben-
zene vapor had also been added for calibration purposes
since they deliver HT ions and C* ions.

According to (2.111), the velocity spread Av
corresponds to a length As, of the parabola given by

L 2E?
ASPZ\/Ax2+Ay2= 1 210\/324- Av.
mv

U2
2.113)

This spread decreases the sensitivity of photographic
recording.

Note:

The equations (2.111a) and (2.111b) show that
the deflection x of a charged particle by an elec-
tric field is inversely proportional to its kinetic
energy, while in the magnetic field it is inversely
proportional to its momentum mv. The deflection
in electric fields is therefore a measure of the ki-
netic energy that in a magnetic field is a measure
of the momentum.

2.7.2 Velocity-Independent Focusing

In Thomson’s mass spectrograph, ions of equal masses
but different velocities were spread out along a parabola.
This diminishes the intensity of the ions impinging onto

2.7. Atomic Masses and Mass Spectrometers

Fig.2.72a,b. The ions
arrive at the photo-
plate along a para-
bolic curve, for each
mass /m; on a separate
parabola. (a) Schema-
tic drawing. (b) Real
measurement of the dif-
ferent neon isotopes in
an isotopically enriched
neon discharge with ad-
mixtures of water and
benzene CgHg (From
J. Mattauch [2.43])

a specific point (x, y) on the photoplate. One would ob-
tain a much higher signal if all ions of equal mass could
be focused onto the same spot (for instance the ent-
rance aperture of an ion detector). This can be achieved
by the mass spectrograph constructed by Francis Wil-
liam Aston (1877-1945). Here the electric and magnetic
field regions are spatially separated (Fig.2.73) and the
direction of the fields is chosen in such a way that the
deflections of the ions are in opposite directions. The in-
cident ion beam is collimated by the two slits S| and S,
parallel to the y-direction and enters the electric field
as a parallel beam in the z-direction. The deflection an-
gle o of the beam by the electric field is, according
to (2.110)
qEL,

tana =

5 (2.114a)
mv

while the deflection angle 8 caused by the magnetic

field is

qBL,
mv

For small deflection angles (tana < 1, tanf < 1)

we can approximate tano ~ «, tan f &~  and derive
from (2.114a), (2.114b) the relations:

de  2gEL, 20

tan § = (2.114b)

= =— and (2.114¢)
dv muv3 v
d BL
B__aBLo_ B (2.114d)
dv mu? v

The total lateral deflection D of the ions against the
z-axis is then approximately (see Fig. 2.73)

D~ (a+b)a—bp. (2.115)
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y

Fig. 2.73. Aston’s mass spectrograph with velocity independent focusing

For dD/dv = 0 the deflection becomes independent of
the ion velocity v. This yields
do d 2(a+b)a b
(a+b) —bﬂz—( )+'B=
dv dv v v
= pb=2(a+b)a=D=—(a+b).

0
(2.116)

This can be fullfilled, if the photoplate is arranged
in a plane that is inclined by the angle « against
the z-direction and that intersects the z-axis in the
middle of the electric field (see Fig.2.73). The slit S3
defines a range A« of deflection angles « around
a medium value oy, which defines the position of the
photoplate. This means, that not all ions with vastly dif-
fering velocities are transmitted but only those within
a selectable range Av. Velocity-independent focusing
therefore means:

All ions with velocities within the interval vy, —
Av/2 up to vy + Av/2 are imaged onto a small
spot with diameter As on the photoplate. The va-
lue of As is much smaller than in Thomson’s
parabola spectrograph, which implies that one re-
ally wins in intensity (number of ions impinging
per time onto a given spatial interval As).

2.7.3 Focusing of Ions
with Different Angles of Incidence

Up to here we have assumed that the incident ions form
a parallel beam in the z-direction. Although this can be

approximately realized by apertures the loss in intensity
quadratically increases with increasing collimation. It
is therefore highly desirable if the ions with different
directions of their initial velocities could be refocused
and therefore contribute to the signal without loss of
mass resolution.

This goal was first realized by Arthur Jeffrey Demp-
ster (1886—1950) who built a magnetic sector field with
2¢ = 180° where the ion paths are half-circles with ra-
dius R =mv/(gB). As is shown in Fig.2.74a all ions
passing through the entrance slit A within the angular
range from —o to +« against the y-axis are imaged onto
the exit plane y = 0 within a small interval Ax ~ Ra?.
This can be understood from the relations obvious from
Fig.2.74a:

AC=2R; AB=2Rcosa~2R(1—-a?/2)
= As=AC—AB~ Ra’.
EXAMPLE

R=10cm, a =3°=0.05rad = As =2.5x10"%2cm.
Placing a 0.25-mm wide slit in the exit plane allows
all incident ions with equal ratios g/m, but velocity
directions ranging from —3° to +3°, to be transmitted
through the slit.

As has been shown in Sect.2.6.4, magnetic sector
fields with arbitrary sector angles ¢, act as cylindrical
lenses with a focal length

Fe Ry _muv 1

sin(gpn/2) g Bsin(gy/2)
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Fig. 2.74a,b. Comparison of directional focusing (a) in a 180°
magnetic sector field, (b) in an electrostatic 127.3° cylindrical
field

The comparison with the cylindric electric condenser
reveals (see Problem 2.15) that both fields act the same
way if the radius of curvature Ry in the magnetic sector
field is replaced by ro~/2 for the curvature of the central
equipotential surface in the cylindrical condenser and
the sector angle ¢p, by e = ¢ /~+/2. The magnetic 180°
sector field therefore corresponds to a 127.3° electric
cylinder condenser (Fig. 2.74b).

2.7.4 Mass Spectrometer with Double Focusing

When using a combination of electric and magnetic
sector fields with proper sector angles, simultaneous ve-
locity and directional focusing can be achieved, as shown
in the example in Fig. 2.75. The incident ion beam pas-
sing the entrance slit has an angular divergence of +Ac«.
Behind the cylindrical condenser the slit S, selects ions
withintheenergy range E + A E. Since allions have been
accelerated by the same voltage V before reaching S;
they all should have the same energy. Their energy spread
comes about because their thermal velocity distribution
in the ion source has to be added to their acceleration
energy. This spreads the ions with slightly different ve-
locities over a spatial interval in the plane of slit S,. The
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Mass selection

Fig. 2.75. Example of a double-focusing mass spectrograph

slit width of S, determines the energy interval AE of
those ions entering the magnetic sector field, where the
mass separation takes place, because the magnetic field
separates ions with different momenta mv = v/2mE,
see (2.73). Both fields focus divergent ion beams if the
sector angles ¢ and ¢, have been chosen correctly as
has been shown in the previous sections. For g = 17/+/2
allions with energies within the interval E 4+ A E, which
pass through Sy, are imaged onto S,. For the magnetic
sector angle ¢, = 60° S, is then imaged with a focal
length fi, = R/ sin30° = 2R = 2mv/ (g B) onto the pho-
toplate or a slit S3 in front of the detector. The imaging
of ions with different velocities is achieved in first order
in the same way as in Aston’s spectrometer, because the
deflections in both fields are in opposite directions.

For an illustration of the achievable resolution
m/Am = 6 x10°, Fig.2.76 shows a section of a mass
spectrum of different masses around AMU = 20, mea-
sured with such a double-focusing spectrograph. Their
masses differ only by small fractions of 1 AMU, due to
different mass defects of the individual nuclei.

2.7.5 Time-of-Flight Mass Spectrometer

The basic principle of a time-of-flight (TOF) mass spec-
trometer is simple (Fig.2.77). At time ¢t =0 ions are
produced in a small volume (for example the crossing
volume of alaser beam and a molecular beam). They are
accelerated by a voltage V to a velocity v = (2¢gV/m)'/?
where m is their mass and ¢ their charge. The ions
drift through a field-free region of length L before they
are detected. Measuring the time delay between ion
production at # = 0 and mass-dependent arrival time

L L

o= J2aVim (2.117a)

ty =
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Massenzall 20

Fig.2.76. Selection of the high resolution mass spectrum of
ions within the mass range around 20 AMU, obtained from
a gas discharge of argon and neon, mixed with methane CHy,
ammonia NH3z, water vapor H,O and their isotopomers (From
Mattauch [2.37])

at the detector gives the mass m of the ion:

2qV
m=" 2 (2.117b)
EXAMPLE

L=1m, V=1kV, m =100AMU = 1.6 x 10~ kg,
g=e=16x10"""C=1, =52us.

The accuracy of mass determination depends on
how accurate the distance L, the time of flight 7,,, and

+U lonization volume -
. -
1 e !
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:¢e| ! ! etector
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>t

=
=

. > t
t, t

Fig.2.77. Principal scheme of a time-of-flight mass
spectrometer

the acceleration voltage can be measured. The mass re-
solution m / Am depends on the shortest time interval Az
that can still be resolved. From (2.117b) we obtain

Am At
=2 . (2.117¢)

m tm

Since the time resolution At cannot be better than the
initial time spread, the duration Az, of the initial ion
pulse should be as short as possible. If the ions are, for
instance, formed through photo-ionization by a short
laser pulse of Aty = 107%s, the initial pulse width is
short compared to the flight time and can therefore often
be neglected.

EXAMPLE

Aty =10"8s, 1, =50ps = Am/m =4 x 10~*.This
means that two masses m; =2500AMU and
my = 2501 AMU can be still separated.

Another problem arises because the ions are not
all produced at the same location, but within a finite
volume. The electric field used to extract the ions va-
ries over this volume and therefore the kinetic energy,
the ions acquire by the extraction voltage, varies ac-
cordingly. Therefore, the velocities of ions, produced at
different locations, differ, which smears out the arrival
times and limits the mass resolution.

In order to improve this, a modification of the ex-
traction field was introduced by McLaren et al. [2.38],
where the acceleration occurs in two steps. This can



be achieved by three plane grids kept at the poten-
tials ¢y, ¢,, and ¢3 =0 with distances d; and d,
(Fig.2.79) and homogeneous fields E; = (¢, — ¢1)/d1,
E; = (¢3 — ¢2)/d> between the grids.

Assume the x-axis to be the symmetry axis of the
spectrometer. An ion produced at the distance x| from
grid 2 has a flight time #; until it reaches the grid 2. We
obtain for ions starting at x = d; —x; with a velocity
v=20

19E 2mx
X1 = 4 1t12:>l‘1=\/ 1.
m

At grid 2 (x = d;) it has acquired the velocity

<dx qE;
v = = 1.
dr /, m

At grid 3 with potential ¢3 the velocity has increased to

(2.118a)
(2.118b)

E
v=v+ T 2, (2.118¢)
m

where t, is the flight time from G, to Gs. Integration
yields the relation between the distance d and the flight
times 1, t, and the electric fields E;, E»

t+1 t+

E
/vdt: / <v1+q zt) dt
m

f 3|

dy =

lqEz
=uvh+, " (2t +15)

1
=nq1 |:(E1 +Ez)t1tz+2E2r§] . (2.119)

The drift time across the field-free region is then
t3 = L /v, and the total time of flight

t=Hh+h+t.

Molecular
beam

Laser Reflecting
potential
lonization } 2
volume ) R H
Detector +AU

Fig.2.78. Two ions (black and blue dots) with the same
mass but different energies travel along different paths in the
reflector field and arrive at the detector at the same time
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If ¢ should be independent of the location x of ion
production, one has to demand dz/dx; = 0. Inserting #;,
ty, and t3 into (2.119) and taking the derivative dz/dx;
yields the optimum flight path length L in the field-
free region from Gj to the detector

d 1
Lopy = d1k3? (1— ) (2.120)
op dy k+/k
with
2d, E, Vs
k=1 =142 7,
* d E; * Vi

where V| = ¢ — ¢; and V, = ¢3 — ¢, are the potential
differences between the grids in Fig. 2.79. It is therefore
possible to construct the spectrometer in such a way that
the distance from ion source to detector equals the opti-
mum flight distance L, where the total flight time is the
same for all ions independent of the location where they
are produced. In Fig. 2.79b the total flight times of these
ions produced at different distances x; from grid ¢, are
illustrated. Ions with larger values of x; have larger
flight paths to the detector but also gain higher kinetic
energies because they are produced at a higher poten-
tial ¢(x). Therefore they pass the slower ions produced
at smaller x after a total flight time #, at a total distance
X(t2) = Lopt +d> + x1 from their production point. That
is where the detector has to be placed.

The advantages of time-of-flight spectrometers are
the following:

e [t is possible to measure all mass components of
a mixture of different species

e Evenatoms or molecules with very large masses (for
example biological molecules with m < 10> AMU)
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Fig. 2.79. Arrangement of grids and potentials in a McLaren
time-of-flight spectrometer with improved mass resolution
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can be detected, although they have a correspon-
dingly long flight time and the ion detector needs
a high acceleration voltage to achieve a sufficient
secondary electron emission coefficient.

® The TOF design is simple and easy to construct. It is
much cheaper than other types of mass spectrometer.

The mass resolution of TOF can be considerably in-
creased if the ions are reflected at the end of the drift
distance L by an electrostatic reflector, which consists
of grids at a positive voltage producing an electric field
that repels the ions (Fig.2.78). Ions entering the field
under an incident angle « against the field direction are
reflected into an angle 2« against their incident direc-
tion, where they reach the detector after a further drift
distance L. The faster ions penetrate deeper into the
reflecting field and therefore travel a larger distance,
just compensating for an earlier arrival time at the re-
flecting field. This device, called a “reflectron” [2.39],
achieves the same total travel time for all ions wi-
thin a velocity interval Av (see also Problem 2.16e).
Time-of-flight spectrometers are particularly useful in
combination with photo-ionisation by short-pulse la-
sers, because here start time and ionization volume are
precisely defined [2.40].

For illustration, Fig. 2.80 shows the TOF mass spec-
trum of Na, clusters [2.41]. These are loosely bound
compounds of n sodium atoms. Such clusters are of

Nag
Na;! cluster
spectrum
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+ + - L
Naj . Nat Nag Na7 Nag

PO T
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Fig. 2.80. Time-of-flight mass spectrum of sodium cluster ions
Na,

current interest, since they allow detailed studies of the
transition regime between free molecules and liquid
droplets or solid micro particles.

2.7.6 Quadrupole Mass Spectrometer

In Sect.2.6.2 it was shown that an axially symmetric
hyperbolic electrostatic field causes focusing or defo-
cusing of charged particles, depending on the polarity of
the applied dc voltage. The quadrupole mass spectrome-
ter developed in 1953 by Wolfgang Paul (1913-1994),
(Nobel Prize 1992) and H. Steinwedel [2.42] uses
a hyperbolic potential

P(x,2) = ¢02 (x¥*=2%) .,

2.121
2rg ( )

which is not axially symmetric. It is, however, invari-
ant against translation in the y-direction. It is formed
by four metal electrodes with hyperbolic inner surfaces,
where two opposite electrodes are electrically connec-
ted and are kept at the potential £¢y/2 (Fig.2.81b).
Note the difference between the potential diagram of
Fig.2.81a and that of Fig.2.61. While the latter has
axial symmetry around the z-axis and is generated by
electrodes with cylindrical symmetry, the potential in
Fig.2.81a has no axial symmetry, although the diagram
looks similar, because the rods, forming the electrodes,
extend linearly into the y-direction and Fig.2.81a just
shows the potential in an arbitrary plane y = yy.

The ions are accelerated by a voltage Uy before
they enter the mass spectrometer and fly into the y-
direction. With a time-independent constant voltage
U = ¢ between neighboring electrodes the field com-
ponent E, = —d)ox/rg causes a force Fy = +qE, that
drives the ions back to the center x = 0. The ions there-
fore perform harmonic oscillations in the xy-plane.
Because of the opposite polarity of the field compo-
nent E, = +¢oz/ rg the force component E, = gE; is
directed away from the center z = 0 and the ions are dri-
ven away from the central axis z = 0 along their flight
in y-direction. Their movement in the yz-plane is there-
fore instable and such a dc device would not be useful.
However, using a trick the ions can be stabilized in
both directions, if in addition to the dc voltage U an
ac voltage V coswt is applied to the electrodes. The
potential ¢ then becomes

@o(t) =U+V coswt . (2.122)
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Fig. 2.81a—c. Quadrupole mass spectrometer. (a) Equipotential lines. (b) Hyperbolic electrodes. (¢) The experimental

approximation of (b) uses cylindrical rods

The polarity of the electrodes changes periodically. This
means that within a half-period of the ac field the ions
are stabilized in the x-direction and destabilized in the
y-direction while in the next half period the situation is
just reversed. Before the ions during their destabiliza-
tion period can fly too far away from the axis they are
stabilized again and are brought back. It can be shown
mathematically, that on the time average this device
leads to a stabilization in both directions for ions of
a selected mass, but to a destabilization for ions of dif-
ferent masses. The mass selection is determined by the
frequency w and the ratio U/V of dc and ac amplitude.
The equations of motion for the ions are

i+ 1 WU4Vcoswnx=0, (2.123a)
mr
i— 1 (WU+Veoswnz=0. (2.123b)
mr
Introducing the dimensionless parameters
4qU 2qV 1
a= "7 b= "1 = o (2124)
mrgw mry 2

transforms these equations into the (well-known to
mathematicians) Mathieu’s differential equations

d%x
4+ (a+2bcos2t)x =0, (2.125a)
dr?
d’z
, —(a+ 2bcos21)z=0. (2.125b)
dr

The parameter a represents twice the ratio of the ion’s
potential energy ¢V in the dc field to the average kinetic

energy (m/2)v? = mrjw*/2 of its oscillation in the ac
field, while b gives the average ratio of E,o to Eyp in
the ac field.

Mathieu’s equations have stable and unstable so-
Iutions depending on the values of the parameters a
and b.

The stable solutions describe oscillations of the
ions with limited amplitude. These ions pass through
the quadruple spectrometer in the y-directions without
hitting the electrodes.

The unstable solutions describe ions with oscillation
amplitudes in the x- or z-direction, which exponentially
increase while the ion is moving into the y-directions.
The ion hits the electrodes before it can reach the
detector.

The stable regions can be represented in the a—
b-diagram of Fig.2.82. Note, that the conditions for
stability solely depend on the parameters a and b and
not on the initial conditions of the ions. Choosing the op-
timum combination of @ and b allows one to transmit the
wanted mass m and to suppress all other masses. This is
illustrated by Fig. 2.82b, where the first stability region
for both the x- and z-direction limited by a < 0.237 and
b < 0.9is plotted on an expanded scale. For given values
of U and V the different masses all lie on the straight
line a/b =2U/V = const, as can be seen from (2.124).
The position of a mass m; = 4qU/ (aréa)z) depends for
a mass spectrometer with fixed values of ry and wy on
the parameter a. Only those ions that have masses within
the stable region reach the detector. For our example in
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Fig. 2.82. (a) Different stabiltity ranges (grey) of the quadru-
pole mass filter. (b) Enlarged section of the blue stability range
in (a). The straight line with a/b = const gives the location
for the masses m;. Only masses inside the colored region are
transmitted

Fig. 2.82b these are the masses m; and m,. The closer
the straight lines approaches the peak of the stability
region, the smaller is the mass range Am transmitted
to the detector. Selecting the ratio a/b therefore allows
one to set the mass range of transmitted ions, which de-
termines the mass resolution of the spectrometer. The
mass resolution m/Am of the quadruple mass spectro-
meter can therefore be easily adjusted (within certain
limits) by choosing the appropriate ratio U/V of dc
voltage U and ac amplitude V [2.43].

2.7.7 Ion-Cyclotron-Resonance Spectrometer

This type of mass spectrometer was developed in 1965
and since then has been greatly improved. Today it re-
presents the device with the highest accuracy in absolute
mass measurements and the highest mass resolution
(m/Am > 108)).

Its basic design [2.44] is illustrated in Fig.2.83. It
consists of an axially symmetric hyperbolic electric
field (like that in Fig.2.61) with the z-axis as sym-
metry axis, superimposed by a homogeneous magnetic
field B in the z-direction. The ions, produced in an
ion source are injected into the device and then the
electric field is switched on. The electric field stabili-
zes the ion in z-direction and the magnetic field causes
them to move on circles around the magnetic field lines,
thus stabilizing them in the radial directions (x- and y-
directions). In order to avoid collisions of the ions with
the background gas atoms the vacuum has to be very
good (p < 107'¢ Pa). Without the electric field the ions
with an initial velocity v = {v,, vy, 0} would move on
circles with radius R = mv/(¢B). The angular velocity
(see Sect.2.7.4)

qB

W =
m

(2.126)

is the cyclotron frequency. It is independent of the
radius R.

The electric field is formed by hyperbolic electro-
des, consisting of two hyperbolic caps and one ring

zAB .
Signal

/)4//‘//1 =nd cap \\\\\‘i\
[/

Electric
field lines

\B‘\\\“ : End cap ’ ”/////
I

Fig. 2.83. Cyclotron-resonance mass spectrometer (penning
trap)




symmetric to the xy-plane. A positive voltage at the
caps stabilizes the ions in the z-direction. The axi-
ally symmetric electric field has the components (see
Sect.2.6.2).

Uy Uy
E.=— ).

E = + 9
! 275 Zj

(2.127)
Without a magnetic field the ions would perform har-
monic oscillations in the £z-direction, due to the linear
restoring force gE,, but they were not stabilized in the
radial direction. The superposition of the homogeneous
magnetic field B, stabilizes the ions in all directions but
their movement becomes more complicated (Fig. 2.84).
It can be composed of the cyclotron movement (circles
around an axis in the z-direction), a second component,
where the center of these circles performs oscillations in
the £z-direction (axial oscillations) and a third compo-
nent, where the center of the circles undergoes a slow
drift on a large circle around the z-axis (magnetron
movement).

The angular frequency of the periodic ion movement

2

o= ()
2 2 2

(2.128)

is determined by the cyclotron frequency . (2.93) and
the frequency we of the harmonic oscillation due to the
electric field. The periodic ion movement induces an ac
voltage U(t) at the caps, which can be used to monitor
the frequency of this movement.

Axial
oscillation

Magnetron
Cyclotron motion
circular path
.

z

Fig. 2.84. Composition of the ion-motion of magnetron mo-
tion around the field direction, axial oscillations and circular
cyclotron motion

2.7. Atomic Masses and Mass Spectrometers
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Fig. 2.85. Illustration of mass resolution of the cyclotron re-
sonance spectrometer by showing the width of the resonance
frequency w. for the Cs™ ion [2.45]

The Fourier transform

Ulw—wy) = / U(r) e @91 ¢ (2.129)
of the measured voltage exhibits sharp peaks at w = w4
and w = w_, which allows the accurate determination of
the cyclotron frequency . and therefore, using (2.126),
the ion mass as well, if the magnetic field B is known.
The magnetic field can be calibrated using '>C* ions
because their mass represents the unit of the atomic
mass scale (see Sect.2.2.1).

As an illustration of the achievable accuracy,
Fig.2.85 shows the resonance peak around the fre-
quency w,; of '3CsT ions, which has a line width
of only 0.3Hz (!) at a cyclotron frequency w. = 27 -
685,075.6 Hz. The central frequency can be determined
within £0.05 Hz, which implies, according to (2.93), an
accuracy of m/Am > 108 [2.45].

2.7.8 Isotopes

Measurements of atomic weights with chemical me-
thods (Sect.2.1) brought the result that most of the
natural chemical elements have atomic mass numbers
x AMU, where x generally is close to an integer. For
some elements, however, large deviations from an in-
teger were found. The explanation of these findings
became possible through accurate measurements of the
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atomic masses with mass spectrometers. These measu-
rements showed that most chemical elements in nature
consist of a mixture of components with slightly diffe-
rent masses, differing from each other by one or a few
atomic mass units. These components of a chemical ele-
ment have exactly the same chemical properties, their
only difference lies in their masses. They were called
isotopes.

EXAMPLES

1. The natural isotopic abundance of oxygen is 99.75%
160 with 16 AMU and 0.2% of '30 with 18 AMU.
The average mass number (weighted without iso-
tope separation) is therefore 0.9975 x 16 +0.002 x
18 =16.005 AMU.

2. Natural chlorine consists of 77.5% 3°Cl and 24.5%
3Cl, which gives an average mass number of
0.755 x 35+0.245 x 37 = 35.49 AMU.

The atomic mass number of each isotope is writ-
ten as an upper left index before the chemical symbol,
whereas the number of its electrons, which determines
its chemical properties, is written as a lower left index.
Then ?;Cl is a chlorine isotope with 17 electrons and
a mass of 37 AMU.

The real explanation for isotopes was only possi-
ble after the discovery of the neutron in 1932. It then
became clear, that the atomic nucleus (see Sect.2.8)
consists of positively charged particles, called protons,
and neutral particles, called neutrons. The total charge

N

92 94 95 96 97 98 100
Mass number —

Fig.2.86. Relative abundances of molybdenum isotopes,
measured with the double-focusing mass spectrograph of
Mattauch [2.37]

of all protons cancels that of all electrons in the atom.
Isotopes only differ in their number of neutrons.

Figure 2.86 shows the abundances of the mo-
lybdenum isotopes measured with a high-resolution
double-focusing mass spectrometer.

2.8 The Structure of Atoms

The experiments discussed so far, have given us infor-
mation on the size and masses of atoms and also on
the fact that neutral atoms carry negative and positive
charges. How these charges are distributed over the vo-
lume of an atom was only discovered in 1911 by the
scattering experiments of Rutherford and his group.
Such scattering experiments can also give informa-
tion on the interaction potential between two colliding
atoms and its dependence on the distance between the
collision partner. We will therefore discuss in this sec-
tion the scattering of particles by each other and the
atomic models resulting from such experiments.

2.8.1 Integral and Differential Cross Sections

When a parallel beam of particles A with a particle
flux density N = dN/dr pass per second and unit area
in the x-direction through a layer with thickness d,,
which contains particles B with a particle density np
(Fig.2.87a) a fraction of the incident particles A will be
scattered out of the original x-direction due to their
collisions with particles B. The deflection angle at
such a collision depends on many parameters: the di-
stance between A and B, the interaction potential, the
masses m and mp, and the relative velocity va — vg.

If the number ng dx of scattering particles B along
the path dx is sufficiently small, each particle A will
pass, during its way through dx, at most one atom B
closely enough to be scattered by a measurable angle.
This means multiple scattering can be neglected.

We define the integral scattering cross section oy
for scattering of particles A by particles B as that
area oy = 7> around B, through which A has
to pass in order to be deflected by an angle ®
larger than the minimum detectable deflection
angle O, (Fig.2.87b).
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Fig.2.87. (a) Scattering of atoms A by atoms B with number
density np in a layer with thickness dx. (b) [llustration of the
collision cross section by circles with radius r = rp +rp

Due to these deflections, the particle flux density N
decreases over the distance dx by

dN = —Nojynp dx . (2.130)

Dividing by N and integrating over dx gives the par-
ticle flux after having passed a distance x through the
scattering region

N(x) = N(0)e "Bom* (2.131)

The integral cross section is related to the mean free
path length A by (see Problem 2.17)

A= ! . (2.132)

no

A possible experimental realization for measuring in-
tegral scattering cross sections is shown in Fig.2.88a.
The incident beam of particles A is collimated by two
slits Sy, S, and passes either through a thin foil of
atoms B (in the case of fast particles A which can pene-
trate the foil) or through a gaseous sample restricted to
a volume V with thickness dx. Such a volume is reali-
zed either by a differentially pumped cell with holes for
the entrances and exit of the beam A or by a second col-
limated beam of particle B, which crosses the beam A
perpendicularly (Fig. 2.88b). In the case of a differenti-
ally pumped cell, the particles B, which effuse through
the holes of the cell have to be pumped away in order to
maintain sufficiently low pressures outside the cell so

2.8. The Structure of Atoms
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Fig. 2.88. (a) Measurement of the integral cross section o.
(b) Measurement of the differential cross section do/ds2

that collisions of atoms A only occur inside the defined
volume of the cell but not outside.

The detector is located behind a third slit S5, that
transmits only those particles A that have not been
deflected by collisions.

More information is obtained by measuring that
fraction of the incident particles A, that is scattered
into a defined solid angle d$2, and which is determined
by the differential cross section.

While for the determination of the integral cross
section, the decrease of the intensity of the
incident particles A (that is, the unscattered par-
ticles) is measured, the differential cross section
do(®)/ds2 is a measure for those particles that
have been deflected by a certain angle @ into the
solid angle ds2.

We will now derive an expression for the differential
cross section.

Assume NA incident particles pass per second
through the area A in the scattering volume V = A - Ax,
and AN (O, £2) is the rate of particles scattered by a de-
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flection angle ® and detected by the detector with an
acceptance solid angle AS2. Then

AN _mey 4o o x4 a0

NA A d@ ds
is the fraction of incident particles that is scattered
into the solid angle Af2 accepted by the detector. It
is determined by the particle density ng of scatterers B,
the length Ax which the incident beam of particles A
traverse through the scattering volume V and the diffe-
rential scattering cross section do/dS2 which depends
on the interaction potential between particles A and B.

For measuring do/ ds2 the setup of Fig. 2.88b can be
used. Two beams, collimated by the apertures S; and S,
cross each other in the scattering volume V = AAx. The
particles A scattered by an angle ® into the solid angle
of AS2 are monitored by the detector with sensitive
area Ap = R>AR in a distance R from the scattering
volume V where R > Ax.

(2.133)

The differential cross section gives information
on the interaction potential E, () between the
colliding particles A and B at a distance r.

We will now look into the relation between Ep (7)
and do/d$2 in more detail.

2.8.2 Basic Concepts of Classical Scattering

As is generally shown in classical mechanics, the mo-
vements of two particles with masses m, m,, velocities
v1, v2 and a mutual interaction potential E,o(|ry —r2])
can be represented in the center of mass coordinate
frame as the movement of a single particle with reduced
mass
nymyp
mi+mp
and relative velocity v = v; — v; in a potential Epo(7),
where r = |r{ —r;| is the distance between the two
particles. The description of the scattering of the two
particles by each other in this center of mass frame
is named “potential scattering,” because it demands,
besides the reduced mass p and the initial conditi-
ons (rg, vg) solely the knowledge of the interaction
potential Epq (7).
We will here restrict the discussion to the most sim-
ple case of spherically symmetric potentials Epo(7),

v A(+)
2
""" '. Vg Sind
¢) + Fy= 0
 Fsing
i Vo COS ¥
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A(= o) == - - K- - S il
b r
(p [
B X

Fig. 2.89. Scattering of a charged particle A in a potential
V(r) o< 1/r, where r is the distance between A and B

which is adequate for many real collision events. In
such a potential, the angular momentum L of the par-
ticle remains constant (see Problem 2.20). This implies
that the path of the particle is planar. It always stays
within the so-called “scattering plane.” Therefore, po-
lar coordinates (r, ¢) are best suited for the description
of the particles time-dependent position. The deflection
angle of our particles, measured in the center of mass
frame is named ¥, while it is described by @ in the
laboratory frame (Fig. 2.89).

The deflection of the incident particle A depends
on its impact parameter b. This is the smallest distance
of A to the target particle B, if there is no deflection,
i.e., if A passes along a straight line (Fig. 2.90a). For the
potential scattering (i.e., the description of the scattering
process in the center of mass frame) the particle B is
fixed at the origin of our coordinate frame and it also
does not suffer any recoil, that is, it can be regarded as
a point-like particle with infinite mass.

When the initial velocity of particle A is |v(—00)| =
v, energy conservation demands

1 1
w* 4 Epot(r) = 5 v = const, (2.134)

2

because Epo(r = 200) = 0. The angular momentum L,
with respect to the scattering center atr = 0 is
L=u@rxv)=u (r X |:drér+r d(pét])

dr dr
= ure (r X ét) , (2.135)

because e, is parallel to r. The unit vector ¢, points
along the tangent to the path of A. For L we obtain:

|IL| =L = ur’p = uvb, (2.136)



because L(x = —00) = -vg-r-sing = i -vg-b. The
kinetic energy in the center of mass frame is
Eyin = 1/“)2 = IM (P +r*¢?)
2 2
L + ’ (2.137)
= _ur . .
e 2ur?

The total energy E =T + E}, in the center of mass
frame can then be written as

2

2 + Epo(r) = const .

(2.138)

1.
Eotal = Eg = 2Mr2+ 2//L

Solving (2.138) and (2.136) for i and ¢ yields

12 1/2
)] (2.139a)

2
= Ey—E —
r |:M < 0 pot(r) 2,UJ’2

. L

(p - MrQ .
In a real experiment the path (r(r), ¢(¢)) of a single
particle cannot be followed. However, the measured
deflection angle ¥ allows to determine the asymptotic
values of the path for r — o0. Since for a spherically
symmetric potential this path must be mirror-symmetric
to the line OS through the point S of closest approach
in Fig.2.90b. (This means that the scattering process
is invariant against time-reversal.) We can relate the
asymptotic scattering angle ¢ to the polar angle ¢y, =

(p(rmin) by

(2.139b)

Y =7 —2@min -

This yields the relation

$min Tmin
de dt
'min — dyp = d
¢ / v / drdr
9=0 r=—00
Fmin +OO.
- / (gb/f)dr:/‘f’dr.
r
r=—00 Tmin

With (2.139a) and (2.139b) the scattering angle in the
CM-frame becomes:

+o00 5
ﬂ(Eo,L):n—Z/ (L/Cur ))drz e
Fmin I:Z (EO - EPOt(r) - zll;rz )]

(2.140)

2.8. The Structure of Atoms

Fig. 2.90. (a) Scattering of a particle A with reduced mass
w=mamp/(ma+mp) in a potential V(r) with the origin
in B. (b) Relation between scattering angle ¢ in the center of
mass system and the polar angle ¢, at the closest approach
between A and B (point S)

With the total energy Ey = ;;w% the amount of the
angular momentum

L = prvsing = ubvy = L*= /Lzbzv% = 2ub’E,
(2.141)
is uniquely defined by the initial energy E; and the
impact parameter b of the incident particle B. Inserting
these relations into (2.140) we obtain
+o00

z?(Eo,b):n—be dr e
2 I:l b Epot(’)]
min 2 Eg
(2.142)
This shows that the deflection angle ¢ is determined by
the interaction potential Epq (7), the impact parameter b
and the initial energy Ej.

The lower integration limit rn;, is fixed by
the condition 7 (ryin) =0. This gives with (2.139)
and (2.141)

b

1— Epot(rmin) 172
20)

(2.143)

Ymin =
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Note:

® For r = ry, the integrand in (2.140) becomes in-
finite. Whether the integral remains finite depends
on the exponent n in the power dependence of the
interaction potential (Epo(7")).

e For b=0is L =0= 9 =m. Particles with b =0
suffer central collisions with B. They are reflected
back into the incident direction.

® If D, is the smallest still detectable deflection
angle then all particles with ¢ < ¥, are regar-
ded as not scattered. These are all particles with
b > byax (Omin). The integral scattering cross sec-
tion is then oy = b, . This shows that with such
a definition the cross section, which should be solely
dependent on the particle characteristics, becomes
dependent on the design of the apparatus. This con-
tradiction is removed by the quantum-mechanical
treatment of collisions.

e For monotonic potentials Ep(r) (for example pure
repulsive potentials Epq o r~1) there is, for a given
energy Ey, a well-defined unique deflection angle &
for each value b of the impact parameter (Fig. 2.91a).
This is no longer true for non-monotonic potentials
(Fig. 2.91b), where, for example, two different im-

L a
Epot (= T Epot(r)
Ll §
>r
9, (a) 9, (b)
T T
T
E b17br/ i
al2E, b

Fig. 2.91a,b. Qualitative relation interaction potential and de-
flection function ¥(b). (a) Monotonic potential. (b) Potential
with a minimum

pact parameters b; and b, may lead to the same
deflection angle . Plotting the curves ¥(b) at a gi-
ven initial energy Ey yields deflection curves such as
those shown in Fig. 2.91. Their form depends on Ej
and Epu (7).

We should keep in mind that the only quantity ob-
tained from a scattering experiment is the differential
or integral scattering cross section. The impact parame-
ter b itself cannot be directly measured! The measured
scattering cross section yields, however, the wanted in-
formation on the deflection curve ©(b) from which the
interaction potential can be derived. This can be seen as
follows.

Let us assume a parallel beam of incident partic-
les A with particle flux density Ny = nav, that passes
through a layer of particles B in rest with density ng.
All particles A passing through an annular ring with ra-
dius b and width db around an atom B are deflected by
the angle ¥ + d#/2, assuming a spherically symmetric
interaction potential (Fig.2.92). Through this annular
ring dNy = Na dA = nava2mb db particles A pass per
second. One particle B therefore scatters the fraction

dNy (9 + 1 do)

Na
of all particles A, incident per second and unit area onto
the target, into the range of deflection angles ¥ + dv/2.
The detector with area Ap = R? d2 = R?sin® do d¢

db
=2nbdb=2mb 49 (2.144)

Detector area dA aQ
dAp = R%.dQ
=R%sin®-dd-do /7
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Fig. 2.92. Relation between impact parameter b, scattering
angle ¥ and differential cross section do/ds2



in a distance R from the scattering center B, receives
the fraction
ANA(9. ¢) dp _ db

b dv d¢,
NA 2 do d)

which passes through the segment b db d¢ of the
annular ring in Fig. 2.92.

The fraction of all incident particles A, scattered by
all atoms B with density ng in the volume V = AAx is
then:

dNA(d$2 db
AldD) npAAxh 49 dg.

(2.145)

2.146
A ( )

The comparison with (2.133) gives, with df2 =
sin ¢+ dv* d¢, the differential scattering cross section

d db 1
T _p (2.147)
ds2 d?d sin ¥
We can therefore also write (2.146) as
dN,(ds$2 d
AdD) i Y ae. (2.148)
Na ds2

The integral scattering cross section is obtained by
integration over df2, where the integration limits are
(b =0) = and ¥ (bmax) = Pmin:

Ymin 27
d d
oim=/ d; a0 = / / d;sinl‘}dﬁdqb,
2 V=m ¢=0

(2.149a)

where Y, is the smallest detectable deflection angle.
The integration over ¢ gives 2m. With (2.147) we get:

Pmin
b |db| .
Oint = 270 . sin ¥ d¢
sin?d | dv
v=m
bmax
=2n / bdb=nb2,, . (2.149b)
b=0
EXAMPLE

Collisions of hard spheres A and B with equal
diameters D. The potential energy in this case is:

oo for r<D
Eyo(r) = - .
poc(r) {O for r>D}

2.8. The Structure of Atoms

A

b

y

r=D D
Fig.2.93a—c. Collision of hard spheres with diame-
ter D. (a) Scattering angle for impact parameters b < D.
(b) Potential V(r). (¢) Deflection function ¥(b)

From Fig.2.93a it is seen that at the closest approach
sin ¢, = b/ D, which implies that a collision can only
take place for b < D. For the scattering angle ¥ we find
V/2=m/2—¢n.

The impact parameters for b < D are therefore

b = Dsin ¢y = Dcos(9/2) .
Then the derivative db/d®¥ becomes
db D
aol= 2 sin /2

and the differential scattering cross section is:

do. b db _ Dcos(¥/2)Dsin(¥/2) D’

dQ ~ sin® d 2 sin 4
com=[ 97 =4z —p?
Oint = 4o =4 4 =nD".
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The deflection function ©*(b) for hard
(Fig.2.93¢) is

Y =m —2¢y =m —2arcsin (b/2D) .

spheres

2.8.3 Determination of the Charge Distribution
within the Atom from Scattering
Experiments

In order to find the charge distribution in atoms the
best choice is to use charged incident particles A with
charge g, as probes. The charge g, = pe dV of atoms B
inside the volume element dV contributes a force

N (2.150)
The total force that is responsible for the deflection of
the charged particles A is obtained by integration of all
volume elements of atom B.

At the beginning of the 20th century charged pro-
jectiles were available in the form of « particles from
the radioactive decay of some radioactive substances
with charge ¢; = +2e, mass m = my. =4 AMU and
kinetic energies Eyj, = 1—9 MeV. Also, electrons with
lower energies Eyi, < 10keV could be produced from
cathode rays in gas discharges.

When the heavy « particles pass through an atom,
the light electrons of this atom, because of their small
mass, contribute little to the deflection of the « partic-
les which is mainly caused by the positive charges with
larger masses. The measured angular distribution N(29)
of the scattered « particles therefore mainly gives in-
formation about the spatial distribution of the positive
charges while the presence of the atomic electrons only
gives a small correction.

2.8.4 Thomson’s Atomic Model

The results of his experiments and those of others
brought Thomson to the conclusion that each neutral
atom consists of Z electrons with the total charge
q~ = —Ze and constituents with a total positive charge
g+ = +Ze. Since the atom is neutral, Thomson propo-
sed for the spatial distribution of the charges his “raisin
cake model,” where all charges were equally distribu-
ted over the volume of the atom with radius R because
this would result in a distribution of minimum energy,
if only electric forces were present (Fig. 2.94).

Fig.2.94. Thomson’s “raisin
cake” model for the distribu-
tion of positive and negative
charges in the atom

i 2R /i

How can this model be tested experimentally?

The electric field of a homogeneously charged
sphere with radius R and charge Ze at a distance r < R
from the center is given as

Z
- ¢ _ ze . (2.151)
4regr?  4megR3
because the charge inside the radius r is Q =Z-e-
r3/R3. If we first neglect the negative charges, an
electron would experience the force
F =—¢E = —kr

with k= (2.152a)

Z
dregR3
Any radial displacement of an electron from its equili-
brium position would then lead to a harmonic oscillation
(since the restoring force is linearly dependent on the
displacement) with a frequency

w=+/k/m .

If we now consider the other Z — 1 electrons, we as-
sume, according to the raisin cake model, a uniform
density

(2.152b)

z

(2.152¢)
4
JTR3

ne =
of the electrons that equals the density of the positive
charges. This cloud of electrons can oscillate against the
cloud of positive charges with the so-called “plasma-
frequency,” which can be derived as

nee? 3Ze?
C()p = = 3
oMo 4megme R

which differs from the simple model of a single elec-
tron (2.152b) only by a factor of /3. When illuminating

(2.152d)



these atoms with light the atoms would preferentially
absorb at their resonance frequency w, and its higher
harmonics w, = nw.

Atoms excited by light or electron impact should
emit light preferentially at these frequencies.

However, the observed frequencies of light absor-
bed or emitted by atoms do not at all agree with those
estimated by Thomson’s model.

The strongest argument against the raisin cake
model is supported by scattering experiments, first per-
formed by Sir E. Rutherford and his coworkers, using o
particles emitted by radioactive atoms. These experi-
ments give a different angular distribution of scattered
charged particles than expected from Thomson’s model.
This will now be outlined in more detail.

In Fig. 2.95 we consider the deflection of an « par-
ticle with charge ¢ = 4+2¢ and mass m, ~ 7350 m. by
a spherical homogeneous distribution of the positive
charge Q = +Ze. Because of their small mass m. the
electrons of the atom do not significantly contribute to
the deflection of heavy « particles. They are neverthe-
less important because they bring about that the total
atom is neutral for distances b > R. A charged particle
passing the atom with radius R at an impact parameter
b > R is therefore not deflected by much. In order to
measure the charge distribution inside the atom we the-
refore need to include only impact parameters b < R.
The following estimation gives an upper limit for the
maximum possible deflection angle ¥,,x for a homoge-
neous distribution of the positive charges. The existence

Ay

Fig.2.95. Scattering of a particle with charge ¢ by
a homogeneous spherical charge distribution with total
charge O
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of the negatively charged light electrons will decrease
this angle only slightly.

A projectile particle with momentum muvy in the
x-direction is deflected by the angle ¥ while passing
through the atom. The deviation is due to the repulsive
fore component

Fy=F(r)cos 8, (2.153a)
which acts at any point of the path within the atom and
causes a change

Apy, = / F, dt (2.153b)
of the momentum (Fig. 2.95). The force F = g E at a di-
stance r from the center is determined by the electric
field E (2.151). We will later see that the deflection
is very small. We can therefore neglect the curvature
of the path and approximate the path by a slightly in-
clined straight line with a length d = 2+/R2 — b2 and
cos B ~ b/r. With this approximation, we obtain during
the time-of-flight

2
T="VR -1
Vo
the momentum change

2Ze’b _ AZkb

Apy, = ~ Rz —1?
Py 47'[8()R3 Vo \/
62
with k= . (2.154)
47T8()R3

Since Ap, < p, we may regard p, ~ p = const. This
yields
Apy ~ Ap, _
Px p muj

VR2 2. (2.155)

The deflection angle ¥ depends on the impact parame-
ter b. Its maximum value is obtained when the derivative
d¥/db is zero. With tan © ~ 1 we obtain

do  4Zk b?
= 2[\/R2—b2— }:o,
db muvg JRZ —_p2
which yields
2ZkR?
b(Ima) =R/V2 and V=, . (2.156)
mvo
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We can define with (2.155) an average deflection angle
averaged over all impact parameters b < R. This gives

R R
27th 8Zk
z?:/z? ™ b = /\/Rz—bzbzdb
TR2 mv%R2
b=0 b=0
i ZkR? i Ze?

(2.157)

T 2m} 4™ 8egRmv}
The average deflection angle ¥ equals approximately
the ratio of potential energy Epop = 27Ze% /(4megR) at the
distance R from the center and kinetic energy (m/2) v(z).

For typical radii R ~ 0.2 nm of gold atoms the mean
deflection angle ¥ for « particles with Eyj, & 5 MeV,
scattered by gold atoms (Z = 79) should be according to
Thomson’s model (2.157) with mv(z) =10MeV =1.9 x
1072 Nm

=9 =7.6x10"rad£4.6x1073°=0.27".
(2.158)

This is an extremely small deflection angle, which is
not easy to measure. However, until now we have only
considered the deflection of « particles by a single atom.

In the experiment performed by Rutherford and his
coworkers Geiger and Marsden, the « particles pass
through a thin gold foil and are therefore scattered by
many gold atoms. For an atomic diameter of 0.4 nm and
a 20-pm thick foil, the « particles have to pass through
5 x10* atomic layers. The impact parameters b;, rela-
ted to the centers of the different atoms are more or
less statistically distributed (see Fig.2.96a). Therefore,
the average deflection angles ¢ caused by the different
atoms, will also be statistically distributed. The stati-
stical average (1) of the total deflection angle after n

o-particle

Gold foil
a) b)

Fig.2.96. (a) Multiple scattering of an « particle by gold
atoms in a foil according to Thomson’s model. (b) Expected
angular distribution of the scattered particles

scattering events is (see books on probability theory)
(0)=+/n-v.

The situation is completely analogous to the random
walk problem (see Feynman, vol. I) where a drunken
sailor throws a coin and goes for every step forward
one step to the left or to the right according to whe-
ther the coin shows its foreside or its backside. The
probability P that the sailor deviates after n steps by
a distance Ay from the straight line y = 0 is given by
the Gaussian distribution

P(y) = Ce*(yz/'lﬂyz) .
By a similar consideration, one obtains

N(@) = Noe > /@0 (2.159)

for the distribution N(¥) of particles deflected by an
angle 9 after the foil.

EXAMPLE

For n=5x10% 9 =7.6x10"rad= (¥)=1.7x
102 rad =~ 1°. The Gaussian distribution with a maxi-
mum at ¥ =0 has a full halfwidth of (A¥);,, =3.4 x
10~ 2 rad = 2°.

This is in sharp contrast to the experimental results
discussed in the next section.

2.8.5 The Rutherford Atomic Model

In order to test Thomson’s model, Geiger and Marsden
performed extensive scattering measurements [2.46]
with the experimental setup illustrated in Fig. 2.97.

The « particles were emitted by radon gas in the
tube T, and were collimated by the narrow channel D.
The nearly parallel beam of o particles then passes
through a thin gold foil F and the scattered « particles
produced faint light flashes on a phosphorous screen S,
which were observed through a microscope. The detec-
tor (screen and microscope) could be turned against the
direction of the incident beam. This allowed the detec-
tion of « particles scattered by an arbitrary angle ¥ into
a deflection range ¥ = 1/2 A9, where Av is the angular
resolution of the detector.

The experiments clearly showed that even partic-
les with large deflection angles up to @ = 150° (limited
by the experimental set-up) could also be observed,
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Fig.2.97. Experimental setup for Rutherford’s scattering
experiment

in sharp contrast to Thomson’s atomic model. Ruther-
ford, who was very much surprised by these unexpected
results said, “This is as improbable as a bullet being
reflected back when shooting it into a cotton-wool
ball.” [2.46].

After many discussions, long thoughts and the ex-
amination of several models proposed in the literature,
Rutherford recognized that the positive charge must be
contained in a very small volume around the center
of the atom. This volume, which should carry nearly
the total mass of the atom, although it covers only
a tiny fraction of the atomic value, was given the name
“atomic nucleus” by Rutherford.

According to this model the « particles are deflected
only by the nucleus because the masses of the elec-
trons are small compared with that of the « particles
(me/my =~ 1.4 % 107%).

Based on these considerations Rutherford derived
his famous scattering formula, which shows excellent
agreement with experimental findings.

2.8.6 Rutherford’s Scattering Formula

When the « particles, according to Rutherford’s model,
are essentially deflected solely by the atomic nucleus,

2.8. The Structure of Atoms

which may be regarded as a point-like particle, the
theoretical treatment of the scattering is reduced in the
center-of-mass frame to the scattering of a particle with
reduced mass u = mgmy/(mqy +my) =~ m, in a Cou-
lomb potential (see Sect. 2.8.1). Following the argument
in Sect.2.8.1, we obtain for the angular momentum

L = |L| from (2.136)
L = pur*¢ = puob (2.160)

and for the component F, of the Coulomb-force,
responsible for the deflection of the « particles,

dvy asing

F, = =
PR G r2
with a= 92 . 4=2. 0=ze. @16
4dme
This gives
dv, _ asing _ asing do . (2.1622)
dr ur? L dt
The « particle comes from the point A (r = —00) in

Fig.2.98 and finally reaches, after the scattering event,
the point B (r = +00). The angle ¢ changes during this
scattering for a particle with scattering angle ¥ from
¢ =010 ¢ = pmax = 7 — V. Integration of (2.162a) gives

v sin T—19

dvy, = “ / sing do .
T uveb
0

The solution of the integrals on both sides of (2.162b)
is

(2.162b)

vsin® = © (14cosd). (2.162¢)
Uvob

Because (1 + cos )/ sin ¢ = cotan (¢/2), the relation
between the deflection angle ¥ and impact parameter b

Th A+
N
Fan T Vo lvg sin ©
v 1FFV.= A °
rene Vg cos ¥
v l
A (—c0) oL X gaa -------ooo-eesesee
(p -
B X

Fig. 2.98. Scattering in a Coulomb potential
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of a particle in a potential with potential energy Epo =
a/r becomes

Qb

cotan (9/2) = (2.163a)

The ratio a/b represents the potential energy at the
distance r = b. Inserting this into (2.163a) gives:

2Eki“(r = —OO) o 47‘[8()

cotan (9/2) = EnGr=b — q0
pot\/" =

pudh .
(2.163b)

The scattering angle ¢ in the CM-system is for
a Coulomb potential determined by the ratio

v/ (a/b) = 2Eyin(r = —00)/ Epot(b)

of twice the initial kinetic energy to the potential
energy at the distance r = b.

EXAMPLE

b=2x10""2m (= 1/100 atomic diameter), ,uv% =
10MeV =1.6x10""2J;4g=3.2x10"""C,Q =1.26 x
1077C, ©=392AMU = ¢ =1.3°. For b=2x
10~ m (1/1000 atomic diameter) = © = 13.2°, and
forb=2x10""%m= ¢ =51°.

This example illustrates that for ¢ > 1° the scatte-
ring cross section o = 7b> = 10~* 7R} becomes very
small compared to the atomic cross section 7R . This
illustrates that in spite of the large number of gold atoms
in the foil each « particle is scattered by ¢+ > 1° once at
most when passing through the foil.

In order to obtain the differential scattering cross
section, we have to calculate that fraction of all incident
«a particles which is scattered into the angular range o +
;Azﬁ‘ and can reach the detector with area (Fig. 2.99)

AAp = (Rsin®)RAVAY = R*AS2 . (2.164)

In (2.147) the differential cross section was derived as
d db 1
C_p (2.1652)
ds2 d? sin
From (2.163a) we obtain
d 1 ¢qQ 1

— _ ) (2.165b)
d9 2 4meopvg sin?(9/2)

Gold foil

\

Fig.2.99. Definition of solid angle A2 and detector area
AAp = R2A02 = R%sin9AvAg

Inserting this into (2.165a) and using the relation
sin ¥ = 2 sin(¥}/2) cos(¥/2) and (2.163b) for the im-
pact parameter b we finally get the differential cross
section

d 1 S |
7 = @0 ) (2.166)
d 4 \4dmeopvg) sin*(9/2)

for the scattering of particles with initial kinetic energy
Eyin = éuv% and charge ¢ in a Coulomb potential
produced by a point-like charge Q. This yields the
fraction

AN _ ngoldAV qQ 2
NA 4R2A SJTE()Ekin

AAp

sin(9/2) (2.167)

of incident particles NA in a parallel beam with
cross section A, that are scattered by nAV gold
atoms within the volume AV = A - Ax into the so-
lid angle A2 around ¢ and reach the detector with
area AAp = A.Q/R2 at a distance R > R from the
scattering center.

Note:

NA is the total number of particles that passes per
second through the sample area A.
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Fig. 2.100. Comparison of experimental results (points) with
the predictions by Thomson (dashed curve) and Rutherford
(solid curve)
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The measured angular distribution (Table 2.5 and
Fig. 2.100) agrees very well with (2.167). Note, that the
product AN -sin* ©9/2 in Table 2.5 is fairly constant for
¥ > 45°. The slightly larger values for small angles @
are due to the fact, that here A9 is no longer very small
compared to ©. Here sin*(%/2) - A? has to be replaced
by

D+AD/2

3 1
sin* /2 do = g AP+ o cos 299 sin AY
9—AD/2

—cos ¥ sin(A%/2) .

The experiments showed that for large angles ¥ > ¥,
which correspond to small impact parameters de-
viations from the expected values were observed
(Fig.2.101). Rutherford had already recognized that
these deviations are due to the finite size Ry of the
nucleus. If the impact parameter b becomes smaller
than Ry, the « particle penetrates into the nucleus. For
b < Ry the deflection should be described by (2.157).
However, for b < Ry a new short range force, called
the nuclear force, becomes important and the Coulomb

2.8. The Structure of Atoms

Table 2.5. Measured counting rates for different scattering
angles ¥ [2.47]

15° 132,000 38.3
30° 7800 35.0
37.5° 3300 353
45° 1435 30.8
60° 477 29.8
75° 211 29.1
105° 70 27.7
120° 52 29.1
135° 43 31.2
150° 33 28.7

E, =5MeV

10 MeV
30 MeV
50 MeV
a)
1000
)
©

Ekin =10MeV

-

00

Coulomb-
scattering

(relative units)
=

Differential cross section for 3

Experimental ~ ©
results °
e : : .
10 15 20 25 30 35 40 45 50 100 O/°

b) E,/MeV c)

Fig. 2.101. (a) Paths of particles with different initial ener-
gies, all scattered by ¥ = 60°. (b) Deviation from Coulomb
potential for paths with Eyj, > 25MeV (.e., b < b.) for
¥ = 60°. (¢) Deviation at fixed initial energy Exi, = 10 MeV
for scattering angle ¥ > 100°

law (2.150) is no longer valid. The attractive nuclear
force is much stronger than the repulsive Coulomb force
and changes the deflection of the « particles.
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Thus the impact parameter at which the measured

distribution deviates from the predicted one gives a mea-
sure for the size of the atomic nucleus. One obtains
values of

RN ~ roAl/z s

where A is the atomic mass in AMU and rp = 1.3 x
10~ m.

S UMMAIRY

The initially diffuse and sometimes incorrect pic-
ture of atoms has been concretized by more
and more refined experiments during the past
200 years. This has lead to a quantitative ato-
mic model that describes most observations
correctly.

In a first crude model atoms are described by sphe-
rical charge and mass distributions with mean
radii of 0.05—0.5nm, which can be determined
by scattering experiments or by X-ray diffraction
in crystals.

1 mol is that quantity of matter that contains as
many atoms or molecules as 0.012kg '>C, or that
contains as many grams as the mass number of
its atoms or molecules (in atomic units AMU)
indicates.

The Avogadro constant Ny = 6.022 x10%* /mol
gives the number of atoms or molecules in 1 mol
of the substance.

Each neutral atom consists of Z electrons
with mass m. = (1/1836) AMU and charge
—e=—1.6x10""C and a much more massive
nucleus with mass A (in AMU) and charge + Ze.
Free electrons can be produced by thermal
emission from metal surfaces, by field emis-
sions from sharp metal peaks in high electric
fields, by electron impact on atoms or mole-
cules and by photoionization, following light
absorption by atoms or molecules, and finally
by the photoeffect, where light incident on
metal surfaces can result in the emission of
electrons.

Neutral atoms can be ionized through electron
impact, photon absorption, by collisions with fast
ions or by charge exchange in collisions with other

The volume of the nucleus therefore only accounts
for the fraction (Ryx/Ra)> &~ 10713-10715 of the
atomic volume Vjy!

While the atomic volume of the gold atom is
about Vo =10 m? that of its nucleus is only
N A 10742 m3,

atoms. Atoms that have lost n electrons are called
n-fold ionized.

Negative ions can be formed by recombination
of free electrons with neutral atoms. They have
a surplus of electrons and can be readily ionized
to become neutral atoms again.

Charged particles can be deflected in electric or
magnetic fields. Specially formed fields can act as
electron- or ion-optics. The total length of elec-
trostatic or magnetic lenses can be continuously
varied with the field strength.

The ratio g/m of charge ¢ to mass m of electrons
and ions can be measured with instruments based
on the deflection of charged particles in electric
or magnetic fields. The mass can be determined
separately only if the charge ¢ is known. Mass
spectrometers are devices that separate ions of
different masses and can measure the absolute va-
lues of masses after calibration with carbon atoms
representing the mass unit.

In time-of-flight spectrometers the mass depen-
dent flight time through a field-free region of ions
accelerated by a known voltage U is used for mass
determination.

The elementary charge unit g = e can be measured
with Millikan’s oil droplet experiment

Scattering of « particles (He*™) by gold atoms,
or more recent modern variants of Rutherford’s
initial experiments, using high energy electrons
or protons, support the Rutherford atomic model,
which proposes the following structure of atoms:
By far, the major part of the atomic mass is united
in a very small volume, called the atomic nucleus
with a typical radius of (1—5) x 10~'3 m, which
is about five orders of magnitude smaller than



the atomic radius Ra =~ 10~ m. The volume of
the nucleus is therefore only about 10713 —1071
of the atomic volume. The rest of the volume
contains the Z electrons, but is nearly completely
empty of mass although filled with the electric
field of the charges.

Summary

The positive charge +Ze of the atomic nucleus is
compensated by the negative charges — Ze of the
Z electrons to form a neutral atom. Experiments
show that possible differences Ag between the
absolute values of positive and negative charges
are smaller than Ag/q < 10721,
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PR OBULEMS

1.

In 1 m? of air there are 2.6 x 10> molecules under
normal conditions (p = 101,325 Pa = 1 atm and
T =273.2K =0°C). How large is

a) the mean distance between two molecules?

b) the spatial filling factor n = Vjy01/1 m?, when
the molecules are described by spheres with radius
R =0.1nm?

c¢) the mean free path length A?

The main constituents of air are: 78% N», 21% O,
and 1% Ar. Using these numbers calculate the
mass density o of air under normal conditions.
How many atoms are in

a) 1gof 12C?

b) 1 cm?® of helium at a pressure p = 10° Pa and
T =273K?

¢) 1kg of nitrogen gas (N;)?

d) In a steel bottle with 10 dm? volume of H, gas
at p = 10°Pa?

In interstellar space the mean density of H atoms
is about 1 atom/cm® and the mean temperature
is about 10 K. What is the pressure under these
conditions? Why can such low pressures not be
obtained on earth under laboratory conditions?
Imagine that an international commission has de-
fined a new temperature scale, where the absolute
zero is defined as 0° N and the freezing point of
water as 100° N. What is the value of the boiling
point of water on this new scale? What would be
the value of the Boltzmann constant k in J/° N?
Prove the relation vy = vp, = (KRT/ M)'/2 bet-
ween sound velocity vy molar mass M and
temperature 7 given in Sect.2.2.3b? How large
are the frequencies of radial acoustic resonances
in a spherical resonator with radius r(?

In his experiments about the number density dis-
tribution of latex particles in water, Perrin found
49 - Ah particles per cm? in aslice Ah ata height i
and 14 particles at 2 4- 60 wm. The mass density of
the particles was pp = 1.194kg/dm? and their ra-
dius r = 2.12 x 107 m. What was the mass of the
particles, the Avogadro constant and their mole
mass?

a) What is the incidence angle o for X-rays
with A =0.5nm falling onto a grating with
1200 grooves per mm when the first diffraction
maximum should be observed under the angle

10.
11.

B1 =87°. Where does the the second diffrac-
tion order appear? How large must o be to give
pi1— B2 =0.75°?

b) X-rays with A =0.2nm are diffracted at the
(100) plane (parallel to two of the endfaces of
the cube) of a cubic NaCl crystal. The first dif-
fraction order appears at 8 =21°. What is the
lattice constant of the NaCl crystal? How large
is the Avogadro constant calculated from this
experimental result when the mass density is
pnact = 2.1kg/dm??

¢) What are the radius and the volume of Ar
atoms in a cold Ar crystal (face centered cu-
bic lattice = highest density package of spheres),
when the specular reflection maximum is at
U =43° for an X-ray beam with wavelength
A = 0.45 nm, incident on the crystal under an an-
gle ¥ against the plane (100) parallel to one side
of the cubic crystal?

The general equation for a real gas can be writ-
ten either in the form of the Van der Waals
equation (2.51b) or as a Taylor series in powers
(1/VMm)" of the inverse mole volume Vy:

PV = RT(1+ B(T) )V +C(D) VG +...) .

Compare the virial coefficients B(7), C(1), ...
with the constants a and b in the van der Waals
equation and discuss their physical meaning.
Derive the equation (2.52).

How accurate can the ratio e/m for electrons be
determined under the following conditions?

a) In a longitudinal magnetic field, when the
electrons pass through apertures with 1 mm dia-
meter located before their entrance into the field
and in the focal plane. The current reaching the
detector can be measured with a relative ac-
curacy of 1073, the magnetic field B and the
acceleration voltage U with 10~* and the di-
stance L = 100 mm between entrance and exit
aperture with 2 x1073?

b) With a Wien filter, where entrance and
exit slits with width » =0.1 mm are separa-
ted by d =10cm and the acceleration voltage
is U =1kV. The accuracies for all necessary
measurements are the same as above.



12.

13.

14.

15.

16.

A beam of Cs-atoms with velocity v =300m/s
is emitted into vacuum through an orifice with
diameter dy = 40 wm. The beam is collimated by
a slit S; with width ; =40 pm, placed 200 cm
downstreams of the orifice.

a) Calculate the vertical deviation of the beam
from a horizontal line at a distance d, = 200 cm
away from S;, caused by gravity. b) What is the
deflection of the atoms with assumed charge Aq
after passing an electric field E =5 x10°V/m
with length L =200cm, placed between S;
and S;? c) How large is the relative change
AN/N of particles passing through the second
slit S, 200cm away from S;, when the electric
field is switched from +E to —E? d) Esti-
mate the accuracy limit for the determination of
Ag = let|—|e|, when a change AN = 10~* N
with N = 10° s~! can still be monitored?

Ar" ions with a kinetic energy of 10°eV pass
through a magnetic 60° sector field. What is the
magnitude of the magnetic field for achieving
a focal length of f =80cm?

The electric potential along the axis of an electron
lens with cylindrical symmetry shall be described
by

¢=¢o+az2 for
¢p=¢9 for z<0
¢=¢o+azy for z>z

0<z<z

How large is the focal length of this lens
for electrons entering the field with a velocity
vy = (2edy/m)!/? for a potential ¢y = 10*V/m
and a = 10° V/m3?

a) Derive the relation U =2VjIn(R,/R;) bet-
ween the voltage U between the two cylindrical
plates of a condensor and the optimum accelera-
tion voltage Vj for electrons passing through the
condensor on the central curved path?

b) For which angle ¢ in Fig.2.66 acts the con-
densor as cylindrical lens? What is its focal
length?

Within a thin layer of thickness » = 2 mm between
two grids, separated by d = 30 mm with a voltage
of 300 V between the grids, ions with mass m are

17.

18.

19.

20.

Problems

produced and sent through a time-of-flight mass
spectrometer.

a) What is the time of flight and its spread in
a 1-m long field-free drift tube? Is it possible
to separate two masses with m; = 110 AMU and
my = 100 AMU?

b) Show that the reflectron has a larger mass reso-
lution than the linear time-of-flight spectrometer.
What is the reason for this? Which parameters in-
fluence the mass resolution?

¢) Compare the mass resolution of a time of flight
spectrometer with that of a magnetic 180° mass
spectrometer, where ions within the velocity in-
terval vy = Av/2 enter the field as a parallel beam
through an aperture that is Imm in width. The
exit slit is also Imm wide. What is the beam
divergence at the exit plane?

Prove, that the angular momentum of incident
particles, defined with respect to the centre point
is conserved during a collision, if the interaction
potential is spherical symmetric.

o particles with Eyj, =5MeV are scattered
by gold atoms in a thin foil (d =5x10"%m,
p=19.3g/cm’, M =197 g/mole).

a) What is the impact parameter b for particles
with a scattering angle ¢ = 90°?

b) What is the value for r;, for backward scatte-
ring ¢ = 180°?

¢) What fraction of all incident particles is scatte-
red into angles ¥ > 90°?

d) What fraction is scattered into the range
45° <9 <90°7

Compare the relative numbers of particles scat-
tered into the range ¥ = (1£0.5)°and 9 = (5 £
0.5)° for both the Thomson and the Rutherford
model for the gold foil of Problem 2.18 when the
angular resolution is 1°.

Protons are shot into a copper foil withd = 12 pm.
a) What is the proton energy if the central col-
lisions ryj, become equal to the nuclear radius
rN =5 x 1075 m of the copper atoms?

b) For rmy, < r, deviations from the Rutherford
scattering formula are expected. For which scatte-
ring angles ¥ does this happen at a proton energy
of 9.5MeV?
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3. Development of Quantum Physics

At the beginning of the 20th century several experi-
mental findings could not be explained by the existing
theories of the time, which we will name “classical
physics”. These experiments indicated that the concep-
tion of classical physics had to be modified. Examples
are the measured spectral distribution of radiation from
black bodies, which was in disagreement with theoreti-
cal predictions, the photo effect, the explanation of the
Compton effect and a satisfactory answer to the que-
stion of why atoms in their lowest energetic state are
stable.

It turned out that the particle model of classical
mechanics had to be reviewed. This model attributed
to each particle a well-defined path in space that could
be predicted for all times provided the initial conditions
(location and velocity at time ¢ = 0) and the force field
acting on the particle, were known.

Also the classical description of electromagnetic
fields and waves by the Maxwellian equations seemed to
need a critical revision when applied to the microscale
of atoms and molecules.

This chapter will present the most important ex-
perimental proofs for the necessary modification and
extension of classical physics, which have led to the
development of quantum physics. The basic ideas of
quantum physics will be presented here, while a brief
description of the mathematical framework of quantum
theory along with some examples are given in the next
chapter.

3.1 Experimental Hints
to the Particle Character
of Electromagnetic Radiation

During the 18th century a long-lasting quarrel was
fought among scientists about the correct description

of light. Newton and his school postulated that light
should consist of small particles [3.1]. Their model
could explain the straight paths of light rays and also
the refraction of light at the boundary between two
media with different refractive indices. Huygens and
other scientists, on the other side, believed that light was
a wave phenomenon. Their experiments on diffraction
and interference seemed to prove their theory [3.2].

The wave model was generally accepted when Hein-
rich Hertz discovered the electromagnetic waves and
when it was recognized that visible light was just a spe-
cial case of electromagnetic waves restricted to the
wavelength region between A = 0.4 pm—0.7 pum, which
could be described by the Maxwellian equations like all
electromagnetic waves.

The following sections shall illustrate that both mo-
dels, the particle model and the wave description of
light, were partly correct but that both models must be
combined for a complete characterization of light. The
important point, shown by the quantum physical model
is that particle and wave descriptions do not contra-
dict but rather supplement each other. Depending on
which property of light is described, the wave model or
the particle model is a more proper description. Let us
first summarize the classical model of electromagnetic
waves.

In classical physics a plane electromagnetic wave

E=Acos(k-r —wr)

is described by its amplitude A = |A|ép, its frequency w,
and its wave vector k, which points into the propagation
direction and has the amount |k| = 27/, determined by
the wavelength A = ¢/v = 2rr¢/w. In case of a polarized
wave the direction of the electric field vector is given
by the polarization unit vector é,. The energy density
of this electromagnetic wave in a vacuum

1
Wem = 0| E|> = 580 (E*+c*B%) [I/m’] (3.1
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is determined by its electric field amplitude £ = | E| and
can be also described by the magnetic field amplitude B.

The intensity (the incident power per unit area) of
an electromagnetic wave is

I = ceoE? = cWem (3.2a)

and the power, transmitted through the area A with the
normal unit vector ¢,

=1A ¢, (3.2b)

is determined by the relative orientation of wave vectork
and normal vector e, of the area A.

Note that in this classical description both power
density and intensity depend on the square of the electric
field amplitude E. They are continuous functions of £
and of the space coordinates inside the radiation field.

The classical electromagnetic wave also has
a momentum density (momentum per unit volume),

(3.2¢)

1
Tem =60(ExB)= S
c

described by the pointing vector S = goc’(E x B),
where the amount of §

IS| = egcE> =1 (3.2d)

equals the intensity of the wave.
An important quantity is the spectral intensity 1,
[Wm~2s] with

oo

I:/Iv(v)dv,

v=0

(3.2e)

where 1, (v)dv gives the incident power density within
the spectral interval dv.

All these results can be derived from Maxwell’s
equations and the continuity equation, which describes
all phenomena observed until the end of the 19th century
very well.

The first hints that corrections were necessary came
from experiments measuring the spectral distribution of
the radiation emitted by a hot blackbody, which will be
discussed in the following section.

3.1.1 Blackbody Radiation

Material that absorbs all incident radiation (its ab-
sorption is A* = 1) is called a blackbody. It can be

A <A

Fig. 3.1. A closed cavity absorbs nearly all radiation entering
the cavity through a small hole

approximately realized by a closed cavity with absor-
bing walls and a small hole in one of the walls (Fig. 3.1).
If the area AA of this hole is very small compared to
the area A of the inner walls, radiation passing from
outside through the hole into the cavity has a negligible
chance to leave the cavity again, i.e., it is completely
absorbed. This means that the absorption of the hole is
A* 1.

When the walls of the cavity are heated to a tem-
perature 7> T, where T is the temperature of the
surrounding, the hole acts as radiation source with an
intensity that is larger than that of any other body at the
same temperature. This can be demonstrated by a sim-
ple experiment. Into one side of a solid graphite cube
the letter H is mill-cut (Fig.3.2). At low temperatures
the letter appears much darker than its surroundings, but
at higher temperatures (about 1000 K) it appears bright
yellow on a dark red surrounding. This means that at

TK zTS

Fig. 3.2. The letter H mill-cut into a graphite cube appears
completely black at temperature 7x < Ty = temperature of the
surrounding, but appears bright for Ty > T

Tg > Tg
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low temperatures it absorbs nearly all incident radia-
tion while at higher temperatures it emits more than the
surface of the cube at the same temperature.

Inside the closed cavity of Fig. 3.1 a stationary radia-
tion field exists that depends solely on the temperature
of the cavity walls and not on the dimensions d of the
cavity as long as d >> A, where X is the wavelength of
the enclosed radiation. The application of basic laws of
thermodynamics lead to the following considerations.

e For a stationary state of the cavity radiation the ra-
diation power emitted by the walls must equal that
absorbed by them for all frequencies v of the radia-
tion (otherwise the radiation field would change in
time). This means

dw,(v)  dW.(v)
d At
For such a stationary state we define the tempera-
ture T of the radiation field by the temperature of the
cavity walls. The radiation field has the following
characteristics.

® The cavity radiation field is isotropic, which means
that the spectral radiation density S} (this is the
radiation power per frequency interval dv = 1s~!
radiated into the solid angle df2 = 1 Sterad) is inde-
pendent of the direction at every point of the cavity.
If this wasn’t the case, one could insert a black disc
with surface area dA into the radiation field and ori-
ent it in such a way that its surface normal would
point into the direction of maximum radiation den-
sity (Fig.3.3). The disc would then absorb more
energy than it emits and would be heated above the

(3.3)

isotropic

radiation
\\(/ field

dQ

Fig. 3.3. A body in the cavity is at thermal equilibrium with
the thermal isotropic radiation inside the cavity

temperature 7' of its surrounding. This, however,
contradicts the second law of thermodynamics.

® The cavity radiation is homogeneous, i.e., its energy
density is independent of a special point inside the
cavity. Otherwise a similar argument would hold as
in the previous paragraph and a perpetual motion
machine of the second kind could be constructed.

When a body is placed inside the cavity radiation field,
its surface element absorbs the power

dW,(v)
dr

from the radiation with spectral radiation power den-
sity S within the frequency interval dv incident on dA
within the solid angle d£2. The constant A7 is the spec-
tral absorbance of the body. The surface element dA
emits, on the other hand, the power

dWe(v)
dr

into the solid angle d$2 within the frequency interval dv.

For thermal equilibrium conditions both quantities
must be equal. Since the cavity radiation is isotropic
and homogeneous, this must be valid for every direction
(0, ) and for every location inside the cavity. Therefore
we obtain Kirchhoff’s law:

= A*S* dA dQ dv (3.4a)

=E*dAdQ2 dv (3.4b)

E;

s =S (3.5)

For all bodies in thermal equilibrium with the ca-
vity radiation the ratio of spectral emittance E*v
and absorbance A} equals the spectral radiation
density S} of the cavity radiation, which itself
depends on the temperature 7.

For a black body is A} = 1 for all frequencies v. We
therefore conclude from (3.5):

The spectral emittance E}; of a blackbody equals
the spectral radiation density S of the cavity
radiation.

Our next task is now to determine the spectral de-
pendence of S;, which equals the spectral intensity
distribution E7(v) of the blackbody radiation.
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3.1.2 Planck’s Radiation Law

Let us assume a radiation field inside a cubic box with
side lengths L that is in thermal equilibrium with the
walls of the cavity at temperature 7. The field can be de-
scribed as the superposition of waves with wave vectors
k={kc, ky, k;}. A stationary field distribution, which
means a standing wave field, can be only realized if cer-
tain boundary conditions are fulfilled. These conditions
demand that the field amplitude be zero at the walls of
the box (Fig. 3.4a,b). This restricts the possible values
of the components of the k-vector to

T

T T
kx: ni, ky: ny, kz: Ll’l3

L L

i
=>k=|k|=L\/n%+n§+n§, (3.6)

where the n; are arbitrary integers. For the wavelengths
A =2m/k and the angular frequency w = kc we then
obtain

2L
A= , (3.7a)
\/n%+n§+n§
w:ck:yzc\/n%—i—n%—}—n%. (3.7b)

Every stationary field distribution with a specified triple
(n1, ny, n3) is called a mode of the cavity radiation field.

The question now is how many modes with frequen-
cies w < wp, can exist, where wy, is anumber determined
by the specific problem.

In a coordinate system in k-vector space with
coordinates (w/L)(ny, ny, n3) each triple of integers
(n1, ny, n3) represents a point in a three-dimensional
lattice with the lattice constant 7/ L. In this system (3.7)
describes all possible lattice points within the positive
octand of a sphere with radius w/c (see Fig.3.4c). If
this radius is large compared to the lattice constant 77/ L,
(which means L > A;,) the number N = (L /71)3 -V of
lattice points (n1, ny, n3) with w < wp, is approximately
given by the volume

Ve 14 . (a)m )3

83 c
of the octant of the sphere in Fig. 3.4c. This also gives
the number of modes of a stationary radiation field.

Each mode can be composed of two standing waves
with independent polarization directions of the electric
field vector

e, erlk.

For the total number of possible standing waves with
frequencies w < wy, inside a cubic cavity with length L
including the polarization we then obtain

147 (Low\® 1L}
83 S 33
The mode density (i.e., the number of modes within the
unit volume)

E=aei+ae,, e-e=dn,

Nw < wy) =2 (3.8)

c

3

X a) b)

Fig.3.4a-c. Modes of a stationary EM field in a cavity.
(a) Standing waves in a cubic cavity (b) Superposition of
possible k vectors to form standing waves, illustrated in

1 Wi
n(w < wy) = 13 Nw < wy) = 3 723 (3.9a)
k, :f'”s
A
ky=T-ny
y
R=2L/A
ky =0y

<)

a two-dimensional coordinate system (c) Illustration of the
calculation of the maximum number of modes in momentum
space
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10° 1
10°

104 A e o oo

10%

102 T--------

10" 10" 10" v/s™
Fig.3.5. Spectral mode density n(v) as a function of
frequency v, represented on a double-logarithmic scale

10!

becomes independent of the size of the cavity as long
as L > A.

The spectral mode density (i.e., the number density
of modes within the spectral interval dw = 1s~! can be
obtained by differentiating (3.8)). This gives

d wp= &
Ny = n = .
dw @ w23

Spectroscopists prefer the frequency v instead of the an-
gular frequency @ = 2mv. This converts (3.9b) because
dw =27 dv into

(3.9b)

]Tl)2

n,(v) = 8 (3.10a)

A3
InFig. 3.5 this quantity is plotted against the frequency v
on a double logarithmic scale.

The number of modes per unit volume within the
frequency interval between v and v+ dv is

8?2

n,(v) = dv.

X (3.10b)
o

EXAMPLE

In the visible range (v = 6 x10'* s~'=1 = 500 nm), we
obtain from (3.10): n(v) =3 x10° m—3 Hz~!. Within
the frequency interval dv = 10°s~! (this corresponds

to the frequency width of a Doppler broadened spectral
line (see Sect. 7.3)), there are 3 x 10'* modes/m?>.

The spectral energy density w,(v) of the cavity
radiation field is then

w,(v)ydv =n()w,(T)dv, (3.11)

where w,(7) is the average energy per mode, which
depends on the temperature 7.

For the determination of w, (7) Rayleigh and Jeans
used a classical model. They assumed that each mode
of the field could be treated like a harmonic oscil-
lator with the mean energy w,(7) = kT (remember
the proof in thermodynamics that the mean energy
of a system with f degrees of freedom is jz(kT). The
one-dimensional harmonic oscillator has potential and
kinetic energies with equal mean values. Therefore its
total mean energy is 2ékT. This yields for the spectral
energy density of the cavity field

8?2
w,(v) =dv= kT dv

3 (3.12)

(the Rayleigh—Jeans radiation law).

Through a small hole in a cavity wall the radiation
density S*(v)dv = (¢/4m)w, dvds2 is emitted into the
solid angle df2. Using (3.11) this gives

" _ 212
S (v)dv = 5 kT dv.
c

(3.13)
The experimental check shows, that for small fre-
quencies (in the infrared spectral region) (3.13) agrees
quite well with the experimental results. However, for
larger frequencies (in the ultraviolet region) drastic dis-
crepancies were found. While the Rayleigh—Jeans law
predicts

lim S}(v) - o0
V—>00

the experiments proved that with increasing v the ra-
diation density S} (v) increases at first, passes through
amaximum and then decreases again. This discrepancy,
which could not be explained at that time, was called
the ultraviolet catastrophe.

What is wrong with the Rayleigh—Jeans model?

This question was finally answered by Max Planck,
who in 1904 developed a new theory he called quan-
tum hypothesis [3.3,4]. It is based on the following
assumptions.
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Planck also described the cavity modes of the ra-
diation field as oscillators. However, he postulated,
that these oscillators could not increase or decrease
their energies w, by arbitrary small amounts (as this
would be for w, = kT), but only in integer multiples of
a minimum energy quantum iv. The constant

h = 6.6260755 x1073* Js

is named Planck’s constant.

This energy quantum /v with the minimum possible
energy w, > 0 is called a photon. The energy stored in
a mode containing »n photons is then

w, =nhv.

At thermal equilibrium the energy distribution w, (7)
of a system is governed by the Boltzmann factor
exp[—w/kT]. Therefore the probability p(w,) that
a mode contains n photons, i.e., has the energy
w, = nhv, is given by
e—nhv/(kT)
p(wy) = ZOOO e—nhv/(T) ’

n=|

(3.14a)

where the denominator represents the partition function
which normalizes the probablity p(w,) in such a way
that

i p(nhv) =1
n=0

as can be immediately seen from (3.14a). This means,
that the total probability, that a mode contains an energy
between 0 and oo must, of course, be 100%.

The mean energy per mode is then (see Problem 3.2)

o0
i, = Y nhvp(nhv)

n=0
h —nhv/kT h
_Xxn Ve - (3.14b)
Z e nhv/kT ehv/kT -1

The spectral energy density w,(v) of the blackbody
radiation is then

w,(v, ) =n(v)w, (v, T) . (3.14¢)

Inserting (3.10b) and (3.14b) yields the famous Planck’s
radiation law

8hv3 dv

3 ehv/kT _q 3.15)

w,(v)dv =

for the spectral energy density w, [Jm™s], i.e., the
energy per unit volume and unit frequency interval dv =
Is7!.

The spectral radiation energy, emitted within the
frequency interval dv by a surface element dA of
a blackbody into the solid angle ds2 is then

S'dvd2 dA=  w,dvde
4

2hv? dv d2
T 2 eh/kT-1 da, (3.16)
which is in complete agreement with experimental
results!

For hv <« kT the denominator in (3.16) can be ap-
proximated by hv/kT because e* ~ 1+ x for x < 1.
Then we obtain

212 82
¢

Sl =", KT = wl) =" kT (3.17)

This is identical to the Rayleigh—Jeans formula (3.13),
which turns out to be the asymptotic case of the gene-

10%.S" /(W-m2nm~'sr™)

12,000 K

500 1,000 1,500 A/nm

Fig. 3.6. Spectral distribution of the radiation density S*(X)
of a blackbody within the spectral interval AX = 1nm. The
ordinate for the curve for 300 K is increased 100-fold
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A SO /(W-m2nmTsr)

Planck

Fig.3.7. Comparison between Planck’s spectral
distribution and the Rayleigh—Jeans spectral dis-
tribution of the blackbody radiation at two different
temperatures

ral Planck distribution for the long wavelength region
(hv/kT < 1).

Using the relation A =c¢/v, Planck’s law (3.15)
can also be written in terms of the wavelength A.
Note that di/dv = —¢/v? = di = —(c/v?)dv. Defi-
ning w; (A)dA as the spectral energy per wavelength
interval dA gives

8mhc da

wdh="

(3.18)
From dw;/dA =0 one obtains (see Problem 3.3) for
the wavelength A, at which w; (A) has its maximum

_ 2.88 x1073 [m]

Am
TIK]

= AmT =2.88 x107 [mK] = const . (3.18a)

To illustrate, Fig.3.6 shows the wavelength-
dependent distribution of the spectral radiation density
of a blackbody at four different temperatures and
Fig.3.7 demonstrates the difference between the
Rayleigh—Jeans and Planck distribution.

EXAMPLE

The sun can be regarded, to a good approximation, as
a blackbody with a surface temperature of 5800 K. Its
spectral radiation density emitted at A = 500nm (v =
6 x10'* s~1) into the solid angle d$2 = 1 Sterad within
a wavelength interval dA = 1 nm (Av = 1.2 x10'2s™1)
is, according to (3.16),

w

S*Av=4.5x10* :
m?2 Sterad

Integration over all wavelengths gives the total radiation
density

§* =1 x10" W/(m? Sterad) .
Integration over the suns surface yields the total power
Py =47RZ10' W =3.82 x10° W

radiated by the sun into all directions.
The earth, seen from the center of the sun, at
a distance r = 1.5 x10'! m covers a solid angle

R%/4

= =2.5x1077 Sterad .
(1.5 x1011)2

AS2

It therefore receives from the sun the total radiation
power

dW/dt = Po AR2/4m =7.6 x108 W .

About 37% of this irradiation falls into the visible range
between v; =4 x10"¥Hz (A =750nm) and v, =7 x
10 Hz (A =430 nm).

The intensity I = Pg/A received per m? of the earth
surface at vertical incidence is the solar constant

SC=1.36x10°W/m?.

About 37%=500 W/m? are in the visible range.

Less than half of this radiation power heats the sur-
face of the earth. Part of it is reflected by the atmosphere
and the earth’s surface and part of it is absorbed in the
atmosphere.
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3.1.3 Wien’s Law

The maximum of the intensity distribution S} (v) (3.16)
is obtained by setting the derivative d.S}/dv = 0. This
is more tedious than looking for d(In S}) dv = 0, which,
of course, gives the same frequency vy, for the intensity
maximum.

The result is (see Problem 3.3)

2.82 Vm 10 —1 1r—1
Vi = P kT=>T=5.87><10 sT K.

(3.19)

The frequency vy, of the maximum intensity therefore
increases linearly with the temperature 7', which means
that the ratio v, /T is a constant.

Note:

Am does not equal vy, /c, because w; (1) is defined for
a spectral interval dA = 1 nm, while w,(v) is defined
for dv = 1s~!. Because of the nonlinear relation di =
—(c/v*)dv the variation of w; (1) with decreasing A
differs from that of w, (v) with increasing v.

The product A, T =2.88 x107>mK is a constant
(see Fig. 3.8). Wien’s law can therefore be written as

AmT =const or vy,/T =const, (3.20)

where the two constants are different.

The experimental results are in perfect agreement
with Wien’s law, which is derived from Planck’s
radiation law.

S Amax =0545um  Apay =27 um
1\ T=5,000K !
! /) 1oy, 500 S*(\)
: S '\ T=1,000K
1 2 3 4 5 A/um

Fig. 3.8. Illustration of Wien’s law. The ordinate of the 1000 K
distribution has been expanded by a factor 500

3.1.4 Stefan-Boltzmann’s Radiation Law

The total energy density of the blackbody radiation,
integrated over all frequencies v is

vidv

T 87h
W= | w,(v, Ddv= & ehv/kT—1 *
v=0
(3.21)

We use the abbreviation x = hv/kT and expand

1 e~

o0
ex—lzl—e—x:Ze_m'

Inserting this expansion into (3.21) yields, with

kT
v=(kT/h)x = dv = I dx,

8h (KT\* S [ 5 .
wh =" (h) Z/xe dr.  (3.22a)
0

n=I

The integration of each member of the sum gives the
final result for the energy density
4kt

with a=

=aT* .
wl=a 1513¢3

(3.22b)
The radiation power S* emitted from a surface element
A = 1m? into the solid angle df2 =1 Sterad is, with
S* = (c/4m)W,

474
Tkt

S5(T) =
D 15h3¢2

(3.23a)

Into the solid angle d§2 = 2x the radiation power of
1 m? surface of a blackbody is then

dw
4= 27S*(T) = oT* (3.23b)
b ¢ 275 k*
1 = =
WL =50 = 532

=567x10¥Wm2K™.

The constant o is named the Stefan—Boltzmann
constant.
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Planck’s law, Wien’s law and the Stefan—
Boltzmann law are all in complete agreement
with experimental findings. This strongly cor-
roborates Planck’s hypothesis of the quantized
radiation field, which postulates that the energy
density w, (v, 7) is not a continuous function of T
but a discontinuous step function with smallest
steps /- v. In most cases these steps are so small
that they are not directly noticed. We will, howe-
ver, soon discuss experiments where they can be
directly detected.

3.1.5 Photoelectric Effect

When a negatively charged isolated metal plate is irra-
diated by ultraviolet light (Fig. 3.9) the electric charge
on the plate decreases, as was found in 1887 by Heinrich
Hertz (1857-1894) and later in 1895 through more de-
tailed experiments by Wilhelm Hallwachs (1859-1922).
This means that electrons must have left the plate.
This light-induced electron emission can be quan-
titatively measured with the device shown in Fig. 3.10.
The irradiated plate within an evacuated glass bulb ser-
ves as cathode, which is opposed by a similar plate
with positive voltage that forms the anode of an elec-
tric diode. The photocurrent I,,(U) is measured as
a function of the voltage U between cathode and an-
ode. The measurements show that I, (U) starts already
at slightly negative voltages U, (i.e., the anode has
anegative voltage U against the cathode), rises with in-
creasing voltage until it reaches a saturation value that
depends on the radiative power incident on the cathode

Electro-
meter

Fig.3.9. Experimental ar-
rangement of Hallwachs for
the demonstration of the
photoelectric effect

Isolator

Fig.3.10. (a) Phototube
for measuring the photo-
induced electric current
Iph as a function of the ap-
plied voltage; (b) Photo-
current Ipn (U)

_Uo

o
c

(Fig.3.10b). When electrons can reach the anode with
anegative bias voltage —U > —U), they must have been
emitted from the cathode with a kinetic energy

Mme
v? >elU.
2

In 1902 Lennard obtained the following results after
careful measurements:

Eyin =

e The kinetic energy (m/2)v? of the photoelectrons is
dependent solely on the wavelength A of the incident
light, not on its intensity!

e The number of ejected photoelectrons is proportio-
nal to the light intensity.

e There is no measurable time delay between
irradiation and electron ejection.

Einstein was able to explain Lennard’s experimental
results in 1905 using the model of light quanta (pho-
tons). Each absorbed photon transfers its energy hv
completely to an electron inside the metal, which is
bound to the metal by attractive forces and needs a mi-
nimum energy W, (work-function) to leave the metal.
The maximum kinetic energy of the photo electron is
then

EgZ*=hv—W,. (3.24)
In the experiment this maximum kinetic energy
Eg™ = el (3.25)
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1 —eUO = Ekin

Fig. 3.11. Plot of the maximum bias voltage Uy as a function
of the frequency v of the incident light

can be determined from the bias voltage —Uj at which
the photocurrent starts. The relation (3.24) can then be
written as

eUy=hv—W,. (3.26)
Plotting eUj against the photon energy hv = hc/X, gi-
ves the straight line shown in Fig.3.11. From its slope
tan o = eUy/(hv), Planck’s constant /& can be determi-
ned. The intersection with the vertical axis hv yields the
work function W, of the cathode material.

In the classical model of an electromagnetic wave
the radiation power P, = I A incident onto the area A
of the metal should be equally shared by all NAV elec-
trons with a number density N within the irradiated
volume V = AAz (Az =~ A is the penetration depth of
the light wave with wavelength A into the metal).

Each electron would then receive, on average, the
energy

_ P At

w= . (3.27)

NAL
Since w has to be larger than the workfunction W,, we
conclude from (3.27) that the irradiation time must be
at least At > W,NAML/PL.

EXAMPLE

A zinc plate (electron density N = 10> /cm?, work-
function W, &~ 4¢eV) is irradiated at a distance of 1 m
from the light source (Hg arc lamp) that emits (through
a spectral fitter) 1 W radiation power at A = 250 nm.
The power incident onto 1 cm? of the zinc plate is then

the intensity
I. = 41”\:2 =8x107°W/cm? .

This power is shared by NAV = A-10% =2.5 x10"
electrons. The average radiation power received by
one electron is Poj =3 x1072* W =2 x 107> &V /s. This
means it would take At = W,/Pg =2 x 10° s before
an electron had accumulated sufficient energy to es-
cape from the metal. This strongly contradicts the
experimental results.

Einstein’s model could explain the experimental re-
sults completely. In 1926 he received the Nobel Prize
in Physics for his photoeffect theory (not for his theory
of relativity!).

There are numerous descriptions of detailed experi-
ments in the literature that unambiguously corroborate
Einstein’s theory of the photo effect [3.5]. One example
is the experiment performed by Joffe and Dobronrawov
in 1925 [3.6]. They measured the changes AQ of the
charge Q of a small bismuth particle balanced between
the plates of a capacitor (Fig.3.12) during illumina-
tion of the particle with low intensity X-rays. Every
change AQ, due to the loss of an electron results in
a perturbation of the balance between gravitational and
electric force and leads to a movement of the particle,
which is observed through a microscope.

The X-ray source emitted N = 10> X-ray quanta
with hv = 10* eV per second into all directions, which
corresponds to a radiation power of 10712 W. On the
average a charge change AQ of the particle was ob-
served every 30 min. The quantum hypothesis explains
this experimental finding as follows.

The number of X-ray photons hv, hitting the
bismuth particle within the time interval Af is

X—ray
source

aperture

Fig.3.12. Experiment of Joffé and Dobronrawov for
confirming the photon model of Planck
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Z = NAtAS2/4m, where AS2 is the solid angle ac-
cepted by the particle. With A2 = 6 x107% Sterad and
At = 1800s the estimated number becomes Z =1 in
accordance with the experiment.

The classical model describes X-rays as a spherical
wave, propagating from a point-like source in all di-
rections. Like in the quantum model, the fraction dP
of the radiation power P absorbed by the particle
is dP = Pd$2/4m. However, the absorbed power dP
should be shared by all N & 10'? electrons of the bis-
muth particle. In order to emit an electron after 30 min,
all electrons must simultaneously transfer their energy
share to the same electron, which is highly improbable.
This example shows that the deficiency of the wave mo-
del stems from the fact that it does not concentrate the
wave energy onto a single electron but spreads it out to
a larger volume determined by the irradiated area.

Note:

However, the discrepancy between the wave model of
light and the experimental results can be removed if not
only the radiation but also the electrons are described
as waves (see Sect. 3.2).

3.1.6 Compton Effect

The particle character of light quanta became particu-
larly clear by the results of an experiment performed in
1922 by Arthur Holly Compton (1892—-1962). When
irradiating material by X-rays with wavelength Ao,
Compton found that the scattered radiation did not only
contain the wavelengths Ao expected for elastic scatte-
ring, but also larger wavelength A > ¢ (Fig. 3.13). The
intensity distribution I(Xs) of this scattered radiation is
strongly dependent on the scattering angle ¢, but only
slightly on the kind of material used.

The quantum model describes the Compton effect as
an elastic collision between a photon with energy /#v and
momentum p = hk and a loosely bound electron of the
scattering material (Fig.3.13b). If the binding energy
Ey, < hv is small compared to the photon energy hv we
can neglect it and regard the electron as a free particle.
In order to simplify the following calculation we further
assume that the electron is at rest before the collision,
although this assumptions is not essential for the result.

For the elastic collision
hvo+e~ (Exin=0) — hvg+e” (El’(in > O) (3.28)

total energy and total momentum have to be conserved.
Since the photon travels with the velocity of light and
the ejected electron might also have a large velocity,
we must use the relativistic description. We choose our
coordinate system in such a way that the incident pho-
ton travels into the x direction, and the xy-plane is the
scattering plane. The energy conservation then reads
with 8 =v/c as:
hvo = hvs+ Exin(e™)

2
0C >

with Egn= ¢ —mgc (3.29)
Vi-p
and momentum conservation demands
. nmov
po = hko = hks+p.  with  p. = \/1 ﬂz .
(3.30)
Solving (3.30) for p, yields for |p|?:
2.2 2
h
"oV (vé—i—vsz—Zvovs cos (p) , (3.31)

1-p2~ 2
where ¢ is the angle between ky and k¢ and the relation
|p| = hk = h /A = hv/c has been used. Squaring (3.29)
yields

2 4
2 mge

o = 5
which gives with ¢? = v?/B2, after rearranging the
terms,

miv?  h? 5
|_pr = 2 =W 2o —v)mo. (332)
A comparison between (3.31) and (3.32) yields
h
Vo — Vs = UO;S(I—cosw).
c

Inserting A =c/v and (1 —cosg) = 2sin’(¢/2) we
obtain Compton’s scattering formula

As = Ao +2Acsin®(@/2) , (3.33)
where the constant
he = =2.4262 %107 m (3.34a)

moc
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Fig.3.13a-d. The Compton effect. (a) Experimental setup
(b) Schematic diagram (¢) Momentum diagram (d) Wave-

is the Compton wavelength of the electron, which re-
presents the wavelength change AA = A — A of the X-
rays for a scattering angle ¢ = 90°. Multiplying (3.34a)
by c yields

)\,C h Vo
= . 3.34b
)\.() I’I’loC2 ( )

* Primary line

9=0°

45°

o

Intensity

90°

135°

. \
\
0.750

0.700
A/107%m >

length distribution I5(A) of scattered radiation intensity for
different scattering angles ¢

This shows that the ratio of Compton wavelength A. and
incident wavelength Ao equals the ratio of incident pho-
ton energy /vy to the rest energy moc? of the electron.

The experimental results are in excellent agreement
with this theoretical result and again corroborate the
particle model of electromagnetic radiation.

From measurements of Ag, As and ¢ the Compton
wavelength A. and Planck’s constant 4 can be de-
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termined, since the electron mass mg is known (see
Sect. 2.6).

3.1.7 Properties of Photons

The experiments described in the previous sections have
demonstrated the particle character of electromagnetic
radiation. Each electromagnetic field with frequency v
consists of energy quanta hv, called photons. A field
with energy density we, contains

Wem
= 3.35
= (3.35)
photons per m3. In an electromagnetic wave with field
amplitude E and intensity [ = ceoE?
N 1
=_ =nc
hv
photons pass per second through an illuminated unit
area AA = 1 m?, perpendicular to the wave vector k.
The Compton effect shows that the momentum

(3.36)

2
p="hk with |p|=h : = hv/c (3.37)
can be attributed to a photon Av. The total momentum
per unit volume inside an electromagnetic wave with
energy density wep, is then

Tem = nhk and |em| =nhv/c = wen/c.

(3.38)

When a photon is absorbed by an atom (see Sect. 7.3) the
angular momentum of the atom changes by 17 = h /2.
Since the total angular momentum of the system “atom
plus photon” must be conserved, the photon has to carry
the angular momentum 1A, which is also called the

K K
- . -~ s=+hk s=-hk
s =+hk s =-hk

Naaa
o

a) o' light b)

.Y

o light c)

Fig. 3.14. Photon model of polarized radiation. (a) o+ = left
circular (b) o~ = right circular (c) w = linear polarization

spin of the photon

k

. (3.38b)

Sphoton = £h
and is independent of its energy hv. If left circularly-
polarized light (ot -polarization) propagating in the z
direction is absorbed by atoms, the z component of
their angular momentum J; is changed by AJ, = +h,
if o~ -light (right circular polarization) is absorbed J,
changes by AJ, = —h. We therefore must conclude that
o™ light consists of photons with spins sp, = +7ik/|k|
pointing into the propagation direction, while o~ light
represents photons with sy, = —hk/|k]|.

Note:

In older literature o™ light is called left circularly-
polarized, because the polarization vector rotates
counterclockwise for an observer looking against the
direction of light propagation. Similary o~ light was
named “right circular polarized”.

Since linearly polarized light (;r-polarization) can
be regarded as a superposition of o™ + 0~ components,
it should consist of equal numbers of photons with
Sph = +hk/|k| and s, = —hk/|k|. Indeed, the absorp-
tion of w-polarized light does not change the angular
momentum component J, of the atoms.

According to the relation E = mc? between mass m
and total energy E of a particle we can formally attribute
the mass

(3.39)

to a photon with energy 4 v. From the relativistic energy
relation

E = \/pzcz +mjct

between energy E and momentum p of a particle with
rest mass my it follows for the photon with £ = hv and
p = E/c that its rest mass my must be zero. This result
can be also obtained from the relativistic relation

B \/l —v%/c?

Since vppoton = ¢, We obtain for a finite mass m the result
nmop = 0.

m = mo=my1—v2/c2.
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Note:

Photons at rest do not exist! It is therefore some-
how artificial to speak of the photon rest mass. It
is more logical to use the relation m = h - v/c? for
the definition of the photon mass.

3.1.8 Photons in Gravitational Fields

When we attribute the mass m = hv/c* to a photon,
it must experience a gravitational force. If a photon is
send from a point r; with gravitation potential ¢g(r;)
to a point r, with ¢g(r,) the potential energy changes
by

h
AEp =mAgs =", @6(r) —¢6(r) . (340)

Because of energy conservation the photon energy hv
must change by this amount. The frequency v; of
a photon is therefore changing to

A A A
U2=U1<1_ ¢G)$ v _ (e}

c? v c?

(3.41a)

when it travels from the point r; to the point r; in
a gravitational field.

EXAMPLES

1. A light source at the earth’s surface at Hy =0
emits light into the vertical direction (Fig.3.15).
A detector at the height H measures the frequency

Detector

V2

Av _H-g
v c?

Fig.3.15. Demonstration
experiment by Pound and
Rebka for the proof of
photon redshifts in the
gravitational field of the
earth

Source

vzzv(l—ﬁf):ﬁvzig. With H =20m,

g =9.81m/s? we obtain Av/v =2.5x10"1%, This
gravitational redshift was indeed measured by
Pound and Rebka [3.7] using the MoBbauer-effect
as a sensitive frequency detector.

2. Light with frequency v; emitted from the surface
of the sun, is received on earth with the smaller
frequency

Mo
V2 = Vg 1-G 5 s
R@C

where Mg, is the mass of the sun, Ry its radius
and G the gravitational constant. The frequency in-
crease of photons entering the gravitational field of
the earth is very small compared to this decrease
and has been neglected. Inserting numerical values
yields Av/v =5 x10~". This frequency shift can be
readily measured with modern interferometers [3.8].

3. For M = R-c?/G we obtain v, = 0. This represents
a “Black Hole” where no light from locations R <
Ry=M-G/c* can escape. The radius Ry is called
Schwarzschild Radius.

(3.41b)

Light suffers a red shift when propagating away
from an attracting mass. This red shift corre-
sponds to an increase AW, in potential energy of
a particle with mass m = hv/c. If AWy > hvy
the light cannot leave the attracting mass. This
situation is found for black holes.

3.1.9 Wave and Particle Aspects of Light

The discussion in the last section has shown that the
particle properties of photons, such as mass m = hv/c?,
energy hv and momentum p = hk; |p| = h/A can be
only defined by using the wave characteristics fre-
quency v and wavelength A = c¢/v. This itself illustrates
the tight connection between the particle model and the
wave model of electromagnetic fields. As an example
we will consider the relation between the intensity /
of an electromagnetic wave and the corresponding pho-
ton flux density. When N = dN/ dr photons /v pass per
second with velocity ¢ through a unit area perpendicu-
lar to the propagation direction, the intensity / (energy
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per m? per s) is

[ =Nhv. (3.42a)
In the wave model the intensity is
I =gocE”. (3.42b)

The comparison of (3.42a) and (3.42b) gives the re-
lation between the electric field amplitude E of the
electromagnetic wave and the photon flux N

\/th
E =
&y C

which shows that the field amplitude is proportional to
the square root of the photon flux N.

The photon structure of light can be demonstrated
by various experiments besides those already discus-
sed in the previous sections. A famous example is the
experiment by Taylor (Fig. 3.16) where many equal de-
tectors D; are arranged on a circle with radius R around
the light source S [3.12]. The light, isotropically emit-
ted by the source into all directions, is described in
the classical wave model as a spherical wave with field
amplitude

(3.42¢)

E = A ei(kr—wt)
r

(3.432)

All detectors with sensitive area S at a distance R from
the centrum r = 0 receive, per s, the same radiation
power

aw A
dr R?

(3.43b)

Fig. 3.16. Taylor’s experiment to prove the photon structure
of a light wave

This is indeed observed for sufficiently large light
intensities.

If, however, the emitted power of the light source
is diminished so much that dW/dr <« hv/t, where t
is the time interval that can just be resolved by the de-
tectors then at most one photon can reach a detector
per resolved time interval. Not all detectors give simul-
taneous signals but only one or none of them during
the time t. The output signals of the detectors D; are
statistically distributed in time. Averaged over a time
interval A¢ > t all detectors again show the same total
number of counts.

This means that in this experiment the quantum
structure of light becomes apparent at low light inten-
sities. The radiation energy of the source is in this case
not simultaneously emitted into all directions, but at one
time a photon flies only in one direction and at another
time into another direction.

The total number of photons received by each
detector over a time interval Az shows a Poisson
distribution

N=Ne N-M/N (3.44)

with a standard deviation o = \/ N. The probability P
that any one of the detectors has counted N = N + 3N
photons is P = 0.997.

This illustrates that the classical wave description
of light represents the asymptotic case of large photon
fluxes. The relative fluctuations of the photon flux

AN o !

N VN
decreases with increasing photon flux N and the quan-
tum structure of electromagnetic waves (i.e., the steps
hv in the energy density) becomes significant only for
small photon flux densities N.

An essential characteristic of a classical particle is
its localization within a small spatial volume, which is
the volume of the particle, in contrast to a wave that
is spread out over a larger volume. How this apparent
contradiction of particle and wave description can be
solved will be discussed in Sect. 3.3.

The question of whether light can be regarded as
a wave or a stream of particles was controversially and
vehemently discussed for a long time between Isaac
Newton (1642—-1727), who represented the particle mo-
del, and Christian Huygens (1629-1695) who believed
in the wave model [3.2]. Both scientists met in Lon-

(3.45)
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don in 1689 and discussed their controversial views but
could not come to an agreement.

Experiments by Huygens, Thomas Young (1773—
1829), and many other researchers, looking at
diffraction and interference of light decided the quar-
rel in favor of the wave model, since at that time it was
generally accepted that particles will not show any in-
terference effects. It is very instructive to discuss the
diffraction and the interference of light by a double slit
(Young’s double slit experiments (Fig.3.17). The de-
tector can be a photoplate in the observation plane or, in
amodern version, a two-dimensional CCD array, where
one can decide which diode of the array has received
a photon. The experiment shows that at sufficiently low
intensities one first sees a statistical spatial distribution
of photons without recognizable interference fringes
(Fig. 3.17a). Increasing the illumination time at a con-
stant source intensity, the interference pattern emerges
more and more clearly (Fig. 3.17b). As long as the diffe-
rence Npmax — Nmin of the photon numbers in the maxima

and minima of the interference pattern is less than \/ N,
the pattern can hardly be seen. However, if by accumu-
lation over a time interval At the number N Az becomes
sufficiently large, interference clearly appears, even if

c) -

Fig.3.17a—c. Observation of an interference pattern when
light passes through a double slit. (a) Very small light
intensity where AN > Nmax — Nmin (b) Medium intensity
AN & Nmax — Nmin (¢) High intensity AN < Nmax — Nmin

Table 3.1. Characteristic properties of the photon and the
electromagnetic field

E=hv p=hk s = thk m=E/c*
=h/(c-)\)
E=ho |pl=h/r s|=nh mo=0
=E/c
wo=n-hv I=n-c-hv ng,:(l/cz)-S
=go|EI? = ceo|EI? = nhk

the intensity is so small that only one photon passes the
slits at a time. From a classical point of view this can-
not be understood. How should a photon know through
which of the two slits the foregoing photon passed?
This apparent paradox has been solved by the quantum
theory, which will be discussed in Chap. 4.

The above examples show that according to our
present concepts, light has wave as well as particle
character. The important point is that both models
do not contradict but supplement each other, as
will become clearer in the next sections.

At the end of this section Table 3.1 compiles both
the wave and particle descriptions of light.

3.2 Wave Properties of Particles

We will now show that objects that had always been
regarded unambiguously as particles, such as electrons,
nuclei, atoms or molecules also show wave properties,
since diffraction and interference phenomena have been
meanwhile observed for these particles.

Louis de Broglie (1892—-1987) (Fig.3.18) was the
first to propose (in 1924) a wave description of
both light and particles, although at this early time,
no wave properties of particles had been observed
experimentally [3.9].

For this idea, which he later outlined in more detail,
de Broglie was awarded the Nobel Prize in 1929.
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Fig. 3.18. Loius de Broglie (1892—1987). From: E. Bagge: Die
Nobelpreistriager der Physik (Heinz-Moos-Verlag, Miinchen
1964)

3.2.1 De Broglie Wavelength
and Electron Diffraction

If the relation p = hk found for photons is also applied
to particles with mass m, moving with the velocity v,
we can attribute to them a wavelength A = 27 /k, which
can be written with k = p/h as

h h h
A= =

= . 3.46
p mv  /2mEy, (3.46)

The de Broglie wavelength is inversely proportio-
nal to the momentum of a particle.

When electrons are accelerated by a voltage U rea-
ching the velocity v < ¢, we obtain with Ey, = eU the
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Fig. 3.19a,b. Comparison of (a) electron diffraction and (b) X-
ray diffraction by a thin-foil of crystalline aluminium

de Broglie wavelength

h
A= . (3.47a)
V2meU
EXAMPLE

U=100V, m.=1.9x1073! kg, h =6.6 x10%Js =
A=12x10""m=0.12nm.

Clinton Joseph Davisson (1881-1938) (Nobel Prize
1937) and Lester Halbat Germer (1896-1971) could
indeed demonstrate in 1926, two years after de Broglie’s
proposal, that electrons with the kinetic energy Eyi, =
e-U in a collimated beam from an electron gun at the
voltage —U produced interference patterns, when they
were reflected by a single crystal of nickel (Fig. 3.20).
There are two ways to detect these interferences:

a) When the electrons, accelerated by a constant
voltage U, are reflected by the Nickel-crystal, a dif-
fraction pattern /(¢) is measured, when the detector
has a variable direction ¢ against the incident beam.

Nickel tanget
ab N

_u Electron 1 4
a~Y gun b) W
Fig. 3.20. (a) Schematic drawing of the experimental setup of
Davisson and Germer. (b) Reflected intensity as a function of
the acceleration voltage U, according to (3.47b)
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a)

-~

3
f- .
r

Fig. 3.21a,b. Comparison of (a) light
tron diffraction with Eyj, = 38keV at the edge of a MgO
single crystal. For (b) the distance rg of the photoplate from
the edge was chosen such that the product roA was equal
for (a) and (b) (From: H. Raether: Elektroneninterferenzen
in: Handbuch der Physik Bd. 32, 443 (1957))

b) At fixed angles ¢ and ¢ the voltage U is varied and
thus the de-Broglie wavelength (Fig.3.20b). Ma-
xima of the reflected intensity are observed for the
Bragg-condition (see Sect.2.2.3) m-A = 2d -sin ¥;
m=1,2,3,...,whered is the distance between the
crystal planes. With A = h//2m.eU the maxima
appear at voltages U with

-h
\/U= " =m-a.

3.47b
2d -sin ¥ - /2e - m. ( )

With high energy electrons, transmitted through
a thin foil of crystaline aluminium, circular diffrac-
tion patterns can be detected on a photoplate behind
the foil which were quite similar to those patterns pro-
duced by X-rays (Fig.3.19b), which had already been
recognized as short wavelength electromagnetic waves
(see Chap. 7).

This proved that electrons, which had always been
clearly regarded as particles, also show wave proper-
ties in this experiment, in accordance with de Broglie’s
hypothesis (3.41). In Fig.3.21 the diffraction patterns
of light and of electrons produced by the sharp edge
of a MgO crystal are compared. It illustrates that the
same Fresnel diffraction pattern is produced in both ca-
ses if the product Ary of wavelength X, and distance r
between the edge and the photoplate is the same.

3.2.2 Diffraction and Interference of Atoms

More recent experiments have shown that particle dif-
fraction and interference is not restricted to electrons

A

| (atoms per sec)

200

100

— Background —

y

S
D
Collimated
. Diffracted D
He’- |
vo'x
beam ) Observation
atomic wave plane

S>

b) Sp

Fig. 3.22a,b. Diffraction of a collimated beam of He atoms
by a slit Sp and observation of the interference pattern
behind a double slit. (a) Observed interference pattern
(b) Experimental setup [3.17]

but can also be observed for atoms [3.10]. In Fig. 3.22,
helium atoms in an atomic beam pass in the x direc-
tion through a narrow slit of width » = 12 um. The
atomic waves diffracted by Sy then reach two slits S
and S, with b = 1 pum each, separated by 8 um, which
are located 64 cm downstream of Sj.

In the observation plane x = x( an interference
pattern I(y) is produced that can be monitored with
a detector, movable in the y direction. The observed
interference pattern looks like that of light in Young’s
double slit experiment.

Note:

He atoms in their ground state cannot be detected very
efficiently. Therefore energetically excited He atoms
He* are used, which are in a “metastable state” (see



Sect. 6.1) with a lifetime longer than the transit time
from the He* source to the detector. These excited He*
atoms release electrons when impinging on a metal
plate. The resulting ions can be effectively monitored.

In a second experiment, shown in Fig. 3.23, a col-
limated beam of metastable He atoms passes through
a standing light wave with optical wavelength Ay, pro-
duced by two laser beams traveling in opposite *+y
directions. In the nodes of the standing wave the light
amplitude is zero and the atoms can pass undeflected.
In the maxima, the light intensity is high and the atoms
can absorb photons if the laser frequency is tuned to an
absorbing transition of the atoms. These photons trans-
fer their momentum 7k in the +y direction to the atoms,

_ Standing by
Incident light wave
matter wave Phase modulation
Laser of matter wave
RS —
/
> ———
. T
1T T Detector
Laser Diffraction
orders
a) X

—_
o
I

Observed atom rate N(0)
o
[¢)]

©
=)

0 4 8

-8 -4
b) Momentum transfer Apy =n-hk

Fig. 3.23a,b. Diffraction and interference phenomena obser-
ved when a beam of metastable He atoms passes through
a standing light wave. (a) Experimental setup (b) Ob-
served interference pattern N(f) in the plane x = const,
y = Lsin# [3.10]
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resulting in a deflection of atoms out of the x direction.
With a detector behind the light wave the atomic inter-
ference pattern shown in Fig. 3.23b is observed, where
the number N(®) of He* atoms is measured when the
detector is moved along the £y direction [3.10]. The
result can be explained by two different models, which
do not contradict each other.

In the wave model the standing light wave acts
onto the atoms like a phase grating, quite analogous
to phase gratings used in optics, because the periodic
variation of the electric field E(y) of the standing light
wave acts on the atoms like a periodic variation of the
index of refraction. The reason for this is that the po-
tential energy of the atoms depends on the electric field
amplitude and since the total energy of the atoms is
constant, their kinetic energy changes accordingly. Dif-
fraction of the atomic de Broglie wave by this phase
grating with a grating constant d = Ay /2 results in
intensity maxima if the phase difference between neigh-
boring diffracted partial waves Agp = 27w/ gp)As,
becomes Ap =n2x (n=1,2,3,...). With the path
difference As =dsin® = A sin ® we obtain for the
nth diffraction maximum at angle ©®, < 1

nidp

n)"dB =As = )\-L sin @n = @n ~ (348)

L
The result of Fig. 3.23b can be also explained with the
particle model if photons and atoms are both treated
as particles. The absorption of n photons in the + di-
rection causes a recoil of the atoms with a transferred
momentum

Ap, =Enhk=xnh/\ . (3.49a)

The atoms therefore change their flight direction by
angles @, determined by
Apy,  Ap, A
sin®, = Py 2Py _ 11708
Px p AL

which gives the same result as (3.48) and illustrates that
the particle model as well as the wave model correctly
describe the same experimental result [3.11].

, (3.49b)

3.2.3 Bragg Reflection
and the Neutron Spectrometer

When a collimated beam of particles with momentum
p = mv and de Broglie wavelength A4g = 1/ p impinges
on a crystal under the angle ¥+ against parallel crystal
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planes, the partial waves reflected by the different planes
with distance d can interfere constructively if the path
difference As = 2d sin« becomes an integer multiple
of the wavelength Aqp (see Fig.2.10). This leads to the
Bragg condition:
2dsinz9=nAdB (I’l=1,2,3,...).

Measuring the different angles ¥, of incidence, where
maxima occur in the reflected beam, yields the de Bro-
glie wavelength Agp, if the distance d between adjacent
crystal planes is known.

This is illustrated in Fig.3.24 by the example of
a neutron spectrometer [3.12]. The neutrons, produced
inside the core of a nuclear reactor are slowed down by
inelastic collisions with H atoms in paraffin and leave
the reactor through collimating apertures as a collima-
ted beam with thermal velocity distribution. They are
directed towards a crystal that can be turned around
a vertical axis to choose a wanted angle ¢ against the

Sample crystal

Aperture
1

Neutron
counter

. T
Neutrons  Monochromator Monochromatic
from crystal neutrons with
reactor Ap =2d-sinoy
\ Detector
b)

Fig.3.24a,b. Neutron spectrometer. (a) Neutrons from
a nuclear reactor are monochromatized by Brass reflec-
tion (b) Velocity selection with two rotating discs and
time-resolved detection

direction of the incident neutron beam. A bortrifluo-
ride detector counts the incident neutrons. They have
a velocity

h
v= .
2md sin ¥

The crystal acts as velocity filter and reflects only
neutrons with the wavelength Agg = 2dsin?d; into
the direction ¢,. It therefore acts like a grating
monochromator in optical spectroscopy.

Instead of using the Bragg reflection by a crystal
with known distance d between its planes, a time-of-
flight technique can be used to select neutrons with
a given velocity (Fig. 3.24b). A rotating absorbing disc
with a narrow slit transmits neutrons only during the
short time interval At at time r = 0. A gated detector
at a distance L from the disc, which measures neutrons
arriving at the time #;, selects neutrons with velocities
around v; = L/t;. These neutrons with known veloci-
ties and therefore known de Broglie wavelength can
now be directed towards a Bragg crystal with unknown
distances d, of its planes. Measuring the angles ¥,
where maxima of the reflected beam are observed,
yields the wanted distances d,.

3.2.4 Neutron and Atom Interferometry

The wave properties of neutrons allow the construc-
tion of a neutron interferometer, analogous to an
X-ray interferometer (see Sect.2.2.3). Such a par-
ticle interferometer can be used to measure many
quantities important for basic physics and for many
applications.

The device is shown in Fig.3.25 (compare with
Fig.2.12!). Three thin slices of a silicon crystal are cut
out of a single crystal. This guarantees that the three sli-
ces have the same crystal orientation. The intensities I,
and /I, measured by the detectors D; and D, depend on
the phase differences of the interfering partial neutron
beams. The sum of the intensities /1 + I, is, however,
independent of phase shifts.

If a phase shifting sample is now brought into one
of the partial beams, the signals of D; and D, change.
Due to interactions of the neutrons with the nuclei of
the sample, their potential is altered inside the sample.
This causes a phaseshift of their de Broglie wave.

The phase shift can also be caused by the gravita-
tional field of the earth, if the two partial beams pass
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Fig. 3.25. Neutron interferometer

at different heights H; through the interferometer, be-
cause then the potential energy of the neutrons mgH; is
different and therefore their kinetic energy changes by

AEkin =—m~g-AH.
Because Eyi, = h?/(2mA2y) we obtain

2mg-AH

Algg = E
kin

Note:

Phase shifts caused by AH = 1cm can already be
detected [3.14].

With such an interferometer, phase shifts caused by
electric or magnetic fields or by materials transparent
for neutrons can be measured. They give information
on the interaction of neutrons with the fields or with the
atoms of the sample.

Also for atoms interferometers can be reali-
zed [3.13]. Replacing the diffracting Bragg crystal
slices by standing optical waves, which deflects the

3.2. Wave Properties of Particles

atoms by photon recoil allows the realization of an
atomic interferometer (see Sect. 3.2.3), which can mea-
sure the phase shift of atomic de Broglie waves, when
interacting with external fields or with matter.

3.2.5 Application of Particle Waves

The de Broglie wavelength Agg = & /(mv) can be adop-
ted to the special problem by selecting the appropriate
particle velocity v. For example, the measurement of the
distances d between adjacent crystal planes demands
Aag < d.In Table 3.2 some numerical values of A4g for
electrons, neutrons and He atoms at three different ki-
netic energies are compiled, in order to give a feeling
of the order of magnitude for Agg.

EXAMPLE

Helium atoms at room temperature (7' =~ 300 K) have
a mean velocity v~ 1300m/s and a mean kinetic
energy FEyin ~ 0.03eV. Their de Broglie wavelength
is then Agg = 8.3 x10~!"' m. This is about half of the
typical atomic distances in a crystal.

With such thermal He atoms, the surface structure
of solids can be probed by measuring the diffraction
pattern of the reflected atoms obtained when a paral-
lel beam of He atoms falls under an angle ¥ onto the
surface. Since the atoms, contrary to neutrons, do not
penetrate into the solid, only the surface layer of the
crystal atoms contributes to the diffraction. The diffrac-
tion pattern therefore gives information on the structure
of this surface layer and will change when other atoms
are adsorbed at the surface.

When we regard the electrons in an electron micros-
cope as de Broglie waves, their wavelength at a kinetic
energy of Eyj, = 10°eV is Agg 4 x107 2 m, i.e., by
five orders of magnitude smaller than the wavelength of
visible light. Therefore, the principle lower limit Ax for

Table 3.2. De Broglie wavelengths in units of 107'9m =1A
for electrons, neutrons and He-atoms with different kinetic
energies

0.03 70.9 1.65 0.83
1 12.3 0.28 0.143
10* 0.123 0.003 0.001
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the spatial resolution (Ax > X/2) is much smaller than
in a light microscope. However, although the resolution
in a real electron microscope is not limited by diffrac-
tion and reaches a spatial resolution of Ax < 0.1 nm, it
is still limited by imaging errors in the electron-optical
system.

3.3 Matter Waves and Wave Functions

In the wave model of a particle with mass m, moving
with a velocity v in the x direction, we write the wave
function quite analogously to that of light waves as

Y(x, 1) = Cel® =D — Cel/Mpx—ED (3.50a)

where we have used the relations E = Ey;, = hw bet-
ween the energy E of a free particle (Epy = 0) and the
angular frequency w of its matter wave, and

p =k (3.50b)
between its momentum p and the wave vector k with
k| = 27/Aqp.

Note, however, that there exists an important dif-
ference between electromagnetic waves and matter

waves. The phase velocity of electromagnetic waves
in vacuum, obtained from the condition

d
ds (kx —wt) =0 = vpy = = const

dt
=0 (3.51)
is independent of w, since k =27 /A = w/c = vp, =c.

This means that electromagnetic waves propaga-
ting in a vacuum do not show dispersion.

For matter waves this does not hold! We obtain for
a free particle with E = Ey, = p?/2m

E Rk’ o o  hk p
w = = = = =
h 2m P T am T 2m
dvph 1
= 0. 3.52
do — k #* (3.52)

The phase velocity depends on the momentum p of the
particle. With the particle velocity v, = p/m = hk/m
we obtain the relation

1

2V (3.53)

Uph =

between particle velocity v, and phase velocity vy, of
its matter wave.

Matter waves do show dispersion and their phase
velocity is equal to 1/2 of the particle velocity vy,

Therefore the matter wave (3.52) and its phase ve-
locity wvpp is not directly useful for the description
of the moving particle. Furthermore, the particle is
restricted to a certain volume dV = dxdydz around
a point (x(#), y(¢), z(t)), which moves with the particle
velocity v, in space, while the matter wave (3.50a)
extends over the total space. This deficiency can
be removed by introducing the model of wave
packets.

3.3.1 Wave Packets

Wave packets represent a superposition of many mo-
nochromatic waves with frequencies w; in an interval
Aw. The introduction of wave packets (sometimes also
called wave groups) localizes the matter wave within
a certain space interval Ax or for three dimensional
problems within the volume dV. This can be seen as
follows.

When many monochromatic plane waves with
amplitudes C;, frequencies w; within a restricted in-
terval Aw and parallel wave vectors k within the
interval Ak (Fig. 3.27a), propagating in the x direction,

o situation at time )
=0 RS
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Y =cos(myt —kqx) +cos(myt —k,X)

Fig. 3.26. Superposition of two monochromatic waves with
slightly different frequencies w; and w; and equal amplitudes
results resolutions in a beat pattern



C(k)

| e

‘ o | "

} } } L)
a) 0y —Aw/2 N 0 +Aw/2

W(Xrto)
> Vg

IRAVAVAV/4 NAVAVA=C i
0 > Ax = 47/ Ak = X

Fig.3.27a,b. Wave packet as superposition of waves with
frequencies w within the range ko £ Ak/2 or wo=+ Aw/2.
(a) Equal amplitudes C(k) = C(kog) of all partial waves.
(b) Resulting wave packet ¥(x, fp) at a given time t = fg

are superimposed, their sum

U(x, 1) = Z Cj ei(ij—mjt) (3.54)
j

3.3. Matter Waves and Wave Functions

shows maximum amplitudes A(xp) at locations xp
(Fig. 3.27b), which propagate into the x direction with
the group velocity v, = dow/ dk.

With an infinite number of such waves with
frequencies w filling the interval

w)—Aw/2 <w < wy+ Aw/2
and with wave numbers kg — Ak/2 < k < ko + Ak/2 the
sum (3.54) transforms into the integral
ko+A4k/2
Y(x, 1) = C(k)e' =D gk .

ko—Ak/2

(3.55)

For sufficiently small intervals Ak < ko we can expand
w(k) into the Taylor series

dow

dk (3.56)

w(k) =wo+< ) (k—ko)+....
ko

where we neglect the higher order terms. If the am-

plitude C(k) does not change much over the small

interval Ak, we can replace C(k) by its constant va-

lue C(kp). Inserting (3.56) into (3.55) we obtain with

the abbreviations
k=ko—k and u=(dw/dk)i,t—x

the matter wave function

+Ak/2
Y(x, 1) = C(ko) e ko= " di.  (3.57a)
—Ak)2
The integration is simple and yields
VU(x, f) = A(x, k, 1) el ko¥=eod
with  A(x, k, ) = 2C(ko) Sin(”uAk/ D 3570

This function describes a plane matter wave with
an amplitude A(x, f) that has a maximum for u =0,
corresponding to a position

dw ,
Xm =
" \dk )/,

The maximum of the wave packet propagates with the
group velocity vy = (dw/ dk)y, into the x direction. We
call ¥(x, t) a wave packet (Fig.3.27). The form of the
wave packet (maximum amplitude and width Ax, i.e.,
the distance between the first side minima of both sides

(3.57¢)
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of the central maximum depends on the chosen inter-
val Ak and the amplitude distribution C(k) in (3.25).
In Figs. 3.27b and 3.28b the wavepackets (3.55) with
constant amplitudes C(k) = C(ko) and with a Gaussian
distribution of C(k) are compared.

With the relations

. E . p? . hk?
@= E '~ 2mh  2m
dw hko p
:H)g_(dk)k = _m—vp (3.58)
0
C(k)
a) Ko
v(x.to)
Vg
b) X

Fig.3.28a,b. Wave packet ¥(x,#) composed of par-
tial waves with Gaussian amplitude distribution (a).
C(k) = C(ko) exp[—(k —ko)*/k3]; (b) ¥(x) at given time
=1

it follows that the group velocity of the wave packet
equals the particle velocity vp.

Such a wave packet represents a better descrip-
tion of a particle than the spatially extended
plane wave, because its center wave vector ky
and its group velocity v, correspond to particle
properties:

® The group velocity vg equals the particle velocity v,

e The wave vector kg of the group center determines
the particle momentum p,, = hko

e The wave packet is localized in space. The ampli-
tude A(x,r) of the wavefunction (3.57b) has non
vanishing values only within a limited space inter-
val Ax. From (3.57) we obtain at time r =0 the
width Ax of the central maximum between the two
minima

dr 2w

Ax = >
Ak~ ko

ZA.dB .

This shows that the width Ax of the wave packet
has a minimum value equal to the de Broglie
wavelength Agp.

We summarize:

Particles can be described by wave packets. The
particle velocity equals the group velocity of the
wave packet and the particle can be localized not
better than within its de Broglie wavelength.

Note that this spatial restriction corresponds to the
spatial resolution, when illuminating objects with light.
Here, however, the spatial resolution is limited by the
wavelength X of the light.

Remark

The additional small side maxima in Fig. 3.27b that ap-
pear when a constant amplitude C(k) = C(kp) is used,
disappear when C(k) is represented by a Gaussian
distribution

C(k) = C(ko) exp [—(k —ko)*/2AK’]

(see Fig. 3.28).
In spite of this close correspondence between the
wavepacket and its particle, the wave packet ampli-



tude (3.57a) can not be the real representation of the
particle for the following reasons:

e The wave function (x,f) in (3.57a) can as-
sume complex and negative values, which do
not correspond to real and measurable particle
properties

e The width Ax(#) of the wave packet increases with
time because of the dispersion of the matter waves of
which it is composed (see next section). It changes
its form while propagating in space, in contrast to
a real particle, which keeps its form.

e Any elementary particle, such as the electron, is
indivisible according to our present knowledge.
A wave, however, can be split, for instance by abeam
splitter, into two components, which then move into
different directions.

Fig. 3.29. Max Born (1882-1970) From: E. Bagge: Die Nobel-
preistriager der Physik (Heinz Moos-Verlag, Miinchen 1964)

3.3. Matter Waves and Wave Functions

These difficulties induced Max Born (1882-1970,
Fig.3.29) to propose a statistical interpretation of the
physical meaning of matter waves [3.15].

3.3.2 The Statistical Interpretation
of Wave Functions

Since a particle incident on a boundary plane between
two media has to be either reflected or transmitted, the
splitting of the corresponding matter wave into a re-
flected and transmitted partial wave could be related
to the probability of reflection or transmission of the
particle. However, the probability is per definition a po-
sitive real number between zero and one. Therefore, the
complex wave amplitude can not be directly interpre-
ted as a probability. Max Born proposed the following
definition.

The probability P(x, f)dx of finding a particle at
time 7 in the space interval from x — Ax/2 to x + Ax/2
is proportional to the absolute square |/(x, £)|* of the
wave function ¥ (x, ) representing the particle

P(x, 1) Ax o |¥(x, )| Ax . (3.59)
[¥(x,£)|> is called the probability density at the
location x at time ¢ (Fig. 3.30a).

A particle moving along the x-axis can be found with
certainty within the interval —oo < x < +o0. Therefore
the condition

+o00
f [Y(x, )*dx = 1 (3.60)

can be used for the normalization of the wave func-
tion. With this normalization the proportionality factor
in (3.59) becomes unity and we obtain

P(x, ) Ax = |(x, 1)|* Ax . (3.61)
To a particle moving freely in three-dimensional space,
a three-dimensional wave packet ¥ (x, y, z, ) can be
attributed (Fig. 3.30b) and the same arguments as above
result in the normalization

f/ ly(x, y, z, H)*dxdydz = 1.
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b wixt=to)?

W(xo, to)dx = (X0, to ) dix

Fig.3.30. (a) Absolute square of a one-dimensional wave
packet, representing the probability density to find a particle
at x = xp at the time ¢t = #p. (b) Two-dimensional wave packet

In summary:

Each “particle” can be represented by a three-
dimensional wave packet, described by the wave
function ¥ (x, y, z, f). The real positive quantity

P(x, v, z,)dxdydz = [¥(x, y, z, ©)|* dxdydz

gives the probability of finding the particle at the
time ¢ within the volume dV = dxdydz around
the point (x, y, z). The probability is maximum at
the center of the wave packet, which moves with
the group velocity v, through space and which is
identical with the particle velocity vj.

Note, however, that the probability is larger than
zero not only at the point (x, y, z), but also within a fi-
nite volume dV around (x, y, z). This means that it is
not possible to localize the particle exactly at the point

(x, ¥, z). The localization of the particle is only possi-
ble within an uncertainty that is related to the spatial
width of the corresponding wave packet. We will now
discuss this aspect in more detail.

3.3.3 Heisenberg’s Uncertainty Principle

We choose a wave packet as a superposition of plane
waves with amplitudes C(k), following the Gaussian

distribution
C(k) = Cy e[—(11/2)2(16—/<0)2] (3.62)

around the central wavenumber kj;. The one-

dimensional wave packet then becomes
Y(x, 1) = Co f e 1@ k—ko)” gitkr—on g (3,63)

The integration over k is analytically possible and yields
atr=0

2\,
¥(x.0) =< 2) e r/elor
wa

where we have chosen Cy = \/a/ (2)3/* in order to ob-
tain the normalized wave function with the probability
density

2 2.2
|¢<x,0)|2=\/m2e A

which satisfies the condition

(3.642)

(3.64b)

+00
/ [yr(x, 0)*dx = 1

as can be readily verified.

The wave packet (3.64) has its maximum amplitude
atx = 0. At the points x; » = a/2 the probability den-
sity has dropped to 1/,/¢e of the maximum value. The
interval Ax = x; —x, = a is defined as the full width
of the wave packet (3.64). The width Ak = k| —k, of
the amplitude distribution C(k) between the values k;
and k, where C(k; 5)> = Cy/+/¢ is, according to (3.63)
Ak =1/a.

This yields the important result:

Ax-Ak>1 (3.65a)

The product of spatial width Ax and wave packet
wavenumber width Ak is Ax - Ak > 1.



This result might already be familiar to you from op-
tics. In every spectrometer the smallest, still resolvable
frequency interval Awpin = 1/ Atmax is limited by the
maximum traversal time difference between interfering
light waves.

With Aw = cAk and Ax = c Aty this gives again
Akpin - AXmax = 1.

Therefore the result Ak - Ax > 1 is not specific for
quantum physics, but is typical for any wave mo-
del. Its significance for the quantum mechanical
description of particles stems from the interpreta-
tion of |1/|? as probability density of the location
of the particle.

With the de Broglie relation p, = hk, for the mo-
mentum p, of a particle moving in x direction, one

Fig. 3.31. Werner Heisenberg (1901-1975) From: E. Bagge:
Die Nobelpreistrager der Physik (Heinz-Moos-Verlag, Miin-
chen 1964)

3.3. Matter Waves and Wave Functions

obtains from (3.65a) the relation

Ax-Apy=hi. (3.65b)

It can be proved [3.16] that a Gaussian wave packet
has the minimum product Ax - Ap,. For all other am-
plitude distributions C(k), the product becomes larger.
We, therefore arrive at the uncertainty principle, first
formulated by Werner Karl Heisenberg (1901-1975,
Fig.3.31)

Ax-Ap,>h. (3.65¢)

The product of the uncertainty Ax in the locali-
zation of a particle, defined as the spatial width
of its wave packet, and the uncertainty Ap, of
the particle’s momentum p,, defined as the width
of the momentum distribution C(k) with k = p/h,
cannot be smaller than A.

This illustrates that Planck’s constant /4 (or the re-
duced constant 7 = h/2m) does not only describe the
quantization of photon energies but also governs the
uncertainty relation. This is due to de Broglie’ relation

2
b Jy(x to)? b w(x.to)]
AX \t——
Ax=— Ax
Ak
Xo )? Xo )V(
C(k) b C(k)
e AK AK \e—
Ak =L
AX ‘ R
a) Ko k, b) Ko Ky

Fig. 3.32a,b. Illustration of the uncertainty relation between
localization and momentum uncertainty. (a) Small spatial
uncertainty (b) Large spatial uncertainty
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Ags = h/p between the momentum p of a particle and
the wavelength Agp of its matter wave.

Remark

Often, one defines the width Ax of a Gaussian distribu-
tion as the interval between the points x; and x, where
the function y(x) in (3.64a) drops down to 1/ e (instead
of 1/e) of its maximum value and the width Ak bet-
ween the values k; and k, where C(k) drops to 1/e of
C (ko). This definition thenresultsin Ak =2-2/a=4/a
and Ax = 2a and instead of (3.65a) and (3.65c)one
obtains the uncertainty product

Ax-Ak=2 or Ax-Ap,>2h (3.66)

If the width of the wave packet with constant ampli-
tudes C is chosen as the distance between the first zero
points on both sides of the central maximum (Fig. 3.27a)
we obtain from (3.57b) instead of (3.65b), the relation

Ax-Apy >2h =4nh, (3.67)

which means that for this definition of Ax, Ap, the
uncertainty product is 4 times larger than in (3.65b).

This should remind you that the numerical value
of the lower limit for the product Ax- Ap, de-
pends on the definition of the uncertainties Ax,
Ap, and on the form of the wave packet.

For the other directions y and z of a three-
dimensional Gaussian wave packet one obtains in an
analogous way:

Ay-Apy>h, Az-Ap,>h. (3.68)
We will now illustrate the uncertainty principle using
some examples.

a) Diffraction of Electrons
Passing Through a Slit

We regard a parallel beam of electrons with momentum
p =10, py, 0} and a large beam diameter incident onto
a narrow slit with width Ax = b (Fig. 3.33). Before the
slit, the x component of the momentum of the electrons
is p, = 0, but we cannot know the x coordinates of an in-
dividual electron, that is, Ax = oo. Of all electrons only

Ap

X

Fig. 3.33. Diffraction of electrons by a slit as explained by the
uncertainty relation

those with x coordinates within the interval x = 0£5/2
can pass through the slit. For these electrons we know
their x coordinates within the uncertainty b,i.e., Ax = b.

According to the uncertainty principle (3.67), their
momentum components p, must have the uncer-
tainty Ap, > h/b. Since Ap, = p,-siné ~ p-sin6,
this means that the electrons can be found within the
angular interval —® < ¢ < @ where

sin® ==+ AP h .

p bp

When we describe the electrons by their matter wave
with the de Broglie wavelength Agg = &1/ p, the wave is
diffracted by the slit, as in wave optics, and the central
diffraction maximum has an angular width A¢p =26

between the two first minima. The wave model gives
. A h

sin®@ = = ,

b bp

which turns out to be identical to (3.69a).

=g (3.69a)

(3.69b)

This illustrates that the uncertainty principle just
takes into account the description of particles
by matter waves. If this is accepted, the re-
lations (3.65) and (3.69) follow from classical
diffraction theory.



b) Spatial Resolution Limit of the Microscope

Assume one wants to measure the location x of a particle
at rest by illuminating it with light of wavelength A
(Fig.3.34).

The photon must be scattered by the particle into
the solid angle with apex angle 2« in order to reach
the collimating lens of the microscope with diameter d,
where sin @ & tan o = d/2y. The uncertainty A p, of the
photon momentum p, is then

. h d h d
Apy = pySina & = _ - , (3.70)
a2y A 2y
because the de Broglie wavelength of a photon
o — h  h-c N
dB = P hov

equals the wavelength X of the light wave.

Conservation of momentum requires that the scat-
tering particle must suffer a recoil —p, with the
uncertainty Ap;.

Parallel light entering from above the collimating
lens (Fig.3.34b) produces in the focal plane, at a di-
stance y from the lens, a diffraction pattern where the
central maximum has the diameter

A
D=12-2ysin® ~2y

3.71
J (3.71)
(see textbooks on optics).
y
- — d -~
X
Scattered
photon y
Light
source
A
p=h/A ' —~{ D
Particle
D=2-12-y-sin®
a) b) =2.y-Ald

Fig. 3.34. Explanation of spatial resolution limit of a micros-
cope by the uncertainty relation

3.3. Matter Waves and Wave Functions

This shows that the location x of the scattering par-
ticle can not be defined more accurately than within
the interval Ax ~ D. From (3.70) and (3.71) we again
obtain the relation

hd_ A
Apy-Ax > 2y =h

3.72
S (3.72)

When using light with shorter wavelength X, the uncer-
tainty Ax becomes smaller, but the uncertainty Ap, of
the particles momentum becomes accordingly larger.

This example illustrates that the measuring pro-
cess itself (here the illumination of the particle)
changes the state of the measured object (here its
momentum and location).

3.3.4 Dispersion of the Wave Packet

According to (3.58) the group velocity v, of the
wave packet is related to the momentum p of the
corresponding particle by

(3.73)

lw?| —=Vy
- AX(ty)
- AX(t5) —=
X(ty) X(t2) X
= Vg
— ~—AX(ty) ‘
~— Ax(tp) —

x(ty) X(t2) X

Fig. 3.35. Spread of a wave packet in time for two different
initial uncertainties Ax(t)
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The initial momentum p can be determined only
within the uncertainty interval Ap. This implies
a corresponding uncertainty

1 h

1
Ap > ,
m

Avg =
m Axg

(3.74)
where Axg is the initial width of the wave packet,
i.e., the uncertainty of the determination of the starting
point xo. Because of the uncertainty Av, of the velocity
the uncertainty Ax = Avgt + Ax increases with time.
We obtain

t+ Axg .

D Vel + Ao mAxy

The width Ax(?) of the wave packet therefore increases
with time while the area f [ (x, )|* dx remains constant
because of the normalization

+o00
/ W(x, )*dx=1.

The rate with which Ax(f) increases becomes larger
when Ax is smaller, because the uncertainty Av, incre-
ases as h/(m Axgp). The localization of a particle moving
with velocity v, & Av, becomes more and more uncer-
tain after its initial parameters (xo & Axg, vy = Avg),—o
had been determined at t = 0.

3.3.5 Uncertainty Relation for Energy and Time

In Sect. 3.3.3 we have discussed the spatial width Ax
of a wave packet which is composed of an infinite
number of monochromatic waves with wavenumbers k
within the interval k — Ak/2 <k < k+ Ak/2. We will
now investigate how accurate the energy hwp at the
center frequency wy of a wave packet can be mea-
sured, when the measuring time is Ar. We consider
a wave packet composed of monochromatic waves
A; expli(w;t — k;jx)], where the frequencies w; are
spread over the interval wg — Aw/2 < w; < wy+ Aw/2.
We now integrate over the frequency interval Aw in-
stead over the wavenumber interval Ak. We therefore
write the wave packet as the superposition

wy+Aw/2
U(x, 1) = A(w) e &= dg) .

wy—Aw/2

(3.75)

y =A-sinwgt
a)l+ ‘\
b A(w)
— for At=-oo
b)
\‘V(Xo‘t)z — v
7oAt
—_— ‘_2
c) At=21/Aw t

Fig.3.36. (a) Illustration of the uncertainty relation Aw-
At > 27 measured during the time interval Az only. (b) Am-
plitude distribution A (w) of a sine wave. (¢) Wave packet with
frequency uncertainty Aw, passing through the detection point
X =Xx0

The procedure is quite analogous to that in Sect. 3.3.3.
Inserting the Taylor expansion

dk
k:ko—i—( ) (w—wo)+. ..
dw o



into (3.75) we obtain for constant amplitudes C(w) =
Co with the abbreviations

u=t—(dk/dw)y,x; Aw=wy—w

the solution:

el (kgx—awot) .

Ux 1) = 240 sin(b;Aa))

(3.76)
At a fixed position xo the maximum of the wave packet
at u = 0 appears at the time 7y = (dk/dw)xg. The two
minima at both sides of the central maximum pass the
position xg at the times

dk
o= < ) xo =k i .
dw 00 Aw

It therefore takes the time At =2n/Aw for the cen-
tral maximum to pass through the point x(, where the
measurement is performed.

On the other hand, when a wave packet is only
observed during the time interval At, its central fre-
quency wy can only be measured within an uncertainty
Aw =2/ At. This can be proved as shown below.

When a monochromatic wave

Y(x, 1) = Age! 0oy

(3.77)

is measured, only during the time interval At at x =0
the Fourier transform of the wave train gives the
amplitude distribution

+A1)2 Ao sin ((w—c;g)At)
Alw) = f Age! @0 dr = :
2 ((,() - (,()())
—At2
(3.78)

which determines the frequency spectrum of the wave
train. The central maximum of this distribution has
a width Aw =2m/At, defined by half the distance
w| — wy between the zero points of (3.78) at w; = wg +
2r/ At and wy = wg — 27/ At.

Since the energy E =hw is related to the
frequency w we obtain the uncertainty relation

AE-At>2nh=h (3.79)

between energy E and observation time Az.

When a particle is observed only during the li-
mited time interval At¢, its energy E can be
determined only within the uncertainty limits
AE > h/At.

3.4. The Quantum Structure of Atoms
Remark

1. If a Gaussian amplitude distribution A(w) is assu-
med instead of the constant amplitude A(w) = Ao,
the smallest uncertainty AE - Ar > & is obtained
analogously to (3.65).

2. Equation (3.79) has been derived from classical
physics, using the Fourier theorem. The quantum
mechanical aspect comes only from the relation
E = hv.

3.4 The Quantum Structure of Atoms

Rutherford’s scattering experiments discussed in
Chap. 2 have proved that atoms consist of a nucleus with
positive charge Q = +Ze, a small radius Rg < 10~%m
and a mass that nearly equals that of the total atom, and
of Z electrons with very small masses, occupying, ho-
wever, a volume that is about 10'>~10'> times larger
than that of the nucleus.

Up to now we have not discussed any possible struc-
ture of the spatial and energy distribution of the atomic
electrons. In particular it must be cleared whether the
electrons move around within the atom or whether they
are at rest and form a static charge distribution. Both
assumptions lead to certain contradictions: Because of
the attractive Coulomb force between the positively
charged nucleus and the negatively charged electrons
a static configuration would not be stable. A dynami-
cal model in which the electrons move on closed paths
within the atom and must therefore be continuously
accelerated, cannot explain why these accelerated char-
ges do not radiate, as postulated by electrodynamics.
They would then loose energy and would also become
unstable.

The experiments presented in the following sec-
tions have essentially contributed to clarifying these
questions.

3.4.1 Atomic Spectra

In 1859 Gustav Kirchhoff (1824-1887) and Robert
Bunsen (1811-1899) had already found, through joint
research, that atoms only absorb or emit light at certain
discrete wavelengths A;. These specific wavelengths
that are characteristic of each chemical element, are
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called the absorption or emission spectra of the atom.
These spectra are like a fingerprint of the atom, since
every atomic species can be unambiguously recognized
by its spectrum.

A possible experimental arrangement for measuring
emission spectra is shown in Fig. 3.37a.

The light emitted by atoms in the light source (which
might be, for instance, a gas discharge or a high current
arc between two electrodes of the material to be investi-
gated) is collected by the lens L; and imaged onto the
entrance slit S; of the spectrograph, which is placed in
the focal plane of lens L,. The parallel light bundle pas-
ses through the dispersing prism and the lens L3 images
the entrance slit onto the observation plane, where the
position of the slit image S>(A) depends on the wa-
velength A. If the light source emits light with discrete
wavelengths Ak, the photoplate in the observation plane
shows after being developed dark lines at all those po-
sitions xg that correspond to slit images S,(Ag). Such
aspectrum as that in Fig. 3.37b) is therefore called a line
spectrum. Many light sources emit continuous spectra,
i.e., their emitted intensity /() is a continuous func-
tion of the wavelength A. Examples are the radiation
of the sun’s photosphere, the emission of a blackbody
(see Sect.3.2) and generally the emission of hot solid
bodies.

Absorption spectra can be measured with the se-
tup shown in Fig. 3.38. The radiation from a continuous

Continuum |

Light
source

a)

[

398 nm

Fig.3.37. (a) Prism spectrograph for measuring the emis-
sion spectrum of a light source. (b) Emission spectrum of an
iron arc in the spectral interval 390—398 nm, taken for three
different exposure times

light source is collimated by the lens L; and the paral-
lel light bundle is sent through the absorbing gaseous
sample. The lens L, focuses the transmitted radiation
onto the entrance slit of a spectrograph. At those wa-
velengths Ak, where the sample atoms absorb light, the
transmitted intensity is smaller than at nonabsorbing

i L
light source Absorption cell 2
|
) — k) —
Photo-
a) Spektrograph detector recorder

2594—
2544 —
2512—

b)

or PC-screen

Fig. 3.38a,b. Measurement of absorption spectra. (a) Experimental arrangement (b) Absorption spectrum of sodium vapor



wavelengths. The negative of the illuminated photo-
plate therefore shows bright lines on a dark background
(Fig.3.38b).

Such experiments brought about the following
results: °

e FEach wavelength observed in an absorption spec-
trum also appears in the emission spectrum of the
same kind of atoms if the atoms have been excited
into the emitting state by absorption of light or by
collisional excitation.

® The absorption and emission spectra are characteri-
stic for specific atoms. They allow the unambiguous
determination of the chemical element correspon- o
ding to these spectra. The spectral analysis therefore  Fig,

3.4. The Quantum Structure of Atoms

a sample. This is particularly important in astro-
physics where the spectrum of the starlight gives
information on the number and the composition of
chemical elements in the atmosphere of the star.

The spectral lines are not completely narrow, even
if the spectral resolution of the spectrograph is ex-
tremely high. This means that the atoms do not emit

||

3.39. Balmer series of the hydrogen atom emitted from

yields the composition of chemical elements in  ahydrogen gas discharge

Level energy / eV

4 n lonization limit v/em™
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Fig. 3.40. Simplified level scheme of the hydrogen atom and the different absorption or emission series
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strictly monochromatic radiation but show an inten-
sity distribution I/(Ag) around each wavelength Ag
with a finite halfwidth AA. The reasons for these
halfwidths will be discussed in Sect. 7.5.

The most simple of all atoms is the H atom, consisting of
only one proton and one electron. Its emission spectrum
was measured in 1885 by Johann Jakob Balmer (1825—
1898). He could fit the wavenumbers vg = 1 /i of its
emission lines by the simple formula

_ R (l 1)
VK = — y
K y n% Vl%

where the integer numbers n |, n, take the values n; =2
andny =3,4,5,....Theconstant Ry = 109,678 cm™!
is the Rydberg constant, which is historically given by
spectroscopists in units of inverse centimeters cm™!,
since all wavenumbers Vg = 1/Ag are measured in these

units.

(3.80)

EXAMPLE

A spectral line with a wavelength Ax =500nm =5 x
1073 cm has a wavenumber g =2 x10*cm~!.

Later on Theodore Lyman (1874-1954) and Fried-
rich Paschen (1865-1947) found further series in the
emission and absorption spectrum of the H atom, which
could all be described by the Balmer formula (3.80), but
with n; = 1 (Lyman series) or n; = 3 (Paschen series)
(Fig. 3.40).

How can we understand these experimental results?

3.4.2 Bohr’s Atomic Model

Many theorists tried to develop models that could ex-
plain the experimental findings. However, most of these
models could describe some results but not all of them in
aconsistent way without any contradictions. After many
efforts Nils Bohr (1885-1962) (Fig. 3.41) starting from
Rutherford’s atomic model finally developed in 1913
the famous planetary model of the atoms [3.3,4, 17],
which we will now discuss for atomic systems with
only one electron (H atom, He™ ion, Li™ ion, etc.).
In Bohr’s atomic model the electron (mass i,
charge —e) and the nucleus (mass my, charge +Ze)
both move on circles with radius r. or ry, respectively,
around their center of mass. This movement of two bo-
dies can be described in the center of mass system by

Fig.3.41. Niels Bohr (1885-1962) From E. Bagge: Die
Nobelpreistriager (Heinz-Moos-Verlag, Miinchen 1964)

the movement of a single particle with reduced mass
u = (memy)/(me +my) & m. in the Coulomb poten-
tial E,o(r) around the center » =0, where r is the
distance between electron and nucleus. The balance
between Coulomb force and centripetal force yields the
equation

wo? 1 Zé

r dmeg 12’ (3:81)
which determines the radius

ze 3.82

"= 4meguv? (3:82)

of the circular path of the electron. As long as there are
no further restrictions for the kinetic energy (u/2)v>
any radius r is possible, according to (3.82).

If, however, the electron is described by its mat-
ter wave, Agg = h/(1Lv) a stationary state of the atom
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Fig. 3.42. Standing de Broglie matter wave illustrating the
quantum condition for the angular momentum in Bohr’s
model

must be described by a standing wave along the circle
(Fig. 3.42) since the electron should not leave the atom.
This gives the quantum condition:

2nr =nigg (n=1,2,3,...), (3.83)
which restricts the possible radii r to the dis-
crete values (3.83). With the de Broglie wavelength
Ad = h/(uv) the relation

h

v=n
2wur

(3.84)
between velocity and radius is obtained. Inserting this
into (3.82) yields the possible radii for the electron
circles:

n*h%sy  n? (3.85)
Ty = = _ap, .
" auzer Z 0
where
80h2

ap = =52917x107" " m~05A

et

is the smallest radius of the electron (n = 1) in the
hydrogen atom (Z = 1), which is named the Bohr
radius.

3.4. The Quantum Structure of Atoms

a)

Fig. 3.43a,b. Radial dependence of kinetic, potential, and total
energy of the electron in the Coulomb field of the nucleus.
(a) Classical model (b) Quantum mechanical model

The kinetic energy Eyi, of the atom in the center of
mass system is obtained from (3.81) as
w o, 1 Ze? 1
E o= = = —
k= oV T D dmer T 2
and equals —1/2 times its potential energy. The total
energy (Fig.3.43)

Epor (3.86)

L 1 zé
27T 4megr
is negative and approaches zero for r — oo. Inser-
ting (3.85) for r yields for the possible energy values E,,
of an electron moving in the Coulomb potential of the
nucleus:

E = Ey,+ Epot =+ (3.87)

472 2

ue*zZ VA
E,=— = —Ry* 3.88
88%h2n2 Y n? (3.88)

with the Rydberg constant

pet

8edh?
expressed in energy units Joule.

This illustrates that the total energy of the atom
in the center of mass system (which nearly equals the
energy of the electron) can only have discrete values
for stationary energy states, which are described by
the quantum number n =1,2,3.... (Fig.3.40). Such
a stationary energy state of the atom is called a quantum
state. In Bohr’s model, the quantum number n equals
the number of periods of the standing de Broglie wave
along the circular path of the electron.

Ry*=hcRy = (3.89)

Note:

1. The exact value of the Rydberg constant Ry
depends, according to (3.89), on the reduced
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mass p of the electron nucleus system. It dif-
fers, therefore, slightly for different masses of the
nucleus. In order to have a unique definition, the
Rydberg constant Ry, for infinite nuclear mass
mN = 00 = (= m, is defined. Its numerical va-
lIue is Ry, = 109,737.31534 cm™ 1.

The Rydberg constant for finite nuclear mass my is
then:

Ry = Rysop/me .

2. Bohr’s atomic model is a “semiclassical model”,
which treats the movement of the electron as that of
a point mass on a classical path but adds an additio-
nal quantum condition (which is in fact a boundary
condition for the de Broglie wavelength of the
moving electron).

3. This quantum condition can also be formulated
using the angular momentum L of the electron.
Multiplying (3.84) by ur yields

urv=|L|=nh,

where i = h/2m. This means:

The angular momentum of the electron on its
path around the nucleus is quantized. The abso-
lute value nh is an integer multiple of Planck’s
constant A.

The two conditions:

a) The angular momentum of the atom in the center of
mass system is |L| = nh

b) The circumference of the circular path of the elec-
tron 2nr = n\gg must be an integer multiple of the
de Broglie wavelength

are identical. They are both due to the boundary
condition for the standing de Broglie wave.

In order to explain the line spectra observed in ab-
sorption or emission, the following hypothesis is added
to Bohr’s model.

By absorption of a photon /v the atom can be excited
from a lower energy State E; into a higher state Ey, if
the energy conservation

hviy = Ex — E; (3.90)

is fulfilled. Inserting the relation (3.88) for the energies
Ey, E; yields the frequencies

Ry ,(1 1
ik = Z -
T ( )

L

(3.91)

of the absorbed light. With the wave numbers bV =v/c
and Ry* = hc- Ry we obtain for the hydrogen atom
(Z=1) exactly Balmer’s formula (3.80) for his
observed spectra.

When emitting a photon hv, the atom undergoes
a transition from a higher energy state E; to a lower
state E;, where again energy conservation (3.90) has to
be fulfilled.

We will summarize the preceding results of Bohr’s
model of hydrogenic atoms with a single electron.

® The electron moves on circles around the
nucleus with quantized radii

n*  n*hs
2 T Ze?

that increase quadratically with the integer
quantum number 7.

® The possible values r, are inversely propor-
tional to the nuclear charge Ze. For the He™
ion with Z = 2 they are only half as large as
in the hydrogen atom.

® In each quantum state the atom has a well-

defined total energy
2
En = _Ry* 2 EPOt = +2En ’
n
Evin=—E, .

The energy Eo =0 for n = 0o and r,, > o0
is chosen as zero. In its lowest possible state
the energy is E; = —Ry*Z>. Therefore the
positive energy —E| is necessary to ionize
the atom in its ground state (i.e., to bring
the electron from r = r; to r = 00). It is cal-
led the ionization energy. For the H atom the
ionization energy is Ejo, = 13.6€V.

e By absorption of a photon hv = E; — E; the
atom can be excited from its lower energy
state E; into the higher state E;. Emission of
aphoton by an excited atom causes a transition
from Ej to E;.



Note:

The first excited state (n = 2) of the H atom already
needs an excitation energy of about 10.2eV, which is
3/4 of the ionization energy.

Although Bohr’s semiclassical atomic model ex-
plains the observed spectra very well, and also brings
some esthetical satisfaction, because of its resemblance
to the planetary system, it leaves several questions
open. One essential point is that, according to classi-
cal electrodynamics, every accelerated charge should
emit radiation. The electron on its circular path is such
an accelerated charge. It should, therefore, loose energy
by emitting radiation and should spiral down into the
nucleus. Therefore, the Bohr model cannot explain the
existence of stable atoms.

3.4.3 The Stability of Atoms

The stability of atoms is consistently explained by
quantum theory. We will here give a conspicuous ar-
gument based on the uncertainty relation. It should be
only regarded as a simple estimation that is not re-
stricted to circular paths of the electron. If a is the
mean radius of the atom, we can give the distance r
of the electron from the nucleus with an uncertainty
Ar < a, since we know that the electron has to be
found somewhere within the atom. According to the
uncertainty relation the uncertainty Ap, of the radial
component of the electron momentum p must be lar-
ger than //a. Therefore we conclude for the uncertainty
Ap > Ap, > h/a (otherwise we could determine p wi-
thin narrower limits than its component p,). We find the
relation p > Ap > h/a. The mean kinetic energy of the
electron is:

2 2 2
p- _ (Ap)” h

Exin = .
kin 2me — 2me — 2mea?

(3.92)
Its potential energy at a distance a from the nucleus
is

o2

Epot = — (3.93)

dmega

and its total energy E = Eyj, + Epo at the distance a is
then:

K2 &2

> — . 3.94
T 2ma® 4mspa (3:94)

3.4. The Quantum Structure of Atoms

The largest probability of finding the electron is at a di-
stance amin, where the total energy is minimum, i.e.,
where dE/da = 0. This gives

4reoh?
Amin = )
me

80/12
— ap

= e = (3.95)

which is identical to the Bohr radius ay.
Therefore, a stable state exists with the minimum
energy limit

me4 me4

T 2(4meoh?)? T 8e2h?

*

—Ry",

Emin =
(3.96)

which is consistent with the energy of the lowest state
with n = 1 in Bohr’s model.

Although the quantum mechanical results for the
energy confirms Bohr’s result, the explanation of the
stability is different.

According to the uncertainty principle the atom can-
not radiate in its lowest state because it has minimum
energy. In order to emit a photon, it would have to make
a transition to a higher energy state, which contradicts
energy conservation. The reason for this energy mini-
mum is the sharp increase of the kinetic energy of the
electron with decreasing distance a, due to the uncer-
tainty of its momentum (Fig.3.43). In higher energy
states the atom can radiate, in accordance with the
experimental results.

In Bohr’s model the stability is explained by the as-
sumption of standing waves for the electron, where the
Poynting vector is zero. However, this does not explain
why higher energy states, which are also represented by
standing waves, do radiate.

3.4.4 Franck-Hertz Experiment

James Franck and Gustav Hertz [3.18] gave in 1914
an impressive experimental proof for the energy quan-
tization of atoms based on the following experimental
arrangement (Fig. 3.44a).

Electrons, emitted from a hot cathode are accele-
rated to the energy Eyi, =eU by the grid G at the
voltage U against the cathode in a bulb, filled with
mercury vapor at low pressures. The electrons can only
reach the collecting anode A that is kept at a lower vol-
tage Upn = U — AU, if their energy after having passed
the grid G is at least eAU..
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Fig. 3.44a,b. Franck—Hertz experiment. (a) Experimental se-
tup (b) Electron current as function of the acceleration
voltage U in a tube with mercury vapor

When measuring the electron current I (U) as
a function of the acceleration voltage U, one obtains
a curve like that in Fig.3.44b. The current increases
with U between U =0 and U =4.9¢eV and follows
a typical diode characteristics. Above U; =4.9V the
current decreases sharply, goes through a minimum, ri-
ses again until it reaches a second maximum at about
U.=9.8¢eV.

How can this be explained?

The electrons suffer elastic and inelastic collisions
with the Hg atoms. In inelastic collisions,

e (Exin) +Hg — Hg" (E)) +e” (Exin— Ea)

the electrons excite the Hg atoms and transfer the
amount AE\y;, = Eyi, — E, of their kinetic energy to
the excitation energy E, of the atom. Because of
this loss of energy the electrons cannot overcome the
bias voltage —AU and therefore cannot reach the
detector.

During elastic collisions the electron can at most
transfer the fraction 4me/myg ~ 10~° of its kinetic
energy. At sufficiently low pressures each electron suf-
fers only a few elastic collisions and the total energy
loss due to elastic collisions is then completely negli-
gible. However, elastic collisions may result in large
angular changes of the electron’s flight direction and
the electrons may therefore hit the walls of the tube
before they reach the anode. Without inelastic collisi-
ons the electron current would follow the dashed curve
in Fig. 3.44b, which resembles the electron current in
a diode tube. The further maxima and minima in the ac-
tually measured current I(Uy) are due to the fact that
at sufficiently large voltages U the electron can regain,
after n inelastic collisions, the minimum required ki-
netic energy eAZ during its flight path to the grid G
but has not enough energy for the (n+ 1)th inelastic
collision.

The separation between subsequent maxima cor-
responds to the excitation energy E, =4.9eV of Hg
atoms. The exact form of the curve I(U) in Fig.3.44 is
determined by

e The energy dependence of the excitation probability
(Fig.3.45)

® The energy distribution of the electrons emitted
from the hot cathode.

With the improved experimental setup of Fig.3.45a
the energy resolution could be substantially impro-
ved. Here, two grids are used and the acceleration of
the electrons is essentially restricted to the short flight
path between K and Gy, while the small adjustable vol-
tage U, between G, and G| does not change the electron
energy much. The excitation probability is then nearly
the same for all points between G; and G,. With such
an improved apparatus the finer details of the excita-
tion function could be resolved, which correspond to
different excited states of the Hg atoms (Fig. 3.46).
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Fig.3.45. (a) Improved experimental arrangement for the
Franck—Hertz experiment with higher energy resolution.
(b) Electron current /(U) measured with the apparatus shown
in (a), where the excitation of many higher levels in the Hg
atom can be seen. The structured maximum corresponds to
the first maximum in Fig. 3.44b

The excited Hg* atoms release their excitation
energy by emission of light

Hg* — Hg+hv.

Measuring this fluorescence light through a mono-
chromator shows that the emitted spectral lines have
wavelengths A, which exactly correspond to the mea-
sured absorption lines of Hg vapor. Time-resolved
measurements of this fluorescence prove that the excited
atomic levels E; are not stable. They decay within a very

Oexe /1078cm?
Hg atom
0.51
H atom
0.4+
0.2
4 8 12 16 20E,/eV

Fig. 3.46. Energy dependence of the excitation cross section
for the excitation n = 1 — n = 2 in the H atom (black curve)
and on the singlet-triplet transition 6'Sy — 63 Py in the Hg
atom (blue curve)

short time (typically ~ 107%s) into lower states E,
where

AE =Ey—E; =hvjy = hc/Aj .

Only the lowest atomic states (called the ground states)
are stable. Their lifetimes are infinitely long (if not
excited by collisions or absorption of photons). The
wavelength X;; of the emission spectrum measured
through a spectrograph allow a much higher accuracy in
the determination of energy levels than those obtained
from the electron impact measurements in Figs. 3.45
and 3.46.

The experimental results of the electron impact
excitation prove that atoms can acquire energy
only in discrete energy quanta AE. Their magni-
tude depend on the specific atom and its level
structure.

3.5 What are the Differences Between
Classical and Quantum Physics?

In the quantum physical description of micropartic-
les, such as atoms, molecules, electrons and photons,
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there is no distinct separation between particle model
and wave model. The matter wave function is charac-
terized by the particle momentum p and energy E
as well as by the de Broglie wavelength A or the
frequency v = E/h. The examples given in the pre-
vious sections have illustrated the particle nature of
light and the wave properties of particles. In this
section we will discuss the particle-wave duality of
microparticles and make clear, by some more in-
structive examples, that this duality does not give
contradictory but rather complementary descriptions of
nature.

3.5.1 Classical Particle Paths Versus Probability
Densities in Quantum Physics

The classical path of a particle can be exactly predic-
ted, at least in principle, for all times, if the initial
conditions (e.g., r(t = 0) and v(r = 0)) and the forces
acting on the particle are known. For the model of
point-like massive particles the equation of motion
(Newton’s equation F = ma) can be solved either ana-
lytically or numerically with computers within any
wanted accuracy.

For linear equations of motion, small inaccuracies of
the initial conditions results in only small uncertainties
of the further path r(¢) of the particles.

However, many phenomena in nature have to be
described by nonlinear equations of motion (e.g., the
motion of a particle in a turbulent flow). Here, tiny
changes in the initial conditions may already change the
future development of the particles motion drastically.
For such “chaotic” movements the exact calculation of
the motion r(#) is in principle not possible, even in
“classical physics.”

Quantum physics brings, through the uncertainty
relations, an additional principal limit to the calculation
of the time development of a physical system.

® The initial conditions 7 (0) and p(0) for location and
momentum of a particle can not be both given simul-
taneously exactly but only within uncertainty limits.
The product Ax; - Ap; (i = x, y, z) of the uncertainty
Ax;, Ap; cannot be smaller than Planck’s constant 7
(Fig. 3.47). Instead of the classical well-defined path
represented by the solid curve in Fig. 3.47 the loca-
tion x(#) can be only determined within a certain area
Ax - At, schematically shown by the coloured area

X
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p—= path
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| Q) Uncertainty area
V(O] <R 2NN of measurement
T (v+Av) attime t
Initial
uncertainties

t

Fig. 3.47. Uncertainty limits of the path of a microparticle,
determined by the uncertainty Ax, Ap, of the initial condi-
tions and by the principal uncertainty of the measurement of
Ax at the particle location at time ¢ and At of the time ¢

in Fig.3.47, which becomes larger over the course
of time.

® The determination of the exact paths r(r) of
single particles is replaced in quantum physics
by probability statements. It is only possible to
determine the probability P(x, p, ) to find a mi-
croparticle with momentum p(7) at the location x(7)
at time 7.

® Measurements of x and p changes the state of the
micro-particle (see Sect. 3.3.3).

e The probability of finding a particle at time ¢ at the
location x is related to its wave function ¥ (x, t).
Averaging over a large number of identical mea-
surements gives the mean probability |1/(x, £)|>dx
to find the particle at time ¢ within the spatial
interval dx around x. In the classical wave descrip-
tion this corresponds to the intensity of the wave
at (x, 1).

e The spatial uncertainty Ax of a particle corresponds
to its de Broglie wavelength Aqg = h/p = h/mv.
While this uncertainty plays an essential role for
microparticles, it is generally completely negligi-
ble for macro particles because of their large mass.
Only under special conditions (electrons in me-
tals or neutrons in neutron stars) the uncertainty
relation remains essential for macroscopic bodies.
Of course, it is responsible for the stability of
atoms (see Sect.3.4.3) and therefore of matter in
general.
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3.5.2 Interference Phenomena
with Light Waves and Matter Waves

The observation of interference phenomena had been
always regarded as convincing proof for the wave mo-
del of light. In this section we will illustrate the physical
essence of the quantum description of particles by mat-
ter waves, discussing several modifications of Young’s
double slit experiment, performed with:

® Macroscopic particles
e Light
e Electrons

a) Macroscopic Particles

A spray gun SP in Fig. 3.48a produces a divergent beam
of small dye particles (J ~ 1 um), which hits a screen
with the two narrow slits S; and S, (width b, separa-

|1+|2

S1 -

I<— Dy —»l«—— Dy —»—»
b) O X

Fig.3.48a,b. Young’s double slit experiment (a) with
macroscopic dye particles and (b) with photons

tion d) at the position x = x;. At a distance x, behind
the screen the transmitted particles hit a glass plate G,
where they stick to the surface. The intensity /(y) of the
transmitted particles can be measured by the density of
the deposited dye layer.

When we close the slit S,, we obtain the density-
distribution /;(y) (dashed curve) when closing Si,
a slightly shifted distribution I5(y) is measured. When
both slits are open, the measured intensity distribu-
tion I(y) = I,(y) + I(y) equals the sum of the two
distributions of each slit, as could have been expected.

With macroscopic particles no interference

phenomena are observed!

b) Light

When we replace the spray gun by a light source LS and
the glass plate by a photoplate, we observe for a proper
choice of the slit dimensions (b~ 2A, d > b) similar
intensity distributions as in Sect. a, if only one of the
slits is open. They correspond to the central diffraction
maximum for the diffraction by a single slit. However, if
both slits are open, the observed intensity does not equal
the sum /] + I, but an interference pattern appears that
can be described by

1(y) =141 () + A ()
=L+ 5L+2A1A;cos(Ap(y)),

where A; is the amplitude of the partial wave transmitted
through the slit S; and Agp = (2w /1) As is the phase
difference between the two interfering partial waves at
the point P(y) on the photoplate, resulting from the path
difference As(y) = S P(y) —S2P(y).

Now we perform an important modification of the
experiment.

We gradually decrease the intensity I of the light
source until at most one photon is traversing the system
during the passage time At = D/c with D = D| + D,
from the source to the detector. There is then always at
most one photon on the way. Its arrival time and location
in the detector plane can be measured when replacing
the photoplate by an array of many small photo detectors
(CCD-array). The photon can only pass through one of
the two slits. If it passed simultaneously through both
slits, each slit would have transmitted half a photon

(3.97)
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éhw, in contradiction to Planck’s hypothesis that Aw is
the smallest energy unit of the electromagnetic field.

If the experiment is continued over a sufficiently
long time period in order to collect a sufficiently
large signal, one again observes an interference pat-
tern. This interference could not have been produced
by the interaction between different photons, passing
simultaneously through the two slits.

If two shutters are placed in front of the two slits,
which open alternately at a defined time, so that the ob-
server knows which slit is open, the interference pattern
disappears! The intensity in the observation plane then
becomes

I=h+1.

This illustrates that the interference pattern only
appears when we do not know through which of
the two slits a photon has passed, although we
know that it must have passed through one of the
two slits. We can only state that the probability is
P = 0.5 for passing through one of the two slits.

The quantum physical description is unambiguous.
If ¥, is the wave function of the photon passing through
slit S; and v, for passing through S, the wave function
must be ¥ = | + 1, for the case that both slits are
open and we do not know through which slit the photon
has passed. The probability of detecting a photon in the
observation plane is therefore:

Y =x1+x2, VP = Y1+ vl
=[P+ [l + Y+ s
The last two terms represent the interference. If we

assume (following Huygen’s principle) that each point
of the slit acts as a source of an outgoing spherical wave

(3.982)

A; i
_ (kir—wt)
v = e
' r
the interference term becomes for A| = A, = A:
2

A
Uity = o COs [k(s1—s2)]

where s; is the distance between slit S; and the point of
observation P(y).

If the slit S; is closed, y; becomes zero and the
interference disappears.

(3.98b)

¢) Electrons

Instead of the light source in Sect.b we now use an
electron gun, which emits a divergent electron beam
covering both slits. A spatially resolving electron de-
tector (CCD-array) in the plane x = x| 4+ x, measures
the transmitted electrons. The observed intensity pat-
tern is quite similar to that in Sect.b if all quantities
(b, d, x1 +x;) are scaled by the ratio A/Agg of light
wavelength A and the de Broglie wavelength Aqg. The
experiment shows that electrons also produce interfe-
rence patterns due to their wave properties if the ratios
Aag/b and b/d are chosen properly.

We will now discuss another, very instructive
“Gedanken-experiment” as a modification of the pre-
vious experiment. When a light source LS is placed
behind the plane of the two slits, it can illuminate elec-
trons passing through one of the slits (Fig. 3.49). The
light scattered from the electron could be detected by
one of the two detectors D; (i = 1, 2) and gives infor-
mation about the location of the electron just behind the
slit. In this way it should be possible to decide through
which of the two slits the electron has passed.

If the detector D; and simultaneously a pixel of
the CCD-array in the plane x = x; 4+ x, deliver a si-
gnal pulse we know that an electron has passed through
slit S and has impinged onto the point P(y) in the plane
X = x1 4 x,. Will there be still an interference pattern?
Quantum mechanics says “no,” in accordance with the
experimental results. How can this be understood?

The collision between photon and electron changes
the electron’s momentum and the direction of its velo-

Electron
source

Fig.3.49. Double slit experiment with electrons. The light
from a source LS scattered by an electron after having passed
slit S allows one, in principle, to know through which of the
two slits the electron has passed
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city. As was shown in Sect. 3.4 for the example of the
microscope, the momentum change is Ap, =h/d, if d
is the spatial resolution, i.e., the uncertainty, with which
the location of the scatterer can be determined. The
electron then arrives at the detection plane at another
point (x = x| +x», y+ Ay). The statistical distribution
withawidth Ay = (Ap,/p,)x, becomes larger than the
distance A = (A/d)x> = h/(p,d)x>. This means, the in-
terference is completely washed out if the uncertainty
of the electron’s location in the plane of the slits S, S
becomes smaller than the slit distance d. The measu-
ring process change the conditions for observation and
destroys partly or completely the interference.

New experiments reveal, however, that the recoil
during the measuring processes of the electron’s loca-
tion is not the main cause of the disappearance of the
interference pattern, but the knowledge about the way
of the electron (see Sect. 12.5). The path of an atom in
an atom-interferometer can be inferred from preparing
specific atomic states by microwave absorption. Be-
cause the microwave frequency v is much smaller than
that of visible light, its momentum p = hv/c transferred
to an atom is completely negligible. Nevertheless, any
interference phenomena at the exit of an atom interfero-
meter disappeared when knowledge was gained about
which way an atom had gone [12.4]. We can therefore
summarize:

Interference phenomena for light or particle waves
are due to the principal lack of knowledge about
the exact path of particles through the interference
device.

The probability description of Born’s statistical
interpretation of matter waves can be illustrated by
the following example. When in the arrangement of
Fig. 3.48 only a single electron is detected at (x = D, y),
we do not know, whether it has passed through slit S,
or S;. However, we can give the probability amplitude
Y1 (y — y1) that the electron has passed through S; and
is detected at (x = D, y) or ¥, (y — y») for its passage
through S,. For a coherent superposition the amplitudes
have to be added. The total probability, to find the elec-
tron at the position y in the detector plane, independent
of its way through S; or S, is then

YD) = Y1 (v —y1) + ¥ (y — y) I

=12+ WP+ ¥ +yivs . (3.99)

Since the probability to find the electron somewhere in
the detector plane is

[yIPdy=1.

The detection probability for a detector that covers the
interval from y to y+ dy is

P(y)dy = [y(n)*dy .

When N electrons have passed per second through eit-
her of the two slits, the counting rate of the detector
is

Z(y)dy=Nly()|*dy.

Inserting (3.99) gives the spatial interference structure
of the counting rate Z(y).

(3.100)

3.5.3 The Effect of the Measuring Process

The examples in the preceding sections have illustrated
that in the quantum mechanical description of a mea-
surement, the measuring process itself affects the result
of the measurement. When we measure the location of
a particle, we change by this measurement its momen-
tum p. This change Ap is the larger the more accurate
we measure its position. If this measurement of posi-
tion is performed with light of wavelength A (remember
that the position x cannot be measured more accurately
than by Ax =~ A). The photon transfers the momentum
Ap =h/X to the particle and the random direction of
the recoil momentum results in an uncertainty Ap of
the particles momentum.

The influence of the measuring process on the state
of the measured object can impose a limit to the accu-
racy of the measurement not only for microparticles but
even for macroscopic bodies.

One example is the measurement of gravitational
waves by a large metal cylinder with about 10* kg mass
suspended by elastic strings.

The gravitational waves, which are produced, for
example, by an exploding star (supernova) cause a pe-
riodic contraction and expansion AL of the length L of
the cylinder. For a supernovae at a distance of 10° light
years the amplitude AL is estimated as 1072! m. For
its measurements, two points (x1, y;) and (xz, y» = y1)
at the ends of the cylinder have to be marked. The
measurement of their position with an uncertainty
Ax = 1072 m will result in the momentum transfer
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Ap > h/(2Ax). If the cylinder was at rest before the
measurement, it will afterwards move with a velocity
v= Ap/m > h/(2m Ax). For a frequency vg = 10° s~!
of the gravitational wave the time between two con-
tractions is T A~ 1073 s. Within this time the cylinder
moves by Ax,, = vt &~ ht/(2m Ax). Inserting the values
m=10*kg, Ax =102 m, t = 1073, gives

Axy >5x1072"m=5Ax .

The uncertainty of the local position of the massive
cylinder, caused by measuring its position, is therefore
larger than the shift expected due to the gravitational
wave. A way out of this dilemma is a larger mass m and
averaging over many measurements.

‘We note that the measuring process itself changes
the state of the measured object.

Remark

Meanwhile, several sophisticated experimental arran-
gements have been set up that allow “quantum nonde-
molishing” experiments, where information about the
measured system is obtained without altering the state
of the measured object. For more details see Sect. 12.5
and the literature [3.19, 20, 21,22, 23].

3.5.4 The Importance of Quantum Physics
for our Concept of Nature

Quantum theory can answer all open questions discus-
sed in the preceding sections (for example concerning
the stability of atoms, the diffraction of electrons, the
ultraviolet disaster and the photoeffect). Its extension to
quantum electrodynamics (QED) is in complete agree-
ment with all known experimental results within the
range of its validity, which means that all phenomena
associated with atoms, molecules and solids are satis-
factorily described by this QED-theory. Its limitations
only become visible when investigating the nuclear
structure and the properties of elementary particles. Its
disadvantage is its lack of vividness. There is, for in-
stance, no vivid picture of the photon because of its dual
character as particle or as wave. Also the quantum me-
chanical postulate that a lack of knowledge about the
way in which a particle has reached the detector, causes

interference phenomena, contradicts our usual picture
of classical physics.

The concept of probability and the uncertainty re-
lations have essential philosophical consequences. The
future destiny of a microparticle is no longer comple-
tely determined by its past. First of all, we only know its
initial state (location and momentum) within limits set
by the uncertainty relations. Furthermore, the final state
of the system shows (even for accurate initial conditi-
ons) a probability distribution around a value predicted
by classical physics.

The possibility of exact predictions, postulated in
classical physics for exactly known initial conditions, is
restricted in quantum physics in a two-fold way. The in-
itial conditions are not exactly known and the measuring
process itself affects the state of the system.

This is further illustrated by the following example
in Fig. 3.50. A light beam is split by beam splitters BS
into two equally intense partial beams, which are de-
tected by the detectors D; and D;. Each of the two
detectors counts the statistically impinging photons and
both measure on the average an equal mean photon rate.

D4 Counter
Counter Ny=N, = N
2
N
a)
D; Counter | N,=N
No counts
N BS
R—r ii BS, D, N,=0
LS AM Dark

e
b)

Fig. 3.50. (a) The role of the beam splitter without observing
an interference pattern. (b) An additional beam splitter to form
an interferometer



Since a photon is indivisible, the beam splitter BS can
only either transmit or reflect the photon. Which of the
photons is reflected and which is transmitted, is not pre-
dictable. One can only say that the probability for each
of the two processes is 0.5.

Now a second beam splitter BS; is inserted
(Fig. 3.50b) that splits the incoming light beam into two
partial beams that are again superimposed at the beam
splitter BS,. From interference experiments in classi-
cal optics we know that the intensity received by the
two detectors Dy, D, depends on the phase difference
between the two interfering beams at S. At a proper
phase difference, destructive interference occurs for the
beam directed towards D, and constructive interference
for the beam towards D;. This means that D, receives
no light, but D; all of the light. This is observed even
at very low light intensities, where only one photon
is simultaneously on its way from the source to the
detector.

S UMMARY

e Many experimental results prove the particle cha-
racter of electromagnetic waves. Examples are
the spectral distribution of blackbody radiation,
the photoelectric effect, the Compton effect or
measurements of the photon structure of the light
emitted by a weak light source.

® The derivation of Planck’s radiation formula ba-
sed on the photon model gives results that are in
complete agreement with experiments.

e The energy quanta hv of the electromagnetic field
are called photons. One can formally define the
photon mass as m = hv/c?. Photons are deflected
by gravitational fields, like other particles with
mass m. There are no photons at rest. Neverthe-
less one defines a rest mass my = 0, in order to
describe photons by the same relativistic equa-
tions for energy and momentum used for other
particles with mg # 0.

® To define the characteristic properties of a photon,
such as momentum ppnoe = hk = (h/A\)k, energy
E =hv=hw and mass m = hv/cz, one needs
the wave properties frequency v, wavelength A
and wave vector k. This shows the duality in the
description of light.

Summary

How can the photons “know” that they now all
should travel towards D and not towards D, ?

This example illustrates that the experimentator can
influence the future fate of photons by choosing the
corresponding experimental arrangement. Changing the
distance S;S|R R, affects the splitting ratio of BS;.
This demonstrates that it is not meaningful to attribute
a definite path to the photons, but rather only a detec-
tion probability for D; and D,, which depends on the
experimental arrangement.

During recent years several modifications of such
“which way” experiments have been demonstrated.
Their results are all in complete agreement with
quantum theory but cannot be explained by classical
concepts.

For a more detailed discussion the reader is referred
to the recommendable book of Paul [3.20] and to several
other books or review articles about this interesting
field [3.21, 22, 23].

e The wave character of particles is proved
experimentally by diffraction and interference
phenomena. Examples are the Bragg reflection
of neutrons by single crystals, neutron inter-
ferometry and numerous experiments in atom
optics, demonstrating diffraction and interference
of matter waves.

® Matter waves show dispersion, even in a vacuum.
Their phase velocity, which equals one half of the
particle velocity, depends on the frequency w.

® Particles can be described by wave packets. The
particle velocity equals the group velocity of the
wave packet.

e The absolute square | (x, 1)|? of the matter wave
function represents a probability density. This
means that |(x, 1)|*>dx gives the probability to
find the particle at time ¢ in the interval dx
around x.

® Position x and momentum p, of a particle cannot
be simultaneously accurately measured. Heisen-
berg’s uncertainty relation Ax-Ap, > h puts
a principle lower limit to the uncertainties Ax of
the particle position and A p, to its momentum, if
both are measured simultaneously.
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Analogous to the situation in classical optics the
uncertainty Ax for the location of a particle cannot
be smaller than the wavelength A =h/p of its
matter wave.

A similar uncertainty relation AE - At > his valid
for the measurement of the particle energy E and
the time duration Az of this measurement. The
energy of an excited atomic state with mean life-
time 7 can only be measured with an uncertainty
AE =h/t.

Bohr’s classical atomic model, where the elec-
trons orbit around the nucleus on circles like
planets around the sun, needs an additional quan-
tum condition in order to explain the discrete
energy levels of the atom. The condition for
the radius r of the orbit can be formulated as
2ntr = ni, where A = h/p is the de Broglie wave-
length of the electron’s matter wave, or as the
quantization |/| =rp =nh of the angular mo-
mentum [ of the electron. Both conditions are
equivalent and lead to a quantization of the energy
levels.

The allowed energy levels of atoms or ions with
only one electron and nuclear charge Ze are

E,=—Ry*Z?/n*> (n=1,2,3,...),

where Ry* = pe*/(8ne}h?) is the Rydberg con-
stant for the system consisting of the electron and
nucleus with reduced mass p.

PR OBULEMS

1.

What is the velocity and the kinetic energy of
a neutron with the de Broglie wavelength Aqg =
10719 m? Is this still a thermal neutron?
Calculate the mean energy per mode of the cavity
radiation field and prove (3.14b).

Derive Wien’s law in the form of (3.18)
and (3.18a).

a) Show that energy conservation and mo-
mentum conservation cannot be simultaneously
fulfilled when a free electron with velocity v;
absorbs a photon hv, increasing its velocity to
vy > v;. Why are both quantities conserved in the
Compton effect?

Bohr’s model predicts many features of atomic
spectra correctly, but has to be modified on some
essential points.

The uncertainty relation explains the stability of
atomic ground states.

All excited atomic states Ej are unstable. They
decay under emission of a photon hv = E; — E;
into lower states E;.

The quantization of atomic energy levels is cor-
roborated by the results of the Franck—Hertz
experiment and by the observation of line spectra
in absorption and emission of atoms.

The quantum mechanical description replaces the
exactly determined path of a microparticle by
a probability distribution [y (x,#)|> of a wave
packet. This distribution spreads in time. The un-
certainty Ax becomes the larger the more accurate
the initial location x(#y) had been known.

The interference phenomena observed for mat-
ter waves in interference experiments, where the
matter wave is split and later recombined, are
due to the imperfect knowledge of which path the
particle has taken. The final state of the particle
therefore has to be described by a linear combina-
tion of two or more wave functions. If the path of
the particle is defined by additional experiments
the interference pattern disappears, because now
the linear combination can be reduced to one of
the terms in the linear combination.

b) What is the momentum of a photon 7v = 0.1 eV
(infrared), hv =2¢eV (visible), and hv =2 MeV
(y-Quant)?

A slit with width b is illuminated by a paral-
lel beam of electrons with kinetic energy FEiiy.
For which slit width o is the width B
of the central diffraction maximum obser-
ved on a screen at a distance D from the
slit?

What are radius and electron velocity v on the first
Bohr orbit with n =1

a) in the H atom with Z = 1?

b) in the gold atom with Z = 79?



¢) How large is the relativistic mass increase for
the two cases? How much do the energy va-
lues change if this mass increase is taken into
account?

Free neutrons have a mean lifetime of about 900 s.
After what distance from the neutron source has
the number of neutrons with a de Broglie wave-
length A4 = 1 nm decayed to one half of its initial
value?

Calculate the wavelength of the Lyman-« line

a) for tritium atoms (Z =1, A = 3)

b) for positronium e*e™.

10.

11.

Problems

An atom with one electron has the energy levels
E, = —a/n>. Tts spectrum has two neighboring
lines with A1 = 97.5nm and A, = 102.8 nm. What
is the value of the constant a?

The Balmer series of the hydrogen atom should
be measured with a grating spectrograph with
a spectral resolution A/ AL = 5 x 10°. Up to which
principal quantum number n are two neighboring
lines still resolvable?

What are the numerical values for the first Bohr
radius of the electron and its kinetic energy in the
He™ ion? Which value of the minimum energy is
obtained from the uncertainty relation?
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In Chap. 3 we saw that because of the uncertainty rela-
tion, the location x and the momentum p, of an atom
cannot be simultaneously measured exactly. The clas-
sical well-defined path r(7) of a particle moving with
velocity v(#) has to be replaced by the probability

P(x,y,z,t) dV = [Y(x, y, z, )| > dV 4.1)
of finding a particle at a given time ¢ in the volume dV
around the point r = {x, y, z}. The probability den-
sity is determined by the absolute square of the wave
function .

In this chapter we will demonstrate, using several
simple examples, how the wave function i can be ob-
tained. These examples also illustrate the physical ideas
behind the mathematical framework of quantum mecha-
nics and their differences from classical concepts. They
furthermore show under which conditions the quantum
mechanical results converge to the classical ones and
they demonstrate that classical mechanics represent the
correct theory for all situations where the de Broglie
wavelength Agqg approaches zero (this is nearly always
the case in daily life phenomena).

We will also see that most of the quantum mecha-
nical phenomena are well known in classical optics.
This means that the essential new concept of quan-
tum mechanics is the description of classical particles
by matter waves, where the de Broglie wavelength
Ag = h/(mv) gives the minimum spatial uncertainty
range when the momentum p = mv is known within
Ap ==xh/Agg = £mv/2m. The deterministic classical
model of the time-dependent location (r(f), p(f)) of
a particle in phase space is replaced by a statistical de-
scription, where only probabilities can be given for the
result of a measurement. There is a principal uncertainty
for the simultaneous determination of location and mo-
mentum of a particle, which cannot be overcome even
with sophisticated measuring techniques.

4.1 The Schrodinger Equation

In this section we will discuss the basic equation of
quantum mechanics that was introduced in 1926 by
Erwin Schrodinger (1887-1961) (Fig. 4.1). The soluti-
ons of this equation are the wave functions ¥ (x, y, z, )

4

Fig.4.1. Erwin Schrodinger (1887-1961). From E. Bagge:
Die Nobelpreistriger der Physik (Heinz-Moos-Verlag, Miin-
chen 1964)
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we are looking for. They can be obtained, in analyti-
cal form, only for a few simple problems. For real and
therefore more complex situations the solutions have
to be calculated numerically. However, with present
day computing power, this generally poses no major
problems.

Although the Schrodinger equation cannot be deri-
ved in a direct mathematical way, it is possible to show
how Schrodinger arrived at this equation from classical
wave concepts if the description of particles by matter
waves is accepted.

We regard a free particle with mass m moving with
uniform velocity v in the x direction. With the relations
A=h/p= p=hkand E = ho = Ey;, (because Ep, =
0) we obtain, analogously to an optical wave, the matter
wave function

U(x, 1) = Aeltr—on — A o(/M(px=Eint) 4.2)

where Ey;, = p?/2m is the kinetic energy of the particle.
With the derivatives

82w pZ BZw 5 E]%

T
we obtain the wave equation

Py 1%y

w2 u? o “.3)

for waves that propagate with the phase velocity u =
w/k=E/p.

For stationary problems, where p and E do not ex-
plicitly depend on time, the wave function (4.2) can
be split into a product of a factor ¥(x) = Ael**, which
only depends on x (not on ) and a time-dependent phase
factor e ™', We can then write

Yx, 1) = P(x)e . (4.4)
Inserting (4.4) into the wave equation (4.3) yields, for
the space function y(x) with k> = p?/h? = 2m Ey;n/R?,
the equation:

Py 2m

g2 = Ky =— 2 Erin? -
For the case of a particle moving in the x direction in an
external field with potential energy E, the particle has
the total energy E = Eyj, + Epo. Replacing Ey;, in (4.5)
by E — E},, we obtain the one-dimensional Schrodinger
equation for stationary situations:

4.5)

R 3y

g a2 +EY =Y

(4.6a)

For the more general case of a particle moving in three-
dimensional space the wave equation (4.3) becomes

1 3%y
A =
v u? or?
with the Laplace operator
2 2 9?
A=

ox2 + 9y? + 92’

For stationary conditions, the wave function
¥(x, y, z,t) can be again split into a space dependent
factor and a phase factor ¥(x, v, z, 1) = ¥ (x, y, z) e "\,
where ¥(x, y, z) is the solution of the three dimensional
stationary Schrodinger equation

2

h
- mAw"'EpotI/’:Ew-

) (4.6b)

For time-dependent problems we obtain the Schrodin-
ger equation as follows: Taking the partial derivative
oyr/at of (4.2) gives

oy i
= - Ein .
ot h kin¥/

For a free particle with Epo =0 is Exjn = E = const.
Inserting (4.6¢) into (4.5) gives

N R A A )
o 2m axr

which can be generalized for the three-dimensional case
to

(4.6¢)

(4.7a)

N h?
i = A

If the particle is moving in an external potential with
potential energy Epq(r), the general three-dimensional
time-dependent Schrodinger equation is:

(4.7b)

oy(r, h?
ih wgrt " —zmﬂlﬁ(r, 0+ Epoi(r) - ¥(r, 1) .

4.8)
Remarks
1. The “derivation” of the stationary Schrédinger equa-

tion (4.6b) is based on the de Broglie relation p = hk
between momentum p of a particle and wave



vector k of the matter wave, which has been pro-
ved by many experiments but cannot be derived in
a mathematical sense.

2. The stationary Schrodinger equation (4.6) repres-
ents the energy conservation Exn ¥ + Epoy = EYr
in quantum mechanics. Just as the classical law of
energy conservation (first law of thermodynamics)
it cannot be derived from first principles but is solely
based on experimental experiences.

3. The Schrodinger equations (4.6) and (4.7) are linear
equations. This means that with solutions v; and ¥,
any linear combination ¢ + ¢V is also a solution
(superposition principle).

4. Since (4.7) is a complex equation the wave functi-
ons ¥ may also be complex. However, the absolute
square |/|? is always real, as it should be, because
it describes a physical quantity, namely the spatial
probability density of a particle.

5. There is an important difference compared to
the linear dispersion relation w(k) = kc of elec-
tromagnetic waves. For the matter wave of
a particle with energy E and momentum p,
where E = p?/(2m), the dispersion relation beco-
mes a quadratic relation w(k) = (h/ 2m)k?, where
E = hw and p = hk. Therefore the group velocity
dw/dk = (h/m)k of the matter wave depends on k
(see Sect.3.3.4).

For nonstationary problems (this means that energy
E = E(t) and momentum p = p(f) may be time
dependent) 9%v/dt> can no longer be written as
—?y and (4.7b) cannot be derived from the wave
function (4.2).

Schrodinger postulated, that the generalized equa-
tion (4.8) for a particle moving in a time-dependent
external field with potential energy E,.(r,?) should
still be valid for this more general case.

Although there is no mathematical proof for
this postulate, numerous experiments have con-
firmed that the time-dependent Schrodinger
equation (4.8) is a correct description for all non-
relativistic phenomena observed so far. It is the
master equation of nonrelativistic quantum me-
chanics and all phenomena in this field can be (at
least numerically) calculated by this equation.

4.2. Some Examples

For stationary problems the wave function ¥ (r, f)
can be separated into

Y0 = Yr)e E0

Inserting this product into (4.8) again yields the sta-
tionary Schrodinger equation (4.6a) for the spatial part

vr).

4.2 Some Examples

In this section we will demonstrate the application
of the Schrodinger equation (4.6) to some simple
one-dimensional problems. These examples shall illu-
strate the wave description of particles and its physical
consequences.

4.2.1 The Free Particle

A particle is called a free particle when it moves or
rests in a constant homogeneous potential £}, = const.
Because F = — grad E},, = 0 there is no force acting
on the particle. We can choose this constant potential
energy as E,o =0 without restricting the generality
of the problem. From (4.6) we obtain the Schrodinger
equation of the free particle:

R RZEY
2m  dx2

The total energy E = Exj, + Epo is now, because E,op =
03

= EY(x) . (4.92)

2 h2k2

=" ="
2m 2m

And (4.9a) reduces to

d>yr 5

a2 = —k“y .

With the general solution

(4.9b)

I/I(X) — Aeikx + Be—ikx
the time-dependent wave function

w(x’ t) — 1p(x) e—iwt — Aei(kx—wt) + Be—i(kx+wt)
(4.9¢)

represents the superposition of a plane wave traveling
into the +x direction and a wave into the —x direction.
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The coefficients A and B are the amplitudes of these
waves, which can be determined from the boundary
conditions. If, for example, the wave function shall de-
scribe electrons that are emitted from a cathode and fly
into +x direction to the detector, the coefficient B must
be zero. From the experimental setup we know that the
electrons can only be found within the distance L bet-
ween cathode and detector (Fig. 4.2). This implies that
the amplitude A can be nonzero only for 0 < x < L.

With the normalization condition

L
/Iw(x)|2dx=1 = A’L=1 (4.10)
0

we obtain for the amplitude A = 1/+/L.

In order to define the location of a particle at time ¢
more precisely, we have to use wave packets instead of
the plane waves (4.21) for its description:

ko+Ak/2
U(x, 1) = A(k)e!® =) dk
ko—Ak/2
(see Sect.3.3.1).

The local uncertainty Ax > h/(2Ap,) = 1/(2Ak)
at time r =0 depends on the momentum uncertainty
Ap, = hAk (Fig. 3.32). The larger the uncertainty Ak
the smaller the uncertainty Ax (¢ = 0), however, the
faster the wave packet spreads for # > 0.

This can be nicely illustrated by our example in
Fig.4.2. If we apply a short voltage pulse between the
cathode K and the anode A at t = 0, electrons can start
moving between K and A only during the pulse. Due to
the thermal velocity distributions of the electrons emit-
ted from the hot cathode their velocities are spread over
the interval Av ox Ak. Electrons with different values

(4.11b)

Fig. 4.2. Illustration of the spread of the wave packet by ob-
serving a bunch of electrons emitted at # = 0 from the cathode
with velocity spread Av(r = 0)

of v emitted at 7 = 0 are “smeared out” over the interval
Ax at later times . The uncertainty Ax increases with
time according to

 ax) = av = " Ak o APE=O
dr m m

The spatial spread of the wave packet is proportional to
its initial spread of momentum.

4.2.2 Potential Barrier

We divide the total x range into two parts (Fig. 4.3).
For x < 0 the potential energy is zero, while for x > 0
Epo = Eo #0. At x =0 we have a step AEpy = Eo of
the potential energy. From the left side of Fig. 4.3 free
particles with energy E fly into the +x direction. We
describe them, as in (4.10), by the wave function

Yi(x) = Ae™ + Be Ik | 4.11)

where B is the amplitude of the wave functions for
particles reflected at the potential barrier and traveling
in the —x direction. Note, that only the spatial part of
the wave function is written in (4.11), the time depen-
dent part is here omitted because we are dealing here
with stationary problems. The complete wave function
is represented by (4.9c¢).

For x > 0 the Schrodinger equation is

d*yr

dx2
With the abbreviation o = /2m(Eq — E)/h this redu-
ces to

2m
+, (E-Ey =0. (4.12a)

d2

dx‘f —a?Y =0 (4.12b)
The solutions of (4.12b) are

Yp=x>0=Ce**+De™*". (4.13)

E (x) 4

—_ —_—

Ek > EO D- e|kx

A. ek E,
— > -

Ek < EO B. e—lkx Ep = E0

| Il o
0 - X

Fig. 4.3. One-dimensional potential barrier



Since the total wave function

Yy for
Yy for

has to be uniquely defined within the whole range
—00 < 400, the derivative di/dx must be a conti-
nuous function and has to be finite within this range.
Otherwise, the second derivative in (4.12b) would not
be defined and (4.12) could not be applied.

This gives the following boundary conditions for
x=0:

Yi(x =0) =yYn(x =0)

V) = x<0

x>0

= A+B=C+D (4.14a)
dyn _ Y
dx x=0 dx x=0

= 1k(A—B)=4a(C—D). (4.14b)
We distinguish the two situations where the energy

Exin = E of the incident particles is smaller (E < Ep)
or larger (E > Ej) than the potential step (Fig. 4.3).

a) E<Ey:

In this case o = +/2m(Ey— E)/h is real and the co-
efficient C in (4.13) has to be zero. Otherwise v (x)
becomes infinite for x — oo and could no longer be
normalized. With (4.14) we then obtain:

ik 2ik
B="T% and D= “ 4. (4.15)
ik—o ik—a
The wave function in the region x < 0 is then
. ik A
Yi(x) = A [e"”‘ 4 te e_lk":| . (4.152)
ik—o
Its real part is illustrated in Fig. 4.4.
/\ /\ EO}EK
\/ \/ ° B
Ek _— -
B
X
A=B 0

Fig. 4.4. Complete reflection of the incident wave for Eyi, <
Ey, in spite of its penetration into the potential wall

4.2. Some Examples

The fraction R of the reflected particles is

2

Bikx2 B2
_ Bl _1BIT —1.  (416)

- |Aeikx|2 - |A|2 -

ik+ o
ik—«

This means that all particles are reflected.

This would also be expected from classical mecha-
nics. Since the particles do not have sufficient energy,
they cannot reach the region x > 0.

However, there is an important difference in the
wave description:

The particles are not reflected exactly at x = 0 but
penetrate into the region x > 0 before they return
to the —x direction.

This can be seen from closer inspection of Y. The
probability of finding a particle at x > 0 is

_ 2 —ax|2 _ 4k2 2 . —2ax
P(x) = |yux)|* = [De™| = pqplAle
41
= |APe ™, 4.17)
kO

where k3 =2mEy/h?. After a penetration depth x =
1/(2«), the probability has dropped to 1/e of its value
(4k? /k3) A% at x = 0.

Particles with energy E, described by matter
waves can penetrate into regions with potential
energy Ey > E, where they would not be allowed
in classical particle mechanics.

However, if we accept the wave description of par-
ticles the result, which is surprising at a first glance,
follows quite naturally and completely analogously to
the well-known phenomena of total reflection in wave
optics. If a light wave traveling in a medium with re-
fractive index n is incident on the boundary plane to
a second medium with refractive index n’ < n, under an
angle 6 less than the critical angle 6. it is totally reflec-
ted for n sin @ > n'. The wave, however, still penetrates
into the second medium with a penetration depth

1

xXp = with y =+/n2sin26—n"? .

This shows that quite analogous formulas are obtained
for both cases if 2« is replaced by ky.
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b) E >E0

Now the kinetic energy Eyi, = E of the incident partic-
les is larger than the potential barrier Ey. In the classical
particle model, all particles would travel into the region
x > 0, while their kinetic energy Eyi,(x >0) = E — E
would become smaller (Fig. 4.5).

What does the wave model say?

The quantity « in (4.12b) is now purely imaginary
and we replace it by the real quantity

K =ia=+/2m(E—Eg)/h. (4.18)
The solutions for y(x) are again (4.11) and for vy (x)
we obtain instead of (4.13) for x >0

Yn(x) = Ce K 4 pelk'x (4.19a)

Since for x > 0 no particles travel in the —x direction,
the amplitude C has to be zero and we obtain
Yn(x) = De *x (4.19b)
From the boundary conditions (4.14) we deduce that
k—Kk 2k
= A and B= A.
k+k k+k
The wave functions vy and v then become:

B (4.20)

A k—kK .
Yi(x) = A <elk" + Lk e_‘kx) x<0 (4.21a)
and
2k ik’ x
Yu(x) = Ak+k’ e x>0 (4.21b)
The reflection coefficient
|B>  |k—K|?
= = (4.22)
|AI? k4K

, 2
|n=2x | DR VR S
WA\

. JANEVAN
ARV

v |AP viDP T
E>E, Ey
l v-BP l
-]

0
Fig. 4.5. Transmission and reflection for Exi, > Eg
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Fig.4.6. (a) Reflectivity R of a potential barrier plotted as
a function of the ratio Ey/E of the heights E( of the barrier to
the energy E of the incident particle. Negative values represent
negative potentials £y < 0. (b) An enlarged section for £ >
Ey>0

gives the fraction of reflected particles, while the
transmission coefficient

v'|D|? 4kk’ 423
T OUAR T kK2 23
gives the fraction of the fluxes of transmitted particles
(Fig.4.5). Here the different velocities v and v’ in both
regions have to be taken into account. Since D? gives the
spatial density of transmitted particles, the flux is v’ D

From (4.22) and (4.23) it follows that R+ 7T =1
(conservation of the particle number!)

The reflection coefficient R strongly depends on the
ratio Ey/ E (Fig. 4.6), since k' = /2mEy(E/Ey— 1) /h.

For E = Ey= k' =0 and R = 1. All particles are
reflected.

Remarks

1. Instead of the positive potential step a negative step
with Ey < 0 can also occur. This can be realized



when in Fig.4.3 the particles enter from the right
side, i.e., all k-vectors are inverted.

2. Since in optics the wave number k = 277/ is related
to the refractive index n by k = nkg, (4.22) can be
directly converted to

2
ny+ny
niy+ny

R =

which gives the optical reflection coefficient for
a boundary plane between two media with refrac-
tive indices n; and n;. This again shows the close
relationship between wave optics and matter wave
description.

3. The reflection and transmission at a negative po-
tential step are analogous to the transition from an
optical dense medium with refractive index n; into
a less dense medium with n| < n,.

4.2.3 Tunnel Effect

We will now consider the case of a potential barrier with
finite width Ax = a (Fig.4.7). We therefore divide the
whole x range into three sections:

I: x<0, Ep=0
II: 0<x<a, Exw=E
or: x>a, E,w=0.

The wave functions are similar to the discussion in the
previous section:

Yi(x) = Ae™ 4 Be k| (4.242)
Yup=Ce*+De ™, and (4.24b)
Y = A e 4 B e ik (4.24¢)

A
VARV l

0 a

Fig.4.7. The tunnel effect. Penetration of a matter wave
through a rectangular potential barrier

4.2. Some Examples

Since there is no wave in region III that travels in the
—x direction, the coefficient B’ has to be zero. The
boundary conditions:

Y1(0) = Yyu(0),  Ymula) = Ym(a) , (4.25a)
dyn dym
= , and
d‘x x=0 d‘x x=0
dym _ dyrm 4.25b)
dx X=a dx X=a

yield relationships between the coefficients A, B, C,
D, A’. This gives for the transmission, after some
algebra

B U|A/|2 _ |A/|2
S uAR AP
| —E/E,

— 5 (4.26a)
(1—E/Ey) + (Ep/AE) sinh” (ax)

with @ = /2m(Ey — E) /h (see Problem 4.4).
For large barrier widths (ac >> 1) we can approxi-
mate

7aa) ~ 1 eaoz

2

and obtain with E3e*“/(16E(Ey—E))>> 1 from
(4.26)

1
sinh(aa) = 5 (e‘w‘ -

16E
T~ (Ey— E)e 2 .

4.26b
g2 ( )

The transmission of the matter wave (and therefore of
the particle represented by this matter wave as well)
through the potential barrier, depends on the barrier

T<1

E<E, Eo

> X
Fig. 4.8. Illustration of the tunnel effect for a potential barrier
of general shape
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heights Ey, on the difference (Ey — E) and exponenti-
ally on the product ax of barrier widths a and coefficient
a=+/2m(Ey—E)/h.

In the classical particle model, particles with E < Ej
could never overcome the barrier. The transmission of
matter waves through a potential barrier is called the
tunnel effect, because the particles seem to penetrate
the barrier at energy E on a horizontal path, as if this
were a tunnel. The potential barrier E,(x) can have an
arbitrary form, as indicated in Fig. 4.8. In our examples
we use rectangular barriers because the calculation of
transmission coefficients is much simpler for this case.

EXAMPLE
E=E/2,
a=MAg/2nr =h/p= Sax=1.
aB/ /p J2m(Eo— E)
With sinh(1) = 1.543 we obtain from (4.26a):
0.5
T 0.3.

T 0540515432

This means that 30% of all incident particles can
transmit through the barrier.

If a =Aigg = aa =27. With sinh’>(27) =7 x10*
the transmission becomes 7 = 1.5 x 1073,

In Fig. 4.9 the reflection coefficient R and the trans-
mission 7 =1— R are plotted as a function of the
ratio E/Ey for the special case of a barrier with width
a =0.4814p(Ep) that is about half of the de Broglie
wavelength Agp of the incident particles. The diagram
shows that even for E > E the transmission is smaller
than one, which means that not all of the incident par-
ticles pass the barrier, although they would do so in the
classical particle model.

For E > E, the quantity « in (4.26) becomes
imaginary. We, therefore, introduce the real quantity
kK =io = +/2m(E — Eg)/h. This transfers (4.26) into

T E/Ey—1

"~ (E/Eo—1)+(Eo/4E) sin2(K'a)
This formula is completely analogous to the Airy-
formula in optics, which describes the transmission of
an electromagnetic wave through a glass plate. The

undulations of 7 in Fig.4.9 are due to interferences
between the waves reflected at the front side and the

(4.26¢)

10 T T T LI S E——— T
LA _
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- \ .
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Fig.4.9. Transmission 7" and reflectivity R of a rectangular
barrier of width a = 3h/4/2mEg = (3/2m) g ~ 0.48)4p as
a function of the energy of the incident particle

backside of the barrier. For K'a = mm = a = ni/2 de-
structive interference occurs, which results in R = 0 and
T = 1for E = E( because in this case the de Broglie wa-
velength A, = 27/k’ becomes infinite, the parameter o
therefore becomes zero and the transmission is 7' = 1
independent of the width as of the barrier (Fig.4.10).
This can be verified using the rule of de-1"Hospital,
i.e., by differentiating the nominator and denominator
in (4.26c) with respect to E and then inserting £ = 0.
In classical wave optics the tunnel effect is a well-
known phenomenon. When a light wave is totally
reflected at the boundary plane between glass and air

05 »a/\

Fig. 4.10. Transmission 7 as a function of the ratio a/Aqg of
barrier width a and de Broglie wavelength A for E > Eq



D, Fig.4.11. Measure-
yd ment of frustrated
A total reflection in op-

D, tics, by changing the
D separation d of the
two prism surfaces

Laser
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(Fig.4.11) the reflection coefficient is R = 1 and the de-
tector D receives the full incident intensity. If, however,
a second glass plate is brought within a distance d paral-
lel to the first interface, part of the light is transmitted to
the detector D,. The transmission 7" can be varied bet-
ween 0 and 1 depending on the distance d. The reason
for this is that part of the light wave penetrates through
the first interface and this evanescent wave travels par-
allel to the interface plane. Its amplitude decreases but
the transmission through the interface remains zero un-
less a second air-glass-interface is brought within d &~ A
to the first one.

The tunnel effect is, therefore, not a specific quan-
tum mechanical phenomenon (as is often stated
in text books), but occurs for all waves (optical,
acoustic or matter waves). The crucial quantum
mechanical aspect is the description of classical
particles by waves.

We will illustrate the tunnel effect, discussed so far
by a model barrier, for some real situations in atomic
and nuclear physics.

a) Field Ionisation of Atoms

The electron of the hydrogen atom is bound by the
Coulomb force
1 ¢

Fc = 7

— 4.27
4req r? : ( )

between electron and proton. If the atom is placed in
an external electric field, E = {0, 0, E.} in z direction,
an additional force F = —e¢E = —¢E,e, is acting on
the electrons (Fig. 4.12). With z = r cos ¥ we obtain for

4.2. Some Examples

Zm z _
Coulomb potential
~. d=-FE
\¢\ z Penetration
N through the
ORI it S » potential
“~~~__ Dbarrier

Fig. 4.12. Field ionization of high lying atomic energy levels
by an external electric field through the tunnel effect

¥ = 0 the z dependence of the potential
e
P$(2) =— —Ez
4menz
which has a maximum for [d¢/ dz],,, = 0. This yields

e
im = .
" 4menE,

The energy level E3 in Fig.4.12 would be stable in
a classical particle model but can decay by tunnel effect
in the quantum mechanical model, which describes the
electron by its matter wave.

(4.28)

(4.29)

b) Nuclear a-decay

The radioactive a-decay rate of instable radioactive
nuclei is determined by the tunnel effect. The «-particle
(2 protons + 2 neutrons) is kept within the nucleus by
the strong attractive nuclear force, which can be mo-
deled by the potential well in Fig. 4.13. Superimposed
on the attractive potential is the repulsive Coulomb-
potential due to the electrostatic repulsion between the
positively charged a-particle and the positive charge
of the nucleus. If the energy of the «-particle is
above the total potential energy at r — 00 (E = Epo +
Eyin > Epo(00)) the a-particle can tunnel through the
potential barrier and can leave the nucleus. The energy
difference AE = E(rp) — Epo(00) appears as kinetic
energy of the emitted a-particle.
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AE
Repulsive
Coulomb potential

_ z2.2¢?
=00 ey

Tunnelling

<—Nuclear radius

Attractive
nuclear
potential

Fig. 4.13. Emission of « particles out of the nucleus of heavy
atoms through the tunnel effect

¢) Inversion Tunneling in the NH; Molecule

A famous example of the tunnel effect in molecular
physics is the NH3; molecule (Fig. 4.14). The potential
energy E,(z) of the N atom has two minima at z =
470 above and below the plane of the three H atoms,
separated by a maximum at z = 0. Even if the energy
of the N atom vibrating against the three H atoms is
less than the potential energy E,(z =0), it can tunnel

b)
1E@)

Vibrational
level

Coupling
of both levels
by tunneling

0 N

Fig. 4.14. Tunneling of the N atom through the plane of the
three H atoms in the NH3 molecule, resulting in the inversion
splitting of vibrational levels

through the potential barrier and has, therefore, an equal
probability of being at z = zp or z = —zo.

4.2.4 Particle in a Potential Box

We will now discuss the case that a particle is restricted
to a finite interval 0 < x < a (Fig.4.15). This can be
realized, if the potential energy is chosen as

0 for 0<x<a

Epot(x) = (4.30)

oo elsewhere .

In order to calculate the possible energies of the
particle with mass m, we have to solve the one-
dimensional Schrédinger equation with the given
boundary conditions.

Within the interval 0 < x <a where Ep, =0 the
Schrodinger equation is

d>y 2mE

dx? h2
with the boundary condition ¥(x < 0) = ¥ (x > a) =0,
since the particle cannot reach these x ranges.

We use, as we did in Sect.4.2.2, the trial wave
functions

+ky =0 with k= 4.31)

U(x) = Aelk¥  Be K (4.32)

as possible solutions. The boundary condition ¥/(x = 0)
yields

A+B=0 (4.33a)
while ¥(x = a) =0 gives

Aekd 4 Be ik = | (4.33b)
Because of (4.33a) this reduces to

A(e*—e*) =0. (4.33¢)

E = Eyin

Fig.4.15. Particle in a one-
O » dimensional potential well with
0 Ept=0 a X ipfinitely high walls




When inserting (4.32) and (4.33a) into (4.31) we obtain
the possible wave functions

Y(x) = A (" — e ™) =2iAsin(kx) . (4.34a)

The second boundary condition (4.33b) demands

2iAsintka) =0=ka=nmr (n=1,2,3,...).
(4.34b)

The wave functions are then

¥(x) = 2iA sin (”;T x) = Csin ("; x) (4.35)
with C = 2iA. They describe standing waves with am-
plitudes C. Since these amplitudes have to be real
for real physical situations, the amplitude A = C/2i
must be imaginary. The boundary conditions allow only
certain wavelengths

2
Ay =" (4.362)
n
or wave numbers
2
k, = =n (4.36b)
An a

These standing waves are completely analogous to vi-
brations of a string fixed at both ends (Fig. 4.16). The

a) b)
AE AE

E, 16 E,

E, 9E,

E, 4E,

= X X
0 a 0 a

Fig.4.16a,b. Energy levels and eigenfunctions of a particle
in a one-dimensonal box with infinitely high walls. (a) Ei-
genfunctions (x) as standing waves. (b) Spatial probability
distribution |y (x)|?
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probability |¥(x)|> dx of finding the particle in the
interval x — dx/2 < x + dx/2 is shown in Fig. 4.16b.

The possible energies of the particle in the one-
dimensional box follow from (4.36b) as:

2 h2k2
En = p = n
2m 2m

_ Rat,

n (n=1,2,3,...) (4.372)

T 2m a?

The energies are quantized. Not every energy is possible
but only discrete values E,, which increase as n? and
are proportional to 1/a*. This means that the larger
the width a of the potential well is, the smaller the
eigenenergies (Fig.4.17a,b).

The minimum energy is not zero but
h? n?

E, = .
"= om a2

(4.38)
This zero-point energy is caused by restricting the
location x of the particle to Ax = a. The larger Ax
the smaller is the zero-point energy.

This is directly related to Heisenberg’s uncertainty
relation that demands

ApAx > h/2.
a) b)
AE AE
Es Es
Es
E, E,
=5
E, Ez
> 1 >
0 a X 0 2a X

Fig.4.17a,b. Comparison of energy levels in a one-
dimensional potential box with different widths Ax.
(a) Ax =a, (b) Ax =2a
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With Ax = a this gives

h p2 . h2 thZ
>Ap > =Epn= """ = .
P=2P=,, 2m ~ 8ma?  2ma?
(4.39)
For the minimum wave number we obtain:
1 b4 2
kmin =, Pmin = = Amax = =2a. (4.40)
h a kmin

EXAMPLE

For an electron in a potential well with a = 1 nm the
energy values are

h2m?

2mea’

E, n?=0.368¢eV-n*.

The excitation of the electron from its lowest state E;
to the first excited state E, demands the energy AE =
E,—E =3-0368¢eV=1.1€V.

Remarks

1. When the walls of the potential box have a finite
height E the particle can partly penetrate into these
walls, as was shown in Sect. 4.2.2. Its wave function
decays inside the walls exponentially (Fig.4.18).
The wave functions slightly change because the
boundary conditions ¥(0) =0 and (a) =0 are
no longer valid. The energies E, decrease. As
is outlined in Problem 4.4 the energies E, can
be numerically calculated from the transcendent
equations

k, tan(k,a/2) = o (4.41a)

EO
__Z X'Efi
EO
-] pem== E2
0 i —— =

0 a

Fig.4.18. Energy levels and eigenfunctions in a one-
dimensional potential box with finite heights of the
walls

or
— kycotan(k,a/2) =« (4.41b)

depending on the boundary conditions, with
1
o= h\/Zm(Eo —E)
and

1
k, = h\/sz” ) (4.41¢)

. Energies E > E are not quantized, since the particle

is now no longer restricted to the interval 0 < x <a.
A particle with E > E traveling into the x direction
traverses the potential well, however, not with the
transmission probability 7 = 1. Part of its matter
wave is reflected, as has already been discussed in
Sect.4.2.2.

. Up to now we have described the particle by its mat-

ter wave with a well- defined k-value. In Sect. 3.3
we have, however, learned that the adequate descrip-
tion is a wave packet that contains many different
k-values within the interval ko — Ak/2 < k+ Ak/2.
While the solutions (4.35) describe the stationary
time-averaged situation of a particle in a one-
dimensional box, the time-dependent description of
a particle moving back and forth in the box has to be
performed with wave packets. Here the interference
pattern is much more complex, because many dif-
ferent wavelengths of the wave packet contribute to
it. An impression of the time-dependent description
gives the colored picture 1 in the Appendix.

. If the energy scale in Fig.4.18 is shifted in such

a way that

—Ey for 0<x<a
Ep0t=

0 elsewhere

all formulas in Sect.4.2.3 can still be used if Ej is
replaced by — Ey. Since E > Ej, the transmission T,
is now obtained from (4.26¢), but with a different
value of k’

K =\/2m(E+Eo)/h.

At energies E, = h*k?/2m with k, =nm/a the
transmission shows maxima. This phenomenon,
caused by interferences between waves reflected at
the front and backside of the potential can be also



observed for more general (i.e., non-square well)
potentials. For instance, the scattering cross section
of particles scattered by other atoms in a gas shows
minima for energies of the incident particle when
destructive interference occurs for the deflected de
Broglie waves (Ramsauer effect).

In Summary

If a particle is spatially restricted to the interval
Ax < a, it can only have discrete energy values

m r*, h?
E = n- = .
" 2m a? 8ma?
Its minimum energy is not zero but
h? m?
E| = (zero-point energy).
2m a?

4.2.5 Harmonic Oscillator

A very famous example of one-dimensional problems
is the harmonic oscillator, which plays an important
role in many branches of physics, such as molecu-
lar physics, solid-state physics and nuclear physics.
If a particle moves in a parabolic potential with
potential energy Epo = ész the restoring force is
F = —grad E,, = —Dx. The classical description
uses a point mass 7, that is attached to a spring with re-
storing force F' = —Dx (Hook’s law) (Fig. 4.19). If the
point mass is removed from its equilibrium position at
x =0 and then released it performs harmonic oscilla-
tions x = A sin(wt) or x = A cos(wt) depending on the
initial conditions. The frequency of these oscillations is

a)z\/D/miDzma)z. (4.42)

E(x >0)

i

f

F(x <0) Fig. 4.19. Classical model of the
harmonic oscillator

4.2. Some Examples

It depends on the mass m and the restoring force
constant D of the spring.

The quantum mechanical treatment starts from the
Schrodinger equation (4.6a), which now becomes:

e d2¢+ 'p 2y = Ey
— X Y = .
2m dx? " 2

Inserting (4.42) gives
Py 1,
T om di2 +2a) mx“y = Ey .

Using the transformation of the variable x to

£ =xy/mw/h
and the abbreviation
2F

C=
how

we obtain from (4.44a) the Schrodinger equation in the
form

d>y
dg?

(4.43)

(4.442)

(4.45)

+(C—EHy =0. (4.44Db)

For the special case C=1 (E = )ho) the solution
of (4.44b) is:

Yo(§) = Ae 572

as can be readily verified by inserting (4.46a)
into (4.44b). We now make the more general ansatz:

(4.462)

W) = HEe /. (4.46b)
Inserting this into (4.44b) yields the equation
& H 2& i +(C—-1)H=0 (4.47)
de2 dg a '

for the function H(&). This is a Hermitian differential
equation, well known to mathematicians. Its solutions
are the Hermitian polynomials H, (&) of order v, which
are defined by the generation equation

v
H© =0 0 () (448)
dév
with v=0,1,2,..., as can be verified by inser-
ting (4.48) into (4.47). The Hermitian polynomials can
be found in mathematical tables. The first four polyno-
mials H, with v=0, 1, 2 and 3 are listed in Table 4.1,
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Table 4.1. Eigenfunctions of the harmonic oscillator for the
four lowest vibrational levels

0 ! hoo No-e 572

1 3 ho Ny -2&. e €/

2 S ho No-(482-2). e 6/

3 T ho N3- (883 —12¢) - =82

where the N; are normalization factors, which ensure
that

/|w<s>|2ds= / WO de=1. (449
a;-’:—oo X=—00

The Hermitian polynomials can be represented by the
power series

HE =Y aé', (4.50)
i=0

which must be finite. Otherwise H,(£) would become
infinite for £ > 1 and the normalization (4.49) would
not be possible for the wave functions

Y(x) = H(x)e MEMP2 (4.51)

Inserting (4.50) into (4.47) and comparing the co-
efficients of equal powers &' yields the recursion
formula

(+2)(i+ Dajyr =[2i = (C—D]a; . (4.52)

Assume that £V is the highest power of £'. Then a,,
has to be zero. From (4.52) we can, therefore, conclude

(2v—C+1)=O:>v=;(C—1). (4.53)

Since C = 2E/hw we obtain the relation between the
“quantum numbers” v and the energy values

E() = <v+ ;) ho (=0,1,2,...). (4.54)

The possible energy values of the harmonic oscil-
lator are equidistant with the separation A E = hw.
The lowest energy for v =0
1
Ey= 5 hw (4.55)
is not zero but equals half of the level separation
AE = hw. E is called zero-point energy.

Fig.4.20. Equidistant energy levels wave functions 7, (x)
and spatial probabilities [y(x)|? for a particle in a parabolic
potential (harmonic oscillator)

The wave functions of the harmonic oscillator are

Y(x) = H(x)e "E/M (4.56)

They are depicted in Fig. 4.20 forv =0, 1, 2, 3 together
with their absolute squares || dx, which give the pro-
bability to find the particle in the interval dx around the
position x.

In classical physics, the probability of finding the
particle during the time interval d¢ within the spatial
interval dx during the harmonic oscillation with period
T=2n/wis
dt dx
T o7’

where df = dx/v(x) is the time interval the particle
needs to traverse the spatial interval dx. Since the
velocity v(x) = dx/df becomes zero at the two tur-
ning points of the oscillation, the probability P(x) has
maxima at these points (Fig.4.21).

Also the quantum mechanical description yields, for
v > (0, maxima around the turning points, but has an os-
cillatory probability P(x) dx of finding the particle in
the interval dx around x. For large quantum numbers v
the classical description (dashed curve in Fig.4.21)
represents the average of the quantum mechanical
probability |1/|> dx, shown for v = 10.

For the lowest state v =0, both descriptions dif-
fer considerably. The quantum mechanical probability
has a Gaussian distribution with its maximum at x = 0,

P(r) dt = 4.57)



2
Ayl

’lnn L]

HIREEaTAY |
Mn-r |
L |
I
AN
-6 5 4 3 -2 -1 0 1 2 3 4 5 6
Fig.4.21. Comparison of classical (dashed blue line) and
quantum mechanical probabilities for a particle with high

vibrational quantum number (here v = 10) of the harmonic
oscillator. The abscissa is plotted in units of & = x/mw/h

whereas the classical description assumes a particle
at rest and the probability would therefore be a delta
function at x = 0. The classical model gives the lowest
energy as Ey = 0, while the quantum mechanical mo-
del yields the zero-point energy Ey = hw/2, which is
justified by the uncertainty relation.

AE =h/ At

- /
N AN A,

V+2

Vi —r

ty v ty

X

Fig.4.22. Two momentary pictures of a wave packet oscil-
lating back and forth in the harmonic potential. The wave
packet is composed here of four vibrational wave functions
of levels v to v+3

4.2. Some Examples

All experiments performed so far (see Chap.11)
have proven that the quantum mechanical model of the
harmonic oscillator is the correct description.

Remark

The quantities |1/|> dx in (4.39) give the probabilities
of finding the particle within the interval dx only for
the stationary case. This case is relevant if the ener-
gies E, are measured with a low time resolution, which
means that the measuring interval At is large compared
to the vibrational period T of the oscillator. For measu-
rements with a very high time resolution, the dynamics
of the vibrating particle can be resolved. In this case the
stationary wave description is no longer adequate, but
wave packets must be used in order to localize the par-
ticle better during its vibration (Fig.4.22). This wave
packet description comes closer to the classical model
(see Chap. 11).

EXAMPLE

The vibration period of a vibrating molecule depends
on the mass and the restoring force (i.e., the potential
coefficient D in (4.30)). For Na, molecules T =2 x
10~ 13, for N, molecules T = 1.4 x10~1* s and for the
light hydrogen molecule H; the vibrational period is
only T =7.6x10" s,

In order to measure the dynamics of a vibrating
molecule a time resolution in the femtosecond range
(1fs = 10715 s) is necessary.

If the wave packet should have a spatial resolu-
tion Ax corresponding to a resolved time interval At
that is small compared with the vibrational period T,
than its energy resolution AE > h/At becomes worse.
For instance, if At = 0.2 T than AE is about five times
as large as the energy separation AEy, = E,) — Ej,.
This means that five vibrational levels are simulta-
neously involved in the oscillation. The superposition
of the wave functions (including their time factor
exp(iw,1)) of these five levels determines the form of
the wave packet, which oscillates, like the classical par-
ticle, between the turning points within the harmonic
potential (Fig.4.22).

The discrepancy between the oscillating classical
particle and the stationary wave functions is, there-
fore, somewhat artificial and does not represent a real
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problem. The stationary wave functions describe the
time-averaged motion of the particle with the time-
independent total energy, while the wave packet model
describes the dynamics of the particle, it separates the
kinetic energy (determined by the group velocity of the
wave packet) and the potential energy. Both energies
change during the oscillation, while the total energy
remains constant.

4.3 Two-and Three-Dimensional
Problems
For the solution of two- or three-dimensional problems

we have to start from the three dimensional Schrédinger
equation (4.6b)

hZ
~y AY + Epay = EYr (4.58)
m
with the Laplace operator in Cartesian coordinates
%y %y %Y
Ay = . 4.59
v ox2 + ay? + 072 (49)

The solutions ¥ = (x, y, z) can be obtained analyti-
cally only for potentials with high symmetry. For all
other cases the Schrodinger equation has to be solved
numerically. We will start with the more simple case of
a two-dimensional potential box.

4.3.1 Particle in a Two-dimensional Box

If the potential energy is

for 0<x<a;
Epol(xv y) = T
oo elsewhere

(Fig.4.23a) we can use the separable ansatz

U(x, y) = f(x)g(y) (4.61)

for the solution of (4.58). Inserting (4.61) into (4.58)
we obtain, with the boundary conditions

Yx=0,y=0=yx=a,y=b=0, (462
analogously to (4.35), the solutions are
. (NxTTX
f(x):Asm( B )
o (MY
g(y) = Bsin ( b ) (4.63)

a) b)

E
s/

E,=0 !/

——a—
Fig.4.23. (a) Rectangular two-dimensional potential box.
(b) Classical analogy of a mass bound by two springs to the
walls of a box as example for a two-dimensional harmonic
oscillator

with the integer numbers n,, n,,. Our wave function then
becomes

. (NxTXN\ (MY
Y(x, y) = Csin ( B ) sin ( b ) (4.64)
with C = AB. The normalization
a b
/ / [Y(x, y) dxdy =1 (4.65)

x=0y=0

yields the condition C =2/ Jab.
Inserting this normalized wave function into the
Schrddinger equation (4.58) gives the possible energies

h* (n? n? ) )
E(ny, ny) = 8m \ a2 + bé = Eixny + Exyny
(4.66a)
with
h? h?
E = 8ma? ;o By = Smb? (4.66b)

This shows, that every combination (n,,n,) yields
a possible energy value. The number of allowed energy
levels within a given energy interval is, therefore, much
larger than in the one-dimensional case (Fig. 4.24).

It may happen, that two different combinations
(ny, ny) result in the same energy. For example for the
quadratic potential box with a = b the two configurati-
ons with (n, =7,n, =1) and (n, =n, = 5) both have
the same energy E = 50E, although their wave func-
tions differ completely (see Fig. 4.25). Such states with
different wave functions, but with the same energy are
called degenerate.
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Fig. 4.24. Energy eigenvalues Ej,y ,y of a particle in a two-
dimensional rectangular potential box with unequal rectangle
sides a > b and for a quadratic box with a = b

The absolute squares |(x, y)|> of the wave func-
tions represent the probability to find the particle at
the position (x, y) in the energy state E(ny,n,). For
degenerate states different spatial distributions of this
probability give the same energy value.

A similar treatment gives for a two-dimensional pa-
rabolic potential the energy values of a two-dimensional
harmonic oscillator, illustrated by the classical analogon
in Fig. 4.23b.

4.3.2 Particle in a Spherically Symmetric Potential

For a potential with spherical symmetry the solutions
of the Schrodinger equation are easier to obtain when

4.3. Two-and Three-Dimensional Problems
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Fig. 4.25. Spatial probability |v(x, y)|? of a particle in a qua-
dratic potential box for two degenerated energy states (n, =7,
ny=1landny, =ny, =5)

we use spherical coordinates (r, %, ¢) instead of the
Cartesian coordinates (x, y, z). The relations between
the two sets of coordinates (Fig. 4.26) is given by

r=/x2+yr+22
¥ = arcos <
= (Jx2+y2+22>

¢ = arctan(y/x)

x =rsind cos¢
y=rsindsing
z=rcos?

(4.67)

The differentiation in the Laplace operator (4.59) using
the relations (4.67) gives A(r, ¥, ¢) as

10 a
r2 or ( 8r>
1 d . a
t 2 ging o9 (Sm ﬁa&)
1 9
+ r2 sin? ¢ d¢?

A(r, 0, ¢) =

(4.68)
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Fig.4.26. Spherical coordina-
tes for the description of
a particle in a spherical poten-
tial

z
) Epot: Epot(r)

Then the Schrédinger equation becomes, in spherical
coordinates,

1 0
r? oy + 1 9 sin ¢ oy
r2 or or r2sin ¥ 9% s

LM k) ¥ =0
— r =0V.
r2sin2 ¢ dp? = h? pot
(4.69)
For its solutions we try the product ansatz
Y(r, v, 9) = RNODN)P(p) . (4.70)

Inserting this into (4.69) gives, after multiplication of
both sides with 72 sin” 9/,

sin? 9 d , dR +sinz9 d sinﬂd@
r
R(r) dr dr

o) dv dd
2m 1 do
E-E *sin® 9 = — :
+ 12 ( pot(r))r sin D(p) dp?
4.71)

Now we draw an important conclusion:

The left side of (4.71) solely depends on r and ¥, the
right side solely on ¢. Since the equation has to be valid
for all values of r, 1, and ¢ it follows that both sides
have to be equal to a constant C (prove this statement!).
For the right side of the equation this gives

d2o

=-C® 4.72

dg? 1 (4.72)
with has a solution

& = AetVC19 (4.73)

The function @(¢) has to be uniquely defined for all
possible values of ¢. This results in the condition

B(p) = D(g+n27)
= ei«/Clanr — 1 = \/Cl =m

with m = integer , 4.74)

which means that m must be a positive or negative
integer. The solutions @(¢p) are then:

D, (p) = Ae™? | (4.75a)
We will normalize them in such a way that
2
/ P, (QPu(p)dp=1= A=
0

1
\/ 2
This gives the normalized functions

D, () = e™e . (4.75b)

1
«/ 21
They are orthogonal because

21

/®:1¢n d¢ = (Sm,n .
0

Now we will determine the solutions ®@(1%). We di-
vide both sides of (4.71) that equal the constant C| = m?
by sin? ¥ and rearrange the different terms in such a way
that only terms that solely depend on ¢ remain on the
right side, while on the left side only terms depending
on r remain. This yields:

Ld (r2 dR) + 22 (B = Epu()

R dr dr h? pet

=— : d (sinl?d@)—i- m =C;
®sin® dv dy sin2 ¥ ’
(4.76)

where the same conclusion as for (4.71) is again drawn
that both sides have to be equal to a constant Cj.

Remark

Unfortunately the symbol m in eqation (4.76) is used
for two different quantities. On the left side it represents
the mass of the particle and on the right side the integer
m = 4/Cj. Since in most of the literature, the symbol
m is used for the magnetic quantum number m = /C;
(see later) we did not want to depart from this common
nomenclature.

From (4.76) we obtain for the function ®() the
equation

1 d

in o 4¢ m* C,. (477
Sin — = — . .
Osing do do ] sin?® 2



a) m=0

For the special case m =0 (4.77) reduces with the
abbreviation & =cos?¥, to the Legendre differential
equation

d (1-&%) 1o +C,0=0 (4.78)

d& de | T '
The solutions can be written as the power series

O=ay+aE+at*+.... (4.79)

Since the function ®(?%) must also be finite for & = +1,
i.e., for # = 0° and ¥ = 180°, the power series can only
have a limited number of terms.

Inserting (4.79) into (4.78) yields, when compa-
ring the coefficients of equal powers of & the recursion
formula,

k(k+1)—C,
Chtk+1)
If the power series ends with the highest term ;&' the
conditions a; # 0 but @;, = 0 must be fulfilled. This
gives

a2 = da (480)

Cr,=I(l+1) [eN,. (4.81)
The real solutions
®;(&) = constP;(cos ) (4.82)

of Legendre’s equation (4.78) are named Legendre’s
polynomials. The boundary conditions demand:

O*W) =O*(W+71) = OW) =+OW +1) .

Each of the functions represented by the power se-
ries (4.77) can therefore contain either even powers of &
only, or odd powers only.

b) m #0

For m # 0 the solutions of equation (4.78) are the as-
sociated Legendre functions P (cos ¢}). As is shown in
mathematical textbooks, they can be obtained from the
Legendre’s polynomials
®;(&) = Pi(cosv) with & =cos?v
by solving the equation
diml

P (cos ¥) = const(1 — g2)m/2l aein

(P8) .
(4.83)

4.3. Two-and Three-Dimensional Problems

Since P;(§) is represented by a power series up to the
highest power &/, we see from (4.83) that the condition
|m| <[ has to be fulfilled, otherwise the mth derivative
would not be defined. The integer numbers m can be
positive as well as negative. Therefore the range of
possible m-values is restricted to

—l<m<+H. (4.84)

The functions P/" are defined by (4.83) only apart
from a constant factor, which is determined by the
normalization condition

b2

/ |P"(cos )|*sin9 d = 1. (4.85)
9=0

The product functions
Y (0, ¢) = P/"(cos ) Dy, (¢) (4.86)

are the spherical surface harmonic functions (Ta-
ble 4.2). Their normalization

b

2
/ / Y™ (9, )[*sin® d dp = 1

(4.87)
9=0¢=0
Table 4.2. Spherical surface harmonics
0 0 , \1/ i
! +1 :Fé\/fﬂ sin® eTi®
0 ;\/ ; cos U
2 +2 ‘1“/21751 sin2 § o219
1 jFé\/zlfr cos ¥ sin® et
0 41;\/,5, (2 cos? & —sin® ¥)
3 +3 :F;;\/zf sin3 ¥ e3¢
+2 zlt\/lzers cos ¥ sin® ¥ e*2i¢
*l %1;\/2,3 sin 9 (5cos2 # — 1) e*i®
0 411\/171(5C053ﬁ—3C0S19)
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O
/2
P}

Fig. 4.27. Polar diagrams of the absolute squares |Y;" (, @) 2
of the spherical harmonics. The length |r| of the vector r
gives the values |Y}" (cos 9)|? for the different values of ©.

is automatically fulfilled because both factors are nor-
malized separately. The absolute squares |Y;" (¥, o)?
are illustrated in Fig. 4.27 for some values of R and m.

The quantity | ¥;"|* sin 9 d dg gives the probability
of finding the particle within the cone ¢ & dv/2; ¢ &
de/2.

=3
m=0

All diagrams are symmetric with respect to rotations around
the z-axis, which has been chosen here as the vertical
axis

Remark

The angular part Y;" (¢, ¢) of the wave function is inde-
pendent of the r-dependence of the potential Ep,o (7).
The only demand for the factorization (4.70) is the
spherical symmetry of the potential.



The radial function R(r) in (4.70) can be determined
from the left side of (4.76). Based on the results (4.55)
and (4.81) we obtain after multiplication with R(r):

d ( 2dR)
r
dr dr
n [2'" P2 (E = Epu(M) — 10+ 1)} R()=0.

ﬁZ
(4.88)

The solutions of (4.88) do depend on the radial de-
pendence of the potential E,n () and on the total
energy E. We will discuss these solutions for the case
of a Coulomb potential in the next chapter.

From (4.84) and (4.86) we can conclude that for
a given allowed energy E and a fixed quantum num-
ber/ there are (2] + 1) different spherical harmonics Y},
because the energy does not depend on the quantum
number m which can be any integer number within the
interval

—l<m<+l. (4.88x)

Remark

The separation (4.70) is possible only for spherical sym-
metric potentials that do not depend on the angles ¢
and ¢. The spherical harmonics can, nevertheless, de-
pend on ¥ and ¢. This means that even for a spherically
symmetric potential the probability of finding a par-
ticle generally depends on the angles and is therefore
not spherically symmetric! The spherical harmonics
are solutions for every potential with spherical symme-
try, independent of the radial form of this potential. In
acoustics the functions Y;" describe the possible defor-
mations of the surface of a sphere caused by resonant
standing acoustic waves within the sphere. They are
therefore also called spherical surface functions.

4.4 Expectation Values and Operators

For the statistical description of properties of a many
particle system one has to define average values,
which depend on the distribution of these properties
over the particles of the system. For example, the
mean velocity v in a system of particles with velocity

4.4. Expectation Values and Operators

distribution f(v) is defined by

o0

D:/vf(v)dv.

v=0

(4.88y)

The function f(v) dv gives the probability of finding
a particle within the interval v to v+ dv. The mean
square velocity

o

V2= / v? f(v) dv

v=0

(4.882)

gives the average value of v.

In quantum mechanics, the probability of finding
a particle within the interval from x to x 4 dx is given
by |¥(x)|> dx. The average value

+00

(x) = / *Y() P dr

—0o0

(4.89)

is called the expectation value for the location x of the
particle. The exact location in classical mechanics is re-
placed by a probability statement. The above definition
of the expectation value has the following meaning.

When we perform a series of measurements of the
location x of a particle, the result will be a distribution
of slightly different values x around the mean value

(x) = / P OXP () dr .

This distribution is not caused by errors or inaccura-
cies of measurement, but by the fact that due to the
uncertainty relation Ax > h/Ap, it is in principle not
possible to measure the location x more accurately.

In an analogous way, we can define the expectation
value of the three dimensional radius vector

r) = / VO de

Zf//W*(X,y,Z)rlﬂ(x,y,Z) dx dy dz .

(4.90)

When a particle with charge g is moving in an exter-
nal electric field with potential ¢(r), its mean potential
energy is

(Epot) Zq/lﬁ*(r)qﬁ(r)lﬁ(r) dr, 4.91)
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where the volume element dr = dxdydz and the
integral indicates the integration over all three
dimensions.

The expectation value of a measurable quantity of
a particle is equal to its mean value obtained from
the wave function v of the particle replacing the
classical distribution function.

4.4.1 Operators and Eigenvalues

The general expectation value (A) of a measurable
quantity A (called observable), is defined as

(A) = / v Ay dr (4.92)
where A is the operator related to the observable A.
The operator A performs a definite operation on the
wave function 1. For example the operator 7 corre-
sponding to the spatial coordinate r just multiplies the
wave function i with the radius vector r.

The expectation value of the kinetic energy can
be obtained from the Schrodinger equation, which
represents the quantum mechanical analogy to the
classical law of energy conservation Eyi, + Epo = E.
From (4.6b) we see that

2

(Exin) = ) / YAy dr. (4.93)
m
The operator of the kinetic energy of a particle
. n?
Exin=—_. A (4.94)
2m

causes the second derivative of the particle’s wave
function. Performing the first derivative of the wave

function
V= A /M) (pr—En (4.95)

with respect to x, y and z we obtain
a a
—ih, ¥=p¥, —ih, ¥y =p,¥, and
ox ay

—ih 9 v =p.y. (4.96)
0z

This means that the operator of the particle’s momentum

can be expressed by

p=—ihV. 4.97)

If A is a measurable physical quantity that is measured
N times, the measured values A,, will show deviations
AA, = A, — (A) from the mean value

that are caused by the uncertainty AA of the observa-
ble A. There may be additional deviations caused by
statistical or systematic errors of the measurement.

The deviations AA become zero, if the operator A
applied to the function ¥ reproduces this function apart
from a constant factor A, i.e., if

Ay = Ay .

The function v is called an eigenfunction of the ope-
rator A and the constant A is the eigenvalue of the
operator A. In this case we obtain for the expectation
value

(4.98)

(A) = A f Yty dr=A, (4.99)

which means that the expectation value of an opera-
tor A formed with an eigenfunction ¥ of this operator
equals the eigenvalue A that is well-defined and has no
uncertainty.

This can be seen as follows. For eigenvalues we
have the relations

2
(A%)—(A)* = / YAy dt — (/ v Ay dt)

2
= [ Y*AAY dr — A2 <f vy dr)
=2 [yry ar—a( [ vy ao?
=0 because /w*w dr=1.

(4.100)

The mean quadratic deviation ((AA)?) becomes zero,
because

((AA)?) = ((A—(A)?) = (A%)+(A) =2 (A (A))
= ((AA)*)=2(A*)—2(A)*=0.
(4.101)

Here we have used the relation (A(A)) = (A)2.



This results means:

If the wave function  is eigenfunction of an ope-
rator A, then the mean quadratic deviation of an
observable A is zero. The system is in a state
where the quantity A is constant in time and the-
refore the same value of A is obtained (apart from
measuring errors) when several measurements are
performed over the course of time.

Since A is a measurable quantity, it must be real. We
therefore only allow those operators for physical quan-
tities that have real eigenvalues and not complex ones.
This demand is fulfilled for all Hermitian operators.

Definition:

An operator is called Hermitian, if
/ v Ay dr = / " (Aw) dr,  (4.102)

where * is the conjugate complex of the
function .

If the operators A and B of two observables A and B
have the same eigenfunctions i, both quantities A
and B of a particle described by the wave function ,
can be measured simultaneously.

This can be seen as follows. From the relations

Ay =AYy and By =By
it follows that

BAy = B(Ay) = A (éw) — ABY
and

ABy = A(BY) =B (Aw) — BAY .

Since A and B are real numbers which are commutative,
i.e., AB = BA, we obtain

(Aé - éA) v =0= ABy=BAy.  (4.103)
Two operators that fulfill the condition (4.103) are
called commutable.

If two operators are commutable their eigenva-
lues can be measured simultaneously with no
uncertainty (apart from measuring errors).

4.4. Expectation Values and Operators

This will be illustrated by some examples.

We have seen from the discussion of the stationary
Schrodinger equation that the operator of the classical
kinetic energy Eyj, = p*>/2m of a particle is given in
quantum mechanics by the Laplace operator:

A n?
Exn=—_. A,
kin m
which performs the second derivative operation on the
wave function.

The operator of the total energy E = Ejj, + Epq is

the Hamiltonian operator

(4.104)

2

1)
2m A + EpOt(r) ’

which is analogous to the classical Hamiltonian func-
tion and describes the total energy of stationary
systems.

H = Eyin+ Epot = — (4.105)

The total energy of a stationary state is the
eigenvalue of the Hamiltonian operator. The
Schrodinger equation (4.8) can be written as

Hy = Ey .

From (4.104) the operator of the momentum of
a particle follows as

p=—ihV (4.106)
because the relation

. A2 72 2

Bo=? =2

2m 2m 2m

can then be fulfilled.

The expectation value of the momentum is

(p) = —ih/ YV dr . (4.107)

The x-components p, of the momentum operator p
and x of the operator X are not commutable. This can
be readily seen as follows:

£ pr(f(0) = pr - £(f(x))

= —sin"! tin ) (efo)
= —ih (xaf +f(x)+xaf) #0.
ax ox

+ih
X
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If f(x) is an eigenfunction of X it cannot be an ei-

genfunction of p,. This means, that the observables x

and p, cannot be exactly measured simultaneously.
We can now make the general statement:

To every measurable physical quantity we can re-
late a Hermitian operator, where the quantity is
the eigenvalue of this operator.

In Table 4.3 some physical quantities are listed
together with their corresponding operators.

Remark

The representations of the vector operator 7 as the vec-
tor r and of the momentum operator p as —ihV are
useful if the wave functions are functions of the coor-
dinate r. There are physical situations (for example
in solid-state physics) where problems can be solved
easier when the wave functions y/(r) are Fourier trans-
formed into functions @(p) of the momentum p, which
are defined in momentum space. One example is the
eigenfunction

d(p) = elp/hr

of the momentum operator p.

One obtains the location r, in momentum space,
if the operator 7, = p = —ihV, is applied to the
function @(p). This yields

Fp®@ =rd .

4.4.2 Angular Momentum in Quantum Mechanics

The classical definition of the angular momentum L of

a particle with mass m and velocity v with respect to

the originr =0 is
L=rxp=m@rxv). (4.108a)

With the definition of the momentum operator

p = —ihV we obtain the operator of the angular
momentum
L =—ihrxV). (4.108b)

Table 4.3. Some measurable quantities and their operators

position vector r r
potential energy Epo Epoy = V()
—_hK?
kinetic energy Ekin A
2m 2
total energy H= l:?pgt —, A
E= Eput + Exin "
momentum p p=—ihV
angular momentum L L=—ih (rxV)
A ad
z-component of L L,=—ih
g

In Cartesian coordinates the components of L are

A a ad
Lx:_1h<y —Z ) ’
0z ay
N ad a
L,=—ih - d
y i (Zax x&z)’ an

A a a
L,=—ih|x_ —y .
ay x

In order to obtain L in spherical coordinates, we use the
transformations

0 _8r8
dx  Ox or

(4.108¢)

o 9
ox 9

dp 0

4.109
ax 0p ( )

with similar expressions for y and z. This gives the
components (see Problem 4.7)

R d
L, =ih (simp

0
cotan? cos ,
o " ¢ Bga)

L,=ih 9 + cotan® si 9 d
=1 — COS cotanv sin s an

y ‘Paﬂ <ﬂa§0

(4.110)

From (4.110) we get the operator of the square L? as
2= 24P 402
1 9 ad 1 9
=R sin + . .
sin & 01 Roa sin? ¢ d¢?
(4.111)

A comparison with (4.71) reveals that L? is propor-
tional to the angular part of the Laplace operator A.



Fig. 4.28. Absolute squares |Y}" (¢, ©)|2, which are proportio-
nal to the spatial probability density of a particle in a spherical
symmetric potential, are plotted here in Cartesian coordinates

This implies that the spherical harmonics (Fig.4.28)
are eigenfunctions of the operator L2,

We will prove this by applying L? to the wave
function ¥ (r, ¥, ) = R(NY" (¥, ). With (4.111) we
obtain:

L*y = L*(ROHY" (9, 9) = RL* Y (9, 9)
= R+ DRPY" (9, 9) =1+ DIy .

4.4. Expectation Values and Operators

The expectation value of the square of the angular
momentum L is therefore

<L2)=/I/I*I:2W dr =1+ DR (4.112a)

because the functions i are normalized.

The integer [ is therefore named the angular mo-
mentum quantum number. For the absolute value of
the angular momentum we obtain from L? = I(I + 1)h?:

IL| = I+ 1.

For the z-component L, we get, using (4.110),

(4.112b)

. 9
L.y= —ih8 (R(NO@)P(9))
[
= —ihR(NO®) g e = mhy .
dp

The eigenvalues of L, are therefore

(L)) =mh. (4.113)

where m is the magnetic quantum number introduced
in Sect. 4.3.2.

The two operators I:Z and L have the same ei-
genfunctions. They are, therefore, commutable and the
quantities L. and L? can be simultaneously measured.

If the operators L, or iy are applied to the func-
tion V¥, one can prove that ¥ is not an eigenfunction
of L v l.e.,

Loy #my.

The same is true for L,. However, for the opera-
tor L)zC +L% =1%— L? the function ¥ in (4.70) is an
eigenfunction. The eigenvalues are

(L2+82) v =[a+D—m] B2y .

4.114)

(4.115)

Table4.4. Labeling of levels with angular momentum
quantum number / and the degree of degeneracy

0 0 s 1
1 —1,0,+1 p 3
2 —2t0 42 d 5
3 —3t0+3 f 7
4 —4to +4 g 9
5 —5t0 45 h 11
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Table 4.5. Expression of the angular functions Y(x, y, z) in
Fig. 4.28 as functions of ¥ and ¢

0 0 s =1/v4n
1 0 pzz\/3/47rcosz9
1 px:\/3/47'r sin ¥ cos ¢
Py =+/3/4m sin ¥ sing
2 0 dy 22 =+/5/167 (3cos® ¥ — 1)
1 de:\/15/4J'r sin ¥ cos ¥ cos ¢
dy; = \/15/411 sin ¥ cos ¢ sin ¢
2 do_p= \/15/47t sin® ¥ cos 2¢

dyy = \/15/47T sin® ¥ sin 2¢

Historically the eigenfunctions with [ = 0 are called s-
functions, with [ = 1 p-functions with [ = 2 d-functions
(see Table 4.4). The magnetic quantum number m gives
the orientation of the symmetry axis of these functi-
ons against the z direction. If an external magnetic field
B ={0, 0, B,} is applied, the quantum number m gives
the projection of the angular momentum L onto the field
direction. Since m can take all integer values in the in-
terval —/ < m < 4+ there are 2/ + 1 different functions

mh

¢ y

VI-(1+1)-m2h

a) X

Fig. 4.30. (a) Possible orientations of the angular momentum/
with a fixed projection (I;) = mh and length |I| = /I(l+1),
where the vector I can be everywhere on the surface of

zi Fig. 4.29. The vector L

______ y of the orbital angular

P . . momentum has a de-

finite length |L| and

- X projection L., but no

defined orientation in
space

- -

describing states with the same energy in a spherical po-
tential without magnetic field. Sometimes it is useful to
represent the functions Y;" (¢, ¢) in Cartesian coordina-
tes, for instance to illustrate the orientation of chemical
bonds in molecules.

With

: 1
singet? = (x £iy)
r
the representation of the Y;" (¥, ¢) in Table 4.2 trans-

forms into the Cartesian representation Y(x, y, z) of
Table 4.5.

J12

/1.
b)

the cone with angle ¢ and cos®¥ =mh/|l|. (b) Possible
projections of the angular momentum [/ with /=3 and
—3<m=<+3



We will demonstrate this transformation for the
example of p-functions with / = 1:

_ x 1 “1_ ytl
Vp) =50, =, (=1
=\/3/4ﬂsinz900s<p

i
W =F07 = ) (=)
=\/3/4nsinﬁsin<p

Y(p.) = fp(r)i — Y= /3/4mcost.  (4116)

While in classical mechanics the angular momentum
of a particle moving in a spherically symmetric poten-
tial is constant in time (because there is no torque on
the particle), which implies that the amount |L| and
all three components are constant and well defined, the
quantum mechanical description gives a different ans-
wer. The amount |L| and only one of the components
is constant and has a time-independent constant va-
lue, the two other components cannot be measured
simultaneously. Generally the z-axis is chosen as the
preferential direction (quantization axis), which means

S UMMARY

e The essential part for the quantum mechanical de-
scription of particles is the wave function ¥ (r, 7),
which gives the probability amplitude for finding
the particle at the position r at time ¢.

e The wave functions ¥ (r, t) are solutions of the
time-dependent Schrodinger equation, which al-
lows one to calculate (at least numerically) the
behavior of a particle with mass m in an arbitrary
potential @(r, f) as a function of position r and
time ¢.

e For stationary problems the time-independent
Schrddinger equation

hZ
~y AY(r) + Epot(r)Y(r) = EY(r)
m

is used. The solutions are stationary wave func-
tions v (r), that depend only on the position r
but not on time. They might be complex functi-
ons. Their real absolute square |(r)|> dr gives
the probability to find the particle in the volume
element dr = dx - dy- dz around the position r.

Summary

that the z-component L, is chosen as the component
that can be measured simultaneously with L2. With this
convention we get:

LY =10+ DRy ; L.y =mhy .

4.117)

In Fig.4.29 this is illustrated by a vector model. The

length of the angular momentum L (blue vector) is well

defined as is its projection onto the z-axis. The two other

components L, and L, are not defined. This means in

our vector model that the endpoint of the vector L can

have any location on the dashed blue circle (Fig. 4.30).
In summary

The operators L> and L. have common eigen-
functions. Their eigenvalues are simultaneously
measurable. L, and L, have no common eigen-
functions with 2. Only the sum L2 + Lf, =L-
L? can be measured simultaneously with L2

12
and L.

e For time-dependent problems, the solutions of the
time-dependent Schrodinger equation

o,
a

with the Hamilton operator

1A
—hHI/f(r, 1)

. K2

H= _2mA+Epol(r’ )]
are wave functions v (r, t). The absolute square
| (r, 1)|* describes the movement of the particle
in space. If E},,; does not depend on time, the wave
functions

Y, = P e

can be split into a product of a spatial part (r),
which is a solution of the stationary Schrodinger
equation, and a phase factor with an exponent that
depends on time and on the energy of the particle.
® A particle with energy E can tunnel through
a potential barrier of height Ey, even if E < Ej
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(tunnel effect). The tunnel probability depends on
the difference £y — E and on the width Ax of the
potential barrier. The tunnel effect is a wave phe-
nomenon and is also observed in classical wave
optics.

When a particle is restricted to a spatial inter-
val Ax (one-dimensional potential box) it has
discrete energy values

2 2
b w o,
= n-,

2m a?
which increase with the square of the integer 7,
called a quantum number. The lowest energy
is realized for n =1 and is larger than zero.
This zero-point energy is a consequence of the
uncertainty relation Ap, - Ax > h.

In a parabolic potential E,y = ax® the energy
eigenvalues

E,

E, =+ Dho

of the harmonic oscillator are equidistant.
For a spherical symmetric potential the three-
dimensional wave function

V(. 9, ) = R(nOW) P ()

PR OBLEMS

1.

Show that for time-independent potentials the
solutions of the time-dependent Schrodinger
equation can always be written as the product
Y(r, t) = f(r)- g(t) of two functions. What is the
form of g(r) for a constant total energy of the
particle?

What is the reflectivity R for a proton with Eyj, =
0.4 meV that hits a rectangular potential barrier
with Eyo = 0.5meV and a width Ax = 1nm?
What is the reflectivity of a potential well
(Epot = —Eg = —1¢€V, Ax = 5nm) as a function
of the energy E of an incident particle? Prove
that relations analogous to (4.26) are also va-
lid for a potential well with Eyo = —Eg. What
is the exact form of these relations for this
case?

Derive equations (4.26a) and (4.26¢) for the tunnel
transmission.

can be separated into a product of three
one-dimensional wave functions.

The angular part @ ()P () is the same for all
spherically symmetric potentials independent of
the radial form of the potential. It is described by
the spherical surface harmonics Y;" (¢, ¢), while
the radial part R(r) reflects the radial dependence
of the potential.

The functions Y;" (¢, ¢) are eigenfunctions of the
square L? of the angular momentum operator and
of the operator L, of its z-component.

The expectation values of a measurable physical
quantity A with the operator Ais given by

(A):/wﬁw dr.

If the functions 1 are eigenfunctions of the opera-
tor A, the expectation value (A) of the measurable
quantity A is equal to the exactly measurable
eigenvalue A.

Two operators A and B are commutable, if the
relation A By = BAy holds.

Two commutable operators have common eigen-
functions and eigenvalues that are simultaneously
measurable.

How many energy levels of a particle with mass
m fit into a rectangular potential well with width
a = 0.7 nm up to the energy E = 10¢€V, if the bot-
tom of the well is at £ =0 and the walls are
infinitely high (a) for a proton and (b) for an elec-
tron? (c) How do the values change when the walls
have finite heights Ep,x = 10eV?

How large is the spatial uncertainty Ax of
a particle in a parabolic potential Epy =
(1/2)Dx?, if its zero-point energy is E(v =0) =
(1/2)h(D/m)"/?? How large is Ax for v =20?
Derive from (4.108c) the relation (4.110) for L
and (4.111) for L>.

A particle with kinetic energy E is confined in
a potential well with width Ax =a and depth
E = —E,. What is the penetration depth into the
walls of the well where the probability |1/(x)|> has
decreased to 1/e of its maximum value?



10.

An electron with energy E = Ey/2 or E = Ey/3
hits a rectangular potential barrier with heights E
and widtha = h/(2mE)"/? = A4g. How large is its
transmission probability? For which value of the
ratio E/E( is T a maximum?

Electrons with Eyj, = 0.8eV and 1.2V, respec-
tively, hit a potential barrier with £y = 1€V and
Ax =a = 1nm. Calculate, for both cases, the

11.

Problems

transmission 7 and the reflection R. Prove that
always R+T7 = 1.

An electron is confined in a two-dimensional
quadratic potential well with a=1nm and
E® = —1eV. How many bound states exist in this
well? (Use the formulas for a well with infinitely
high walls).
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5. The Hydrogen Atom

Based on the discussions in Chap.4 we will now ap-
ply the quantum mechanical treatment to the simplest
atom, the H atom, which consists of one proton and one
electron moving in the spherical symmetric Coulomb
potential of the proton. These one-electron systems,
such as the hydrogen atom and the ions He™, Lit™,
Be™ ', etc., are the only real systems for which the
Schrodinger equation can be exactly (i.e., analytically)
solved. For all other atoms or molecules approximations
have to be made. Either the Schrédinger equation for
these systems can be solved numerically (which offers
a mathematical solution within the accuracy of the com-
puter program, but generally gives little insight into the
physical nature of the approximation), or the real atoms
are described by approximate models that can be cal-
culated analytically. In any case, for all multielectron
systems, one has to live with approximations, either in
the numerical solution of the exact atomic model or for
the exact solution of the approximate model.

A closer inspection of the spectrum of the hydrogen
atom and other atoms reveals, however, that at higher
spectral resolution the lines show a substructure that
cannot be described by the Schrodinger theory, but is
due to new effects, such as fine structure, hyperfine
structure or the anomalous Zeeman effect. Therefore,
even for the simple hydrogen atom the quantum mecha-
nical model of an electron in the Coulomb field of the
proton has to be modified by introducing new properties
of electron and proton, such as electron spin or proton
spin and their mutual interactions. These effects, which
are small compared to the Coulomb energy, are inclu-
ded in a relativistic theory, based on the Dirac equation,
which is called quantum electrodynamics. The Schro-
dinger equation can be regarded as the fundamental
equation of nonrelativistic quantum theory.

The treatment of the hydrogen atom illustrates in
a very clear way the basic ideas of quantum mechanics,
it explains the physical interpretation of quantum num-

bers, the description of the Zeeman effect and the fine
structure by the model of angular momentum vector
couplings and gives a better understanding of the more
complex many-electron systems that will be discussed
in the next chapter.

5.1 Schrodinger Equation
for One-electron Systems

The Schrédinger equation for a system consisting of one
electron (mass m, charge ¢ = —e and radius vector ry)
and a nucleus (mass my > m|, charge ¢ = +Ze and
radius vector r») is:

h? h?

A Aoy Ze
1 ! 2mo 2 dme

2
) Y =Ey(r,r),
m ol

(5.1)

where A; is the Laplace operator with respect to r;. The
first term describes the kinetic energy of the electron,
the second describes that of the nucleus and the third
one the potential energy of the Coulomb interaction
between the two particles, where r = |[r; —r;| is the
distance between the two particles. The wave function
U(ry, ry) depends on the location of the electron and
nucleus, which means it depends on six coordinates.

5.1.1 Separation of the Center of Mass
and Relative Motion

In classical mechanics it is shown that the movement
of a closed system of particles can always be separated
into the motion of the center of mass and the relative
motion of the particles in the center- of-mass system.
This is also possible in quantum mechanics as can be
seen by the following derivation.

We regard a system of two particles with coordinates
ri = {x1, y1, z1} and r, = {x,, y2, z»} written in lower
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X

Fig. 5.1. Transformation of laboratory frame into the center-
of-mass coordinate system

case letters and the coordinates of the center of mass
(written in capital letters)

mir
r=M 1 +mor;
M

with M=m1+m2, R:{X, Y,Z}

With the relative distance r = {x, y, z} = |r; —rz| =
[{x1 —x2, y1 — ¥2, 21 — 22}| we obtain from Fig. 5.1 the
relations:

R+ rR-""
r = r, rm=R— r.
: M : M
In order to properly write the Schrodinger equation (5.1)
in the coordinates r and R we have to consider that the
differentiation of the function ¥(r, R) with respect to

the variable x; (i = 1, 2) follows the chain rule:

(5.2)

Oy oYX | Y ox  m oy OY
dx;  dXdx;  ox dx; M dX = dx
0 0 (mpoy oy oX
w? 0X (M ax " 8x> x|
d (m oY oY\ ox
ox (M 8X+ Bx) x|
mi Yy 2my Py Y
= + + . (5.3)
M2 X2 M 8Xox  dx2

Analogous expressions are obtained for x,. When (5.1)
is written in the new coordinates (X, Y, Z) and (x, y, z),
the mixed terms in (5.3) cancel and the Schrodinger

equation becomes
R [ 9? 02 02
[_ZM <ax2 Topt azZ)

e EE LR
E =FEy,

2/.1, (axz_i_ayz—‘razz)}w—i_ pOl(r)¢ w
5.4

where u = (mmy)/(m| +my) is the reduced mass of
the system.
For the solution of (5.4) we try the ansatz:

V(R,r) = fr)g(R) .
Inserting this into (5.4) yields after division by v
h? ARrg h? A f
2M g 2 f
where Ag is the Laplace operator for (X, Y, Z) and A,
that for (x, y, z).

The term 7 on the left side of (5.5) depends so-
lely on the center-of-mass coordinates X, Y, Z. The two
other terms 7> and T3, on the right side, depend solely
on the relative coordinates x, y, z. The total energy E
of the system is constant.

Now we draw the same conclusion as in Sect. 4.3.2:
Since equation (5.5) has to be valid for arbitrary values
of the coordinates X, Y, Z and x, y, z, both sides of the
equation have to be constant. This means 77 as well as
T, + T5 have to be constant, otherwise (5.5) can not be
fulfilled for arbitrary choices of the coordinates. This
gives the two conditions:

+E— Epa(r) (5.5)

A
RE =const = —FE,
2M g
R A f
o f pot(r) = cons ! (5.6)

with E,+ Ey = E. We then obtain the two separate
equations

hZ

— 2MARg(R) =E.g(R) (5.7a)
h2

ey A f(r) + Epot(r) f(r) = Ef f(r) . (5.7b)

The first equation describes the kinetic energy E, =
EE%M) of the center-of-mass motion, which means the
movement of the whole atom. Its solution is, as outlined

in Chap. 4, the spatial part of the plane wave
2(X, Y, Z) = AekR—(Eg/Mn)



With the de Broglie wavelength

21 h

A = = s
MT kT oME,

which depends on the translational energy E, of the
center-of-mass motion.

The relative motion of electron and nucleus is des-
cribed by (5.7b). Renaming f(r) as ¥(r), Ey as E and
A, as A, we obtain the Schrodinger equation

2

- MAw+Epot(r)¢ =EY,

5 (5.8)

which is identical to the Schrodinger equation (4.40)
for a particle in a spherically symmetric potential if
the mass m of the particle is replaced by the reduced
mass /L.

The Schrodinger equation of a moving one-
electron atom can be separated into a term
describing the translational motion of the cen-
ter of mass and a second term that describes the
motion of a particle with reduced mass p around
the nucleus at » =0 under the influence of the
interaction potential.

In Sect. 4.3.2 we have already discussed the separa-
tion of this equation in spherical coordinates (r, ¥, ¢).
It was shown there that the wave function

1/f(’”’ ﬁv (P) = R(V)Ylm (1}, (P)

can be separated for arbitrary spherical potentials into
aradial function R(r) that depends on the r-dependence
of the potential and the angular part, which equals
the spherical functions Y;" independent of the radial
coordinate r.

In order to obtain the wave functions for the hy-
drogen atom we have to look for the radial wave
function for the Coulomb potential. Inserting this func-
tion into the Schrodinger equation yields the energy
eigenvalues E.

Note:

The function R(r) has nothing to do with the
coordinate R of the center of mass!

5.1. Schrodinger Equation for One-electron Systems

5.1.2 Solution of the Radial Equation
With the product-ansatz

Y(r, 9, ) = R(NY" (D, ¢)

for the wave function ¥(r, ¥, ¢) in Sect.4.3.2 we had
already obtained (4.65) for the radial part R(r), which
converts form — p and C, = [(I + 1) into

1d[,dR\ 2u
g (P00) s () R0

_la+n

2 R(r) .

(5.9)

The integer / describes, according to (4.89), the integer
quantum number of the orbital angular momentum of
the particle with respect to the origin 7 = 0 in our relative
coordinate system, where the nucleus is at rest at r = 0.
Differentiation of the first term and introducing the
Coulomb-potential for E ,, (r) yields

d®R n 2 dR
dr?2  r dr
2 Ze I+ 1)
E — R=0. 5.10
+ [ h? ( + 471£0r) r2 ] ( )

In the limit 7 — oo all terms with 1/r and 1/r? approach
zero and (5.10) becomes for this limiting case:

d*R(») 2

2 SR ER(r) .

The solutions of this equation describe the asymptotic
behavior of the radial wave function R(r). The proba-
bility of finding the electron in a spherical shell with
volume 477> dr around the nucleus between the radii r
and r + dr is given by 47| R|?r? dr. The absolute square
of the function R therefore gives the probability of fin-
ding the electron within the unit volume of the spherical
shell.

Introducing W(r) =r- R(r) into (5.10) and ne-
glecting all terms with 1/r and 1/r? yields, with
k = /2 E / h, the asymptotic solution

5.11)

W(r — 00) = AeX" + Be™*" (5.12a)
This gives for R(r) = W(r)/r
A ikr B —ikr
Rir)y= "¢k 4 = ik (5.12b)
r r

For E > 0 kisreal and the first term in (5.12b) represents
the spatial part of an outgoing spherical wave

A .
Y(r, =" ek (5.12¢)
r
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. .
,--~_ Electron wave
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Fig.5.2. (a) In-
going and out-
going  spherical
waves as solutions
to the Schrodinger
equation for an
electron with E >
0 in a spherical
potential. (b) Ex-
perimentally de-
creasing wave am-

plitude for £ <0

E<O

b)

which describes an electron that can, with a positive
total energy, leave the atom and can reach r — oo
(Fig. 5.2a). The second term corresponds to an ingoing
spherical wave that represents an electron coming from
R =00 and approaching the nucleus (this is called
a collision process).

For E < 0 we substitute k = /—2uE/h =ik and
obtain the real asymptotic solutions

R(r— 00) = Ae ™ + Beter . (5.12d)

Since R(r) must be finite for all values of r (otherwise
the function R(r) could not be normalized) it follows
that B = 0. We then obtain the asymptotic solution

R(r — o0) =Ae™ .

This is an exponentially decreasing function which has
decayed to 1/e forr = 1/«.
For the general solution, valid for all values of r, we

try the ansatz
Rr)=u(r)e™ . (5.12¢)

Inserting this into (5.10) we obtain for u (r) the equation

d%u (1 )du |:2a—2/< l(l+l)]
+2 —« + — u

dr? r dr r r?
=0. (5.13)
Where the abbreviation a is
,uZe2
a= .
4egh?

The reciprocal value ry = 1/a = 4meogh?/(uZe?) gives,
according to (3.85), the Bohr radius of the lowest energy
level.

We write u(r) as the power series

u(r) = ijrj .
J

Inserting this into (5.13) the comparison of the co-
efficients of equal powers in r yields the recursion
formula

(5.14)

Kj—a
TG —1a+1)
Since R(r) must be finite for all values of r, the power
series can only have a finite number of summands.
If the last nonvanishing coefficient in the power se-
ries (5.14) is b,_; than b; becomes zero for j=n.
This immediately gives, from (5.15), the condition, that
only the coefficients b; with j < n contribute to the
series (5.14).We therefore have the condition

bj=2b (5.15)

j<n. (5.16)
Since for j =n = b; = 0 we obtain from (5.15)
a=nk. (5.17)

With k = ++/—2u E/F this yields the condition for the
energy values

2h2 ZZ 4 ZZ
E,=—2" =10 — Rkt (518
2un 8egh? n
with the Rydberg constant

4
ne

Ry* = . 5.18a

YT gene ©-182)

Note that this formula is identical to that of Bohr’s
model in (3.88).

The quantum mechanical calculation of one-
electron systems gives the same energy values
as Bohr’s atomic model.

Note:
1. From the derivation of (5.18) it can be recognized

that the discrete eigenvalues E, of possible ener-
gies stem from the restraint y/(r — 00) — 0, which



implies that the electron is confined within a finite
spatial volume (see also Sect. 4.2.4).

2. Besides the condition (5.18) for the energies there
is also a restraint for the angular momentum quan-
tum numbers [ following from (5.15). According
to (4.59) I must be an integer. For the values j < n
that are allowed according to (5.16) the denomina-
tor in (5.15) would become zero for [ = j, which
would result in an infinite coefficient b;. We the-
refore have to demand that in (5.15) all terms with
J < I must be zero in order to keep the function u ()
finite.

We have then the condition

[<j<n-—-1,
which gives the restraint for the angular momentum
quantum number /

I<n-—1. (5.19a)

With the recursion formula (5.15) the functions u(r)
and with (5.12e) also the radial wave functions R(r) can
be calculated successively. Table 5.1 lists, for the lowest

Table 5.1. Normalized radial wave functions R(r) (Laguerre-
Polynomials) of an electron in the Coulomb potential of the
nucleus with charge Ze (N = (Z/nag)?'?; x = Zr/nay; ag =
dmegh? /(Zjue?))

1 0 2Ne™
2 0 2Ne (1 —x)

2 1 Sy Nex

3000 e (1m0 %)

3 1 IV2Ne ™ x(2—x)

3 2 oo NeT?

40 aNe(1-3r+22 - )
41 2 fiNe (1-x+%)
4 2 2\/éNe’xx2 (1-3)

4 3 3j\nge_xﬁ

5.1. Schrodinger Equation for One-electron Systems

values of n and /, the radial functions R(r). They depend
on n because of the condition (5.16) and on [ because
of (5.15).

The energies E, can be calculated from (5.18)
without the knowledge of the functions R(r). These
functions give, however, the radial electron distribution
and therefore the electric structure of the atom around
the nucleus. This will be discussed in more detail in the
following section.

5.1.3 Quantum Numbers and Wave Functions
of the H Atom

The normalized wave functions

Y(r, 9, 9) = Ry (NY]" (9, ¢)
discussed in Sects. 4.3.2 and 5.1.2 are also called atomic
orbitals, because in the old Bohr-Sommerfeld theory the
electron was assumed to move on certain orbitals around
the nucleus. This expression is, however, misleading,
because we know from the discussion in Sect. 3.5 that
we can not attribute to the electron a definite path, but
only a probability of finding it within a volume dV,
given by |¥[2dV.

The normalized total wave functions v for the lo-
west energy states of the hydrogen atom are compiled
in Table 5.2. They depend on the Quantum numbers #, /
and m. This also means that the probability of fin-
ding the electron at the position (r, 9, ¢), i.e., the
spatial electron distribution depends on these quantum
numbers.

Each atomic state, described by its energy and its
spatial electron distribution is defined uniquely by
the three quantum numbers 7, [ and m.

The different (I, m) states are labeled according to
an international convention with lower case Latin and
Greek letters, as compiled in Table 5.3. For example,
a state with quantum numbers n =2,/=1and m =0
is a2po state,one withn =4,/ =3 andm =2isa4fs
state.

In Fig.5.3 the radial wave functions of some ato-
mic states are illustrated. Together with the angular
part Y" (¥, ¢), drawn in Fig. 4.24, the total wave func-
tions can be visualized, as shown for two examples in
Fig. 5.4, which represents the three-dimensional elec-
tron distribution in the Coulomb potential for the 1s
and the 2po state.
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Table 5.2. Normalized total wave functions of an electron in ~ Table 5.3. Labeling of atomic states (/, m) using Latin and
the Coulomb potential Ejor = —Ze? /(4meor) Greek letters

3/2 0 s 0 o
1 (z ~7r
ro o0 (a) e L I
1 (z)? z Zr/2 2 d 2 g
r —Zr/2a
20 0 a2 (ao) (Z—ao) e 0 3 f 3 ®
v (z2N Pz o~z ! # ! Y
r .—7r/2a
21 0 a2 (ao) a © 0 cos ¥
21 41 1 (z 32 g Zrp2ag 9 eLiv R =1
s Lao o € sin® e o L
3/2 2,2
1 z _ Zr Zr —Zr/3a
30 0 L (2) (27 187 +272 )e 0, —o
V2 (NP 2\ 2 23
31 0 81/ (ao) (6—0(;) aO’ e 4130 cos
2
3/2 i
1 z _Zr\ Zr ,—Zr/3ag o +ip
31 +£1 Jslx (ao) (6 ao) a © 0sind e
3/2 p2 0 Jt | t‘a
1 zZ\* 22 —Zr/3a 2.9
320 4 e (ao) @ ¢ 0@ cos”# —1) r/107°m
32 £ ! (2)3/2 222 o= 2r/30 in 9 cos ¥ o0 M T
81y \ao a r/107%m
39 40 I (Z )3/ 222 - 2rsag gin?  etie Fig. 5.3. The radial wave function Ry(r) for the principle
1027 \do 4 quantum numbers n = 1, 2, 3. The ordinate is scaled in units
of 108 m=3/2
Since, according to (5.18), the energy E, of an  because of [ <n,
atomic state depends in this model solely on n and .
not on / or m, all states with possible combinations 2
of [ and m for the same n have the same energy. For k= Z(;QH_ D=n. (5.190)
each quantum number [ there are 2/+ 1 possible m B

values, because —/ <m < +I. The total number of Different states with the same energy are called ener-
different atomic states with the same energy is then, getically degenerate. The number of degenerate states
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Fig.5.4a,b. Illustration of the three-dimensional electron  cases the two-dimensional projection of [¥|? onto the xz-

charge distribution (a) for the spherical symmetric function  plane is shown (calculated by H. von Busch, Kaiserslautern,
of the 3s state and (b) for the 2po (m = 0) state. In both  Germany)



5.1. Schrodinger Equation for One-electron Systems

E/eV =1
olh=e  goon 120 1=1
_0.84 —38—
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337 5

-13.5— n=1 1 T

Fig. 5.5. Level scheme of the H atom, drawn on a correct scale

is called the degeneracy order. The states in the Cou-
lomb potential (e.g., for the H atom or the He* ion)
are n’-fold degenerate, which means that n” states with
different quantum numbers / and m and therefore dif-
ferent wave functions, but the same quantum number n
all have the same energy (Fig. 5.5).

EXAMPLES

The state with the lowest energy (ground state) with
n =1,/ =0, m =0 is nondegenerate.

States with n =2 may have angular momentum
quantum numbers [ =0, m =0 (2po) or [ =1 and
m=—1,0 and +1 (2pm). Such states are therefore
fourfold degenerate.

Note, that several effects (such as electron spin,
nuclear spins, external fields or the relativistic mass
dependence), which are not included in the Schrédin-
ger theory, may lift the degeneracy and split degenerate
levels into components with different energies (see
Sects. 5.3-5.6).

5.1.4 Spatial Distributions and Expectation Values
of the Electron in Different Quantum States

The spatial distribution of the electron in s states is
spherically symmetric. The electron has the angular

1=2 =3 I=4 lonization limit
| 5
23— 4=
3d
momentum

I =I(+1)h=0

in contrast to the Bohr-model, where the electron moves
on a circular path around the nucleus with an angular
momentum |/| = &. We can see from Table 5.2, that the
spatial probability density |v/|(r, ¥, @)|* in the Ls state
has its maximum at » =0, i.e, at the location of the
nucleus.

When we want to calculate the probability P(r)dr
to find the electron within a spherical shell in a distance
between r and r 4 dr from the nucleus, independent of
the angles ¥+ and ¢, we have to solve the integral

T 2
P(r) dr = / [ (r, 9, 9)|>r* drsin® do dg .

=0 =0
(5.20)

Inserting the wave function ¢ forn =1,/ =0andm =0
(i.e., for the ground state of the hydrogen atom), we
obtain

4
P(rydr =

z3
3 r2e= 2%l gy
ao

(5.21)

Comparing this with the wave function for the s state
we get the result:
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The probability to find the electron within the
distance r to r + dr from the nucleus is in the ls
state given by

P(r) dr = 4572 |1y(r, 9, @) |* dr .

Note:

Similar results are obtained for all s states with arbitrary
quantum number 7.

The function P(r) is maximum for ry, = ay/Z, as
can be seen immediately by differentiation of (5.21).
For Z =1 one obtains the Bohr-radius r,, = ag (the
maximum probability of finding the electron is at the
Bohr-radius!). However, one should keep in mind that
the angular momentum obtained from the quantum me-
chanical treatment is [ = 0, while the Bohr model gives
[ = 1. All experiments performed so far have confirmed
the quantum mechanical result.

If one would like to use a classical model for the
movement of the electron in the 1s state, one has to re-
place the circular path of the Bohr model by periodic
linear motions of the electron through the nucleus. The
direction of this oscillation is, however, randomly dis-
tributed, causing an average electron distribution that
is spherically symmetric (Fig. 5.6). Arnold Sommerfeld
(1868-1951) showed that the electron motion can be
described to proceed on very eccentric elliptical orbits

| w(r) 2= maximum for r=0
4nr | y(r) P dr = maximum W)
forr=a, v
\ r? [y?|
\
| |
() N
N 1
b) 1 {2 rl/ag

Fig.5.6. (a) Classical model of electron paths as oscillati-
ons on straight lines through the nucleus of the 1s state.
The orientation of the lines is statistically distributed to give
an isotropic average. (b) Comparison between the probabi-
lity density |y(1s)|> and the probability 472 |v(15)|* dr of
finding the electron within the spherical shell 47r> dr

passing close to the nucleus, which causes a fast pre-
cession of the large axis and brings about that the outer
turning points are uniformly distributed on a spherical
surface.

The expectation value (r) for the mean distance
between electron and nucleus is given by

oo mw 27
(ry = / / Iy (r, 9, 9)|*r* sin® d de dr .
r=09=0 ¢=0

(5.22a)

For the 1s state this yields, after inserting the 1s wave
function from Table 5.2,

o0

3
(ry= f "247'rr2 e 2/ dr = " ay,
ay 2

r=0

(5.22b)

which differs from the Bohr radius a!

In Fig. 5.7 the functions r2ag| R, (r)|? are plotted for
some states against the abscissa r/ay, i.e., in units of the
Bohr radius. They are normalized in such a way that the
shaded area under the curve becomes

T d
r
/ PRy (nfag  =1.
ao
r=0

The plotted curves are directly proportional to the pro-
bability 477%|R,,;(r)|> dr of finding the electron within
the spherical shell between r and r + dr.

The probability P(r < ap) of finding the electron
within the Bohr radius ay is, for s-functions (/ = 0),

a0

P,i(r <ap) =41 / P Yn0(r)* dr
r=0

(5.23)

and can be calculated with the functions in Tables 5.1
and 4.2.
For n =1 and / = 0, for example, we obtain:
ap

4
; /rze_zr/“odr:0.32.

0r:O

Pio(r <ap) =

For n =2 and [ = 0 one can verify the result:

P, o(r < ap)
ag
1 43t
=, / <4r2— " +r2) e~/ dr = 0.034 .
8ay . ap  ag
r=



5.2. The Normal Zeeman Effect
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Fig. 5.7. Radial charge distribution of the electron in different states of the H atom. Note the different ordinate and abzissa scales

While for n =2 and [ =1 one obtains the smaller the maximum possible valuesof/ < n become larger and

probability the quantum mechanical spatial probabilities approach
@ more and more closely the classical circular orbits.
Poi(r < ag) = . / AT/ gy — 0.0037 | An interesting result arises:
24ay
r=0

Summing the spatial probability |y (r, 9, ¢)|* at
a given n over all allowed values of / and m gives
the total probability in the state n, which is always
spherically symmetric! Therefore the sum over the
electron distributions in all possible states (I, m)
for a given value of n is called an electron shell.

These results are illustrated by the curves in Fig. 5.7.
In the simplified classical model this means that the
orbits with [ = 0 correspond to very eccentric elliptical
paths where the electron is often close to the nucleus,
while orbits with maximum possible / are close to circu-
lar orbits. With increasing principal quantum number n
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5.2 The Normal Zeeman Effect

We will now discuss the behavior of the H atom in
an external magnetic field. In the beginning we will
use a semiclassical model (called the vector model),
where the electron motion is described by a classical
circular orbit, while the angular momentum is given by
the quantum mechanical expression

1] =i+ Dh.

An electron with charge —e moving with the velocity v
and the circular frequency v = v/(2nr) on a circle with
radius r represents an electric current

ev

I =—ev=— ) (5.24)
2ntr
which causes a magnetic moment
w=IA=Imr’h, (5.25)

where A = 77’71 is the area vector perpendicular to the
plane of the motion (Fig. 5.8).

The angular momentum of the circulating electron
is

l=rxp=mervn . (5.26)

The comparison of (5.25) and (5.26) gives the relation
(5.27)

between magnetic moment g and angular momentum /
of the electron. Since p is proportional to /, the orbital
magnetic moment is often labeled u;.

In an external magnetic field the potential energy of
a magnetic dipole with magnetic moment u is

Epw=—p-B. (5.28)

—

Fig. 5.8. Classical model of or-

Q)
bital angular momentum / and

2mg magnetic moment g

Using the relation (5.27) this can be expressed by the
angular momentum / as
‘1B,

2me
When the magnetic field points into the z-direction (B =
{0, 0, B, = B}), we obtain from (5.29), because of [, =
mh,

Epu =+ (5.29)

eh
mB
2me

Epo = (5.30)

where m (which had been introduced before as the
projection of [ onto the z-axis) is called the magnetic
quantum number, that can take the values — <m < +1.

The constant factor in (5.30)

eh

MB = 2m,
is called the Bohr magneton.

We can now write the additional energy caused by
the magnetic field as

AE, = ugmB,

=9.274015 x107%*J/T (5.31)

(5.32)

which gives for the energies of the hydrogen atomic
states in an external magnetic field:

En1m = Ecou(n) +pupmB . (5.33)
The 2/ 4 1 m states that are degenerate without magnetic
field split into 2/ + 1 equidistant Zeeman components
with an energetic distance (Fig.5.9)

AE = En,l,m - En,l,mfl = MBB 5 (534)

which is determined by the product of Bohr magne-
ton wp and magnetic field strength B.

The splitting of the 2/+1 degenerate m com-
ponents in an external magnetic field B due to the
orbital magnetic moment related to the angular
momentum |/| = /(I + 1)A is called the normal
Zeeman effect.

m
, +2
,'I ! +1
=2 //AE=ug-B 0

RN / 1 Fig.5.9. Zeeman splitting of

Y\ a level with /=2 in a ho-

-2 mogeneous magnetic field

B=0 B#0 (normal Zeeman effect)



5.3. Comparison of Schrodinger Theory with Experimental Results

Using the Bohr magneton (5.31) we can write the
orbital magnetic moment of the electron as

i =—(up/ML . (5.34x)
Since the external magnetic field with cylindrical sym-
metry breaks the spherical symmetry of the Coulomb
potential the orbital angular momentum / of the electron
is no longer constant, because the torque

D=u xB (5.34y)

acts on the electron. In the case of a magnetic field
B = {0, 0, B, = B} in the z direction the z component
of [ stays constant. The vector I precesses around the
z-axis on a cone with the apex angle 2« (Fig.5.10),
where

[ m
cosa = 1 = J+1) (5.34z)
The component [, has the values
I, =mh with —I<m<+I. (5.35)
Also, the absolute value of /
0 =Il+ Dk (5.36)

is well defined, while the two other components [, and /,,
are not defined (see Sect. 4.4.2). Their quantum mecha-
nical expectation value is zero, as is the classical time
averaged value.

+2h

+h

b)

Fig.5.10a,b. Vector model of the normal Zeeman effect.
(a) Classical model of orbital angular momentum preces-
sing around the field axis. (b) Possible orientations of I and
projections mh in the quantum mechanical description

For the absorption or emission of light by atoms
in a magnetic field, our model makes the following
predictions.

When a circularly polarized o*-light wave propa-
gates into the z direction all photons have the spin +#.
If they are absorbed by atoms in the magnetic field
B ={0, 0, B,} they transfer their spin +# to the atoms
(because of conservation of angular momentum) and
therefore cause transitions with Al, = +h, where the
quantum number m changes by +1.

For o~, polarization of the light wave transitions
with Am = —1 are induced.

A similar consideration is valid for the emission
of light by atoms in a magnetic field. For the light
emitted into the direction of the magnetic field (i.e., in
the z direction) the two circularly polarized o and o~
components are observed, while for light emitted into
the direction perpendicular to the field three linearly
polarized components are observed. One component
with the E-vector parallel to B, which is not shifted
against the field-free transition, and two components
with E_1 B, which are shifted to opposite sides of the
unshifted line (Fig. 5.11).

According to (5.34), the Zeeman splitting
AE = ugB is independent of the quantum numbers n
and /. This implies that all atomic states should have
the same separation of the Zeeman components. The-
refore every spectral line corresponding to a transition
(n1l;) — (n2, 1) should always split in a magnetic field
into three Zeeman components (Fig. 5.12) with o™, o~
and m-polarization and a frequency separation of

Av=pugB/h.
e T T
1B E|B ELB |
I‘ <+, ‘ I Transverse observation

linearly polarised
Am=+1 Am=0 Am=-1
ELB
Py &
-Av * Av v
Withou/

With
magenetic field

Longitudinal observation
circularly polarised

Fig.5.11. Normal Zeeman effect. Zeeman splitting and po-
larizations of a spectral line with frequency v observed in
emission. The splitting is Av = ugB/h
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E B=0 B0 m B=0 B0 m
/] +2 T +2
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\\ —1 \\ —1
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Am= +11||0 -1 Am= -11{|0 +1
. +1 . +1
I=1 /:_ 0 I=1 /:_ 0
-1 > -1
Av | Av
Absorption Vo Emission
Av=pg-—
Up h

Fig. 5.12. Level scheme and transitions Am = 0, £1 between
Zeeman level in absorption and emission for the normal
Zeeman effect

Next we will discuss how this prediction and all the
other conclusions drawn from the Schrodinger model
of the atoms match the experimental results?

5.3 Comparison of Schrodinger
Theory with Experimental Results

Although the hydrogen atom is, from a theoretical point
of view, the simplest atomic system, and can be calcula-
ted analytically (at least within the Schrodinger model),
its experimental investigation is not as simple. There are
several reasons for this:

1. First of all hydrogen atoms cannot be bought in

a bottle. They have to be produced by dissociation
of H, molecules. This can be achieved in several
ways.
The easiest method is dissociation by electron
impact in gas discharges, where electrons with
sufficient kinetic energy collide with hydrogen mo-
lecules H, to form H atoms, according to the
scheme

Hy+e — H" +H+e™ .

The excited atoms H* in the state |ng) release
their excitation energy partly or completely by
emitting photons with energy hv = E(ny) — E(n;)

with E; < Ey:
H* () ~5 H(n,) .

Another technique is the thermal dissociation of H,
molecules at high temperatures (7 = 1500—2000 K) in
the presence of catalysts (e.g., tungsten surfaces).

Nowadays the preferred method is the dissociation
by microwave discharges, which has proved to be the
most efficient way of forming H atoms.

2. The absorption spectrum of ground state hydrogen
atoms lies in the vacuum ultraviolet (VUV) spectral
region. It therefore can be measured only in the va-
cuum, i.e, in evacuated spectrographs (Fig.5.13b).
In most experiments the emission rather than the
absorption is measured. The hydrogen discharge
is placed in front of the entrance slit of the eva-
cuated spectrograph (Fig.5.13) and the dispersed
emission spectrum of the hydrogen atoms is detec-
ted on a photoplate. Since most materials absorb
in the VUV, no lenses are used and the curved gra-
ting (Rowland arrangement) images the entrance slit
onto the photoplate. For wavelengths below 120 nm
no entrance window can be used and the air co-
ming from the outside through the open entrance
slit has to be pumped away by differential pumping
in order to maintain the vacuum inside the spectro-
graph.

Since the emission of excited H atoms has a spec-

trum covering the whole range from the infrared to

the VUV region, that part of the emission spectrum
with wavelengths above 200nm can be measured
with spectrographs in air. Here, the intensity can be
enlarged by imaging the discharge spot S by a lens

onto the entrance slit and two curved mirrors M;

and M, image the entrance slit S; onto the CCD ca-

mera at the exit (Fig. 5.13a).

As has already been discussed in Sect. 3.4.1 the li-

nes in the spectrum of the H Atom can be arranged

in series (Fig. 3.40) with wavenumbers that can be
fit by the simple relations

_ 1 1
Vik = Ry l’ll2 - nlz

. my
with Ry = Ry

Me +my

=109,677.583 cm™! (5.37)

in accordance with the formula (5.18).
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Fig.5.13. (a) Experimental setup for measuring the emis-
sion spectrum of atomic hydrogen for lines with A > 200 nm.
(b) Vacuum UV spectrograph for measuring the Lyman-series
with A <200 nm

Accurate measurements with higher spectral reso-
lution showed, however, significant deviations of the
measured line positions and line structures from the
predictions of the Schrodinger theory discussed so far.

a) The wavenumbers v;; of the different transitions
between levels |i) and |k) depend not only on the
principal quantum number n but also slightly on the
angular momentum quantum number /. The abso-

0 500,000 GHz

Balmer
series

[ 1
—
S I L B

x 40,000

a)

Doublet
structure
of Hy

b) _.l |._ Lamb-shift
High resolution
Doppler-free
spectrum

c)
3Ds/2

3D3/2
3P3/2

3S1/2
3P/

3P3/2 I
Lamb- Fine
shift structure

35,2 ' '
3Pq/2 T

Fig. 5.14a—c. Balmer series of the hydrogen atom. (a) Fine
structure of Hy, measured with conventional Doppler-limited
spectroscopy. (b) High-resolution Doppler-free spectrum of
H, showing the Lamb shift of the 22§, 2 level. (¢) Level
scheme

lute wavenumbers for the H atom deviate from the
predictions by up to 0.2cm™!.

b) All spectral lines starting from s levels with
[ =0 consist of two narrowly spaced components
(doublets). Those starting from levels with [ > 0
contain even more components (Fig. 5.14).
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Table 5.4. Comparison of the measured wavenumbers of the
Balmer series and the calculated values obtained from the
Rydberg formula

Hq 3 6562.79 15,233.21 15,233.00
Hg 4 4861.33 20,564.77 20,564.55
H, 5 4340.46 23,032.54 23,032.29
H; 6  4101.73 24,373.07 24,372.80
H, 7 3970.07 25,181.33 25,181.08
H, 8 3889.06 25,705.84 25,705.68
H, 9 3835.40 26,065.53 26,065.35
Hy 10 379791 26,322.80 26,322.62
H, 11 3770.63 26,513.21 26,512.97
H. 12 3750.15 26,658.01 26,657.75
H, 13 3734.37 26,770.65 26,770.42
H, 14 372195 26,860.01 26,859.82
H, 15 3711.98 26,932.14 26,931.94

¢) The experimentally observed splittings of the Zee-
man components agrees only for a few atomic
species with the prediction of the normal Zeeman
pattern. For most atoms it is more complicated.
For the H atom, for instance, it looks completely
different from the regular triplet pattern in Fig. 5.12.

d) The ground state of the H atom (n = 1, [ = 0) shows
a very narrow splitting into two components (hyper-
fine structure), which differs for the two isotopes Iq
and ’H = ?D.

In order to explain these deviations, the Schrodinger
theory has to be extended and new atomic parameters
have to be included. This will be discussed in the next
sections.

5.4 Relativistic Correction
of Energy terms

Part of the deviation between experimental results and
theoretical predictions of the energy term values (5.18)
can be explained when the relativistic mass increase
of the electron during its motion around the nucleus is
taken into account.

Instead of the nonrelativistic energy relation

E = p*/2m+ Epo (5.38)

anticipated by the Schrodinger theory, we have to use
the relativistic energy relation

E = c\/m%cz + p2—moc* + Epor - (5.39)

For the electron in the hydrogen atom, the velocity v of
the electron is still small compared to the velocity of
light ¢, which means that Eyj, < moc? or 172/771(2)c2 < 1.
We can therefore expand the square root in (5.39) into
the power series

2 2 4
P L p 1L p
1+ =1+ — +...,
\/ m(z)c2 Zm%c2 8m3c4

which gives for the energy expression (5.38)

2 4
p p
E= (2mo +Epm> a 8m802 +ooo = En— AL
(5.40)

For Eyi, < moc? we can neglect the higher order terms.
In this approximation the last term in (5.40) repres-
ents the relativistic correction A E; to the nonrelativistic
energy (5.38).

We can obtain the quantum mechanical expectation
value of this correction by substituting p — ik, which
leads to the expression

h4
AE, = S / vV Vm dT (5.41)
0

Inserting for 1 the wave functions of the hydrogen atom
Yu.1.m gives the “Darwin term” (see Problem 5.6)

Z%a* (3 1

AE, =E,~ ¢ _ . (5.42)
n 4n 1+1/2

The constant

¢ 20735310 = |

o= = /. T =
dreghe 137
(5.43)

is called Sommerfeld‘s fine structure constant.

The total energy of an eigen-state for the H atom is

then
72 o?7% (3 1
E,; = —Ry 1— - ,
’ n? n \4n [+1/2
(5.44)

which now depends not only on n but also on /! The
relativistic correction is maximum forn =1 and [ = 0.



EXAMPLES

1. Forn=1,1=0 and Z =1 the magnitude of the
relativistic correction is

AE, = E 5% /4=9x10"%¢eV .
2. Forn =2, =0 we obtain

2

AE(n=2,1=0)= 20

13
- E
16
=1.5x10"%eV.

3. Forn =2,1 =1 the correction is only

7
AE(n=2,1=1)= —24E2a2

=52x1076V.

This illustrates that

a) The relativistic energy shift is maximum for the
ground state of atoms (n =1,/ =0).

b) The correction depends on both quantum numbers n
and /. The (n — 1)-fold degeneracy of states (n, /),
deduced from the Schrodinger theory is lifted by the
relativistic correction.

c) At a given value of n, the electron comes closest
to the nucleus (and therefore acquires the largest
velocity) for small values of / (the Sommerfeld or-
bits are then ellipses with large eccentricity). The
relativistic mass increase is then maximum, which
decreases the energy term value. For the maximum
allowed / = n — 1 the orbit is circular and the velo-
city of the electron has a constant medium value.
The relativistic mass correction is then minimum.

Note:

As the numerical examples show, the relativistic mass
correction only amounts to less than 10~* of the
Coulomb energy.

5.5 The Stern—-Gerlach Experiment

The space quantization of the angular momentum intro-
duced by Arnold Sommerfeld in 1916 was considered by

5.5. The Stern—Gerlach Experiment

many physicists as a purely theoretical model without
any real correspondence in nature. It was therefore in
doubt if the explanation of the Zeeman effect by the
corresponding space quantization of the magnetic mo-
ment could ever be proved experimentally. Nevertheless
this issue was intensely discussed among experimen-
tal physicists. Otto Stern (1888—1969), who had a lot
of experience with atomic beams, proposed to test the
idea of space quantization by measuring the deflec-
tion of atoms in a collimated atomic beam passing
through a transverse inhomogeneous magnetic field. He
found in Walther Gerlach (1989-1979) an enthusiastic
and experimentally skillful assistant whom he convin-
ced to try this experiment. They started in 1919 and
after many unsuccessful efforts and following impro-
vements to their beam apparatus, the two researchers
were finally rewarded with an unexpected result in
1921 [5.1].

They chose as test objects silver atoms because these
atoms could be detected on a glass plate, where they
condensate and form a thin layer with an optical trans-
parency depending on the thickness of the layer and
therefore the number of incident atoms.

The silver atoms were evaporated in a hot furnace
and emerged through a narrow hole A in the furnace
into the vacuum chamber (Fig.5.15). They were then
collimated by the slit S before they entered, traveling in
the in x direction, the inhomogeneous magnetic field B.,
which pointed in the z direction. In the plane x = xg
the atoms were condensed on a cold glass plate. With
a densitometer the density N(z) of silver atoms on the
glass plate could be measured.

Without a magnetic field, the symmetric blue density
profile corresponding to the central curve in Fig. 5.15¢
was obtained. It represents the density profile of the
non-deflected atomic beam due to the spread of the
transverse velocity components of the silver atoms
behind the collimating slit S.

In the inhomogeneous magnetic field the force

F=—pgrad B

on the atoms depends on the spatial orientation of the
magnetic moment g relative to B. The intensity distri-
bution /(z) is therefore expected to split into as many
peaks as the possible values of the scalar product u - B.
At that time the quantum number / of the orbital an-
gular momentum of silver was assumed to be [ = 1.
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Fig.5.15. (a) Stern-Gerlach
apparatus for measuring the
space quantization of angular
momentum [, = mh. (b) Cut
in the yz-plane of the in-

homogeneous magnetic field.
() Observed density pattern of
silver atoms in the detection

S Beam of
silver atoms plane x = xo
Oven Collimation Inhomogeneous Glas plate
a) slit magnetic field
|
Without magnetic field
weak field
Atomic beam SmTT Strong field

b) 0) ecl s ?

Therefore three possible values of uB were expected,
corresponding to the three magnetic quantum numbers
m; =0, 1. The experimental result clearly showed
only two peaks and a minimum intensity in between
the peaks where atoms with m = 0 should arrive. Bohr,
who was asked for advice, explained this result by a mo-
del that assumed that atoms with their magnetic moment
perpendicular to the direction of the magnetic field were
unstable and would flip into one of the other quantum
states with m = £1 [2.6].

Stern and Gerlach had proved with their pionee-
ring experiment that space quantization is a real effect
and does not only exist in the brain of theoreticians.
O. Stern later on received the Nobel Price 1944 for his
contribution to the development of the molecular beam
technique and the discovery of the magnetic moment of
the proton.

Although their experiment was a very ingenious de-
monstration of space quantization, it turned out that the
interpretation of their results was not correct, because
the splitting was not due to the orbital angular mo-
mentum, but to a new quantity called the electron spin,
which was postulated as a new characteristic property
of the electron after further convincing experimental
discoveries.

5.6 Electron Spin

When spectroscopic measurements showed that the
ground state of silver atoms is in fact an s state with
[ =0, Bohr’s explanation of the results of the Stern—
Gerlach experiment could no longer be regarded as
correct.

Samuel A. Goudsmit (1902-1978) and George
E. Uhlenbeck (1900-1988) proposed a new model
where the electron possesses an intrinsic angular
momentum, called the electron spin in addition to a pos-
sible orbital angular momentum. This model attributes
a new property to the electron, which is then cha-
racterized by its rest mass my, its charge ¢ = —e, its
orbital angular momentum / and its spin s which is
connected with a magnetic moment p that can inter-
act with magnetic fields. Many further experimental
findings such as the fine structure in atomic spectra
and deviations from the normal Zeeman splittings (cal-
led the anomalous Zeeman effect) corroborated this
hypothesis.

This spin can be mathematically treated like an an-
gular momentum and is therefore often regarded as
a mechanical “eigen-angular momentum” of the elec-
tron. The astronomical analogy is the earth revolving



around the sun in one year but simultaneously tur-
ning around its own axis within one day. The total
angular momentum of the earth is the orbital angu-
lar momentum plus the “spin” of the earth. Similarly,
the electron of the hydrogen atom has for / > 0 an
orbital angular momentum I/ =r X p and in addition
its spin s. However, as will be discussed in Sect.5.10
this interpretation of the electron spin as a mechani-
cal angular momentum runs into serious difficulties.
Nevertheless the spin can be treated as a vector obey-
ing the same mathematical rules as the orbital angular
momentum.
The absolute value of the spin s is written as

s|=+/sGs+Dh | (5.45)
where s is the spin quantum number, which had already
been introduced by Pauli as an additional quantum num-
ber in order to explain the different components in the
fine structure of observed spectra (see below). Pauli,
however, regarded this as a pure mathematical quan-
tity and resisted giving it a physical meaning as a real
angular momentum.

The magnetic spin moment p, is related to the spin
by

s = VS, (5.46)

where y is the gyromagnetic ratio of magnetic moment
to spin.

From the experimental result of the Stern—Gerlach
experiment, that the beam of silver atoms was split
in the inhomogeneous magnetic field into two com-
ponents, it can be concluded that the angular momentum
should have two possible orientations. Since spectros-
copic investigations of the silver atom proved that the
orbital angular momentum in the ground state is zero,
the splitting must be due to electron spin. The magne-
tic spin moment p; must have two orientations and
therefore the electron spin must also have two com-
ponents s, = mh. If the electron spin should be treated
as an angular momentum then the quantum number
must obey the relation —s < m < +s. Since m; can
only change by an integer value, the explanation of two
components in the Stern—-Gerlach experiment gives the
condition (Fig. 5.16):

s=1/2=m,==+1/2. (5.47)

5.6. Electron Spin

Fig.5.16. Space quantization
of electron spin

The absolute value of the electron spin is then

Is| = /s(s+ Dh= ;\/371. (5.47a)

And the two components in £z direction are

1
=%, h. (5.47b)

We will at first introduce the experiments leading
to the introduction of the electron spin and will then
discuss some basic theoretical considerations.

5.6.1 Einstein—de Haas Effect

Einstein proposed the following experiment in order to
gain insight into the causes of magnetic properties of
solids. It was actually performed some years later by
the Dutch physicist Wander Johannes de Haas (1878—
1960).

An iron cylinder with mass m and radius R hangs
on a thin wire (Fig.5.17) in a vertical magnetic field
B ={0, 0, B,}, produced by an electric current through
acoil. The magnetic field was chosen sufficiently strong
to saturate the magnetization M = Ny of the cylinder
with N free electrons, each possessing the magnetic mo-
ment w. In cases of saturation, all magnetic moments
point in one direction opposite to that of the magnetic
field. Since the free electrons in the conduction band

Light source

Mirror

Torsion wire

Magnetic

Fig.5.17. Ein-
field cail

stein—de Haas ex-
periment
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of iron have no orbital angular momentum and there-
fore also no orbital magnetic moment (there is no force
center to cause a circular motion of the electrons) the
magnetic moment must have another reason. We will
see that it is caused by the spins of the free electrons.

Note:

In iron, the magnetic moment is not exclusively caused
by the free electrons in the conduction band. A minor
contribution also comes from the electrons bound in the
iron atoms. They can have orbital angular momentum
and spin. However, this contribution is small and we
will neglect it for the following discussion. (For a more
detailed discussion see textbooks on solid state physics).

If the magnetic field is reversed, all magnetic mo-
ments flip into the opposite direction. This causes
a change in magnetization

AM =2M =2Npu . (5.48)

From the measurement of AM the product Nu can be
determined.

The reversal of the magnetic moments also results
in a flip of the corresponding angular momenta s of all
electrons. The resulting change

AS=2Ns,=—AL=—Iw (5.49)

has to be compensated by the opposite change AL of
the mechanical angular momentum of the cylinder with
the moment of inertia = (1/2) MR?. With a reversal of
the magnetic field, the cylinder that was initially at rest
acquires the angular momentum —L = —(1/2) MR’
and a rotational energy

Ewi=L?/21 = L?/(MR?), (5.50a)

which results in a torsion of the suspension wire with
a restoring force F; = —D;p. The maximum torsion
angle ¢nax is reached when the potential energy

Eoi=L%)21 (5.50b)

1 2
2 Dl‘q)max =

of the twisted suspension wire equals the kinetic ro-
tational energy. The measurement of ¢y, therefore
allows the determination of L. The experiment gave
the surprising result

Epol =

AL = Nh =2Nh/2 . (5.50¢)

This means that the z component of the angular momen-
tum of each electron must have the amount s, = h/2.
From the measured magnetization change AM it was,
however, clear that the magnetic moment related to this
angular momentum must be u = ug, i.e, the same as
for the orbital angular momentum with [ = 1A.

The gyromagnetic ratio

Ans il
As. sl

of magnetic moment |u;| and angular momentum |s|
is therefore twice as large as for the orbital angular
momentum, where it is

AM/AS = =2ug/h=y,  (5.51)

|/l = ps/h =y . (5.52)

This means that y; is twice as large as y;!

For the electron spin, the ratio of magnetic mo-
ment to mechanical angular momentum is twice
as large as for the orbital angular momentum of
the electron.

The magnetic spin moment is written analogously
to the orbital moment u; = (ug/h)l as

s =—gs(us/M)s . (5.53a)

The factor g, ~ 2 is called the Landé factor.
The absolute value of the magnetic spin moment is

lits) = gopp/s(s+1) . (5.53b)

Remark

Here the electron spin has been introduced pheno-
menologically. The exact value of the Landé factor
gs = 2.0023 can only be explained by a theory that al-
ready includes the electron spin in the basic equations.
Such a theory has been developed by Paul Dirac (1902—
1984) who replaced the Schrodinger equation with the
Dirac equation. Its representation exceeds, however, the
level of this textbook.

5.6.2 Spin-Orbit Coupling and Fine structure

We will now discuss why the energy levels of the H
atom with / > 0, split into two components, which could



not be explained by the Schrédinger theory. Since this
splitting is very small and can be only resolved with
high resolution spectrographs, where the hydrogen li-
nes appear as a fine substructure, it was named fine
structure.

We start with a semiclassical model, treating the
angular momenta as vectors with quantized absolute
values and quantized z components. In Sect. 5.2 it was
shown that an electron with charge —e, moving with
the orbital angular momentum / on a circle around the
nucleus, produces a magnetic moment

© 1= —(us/B)L.
2me
That is proportional to /.

In a coordinate system where the electron rests at
the origin, the nucleus with positive charge Z - ¢ moves
with the frequency v on a circle around the electron. This
causes a circular current Zev that produces a magnetic
field B at the location of the electron (Fig. 5.18). Accor-
ding to Biot—Savart’s law (see textbooks on magnetic
fields) this magnetic field is

M= —

HoZe woZe
B = Ay (vx(-=r)) =— Aory3 (vxr)
HoZe
= 1 5.54
+47tr3me (5-54)

because the angular momentum [, of the proton equals
the negative angular momentum I = m.(r x v) of the
electron in a coordinate system where the electron
moves around the proton at rest.

The magnetic spin moment of the electron has two
spatial orientations in this field according to the two
spin directions s, = 4h/2. This causes an additional

N
T ﬁsz 4 Hsz
’- -e

? p €
+Z-e

N

v |

a) b)

Fig. 5.18a,b. Vector model of spin-orbit interaction. (a) vector
model. (b) transformation to a coordinate system, where the
electron rests at r =0

5.6. Electron Spin

energy (in addition to the Coulomb energy)

noZe
AE=—p, B =g 1
hs-Br=g. MB4nr3mJL(s )
poZe
~ ). 5.55
4nm§r3(s ) (553)

Transforming the coordinate system back to the rest-
frame of the nucleus by a Lorentz transformation gives
a factor 1/2 (Thomas factor [5.2]), which is due to the
fact that the electron spin in the rest-frame of the nucleus
precesses when moving around the nucleus (Thomas
precession).

The energy levels E, of (5.18), which had been
obtained without taking into account the electron spin,
now split, due to the spin-orbit coupling, into the fine
structure components with energies

7 2
Evio=En—ts Bi=E,+"00 -1, (5.56)
mzr

The scalar product (s -I) may be positive or negative
depending on the orientation of the spin relative to the
orbital angular momentum.

When we introduce the total angular momentum

j=l+s with [j|=+j(j+Dh (5.57a)

as a vector sum of orbital angular momentum / and
electron spin s (Fig. 5.19), we can square this sum and

obtain
Jr=P+s>+2-s. (5.57b)

This gives for the scalar product

1
l.s= 2h2[j(j+ D—=I0+D—=s(s+1]. (5.58)
With this relation we can write (5.56) as

Enpj=En+ Z[j(j+ D—Il+1) —s(s+1)].
(5.59)

Fig.5.19. Vector coupling of orbi-
tal angular momentum / and electron
spin s to form the total angular
momentum j of the electron
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_3 Fig. 5.20. Energy level scheme
=3 of fine structure splitting of
P __T a2 Psjz a 2p( =1) state
=1 a
— P,
1 1/2
=2

With the spin-orbit coupling constant

272
o= HoZeh (5.59b)

8mZr3
The energy levels split, depending on the orientation of
the spin, into the two components with j =74 1/2 and
j =1—1/2 (see Fig.5.20). Finestructure splittings are
observed only for levels with [ > 1, i.e. for p,d, f, ...
levels, not for s-levels with [ = 0.

The fine structure may be regarded as Zeeman
splitting due to the interaction of the magnetic spin
moment with the internal magnetic field generated
by the orbital motion of the electron.

In the quantum mechanical model the distance r
of the electron from the nucleus cannot be given ex-
actly. Only the time-averaged value of r related to the
probability of finding the electron at the location r is
a measurable quantity

(r) =/1/f;f,z,mrl/fn,z,m dr =

1 1
r3 = Wil,l,m }"3 Wil,l,m dr.

The quantum mechanical average (a) of the spin-orbit
coupling constant is then

232
noZe h 1
= f w;zk,l,m /3 wn,l,m dr.

(a) =
Inserting the hydrogen wave functions v, ;,, (7, ¥, @),
the integral can be solved and one obtains

(5.60a)

5.60b
8mm? ( )

A
=—E , 5.61
(@) "l +1/2)(+ 1) (5-61)
where the constant
2 2
1
o= Hocem € (5.62)

4t dmeohc 137

is Sommerfeld’s fine structure constant, which was
already introduced in Sect.5.4 for the relativistic
correction of the level energies.

The energy separation of the two fine structure
components (n,l, j =14+1/2) and (n,l, j=1—1/2)
is then, according to (5.59) and (5.61),

AE =@ 1+ ) =—E Za?
Ls =14 2) T T a4+ 1)
5 Zz
~—53x107E . 5.63
X "l 1) (5.63)

This shows that the splitting is very small compared to
the energy E, ; of the levels (n, [) and justifies the name
“fine structure.”

As can be seen from (5.63), the fine structure split-
ting decreases with increasing quantum numbers n
and [, but it increases proportionally to the product
Z?E,. Since the energies E,, of the levels with princi-
pal quantum number n follow the relation E, o< Z%/n?,
we can write the fine structure splitting as

Z4

AE[S X .
ST RBI41)

(5.64)

EXAMPLE

For the 2p level of the H atom, we have Z =1, n =2,
[=1 and E, = —3.4eV. From (5.63) we therefore
obtain for the fine structure splitting AE;; = 4.6 X
107%eV = AE; /hc=Av=0.37cm™!.

If both effects, the relativistic increase of the elec-
tron mass and the spin-orbit coupling, are taken into
account we have to add (5.42) and (5.63) and obtain for
the energy of a fine structure component (n, [, j) (see
Problem 5.7)

Z%a? 1 3
E,;=E,|1+ ) — , (5.65)
n j+1/2 4n

which turns out to be independent of /.

In the Coulomb field with E},o o< 1/r the energy
of a fine structure component (n, [, j) does not
depend on the quantum number /. All levels with
equal quantum numbers n and j have the same
energy (Fig.5.21).
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Fig. 5.21. Energy level scheme of the hydrogen atom, taking
into account the relativistic mass increase and the spin-orbit

EXAMPLE

The two levels 251/, and 2p; /> or 3p3 /> and 3d3,, have
the same energy (Fig.5.21).

However, this degeneracy applies only to one-
electron systems such as the hydrogen atom or the ions
He™,LitT, etc., where the electron moves in a Coulomb
potential. This is because the assumption Epo o< 1/r
enters into the relativistic mass correction, as well as
in (5.60), for the calculation of the fine structure con-
stant. For atoms with more than one electron there is no
longer a Coulomb potential because of the mutual inter-
action between the electrons. Here levels with different
values of the quantum number / have different energies
even for equal quantum numbers j.

5.6.3 Anomalous Zeeman Effect

When the electron spin s and the magnetic spin mo-
ment p, are taken into account, the total magnetic

) 0.036 cm™’
””””” 14—LL 2 3ds)2

5.6. Electron Spin

AEgg = -113x107%eV
20,09 cm™

0.365cm™"

1eV = 8065.54cm™’

coupling. The dashed lines mark the energies obtained from
the Schrodinger equation

moment depends on the coupling of the two vectors
M+ . The Zeeman splittings of levels in a magne-
tic field now become more complicated than those
for the normal Zeeman effect shown in Figs. 5.11
and 5.12, which are only observed, if the total spin
of the atomic electrons is S =Y _s; = 0. This is, for
instance, the case for the helium atom with two elec-
trons with antiparallel spins in its ground state (see
Sect. 6.1).

Without a magnetic field, the total angular momen-
tum j = I +s of the electron in a Coulomb field (central
force field) is constant, which means that its orientation
in space and its absolute value are constant, independent
of time (Fig. 5.22a). In an external homogeneous ma-
gnetic field B =10, 0, B.}, the magnetic moment g,
and therefore j, precess around the field axis with
constant components p, and j, (Fig.5.22b).

If the external magnetic field is weaker than the
magnetic field generated by the orbital movement of
the electron, the Zeeman splitting is smaller than the
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»l

a) b) c)

Fig. 5.22. (a) Coupling of I and s and their precession around
the space-fixed vector j =I+s. (b) Precession of j in an
external magnetic field B;. (¢) Possible orientations of j with
components j, =mh

fine structure splittings. In other words, the coupling
between orbital angular momentum and spin is stronger
than the coupling of u; and u; to the external field.
The spin-orbit coupling is still valid and the absolute
value |j| of the total angular momentum

j=Il+s with [j|=+j(i+Dh

is conserved in the external magnetic field. Its direc-
tion is, however, no longer space-fixed because the
magnetic moment i ; = j; + iy, which is related to j,
experiences a torque

(5.65a)

D=u;xB. (5.65b)

For one-electron systems the component j, can take
the values j, = m ;h with the half-integer values — j, <
mj < +j. (Fig.5.22c).

The magnetic moments of orbital motion and spin
of the electron are:

= (ug/Ml and  ps = go(us/M)s . (5.65¢)

There is an important point to mention:

Because of the Landé factor g, &~ 2 for the spin
moment K, the total magnetic moment

mj =i+ s = (us/h) I+ gss) (5.66)

is no longer parallel to the total angular
momentum j =1+s!

Without an external field the absolute value and the
direction of j is constant in time. Since the vector s
precesses around the axis of the internal magnetic field

a) b)

Fig. 5.23. (a) Projection of u ; onto the direction of j. (b) Pre-
cession of the angular momentum j and the average magnetic
moment (g ;) around the z-axis in an external magnetic field
B={0,0, B;}

produced by the orbital movement of the electron and
i isnotparallel to j, p j has to precess around the direc-
tion of the space-fixed vector j. The time average (i ;)
of u; is then the projection of p; onto j (Fig.5.23a).
This gives

wij e <l-j s-j)
pi)="7"°"=— Ste ). (5.67)
() 17l 2me \ j| 1jl

From j =1+s follows
l.j= ;[jz—i-lz—sz]
=;[j(j+1)+l(l+1)—s(s+1)]h2 (5.67a)
and similar froml = j —s:
5= ;[j(j+1)+s(s+1)—l(l+1)]h2.

We can therefore write (5.67) with g; = 2 as
3jj+ 1D +s(s+1)—I(l+1)
(ki) ==

.. "B

2VjG+D

= —gjVj(j+Dus . (5.68)
The Landé factor g; is defined here as
JU+D+sts+1)—10+1)
gi=1+ .

' 2jG+1)

(5.69)
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Fig.5.24a,b. Anomalous Zeeman effect of the transitions (a) 2P, 2 <25 2 and (b) 2p; /2 <2g /2 neglecting hyperfine

structure

For s = 0 (pure orbital magnetism) it follows j =/ and
we obtain g; = 1. For / =0 (pure spin magnetism) is
J = s and therefore g; ~ 2.If orbital angular momentum
and spin both contribute to the magnetic moment, the
value of the Lande factor g is between 1 and 2.

In an external magnetic field B = {0, 0, B.}, the spa-
tial orientation of the total angular momentum is no
longer constant. The vector j precesses around the field
direction. The projection of j can take the values

jzzmjh with —jfm,f—l-J
The precession of u; around j is faster than that of j
around B as long as the finestructure splitting is larger
than the Zeeman splitting. Therefore the z component
(1 ), of the average magnetic moment (i ;) is

(1) =—mjgjns (5.692)

and the additional energy of the Zeeman component 11
is

AEy; = —(uj);B=mjg;upB. (5.70)

The energy separation between two adjacent Zeeman
components comes out as

AEmj_AEmj,l =g]/.LBB (57])

Since the Landé factor g ; depends on the quantum
numbers / and j,according to (5.69), the Zeeman
splitting for the anomalous Zeeman effect differs
for the different levels (n, [, j), contrary to the si-
tuation for the normal Zeeman effect. Therefore,
the Zeeman pattern of spectral lines is more com-
plicated here. There are generally more than three
Zeeman components.
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The following examples shall illustrate the situa-
tion for the anomalous Zeeman effect. In Fig. 5.24 the
Zeeman pattern of the two D-lines in the sodium spec-
trum are shown, corresponding to the transitions Na
2S1/2 —)2 P1/2 (D1 line) andNale/Z —)2 P3/2 (D2 line).
For the H atom a completely similar pattern is obtained.
Only the spin-orbit coupling constant a is smaller and
therefore the fine structure splitting smaller. The Lande
factors of the different levels are

g (*Sip)=2. g (*Pip)=2/3.
g (CP3p) =4/3.

The spectrum shows four Zeeman components for the
transition 25, 2 -2 p 2 and six components for the
S, 2 —2 Py /2, which are not equidistant.

As for the normal Zeeman effect, transitions with
Amj;==1 are circularly polarized and those with
Am; =0 are linearly polarized with the electric field
vector E in the direction of the external magnetic field.

5.7 Hyperfine Structure

In the previous sections we have described the atomic
nucleus as a point-like charge Ze that interacts with the
electron merely through the electric Coulomb-potential

Ze
4megr

¢(r) = —

With this potential the Schrodinger equation allowed
the calculation of the term values of all levels in the
H atom and the wavenumbers of all transitions between
these levels. The fine structure of the spectral lines was

=

E HFS=_P-1'BJ' B=B(us,pl,r)

Fig. 5.25. Nuclear spin I, nuclear magnetic moment g; and
the projection I, =mh

explained by the magnetic interaction between the ma-
gnetic moments of the orbital angular momentum and
the electron spin. This magnetic interaction was just ad-
ded to the Coulomb interaction. It cannot be calculated
from the Schrodinger equation, which does not include
the electron spin.

5.7.1 Basic Considerations

If the hydrogen spectrum is observed with very high
spectral resolution, one finds that even the fine struc-
ture components are split into two subcomponents. The
separation of these sub-components is, for the H atom,
smaller than the Doppler width of the spectral lines
and therefore these components cannot be recogni-
zed with Doppler-limited resolution. This very small
splitting, which for many atoms can only be resolved
with special Doppler-free spectroscopic techniques (see
Chap. 12), is called hyperfine structure. 1t is explained
as follows.

Atomic nuclei have a small but finite volume and
possess, besides their electric charge Ze, a mechani-
cal angular momentum /, called the nuclear spin. Its
absolute value

11| = I(I+1)h (5.72)
is described by the nuclear spin quantum number /. The
projection of I onto the z-axis is

I,=mih with —1<m;<+I, (5.73)
in complete analogy to the electron spin.
z } B B
i

Errs =—M,'Bj B =B(lg,M,.r)

Fig. 5.26. Interaction between nuclear magnetic moment g
and the magnetic field B; produced at the location of the
nucleus by the orbital motion of the electron and the magnetic
moment p; due to the electron spin s



A magnetic moment is connected with the nuclear
spin

uN=ykl . (5.74)
The unit of the nuclear magnetic moment is the nuclear
magneton

e = me g = M“B

2my”  my' " 1836
=5.05x10"2"JT"! (5.75)
analogue to the Bohr magneton up. However, the
nuclear magneton is smaller by a factor m./m, ~
1/1836. The magnetic moment of the proton is
m1(p) =2.79uxk and is determined by the movements
and charges of the three quarks (u,u,d) inside the proton.

The magnetic moment of any atomic nucleus can be
written in units of the nuclear magneton as

MK

uN =yl =gn 5 I,

where the dimensionless factor gy = yxh/uk is called
the nuclear g-factor.

The nuclear magnetic moment gives two contribu-
tions to the shift and splitting of energy levels of the
atomic electrons:

MK

(5.76)

a) The interaction of the nuclear magnetic moment uy
with the magnetic field produced by the electrons
at the nucleus (Zeeman effect of py in the internal
magnetic field produced by the electrons).

b) The interaction of the electronic magnetic mo-
ment u; with the nuclear moment un (magnetic
dipole-dipole interaction).

The potential energy of the nuclear magnetic mo-
ment gy in the magnetic field produced by the electron
at the location of the nucleus is

Ep()t(ls J) = —UNBint = _|ILN|Bj COS(/j, I .
(5.77)
Introducing the total angular momentum F = j+1
of the atom as the vector sum of the total electronic
angular momentum j =/4s and the nuclear spin
(Fig. 5.27), we obtain, because of j - I = 1/2(F* — j*> —
1) =|jll|cos(/j, D),
. J-I
cos/(j,I)= ",
/1]

_ LFF+1D)—j(j+D—1I+1)

2 ViG+DIT+1)
(5.77a)

5.7. Hyperfine Structure

7T
Fig. 5.27. Coupling of total electronic angular momentum j =

[+ and nuclear spin 7 to the total atomic angular momentum
F=j+1I

The hyperfine energy of the H atom is then

A
AEyrps = ) [FIF+ 1) —j(+D—II+1)],

(5.78)
where the hyperfine constant
B
= SNHKDS (5.79)
ViG+D

depends on the internal magnetic field produced by the
electron, and is therefore dependent on the electronic
angular momentum j.

Each energy level E,;; splits into hyperfine
components, due to the interaction between
nuclear magnetic moment and electronic magne-
tic moments. The energy of these components
is

Enrs = E, 1

+ ;A[F(F+ D—jG+D=II+1D)].
(5.80)

Fig. 5.28. Hyperfine structure of the 125 /2 state of the H
atom. The hyperfine coupling constant is A = 0.047 cm™!
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For the H atom, with a proton as the nucleus, the
experiments give the values

I=1/2, g/ =+558= (un). =+2.79ux .

For the ground state >0 is j=1/2, 1 =1/2= F =
0 or F = 1. This gives the two hyperfine components
(Fig.5.28).

Eurs(F=0)=E1 91— A

— s W

Eups(F=1)=E1 012+ 4A ,

with the separation AE = A = 0.047cm™".

(5.81)

5.7.2 Fermi-contact Interaction

The internal magnetic field at the location r = 0 of the
nucleus depends on j and on the spatial probability dis-
tribution |1, ;|* of the electron. The hyperfine splitting
is particularly large for 1§ states where ¢ has a ma-
ximum for r = 0. The magnetic interaction of the 1s
electron with the nucleus is called Fermi-contact in-
teraction, because there is close contact between the
electron and the nucleus. A more detailed calculation
shows that for S states the hyperfine constant is given
by

2
A =" poginpenik |V r =0)[*. (5.82)

3

This is the dominant contribution for the HES of the H
atom. The absolute value of the hyperfine splitting in the
2S1/2 ground state of the H atom is Ab = 0.0474cm™".
In the optical spectral region it can only be resol-
ved with special Doppler-free techniques. One example
is the Doppler-free two-photon absorption 1S — 2§
(Fig.5.29), where two photons are simultaneously ab-
sorbed out of two antiparallel laser beams. The splitting
of the two lines in Fig.5.29 reflects the difference
Av=AE(1S) — AE(2S) of the hyperfine splittings
of the lower and the upper state of the transition
with AF = F(1S) — F(2S) = 0. The splitting AE(2S)
is small compared to that of the ground state.

The total angular momentum F has to be conserved
for the two photon transition because the two absor-
bed photons have opposite spins. They therefore do not
transfer angular momentum to the atom.

The hyperfine splitting of the ground state 1.5 can
be directly measured by a magnetic dipole transition

0 1000 MHz

Fig. 5.29. The two resolved hyperfine components F' =0, 1 of
the two-photon transition 25 < 1S in the H atom (with kind
permission of Th.W. Hénsch from G.F. Bassani, M. Inguscio,
T.W. Hinsch (eds) The Hydrogen Atom (Springer, Berlin
Heidelberg New York, 1989))

(see Sect.7.2.4) between the two HFS components.
This transition lies in the microwave range with a wa-
velength of A =21cm. It plays an important role in
radio astronomy, because H atoms are the most abun-
dant species in the universe and H atoms in interstellar
clouds can be excited by star radiation into the up-
per HES level and can emit this transition as radio
signals received on earth by large parabolic radio an-
tennas. The measurements of the signal amplitude with
spatial resolution gives information of the density dis-
tribution, velocities and temperatures of H atoms in the
universe.

5.7.3 Magnetic Dipole-Dipole Interaction

The second contribution to the hyperfine splitting is the
dipole-dipole interaction between the magnetic dipo-
les of the electron and the nucleus. This contribution is
zero for § states with a spherically symmetric charge
distribution, because the average of the electronic ma-
gnetic moment is zero. It therefore plays a role only for
states with / > 1 (Fig. 5.30), where the first contribution
is small because the electron density at r =0 is zero
(Fig.5.3).

For larger atoms there are also electrostatic contri-
butions to the hyperfine structure if the nucleus has an
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Fig. 5.30. Fine and hyperfine splittings of the 2P state of the
Hatomwithn=2,1=1, j=1/2,3/2, F=0,1,2

electric quadrupole moment. For the H atom, howe-
ver, this electrostatic contribution is absent because the
proton has no quadrupole moment.

5.7.4 Zeeman Effect of Hyperfine Structure Levels

In a weak external magnetic field B the hyperfine com-
ponent with F =1 splits into three Zeeman sublevels
with mp =0, 1, while the component with F =0
does not split. This is, however, only observed for weak
fields as long as the interaction energy A Eyrs between
nuclear magnetic moment and electron moments is lar-
ger than the Zeeman coupling energy 1, B between the
electronic spin moment and the external magnetic field.

5.7. Hyperfine Structure

z Fig. 5.32. Vector model
4B of the Paschen—Back ef-
fect

This gives rise to the anomalous Zeeman effect of the
hyperfine levels.

For stronger fields, when p, - B becomes larger than
A Eygs the electron spin s and the nuclear spin I become
uncoupled and the energy E ¢ of the levels is governed
by the interaction energy u, - B between electronic ma-
gnetic moment and external field. In this case there are
only two Zeeman components with s, = 41/2. Each of

. m m
E Si °
TT —  +1/2 +1/2
me Tl E— +1/2 -1/2
F=1 ,—— 1
128y, 0 F=1
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\ d
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a) b)

Fig.5.31a,b. Zeeman effect of the 125 »2 ground state of the hydrogen atom. (a) Weak magnetic field. (b) Energy

dependence Er,; s(B) of hyperfine components
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these components shows a hyperfine splitting into two
HFS components with I, = +1/2 (Fig. 5.31).

This uncoupling of angular momentum by the
magnetic field is called the Paschen—Back effect
(Fig.5.32). It appears for hyperfine structure at rather
small magnetic fields. It is also observed for the fine
structure levels, but only at higher fields, because the
interaction energy between f; and the internal magne-
tic field produced by [ is generally much larger than
the Zeeman energy p; - Bey, while the Zeeman energy
N - Bexe can exceed the hyperfine energy A Eyps.

5.8 Complete Description
of the Hydrogen Atom

The preceding sections have shown that all the effects
discussed so far make the spectrum of the simplest
atom more complicated, as was assumed in Bohr’s
model of the H atom. In this section we will summa-
rize all phenomena discussed in this chapter and some
new ones for a complete description of the hydrogen
spectrum.

5.8.1 Total Wave Function and Quantum Numbers

The solutions of the Schrodinger equation for the H
atom gave (without taking into account the electron
spin) n? different wave functions for each value of
the principal quantum number n. They represent n’
different atomic states with the same energy (they
are n’-fold degenerate), but with different spatial distri-
butions of the electron density. Each of these n> wave
functions

Wn,l,m; ()C, ya Z) = Rn,l(r) Ylm (ﬁ’ (p)

is unambiguously defined by the quantum numbers #, [,
and m;.

The introduction of the electron spin with its two
possible orientations s, = +1/2h against the z-axis
(which is chosen as preferential axis by general agree-
ment and is called the quantization axis) adds a new
quantum number m; = £=1/2, which defines the projec-
tion of the electron spin onto the quantization axis. Each
of the spatial electron distributions v, ;,, (x, y, z) can
be realized with two spin orientations. This is described
by multiplying the spatial wave function v, ; , (X, ¥, 2)

(5.83a)

with a spin function y,,, (s;) that defines the projection
s, = mgh of the electron spin s onto the quantization
axis. We label the spin function as x* for my; = +1/2
and as x~ for my = —1/2. The total wave function,
including the electron spin, is then

Wn,l,ml,mx (x, Y, 2, Sz) = an,l,m/ (x, Yy, Z)me .
(5.83b)

Each electronic state of a one-electron atom is
unambiguously defined by the four quantum num-
bers n,l, m; and my. It is described by a single
wave function (5.83).

5.8.2 Term Assignment and Level Scheme

For the complete assignment of an atomic state by
its quantum numbers (n, [, m;, s, mg) the short hand
notation

n®Hx; (5.84a)

is used. The capital letter X stands for S (I =0),
P(=1),D (=2), F (I=3),.... The upper left
index 2s + 1 is the multiplicity, which gives the number
of fine structure components for / > 0. For systems with
only one electron outside closed shells is s = 1/2 and
the multiplicity is 2s + 1 = 2. Atoms with a single elec-
tron always have doublet states, which split into two
fine structure components for / > 0. The lower right in-
dex gives the quantum number j of the total electronic
angular momentum j =17 +s (Fig.5.19).

The hyperfine components are labeled by the quan-
tum number F of the total angular momentum F = j 4
I, including the nuclear spin I (Fig.5.27).

EXAMPLE

The first excited state 2 2P of the H atom that can be re-
ached by one-photon excitation from the 125/, ground
state is defined by the quantum numbersn =2,s = 1/2,
I=1,and j=1/2 or j =3/2. The two fine structure
components are therefore labeled as 2Py, and 2 2P; 5.
Both of them split into two hyperfine levels 22P
(F=0o0r1)and2%P;; (F=1o0r2).

Without nuclear spin interaction and without Lamb
shift (see Sect.5.8.3) all levels of the H atom with



equal quantum numbers (n, j) have the same energy,
because the energy shift due to the relativistic increase
of the electron mass m. and that due to spin-orbit coup-
ling just cancel. This (2 + 1) fold degeneracy is lifted
by the hyperfine interaction, because the magnitude of
this interaction depends on the spatial distribution of
the electron density and is therefore different for diffe-
rent values of the quantum number /. Levels with equal
quantum numbers n and j but different values of / do
experience different hyperfine shifts and splittings.

In an external magnetic field, each atomic state
(n,l,s, j) splits without hyperfine interaction into
2j+41 Zeeman components. The energy separation
of these components depends on the Lande fac-
tor g; (5.69), which might be different for the different
levels. Generally the Zeeman splittings of different
states are therefore different (anomalous Zeeman ef-
fect). For states with total electron spin S = 0 (which
can be only realized for atoms with an even number
of electrons) the normal Zeeman effect applies and the
Zeeman splittings are equal for all states.

If the Zeeman splittings are small compared to
the hyperfine splittings (- B < Aj - I), the external
magnetic field can not break the coupling between elec-
tronic and nuclear magnetic moments. The total angular
momentum including nuclear spin is then the vector
sum F = j + I, which has 2F + 1 possible orientations
against the external magnetic field with different ener-
gies. Therefore the hyperfine levels with the quantum
number F split into 2F + 1 Zeeman components.

For the ground state 125, /2 of the H atom no Zeeman
splitting is observed for the HFS component F' =0,
while the other HFS component with F' = 1 splits into
three Zeeman sublevels (Fig. 5.31).

For higher magnetic fields (u;- B > AEyrs) the
coupling between j and I breaks down. The quantum
number F is no longer defined and the Zeeman shift
of the levels depends on u ; - B. For still higher magne-
tic fields (u; - B > AEgs) even the coupling between s
and [ breaks down. In this case there is no longer a de-
fined total electronic angular momentum j but / and s
precess separately around the field axis (Paschen—Back
effect Fig. 5.32).

The complete level scheme of the H atom is shown
in Fig.5.33 where, on the left side, the energy levels
without effects of the electron spin are plotted, which
are the energies obtained from Bohr’s atomic model
and also from the Schrodinger equation. The level ener-

5.8. Complete Description of the Hydrogen Atom

gies plotted in the second column take into account the
relativistic mass increase and the fine structure due to
spin-orbit coupling. The next column adds the Lamb
shift (see next section) and the last column includes the
hyperfine interaction.

Note that the energy scales for fine and hyperfine
interactions are widely spread, in order to show these
small splittings in the same diagram. The absolute va-
lues for the splitting of the 2Py, level are illustrated in
Fig.5.34.

Remark

In this chapter the electron spin was introduced in a phe-
nomenological way, based on the results of experiments,
such as the Einstein—de Haas effect, the fine structure in
the atomic spectra and the Stern—Gerlach experiment.
Mathematically, the total wave function was written as
the product of spatial wave function (solution of the
Schrodinger equation) and spin function. This heuri-
stic introduction of the electron spin is able to explain
all experimental results discussed so far, although it
does not meet the requirements of a strict mathematical
derivation.

A complete theory, including the electron spin ab
initio, was developed by Paul A.M. Dirac (1902-1984)
who used as a master equation, instead of the Schrodin-
ger equation, an equation that includes all relativistic
effects (Dirac equation). This equation can be solved
analytically for all one-electron systems as long as they
can be reduced to real one body systems (for instance the
treatment of the H atom can be reduced to a one-body
system, where one particle with the reduced mass p
moves in the spherical symmetric Coulomb potential).
This treatment is no longer possible for the two par-
ticle system ete™ (positronium consisting of positron
and electron) because the interaction between the two
spins of €™ and e~ represents a strong perturbation of
the Coulomb potential (see Sect. 6.7.4).

5.8.3 Lamb Shift

An atom can absorb or emit electromagnetic radiation.
The correct description has to take into account the
interaction of this atom with the radiation field. This
interaction is not only present during the absorption
or emission of photons, but also for so-called “vir-
tual interactions,” where the atomic electron in the
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Coulomb field of the nucleus can absorb and then
emit a photon of energy hw during a time interval
At < h/AE = 1/w. The uncertainty relation AEAt > h
allows such processes without violating the energy
conservation law.

This interaction leads to a small shift of the energy
levels, which depends on the spatial probability dis-
tribution of the electron in the Coulomb field of the
nucleus and therefore on the quantum numbers n and /.

The Lamb shift can be understood at least qualita-
tively by an illustrative simple model. Because of the
photon recoil, the statistical virtual absorption and emis-
sion of photons results in a shaky movement of the

Random absorption and emission
of virtual photons

AN
s

o ,

b) hv <1 hv

Fig. 5.35a—c. Illustration of the random shaky motion of the
electron due to absorption and emission of virtual photons.
Motion of a free electron in a radiation field without taking
into account the photon recoil (a), with recoil (b), and shaky
motion of an electron in a Coulomb field on the first Bohr
orbit including the photon recoils (c)
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electron in the Coulomb field of the nucleus (Fig. 5.35),
where its distance from the nucleus r varies in a random
way by dr. Its average potential energy is then

<E )__Ze2 1
P Ageg \r+6r]

For a random distribution of ér is (6r) =0 but {((r +
8r)~1) # (r~!). Therefore an energy shift occurs. Its
quantitative calculation is not possible within the fra-
mework of the Schrodinger theory but can be performed
in an extended theory called quantum electrodynamics,
which contains the complete description of atoms and
their electron shells including the interaction with the
radiation field [5.3].

The effects of these interactions are generally very
small. Therefore, in most cases the Schrodinger theory,
including the electron spin, is sufficiently accurate to
match the experimental results. Only in special cases,
and in particular for high precision measurements, does
the Lamb shift have to be taken into account.

The complete term diagram of the levels with n =2
in the H atom is drawn in Fig. 5.34. The Lamb shift A Ey
is maximum for the § states, because the wave function
has a maximum at the position of the nucleus and the
effect of the random variations §r are largest for small
r values.

The numerical values for the Lamb shifts are

(5.84b)

AE1,(17812) = +3.55 105 eV

= Avp, = +8.176 GHz
AEL,(2%S1)2) = +4.31 x107%eV

= Avp, = +1.056 GHz
AEL (2P jy) = —5.98 x107 % eV

= Av, =—14MHz .

The first measurement of the Lamb shift was performed
in 1947 by Willis Lamb (*1912) [5.4] and Robert Re-
therford (*1912) using the experimental setup shown in
Fig.5.36.

In a heated tungsten oven, hydrogen is thermally
dissociated. (In modern devices, a higher degree of
dissociation is achieved with a microwave discharge.)
The H atoms emerging from a hole in the oven into
the vacuum are collimated by the aperture B into
a nearly parallel atomic beam. The atoms are exci-
ted into the metastable 225, /2 state by collisions with
electrons crossing the atomic beam. The lifetime of
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Fig. 5.36. Lamb—Retherford experiment

the 25 state is about ls and therefore longer than
the flight time of the atoms through the apparatus.
After a pathlength L, the metastable atoms impinge
onto a tungsten target, where they transfer their excita-
tion energy, which is higher than the energy necessary
to release electrons from the conduction band, which
are collected by a detector. The rate of emitted elec-
trons represents a small electric current that can be
measured.

During their flight to the detector the elec-
trons pass a radio frequency field with a tunable
frequency. If the frequency matches the energy separa-
tion AE = E(22S12) — ECP2) =4.37x10%eV (=
Vres = 1.05 x10° Hz or A = 0.3 mm) between the 225 >
state and the 2% P, state, transitions 228, — 22P;
are induced. The lifetime of the 2%P, »2 state is
only 7 ~2 x107?s, because it decays spontaneously
into the 1S state by emitting Lyman-o radiation.
Therefore atoms in the 2P state cannot reach the
detector. Hydrogen atoms in the 1S ground state
cannot release electrons from the tungsten target.
Therefore the measured electron current decreases
and I(vy) shows a sharp dip at the resonance radio
frequency.

An alternative way for detecting the transitions
between the 225, »2 and the 2P, 2 states is the mea-
surement of the Lyman «-fluorescence emitted from
the 2P, /2 state. It can be detected with a solar blind
photomultiplier viewing the rf field region.

T
L
r oy >\
1oy
oy
A
J

+.
Fluorescence (Vie)

The numerical value vyes = 1.05 x 10°Hz=1.05 GHz
obtained from these experiments is in good agreement
with theory. However, recent, much more accurate mea-
surements, show that for a reliable comparison with
theory the charge distribution in the proton, which af-
fects the Lamb shift, must be known more accurately
than is presently possible from high energy scattering
experiments.

Note:

In real experiments [5.4] very small electric stray fields,
which are difficult to eliminate completely, already
cause Stark shifts that are different for the 2.5 and the
2 P levels. These shifts not only add to the Lamb shift
but can also mix the 25 and 2P levels, causing Lyman-
o emission without applying the rf field. This effect
can be avoided by applying a static magnetic field B,
which causes a Zeeman splitting and an increase of the
energy separation between the 225 and 22 Py /5 levels
(Fig.5.37). Instead of tuning the rf field, the magne-
tic field is now varied at a fixed radio frequency until
the resonance is reached for transitions between the
Zeeman levels. This has the additional advantage that
the radiofrequency can always stay in resonance with
the rf resonator and therefore the rf field amplitude in
the interaction zone is always constant at its maximum
value.



5.8. Complete Description of the Hydrogen Atom
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Fig.5.37. (a) Zeeman splittings of the 22p, /25 225, /2 and 22 P35 levels for measuring the Lamb shift. (b) Frequencies of the
rf transitions as a function of the magnetic field strength
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Fig. 5.38a,b. Optical measurement of the Lamb shift. (a) Level scheme. (b) Experimental arrangement
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If the experiment is repeated at different radio fre-
quencies, the resonance will occur at different magnetic
fields B. Plotting the measured values of v, as a func-
tion of B (Fig.5.37b) allows the extrapolation towards
B =0, which yields the field-free Lamb shift.

While the Lamb-Retherford experiment measured
only the Lamb shift of the 2§ state, a modern ver-
sion of Lamb shift measurement can also determine the
much larger Lamb shift of the 125}/, ground state [5.5].
It is based on the precise comparison of the frequen-
cies of two different optical transitions in the H atom
(Fig.5.38):

Firstly the two-photon transition 125, = 228, /25
which is only possible if two photons are simulta-
neously absorbed (see Sects. 7.2.4 and 10.5). And
secondly, the one-photon transition 225, — 42 Py ».

According to the Schrodinger theory (and also the
Dirac theory) the relation

o (12S1/2 — 2251/2) =4 (2251/2 - 42pl/z)
(5.84¢)

holds. Taking into account the Lamb shift (which is
negligible for the 4? Py, level) we obtain for the actual
frequencies

v =) — AEL,(18) + AEL.(29)
vy =) — AEL,(2S) .
The difference

(5.84d)

Av =v; —4v,
=19 —4v) — (AEL.(1S) — SAEL,(25))/h
= (—AEL, (1) +5AEL(28))/h (5.852)

is measured. Since the Lamb shift of the 2 state is
known from the Lamb—Retherford experiment, the shift
of the 1S state can be determined from (5.85a).

The two-photon transition 15 — 2§ is excited by
two photons from the frequency-doubled output of a dye
laser, tuned to the optical frequency vy, = (1/4)v(1S —
2S) = (1/4)v;. The Lamb shift of the 1S ground state
is then

AEL.(18) = 5AEL.(2S) —h- (v —41y) . (5.85b)

The very precisely measured frequencies v; and v; [5.6]
furthermore yields the present most accurate value of
the Rydberg constant

Ryso = 10,973,731.568639(91) m ™" .

5.9 Correspondence Principle

For many qualitative results, estimates are sufficient
and can save much of the time necessary for more de-
tailed calculations. Here, a correspondence principle,
formulated by Niels Bohr, is very useful. It illustra-
tes the relation between classical and quantum physical
quantities [5.7]. Its statements are as follows.

The predictions of quantum mechanics have to con-
verge against classical results for the limit of large
quantum numbers.

Selection rules for transitions between atomic states
are valid for all quantum numbers. This means that rules
obtained from classical considerations for large quan-
tum numbers must also be valid for quantum mechanical
selection rules for small quantum numbers.

This correspondence principle allows a quantitative
relation between classical and quantum physics and gi-
ves the validity area for a classical description and its
correspondence to a quantum mechanical model at the
borderline of the classical realm. We will illustrate this
using some examples.

EXAMPLES

1. According to classical electrodynamics, the fre-
quency of an electromagnetic wave emitted by an
electron on an orbit around the nucleus equals the re-
volution frequency of the electron. In Bohr’s atomic
model, this frequency is on the nth orbital

v mZ*z*
2ar 46‘%713/’13 '

The quantum theory demands that hv = AE = E; —
Ey. This gives

meZ%* (1 1
VoM = - .
QM 88%/13 n? n,%

L

(5.85b)

Vela =

(5.86)

For large quantum numbers n and small quantum
jumps An = n; —ny < n; we can approximate (n; +
ny)(n; —ny) ~ 2nAn and we obtain:
N mZ*e*

~ 4 2,3 h3 n.

en

For An =1 the quantum model gives the clas-
sical fundamental frequency (5.85b) and for

An =2,3,... the corresponding harmonics (Ta-
ble 5.5).

YoM (587)



Table 5.5. Comparison of quantum mechanical and classical
transition frequencies An = 1 for the H atom

5 526 -108 738 .10 29

10 657 -10'2 772 102 14
100 6.578 -10°  6.677 -10° 1.5
1000 6.5779-10°  6.5878-10° 0.15
10,000 6.5779-10°  6.5789-103 0.015

2. The angular momentum of the electron is, according
to Bohr’s model,

| =nh with n=1,2,3,..., (5.88a)
while the Schrodinger theory yields
0 = I(l+ Dh. (5.88b)

For small values of [ the differences between the
two models are significant, because the lowest state
is described by [ = 1 in the Bohr model while the
quantum theory demands / = 0.

For large values of [ and n both models con-
verge against [~ [[(I+1)]'? <[(n—Dn]">~n
(because l <n—1).

3. For the limiting case of small frequencies (large wa-
velengths) Planck’s radiation law converges against
the Rayleigh—Jeans law (see Sect.3.1). The mean
energy of the black body radiation at the frequency v
is (E) = (n)hv, where (n) is the mean population
density of photons /v in a mode of the radiation
field. From Planck’s formula we can see that for
v — 0, the energy converges as E — kT . This gives

(n) hv — kT = (n) — kT/(hv) . (5.88¢)

For hv <« kT the mean photon density (n) becomes
very large, and (n)hv > hv. The quantum structure
of the photon field becomes less prominent, because
the energy E = (n)hv is now a nearly continuous
function of n and the classical model does not differ
much from the quantum mechanical one.

4. For the harmonic oscillator, the probability |/, (R)|?
of finding the system in the nth vibrational level at
a distance R is for small quantum numbers n very
different for the classical and the quantum mecha-
nical models. However, for large values of n the
classical probability P,(R) approaches more and
more the average of [/(R)|? (see Fig.4.21).

5.10. The Electron Model and its Problems

The correspondence principle is particularly use-
ful for the discussion of selection rules for radiative
transitions between atomic or molecular levels (see
Chap. 7).

5.10 The Electron Model
and its Problems

We have learned so far that the electron has a rest
mass m. =9.1 x1073 kg, a negative electric charge
e =—1.6 x107"” Coulomb, a spin s with the absolute
value

1
Is| = 2«/35, (5.88¢)
which can be mathematically treated like an angular
momentum, and a magnetic moment

lis| = gsmuB ~ 2uB ,
which is related to the spin by

Ks =Vs-S with Vs =e/me.

Up to now we have neither discussed the size of the
electron, nor the spatial mass and charge distribution.
In a simple classical model, one assumes that the
electron can be described by a charged sphere where the
mass is uniformly distributed over the volume of this
sphere and, because of the electric repulsion between
charges of equal sign, the charge is uniformly distribu-
ted over its surface. The radius r, of this sphere (the clas-
sical electron radius) can then be calculated as follows.
The capacity of the charged surface is

C =4mepre . (5.88f)

Fig.5.39. Classical model of
the electron as a sphere
with mass m, uniform sur-
face charge —e, spin s and
magnetic moment fi
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In order to bring a total charge Q = —e onto this
capacitor, one needs the energy

W ) ) 0re pot -

This potential energy corresponds to the energy
W= 580|E | of the static electric field produced by
the charged electron. If this energy equals the mass
energy m.c” of the electron the classical electron radius
becomes

eZ

=14x10""m. (5.89a)

Vo =
© 7 8megmec?
If the charge is not only on the surface of the sphere but is
uniformly distributed over the volume, an analogue con-
sideration yields twice the energy, i.e., W = e*/(4megre)
and a radius

re=e*/ (4meomec’) =2.8 107" m.  (5.89b)

In this model the magnetic moment pu; of the elec-
tron is produced by the rotating charge. The elementary
calculation gives the relation
1

3 w-e- rg

between 1, and the angular rotation frequency w. Inser-
ting the absolute value j1; = 2ug = 1.85 x 10723 Am?,
obtained from the Einstein—de Haas experiment and the
classical electron radius r, = 1.4 x 10713 m, yields the
angular frequency

_ 3K

.2
e-re

= (5.90)

w =1.7x10%s7". (5.91)
This would result in a velocity at the equator of the

sphere of

v=owre =2.3x10" m/s > ¢ =3 x10% m/s!!
(5.92)

This is clearly a problematic result.

A similar result is obtained, in contradiction to spe-
cial relativity, when the electron spin is interpreted as
mechanical angular momentum of a sphere with the
classical electron radius.

The moment of inertia of the sphere is [ = gmer
and the angular momentum

2
e

1 2
|s|:2\/3.h=1~a):5mer62-a). (5.93)

This gives an angular velocity

5-v/3-h
= v (5.94)
4dmer?
and a velocity of a point at the equator of
5-V3-h
v= v . (5.95)
4mere

Inserting the numerical values yields
v=9x10"m/s > c=3x10"m/s.

From high energy scattering experiments it can be con-
cluded that the charge e of the electron is localized
within a smaller volume with r < 107'®m. The re-
sultant smaller value of r would, however, increase
the discrepancies of this mechanical model even more,
because a smaller r. in the denominator of the expres-
sion (5.95) would further increase the equator velocity
vo l/r.

Apparently the mechanical model of the electron as
a charged sphere and the interpretation of its spin as
mechanical angular momentum must be wrong. Up to
now there does not exist a convincing vivid model of
the electron.

The high energy experiments and precision measu-
rements of the magnetic spin moment indicate that the
electron can be treated as a point-like charge. Its mass
me = E/c? can be interpreted as the energy E of the
electric field produced by its charge —e. The spin is an
additional characteristic of the electron. Although it fol-
lows the same mathematical relations as other angular
momenta, such as the commutation relations, and it has
the properties of a vector, it apparently cannot be regar-
ded as a mechanical angular momentum in the classical
sense.

The charge distribution

dg(r, 0, ) = 0a(r, ¥, @) dr
= —e|Y(r, 9, 9)|*-r*sin® dr d9 dg

of the electron in the atomic electron shell gives the
probability to find the (probable point-like electron) in
the volume element dr around the location (r, ¥, ¢).
These considerations illustrate a general problem
in the realm of microparticles. Is the distinction bet-
ween particles with mass m and field energy E = mc?
still meaningful? What are the lower limits of volumes



AV = Ax-Ay- Az in space, where our geometrical
concept of space is still valid? Do we have to go to
a higher dimensional space when we want to describe
elementary particles?

There have been several attempts to answer these
questions, but a definite indisputable model has not
yet been developed. There are, however, mathemati-
cal theories which are consistant with all experimental
results, although they do not provide a clear and vivid
picture of the electron.

S UMMARY

® The three-dimensional Schrédinger equation for
the hydrogen atom can be separated in the
center-of-mass system into three one-dimensional
equations. This is possible because of the sphe-
rically symmetric potential. The solutions of
the Schrodinger equation are wave functions
Y(r, ¥, ) = R(r)O()P(¢), which can be writ-
ten as the product of three functions of only one
variable. While the radial part R(r) depends on the
special r-dependence of the potential, the angular
part Y" (9, ) = ©(9) P (@) represents spherical
surface harmonics Y;" for all spherical potenti-
als. These functions depend only on the quantum
numbers [ of the orbital angular momentum [/
and m; of its projection /.

® The constraints of normalization and unambiguity
for the wave function lead to the quantization of
bound energy states with E < 0 (only discrete
energy levels exist) while for states with E > 0
all energies are allowed (continuous states). One
can also say that if the wave function is restricted
to a finite volume in space, the energies are quan-
tized. If the particle can move all over the space,
a continuous energy spectrum appears.

e Each wave function ¥ = ¥, ., (r, 9, ¢) of the
H atom is unambiguously defined by the three
quantum numbers n (principal quantum number),
I (quantum number of orbital angular momen-
tum /) and m; (projection quantum number of /.).

5.10. The Electron Model and its Problems

The Dirac theory starts from a relativistic equation
(the Dirac equation) that describes all properties of
the electron correctly (except its self-interaction with
its radiation field resulting in the Lamb shift). Analo-
gous to the situation for the Schrodinger equation the
Dirac equation cannot be derived in a mathematical
way from first physical principles. The complete theory
that includes all aspects of atomic and molecular phy-
sics is quantum electrodynamics (QED) [5.8,9, 10]. Its
introduction is, however, beyond the scope of this book.

e The absolute square |¥(r, 9, ¢)|> of the wave
function describes the probability density func-
tion. This means, that [y|>dV gives the
probability to find the particle within the
volume dV.

e The energy eigenvalues E, are obtained by
inserting the wave functions v, ;,, into the
Schrodinger equation.

e Within the Schrodinger model the energies E,
of the discrete states of the hydrogen atom de-
pend solely on 7, not on [ and m. All states with
equal n but different values of / or m have the
same energy (they are degenerate). For each pos-
sible value of E, there are k = Y/ | (21 + 1) = n?
different wave functions v, 1., (r, ¥, ¢) that des-
cribe n? different spatial charge distributions of
the electron. The energy states of the hydrogen
atom are therefore n>-fold degenerate.

® The normal Zeeman effect results from the in-
teraction of the magnetic moment y; (due to the
orbital motion of the electron) with an external
magnetic field. This interaction splits the energy
states £, ; into (2] + 1) equidistant Zeeman com-
ponents with energies shifted by AE = ugm;B
against the field-free energies, where ug is the
Bohr magneton.

e Several experimental results (anomalous Zeeman
effect, Stern—Gerlach experiment, Einstein—de
Haas experiment) force an extension of the Schro-
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dinger theory. This was achieved by the intro-
duction of the electron spin with an additional
spin magnetic moment g = —g, (g /h)s with the
Lande factor g ~ 2. The total angular momentum
of the electron is the vector sum j =1 +s. The to-
tal wave function is now written as a product of
the spatial part and a spin function.

The fine structure, observed in the atomic spectra,
can be explained as Zeeman splitting, caused by
the interaction of the spin magnetic moment i
with the internal magnetic field, produced by the
orbital motion of the electron. The energies of the
fine structure components are

En,l,j=E,,+Z[j(j+1)—l(l+1)—s(s+l)]

where
Mo Z62h2

© 8mwm?2r3
is the spin-orbit coupling constant.
In the Coulomb potential all energy terms with
equal quantum number j are degenerate. This is
due to the cancellation of the energy shift due to
the relativistic increase of the electron mass and
the shift caused by the spin-orbit interaction. This
degeneracy is lifted in non-Coulombic potentials,
even if they are spherically symmetric, because
here the two shifts are different.
The anomalous Zeeman effect is observed for all
states with total spin S # 0. The energy shift of
the Zeeman components is AE = —u; - B, with
;= py+ ps. Each term E,, ; splits into (27 + 1)

Zeeman components, which are generally not
equidistant as for the normal Zeeman effect.
Atoms with a nuclear spin / and a corresponding
(very small) nuclear magnetic moment un show
an additional small energy shift AE = —un-B
of the atomic states, caused by the interaction
of the nuclear magnetic moment with the inter-
nal magnetic field produced by the electrons at
the position of the nucleus (hyperfine structure).
The energy levels split into (2F + 1) hyperfine-
components, where F is the quantum number of
the total angular momentum F = J+I1 =L+ S+
1, including the nuclear spin 1.

If the interaction of the electron with the radiation
field produced by virtual emission and absorp-
tion of photons is taken into account, the energy
levels experience a small additional shift, cal-
led the Lamb shift. The shift is maximum for
the 1§ state, smaller for the 2§ state and negligi-
ble for the P or D states. The Lamb shift can only
be calculated within the framework of quantum
electrodynamics.

The Schrodinger theory describes the hydrogen
atom correctly if relativistic effects (mass increase
and electron spin) are neglected. The Dirac theory
includes these effects, but does not take into ac-
count the Lamb shift. A complete description of
all effects observed so far, is possible within the
quantum electrodynamic theory.

Up to now no vivid model of the electron exists
that consistently describes all characteristics such
as mass, size, charge, spin and magnetic moment.



PR OBULEMS

1.

2.

Calculate the expectation values (r) and (1/r) for
the two states 1s and 2s in the hydrogen atom.
Which spectral lines in the emission spectrum of
hydrogen atoms can be observed if the atoms are
excited by electrons with kinetic energy Eyj, =
13.3eV?

By what factor does the radius of the Bohr or-
bit increases if the H atom in its ground state is
excited by (a) 12.09eV and (b) 13.387eV?

Show that within the Bohr model the ratio p;/!
of orbital magnetic moment and angular mo-
mentum is independent on the principal quantum
number 7.

By how much does the mass of the hydrogen atom
differ in the state with n = 2 from that in the state
n =1 (a) because of the relativistic increase of
the electron mass and (b) because of the higher
potential energy? Assume circular motion of the
electron.

In the classical model, the electron is descri-
bed as a rigid sphere with radius r, mass m,
charge —e and uniform charge distribution.
(a) What is the velocity of a point on the equa-
tor of this sphere when the angular momentum is
1/2+/3h? (b) What would the rotational energy
of this sphere be? Compare the result with the
mass energy m.c>. Use both numerical values
re = 1.4 107 m (obtained from the classical

7.

Problems

model of the electron) and r. = 10! m (obtained
from scattering experiments).

Assume you want to measure the Zeeman split-
ting of the Balmer «-line on the transition
22812 — 3% Py, in a magnetic field of B=1T.
(a) What should the minimum spectral resolution
of a grating spectrograph be in order to resolve
all components? What is the minimum number of
grooves that must be illuminated if you observe
in the second diffraction order? (b) What is the
minimum magnetic field B needed to resolve the
Zeeman components with a Fabry—Perot interfe-
rometer (plate separation d = 1 cm, reflectivity of
each plate R = 95%)?

How large is the internal magnetic field produced
by the ls electron in the H atom at the location
of the proton that causes the splitting of the two
hyperfine components observed in the transition
with A = 21 cm between the two components?
Compare the frequencies of the absorption li-
nes 1S — 2P for the three isotopes 'H, °D,
and 3T of the hydrogen atom (a) by taking
into account the different reduced masses and
(b) by calculating the hyperfine shifts and split-
tings with the nuclear spin quantum numbers
IH)=1/2, I(D)=1 and I(T) =3/2 and the
nuclear magnetic moments un(H) =2.79ux,
pnN(D) = 0.857uk; pun(T) = 2.98 k.
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6. Atoms with More Than One Electron

In atoms with more than one electron additional pro-
blems arise that are caused by mutual electrostatic
and magnetic interactions between the electrons. In
addition, we are now confronted with new symmetry
principles that are valid if two electrons are exchan-
ged. These stem from the fact that electrons cannot be
distinguished from each other.

We will first study these phenomena for the he-
lium atom, which represents the simplest system with
two electrons. This will help us understand the buil-
ding up principle for the structure of electron shells for
larger atoms. We will see that the electron configura-
tions for all atoms can be obtained from the minimum
energy principle, the correct coupling of the different
angular momenta of the electrons and the observation
of certain symmetry rules. This results in the deter-
mination of all possible energy states of the atoms
and the characterization of these states by quantum
numbers.

6.1 The Helium Atom

The helium atom consists of a nucleus with charge
+Ze = +2e and mass mg ~ 4myg and of two elec-
trons each with charge ¢ = —e. The spatial distribution
of the two electrons depends on their wave func-
tion (ry,ry), which is a function of the spatial
coordinates ry = (x1, y1,21) and ry = (x2, y2, 22) of
the two electrons. Their distances from the nucleus
are r; = |r;| and r, = |rp| and their mutal distance is
rip=|ri—ra|.

The potential energy of the electrons is then:

é? (Z z 1 )

4 o \I'" r ri2

Epot = (6.1a)

The operator of the kinetic energy in the center of mass
system is

~ K2
Eyin = ) (A1(r1) + Ax(r))
n

memg

with = (6.1b)

Mme +mg
where the operator A; acts on the coordinate r;.
Since mg ~ 7300 m., we can use the approximation
u ~ me = m. The Schrédinger equation is then:
2 2

h h
— . AW — . Anp(ry,r)
2m 2m

+Ep0tw(r17r2)=El//(rlar2) .

The last term on the left side is the potential energy,
which is no longer spherically symmetric as in the hy-
drogen atom, but depends on the angle « between the
radius vectors r; to the electrons, because of their mu-
tual repulsion. From Fig. 6.1 we can derive the relation

(6.2)

ri,=\ri—r*=ri+r;—2rrcosa.

We therefore can not separate the total wave function
into a radial part and an angular part, as we could
in the case of one-electron systems. This implies that
the Schrodinger equation (6.2) is no longer solvable
analytically and we have to use approximations.

Fig. 6.1. The helium atom
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6.1.1 Approximation Models

Because of the mutual repulsion, the electrons will
move in such a way that on the time average
(ri2) > (r1) = (r2).

In a first crude approximation we can therefore ne-
glect the last term in (2.1). Then we can separate the
wave function into the product

Y(ri,r) = Y1)y ) . (6.3)

Inserting this into the Schrodinger equation (6.2) yields
two separate equations for the two electrons

2 2

h e
- Ay —
m 4dmeg

Z
’ Yi1(r) = E1yi(r1)
ri

2 2

h ec Z
~y Axr () — Y2 (r2) = Exyra(ra)
m dmeg 1o

(6.4)

with E| 4+ E, = E. Each of these equations is identical
to the Schrodinger eqation (5.8) for the one electron
system and can be solved accordingly.

With Z = 2 we obtain in this approximation for the
energy of the two electrons in the lowest state with
n=1:

Ene(ls) = —2Z%Ey=—2-4-13.6eV
= —108.8¢V .

The experimental value for this energy that is necessary
to remove both electrons from the atom (this means to
convert the He atom into the doubly charged ion He™ ™)
is, however, only Ex, = 78.93€V.

The neglection of the electron repulsion therefore
introduces an absolute error of 30€V, i.e., a relative
error of about 40%.

A much better approximation is obtained by a mo-
del that assumes that each of the two electrons moves in
the Coulomb potential of the nucleus, shielded by the
charge distribution of the other electron (which is assu-
med to have a spherically symmetric time average). The
resulting potential for each electron is then a spherically
symmetric Coulomb potential generated by the effec-
tive charge Q. = (Z — S)e (Fig.6.2). The quantity S
(0 < S < 1) is called the shielding constant.

For total shielding S =1 and one would need the
energy Ey to remove the first electron from the atom.
The remaining ion He™ now has the nuclear charge
+2e and the binding energy of the second electron is

Fig.6.2. Partial shielding of
the nuclear charge +Ze by
the negative charge distribution
pei(e2) = —elYis(ra)|* of a ls

pel(ej)/"
A(t)

electron
Z-e
Pe(2) = —VYis Wi €
therefore —Z? Eyy = —4Ey. The total ionization energy

of the He atom is then

EHe(ls) = —EH —4EH = —SEH =—67.5eV s
(6.5)

which comes much closer to the experimental value
Ey. = —78.983 eV. For a shielding constant § = 0.656
the experimental value is exactly reproduced. In our
model the correct energy is therefore obtained for an
effective nuclear charge of Z.ge = +1.344 e. This im-
plies that about 33% of the real nuclear charge +2e is
shielded for one electron by the other electron in the
1s state.

Note:

The shielding for an electron in higher energy states
(for instance the 2s or 2p state) by an ls electron can
be much larger, because the spatial charge distribution
for the higher state has only small values within the 1s
distribution of the shielding electron.

The spatial charge distribution of the shielding
electron in the 1s state is given by

el = €5 (19)Y2(1s) . (6.6)
The potential energy of the other electron is then
e [z Vi
Epot(r1) = — —// 272 4r,
47‘[80 r rn
% @Y 1
6.7)

In a first approximation we can assume that the charge
distribution of the second electron is not changed much
by the presence of the shielding electron. This means
that we can take the unperturbed hydrogenic wave func-
tions for its spatial distribution. This yields for the



potential energy

Epol(rl)
2 3/2 —2Zry/a
Z Z 2/40
(1))
47'[80 r ap r2
rn
(6.8)
which has the solution
Epot(rl)
2
_ e [2—1 +<Z N 1)622,1/%] .
47'[80 rt ap ry
(6.9)

Inserting this expression into the Schrédinger equation
gives a much better value for the energy of the helium
ground state than by inserting the shielding factor § =
1. In addition the shielding is now dependent on the
distance r; of the electron ¢; from the nucleus. This is
reasonable because the more the electron e penetrates
into the charge distribution of e;, the lower the shielding
by e, becomes.

6.1.2 Symmetry of the Wave Function

We will label the two electrons e¢; and e;. The two
factors vy (n1, Iy, my,) and Y (n2, I, my,) of the sepa-
rated wave function (6.3) depend on the three quantum
numbers (n., m;) of the two electrons, which we will
abbreviate with

a=(ny,li,my) and b= (ny, lh,my).

The probability P(a, b) = |¥,,(r1, r2)|?, that the ato-
mic state (a, b) is realized, (this means that e; is in
state a and e; in state b) can be expressed in the appro-
ximate model of independent electrons (the interaction
term ¢?/ry, is neglected) by the absolute square of the
product function (6.3)

Y, = Y@ va(b) .

If we exchange the two electrons, (e; is now in state b
and e; in state a) our product function becomes

Yl =y (@) ¥ (b) .

However, the two electrons are indistinguishable! This
means that the charge distribution of the total atom

(6.10a)

(6.10b)

6.1. The Helium Atom

e, e,

undistinguishable

€ €4

Fig. 6.3. The two-electron configurations are undistinguisha-
ble

should not be changed under exchange of the two
electrons. We can write this as

12 I |2 I i 11
|I//ab| = |¢ab| = 1ﬂab = e ab -
Applying the permutation of the two electrons twice

brings the state back into its original configuration. This
demands g =0orgp=7m =

Viap = £V - (6.12)

Neither of the two functions ! nor ™ fullfill this
condition. They therefore cannot represent the correct
eigenfunctions for the description of our atomic state.
We can, however, form a symmetric and an antisym-
metric linear combination of these product functions,
which obey the condition (6.12):

Vaom = V1@ V2(b) + Y2 ()1 (D)
Vaom = V1@ V2(b) — Y2 ()1 (D) .

The symmetric function v, reproduces itself under
exchange of the two electrons, while ¥/2__ only changes

a
atom
1ts sign.

6.11)

(6.132)
(6.13b)

Note:

Y® and y? represent the probability amplitudes for the
configuration that one electron is in state a and the
other in state . However, we do not know which of the
two electrons is in a and which is in b. This problem
is quite analogous to the situation in Young’s double
slit experiment (see Sect. 3.5.2), where the probability
of finding a photon on the screen behind the double
slit is given by the absolute square of the sum of two
probability amplitudes. In a similar way the probability
for the realization of an atomic state where one electron
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is in state a and the other in state b is given either by
[V om|* 0T by |2 7. Which of the two functions gives
the correct description of the atomic state depends on
the total electron spin of this state, as will be explained

below.

If both electrons are in the same state (a = b), we
obtain from (6.13b)

Vaom = ¥1(@V2(a) =Y (@)Y1(s) =0.  (6.13¢)

Two electrons with the same quantum numbers
(n, 1, m;) are described by the symmetric spatial

wave function ¥} ..

6.1.3 Consideration of the Electron Spin

Based on the experimental facts (fine structure and
the anomalous Zeeman effect) described in the pre-
ceding chapter we know that each electron has a spin s
with a value |s| = +/s(s + 1), where the spin quantum
number s takes the value s = +1/2 and a component
s, = mgh where the spin projection quantum number 71,
can only have the values m; = +1/2 orm; = —1/2. We
will describe these two possible spin orientations by
spin functions x*(my; = +1/2) and x~ (m; = —1/2).
The correct mathematical description of these func-
tions, which are represented by vectors with two
components (spinors), is not important for the following
considerations.

The spin state of the atom where both electrons
have parallel spins is described by the symmetric spin
function

xi=cx ()x*2) and

xre=cax (Hx @), (6.14)

which remains unchanged, when the two electrons are
exchanged.

Since the two electrons are indistinguishable, the
two configurations (Xfr, X, ) and (x,, X; ) with an-
tiparallel spins have to be regarded as identical. The
atomic states with antiparallel electron spins have to be
described by the antisymmetric spin function

x=axTMx"@+x MHx @] . (6.15)

A
5 mg, =+
Sq + %2
Mg, =%
|
b) S=0 (Singlet state)

Fig. 6.4a,b. Vector model of (a) the three triplet sublevels with
S=1, Mg =0, 1 and (b) of the singlet level with S =0

If we normalize the spin functions (|x*x|*> = 1), the
coefficients in (6.14) and (6.15) become ¢; = ¢, = 1;
c3 = 1/+/2. This gives the three symmetric spinfuncti-
ons (Fig. 6.4a)

xi=xTx Q2);

x2=x (Hx 2);

My =mg +mg, =+1

My =mg +mg;, =—1

1
6=, (XX~ @+ xT@x ()] M;=0,
(6.16)

which describe atomic states with total electron spin
S =51 +59, its amount | S| = /S(S + 1)A, the total spin
quantum number S =1, and the total spin projection
quantum number M, = m,, +m,, =0, £1.



The total electron spin S with S =1 has three
possible projections onto the quantization axis
with quantum numbers Mg = 0, £1. If the elec-
tron spin interacts with other angular momenta
or with external fields, the corresponding atomic
state splits into three components. We therefore
name such states triplet states.

The antisymmetric wave function
X =xT O~ @-xT@x (D)

represents an atomic state with total electron spin-
quantum number S = 0 and therefore Mg = 0, which
we call a singlet state (Fig. 6.4Db).

The total wave function of an atomic state can now
be written as the product

Yiotal = VYap (11, V1, @1, 12, D2, 02) - X(S, M)
(6.18)

of the spatial wave function v (r, ¥, ¢) that is de-
termined by the two sets of quantum numbers
a=(ny,li,m)and b= (ny, I, m;,), and the spin wave
function x(S, M), which depends on the quantum
number S of the total electron spin S =s;+s, and
the quantum number Mg = my, +my, of the projection
M, = Msh.

6.17)

Note:

This separation into the product (6.18) is only possible if
the interaction between the spin and the orbital angular
momentum can be neglected (see Sect. 6.5).

6.1.4 The Pauli Principle

The observation and the analysis of the helium spec-
trum (see next section) and of many other atoms with
more than one electron brought the following surprising
result.

The only atomic states that are observed in nature
are described by total wave functions (spatial function
times spin function) that are antisymmetric against a
permutation of two electrons.

Based on these experimental results and on
fundamental symmetry arguments Wolfgang Pauli
(1900-1958) (Fig. 6.5) postulated the general symmetry
rule in 1925 (called the Pauli principle):

6.1. The Helium Atom

Fig.6.5. Wolfgang  Pauli
(1900-1958) From: E. Bagge:
Die Nobelpreistriager der Phy-
sik, Heinz Moos-Verlag, Miin-
chen, 1964

The total wave function of a system with more
than one electron is always antisymmetric with
repect to an exchange of two electrons.

Up until now, no exception to this rule has been
found!

A more involved theoretical treatment of systems
with identical particles shows that this Pauli principle
is valid for all particles with spin quantum number s =
(n+1/2)h (n=0,1,2,...). Such particles are called
Fermions, whereas particles with integer spin quantum
number s are called Bosons.

The Pauli principle is therefore also valid for protons
and neutrons (both have a nuclear spin quantum number
of 1/2).

If two electrons of an atom are both in the same
state described by the spatial wave function v, ; ,, (this
means that they have the same quantum numbers n, /,
and my;), their antisymmetric spatial wave functions be-
comes, according to (6.13c), zero. This implies that such
a state has to be described by a spatial wave function
that is symmetric against exchange of two electrons.
Since the Pauli principle demands that the total wave
function has to be antisymmetric, it follows that the spin
wave function must be antisymmetric and can be descri-
bed by (6.17). The two spin projections m g h and mh
must differ in their sign.

In other words, two electrons with the same quantum
numbers n, [, m; must have different spin projection
quantum numbers my, #m,,! When we describe an
atomic state by the four quantum numbers (n, [, m;, my)
we can formulate the Pauli principle as:
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Fig.6.6.  Ground
state 115y of the
helium atom with
n=1,1=0, m=
0, M; =0

n=1; 1=0; m=0

- T l - =,
S1z Soz S3 27
0

Ms = 4N

allowed forbidden!

An atomic state characterized by the set of four
quantum numbers (n, [, m;, m;) can be occupied
by at most one electron.

or:

An atomic state with the three quantum numbers
(n, 1, m;), can be occupied by at most two elec-
trons with opposite spin orientations m; = +1/2
and m; = —1/2 (Fig. 6.6).

6.1.5 Energy Levels of the Helium Atom

The lowest energy level of the He atom (ground state)
is obtained if both electrons have the lowest possible

principal quantum number n = 1. The other quantum
numbers must then be / = 0 and m; = 0. The two elec-
trons now have identical quantum numbers (n, [, m;)
of the spatial wave function and therefore their spin
quantum numbers my, = +1/2 # my, = —1/2 must be
different. Since the spatial wave function is symmetric,
the spin function must be antisymmetric. For the total
spin we get S =s; +5, = 0. Both spins are antiparal-
lel and Mg = my, +my, = 0. The helium ground state
is a singlet state. The state does not split in an external
magnetic field but has only one Zeeman component be-
cause its total angular momentum and therefore also its
magnetic moment are zero.

The number 25+ 1 of possible orientations Mg of
the total spin S is called the multiplicity of the atomic
state. The multiplicity of an atomic state is written as an
upper index in front of the symbol for the total orbital
angular momentum. Each atomic state is characterized
by the symbol n5*! L ;, where n is the principle quantum
number, L =1, + 1, the quantum number of the total
orbital angular momentum (apart from spin) and J the
quantum number of the total angular momentum J =
L + S including the spin.

The helium ground state is then labeled as the 1'S,
state(m=1,2S+1=1,L=0and J =0).

m, 0 0 0 1 1 1
5
Sh=2) 1
or
— -
Coupling L J
of angular e o o o () .
momentum S
S=0,L=0 S=0,L=0 S=1L=0 S=1L=1 S=1L=1 S=1, L=1
Total angular J=0 J=0 J=1 J=2 J=0 J=1
momentum
State 1's, 2's, 23s, 23p, 2%p, 2°P,

Fig. 6.7. Symbolic representation of the quantum numbers n, L and S for the ground state and some excited states of the helium

atom. The electron e is always in the 1S ground state



The helium atom can be excited into higher electro-
nic states by absorption of photons or by electron impact
or by collisions with other particles, if their energy is
sufficiently high. If one electron, say ey, is excited into
a state with n = 2 and the other electron e, stays in the
lower state with n = 1, the quantum number /; can take
the values /; = 0 or /; = 1. Since the principle quantum
numbers n; =2 and n, = 1 differ, all other quantum
numbers can be the same for the two electrons or they
can differ (see Fig. 6.7). Therefore the following exci-
ted states of the He atom can be realized for n; = 2 and
(np,=1,1,b =0, mp, = 0, Mg, = +1/2):

1
28y (1] =0,my =0,my =—, J=O>

1
2'Py (zl =Lomy =0,%1my == ,J= 1)

While the ground state 'Sy of the helium atom
must be a singlet state according to the Pauli prin-
ciple, the excited states can be either singlet or
triplet states.

Because of spin-orbit coupling (see Sects. 5.6.2
and 6.5) all triplet states with the spin quantum num-
ber S =1 and the orbital quantum number L > 1 split
into three fine structure components that differ in the
quantum number J of the total angular momentum
J=lL+L+s +s2 (Fig. 6.8).

The magnitude of the splitting and the energetic
order of the fine structure components depend on the
kind and strength of the coupling between the different
angular momenta (see Sect. 6.5).

The level system of the helium atom therefore
consists of a singlet system (single components with
S=0=J=L) and a triplet system with S=1
(Fig.6.9).

6.1. The Helium Atom

y 3Py

RN
AR
N
\\ 3P1

=9,000cm™  \ 0.078 cm™’
2%, i 4 &k

Fig. 6.8. Fine structure of the 23 P state compared with the
unsplit 238 state of the helium atom

The energy of the singlet levels is quite different
from that of the triplet levels with the same quantum
numbers (n, [, m;). The reason for this difference is
not the magnetic interaction of the spin-orbit coup-
ling (which only causes small fine structure splittings),
but a consequence of the Pauli principle. For exam-
ple, the energetic difference between the 2! S, level and

Singlet Triplet
's % b ¥ % ¥ D ¥
2459 =777 7777 TTTToTTTT TTTT TTTT oTTTmoTTeT
V| === — — = =
4's 1
2292 — T 8D = =
3'g 3P R
— 2'p
] 23P
20.62f — »o'g
19.82 23g
S
ot —1's

Fig. 6.9. Level scheme of singlet and triplet states of the he-
lium atom from L = 0 up to L = 3. The ground state 1' Sy is
chosen to have the energy £ =0
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the 23S levelis AE = E('Sy) — E(Sp) = 0.28 eV! The
23S level is described by the antisymmetric spatial wave
function, where the mutual time-averaged distance (ry)
between the two electrons is larger than in the 218 state,
where the electrons can come much closer together
since the spatial wave function is even for r;, = 0 not
equal to zero. The time-averaged electrostatic repulsion
between the two electrons

&2 &2 1
(Epo(r12)) = - f v Ly
p dmegryn 4meq 12

is therefore larger in the 2! S state than in the 23 state.
This pushes the energy of the 2'S state above that of
the 23S state.

6.1.6 Helium Spectrum

The spectrum of the helium atom consists of all allowed
transitions between two arbitrary energy levels E;, Ej
(see Chap. 7). For all excited states where only one of
the two electrons is excited only this electron is involved
in such a transition, the other stays in the ground state.
The energy of the absorbed or emitted photons is

hc
hvy=E; —E; = Aix =

6.19
E —E, (6.19)

Singlet system Triplet system

3%
A E 31P1 0
3's,
728.1 nm
501.57 2'p,
2's,
2,058.1 nm
S 53.7nm
117,

Fig. 6.10. Possible transitions within the singlet and the triplet
system

(Fig. 6.10). However, not every transition obeying the
energy relation (6.19) is actually observed in the
spectrum, because certain selection rules exist (see
Chap. 7) for possible transitions E;(n;, l;, m;,, my,) <
Ey(ng, Iy, mj,, mg,) in absorption or emission. Only
those changes in the quantum numbers (n, [, m;, my) of
the excited electron that fulfill the following conditions
are allowed:

Al==+1; Am;=0,=+1
Aj=0,£1 except ji=0 jiz=0
As=0.

Since the excitation of one electron does not change the
quantum numbers of the other electron, these selection
rules are also valid for the quantum numbers of the total
angular momenta

AL=41, AM.=0,%1; AS=0. (6.20)

According to these selection rules, transitions between
the singlet system (S = 0) and the triplet system (S = 1)
are forbidden.

For transitions between triplet levels with L > 1,
more than three components are often observed, as can
be seen from Fig. 6.11, which shows the six possible
transitions between the fine structure components of
33D and 23 P levels.

Since the spectrum of the singlet system looks
quite different from that of the triplet system regar-
ding the line positions and the fine structure (Fig. 6.10)
the two spectra were initially regarded as originating
from different kinds of atoms. Because the chemical
analysis had unambiguously identified both systems as
belonging to helium, it was believed that two kinds of
helium might exist, which were named para-helium
and ortho-helium.

WN =
w
W)

J
0
3P1
2

Fig. 6.11. All allowed transitions between the fine structure
levels of the D and the 3 P state



6.2. Building-up Principle of the Electron Shell for Larger Atoms

Today we know that there exists only one kind of
helium and that the difference in the spectra stems from
the different total electron spin S =s; +s,. For para-
helium the total spin quantum number is S = 0 and for
ortho-heliumitis S = 1.

6.2 Building-up Principle of the
Electron Shell for Larger Atoms

Since the Pauli principle does not allow more than two
electrons in the 1s state with n = 1, the additional elec-
trons in atoms with more than two electrons have to
occupy higher energy states with n > 2 even in the
lowest energy state (ground state) of these atoms.

The population of electrons in atoms with energy
levels (n, I, m;, my) occurs in such a way that

1. The Pauli principle is obeyed and
2. The total energy of all electrons is minimum for the
atomic ground state.

It is remarkable that the structure of the electron
shells of all existing atomic elements can be explained
by these two principles. In particular, the arrangement
of the elements in the periodic table postulated by
D. Mendelejew 1869 and indepently by L. Meyer 1870
by comparing the chemical properties of the elements,
follows quite naturally from these principles in a very
satisfactory way. It explains the periodic table using
the structure of the atomic electron shells, governed by
these two principles.

Without the Pauli principle the electron shells of
all atoms would collapse into the 1s shell with
the lowest energy. One can therefore say the Pauli
principle guarantees the stability of atoms and
the great variety of chemical properties of the
different elements.

We will explain these general remarks by some
specific examples.

6.2.1 The Model of Electron Shells

The radial distributions of atomic electrons, according
to Sect. 5.1.4, is given by

P(r) = r?| Ry 1 (r) |,

where R, ;(r) is the radial part of the wave function
for an electron with principal quantum number n and
orbital angular momentum quantum number /.

We discussed in Sect. 4.3 that for each value of / there
are (2/+1) degenerate wave functions Y;", with diffe-
rent quantum numbers m;, describing different angular
distributions. For each value of the principal quantum n
there are n possible values [ =0, 1,2, ... ,n—1 of the
angular momentum quantum number. Therefore, there
are

n—1
Z(zz+1) =n’ 6.21)
1=0
different states described by the wave functions
Yu.1.m (1, ¥, @) that can be occupied by at most 2n? elec-
trons with pairs of opposite spins, according to the Pauli
principle.

The time-averaged total charge distribution of
all 2n? electrons with the same principal quantum
number n

elYul’=eY Y [WnimlP=C-e Y R
I my !

(6.22)

is obtained by summation over the squares of all pos-
sible wave functions with [ <n and —I <m; <+,
where C is a normalization factor. This gives a spheri-
cally symmetric charge distribution, as can be seen by
summing over all squared spherical harmonics Y;" for
a given value of n. This charge distribution has maxima
at certain values of the distance r from the nucleus,
which solely depend on the principal quantum num-
ber n. The main part of the electron charge is contained
within the spherical shell between the radii » — Ar/2
and r + Ar/2 (Fig.6.12). Such a spherically symme-
tric charge distribution is called an electron shell. The
different shells are labeled as follows:

n=1:K-shell, n=4:N-shell
n=2:L-shell, n=>5:0-shell
n=23:M-shell, n=6:P-shell

Each of these electron shells has, including the electron
spin, 2n? states (n, I, m;, my), where each of these states
can be occupied by at most one electron. Some of these
states can be degenerate (for instance all 2/ 41 levels
of a given [-value are degenerate without an external
magnetic field).
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r "pel
10
r?.pe (n=1)in'S, state
(2 electrons)
5 4
, 1 2 3 r/(ay/Z)
I~ Pel
10 r*-pg (N=2)
(8 electrons)
5 -
1 2 3 4 5 6 7 8 r/(a/2)
2
™ Pel
20+ 5
| r°-pg (N=3)
15 (18 electrons)
107
5 -
5 10 15 r/(ay/Z)

Fig.6.12. Radial electron density distribution for fully
occupied shells with n =1, 2 and 3

According to the Pauli principle each electron
shell can be occupied by at most 21> electrons.

Since the radial wave function for non-Coulomb
potentials also depends on the angular momentum quan-
tum number / (Fig. 6.13), one calls the arrangement of
all electrons with given values of n and / a subshell.

For each value of n there are n different values
of [ and therefore n subshells.

6.2.2 Successive Building-up of Electron Shells
for Atoms with Increasing Nuclear Charge

The successive building-up of the electron shell with
increasing total number Z of atomic electrons according
to the Pauli principle is illustrated in Fig. 6.14 for the
ground states of atoms with the ten smallest values
of Z from hydrogen (Z = 1) to neon (Z = 10). The
two possible spin states m; = £=1/2 are symbolized by

5_
4_
3_
2_
n=1, =0
1
0 T T
5 5 10
2_
/\/\ -
1_
0 5 10 15
3_
S 2 |
~ n=2, =1
§ 1-/\
o
? O T T T
= 5 10 15
= 3
L o
n=3, I=0
1_
0 T T T T T
3 5 10 15 20 25
2_
n=3, |=1
1_
0 T T T T T
2 5 10 15 20 25
2_
n=3, I=2
1_
0 T T T T T
5 10 15 20 25
r/(ay/Z)

Fig. 6.13. Radial dependence of the probability density for
an electron between the spherical shells for » and r + dr for
different quantum numbers n, [

upwards or downwards arrows. Fully occupied states
are marked as dark blue, states with only one electron
as light blue and unoccupied states as white.

For lithium, with Z = 3, the third electron can-
not occupy the K-shell (1s), because there are already
two electrons. It has to be in the next highest energy
L-subshell 2s with n =2 and [/ = 0. The electron con-
figuration of the Li atom is then (1s)?(2s), where the
exponent gives the number of electrons in the corre-
sponding subshell. The quantum numbers of the third
electron are n =2; [ =0, m; =0; mg = 1/2 and the Li
ground state is labeled as 225, /2 (see Sect. 6.1.4).
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Fig. 6.14. Building up principle of the electron configurations for the ground states of the first ten elements in the periodic table

The fourth electron in the beryllium atom can still
occupy the 2s state (n =2; 1 =0; m; =0; my = —1/2)
if the spin quantum number m; differs from that of
the third electron. The ground state of the Be atom is
therefore 21S.

For the fifth electron in the boron atom the state 2s is
already occupied and it has to go into the 2 p state with
n =2 and [ = 1. The ground state of B is then 22 Py).

The next two electrons for the elements carbon C
and nitrogen N still fit into the subshell 2p with [ = 1
and m; =0, 1. It turns out that the lowest energy is
realized, if the three electrons have parallel spins. The
reason for this rule is that the spatial wave functions
for electrons with parallel spins are antisymmetric (see
Sect. 6.1.4) and describe an electron distribution where
the electrons are farther apart than for symmetric wave
functions. Therefore their mutual Coulomb repulsion is
smaller and the energy is lower. This is summarized in
Hund’s rule:

For every atomic ground state, the total electron
spin has the maximum value tolerated by the Pauli
principle.

The quantum numbers (L, S, and J) of the ato-
mic ground states are determined by the total orbital
angular momentum L =) _1I;, the total spin S=)s;
and their coupling to J = L 4 S. The ground state of C
is then 23 P, and of N it is 2* P /2. For the next three
atoms O, F and Ne the three additional electrons still
fit into the 2p shell, but according to the Pauli prin-
ciple, their spins must be opposite to that of the three
electrons, already occupying this subshell. The total
spin quantum number therefore decreases from oxy-
gen (S =3/2) to fluorine (S =1/2) to neon (S =0).
For neon the L-shell with n =2 is fully occupied. The
total orbital angular momentum is L =)/, =0 and
the total spin S = ) s; = 0. The time-averaged electron
charge distribution for neon is spherically symmetric.
The spectroscopic labels of the ground states of the first
ten elements are given in Fig. 6.14.

With sodium (Z = 11) the building-up of the M-
shell with n =3 starts, until eight electrons fill this
M-shell, which is still not fully occupied for argon
with Z = 18 because the d subshell is not yet occu-
pied (Table 6.2). The analysis of the atomic spectra
proves that with potassium (Z = 19) in the first row
of the third period in the periodic table the building

Table 6.1. Maximum number of electrons in the different atomic electron shells and subshells

Maximum

number of electrons 2 8

in shell X

Subshells Is 2s 2p
Number of electrons 2 26

Total number of
electrons up to the 2 10
filled shell X

18 32 50
353p3d 4sdpad Af 15g
2 610 2 61014 18
28 60 110
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Table 6.2. Electron configuration in the ground states of the chemical elements

1 H Hydrogen 1 28 Ni
2 He Helium 2 29 Cu
3 Li Lithium 2 1 30 Zn
4 Be Beryllium 2 2 31 Ga
5 B Boron 2 2 1 32 Ge
6 C Carbon 2 2 2 33 As
7 N Nitrogen 2 2 3 34 Se
8 O Oxygen 2 2 4 35 Br
9 F  Fluorine 2 25 36 Kr
10 Ne Neon 2 2 6 37 Rb
11 Na Sodium 2 2 6 1 38 Sr
12 Mg Magnesium 2 2 6 2 39Y

13 Al Aluminum 2 2 6 2 1 40 Zr
14 Si  Silicon 2 2 6 2 2 41 Nb
15 P Phosphorus 2 2 6 2 3 42 Mo
16 S Sulfur 2 2 6 2 4 43 Tc
17 C1 Chlorine 2 2 6 25 44 Ru
18 Ar Argon 2 2 6 2 6 45 Rh
19 K Potassium 2 2 6 2 6 1 46 Pd
20 Ca Calcium 2 2 6 2 6 2 47 Ag
21 Sc  Scandium 2 2 6 2 6 1 2 48Cd
22 Ti Titanium 2 2 6 2 6 2 2 49 In
23 V  Vanadium 2 2 6 2 6 3 2 50 8Sn
24 Cr Chromium 2 2 6 2 6 5 1 51 Sb
25 Mn Manganese 2 2 6 2 6 5 2 52 Te
26 Fe Iron 2 2 6 2 6 6 2 531
27 Co Cobalt 2 2 6 2 6 7 2 54Xe

up of the 4s shell starts, which is fully occupied for
calcium (Z = 20) before the 3d shell is filled. The rea-
son for this apparent deviation from the regular scheme
stems from the fact that the 3d electrons are, on ave-
rage, farther away from the atomic nucleus than the
4s electrons. Therefore their energy is higher and the
principle of energy minimization favors the 4s elec-
trons. Indeed extensive computer calculations of the
total energy Eiora prove that Ey, of the electron shell
of K and Ca is smaller if the 4s shell is filled instead of
the 3d shell.

In Fig. 6.16 the successive building-up of the diffe-
rent electron shells is illustrated by an arrow diagram
(without taking into account the peculiarity for Cu,
where electrons are rearranged within a subshell).

This model of atomic electron shells can explain
all peculiarities in the periodic table such as the group
of rear earth elements, sitting all in the same row of

Nickel 2 2 6 2 6 8 2

Copper 2 2 6 2 6 10 1

Zink 2 2 6 2 6 10 2

Gallium 2 2 6 2 6 10 2 1

Germanium 2 2 6 2 6 10 2 2

Arsenic 2 2 6 2 6 10 2 3

Selenium 2 2 6 2 6 10 2 4

Bromium 2 2 6 2 6 10 2 5

Krypton 2 2 6 2 6 10 2 6

Rubidium 2 2 6 2 6 10 2 6 1
Strontium 2 2 6 2 6 10 2 6 2
Yttrium 2 2 6 2 6 10 2 6 1 2
Zirconium 2 2 6 2 6 10 2 6 2 2
Niobium 2 2 6 2 6 102 6 41
Molybdenum 2 2 6 2 6 10 2 6 5 1
Technetium 2 2 6 2 6 10 2 6 6 1
Ruthenium 2 2 6 2 6 10 2 6 7 1
Rhodium 2 2 6 2 6 10 2 6 8 1
Palladium 2 2 6 2 6 10 2 6 10

Silver 2 2 6 2 6 102 6 10 1
Cadmium 2 2 6 2 6 102 6 10 2
Indium 2 2 6 2 6 102 6 10 2 1
Tin 2 2 6 2 6 102 6 10 2 2
Antimony 2 2 6 2 6 102 6 10 2 3
Tellurium 2 2 6 2 6 102 6 10 2 4
Iodine 2 2 6 2 6 102 6 10 2 5
Xenon 2 2 6 2 6 102 6 10 2 6

the table. Here inner shells 4 f and 5d are successively
filled without changing the occupation of the outer 6s
shell, which determines the chemical character of an
element (see below). Also for all actinides from radium
(Z = 88) to Rutherfordium (Z = 104) the occupation
of the outer shell 7s is the same while the inner shells
5 f and 6d are successively filled up.

6.2.3 Atomic Volumes and Ionization Energies

The shell structure of the atomic electron distribution
is substantiated by many experimental results. We will
only present some of them here.

The experimental techniques discussed in Sect. 2.4
allow the determination of atomic sizes and volu-
mes. The dependence of these volumes on the number
Z of atomic electrons exhibit a typical periodicity
(Fig. 6.15) corresponding to that of the periodic table.



Table 6.2. Electron configuration in the ground states of the chemical elements (continued)

55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79

Cs
Ba
La
Ce
Pr
Nd
Pm
Sm
Eu
Gd
Tb
Dy
Ho
Er
Tm
Yb
Lu
Hf
Ta
W
Re
Os
Ir
Pt
Au

Cesium
Barium
Lanthanium
Cerium
Praseodymium
Neodymium
Promethium
Samarium
Europium
Gadolinium
Terbium
Dysprosium
Holmium
Erbium
Thulium
Ytterbium
Lutetium
Hafnium
Tantalium
Tungsten
Rhenium
Osmium
Iridium
Platinum
Gold
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6.2. Building-up Principle of the Electron Shell for Larger Atoms

80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104

Hg Mercury 4 2 6 10 2

Tl  Thallium 14 2 6 10 2 1

Pb Lead 14 2 6 10 2 2

Bi Bismuth 14 2 6 10 2 3

Po Polonium 14 2 6 10 2 4

At Astatine 14 2 6 10 2 5

Rn Radon 14 2 6 10 2 6

Fr  Francium 14 2 6 10 2 6 1
Ra Radium 14 2 6 10 2 6 2
Ac Actinium 14 2 6 10 2 6 1 2
Th  Thorium 14 2 6 10 2 6 2 2
Pa Protactinium 4 2 6 10 2 2 6 1 2
U  Uranium 4 2 6 10 3 2 6 1 2
Np Neptunium 14 2 6 10 5 2 6 2
Pu  Plutonium 14 2 6 10 6 2 6 2
Am Americium 4 2 6 10 7 2 6 2
Cm Curium 14 2 6 10 7 2 6 1 2
Bk Berkelium 4 2 6 10 8 2 6 1 2
Cf Californium 14 2 6 10 10 2 6 2
Es Einsteinium 4 2 6 10 11 2 6 2
Fm Fermium 14 2 6 10 12 2 6 2
Md Mendelevium 14 2 6 10 13 2 6 2
No Nobelium 4 2 6 10 14 2 6 2
Lr Lawrencium 4 2 6 10 14 2 6 1 2
Rf Rutherfordium 14 2 6 10 14 2 6 2 2

Each time a new electron shell starts to be occupied
(for the elements Li, Na, K, Rb and Cs), the ato-
mic volumes jump upwards. The atomic shell model
explains this readily, because the new shell with a hig-
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Fig. 6.15. Variation of atomic volume with the number Z of
electrons
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her principal quantum number n has a larger mean
radius (r) (see Fig.5.7) than the shells with lower n
values.

Also, the ionization energies Ejo, show this periodi-
city. The energy necessary to remove the outer electron
(which is the most weakly bound electron) from its state
(n.l.m;) to infinity is

Z.ie® Zfre?
Wior = / et Left€
4mregr? 4rreory,
ZZ
=2Ry* " (6.23)
n

which depends on the average distance (r) =r, of
the electron from the nucleus with the effective
charge eZ. = e(Z — S), partly shielded by the inner
electrons.

The noble gases, with their closed, fully occupied
shells have the smallest value of (r), which means the
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Subshell shell
g7Fr —ggRa - 7s } Q
ggAC -— 6d
g1 Tl —goPb—54Bi —g,Po—g;At—4.Rn -— 6p P
-«— 6Bs
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55Ce—"59Pr —=g,Nd—5,Pm—=% +53EU—5,Gd =5 Th 6eEr g9 TM—>5oYb—,Lu - 4f
39Y — 202 —*31Nb —3,Mo —35Te =4, Ru —35Rh 36Pd —47A0 —4Cd <~ 4d
N
31Ga>3,Ge 33A8 3,56 35 Br—5Kr - 4p
190K % “— 4s
215C ™ ppTi =3V = Cr =5Mn =5gFe =760 =5gNi =g Cu—=30Zn -~ 3d
13A1 734Si 5P —=S —=,Cl —=5Ar -— 3p M
11Na—,Mg <— 3s
B =sC—= N—=50 —=oF —Ne <« 2p
L
oLi —=Be -~ 25
H—=,He “— 1} K

Fig. 6.16. Building up the electron shells of all chemical elements

largest effective charge e Z ¢ of all elements in the same
row of the periodic table and therefore the highest ioni-
zation energy. They form the sharp peaks in the curve in
Fig. 6.17 while the alkali atoms, where the electron in
the outer shell, occupied by only one electron, is more

shielded by the lower closed shells, represent the mi-
nima in the ionization curve FEjy,(Z). In Table 6.3 all
measured ionization energies and the effective charge
numbers Z.g are listed for the first 36 elements in the
periodic table.



6.2. Building-up Principle of the Electron Shell for Larger Atoms

Table 6.3. Nuclear charge number Z, principle quantum number 7, ionization energy Ejopn, effective nuclear charge number Zgr
and shielding constant § for the leucht-electron in the ground states of the first 36 chemical elements

H 1 1 13.595 1.00

He 2 1 24.580 1.36 0.64
Li 3 2 5.390 1.25 1.75
Be 4 2 9.320 1.66 2.34
B 5 2 8.296 1.56 3.44
C 6 2 11.264 1.82 4.18
N 7 2 14.54 2.07 4.93
O 8 2 13.614 2.00 6.00
F 9 2 17.42 2.26 6.74
Ne 10 2 21.559 2.52 7.48
Na 11 3 5.138 1.84 9.16
Mg 12 3 7.644 2.25 9.75
Al 13 3 5.984 1.99 11.01
Si 14 3 8.149 2.32 11.68
P 15 3 10.55 1.64 12.36
S 16 3 10.357 2.62 13.38
Cl 17 3 13.01 2.93 14.07
Ar 18 3 15.755 3.23 14.77

25 THe
Ne
20
Ar

Kr
A ﬂX Hg| Ra

I LA LW

L N d 4 Ti
i a g Rb Cs

lonization energy / eV
> o
w

(¢)]

0

0O 10 20 30 40 50 60 70 80—+>Z

Fig. 6.17. Variation of ionization energies with the nuclear
charge number Z = total number of electrons

Since the mean radius r,, in the Bohr’s atomic model
is given by (3.85), the ionization energy for an elec-
tron in an unshielded Coulomb potential of the nuclear
charge Ze is

Ze? Z?

Wo = =2Ry* n2

dmegr,

A comparison of (6.24) with (6.23) allows the deter-
mination of the effective charge Z.ge and the shielding

(6.24)

K 19 4 4.339 2.26 16.74
Ca 20 4 6.111 2.68 17.32
Sc 21 4 6.56 2.78 18.22
Ti 22 4 6.83 2.84 19.16
A% 23 4 6.738 2.82 20.18
Cr 24 4 6.76 2.82 21.18
Mn 25 4 7.432 2.96 22.04
Fe 26 4 7.896 3.05 22.95
Co 27 4 7.86 3.04 23.96
Ni 28 4 7.633 3.00 25.00
Cu 29 4 7.723 3.01 25.99
Zn 30 4 9.391 3.32 26.68
Ga 31 4 5.97 2.66 28.34
Ge 32 4 8.13 2.09 28.91
As 33 4 9.81 3.40 29.60
Se 34 4 9.75 3.38 30.62
Br 35 4 11.84 3.73 31.27
Kr 36 4 13.996 4.06 31.94
constant S = Z — Z.g:
S \/ Wion
2Ry*
WO - Wion
=S n\/ IRy (6.25)

from measured ionization energies Wigy.

More detailed information on the quantitative cha-
racteristics of the different elements can be found
in [6.1,2, 3].

6.2.4 The Periodic System of the Elements

Dijmitrij Iwanowitsch Mendelejew (1834—1907) and
Julius Lothor Meyer (1830-1895) had the idea, in-
dependent from each other, to arrange all chemical
elements with increasing atomic numbers A in a ta-
ble with several rows in such a way, that elements
with similar chemical properties are all placed in the
same column of the table (Fig.6.18). Later on, it tur-
ned out that the number Z of atomic electrons, rather
than the atomic mass number N is the correct orde-
ring parameter. This gives seven rows (periods) and
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o Group
ke
&1 Il 1] v Vv \ \ll Vil
1H 2 He
1.00797 4.0026
3Li 4 Be 5B 6C 7N 80 9F 10 Ne
6.939 9.022 10.81 12.01115 14.0067 15.9994 18.9984 20.183
11 Na 12 Mg 13 Al 14 Si 15P 16 S 17 Cl 18 Ar
22.9696 24.312 26.9815 28.086 30.9738 32.064 35.453 39.948
19K 20 Ca 21 Sc 22Ti 23V 24 Cr 25 Mn 26 Fe 27Co 28Ni
39.102 40.08 44.956 47.90 50.942 51.996 54.938 55.847 58.9332 58.71
29 Cu 30 Zn 31 Ga 32 Ge 33 As 34 Se 35 Br 36 Kr
63.54 65.37 69.72 72.59 74.9216 78.96 79.909 83.80
37 Rb 38 Sr 39Y 40 Zr 41 Nb 42 Mo 43Tc 44 Ru 45Rh 46 Pd
85.47 87.62 88.905 91.22 92.906 95.94 99 101.07 102.905 106.4
47 Ag 48 Cd 49 In 50 Sn 51 Sb 52 Te 53J 54 Xe
107.87 112.40 114.82 118.69 121.75 127.60 126.9044 131.3
55 Cs 56 Ba 57 La 72 Hf 73Ta 74 W 75 Re 76 0s 771Ir 78 Pt
132.905 137.34 138.91 178.49 180.948 183.85 186.2 190.2 192.2 195.09
79 Au 80Hg (& 81Tl 4 82 Pb 83 Bi 84 Po 85 At 86 Rn
196.967 200.59 204.37 207.19 208.98 210 210 222
87 Fr 88 Ra 89 Ac 104 Rf 105 Ha
223 226.05 227 Ak |[|258? 2607
58Ce 59Pr 60Nd 61Pm| [62Sm 63Eu 64Gd 65Tb 66Dy 67Ho 68Er 69Tm 70Yb 71Lu
140.12 140.907 144.24 145 150.35 151.96 157.25 158.924 162.50 164.93 167.26 168.934 173.04 174.97
90Th 91Pa 92U 93Np 94Pu 95Am 96Cm 97Bk 98Cf 99Es 100Fm 101 Md 102 No 103 Lr
232.038 231 238.03 237 244 243 247 247 251 254 257 256 256 2587

Fig. 6.18. The periodic table of the elements. The mean mass
numbers are averaged over all natural isotopes of an element.
The lanthanides (upper blue row) are all in column III of the

eight columns (groups of elements), where all elements
with similar chemical properties are included in one of
these groups. The alkali elements form the first group,
the alkaline earth elements form the second, the halo-
gens the seventh and the noble gases are in the eighth
column.

In the sixth period, the third row comprises all
rare-earth elements (lanthanides) from La to Lu and in
the seventh period, the third row includes all actinides
and trans-uranium elements from Th to the artificially
produced heavy element Lawrencium Lr with nuclear
charge Z = 103.

The explanation of this arrangement of all elements
is now completely understood based on the structure of
the atomic electron shells, discussed in the foregoing
section.

sixth row, the actinides (lower blue row) are in column III of
the seventh row

The ordering parameter in the periodic system
of the elements is the nuclear charge number Z
that equals the number of atomic electrons. Going
from left to right in the nth period the elec-
tron shell with principal quantum number 7 is
successively filled.

The atomic mass numbers A are nearly integers forall
elements with a single isotope. Isotopes of the same che-
mical element have the same nuclear charge number Z
(i.e.,the same number of protons in the nucleus) but differ
inthe number N of neutrons. Their atomic mass numbers

A=[Z(my+me)+N-my]| /(Mc/12)

therefore differ.



The small difference in A from an integer for ele-
ments with only a single isotope is caused by the
mass defect AM = AENg /c2 due to the nuclear bin-
ding energy. If several isotopes of an elements exists,
the atomic mass number can be far from an integer. It
depends on the relative abundances of these isotopes
and is the weighted average of the mass numbers of the
different isotopes:

A=Y "niA; with ;= (6.26)

N;
YN
where N; is the number of atoms per mol of the isotope
with mass M; and N =) N; is the total number per
mol of atoms of this element.

The chemical properties of the elements are mainly
determined by the outer electrons with the smallest
binding energy, which are therefore called the valence
electrons. The reason for this is as follows.

In chemical reactions where atoms collide with each
other and form molecules

A+B+M— AB+M (6.27a)

the atomic electrons are rearranged during such a re-
action. The third collision partner M (which could be
the wall of the container) is necessary to take away the
excess kinetic energy and to allow the binding of AB.

For instance, the electron from the Na atom is trans-
ferred to the Cl atom. The energy that is necessary for
such a rearrangement is provided by the kinetic energy
of the reactants and the binding energy of the reaction
product. These energies are, however, small and amount
to only a few eV. Therefore the binding energy of the
electrons can not be larger and inner shell electrons can
not participate in such reactions.

If atoms collide with molecules, the molecule can
be dissociated and new reaction products are produced,
such as

A+BC— AB+C. (6.27b)

Such reactions also lead to a rearrangement of atomic
electrons or to a transfer of electrons from one atom to
the other. For such rearrangements the electron cannot
be too tightly bound, otherwise the electron could not
leave “its atom”. Therefore only valence electrons can
participate.

Since the ordering parameter in the periodic table is
the number Z of electrons, and after a shell is fully oc-
cupied a new period starts, elements in the same column

6.3. Alkali Atoms

have the same number of electrons in the outer shell.
The binding energies of electrons in the outer shell
of atoms in the same column in Fig.6.18 are nearly
the same, because their effective charge number Z.s
is nearly equal. These elements should therefore show
a similar chemical behavior.

EXAMPLES

1. The alkali atoms Li, Na, K, Rb, Cs and Fr all have
only one valence electron in the outer shell. They
are all monovalent and have a similar chemical
behavior.

2. All noble gases He, Ne, Ar, Kr, Xe and Rn have
a fully occupied outer shell. These are therefore pla-
ced in the last column of the periodic table. In order
to excite an electron, it has to be lifted into a hig-
her nonoccupied shell. This demands a large energy
(for He, e.g., about 20eV). Such a large energy is
not available for most chemical reactions. Therefore
noble gases are chemically inactive and do not re-
act with other elements under normal conditions.
If, however, one of the electrons is excited into a hig-
her shell by other means (for instance by electron
impact in a gas discharge), then the noble gas atom
can react, because now much less energy is requi-
red to transfer the electron from the excited state to
the other reaction partners.

3. The halogens F, Cl, Br and I all have one empty
place in their nearly filled outer shell. They all be-
have chemically similar and react with alkali atoms
readily, because the energy gain achieved by brin-
ging the electron from the alkali atom into this hole
is larger than the binding energy of the electron in
the alkali atom. The alkali-halogen molecule forms
an ionic bond NatCl~, where the electron has a lar-
ger probability of being in the electron shell of the
halogen atom than in the alkali atom.

4. All lanthanides from Lanthanum to Lutetium have
the same number of electrons in the outer P-subshell.
They only differ in the number of electrons in inner,
incompletely filled shells (see Table 6.2).

Other physical properties of the elements, such as
the electrical conductivity, also depend on the structure
of their electron shell and can be satisfactorily explained
by our atomic model.
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6.3 Alkali Atoms

The alkali atoms are the most similar to the hydrogen
atom. They are therefore called “hydrogen-like”. They
have, besides ng closed shells with principal quantum
numbers n <ng=1,2,3, ..., a single electron in the
outer shell withn =ng+ 1.

Since the time-averaged electron distribution in the
closed shell is spherically symmetric with quantum
numbers L =0 and S =0 for the total orbital angu-
lar momentum and the total electron spin, the outer
electron moves in a spherically symmetric potential,
which, however, differs from the Coulomb-potential
of the hydrogen atom. It consists of the Coulomb po-
tential produced by the nearly point-like nucleus with
charge Ze and the spatially extended spherical distri-
butions of the other electrons with charge —(Z — 1)e in
the filled shells.

The outer electron can be excited into higher states
by absorption of visible light and can emit visible light
afterwards. It is therefore called a “leucht-electron”
from the German verb leuchten, which means “to
shine”.

When r, is the mean radius of the highest closed
electron shell, the potential @(r) of the leucht-electron
can be approximated by a Coulomb potential for all
values r > r.. Since the nuclear charge Ze is very effec-
tively shielded by the Z — 1 electrons in closed shells,
the effective charge number is Z. & 1.

For r < r, this is no longer true, because here the
outer electron submerges into the closed shells and the
screening of the nuclear charge becomes less effective.
Here the potential depends on the radial distribution in
the electron shell. The effective radial dependence of
the potential @(r) changes from a Coulomb potential
with central charge Ze at small values of » to one with
acompletely screened charge (Z — (Z — 1))e = eat very
large distances r (Fig. 6.19):

ime() = 2° . lmer= ¢ . (629
r—0 47180}’ r—00 47[80}’

We will illustrate this by the simplest case of the Li
atom, where the outer electron in the 2s state moves in
the potential of the nucleus with charge Q = +3e and
the two screening electrons in the 1s state. If r; is the
distance of the 2s electron from the nucleus and 7;; to
the jth electron in the Is state (Fig. 6.20), the potential

Epot (I’)

Fig. 6.19. Radial dependence of the effective potential energy
for the outer electron in an alkali atom

for the 2s electron is given by

7 2
ooy 26 € /w]s(nn i
47‘[807‘,’ 47‘[80 ril

2
+/ [¥r15(r2)] dt2:|,
riz

where ¥(r;) is the wave function of the jth electron and
the integration is performed over the coordinates of the
jth electron. In a crude approximation the interaction
between the two 1s electrons can be neglected and the
wave functions v; can be written as hydrogenic 1s
wave functions, listed in Table 5.2. Inserting these wave
functions into (6.28x) yields the potential for the 2s
electron (see Problem 6.2)

o= |1+2e2Zer/a0 A )|
dmegr ag

(6.28y)

For r — 0 the potential equals the Coulomb poten-
tial for Z = 3, while for » — oo the potential becomes
a Coulomb potential with Z.¢ = 1, which means that the
two ls electrons have the screening factor S = 2. For

(6.28x)

the potential energy Epo (1) = —e - ¢er(r) we therefore
obtain:
Ze? 2
— E — . 6.29
dmeyr < Epo(n) < dmegr ( )
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Fig. 6.20. Illustration of shielding of the nuclear charge Ze
for the 2s electron by the charge distribution of the two 1s-
electrons

For the hydrogen atom, levels with the same princi-
pal quantum number 7 but different quantum numbers /
are degenerate. This (n — 1)-fold degeneracy is due to
the Coulomb potential and no longer holds for another
potential, even if it is spherically symmetric. There-
fore this /-degeneracy is lifted for the alkali atoms,
where levels with different values of / within the same
n shell do have different energies, even if spin effects
are neglected. The splitting between these levels be-
comes larger for small principal quantum numbers 7,
because the mean radius (r) of the electron distribu-
tion differs for different /-values and the screening
effect is therefore different. For / =0 the penetration
depth of the outer electron into the electron core is
more pronounced (in a classical model, the motion of
an electron with / =0 would be a straight line pas-
sing through the nucleus), the electron experiences the
nearly unshielded nuclear charge and its mean energy

6.3. Alkali Atoms

is lower than that for / > 0. The classical path for an
electron with / =n —1 would be a circle with a ra-
dius (r) and the penetration into the electron core is
minimum, the electron experiences an optimum shiel-
ded nuclear charge and its energy is higher than that
for all lower [-values with a given principal quantum
number 7.
This implies that the energies follow the sequence

E(n,l=0)<Emn,l=1)<E@nl1=2)...
(Fig. 6.21) .

Using different nomenclature we can write

E,(S)<E,(P)<E,D).... (6.30)

The zero reference point E = O1is either chosen as the io-
nization limit E(n — oo) = 0, in which case all energies
of bound states become negative (left scale in Fig. 6.21),
or the energy of the ground state is chosen to be E; = 0.
In this case all energies of excited states become positive
and the ionization energy Ej,, = —Ep becomes equal
to the negative binding energy of the electron in the
ground state. In spectroscopic nomenclature, generally
the second possibility is chosen. Instead of energies E

H Li Na K Rb Cs
E/eV SPDF SPDF SPDF SPDF SPDF
rn

5+--4 T L LT TT
4+ - SR AN ',72
-1+ L S i
° 6
31
—2+ L5
-3+
o
-2
16
—41
415
~4
—51 1s
L2

Fig. 6.21. Simplified level scheme E(n, /) of the alkali atoms
compared with the hydrogen atom (dashed red lines)
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the term values 7' = E/hc are given. This allows one
to express the wavenumber b = 1/A [cm™'] of a tran-
sition between level |i) and |k) as the difference of the
two term values:

V=T, —Tj .

For illustration, the level scheme of the sodium atom and
the possible transitions are given in Fig. 6.22. The left
scale gives the energies in electron volts eV with E(n =
oo) = 0, while the right scale gives the corresponding
term values in cm ™! with E, = 0. The conversion factor
is

leV =8065.541cm™" . (6.31)

For large principal quantum numbers n (which means
large mean distances (r) of the electron from the
nucleus), where the potential approaches the Coulomb
potential of the H-atom (Fig.6.19), the energy levels
of the alkali atoms can be described by the modified
Rydberg formula (see Sect. 6.6.4)

Ry* Ry*
Eni=— 3 == % | (6.32)
neff (I’l - 811,1)
Sy, %Pgo *Pyp *Dapsie Fsmzi
e e — — —
= = = = w0
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Fig. 6.22. Level scheme and transition of the sodium atom

where the integer principal quantum number n is
replaced by an effective quantum number

Neff =N — 8y -

The quantity §,;, that depends on n and [ is called the
quantum defect, which expresses the changes of the
energy values E,; against that of the hydrogen atom
(6 = 0) by a dimensionless number.

To summarize we can say that the shifts of the alkali
energy levels E,; against those of the hydrogen atom
are caused by the following effects.

e The deviation of the effective potential from the
Coulomb potential, which causes energy shifts AE,;
that depend on n and [, because of the n- and /-
dependent penetration depths of the outer electron
into the core of the other electrons.

e The outer electron interacts with the other electrons
in the core and polarizes the electron shell. This
leads to a deviation from the spherical charge distri-
bution even for closed shells. The magnitude of this
polarization depends on the angular momentum / of
the outer electron.

® When the outer electron penetrates into the core, it
can collide with the other electrons. This may result
in an exchange of the outer with an inner electron,
which causes an additional energy shift.

All these effects are included in the quantum defects §,,;.
In Table 6.4 the measured quantum defects for different
levels of the sodium atom are compiled.

Note:

The numbers in Table 6.4 illustrate that the quantum
defects depend only slightly on the principal quantum
number n. Therefore the AE of the energies shifts

E,=—Ry*/(n—38)*

Table 6.4. Measured quantum defects §,; for different
Rydberg states of the sodium atom

s: =0 1373 1357 1.352 1349 1348 1.351
p:l=1 0883 0.867 0.862 0.859 0.858 0.857
d:1=2 0.010 0.011 0.013 0.011 0.009 0.013
fil=3 - 0.000 —0.001 —0.008 —0.012 —0.015



against the energy levels E, = —Ry*/n” in the H atom
decreases with increasing values of n.

EXAMPLE

The shift of the level E, ;g is:

AE = Ry*[1/n?> —=1/(n—6)?]. For n=23 this
amounts to AE = Ry*[(1/9) —1/1.627*] = 0.27R*,
while for n = 20 the shift is only AE = Ry*[1/400 —
1/336.7] = 0.0005 Ry*.

6.4 Theoretical Models
for Multielectron Atoms

In Section 6.1 we already saw that even for the simplest
case of a multielectron atom, namely the two-electron
He atom, an exact theoretical treatment is not possible.
The reason for these difficulties are the interacti-
ons between the electrons, which because they have
a non-spherical symmetry, prevent a separation of the
Schrédinger equation as in one-electron atoms. Either
numerical methods have to be used or approximate mo-
dels that might be calculated analytically. If one starts
from a crude, but easier-to-calculate model and then
improves this model in successive steps, the physical
insight into the effect of the improvements and their
physical significance is much better, than for a nume-
rical treatment of the accurate atomic model without
approximations. Furthermore this successive way of im-
proving the atomic model is not restricted to a specific
atom but can be applied to all multielectron atoms.

In the following we will discuss some commonly
used approximation models for the description of larger
atoms.

6.4.1 The Model of Independent Electrons

If we consider an arbitrary electron e; from a many-

electron atom, its electrostatic interaction with the other

electrons e; results in a potential energy
ez Z 1

4mey P Ir—r;

In the model of independent electrons, this interaction

is not explicitly introduced but it is taken into account

EpOl(ris rj) = (6.33)

6.4. Theoretical Models for Multielectron Atoms

implicitly by using an effective potential @.g(r) that
depends on the nuclear charge Ze and the time avera-
ged spherical charge distribution of all other electrons.
Any arbitrarily chosen electron e¢; moves in this poten-
tial, that is independent of the momentary location of
the other electrons. This model therefore reduces the
problem to a one-electron model, which can be sol-
ved more easily with numerical techniques. Contrary
to the situation in the H atom, the radial dependence
of this potential is different from that of the Coulomb
potential, although both potentials have spherical sym-
metry. When we insert this effective potential into the
Schrodinger equation we get the wave functions and the
energy eigenvalues for any of these arbitrarily chosen
electrons.

These one-electron wave functions can be separa-
ted into an angular part and a radial part. While the
angular part is the same as that of the hydrogen wave
functions (because the potential has spherical symme-
try), its radial part is different (because the potential is
not Coulombic).

The energy states E; (n;,l;, m,, my;) in the one-
particle model are defined by the four quantum
numbers n;, [;, m;; and my, of the i-th electron. The
Pauli principle demands that each of these states can
only be occupied by at most one electron. Starting from
the lowest energy state and filling all electrons of the
atom successively with increasing energy into the dif-
ferent states gives the structure and electronic energy of
the atom.

The question now is how to obtain the effective
potential. If the one-electron wave functions v; of all
electrons e; (i # j) were known, the potential for the
ith electron could be calculated according to

Getr (i)
e y4 1 )

= - rplPd |
47'[8() ri /rij|¢](rj)| ‘C]

J#
(6.34)

where the first term gives the attractive interaction due to
the nuclear charge Ze and the second term the repulsive
interaction with the electronic charge, which is written
as the sum over the charge distributions —e|/; | of all
electrons e; with j # i, shielding the nuclear charge.
Since the integration extends over all angular coordina-
tes, the mutual distance r;; is averaged and the second
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term becomes a function that depends solely on r. The
total effective potential is then spherically symmetric.

We can therefore reduce the problem of finding
the optimum effective potential to that of finding the
optimum one-electron wave functions.

The procedure for calculating wave functions as so-
lutions of the Schrodinger equation is called ab-initio
method, because it starts from the basic equation, where
the approximation is solely due to the approximate
potential inserted into the Schrodinger equation.

6.4.2 The Hartree Method

The optimum wave functions can be obtained by an
iterative procedure, first proposed by Douglas Ray-
ner Hartree (1897-1958). It is illustrated by the flow
diagram in Fig. 6.23.

We start with a guessed spherically symmetric po-
tential ¢¥ (r), that approximates, in a crude way, the
screening of the nuclear charge by the electrons. A pos-
sible ansatz for such a zeroth-order potential could be,
for the lithium atom,

000 = ¢ (Leae)
4meg \ 1

which describes the screening of the nuclear charge by
the two s electrons and provides the effective potential
for the 2s electron. The two parameters a and b can be
adjusted to optimize the effective potential.

Inserting this potential into the one-electron Schro-
dinger equation for the ith electron, the one-electron
wave function (p;()) and the energy eigenvalue E; can be
calculated. This is now done for all N electrons of the
atom.

The different energy states are then filled with elec-
trons, starting from the lowest state and obeying the
Pauli principle, until each of all N electrons is assigned
to a specific state.

Now these wave functions are used to calculate,
according to (6.34), the improved potential for the ith
electron

(6.35)

0)
¢i(1)(ri)=€ i (r])|2

3

J#

(6.36)

which is produced by the nuclear charge and all other
electrons with time-averaged charge distributions. This
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Fig. 6.23. Flow charge diagram of the Hartree procedure

potential is inserted into the Schrodinger equation,
giving 1mpr0ved wave functions ¢; )(r) and energy
eigenvalues E; D for the ith electron which are com-
pared with the wave functions 90 ) and energies E(O)
If they do not agree with each other within given li-
mits, the procedure is continued until a minimum value
is approached for the lowest energy, because it can be
shown that the energies, obtained with the “true” wave
functions, are always lower than those obtained with
approximate functions. After a certain number of ite-
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rations, depending on the quality of the zeroth order
potential of the wave functions, the effective potential
and the energy values converge and further iterations do
not change them noticeably. The procedure is therefore
called “self-consistent field approximation” (SCF).

The important point of the Hartree method is, that
the total wave function ¥ (ry, 2, ... , ry) is reduced to
a product

Y, r, ..

of one-electron wave functions [6.4].

WIN) =1r)ea(r2) ... on(ry) (6.37)

Note:

This approximation is much better than the product
(6.3) discussed for the He atom. There the interaction
between the electrons had been completely neglected.
Here it is implicitly introduced in a global way by choo-
sing the best effective potential for obtaining the one
electron wave functions.

In Section 6.1 we have already noted that the total
wave function must be antisymmetric with respect to
the exchange of two arbitrary electrons. This can be
achieved if linear combinations of product functions,
such as (6.37), are formed that meet this symmetry
condition. Such an antisymmetric linear combination
can be written as the determinant

P1r)e1r2) ... o1(ry)

Y, ra, ... </)2(r1)<p2(r2') < a(ry)

ry)=C
onr)en@2) ... on@ry)
(6.38)

which automatically fulfills this demand. When two
electrons are exchanged, two columns of the determi-
nant are interchanged, which inverts the sign of the
determinant. This representation of an antisymmetric
multielectron wave function is called a Slater determi-
nant. It describes the wave function of a level in an atom
with many electrons as an antisymmetric linear combi-
nation of products of one-electron wave functions. More
details can be found in [6.4].

6.4.3 The Hartree-Fock Method

So far we have neglected the electron spin. In Sect. 6.1.3
we saw that the total wave function can be written as

the product

Y= @) x(s)

of the spatial part and spin function. This is valid if the
interaction energy between the magnetic moments of
spins and orbital momenta (causing the fine structure
splitting) is small compared to the electrostatic energy,
which is generally the case. Instead of (6.38) we then
obtain the determinant

Y(r,s)

(6.38a)

er(Dx1 (1), 91D x1(2) - .. @1 (N) x1(N)
== C N

en (D xn (D), on (D) xn(2) - - . o (N) xn (N)
(6.38b)

which is again antisymmetric with respect to an ex-
change of two arbitrarily chosen electrons. When using
these Hartree—Fock functions for computing the energy
eigenvalues, the necessary computer time is much lon-
ger than for the Hartree functions, but the results are
much more accurate and nowadays such functions are
nearly exclusively used for ab initio calculations.

6.4.4 Configuration Interaction

The best and most often used method for including
the interaction between the electrons (electron corre-
lation) is the configuration interaction (CI) technique.
Combined with the Hartree-Fock method it provides
the most accurate wave functions and energy values for
multielectron atoms.

The wave function of an atomic state is written as
the linear combination

W)=Y ci (6.38¢)
k

of Slater determinants (6.38b), where each of the Sla-

ter determinants gives the distribution of the atomic

electrons over the different one-electron levels, called

a configuration. If the energy

E= (V| H|W)

of an atomic state is calculated with the functi-
ons (6.38c), integrals of the form (v;|H|vyy) also
contribute to the total energy. These integrals describe
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the contributions of interactions between the diffe-
rent configurations ;, represented by the one-electron
functions (6.38b) to the energy.

In the sum (6.38b) only functions v, with the same
symmetry and the same spin are included. Otherwise
the integrals (y;| H|vy) vanish.

6.5 Electron Configurations and
Couplings of Angular Momenta

Besides electrostatic interactions, the magnetic inter-
actions between the magnetic moments of electrons
must also be taken into account. These much smal-
ler interactions cause a splitting of the energy states
into fine structure components. While for one-electron
atoms there are only two fine structure components for
all levels with / > 1, corresponding to the two different
orientations of the electron spin s with respect to the or-
bital angular momentum / (see Sect. 5.6.3), there might
be more than two components in multielectron atoms.
The manifold of fine structure components of a given
state (n, [) is called a multiplet.

The different electrons characterized by their one-
electron wave function, are labeled according to their
principal quantum number n and the quantum num-
ber [ of their orbital angular momentum. The electron
configuration describes these quantum numbers for all
electrons of the atom. For instance, the electron configu-
ration 152252 p represents a four-electron atom with two
electrons in the 1s state withn = 1 and [ = 0, one in the
2s state with n = 2 and / = 0 and one in the 2 p state with
n =2 and [ = 1. The configuration 2s>2p> of a seven-
electron atom has two electrons in the filled 1s state
(which are not included in the labeling, because it is self-
evident that the 1s shell has to be occupied in the ground
state of atoms with more than one electron), two elec-
trons in the 2s state and three electrons in the 2 p state.
The total quantum numbers of the atomic state depend
on the quantum numbers of the individual electrons and
on the couplings of their angular momenta.

6.5.1 Coupling Schemes
for Electronic Angular Momenta

The way the orbital angular momenta /; and the spins s;
of the individual electrons are coupled to form the total
angular momentum J of the atom, depends on the ener-

getic order of the different interactions. We will discuss
two limiting cases.

a) L-S Coupling

If the interaction energies

‘/Vlilj = Cl,'jll'lj (6393)

between the orbital magnetic moments of electrons e;
and e; and

Wsis/- = bijSiSj (639b)

between their spin moments are large compared to the
interaction energy

W5, = ciilis; (6.39¢)

between orbital magnetic moment u;; = ugl; and spin
moment s = ggups; of the same electron, then the
orbital angular momenta /; of the different electrons
couple to a total orbital momentum

L=)I; with |L|=vL(L+Dh  (6.40a)
and the individual spins s; to a total spin
S= Zs,- with |S] =/S(S+ Dk (6.40b)

of the atomic state. The total angular momentum of the
electron shell is then

J=L+S with |J|=VJJ+Dh.

This limiting coupling case is named L — S coupling
(Fig. 6.24). The electron configuration with total orbital
angular momentum L and total spin S results (depen-
ding on the coupling of L+ S =J) in different fine
structure components of a multiplet, which only differ
in their quantum number J. The number of possible
fine structure components equals the smaller of the
two numbers (254 1) or (2L + 1), because this gives
the number of possible relative orientations between
the two vectors S and L, and therefore the number of
different couplings L + S = J.
The energy of a fine structure component is

E;j=En,L,SY+C-L-S,

(6.40c)

(6.41)

where the last term gives the coupling energy of the
interaction between total orbital angular momentum L
and total spin S. The coupling constant C is given in
units of [1 kg~ 'm~2].
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Fig. 6.24. Vector model of L-S coupling

Because of the vector relation
J=(L+S)?=L"+S+2L-S (6.42)

we obtain for the fine structure coupling energies
C-L-S

1
= CLUU+ D= LL+D =SS+ DI (643)
The labeling of a fine structure component is n>S*1L ;.

EXAMPLES

PPm=385=1,L=1,J=1);
D3 pn=4,8S=1/2,L=2,J=3/2),

The following nomenclature is used in accordance

with the labeling of levels in one-electron atoms:
L=0:S-terms; L =1:P-terms;
L=2:D-terms,... .

Note:

Unfortunately the letter S is used in the literature for
two different things, namely, for the total electron spin
and for levels with L = 0.

EXAMPLES

1. The electron configuration with L =2 and S =1
results in three fine structure components with quan-
tum numbers J =1,2,3 (Fig.6.25a). The corre-
sponding vector couplings are shown in Fig. 6.25b.

3
a) / T b) A
J s R
/ 2C 3
=281/ | . 3
‘\\\ C J
[IRY i - -
“‘ _T_ 2 L J E L T_)
\ J
\‘ 2C
\ 1 J=3 J=2 J=1

Fig. 6.25a,b. L-S coupling for the case L =2, S = 1. (a) Level
scheme (b) Coupling possibilities

The energies of the fine structure components are
calculated according to (6.41)-(6.43)

E;(n,L,S,J)

=E(n, L,S)+C/2[J(J+1)—6—2]h?
=E(n, L,S)+2Ch*> for J=3
=E(,L,S)—1Ch*> for J=2

=EWn,L,S)—3Ch* for J=1

The fine structure components are not equally
spaced!

2. The configuration with L = 1 and S = 3/2 has three
possible fine structure components with J =5/2,
3/2 and 1/2. The components are labeled 4P5/2,
4P3/2, and 4P]/2.

T/cm™
——— 95,533
3p 4P
> p
i ——
5/2
94,800 - 3/5 795
12515 772
e
5/2 88,173
88,150 | 2 153
109
2p*) 4P
BN (2p™)
5/2 83,366
83,300 |- 4/ 319
12— 285

Fig. 6.26. Level scheme
of the lowest quartet
states of the nitrogen

(1s?2s°2p°) %S, atom
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For L-S coupling, the fine structure splitting
AEps = Ej— Ej is small compared to the ener-
getic separation of levels with different values
of L or S. In the spectrum of an atom, following
L-S coupling, one recognizes a distinct multi-
plet structure of narrow fine structure components
(Fig. 6.26).

® The fine structure constant C is largest for
the lowest atomic levels (small values of n)
with L # 0 and S # 0. The magnitude of the
multiplet splitting decreases with increasing
principal quantum number n (Fig. 6.27).

e [-S coupling is valid mainly for light atoms
with small Z values. Quantum mechani-
cal calculations show that the fine structure
constant C is proportional to

CxZn, (6.43y)
while the energy separation between levels
with different values of L only increases with
7% /n’.

e For large Z values, the fine structure splittings
become comparable with the separation of le-
vels with different L values and the validity of
the L-S coupling scheme breaks down.

Note that the weighted average of the energies of all
fine structure components

k = J J > ’

where each component is weighted by its statisti-
cal weight factor 2J + 1 (according to the number of
possible spatial orientations of J) coincides with the
energy E(n, L, S) of the unsplit level ((2.45) without
the coupling term). This weighted average is indicated
in Fig. 6.25a by a dotted line.

The small fine structure splitting is, for instance,
visible in the spectrum of the smaller alkali atoms
(Fig. 6.27), where transitions from the ground state n S,
which has no fine structure splitting, to higher levels
(n+ x) 2P are observed. The splittings of the lines the-
refore directly give the splittings of the upper levels.
The figure illustrates that the splitting increases with Z
although the principle quantum number n of the ground

2 S o
5 R e /A
v i
S —

- —

o 1ML [ || Na
| ] AT T I «
lonization limit__ > [[[I] [ ] [ Ro
I (1T [l cs
- 1 1 1 ]
V/em™ 40,000 30,000 20,000 10,000

Fig. 6.27a—c. Absorption spectra of the alkali atoms. (a) En-
larged section of the Na spectrum in (b). (¢) Spectra and
ionization limits of K, Rb, and Cs

states also increase (n =3 for Na,n =4 for K, n =5
for Rb and n = 6 for Cs).

In Fig.6.28 the different interaction terms in the
case of L-S coupling are schematically illustrated for
the example of two interacting electrons with /; =1
and I, =2. The Pauli principle demands for singlet
terms (§ = 0) another spatial distribution of the two
electrons (symmetric spatial wave function) than for tri-
plet terms (S = 1) with an antisymmetric spatial wave
function. In the latter case the two electrons are farther
apart than in the first case and the electrostatic repul-
sion energy is smaller. The triplet states therefore have
alower energy than the singlet states. It should be stres-
sed again that the splitting between singlet and triplet
levels with equal L values is not due to a magnetic inter-
action, but due to the electrostatic interactions between
the electrons, which is different for singlet and triplet
levels.

Since the potential for electrons in multielectron
atoms is no longer a Coulomb potential, the L de-
generacy discussed for the H atom is lifted and

Table 6.5. Fine structure splittings of the levels (n =2,/ =1)
for some light atoms in cm ™!

He 2 2p 3p° 1
Be 3 2p23p° 3
C 6 2p%3pP 42
0 8 2p*3P 226
F 9  2p°3P, 404
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Degeneracy
J of levels
1
P 1 3
1
8=0 Z 2 2 5
1
F 3 7
] Deviation from
Electrostatic Coulomb-potential Fine-structure
(ny.l4) (Np.15) interaction, lifts degeneracy splittings
h Pauli-principle 3p 2 5
I 1 3
E{+E, ! 0 ;
One-ele_ctron ! . 3 ;
energies ! 5 5
| S=1 1 3
: 4 9
| 3F

|

2 5

Fig. 6.28. Energetic sequences of the different interactions with the corresponding level splittings in the case of L-S coupling

for the example of the (1 P (nad)! configuration

levels with different L values have different energies.
The vector sum L =1; 4+, of the two orbital angu-
lar momenta /; results in possible quantum numbers
L =1, 2, 3. The singlet term with S = O splits into the
levels ' P(L = 1), the ! D level (L = 2) and the ' F levels
with L = 3 and the triplet states in the corresponding
triplet components.

The singlet levels show no fine structure (because
the total spin is zero), while the triplet states split into
three fine structure components. The splitting is largest
for the largest L value (see (6.41)).

The different fine structure components are labeled
by the quantum number J, which is given in Fig. 6.28,
together with the degeneracy 2J + 1.

b) j-j Coupling

If the interaction energy
Wi.s; = ciilisi (6.44)

between the magnetic moment of an electron due to
its orbital angular momentum and its spin moment
becomes larger than the magnetic interactions

Wlilj = aijl,'lj or Wsisj = b,‘jS,‘Sj

between different electrons, the order of couplings
changes. Now [; and s; initially couple to form the
resultant angular momentum

Ji=1+s; (6.45a)
of the electron ¢;, and the vectors j; of the different
electrons couple to the total angular momentum J of
the atomic state

J=Zji~

This limiting coupling case, which is mainly obser-
ved for heavy atoms with large Z values, is called
Jj-J coupling. The vector coupling diagram is shown
in Fig. 6.29.

(6.45b)

Fig. 6.29. Vector model of j-j coupling
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Note:

In the limiting case of j-j coupling the total orbital an-
gular momentum L and the total spin S are no longer
defined, although the individual vectors I; and s; are
known. There are no longer S, P, D. .. levels and also
no distinction between singlet, doublet or triplet levels
can be made. The only well-defined “good” quantum
number is J for the total angular momentum J with
|J| = (J(J +1))!/2. Levels with equal quantum num-
bers /; for the individual electrons but different spins s;
no longer form narrowly spaced fine structure com-
ponents of multiplets but are energetically mixed with
levels of different /;.

The spectra of such atoms with large Z numbers
are therefore confusing and not easy to assign. The
spectrum is very crowded as can be seen in the example
for the iron spectrum, from which a small section is
shown in Fig. 6.30.

EXAMPLE

The tin atom Sn (Z = 50), has the ground state con-
figuration 5s>5p”. When one of the two p electrons
is excited into the 6s level, the electron configura-
tion (5s%, Sp, 6s) is obtained with L =1, S=1, and
J=0,1,2.

If the 65 electron is completely removed, the Sn™
ion with the configuration (5s2, 5 p) results in the 5p* P
state, which shows a fine structure splitting of the same

C Si Ge Sn
vem™ 2p 3s 3p 4s 4p 5s 5p 6s
5000
4000
3000
2000

.
1000 | 3p, 'Pq
N

=

AR TR MY Vi

3900 1 2 3 4 5 6 7 A/nm

Fig. 6.30. Section of the emission spectrum of iron atoms in
the near UV

magnitude as the (5s25p, 6s) configuration of the Sn
atom. This demonstrates that the main part of the fine
structure splitting is caused by the interaction of the p
electron with the other electrons, because the p electron
submerges into the electron shell of the Sn atom. Only
the minor part is due to spin-orbit coupling between the
6s and the 5p electron. This is a further indication for
Jj-j-coupling [6.3].

For most atoms, intermediate coupling cases apply,
which are between pure L-S coupling and j-j coupling.
In Fig.6.31 the transition from L-S coupling for the
carbon atom (Z = 6), over the intermediate coupling
for Germanium (Z = 32) to the j-j coupling for lead
Pb (Z = 82) is illustrated.

The total number of possible levels for a given elec-
tron configuration (/;, s;) is the same for the two limiting
cases. It is therefore possible to draw for the transition
from L-S coupling to j-j coupling in such a diagram
unambiguously connecting lines for levels with a given
J-value. Such a diagram is called correlation diagram
(Fig. 6.32).

Pb

6p 7s J j1| j2

3 —_—
— 1000} P17,
o
- 2000+ °p, L-S-coupling
— 3000}
— 4000 |
— 5000 |

j—j-coupling

Fig.6.31. Transition range between
L-S coupling and j-j coupling for
equivalent states of atoms in the fourth
column of the periodic table
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Fig. 6.32a,b. Correlation diagram for the transition from
L-S coupling for light atoms to j-j coupling for heavy
atoms. (a) For the pz-conﬁguration. (b) For the (np, (n+1)s)
configuration of some atoms

6.5.2 Electron Configuration and Atomic States

In this section we will discuss how the different ato-
mic states and their spectroscopic assignment can be
deduced from the electron configurations.

From the building-up principle, discussed in
Sect. 6.2 it follows that in the case of L-S coupling the
total orbital angular momentum L =) /; for a filled
electron shell must be zero, because for each quantum
number [, all levels with projection quantum num-
bers m; (—I < m; < +I) are occupied. This means that
all possible orientations of the orbital angular momen-
tum are realized and therefore the vector sum L = »_I;
must be zero.

Since this shell is filled with pairs of electrons with
antiparallel spins, according to the Pauli principle, the
total spin S = ) s; must also be zero. This is illustrated
in Fig. 6.33 for the neon atom.

Ne 1322522p6
K shell: n=1

T=1=0 = L=0 } -

Si+s,=0 =8=0

T=1m0 = 51=-5,
a) = L=0 und S=0
b) I;+E+I2=O, §3+§4+§5=§a¢0
c) TG+I_;+TB=O, §6+§7+§8=§b=—§a

:E=O;§:§a+§b:0

2 electrons

8 electrons

N -
- - s T - - Sei
I3 Iy jT lg l7 N
s 7¢
= 4 = N
|5 SaT |8 ai

Fig. 6.33. Illustration of the vector sums ) I, = L =0 for
orbital angular momentum and ) _s; = S = 0 for the electron
spins for closed shell atoms such as neon

All noble gases in their ground states have the
quantum numbers L = S = J =0, their ground
state is ! Sp.

For all other atoms the values of L and S can be
determined by counting only electrons in unfilled
shells. All filled shells with a given principal quan-
tum number n do not effect the angular momenta
of the unfilled shells.

We will illustrate this for the example of the carbon
atom with six electrons.

The electron configuration in the ground state is
15%25?2p?. The 1S shell and the 2S subshell are fil-
led. Their quantum numbers are S=L =J =0. We
only need to consider the two 2p electrons with [ = 1
and s = 1/2. Depending on the relative orientation of
the two orbital angular momenta /; and their spins s;
different atomic states can be realized, which differ in
their quantum numbers L, S and J. This is illustra-
ted in Fig. 6.34a, where the possible orientations of the
two vectors /| and I, of the two p electrons are indica-
ted. The level diagram of Fig. 6.34b shows the different
energies of the resulting states, that are allowed by the
Pauli principle. If the two electrons have the same prin-
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Fig. 6.34. (a) Vector model of the p?-configuration. (b) Term
diagram. The blue levels are only possible for n; # na

cipal quantum number (n = n’), only the black energy
terms are allowed. For these states the sum L 4 S is al-
ways an even integer. For electrons with n; # n,, five
additional terms can be obtained, which are marked in
red in Fig. 6.34b. The triplet states are lower than the
singlet states. Within the triplet states the D states are
lower than the P states and for a given value of L the
levels with the smallest J value have the lowest energy.

The possible states resulting from the p* configura-
tion are illustrated in another way by the Slater diagram
of Fig.6.35. Here the left part shows all M; and My
values that can be realized. The white circles indicate
states that are forbidden by the Pauli principle. The right
part of Fig. 6.35 shows how the different states contri-
bute to all possible M} and Mg values on the left side.

5’ + s

Fig. 6.35. Slater diagram of all levels (M, M) for a p>-
configuration of equivalent electrons (11 = ny). The white
circles are not observed because of the Pauli principle

This diagram shows that for equivalent 2p electrons
with n| = n, fifteen combinations of M; and My are
possible. Five of these combinations result in the ' D
state, nine in the 3 P state and one in the 'S state. The
combination M; = Mg = 0 comes from three different
couplings of the individual angular momenta of the two
p electrons, and M; = 1, Mg = 0 from two, as explai-
ned by Table 6.7. Table 6.7 shows in detail the different
quantum numbers L, S, my,, my,, my,, my,, MgM; and
the resulting atomic states. In Table 6.8 the possible
multiplicities due to the coupling of the electron spins
are compiled.

Table 6.6. Possible total angular momenta and resulting
atomic levels for different two-electron configurations

s 0 é ; Sl/2
5? 0 0 O 1S,
0o 1 1 38, forny #na
sp 10 1 'p,
11 01,2 3Py,3P.,3P,
p? 0 0 0 1S,
1 1 012 3Py.3P.%P,
2 0 2 'D,
0 1 1 3S1 only for
1 0 1 'p, ny #ny
2 1 1,23 3D,



Table 6.7. Possible quantum numbers for levels resulting from
a np2 electron configuration withn; =ny =n

00 0 0 4, =5 0 0 5
10 0 -1 43 43 +1 0 3P,
L=+ 4+ Al
11 1 o0 -} -1 -1 0 3P
R R e e
10 45 45 41 42
L=l 4} 4} +1 +1
11 0 0 43 =5 0 0 3P
S R 0 -1
o -1 -} -7 -1 =2
+1 +1 4+ =) 0 42
+1 0 45 -3 0 4l
2 0 1 -1 +, =) 0 0 D
0 -1 45 =5 0 -1
-1 -1 +) =1 0 -2

The total spin S and with it the multiplicity 25+ 1
of an atomic state depends on the number of electrons
in not completely filled shells (Table 6.8).

6.6 Excited Atomic States

In Sect. 6.1.5 we illustrated for the case of the He atom
that for excited atomic states, the number of possible
ways to couple the different angular momenta becomes
much larger than for the ground state. The reason for this
larger manifold of possible states is that now the excited
electron has a different principal quantum number and
therefore the Pauli principle imposes fewer restrictions.

In this section we will present the different
possibilities of populating excited atomic states.

Such excitations can be experimentally realized by
the absorption of photons, by collisions with electrons,
or with high energy ions.

One speaks of one-electron excitation if in the inde-
pendent electron model (Sect. 6.4.1) only the quantum
numbers of one electron are changed while they re-
main the same for all other electrons. One should,

6.6. Excited Atomic States

Table 6.8. Total electron spin and multiplicity of atomic states
resulting from different numbers of valence electrons

1 mszé Doublet
2 mg, =+3.my, =+3=S5=1  Triplet
mg, =+3,my, =—5=S=0  Singlet
3 +;,+§,—é:>S:£ Doublet
+l L+l =s=3 Quartet
4 1ty s —y=>8=0 Singlet
+ytytr—y=S=1 Triplet
+o gty = 8=2 Quintet

however, keep in mind that because of the electron
correlation the excitation of one electron does affect
the energies of the others, because the electrostatic
interaction is changed and also, to a smaller extent,
the magnetic interactions might change. The energy
transferred to the atom by photon absorption or elec-
tron impact is, even for one-electron excitation not
completely transferred to the excited electron but also
changes the energy of the residual electron shell. This
is particularly true for the excitation of an electron
from inner shells, because here the average distance
between the electrons is smaller and the correlation
larger.

6.6.1 Single Electron Excitation

The smallest energy is required, when an electron in
the outer valence shell is excited into higher states.
The excitation energy of these valence electrons ranges
from 1—10eV. Exceptions are the noble gases, where
the outer shell is completely filled, the binding energy
is larger and the excitation energy of an electron in this
shell is higher. For example, for helium the first excited
state lies about 20 eV above the ground state.

The excited state Ey is not stable. It can decay spon-
taneously into lower states E; by emitting a photon with
energy hv = Ej;, — E;. The mean lifetime 7; of the ex-
cited state depends on the total probability of radiative
transitions into lower states (see Sect.7.3). For some
states this transition probability is very small and the
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lifetime correspondingly long. Such states are called
metastable states.

EXAMPLES

1. Lifetimes of some excited states:

HQ2’Pip): t=15x10"°
He(2'P): 1=05x10"s
Na(3’Pyp): t=16x10""

2. Lifetimes of metastable states:

H(2?Si5): ©=38s
He(2'Sp): t=19.6ms
He(2’S)): t=7870s

6.6.2 Simultaneous Excitation of Two Electrons

Under special conditions two electrons can be excited
simultaneously. Assume, for instance, that two electrons
from the 2s state of Be (Fig. 6.14) are excited into higher
states. The two excited electrons can populate the 2p
state, or one electron is excited into the 2 p state and the
other into the 3 p state, etc. The total excitation energy
is then

E=E+E,+AE, (6.46)

where E; is the excitation energy for the single ex-
citation of electron e¢; and AE is the change in the
interaction energy between the two electrons and with
the core, caused by the excitation of the two electrons.

The doubly excited atomic state can decay either by
emission of two photons, or the energy of one excited
electron can be transferred to the other excited electron,
due to the Coulomb interaction between the two elec-
trons. This causes a further excitation of one electron
into still higher states and a de-excitation of the other.
This process becomes less likely if the two electrons are
excited into states with very different principal quantum
numbers, because then the mean distance between the
two electrons becomes larger and their mutual interac-
tion weaker. This increases the lifetime of such doubly
excited states if their energy is still below the ionization
energy.

\

Excitation
At+e

Auto-
ionization

Fig. 6.36. Illustration of autoionization of a doubly excited
atomic state (ET = energy transfer)

Since the total energy must be conserved, this pro-
cess of energy transfer from one electron to the other is
only possible, if an excited atomic state exists, that mat-
ches the energy E* of this highly excited electron. This
is very unlikely for the discrete atomic energy levels be-
low the ionization limit, i.e, for E* < Ejoy, but is always
possible for the continuous energy spectrum E* > Ejy,.
In this case the transfer of the excitation energy of one
of the two excited electrons to the other allows this
electron to leave the atom and the atom becomes io-
nized (Fig. 6.36). This process, which is illustrated in
Fig. 6.37, is called autoionization. The term diagram is
shown in Fig. 6.37b for the case of the doubly excited
Li atom. One electron is excited from the 1s into the 2p
level, the other from the 2s into the 3 p level. The total
energy of the doubly excited state 1s2p3p lies above

AE/eV o
AHt0|op|zat|on
LTI . 8.0L152p3p Li'+e+Ey,
_____ AN *92 T
pid \C)\/(. \\\‘ : Ekin
&7 N e, | 5.4 “
i @ o=y T """ lonisazion
. ff?’ﬁ S limit
. /,/ ,/' 15°5p
-
e 1822 1522
M 185 P
15%25)—(1s2p3
( )=>(1s2p3p) 1s%2s 1s%2s
a) b)

Fig. 6.37a,b. Simultaneous excitation of two electrons in
the Li atom. (a) Bohr model. (b) Level scheme with
autoionization



the ionization energy

Eion = lim (1s’np) (6.46a)
n—o0

of singly excited states at about 5.4 eV. If the 2 p electron

transfers its energy to the 3 p electron, the energy of the

latter becomes higher than Ej,, and the electron can

leave the atom.

6.6.3 Inner-Shell Excitation and the Auger Process

When an electron from an inner shell is excited into
higher unoccupied states, larger energies are required
than for the excitation of a valence electron, because
electrons in inner shell are much less screened from
the nuclear charge and their binding energy is accordin-
gly larger. Inner shell excitation therefore needs either
UV or even X-ray photons or collisions between inner
shell electrons and incident electrons having sufficient
energy.

The hole created in the inner shell by the excita-
tion of an electron can be refilled when an electron
from a higher state E; falls into this hole. The energy
AE released by this process is generally emitted as
UV or X-ray photons hv = AE (Fig. 6.38). This is the
source for the discrete X-ray emission in X-ray tubes
(see Sect.7.6.2).

The energy AE = E; — E}, awailable during the
transition of an electron E; from level |7) to |k), can also
be transferred directly onto another electron e; of the
same atom, due to the interaction between the electrons.
If the binding energy E of e, is smaller than AE, it can
leave the atom, which means that autoionization takes

Fig. 6.38. Inner shell excitation with subsequent emission of
characteristic X-rays

6.6. Excited Atomic States
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Fig.6.39. The Auger effect. The electron e in the L shell
falls down into the vacancy in the K shell and transfers its
energy to the electron e, , which leaves the atom

place (Fig. 6.39). This special kind of autoionization is
called the Auger effect.
The kinetic energy of the ejected Auger electron is

Eyin=E;—E;—Egp .

Measuring this energy allows the determination of the
atomic state out of which it was ionized.

The emission of X-rays and the Auger process are
competing processes. The fraction of all inner shell ex-
citations that lead to X-ray fluorescence on the transition
E; — E} is called the fluorescence yield. It depends on
the level E; and on the nuclear charge Ze of the atom.
For Z < 30 the Auger process is dominant, for Z > 60
the fluorescence yield reaches 90%, if the excitation
starts from the K shell.

6.6.4 Rydberg States

In Sect.4.3 it was shown that the mean radius of the
electron in the H atom

(ry =aon® with ap=5x10""m

is proportional to the square of the principal quantum
number n. An electron with n = 100, therefore, has
a mean radius of its orbit (r) =5 x10~" m = 0.5 pm!
When its orbital angular momentum has the maximum
value |I| = (n — 1)h the electron orbit approaches a cir-
cular path with radius r = (r), since for large values of n
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the quantum mechanical description converges towards
the classical one (see Sect. 5.8).

For [ « n the classical orbits are elliptical. The inner
turning point (perihelion) of the ellipse comes close to
the nucleus and therefore experiences a revolution of
the major axis (Fig. 6.40). The maximum probability of
finding the electron is around the black dashed circle
in Fig. 6.40, because there are the outer turning points
(aphelions) of the elliptical orbits where the electron
has its smallest velocity.

According to the Rydberg formula (6.32) in
Sect. 6.3,

E,=—Ry*/(n—8)*, (6.46b)

the binding energy of a Rydberg electron becomes very
small for large n values. It can therefore be readily
ionized by small perturbations, such as collisions with
atoms or electrons or by external electric fields.

The field ionization of Rydberg atoms is used for
a very sensitive detection of these atoms.

The level scheme is shown in Fig.6.41. For suf-
ficiently large values of n, the potential is close to
a Coulomb potential with Z = 1 because the nuclear
charge is nearly completely shielded by the electron
core. The homogeneous external field in the x di-

Fig. 6.40. Classical paths of Rydberg electrons with [ < n
(blue curves) and | = Iy, = n — 1 (black curve)

7VCoqumb
n+2 / » |nstable
Field ionization _ E =-eE,- )A(

n+1 /

Fig. 6.41. Field ionization of a Rydberg level

rection has the potential energy Epo = —eEox. With
x =rcos ¥, the sum of the two potentials

Epor = — —eEpx

dmegr

1
=—¢ < + Eyr cos 19)
dmegr

has amaximum for dE,,,/dr = 0. This yields aradius r.
of maximum energy

1
re =
\/47180E0 cos v

and the potential energy

Eycos
Epot(rc) = _e\/ 0

TTEQ

(6.46¢)

The ionization energy is therefore lowered for ¢ = 0 by

Ey
AEpOt = —€ .
TTE(

EXAMPLE

(6.46d)

With the external electric field E =5 x10° V/m, the
maximum of the total potential energy is Epy(rc) =
—0.858 x1072! ] = —5.4 meV. All Rydberg levels with
n > 50 are above this energy and are therefore ionized.
In fact, due to the tunnel effect even levels with n < 50
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Table 6.9. Characteristic data of atomic Rydberg states (ag = 5.29 x 10~"'m, Ry = 1.09737 x10’ m™ 1)

Binding energy —Ry*n~?

Energy E(n+ 1) — E(n) AE, = Ry (,,12 - (n+11>2>
difference

Mean Bohr radius aon®

Geometric ngn4

cross section

Revolution T, xn?

period

Radiative lifetime xn’

Critical electric E. =msg Ry*ze’3rf4
field for

ionization

can be ionized, although their ionization probability
decreases exponentially with decreasing n.

For the mean kinetic energy of a Rydberg electron
in a Coulomb potential, the virial theorem states that

(Exin) = _1/2(Epot) .

From energy conservation E,, = Exj, + Epo ist follows
then that

Exin = E, + Ry*/n* .

With increasing n the velocity of the electron decreases
as 1/n.

The absorption or emission frequencies for transiti-
ons between neighboring Rydberg levels are

2Ry*
nn—1)"
For n > 60 they are in the microwave range, for n > 300
in the rf range.

v=(E, — En—l)/h ~

EXAMPLE

For the Rydberg level of the hydrogen atom with
n = 100 the kinetic energy is Eyj, = 2 X 10727=0.6 x
1073 eV. The velocity of the Rydberg electron on a cir-
cular path with r = n?ay is then v =2.2 x10* m/s, its
revolution period is 7, = 2/v = 1.4 x107 s and its
revolution frequency v =7 x10° s~!. Compared to the
period 7; = 1.4 x107's for the lowest orbital with
n = 1 the Rydberg electron moves very slowly.

34eV 0.0054eV = 43.5¢cm™!

5 R~2ev 0.2meV =2cm™!

4ay 2500ag = 132 nm

167aj 61 x10%a} =5 x10~14 m?
10755 2x107 g

5x107%s 1.5x107%s

5x10° V/m 5x10° V/m

For heavy atoms with Z > 1 the difference beco-
mes even larger, because the velocity on the inner orbit
where the nuclear charge Ze is barely shielded, scales
with Z.

The frequency v(n — n + 1) of transitions between
neighboring Rydberg levels n =100 and n+1 is v =
6.5 GHz.

If in atoms with more than one electron, one of
the electrons is excited into such a high lying Rydberg
state, it mainly moves outside the charge distribution of
the other electrons. The potential for the Rydberg elec-
tron is therefore nearly the Coulomb potential of an ion
with the effective charge Q. = +e, because the nuclear
charge is nearly cancelled by the Z — 1 other electrons.
The screening of the nuclear Coulomb potential de-
pends on the penetration depth of the Rydberg electron
into the atomic core, which in turn depends on the
angular momentum of the Rydberg electron. For the ma-
ximum angular momentum quantum number / =n — 1
the classical orbit is circular and the penetration depth
is minimum while for small values of [ < n, the clas-
sical path is an ellipse with large eccentricity and the
Rydberg electron submerges deep into the core where it
experiences the deviation from the Coulomb potential.

In the quantum mechanical language the deviation
of the potential for a Rydberg electron from the pure
Coulomb potential of a one-electron atom depends on
the spatial overlap of the wave functions of the Rydberg
electron with those of the core electrons. These wave
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functions depend on the quantum numbers #n and [ (see
Fig.5.7).
The energies of Rydberg levels in multielectron
atoms is therefore shifted against the energy
E, = —Ry*/n? (6.47)
of hydrogen like atoms. This energy shift can be expres-

sed by the so-called quantum defect §,;. The Rydberg
formula (6.47) is then generalized to

Ry* Ry*

En 1= =
(n— 8!1.1)2 ngff

, (6.48)

where the quantum defect §,; depends on n and [ (Ta-
ble 6.4). Often, the effective principal quantum number
Netf = n — 8, 1s introduced, which deviates from an in-
teger. This allows one to use a similar Rydberg formula
for all atoms [6.5]. From the equation

A 1\ 28
Eni=En=Ry n—82 n2) "

the quantum defect can be calculated. For n > § the
difference between observed level energies E, ; and
those, calculated for a Coulomb potential decreases as
1/n3.

6.6.5 Planetary Atoms

When two valence electrons are excited into different
high lying Rydberg states (n,1) and (n’, 1) (Fig.6.42)
the total excitation energy is way above the ioniza-
tion limit (Fig. 6.43) and autoionization can occur (see
Sect. 6.6.2). Since the radii of Rydberg orbits scale
with n? the mean distance between the two excited
electrons is large for n # n’ and their mutual interac-
tion becomes small for large values of n. This decreases
the probability of autoionization and the lifetime of such
doubly excited Rydberg states may be much longer than
those for doubly excited lower states. This allows the
observation and spectroscopic characterization of such
unusual atoms called planetary atoms, because the two
electrons circle around the inner atomic core like planets
around the sun [6.6].

If the two electrons come close to each other, the
mutual interaction increases and one electron can trans-
fer its excitation energy onto the other electron, which

Fig. 6.42. Classical model of a planetary atom with two
excited electrons

can then leave the core (autoionization, Fig. 6.43). The
ionic state resulting from the autoionization can be de-
tected by measuring the kinetic energy of the ejected
electron or by photoionization of the excited ion state
into a doubly ionized atom A*T, which can be mo-
nitored by mass spectrometry. Measurements of the
decay times and their dependence on the quantum num-
bers (n, 1, s) and (n’, ', s") gives much information on
the correlation energy between two electrons in de-
fined states, which are nearly unaffected by the core
electrons.

One example is the investigation of planetary ba-
rium atoms (Fig. 6.43). By simultaneous absorption of
two photons Av; from a pulsed laser L1 one electron
is excited from the ground state 65> into the ! D, state
with the electron configuration 6snd. Further excitation
by absorption of two other photons /v, from a second
laser L2 brings the other 6s electron from the 6snd
configuration into the 9dn’d configuration which corre-
spond to a doubly excited high-lying Rydberg state with
an energy above the ionization limit. This state can the-
refore decay into an excited state of the Ba™ ion, which
can be detected by further ionization into Ba™™ by ab-
sorption of another photon iv, from the second laser.
The Ba™™ ions are detected with time resolved tech-
niques. This gives information on the lifetime of the
doubly excited state [6.7].
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Fig. 6.43. Level scheme, excitation and autoionization of
a planetary atom for the example of the Ba atom

6.7 Exotic Atoms

Up to now we have assumed that the spatial exten-
sion of the atomic nucleus can be neglected and the
nucleus can be treated as a point-like charge. This
assumption is justified as long as the mean nuclear
radius (ry &~ 10715 m) is very small compared to the
mean distance (r) between electron and nucleus, which
can be estimated by the Bohr radius (r; &~ 107'%m)
of the electrons for the lowest electron state with
n=1.

In Sects. 5.1 and 5.7 we have already discussed that
for 1S states with [ = O the electron wave function has
its maximum at » =0 at the position of the nucleus.
The energy of the 1S states should therefore be affec-
ted by the spatial distribution of the nuclear charge, in
particular for atoms with a high nuclear charge Ze.
Measurements with high spectral resolution can in-
deed detect energy shifts caused by the deviation of
the nucleus from a point charge, which are part of the
hyperfine shifts (Sect. 5.6).

6.7. Exotic Atoms

Much larger shifts are observed in exotic atoms
where one atomic electron is replaced by a heavier par-
ticle with negative charge and mass m, >> me, such
as a myon p~, a T lepton 7, a w~ meson or an
antiproton p~. The Bohr-radii (see (3.85))

4eohin?

= Zetu
of these particles, which scale inversely proportional to
the reduced mass

meN
"=
my+ M N
are much smaller than for the corresponding orbits of
an electron in the Coulomb field of the nucleus with
charge Ze. The influence of the spatial distribution of
the nuclear charge on the energy levels of such exotic
atoms is therefore much more pronounced. Measure-
ments of these energy shifts give detailed information
on the spatial charge distribution and the mass distri-
bution within the nucleus and their dependence on the
nuclear spin.

Unfortunately the elementary particles pu=, 7~
or T~ are not stable. They decay within 10~ s to 1078 s
into other particles. Therefore the exotic atoms only
exist for a short time. This makes their spectrosco-
pic characterization difficult. Nevertheless it has been
possible in recent years to produce sufficient numbers
of exotic atoms and to perform accurate spectroscopic
measurements of their energy states and transition pro-
babilities [6.8,9, 10]. This will be illustrated by some
examples.

(6.49)

6.7.1 Myonic Atoms

A myonic atom consists of the atomic nucleus, a ne-
gatively charged myon p~ and the electron shell with
(Z — p) electrons. When the myon is captured by the
neutral atom with Z electrons, the released energy (ki-
netic energy and binding energy of the myon) can
be transferred to the electron shell and p electrons
(p=1,2,3,...) can leave the atom due to the Au-
ger effect (see Sect. 6.6.3). Because of the large myon
mass m,, = 206.76 m. the lowest possible Bohr orbit
(n = 1) of the myon is for a nuclear charge Ze with
Z =30 according to (6.49) only

rn(pn)=77%x10""m,

which is of the same order of magnitude as the nuclear
radius (Fig. 6.44). This means that the myon experi-
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Fig. 6.44a,b. A myonic atom. (a) Comparison of radial charge
density for the myon p~ and the electron e~ in the 1s state.
(b) Bohr-radius of levels with principle quantum number n
for exotic atoms, where the electron is replaced by different
myons or mesons
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ences the unshielded nuclear Coulomb field and the
energies E, of the myonic atom levels are very much in-
fluenced by the spatial distribution of the nuclear charge,
while the other electrons have a much smaller effect on
the myon, because their average distance from the myon
is much larger.

Measuring the wavelength of the radiation emitted
when the myon jumps from level E; into the lower
level Ej; allows the determination of the energy dif-
ferences AE;; = E; — E} and therefore the deviations
of the level energies from those in a pure Cou-
lomb potential. These deviations are caused by the
spatial charge distribution within the nucleus. The
potential experienced by the myon can be expan-
ded into a power series of r~", where the different
terms represent the monopole potential, the quadru-
pole, octopole, etc., potential. A model calculation
yields that nuclear charge distribution which fits best
the measured term energies [6.9]. For myonic lead
atoms (Z = 82) the photon energies are in the MeV
range.

Since the mean lifetime of ©~ is 2.2 us myonic
atoms are unstable even in their ground state. For light

Ge-Detector

Moderator

Fast
H Graphite

Collimator Ge-Detector

Fig. 6.45. Generation of exotic atoms and their detection by
X-ray spectroscopy

atoms (Z < 10) the u~ decays according to the scheme

W —>e +ve+vy, (6.50)

into an electron, an electron antineutrino and a myon
neutrino. For heavy atoms (Z > 10) the lowest ;= orbit
is already within the nucleus. In this case the myon
induces the nuclear reaction

w +p—>n+y,, (6.51)

where a proton in the nucleus is converted into a neu-
tron. The probability of this reaction is high for the
lowest myon level and the mean lifetime of the myon
is therefore much smaller than for lighter atoms where
the myon orbit is outside the nucleus.

A possible experimental arrangement for the spec-
troscopy of myonic atoms is shown in Fig. 6.45. Fast
protons from a proton synchrotron collide with a target
producing an intense beam of w~ mesons, which de-
cay during their flight within 2.2 x10~3 s into = + vy
forming a fast beam of p~. The fast myons are slowed
down in a graphite block and are completely stopped
in two crossed thin sheets of a specific material. Here
they are captured by the atoms in the sheets forming
myonic atoms or ions in high lying levels from where
they can cascade down into lower levels. The X-ray ra-
diation, emitted during this cascading is measured with
a germanium semiconductor detector with high energy
resolution.

Meanwhile even the fine structure of energy levels
in myonic atoms and Zeeman splittings have been resol-
ved. The fine structure splittings are here much larger
than in normal atoms and amount to several eV. Transiti-
ons between fine structure components can therefore be
induced with visible lasers. These measurements yield
very accurate absolute values of mass and magnetic
moment of the £~ myon [6.11, 12].



6.7.2 Pionic and Kaonic Atoms

Instead of the myon, a negative 7~ meson can also
be captured by a neutral atom. The energy released by
this capture process is sufficient to eject one or several
electrons from the atomic electron shell (Fig. 6.46). For
am~ meson in atomic orbits with n < 17 the Bohr radius
is already sufficiently small to make the interaction of
the 7~ with the electrons of the atom negligibly small.

The nucleons (protons and neutrons) in the atomic
nucleus interact with the 7~ meson not only through
Coulomb forces but also through the short range, but
much stronger, nuclear force. A comparison of the
energy levels in the myonic and the pionic atoms gives
information about the nuclear forces and their radial
dependence (because the lepton = does not feel the
strong nuclear force contrary to the 7~ meson).

Exotic atoms with heavier negative mesons (K,
n~) allows probing of charge and mass distribution at
even smaller distances from the center of the nucleus.
They can give information on deviations of these distri-
butions from a spherical symmetry. Since the lifetime
of the K~ mesons is only 12 ns, measurements of the
spectra of these exotic atoms becomes more and more
difficult [6.13].

Instead of leptons or mesons, an electron in the ato-
mic shell can also be replaced by negatively charged
hadrons such as the antiproton p~ or the X'~ particle
which have a larger mass and therefore even smaller
Bohr radii [6.14].

In Table 6.10 some characteristic properties of
different exotic atoms are compiled.

Table 6.10. Characteristic features of exotic atoms

m/me 1

53
Bohr radius r; in fm 7 10*
Term energy forn =1,Z =1 —13.6eV
AEn=2—1) for Z=20 4.1keV
Mean lifetime o0
of free particle 7 / s
Fine structure splitting 2> P 6.6eV

for Z=20,n=2
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Coulomb T e U
potential %

_— Cascade transitions

2p—1s
150 keV

n=1

Fig. 6.46. Capture of a .~ myon oraw~ meson with following
cascading transitions into the final ground state

6.7.3 Anti-hydrogen Atoms and Other Anti-atoms

If the proton and electron in the hydrogen atom are
both replaced by their anti-particles, the anti-proton
p~ and the anti-electron = positron e, the exotic
bound system (p~e*) of the two anti-particles can
be formed, which is called anti-hydrogen. Its pro-
duction is by no means trivial but recently the first

207 273 967
256 194 54.8

4 Z 4
—2.79keV —3.69keV —13.1keV
837 keV 1.1 MeV 3.9 MeV
2.2-107° 2.6-1078 1.2-1078
1.3keV 1.8 keV 6.4keV
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anti-hydrogen atoms have been observed [6.15]. Their
detailed spectroscopy and the comparison of the energy
levels with those of the H-atom provide a stringent
test of possible differences between the absolute va-
lues of positive and negative charges, of the masses
and the magnetic moments of elementary particles and
anti-particles.

In particle accelerators a large number of anti-
protons p~ can be produced by high energy collisions of
protons p* with protons. Positrons can be obtained from
radioactive B+ -emitters and are subsequently accelera-
ted. Both anti-particles are stored and accumulated in
storage rings where they circulate with high energies.
However, only a tiny fraction of these high energy anti-
particles can be slowed down to thermal energies, where
they can be captured in special magnetic traps in order
to enhance the formation of anti-hydrogen. This is a dif-
ficult task, since on one hand a large number of slow
antiparticles is needed in order to produce a sufficient
number of anti-hydrogen atoms. On the other hand col-
lisions between antiprotons p~ and protons p* from
the residual background gas in the trap or between po-
sitrons et and electrons e~ will immediately annihilate
these particles by the reactions

pi4+p =2y et+e =2y,

After an extremely good vacuum could be achieved
in the trap anti-protons could be captured and sto-
red for several weeks in specially designed magnetic
traps (Fig. 6.47). This long storage time has allowed
the researchers to obtain precise spectroscopic data
about the charge and the magnetic moment of the anti-
proton [6.16]. The result of these measurements was
that the relative mass difference Am/m = [m(p*) —
m(p~)]/m(p") and the relative charge difference
|Ag/q| are both smaller than 1073,

Recently a research collaboration at the European
high energy center CERN also reported that anti-
hydrogen atoms had been observed, which could be
stored in a sophisticated trap design that can store both
particles simultaneously for a short time. In order to
perform precision measurements, a larger number and
longer storage time of both anti-particles is needed. Ex-
periments for improving the situation are underway and
first results are expected in the near future.

Slowing down anti-protons p~ in a hydrogen target
at low temperatures, protonium (p*p~), a bound sy-
stem of a proton and an anti-proton has been observed.

22 Na positron source
150 mCi
o
not to scale
Superconducting
solenoid and
dewar
et trap
Scintillating
fibers
trap
||
Parallel plate / = BGO positron

amma detector
not yet installed)

avalanche detector

(for steering beam) drElg

Fig. 6.47. Magnetic trap for anti-protons p and positrons
e to form anti-hydrogen (pet) (www.Atrap Collaboration,
CERN)

Its reduced mass is
p=1/2m, =469 MeV/c*.

The radius of the first Bohr orbit is 57 x10~!3 m, photon
energies for transitions between different energy levels
are in the range of keV. For instance the photons of the
Balmer «-line emitted on the transition 3p — 2s have
the energy hv = 1.7 keV.

The capture of anti-protons p~ by heavy atoms
has a higher probability than capturing by light atoms.
Recently, the Lyman spectrum of the exotic atom of
anti-protonic argon was observed. This system consists
of an argon nucleus with 18 protons and 22 neutrons, but
instead of 18 electrons in the atomic shell one electron
isreplaced by an anti-proton. The antiproton has a much
smaller Bohr radius than the electrons and the Coulomb-
interaction between the electrons and the anti-proton is



therefore small. Transitions between excited energy le-
vels and the lowest level of the anti-proton produce
the Lyman series with energies of the emitted pho-
tons in the range between 20—200 keV. These energies
can be measured with high accuracy using germanium
semiconductor detectors [6.15]. They give valuable in-
formation about the interaction of the anti-proton with
the protons and neutrons in the atomic nucleus.

6.7.4 Positronium and Myonium

Positronium is a hydrogen-like system consisting of an
electron e~ and a positron e*. Its investigation gives
very interesting information about a pure leptonic sy-
stem of two light particles with equal masses, which
have opposite charges and magnetic moments. Since
the reduced mass u = 1/2m. is only about half of that
in the hydrogen atom the radii of the Bohr orbits are
twice as large. Both particles circulate around the cen-
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single crystal  bottle pulse Al target
S ——rl

b oA/ [1IIJs

. N Detector
Bsasource e’ storage Formation | ager
+
Co of e"-pulses
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A u 23,
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2Py —p——
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2°p,
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135, (14x107s)
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(2y decay)

1l q1q |
b) 'S, 0.125ns

Fig. 6.48. (a) Generation of a positronium e*e™. (b) Level
scheme of ete™
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ter of mass, which is located in the middle between the
two particles. The sum of kinetic and potential energy
is about one-half of that in the hydrogen atom. Accurate
measurements of the spectral lines emitted from exci-
ted states of the system allow one to prove whether the
electron is indeed a point-like charge [6.16].

The positronium can be produced by recombina-
tion of slow positrons and electrons. Fast positrons
from a radioactive *2Co source (8'-emitter) are mo-
nochromatized by Bragg reflection at the (110)-surface
of a tungsten single crystal and are then slowed down by
an electric bias field. The slow positrons can be stored in
a magnetic bottle (Fig. 6.48a), where positive voltages

. — MCP
\

e*from Muon decay

=,

\ Lens C

k J\ Scintillation counter

Bending magnet

Electrostatic MCP

BN

JNC)
B y

Muon traces

Lens B

/

Lens A

Main accelerator

Preccelerator

\

244 nm laser beam

IO 1|0 2|0 36 cm SiO,, target

Fig. 6.49. Two-photon spectroscopy of the 1S-2S-transition in
muonium e~ After photoionization the ionized w™ is ac-
celerated, energy selected and detected by the decay products
et from ut — et +v [6.18]

237



238

6. Atoms with More Than One Electron

at both ends of the bottle prevent the positrons from es-
caping the bottle. By high negative voltage pulses they
can be extracted and impinge as a positron pulse onto
an aluminum foil. Here they can capture electrons to
form positronium. By heating the foil, the positronium
can evaporate from the foil and pass through a pulsed
laser beam, where it can be optically excited into va-
rious levels if the laser wavelength A is tuned to the
corresponding transition wavelength A ;.

Positronium is one of the few systems where the
lifetime of the ground state is smaller than that of excited
states, because in the 1S state the wave functions of the
two particles overlap and therefore the particles can
come into contact and annihilate by the process

et +em = 2y.

Since the center of mass of the positronium is nearly
at rest, the two y-quanta with the energy hv = 0.5 MeV
are emitted into opposite directions and are detected by
a germanium detector.

Since the magnetic moments of electron and po-
sitron have the same magnitude but opposite sign, the
magnetic interaction between the two particles is much
larger than the hyperfine interaction in the hydrogen
atom, where the small nuclear magnetic moment only

S UMMATRY

® The theoretical treatment of atoms with more than
one electron has to take into account the interac-
tion between the different electrons. The potential
is no longer spherically symmetric and the atomic
wave function cannot be separated into functions
of only one variable.

e The total wave function has to be antisymme-
tric with respect to the exchange of two arbitrary
atomic electrons (Pauli principle). If the total
wavefunction is written as a product of spa-
tial wavefunction and spin-function symmetric
spatial functions can be only combined with
antisymmetric spin functions and vice versa.

® Another formulation of the Pauli-principle is: An
atomic state (n, [, m;, my), characterized by the
four quantum numbers n (principal quantum num-
ber), [ (orbital angular momentum quantum num-
ber), m; (projection quantum number of orbital

causes a small splitting of the energy levels. The ma-
gnetic interaction can therefore no longer be treated
as a small perturbation and the theoretical treatment
of the positronium can not be based on the Schrédin-
ger equation, but has to use the framework of quantum
electrodynamics.

Meanwhile a series of accurate spectroscopic mea-
surements of positronium have been performed that
allow a precise test of predictions of quantum electro-
dynamics [6.16]. Here, nuclear size effects, which are
important for precise interpretations of very high reso-
lution spectroscopy of the hydrogen atom (see Sect. 5.7)
are completely absent and the measurements give infor-
mation on a pure leptonic system, where, besides the
Coulomb interaction, only magnetic and weak forces
play a role.

Another leptonic system is myonium (ute™), which
consists of a positive myon ut and a negative elec-
tron e~. The u™ leptons are produced by irradiating
beryllium with 500 MeV protons (Fig. 6.49). They are
then slowed down in a target of SiO,-powder, where
they can capture an electron. The neutral system e~
can diffuse out of the target into the interaction region
with a laser beam where it is excited in a similar way as
the positronium [6.17].

angular momentum) and m; (electron spin projec-
tion quantum number) can only be occupied by at
most one electron.

® The Pauli principle and the principle of minimum
energy govern the building-up of the electron
shells of all atoms. The shell structure of atomic
electrons resulting from these principles, explains
the arrangement of all chemical elements in the
periodic system of elements.

® The dependence of atomic volumes and ioniza-
tion energies on the number Z of atomic electrons
reflect the shell structure of the electron arran-
gement in atoms. Alkali atoms have the smallest
ionization energy and the largest atomic volume
of all elements in the same row of the periodic ta-
ble. Noble gas atoms have the highest ionization
energy and the smallest atomic volume in their
TOW.



Alkali atoms are hydrogen-like. They have only
one electron in the highest occupied shell. The
potential for this electron is spherically symme-
tric but deviates from a Coulomb potential. The
Rydberg term energies can be described by a Ryd-
berg formula in the same way as for the H atom if
the integer principal quantum number 7 is repla-
ced by a non-integer effective principal quantum
number negs = n — §,,, where the quantum defect
8, depends on the quantum numbers » and /.
The spatial charge distribution and the term ener-
gies of multi-electron atoms with Z electrons can
be approximately calculated with the Hartree me-
thod, which is an iterative optimization procedure
based on the assumption that each electron mo-
ves in an effective spherical symmetric potential
produced by the atomic nucleus and the average
charge distribution of all other electrons.

The total wave function ¥ (ry,rp,r3,... ,rz) of
these multielectron atoms can be written as the lin-
ear combination of products of one-electron func-
tions ¢(7;) (Slater determinant), which is antisym-
metric with respect to an exchange of two arbitrary
electrons, thus obeying the Pauli principle.

The vector coupling of the angular momenta of
the different electrons depends on the energetic
order of the different interactions. For light atoms
(small Z) the interaction a;l;l; between the orbital
angular momenta [;, [; of the different electrons
and bys;s; between their spins s;, i is stronger
than the interaction c;;l;s; between I; and s;. The
different /; couple to

L:Zli.

And the s; to

S=ZS,‘.

The total electronic angular momentum is
L+S=J

(L-S coupling is dominant). The spectra of atoms
obeying L-S coupling show narrow fine structure
multiplets.

For closed shellsis L =S = J =0.

For heavy atoms (large Z) the j-j coupling is do-
minant. The interaction energy c;;/;s; is larger than
the interaction a;l;l; between the different /;, /;.

Summary

Here the coupling scheme is:
li+si=j; and J=) ji. (6.52)

The quantum numbers L and S are no longer
“good” quantum numbers, i.e., they are not well-
defined. The different components of a spin-orbit
multiplet do not form a fine structure pattern in the
spectrum, but are so widely separated that com-
ponents from different multiplets may overlap.
For medium size atoms (medium values of Z)
an intermediate coupling scheme between L-S
coupling and j-j coupling is observed.

In excited states of multielectron atoms each
electron configuration (n,[) and (n’,!") of two
electrons can give rise to many atomic states with
different energies, due to the different coupling
possibilities of the angular momenta of the two
electrons.

Rydberg states of atoms are excited states, where
one electron is brought into a state with large prin-
cipal quantum number n. This electron has a large
Bohr radius r,, = apn® and moves in a nearly sphe-
rical potential formed by the atomic nucleus and
the residual electron core. The ionization energy
of these Rydberg states is Eion = Ry*Z2;/n>.

In planetary atoms, two electrons are exci-
ted into different Rydberg states. They decay
preferentially by auto-ionization.

Exotic atoms are formed by replacing one of the
atomic electrons by a heavier negative elementary
particle. For the myonic atoms, this is a .~ myon,
for pionic atoms a 7~ meson. Such exotic atoms
are not stable, because the elementary particles
have a short lifetime. Their Bohr radii r, o< 1/m
are much smaller than those of ordinary atoms.
The spectroscopy of these exotic atoms probes the
charge and mass distribution in the atomic nucleus.
Positronium is a system consisting of an elec-
tron e~ and a positron e*. Its lifetime ranges
between 1 ns and 1 ps, depending on the energy
state of the system. The ground state has the
smallest lifetime.

Antimatter is formed by atoms consisting of
antiprotons and anti-electrons = positrons. The
anti-hydrogen atom has been experimentally
formed by recombination of antiprotons and
positrons in a special trap.
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PR OBULEMS

1.

When the first electron in the He atom is descri-
bed by the 1s wave function, what is the potential
for the second electron? (In this model the interac-
tion between the two electrons is only indirectly
taken into account by the time-averaged charge
distribution of the first electron.)

Derive (6.28y) for the potential of the 2s electron
in the Li-atom, assuming that the two 1s-electrons
can be described by hydrogenic 1s-wavefunctions
for Zey = 2.

A system of Na atoms with number density n
is cooled down to the temperature 7. What
is the critical temperature, where the de Bro-
glie wavelength of the Na atoms becomes equal
to their mean distance. Numerical example:
n=10'"/cm?3.

In a classical model of the He atom, the two elec-
trons move around the nucleus on a circle with
radius » = 0.025 nm. What is the minimum poten-
tial energy where the two electrons are at opposite
locations on the circle, and what is the kinetic
energy of the two electrons? Compare this with
the measured energy of the 1s? ground state of the
He atom and discuss the difference.

How large would be the energy difference bet-
ween the 1s2s and the 1s3s states of the helium
atom for the potential of Problem 6.1. Compare
this with the measured energy difference AE, ob-
tained from Fig. 6.9 (or more accurately from CH.
Moores Tables of Atomic Energy Levels, NBS
monograph).

Give a simple vivid explanation for Hund’s rule
that the lowest level of a multielectron atom is rea-
lized by the maximum electron spin compatible
with the Pauli principle.

What is the relation between the shielding con-
stant S and the quantum defect §, ; of a Rydberg

10.

11.

12.

13.

state (n,[) with large principal quantum num-
ber n and maximum angular momentum quantum
number / = n — 1 in an alkali atom?

What is the photon energy for a transition
n =2 — n =1 1in a myonic atom with a mass of
140 AMU and a nuclear charge number Z = 60?
For which principal quantum number n has the
Bohr radius r,, of the myon the same value as the
lowest radius r; for an electron in this atom?
Why is the energy of the 3P term in the Na atom
higher than that of the 3 term?

The negative H™ ion is a two-electron system like
the He atom. How large is the binding energy
of the second electron according to a similar
calculation as in Problem 6.1?

The energy of the ground state 2§ in the Li
atom is E = —5.39 eV, that of the Rydberg state
with n =20 is E = —0.034eV. How large is
the effective charge Z.gfe, the mean Bohr ra-
dius r, and the quantum defect § = n —neg of
the valence-electron in the two states?

The absolute value of the binding energy of the al-
kali atoms decreases with increasing atomic size
as Eg(Li) = —5.395¢V; Eg(Na) = —5.142¢eV;
Ep(K)=—4.34¢V; Eg(Rb) = —4.17¢eV; Eg(Cs)
= —3.90eV .Give a qualitative explanation for
this sequence. How would you determine these
values of Ep experimentally and how can one
calculate them?

How large is the maximum of the potential barrier
and at which value of x is it located, if a hydro-
gen atom is placed in a homogeneous electric field
E = —Eyx with Eg = 3 x10* V/m. Determine the
critical principal quantum number n. where field
ionization (without a tunnel effect) starts. Calcu-
late the field-ionization probability for the levels
with n. — 1, possible through the tunnel effect.



7. Emission and Absorption

of Electromagnetic Radiation by Atoms

We have so far discussed primarily stationary atomic
states that are described by a stationary wave function
W,.1.m;,ms Or by the corresponding quantum numbers
n,l, m;, mg, which give all angular momenta /, s and
J =1+s of single electron atoms and the energies E;
of the states (i|, where the index i stands for all four
quantum numbers. The spatial parts of the wave functi-
ons are obtained by solving the stationary Schrodinger
equation and the spin is described by the corresponding
spin function.

For atoms with more than one electron the couplings
of the different angular momenta depends on the coup-
ling strength between them and only those states are
realized that obey the Pauli principle, which demands
that the total wave function (including the spin part)
has to be antisymmetric with regard to the exchange of
two electrons. The wave functions that fulfill this de-
mand can be written as linear combination of Slater
determinants (see Sect. 6.4).

When discussing Bohr’s atomic model we men-
tioned that atoms can undergo transitions between
different states with energies E; and E;, when a photon
with energy

ho = E — E; (7.1)

is emitted or absorbed.

Experiments show, however, that the absorption or
emission spectrum of an atom does not contain all pos-
sible frequencies w according to (7.1). There must be
certain “selection rules” that select from all possible
combinations E; and Ej only those between which
a radiative transition can take place. Furthermore, the
intensity of the spectral lines can vary by many or-
ders of magnitude, which means that the probability of
a transition generally depends strongly on the specific
combination of the two atomic states in (7.1).

Besides the energy conservation expressed by (7.1)
also the total angular momentum of the system (atom +

photon) has to be conserved. The transition probability
therefore depends on the polarization of the emitted or
absorbed electromagnetic radiation.

In this chapter we will discuss how such transition
probabilities can be calculated from the wave functions
of the states involved in the transition (Sect. 7.1). Also,
experimental methods for measuring such transition
probabilities are presented.

The selection rules are then discussed in Sect.7.2
and the problem of measuring and calculating lifetimes
of emitting atomic states is covered in Sect. 7.3.

For transitions of an electron in an outer shell of the
atom the energy difference in (7.1) amounts to a few
electron volts. The transition frequency then falls into
the spectral region between the near infrared to the
near ultraviolet (1eV corresponds to a wavelength A
of 1.234 um = near infrared, while 3 eV corresponds to
A =478 nm = blue spectral region). Since these tran-
sitions mostly give rise to emission of visible light,
the electron in the outer atomic shell is often referred
to the German word “Leucht-Elektron”, which means
“light-emitting electron.”

If an electron in an inner atomic shell is excited
into higher unoccupied states, its excitation energy can
be several keV. When it returns to its initial state, ra-
diation with short wavelengths (X-rays) are emitted.
The emission or absorption spectrum corresponding
to transitions of inner shell electrons therefore fall
between the far ultraviolet and X-ray region with wave-
lengths between 0.01—50 nm (a wavelength of 0.01 nm
corresponds to an energy of about 120 keV). The gene-
ration, absorption and detection of X-rays is discussed
in Sect. 7.4.

When measuring the frequency dependence of the
emitted or absorbed radiation intensity I(w), it turns
out that discrete spectra are found where the intensity
peaks around certain frequencies w;;, which obeys the
energy relation (7.1), but also continuous spectra where
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the intensity /(w) is a smooth function of w. However,
even for discrete spectra, the intensity /() of a spectral
line is not a delta function, but has an intensity profile
with a halfwidth Aw, which depends on the lifetime of
the states involved, on the temperature of the atomic
sample and on its pressure. This subject of line profiles
and line broadening will be treated in Sect. 7.5.

7.1 Transition Probabilities

In this section we will discuss what a transition proba-
bility means and how it depends on the wave functions
of the atomic states involved in a specific transition
between these states. Some techniques for measuring
transition probabilities are presented.

7.1.1 Induced and Spontaneous Transitions,
Einstein Coefficients

If an atom in the state (k| with energy Ej is brought into
an electromagnetic radiation field with spectral energy
density w, (v) (this is the field energy per unit volume
and unit frequency interval Av = 1s~!) it can absorb
a photon kv, which brings the atom into a state with
higher energy E; = Ey + hv.

The probability per second for such an absorbing
transition

dPpp
1
dr

is proportional to the spectral energy density w,(v) =
n(v)hv of the radiation field (where n(v) is the number
of photons Av per unit volume within the frequency
interval Av = 1s~!). The proportionality factor By; is
the Einstein coefficient for absorption. Each absorption
takes one photon from a specific mode of the radiation
field (see Sect. 3.1) and therefore decreases the number
of photons in this mode by one.

The radiation field can also induce atoms in an ex-
cited state with energy E; to emit a photon with energy
hv = E; — E} into a specific mode of the radiation field
and to go into the lower state Ey. This process is called
induced (or stimulated) emission. It increases by one
the number of photons in this mode from which the in-
ducing photon came. Since the two photons are in the
same mode, they have identical propagation directions.
The energy of the atom is reduced by AFE and that of

= Biiw,(v) (7.2)

the mode of the radiation field is increased by the same
amount AE = hv.

The probability per second for the induced emission
is analogous to (7.2) given by

mind. em

47 ’St = Byw, (V) . (7.3)
The factor By is the Einstein coefficient for induced
emission.

An excited atom can also give away its excita-
tion energy spontaneously without an external radiation
field. This process is called spontaneous emission.
Different from the induced emission, the spontaneous
photon can be emitted into an arbitrary direction, i.e.,
into any one of the modes of the radiation field. The
probability per second for such a spontaneous emission

1S
»Sp. em.
4P,

ik
=Ai. 7.4
dr ik ( )

The factor A is the Einstein coefficient for sponta-
neous emission. It is solely dependent on the wave
functions of the states (i| and (k| but independent of
the radiation field. In Fig.7.1 all three processes are
depicted schematically.

We will now look for relations between the three
Einstein coefficients.

Consider N; atoms in state E; and N, atoms in
state E; within the unit volume inside a radiation field
with spectral energy density w(v). Under stationary
conditions the number densities N; and Ny do not vary
with time, i.e., they are constant. This means that the
absorption rate must be equal to the total emission rate:

Briw, (W) Ny = (Bjpw, (v) + Air) N; . (7.5)
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A Nyp------ .
Wy By wy By [N E— % ______
E l i = .
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Fig.7.1. (a) Absorption, induced emission and spontaneous
emission in a two-level system. (b) Thermal population
distribution N(E)



At thermal equilibrium, the ratio N;/N; follows the
Boltzmann distribution (Fig. 7.1b)

N; _ & o Ei—EQ/KT _ 8i o—hV/KT
Ne & 8k

where g = 2J + 1 is the statistical weight (i.e., the num-
ber of possible realizations) of a state with energy E
and total angular momentum quantum number J. This
state has 2J + 1 possible orientations of the angular mo-
mentum vector J, which all have (without an external
magnetic field) the same energy; they are energetically
degenerate.

Inserting (7.6) into (7.5) and solving for w(v) yields

A/ Bik
(8i/81)(Bik/ Bri) (ehv/kT _ 1)
The spectral energy density of the thermal radiation

field is, on the other side, given by Planck’s formula
(see Sect. 3.1)

8whv® 1
Wo=""3 emikr_q-"

(7.6)

w, (V) = (7.7)

(7.8)

Since the two equations (7.7) and (7.8) describe the
same radiation field for all frequencies v and at arbitrary
temperatures 7, we get for the nominator in (7.7):

8hv?
Ai/Bik = 4 (7.9a)
c
and for the constant factor in the denominator
8iBik/(gkBr)=1. (7.9b)

This yields the relations between the Einstein

coefficients:
B = 8k By; (7.10a)
8i
8mhv?
A= 5 Bi (7.10b)
c

These important relations give us a deeper in-
sight into the three processes of induced emission and
absorption and spontaneous emission:

If both states have equal statistical weights
(gi = gr) the Einstein coefficients for induced
absorption and emission are equal.

7.1. Transition Probabilities

Since 8mv?/c? gives the number of modes within
the unit frequency interval Av = 1s~" (see Sect.3.1)
the ratio A;./(8mv?/c®) gives the probability per se-
cond that a spontaneous photon is emitted by an atom
into one mode of the radiation field. On the other hand,
the product B;;hv gives the probability per second that
induced emission is induced by one photon, i.e., that
an induced photon is emitted into a mode of the radia-
tion field, which had contained one inducing photon.
Rearranging (7.10b) into

Aik
8mv?/c3
shows that the spontaneous emission probability into
one mode equals the induced emission probability if

this mode contains just one photon (after the induced
emission it contains two photons). In other words:

= Bihv (7.10c)

Spontaneous and induced emission rates are equal
in a radiation field that contains, on average, one
photon per mode.

If the radiation field contains, on average, n pho-
tons per mode then the ratio of induced to spontaneous
emission rates is

ppd-em Bignhv

Apcd/@Bmv?)

pon = (7.10d)

The ratio of induced to spontaneous emission rates
into one mode of the radiation field equals the
number of photons in this mode.

Figure 7.2 illustrates the average number of pho-
tons per mode of a thermal radiation field as a function
of frequency v for different temperatures 7. It demon-
strates that in thermal radiation fields at temperatures
T < 103K the average photon number 7 in the visible
spectral range is small compared to one. In this case the
spontaneous emission in the visible range exceeds by
far the induced emission.

In order to enhance the induced emission beyond
the spontaneous emission, non-thermal radiation fields
have to be realized, where the photon number 7 is not
equally distributed among all modes but is concentrated
into one or a few modes. In these modes, n > 1 and
then the induced emission rate becomes much larger
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Fig.7.2. Mean photon number n per mode of the thermal
radiation field as a function of frequency v and temperature 7

than the spontaneous one. This situation is realized in
lasers, which will be discussed in Chap. 8.

EXAMPLES

1. At a distance of 10cm away from the filament of
a 100 W light bulb, the average photon number per
mode at A =500nm is about 1078, For atoms in
this radiation field the spontaneous emission rate
exceeds by far the induced rate.

2. In the brightest spot of a high-pressure mercury
lamp in the maximum of the intense mercury emis-
sion line at A = 253.7nm the photon number per
mode is about 10~2. Even here the induced emission
plays a minor role compared with the spontaneous
emission.

3. Within the optical resonator of a helium-neon laser
(output power 1 mW through the output mirror with
transmittance of 1%), which oscillates in a single
mode, the photon number in this mode is about 107!
Here, the spontaneous emission into this mode is
completely negligible. Note, however, that the total
spontaneous emission within the Doppler-width of
the neon transition at A = 632.3 nm, which is dis-
tributed over 3 x 10® modes of the active volume of
1 cm? and is emitted into all directions exceeds 1 W
and is therefore stronger than the induced emission.

Note:

When using the angular frequency o = 2mv instead
of v, the unit frequency interval dw =27 dv is lar-
ger by a factor of 2. Since w(v) dv must be equal to
w(w) dw, the spectral energy density

ha)S

W@ = 1 r = we)/2

of the radiation field is then smaller by this factor. The
ratio of the Einstein coefficients
th
Au/By =

w2c3

is then also smaller by the factor 27r. However, the ratio
A/ (B wo(@)) = Au/ (B w,()

of spontaneous to induced emission rates remains the
same.

7.1.2 Transition Probabilities and Matrix elements

The relation between transition probabilities and the
quantum mechanical description by matrix elements
can be illustrated in a simple way by a comparison with
classical oscillators emitting electromagnetic radiation.

A classical oscillating electric dipole (Hertzian
dipole) with electric dipole moment

p =qr = posinwt

emits the average power, integrated over all directions ¢
against the dipole axis (Fig. 7.3a) [5.2]
2 prot

1 2
S P3- (7.11)

In the quantum mechanical description, the average (p)
of the electric dipole moment of an atomic electron in
state (n, [, m;, my) = i with stationary wave function ;
is given by the expectation value

<p>=e<r>=e/w;"m/fi dr .

The vector r is the radius vector of the electron from
the origin at the atomic nucleus (Fig. 7.3b).

The integration extends over the three spa-
tial coordinates of the electron. The volume ele-
ment is dr = dx dy dz in Cartesian coordinates or
dr =2 dr sin® d© dg in spherical coordinates.

: 2 _
T 34mepc3 with - p*=

(7.12)
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Fig.7.3. (a) Spatial radiation characteristics of a classi-
cal oscillating electric dipole. (b) The expectation value
(pr) = —e(rg) of the quantum mechanical dipole moment in
level |k), determined by its wave function v

For a transition E; — Ej the wave functions of both
states have to be taken into account, because the tran-
sition probability depends on both wave functions ;
and Y. We therefore define the expectation value of
the so-called transition dipole moment M, = (p;;) as
the integral

Mk:efwrwk dr (7.13)

where the two indices i= (n;,[;, m;, ms) and
k = (ng, lx, m;,, mg,) are abbreviations for the four
quantum numbers of each state.

Replacing the classical average p? in (7.12) by the
quantum mechanical expression

1
5 (1Ml + |Mi)? =2 | My | ? (7.14)

(see [7.1]), we obtain the average radiation power, emit-
ted by an atom in level (i| on the transition (i| — (k|
as

4
4 wj

(Py) = | Ml *, (7.15)

3 4megc3

which is equivalent to the classical expression (7.11)
for the radiation power of the Hertzian dipole, if the
average p? is replaced by 2| Mj;|>.

N; atoms in level (i| emit the average radiation
power (P) = N;(Pjy) on the transition (i| — (k| with
frequency wiy.

Using the Einstein coefficient A;; for spontaneous
emission, which gives the probability per second that

7.1. Transition Probabilities

Fluorescence
P=N;-Ay-h- v

Excitation

Eo

Fig. 7.4. Mean radiation power (p;k) emitted by N; excited
atoms as fluorescence on the transition |i) — |k)

one atom emits a photon on the transition (i| — (k| the
average power emitted by N; atoms (Fig. 7.4) is

(P) = N;Aithvix = N; Ajhwiy . (7.16)

The comparison of (7.15) with (7.16) yields the relation

_ 2wy
3 80hc3

between the Einstein coefficient A;; and the transition
moment M. The relation between B;; and My is then,
according to (7.10b):

_ 272
T 3goh?

If the wave functions v;, ¥ of the two states in-
volved in the transition, are known, the spontaneous
transition probability A;; can be calculated from (7.17)
and therefore the total radiation power emitted by N;
atoms in level (i| on the transition (i| — (k| can also be
calculated.

The expectation values M;; for all possible transiti-
ons between arbitrary levels i, k=1,2,... ,n can be
arranged in an n X n matrix. The M;; are therefore cal-
led Matrix elements. If some of the matrix elements are
zero, the corresponding transition does not occur. One
says that this transition is “not allowed” but “forbid-
den.” The absolute square | M| of the matrix element
is directly proportional to the probability of the transi-
tion (i| — (k|, i.e., of the intensity of the corresponding
line in the atomic spectrum.

Aix | My |* (7.17a)

Bix M| . (7.17b)

Note:

Equation (7.17), called the dipole approximation (see
appendix) is only valid, when the wavelength A of the
radiation is large compared to the dimensions of the
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dipole. This is completely analogous to the classical
case of the Hertzian dipole.

For visible light this is readily fulfilled since A ~
500 nm is very large compared to the average size r ~
0.5 nm of the emitting atomic dipole. This means that
r/x =~ 1073, However, the dipole approximation is no
longer valid for X-rays when the wavelength becomes
smaller than 1 nm.

The experimental arrangement for measuring the
emitted radiation power is depicted in Fig.7.5. The ra-
diation, emitted from the atoms is collected by a lens
and imaged onto the entrance slit of a spectrograph,
which has the transmission T(w). A detector behind the
spectrograph receives the signal

S(w) = N; {(Py) € d2 T(w)n(w) , (7.18)

where N; is the number of emitting atoms in level (i|,
(Py) is the average power emitted by a single atom
into the solid angle 47, d§2 is the solid angle accep-
ted by the spectrograph, ¢ is the fractional area of the
image of the light source that passes through the ent-
rance slit of the spectrograph, T(w) is the transmission
of the spectrograph and 7 is the spectral efficiency of
the detector.

Detector

—_|

n(w)

Spectrograph
Transmission

Optical
\ fiber bundle

T(w) | Spectrograph ===z /

Entrance slit

Fig.7.5a,b. Experimental setup for measuring the radiation
power emitted by the source S on the transition |i) — |k).
(a) Conventional arrangement. (b) Use of an optical fiber
bundle for increasing the collection efficiency

N; N Fig.7.6.  Measure-
B —T1— — E, ment of the relative
line strengths of two
A | ha Amn | h®mn spectral lines
—  E_
= r
P=N-A -ho

S Sik
/\ /\Sﬂm
7LIik xnm A

S=P-T(XA)-n(})

Generally, the image of the light source is larger
than the width of the entrance slit, which implies that
& < 1. Here, an optical fiber bundle can be used to incre-
ase the total light collection efficiency (Fig.7.5b). The
light source is imaged onto the circular entrance cross
section of the fiber bundle. The exit cross section of the
bundle can be formed into a narrow rectangular area,
that matches the entrance slit of the spectrograph and
makes € = 1.

The ratio Sjx/Snm of the measured signals for two
spectral lines at frequencies w;; and w,, is then,
according to (7.18) and (7.16),

Sik _ NiAuowix  T(wi)n(wix)
S"lm NmAnma)nm T(wnm)n(wnm) '

where N; and N,, are the numbers of emitting atoms in
levels (i| and (n| (Fig. 7.6), respectively.

(7.19)

7.1.3 Transition Probabilities
for Absorption and Induced Emission

While the transition probabilities of spontaneous emis-
sion are independent of an external radiation field and
solely depend on the wave functions of the atomic states,
the induced processes do depend on the spectral energy
density w,,(w) of the inducing radiation field, as was
already discussed in Sect. 7.1.1.

We describe the electromagnetic wave incident on
the atom with its nucleus atr = 0 by

E = Eje'®r—on (7.20)

where k is the wave vector of the electromagnetic
wave with the wavenumber k = |k| = 27r/X. The quan-
tum mechanical treatment gives the probability per
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dP,; we?
i = (7.21)

2
fw;E0~rei""1p,» dr

for absorbing a photon hw, which induces the atomic
transition (n| — (i|]. We have here selected a transi-
tion from a level (n| instead of (k| in order to avoid
confusion with the wavenumber k. For k-r <« 1 (this
means that the wavelength A is much larger than the
size of the atom) we obtain the dipole approximation
with e ~ 1

2

dj)m'
, (7.22)

7T62 o
-""E
dt 2 0

fw:e-rw,- dr

where € = E(/|Ey| is the unit vector in the direction of
the electric field E of the wave.

Equation (7.22) shows that the transition probabi-
lity J,; depends on the scalar product Ej -r, i.e, on the
relative orientation of electric field vector E of the light
wave and atomic dipole moment p = er.

When the radiation field is isotropic (for example,
the thermal radiation field discussed in Sect.3.1) the
scalar product can be averaged over all directions. Be-
cause all mixed scalar products (¢; - j), i, j = x, y, z are
zerofori # jand (|e.x|*) = (e, yI*) = (|e-z[*) = § (e
r|?), the averaged dipole moment in the electric field E
is

2 n_ 1, 2

(IMi|*) o< (|e-r| %) = 3 Ir|?. (7.23)
Using the relation w = gy E|> between the spectral
energy density w and the electric field E of the ra-

diation field, we can write (7.22) for isotropic radiation
fields as

APy e? 2
wU (V) k]

dr ~ 3ggh? (7.24)

/ Y dt

where we have replaced the index n by k and the total
energy density w is related to the spectral energy density
by w= [ w,(v) dv.

Comparing this result with (7.2) we obtain for the
Einstein coefficient By; for absorption

2
2 2e?

By =
=3 goh?

(7.25)

/W/f”/fi dr

7.2. Selection Rules

A comparison of (7.25) and (7.17) again yields the
relation (7.9b) between the Einstein coefficients A;;
and Bik~

7.2 Selection Rules

Not every transition possible according to the energy
conservation rule (7.1) is actually observed in ato-
mic spectra. The reason for this is that besides
energy conservation, the conservation of angular mo-
mentum and certain symmetry rules must also be
obeyed. This is all included in the transition matrix
elements. From (7.16) it follows that for the sponta-
nously emitted radiation only those transitions (i| — (k|
are allowed for which the transition dipole matrix
element

M = e/ Yiryy dr (7.26)
is not zero. This means that at least one of the
components

Mjx)x = e/ Vi xyy dr

(M), =e / Wy dr (7.27)

(M), = 6/ Yz dr

must be different from zero.
We will illustrate this for the hydrogen atom.
In order to make the calculation not too compli-
cated we will disregard the electron spin and only
deal with the spatial part of the wave function,
since in the matrix elements discussed so far we
have only used the spatial part of the wave functi-
ons and the integration extends only over the spatial
coordinates.
The hydrogenic wave functions are, according to
Sect.5.1.3:
Ry (r)OL, (9)e™? .

Yty = (7.28)

1
V2r
When a light wave is interacting with the atom
(induced absorption or emission) we must consider
instead of (7.26) the matrix-element (7.22). When
a linearly polarized wave with the electric field vec-
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tor E=1{0,0, Eyp} interacts with the atom, only the
z-component of the matrix element (7.27) is non-
zero, the other two vanish. We choose the z-axis as
quantization axis. With z =rcos®# the z-component
becomes

o0

1

(Mjy), = / R Ry dr
2

r=0

x / @f;;k@,’;,i sin ¢ cos ¢ dv
9

0
2
X / el MM qgp | (7.29)
9=0
Only those transitions (i| — (k| appear in the

spectrum, for which all three factors are non-
Zero.

For circularly polarized light travelling into the
z-direction the x- and y-components of M; can
contribute to the transition probability. The elec-
tric field vector for circularly polarized o*t-light can
be written as E* = E,+iE, and for o~ -light is
E~ = E,—iE,. Inserting this into (7.23) gives for
the scalar product &-r = &,x £ie,y. Therefore only
the x- and y-components of the matrix element (7.22)
contribute to the transitions induced by circularly pola-
rized light. Forming the linear combinations (M), +
i(Mj), of the matrix elements gives for the tran-
sition probability the absolute square of the scalar
product

. . 2
|E-r|* = |(E, £iE))(x +iy)| = E*(* +)?) .

With x =rsin® cos ¢ and y = r sin ¥ sin ¢ we obtain
1 o0
M +i ), = [ Rk @
2
r=0
T
X / Oy O sin® ¥ dv
=0

x [ elmmithe 4y (7.30a)

oo

1
(M), —i (M), = f RiR dr
/ 27
r=0
T
x / Oy Ok sin> ¥ dy
=0
27

% / el(mg—m;i—1¢ dg .
=0
(7.30b)

7.2.1 Selection Rules
for the Magnetic Quantum Number

The last factor in the matrix elements (7.29) for linearly
polarized light is always zero, except for m; = my. This
gives the selection rule

(Mix), 70 only for Am =m; —m;=0.

(7.31)

The integrals in (7.30a) and (7.30b) for circular
polarized light show that (M), +1(Mx), #0 only
for my =m; —1 and (M), —i(My)y, #0 only for
my =m; + 1 (Fig.7.7).

In conclusion, we obtain for transitions E; — Ej
the selection rules for the change Am = m; —my
of the magnetic quantum number m

Am = =£1 for circularly polarized light
(7.32a)

Am =0 for linearly polarized light .
(7.32b)

Am = +1

Fig.7.7. Transitions with Am = 0 (emission of linearly polari-
zed light) and Am = =£1 (circular polarization). Quantization
axis is the z-axis

Am=0
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This selection rule also follows from the conser-
vation of angular momentum for the system atom +
photon. For o light, the photon spin is s, = +1A, poin-
ting in the +z direction. When the photon is absorbed,
the atom has to increase the z component of its angu-
lar momentum by the same amount (Fig.7.7). For o~
light, the photon spin is s, = — 1A, giving rise to ato-
mic transitions with Am = —1. For linearly polarized
light the average spin of all photons in the incident light
beam is zero (because half of the photons have a spin
s, = +1h, the other half the spin s, = —1h) (Fig. 7.8).
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Fig.7.9. Possible transitions Am = =+1 of Zeeman com-
ponents for the normal Zeeman effect and the corresponding
polarization of the radiation for the observation parallel and
perpendicular to the magnetic field direction

7.2. Selection Rules

Table 7.1. Change Am of the magnetic quantum number m
under absorption or emission of photons

ot sphot 11 K Am = +1 Am = —1
07 Sphot 41 k Am = —1 Am = +1
7T (Sphot) =0 Am =0 Am =0

For the emission of light E; — Ej + hv, the angular
momentum m;# in the initial state must be equal to the
sum of angular momentum myh in the final state and
the photon spin (Table 7.1).

When the atom is placed in an external static ma-
gnetic field B = {0, 0, B}, which causes the degenerate
magnetic sublevels to split into Zeeman components,
one observes for the light emitted into the field di-
rection, two circularly polarized components. In the
direction perpendicular to the magnetic field direc-
tion, one observes three linearly polarized components,
one polarized in the z direction, which is due to the
component (M;;), with Am =0, and two due to the
sum (M +iM,) + (M, —iM,) = 2M, with Am = £1
(Fig.7.9) (see also Sect. 5.2).

7.2.2 Parity Selection Rules

Even when the selection rules for the magnetic quan-
tum number are fulfilled (which implies that the third
integrals in (7.29) or (7.30) are nonzero, the second inte-
grals can still vanish, bringing the transition probability
to zero.

The somewhat lengthy calculation (see [7.1]) shows
that the integrals

/ O O sind cos® i}
and / O O sin® ¥ dv

in (7.29) and (7.21) are nonzero only if [}, —[; = %1.

Only those transition are allowed for which the
quantum number / of the electronic orbital angular
momentum / obeys the selection rule

Al=l -l ==%£1. (7.33)
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Also, this selection rule is a consequence of the
conservation of angular momentum. The absorbed or
emitted photon has the spin s = +1A. Since the total
angular momentum of the system atom plus photon has
to be constant when a photon is absorbed or emitted,
the atom must change its angular momentum during the
transition (i| — (k| by £1#.

The selection rule (7.33) can be also derived from
symmetry arguments. We consider the matrix element

My = / / / WE v, Drv(r, v, 2) de dy dz
Xy z

in Cartesian coordinates. Since the integration ex-
tends from x,y,z = —00 to +oo the integrand has
to be an even function of the coordinates x,y, z,
otherwise the integral vanishes. Since r = {x, y, z} is
an odd function, the product vy must also be an
odd function in order to make the integrand an even
function.

The symmetry of a function with regard to a reflec-
tion of all coordinates at the origin is called its parity.
The function f(x, y, z) has even (or positive) parity if
f(x,y,2) =+ f(—x, —y, —z), it has odd (or negative)
pantY’ if f(-x’ Y, Z) = _f(_-x’ - _Z)-

The transition moment M;; can be only nonzero,
if the wave functions ¥; and ¥ of the two states
of the transition (i| — (k| have opposite parities.

The hydrogenic wave functions in Table 5.2 have
the parity (—1)'. This implies, that the quantum num-
ber / of the angular momentum has to change by an odd
number for an allowed dipole transition. Since the an-
gular momentum of the photon is £1#, this odd number
has to be &1 for electric dipole transitions. This again
gives the selection rule (7.33).

7.2.3 Selection Rules
for the Spin Quantum Number

Up to now we have neglected the electron spin. For
atoms with only one electron the absolute value of the
spin is always |s| = 1/3/4%, which does not change
under electric dipole transitions.

The same consideration applies for one-electron
transitions in multi-electron atoms with S=Ys;,
where only one electron is involved in the transition.

This gives the selection rule

AS:&—&=<$+2>—(%+2>=Q

(7.34)

where S* is the total spin quantum number of all other
electrons, not involved in the transition. Since their spin
quantum number S* does not change, we obtain §7 = S}
and therefore AS = 0.

For atoms with two electrons where each of the two
could interact with the light wave the wave functions de-
pend on the spatial coordinates (1, r,) of both electrons.
The transition dipole matrix element now becomes

My = 6/ Y, ) +r) Y@, ry) dry do
(1.35)

where the integration extends over all six coordinates
of the two electrons. Because the two electrons are in-
distinguishable, M;; should not change under exchange
of the two electrons.

For a singlet state, the spatial part y(ry,r,) of the
wave function is symmetric under electron exchange
(see Sect.6.1), for a triplet state it is antisymmetric.
The matrix element (7.35) is only independent of an
electron exchange, if both wave functions v; and ¥
are either symmetric or both are antisymmetric with
regard to an electron exchange. This means, that both
states have to be either singlet or triplet states.

Transitions between singlet and triplet states are
forbidden. The selection rule is

AS=0. (7.36)

Note:

This selection rule is not as strict as the parity selection
rule. It only holds if the spin-orbit coupling is small,
which means that the spin quantum number is well
defined. One says in this case that it is a “good quantum
number.” The total wave function can then be separated
into a product of spatial part and spin function.

In heavier atoms the spin-orbit coupling increases
strongly with the nuclear charge Ze (see Sect. 6.4). The
separation into a spatial and a spin part is no longer pos-
sible and S is no longer a good quantum number. In such



cases, one observes transitions between different mul-
tiplet systems with AS = %1, called “intercombination
lines.” Their intensity is still much weaker than that of
the allowed transitions with AS = 0. One example is
the intercombination line of Hg atoms at A = 253.7 nm,
which is emitted on the transition 6> P — 6!8.

Although the absolute value |S| of the total spin of
the electron shell does not change for an allowed electric
dipole transition, the orientation of the spin S relative to
the electronic orbital angular momentum can change.

For the quantum number J of the total angular
momentum J = L 4 S we obtain the general selection
rule

AJ=0,£1, but J=0-»J=0.

(7.37)

For AS = Othe necessary change AL = =1 can be com-
pensated by the opposite change AMg = F1 in order to
obtain AJ =0 (Fig.7.10).

There is, for instance the allowed transition
2P =1,my=+1/2) =2 D3jp(l=2,m; = —1/2)
in alkali atoms.

In Table 7.2 all selection rules are compiled.

Table 7.2. Selection rules for electric dipole transitions

Al ==+1 Strictly valid
for one-electron systems
AL = =1 Gerade levels are

for multi electron systems
with L-S-coupling
AM =0, %1

solely combined with
ungerade levels

AM = 0: linear
polarized light
AM==1:0%or o~
circularly polarized light
AS=0 Valid for light atoms.
Exceptions for heavy
atoms with large spin-
orbit coupling (weak
Intercombination
lines)

J=0—>J=0

is forbidden

AJ =0, %1

7.2. Selection Rules

Az
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+h-v=> 2
c 7 E \g\
= 54 1
Sph*h‘ LN N
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[AL=—1, AJ,= -1, AJ=0

Fig.7.10. Example for the conservation of electron spin §
for transitions in atoms with L-S-coupling, illustrated by the

.. h
transition 2D1 2 id 2P1 2

7.2.4 Higher Order Multipole Transitions

Besides the electric dipole transitions with transition
probability (7.17) given by the absolute square of the
transition dipole matrix element (7.26) there are also
electric quadrupole transitions and magnetic dipole
transitions that have transition probabilities which are
smaller by several orders of magnitude. They become
important for cases where the electric dipole transitions
are forbidden.

Electric quadrupole transitions are emitted by a qua-
drupole moment that changes in time. Analogously to
the derivation of the radiation emitted by an oscillating
electric dipole moment in Sect. 7.1.2, the amplitude of
the quadrupole radiation is proportional to the second
time derivative of the oscillating electric quadrupole
moment.

With the spatial extension a. of the electric charge
distribution and the wavelength A of the emitted ra-
diation the amplitude ratio of quadrupole to dipole
radiation is on the order a./X and the intensity ratio
therefore about (a./A)?.

EXAMPLE

a.=10""m, A =500nm=5x%x10"m= Io/Ip =
4x1078.

This illustrates that in the visible spectral range,
electric quadrupole transitions can be only detected on
transitions for which electric dipole transitions are for-
bidden. Otherwise they would be completely masked
by the much stronger dipole transitions.
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The electric quadrupole moment QM of a distribu-
tion of charges g; (x, y, z) can be written in the form of
a matrix (QM is in fact a second rank tensor)

QMxx QMxy Qsz

OM = | QM. OM,, OM,, (7.38a)

oM. QM OM:.
The components are

OMy =Y qi(3x7 —r});

OMy =Y g3y — 1)

OM..=Y g3z —r]);

OMyy = QM =3 gixiy;

OMy. = QM. =3 qixiz ;

OM,, = OM;, =3 Z%‘ini )

where 1= (x7+y? +z)"?. (7.38b)

All components depend on the product of two coordi-
nates or on the square of coordinates. Under reflection
of all coordinates at the origin, the components are the-
refore not changed. This means that the quadrupole
moment has positive parity, contrary to the electric di-
pole moment, which has negative parity. The two wave
functions of the two states of a quadrupole transition
therefore must have the same parity. Since the parity of
the wave function is determined by (—1), we obtain
the following result.

The selection rule for the orbital angular momen-
tum quantum number / on quadrupole transitions
is

Al=0,£2. (7.39)

The same result holds for the quantum number L
of multielectron atoms.

For the quantum number J of the total angu-
lar momentum J =L+ S the selection rules are
AJ =0, £1, £2, where the transition J =0 — 0 is
again forbidden.

The different selection rules for electric dipole
and electric quadrupole transitions are illustrated in
Fig.7.11.

Electric dipole radiation J — J' \
h
Atom 4 |Photon h J=2
= -h J=1
= J=1
J'=1
J'=0,Ad=-1 AJ=0 A =+1
Electric quadrupole radiation J — J' 1
AJ
J=1 AJ AJ J=3
J=1 >
ldl: K -2 J=1
AJ=-2 Ad=1 A =+2

Fig. 7.11. Possible changes AJ = J' — J of the quantum num-
ber J of total angular momentum for electric dipole transitions
|AJ] =h and electric quadrupole transitions |AJ|=nh
n=0,1,2)

EXAMPLES

The transitions 28y, —2 D32 and 2° Py — 33 P, are
both allowed quadrupole transitions.

7.2.5 Magnetic dipole transitions

Magnetic dipole transitions appear when the amount
or the direction of the atomic magnetic dipole moment
changes for a transition. Examples are transitions with
Am = %1 between the Zeeman components of an ato-
mic level, or between the fine structure components
of an atomic state (n, [, m;, my), e.g., for the transition
3P32 — 3Py, of the Na (3P) state.

The square of the magnetic dipole matrix element is
about 2-3 orders of magnitude smaller than that of an
electric dipole transition. In addition, the following fact
further drastically diminishes the intensity of magnetic
dipole transitions. Most of these transitions occur bet-
ween levels with a small energy separation AE. The
frequency v = AE/h is therefore smaller by several
orders of magnitude compared with optical transitions.
Since the spontaneous transition probability scales with
v}, the emitted or absorbed line intensity is indeed very



small compared with lines in the optical range, unless
the latter belong to forbidden transitions.

7.2.6 Two-Photon-Transitions

By “simultaneous” absorption of two photons two-
photon transitions with AL = 0, &2 become possible.
However, they demand high light intensities, which are
only achievable with lasers, because the two photons
both have to be present within the absorption volume of
the atom within the time interval At of the transition.
The transition probability of a two-photon transition
between the initial level (i| and the final level ( f|

d%is Qw)

M, My ré,
d[ Z

Wy — W) — vk1

k

M e My e
k

7.40
ki — w2 — vk e

is given by products of one-photon transition proba-
bilities for transitions between the initial level and an
intermediate level (v| at the energy E; + hv for the first
photon hw; and (v| — (f| for the second photon hw,.
The energy of the level (v| may not coincide with a real
atomic level, which means that the first absorbed photon
excites the atom far off-resonance with areal level (k|. In
order to simplify the diagrams, the level (v| is often cal-
led a “virtual level” (Fig. 7.12). The sums extend over all
real atomic levels (k| that are connected by allowed one-
photon transitions with the initial level (i |. The two terms

(f|
(k3]
h-v h-vy
(kal
M ---4--F - vinal
__l__ levels
h-v h'V2 <k1|
(il

Fig.7.12. Two-photon transition with two equal or two
different photons

7.3. Lifetimes of Excited States

in (7.40) take account of the fact that either the first pho-
ton with @ can be absorbed on the first step i — k or the
second photon with w,. Since both possibilities are not
distinguishable the total transition amplitude has to be
the same of the two individual amplitudes (see Sect. 3.5).
The denominator describes the detuning of the photon
frequency w; from the frequency w;; of the one photon
transition to the real level Ey including the Doppler-shift.

Examples for observed two-photon transitions are
the 1'Sy — 2'S, transition in the H atom with AL =0
or the 325y, — 4>Dj3>5)> transition in the Na atom
with AL =2[7.3,4].

7.3 Lifetimes of Excited States

If an atom is excited (for instance by absorption of a pho-
ton, or by collisions with electrons) into a state with
energy E; above that of the ground state, it can spon-
taneously relax back into a lower state with energy E;
by emitting a photon v = E; — E;. This spontaneous
emission is called fluorescence. This lower state E;
may be still above the ground state Ey. In this case it can
further relax into the ground state by photon emission
or by a collision-induced transition.

The probability per second for the fluorescence tran-
sition per atom is (see Sect.7.2) given by the Einstein
coefficient A;;. If N; atoms are in the energy state E;,
the emission rate on the transition (i| — (j| is

dN; = _AijNi dr. (7.41a)

If the state E; canrelax into several lower states £ < E;
(Fig.7.13), we obtain for the total rate

dN;=—A;N;dr with A;=) Ay. (741b)
J

Integration of (7.41b) gives the time dependent
population density

N;(f) = N;(0)e~ A", (7.41¢)
The population of the excited state E; decreases ex-
ponentially from its initial value N;(0) at time zero to
N;(o0) =0 (Fig.7.14).

The constant 7; = 1/A; is the mean lifetime of the
state E;. This can be seen as follows. The mean lifetime
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E,— Fig.7.13. Spontan-
A ..
eous radiative decay
(fluorescence) from
the excited level E;
Excitation into several lower le-
vels E;
Eq—
is defined as
0
1
<tl>_ t'le(t)
0
No
r 1
= —/tA,- eildr= =1, (7.42)
A;

0

where (1/Ny)dN;(¢) dt is the probability of a decay of
an atom within the time interval between ¢ and ¢ + dr.

After the mean lifetime (f;) =1, the initial
population N; (¢t = 0) has decreased to N;(0)/e.

Measurements of the mean lifetime of a level with
energy E; allows the determination of the total transition
probability A; =Y A;, = 1/7;. The specific transition
probabilities A;, can be inferred from measurements of
the relative line intensities of the individual transitions
E; — E, using the relation

Iin/(hvin)
Zn Iin/(hvin) .

This yields, with (7.17), the transition matrix ele-
ments M;; [7.5].

A= A; (7.43)

N; 4
Ni(0)

N |

>t

P P

i
Fig.7.14. Experimental decay curve of the population N; of
an excited level E; with mean lifetime t;

If other relaxation processes (for example collisi-
ons) add with the probability R; per second to the
deactivation of level E; (Fig.7.15), (7.41b) must be

modified to
dN; = —(A;+R;)N; dr . (7.44)

We then obtain the time dependent population density

N;(t) = N;(0) e~ AitRo! (7.45)
and the effective lifetime 7. becomes
1
off — . (7.46)
Ai+R;

If level E; of atom A is depopulated by inelastic col-
lisions with other atoms B, the collision-induced rate
becomes

R; = ngvago™ (7.47)

i I
where ng = Np/V is the number density of atoms B
and

8kT )
VAB = with = (7.48)
T Ma+ Mz
is the mean relative velocity of the two collision partners
with reduced mass u in a gas cell at temperature 7.
Plotting the inverse effective lifetime

1 1

_L,ieff _L_ispont

+nBvABaii“el (7.49)

as a function of the product ngvap (Stern—Vollmer plot
(Fig.7.16)) one obtains a straight line with the slope
equal to the inelastic collision cross section U[i“el.

The intersection of this straight line with the axis
ng = 0 yields the inverse spontaneous lifetime 1/7;"".

From the general equation of state

pV = NkT

E y Inelastic
collisions
A F
Excitation
Fluorescence

E Fig.7.15. Inelastic
J collisions can con-
tribute to the depo-
Eo — pulation of level E;



tga=C-g;
with C = 1m~

0 Ng “VaB

Fig. 7.16. Inverse effective lifetime 1/ts as a function of the
density np of collision partners B (Stern—Volmer plot)

the number density ng = N/V = p/kT can be expres-
sed by the pressure p and the temperature 7', which
can be determined experimentally much easier than the
number density ng. This yields the relation

1 1 inel 8
reff = FSpont +o;" \/n,ukT P

1 1

(7.50)

between effective lifetime 7.4 of an excited state and
the pressure p of the collision partners B [7.6, 7].

7.4 Line Profiles of Spectral Lines

The absorption or emission of radiation on an atomic
transition

AE:E,'—Ek :hv,-k

does not result in a strictly monochromatic spectral line,
but rather in a frequency distribution around the cen-
tral frequency vy. This gives a line profile I(v— vp)
with a full-width at half-maximum &v, which not only
depends on the spectral resolution of the measuring ap-
paratus but also on basic physical properties, such as
the lifetimes of the atomic states involved in the transi-
tion, the velocity distribution of the moving atoms and
the pressure of the gaseous sample.

The linewidth in frequency units is defined as the in-
terval §v = v, — v between the frequencies v; < vy and
vy > 1o on both sides of the central frequency vy, where
the intensity I(v;) = I(v2) = ;I (vo) of the spectral line
profile has dropped to half its maximum value at the
line center (full width half maximum FWHM). Often
the linewidth is given in units of the circular frequency
o = 21wy = dw = 27év or in units of the wavelength A.

7.4. Line Profiles of Spectral Lines

Line kernel

Py/2

>V
Fig.7.17. Line profile of a spectral line
Because A =c/v =

8= —(c/v)sv=—(/v)dv. (7.51)

The relative half-widths are equal in all these notations,
because from (7.51) it follows that
SA ) 8
’ ‘: Y =’ w‘ (7.52)
A % w

The spectral interval inside the full half-width is cal-
led the line kernel, the ranges outside the line wings
(Fig. 7.17).

There are several reasons for the finite linewidths of
spectral lines:

e Theenergy levels of the atoms have an energy uncer-
tainty 8 E = h /7 related to their finite lifetime t. The
frequency width of a spectral line corresponding to
a transition between levels E; and E} is

ik = (8E; +38Er)/h

(natural linewidth, see Sect.7.4.1).

® Atoms in a gas move with a mean velocity v, de-
pending on their mass and on the temperature of the
gas. This leads to a Doppler shift of their emitted
or absorbed radiation. The statistical distribution of
the velocities of many atoms in a gas results in stati-
stically distributed Doppler shifts, which gives rise
to a Gaussian line profile (Doppler broadening, see
Sect.7.4.2).

e Every atom in a gas interacts with other neighbo-
ring atoms. This results in a shift of the atomic
energy levels. Since the interaction decreases with
increasing distance between the interacting atoms
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the level shifts and with it the line-shifts increase
with the density or pressure of the gas, resulting in
a pressure broadening and shift of the spectral lines
(Sect. 7.4.3).

We will now discuss these effects in more detail.

7.4.1 Natural Linewidth

An excited atom can deliver its excitation energy in
the form of spontaneous emission. We will describe
the excited electron by the classical model of a dam-
ped harmonic oscillator with mass m, spring constant D
and eigenfrequency wy = «/D/m (Hertzian dipole). The
time dependent amplitude of its oscillation can be
obtained from the equation of motion

¥+yit+ajx=0, (7.53)

where y is the damping constant. The real solution
of (7.53) is:

x(1) = xoe~"?" [cos wt + (y/2w) sinwt] . (7.54a)

Note that the frequency w = \/ a)% — (y/2)? of the dam-
ped oscillator is slightly lower than w of the undamped
oscillator. However, we will see that for excited atoms
the damping constant y is in most cases much smal-
ler than wy. We can therefore neglect the second term
and approximate w by wg. The solution of (7.53) then
becomes

x(1) ~ xge” Y cos wot . (7.54b)

Because of the time dependent amplitude x(#) the fre-
quency of the emitted radiation will no longer be strictly
monochromatic, as would be the case for an infinitely
long undamped oscillation. The Fourier transforma-
tion of x(f) yields the frequency distribution of the
amplitudes

+00

Alw) = \/;T f x(f)e " dr

—0o0
+00

/ xoe” P! cos wote ™ dr

0

1
B V2
(7.55a)

where we have assumed that the excitation of the atom
occurs at t = 0, which means that the oscillation starts
atr =0, giving x(r < 0) =0 (Fig. 7.18a).

AX
Pl 8
/\‘ ~~~~~~~~~~ % /
/\/\\/‘ .
a)
}A@)P
1 +
0,5+ Y
b) s - e

Fig. 7.18. (a) Damped oscillation. (b) Lorentzian line profile
|A(w)|* as Fourier transform of a damped oscillation

The elementary integration of (7.55a) yields the
complex amplitudes

1

Aw)= 0 [
/87 Lilwo—w) +y/2

+ . ! i| . (7.55b)
i(wo+w) +y/2

In the vicinity of the resonance frequency wy is |w —

wp| K wy. We can therefore neglect the second term

in (7.55b).

The amplitude A(w) is proportional to the Fourier
component E(w) of the electric field of the emitted radi-
ation. Therefore the spectral radiation power density
P,(w) is

P,(w) x A(w)A*(w) .

In the vicinity of the central eigenfrequency wg we then
obtain the spectral profile of the radiation power density
C
(@—wo)*+ (y/2)*
The constant C is chosen in such a way that the total

power becomes

o

/ P,(w)dw=PF,.

0

P (w) = (7.56)

(7.57a)



The substitution @’ = w — wy transforms the integral
into

00 400

/ P, (®) do ~ / P, (o) do' =Py .

0 —00

(7.57b)

The integration of this integral yields C = Pyy/2mw.
The normalized line profile

y/2m

Fol@ =P opy2+ /20

(7.58)

is called the Lorentzian profile (Fig.7.18b). The full-
width at half-maximum (FWHM) is derived from (7.58)
as

dw, =y = dv, =y/2m . (7.59)

This half-width is called the natural linewidth, because
it is caused by the spontaneous emission of the atom,
without any external influences.

Note:

Sometimes one finds in the literature another normali-
zation where the constant C is chosen in such a way
that Py = P,(wp) becomes the spectral power density
at the line center. This gives C = (y/2)? P and the line
profile becomes

Py

Pa)(w)z 9 -
1+< V/20)

(7.58b)

We can gain more physical insight into the energetic
conditions during the emission of radiation, when we
multiply both sides of (7.53) by mx, which gives

mii+moixk = —ymi* . (7.60)
This can be written as
drm_, m , 2] dw 2
= =— . 7.61
dt[2x+2w0x a - (7.61)

The expression in the brackets represents the total

energy W = Eyin + Epor as the sum of kinetic and po-

tential energy. Inserting x(¢) from (7.54b) into the left

side of (7.61) gives for y < wy the radiation power
dw

_ _ 22—yt 2
P= = —ymxywye " sin” wot .

N (7.62)

7.4. Line Profiles of Spectral Lines

The average over one oscillation period becomes, with
(sin® wot) = 1/2,

dw

P= 7.63
dr (7.63)

= ! ymxjage ™.
2

Since the decrease of the oscillator energy equals the
radiation power, we can see from (7.63) that the radia-
tion power decreases exponentially and after the mean
lifetime T = 1/y it has only 1/e of its initial power
P(t=0)=P,.

In Sect.7.3 we have seen that the mean lifetime
7; = 1/A; of an excited atomic state is related to the
Einstein coefficient A; for spontaneous emission. This
means that when we replace the classical damping con-
stant y by the Einstein coefficient A; we can directly
adopt the formulas for a classical damped harmonic os-
cillator to describe the time dependence of spontaneous
emission of excited atoms. We then obtain for the natu-
ral linewidth of a transition from level |i) to the ground
state

1 A;
dw, =A;i= =0y, = =

. 7.64
T; 2n 27T ( )

These equations can be also derived from Heisenberg’s
uncertainty relations. If an atomic state has a mean li-
fetime 7, its energy can be determined only within an
uncertainty AE = h/t. The frequency uncertainty of
the emission from this state into the ground state (with

\E A
E; AE,
(\
< E 112¥iiD AR, N
> v
(AE;+AE) /h

Fig.7.19. Natural linewidth caused by the energy uncertain-
ties AE;, AEy of the atomic levels connected by the transition
hviy = E; < Ej
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7o = 00) is then

1
Av=AE/h = = Av =4y, .
T

2
For a transition between two excited states £ and E;
with lifetimes 7; and 7; both energy uncertainties
contribute to the linewidth (Fig. 7.19), which yields

1 /1 1
AE:AEi+AEk=>8vn:2 ( + )

T \T; Tk
(7.65)

EXAMPLES

1. The natural linewidth of the Na D-line, emit-
ted on the transition from the excited level 3P/
(t = 16ns) into the ground state 35, (t = 00) is

10" 10’s™" = 10MHz

16-27 B '
Since the frequency at the line center is vy =5 x
10 s~ the damping constant y = 6.25 x107 is
very small compared to wy = 2mvy. Only after
8 x10° oscillation periods the amplitude has decre-
ased to 1/e of its initial value. This illustrates that
the approximation y < wp, made above, is indeed
well justified.

2. For metastable excited states, the lifetimes may be-
come very long, because there are no allowed spon-
taneous transitions to lower states. Examples are the
2282 states of the H atom, or the 23S state of the
He atom. The excited 225, /2 state of the hydrogen
atom can only undergo a two-photon transition into
the ground state. Its lifetime is about 0.14 s (!) and
its natural linewidth is accordingly 8v, = 1.1s7".
Such a small linewidth can be measured only with
special techniques (see Chap. 11).

Sy, =

7.4.2 Doppler Broadening

If an excited atom moves with the velocity
v = {vy, vy, v.}, the center frequency of the radiation,
emitted into the direction of the wave vector k of the
wave appears for an observer at rest Doppler-shifted to

we =awo+k-v with |k| =27/ (7.66)

>
e

o

<l
x|

<
v
@
=
(0]
Q
=
o
=
\j
<

a) b)

AP()

» (D

>\

c) dv,=2-vIn2-v,

Fig. 7.20a—c. Doppler-broadening of spectral lines. (a) Doppler-
shift emitted. (b) Absorbed photons. (¢) Gaussian line profile
caused by the thermal velocity distribution of absorbing or
emitting atoms

(Fig. 7.20a). Also, the absorption frequency w, of an
atom, moving with the velocity v changes. If a plane
wave with wave vector k and frequency w hits the mo-
ving atom, the frequency w appears in the moving frame
of the atom shifted to w’ = w — k- v. Since the absorp-
tion frequency of the atom in its rest frame is wy, the
wave can only be absorbed if @ = wy. The frequency
of the incident wave therefore has to be

w=w,=wy+k-v (7.67)

in order to be absorbed (i.e., coincide with the center
frequency wy of the atom in its rest frame).

If the wave travels in the z direction its wave vec-
tor is k=1{0,0, v,} = k-v = k,v, and the absorption
frequency becomes

W, = wy + kv, = wo(1+v,/c) (7.68)

(Fig.7.20b).

At thermal equilibrium, the velocities of the atom
follow a Maxwell-Boltzmann distribution. The number
density n;(v;) dv, of atoms in the absorbing level [i)
with velocity components v, within the interval from v,



to v, 4 dv, is given by

N[ e_(vz/vw)z dvz ,
VwA/ T

n;(v,) dv, = (7.69)
where vy, = (2kgT/m)'/? is the most probable velocity
component, kg is the Boltzmann constant and

+o0
N, = / ni(vs) dv,
—00

is the total number of all atoms in level E; per unit
volume.

If v, and dv, in (7.69) are expressed by the fre-
quency w and the frequency shift dw according to
the relations (7.68) we obtain v, = (¢/wp)(w — wp) and
dv, = (¢/wp) dw. Inserting this into (7.69) gives the
number of atoms

NP e@—on) o g, (7.70)

i(w) do =
(@) do WOVwA/T

that absorb or emit radiation within the frequency in-
terval between w and w+ dw. Since the absorbed or
emitted spectral radiation power density is proportional
ton(w) dw, the intensity profile of a Doppler-broadened
absorption or emission line becomes
Po() = Py (ep) e @)/ (@ov)l? (7.71)

This a Gaussian function that is symmetric to the center
frequency wq (Fig. 7.20c). The full half-width is

dwp = |w1 — ws|

with  P(w;) = P(wy) = ;P(wo) .

Using the relation vy, = (2kg T/ m)'/? converts this into

Sop = 23/ In 2wgvy, /¢ = (wo/c)y/8kg T In2/m .
(7.72a)

Because (41n2)~1/2 ~ 0.6 we can write (7.71) as

P(w) = P(wp) e 1@—e0)/0650p)” (7.71b)

The Doppler-width $wp increases proportionally
with the frequency wy, with T'/? and decreases
with increasing mass m of the atom as m~/2.

7.4. Line Profiles of Spectral Lines

With the Avogadro number N,, the molar mass
M = Nam and the gas constant R = Nakg we can
transform (7.72a) into the expression

Svp ="/ (2RT/M)In2

- ! . (172
=7.16 x10 v /T/M s

which is more handy for fast calculations, where T is
given in K and M in g/mol.

EXAMPLES

1. The Lyman «-line of the transition 2P — 1S
in the hydrogen atom (M =1g/mol): A=
121.6nm = vy = 2.47 x10'9 s, At a temperature
of T = 1000 K in a hydrogen discharge the Doppler-
width becomes §8vp = 5.6 x109s~! = 56 GHz,
SAp =2.8 x1073 nm.

2. The Na D-line of the transition 3P — 38,
in the sodium atom (M = 23 g/mol) has a wave-
length A =589.1nm and a frequency vy = 5.1 x
10" s~1. At a temperature T = 500 K the Doppler-
widthis§vp =1.7x10°s™! = 1.7GHz = $A =2 x
1073 nm.

3. The infrared transition in the CO, molecule
(M =44¢g/mol) at A~ 10pum (vg =3 x1013s71)
has, at room temperature 7 = 300K, a Doppler
width Svp = 5.6 x10°s~! =56 MHz = 6% = 1.3 x
1073 nm.

These examples show that in the visible range the
Doppler width exceeds the natural linewidth by
about two orders of magnitude.

This is also true for vibrational transitions in the
infrared, where the lifetimes of the vibrational
levels are very long and the natural linewidths
accordingly small.

This implies that generally the natural linewidth is
completely masked by the much larger Doppler-width.
Without special experimental tricks (see Sect. 11.5.8) it
is therefore not possible to measure the natural linewidth
directly. It is, however, possible to determine it from
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measured spontaneous lifetimes of excited states (see
Sect.7.3).

Note:

The Gaussian line profile of Doppler broadening de-
creases exponentially with increasing distance | — wo|
from the line center wy, (see (7.73)), while the Lorent-
zian line profile decreases only as (@ — wo) ™2 (7.58).
Therefore, it is possible to extract from the extreme line
wings, information on the natural line profile in spite of
the much larger Doppler-width (Fig. 7.21).

More detailed consideration shows that a Doppler-
broadened spectral line cannot be strictly represented
by a pure Gaussian profile as has been assumed in the
foregoing discussion, since not all atoms with a de-
finite velocity component v, emit or absorb radiation
at the same frequency «’ = wo(1 +v,;/c). Because of
the finite lifetime of the atomic energy levels, the fre-
quency response of atoms with a velocity component v,
is represented by the Lorentzian profile (see Sect. 7.4.1)

y/2m

Lo=a)= (o wy s

(7.73)

with a central frequency o' = wo(1 + v, /c) (Fig.7.22).

Let n(«') do’ = n(v,) dv, be the number of atoms
per unit volume with velocity components within the
interval v, to v, 4+ dv,. The spectral intensity distribu-
tion I(w) of the total absorption or emission of all atoms

4 P(w)
2
_[_®©—®g
Pee (0,6-8wD)
Gaussian
/27w
P=Py— 2
(-0 P+ (/27
Lorentzian
LA, t > ()
0]

Fig.7.21. Comparison between Lorentzian and Gaussian line
profiles with equal half-widths
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Fig.7.22. Voigt profile as a convolution of Lorentzian line
shapes L(wg — o) with o' = wo(1 +v,/c)

on the transition E; — E is then

I(w) =1 / n(w)L(w—o') do' .
0

Inserting (7.74a) for L(w — ') do’ and (7.70) for n(w')
we obtain

(7.74a)

o / 2
e L(c/vp)(@wo—w)/wp]

I(w)=C do’ 7.74b
) (0 —')?+(y/2)? ( )
0
with
_ YNic
2032w

This intensity profile, which represents a convolution
of Lorentzian and Gaussian profiles (Fig. 7.22) is called
a Voigt profile. Such profiles play an important role for
the spectroscopy of stellar atmospheres, where accu-
rate measurements of line wings allow one to separate
the contributions of Doppler-broadening and natural
linewidths or collisional broadening. From such mea-
surements, the temperatures and the pressures of the
atmospheric layers of stars or planets from which the
radiation is emitted or where radiation from the inner
part of the star is absorbed can be deduced.

7.4.3 Collision Broadening

If an atom A, with energy levels E; and E}, approaches
another atom or molecule B, the interaction between A
and B shifts the energies of both levels. This energy
shift depends on the structure of the electron shell of
both partners A and B, on the specific energy levels and



on the mutual distance R(A,B), which we define as the
distance between the centers of mass of A and B. The
energy shift generally differs for the different levels.
It may be positive (for repulsive potentials between A
and B) or negative (for attractive potentials). Plotting
the energies E;(R) and Ey(R) of atom A as a function
of the distance R we obtain potential curves, such as
those schematically drawn in Fig.7.23. The approach
of two particles to a distance R, where the interac-
tion energy becomes noticeable (this means that the
potential curves deviate noticeably from E(R = 00)),
is called a two-body collision and the system AB(R) is
called a collision pair. If the densities of A and B are not
too high, the probability that three collision partners ap-
proach each other simultaneously within R < R, (three
body collision) is very small and we can neglect it.

The distance R. where the interaction becomes no-
ticeable is the collision radius. If the relative velocity
of A and B is v, the duration of the collision (also called
the collision time) can be defined as 7., = R/ v.

E/h

Vik(s0) = Vg

Vi (R)

Pw)

Av=N-v-o4/2n

AV ]

With
collisions

Without

collisions
ov

— >V
v(R) Vo

Fig.7.23a,b. Collision broadening. (a) Potential curves of

the collision pair AB and A*B. (b) Shift and broadening of

a spectral line by collisions

7.4. Line Profiles of Spectral Lines

EXAMPLE

At thermal velocities of v =5 x10%>m/s and a typical
collision radius R. = 1nm the collision time beco-
mes Teo = 2 X 10712 5. This illustrates that the collision
times are very short.

Note, that one has to distinguish between the colli-
sion time and the mean time (7) = n~'/3 /v between two
collisions, which is proportional to the average distance
d = n~'/3 between two atoms and therefore depends on
the density n of the collision partners. At sufficiently
low pressures, () is much longer than 7.

EXAMPLE

At a pressure of 1mbar the density is about 3 x
10?> m—3. With a relative velocity v =5 x10°>m/s we
obtain () ~ 3 x10~!!s.

The frequency
vik = |Ei(R) — Ex(R)| /h

of the radiation emitted or absorbed on the transition
E; — E; during a collision depends on the distance R
at which the transition takes place (we assume here
that the duration of the radiative transition is short
compared with the collision time, which means that
in Fig.7.23a, the transition can be drawn as a vertical
line). In a gas mixture, the distances R show random
fluctuations with a distribution around a mean value R,
which depends on the pressure and temperature of the
gas. The frequencies of absorbed or emitted radiation
show a corresponding distribution around a most pro-
bable value v (Ry,), which may be shifted against the
center frequency vy of the unperturbed atom A. The
shift Av = vy — v (Ry,) depends on how differently the
two energy levels E; and Ej are shifted at a distance
Rn(A,B) where the transition probability for emission
or absorption has a maximum.

The intensity profile /(w) of the collision broadened
emission line can be described by

H@a/Ammnmm

X (; [Ei(R)— Ex(R)] dR, (7.75)

d

where A;(R) is the spontaneous transition probabi-
lity, which depends on R because the electronic wave
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functions of the collision pair (AB) depend on R. The
probability P.o(R) that the distance R lies between R
and R+ dR depends on the interaction potential, the
density and the temperature of the gas. It can be derived
in the following way:

The number of particles B in a spherical shell with
radius R around atom A is

Ng(R) dR = nopdnR> dRe™ Evot (RV/KT (7.76)

where ny is the average density of atoms B. The Boltz-
mann factor exp(—E}/kT) takes into account that the
energy of the collision pair depends on the potential
interaction energy Ep,o(R). The probability P(R) is
(N(R)/ng). Inserting this into (7.75) gives the intensity
profile of the absorption line

l(w) dw (7.77)

0] d
=C* [Rze_EPO‘(R)/kT g Ei® —Ek(R»] dR .

Measuring the line profile as a function of the
temperature gives

i@, 1) _ Epa(R) |
dr ~ kT?

This allows the determination of the ground state
potential seperately!

(@, T). (7.78)

From the temperature dependence of the line pro-
file, one can determine the interaction potential
for the two corresponding states separately, while
from measurements at constant temperature only
the difference A E(R) can be obtained.

Frequently, spherical model potentials are substitu-
ted into (7.77), such as the Lenard—Jones potential

a b
EPOI(R) = R12 - R6 .

The coefficients a and b are adjusted for optimum
agreement between theory and experiment.

So far we have only discussed elastic collisions,
where the energy level of the atom A is only shifted du-
ring the collision, but returns to its initial value after the
collision, unless the atom has emitted a photon during
the collision. The shift of absorption or emission lines
caused by elastic collisions corresponds to an energy
shift AE = hAw between the excitation energy hwq of

(7.79)

the free atom A* and the energy hw of the emitted pho-
ton. This energy difference is supplied from the kinetic
energy of the collision partners. In the case of positive
shifts (Aw > 0), the kinetic energy is smaller after the
collision than before.

Besides these elastic collisions, inelastic collisions
may also occur in which the excitation energy of atom A
is either partly or completely transferred into internal
energy of the collision partner B, or into translational
energy of both partners A and B. Such inelastic col-
lisions are called quenching collisions, because they
decrease the number of excited atoms A in level E;
and therefore quench the fluorescence intensity. The
total transition probability A; for the depopulation of
level E; is the sum of radiative and collision-induced
probabilities

A= AP AT with A =ngoiv.  (7.80)
Inserting the relations
\/ 8kT
V= s
T

and PB = anT

MaMg

M_MA—l-MB’

between the mean relative velocity v, the partial pres-
sure p of the particles B with number density ng and the
gas temperature 7' gives the total transition probability

kT’
(7.81a)

1 . 2
A= spont +apg with a= 20ik\/
T.

14

which is identical to (7.50) for the lifetime dependence
on pressure.

Itis evident from (7.64) that this pressure-dependent
transition probability causes a corresponding pressure
dependent linewidth dw, because it shortens the effec-
tive lifetime of the excited level. It can be written as the
sum of two damping terms

8w = 8wy =+ 8weoll = Yut+ Yeoll = Yt aps . (7.81Db)

The collision-induced additional line broadening apg
is therefore often called pressure broadening.

In a classical model, which describes the excited
atom A by a damped harmonic oscillator, the inela-
stic collisions decrease the amplitude of the oscillation.
Although the elastic collisions do not change the am-
plitude, they do change the phase of the oscillation



(Fig.7.24). Because the energy difference between the
corresponding states of the atom A changes during the
elastic collision time, the frequency w of the emitted
or absorbed radiation changes by Aw(R). This change
depends on the interaction potential between A and B.
Although after the collision the frequency again takes
its initial value, the phase-change is (Fig. 7.24)

o0

Ap = f Aw(t) dr .
0

Elastic collisions are therefore called phase-changing
collisions. Since the frequency differences Aw differ for
collisions with different distances R(AB), the ensemble
of atoms A has suffered random phase changes. The
Fourier transform of the radiation gives a Lorentzian
line profile, which is broadened and shows a shift of its
line center (Fig.7.23).

The line profile caused by elastic and inela-
stic collisions is obtained after a somewhat lengthy
calculation [7.8] as

(7.82)

( Vn +2V1nel + NUOb)z

(Cl) —wy— NUGS)2 + (}’n+2)’mcl + NUO'b)z
(7.83a)

I(w) =

|<_/S
a) @A
X(t)
b) > TG ] -
\ AD
0) P D > -t

Fig. 7.24a—c. Elastic collisions as phase perturbers. (a) Clas-
sical path of the collision partner B. (b) Frequency shift of A
during the collision. (¢) Resulting phase shift

7.5. X-Rays

Table7.3. Line broadening §vg and line shift Avs (in
MHz/Pa) for some transitions in alkali atoms colliding with
noble gas atoms

Na:
38,, <3P, 007 00 01 —005 0.3 —0.07
A =589.6nm
K:
48, , < 4P, 0.06 002 0.1 —0.09 0.12 —0.07
A =589.6nm
Cs:
6S,,, < 6P, 0.08 0.05 0.08 —0.07 0.09 —0.06
A =589.6nm
The cross sections
o0
op, =27 /(1 —cos@(R))R dR (7.83b)
0
o0
oy =21 / singp(R))R dR (7.83c¢)

0

are a measure for the line broadening (oy,) and the line
shift (o5) by elastic collisions.

Both elastic and inelastic collisions result in the
broadening of spectral lines. Elastic collisions
cause, in addition, a shift of the line center.

The classical models of pressure broadening and
shifts can be extended to a more general quantum me-
chanical treatment [7.9, 10]. This, however, exceeds the
scope of this textbook.

7.5 X-Rays

In the year 1895, in the German city of Wiirzburg,
Wilhelm Conrad Rontgen (1845-1923) (Fig.7.25) dis-
covered, while experimenting with gas discharge tubes
developed by Phillip Lenard, that radiation was emit-
ted from these tubes that could penetrate materials such
as glass, wood or human tissue. Since he did not know
much about the nature of this radiation, he called it
X-ray radiation.
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\

Fig.7.25. Wilhelm Conrad Rontgen (From E. Bragge; Die
Nobelpreistriger, Heinz-Moos-Verlag, Miinchen 1964)

N

In the following years, the importance of these
X-rays for material inspection and in particular for me-
dical diagnostics, soon became evident and in 1903
Rontgen was the first physicist to receive the Nobel
Prize. In the following 100 years the applications of
X-rays have vastly increased [7.11], ranging from ma-
terial sciences, sterilization of food, numerous medical
applications culminating in the development of X-ray
tomographs to discoveries of new phenomena in the
universe using X-ray astronomy [7.12, 13, 14].

The basic principle of an X-ray tube is shown in
Fig.7.26. Electrons are emitted from a heated cathode,
accelerated by a voltage U and impinge onto an an-

o U o-

Vacuum

Cathode B Anode
‘ e
—_—
Uy _— §;§
B ———

i

%

Window

Fig. 7.26. Schematic illustration of an X-ray tube

ode. In the anode material (for example tungsten) the
electrons are stopped and part of their energy eU is
converted into radiation with short wavelengths. These
X-rays leave the tube through a window and can be
collimated by proper apertures.

X-rays are produced by two different effects:

1. By decelerating energetic electrons (ranging
from keV to MeV) bremsstrahlung is produced with
a continuous spectral intensity distribution (),
which depends on the energy of the electrons.

2. The energetic electrons can excite inner shell tran-
sitions in the atoms of the anode. The excited
states E; emit X-rays as spectral lines on transiti-
ons E; — E; with wavelengths A, characteristic
for the anode material. These X-rays are therefore
called characteristic X-ray radiation.

We will now discuss both effects in more detail.

7.5.1 Bremsstrahlung

Energetic electrons passing through a material with high
nuclear charge numbers Z, are deflected in the Cou-
lomb field of the positive nuclear charge (Fig.7.27a).
Since, according to electrodynamics, every accelerated
or decelerated charge emits radiation with a radiation
power proportional to the square of the acceleration,
these electrons emit a broad radiation continuum with
an intensity distribution depending on the initial elec-
tron energy (Fig.7.28). The high energy limit of this

.~ 7.7+ _ Electron
Lo // shell
o ,' - L
) ¢
"Z-e - h-v
a)
e (e-U) o
o
E..=AE-E
b) kin B

Fig.7.27a,b. The origin of the continuous X-ray radiation
(bremsstrahlung). (a) Deflection of an incident electron in the
Coulomb field of the nucleus of target atoms. (b) Inelastic
collision of an incident electron with an electron in the shell
of a target atom
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Fig.7.28. Spectral distribution of the bremsstrahlung in
a tungsten target for different voltages U

continuum is reached when the total energy Eyi, = eU
of the incident electrons is converted into radiation. This
gives the condition

h
Y < hvpex = U => A > Amin = ; (7.84)
e

Inserting the quantitative values for £, ¢ and e into (7.84)

yields the more readily calculable form

Amin = 1234.5(U[V]) ' nm (7.85)

EXAMPLE

U =10kV = Apin = 0.12 nm, or v, = 2.5 x 1018 571,
U =50kV = Apin = 0.024nm, or vy, = 1.25x
1051,

Of course, the incident electrons can also collide
with the electrons in the atomic shells of the anode

7.5. X-Rays

material (Fig.7.27b). The outer electrons with a small
binding energy are kicked away by collisions with the
high energy incident electrons, they collide further with
electrons of other atoms and finally convert their energy
into heat. Collisions with more tightly bound inner elec-
trons lead to excitations into higher, but still bound,
atomic states. This excitation energy is transferred to the
characteristic X-ray fluorescence emitted by the excited
atoms.

Both contributions represent electromagnetic radia-
tion as was first proved by the English physicist Charles
Glover Barkla (1877-1944, Nobel Prize 1917), who
measured the polarization of the X-radiation. Further
convincing proofs were given by the German physi-
cist Max von Laue and his assistants W. Friedrich and
P. Knipping and later by the English physicists Wil-
liam Henry Bragg (1862—-1942) (Fig.7.29) and his son
William Lawrence Bragg (1890-1971) who together

Fig.7.29. William Henry Bragg (From E. Bragge; Die Nobel-
preistriger der Physik, Heinz Moos-Verlag, Miinchen 1964)
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received the Nobel Prize in 1915. They measured in-
terference and diffraction patterns when single crystals
were illuminated by X-rays, which demonstrated that
X-rays were electromagnetic waves.

7.5.2 Characteristic X-Ray-Radiation

The spectral lines of the characteristic X-ray radiation
appear only if the energy of the electrons, incident on
the anode, is sufficiently high to excite atomic inner
shell electrons into higher unoccupied levels (Fig. 7.30)
according to the scheme

e~ (Exin) +A(E) = A*(E)) +e(El,)  (7.862)
with  Ey, — El/dn =E, —E;
A*(E;) = ACEL) + hvy (7.86b)

with hvy=E;,— E; .

EXAMPLE

Ey(Cu(ls)) = —8978 ¢V (binding energy of an electron
inthe 1s level of the K-shell); E; (Cu(6p)) = —4¢eV. The
incident electrons can therefore only excite electrons in
the K-shell into the level E;, which emits the Cu-K-
radiation, if their kinetic energy is above 8974 V.

The characteristic X-ray radiation appears as
sharp lines superimposed on the continuous spectral

A
lonization
A(E)+e = A" +2e”
E; -
A
h-vik
E
c m
s}
IS
h-v
h. ik mk
=

Fig. 7.30. Level scheme for the explanation of the characteri-
stic X-ray emission from the anode atoms
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Fig.7.31. (a) Continuous X-ray radiation, superimposed by
the characteristic lines of tungsten. (b) Ratio n = Pcpar/ Peont
of emitted characteristic and continuous X-ray radiation
power from a tungsten anode as a function of applied
voltage U

background of the bremsstrahlung (Fig.7.31). With in-
creasing voltage U between the cathode and anode, the
ratio 7§ = Pehar/ Peont Of the emitted powers of charac-
teristic to continuous radiation increases (Fig.7.31b).
However, even at a voltage U =250kV it is only
about 0.1 for a tungsten anode.

7.5.3 Scattering and Absorption of X-Rays

When a parallel X-ray beam passes through a sample in
x direction (Fig.7.32) the transmitted radiation power
P(x) decreases after the pathlength dx by

dP=—uP dx. (7.87a)



Fig.7.32. Absorption and
scattering of X-rays in
matter

PO dx P
dP =P-Py=—-p-Pdx

The constant factor w, which depends on the material
of the sample is the attenuation coefficient. Integration
over a sample thickness x gives

P(x) = Pye " . (7.87b)

The attenuation has two reasons: scattering and absorp-
tion, which may be both simultaneously effective. The
attenuation coefficient can therefore be written as the
sum

Hn=Us+o

of scattering coefficient 1y and absorption coeffi-
cient o.

The scattering is produced by the atomic electrons
of the sample. In a classical model, each electron can
be regarded as a harmonic oscillator induced to forced
oscillations under the influence of the incident electro-
magnetic wave with frequency w (Hertzian oscillating
dipole). Assume that the electric field vector of the inci-
dent wave points in the y direction. Then the oscillating
dipole is described by y = yg sin wt. The amplitude A
of the radiation emitted by the oscillator is proportional
to the acceleration

§=—w’y sinwt = —a’y . (7.87¢)

The emitted power, which is proportional to the absolute
square of the amplitude, scales therefore with w*! In
electrodynamics it is shown that the power emitted by
an oscillating dipole is

Yot
32m2e0c?

where ¥ is the angle between the dipole axis (in our
example the y direction) and the direction of observa-
tion. The total scattered power emitted by N scatterers
in a solid sample where all atoms stay at their po-
sitions, depends on the ratio of wavelength A to the

Py(%) = sin® 9, (7.87d)

7.5. X-Rays

diameter d of the scattering region. If d <« A, the pha-
ses of the waves scattered by the different atoms differ
only by an amount Ag < 2. All waves interfere co-
herently and the total amplitude of the scattered wave
is proportional to N, which implies that the scattered
power is proportional to N?! (coherent scattering). If
the diameter d is comparable or larger than A, con-
structive and destructive interference occurs and for
a non-periodical random arrangement of the scatterers,
the total scattered power only scales with N (incoherent
scattering).

The scattering can be described by a scattering cross
section oy, which defines the area around a scattering
atom through which an incident photon has to pass in
order to be scattered. If the number density of scat-
terers is N the scattering coefficient us is related to the
scattering cross section og by

s = Noy , (7.87¢)

with a thickness ¢ of the scattering sample and an
incident power Py the scattered power is

Pi=Py(1—e ™)~ Py-ps-t for pgt<1.
(7.87f)

The scattering cross section scales with w* or A 7%,
Itis therefore much larger in the X-ray region than
in the visible range.

EXAMPLE

When visible radiation with A = 500 nm passes through
clear water it is attenuated by scattering to 1/e of its in-
itial intensity only after a path length of 1 km, while the
intensity of X-rays with A = 0.1 nm is already reduced
to 1/ e after a 5 mm path length!

Besides elastic scattering where the wavelength of
the scattered radiation is the same as that of the incident
radiation, also inelastic scattering can occur (Compton
effect, see Sect.3.1.6). Here the scattered photon with
V' < v may be either scattered again or it may be absor-
bed. This leads to a complete absorption of the incident
power, if the thickness of the sample is sufficiently large.

The absorption of X-rays strongly depends on the
absorbing material. It is caused by three different
effects.
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Fig.7.33. The
photoeffect
Exn=h-v
- (Eion - E‘])
Egn=h-v
- (Eion - EO)
T Eion
h-v
h-v
E,
Ey

Photoeffect: The X-ray quantum hv is absorbed by
an atom in the sample in the state E;. This leads to
photoionization of an inner shell electron (Fig.7.33)
and can be written as

hv+A(Ey) — AT (Eion) +¢~ (Exin) - (7.88)
Energy conservation demands the relation
Exin(e™) = hv — (Ejon — Ex) . (7.89)

Compton effect: The X-ray quantum hv “collides” with
a “nearly free” electron, which has a binding energy
Ey < hv (see Sect.3.1.6), transfers only part of its
energy onto the electron, and is inelastically scattered
according to the scheme:

hv+e~ — h'+e (Exn) . (7.90)

With h(v — V') = Exin(e™) + Eping (Fig. 7.34a). The in-
elastically scattered photon 41V’ can be absorbed by other
atoms of the sample (photoeffect).

Exin =h-(v—v')

h-v =2mgc?+2E,

h-v

b) e*
Fig. 7.34. (a) The Compton effect. (b) Pair formation

Puair formation: For sufficiently high energies hv >
1 MeV the X-ray quantum can produce in the material
an electron positron pair (Fig. 7.34b)

hy — e_+e++2Ekin (7.91)

with hv = 2mec?® + Exin(e”) + Exin(e?). Each of the
two particles must have the same kinetic energy because
they have equal masses. This follows immediately from
the conservation of momentum.

The relative share of the three processes to the ab-
sorption of X-rays strongly depends on the energy hv.
In Fig.7.35 the contributions of the three processes
are plotted as a function of the photon energy. This
illustrates that for lead the photoeffect is the domi-
nant absorption process for energies v < 500 keV, but
decreases sharply with increasing photon energy. The
total absorption cross section has a minimum at photon
energies around 3 MeV.

The absorption coefficient

(7.92)

o =no,

is the product of particle density n and absorption
cross section o,. Often the attenuation of incident X-
rays is related to the mass of the absorbing material
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Fig. 7.35. Contributions of the photoeffect, the Compton ef-
fect and pair formation on the absorption coefficient of X-rays
in lead and their dependence on the photon energy



Table 7.4. Mass absorption coefficient x/(m?/kg) of different
absorbing materials for X-rays with photon energies hv/eV
and wavelengths A /pm

5 246 2 2.0 25 24 70 100
10 123 0.5 0.52 26 224 9.53 13.7
50 25 0.02 092 0.04 026 0.6 0.8

100 12 0.015 0.017 0.02 0.05 04 0.6

rather than to its thickness. With a mass density p
the product px gives the mass per unit area that is
traversed by the photon along the pathlength x. The
equation

e~ — o—(@/p)px _ o—Kapx

(7.93)

relates the absorption coefficient o with the mass-
absorption coefficient
2

el =1""
K. =
a kg

The ratio x. = 1/(k, - p) gives the pathlength x. af-
ter which the intensity of the X-rays has decreased
to 1/e, while 1/k, gives that mass per cm? area per-
pendicular to the X-ray direction that decreases the
incident intensity to 1/e. The mass attenuation coef-
ficient k, depends on the material and on the photon

energy hv.

o
Ka = 3

EXAMPLE

Lead has a density p = 11.3 x103kg/m3. For X-rays
with A = 0.1 nm (& 12keV) the mass-absorption coef-
ficient is x, = 7.5 m?/kg. One therefore needs a mass
area density of 0.61 kg/m? in order to attenuate the in-
cident X-rays down to 1% = e~*®. This corresponds
to a thickness r =54 um of a lead sheet. For X-
rays with A = 0.01 nm (* 120keV) is «, = 0.5m? /kg.
Now a thickness of + = 0.8 mm is necessary for the
attenuation down to 1%.

The mass-absorption coefficient of a sample with n
atoms per m> can be written as the ratio
a  hnoy 0O,
Ka = = =
o o my
of absorption cross section o, and atomic mass m, =
p/n, where the absorption cross section

0, =CZ*)\?

(7.94)

(7.95)

7.5. X-Rays

strongly depends on the number Z of electrons of each
atom and the wavelength A.

Experiments show that the absorption cross sec-
tion o, is proportional to the fourth power of
the nuclear charge Z and the third power of the
wavelength A.

The constant C depends on the absorbing material,
e.g., the packing density of the absorbing atoms and the
number of electrons per atom. For absorbing molecular
samples the absorption cross sections of the molecules
is the sum of the atomic cross sections o,

Oam = E Oaj -

Lead (Z = 82) attenuates X-rays, because of the AR
dependence, about 1580 times more than an equal path
length in aluminum (Z = 13), and still 100 times more
than iron (Z = 26). The mass absorption coefficients,
however, are only proportional to Z3, because the ato-
mic masses scale with Z. It is: n-Z =~ ;n CAoxn-
M, = ky X0,/Z. For equal masses per irradiation
area lead attenuates about 30 times more than iron.
Plotting the cubic root of the absorption cross sec-
. 1/3 .
tion o,’” as a function of A over a large wavelength
range (Fig. 7.36) one finds a straight line as predicted by
the relation (7.95). However, at certain wavelengths Ay,
characteristic for the absorbing atoms, the absorption
coefficient jumps suddenly and then follows a straight
line again. This shows that below these wavelength Ay,

G1a/ 3

Copper

Silver

/ L 1.378

10.485

N w A o0 0 N

0 02 04 06 08 1.0 12 14 16 1.8 20
A/107"%m

Fig.7.36. Wavelength dependence of absorption coefficient
(0a)'/? showing the absorption K-edges of copper and silver
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Fig.7.37. Energy level diagram for the explanation of the
absorption edges

called the absorption edges, a new absorption channel
is opened. The explanation of this behavior is given by
Fig.7.37, which shows schematically the energy level
diagram for absorbing transitions of an atom with io-
nization energy Ep. For photon energies hv, < Ey— Ej
electrons in atomic shells with principal quantum num-
bers n > k can be ionized. These electrons can all
contribute to the absorption cross section. When the
photon energy exceeds the value kv the electrons in
shell n =k can be additionally ionized and therefore
add to the absorption cross section, which means that
a new absorption channel is opened. According to the
new electron shell accessible to absorption of the X-
ray quanta, the absorption edges are called K-, L-, or
M-edges. Equation (7.95) can be adapted to the real wa-
velength dependence of the absorption cross section by
fitting the constants C for each section between two ab-
sorption edges. This yields different values of C for the
different sections.

Plotting the square root D,i/ ? of the reciprocal wave-
length v, = 1/A; against the nuclear charge number Z
(Fig. 7.38) yields the approximate relation

v =K, (Z—98)?= v =cK,(Z—8)*, (7.96)

where K, is a constant depending on the principal
quantum number n, and § is the shielding factor of
the nuclear charge Z-e (see Sect.6.1.1). These rela-
tions, discovered empirically by Henry G.J. Moseley
(1887-1915), can be immediately explained by the term

\ —
Vk /Ry
80
60
401
L series
20 y

10 20 30 40 50 60 70 80 90 Z

Fig.7.38. Moseley diagram of the Z-dependence of the K-
absorption edges

energies of the two corresponding levels with n = k and
n =i of the absorbing transition

11
hvi = (Z = $)*Ryhc ( 2= 2) (7.97a)
ny n;
— 2 1 1
==Z-Ry( ,— , - (7.97b)
ny n;

Here Zcie = (Z — S)e is the effective nuclear charge,
which is the real charge Ze, partly shielded by the in-
ner electrons, described by the shielding factor S (see
Sect. 6.1). If the upper level is above the ionization
energy (n; = 00) (7.97) simplifies to

R
Vi = nzy (Z—5)? (7.97¢)
k

and the K-edge with n; = 1 appears at the wavenumber
v(k) = Ry(Z — S)* .

Measuring the wavelengths A, of the different edges gi-
ves the shielding factor § for the corresponding electron
shells.

(7.97d)

EXAMPLE

For lead (Z = 82) the wavelength at the K-edge is
M = 14.8 pm, which yields the effective nuclear charge
number Z.i = 80.4, corresponding to a shielding con-
stant S = 1.61. The large shielding factor S > 1 shows
that besides the remaining 1s electron, which gives the
main contribution to the shielding, electrons from higher
shells also contribute, since their wave functions (r)
have a non-negligible value for r < (r(1s)).



Moseley used his measurements of K absorption
edges to determine the nuclear charge numbers of many
elements, where he assumed the shielding factor to be
S=1.

Measuring the spectral intervals around the absorp-
tion edges with higher resolution reveals a substructure.
The edges consist of several closely spaced peaks
(Fig.7.39). The reason for this is the following.

For levels n with an angular momentum J > 0, the
energy levels E, split due to two effects. Firstly, le-
vels with the same principal quantum number n, but
different orbital angular momentum quantum num-
bers L are degenerate only in the Coulomb potential
but have different energies in the real potential of many-
electron atoms. Secondly, atoms with an electron spin
S # 0 split, due to spin-orbit interaction (see Sect. 5.5)
into fine-structure components with the same principal
quantum number 7, but different values of J =L+ S
(see Fig.7.37). Therefore, the absorption edges also
show these splittings.

The K-shell with n =1 shows no splitting be-
cause the angular momentum quantum numbers of
the absorbing electron have to be /=0 and s =0.
The levels with n =2 in the L-shell have three sub-
levels I=0; I=1, j=1/2; and [=1, j=3/2).
Since the fine-structure splittings increase with Z*
they can reach values of several keV for heavy
elements.

20 ‘
Ly

. [,

14

0 0.5 1 1.5
A/107%m

Fig. 7.39. Fine structure of the L-absorption edge in the X-ray
absorption spectrum of lead

7.5. X-Rays

7.5.4 X-ray Fluorescence

If an inner-shell electron is excited from a level E}, into
a higher unoccupied level E; by electron impact or by
absorption of X-rays, a vacancy is produced in this inner
shell. One of the electrons from higher levels E, > Ej
can fall down into the vacancy while a fluorescence
photon hv,; = E, — Ey is emitted, if the transition is
allowed (Fig.7.31).

For a definite excitation energy E,, one therefore
generally observes in the fluorescence spectrum many
lines with frequencies v;; corresponding to all allowed
transitions from levels E; > Ej into the vacancy in le-
vel Ey (Fig. 7.40). The whole spectrum can be described
by (7.97), whichis similar to the Rydberg formula (3.91).

Measurements of the wavelengths A = c¢/vy of
these lines allows the determination of the energies of
levels in inner shells, which are more difficult to cal-
culate because of strong electron correlation and of the
shielding factors S, which in turn gives information
on the spatial distribution of the wave functions of the
electrons involved (see Sect. 6.4).

Fig.7.40. The L-fluorescence series of the characteristic X-
ray emission of tungsten (from Finkelnburg: Einfiihrung in
die Atomphysik, Springer, Berlin, Heidelberg 1967)

7.5.5 Measurements of X-Ray Wavelengths

Since the wavelength of X-rays is much smaller than
that of visible light, new techniques had to be developed
for their measurement. One of these methods uses op-
tical gratings where the X-rays are incident under very
small angles against the grating surface (Fig. 7.41). If ¢
is the angle between the direction of the incident paral-
lel X-ray beam and the plane of the grating, the effective
grating constant (i.e., the effective groove separation) is
the projection

der =dsintd ~d -0 (7.98)

of the groove distance d onto the incidence direction.
For accurate measurements of the wavelength A the
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d-sint
a) F d >
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Fig.7.41a,b. Measurement of X-ray wavelengths (a) with
grazing incidence onto an optical grating with effective gra-
ting constant d sin ¥ and (b) the conditions for the different
diffraction orders

effective grating constant deg has to be of the same
order of magnitude than A.

EXAMPLE

A grating with 1200 grooves per mm has a gra-
ting constant d = 0.83 wm. For ¢ = 10/ = sin® = 3 x
1073 = dof = 2.5nm. A wavelength A =2.5nm cor-
responds to a photon energy of hv=0.5keV.
Wavelengths down to 0.2 nm can be measured this way
with sufficient accuracy.

For a given angle of incidence o = 90° — ¢ against
the grating normal the diffraction angle § is determined
by the grating equation

d(sina —sin ) =m . (7.99)

This means that in the direction § against the grating nor-
mal the path difference between partial beams diffracted
by adjacent grooves is mA and therefore a construc-
tive interference occurs in this direction (Fig. 7.42). For
very small angles ¥ = 90° —« and y = 90° — B the large
angles « and B can only be measured with less accuracy
than ¢ and y. Inserting ¢ and y into (7.99) gives

d[cos ¥ —cos(¥ + )] = mA . (7.100)

Grating

normal
Groove

normal

Grating normal

(@) As=d(sina—sinf) (b)

Fig.7.42. (a) Illustration of the grating equation (7.99).
(b) Blaze angle 6 and direction of maximum reflection

The mth interference order is observed at the angle
8§ = ¥ + y against the grating plane. The total deflection
of the diffracted beam against the incident beam is A =
¥+ 8 = 20 + y. This yields with cos ¥ & cos y & 1 for
the wavelength A the relation
Ay d
mA = 2d sin ) sin ) 2A y
Measuring the total deflection angle A =2¢ 4y and
the angle y between the Oth diffraction order (regular
reflection) and the mth order allows the determination of
the X-ray wavelength according to (7.101). The grating
constant d is calibrated by diffraction of visible light
with known wavelength.

(7.101)

EXAMPLE

d=083pm, A=1A=10""m, 9»=10=2.8x
1073 rad. The first interference order (m = 1) appears
at the angle § = 1.5 x 1072 rad against the grating plane
and under the angle A = 1.8 x1072rad against the
direction of the incident beam.

At such small angles total reflection of the X-rays
occurs, because the refractive index n of materials can
be smaller than that of the vacuum with n = 1. This can
be seen as follows.

The real part n’ of the complex refractive index n =
n’ —ik is given by (see Problem 7.14)

n2=1+z

i

NZé?

, 7.102
gome (@7 — @?) ( )



where N is the atom number density, w; are the eigen-
frequencies of absorbing transitions of the atoms in the
sample and m. is the mass of the electron. The largest
contribution to the sum comes from the transition with
the highest frequency .

If the frequency w of the X-rays is higher than all
eigenfrequencies (this implies that A is smaller than
the K-edge in Fig. 7.36) all terms of the sum in (7.102)
become negative and n> < 1. This means that the sample
has a smaller refractive index than the vacuum or the
air and the X-rays are totally reflected if their angle of
incidence o becomes larger than the critical angle o of
total reflection defined by

S = nsample/nair .

EXAMPLE

With A = 107"m = w =~ 2 x10'° s~!. For copper, the
highest eigenfrequency is wy = 1x10'"s~!, which
givesn’ =1 —1.3 x107>. The critical angle for total re-
flection is then sina, = 5in(90° — ¥¢) = Ngample/Mair =
0.999987, which gives ¥, = 0.3° =5 x 1073 rad.

For all angles o > . = ¥ < ¥, total reflection of
the incident X-rays is observed.

This means that the total incident intensity is re-
flected and distributed among the different diffraction
orders.

For spectral regions with n" <1 no collecting
lenses, based on refraction, are possible. Any X-
ray optics, therefore, must use the reflection by
collimating mirrors, or Fresnel lenses, based on
diffraction and interference.

The most important method for measuring X-ray
wavelengths is Bragg diffraction by single crystals (see
Sect.2.4.3).

If a plane electromagnetic wave with wavelength A
falls onto a crystal under an angle ¥ against a crystal
plane (Fig.7.43) all atoms of the crystal can scatter
the wave. The partial waves from the different atoms
interfere constructively, if the path difference between
them is an integer of A. This gives the Bragg condition

2d.sind =mr (m=1,2,...), (7.103)

7.6. Continuous Absorption and Emission Spectra

_X-ray tube
000
| =5
Collimating Rotation by &
slits
a)
1
A12 = 2dk sind
2
\ . ) . /
/8 d
®- e Py o A

b) A= dk-sinﬂ/

Fig.7.43. (a) X-ray spectrometer with rotating crystal.
(b) Condition for Bragg reflection at parallel crystal planes

where d. is the distance between adjacent parallel
crystal planes.

The distance d. is calibrated by illuminating the
crystal with X-rays of known wavelength, measured
with the technique, discussed above. When the same
crystal is now irradiated with X-rays of unknown wa-
velengths, they can be determined from measurements
of the angle ¥, where the maximum diffraction occurs.
In practice, one measures the angle 29 of the deviation
from the incident beam direction.

7.6 Continuous Absorption
and Emission Spectra

Transitions between two bound states of atoms or mole-
cules always result in line spectra (see Sect. 3.4) where
only discrete frequencies appear in the spectra, which
are determined by energy conservation

hv,-k :Ei—Ek .

If at least one of the two states is not bound (e.g., if
it lies above the ionization limit of the atom or above
the dissociation energy of the molecule) the emitted or
absorbed radiation shows a continuous spectrum.
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EXAMPLES

1. Photoionization of atoms: Here the photon energy
hv is larger than the binding energy E' of the atomic
electron. The electron can then leave the atom with
a kinetic energy

Ekin =hU—EB (7104)

Varying the frequency v changes the kinetic energy
accordingly (Fig. 7.44). Every frequency v results in
an allowed transition and one obtains a continuous
absorption spectrum.

2. The inverse process is the radiative recombination,
where a free electron with kinetic energy Eyi, re-
combines with an ion, which ends up in an excited
bound state with binding energy Eg, and a photon
with energy

hv = Ey,+ E (7.105)

is emitted (Fig.7.45) This results in a continuous
emission spectrum.

3. Bremsstrahlung, discussed in the previous section,
is an example for transitions between two unbound
states. A free electron with kinetic energy Eyi, = eU
in the X-ray tube is decelerated in the Coulomb field
of the nucleus of an atom in the anode and looses
the energy AE = eU — Ey;,, where Ej, is the final
energy of the electron after the deceleration.

A second example of bremsstrahlung is the syn-
chrotron radiation emitted by high energy electrons
circulating on a curved path in a magnetic field.

lonization
limit

Fig.7.44. Photoionization
of an atom in its ground-
state Ej; or in an excited
state E;

e +Eg, Fig.7.45. TIllustration
[ J o g N
of radiative recombi-
senTTIT hv=Ey,+E  nation
- N\‘A \\
T e -Ei
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L] VooV
] @ s i
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We will now discuss such continuous spectra in
more detail.

7.6.1 Photoionization

Measuring the absorption spectrum of an atom in
a bound state E; with binding energy Ep one observes
with increasing photon energy a series of absorption
lines with frequencies (see Sect. 6.6.4)

¢ Ry

vik = Ex/h — (i — 82

(7.106)
which become increasingly dense with increasing prin-
cipal quantum number 7. They are caused by transitions
from level Ej into bound Rydberg levels. The se-
ries converges for n — oo towards the ionization
limit hv. = Eg of the atom. For v > v. the conti-
nuous part of the spectrum appears where the atom
is photoionized.

The ions can be collected on the detector with an
efficiency of 100% by a small electric field. The num-
ber of collected ions is a measure for the number of
absorbed photons.

For a density n, of absorbing atoms the measured
ion rate is

Nion = naNphUPI Vion » (7.107)

where opy is the photoionization cross section, Nph is the
incident photon flux per cm? and Vi, is the ionization
volume. In Fig. 7.46a the experimental arrangement for
the measurements of absorption spectra is shown and
Fig. 7.46b illustrates schematically the absorption cross
section around the transition range from the discrete to
the continuous part of the spectrum.

The absorption coefficient passes smoothly from the
increasingly dense absorption lines into the continuum.
Its value in the continuum is given by the square of the
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Fig. 7.46a—c. Rydberg absorption spectrum with adjacent ion-
ization continuum. (a) Experimental setup. (b) Frequency de-
pendence of absorption coefficient «(t). (¢) Photoionization
cross section opy(v)

matrix element
Mg = / Viry(E) dr

for transitions from a bound state with wave function ;
into a continuum state with wave function . (E) and
energy E. For E — Ejo, the matrix element converges
towards the matrix element for bound-bound transitions
into Rydberg levels with n — oo.

The following experimental effect, however, pre-
tends a jump of the absorption coefficient.

Because of the long lifetime t,, of Rydberg levels E,,,
which increases with n3, the natural linewidths of high
Rydberg levels Av, = 1/1, becomes very small. The
resolvable spectral interval Avey, of the spectrograph
in Fig.7.46a is generally much larger than Av,. The
measured transmitted intensity for small absorptions is
for a monochromatic incident radiation

L) = lpe VYt = AI(v) = Iy — I, ~ a(v) LIy ,
(7.109)

(7.108)

7.6. Continuous Absorption and Emission Spectra

while for radiation with a spectral continuum the
absorbed intensity is

1
Al = / Al(v) dv
AVexp
vo+Avy /2

= Tpa(v) dv .
Avexp
vo—Av, /2

(7.110)

Since for continuous radiation the intensity [y barely
depends on v within a limited spectral interval, we can
drag Iy out of the integral in (7.110) and obtain for
transitions into Rydberg levels where the absorption co-
efficient has only noticeable values within the linewidth
Av,

Ay,
Alesy ~ LIoa(vo) ,
AVexp
while for transitions into the continuum, all incident
frequencies can be absorbed.
Introducing an effective absorption coefficient oy,
which reflects the true measured absorption

Qett = Aleie/(IpL) |

one obtains from (7.110) for the discrete spectra an
effective absorption coefficient
Av,

et = a(Vp) ,

(7.111)
Avexp

which is smaller than the real absorption coeffi-
cient «(v,) at the line center by a factor

Av, [Aveyp L 1.

EXAMPLE

Av, = IMHz, Avep, = 1GHz = 10° MHz = aep =
107 3a(vy,).

Because of the finite spectral resolution of the spec-
trograph the different lines of the Rydberg spectrum
can no longer be resolved for large values of the prin-
cipal quantum number n. In this case, one measures
a superposition of several Rydberg transitions and the
apparent spectrum seems to be continuous. This shifts
the experimentally observed ionization limit to smaller
frequencies.
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A way out of this deficiency is the measurement of
the photo ions instead of the transmitted intensity. Ano-
ther solution is provided by laser spectroscopy where
the natural linewidth can be resolved (see Sect. 10.5).

For transitions into the true continuum is
Av, = Avey,, because all frequencies contribute to the
absorption and the above-mentioned problem does not
arise.

For doubly excited atoms where two electrons are in
excited states (e.g., ns, 2p for the helium atom, where
one electron is in Rydberg levels ns and the other in the
2 p state), the ionization limit for one of the two excited
electrons appears at a higher total energy than for singly
excited atoms (Fig. 7.47). The difference is just the ex-
citation energy of the second electron. For our example,
the ionization limit is shifted upwards by the excitation
energy of the 2p electron. For the He atom doubly ex-
cited states (ns,2p) are already for n =4 above the
ionization limit of singly excited He atoms (s, ls).
These doubly excited states can decay by autoioniza-
tion (see Sect. 6.5), where, due to a correlation between
the two electron the electron in the 2 p state transfers its
energy to the Rydberg electron, which can then leave
the atom while the 2p-electron falls back into the 1s
ground state.

Measuring the absorption spectrum of an atom
above its ionization limit, one observes resonances at
the energies of doubly excited states that are superimpo-
sed on the continuum. They are due to autoionization.
The line profiles of these resonances have been studied
and explained theoretically by U. Fano and are therefore

Auto ec

>

Ae  jonization

~1s2p

2

1 ) o

Fig.7.47. Auto-ionization of a double-excited atomic state

called Fano profiles (Fig. 7.48). They can be understood
from the following consideration:

The absorption of a photon reaches two states at
the same energy E: the doubly excited discrete state
with a level width AFE and the interval AE around E
in the continuum. The wave function of these superim-
posed states is written for our He example as the linear
combination

¥ = c1i(ns, 2p) + 2 (E) .

The absorption coefficient for the transition from the
initial level E; to the energy E around the autoionization
resonance, which is proportional to the square of the
matrix element

My — f VHEDF [a1¥(ns, 2p) + e (E)] de
(7.113)

(7.112)

contains the interference term

2c1y(ns, 2p)erpe(E)

which depends on the energy difference AE = E qp¢ —
E(ns,2p). While the phase of the continuous wave
function depends only weakly on the energy, that of
the doubly excited state depends strongly on AE, be-
cause it changes by r, when tuning across the resonance
profile. If both wave functions are in phase, the ab-
sorption cross section becomes maximal, if they have
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Fig.7.48. Absorption profile of an autoionization line (Fano



opposite phases the interference is destructively and the
absorption becomes minimal.

Fano and Cooper [7.15, 16] have shown that the
energy dependence of the absorption cross section
around an autoionization resonance can be described
by

(e+q)?

o(E) =0, 142 + 0y,
where e = AE/(I'/2) = (E — E;)/(I'/2) is the energy
difference in units of the halfwidth I"/2 of the resonance,
0, 1s the absorption cross section for the absorption by
the doubly excited state (unperturbed by autoioniza-
tion) and oy, is the background absorption of the direct
excitation into the continuum (Fano profile Fig. 7.49).

The Fano parameter g stands for the ratio
_ D

Dy Ry,

of the squared transition amplitude D; to the bound
state and the product D;Rj, of the transition ampli-
tude to the continuum and the coupling R;, between
both states. In fact, this product gives the transition am-
plitude for reaching the continuum state via the bound
state. If the transition moments for the two different path
ways from the ground state to the continuum state have
equal amplitudes but opposite phases, the two contribu-
tions cancel each other and the absorption cross section
becomes zero.

The width I" = 1/t (full width at half maximum)
is determined by the lifetime t of the doubly excited

(7.114)

q:

Doubly excited
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lonization
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Fig.7.49. Level scheme for the explanation of Fano profiles

7.6. Continuous Absorption and Emission Spectra

state. Since radiative transitions into lower bound states
of the atom have a small probability, the lifetime of
autoionizing states is mainly limited by the fast auto
ionization process. Typical values for atoms range from
T=10""2-10"1"s.

7.6.2 Recombination Radiation

A free electron with velocity v can be captured by an
atom or ion into a bound state with binding energy Eg.
The energy released at this process can be converted
into radiation with a photon energy

hv = Eygy— E; = "; V—E (E <0). (7.115)
This process is called two-body recombination or
radiative recombination, contrary to three-body re-
combination, where the excess energy can be
transferred to a third particle, which also takes care of
momentum conservation. The three-body recombina-
tion, where no radiation is emitted, becomes significant
at higher densities of electrons and atoms or ions, be-
cause three collision partners have to meet at the same
time. The inverse process of autoionization is the diel-
ectronic recombination. Here a free electron is captured
by an atom and the recombination energy is not emitted
as radiation but transformed to another bound electron
of the atom which is promoted into a bigger bound
energy level.

The radiative recombination plays an important role
in gas discharges and in other low density plasmas such
as in stellar atmospheres. The cross section for electron
capture into an atomic state E; depends on the relative
velocity of the two collision partners.

We will consider as an example a low density plasma
at local thermal equilibrium with ion density N, and
electron density N.. The electron density within the
velocity interval between v and v+ dv is ne(v), where

N. =/ne(v) dv.
The recombination rate is

Ng =N, / ne(v)or (v)v dv (7.116)

and one photon is emitted per recombination event.

In a plasma the velocity distribution of the elec-
trons depends on the electron temperature 7t., which is
generally higher than the ion temperature Tjqy,.
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Fig.7.50. Logarithmic plot of two-body recombination rate
vo; versus the logarithm of the electron temperature 7. for
two different electron densities

In Fig.7.50 the dependence of the recombination
cross section on the electron temperature is plotted on
a logarithmic scale for two different electron densi-
ties. For low densities the recombination rate is low
and nearly independent of temperature, while for high
electron densities it falls drastically with increasing
temperature.

In a plasma at thermal equilibrium the recombina-
tion radiation is isotropic. The radiation power emitted
into the solid angle A§2 = 1 Sterad within the frequency

interval dv is then
h
P(v) dv = 4” Nane(v)vog dv. (7.117)
TT

From the energy conservation
hv = (me/2)v* —E;  (E; <0,

the velocity of the recombining electron is

2 172
V= |: (hv+E,-)i| .
ne

Inserting this into the Maxwellian distribution

(7.118)

ne(v) dv = N, e/ gy (7.119)

492

N ,
v/
with the most probable velocity

vp = (2kT/me)"?

we obtain with (7.117) the intensity distribution of the
recombination radiation as
h2vv

Pu dv = NaNeO'R(U) e_((V_VO)/VO)Z dv ,
m

en3/2vg
(7.120)

AP(A) /W

@)

500 A/nm
Fig.7.51. Continuous spectrum of radiative recombination
in a hydrogen plasma with low electron concentration
at T=6000K. (1) =H+e™ - H +hv. (2) =H "+
e —>H+hv

with an intensity maximum at the frequency

1 2
Vo = 2mevp—E,- /h

shown schematically in Fig. 7.51 by the black curve for
the recombination in a hydrogen plasma

(7.121)

HY +e (Egy) — H+hv (7.122a)

of electrons with protons, which occurs in the
atmosphere of hot stars.

The continuous emission spectrum of our sun,
represented by the Planck distribution (3.15) with a tem-
perature of about 5800 K, is an important example for
a recombination continuum. The visible part of it is
mainly due to the recombination of neutral hydrogen
atoms and electrons, according to the scheme

H+e (Exin) > H +hv, (7.122b)

where negative H™ ions are formed. These H™ ions
loose their electron by collisions with electrons

H +e  — H"+2e,

which replenishes the supply of neutral H atoms, used
again for the recombination process (7.122).

Besides the process (7.122), the recombination of
protons and electrons is also present

HY +e (Egy) — H* +hv. (7.122¢)

The recombination radiation from this process mainly
contributes to the UV part of the continuous spectrum
of our sun.



S UMMATRY

The frequencies v;; absorbed or emitted by atoms
vk = (E; — E.) /h

are determined by the energies E;, E; of the
atomic states connected by the radiative transition.
The relation between the probability w,B;; of
absorption by an atom in a radiation field with
spectral energy density w, and w, By; of induced
emission is g; By = g; Bix, where g; and g; are
the statistical weights of the levels, i.e., the num-
ber of different wave functions representing this
level.

If the total angular momentum quantum number
is J the statistical weightis g = (2J +1).

The relation between the Einstein coefficients B;;
and Ay is Aix = (873 /%) Bix.

In a radiation field with one photon per mode
the spontaneous radiation probability equals the
induced emission probability. In thermal radia-
tion fields at achievable temperatures, the number
of photons per mode n < 1 is very small in the
range from near infrared to UV. Here, the spon-
taneous emission is therefore by far the dominant
emission.

The radiation power absorbed or emitted on a tran-
sition E; — Ej is proportional to the absolute
square of the transition dipole matrix element

M,-kze/w;"rlpk d‘L’,

which depends on the wave functions v;, ¥y of
the corresponding atomic states. M;; represents
the quantum mechanical average of the classical
dipole moment in the two atomic states.

An electric dipole transition is only allowed, if
the selection rules AL = +1, AM; =0, £1, and
AJ=0=£1 are obeyed, but /=0— J =0 is
forbidden. Here L is the orbital angular momen-
tum quantum number M its projection and J
the quantum number of total angular momentum
J=L+S.

For all light atoms (small Z) only transitions
occur, where the spin quantum number S does
not change (AS =0). For atoms with large Z
spin-orbit coupling allows weak transitions with
AS #0.

Summary

Besides electric dipole transitions, higher order
transitions, such as electric quadrupole transiti-
ons or magnetic dipole transitions, can also occur,
but with probabilities that are smaller by several
orders of magnitude.

The mean lifetime t; = 1/A; of an excited atomic
level (i| with energy E; is given by the inverse
Einstein coefficient A; of spontaneous emission
on allowed transitions from (i| into all other le-
vels (j| with energies E£; < E;. Measurements of
level lifetimes therefore allow the determination
of transition probabilities and matrix elements.
They represent a crucial test of the accuracy of
calculated wave functions.

The effective lifetimes are determined by the
sum of radiative decay and inelastic collision
probabilities. Inelastic collisions shorten the na-
tural lifetime of an atomic level. Elastic collisions
perturb the level energies of the emitting atom.
The linewidths of spectral lines are determined
by: a) The natural linewidth

1 ( 1 1 )
Sv, = +
2 \1,

b) The generally much larger Doppler-width

Svp = 7.16 x10™ vy /T/M

(M = molar mass)

c) Collisions of the emitting or absorbing
atom with other atoms or molecules (pressure
broadening)

X-rays are electromagnetic waves with wave-
lengths in the range of 10nm to 0.1 nm. The
measurement of these wavelengths can be achie-
ved by Bragg reflection or diffraction in single
crystals or with optical diffraction gratings under
gracing incidence.

X-rays are produced:

By decelerating electrons with energies in the
keV range (continuous emission of bremsstrah-
lung)

By transitions of atomic electrons from hig-
her energy states in vacant inner shell states
(characteristic X-ray emission)
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7. Emission and Absorption of Electromagnetic Radiation by Atoms

X-rays are absorbed by:

The photo-effect A+ hv — A*

The Compton effect hv+e~ — hv'+e™ + Eyy,
Pair formation hv — e~ +e™.

The relative probabilities of these processes
depend on the energy hv of the X-ray photons.
Continuous absorption spectra of atoms are obser-
ved for the photoionization of atoms. Continuous
emission spectra are generated by radiative re-
combination of free electrons with ions or neutral
atoms. Another source of continuous radiation
is produced when free electrons are decelerated

PR OBULEMS

1.

108 sodium atoms are excited into the 3% P3; level
(r = 16 ns) by absorption of light that is linearly
polarized in the x direction and propagating into
the z direction. The emitted fluorescence follows
the angular distribution /(%) = I sin® % where
is the angle against the x direction.

a) What is the total fluorescence power?

b) Which fraction of this power is emitted into the
solid angle d$2 = 0.1 sterad around ¥ = 90°?

a) What is the Doppler width of the Lyman-« line
of the H atom at a temperature of 7 = 300K?

b) A collimated beam of H atoms (the nozzle
diameter is 50 wm, the distance between nozzle
and collimating slit is d = 10cm, the width of
the slit is » = 1 mm) is perpendicularly crossed
behind the slit by a parallel beam of a laser tuned
across the absorption profile of the Lyman-« line.
What is the residual Doppler width?

¢) Compare this width with the natural linewidth
(z(2p) = 1.2ns).

d) Is it possible to resolve the hyperfine structure
of the 125, /2 ground state?

The spectral width of a line can be limited by
the finite interaction time of the atom with the
radiation field. What is the minimum interaction
time of a calcium atom needed in order to achieve
a linewidth of 3 kHz for the transition 'Sy —3 P,
(A =657.46nm) with a lifetime t = 0.39ms of
the upper level? What is the minimum interaction

either in the Coulomb field of atoms (bremsstrah-
lung) or when high energy electrons (MeV —GeV)
are forced, using a magnetic field, onto circular
paths (synchrotron radiation).

The continuous spectrum of our sun in the vi-
sible and infrared part is produced by radiative
recombination

H+e — H +h-v,
while the UV part is due to the process

H +e > H+hv.

zone of Ca atoms in a collimated beam for an oven
temperature of 7 = 900 K?

Metastable He atoms in the 2'Sy state in a gas
discharge at 7 = 1000K absorb light on the
transition 2'Sy; — 3'P;. The term values of
the corresponding levels are 166,272cm~" and
186,204 cm™!, the lifetimes are (3! P;) = 1.4 ns,
7(2'Sp) = 1 ms. a) What is the wavelength of the
transition?

b) What is its natural linewidth?

¢) What is the Doppler-width?

How large is the absorption of a monochroma-
tic wave on the transition in Problem 7.4 relative
to the absorption at the line center for an absorp-
tion frequency v that is 0.1 nm, 0.18vp, 1évp and
106vp away from the line center vy? Consider
the answer for a Gaussian profile and a Lorent-
zian profile. For which frequency difference is
the absorption equal for both profiles?

Calculate the velocity and kinetic energy of
photoelectrons released from the K shell of mo-
lybdenum by the absorption of K, radiation from
silver atoms?

What is the recoil energy and recoil velocity of H
atoms, initially at rest, when a photon is emitted or
absorbed on the transition n = 2 <> n = 1? What
is the shift of the absorption frequency against the
emission frequency? Compare this shift with the
natural linewidth and the Doppler-width at 300 K.

>



10.

The quenching cross section for inelastic col-
lisions of excited Na atoms (32P, »2) with N
molecules is og =4x10"""m?. What is the
effective lifetime of the Na (32P; 2) level
with 7, = 16ns for N, pressures of 1mbar,
10 mbar and 100 mbar at a temperature of T =
500K?

Na atoms in a collimated atomic beam with a mean
beam velocity of 800m/s are excited by a per-
pendicular beam of a tunable laser. What is the
minimum collimation ratio: a) In order to resolve
the hyperfine structure (Av =190 MHz) of the
32P1/2 level?

b) In order to make the residual Doppler-
width smaller than the natural linewidth of the
3812 — 3Py, transition?

Compare natural linewidth, Dopplerwidth and
collisional broadening of the Lyman-«-line (1s-
2p) and the 21cm line (hyperfine transition
1710, F=1< F=0) with Ay(a) =10"s7"
and Aj(21cm) =2.9 x10~ 5 s~! under the fol-
lowing conditions:

a) Starlight passes through an interstellar
cloud of H-atoms with a density N = 10° /m?
(1 Atom/cm3), temperature 7 = 10K, ab-
sorption path length L =1pc=23x10""m,

Ocoll = 10719 m2.

11.

12.

13.

14.

Problems

b) What is the absorption of the two lines with
an absorption cross section o(Lyman ) =1 X
1075 m?, 6(21 cm) =3 x 10720 m?2.

c) A laser beam with 10 mW powerat A = 3.39 um
and a beam diameter of 1cm passes through an
absorption cell filled with methane CH4 molecu-
les at a pressure of 0.1 mbar and a temperature
T =300K. What are the ratios of natural line-
width, transit-time broadening, saturation broade-
ning and Doppler-width of the transition (k| — (i|
with lifetimes 7; = 20 ms and 17, = 00?

Show, by calculating the integral, that the tran-
sition dipole matrix element [ ¥} r», dr of the
transition 1S — 2§ in the H atom is zero. Use the
wave function of Table 5.2.

What is the value of the transition probability of
the transition 1S — 2P?

What are the transition probability and the natural
linewidth of the transition 3s — 2 p in the H atom?
The lifetimes are t(3s) =23ns, t(2p) =2.1ns.
Compare the natural linewidth with the Doppler-
width of this transition at 7 =300K and 7 =
1000 K.

Derive (7.102) for small refraction indices (n —
1 « 1). Is for n < 1 the velocity of an electroma-
gnetic wave larger than the velocity ¢ in vacuum?
Does this contradict the special theory of relativity ?
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8. Lasers

Laser is an acronym for Light Amplification by Stimu-
lated Emission of Radiation that describes the basic
physical principle of its operation. Gordon, Zeiger and
Townes [8.1] showed for the first time in 1955 that a mi-
crowave could be amplified by NH3; molecules on the
inversion transition at A = 1.26 cm (Fig. 4.13) if these
molecules were prepared in such a way that the upper
level of the transition had a larger population than the
lower one. With such inverted NH3 molecules inside
a microwave cavity, the first “maser” (microwave am-
plification by stimulated emission of radiation) could
be operated.

Schawlow and Townes published a paper in 1958
with detailed discussions of how the maser principle
might be extended into the visible spectral range [8.2].
The first experimental realization of a laser was de-
monstrated in 1960 by Maiman, who built a ruby laser,
which was pumped by a helical flashlamp and emitted
coherent radiation at A = 694 nm [8.3].

Since then, lasers have been developed spanning the
whole spectral range from the far infrared down to the
vacuum ultraviolet region. They have proved to be va-
luable tools not only for the solution of many scientific
problems but also for numerous technical applications.

In this chapter we will discuss the basic physical
principles of lasers, the most important classes of lasers
and some interesting novel applications. More detailed
discussions can be found in the vast literature on lasers
[8.4,5,6].

8.1 Physical Principles

A laser basically consists of three components
(Fig.8.1):

1. The active medium where an inverted popula-
tion N(E) is created by selective energy transfer.

/Resonator
d -,
Active medium Laser
beam

Fror T

Energy pump

Mirror Mirror

Fig. 8.1. Schematic setup of a laser

This population distribution N(E) deviates stron-
gly from a thermal Boltzmann distribution (Fig. 8.2)
in such a way that N(E;) > N(E;) for E; > Ey,
contrary to a thermal population

N(E) ox e E/FT

2. The energy pump, (flashlamp, gas discharge, elec-
tric current or another laser) that generates the
population inversion.

3. The optical resonator that stores the fluorescence
emitted by the active medium in a few modes of the
radiation field (see below). In these modes the pho-
ton number becomes Nppo > 1. Therefore, in these
modes, the induced emission becomes much lar-
ger than the spontaneous emission (see Sect. 7.1.1).

AN(E)
\\\ Thermal population
N /distribution
N(E) |------- : NTUTT Population
Y — inversion
N(Ek) """""""" S~
= E ~E

Fig. 8.2. Selective population inversion (N; > Ni) in spite of
E; > Ey, deviating from a thermal population distribution (red
dashed curve)
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The optical resonator furthermore reflects the in-
duced emission back into the active medium and
allows many paths back and forth through the me-
dium, thus realizing a long amplification path. This
converts the light amplifier into a light oscillator if
the total amplification exceeds the total losses.

8.1.1 Threshold Condition

When an electromagnetic wave with frequency v tra-
vels in the z direction through a medium (Fig. 8.3) its
intensity changes according to Beer’s absorption law

I(v, ) = I(v, 0) - e %07, (8.1)
The frequency-dependent absorption coefficient
a(v) = [N — (g/gi) Nilo(v) (8.2)

is determined by the absorption cross section o(v) of the
transition Ny — N;, the population densities N;, N, of
the levels with energies E;, E; with AE = E; — E} =
hv, and their statistical weights g;, g, (the statistical
weight of a level with total angular momentum quantum
number J is g =2J 4 1). For

Ni > (8i/8) Nk = a(v) <0 (8.2a)

this means that the transmitted wave will be ampli-
fied instead of attenuated. Such a deviation (8.2a) from
athermal equilibrium population is called inversion and
the medium where this inversion is realized is called the
active medium.

When the active medium with length L is placed
between two parallel mirrors (Fig. 8.1) the light wave is
reflected back and forth and passes through the active
medium many times, where it is amplified each time by
the factor

(8.3)

which is larger than 1 for «(v) < 0.

Unfortunately there are also losses that attenuate the
wave. These are reflection, diffraction, absorption, and
scattering losses.

Reflection losses. A mirror with reflection coefficient R
only reflects the fraction R < 1 of the incident intensity.
If absorption losses of the mirror can be neglected, the
fraction (1 — R) of the incident intensity is transmitted
through the mirror.

-OL(V).=(Nk _.%TNi)'G(Vik?

I(v) — .. - > (L) =lp-e "

L »

Fig. 8.3. Attenuation (« > 0) or amplification (o < 0) of alight
wave passing through a medium

Absorption and scattering losses. In case of gas lasers,
the windows of the tube containing the active medium
may absorb and scatter some of the transmitted light.
For solid lasers the end surfaces of the laser rod may
scatter and reflect some light. Also, the active medium
might not have a spatially uniform inversion, leaving
locations with « > 0. Finally, the mirror surfaces are
not perfect. They can scatter light and the reflecting
layers can also show small absorptions.

Diffraction losses. Depending on the parameters of the
optical resonator (aperture diameter a, mirror separa-
tion d and radius of curvature r of the mirrors) the wave
being reflected back and forth shows an angular spread
due to diffraction (see below). This means that only
part of the intensity is reflected back into the active me-
dium, which represents a diffraction loss per roundtrip
through the resonator.

We will describe the sum of all these losses per roundtrip
by the loss factor y. The intensity after one roundtrip has
decreased (without amplification by the active medium)
by the factor e™7:

12

I(((;l)') =e 7 with y=y+ s+ Vi -
Taking into account the amplification by the active
medium we obtain the gain factor
[.2d) _ _aey L4y
1(v, 0)
For G(v) > 1 the amplification overcomes the losses
and the light amplifier becomes a light oscillator. Ac-
cording to (8.2) and (8.5) the threshold condition for
starting the self-sustained oscillation (i.e., the laser
oscillator) is

(8.4)

G) = (8.5)

20(v)-L+y <0. (8.5a)
Inserting (8.2) this gives
2[Nk —(8k/&i)Nil-o(v)- L+y <0. (8.5b)
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Fig. 8.4. Illustration of the losses in a laser resonator

The minimum inversion AN = N;(gx/gi) — Ny for
lasing must therefore fulfill the threshold condition

AN = Ni(8k/&) — Nk = ANy
_ Y (8.6)
20(v)- L
If the energy transfer from the pump into the active me-
dium is sufficiently strong to achieve AN > A Niyreshold
the light will be amplified for each roundtrip, because
the amplification exceeds all losses.

The laser oscillation for a continuous laser with
time-independent pump power builds up in the
following way.

Fluorescence photons, spontaneously emitted by the
upper level E; into the direction of the resonator axis
are reflected back into the active medium, where they
are amplified, reflected back into the medium by the
rear mirror, etc. This results in a photon avalanche
with increasing photon number after each roundtrip, if

Emission

k) —o —0 T

2 R

hv N e~

i &
i) Y
Absorption

Fig. 8.5. Photon avalanche generated by a photon passing
through the active medium due to induced emission

8.1. Physical Principles

G(v) > 1 (Fig. 8.5). Part of this radiation power, circu-
lating between the two resonator mirrors is transmitted
by one of the mirrors. With increasing photon number
the probability of induced emission increases, which
decreases the population inversion until it is depleted
down to the threshold value. Here, gain and losses are
just equal and the laser has reached its stationary state,
where the emission is constant. The emitted laser power
depends on the pump power and the pumping efficiency.

For pulsed lasers the pump power is time-dependent.
After a certain pumping time the threshold inversion has
been reached. Now laser oscillation starts, which de-
pletes the inversion due to induced emission. The time
dependence of the laser output power depends on the re-
lative rates +dN; / dt of pumping and —d(N; — N)/ dt
of inversion depletion by induced emission. For suffi-
ciently strong pumping the laser output power follows
the time-dependent pump power and a laser pulse is
emitted that is shorter than the pump pulse because it
only starts after inversion has been reached and ends
when the pump power falls below the threshold value
(Fig. 8.6).

In cases of strong depletion by stimulated emission
the inversion drops below the threshold already during
the pump pulse and the laser emission stops, until the
pump has again built up sufficient inversion. Now the
laser emission starts again. In such cases (e. g., for the
ruby laser) the laser output consists of more or less
irregular spikes with short durations, which are emitted
while the pump power is above threshold (Fig. 8.7).

APP

Treshold
/2 o=y

Y

[

Fig. 8.6. Pump-pulse power Pp(t), laser power P (f), thres-
hold inversion « = y and time-dependent inversion AN(#) for
a pulsed laser
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A PP,

Pump

pulse Laser

Treshold pump

Time t

Fig.8.7. Schematic illustration of spikes in the output of
a flashlamp-pumped solid-state laser with long relaxation
times t;, Tx

Large
Resonator axis amplification

[ / e N\ } >

I
M1 Small M2
amplification

Fig. 8.8. The net gain depends on the effective path length
through the active medium

The amplification factor is largest for photons with
the longest path through the active medium. These are
those photons that travel along the resonator axis. Pho-
tons emitted into directions inclined to the axis, are not
reflected back into the active medium and are therefore
less amplified (Fig. 8.8). If their amplification does not
reach the threshold value, they cannot contribute to the
laser oscillation. Depending on the geometric dimensi-
ons of the active medium and the limiting apertures of
the optical resonator the laser oscillation is restricted to
a small angular divergence around the resonator axis.
This results in a laser beam, transmitted through one
of the resonator mirrors, which has a small divergence
and appears in many cases as nearly parallel light beam
with a small diameter.

8.1.2 Generation of Population Inversion

The minimum inversion, required for laser oscillation,
can be achieved by a selective pump process, that po-
pulates the upper level E; of the laser transition more
strongly than the lower level E;. The pump energy can
be transferred either as a pulse (e.g., by flashlamps)

or continuously (e. g., by electron impact in a stationary
gas discharge). In the first case, laser emission occurs as
a pulse, in the second case it occurs continuously (cw =
continuous wave operation). We will provide examples
of both cases.

The flashlamp-pumped ruby laser historically re-
presents the first demonstration of pulsed laser
operation. Its active medium is a cylindrical rod consi-
sting of an Al,Oj3 crystal, that is doped with about 1%
Cr™*7 ions. The level scheme of these Crt*+ ions is
shown in Fig. 8.9. By absorption of light from the flash-
lamp the ions are pumped from the ground state Ej
into the levels E| and E,, which are strongly broade-
ned by interaction with the host crystal. The resulting
broad absorption lines overlap with the maximum of
the spectral continuum emitted by the flashlamp filled
with xenon and can therefore be effectively pumped.
The two upper levels transfer part of their excitation
energy in a very short time (1071°—10~!!s) to vibra-
tional energy of the crystal due to a strong interaction
with their surroundings. This loss of excitation energy
results in fast radiationless transitions into a sharp lower
level E;, which is the upper level of the laser transition
E; — Eyat A = 694 nm.

In order to achieve population inversion, the number
of Cr*** ions in the level E; must be larger than that
in the ground state Ey. A direct pumping of level E; on
a transition £y — E; could not achieve inversion, be-
cause as soon as the populations of both levels become
equal, the absorption of the pump light on the laser
transition becomes zero and the pump can no longer
populate level E;. The intermediate levels E; and E;
are therefore essential for the realization of laser oscil-
lation. One needs at least three levels, as indicated in

E,
@ Radiationless
transitions
E; \\\\\
E,
Pump
light

Laser
emission

@

Ground state

=

Fig. 8.9. Level scheme of the ruby laser



Fig. 8.9 by the encircled numbers (where E; and E;
have been combined into a single level). Such a level
scheme for laser operation is called a three level system.
The ruby laser is therefore a three level laser.

Note:

Under special conditions it is also possible to achieve
inversion for a short time in a two-level system, if the
pumping time is short compared to all relaxation times
of the system and even shorter than the Rabi oscilla-
tion time Tg =7 -h/(My - E(vi;)), where Mj; is the
matrix element for the transition i — k and E is the
electric field vector of the pump wave. These conditi-
ons, however, apply only to very few real systems that
are specially designed.

There are several possible experimental configura-
tions of the ruby laser using linear or helical flashlamps
(Fig. 8.10). While Maiman used the helical design for

a) Cylindrical
reflector with
elliptical cross section

|<—5—10cm
Ruby crystal
Mirror Mirror
Faserth IY O
beam] 4 4 4 A4 4
AP NTILID I PR DU *
I Flfash lamp
T

Capacitor

Switch

Diffuse reflector

b) Flash lamp for pump light

Fig. 8.10a,b. Two possible configurations for a pulsed ruby
laser. (a) Linear flashlamp with cylindrical reflector cavity
with elliptical cross section (b) Helical flashlamp, originally
used by Maiman for his first ruby laser

8.1. Physical Principles

his first laser, nowadays the linear configuration is
preferred. Here the cylindrical ruby rod and the li-
near flashlamp are placed along the two focal lines
of a cylindrical reflector with elliptical cross section
(Fig. 8.10a). The light emitted by the flashlamp is focu-
sed into the ruby rod from all sides, due to the imaging
characteristics of the pump light reflector with ellip-
tical cross section. The mirror surface is coated with
dielectric layers with maximum reflection at those wa-
velengths preferentially absorbed by the Cr™** ions
on the transitions Ey — E|, E;. The parallel end faces
of the ruby rod are polished and one end face is coa-
ted with a highly reflecting layer, the other endface for
the laser output with a partially transmitting layer. The
flashlamp is fired by discharging a high voltage capa-
citor through the lamp. While the pump pulse lasts for
approximately 1—3 ms, the laser output is a pulse of ty-
pically 0.2—0.4 ms, generally consisting of many short
(~ 1 ps) spikes.

Our second example is the He-Ne-laser, which re-
presents the most commonly used cw gas laser. This
laser is based on a four-level system and the pumping
is achieved by inelastic collisions of electrons with he-
lium and neon atoms in a stationary gas discharge in
a glass tube. Its principle design is shown in Fig. 8.11.
A gas discharge is initiated by a high voltage between
a cylindrical anode and an aluminum cathode surroun-
ding a glass or quartz capillary (1—4 mm diameter).
The power supply for a He-Ne laser has a typical out-
put of 5—10mA at a voltage of 1kV. The whole tube
is filled with a mixture of about 88% He and 12%
Ne at a total pressure of 1—5mbar. In this discharge
(in particular in the narrow capillary, where the cur-
rent density is high), He and Ne atoms are excited
into many high lying energy levels. Most of these le-
vels have a short lifetime and decay by spontaneous
emission. In the helium atom there are two metastable

- 100kQ2 +
=1kV

R20995( - f.~ . bt R=0.98
M1 /- He+Ne -|. - .. M2
/ I
Capillary Alu Cathode l Anode Laser
Gas reservoir  Glass cylinder beam

Fig. 8.11. Design of a He-Ne laser
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states with long lifetimes (see Sect. 6.2). These are the
23S, (t =20ms) state and the 2'Sy state (t > 6005s),
which cannot decay by allowed dipole transitions into
lower states. They are populated not only by electron
impact but also by cascading spontaneous emissions
from higher levels (Fig.8.12). In the discharge, the-
refore, a high concentration of He-atoms in these
states is built up. The electron configuration of excited
states in neon is 1s%>2s22p> n'l', with n’ =3,4,5, ....
In “Paschen-notation” (L-S-coupling) the sublevels
of each configuration are numbered with decrea-
sing energy. For example the 2p°3p configuration
has ten sublevels 25T!L;, which are (with decre-
asing energy) 1S0,3P 3 Py,3 P2, P, D>,3 Dy ,> D)3 D5
and 3S| numbered by 1,2,...10.

Both metastable He states are in close energy reso-
nance with excited neon levels. By collisions between
excited He atoms and ground state Ne atoms this energy
resonance results in large cross sections for the colli-
sional transfer of the excitation energy from the He to
the Ne atoms (near resonance collisions of the second

E/ev Collisional
energy transfer
3.39 pm
21 2's
Cascade / 4p
Laser
V transitions
Metastable 0.633 pm
states
3P 4
Electron
impact
N 3s Spontaneous
== transition
Deactivation
z by collisions
. 2 Yy col
T A with the wall
0L 1 1
He 2'So Ne

Fig. 8.12. Level scheme of the He-Ne laser with three possible
laser transitions

kind) according to the scheme:

He* (2 'Sy) + Ne(2 'Sy) — He(1 'Sy) + Ne*(5s)
(8.7)
He*(235)) + Ne(1'Sg) — He(1 'Sp) + Ne*(4s)

This energy transfer results in a selective excitation
of the neon levels 4s and 5s, which achieve a higher
population than the lower levels 4p and 5p, resulting
in a population inversion on the transitions 55 — 5p
(A=3.39um), 4s — 4p (A =1.15um) and 5s — 4p
(A =633 nm). Such a system, where the laser transition
occurs between two excited states, and four levels are
involved (the He ground state, a metastable He state and
the two Ne levels) is called a four-level system.

Since the population of the lower laser levels is very
small, only a small percentage (=~ 1079) of all He atoms
needs to be excited into the metastable states, contrary
to the three level system of the ruby laser where more
than 50% of all Cr™**-ions had to be pumped into the
upper laser level. Therefore only about 1076 of all neon
atoms occupy the upper levels of the laser transitions.

The level scheme shows that laser oscillation is pos-
sible for several transitions with different wavelengths.
However, only those transitions can reach laser thres-
hold, for which the gain exceeds the losses. The losses
can be selected by a proper choice of the resonator mir-
rors. If the reflection of these mirrors is high for one
wavelength but low for the others, laser oscillation can
only occur at this favored wavelength.

The gain on the transition 55 — 4p (A =633 nm)
reaches only a few percent for a length of 20cm in
the active medium. Therefore the losses have to be
correspondingly low and laser operation could only
be achieved after high reflecting dielectric mirrors had
been designed with reflectivities of 99.99% for one mir-
ror and 98% for the transmitting mirror. The gain can
be increased by using the isotope *He instead of “He,
because here the energy resonance between the meta-
stable He levels and the excited Ne levels is even closer
than in “He and therefore the cross section for energy
transfer from He to Ne is larger.

8.1.3 The Frequency Spectrum
of Induced Emission

Both the gain —«/(v) - L and the losses y(v) depend on
the frequency v of the light wave. When the pump pro-
cess starts, the laser reaches the threshold first for those



frequencies where the threshold inversion ANy, is mi-
nimum. The frequency dependence of the gain depends
on the active medium. For gaseous media (He-Ne-laser,
Art-laser) the spectral lines are Doppler-broadened,
showing a Gaussian line profile with a width of several
GHz (10° Hz). For solid state lasers or liquid lasers the
line width is mainly determined by interaction of the la-
ser atoms, ions or molecules with their surroundings. It
is generally much broader than in gases.

The loss factor y mainly depends on the charac-
teristics of the optical resonator. It has minima at the
resonance frequencies of the resonator. Therefore la-
sing starts at those resonator resonances that lie within
the spectral gain profile of the active medium. If the
spacing between resonator modes is smaller than the
spectral width of the gain profile, the laser oscillates on
several wavelengths simultaneously. This deteriorates
the coherence properties of the laser emission. If os-
cillation on a single wavelength is required, additional
wavelength selecting elements have to be introduced.
This can be realized either by a special resonator de-
sign or by prisms or optical gratings inside or outside
the resonator.

Since the laser resonator plays a central role for the
spectral characteristics of laser emission, we will first
discuss optical resonators.

8.2 Optical Resonators

In Sect. 3.1.2 it was shown that inside a closed resonator
a radiation field can exist with an energy density w, (v)
that is equally distributed over all resonances or modes
of the cavity. In the optical spectral range where the
wavelength A is small compared to the dimensions of
the cavity, the number of modes within the frequency
interval dv is (see (3.10b))

n(v) dv= 871(\)2/03) dv.

For v=>5x10"s"! (A =600nm) the number of
modes within a Doppler broadened spectral line
(Av=10"s"") is n(v)Av =2.5 x10"* m~3. This im-
plies that the spontaneous emission from excited atoms
inside a closed cavity is distributed over many mo-
des, which means that the average photon number per
mode is very small. In such a closed cavity the induced
emission, started by spontaneous photon avalanches, is
spread out over many modes. Because the total power

8.2. Optical Resonators

emitted by spontaneous and induced emission has to be
supplied by the pump energy, one needs an exceedingly
high pump power in order to achieve laser oscillation
on all these modes. The laser emission would then be
distributed over many directions into the solid angle 47
and the directionality of laser emission would be lost.

Closed cavities, which are used for the realization
of masers in the microwave region, where A is
comparable with the cavity dimensions, are not
suitable for optical lasers.

8.2.1 The Quality Factor of Resonators

Assume that the kth resonator mode contains the ra-
diation energy W;(¢). If no energy is fed from external
sources into this mode, its stored energy will decrease
as

dW
=—B;-W,, 8.8
dr Br - Wi (8.8)
which yields the time-dependent stored energy
Wi(1) = Wi(0) - e=F (8.9)

with the loss factor B;. After the time v = 1/8; the
energy stored in the kth mode has decayed to 1/e of its
initial value at # = 0. This time can be regarded as the
mean lifetime of a photon stored in this resonator mode.
We define the quality factor Q; of the kth resonator
mode as 27 times the ratio of the energy, stored in this
mode to the energy loss per oscillation period 7 = 1/v
of the radiation with frequency v:

27y - Wk
dw,/dr

Inserting (8.8) and (8.9) gives the relation between the
loss factor S and the quality factor Qy:

O = (8.10)

Qi = —2mv/Bk . (8.11)
The loss factor y per roundtrip is then
Yo = B~ (2d/c) . (8.12)

Evenif att = 0 the radiation energy, supplied by sponta-
neous emission, is the same for all modes, those modes
with a high Q-factor will store this energy for a longer
time while those with a low Q-factor loose their energy
after a short time.
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8.2.2 Open Optical Resonators

In order to concentrate the induced emission onto a few
modes, the Q-factor of the resonator must be large for
these modes (i.e., the losses must be small), while it
should be sufficiently small for all other modes, so
that for a given pump power the threshold for laser
oscillation is not reached for these modes.

Open resonators, consisting of a suitable arrange-
ment of optical mirrors can fulfill this condition. We
will illustrate this by the example of two plane-parallel
mirrors M| and M, with reflectivity R; and R, and with
diameters 2a, which are separated by the distance d
(Fig. 8.4). This represents, in fact, a Fabry-Perot inter-
ferometer (FPI) used in spectroscopy as a spectral filter
with high resolution. There is, however, an essential
difference from conventional FPI, where the mirror se-
paration d is small compared to the diameter 2a of
the mirrors. For this laser resonator the situation is
the opposite: here d >> 2a. This makes a large diffe-
rence with respect to diffraction, which is negligible in
a conventional FPI, but essential in a laser resonator.

We will first regard the reflection losses.

A light wave reflected back and forth between
the mirrors suffers reflection losses and its intensity
decreases per roundtrip according to

12d) = IoR\ Ry =1Ip-€e " . (8.13)
The reflection loss factor y; is defined as
e =—In(RiRy) . (8.14)

Since the transit time for one roundtrip is 7 = 2d/c, the
mean lifetime 7 of a photon stored in the resonator and
traveling along the resonator axis is

2d
T =
C- 1II(R1 Rz)
if no other losses were present.

(8.15)

EXAMPLE

Ri=1, R, =098, d=0.5m= . =0.02 and 7 =
1.5%x1077s.

We will now discuss the diffraction losses of open
resonators.

Because of the finite diameter 2a < d of the mir-
rors diffraction losses are generally not negligible.
This is illustrated by Fig.8.13c. A plane wave tra-
veling from below onto the mirror M; is no longer
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Fig. 8.13. (a) Plane waves as stationary field solutions in a cu-
bic closed resonator compared with curved wave fronts in an
open resonator with diffraction losses. (b) Diffraction pattern
of a plane wave behind a circular aperture with diameter 2a,
compared in (c) to a similar pattern after reflection by a plane
mirror of size 2a

reflected as a plane wave but becomes divergent be-
cause of diffraction. This is completely analogous to
a plane wave passing through an aperture with diame-
ter 2a (Fig. 8.13b). Here the transmitted wave shows an
intensity profile

2 2 2
1©) =1, ( T (x)> with x=""sin®
X A
(8.16)

with a central maximum and higher diffraction orders
(see textbooks on optics). The central diffraction maxi-
mum has an angular width between the first two nodes of
the Bessel function J; (x) on both sides of the maximum
at x = 0, which gives

sin® = 1.21/(2a) = © ~ 1/(1.7q) . (8.17a)
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Fig. 8.14. (a) Fresnel zones on mirror My,
as seen from the center A of the other mir-
ror My. (b) The three regions of d/a with the
Fresnel number N> 1, N=1,and N < 1

Light with larger diffraction angles does not hit the
mirror M, in Fig. 8.13c and is therefore lost. If the total
light power included in the Oth diffraction order, should
be reflected by M, the diffraction angle @ has to obey
the relation

tan®-dx~O-d<a.

Inserting (8.17a) yields
2

a
1.7 >1. 8.17b
A-d ™ ( )

The ratio
Ng = a*/(Ad) (8.18)

is called the Fresnel number of the resonator. It gives the
number of Fresnel zones on the surface of M;, which
can be seen from the center A of M, (Fig. 8.14).

A more detailed calculation shows [8.7, 8] that for
Nrp > 1 the diffraction loss factor is yq &~ 1/N. This
means thatinaresonator with Fresnel number Ng thelight
power drops after one roundtrip by a factor exp(—1/N)
if only diffraction losses were present. When the light
wave makes m roundtrips, the Fresnel number should be
Ng > m - yr if the diffraction losses are to be smaller than
the reflection losses.

EXAMPLE

For a FPI with a =2cm and d = 1 cm, typically for
spectroscopic applications, the Fresnel number for
A =500nm is Ng = 8 x10*. The diffraction loss factor
is yg = 1.2 x107> and diffraction losses are therefore
negligible. The phase fronts of a wave inside the FPI
are planes and the mirror surfaces are nodes of the stan-
ding wave. These dimensions are, however, not suitable
for a laser resonator.

The resonator of a gas laser with plane mirrors (dia-
meter 2a = 0.2 cm and a separation of d = 50 cm) has

d>z,
N<1

for A = 500 nm a Fresnel number Ng = 4. The diffrac-
tion losses per roundtrip amount already to 25% and
a He-Ne-laser with such a resonator would not reach
threshold.

8.2.3 Modes of Open Resonators

While the modes of closed cavities can be described
as a superposition of plane waves (see Sect. 3.1.2) with
amplitudes and phases that are constant on planes per-
pendicular to the wave vector k, in open resonators both
quantities are changing across these planes because the
diffraction causes a curvature of the wave fronts. Pos-
sible modes of open resonators are therefore not plane
waves!

The amplitude and phase distribution A(x, y) and
@(x, y) of modes in an open resonator with the resonator
axis in z-direction can be determined in the following
way.

The light wave being reflected back and forth
between the two resonator mirrors corresponds to, re-
garding the diffraction effects, a wave passing through
a series of equidistant apertures with the same size as
the mirrors (Fig. 8.15). This is shown in optics by Ba-
binet’s theorem. When a plane wave passes through
the first aperture in the plane z = 0 the amplitude dis-
tribution A(x, y) will change due to diffraction. The
amplitude will at first decrease more at the edges than
in the center, until the diffraction losses are equal for
all values of x and y. We assume that after having
passed the nth aperture, the diffracted wave will have
reached a stationary state, where the relative amplitude
distribution A (x, y) will no longer change, although the
absolute total amplitude may still decrease. This implies
the relation:

Ap(x, ) =C-Ap1(x,y) (8.19)
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Fig. 8.15. The diffraction of a wave traveling back and forth
between two mirrors M and M is equivalent to that of a wave
passing through a series of equidistant apertures

where the constant C with |C| < 1 does not depend on
x and y.

The amplitude distribution A,(x,y) across the
nth aperture can be calculated from the distribution
A,_1(x', y") across the foregoing aperture, using Kirch-
hoff’s diffraction theory. The light emitted by every
point (x’, y") contributes to the amplitude A(x, y) in the
nth aperture. From Fig. 8.16 we obtain the relation

i 1
An<x,y>=—2)b//An_l(x’,mge ko
X/ y/

x (1+cos®) dx’ dy". (8.20)

Inserting (8.19) gives an integral equation for the am-
plitude A(x, y), which can be generally solved only
numerical, except for special cases where analytical so-
lutions are possible. The constant factor C in (8.19) is
found to be

C=(1—y)'? e (8.21)

| cosv=d/p |
Py w
p
* \ » 7
j_ d>a I Px,y)
n-1lI d *In

pP=d?+(x—x)*+(y-y)
Fig. 8.16. Illustration of Eq. (8.20)

A(x) A(x)

0 X X ' K’
TEMooq TEM,q TEMy0q

Fig. 8.17. One-dimensional electric field distribution in the x
direction for some resonator modes

where yp is the diffraction factor, and ¢ is the phase
shift, caused by the curvature of the wave fronts, due to
diffraction.

Some solutions of the integral equation (8.20) are
illustrated in Fig.8.17. They correspond to stationary
solutions as standing waves between the two resona-
tor mirrors and are called transverse electromagnetic
(TEM) modes of the open resonator. They are labe-
led by three indices, which give the number of nodes
of the standing wave in the x-, y-, and z-directions
(Fig. 8.18). The TEMy,, modes with no nodes in x-
and y-direction are called fundamental modes. Their

4 4 ' ' f§+
b (et [
: : Cartesian
4 b titid coordinates: x,y
TEMy, TEM,,q TEM,, y
b [k [RIRLL
T I Pitid x
bl Pleieta] pyiyTy
TEM,, TEM, TEM,, a)
‘ Cylindrical
coordinates: r,%
TEMy, TEM,
TEM,, TEMy, b)

Fig. 8.18a,b. Schematic representation of electric field distri-
bution in the xy-plane inside the resonator (a) In Cartesian
coordinates (b) In cylindric coordinates



k-vector points into the +z-direction and they have q
nodes along the z-axis. Their electric field amplitude
distribution E(x, y) shows a Gaussian profile.

Generally, mirrors of circular size are used and
the active medium also has a circular cross section.
Because of this cylindrical symmetry, cylinder coordi-
nates (7, ¢, z) are better suited for the description of the
amplitude distribution of the modes. The fundamental
modes are then described by the radial field amplitude
distribution

E(r,¢,2) = Ege /™"

where w is the beam waist, i.e. for »r = w the amplitude
has decreased to E/e. Because the intensity is related
to the electric field amplitude by

I = C8()E2

we obtain the intensity distribution of the fundamental
modes
I(r, ) = Ipe 20w (8.22)
where the beam waist r = w(z), for which the intensity
has dropped to I(w) = I(0)/e? can depend on the z-
coordinate (Fig. 8.19).
The higher transverse modes TEM,, ,, , withn, m >
0 correspond to standing waves with k-vectors that are
inclined by a small angle o against the resonator axis
(Fig. 8.20). The path length between the two mirrors is

s=d+/2)m>+n>H)'? . (8.23a)

Fig. 8.19. Radial intensity profiles I(r, z) and beam waists
wg(z) in a confocal resonator

8.2. Optical Resonators

d+h/2nmZ+n  Kmn L1 12
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Fig. 8.20. Direction of the wave vector k,,, of a transverse
mode TEM,, , , against the resonator axis

The inclination angle is

tana = [(h/d) - (m* +n*)'2]"? . (8.23b)

EXAMPLE

d=50cm, A=500nm, m=n=1=tana=1.2x
1073 =a=0.07"=4.2.

Resonators with plane mirrors are often not the best
choice for two reasons. They have large diffraction los-
ses and they are very critical regarding alignment. A tilt
by an angle ¢ changes the direction of the reflected
beam by 2¢, and the reflected beam might not pass back
through the active medium (Fig. 8.21a).

EXAMPLE

d =1m and a =2 mm. If the laser beam should pass
50 times through the active medium, the deviation from
the correct alignment of the mirrors should not be larger
than

e=2x1073/50=4x10"rad = (2.4 X 10_3)02 8.5".

Confocal resonator
ry=r,=d

Resonator with
plane mirrors

Fig. 8.21a,b. Different sensitivities against misalignment for
resonators with plane mirrors (a) compared to confocal
resonators with curved mirrors (b)
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Fig.8.22. Phase
fronts at diffe-
rent locations z
in a confocal re-
sonator with the

mirrors at z =
+d/2

+d/2 z

o+

—dre

Spherical mirrors are less critical with respect to
alignment, as is shown in Fig.8.21b for the example
of a confocal resonator, where the mirrors with radius
of curvature r are separated by the distance d = r. The
focal points of both mirrors coincide.

Resonators with spherical mirrors have lower dif-
fraction losses, because they refocus the divergent
diffracted beam and therefore decrease the beam spot
size on the mirrors, if their radius of curvature r and
their distance d is chosen properly.

In Fig.8.19 the beam profile for the fundamental
modes are shown for a confocal resonator with two
spherical mirrors with equal radii of curvature r. The
smallest spot size appears in the middle of the resonator
at z = 0 when the mirrors are at z = +d/2. In Fig. 8.22
the phase fronts of the fundamental mode in a confocal
resonator are illustrated. At z =0 in the middle of the
resonator they are plane, at the mirrors they coincide
with the mirror surfaces.

8.2.4 Diffraction Losses of Open Resonators

The diffraction losses of a standing wave inside a re-
sonator depend on the radial intensity distribution 1(r).
The larger the intensity at the edges of the mirrors or
of limiting apertures inside the resonator, the larger are
the diffraction losses. This implies, that the fundamen-
tal modes TEMgg, have the lowest diffraction losses
while the higher transverse modes with n, m > 0 suf-
fer larger losses. In Fig. 8.23 the diffraction losses for
the fundamental and for some transverse modes are
plotted as a function of the Fresnel number N for re-
sonators with plane mirrors and for confocal resonators
with curved mirrors. This illustrates that for confocal
resonators diffraction losses are much lower. In fact,

4 % Diffraction
100} losses
TEM;,
10
TEMy,
1k TEMyo
bl TEM,,
— Plane "
0.1 —_ Spherical mirror

0 02 04 06 08 10 12Ng=a2/d-A

Fig. 8.23. Diffraction losses of some modes in resonators with

plane and with curved confocal mirrors, as a function of the
Fresnel number F

a He-Ne-laser can only operate with curved mirrors,
because otherwise the diffraction losses would be too
high for the small gain achievable in a discharge with
only 10—15 cm length.

These diffraction losses offer the possibility to eli-
minate higher transverse modes and to achieve laser
oscillation solely on fundamental modes. The resona-
tor configuration has to be chosen in such a way, that
the transverse modes suffer sufficiently high losses, to
prevent them from reaching the oscillation threshold.

EXAMPLE

When the gain of the active medium per roundtrip
is 10% (G(v) = 1.1 in (8.3), the Fresnel number of
a confocal resonator has to be Np < 0.8, according to
Fig. 8.23, in order to prevent all transverse modes from
oscillation. For a wavelength A = 600 nm and a mirror
separation d = 50 cm the limiting aperture must have
a diameter of 2a = 2(NpAd)'/? < 10~*m ~ 1 mm.

8.2.5 The Frequency Spectrum
of Optical Resonators

For the fundamental modes with m = n = 0 a standing
wave can build up in a resonator with plane mirrors if
an integer multiple of the half-wavelength fits between
the mirrors:

d=qAr/2= v, =qc/(2d) . (8.24a)

The resonance frequencies v; of neighboring fundamen-
tal modes are separated by

Svr=(q) —v(g—1) =¢/(2d) . (8.24b)



The spacing §v; is called the free spectral range of the
resonantor.

For the transverse modes TEM,,,,, the resonance
frequencies are obtained from the solutions of the inte-
gral equation (8.20), which can be solved analytically
for the confocal resonator [8.9]. One obtains

g+ Lm+n+1), (8.24¢)

c
M=oy
which converts to (8.24a) for m =n =0, if ¢ is repla-
ced by ¢* =q+ é When m +n is an odd integer, the
eigenfrequencies of the transverse modes are just in the
mid between two fundamental (also called longitudinal)
modes.

Standing TEM,,,,, waves with these eigenfrequen-
cies have minimum losses. They are stored inside the
resonator for a much longer time then waves with non-
resonant frequencies. The total losses can be described
by the sum

Y = Vv + Vsc 1 Vditte

of the loss factors for reflection losses, scattering and
diffraction losses, where ygif sharply increases with m
and n.

The threshold condition

—2a(v)L —y(v) >0

is only fulfilled for those resonance frequencies which
lie within the spectral gain profile of the amplifying
transition of the active medium (Fig. 8.24). The laser
emission consists of all these frequencies and the total

.G Resonator modes

o5l . l { Spectral
: Net gain gain profile

2.0 ‘
10} ¥ l
0.5 \7 Vo Vo \Y

M, —L—p M, Av=c/(2nd)

D |

O
——d——>

Fig. 8.24. Net gain G (v) for resonator modes within the gain
profile of the active medium. The vertical black lines give
the frequencies of a multimode laser oscillating only on
fundamental modes TEMy g 4

8.3. Single Mode Lasers
bandwidth of the laser emission depends on the width
of the gain profile above the threshold line —2«aL =y
in Fig. 8.24.

EXAMPLES

1. He-Ne Laser:d =50 cm = v, = ¢/2d = 300 MHz.

Within the gainprofile with Avp = 1.5 GHz are Five
longitudinal modes. If the discharge tube diameter
is 2a < 1 mm, the diffraction losses are too high for
transverse modes and the laser oscillates solely on
these five fundamental modes.

2. Ruby laser: d =10cm = év, = 1.5GHz. With
2a = 6 mm the diffraction losses are smaller than
the high gain even for higher transverse modes.
The width of the gain profile is about 30 GHz. This
means that besides about 20 fundamental modes
many transverse modes are present in the emission
of the ruby laser.

8.3 Single Mode Lasers

In order to achieve laser oscillation on a single
fundamental mode several measures can be taken.

The simplest one is the shortening of the resona-
tor length d below a value where the mode spacing
Sv, = ¢/(2d) becomes larger than one-half of the spec-
tral width of the gain profile at the threshold line. This,
however, generally reduces the gain for gas lasers and
only small output powers can be achieved. For solid
state lasers with a large gain per centimeter, this might
be a solution, but the spectral gain profile of these la-
sers is generally very broad and even short cavities still
might result in multimode operation.

The better, and most commonly used method for
achieving single mode operation is the insertion of addi-
tional frequency selective optical elements into the laser
resonator. Such an element can be, for instance, a tilta-
ble plane parallel glass plate with reflecting surfaces on
both sides (Fig. 8.25a), which represents a Fabry-Perot
etalon. As shown in textbooks on optics, the transmis-
sion of this etalon with reflectivity R on both sides is
given by

1

T= )
1+ F -sin?(8/2)

(8.25)
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Fig. 8.25a—d. Selection of a single resonator mode (a) Expe-
rimental setup (b) Resonator modes within the gain profile of
the active medium (c) Transmission 7(v) of the etalon (d) Net
gain of the laser with the etalon inside the resonator

with
F

4R
C(1=R?’
The phase shift § = 27 As/A between two adjacent inter-
fering partial beams with angles of incidence « against
the normal to the plate surfaces (Fig. 8.26) is determined
by the optical path difference

As = 2t/n? —sin« . (8.26)

From (8.25) it follows that T = 1 for § = 2m - 7. This
is fulfilled for all wavelengths X, = As/m i.e. for all
frequencies v,, = c/A, = (¢/As) - m,m=1,2,3,....

Adjusting the tilting angle « correctly, one of the
frequencies v,, can coincide with a resonator eigen-
frequency inside the gain profile (Fig. 8.25c). Only for

As=D+@-O®

_ 2t —2t-tanf-sina
cosfP

=2t-yn? —sina

Fig. 8.26. Path difference in a plane parallel glas plate

this frequency are the total losses small, for all other
resonator eigenfrequencies the transmission of the eta-
lon is small and if the reflectivity R of the etalon is
sufficiently high the total losses for these frequencies
are larger than the gain and they do not reach oscilla-
tion threshold (Fig. 8.25d). The laser then oscillates on
a single fundamental mode if the transverse modes are
eliminated by high diffraction losses.

The mean line width of such a single mode laser is
mainly determined by technical fluctuations of the opti-
cal resonator length n - d, where n is the refractive index
between the resonator mirrors. Since the laser frequency
is given by the eigenfrequency of the resonator

v = v =¢q-c/(2nd)

fluctuations An of the refractive index or Ad of the
resonator length result in corrsponding fluctuations of
the laser frequency

—AUL An Ad
= + .

8.27
VL, n d ( )

EXAMPLES

1. If the mirror separation d = 50 cm changes by 1 nm,
this results in a relative frequency change Av/v =
2 x107%. At a laser frequency of v =75 x10"s"!
we obtain Ay, = 1 MHz!



2. If the air pressure between the mirrors changes by
1 mbar, this results in a change An/n =2.5 x1077
of the refractive index, which means a frequency
shift of 125 MHz at v =35 x10'*s~!

Such technical fluctuations can be partly compen-
sated, if one of the resonator mirrors is mounted on
a piezocrystal (Fig. 8.27). This consists of a material,
that changes its length under an external voltage ap-
plied to its end faces. If part of the laser output is
sent through a very stable Fabry-Perot (Fig. 8.28), the
transmitted intensity changes when the laser frequency
changes. A photodiode behind the FPI gives an output
voltage that reflects this intensity change. The output is
compared with a reference voltage and the difference is
amplified and applied to the piezocrystal, which chan-
ges the resonator length and brings the laser frequency
back to its wanted value. Such a feedback control system
can stabilize the laser frequency within about 1 Hz! New
very sophisticated devices can even reach a stability of
I mHz = 1073 Hz.

The physical limitation to the line width of the laser
is due to the following effect.

The laser emission starts with avalanches of photons
induced by spontaneous emission. Since the sponta-
neous photons are randomly emitted, the amplitudes
and phases of these avalanches are random. The to-
tal laser output consists of a superposition of such
avalanches. This results in amplitude- and phase fluc-
tuations of the laser wave. The amplitude fluctuations
are compensated by a feedback mechanism of the active
medium: A positive peak in the amplitude reduces the

b) Epoxy C)

“O”ring

Laser mirrorw
M

8.3. Single Mode Lasers

Difference -
amplifier Reference At A

Fig. 8.28. Laser wavelength stabilization onto the slope of the
transmission 7(A) of a stable reference FPI

inversion and thus the amplification, while a negative
deviation from the average amplitude increases the am-
plification. Such a feedback mechanism does not work
for phase fluctuations, which lead to a finite line width
(Sect. 7.4.3). A quantitative derivation gives the famous
Schawlow—Townes formula [8.2] for the lower limit of
the line width of a single mode laser:

wh VL

Ay, =
L P

AV (8.28)
Here Av, is the width of a resonator resonance for
an empty resonator, and P is the output power of
the single mode laser. In Fig. 8.29 the resulting laser
profile is plotted on a logarithmic scale, together with
the Doppler-broadened background of the spontaneous
emission.

The theoretical limit, which gives for P, = 1 W and
Avy = 1 MHz a line width of 107% Hz has never been
realized in a practical experiment due to the technical
perturbations mentioned above. With normal expen-

Modulating

voltage

N\

— =[]

[Ir-..

Laser tube A~

T Laser housing
Piezo ceramic P

Electrodes Mirror tilting mechanism

Fig. 8.27. (a) Piezocylinders and their (ex-
aggerated) change of length with applied
voltage (b) Laser mirror epoxide on a pie-
zocylinder (¢) Mirror plus piezomount on a
single-mode tunable argon laser
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Fig. 8.29. Spectral profile of laser emission for an idealized
laser without technical perturbations, plotted on a logarithmic
scale

diture, a line width of about 100 kHz—-1 MHz can be
achieved.

Note:

A laser width a line width Av;, = 1 MHz has a cohe-
rence length of As. =c/Avy =300m! However, for
a multimode argon laser with a bandwidth of 5 GHz the
coherence length is only Av, = 6 cm, which is compa-
rable to that of a normal discharge lamp, where a single
emission line has been selected.

8.4 Different Types of Lasers

The different experimental realizations of lasers can be
divided into three main groups according to their active
medium:

e Solid-state lasers
e Liquid lasers
® Gas lasers

Each of these types can be operated in a pulsed mode or
continuously (cw operation). Depending on the kind of
energy transfer from the pump into the active medium
we distinguish between optically pumped lasers (e. g.,
the ruby laser and other solid-state lasers, such as the
neodymium laser or the titanium-sapphire laser, and the

liquid-dye laser), and electrically pumped lasers (the
semiconductor laser and most gas lasers pumped by an
electric discharge).

Many types of lasers emit on fixed frequencies,
corresponding to discrete transitions in atoms or mole-
cules. Their wavelengths can be changed only slightly
within a narrow gain profile of the atomic or mole-
cular transition. We will call them “fixed-frequency
lasers.”

For spectroscopic applications “tunable lasers” are
of particular importance, where the laser wavelength
can be tuned over a broader spectral range. These lasers
have a broad gain profile and the laser wavelength can
be selected within this range by wavelength-selecting
optical elements (prism, optical grating or interferome-
ter) inside the laser resonator. Tuning the transmission
peak of these elements allows a continuous tuning of
the laser wavelength over the whole gain profile. Such
single-mode tunable lasers represent an intense, narrow-
band coherent wavelength-tunable light source, which
has proved to be of invaluable advantage for numerous
spectroscopic problems.

Electron beam

Helical magnet

My

c) Zy Zo+ Ay rs

Fig. 8.30. (a) Schematic arrangement of a free-electron laser
(b) Radiation of a dipole at rest (v = 0) and a moving dipole
with v >~ ¢ (¢) Phase-matching condition



A completely different concept of tunable lasers uses
high energy relativistic electrons from an accelerator as
active medium. These electrons are forced onto oscil-
latory paths in a periodically changing magnetic field,
where the electrons emit radiation. With a properly cho-
sen period length of the alternating magnetic field, the
contributions of the radiation from the different segments
of the periodic structure superimpose in phase and add up
to an intense wave in the forward direction of the average
electron path (Fig. 8.30). The wavelength of the cohe-
rent emission depends on the energy of the electrons and
can extend from the far infrared into the far ultraviolet.
With high energy accelerators even the X-ray region can
be reached. Such lasers are called free-electron lasers
because their active medium consists of free electrons.

In the following sections we will discuss the most
commonly used laser types.

8.4.1 Solid-state Lasers

The active medium of solid-state lasers are cylindrical
rods of glass or single crystals, which are doped with
special atoms, ions or molecules that can be optically
pumped into excited states. The doping concentration
varies between 0. 1% to about 3%, depending on the kind
of host material. In Table 8.1 some examples of solid-
state lasers are compiled with their characteristic data.

All these solid-state lasers are optically pumped. Of-
ten pulsed flashlamps are used as pump sources, which
results in a pulsed laser output. Although ruby lasers
were the first lasers, these are being replaced more and
more by neodymium lasers, which consist of a glass
rod doped with Nd*** ions emitting laser radiation
at A = 1.06 wum. The advantage of the Nd lasers is ba-
sed on the fact that it represents a four-level system
(Fig. 8.31), which needs less inversion and therefore
less pump power than the three-level ruby laser. Its in-
frared emission can be converted by optical frequency
doubling (see Sect. 8.5) into the visible range.

The laser threshold can be further lowered by re-
placing the glass in the Nd-glass laser by a crystal of
yttrium-aluminum-garnet (YAG), which has a higher
heat conductivity and can therefore more effectively
transfer the excess energy N(hv, —hvr) (produced as
heat in the rod when N photons are emitted) to the
cooling system.

The pulse durations of these solid-state lasers range
from microseconds to milliseconds and the output pulse

8.4. Different Types of Lasers

Table 8.1. Examples of solid-state lasers that can be operated
in a pulsed and a cw mode

Ruby laser Crtt AL O3 0.6943
(Saphir)
Neodynium- Nd**+ Glass 1.06
Glass-laser
Neodynium- Nd+++ Y3Al501>, 1.06
YAG-Laser CaF,, CaF3 0.9-1.1
Titanium- Tit++ AlLO3 0.65—1.1
Sapphire
Alexandrit Crt++ BeAl,O4 0.7—0.83
Cobalt- Cott MgF, 1.5-2.1
laser
Holmium- Hott+t YAG 2.06
laser
Erbium- Ert++ YAG 2.9
laser
Colour- vacancies  alkali- 0.8—3.5
center of alkali halogenid- depending
laser ions crystal on the
crystal
471, 6.6us
<2
Phonon
coupling
1.5ms <3
2E
Laser-
transitions
c
i)
s
S
x
]
<4l
4 Phonon-
< 2 _Ground- relaxation

state
Fig. 8.31. Level scheme of the Nd:glas laser
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energies from 1mJ to about 1J, which gives peak
powers from the kW range to many MW.

In order to achieve higher output powers, the output
of the laser oscillator is sent through an optical ampli-
fier, consisting of one or several optically pumped rods,
where inversion is achieved (Fig. 8.32). These laser am-
plifiers have a similar setup as the laser oscillator, but
without the mirrors, to prevent self-starting laser os-
cillation in these stages. The oscillator and amplifier
are separated by an optical isolator in order to prevent
feedback into the oscillator.

All lasers compiled in Table 8.1 can also be pumped
by continuous pump sources, €. g., with continuous la-
sers. They then emit cw radiation with a wavelength A
that can be tuned within the gain profile of the active
medium. Some of these media have a very broad gain
profile, such as the Ti:Al,O3 (titanium-sapphire) laser
(Fig. 8.33). The reason for this broad tuning range is
as follows. The optically pumped excited states relax
in a very short time into a lower level, due to interac-
tions with the vibrating atoms of the host crystal. This
level represents the upper laser level. The optical transi-
tions from this level (Fig. 8.34) can terminate on many
“vibronic levels” within a low-lying electronic state,
corresponding to vibrations of the host crystal Al,O3
(phonons). These phonons relax very fast into lower le-
vels, thus repopulating the initial state from which the
pump process starts.

M1 Oscillator  p2 Amplifier
—— 1l [
[—
o TTHT At opfca
< e Mt
Pumplight Pumplight

Fig. 8.32. Amplification of the laser output power by an optical
amplifier

Cr*":KZnF,  Ni#":MgO CO*":KZnF,
I SH -
Cr3":BeAl,0, CO*":MgF,
| — | S—
I I
Ti:AlLO,
e —— |
I
05 06 07 08 09 10 2.0 3.0
A/um

Fig.8.33. Tuning ranges of some solid-state lasers (cw
operation: black, pulsed operation red)
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Fig. 8.34. Level scheme of vibronic solid-state lasers

Another important class of tunable solid-state lasers
are color-center lasers, which consist of alkali-halide
crystals (e.g., NaCl or KBr), which are transparent in
the visible. If defects (a missing negative halide ion)
are produced in such a crystal by X-ray irradiation, the
vacancy spot acts as a potential well for the remaining
electron (Fig.8.35a). The energy levels of this elec-
tron can be excited by absorption of visible photons,
thus making the crystal appear colored. Therefore these
vacancies are called color centers.

When the electron is excited, the forces on the sur-
rounding ions change. This changes their arrangements
around the color center and the energy of the initially
excited states |1) decreases to level |k). (Fig.8.35b),
which acts as an upper laser level. Similarly to vibronic
lasers, the laser emission terminates on many vibronic
levels |i) which relax into the initial level |0).

In Fig.8.35c the tuning ranges of different color
center lasers are illustrated.

8.4.2 Semiconductor Lasers

The active medium of semiconductor lasers (often cal-
led diode lasers) is a p-n semiconductor diode. An
electric current is sent in the forward direction through
the diode, which transports electrons from the n-into the
p-section and holes from the p- into the n-section. At
the n- p-junction the electrons and holes can recombine
(i.e., the electrons fall from an energetically higher state
in the conduction band into a lower hole state in the va-
lence band) and may emit their recombination energy in
the form of electromagnetic radiation (Fig. 8.36). The
emitted radiation can be amplified when passing along
the p-n-junction (stimulated recombination). Since the
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Fig. 8.35a—c. Color-center lasers. (a) Schematic illustration
of defects in the ground state and in the relaxed upper state
(b) Level scheme (c¢) Tuning ranges with different crystals

electron density is very high, the amplification is cor-
respondingly large and a path length through the active
medium of less than 1 mm is sufficient to reach laser
threshold.

The uncoated polished or cleaved end faces of the
semiconductor crystal can serve as resonator mirrors.
The refractive index of semiconductor materials is very
large. For example for the GaAs (gallium-arsenide) la-
ser emitting at A = 850 nm is n = 3.5. The reflectivity
for vertical incidence is

n—1\2
R = ~ 0.30.
n+1

Because of the high gain, this reflection is sufficient to
surpass the laser threshold in spite of reflection losses
of 0.7 per one-half roundtrip.

(8.29)

8.4. Different Types of Lasers

a) W(T mm
> Flat

Metal base

b)
>
sy
(0]
c
L —_—
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+
/ I \
p zone Boundary layer n zone

Fig. 8.36a,b. Simplified principle of a semiconductor laser.
(a) Structure of the laser diode (b) Level scheme with valence
and conduction band and radiative recombination of electrons
with holes

Typical output powers of cw semiconductor lasers
are 10—50mW, when they are pumped by an electric
current of 100—300 mA. Special arrays of many simul-
taneously pumped diodes deliver output powers of more
than 100 W! The plug-in efficiency of radiation output
power to electric input power, defined as the ratio

n=P"/PJ~025,

reaches 25—30%, which is the highest efficiency of all
lasers developed so far.

Diode lasers are more and more used for pumping
other solid state lasers. Using different semiconduc-
tor materials, wide tuning ranges for the diode laser
wavelengths can be achieved.

8.4.3 Dye lasers

The most important representatives of liquid lasers are
dye lasers with various designs, which can be operated
in a pulsed as well as in acw mode. The active media are
large dye molecules dissolved in a liquid (e. g., ethylene
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glycol). These molecules have many vibration-rotation
levels in the electronic ground state (singlet Sp) and in
excited states (S; or triplet states 7;). The energy le-
vel scheme is schematically depicted in Fig. 8.37. The
strong interaction of the dye molecules with the liquid
solvent results in a broadening of the transitions, which
is larger than the average spacings between the different
rotational-vibrational transitions. Instead of many dis-
crete lines broad absorption and emission bands appear
(Fig. 8.37b).

The pump source (a flashlamp or a pulsed or cw la-
ser) excites the dye molecules from the ground state Sy
into many vibration-rotation-levels of the S; state. Due
to the strong interaction with the solvent, the excited

a) E4 81

;ﬁ
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Opt. excitation
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=
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Fig.8.37a,b. Dye laser. (a) Level scheme (b) Structure of
dye molecule rhodamin 590 and absorption fluorescence
spectrum

molecules relax within a short time (10710—10"'25)
into the lowest levels |2) of the S; state, from where they
emit fluorescence on radiative transitions into many
vibration-rotation-levels |3) of the Sy state. Since these
levels with energies E > kT are not thermally popula-
ted at room temperature, population inversion can be
reached between these levels |2) and the levels |3), if
the former are sufficiently populated by optical pum-
ping. The active medium of the dye laser is therefore
a four-level system.

Since the absorption starts from the lower levels |1)
and reaches higher levels in §; while the emission
starts from the lowest levels |2) in S; and terminates
on the higher levels |3) in Sy, the emission spectrum
is red-shifted towards longer wavelengths against the
absorption spectrum (Fig. 8.37b).

The dye laser can oscillate on those transitions
where the threshold is reached. From the broad emis-
sion line profile a specific wavelength can be selected
by wavelength-selecting elements inside the laser reso-
nator. Tuning the transmission peaks of these elements
results in a corresponding tuning of the laser wave-
length. In Fig. 8.38 the tuning ranges for different dyes
are shown. This figure illustrates that with different
dyes the whole spectral range from 1 um down to about
400 nm can be covered.

In Fig. 8.39 the experimental design of a flashlamp-
pumped dye laser is shown. It is similar to that of the
ruby laser in Fig. 8.10, but the solid rod is replaced
by a glas tube through which the dye solution is pum-
ped, producing a steady flow of dye molecules through
the region pumped by the flashlamp. Because of the
broad gain profile a prism is placed inside the reso-
nator in order to select the wanted wavelength. Only
that wavelength A can oscillate, for which the laser
beam hits the end mirror M, vertically. All other wa-
velengths are reflected back under an angle inclined
against the resonator axis and do not reach the gain
medium again. Wavelength tuning is accomplished by
tilting the mirror M.

In Fig. 8.40 the arrangement is shown for a dye laser,
pumped by another pulsed laser (e.g., a nitrogen-laser
or an excimer laser (see below)). The pump beam is
focused by a cylindrical lens into the dye cell, forming
aline focus where inversion is achieved. The narrow dye
laser beam is enlarged by telescope optics and falls onto
an optical Littrow grating, where the first order diffrac-
tion is reflected back into the incident direction. This
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Fig. 8.39. Flashlamp-pumped dye laser

can be realized with a grating with groove distance d, if
the incidence angle « is equal to the diffraction angle 3,
which gives the grating equation

m-A=d(sina+sin ) =2d-sina (8.30)
with m=1.

The spectral resolution of the grating
AALN=m-N (8.31)

is proportional to the number N of illuminated grooves
and the diffraction order m. Therefore it is necessary to
enlarge the dye laser beam to cover a large number of
grooves N. Tilting the grating results in a continuous
tuning of the laser wavelength.

2N
N
:

800 1000
Wavelength /nm
v
M Dye cell
0\ /
-t | —
Cylindric Bea{nlexpanding Y
lens elescope \’ grating
Pump laser

(e.g. excimer laser)

Fig. 8.40. Excimer-laser-pumped dye laser

Since the spectral width Av of pulsed lasers with
pulse duration Atf is principally limited by the Fou-
rier limitation Av = 1/At, cw lasers are demanded for
really high resolution in the MHz range. In Fig. 8.41
a commercial version of such a single mode cw dye
laser is shown.

The active medium is a thin (= 0.5 mm) liquid jet
of the dye solution, which is pumped by an argon laser
beam, focused by a spherical mirror into the dye jet. Dif-
ferently from the previously discussed resonators, four
mirrors form a ring-resonator, where no standing laser
wave is produced but a wave running only in one direc-
tion. This has the advantage that no nodes are present as
in a standing wave and the whole inversion of the active
medium can contribute to the laser amplification. In or-
der to avoid laser waves in both directions the losses for
one direction must be higher than for the other direction.
This can be achieved with an optical diode (unidirec-
tional device), consisting of a birefringent crystal and
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Pump beam from argon laser

M pump

M1 M2

Auxiliary beam waist \
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Unidirectional Thin Scanning Birefringent
device etalon etalon filter

M3

Collimated arm
Fig. 8.41. Commercial version of a single-mode cw ring dye laser (Spectra-Physics)

a Faraday polarization rotator, which turns the birefrin- The argon laser oscillates on transitions between
gent rotation back to the input polarization for the wave  different excited levels of argon ions Art. It there-
incident in one direction, but increases the rotation for ~ fore needs a high current discharge (5—50A with
the other direction. Waves with the wrong polarization ~ 70—700 A/cm? current density), where the degree of
suffer large losses at the many Brewster surfaces in the  ionization is high. The excitation of the upper laser

resonator and therefore do not reach the threshold. levels occurs in two steps:

Wavelength selection is achieved with a birefringent
filter and two Fabry—Perot-etalons with different thick- Arte” — Ar'42e” (8.32a)
nesses f. If the transmission peaks of all these elements Art e — Art*(dp, 4s) +e . (8.32b)

are tuned to the same wavelength A, the laser will oscil-

late at this wavelength as a single mode laser. The laser  In a capillary of ceramic (length ~ 1 m, diameter
wavelength can be continuously tuned, if all elements A~ 3 mm) current densities of more than 700 A/cm? are
and the resonator length are tuned synchronously. This  reached at a total discharge current of 50 A. The gas
can be realized with special feedback control systems.  discharge is confined by a longitudinal magnetic field

For details of these devices see [8.10]. in order to prevent the ions to reach the wall of the ca-
pillary where they could damage it by sputtering. The
ceramic tube is cooled by a water flow between the

8.4.4 Gas Lasers

tube and an outer cylinder on which the electric wires
Nearly all gas lasers use gas discharges as active me-  for the magnetic field are wound. A heated helical ca-
dium. Besides the He-Ne laser already discussed in  thode supplies the large electron current necessary to
Sect. 8.1.2 the most important gas lasers are compi- maintain the discharge (Fig. 8.42). An elegant techni-
led in Table 8.2. Here, we will only briefly discuss the  cal solution for the transfer of heat (= 20—30 KW) to
physical principles of their operation. the cooling water is shown in Fig. 8.42b. The discharge
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Table 8.2. Characteristic data of some important types of gas lasers

He-Ne-Laser about 10 transitions

with A = 0.54—3.39 um

about 20 transitions
with A =0.35—0.53 um

about 200 transitions
with A =9.5—10.3 um
about 300 transitions
A=4.5—6m

XeCl: 308 nm

KrF: 248 nm

ArF: 193 nm

Hjy: 150 pm

HF, DF: 2—3 pm

and 10—20 pm

Argon laser
CO,-He-N;-laser
CO-laser

Excimer-laser

Chemical lasers

Far infrared
lasers pumped
by CO;-lasers

with A = 50—350 um

Prism for
a) I ~1m | line selection

Aperture/

Ou{put 8 M
mirror

b) Magnet—| |
Cooling water/"

Ceramic tube—

Heat transfer ——
through copper discs
Tungsten disc

Dischargepath—>T1" N 1 1
through holes
Ceramic—__,
isolation discs
Fig. 8.42a,b. Argon ion laser. (a) Experimental setup (b) De-

tails of the discharge path through holes drilled into tungsten
discs and the heat transfer to the water-cooled envelope

runs through small holes (3 mm diameter) in tungsten
discs, which are heated by the dissipated power to tem-
peratures up to 1000 K. These hot discs transfer their
energy by radiation to the wall of a ceramic tube with

several hundred transitions

0.1—100 mW

1 W-1kW

cw: 1 W—10kW
pulsed: < 1MW

cw: several watts

Pulse energies
1—400 mJ /pulse

repet. rate: <200 Hz
several kW

pulsed: mW-W

Laser tube \
/ 7 [OB\ 2¢
/

M,
b) °Sy,
4 i i 2 112
p configuration 2n Pajpo
2 32
D Dsj2
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©
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Fig.8.43. (a) Laser line selection on a specific transition in
argon. (b) Level scheme

about 40 mm diameter, which is again cooled by wa-
ter. The larger surface of this tube facilitates the heat
transfer.

Since several upper levels in the Ar™ ions are
excited, the laser can reach oscillation threshold for
several transitions and therefore oscillates on several
wavelengths. A specific wavelength can be selected by
a prism inside the resonator (Fig. 8.43). By tilting the
mirror M, the desired wavelength can be chosen.
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The efficiency of the argon laser
n = PL/Pelecee ~ 0.1%

is very low. In order to produce 1 W laser output power,
more than 10 kW electrical input power are necessary.
Most of the power (99.9%), put into the discharge,
is converted into heat transferred to the walls of the
discharge and has to be taken away by the cooling water.

The CO; laser has the highest efficiency of all gas
lasers (= 10—20%) and for cw operation the highest
output power. The active medium is a gas discharge
in a mixture of He, N, and CO,. By electron im-
pact in the discharge excited vibrational levels in the
electronic ground states of N, and CO, are populated
(Fig. 8.44). The vibrational levels v = 1 in the N, mole-
cule and (vy, va, v3) = (00°1) in the CO, molecule (see
Sect. 10.4) are near-resonant and energy transfer from
the N, molecule to the CO, molecule becomes very
efficient. This populates the (00°1) level in CO, prefe-
rentially, creates inversion between the (00°1) and the
(02°0) levels, and allows laser oscillations on many ro-
tational transitions between these two vibrational states

a) A
000> /\ or40—0>
E cm™ V4 u ¥ Vg
hc v
y 2
3,000 1
(00%1) AE=18cm
~T v=1
2,000 ,\0.6\““ ‘b‘}& Energy transfer
0 &
0,
(100 02°0) Electron
1,000 - peqctivation | impact
by collisions ~ 5 (01°0) excitation
oL 0 J;V=O
CO, (00°0) N,
b) + _ + NaCl
|'_ﬂ\ A A (\/wmdow
My 5
—10° eam
T=10% (' expanding
telescope

Littrow grating

Fig. 8.44. (a) Level scheme and the three normal vibrational
modes of the CO, molecule. (b) CO, laser with a Littrow-
grating for line selection

in the wavelength range 9.6—10.6 um. A single line
can be selected by a Littrow-grating, forming one of the
resonator end mirrors.

Note:

The linear CO, molecule has three normal modes of vi-
bration, labeled v;, v, and v3, and depicted in the upper
part of Fig.8.44a (see also Sect. 10.3). The vibratio-
nal state of the molecule is described by the number of
vibrational quanta in these modes. A state with 1 quan-
tum in vy, 2 quanta in v, and O quanta in vj is labeled
as (120). The bending vibrational mode is twofold de-
generate and can have a vibrational angular momentum
along the CO, axis. The number of quanta nk of this
vibrational angular momentum is stated as an upper in-
dex to the vibrational v, quanta. The upper laser level
(00°1) has zero vibrational angular momentum and 1
vibrational quantum in the v3 mode.

A powerful gas laser in the UV is the excimer la-
ser, where specific diatomic molecules, called excimers,
form the active medium. These excimers (excited di-
mers), are stable in an electronically excited state but
unstable in their ground state (Fig. 8.45). Examples are
the noble gas halides, such as XeCL, KrCL or ArF. If the
stable upper state AB* of the excimer AB is populated,
(e.g., by electron excitation of the atom A and recom-
bination A*+B — (AB¥), inversion is automatically
produced because the lower state is always comple-
tely emptied by fast dissociation on a time scale of
10~ 13 s, if it is populated by fluorescence from the upper
level.
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recombination A*+B
(AB)* —
ft.
o
s
‘C
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(0]
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Fig. 8.45. Potential curves and fluorescence transitions of an
excimer



Excimers are therefore ideal candidates for an active
laser medium. They have the additional advantage that
the emission from the bound upper level terminates on
a repulsive potential curve on the dissociative ground
state and therefore forms a broad emission continuum.
This results in a broad gain profile and the wavelength
of the excimer laser can be tuned over a relatively large
range.

8.5 Nonlinear Optics

The optical frequency of lasers can be doubled in non-
linear optical crystals, thus considerably extending the
wavelength range where coherent radiation can be ge-
nerated. In this section we will briefly discuss the
physical principles of optical frequency doubling or
mixing under the heading nonlinear optics.

When an optical wave passes through a crystal, it
induces the atomic electrons to forced oscillations. For
sufficiently small electric field amplitudes E of the wave
the elongations of the oscillating electrons are small and
the restoring forces are proportional to the elongation
(linear range). The induced dipole moments p =« - E
are proportional to the field amplitude and the com-
ponents P; of the dielectric polarization of the medium
induced by the light wave

Pi:‘QOZXijEj (i,j:x» y, Z) (833)
J

are linearly dependent on E, where x;; are the com-

ponents of the tensor x of the electric susceptibility.

This is the realm of linear optics.

EXAMPLE

The field amplitude of the sunlight reaching the earth
at A =500nm within a bandwidth of 1nm is about
E ~ 3V /m. On the other side the electric field from the
Coulomb force, binding the electron to the nucleus is,
for a binding energy of 10eV, about
10V

10-10m
Therefore, the elongation of the electrons induced by
the sunlight (for example, for the Rayleigh scattering)
is very small compared with its mean distance from
the nucleus and the restoring force within this small
elongation is linear to a good approximation.

B = =10"V/m. (8.34)

8.5. Nonlinear Optics

For much larger light intensities, as can be realized
with focused beams of lasers, the nonlinear range of
electron elongations can be readily reached. Instead of
(8.33) the dielectric polarization has to be written as the
expansion

Pi=80|:ZXi;1)Ej
j
+2_ 2 X EiE
ik
+ZZZX$;E_,-E,(E,+...]
ikl

where x ™ is the nth order susceptibility, which is re-
presented by a tensor of rank (n+ 1). The quantities
x decrease rapidly with increasing n. However, for
sufficiently high field amplitudes E the higher order
terms in (8.35) can be no longer neglected. They form
the basis of nonlinear optical phenomena.

When a monochromatic light wave

E = Ejcos(wt —kz) (8.36)

passes through the medium, the frequency spectrum of
the induced polarization P also contains (because of
the higher powers n of the field amplitudes E"), be-
sides the fundamental frequency w, higher harmonics
mw (m =2,3,4...). This implies: The induced oscil-
lating dipoles emit radiation not only on the frequency w
(Rayleigh scattering), but also on higher harmonics
(Fig. 8.46). The amplitudes A (mw) of these emitted wa-
ves depends on the magnitude of the coefficients y

(8.35)

E= EO . ei((m—kz) 30 20

———
z

Fig. 8.46. Schematic illustration of the generation of optical
harmonies under the influence of a strong electromagnetic
wave
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and in a nonlinear way on the amplitude E, of the
incident light wave.

8.5.1 Optical Frequency Doubling

If the light wave (8.36) passes through an isotropic
medium we obtain from (8.35), for the location z =0,
the x-component of the dielectric polarization

Py =& (x\) Eox cos wt + x 3, Eg, cos” wt +. ...
(8.37)

when we neglect all higher order terms x with
n > 2. Similar equations are obtained for the y- and z-
components. Using the relation cos® x = é(l +cos 2x)
we can write (8.37) as

P, = go(éX(Z)ng + x "V Eo, cos wt

+ 1xPE}, cos 20t) . (8.38)

The dielectric polarization contains a constant term
teox @ E],, a linear term with frequency o and the
nonlinear term with 2w. This means that each of the
atoms hit by the incident wave radiates a scattered wave
that contains the frequency w (Rayleigh scattering) and
a second harmonic wave with the frequency 2w.

The amplitude of the second harmonic wave is
proportional to the square of the amplitude of the inci-
dent wave. This means that the intensity /(2w) is also
proportional to I?(w).

The microscopic second harmonic waves, emitted
by the different atoms, can only add up to a macroscopic
wave if they are all in phase for all location in the
crystal. Since the phase velocity generally depends on
the frequency (dispersion), special crystals have to be
used in order to match the velocities of the fundamental
and the second harmonic wave.

8.5.2 Phase Matching

When a plane wave (8.36) passes through the crystal,
it generates in each plane z = zo dipoles with oscilla-
tion phases that depend on the phase of the inducing
fundamental wave at z = zp. In a neighboring plane,
7 = 70 + Az, the same phase difference exists between
the incident wave and the induced dipoles.

The waves at frequency w, radiated by the atoms
in the plane z = zo reach the next plane z = zp+ Az
after the same time interval as the incident wave. They

therefore superimpose the microscopic waves emitted
from atoms in that plane in phase and add up to twice
their individual amplitude.

This is, however, not true for the second harmonic
waves, because their phase velocity vpn (2w) = ¢/n(2w)
differs from that of the incident wave vyp(w) = ¢/n(w)
if the refractive index n(2w) # n(w), which is gene-
rally the case. The second harmonic wave generated by
atoms in the plane z = z° therefore reaches the plane
7z = 70+ Az with another time delay than the incident
wave and a phase difference arises between the mi-
croscopic second harmonic waves generated in the two
planes. After a distance

Az=(/2)/[n(w) —nQw)] (8.39)

the second harmonic wave generated in the plane z = zg
arrives at the plane z + Az with the opposite phase as
the second harmonic waves generated in this plane and
therefore the two contributions interferes destructively
(Fig. 8.47).

In summary: In isotropic homogeneous media the
second harmonic waves generated in the diffe-
rent planes do not superimpose in phase. Summed
over the whole crystal all phase differences bet-
ween 0 and 27 occur and the total wave remains
very small due to destructive interference of the
different microscopic contributions.

A solution to this dilemma is provided by uniaxial
birefringent crystals, where the incident light wave is

Fundamental wave
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Fig. 8.47. Phase shift of = between the two harmonic waves
with 2w, generated at a point z; and a point zo = z1 + Az
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Fig. 8.48. Phase matching between fundamental wave with
frequency w and second harmonics with 2w in birefringent
optical crystals

split into an ordinary wave for which the refractive in-
dex n =ng does not depend on the direction, and an
extraordinary wave where n = n.(®) depends on the
angle ® between the optical axis of the crystal and the
propagation direction (Fig. 8.48). At a certain angle ®p,
called the phase matching angle, the ordinary refractive
index ng(w) for the fundamental wave at frequency w
equals the extraordinary index n.(2w) for the second
harmonic wave. In this direction, phase matching is
possible for a selected frequency w. The condition for
phase matching can be written as

ne(2w) = no(w) = vpn(w) = vph(Cw)

= kQw) = 2k(w) . (8.40)

PZT

Fundamental ﬂ Doubling crystal

input \> X

M1 M2

? / Harmonic
output

8.5. Nonlinear Optics

If the angle ® is changed, phase matching is achieved
for another frequency w, i.e., another wavelength A.
Therefore the phase matched wavelength can be tu-
ned by tilting the crystal. All microscopic secondary
waves at 2w emitted into the direction & from the di-
poles induced by the incident fundamental wave are in
phase with the fundamental wave along the whole path
through the crystal. Now a macroscopic second harmo-
nic wave can build up, traveling in the same direction
as the fundamental wave.

For instance, the red ruby laser emission at
A=690nm is partly converted into UV light
at A =345nm in a properly phase-matched KDP
(potassium-dihydrogen phosphate) crystal. With suf-
ficiently large nonlinear coefficients x® of the
doubling crystal and with pulsed incident lasers
of high peak powers conversion efficiencies up to
n = PQw)/P(w) = 40% can be achieved.

With cw lasers the output power is much less
and therefore the conversion efficiency n = x@I(w)
is smaller. One can either focus the laser beam onto the
crystal to increase I(w) at a given power P(w), or the
doubling crystal is placed inside an enhancement reso-
nator with highly reflecting mirrors (Fig. 8.49), where
the power of the fundamental wave is enhanced by a fac-
tor up to 100. With this technique a UV power of more
than 50 mW can be achieved for an input power of
500 mW.

8.5.3 Optical Frequency Mixing
When two light waves

E| = Ep e, cos(wt —kir)

E, = E()géx cos(wyt —kor)

are superimposed in a nonlinear optical medium, the
total electric field amplitude E = E;|+ E, induces

Fig.8.49. Low-loss ring resonator with
astigmatic compensation and wide tuning
range for optical frequency doubling
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a polarization with a nonlinear contribution

P@(w) = eox @[ Ej, cos® w1t + E, cos® wat
+2Ey Egy cos wit - cos wzt]
= Jeox? [ (Egi + Ep)
+ (Eé1 cos 2wt + EX, cos 2a)2t)
+2Eg Egy(cos(w) + wn)t
+ cos(w; — wz)t)] .

(8.41)

Besides the second harmonics at frequencies 2w
and 2w, also waves are generated with the sum fre-
quency w; + w; and the difference frequency w; — ws,
if the phase matching condition can be properly chosen
for each of these different contributions. For exam-
ple, the phase-matching condition for the macroscopic
generation of the sum frequency w; = w; + w, is

k(w) +w) =ki(w1) + ko (wr) = (8.42a)

nows =nw) +nywy with n; =n(w;). (8.42b)

This condition is generally more readily fulfilled than
that for the second harmonic generation, because the
directions of the two incident waves (and therefore their
wave vectors) can be freely chosen within certain limits,
which imposes less restrictions to the selection of the
nonlinear crystal.

The possibility of optical frequency mixing has
greatly increased the spectral ranges covered by intense
coherent light sources. With difference-frequency gene-
ration, using two visible lasers, the mid-infrared region
can be covered, while sum-frequency generation gives
access to the UV range down to A = 200 nm. The spec-
tral limitations are given by the spectral regions where
the absorption of the nonlinear crystal becomes large.

8.6 Generation of Short Laser Pulses

The investigation of fast processes induced by the ab-
sorption of photons, demand a high time resolution of
the detection technique. Examples for such fast proces-
ses are the decay of excited states with a short lifetime,
the dissociation of molecules or the rearrangement of
molecular structure after excitation into higher energy
states. This latter process plays an important role in the
visual process, where the primarily excited rhodopsin
molecules in the retina of the eye undergo many energy

transfer process before the excitation energy is trans-
ferred into an electrical signal reaching our brain. Such
processes could only be studied in detail after the de-
velopment of ultrashort laser pulses with pulse widths
down to about five femtoseconds (1 fs = 1013 ).

In this section we will briefly discuss some expe-
rimental techniques for the generation of short laser
pulses.

8.6.1 Q-Switched Lasers

The inversion threshold for obtaining laser oscillation
depends on the total losses (see Sect. 8.1.1), which can
be expressed by the quality factor (Q-factor) of the laser
resonator.

The Q-value of the kth resonator mode is defined as

2mvWy, — w
dWe/dr

and can be expressed by the total loss factor y; of this
mode and the roundtrip time Tg = 2d/c.

The Q-switching technique uses the following trick:
During the pump process the Q-value of the laser re-
sonator is kept so low (i.e., the losses are so high)
that the laser threshold is not reached in spite of the
growing inversion. At a selected time ¢ = £, Q is sud-
denly switched to a maximum value (Fig. 8.50). This
prevents laser oscillation for ¢ < 7, and allows the po-
pulation inversion to reach a large value, because it is
not depleted by induced emission. When the losses are
suddenly switched to a minimum value at ¢ = t; the in-
version is way above threshold and the amplification of
the spontaneous emission starting the photon avalanche
is accordingly high. This leads to a fast rising “giant

O = Tr (8.43)

APp, P, AN

Losses y P

--------- S T -
Threshold X !
Pump powgr ' i
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. .t
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Fig. 8.50. Pump power Pp(?), laser output power P (f), and
cavity losses y(#) for a Q-switched laser



pulse”, which depletes the inversion within a short time
and therefore terminates itself.

In Fig. 8.51 two possible experimental realizations
of O-switched lasers are shown. A fast spinning resona-
tor mirror spoils the Q-value for all times, except for the
short time span where the mirror surface is perpendicu-
lar to the resonator axis. The light from a light-emitting
diode is reflected by the backside of the spinning mir-
ror onto a photodetector. Its output signal triggers the
discharge of the flashlamp, pumping the laser. An elec-
tronic delay of the trigger signal can select the time
delay between trigger time and vertical position of the
spinning mirror.

The optimum time delay depends on the duration of
the pump pulse and on the lifetime 7 of the upper laser
level. The time delay must be smaller than the lifetime 7,
because otherwise one looses too much of the upper
state population necessary for the amplification of the
giant pulse.

Another more commonly employed technique uses
aPockels cell inside the laser resonator for Q-switching.
A Pockels cell consists of a birefringent crystal that
changes its birefringence with an applied electric field.
If the crystal is biased in such a way that it rotates
the plane of polarization by 45° for one transit, the light

Laser

a) @ﬂ R=1
PZp tttt .

Rotating
mirror

"~ Flash lamp

Trigger pulse
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U
Pockels cell -
Trigger pulse
Nd:YAG Pol. N
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M outcoupling My

Fig.8.51a,b. Possible realizations of cavity Q-switching
(a) With a rotating resonator mirror (b) With an electro-optic
switch (Pockels cell) inside the laser resonator
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transmitting the crystal a second time after reflection by
mirror M, has its plane of polarization turned by 90°.
A polarization beam splitter then reflects the beam out
of the laser resonator (Fig. 8.51b). At the Q-switching
time 5, a high voltage pulse is suddenly applied to the
crystal that changes the birefringence and brings the
rotation angle per transit to 90° and for the reflected
beam to 180°. The beam is now transmitted by the
polarization beam splitter and reaches the laser rod.

These techniques generate giant laser pulses with
durations of a few ns and peak powers of 10°—10° W,
depending on the laser type.

8.6.2 Mode-Locking of Lasers

Much shorter pulses can be achieved with the mode-
locking technique, which is based on the following
principle.

If a light wave with optical frequency vy pas-
ses through an optical modulator with a modulation
frequency f (e.g., a Pockels cell or an ultrasonic modu-
lator), the transmitted amplitude intensity is modulated
according to

Iy = Ih[1 +acos(2r ft)] cos? 2mvot) . (8.44)

The degree of modulation a < 1 depends on the voltage
applied to the modulation cell. The Fourier analysis of
such a modulated light wave gives a frequency spectrum
that consists of the carrier frequency vy and sidebands
at frequencies votn - f.

Inserting the modulator inside the laser resonator
(Fig. 8.52) and choosing the modulation frequency f to
be equal to the frequency separation

Sv=c/2d=f

of the longitudinal resonator modes, makes all side-
bands resonant with resonator modes. This means that
the sidebands can participate in laser oscillation as long
as their frequencies lie within the gain profile of the ac-
tive medium. This leads to a coupling of all resonator
modes within the gain profile because the phases of the
sidebands are coupled to that of the carrier by the phase
of the modulation.

If the modulator has the time dependent transmis-
sion

T =Ty [1—asin’(2/2)t] (8.45)
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Fig. 8.52a—c. Mode-locking of lasers. (a) Experimental setup
with an ultrasonic modulator (b) Laser frequency vy and the
two neighboring side-bands (¢) Laser output pulses with width
At =~ 1/Av and repetition frequency f =1/T =c/2d

with the modulation frequency f = £2/27 and the mo-
dulation amplitude a < 1, the amplitude ot the kth mode
becomes

Ap(t) = TAy; cos oyt (8.46)
= TyAxo [1 — asin®(2/2)t] cos wyt .
This can be written as
Ar(t) = ToAko[ (1 - ;’) COS Wit (8.47)

a
+ 4 [ cos(wy + §2)t + cos(wy — Q)t]:| .

The total amplitude of N =2m + 1 coupled modes is
then
+m
Al = Z Aj cos(wy + k- 2)t
k=—m
For equal amplitudes Ay =
intensity becomes

2 sin (é N.Qt)

% sin2 (;.Qt)
For cw lasers the amplitude A( is constant in time

and (8.48) represents an equidistant sequence of pulses
(Fig. 8.53) with a pulse separation

Ay the total time-dependent

I(H) x A cos® wot . (8.48)

(8.49)
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t

Fig. 8.53. Mode-locked pulses, where N modes have been
locked. Note the different ordinate scales

which equals the roundtrip time through the laser
resonator. The pulse width

2 2 1

T Qm+1)/R2 N2 v (8.50)

is determined by the number N of phase locked mo-
des within the gain profile with spectral width v
and is therefore inversely proportional to the spectral
bandwidth §v of the gain profile above threshold.

The peak power of the pulses is proportional to N2.
The pulse energy is proportional to N>AT oc N. In
between two succesive main pulses (N —2) small ma-
xima appear, which decrease in intensity as N increases
(Fig. 8.53).

Contrary to a normal multimode laser that can os-
cillate simultaneously on many modes with, however,
random phases, the mode-locked laser oscillates on
many phase-coupled modes, because the modulator en-
forces a definite phase relation between the oscillating
modes.

EXAMPLES

1. The gain profile of the He-Ne laser has a width
of about Av =2GHz. Mode-locking therefore
achieves pulses with a minimum duration of
At =500 ps.



2. The argon laser has a larger spectral width Av =
6 GHz of its gain profile and allows mode-locked
pulses with widths down to At = 170 ps.

3. The dye laser has a very large spectral band-
width of about Av =3 x10'3 s~!. Therefore, pulses
down to At =3 x10!*5s should be possible. The
experimental realization only reaches At =3 x
107125 = 3 ps. This corresponds to the transit time
At = Ax/c of the light through the modulator with
length Ax.

Not only cw lasers, but also pulsed lasers, can be
mode-locked. The pulse amplitude is no longer constant
but follows the time profile of the gain. In Fig. 8.54 the
pulse sequence within one pulse envelope of a mode-
locked neodymium-glass laser is shown for illustration.

The shortest laser pulses, obtained so far are genera-
ted by a nonlinear effect, called Kerr lens mode-locking.
Its basic principle is illustrated in Fig. 8.55.

For sufficiently high intensities, the refractive index
is affected by the nonlinear interaction of the light wave
with the medium. It can be written as a sum

n(w, I) =no(w)+nr(w) -1 (8.51)

where ng(w) is the normal refractive index and n, (w) <
no(w). The intensity-dependent change of the refractive
index is caused by the nonlinear polarization of the
atomic electron shells induced by the electric field of

Active mediL}m n(r) .

Gaussian
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Self-focusing

A Laser intensity
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8.6. Generation of Short Laser Pulses

3 é
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Fig. 8.54. Periodic pulse sequence from a pulsed mode-locked
Nd:glass laser (W. Rudolf, E.B. Physik, Univ. Kaiserslautern)

the optical wave and is therefore called the optical Kerr
effect.

When a laser beam with a Gaussian radial intensity
profile I(r) passes through a medium, the refractive
index shows a radial gradient with a maximum value of
n at the central axis at ¥ = 0. The medium then acts like
alens and leads to a focusing of the incident laser beam,
where the focal length depends on the laser intensity.

When a laser pulse with the time profile /(7) passes
through the medium, the central part of the pulse around
its maximum generates the largest gradient of n(r) and

Time

—
-

Time  Fig. 8.55. Kerr-lens mode-locking
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therefore the shortest focal length fi, of the Kerr lens.
If an aperture is placed at a distance f,, behind the
Kerr lens, only that part of the pulse /() around its ma-
ximum at t = t is fully transmitted through the aperture.
All other parts before and after the maximum produce
a longer focal length and therefore have a larger spot
size at the aperture and only the central part of the radial
beam profile is transmitted through the aperture. These
parts of the pulse therefore suffer larger losses and are
attenuated. This happens for every roundtrip inside the
resonator and leads to a shortening of the pulse duration.

EXAMPLE

For sapphire Al,O3 n, =3 X 10-16 cmz/W. For the in-
tensity 7 = 10'* W/cm? the refractive index changes by
An =3 x1072 ng with ng = 1.76. For a laser pulse with
awavelength A = 1 yum this leads to an additional phase
shift of the optical phase by Ap = 27/1)An =27 X
300-1.76 after a pathlength of 1cm through the Kerr
lens material, which results in a radius of curvature R =
4 cm of the wavefront of the light wave. For a Gaussian
beam profile with peak intensity 7(0) = 10'* W/cm?
which would be a plane wave without the Kerr lens, the
focal length of the Kerr lens is then f =4 cm.

This Kerr lens mode-locking has been successfully
applied to the generation of ultrashort light pulses from
a Ti:sapphire laser, which has a very broad gain profile
and is therefore well suited to allow such short pulses. In
Fig. 8.56 a possible experimental realization is shown.
The Kerr medium is the Ti:sapphire crystal, which acts
simultaneously as active laser medium, and the limi-
ting aperture is placed in front of mirror My. The Kerr
lens changes the focal length and therefore the imaging

Pump

M3
Aperture —I

Fig. 8.56. Experimental setup for a Kerr-lens mode-locked
Ti:sapphire laser (OC = optical compensator)

I(z,h) . At = 6fs

P .

= >t

Fig. 8.57. Schematic representation of an ultrashort light pulse
containing only three optical cycles of the light intensity. The
envelope has a half-width of A7 = 6 fs and a spatial extension
Az=c X At =2pm

characteristics of the laser resonator in such a way that
for the maximum of the laser pulse the focus lies in the
center of the aperture.

With such a device, pulses down to 4 fs have been
achieved. For these short pulses the spectral width is
very large and any dispersion effects in the laser resona-
tor must be carefully compensated for. For instance, the
dielectric mirrors with many reflecting layers generally
have a wavelength- dependent phase shift, which would
lead to a broadening of the pulse. Therefore special
dispersion-compensated mirrors have been designed
that avoid this problem.

For an optical wave at A =600nm (v=5x
10's71), the optical cycle time is Ty = 1/v = 2fs.
A light pulse of 6 fs half-width therefore contains only
three optical cycles (Fig. 8.57).

8.6.3 Optical Pulse Compression

When a short optical pulse is sent through an optical fi-
ber with a core diameter of 5 pum, the intensity becomes
so high that the refractive index

n(w) = ng(w) +ny x I(t)

is changed by the nonlinear interaction of the medium
with the laser pulse. It becomes time-dependent. The
nonlinear term n; can be positive as well as negative,
depending on the material and the laser wavelength.

A short pulse of duration AT can be described by
the wave packet

+Aw/2
1(H) = (@)™ dw .

—Aw/2

(8.52)



This represents a superposition of many fre-
quency components within the frequency interval
Av=1/AT = Aw/2m where I(w) gives the envelope
of the spectral profile.

The linear part ng(w) of the refractive index causes,
for normal dispersion (dng/dA < 0), a larger phase ve-
locity for the red components in the pulse than for the
blue components. The red components will therefore
be at the leading edge and the blue components at the
trailing edge of the pulse. This results in spatial- and
time-broadening of the pulse.

The nonlinear part n,I(f) causes a frequency shift
dependent on the intensity. This can be seen as follows.
The phase of the wave E = E( cos(wot — kz)

¢ = wot —kz = wot —wnz/c (8.53)
=wy-(t—noz/c)—A-I(t); A=mnmwz/c
depends on (7). Since the frequency
w=dp/dt =wy—A-dl/d¢ (8.54)

is the time derivative of the phase g, it is evident from
(8.53) that with A > 0 the frequency at the leading edge
of the pulse (d//dt > 0) is decreased and at the trai-
ling edge (dI/dt < 0) is increased. This phenomenon
is called a chirp of the optical pulse, where the optical

8.6. Generation of Short Laser Pulses
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Fig. 8.59. Optical pulse compression by a grating pair

frequency changes from small to high frequencies over
the pulse profile I(¢) (Fig. 8.58).

In summary, when passing through an optical
medium the optical pulse /(f) becomes broader,
caused by the dispersion ng(w), and its spectral
profile /(w) becomes broader due to the chirp
induced by the nonlinear part n,-I(f) of the
refractive index.

When such a spectrally broadened pulse is sent
through a pair of parallel optical gratings (Fig. 8.59),

a) initial pulse spatially broadened chirped pulse
—_—
Ng(w) blue red
® z z

b) spectral broadening

in, ® I(w)

z=2,
n,(l)
o O

(O]

Fig. 8.58a,b. Spatial and spectral broadening of a pulse in a medium with normal linear (a) and nonlinear (b) refractive index
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Fig. 8.60. Experimental arrangement for the generation of femtosecond pulses by self-phase modulation with subsequent pulse

compression by a grating pair [8.11]

the red components of the pulse are diffracted into ano-
ther angle g than the blue ones. From Fig. 8.59 one can
infer the path difference S between the plane phase front
of the incident wave at point A and the phase plane at
point B as

D

S=51+8%=
1+ cos

Dsiny (8.55)
cos B '

where D is the distance between the two parallel
gratings. From the grating equation

d(sina —sin ) = A (8.56)

for a grating with groove separation o we obtain, after
some calculations,
ds ds dp —D-\

= = . (857
=g AT @l —ajd—siap 7

Optical
frequency

} (t)

This shows that the optical path length through the
grating pair increases with increasing wavelength.
Choosing the grating separation D sufficiently large,
the broadening of the pulse due to the linear dispersion
in the optical fiber can be overcompensated for by the
grating pair and leads to a shortening of the duration AT
of the pulse /(¢). The experimental arrangement for the
compression of optical pulses after they pass through
the fiber is shown in Fig. 8.60.

8.6.4 Measurements of Ultrashort Optical Pulses

Since the time resolution even for fast optical detec-
tors is limited to about 100ps (except for the streak
camera, which reaches 1 ps) the measurement of such
short pulses can no longer be performed with conven-
tional devices, but demands new ideas. One method

/\ < doubler Filter Detector
- A 0,
¥ V A
<v ) 120 L
Retro- I2/2)
Ax - reflection Fig.8.61. Optical interferometry with
prism translation-retroreflecting prism and se-
cond harmonic generation for measuring
At=Ax/c the width of ultrashort pulses
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Fig. 8.62. Measured femtosecond pulse with only five optical
periods of 7' = 2.5 fs within the full half-width of the envelope

is based on optical interferometry (Fig.8.61). The la-
ser beam is split into two parts that are recombined
after having traveled along two different paths with
slightly different path lengths. The superposition of the
two parts with variable time delay 7 and intensities
Li(1) = A1 (07 and L(147) = |A2(1+0)|* gives the
total intensity

(D) = A1)+ At + )| ?
= I] (l)+12(l) +2A1(t) ~A2(l+‘[) s

(8.58)

8.6. Generation of Short Laser Pulses

which depends on the relative phase between the two
optical waves, i.e., on the time delay 7. Although the
detector cannot follow the fast optical waves, it mea-
sures the time dependent interference pattern I(7), if
the change of the time delay t is sufficiently slow. If
the spectral width of the short pulse is large, it con-
tains a superposition of many monochromatic carrier
waves with a nearly continuous frequency spectrum. In
this case there will be no clear interference pattern and
the detector would measure the sum of the two inten-
sities 11 + I, independent on their separation. Here the
frequency-doubling of the fundamental wavelength in
a nonlinear crystal is a good solution. The intensity

1Qw) o L)+ L(t+1)|?
2 2
=1+ L+2L(t) - L(t+71)

of the second harmonics does depend on the time de-
lay 7. Even if the time constant of the detector is long
compared to the pulse width and the detector measu-
res the time average of the pulses, it still gives the true
pulse profile I(7).

In Fig. 8.62 an actual experimental result is shown
for a pulse with 7.5fs duration (half-width at half-
maximum), which shows the optical cycles with 2.5 fs
period, monitored with a detector with a time constant
of about 1 ns.

Some applications of these ultrashort pulses are
discussed in Chap. 12.
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S UMMARY

Laser stands for “Light Amplification by
Stimulated Emission of Radiation”.

A laser consists essentially of three components:

The energy pump, which produces inversion in
a medium by selective energy transfer into the
medium.

The active medium with a population inversion
for selected transitions where an electromagnetic
wave passing through the active medium is am-
plified instead of attenuated.

The optical resonator, which stores the radiation
power emitted by the active medium in a few re-
sonator modes. In these modes, the number of
photons should be large. This ensures that in these
modes the induced emission is much stronger than
the spontaneous emission.

Laser oscillation starts at a threshold power deli-
vered by the pump into the active medium, which
depends on the critical inversion and the total los-
ses of the lasing modes. At threshold the losses
are just compensated by the gain of the active
medium.

The oscillation frequencies of the laser emission
are limited by the spectral range where the active
medium has sufficient gain. Within the gain profile
of the active medium the lasing frequencies are
determined by the eigenresonances of the optical
resonator.

The divergence of the emitted laser beam depends
on the number of transverse modes participating
in laser oscillation. If only fundamental modes
contribute to laser emission, the laser beam profile

PR OBULEMS

1.

a) What is the population ratio N;/N; for atoms
in a gas for thermal equilibrium at 7 = 300K,
if the wavelength of the transition E; — Ej is
A =500 nm and the angular momentum quantum
numbers are J; =1 and J, =0?

b) What is relative absorption of a monochromatic
light wave per cm path length through a gas, if the
transition probability A; =1 x108s™!, the gas
pressure p = 1 mbar and 10~ of all atoms are in
the lower state Ej of the transition?

is Gaussian and its divergence is only limited by
diffraction effects.

Single mode lasers, oscillating on a single funda-
mental mode, can be realized by additional mode
selecting elements inside the laser resonator.

A synchronous tuning of all frequency-selecting
elements allows the realization of a single mode
laser with a single wavelength tunable across the
spectral gain profile of the active medium.

The active medium can be a solid, a liquid or
a gas. Broad gain profiles are provided by semi-
conductor materials, by dye solutions, by doped
crystals with color centers and by vibronic solid
state lasers consisting of an insulator, doped by
metal ions.

For some types of lasers, threshold inversion can
only be achieved with pulsed pumps (e. g., pulsed
Nd:glass lasers or excimer lasers), while most la-
sers can be operated in a continuous wave mode
(cw lasers) as well as in a pulsed mode.

The time profile of the laser output is limited by
the duration of the pump power above threshold.
By fast switching of the resonator quality factor,
short laser pulses in the nanosecond range can be
realized (Q-switched lasers).

Coupling of many lasing resonator modes (mode
locking) results in even shorter pulses down to
about 1 picosecond.

By pulse compression in optical fibers or by
nonlinear gain manipulation inside the laser ca-
vity (Kerr lens mode locking) femtosecond laser
pulses have been obtained.

¢) What is the threshold inversion Nj;— N;,
if the total losses per roundtrip of 10%
should be compensated for by the gain over
a path length of 20cm in the active me-
dium?

a) Calculate the Doppler-width of the neon line
at A = 633 nm in a gas discharge with a tempera-
ture of T = 600 K.

b) How many resonator modes TEM o, for
a resonator length of 1 m can oscillate, if the laser



threshold is at 50% of its maximum value at the
line center?

An argon laser with a resonator length d = 1 m,
oscillating at a wavelength A =488nm can be
forced to oscillate on a single mode by inserting
a Fabry-Perot etalon inside its resonator.

a) What is the thickness ¢ of the solid fused quartz
etalon with a refractive index n = 1.5, if only one
etalon transmission maximum should lie within
the Doppler broadened gain profile of the argon
transition at a discharge plasma temperature of
T =5000K?

b) What is the reflectivity R of the two coated
planes of the etalon, if the transmission T of the
etalon for the neighboring laser resonator modes
should decrease to T = 1/3 of that for the selected
mode with 7' =1 at the maximum of the etalon
transmission?

Assume that the two end mirrors of a laser re-
sonator are connected by invar steel rods with
alength d = 1 m and a thermal expansion coeffi-
cienta =12 x107 0K~

a) How much does the laser frequency v shift for
a temperature change AT = 1K?

b) If the laser wave inside the resonator passes
through 40 cm air at atmospheric pressure, what
is the frequency shift for a pressure change of
10 mbar? c) Is the dependence of the cavity’s geo-
metric length on the pressure change significant?
Give an estimation of this change, using Hooke’s
law, for the invar rods (the elastic modulus of in-
var is E = 107 N/mz, the diameter of the rods is
1cm).

The nearly parallel beam of a laser with wave-
length A = 10 um and output power of P = 10 W
has a beam diameter of d = 3 cm. It is focused by
alens with f =20cm.

a) How large is the beam waist wq in the focal
plane?

b) The intensity distribution in this plane is

1(r) = Iy x exp[—(r/wo)*] .

Problems

‘What is the value of 1?

c) Assume that 10% of the laser power can be
used for evaporating material from a steel sheet
with thickness = 1 mm placed in the focal plane.
How long will it take for the laser beam to produce
a hole through the steel sheet, if the evaporation
heat is 6 x10° J/Kg?

A short Fourier-limited laser pulse (Af = 10fs)
passes through a medium with refractive in-
dex n = 1.5 and a dispersion of dn/dr =4.4 x
10*m~".

a) What is the minimum spectral width of the
pulse?

b) After which path length has the width Az of the
pulse doubled due to the linear dispersion of the
medium?

¢) How large must the intensity be in order to
compensate for the pulse spread caused by the li-
near dispersion if the nonlinear refractive index is
ny =107"%cm?/W?

a) What is the quality factor Q of a laser cavity
with mirror separation d = 1 m, mirror reflec-
tivities R; = R, =0.99 at a frequency v =15 x
10 s~ if all other losses (apart from reflection
losses) are 2% per roundtrip?

b) After how much time does the energy stored in
the cavity reduce to 1/e, if at time # = 0 the am-
plification by the active medium suddenly drops
to one?

¢) What are the separations Av and the half-widths
Sv of the longitudinal cavity resonances?
Assume the laser oscillation in a cavity mode with
v =4.53 x10" s~ starts with one photon in this
mode. How long does it take until the laser output
power in this mode has reached 1 mW, for a net
gain g per roundtrip of 5%, a resonator length
of d = 1 m and mirror transmissions R; = 0 and
R, =0.02if

a) the net gain g = —qg is independent of the
intensity?

b) the gain saturation is essential and « = g +a x

P witha=04W 'mora=055W"'m™!?
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9. Diatomic Molecules

In the next two chapters we will discuss the basic phy-
sics of molecules. In particular, the following questions
shall be addressed and answered:

e Why can neutral atoms combine to form stable mol-
ecules, i.e., what is the nature of molecular binding
forces?

e What is the internal energy structure of molecules,
which not only depends on the distribution of elec-
trons in atoms, but also on the location and motion
of atomic nuclei?

e How can chemical reactions, and therefore bio-
logical processes, be explained on a molecular
level?

First we will discuss diatomic molecules, because their
treatment is simpler than that of polyatomic molecules.
From the didactical point of view, they provide a good
understanding of many problems, which are relevant
not only to diatomics but also to polyatomic mol-
ecules. In particular, the interaction between two neutral
atoms and its dependence on their distance R from
each other will give us better insight into the na-
ture of chemical bonds. Also, the model of atomic
orbitals, which give an intuitive picture of the spa-
tial electron distribution and play an important role in
chemistry, can be explained more readily for diatomic
molecules.

Similarly to the situation for atoms, transitions bet-
ween different molecular levels can be induced by
absorption or emission of radiation. Since the energy
levels of molecules are not only determined by electro-
nic excitation but also by vibrations of the nuclei or the
rotation of the whole molecule around an axis through
its center of mass, the spectra of molecules are much
more complex than those of atoms, but on the other hand
they also give more detailed information about the in-
ternal structure and dynamics of molecules. We will
discuss the spectra of diatomic molecules in Sect. 9.6,

while Chap. 10 deals with the structure, the spectra and
dynamics of polyatomic molecules.

We will start with the simplified model of rigid mol-
ecules, where the nuclei are clamped at a given position.
For diatomic molecules this means that the internuclear
distance is fixed and we neglect their vibration . For
any arbitrary, but constant, value of R the energy of the
molecule is calculated. This yields the potential energy
curves E(R) for the different electronic states of the
molecule. Later on we will then extend our model to
include molecular vibration and rotation.

9.1 The H;' Molecular Ion

The simplest of all molecules is the H; ion, consi-
sting of two identical nuclei (protons) and one electron
(Fig.9.1). The interaction potential E, between the
three particles is

&2 1+1 1
4meg \ra 138 R/

Epot = 0.1

Fig.9.1. H; molecular ion
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When we chose the center of mass of the two protons
as the origin of our coordinate system (because of its
small mass the electron does not noticeably change the
center of mass) we obtain from Fig. 9.1 the relations

1
r=Rpo+rn=Rg+rg=r= ) (ra—+rp)

because Ry = —Rg. With R=rp —rg we can re-
place rp and rg by:
1 1
= R; =r— R. 9.2
ra=r+ ) rp=r— 9.2)

The Schrodinger equation for this three body problem
is:

A®=E® (9.32)
with
N h2
H=— A
M (AA(RA) + Ap(RB))
hZ
- Ae(r) + Epot(ry R) (93b)
2m

where the first two terms represent the kinetic energy of
the nuclei, and the third term that of the electron. The
nuclei and the electron move in the potential £, (r, R).

9.1.1 The Exact Solution
for the Rigid Hf Molecule

Differing from the situation for the H atom, the
Schrodinger equation (9.3) cannot be solved analyti-
cally. One must therefore use approximations. Because
of the much larger mass of the nuclei (M/m =~ 1836)
their velocities v and their kinetic energy Eyi, = p*/2M
is much smaller than that of the electron. In a first ap-
proximation we can neglect it. In this approximation
the two nuclei are clamped at a given distance R (ri-
gid nuclear frame). The nuclear distance R = |R| can
be regarded as a freely chosen parameter. This means
that (9.3) is solved for all relevant values of R. This gi-
ves the wave function and the energy of the electron
(Exin + Epo) plus the repulsive potential energy bet-
ween the two nuclei for each chosen value of R, i.e., as
a function of the parameter R.

In this approximation of the rigid Hj the
Schrodinger equation (9.2) with the potential (9.1)
becomes:

h? A 2 (1 N 1 1
—_— e r — —_
2m dmweg \ra rg R

X P(rp,rg, R) = E(R)®P(ra,rp, R) 9.4)

where r and rg depend on the coordinates both of the
electron and of the two nuclei.

Equation (9.4) can be solved analytically in a similar
way as (5.1) for the H atom. Since the potential energy
is no longer spherically symmetric but has cylindrical
symmetry, it is convenient to use elliptical coordinates:

_rA+TB |

I'an —FrB

o V= ;
R R
@ = arctan (y) 9.5)

X

where the location of the two nuclei are the focal points
of the ellipsoid with cylindric symmerty and the z-axis
as symmetry axis is chosen to coincide with the line
between the two nuclei (Fig.9.2). In elliptical coordi-
nates the wave function, which is dependant on three
coordinates, is separable into the product

@(ra.re, R) = M(1) x N(v) x ¢(¢) (9.6)

o>
x
Ow
/

_Atls

"—B

v=-_—2=

R tgp=y/x

/ Plane v=0
/7
)/ Y T~ Plane ¢=0
; '
. I e\

1 _' Z

Rotational symmetric u=1=z axis
ellipsoid

n=const

Fig. 9.2. Elliptical coordinates and their physical interpreta-
tion



of three functions, where each function depends on only
one coordinate. The condition @(u, v, ¢) = 0 is fulfil-
led on a surface in the three-dimensional space. The
function @ becomes zero if at least one of the three
factors is zero. The first factor M(x) becomes zero
for ro +rg = 0. This is fulfilled on the surface of an
ellipsoid with rotational symmetry around the z-axis
(Fig. 9.2b). The second factor N(v) is zero for rp = rg.
This is the symmetry plane z = 0, perpendicular to the
z-axis. The third factor is zero for ¢ = 0 which gives
the x-z-plane.

Similar to the separation of the hydrogen atomic
wave function, we obtain three equations for the func-
tions M(u), N(v) and ¢(¢), which are analytically
solvable. Since the solutions have to be unambiguous
and normalized, this imposes restrictions on the wave
functions and leads to definite wave functions and
discrete energy eigenvalues E,(R), which, however,
depend on the internuclear separation R (Fig.9.3).

The spatial part @(r, R) of the wave function
is called a molecular orbital. Its absolute square
—e x |®(r)|? gives the spatial distribution of the
electron charge, for any given value of the nuclear
distance R.

The functions E(R) can monotonously decrease
with increasing R (repulsive instable energy states) or
they can show minima at a certain value of R (stable
energy states).

Fig.9.3. Schema-
tic representation
of potential cur-
ves E(R) corre-
sponding to bound
states and repulsive
unstable states

m
3
Ty

9.1. The H2+ Molecular Ion

e (1 1 1
4me (R _<rA + rB>>
9.7)

are called potential energy curves, although they also
include, besides the potential energy, the time-averaged
kinetic energy of the electron. They describe the poten-
tial in which the nuclei can vibrate, if we go beyond the
approximation of the clamped nuclei.

Since the potential is not spherically symmetric,
the angular momentum [/ of the electron is no lon-
ger constant in time. The vector [ precesses around
the internuclear axis. Its absolute value |I| depends
generally on the internuclear separation R, but its pro-
jection onto the z-axis has a well-defined expectation
value

(Ly=m-h,

These curves

E(R) = (Exin(e7))+

(9.8a)

which is determined by the integer m =0, 1, 2, ...
+/ (Fig.9.4) and is, for a given potential curve E(R)
independent of R. The reason for this is that the operator

I, = (h/)d/d¢ (9.8b)

depends solely on ¢ and not on R. If it is applied to the
function (9.6) it acts only on the last factor ¢(¢) and
yields the eigenvalue m - h. This is completely analo-
gous to the case of the hydrogen atom in an external
magnetic field, where the spherical symmetry is broken
and only cylindrical symmetry is left and the vector /
precesses around the field axis.

The difference is, however, that in the axial electric
field of a nonrotating diatomic molecule the energy of
alevel does not depend on the direction of the field. This
means, that levels with (I,) = 4m -h have the same

N

Fig. 9.4. The precessing orbital angular momentum I of the
electron and its constant projection [, = Ah
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energy. Therefore the molecular levels are described
by the quantum number A = |m|. Instead of (9.8a) we
write

(I.)=MAh. (9.8¢)

Analogous to the nomenclature in atoms, electrons in
diatomic molecules are called o-electrons for A = 0; -
electrons for A = 1 and §-electrons for A =2 etc. The
Latin letters used in atoms are just replaced by Greek
letters for molecules.

Due to the precession of the electron around the
internuclear axis for A >0 a magnetic field in z-
direction is produced. If we take into account the
electron spin s, the magnetic moment /s can have two
different orientations in this field, similar to the situa-
tion for atoms in the Stern—Gerlach experiment (see
Sect. 5.5). The electron spin precesses around the ma-
gnetic field direction (which is the z-direction) and only
its z-component

(s:)=mg-h==%lh (9.8d)

has definite eigenvalues (Fig.9.5).

The energy state E(R) of the electron in the
clamped nuclei model for a given nuclear di-
stance R is completely defined by the principal
quantum number n, the quantum number A of
the z-projection of I and mg of s. This state
E(n, A, mg) can therefore be characterized by the
three quantum numbers n, A, m.

~——2h —>\|/<— mgh

[—— oh = (A +mg)h

Fig. 9.5. The projections (/;) = Lk of the orbital angular mo-
mentum / and (s;) = mgh of the electron spin s adds up to
the total projection wh = (A +mg)h

Note:

In the literature the spin projection quantum number 1
is often labeled as o. In order to avoid confusion with
the state with A = 0, which is also called a o-state, we
will use m; instead of ¢ in this book.

In Fig. 9.6 the spatial distribution of some molecular
orbitals are shown. They are characterized by the three
quantum numbers n, / and A as n/A, where n is a number
that labels the electronic states according to increasing
energy (analogous to the principal quantum number n
in atoms), / is the quantum number of the orbital an-
gular momentum / which is, however, only defined for
large R, and A the projection quantum number. As in
atoms the states with different /-values for R — oo are
labeled with Latin letters (s for [ =0, p for/=1...).
A molecular orbital withn =1,/ =0, A =0 is named

y
L» () (] o [ ]
z
y
‘_> ) ()
X
1sc 2s0
y
T
|
, ¢ 2 @ °
|
I ;
VL
2
. ( J pr ( J

Fig. 9.6. Some examples of molecular orbitals of the H;r ion.
In the blue regions @ > 0, in the grey ones @ < 0. The solid
lines give the location of @ =0



Table 9.1. Quantum numbers and term nomenclature of a mo-
lecular electron with principal quantum number n, angular
momentum quantum number /, projection quantum number
A=Im|

1 0 0 lso
2 0 0 250
2 1 0 2po
2 1 1 2pw
3 3 1 3dm
3 3 2 3ds

Iso and withn =2, =1, A =1 is a 2pm orbital (see
Table 9.1).

9.1.2 Molecular Orbitals
and LCAO Approximations

Although the rigid H molecule can be treated ti-
gorously, it is instructive to apply some important
approximation methods to the description of this sim-
ple molecule and to compare the results with the exact
solutions. We can then learn more about the advan-
tages and deficiencies of these methods when they
are applied to larger molecules, that cannot be treated
exactly.

One of these methods is the LCAO approximation,
where the molecular wave function is composed of li-
near combinations of atomic orbitals of the atoms that
form the molecule. The coefficients of the atomic or-
bitals in this linear combination are optimized in such
a way, that the energy, calculated with this molecular
wave function becomes a minimum. This optimization
procedure is based on the fact that the correct wave func-
tion always yields lower energies than the approximate
functions [9.1].

Since the absolute square |®(x, y, z)|2 of the wave
function @ represents the spatial probability den-
sity distribution of the electron, which corresponds
to the classical orbitals of the electron in the mol-
ecule, the molecular wave function is called a molecular
orbital.

The H; molecular ion can be composed of an H
atom and an H*-ion (= proton) (Fig. 9.7). For the lowest
energy state of H, the H atom is in its 1s ground state.
The atomic orbital of the electron in the H atom is then

9.1. The H2+ Molecular Ion

e e
ra '8
A R B A R B
H + H" = H* + H
Fig. 9.7. Equivalence of the two configurations Ha + Hg and
HY +Hg
(see Table 5.2):
Pa(ra) = e A, 9.9)
nay

The electron can be found around either nucleus A or B.
Both possibilities lead to the Hy ion when the two
nuclei are brought to the proper distance R = R.. Since
we cannot distinguish between the two possibilities we
have to take both into account. We therefore choose the
molecular wave function as the linear combination

@(r, R) = c19a(ra) +c2¢8(rp) (9.10)

where ro =r + R/2 and rg =r — R/2 can be substitu-
ted by the nuclear separation R and the distance r = |r|
of the electron from the center of mass (Fig.9.1).

The wave function should be normalized for
arbitrary values of R. This demands

/