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 My interest in missing data issues began in the early 1980s when I began working 
with the group that was to become the Institute for Health Promotion and Disease 
Prevention Research (better known as IPR) at the University of Southern California. 
This was my introduction to large-scale, longitudinal,  fi eld-experimental research. 
I had been trained in a traditional experimental social psychology program at the 
University of Southern California, and most of my colleagues at IPR (at least in the 
early days) happened also to have been trained as social psychologists. Given my 
training, much of my thinking in these early days stemmed from the idea that 
researchers had substantial control over the extraneous factors in their research. 
Thus, much of my early work was focused on gaining a degree of control in  fi eld 
experiment settings. 

 The challenges, of course, were numerous, but that is one of the things that made 
it all so interesting. One of the key challenges in those early days was missing data. 
The missing data challenge manifested itself as missing responses within a survey 
and as whole surveys being missing for some people at one or more waves of longi-
tudinal measurement. Missingness within a survey often was due to problems with 
individual items (if students were confused by a question, a common reaction was 
to leave it blank) and problems with the length of the survey (slower readers would 
often leave one or more pages blank at the end of the survey). When whole surveys 
were missing from one or more waves of the longitudinal study, it was not uncom-
mon that the student would return to complete a survey at a later wave. It was also 
common, however, that once a student was missing entirely from a measurement 
wave, that the student remained missing for the duration of the study. 

 In those days, there were no good analysis solutions for dealing with our missing 
data, at least none that one could expect to use with anything close to standard soft-
ware. Our only real solution was to ignore (delete) cases with any missingness on the 
variables used for any statistical model. In fact, as I will discuss in Chap.   12    , we even 
developed a planned missing data design (the  fi rst versions of the “3-form design”) 
as a means of reducing the response load on our young student participants. Although 
this planned missing data design has proven to be an excellent tool for reducing 
response load, it further exacerbated our missing data analysis problems. My early 
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thinking on this was that because the pairwise-deletion correlations produced in this 
context would be random samples of the overall correlations, this would somehow 
help with our analysis problems. Although that thinking turned out to be correct, it 
wasn’t for another 10 years that our analysis solutions would catch up. 

 I started thinking in earnest about missing data issues in the late 1980s. The 
impetus for this new thinking was that statisticians and other researchers  fi nally 
began making good missing data analysis tools available. In fact, what happened in 
the missing data literature in 1987 alone can be thought of as a missing data revolu-
tion. In that single year, two major missing data books were published (Little and 
Rubin 1987; Rubin 1987). These two books were the statistical basis for most of the 
important missing data software developments in the following decade and beyond. 
Also published in 1987 were two in fl uential articles describing a strategy for per-
forming missing data analysis making use of readily available structural equation 
modeling (SEM) software (Allison 1987; Muthen et al. 1987). These articles were 
important because they described the  fi rst missing data analysis procedure that was 
truly accessible to researchers not trained as statisticians. Also published in 1987 
was the article by Tanner and Wong (1987) on data augmentation, which has become 
a fundamental part of some approaches to multiple imputation. 

   Philosophy Underlying This Book 

 I feel it is important to give this brief history about the development of missing data 
theory and analysis solutions as well as the history of the development of my own 
skills in missing data analysis. It is important because my knowledge and experi-
ence in this area stemmed not from a background in statistics but from the need to 
solve the real problems we faced in the burgeoning discipline of prevention science 
on the 1980s and 1990s. 

 Because of my beginnings, my goals have always been to  fi nd practical solutions 
to real-world research problems. How can I do a better job of controlling the extra-
neous factors in a  fi eld experiment? How can I draw more valid conclusions about 
the success or failure of my intervention? Also, because I was trained as an experi-
mental social psychologist and not as a statistician – not even as a quantitative 
psychologist – my understanding of the statistical underpinnings of various missing 
data techniques has often been couched in practical needs of the research, and my 
descriptions of these techniques and underpinnings have often relied more on plain 
English than on terms and language common in the statistical literature. 

 This practical basis for my understanding and descriptions of missing data tech-
niques has caused some problems for me over the years. Occasionally, for example, 
my practical approach produces a kind of imprecision in how some of these impor-
tant topics are discussed. To be honest, I have at times bumped heads a little with 
statisticians, and psychologists with more formal statistical training. Fortunately, 
these instances have been rare. Also, it has been my good fortune to have spent 
several years collaborating closely with Joe Schafer. This experience has been a 
huge bene fi t to my understanding of many of the important topics in this book. 
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 On the other hand, my somewhat unusual, practical, approach to missing data 
techniques and underpinnings has gradually given me the ability to describe these 
things, in plain English, with a satisfying degree of precision. Further, my take on 
these issues, because it is so  fi rmly rooted in practical applications, occasionally 
leads to discoveries that would not necessarily have been obvious to others who 
have taken a more formal, statistical, approach to these topics. 

 The long and short of this is that I can promise you, the reader, that the topics 
covered in this book will be (a) readable and accessible and (b) of practical value.  

   Prerequisites 

 Most of the techniques described in this book rely on multiple regression analyses 
in one form or another. Therefore, I assume that the reader will, at the very least, 
already have had a course in multiple regression. Even better would be that the 
reader would have had at least some real-world experience in using multiple regres-
sion. As I will point out in later chapters, one of the most  fl exible of the missing data 
procedures, multiple imputation, requires that the output of one’s statistical analysis 
be a parameter estimate and the corresponding standard error. Multiple regression 
 fi ts nicely into this requirement in that one always has a regression coef fi cient 
(parameter estimate) and a standard error. Other common procedures such as analy-
sis of variance (ANOVA) can be used with multiple imputation, but only when the 
ANOVA model is recast as the equivalent multiple regression model. 

 Knowledge of SEM is not a prerequisite for reading this book. However, having 
at least a rudimentary knowledge of one of the common SEM programs will be very 
useful. For example, some of the planned missing data designs described in Section 
4 of this book rely on SEM analysis. In addition, my colleagues and I have found 
the multiple-group SEM (MGSEM) procedure (Allison 1987; Muthen et al. 1987) 
to be very useful in the missing data context. The material covered in Chaps.   10     and 
  11     relies heavily on these techniques. Finally, knowledge of one of the major SEM 
packages opens up some important options for data analysis using the full informa-
tion maximum likelihood (FIML) approach to handling missing data. 

 Because my take on handling missing data is so  fi rmly rooted in the need to solve 
practical problems, or perhaps because my understanding of missing data theory 
and practice is more conceptual than statistical, I have often relied on somewhat 
low-tech tools in my solutions. Thus, I make the assumption that readers of this 
book will have a good understanding of a variety of low-tech tools. I assume that 
readers are well versed in the Microsoft Windows operating system for PCs. 1  For 
example, it will be extremely helpful if readers know the difference between ASCII 

  1   I know very little about the operating system for Apple computers, but with a few important 
exceptions (e.g., that NORM currently is not available for Apple computers), I’ll bet that good 
knowledge of the Apple operating system (or other operating systems, such as Unix or Linux) will 
work very well in making use of the suggestions described in this book. 

http://dx.doi.org/10.1007/978-1-4614-4018-5_10
http://dx.doi.org/10.1007/978-1-4614-4018-5_11


x Preface

(text)  fi les (e.g., as handled by the Notepad editor in Windows) and binary  fi les 
(e.g., as produced by MS Word, SAS, SPSS, and most other programs). Although 
the Notepad editor for editing ascii/text  fi les will be useful to an extent, it will be 
even more useful to have a more full-featured ascii editor, such as UltraEdit (http://
www.ultraedit.com).  

   Layout of this Book 

 In Section 1 of this book, Chaps.   1     and   2    , I deal with what I often refer to as missing 
data theory. In Chap.   1    , I lay out the heart of missing data theory, focusing mainly 
on dispelling some of the more common myths surrounding analysis with missing 
data and describing in some detail my take on the three “causes” of missingness, 
often referred to as missing data mechanisms. I also spend a good bit of space in 
Chap.   1     dealing with the more theoretical aspects of attrition. In Chap.   2    , I describe 
various analysis techniques for dealing with missing data. I spend some time in this 
chapter describing older methods, but I stay mainly with procedures that, despite 
being “old,” are still useful in some contexts. I spend most of the space in this chap-
ter talking about the more theoretical aspects of the recommended methods (multi-
ple imputation and maximum likelihood approaches) and the EM algorithm for 
covariance matrices. 

 In Section 2, I focus on the practice of multiple imputation and analysis with 
multiple imputed data sets. In Chap.   3    , I describe in detail multiple imputation with 
Schafer’s (1997) NORM 2.03 program. Chapter   4     covers analysis of NORM-
imputed data sets with SPSS (versions 15, 16, and lower; and newer versions with-
out the new MI module). In this chapter, I outline the use of my utility for automating 
the process of analysis with multiple imputed data sets, especially for multiple 
regression analysis. In Chap.   5    , I describe multiple imputation with the recently 
released versions of SPSS (version 17–20) that include the MI module. In this chap-
ter, I describe the process of performing multiple imputation with small data prob-
lems, staying within the SPSS environment, and performing automated analysis 
with regression and logistic regression. I also describe the limitations of this initial 
SPSS product (through version 20) and suggest the preferable alternative of doing 
MI with NORM 2.03 (along with my automation utility for reading NORM-imputed 
data into SPSS), but performing analysis and automation with the quite excellent 
automation features newly available in SPSS 17 and later versions. In Chap.   6    , 
I cover the topic of imputation and analysis with cluster data (e.g., children within 
schools). I describe analysis of multilevel data with SPSS 17–20 Mixed module and 
also with HLM 6. I also describe a feature of my automation utility for analyzing 
NORM-imputed data with HLM 6–7. In Chap.   7    , I discuss in detail multiple impu-
tation with SAS PROC MI. In this chapter, I provide syntax for analysis with PROC 
REG, PROC LOGISTIC, and PROC MIXED and describe the combining of results 
with PROC MIANALYZE. 

http://dx.doi.org/10.1007/978-1-4614-4018-5_1
http://dx.doi.org/10.1007/978-1-4614-4018-5_2
http://dx.doi.org/10.1007/978-1-4614-4018-5_1
http://dx.doi.org/10.1007/978-1-4614-4018-5_1
http://dx.doi.org/10.1007/978-1-4614-4018-5_2
http://dx.doi.org/10.1007/978-1-4614-4018-5_3
http://dx.doi.org/10.1007/978-1-4614-4018-5_4
http://dx.doi.org/10.1007/978-1-4614-4018-5_5
http://dx.doi.org/10.1007/978-1-4614-4018-5_6
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 In Section 3, I focus on the practicalities of dealing with missing data, especially 
with multiple imputation, in the real world. In Chap.   8    , I address the issue of spot-
ting and troubleshooting problems with imputation. In Chap.   9     (with Lee Van Horn 
and Bonnie Taylor), I address the major practical concern of having too many vari-
ables in the imputation model. In Chap.   10    , I cover the topic of doing simulation 
work with missing data. Given the popularity of simulations for answering many 
research questions, it is important to address issues that arise in the conduct of simu-
lations relating to missing data. In addition to a brief description of the usual Monte 
Carlo approach to simulations, I also outline a more compact, non-Monte Carlo, 
approach that makes use of the multiple-group capabilities of SEM programs. In 
this section, I describe simulations based on MCAR missingness (this approach is 
at the heart of the material covered in Chap.   9    ), but I also extend this work in an 
important way to describe an approach to non-Monte Carlo simulations with MAR 
and MNAR missingness. In Chap.   11     (with Linda M. Collins), I cover the important 
area of including auxiliary variables in one’s model. This chapter focuses mainly on 
addressing the problems associated with participant attrition. It touches on the value 
of auxiliary variables for bias reduction, but focuses on recovery of lost statistical 
power. The chapter covers practical strategies for including auxiliary variables in 
MI and FIML models. I outline an automation utility for determining the bene fi t of 
including auxiliary variables under a variety of circumstances. 

 Section 4 of the book describes the developing area of planned missing data 
designs. These designs allow researchers to make ef fi cient use of limited resources, 
while allowing meaningful conclusions to be drawn. Chapter   12     describes the the-
ory and practical issues relating to implementation of the 3-form design, a kind of 
matrix sampling design. Chapter   13     (with Allison Shevock; nee: Olchowski) 
describes a design we have called two method measurement. In this chapter, we 
present the theory and practical issues of implementing this SEM-based design.                      

http://dx.doi.org/10.1007/978-1-4614-4018-5_8
http://dx.doi.org/10.1007/978-1-4614-4018-5_9
http://dx.doi.org/10.1007/978-1-4614-4018-5_10
http://dx.doi.org/10.1007/978-1-4614-4018-5_9
http://dx.doi.org/10.1007/978-1-4614-4018-5_11
http://dx.doi.org/10.1007/978-1-4614-4018-5_12
http://dx.doi.org/10.1007/978-1-4614-4018-5_13
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   Overview 

 In this  fi rst chapter, I accomplish several goals. First, building on my 20+ years of 
work on missing data analysis, I outline a nomenclature or system for talking about 
the theory underlying the modern analysis of missing data. I intend for this nomen-
clature to be in plain English, but nevertheless to be an accurate representation of 
statistical theory relating to missing data analysis. Second, I describe many of the 
main components of missing data theory, including the causes or mechanisms of 
missingness. Two general methods for handling missing data, in particular multiple 
imputation (MI) and maximum-likelihood (ML) methods, have developed out of 
the missing data theory I describe here. And as will be clear from reading this book, 
I fully endorse these methods. For the remainder of this chapter, I challenge some 
of the commonly held beliefs relating to missing data theory and missing data anal-
ysis, and make a case that the MI and ML procedures, which have started to become 
mainstream in statistical analysis with missing data, are applicable in a much larger 
range of contexts that typically believed. 

 Third, I revisit the thinking surrounding two of the central concepts in missing 
data theory: the Missing At Random (MAR), and Not Missing At Random 
(NMAR) concepts. Fourth, I describe estimation bias that is due to missingness 
that is NMAR, and outline several factors that in fl uence the magnitude of this 
bias. In this section, I also make the case for thinking about the practical 
signi fi cance of the bias. Fifth, I pull together the information we have to date 
about the factors that in fl uence missing data bias, and present a sensitivity analy-
sis showing that missing data bias commonly described in studies may be much 
less severe than commonly feared. 

 Sixth, I extend the work on estimating missing data bias, introducing a taxonomy 
of attrition that suggests eight different attrition scenarios that must be explored in 
future research. Finally, I present design and measurement strategies for assuring 
that missingness is MAR. In this  fi nal section, I talk about measuring the plausible 
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causes of missingness, about measuring “auxiliary” variables, and about the value 
of collecting additional data on a random sample of those initially missing from the 
main measure of one’s study.  

   Missing Data: What Is It? 

 Two kinds of missing data have been described in the literature. These are often 
referred to as  item nonresponse  and  wave nonresponse . In survey research, item 
nonresponse occurs when a respondent completes part of a survey, but leaves some 
individual questions blank, or fails to complete some parts of the survey. This type 
of missing value might occur because the person just did not see the question. It 
could occur because the person did not know how to respond to the question. It 
could be that the person intended to come back to the skipped question, but just 
forgot. It could be that the person leaves the question blank because of the fear that 
harm may come to him or her because of the response. It could be that the person 
leaves the questions blank because the topic is upsetting. Some people may not 
answer questions near the end of a long survey due to slow reading. Finally, it could 
be that the person fails to respond to the question because the question was never 
asked in the  fi rst place (e.g., in planned missing data designs; see Chaps.   12     and   13    ). 

 The concept of item nonresponse also applies to other types of research, where 
a research participant has some, but not all data from the measurement session. 
It could be that the data value was simply lost during the data collection or data 
storage process. It could be that the data value was lost because of equipment mal-
function. It could be that the value was lost due some kind of contamination. It 
could be that the person responsible for data collection simply forgot to obtain that 
particular measure. 

 Wave nonresponse applies to longitudinal research, that is, research in which the 
same individuals are measured at two or more times (waves). Wave nonresponse 
describes the situation in which a respondent fails to complete the entire survey (or 
other measure); that is, when the person is absent from an entire wave of the longi-
tudinal study. In some cases, the individual is missing entirely from one wave of 
measurement, but comes back to complete the measurement at a later wave. In other 
cases, the person is missing entirely from one wave of measurement, and never 
returns. I refer to this latter, special case as  attrition . 

 For a variety of reasons, which will become clear as you read through this book, 
I typically do not worry too much about item nonresponse. One upshot of this is that 
I typically do not worry too much about missing data in cross-sectional measure-
ment studies. Of course, situations may occasionally arise in which item nonre-
sponse causes serious problems for statistical inference, but I usually view this type 
of missingness more as a nuisance – a nuisance that can be dealt with extremely 
well by the missing data analysis strategies described in this book. 

 Even wave nonresponse is typically not a particular problem when the respon-
dent returns to provide data at a later wave. Dealing with missing data involves 

http://dx.doi.org/10.1007/978-1-4614-4018-5_12
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making guesses about what the missing values might plausibly be, based on what is 
known about the respondent. If the researcher has data at a prior wave and data at a 
later wave on the same respondent, then these guesses are typically very good, 
because this is a kind of interpolation. With attrition, the researcher has information 
about the respondent only at a prior wave. Thus, making the guesses about the 
respondent’s missing values involves extrapolation. And one is typically much less 
con fi dent about guesses based on extrapolation. Still, as I describe in this chapter, 
much can be known, even in the case of attrition. So even with attrition, researchers 
can typically have good con fi dence in the performance of the missing data analysis 
procedures I describe throughout this book, provided they pay careful attention to 
all sources of information available to them.  

   Missing Data: History, Objectives, and Challenges 

 The problem of missing data has long been an issue for data analysis in the social 
and health sciences. An important reason for this is the fact that algorithms for data 
analysis were originally designed for data matrices with no missing values. This all 
began changing in rather dramatic fashion in 1987 when two important books (Little 
and Rubin  1987 ; Rubin  1987  )  were published that would lay the groundwork for 
most of the advances in missing data analysis for the next 20 years and beyond. 

 These two published works have produced two rather general strategies for 
solving the missing data problem, MI and ML. I provide a more detailed discus-
sion of these topics in Chap.   2     (under the heading, “Basics of Recommended 
Methods”). With either of these solutions to the missing data problem, the main 
objectives, as with any analysis procedure, are to obtain unbiased estimates of the 
parameters of interest (i.e., estimates that are close to population values), and to 
provide an estimate of the uncertainty about those estimates (standard errors or 
con fi dence intervals). 

 A good bit of missing data theory has been counterintuitive when viewed from 
the perspective of researchers with standard training in the social and health sci-
ences. It was not until the software solutions began to emerge in the mid-to-late 
1990s that it became possible to convince these scientists of the virtues of the new 
approaches to handling missing data, namely MI and ML. Although the use of these 
new approaches was undeniably a huge step forward, the theoretical underpinnings 
of these approaches have in large part remained a mystery. 

 Part of that mystery stems from that fact that the language used to describe miss-
ing data theory is as easy to understand for social and health scientists as ancient 
Aramaic. Although the language of the formal equation in statistical writing is 
beyond the ken of most nonstatistics researchers with standard training, an even 
bigger impediment to comprehending the underpinnings of modern missing data 
procedures is that the statistics books and articles on missing data commonly con-
tain plain English words that have meanings in this context that are rather different 
from plain English.  

http://dx.doi.org/10.1007/978-1-4614-4018-5_2
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   Terms 

 There are several terms that are at the heart of modern missing data theory that have 
been widely misunderstood outside of the statistics realm. Among these are model, 
missingness, distributions, and mechanisms of missingness. I would argue that to 
understand these terms fully, one must speak the language of statistics. Barring that, 
one must translate these fundamental concepts into plain English in a way that pre-
serves their overall meaning with a satisfying degree of precision. The next sections 
tackle this latter task. 

   Model 

 The word “model” appears in at least three ways in any discussion of missing data 
analysis. In order to avoid confusion, and to distinguish among the three different 
types of model, I de fi ne them here. 

 First, I will frequently mention the analysis model of substantive interest. I will 
refer to this model as the  analysis model . This is the model one tests (e.g., regres-
sion model; SEM model) to address the substantive research question. 

 The second type of model is the model that creates the missing data. I will refer 
to this type of model as the  missing data creation model . For example, in later sec-
tions of this chapter, I talk about a system of IF statements that can be used to gener-
ate MAR missingness. Such a set of statements might look like this:

     

= =
= =
= =
= =

if Z 1,  the probability that Y is missing [p(Ymis)] .20

if Z 2,  p(Ymis) .40

if Z 3,  p(Ymis) .60

if Z 4,  p(Ymis) .80
    

 In this instance, the probability that Y is missing depends on the value of the 
variable Z, as shown in the IF statements. 

 It is important to realize that except for simulation work (and the kind of planned 
missing data measurement designs described in Chaps.   12     and   13    ), no one would 
want to create missing data. Also, although one typically does not know the details 
of this model, except in simulation work, it is often useful to have a sense of 
the kinds of models that create missing data. Later in the this chapter, for example, 
I will talk about sensitivity analyses in which one can make use of various missing 
data creation models to get a sense of the range of values that are plausible replace-
ments for a missing value. Finally, a little later in this chapter I will mention that 
some missingness is often described as “ignorable.” For that type of missingness, it 
is the details of the missing data creation model that are ignorable. 

 The third type of model is the model in which the missingness is handled. As I 
describe in this book, missingness will typically be handled with MI or ML procedures. 

http://dx.doi.org/10.1007/978-1-4614-4018-5_12
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I will refer to the models that describe these procedures as the  missing data analysis 
model . For example, when I talk about whether a particular variable has been, or 
should be, included in the missing data analysis model, I am talking about whether 
the variable has been included in the MI (or ML) model. Finally, note that for the 
“model-based” (ML) missing data procedures (see Chap.   2    , Basics of Recommended 
Methods), the  Analysis Model  and the  Missing Data Analysis Model  are the same.  

   Missingness 

 Even this very fundamental term has been long misunderstood by nonstatisticians. 
Little and Rubin  (  2002  )  do not actually de fi ne this term, but their term  missing data 
patterns  seems closely related. Schafer and Graham  (  2002  )  talked about missing-
ness by saying, “In modern missing-data procedures missingness is regarded as a 
probabilistic phenomenon (Rubin  1976 ).” 

 I believe that a de fi nition that talks about probabilities is at the heart of the confu-
sion about this concept. Being a probabilistic phenomenon may well make sense 
within the language of statistics. But it makes less sense in plain English. In my 
system, I begin by de fi ning missingness using the standard rules of plain English:

   Missingness  is the state of being missing.   

 There is nothing in this de fi nition about probabilities. The phrase “state of being,” 
which is a common descriptor for other English words ending in “ness,” implies a 
static state, not a  fl uid or probabilistic one. The value is either missing or it is not. 
Please understand that what I am saying here does NOT deny the importance of 
probabilities in this context. It is just that I believe that the concept of probability, 
from the perspective of plain English, comes into the picture in a different way, and 
not in the de fi nition of missingness itself. 

 In my system, my de fi nition of missingness (the state of being missing) seems 
clear enough. However, in the next sections, I talk about the reasons for the missing-
ness, and about variables that are related to, or explain missingness. That is, I will 
be talking about the causes of missingness. However, the  fi rst rule of causation is 
that the cause and effect must covary (e.g., Cook and Campbell  1979 ). And before 
the cause and effect can covary, each must  fi rst vary. That is, each must  fi rst be a 
variable (a quantity that takes on variable values). Thus, I will also need missing-
ness to be a variable. A convenient operational de fi nition of missingness is a binary 
variable,  R , that takes on the value 1 if a variable (Y) is observed (i.e., not missing), 
and 0 if Y is missing. 1  

   1   Schafer and colleagues (Collins et al.  2001 ; Schafer and Graham  2002 ) have referred to this 
variable as  R ; Little and Rubin  (  2002 ; and Rubin  1976 ) refer to the same variable as  M .  

http://dx.doi.org/10.1007/978-1-4614-4018-5_2
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 To be absolutely clear, at a conceptual level, I de fi ne missingness as the state of 
being missing. But as an operational de fi nition:

     =Missingness R      

   Distribution 

 Schafer and Graham  (  2002  )  say, “[w]e treat  R  as a set of random variables having a 
joint probability distribution.” Note that they say that  R has  a joint probability dis-
tribution, not that  R is  a joint probability distribution. It is important in my system 
that the probability distribution is not  R  itself. It is something outside  R . That distri-
bution is described in the next section.  

   Mechanisms of Missingness 

 “In statistical literature, the distribution of  R  is sometimes called the response mech-
anism or missingness mechanism, which may be confusing because mechanism 
suggests a real-world process by which some data are recorded and others are 
missed” (Schafer and Graham  2002 ; p. 150). Again, it is critical to see that these 
mechanisms are separate from  R  itself. However, here there is an added layer of 
confusion having to do with the differences between the language of statistics and 
plain English. I am referring here to syntax. Note that Schafer and Graham referred 
to it as “… the process by which some data are recorded and others are missed.” I 
believe that this statement is precise in plain English. 

 On the other hand, other writers refer to the idea of processes (or mechanisms) 
causing the missing data (i.e.,  R ). It may seem that I am just being pedantic in mak-
ing this point, but I believe statements such as this imply a model that is different 
from what researchers typically think of as addressing causal mechanisms. When 
researchers want to test whether it is reasonable to say “X causes Y,” they would 
typically perform a regression (or comparable) analysis in which X (which can be a 
manipulated variable) predicts Y. That is,

     ⇒X  Y.     

 In order to be consistent with this type of model, we should say that variables 
cause variables. In talking about missingness, we could say that some variable, Z, is 
the cause of missingness, that is,

     Z .R⇒     
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 Let me summarize my system on this point. First, we have mechanisms, which 
describe the process by which one or more variables causes missingness, that is the 
process by which some variable, Z, causes  R . Second, we have the variables that 
represent the various causes of missingness.   

   Causes of Missingness 

 What the statisticians refer to as the mechanisms of missingness generally fall into 
three categories: Missing Completely At Random (MCAR), Missing At Random 
(MAR), and Not Missing At Random (NMAR). 2  It makes sense that the various 
 causes of missingness  (i.e., variables that cause missingness) would fall into these 
three categories. Schafer and Graham  (  2002  )  suggest “[t]o describe accurately all 
potential causes or reasons for missingness is not realistic.” However, and note that 
I am diverging somewhat from Schafer and Graham on this point, even if many 
causes are plausible, and I can think of only some of them, I believe that it is valuable 
to think in terms of causes of missingness. 

 In order to facilitate this discussion, Table  1.1  presents a list of all variables (by 
class) that are relevant to missingness (sometimes by not being related to it). It is 
customary in describing these concepts to refer just to MCAR, MAR, and NMAR 
missingness (although see Little  1995 , who extends the list to include “covariate-
dependent dropout”). However, in Table  1.1 , I focus on the causes of missingness 
(the variables) rather than on the mechanisms. Also, I have attempted in Table  1.1  
to provide an exhaustive list of all possible causes of missingness.  

 In discussing the various causes of missingness, some readers might be thinking 
that there is no way of knowing what the true cause of missingness is, so what is the 
point of this extensive list? Although it is true that we cannot know all the causes of 
missingness, I believe we can agree that all of the causes come from the categories 
on this list. And I believe that if we can at least conceive of a class of variables, then 
we should be able to think of at least some variables that would fall into that class. 
Further, I believe that this type of thinking can be useful in helping us make plau-
sible guesses about the effects that these unknown variables have on our statistical 
estimation. 

 First in Table  1.1  is  R , which I have already de fi ned as a binary variable that is 
the operational de fi nition of missingness, and that takes on the value 1 if Y is 
observed, and 0 if Y is missing. 

   2   Little and Rubin  (  2002  )  refer to this as Not Missing At Random (NMAR). But Schafer and 
 colleagues (Collins et al.  2001 ; Schafer and Graham  2002 ) refer to this same mechanism as Missing 
Not At Random (MNAR). I have decided to use NMAR here, because it makes sense that missing-
ness should either be MAR or not (i.e., Not MAR). However, there are good arguments for using 
MNAR as well. I view the two terms to be interchangeable.  
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 In Table  1.1 , I describe Y as a variable that is in the data set, but that is sometimes 
missing. I am describing the case where just one variable (Y) has missing data, but 
everything I say here can be applied to more complex missingness patterns (e.g., 
more than one variable with missing data and a variety of patterns of missing and 
observed variables). Also I am thinking here of this variable as the dependent vari-
able (DV) in a regression analysis, but what I say also applies to other analysis 
models, and to models in which “Y” is some variable in the analysis model other 
than the DV (e.g., a mediation model with missing data for both the mediator and 
the outcome; or a growth model in which the variable being measured over time has 
missing data at more than one time). 

 The subscript  
 R 0

  means that Y is not related to its own missingness;  
 R 1

  means that 
Y is related its own missingness. For example, if Y was cigarette smoking, and if 
smokers were just as likely as nonsmokers to have missing data, then it would be 
Y 

Y1,R0
 . However, if smokers were more likely than nonsmokers to have missing 

data, then it would be Y 
Y1,R1

 . 
 Next, are variables labeled X. These variables are of substantive interest; they 

are in the data set, and are intended to be part of the analysis model. For example, 
if Y is smoking, I might be interested in several variables as predictors of smok-
ing. I might be interested in personality variables like empathy and intellect 

   Table 1.1    A taxonomy of all classes of variables and their relevance to missingness   

  R  A binary variable that takes on the value 1 if Y is observed, and 0 if Y is missing. This 
variable is the operational de fi nition of “missingness” – the state of being missing. 

 Y A variable of substantive interest that is sometimes missing. I usually think of “Y” as the 
dependent variable (DV) in a regression model, but it can be any variable in the analysis 
model. 

  Y 
Y1,R0

  It is related to Y (of course), but unrelated to  R . 
  Y 

Y1,R1
  It is related to Y, and also related to  R . 

 X Variables of substantive interest (will be included in the analysis model). 
  X 

Y0,R0
  It is unrelated to Y and  R . 

  X 
Y1,R0

  It is related to Y, but not to  R . 
  X 

Y0,R1
  It is unrelated to Y, but it is related to  R . 

  X 
Y1,R1

  It is related to both Y and  R . 

 V Variables not of substantive interest; that is, not in the analysis model; but in the data set. (For 
now, these are never missing.) 

  V 
Y0,R0

  It is unrelated to Y and  R . 
  V 

Y1,R0
  It is related to Y but not to  R . 

  V 
Y0,R1

  It is unrelated to Y, but it is related to  R . 
  V 

Y1,R1
  It is related to both Y and  R . 

 W Variables not in the data set (always missing) 
  W 

Y0,R0
  It is unrelated to Y and  R . 

  W 
Y1,R0

  It is related to Y but not to  R . 
  W 

Y0,R1
  It is unrelated to Y but it is related to  R . 

  W 
Y1,R1

  It is related to both Y and  R . 

 Q A completely random process such as  fl ipping a coin. Q is usually either always observed or 
always missing. Q is unrelated to all other variables, measured or unmeasured. 
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(often referred to as agreeableness and openness), GPA, and rebelliousness. In this 
case, these variables would be in the X category. 

 I will talk here about the case where these variables are always observed, but 
what I say here can also be extended to the case in which these variables are also 
sometimes missing (e.g., see Chap.   11    ; also see Enders  2008  ) . The four types of 
X variable shown in Table  1.1  vary in their relatedness (e.g., correlation) to Y and 
to  R . In the table the  

Y0,R0
  subscripts denote that the variable is uncorrelated with 

both Y and  R . For example, in one of my data sets, the personality variable empathy 
was found to be virtually uncorrelated with both smoking and missingness on smok-
ing. The  

Y1,R0
  subscripts denote that the variable is correlated with Y, but not with  R . 

For example, in my data set, the measure of rebelliousness was positively correlated 
with smoking, but was virtually uncorrelated with missingness on the smoking vari-
able. The  

 Y0,R 1
  subscripts denote that the variable is uncorrelated with Y, but is cor-

related with  R . For example, in my data set, the personality variable Intellect was 
virtually uncorrelated with cigarette smoking, but was negatively correlated with  R  
(higher intellect was associated with greater missingness on the smoking measure). 
Finally, the  

 Y1,R 1
  subscripts denote that the variable is correlated with both Y and  R . 

For example, in my data set, the variable GPA was negatively correlated with ciga-
rette smoking, and positively correlated with  R  (higher GPA was associated with 
less missingness on the smoking measure). By the rules common in philosophy of 
science, no variable can be a cause of missingness unless it is correlated with  R . 
That is, of the variables listed in Table  1.1 , only those with  

 R 1
  as a subscript can be 

causes of missingness. 
 The next class of variables is V. Most data are collected with several purposes in 

mind. Thus, variables that are central to one set of analyses will be irrelevant to 
another set of analyses. It is these “irrelevant” variables that make up the V class. 
These variables are also in the data set, but they are not of substantive interest, and 
are thus not intended to be part of the analysis model. I am thinking of the case 
where these variables are always observed, but what I say can also be extended to 
the case in which these variables are sometimes missing (e.g., see Chap.   11    ; also see 
Enders  2008  ) . With the V variables, the  

Y0
 ,  

Y1
 ,  

 R 0
 , and  

 R 1
  subscripts have the same 

meaning as with the X variables. The examples given above for the X class of vari-
ables could also apply here, except that as variables in the V class, the variables 
mentioned would not be part of the analysis model. 

 When they are causes of missingness, the two classes, X and V taken together, 
are the variables that relate to what Little  (  1995  )  referred to as “covariate-dependent 
dropout.” 

 The next class of variables in Table  1.1  is W. These variables are not in the data 
set, and thus are always missing. These variables could have been omitted from the 
data set for a variety of reasons. They may have been deemed of less importance for 
the main goals of the research, or they may have been deemed important for the 
research, but omitted for cost reasons. Alternatively, they may not have been consid-
ered for measurement at all. With the W variables, the  

Y0
 ,  

Y1
 ,  

 R 0
 , and  

 R 1
  subscripts 

have the same meaning as with the X and V variables. 

http://dx.doi.org/10.1007/978-1-4614-4018-5_11
http://dx.doi.org/10.1007/978-1-4614-4018-5_11
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 Finally, there is Q, a variable that represents a completely random process such 
as  fl ipping a coin, or drawing a value from a valid random number generator. This 
variable can be entirely observed if the researcher happens to save it. However, it is 
often discarded after it has served its purpose, and therefore is entirely missing. An 
important property is that Q is unrelated (uncorrelated) to all other variables, mea-
sured or unmeasured. 

 I want to make use of another variable, Z, that is a different kind of variable than 
those appearing in Table  1.1 . Z is a variable name I reserve as an “action” variable. 
Technically, Z can be any of the variables described in Table  1.1  (except  R ). 
Sometimes it will be the cause of missingness on Y, sometimes it will be related to 
Y, but not to  R . Sometimes it will have been measured; sometimes it will not have 
been measured. Collins et al.  (  2001  )  made good use of this variable in their article.  

   Mapping Causes of Missingness onto the Three 
Missingness Mechanisms 

 In this section, I will provide de fi nitions of the three missingness mechanisms 
typically described in the missing data literature (MCAR, MAR, NMAR). I will 
begin each section with a classic example of that mechanism, and will show how 
the causes of missingness shown in Table  1.1  map onto that missingness mecha-
nism. I will follow this with one or more de fi nitions as they have appeared in the 
literature. 

   Missing Completely at Random (MCAR) 

   Classic Example of MCAR 

 The classic example of MCAR missingness is that a researcher uses some com-
pletely random process to determine which respondent receives which of several 
planned missing data design options (e.g., which form of the 3-form design; see 
Chap.   12    ). The variable de fi ned by this completely random process is in the Q class 
in Table  1.1 . See Table  1.2  for a summary of how the variables from Table  1.1  map 
onto the three mechanisms of missingness.   

   Table 1.2    Mapping causes of missingness onto the missingness mechanisms   

 MCAR: Any cause of missingness on Y is Q, X 
Y0, R 1

 , V 
Y0, R 1

 , or W 
Y0, R 1

 . 
 MAR: Any cause of missingness on Y is X 

Y1, R 1
 , or V 

Y1, R 1
 . After conditioning on X and V, the only 

residual relationships with  R  are X 
Y0, R 1

 , V 
Y0, R 1

 , W 
Y0, R 1

 , or Q. 
 NMAR: Some cause of missingness on Y is Y 

Y1, R 1
 , or W 

Y1, R 1
 . Even after conditioning on X and V, 

Y 
Y1, R 1

  or W 
Y1, R 1

  still have a residual relationship with  R . 

http://dx.doi.org/10.1007/978-1-4614-4018-5_12
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   De fi nitions of MCAR 

 The de fi nitions for MCAR missingness vary in complexity. One of the more 
straightforward de fi nitions for MCAR is “ … missingness does not depend on the 
values of the data Y, missing or observed …” (Little and Rubin  2002  ) . I often think 
of MCAR in this way: Cases with data for a variable, and cases with missing data for 
a variable, are each random samples of the total. This situation is achieved if the 
cause of missingness is a completely random process such as  fl ipping a coin.  

   Missingness That Is Essentially MCAR 

 Missingness can also be MCAR, or what I sometimes refer to as  essentially MCAR , 
even when the cause is not a completely random process. This will be true if a 
 particular variable causes missingness on Y, but happens not to be correlated with Y. 
One example is that parents, whose child was part of a drug prevention study, left an 
area to take a job in a new city. Their child will have dropped out of the measurement 
part of the study, so this variable (parents leaving) is a cause of missingness. However, 
as it turns out, this variable (parents leaving) is virtually uncorrelated with the DV, 
drug use. As shown in Table  1.2 , the cause of missingness in this case could be a 
variable, X 

Y0, R 1
 , V 

Y0, R 1
 , or W 

Y0, R 1
 . In this instance, this variable behaves just like Q. 

 Table  1.2  summarizes the possible causes of missingness using the variables 
de fi ned in Table  1.1 .   

   Missing at Random (MAR) 

   Classic Example of MAR 

 A classic example here is reading speed. With a long, self-administered survey, for 
which there is a limited amount of time for completion (e.g., 50 min), fast readers 
will complete the survey, but slow readers will leave some questions blank at the 
end of the survey. However, reading speed is something that can be measured early 
in the questionnaire where virtually all of the respondents will provide data. Because 
of this, any biases associated with reading speed can be controlled by including the 
reading speed variable as in the missing data analysis model.  

   Typical/Classical De fi nition(s) of MAR 

 Despite the occasional formality of its de fi nition, the meaning of MCAR is what its 
label implies. And most researchers’ intuition is reasonably accurate about its mean-
ing. Unfortunately, this is not at all true of MAR. There is a sense in which the MAR 
missingness is random, but MAR does not mean that the missingness was caused by 
a completely random process (i.e., Q in Table  1.1 ). 
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 A common de fi nition of MAR missingness is that missingness (R) may depend 
on Y 

OBS
 , but not on Y 

MIS
 , where Y 

OBS
  represents data that are observed and Y 

MIS
  

represents data that are missing. Using this de fi nition, it is typically said that MCAR 
is a special case of MAR in which missingness also does not depend on Y 

OBS
 .  

   My De fi nition of MAR 

 As shown in Table  1.2 , MAR means that once all of the known (and measured) 
causes of missingness (e.g., reading speed) are taken into account, that is, included 
in the analysis model or in the missing data analysis model, any residual missing-
ness can be thought of as MCAR. What is important with MAR missingness is that 
one must take causes of missingness into account by including those variables in the 
analysis model or in the missing data analysis model   . Otherwise, there will be 
estimation bias. 3   

   De fi ne MAR by Creating MAR Missingness 

 I sometimes  fi nd it very useful for understanding MAR to see exactly how the MAR 
missingness is generated. For example, Collins et al.  (  2001  )  operationally de fi ned 
three kinds of MAR missingness: MAR-linear, MAR-convex, and MAR-sinister. 
With MAR-linear, missingness on Y was a linear function of Z, and the values of Z 
represented the quartiles of Z:

     

= =
= =
= =
= =

if Z 1,  the probability that Y is missing [p(Ymis)] .20

if Z 2,  p(Ymis) .40

if Z 3,  p(Ymis) .60

if Z 4,  p(Ymis) .80     

 With MAR-convex, missingness on Y was a particular nonlinear function of Z:

     

= =
= =
= =
= =

if Z 1,  p(Ymis) .80

if Z 2,  p(Ymis) .20

if Z 3,  p(Ymis) .20

if Z 4,  p(Ymis) .80     

 With MAR-sinister, missingness on Y was a function of the correlation between 
X (another variable in the analysis model), and Z (the cause of missingness). With 
this type of missingness, Collins et al.  (  2001  )  divided the N = 500 into 50 clusters of 

   3   Although as I demonstrate in a later section of this chapter, the amount of bias depends on many 
factors, and may often be tolerably low.  
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10 and calculated  r  
XZ

  within those 50 clusters. The groups were divided into the 25 
with high correlations and the 25 with low correlations (median split). Then,

     = =
= =

XZ

XZ

if  high,  p(Ymis) .80

if  low,  p(Ymis)  .20

r

r

     

   MAR Does Not Refer to Missingness Alone 

 One of most confusing aspects of MAR missingness is that MAR does not refer to 
missingness alone. Rather it refers also to the analysis model or the missing data 
analysis model. If the analysis model or the missing data analysis model does not 
take the causes of missingness into account, then missingness is NMAR (see next 
section), and not MAR. 

 This was so confusing, in fact, that Graham and Donaldson ( 1993 ) coined a new 
term to describe this kind of missingness. We referred to this kind of missingness as 
 accessible  missingness. We called it accessible, because the researcher had access to 
the cause of missingness. This captures the idea of MAR missingness that the cause 
of missingness is a variable that has been measured (e.g., X or V in Table  1.1 ). 
However, our new term applied to missingness itself and was independent of one’s 
choice of whether or not to make use of the cause of missingness in one’s analysis. 
That is, accessible missingness is a characteristic of the missingness (as de fi ned here), 
whereas MAR is a joint characteristic of the missingness and the analysis used.  

   MAR Missingness and Ignorability 

 MAR missingness is sometimes referred to as  ignorable  missingness. But this is not 
ignorable in the way many researchers might think of ignorable. For example, MAR 
missingness is not ignorable in the sense that the cause of missingness (as I have de fi ned 
it above) may be omitted from the missing data analysis model. What may be ignored 
here is the missing data creation model. For example, with MAR linear (e.g., as de fi ned 
in the IF statements given above), it is suf fi cient to include the variable, Z (e.g., reading 
speed in my example), in the analysis model or in the missing data analysis model. It is 
not necessary to know precisely which IF statements generated the missing data.   

   Not Missing at Random (NMAR; aka Missing Not 
at Random; MNAR) 

   Classic Example of NMAR Missingness 

 With this type of missingness, the cause of missingness, Z, is correlated with Y (the 
variable that is sometimes missingness), but Z has not been measured, so Z cannot 
be included in the missing data analysis model. The classic example of this kind of 
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missingness relates to the measure of income. It is common in survey research for 
people with higher incomes to leave the income question blank. But because income 
is missing for many respondents, including it in the missing data analysis model 
will not eliminate biases. 

 The classic de fi nition of NMAR missingness is that missingness depends on 
Y 

MIS
 . Using the logic presented in this book, NMAR missingness occurs when miss-

ingness on Y (i.e.,  R ) is caused by Y itself, by some variant of Y, 4  or by some other 
variable that is related to Y, but which has not been measured (i.e., W 

Y1R1
 , as shown 

in Tables  1.1  and  1.2 ). The important thing, however, is that even after taking all 
measured variables into account, residual missingness remains such that the cause 
of this residual missingness is Y 

Y1R1
  or W 

Y1R1
 . The problem is that the data analyst 

would have no way of knowing whether the residual missingness was related to, or 
caused by some unmeasured variable (Y 

Y1R1
  or W 

Y1R1
 ) that was also related to Y. 5  

 Graham and Donaldson ( 1993 ) de fi ned this type of missingness as  inaccessible  
missingness. It is inaccessible because the cause of missingness has not been mea-
sured and is therefore not available for analysis. The relationships between the 
Graham and Donaldson terms (accessible and inaccessible) and the classic terms 
(MAR and NMAR) are summarized in Table  1.3 . For completeness, I also include 
a row for MCAR missingness.  

 An important point typically made about MAR and NMAR missingness is that 
the analyst cannot know which is working in a particular data set. Although I do 
agree to an extent with this point, I also believe that the analyst is not without rele-
vant information in many data sets, especially in longitudinal data sets. I turn now 
to a detailed discussion of this issue.    

   Table 1.3    Relationships between accessible/inaccessible and MAR/NMAR   
 Cause of missingness included in missing data analysis model 

 Missingness  Yes  No 

 MCAR  MCAR  MCAR 
 Accessible  MAR  NMAR 
 Inaccessible  *  NMAR 

  *Cause of missingness cannot be included in the missing data analysis model  

   4   One common variant of Y, for example, could be Z, a 4-level, uniformly distributed variable 
where the four levels represent the quartiles of the original Y variable, which was continuous and 
normally distributed. In this example, the two variables are highly correlated ( r  

YZ
  = .925), but they 

are not correlated  r  = 1.0.  
   5   At the heart of all methods for analysis of NMAR missingness is a guess or assumption about the 
missing data creation model. Because all such methods must make these assumptions, methods for 
NMAR missingness are only as good as their assumptions. Please see the discussion in the next 
section.  
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   MAR Versus NMAR Revisited 

 Much of missing data theory revolves around the MAR and NMAR concepts. Part 
of the reason this distinction has been so important is that the recommended missing 
data analyses (MI and ML) assume that the missingness is MAR (or MCAR). So as 
long as the MAR assumption holds a good bit of the time, we are ok. But just as 
there has been confusion relating to the de fi nitions of MAR and NMAR, there has 
also been a good deal of confusion about when the MAR assumption is plausible. 

   Can We Ever Know Whether MAR Holds? 

 The conventional wisdom is that one cannot know whether the missingness is MAR 
or NMAR. For example, Schafer and Graham  (  2002  )  say “[w]hen missingness is 
beyond the researcher’s control, its distribution is unknown and MAR is only an 
assumption. In general, there is no way to test whether MAR holds in a data set, 
except by obtaining followup data from nonrespondents …” (p. 152). 

 Because of this apparent fact, writers simply assert that the conditions they want 
(i.e., MAR or NMAR) do, in fact, exist. Researchers who want MAR to hold often 
say nothing at all about it, and if they do say anything, it is simply to assert that it is 
reasonable to assume that MAR holds. In longitudinal studies, some researchers 
perform comparisons on pretest variables between those who drop out of the study 
and those who remain. Although such comparisons do little to address the issue of 
whether MAR holds, they are often used in this way (I talk in more detail about this 
practice later in this chapter under the heading,  The Value of Missing Data 
Diagnostics ). 

 Researchers who want to write about NMAR methods (e.g., pattern mixture 
models) simply assert that conditions exist in which the MAR assumption is unten-
able. We all know that such conditions can and most likely do exist, but researchers 
talking about NMAR methods generally do not make speci fi c arguments about a 
particular data set. Some go no further than to say something such as, MAR meth-
ods are good, “… but also yield biased inferences under plausible models for the 
drop-out process” (Little  1995  ) . In this vein, Demirtas and Schafer  (  2003  )  say, “[i]f 
we suspect that dropout is related to current response in some fundamental way, 
ignorability becomes dubious, prompting us to consider nonignorable alternatives.” 
Similarly, Verbeke and Molenberghs  (  2000  )  say, “[i]n cases where dropout could be 
related to the unobserved responses, dropout is no longer ignorable, implying that 
treatment effects can no longer be tested or estimated without explicitly taking the 
dropout model … into account” (p. 234). 

 Some researchers do go a bit further when discussing NMAR methods. Demirtas 
and Schafer  (  2003  )  offered the general possibility that people who do not seem to 
be responding well to treatment may drop out to seek alternative treatment. They 
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also offered the possibility that people who seem to be responding exceptionally 
well to treatment may drop out because they think they are cured. The implication 
is that either scenario would be NMAR because the dropout is related to the 
dependent variable. Enders  (  2011  )  also takes the assertion a bit further, saying 
“[a]lthough the MAR mechanism is often reasonable, there are situations where this 
assumption is unlikely to hold. For example, in a longitudinal study of substance 
use, it is reasonable to expect participants with the highest frequency of use to 
have the highest likelihood of attrition, even after controlling for other correlates of 
missingness.” But in cases like these, the authors make no attempt to tie their 
examples to real data, or to evaluate their assertions either on substantive or on 
statistical grounds.  

   Maybe We Can Know if MAR Holds 

 Unfortunately, scenarios such as those described above do not really explain the 
missingness, and comments of this sort offer no guidance to data analysts for 
speci fi c missing data scenarios. It is generally held that one cannot know whether 
missingness is MAR or NMAR in any particular case. However, I believe there is 
much that one can glean from one’s data. And although it may be true that we can-
not know the details regarding MAR versus NMAR, I argue that we often do not 
need the precise details to know that MAR holds, either in a statistical sense, or at 
least in a practical sense. 

 Schafer and colleagues have opened the door to this way of thinking (also see 
Little  1994 ; p. 482). Schafer and Graham  (  2002  )  to say,

  [i]n general, there is no way to test whether MAR holds in a data set, except by obtaining 
followup data from nonrespondents .... In most cases we should expect departures from 
MAR,  but whether these departures are serious enough to cause the performance of 
MAR-based methods to be seriously degraded is another issue entirely  .... Recently, 
Collins et al.  (  2001  )  demonstrated that in many realistic cases, an erroneous assumption of 
MAR (e.g., failing to take into account a cause or correlate of missingness) may often have 
only a minor impact on estimates and standard errors (p. 152; emphasis added).   

 And Collins et al.  (  2001  )  say,

  [i]t is highly doubtful that an analyst will have access to all of the relevant causes or 
correlates of missingness. One can safely bet on the presence of lurking variables that 
are correlated both with the variables of interest and with the missingness process;  the 
important question is whether these correlations are strong enough to produce sub-
stantial bias if no additional measures are taken  (p. 333; emphasis added).   

 This work, especially the simulations conducted by Collins et al.  (  2001  ) , can be 
interpreted to suggest that it is sometimes possible to make judgments about whether 
MAR does or does not hold in a particular situation.  
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   Measuring Estimation Bias 

   Bias That Is Statistically Signi fi cant 

 Let us suppose we have conducted a Monte Carlo simulation to test whether a 
regression coef fi cient deviates appreciably from the known population value for 
that parameter. Let us say we conduct 500 replications of the simulation. That means 
we have a sample of  N  = 500 estimates of the regression coef fi cient. Let us say that 
the average b-weight was −0.46808, and that the population value was −0.481487. 
In this case the raw bias is 0.013407, that is, the estimates for the regression 
coef fi cient were a little too close to 0. Further, let us say the standard deviation of 
the sampling distribution for this parameter was 0.065973. So the mean bias for this 
parameter was .013407, and the standard deviation for this mean was .065973. We 
can calculate the standard error for this mean by dividing the standard deviation by 
the square root of  N  (500 in this case). So,

     = =SE .065973 / 500 .00295     

 Thus, the bias, .013407, in this case was statistically signi fi cantly different from 0,

     = = <(498) .013407 / .00295 4.57, .0001t p      

   Bias That Is Signi fi cant in a Practical Sense 

 As with many statistical analyses, an effect can be statistically signi fi cant, but lack 
practical signi fi cance. Collins et al.  (  2001  )  attempted to distinguish between bias 
that did and did not have important practical implications for the statistical deci-
sions (i.e., distinguish between bias that would and would not materially affect the 
interpretation of the analysis model). They made good use of  Standardized Bias , 
which can be thought of as the percent of a standard error the estimate is from the 
population value.

     

−= ×Estimate  Population Value
Standardized Bias (SB) 100

SE    

where SE is the standard error of the estimate (standard deviation of the sampling 
distribution). Collins et al. suggested that the absolute value of SB greater than 
around 40 represents a potential problem for statistical inference; “… once the stan-
dardized bias exceeds 40–50 % in a positive or negative direction, the bias begins to 
have a noticeable adverse impact on ef fi ciency, coverage, and error rates” (Collins 
et al.  2001 ; p. 340). This implies that |SB| < 40 could be thought of as bias that was 
not signi fi cant in a practical sense.   
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   Factors Affecting Standardized Bias 

 In this section, I address factors affecting SB that might be thought of as having 
substantive interest. In a later section I address other factors that affect standardized 
bias, but that might be thought of more as nuisance factors. 

 Collins et al.  (  2001  )  studied several factors that affect SB. They studied a simple 
regression model (X predicting Y), such that X was never missing, but Y was some-
times missing. In their simulations, 25 % or 50 % of the Y values were missing. 
With 50 % missing on Y, as shown previously, MAR-linear missingness was a func-
tion of Z based on the following IF statements.

     

= =
= =
= =
= =

if Z 1,  p(Ymis) .20

if Z 2,  p(Ymis) .40

if Z 3,  p(Ymis) .60

if Z 4,  p(Ymis) .80     

 With 25 % missing on Y, the statements used to generate MAR-linear were these:

     

= =
= =
= =
= =

if Z 1,  p(Ymis) .10

if Z 2,  p(Ymis) .20

if Z 3,  p(Ymis) .30

if Z 4,  p(Ymis) .40     

 Collins et al. also varied the degree to which the cause of missingness (Z) was 
correlated with Y. In their simulations,  r  

YZ
  = .40 or  r  

YZ
  = .90. The correlation  r  

YZ
  = .40 

simulated the situation where Z was one of the best predictors of Y. This correlation 
( r  

YZ
  = .40) was the highest substantive correlation observed in one of my data sets 

where Y was adolescent cigarette smoking, and Z was rebelliousness. The correla-
tion  r  

YZ
  = .90 simulated the case in which a variant of Y itself was the cause of 

missingness on Y. 
 From their simulations, it was clear that percent missing was related to SB. For 

the regression coef fi cient of X predicting Y (for MAR-linear missingness when Z 
was omitted from the model), the average SB was −10.8 for 25 % missing and −66.4 
for 50 % missing. The correlation  r  

YZ
  was also clearly related to SB. In their MAR-

linear simulations, SB averaged −15.3 for  r  
YZ

  = .40 and −61.9 for  r  
YZ

  = .90. 
 A factor not studied by Collins et al.  (  2001  )  was  r  

ZR
 , the correlation between Z 

(the cause of missingness) and  R  (missingness itself). The IF statements they 
employed for all 50 % missing conditions of their MAR-linear simulation were:

     

= =
= =
= =
= =

if Z 1,  p(Ymis) .20

if Z 2,  p(Ymis) .40

if Z 3,  p(Ymis) .60

if Z 4,  p(Ymis) .80     
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 These statements produced  r  
ZR

  = .447. As it turns out,  r  
ZR

  = .447 represents a 
rather dramatic effect of the variable on its own missingness. In my experience with 
drug abuse prevention programs, I have never seen a correlation anywhere near 
 r  = .447. For example, I found estimates much closer to  r  

ZR
  = .10 (and below) with 

 fi ve different prevention data sets (Graham et al.  2008 ). IF statements producing 
 r  

ZR
  = .10 would be:

     

= =
= = = − =
= =
= =

if Z 1,  p(Ymis) .433

if Z 2,  p(Ymis) .478 range .567 .433 .134

if Z 3,  p(Ymis) .522

if Z 4,  p(Ymis) .567    

where the quantity  range  (which will be employed extensively in this and other 
chapters of this book) is simply the difference between the highest and lowest prob-
abilities in the MAR-linear IF statements. 6  To illustrate the dramatic effect of  r  

ZR
  on 

SB, in a later simulation we (Graham et al.  2008 ) estimated SB for the situation very 
close to that examined by Collins et al.  (  2001  ) , namely, 50 % missingness,  r  

XY
  = .60, 

 r  
XZ

  = .555,  r  
YZ

  = .925, all variances = 1, except that we also varied  r  
ZR

 . For the situa-
tion with  r  

ZR
  = .104 (range = .14), we found SB to be just −5.9 (Graham et al.  2008 ; 

also see Chap.   10    ). Compare this to SB = −114.5, where percent missingness,  r  
XY

 , 
 r  

XZ
 , and  r  

YZ
  are the same values as in the above situation, but  r  

ZR
  = .447 (range = .60), 

as used in the Collins et al. simulation. 
 Finally, Collins et al.  (  2001  )  did not vary the substantive correlation,  r  

XY
 . In all of 

their simulations,  r  
XY

  = .60. However, standardized bias is also affected by  r  
XY

 . For 
example, with 50 % missingness,  r  

XY
  = .60,  r  

XZ
  = .555,  r  

YZ
  = .925,  r  

ZR
  = .447 

(range = .60), and all variances = 1, SB = −114.5. However, for these same condi-
tions, but with a much more modest  r  

XY
  = .20, SB = −45.7 (see Chap.   10     for a more 

complete description of these effects).   

   Estimating Statistical and Practical Signi fi cance 
of Bias in Real Data 

 One conclusion to draw from the simulations presented by Collins et al.  (  2001  )  
and the follow-up simulations by Graham et al. ( 2008 ; also see Chap.   10    ) is that 
estimation bias due to NMAR missingness is tolerably low in a wide range of 

   6   I describe the range quantity in more detail in Chap.   10    . One important point about this quantity 
is that for any given level of missingness, r 

ZR
  is a linear transformation of the range of probabilities 

in the MAR-linear IF statements. During our simulation work (Graham et al. 2008), Lori Palen 
discovered that r 

ZR
  was the product of a constant (0.7453559925 for 50 % missingness and Z as 

uniformly distributed variable with four levels) and the range between the highest and lowest prob-
abilities for the IF statements. I refer to this constant as the Palen proportion.  

http://dx.doi.org/10.1007/978-1-4614-4018-5_10
http://dx.doi.org/10.1007/978-1-4614-4018-5_10
http://dx.doi.org/10.1007/978-1-4614-4018-5_10
http://dx.doi.org/10.1007/978-1-4614-4018-5_10
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circumstances. Still, it would be good if we researchers had means for examining 
the statistical and practical signi fi cance of bias based on data from existing empirical 
data sets. We can make reasonable judgments about the statistical and practical 
signi fi cance of bias if we can make reasonable judgments about the factors that 
affect this bias (percent missing,  r  

XY
  ,  r  

ZY
  ,  r  

ZR
 ). I suggest some workable strategies in this 

section for estimating these quantities. The strategies I suggest, in a broad sense, are a 
little like performing a statistical power analysis after a study has been completed. 

   Percent Missing 

 Estimating this value is never really an issue. It is easy to know if one’s DV is miss-
ing. It is also easy to get precise estimates of missingness within the program and 
control groups in an intervention study.  

   Estimating r 
XY

  

 This is the correlation between the IV (X) and DV (Y) in a study. The Y variable is 
assumed to be a measured variable. The X variable could be a treatment group 
membership variable (e.g., treatment = 1; control = 0), or it could also be a measured 
variable. The quantity one wants here is the unbiased value of  r  

XY
 . Because of the 

possibility for bias due to NMAR missingness, this value is unknowable, to an 
extent. However, knowing this value even approximately may be good enough in 
this context. With realistic values of the key factors affecting bias, for example 
 r  

ZR
  = .22 (range = .30), and 50 % missing on Y, differences as large as .10 for  r  

XY
  

caused differences of SB of only about 5 (see Chap.   10    ). Thus, it is very likely that 
the complete cases estimate for  r  

XY
 , or better still, the EM estimate for  r  

XY
 , with 

several other variables in the model, will provide a reasonable estimate for this 
quantity (details of the EM algorithm are given in Chap.   2    ).  

   Estimating  r  
ZY

  

 This is the correlation between Z, the cause of missingness on Y, and Y, the variable 
that is sometimes missing. If the cause of missingness, Z, is suspected to be some 
measured variable (category X or V from Table  1.1 ), then it will be an easy matter 
to estimate  r  

ZY
  in the same manner as just described for  r  

XY
 . Even if Z is suspected 

to be in the W category from Table  1.1 , it may be possible to approximate this cor-
relation by comparing it to known correlations between measured variables and Y. 

 If the cause of missingness is suspected to be Y itself, the calculation is a bit 
more dif fi cult, but not impossible. First, just because Y is the cause of its own miss-
ingness, it does not follow that  r  

ZY
  = 1.0. It is much more likely to be something at 

http://dx.doi.org/10.1007/978-1-4614-4018-5_10
http://dx.doi.org/10.1007/978-1-4614-4018-5_2
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least a little lower. For example, if Z, the cause of missingness on Y, were the 
quartiled version of the normally distributed, continuous variable, Y (i.e., 4-level, 
uniformly distributed version of Y, where everyone in the  fi rst quartile of Y has “1” 
for Z; everyone in the second quartile of Y has “2” for Z, and so on), then  r  

ZY
  = .925, 

approximately. Of course, variants are possible. For this chapter, when the cause of 
missingness is assumed to be Y itself, I will assume that Z is actually the quartilized 
version of Y, and I will assume that  r  

ZY
  = .925. 

  r  
ZY

  = .925 is a reasonable estimate of the zero-order correlation of Z with Y. 
However, in many studies, other variables will be available that will affect  r  

ZY
  

(These are  auxiliary variables : variables that are not part of the analysis model, but 
that are correlated with the analysis model variables that are sometimes missing; see 
Chap.   11    ). In particular, in longitudinal studies, the main DV will have been mea-
sured multiple times. And the relevant version of  r  

ZY
 , that is, the  operative   r  

ZY
 , will be 

the version of  r  
ZY

  that controls for measures of Y from prior waves of measurement. 
In studies like these, the operative  r  

ZY
  is the semi-partial correlation of Z with Y 

controlling for Y measured at prior waves. 

   Example of Estimating  r  ZY  

 I will use data from the Adolescent Alcohol Prevention Trial (AAPT; Hansen and 
Graham  1991 ) to illustrate one approach for estimating the operative  r  

ZY
 . The vari-

ables are lifetime cigarette smoking at seventh, eighth, ninth, and tenth grades 
(Smoke 

7
 , Smoke 

8
 , Smoke 

9
 , and Smoke 

10
 ). Let us say that the quartilized version of 

Smoke 
10

  (Z 
10

 ) is the cause of missingness in Smoke 
10

 . I can create the quartilized 
version in SAS using Proc Rank, as shown below. 7  I then use Proc MI to generate 
an EM covariance matrix for performing the various regression analyses (basics of 
the EM algorithm are given in Chap.   2    ; details about using SAS Proc MI in this 
manner are provided in Chap.   7    ). 

 The order and logic of the regression analyses is as follows.

   Model (1): Predict Smoke 
10

  using the supposed cause of missingness, Z 
10

 , the 
quartilized version of Smoke 

10
 . 

 The R 2  from Model (1) indicates the zero-order relationship between Z 
10

  and 
Smoke 

10
 . In these data, R 2  = .834 for Model (1). The corresponding zero-order 

 r  = .913. This veri fi es that the zero-order version of  r  
ZY

  is indeed large.  

  Model (2): Predict Smoke 
10

  using Smoke 
7
 , Smoke 

8
 , and Smoke 

9
  as predictors. 

 The R 2  = .688 for Model (2). The three smoking variables prior to the tenth grade 
accounted for 69 % of the variance in the tenth grade measure.  

   7   Note that the quartilized version of Smoke 
10

  (Z 
10

 ), had only three levels in the data used in this 
example (0, 2, 3). Despite this, however, the results shown in this section are representative of what 
will commonly be found with these analyses.  

http://dx.doi.org/10.1007/978-1-4614-4018-5_11
http://dx.doi.org/10.1007/978-1-4614-4018-5_2
http://dx.doi.org/10.1007/978-1-4614-4018-5_7
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  Model (3): add Z 
10

  to Model (2) as a fourth predictor. 
 Model (3) assesses the incremental bene fi t of Z 

10
  in predicting Smoke 

10
 , over and 

above Smoke 
7
 , Smoke 

8
 , and Smoke 

9
 . For Model (3), R 2  = .884. The R 2 -improvement 

over Model (2) was .195. The corresponding semi-partial  r  = .442.    

 In sum, the operative  r  
ZY

  = .442 in this instance, not .913. This represents the 
value of r 

ZY
  that is over and above the effects of other variables in the model assessed 

in previous waves of measurement. And it is this value,  r  
ZY

  = .442, that should be 
used in estimating the impact of estimation bias. Let me illustrate the impact of the 
difference between  r  

ZY
  = .925 and  r  

ZY
  = .442. With 50 % missing on Y,  r  

XY
  = .20, 

 r  
ZR

  = .373 (range = .50), and all variances = 1.0, SB = −31 with  r  
ZY

  = .925, and 
SB = −6.8 with  r  

ZY
  = .442. 

  Sample Data  � . The input data set for this example is ex1.dat. Sample SAS code 
for analyzing these data is given below. 8  

 data a;in fi le ‘ex1.dat’; 
   input smoke7 smoke8 smoke9 smoke10; 
   array x smoke7 smoke8 smoke9 smoke10; 
 *** recode “-9” values to system missing (“.”); 
    do over x; 
     if x=-9 then x=.; 
    end; 
  *** generate “missingness” (R10) for smoke10; 
  if smoke10=. then r10=0;else r10=1; 
 run; 

 *** produce a quartilized version of smoke10; 
 proc rank data=a out=b groups=4;var smoke10;ranks z10; 
 run; 

 *** Generate EM covariance matrix (see chapters 2 and 7 
for details; 

 proc mi data=b nimpute=0; 
  em outem=c; 
  var smoke7 smoke8 smoke9 smoke10 z10; 
 run; 
 *** Regression with EM covariance matrix as input (see 

Chapter 7 for details; 
 proc reg data=c(type=cov); 
  model smoke10=z10; 
  model smoke10=smoke7 smoke8 smoke9; 
  model smoke10=smoke7 smoke8 smoke9 z10; 
 run; 
 quit;   

   8   SPSS and other statistical packages can certainly be used for this assessment. The EM covariance 
matrix is used here mainly as a convenience. If you are making use of SPSS, please see Chaps.   3     
and   5     for details of performing comparable analyses in SPSS.  

http://dx.doi.org/10.1007/978-1-4614-4018-5_3
http://dx.doi.org/10.1007/978-1-4614-4018-5_5
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   Estimating r 
ZR

  

 Estimating  r  
 ZR 

  can be tricky, but it is possible with longitudinal data. Recall that 
missingness is operationally de fi ned as a binary variable,  R  ( R  

10
  in this case), that 

takes on the value 1 if the data point is observed, and 0 if the data point is missing. 
Thus, it is an easy matter to create this variable for the same data I presented in the 
previous example. This variable is generated using the statement just before “run” 
in the  fi rst data step of the SAS code shown above. 

 The main problem in estimating  r  
 ZR 

  is that it is not possible to perform a correla-
tion or regression analysis with  R  

10
  and Smoke 

10
  in the same model;  r  

 ZR 
  is unde fi ned 

because data for Smoke 
10

  are available only when  R  
10

  = 1, and a correlation cannot 
be calculated when one of the variables is a constant. Therefore, there is no direct 
test of the relationship between Smoke 

10
  and  R  

10
 . However, it is often possible to 

examine other correlations and regressions that give one a sense of what the rela-
tionship might be between Smoke 

10
  and  R  

10
 . I recommend the sequence of models 

described below. 

 Model (1): A regression model with Smoke 
7
  predicting  R  

10
 . 

 For model (1), R 2  = .0141. The corresponding  r  = .119. Clearly, Smoke 
7
 , taken by 

itself, is not an important predictor of  R  
10

 , missingness at tenth grade. 

 Model (2): Add Smoke 
8
  to Model (1) as a second predictor. 

 For model (2), R 2  = .0174; R 2 -improvement = .0033. The corresponding semi-partial 
 r  = .057. It is clear that Smoke 

8
  did not add appreciably to the prediction of  R  

10
 . 

 Model (3): Add Smoke 
9
  to Model (2) as a third predictor. 

 For model (3), R 2  = .0175. R 2 -improvement = .0001. The corresponding semi-partial 
 r  = .01. It is clear (a) that Smoke 

9
  did not add appreciably to the prediction of  R  

10
 , 

and (b) that even taken together, the seventh, eighth, and ninth grade measures of 
smoking contributed very little to the prediction of  R  

10
 . I discuss the implications of 

these results in the next section. 

  Sample Data  � . The input data set for this example is ex1.dat. The sample SAS 
statements would be added to the end of the code for the previous example. 

 proc mi data=b nimpute=0; 
   *** details of proc mi are given in Chapter 7; 
   *** basics of EM algorithm are given in Chapter 2; 
   em outem=d; 
   var smoke7 smoke8 smoke9 r10; 
 run; 

 *** regression analyses with EM covariance matrix as input; 
 proc reg data=d(type=cov); 
   model r10=smoke7; 
   model r10=smoke7 smoke8; 
   model r10=smoke7 smoke8 smoke9; 
 run; 
 quit;   
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   Sensitivity Analysis 

 A sensitivity analysis (e.g., see Little  1993,   1994,   1995  )  in this context would 
examine the effect on estimation bias when a range of values is used, rather than a 
point estimate, for quantities (e.g.,  r  

XY
 ,  r  

ZY
 , and  r  

ZR
 ) for which information is limited. 

If the results show that bias is small through the entire range of values examined, 
then one has greater con fi dence that the true level of bias is small. 

 The relevant quantities for doing a sensitivity analysis in this instance are percent 
missing,  r  

XY
 ,  r  

ZY
 , and  r  

ZR
 . Estimates of the  fi rst three quantities are relatively straight-

forward, as described above. The  fi rst quantity, percent missing, is a given. The two 
correlations  r  

XY
  and  r  

ZY
 , although not known precisely, are likely to be at least simi-

lar to the values estimated from EM analyses. The fourth quantity,  r  
ZR

 , is the biggest 
question mark. 

 In the analyses described above, I did not show anything that relates directly to 
the relationship between Smoke 

10
  and  R  

10
 . However, with longitudinal data, it is 

often reasonable to extrapolate that relationship by examining the trends for data 
that are available. In the three models just tested, for example, the R 2 -improvements 
due to each smoking variable were .0141, .0033, and .0001, for smoke7, smoke8, 
and smoke9, respectively. The corresponding semi-partial correlations were .119, 
.057, and .01. With a trend like this, we are in a good position to posit plausible 
values for r 

ZR
  involving Smoke 

10
  and  R  

10
 . In this instance, would you be surprised to 

learn that the true  r  
ZR

  = .01? Would you be surprised to learn that the true  r  
ZR

  = .10? 
Would you be surprised to learn that the true  r  

ZR
  = .30? Although the  fi rst two cor-

relations are clearly within the realm of plausibility, the third correlation,  r  
ZR

  = .30, 
seems high. I do not mean that  r  

ZR
  = .30 is not ever plausible; I just mean that in this 

scenario it seems too high. What possible psychological, social, or administrative 
process might produce such a jump in this correlation in this situation? 

 My point here is that we can make use of this information to develop values that 
can be used for a sensitivity analysis. Even setting  r  

ZR
  = .30, in the context of the 

other quantities that are more easily estimated, produces a level of bias that can be 
described as tolerably low, or even not statistically signi fi cant. For example, with 
50 % missing on Y,  r  

ZR
  = .30 (which corresponds to range = .40 with 50 % missing), 

 r  
ZY

  = .45,  r  
XY

  = .20, and all variances set to 1.0, SB = −4.5. And with a simulation 
with 500 replications, this degree of bias would not be statistically signi fi cant (see 
below). 

 In a previous section, I noted that the statistical signi fi cance of estimation bias 
can be calculated using (a) the average bias, (b) the standard deviation of the bias, 
and (c) the number of replications of the simulation.

     ( )β= − b( ) (b ) / S / Nrepst df    (1.1)  

where  b  is the population parameter value,     b    is the average parameter estimate 
over the number of simulation replications (Nreps), S 

b
  is the standard deviation of 

b over the Nreps, and the df for the t is Nreps-2 ( df  = 498 in this case). The  t -value 
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for testing the signi fi cance of the bias can also be calculated from the standardized 
bias (SB) as,

     = ×( )  SB Nreps /100.t df    (1.2)   

 So with a little rearranging, it is easy to see that when Nreps = 500, |SB|  £  8.7 
represents statistically nonsigni fi cant bias (i.e.,  t   £ 1.95). 

 The statistical signi fi cance of the bias is clearly dependent on Nreps. Simulations 
with large Nreps are much more likely to discover signi fi cant bias than are simula-
tions with smaller Nreps, because as Nreps gets large, the denominator of ( 1.1 ) gets 
smaller, and t becomes larger. However, for comparison purposes, it is possible to 
 fi x Nreps at some reasonable value. Table  1.4 , which is based on Nreps = 500, can 
be used to help in sensitivity analyses. The left column of the table lists a range of 
values for  r  

ZY
 . The second column of the table shows the corresponding maximum 

values of r 
ZR

  for which estimation bias for the regression coef fi cient for X predicting 
Y remains nonsigni fi cant. The values in the remaining columns show the range and 
IF statements for MAR-linear missingness that produce the value of  r  

ZR
  shown.  

 Table  1.5  shows the maximum values for r 
ZR

  that correspond to estimation bias 
that is nonsigni fi cant in a practical sense, using the criterion of SB < .40 used by 
Collins et al.  (  2001  ) .  

   Plausibility of MAR Given in Tables 1.4 and 1.5 

 The  fi gures shown in Tables  1.4  and  1.5  paint a very optimistic picture about the 
plausibility of MAR. Let me focus for the moment on the  fi gures shown in Table  1.4 . 
Even when  r  

ZY
  = .925, estimation bias will not be statistically signi fi cant as long as 

r 
ZR

  is no larger than about  r  
ZR

  = .20. This will actually cover a rather wide range of 
circumstances, the example described above with AAPT data being one of them. 
But with the more realistic estimates of  r  

ZY
  shown in Table  1.4  (e.g., .80, .70, .60, 

   Table 1.4    Cutoffs for statistical nonsigni fi cant estimation bias   

 Maximum  r  
ZR

  for 
statistical  IF statement probabilities 

  r  
ZY

   non-signif.  Range  Q1  Q2  Q3  Q4 

 .925  .200  .27  .366  .455  .545  .634 
 .80  .216  .29  .355  .452  .548  .645 
 .70  .261  .35  .325  .442  .558  .675 
 .60  .306  .41  .295  .432  .568  .705 
 .50  .373  .50  .250  .417  .583  .750 
 .40  .455  .61  .195  .398  .602  .805 
 .20  .738  .99  .005  .335  .665  .995 

   Note : In each row,  r  
ZR

  less than or equal to the value shown yields non-
signi fi cant estimation bias.  These  fi gures hold for N=500, Nreps=500, 
and  r  

XY
  = .20. Q1, Q2, Q3, and Q4 represent the four quartiles of Z, the 

cause of missingness on Y.  Range = Q4 − Q1  
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.50, or even lower), the probability is even higher that estimation bias will be 
nonsigni fi cant in a statistical sense (with Nreps = 500). 

 If the  fi gures shown in Table  1.4  are optimistic, those shown in Table  1.5  are 
striking. With  r  

ZY
  = .60, or .50, which will be realistic in many longitudinal studies, 

the chances are actually very slim that estimation bias will be signi fi cant in a 
practical sense.  

   Limitations (Nuisance Factors) Relating to Figures 
in Tables 1.4 and 1.5 

 The new  fi ndings presented here are good news indeed. They suggest that MAR 
missingness will very often be a highly plausible assumption. However, there are 
issues that must be presented and dealt with. Some of these issues relate to the 
assessment of statistical signi fi cance of bias; other issues relate to the assessment of 
practical signi fi cance of bias. 

   Nuisance Factors Affecting Statistical Signi fi cance of Bias 

 The main nuisance factor here is the fact that the same level of bias will be judged 
to be nonsigni fi cant with a simulation involving Nreps = 500, but statistically 
signi fi cant with Nreps = 5,000. This is akin to the fact that an effect of a particular 
magnitude, say  r  = .10, is nonsigni fi cant with  N  = 100,  t (98) = 0.99, but is statistically 
signi fi cant with  N  = 500,  t (498) = 2.24,  p  < .05. This would not be a huge problem if 
researchers could agree on some speci fi c Nreps that would be used in this context, 
regardless of the number of actually used in the simulation. I believe that Nreps = 500 
would be a reasonable starting place for this.  

   Table 1.5    Cutoffs for practical nonsigni fi cant estimation bias   

 Maximum  r  
ZR

  for 
practical  IF Statement Probabilities 

  r  
ZY

   non-signif.  Range  Q1  Q2  Q3  Q4 

 .925  .417  .56  .220  .407  .593  .780 
 .80  .484  .65  .175  .392  .608  .825 
 .70  .552  .74  .130  .377  .623  .870 
 .60  .641  .86  .070  .357  .643  .930 
 .50  .738  .99  .005  .335  .665  .995 
 .40  .738  .99  .005  .335  .665  .995 
 .20  .738  .99  .005  .335  .665  .995 

   Note : In each row,  r  
ZR

  less than or equal to the value shown yields non-
signi fi cant estimation bias. These  fi gures hold for  N  = 500, and  r  

XY
  = .20. 

Q1, Q2, Q3, and Q4 represent the four quartiles of Z, the cause of missing-
ness on Y. Range = Q4 − Q1  
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   Nuisance Factors Affecting Practical Signi fi cance of Bias 

 Similar nuisance factors affect the assessment of the practical signi fi cance of bias. 
In this instance, the study sample size is a big issue. The simulations conducted by 
Collins et al.  (  2001  )  and by Graham et al. ( 2008 ; also see Chap.   10    ) all used  N  = 500. 
With larger sample sizes, however, SB would be larger. Table  1.6  shows a simple 
study that varies the sample size, keeping all other factors the same.  

 As shown in Table  1.6 , SB doubles as the study N quadruples. As I suggested 
above, bias of 31 means that the  t -value is (in this case) too small by .31. For exam-
ple, a true  t  = 2.41 would appear to be  t  = 2.10. It makes sense that increased sample 
size would increase the  t -value for differences between group (program and con-
trol). Thus it also makes sense that the amount by which the  t -value would be off 
due to bias would also increase (as shown in Table  1.6 ). 

 A second nuisance issue in this context is the variance of the X, Y, and Z. As 
shown in Chap.   10    , SB is substantially affected by these variances (higher variance 
is associated with higher SB). 

 The solution to these nuisance issues should be straightforward. The variance 
issue can easily be solved by standardizing all variables using variance = 1.0. For the 
study  N , the solution might be the same as before. If researchers could agree, we 
could always estimate SB with study  N  = 500.   

   Call for New Measures of the Practical Signi fi cance of Bias 

 In Graham  (  2009  ) , I encouraged researchers to begin using SB, but also to develop 
other indicators of the practical signi fi cance of bias. Statisticians have taken several 
approaches to assessing this kind of bias. Raw bias is the (average) difference between 
the parameter estimate and its population value. Although raw bias is not particularly 
valuable in and of itself, most other approaches to assessing bias start with this. One 
test, which I described above, is the statistical test of whether the raw bias is signi fi cantly 
different from 0 in a statistical sense. As I noted above, I believe this test can be quite 
useful, but it is limited because in simulation work the bias is more likely to be statisti-
cally signi fi cant as the number of simulation replications increases. 

 Another test compares the bias against the SE of the estimate. I also described 
this above (standardized bias; SB). I believe that this measure can also be very useful, 
but as I described above, SB is limited in the sense that its magnitude is positively 

   Table 1.6    Standardized bias with different study sample size   

  r  
XY

    r  
XZ

    r  
ZY

   Range ( r  
ZR

 )  Study  N   Standardized bias  Relative bias 

 .20  .185  .925  .50 (.373)   500   −31.0  −.1009 
 .20  .185  .925  .50 (.373)  1000   −43.8  −.1009 
 .20  .185  .925  .50 (.373)  2000   −62.0  −.1009 
 .20  .185  .925  .50 (.373)  8000  −124.1  −.1009 

http://dx.doi.org/10.1007/978-1-4614-4018-5_10
http://dx.doi.org/10.1007/978-1-4614-4018-5_10
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related to the study sample size. Other quantities that have been used in this context 
include comparisons against the standard deviation (e.g., see Bose  2001  ) , relative 
bias (comparison of the bias against the magnitude of the parameter), and root-
mean-square error (square root of the average squared difference between the 
parameter estimate and its population value). 

 Other areas of statistics, most notably structural equation modeling (SEM), have 
made very good use of practical indices of related quantities. In SEM, goodness of 
 fi t was a critical issue. It is important that goodness of  fi t involves the comparison 
between some standard (the true covariance matrix) and something estimated (the 
covariance matrix implied by the SEM model). Thus, many of the concepts inherent 
in the assessment of measurement bias have been found in the SEM goodness of  fi t 
literature. 

 The SEM counterpart to raw bias is the residual covariance matrix, that is, the 
matrix showing the element-by-element comparison between the real and implied 
covariance matrices. The test of statistical signi fi cance is the chi-square test, which 
provides a statistical test for the element-by-element comparison between real and 
implied covariance matrices. Similar to what was said about the statistical test of 
bias, it has long been known that the chi-square signi fi cance test is seriously affected 
by sample size, such that with large sample sizes, even trivial deviations from good 
 fi t were statistically signi fi cant by this test. 

 In response to this problem, SEM researchers have developed several indices of 
practical  fi t that have enjoyed much popularity, for example, Rho (Tucker and Lewis  
 1973 ; also known as the non-normed  fi t index; NNFI; Bentler and Bonett  1980  ) , the 
comparative  fi t index (CFI; Bentler  1990  ) , and the root-mean-square error of 
approximation (RMSEA; Browne and Cudeck  1993 ; Steiger and Lind  1980  ) . 

 I often think of the chi-square test as a comparison of one’s model against the 
perfect model. That is, if the chi-square is signi fi cant, it means that one’s model 
deviates signi fi cantly from the perfectly  fi tting model. Practical indices known as 
comparative  fi t indices (Rho/NNFI and CFI) seek to compare the  fi t of the model 
under study against a very bad- fi tting model, often referred to as the “indepen-
dence” model. The model most often used in this connection is one in which vari-
ances are estimated, but all covariances are  fi xed at 0. Conceptually, the indices of 
practical  fi t that make use of this independence model represent the percent of the 
way from the poor  fi tting model (0) to the perfect model (100). And it is generally 
considered good  fi t if the  fi t of one’s model is 95 % of the way from poor  fi t to good 
 fi t (e.g., Hu and Bentler  1999  ) . 

 One variant of the NNFI is the normed fi t index (NFI; Bentler and Bonnett 1980). 
Although seldom used in SEM because of its sensitivity to sample size, it is relevant 
in the estimation bias context because it is so similar to what has been referred to as 
 relative bias,  the comparison of the raw bias to the parameter value. The formula for 
the NFI is:

     

−
= − =

2 2 2
Indep. Model Model

2 2
Indep. Indep.

X X X
NFI , 1  NFI 

X X
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where the independence model is one that estimates variances but not covariances. 
Although this index is scaled so that a large value (e.g., .95) represents good  fi t, it 
makes more sense in the estimation bias context to reverse scale it (1−NFI) so that 
small values re fl ect good  fi t. Of course, this rescaled version has the same form as 
what statisticians have referred to as relative bias:

     θ θ
θ θ

−
= = Est Pop

Pop Pop

Raw Bias
Relative Bias (RB)

    

   Preliminary Evaluation of RB 

 RB has the advantage of not being sensitive to sample size. For example, given the 
scenarios shown in Table  1.6 , RB = −.101 for all Ns shown in the table. However, 
RB  is  sensitive to the magnitude of the parameter. The relationship between SB and 
RB is a constant over all conditions within a single level of  r  

XY
 . However, that rela-

tionship varies over different levels of  r  
XY

 . For example, holding RB constant,

     

= = =
= = =
= = =
=

XY

XY

XY

XY

When .10,  conditions that lead to SB ~ 15 produce RB ~ .10.

When .20,  conditions that lead to SB ~ 30 produce RB ~ .10.

When .40,  conditions that lead to SB ~ 65 produce RB ~ .10.

When .6

r

r

r

r = =0,  conditions that lead to SB ~ 113 produce RB ~ .10.     

 Alternatively, holding SB constant,

     

= = =
= = =
= = =
=

XY

XY

XY

XY

When .10,  conditions that lead to SB ~ 30 produce RB ~ .21.

When .20,  conditions that lead to SB ~ 30 produce RB ~ .10.

When .40,  conditions that lead to SB ~ 30 produce   RB ~ .045.

When 

r

r

r

r = =.60,  conditions that lead to SB ~ 30 produce RB ~ .026.      

   Conclusions About Relative Bias 

 A strength of RB is that it is not sensitive to sample size. Another strength is that it 
is a percentage of the magnitude of the parameter. We could say, for example, that 
if the bias is no more than 10 % of the magnitude of the parameter value, then it is 
small enough to be tolerable. A weakness of RB is that 10 % of a large parameter 
can be associated with a very large  t -value (in comparison to no bias), and even with 
a large SB. 

 One possibility is that RB and SB can be used together. For example, when 
SB < 40 and RB < 10, we can perhaps have greatest con fi dence that the level of bias 
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is tolerably small. For example, the following conditions might produce bias that 
is judged to be tolerably small:

     

= = =
= = =
= = =

XY

XY

XY

When .10,  conditions that lead to SB ~ 15.1 produce RB ~ .10.

When .20,  conditions that lead to SB ~ 30.7 produce RB ~ .10.

When .40,  conditions that lead to SB ~ 40 produce RB ~ .060.

W

 

e

 

h n 

r

r

r

= = =XY .60,  conditions that lead to SB ~ 40 produce RB ~ .034.r     

 It could also be that bias should be judged tolerably small if either of these 
conditions is met (SB < 40 or RB < .10). With smaller effect sizes, SB would take 
precedence; with larger effect sizes, RB would take precedence. 

 One other index of bias that is commonly used in this context is the root-mean-
square error (square root of the average squared difference between the parameter 
estimate and its population value). Other indices that have been used in SEM, and 
that may or may not  fi nd counterparts in this context, are the RMSEA (root-mean-
square error of approximation), the AIC (Akaike information criterion), and the 
BIC (Bayesian information criterion). The concept for the RMSEA was to give up 
on the idea of statistically good  fi t, and settle for establishing whether or not one had 
“close”  fi t. The AIC and BIC have enjoyed some popularity, especially in the area 
of latent class model  fi t. 

 Time will tell whether any of the indices already in use will prove to be helpful in 
describing bias that is or is not of practical signi fi cance. Time will also tell whether 
some of the other indices (RMSEA, AIC, BIC) can  fi nd useful counterparts in the bias 
assessment domain. In the meantime, I continue to encourage researchers to develop 
new indices that can be used for this purpose. I also encourage researchers to adopt the 
approach taken by SEM researchers in developing, and gaining experience with, indi-
ces that can help us identify when bias is and is not of practical signi fi cance.   

   Other Limitations of Figures Presented in Tables 1.4 and 1.5 

 In this chapter, I have painted a very optimistic picture regarding the appropriate-
ness of using MAR methods for handling missing data problems. It would appear 
from my writing that MAR virtually always holds. Indeed I am very optimistic 
about the idea that MAR holds a great deal of the time. However, I also acknowl-
edge that my research experience is based predominantly in the area of prevention 
research. An important characteristic of this research domain is that the research is 
conducted almost exclusively on nonclinical populations. 

 To be honest, the effect sizes of interventions on these populations are not sub-
stantial. It is not at all unusual in these populations, for example, to  fi nd program 
effect sizes that are considered “small” in Cohen’s  (  1977  )  terms (i.e.,  r  = .10 or 
 d  = .20). We would expect much more substantial effect sizes in clinical research. 
For example in the drug treatment study described by Hedeker and Gibbons  (  1997 ; 
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also see Enders  2011  ) , the program effect size was much larger, between medium 
and large in Cohen’s terms ( r  = .40). So it would appear that the variant of Ben 
Franklin’s adage, “an ounce of prevention is worth a pound of cure” is also true in 
the sense that preventive (primary prevention, universal) interventions tend to have 
less impact on the individual participants’ lives than do curative (including targeted 
and indicated) interventions. 

 My point here is that the MAR assumption may be very likely to hold (in a sta-
tistical or practical sense) in research studies that involve nonclinical populations 
because the interventions have relatively little impact on all factors relating to these 
study participants, including factors relating to study participation. That is, it will be 
rare for universal preventive interventions to have more than a small impact on par-
ticipants’ decisions about remaining in the program (this point also applies to longi-
tudinal studies that do not involve an intervention). 

 For curative (or targeted/indicated) interventions, on the other hand, because 
they do have much more dramatic impact on all factors relating to the participants’ 
lives, are much more likely to relate to the reasons why people remain in or drop out 
of a research study that involves a curative intervention. 

 I am NOT saying that MAR assumptions do not hold or are less likely to hold in 
such studies. Indeed, the  fi gures presented in this chapter (e.g., the  fi gures in 
Tables  1.4  and  1.5 ) are most certainly also relevant in studies involving curative 
interventions. All I am saying here is that I have very little personal experience with 
research on clinical populations.   

   Another Substantive Consideration: A Taxonomy of Attrition 

 There is another important consideration in the study of missingness, especially as 
it applies to drop out or attrition in longitudinal studies. The simulations conducted 
by Collins et al.  (  2001  )  and the follow-up simulations conducted by Graham et al. 
( 2008 ; Chap.   10    ) all dealt with a particular category of missingness. This prior work 
was all based on a relatively simple regression model in which X predicted Y. 
Missingness on Y was a function of a variable Z. In this chapter I have described the 
IF statements used to generate the missingness on Y. Virtually all of this prior work 
can all be thought of as dealing with the situation in which Y (or some variant of Y) 
was the cause of its own missingness (although see the MAR-sinister simulations by 
Collins et al.  2001  ) . The variable X in the substantive model used in those simula-
tions had nothing to do with missingness on Y. 

 Graham et al. ( 2008 ) suggested an expanded taxonomy of missingness that 
examined three possible causes of missingness in the context of attrition from a 
program: Program (P; or Treatment; same as X in everything presented up to now 
in this chapter), Y, and the interaction between them (PY). 9  We suggested eight 

   9   Note that everything I describe in this section can also be applied to the situation in which the 
predictor variable is a measured variable and not a manipulated program intervention variable.  

http://dx.doi.org/10.1007/978-1-4614-4018-5_10
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possible combinations of these three causes. I present a slight rearrangement of the 
eight cases here:

   Case 1: none of these causes  
  Case 2: P only  
  Case 3: Y only  
  Case 4: P and Y (but no PY interaction)  
  Case 5: PY interaction only  
  Case 6: P and PY (but not Y)  
  Case 7: Y and PY (but not P)  
  Case 8: P, Y, and PY    

 Case 1 is essentially MCAR missingness and presents no problem due to attri-
tion. Case 2 is MAR given that P will always be in program, or treatment effects 
models. Case 3 is the situation in which only Y is the cause of its own missingness. 
As I have noted above, based on the Collins et al.  (  2001  )  simulations, and on the 
follow-up simulations, despite being NMAR, Case 3 is also not a problem for pro-
gram, or treatment effects analyses. The remaining cases (4–8), however, have not 
been studied systematically. 

   The Value of Missing Data Diagnostics 

 Future research must focus on the other cases of attrition. The tools for studying 
these cases will come from, or be closely related to, the tools already described in 
this chapter for studying case 3. However, new tools must be brought to bear on the 
study of these other cases. Missing data diagnostics are one such tool. 

   Pretest Comparisons 

 I have often seen researchers compare pretest measures, where everyone has data, 
for those who drop out of a study and those who stay. This practice does have some 
value, to be sure, but its value is limited. It is commonly the case that those who 
drop out are different, so there is no real surprise there. Also, any variable for which 
there are differences may simply be included in missing data analysis model, and all 
biases related to that variable are removed. I often say that what you can see (i.e., 
what is measured) cannot hurt you. What can hurt you, in the sense of bias, are dif-
ferences on variables for which you do not have data. It is important to note that 
pretest comparisons do not allow the researcher to determine whether the MAR 
assumption holds. 

 It is useful to conduct pretest comparisons in order to identify variables that are 
related to missingness, and that should be included in the missing data analysis. 
Occasionally, an important variable can be found in the process. However, unless the 
study is of very short duration (e.g., if the study has just two waves of measurement), 
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the relationship between pretest variables and drop out is generally a weak one. And 
when the relationship is weak between pretest measures and missingness, the value 
of including such measures in the missing data analysis model is minimal. 

 It is certainly not a bad thing if no differences are found on pretest variables 
between stayers and leavers. But the lack of differences on pretest variables is incon-
clusive by itself; it amounts to arguing for the null hypothesis, which is a risky busi-
ness. In any case, it is not the lack of difference on measured variables that matters; 
one really wants lack of difference on variables for which one does not have data.  

   Longitudinal Diagnostics 

 On the other hand, examining patterns of missingness over multiple waves of mea-
surement can be extremely helpful. Hedeker and Gibbons  (  1997  )  presented data 
from a Psychiatric Clinical Trial on treatment for schizophrenia. Patients in the 
study were divided into the Drug Treatment and Placebo Control groups. The pri-
mary measurements were taken at weeks 0, 1, 3, and 6. In studying pattern mixture 
models, Hedeker and Gibbons plotted their data in four groups: Control with week 
6 data missing; Control with data for week 6; Treatment with data for week 6; and 
Treatment with week 6 data missing. Figure  1.1  presents a representation of these 
plots, approximated from the 1997 paper, and combined into a single fi gure.  

 Imagine that the plots shown in Fig.  1.1  were such that the only data available 
were from weeks 0 and 6 (the two end points). Then one would have no clue where 
the missing values might be; they could plausibly be anywhere across the range of 
observed responses. In this situation, Little’s  (  1994  )  “pessimist” would be correct in 
saying “… predictions of [the dependent variable] for nonrespondents could take 
any form, and thus nothing can honestly be said about [the mean of the dependent 
variable]” (p. 482). 

     Fig. 1.1    Psychiatric functioning at weeks 0, 1, 3, and 6. The four curves shown are based on 
approximate means for these four groups, from top to bottom: placebo control missing week 6 data; 
placebo control with week 6 data; drug treatment with week 6 data; drug treatment with week 6 data       

Psychiatric
Functioning
(lower 
values mean
better
functioning)
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2.80

3.20
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 But the plots shown in Fig.  1.1  are based on multiple time points, and thus they 
show clearly how each of the four groups is changing over time. As Little  (  1994  )  
suggests, if information is available from other measured variables, then one is 
able to incorporate that information into the missing data analysis model, and the 
situation is not as dire as commonly supposed. The upshot here is that plots such 
as those in Fig.  1.1  can give one a degree of con fi dence in extrapolating to the miss-
ing data points. 10  

 With the plots showing rather consistent changes over time within each of the 
four groups, it makes most sense that the missing point for the topmost plot is at 
least somewhere in the vicinity of the extension of that plot. Similarly, it makes 
most sense that the missing point for the bottom-most plot is at least somewhere in 
the vicinity of the extension of that plot. Although there may well be a plausible 
substantive theoretical explanation that would have the top curve bending down-
ward, and the bottom curve bending upward, it makes little conceptual sense for the 
missing point for the top curve to be near the bottom of the range, or for the missing 
point for the bottom curve to be near the top of the range.   

   Nonignorable Methods 

 Nonignorable methods, especially pattern mixture models (Demirtas and Schafer 
 2003 ; Hedeker and Gibbons  1997 ; Little  1993,   1994,   1995  ) , may be useful when 
there is good reason to believe, and evidence to support the idea that the missingness 
goes beyond what can be handled by MAR methods (MI and ML). However, one 
must be careful about selecting the model that created the missingness. Using the 
wrong model with these methods can produce results that are more biased than are 
the MAR methods (Demirtas and Schafer  2003  ) .  

   Sensitivity Analysis 

 Little (e.g.,  1994  )  has suggested the use of sensitivity analyses in conjunction with 
pattern mixture models. He talked about the idea that missingness on Y being a 
function of X (a measured covariate) and Y, and he posited a parameter  l , which 
indicated the degree to which Y, over and above X, was responsible for its own 
missingness. Rewriting his formula with my notation, it would be:

     λ= +Y  X YR     

   10   Note that the plots shown in Table  1.1  could also be based on more than two levels of a measured 
independent variable.  
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 Little suggested that one could examine the mean of Y and the 95 % con fi dence 
interval for several different values of  l . However, he also suggested that

  [a]nother way is to create draws from the posterior distribution, but with a different value of 
 l  for each draw sampled from a prior distribution of plausible values. The result would be 
a single wider interval for [the mean of Y]. Of course this interval is sensitive to the choice 
of prior, but a choice that provides for nonzero  l ’s may be more plausible than the prior 
implied by the standard ignorable-model analysis, which puts all the probability at the value 
 l  = 0 (pp. 480-481).   

 I really like this idea of taking random draws from a prior distribution of plausi-
ble values of  l  (also see Demirtas  2005  for a similar Bayesian strategy). But I would 
prefer to take a somewhat different approach. For starters, I would want to be very 
clear about who decides the plausibility of individual values of  l  (or comparable 
parameters). I would prefer that the substantive researcher, in close collaboration 
with the statistician, make these judgments. I would also prefer that the judgments 
about plausible values of the missing Y would come from substantive theory rather 
than from statistical theory. Then statistical theory would be matched with the sub-
stantive theory to help with the prediction. 

 It also makes sense, especially in longitudinal studies, that judgments be made 
about the missing values on a case-by-case basis. For example, look at the explana-
tion given by Demirtas and Schafer  (  2003  )  as to why people in the Hedeker and 
Gibbons  (  1997  )  data were missing. Demirtas and Schafer suggested that dropouts 
from the placebo control group (the top curve in Fig.  1.1 ), who had the least favor-
able trajectory, may have dropped out because of the apparent failure of the treat-
ment. They also suggested that dropouts from the drug treatment group (bottom 
curve in Fig.  1.1 ), who had the most favorable trajectory, may have dropped out 
because they judged that they were cured and no longer needed treatment. These 
possibilities do seem plausible given the trajectories shown in Fig.  1.1 . However, 
these are average trajectories. Some individuals who showed this basic pattern may 
have dropped for the suggested reasons. However, some individuals with this basic 
pattern may still have dropped out for other reasons. Also, individuals who had dif-
ferent patterns are much more likely to have dropped out for other reasons. 

 My suggestion is that the substantive researchers should work hard to come up 
with several substantive theoretical models that would allow extrapolation from the 
known data. Each theoretical model would be matched as best as possible, with an 
appropriate statistical model to achieve the predictions about the missing values. 
Then the substantive researchers would make judgments about the relative plausi-
bility of the various substantive theories. These judgments would generate a prob-
ability density function for the various theories, and random draws from that prior 
distribution would then produce the sensitivity analysis described by Little  (  1994  ) . 

 I want to highlight two aspects of this approach. First, the models themselves 
should be derived from substantive theory, not statistical theory. Statistical theory 
would be applied as needed as a second step. Second, the relative plausibility of the 
various theoretical models would mean that the distribution of values would be 
based on substantive theoretical considerations and not on statistical ones.   
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   Design and Measurement Strategies for Assuring MAR 

 I have heard it said that the best way to deal with missingness, especially attrition, 
is not to have it. The same can be said for NMAR missingness, per se. It is best if 
one can convert NMAR to MAR. Three strategies have been described in the litera-
ture for helping to reduce or eliminate NMAR missingness, especially due to attri-
tion. I present these below. 

   Measure the Possible Causes of Missingness 

 Little  (  1995  )  talked about the importance of information about the missing data 
process. Schafer and Graham ( 2002 ; also see Demirtas and Schafer  2003  )  have 
argued for including measures about intention to drop out of later survey sessions. 
Leon et al.  (  2007  )  simulated the inclusion of intent to drop out, and showed that this 
approach can be useful for reducing bias associated with attrition. 

 Graham et al.  (  1994  )  suggested a broad list of the potential causes of a variety of 
types of missingness. They suggested measuring a wide variety of causes, including 
slow reading speed, lack of motivation (e.g., for completing a survey), rebellious-
ness, transiency, reasons for parents refusing to allow participation, and indirect 
measures of processes associated with the dependent variable being the cause of its 
own missingness. 

 Most of the potential sources of missingness they suggested continue to have 
value, but I want to focus here on attrition. For a variety of reasons, other kinds of 
missingness generally prove to have less impact on study conclusions. In Table  1.7 , 
following Graham et al.  (  1994  ) , I suggest several measures as proxies for processes 
that could account for the person dropping out of the study after one or more waves 
of measurement.  

 The questions shown in Table  1.7  come from a recent school-based adolescent 
drug prevention study (Drug Resistance Strategies-Rural; DRSR; Colby et al. 
in press). These questions are part of a survey given to all participants. I would nor-
mally include these measures early in the survey. When I am using the 3-form 
design (which is very often in my school-based studies), these questions would 
always be in the “X” set of questions (i.e., asked of everyone; see Chap.   12    ). 

 Measuring possible causes of attrition is a good strategy because it is likely to 
reduce estimation bias. An important point here is that variables such as these need 
not account for all of the cause of missingness. If they even reduce the uncertainty, 
it is very possible that the amount of estimation bias is reduced to tolerably low 
levels. Examine Tables  1.4  and  1.5 , for example. It is easy to see from examining 
these tables that the correlation between the cause and missingness itself, under 
realistic conditions, does not need to be  r  = 0 for bias to be nonsigni fi cant in a statis-
tical or practical sense. 

http://dx.doi.org/10.1007/978-1-4614-4018-5_12
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 Another particularly good thing about this strategy is that it is easy and relatively 
inexpensive to implement. The speci fi c measures that will help with attrition bias 
will vary across different research contexts, but the classes of variables described 
here will typically have counterparts in other research contexts. In addition, adding 
a few measures (along the lines of those described above) to one’s measurement 
arsenal will typically be relatively easy and within one’s budget.  

   Measure and Include Relevant Auxiliary Variables 
in Missing Data Analysis Model 

 In Chap.   11    , the chapter coauthor (Linda M. Collins) and I present a more detailed 
look at the use of auxiliary variables. Collins et al.  (  2001  )  showed that estimation 
bias could be reduced if an auxiliary variable (a variable highly correlated with Y, 
sometimes missing, but not part of the analysis model) were included in the missing 
data analysis model. Auxiliary variables are typically included as a matter of course 
in longitudinal studies. The same variable as the main DV, but measured at previous 
waves, is generally most highly correlated with the main DV. If such a variable is 
not already part of the analysis model, (e.g., as a covariate or part of a growth curve 
analysis), it can be added in a number of ways in the missing data analysis model. 
We describe this in more detail in Chap.   11    , but for now, I will mention that the easi-
est way to take such variables into account is simply to add them to one’s MI analy-
sis (see Chaps.   3    ,   7    , and   11    ).  

   Track and Collect Data on a Random Sample of Those 
Initially Missing 

 Tracking and collecting data on those who are missing at the conclusion of the last 
wave of measurement represents perhaps the best approach to turning possible 
NMAR missingness into missingness that is clearly MAR. The logic here is that one 
identi fi es a random sample of those initially missing, and then tracks these individu-
als down, and measures them (see Glynn et al.  1993 ; Graham and Donaldson  1993 ). 
If the researcher is successful in measuring a large proportion (e.g., 80 %) of the 
targeted sample, then the data from the sample can be generalized to the remaining 
missing individuals, and the missingness becomes MAR. 

 Tracking and measuring respondents who were not available at the main measure 
can be expensive. However, one thing that makes this strategy feasible is that the costs 
of measuring the individuals in the targeted random sample can be focused on a rela-
tively small number of individuals. That is, rather than having to spend, say, $200 per 
respondent on the full sample of 200 individuals initially missing (total costs: $40,000), 
one could expend, say, $500 per respondent, to track and measure 40 individuals from 
the targeted sample of 50 (total costs $25,000). Of course, these are hypothetical 
 fi gures, but the point is that this strategy can be relatively cost-effective. 

http://dx.doi.org/10.1007/978-1-4614-4018-5_11
http://dx.doi.org/10.1007/978-1-4614-4018-5_11
http://dx.doi.org/10.1007/978-1-4614-4018-5_3
http://dx.doi.org/10.1007/978-1-4614-4018-5_7
http://dx.doi.org/10.1007/978-1-4614-4018-5_11
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 One problem, of course, is that tracking and measuring individuals who were 
initially missing from the main measurement wave can be a daunting task. When we 
attempted this kind of thing in the AAPT project, for example (see Graham et al. 
 1997  ) , we were able to track and measure a percentage of the originally targeted 
sample that was much smaller than 80 %. However, even under these circumstances, 
one is still able to make good use of the new data collected (e.g., see Glynn et al. 
 1993  ) . As I have said in this chapter, it is not necessary to remove all of the NMAR 
missingness in order to achieve bias that is tolerably small. Future research must 
bear this out, but I believe that even when one is able to track and measure only 
some of the targeted sample, and perhaps augment this with others tracked and 
measured from the group of those initially missing, one will generally convert 
enough of the NMAR missingness to MAR to make MAR methods reasonable. 

   Follow-Up Measures as Auxiliary Variables 

 When one speaks of tracking those initially missing and measuring them (or a ran-
dom sample of them), one is often talking about collecting data, not on the missing 
DV, but on an excellent proxy for the missing DV. That is, it often happens that the 
procedures used to collect data from the sample of those initially missing will be 
different from the procedures used in the main study (e.g., follow-up phone survey 
versus a paper-and-pencil, in-class survey in the main study). Time will generally 
also be different. For example, the time frame for the main measurement might be, 
say, 2 months (e.g., all of April and May of a given year). The follow-up measures 
may take 2–3 months longer (taking place in June, July, or even August of that 
year). 11  When this is true, it makes more sense to think of these measures, not as 
direct replacements for the missing measures, but as excellent auxiliary variables. 
However, in order for these follow-up measures to work as auxiliary variables, one 
must also collect follow-up data on a random sample of respondents who did pro-
vide data at the main measure.        
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 In this chapter, I present older methods for handling missing data. I then turn to the 
major new approaches for handling missing data. In this chapter, I present methods 
that make the MAR assumption. Included in this introduction are the EM algorithm 
for covariance matrices, normal-model multiple imputation (MI), and what I will 
refer to as FIML (full information maximum likelihood) methods. Before getting to 
these methods, however, I talk about the goals of analysis. 

   Goals of Analysis 

 The goal of any analysis is to obtain unbiased estimates of population parameters. For 
example, suppose the researcher wants to perform a multiple regression analysis to 
determine if the variable X has a signi fi cant, unique effect on the variable Y, after 
controlling for the covariate C. The  fi rst goal of this analysis is to obtain an estimate 
of the regression coef fi cient for X predicting Y that is unbiased, that is, near the popu-
lation value. The second goal of analysis is to obtain some indication of the precision 
of the estimate; that is, the researcher wants to obtain standard errors or con fi dence 
intervals around the estimate. When these two goals have been achieved, the researcher 
also hopes to test hypotheses with the maximum statistical power possible. It is in this 
context that I will talk about the methods for handling missing data. In evaluating the 
various methods, I will talk about the degree of bias in parameter estimates, and 
whether or not there is a good way with the strategy for estimating standard errors. 
Where relevant, I will also evaluate the method with respect to statistical power.  

   Older Approaches to Handling Missing Data 

 In this section, I will devote some space to each of these topics: (a) complete cases 
analysis, (b) pairwise deletion, (c) mean substitution, and (d) regression-based sin-
gle imputation. With these older methods, the goal is not so much to present a 

    Chapter 2   
 Analysis of Missing Data                 
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historical overview of what was typically done prior to 1987. Rather, I want to men-
tion the various approaches, say what is good and bad about them, and in particular, 
focus on what (if anything) is still useful about them. One thing is clear with these 
methods, however. None of them were really designed to  handle  missing data at all. 
The word “handle” connotes dealing effectively with something. And certainly 
none of these methods could be said to deal effectively with missing data. Rather, 
these methods, usually described as ad hoc, were designed to get past the missing 
data so that at least some analyses could be done. 

   Complete Cases Analysis (aka Listwise Deletion) 

 Complete cases analysis begins with the variables that will be included in the analy-
sis of substantive interest. The analyst then discards any case with missing values 
on any of the variables selected and proceeds with the analysis using standard meth-
ods. The  fi rst issue that arises with complete cases analysis relates to whether the 
subsample on which the analysis is done is a random sample of the sample as a 
whole. If the missingness is MCAR (see Chap.   1    ), then the complete cases are rep-
resentative of the whole, and the results of the analyses will be unbiased. In addi-
tion, the standard errors from this analysis are meaningful in the sense that they 
reasonably re fl ect the variability around the parameter estimate (although if the esti-
mates are biased, the meaningfulness of these standard errors is questionable). 

 However, because MCAR missingness is rather a rare occurrence in real-world data, 
it is almost always the case that cases with complete data for the variables included in 
the analysis are not representative of the whole sample. For example, in substance abuse 
prevention studies, it is virtually always true that drug users at the pretest are more likely 
than nonusers to drop out of the study at a later wave. This means that those with com-
plete cases will be different from those who dropped out. And this difference will lead 
to estimation bias in several parameters. In particular, means at the posttest will be 
biased, and Pearson correlations between pretest and posttest variables will be biased. 

 On the other hand, when missingness is MAR, regression coef fi cients for pretest 
variables predicting posttest variables will often be tolerably unbiased. In fact, as 
noted in Chap.   1    , when missingness on Y 

2
  (Y at time 2) is caused by C 

1
  (C at time 1; 

no missing data), then the regression coef fi cient for X 
1
  (X at time 1; no missing 

data) predicting Y 
2
  is unbiased when C 

1
  is included as a covariate. In this speci fi c 

context, complete cases analysis yields b-weights that are identical to those obtained 
with ML methods (e.g., EM algorithm; Graham and Donaldson  1993  ) . 

 With respect to bias, complete cases analysis tends to perform quite well, 
compared to MI and ML analyses, with ANCOVA or multiple regression analysis 
with several predictors from a pretest, and a single DV from a posttest. And because 
this type of model is so common, complete cases analysis can often be useful. 

 However, complete cases analysis fares less well when the proportion of cases 
lost to missingness is large. Thus, complete case analysis tends to fare much less 
well with more complex analyses, for example, with a mediation analysis with X, 
M, and Y coming from three different waves of measurement. 

http://dx.doi.org/10.1007/978-1-4614-4018-5_1
http://dx.doi.org/10.1007/978-1-4614-4018-5_1
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 Also, because complete cases analysis involves discarding cases, it often hap-
pens that complete cases analysis will test hypotheses with less power. And this loss 
of power can be substantial if the missingness on different variables in the model 
comes from nonoverlapping cases. Table  2.1  shows the missingness patterns for 
such a data set. Although this pattern is somewhat extreme, it illustrates the problem. 
In this instance, 80 of 500 data points are missing. That is, just 16 % of the total 
number of data points are missing. However, in this instance, complete cases analy-
sis would discard 80 % of the cases. Discarding 80 % of the cases because 16 % of 
the values are missing is unacceptable.  

 In situations such as the one illustrated in Table  2.1 , MI or ML methods are 
clearly a better choice than using complete cases analysis. But even in much less 
extreme situations, I argue that MI/ML methods are the better choice. In fact, I argue 
that MI/ML methods are always at least as good as complete cases analysis, and 
usually MI/ML methods are better, and often they are substantially better than the 
older methods such as complete cases analysis (Graham  2009  ) . 

 Graham et al.  (  1997  )  compared several different analysis methods with a media-
tion analysis using data related to the Adolescent Alcohol Prevention Trial (AAPT; 
Hansen and Graham  1991  ) . A somewhat simpli fi ed version of the model tested is 
shown in Fig.  2.1 . The variables on the left in the model represented three program 

   Table 2.1    Hypothetical patterns of missing and observed values   
 Variable 

 Percent 
 Data 
 Points  A  B  C  D  E 

 1  1  1  1  1  20  100 
 1  0  1  1  1  20  100 
 1  1  0  1  1  20  100 
 1  1  1  0  1  20  100 
 1  1  1  1  0  20  100 

  1 = observed; 0 = missing. 500 total data points  

     Fig. 2.1    Theoretical mediation model for the adolescent alcohol prevention trial (Hansen and 
Graham 1991). RT = Resistance Training program vs. control; Norm = Normative Education pro-
gram vs. control; Comb = Combined (RT + Norm) program vs. control; Skill = behavioral measure 
of skill in resisting drug use offers; Percept = measure of perceptions of peer drug use; Alc9 = 
measure of alcohol use at 9th grade       
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group variables (variables were dummy coded so that each variable represented a 
comparison against an information-only control group). The programs were 
implemented in the seventh grade. The variables in the middle represented the 
hypothesized mediators of longer term effects. These measures were taken 
approximately 2 weeks after completion of the programs. The variable on the right 
represented the longer term outcome (ninth grade alcohol use). In NORM, students 
received a norms clari fi cation curriculum designed to correct student misperceptions 
about the prevalence and acceptability of alcohol and other drug use among their 
peers. In RT, students received resistance skills training. In the COMBined program, 
students received the essential elements of both NORM and RT curricula. It was 
hypothesized that receiving the NORM (or COMBined) curriculum would decrease 
perceptions of peer use, which in turn would decrease ninth grade alcohol use. It was 
also hypothesized that receiving the RT (or COMBined) curriculum would increase 
resistance skills, which in turn would decrease ninth grade alcohol use.  

 Approximately 3,000 seventh grade students received the programs and com-
pleted the pretest survey. Approximately the same number completed the immediate 
posttest survey, which included questions about perceptions of peer use. At the same 
time as the immediate posttest survey administration, approximately one-third of the 
students were selected at random to be taken out of the classroom to complete an 
in-depth, role-play measure of drug resistance skills. Approximately 54 % of those 
present at the seventh grade pretest also completed the survey at the ninth grade 
posttest. Given all this, approximately 500 students had data for all measures. 

 The data described above were analyzed using several procedures, including MI 
with the MIX program for mixed categorical and continuous data (Schafer  1997  ) , 
Amos, an SEM program with a FIML feature for handling missing data (Arbuckle 
 1995  ) , EM algorithm (with bootstrap for standard errors; for example., Graham 
et al.  1996  ) , and complete cases (CC) analysis. The results of these analyses appear 
in Table  2.2 . The key point to take away from these results is that the results based 
on complete cases appears to be slightly biased. But more importantly, the mediator 
→ outcome effects were both nonsigni fi cant using complete cases analysis. Thus, 
had that been our approach, we would not have found signi fi cant mediation in this 
instance (MacKinnon et al.  2002  ) .   

   Table 2.2    Results of analysis of a mediation model based on AAPT data   

 Effect  Amos  Mix  EM  CC 

 RT  → Skill  .365 (6.29)  .375 (6.36)  .365 (6.98)  .438 (4.56) 
 Comb  → Skill  .332 (5.49)  .330 (5.42)  .332 (5.10)  .354 (3.82) 
 Norm  → Percept  −.117 (3.31)  −.118 (3.22)  −.117 (3.73)  −.191 (2.31) 
 Comb  → Percept  −.270 (7.91)  −.273 (7.89)  −2.70 (8.13)  −.209 (2.90) 
 Skill  → Alc9  −.019 (0.48)  −.021 (0.68)  −.019 (0.50)  −.034 (0.62) 
 Percept  → Alc9  .143 (4.35)  .119 (3.26)  .143 (3.50)  .135 (1.89) 

   Note : Table adapted from Graham et al.  (  1997  ) . Regression coef fi cients are shown (with corre-
sponding  t -values shown in parentheses). Amos refers to the Amos Program (Arbuckle  1995  ) ; Mix 
refers to Schafer’s  (  1997  )  Mix program (multiple imputation for mixed continuous and categorical 
data); EM refers to the EM algorithm; Standard errors ( t -values shown) for EM estimates were 
based on bootstrap methods (Efron  1982  ) ; CC refers to complete cases analysis  
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   Pairwise Deletion 

 Pairwise deletion is a procedure that focuses on the variance-covariance matrix. 
Each element of that matrix is estimated from all data available for that element. In 
concept, pairwise deletion seems like it would be good, because it does make use of 
all available data. However, because different variances and covariances are based 
on different subsamples of respondents, parameter estimates may be biased unless 
missingness is MCAR. In addition, because the different parameters are estimated 
with different subsamples, it often happens that the matrix is not positive de fi nite, 
and therefore cannot even be analyzed using most multivariate procedures. An odd 
by-product of pairwise deletion is that eigenvalues from principal components anal-
ysis are either positive (good) or  negative  (bad). With complete cases, eigenvalues 
are either positive (good) or zero (bad). 

 In practice, I have found the biggest limitation of pairwise deletion to be the 
fact that there is no obvious way to estimate standard errors. Estimation of stan-
dard errors requires specifying the sample size, and there is no obvious way to do 
that with pairwise deletion. Thus, with the one exception, outlined in Chap.   8    , I do 
not use pairwise deletion. Even if parameter estimation is all that is needed, better 
parameter estimates are easily obtained with EM (see below; also see Chaps.   3     
and   7    ).  

   Mean Substitution 

 Mean substitution is a strategy in which the mean is calculated for the variable 
based on all cases that have data for that variable. This mean is then used in place of 
any missing value on that variable. 

 This is the worst of all possible strategies. Inserting the mean in place of the 
missing value reduces variance on the variable and plays havoc with covariances 
and correlations. Also, there is no straightforward way to estimate standard errors. 
Because of all the problems with this strategy, I believe that using it amounts to 
nothing more than pretending that no data are missing. I recommend that people 
should NEVER use this procedure. If you absolutely must pretend that you have 
no missing data, a much better strategy, and one that is almost as easy to imple-
ment, is to impute a single data set from EM parameters (see Chaps.   3     and   7    ) and 
use that.  

   Averaging the Available Variables 

 This is the situation in which the mean for a scale is calculated based on partial data 
when the person does not have complete data for all variables making up the scale. 
I cover this topic thoroughly in Chap.   9     (coauthored by Lee van Horn and Bonnie 

http://dx.doi.org/10.1007/978-1-4614-4018-5_8
http://dx.doi.org/10.1007/978-1-4614-4018-5_3
http://dx.doi.org/10.1007/978-1-4614-4018-5_7
http://dx.doi.org/10.1007/978-1-4614-4018-5_3
http://dx.doi.org/10.1007/978-1-4614-4018-5_7
http://dx.doi.org/10.1007/978-1-4614-4018-5_9
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Taylor). But I wanted also to mention here to distinguish it from mean substitution. 
The idea of using available variables to calculate a scale score is not at all the same 
as mean substitution. Rather, I think of it as being a variant of regression-based 
single imputation (see next section). And as such, this strategy, although not perfect, 
has much better statistical properties.  

   Regression-Based Single Imputation 

 With this strategy, one begins by dividing the sample into those with a variable (Y), 
and those for whom Y is missing, as shown in Table  2.3 . One then estimates a 
regression model in the  fi rst group (X 

1
 , X 

2
 , and X 

3
  predicting Y) and applies that 

regression equation in the second group.  
 For example, in the  fi rst group, the regression equation is:

    Y = + + +0 1 1 2 2 3
ˆ b b X b X b X   

 And because all three X variables have data for the second group, the Ŷ values 
are calculable in the second group. These values are the imputed values and are 
inserted wherever Y is missing. 

 Conceptually, this is a good way to impute values. It is good in the sense that a 
great deal of information from the individual is used to predict the missing values. 
And as I shall show throughout this book (especially see Chap.   11     on auxiliary vari-
ables), the higher correlation between the predictors and Y, the better the imputation 
will be. In fact, this is such a good way to impute values that it forms the heart of 
the EM algorithm for covariance matrices and normal-model MI procedures. 

 However, regression-based single imputation is not a great imputation procedure 
in and of itself. Most importantly, although covariances are estimated without bias 
with this procedure (when certain conditions are met), variances are too low. It is 
easy to see why this is. When Y is present, there is always some difference between 
observed values and the regression line. However, with this imputation approach, 
the imputed values always fall right on the regression line. It is for this reason that 
I do not recommend using this approach. The option available within the MVA 
package in SPSS (even as recent as version 20) for imputing data from the EM solu-
tion is this kind of single imputation (von Hippel  2004  ) . I therefore cannot recom-
mend using this imputed data set (however, please see Chaps.   3     and   7     for other 
options).   

   Table 2.3    Missing data patterns   
 X 

1
   X 

2
   X 

3
   Y 

 1  1  1  1 
 1  1  1  0 

  1 = value observed; 0 = value missing  

http://dx.doi.org/10.1007/978-1-4614-4018-5_11
http://dx.doi.org/10.1007/978-1-4614-4018-5_3
http://dx.doi.org/10.1007/978-1-4614-4018-5_7
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   Basics of the Recommended Methods 

 I have often said that the recommended methods for handling missing data fall into 
two general categories, model-based procedures and data-based procedures. Model-
based approaches rewrite the statistical algorithms so as to handle the missing data 
and estimate parameters all in a single step. Data-based approaches, on the other 
hand, handle the missing data in one step, and then perform the parameter estimation 
in a second, distinct, step. The most common of the model-based procedures are the 
current crop of structural equation modeling (SEM) programs, which use a FIML 
feature for handling missing data. The most common of the data-based procedures is 
normal-model MI. However, with the EM algorithm, this distinction gets a little 
fuzzy (see below). When an EM algorithm is tailored to produce parameter estimates 
speci fi c to the situation, EM is a model-based approach. However, when the EM 
algorithm produces more generic output, such as a variance-covariance matrix and 
vector of means, which is then analyzed in a separate step, it is more like a data-based 
procedure. The basics of these recommended approaches are presented below. 

   Full Information Maximum Likelihood (FIML) 

 The most common of the model-based procedures are the SEM programs that use a 
FIML feature for handling missing data. As with all model-based approaches, these 
programs handle the missing data and parameter estimation in a single step. The 
FIML approach, which has sometimes been referred to as raw-data maximum likeli-
hood, reads in the raw data one case at a time, and maximizes the ML function one 
case at a time, using whatever information is available for each case (e.g., see 
Graham and Coffman  in press  ) . In the end, combining across the individuals pro-
duces an overall estimate of the ML function. All of these SEM/FIML programs 
provide excellent (ML) parameter estimates for the model being studied and 
also provide reasonable standard errors, all in one step. 

   Amos and Other SEM/FIML Programs 

 Several SEM programs have the FIML feature, including, in alphabetical order, 
Amos (Arbuckle  2010  ) , EQS 6.1 (Bentler and Wu  1995  ) , LISREL 8.5+ (Jöreskog 
and Sörbom  2006 ; also see Mels  2006  ) , Mplus (Muthén and Muthén  2010  ) , Mx 
(Neale et al.  2003  ) , and SAS (v. 9.2) Proc CALIS. All of these programs allow ML 
estimation with missing data and provide good standard errors. Amos has the added 
advantage of being part of the SPSS package. Amos also has the advantage of being 
exceptionally intuitive and easy to use. For these reasons, and because SPSS users 
need more missing data tools, I emphasize Amos a little more here. A more detailed 
discussion of the workings of Amos can be found in Graham et al.  (  2003 ; also see 
Graham et al.  in press  ) .   
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   Basics of the EM Algorithm for Covariance Matrices 

 First, E and M stand for Expectation and Maximization. Also, please understand 
that it is not quite proper to refer to “the” EM algorithm. There are several EM 
algorithms. Collins and Wugalter  (  1992  )  described one for estimating LTA mod-
els, a type of latent class model. Rubin and Thayer  (  1982  )  described an EM algo-
rithm for factor analysis. And early versions of the HLM program (Raudenbush 
and Bryk  2002  )  also made use of an EM algorithm (Raudenbush et al.  1991  ) . In 
each case, the EM algorithm is tailored to produce the ML parameter estimates of 
interest. The version of the EM algorithm I am talking about in this chapter (and 
throughout this book) is what I refer to as the EM algorithm for covariance 
matrices. 

 As with all of these versions, the EM algorithm for covariance matrices  fi rst 
reads in, or calculates the suf fi cient statistics, the building blocks of the particular 
analysis being done, and reads out the relevant parameters. In this case, the relevant 
parameters are a variance-covariance matrix and vector of means. From here on, 
when I refer to “the EM algorithm,” I am speaking of the version that produces a 
variance-covariance matrix and vector of means. 

 The EM algorithm is an iterative procedure that goes back and forth between the 
E-Step and the M-step. 

   The E-Step 

 The suf fi cient statistics for the EM algorithm are sums, sums of squares, and 
sums of cross products. The program reads in the raw data, and as each case is 
read in, it updates the sums, sums of squares, and sums of cross products. Where 
the data point is observed, it is used directly to update these sums. If the data 
point is missing, however, the best estimate is used in its place. The best estimate 
of the missing value is the Ŷ from a regression equation using all other variables 
as predictors. For sums, the value is added directly whether it was observed or 
missing. For sums of squares and sums of cross products, if one or both values 
were observed, the value is added directly. However, if both values were missing, 
then the best estimate is added along with a correction term. This correction term 
is the residual from the regression with all other variables as predictors. Thus, it 
is like the error variance added to imputed values in multiple imputation (see 
below).  

   The M-Step 

 Once the sums, sums of squares, and sums of cross products have been estimated, 
the variance-covariance matrix (and vector of means) can simply be calculated. This 
concludes the  fi rst iteration. 
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 From the variance-covariance matrix and means from the  fi rst iteration, one can 
calculate all of the regression equations needed to predict each variable in the model. 
During the next iteration, these equations are used to update the “best estimate” 
when the value is missing. After the sums, sums of squares, and sums of cross 
products have been calculated at this iteration, a new variance-covariance matrix 
and vector of means are calculated, and new regression equations are estimated for 
the next iteration. 

 This process continues until the variances, covariances, and means change so 
little from iteration to iteration that they are considered to have stopped changing. 
That is, when this happens, EM is said to have  converged . 

 The variance-covariance matrix and vector of means from the last iteration are 
ML estimates of these quantities. Any analysis that requires only a variance- 
covariance matrix and vector means as input can be used with these EM estimates 
as input. If the new analysis is something that is simply calculated based on the 
input matrix, for example, a multiple regression analysis, then those estimates 
are also ML (note, e.g., that the EM and Amos parameter estimates from Table  2.2  
are identical). However, if the analysis itself is an iterative procedure, such as a 
latent- variable regression model, then the estimates based on the EM variance- 
covariance matrix and means will be unbiased and ef fi cient but technically will not 
be ML.  

   Standard Errors 

 The one drawback with EM is that standard errors are not produced as a by-product 
of the parameter estimation. There are other approaches (e.g., see Yuan and Bentler 
 2000  ) , but the most common approach to estimating standard errors with EM esti-
mates is to use bootstrap procedures (e.g., Graham et al.  1997  ) . Note that the  t- values 
based on bootstrapping in Table  2.2  are reasonable, but are somewhat different from 
the those based on FIML and MI analysis. Although the EM + bootstrapping process 
is generally more time consuming than FIML or MI, one notable advantage of EM 
with bootstrapping is that this is a good approach when data are not normally dis-
tributed. In this instance, bootstrapping to yield direct estimates of the con fi dence 
intervals (which requires one or two thousand bootstraps) provides better coverage 
than does either MI or FIML with regular (i.e., not robust) standard errors.  

   Implementations of the EM Algorithm 

 The EM algorithm for covariance matrices now has many implementations, 
including SAS Proc MI, Norm (Schafer  1997  ) , and EMCOV (Graham and Hofer 
 1991  ) . SPSS does have an EM algorithm routine within its MVA module. This is a 
stand-alone routine that does not interface with other parts of SPSS, but it can be 
very useful for estimating EM means, variances, and correlations. The latest ver-
sions of STATA also have EM capabilities.   
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   Basics of Normal-Model Multiple Imputation 

 In a previous section, I said that the regression-based, single imputation procedure 
formed the heart of EM and normal-model MI. I also said that regression-based 
single imputation underestimates variances. That is, there is too little variability in 
the imputed values. The  fi rst reason for this is that the imputed values have too little 
error variance. This problem is depicted in Fig.  2.2 . The observed data points devi-
ate from the regression line by some amount, but, of course, the imputed values lie 
right on the regression line. This problem is easily resolved simply by adding ran-
dom normal error to each imputed value (this corresponds to adding the correction 
term in the E-step of the EM algorithm, as described above). 1   

 The second reason there is too little variability relates to the fact that the regres-
sion equations used in single imputation are based on a single sample drawn from 
the population. As depicted in Fig.  2.3 , there should be additional variability around 

  Fig. 2.2    A bivariate distribution with the best-fi tting straight line. Imputed values based on 
regression-based single imputation lie right on the regression line. Real (observed) data points 
deviate by some amount from the regression line       

  Fig. 2.3    Regression lines are slightly different for different random draws from the population       

   1   It is this random error that is missing from the data set imputed from the EM solution in the MVA 
module of SPSS (von Hippel  2004 ; this remains the case at least through version 20).  
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the regression line itself to re fl ect what would occur if there were a different random 
draw from the population for each imputed data set. Of course, researchers seldom 
have the luxury of being able to make several random draws from the population of 
interest. However, bootstrap procedures (Efron  1982  )  can be used in this context. Or 
random draws from the population can be simulated using Bayesian procedures, 
such as Markov-Chain Monte Carlo (MCMC) or data augmentation (Tanner and 
Wong  1987 ; Schafer  1997  )  procedures.  

 It has been said that data augmentation (DA), which is used in Schafer’s  (  1997  )  
NORM program, is like a stochastic version of EM. DA is also a two-step, iterative 
process. In the I-step (imputation step), the data are simulated based on the current 
parameter values. In the P-step (posterior step), the parameters are simulated 
from the current data. On the other hand, DA converges in a way that is rather dif-
ferent from how EM converges. Whereas EM converges when the parameter esti-
mates stop changing, DA converges when the distribution of parameter estimates 
stabilizes. 

 Recall that DA is used in order to simulate random draws from the population. 
However, as with all Markov Chain procedures, all information at one iteration 
comes from the previous iteration. Thus the parameter estimates (and imputed data) 
from two consecutive steps of DA are much more like one another than if they had 
come from two random draws from the population. However, after some large num-
ber of DA steps from some starting point, the parameter estimates are like two ran-
dom draws from the population. The question is how many DA steps between 
imputed data sets is enough? The answer (described in more detail in Chaps.   3     
and   7    ) is that the number of iterations for EM convergence is a good estimate of the 
number of DA steps one should use between imputed data sets. 

   The Process of Doing MI 

 Analysis with MI is a three-step process. First, one imputes the data, generating  m  
imputed data sets. With each data set, a different imputed value replaces each miss-
ing value. Early writers suggested that very few imputed data sets were required. 
However, more recent work has suggested that more imputations (e.g.,  m  = 20–40 or 
more) are required to achieve the statistical power of equivalent ML procedures 
(Graham    et al.  2007 ; see below for more details). The details for performing MI are 
given in Chaps.   3     and   7    . 

 Second, one analyzes the  m  data sets with usual, complete data, procedures (e.g., 
with SAS, SPSS, HLM, etc.), saving the parameter estimates and standard 
errors from analysis of each data set. Details for performing analyses are given in 
Chaps.   4    ,   5    ,   6    , and   7    . 

 Third, one combines the results to get  MI inference . Following what are com-
monly known as Rubin’s rules (Rubin  1987  ) , the two most important quantities for 
MI inference are the point estimate of the parameters of interest and the MI-based 
standard errors. These and other important quantities from the MI inference process 
are described below.  

http://dx.doi.org/10.1007/978-1-4614-4018-5_3
http://dx.doi.org/10.1007/978-1-4614-4018-5_7
http://dx.doi.org/10.1007/978-1-4614-4018-5_3
http://dx.doi.org/10.1007/978-1-4614-4018-5_7
http://dx.doi.org/10.1007/978-1-4614-4018-5_4
http://dx.doi.org/10.1007/978-1-4614-4018-5_5
http://dx.doi.org/10.1007/978-1-4614-4018-5_6
http://dx.doi.org/10.1007/978-1-4614-4018-5_7
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   Point Estimate of the Parameter 

 The point estimate for each parameter is simply the arithmetic average of that param-
eter estimate (e.g., a regression coef fi cient) over the  m  imputed data sets. It is this 
average for each parameter of interest that is reported in the article you are writing.  

   Standard Errors and  t- Values 

 The MI inference standard error (SE) is in two parts. One part,  within-imputation 
variance  ( U ) re fl ects the regular kind of sampling variability found in all analyses. 
The other part, between-imputation variance ( B ), re fl ects the added variability, or 
uncertainty, that is due to missing data. The within-imputation variance is simply the 
average of the squared SE over the analyses from the  m  imputed data sets, that is,

    = ∑ 2U SE / ,m   

for each parameter being studied. The between-imputation variance is the sample 
variance of the parameter estimate (e.g., a regression coef fi cient) over the  m  imputed 
data sets,

    = 2
PS ,B   

where P is the parameter being studied. The total variance is a weighted sum of the 
two kinds of variance,

    = + +(1 1 / ) .T U m B    

 It should be clear that  B  is the variance that is due to missing data. If there were 
no missing data, then the variance of the parameter over the  m  imputed data sets 
would be 0 and the  B  component of variance would be 0. The MI inference standard 
error is simply the square root of  T .  

   Degrees of Freedom (df) 

 The  df  associated with the  t- value in Rubin’s rules, adapted from Schafer  (  1997  ) , is

    
−

⎡ ⎤= − = +⎢ ⎥+⎣ ⎦

2

1

U
( 1) 1 .

(1 )
df m

m B    

 The  df  in MI analysis is different from  df  in other statistical contexts; for example, 
it has nothing to do with  N . Just looking at the formula for  df  can give insights into 
its meaning. First, if there were very little missing data,  B  would be very small. At 
the limit,  B  would tend toward 0, and  df  would tend toward in fi nity. On the other 
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hand, if there were much missing data and uncertainty of estimation due to missing 
data, then  B  would tend to be large in comparison to  U , and the right-hand term in the 
brackets would tend to be very small. In that case,  df  would tend toward its lower 
limit ( m− 1). More conceptually, I think of  df  as indicating the stability of the MI 
estimates. If  df  is large, compared to  m , then the MI estimates have stabilized and can 
be trusted. However, if  df  is small, for example, near the lower limit, it indicates that 
the MI estimates have not stabilized, and more imputations should be used.  

   Fraction of Missing Information 

 The fraction of missing information ( FMI ) in Rubin’s rules, adapted from Schafer 
 (  1997  ) , is

    

+ +=
+

2 / ( 3)

1

r df
FMI

r   

where

    

−+=
1(1 )

.
m B

r
U    

  FMI  is an interesting quantity. Conceptually, it represents the amount of  informa-
tion  that is missing from a parameter estimate because of the missing data. In its 
simplest form, the  FMI  is theoretically the same as the amount of missing data. For 
example, with a simple situation of two variables, X and Y, where X is always 
observed, and Y is missing, say 50 % of the time,  FMI  = .50 for b 

YX
 , the regression 

coef fi cient for X predicting Y. However, when there are other variables in the model 
that are correlated with Y,  FMI  will theoretically be reduced, because, to the extent 
that those other variables are correlated with Y, some of the lost information is 
restored (see Chap.   11     for a detailed presentation of this issue). 

 It is important to note that in any analysis, the estimated FMI will differ from the 
hypothetical value.  FMI  based on the formulas given above is only an estimate. And 
it can be a rather bad estimate, especially when  m  is small. I do not trust the  FMI  
estimate at all unless  m   =  40 or greater. And even then, although I do look at the  FMI  
to get a sense of its magnitude, I always bear in mind that the true  FMI  could be a 
bit different.    

   What Analyses Work with MI? 

 It should be clear from reading this book that I believe strongly that normal-model 
MI is an exceptionally useful analytic tool. Normal-model MI, which is just one of 
the MI models that has been described in the literature, is (a) without doubt the best 

http://dx.doi.org/10.1007/978-1-4614-4018-5_11
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implemented of the available programs, and (b) able to handle an exceptionally 
wide array of analytic problems. 

 I think it helps to know that normal-model MI “preserves,” that is, estimates 
without bias, means, variances, covariances, and related quantities. It does not, how-
ever, give unbiased estimates for the proportion of people who give a particular 
answer to a variable with more than two response levels. For example, normal-
model MI (and the related EM algorithm) typically cannot be used to estimate the 
proportion of respondents who respond “none” to a variable asking about the num-
ber of cigarettes smoked in the person’s lifetime. That proportion is really a categori-
cal quantity, and unless the variable happens to be normally distributed, normal-model 
MI will get it wrong. The good news is that variables such as this can often be recast 
so that normal-model MI can handle them. With the lifetime cigarette smoking ques-
tion, for example, if the variable were recoded to take on the values 0 (never smoked) 
and 1 (ever smoked), then normal-model MI (and EM) will produce unbiased esti-
mates of the proportion. The reason it works in this instance is that the proportion of 
people responding “1” is the same as the mean for that recoded version of the vari-
able, and the estimate of the mean is unbiased with normal-model MI. 

   Normal-Model MI with Categorical Variables 

 Normal-model MI does not deal with categorical variables with more than two lev-
els, unless they are  fi rst dummy coded; any categorical variable with  p  levels must 
be recoded into  p −1 dummy variables. When such variables have no missing data, 
that is all that needs to be done. When such variables have missing data, the values 
may be imputed with normal-model MI, but a minor ad hoc  fi x may be needed for 
certain patterns of imputed values (Allison  2002 ; also see Chaps.   3     and   7    ). Normal-
model MI may also be used for cluster data (e.g., students within schools). I discuss 
this topic in much greater detail in Chap.   6    , but suf fi ce it to say here that normal-
model MI does just ok with cluster data, and in this instance, other MI models (e.g., 
Schafer’s PAN program; Schafer  2001 ; Schafer and Yucel  2002  )  are preferred.  

   Normal-Model MI with Longitudinal Data 

 Schafer’s  (  2001  )  PAN program was developed initially to handle the special longi-
tudinal data problem depicted in Table  2.4 . The data came from the AAPT study 
(Hansen and Graham  1991  ) . The three variables shown were Alcohol (alcohol use), 
Posatt (beliefs about the positive social consequences of drinking alcohol), and 
Negatt (beliefs about the negative consequences of drinking alcohol). As shown in 
the table, students were asked about their alcohol consumption in each grade from 
 fi fth to tenth grades. However, the Posatt questions were not asked in eighth grade, 

http://dx.doi.org/10.1007/978-1-4614-4018-5_3
http://dx.doi.org/10.1007/978-1-4614-4018-5_7
http://dx.doi.org/10.1007/978-1-4614-4018-5_6
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but reappeared on the survey in ninth and tenth grades. The Negatt questions were 
not asked in any of the last three grades.  

 Normal-model MI cannot impute data such as those shown, because data for 
each case (which would normally appear in one long row) would be missing data 
for Posatt at eighth grade and Negatt at eighth, ninth, and tenth grades. However, 
PAN (short for panel) adds a longitudinal component (essentially a growth model) 
to the imputation procedure. Thus, Posatt data for  fi fth, sixth, seventh, ninth, and 
tenth grades can be used to make a good guess about the missing value for Posatt at 
eighth grade. Also, Negatt at  fi fth, sixth, and seventh grades can be used to make 
guesses about the missing Negatt scores for eighth, ninth, and tenth grades. Of 
course, we would be much more con fi dent about imputing the missing Posatt score 
at eighth grade than we would about imputing the missing Negatt scores. But the 
point is that this kind of imputation is possible with PAN. 

 Many people believe, incorrectly, that programs such as PAN must also be used 
to impute longitudinal data under what I would refer to as typical circumstances 
(e.g., the pattern depicted in Table  2.5 ). The data shown in Table  2.5  differ 
signi fi cantly from the data shown in the previous example. With the data shown in 
Table  2.5 , some people have complete data. More importantly, with these data, at 
least some cases have data for every variable and for every pair of variables. Under 
these circumstances, longitudinal models, for example, growth models, may be esti-
mated based on a variance-covariance matrix and vector of means (e.g., using SEM 
procedures; see Willett and Sayer  1994  ) . And because variances, covariances, and 
means are estimated without bias with normal-model MI (and the corresponding 
EM algorithm), these normal-model procedures are suf fi cient for imputing data in 
this longitudinal context.   

   Table 2.4    “Special” longitudinal missing data patterns   
 Grade 

 5  6  7  8  9  10 

 Alcohol  1  1  1  1  1  1 
 Posatt  1  1  1  0  1  1 
 Negatt  1  1  1  0  0  0 

  1 = data observed; 0 = data missing. Data for each case would 
normally appear in one long row  

   Table 2.5    Typical longitudinal missing data patterns   
 Alcohol in grade 

 Pattern  5  6  7  8  9  10  N 

 1  1  1  1  1  1  1  500 
 2  1  1  1  1  1  0  200 
 3  1  1  1  0  1  1  100 
 4  1  1  1  0  0  0  200 

  1 = data observed; 0 = data missing  
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   Imputation for Statistical Interactions: The Imputation Model 
Must Be at Least as Complex as the Analysis Model 

 Researchers are often interested in statistical interactions (e.g., see Aiken and West 
 1991 ; Jaccard and Turrisi  2003  ) . One way to form a statistical interaction is simply 
to obtain a product of two variables, for example,

    = ×AB  A  B    

 Suppose one is interested in testing a regression model with main effects and 
interaction terms, for example, A, B, and AB as predictors of Y. People often ask if 
they can go ahead and test this kind of interaction model if they did not address the 
interaction during imputation. The general answer is that the imputation model 
should be at least as complex as the analysis model. One way of thinking of this is 
that any variable that is used in the analysis model must also be included in the 
imputation model. 2  

 If a variable is omitted from the imputation model, then imputation is carried out 
under the model in which the omitted variable is correlated  r  = 0 with all of the vari-
ables included in the model. Thus, to the extent that there is missing data, the 
correlation between the omitted variable and any included variable will be sup-
pressed, that is biased, toward zero. Interactions (product of two variables) are com-
monly omitted from the imputation model. And because the product is a nonlinear 
combination of two variables, it cannot simply be calculated after imputation. One 
solution, then, is to anticipate any interactions, and to include the appropriate prod-
ucts in the imputation model. 

 A more convenient approach to imputation with interactions is available for 
some classes of variables – categorical variables that fall naturally into a small num-
ber (e.g., just two or three) groups. This approach follows from the idea that interac-
tions can also be conceived of as a correlation between two variables (e.g.,  r  

AY
 ) 

being different when some categorical third variable, B, is 0 or 1. With this approach, 
one simply imputes separately at the two (or more) levels of the categorical vari-
able. The good news is that imputing in this manner allows one, after imputation, to 
test any interaction involving the categorical variable. For example, if one imputes 
separately for males and females, then any interaction involving gender can be 
tested appropriately after imputation. This strategy also works well for treatment 
membership variables. If one imputes separately within treatment and control 
groups, then any interaction involving that treatment membership variable can be 
tested appropriately after imputation.  

   2   However, it is acceptable if variables are included in the imputation model that are not included 
in the analysis model.  
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   Normal-Model MI with ANOVA 

 The kind of analysis that works best with MI is the kind of analysis that produces a 
parameter estimate and standard error. Thus, virtually all analyses in the large fam-
ily of regression analyses lend themselves very well to normal-model MI. Analyses 
that do not work so well are ANOVA-related analyses, speci fi cally, analyses that 
focus on sums of squares, F-tests, and the like. Fortunately, it is generally possible 
to recast problems that are typically handled with some version of ANOVA into 
some kind of regression analysis.  

   Analyses for Which MI Is not Necessary 

 Some analyses do not require the overhead associated with MI. For example, as 
I outline in Chaps.   4    ,   5    , and   7    , analyses (e.g., coef fi cient alpha analysis or explor-
atory factor analysis) that do not require hypothesis testing are more readily handled 
directly by analyzing the EM covariance matrix (see Chap.   7    ), or by imputing a 
single data set from EM parameters, and analyzing that (see Chaps.   4    ,   5    , and   7    ). 

 Similarly, although one would de fi nitely prefer to use MI for multiple regression 
analysis, certain quantities in those analyses do not necessarily involve hypothesis 
testing, and can be handled either by analyzing the EM covariance matrix directly 
(see Chap.   7    ), or by analyzing the single data set imputed from EM parameters (see 
Chaps.   4    ,   5    , and   7    ). For example, standardized b-weights and R 2  values can theoreti-
cally be handled with MI. But it is much easier to estimate these quantities using the 
EM covariance matrix directly or by analyzing a single data set imputed from EM 
parameters.   

   Missing Data Theory and the Comparison Between 
MI/ML and Other Methods 

 MI and ML methods for handling missing data were designed speci fi cally to achieve 
unbiased estimation with missing data when the MAR assumption holds. Thus it is 
not surprising that when compared against older, ad hoc methods (e.g., listwise 
deletion, pairwise deletion, mean substitution), MI and ML methods yield unbiased 
parameter estimates. And regardless of whether the assumptions are met or not, MI 
and ML yield estimates that are at least as good as the older, ad hoc methods (Graham 
 2009  ) . This does not mean that the MI/ML methods will always be better than, say, 
complete cases analysis. But they will always be at least as good, usually better, and 
often very much better than the older methods (Graham  2009  ) . 

 An important point here is that missing data  theory  predicts that MI and ML 
will be better than the old methods. There are already numerous simulations to 
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demonstrate that they are, in fact, better. An important point here is that we do not 
need more simulations to demonstrate this. What we do need are simulations and 
other studies that demonstrate the limits of the MI/ML advantage. My recommenda-
tion for future research in this area is that the researcher should acknowledge estab-
lished missing data theory and articulate the reasons why it is either incorrect or 
incomplete. Here is one example. 

   Estimation Bias with Multiple Regression Models 

 Consider the simple regression model depicted in Fig.  2.4 . The regression coef fi cient 
of X predicting Y (b 

YX
 ) is of primary interest in the model, and the variable C is 

included as a covariate. In this instance, X and C are never missing. Y is sometimes 
missing, and C is the cause of missingness on Y. Graham and Donaldson  (  1993  )  
demonstrated that under these circumstances, b 

YX
  is identical when based on the EM 

algorithm and on complete cases analysis.  
 Although this model is a very simple one, it is representative of a very common 

kind of model. That is, it is common to have a regression model such as that shown 
in Fig.  2.4 , with perhaps several covariates. Even with several covariates, where the 
pattern of missingness among the covariates could be somewhat complex, complete 
cases analysis does tend to yield results that are similar to those given by EM and 
MI. What is important is that regardless of the type of missingness, these EM/MI 
and complete cases analysis yield similar results for regression coef fi cients under 
these circumstances (Graham and Donaldson  1993  ) . 

 Note that this is not true of other parameters. For example, means and correla-
tions based on complete cases are often substantially biased under the conditions 
described here. And with more complex models, such as that described in Fig.  2.1  
and Table  2.2 , the advantage of the MI/ML approach over complete cases analysis 
can be substantial. 

  Fig. 2.4    Simple regression model with X and C predicting Y       
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 Perhaps the biggest drawback with complete cases analysis is that it is not pos-
sible to make use of auxiliary variables. As noted above, with MI/ML methods, the 
information that is lost to missingness can be partially mitigated by adding auxil-
iary variables to the model (please see Chap.   11    ). However, this mitigation makes 
no sense when there are no missing data, as is the case with complete cases 
analysis.   

   Missing Data Theory and the Comparison Between 
MI and ML 

 Missing data theory holds that MI and ML are asymptotically equivalent. We do not 
need new simulations to demonstrate this point. What we do need are studies to 
de fi ne the limits of this equivalence. Under such and such conditions, for example, 
ML or MI is better. 

   MI and ML and the Inclusion of Auxiliary Variables 

 Collins et al. ( 2001 ) tested and found substantial support for the following 
proposition:

   Proposition 1 . If the user of the ML procedure and the imputer use the same set of input data 
(same set of variables and observational units), if their models apply equivalent distribu-
tional assumptions to the variables and the relationships among them, if the sample size is 
large, and if the number of imputations,  M , is suf fi ciently large, then the results from the 
ML and MI procedures will be essentially identical (p. 336).   

 Although their proposition was supported, Collins et al. (2001) noted that it holds 
in theory. But they also noted that, as typically practiced, MI and ML do have impor-
tant differences. For example, as practiced, MI users have typically included vari-
ables in the imputation model that, although not intended for analysis, were included 
to “help” with the imputation (we now refer to these variables as auxiliary variables; 
see Chap.   11    ). 

 Users of ML methods, however, in usual practice, are much more likely to limit 
their models to include only those variables that will be part of the analysis model. 
Although strategies have been described for including auxiliary variables into some 
types of ML models (e.g., see Graham  2003 , for strategies within a structural equa-
tion modeling context), it is not uncommon to see ML models that do not attempt to 
include auxiliary variables. The exclusion of important auxiliary variables from ML 
models violates the particulars of the Collins et al. proposition and leads to impor-
tant differences between the models. An important extension of the concept of 
including auxiliary variables is that models are less well described for including 
auxiliary variables in ML approaches to latent class analysis.  

http://dx.doi.org/10.1007/978-1-4614-4018-5_11
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   MI Versus ML, the Importance of Number of Imputations 

 Missing data theorists have often stated that the number of imputations needed in 
MI in order to achieve ef fi cient estimates was relatively small, and that  m  = 3–5 
imputations were often enough. In this context the relative ef fi ciency of the estimate 
is given by (1 +  g  /  m  ) −1 , where  g  is the fraction of missing information (Schafer and 
Olsen  1998  ) . The point made in this context was articulated clearly by Schafer and 
Olsen:

  Consider … 30 % missing information ( g  = .3), a moderately high rate for many applica-
tions. With  m  = 5 imputations, we have already achieved 94 % ef fi ciency. Increasing the 
number to  m  = 10 raises the ef fi ciency to 97 %, a rather slight gain for doubling of compu-
tational effort. In most situations, there is simply little advantage to producing and analyz-
ing more than a few imputed datasets (pp. 548-549).   

 However, Graham et al. (2007) showed that the effect of number of imputations 
on statistical power gives a different picture. Graham et al. showed that although the 
relative ef fi ciency difference might seem small in the context described by Schafer 
and Olsen  (  1998  ) , MI with small  m  could lead to an important falloff in statistical 
power, compared to the equivalent FIML model, especially with small effect sizes. 
The numbers below apply to a small effect size in Cohen’s (1977) terms (  r   = .10). 
Under these conditions MI with  m  = 5 imputations yields statistical power that is 
approximately 13 % lower than MI with  m  = 100, and 13 % lower than the compa-
rable FIML analysis (power is .682 for  m  = 5; .791 for  m  = 100; and .793 for the 
comparable FIML model). Figure  2.5  displays for power falloff compared to FIML 
for MI with various levels  m  for  g  = .50. Graham et al. agreed that an acceptable 
power falloff is a subjective thing, but that power falloff greater than 1 % would be 
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considered unacceptable to them. Given this judgment, their recommendations are 
shown in Table  2.6  for the number of imputations required to maintain a power 
falloff of less than 1 % compared to FIML.     

   Computational Effort and Adjustments in Thinking About MI 

 In the Schafer and Olsen  (  1998  )  quote given above, the second to last sentence sug-
gested that the increase in ef fi ciency from .94 to .97 was “… a rather slight gain for 
doubling of computational effort.” It is important to look carefully at this statement. 
I will go into more detail about this idea in later chapters, but let me say here that 
their doubling the number of imputations comes nowhere near doubling the compu-
tational effort. There are exceptions, of course, but with the latest versions of the 
common statistical software (especially SAS, but also SPSS to an important extent), 
and with the automation utilities described in later chapters, it often costs little in 
additional computational effort to increase from 5 to 40 imputations. 

 In the earliest days of MI, several factors conspired to make the computational 
intensity of the procedure undesirable. First, the procedure itself was brand new 
back in 1987 and was still relatively new even in 1998. Back then, it represented a 
radically new approach to handling missing data. Second, in 1987 computers were 
still very slow. With the computers available back then, the difference between 5 
and 40 imputations would often have been very important in terms of computational 
effort. Third, software for performing multiple imputation was not generally avail-
able. Certainly, automation features for handling analysis and summary of multiple 
data sets were not available. 

 In this context, the MI theorists suggested the impute-once-analyze-many-times 
strategy. With this strategy, the computational costs of multiple imputation could be 
amortized over numerous analyses, thereby reducing the overall costs of the MI 
procedure. Along with the suggestion that perhaps just 3–5 imputations were enough 
for ef fi cient parameter estimates, MI did not look so bad as an alternative to other 
possible approaches to handling missing data. 

 However, as the realities set in for performing multiple imputation in real-world 
data sets, it became clear that much of the original thinking regarding MI would not 
be feasible in large-scale research with missing data. In this context, I have begun 
to realize that the impute-once-analyze-many approach often does not work. 
Although it would certainly be desirable in many research contexts, it happens far 

      Table 2.6    Recommended number of imputations 
needed for power falloff < .01 compared to FIML   

  g  (Fraction of missing information) 

 .1  .3  .5  .7  .9 
 20  20  40  100  >100 

  Effect size:   r   = .10  
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too often that the researcher needs to make a change in analysis that requires a 
whole new set of imputations. In addition, pretty much everything is different now. 
Computers are now very much faster than they were in 1987, and they will continue 
to get faster. Perhaps more importantly, the software is catching up. The MI feature 
in SAS (Proc MI; see Chap.   7    ) is now a highly functional program. And SPSS, with 
versions 17+, (see Chap.   5    ) is not far behind. With a fast computer running SAS, it 
is very feasible to perform multiple imputation separately for each analysis.      
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 In this chapter, I provide step-by-step instructions for performing multiple imputation 
with Schafer’s  (  1997  )  NORM 2.03 program. Although these instructions apply most 
directly to NORM, most of the concepts apply to other MI programs as well. 

   Step-by-Step Instructions for Multiple Imputation 
with NORM 2.03 

 In this section, I describe in detail the use of the NORM software (version 2.03; 
Schafer  1997  ) . For other descriptions of the workings of NORM, please see Graham 
et al.  (  2003  ) , Graham and Hofer  (  2000  ) , and    Schafer and Olsen ( 1998 ). 

   Running NORM (Step 1): Getting NORM 

 If you do not have NORM already, you can download it for free from the website, 
  http://methodology.psu.edu    . Click on “Free Software”. Please note that you will be 
required to set up an account for access to the Methodology center web page. Once 
you have it downloaded, install the program. It is a self-extracting zip  fi le that 
unzips, by default, to the folder, c:\winimp. 

   Installation Details 

 The defaults for downloading usually work well. However, there is one detail you 
should know. The NORM executable (norm.exe) and the library DLL (sal fl ibc.dll) 
need to be in the same folder. If you always run NORM from the c:\winimp folder, 
or from any other folder containing both  fi les, it will work  fi ne. An alternative is to 

    Chapter 3   
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place the sal fl ibc.dll  fi le into a folder that is listed in the “path” statement. The 
 folders listed there are searched any time a command or program is executed. I have 
found it useful to place the sal fl ibc.dll  fi le in the c:\windows folder. 

 Please contact me (at jgraham@psu.edu) if you are having dif fi culty negotiating 
this process.   

   Running NORM (Step 2): Preparing the Data Set 

   Select Variables that will be Included in NORM 

 A  fi rst step in running NORM is to prepare the data set that will be used as input to 
NORM. A key  fi rst step in this preparation is to select the variables that will be used 
in the MI analysis. It is crucial in selecting variables that you realize that it almost 
always happens that you cannot simply perform MI on all the variables in your data 
set. I usually say that in choosing your variables for MI analysis, you should

    (a)    Start with the analysis model of interest.  
    (b)    Judiciously include a few auxiliary variables (variables that are highly corre-

lated with the variables in your analysis model). If you have a longitudinal data 
set, the best auxiliary variables are variables that are the same as the variables 
in your analysis model, but that are not being used in this analysis. For exam-
ple, if I were looking at a program effect at seventh grade on cigarette smoking 
at tenth grade, I might well include smoking at eighth and ninth grades as aux-
iliary variables, along with smoking at seventh grade (if it is not being used as 
a covariate in the analysis model). Similarly, for any mediating variable used in 
the model, good auxiliary variables would be that same mediating variable 
measured at other waves not otherwise included in the analysis. Especially 
important in this context is to include measures that were measured after the 
mediating variable to be used in the analysis. For example, suppose beliefs 
about the prevalence of cigarette smoking among peers, measured at the imme-
diate posttest (late seventh grade) was the mediating variable. I might well 
include as auxiliary variables prevalence beliefs at eighth and ninth grades 
(along with prevalence beliefs in early seventh grade if that variable is not part 
of the analysis model).  

    (c)    If multilevel analysis of cluster data is the analysis of choice, then cluster mem-
bership dummy variables should be included (Chaps.   6     and   7     present examples 
and important caveats to the strategy of including dummy variables to represent 
cluster membership).     

 The variables that are included in the MI analysis should all be continuous (or rea-
sonably assumed to be continuous, including “ordered categorical” variables), or 
dichotomous categorical. Any categorical variables with more than two levels must 
be recast as dummy variables before the MI analysis ( p  − 1 dummy variables must 
be used to represent the categorical variable with  p  > 2 categories). 

http://dx.doi.org/10.1007/978-1-4614-4018-5_6
http://dx.doi.org/10.1007/978-1-4614-4018-5_7
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 Be sure to convert  all  missing values in the data set to  − 9 or some other negative 
number (positive numbers that are clearly out of range are also possible, but nega-
tive numbers work best in this context). In some data sets, multiple numbers are 
used to refer to the different reasons as the variables have missing values. This strat-
egy will not be used here. 1  Be sure that all missing values have the same missing 
value indicator. Whatever this missing value indicator is, it should be well out of the 
range of legal values in all your variables. Thus, I prefer  − 9 or some other negative 
number (e.g.,  − 99 or  − 999), because these values are typically out of range for all 
variables. It is crucial that the system missing code (typically a period) NOT be 
used. It is also important that the missing value not be a blank or space. 

 Finally, write the data out to an ASCII data set. Each value should be separated 
by a space (free fi eld format; space delimited), or a tab (tab delimited), and the data 
for each subject should be output to a single long line. 

 In naming the output data set, it is best if the name be broken into a “root” (e.g., 
mydata), followed by “.dat” as the suf fi x (e.g., mydata.dat). It is also highly useful 
to produce a second ASCII text  fi le with the names of the variables appearing in the 
“.dat”  fi le, in the order that they appear in that  fi le. This variables names  fi le should 
have the same “root” as the data  fi le, but should have the “.nam” suf fi x (e.g., 
mydata.nam).   

   Writing Data Out of SPSS 

 There are many acceptable ways to write SPSS data out to an ascii data set. This is 
one way.

    (a)    Create a version of your SPSS data set that contains only those variables you 
will include in the NORM analysis.  

    (b)    Click on “Transform” and on “Recode into Same Variables”.  
    (c)    Select all of the variables on the left and transfer them to the “Variables” win-

dow on the right.  
    (d)    Click on “Old and New Values”.  
    (e )    On the left, under “Old Value”, click on “System-missing”; on the right, under 

“New Value”, enter the value (use “ − 9” or some other number clearly out of 
range for all variables in the data set). Click on “Add” for the “Old –> New” 
window. Click on “Continue”, and on “OK”.  

    (f )    While in the Data editor window, click on “File” and “Save As”. For “Save as 
type”, select “Tab delimited (*.dat)”; uncheck the box, “Write variable names 
to spreadsheet”. Enter the desired “File name” (e.g., mydata.dat), and click on 
“Save”.      

   1   There has been some attempt to expand standard normal model MI for dealing with two missing 
data mechanisms in the same data set (e.g., see Harel  2003,   2007  ) , but the usefulness of approaches 
such as this remains to be demonstrated.  
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   Writing a Variable Names File from SPSS 

     (a)    Go to the Data Editor window. Click on the “Variable View” tab at the bottom 
left.  

    (b)    Highlight and copy all of the variable names in the “Name” column.  
    (c)    Open a Notepad window and paste the variable names.  
    (d)    Click on File and on Save. Under “File name”, enter the same root as you used 

in (f) above, but with the “.nam” suf fi x (e.g., mydata.nam). Be sure the new  fi le 
is being saved to the same folder containing the data (mydata.dat).  

    (e)    If you click on “Save” now, the  fi le will be saved with the “.txt” suf fi x (e.g., 
mydata.nam.txt). So  fi rst click on “Save as type”, and select “All Files”. Click on 
“Save”. Now the  fi le will be saved with the “.nam” suf fi x (e.g., mydata.nam).      

   Empirical Example Used Throughout this Chapter 

 In order to facilitate learning the procedures outlined in this chapter, I encourage 
you to download the data  fi le, “ex3.dat”, and the corresponding variable names  fi le, 
“ex3.nam”, from   http://methodology.psu.edu    . 

 The sample data set comes from a subset of one cohort of students ( N  = 2,756) 
who took part in the Adolescent Alcohol Prevention Trial (AAPT; Hansen and 
Graham  1991  ) . The sample data set includes a variable,  School , indicating which of 
12 schools the student was from. In addition, 19 substantive variables are included: 
Lifetime alcohol use at seventh, eighth, and ninth grades ( Alc7 ,  Alc8 ,  Alc9 );  fi ve 
variables making up a scale tapping relationship with parents at seventh grade 
( Likepar71, Likepar72, Likepar73, Likepar74, Likepar75 ); three variables making 
up a scale tapping beliefs about the positive social consequences of alcohol use at 
seventh grade ( Posatt71 ,  Posatt72 ,  Posatt73 ); four variables tapping risk-taking 
and rebelliousness in grade 7 ( Riskreb71 ,  Riskreb72 ,  Riskreb73 ,  Riskreb74 ); and 
four variables tapping risk-taking and rebelliousness in eighth grade ( Riskreb81 , 
 Riskreb82 ,  Riskreb83 ,  Riskreb84 ). 

 As you read through the steps for conducting imputation with Norm 2.03, 
I encourage you to try out each step with this sample data set.  

   Running NORM (Step 3): Variables 

 NORM 2.03 is a Windows program, so users will recognize familiar aspects of the 
layout. Begin by clicking on “File” and starting a “new session.” Locate your 
recently created data fi le and read it into NORM. The data set appears in the main 
window. Verify that the number of cases, number of variables, and the missing data 
indicator are all correct. 

http://methodology.psu.edu
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  Sample Data  � . Find and click on the data set named ex3.dat. 

 Click on the “Variables” tab. In the left column are the default variable names. 
If you have included a root.nam  fi le, the variables names in that  fi le will appear here. 
If you are dealing with a small  fi le, you can double-click on the variable name to 
change it. 

  Sample Data  � . Because the  fi le “ex3.nam” exists in that same folder, you will 
see the 20 variable names listed. 

 The second column from left (“In model”) can be very valuable. It is sometimes 
useful to include variables (e.g., Subject ID codes) in the data set even if they are not 
intended for analysis. Such variables are easily removed from the imputation model by 
double-clicking to remove the asterisk for that variable. Sometimes it is also useful to 
retain in the data set certain categorical variables with  p  > 2 categories, along with the 
dummy variables representing that variable (this makes sense only where there are no 
missing data on that categorical variable). In this case, remove the “In model” asterisk 
for the original variable, but leave the “In *.imp” asterisk (rightmost column). 

  Sample Data  � . For these analyses, eliminate the variable “school” from the 
imputation model. Remove (double-click on) the asterisk for “In model”. This 
will leave 19 variables in the imputation model. 

 Transformations (e.g., log transformations) can sometimes speed up the imputa-
tion process. But although Norm 2.03 does allow transformations to be made, it is 
usually better to perform any such transformations in the statistical program (e.g., 
SPSS) used to write the data out in the  fi rst place. If one wishes to transform one or 
more variables for imputation, but retain the original untransformed variables for 
analysis, it is relatively easy to back transform the variables (again with SPSS or 
whatever program one uses) after imputation (e.g., using the antilog after a log 
transformation). 

 An interesting exception to my rule of doing transformations in the regular 
 statistical program you use relates to forming dummy codes for categorical vari-
ables for which there are no missing data. For such variables, one option is to leave 
those variables in the model in their original (categorical) format, and let Norm 
generate the dummy variables. An often useful example of this option is found with 
variables that indicate cluster membership, for example, for students within schools, 
this kind of variable would indicate school membership (see Chap.   6     for more detail 
on this strategy). To create dummy variables for such variables, double-click on the 
word “none” in the Transformations column, and click on Dummy variables at the 
bottom of the screen, and on OK. 

 Rounding is an interesting issue. My view is that rounding should be kept to a 
minimum. Multiple imputation was designed to restore lost variability in the data 
set as a whole. However, rounding after imputation is the same as adding a small 
amount of additional random error variance to the imputed values. This is easiest to 
see when calculating coef fi cient alpha when scale items have been rounded and 
unrounded. The rounded versions always have scale alpha that is one or two points 
lower (indicating more random error in the scale score). 

http://dx.doi.org/10.1007/978-1-4614-4018-5_6
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 So my rule for rounding is this. If the variable will be used in an analysis where 
the unrounded values will be no problem (e.g., using a variable as a covariate in a 
regression model), then leave it in its unrounded form. Of course, if the variable is 
to be used in an analysis where only certain values make any sense (e.g., using gen-
der as a blocking variable or using a dichotomous smoking variable as the depen-
dent variable in a logistic regression analysis), then by all means, round to the legal 
values (e.g., 0 and 1). 

  Sample Data  � . Go ahead and leave the rounding alone for this example. But just 
to see how it is done, change one variable. Double-click on the word “integer” in 
the Rounding column corresponding to the variable  Alc9  (last variable in the data 
set). Click on the word “hundredth” in the right column, and click on OK. This 
will allow rounding of imputed values to the nearest hundredth.  

   Running NORM (Step 4): The “Summarize” Tab 

 This is an important step in the imputation process. Click on the “summarize” tab 
and “run”. The output from this summary is saved in the  fi le, “summary.out”. It 
appears automatically when Summarize is run, and can be reloaded at any time by 
clicking on “Display” and “Output  fi le”. Be sure to rename this  fi le if you wish to 
save it, because it is overwritten each time you run Summarize. 

 The Summarize output is in two parts. The top section displays the number and 
percent missing for each variable in the missing data model. I  fi nd it useful to scan 
down the percent missing column and make sure that each percent missing makes 
sense based on what I already know about the data set. Be especially watchful when 
the percent missing is high. Does it make sense that some variables have 50 % 
(or more) missing data? This sometimes happens for the right reasons, for example, 
the data are missing due to a planned missing data design. But it is also possible that 
a high percent missing could be due to a simple coding error. It is important not to 
go forward until you have an adequate explanation. 

  Sample Data  � . Information about the number and percent of missing data for 
each variable is presented in Table  3.1 . Because you dropped the school variable 
from the MI analysis, you should have 2,756 observations and 19 variables. Note 
that a small percentage (6.42 %) of students had missing data for Alc7, alcohol 
use at seventh grade. Normally there is virtually no missing data in this cohort on 
this variable at seventh grade. The small amount of missingness seen here is due 
mainly to the fact that in this data set, I included new students who “dropped in” 
to the study beginning at eighth grade. Also note that about 40 % of students 
were missing on each of the other variables measured at seventh grade. This 
amount of missingness is due largely to the planned missingness design used in 
this study (see Chap.   12     for a discussion of this type of design). In this case, 
approximately a third of the students were not given these questions. Add to that 
the approximately 6 % not present at all at the seventh grade measure, and the 

http://dx.doi.org/10.1007/978-1-4614-4018-5_12
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number is very close to the 40 % missingness observed. The 8.13 % missing on 
Alc8 represents approximately 8 % attrition between seventh and eighth grades. 
This is reasonable in this study. The somewhat higher rate of missingness on the 
riskreb8 items (43–44 %), compared to the seventh grade versions of these vari-
ables, is also reasonable. The 34.25 % missing on Alc9 re fl ects the somewhat 
greater attrition between eighth and ninth grades. This, too, makes sense given 
what I already know about these data.  

 The second part of the summarize output is the matrix of missing data patterns. 
When many variables are included in the model, and with large sample sizes, this 
section of output may be too complex to be of immediate usefulness. However, 
there is always some valuable information in this matrix. The top row of this matrix 
shows the number of cases (if any) with complete data. This is always useful infor-
mation. It is good to know what proportion of the total sample has complete data 
(also see Step 5, below). The bottom row of this matrix also provides useful infor-
mation. The bottom row displays the pattern with the least data. Occasionally, one 
 fi nds that this bottom row has all “0” values, that is, some cases happen to have no 
data at all for this set of variables. Although NORM and other missing data proce-
dures do handle this situation in an appropriate way, it is not good form to keep 
cases in the model when they have no data at all. If you are not convinced of this, 
imagine the sentences you must write in the Method section of your article describing 

   Table 3.1    Number and percent missing information   

 NUMBER OF OBSERVATIONS =    2756 
 NUMBER OF VARIABLES    =     19 
             NUMBER MISSING     % MISSING 
 alc7  177  6.42 
 rskreb71 1111 40.31 
 rskreb72 1100 39.91 
 rskreb73 1100 39.91 
 rskreb74 1101 39.95 
 likepa71 1116 40.49 
 likepa72 1114 40.42 
 likepa73 1119 40.60 
 likepa74 1108 40.20 
 likepa75 1111 40.31 
 posatt71 1122 40.71 
 posatt72 1118 40.57 
 posatt73 1130 41.00 
 alc8  224  8.13 
 rskreb81 1211 43.94 
 rskreb82 1191 43.21 
 rskreb83 1192 43.25 
 rskreb84 1199 43.51 
 alc9  944 34.25 
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the rationale for leaving these variables in. I recommend that you go back to the 
original program and delete these cases before proceeding. 

  Sample Data  � . There are three key things to see here. First, there are no com-
plete cases. I know this, because the top row, which will show the complete cases 
if there are any, have “0” values in columns 3, 4, and 5 (rebel72, rebel73, rebel74). 
This is expected because with the planned missingness design used in this study, 
the 3-form design (see Graham et al.  2006 ; also see Chap.   12    ), no one has com-
plete data for all variables in the data set. Second, there are 232 different patterns 
of missing and nonmissing data. Third, because the bottom row of this matrix 
contains some “1” values, I know there are no cases with no data. 

 I also  fi nd it useful to scan the matrix of missing value patterns for the largest 
patterns. This also serves as a diagnostic tool. Does it make sense that many people 
have missing data for a particular block of variables? 

  Sample Data  � . I often  fi nd it useful to provide a version of this matrix of missing 
data patterns in articles I write. However, with 232 patterns, such a table would 
most likely be more confusing than helpful. However, one thing I often do is to 
provide a table with the largest patterns. For example, in this data set, Table  3.2  
shows all missing data patterns with at least ten cases.   

   Table 3.2    23 largest patterns of missing and observed values   
 Count 

  386 1 1 1 1 1 1 1 1 1 1 0 0 0 1 1 1 1 1 1 
  58 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 
  10 1 1 0 0 0 1 1 1 1 1 1 1 1 1 0 1 1 1 1 
  351 1 0 1 1 1 0 0 0 0 0 1 1 1 1 0 1 1 1 1 
  11 1 1 1 1 1 1 1 1 1 1 0 0 0 1 0 1 1 1 1 
  58 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 1 1 1 
  369 1 1 0 0 0 1 1 1 1 1 1 1 1 1 1 0 0 0 1 
  36 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 1 
  29 1 1 0 0 0 1 1 1 1 1 1 1 1 1 0 0 0 0 1 
  47 1 0 1 1 1 0 0 0 0 0 1 1 1 1 0 0 0 0 1 
  36 1 1 1 1 1 1 1 1 1 1 0 0 0 1 0 0 0 0 1 
  66 1 1 0 0 0 1 1 1 1 1 1 1 1 0 0 0 0 0 1 
  63 1 0 1 1 1 0 0 0 0 0 1 1 1 0 0 0 0 0 1 
  48 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 1 
  216 1 1 1 1 1 1 1 1 1 1 0 0 0 1 1 1 1 1 0 
  10 1 1 1 0 0 1 1 1 1 1 0 0 0 1 1 1 1 1 0 
  217 1 0 1 1 1 0 0 0 0 0 1 1 1 1 0 1 1 1 0 
  12 1 0 1 1 1 0 0 0 0 0 1 1 0 1 0 1 1 1 0 
  218 1 1 0 0 0 1 1 1 1 1 1 1 1 1 1 0 0 0 0 
  13 1 0 0 0 0 0 0 0 0 0 1 1 1 1 1 0 0 0 0 
  25 1 1 0 0 0 1 1 1 1 1 1 1 1 1 0 0 0 0 0 
  23 1 0 1 1 1 0 0 0 0 0 1 1 1 1 0 0 0 0 0 
  22 1 1 1 1 1 1 1 1 1 1 0 0 0 1 0 0 0 0 0 

http://dx.doi.org/10.1007/978-1-4614-4018-5_12
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   Running NORM (Step 5): EM Algorithm 

 Start by clicking on the “EM algorithm”. Although it is often reasonable to accept 
all of the defaults when running EM,  fi rst click on the “Computing” button to view 
several options. 

   Maximum Iterations 

 I outlined the workings of the EM algorithm in Chap.   2    . EM iterates (back and forth 
between the E and M steps) until in “converges”, or until the “maximum iterations” 
have been reached. My rule of thumb here is to leave the maximum iterations at the 
default (1,000 iterations). If EM has not converged in 1,000 iterations, I can almost 
always make changes that will allow it to converge in fewer iterations. It is often a 
sign of a fundamental data problem when EM takes as many as 1,000 iterations to 
converge.  

   Convergence Criterion 

 In Chap.   2    , I noted that EM converges when the elements of the covariance matrix 
stop changing appreciably from one iteration to the next. Of course, what constitutes 
“appreciable” change can vary. The default convergence criterion for NORM is 
1E-04 (.0001). It is important to know that with NORM, convergence is reached 
when the largest absolute change in any of the variance-covariance parameters, 
divided by that parameter’s value, is less than the criterion. With NORM, the 
 variables are also in standardized form for the interim analyses (variables are back 
standardized to their original scales for imputation). But other criteria are possible. 
For example, with EMCOV (Graham and Donaldson  1993 ; Graham and Hofer 
 1992  ) , convergence is reached when the largest change in any of the variance-
covariance parameters is smaller than the criterion (without dividing by the param-
eter’s value). Thus, what constitutes “appreciable” change is typically a little larger 
for EMCOV than it is for NORM.  

   Maximum-Likelihood Estimate or Posterior mode    

 The last decision to make in this window is whether to ask for the standard maxi-
mum-likelihood estimate or to use the Bayesian “posterior mode under ridge prior 
with hyperparameter”. My view is that the ML solution is better if it works, so it is 
always best to try that  fi rst. But occasionally, the ML mode does not work well (e.g., 
EM takes more than 1,000 iterations to converge, or never converges). I have found 
that having few or no cases with complete data can often (but not always) produce 
this problem. The problem can also manifest itself when one or more variables have 
a very high percent missing data (see Chap.   8     for other examples). 

http://dx.doi.org/10.1007/978-1-4614-4018-5_2
http://dx.doi.org/10.1007/978-1-4614-4018-5_2
http://dx.doi.org/10.1007/978-1-4614-4018-5_8
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 The posterior mode under ridge prior is like ridge regression in some respects. 
Ridge regression (e.g., see Price  1977  )  has been used when the predictors in multi-
ple regression are so highly correlated as to produce unstable results. In ridge regres-
sion, one adds a small constant to all of the diagonal elements of the input correlation 
matrix (e.g., making them all 1.01 rather than 1.00). It is easy to see that all correla-
tions in this new input matrix are slightly biased toward 0. The result is that the 
regression results will be slightly biased, but the solution will also be more stable 
because the predictors are less correlated. 

 A similar thing happens with multiple imputation. The idea is to introduce a little 
bias in order to make the MI analysis more stable. Adding a ridge prior with hyper-
parameter is a little like adding some number of cases at the bottom of one’s data set, 
such that all of the variables are uncorrelated. The number of cases added is similar 
to the value of the hyperparameter. So, if one sets the hyperparameter to 5, it is a little 
like adding  fi ve cases at the bottom of one’s data set. It makes sense why this should 
work. If your data set has no complete cases, then adding these  fi ve cases means that 
your data set now has  fi ve complete cases. But the cost of doing this is that all cor-
relations are biased slightly toward 0. This is why I say that I prefer using the ML 
mode if it works; I would like to avoid this bias if possible. Also, even if you must 
use the posterior mode, it is a good idea to use a hyperparameter as small as possible. 
My rule of thumb here is to use a hyperparameter no larger than 1 % of the overall 
sample size. In order to help keep that number as low as possible, think of the hyper-
parameter as adding “bogus” cases to the bottom of your data set. What reviewer will 
respond favorably to your adding a large number of bogus cases to your data set?  

   Other Options 

 Another option under the EM algorithm tab is whether to have the covariance matrix 
or correlation matrix output to the EM output  fi le. Either is  fi ne, but I generally  fi nd 
it more useful to have the correlation matrix output. The covariance matrix is always 
written to the  fi le “em.prm” (default name) in case it is needed. 

 The other options here relate to input and output  fi le names. By default, EM 
begins with values calculated from the data set itself. I do not remember when 
I have ever needed to change this, so I leave the input  fi le name blank. The output 
 fi le for EM parameters is “em.prm” by default. Again, I do not remember ever 
 having to change this.  

   EM Output: Iteration History 

 Output from the EM run is saved in the  fi le “em.out”. This window appears auto-
matically at the end of the EM run and can be retrieved at any time by clicking on 
“Display” and “Output  fi le”. Be sure to rename this  fi le if you want to save it, 
because it is overwritten each time EM is run. 
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 The top part of the EM output  fi le contains basic information about the data set, 
any transformations that were used, and the means and standard deviations of the 
observed data (using available complete data). I typically skip all this information. 

 The next section of the EM output is the iteration history for the observed data 
loglikelihood function. This can be highly informative. Scan down the iterations. 
The function value should change monotonically over the iterations. When this has 
occurred, and the number of iterations is reasonably low (de fi nitely some number 
less than 1,000), then I feel comfortable saying (e.g., in my article) that “EM con-
verged normally in xxx iterations.” 

  Sample Data  � . In this instance, EM (ML mode) converged normally in 72 itera-
tions. The iteration history is shown in Table  3.3 . Scanning down the iterations, 
we can see that the  fi t function did indeed change monotonically. The function 

   Table 3.3    Iteration history   
 ITERATION # OBSERVED-DATA 

  LOGLIKELIHOOD 
  1 -16428.50000 
  2 -12336.59596 
  3 -11591.68956 
  4 -11402.88252 
  5 -11347.51545 
  6 -11328.21002 
  7 -11320.20358 
  8 -11316.42661 
  9 -11314.49253 
  10 -11313.44867 
  11 -11312.86328 
  12 -11312.52409 
  13 -11312.32136 
  14 -11312.19641 
  15 -11312.11702 
  16 -11312.06510 
  17 -11312.03021 
  18 -11312.00619 
  19 -11311.98930 
  20 -11311.97721 
  21 -11311.96843 
  22 -11311.96197 
  23 -11311.95718 
  24 -11311.95358 
  25 -11311.95088 
  26 -11311.94883 
  27 -11311.94727 
  28 -11311.94607 

(continued)
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Table 3.3 (continued)
 ITERATION # OBSERVED-DATA 

  LOGLIKELIHOOD 
  29 -11311.94516 
  30 -11311.94446 
  31 -11311.94391 
  32 -11311.94349 
  33 -11311.94317 
  34 -11311.94292 
  35 -11311.94273 
  36 -11311.94257 
  37 -11311.94246 
  38 -11311.94237 
  39 -11311.94229 
  40 -11311.94224 
  41 -11311.94220 
  42 -11311.94216 
  43 -11311.94213 
  44 -11311.94211 
  45 -11311.94210 
  46 -11311.94208 
  47 -11311.94207 
  48 -11311.94207 
  49 -11311.94206 
  50 -11311.94206 
  51 -11311.94205 
  52 -11311.94205 
  53 -11311.94205 
  54 -11311.94205 
  55 -11311.94204 
  56 -11311.94204 
  57 -11311.94204 
  58 -11311.94204 
  59 -11311.94204 
  60 -11311.94204 
  61 -11311.94204 
  62 -11311.94204 
  63 -11311.94204 
  64 -11311.94204 
  65 -11311.94204 
  66 -11311.94204 
  67 -11311.94204 
  68 -11311.94204 
  69 -11311.94204 
  70 -11311.94204 
  71 -11311.94204 
  72 -11311.94204 
 EM CONVERGED AT ITERATION 72 
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value for the last 17 iterations did not change (to  fi ve decimal places). This is 
normal. Remember it is the change in parameter estimates that determines 
convergence, not the change in the function value. Note that, in this instance, EM 
(ML mode) converged normally in a reasonable number of iterations, despite the 
fact that there were no complete cases.  

  Important Note  � . Everything to here, including EM (ML mode) converging in 
exactly 72 iterations is something you should expect to  fi nd when you run this 
example on your computer. However, when dealing with imputation steps that 
follow, any two people will get slightly different results (e.g., for speci fi c imputed 
values and for results based on imputed data). This is because the error added to 
each imputed values is random. However, differences will not be large, provided 
the number of imputations is suf fi ciently large. 

 On the other hand, if the  fi t function value sometimes gets smaller, then larger, 
then smaller, etc., this is a sign of a serious problem with the data. You should NOT 
proceed with the EM solution when this happens. In these instances, it is important 
to troubleshoot the source of the problem. Please see Chap.   8     for strategies for 
troubleshooting problems of this sort. 

 But also watch for more subtle signs that the  fi t function value is not always 
changing in the same direction. I recently had a case where the absolute value of the 
 fi t function was getting smaller and smaller in what appeared to be a normal way for 
267 iterations, but then it started getting larger again. Although EM eventually con-
verged in 405 iterations, I was wary of the solution. (Note that this was a case with 
43 variables and 517 cases – 62 complete cases. EM in ML mode converged nor-
mally in 664 iterations. The problem noted occurred in posterior mode with hyper-
paramete r  = 5.) 

 A key bit of information from the iteration history is the  fi nal number of itera-
tions it takes EM to converge. This information will be used later in the MI process, 
so it is a good idea to write it down. Also, as noted above, if it is true, I like to write 
this number in my article, for example, “EM converged normally in xxx 
iterations.”  

   EM Output: ML Estimates 

 The bottom section of the EM output contains the ML parameter estimates: means, 
standard deviations, and the correlation or covariance matrix (see Table  3.4 ). I 
believe these are the best point estimates for these parameters. If you want to report 
these quantities in your article, I believe they should come from this output. Your 
table (or text) should, of course, be clear that these means and standard deviations 
(and correlation matrix) are EM parameter estimates.     

http://dx.doi.org/10.1007/978-1-4614-4018-5_8
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   Speed of EM 

 How long it takes EM to converge depends on many factors. The two biggest fac-
tors are the number of variables ( k ) in the model and the amount of missing informa-
tion (related to the amount of missing data). EM estimates  k ( k  + 1)/2 variances and 
covariances and  k  means. Table  3.5  shows how the number of parameters to be 
estimated increases exponentially with the number of variables. Because the EM 
algorithm works primarily with the variance-covariance matrix, and other matrices 
of the same size, the number of variables is far more important to the time to EM 
convergence than is the number of cases.  

 The second major factor in EM convergence rate is the amount of missing data. The 
more the missing data, the longer it takes EM to converge. Another factor is the correla-
tion between other variables in the model and the variables with missing data (higher 
correlations mean faster convergence). The number of different missing data patterns 
also contributes to the convergence rate (more patterns take longer). I have also observed 
that EM with highly skewed variables also seems to take longer to converge.   

   Running NORM (Step 6): Impute from (EM) Parameters 

 Imputing from EM parameters could not be easier. Just be sure you have just run 
EM (and that EM has converged “normally,” as described above). Then simply click 

   Table 3.4    EM parameter estimates       
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on “Impute from parameters” tab, and click on “Run”. You will see a window: “use 
parameters from parameter (*.prm)  fi le:” with the just-created “em.prm” listed. 
That is the default if you have just run EM; leave that as is. At the bottom of the 
window, you will also see a window “Imputed data set save to  fi le:”. The  fi le name 
will be the root of your original data set, with “_0.imp” as the suf fi x (e.g., mydata_0.
imp). This  fi le may be read into any statistical analysis program. This  fi le is particu-
larly useful for data quality analyses such as coef fi cient alpha analysis and explor-
atory factor analysis. This  fi le can be used to obtain certain parameter estimates 
from other analyses such as multiple regression analysis. Parameter estimates from 
any number of statistical analyses will be very useful.  However, this  fi le should 
NOT be used for any type of hypothesis testing  .  I typically create this imputed data 
set at this point in the process, even if I have no immediate plans for it. It is easiest 
to create at this point, and you may well discover later that you need it. 

  Sample Data  � . Some things to note about the newly created single data set 
imputed from EM parameters. First, the output data set will have the name: 
“ex3_0.imp” and will appear in the same folder with “ex3.dat”. Second, note that 
this imputed data set includes the original values for the cluster indicator vari-
able,  School  (and not the dummy codes) even though it was omitted from the 
imputation model. Finally, note that all of the variables were imputed to the inte-
ger values, except the last variable. For that variable (Alc9), any imputed value 
was imputed to the nearest hundredth. 

 One caveat with NORM 2.03 is that this step sometimes fails, giving an error mes-
sage that the covariance matrix is not positive-de fi nite. This is an error, but a simple 
work-around is possible. Simply proceed to the next step, Data Augmentation (DA), 
but ask for just one iteration of DA. I have never seen this alternative strategy fail. 

   Table 3.5    Increase in parameters estimated in EM as 
number of variables increases   
 Variables  Parameters estimated 
  k   [( k ( k  + 1)/2) +  k ] 

  20  230 
  40  860 
  60  1,890 
  80  3,320 
 100  5,150 
 120  7,380 
 140  10,010 
 160  13,040 
 180  16,470 
 200  20,300 
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Imputed data sets from two adjacent steps of DA will be very similar. So this 
alternative data set will be very close to the single data set imputed from EM param-
eters. Both versions of this data set will provide unbiased parameter estimates. 
However, this alternative version will be very slightly less ef fi cient than the data set 
imputed from EM parameters.  

   Running NORM (Step 7): Data Augmentation (and Imputation) 

 The data augmentation (and imputation) part of this process is normally run imme-
diately after running EM (and imputing from EM parameters). Begin this next step 
by clicking on the “Data augmentation” tab. Perform this part of the process in three 
steps, moving from right to left at the bottom of the screen. 

 First, click on the  Series  button. This is where you select information that will be 
used in the diagnostic plots (the diagnostics themselves will be described later). 
I usually select “Save all parameters at every  k th cycle”, where  k  = 1. Although in 
some instances, it may be suf fi cient to select “Save only worst linear function of 
parameters at every  k th cycle”, I seldom use this option. Click on “OK”. 

 Next, click on the  Imputation  button. Occasionally, I will choose “No imputa-
tion”. I do this when I have doubts about my data. Seeing the diagnostic plots after, 
say, 1,000 steps of data augmentation will often help me see a problem I was unable 
to see in other ways. 

 It is also possible to select “Impute once at end of DA run”. I occasionally have 
used this option when imputing a single data set from EM parameters failed. 
However, the most common option here is to select “Impute at every  k th iteration”. 
As described in Chap.   2    , spacing imputations some largish number of DA steps 
apart is how one simulates random draws from the population. As I said in Chap.   2    , 
a good number to choose for  k  is the number of iterations it took EM to converge. 
This number (which will normally be less than about 200, but will certainly be less 
than 1,000) should be entered for the value of  k . Click on OK. 

  Sample Data  � . Because EM converged in 72 iterations, enter 72 for the value of 
 k  in this screen. 

 Finally, click on the  Computing  button. If you used the ML version of EM, then 
“Standard noninformative prior” will already be selected (select it if that is not the 
case). If you used EM with the Ridge prior, then “Ridge prior with hyperparameter” 
will be selected, and the value of the hyperparameter will be the same as that used 
in EM. 

 The “No. of iterations” should be the number of steps of DA between imputa-
tions (the value of  k  from the previous screen) times the number of imputed data sets 
you wish to create. As described in Chap.   2    , the number of imputed data sets should 
be larger than previously thought. I typically use 40 imputations (and often more) 
for work I hope to publish, but, depending on how long the process takes, I some-
times use fewer imputations to help me draw tentative conclusions about a problem. 

http://dx.doi.org/10.1007/978-1-4614-4018-5_2
http://dx.doi.org/10.1007/978-1-4614-4018-5_2
http://dx.doi.org/10.1007/978-1-4614-4018-5_2
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In any event, the value to be entered here should be the product of these two num-
bers:  k  ×  m . For example, if EM converged in 164 iterations, and you wish to pro-
duce 40 imputed data sets, then  k  ×  m  would be 164 × 40 = 6,560. This is the value to 
enter in this window for “No. of iterations”. 

  Sample Data  � . In this case, impute 40 data sets. 40 × 72 = 2,880, so enter 2,880 
in the “No. of iterations” box. 

 As NORM runs, it pauses after every  k  DA steps to write out an imputed data set. 
If yours is a small problem, you may not see the pauses. The default names of the 
data sets are root_1.imp, root_2.imp, root_3.imp, and so forth up to the number of 
imputed data sets you speci fi ed. If you follow the strategies outlined in this book, 
the imputation phase itself is usually relatively quick (minutes at the longest). 
However, large problems do take longer. 

  Sample Data  � . This problem took about 2.5 min with a Dell Latitude D620 
 laptop (2 GHz Core Duo processor with 1 GB RAM) and 51 s with a Dell Latitude 
E6320 laptop (Intel ®  Core(TM) i7-2,620 M CPU @ 2.70 GHz, with 4 GB 
RAM). 

   Results of Imputation 

 Once completed, there will be  m  (e.g., 40) imputed data sets in the same folder as 
the original data. As noted above, the default names will be root_1.imp, root_2.
imp, … root_39.imp, root_40.imp. 

  Sample Data  � . The imputed data  fi les for this example will be “ex3_1.imp”, 
“ex3_2.imp”, …, “ex3_40.imp”.   

   Running NORM (Step 8): Data Augmentation Diagnostics 

 The  fi nal step in the imputation process is to check the diagnostic plots. The goals 
of checking these plots are to verify (a) that the number of DA steps between 
imputed data sets was suf fi cient, and (b) that the imputation solution was “accept-
able,” and not “pathological.” 

 In Norm 2.03, click on “Series” and on “Open”. The default name for the diag-
nostic plots is “da.prs”. Click on the  fi le, and on “Open”. When the message 
“Parameter series open” appears at the bottom of the window, you are ready to view 
the diagnostic plots. It may sometimes be useful to view the “Worst linear function” 
(WLF) as a shortcut for seeing the worst-case scenario. But it occasionally happens 
that the WLF plots appear to be acceptable, even when there is a clear problem with 
one or more individual parameters. Thus, I take the time to view the plots for all the 
individual means and covariances. It often means paging through rather a lot of 
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     Fig. 3.1    Diagnostic Plots. Plots depict MI solutions that range from clearly acceptable to clearly 
pathological          
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plots, but it is worth it to be able to report in your article that “the diagnostic plots 
appeared normal for all parameters.” 

 Click on “Series” again, this time clicking on “plot” and “means” or “covari-
ances” (or “Worst linear function”). Sample plots appear in Fig.  3.1 . The top plot in 
each Panel is the “series” plot for the parameter indicated. This plot displays the 
parameter value over the total number of DA steps requested. The bottom plot in 
each panel is for the Sample autocorrelation function (ACF). This plot gives the 
correlation of the parameter from one step of DA with the same parameter 1, 2, … 
5, … 10, … 20, … 50, … 100 steps removed. The horizontal lines near the bottom 
of the plot indict the level of nonsigni fi cant autocorrelations.  

Fig. 3.1 (continued)
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 The top and bottom plots are related, but for the moment, focus on the bottom 
plots. Panel (a) in Fig.  3.1  shows that the autocorrelation falls below the (red) 
signi fi cance line between 5 and 10 steps of DA. That is, two imputed data sets 
separated by 10 steps of DA will simulate two random draws from the population. 
Panel (b) suggests we may need a few more (e.g., 15–20) steps of DA between 
imputed data sets. With the pattern shown in Panel (c), I might want as many as 
75–100 steps of DA. 

 With the pattern shown in Panel (d), I might want even more (e.g., 100+) steps of 
DA. With a plot like this, it is useful to increase the lag for the ACF plot in order to 
get more information. To do this, click on Properties and on Plot options. Under 
ACF plot, change the Maximum lag to a larger value. The plot shown in Panel (d2) 
of Fig.  3.1  displays the same plot as in Panel (d), except that the ACF plot extends 
to a lag of 200. With a plot like this, I would start feeling comfortable with imputa-
tions separated with ~150 steps of DA. 

 Now focus on the top plots displayed in Fig.  3.1 . These give a more direct sense 
of the acceptability of the DA analysis. Conceptually, it would be good if the param-
eter estimates at the beginning, in the middle, and at the end of the DA run all show 
a plausible range of values. Such a plot will typically resemble a rectangle, provided 
enough steps of DA have been requested. The plot in Panel (a) does not bear much 
resemblance to a rectangle, but Panel (a2) of Fig.  3.1  shows how that look can 
change simply by increasing the total number of DA steps, in this case from 1,000 
to 5,000. 

 The plot in Panel (b) of Fig.  3.1  also displays an acceptable pattern. The pattern 
shown in Panel (c) could be ok, but it may also be indicative of a problem. Note how 
the plot tends to wander a bit over the 1,000 DA steps. This is a good example, 
however, of having too few total steps of DA. Panel (c2) of Fig.  3.1  shows a DA run 
on the same data, but with 5,000 rather than 1,000 steps of DA. Note how the upper 
plot looks much more rectangular, and the ACF plot seems to stabilize nicely by 
around lag of 50. 

 The top plot in Panel (d) of Fig.  3.1  is even more troubling. Note that in addition 
to wandering somewhat, this parameter estimate tends to be lower toward the end 
of the DA run; that is, the overall plot has a nonzero slope. An especially trouble-
some aspect of the DA analysis of these data is that I was not able to get it to per-
form 5,000 steps of DA. I tried several times, each time receiving the error message: 
“non-positive de fi nite matrix or shape parameter.” This is de fi nitely a sign of 
trouble. 

 The pattern shown in Panel (d) of Fig.  3.1  came from a DA run using the stan-
dard noninformative prior (corresponds to ML option with EM). However, this is a 
good example of a case in which using the Ridge prior option (in this case with 
hyperparamete r  = 6, which was the smallest hyperparameter to yield normal, i.e., 
monotonic, EM convergence) yielded much better results. Panel (d3) of Fig.  3.1  
shows the results of this latter run with 5,000 steps of DA. Those results much more 
clearly suggest an acceptable DA run. 

 Panel (e) of Fig.  3.1  displays a solution that is clearly pathological. In this case, 
the parameter estimate changes value throughout the DA run and has a clear 
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nonzero slope. Also, although the ACF appears to drop below the signi fi cance level 
at lag of 100, the autocorrelation remains unacceptably high. This is also an instance 
in which 5,000 steps of DA did not solve the problem. It is also an instance when 
using the Ridge prior option with hyperparamete r  = 10 did not solve the problem. 
As shown in Panel (e2) of Fig.  3.1 , the plot of parameter estimates remains clearly 
pathological, even with hyperparamete r  = 10, and 5,000 steps of DA. In general, the 
problem illustrated by the plot in Panel (e) of Fig.  3.1  can occur is that people with 
one level of a categorical variable are always missing on another variable in the 
imputation model. I discuss these and other troubleshooting issues in Chap.   8    . 

  Sample Data  � . Figure  3.2  presents the plots for the WLF for the sample data. In 
this instance, the WLF plot was not uncharacteristic of the plots for other param-
eters. The top plot shows a series plot that, although a bit ragged, appears to have 
a zero slope and is at least somewhat rectangular. The lower plot (ACF) suggests 
that with approximately 35 steps of DA, the plot goes beneath the signi fi cance 
lines. This suggests that the 72 steps of DA used between imputed values in this 
instance was  fi ne.  

 Presenting all of the diagnostic plots for all parameters would be dif fi cult 
(19 means; 190 variances and covariances). However, I have made the  fi le, “da_ex3.
prs” available on the website for ancillary information relating to this book. If you 
are interested, please go to:   http://methodology.psu.edu    . 

 Remember that the plots shown on this website will be different from those you 
obtain from your analysis of these same data. However, the general patterns will be 
the same.       

  Fig. 3.2    Diagnostic plots for sample data       

 

http://dx.doi.org/10.1007/978-1-4614-4018-5_8
http://methodology.psu.edu
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           In this chapter, I cover analyses with SPSS (v. 16 or lower) following multiple 
imputation with Norm 2.03. This chapter also applies to newer versions of SPSS 
that do not have the MI module installed. The chapter is split into three parts: 
(a) preliminary analyses for testing reliability, including exploratory factor analysis; 
(b) hypothesis testing analyses with single-level, multiple linear regression; and (c) 
hypothesis testing with single-level, multiple (binary) logistic regression (I also 
touch on other hypothesis testing analysis, such as multilevel regression with the 
Mixed routine). 

 The reliability and exploratory factor analyses make use of the single data set 
imputed from EM parameters. For these analyses, the output of interest comes 
directly from the SPSS output itself. The multiple regression and logistic regression 
analyses make use of the multiple imputed data sets. For the multiple regression 
analysis, the combining of results is handled by the MIAutomate utility, which is 
reasonably well automated and provides easy-to-read output outside of SPSS. For 
the logistic regression (and other SPSS) analysis, the combining of results is some-
what less automated, involving some copying and pasting to an external Notepad 
 fi le, and the  fi nal results are provided by the Norm program. The worked examples 
provided in this chapter will help you master these procedures. 

 At the start of each section, I will  fi rst outline the use of my utility for creating an 
automated interface between the output from Norm 2.03 (i.e., the imputed data sets) 
and for achieving the goal of all analysis: to draw reasonable inferences from one’s 
data. 

   Analysis with the Single Data Imputed from EM Parameters 

 In this section, I describe the use of the MIAutomate utility, and then proceed to 
examining reliability of the scales with coef fi cient alpha, and exploratory factor 
analysis. 

    Chapter 4   
 Analysis with SPSS (Versions Without 
MI Module) Following Multiple Imputation 
with Norm 2.03       
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   Before Running MIAutomate Utility 

 Rather than jump right into use of the automation utility, I want to walk you through 
the process of reading raw (ascii text) data into SPSS. There are two reasons for this. 
First, I think it is valuable to understand at a conceptual level what is happening 
when you read data into SPSS. Second, I want you to appreciate that the process, 
which is conceptually very straightforward, is often a pain in the neck. That is, 
I want you appreciate what the automation utility is doing for you. On the other 
hand, after seeing what is involved, some readers may simply bypass use of the 
automation utility, especially for this  fi rst kind of analysis. 

 At a conceptual level, making use of the single data set imputed from EM could 
not be easier. This is, after all, a data set with no missing data. Unfortunately, most 
users do not routinely read “raw” (ascii text) data into SPSS. So the simple act of 
reading data into SPSS itself can often prove to be a challenge. 

 For this chapter, I used SPSS 15, but the process is the same for SPSS 16 and, 
from what I can remember, the procedure for reading in raw data has not changed 
appreciably as far back as SPSS 11, and possibly further. What I describe here also 
applies to newer versions of SPSS that do not have the MI module installed. So start 
SPSS. Click on File and on Read Text Data (fourth thing down on the File menu). 
Locate the recently created ***_0.imp  fi le. 

 When you get to the right folder, remember that the  fi le name ends with “.imp” 
and not “.txt”, which is the default for SPSS. So either enter “*.imp” under File 
name (this may not work with SPSS 16), or click on Files of type, and choose “All 
Files”. Click on the  fi le you recently created. 

  Sample Data . �  In Chap.   3    , the single data set imputed from EM parameters was 
named, “ex3_0.imp”, so for starters, look for that  fi le. 

 The Text Import Wizard will walk you through the process of importing your 
data set. For this  fi rst example, just accept all the defaults. The result is that you will 
have an SPSS data set with  k  = 20 variables and  N  = 2,756 cases. The only problem 
is that the variables are named “V1” to “V20”. If you are very familiar with your 
data set, this may be good enough. But it would be a lot better if you had the variable 
names at the top of your data  fi le. 

 Conceptually, it is an easy matter to add the variable names to the SPSS  fi le. But 
in practical terms, this simple task can also be a pain in the neck. One option is sim-
ply to switch to the Variable View of the data set and enter the variable names manu-
ally. This will certainly be acceptable for smallish data sets. But it is annoying to have 
to go through this process again if you decide to change something about the data set 
and redo the imputation. Entering the variable names manually also becomes more 
dif fi cult as the number of variables increases. And with added dif fi culty comes more 
errors. One of the values of the automation utility, to be sure, is to make the process 
easier, but the more important value of the automation is that it cuts down on errors. 

 The second option for adding the variables to the SPSS  fi le is to add them to the 
top of the input data before reading the data into SPSS. But how do you do that? The 
best way to do that is with an ascii editor, such as the Notepad utility that is part of 

http://dx.doi.org/10.1007/978-1-4614-4018-5_3
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the Windows program. One drawback with Notepad is that it sometimes cannot 
handle the largest data sets. The bigger problem, however, is that within the Notepad 
window, you can have only one  fi le open at a time. So you cannot read in the data 
set (ex3_0.imp) in one window and the variable names  fi le (ex3.nam) in another. 
You can, on the other hand, open two Notepad windows: read ex3_0.imp into one 
and read ex3.nam into the other. 

 Note that using programs such as Word is not a good idea in this context. The 
main function of Notepad and other ascii editors is to handle ascii data sets. Programs 
such as Word do a poor job with this. Having a full-featured ascii text editor (I par-
ticularly like UltraEdit; see   http://www.ultraedit.com    ) makes this process even eas-
ier, but some problems still remain (see below). 

 Regardless of how you do this, you must change the variable names from a single 
column, to be a single row, with the variable names  separated with exactly one 
space  (double spaces sometimes create problems for SPSS). If you do go this route, 
the process is almost as easy for reading this new data set into SPSS with the vari-
able names as the  fi rst row of data. At the second screen of the Text Import Wizard, 
answer “yes” when asked if the variable names are included at the top of your  fi le 
and accept all of the defaults after that. 

 Regardless of how you handle all this, it still requires some work on your part. 
More importantly, errors remain a possible problem. So consider using the automa-
tion utility.  

   What the MIAutomate Utility Does 

 The automation utility takes care of all the steps I just described. It adds the names 
 fi le in the appropriate way to the top of the  fi le containing the data. It then generates 
the SPSS code needed for importing this data set into SPSS. Your task, then, after 
running the utility, is reduced to this running an SPSS syntax  fi le generated by the 
MIAutomate utility.  

   Files Expected to Make Automation Utility Work 

 The  fi les listed below are expected to be in a single folder. I am giving the  fi le names 
for the empirical example I am using throughout this chapter. Of course, the data set 
names will be different when you analyze your own data.  

 ex3.dat  The original data  fi le with missing values 
 ex3.nam  The variable names  fi le. It is not absolutely necessary to have this  fi le, but you 

are strongly encouraged to create one for the imputation process 
 ex3_0.imp  The single data set imputed from EM parameters (description of generating 

this  fi le appears in Chap.   3    ) 

http://www.ultraedit.com
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   Installing the MIAutomate Utility 

 The MIAutomate utility can be downloaded for free from   http://methodology.psu.
edu    . The utility comes as a self-extracting zip  fi le. The default location for installa-
tion is the folder, c:\MIAutomate, with the Java run-time library  fi le located in c:\
MIAutomate\lib. This will work  fi ne, but I also  fi nd it useful to specify the desktop 
during this unzip process. In that case, the main executable  fi le is unzipped to c:\…\
desktop\MIAutomate, and the Java run-time library is unzipped to c:\…\desktop\
MIAutomate\lib.  

   Running the Automation Utility 

 Open a Windows Explorer window and locate the folder containing the Utility  fi le. 
Double-click on MIAutomate.exe to start the utility. A picture of the window is 
shown in Fig.  4.1 .  

 Click on the Browse button for “Input Dataset”. Locate the folder containing the 
data and imputed  fi les and locate “ex3.dat”. 

 Click the check-box for “Variable names  fi le Available?” 
 For “No. of Imputations” enter “1”. 
 Click on the “Select First File” button and select “ex3_0.imp”. 
 Finally, click on “Run”.  

  Fig. 4.1    MIAutomate (automation utility) window translating NORM-imputed data into SPSS-
read format: reading the single data set imputed from EM parameters       
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   Products of the Automation Utility 

 After clicking on “Run”, the automation utility completes its work by writing out 
three  fi les:  

 ex3all.imp  In this case, this  fi le is the same as “ex3_0.imp” except that the variable names 
are at the top of the  fi le (and the new variable, “imputation_” is added as the 
 fi rst variable) 

 spss1.sps  This is the SPSS syntax  fi le you will use to read the raw data into SPSS 
 spss2.sps  This  fi le is generated but is not used when analyzing the single data set imputed 

from EM parameters 

 After you click on “Run”, the MIAutomate utility normally takes just a few sec-
onds to do its work. You will see the progress in the lower right-hand corner of the 
window. When the process is complete, the utility will prompt you to launch SPSS. 
Usually you will click on “Yes”. This will launch SPSS, with the usual data editor 
window, along with a syntax window with SPSS1.SPS already loaded. Click on 
“Run” and “All” to complete the process of reading the imputed data into SPSS. 

 It occasionally happens that the SPSS window does not open automatically. In 
that case, start SPSS manually. When it opens, click on “File”, “Open”, and 
“Syntax”, and locate the recently created syntax  fi le, SPSS1.SPS. When that win-
dow opens, click on “Run” and “All” to proceed.  

   Analysis with the Single Data Set Imputed from EM Parameters 

 The main thing to know about these analyses is that they will be performed and 
interpreted the same as you would perform and interpret them if you happened to 
have a data set with no missing data. The conclusions you draw are valid, and you 
should feel comfortable publishing results from these analyses. The one caveat is 
that you should make it clear that the results of these analyses were based on a sin-
gle data set imputed from EM parameters (with error). 

 The single data set imputed from EM parameters is completely appropriate for 
addressing research questions for which hypothesis testing is not typically used 
(e.g., coef fi cient alpha analysis or exploratory factor analysis). This data set is not, 
however, appropriate for performing analyses for which hypothesis testing is com-
mon. For example, multiple regression analysis should NOT be performed with this 
data set. 

 I do have one caveat about using this data set for multiple regression analysis. 
Although it is best to perform hypothesis tests (standard errors,  t -values,  p -values) 
using multiple imputation, analysis of this single data set is very good for estimating 
standardized regression coef fi cients and R 2  values (which are commonly reported 
without signi fi cance levels).   
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   Analysis Following Multiple Imputation 

 Before describing the automation utility, it is important to be clear about the process 
of doing data analysis with any program following multiple imputation. As I pointed 
out in Chap.   2    , the three-step process is (a) impute, (b) analyze, and (c) combine the 
results. I have already covered the imputation part in Chap.   3    . In the analysis phase 
of the MI process, you simply perform the analysis just as you would if you had no 
missing data. For example, if the analysis of choice is SPSS regression, you would 
read the  fi rst imputed data set into SPSS and perform the regression analysis in the 
usual way. Then read the second imputed data set and perform the analysis on that, 
and so on. 

 The only problem is that, rather than using the results of these analyses for writ-
ing your article, you must save those results in a convenient form, so that the third 
step in the process (combining the results) can be done ef fi ciently. For example, 
suppose you want to do multiple linear regression with a group of adolescents; you 
want to determine the extent to which the three seventh grade variables, rebellious-
ness ( Rebel7 ), beliefs about the positive consequences of alcohol use ( Posatt7 ), and 
relationship with parents ( Likepar7 ), predict ninth grade alcohol use ( Alc9 ), control-
ling for seventh grade alcohol use ( Alc7 ). A simpli fi ed picture of the model appears 
in Fig.  4.2 .  

  Sample Data . �  Read into SPSS the data from the  fi rst imputed data set generated 
in Chap.   3     (i.e., from ex3_1.imp). For simplicity, for this analysis, use just one of 
the items from each scale to represent each of the scales. Use Alc9 as the depen-
dent variable, and Alc7, Rebel71, Likepar72, and Posatt72 as predictors. 

 Such an analysis would have  fi ve parameter estimates: an intercept and a regres-
sion coef fi cient for each of the predictors. Further, a standard error would be associ-
ated with each of the  fi ve coef fi cients. These quantities can be organized as shown 
in the  fi rst two rows of Table  4.1 . Now, if we read in the data from the second 
imputed data set (ex3_2.imp) and, conduct the same regression analysis, we see the 
regression coef fi cients and standard errors in the last two rows of Table  4.1 . This 
process would be repeated over and over again, each time saving the regression 
coef fi cients and their standard errors.  

 At the conclusion of this process, we would perform the combining operation, 
using Rubin’s rules, as described in Chap.   2    . As outlined in Chap.   2    , the regression 

Alc7

Likepar7

Posatt7

Rebel7

Alc9

  Fig. 4.2    Example regression model for SPSS regression       
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coef fi cient (e.g., for the effect of Likepar7 on Alc9) would be the simple mean of 
that b-weight over the results from the  m  imputed data sets. Also as described in 
Chap.   2    , the standard error for each parameter estimate is made up of the within-
imputation variance and the between-imputation variance. The within-imputation 
variance, the normal kind of sampling variability, is the average of the squared stan-
dard error over the  m  imputed data sets. The between-imputation variance, that is, 
the variance due to missing data, is the sample variance for the b-weight over the  m  
imputed data sets. The standard error is the square root of (weighted) sum of these 
two variances.  

   Automation of SPSS Regression Analysis with Multiple 
Imputed Data Sets 

 It should be easy to see that going through this process “by hand,” even with just a 
few imputed data sets, would be tedious and error prone. With the number of 
imputed data sets, I recommend ( m  = 40 imputed data sets would be typical; see 
Graham et al. 2007), the work involved, and especially the high probability of errors, 
would render multiple imputation infeasible. 

 The automation utility for SPSS Regression accomplishes the same tasks as 
described above, except that the automation takes care of the tedium, and virtually 
eliminates the mistakes that are made when doing these analyses by hand. The 
steps for performing multiple linear regression in SPSS are virtually the same as 
the steps outlined above, with some obvious exceptions that relate to the regression 
analysis itself. 

   Running the Automation Utility 

 Locate the MIAutomate utility and run it. A picture of the window for MI is shown 
in Fig.  4.3 .  

 Click on the Browse button for “Input Dataset”. Locate the folder containing the 
data and imputed  fi les, and locate “ex3.dat”. 

   Table 4.1    Parameter estimates and standard errors for imputations 1 and 2   

 Parameter 

 Imputation  Quantity  Intercept  Alc7  Likepar7  Posatt7  Rebel7 

 1   b   2.847  .571  −.215  .242  .102 
 1   SE    .166  .021   .035  .047  .046 
 2   b   2.819  .605  −.182  .030  .153 
 2   SE    .170  .022   .035  .049  .045 

http://dx.doi.org/10.1007/978-1-4614-4018-5_2
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 Click the check-box for “Variable names  fi le Available?” 
 For “No. of Imputations” enter “40”. 
 Click on the “Select First File” button and select “ex3_1.imp”. 
 Finally, click on “Run”.  

   Products of the Automation Utility 

 After answering the last question, the automation utility completes its work by 
 writing out three  fi les:  

 ex4all.imp  In this case, this  fi le contains all 40 imputed data sets, stacked together. A new 
variable, “imputation_”, has been added as the  fi rst variable. It takes on the 
value of 1, 2, 3, …, 10, …, 40, and indicates which of the 40 imputed data sets 
is which. This data set also has the variable names (   including the new 
“imputation_” variable), added at the top of the data set 

 spss1.sps  This is the SPSS syntax  fi le you will use to read the raw data into SPSS. This 
version of the syntax  fi le also sorts the data by the new variable “imputa-
tion_”, and performs the “split  fi le” operation. This operation allows any 
analysis done (e.g., multiple regression) to be done automatically on each of 
the  m  = 40 imputed data sets separately, producing  m  separate sets of output 

 spss2.sps  This  fi le is used after the regression analyses is complete, and it prepares the 
output for automated combining of results, which is completed by another part 
of the MIAutomate utility outside of SPSS 

  Fig. 4.3    MIAutomate (automation utility) window translating NORM-imputed data into SPSS-
read format: reading multiple imputed data sets       
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 After you click on “Run”, the MIAutomate utility normally takes just a few sec-
onds to do its work. You will see the progress in the lower right-hand corner of the 
window. When the process is complete, the utility will prompt you to launch SPSS. 
Usually you will click on “Yes”. This will launch SPSS, with the usual data editor 
window, along with a syntax window with SPSS1.SPS already loaded. Click on 
“Run” and “All” to complete the process of reading the imputed data into SPSS. 

 It occasionally happens that the SPSS window does not open automatically. In 
that case, start SPSS manually. When it opens, click on “File”, “Open”, and 
“Syntax”, and locate the recently created syntax  fi le, SPSS1.SPS. When that  window 
opens, click on “Run” and “All” to proceed.  

   Rationale for Having Separate Input and Output 
Automation Utilities 

 You might wonder why the automation utility is divided. The main reason for that 
relates to how one typically performs data analysis. First you read in the data. Then 
you work with the data, for example, by performing transformations on skewed 
variables and by combining individual variables into scales for further analysis. 
Only then do you actually perform the intended multiple regression analysis. This 
process is no different when you have missing data. Although it is sometimes desir-
able to impute whole scales rather than individual items making up scales (e.g., see 
Chap.   9    ), it is often the case that one wants to impute the single items and then form 
scales after imputation. In any case, by dividing the input and output parts of the 
automation utility, you, the user, will be able to perform your data analyses with the 
greatest degree of  fl exibility.  

   Multiple Linear Regression in SPSS with Multiple 
Imputed Data Sets, Step 1 

 After you have recoded or computed variables as needed, the data set is ready for 
the multiple regression analysis. Click on Analyze, Regression, and Linear. 

  Sample Data  � . Find the variable Alc9 on the left and transfer it into the box 
labeled “Dependent”. Find Alc7, Riskreb71, Likepar72, and Posatt72 on the left 
and transfer them into the box labeled “Independent(s)”. 

   A Crucial Step 

 Click on the “Save” button. Check the box (near the bottom) labeled “Create 
Coef fi cient Statistics” (Note that this crucial step may be slightly different in earlier 

http://dx.doi.org/10.1007/978-1-4614-4018-5_9


104 4 Analysis with SPSS (Versions Without MI Module)…

versions of SPSS). Check the box labeled “Write a new data  fi le”. Click on the 
“File” button and write “ results.sav ” in the File Name window. 1  Be sure this  fi le is 
being written to the same folder with the imputed data and click on Save. If a  fi le 
named “results.sav” already exists, say “Yes” to overwrite it. 

 Click on “continue” and on “OK” to start the multiple regression analysis.  

   Scan the Output 

 In the output window, you should see evidence that SPSS did, indeed, run the regres-
sion analysis  m  = 40 times (of course this number will depend on how many imputed 
data sets you actually have). It is important not to look too carefully at these analy-
ses. Most of the reasons people do so come from what I sometimes refer to as “old” 
thinking. Remember, the imputed value does not represent what the subject would 
have said had the data actually been collected. Rather, the multiple imputed values 
are designed to preserve important characteristics of the data set as a whole, that is, 
to yield unbiased estimates of each parameter and to allow us to assess the variabil-
ity around that estimate. The variability you see in the  m  regression solutions are 
another part of this preserving important characteristics of the data set as a whole.   

   Multiple Linear Regression in SPSS with Multiple 
Imputed Data Sets, Step 2 

 The analysis has been run (40 times in the data example for this chapter), and the 
results  fi le has been stored conveniently in a SPSS system  fi le called, “results.sav”. 
However, we are not quite there. Some of the information must be trimmed from 
that data  fi le, and the  fi le must be written out as an ascii text  fi le so the MIAutomate 
utility can  fi nish its work. 

 From the data editor window, click on File, Open, and Syntax. 2  Find and double-
click on the recently created syntax  fi le, “spss2.sps”. 

 Within the syntax window, click on Run and on All. This syntax has automati-
cally stripped unneeded information from the results.sav  fi le and has written the 
compact results out to the ascii text  fi le, “output.dat”. 

 Go back to the MIAutomate window, which should still be open. Click on MI 
inference and on SPSS 15/16. A window opens to give you an opportunity to browse 

   1   It is best that this output  fi le be named “results.sav”. However, it also works to make this output 
 fi le a temporary SPSS  fi le, and give it an arbitrary name (e.g., “xxx”). After the analysis task is 
complete, be sure that the new  fi le is the active screen and then load and run the syntax  fi le, “spss2.
sps”. When you run that syntax  fi le, there will be errors, but the correct actions are taken.  
   2   Remember. If you named the output  fi le, “results.sav”, then you can load the syntax  fi le, spss2.
sps, and run it from any SPSS window. However, if you gave the results  fi le another, temporary, 
name, then you must load the SPSS Data Editor window corresponding to that name, and load and 
run spss2.sps from that window.  
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for the newly created  fi le, output.dat. In most instances, however, you can simply 
click “No”. When you do, a Notepad window will open with the  fi le “minfer.txt” 
(for MI Inference). This  fi le contains the MI inference for the regression analysis 
just run. 

  Sample Data  � . For the sample data used in this chapter, the  fi nal results of the 
multiple regression analysis appear in Table  4.2 .  

   Parameter Estimate (EST), Standard Error (SE),  t - and  p -Values 

 The parameter, as noted before, is simply the mean of the parameter estimate over 
the analyses of the  m  imputed data sets. The standard error is the square root of the 
weighted sum of the within- and between-imputation variances for that parameter 
estimate. The  t -value for a parameter is the estimate divided by its SE. The  p -value 
is calculated for that  t -value and the df shown.  

   Fraction of Missing Information (FMI/% mis inf) 

 The fraction of missing information, as discussed in Chap.   2    , is related to the simple 
percent of missing data. But it is adjusted by the presence of other variables that are 
highly correlated with the variables with missing data. With multiple regression and 
with models that include auxiliary variables, the amount of missing information is 
less (in theory) than the amount of missing data, per se. However, as I noted in 
Chap.   2    , even with  m  as high as 40, there remains some wobble in the FMI estimate. 
Thus, although I do present this information, it should be taken as a rough approxi-
mation of the true amount of missing information.  

   Multiple Imputation Degrees of Freedom (DF) 

 As noted in Chap.   2    , DF has unique meaning in multiple imputation. It is not related 
to the sample size, as in the common complete cases analysis. I like to think of it as 
an indicator of the stability of the estimates. When DF is low (the minimum value 

   Table 4.2    Multiple imputation results for multiple linear regression in SPSS   
 Parameter  EST  SE  t  df  % mis inf  p 

 CONST_   2.873  0.2474  11.62  131  55.2  .0000 
 alc7   0.610  0.0255  23.87  484  28.7  .0000 
 rskreb71   0.140  0.0672   2.08  134  54.6  .0394 
 likepa72  –0.205  0.0513  –4.01  125  56.4  .0001 
 posatt72   0.104  0.0735   1.42  113  59.3  .1585 

  These results are based on  m  = 40 imputations  

http://dx.doi.org/10.1007/978-1-4614-4018-5_2
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for DF is  m −1), it indicates that  m  was too low and that the parameter estimates 
remain unstable. When DF is high (substantially higher than  m ), it is an indicator 
that the estimation has stabilized. The bottom line is that whenever the DF is just 
marginally higher than  m , it is an indication that more imputations are needed.   

   Variability of Results with Multiple Imputation 

 Note that the table you construct based on multiple imputation of the data set ex3.
dat will be different from what is shown in Table  4.2 . Multiple imputation is based 
on simulated random draws from the population. Thus, just as each imputed data set 
is a little different to re fl ect that randomness, each set of imputed data sets produces 
slightly different results. To illustrate, I reran the multiple imputation analysis just 
described with 40 new imputed data sets. The results of that analysis appear in 
Table  4.3 .  

 There are differences, to be sure, between the results shown in Tables  4.2  and  4.3 . 
However, the differences between these two solutions is very small. Had I used  m  = 5 
or  m  = 10 imputed data sets, the differences would have been larger (try it and see).  

   A Note About Ethics in Multiple Imputation 

 With multiple imputation, each time you impute and repeat the analysis, you arrive 
at a somewhat different answer. For the most part, those differences are small. But 
occasionally, those small differences will happen to span the  p  = .05 level of 
signi fi cance. So what is the conclusion when this happens? Should we conclude that 
a particular predictor was signi fi cant or not? 

 In my mind, the answer to this question is clear only when you decide in advance 
of seeing the results how you are going to do to determine the answer. Normally, 
one would run just multiple imputation just once, and the problem would not arise. 
The signi fi cance level would be whatever one found in analysis of that one set of 
imputed data sets. 

 If I happen to stumble across a situation like the one just described (signi fi cant 
with one set, not quite signi fi cant with the other), then in my mind, the only 

   Table 4.3    Multiple imputation results based on 40 new imputed data sets   

 parameter  EST  SE  t  df  % mis inf  p 

 CONST_   2.866  0.2647  10.82  107  60.9  .0000 
 alc7   0.608  0.0298  20.37  170  48.4  .0000 
 riskreb71   0.137  0.0690   1.99  122  57.2  .0489 
 likepar72  –0.212  0.0557  –3.81   99  63.2  .0002 
 posatt72   0.110  0.0699   1.58  135  54.4  .1171 
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 acceptable solution is to run yet a third multiple imputation (this one could have 
 m  = 40, or could make use of more imputed data sets, e.g.,  m  = 100). But the idea is 
that I would abide by the results no matter how they came out. It is absolutely inap-
propriate, of course, to do this more than once. That is, one cannot ethically keep 
producing new sets of  m  = 40 imputed data sets until one gets the answer one was 
looking for. 

 One might also be tempted, after seeing the con fl icting results, to switch to a 
comparable FIML analysis. But the same ethical problem exists. Sometimes the 
FIML analysis yields stronger results, and sometimes it yields weaker results. If 
you think FIML might solve your problems in this regard, I would say that you 
must decide before looking at the FIML results that you will go with them no mat-
ter what.   

   Other SPSS Analyses with Multiple Imputed Data Sets 

 With newer versions of SPSS (version 17 and later) in which the MI module has 
been installed, performing other analyses with multiple imputed data sets (e.g., 
logistic regression or mixed-model regression; e.g., see Chap.   5    ) is very easy to do. 
However, if you happen to have an older version of SPSS, or a newer version that 
does not have the MI module, it is not as easy to do other analyses. The Regression 
program works reasonably well in older versions of SPSS because there is a built-in 
feature in the Regression program for saving the parameter estimates and standard 
errors. Unfortunately, this feature is not available with other similar programs like 
logistic regression. 

 If I were in the situation of having to perform such analyses, I would do the fol-
lowing. First, use the  fi rst part of the MIAutomate utility to read multiple imputed 
data sets into SPSS (as described above), except under “Syntax Choice”, select 
SPSS 17+. The difference between the syntax choices is in how SPSS handles the 
split  fi les process. With SPSS 15/16, SPSS splits the  fi le using “separate by impu-
tation_”. This type of  fi le splitting is needed for saving the parameter estimates and 
standard errors in the proper format for using MIAutomate to perform MI 
Inference. 

 However, with version 17+, SPSS splits the  fi le using “layered by imputation_”. 
The MI module uses this type of  fi le splitting to perform the MI inference when the 
MI module is present. However, this type of  fi le splitting also presents the output 
(e.g., for logistic regression) in more compact form. Sample output for logistic 
regression ( fi rst  fi ve imputations only) is shown in Table  4.4 . With output in this 
compact form, it will be a relatively easy matter to copy all of the parameter esti-
mates (from the column labeled “B” in Table  4.4 ) along with the SE values (from 
the “S.E.” column in Table  4.4 ) and paste them into an ascii editor such as Notepad. 
This will produce two columns (B and SE) with the two elements on each row sepa-
rated by a tab. This  fi le can then be saved to an ascii text  fi le (e.g., results.dat).         

http://dx.doi.org/10.1007/978-1-4614-4018-5_5
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 MI inference may then be performed by reading the saved ascii  fi le (e.g., results.
dat) into NORM. Start NORM (as described in Chap.   3    ). Click on “Analyze” and on 
“MI inference: Scalar”. Select the  fi le (results.dat) and open it. For “File format”, 
select “stacked columns”. For “Number of estimands”, select the number of predic-
tor variables, plus one for the intercept (e.g., 5 if you have alc7, rskreb71, likepar72, 
posatt72, and the constant). For “Number of imputations”, enter the number you 
used (e.g., 40). The results will be more meaningful if you copy from the output  fi le 
the names of the predictors (in order), along with the intercept (“constant”, if esti-
mated), and paste them into another Notepad  fi le, which should be saved as “results.
nam”. In NORM, you would then enter this  fi le name (e.g., results.nam) under 
“Names for estimands”, after clicking on “Get from  fi le”. 

imputation_

1

2

3

4

5

Step 1a

Step 1a

Step 1a

Step 1a

Step 1a

alc7

rskreb71

likepa72

posatt72

Constant

alc7

rskreb71

likepa72

posatt72

Constant

alc7

rskreb71

likepa72

posatt72

Constant

alc7

rskreb71

likepa72

posatt72

Constant

alc7

rskreb71

likepa72

posatt72

Constant

B

.504

.017

−.219

.242

−1.326

.509

.199

−.151

.094

−1.666

.544

.096

−.099

.210

−1.361

.525

.125

−.155

.089

−1.595

.512

.129

−.167

.120

−1.528

S.E.

.028

.051

.040

.054

.195

.029

.053

.039

.055

.193

.031

.053

.039

.056

.197

.029

.052

.039

.054

.193

.029

.051

.039

.054

.192

Wald

314.467

.107

30.626

20.240

46.240

317.899

14.248

15.021

2.963

74.706

299.929

3.293

6.323

14.306

47.687

334.723

5.660

16.024

2.676

68.469

319.202

6.385

17.977

4.913

63.083

df

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

Sig.

.000

.743

.000

.000

.000

.000

.000

.000

.085

.000

.000

.070

.012

.000

.000

.000

.017

.000

.102

.000

.000

.012

.000

.027

.000

Exp(B)

1.655

1.017

.804

1.274

.266

1.664

1.220

.860

1.099

.189

1.723

1.100

.906

1.234

.256

1.691

1.133

.856

1.093

.203

1.669

1.137

.847

1.128

.217

 Table 4.4    Sample logistic regression output from SPSS  

http://dx.doi.org/10.1007/978-1-4614-4018-5_3
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 When you click on “Run”, NORM produces an MI inference table, much like 
that shown in Tables  4.2  and  4.3 . The table itself will be saved in a  fi le called “mi.
out”. It may need to be edited somehow to have it appear the way you want it for the 
table in your article, but all of the important information is there. 

  Sample Data  � . Based on the data already imputed, I did a median split on the 
variable, Alc9, and used it in a logistic regression analysis in SPSS. The results 
from that analysis based on the  fi rst 5 imputed data sets appear in Table  4.4 . The 
MI inference analysis, based on all 40 imputed data sets, and produced by 
NORM, appear in Table  4.5 .       

   Table 4.5    MI inference information as produced by NORM   

 ************************************************************ 
 NORM Version 2.03 for Windows 95/98/NT 
 Output from MI INFERENCE: SCALAR METHOD 
 untitled 
 Monday, 22 August 2011 
 17:25:59 

 ************************************************************ 

 Data read from  fi le: 
   C:\MIAutomate\results.dat 
   Number of estimands = 5 
   Number of imputations = 40 
   File format: stacked columns 

 ************************************************************ 

 QUANTITY ESTIMATE STD.ERR. T-RATIO DF P-VALUE 
 alc7 0.524500 0.343787E-01 15.26 554 0.0000 
 rskreb71 0.138750 0.700222E-01  1.98 197 0.0489 
 likepa72 –.161200 0.569658E-01 –2.83 138 0.0054 
 posatt72 0.110475 0.755974E-01  1.46 172 0.1457 
 Constant –1.44863 0.359952 –4.02  76 0.0001 

 CONFIDENCE LEVEL FOR INTERVAL ESTIMATES (%): 95.00 

 QUANTITY LOW ENDPT. HIGH ENDPT. %MIS.INF. 
 alc7 0.456971 0.592029 26.8 
 rskreb71 0.660595E-03 0.276839 45.0 
 likepa72 –.273839 –.485614E-01 53.7 
 posatt72 –.387431E-01 0.259693 48.1 
 Constant –2.16553 –.731719 72.1 
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 In this chapter, I provide step-by-step instructions for performing multiple imputation 
and analysis with SPSS 17-20. I encourage you to read Chap.   3     before reading this 
chapter. 

 Before launching into this chapter, I want to say that this version of the SPSS 
(version 20 was the current version as I wrote this) multiple imputation procedure 
has some excellent features. However, as an MI package, this product is still in its 
infancy, and remains seriously limited. To be fair, when Proc MI was  fi rst intro-
duced in SAS version 8.1 (see Chap.   7    ), its usefulness was also seriously limited. 
However, in SAS version 8.2, Proc MI had matured substantially, and with SAS 
version 9, Proc MI is now a highly developed, and highly useful multiple imputation 
and analysis tool. So although this version of the SPSS multiple imputation proce-
dure has some serious shortcomings, I am hopeful that future versions will be much 
more useful. 

 Because of the limitations in this version, this chapter will have two major 
focuses. First, in the pages that follow, I do describe multiple imputation and analy-
sis with SPSS 17-20. Second, however, I describe procedures that are much like 
those described in Chap.   4     for using Norm-imputed data with SPSS 15-16 (and 
newer versions that do not have the MI module installed). These same procedures 
can be used largely unchanged for analysis with SPSS 17-20. Using (a) Norm for 
imputation, (b) the MIAutomate utility for reading Norm-imputed data into SPSS, 
and (c) the results-combining feature now built in to SPSS 17-20, analysis involving 
SPSS with missing data is now highly automated and exceptionally useful. 

   Step-by-Step Instructions for Multiple Imputation 
with SPSS 17-20 

 Because of the limitations of this program, I strongly encourage you to consider using 
the procedure described a little later in this chapter for imputing with Norm 2.03 (see 
Chap.   3    ) and make use of the MIAutomate utility to import the Norm-imputed data 

    Chapter 5   
 Multiple Imputation and Analysis 
with SPSS 17-20                 

http://dx.doi.org/10.1007/978-1-4614-4018-5_3
http://dx.doi.org/10.1007/978-1-4614-4018-5_7
http://dx.doi.org/10.1007/978-1-4614-4018-5_4
http://dx.doi.org/10.1007/978-1-4614-4018-5_3
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into SPSS. If you must make use of the imputation procedure, remember that (a) it is 
very slow, and (b) there is no way of knowing if the few decisions available to you 
have indeed produced proper multiple imputations. For these reasons, if you must use 
SPSS 17-20 to do the imputation, you are encouraged to keep your models small, that 
is, limit the number of variables to some small number (e.g., 15–20 variables). Further, 
because of the shortcomings in this version, you will  fi nd describing the process in a 
paper meant for publication will be met with resistance from reviewers and editors. 

 In order to keep the material in this chapter as comparable as possible with the 
information presented in other chapters (especially Chaps.   3     and   7    ), the steps I pres-
ent for imputing with SPSS 17-20 will have the same functions as those for doing 
multiple imputation with Norm (see Chap.   3    ). 

   Running SPSS 17-20 MI (Step 1): Getting SPSS MI 

 Be sure that your version of SPSS 17-20 has the Multiple Imputation module. To 
see if your version does have it, click on “Analyze”. If your version has the MI 
module, you will see “Multiple Imputation” near the bottom of the list. If your ver-
sion does not have it, please see your system administrator to obtain it. 

   Preparing SPSS 

 One option with SPSS should be modi fi ed before performing MI. When  m  (the 
number of imputations) is large, SPSS may not display all of the results using the 
default display settings. You can correct this problem by clicking “Edit” and on 
“Options”. Then click on the tab for “Pivot Tables”. At the bottom left is a table 
labeled “Display Blocks of Rows”. Check the box, “Display the table as blocks of 
rows”. Be sure that the values in the next two boxes are suf fi ciently large. I use 
“1,000” for “Rows to Display” and “100,000” for Maximum Cells.   

   Running SPSS 17-20 MI (Step 2): Preparing the Data Set 

 One of the best things about having an MI procedure built into a statistics package 
is that minimal work is required for preparing the data set. However, there are a few 
things you must do in this regard. First, you must be sure that the missing values in 
your SPSS  fi le are displayed as “system missing” (“.”), or that the missing value 
indicator (e.g., “−9”) has been identi fi ed as a missing value (see the “Variable 
View”). This, of course, is a required step for any analysis with SPSS. If you wish 
to perform any other RECODE or COMPUTE operations prior to running MI, that 
should be done at this stage as well. 

http://dx.doi.org/10.1007/978-1-4614-4018-5_3
http://dx.doi.org/10.1007/978-1-4614-4018-5_7
http://dx.doi.org/10.1007/978-1-4614-4018-5_3
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   Scale 

 An important bit of preparation is to set the scale of measurement for all variables to 
be involved in the MI analysis to “scale” (do this in the rightmost column in Variable 
view). Note that this must be done even for two-level categorical variables, such as 
gender or any dummy variable generated to represent 3+ level categorical variables.   

   Empirical Example Used Throughout this Chapter 

 In order to facilitate learning the procedures outlined in this chapter, I encourage 
you to download the data  fi le, ‘ex3.sav’ from our website (  http://methodology.psu.
edu    ). The     fi le may be stored in any folder of your choosing. 

 The sample data set comes from a subset of one cohort of students ( N  = 2,756) who 
took part in the Adolescent Alcohol Prevention Trial (AAPT; Hansen and Graham 
 1991  ) . The sample data set includes a variable, School, indicating which of 12 schools 
the student was from. In addition, 19 substantive variables are included: Lifetime 
alcohol use at seventh, eighth, and ninth grades (Alc7, Alc8, Alc9);  fi ve variables 
making up a scale tapping relationship with parents at seventh grade (Likepar71, 
Likepar72, Likepar73, Likepar74, Likepar75); three variables making up a scale tap-
ping beliefs about the positive social consequences of alcohol use at seventh grade 
(Posatt71, Posatt72, Posatt73); four variables tapping risk-taking and rebelliousness 
in grade 7 (Riskreb71, Riskreb72, Riskreb73, Riskreb74); and four variables tapping 
risk-taking and rebelliousness in eighth grade (Riskreb81, Riskreb82, Riskreb83, 
Riskreb84). As you read through the steps for conducting imputation with SPSS 
17-20, I encourage you to try out each step with this sample data set.  

   Running SPSS 17-20 MI (Step 3): Variables 

 Begin the MI analysis by clicking on “Analyze” and on “Multiple Imputation”. The 
MI procedure in SPSS 17-20 is set up a little different from Norm 2.03, so you will 
need to select variables twice, once during the missing data summary process, and 
again for the MI process itself. Variable selection is described brie fl y below for each 
of these steps.  

   Running SPSS 17-20 MI (Step 4): Missingness Summary 

 In order to summarize the missingness patterns, click on “Analyze”, “Multiple 
Imputation”, and “Analyze Patterns”. Select variables in the usual way by clicking 
on a variable name in the window on the left, and hitting the arrow button to transfer 
it to the window on the right. 

http://methodology.psu.edu
http://methodology.psu.edu
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  Sample Data  � . For this example, select the following variables for inclusion: 
alc7, riskreb71, likepar71, posatt71, alc8, riskreb81, alc9. 

 Under “output”, be sure that all three boxes are checked. It is a good idea to have 
information displayed for all variables. So for “maximum number of variables dis-
played”, be sure the number is some large number, at least as large as the number of 
variables being analyzed. Also, for “Minimum percentage missing for variable to be 
displayed”, enter 0. 

 The SPSS output from this analysis is presented in Fig.  5.1 . SPSS did a nice job 
of presenting the missingness summary information. Figure  5.1  (panel A) shows 
three pie charts indicating the percentage of variables, cases, and values having 
missing and observed values. The “variables” chart may not be all that useful, but 
the other two are very valuable, allowing the user to capture the relevant information 
quickly. The “cases” chart indicates the number of complete cases (presented in 
blue) for the variables selected. The “values” chart indicates the number of indi-
vidual values that are missing (green) and observed (blue).  

  Sample Data  � . In our example, as shown in the “Cases” chart, only 381 cases 
(13.8 %) have complete data. On the other hand, the “values” chart indicates that 
only 30.6 % of the total, individual values are missing. 

 Figure  5.1  (panel B) shows, in very compact form, the number and percent miss-
ing for each variable selected. I  fi nd it useful to scan down the percent missing 
column and make sure that each percent missing makes sense based on what 
I already know about the data set. Be especially watchful when the percent missing 
is high. Does it make sense that some variables have 50 % (or more) missing data? 
This sometimes happens for the right reasons, for example, the data are missing due 
to a planned missing data design. But it is also possible that a high percent missing 
could be due to a simple coding error. It is important not to go forward until you 
have an adequate explanation. 

  Sample Data  � . Note also that a small percentage (6.4 %) of students had missing 
data for Alc7, alcohol use at seventh grade. Normally there is virtually no miss-
ing data in this cohort on this variable at seventh grade. The small amount of 
missingness seen here is due mainly to the fact that in this data set, I included 
new students who “dropped in” to the study beginning at eighth grade. Also note 
that about 40 % of students were missing on each of the other variables measured 
at seventh grade. This amount of missingness is due to the planned missingness 
design used in this study (see Chap.   12     for a discussion of this type of design). In 
this case, approximately a third of the students were not given these questions. 
Add to that the approximately 6 % do not present at all at the seventh grade mea-
sure, and the number is very close to the 40 % missingness observed. The 8.1 % 
missing on Alc8 represent approximately 8 % attrition between seventh and 
eighth grades. This is reasonable in this study. The somewhat higher rate of miss-
ingness on the riskreb8 item (44 %), compared to the seventh grade version, is 
also reasonable. The 34.3 % missing on Alc9 re fl ects the somewhat greater attri-
tion between eighth and ninth grades. This, too, makes sense given what I already 
know about these data. 

http://dx.doi.org/10.1007/978-1-4614-4018-5_12
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     Fig. 5.1    SPSS MI module: description of missing values         
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 Figure  5.1  (panel C) presents a matrix of missing data patterns. The one thing 
missing from this part of the output is the number of cases with each pattern. However, 
this omission is a minor one, especially given that SPSS also shows the percent miss-
ing for the 10 most common patterns (see Fig.  5.1 , panel D). When many variables 
are included in the model, and with large sample sizes, this section of output may be 
too complex to be of immediate usefulness anyway. And the most important infor-
mation can be found in this matrix and elsewhere in the output. The top row of this 
matrix shows the pattern of complete data (if it exists). We already know from the 
middle pie chart (Fig.  5.1 , panel A) that  N  = 381 cases (13.8 %) have this pattern. 

 Taken together with the pie chart for “cases” at the top of the output, one has all the 
necessary information. It is always useful to know the number and percentage of com-
plete cases in the analysis. The bottom row of this matrix also provides useful infor-
mation. The bottom row displays the pattern with the least data. Occasionally, one 
 fi nds that this bottom row has all red (missing) values, that is, some cases happen to 
have no data at all for this set of variables. Although MI procedures do handle this situ-
ation in the appropriate way, it is not good form to keep cases in the model when they 
have no data at all. If you are not convinced of this, imagine the sentences you must 
write in the Method section of your article describing the rationale for leaving these 
variables in. I recommend that you go back and delete these cases before proceeding. 

  Sample Data  � . There are three key things to see here. First, there are 381 (13.8 %) 
complete cases. This information comes from the pie chart labeled “cases”. 
Second, there are 42 different patterns of missing and nonmissing data. Third, 
because the bottom row of this matrix contains some white values, I know there 
0 cases with no data. I like to keep any case having valid data for even one sub-
stantive variable. 

 I also  fi nd it useful to scan the matrix of missing value patterns for the largest 
patterns. This also serves as a diagnostic tool. Does it make sense that many people 
have missing data for a particular block of variables? The bottom panel of the SPSS 
output (see Fig.  5.1 , panel D) shows the percent of cases with the 10 most frequently 
occurring patterns of missing and nonmissing values. Although this information can 
be useful when paired with the patterns themselves, the mode of presentation makes 
it dif fi cult to put these bits of information together. An example of how such a table 
might look is given in Table  5.1 . (Note also that the percents of missing values 
shown in Table  5.1  do not line up perfectly with the percents shown in Fig.  5.1 , 
panel D; it could be that the denominator used in the percent calculations shown in 
the  fi gure is 2349, the number of cases with the 10 most common patterns).   

   Running SPSS 17-20 MI (Step 5): EM Algorithm 

 Norm 2.03 and SAS Proc MI both obtain EM algorithm estimates of the variance-
covariance matrix as starting values for the MCMC (Data Augmentation) process 
(simulating random draws from the population and writing out imputed data sets). 
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SPSS 17-20 may do the same thing. However, documentation with SPSS 17-20 is 
thin, and there is no indication that this is, in fact, part of the process with this 
version. 

 Whether or not EM is actually run to provide starting values for the MCMC 
process, it is a serious omission that information about EM is not presented. It is 
important to see the results of EM (a) to verify that EM has converged normally, and 
(b) to get an estimate of the number of steps of MCMC required between imputed 
data sets. It is also valuable to have an EM solution on which to base a single 
imputed data set (plus error; see Chaps.   3    ,   4    , and   7    ). Given that SPSS 17-20 also 
does not include MI diagnostics (parameter estimate plots and autocorrelation plots; 
see Chaps.   3     and   7    ), there is no way of knowing whether the MI solution is an 
acceptable one. This is an omission that will make it dif fi cult to publish results from 
imputation with SPSS 17-20. 

 Because of these omissions and because this version of the MI procedure is very 
slow (roughly 12 times slower than Norm 2.03), I cannot recommend this procedure 
as one’s main multiple imputation program. However, provided that the problem 
(i.e., the number of variables) is small (e.g., no more than about 20), this version of 
the MI procedure should be good for preliminary analyses, provided the number of 
imputations is high enough (e.g., at least 20), and the number of iterations of MCMC 
between imputations is also high enough (e.g., at least 30; see Step 7, below). 

   EM Algorithm with the MVA Procedure 

 One valuable use of the EM algorithm output is simply to see the EM estimates of 
means, variances, and correlations in the missing data case. Although EM analysis 
is missing from the Multiple Imputation procedure in SPSS 17-20, it is available in 
the MVA procedure. To run this analysis, click on “Analyze” and “Missing Value 

   Table 5.1    Ten most common patterns of missing 
and nonmissing values   
 Count  Percent 

 443   1 1 1 0 1 1 1  16.1% 
 429   1 0 0 1 1 0 1  15.6% 
 381   1 1 1 1 1 1 1  13.8% 
 283   1 0 0 1 1 0 0  10.3% 
 273   1 1 1 0 1 1 0   9.9% 
 232   1 1 1 1 1 1 0   8.4% 
  99   0 0 0 0 1 1 1   3.6% 
  72   1 0 0 1 0 0 1   2.6% 
  70   1 1 1 1 0 0 1   2.5% 
  67   0 0 0 0 1 0 1   2.4% 

   Note : 1 = non-missing; 0 = missing. Variable order: 
s1-s11, alc7, riskreb71, likepar71, posatt71, alc8, 
riskreb82, alc9  

http://dx.doi.org/10.1007/978-1-4614-4018-5_3
http://dx.doi.org/10.1007/978-1-4614-4018-5_4
http://dx.doi.org/10.1007/978-1-4614-4018-5_7
http://dx.doi.org/10.1007/978-1-4614-4018-5_3
http://dx.doi.org/10.1007/978-1-4614-4018-5_7
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Analysis”. Select the same variables as quantitative variables. Check the box for 
“EM” and click on the EM button. Select “Normal” under Distribution and select 
some large number of iterations (e.g., 200) under Maximum Iterations. Do not check 
the box for “Save completed data” (see next section). The results of this analysis 
give you the EM estimates you seek. These are excellent parameter estimates for 
means, standard deviations, and correlations if you need to report these values in 
your article.   

   Running SPSS 17-20 MI (Step 6): Impute from (EM) Parameters 

 This option is missing from the Multiple Imputation procedure in SPSS 17-20. This 
is a big omission. Please see Chaps.   3    ,   4    , and   7     for examples of analyses that follow 
from imputing a single data set from EM parameters (plus error). It is important to 
understand that the MVA (Missing Value Analysis) routine in SPSS 17-20 is not a 
solution in this regard. It is possible to write out a single imputed data set based on 
EM parameters, but this data set is known to be  fl awed in that the imputed values are 
written without adding a random error term. Thus, any variable with imputed values 
has variances that are too small (von Hippel  2004 ; Graham  2009  ) .  

   Running SPSS 17-20 MI (Step 7): MCMC (and Imputation) 

 Click on “Analysis”, on “Multiple Imputation”, and on “Impute Missing Data 
Values”. Click on the “Variables” tab and select variables in the usual way. 

  Sample Data  � . For this example, select the following variables for inclusion: 
alc7, riskreb71, likepar71, posatt71, alc8, riskreb81, alc9. 

   (Number of) Imputations 

 Early MI theorists often suggested that analysis of multiple-imputed data sets could 
be adequately ef fi cient with just 3–5 imputations. More recent work, however, has 
suggested that many more imputations are required, especially with small effect 
sizes, and when the fraction of missing information (FMI) is 20 % or higher. For 
example, Graham et al.  (  2007  )  showed that with FMI = 50 %, 40 imputations were 
needed to guarantee that the falloff in statistical power (compared to the equivalent 
FIML procedure) was less than 1 %. For this reason, I recommend that one consider 
using 40 imputations routinely. 

 Unfortunately, because the SPSS 17-20 MI procedure is so slow (approximately 
12 times slower than Norm), asking for 40 imputations, especially with larger prob-
lems, will be daunting. 

http://dx.doi.org/10.1007/978-1-4614-4018-5_3
http://dx.doi.org/10.1007/978-1-4614-4018-5_4
http://dx.doi.org/10.1007/978-1-4614-4018-5_7
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  Sample Data  � . Using the recommended settings of 40 imputations, 50 iterations 
of MCMC between imputed data sets (see below), SPSS 19 took 1 min 35 s to 
perform the 40 imputations. By comparison, Norm 2.03 took 8 s to perform 40 
imputations. Norm was 95/8 = 11.9 times faster. 

 However, if you accept my recommendation that this procedure be used only for 
preliminary analyses, then it may sometimes be acceptable to run the MI procedure 
with many fewer imputations (e.g., 10 or 20), just to get a sense of the signi fi cance 
levels.  

   Imputation Method 

 Next click on the “Method” tab. Normally, I would recommend checking “Custom”, 
and checking “Fully conditional speci fi cation (MCMC)”. Unfortunately, there is no 
way of knowing, based on SPSS alone, what value should be entered for “Maximum 
Iterations”. I know from running Norm 2.03 that this value should be set at 42 (but 
I used 50 to be conservative), but there is no way to know this with SPSS alone. And 
because there are no diagnostics with SPSS 17-20, there is no way of knowing 
whether this value is adequate. 

 Nevertheless, if you follow my suggestion to use this procedure only for quick 
and dirty (i.e., preliminary) analyses, then what this value is will be less important, 
it may even be acceptable simply to select the “Automatic” option. Leave the 
“Include two-way interactions …” option unchecked. 

  Sample Data  � . Under the “Variables” tab, select “5” Imputations. Under “Create 
a new data set”, enter something descriptive, such as “Impute5”. Under the 
“Methods” tab, select “Custom”, and “Fully conditional speci fi cation (MCMC)”. 
   Enter 20 for “Maximum Iterations”. Click on the “OK” button to start 
imputations. 

 Remember that each time this analysis is run, a different set of randomly 
determined imputed values are used. So results will vary slightly from one set of 
imputations to the next. If the number of imputations is large (e.g.,  m  = 40), the 
differences from one set to the next will be small. However, with a smaller num-
ber of imputations (e.g.,  m  = 5), the differences from one set of imputations to the 
next could be considerable.   

   Running SPSS 17-20 MI (Step 8): MCMC Diagnostics 

 This step is missing from SPSS 17-20. Please see Step 8 in Chap.   3     or   7     to get a 
sense of the value of these diagnostics.   

http://dx.doi.org/10.1007/978-1-4614-4018-5_3
http://dx.doi.org/10.1007/978-1-4614-4018-5_7
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   Analysis of Multiple Data Sets Imputed with SPSS 17-20 

   Split File 

 This is where SPSS 17-20 really shines. One preliminary step is required for these 
analyses. Click on “Data” and on “Split File”. Click on the middle option, “Compare 
Groups”, and move the special SPSS variable “imputation_” from the left box to the 
right box. Click on OK. Your data set is now ready.  

   Multiple Linear Regression in SPSS with Multiple 
Imputed Data Sets 

 After you have recoded or computed variables as needed, the data set is ready for 
the multiple regression analysis. Click on Analyze, Regression, and Linear. 

  Sample Data  � . Find the variable Alc9 on the left and transfer it into the box 
labeled “Dependent”. Find Alc7, Riskreb71, Likepar72, and Posatt72 on the left 
and transfer them into the box labeled “Independent(s)”. Note that after multiple 
imputation, all variables are conditioned on variables included in the imputation 
(including alc8 and riskreb81). The nice thing about this is that one need include 
only the variables of interest in the analysis model. 

 Click on “continue” and on “OK” to start the multiple regression analysis. 

   Scan the Output 

 In the output window, you should see evidence that SPSS did, indeed, run the regres-
sion analysis  m  = 5 times (of course, this number will depend on how many imputed 
data sets you actually have). It is important not to look too carefully at the analyses 
from the individual analyses. Most of the reasons people do so comes from what 
I sometimes refer to as “old” thinking. Remember, the imputed value does not rep-
resent what the subject would have said had the data actually been collected. Rather, 
the multiple imputed values are designed to preserve important characteristics of the 
data set as a whole, that is, to yield unbiased estimates of each parameter, and to 
allow us to assess the variability around that estimate. The variability you see in the 
 m  regression solutions is another part of this preserving important characteristic of 
the data set as a whole.  
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   MI Inference Output 

 The MI inference information – the information you will include in your article – is 
found in the bottom row (labeled “Pooled”) of the “Coef fi cients” output table. 

  Sample Data  � . Table  5.2  displays the key results for this analysis. Remember 
that your results may look rather different from those shown in Table  5.2 .  

 Relevant information in this output (what might go in a table in your article) is: 
Parameter name, unstandardized regression coef fi cient (B), Standard Error,  t -value, 
and  p -value (Sig). Also relevant for multiple imputation is the  fi rst column to the 
right of the  p -value: the estimate of the fraction of missing information (FMI). 
Remember that the FMI values are only estimates, and these estimates are rather 
unstable until one has 40 or more imputations. Still, the fact that the FMI estimate 
for three of the four regression coef fi cients are above .60, which means that more 
imputations (possibly 50 or more) are needed for key hypothesis tests when effect 
sizes are small. 

 An important omission in the SPSS 17-20 output for MI inference is the MI 
estimate of degrees of freedom (DF). Although the  p -value shown in the output is 
correct for the correct DF, it would be better to able to see it.   

   Binary Logistic Regression in SPSS with Multiple 
Imputed Data Sets 

 A major improvement in SPSS 17-20 is the ability to automate analysis with proce-
dures other than linear regression. Many other procedures allow MI inference pool-
ing, including Independent-Samples T Test, One-Way ANOVA, GLM Univariate, 
GLM Multivariate, and GLM Repeated, Linear Mixed Models, Generalized Linear 
Models and Generalized Estimating Equations, Binary Logistic Regression, 
Multinomial Logistic Regression, and Ordinal Regression. For illustration, I present 
brie fl y here an example with binary logistic regression. In the next chapter, I present 
an example with Linear Mixed Models. 

   Table 5.2    MI inference for linear regression   

 B  SE  t  p  FMI 

 Pooled  Constant  2.951  0.369  8.00  0.000  0.770 
 alc7  0.623  0.026  23.91  0.000  0.417 
 riskreb71  0.187  0.112  1.68  0.146  0.869 
 likepar71  −0.257  0.080  −3.22  0.009  0.684 
 posatt71  0.034  0.119  0.28  0.788  0.910 
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  Sample Data  � . Using the same data already imputed in the previous example, 
 create a dichotomous version of the dependent variable, Alc9, using syntax such 
as this 1 : 

 DATASET ACTIVATE Impute5. 
 RECODE alc9 (MISSING=SYSMIS) (Lowest thru 2.5=0) 
         (2.500000001 thru Highest=1) INTO xalc9. 
 EXECUTE. 

 Click on “Analyze”, “Regression”, and “Binary Logistic”. 2  Choose the newly 
created binary variable, Xalc9, as the dependent variable. Choose Alc7, riskreb71, 
likepar71, posatt71 as Covariates. Click on OK to run the analysis. 

  Sample Data  � . The key output appears in Table  5.3 . Shown in the table is a copy 
of the last row of the SPSS output for the “Variables in the Equation” table.  

 The relevant information for your article appears in Table  5.3 . As with multiple 
regression analysis, the MI DF is omitted from the SPSS output. Also omitted from 
the SPSS output for logistic regression is the  t -value on which the signi fi cance level 
is based. The  t -value is easily calculated simply by dividing each parameter estimate 
(B) by its standard error.   

   SPSS 17-20 Analysis of Norm-Imputed Data: Analysis 
with the Single Data Imputed from EM Parameters 

 In this section, I describe the use of the MIAutomate utility for importing Norm-
imputed data into SPSS, and then proceed to examining reliability of the scales with 
coef fi cient alpha, and exploratory factor analysis. Chapter   3     details the use of Norm 

   Table 5.3    MI inference for binary logistic regression   

 B  SE  t*  df*  p  Exp(B)  FMI 

 Pooled  alc7  0.6752  0.0553  (12.21)  (26)  0.000  1.964  0.430 
 riskreb71  0.1375  0.1297  (1.06)  (6)  0.325  1.147  0.813 
 likepar71  −0.2063  0.0974  (−2.12)  (12)  0.055  0.814  0.630 
 posatt71  −0.0131  0.0748  (−0.18)  (18)  0.863  0.987  0.519 
 Constant  0.1166  0.4860  (0.24)  (7)  0.816  1.124  0.765 

   Note : * t -values and MI df, shown in parentheses, were not given in the SPSS output. However, the 
signi fi cance level ( p ) is based on these quantities.  t -values shown above in parentheses were calcu-
lated ( t  = B/SE).  df  values, also shown in parentheses, were calculated from the results of the  fi ve 
imputations using Norm 2.03  

   1   Please note that I am suggesting creating a dichotomous variable (xalc9) from the previously 
“continuous” variable, alc9. I suggest that here merely to illustrate the use of the logistic regression 
analysis with MI. For a variety of reasons, it is generally not acceptable simply to dichotomize 
continuous variables for this purpose, especially when the continuous variable has been imputed.  
   2   I do not consider myself to be an expert with binary logistic regression. This example is meant to 
be a simple example of using this procedure with multiply-imputed data sets.  

http://dx.doi.org/10.1007/978-1-4614-4018-5_3
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2.03 for multiple imputation. Chapter   4     details the use of Norm-imputed data for 
analysis with earlier versions of SPSS. The strategies described in Chap.   4     may also 
be used, virtually unchanged, with SPSS 17-20, except that the utility as described 
here takes advantage of the new analysis combining features in SPSS 17-20. 

   Before Running MIAutomate Utility 

 Rather than jump right into use of the automation utility, I want to walk you through 
the process of reading raw (text) data into SPSS. There are two reasons for this. 
First, I think it is valuable to understand at a conceptual level what is happening 
when you read data into SPSS. Second, I want you to appreciate that the process, 
which is conceptually very straightforward, is often a pain in the neck. That is, 
I want you appreciate what the automation utilities are doing for you. On the other 
hand, after seeing what is involved, some readers may simply bypass use of the 
automation utilities, especially for this  fi rst kind of analysis. 

 At a conceptual level, making use of the single data set imputed from EM could 
not be easier. This is, after all, a data set with no missing data. Unfortunately, most 
users do not routinely read “raw” (ascii text) data into SPSS. So the simple act of 
reading data into SPSS itself can often prove to be a challenge. 

 For this chapter, I used SPSS 19, but the process is the same for SPSS 17-20, and, 
from what I can remember, the procedure for reading in raw data has not changed 
appreciably as far back as SPSS 11, and possibly further. So start SPSS. Click on 
File and on Read Text Data (fourth thing down on the File menu). Locate the recently 
created ***_0.imp  fi le. 

 When you get to the right folder, remember that the  fi le name ends with “.imp” 
and not “.txt” or “.dat”, which are the defaults for SPSS 19. So either enter “*.imp” 
under File name, or click on Files of type, and choose “All Files”. Click on the  fi le 
you recently created. 

  Sample Data  � . In Chap.   3    , the single data set imputed from EM parameters was 
named, “ex3_0.imp”, so for starters, look for that  fi le. 

 The Text Import Wizard will walk you through the process of importing your 
data set. For this  fi rst example, it could not be easier; just accept all the defaults. The 
result is that you will have an SPSS data set with  k  = 20 variables and  N  = 2,756 
cases. The only problem is that the variables are named “V1” to “V20”. If you are 
very familiar with your data set, this may be good enough. But it would be a lot bet-
ter if you had the variable names at the top of your data  fi le. 

 Conceptually, it is an easy matter to add the variable names to the SPSS  fi le. But 
in practical terms, this simple task can also be a pain in the neck. One option is 
simply to switch to the Variable View of the data set and enter the variable names 
manually. This will certainly be acceptable for smallish data sets. But it is annoying 
to have to go through this process again if you decide to change something about the 
data set and redo the imputation. Entering the variable names manually also becomes 

http://dx.doi.org/10.1007/978-1-4614-4018-5_4
http://dx.doi.org/10.1007/978-1-4614-4018-5_4
http://dx.doi.org/10.1007/978-1-4614-4018-5_3
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more dif fi cult as the number of variables increases. And with added dif fi culty come 
mistakes. One of the values of the automation utility, to be sure, is to make the pro-
cess easier, but the more important value of the automation is that it cuts down on 
errors. 

 The second option for adding the variables to the SPSS  fi le is to add them to the 
top of the input data before reading the data into SPSS. But how do you do that? The 
best way to do that is with an ascii editor, such as the Notepad utility that is part of 
the Windows program. One drawback with Notepad is that it sometimes cannot 
handle the largest data sets. The bigger problem, however, is that within the Notepad 
window, you can have only one  fi le open at a time. So you cannot read in the data 
set (ex3_0.imp) in one window and the variable names  fi le (ex3.nam) in another. 
You can, on the other hand, open two Notepad windows: read ex3_0.imp into one 
and read ex3.nam into the other. 

 Note that using programs such as Word is not a good idea for this task. The main 
function of Notepad and other ascii editors is to handle ascii data sets. Programs 
such as Word do a poor job with this. Having a full-featured ascii text editor (I par-
ticularly like UltraEdit; see   http://www.ultraedit.com    ) makes this process even eas-
ier, but some problems still remain (see below). 

 Regardless of how you do this, you must change the variable names from a single 
column, to be a single row, with the variable names  separated with exactly one 
space  (double spaces sometimes create problems for SPSS). If you do go this route, 
the process is almost as easy for reading this new data set into SPSS with the vari-
able names as the  fi rst row of data. At the second screen of the Text Import Wizard, 
answer “yes” when asked if the variable names are included at the top of your  fi le, 
and accept all of the defaults after that. 

 Regardless of how you handle all this, it still requires some work on your part. 
More importantly, errors remain a possible problem. So consider using the automa-
tion utility.  

   What the MIAutomate Utility Does 

 The automation utility takes care of all the steps I just described. It adds the names 
 fi le in the appropriate way to the top of the  fi le containing the data. It then generates 
the SPSS code needed for importing this data set into SPSS. Your task, then, after 
running the utility, is reduced to this running an SPSS syntax  fi le generated by the 
MIAutomate utility.  

   Files Expected to Make the MIAutomate Utility Work 

 The  fi les listed below are expected to be in a single folder. I am giving the  fi le names 
for the empirical example I am using throughout this chapter. Of course, the data set 
names will be different when you analyze your own data.  

http://www.ultraedit.com
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 ex3.dat  The original data  fi le with missing values 
 ex3.nam  The variable names  fi le. It is not absolutely necessary to have this  fi le, 

but I strongly encourage you to create one for the imputation process 
 ex3_0.imp  The single data set imputed from EM parameters (description of generating 

this  fi le appears in Chap.   3    ) 

   Running the Automation Utility 

 Locate MIAutomate.exe and start it in the usual way (e.g., by double-clicking on its 
icon). A picture of the window is shown in Fig.  5.2 .  

 Click on the Browse button for “Input Dataset”. Locate the folder containing the 
data and imputed  fi les, and locate “ex3.dat”. 

 Click the check-box for “Variable names  fi le Available?” 
 For “No. of Imputations” enter “1”. 
 Click on the “Select First File” button, and select “ex3_0.imp”. 
 Finally, click on “Run”  

  Fig. 5.2    MIAutomate (automation utility) window translating NORM-imputed data into SPSS-
read format: reading the single data set imputed from EM parameters       

 

http://dx.doi.org/10.1007/978-1-4614-4018-5_3
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   Products of the Automation Utility 

 After clicking on “Run”, the automation utility completes its work by writing out 
three  fi les:  

 ex3all.imp  In this case, this  fi le is the same as “ex3_0.imp” except that the variable 
names are at the top of the  fi le (and the new variable, “imputation_” is 
added as the  fi rst variable) 

 spss1.sps  This is the SPSS syntax  fi le you will use to read the raw data into SPSS 17-20  
 spss2.sps  This  fi le is generated, but is not used with SPSS 17-20 (with MI module 

installed) 

   Analysis with the Single Data Set Imputed from EM Parameters 

 The main thing to know about these analyses is that they will be performed and 
interpreted the same as you would perform and interpret them if you happened to 
have a data set with no missing data. The conclusions you draw are valid, and you 
should feel comfortable publishing results from these analyses. The one caveat is 
that you should make it clear that the results of these analyses were based on a 
 single data set imputed from EM parameters (with error). 

 The single data set imputed from EM parameters is completely appropriate for 
addressing research questions for which hypothesis testing is not typically used (e.g., 
coef fi cient alpha analysis or exploratory factor analysis). This data set is not, however, 
appropriate for performing analyses for which hypothesis testing is  common. For 
example, multiple regression analysis should NOT be performed with this data set. 

 I do have one caveat about using this data set for multiple regression analysis. 
Although it is best to perform hypothesis tests (standard errors,  t -values,  p -values) 
using multiple imputation, analysis of this single data set is very good for estimating 
standardized regression coef fi cients and R 2  values (which are commonly reported 
without signi fi cance levels). 3    

   SPSS 17-20 Analysis of Norm-Imputed Data: Analysis 
of Multiple Data Sets Imputed with Norm 2.03 

 Before describing the automation utility for multiple imputation, it is important to 
be clear about the process of doing data analysis with any program following mul-
tiple imputation. As I pointed out in Chap.   2    , the three-step process is (a) impute, (b) 
analyze, and (c) combine the results. I have already covered the imputation part in 

   3   Note that although the meaning of the R 2  is the same in this context as it is for complete cases 
analysis (i.e., percent of variance accounted for), you should not use complete cases procedures for 
testing the signi fi cance of this R 2  or R 2 -related quantities (e.g., R 2 -improvement).  

http://dx.doi.org/10.1007/978-1-4614-4018-5_2
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Chap.   3    . In the analysis phase of the MI process, you simply perform the analysis 
just as you would if you had no missing data. For example, if the analysis of choice 
is SPSS regression, you would read the  fi rst imputed data set into SPSS, and per-
form the regression analysis in the usual way. Then read the second imputed data set 
and perform the analysis on that, and so on. 

 The only problem is that, rather than using the results of these analyses for writ-
ing your article, you must save those results in a convenient form, so that the third 
step in the process (combining the results) can be done ef fi ciently. For example, sup-
pose you    want to do multiple linear regression with a group of adolescents, and you 
want to determine the extent to which the three seventh grade variables, rebellious-
ness ( Rebel7 ), beliefs about the positive consequences of alcohol use ( Posatt7 ), and 
relationship with parents ( Likepar7 ), predict ninth grade alcohol use ( Alc9 ), control-
ling for seventh grade alcohol use ( Alc7 ). A simpli fi ed picture of the model appears 
in Fig.  5.3 . We could read into SPSS the data from the  fi rst imputed data set.  

  Sample Data  � . Read into SPSS the data from the  fi rst imputed data set generated 
in Chap.   3     (i.e., from ex3_1.imp). For simplicity, for this analysis, use just one of 
the items from each scale to represent each of the scales. Use Alc9 as the depen-
dent variable, and Alc7, Rebel71, Likepar72, and Posatt72 as predictors. 

 Such an analysis would have  fi ve parameter estimates: an intercept and a regres-
sion coef fi cient for each of the predictors. Further, a standard error would be associ-
ated with each of the  fi ve coef fi cients. These quantities can be organized as shown 
in the  fi rst two rows of Table  5.4 . Now, if we read in the data from the second 
imputed data set (ex3_2.imp), and conduct the same regression analysis, we see the 
regression coef fi cients and standard errors in the last two rows of Table  5.4 . This 
process would be repeated over and over again, each time saving the regression 
coef fi cients and their standard errors.  

 At the conclusion of this process, we would perform the combining operation, 
using Rubin’s rules, as described in Chap.   2    . As outlined in Chap.   2    , the regression 
coef fi cient (e.g., for the effect of Likepar7 on Alc9) would be the simple mean of 
that b-weight over the results from the  m  imputed data sets. Also as described in 
Chap.   2    , the standard error for each parameter estimate is made up of the within-
imputation variance and the between-imputation variance. The within-imputation 
variance, the normal kind of sampling variability, is the average of the squared 

Alc7

Likepar7

Posatt7

Rebel7

Alc9

  Fig. 5.3    Example regression model for SPSS regression       

 

http://dx.doi.org/10.1007/978-1-4614-4018-5_3
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standard error over the  m  imputed data sets. The between-imputation variance, that 
is, the variance due to missing data, is the sample variance for the b-weight over the 
 m  imputed data set. The standard error is the square root of (weighted) sum of these 
two variances.  

   Automation of SPSS Regression Analysis 
with Multiple Imputed Data Sets 

 It should be easy to see that going through this process “by hand,” even with just a 
few imputed data sets, would be tedious and error prone. With the number of 
imputed data sets I recommend ( m  = 40 imputed data sets would be typical; see 
Graham et al.  2007  ) , the work involved, and especially the high probability of errors, 
would render multiple imputation infeasible. 

 The automation utility for SPSS Regression accomplishes the same tasks as 
described above, except that the automation takes care of the tedium, and eliminates 
the mistakes that are made when doing these analyses by hand. The steps for per-
forming multiple linear regression in SPSS are virtually the same as the steps out-
lined above, with some obvious exceptions that relate to the regression analysis 
itself. 

   Running the Automation Utility 

 Locate MIAutomate.exe and start the utility. A picture of the window for MI is 
shown in Fig.  5.4 .  

 Click on the Browse button for “Input Dataset”. Locate the folder containing the 
data and imputed  fi les, and locate “ex3.dat”. 

 Click the check-box for “Variable names  fi le Available?” 
 For “No. of Imputations” enter “40”. 
 Click on the “Select First File” button and select “ex3_1.imp”. 
 Finally, click on “Run”  

   Table 5.4    Parameter estimates and standard errors for imputations 1 and 2   

 Parameter 

 Imputation  Quantity  Intercept  Alc7  Likepar7  Posatt7  Rebel7 

 1   b   2.847  .571  −.215  .242  .102 
 1   SE   .166  .021  .035  .047  .046 
 2   b   2.819  .605  −.182  .030  .153 
 2   SE   .170  .022  .035  .049  .045 
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   Products of the Automation Utility 

 After clicking on “Run”, the automation utility completes its work by writing out 
three  fi les:  

 ex3all.imp  In this case, this  fi le contains all 40 imputed data sets, stacked together. A new 
variable, “imputation_”, has been added as the  fi rst variable. It takes on the 
value of 1, 2, 3, …, 10, …, 40, and indicates which of the 40 imputed data 
sets is which. This data set also has the variable names (including the new 
“imputation_” variable), added at the top of the data set    

 spss1.sps  This is the SPSS syntax  fi le you will use to read the raw data into SPSS. This 
version of the syntax  fi le also sorts the data by the new variable “imputa-
tion_”, and performs the “split  fi le” operation. This operation allows any 
analysis done (e.g., multiple regression) to be done automatically on each 
of the  m  = 40 imputed data sets separately, producing  m  separate sets of 
output 

 spss2.sps  This  fi le is generated by the MIAutomate utility, but is not used when using 
SPSS 17-20 with the MI module installed 

 When the automation process is complete, you are asked, “Do you wish to start 
SPSS now with this syntax  fi le?” Answering this question with “Yes” automati-
cally starts SPSS 17-20 and automatically loads the newly created syntax  fi le, 
“spss1.sps”.  

  Fig. 5.4    MIAutomate (automation utility) window translating NORM-imputed data into SPSS-
read format: reading multiple imputed data sets       
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   Setting Up Norm-Imputed Data for Analysis with SPSS 17-20 

 Within the syntax window, click on “Run” and “All”. It occasionally happens that 
the SPSS window does not open automatically. In that case, start SPSS manually. 
When it opens, click on “File”, “Open”, and “Syntax”, and locate the recently cre-
ated syntax  fi le, SPSS1.SPS. When that window opens, click on “Run” and “All” to 
proceed.  

   Multiple Linear Regression in SPSS with Norm-Imputed Data Sets 

 This process is exactly as described above under the heading,  Multiple Linear 
Regression in SPSS with Multiple Imputed Data Sets . Run the regression analysis 
however you like. The key results will be the last part of the output, with the row 
heading “Pooled”.  

   Binary Logistic Regression in SPSS with Norm-Imputed Data Sets 

 This process is also exactly as described above under the heading,  Binary Logistic 
Regression in SPSS with Multiple Imputed Data Sets .  

   Other Analyses in SPSS with Norm-Imputed Data Sets 

 I do not describe other analysis procedures in detail here (except that linear mixed 
modeling will be described in Chap.   6    ). SPSS documentation indicates that the fol-
lowing procedures allow MI inference pooling: Independent-Samples T Test, One-
Way ANOVA, GLM Univariate, GLM Multivariate, and GLM Repeated, Linear 
Mixed Models, Generalized Linear Models and Generalized Estimating Equations, 
Binary Logistic Regression, Multiple Linear Regression, Multinomial Logistic 
Regression, and Ordinal Regression. 

 Although these procedures are not described here, they follow same basic pattern 
described for multiple linear regression and binary logistic regression. Rubin’s rules 
(Rubin  1987  )  for combining results of analysis of multiple-imputed data sets require 
that there be a parameter estimate and a standard error from the complete-cases 
analysis of each data set. These quantities are then combined, as described in 
Chap.   2    . In SPSS 17-20, the key output based on this combining, is presented at the 
bottom of one of the output matrices, and has the row label “Pooled”. Not all quanti-
ties can be pooled in this way, but it is generally possible to work out a good method 
for obtaining all necessary quantities.       

http://dx.doi.org/10.1007/978-1-4614-4018-5_6
http://dx.doi.org/10.1007/978-1-4614-4018-5_2
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 In this chapter, I provide a little theory about multilevel data analysis and some 
basic imputation strategies that match up with the desired analysis. I then describe 
the automation utility for performing multilevel (mixed model) analysis with SPSS 
15/16 and SPSS 17-20 based on Norm-imputed data. Finally, I describe the automa-
tion utility for using HLM 6/7 with Norm-imputed data. 

 When I say “multilevel” data, I mean “cluster” data. That is, I am thinking of 
situations in which data are collected from many individuals (e.g., students) within 
naturally occurring clusters (e.g., schools; see Raudenbush and Bryk  2002  ) . 
Although many people like to use the term “multilevel” analysis to refer to the situ-
ation in which data are collected from a single individual at many points in time, 
I would prefer to think of that kind of analysis as “growth modeling,” or more 
 generally, modeling change over time. This chapter has nothing to do with growth 
modeling but everything to do with analysis of cluster data. 

 Throughout this chapter, I will make use of the example of students within 12 
schools. The empirical example I will use throughout will come from the Adolescent 
Alcohol Prevention Trial (AAPT; Hansen and Graham  1991  ) , in which students 
were pretested, and received an intervention as seventh graders, and were then given 
follow-up measures in eighth and ninth grades. In this chapter, I will also deal 
mainly with 2-level data (e.g., students within schools). The procedures described 
do generalize, to an extent, to multilevel models with three or more levels (e.g., 
students within classrooms within schools). I will spend a little time at the end of the 
chapter discussing special issues relating to missing data imputation in multilevel 
data situations. 

 One last caveat – I am writing this chapter in the hopes that people will be able 
to perform appropriate imputation analyses with multilevel data. This chapter is not 
designed to provide instruction or any new insights about multilevel analysis per se, 
except as it relates to multiple imputation. In brief, I write this chapter with the 
assumption that the reader already has multilevel data and already knows how to 
perform the appropriate multilevel analysis when there are no missing data. I assume 
that you are already familiar with the few equations I present. I will try to stay at 
least close to the typical notation for this kind of model. 

    Chapter 6   
 Multiple Imputation and Analysis 
with Multilevel (Cluster) Data         
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   Imputation for Multilevel Data Analysis 

 Multilevel analysis is often presented as analysis at two levels: (1) between 
 individuals (level-1 units) within each cluster, and (2) between clusters (level-2 
units). I begin with a simple model of a pretest score (e.g., alcohol use at seventh 
grade; Alc7) predicting a posttest score (e.g., alcohol use at ninth grade; Alc9) 
within each school.

     
= + +Alc9  Alc7 ej j j j j0 1b b

   (6.1)   

 In ( 6.1 ), the subscript,  j , refers to the school. In this case, this equation is repeated 
12 times, once for each school. 

 The level-2 equations, then, look something like this:

     γ γ ε= + +0 1 0 Program 0b    (6.2)  

     γ γ ε= + +0 1 1Program 1b    (6.3)   

 The variable “Program”, in ( 6.2 ) and ( 6.3 ) is de fi ned at level 2 (it is a constant for 
everyone within each school). In this case, six schools were randomly assigned to 
receive the intervention program, and six other schools were randomly assigned 
to serve as controls (no program). 

 The idea is that the dependent variables,  b  
 0 
  in ( 6.2 ) and  b  

 1 
  in ( 6.3 ) are allowed to 

vary across schools. That is, they are  random effects . In many instances, researchers 
are interested in a  random intercepts  model. In these models, the intercepts (the  b  

 0 
  

in  6.2 ) are allowed to vary across schools, but the slopes (the  b  
 1 
  in  6.3 ) are   fi xed 

effects , that is, they are (assumed to be) the same across schools. Random intercepts 
models are very common in program evaluation research, where the researcher sim-
ply wants to account for the effect of the intraclass correlation (ICC) on the estimate 
of the standard error of the estimate. 

 On the other hand, researchers might be interested in a random intercepts and 
random slopes model, in which case both the  b  

 0 
  and  b  

 1 
  are allowed to vary across 

schools. The imputation model you use should match up with the analysis model of 
choice. As with any imputation model, it is always important that the imputation 
model be at least as complex as the analysis model. In this case, if your analysis of 
choice is a single-level analysis (ignoring the multilevel structure), then the imputa-
tion model may also ignore the multilevel structure. If you are correct that the mul-
tilevel structure is not important in your analysis, using an imputation model that 
takes the multilevel structure into account will not hurt you (however, see the caveat 
described below in section “ Problems with the dummy-coding strategy ”). 

 However, the reverse is not true. If your analysis of choice is a random intercepts 
model, then imputing without taking multilevel structure into account will bias 
your results. As explained previously (see Chap.   2    ), if a variable is omitted from the 

http://dx.doi.org/10.1007/978-1-4614-4018-5_2
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imputation model, the all imputations are produced under the model that the cor-
relation is  r  = 0 between that variable and all variables that are in the imputation 
model. In this instance, not taking the multilevel structure into account during 
imputation means that you are imputing under the model that the means (and vari-
ances and covariances) are all equal across clusters. This means that the imputation 
will tend to suppress differences in these quantities toward 0 across clusters. Given 
that you were interested in a random intercepts model, it may well be the case that 
variances and covariances are reasonably equal across clusters, so this will not be a 
problem. But if you were interested in a random intercepts model, it is because you 
believe that the means do vary across clusters, and the suppression of mean differ-
ences across clusters will bias your results to the extent that the cluster means really 
are different. 

   Taking Cluster Structure into Account (Random 
Intercepts Models) 

 I have written previously that cluster data can reasonably be imputed using dummy 
variables to represent the cluster membership. That is, represent the  p  clusters with 
 p −1 dummy variables as shown in Table  6.1 . Ignoring the cluster membership 
 during imputation forces the means toward the grand mean during imputation, 
thereby suppressing the ICC. In theory, the presence of the dummy variables in the 
imputation model allows the cluster means to be different during imputation, thereby 
allowing the ICC to be estimated properly.  

   Program Variable in Group Randomized Trials 

 In group randomized intervention trials, whole groups or clusters (e.g., schools) are 
assigned to treatment conditions (e.g., treatment and control; see Murray  1998  ) . If 
such a variable exists, it is important that it be omitted from any imputation model 
that includes the cluster membership dummy variables described above. The 
 information contained in such a program variable is completely redundant with the 
dummy variables. However, one de fi nitely wants the program variable for analyses. 
The most convenient strategy is to omit the program variable from the imputation 
model, but to include it in the imputed data sets.  

   Table 6.1    Dummy variables for representing school membership   

 School  S1  S2  S3  S4  S5 

 1  1  0  0  0  0 
 2  0  1  0  0  0 
 3  0  0  1  0  0 
 4  0  0  0  1  0 
 5  0  0  0  0  1 
 6  0  0  0  0  0 
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   Problems with the Dummy-Coding Strategy 

 Very recent work by Andridge  (  2011  )  has shown that this dummy-coding strategy 
overcompensates for school structure. Andridge showed that ignoring the cluster 
structure during imputation does, indeed, produce an arti fi cially low ICC, but she 
also showed that including cluster membership dummy variables in the normal 
model MI analysis produces an arti fi cially high ICC. The explanation for this latter 
effect is that including the dummy variable represents a  fi xed effect for cluster in the 
multilevel imputation model. However, in the corresponding multilevel analysis 
model, the effect for cluster is a  random  effect. In short, including the dummy vari-
ables in the normal model MI analysis has the effect of increasing the between-
cluster variance, thereby producing an in fl ated ICC. 

 Andridge  (  2011  )  found that the biasing effects of the dummy variable strategy 
increases as the ICC gets small. The bias also increases as the cluster size gets small. 
It is dif fi cult to know exactly what the biasing effects there will be on the ICC of 
ignoring cluster membership or using the dummy code strategy in any particular 
empirical study. In one empirical study, Andridge showed that without covariates 
(the “unconditional” model), using the dummy-coding strategy produced ICC esti-
mates that were 55 %, 78 %, and 26 % too high for three measures whose true ICCs 
were .032, .016, and .038, respectively. The true ICC was calculated using PAN 
(Schafer  2001 ; Schafer and Yucel  2002  ) , an MI method that allows a random inter-
cept for cluster membership. With covariates in the model, she showed that the 
dummy code strategy produced ICCs that were 32 %, 80 %, and 37 % too high for 
these same three measures. Andridge also showed that without covariates, ignoring 
cluster membership during imputation produced ICCs that were 63 %, 109 %, and 
50 % too low for these same three measures. For models with covariates, ignoring 
cluster membership during imputation produced ICCs that were 53 %, 89 %, and 
80 % too low for these same three measures. 

 I conducted a small simulation involving one of my data sets from the AAPT 
project, which involves cluster data (students within schools). I imputed data with 
and without the cluster membership dummy variables. When I omitted the dummy 
variables (ignoring school membership) in the imputation model, a model with one 
covariate (seventh grade smoking) and one outcome (eighth grade smoking) 
 produced an ICC (.0027) that was 73 % too small. When I imputed the same data, 
including the dummy variables to represent school, the ICC (.0184) was 82 % too 
large (I judged the true ICC to be .0101 in this case).  

   PAN: Best Solution for Imputing Cluster Data 

 The best solution for imputing cluster data is to use an imputation model that 
matches the multilevel analysis model. That is, one must employ an imputation 
model that, at the very least, allows random effects for cluster membership. PAN 
(Schafer  2001 ; Schafer and Yucel  2002  )  is such a program. PAN is a FORTRAN 
program that must be executed within the R package. Unfortunately, I can give you 
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no guidance for this solution, beyond suggesting (a) that you obtain a copy of the 
PAN program on the Internet (I suggest you begin by entering “pan multiple 
 imputation” – without quotes – in Google), and (b) that you  fi nd an expert in R who 
can help you get started.  

   A Partial Solution for Imputing Cluster Data: A Hybrid Dummy 
Code Strategy 

 A partial solution is possible for performing multiple imputation with cluster data. 
Earlier, I described brie fl y results reported from the Andridge  (  2011  )  study and results 
from the AAPT study. The data from both of these studies show (a) that ignoring 
cluster membership during imputation produces ICCs that are generally too small, 
and (b) that using the dummy code strategy produces ICCs that are too large. My 
solution, then, is simply to combine these two approaches. For example, if you are 
imputing  m  = 40 data sets, you would impute 20 data sets omitting the dummy vari-
ables and 20 data sets including the dummy variables. The results of analyses based 
on this approach will have ICCs that are between the two extremes. My brief simula-
tion work to date suggests that the resulting ICCs will still tend to be somewhat too 
high, but not nearly as high as the ICCs produced using the dummy code approach 
alone. For example, with the AAPT data I described above, the true ICC was judged 
to be .0101. The dummy code strategy produced ICC = .0184 (82 % too high), and 
ignoring school membership produced ICC = .0027 (73 % too small). My hybrid 
dummy code strategy, which combined these imputed data sets, produced ICC = .0128, 
which was only 27 % too high. In program effects analyses for cluster-randomized 
trials, this procedure will provide a conservative estimate of program effects.  

   Details for Combining the Imputed Data Sets 

 About the only issue with using this hybrid solution for cluster data relates to how 
one combines the two sets of imputed data sets. In this chapter (see below), I describe 
a strategy for doing this combining with the NORM program. In the next chapter, 
I describe a strategy for implementing this strategy with SAS PROC MI.   

   Limitations of the Random Intercepts, Hybrid Dummy 
Coding, Approach 

 Because each dummy variable is a variable to be analyzed in the imputation model, 
one limitation is that the number of clusters in one’s data set cannot be huge. Given 
my rule of thumb that the number of variables in the imputation should never exceed 
about 100, there are practical limits in the number of clusters that can be represented 
by dummy variables. I have seen imputation models with as many as about 35 
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 cluster-membership dummy variables. A few more than this might also work, pro-
vided that the sample size within clusters as rather large. 

 Cluster size can be a limitation with this approach. The key issue here is that 
small clusters are more likely, by chance alone, to have little or no variance on one 
or more variables. Also, it is more likely with small clusters, that some variable 
might be completely missing within the cluster. These problems can limit how well 
the models work. 

 It is sometimes possible to get around problems caused by small clusters simply 
by combining the problem cluster with another cluster that is similar on important 
dimensions. If this is done, it is critical that the combined clusters belong to the 
same program group. It is also desirable that the clusters have similar means on 
variables critical to the study. This combining of clusters does, indeed, give up some 
information. But if the imputation model does not work with all the information 
intact, then some compromise is required.  

   Normal Model MI for Random Intercepts and Random 
Slopes Models 

 The hybrid dummy code strategy just described works well when a random inter-
cepts model is the analysis of choice. However, when one wishes to test a random 
intercepts and random slopes model, then a different imputation strategy must be 
employed. The strategy in this case is to perform a separate imputation within each 
of the clusters. This strategy preserves (i.e., estimates without bias) the mean, vari-
ances, and covariances within each cluster. In short, this strategy imputes under a 
model that allows each of these quantities to be different across clusters. Thus any 
analysis that speci fi cally examines differences in these quantities across clusters 
produces unbiased estimates.  

   Limitations with the Impute-Within-Individual-Clusters Strategy 

   Cluster Size 

 The biggest limitation of this strategy is the cluster size. Because imputation is done 
within each cluster, the sample size for each cluster is like the sample size for the 
whole study with regular (1-group) imputation. With  N  = 200 per cluster (or in the 
smallest cluster), you may be successful imputing, say,  k  = 40 variables. 1  One bene fi t 

   1   This estimate of  k  = 40 variables is just a ballpark  fi gure. With your data, you may be able to 
impute only  k  = 25 variables. Or you may  fi nd that the imputation model is well behaved with as 
many as  k  = 60 variables.  
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of doing the imputation this way is that the dummy codes for cluster membership 
need not (should not) be included in the model. So  k  = 40 variables in this model can 
be compared against  k  = 60 in a larger model that includes 20 dummy variables for 
cluster membership. 

 Note that when cluster membership is smaller (e.g.,  N  = 50 per cluster), the num-
ber of variables possible will be small. For certain kinds of multilevel models (e.g., 
examination of individual family members within families or individuals within 
couples), the N per cluster is so small as to preclude the use of this approach to 
imputation.  

   Tedium and Error-Proneness 

 Another issue that comes up with this approach to imputation is that the process 
itself is somewhat tedious and error prone. 2  For example, when imputing within, 
say,  p  = 12 different clusters with Norm 2.03, one must have 12 original data sets, 
and, say,  m  = 40 imputed data sets per cluster. That is 408 data sets that must be 
handled. After imputation, the 12 data sets labeled ***_1.imp must all be com-
bined; those labeled ***_2.imp must all be combined, and so on. If you are consid-
ering making use of this approach with Norm 2.03, then some automation will be 
highly desirable.  

   Problems with the ICC 

 The hybrid dummy-coding strategy described above will not work for this type of 
model. Although it seems like a great solution for many problems, imputing within 
clusters does NOT solve the problems of ICCs that are too high. My preliminary 
simulation work suggests that ICCs with this model are comparable to ICCs calcu-
lated with the dummy variables only (not the hybrid strategy). Thus, it would seem 
that this strategy addresses one issue (random slopes), but it fails to address another 
important issue (random intercepts).    

   Multilevel Analysis of Norm-Imputed Data with SPSS/Mixed 

 Chapter   3     details multiple imputation with Norm 2.03. The only addition from what 
was described in Chap.   3     is the use of the hybrid dummy-coding strategy for repre-
senting cluster (e.g., school) membership in the imputation process. During the 

   2   Note that this limitation does not apply to imputing within clusters using Proc MI in SAS (see 
next chapter).  

http://dx.doi.org/10.1007/978-1-4614-4018-5_3
http://dx.doi.org/10.1007/978-1-4614-4018-5_3
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imputation phase (described in detail in Chap.   3    ), impute, say, 20 data sets with the 
dummy variables. Then impute another 20 data sets omitting the dummy variables. 
Then just continue as described in Chap.   3     to impute, say,  m  = 20 data sets. 

  Sample Data  �  (Part 1). 3  Multiple imputation with Norm 2.03 is the same as 
described in Chap.   3    , except that we add the 11 dummy variables to represent 
school membership. Let us start from the beginning. Open Norm, click on File 
and New Session. Find and open the  fi le “ex6.dat” in the folder containing exam-
ples for Chap.   6    . Click on the Variables tab. Double-click on the word “none” for 
the  School  variable, and click on “Dummy variables” at the bottom of the screen. 
Norm will warn you that “this will create a large number of dummy variables 
(11),” but do so anyway in order to take the cluster (school) membership into 
account during the imputation. This will be especially important if later analyses 
will be used that take cluster membership into account (e.g., random intercepts 
regression models). 

 Now select the following eight variables for the imputation model by leaving 
the asterisk in the “In model” column for those variables:  school ,  alc7 ,  riskreb7 , 
 likepar7 ,  posatt7 ,  alc8 ,  riskreb8 , and  alc9 . Exclude the variable, program, by 
double-clicking on, and removing the asterisk in the “In model” column for that 
variable. Remember you cannot have both the school membership variables and 
a school-level program variable in the same model. 

 Click on the Summarize tab and on Run. 
 Click on the EM Algorithm tab and on Run. Note that EM converged 

 normally (function changed monotonically) in 37 iterations. 
 Click on the Impute from Parameters tab. Click on Run to impute a single data 

set from EM parameters (recall that I generally do this step even if I have no 
immediate plans for analyses involving this imputed data set). 

 Click on the Data Augmentation tab. I will skip the Series button for this 
example. Normally you would include it. Rest assured that the diagnostic plots 
for this analysis all looked  fi ne. 

 Click on the Imputation button, and on “Impute at every  k th iteration”, and set 
 k  = 37. Click on OK. 

 Click on the computing tab. Multiply 37 (number of iterations to EM conver-
gence) by the number of imputations (use 20 in this example): 37 × 20 = 740. 
Enter 740 in the “No. of iterations” box and click on OK. 

 Click on Run to begin the Data Augmentation/Imputation process. 

  Sample Data  �  (Part 2). After you have the  fi rst 20 imputed data sets, start over. 
This time be sure that the “school” variable is NOT included in the MI analysis. 
Do this by removing the asterisk just to the right of the variable name “school”. 
However, you should include the variable, program, in this second imputation 

   3   I describe the imputation process in somewhat less detail here, focusing on what is different 
between this example and the example presented in Chap.   3    . For greater detail about performing 
multiple imputation with Norm 2.03, please refer to Chap.   3    .  

http://dx.doi.org/10.1007/978-1-4614-4018-5_3
http://dx.doi.org/10.1007/978-1-4614-4018-5_3
http://dx.doi.org/10.1007/978-1-4614-4018-5_3
http://dx.doi.org/10.1007/978-1-4614-4018-5_6
http://dx.doi.org/10.1007/978-1-4614-4018-5_3
http://dx.doi.org/10.1007/978-1-4614-4018-5_3
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model. For this second imputation model, when you get to the imputation phase 
(as described in Chap.   3    ), you need to make only one small change. Click in the 
“Imputation” button. In the middle of that window, leave the default data set 
name in the window labeled “Name imputed data  fi le(s):”. However, in the win-
dow immediately below that (“adding extension *_n.imp, starting at ”) enter 
“21” in the window. The  fi rst imputation model produced data sets with names 
ending with 1–20. This second imputation model will then produce data sets 
with names ending with 21–40. Everything else about this process is as described 
elsewhere in this book. 

   Preparation of Data Imputed with Another Program 

 Use of the hybrid dummy-coding strategy for imputing cluster data is a compro-
mise solution. The only reason for using this strategy is that  fi nding a way to use 
a better program, such as PAN and the R package, is just too dif fi cult. However, 
many readers will want to make use of PAN, or some other imputation program 
that accomplishes the goal of imputing with a random effect for cluster member-
ship. With PAN, the imputed  fi les will be in the same form as with NORM, so use 
of the MIAutomate utility with PAN-imputed data will be the same as that 
described for NORM. Any imputation program that writes out one large  fi le con-
taining all the  m  imputed data sets, already stacked, will be relatively easy to 
handle. Simply import the data set into SPSS as described in Chap.   4    . Any imputa-
tion program that writes out the m imputed data sets to individual data sets, but 
with a different naming convention than used by NORM and PAN will be some-
what more involved. Probably the easiest thing (although somewhat tedious) 
would be to rename the individual imputed  fi les using the same naming conven-
tion used by NORM and PAN.  

   Multilevel Analysis of Norm-Imputed Data 
with SPSS 17-20/Mixed 

 Chapter   5     details the use of Norm-imputed data for analysis with versions of SPSS 
that have the new MI module. The strategies described in Chap.   5     may also be used, 
virtually unchanged with these analyses. The operation of the MIAutomate utility is 
the same as described in Chap.   5        (the relevant part of Chap.   5     begins with section 
headed  SPSS 17-19 Analysis of Norm-Imputed Data: Analysis of Multiple Data 
Sets Imputed with Norm 2.03 .) The steps described below begin after you have run 
the MIAutomate utility as described in Chap.   5    . These steps include much the same 
information as described in Chap.   5     for performing Multiple Regression and Logistic 
Regression analysis.  

http://dx.doi.org/10.1007/978-1-4614-4018-5_3
http://dx.doi.org/10.1007/978-1-4614-4018-5_4
http://dx.doi.org/10.1007/978-1-4614-4018-5_5
http://dx.doi.org/10.1007/978-1-4614-4018-5_5
http://dx.doi.org/10.1007/978-1-4614-4018-5_5
http://dx.doi.org/10.1007/978-1-4614-4018-5_5
http://dx.doi.org/10.1007/978-1-4614-4018-5_5
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   Setting Up Norm-Imputed Data for Analysis with SPSS 17-20 

 When the MIAutomate process is complete, you are asked, “Do you wish to start 
SPSS now with this syntax  fi le?” Answering this question with “Yes” automatically 
starts SPSS 17-19, and automatically loads the newly created syntax  fi le, “spss1.
sps” (if SPSS does not load automatically, you will need to start SPSS and open the 
“spss1.sps”  fi le manually). Within the syntax window, click on “Run” and “All”.  

   Multiple Linear Mixed Regression in SPSS 17-20 
with Norm-Imputed Data Sets 

 Analysis with the Mixed procedure in SPSS 17-20 is much like that described in 
Chap.   5     for analysis with multiple linear regression. Click on Analyze, on Mixed 
Models, and on Linear. Test the multilevel (mixed) model of interest. 

 As with multiple regression and binary logistic regression analyses described in 
Chap.   5    , one section (or more) of the output will contain, in addition to the output for 
the  m  imputed data sets, a row of results titled “Pooled”. In this instance, the output 
matrix “Estimates of Fixed Effects” contains the key output for MI inference. Like 
the output for linear regression, this matrix contains pooled results for these effects. 
You may also be interested in the results appearing in the next output matrix, titled 
“Covariance Parameters.” The last row of this matrix presents the pooled estimates. 

  Sample Data  � . For this example, load the syntax  fi le “mixed.sps”, and click on 
“Run” and “All”. The key results of the analysis appear in Table  6.2 .  

   DF with MI for Cluster Data 

 There is a question about what the appropriate DF should be for level-2 effects, for 
example, the effect of “Program” on the outcome. Most software, including SAS 
PROC MIXED and SPSS MIXED, use the standard estimate for DF, as shown in 
Table 7.3. However, current thinking is that this value should be much smaller; the 
upper bound for this DF should be the complete cases DF (10 for the example used 
here; Andridge  2011 ; Barnard and Rubin  1999 ; Little and Rubin  2002  ) . 

 For comparison, Table  6.3  presents the MI inference based on 40 imputations 
when the school membership variables were omitted from the imputation model. 
Although some differences are always found from analysis to analysis, even with as 
many as 40 imputations, differences like this illustrate the undesirable effect of 
omitting the cluster membership variables from the imputation model. Focus espe-
cially on the  t - and  p -values for the variable  Program . The  t  was 28 % too large 
when the dummy variables for school membership were omitted. Note, too, that the 
parameter estimate itself was in the ballpark in the second analysis (only 3 % too 
large), but the StdErr in the second analysis was substantially too small (20 % 
smaller than when the dummy variables were included).  

http://dx.doi.org/10.1007/978-1-4614-4018-5_5
http://dx.doi.org/10.1007/978-1-4614-4018-5_5
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 The results appearing in Table  6.4  are for the compromise solution using the 
hybrid dummy variable strategy. For this strategy, I used the  fi rst 20 imputed data 
sets from the analysis with dummy variables and the last 20 imputed data sets from 
the analysis that omitted the dummy variables. Note that the simple combining of 
imputed data sets was possible because the same variables appeared in the same 
order in both sets of imputed data sets. The results shown in Table  6.4  are more 
realistic, but are likely to be slightly conservative (e.g.,  t -value for the variable, 
 program, is probably slightly too small) compared to results based on imputation 
procedure such as PAN.    

   Multiple Linear Mixed Regression in SPSS 15/16 
with Norm-Imputed Data Sets 

 The strategy described for performing mixed linear regression for SPSS 17-20 
applies almost exactly to mixed linear regression analysis with older versions of 
SPSS and to newer versions of SPSS that do not have the MI module installed. 

   Table 6.2    MI inference for random intercepts model (school membership variables included in 
imputation model)   

 Parameter  Estimate  Std. Err.  MI  df    t    p   FMI 

 Pooled  Intercept  3.207  0.292  (164)  11.00  .0000  .493 
 Program  −0.449  0.143  (1995)  −3.15  .0017  .141 
 alc7  0.630  0.025  (308)  24.84  .0000  .360 
 riskreb7  0.179  0.069  (113)  2.58  .0111  .595 
 likepar7  −0.279  0.073  (110)  −3.80  .0002  .601 
 posatt7  0.025  0.064  (106)  0.39  .7000  .612 

   Note : The MI  df  is not presented as part of the MI inference (pooled) SPSS 17-19 output. However, 
the MI  df  values (shown in parentheses as calculated manually using Norm) are used in SPSS 
17-19 to determine the signi fi cance levels of each  t  statistic. With  df  = 10 for the program variable, 
 p  = .0103. Estimated ICC = .0087 for these data  

   Table 6.3    MI inference for random intercepts model (school membership dummy variables omit-
ted from imputation model)   

 Quantity  Estimate  Std. Err.  MI  df    t    p   FMI (%) 

 Pooled  Intercept  3.191  0.297  (129)  10.75  .0000  55.6 
 Program  −0.464  0.115  (380)  −4.02  .0001  32.4 
 alc7  0.625  0.026  (272)  24.24  .0000  38.3 
 riskreb7  0.184  0.071  (108)  2.60  .0106  60.7 
 likepar7  −0.272  0.073  (113)  −3.72  .0003  59.4 
 posatt7  0.033  0.068  (91)  0.48  .6314  66.1 

   Note : The MI  df  is not presented as part of the MI inference (pooled) SPSS 17 output. However, 
the MI  df  values (shown in parentheses as calculated manually using Norm) are used in SPSS 
17-19 to determine the signi fi cance levels of each  t  statistic. With  df  = 10 for the program variable, 
 p  = .0024. Estimated ICC = .0024 for these data  
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The main difference is that these versions of SPSS will not have the “pooled” 
 estimates given at the bottom of the key output matrix. You may then use the NORM 
program to perform the combining of results, or MI Inference. However, if you 
specify SPSS 17-20 for syntax choice with the MIAutomate utility, the output for 
SPSS/Mixed will be suf fi ciently compact that it is reasonable in this case to perform 
the MI Inference analyses using NORM. 

 By “compact,” I mean that the parameter estimates and standard errors for 
 m  imputed data sets are printed side-by-side in two columns. The results for the  m  
imputed data sets are stacked, making it a rather straightforward task simply to cut 
and paste the two columns for all imputed data sets into a separate ascii text  fi le 
(Notepad works well for this). I  fi nd that it works best if you  fi rst copy the entire 
output matrix (Estimates of Fixed Effects) to a Word document, and then copy and 
paste the two key columns into Notepad. You should save this ascii  fi le with a con-
venient name, such as “results.dat”. Then copy the predictors labels (including 
“Intercept”) and paste these labels into a second ascii  fi le which you give the same 
name as the results  fi le, except with the “.nam” suf fi x (e.g., results.nam). These two 
 fi les may then be read by NORM 2.03 for MI inference. 

   MI Inference with Norm 2.03 

 Open Norm 2.03, and click on “analyze”, and on “MI    Inference: Scalar”. Locate 
your results  fi le (e.g., “results.dat”) and open it. Click on the “Stacked Columns” 
option. Enter the number of estimands (predictors; do not forget to count the inter-
cept). An easy way to  fi gure this is to count the number of labels in the parameter 
names  fi le. Enter the number of imputations (e.g., 40). Click on Run. 

 The results appear in the NORM screen. The MI inference  fi le is also saved in the 
same folder under the name “mi.out”. That  fi le may be edited to get the values into 
a form that is suitable for presentation in your article.    

   Table 6.4    MI inference for random intercepts model    (school membership dummy variables 
included for 20 data sets; omitted from 20 data sets)   

 Quantity  Estimate  Std. Err.  MI  df    t    p   FMI (%) 

 Pooled  Intercept  3.210  0.277  (186)  11.59  .0000  46.4 
 Program  –0.462  0.127  (1004)  −3.64  .0003  19.9 
 alc7  0.628  0.025  (351)  25.14  .0000  33.7 
 riskreb7  0.181  0.066  (135)  2.76  .0066  54.3 
 likepar7  −0.281  0.069  (133)  −4.05  .0001  54.8 
 posatt7  0.034  0.067  (95)  0.50  .6166  64.9 

   Note : The MI  df  is not presented as part of the MI inference (pooled) SPSS 17 output. However, 
the MI  df  values (shown in parentheses as calculated with SAS) are used in SPSS 17-19 to deter-
mine the signi fi cance levels of each  t  statistic. With  df  = 10 for the program variable,  p  = .0045. 
ICC = .0052 for these data  
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   Multilevel Analysis of Norm-Imputed Data with HLM 7 

 The MIAutomate Utility also has the capability of preparing  fi les for use with HLM 
6 or HLM 7. Note that this utility does NOT make use of the built-in HLM feature 
for combining results based on multiply-imputed data sets. 4  

 There are  fi ve parts to the total task: (a) Impute multiple data sets using Norm 
2.03; (b) run the MIAutomate program to locate all relevant  fi les (same as described 
for SPSS); (c) locating the HLM executable  fi le; (d) build the 2-level HLM model 
by answering questions about the status in the model of each variable included in 
the imputed data sets; and (e) run HLM and view the MI Inference results. 

   Step 1: Imputation with Norm 2.03 

 Impute multiple (say 40) data sets using Norm 2.03. I describe this process in more 
detail above and in Chap.   3    . As I have said before, you are STRONGLY encouraged 
to include a variable names  fi le. This  ascii text  fi le  should have all variable names 
in your data set, in the order in which they appear in the data set, one name per line. 
The name of the variable names  fi le should be root.nam. For example, if your 
 original data set is named “abc12.dat”, then the variable names  fi le should be 
“abc12.nam”. This step is described brie fl y above in this chapter and in consider-
able detail in Chap.   3    .  

   Step 2: Run MIAutomate Utility 

 Launch the MIAutomate utility as described in Chaps.   4     and   5    , and earlier in this 
chapter. I  fi nd it best to address all questions on the main MIAutomate window 
before making your syntax choice. First locate the original data  fi le (e.g., mydata.
dat). The name of the  fi le, and the  fi le, along with its folder location will appear in 
blue below the Browse button. Check the box for “Variable names  fi le available?”. 
Indicate the No. of imputations (e.g., 40). Click on “Select  fi rst  fi le”, and locate the 
 fi rst imputed  fi le (usually named something like, mydata_1.imp) and click on Open. 
The name of the  fi rst imputed  fi le, along with its folder location will appear in below 
the Select  fi rst  fi le button. Now click on the Syntax choice window, and select HLM. 
This last step opens a new window, “Enter HLM information”.  

   4   The feature built in to HLM6 for combining results from multiply-imputed data sets is limited in 
some important ways and will not be used here. First, the feature works with only 10 imputed data 
sets. Although this does give reasonable preliminary results, it is often desirable to have more than 
ten imputed data sets (see Graham et al.  2007  ) . Second, the built-in feature in HLM 6 does not 
calculate the Fraction of Missing Information. This is not a huge omission, but it would be better 
to have it.  

http://dx.doi.org/10.1007/978-1-4614-4018-5_3
http://dx.doi.org/10.1007/978-1-4614-4018-5_3
http://dx.doi.org/10.1007/978-1-4614-4018-5_4
http://dx.doi.org/10.1007/978-1-4614-4018-5_5
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   Step 3: Enter HLM Information Window: Executable Information 

 A sample “Enter HLM information” window appears in Fig.  6.1 . First click on the 
Browse button for “HLM executable”, and locate the executable for the version 
you are using. Whichever version of HLM you are using, it is likely to be in the 
“c:\Program Files\” folder, so click on that  fi rst, and then look for folders beginning 
with “H”. For example, the student version of HLM6 is located in c:\Program Files\
HLM6S. The student version of HLM7 is located in c:\Program Files\HLM7Student. 
This executable itself begins with “HLM2”, and ends with “.exe”. The student 
 versions of HLM6 and HLM7 are both named HLM2s.exe. The trial version may be 
named HLM2R.exe. The regular version may be named HLM2.exe. Locate the 
executable for your version of HLM and click on Open. The executable name, along 
with its folder location, will appear in blue below the Browse button.   

   Step 4: Enter HLM Information Window: HLM Model 
Information 

 The HLM model possible with this version of the MIAutomate utility is a simple, 
2-level model. The model is speci fi ed by selecting variables (from those listed in 

     Fig. 6.1    Enter HLM information window. ID = the cluster membership variable; DV = dependent 
variable in the regression analysis; Lev1 = Level 1 predictors; Lev2 = Level 2 predictors. One ID 
variable, and one DV must be selected. One or more variables may be indicated as Lev1 and Lev2 
predictors       
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the rightmost column) for each of the columns describing the HLM model. The  ID  
 variable is the variable describing cluster membership (e.g., “school”). Check the 
box in the ID column for exactly one variable. Next check the box in the  DV  column 
for exactly one variable. This is the dependent variable in your regression analysis. 
Next, check the boxes in the  Lev1  column for any variable that will be a level-1 
predictor. Finally, check the box in the  Lev2  column for any variable that will be a 
level-2 predictor. Note that the boxes for some variables listed on the right (e.g., 
auxiliary variables) may not be checked in any of the columns. This is  fi ne. 

 When all model information has been given, click on “Close”, and on “Run” at 
the bottom of the main MIAutomate window. The progress of HLM analyses will 
be shown in the lower right-hand corner of the main MIAutomate window. Note that 
this process can be rather slow. It is slow,  fi rst because HLM must be run twice for 
each imputed data set: once to set up the data (creating the MDM  fi le) and a second 
time to perform the 2-level HLM analysis. This process is also slow because HLM 
itself is rather slow.  

   Step 5: MI Inference 

 When the process is complete, “100 %” shows in the progress window in the lower 
right-hand corner of the main MIAutomate window. Also, two Notepad windows 
automatically open. One Notepad window shows the  fi le, minfer1.txt, which dis-
plays the MI inference results based on regular (multilevel) standard errors. The 
second Notepad window shows the  fi le minfer2.txt, which displays the MI inference 
results based on robust standard errors. 

  Sample Data  � . For this example, the input data  fi le is the same as used above for 
SPSS: ex6.dat (and ex6.nam). The Enter HLM Information screen for this exam-
ple appears in Fig.  6.1 . The  m  = 40 imputations used for this example are based 
on the hybrid dummy code strategy described above (20 data sets imputed with 
the dummy variables, 20 data sets imputed without the dummy variables). Thus, 
these results correspond to the SPSS/Mixed results appearing in Table  6.4 . The 
HLM analysis of  m  = 40 imputed data sets took several minutes and produced 
the output displayed in Table  6.5  (copied from “minfer1.txt”, based on regular 
standard errors). Note that the results in Table  6.5  are virtually identical in every 
respect to those shown above in Table  6.4 , except for df for the level-2 variable, 
program. Note that df given here was based on the simple formula,  N−2  = 10, 
where the N is for level-2 units (there were 12 schools in this example). It was 
 N−2  because there was just one level-2 predictor (program). This value for df is 
not quite correct. The value for df described by Barnard and Rubin  (  1999 ; also 
see Andridge  2011 ; Little and Rubin  2002  )  will generally be very slightly 
smaller than this. However, using this formula will provide statistical inference 
that is very close to what is correct (and much closer than using the df estimate 
based on traditional MI theory). The  p -value given in these tables is correct 
for  df  =10.  



148 6 Multiple Imputation and Analysis with Multilevel (Cluster) Data

 The results shown in Table  6.6  were copied from the  fi le “minfer2.txt”. The 
 difference between these results and those shown in Table  6.5  is that the standard 
errors from these results were described in HLM as “robust standard errors” (e.g., 
robust to deviations from the normal distribution assumption).   

   Limitations of the MIAutomate Utility for HLM 

    This version of the MIAutomate utility works with HLM 6 and HLM 7.  
  This version of the utility works with 2-level HLM models.  
  This version of the utility works with random intercepts models.      

   Table 6.5    MI inference for random intercepts model in HLM 7 S: regular standard errors   
 Parameter  EST  SE  t  df  % mis inf  p 

 Intrcpt2  3.210  0.2770  11.59  186  46.3  .0000 
 program  –0.462  0.1268  -3.64  10  19.8  .0045 
 alc7  0.628  0.0250  25.13  350  33.7  .0000 
 riskreb7  0.181  0.0656  2.76  135  54.3  .0066 
 likepar7  -0.281  0.0694  -4.05  133  54.8  .0001 
 posatt7  0.034  0.0672  0.50  94  64.9  .6166 

   Note : The results shown above came from the output  fi le minfer1.txt. These results, which are 
virtually identical to those presented above in Table  6.4  for the SPSS/Mixed procedure, are based 
on “regular” standard errors. These results were based on 40 imputed data sets: 20 were imputed 
with dummy variables representing school membership; 20 were imputed omitting the dummy 
variables  

      Table 6.6    MI inference for random intercepts model in HLM 7: robust standard errors   
 Parameter  EST  SE  t  df  % mis inf  p 

 Intrcpt2  3.210  0.2558  12.55  135  54.3  .0000 
 Program  -0.462  0.1180  -3.91  10  22.9  .0029 
 alc7  0.628  0.0215  29.24  191  45.7  .0000 
 riskreb7  0.181  0.0617  2.93  105  61.4  .0041 
 likepar7  -0.281  0.0691  -4.06  131  55.2  .0001 
 posatt7  0.034  0.0666  0.51  91  66.1  .6134 

   Note : The results shown above came from the output  fi le minfer2.txt. These results were based on 
“robust” standard errors. These results were based on 40 imputed data sets: 20 were imputed with 
dummy variables representing school membership; 20 were imputed omitting the dummy 
variables  
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   Special Issues Relating to Missing Data Imputation 
in Multilevel Data Situations 

   Number of Level-2 Units 

 I have already discussed the limitations relating to MI when the number of level-2 
units is large, even for random intercepts models. The problem with such models is 
that the number of variables relating to level-2 unit membership becomes so large as 
to severely limit the number of substantive variables that can be included in the 
model. On the other hand, it may be possible to combine level-2 units (within experi-
mental conditions, if that is relevant) that already have similar means on key vari-
ables. One approach here might be to perform a k-means cluster analysis on the 
level-2 units (e.g., at the school level) on key variables. Even if the number of clusters 
is large compared to what is typically considered desirable for this kind of analysis, 
it will represent a big reduction in the number of level-2 units used with MI.  

   Random Slopes Models 

 This issue was discussed brie fl y earlier in this chapter. The best inferences are made 
with this type of model if imputation is carried out within each level-2 unit. This 
allows all correlations to vary across level-2 units. Imputing once with the overall 
sample suppresses correlations to be equal across level-2 units. When level-2 units 
have relatively few (e.g., 50) cases, it will be possible to impute separately within 
each level-2 unit, but the number of variables in such models will be small. As I 
pointed out above, one bit of good news for this approach is that the dummy coding 
for level-2 group membership is not required. 

 Unfortunately, it much more complicated with random slopes models to combine 
groups that are similar with respect to their correlation matrices. However, it may be 
   possible to do something unusual such as treating the correlations themselves as the 
data for a cluster analysis. As long as relatively few variables were involved, this 
might be a possibility. 

 Finally, imputing within clusters does not solve the problem of in fl ated ICC. 
Thus, although this approach does allow covariances (slopes) to differ across 
 clusters during imputation, the in fl ated ICC seems to be an important limitation of 
this approach. When one wishes to impute under a random slopes model, it is advis-
able to invest in the PAN program for imputation.  

   3-Level Models 

 The analyses and utilities described in this chapter are limited to 2-level models. For 
example, the data illustrations in this chapter have related to students within schools. 
But it would be possible to examine the 3-level model: students within classes 
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within schools. The structure of MI for 3-level models is the same as that for 2-level 
models. The only difference is that the number of groups that must be dummy coded 
increases geometrically with each new level. For example, in the AAPT example 
used in this chapter, rather than concerning ourselves with 12 schools, we would 
need to take 120 classes-within-schools combinations into account. Even with a 
sample size of over 3,000, this reduces to roughly 25 cases per class-within-school 
combination. It might still be feasible with such a model to do a random intercepts 
model by clustering the level-2 × 3 combinations into a much smaller number of like 
units. It might even be possible to estimate correlations within each of the 120 class-
within-school combinations, and cluster analyze based on those correlations. But in 
this case, the stability of correlations and means with  N  = 25 is very questionable.  

   Other MI Models 

 In this chapter, I have described handling MI with multilevel data using normal 
model MI software. The main reason for this is the accessibility of normal model 
MI software, and the inaccessibility of software designed to handle cluster data. For 
example, Schafer’s PAN software  (  2001 ; Schafer and Yucel  2002  )  will, among other 
things, handle MI with cluster data. The problem with PAN is that it was never 
implemented as a mainstream package (as was Norm). Although programs such as 
PAN will very likely be the wave of the future, the future is not yet here.       
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 In this chapter, I provide step-by-step instructions for performing multiple 
 imputation and analysis with SAS version 9. I describe the use of PROC MI for 
multiple imputation but also touch on two other ways to make use of PROC MI for 
handling missing data when hypothesis testing is not the issue: (a) direct use of the 
EM algorithm for input into certain analysis programs, and (b) generating a single 
data set imputed from EM parameters. 

 Although virtually all analyses can be handled using multiple imputation or one 
of the other missing data approaches, in this chapter I will focus on these analyses: 
Coef fi cient alpha analysis with PROC CORR; exploratory factor analysis with 
PROC FACTOR; multiple linear regression with PROC REG; logistic regression 
with PROC LOGISTIC; and multilevel linear regression with PROC MIXED. The 
purpose of discussing these Procs is not to give readers a grounding in the statistical 
procedures. I make the assumption that readers already know how to use these pro-
cedures. Rather, my goal here is provide readers with the grounding necessary to 
carry out these analyses in the missing data case. 

 The MI product I know most about is NORM 2.03. Despite some of its limita-
tions and quirks, I would almost always rather be working with that program, espe-
cially when I am in the process of getting to know my data. However, I must say that 
I have been very impressed with PROC MI. Over the years, I have gained substan-
tial con fi dence in this program. It is fast, ef fi cient, and I am able to do pretty much 
everything with PROC MI that I can do with NORM, and more. PROC MI is an 
incredibly useful product. I will not say that the interface between PROC MI and the 
analysis procedures is seamless – this remains one of its weaknesses, but it is very 
good, nonetheless. At this point in time, it is my opinion that with PROC MI and the 
interface between it and the various analysis procedures, SAS offers the best com-
bination of MI and analysis features available for dealing with missing data. 

 Help documentation with SAS is excellent. I have the following link in with my 
“bookmarks” (“favorites”). I refer to it constantly for help with SAS syntax. 

   http://support.sas.com/documentation/index.html     

    Chapter 7   
 Multiple Imputation and Analysis with SAS         

http://support.sas.com/documentation/index.html
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   Step-by-Step Instructions for Multiple Imputation 
with PROC MI 

 Although it is not absolutely necessary, I do encourage SAS users to read Chap.   3     
on MI with Norm. There is considerable theoretical overlap between the two 
approaches, given that the PROC MI was based on Schafer’s ( 1997 ) algorithms. 
However, it is important to have a good conceptual feel for the process before apply-
ing it with PROC MI, and I believe it is a little easier to see the process with Norm. 

 In order to keep things straight between the chapters, I stay with the same eight 
steps to describe the operation of PROC MI that I used to describe the operation of 
NORM 2.03. Also, as in Chap.   3    , I will conduct each step with an empirical data set, 
reporting the interim results as I go along. I encourage you to conduct these analyses 
as you read and compare your results with mine. 

   Running PROC MI (Step 1): Getting SAS 

 This is an easy one. You either have SAS or you do not. SAS is an expensive 
 program. If your organization does not have a site license for the latest version of 
SAS, the chances are you do not have a copy of it. So I will assume that you do have 
a copy of SAS, version 9. Most of what I describe here also applies to SAS version 
8.2, but PROC MI is much better developed in SAS version 9, and I encourage you 
to upgrade to that if possible.  

   Empirical Example Used Throughout This Chapter 

 In order to facilitate learning the procedures outlined in this chapter, I encourage 
you to download the data  fi le, “ex7.sas7bdat” from our website: 

   http://methodology.psu.edu     

 The sample data set comes from a subset of one cohort of students ( N  = 2,756) 
who took part in the Adolescent Alcohol Prevention Trial (AAPT; Hansen and 
Graham  1991  ) . The sample data set includes a variable,  School , indicating which of 
12 schools the student was from. In addition, 19 substantive variables are included: 
Lifetime alcohol use at seventh, eighth, and ninth grades ( Alc7 ,  Alc8 ,  Alc9 );  fi ve 
variables making up a scale tapping relationship with parents at seventh grade 
( Likepar71, Likepar72, Likepar73, Likepar74, Likepar75 ); three variables making 
up a scale tapping belief about the positive social consequences of alcohol use at 
seventh grade ( Posatt71 ,  Posatt72 ,  Posatt73 ); four variables tapping risk-taking and 
rebelliousness in grade 7 ( Riskreb71 ,  Riskreb72 ,  Riskreb73 ,  Riskreb74 ); and four 

http://dx.doi.org/10.1007/978-1-4614-4018-5_3
http://dx.doi.org/10.1007/978-1-4614-4018-5_3
http://methodology.psu.edu


153Step-by-Step Instructions for Multiple Imputation with PROC MI 

variables tapping risk-taking and rebelliousness in eighth grade ( Riskreb81 , 
 Riskreb82 ,  Riskreb83 ,  Riskreb84 ). 1  

 As you read through the steps for conducting imputation with PROC MI, 
I encourage you to try out each step with this sample data set.  

   Running PROC MI (Step 2): Preparing the Data Set 

 This is one of the best features of conducing MI within SAS. The data set is already 
prepared in some respects. I will assume that you already have a SAS system  fi le to 
work with. 

 Not surprisingly, SAS handles MI differently from NORM. This stems from the 
fact that the data structure itself (the DATA step) is carried along with the imputation. 
With NORM, one selects variables for imputation, and the data set produces typi-
cally has those variables, and not much more. With SAS, one begins with a  possibly 
rather large data set (e.g., 500 variables), and from that number, performs MI with a 
much smaller subset (e.g., 50 variables). The data set output from PROC MI will 
include imputed values for the 50 selected variables, and the multiple-imputed data 
sets will be stacked, but the stacked, multiple-imputed data set will also contain 
unimputed versions of the variables not included in the PROC MI analysis. So if you 
have 500 variables, 50 of which were analyzed with PROC MI, and if you asked for 
 m  = 40 imputations, the resulting output data set will be rather large. It will contain 
40 versions of the 50 variables, with different imputed values for each version, plus 
40 copies of the original 450-variable data set not included in PROC MI. This is not 
really a limitation in most cases; you should just know what you are getting. If this 
does become a problem, it is an easy matter to use KEEP or DROP statements prior 
to running PROC MI in order to keep the output data set of manageable size. 

   Number of Variables to Be Imputed 

 In this regard, many    of the statements I made in Chap.   3     for running Norm, also 
apply here. You cannot simply include all of your variables in your PROC MI vari-
able list. Just as with Norm, it is advisable to keep your input data set to a maximum 
of around  k  = 100 variables regardless of how many cases you might have. I have 
gone above this number over the years, but I begin feeling uneasy as the number of 
input variables exceeds 100, and with every added variable, that uneasiness increases 
exponentially, just as the number of parameters that must be  estimated by the pro-
gram increases exponentially with sample size (please see Table  7.6 ). 

   1   Note that the variable  Program , used in the Proc Mixed example near the end of the chapter, is a 
simulated program variable, and results based on that variable are somewhat different from true 
program effects observed for the AAPT project.  

http://dx.doi.org/10.1007/978-1-4614-4018-5_3
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 So be judicious in selecting the variables for analysis. Follow these general 
rules:

    (a)    Start with the analysis model of interest.  
    (b)    Judiciously include a few auxiliary variables (please see Chaps.   1     and   11    ). If 

you have a longitudinal data set, the best auxiliary variables are variables that 
are the same as the variables in your analysis model, but that are not being used 
in this analysis. For example, if I were looking at a program effect at seventh 
grade on cigarette smoking at tenth grade, I might well include smoking at 
eighth and ninth grades as auxiliary variables, along with smoking at seventh 
grade (if it is not being used as a covariate in the analysis model). Similarly, for 
any mediating variable used in the model, good auxiliary variables would be 
that same mediating variables measured at other waves not otherwise included 
in the analysis. Especially important in this context is to include measures that 
were measured after the mediating variable to be used in the analysis. For 
example, suppose beliefs about the prevalence of cigarette smoking among 
peers, measured at the immediate posttest (late seventh grade) was the mediat-
ing variable. I might well include as auxiliary variables prevalence beliefs at 
eighth and ninth grades (along with prevalence beliefs at seventh grade if that 
variable is not part of the analysis model).     

 In general, the variables that are included in PROC MI should all be continuous (or 
reasonably assumed to be continuous, including “ordered-categorical” variables), or 
dichotomous categorical. Any categorical variables with more than two levels must 
be recast as dummy variables before the MI analysis ( p  − 1 dummy variables must be 
used to represent the categorical variable with  p  > 2 categories). For example, sup-
pose you have a variable describing political party af fi liation, with three levels: 
Democrat, Republican, Independent. This variable (e.g., Party), would be dummy 
coded as shown below, and the dummy variables, not Party, would be include in the 
PROC MI analysis. 

 data a;set in1.mydata; 
   if party=’Democrat’ then do;dummy1= 1 ;dummy2= 0; end; 
    if party=’Republican’ then do;dummy1= 0 ;dummy2= 1; end; 
    if party=’Independent’ then do;dummy1= 0 ;dummy2= 0; end; 
 run; 

 Note that each group in the categorical variable has a “1” for a different dummy 
variable, and “0” for all others, except the last group, which has “0” for all dummy 
variables. 

 I would like to make one general point about naming SAS data sets. Many PROC 
steps in SAS automatically writes out a new SAS data set. If you do not explicitly 
name the data set, for example with an “OUT = ” statement, then SAS gives it an 
automatic name (starts with “DATA1”, “DATA2”, and so on). The problem is that 
you may not remember what it is for that particular PROC. So I usually encourage 
people to provide an explicit name for every data set generated. I usually use letters 

http://dx.doi.org/10.1007/978-1-4614-4018-5_1
http://dx.doi.org/10.1007/978-1-4614-4018-5_11
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“a”, “b”, “c”, and so on, but many explicit naming conventions are possible. 
Use what works for you. The bottom line is that when you run PROC MI, you 
should explicitly name the output  fi le.  

   Reading the Sample Data into SAS 

 Over the years, one of the biggest headaches I have had with SAS is in getting the 
data into SAS so I can do my work. If you are comfortable reading data into SAS, 
then just do this part in your usual way. However, if you just cannot get it to work 
any other way, try placing the SAS data  fi le into the folder: “c:\NormUtil”. Then, 
the SAS code I show below may be used to access the sample data set and perform 
the simplest of PROC MI runs. 2  

 ***===================================================***; 
 *** Reading Sample data into SAS ***; 
 ***===================================================***; 
 libname in1 ‘c:\NormUtil’; 

 data a;set in1.ex7; 
    keep school alc7 riskreb71 likepar72 posatt72 alc9; 
 run; 

 proc mi data=a nimpute=2 out=b; 
    var alc7 riskreb71 likepar72 posatt72 alc9; 
 run; 

 ***==================================================***;   

   Running PROC MI (Step 3): Variables 

 As I said above, one of the best things about doing MI with SAS is that the data are 
all right there and available. Assuming that you are already a SAS user, and that you 
have read the data in (e.g., as I suggest above), there is relatively little else to do. 

 With NORM 2.03, performing data transformations is handled at this step. 
The same is true for SAS. If you want to perform any transformations (e.g., log 
transformations to help with skew), I recommend that you do this prior to running 
PROC MI. 

 With NORM 2.03, you must select variables to be included in the MI model. The 
same is true with PROC MI. With most SAS PROCs, you select variables with a 
VAR statement (see the statement in the brief example; the VAR statement appears 

   2   Note that in most of these preliminary PROC MI runs, I am setting NIMPUTE = 2. Please do not 
take from this that I ever think just two imputations is enough. I am using NIMPUTE = 2 for these 
preliminary runs to save time. When it matters, NIMPUTE will be set to a reasonable number.  



156 7 Multiple Imputation and Analysis with SAS

just below the PROC MI statement in the sample code). In the example shown just 
above, just  fi ve variables were included in the MI model. However, note that in that 
example, I have used the KEEP statement within the prior DATA STEP to keep the 
School variable as well. As the sample code indicates, the School variable is not 
included in the MI model, but it will be in the output data set (OUT = B). 

   Rounding 

 Rounding is an interesting issue. My view is that rounding should be kept to a 
 minimum. Multiple imputation was designed to restore lost variability in the data 
set as a whole. However, rounding after imputation is the same as adding a small 
amount of additional random error variance to the imputed values. This is easiest to 
see when calculating coef fi cient alpha when scale items have been rounded and 
unrounded. The rounded versions always have scale alpha that is one or two points 
lower (indicating more random error in the scale score). 

 So my rule for rounding is this: If the variable will be used in an analysis where 
the unrounded values will be no problem (e.g., using a gender variable as a covariate 
in a regression model), then leave it in its unrounded form. Of course, if the variable 
is to be used in an analysis where only certain values make any sense (e.g., using 
gender as a blocking variable or using a dichotomous smoking variable as the 
dependent variable in a logistic regression analysis), then by all means, round to 
the legal values (e.g., 0 and 1).  

   Rounding in SAS 

 Fortunately, no rounding is the default in PROC MI. That is, unless you do some-
thing special, imputed values will be imputed with no rounding. Unfortunately, 
when you want rounding, the rounding feature in PROC MI is a little clunky. See 
the following code: 

 proc mi data=a out=b nimpute=10; 
   var alc7 riskreb71 likepar72 posatt72 alc9; 
 run; 

 To round all  fi ve variables to integers, the code is: 

 proc mi data=a out=b nimpute=10 round=1; 
   var alc7 riskreb71 likepar72 posatt72 alc9; 
 run; 

 proc freq;tables alc7 riskreb71 likepar72 posatt72 alc9; 
 run; 
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 Add a PROC FREQ statement as shown above in order to check the effects of 
using this rounding statement. You will see in the output that any imputed values 
rounded to 0 are actually rounded to some very small number (e.g., 3.274291E-17). 
The fact that SAS PROC MI rounds to a value very near zero, but not exactly to 
zero, may be a problem in many applications. For example, a problem would arise 
if you tried to act on those values using an IF statement: 

 data c;set b; 
   if alc9=0; 
 run; 

 Try the kind of IF statement shown above. SAS does not see the very small value 
as 0. This problem may have been resolved in SAS (version 9.2). However, I believe 
that using the ROUND function within the SAS DATA STEP is a better way to do 
any necessary rounding following MI. 

 proc mi data=a nimpute=2 out=b; 
   var alc7 riskreb71 likepar72 posatt72 alc9 xalc9; 
 run; 

 data c;set b; 
   array x alc7 riskreb71 likepar72 posatt72 alc9 xalc9; 
   do over x; 
   x=round(x,1); 
   end; 
 run; 

 proc freq;tables alc7 riskreb71 likepar72 posatt72 alc9 
xalc9; 
 run; 

 data d;set c; 
   if posatt72=0; 
 run; 

 data d;set c; 
   if posatt72=1; 
 run; 

 Looking at the PROC FREQ results, you will see that all values rounded to 0 
appear as exactly 0 in the PROC FREQ output. Double check by adding the two 
data steps following the PROC FREQ. Checking the SAS LOG, you will see that 
the number of cases for these two data steps is the same as shown in the PROC 
FREQ output. This veri fi es that IF statements correctly operate on values rounded 
to 0 and to 1.   
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   Running PROC MI (Step 4): Summarizing the Missing Data 

 The  fi rst part of the SAS output summarizes the missing data, and the analysis, in 
several ways. This is an important step in the imputation process. First, I  fi nd it use-
ful to add the SIMPLE option in the PROC MI statement (see sample code below). 

 proc mi data=a nimpute=2 out=b  simple ; 
   var alc7 riskreb71 likepar72 posatt72 alc9; 
 run; 

 The  fi rst section of the output is entitled, “Model Information.” In my main run, 
I got the output shown in Table  7.1 .  

 I  fi nd it useful to scan quickly down the list of model parameters. Seeing what 
was in the model might remind you that something different was needed. I will 
come back to many of these options later in the chapter; here I am just talking about 
the output itself. 

 All of these were defaults: Single chain MCMC for imputation (always use this); 
initial estimates coming from EM estimates; prior is “Jeffreys” (uninformative 
prior). I will talk more later in this chapter about the prior. For now, suf fi ce it to say 
that this prior should be used if it works. As I noted above, number of imputations 
was set to 2 only for these preliminary models just to save time. The default for 
number of “burn-in” iterations is 200. It is customary in using MCMC procedures 
to allow the procedure to work a while (burn in) before one attempts to make use of 
the results. The random starting seed is always set automatically. However, if you 
would like control over the solution (always get the same results), then you may 
choose the random starting seed with the SEED = option within the PROC MI 
statement. 

 The next section of the preliminary output is “Missing Data Patterns.” Table  7.2  
presents these patterns for the small example used here. This section can be useful 
for a variety of reasons. In the output, as shown below, an “x” means the cases have 
data for that variable, and a “.” means the variable is missing. First, as shown below, 

   Table 7.1    Model information output from SAS   
 Model Information 

 Data Set  WORK.A 
 Method  MCMC 
 Multiple Imputation Chain  Single Chain 
 Initial Estimates for MCMC  EM Posterior Mode 
 Start  Starting Value 
 Prior  Jeffreys 
 Number of Imputations  2 
 Number of Burn-in Iterations  200 
 Number of Iterations  100 
 Seed for random number generator  752953001 
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pattern, or “Group” 1, contains the complete cases, if there are any. The last pattern 
displayed (Group 20 in Table b8.2) shows the group with the least data. If there hap-
pen to be any cases with no data at all, it will show up here. If this should happen, 
“.” shows up for all variables, and those cases are automatically omitted from the MI 
analysis. Still, when that happens, it is better to go back to the previous DATA STEP 
and eliminate any cases with data missing for all of the variable to be included in 
PROC MI.  

  Sample Data  � . There are three key things to see here. First, for this small exam-
ple, there were some (18.11 %) complete cases. I know this, because the top row, 
which will show the complete cases if there are any, have no “.” values. Second, 
there were just 20 different patterns of missing and observed data in this small 
example. Third, because the bottom row of this matrix contains at least one “X” 
value, I know there no cases missing all the data. 

   SAS Proc MI (v. 9) Is Not Perfect 

 Please understand that I believe SAS Proc MI to be an amazingly useful product. 
However, there are a few areas where it could be improved. For example, I  fi nd that 
the  fi rst few sections of output from PROC MI are a little disorganized, so beware. 

   Table 7.2    Patterns of missing and observed values   
 Missing Data Patterns 

 Group  alc7  riskreb71  likepar72  posatt72  alc9  Freq  Percent 

 1  X  X  X  X  X  499  18.11 
 2  X  X  X  X  .  266  9.65 
 3  X  X  X  .  X  554  20.10 
 4  X  X  X  .  .  308  11.18 
 5  X  X  .  X  X  5  0.18 
 6  X  X  .  .  X  3  0.11 
 7  X  X  .  .  .  1  0.04 
 8  X  .  X  X  X  2  0.07 
 9  X  .  X  X  .  2  0.07 
 10  X  .  X  .  X  2  0.07 
 11  X  .  .  X  X  531  19.27 
 12  X  .  .  X  .  327  11.87 
 13  X  .  .  .  X  42  1.52 
 14  X  .  .  .  .  37  1.34 
 15  .  X  X  X  X  3  0.11 
 16  .  X  X  X  .  1  0.04 
 17  .  X  X  .  X  3  0.11 
 18  .  X  X  .  .  2  0.07 
 19  .  .  .  X  X  2  0.07 
 20  .  .  .  .  X  166  6.02 
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One example of this is that when there are many missing data patterns, you will  fi rst 
see a few patterns, then you will see the means for the variables within those 
 patterns. Then you will see more patterns and more means. For sake of clarity in 
Table  7.2 , I combined two bits of output to create a somewhat cleaner version of the 
information. With larger models, this section of output is almost impossible to keep 
straight. So with larger models, keep in mind what you are looking for.

    (a)    Does Pattern (group) 1 indicate complete cases? (If there are any complete 
cases, they will show up in this group).  

    (b)    How many complete cases are there?  
    (c)    Does the last pattern indicate that cases with this pattern have at least some 

data?     

 If you focus on just these three bits of information, you will be able to  fi nd them, 
even with the largest problems. A partial solution to the problem of disjointed out-
put is to ask for a very wide output line, for example, with, “Options LS = 255”.  

   What Is Most Useful About Missing Data Patterns? 

 A key part of the EM algorithm is identifying all these patterns and operating on 
each of them separately. So because identifying all these patterns is being done 
anyway, it is an easy thing to provide a table of these patterns. 

 Software makers display all of the patterns of missing values more for complete-
ness and because it is easier to present all of them. They do not present all the pat-
terns because it is important for the end user to view all the patterns. As I have 
pointed out above, relatively few bits of information must be gleaned from these 
patterns. 

 In fact, in terms of conveying useful information to readers of an article I might 
be writing, I  fi nd it useful to generate missingness patterns from a set of variables 
that might be slightly different from, or possibly just a subset of, the variables that I 
am actually analyzing. For example, in a longitudinal study, I often  fi nd it useful to 
present a missingness patterns table that shows how many participants provided any 
data at each wave. For this kind of thing, I  fi nd it more useful to calculate the 
 missingness patterns “by hand” in SAS. Using the sample data for this chapter, the 
relevant SAS code might look like this: 

 data a;set in1.ex7; 
   if n(of alc7 riskreb71-riskreb74 likepar71-likepar75 
     posatt71-posatt73)>0 then r7=1;else r7=0; 
   if n(of alc8 riskreb81-riskreb84)>0 then r8=1;else r8=0; 
   if n(of alc9)>0 then r9=1;else r9=0; 
 run; 

 proc freq;tables r7*r8*r9/list; 
 run; 



161Step-by-Step Instructions for Multiple Imputation with PROC MI 

 In this case, if a participant provided any data for the seventh grade wave, the 
variable r7 takes on the value “1”. Otherwise, r7 takes on the value “0”. Similarly, if 
a participant provided any data for the eighth or ninth grade wave, then r8 or r9 
would take on the value of “1”. Otherwise, those variables would take on the value 
“0”. The SAS output from this code appears in Table  7.3 .  

 I might trim this table a little for presentation in my article (e.g., removing the 
two columns on the right), but otherwise, this is essentially the table I would pres-
ent. I  fi nd the information in this table to be a lot more useful in understanding the 
data than is the information (taken as a whole) shown in Table  7.2  (this is especially 
true for models with more variables). As needed, I might consider including some-
thing like Table  7.3  in my article and present the information in Table  7.2  (and 
Table  7.1 ) on a website for ancillary information related to the article. 

 As noted above, I  fi nd it very useful to include the option, SIMPLE, in the PROC 
MI statement. If you do so, then at the end of the next section on univariate statistics, 
you will see the following output relating to the number and percent of missing data 
for each variable in the model. I  fi nd it useful to scan down the percent missing 
column and make sure that each percent missing makes sense based on what I 
already know about the data set. Be especially watchful when the percent missing is 
high. Does it make sense that some variables have 50 % (or more) missing data? 
This sometimes happens for the right reasons, for example, the data are missing due 
to a planned missing data design. But it is also possible that a high percent missing 
could be due to a simple coding error. It is important not to go forward until you 
have an adequate explanation. 

  Sample Data  � . Table  7.4  shows the part of the SAS output that relates the 
 number and percent missing for each variable in the model.  

   Table 7.3    Patterns of missing and observed values for wave participation   
 Cumulative  Cumulative 

 r7  r8  r9  Frequency  Percent  Frequency  Percent 

 0  1  1  166  6.02  166  6.02 
 1  0  1  213  7.73  379  13.75 
 1  1  0  944  34.25  1323  48.00 
 1  1  1  1433  52.00  2756  100.00 

   Table 7.4    Partial PROC MI output   
 Univariate Statistics 

 Missing Values 

 Variable  Count  Percent 

 alc7  177  6.42 
 riskreb71  1111  40.31 
 likepar72  1114  40.42 
 posatt72  1118  40.57 
 alc9  944  34.25 
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 Note that a small percentage (6.42 %) of students had missing data for Alc7, 
alcohol use at seventh grade. Normally there is virtually no missing data in this 
cohort on this variable at seventh grade. The small amount of missingness seen 
here is due mainly to the fact that in this data set, I included new students who 
“dropped in” to the study beginning at eighth grade. Also note that about 40 % 
of students were missing each of the other variables measured at seventh grade. 
This amount of missingness is due to the planned missingness design used in this 
study (see Chap.   12     for a discussion of this type of design). In this case, approxi-
mately a third of the students were not given these questions. Add to that the 
approximately 6 % not present at all at the seventh grade measure, and the num-
ber is very close to the 40 % missingness observed. The 34.25 % missing on Alc9 
re fl ects the somewhat greater attrition between eighth and ninth grades. This, 
too, makes sense given what I already know about these data.   

   Running PROC MI (Step 5): EM Algorithm 

 Just as with NORM, PROC MI  fi rst runs EM and then runs MCMC using the EM 
parameter estimates as starting values. However, unlike NORM, PROC MI runs the 
whole thing at once, so it is not as obvious which part is EM and which part is 
MCMC. 

 However, it is important to see how EM is performing before going ahead with 
MCMC. For example, are the defaults for MCMC appropriate? As described in 
Chap.   2    , having enough steps of MCMC (or DA) between imputed data sets is what 
allows normal-model MI to simulate random draws from the population. If too few 
steps are used, then the results of the MI inference will not be valid (because the 
between-imputation variance will be too small). 

 Thus, I strongly recommend running PROC MI in stages. First, examine the 
performance of EM without imputing anything. Sample PROC MI code for this is 
as follows: 

 proc mi data=a nimpute=0 simple; 
   em itprint; 
    var 
     alc7 alc8 alc9 
     riskreb71-riskreb74 
     likepar71-likepar75 
     posatt71-posatt73 
     riskreb81-riskreb84; 
 run; 

 Adding the nimpute = 0 option just saves the time of imputation during this step. 
In older versions (version 9.1), EM is run with PROC MI even without the “EM 
ITPRINT” statement. However, with SAS version 9.2, if the EM statement is 
 omitted, EM is not run. If EM option is given (as shown), the output is given for 

http://dx.doi.org/10.1007/978-1-4614-4018-5_12
http://dx.doi.org/10.1007/978-1-4614-4018-5_2
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EM (MLE). If just the “MCMC” option is given (EM omitted), then output for EM 
(posterior mode) is given. If both EM and MCMC statements are present, then out-
put is given for both EM (MLE) and EM (posterior mode). 

 Adding the “ITPRINT” option for EM produces the  fi t function value at each 
iteration (crucial information), along with means for each variable at each iteration 
(much less important information). 

  Sample Data  � . If you run the SAS statements shown just above, look in the out-
put for “EM (MLE) Iteration History”. The  fi rst thing listed for each iteration 
uses the value of the  fi t function (-2 Log L). This value should change monotoni-
cally over the iterations. In this example, note that the value is 39,047 at iteration 
0. At iteration 1, the value is 30,863. The values become smaller and smaller, 
until by iteration 24, the value is 28,813. Because only integers are shown in the 
output, you see no further changes in the function value through convergence at 
iteration 51. 

 As with the initial output, this part of the output is somewhat cluttered with 
 information of secondary importance (e.g., means for all variables at each iteration). 
On my screen (using options LS = 100), I  fi rst see all information for the  fi rst three 
iterations. It is  fi ve output pages before I see the function values for iterations 49–51. 
But persevere. It is important to verify that the function changes monotonically over 
the iterations. 

 The number of iterations to EM convergence can be seen in the output, but it also 
appears in the SAS LOG: 

  � NOTE:  The EM algorithm (MLE) converges in 51 
iterations. 

 The key information from the log is the number of iterations for EM (MLE) 
convergence. 

   EM Convergence: Maximum Iterations 

 The default is 200 for EM (MLE) convergence in PROC MI. Verify (in the SAS 
LOG or in the output) that EM (MLE) has indeed converged. There will be warning 
in the SAS log if EM (MLE) fails to converge in the default 200 iterations: 

  � WARNING: The EM algorithm (MLE) fails to converge 
after 200 iterations. You can increase the number 
of iterations (MAXITER=option) or increase the value 
of the convergence criterion (CONVERGE=option). 

 If you see this message, it is important. Although EM taking more than 200 itera-
tions to converge is not necessarily indicative of a problem, it is usually a good idea 
to take steps (e.g., modify or delete variables) if EM takes too long to converge. My 
rule of thumb is that if EM has not converged in 1,000 iterations, I can almost always 
make changes that will allow it to converge in fewer iterations. It is often a sign of a 
fundamental data problem when EM takes as many as 1,000 iterations to converge. 
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 If you see the warning that EM has not converged, it is important that you increase 
the maximum number of iterations (with the MAXITER = option), but you should 
NOT increase the value of the convergence criterion (see below) simply to get EM 
to converge within the 200 iteration limit.  

   Convergence Criterion 

 In Chap.   2    , I noted that EM converges when the elements of the covariance matrix 
stop changing appreciably from one iteration to the next. Of course, what consti-
tutes “appreciable” change can vary. The default convergence criterion for NORM 
is 1E-04 (.0001). It is important to know that with NORM, convergence is reached 
when the largest absolute change in any of the variance-covariance parameters, 
divided by that parameter’s value, is less than the criterion. But other criteria are 
possible. For example, with EMCOV (Graham and Hofer  1992 ; Graham and 
Donaldson  1993  ) , convergence is reached when the largest change in any of the 
variance-covariance parameters is smaller than the criterion (without dividing by 
the parameter’s value). With SAS, the convergence criterion is partly what is used 
with NORM (for parameter values greater than .01), and partly what is used for 
EMCOV (values less than .01). The upshot is that what constitutes “appreciable” 
change is a little different for NORM and for PROC MI. 

 In any event, the convergence rates for the three programs were different for the 
sample data set used for this book. Table  7.5  presents the convergence rates for the 
three programs with different convergence criteria. It is important to realize that 
these convergence rates do not generalize perfectly to other input data sets. However, 
it does point up the fact that, for whatever reason, PROC MI converges in fewer 
iterations than does NORM. The  fi gures in Table  7.5  suggest that in order to achieve 
comparable estimates of number of iterations to EM convergence, EM from PROC 
MI should specify CONVERGE = 1E-5.  

 I am not saying that NORM is right and PROC MI is wrong. I am saying that 
I have extensive experience with the number of iterations for EM convergence with 
NORM, so that is the number I want to use. I will do whatever I need to within 
PROC MI EM to get a similar number. And that “whatever” appears to be to use 
CONVERGE = 1E-5.  

   Table 7.5    Converge rates for three EM programs   
 Convergence Criterion 

 1E-3  1E-4  1E-5  1E-6 

 Norm 2.03  54   72   91 
 EMCOV  52   70   94 
 PROC MI  51   70   89 

http://dx.doi.org/10.1007/978-1-4614-4018-5_2
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   Maximum-Likelihood Estimate or Posterior Mode    

 I describe the difference between these two modes of estimation here. SAS (v. 9) 
PROC MI does not have a separate PRIOR = statement for EM. But the 
PRIOR = option used under the MCMC statement also applies to the estimation 
of EM. 

 The decision to be made here is whether to ask for the standard maximum- 
likelihood estimate or to use the Bayesian posterior mode under ridge prior with 
hyperparameter. My view is that the ML solution is better if it works, so it is always 
best to try that  fi rst. But occasionally, the ML mode does not work well (e.g., EM 
takes more than 1,000 iterations to converge, or never converges). I have found that 
having few or no cases with complete data can often (but not always) produce this 
problem. The problem can also manifest itself when one or more variables have a 
very high percent missing data. 

 The posterior mode under ridge prior is like ridge regression (e.g., see Price 
 1977  )  in some respects. Ridge regression has been used when the predictors in mul-
tiple regression are so highly correlated as to produce unstable results. In ridge 
regression, one adds a small constant to all of the diagonal elements of the input 
correlation matrix (e.g., making them all 1.01 rather than 1.00). It is easy to see that 
all correlations in this new input matrix are slightly biased toward 0. The result is 
that the regression results will be slightly biased, but the solution will also be more 
stable because the predictors are less correlated. 

 A similar thing happens with multiple imputation. The idea is to introduce a little 
bias in order to make the MI solution more stable. Adding a ridge prior with hyper-
parameter is a little like adding some number of cases at the bottom of one’s data 
set, such that all of the variables are uncorrelated. The number of cases added is 
similar to the value of the hyperparameter. So, if one sets the hyperparameter to 5 
(with PRIOR = RIDGE = 5), it is a little like adding  fi ve cases at the bottom of one’s 
data set. It makes sense why this should work. If your data set has no complete 
cases, then adding these  fi ve cases means that your data set now has  fi ve complete 
cases. But the cost of doing this is that all correlations are biased slightly toward 0. 
This is why I say that I prefer using the ML mode if it works; I would like to avoid 
this bias if possible. Also, even if you must use the posterior mode, it is a good idea 
to use a hyperparameter as small as possible. My rule of thumb here is to use a 
hyperparameter no larger than 1 % of the overall sample size. In order to help keep 
that number as low as possible, think of the hyperparameter as adding “bogus” cases 
to the bottom of your data sets. What reviewer will respond favorably to your add-
ing a large number of bogus cases to your data set?  

   Informative Prior 

 The uninformative prior (Jeffreys prior) is a way to use the Bayesian posterior mode 
that is most similar to ML estimation. However, in addition to using the Ridge prior, 
it is also possible in SAS to use an informative prior. Let me talk brie fl y about a 
study that used a skip pattern (very common in survey research). That survey  fi rst 
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asked adolescent participants if they had ever smoked in their life (yes or no). If the 
person responded “yes,” then he or she received the follow-up question asking how 
much was smoked in the previous 30 days. But if the person answered “no,” the 
follow-up 30-day smoking question was not presented. 

 With data like these, it makes sense that one could estimate the correlation 
between the lifetime smoking question and some other variable (e.g., grades in 
school), and between the 30-day smoking question and grades in school. But the 
correlation between lifetime smoking and 30-day smoking is not estimable in these 
data, because the only people with data for the 30-day question have a constant 
(“1”) on the lifetime smoking question. Nevertheless, just because it is not estimable 
in these data, it makes sense that there is a correlation between one’s lifetime smok-
ing and one’s smoking in the previous 30 days. And under some circumstances, it 
might be useful to have both of these variables in the same analysis model. 

 Suppose you had another data set based on a comparable population for which 
the dichotomous lifetime smoking and 30-day smoking questions were both 
observed. That data set would provide a reasonable basis for estimating the correla-
tion between lifetime and 30-day smoking in the data with the skip pattern. Under 
these circumstances, you can make use of the  PRIOR = INPUT = [SAS data set]  
option (under the MCMC statement) to provide enough information to allow the 
estimation of the correlations for the three variables, lifetime smoking, 30-day 
smoking, and grades in school. This data set is a TYPE = COV data set in SAS, 
where the N provided in the data set is like the hyperparameter given with the 
PRIOR = RIDGE option. 

 As I suggested above, using the ridge option with hyperparameter is a little like 
adding a certain number of bogus cases to the bottom of your data set, such that all 
of the variables are uncorrelated. Similarly, using this informative prior is a little 
like adding a certain number of bogus cases to the bottom of your data set such that 
the variables in question have the correlation speci fi ed in the TYPE = COV data set. 
And as with using the ridge prior, the N used with the PRIOR = INPUT = option 
should be kept as small as possible.  

   Using an Informative Prior: Be Very Cautious 

 I very much like the fact that adding an informative prior is even possible with SAS 
PROC MI. But one of my basic philosophies of life is that just because something 
is possible, it does not mean one should do it. In this case, adding an informative 
prior to one’s analysis requires rather strong assumptions. I would say that this 
approach should be attempted,  fi rst with great caution, and only then when the 
potential payoffs are substantial.  

   EM Output: ML Estimates 

 Near the bottom of the EM output are EM (MLE) parameter estimates: means, stan-
dard deviations, and the correlation or covariance matrix. I believe these are the best 
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point estimates for these parameters. If you want to report these quantities in your 
article, I believe they should come from this output. Your table (or text) should, of 
course, be clear that these means and standard deviations (and correlation matrix) 
are EM parameter estimates. Remember that in order to get these EM estimates 
(MLE), you must have the EM statement in PROC MI.  

   Speed of EM 

 How long it takes EM to converge depends on many factors. The two biggest factors 
are the number of variables ( k ) in the model and the amount of missing information 
(related to the amount of missing data). EM estimates  k ( k  + 1)/2 variances and cova-
riances and  k  means. Table  7.6  shows how the number of parameters to be estimated 
increases exponentially with the number of variables. Because the EM algorithm 
works primarily with the variance-covariance matrix, and other matrices of the same 
size, the number of variables is far more important to the time to EM convergence 
than is the number of cases.  

 The second major factor in EM convergence rate is the amount of missing data. 
The more missing data, the longer it takes EM to converge. Another factor is the 
correlation between other variables in the model and the variables with missing data 
(higher correlations mean faster convergence). The number of different missing 
data patterns also contributes to the convergence rate (more patterns take longer). 
I have also observed that EM with highly skewed variables can take longer to 
converge.  

   Output the EM (MLE) Variance-Covariance Matrix 

 A very useful feature in SAS is the ability to produce TYPE = COV data sets. Of 
course, such data sets come most commonly from PROC CORR, and can be used as 
input to several other procedures, including PROC FACTOR and PROC REG. It is 

   Table 7.6    Increase in parameters estimated 
in EM as number of variables increases   

 Variables  Parameters estimated 
  k   [( k ( k  + 1)/2) +  k ] 

 20  230 
 40  860 
 60  1,890 
 80  3,320 

 100  5,150 
 120  7,380 
 140  10,010 
 160  13,040 
 180  16,470 
 200  20,300 
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especially important that PROC MI also has the capability of producing an EM 
(MLE) variance-covariance matrix as a TYPE = COV data set. The code for writing 
out this data set is given below. 

 proc mi data=a nimpute=0; 
   em outem=b; 
     alc7 alc8 alc9 
     riskreb71-riskreb74 
     likepar71-likepar75 
     posatt71-posatt73 
     riskreb81-riskreb84; 
 run; 

 The description of using this output data set with PROC FACTOR and PROC 
REG is given later in this chapter.   

   Running PROC MI (Step 6): Impute From (EM) Parameters 

 Imputing from EM parameters is with PROC MI is easy. The only major difference 
between the imputing from EM parameters with PROC MI and NORM is that with 
PROC MI, the EM estimates for imputation are the EM (posterior mode) estimates, 
whereas with NORM, the EM estimates for imputation are the ML estimates. These 
two sets of estimates do tend to be very similar, as long as the uninformative 
(Jeffreys) prior is used for posterior mode (this is the default in PROC MI). 

 The key here is that one does not want to iterate at all. This can be accomplished 
by suppressing all MCMC iteration. The sample code for generating this single data 
set imputed from EM parameters is given below. 

 proc mi data=a nimpute=1 out=b; 
   mcmc nbiter=0 niter=0; 
     alc7 alc8 alc9 
     riskreb71-riskreb74 
     likepar71-likepar75 
     posatt71-posatt73 
     riskreb81-riskreb84; 
 run; 

 The data set resulting from the OUT = B statement can then be used like any 
other regular SAS data set. As I suggest in later in this chapter, this data set is 
 particularly useful for conducting data quality (coef fi cient alpha) analysis. However, 
this data set should not be used for hypothesis testing. Hypothesis testing should be 
carried out only with multiple imputations.  
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   Running PROC MI (Step 7): MCMC (and Imputation) 

 The MCMC (and imputation) part of this process should be run as a separate step 
after verifying that EM converges normally and knowing the number of iterations it 
took for EM convergence (using CONVERGE = 1E-5). Note that I am now asking 
for 40 imputations with the NIMPUTE = 40 option. 

 proc mi data=a nimpute=40 out=b; 
   mcmc nbiter=200 niter=70; 
     var 
     alc7 alc8 alc9 
     riskreb71-riskreb74 
     likepar71-likepar75 
     posatt71-posatt73 
     riskreb81-riskreb84; 
 run; 

 Recall that EM (with CONVERGE = 1E-5) converged in 70 iterations (see 
Table  7.5 ). So the number of MCMC iterations between imputed data sets should be 
70. Accomplish this with the NITER = 70 option within the MCMC statement. For 
the number of burn-in iterations (i.e., the number of MCMC iterations before imput-
ing the  fi rst data set), my rule of thumb is to use the SAS default (NBITER = 200) 
whenever EM converged in 200 or fewer iterations. After that, allow NBITER and 
NITER to increase to the same value (although it may be necessary to see the plots 
to judge whether a larger number of burn-in iterations is required). For example, if 
EM converged in 237 iterations, then the settings for MCMC would be NBITER = 237 
and NITER = 237. I encourage you to use the NBITER = and NITER = statements 
even when the defaults are used. I  fi nd that this keeps me from omitting these state-
ments mistakenly when they should be used. 

 Note that when you run MCMC without the EM statement, EM convergence will 
revert to the default convergence levels. This is reasonable; EM estimates are used 
only as starting values for MCMC iteration. As long as these estimates are reason-
able, and they will be even with the default, CONVERGE = 1E-4, the burn-in itera-
tions for MCMC will produce a meaningful  fi rst imputed data set. However, if for 
some reason you would like to retain the more stringent convergent criteria for both 
the MLE and posterior mode EM estimates, do so with separate CONVERGE = state-
ments within the EM and MCMC statements: 

 proc mi data=a nimpute=40 out=b; 
  em converge=1e-5; 
  mcmc nbiter=200 niter=70 initial=em(converge=1e-5); 

 The CONVERGE = option within the EM statement controls the convergence 
criterion for EM (MLE), and the CONVERGE = option within the MCMC state-
ment controls the convergence criterion for EM (posterior mode). 
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 At the same time you are doing the MCMC and imputation part of the process, 
I strongly encourage you to ask for the diagnostic plots. These plots must be speci fi ed 
explicitly in SAS: 

 proc mi data=a nimpute=40 out=b; 
   mcmc nbiter=200 niter=70 acfplot(cov mean wlf) 
timeplot(cov mean wlf); 

 The ACFPLOT is a plot of the auto correlations of parameters over iterations of 
MCMC. The TIMEPLOT is the plot of the parameter estimates themselves over all 
iterations of MCMC. For the two plots, COV refers to the elements of the variance-
covariance matrix, MEAN refers to the estimates of the means, and WLF refers to 
the “worst linear function.” I suggest you typically ask for both kinds of plots with 
all three of kinds of estimates. 

  Sample Data  � . This problem took just under 2.5 min with a Dell Latitude D620 
laptop (2 GHz Core Duo processor with 1 GB RAM) and just under 28 s with a 
Dell Latitude E6320 laptop (Intel® Core(TM) i7-2620 M CPU @ 2.70 GHz, 
with 4 GB RAM). 

 Results of Imputation � . Once completed, there will be  m  (e.g., 40) imputed data 
sets in the speci fi ed SAS output  fi le.  

   Running PROC MI (Step 8): MCMC Diagnostics 

 The  fi nal step in the imputation process is to check the diagnostic plots. The goals 
of checking these plots are to verify (a) that the number of MCMC steps between 
imputed data sets was suf fi cient, and (b) that the imputation solution was “accept-
able,” and not “pathological.” Remember that we use the MCMC procedure to 
 simulate random draws from the population. So it makes sense that each parameter 
estimate from each random draw from the population would come from legal 
parameter space. That is, each parameter value would fall in a reasonable range of 
values. If the time series (trace) plot is somewhat rectangular in appearance, that 
suggests that a parameter value drawn anywhere along the width of the plot would 
fall in the same range of values. I say this is an “acceptable” plot, because it means 
that imputed data sets from the DA run are a good representation of multiple ran-
dom draws from the population. The trace plot displayed in Fig.  7.1  (panel a1) is an 
example of an acceptable plot. However, the 1,000 MCMC iterations in this plot is 
not a very large number; because of this, the plot does look a little ragged. The plot 
displayed in Fig.  7.1  (panel a2) was based on 5,000 MCMC iterations. This plot is 
more clearly an example of an acceptable MCMC run.  

 On the other hand, if the time series (trace) plot snakes slowly up or down over 
the width of the plot, then it is likely that parameter values drawn at one point will 
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     Fig. 7.1    Diagnostic plots. Plots depict M1 solutions that range from clearly acceptable to clearly 
pathological       
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be larger or smaller than parameter values drawn at other points along the width of 
the plot. I refer to this as a “pathological” plot, because it does not re fl ect a good 
simulation of random draws from the population. The plot displayed in Fig.  7.1  
(panel b1) appears to have this problem. Parameter values early in the series are 
clearly lower than those later in the series. However, this may be an artifact of (a) a 
burn-in period that was too short, and (b) having too few overall MCMC iterations. 
Figure  7.1  (panel b2) displays the time series (trace) plot for the same data, but with 
10,000 MCMC iterations. This plot is much more clearly acceptable; however, note 
that the  fi rst 1,000 or so iterations are still somewhat lower than the remainder of the 
plot. This is further evidence that the burn-in should have a larger number of MCMC 
iterations. Figure  7.1  (panel b3) displays the WLF plot for these same data. This plot 
much more clearly shows that at least 1,000 burn-in MCMC iterations are required 
(nbiter = 1,000), and that after about 1,000 iterations, the plot looks acceptable. 

 Figure  7.1  (panel c1) displays a time series (trace) plot that shows a clearly 
 pathological MCMC run. However, one might question whether the shape of this 
plot is due to the relatively small number of MCMC iterations (1,100). Figure  7.1  
(panel c2) displays the time series plot for the same data, but with 5,000 MCMC 
iterations. Clearly, the pathological nature of this plot was not due to the relatively 
small number of iterations. For these data, even with posterior mode and a small 
hyperparameter, the plot remains pathological (see Fig.  7.1 , panel c3). These data 
came from two questions with a skip pattern. If the person responded with “0” to the 
 fi rst question (“never smoked”), then he or she did not see the second question 
(How many cigarettes smoked in past 30 days), that is, the second question was 
always missing. Because the  fi rst question had only two categories (“0” or “1”), the 
correlation between the two questions could not be estimated, even using posterior 
mode with a small hyperparameter. 

   Options for the ACFPLOT 

 One option for the ACFPLOT is the number of lags for the autocorrelations. The 
value of examining these plots is to verify that the number of MCMC steps between 
imputed data sets was reasonable. Therefore, you need the number of lags to be 
larger than the number of MCMC steps between imputed data sets. In our example, 
EM converged with 70 iterations, so I set NITER = 70. In this case, then, the number 
of lags should be larger than 70; setting NLAG = 100 or NLAG = 150 would be a 
good idea in this case. The default for NLAG = 20, which is way too few to be useful 
in many instances. Be sure to set this value before you run PROC MI. 

  Sample Data  � . I analyzed the 19 variable data set, asking for the Time Series 
(trace) and ACF plots, using the code shown below. 
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 proc mi data=a nimpute=1 out=b; 
  em itprint converge=1e-5 maxiter=1000; 
   mcmc nbiter=1000 niter=1000 acfplot(cov mean wlf/
nlag=150)   timeplot(cov mean wlf); 

   var 
   alc7 alc8 alc9 
   riskreb71-riskreb74 
   likepar71-likepar75 
   posatt71-posatt73 
   riskreb81-riskreb84; 

 The code given above illustrates how one might examine the diagnostic plots 
before performing the imputations. The time series (trace) plot for the worst 
linear function for these data appears in Fig.  7.2  (panel a). I would judge this plot 
to re fl ect an acceptable MCMC run. However, as with the plot shown in Fig.  7.1  
(panel a1), this plot does look a little raged. Increasing the number of MCMC 
iterations (with nbiter = 5,000) yielded the plot shown in Fig.  7.2  (panel b). 

  Fig. 7.2    Diagnostic plots for sample data       

 



174 7 Multiple Imputation and Analysis with SAS

As with the plot shown in Fig.  7.1  (panel a2), increasing the number of MCMC 
iterations to 5,000 makes it clearer that this is an acceptable MCMC run. The plot 
shown in Fig.  7.2  (panel b) also shows that the burn-in should have a minimum 
of about 200 MCMC iterations.  

 ACF Plots. The ACF plot for the sample data appears in Fig.  7.2  (panel c). 
The plot shows that the autocorrelation for this parameter drops below the 
signi fi cance line at a lag of around 35. This plot veri fi es that writing out an 
imputed data set after every 70 MCMC iterations is reasonable for these data. 

 The diagnostic plots in PROC MI are a little less convenient to examine than are 
the plots produced by NORM. But they are good, readable plots. Wending your 
way through the plots may be a bit tedious (in PROC MI or NORM), but it is usu-
ally just a one-time job when you impute. Making use of the WLF does give you a 
sense of the worst it can get, but in my experience, it is better to take the time to 
examine the plots of individual parameters. Once you have gained experience with 
a particular set of variables, it is not necessary to keep examining the plots. And, 
you are often able to focus on the parameters that are likely to create the most prob-
lems. Also, in viewing the plots, it is not necessary to stare at each plot. You can 
move through them quickly and still comprehend all you need in a relatively short 
amount of time.    

   Direct Analysis of EM (MLE) Covariance Matrix 
with PROC FACTOR, PROC REG 

 One of the beauties of working with SAS is that it is possible to estimate an EM 
(MLE) covariance matrix with PROC MI, and then analyze that matrix directly with 
other SAS PROCs such as PROC FACTOR, and to an extent PROC REG. 

   PROC FACTOR with an EM Covariance Matrix as Input 

 I do not intend this to be a tutorial in performing exploratory factor analysis with 
PROC FACTOR. Mainly I want to familiarize you with the syntax for performing 
this very useful analysis. Here is the syntax: 

 proc mi data=a nimpute=0; 
   em outem=b; 
    var 
    alc7 alc8 alc9 
    riskreb71-riskreb74 
    likepar71-likepar75 
    posatt71-posatt73 
    riskreb81-riskreb84; 
 run; 
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 proc factor data=b(type=cov) method=prin rotate=promax 
   round reorder; 
   var 
    riskreb71-riskreb74 
    likepar71-likepar75 
    posatt71-posatt73 
    riskreb81-riskreb84; 
 run;  

   PROC REG with an EM Covariance Matrix as Input 

 Before I present the material in this section, let me explain that I do NOT recom-
mend that the EM covariance matrix be used directly for the regression analysis. In 
this book, I have said repeatedly that the EM covariance cannot be used for hypoth-
esis testing. My use of PROC REG with an EM covariance matrix is a special case 
and does NOT involve hypothesis testing. 

 One of the most frequently asked questions I get is:
   How do I estimate the R 2  in multiple regression with multiple imputation?    

 And the related question:
   How do I get standardized regression coef fi cients with multiple imputation?    

 I have two answers to both of these questions. First, the R 2  and standardized 
regression coef fi cients are parameter estimates. So one can certainly use multiple 
imputation to estimate them. The biggest problem with that approach, however, is 
that these two parameter estimates typically do not have associated standard errors. 
Thus, one must  fi ddle with the multiple imputation solution in order to get it to 
work. Or one must use some other way to calculate the mean of these quantities over 
the  m  imputed data sets. 

 But a much easier and completely acceptable alternative is available. Simply 
perform a single multiple regression analysis with the EM covariance matrix as 
input. Because researchers typically use the R 2  and standardized regression 
coef fi cients without signi fi cance tests, all one is really interested in here are the 
parameter estimates themselves. And, we know that EM produces excellent param-
eter estimates. 

 I do not intend this to be a tutorial on performing multiple regression analysis, so 
I am presenting this section mainly to familiarize you with the syntax necessary to 
carry out this analysis. So here is one, very simple, multiple regression analysis with 
the EM covariance matrix as input. 
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 proc mi data=a nimpute=0; 
   em outem=b; 
    var 
    alc7 alc8 alc9 
    riskreb71-riskreb74 
    likepar71-likepar75 
    posatt71-posatt73 
    riskreb81-riskreb84; 
 run; 

 proc reg data=b(type=cov); 
   model alc9=alc7 riskreb71 likepar72 posatt72/stb; 
 run; 

 The standardized regression coef fi cients and R 2  from this analysis may be placed 
directly into your article. Usually this information would be used in conjunction 
with regular MI (see below) for the main hypothesis tests.   

   Analysis of Single Data Set Imputed from EM Parameters 
with PROC CORR ALPHA 

 Again, in this section, my goal is not to provide a tutorial for performing coef fi cient 
alpha analysis. I simply wish to acquaint you with this strategy for performing these 
analyses with missing data, using the single data set imputed from EM parameters 
input for the analysis. 

 In the code that follows, by using NBITER = 0, and NITER = 0, and NIMPUTE = 1, 
I am asking that the one data set be imputed from the starting values provided to 
MCMC. Those starting values are the EM (posterior mode) estimates. Although 
they are not identical to the EM (MLE) estimates, they are very close. I believe this 
to be an excellent option for performing this analysis. 

 proc mi data=a nimpute=1 out=b; 
   mcmc nbiter=0 niter=0; 
     var 
     alc7 alc8 alc9 
     riskreb71-riskreb74 
     likepar71-likepar75 
     posatt71-posatt73 
     riskreb81-riskreb84; 

 proc corr data=b alpha;var riskreb71-riskreb74; 
 proc corr data=b alpha;var likepar71-likepar75; 
 proc corr data=b alpha;var posatt71-posatt73; 
 proc corr data=b alpha;var riskreb81-riskreb84; 
 run; 

 proc corr data=b;var alc7 alc8 alc9; 
 run; 
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 The last PROC CORR statement was included in the syntax above simply to 
illustrate that this approach may also be used to examine the test-retest correlation 
between two scales. Note that in all of these analyses, all correlations are condi-
tioned on all 19 variables included in the PROC MI analysis, even though only a 
few of those variables are included in each PROC CORR analysis.  

   Analysis of Multiple-Imputed Data with PROC REG, 
PROC LOGISTIC, PROC MIXED 

 One of the real joys of doing multiple imputation with PROC MI is that once the 
data have been imputed (successfully), it is an easy matter to perform analyses with 
procedures like PROC REG, PROC LOGISTIC, and PROC MIXED. 

   Analysis of Multiple-Imputed Data with PROC REG 

 Analysis of multiple-imputed data sets with PROC REG is exceptionally easy. 
Below is the syntax for the PROC MI, PROC REG, and PROC MIANALYZE. 
Given that this is the  fi rst time PROC MIANALYZE has been discussed, let me say 
that this is the program with which the saved results from the PROC REG analysis 
are combined using Rubin’s Rules for MI inference. 

 proc mi data=a nimpute=40 out=b; 
   mcmc nbiter=200 niter=70 acfplot(cov mean wlf/nlag=150) 
      timeplot(cov mean wlf); 
     var 
     alc7 alc8 alc9 
     riskreb71-riskreb74 
     likepar71-likepar75 
     posatt71-posatt73 
     riskreb81-riskreb84; 

 proc reg data=b outest=c covout noprint; 
   model alc9=alc7 riskreb71 likepar72 posatt72; 
   by _imputation_; 
 run; 

 proc mianalyze data=c; 
    modeleffects intercept alc7 riskreb71 likepar72 

posatt72; 
 run; 

 Let me go through the syntax for the PROC REG statement. The DATA = B 
option speci fi es which data set will be read into PROC REG. DATA = B is the 
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default in this case, but I  fi nd it useful to be explicit about this. With complicated or 
repetitive code, it is sometimes possible to read in the wrong data set. 

 OUTEST = C is the option that writes the parameter estimates from PROC REG 
out to a SAS  fi le named “C”. The “BY _IMPUTATION_” statement tells SAS to 
perform the PROC REG and the writing out of results separately for each of the 
 m  = 40 imputed data sets. The COVOUT option speci fi es that the covariance matrix 
of the estimates be output along with the parameter estimates, for each of the  m  = 40 
imputations. The main diagonal of this matrix is the variance of the estimates. The 
square roots of these variances are the standard errors of the estimates. 

 As an exercise, specify PROC PRINT;RUN; immediately after the RUN; state-
ment for PROC REG. This will help you see the organization of the SAS data set 
containing the results of PROC REG for each of the  m  = 40 imputed data sets. It is:

    1.    Parameter estimates for imputation 1  
    2.    Covariance matrix of estimates for imputation 1  
    3.    Parameter estimates for imputation 2  
    4.    Covariance matrix of estimates for imputation 2 and so on     

 The NOPRINT option with PROC REG suppresses the output for the individual 
PROC REG analyses. I  fi nd this useful because (a) there is typically too much out-
put, and (b) examining that output almost always leads people to make incorrect 
inferences about their data. Remember, it is not the individual imputed values or the 
results from the individual imputed data sets that are important. It is the combined 
results. Thus, I encourage you to ignore the individual results and focus on the com-
bined results. 

 The syntax for PROC MIANALYZE is also given above. I am generally explicit 
in specifying the input data set, but PROC MIANALYZE generally follows imme-
diately after the relevant PROC statement, and the default data set will almost 
always be the correct one. The MODELEFFECTS statement replaces the VAR 
statement from the earlier versions of PROC MI. The “INTERCEPT” may be 
speci fi ed as one of the MODELEFFECTS. In this version of SAS, the variable 
“INTERCEPT” has all its letters (version 8.2 did not include the last “T” in order to 
keep the variable name to eight characters). If you forget what it is called, run the 
PROC PRINT I described just above.  

   PROC MIANALYZE Output for PROC REG 

 Table  7.7  presents the results of PROC MIANALYZE produced from the code 
given just above. This output is based on the PROC REG analysis of 40 imputed 
data sets. The presentation of the results in MIANALYZE is a little unfortunate in 
that it does not bear much resemblance to the output from PROC REG or the other 
PROCs. Still, all the relevant information is there, and you will grow accustomed to 
reading it. Note that the output from PROC MIANALYZE is a little more readable 
if you specify a long output line length (e.g., OPTIONS LS = 120, or OPTIONS 
LS = 255).  
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   Table 7.7    PROC MIANALYZE: output from PROC REG   
 Formatted with OPTIONS LS=80 

 The MIANALYZE Procedure 

 Model Information 
 Data Set  WORK.C 
 Number of 

Imputations 
 40 

 Variance Information 
 –––––––––––––––––Variance––––––––––––––––––––– 

 Parameter  Between  Within  Total  DF 
 intercept  0.052060  0.028638  0.081999  92.093 
 alc7  0.000290  0.000471  0.000768  260.77 
 riskreb71  0.003102  0.002159  0.005338  109.94 
 likepar72  0.001754  0.001198  0.002995  108.31 
 posatt72  0.004029  0.002386  0.006516  97.069 

 Variance Information 
 Relative  Fraction 
 Increase  Missing  Relative 

 Parameter  in Variance  Information  Ef fi ciency 
 Intercept  1.863328  0.658101  0.983814 
 alc7  0.630601  0.391379  0.990310 
 riskreb71  1.472799  0.602761  0.985155 
 likepar72  1.500476  0.607262  0.985045 
 posatt72  1.731175  0.641175  0.984224 

 Parameter Estimates 
 Parameter  Estimate  Std Error  95% Con fi dence 

Limits 
 DF 

 Intercept  2.908503  0.286355  2.33979  3.47722  92.093 
 alc7  0.607158  0.027707  0.55260  0.66172  260.77 
 riskreb71  0.143061  0.073065  -0.00174  0.28786  109.94 
 likepar72  -0.214834  0.054731  -0.32332  -0.10635  108.31 
 posatt72  0.103754  0.080721  -0.05645  0.26396  97.069 

 Parameter Estimates 
 Parameter  Minimum  Maximum 
 Intercept  2.419720  3.310048 
 alc7  0.556408  0.633649 
 riskreb71  0.030990  0.243192 
 likepar72  -0.285737  -0.117881 
 posatt72  -0.032115  0.260663 

 Parameter Estimates 
 t for H0: 

 Parameter  Theta0  Parameter = 
Theta0 

 Pr > |t| 

 Intercept  0  10.16  <.0001 
 alc7  0  21.91  <.0001 
 riskreb71  0  1.96  0.0528 
 likepar72  0  -3.93  0.0002 
 posatt72  0  1.29  0.2017 
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 All of the relevant information is there in the output. When I do PROC REG with 
MI, however, I tend to focus on a few bits of information. And, to help me focus on 
the key results, I prefer to reformat the results every time I do this analysis. For 
example, I would reformat these results to what is shown in Table  7.8 .  

 For me, the key information is the parameter estimate, its standard error (based 
on Rubin’s rules), and the  t -value (estimate divided by its standard error). And at the 
far right, the  p -value. The DF and %MisInf, or fraction of missing information 
(FMI), are two quantities that are peculiar to multiple imputation. 

   Fraction of Missing Information 

 The FMI, as discussed in Chap.   2    , is related to the simple percent of missing data. 
But it is adjusted (downward) by the presence of other variables that are highly cor-
related with the variables with missing data. Remember that what appears in the 
output is just an estimate of the FMI; the estimate becomes stable only with a large 
number of imputations. Even with  m  = 40 imputations, there can still be consider-
able “wobble” in the FMI estimate.  

   Multiple Imputation Degrees of Freedom 

 As described in Chap.   2    , DF has unique meaning in multiple imputation. It is not 
related to the sample size, as in the common complete cases analysis. I like to think 
of it as an indicator of the stability of the estimates. When DF is low (the minimum 
is  m− 1), it indicates that  m  was too low, and that the parameter estimates remain 
unstable. When DF is high (substantially higher than  m ), it is an indicator that the 
estimation has stabilized. The bottom line is that whenever the DF is only margin-
ally higher than  m , it is an indicator that more imputations are needed.   

   Table 7.8    Reformatted MI output   

 Parameter  EST  SE  t  df  % mis inf  p 

 intercept  2.909  0.2864  10.16  92  65.8  .0000 
 alc7  0.607  0.0277  21.91  260  39.1  .0000 

 rebel71  0.143  0.0731  1.96  109  60.3  .0528 
 likpar72  -0.215  0.0547  -3.93  108  60.7  .0002 
 posatt72  0.104  0.0807  1.29  97  64.1  .2017 

http://dx.doi.org/10.1007/978-1-4614-4018-5_2
http://dx.doi.org/10.1007/978-1-4614-4018-5_2
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   Proc Reg with Multiple Dependent Variables 

 The code described above for using PROC REG with multiple implementation 
works only with one dependent variable at a time, even though PROC REG itself 
works well with multiple dependent variables. A simple trick allows you to use 
PROC REG with two or more dependent variables at the same time. The trick is to 
sort the output data set by the dependent variable and to use BY processing with 
PROC MIANALYZE. The code assumes that you have already run PROC MI and 
that you have speci fi ed the output stacked data set with OUT = B. These differences 
between this code and the previous code for one dependent variable are highlighted 
in bold print. 

 proc reg data=b outest=c covout noprint; 
    model alc8 alc9=alc7 riskreb71 likepar72 posatt72; 
    by _imputation_; 
 run; 

  proc sort;by _depvar_;run;  

 proc mianalyze data=c; 
     modeleffects intercept alc7 riskreb71 likepar72 

posatt72; 
     by _depvar_;  
 run; 

 The output for this analysis appear in Table  7.9  (for Dependent Variable = Alc8 
only). In this analysis, I examined the effects alc7, riskreb71, likepar72, and pos-
att72 on alcohol use at eighth (alc8) and ninth (alc9) grades. A nice by-product of 
inserting the PROC SORT statement between the PROC REG and PROC 
MIANALYZE statements is that the dependent variable is listed at the top of each 
output page (something that does not happen normally). So I usually like to make 
use of this “trick” even when dealing with just one dependent variable at a time.  

 Note that this analysis shows that all three seventh grade predictors (risk-taking/
rebelliousness, liking for parents, and beliefs about the positive consequences of 
alcohol use) were signi fi cant predictors of eighth grade alcohol use (alc8) after con-
trolling for seventh grade alcohol use (alc7).  



   Table 7.9    PROC MIANALYZE output sorted by _depvar_   
  Dependent variable=alc8  
 The MIANALYZE Procedure 

 Model Information 
 Data Set  WORK.C 
 Number of 

Imputations 
 40 

 Variance Information 
 –––––––––––––––––––Variance––––––––––––––––––– 

 Parameter  Between  Within  Total  DF 
 Intercept  0.014139  0.021589  0.036082  241.73 
 alc7  0.000110  0.000351  0.000464  664.88 
 riskreb71  0.001101  0.001622  0.002751  231.53 
 likepar72  0.000616  0.000897  0.001528  228.39 
 posatt72  0.002107  0.001788  0.003948  130.27 

 Variance Information 
 Relative  Fraction 
 Increase  Missing  Relative 

 Parameter  in Variance  Information  Ef fi ciency 
 Intercept  0.671317  0.406559  0.989938 
 alc7  0.319595  0.244461  0.993926 
 riskreb71  0.696125  0.415449  0.989721 
 likepar72  0.704246  0.418302  0.989651 
 posatt72  1.208283  0.553955  0.986340 

 Parameter Estimates 
 Parameter  Estimate  Std Error  95% Con fi dence 

Limits 
 DF 

 Intercept  1.371896  0.189952  0.99772  1.74607  241.73 
 alc7  0.676670  0.021534  0.63439  0.71895  664.88 
 riskreb71  0.193980  0.052447  0.09064  0.29731  231.53 
 likepar72  -0.108091  0.039093  -0.18512  -0.03106  228.39 
 posatt72  0.227718  0.062832  0.10342  0.35202  130.27 

 Parameter Estimates 
 Parameter  Minimum  Maximum 
 Intercept  1.106418  1.565042 
 alc7  0.655318  0.698939 
 riskreb71  0.123783  0.245823 
  Dependent variable=alc8  
 The MIANALYZE Procedure 

 Parameter Estimates 
 Parameter  Minimum  Maximum 
 likepar72  -0.159370  -0.055149 
 posatt72  0.116454  0.308355 

 Parameter Estimates 
 t for H0: 

 Parameter  Theta 0  Parameter = 
Theta 0 

 Pr > |t| 

 Intercept  0  7.22  <.0001 
 alc7  0  31.42  <.0001 
 riskreb71  0  3.70  0.0003 
 likepar72  0  -2.76  0.0062 
 posatt72  0  3.62  0.0004 
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   Analysis of Multiple-Imputed Data with PROC LOGISTIC 

 The syntax for performing logistic regression with PROC LOGISTIC is virtually 
the same as that used for PROC REG. 

 proc mi data=a nimpute=40 simple out=b; 
   mcmc nbiter=200 niter=70 ; 
    var 
     alc7 alc8 alc9 
     riskreb71-riskreb74 
     likepar71-likepar75 
     posatt71-posatt73 
     riskreb81-riskreb84; 
 run; 

 data b2;set b; 
 *** ==================================================== ***; 
 *** create a meaningful dichotomous version of alc9 variable 
 *** for use with logistic regression *** 
 ***  I am not recommending this dichotomizing procedure in 

general. 
 *** I am simply using it for this example.; 
 *** ==================================================== ***; 

   if -100<alc9<=2 then xalc9=0; 
    else if alc9>2 then xalc9=1; 
 run; 

 proc logistic data=b2 outest=c covout; 
   model xalc9 (event=’1’)=alc7 riskreb71 likepar72 posatt72; 
   by _imputation_; 
 run; 

 proc print;run; 

 proc mianalyze data=c; 
   modeleffects intercept alc7 riskreb71 likepar72 posatt72; 
 run; 

 The PROC MIANALYZE output from these statements, which appears in 
Table  7.10 , is laid out exactly as it was for PROC REG.  

 Differences in these results from the PROC REG analysis shown with the same 
data could stem from two sources. First, of course, the two analyses are different, 
and the dependent variable itself was dichotomized for PROC LOGISTIC for 
illustrative purposes. Second, because I imputed  m  = 40 data sets twice, there 
would naturally be a little imputation wobble (slightly different results even if the 
same analysis were used, e.g., see the differences in results displayed in Tables 4.2 
and 4.3).  
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   Table 7.10    PROC MIANALYZE: output from PROC LOGISTIC   
 The MIANALYZE Procedure 

 Model Information 
 Data Set  WORK.C 
 Number of 

Imputations 
 40 

 Multiple Imputation Variance Information 
 –––––––––––––––––––Variance––––––––––––––––––– 

 Parameter  Between  Within  Total  DF 
 Intercept  0.052228  0.055363  0.108896  161.38 
 alc7  0.001136  0.002236  0.003400  332.48 
 riskreb71  0.003106  0.004301  0.007485  215.53 
 likepar72  0.002190  0.002184  0.004428  151.82 
 posatt72  0.005125  0.005153  0.010407  153.03 

 Multiple Imputation Variance Information 
 Relative  Fraction 
 Increase  Missing  Relative 

 Parameter  in Variance  Information  Ef fi ciency 
 Intercept  0.966958  0.497787  0.987708 
 alc7  0.520896  0.346413  0.991414 
 riskreb71  0.740273  0.430636  0.989349 
 likepar72  1.027715  0.513205  0.987332 
 posatt72  1.019494  0.511174  0.987382 

 Multiple Imputation Parameter Estimates 
 Parameter  Estimate  Std Error  95% Con fi dence 

Limits 
 DF 

 Intercept  0.298351  0.329994  -0.35331  0.95001  161.38 
 alc7  0.689592  0.058313  0.57488  0.80430  332.48 
 riskreb71  0.087063  0.086518  -0.08347  0.25759  215.53 
 likepar72  -0.191643  0.066547  -0.32312  -0.06017  151.82 
 posatt72  0.025475  0.102013  -0.17606  0.22701  153.03 

 Multiple Imputation Parameter Estimates 
 Parameter  Minimum  Maximum 
 Intercept  -0.121228  0.668341 
 alc7  0.615055  0.758255 
 riskreb71  -0.060911  0.194486 
 likepar72  -0.264078  -0.085495 
 posatt72  -0.161954  0.196999 

 Multiple Imputation Parameter Estimates 
 t for H0: 

 Parameter  Theta 0  Parameter = 
Theta 0 

 Pr > |t| 

 Intercept  0  0.90  0.3673 
 alc7  0  11.83  <.0001 
 riskreb71  0  1.01  0.3154 
 likepar72  0  -2.88  0.0046 
 posatt72  0  0.25  0.8031 
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   Analysis of Multiple-Imputed Data with PROC MIXED 

 Before tackling analysis with PROC MIXED, I want to talk about some special 
challenges that arise for MI with cluster data (please see my discussion of this issue 
in Chap.   6    ). In previous written work, I have suggested that multilevel data could be 
handled with normal-model MI simply by dummy-coding cluster membership, as 
illustrated below, and including the dummy variables in the MI analysis. I have 
argued that including these dummy variables in the MI model allows the cluster 
means to be different during imputation, thus yielding unbiased estimates of the 
cluster means. I have argued that this model is equivalent to the random intercepts 
model. Indeed, ignoring cluster membership during MI is the same as imputing 
under the model that the means are all the same across clusters, and this is known to 
produce an intraclass correlation (ICC) that is too small. 

 Very recent work by Andridge  (  2011  ) , however, has shown that this dummy-
coding strategy overcompensates for cluster structure. Although she veri fi ed that 
ignoring cluster structure produces ICCs that are too small, Andridge also showed 
that including cluster membership dummy variables in the normal-model MI analy-
sis produces an arti fi cially high ICC. The explanation for this latter effect is that 
including the dummy variable represents a  fi xed effect for cluster in the multilevel 
imputation model. However, in the corresponding multilevel analysis model, the 
effect for cluster is a  random  effect. In short, including the dummy variables in the 
normal-model MI analysis has the effect of increasing the between-cluster variance, 
thereby producing an in fl ated ICC. 

 The best solution to this problem is to use the PAN program (   Schafer  2001 ; 
Schafer and Yucel  2002 ) for performing the MI analysis (Andridge  2011 ; also see 
my discussion in Chap.   6    ). The PAN program allows the cluster to be included in 
the model as a random effect, thereby providing better estimates of the ICC. A 
potentially excellent new option in this context for SAS users is a PAN-like SAS 
macro being developed by Enders and colleagues (e.g., Mistler and Enders  2011  ) . 
The early versions of this macro suggest that this is an excellent product that will be 
of enormous bene fi t to SAS users. 

 For the time being, PAN remains the best option. However, PAN, which is a 
program that must be executed from within the R package is not nearly as accessible 
as normal-model MI. In Chap.   6    , I suggested that there is a compromise that can be 
used with normal-model MI. Ignoring cluster structure is known to produce ICCs 
that are too small, and including the dummy variables to represent cluster member-
ship is now known to produce ICCs that are too large. So my compromise    is to 
impute half the time under each model, thereby producing ICCs that are between 
these two extremes. Although this hybrid dummy variable strategy not as good as 
using PAN or other PAN-like programs, it will provide ICCs that are much closer to 
true ICCs than using the dummy-coding strategy alone. Also, my preliminary simu-
lation work suggests that this hybrid dummy-coding strategy still produces ICCs 
that are a little too large. Thus with cluster randomized trials, program effects analy-
ses will yield results that are somewhat too conservative. I illustrate the use of this 
hybrid dummy-coding strategy below with an empirical example. 

http://dx.doi.org/10.1007/978-1-4614-4018-5_6
http://dx.doi.org/10.1007/978-1-4614-4018-5_6
http://dx.doi.org/10.1007/978-1-4614-4018-5_6


186 7 Multiple Imputation and Analysis with SAS

  Sample Data . �  In the sample data, ex7.sas7bdat, the variable School, takes on 12 
values (1–12). This sample data set is taken from the AAPT study (Hansen and 
Graham  1991  ) . The participants were seventh graders at the  fi rst wave (when 
they received the program). These sample data involve seventh, eighth, and ninth 
grade data from this cohort. Listed below are the variables on the data set, along 
with brief descriptions.  

 school  school membership (schools 1–12) 
 program  received program = 1; control = 0 
 alc7  alcohol use in seventh grade 
 riskreb7  risk-taking/rebelliousness in seventh grade 
 likepar7  relationship with parents in seventh grade 
 posatt7  positive alcohol expectancies in seventh grade 
 alc8  alcohol use in eighth grade 
 riskreb8  risk-taking/rebelliousness in eighth grade 
 alc9  alcohol use in ninth grade 

 In order to generate the 11 dummy variables for inclusion into PROC MI, 
I did the following: 

 Data a;set in.ex7; 

 if school=1 then do;s1=1;s2=0;s3=0;s4=0;s5=0;s6=0;s7=0;s
8=0;s9=0;s10=0;s11=0;end; 
 if school=2 then do;s1=0;s2=1;s3=0;s4=0;s5=0;s6=0;s7=0;s
8=0;s9=0;s10=0;s11=0;end; 
 if school=3 then do;s1=0;s2=0;s3=1;s4=0;s5=0;s6=0;s7=0;s
8=0;s9=0;s10=0;s11=0;end; 
 if school=4 then do;s1=0;s2=0;s3=0;s4=1;s5=0;s6=0;s7=0;s
8=0;s9=0;s10=0;s11=0;end; 
 if school=5 then do;s1=0;s2=0;s3=0;s4=0;s5=1;s6=0;s7=0;s
8=0;s9=0;s10=0;s11=0;end; 
 if school=6 then do;s1=0;s2=0;s3=0;s4=0;s5=0;s6=1;s7=0;s
8=0;s9=0;s10=0;s11=0;end; 
 if school=7 then do;s1=0;s2=0;s3=0;s4=0;s5=0;s6=0;s7=1;s
8=0;s9=0;s10=0;s11=0;end; 
 if school=8 then do;s1=0;s2=0;s3=0;s4=0;s5=0;s6=0;s7=0;s
8=1;s9=0;s10=0;s11=0;end; 
 if school=9 then do;s1=0;s2=0;s3=0;s4=0;s5=0;s6=0;s7=0;s
8=0;s9=1;s10=0;s11=0;end; 
 if school=10 then do;s1=0;s2=0;s3=0;s4=0;s5=0;s6=0;s7=0;
s8=0;s9=0;s10=1;s11=0;end; 
 if school=11 then do;s1=0;s2=0;s3=0;s4=0;s5=0;s6=0;s7=0;
s8=0;s9=0;s10=0;s11=1;end; 
 if school=12 then do;s1=0;s2=0;s3=0;s4=0;s5=0;s6=0;s7=0;
s8=0;s9=0;s10=0;s11=0;end; 

 run; 
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 To produce 40 imputed data sets using the hybrid dummy-coding strategy, 
I   fi rst generated 20 imputed data sets using each model (with and without dummy 
variables). I then added 20 to the variable _imputation_ in the second imputed 
data set and stacked the two sets of imputed data sets together using the SET 
command: 

 proc mi data=a nimpute=20 out=b1; 
   em itprint converge=1e-5; 
   mcmc nbiter=200 niter=50 initial=em(converge=1e-5); 
    var alc7 riskreb7 likepar7 posatt7 alc8 riskreb8 alc9 

s1-s11; 
 run; 

 proc mi data=a nimpute=20 out=b2; 
   em itprint converge=1e-5; 
   mcmc nbiter=200 niter=50 initial=em(converge=1e-5); 
    var program alc7 riskreb7 likepar7 posatt7 alc8 

riskreb8 alc9; 
 run; 

 data b2x;set b2; 
   _imputation_=_imputation_+20; 
 run; 

 data b;set b1 b2x; 
 run; 

   Notes 

 With the EM convergence criterion set to 1E-5, EM converged in 39 iterations for 
the  fi rst analysis and in 37 iterations for the second analysis. Thus, setting mcmc 
niter = 50 in both analyses was a conservative number. Note that the variable 
 “program” was omitted from the  fi rst analysis (which contained the dummy vari-
ables representing school), and that “program” was included in the second analysis 
that omitted the dummy variables. 

 The syntax with PROC MIXED is a little different from the previous analyses. 
I do not pretend to be an expert with MIXED models, but I have had good luck with 
this one for taking the multilevel (cluster) structure of my data (e.g., students within 
schools) into account. The model I have used for this is a random intercepts model 
(i.e., allowing intercepts, but not slopes to vary across schools). 
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 proc mixed noclprint covtest; 
   class school; 
    model alc9=program alc7 riskreb71 likepar71 posatt71 /

solution ddfm=bw; 
   random intercept /sub=school; 
   by _imputation_; 
    ods output SolutionF=mixparms CovParms=mixparmsR; 
 run; 

 proc mianalyze parms = mixparms; 
    modeleffects intercept program alc7 riskreb71 likepar71 

posatt71; 
 run; 

 The output for this analysis is presented in Table  7.11 .  
 Not surprisingly, the MIANALYZE output based on PROC MIXED is the same 

as with the other two programs. Note that the  fi nal results are very similar to the 
results obtained from PROC REG. The differences that did appear between PROC 
MIXED and PROC REG could be due to the differences in the analysis; but they 
could also be due simply to imputation wobble, that is, to minor differences in 
results that are found between two sets of imputed data sets. As I have point out 
previously (e.g., please see the discussion of this topic in Chap.   4    ), those differences 
tend to be small, especially when the number of imputations is reasonably large. 
I used  m  = 40 imputations in these examples, so I expect the differences in results 
based on different sets of imputed data sets to be tolerably small.        

   Table 7.11    PROC MIANALYZE: output from PROC MIXED   
 The MIANALYZE Procedure 

 Model Information 
 PARMS Data Set  WORK.MIXPARMS 
 Number of 

Imputations 
 40 

 Variance Information 
 –––––––––––––––––––Variance––––––––––––––––––– 

 Parameter  Between  Within  Total  DF 
 intercept  0.064584  0.043222  0.109420  106.55 
 program  0.003076  0.013270  0.016423  1058.3 
 alc7  0.000303  0.000415  0.000725  212.64 
 riskreb7  0.003619  0.002084  0.005794  95.124 
 likepar7  0.004439  0.002310  0.006860  88.647 
 posatt7  0.002145  0.001675  0.003874  121.06 

(continued)

http://dx.doi.org/10.1007/978-1-4614-4018-5_4
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 The MIANALYZE Procedure 

 Variance Information 
 Relative  Fraction 
 Increase  Missing  Relative 

 Parameter  in Variance  Information  Ef fi ciency 
 intercept  1.531589  0.612202  0.984926 
 program  0.237574  0.193490  0.995186 
 alc7  0.749066  0.433569  0.989277 
 riskreb7  1.780149  0.647638  0.984067 
 likepar7  1.969869  0.670633  0.983511 
 posatt7  1.312545  0.574547  0.985840 

 Parameter Estimates 
 Parameter  Estimate  Std Error  95% Con fi dence 

Limits 
 DF 

 intercept  3.241134  0.330787  2.58536  3.89691  106.55 
 program  -0.443729  0.128151  -0.69519  -0.19227  1058.3 
 alc7  0.626909  0.026927  0.57383  0.67999  212.64 
 riskreb7  0.188625  0.076115  0.03752  0.33973  95.124 
 likepar7  -0.286244  0.082826  -0.45083  -0.12166  88.647 
 posatt7  0.010754  0.062241  -0.11247  0.13398  121.06 

 Parameter Estimates 
 Parameter  Minimum  Maximum 
 intercept  2.718170  3.825570 
 program  -0.574173  -0.353057 
 alc7  0.596191  0.668577 
 riskreb7  0.066776  0.332532 
 likepar7  -0.433510  -0.143740 
 posatt7  -0.094267  0.087881 

 Parameter Estimates 
 t for H0: 

 Parameter  Theta 0  Parameter = 
Theta 0 

 Pr > |t| 

 Intercept  0  9.80  <.0001 
 Program  0  -3.46  0.0006 
 alc7  0  23.28  <.0001 
 riskreb7  0  2.48  0.0150 
 likepar7  0  -3.46  0.0008 
 posatt7  0  0.17  0.8631 

  It is not clear that this is the correct DF for the level-2 predictor, Program. It could be that the 
appropriate DF = 10 for this predictor (e.g., Barnard and Rubin  1999  )   

Table 7.11 (continued)



190 7 Multiple Imputation and Analysis with SAS

      References 

    Andridge, R. R. (2011). Quantifying the impact of  fi xed effects modeling of clusters in multiple 
imputation for cluster randomized trials.  Biometrical Journal ,  53 , 57–74.  

    Barnard, J., and Rubin, D. B. (1999). Small-sample degrees of freedom with multiple imputation. 
 Biometrika ,  86 , 948–955.  

    Hansen, W. B., & Graham, J. W. (1991). Preventing alcohol, marijuana, and cigarette use among 
adolescents: Peer pressure resistance training versus establishing conservative norms. 
 Preventive Medicine ,  20 , 414–430.  

    Graham, J. W., & Donaldson, S. I. (1993). Evaluating interventions with differential attrition: The 
importance of nonresponse mechanisms and use of followup data.  Journal of Applied 
Psychology ,  78 , 119–128.  

   Graham, J. W., & Hofer, S. M. (1992).  EMCOV Users Guide . Unpublished Manuscript, University 
of Southern California.  

   Mistler, S. A., and Enders, C. K. (2011). Applying multiple imputation to multilevel data sets: 
A practical guide. Paper presented at the Annual Convention of the American Psychological 
Association, Washington, DC, August 6, 2011.  

    Price, B. (1977). Ridge regression: Application to nonexperimental data.  Psychological Bulletin , 
 84 , 759–766.  

   Schafer, J. L. (1997). Analysis of Incomplete Multivariate Data. New York: Chapman and Hall.  
   Schafer, J. L. (2001). Multiple imputation with PAN. In L. M. Collins & A. G. Sayer (Eds.),  New 

methods for the analysis of change  (pp. 357–377). Washington, DC: American Psychological 
Association.  

   Schafer, J. L., & Yucel, R. M. (2002). Computational strategies for multivariate linear mixed-
effects models with missing values.  Journal of Computational and Graphical Statistics, 11 , 
437–457.     



     Section 3 
  Practical Issues in Missing Data Analysis         



193J.W. Graham, Missing Data: Analysis and Design, Statistics for Social 
and Behavioral Sciences, DOI 10.1007/978-1-4614-4018-5_8, 
© Springer Science+Business Media New York 2012

 If you follow the advice I have given in previous chapters, the chances are good that 
the results of your multiple imputation and analysis will be good. However, unfore-
seen things happen. Also, if you happen to be helping another person with these 
analyses, the material in this chapter will give some strategies for working through 
the problems. 

 When you have problems with the missing data analysis, the root problem is 
most likely in your data. In this chapter, I talk about several kinds of problems that 
you may face, and I talk about some strategies you can employ, at different stages 
of the research, to help with the problem. I cannot guarantee that my strategies will 
always work, but I have found them to be useful in solving a wide variety of prob-
lems in MI analysis. 

 One idea that came out in the early days of missing data analysis was the “impute 
once, analyze many times” strategy. The idea was that if the analyst could get, say, 
50 different analyses out of one multiple imputation analysis, then any tedium 
involved could be spread over the “life” of the imputed data set, and would there-
fore be lessened. Unfortunately, this thinking can lead analysts to believe that throw-
ing everything into the MI model is an acceptable thing to do. I sometimes refer to 
this as the “kitchen sink” approach to MI. 

 Although this approach might work in theory, the practicalities of such an analy-
sis virtually always make it infeasible (for reasons I describe below in this chapter 
and in the next chapter). It is for this reason that I have taken the opposite stance in 
my own work and in this book. I take the “impute once, analyze once” approach 
(although it does often work out that one can perform several analyses based on a 
single imputation). As the software options (as with the current version of Proc MI 
in SAS) become more automated, the “impute once, analyze once” approach will be 
an obvious solution to one’s missing data problems. 

    Chapter 8   
 Practical Issues Relating to Analysis 
with Missing Data: Avoiding and 
Troubleshooting Problems                 
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   Strategies for Making It Work: Know Your Analysis 

 Often one of the  fi rst questions I ask of people wanting to do missing data analysis 
is: What analysis are you planning? What would you be doing if you had no missing 
data? I often  fi nd that a big problem with missing data analysis stems from the fact 
that the people do not have ready answers to these questions. 

 So an important point about understanding missing data analysis is to know your 
analysis. Think through what hypothesis you want to test. Maybe even try it out  fi rst 
with complete cases analysis. Although this is not always a good strategy (e.g., 
when the complete cases N is small compared to the total N), I often  fi nd that doing 
an analysis helps me think through the wisdom of the analysis. Once you are very 
clear about the analysis you want and need, solving the missing data part of the 
problem becomes much more straightforward.  

   Strategies for Making It Work: Know Your Data 

 Once you know what analysis you want, the next thing to be clear about is your data. 
First, rule out simple problems. For example, verify that no variable you are using 
is a constant in the sample you are using. Also, take care of mundane issues. For 
example, be sure that the missing data indicator you are using is appropriate for your 
analysis. If you are using PROC MI, missing values should be represented by the 
system missing indicator in SAS, that is, by a period, “.”. On the other hand, if you 
will be imputing with an outside program such as NORM, then the missing value 
indicator needs to be something numeric (e.g., −9), and the system missing indicator 
will be improper. Finally, along these same lines, sometimes missing values appear 
as a blank space. That can create all kinds of problems for MI programs. 

 Once the more mundane issues have been dealt with, determine what variables 
are relevant – from the  analysis  perspective? For example, if you were planning a 
multiple regression analysis, you may need to form scales out of individual items 
prior to the analysis. Should scales be formed before or after imputation? What 
background or demographic variables will be included in the analysis, for example, 
as covariates? Do any of these variables, which are often categorical, need to be 
transformed into dummy variables prior to the analysis? 

 When you have identi fi ed and dealt with (e.g., transformed) all of the variables 
that will be in your analysis model, why would you need any additional variables in 
the imputation model? That is, what variables are relevant from a  missing data  
perspective? 

   Causes of Missingness 

 The  fi rst answer is that you may want to include the cause(s) of missingness in the 
missing data model. In the early days following the missing data revolution, there 
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was a lot of confusion about the necessity of including these variables in the model. 
Many people (including me) did simulations to show that omitting the cause of 
missingness produced estimation bias. These people (including me) concluded that 
it was therefore critical to include the cause(s) of missingness in the missing data 
model. My early writings were replete with statements such as these:

  When data are missing, work hard to  fi nd the cause of missingness and include the cause in 
the analysis model. When planning a study, think about what the causes of missingness are 
likely to be and obtain measures for as many causes as possible (Graham et al.  1994  ) .   

 Although I believe it is still good advice to think about the causes of missingness 
and to include measures of such variables where possible, our implying that there 
was a dire need to do so rather substantially overstated the case, and said more about 
our misunderstanding of the processes involved than about the true need. 

 Recent work, most notably Collins et al.  (  2001 ; also see my discussion in Chaps. 
  1     and   10    ), has shown rather clearly that for many important parameter estimates (e.g., 
the regression coef fi cient for X predicting Y when Y has MNAR missingness) the 
biases are tolerably small when the cause of missingness is omitted from the model. 

 The key here is that failing to include a cause of missingness will, to be sure, 
introduce estimation bias into the analysis. With very few exceptions, it is safe to 
say this is always true. However, what is seldom said in this context is that the 
amount of bias can be anywhere from trivial to substantial. In those early days, most 
of us acted as though any bias was important. But the recent work has shown that 
the magnitude of the bias is dependent on several factors, and that bias that has an 
appreciable effect on statistical conclusions requires circumstances are that are rela-
tively rare in many types of research (see Chapts.   1     and   10    ). 

 The bottom line is that you should de fi nitely make an attempt to identify the 
causes of missingness, to measure them, and to include them in the missing data 
model to the extent that is possible. But it is important to select variables that you 
know are causes of missingness, and to ignore variables for which you have no clear 
expectations about them being causes of missingness. 

 So, for example, when designing your measurement procedures, try to include as 
many causes of missingness as is feasible, but do not go overboard. Graham et al. 
 (  1994  )  suggested several possibilities (also see Chap.   1    ). For example, research 
participants may fail to complete a self-administered survey because they are slow 
readers. Thus, we often include measures of reading speed early in the survey. They 
may fail to complete the survey because they lack the motivation. So we often 
include measure of general motivation to comply, for example, by measuring the 
personality trait, conscientiousness. Or they may fail to complete the survey because 
they are motivated to behave contrary to what is asked of them. Thus, we often 
include measures of rebelliousness or related concepts. 

 Another cause of missingness relates to attrition from longitudinal studies. For 
example, schoolchildren may be drop out of a longitudinal study because their par-
ents move away. Thus, a measure of family transiency would be a predictor of later 
attrition (e.g., something like, “How many different schools have you attended since 
 fi rst grade?”). It might even work in this context simply to ask respondents how 
likely it is that they will still be in the present school system next year. 

http://dx.doi.org/10.1007/978-1-4614-4018-5_1
http://dx.doi.org/10.1007/978-1-4614-4018-5_10
http://dx.doi.org/10.1007/978-1-4614-4018-5_1
http://dx.doi.org/10.1007/978-1-4614-4018-5_8
http://dx.doi.org/10.1007/978-1-4614-4018-5_1
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 All of this will help, but to be honest, it may not help all that much (e.g., see 
Collins et al.  2001  ) . So it is important to balance your attempts to measure causes of 
missingness against other needs of the project. What I described above could be 
handled with seven questions ( fi ve for predicting survey completion and two for 
predicting attrition). In short, keep relatively small the number of variables measur-
ing causes of missingness.  

   Auxiliary Variables 

 A second answer to the question of what variables are relevant from a  missing data  
perspective is auxiliary variables (see Chap.   11    ). In the early days after the missing 
data revolution, people would often say that such variables were included “to help 
with the imputation.” I probably made statements like that in my early writing. The 
problem was that in those early days we did not have a clear idea of how, and to 
what extent, adding auxiliary variables would help with the imputation. Because of 
the fuzziness surrounding the value of auxiliary variables, researchers often got the 
idea that they should include all variables in the imputation model. 

 Now, however, we know a lot more about the value of auxiliary variables. From 
the work in Chap.   11    , for example, we know that a key factor is the correlation 
between the potential auxiliary variable and the variable with missing data. From 
what we said in Chap.   11    , it is clear that auxiliary variables have signi fi cant impact 
when they correlate  r  = .50 or more with the model variables that are sometimes 
missing. It is true that there is some bene fi t with auxiliary variables with smaller 
correlations, but I would argue that the point of diminishing returns is around  r  = .50. 
You are, of course, free to draw the line wherever you like, but the bene fi ts of 
auxiliary variable correlations below  r  = .50 drop off rather substantially. For exam-
ple, from the work described in Chap.   11    , ( N  

TOT
  = 1,000;  N  

CC
  = 500; %Z = 100 %), 

 r  = .50 returns a 14 % increase in the  N  
EFF

 ;  r  = .40 returns an 8.4 % increase; 
and  r  = .30 returns a 4.4 % increase. 

 My main point here is that correlations in the neighborhood of  r  = .50 are possi-
ble for variables measured at the same wave, but they are not common. Thus, in 
cross-sectional studies, good auxiliary variables are rare. In longitudinal studies in 
which a person left blank one or more items at the wave 2 measure, the best auxil-
iary variable may come from the wave 1 measure, and not from other variables 
measured at wave 2. That is, the wave 1 measure of construct X is likely to be a 
better auxiliary variable for the missing wave 2 measure of construct X than is any 
other variable measured at wave 2. 

 Also, as we pointed out in Chap.   11    , the incremental bene fi t of adding a second 
auxiliary variable is often quite small, assuming a realistic correlation between the 
two auxiliary variables. So, for example, if the main dependent variable were alco-
hol use at tenth grade (alc10; see Table 11.9), and the auxiliary variables were alc9 
( r  = .57 with alc10) and alc8 ( r  = .48 with alc10;  r  = .56 between alc8 and alc9), the 
incremental bene fi t of adding alc8 as a second auxiliary variable would only 

http://dx.doi.org/10.1007/978-1-4614-4018-5_11
http://dx.doi.org/10.1007/978-1-4614-4018-5_11
http://dx.doi.org/10.1007/978-1-4614-4018-5_11
http://dx.doi.org/10.1007/978-1-4614-4018-5_11
http://dx.doi.org/10.1007/978-1-4614-4018-5_11
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be  N  = 13. The reason for this is that the partial correlation between alc8 and alc10, 
partialling alc9, is only  r  = .24. Adding a second auxiliary variable that is a different 
variable almost always has an even smaller bene fi t (see Table 11.9).  

   Bottom Line: Think FIML 

 My strategy for selecting variables for MI reduces to the following. Start by think-
ing only of the variables that would be included in the analysis if there were no 
missing data. Then, judiciously, add variables that are the causes of missingness or 
auxiliary variables. I say “think FIML” here because if you were using a FIML 
model, this would be the basic strategy you would use (although adding auxiliary 
variables to FIML models is certainly desirable and feasible; e.g., see Graham  2003 ; 
Muthen and Muthen  2010  ) . 

 For causes of missingness, a rule of thumb is to include such variables only if (a) 
 r  > .40 between the variable and your main DV, AND (b)  r  > .40 between the vari-
able and missingness itself. For auxiliary variables, a good rule of thumb is to 
include variables only if  r  > .50 between the variable and the main DV. Of course, if 
the number of variables in your analysis is relatively small, you can move these 
values down to include more variables.   

   Troubleshooting Problems 

 I have organized this section according to the symptoms one might observe in the 
process of doing MI. The symptoms fall into three basic categories revolving around 
three diagnostic elements: (1) speed of EM convergence; (2) monotonicity of 
EM function values over iterations; (3) data augmentation (or MCMC) diagnostic 
plots. 

   Disclaimer 

 Note that I have selected the examples in this chapter to be rather straightforward 
examples of each problem. Although these examples are representative of the kinds 
of problems you will encounter in real data (all these examples do come from real 
data), you need to know that the solutions you will encounter will not always be as 
clean as those shown. For example, in the  fi rst example shown, the EM convergence 
numbers shown change monotonically over the examples, and the effect of adding 
the small hyperparameter also changes monotonically over the examples shown. 
Although the general patterns should nearly always hold as I have shown them, you 
may  fi nd inconsistencies in your own data. 
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  Symptom:  EM Doesn’t Converge (or Very Slow Convergence)  
  Function Value Changes Monotonically  

 With this problem, EM seems to be converging, in the sense that the function 
value is changing monotonically, but EM just goes on and on without converging. 
It goes past 1,000, 2,000, and 3,000 iterations without converging. With this pattern, 
EM probably will converge eventually, but the number of iterations is so high that 
it is infeasible, or only marginally feasible to perform the corresponding multiple 
imputation (realizing that 40 or more imputations may be necessary).  

   Underlying Problem 1 

 One of the most common reasons for this symptom is that one simply has too many 
variables in the model.  

   Solution 1 

 The solution to this problem is to reduce the number of variables (please see Chap.   9    ; 
also read carefully the earlier sections in this chapter).  

   Underlying Problem 2 

 Another common reason for this symptom is that some variables have a very large 
amount of missing data.  

   Solution 2a 

 One solution in this situation is to remove at least some of the variables with the most 
missing data. This may seem like an undesirable option, but remember that you can-
not address a particular hypothesis unless you have data. Having too much missing 
data is tantamount to having no data in this instance. On the bright side, it is some-
times necessary to remove just one or two variables with the most missing data.  

   Solution 2b 

 In this situation, it is sometimes possible to switch from ML mode (for EM), and use 
posterior mode with a small hyperparameter. As I have noted previously, using a 

http://dx.doi.org/10.1007/978-1-4614-4018-5_9
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hyperparameter of, say, 5, is like adding 5 complete cases to the bottom of the data 
set, such that all variables are correlated  r  = 0. Using a hyperparameter introduces a 
small amount of bias (all correlations are suppressed slightly toward 0), but in the 
process, the solution is often much more stable. Remember, however, to keep the 
hyperparameter small in comparison to the full sample size. My rule of thumb is to 
select a hyperparameter that is no more than 1 % of the nominal sample size. Smaller 
values are desirable. 

  Sample Data  � . In a recent study, I asked college students about their skills for 
making plans to avoid alcohol-related harm, about their intentions for making 
such plans, and about actually making such plans. The  fi rst two kinds of ques-
tions were relevant for all participants, and with four relatively minor exceptions 
(see Fig.  8.1 ), missingness on these variables was in the 31–39 % range. However, 
for the  fi ve variables measuring actual vehicle-related plans, which required that 
the student participants found themselves in the situation requiring such plans, 
the missingness rate ranged from 82 % to 89 %.  

 Dataset: ex8a.dat 
  N  = 1,023 
 Variables ( k  = 20) 

 Variable names  fi le: ex8a.nam
   skill1-5 = skill for making plans at waves 1-5  
  iplanv1-5 = intention to make vehicle-related plans at waves 1-5  
  planA1-5 = made actual plans for preventing alcohol-related harm  
  planV1-5 = made actual vehicle-related plans    

 Missingness rates for the 20 variables are presented in Fig.  8.1 . 
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  Fig. 8.1    Percent Missing by Item Type, Skill = Planning Skill, IplanV = Intentions to make vehicle-
related plans, PlanV = Actually made vehicle-related plans, PlanA = Actually made other kinds of 
harm-prevention plans       
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 Next, with the Norm program, run EM on with all 20 variables. Then delete 
the variable with highest missingness (PlanV2, 89 %) and rerun EM. Then delete 
the variable with the next highest missingness (PlanV5, 88 %) and rerun EM. 
Then omit the variable with the next highest missingness (PlanV1, 87 %) and 
rerun EM. Finally, omit all  fi ve PlanV variables and rerun EM. The results of 
these EM runs appear in Table  8.1 .  

 The numbers for EM convergence shown in Table  8.1  illustrate these points nicely. 
Under these circumstances, dropping even one variable with the most missing data cut 
the number of EM iterations in half. As it happens, dropping this wave 2 variable has 
limited substantive implications and is therefore a reasonable option in this case. 
Dropping the variable, PlanV5, however, might have more serious substantive implica-
tions; thus, dropping this variable might not be a good option. Also, in this case, switch-
ing to posterior mode with hyperparameter = 5 produced an even more striking 
improvement in EM convergence. In this case, it would seem that either of these options 
(dropping an item or switching to posterior model) would produce a viable solution. 

  Symptom:  EM May or May Not Converge  
  Function Value Changes Non-monotonically  

 With this problem, EM sometimes does not converge, and sometimes EM does 
converge, but in a weird way. The key here is that the function values bounce back 
and forth between getting smaller and getting larger. When EM does converge in 
this context, it is “weird” because the function value seems to be changing in rather 
large chunks just before apparent convergence. 1   

   Underlying Problem: Redundancies in Variable List 
(Matrix Not Positive De fi nite) 

 The easiest, most common version of this problem is that the analyst inadvertently 
includes the individual items making up an additive scale and the scale score itself. 

   Table 8.1    EM convergence with high percent missing for some variables   
 Number of iterations for EM convergence 

 Variables  ML mode 
 Posterior mode with 
hyperparameter = 5 (% improvement) 

 All 20 variables  1,373  293 (79 %) 
 Drop PlanV2 (89 %)  647  240 (63 %) 
 Drop PlanV5 (88 %)  492  193 (61 %) 
 Drop PlanV1 (87 %)  172  137 (20 %) 
 Drop all 5 PlanV variables  67  61 (9 %) 

   1   But do recall that convergence is a function of the parameter values, and is not a direct function 
of the function value. Still, it is more common with “normal” EM convergence that the function 
value makes very small (monotonic) changes just prior to convergence.  
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A more insidious version of the problem is usually referred to as multicollinearity, 
that is, there are redundancies in the data, but it just happens that a particular vari-
able is perfectly predicted (linearly) by a rather large set of other variables. Whatever 
the source of the problem, in this situation, you have less information than is implied 
by the number of variables in the model. Virtually no multivariate procedures, 
including EM and multiple imputation, work under these circumstances. 

  Sample Data  � . 

 Dataset: ex8b.dat 
  N  = 2,570 
 Variables ( k  = 6) 

 Variable names  fi le: ex8b.nam
   riskreb1 = risk-taking/rebelliousness (item 1)  
  riskreb2 = risk-taking/rebelliousness (item 2)  
  posatt1 = beliefs about positive consequences of alcohol use (item 1)  
  posatt2 = beliefs about positive consequences of alcohol use (item 2)  
  posatt3 = beliefs about positive consequences of alcohol use (item 3)  
  posatt = beliefs about positive consequences of alcohol use (scale score – 

average of other 3).    
 This data set was constructed to illustrate what happens when the individual 

items making up a summary scale, and the scale score itself, are included in the 
EM analysis. Start by running EM in Norm on all six variables in the data set. 
Note that the function value (Observed-data loglikelihood) is not monotonic over 
iterations. I show the last few iterations from the Norm output in Table  8.2 .  

 Now repeat the EM analysis omitting the variable, posatt (the scale score). I show 
the iterations of EM in Table  8.3 .   

   Table 8.2    Output from EM.OUT: input matrix not 
positive de fi nite   

 iteration # 
 Observed-data 
 Loglikelihood 

 990  21036.11128 
 991  20886.85934 
 992  22142.71381 
 993  21000.63380 
 994  21356.37234 
 995  21540.07565 
 996  21356.43041 
 997  20624.48552 
 998  20853.13673 
 999  21297.81517 

 1000  20976.37888 

 WARNING!!!!! 
 EM DID NOT CONVERGE BY ITERATION 1000 
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   Table 8.3    Output from EM.OUT: with problem vari-
able omitted   

 iteration # 
 Observed-data 
 Loglikelihood 

 1  −4097.000000 
 2  −3573.606946 
 3  −3461.251865 
 4  −3432.067301 
 5  −3423.604506 
 6  −3420.837124 
 7  −3419.845559 
 8  −3419.461072 
 9  −3419.298466 

 10  −3419.222811 
 11  −3419.184264 
 12  −3419.163138 
 13  −3419.150954 
 14  −3419.143699 
 15  −3419.139294 
 16  −3419.136589 
 17  −3419.134917 
 18  −3419.133879 
 19  −3419.133233 
 20  −3419.132831 
 21  −3419.132580 
 22  −3419.132423 
 23  −3419.132325 
 24  −3419.132264 
 25  −3419.132226 
 26  −3419.132202 
 27  −3419.132187 
 28  −3419.132178 
 29  −3419.132172 
 30  −3419.132168 
 31  −3419.132166 
 32  −3419.132164 
 33  −3419.132163 
 34  −3419.132163 
 35  −3419.132162 
 36  −3419.132162 
 37  −3419.132162 
 38  −3419.132162 
 EM CONVERGED AT ITERATION 38 

 Note that when the scale score was included in the analysis (Table  8.2 ), not only 
did the function values bounce around (getting larger, smaller, larger, etc.), but the 
changes were relatively large. Compare that to normal EM convergence shown in 
Table  8.3 . With normal convergence, there may be large changes in the function 
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value early in the iterations, but it is not at all uncommon for the changes just before 
convergence to be very tiny. 

 Note, too, that the problem shown here may manifest itself in different ways. But 
in each case, the pattern of function values over iterations will deviate rather sub-
stantially from that shown for “normal EM convergence” in Table  8.3 . One example 
comes from this same data set. Rerun EM in Norm, but this time select only the four 
Posatt variables (including the scale score; ignore for now the fact that many of the 
cases have no data at all for these four variables). EM did appear to converge in this 
case (as shown in Table  8.4 ). But note the highly unusual pattern of function values 
over iterations. Although the values did change monotonically over iterations, the 
values went from negative to positive, and the changes from iteration to iteration 
near “convergence” were very large – nothing at all like the normal convergence 
shown in Table  8.3 .  

   Solution1 

 This is not so much a solution as a method for discovering the solution. The ultimate 
solution in this case is to  fi nd the variables that render the matrix nonpositive de fi nite 
and remove them from the analysis. The  fi rst step in this solution is to verify that the 
matrix is, indeed, not positive de fi nite. To do this, analyze the  same  data using prin-
cipal components analysis. Use pairwise deletion for this task. 

      Table 8.4    Output from EM.OUT: another 
pathological pattern   

 iteration # 
 Observed-data 
 Loglikelihood 

 1  −3237.500000 
 2  −1587.081959 
 3  −737.7915525 
 4  32.43368198 
 5  789.6940132 
 6  1544.946098 
 7  2299.900033 
 8  3054.809647 
 9  3809.712383 

 10  4564.613954 
 11  5319.515303 
 12  6074.416605 
 13  6829.317899 

 EM CONVERGED AT ITERATION 13 
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 I did this analysis in SAS (I asked for promax rotation for this analysis). 2  The key 
results appear in Table  8.5 . The  fi rst thing to notice from this analysis is that the last 
eigenvalue is negative. That demonstrates that the matrix for these six variables was 
not positive de fi nite. Second, look the  fi nal communality estimates. Although this 
may not be so telling in all cases, note that in this case, the communality estimate 
for posatt was .999.   

   Solution1b 

 The follow-up to running principal components is to perform a multiple regression 
analysis on the same data (with pairwise deletion). I typically just pick the  fi rst vari-
able in the variable list as the dependent variable and specify all other variables as 
predictors. You may sometimes need to test additional models, but that will often 
show the bad variable. For example, with the six variables from our sample data set, 
the key output from the SAS Proc Reg analysis is shown in Table  8.6 .  

 Of course, had one of the other posatt variables been listed last in the analysis, 
that one would have been shown to be the problem variable. But at least this  analysis 

   Table 8.5    Principal components eigenvalues and  fi nal communality estimates (based on pairwise 
deletion), including bad variable   
 The FACTOR Procedure 

 Initial Factor Method: Principal Components 
 Prior Communality Estimates: ONE 
 Eigenvalues of the Correlation Matrix: Total = 6 Average = 1 

 Eigenvalue  Difference  Proportion  Cumulative 

 1  3.25069837  2.18208280  0.5418  0.5418 
 2  1.06861557  0.37637959  0.1781  0.7199 
 3  0.69223598  0.12380224  0.1154  0.8353 
 4  0.56843374  0.14640731  0.0947  0.9300 
 5  0.42202643  0.42403651  0.0703  1.0003 
 6  -.00201008  -0.0003  1.0000 

 The FACTOR Procedure 
 Rotation Method: Promax (power = 3) 
        Final Communality Estimates: Total = 4.319314 

 rskreb71  rskreb72  posatt71  posatt72  posatt73  posatt 
 0.60765066  0.69463724  0.65657938  0.70695389  0.65462493  0.99886784 

   2   I also performed the same analysis with SPSS 19. Strategies and code for performing these analy-
ses in SAS and SPSS are provided on our website,   http://methodology.psu.edu    .  

http://methodology.psu.edu
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shows that the problem is in that set of variables. Once you see that, it should be a 
relatively straightforward to see the solution to the problem. 3  

  Symptom:  EM Converges Quickly  
  Function is Monotonic over Iterations  
  MI Diagnostic Plots Are Pathological  

 This problem is more dif fi cult to see in the  fi rst place. But it points to the need to 
examine all of the diagnostics before proceeding with interpretation of the analysis 
results.  

   Underlying Problem 

 Suppose that our data set has data from 12 schools. Normally, within each school, 
each variable would have some cases with data, and some cases with missing val-
ues, as depicted in Table  8.7  (in this case, “1” for variable S11 means that the case 
comes from school 11; “0” indicates the cases come from another school).  

 In this example (normal scenario), there are missing and nonmissing values both 
within school 11 and in other schools. 

 However, suppose that for whatever reason, all students in school 11 did not 
provide data for the alcohol use measure in seventh grade. Under these circum-
stances, the numbers would look as shown in Table  8.8 .  

 Note that in this scenario, data coming from all other schools appear normal, in that 
some values are “1” (no alcohol use), some are “2” (some alcohol use), and some are 
“.” (missing). However, in this case, all values from school 11 (S11 = 1) are missing. 

   Table 8.6    Multiple regression results (with pairwise deletion), including bad variable   

 The REG Procedure 
 Model: MODEL1 
 Dependent Variable: rskreb71 

 Parameter 
 Error 

 Standard 

 Variable  DF  Estimate  t Value  Pr > |t| 

 Intercept  B  0.78778  0.06079  12.96  <.0001 
 rskreb72  B  0.23227  0.02366  9.82  <.0001 
 posatt71  B  0.07998  0.02496  3.20  0.0014 
 posatt72  B  0.22451  0.02969  7.56  <.0001 
 posatt73  B  0.01734  0.03755  0.46  0.6443 
 posatt  0  0  .  .  . 

   3   In SPSS, I found the principal components analysis to be as described above. However, I was 
somewhat less able to make use of the regression analysis to point further to the variable that 
should be removed, because SPSS does not have the option of including variables in the order 
presented. Thus, posatt1 was omitted from the analysis based on the F-to-enter criterion. On the 
other hand, the variable that was removed automatically (posatt1) did show that the problem was 
probably in that set of variables.  
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 Analyses of these data that do not take school membership into account will be 
 fi ne, because data from school 11 will be grouped with data from other schools. 

  Sample Data   �

 Dataset: ex8c.dat 
  N  = 2,756 
 Variables ( k  = 16) 

 Variable names  fi le: ex8c.nam
   S1–S11 = school membership dummy variables; 1 = member of the school; 

0 = not a member of that school. Data with all “0” values for these 11 
dummy variables come from School 12.  

  xalc7 = alcohol use in seventh grade  
  riskreb1 = risk-taking/rebelliousness (item 2)  
  likepar1 = liking for parents (item 1)  
  posatt1 = beliefs about positive consequences of alcohol use (item 1)  
  alc8 = alcohol use in eighth grade    

  When the school membership dummy variables were omitted  from the anal-
ysis, EM converged normally in 34 iterations. 

 Further, all diagnostic plots from data augmentation (MCMC) looked reason-
able (see Chaps.   3     or   7    ). 

  When the school membership dummy variables were included  in the model, 
EM converged normally in 52 iterations. 

   Table 8.8    All missing data within school 11 (S11)   
 s11  xalc7  Frequency  Percent 

 0  .  174  6.31 
 0  1  831  30.15 
 0  2  1603  58.16 
 1  .  148  5.37 

  S11 = 1 indicates data come from School 11; S11 = 0 indi-
cates data come from another school. Alc7 = Alcohol use at 
seventh grade. Alc7 = 1 indicates no use; Alc7 = 2 indicates at 
least some alcohol use.  

   Table 8.7    Normal data pattern within school 11 (S11)   
 s11  alc7  Frequency  Percent 

 0  .  174  6.31 
 0  1  831  30.15 
 0  2  1603  58.16 
 1  .  3  0.11 
 1  1  45  1.63 
 1  2  100  3.63 

  S11 = 1 indicates data come from School 11; S11 = 0 indicates 
data come from another school. Alc7 = Alcohol use at seventh 
grade. Alc7 = 1 indicates no use; Alc7 = 2 indicates at least some 
alcohol use  

http://dx.doi.org/10.1007/978-1-4614-4018-5_3
http://dx.doi.org/10.1007/978-1-4614-4018-5_7
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 Diagnostic plots from data augmentation showed some pathological patterns. 
The plots for several parameter estimates involving the variable xalc7 looked 
questionable (e.g., see Fig.  8.2 , panel a). But others were clearly pathological 
(see Fig.  8.2 , panels b, c, and d).  

 Note that with this problem, adding a hyperparameter does not help. 
Even with a hyperparameter = 10, EM converged (apparently normally) in 912 
iterations. Further, diagnostic plots were clearly pathological for the same 
 parameters (mean of xalc7, variance of xalc7, and covariance of s11 with xalc7 
were again the worst offenders).  

  Fig. 8.2    Diagnostic Plots. Plots depict MI solutions that range from probably pathological to 
clearly pathological       
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   First Conceptual Basis for This Missingness Pattern 

 I have seen this pattern manifests itself in two contexts. First, in a large study in sev-
eral communities, one whole community did not want its children responding do cer-
tain questions that were on the survey. The following solution applies in this context.  

   Solution 

 The problem in this instance is that one cannot test hypotheses involving all of the 
dummy variables and the substantive variable (xalc in my example) that has the 
problem. So the solution is that one of the problem variables must be removed. If 
the substantive variable is key for testing study hypotheses, then one must drop the 
problem dummy variable. In this instance, I feel that relatively little is given up if 
you combine the problem school with another school. If you simply drop the prob-
lem dummy variable (s11), it means that school 11 is combined with school 12 (the 
school with 0 for all dummy variables). If you must do this combining, it is proba-
bly best to combine school 11 with another school that has the most similar school 
characteristics. At the very least, be sure to combine the school in question with 
another school that is in the same condition (e.g., program or control).  

   Second Conceptual Basis for This Missingness Pattern 

 Another context for this missingness pattern is with certain skip patterns in ques-
tionnaire research. Skip patterns typically take this form: The participants are  fi rst 
shown a lead question, for example, “Have you ever smoked even one cigarette in 
your whole life?” (1 = “no”, 2 = “yes”). If the answer is “yes,” the person receives 
the follow-up questions, such as “How many cigarettes have you smoked in the past 
30 days?” However, if the person answers “no” to the lead question, then he or she 
is not shown the follow-up questions. When the lead question is dichotomous, this 
situation creates exactly the missingness pattern we have been talking about in this 
section. Ignoring other forms of missingness, the missingness on the two questions 
(lead and follow-up questions) look as shown in Table  8.9 .  

 As expected, everyone with a “1” on wa14 is missing on xa15. In this case, a 
correlation cannot be calculated between wa14 and xa15, and the missing values on 
xa15 cannot be imputed (with wa14 in the model).  

   Solutions 

 There are solutions to this problem. However, none of them are particularly satisfy-
ing. One solution is to be sure that the lead question is not a categorical question. 
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The problem occurs when everyone with one level of a categorical variable has a 
missing value for some other question. So if the lead question has even three ordered 
categories, it is possible to estimate a correlation between the lead and follow-up 
questions. For example, suppose the lead question (wa14) was, “How many ciga-
rettes have you smoked in your whole life?” 1 = none; 2 = part or all of one cigarette; 
3 = more than one cigarette. In this case, the follow-up question (xa15; e.g., “How 
many cigarettes have you smoked in the past 30 days?”) is missing whenever 
wa14 = 1. In this case, the correlation between wa14 and xa15 can be estimated 
using values of wa14 that are greater than 1. Unfortunately, when the lead question 
has only three levels, the correlation with the follow-up question can be substan-
tially biased. That is, the correlation based on the last two values of wa14 is not 
representative of the correlation based on all three values of wa14. 

 A better solution is to have a lead question with several response options. For 
example, suppose the lead question (wa14) was, “How many cigarettes have you 
smoked in your whole life?”, and the responses were 1 = none; 2 = only one puff; 
3 = part or all of one cigarette; 4 = 2–4 cigarettes; 5 = 5–20 cigarettes; 6 = 1–5 packs; 
and 7 = more than 5 packs. Further suppose that the follow-up question (xa15) is, as 
before, “How many cigarettes have you smoked in the past 30 days?” (with six 
response categories). In this case, all values of xa15 are still missing if wa14 = 1. But 
in this case, the correlation between wa14 and xa15 can be estimated using values 
2–7 for wa14. Thus, in this case, the correlation has a better chance of being repre-
sentative of the correlation based on all the data. In this case, it is also possible to 
impute the missing values of xa15 with wa14 in the imputation model. 

 This solution will perform reasonably well when the observed correlation (omit-
ting cases where wa14 = 1) is similar to the overall correlation. Table  8.10  shows the 
correlations with the key variables with and without the skip pattern using data from 
the Adolescent Alcohol Prevention Trial (AAPT; Hansen and Graham  1991  ) . We did 
not actually use skip patterns in the AAPT questionnaire. However, it is possible to 
simulate a skip pattern in these data simply by setting all values of the follow-up ques-
tions (xa15 and xa16) to missing whenever the lead question (wa14) takes on the value 
1 (in this example, xa15 = How many cigarettes have you smoked in the past 30 days?; 

   Table 8.9    Missingness on follow-up question based on 
response to lead question   
 wa14  xa15  Frequency  Percent 

 1  .  1875  61.94 
 2  1  933  30.82 
 2  2  39  1.29 
 2  3  66  2.18 
 2  4  59  1.95 
 2  5  29  0.96 
 2  6  20  0.66 

  wa14 = lead question: Have you ever smoked even one ciga-
rette in your whole life (1 = no; 2 = yes). xa15 = follow-up 
question: How many cigarettes have you smoked in the past 
30 days (1 = none; 2–6 = some)  
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xa16 = How many cigarettes have you smoked in the past 7 days?). The variables xa15 
and xa16 simulated data that would be observed with the skip pattern; the variables 
wa14, wa15, and wa16 were the actual data (i.e., without the skip pattern).  

 In this instance, it is pretty easy to see that the correlations based only on the 
reduced sample with data for both questions were good representations of the cor-
relations based on the total sample. In general, however, this will occur only when 
the two variables are linearly related through the entire range of responses. 

 Another solution involves simply inserting “no use” values (“1” in this case) in 
the follow-up questions when “no use” (“1”) was indicated on the lead question. 
Although this solution is admittedly ad hoc, it often performs well in practice. It 
works because the probability is very low that a person who indicates “no use” on 
the lead question will in fact indicate something other than “no use” on the follow-
up questions, if given the chance. In the AAPT study, for example, 1,875 students 
indicated “no use” on the lead, lifetime smoking question. Of those, one was miss-
ing on the follow-up question about smoking in the past 30 days, and three (0.16 %) 
gave responses other than “no use” on the follow-up question. For the lead, lifetime 
alcohol use question in the AAPT study, 1,002 students gave the “no use” response. 
Of these, four students (0.4 %) gave responses other than “no use” to the 30-day 
alcohol use question. In short, given that the other solution described above (having 
a lead question with multiple response categories) may not always work well, this 
ad hoc solution could be the best option available.   

   Summary of Troubleshooting Symptoms, 
Causes, and Solutions 

 Table  8.11  presents a convenient summary of the troubleshooting tips described in 
this chapter.       

   Table 8.10    Correlations with and without skip pattern   
 With skip pattern (simulated)  Without skip pattern 

 wa14  xa15  xa16  wa14  wa15  wa16 

 wa14  1.000  wa14  1.000 
 3023  3023 

 xa15  .590  1.000  wa15  .590  1.000 
 <.0001  <.0001 
 1146  1149  3020  3023 

 xa16  .463  .747  1.000  wa16  .455  .754  1.000 
 <.0001  <.0001  <.0001  <.0001 
 1145  1148  1148  3018  3021  3021 

  Below each correlation is the  p -value for the correlation, and below that, the sample size on which 
the pairwise correlation was calculated. wa14 = lifetime smoking; wa15 = smoking in past 30 days; 
wa16 = smoking in past 7 days; xa15 = smoking in past 30 days with skip pattern (xa15 missing if 
wa14 = 1); xa16 = smoking in past 7 days with skip pattern (xa16 missing if wa14 = 1)  
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 One of the most dif fi cult problems with performing multiple imputation relates to 
having too many variables in the imputation model. In many instances, the prob-
lems associated with having too many variables in the model can be avoided by 
using the strategies suggested in the previous chapter. Still, situations arise in which 
more variables need to be included in the model than can feasibly be handled by the 
current software. In this chapter, we reiterate the “Think FIML” approach to mul-
tiple imputation, which will help you avoid many pitfalls in this regard. Also, for 
situations in which the Think FIML approach is not enough, we describe two other 
strategies for dealing with this problem. The  fi rst strategy involves reducing the 
number of variables by imputing whole scales rather than the individual items mak-
ing up the scales. The second strategy involves dividing up the variables into two or 
more sets that can be imputed separately with minimal bias. 

   Think FIML 

 As outlined in the previous chapter, the Think FIML strategy starts with the vari-
ables that are in the analysis model. Then add the few variables you know to be 
related to missingness on your model variables. Finally, add the few auxiliary vari-
ables that are most highly correlated with the analysis model variables that are 
sometimes missing. This strategy works very well to reduce any biases related to 
missing data, and to restore lost power due to attrition and other forms of missing-
ness. Also, because these models tend to be relatively small, and with the kind of 
automation that is currently available (including the automation utilities described 
in this book), it is often quite practical to perform missing data analyses tailored to 
each analysis. 

 Before going on to the other strategies for dealing with large numbers of 
variables, we want to make one more pitch for using the Think FIML strategy. First, 
why would one want to impute more variables? One reason might be to take advantage 
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of the bene fi ts of using an inclusive model (i.e., less bias, more power). However, 
the incremental bene fi t of adding causes of missingness and auxiliary variables falls 
off very quickly (e.g., as shown in Chap.   11    ). 

 A second reason for imputing a large number of variables is that one  fi nds the 
imputation-analysis process so daunting that one wants to do the imputation part as 
few times as possible, for example, by imputing a large number of variables, and 
performing many different analyses on subsets of those variables. Because of the 
highly automated analysis programs, especially with SAS (also see the latest ver-
sions of Stata), and to a large extent with SPSS analysis with Norm and the 
MIAutomate utilities, it gets easier and easier to take the Think FIML, and “impute 
once, analyze once” approach.  

   Imputing Whole Scales 

 We take it as an axiom that imputing at the item level is always at least as good as 
imputing at the scale level. However, in  fi eld research, especially in longitudinal 
panel studies, sometimes there are simply too many variables to impute everything 
at the item level. For example, with even 10 scales, each with  fi ve items, there are 
50 items total. If one has  fi ve waves of data, there are 10 × 5 × 5 = 250 individual 
variables. This number of variables would overwhelm any standard missing data 
routine, even with a large number of cases. Because scenarios such as this are all too 
common in longitudinal  fi eld research, one must be prepared to make some compro-
mises. This chapter describes one such compromise. 

 The strategy involves imputing at least some scales at the scale level rather than 
at the individual item level. Although it is generally better to impute at the individ-
ual variable level, there are cases where the two approaches are essentially the same. 
Speci fi cally, if all cases have either all data or no data for all of the individual 
variables making up a scale, then it makes virtually no difference whether imputa-
tion is done at the individual variable or the scale level (assuming, of course, that 
the ultimate goal is to perform analyses on scales, rather than on individual items). 

 However, this ideal pattern is seldom found in empirical data. So a big part of our 
strategy involves generating scores for some scales for individuals who have data for 
some, but not all of the variables comprising the scale. Creating combined scale 
scores when subjects are missing different items requires some relatively strong 
implicit assumptions. The  fi rst assumption is that the expected response for all items 
is identical; this assumption implies equal means and variances for all items. To see 
why this is true, imagine two subjects with identical scores on a scale but where the 
 fi rst is missing item 1 and the second is missing item 2. If the mean for item 1 is 
higher than the mean for item 2, the  fi rst subject would have a lower score on the 
combined scale than the second subject simply because he or she happened to be 
missing a different item. This problem is readily  fi xed by standardizing all items to a 
common mean and variance before creating summed scales. This  fi x is very common 
part of scale construction, and works well with most, though not all, types of scales. 

http://dx.doi.org/10.1007/978-1-4614-4018-5_11
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 Schafer and Graham  (  2002  )  also discussed this strategy in a general way under 
the heading, “Averaging the Available Items,” saying that the practice “… is dif fi cult 
to justify …”, but that it can sometimes be useful provided the items “… form a 
single, well-de fi ned domain.” When the items do not form a single, well-de fi ned 
domain, it is possible that items relate differentially to other variables outside the 
scale. Under these conditions, generating scale scores based on the average of non-
missing items may cause estimation bias and is not recommended. 

 Identifying whether the items form a single, well-de fi ned domain is something 
that must be done if one is to employ the strategy of generating scale scores based 
on partial data. However, there are no absolute criteria to help one determine whether 
the items form a single, well-de fi ned domain. One of the main purposes of this 
chapter is to develop reasonable decision rules about when a scale may reasonably 
be thought of as forming a single, well-de fi ned domain (we will hereafter refer to 
this as a “homogeneous” scale), and for dealing with the situation whether or not the 
scale has been judged to be homogeneous. 

   Determining Whether a Scale Is Homogeneous or Heterogeneous 

 Our operational de fi nition of whether a scale is homogeneous or not will be based on 
a one-factor factor analysis and on coef fi cient alpha. It is best in this context to make 
use of common factors analysis (principal axis factoring with iterations), or struc-
tural equation modeling (SEM). Other, comparable models might also make sense. 
Ideally this factor analysis would be based directly on an EM covariance matrix, on 
a single data set imputed from EM parameters (e.g., with Norm or Proc MI; see 
Chaps.   3     and   7    ), or on some other form of ML estimation with missing data. 

 For now, we will de fi ne the scale to be homogeneous as long as the difference 
between the largest and smallest factor loadings is no more than .20. However, this 
factor loading criterion is a necessary, but not suf fi cient condition for describing the 
scale as homogeneous. In order for a scale to be homogeneous, the .20 difference 
rule for factor loadings must apply, and coef fi cient alpha must also be at least .70. 1  

 Table  9.1  presents the correlation matrix, factor loading matrix, and coef fi cient 
alpha for several different scenarios involving four scale items. These scenarios 
show different patterns ranging from clearly homogeneous to clearly heterogeneous. 
Below, we make judgments about appropriate handling with each scenario. Our 
judgments could certainly be used as is. However, minor deviations from our rec-
ommendations may also be justi fi ed.   

   1   One could consider other approaches to making these judgments about unidimensionality and 
homogeneity. For example, one could consider using tools of exploratory factor analysis (e.g., the 
scree test) to verify that the items making up a scale do indeed form a single factor. One could also 
use the SEM framework to help make judgments about whether the scale items tap a single factor, 
and whether it is reasonable in a statistical sense to treat the factor loadings to be equal, that is, to 
be homogeneous.  

http://dx.doi.org/10.1007/978-1-4614-4018-5_3
http://dx.doi.org/10.1007/978-1-4614-4018-5_7
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   Table 9.1    Sample scenarios   

  Scenario A1: homogeneous with high factor loadings (very high alpha)  
 Correlation matrix 
 1.00 
 .70  1.00 
 .70  .70  1.00 
 .70  .70  .70  1.00 

 Factor loadings (SEM) 
 A  .84 
 B  .84 
 C  .84 
 D  .84 
 coef fi cient  alpha = .90  

  Scenario A2: homogeneous with good factor loadings (good alpha)  
 Correlation matrix 
 1.00 
 .50  1.00 
 .50  .50  1.00 
 .50  .50  .50  1.00 

 Factor loadings (SEM) 
 A  .71 
 B  .71 
 C  .71 
 D  .71 
 coef fi cient  alpha = .80  

  Scenario A3: homogeneous, but with moderate factor loadings (moderate alpha)  
 Correlation matrix 
 1.00 
 .40  1.00 
 .40  .40  1.00 
 .40  .40  .40  1.00 

 Factor loadings (SEM) 
 A  .63 
 B  .63 
 C  .63 
 D  .63 
 coef fi cient  alpha = .73  

  Scenario A4: homogeneous, but with lowish factor loadings (lowish alpha)  
 Correlation matrix 
 1.00 
 .30  1.00 
 .30  .30  1.00 
 .30  .30  .30  1.00 

 Factor loadings (SEM) 
 A  .55 
 B  .55 
 C  .55 
 D  .55 
 coef fi cient  alpha = .63  

(continued)
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  Scenario A5: homogeneous, but with low factor loadings (low alpha)  
 Correlation matrix 
 1.00 
 .20  1.00 
 .20  .20  1.00 
 .20  .20  .20  1.00 

 Factor loadings (SEM) 
 A  .45 
 B  .45 
 C  .45 
 D  .45 
 coef fi cient  alpha = .50  

  Scenario A6: homogeneous, but with very low factor loadings (very low alpha)  
 Correlation matrix 
 1.00 
 .15  1.00 
 .15  .15  1.00 
 .15  .15  .15  1.00 

 Factor loadings (SEM) 
 A  .39 
 B  .39 
 C  .39 
 D  .39 
 coef fi cient  alpha = .41  

  Scenario B1: Heterogeneous, with three good and one very low factor loading  
 Correlation Matrix 
 1.00 
 .70  1.00 
 .70  .70  1.00 
 .20  .20  .20  1.00 

 Factor Loadings (SEM) 
 A  .84 
 B  .84 
 C  .84 
  D    .24  
 coef fi cient  alpha = .77  

  Scenario B2: heterogeneous, with three good and one low factor loading  
 Correlation matrix 
 1.00 
 .70  1.00 
 .70  .70  1.00 
 .30  .30  .30  1.00 
 Factor loadings (SEM) 
 A  .84 
 B  .84 
 C  .84 
  D    .36  
 coef fi cient  alpha = .80  

Table 9.1 (continued)

(continued)



218 9 Dealing with the Problem of Having Too Many Variables in the Imputation Model

  Scenario B3: heterogeneous, with three good and one lowish factor loading  
 Correlation 
Matrix 
 1.00 
 .70  1.00 
 .70  .70  1.00 
 .40  .40  .40  1.00 

 Factor loadings (SEM) 
 A  .84 
 B  .84 
 C  .84 
  D    .48  
 coef fi cient  alpha = .83  
 perfect  fi t 

  Scenario B4: heterogeneous, with two good and two lowish factor loadings  
 Correlation matrix 
 1.00 
 .70  1.00 
 .40  .40  1.00 
 .40  .40  .40  1.00 

 Factor loadings (SEM) 
 A  .83 
 B  .83 
  C    .50  
  D    .50  
 coef fi cient  alpha = .77  

  Scenario B5: heterogeneous, two 
dimensional scale  

 Correlation matrix 
 1.00 
 .70  1.00 
 .40  .40  1.00 
 .40  .40  .70  1.00 

 Factor loadings (SEM) 
 A  .80 
 B  .80 
  C    .59  
  D    .59  

 coef fi cient  alpha = .80  

Table 9.1 (continued)
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   Decision Rules for These Scenarios 

   Scenario A1 (Homogeneous Loadings = .84, Alpha = .90) 

 This is a good candidate for generating a scale score based on partial data. With this 
scenario, we would feel comfortable generating a scale score based on just half the 
items making up the scale. Forming a scale score with 2 of 4 items or 3 of 6 would 
seem to be acceptable in this instance.  

   Scenario A2 (Homogeneous Loadings = .71, Alpha = .80) 

 This is also a good candidate for generating a scale score based on partial data. With 
this scenario, however, we would prefer to have a majority of the items with data 
before forming the scale score. Forming a scale score with 3 of 4, 3 of 5, or 4 of 6 items 
would seem to be acceptable. Forming a scale score with 3 of 6 seems a little risky.  

   Scenario A3 (Homogeneous Loadings = .63, Alpha = .73) 

 With this scenario, we might be willing to form a scale score with 3 of 4, 4 of 5, or 
5 of 6 items, but would feel a little uncomfortable in this instance forming a scale 
score with 3 of 5 or 4 of 6 items.  

   Scenario A4 (Homogeneous Loadings = .55, Alpha = .63) 

 Starting with this scenario, we would feel uncomfortable forming a scale score with 
anything less than all of the items. In this instance (as with scenarios A5 and A6), 
the items seem to tap rather different constructs. They are balanced, to be sure, but 
in this instance, despite that balance, omitting one item might have a rather different 
substantive meaning than dropping another item. For scenarios A4, A5, and A6, we 
would require that all of the items have data before forming a scale score.  

   Scenarios B1, B2, B3 (Heterogeneous Loadings, Three Good = .83, 
One Lower, Alpha Good) 

 These scenarios all violate the requirement for homogeneous factor loadings (maxi-
mum loading difference greater than .20). Thus in these three scenarios, we would 
require that all items have data for forming a scale score. Another option in this 
instance is to rethink the scale. It is possible to drop the item with the low loading, 
retaining the three or more items with solid (homogeneous) loadings. Alternatively, 
it might be possible to separate the items into parts for imputation and recombine 
them later. That is, one could treat the three (or more) items with homogeneous 
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loadings and the item(s) with lower loadings as separate subscales for imputation. 
Then, after imputation, the two subscales could be recombined (weighting the 
subscales appropriately). One would have to be very careful with the logistics of 
this approach, but it does seem to be a reasonable strategy that would serve to 
reduce the estimation load during imputation.  

   Scenario B4 (Heterogeneous Loadings, Two Good = .83, 
Two Lowish = .50, Alpha Good) 

 We would treat this scenario the same as the previous ones; begin by considering 
dropping the two low-loading items. Alternatively, we might treat the parts of this 
scale separately for imputation and recombine the subscales after imputation. In this 
instance, however, one would need to form three subscales (items A and B, item C, 
item D). If dropping the two low-loading items is not an option, we would prefer to 
impute at the scale level (requiring that all items have data, discarding any partial 
data) or impute at the individual item level.  

   Scenario B5 (Heterogeneous Loadings, Two-Dimensional Scale) 

 This would be a case where separating the items into two scales might be the best 
strategy. However, with this scenario, the researcher could consider separating the 
two dimensions for imputation (following the rules described above for the A sce-
narios) and recombine the parts into a full scale after imputation.   

   Decisions About Throwing Away Partial Data Versus 
Imputing at the Item Level 

 In the previous sections,    we outlined some strategies for determining how many of 
the scale items must have data before we feel comfortable forming a scale score. At 
one extreme, we argued that some scales must be formed only when all items have 
data. At the other extreme, we argued that some scales may be formed when at least 
half of the items have data. But even with these decision rules, one must still decide 
whether it is better (a) to impute scale scores, and discard any partial data for which 
the rules for forming a scale score have not been met, or (b) to go ahead and impute 
at the individual item level. We address this latter issue in this section. 

   Missing Data Patterns for Scale Items 

 A major bit of relevant information comes from examination of the patterns of 
missing and nonmissing values among the items making up the scale. For example, 
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the pattern of missing and nonmissing values might look like that shown in Table  9.2  
for a 4-item scale, where 1 = data point observed and 0 = data point missing.  

 The kind of information shown in Table  9.2  can be prepared in a number of ways. 
Preprocessing the items from the scale with the Norm program (Schafer  1997  )  will 
produce this type of table (see Chap.   3    ). Just select the variables of interest and then 
run the Summary feature in Norm. The following SAS code (see Table  9.3 ) may 
also be used to obtain this information.  

 The rules here apply pretty much the same to all of the scenarios outlined above. 
We start with the basic pattern of missing and nonmissing values as shown in Table  9.2 . 
Let us de fi ne the three important parts of these patterns as (a) complete data (including 
patterns that are complete enough to form a scale score by the rules described above), 
(b) entirely missing data (pattern 5 in Table  9.2 ), and (c) partial data that do not con-
form to rules described above (e.g., patterns 3 and 4 in Table  9.2 ). 

 Also important are the percentages of people falling into these three categories. 
Especially important is the percentage of people falling into category (c); these are the 
cases whose data must be deemed missing for imputing the whole scale. Let us assume 
that the pattern shown in Table  9.2  was based on a scenario in which we could form a 
scale score based on having data for 3 of the 4 items. Thus, under these circumstances, 
we can form a scale score for 97 % of the cases, and 2 % of the cases have no data and 
must be imputed. That means that in this instance, 1 % of the cases have partial data 
not conforming to our rules, and the partial data must be discarded. 

 An important part of this process is for the researcher to ask at this point, “How 
do I feel about discarding the partial data for 1 % of the cases?” Only the researcher 
can make this decision. 1 % may seem ok, but 2 % may seem to be too much.   

   Table 9.3    Sample SAS syntax for producing table of missing data patterns   

 data a;set in.mydata; 
    if A=. then ra=0;else ra=1; 
    if B=. then rb=0;else rb=1; 
    if C=. then rc=0;else rc=1; 
    if D=. then rd=0;else rd=1; 
 run; 
 proc freq;tables ra*rb*rc*rd/list; 
 run; 

   Table 9.2    Sample missing data patterns   
 Item 

 Pattern  A  B  C  D  Frequency (%) 

 1  1  1  1  1  96 
 2  1  0  1  1  1 
 3  0  0  1  1  0.5 
 4  1  0  0  1  0.5 
 5  0  0  0  0  2 

http://dx.doi.org/10.1007/978-1-4614-4018-5_3
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   Issues Regarding Decision Rules 

 In employing this strategy, one must make some tough choices. The options (listed 
in approximately the order of the data quality they yield) are these:

   (a)    Impute at the item level.  
   (b)    Impute whole scales using decision rules described above that involve discard-

ing partial data not conforming to the rules.  
   (c)    Use more lenient decision rules for forming scale scores with partial data, 

thereby retaining more of the partial data.     

 Option (a) is clearly the best option for data quality. However, if the model to be 
tested is even moderately large, the researcher simply may not be able to impute all 
scales at the item level. 

 Option (b) has the undesirable characteristic of discarding some data. Unless 
one’s back is against the wall, it is often dif fi cult to do this. However, with this 
option, there are minimal biases associated with discarding these data. Estimation 
may be very slightly less precise, but in most instances of this sort, there will be no 
appreciable estimation bias with discarding the data from these cases. 

 Option (c) has the desirable characteristic of making use of more data. However, 
it has the undesirable characteristic of increasing estimation bias. The situations that 
make this strategy improper are much more likely to exist when the rules described 
above are violated in order to include more data. It is important that with the previ-
ous option (b), the disadvantage of the option is that there is more  random  error. 
The disadvantage with this option (c) is that there is likely to be more  systematic  
error, that is, bias. Because it is generally be more desirable in science to err on the 
side of increasing random error rather than systematic error, option (b) will gener-
ally be preferred to option (c). 

 On the other hand, it should still be possible to get everything possible out of the 
data. One important fact here is that you will almost certainly have some  fl exibility 
in most situations. For example, suppose you had 10 scales at each of  fi ve waves, 
with four items per scale. That is, 10 × 4 x 5 = 200 items. Or, think of it as 50 scales 
× 4 items = 200 items. If you were able to impute at the scale level for 6 of 10 scales 
at each wave, that would be 30 scales + 16 × 4 = 64 individual items = 94 variables in 
the imputation model. 

 Also, even when the data do not conform perfectly to the decision rules described 
above, you may be able to achieve partial bene fi t of combining items before imputa-
tion. For example, in scenarios B1, B2, B3, and B5 described above, it is possible to 
use a hybrid decision rule by breaking the scale’s items into subscales before impu-
tation and then reassembling the scale after imputation. This option makes sense 
when the scales are on the large side. For example, it might make some sense to 
break a 4-item scale into two subscales. This would still reduce the number of items 
for imputation from 4 to 2. But it makes less sense to employ this approach (e.g., 
with scenario B4) when three subscales are needed to deal with a four-item scale. 
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 This general approach may also be used with scenarios A4, A5, and A6. For 
example, suppose one had a missingness scenario depicted in Table  9.4 . With scenario 
A5, for example, we have recommended that the scale score be formed only when 
all the items have data. In the situation depicted in Table  9.4 , it would be good to 
think of the 4-item scale as two subscales: items A, B, and C as one subscale and 
item D as a separate subscale. The data for people with patterns 1 and 2 (97 % of the 
sample) have complete data for the subscale made up of items A, B, and C. For 
those with pattern 2, data for item D only would be imputed.    

   Splitting Variable Set for Multiple-Pass Multiple Imputation 

 Situations do arise in which the strategy of imputing scales is not a good solution. One 
such situation arises when the researcher wants to make use of the individual vari-
ables, for example, with latent variable analysis. In this situation, medium to large 
models might well involve more than the recommended 100 variables. If the study 
involves just 10 constructs, each measured at four times with four items, the researcher 
has 160 variables. With just a few demographic and other background variables, this 
number would be even higher. If the data have been collected with a nested structure 
(e.g., students within schools), this could add even more variables easily bringing the 
total to more than 200 variables. This number of variables could be a problem for a 
multiple imputation analysis, even if the research has thousands of cases. 

 A second situation may arise in which the number of variables is no more than 
100, but the number of cases is small enough to make even that number inadvisable. 
The basic problem is that one often needs to impute more individual variables than 
can reasonably be handled by the software. 

 One solution to the problem is to break the variables into parts. For example, if 
the researcher has 200 variables, he or she could do two sets of multiple imputation 
analyses, each involving, say, 100 variables. The problem with this solution is that 
the two separate sets of variables are each imputed under the model that all variables 
in one set are correlated  r  = 0 with all the variables in the other set. This is hardly a 
desirable solution. 

   Table 9.4    Sample missing data pattern matrix   
 Item 

 Pattern  A  B  C  D  Frequency (%) 

 1  1  1  1  1  80 
 2  1  1  1  0  17 
 3  0  0  1  1  0.5 
 4  1  0  0  1  0.5 
 5  0  0  0  0  2 



224 9 Dealing with the Problem of Having Too Many Variables in the Imputation Model

   A Solution That Makes Sense 

 Following up with our example, suppose we have 200 variables. Set 1 contains 100 
variables, and Set 2 contains the remaining 100 variables. If the variables in Set 1 
really are uncorrelated with those in Set 2, then we can go ahead and impute the two 
sets separately. 

 Of course, it will virtually never be the case in empirical data that the between-
set correlations are exactly  r  = 0. However, it might well be the case that the correla-
tions between variables from one set to the other are so small as to make any biases 
tolerably small. Any biases involved in imputing separately in two sets of variables 
can be reduced further if at least some of the information from set 1 can be used for 
imputing set 2 and vice versa. The strategy outlined below accomplishes this goal. 

   Overview 

 The  fi ve steps of the process, shown below, are these:

   Step 1: Principal components analysis to identify the two sets of variables.  
  Step 2: Impute single data set from EM parameters in each variable set.  
  Step 3: Generate 10 principal components factor scores for each variable set.  
  Step 4:  Do MI with set 1 variables and set 2 factor scores; and with set 2 variables 

and set 1 factor scores.  
  Step 5: Combine the two sets of imputations, dropping the factor scores.     

   Solution Step 1 

 The  fi rst step is to create two sets of variables that are roughly equal in size, and that 
are as uncorrelated as possible. One can do this with principal components analysis. 
Because there are too many variables to do multiple imputation, there are likely too 
many variables to perform the EM algorithm as well. Thus, at this step, we suggest 
using pairwise deletion. Although this is not generally an acceptable solution (e.g., see 
Graham and Hofer  2000 ;    Graham  2009 ), it is acceptable in this one context. 

 The following SAS code achieves this: 

 proc corr out=ds1 noprint;var x1-x200; 
 run; 
 proc factor data=ds1(type=corr) method=prin rotate=promax 

nfact=2 reorder; 
 var x1-x200; 

 run; 

 For SPSS, click on Analyze, Dimension Reduction, and Factor. Select the desired 
variables (e.g., ×1, ×2, ×3 … ×200). Under Extraction, select Principal Components 
(the default), and click on Fix number of factors (enter 2). Under Rotation, click on 
Promax. Under Options, choose Exclude cases pairwise, and click on Sorted by size. 



225Splitting Variable Set for Multiple-Pass Multiple Imputation

 The following SPSS syntax also performs this analysis: 

 DATASET ACTIVATE DataSet1. 
 FACTOR 
    /VARIABLES x1 x2 x3 … x200 [apparently you must list all 

variables] 
   /MISSING PAIRWISE 
   /ANALYSIS x1 x2 x3 … x200 [again, list them all] 
   /PRINT INITIAL EXTRACTION ROTATION 
   /FORMAT SORT 
   /CRITERIA FACTORS(2) ITERATE(25) 
   /EXTRACTION PC 
   /CRITERIA ITERATE(25) 
   /ROTATION PROMAX(4) 
   /METHOD=CORRELATION. 

 The results of this analysis will divide the data into two sets that are maximally 
uncorrelated. However, there are two possible drawbacks to the results based on this 
 fi rst principal components analysis. First, it is likely than some, even many vari-
ables will load highly on neither factor. Second, it may well happen that many more 
items load more highly on factor 1 than on factor 2. 

 The  fi rst problem is not really a problem. This is not a factor (or principal com-
ponents) analysis in the usual sense. We are just trying to get two sets of variables 
that are maximally uncorrelated. If a particular variable loads about the same on the 
two factors, that is ok. Just put it with the factor for which it loads slightly higher. 
This also applies if a particular item load is near zero on both factors. Just put it with 
the factor for which it loads slightly higher. 

 The second problem could be more serious. If the number of variables loading 
on the two factors is very different, we may not have achieved our goal. For exam-
ple, if 150 variables load on factor 1, and only 50 load on factor 2, this may not be 
a good solution, because handling 150 variables all at once may be little better than 
handling 200 variables all at once. 

 If the differences are this large, one option may be to split the variables into three 
groups, that is, by asking for a 3-factor solution. This will almost always help the 
situation. On the other hand, if the differences are more modest (e.g., 115 and 85), 
one can probably live with the difference.  

   Solution Step 2 

 Once the variables have been divided into the two (or more) groups, conduct a regular 
missing data analysis separately for each group. Read the data in, run the EM algo-
rithm, and then ask the program to impute a single data set from EM parameters. 

 For SAS users, sample code is as follows: 

 proc mi data=a nimpute=1 out=b; 
   var x1-x100; 
   mcmc nbiter=0 niter=0; 
 run; 
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 For SPSS users, within the Norm program, read the data in for each set, run the 
EM algorithm, and then ask the program to impute a single data set from EM param-
eters (see Chap.   3    ). This data set may then be read back into SPSS using the 
MIAutomate utility (see Chap.   5    ). 

 This data set will have the property of having parameter estimates that are near 
the middle of parameter space. It is not good for hypothesis testing, because there is 
no way to estimate standard errors, however it is a very good way to perform analy-
ses, for which hypothesis testing is typically not done, for example, for exploratory 
factor analysis (see Graham et al.  2003  ) . In addition, this singly imputed data set is 
good in that factor scores may be written out (factor scores can be written only if 
there are complete data).  

   Solution Step 3 

 Perform principal components analysis on each of the sets of variables identi fi ed 
in Step 1, using the data sets created in Step 2. 

 Sample SAS code for performing these analyses is as follows (note that the factor 
scores will have no missing data in these analyses): 

 proc mi data=a nimpute=1 out=b1; 
   var x1-x100; 
   mcmc nbiter=0 niter=0; 
 run; 
 proc factor method=prin rotate=promax score out=c1 nfact=10; 
   var x1-x100; 
 run; 
 data d1;set c1; 
     setA1=factor1; 
     setA2=factor2; 
     setA3=factor3; 
        *** and so on ***; 
   keep ID x101-x200 setA1-setA10; 
 run; 
 proc mi data=a nimpute=1 out=b2; 
    var x101-x200; 
    mcmc nbiter=0 niter=0; 
 run; 
 proc factor method=prin rotate=promax score out=c2 nfact=10; 
   var x101-x200; 
 run; 
 data d2;set c2; 
     setB1=factor1; 
     setB2=factor2; 
     setB3=factor3; 
        *** and so on ***; 
   keep ID x1-x100 setB1-setB10; 
 run; 

http://dx.doi.org/10.1007/978-1-4614-4018-5_3
http://dx.doi.org/10.1007/978-1-4614-4018-5_5
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 In SPSS, the logic is the same, but the imputation steps should be carried out in 
NORM, and imported into SPSS using the MIAutomate utility for the principal 
components and analysis and writing of factor scores.  

   Solution Step 4 

 Impute the two data sets separately, asking for, say, 40 imputed data sets for each. 
 Sample SAS code is given below: 

 proc mi data=d1 nimpute=40 out=e1; 
   var x101-x200 setA1-setA10; 
   mcmc nbiter=* niter=*; 
 run; 
 *** The nbiter and niter values will be set according to the 
performance of EM -- see Chapter 7 ***; 
 proc mi data=d2 nimpute=40 out=e2; 
    var x1-x100 setB1-setB10; 
    mcmc nbiter=* niter=*; 
 run; 

 In SPSS the logic is the same, except that the imputation steps are carried out in 
NORM (see Chap.   3    ) and the results are imported into SPSS by the MIAutomate 
utility (see Chap.   5    ).  

   Solution Step 5 

 Combine the two sets of imputed data sets (merge them), discarding the two sets of 
factor scores. 

 Sample SAS code is given below: 

 data x1;set e1; 
   keep ID _imputation_ x101-x200; 
 run; 
 proc sort;by _imputation_ ID; 
 run; 
 data x2;set e2; 
   keep ID _imputation_ x1-x100; 
 run; 
 proc sort;by _imputation_ ID; 
 run; 
 data x;merge x1 x2;by _imputation_ ID; 
 run;   

http://dx.doi.org/10.1007/978-1-4614-4018-5_3
http://dx.doi.org/10.1007/978-1-4614-4018-5_5
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   Comments 

 As we stated at the outset of this section, the problem with imputing two sets of 
variables separately is that the imputation is done under the model that all correla-
tions are  r  = 0 between the variables in one set and the variables in the other set. The 
data sets created using this procedure will have been imputed under a different 
model. First, the actual correlation between the two sets will be minimized by 
selecting the variable sets with principal components analysis. Second, the variables 
in Set A are not unrepresented in the imputation of variables in Set B and vice versa. 
They are represented by the factor scores. 

 It could be argued that this is not an optimal solution to the problem of having 
too many variables for the multiple imputation programs to handle all at once. 
Although this may be true, it is, at present, the only solution we have. Further, 
although simulations remain to be conducted to test the performance of this proce-
dure, our intuition is that it will work very well in real empirical data. 

 One alternative to procedures such as this is simply to impute all the variables at 
once. Imputing large numbers of variables (e.g.,  k  = 200 or greater) will work, in 
theory. Well-behaved (e.g., normally distributed) simulation data based on large 
numbers of variables should, for example, produce results that are as unbiased and 
ef fi cient as are results based on smaller numbers of variables. But problems arise 
with this approach. Most importantly, the imputation process can take a long time. 
Stories exist, for example, of imputation models taking weeks to be complete. Two 
issues arise here. First, when the imputation model is churning and churning, there 
is no guarantee that it will ultimately be successful. It takes enormous faith, for 
example, to wait 1 or 2 months for the imputation results. Add to that the enormous 
task of double-checking the data augmentation (or MCMC) diagnostic plots, and 
we have a very dif fi cult situation. Second, and perhaps more importantly, it would 
be virtually impossible to perform a simulation to verify that these very large MI 
problems do, in fact, produce proper, usable solutions. If one replication of the 
simulation takes 2 months, then even with very fast computers, the simulation with 
1,000 replications would take 2,000 months (167 years). Even with massively dis-
tributed processing, this task would be daunting.       
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   Who Should Read This Chapter? 

 If you have some experience with simulation work, then much of what I say here in 
the early part of this chapter should be a review. However, even if you do have prior 
experience with this topic, I believe it will be good to see my take on the more tra-
ditional Monte Carlo approach to missing data. Also important is that having a good 
sense of the traditional Monte Carlo approach to simulations will be a good setup 
for the non-Monte Carlo simulations I describe toward the end of this chapter. 

 If you have no prior experience with simulation work, I believe you will also  fi nd 
this chapter useful. You should be able to pick up enough basic knowledge in this 
chapter to allow you to begin to do at least some simulation work. However, if you 
are in this category, it may be good to  fi nd a general introduction to doing simula-
tion studies (e.g., see Fan et al.  2002  ) . 

 At the very least, having a sense of how the non-Monte Carlo simulations work 
will be valuable in other chapters in this book (Chaps.   11     and   13    ).  

   Background 

 As computers have become more and more powerful, researchers have begun to rely 
more and more heavily on simulations to address their questions. In this chapter, 
I talk about simulations, particularly those relating to the study and analysis of miss-
ing data. The most commonly used simulations are usually called Monte Carlo 
simulations. I will start here by describing the rudiments of this kind of simulation. 
I will include what I feel are important admonitions regarding the conduct of 
simulations. 

 A less used approach to simulation work will also be covered in this chapter. This 
approach starts with one of the  fi rst accessible methods for analysis of missing data 
(Allison  1987 ; Muthen et al.  1987  ) , an approach that made use of the multiple group 
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(MG) capabilities of structural equation modeling (SEM) programs (e.g., LISREL; 
Jöreskog and Sörbom  1996  ) . 

 The key feature of this approach, which I refer to as MGSEM, is that one can 
work with the population covariance matrix, thereby obviating the need to generate 
thousands of data sets as with the Monte Carlo approach. As I will point out in a 
later section of this chapter, this difference in approaches amounts to a 200-fold 
 difference in the time it takes to complete a simulation. 

 Studies that have made use of this MGSEM approach to simulations (e.g., 
Graham et al.  2001 ; Graham et al.  2006  )  have always made the assumption that the 
missingness was MCAR, which, with planned missing data designs is a good 
assumption. In this chapter, however, I also describe the nontrivial extension of 
working with population covariance matrices to MAR (and NMAR) missingness. In 
so doing, I demonstrate how one might employ this much more compact MGSEM 
approach to address simulation questions that heretofore have been handled using 
the Monte Carlo simulation approach.  

   General Issues to Consider with Simulations 

   What Are the Goals of Your Simulation? 

 Be absolutely clear and explicit about the goals of your simulation.  

   What Other Approaches Are Available to Achieve Your Goals? 

 The best reason for using a Monte Carlo simulation is that a closed-form solution is 
not possible for your question. This may often be the case, but I think researchers 
are a bit too quick these days to ignore the possibility that there may be an algebraic 
solution to the problem. Remember that a Monte Carlo solution is, by its very nature, 
only an approximate solution. That is, the results from Monte Carlo simulations are 
fully stable only when the procedure is repeated an in fi nite number of times. Thus, 
even when the procedure is replicated, say, 1,000 times, there are still some differ-
ences between average parameter estimates over the  fi rst 1,000 replications, and the 
parameter estimates over a second 1,000 replication. I refer to such differences as 
simulation “wobble.” It is true that results from a good simulation can be immensely 
valuable; but would not it be even more valuable, not to mention elegant, if a closed-
form solution were possible? 

 In a later section of this chapter, I describe a non-Monte Carlo simulation 
approach that may, in some circumstances, provides results that are as good in 
many respects as a closed-form solution. I will describe this approach for MCAR 
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missingness, as well as a new version of the approach that will be useful for some 
kinds of studies involving MAR and NMAR missingness.  

   What Should the Simulation Parameters Be? 

 Some simulations attempt to cover a broad range of parameters. For example, 
Collins et al.  (  2001  )  examined   m   

Y
  (the mean of Y, the variable with missing values), 

  s    
Y
  2   (the variance of Y),   b   

YX
  (the regression coef fi cient for X, an important substan-

tive variable, predicting Y),   b   
XY

  (the regression coef fi cient for Y predicting X, and 
  r   

XY
  (the correlation between X and Y). Alternatively, the simulation may be more 

focused. For example, if the simulation is meant to apply to evaluations of interven-
tions, then it could be that fewer parameters are needed. Under these more focused 
circumstances, it could be that one would examine just   b   

YX
 , or under some circum-

stances, perhaps   b   
YX

  and   m   
Y
 . Either the broad or more focused approach can prove 

to be valuable. 
 Several parameters relate to missingness, per se. One variable often studied is 

whether the missingness is MCAR, MAR, or NMAR (see Chap.   1    ). Within MCAR 
missingness, the major variable is the percent missing. Another possible variable in 
this context is the pattern of missingness (e.g., missing on one variable; missing on 
several variables within the same individuals; more complex missingness patterns). 
Within MAR missingness, Collins et al.  (  2001  )  studied three different kinds of 
MAR missingness: “MAR Linear,” “MAR Convex,” and “MAR Sinister” (see 
Collins et al.  2001 ; also see Chap.   1    , and later in this chapter for more details). Also 
important within MAR missingness are (a) percent missing; (b)   r   

XY
 ; (c)   r   

YZ
  (where 

Z is the “cause” of missingness); and (d)   r   
YR

 , where R is a dichotomous variable 
representing missingness, per se ( R  = 0 if Y is missing;  R  = 1 if Y is not missing; see 
Chap.   1    ). MAR missingness typically involves including Z in the missing data 
model. NMAR missingness is generally the same as MAR, except that Z is excluded 
from the missing data model.  

   What Should the Range of Parameter Values Be? 

 I believe that these choices are hugely important. I think one of the biggest mistakes 
simulation researchers make is to select parameter values, or ranges of parameters, 
that are not representative of the substantive research domain to which the simula-
tion should apply. 

 The big issue here is to tie the range of parameter values (a) to the research ques-
tion, and (b) to reality. Be able to argue why it is that this particular range of parameter 
values (and these parameters) helps one address the goals of the simulation. Also, be 
able to provide solid evidence from the relevant empirical literature to support the use 
of one parameter range or other.   

http://dx.doi.org/10.1007/978-1-4614-4018-5_1
http://dx.doi.org/10.1007/978-1-4614-4018-5_1
http://dx.doi.org/10.1007/978-1-4614-4018-5_1
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   Monte Carlo Simulations 

 As I stated at the outset of this chapter, my discussion of Monte Carlo simulations is 
intended to be review for readers who already have some experience with these meth-
ods. Readers who do not have experience with Monte Carlo methods will  fi nd enough 
material here to get started using these methods. All readers will  fi nd this material a 
good lead-in for the non-Monte Carlo methods described in a later section. 

   Start with a Population and Generate Samples 

 A simple Monte Carlo simulation starts with population values for several parame-
ters, for example, means, variances, and correlations. From those parameters, one 
generates raw data (with normal or nonnormal distributions), such that a large sam-
ple (e.g.,  N  = 1,000,000) will produce values very close to the population values. 
When one wishes to study some aspect of missing data or analysis with missing 
data, the procedure often begins this way. 

 There are several ways to conceive of the population. One way is to think of the 
population parameters described above as the population. With this strategy, one 
can generate numerous samples from that population. With this approach, one might 
generate numerous samples of, say,  N  = 500, using a data generation program. 
I often use an old program associated with LISREL 8 (Jöreskog and Sörbom  1996  )  
called GENRAW. 

 A second approach is to start with the population parameters as described above, 
but rather than generating the numerous samples directly, one might  fi rst generate a 
single large sample (e.g.,  N  = 1,000,000), and then call that the population, and draw 
random samples from that. The good thing about the  fi rst strategy is that the expected 
value for all parameters over a large number of samples will be the population 
parameter values. One bad thing about that strategy, however, relates to the fact that 
the next step, degrading the data set, creates some issues with population parameter 
values. This happens because some strategies for degrading the data set often require 
that at least one variable have a distribution other than normal (e.g., a 4-level vari-
able with uniform distribution; see below). Thus the second approach may be pre-
ferred, because it may be possible to come very close to the desired population 
parameter values (especially correlations) in a population of a speci fi c size, even 
when one or more of the variables are not normally distributed. Another advantage 
of this strategy is that one may use more standard software (e.g., SAS) to generate 
the “population” using standard SAS functions. 

  Sample Data  � . The following SAS code provides a very simple model for gen-
erating a smallish population ( N  = 100,000) of the sort just described. The code 
shown below generates two variables (X and Y) that are correlated approxi-
mately  r  = .50. One can  fi ddle with the code, for example, by using differential 
weighting, to produce different correlations. The code also shows a way to draw 
a random sample of  N  = 500 from the population. 
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 data a;*** step 1: generate the population ***; 
   do i=1 to 100000; 
     a = normal(0); 
     X = a + normal(0); 
     Y = a + normal(0); 
     output; 
   end; 
 run; 

 data b;set a; 
    rx = uniform(0); *** step 2: sort the population by a new 

random variable ***; 
 run; 
 proc sort;by rx; 
 run; 

  data c;set b; *** step 3: generate the random sample of N = 500 
***; 
   if _n_ < = 500; 
 run; 

 With this approach, one should generate the population once and save it to a 
permanent  fi le. Then each subsequent step is drawn from the same population with 
known parameter values. 

 A variant of this second approach starts with a “population” based on real 
empirical data. In one Monte Carlo simulation study, for example, our “popula-
tion” was de fi ned as a sample of  N  = 12,000, from which we drew repeated samples 
of  N  = 100 or  N  = 50 (Graham and Schafer  1999  ) . The nice thing about this variant 
is that the population parameter estimates are very realistic (because they come 
from real empirical data). Another nice thing about this approach is that the distri-
butions of the variables are realistic. One drawback with this approach, however, is 
that the researcher has little control over the population parameter values or the 
distributions used. 

 Using any of these approaches, the key is that the population parameter values 
(and distributions) are known. This means that the results of any analysis can be 
compared against a meaningful gold standard.  

   Degrading the Sample 

 The next step with a Monte Carlo simulation with missing data is to degrade the 
sample data set, that is, create the missing data. For starters, one must decide whether 
the missingness mechanism will be MCAR, MAR, or NMAR, or some combination 
of these mechanisms. Let me begin with the simplest case in which missingness is 
MCAR, and a single variable has missing values. 
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   MCAR Missingness 

 MCAR is actually very easy to accomplish. If you start with a sample of  N  = 500, 
and want 50 % missing on a variable, say “Y”, you can simply set Y to missing for 
the  fi rst 250 cases of the sample data set. Because the generated data were a random 
sample from the population, the  fi rst 250 cases of that sample represent a random 
sample of the sample. 

  Sample Data  � . The following SAS code shows one way to degrade the data set 
just described. This code sets the variable Y to be missing for a random 50 % of 
the sample. 

 data d;set c; 
   if _n_ < = 250 then Y=.; 
 run;  

   MAR Missingness 

 MAR is also not dif fi cult. Recall that MAR missingness on Y may be due to some 
variable you have measured, but it is not due to a variable you have not measured. 
In this case, I have a simple model in which the missingness on Y is due to X. But 
what is the form of the MAR missingness? I generally use  MAR-linear  to generate 
my missing data. But as I indicated above (also see Chap.   1    ), other forms of MAR 
are possible. 

  Sample Data  � . The SAS code for a simple degrading of the sample data set 
using MAR-linear is given below. Note that for degrading the sample with MAR-
linear missingness, I  fi rst change the variable X to be a four-category variable 
with a uniform distribution. 

 proc rank data=c out=d groups=4;var X; 
     *** note that this code produces a new version of X that has 

values 0, 1, 2, and 3. Missingness on Y will be MAR if this 
new version of X is used in the missing data analysis model 
(e.g., the MI model). Note also that the correlation with Y 
will be somewhat lower ***; 

 run; 
 data e;set d; 
   rx = uniform(0); 
   if X = 0 and rx < .20 then Y=.; 
   if X = 1 and rx < .40 then Y=.; 
   if X = 2 and rx < .60 then Y=.; 
   if X = 3 and rx < .80 then Y=.; 
 run; 

http://dx.doi.org/10.1007/978-1-4614-4018-5_1
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 The IF statements shown above have a rather strong “lever” on missingness    
(Graham  2009 ). That is, with these statements, the correlation between X and 
 missingness  itself (a dichotomous variable, often called “R”, with 0 if Y is missing 
and 1 if Y is present; see Chap.   1    ) is  r  

XR
  = .447. But an even stronger effect on 

missingness is possible: 

 if X = 0 and rx < .05 then Y=.; 
 if X = 1 and rx < .35 then Y=.; 
 if X = 2 and rx < .65 then Y=.; 
 if X = 3 and rx < .95 then Y=.; 

 These statements produce  r  
XR

  = .671, which is nearly the strongest MAR-linear 
effect possible. It is also easy to have IF statements that would produce a much 
weaker effect on missingness: 

 if X = 0 and rx < .35 then Y=.; 
 if X = 1 and rx < .45 then Y=.; 
 if X = 2 and rx < .55 then Y=.; 
 if X = 3 and rx < .65 then Y=.; 

 These statements produce  r  
XR

  = .224. And an even weaker effect ( r  
XR

  = .045) 
would be produced with these IF statements. 

 if X = 0 and rx < .47 then Y=.; 
 if X = 1 and rx < .49 then Y=.; 
 if X = 2 and rx < .51 then Y=.; 
 if X = 3 and rx < .53 then Y=.; 

 The important thing to consider about the strength of the “lever” on missingness 
relates to what is reasonable with respect to what is known from the relevant litera-
ture. I will discuss this more a bit later in this chapter, but the bottom line is that the 
strength of the lever used in a simulation should not be selected arbitrarily. 

 Another point to make about the IF statements shown above is that they all pro-
duce 50 % missingness on Y (look at the average of the four probabilities given in 
each case). For 25 % missingness, the IF statements might look like this: 

 if X = 0 and rx < .10 then Y=.; 
 if X = 1 and rx < .20 then Y=.; 
 if X = 2 and rx < .30 then Y=.; 
 if X = 3 and rx < .40 then Y=.; 

 This produces one of the stronger “levers” on missingness possible with 25 % 
missingness (although somewhat stronger levers are possible), but  r  

XR
  = .224. With 

the weaker lever shown below,  r  
XR

  = .075. 

http://dx.doi.org/10.1007/978-1-4614-4018-5_1
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 if X = 0 and rx < .200 then Y=.; 
 if X = 1 and rx < .233 then Y=.; 
 if X = 2 and rx < .267 then Y=.; 
 if X = 3 and rx < .300 then Y=.; 

 This illustrates that two things happen with less missingness. First, the smaller 
amount of missing data has a milder impact on statistical conclusions even under 
the worst conditions. Second, the correlation  r  

XR
  is also smaller, rendering the effect 

on statistical conclusions even less problematic.  

   MAR-Convex Missingness 

 MAR-Convex missingness, as described by Collins et al.  (  2001  )  was produced with 
IF statements like the following: 

 if X = 0 and rx < .80 then Y=.; 
 if X = 1 and rx < .20 then Y=.; 
 if X = 2 and rx < .20 then Y=.; 
 if X = 3 and rx < .80 then Y=.;  

   NMAR-Linear Missingness 

 NMAR-linear missingness can also be relatively straightforward. Recall that miss-
ingness on Y is NMAR if the missingness is due to some variable that has not been 
measured (or is simply not used in the missing data analysis model). The two ways 
this can occur are (a) if the cause of missingness on Y (Z) is a variable that is cor-
related with Y, but that has not been measured (or simply not used in the missing 
data analysis model), and (b) if the Y itself (or a version of it) is the cause of its own 
missingness. 

 An example of the  fi rst case is that the variable Rebelliousness is a cause of 
missingness on Drug Use in a prevention study. And Rebelliousness (Z) and Drug 
Use (Y) are correlated  r  

YZ
  = ~.40. An example of the second case is the Drug Use 

(Y) is the cause of its own missingness. That is, Z = Y. Note that in this latter case, it 
is not necessarily the case that Z and Y are perfectly correlated,  r  

YZ
  = 1.0. In fact, one 

of the most straightforward ways of generating missing data of this form is to create 
a normally distributed Y variable as shown above, and then create a uniformly dis-
tributed, 4-category version of Y with the Proc Rank, for example: 

 proc rank data = c out = d groups = 4;var y;ranks z; 
    *** note that this code produces a new version of y (Z) that 

has values 0, 1, 2, and 3. Note also that the correlation 
with Y will be somewhat lower: r 

YZ
  = ~.925 rather than r 

YZ
  = 1.; 

 run; 



237Monte Carlo Simulations

 data e;set d; 
   rx = uniform(0); 
   if Z = 0 and rx < .20 then Y = .; 
   if Z = 1 and rx < .40 then Y = .; 
   if Z = 2 and rx < .60 then Y = .; 
   if Z = 3 and rx < .80 then Y = .; 
 run; 

 As with MAR-linear missingness, with NMAR-linear missingness, even when 
 r  

YZ
  > .9, the correlation  r  

ZR
  need not be large. The IF statements shown above re fl ect 

a rather strong lever on missingness ( r  
ZR

  = .447). Most importantly, the strength of 
this lever (i.e., the magnitude of  r  

ZR
 ) is independent of the  r  

YZ
 , the correlation 

between the cause of missingness (Z) and the main outcome variable (Y), which is 
sometimes missing. That is, a strong lever on missingness (i.e., a large value of  r  

ZR
 ) 

is no more likely with NMAR missingness than it is with MAR missingness and is 
no more likely with large values of  r  

YZ
  than with small values of  r  

YZ
 .   

   Automation Strategies 

 Automation is essential in Monte Carlo simulations. The process is: generate the 
sample, perform analysis, and combine the results. The problem is that this process 
must be repeated  many  times. I have seen many situations in which 100 replications 
are too few even to have a glimpse of reality. I have seen situations where results do 
not begin to stabilize adequately until I got to 20,000 replications. In any event, 
simulations are time intensive even with automation and are simply impossible 
without automation. 

   SAS and Other Full-Featured Software 

 Some simulations are pretty easy within the SAS framework (see Fan et al.  2002  ) . 
I can generate the data in a DATA step (producing population parameters close to 
desired levels), degrade the data, perform the analysis, and combine the results, all 
in a single SAS syntax  fi le. The last part, combining the results, is very nice in the 
SAS environment, because it is always the case with SAS PROCs that the parame-
ters and standard errors may be output to a SAS data set. In addition, PROC MI 
allows one to perform multiple imputation analysis as part of the process if that is 
what one wants. Finally, the SAS Macro language allows for relatively simple auto-
mation of the process. 

 Statisticians and others commonly use the R or S-plus packages for Monte Carlo 
simulation work. These packages are not in common use in the social and behav-
ioral sciences, but they provide an excellent framework for generating, degrading, 
and analyzing data, and for combining the results from thousands of replications of 
the simulation.  
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   Stand-Alone Simulation Software 

 Another approach I take to doing Monte Carlo simulations is to write my own auto-
mation software. This is especially valuable when the analysis I want to do is not 
available in SAS (e.g., LISREL or HLM, etc.). With this approach, it is important to 
be able to write code in one of the programming languages. It is best if you can write 
in C++ or even FORTRAN. I happen to write my code in the ancient BASIC lan-
guage (using an equally ancient BASIC compiler to produce stand-alone ***.exe 
 fi les). With this approach, just as with any approach to Monte Carlo simulations, the 
key steps are:

   Data generation  
  Degrading the data  
  Analysis  
  Combining results     

   Simulations Involving Multiple Imputation 

 For simulations involving MI, per se, for example, when MI inference with some 
number of imputations is part of the question to be addressed by the simulation 
(e.g., see Graham et al.  2007  ) , I  fi nd that using SAS (or equivalent full-featured 
statistical package, such as R or S-plus) is recommended.  

   Simulations Involving EM Algorithm 

 On the other hand, some simulations focus on parameter estimation and do not nec-
essarily need the overhead connected with obtaining standard errors via MI infer-
ence. For simulations like this, it is often useful simply to employ a stand-alone EM 
algorithm program (e.g., EMCOV; Graham and Hofer  1992 ; Graham and Donaldson 
 1993 ; Graham et al.  1996  ) . Simulations such as these would simply insert additional 
lines of code to run the EM program.   

   Technical Issues to Consider in Monte Carlo Simulations 

   Random Number Generators 

 One issue that comes up in Monte Carlo simulations relates to what constitutes 
randomness. Random selection has as its primary rule that all elements in the popu-
lation have an equal probability of being selected. The problem with this is that 
many random number generators violate this basic rule. Random number generators 
that are based on the computer’s clock to generating a starting seed, for example, are 
not truly random, because the clock values represent only a subset of all possible 
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starting seeds. The bottom line is that you should  fi nd a random number generator 
that conforms to standards of randomness. One good one is the program from 
Numerical Recipes (see Press et al.  2007 ; also see   http://www.nr.com    ).  

   Simulation “Convergence” 

 By simulation “convergence,” I mean that the key parameter estimates of the simu-
lation have stabilized suf fi ciently to allow you to draw good conclusions.  All  Monte 
Carlo simulations have what I call “simulation wobble.” That is, even after tens of 
thousands of replications, the plots of key simulation parameters over variations in 
parameter values will not be perfectly smooth. The point is that a large enough 
number of replications must be run so that such plots (or equivalent tabled values) 
are smooth enough that good conclusions can be made. 

 One area of particular concern is the monotonicity of certain  fi ndings over varia-
tions of one parameter. For example, given a particular sample size, as the percent 
of missing data increases on a key variable, the amount of bias in NMAR models 
must increase. Similarly, the amount of estimation bias over variations of  r  

YZ
  (the 

correlation between the cause of missingness, Z, and the variable that is sometimes 
missing, Y) must be monotonic. If a simulation seems to be showing that the amount 
of estimation bias is not monotonic in these (and other) cases, then there were too 
few replications in the simulation. 

 Granted, missing data theory is not always correct. But if the goal of your simu-
lation is to demonstrate that missing data theory is wrong in one way or other, you 
had better demonstrate  fi rst that you have done your simulation completely cor-
rectly. I would suggest that you also have a theoretical argument as to why missing 
data theory was incorrect in that instance.    

   Non-Monte Carlo Simulation with the MGSEM Procedure 

 This section describes procedures that make use of multiple group SEM analysis. In 
order to follow everything I present in this section, you must have at least some 
experience with multiple group SEM analysis. I happen to use the LISREL pro-
gram, but I present the material in this section in a more generic way, so experience 
with any SEM package will be  fi ne. 

 On the other hand, if you do not have experience with multiple group SEM anal-
ysis, or with any kind of SEM analysis, you can still follow the main points pre-
sented in this section. An important bene fi t of using this approach is that one is able 
to work with the population covariance matrix directly. Because of this, where this 
procedure is applicable, one is able to obtain parameter estimates and standard 
errors for the population, without having to conduct tens of thousands of replica-
tions that are needed with Monte Carlo methods. 

http://www.nr.com
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   The Multiple Group SEM Procedure 
for MCAR Missingness: Overview 

 What I am calling the MGSEM procedure was described by Allison  (  1987  )  and by 
Muthen et al.  (  1987  ) . One begins by dividing up the sample into groups represent-
ing different patterns of missing and nonmissing values. Let me begin with a simple 
model in which there are three variables, X (the independent variable in a simple 
regression model), Y (the dependent variable in the regression model), and Z (an 
auxiliary variable, i.e., a variable that is correlated with Y, but not part of the analy-
sis model). 

 To start, I assume that X and Z are never missing, but that Y is missing for 50 % 
of the cases. I assume further that any missingness on Y is purely of the MCAR 
variety. That is, I assume that the group with complete data on the three variables is 
a random sample of the total sample. Under these assumptions, I have the patterns 
of missing and observed values shown in Table  10.1 .  

 If missingness on Y is purely MCAR, then I can assume that the covariance 
matrices and means in the two groups are the same. For example, suppose that the 
covariance matrix and means in Group 1 are as shown in Table  10.2 .  

 In its simplest form, the MGSEM procedure is a two-group SEM model. Group 1 
is set up in the usual way. Group 2 begins with a special covariance matrix (and 
means) as input. Where covariances are estimable, they appear as they did in 
Group 1. Where data are missing for a particular covariance, that element is given 
as “0” in the input matrix. Variances for nonmissing data are given the same as in 
Group 1. Variances for missing values are given as “1” in Group 2. Means for miss-
ing variables are given as “0” in Group 2. The Group 2 covariance matrix and vector 
of means would look as shown in Table  10.3  for the current example.  

 The SEM setup in Group 2 is the same as in a normal two-group model with 
some exceptions. The factor-level parameters (factor variances and covariances, 
factor regressions, factor means) are all set to be invariant in the two groups. Where 

   Table 10.1    Patterns of missingness   

 Group  X  Y  Z  N 

 1  1  1  1  500 
 2  1  0  1  500 

   Table 10.2    Covariance matrix for Group 1   

 X  Y  Z 

 X  1.00 
 Y   .10  1.00 
 Z   .10   .60  1.00 
 Means  0.00  0.00  0.00 
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item-level parameters (e.g., factor loadings and item residual variances) have data in 
Group 2, the parameters are estimated, and constrained to be equal to the same 
parameter in Group 1. If a factor loading is associated with a missing value, it is 
given as “0” in Group 2 (even if the value was  fi xed at “1” in Group 1). If an item 
residual variance is associated with a missing value, it is given as “1” in Group 2 
(even if it is  fi xed at “0” in Group 1).  

   Examples of Good Uses of the MGSEM Procedure 
for MCAR Missingness 

 Chapter   11     describes the statistical power bene fi ts of including one or more auxil-
iary variables in the missing data model. That work was all done under the assump-
tion that the missingness on Y was MCAR (please see Chap.   11     for details). 
Chapter   13     describes a planned missing data design that my colleagues and I have 
called “two-method measurement” (Graham et al.  2006  ) . This design involves col-
lecting data using two different approaches to measure a key construct. One mea-
sure is relatively cheap and is administered to all participants. The other measure is 
much more expensive and is administered only to a random sample of the partici-
pants. Thus, missingness on the more expensive measure is MCAR (please see 
Chap.   13     for details).  

   Overview of MGSEM Procedure for MAR/NMAR Missingness 

 With MCAR missingness on Y, those with complete cases on X, Y, and Z can be 
thought of as a random sample of the total sample. Thus, under MCAR, it makes 
sense that the means, variances, and correlations in Groups 1 and 2 (see above) are all 
the same (where there are data in Group 2). However, with MAR missingness on Y, 
this is not true. But at least at a theoretical level, one can conceive of the two sets of 
parameters (means, variances, and correlations) in these two groups, even under MAR 
missingness. For example, it would certainly be possible to use the Monte Carlo 
simulation approach described above to generate a large number of cases, and then 
degrade that data set such that Y was missing, due to Z, in, say, 50 % of the cases. 

   Table 10.3    Covariance matrix for Group 2   

 X  Y  Z 

 X  1.00 
 Y   .00  1.00 
 Z   .10   .00  1.00 
 Means  0.00  0.00  0.00 

http://dx.doi.org/10.1007/978-1-4614-4018-5_11
http://dx.doi.org/10.1007/978-1-4614-4018-5_11
http://dx.doi.org/10.1007/978-1-4614-4018-5_13
http://dx.doi.org/10.1007/978-1-4614-4018-5_13
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It would then be possible to calculate the means, variances, and correlations in the 
two groups to see how they differ. 

 Of course, doing this in the general case would amount to nothing less than a full 
Monte Carlo simulation. The parameter estimates one would get from any one rep-
lication of such a simulation, even with very large sample sizes (e.g.,  N  = 10,000,000), 
would still just approximate the true population parameter values. However, once 
these approximate population values are known, it may be possible to see, in a 
closed-form sense, what those population parameter values should be under certain 
assumptions. 

 In this chapter, I describe MAR missingness of the sort described by Collins 
et al.  (  2001  )  as  MAR-linear  missingness. The IF statements such as those shown 
below would produce MAR-linear missingness. In this case, Z has uniform distribu-
tion with the four values, 0, 1, 2, and 3. 

 data e;set d; 
   rx = uniform(0); 
   if Z = 0 and rx < .20 then Y=.; 
   if Z = 1 and rx < .40 then Y=.; 
   if Z = 2 and rx < .60 then Y=.; 
   if Z = 3 and rx < .80 then Y=.; 
 run; 

 In this chapter, I describe MAR missingness of this sort (MAR-linear) when 
there is 50 % missingness on Y, and where the variances of the three variables 
(X, Y, and Z) are equal. 

 Under these conditions, some very interesting things emerge. Before getting to 
these things, however, I  fi rst need to de fi ne the  Range  as the difference between the 
smallest and largest probabilities in the MAR-linear IF statements of the sort shown 
above. For example, in the IF statements shown above, the highest probability is .8 
and the lowest is .2, so the Range in this instance would be .6. Second the subscript 
“1”, below, refers to the parameter value in Group 1, the group with complete data 
on the three variables. The subscript “2” refers to the parameter value in Group 2, 
the group with missing data on the variable Y. Finally, all parameter values are 
shown below, even though all Group 2 parameter values relating to Y would not 
normally be known. 

   Means in Groups 1 and 2 

 The change in the mean of Z is a function of the Range for the IF statements, the vari-
ance of Z, and a constant (2/3). Note that the mean in Group 1 is lower by this func-
tion, and the mean in Group 2 is higher by the same function. The change in the mean 
of X is a function of the Range, the variance of X, the constant (2/3), and the correla-
tion between X and Z. The change in the mean of Y is a function of the Range, the 
variance of Y, the constant (2/3), and the correlation between Y and Z   .
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   Variances in Groups 1 and 2 

 The change in each variance is the square of the change in the corresponding mean. 
Note that variances are the same in both groups.
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   Correlations in Groups 1 and 2 

 Note that the correlations are the same in the two groups. The correlations involving 
Z can be calculated using one of the formulas for the regression coef fi cient.

     

( )
( )

= =

= =
1 2 1 1

1 2 1 1

* /

* /

XZ XZ XZ Z X

YZ YZ YZ Z Y

ρ ρ ρ σ σ

ρ ρ ρ σ σ
    

 The formula for the correlation not involving Z can be calculated using the 
 formula for the partial correlation.

     
( )( ) ( )( ) ( )= = − − +

.5 .52 2
1 2 . 1 1 1 1* 1 * 1 *XY XY XY Z XZ YZ XZ YZρ ρ ρ ρ ρ ρ ρ

   

where   r   
XY.Z

  is the partial correlation of   r   
XY

  partialling Z.  

   Running the MGSEM Model with MAR Missingness 

 Running the MGSEM model with MAR missingness is the same as described above. 
The only exception is that the two correlation matrices (means and standard devia-
tions) are as calculated in this section. MGSEM analysis with MAR missingness 
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involves all three variables (i.e., including the cause of missingness, Z). This analysis 
yields parameter estimates that are the same as the original population parameter 
values. Note that parameter estimates from the MGSEM analysis may, due to round-
ing error, be very slightly different from the original population values. However, 
one can obtain parameter estimates as precise as desired simply by estimating the 
parameter values in the two groups with greater precision. For example, in my expe-
rience, rounding the parameter values in the two groups to  fi ve decimal places yields 
MGSEM parameter estimates that are precise to at least four decimal places. 

 This MAR analysis yields, in a single analysis, parameter estimates and standard 
errors that are the same as what one would obtain from an in fi nite number of repli-
cations of the comparable Monte Carlo simulation.  

   Running the MGSEM Model with NMAR Missingness 

 Running the MGSEM model with NMAR missingness is that same as described 
above, except that the model omits the cause of missingness, Z. That is, the analysis 
involves just X and Y. Because the cause of missingness, Z, is omitted, the key 
parameter estimates (e.g., the regression coef fi cient for X predicting Y) is biased as 
a function of several factors, including   r   

YZ
  and the percent missing on Y (Collins 

et al.  2001  ) , and   r   
ZR

 , which is a function of the Range of the IF statements used to 
generate the missing data (Graham et al.  2008 ). This NMAR analysis yields, in a 
single analysis, parameter estimates and standard errors that are the same as what 
one would obtain from an in fi nite number of replications of the comparable Monte 
Carlo simulation.   

   Examples of Good Uses of the MGSEM Procedure for MAR/
NMAR Missingness 

 The MGSEM procedure for MAR/NMAR missingness may be used in place of 
Monte Carlo simulations to address many missing data questions. One use would be 
to establish the degree to which  r  

YZ
  (Collins et al.  2001  )  and  r  

ZR
  (Graham et al. 

2008) actually affect estimation bias, for example, in terms of the standardized bias 
(SB; e.g., see Collins et al.  2001  ) :

     
= ×

Parameter Estimate - Population Value
100

Standard Error
SB

    

 At this point, I would ideally compare the SB estimate obtained from the MGSEM 
procedure described here with simulation results that have already been published. 
Unfortunately, the current implementation of the MGSEM automation utility 
requires equal variances across the three variables in the simulation. Although this 
is not a serious limiting factor for performing a new simulation, it does make it 
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dif fi cult to compare results with any already-published simulation in which 
 variances happened not to be equal (e.g., that described by Collins et al.  2001  ) . 

 Graham et al. (2008), in extending the Collins et al.  (  2001  )  simulation, examined 
the degree to which Range of IF statements (see above) affected the SB. Although 
the original Graham et al. simulation did not have equal variances, I was able to 
rerun parts of that simulation using equal variances (1.25) for all three variables. 
The results of this simulation for   r   

XY
  = .60 (same as in Collins et al.  2001  )  appear in 

Table  10.4 . A replication of this simulation, but with smaller   r   
XY

  (  r   
XY

  = .124), 
appears in Table  10.5 .   

 The results for the MGSEM procedure are comparable to those obtained with the 
Monte Carlo procedure. For each level of   r   

XY
  (.60 and .124), the correlation between 

   Table 10.4    Standardized bias for Monte Carlo and MGSEM simulations for  r  
XY

  = .60   

 Probability of missing 
on Y for quartiles of Z  Range 

 Standardized bias 

 MonteCarlo  MGSEM  Diff 

 .10, .367, .633, .90  .80  −271.9 10K   −292.7  −20.8 
 .15, .383, .617, .85  .70  −203.9 10K   −210.4   −6.5 
 .20, .400, .600, .80  .60  –145.0 10K   −147.0   −2.0 
 .25, .417, .583, .75  .50  −100.9 10K    −98.0   2.9 
 .30, .433, .567, .70  .40   −64.5 10K    −60.8   3.7 
 .35, .450, .550, .65  .30   −39.0 10K    −33.4   5.6 
 .40, .467, .533, .60  .20   −18.7 10K    −14.6   4.1 
 .45, .483, .517, .55  .10    −6.6 10K     −3.6   3.0 

  Note: For all of these patterns, there was 50% missingness on Y and   r   
ZY

  = .925. These tabled val-
ues are based on variances = 1.25 for all three variables, and the .555, .60, .925 correlations. For 
the Monte Carlo simulation, there were 10,000 replications for each cell shown. Diff = MGSEM 
estimate – Monte Carlo estimate  

   Table 10.5    Standardized bias for Monte Carlo and MGSEM simulations for  r  
XY

  = .124   

 Probability of missing 
on Y for quartiles of Z  Range 

 Standardized bias 

 MonteCarlo  MGSEM  Diff 

 .10, .367, .633, .90  .80  −69.4 10K   −71.0  −1.6 
 .15, .383, .617, .85  .70  −50.7 10K   −51.7  −1.0 
 .20, .400, .600, .80  .60  −36.1 10K   −36.5  −0.4 
 .25, .417, .583, .75  .50  −25.8 10K   −24.6  −1.2 
 .30, .433, .567, .70  .40  −15.6 10K   −15.4   0.2 
 .35, .450, .550, .65  .30   −8.4 10K    −8.5  −0.1 
 .40, .467, .533, .60  .20   −1.8 10K    −3.7  −1.9 
 .45, .483, .517, .55  .10   −1.8 10K    −0.9   0.9 

  Note: For all of these patterns, there was 50% missingness on Y and   r   
ZY

  = .925. These tabled values 
are based on variances = 1.25 for all three variables, and the .1147, .124, .925 correlations. For the 
Monte Carlo simulation, there were 10,000 replications for each cell shown. Diff = MGSEM 
 estimate – Monte Carlo estimate  
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the two sets of SB estimates was  r  = .999. Further, although the Monte Carlo simulation 
results for   r   

XY
  = .60 appeared to be rather stable with 10,000 replications per cell, 

the Monte Carlo simulation results for   r   
XY

  = .124 were less stable, even with 10,000 
replications per cell. Most notable was the fact that SB was estimated to be −1.79 
for Range = .10 and −1.78 for Range = .20. The difference in SB between these two 
cells is small, to be sure, and the conclusion for both ranges would be that estima-
tion bias is not large. However, this is an example of a nonmonotonic change in the 
SB estimates over monotonic changes in the Range variable. That is, it is an exam-
ple of a simulation that has failed to converge, even with 10,000 replications. 

 The most important difference between the two approaches was the amount of 
time to complete the simulation. For example, it took virtually an entire workday to 
complete the Monte Carlo simulation described in Table  10.5 , whereas the MGSEM 
 fi gures shown in Table  10.5  were calculated in just under 2 minutes. That is more 
than a 200-fold difference in simulation time. 

 The MARSimulate automation utility, which is available from our website (  http://
methodology.psu.edu    ) asks for several bits of information, including  r  

XY
 ,  r  

XZ
 , and 

 r  
YZ

 , the means and variances of X, Y, and Z, and the value for the Range variable. 
The utility then automatically generates LISREL code for performing the two-group 
analyses and automatically calls LISREL (the location of your version of the 
LISREL executable must also be provided). The user does not need to know, under-
stand, or write the LISREL code in order to run this utility. In fact, the free student 
version of LISREL also works with this automation utility. 

 Given how little time it takes to perform the MGSEM calculations (with the 
automation utility), it is an easy matter to explore other factors that affect bias. For 
example, what is the effect of different means? What is the effect of different vari-
ances? What is effect of different values of   r   

XY
  given that   r   

YZ
  = .925, and given that 

  r   
XZ

  =   r   
XY

  ×   r   
XZ

 ? These questions may all be addressed in minutes with great 
precision. 

   Effect of Different Means 

 The long and short of it is that means do not matter. The results presented in 
Table  10.6  shown that the SB was constant when means changed, but correlations, 
variances, and Range all remained constant.   

   Effect of Different Variances 

 Table  10.7  displays the results for the situation in which correlations, means, and 
Range were constant, but variances for the three variables changed. The bottom line 
here is that variances do matter. SB increased with larger variances. And the increase 
was not linear. When variances were 2.0, SB was 2.24 greater than in the situation 
in which variances were all 1.0. When the three variances were 3.0, SB was 3.83 
greater than in the situation in which variances were all 1.0. Also, when the three 

http://methodology.psu.edu
http://methodology.psu.edu
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variances were 4.0, SB was 2.69 greater than the situation in which the three 
 variances were 2.0.  

 It was already known that SB increases as a function of sample size. This new 
 fi nding relating to variances further challenges the potential usefulness of SB as an 
indicator of the problems associated with nonignorable missingness. Because vari-
ances appear to matter so much in the level of SB, I recommend, as a starting place, 
that variances always be set to 1.0 as kind of standard for evaluating the impact of 
NMAR missingness.  

   Effect of Different Values of Range and   r   XY  

 Table  10.8  presents the results for varying   r   
XY

 , while keeping   r   
YZ

 , means, variances, 
and Range constant at the values shown. Table  10.8  also presents the results for hold-
ing   r   

XY
  constant and varying Range. For these calculations,   r   

XZ
  =   r   

XY
  ×   r   

YZ
 . Reading 

down any column of Table  10.8  shows that SB is much smaller for smaller effect 
sizes. For example, for the column with Range = .60, for moderate to large effect 
sizes (  r   

XY
  = .30–.50; Cohen  1977  ) , bias from NMAR missingness had an appreciable 

effect on statistical conclusions. However, for small effect sizes (  r   
XY

  = .10), bias due 
to NMAR missingness was tolerably low. Now read down a column of Table  10.8  
with a more modest Range (e.g., Range = .30), that is, if the probabilities of missing-
ness on Y for the four quartiles of Z were .35, .45, .55, and .65. In this case, SB was 
tolerably low for all effect sizes examined.  

 One can also examine the rows of Table  10.8 . Holding  r  
XY

  constant, it is easy to 
see the effect of changing the range variable. The top row in Table  10.8  ( r  

XY
  = .60) 

gives information similar to what is shown in Table  10.4 , except that  fi gures shown 
in Table  10.8  are based on variances set to 1.0, rather than the 1.25 used in Table  10.4 . 

   Table 10.6    Standardized bias from MGSEM simulations with different means   

   r   
XZ

     r   
XY

     r   
YZ

     m   
X
     m   

Y
     m   

Z
     s    

X
  2      s    

Y
  2      s    

Z
  2    Range  SB 

 .555  .600  .925  1  1  1  1.25  1.25  1.25  .60  −147.0 
 .555  .600  .925  2  2  2  1.25  1.25  1.25  .60  −147.0 
 .555  .600  .925  1  2  2  1.25  1.25  1.25  .60  −147.0 
 .555  .600  .925  2  1  2  1.25  1.25  1.25  .60  −147.0 
 .555  .600  .925  2  2  1  1.25  1.25  1.25  .60  −147.0 

   Table 10.7    Standardized bias from MGSEM simulations for different variances   

   r   
XZ

     r   
XY

     r   
YZ

     m   
X
     m   

Y
     m   

Z
     s    

X
  2      s    

Y
  2      s    

Z
  2    Range  SB 

 .555  .600  .925  1  1  1  1.00  1.00  1.00  .60  −114.5 
 .555  .600  .925  1  1  1  1.25  1.25  1.25  .60  −147.0 
 .555  .600  .925  1  1  1  1.50  1.50  1.50  .60  −181.3 
 .555  .600  .925  1  1  1  1.75  1.75  1.75  .60  −217.7 
 .555  .600  .925  1  1  1  2.00  2.00  2.00  .60  −256.3 
 .555  .600  .925  1  1  1  3.00  3.00  3.00  .60  −439.0 
 .555  .600  .925  1  1  1  4.00  4.00  4.00  .60  −688.2 
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When  r  
XY

  = .60 (very large effect in Cohen’s terms), Range values of 40 or greater 
produced levels of bias that could affect statistical conclusions by the standard sug-
gested by Collins et al.  2001 . However, for Range values of .30 or less (actually .36 
or less) produces, bias is tolerably low by the standard used by Collins et al. 
(SB < 40). However, for small effects in Cohen’s  (  1977  )  terms ( r  

XY
  = .10), all but the 

largest (and least probable) values of the Range variable produced bias that was 
tolerably small by the standard used by Collins et al.  (  2001  ) .  

   Effect of Different Values of   r   XY ,   r   YZ , and Range (  r   ZR ) 

 Finally, Table  10.9  presents results when all the relevant quantities are varied 
(  r   

XZ
  =   r   

 XY 
  ×   r   

 YZ 
  ). All panels of Table  10.9  look at several levels of   r   

YZ
  (.925, .7, .5, 

.3, .1), and several levels of Range (.90–.10 in increments of .10; corresponding 
  r   

ZR
  = .67–.08). Panel (A) examines   r   

XY
  = .10; Panel (B) examines   r   

XY
  = .20; Panel 

(C) examines   r   
XY

  = .30; and Panel (D) examines   r   
XY

  = .40.  
 With small effects (i.e., when   r   

XY
  = .10), estimation bias was tolerably low (by 

the standard of Collins et al.  2001  )  for all but the most extreme values of   r   
YZ

  and 
Range. Even with medium to large effects (  r   

XY
  = .40), estimation bias was tolerably 

low under a wide range of values of   r   
XY

  and Range. In fact, for   r   
XY

  = .40, Range < .42 
OR   r   

YZ
  < .43 produces tolerably low bias; for   r   

XY
  = .30, Range < .48 OR   r   

YZ
  < .48 

produces tolerably low bias; for   r   
XY

  = .20, Range < .57 OR   r   
YZ

  < .58 produces toler-
ably low bias; for   r   

XY
  = .10, Range < .77 OR   r   

YZ
  < .79 produces tolerably low bias.   

   What Simulations Cannot Be Addressed 
with the MGSEM Procedures? 

 Graham et al.  (  2007  )  recently conducted a Monte Carlo simulation examining the 
performance of multiple imputation with different numbers of imputations and 
compared the results against the comparable FIML model. In this instance, the goal 

   Table 10.8    Standardized bias for MGSEM simulations for levels of   r   
XY

  and range   

   r   
XY

  

 Range 

 .90  .80  .70  .60  .50  .40  .30  .20  .10 

 .60   297.4    221.9    162.0    114.5    77.0    48.1    26.5    11.6    2.9  
 .50   263.4    197.3    144.6    102.5    69.1    43.2    23.9    10.5    2.6  
 .40   219.7    165.1    121.3     86.2    58.3    36.5    20.2     8.9    2.2  
 .30   169.6    127.8     94.1     67.0    45.3    28.4    15.8     6.9    1.7  
 .20   115.2     86.9     64.1     45.7    31.0    19.4    10.8     4.7    1.2  
 .10    58.2     44.0     32.5     23.2    15.7     9.9     5.5     2.4    0.6  

  Note: All SB values are negative. All variances are  fi xed at 1;  r  
XZ

  = r 
XY

  ×  r  
YZ

 ; and  r  
YZ

  = .925. SB 
values in italics (SB > 40) suggest concern for statistical inference by the standard used by Collins 
et al.  2001 . SB values in Bold (SB < 40) suggest bias that is tolerably low by the standard used by 
Collins et al.  2001   
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   Table 10.9    Standardized bias for MGSEM simulations for levels of   r   
XY

 ,   r   
YZ

 , and range (  r   
ZR

 )   

  (A)     r   
XY

    0.1    0.1    0.1    0.1    0.1  
   r   

XZ
   0.0925  0.07  0.05  0.03  0.01 

   r   
YZ

    0.925    0.7    0.5    0.3    0.1  

  range     r   
ZR

   Standardized bias 

 0.9  0.671   58.2    30.5    14.8    5.2    *  
 0.8  0.596   44.0    23.6    11.6    *    *  
 0.7  0.522   32.5    17.7    8.8    *    *  
 0.6  0.447   23.2    12.8    6.4    *    *  
 0.5  0.373   15.7    8.8    *    *    *  
 0.4  0.298   9.9    5.6    *    *    *  
 0.3  0.224   5.5    *    *    *    *  
 0.2  0.149   *    *    *    *    *  
 0.1  0.075   *    *    *    *    *  

  (B)     r   
XY

    0.2    0.2    0.2    0.2    0.2  
   r   

XZ
   0.185  0.14  0.1  0.06  0.02 

   r   
YZ

    0.925    0.7    0.5    0.3    0.1  

  range     r   
ZR

   Standardized bias 

 0.9  0.671   115.2    60.3    29.2    10.2    *  
 0.8  0.596   86.9    46.6    22.8    8.0    *  
 0.7  0.522   64.1    35.0    17.3    6.1    *  
 0.6  0.447   45.7    25.3    12.6    *    *  
 0.5  0.373   31.0    17.3    8.7    *    *  
 0.4  0.298   19.4    11.0    5.5    *    *  
 0.3  0.224   10.8    6.1    *    *    *  
 0.2  0.149   *    *    *    *    *  
 0.1  0.075   *    *    *    *    *  

  (C)     r   
XY

    0.3    0.3    0.3    0.3    0.3  
   r   

XZ
   0.2775  0.21  0.15  0.09  0.03 

   r   
YZ

    0.925    0.7    0.5    0.3    0.1  

  range     r   
ZR

   Standardized bias 

 0.9  0.671   169.6    88.5    42.8    14.9    *  
 0.8  0.596   127.8    68.3    33.4    11.7    *  
 0.7  0.522   94.1    51.2    25.3    8.9    *  
 0.6  0.447   67.0    37.0    18.5    6.6    *  
 0.5  0.373   45.3    25.3    –12.7    *    *  
 0.4  0.298   28.4    16.0    8.1    *    *  
 0.3  0.224   15.8    8.9    *    *    *  
 0.2  0.149   6.9    *    *    *    *  
 0.1  0.075   *    *    *    *    *  

(continued)
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of the analysis was to examine the standard errors and statistical conclusions from 
various MI models. Thus in this case, there is no way to simulate those results with 
the MGSEM procedure; one must use a Monte Carlo simulation in this instance.  

   Other Considerations with the MGSEM Procedures for 
MAR/NMAR Missingness 

 Examining the results, especially those shown in Table  10.4 , an interesting pattern 
seemed to emerge. For higher values of the Range variable, the SB with the MC 
approach was slightly smaller than the SB with MGSEM. But with lower values of 
the Range variable, the effect was reversed: The SB with the MC approach was 
slightly larger than the SB with the MGSEM approach. 

 That pattern of results may or may not be real. For example, it could be that the 
pattern is simply the result of simulation wobble; it is much less clear that results 
shown in Table  10.5  show a similar pattern. But if the pattern is real, one might be 
tempted to speculate about which approach yielded the “correct” results. An impor-
tant point here is that it is quite possible that both approaches are correct, but that 
they are simply different in some small way. One way they could be different, for 
example, relates to the way the Z variable works in the Monte Carlo simulations. 
Even if Z starts out as a variable with a normal distribution, the fact that it is “quartil-
ized” (divided into quartiles) to generate MAR missingness changes it. With the 
MGSEM procedure, however, the Z variable has some elements of the quartilized 
variable, but some elements of a continuous variable (in that the population correla-
tions are being dealt with directly). 

  (D)     r   
XY

    0.4    0.4    0.4    0.4    0.4  
   r   

XZ
   0.37  0.28  0.20  0.12  0.04 

   r   
YZ

    0.925    0.7    0.5    0.3    0.1  

  range     r   
ZR

   Standardized bias 

 0.9  0.671   219.7    114.1    55.0    19.1    *  
 0.8  0.596   165.1    87.9    42.9    15.0    *  
 0.7  0.522   121.3    65.9    32.5    11.5    *  
 0.6  0.447   86.2    47.5    23.7    8.4    *  
 0.5  0.373   58.3    32.5    16.3    5.8    *  
 0.4  0.298   36.5    20.6    10.4    *    *  
 0.3  0.224   20.2    11.5    5.8    *    *  
 0.2  0.149   8.9    5.1    *    *    *  
 0.1  0.075   *    *    *    *    *  

  Note: All variances are  fi xed at 1.   r   
 XZ 

  =   r   
 XY 

  ×   r   
 YZ 

 . All SB values are negative. An * signi fi es 
SB < 5. SB values in italics (SB > 40) suggest concern for statistical inference by the standard used 
by Collins et al.  (  2001  ) . SB values in Bold (SB < 40) suggest bias that is tolerably low by the 
standard used by Collins et al.  (  2001  )   

Table 10.9  (continued)
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 My tentative conclusion is that the Monte Carlo simulations and the MGSEM 
procedures described in this chapter are subtly different. In most instances, these 
differences will not change the main  fi ndings of either type of simulation. Future 
research will explore these minor differences in more detail.       
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 Missing data in a  fi eld experiment may arise from a number of sources. Participants 
may skip over questions inadvertently or refuse to answer them; they may offer an 
illegible response; they may fail to complete a questionnaire; or they may be absent 
from an entire measurement session in a longitudinal study. The last is often called 
wave nonresponse. Many participants who are unavailable for one or more occa-
sions of measurement are available at later occasions. We de fi ne attrition is a special 
case of wave nonresponse in which a participant drops out of a study after a certain 
time and is no longer available at any subsequent wave of data collection. 

 We focus on attrition in this chapter because it continues to be a major issue in 
longitudinal  fi eld experiments. Despite the best efforts of researchers, most longitu-
dinal studies have attrition. Attrition tends to occur more frequently in transient 
populations, so research is particularly susceptible when based on the high-risk 
populations in which intervention scientists are often most interested. Furthermore, 
it is common in intervention research for key outcomes to be measured several years 
after the beginning of the study, say in a third or fourth follow-up wave of measure-
ment (e.g., a school-based drug abuse prevention program in which a pretest takes 
place in seventh grade but the key outcome is drug use in tenth grade). As more time 
goes by, there is more opportunity for attrition. If even a modest number of partici-
pants drop out at each wave of measurement, by the time the key outcome is mea-
sured the cumulative amount of attrition can be substantial. 

 Although attrition must be taken seriously and should be minimized, the damage 
it does in intervention research today is much less than it once was, provided that 
modern missing data procedures such as multiple imputation (MI) or maximum 
likelihood (ML) methods are used. Attrition raises two concerns in evaluation of an 
intervention. The  fi rst is that attrition may produce estimation bias, which will affect 
the internal and external validity of the study. To the extent that the Missing at 
Random (MAR) assumption is met, modern missing data approaches deal effec-
tively with estimation biases introduced by attrition and other forms of missing data. 
Even when the MAR assumption is not fully met, modern missing data procedures 
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are a distinct improvement over the ad hoc and unprincipled approaches formerly 
used, such as casewise deletion and mean substitution. Thus even if estimation bias 
cannot be eliminated completely, it can be greatly reduced, often to acceptable 
levels (Collins et al.  2001 ; also see extensive discussions of this topic in Chaps.   1     
and   10    ). 

 The second concern that attrition raises is that the loss of data will result in loss 
of statistical power, possibly reducing power to unacceptable levels. Modern miss-
ing data procedures help with this concern as well. In addition to mitigating estima-
tion bias, modern missing data procedures recover some of the statistical power that 
would otherwise be lost due to attrition. In fact, we suggest that loss of power due 
to attrition has frequently been overestimated because the impact of modern missing 
data procedures on power has not been considered. 

 Intervention scientists often base power analyses on the sample size expected 
after attrition has taken its toll. Such a power analysis assumes that any data pro-
vided by dropouts before they leave the study are unavailable to later statistical 
analysis. However, modern missing data procedures can readily make use of the 
partial data provided by these individuals. In fact, if one pays careful attention to 
the missing data model, using modern missing data procedures can lead to smaller 
standard errors and, therefore, to increased statistical power. That is, with these 
methods, statistical power lost to attrition can be restored to an extent. 

   Effective Sample Size 

 We  fi nd it helpful to quantify the level of statistical power achieved by use of 
modern missing data procedures in terms of the effective sample size ( N  

EFF
 ). Suppose 

a statistical analysis is to be performed on a set of variables that have been subject 
to attrition, and modern missing data procedures are to be used. This analysis is 
associated with a particular level of statistical power. The  N  

EFF
  is the size of the 

sample of complete cases that would provide the same statistical power. The  N  
EFF

  
always falls somewhere between the sample size after attrition (which is the sample 
size that would result if all incomplete cases were discarded, i.e., the sample size 
with complete cases:  N  

CC
 ) and the original total sample size ( N  

TOT
 ). How close the 

 N  
EFF

  is to  N  
TOT

  is a re fl ection of how successful the missing data procedure has been 
at restoring power lost due to attrition. 

 Of course, intervention scientists would prefer to achieve an  N  
EFF

  as close as pos-
sible to  N  

TOT
 . This can be accomplished by making use of ideas from Collins et al. 

 (  2001  ) , who showed that both reduction of estimation bias and recovery of lost 
power are desirable consequences of using an inclusive missing data strategy. An 
inclusive missing data strategy is one that makes use of auxiliary variables, that is, 
variables that are not a part of the substantive analysis model being  fi t but are 
included in order to increase the effectiveness of the missing data procedure. All 
else being equal, auxiliary variables increase the effectiveness of the missing data 
procedure more when they are highly correlated with the variables that are subject 

http://dx.doi.org/10.1007/978-1-4614-4018-5_1
http://dx.doi.org/10.1007/978-1-4614-4018-5_10
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to missingness. Fortunately, good, effective auxiliary variables are almost always 
available in multi-wave prevention studies. 

 The purpose of this chapter is to show how modern missing data procedures can 
be used to mitigate the impact of attrition on statistical power. There are two issues 
here. The  fi rst issue relates to how one includes auxiliary variables in the missing 
data analysis (MI or ML) models. The second issue relates to detailing exactly what 
the bene fi ts are for including auxiliary variables, and how to predict what effect a 
candidate auxiliary variable will have. 

 The  fi rst issue, how one includes an auxiliary variable in one’s missing data 
analysis model, is largely a trivial one. When that missing data analysis model is 
normal model MI, for example, one simply adds any auxiliary variables to the list 
of variables included in the MI model. Although adding auxiliary variables in ML/
FIML models is a little more complicated, Graham ( 2003 ) has also shown how 
auxiliary variables may ef fi ciently be added to FIML models in a way that has the 
equivalent bene fi t enjoyed by MI models. At least one FIML program (Mplus; 
Muthén and Muthén  2010  )  has recently added a feature in which the addition of 
auxiliary variables has been automated. Because of the relative ease of including 
auxiliary variables in these missing data analysis models, we do not spend time with 
this issue in this chapter. 

 The second issue, on the other hand, needs much more elaboration. Researchers 
have in the past included auxiliary variables to “help” with the imputation. But it 
was never made explicit what this “help” was. Collins et al.  (  2001  )  provided some 
initial insights as to how these auxiliary variables were a bene fi t. The purpose of this 
chapter is to expand on those ideas as they relate to statistical power bene fi ts that 
accrue from including auxiliary variables in the model. The chapter has four main 
goals. First, we begin by demonstrating how using a modern missing data procedure 
with a single auxiliary variable can improve power; for this we use a simple arti fi cial 
data example as an illustration. The remaining goals focus on the bene fi t interven-
tion scientists can expect when missing data procedures are used with more com-
plex, and more realistic, attrition patterns. 

 Second, we demonstrate the bene fi t of a single auxiliary variable with the more 
complicated (and more realistic) scenario in which fewer than 100 % of the eligible 
subjects (those missing on Y) have data for the auxiliary variable. Third, we dem-
onstrate the auxiliary variable bene fi t in the still more complicated (and realistic) 
scenario in which one has two auxiliary variables, possibly with different  r  

YZ
 ’s (cor-

relations between the auxiliary variable, Z, and the main dependent variable, Y), 
and different percentages of eligible subjects having data for the two auxiliary vari-
ables. Finally, we provide intervention scientists simple guidance for estimating the 
auxiliary variable bene fi t they might enjoy in their own empirical data. We do this 
by providing an automation utility designed to work with any version of LISREL 8 
(including the free, downloadable, student version). The user does NOT need to be 
a LISREL user. The utility asks a few basic questions about the data, and then auto-
matically writes the LISREL code, runs the analyses required, and prints the pri-
mary results to the screen.  
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   An Arti fi cial Data Demonstration of Improving 
Power Using a Missing Data Model with Auxiliary Variables 

 The  N  
EFF

  can be determined by means of a straightforward simulation based on the 
multiple group structural equation modeling (MGSEM) missing data procedure 
suggested by Allison  (  1987  )  and Muthén et al.  (  1987  ) . Note that although we refer 
to this as a simulation, it was not a Monte Carlo simulation (please see Chap.   10     for 
a detailed discussion of this approach to simulation work). Rather, the MGSEM 
procedure allows one to make use of the population covariance matrices for those 
with complete and partial data. Because of this, each cell of the simulation may 
be carried out with just a single analysis (rather than the thousands of analyses 
required with Monte Carlo simulations). 

   Details of MGSEM Procedure 

 In order to estimate the relevant  N  
EFF

 , we test a simple correlation model involving 
three variables: X, always observed (think of X as the independent variable of sub-
stantive interest), Y, sometimes missing (think of Y as the main dependent variable 
of substantive interest), and Z, always observed (Z is an auxiliary variable, corre-
lated with Y, but not necessarily of direct substantive interest). We examined the 
standard error (SE) for the key parameter estimate ( r  

XY
 ) from several models. 

 We started by estimating the SE in a baseline model; attrition but with no auxil-
iary variables. Given the simple models we tested, this SE was similar to a complete 
cases analysis. But note that this model is technically not a complete cases model. 
Even in this simple, two-variable, case (X always observed, Y sometimes missing), 
and even when the missingness on Y is MCAR, there is a small difference in  r  

XY
  

between the complete cases analysis and an analysis based on appropriate missing 
data methods (e.g., an ML method such as EM algorithm). This difference applies 
to the estimate of  r  

XY
 , but as pointed out in Graham and Donaldson  (  1993  ) , the 

regression coef fi cients for X predicting Y are always identical in this simplistic case 
between complete cases and ML analyses. 

 Second, we introduced the auxiliary variable with speci fi ed properties and noted 
the SE for that model. These SEs were smaller than the SE in the baseline model. 
Third, we repeated the  fi rst model, but with the larger sample size that produced the 
same SE as the second model. 1  This new, larger sample size was the  N  

EFF
 . 

 To estimate the relevant SEs, we made use of the multiple group capabilities of 
LISREL 8.5 (Jöreskog and Sörbom  1996  ) . Using the missing data procedure 
described by Allison  (  1987  )  and Muthén et al.  (  1987  ) , one is able to partition 

   1   This last step involved a simple trial and error process: Try a particular sample size; if the SE was 
too large, increase the sample size and try again.  

http://dx.doi.org/10.1007/978-1-4614-4018-5_10
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the data into groups that correspond to the different patterns of missing and non-
missing values in one’s data set. Normally, one would simply make use of one of the 
full information maximum likelihood (FIML) procedures (e.g., in alphabetical 
order, Amos, EQS 6.1, LISREL 8.5+, Mplus, Mx) to perform SEM analyses with 
missing data. However, in the present context, the multiple group SEM procedure 
has proven to be a useful replacement for Monte Carlo simulation studies (e.g., 
Graham et al.  2001 ; Graham et al.  2006 ; also see Chap.   10    ). 2  

   2   The MGSEM procedure makes use of the covariance matrix as input. When the covariance matrix 
is analyzed in this manner, one may simply change the sample size indicated in model being tested 
without changing the input covariance matrix. The more commonly used FIML approach cannot 
do this. With that approach, raw data must be input. And with raw-data input, the sample size is 
tied directly to the data being input (e.g., with  N  = 500, 500 cases are read from the raw data  fi le). 
Thus with the FIML methods, changing the sample size changes the data being read, thereby pro-
ducing changes in the results.  

   Table 11.1    LISREL code: Model 1 (baseline model)   
 mapping auxiliary variables group 1 (complete data) 
 da no=500 ni=2 ma=cm ng=2 
 labels 
 x y 
 cm sy 
 1.00 
 .10 1.00 
 mo ny=2 ne=2 ly=fu, fi  ps=sy,fr te=di, fi  
 le 
 X Y 
 ma ly 
 1 0 
 0 1 
 ou nd=5 

 mapping auxiliary variables group 2 (Y missing) 
 da no=500 ni=2 ma=cm ng=2 
 labels 
 x y 
 cm sy 
 1.00 
 .00 1.00 
 mo ny=2 ne=2 ly=fu, fi  ps=in te=di, fi  
 le 
 X Y 
 ma ly 
 1 0 
 0 0 
 ma te 
 0 1 
 ou nd=5 

http://dx.doi.org/10.1007/978-1-4614-4018-5_10
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 The LISREL code for the baseline, two-group, model is presented in Table  11.1 . 
In this simple application of the MGSEM procedure, we speci fi ed the input (popula-
tion) correlation matrix in Group 1 to be:   

 X  Y 

 X  1.00 
 Y  .10  1.00 

 In most respects, Group 1 of the LISREL model (see Table  11.1 ) was set up like 
a regular one-group model with manifest variables. 

 Group 2 (see Table  11.1 ) was set up the same as Group 1, with the following 
exceptions: First, the input correlation matrix was:  

 X  Y 

 X  1.00 
 Y  .00  1.00 

 Following Allison  (  1987  ) , the variance is set to 1.0 for any variable with missing 
values in this group, and all covariances relating to this variable are set to 0.0. In 
addition, all of the factor variance and covariance parameters for Group 2 were set 
to be equal to those in Group 1. Further, all factor loadings involving the missing 
variable are  fi xed at 0.0 in Group 2, and all residual item variances in Group 2 are 
 fi xed at 1.0 (see Table  11.1 ). 

  Sample Data  � . Running the LISREL code shown in Table  11.1  produces the fol-
lowing output under LISREL Estimates of Group 2. The output shown is for the 
PSI matrix, the matrix of factor variances and covariances. In our simplistic 
examples, the key parameter estimate is the correlation between X and Y. 

 PSI 
    X      Y      
   -----   -----   
 X 1.00000 
   (0.04477) 
   22.33831 

 Y 0.10000  1.00000 
   (0.04477) (0.06331) 
     2.23383   15.79596 

 The top quantity in each element is the parameter estimate. The middle quan-
tity (in parentheses) is the standard error. The bottom quantity is often referred to 
as the critical ratio (parameter estimate divided by its standard error). This bot-
tom quantity is largely unused in these analyses. Note two things about the out-
put. First, the parameter estimate for  r  

XY
  = .10000. That is, not surprisingly, the 

parameter estimate in the model is exactly the same as in the population 
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covariance matrix. 3  The key quantity in this example is the standard error for  r  
XY

  
(.04477). 

 The second MGSEM model was much the same as the baseline model. The 
LISREL code for this second model appears in Table  11.2 . The correlation  r  

YZ
 , 

shown as “.60” in the Table  11.2  for illustration purposes, was varied from  r  
YZ

  = .10 
to  r  

YZ
  = .95 in increments of .05. Group 1 of the LISREL model (see Table  11.2 ) was 

again set up much like a regular one-group model with manifest variables. The input 

   3   One can safely ignore the “W_A_R_N_I_N_G” in the LISREL output that “LAMBDA-Y does 
not have full column rank”. It is a necessary byproduct of this analysis.  

   Table 11.2    LISREL code: Model 2 (MGSEM model with auxiliary variable)   
 mapping auxiliary variables group 1 (complete data) 
 da no=500 ni=3 ma=cm ng=2 
 labels 
 x y z 
 cm sy 
 1.00 
 .10 1.00 
 .10   .60 1.00 
 mo ny=3 ne=3 ly=fu, fi  ps=sy,fr te=di, fi  
 le 
 X Y Z 
 ma ly 
 1 0 0 
 0 1 0 
 0 0 1 
 ou nd=5 

 mapping auxiliary variables group 2 (Y missing) 
 da no=500 ni=3 ma=cm ng=2 
 labels 
 x y z 
 cm sy 
 1.00 
 .00 1.00 
 .10   .00 1.00 
 mo ny=3 ne=3 ly=fu, fi  ps=in te=di, fi  
 le 
 X Y Z 
 ma ly 
 1 0 0 
 0 0 0 
 0 0 1 
 ma te 
 0 1 0 
 ou nd=5 
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covariance matrix for Model 2 has three variables and includes correlations for the 
auxiliary variable, Z.   

 X  Y  Z 

 X  1.00 
 Y  .10  1.00 
 Z  .10  .60  1.00 

 As with the baseline model, the variance in the input covariance matrix is set to 
1.0 for any variable with missing values in this group, and all covariances relating 
to this variable are set to 0.0.  

 X  Y  Z 

 X  1.00 
 Y  .00  1.00 
 Z  .10  .00  1.00 

 In addition, all of the factor variance and covariance parameters for Group 2 
were set to be equal to those in Group 1, and all factor loadings involving the miss-
ing variable were  fi xed at 0.0 in Group 2. All residual item variances in Group 2 
were  fi xed at 1.0 (see Table  11.2 ). 

  Sample Data  � . Running the LISREL code shown in Table  11.2  produced the fol-
lowing output under LISREL Estimates for Group 2. The output shown is for the 
PSI matrix, the matrix of factor variances and covariances. In our simplistic 
example, the key parameter estimate was again the correlation between X and Y. 

 PSI 
  X Y Z 
  -------- -------- -------- 
 X 1.00000 
  (0.04477) 
  22.33831 

 Y 0.10000 1.00000 
  (0.04064) (0.06120) 
  2.46057 16.33874 

 Z 0.10000 0.60000 1.00000 
  (0.03181) (0.04475) (0.04477) 
  3.14344 13.40840 22.33831 

  Sample Data  � . Note again that all parameter estimates were exactly the same as 
those in the input population variance-covariance matrix. Note that standard 
error for  r  

XY
  = .04064 for this model. This SE is rather smaller than the SE for the 

baseline model (.04477). 

 The third MGSEM model was the same as the baseline model, except that we 
modi fi ed the sample size (“no = ”) in Groups 1 and 2. We increased the sample size 
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in Group 1 by some amount and decreased the sample size in Group 2 by the same 
amount so that the total sample size remained  N  

TOT
  = 1,000. 

  Sample Data  � . Running the LISREL code shown in Table  11.1 , but increasing 
the  N  for Group 1 to 550, and decreasing the  N  for Group 2 to 450, yielded a 
somewhat smaller SE for  r  

XY
  (.04270). Although smaller than the SE for the 

baseline model, this value was still larger than the SE we observed for Model 2, 
which included the auxiliary variable. Changing the N to 600 for Group 1 and 
400 for Group 2 yielded an even smaller SE for  r  

XY
  (.04090). Although still 

smaller, this SE was still somewhat larger than that observed for Model 2. When 
we changed the  N  to 608 for Group 1 and 392 for Group 2, the resulting SE for 
 r  

XY
  (.04063) was as close as we could get to the SE observed for Model 2. 

 The conclusion is that a standard missing data model with  N  
CC

  = 608 is equiva-
lent, in terms of statistical power, to an auxiliary variable model with  N  

CC
  = 500. 

That is,  N  
EFF

  = 608 in this case.  

   Arti fi cial Data Example for One Auxiliary Variable, 
100 % of Eligible Subjects with Data 

 The procedure described above was repeated several times. We varied the value of 
 r  

YZ
  from .10 to .90 in increments of .10. We also included  r  

YZ
  = .95. For all of these 

arti fi cial data examples, we  fi xed  r  
XY

  = .10, and  r  
XZ

  = .10. 4  First, we examined the 
scenario in which the total  N ,  N  

TOT
  = 1,000, and the complete cases  N ,  N  

TOT
  = 500 

(that is, 50 % attrition). The results of those analyses appear as the bottom curve in 
Fig.  11.1 . In the  fi gure, the values for  r  

YZ
  are on the X-axis, and the corresponding 

 N  
EFF

  is on the Y-axis.  
 Using this procedure (with  N  

TOT
  = 1,000,  N  

CC
  = 500), we were able to estimate the 

standard error for  r  
XY

  for the various values of the  r  
YZ

 . For example, when  r  
YZ

  = .10, 
SE( r  

XY
 ) = .04467, which corresponds to  N  

EFF
  = 502; when  r  

YZ
  = .60, SE( r  

XY
 ) = .04064, 

which corresponds to  N  
EFF

  = 608. We also examined the scenario with  N  
TOT

  = 1,000 
and  N  

CC
  = 667 (33 % attrition; the middle curve in Fig.  11.1 ), and the scenario with 

 N  
TOT

  = 1,000 and  N  
CC

  = 750 (25 % attrition; the top curve in Fig.  11.1 ). 
 It is evident from Fig.  11.1  that for any amount of missing data, as  r  

YZ
  increases, 

 N  
EFF

  also increases. In addition, as  r  
YZ

  increases the increase in  N  
EFF

  accelerates. For 
example, with 50 % missing on Y, increasing  r  

YZ
  from .3 to .4 increased  N  

EFF
  by 20, 

   4   We chose  r  
XY

  = .10 because the issue of  N  
EFF

  becomes most important with small effect sizes. This 
is closely related to the issue of determining statistical power with varying effect sizes. With large 
effect sizes, especially in  fi eld experiments, it is often possible to  fi nd signi fi cant effects, even with 
relatively small sample sizes. It is often the case that sample size is an issue only with smaller 
effect sizes. We address the issue of other values of r 

XY
  later in this chapter. 

 We arbitrarily chose  r  
XZ

  = .10. In our experience, this value always tends to be rather similar to 
 r  

XY
 . We address the issue of different values of  r  

XZ
  later in this chapter.  
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whereas increasing  r  
YZ

  from .6 to .7 increased  N  
EFF

  by 52. This acceleration is less 
pronounced with less missingness. 

 Figure  11.1  also shows the magnitude of the recovery in absolute terms. For 
example, with 50 % missing data on Y and  r  

 YZ 
  = .7,  N  

EFF
  = 660. Compared to an 

analysis that deletes all subjects with incomplete data, this represents an increase of 
power equivalent to adding 160 subjects with complete data.   

   Arti fi cial Data Demonstrations with More Realistic 
Attrition Patterns 

   Less than 100 % of Eligible Subjects with Data 
for the One Auxiliary Variable 

 The patterns shown in Fig.  11.1  offer great promise for using an auxiliary variable 
in intervention evaluation research. However, the numbers in Fig.  11.1  are based on 
the idea that 100 % of those missing on the main dependent variable (DV) have data 
for the auxiliary variable. But consider the scenario in which there is an intervention 
in seventh grade (X 

7
 ), and the main DV is measured at two follow-up waves, eighth 

grade (Y 
8
 ) and ninth grade (Y 

9
 ). Given that all participants have data for the pro-

gram variable (X 
7
 ), the three key patterns of missing and nonmissing values are 

shown below in Table  11.3 .  

500

600

700

800

900

1000

0.2 0.3 0.4 0.5 0.6 0.7 0.80.1 0.9

r (y,z)

25% Attrition 33% Attrition 50% Attrition

  Fig. 11.1    Effective sample size (N
EFF

) for varying levels of r
YZ
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 In the scenario depicted in Table  11.3 , 500 cases have complete data; 375 cases 
have missing data for the main DV (Y 

9
 ), but do have data for the auxiliary variable 

(Y 
8
 ). Another 125 cases have missing data for both Y 

9
  and Y 

8
 . In this instance, 75 % 

of those eligible (i.e., 75 % of those with missing data on the main DV) have data 
for the auxiliary variable. We refer to this percentage as %Z = 75 %. 

 Our arti fi cial data illustration again looked at values of r 
YZ

  from .10 to .90 in 
increments of .10, plus  r  

YZ
  = .95. In this illustration,  r  

XY
  = .10,  r  

XZ
  = .10,  N  

TOT
  = 1,000, 

and  N  
CC

  = 500. Also in this illustration, we examined the situations in which 75 %, 
50 %, and 25 % of the eligible cases (those missing on the main DV) had data for 
the auxiliary variable, that is, %Z = 75 %, 50 %, and 25 %. 

 The results of this arti fi cial data illustration appear in Table  11.4 . For compari-
son, also shown in Table  11.4  are  fi gures for the situation in which 100 % of the 
eligible participants have data for the auxiliary variable (these  fi gures correspond to 
the bottom curve in Fig.  11.1 ). Scanning the tabled results for  r  

YZ
  = .95, we see that 

the increment of  N  
EFF

  over  N  
CC

  was 409, 313, 214, and 109, respectively, for 
%Z = 100 %, 75 %, 50 %, and 25 %. For the 75 %, 50 %, and 25 % cases, respec-
tively, the bene fi t was 76.5 %, 52.3 %, and 26.7 % of the bene fi t for %Z = 100 %. 

   Table 11.3    Missing data patterns   

 Pattern  X 
7
   Y 

8
   Y 

9
    N  with   pattern 

 1  1  1  1  500 
 2  1  1  0  375 
 3  1  0  0  125 

  1 = data present; 0 = data missing  

   Table 11.4    Effective sample size ( N  
EFF

 ) for auxiliary variable model for various levels of  r  
YZ

  and 
percent with data for auxiliary variables: one auxiliary variable   

 Percent of eligible cases having data for auxiliary variable 

 100 %  75 %  50 %  25 % 

  r  YZ    N  EFF  

 Statistical 
power for 
 rXY  = .10   N  EFF  

 Statistical 
power for 
 rXY  = .10   N  EFF  

 Statistical 
power for 
r XY  = .10   N  

EFF  

 Statistical 
power for 
 rXY  = .10 

 0.1  502  .61  502  .61  501  .61  501  .61 
 0.2  509  .62  508  .62  506  .62  504  .61 
 0.3  522  .63  519  .63  515  .62  509  .62 
 0.4  542  .64  536  .64  527  .63  516  .62 
 0.5  570  .66  559  .66  544  .65  526  .63 
 0.6  608  .69  590  .68  567  .66  538  .64 
 0.7  660  .73  631  .71  596  .69  554  .65 
 0.8  733  .77  687  .75  634  .71  573  .67 
 0.9  839  .83  764  .79  684  .75  596  .69 
 0.95  910  .86  814  .82  714  .76  609  .70 

   r  
XY

  =  r  
XZ

  = .10 for all cells. Cases are “eligible” if they have missing data for the main DV (Y). 
 N  = 1,000 for X and Z;  N  = 500 for Y  
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These percentages are at least similar to what might be expected. However, the 
tabled values for  r  

YZ
  = .50 are a bit different. The bene fi ts compared to %Z = 100 % 

are 82.9 %, 62.9 %, and 37.1 %, respectively, for %Z = 75 %, 50 %, and 25 %.   

   Two Auxiliary Variables 

 Another way in which the situation is more complex arises if one has more than one 
auxiliary variable. Even with two auxiliary variables, there are numerous new fac-
tors to consider. With just one auxiliary variable, one must consider six factors:

    N  
TOT

 ,  N  
CC

 ,  r  
XY

 ,  r  
XZ

 ,  r  
YZ

 , and % of eligible with data for Z    

 With just two    auxiliary variables, one must consider these 11 factors:

    N  
TOT

 ,  N  
CC

 ,  r  
XY

 ,  r  
X,Z1

 ,  r  
Y,Z1

 ,  r  
X,Z2

 ,  r  
Y,Z2

 ,  r  
Z1,Z2

   
  Percent of eligible with data for Z 

1
  only (%Z 

1
 )  

  Percent of eligible with data for Z 
2
  only (%Z 

2
 )  

  Percent of eligible with data for both Z 
1
  and Z 

2
  (%Z 

1
 Z 

2
 )    

 For now, we reduced the number of factors to consider by making certain assump-
tions. First, we assumed that  r  

XY
  =  r  

X,Z1
  =  r  

X,Z2
  = .10. The rationale for  r  

XY
  = .10 is that 

sample size, and any possible bene fi ts in  N  
EFF

  due to auxiliary variables, will be 
most critical for small effect sizes. Second, to the extent that a variable, Z, is a good 
auxiliary variable for Y, it is expected to be correlated similarly with X. This second 
point applies to both  r  

XZ1
  and to  r  

X,Z2
 , which, in this case, were also set to .10. Third, 

we made the assumption that once one has one auxiliary variable with a particular 
 r  

YZ
 , adding a second auxiliary variable with a lower  r  

YZ
  will generally add only trivi-

ally to the  N  
EFF

  bene fi t. Thus, our strategy for now is to identify one auxiliary vari-
able (Z 

1
 ), which has the larger of the two  r  

YZ
  values. Thus, %Z 

1
  will also include 

%Z 
1
 Z 

2
 . Fourth, we made the assumption that  r  

Z1,Z2
  was the mean of  r  

YZ1
  and  r  

YZ2
 . 

Finally, for now, we cover only the situation with  N  
TOT

  = 1000 and  N  
CC

  = 500 (i.e., 
50 % attrition). The more general case, in which all of these assumptions are relaxed, 
is covered later in this chapter.  

   Two Auxiliary Variables with Different Values 
for  r  

YZ1
 ,  r  

YZ2
 , %Z 

1
 , and %Z 

2
  

 In longitudinal intervention data, it is common that two auxiliary variables will vary 
with respect to their correlation with the main DV ( r  

YZ1
 ,  r  

YZ2
 ), and with respect to the 

percent of eligible people with data (%Z 
1
  and %Z 

2
 ). One example of the variability 

of %Z 
1
  and %Z 

2
  is presented in Table  11.5 , which presents the attrition patterns 

from one cohort of the Adolescent Alcohol Prevention Trial (AAPT; Hansen and 
Graham  1991  ) .  
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 Table  11.5  shows that 713 of 1478 participants were missing data for the main 
DV, smoking at tenth grade (Smk10). And in that study, there were rather compli-
cated patterns of who had and did not have the two auxiliary variables. Just 6.3 % 
of those eligible had data for Smk9 only; 43.2 % of those eligible had data for Smk8 
only; and 21.7 % of those eligible had data for both Smk8 and Smk9. We used our 
assumption that having data for both auxiliary variables is not appreciably better 
than having data for just the one auxiliary variable with the higher  r  

YZ
 . Thus, this 

problem reduces to one in which the auxiliary variable with the higher  r  
YZ

  (Smk9) 
had  r  

Y,Z1
  = .82 and %Z 

1
  = .280 (.217 + .063). The other auxiliary variable (Smk8) had 

 r  
Y,Z2

  = .66 and %Z 
2
  = .432. 

 In order to illustrate  N  
EFF

  bene fi ts over a range of circumstances with two auxil-
iary variables, we conducted another arti fi cial data example. In order to reduce the 
magnitude of the problem, with this arti fi cial data example, we examined all combi-
nations of  r  

YZ
  for each of two auxiliary variables, where  r  

YZ
  ranged from .40 to .90 

in increments of .10. Further, this illustration looked at scenarios in which 100 %, 
75 %, or 50 % of the eligible subjects had data for some combination of the two 
auxiliary variables. The 100 % eligible scenario was broken down into three patterns 
of %Z 

1
  and %Z 

2
 : 75 %/25 %, 50 %/50 %, and 25 %/50 %. The 75 % eligible scenario 

was broken down into two patterns of %Z 
1
  and %Z 

2
 : 50 %/25 %, and 25 %/50 %. 

The 50 % eligible scenario had just one pattern for %Z 
1
  and %Z 

2
 : 25 %/25 %. 

 Table  11.6  presents the results for this arti fi cial data example. Several interesting 
patterns emerge in the table. First, it is not surprising that when  r  

Y,Z1
  =  r  

Y,Z2
 ,  N  

EFF
  

values in the .75/25 column are the same as those in the .25/.75 column. When 
 r  

Y,Z1
  =  r  

Y,Z2
 , these two columns mean the same thing. Also note that when  r  

Y,Z1
  =  r  

Y,Z2
 , 

 N  
EFF

  values in the .50/.50 column are slightly higher than in the .75/.25 and .25/.75 
columns. Also of note is the fact that the  N  

EFF
  values in the .75/.25 column get larger 

faster as  r  
Y,Z1

  increases, compared to the values in the .50/.50 and .25/.75 columns. 
Again, this is to be expected.  

   Table 11.5    Attrition patterns over four waves of AAPT   

 Pattern 

 Grade 

  N   Percent 

 % of those 
missing 
 Smk10 

 Prog  Smoking 

 (Seventh)  Eighth  Ninth  Tenth 

 1  1  1  1  1  543  36.7 
 2  1  0  1  1  70  4.7 
 3  1  1  0  1  125  8.5 
 4  1  0  0  1  27  1.8 
 5  1  1  1  0  155  10.5  21.7% 
 6  1  0  1  0  45  3.0  6.3% 
 7  1  1  0  0  308  20.8  43.2% 
 8  1  0  0  0  205  13.9  28.8% 
 Total  1478 

  Attrition patterns are based on a 3-item cigarette smoking scale. 1 = data present; 0 = data missing. 
All 1478 had data for the program membership dummy variable  



266 11 Using Modern Missing Data Methods with Auxiliary Variables…

   Ta
bl

e 
11

.6
  

  E
ff

ec
tiv

e 
sa

m
pl

e 
si

ze
 (

 N
  E

FF
 ) 

fo
r 

au
xi

lia
ry

 v
ar

ia
bl

e 
m

od
el

 f
or

 v
ar

io
us

 l
ev

el
s 

of
  r

  Y
Z
  a

nd
 p

er
ce

nt
 w

ith
 d

at
a 

fo
r 

au
xi

lia
ry

 v
ar

ia
bl

es
: 

tw
o 

au
xi

lia
ry

 
va

ri
ab

le
s   

 H
ig

he
r 

 r Y
Z
 

 L
ow

er
 

 r Y
Z
 

 Pe
rc

en
t w

ith
 h

ig
he

r/
lo

w
er

  r
 Y

Z
: .

75
/.2

5 
 Pe

rc
en

t w
ith

 h
ig

he
r/

lo
w

er
  r

 Y
Z
: .

50
/.5

0 
 Pe

rc
en

t w
ith

 h
ig

he
r/

lo
w

er
  r

 Y
Z
: .

25
/.7

5 
 Pe

rc
en

t w
ith

 h
ig

he
r/

lo
w

er
  r

 Y
Z
: .

50
/.2

5 
 Pe

rc
en

t w
ith

 h
ig

he
r/

lo
w

er
  r

 Y
Z
: .

25
/.5

0 
 Pe

rc
en

t w
ith

 h
ig

he
r/

lo
w

er
  r

 Y
Z
: .

25
/.2

5 

 .4
 

 .4
 

 54
8 

 55
0 

 54
8 

 54
1 

 54
1 

 53
0 

 .5
 

 .4
 

 57
0 

 56
6 

 55
7 

 55
7 

 54
9 

 53
9 

 .6
 

 .4
 

 60
0 

 58
7 

 56
8 

 57
8 

 56
1 

 55
1 

 .7
 

 .4
 

 64
0 

 61
4 

 58
2 

 60
7 

 57
5 

 56
6 

 .8
 

 .4
 

 69
4 

 65
0 

 59
9 

 64
3 

 59
3 

 58
5 

 .9
 

 .4
 

 77
0 

 69
7 

 62
1 

 69
1 

 61
5 

 60
7 

 .5
 

 .5
 

 57
8 

 58
1 

 57
8 

 56
6 

 56
6 

 54
9 

 .6
 

 .5
 

 60
8 

 60
2 

 58
9 

 58
7 

 57
7 

 56
0 

 .7
 

 .5
 

 64
8 

 62
9 

 60
4 

 61
5 

 59
1 

 57
5 

 .8
 

 .5
 

 70
2 

 66
5 

 62
1 

 65
2 

 60
9 

 59
3 

 .9
 

 .5
 

 77
7 

 71
2 

 64
2 

 70
0 

 63
1 

 61
6 

 .6
 

 .6
 

 61
9 

 62
3 

 61
9 

 59
8 

 59
8 

 57
2 

 .7
 

 .6
 

 65
9 

 65
0 

 63
3 

 62
7 

 61
3 

 58
7 

 .8
 

 .6
 

 71
3 

 68
6 

 65
1 

 66
3 

 63
1 

 60
5 

 .9
 

 .6
 

 78
8 

 73
3 

 67
2 

 71
1 

 65
3 

 62
8 

 .7
 

 .7
 

 67
3 

 67
8 

 67
3 

 64
1 

 64
1 

 60
2 

 .8
 

 .7
 

 72
8 

 71
4 

 69
1 

 67
8 

 66
0 

 62
1 

 .9
 

 .7
 

 80
3 

 76
2 

 71
4 

 72
7 

 68
2 

 64
4 

 .8
 

 .8
 

 74
7 

 75
1 

 74
7 

 69
7 

 69
7 

 64
0 

 .9
 

 .8
 

 82
3 

 80
0 

 77
0 

 74
7 

 72
1 

 66
3 

 .9
 

 .9
 

 84
9 

 85
2 

 84
9 

 77
2 

 77
2 

 68
7 

  Pe
rc

en
t 

w
ith

 h
ig

he
r/

lo
w

er
  r

  Y
Z
  m

ea
ns

 t
he

 p
er

ce
nt

 o
f 

el
ig

ib
le

 p
eo

pl
e 

(t
ho

se
 m

is
si

ng
 t

he
 m

ai
n 

D
V

) 
w

ith
 d

at
a 

fo
r 

th
e 

au
xi

lia
ry

 v
ar

ia
bl

es
 w

ith
 h

ig
he

r 
an

d 
lo

w
er

 
va

lu
es

 f
or

  r
  Y

Z
 . F

or
 a

ll 
ce

lls
, r

 Z
1,

Z
2  =

 (
r Y

Z
1  +

  r
  Y

Z
2 )

/2
  



267Estimating N
EFF

 with One or Two Auxiliary Variables: The General Case

 Perhaps one of the most interesting  fi ndings in Table  11.6  relates to the compari-
son with  N  

EFF
  values in Table  11.4 . Look at the %Z = 100 % column in Table  11.4  

and compare those values with the .50/.50 column in Table  11.6  where  r  
Y,Z1

  =  r  
Y,Z2

 . 
Note that the values in Table  11.6  are always somewhat larger, ranging from a  N  

EFF
  

difference of 8 for  r  
YZ

  = .40 to a  N  
EFF

  difference of 14 when  r  
YZ

  = .90. These 
differences occur because  r  

Z1,Z2
  in the two auxiliary variable case is not  r  = 1.0, as it 

is in the one auxiliary variable case. Recall that  r  
Z1,Z2

  in Table  11.6  were set to be the 
average of  r  

YZ1
  and  r  

YZ2
 . When this value is set to  r  = .99, the  N  

EFF
  values in Table  11.6  

are the same as the corresponding values in Table  11.4 .   

   Estimating  N  EFF  with One or Two Auxiliary Variables: 
The General Case 

 It is possible to estimate the  N  
EFF

  in complex, two auxiliary variable scenarios, based 
on combinations of tabled values, and interpolation of tabled values for one auxil-
iary variable (Table  11.4 ). However, this approach is complicated, somewhat tedious 
and error prone, and at best provides only a rough approximation of the  N  

EFF
  in 

complex, two auxiliary variable scenarios. A closed-form solution may also be pos-
sible for calculating the  N  

EFF
  in all one- and two auxiliary variable scenarios. 

However, the closed-form solution is not currently available. 
 We have taken a third approach here. Using an automation utility, similar in 

many ways to the other automation utilities described in this book (see especially 
Chap.   10    ), it is possible to generate the LISREL code required to obtain exact esti-
mates of the  N  

EFF
  in all one- and two auxiliary variable scenarios. We now describe 

this utility. 

   Automation Utility for Estimating  N  
EFF

  in All One Auxiliary 
Variable Scenarios 

 The tables provided in this chapter go a long way toward helping investigators 
determine the bene fi t they might realize by including auxiliary variables in their 
missing data and analysis models. However, the tables cannot hope to provide the 
kind of detail researchers are likely to  fi nd in many studies. 

 As we noted above, with just one auxiliary variable, one must take six factors 
into account ( N  

TOT
 ,  N  

CC
 ,  r  

XY
 ,  r  

XZ
 ,  r  

YZ
 , and %Z). Although Table  11.4  provides good 

insights about the bene fi t one can realize with one auxiliary variable, many possible 
scenarios fall between the values provided in the tables. 

 Our automation utility, AuxMARSimulate, allows researchers to calculate the 
precise bene fi t from including one auxiliary variable. The utility is a Windows Java 
application. The user supplies some basic information and the utility automatically 
writes the multiple group LISREL syntax that will perform the analyses needed to 
calculate the exact  N  

EFF
  bene fi t. Of course, in order for the utility to work, one must 

already have LISREL installed on the computer to be used. Fortunately, pretty much 

http://dx.doi.org/10.1007/978-1-4614-4018-5_10
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any version of LISREL will work, as far back as LISREL 7. In fact, even the free, 
downloadable, student version of LISREL 8.8 will work with this utility. Further, 
those using the utility need have virtually no knowledge of LISREL. The utility 
handles the writing of LISREL syntax, and running the program, all automatically. 

   Running AuxMARSimulate Utility 

 Download the AuxMARSimulate.exe utility from our website (http://methodology.
psu.edu). This utility can be placed into any Windows folder that is convenient (e.g., 
on the desktop). 

 Locate the AuxMARSimulate.exe utility and run it. A picture of the utility win-
dow for auxiliary variables is shown in Fig.  11.2 .  

 Click on the Browse button and specify the Work directory. All work  fi les and the 
output  fi le will go to the speci fi ed folder. The folder selected will appear in blue 
below the Browse button. 

 Click on the Browse button for the LISREL executable. This  fi le may be located 
in the folder Program Files, but it may also be located in a LISREL  fi le off the root 
directory. The location of your LISREL executable will appear in blue under the 
Browse button, as illustrated in Fig.  11.2 . 

 Specify the total number of cases and the number of complete cases. 
 Specify the percent of eligible cases with data (in decimal form). 100 % is entered 

as 1.00 as shown in Fig.  11.2 . 85 % would be shown as .85. 

  Fig. 11.2    AuxMARSimulate (automation utility) window. This utility calculates the bene fi ts of 
adding one auxiliary variable with the parameters shown in the  fi gure       
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 Specify the values for the three correlations,  r  
XY

 ,  r  
XZ

 , and  r  
YZ

 . 
 Click on the run button. 
 At the conclusion of the iterations, the output from the utility is written to a  fi le 

called “AuxOut.txt”, and will automatically appear in a Notepad window. For exam-
ple, the parameters appearing in Fig.  11.2  produced the output shown in Table  11.7 . 
Note that changes may be made to any parameter shown in the AuxMARSimulate 
window, and the utility may be rerun without changing the other parameters.    

   Automation Utility for Estimating  N  
EFF

  in All Two Auxiliary 
Variable Scenarios 

 The AuxMARSimulate.exe utility can also handle all scenarios involving two aux-
iliary variables. For this version of the utility, one may specify any desired values 
for these 11 factors:  N  

TOT
 ,  N  

CC
 ,  r  

XY
 ,  r  

XZ1
 ,  r  

YZ1
 ,  r  

XZ2
 ,  r  

YZ2
 ,  r  

Z1Z2
 , %Z 

1
 , %Z 

2
 , and %Z 

1
 Z 

2
  

(some of these factors have default values in the utility). 
 To run the two-auxiliary-variable version of the utility, just click on the “2 Aux 

vars” tab. A picture of the window for this version of the utility appears in Fig.  11.3 . 
The steps for running this version of the utility are virtually the same as described 
above. The only differences are (a) that there are more quantities to be entered, and 
(b) the sum of the three percents cannot exceed 100 % (i.e., 1.0; however, the sum 
of the three percents may be less than 100 %). The output from this version of the 
utility, using the parameter values shown in Fig.  11.3 , appears in Table  11.8 .     

   Implications of  N  EFF  for Statistical Power Calculations 

 When planning research, intervention scientists frequently conduct power analyses 
in order to decide on a target sample size. These power analyses have traditionally 
been based on the sample size after attrition, without considering the impact of the 

   Table 11.7    Output for AuxMARSimulate utility   
 Output for Aux simulate Utility 
 target SE = 0.039014 
 Current SE = 0.039017 
 SE diff = 0.000003 
 Ntot = 1000 
 OrigNcc = 500 
 Neff = 660 
 Neff percent bene fi t = 32.0% 

  The “Neff percent bene fi t” is the percent of the 
way from Ncc to Ntot. This output corresponds to 
input values shown in Fig.  11.2   
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missing data approach. As a way of maintaining power, researchers have often 
ensured a suf fi ciently large sample size at the end of a study by increasing the 
starting sample size to compensate for an expected attrition rate. For example, the 
researcher who expects a 10 % attrition rate per year might increase the starting 
sample size to  N  = 1372 in order to ensure power corresponding to a target  N  = 1,000 
at the third follow-up measure. In this chapter, we propose that when modern miss-
ing data methods are used, the target for statistical power assessment can be  N  

EFF
  

rather than  N  
CC

 . This means that in evaluating the resource demands of a planned 
study, not only the expected attrition rate per se but also the missing data model, 
including possible auxiliary variables, should be considered. Collecting data on a 
useful set of auxiliary variables ultimately may maintain statistical power as well as 

  Fig. 11.3    AuxMARSimulate (automation utility) window. This utility calculates the bene fi ts of 
adding two auxiliary variables with the parameters shown in the  fi gure       

   Table 11.8    Output for AuxMARSimulate utility   

 Output for Aux simulate Utility 
 target SE = 0.039133 
 Current SE = 0.039134 
 SE diff = 0.000002 
 Ntot = 1000 
 OrigNcc = 500 
 Neff = 656 
 Neff percent bene fi t = 31.2% 

  The “Neff percent bene fi t” is the percent of the 
way from Ncc to Ntot. This output corresponds to 
input values shown in Fig.  11.3   
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or better than increasing the starting sample size to compensate for anticipated 
attrition. This strategy may also be less costly and more ef fi cient. 

 It should be stressed that this possibility can be realized only if modern missing 
data methods, such as MI or ML methods, are used. There is no way to achieve the 
 N  

EFF
  bene fi ts with older methods such as analysis of complete cases. 5  A key to 

achieving a strong missing data model is a set of auxiliary variables that together are 
highly predictive of the outcome variable. Researchers planning studies may wish 
to consider what auxiliary variables to collect. Prior measures of the outcome 
variable, such as those available in most multi-wave longitudinal prevention stud-
ies, will often be useful auxiliary variables. Depending on the circumstances, other 
variables may also be useful.  

   Loose Ends 

   What Happens When Pretest Covariates 
Are Included in the Model? 

 To keep the examples simple, the models tested in this chapter involved a program 
variable predicting an outcome without a covariate (an after-only design). To be 
sure, including a covariate in the analysis model would change the degree to which 
adding an auxiliary variable would produce an  N  

EFF
  bene fi t. However, that change 

is relatively easily calculated. A good approximation of the bene fi t of adding a par-
ticular auxiliary variable when a covariate is part of the model is to use, in place of 
 r  

YZ
 , the partial correlation,  r  

YZ
 , partialling the covariate. For example, in the AAPT 

study used as the main empirical example in this chapter, the correlation between 
the auxiliary variable Smk9 and the main DV, Smk10, was  r  

YZ
  = .82. The partial cor-

relation between these two variables, partialling the pretest score (Smk7) was  r  = .74. 
Thus the  N  

EFF
  bene fi t expected if Smk7 were included in the analysis model would 

be looked up for  r  
YZ

  = .74.  

   Multilevel Models 

 Many intervention studies are conducted with individuals who come from intact 
units, for example, students within schools. That is, many intervention studies can 

   5   This is true unless the variables acting as auxiliary variables happen to be part of the analysis 
model. The only analysis that  fi ts this requirement well is growth modeling. That is, even when 
there are missing values in the growth part of the model, the growth model can be estimated mak-
ing use of partial data. Although the results of this analysis are not maximum likelihood, they do 
tend to be unbiased and ef fi cient.  
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be thought of as group randomized trials (GRT; e.g., see Murray  1998  ) . The  N  
EFF

  
bene fi t from inclusion of auxiliary variables is, to be sure, more complicated in such 
studies. However, the  N  

EFF
  bene fi ts in such studies can be approximated in a straight-

forward way. One method for estimating power in GRT research is by estimating 
the program effect and standard error without taking the cluster structure into 
account and then adjusting that standard error by the design effect (DEFF; Murray 
 1998  ) . It is also an easy matter to recalculate the effective sample size in these stud-
ies after taking the DEFF into account. In this kind of study, the sample size used 
prior to estimating the DEFF would be the  N  

EFF
  (after taking auxiliary variables into 

account), rather than the nominal sample size normally used.  

   “Highly Inclusive” Versus “Selectively Inclusive” Models 

 As part of their research, Collins et al.  (  2001  )  conducted simulations demonstrating 
that there could be a bene fi t of including many auxiliary variables in a model, and that 
there was no known harm in doing so. Since their article was published, however, 
many researchers have begun to notice that highly inclusive imputation models that 
consist of 100 or more variables can present serious logistical problems in the impu-
tation and analysis phases of their research (see Chap.   9    ). For example, with the cur-
rently available (2012) software, including more than 100 variables in an imputation 
model often leads to problems such as EM convergence taking 1,000 or more itera-
tions; imputation models that take up to 2 months to run; and analysis models that 
take days or even weeks to run, especially if a large number of imputations are used 
(e.g., see Graham et al.  2007  ) . The results produced can have questionable validity. 
This problem should fade in the future as software and hardware increase in capabil-
ity. However, the fact remains that although there may be no theoretical limits on the 
number of auxiliary variables included in the model, today there are practical limits. 

 Also important is the fact that one reaches the point of diminishing returns rather 
quickly when adding auxiliary variables to one’s model. The relevant correlations 
for demonstrating this concept are  r  

Y,Z1
 ,  r  

Y,Z2
 , and  r  

Z1,Z2
 . 6  One way to demonstrate the 

point would be to examine all possible combinations of the three correlations. 
A serious drawback to this approach, however, is that some unusual combinations 
of the correlations produce unbelievable results. For example, with a single auxil-
iary variable with  r  

Y,Z1
  = .82,  N  

EFF
  = 750. However, adding a second auxiliary vari-

able with  r  
Y,Z2

  = .001 and  r  
Z1,Z2

  = .517 yields  N  
EFF

  = 922. Although there could be a 
plausible explanation for this  fi nding (e.g., relating to suppressor effects), we feel it 
would be better to stay with more typical con fi gurations of these three correlations. 
For this reason, we believe that the best approach here is to show a range of correla-
tions from real empirical data. 

   6   For this demonstration, we will stay with the scenario in which  N  
TOT

  = 1,000,  N  
CC

  = 500, and 
%Z = 100 % for both auxiliary variables.  

http://dx.doi.org/10.1007/978-1-4614-4018-5_9
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 Let us consider two scenarios. First, let us consider the scenario in which one has 
a dependent variable measured at three consecutive posttest waves. The measure at 
the third posttest wave represents the main DV. The measure at the second posttest 
wave (one wave removed from the main DV) represents the auxiliary variable with 
the best  r  

YZ
  ( r  

Y,Z1
 ). The measure at the  fi rst posttest wave (two waves removed from 

the main DV) represents an auxiliary variable with a somewhat lower  r  
YZ

  ( r  
Y,Z2

 ). 
Data from the AAPT study can be used to illustrate the effects of the three relevant 
correlations:  r  

Y,Z1
 ,  r  

Y,Z2
 , and  r  

Z1,Z2
 . 

 AAPT data for this scenario appear in the top panel of Table  11.9 . Note that for 
each of these variables there was a small increment in  N  

EFF
  when the second auxil-

iary variable was added. The average increment in  N  
EFF

  was 7.0 for this scenario. 

   Table 11.9    Incremental  N  
EFF  bene fi t of adding a second auxiliary variable   

  N  
EFF

  

 Variable 
 Measured at 
Grades   r  Y,Z1

    r  Y,Z2    r  Z1,Z2  
 1 Aux. 
Var. 

 2 Aux. 
Vars.  Increase 

 Alcohol  7, 8, 9  .56  .44  .57  591  598  7 
 Alcohol  8. 9, 10  .57  .48  .56  595  608  13 
 Alcohol  9, 10, 11  .63  .44  .57  621  625  4 
 Drunk  7, 8, 9  .60  .45  .57  608  614  6 
 Drunk  8. 9, 10  .67  .50  .60  642  648  6 
 Drunk  9, 10, 11  .77  .57  .67  708  711  3 
 Smoking  7, 8, 9  .62  .48  .58  617  625  8 
 Smoking  8. 9, 10  .72  .57  .62  672  684  12 
 Smoking  9, 10, 11  .76  .63  .72  700  707  7 
 Marijuana  7, 8, 9  .50  .30  .38  570  574  4 
 Marijuana  8. 9, 10  .54  .36  .50  583  587  4 
 Marijuana  9, 10, 11  .62  .42  .54  617  620  3 
 Peer Use  7, 8, 9  .52  .41  .46  576  588  12 
 Peer Use  8. 9, 10  .56  .41  .52  591  598  7 
 Peer Use  9, 10, 11  .63  .48  .56  621  630  9 

  N  
EFF

  

 Variables and grades   r  Y,Z1    r  Y,Z2    r  Z1,Z2  
 1 Aux. 
Var. 

 2 Aux. 
Vars.  Increase 

 Smk9, Smk8, Reb8  .62  .33  .37  617  621  4 
 Smk9, Smk8, Peer8  .62  .24  .34  617  617  0 
 Smk10, Smk9, Posatt9  .72  .41  .43  672  678  6 
 Smk8, Smk7, Likepar7  .58  .17  .23  599  599  0 
 Smk9, Smk8, Likepar8  .62  .22  .20  617  620  3 

   Top panel : the third variable in each set is the main DV (Y); the second variable is the auxiliary 
variable Z 

1
 ; the  fi rst variable is the auxiliary variable Z 

2
  

  Bottom Panel:  Grade is shown at the end of each variable. The  fi rst variable in each set is the main 
DV (Y); the second variable is the auxiliary variable Z 

1
 ; the third variable is the auxiliary variable 

Z 
2
 . “Smk” = Smoking; “Reb” = Rebelliousness; “Peer” = Perceptions of Peer Use; “Posatt” = 

Beliefs about the positive consequences of alcohol use; “Likepar” = Relationship with Parents  
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The average  N  
EFF

  = 620.8 ( N  
EFF

  bene fi t of 120.8) with the  fi rst auxiliary variable, so 
this increment represents just a 5.8 % incremental bene fi t (127.8/120.8 = 1.058).  

   Bottom Panel 

 Grade is shown at the end of each variable. The  fi rst variable in each set is the main 
DV (Y); the second variable is the auxiliary variable Z 

1
 ; the third variable is 

the  auxiliary variable Z 
2
 . “Smk” = Smoking; “Reb” = Rebelliousness; 

“Peer” = Perceptions of Peer Use; “Posatt” = Beliefs about the positive conse-
quences of alcohol use; “Likepar” = Relationship with Parents. 

 The second scenario involves the main dependent variable (Smoking in this 
case) at one grade. The  fi rst auxiliary variable (Z 

1
 ) is the same variable measured at 

the previous wave. The second auxiliary variable (Z 
2
 ) is another variable measured 

at the same wave as Z 
1
 . The AAPT results for this scenario are presented in the 

lower panel of Table  11.9 . The second auxiliary variable in this illustration was one 
of these: Rebelliousness (Rebel), Perceived Peer Use (Peer), Beliefs about the 
Positive Consequences of Alcohol Use (Posatt), or Relationship with Parents 
(Likepar). These variables were meant to be like the kinds of variables that research-
ers often consider as auxiliary variables: They are different from the main DV, but 
are variables that are reasonably highly correlated (in real-world terms) with the 
main dependent variable. 

 Note that the average increment in  N  
EFF

  for this scenario was only 2.6. The aver-
age  N  

EFF
  = 624.4 ( N  

EFF
  bene fi t of 124.4) with the  fi rst auxiliary variable only. Thus, 

the increment of adding the second auxiliary variable represents just a 2.1 % incre-
mental bene fi t (127.0/124.4 = 1.021). 

 The results shown in Table  11.9  do illustrate the point that there will often be 
relatively little gain in adding a second auxiliary variable with  r  

YZ
  lower than the 

 fi rst auxiliary variable already in the model. This does not mean that one should 
never include a second (or third or fourth) auxiliary variable in the model. It just 
means that one should be aware of the trade-offs. If one is testing a relatively small 
model, that is one with relatively few variables, then one can easily afford to include 
a few extra auxiliary variables, even if the incremental  N  

EFF
  bene fi t is relatively 

small. However, when the number of variables is large, one must be more judicious 
in selecting auxiliary variables. 

 It is true that the empirical data shown in Table  11.9  do not represent a wide 
range of values researchers will encounter. It may well be that a researcher will  fi nd 
that the incremental bene fi t of adding a second (or third or fourth) auxiliary variable 
to the model will be much larger than implied by the results shown here. The auto-
mation utility described above for calculating the  N  

EFF
  bene fi t given any combina-

tion of factors will help researchers calculate the bene fi t they can expect in their 
particular situation. 

 One last point here is that the relatively small gains for adding a second auxiliary 
variable described in Table  11.9  were based on the idea that 100 % of subjects miss-
ing on Y have data for both auxiliary variables. With other missing data patterns, 
adding a second auxiliary variable will be much more bene fi cial. For example, 
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although not shown here, consider the scenario in which 33 %, 33 %, and 34 % of 
the eligible subjects have data, respectively, for Z 

1
  only, Z 

2
  only, and Z 

1
  plus Z 

2
 . 

Given the same correlations shown in Table  11.9 , this new scenario yields  N  
EFF

  
bene fi ts that are roughly triple those shown above.   

   What Other Factors May Affect the True  N  
EFF

  Bene fi t? 

 The models used in the arti fi cial examples in this chapter assumed data were nor-
mally distributed. Empirical data generally deviate rather substantially from nor-
mal. This very likely will affect the actual  N  

EFF
  to an extent. It is possible that 

theoretical estimates of  N  
EFF

  will be more accurate for nonnormal data if bootstrap 
methods are used to obtain standard errors. 

 There is some evidence that MAR missingness that deviates substantially from 
MCAR may yield somewhat lower  N  

EFF
  bene fi ts. However, we have every reason to 

believe that the missingness in many mainstream intervention studies deviate from 
MCAR in a much more mild way.       
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   Who Should Read This Chapter? 

 This chapter draws heavily on the material covered in the article, “Planned missing 
data designs in psychological research” published in the journal,  Psychological 
Methods,  by    Graham et al. ( 2006 ). Early in that article, we made this statement:

  The value of the planned missing data designs presented in this article hinges on one’s 
ability to make use of analysis procedures that handle missing data.   

 I believe this statement. It does seem to imply that one should not tackle this 
chapter until one has mastered the analysis of missing data, which is covered in 
detail in earlier chapters of this book. But let us take a closer look. What are the 
reasons why one should and should not use a planned missing data design such as 
the 3-form design? 

   Reasons for Not Using the 3-Form Design 

   Lack Missing Data Analysis Skills 

 Certainly one reason for not using a measurement design that increases missing data 
is that one lacks the skills for performing the required missing data analysis. Having 
data from the 3-form design (and other related designs) does increase the need to 
have missing data analysis abilities. 

 However, I do not see this as a legitimate reason for not using this design. Missing 
data analysis skills are also needed for handling other kinds of missing data. In lon-
gitudinal studies, for example, it is relatively rare for there not to be a substantial 
amount of missing data due to attrition. Further, using the recommended proce-
dures, such as those described in this book, is becoming the norm. And it is getting 
more and more dif fi cult to publish empirical articles in top journals without using 
these procedures.  

    Chapter 12   
 Planned Missing Data Designs I: 
The 3-Form Design                 
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   Happy with Data Collected 

 A second reason for not using the 3-form design is that there is simply no need. If 
the researcher is completely happy with the number of questions that can be 
addressed at each wave of measurement with a particular population, then there is 
no need to make use of a design whose main feature is increasing the number of 
questions that can be asked. I agree that this is a legitimate reason for not making 
use of the 3-form design.   

   Reasons for Using the 3-Form Design 

 There is just one reason for using the 3-form design. That reason, the need to ask 
more questions than seems possible, is embodied in these two scenarios:

  Scenario 1: The researchers would very much like to ask 133 questions of their research 
participants. But, as is often the case, the participants are willing or able to answer only 100 
questions given the time (and/or payment) available to them. 

 In this scenario, only option seems to be to ask fewer questions.  

  Scenario 2: In a longitudinal study, the researchers have been asking their participants ques-
tions requiring 60 minutes of work at every wave of measurement. Now, however, the data 
collection manager tells them that the gate keepers (e.g., school administrators) can provide 
only 45 minutes for questionnaire completion. 

 In this scenario, the only option seems to be to ask fewer questions than asked in previ-
ous waves, so that the participants can complete the survey in 25 % less time.   

 In both of these scenarios, conditions seem to require that the researchers ask 
fewer questions than they would like to ask. The 3-form design was designed to 
address this very problem; it was designed to give researchers another option in 
these two scenarios.   

   The 3-Form Design: History, Layout, Design Advantages 

 The 3-form design is a measurement design that falls under the general heading of 
 matrix sampling  designs. Matrix sampling designs can be thought of as one of sev-
eral kinds of  ef fi ciency design . The main goal of all ef fi ciency designs is to conduct 
the research in a way that provides a rigorous test of the research questions, while 
reducing research costs compared to alternative designs. 

 Perhaps the most common kind of ef fi ciency design is random sampling of 
subjects (e.g., Thompson  2002  ) . Other, commonly used ef fi ciency designs include 
what has been referred to as  optimal designs  (e.g., Allison et al.  1997 ; McClelland 
 1997  ) , and  factorial designs  (including full factorial and fractional factorial 
designs; e.g., Box et al.  1978 ; Collins et al.  2009,   2005 ; West and Aiken  1997  ) . 
The ef fi ciency of optimal designs and factorial designs relates to the independent 
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variable in experiments. Matrix sampling, on the other hand, relates to measurement 
of the dependent variables and covariates in experimental and nonexperimental 
designs. 

   Matrix Sampling: Early Designs 

 The main goal of subject sampling designs is, of course, to sample which subjects 
will be included in the study. The main goal of optimal and factorial designs is to 
sample which experimental effects will be studied. The main goal of matrix sam-
pling is a little different. Matrix sampling samples which items will be offered to 
which respondents. In the earliest days of matrix sampling (e.g., Lord  1962 ; 
Shoemaker  1973 ; Munger and Loyd  1988  ) , the focus of the studies was on obtain-
ing meaningful estimates of means and standard deviations for a large number of 
items, but without taxing individual respondents too much. An example of this kind 
of design is shown in Table  12.1 .  

 The example design shown in Table  12.1  is best at reducing the load on the indi-
vidual respondents. For example, suppose each item set (A, B, C, D) included 100 
items as shown in the table. That would mean that means and standard deviations 
could be estimated for 400 individual items, and yet each respondent would respond 
to just 100 items. An important limitation of this kind of design is that correlations 
can be estimated only for the items within each set. That is, with this type of design, 
correlations cannot be estimated for two items from different item sets.  

   History of the 3-Form Design 

 They say that need is the mother of invention. Nowhere is that truer than with the 
original development of the 3-form design. In 1982, I was working in a research 
group that eventually became known as the Institute for Prevention Research (IPR) 
at the University of Southern California. We were working on the  fi rst, large-
scale multiple substance abuse prevention program ever funded (Project SMART; 

   Table 12.1    Simple matrix sampling design   
 Item sets answered 

 100  100  100  100 (items within each item set) 
 Form  A  B  C  D 

 1  1  0  0  0 
 2  0  1  0  0 
 3  0  0  1  0 
 4  0  0  0  1 

  1: respondents received questions; 0: respondents did not receive questions  
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Andy Johnson, Principal Investigator). The project, like many large-scale  fi eld 
research projects, had multiple investigators, each of whom wanted to see many 
favorite questions on the  fi nal version of our questionnaire. Scenario 1, given above 
under Reasons for Using the 3-form design was de fi nitely true for us. Based on pilot 
work in our schools, we  fi gured our students would answer approximately 125 
questions in the 50 min class periods available to us. Unfortunately, our  fi rst cut 
through the survey netted more like 200 questions. 

 In our case, as in most situations like this (which I have found to be the rule, not 
the exception in collaborative  fi eld research), we could cut the number of questions 
down some, but the number did not approach the 125 questions we thought we 
needed. Thus, the  fi rst version of the 3-form design was born.  

   Basic Layout of the 3-Form Design 

 Table  12.2  shows the basic layout of the original 3-form design. With this design 
(which remains the most commonly implemented version), there are four item sets: 
X, A, B, and C. The items in the X set are typically the questions most important for 
answering the central questions of the research. These questions are answered by 
everyone. The A, B, and C sets are then rotated such that each form omits one of the 
sets as shown.   

   Advantages of the 3-Form Design over Other Designs 

 It is easy to see that the main advantage of the 3-form design over the 1-form design 
(which is the same as using Form 1 only) is that data can be collected from more 
questions using the 3-form design. If the item sets have the same number of ques-
tions, then the 3-form design increases the number of variables by 33 % compared 
to the 1-form design. For example, if each item set contains the number of items 
shown in Table  12.2 , then each respondent sees only 100 questions, but data are 
collected on 133 questions in total. 

   Table 12.2    3-form design   
 Item sets answered 

 34  33  33  33 (items within each item set) 
 Form  X  A  B  C 

 1  1  1  1  0 
 2  1  1  0  1 
 3  1  0  1  1 

  1: respondents received questions; 0: respondents did not receive questions  
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 The 3-form design is also better than the simple matrix sampling design shown 
in Table  12.1  in the sense that all correlations between variables may be estimated 
with the 3-form design. Data from more questions (400) can be collected using the 
simple matrix sampling design, but only means and standard deviations may be 
estimated on all of those variables; correlations (and related quantities) may esti-
mated only for variables within each item set and only for the subsample of the 
population for which those variables were collected. 

 A key advantage of the 3-form design is that the missingness due to the design is 
MCAR. Of course, there is almost always at least a small amount of MAR missing-
ness that is superimposed over the planned missing data, but for the most part, the 
MCAR assumption for these data is strong.  

   Disadvantages of the 3-Form Design Compared 
to the 1-Form Design 

 The disadvantage of the 3-form design is that a particular correlation effect 1  might 
be nonsigni fi cant when tested with the 3-form design, but would have been 
signi fi cant had the 1-form design been used. However, I  fi nd it dif fi cult to call this 
a disadvantage, in that at the time one chooses between the two designs, the proba-
bility can be as low as one likes that this disadvantage will manifest itself with an 
important correlation effect. 

 Let me lay out this issue in some detail here, and at the end of this section I will 
revisit the question of whether it is really a disadvantage. I begin by examining the 
correlation effects testable with the 3-form design. These effects are summarized in 
Table  12.3 . Going back to Table  12.2 , you can see that any correlation involving two 
variables from the X set (referred to as XX) will be tested with the full  N . Any cor-
relation between two variables within the A set, B set, or C set (referred to as AA, 
BB, or CC) will be tested with 2 N /3. Any correlation between one variable in X and 
one variable in A, B, or C (referred to as XA, XB, or XC) will also be tested with 
2 N /3. Finally, any correlation between one variable in A, B, or C, and another vari-
able in one of the other sets (A, B, or C; referred to as AB, AC, or BC), will be tested 
with  N /3. There are  k ( k -1)/2 correlation effects within each item set and  k  2  effects 
across any two item sets, where  k  is the number of items per set. With  k  = 10 in each 
of the four item sets, that works out to be 45 effects within each item set, and 100 
effects across any two item sets. 2  The totals are as shown in Table  12.3 .  

   1   Throughout this chapter, I talk about correlations and correlation effects. What I say certainly 
does apply to correlations, per se, but the points made throughout this chapter are meant to apply 
as well to other measures of association.  
   2   I chose  k  = 10 here to re fl ect the idea that there are approximately 10 scales within each item set. 
Assuming 3 or 4 individual items per scale that would be 30–40 items per item set, which is con-
sistent with the other examples I use in this chapter. So the correlation effects I talk about here are 
correlations between scales, not between individual items.  
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   Total Number of Effects Testable in 1- and 3-Form Designs 

 With  k  = 10, the 3-form design allows one to test 780 correlation effects in total, as 
shown in Table  12.3 . The 1-form design allows one to test just 435 correlation 
effects. The difference is that with the 1-form design, all 435 effects are tested with 
the full  N , whereas with the 3-form design, 45 effects are tested with the full  N , 435 
effects are tested with 2 N /3, and 300 effects are tested with  N /3. 3   

   Statistical Power for Testing Various Effects 

  The Tables . More important than the sample size is the statistical power associated 
with testing various effects. Following the approach taken in Graham et al. (2006), 
statistical power for effect sizes from   r   = .05 to   r   = .30 for two different study sam-
ple sizes are given in Tables  12.4  and  12.5 . Graham et al. (2006) provided tables for 
study  N  = 300. In Tables  12.4  and  12.5 , I present tables for Study  N  = 600 and 
1,000. 4    

 In Tables  12.4  and  12.5 , the ✘ mark indicates an effect that is better with the 
1-form design, that is, an effect that has power  ³  .80 with the 1-form design and 
power < .80 with the 3-form design. The ✔ indicates an effect that is better with 
the 3-form design, that is, an effect that has power  ³  .80 with the 3-form design, 
but is untestable with the 1-form design because the C questions were not asked. 5  

   3   These numbers assume equal numbers of items in each item set of the 3-form design.  
   4   Supplementary materials from Graham et al. (2006), including the comparable tables for  N  = 3,000 
can be found at:   http://dx.doi.org/10.1037/1082-989X.11.4.323.supp    . Supplementary tables for 
this book, including power tables for several different sample sizes can be found at:   http://method-
ology.psu.edu    .  
   5   The column for XX effects is omitted from these tables. Note that power for XX effects is the 
same as 1-form design power for other effects, and that power for XX effects is the same for both 
designs, that is, there are no ✔ or ✘ marks in the omitted columns.  

   Table 12.3    Correlation effects tested with 3-form design   

 Correlation effects tested with  N  shown 

 3-form design  1-form design 

 Tested with total  N  (1,000) 
 XX effects  45  435 

 Tested with 2 N /3 (667) 
 AA, BB, CC effects  135  — 
 XA, XB, XC effects  300  — 

 Tested with  N /3 (333) 
 AB, AC, BC effects  300  — 

 Total  780  435 

  Figures based on total  N  = 1000, and  k  = 10 scales per item set. With the 1-form 
design, everyone receives Form 1 as shown in Table  12.2   

http://dx.doi.org/10.1037/1082-989X.11.4.323.supp
http://methodology.psu.edu
http://methodology.psu.edu
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   Table 12.4    Power with various effect sizes ( N  = 600)   

  XA, XB, 
AA, BB  

  XA, XB, XC 
AA, BB, CC    AB    AB, AC, BC  

 Effect 
 Size ( r ) 

  1-form    3-form   Power 
 Ratio 

  1-form    3-form   Power 
 Ratio   N  = 600   N  = 400   N  = 600   N  = 200 

  0.05   0.232  0.170  1.36  0.232  0.109  2.13 
  0.06   0.312  0.224  1.39  0.312  0.135  2.31 
  0.07   0.403  0.288  1.40  0.403  0.167  2.41 
  0.08   0.500  0.360  1.39  0.500  0.204  2.45 
  0.09   0.598  0.437  1.37  0.598  0.246  2.43 
  0.10   0.689  0.517  1.33  0.689  0.293  2.35 
  0.11   0.770  0.596✘  1.29  0.770  0.344✘  2.24 
  0.12   0.838  0.672✘  1.25  0.838  0.397✘  2.11 
  0.13   0.892  0.741✘  1.20  0.892  0.453✘  1.97 
  0.14   0.931  ✔0.802  1.16  0.931  0.510✘  1.83 
  0.15   **  ✔0.854  1.12  **  0.567✘  1.69 
  0.16   **  ✔0.896  1.09  **  0.622✘  1.57 
  0.17   **  ✔0.928  1.06  **  0.676✘  1.46 
  0.18   **  ✔0.952  1.04  **  0.726✘  1.37 
  0.19   **  ✔0.969  1.03  **  0.772✘  1.29 
  0.20   **  ✔0.981  1.02  **  ✔0.813  1.23 
  0.21   **  ✔0.989  1.01  **  ✔0.850  1.18 
  0.22   **  ✔0.994  1.01  **  ✔0.881  1.13 
  0.23   **  ✔**  **  ✔0.908  1.10 
  0.24   **  ✔**  **  ✔0.930  1.07 
  0.25   **  ✔**  **  ✔0.948  1.05 
  0.26   **  ✔**  **  ✔0.962  1.04 
  0.27   **  ✔**  **  ✔0.973  1.03 
  0.28   **  ✔**  **  ✔0.981  1.02 
  0.29   **  ✔**  **  ✔0.987  1.01 
  0.30   **  ✔**  **  ✔0.991  1.01 

  ** indicates power > .995. ✘ indicates an effect size for which the 1-form design has power  ³  .80, 
and the 3-form design has power < .80. ✔ applies to XC or CC effects on the left, and AC or BC 
effects on the right. ✔ indicates an effect for which the 3-form design has power  ³  .80, and the 
1-form design does not allow the test. The power ratio is the power for the 1-form design divided 
by the power for the 3-form design. Larger ratios favor the 1-form design; smaller ratios favor the 
3-form design. All power ratios for XX effects are 1.00 (equal power for the two designs)  

In Table  12.4 , for example, a correlation of   r   = .12 between a variable in the X set 
and a variable in the A set (an XA effect) would be tested with power = .84 with 
the 1-form design ( N  = 600), and with power = .67 with the 3-form design ( N  = 400). 
The power ratio (1.25) in this instance means that the power with the 1-form 
design is 25 % higher than the power with the 3-form design. Also, any correla-
tion of   r   = .14 or greater with one variable from the X set and one from the C set 
(an XC effect) is tested with power  ³  .80 with the 3-form design, and because the 
C set does not appear, the correlation is not testable at all with the 1-form design. 
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 Tables  12.4  and  12.5  can de fi nitely be a help in deciding between the designs. 
However, there is a tendency for researchers to be somewhat risk averse. That is, 
they tend to overvalue the badness of the ✘ effects and to undervalue the goodness 
of the ✔ effects. Graham et al. (2006) made two counterarguments in this regard. 
With their  fi rst counterargument, they showed, by looking at the power ratios, that 
the differences in power were relatively small between effects tested with the full  N  
and effects tested with 2 N /3. This point can also be made by examining the lowest 
testable effect (with power = .80) with the different study sample sizes and for effects 

   Table 12.5    Power numbers with  N  = 1000   

  XA, XB, 
AA, BB  

  XA, XB, XC 
AA, BB, CC    AB    AB, AC, BC  

 Effect 
 Size ® 

  1-form    3-form   Power 
 Ratio 

  1-form    3-form   Power 
 Ratio   N  = 1000   N  = 667   N  = 1000   N  = 333 

  0.05   0.353  0.252  1.40  0.353  0.149  2.33 
  0.06   0.475  0.341  1.41  0.475  0.194  2.53 
  0.07   0.601  0.440  1.36  0.601  0.248  2.40 
  0.08   0.717  0.543  1.33  0.717  0.309  2.32 
  0.09   0.813  0.643✘  1.27  0.813  0.376✘  2.13 
  0.10   0.887  0.735✘  1.20  0.887  0.447✘  1.98 
  0.11   0.937  ✔0.813  1.16  0.937  0.520✘  1.81 
  0.12   0.968  ✔0.875  1.10  0.968  0.593✘  1.64 
  0.13   0.985  ✔0.921  1.08  0.985  0.662✘  1.50 
  0.14   0.994  ✔0.953  1.04  0.994  0.727✘  1.36 
  0.15   **  ✔0.973  1.03  **  ✔0.785  1.26 
  0.16   **  ✔0.986  1.01  **  ✔0.835  1.19 
  0.17   **  ✔0.993  1.01  **  ✔0.877  1.14 
  0.18   **  ✔**  **  ✔0.911  1.10 
  0.19   **  ✔**  **  ✔0.938  1.06 
  0.20   **  ✔**  **  ✔0.957  1.04 
  0.21   **  ✔**  **  ✔0.972  1.03 
  0.22   **  ✔**  **  ✔0.982  1.02 
  0.23   **  ✔**  **  ✔0.989  1.01 
  0.24   **  ✔**  **  ✔0.993  1.01 
  0.25   **  ✔**  **  ✔** 
  0.26   **  ✔**  **  ✔** 
  0.27   **  ✔**  **  ✔** 
  0.28   **  ✔**  **  ✔** 
  0.29   **  ✔**  **  ✔** 
  0.30   **  ✔**  **  ✔** 

  ** indicates power > .995. ✘ indicates an effect size for which the 1-form design has power  ³  .80, 
and the 3-form design has power < .80. ✔ applies to XC or CC effects on the left, and AC or BC 
effects on the right. ✔ indicates an effect for which the 3-form design has power  ³  .80, and the 
1-form design does not allow the test. The power ratio is the power for the 1-form design divided 
by the power for the 3-form design. Larger ratios favor the 1-form design; smaller ratios favor the 
3-form design. All power ratios for XX effects are 1.00 (equal power for the two designs)  
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that are tested with the full  N , 2 N /3, and  N /3. Table  12.6  displays this information. 
Note that with any study  N , the difference in the smallest testable effect is not large 
between effects tested with  N  and 2 N /3.  

 As I have argued above, researchers have control over where items are placed 
into the 3-form design and thus have a great deal of control over which effects are 
tested with  N  and 2 N /3. For example, if the researcher deems a particular effect to 
be important, but expects a small effect size, then it makes most sense to place both 
variables relating to the effect in the X set, making it an XX effect. If the researcher 
deems an effect to be important, but expects the effect size to be larger (e.g., in the 
  r   = .20–.30 range), then it makes sense to place the variables into the survey such 
that the effect is one of those tested with 2 N /3. The problem arises, therefore, 
because an effect that was expected to be somewhat larger turns out to be smaller 
than expected. However, when this happens, as the numbers in Table  12.6  illustrate, 
the researcher is still protected to a large extent. For example, with study  N  = 600, 
an effect that was expected to be   r   = .20 would have to fall below   r   = .14 for the 
effect to be a problem. And even if the true effect were   r   = .11, .12, or .13 (all values 
for which the 1-form design would have power  ³  .80), power, although not ideal, 
would still be reasonable (.60, .67, .74, respectively). 

 With larger study sample sizes (e.g.,  N  = 1,000 or  N  = 3,000), the chances are slim 
that a problem of the type just described would actually occur. With smaller study 
sample sizes, there is still some protection, but as in the case of study  N  = 300, it 
would be advisable to draw the line somewhat higher as to which effects would go 
into the XX part of the design, and which might go into a part of the design where 
effects are tested with 2 N /3. That is, with study  N  = 1,000, I might feel quite com-
fortable placing an effect into the 2 N /3 parts of the design if the expected effect size 
were at least   r   = .20. The true effect size would have to drop below   r   = .11 before 
there would be a problem with power. However, with study  N  = 300, I would almost 
certainly require the effect size of   r    ³  .30 before I would feel comfortable placing 
the effect in a 2 N /3 part of the design. 

 The bottom line with this argument is that, for the most part, effects tested with 
2 N /3 (XA, XB, AA, and BB) that are marked with a ✘ are not a huge concern. 

 The second counterargument made by Graham et al. (2006) focuses on the 
effects tested with  N /3 (i.e., AB effects). They start by noting that, in the scenario 
with  k  = 10 scales per item set, there are just 100 AB effects. Out of the total 780 
effects available with the design, this represents just 12.8 % of the total number of 

   Table 12.6    Smallest testable effect size (with power = .80)   
 Study  Sample size 

  N    N   2 N /3   N /3 

 3000  .051  .064  .09 
 1000  .09  .11  .15 
 600  .115  .14  .20 
 300  .16  .20  .28 
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effects. In addition, Graham et al. noted that effects are very likely not uniformly 
distributed and used data from the Adolescent Alcohol Prevention Trial (AAPT; 
Hansen and Graham  1991  )  as an example. The absolute values of the 1,540 cor-
relations described from that data set had a slightly positive skew (1.01) with a 
mean  r  = .194 (SD = .139; median = .17), and ranged from 0 (rounded to nearest 
hundredth) to  r  = .77. If we focus on the study  N  = 600 (see Table  12.4 ), nine of the 
AB effects are marked with a ✘, ranging from   r   = .11 to   r   = .19. In the AAPT data, 
394/1,540, correlations or 25.6 % fell in this range. Summarizing, by chance 
alone, the probability is 12.8 % that an effect would be in the AB part of the 
design, and the probability is 25.6 % that an effect would be in the range of effect 
sizes where there is a problem. The joint probability, then, is just 3.3 % that there 
would be a problem. 

 Next, consider the probability that the researcher even chooses to study that par-
ticular effect. Recall that these effects are, for the most part, left over after the 
researcher makes predictions. That is, hypotheses (correlation effects) that are con-
sidered important are typically placed in parts of the design that are tested with the 
full  N  (XX effects) or 2 N /3 (XA, XB, XC, AA, BB, CC effects). This    does not nec-
essarily mean that these leftover effects are unimportant. However, it must be true 
that they were not important enough to place them in a part of the design tested with 
at least 2 N /3. I believe I am being conservative in suggesting that there is a 50 % 
chance that the researcher will actually choose to test the effect in question. 

 Finally, statistical power is itself a probability. Look again at the AB effects 
marked ✘ in Table  12.4 . The effect sizes range from   r   = .11 to   r   = .19. Statistical 
power for these effects ranges from .34 to .77, with median power = .57. This means 
that there is a 43 % chance that an effect of this magnitude would not be found to be 
signi fi cant. Combine all these probabilities, and we have 

probability of “bad” effect = 12.8 % × 25.6 % × 50 % × 43 % = 0.7 %. 

 That is, taking all the factors into account, the probability is very low for  fi nding 
an effect to be nonsigni fi cant with the 3-form design that would have been signi fi cant 
had the researcher opted for the 1-form design.  

   Effect of Study  N  on Number of  ✘  and  ✔  Marks 

 Looking at Tables  12.4  and  12.5  (also see the comparable table for  N  = 300 in 
Graham et al. 2006), it is easy to see that smaller sample sizes have more effects that 
favor the 1-form design (more ✘ and fewer ✔), and that larger sample sizes have 
more effects that favor the 3-form design (more ✔ and fewer ✘). The bottom line 
summary is presented in Table  12.7 . When taking all of the factors into account as 
I did above, the probability of there being a problem is somewhat higher with 
smaller study sample sizes. However, bottom line difference between study sample 
sizes is not that large. Different study sample sizes yield the probabilities shown in 
Table  12.7 .    
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   The Disadvantage of the 3-Form Design Is Not Really 
a Disadvantage 

 The main reason why researchers may feel more comfortable having all correlation 
effects tested with the full N is that they cannot see into the future, and they want to 
guard against the possibility of wanting to test a particular correlation later on, only 
to discover that they have insuf fi cient  N  to test the effect with adequate power. This 
is certainly a possibility. But rather than focus on this one possibility, consider the 
possibilities relating to both options: 

 Option (a): Ask the known, important, research question XC (or CC), with good 
power, and forego the  possibility  of later discovering an AB effect 6  that cannot be 
tested with power equal to that of the 1-form design (note that with study  N  = 600, 
any newly discovered AB effect with effect size   r    ³  .20 can still be tested with good 
power; with study  N  = 1,000, any newly discovered AB effect with effect size   r    ³  .15 
can still be tested with good power). 

 Option (b): Do not ask the known, important, research question XC (or CC), and 
retain the  possibility  of later discovering an AB effect that can be tested with the 
same power as the 1-form design. 

 The real issue behind these two options is that there is a known, important, 
research question (in XC or CC). This gets back to the scenarios I presented at the 
start of this chapter. Use the 3-form design if there are more questions you would 
like to ask than are possible with the 1-form design. It may seem as though the 
choice here is an example of the bird-in-the-hand-is-worth-two-in-the-bush con-
cept. But look closer. Actually, it is closer to being a case of two birds in the hand 
being better than one in the bush. It illustrates that people would never trade away a 
known, important, research question in favor of the  possibility  of another research 
question (possibly less important) later on, especially when, as I have shown in this 
chapter, that the chances are so slim that there would be any disadvantage in using 
the 3-form design.   

   Table 12.7    Probability of “bad” effect with 3-form design with different study N   
 Study sample size  Factor probabilities  Bottom line probability 

 300  12.8 % × 31 % × 50 % × 42 %  = 0.83 % 
 600  12.8 % × 25.6 % × 50 % × 43 %  = 0.70 % 

 1,000  12.8 % × 18.1 % × 50 % × 44.4 %  = 0.51 % 
 3,000  12.8 % × 12.2 % × 50 % × 46 %  = 0.36 % 

   6   Recall that the XC and CC effects (along with the AC and BC effects) are extra effects made 
possible by the 3-form design; these are effects that are not possible with the 1-form design. The 
AB effect are the main source of problems in that these effects are most likely to have power < .80 
for the 3-form design, and power  ³  .80 for the 1-form design.  
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   3-Form Design: Other Design Elements and Issues 

   Item Order 

 One of the key elements of the design is that the item sets should be rotated. With 
the most common implementation, the three forms are laid out as shown in 
Table  12.8 . The good thing about rotating these item sets is that a different item set 
is presented last with each form. Because of this, respondents who fail to complete 
the questionnaire do not always leave the same items blank. I often suggest this rota-
tion of item sets even if all items are presented.  

   Variant of 3-Form Design 

 A sometimes useful variant of the 3-form design involves presenting all item sets to 
the respondents. In this variant, as shown in Table  12.8 , the item sets shown in 
brackets are asked. Because a different item set appears last for each form, respon-
dents who fail to complete the survey will not always leave the same questions 
blank. Thus, the MAR assumption is much more plausible with this design. It is 
probably a good idea to use this variant only when a relatively high proportion of 
the participants can complete the entire survey. Although the MAR assumption is 
very good in this context (when causes of failing to complete the survey are mea-
sured early in each form), the missingness is not MCAR with this variant of the 
3-form design.   

   The X Set 

   Is the X Set Needed? 

 One question that often arises is whether the X set is even needed? Having fewer 
variables in the X set does mean that more variables can be examined. At the 
extreme, with the example shown in Table  12.2  (133 questions total, respondents 
answer 100 questions), the 1-form design has just 100 questions total, the balanced 
3-form design (equal numbers of variables in all item sets) has 133 questions, and 
the version of the 3-form design with no X set has 150 questions (0 in the X set and 

   Table 12.8    3-form design item order   
 Form  Item set order 

 1  X A B [C] 
 2  X C A [B] 
 3  X B C [A] 

  Item sets in brackets are typically missing  
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50 in each of the A, B, and C sets). So if we get more data for more questions with 
this version, why not drop the X set altogether? 

 The answer is twofold. First, having a set of items for which everyone has data 
is what allows researchers to protect the most important hypotheses. That is, with 
the balanced version of the 3-form design, a certain number of correlation hypoth-
eses are tested with the full sample size, thereby providing best possible power for 
the test of these important hypotheses. Most researchers do not want to give up this 
feature of the design. This is especially important when these important hypotheses 
also have small effect sizes. Second, having a substantial set of items for which 
everyone has data adds stability to the missing data model.  

   How Large Should the X Set Be? 

 My recommendation is to have the same number of variables in each of the item sets, 
including the X set. I believe this strategy provides the best balance of leveraging one’s 
resources and providing a safety net for important hypotheses with small expected 
effect sizes. And, as I have argued above, I believe the balanced version of the design 
provides advantages with minimal disadvantages. On the other hand, some researchers 
have too many hypotheses to protect than can be protected by the balanced version of 
the design. These people often prefer to have a slightly larger X set. This strategy can 
work very well as long as it is understood that the trade-off is that having more items 
in the X set means fewer items overall. From the completely balanced version of the 
design, for every two items added to the X set, one fewer item can be measured overall 
(while holding constant the number of items seen by each respondent). Of course, it is 
also possible to increase the total number of items asked by reducing the number of 
items in the X set. I do not generally recommend this strategy, but small deviations 
from the fully balanced version of the design should work well.  

   Placement of the X Set 

 The most commonly implemented version of the 3-form design has the X items 
 fi rst. After all, the main point of including the X set is to have some effects tested 
with the full  N . Placement of X items too close to the end of the survey could under-
mine this goal. On the other hand, I have often found it desirable to move sections 
of the X items further back in the survey. Although this can create some confusion 
during data analysis, this can sometimes be a very useful strategy.   

   Variations of the 3-Form Design: A Family of Designs 

 Graham et al. (2006) described a family of designs, each of which involved offering 
to respondents all possible combinations of  L  item sets taken two at a time. The 
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3-form design offers all combinations of three item sets taken two at a time (the X set 
does not  fi gure into this). But there can also be a 6-form design (all combinations of 
four item sets taken two at a time) and a 10-form design (all combinations of  fi ve 
item sets taken two at a time). The 10-form design has been described as the Split 
Questionnaire Survey Design (SQSD; Raghunathan and Grizzle  1995  ) . 

 The advantage of these larger designs is that more questions can be addressed. 
With 34 items in the X set, and 33 remaining sets, the 3-form design allows the one 
to collect data on 133 items; the 6-form design allows one to collected data on 166 
items; and the SQSD (10-form design) allows one to collect data on 199 items. In 
each case, respondents see only 100 items. 

 Although the logistical issues relating to the 3-form design have proven to be 
quite manageable for nearly 30 years of use, the problems associated with dealing 
with multiple forms do compound as the number of forms increases. Also, with the 
larger designs, the number of cases decreases as shown in Table  12.9 . The sample 
sizes available for the other two sets of effects (XA, AA, etc., and AB, AC, etc.) are 
as shown in Table  12.9 . It is easy to generalize these numbers for even larger design 
(e.g., 15- and 21-form designs).  

 The key disadvantage of these larger designs is that unless the study sample size 
is rather large, the sample sizes available for testing effects in the middle category 
can be rather small. On the other hand, when sample sizes are very large, these 
designs could have very desirable properties. 

   What About a 2-Form Design? 

 The “2-form design” simply drops one form and one item set from the regular 
3-form design, yielding the design shown in Table  12.10 . But now each remaining 
item set can include 50 items, because each participant sees just two item sets (X 
and A or X and B). Although I have seen designs like this used, I do not recommend 
it under any circumstances. A serious  fl aw with the design is that  correlations cannot 

   Table 12.9    Speci fi cations for family of designs: 3, 6, and 10-form designs   

 Sample size for 

 Design   k  addressed  XX  XA, AA  AB 

 3-form  133   N   2 N /3   N /3 
 6-form  166   N   3 N /6   N /6 
 10-form  199   N   4 N /10   N /10 

  XX refers to a correlation based on two items from the X set; XA refers to a cor-
relation based on one item from the X set and one item from the A set; AA refers 
to a correlation based on two items from the A set, and so on. XA, AA also refers 
to items sets XB, XC, XD, XE (where available), and BB, CC, DD, and EE 
(where available). AB also refers to item set combinations AC, AD, AE, BC, BD, 
BE, CD, CE, and DE (where available)  
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be estimated between items in set A and those in set B. This design offers only a 
12.8 % increase in items over the balanced 3-form design, and its  fl aws make it an 
undesirable alternative to the 3-form design.    

   Keeping Scale Items Within One Item Set Versus Splitting 
Them Across Item Sets 

 This issue, which comes up a lot, is described in Table  12.11 . In the  fi rst strategy, the 
items from the R, S, and T scales are kept together. In the second strategy, the items 
are split, such that each item set contains some items from each scale. Graham et al. 
 (  1996  )  examined the statistical properties of these two strategies. In particular, we 
looked at the standard errors for one scale predicting another. The clear conclusion 
in that article was that strategy (2) (split items across sets) produces lower (better) 
standard errors.  

 Although the results of that study clearly favored strategy (2), there are good 
reasons for using strategy (1) instead. Most of what I say here comes from experi-
ence with the data from a large-scale study in which we implemented the strategy 
(2) version of the 3-form design. Most importantly, because the items were split 
across forms, we found that it was nearly always necessary to perform missing data 
analyses at the individual item level. With that data set, we were not able to perform 
complete cases analysis for anything. And the number of variables in our missing 
data models tended to be large, even for relatively simple analyses. Also, given what 
we said in Chap.   9    , I would be very reluctant about imputing scale scores, some of 
which are based on partial data, after having used strategy (2) with the 3-form 
design. I will also say that with strategy (1), which I have now used on several large-
scale data sets, has never proven to be an analytical problem. But that one attempt 
at splitting items across item sets has convinced me never to do that again.       

   Table 12.10    “2-form” design (do not use it)   

 Item sets answered 

 50  50  50 (items within each item set) 
 Form  X  A  B 

 1  1  1  0 
 2  1  0  1 

  1: respondents received questions; 0: respondents did not receive questions  

   Table 12.11    Strategies for working with scale items in 3-form design   

 Item set 

 Strategy  A  B  C 

 (1) Keep Items Together  R 
1
  R 

2
  R 

3
   S 

1
  S 

2
  S 

3
   T 

1
  T 

2
  T 

3
  

 (2) Split Items Across Sets  R 
1
  S 

1
  T 

1
   R 

2
  S 

2
  T 

2
   R 

3
  S 

3
  T 

3
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 In the early stages of developing measures of any construct, the primary objective 
is to develop a reasonable measure of the construct. Thus, it is common for the early 
measures of a construct to be a measure that is readily available, often involving a 
simple self-report, or a relatively noninvasive physical, physiological, or biological 
approach to measurement. However, the early measures often have construct valid-
ity problems that become obvious only as the science of measurement matures for 
that construct. Over time, researchers develop better measures of the construct, that 
is, measures with considerably improved construct validity. 

 However, it is also common for these better measures to be much more costly 
than the earlier measures, in terms of time, materials or equipment required, expert 
technicians required, payments to participants, and invasiveness. In cigarette smok-
ing research, simple self-reports of smoking continue to be common, but many 
researchers now collect saliva samples (which are analyzed for cotinine, a metabo-
lite of nicotine, or other substances related to smoking; Etter et al.  2000 ; Luepker 
et al.  1981  ) , or expired air samples (which is analyzed for carbon monoxide; Biglan 
et al.  1985  ) . In body composition research, self-reports of height and weight are 
still commonly used to calculate the body mass index (BMI). More involved mea-
sures of height and weight (for BMI calculations) involve using trained technicians 
and well-calibrated measurement equipment. Still more involved and costly is the 
use of dual energy X-ray absorptometry (DEXA) to assess body composition 
(Avesani et al.  2004 ; Fisher et al.  2000 ; Lohman  1996 ; Roubenoff et al.  1993  ) . 
Blood pressure (BP) measurement is most commonly conducted in health clinics; a 
uniformed doctor, nurse, or technician typically places the cuff on the patient dur-
ing a regular visit, and within seconds has the BP reading that is copied into the 
patient’s permanent chart. A more recent, much more valid, but much more costly 
approach to BP measurement is ambulatory BP measurement (Gerin et al.  2006 ; 
O’Brien et al.  1991 ; Verdecchia et al.  2001  ) ; a BP device is worn by the patient for 
24–36 consecutive hours, and the BP readings are taken and recorded every 15 min 
over that period. 

    Chapter 13   
 Planned Missing Data Design 2: Two-Method 
Measurement 

            John   W.   Graham       and    Allison   E.   Shevock             
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 In short, it is common for multiple measures to exist for any one construct; 
and the different measures often vary (sometimes greatly) in their construct validity, 
and in their cost. Compared to a cheaper measure, the more expensive measure is 
usually thought to be a more valid measure of the construct of interest. Researchers’ 
decisions regarding which measure(s) to use are in fl uenced, many times, by budget 
constraints. In a  fi xed cost scenario, selecting the expensive measure over the 
cheaper measure limits the amount of data that can be collected. Thus, the bene fi t of 
improved construct validity is offset by the power disadvantage of a small sample 
size. However, the alternative is not ideal, either; collecting data using a cheaper 
measure may improve sample size, but the researcher will still need to address the 
measure’s low construct validity during data analysis. 

 The two-method measurement (TMM) design addresses this dilemma by provid-
ing researchers with a third data collection option. With the TMM design, constructs 
are measured using two or more indicators of variable cost and validity. The key 
idea behind the TMM approach is that both cheap and expensive measures can rea-
sonably be modeled as measures of the same construct. The TMM design takes 
advantage of the fact that the combination of cheap and expensive measures pro-
duces greater statistical bene fi ts than either measure provides on its own. Because 
of its lower cost, the cheap measure can be collected on many respondents, thereby 
providing statistical power bene fi ts. In addition, because of its greater construct 
validity, the expensive measure can be used to model the bias (lack of construct 
validity) in the cheap measure, thereby producing highly valid statistical conclu-
sions. Most importantly, the bias-correction ability of the expensive measures 
remains largely unchanged, even when only a small random subset of the respon-
dents provides data for the expensive measure. 

 In sum, the TMM approach offers better statistical power than is possible using 
the expensive measure alone, and better construct validity than is possible using the 
cheap measure alone. 

   De fi nition of Response Bias 

 The model we describe here is a response bias-correction model. By response bias, 
we are not referring to estimation bias. Rather, what we mean by bias in this context 
relates to construct validity; we are referring to the part of the response or score that 
is not valid. A measure is valid (i.e., has good construct validity) if it measures what 
we think it measures. For example, if we were talking about a self-report measure 
of cigarette smoking, the valid part of the measure is the part that actually measures 
cigarette smoking; the biased part might be the respondent’s tendency to underre-
port cigarette smoking (e.g., for social desirability reasons). To the extent that 
response bias has a similar effect on all measures of a certain kind (this has been 
described as “halo errors”; Hoyt  2000 ; or “correlational bias”; Berman and Kenny 
 1976 ; also see Graham and Collins  1991  ) , the bias can be modeled.  
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   The Bias-Correction Model 

 The bias-correction model has roots in the tradition of SEM analysis of multitrait-
multimethod data (e.g., Eid  2000 ; Graham and Collins  1991 ; Kenny and Kashy 
 1992  ) . Following these models and the thinking laid out in Palmer et al.  (  2002  ) , 
Graham et al.  (  2006  )  outlined the bias-correction model and the two-method mea-
surement design. Before talking about the missing data part of the model, we lay out 
the model itself. 

 Two important features of the bias-correction model distinguish it from other 
SEM models. First, there are at least two measures of the cheap but potentially 
 fl awed measure of the construct of interest. Second, there is at least one measure of 
the expensive measure, which can be assumed to be a valid measure of the same 
construct of interest. In real-world applications, this latter assumption need not 
actually be correct; it need only be the case that the expensive measure is one that is 
universally preferred over the cheap measure. 

 The bias-correction model, as presented by Graham et al.  (  2006  ) , is shown in 
Fig.  13.1 . In this model, cigarette smoking predicts health. Cigarette smoking is 
measured using four indicators. Two self-report measures serve as the cheap smok-
ing measures, and expired CO and saliva cotinine represent the more expensive, 
more valid measures. Because there were two cheap measures of cigarette smoking, 
it was possible to model the bias associated with the self-report measures simply by 
allowing those two measures to load on a separate bias factor in addition to the 
smoking factor (see Fig.  13.1 ). The presence of the expensive measures (CO and 
cotinine) permits estimation of the bias factor. In the absence of the expensive mea-
sures in this model, it would not have been possible to have the cheap measures load 
on both the smoking and bias factors. In other words, the expensive measures were 

  Fig. 13.1    Bias correction model presented by Graham et al.  (  2006  )        
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necessary for disentangling the valid parts of the self-report measures from the 
biased parts. Note that although the model presented in Fig.  13.1  involved estimat-
ing a separate bias factor, the same model may also be tested simply by estimating 
the residual covariance between the two cheap (self-report) items (e.g., see Kenny 
and Kashy  1992  ) .   

   Bene fi ts of the Bias-Correction Model 

   The Idea of the Bene fi t 

 Graham et al.  (  2006  )  presented results from several simulations showing the bene fi ts 
of the two-method measurement design. These bene fi ts stem from the fact that data 
are collected using a planned missingness approach. In other words, the researcher 
purposefully tailors the data collection processes so that all respondents provide 
data for the cheap measures, but only a random sample of those respondents also 
provides data for the expensive measure(s). The end result is that the majority of 
respondents have missing data for the expensive measures, and a smaller subsample 
has complete data. 

 Table  13.1  presents a scenario in which the cheap measures can be obtained for 
$4 per respondent, and the expensive measures are obtained for $20 per respondent 
(a 5:1 cost ratio). The  fi rst row in Table  13.1  outlines the complete case scenario; for 
a total of $7,200 in measurement costs, complete data can be collected from  N  = 300 
participants. The 5:1 cost ratio scenario outlined in this example means that for 
every one fewer participant presented with the expensive measure, the total sample 
size can be expanded by collecting cheap measure data from  fi ve additional partici-
pants. For presentation purposes, Table  13.1  summarizes sample sizes when the 
number of cases presented with expensive measures decreases by multiples of 20. 
Collecting expensive data for just 20 fewer cases means that, for the same total 
costs, one can collect cheap measure data for 100 additional cases, thus expanding 
total sample size by  N  = 100.  

 Row 2 of Table  13.1  shows the  fi rst planned missing data collection strategy: for 
the same overall costs of $7,200, one can collect data for  N  = 400 cheap measures 
and 280 expensive measures. In this second scenario,  N  = 120 participants of the 
total sample provide partial data (cheap measures only), and the remaining  N  = 280 
provide complete data. In the most extreme partial data scenario, shown in the last 
row of Table  13.1 , cheap measure data are obtained from  N  = 1,700 cases, and 
expensive measures are obtained from just  N  = 20 cases, yielding a 84:1 ratio of 
cases with partial to complete data. 

 Showing that the various designs in Table  13.1  all cost the same is only part of 
the picture. An interesting thing happens when we test the model of cigarette 
smoking predicting health using the parameters shown in Fig.  13.1  and the differ-
ent sample size con fi gurations shown in Table  13.1 . As noted previously, the 
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parameter estimate of most substantive importance in our model is the regression 
coef fi cient for smoking predicting health. The standard error (SE) for this regres-
sion coef fi cient for each sample size con fi guration is also shown in Table  13.1  and 
plotted in Fig.  13.2 .  

 With complete cases  N  ( N  
CC

  = 300/300 for cheap/expensive measures), the SE for 
the key regression coef fi cient is .0543. Note that as you read down the last column 
in Table  13.1 , the SE continues to decrease monotonically, reaching a minimum of 
.0403 for the sample size con fi guration with  N  = 1200/120 for the cheap/expensive 
measures. After this con fi guration, the SE begins to increase. 

 In this scenario, the SE for the regression coef fi cient of main substantive interest 
is minimized at .0403 when  N  = 1,200 cases provide cheap measure data and  N  = 120 
of the total sample also provide expensive measure data. If we were to test a com-
plete-cases model with sample size increased to  N  = 542, we would also  fi nd that 
SE = .0403. This means that analyzing data with the  N  = 1,200/120 con fi guration 
yields an SE and statistical power equivalent to having  N  = 542 complete cases. 
Graham et al.  (  2006  )  referred to this larger  N  (542 in this case) as the Effective  N  
( N  

EFF
 ). In other words, in this scenario, the optimal con fi guration of the TMM design 

behaves, effectively, as if one had collected complete data from  N  = 542 cases. 
 Graham et al.  (  2006  )  also provided a tool to quantify the  N  

EFF
  bene fi t in compari-

son to the complete-cases design costing the same as the optimal TMM design 
con fi guration. As shown in Table  13.1 ,  N  = 300 complete cases can be collected for 
$7,200 (i.e.,  N  

CC
  = 300). The ratio of  N  

EFF
 / N  

CC
  (542/300 = 1.81 in this case) is referred 

to as the N 
EFF

  Increase Factor. In short, using the TMM design with  N  = 1,200/120 
allows one to test the key study hypothesis with power that is equivalent to a sample 

0.04

0.045

0.05

0.055

0.06

300/300 500/260 700/220 900/180 1100/1401300/100 1500/60 1700/20

N for Cheap/Expensive Measures

  Fig. 13.2    Standard errors for different  N  con fi gurations       
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size that is 1.81 times larger than the complete-cases design costing the same. Both 
the  N  

EFF
  and the  N  

EFF
  Increase Factor can be used as convenient ways to judge the 

level of bene fi t with the TMM design; higher  N  
EFF

  and higher  N  
EFF

  Increase Factors 
imply greater bene fi t.  

   How the Sample Size Bene fi t Works in Bias-Correction Model 

 The sample size bene fi t produced by the TMM design is a function of two main 
factors: (a) the total sample size (i.e., the number of cases providing cheap measure 
data, regardless of whether they also provide expensive measure data) and (b) the 
ability of the bias-correction model to obtain a stable estimate of the bias-related 
parameters. The latter factor is determined by the number of cases with complete 
data. We discuss these two factors in more detail, below. 

 In Fig.  13.3 , two SE curves illustrate the impact that the total sample size and the 
complete case sample size have on the power to estimate the main regression param-
eter in our model. The bottom curve shows how the SE for the key regression param-
eter estimate decreases as the sample size for the cheap measures is increased, in 
 N  = 100 increments, when the smoking factor is de fi ned only by the two self-report 
(cheap) measures. The top curve shows resulting SEs for the key regression parame-
ter estimate as the sample size is decreased, in  N  = 20 increments, for the complete 
case model (i.e., when the smoking factor is de fi ned by the cheap and expensive mea-
sures). The total SE for the bias-correction model is a function of the  combination 

0

0.05

0.1

0.15

0.2

Bottom curve shows SE changes as N for cheap measures increases.
Top curve shows SE changes as N for complete cases decreases.

  Fig. 13.3    Changes in standard error as  N  changes       
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of these two SEs. Although not perfect, the simple average of these two curves 
approximates the shape of the curve shown Fig.  13.2 .  

 Examine the two curves in Fig.  13.3  carefully. The bottom curve changes down-
ward rather quickly with the  fi rst increases in  N  and then begins to  fl atten out as  N  
continues to grow. The top curve, however, starts out increasing at a rather slow rate 
as the complete case  N  is reduced incrementally; however, as the complete-cases  N  
continues to decline, the SE curve begins to increase sharply. A key here is that the 
slope of the lower curve is steeper for a period than is the slope of the upper curve. 
Thus, for a time, the combined SE for the main parameter estimate of interest 
becomes smaller. At some point, the two curves in Fig.  13.3  have the same slope 
(one negative, one positive); at this point, the combined SE for the parameter of 
interest  fl attens out and the power increase provided by the TMM design is maxi-
mized. Then, as Ns continue to change (i.e., as the ratio of partial to complete data 
continues to increase), the slope of the top curve in Fig.  13.3  becomes steeper, 
resulting in an increase in the combined SE. Although not shown in Fig.  13.3 , as the 
complete case sample size becomes very small, the top curve becomes very steep, 
asymptoting at in fi nity. This sharp increase in the slope of the top SE curve illus-
trates how the bias-related parameter estimates become very unstable with small 
complete case sample sizes. In the most extreme case, bias-related parameter 
 estimates are inestimable when the expensive measures are missing altogether.  

   Factors Affecting the  N  
EFF

  Bene fi t 

 Graham et al.  (  2006  )  studied several factors that affected the  N  
EFF

  bene fi ts produced 
by the TMM design. The parameter estimates shown in Fig.  13.1  represent one pos-
sible scenario. In the case shown, the expensive smoking measures (CO and coti-
nine) were better than the cheap (self-report) measures in two important ways. First, 
the expensive measures had greater valid reliability (i.e., the expensive measures 
both had factor loadings of .70 on the smoking factor, compared to .50 loadings for 
the two self-report measures). Second, the expensive measures were not associated 
with self-report bias, whereas the cheap measures were comprised of valid variance 
(.50 loadings on smoking factor) as well as and self-report bias (.50 loadings on the 
bias factor). Other con fi gurations are possible relating to the amounts of valid reli-
ability and self-report bias associated with the expensive and cheap measures, 
respectively. However, Graham et al.  (  2006  )  found these factors to have relatively 
little impact on the  N  

EFF
  bene fi ts of the TMM design. 

 Other factors, however, were found to have much more impact on the bene fi ts of 
the TMM design. Among these was the cost ratio between expensive and cheap 
measures. Graham et al.  (  2006  )  tested a model similar to that shown in Fig.  13.1 , 
with the exception that the regression coef fi cient for smoking predicting health was 
  b   = .40 as opposed to   b   = .20; resulting  N  

EFF
  bene fi ts from this modi fi ed model are 

displayed in Table  13.2 . When the cost for the expensive measures was only 1.6 
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times higher than the cost for the cheap measures, the two-method measurement 
design produced a  N  

EFF
  just 9 % greater than the complete-cases model costing the 

same. However, when the expensive measure was ten times more expensive than the 
cheap measures, the  N  

EFF
  for the TMM design was nearly double that of the com-

plete-cases model costing the same. In other words, with a cost ratio of 1.6:1, the 
two-method measurement design allowed the key study hypothesis to be estimated 
with power equivalent to a sample size that was 9 % larger than the  fi nancially 
equivalent complete-cases design. However, with a more extreme cost ratio of 10:1, 
the key study hypothesis was tested with power that was equivalent to a sample size 
that was nearly double that of the  fi nancially equivalent complete-cases design.  

 Another factor having impact on the  N  
EFF

  bene fi t was the effect size of the regres-
sion coef fi cient for smoking predicting health (see Table  13.3 ). In the model tested 
by Graham et al.  (  2006  )  (identical to that shown in Fig.  13.1 , except that the regres-
sion coef fi cient of smoking predicting health was   b   = .40), the resulting N

EFF
 bene fi ts 

were the same as shown in Table  13.2  for both the 2.3:1 and 10:1 cost ratios. 
However, when the main regression coef fi cient (smoking predicting health) was 
reduced to   b   = .10, resulting  N  

EFF
  bene fi ts were substantially greater. Even for the 

modest 2.3:1 cost ratio, the  N  
EFF

  Increase Factor for the smaller effect size (  b   = .10 
for smoking predicting health) was 1.35, nearly double that for the 2.3:1 cost ratio 
with the larger effect size. For the 10:1 cost ratio, the  N  

EFF
  with the smaller effect 

size was nearly three and a half times greater than the complete-cases design costing 
the same. These results suggest that the two-method measurement design has enor-
mous potential in research situations where the effect sizes for the main hypotheses 
are expected to be small, such as in prevention intervention research.   

   Real Effects on Statistical Power 

 As shown in Table  13.2 , with a modest 2.3:1 cost ratio and an effect size of   b   = .40, 
the two-method measurement design effectively produces an 18 % increase in sam-
ple size. However, under what circumstances is this 18 % increase meaningful? To 
answer this and similar questions, it is important to consider the practical impact of 
N

EFF
 bene fi ts on statistical power. 

 In any study, the expected effect size of the main parameter estimates drives the 
desired sample sizes for the study. To see clearly what the sample size issues are in 

   Table 13.2     N  
EFF

  bene fi ts as a function of 
expensive-to-cheap measure cost ratio   

 Cost ratio   N  
EFF

  increase factor 

 1.6 : 1  1.09 
 2.3 : 1  1.18 
 4.1 : 1  1.43 
 10 : 1  1.96 

   N  
EFF

  increase factor is  N  
EFF

 / N  
CC
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this context, we compare the relevant, or  operative , sample size for the TMM design 
(using  N  

EFF
 ) and the complete-cases design costing the same (using  N  

CC
 ). In this 

discussion, it is useful to think of three ranges of potential sample sizes. In the  fi rst 
range (labeled “lowest range” in Table  13.3 ), the sample size is too small to yield 
good statistical power (power  ³  .80) with either  N  

CC
  or with  N  

EFF
 . Within this sample 

size range, the choice of designs is perhaps less important; in this case, increasing 
the sample size takes precedence. In the second range (labeled “highest range” in 
Table  13.3 ), sample size is large enough that  N  

CC
  and  N  

EFF
  both yield good power 

(power  ³  .80). With these sample sizes, the choice of design may also be somewhat 
less important. 

 However, in the third range, which we refer to as the critical range, power  ³  .80 
based on  N  

EFF
 , but power < .80 based on the same-cost  N  

CC
 . Within this critical range 

of sample sizes, differences in the statistical power yielded by the two designs may 
or may not have important implications. One way to evaluate the power implica-
tions for the two designs is to examine the critical range sample sizes in the context 
of both cost ratio and effect size. Each cell in the “critical range” column of 
Table  13.3  speci fi es a range of sample sizes; the lower value is the  N  for which  N  

EFF
  

yields power = .80. The higher value (+1) is the  N  for which  N  
CC

  yields power = .80. 
When the critical range is narrow, as is the case for the  fi rst scenario in Table  13.3 , 
the traditional complete-cases design and the TMM design do not differ much in 
practical terms. In that  fi rst scenario (top row of Table  13.3 ), the difference between 
 N  = 39 and  N  = 45 would typically have minimal impact on researchers’ decisions 
about choices of sample size. However, when critical range is large, the difference 
between the competing designs is more marked. 

 But, the critical range of sample sizes does not tell the whole story; for example, 
the difference of  N  = 22 in the critical range for the third scenario in Table  13.3  has 
more important power implications than does the difference of  N  = 194 in the second 
scenario. Another way to look at this issue is to consider the power ratio for the 
competing designs. In the rightmost column of Table  13.3 , we present these  fi gures 
for power within the critical range. The power ratio, which is power( N  

EFF
 )/

power( N  
CC

 ), shows how much more power is available to the researcher who opts to 
use the TMM design over the  fi nancially equivalent complete-cases design. 

 Perhaps the best way to view the implications of these power ratios is to examine 
the power values for both designs (presented in Table  13.4 ). In the  fi rst scenario, with 
a cost ratio of 2.3:1 and an effect size of   r   = .40, the power ratio in the critical range 
varied from 1.095 to 1.079. With the power ratio of 1.095, the actual difference in 
power for the two designs was not large (.73 for  N  

CC
  vs. .80 for  N  

EFF
 ). With the power 

ratio of 1.079, the difference in power was even smaller (.79 for  N  
CC

  vs. .85 for  N  
EFF

 ).  
 Although one would always prefer better power, all things being equal, one may 

not be willing to give up much to obtain the higher level of power when the differ-
ences in designs are as small as those in the  fi rst scenario of Table  13.4 . Thus, for 
this particular scenario, it is not clear that the TMM approach produces much bene fi t 
in a practical sense. In this instance, some might prefer to stay with the more tradi-
tional complete-cases design rather than assume the extra steps required for a 
planned missingness approach to data collection. 
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 However, for the other scenarios depicted in Table  13.4 , the differences in power 
are such that the TMM design should be considered. For example, in the second 
scenario in Table  13.4 , when power ratio = 1.187, the difference in power between 
designs (.67 for NCC vs. .80 for NEFF) is large enough that many researchers will 
want to consider the TMM design. For the scenarios shown in the last two rows of 
Table  13.4 , the differences in power are large enough that most researchers would 
give serious consideration to the two-method measurement design. In sum, with a 
large cost ratio, a small effect size, or a combination of these two factors, the TMM 
approach should be considered.   

   Potential Applications of Two-Method Measurement 

 A key criterion for identifying potential applications of the two-method measure-
ment approach is that the standard measure of an important construct used in a 
particular research domain is  fl awed. Nowhere is this more clear than in the social, 
behavioral, and health sciences, where researchers frequently rely on self-reports as 
the primary mode of data collection. Self-reports, especially from self-administered 
questionnaires, are routinely criticized by reviewers and journal editors. Despite the 
fact that self-reports might often have better validity than is often feared, the criti-
cism is common. 

 A second criterion is that there is another measure of the same construct that 
enjoys substantially more respect in these same research domains. This other mea-
sure is typically viewed as being a more objective assessment of the construct under 
study, whereas the self-reports are criticized as being overly subjective. 

 It is probably true that self-reports are often not as biased as feared, and it is 
certainly true that the so-called objective measures are often not as valid as believed. 
We will cover these issues in a later section. For now, we will accept the idea that 
self-reports can be exactly as biased as feared, and the objective measure can be 
highly valid. Here we present several research domains where these two basic crite-
ria for the two-method measurement approach seem to be in place. 

   Cigarette Smoking Research 

 Researchers studying smoking etiology, smoking prevention, and smoking cessation 
have commonly used self-report measures as the primary assessment of cigarette 
smoking. But these researchers have also been at the forefront of efforts to obtain 
more objective measures of the key construct (smoking). Fairly early on, researchers 
made use of saliva thiocyanate (SCN; e.g., Biglan et al.  1985 ; Luepker et al.  1981  )  
as an objective measure of cigarette smoking. Subsequently, smoking researchers 
moved more toward saliva cotinine (e.g., Etter et al.  2000  )  and expired air carbon 
monoxide (CO; e.g., Biglan et al.  1985  )  as the primary objective indicators of 
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 cigarette smoking. Although these researchers typically used these measures as 
external validators of self-report indicators, this research domain seems well suited 
to taking the two-method measurement approach.  

   Alcohol Research 

 Self-reports of alcohol consumption have also been criticized in the alcohol litera-
ture. Many researchers have made good use of breathalyzer devices to provide 
objective assessments of alcohol consumption (e.g., Glindemann et al.  2007  ) . 
Unfortunately, the very short half-life of alcohol in the system means that breatha-
lyzer data, although certainly very objective, is of limited value for validating self-
reported drinking measures when drinking behavior has occurred more than 24 h in 
the past. However, other approaches to measuring alcohol consumption over longer 
periods have been successful in providing more object assessments. Sobell and 
Sobell  (  1990,   1992  )  have had good success with the time line follow-back (TLFB) 
procedure. Although itself a self-report procedure, the TLFB procedure has the 
advantage of helping motivated respondents overcome the memory dif fi culties in 
accurately recalling drinking behavior that has occurred as long ago as 6 months 
prior to data collection. Because of the intensive requirements (i.e., the expense) of 
collecting data via the TLFB, and because the measure has enjoyed more respect 
than have simpler self-report measures of past alcohol use, the TLFB can be thought 
of as the expensive and more valid in the TMM approach.  

   Blood-Vessel Health 

 Cardiovascular health research has commonly involved relatively expensive mea-
sures. For example, West et al.  (  2004,   2005  )  used  fl ow-mediated dilation to measure 
blood-vessel health in people with type 2 diabetes. Although reasonably noninva-
sive and accurate,  fl ow-mediated dilation can be a costly measure (e.g., $150 per 
administration of the technique). Alternatively, it may be possible to employ sim-
pler and cheaper (but less valid) blood-pressure techniques to approximate the 
results that can be obtained by  fl ow-mediated dilation.  

   Measurement of Hypertension 

 The standard clinical method for taking blood pressure (BP) measurements is known 
to be unreliable and of questionable validity (Gerin et al.  2006 ; O’Brien et al.  1991 ; 
Verdecchia et al.  2001  ) . For some individuals, methods typically employed in doc-
tors’ of fi ces often lead to a short-term, arti fi cial elevation in BP (a situation often 
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referred to as “white-coat hypertension”), resulting in overreporting of the person’s 
BP. For other individuals, ironically, the same methods can produce underreporting 
of the person’s BP (often referred to as “masked hypertension”). One solution is to 
collect BP continuously over a substantial period of time (e.g., 24–36 h). This is 
possible through the use of ambulatory BP devices which the patients wear continu-
ously over the data collection period. Although it is substantially more expensive to 
use such devices, the resulting assessments of BP are much more accurate.  

   Nutrition Research 

 Assessing food and nutrient intake is dif fi cult. Brief self-report indicators of nutri-
ent intake are highly questionable in terms of reliability and validity. Gold-standard 
assessments of nutrient intake do not exist, except under highly controlled circum-
stances. In normal living conditions, the best that can be done is to do much more 
expensive assessments involving extensive interview procedures or food diary 
assessments.  

   Measuring Body Composition/Adiposity 

 Measuring body fat content can easily be accomplished using the body mass index 
(BMI), which is a simple function of the individual’s height and weight. The least 
expensive method of calculating BMI is simply to include questions of height and 
weight on a self-administered survey. A more expensive method for measuring BMI 
is to use a lab technician to obtain highly accurate measures of height and weight. 
However, even at its best, the BMI is known to be susceptible to various biases, 
including the muscle-mass bias. That is, individuals with greater muscle mass have 
higher BMI values regardless of body fat content. For this reason, other, more accu-
rate measures of body composition are used. One highly regarded measure, although 
much more expensive than BMI, is dual energy X-ray absorptometry (DEXA) tech-
nique (Avesani et al.  2004 ; Fisher et al.  2000 ; Lohman  1996 ; Roubenoff et al.  1993  ) .  

   Assessment of Physical Conditioning and Physical Activity 

 Measuring physical conditioning can be accomplished simply by asking respon-
dents a few questions on a self-administered survey. A much more extensive (and 
expensive), but much more highly regarded measure of conditioning is the VO 

2
 -

max. Measuring physical activity (PA) itself has been a popular research endeavor 
for a number of years. But as with assessment of nutrient intake, this has proven to 
be a very dif fi cult task. Numerous investigators have developed PA interviews, and 
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others have attempted to adapt those interviews to self-administered questionnaires 
(e.g., for a recent review, see Sallis and Saelens  2000  ) . Success of these self-report 
PA measures has been limited. Validity correlations with more objective measures 
(most often data from uniaxial accelerometers) have been modest at best. Self-reports 
with young people in ad lib conditions have often been poor. The more expensive 
measures of PA (the uniaxial accelerometers) are rather common in this type of 
research. We will explore this particular measure in more detail in a later section.  

   Survey Research 

 Survey research itself has its cheaper and more expensive methods. It is very inex-
pensive to use mail survey procedures. But besides the typically low response rate, 
the unknown conditions under which respondents complete such surveys make the 
reliability and validity of these measures suspect. At the other end of the cost (and 
validity) continuum is the extensive face-to-face interview. Most researchers would 
prefer the face-to-face interview (with modi fi cations of the procedure for the most 
sensitive questions), but the costs are often prohibitive. Other self-report approaches 
are available for costs ranging between these two extremes.  

   Retrospective Reports 

 An interesting application of survey techniques involves the use of retrospective 
reports. With this approach, respondents are asked about behaviors from some period 
in their past. Short-term recall questions might ask about substance use over the 
previous 30 days. But retrospective reports might also ask about periods much fur-
ther in the past. For example, respondents might be asked about their substance use 
over a speci fi c 30-day period a year before. While these questions are easy to ask, 
data resulting from such questions have highly questionable validity. Behavior recall 
data from the recent past are routinely questioned (e.g., see the paragraph on the 
time line follow back), but data from longer-term retrospective reports have been all 
but dismissed as having no validity at all. Any researcher would prefer prospective 
reports (e.g., short-term recall of substance use behavior) over long-term retrospec-
tive reports (e.g., recall of 30-day substance use behavior from the previous year).   

   Cost Ratio Issues 

 We have shown here and in previous work that the cost ratio between expensive and 
cheap measures is an important factor in determining the bene fi t of the two-method 
measurement approach. An important issue in this context is how one calculates the 
cost ratio. In all of our examples thus far, and in the examples described by Graham 
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et al.  (  2006  ) , the cost ratios were simulated. But how does one really calculate this 
ratio? In the simplest case, one calculates the rather literal costs of collecting the 
two kinds of measures. However, it is virtually never the case that the two measures 
in question are being looked at in a vacuum. On the other hand, the complexity of 
the study involving the two variables can vary widely. At one extreme, the research 
is highly focused, with data collected from relatively few other variables. At the 
other extreme, the research is broadly focused, and the variables relating to the two-
method measurement design represent only a small fraction of is the constructs 
being measured. Calculating the cost ratio and estimating the bene fi ts of the two-
method measurement design are rather different in these two kinds of studies. 

   Calculating Cost Ratio and Estimating Bene fi ts 
in Studies with Narrow Focus 

 Suppose a study was focused rather narrowly on alcohol use among college stu-
dents. Asking several (e.g., six) alcohol use questions, along with a relatively few 
related questions would plausibly be accomplished in a large survey course, with 
payment for participation coming in the form of course credit. For comparison pur-
poses, we set the cost of this study arbitrarily at $1 per subject. In this context, it 
would also be desirable to ask a subset of the students to attend a separate measure-
ment session in which they would be asked to complete a more in-depth measure of 
their recent alcohol use (e.g., via the TLFB procedure). Although the procedure 
might take no more than 15–30 min, one would very likely need to pay the students 
$20 to get them to show up for the session. Thus, for this rather narrowly focused 
study, there is a 20:1 cost ratio for the two measures. 

 Table  13.5  presents the complete-cases design ( N  
CC

  = 375) and six variants of the 
TMM design. In these scenarios, the cheap measures are represented by self-report 
alcohol use indicators, and the expensive measures are represented by the TLFB 
procedure. The total costs in this hypothetical example are $7,875 for each of the 
designs. In the last two columns of the table, we provide the SE for the key factor 

   Table 13.5    SE bene fi ts of the two method measurement design, hold costs constant (20:1 
cost ratio)   

  N  total   N  cheap (SR) 
  N  expensive 
(TLFB) 

  N  partial 
(SR only) 

  N  complete 
(SR and TLFB)  Total costs 

 SE 

  r  = .20   r  = .10 

 375  375   375    0    375   $7,875  0.0485  0.0501 
 875  875   350    525    350   $7,875  0.0385  0.0383 

 1,875  1,875   300    1,575    300   $7,875  0.0302  0.0287 
 2,875  2,875   250    2,625    250   $7,875  0.0266  0.0249 
 3,875  3,875   200    3,675    200   $7,875  0.0251  0.0223 
 4,875  4,875   150    4,725    150   $7,875  0.0250  0.0209 
 5,875  5,875   100    5,775    100   $7,875  0.0269  0.0205 
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   Table 13.6    Study costs when statistical power is held constant (20:1 cost ratio)   

  N  total   N  cheap (SR) 
  N  expensive 
(TLFB) 

  N  partial 
(SR only) 

  N  complete 
(SR and TLFB)  Total costs 

 SE 

  r  = .10 

 375  375  375   0  375  $7,875  0.0501 
 406  406  300  106  300  $6,406  0.0501 
 520  520  200  320  200  $4,520  0.0501 
 647  647  100  547  100  $2,647  0.0501 

regression coef fi cient for two effect sizes:  r  = .20 and  r  = .10. (All other assumptions 
from Fig.  13.1  are retained in Table  13.5 ).  

 When  r  = .20, the optimal TMM design was the 4875/150 design, that is,  N  = 4875 
participants provide cheap (self-report) data and  N  = 150 of those participants also 
provide expensive (TLFB) data. When  r  = .10, the optimal TMM design was the 
5875/100 design, that is,  N  = 5875 participants provide cheap (self-report) data and 
 N  = 100 of those participants also provide expensive (TLFB) data. 

 However, for the alcohol use study we described, taking advantage of the bene fi ts 
of the two-method measurement design may not be feasible because of the dif fi culty 
in  fi nding 5,875 students for whom course credit could be given for taking part in 
the study. Thus, rather than holding costs constant and examining the increase in SE 
bene fi ts, we now hold the SE (and statistical power) constant, and examine the total 
cost bene fi ts of performing the study with various versions of the two-method mea-
surement design (see Table  13.6 ).  

 The  fi gures for the cost results when holding statistical power constant are shown 
in Table  13.6  (we focus on the smaller effect size,  r  = .10, in this table). Taking this 
approach, the TMM design shown in the bottom row of the table ( N  = 647 partici-
pants provide data for the cheap measures, and  N  = 100 of these also provide data for 
the expensive measures) is just over a third the cost of a complete-cases design (with 
 N  

CC
  = 375) having the same statistical power.  

   Calculating Cost Ratio and Estimating Bene fi ts in Studies 
with Broad Focus 

 Now, consider a study with a much broader focus. When the study focus is broad, 
the cost ratios of cheap and expensive measures will be smaller. As we just saw 
above with a narrow-focus study, the cost differential between measures can be 
quite large (e.g., the 20:1 ratio just described would not be uncommon). However, 
with a broad-focus study, the cost differential for the same measures might be much 
more modest (as low as 1:1 or even lower). This is because the costs for the other 
aspects of the study will be much larger for the broad-focus study; these additional 
costs are added to the costs of the cheap measure when calculating the cost ratios of 
cheap to expensive measures. 
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 Consider a broad-focus version of the college alcohol study just described. 
Suppose students were asked to complete a relatively long survey that, in addition 
to self-report measures tapping many other constructs, included the same self-report 
measures of recent alcohol use from the previous example. In a recent study much 
like this, students were paid $20 for 1 h of work. As before, we might then sample 
students at random and ask them to spend an additional 15–30 min with the more 
in-depth TLFB procedure to assess their recent alcohol use. In this context, the cost 
ratio is a much more modest 1:1. 

 The direct bene fi ts of the two-method measurement design in this context are 
shown in Table  13.7 . With the larger effect size ( r  = .20), the most powerful design 
in this instance was the complete-cases design with  N  = 375. With the smaller effect 
size ( r  = .10), the optimal design was the 400/350 version of the TMM design (i.e., 
 N  = 400 participants provide self-report data and  N  = 350 of those participants also 
provide TLFB data). To be sure, the direct bene fi ts of the TMM design are minimal 
in this context.  

 On the other hand, although the cost ratios with broad-focus studies tend to be 
smaller, there are hidden, or indirect, bene fi ts of the TMM design in such research 
situations. Focus for the moment on the rightmost column of Table  13.7 . When 
 r  = .10, the SE for the 650/100 version of the TMM design is virtually the same as 
the SE for the complete case design (with  N  

CC
  = 375). So what is the bene fi t? 

 The bene fi t stems from the very fact that the study has a broad focus. With the 
complete-cases design ( N  

CC
  = 375), ALL hypotheses, even those having little or 

nothing to do with alcohol use, must be tested with  N  = 375. And there will be many 
such hypotheses in this type of study given its broad focus. However, as shown in 
the bottom row of Table  13.7 , the 650/100 version of the two-method measurement 
design allows the researcher to test all hypotheses having little or nothing to do with 
alcohol use with  N  = 650. 

 Statistical power for various effect sizes tested with  N  = 375 and  N  = 650 is 
shown in Table  13.8 . For some effect sizes ( r  = .07–.08), power is low with either 
design. But even for these effect sizes, the probability of detecting a signi fi cant 
effect is 56–58 % higher with the TMM design than with the  fi nancially equivalent 

   Table 13.7    SE bene fi ts of the two-method measurement design, hold costs constant (1:1 cost 
ratio)   

  N  total 
  N  cheap 
(SR) 

  N  expensive 
(TLFB) 

  N  partial 
(SR only) 

  N  complete 
(SR and TLFB)  Total costs 

 SE 

  r  = .20   r  = .10 

 375  375  375   0  375  $15,000  0.0485  0.0501 
 400  400  350   50  350  $15,000  0.0486  0.0485 
 450  450  300  150  300  $15,000  0.0487  0.0486 
 500  500  250  250  250  $15,000  0.0489  0.0488 
 550  550  200  350  200  $15,000  0.0494  0.0491 
 600  600  150  450  150  $15,000  0.0501  0.0494 
 650  650  100  550  100  $15,000  0.0516  0.0500 
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complete-cases design. For other effect sizes ( r  = .09–.14), power to detect an effect 
with the TMM design is suf fi cient, and substantially greater than power offered by 
the complete-cases design costing the same. Finally, for effect sizes greater than 
 r  = .14, both the TMM design and the  fi nancially equivalent complete-cases design 
perform well with respect to statistical power and the power difference between 
competing designs is smaller.    

   The Full Bias-Correction Model 

 An important assumption Graham et al.  (  2006  )  made regarding the model shown in 
Fig.  13.1  was that the correlation between the bias factor and the outside variable 
(“Health” in Fig.  13.1 ) is zero. We will refer to this outside variable generically as 
“Y”; thus the assumption is  r  

Bias,Y
  = 0. If this assumption is met, then the power 

bene fi ts of the two-method measurement design will be achieved as described 
above, and the estimate of the relationship between the substantive factor (“Smoking” 
in Fig.  13.1 ) and the outside variable (“Health”) will be unbiased. However, to the 
extent that  r  

Bias,Y
  > 0, the estimate of the relationship between the substantive factor 

and the outside variable will be biased. 
 When the assumption that  r  

Bias,Y
  = 0 is not met, Graham et al.  (  2006  )  suggested 

that other models were possible that would allow this nonzero correlation to be 
estimated. One obvious model is shown in Fig.  13.4 . With this model, one simply 

   Table 13.8    Statistical power various effect sizes 
with two sample sizes   

  r  

  N  

 power ratio  375  650 

 .07  .273  .431  1.58 
 .08  .341  .532  1.56 
 .09  .415  .632  1.52 
 .10  .492  .724  1.47 
 .11  .569  .803  1.41 
 .12  .644  .866  1.34 
 .13  .714  .914  1.28 
 .14  .777  .948  1.22 
 .15  .831  .970  1.17 
 .16  .876  .984  1.12 
 .17  .912  .992  1.09 
 .18  .939  *  1.06 
 .20  .974  *  1.03 
 .25  *  *  1.00 

  * = power > .995. Power ratio is power  
 N  = 650

 /
power  

 N  = 350
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estimates the relationship between the bias factor and the outside factor. This rela-
tionship can be modeled either as a factor regression (as shown in Fig.  13.4 ) or as a 
factor correlation.  

 In our earlier work, we found that the model depicted in Fig.  13.4  did provide 
unbiased estimates of the key factor associations. However, we also found that the 
sample size and power bene fi ts of the two-method measurement model disappeared 
when we estimated this bias-Y relationship. 

 Recent work, however, shows that this pessimistic conclusion was only partially 
correct. With the parameter values shown in Fig.  13.4 , the two-method measure-
ment design offered no bene fi ts over the  fi nancially equivalent complete-cases 
design (see Con fi guration 1 in Table  13.9 ). One key factor in Con fi guration 1 is the 
3:1 cost ratio between measures. According to the simulations in Graham et al. 
 (  2006  ) , a 3:1 cost ratio is modest by today’s standards. Note that these values are 
comparable to those shown in the Graham et al. simulations as having the greatest 
effect when the  r  

Bias,Y
  = 0 assumption holds. In Con fi guration 15, factor loadings and 

factor correlations are held constant, but the cost ratio between measures is a more 
pronounced 10:1. In the Graham et al.  (  2006  )  simulations, this con fi guration of the 
TMM design produced an  N  

EFF
  Increase Factor of 3.47. However, with the full bias-

control model, the bene fi t produced by the TMM design was much more modest 
( N  

EFF
  Increase Factor = 1.02   ).  

 We explored how changing various parameter values might increase the  N  
EFF

  
Increase Factor. In Table  13.9 , Con fi gurations 2–5 show what happens when just 
one of the factor loadings was varied. For example, in Con fi guration 2, increasing 
the expensive measure factor loading on the valid factor from .70 to .89 produced 
only minimal power bene fi ts. Decreasing the factor loading for the cheap measure 

  Fig. 13.4    Full bias-correction model       
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on the bias factor from .50 to .30 produced no bene fi t (Con fi guration 3). In 
Con fi guration 4, increasing the factor loading of the cheap measure on the valid 
factor from .50 to .70 produced a small bene fi t ( N  

EFF
  Increase Factor = 1.01). As 

shown in Con fi guration 5, further increasing the cheap measure factor loading to .86 
produced a slightly higher bene fi t ( N  

EFF
  Increase Factor = 1.07). 

 As shown in Con fi gurations 6 and 7 of Table  13.9 , improving two of the factor 
loadings produced additional power bene fi ts over the  fi nancially equivalent com-
plete-cases design. Improving all three factor loadings (Con fi guration 8) provided 
bene fi t of  N  

EFF
  Increase Factor = 1.27. As shown in Con fi gurations 9–11, changing 

the value of  r  
Bias,Y

  had no impact on the  N  
EFF

  Increase Factor. On the other hand, 
increasing  r  

Valid,Y
  did have an effect, as shown in Con fi gurations 12 and 13. With the 

values shown for Con fi guration 13, the  N  
EFF

  Impact Factor = 1.47 was the largest 
bene fi t observed for the 3:1 cost ratio. Con fi guration 14 shows the further bene fi t of 
increasing the cost ratio to 5:1 ( N  

EFF
  Increase Factor = 1.76). 

 The conclusion we draw here is that the bene fi ts from the full bias-control model 
can be substantial. But perhaps those bene fi ts emerge with a somewhat smaller set 
of parameter values. As with the partial bias-control model, where  r  

Bias,Y
  = 0 is ten-

able, the cost ratio is a major factor in determining the power bene fi ts produced by 
the TMM design. Also, increases in the valid factor loading for the cheap measures 
yielded  N  

EFF
  Increase Factor bene fi ts. When the cheap measures had high factor 

loadings for the valid factor, combined with low factor loadings on the bias factor, 
 N  

EFF
  Increase Factor bene fi ts were especially pronounced. In contrast with the par-

tial bias-control model, the full bias-control model yielded greater bene fi ts with 
larger effect sizes. 

   A Note on Estimation Bias 

 An issue that arises with the full bias-control model is estimation bias. When the 
model generating the data speci fi es  r  

Valid,Bias
  = 0, the parameter estimates for  r  

Valid
  with 

the complete-cases model are unbiased. However, with the missing data models, a 
small amount of bias is introduced in the  r  

Valid
  estimate. However, in our experience, 

the degree of bias tends to be small and can be considered to be tolerably small (see 
Chaps.   1     and   10    ).   

   Assumptions 

 Below we describe two assumptions about research scenarios in which the TMM 
design might be applied. 

http://dx.doi.org/10.1007/978-1-4614-4018-5_1
http://dx.doi.org/10.1007/978-1-4614-4018-5_10
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   Assumption 1: The Expensive Measure is More Valid than 
the Cheap Measure 

 When does this assumption hold? Virtually all of the expensive measures we have 
discussed above have biases; in other words, they are all impacted by sources of vari-
ance that are different from the construct under study (e.g., see Palmer et al.  2002  ) . 
For example, all things considered, saliva cotinine is a very good (objective) mea-
sure of cigarette smoking. But because it is a metabolite of nicotine, cotinine levels 
will also be high if the person has consumed smokeless tobacco but has not smoked 
cigarettes. Expired CO is also a good (objective) indicator of cigarette smoking. 
However, because it detects any burned substance, the CO value will be high if the 
person has smoked marijuana or has been in close contact with others who smoke 
cigarettes, or even if the person lives in a highly industrialized part of a city or in 
close proximity to a freeway. Similarly, uniaxial accelerometers are sensitive to 
many factors that are largely irrelevant to the amount of PA the subject has engaged 
in. Subjects who have walked or run on the hardest surfaces (e.g., concrete) will 
appear to have done more PA than will those who have walked or run on the softest 
surfaces (e.g., grass). Also, uniaxial accelerometers only capture up and down move-
ments; because the mechanics of running change as people run faster, these devices 
are less well suited for capturing the fastest running. In the extreme, uniaxial accel-
erometers cannot distinguish between fast walking and the fastest running. 

 Although these kinds of biases exist, they often have relatively little impact on 
the utility of these measures. Other kinds of bias, on the other hand, are more of a 
problem for measures that are purported to be objective indicators of some con-
struct. The word “objective” implies that the scores from the measure are not subjec-
tive (i.e., they are not under the subject’s control). But some measures that are often 
accepted as objective indicators are, at least to an extent, under the subject’s control. 
A good example of this is the uniaxial accelerometer described above. The biases 
related to the device’s inability to capture nonvertical movement are largely out of 
the subject’s control; however, there is another bias we describe as noncompliance 
bias that is entirely dependent on the subject’s level of adherence to study protocol. 
The individual subject is often given the accelerometer device and instructed to wear 
it every waking minute (except when in contact with water). But whether or not the 
person actually does wear the device as instructed is completely up to the subject. 

 This kind of bias poses a special problem for at least two reasons. First, espe-
cially with younger subjects, failing to wear the device could be very common. 
Second, there could be systematic reasons that individuals fail to wear the devices. 
For example, some children may choose not to wear the device when they are being 
most active, perhaps out of fear that the device could be damaged or lost. Or the 
child may  fi nd the device a bother during the most demanding physical activities 
(e.g., playing full-court basketball). This reason for noncompliance would have a 
rather substantial effect on the correlation between self-reported PA and the accel-
erometer data. This would be particularly bad if the person took off the device for a 
relatively short period of highest activity, but then wore it again for the remainder of 
the (relatively sedentary) day, such that the accelerometer data would appear to have 
come from a valid day of wearing. 
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 The bias resulting from the  fi rst of these two scenarios should be relatively minor 
if the failure to wear the device were largely a random process, or if the bias could 
reasonably be modeled as a random process. However, in the second scenario, the 
noncompliance bias is clearly nonrandom. Even this might also be less of a problem 
if there were some way of knowing which days the device was not worn (e.g., from 
diary data). But these measures, themselves, are susceptible to self-report biases and 
are less than a fully satisfying solution for the problems associated with the 
accelerometers. 

 The problem with noncompliance bias is that the supposedly “objective” mea-
sure (such as the uniaxial accelerometer) may need to be modeled as also loading on 
the self-report bias factor. However, the very thing that allows the TMM models to 
be estimated is that it is reasonable to assume that the expensive measures have 
loadings of “0” on the bias factor. The upshot when these loadings must be different 
from “0” is that more parameters must be estimated in the model than are possible. 
That is, these models are not “identi fi ed” (in terms of simple algebra, these models 
have too few “equations” for the number of “unknowns”). The bottom line is that 
with biases like noncompliance bias, the TMM models we have described in this 
chapter (the partial- and full bias-correction models) are no longer tenable.  

   Assumption 2: The Model Will “Work” Once 
You Have Collected the Data 

   Realities of All Bias-Control Models 

 One of the realities of bias-control models is that the models tend to be unstable. 
With careful planning and data collection that is aimed at this kind of analysis, this 
type of instability should be minimized. If the following conditions are met, this 
problem should be minimized:

    • Have at least two cheap measures  (and possibly three) of the substantive factor. 
The key here is that the two or three cheap measures are all associated with the 
same response bias. When the cheap measures share the same response bias, the 
bias can be modeled (and controlled for) as shown in Figs.  13.1  and  13.4 .  
   • Have at least two expensive measures of the substantive factor  (although one 
expensive measure may work in some instances). It is important to choose an 
expensive measure that has no known subjective biases; alternatively, at a mini-
mum, the expensive measure should be universally considered superior to the 
cheap measure. 1   

   1   We do have some question about whether the universal acceptance of a measure as being better 
than, say, self-reports, is suf fi cient to mean that such measures will work well in TMM models. 
A good counter example is that the uniaxial accelerometer has long been virtually universally 
accepted as an appropriate validator for self-reported PA; but as we have argued in this chapter, this 
practice may not be justi fi ed.  
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   • Ensure that the factor loadings on the substantive factor are substantial . This 
can be accomplished if data collection procedures are built around the TMM 
approach. Substantive factor loadings are much less likely to be substantial if the 
data were collected before the TMM analysis approach was decided upon. Pilot 
testing can be very valuable here.  
   • Ensure that the factor loadings on the substantive factor for cheap and expensive 
items are at least similar  (e.g., no more than .20–.30 difference). This is also 
much more likely if data collection is built around TMM. Pilot testing can be 
very valuable here as well.  
   • Ensure that the zero-order correlation between cheap and expensive measures is 
at least modest  (e.g., at least  r  = .20). Problems with bias-control models often 
stem from the fact that the cheap and expensive measures are not highly corre-
lated. Again, pilot testing will provide insight into the extent to which the cheap 
and expensive measures are correlated.     

   When the Bias-Y Correlation Is Substantial 

 As described above, one assumption underlying the TMM design is that the bias 
factor and the outside variable (e.g., “Health” in Fig.  13.1 ) are uncorrelated. If this 
assumption is met, then the power bene fi ts of the two-method measurement design 
are more likely to be achieved, and the estimate of the relationship between the 
substantive factor (e.g., “Smoking”) and the outside variable (e.g., “Health”) will be 
unbiased. However, to the extent that the bias factor and outside variable are corre-
lated, the parameter estimate of substantive interest (i.e., between the substantive 
factor and the outside variable) will be biased. We have noted above that the full 
bias-correction model (see Fig.  13.4 ) may be used successfully in this context, but 
the true power bene fi ts will depend more heavily on factor loadings, factor correla-
tions, and especially on the true cost ratio.    

   Individual Versus Group Level Focus of the Research 

 The TMM models described in this chapter apply when the researcher is interested 
in group-level statistics. That is, these models apply to the sample as a whole and not 
to individual participants. One good example of this point relates using the TMM 
approach to the study of blood pressure assessment. The TMM approach has been 
shown to work exceptionally well in this context (e.g., see Zawadzki et al. in press)  , 
in the sense that the TMM models were highly successful in modeling the kinds of 
bias commonly observed in assessments of BP taken in doctors’ of fi ces (“white-coat 
hypertension” and “masked hypertension”). However, it is not possible at present to 
use the bias-control models to determine which individual patients exhibited white 
coat or masked hypertension with the typical clinic BP assessments.  
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   Alternative Model: The Auxiliary Variable Model 

 The power and cost bene fi ts of the TMM models described in this chapter derive 
from the fact that all participants in a study sample provide data for the cheap 
measure, and that only a small random sample of participants also provide data 
for the expensive measure. When the TMM models described in this chapter can-
not be estimated in a particular research context, for example, when only a single 
cheap measure is available, it is still possible to estimate an auxiliary variable 
model that will achieve some of the bene fi ts shown with the full TMM models. 
As shown in Chap.   11    , auxiliary variable models work best when the correlation 
is high between the auxiliary variable and the variable that is sometimes 
missing. 

 It will generally be true that auxiliary variable models will provide  N  
EFF

  bene fi ts 
that are modest in comparison to the bene fi ts that are possible with the full TMM 
model. For example, look again at the data forming the basis for Table  13.1 . Suppose 
there was only a single cheap measure and only a single expensive measure. Under 
those circumstances, the full TMM model could not be estimated. In those data, the 
correlation between the cheap and expensive measures was  r  = .78. Using the auxil-
iary variable utility described in Chap.   11    , it is easy to see that under these circum-
stances, the optimal auxiliary variable model yields  N  

EFF
  = 367 (compared to the 

optimal  N  
EFF

  = 542 shown in Table  13.1 ). 
 However, it will sometimes happen that correlations higher than  r  = .78 are 

observed. Researchers studying body composition, for example, may  fi nd that the 
auxiliary variable model is particularly useful. Because the cheapest measure of 
body composition typically used (BMI) is just a single measure, the TMM model 
is not readily applied to this type of data. However, with body composition mea-
sures it is also not unusual for the correlation between the cheap measure (BMI) 
and the expensive measure (DEXA) is greater than  r  = .78. We did  fi nd one study 
(   Bowden et al.  2005 ), who found only  r  = .55 between BMI and DEXA in a sam-
ple of sedentary college students. On the other hand, Lintsi et al.( 2004 ) found and 
average  r  = .825 between BMI and DEXA. If all the other correlations were the 
same as observed in Table  13.1 , the auxiliary variable model would yield 
 N  

EFF
  = 400. Lindsay et al. ( 2001 ) observed an average correlation of  r  = .88 

between BMI and DEXA in a child and adolescent sample. If all the other cor-
relations were the same as observed in Table  13.1 , the auxiliary variable model 
would yield  N  

EFF
  = 466 in this instance. Finally, the highest correlation observed 

between BMI and DEXA by Lindsay et al. ( 2001 ) was  r  = .94 (in their sample of 
5–9-year-old males). If all the other correlations were the same as observed in 
Table  13.1 , the auxiliary variable model would yield  N  

EFF
  = 620! Clearly, there 

will be times when the auxiliary variable model will be a valuable alternative to 
a complete-cases model.      

http://dx.doi.org/10.1007/978-1-4614-4018-5_11
http://dx.doi.org/10.1007/978-1-4614-4018-5_11
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