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Preface to the Second Edition

This edition adds a considerable amount of new information on recent change
point research results. In light of numerous book reviews of the first edition
of this monograph and favorable comments that we have received from
researchers during the last ten years, we have added many new results and
applications of change point analysis throughout this new edition.

The main additions consist of (i) two new sections of applications of the
underlying change point models in analyzing the array Comparative Genomic
Hybridization (aCGH) data for DNA copy number changes in Chapter 2,
(ii) a new Chapter 7 (the original Chapter 7 becomes Chapter 8 in this
edition) on change points in hazard functions, (iii) a new Chapter 9 on other
practical change point models such as the epidemic change point model and
a smooth-and-abrupt change point model, and (iv) a number of examples of
applications throughout the other chapters.

Change point analysis has been an active research area since its inaugura-
tion in the early 1950s. The authors acknowledge that there are many other
works and several approaches in change point analysis that are important
but not included in this monograph due to the approaches that the authors
have chosen to present here. One of the primary goals of this edition is to
present readers and practitioners with a systematic way of detecting change
points in the particular models demonstrated in this book.

The first author started to branch out her statistical research to the
analysis of high throughput data resulting from biomedical and life science
research in 2003. Since then, she has actively collaborated with many sci-
entists on modeling gene expression data, for example, resulting from blood
stem-cell study and somitogenesis study. She and her collaborators envisioned
the problem of modeling array data resulting from DNA copy number studies
as a change point problem in the mean and variance parameters of a sequence
of normal random variables, and started modeling such DNA copy number
experimental data with her medical collaborators in 2006. After her many
years of experience in modeling biomedical data, she is keen to add such
exciting applications of change point analysis to the DNA copy number data
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viii Preface to the Second Edition

to this volume. Meanwhile, the second author and his collaborators have
studied several other change point models, especially the epidemic change
point model, and this work is also added to this volume. In the context
of the above-mentioned new work, the two authors were thus motivated to
write this new edition, emphasizing those change point models that have
major applications in modeling biomedical research data.

Every attempt was made to correct various misprints and errors from the
first edition. The authors are indebted to the many readers who communi-
cated their findings of some of these errata. Special thanks are due to Mr. Paul
Plummer, one of the doctoral students of the first author, for carefully read-
ing the first edition and noting many of the misprints and errors; to Miss Xue
Bai, one of the graduate research assistants of the first author, for obtaining
the computational and graphical results using the R-package called DNAcopy
on the example presented in Section 2.1 of Chapter 2 and in Chapter 9; and
to Dr. Fanglong Dong for proofreading this volume. The authors would like
to thank Richard Scheines and Changwon Yoo for noting some misprints in
Chapter 4 of the first edition, as well as Dr. Asoka Ramanayake for her help
with Chapter 9 of this edition. Finally, the authors would also like to thank
Professor Jiahua Chen for many conversations on various occasions regarding
change point analysis and its applications.

The first author would like to especially thank her husband, Dr. Ke Xia,
for his encouragement and support during the process of writing this second
edition, and she would also like to thank her two daughters, Rowena and
Gracelynn, who were patient and cooperative when their mother was busy
writing this book and unable to play with them during their spare time. The
second author would like to thank his wife Meera and his daughters, Alka,
Mita, and Nisha for their support.

The authors also wish to thank the following publishers, who have granted
them permission to reproduce their own results that were first published in
proprietary scholarly journals (of course, full citations of these publications
are given in the text): Wiley-VCH Verlag GmbH & Co. KGaA, Taylor &
Francis, Pushpa Publishing House, and Susan Rivers’ Culture Institute.

Finally, the authors wish to thank the two anonymous reviewers for their
comments and suggestions, as well as the editors and staff of Birkhäuser for
their assistance and patience during the preparation of the second edition of
this monograph.

Jie Chen
Kansas City, MO

A. K. Gupta
Bowling Green, OH

June, 2011



Preface to the First Edition

Recently there has been a keen interest in the statistical analysis of change
point detection and estimation. Mainly, it is because change point problems
can be encountered in many disciplines such as economics, finance, medicine,
psychology, geology, literature, and so on, and even in our daily lives. From
the statistical point of view, a change point is a place or time point such that
the observations follow one distribution up to that point and follow another
distribution after that point. Multiple change points problems can also be
defined similarly. So, the change point(s) problem is twofold: one is to decide
if there is any change (often viewed as an hypothesis testing problem), and
another is to locate the change point when there is a change present (often
viewed as an estimation problem).

The earliest change point study can be traced back to the 1950s. During the
following period of forty-some years, numerous articles have been published
in various journals and proceedings. Many of them cover the topic of single
change point in the means of a sequence of independently normally distri-
buted random variables. Another popularly covered topic is a change point in
regression models such as linear regression and autoregression. The methods
used are mainly likelihood ratio, nonparametric, and Bayesian. A few authors
also considered the change point problem in other model settings such as
gamma and exponential.

It is impossible to discuss and include all relevant change point(s) problems
in a one-volume work. In this monograph, therefore, only the most important
results in change point(s) analysis have been collected and new interesting
results have been added. In other words, this volume is an in-depth study
of the change point problem in general, and is also a detailed exposure of
change point analysis of the most commonly used statistical models. There
are seven chapters devoted to different aspects/models. Multivariate normal
models and univariate normal models are discussed in much detail about
change point(s) in mean vectors (means), covariance matrices (variances),
or in mean vectors and covariance matrices (means and variances). Regres-
sion, gamma, exponential, and discrete models are also discussed for change
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x Preface to the First Edition

point(s) analysis. The methodologies involved are mainly (classical) likelihood
ratio, Bayesian, and information criterion approaches. Some other methods
are also discussed. An annotated bibliography is given at the end of this
volume.

This research monograph should appeal to theoretical as well as applied
statisticians. It should also appeal to economists, quality control managers,
or graduate students who are interested in change point(s), or any other
investigators who might encounter the change point problem. It can be used
as a reference book concerning different aspects of change point problems.

The authors are thankful to many authors who provided their manuscripts.
They are also very thankful to Professor Larry Q. Eifler for the technical help
in the typesetting of this manuscript. The first author would like to thank
her husband, Ke Xia, for his typing of this monograph, his support, and
encouragement in the preparation of this book. Finally thanks are due to the
publisher for providing all their help.

Jie Chen
Kansas City, MO

A. K. Gupta
Bowling Green, OH

February, 2000
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Chapter 1

Preliminaries

1.1 Introduction

The world is filled with changes. An awareness of those changes can help
people avoid unnecessary losses and to harness beneficial transitions. In many
practical situations, a statistician is faced with the problem of detecting the
number of change points or jumps and their locations. This is known as the
change point problem. Enormous practical problems can be found in many
disciplines.

Example 1.1 Stock Market Analysis: The daily U.S. stock market records
show that the stock price for any company fluctuates daily. Although the
fluctuation of any stock price is normal according to economic theory, there
are some shiftings that are abnormal and worth the investor’s special atten-
tion. Here, we may raise the question of whether the Iraqi invasion of Kuwait
in 1989 caused a statistically significant change in the U.S. stock market.

Example 1.2 Quality Control: In a continuous production process, the quality
of the products is expected to remain stable. However, for several reasons,
the process might fail to produce products of the same quality. One therefore
wants to find out if there is a point where the quality of the products starts
to deteriorate.

Example 1.3 Traffic Mortality Rate: In 1987, the speed limit on many express-
ways in the United States had been increased from 55 miles per hour to
65 miles per hour. Would this increased speed limit cause any problem in
highway traveling? One may, therefore, search for the change in the traffic
accident death rate after the relaxation of the 55 mile per hour speed limit.

Example 1.4 Geology Data Analysis: The measurements of core samples
obtained from different geological sites are very important to the geologist.
If there is a significant change in the measurements of the same type of
core obtained from different sites, then the geologist might want to know

- _1, 
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2 1 Preliminaries

further on what site the change took place, and whether there are oil, gold,
or underground mines.

Example 1.5 Genetics Data Analysis: The measurements of gene expression
for a cell line may contain changes that indicate the dynamics of gene regula-
tion, and these changes are very valuable to scientists for biomedical research.
The DNA copy number variations are very important in cancer research and
identifying these variations often calls for the establishment of an appropriate
change point model.

Among the several examples mentioned above, Example 1.2 is a so-called
online change point problem or an online surveillance change problem, and
all other examples fall into the category of offline change point detection or
retrospective change point analysis. The online change point problems are
popularly presented in statistical quality control, public health surveillance,
and signal processing (Mei, 2006). Fearnhead and Liu (2007) studied an online
multiple change point problem, and Wu (2007) proposed a sequential method
for detecting and identifying sparse change segments in the mean process.
We concentrate on the offline or retrospective change point analysis in this
monograph, and simply use the phrase “change point analysis” throughout.

Usually statistical inference about (offline) change points has two aspects.
The first is to detect if there is any change in the sequence of observed
random variables. The second is to estimate the number of changes and their
corresponding locations. The problem of testing and estimating change points
has attracted much attention in the literature since it was originally addressed
in the field of quality control.

1.2 Problems

Let x1,x2, . . . ,xn be a sequence of independent random vectors (variables)
with probability distribution functions F1, F2, . . . , Fn, respectively. Then in
general, the change point problem is to test the following null hypothesis,

H0 : F1 = F2 = · · · = Fn

versus the alternative:

H1 : F1 = · · · = Fk1 �= Fk1+1 = · · · = Fk2 �= Fk2+1

= · · ·Fkq �= Fkq+1 · · · = Fn,

where 1 < k1 < k2 < · · · < kq < n, q is the unknown number of change
points and k1, k2, . . . , kq are the respective unknown positions that have to be
estimated. If the distributions F1, F2, . . . , Fn belong to a common parametric
family F (θ), where θ ∈ Rp, then the change point problem is to test the null
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hypothesis about the population parameters θi, i = 1, . . . , n:

H0 : θ1 = θ2 = · · · = θn = θ (unknown) (1.1)

versus the alternative hypothesis:

H1 : θ1 = · · · = θk1 �= θk1+1 = · · · = θk2

�= · · · �= θkq−1 = · · · = θkq �= θkq+1 · · · = θn, (1.2)

where q and k1, k2, . . . , kq have to be estimated. These hypotheses together
reveal the aspects of change point inference: determining if any change point
exists in the process and estimating the number and position(s) of change
point(s).

A special multiple change points problem is the epidemic change point
problem, which is defined by testing the following null hypothesis,

H0 : θ1 = θ2 = · · · = θn = θ (unknown)

versus the alternative:

H1 : θ1 = · · · = θk = α �= θk+1 = · · · = θt = β �= θt+1 = · · · = θn = α,

where 1 ≤ k < t ≤ n, and α and β are unknown.
The epidemic change point problem is of great practical interest, especially

in quality control and medical studies. The reader is referred to Levin and
Kline (1985), and Ramanayake (1998).

The change point problem can be considered in many model settings
such as parametric, nonparametric, regression, times series, sequential, and
Bayesian among others.

1.3 Underlying Models and Methodology

The frequently used methods for change point inference in the literature
are the maximum likelihood ratio test, Bayesian test, nonparametric test,
stochastic process, information-theoretic approach, and so on.

Chernoff and Zacks (1964) derived a Bayesian estimator of the current
mean for a priori uniform distribution on the whole real line using a quadratic
loss function. Sen and Srivastava (1975a,b) derived the exact and asymptotic
distribution of their test statistic for testing a single change in the mean of
a sequence of normal random variables. Later (1973, 1980) they generalized
their results to the multivariate case. Hawkins (1977) and Worsley (1979)
derived the null distribution for the case of known and unknown variances
of a single change in the mean. Srivastava and Worsley (1986) studied the
multiple changes in the multivariate normal mean and approximated the
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null distribution of the likelihood ratio test statistic based on Bonferroni
inequality. Recently, Guan (2004) considered a change point problem from a
semiparametric point of view. Gurevich and Vexler (2005) investigated the
change point problem in logistic regression. Horuath et al. (2004) studied the
change point problem for linear models. Ramanayake (2004) provided tests
for change point detection in the shape parameter of gamma distributions.
Goldenshluyer, Tsbakov, and Zeev (2006) provided optimal nonparametric
change point estimation for indirect noisy observations. Osorio and Galea
(2006) investigated the change point problem for Student-t linear regression
models. Kirch and Steinebach (2006) gave an approximation of the critical
values for the change point test obtained through a permutation method.
Juruskova (2007) considered the change point problem for a Weibull distri-
bution of three parameters. Wu (2008) provided a simultaneous change point
analysis and variable solution in a regression problem. Vexler et al. (2009)
provided a study of a classification problem in the context of change point
analysis. Ramanayake and Gupta (2010) considered the problem of detecting
a change point in an exponential distribution with repeated values.

For more works related to the change point(s) problem, the reader is
referred to Hawkins (1992), Joseph and Wolfson (1993), Parzen (1992), Yao
(1993), Zacks (1991), Vlachonikolis and Vasdekis (1994), Chen (1995), Gupta
and Chen (1996), Chen and Gupta (1997), Ramanayake (1998), Gupta and
Ramanayake (2001), Chen and Gupta (1998, 2003), Hall et al. (2003), Kelly,
Lindsey, and Thin (2004), Chen et al. (2006), and Ning and Gupta (2009).

A survey of the change point studies indicates that most of the previous
works were concentrated on the case of a single change point in the random
sequence. The problem of multiple change points, however, has not been con-
sidered by many authors. Inclán and Tiao (1994) used the CUSUM method
to test and estimate the multiple change points problem. Chen and Gupta
(1995) derived the asymptotic null distribution of the likelihood procedure
(see Lehmann, 1986) statistic for the simultaneous change in the mean vector
and covariance of a sequence of normal random vectors. Later (1997) they
studied the multiple change points problem for the changes in the variance
of a sequence of normal random variables.

In order to detect the number of change points and their locations in
a multidimensional random process, Vostrikova (1981) proposed a method,
known as the binary segmentation procedure, and proved its consistency. This
binary segmentation procedure has been widely used in detecting multiple
change points, and it has the merits of detecting the number of change points
and their positions simultaneously and saving a lot of computation time. It is
summarized as the following.

Suppose x1,x2, . . . ,xn is a sequence of independent random vectors (vari-
ables) with probability distribution functions F1(θ1), F2(θ2), . . . , Fn(θn),
respectively. If we tested (1.1) versus (1.2), we would use a detection method
along with the binary segmentation technique to uncover all possible change
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points. A general description of the binary segmentation technique in the
detection of the changes can be summarized in the following steps.

Step 1. Test for no change point versus one change point; that is, test the
null hypothesis given by (1.1) versus the following alternative.

H1 : θ1 = · · · = θk �= θk+1 = · · · = θn, (1.3)

where k is the location of the single change point at this stage. If H0 is not
rejected, then stop. There is no change point. If H0 is rejected, then there is
a change point and we go to Step 2.

Step 2. Test the two subsequences before and after the change point found
in Step 1 separately for a change.

Step 3. Repeat the process until no further subsequences have change points.

Step 4. The collection of change point locations found by steps 1–3 is
denoted by {k̂1, k̂2, . . . , k̂q}, and the estimated total number of change points
is then q.

As the reader may notice, the majority of the models proposed for change
point problems in the current literature are the normal models (univariate or
multivariate). This is because the normal model is the most common model in
practice. The change point problems under many other models, however, are
also very important and are also studied in this monograph. In Chapters 2
and 3, univariate normal and multivariate normal models are considered.
In Chapter 4, a regression model is discussed. The gamma and exponential
models are discussed in Chapters 5 and 6, respectively. Chapter 7 is devoted
to the topic of change points in the hazard function. Some discrete models are
discussed in Chapter 8, and the epidemic change point model and the smooth-
and-abrupt change point model are given in Chapter 9 with applications.



Chapter 2

Univariate Normal Model

Let x1, x2, . . . , xn be a sequence of independent normal random variables
with parameters (μ1, σ

2
1), (μ2, σ

2
2), . . . , (μn, σ

2
n), respectively. In this chapter,

different types of change point problems with regard to the mean, variance,
and mean and variance are discussed. For simplicity and illustration pur-
poses, we familiarize readers with the three types of changes in the normal
sequence by presenting the following three figures, where Figure 2.1 represents
a sequence of normal observations with a mean change, Figure 2.2 shows a
variance change in the normal observations, and Figure 2.3 indicates a mean
and variance change in the sequence of normal observations.

Fig. 2.1 A change in the mean of the sequence of normal observations

- _ , 
, J. Chen and A. . Gupta Parametric Statistical Change Point Analysis: With Applications

to Genetics, Medicine, and Finance, DOI 10.1007/978-0-8176-4801 5
7

2
© Springer Science+Business Media, LLC 2012

K



8 Univariate Normal Model

Fig. 2.2 A change in the variance of the sequence of normal observations

Fig. 2.3 A change in both the mean and variance of the sequence of normal observations

2.1 Mean Change

Suppose that each xi is normally distributed with mean μi and common
variance σ2, i = 1, 2, . . . , n. The interest here is about the mean change. This
problem was first examined by Page (1954, 1955, 1957). Later, Chernoff and

2
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Zacks (1964), Bhattacharya and Johnson (1968), Gardner (1969), Sen and
Srivastava (1975a,b), Gupta and Chen (1996), Chen and Gupta (1997), and
Chen and Gupta (1998, 2003) also contributed to the study of this problem.
Throughout this section, the hypothesis of stability (the null hypothesis) is
defined as

H0 : μ1 = μ2 = · · · = μn = μ.

The mean change problem in this one-dimensional case can be one-sided or
two-sided. Only the two-sided test is addressed here. That is, the interest is
to test H0 versus

H1 : μ1 = · · · = μk �= μk+1 · · · = μn,

where k is the unknown location of the single change point. The test-
ing procedure depends on whether the nuisance parameter σ2 is known or
unknown.

2.1.1 Variance Known

Without loss of generality, assume that σ2 = 1. Under H0, the likelihood
function is

L0(μ) =
1

(
√

2π)n
e−
�n

i=1(xi−μ)2/2

and the maximum likelihood estimator (MLE) of μ is

μ̂ = x =
1
n

n∑
i=1

xi.

Under H1, the likelihood function is

L1(μ1, μn) =
1

(
√

2π)n
e−(
�k

i=1(xi−μ1)
2+
�n

i=k+1(xi−μn)2)/2,

and the MLEs of μ1, and μn are, respectively,

μ̂1 = x̄k =
1
k

k∑
i=1

xi, and μ̂n = xn−k =
1

n− k

n∑
i=k+1

xi.

Let

Sk =
k∑

i=1

(xi − xk)2 +
n∑

i=k+1

(xi − xn−k)2,
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Vk = k(xk − x)2 + (n− k)(xn−k − x)2,

and S =
∑n

i=1(xi − x)2; then Vk = S − Sk. Simple algebra leads to U2 =
Vk∗ = max1≤k≤n−1 Vk is the likelihood procedure (see Lehmann, 1986) test
statistic for testing H0 against H1.

Hawkins (1977) derived the exact and asymptotic null distributions of the
test statistic U . The following is based on his work. First, simple algebraic
computation gives an alternative expression for Vk as

Vk =
n

k(n− k)

[
k∑

i=1

(xi − x)

]2

.

Let

Tk =
√

n

k(n− k)

[
k∑

i=1

(xi − x)

]
;

then Vk = T 2
k or |Tk| =

√
Vk. Therefore,

U =
√
Vk∗ = max

1≤k≤n−1

√
Vk = max

1≤k≤n−1
|Tk| (2.1)

is the equivalent likelihood-based test statistic for testing H0 against H1.
After this computational preparation, the main theorem can be stated as
follows.

Theorem 2.1 The null probability density function of U is given by

fU (x) = 2φ(x, 0, 1)
n−1∑
k=1

gk(x, x)gn−k(x, x),

where φ(x, 0, 1) is the pdf of N(0, 1), g1(x, s) = 1 for x, s � 0, and

gk(x, s) = P [|Ti| < s, i = 1, . . . , k − 1||Tk| = x], (2.2)

for x, s � 0.

To prove this theorem, the following lemma is essential.

Lemma 2.2 {T1, T2, . . . , Tn−1} is a Markov process.

Proof. From the Markov process property, it suffices to show that the
partial covariance σjk.m between Tj and Tk when Tm is fixed equals zero
for j < m < k, or equivalently the partial correlation coefficient ρjk.m is
zero.

2
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For m = 1, 2, . . . , n−1, and m < k, the correlation coefficient ρmk between
Tk and Tm is

ρmk =
n√

km(n− k)(n−m)
E

⎡⎣ k∑
i=1

(xi − x)
m∑

j=1

(xj − x)

⎤⎦
=

n√
km(n− k)(n−m)

m(n− k)
n

=

√
m(n− k)
k(n−m)

.

Then, for j < m < k,

ρjk.m =
ρjk − ρjmρmk√

(1 − ρ2
jm)(1 − ρ2

mk)

=

√
j(n−k)
k(n−j) −

√
j(n−m)
m(n−j)

m(n−k)
k(n−m)√[

1 − j(n−m)
m(n−j)

] [
1 − m(n−k)

k(n−m)

]
= 0.

This completes the proof of the above lemma. �

Now, it is time to prove the theorem.

Proof of Theorem 2.1 Let A, B, C, be the following events.

A = {|Tk| ∈ (x, x + dx)},
B = {|Tj| < |Tk|, j = 1, . . . , k − 1},
C = {|Tj| < |Tk|, j = k + 1, . . . , n− 1}.

U = max
1≤k≤n−1

|Tk|; then

FU (x+ dx) − FU (x) = P [U ∈ (x, x + dx)]

= P

{
n−1⋃
k=1

[|Tk| ∈ (x, x + dx)]
⋂

[|Tk| > |Tj |, j �= k]

}

=
n−1∑
k=1

P [ABC]

=
n−1∑
k=1

P [A]P [B|A]P [C|AB].
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Next, Tk ∼ N(0, 1), therefore P [A] = 2φ(x, 0, 1) + o(dx). Moreover,

P [B|A] = P [|Tj | < x, i = 1, . . . , k − 1||Tk| = x] + o(dx)

= gk(x, x) + o(dx).

Finally, from the fact that {T1, T2, . . . , Tn−1} is a Markovian, {T1, T2, . . . ,
Tk−1} and {Tk+1, T2, . . . , Tn−1} are independent; that is, B and C are
independent given Tk = x. Therefore, P [C|AB] = P [C|A]. According to
the probability symmetry between B and C, similar to P [B|A], we have

P [C|A] = gn−k(x, x) + o(dx).

Thus, we obtain

P [U ∈ (x, x + dx)] =
n−1∑
k=1

2φ(x, 0, 1)gk(x, x)gn−k(x, x) + o(dx),

or

fU (x) = 2φ(x, 0, 1)
n−1∑
k=1

gk(x, x)gn−k(x, x).

This completes the proof of the theorem. �

To be able to use the null distribution of U , one needs to know how to
evaluate gk(x, s) or gn−k(x, s). The following theorem is given just for this
purpose.

Theorem 2.3 The function gk(x, s) is determined by the recursion:

gk(x, s) =
∫ s

0

gk−1(y, s)[φ(y, ρx, τ2) + φ(y,−ρx, τ2)]dy,

where ρ = ρk−1,k is the correlation coefficient between Tk−1 and Tk, and
τ2 =

√
1 − ρ2.

Proof. From (2.2) and the facts that {T1, T2, . . . , Tn−1} is a Markovian, Tk ∼
N(0, 1), the symmetry of Tk about 0, and Tk−1|Tk = x ∼ N(ρx, τ2), we have:

gk(x, s) = P [|Tj| < s, j = 1, . . . , k − 1||Tk| = x]

=
∫ s

−s

P [|Tj | < s, j = 1, . . . , k − 2|Tk−1 = y and |Tk| = x]

d[Tk−1 < y|Tk = x]

=
∫ s

−s

P [|Tj | < s, j = 1, . . . , k − 2|Tk−1 = y]d[Tk−1 < y|Tk = x]

2
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=
∫ s

−s

P [|Tj| < s, j = 1, . . . , k − 2||Tk−1| = y]d[Tk−1 < y|Tk = x]

=
∫ s

−s

gk−1(|y|, s)d[Tk−1 < y|Tk = x]

=
∫ s

−s

gk−1(|y|, s)φ(y, ρx, τ)dy

=
∫ s

0

gk−1(y, s)φ(y, ρx, τ)dy +
∫ 0

−s

gk−1(−y, s)φ(y, ρx, τ)dy

=
∫ s

0

gk−1(y, s)[φ(y, ρx, τ2) + φ(y,−ρx, τ2)]dy. �

In addition to the null distribution of U , the distribution of the location
k∗ of the change point has also been derived, which is given in the following
theorem.

Theorem 2.4 If k∗ is the position of the change point estimated by (2.1),
then for k = 1, 2, . . . , n,

P [k = k∗] =
∫ ∞

0

gk(x, x)gn−k(x, x)φ(x, 0, 1)dx.

Proof. In view of the facts that {T1, T2, . . . , Tn−1} is a Markovian, Tk ∼
N(0, 1), and the symmetry of Tk about 0, we obtain:

P [k = k∗] = P

{√
Vk∗ =

√
Vk = max

1≤k≤n−1
|Tk|

]
= P [|Tj | < |Tk|, j �= k]

=
∫ ∞

0

P [|Tj | < x, j �= k|Tk = x]dP [Tk < x]

=
∫ ∞

0

P [|Tj | < x, j = 1, . . . , k − 1|Tk = x]dP [Tk < x]

P [|Tj | < x, j = k + 1, . . . , n|Tk = x]

=
∫ ∞

0

P [|Tj | < x, j = 1, . . . , k − 1||Tk| = x]dP [Tk < x]

P [|Tj | < x, j = k + 1, . . . , n||Tk| = x]

=
∫ ∞

0

gk(x, x)gn−k(x, x)dP [Tk < x]

=
∫ ∞

0

gk(x, x)gn−k(x, x)φ(x, 0, 1)dx. �
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Although the null distribution of the test statistic U has been obtained,
the recursion formula requires moderate computations. Yao and Davis (1986)
derived the asymptotic null distribution of U , which provides an alternative
way to do formal statistical analysis when n is sufficiently large. The following
is based on their work.

Let Wk = x1 + x2 + · · · + xk, 1 ≤ k ≤ n; then simple algebra leads to

U = max
1≤k≤n−1

∣∣∣∣Wk√
n
− k

n

Wn√
n

∣∣∣∣/[
k

n

(
1 − k

n

)]1/2

.

Suppose {B(t); 0 ≤ t < ∞} is a standard Brownian motion; then under H0,
from properties of the normal random variable,

{(Wk − kμ)/
√
n; 1 ≤ k ≤ n} D=

{
B

(
k

n

)
; 1 ≤ k ≤ n

}
,

where “D=” means “distributed as”. Furthermore,

U = max
1≤k≤n−1

∣∣∣∣Wk√
n
− k

n

Wn√
n

∣∣∣∣/[
k

n

(
1 − k

n

)]1/2

.

= max
nt=1,...,n−1

∣∣∣∣Wk√
n
− t

Wn√
n

∣∣∣∣/[t(1 − t)]1/2

= max
nt=1,...,n−1

∣∣∣∣Wk√
n
− kμ√

n
− t

(
Wn√
n
− nμ√

n

)∣∣∣∣/[t(1 − t)]1/2

D= max
nt=1,...,n−1

|B(t) − tB(1)|/[t(1 − t)]1/2

= max
nt=1,...,n−1

|B0(t)|/[t(1 − t)]1/2,

where t = k/n, and B0(t) = B(t) − tB(1) is the Brownian bridge. The fol-
lowing theorem shows that the asymptotic null distribution of U is a Gumbel
distribution.

Theorem 2.5 Under H0, for −∞ < x < ∞,

lim
n→∞P [a−1

n (U − bn) ≤ x] = exp{−2π1/2e−x},

where an = (2 log logn)−1/2, bn = a−1
n + 1

2an log log logn.

The proof of this theorem is mainly based on the properties of Brownian
motion and convergence rules from the theory of probability. The following
lemmas are needed before the proof of the theorem is given.

2
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Lemma 2.6

max
1≤nt≤[n/ log n]

|B0(t)|√
t(1 − t)

− max
1≤nt≤[n/ log n]

|B(t)|√
t

= op(an).

Proof. For large n and 0 < t ≤ 1/ logn, clearly,
√
t/(1 − t) ≤ 2

√
t, and

(1/
√

1 − t− 1)/
√
t ≤ √

t. We obtain:∣∣∣∣∣ |B0(t)|√
t(1 − t)

− |B(t)|√
t

∣∣∣∣∣ ≤
∣∣∣∣∣ B0(t)√

t(1 − t)
− |B(t)|√

t

∣∣∣∣∣
=

∣∣∣∣∣B(t) − tB(1)√
t(1 − t)

− |B(t)|√
t

∣∣∣∣∣
=

∣∣∣∣∣ |B(t)|√
t

(
1√

1 − t
− 1
)
−
√

t

1 − t
B(1)

∣∣∣∣∣
≤
∣∣∣∣ |B(t)|√

t

(
1√

1 − t
− 1
)∣∣∣∣+

∣∣∣∣∣
√

t

1 − t
B(1)

∣∣∣∣∣
≤ √

t|B(t)| + 2
√
t|B(1)|

≤ (logn)−1/2(|B(t)| + 2|B(1)|).

Then

max
1≤nt≤[n/ log n]

|B0(t)|√
t(1 − t)

− max
1≤nt≤[n/ log n]

|B(t)|√
t

≤ max
1≤nt≤[n/ log n]

∣∣∣∣∣ |B0(t)|√
t(1 − t)

− |B(t)|√
t

∣∣∣∣∣
≤ (logn)−1/2 max

1≤nt≤[n/ log n]
(|B(t)| + 2|B(1)|)

= Op((logn)−1/2)

= op(an). �

Lemma 2.7

max
[n/ log n]≤nt≤[n/2]

|B0(t)|√
t(1 − t)

= Op((log log logn)1/2).

Proof. Inasmuch as B(t) is distributed as N(0, t), from the law of iterated
logarithm, for large n,

nB(t)
2[nt log log(nt)]1/2

= Op(1).
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Then
B(t)

2[t log log(nt)]1/2
= Op(1),

because for large n, n >
√
n. Let t be small, say t = 1/

√
n; then, for large n,

B(t)
2
√
t log log(t−1)

= Op(1),

or with probability 1,

|B(t)| < 2
√
t log log(t−1).

Let t −→ 0+; then for t ∈ [s, 1
2

]
, log log(t−1) < log log(s−1), and

max
t∈[s,1/2]

|B(t)|√
t

= Op((log log(s−1))1/2).

Finally,

max
[n/ log n]≤nt≤[n/2]

|B0(t)|√
t(1 − t)

= max
[n/ log n]≤nt≤[n/2]

|B(t) − tB(1)|√
t(1 − t)

≤ max
[n/ log n]≤nt≤[n/2]

|B(t)|√
t(1 − t)

+ max
[n/ log n]≤nt≤[n/2]

√
t

1 − t
|B(1)|

≤ max
[n/ log n]≤nt≤[n/2]

2|B(t)|√
t

+ max
[n/ log n]≤nt≤[n/2]

√
t

1 − t
|B(1)|

≤ 2 max
[1/ log n]≤t≤[1/2]

|B(t)|√
t

+Op(1)

= Op

(
log log

(
1

logn

)−1
)1/2

+Op(1)

= Op((log log logn)1/2). �

Lemma 2.8 For −∞ < x < ∞,

lim
n→∞P

[
a−1

n

(
max

1≤nt≤[n/ log n]

|B(t)|√
t

− bn

)
≤ x

]
= exp{−π1/2e−x}.

Proof. Because {(|B(t)|/√t); t = 1/n, . . . , [n/ logn]/n} D= {|B(t)|/√t; t =
1, . . . , [n/logn]}, and from Theorem 2 of Darling and Erdös (1956),

2
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lim
n→∞P

[
a−1
[n/log n]

(
max

t=1,...,[n/log n]

|B(t)|√
t

− b[n/log n]

)
≤ x

]
= exp{−π1/2e−x}

(2.3)
or

lim
n→∞P

[
max

t=1,...,[n/log n]

|B(t)|√
t

≤ a[n/log n]x+ b[n/log n]

)]
= exp{−π1/2e−x}.

Now, from L’Hospital’s rule, one can show that

a[n/log n] = an + o(an) and b[n/log n] = bn + o(bn).

Hence, for −∞ < x <∞,

(2.3) = lim
n→∞P

[
a−1

n

(
max

1≤nt≤[n/ log n]

|B(t)|√
t

− bn

)
≤ x

]
= exp{−π1/2e−x}.

�

Lemma 2.9 The following hold as n → ∞,

(i)

max
1≤nt≤[n/2]

|B0(t)|√
t(1 − t)

− max
1≤nt≤[n/ log n]

|B(t)|√
t

= op(an).

(ii)

max
1≤n(1−t)≤[n/2]

|B0(t)|√
t(1 − t)

− max
1≤n(1−t)≤[n/ log n]

|B(t) −B(1)|√
t

= op(an).

Proof. (i) From Lemma 2.6,

max
1≤nt≤[n/ log n]

|B0(t)|√
t(1 − t)

− max
1≤nt≤[n/ log n]

|B(t)|√
t

= op(an),

or

a−1
n max

1≤nt≤[n/ log n]

|B0(t)|√
t(1 − t)

− a−1
n max

1≤nt≤[n/ log n]

|B(t)|√
t

= op(1). (2.4)

Apply it to Lemma 2.8; then we have:

lim
n→∞P

[
a−1

n

(
max

1≤nt≤[n/ log n]

|B0(t)|√
t(1 − t)

− bn

)
≤ x

]
= exp{−π1/2e−x},
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or

lim
n→∞P

[
an

(
max

1≤nt≤[n/ log n]

|B0(t)|√
t(1 − t)

)
≤ anbn + a2

nx

]
= exp{−π1/2e−x}.

Letting n −→ ∞, and then x −→ +∞, we have

lim
n→∞P

[
an

(
max

1≤nt≤[n/ log n]

|B0(t)|√
t(1 − t)

)
−→ 1

]
−→ 1;

that is,

(2 log logn)−1/2 max
1≤nt≤[n/ log n]

|B0(t)|√
t(1 − t)

) n−→∞−→ 1, (2.5)

in probability. From Lemma 2.7,

max
[n/ log n]≤nt≤[n/2]

|B0(t)|√
t(1 − t)

= Op((log log logn)1/2).

Then

an max
[n/ log n]≤nt≤[n/2]

|B0(t)|√
t(1 − t)

= op(1).

Combining the above with (2.5), as n −→ ∞, we obtain

P

[
max

[n/ log n]≤nt≤[n/2]

|B0(t)|√
t(1 − t)

� max
1≤nt≤[n/ log n]

|B0(t)|√
t(1 − t)

]
−→ 0;

that is,

max
[n/ log n]≤nt≤[n/2]

|B0(t)|√
t(1 − t)

< max
1≤nt≤[n/ log n]

|B0(t)|√
t(1 − t)

. (2.6)

Then, according to (2.6),

max
1≤nt≤[n/2]

|B0(t)|√
t(1 − t)

= max

[
max

1≤nt≤[n/log n]

|B0(t)|√
t(1 − t)

, max
[n/log n]≤nt≤[n/2]

|B0(t)|√
t(1 − t)

]
P= max

1≤nt≤[n/log n]

|B0(t)|√
t(1 − t)

.

2
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Therefore, (2.4) becomes

a−1
n max

1≤nt≤[n/2]

|B0(t)|√
t(1 − t)

− a−1
n max

1≤nt≤[n/ log n]

|B0(t)|√
t(1 − t)

= op(1),

which leads to the result (i).
(ii) From the symmetry property of Brownian motion with respect to t =

1
2 , B0(t)

D= B0(1 − t) for 0 < t < 1. Because B(1 − t) D= B(1) − B(t) ∼
N(0, 1 − t), then replacing t by 1 – t in (i), we obtain

max
1≤n(1−t)≤[n/2]

|B0(t)|√
t(1 − t)

− max
1≤n(1−t)≤[n/ log n]

|B(1 − t)|√
t

= op(an),

or

max
1≤n(1−t)≤[n/2]

|B0(t)|√
t(1 − t)

− max
1≤n(1−t)≤[n/ log n]

|B(t) −B(1)|√
t

= op(an).

�
After the above preparation, we are ready to prove the theorem.

Proof of Theorem 2.5

P [a−1
n (U − bn) ≤ x|H0]

= P [U ≤ anx+ bn|H0]

= P

[
max

1≤nt≤n−1

|B0(t)|√
t(1 − t)

≤ anx+ bn

]

= P

[
max

1≤nt≤[n/2]

|B0(t)|√
t(1 − t)

≤ anx+ bn,

max
1≤n(1−t)≤[n/2]

|B0(t)|√
t(1 − t)

≤ anx+ bn

]

= P

[
max

1≤nt≤[n/log n]

|B(t)|√
t

≤ anx+ bn,

max
1≤n(1−t)≤[n/log n]

|B(t) −B(1)|√
1 − t

≤ anx+ bn

]
+ op(1)

= P

[
max

1≤nt≤[n/log n]

|B(t)|√
t

≤ anx+ bn

]
· P
[

max
1≤n(1−t)≤[n/log n]

|B(t) −B(1)|√
1 − t

≤ anx+ bn

]
+ op(1)

n−→∞−→ exp(−π−1/2e−x) · exp(−π−1/2e−x)

= exp(−2π−1/2e−x).
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2.1.2 Variance Unknown

Under H0, the likelihood function now is

L0(μ, σ2) =
1

(
√

2πσ)n
e−
�n

i=1(xi−μ)2/2σ2

and the MLEs of μ and σ2 are

μ̂ = x =
1
n

n∑
i=1

xi, and σ̂2 =
1
n

n∑
i=1

(xi − x)2,

respectively. Under H1, the likelihood function is

L1(μ1, μn, σ
2
1) =

1
(
√

2π)n
e−
�k

i=1(xi−μ1)2/2σ2
1−
�n

i=k+1(xi−μn)2/2σ2
1 ,

and the MLEs of μ1, μn, and σ2
1 are,

μ̂1 = xk =
1
k

k∑
i=1

xi, μ̂n = xn−k =
1

n− k

n∑
i=k+1

xi,

and

σ̂2
1 =

1
n

[
k∑

i=1

(xi − xk)2 +
n∑

i=k+1

(xi − xn−k)2
]
,

respectively.
Let

S =
n∑

i=1

(xi − x)2 and T 2
k =

k(n− k)
n

(xk − xn−k)2.

The likelihood procedure-based test statistic is then given by

V = max
1≤k≤n−1

|Tk|
S

. (2.7)

Worsley (1979) obtained the null distribution of V . His result is presented in
the following.

Let x = (x1, x2, . . . , xn), and y = (y1, y2, . . . , yn), where yi = (xi−x)/
√
S,

i = 1, 2, . . . , n. Also, define

ck =
√
k/(n− k) and bki =

{
n−1/2c−1

k , i = 1, . . . , k
−n−1/2ck, i = k + 1, . . . , n

,

for k = 1, 2, . . . , n − 1. Let bk be the vector such that bk = (bk1, . . . , bkn).
Then, Tk = b′kx, k = 1, . . . , n − 1. It is easy to see that b′k1 = 0, where

2
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1 = (1, 1, . . . , 1)′ is the n × 1 unit vector, hence b′ky = bkx/
√
S and V =

max1≤k≤n−1 |b′ky|.
Next, let y ∈Rn. Under H0, y′y = 1, thus y is uniformly distributed on

the surface of the unit (n – 1)-ball C = {y : y′y = 1 and 1′y = 0}. Let
D = {y : 1′y = 0, |b′ky| ≤ v, k = 1, . . . , n − 1}, then the event {V ≤ v} =
{y ∈ C

⋂
D}. Therefore,

P{V ≤ v} = surface area of C inside D

= P

{
y ∈

n−1⋂
k=1

(A+
k

⋃
A−k )c

}
, (2.8)

where for k = 1, . . . , n− 1,

A+
k = {y : y ∈ C,b′ky > v},

A−k = {y : y ∈ C,−b′ky > v},
Ak = A+

k

⋃
A−k , A

+
k

⋂
A−k = φ.

From DeMorgan’s law, (2.8) is reduced to

P{V ≤ v} = 1 − P

{
y ∈

n⋃
k=1

(A+
k

⋃
A−k )

}

= 1 −
n∑

k=1

P{y ∈ Ak} +
∑∑

1≤k1≤k2≤n−1
P
{
y ∈ Ak1

⋂
Ak2

}

+· · ·+ (−1)p
∑∑

· · ·
∑

1≤k1≤k2≤···≤kp≤n−1
P

⎧⎨⎩y ∈
p⋂

j=1

Akj

⎫⎬⎭
+ · · · + (−1)n−1P

⎧⎨⎩y ∈
n−1⋂
j=1

Aj

⎫⎬⎭ . (2.9)

Because P{y ∈ Ak} = P{y ∈ C, and b′ky > v} + P{y ∈ C, and
b′ky < −v}, and b′ky = bkx/

√
S = Tk/

√
S, then P{y ∈ Ak} can be cal-

culated via the distribution of the statistic Tk/
√
S.

Now, under H0, Tk ∼ N(0, σ2), S2
k =

∑k
i=1(xi−xk)2+

∑n
i=k+1(xi−xn−k)2

is distributed as σ2χ2
n−2, and Tk is independent of Sk; then Tk/[Sk/

√
n− 2] ∼

χ2
n−2. But simple algebra shows that S = S2

k + T 2
k , then Tk/S =

(S2
k/T

2
k +1)−1/2, hence P{y ∈ Ak} can be calculated via a tn−2 distribution.

For other terms in (2.9), we need only to consider a general one such as
P{y ∈ ⋂p

j=1 Ãkj} for 1 < p < n − 1, with k1 < k2 < · · · < kp, and Ãkj is
either A+

kj or A−kj .
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Let B be a p× n matrix such that B = (b∗′k1, . . . ,b
∗′
kp)

′, and Ip be a p× 1
unit vector, where

b∗′ki =

{
bkj if Ãkj = A+

kj

−bkj if Ãkj = A−kj

Then, P{y ∈ ⋂p
j=1 Ãkj} = P{By > vIp}. Now the following theorem gives

the null probability density function of V = By at v.

Theorem 2.10 Under H0, the pdf of V = By at v is given by

fp(v) =

⎧⎨⎩
Γ
[

n−1
2

]
πp/2Γ

[
n−1−p

2

] |Σ|−1/2[1 − v′Σ−1v](n−3−p)/2, if v′Σ−1v < 1

0, otherwise

where Σ = BB′.

To prove this theorem, we need the following results.

Lemma 2.11 B can be written as B = GΓ , where G is a p × p positive
definite matrix, and Γ is p× n with ΓΓ ′ = Ip.

Proof. It follows directly from Theorem 1.39 on page 11 of Gupta and Varga
(1993). �

For the purpose of deriving the null distribution, WLOG, we write:

H0 : μ1 = μ2 = · · · = μn = 0.

Let J = In − (1/n)11′, and augment the matrix Γ in Lemma 2.11 to:

Q =
(
Γ
Γ0

)
,

where Γ0 is (n− p) × n such that Q is an n× n orthogonal matrix. Also, let
M = QJQ′, and let the first p×p principal minor of M be Mp; then we have
the following Lemma 2.12.

Lemma 2.12 V = By has the pdf:

fp(v) =
Γ
[

n−1
2

]
πp/2Γ

[
n−1−p

2

] |M−1
p |1/2|G−1|[1 − v′G′

−1
M−1

p G−1v](n−3−p)/2,

over the region v′G′
−1
M−1

p G−1v < 1, and zero otherwise, where G is as in
Lemma 2.11.

2
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Proof. Clearly, y = Jx/
√

x′Jx and J1 = 0. From Lemma 2.11,

V = By = GΓy

= G(Ip
...0)Qy (0 is a p× (n− p) zero matrix)

= G(Ip
...0)QTQ′(Qx′)/

√
(Qx)′QJQ′(Qx).

Let Z = Qx; then under H0, Z ∼ N(0, σ2In). Let t = Γy = (Ip
...0)MZ√

Z ′MZ, then from Worsely (1979, 1983), the pdf of t is:

f(t1, . . . , tp) =
Γ
[

n−1
2

]
πp/2Γ

[
n−1−p

2

] |M−1
p |1/2[1 − t′M−1

p t](n−3−p)/2

for t′M−1
p t <1, and zero otherwise.

Therefore, V = By = GΓy = Gt has the pdf

fp(v) =
Γ
[

n−1
2

]
πp/2Γ

[
n−1−p

2

] |M−1
p |1/2|G−1|[1 − v′G′

−1
M−1

p G−1v](n−3−p)/2,

over the region v′G′
−1
M−1

p G−1v < 1, and zero otherwise. �

Now it is time to prove the theorem.

Proof of Theorem 2.10 Because

M = QJQ′

=
(
Γ
Γ0

)(
In − 1

n
11′
)(

Γ ′ Γ ′0
)

=
(
Ip − 1

nΓ11′Γ ′ ∗
∗ ∗

)
,

we have Mp = Ip − (1/n)Γ11′Γ ′. But Γ1 = 0p as B1 = 0p, therefore
Mp = Ip. From Lemma 2.12, we thus obtain that the pdf of V = By at v is
given by

fp(v) =
Γ
[

n−1
2

]
πp/2Γ

[
n−1−p

2

] |Σ|−1/2[1 − v′Σ−1v](n−3−p)/2,

for v′Σ−1v < 1, and zero otherwise, where Σ = GM−1
p G′ = GG′ =

GΓΓ ′G′ = BB′. �

Consequently, based on the t-distribution with n – 2 degrees of freedom and
Theorem 2.10, the null probability function of V can be calculated through
(2.9).
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Remark 2.13 Ignoring the higher-order terms in (2.9), one can obtain
Bonferroni approximations for the distribution of V . Worsley (1979) obtained
the percentage points for the Bonferroni approximations.

2.1.3 Application to Biomedical Data

In the last decade or so, life science research has been advanced by fast
developing biotechnologies. Microarray technology, among the many well-
developed biotechnologies, is a breakthrough that makes it possible to quantify
the expression patterns of thousands or tens of thousands of genes in various
tissues, cell lines, and conditions simultaneously. Biologists, geneticists, and
medical researchers now routinely use microarray technology in their speci-
fied research projects thus resulting in voluminous numerical data related
to expression of each gene encoded in the genome, the content of proteins
and other classes of molecules in cells and tissues, and cellular responses to
stimuli, treatments, and environmental factors.

Biological and medical research (e.g., see Lucito et al. 2000) reveals
that some forms of cancer are caused by somatic or inherited mutations
in oncogenes and tumor suppressor genes; cancer development and genetic
disorders often result in chromosomal DNA copy number changes or copy
number variations (CNVs). Consequently, identification of these loci where
the DNA copy number changes or CNVs have taken place will (at least
partially) facilitate the development of medical diagnostic tools and treat-
ment regimes for cancer and other genetic diseases. Due to the advance-
ment in array technology, the array Comparative Genomic Hybridization
(aCGH) technique (see Kallioniemi et al. 1992 and Pinkel et al. 1998) or
single nucleotide polymorphism (SNP) arrays (see Nannya et al. 2005) are
often used in experiments that are deemed to study DNA copy numbers. The
resulting data are typically called aCGH and SNP array data, respectively.
However, because of the random noise inherited in the imaging and hybridi-
zation process in the DNA copy number experiments, identifying statistically
significant CNVs or DNA copy number changes in aCGH data and in SNP
array data is challenging.

In DNA copy number experiments such as aCGH copy number experi-
ments, differentially labeled sample and reference DNA are hybridized to
DNA microarrays, and the sample intensities of the test and reference samples
are obtained (Pinkel et al. 1998, Pollack et al. 1999, and Myers et al. 2004).
As the reference sample is assumed or chosen to have no copy number changes,
markers whose test sample intensities are significantly higher (or lower) than
the reference sample intensities are corresponding to DNA copy number gains
(or losses) in the test sample at those locations (Olshen et al. 2004).

Concretely, the test sample intensity at locus i on the genome is usually
denoted by Ti and the corresponding reference sample intensity byRi, and the

2
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Fig. 2.4 The genome of the fibroblast cell line GM01524 of Snijders et al. (2001)

normalized log base 2 ratio of the sample and reference intensities, log2 Ti/Ri,
at the ith biomarker, is one of the default outputs after the DNA copy number
experiment is conducted using the aCGH technique. Here, log2 Ti/Ri = 0
indicates no DNA copy number change at locus i, log2 Ti/Ri < 0 reveals a
deletion at locus i, and log2 Ti/Ri > 0 signifies duplication in the test sample
at that locus. Due to various random noise, which occurs largely during the
experimental and image processing stages, the log2 Ti/Ri becomes a random
variable. Ideally, this random variable is assumed to follow a Gaussian dis-
tribution of mean 0 and constant variance σ2. Then, deviations from the
constant parameters (mean and variance) presented in log2 Ti/Ri data may
indicate a copy number change. Hence, the key to identifying true DNA copy
number changes becomes the problem of how to identify changes in the para-
meters of a normal distribution based on the observed sequence of log2 Ti/Ri.
Figure 2.4 is the scatterplot of the log base 2 ratio intensities of the genome
of the fibroblast cell line GM01524 obtained by Snijders et al. (2001).

Since the publication of aCGH data by many research laboratories on copy
number studies for different cell lines or diseases, analyzing aCGH data has
become an active research topic for scientists, data analysts, and biostatisti-
cians among others. A recent survey on the methods developed for analyzing
aCGH data can be found in Chen (2010).

Among the many methods used for aCGH data, some methods are rooted
in statistical change point analysis. Olshen et al. (2004) proposed a circular
binary segmentation (CBS) method to identify DNA copy number changes
in an aCGH database on the mean change point model proposed in Sen
and Srivastava (1975a). This CBS method is mainly the combination of the
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likelihood-ratio based test for testing no change in the mean against exactly
one change in the mean with the BSP (Vostrikova, 1981) for searching mul-
tiple change points in the mean, assuming that the variance is unchanged.
The idea of the CBS method (Olshen et al. 2004) can be summarized as
follows.

LetXi denote the normalized log2 Ri/Gi at the ith locus along the chromo-
some; then {Xi} is considered as a sequence of normal random variables
taken from N(μi, σ

2
i ), respectively, for i = 1, . . . , n. Consider any segment

of the sequence of the log ratio intensities {Xi} (assumed to follow normal
distributions) to be spliced at the two ends to form a circle; the test statistic
Zc of the CBS is based on the modified likelihood-ratio test and is specifically,

Zc = max
1≤i<j≤n

|Zij |, (2.10)

where Zij is the likelihood-ratio test statistic given in Sen and Srivastava
(1975a) for testing the hypothesis that the arc from i + 1 to j and its com-
plement have different means (i.e., there is a change point in the mean of the
assumed normal distribution for the Xis) and is given by:

Zij =
1

{1/(j − i) + 1/(n− j + i)}1/2

{
Sj − Si

j − i
− Sn − Sj + Si

n− j + i

}
, (2.11)

with
Si = X1 +X2 + · · · + Xi, 1 ≤ i < j ≤ n.

Note that Zc allows for both a single change (j = n) and the epidemic
alternative (j < n). A change is claimed if the statistic exceeds an appropri-
ate critical value at a given significant level based on the null distribution.
However, the null distribution of the test statistic Zc is not attainable so far
in the literature of change point analysis. Then, as suggested in Olshen et al.
(2004), the critical value when the Xis are normal needs to be computed using
Monte Carlo simulations or the approximation given by Siegmund (1986) for
the tail probability. Once the null hypothesis of no change is rejected the
changepoint(s) is (are) estimated to be i (and j) such that Zc = |Zij | and
the procedure is applied recursively to identify all the changes in the whole
sequence of the log ratio intensities of a chromosome (usually of hundreds to
thousands of observations). The CBS algorithm is written as an R package
and is available from the R Project website.

The influence of the CBS to the analyses of aCGH data is tremendous as
the CBS method provided a statistical framework to the analysis of DNA
copy number analysis. The p-value given by the CBS for a specific locus
being a change point, however, is only obtained by a permutation method
and the calculation of such a p-value takes a long computation time when the
sequence is long, which is the case for high-density array data. Hence the CBS
method has the slowest computational speed as pointed out in Picard et al.
(2005). A recent result in Venkatraman and Olshen (2007) has improved the

2
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Table 2.1 Computational Output for Cell Line GM07408 Using the R Package DNAcopy
(Venkatraman and Olshen 2007)

Chr. Number

ID Start Locus End Locus Mark Seg Mean Statistic p-Value

1 468.3075 72188.15 46 0.0005 6.798636 3.974580 × 10−10

1 77228.4545 91439.90 9 −0.1613 5.206164 6.896233 × 10−6

1 93058.0760 209867.40 63 0.0002 4.205344 7.806819 × 10−4

1 211009.1200 240000.00 15 −0.1129 NA NA

2 0.0000 245000.00 65 −0.0470 NA NA

3 0.0000 218000.00 83 −0.0831 NA NA

4 0.0000 15439.24 11 0.0549 4.091054 1.604376 × 10−3

4 22245.2500 169000.00 126 −0.0728 2.753006 1.323652 × 10−1

4 170170.0000 177387.29 8 0.0242 4.995123 4.854205 × 10−6

4 178400.0000 179200.0 4 0.1962 7.467238 1.040446 × 10−12

4 179490.1710 184000.00 12 0.0193 NA NA

5 0.0000 198500.00 110 −0.0259 NA NA

6 0.0000 65990.01 43 −0.0087 5.582021 7.693862 × 10−7

6 65990.0145 103277.13 12 −0.1887 3.581999 6.122494 × 10−3

6 104186.6075 188000.00 29 −0.0630 NA NA

7 0.0000 161500.00 173 0.0166 NA NA

8 0.0000 13266.95 23 0.0091 5.427554 1.043974 × 10−6

8 16299.9040 16815.62 3 −0.2023 5.065677 7.349159 × 10−6

8 17992.9110 41655.39 24 0.0483 6.296318 1.294907 × 10−8

8 41932.6780 86296.08 48 −0.0553 5.116016 1.016467 × 10−5

8 87774.9320 100534.00 15 −0.1495 7.786791 2.741869 × 10−13

8 107253.3650 147000.00 38 0.0241 NA NA

9 0.0000 33134.86 29 −0.1002 5.493857 1.828478 × 10−6

9 33856.8540 115000.00 77 0.0187 NA NA

10 0.0000 14349.90 16 0.0105 2.317172 2.252879 × 10−1

10 15126.2185 47803.26 23 −0.0401 5.230861 3.958791 × 10−6

10 49954.2190 69209.44 14 −0.1412 8.040106 1.713658 × 10−14

10 69549.0280 73067.45 9 0.0718 2.372705 1.860309 × 10−1

10 74000.0000 108902.62 25 0.0277 4.739140 4.486729 × 10−5

10 110000.0000 117000.00 10 −0.0562 5.814313 1.408531 × 10−7

10 118499.8495 142000.00 23 0.1067 NA NA

computational speed of CBS. If there is an analytic formula for calculating
the p-value of the change point hypothesis, the computational speed will
undoubtedly be faster and more convenient.

For the application of the CBS method to the analysis of 15 fibroblast cell
lines obtained in Snijders et al. (2001), readers are referred to Olshen et al.
(2004) and Venkatraman and Olshen (2007). As a complete example, we
present here the use of the R-package, DNAcopy (Venkatraman and Olshen
2007), on the fibroblast cell line GM07408 (Snijders et al. 2001). After the
data are read into the R-package, we obtaine the p-values (based on the
test statistics Zij , given in (2.11)) for each segement being a change along
the chromosome. These results directly output from DNAcopy are listed in
Table 2.1 of this chapter.



28 Univariate Normal Model

Table 2.2 Computational Output for Cell Line GM07408 Using DNAcopy: Table 2.1
Continued

Chr. Number
ID Start Locus End Locus Mark Seg Mean Statistic p-Value

11 0.0000 20607.03 34 −0.0076 4.551992 1.319627 × 10−4

11 20719.3180 34420.00 14 −0.1402 5.978688 4.620736 × 10−8

11 34420.0000 39388.78 14 0.0011 5.925536 6.168566 × 10−8

11 39623.3960 48010.94 13 −0.1385 6.550567 2.330282 × 10−9

11 48923.4020 87856.91 51 0.0187 7.290779 1.511135 × 10−11

11 88570.8380 117616.94 24 −0.1376 7.615232 1.051503 × 10−12

11 117817.0610 145000.00 30 0.0338 NA NA

12 315.6600 142000.00 91 0.0091 NA NA

13 5653.9480 28325.81 14 0.0122 6.231862 1.191981 × 10−8

13 28469.3085 78470.20 22 −0.1277 5.223176 4.356758 × 10−6

13 80645.9990 100500.00 18 −0.0093 NA NA

14 769.5125 40288.14 30 −0.0847 6.140269 3.336396 × 10−8

14 42901.6730 97000.00 39 0.0301 NA NA

15 0.0000 79000.00 67 −0.0065 NA NA

16 0.0000 52092.53 31 0.0312 5.063312 9.064410 × 10−6

16 53000.0000 55905.26 4 −0.1804 4.543496 1.095742 × 10−4

16 57000.0000 84000.00 30 0.0549 NA NA

17 0.0000 52738.37 58 0.0686 5.153190 8.319006 × 10−6

17 52804.6060 56190.77 4 −0.1529 4.598118 8.167274 × 10−5

17 56313.4240 86000.00 28 0.0868 NA NA

18 0.0000 86000.00 44 0.5821 NA NA

19 0.0000 70000.00 35 0.0828 NA NA

20 0.0000 73000.00 82 0.0459 NA NA

21 3130.9400 19079.91 20 −0.1420 6.288501 7.767927 × 10−9

21 19247.3920 30000.00 13 0.0274 NA NA

22 1100.0000 33000.00 13 0.1213 NA NA

23 0.0000 155000.00 42 0.7744 NA NA

The plot that indicated the whole genome of GM07408 is also obtained and
is given as Figure 2.5. In Figure 2.5, the adjacent chromosomes are indicated
by green and black colors alternately, and the red line segment represents the
sample mean for each segment.

Figure 2.6 gives the collection of all 23 plots for the 23 chromosomes of
the cell line GM07408 with changes identified. It is customary to also obtain
a plot of the log ratio intensities chromosome by chromosome with mean
changes identified by the CBS method. More plots, say Figures 2.7–2.11, are
also obtained by using the same R-package for chromosomes 4, 5, 8–11, 22,
and 23 of the cell line GM07408 with changes identified.

There are changes identified by using the CBS method on each chromo-
some.

2
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Fig. 2.5 The genome plot of the fibroblast cell line GM07408 of Snijders et al. (2001)
using the R-package DNAcopy

Fig. 2.6 The plots of all chromosomes on the fibroblast cell line GM07408 of Snijders
et al. (2001) with mean changes indicated
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Fig. 2.7 The plot of chromosomes 4 and 5 on the fibroblast cell line GM07408 of Snijders
et al. (2001) with mean changes indicated

2
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Fig. 2.8 The plot of chromosomes 8 and 9 on the fibroblast cell line GM07408 of Snijders
et al. (2001) with mean changes indicated
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Fig. 2.9 The plot of chromosomes 10 and 11 on the fibroblast cell line GM07408 of Snijders
et al. (2001) with mean changes indicated

2
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Fig. 2.10 The plot of chromosomes 18 and 19 on the fibroblast cell line GM07408 of
Snijders et al. (2001) with mean changes indicated
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Fig. 2.11 The plot of chromosomes 22 and 23 on the fibroblast cell line GM07408 of
Snijders et al. (2001) with mean changes indicated

2
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2.2 Variance Change

Testing and estimation about mean change in a Gaussian model has been
studied in Section 2.1. The corresponding problem of changes in the regres-
sion model is studied in Chapter 4. Inference about variance changes while
the mean remains common has been studied by Wichern, Miller, and Hsu
(1976), Hsu (1977), Davis (1979), Abraham and Wei (1984), Inclán (1993),
and Chen and Gupta (1997). In this section, the variance change problem for
the univariate Gaussian model using different methods is considered

Let x1, x2, . . . , xn be a sequence of independent normal random variables
with parameters (μ, σ2

1), (μ, σ2
2), . . . , (μ, σ2

n), respectively. Assume that μ is
known. The interest here is to test the hypothesis (see Gupta and Tang,
1987):

H0 : σ2
1 = σ2

2 = · · · = σ2
n = σ2(unknown), (2.12)

versus the alternative:

HA : σ2
1 = · · · = σ2

k1
�= σ2

k1+1 = · · · = σ2
k2

�= · · · �= σ2
kq+1 = · · · = σ2

n,

where q is the unknown number of change points, and 1 ≤ k1 < k2 < · · · <
kq < n, are the unknown positions of the change points, respectively. Using
the binary segmentation procedure, as described in Chapter 1, it suffices to
test and estimate the position of a single change point at each stage, that is,
to test H0 defined by (2.10) against the following alternative:

H1 : σ2
1 = · · · = σ2

k �= σ2
k+1 = · · · = σ2

n, (2.13)

where 1 < k < n, is the unknown position of the single change point.

2.2.1 Likelihood-Ratio Procedure

Under H0, the log likelihood function is:

logL0(σ2) = −n

2
log 2π − n

2
log σ2 −

∑n
i=1(xi − μ)2

2σ2
.

Let σ̂2 be the MLE of σ2 under H0, Then

σ̂2 =
∑n

i=1(xi − μ)2

n
,

and the maximum likelihood is

logL0(σ̂2) = −n

2
log 2π − n

2
log σ̂2 − n

2
.
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Under H1, the log likelihood function is:

logL1(σ2
1 , σ

2
n) = −n

2
log 2π − k

2
log σ2

1 − n− k

2
log σ2

n

−
∑k

i=1(xi − μ)2

2σ2
1

−
∑n

i=k+1(xi − μ)2

2σ2
n

.

Let σ̂2
1 , σ̂

2
n be the MLEs of σ2

1 , σ
2
n, respectively; then

σ̂2
1 =

∑k
i=1(xi − μ)2

k
, σ̂2

n =
∑n

i=k+1(xi − μ)2

n− k
,

and the maximum log likelihood is:

logL1(σ̂2
1 , σ̂

2
n) = −n

2
log 2π − k

2
log σ̂2

1 − n− k

2
log σ̂2

n − n

2
.

Then the likelihood-ratio procedure statistic is

λn =
{

max
1<k<n−1

[n log σ̂2 − k log σ̂2
1 − (n− k) log σ̂2

n]
}1/2

. (2.14)

Notice that, to be able to obtain the MLEs, we can only detect changes
for 2 ≤ k ≤ n − 2. According to the principle of the maximum likelihood
procedure, we estimate the position k of the change point by k̂ such that
(2.12) attains its maximum at k̂.

Next, we derive the asymptotic null distribution of λn. Note that, for
large n,

λn =
{

max
1<k<n−1

[n log σ̂2 − k log σ̂2
1 − (n− k) log σ̂2

n]
}1/2

= max
1<k<n−1

[
n log

∑n
i=1(xi − μ)2

n
− k log

∑k
i=1(xi − μ)2

k

−(n− k) log

∑n
i=k+1(xi − μ)2

n− k

]1/2

.

Under H0, yi = (xi − μ)/σ ∼ N(0, 1); then

λn
D= max

1<k<n−1

[
n log

∑n
i=1 y

2
i

n
− k log

∑k
i=1 y

2
i

k
− (n− k) log

∑n
i=k+1 y

2
i

n− k

]1/2

.

2
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Now, using the three-term Taylor expansion, we write

ξk = n log
∑n

i=1 y
2
i

n
− k log

∑k
i=1 y

2
i

k
− (n− k) log

∑n
i=k+1 y

2
i

n− k

= n

(∑n
i=1 y

2
i

n
− 1
)
− n

2

(∑n
i=1 y

2
i

n
− 1
)2

+
n

3
(θ(1)

n )−3

(∑n
i=1 y

2
i

n
− 1
)3

− k

(∑k
i=1 y

2
i

k
− 1

)
+
k

2

(∑k
i=1 y

2
i

k
−1

)2

− k

3
(θ(2)

n )−3

(∑k
i=1 y

2
i

k
−1

)3

− (n− k)

(∑n
i=k+1 y

2
i

n− k
− 1

)
+
n− k

2

(∑n
i=k+1 y

2
i

n− k
− 1

)2

− n− k

3
(θ(3)

n )−3

(∑n
i=k+1 y

2
i

n− k
− 1

)3

= − 1
2n

[
n∑

i=1

(y2
i − 1)

]2

+
1
2k

[
k∑

i=1

(y2
i − 1)

]2

+
1

2(n− k)

[
n∑

i=k+1

(y2
i − 1)

]2

+
n

3
(θ(1)

n )−3

(∑n
i=1 y

2
i

n
− 1
)3

− k

3
(θ(2)

n )−3

(∑k
i=1 y

2
i

k
− 1

)3

− n− k

3
(θ(3)

n )−3

(∑n
i=k+1 y

2
i

n− k
− 1

)3

,

where |θ(1)
n −1| < |∑n

i=1 y
2
i /n−1|, |θ(2)

n −1| < |∑k
i=1 y

2
i /k−1|, and |θ(3)

n −1| <
|∑n

i=k+1 y
2
i /(n− k) − 1|. Denote ξk = Wk +Qk +Rk, where

Wk = − 1
2n

[
n∑

i=1

(y2
i −1)

]2

+
1
2k

[
k∑

i=1

(y2
i − 1)

]2

+
1

2(n− k)

[
n∑

i=k+1

(y2
i −1)

]2

,

Qk =
n

3
(θ(1)

n )−3

(∑n
i=1 y

2
i

n
− 1
)3

− k

3
(θ(2)

n )−3

(∑k
i=1 y

2
i

k
− 1

)3

,

Rk = −n− k

3
(θ(3)

n )−3

(∑n
i=k+1 y

2
i

n− k
− 1

)3

.

Before having our main theorem, we first give the following lemmas which
are needed in the sequel.
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Lemma 2.14

(i) max1<k<n k
1/2(log log k)−3/2|Qk| = Op(1),

(ii) max1<k<n(n− k)1/2(log log(n− k))−3/2|Rk| = Op(1).

Proof. (i) From the law of iterated logarithm, we obtain:∣∣∣(θ(1)
n )−1n

(�n
i=1 y2

i

n − 1
)∣∣∣

(n log logn)1/2
= Op(1).

Then, ∣∣∣∣(θ(1)
n )−3n3

(�n
i=1 y2

i

n − 1
)3
∣∣∣∣

(n log logn)3/2
= Op(1);

that is,

n1/2(log log n)−3/2

∣∣∣∣∣(θ(1)
n )−3n

(∑n
i=1 y

2
i

n
− 1
)3
∣∣∣∣∣ = Op(1).

But, k1/2(log log k)−3/2 ≤ n1/2(log logn)−3/2 for 1 < k < n, hence

max
1<k<n

k1/2(log log k)−3/2

∣∣∣∣∣(θ(1)
n )−3n

(∑n
i=1 y

2
i

n
− 1
)3
∣∣∣∣∣ = Op(1).

Similarly, we obtain

max
1<k<n

k1/2(log log k)−3/2

∣∣∣∣∣∣(θ(2)
n )−3k

(∑k
i=1 y

2
i

k
− 1

)3
∣∣∣∣∣∣ = Op(1).

That is, max1<k<n k
1/2(log log k)−3/2|Qk| = Op(1), which completes the

proof of (i).
(ii) Similar to the proof of (i). �

Lemma 2.15 Let a(log n) = (2 log logn)1/2, and b(logn) = 2 log logn +
1
2 log log logn − logΓ

(
1
2

)
; then for all x ∈ R, as n −→ ∞, the following

hold.

(i) a2(logn)max1<k<log n Wk − (x+ b(logn))2 P−→ −∞.

(ii) a2(logn)max1<k<log n ξk − (x+ b(logn))2 P−→ −∞.

(iii) a2(logn)maxn−log n<k<n Wk − (x+ b(logn))2 P−→ −∞.

(iv) a2(logn)maxn−log n<k<n ξk − (x+ b(logn))2 P−→ −∞.

2
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Proof. (i) Because as k −→ ∞,

1
k

[
k∑

i=1

(y2
i − 1)

]2

P−→ 1
2
,

then [∑k
i=1(y

2
i − 1)

]2
k log k

P−→ 0,

as k −→ ∞. Thus, there exists a constant c, 0 < c < 1, such that for large k,

0 <

[∑k
i=1(y

2
i − 1)

]2
k log k

< 1 − c.

Now,

a2(logn)max1<k<log n
1
k

[∑k
i=1(y

2
i − 1)

]2
[b(logn)]2

≤ (2 log logn)max1<k<log n
1
k

[∑k
i=1(y

2
i − 1)

]2
[2 log logn]2

≤ max
1<k<log n

[∑k
i=1(y

2
i − 1)

]2
k log logn

≤ max
1<k<log n

[∑k
i=1(y

2
i − 1)

]2
k log k

< 1 − c.

Hence, as n −→ ∞,

a2(log n) max
1<k<log n

1
2k

[
k∑

i=1

(y2
i − 1)

]2

− (x + b(logn))2 P−→ −∞.

Similarly, as n −→ ∞, we obtain

a2(logn) max
1<k<log n

1
2(n− k)

[
n∑

i=k+1

(y2
i − 1)

]2

− (x+ b(logn))2 P−→ −∞.

Moreover, because as n −→ ∞,

1
2n

[
n∑

i=1

(y2
i − 1)

]2

P−→ 1 and a2(log n) −→ ∞,
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as n −→ ∞,

a2(logn)
2n

[
n∑

i=1

(y2
i − 1)

]2

P−→ ∞.

Consequently, as n −→ ∞,

a2(log n) − 1
2n

[
n∑

i=1

(y2
i − 1)

]2

− (x + b(logn))2 P−→ −∞.

Therefore, as n −→ ∞,

a2(log n) max
1<k<log n

Wk − (x+ b(logn))2 P−→ −∞.

Proceeding similarly as above, we can obtain (ii)–(iv). �

Lemma 2.16 As n −→ ∞, the following hold.

(i) a2(logn)maxlog n<k<n−log n |ξk −Wk| = op(1).
(ii) a2(logn)max1<k<n/ log n

∣∣ 1
(n−k)

[∑n
i=k+1(y

2
i −1)

]2− 1
n

[∑n
i=1(y

2
i −1)

]2∣∣ =
op(1).

Proof. (i) Clearly, ξk −Wk = Qk +Rk. Now,

0 ≤ a2(log n) max
log n<k<n−log n

|Qk +Rk|

≤ 2 log log n max
log n<k<n−log n

|Qk| + 2 log log n max
log n<k<n−log n

|Rk|

= 2 log log n max
log n<k<n−log n

(log log k)3/2

k1/2
(log log k)−3/2|Qk|

+ 2 log logn max
log n<k<n−log n

(log log(n− k))3/2

(n− k)1/2
(log log(n− k))−3/2|Rk|

≤ 2(log logn)5/2

(log n)1/2
max

log n<k<n−log n
k1/2(log log k)−3/2|Qk|

+
2(log logn)5/2

(logn)1/2
max

log n<k<n−log n
(n− k)1/2(log log(n− k))−3/2|Rk|

P−→ 0,

as n −→ ∞, hence

lim
n→∞ a2(logn) max

log n<k<n−log n
|ξk −Wk| P= 0;

2
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that is, (i) holds. (ii) For all n and k,

E

⎧⎨⎩ 1
(n− k)

[
n∑

i=k+1

(y2
i − 1)

]2

− 1
n

[
n∑

i=1

(y2
i − 1)

]2
⎫⎬⎭ = 0,

therefore we have,

E

⎧⎨⎩a2(logn)

⎡⎣[ n∑
i=k+1

(y2
i − 1)

]2

− 1
n

[
n∑

i=1

(y2
i − 1)

]2
⎤⎦⎫⎬⎭ = 0

for all n and k. Hence, as n −→ ∞,

a2(log n)

∣∣∣∣∣∣
[

n∑
i=k+1

(y2
i − 1)

]2

− 1
n

[
n∑

i=1

(y2
i − 1)

]2
∣∣∣∣∣∣ P−→ 0,

for all k and 1 < k < n/ logn. That is,

a2(log n) max
1<k<n/ log n

∣∣∣∣∣∣ 1
(n− k)

[
n∑

i=k+1

(y2
i − 1)

]2

− 1
n

[
n∑

i=1

(y2
i − 1)

]2
∣∣∣∣∣∣ = op(1).

�

Lemma 2.17 For all x ∈ R, as n −→ ∞,

a2(logn) max
n/ log n<k<n−n/ log n

Wk − (x+ b(logn))2 P−→ −∞.

Proof. Recall that

Wk =
1
2k

[
k∑

i=1

(y2
i − 1)

]2

+
1

2(n− k)

[
n∑

i=k+1

(y2
i − 1)

]2

− 1
2n

[
n∑

i=1

(y2
i − 1)

]2

.

Let’s consider the first term of Wk.
From Theorem 2 of Darling and Erdös (1956), we have for x ∈ R, as

n −→ ∞,

P

⎡⎣ max
n/ log n<k<n−n/ log n

1
2k

[
k∑

i=1

(y2
i − 1)

]2

< (2 log logn)1/2+
log log logn

2(log logn)1/2
+

x

2(log logn)1/2

]
−→ exp

(
− 1√

π
e−x

)
.
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Therefore, as n −→ ∞,

P

⎡⎢⎣a2(logn)maxn/ log n<k<n−n/ log n
1
2k

[∑k
i=1(y

2
i − 1)

]2
(x+ b(logn))2

<
1
2

(
2 log logn+ 1

2 log log logn+ x

x+ b(logn)

)2
]

−→ exp
(
− 1√

π
e−x

)
.

Because b(logn) = 2 log logn + 1
2 log log logn − logΓ

(
1
2

)
, it follows that as

n −→ ∞,

P

⎡⎢⎣a2(logn)maxn/ log n<k<n−n/ log n
1
2k

[∑k
i=1(y

2
i − 1)

]2
(x+ b(logn))2

<

(
1√
2

+
logΓ (1/2)√

2(x+ b(logn))

)2
]

−→ exp
(
− 1√

π
e−x

)
.

Choose n sufficiently large, such that(
1√
2

+
logΓ (1/2)√

2(x+ b(logn))

)2

< 1 −M, for 0 < M < 1,

therefore, as n −→ ∞,

P

⎡⎢⎣a2(log n)maxn/ log n<k<n−n/ log n
1
2k

[∑k
i=1(y

2
i − 1)

]2
(x+ b(logn))2

< 1 −M

⎤⎥⎦
−→ exp

(
− 1√

π
e−x

)
.

Now, letting x −→ ∞, as n −→ ∞, we obtain:

a2(logn) max
n/ log n<k<n−n/ log n

1
2k

[
k∑

i=1

(y2
i − 1)

]2

− (x+ b(logn))2 P−→ −∞,

2
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and similarly,

a2(log n) max
n/ log n<k<n−n/ log n

1
2(n− k)

[
n∑

i=k+1

(y2
i − 1)

]2

− (x + b(logn))2 P−→ −∞.

For the third term of Wk (i.e., −(1/2n)
[∑n

i=1(y
2
i −1)]2) because as n −→ ∞,

−(1/2n)
[∑n

i=1(y
2
i − 1)

]2 P−→ −1; therefore, as n −→ ∞,

a2(log n) max
n/ log n<k<n−n/ log n

⎛⎝− 1
2n

[
n∑

i=1

(y2
i −1)

]2
⎞⎠−(x+b(log n))2 P−→ −∞.

This completes the proof of the lemma. �

Lemma 2.18 Let {(z(1)
i , . . . , z

(d)
i ), 1 ≤ i < ∞} be independently and identi-

cally distributed random vectors, and define S(j)(k) =
∑k

i=1 z
(i)
i , 1 ≤ i ≤ d.

Assume that E[z(1)
i ] = E[z(2)

i ] = · · · = E[z(d)
i ] = 0, the covariance matrix of

(z(1)
i , . . . , z

(d)
i ) is the identity matrix, and max1≤j≤d E|z(j)

i |r < ∞ for some
r > 2. Then as n −→ ∞,

a(logn) max
1≤j≤d

⎛⎝ d∑
j=1

[k−1/2S(j)(k)]2

⎞⎠1/2

− bd(log n) D−→ y∗,

where y∗ has cdf Fy∗(x) = exp{−e−x}, a(x) = (2 log x)1/2, bd(x) = 2 logx+

(d/2) log log x− logΓ (d/2), and “ D−→” means “convergence in distribution”.

Proof. See Horváth (1993). �

Theorem 2.19 Under the null hypothesis H0, as n −→ ∞, k −→ ∞, such
that (k/n) −→ ∞; then for all x ∈ R,

lim
n→∞P [a(logn)λn − b(logn) ≤ x] = exp{−2e−x},

where a(log n) and b(logn) are defined in Lemma 2.15.

Proof. From Lemma 2.14 (i) and (ii), we have

max
1<k<n

ξk
D= max

log n≤k≤n−log n
ξk.

From Lemma 2.15 (i), it is seen that

max
1<k<n

ξk
D= max

log n≤k≤n−log n
Wk.
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From Lemma 2.15 (ii), we thus have

max
log n≤k≤n/ log n

Wk
D= max

log n≤k≤n/ log n

1
2k

[
k∑

i=1

(y2
i − 1)

]2

. (2.15)

In view of Lemma 2.16,

max
log n≤k≤n−log n

Wk
D= max

{[
max

log n≤k≤n/ log n
Wk

]
,

[
max

n−n/ log n≤k≤n−log n
Wk

]}
.

(2.16)
Next, applying Lemma 2.16 to (2.16), we obtain

max
n−n/ log n≤k≤n−log n

Wk
D= max

n−n/ log n≤k≤n−log n

1
2(n− k)

[
n∑

i=k+1

(y2
i − 1)

]2

.

(2.17)
Combining (2.15) through (2.17), we obtain

max
log n≤k≤n/ log n

Wk
D= max

⎧⎨⎩ max
1<k≤n/ log n

1
2k

[
k∑

i=1

(y2
i − 1)

]2

,

max
n−n/ log n≤k<n

1
2(n− k)

[
n∑

i=k+1

(y2
i − 1)

]2
⎫⎬⎭ .

Therefore,

lim
n→∞P [a(logn)λn − b(logn) ≤ x]

= lim
n→∞P

[
a(log n) max

1<k<n−1
ξ
1/2
k − b(logn) ≤ x

]
= lim

n→∞P

[
a2(logn) max

1<k<n−1
ξk ≤ [x+ b(logn)]2

]
= lim

n→∞P

[
a2(logn) max

log n≤k≤n−log n
Wk ≤ [x+ b(logn)]2

]

= lim
n→∞P

⎡⎣a2(logn)max

⎧⎨⎩ max
1<k≤n/ log n

1
2k

[
k∑

i=1

(y2
i − 1)

]2

,

max
n−n/ log n≤k<n

1
2(n− k)

[
n∑

i=k+1

(y2
i − 1)

]2
⎫⎬⎭ ≤ [x+ b(logn)]2

⎤⎦ . (2.18)

2
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Inasmuch as {yi, 1 ≤ i ≤ k, 1 ≤ k ≤ n/ logn} and {yj, k + 1 ≤ j ≤ n,
n− n/ logn ≤ k ≤ n} are independent, (2.18) simplifies to

lim
n→∞P

⎡⎣a2(log n) max
1<k≤n/ log n

1
2k

[
k∑

i=1

(y2
i − 1)

]2

≤ [x+ b(logn)]2

⎤⎦ ∗

lim
n→∞P

⎡⎣ max
n−n/ log n≤k<n

1
2(n− k)

[
n∑

i=k+1

(y2
i − 1)

]2

≤ [x+ b(logn)]2

⎤⎦
= lim

n→∞P

[
a(log n) max

1<k≤n/ log n

1√
2k

∣∣∣∣∣
k∑

i=1

(y2
i − 1)

∣∣∣∣∣− b(logn) ≤ x

]
∗

lim
n→∞P

[
a(log n) max

1<k≤n/ log n

1√
2(n− k)

∣∣∣∣∣
n∑

i=k+1

(y2
i − 1)

∣∣∣∣∣− b(logn) ≤ x

]
.

(2.19)

Denote the first term of (2.19) by (a) and the second by (b). Let’s consider
(a) first. Let vi = ((y2

i − 1)/
√

2), 1 ≤ i < ∞; we see that {vi, 1 ≤ i < ∞}
is a sequence of iid random variables, with E[vi] = 0, Var[vi] = 1, and
E|vi|r < ∞ for r > 2. Let S(k) =

∑k
i=1vi; it is easy to see that k−1/2S(k) =

(1/2k)
[∑k

i=1(y
2
i − 1)

]2. Then from Lemma 2.18, as n −→ ∞,

a(logn) max
1<k≤n/ log n

1√
2k

∣∣∣∣∣
k∑

i=1

(y2
i − 1)

∣∣∣∣∣− b(logn) D−→ y∗,

where y∗ has cdf Fy∗(x) = exp{−e−x}; therefore, (a) = exp{−e−x}. Simi-
larly, we can obtain: (b) = exp{−e−x}. Then, (2.19) = exp{−2e−x}, which
completes the proof of the theorem. �

Remark 2.20 In many real situations, it is more likely that μ remains common
but unknown instead of being known. Under these circumstances, the like-
lihood procedure can still be applied. Under H0, the maximum log likelihood
is easily obtained as

logL0(σ̂2, μ̂) = −n

2
log 2π − n

2
log σ̂2 − n

2
,

where σ̂2 = (
∑n

i=1(xi − x)2)/n and μ̂ = x are the MLEs of σ2 and μ, respec-
tively. Under H1, the log likelihood function is
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logL1(μ, σ2
1 , σ

2
n) = −n

2
log 2π − k

2
log σ2

1 − n− k

2
log σ2

n

−
∑k

i=1(xi − μ)2

2σ2
1

−
∑n

i=k+1(xi − μ)2

2σ2
n

,

and the likelihood equations are:⎧⎪⎪⎨⎪⎪⎩
σ2

n

∑k
i=1(xi − μ)2 + σ2

1

∑n
i=k+1(xi − μ)2 = 0

σ2
1 = 1

k

∑k
i=1(xi − μ)2

σ2
n = 1

n−k

∑n
i=k+1(xi − μ)2

where the solutions of μ, σ2
1 , and σ2

n are the MLEs μ̂, σ̂2
1 , and σ̂2

n, respectively.
Unfortunately, solving this system of equations will not give us the closed
forms for μ̂, σ̂2

1 , and σ̂2
n. However, we can use Newton’s iteration method, or

some other iteration methods, to obtain an approximate solution. Under the
regularity conditions (Dennis and Schnable, 1983), the solution will yield the
unique MLE. Then the log maximum likelihood under H1 can be expressed
as

logL1(μ̂, σ̂2
1 , σ̂

2
n) = −n

2
log 2π − k

2
log σ̂2

1 − n− k

2
log σ̂2

n − n

2
,

where μ̂, σ̂2
1 , and σ̂2

n are the numerical solutions of the above system of
equations, and 2 ≤ k ≤ n− 2.

2.2.2 Informational Approach

In 1973, Hirotugu Akaike introduced the Akaike Information Criterion (AIC)
for model selection in statistics (Akaike, 1973). Since then, this criterion
has profoundly influenced developments in statistical analysis, particularly
in time series, analysis of outliers (Kitagawa, 1979), robustness, regression
analysis, multivariate analysis (e.g., see Bozdogan, Sclove, and Gupta, 1994),
and so on. On the basis of Akaike’s work, many authors have further intro-
duced various information criteria and used them in many other fields such
as econometrics, psychometrics, control theory, and decision theory.

Suppose x1, x2, . . . , xn is a sequence of independent and identically dis-
tributed random variables with probability density function f(·|), where f is
a model with K parameters; that is,

Model(K) : {f(·|θ) : θ = (θ1, θ2, . . . , θK), θ ∈ ΘK}.

It is assumed that there are no constraints on the parameters and hence the
number of free parameters in the model is K. The restricted parameter space
is given by

2
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Θk = {θ ∈ ΘK |θk+1 = θk+2 = · · · = θK = 0}
and the corresponding model is denoted by model (k).

To view the change point hypothesis testing of the null hypotheis given
by (1.1) against the alternative hypothesis given by (1.2) in a model selec-
tion context, we target to select a “best” model from a collection of models
corresponding to (1.1) and (1.2). Specifically, corresponding to the alter-
native hypothesis (1.2) of q change points, it is equivalent to state that:
X1, . . . , Xk1 ∼ iid f(θ1), Xk1+1, . . . , Xk2 ∼ iid f(θ2), . . . ,Xkq−1+1, . . . , Xkq ∼
iid f(θq−1), Xkq+1, . . . , Xkn ∼ iid f(θq), where 1 < k1 < k2 < · · · < kq < n,
q is assumed to be the unknown number of change points and k1, k2, . . . , kq

are the respective unknown change point positions.
Akaike (1973) proposed the following information criterion,

AIC(k) = −2 logL(Θ̂k) + 2k, k = 1, 2, . . . ,K,

where L(Θ̂k) is the maximum likelihood for model (k), as a measure of
model evaluation. A model that minimizes the AIC (Minimum AIC esti-
mate, MAICE) is considered to be the most appropriate model. However, the
MAICE is not an asymptotically consistent estimator of model order (e.g.,
see Schwarz, 1978). Some authors made efforts to modify the information
criterion without violating Akaike’s original principles. For more details of
the various kinds of modifications, the reader is referred to Bozdogan (1987),
Hannan and Quinn (1979), Zhao, Krishnaiah and Bai (1986a, 1986b), and
Rao and Wu (1989).

One of the modifications is the Schwarz Information Criterion, denoted as
SIC, and proposed by Schwarz in 1978. It is expressed as

SIC(k) = −2 logL(Θ̂k) + k logn, k = 1, 2, . . . ,K.

Apparently, the difference between AIC and SIC is in the penalty term,
instead of 2k, it is k log n. However, SIC gives an asymptotically consis-
tent estimate of the order of the true model. The SIC has been applied to
change point analysis for different underlying models by many authors in
the literature. Recently, Chen and Gupta (2003) and Pan and Chen (2006)
proposed a new information criterion named the modified information crite-
rion (MIC) for studying change point models, which demonstrated that the
penalty term in SIC for change point problems should be defined according
to the nature of change point problems. Here, for historical reasons, the SIC
is employed to find the change point.

(i) SICs of the Change Point Inference

According to the information criterion principle, we are going to estimate the
position of the change point k by k̂ such that SIC(k̂) is the minimal. To be
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specific, corresponding to the H0 defined by (2.10), is one SIC, denoted by
SIC(n), which is found as

SIC(n) = n log 2π + n log σ̂2 + n+ logn, (2.20)

where σ̂2 = (
∑n

i=1(xi − μ)2)/n is the MLE of σ2 under H0. Corresponding
to the H1 defined by (2.11), are the n – 3 SICs, denoted by SIC(k) for
2 ≤ k ≤ n− 2, which are found as

SIC(k) = n log 2π + k log σ̂2
1 + (n− k) log σ̂2

n + n + 2 logn, (2.21)

where σ̂2
1 = (

∑k
i=1(xi − μ)2)/k and σ̂2

n = ((
∑n

i=k+1(xi − μ)2)/(n− k)) are
the MLEs of σ2

1 and σ2
n, respectively, under H1.

Notice that to be able to obtain the MLEs, we can only detect changes
that are located between the second and (n – 2) positions. According to the
information criterion principle, we accept H0 if

SIC(n) < min
2≤k≤n−2

SIC(k),

and accept H1 if
SIC(n) > SIC(k)

for some k, and estimate the position of the change point by k̂ such that

SIC(k̂) = min
2≤k≤n−2

SIC(k). (2.22)

On the one hand, we point out (see Gupta and Chen, 1996) that infor-
mation criteria, such as SIC, provide a remarkable way for exploratory data
analysis with no need to resort to either the distribution or the significance
level α. However, when the SICs are very close, one may question that the
small difference among the SICs might be caused by the fluctuation of the
data, and therefore there may be no change at all. To make the conclusion
about change point statistically convincing, we introduce the significance level
α and its associated critical value cα, where cα � 0. Instead of accepting H0

when SIC(n) < min2≤k≤n−2 SIC(k), we now accept H0 if

SIC(n) < min
2≤k≤n−2

SIC(k) + cα,

where cα is determined from

1 − α = P [SIC(n) < min
2≤k≤n−2

SIC(k) + cα|H0 holds].

By using Theorem 2.19, the approximate cα values can be obtained as
follows.

2
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1 − α = P [SIC(n) < min
2≤k≤n−2

SIC(k) + cα|H0 holds]

= P [λ2
n < logn+ cα|H0 holds]

= P [0 < λn < (logn + cα)1/2|H0 holds]

= P [−b(logn) < a(logn)λn − b(logn)

< a(logn)(log n+ cα)1/2 − b(logn)|H0 holds
]

∼= exp{−2 exp[−a(logn)(logn+ cα)1/2 + b(logn)]}
− exp{−2 exp[b(logn)]},

and solving for cα, we obtain:

cα ∼=
{
− 1
a(logn)

log log[1 − α+ exp(−2eb(log n))]−1/2 +
b(logn)
a(log n)

}2

− logn. (2.23)

For a different significance level α (α = 0.01, 0.025, 0.05, 0.1), and sample sizes
n (n = 13, 14, . . . , 200), the approximate values of cα have been calculated
according to (2.23) and tabulated in Table 2.3.

(ii) Unbiased SICs

To derive the information criterion AIC, Akaike (1973) used log L(θ̂) as an
estimate of J = E

�θ[
∫
f(y|θ0) log f(y|θ̂)dy], where f(y|θ0) is the probability

density of the future observations y = (y1, . . . , yn) of the same size and
distribution as the xs, x = (x1, . . . , xn), and x and y are independent. The
expectation is taken under the distribution of x when H0 is true; that is,
θ0 ∈ ΘH0 . Unfortunately, logL(θ̂) is not an unbiased estimator of J . When
the sample size n is finite, Sugiura (1978) proposed unbiased versions, the
finite corrections of AIC, for different model selection problems.

In this section, we derive the unbiased versions of our SIC under our H0

defined by (2.10) and H1 defined by (2.11), denoted by u − SIC(n), and
u− SIC(k), respectively.

(1) Unbiased SIC under H0 : u − SIC(n)

Under H0, let y = (y1, y2, . . . , yn) be a sample of the same size and distri-
butions as x, x = (x1, x2, . . . , xn), and that y be independent of x.
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Table 2.3 Approximate Critical Values of SIC

n/α 0.010 0.025 0.050 0.100

13 20.927 14.570 10.496 6.946
14 20.431 14.340 10.375 6.895
15 20.077 14.165 10.279 6.852
16 19.807 14.023 10.199 6.816
17 19.589 13.903 10.130 6.783
18 19.405 13.799 10.068 6.753
19 19.247 13.706 10.012 6.725
20 19.106 13.623 9.961 6.698
21 18.980 13.546 9.914 6.673
22 18.860 13.476 9.870 6.649
23 18.759 13.411 9.829 6.626
24 18.661 13.350 9.790 6.605
25 18.569 13.293 9.753 6.583
26 18.484 13.239 9.718 6.563
27 18.404 13.188 9.685 6.543
28 18.328 13.140 9.653 6.524
29 18.257 13.094 9.622 6.506
30 18.189 13.050 9.593 6.488
35 17.895 12.858 9.463 6.406
40 17.656 12.699 9.352 6.333
45 17.456 12.564 9.256 6.268
50 17.284 12.446 9.171 6.208
55 17.134 12.342 9.095 6.154
60 17.001 12.249 9.026 6.104
70 16.773 12.088 8.904 6.014
80 16.584 11.951 8.800 5.934
90 16.422 11.832 8.708 5.863

100 16.280 11.728 8.626 5.799
120 16.043 11.550 8.484 5.686
140 15.848 11.402 8.365 5.589
160 15.684 11.276 8.261 5.504
180 15.542 11.165 8.170 5.428
200 15.416 11.067 8.088 5.359

J = E
�θ

[∫
f(y|θ0) log f(y|θ̂)dy

]

= E
�θ

[
Ey

{
−n

2
log 2π − n

2
log σ̂2 − 1

2σ̂2

n∑
i=1

(yi − μ)2
}]

= E
�θ

[
−n

2
log 2π − n

2
log σ̂2 − n

2
+
n

2
− Ey

{
1

2σ̂2

n∑
i=1

(yi − μ)2
}]

,

where σ̂2 =
∑n

i=1(xi − μ)2/n, and μ is known. Because
∑n

i=1(yi − μ)2 ∼
σ2χ2

n, that is, nσ̂2/σ2 ∼ χ2
n, we get:

2
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J = E
�θ

[
logL0(σ̂2) +

n

2
− nσ2

2σ̂2

]
= E

�θ[logL0(σ̂2)] +
n

2
− n2

2
1

n− 2

= E
�θ[logL0(σ̂2)] − n

n− 2
.

Clearly, −2 logL0(σ̂2) + 2n/(n− 2) is unbiased for −2J . Therefore, the
unbiased u− SIC(n) is obtained as

u− SIC(n) = −2 logL0(σ̂2) +
2n

n− 2

= SIC(n) +
2n

n− 2
− logn.

(2) Unbiased SIC under H1 : u − SIC(k)

Under H1, let y = (y1, y2, . . . , yn) be a sample of the same size and distri-
butions as x, x = (x1, x2, . . . , xn), and that y be independent of x. That is,
y1, y, . . . , yk are iid N(μ, σ2

1), and yk+1, yk+2, . . . , yn are iid N(μ, σ2
n).

J = E
�θ[Ey{logL1(σ̂2

1 , σ̂
2
n, Y )}]

= E
�θ

[
Ey

{
− n

2
log 2π − k

2
log σ̂2

1 − n− k

2
log σ̂2

n

− 1
2σ̂2

1

k∑
i=1

(yi − μ)2 − 1
2σ̂2

n

n∑
i=k+1

(yi − μ)2
}]

,

where

σ̂2
1 =

∑k
i=1(xi − μ)2

k
, σ̂2

n =

∑n
i=k+1(xi − μ)2

n− k
,

and μ is known.∑k
i=1(yi − μ)2 ∼ σ2

1χ
2
k,
∑n

i=k+1(yi − μ)2 ∼ σ2
nχ

2
n−k, kσ̂2

1/σ
2
1 ∼ χ2

k, and
(n− k)σ̂2

n/σ
2
n ∼ χ2

n−k therefore we get

J = E
�θ[logL1(σ̂2

1 , σ̂
2
n)] +

n

2
− E

�θ[
kσ2

1

2σ̂2
1

+
(n− k)σ2

n

2σ̂2
n

]

= E
�θ[logL1(σ̂2

1 , σ̂
2
n)] +

n

2
− k2

2
1

k − 2
− (n− k)2

2
1

n− k − 2

= E
�θ[logL1(σ̂2

1 , σ̂
2
n)] − 2(nk − k2 − n)

(k − 2)(n− k − 2)
.
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Hence, the unbiased SIC under H1 is

u− SIC(k) = −2 logL1(σ̂2
1 , σ̂

2
n) +

4(nk − k2 − n)
(k − 2)(n− k − 2)

,

for 2 ≤ k ≤ n− 2.

2.2.3 Other Methods

In addition to the likelihood procedure and information approach to the
variance change point problem, there are several other methods available
in the literature; see Hsu (1977), Davis (1979), and Abraham and Wei (1984)
for more details. Here, a Bayesian approach based on the work of Inclán
(1993) is presented.

Let x1, x2, . . . , xn be a sequence of independent normal random variables
with parameters (0, σ2

1), (0, σ
2
2), . . . , (0, σ2

n), respectively. It is desired to test
the hypothesis:

H0 : σ2
1 = σ2

2 = · · · = σ2
n = σ2 (unknown),

against the alternative:

H1 : σ2
1 = · · · = σ2

k1
= η2

0 �= σ2
k1+1 = · · · = σ2

k2
= η2

1 �= · · ·
�= σ2

kq−1+1 = · · · = σ2
kq

= η2
q−1 �= σ2

kq+1 = · · · = σ2
n = η2

q ,

where q is the unknown number of change points, and 1 < k1 < k2 < · · · <
kq < n, are the unknown positions of the change points, respectively.

Let Kr,m denote the posterior odds of r changes versus m changes.
A systematic way of using the posterior odds to determine q is to calcu-
late Kr,r−1 for r = 1, 2, . . . , n. Starting with r = 1, where K1,0 means one
change versus no change, if K1,0 > 1, then there is at least one change. Next,
compute K2,1; if K2,1 > 1; then there are at least two changes. Keep cal-
culating Kr,r−1 as long as Kr,r−1 > 1. If Kr+1,r ≤ 1, stop the process and
conclude that there are r changes and estimate q by q̂ = r.

In the following, the derivation of Kr,m is given. Let k0 = 0, kq+1 = n; then
there are dj = kj+1 − kj observations with variances η2

j , j = 0, 1, dots, q. Let
σ = (σ1, . . . , σq)′, η = (η0, . . . , ηq)′,k = (k1, . . . , kq)′, and x = (x1, . . . , xn)′.
The joint density of x given η,k,q can be written as

2
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f(x|η,k,q) =
1

(2π)n/2

n∏
i=1

σ−1
i exp

{
− 1

2σ2
i

x2
i

}

=
1

(2π)n/2

q∏
j=0

η
−dj

j exp

⎧⎨⎩− 1
2η2

j

kj+1∑
i=kj+1

x2
i

⎫⎬⎭ . (2.24)

Now let the prior distributions be as follows,

q|θ ∼ Binomial (n− 1, θ),

where θ is the probability of observing a change; that is,

f(q|θ) =
(
n− 1
q

)
θq(1 − θ)n−1−q, q = 0, 1, . . . , n− 1.

Assume that η′js are conditionally independent drawn from the inverted
gamma density and independent of q and k:

f(ηj |c, υ) =
2cν/2

Γ (ν/2)
η
−(ν+1)
j exp(−cη2

j ), (2.25)

where 0 < ηj < ∞, j = 0, . . . , q. Assume k1 < k2 < · · · < kq are equally
likely:

f(k|q) =
1(

n− 1
q

) . (2.26)

Then from (2.22) through (2.24) the joint probability density function of x,
η,k given q is obtained as

f(x, η,k|q) = f(k|q)f(η|k, q)f(x|η,k,q)
= f(k, q)f(η|c, ν)f(x|η,k, q)

=
(2π)−n/2(
n− 1
q

) ( 2cν/2

Γ (ν/2)

)q+1

·
q∏

j=0

⎛⎝η−(dj+ν+1)
j exp

⎧⎨⎩− 1
2η2

j

⎡⎣ kj+1∑
i=kj+1

x2
i + 2c

⎤⎦⎫⎬⎭
⎞⎠ . (2.27)
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Inasmuch as ∫ ∞

0

η
−(dj+ν+1)
j exp

⎧⎨⎩− 1
2η2

j

⎡⎣ kj+1∑
i=kj+1

x2
i + 2c

⎤⎦⎫⎬⎭ dηj

=
Γ
(

dj+ν
2

)
2
[

1
2

∑kj+1
i=kj+1 x

2
i + c

](dj+ν)/2
,

and η′js are independent,

f(x,k|q) =
∫

· · ·
∫

f(x, η,k|q)dη

=
(2π)−n/2(
n− 1
q

) ( cν/2

Γ (ν/2)

)q+1

·
q∏

j=0

⎧⎪⎨⎪⎩Γ
(
dj + ν

2

)⎡⎣1
2

kj+1∑
i=kj+1

x2
i + c

⎤⎦−((dj+ν)/2)
⎫⎪⎬⎪⎭ . (2.28)

Now,
f(x|q) =

∑
k1

· · ·
∑
kq

f(x,k|q), (2.29)

where the sums are over all possible values of k :k1 = 1, 2, . . . , n−q; k2 = k1+
1, . . . , n−q+1; . . . ; kj+1 = kj+1, . . . , n−q+j; . . . ; and kq = kq−1+1, . . . , n−1.

Therefore,

f(k|x, q) =
f(x,k|q)
f(x|q) . (2.30)

Because
f(q|x) =

f(q)f(x|q)
f(x)

∝ f(q)f(x|q),

the posterior odds Kr,m are given by

Kr,m =
P (q = r|x)
P (q = m|x)

=
P (q = r)f(x|q = r)
P (q = m)f(x|q = m)

=

(
n− 1
r

)
θr(1 − θ)n−1−r(

n− 1
m

)
θm(1 − θ)n−1−m

·
∑

k1
· · ·∑kr f(x,k|q = r)∑

k1
· · ·∑km

f(x,k|q = m)

2
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=

(
n− 1
r

)
(
n− 1
m

) ( θ

1 − θ

)r−m

·

∑
k1

· · ·∑kr
(2π)−n/2�
�n− 1

r

�
�

(
cν/2

Γ (ν/2)

)r+1

∑
k1

· · ·∑km

(2π)−n/2�
�n− 1

m

�
�

(
cν/2

Γ (ν/2)

)m+1

∏r
j=0

{
Γ
(

dj+ν
2

) [
1
2

∑kj+1
i=kj+1 x

2
i + c

]−((dj+ν)/2)
}

∏m
j=0

{
Γ
(

dj+ν
2

) [
1
2

∑kj+1
i=kj+1 x

2
i + c

]−((dj+ν)/2)
}

=
(

θ

1 − θ

)r−m(
cν/2

Γ (ν/2)

)r−m

·
∑

k1
· · ·∑kr

∏r
j=0

{
Γ
(

dj+ν
2

) [
1
2

∑kj+1
i=kj+1 x

2
i + c

]−((dj+ν)/2)
}

∑
k1

· · ·∑km

∏m
j=0

{
Γ (dj+ν

2 )
[

1
2

∑kj+1
i=kj+1 x

2
i + c

]−((dj+ν)/2)
} . (2.31)

It may be noted that λ, c, ν are hyperparameters that will not be modeled.
However, the values of λ, c, ν can be assigned thoughtfully according to expe-
rience. A typical assignment is: λ = 1/n, ν = 1 or ν = 2, and c = (υ + 1)/2.
For a discussion of this matter, the reader is referred to Inclán (1993).

After estimating the number of change points q, the next step is to locate
the change points. One way to do it is to obtain the posterior pdf of k given
x and q = q̂. From (2.28),

f(k|x, q = q̂) =
f(x,k|q = q̂)
f(x|q = q̂)

.

Then, obtain the marginal distributions of each kj , for j = 1, 2, . . . , q̂. Finally,
the joint mode (mode(k1),mode(k2), . . . ,mode(k�q)) gives the locations of the
change points; that is,

k̂1 = mode(k1), k̂2 = mode(k2), . . . , k̂q = mode(k�q).

2.2.4 Application to Stock Market Data

We give an application of the SIC test procedure to searching a change point
in stock prices (Chen and Gupta, 1997). Hsu (1977) analyzed the U.S. stock
market return series during the period 1971–1974 using T - and G-statistics,
and found that there was one variance change point which is suspected to
have occurred in conjunction with the Watergate events. Later, he (Hsu,
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1979) reanalyzed the stock market return series data by considering a gamma
sequence and came up with the same conclusion.

Here we take the same stock market price data as in Hsu (1979), and per-
form the change point analysis by using the SIC procedure. Let Pt be the stock
price; we first transform the data into Rt = (Pt+1 − Pt)/Pt, t = 1, . . . , 161.
According to Hsu (1977), {Rt} is a sequence of independent normal random
variables with mean zero. We then test the following hypothesis based on the
Rt series,

H0 : σ2
1 = σ2

2 = · · · = σ2
161 = σ2(unknown),

versus the alternative:

H1 : σ2
1 = · · · = σ2

k1
�= σ2

k1+1 = · · · = σ2
k2

�= · · · �= σ2
kq+1 = · · · = σ2

161,

where q is the unknown number of change points, and 1 ≤ k1 < k2 < · · · <
kq < 161, are the unknown positions of the change points, respectively.

Using the binary segmentation procedure along with the SIC, we are
able to detect all the changes in the Rt series. According to our compu-
tations, at the first stage min1<k<160SIC(k) = SIC(89) = −787.5745 <
SIC(161) = −765.6242. If we use the cα in Tables 2.3–2.5, we still have
SIC(89)+ cα < SIC(161). Hence, t = 89 is a variance change point for the Rt

series. Transferring to the price Pt, t+ 1 = 90 is the location of the variance
change point. In other words, the stock price started to change at the 91st
time point, which corresponds to the calendar week of March 19–23, 1973.
Our conclusion matches Hsu’s (1977, 1979) conclusion at this point.

Moreover, we continue to test the two subsequences: t from 1 to 88, and
t from 89 to 161. Our computational results show that there are no further
changes in the subsequence of t from 89 to 161, but there are at least two more
changes in the subsequence of t from 1 to 88. One of the changes occurred
during the period July 19 to August 8, 1971, and the other change occurred
during the period November 15 to December 12, 1971. Going back to some
historical records (e.g., Leonard, Crippen and Aronson, 1988), and looking
at what happened to the U.S. economy and environment during those two
periods we find that: from July 19 to August 8, 1971, several union strikes
influenced the changes of the U.S. stock markets. The wage increases, result-
ing from several union–company negotiations, caused grave concerns about
market prices. Among those strikes, the one organized by the United Trans-
portation Union on July 26 was the biggest, and the negotiations were sus-
pended indefinitely over a dispute on work rule changes. Responding to the
suspension, U.S. gold stocks fell dramatically. The rate of wage increases in
steel companies, the U.S. Postal Service, and some others was as high as 30
percent. On August 4, President Nixon said he would consider establish-
ment of wage–price review bonds to examine the situation of American
markets.

From November 15 to December 12, the most eye-catching economic event
was the price increases of some important industrial products. Although the

2
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Fig. 2.12 Return series Rt of the weekly stock prices from 1971 to 1974

Nixon administration established the price commission to stabilize prices,
economic conditions forced the administration to approve price increases.
For example, the price commission approved steel price increases that were
about triple the commission’s target. Also, the commission approved price
increases for the Big Three automakers, averaging nearly 3 percent.

The scatterplot of the return series Rt is given in Figure 2.12 with the
identified changes indicated by arrows.

2.3 Mean and Variance Change

Let x1, x2, . . . , xn be a sequence of independent normal random variables with
parameters (μ1, σ

2
1), (μ2, σ

2
2), . . . , (μn, σ

2
n), respectively. Testing and estima-

tion about multiple mean changes in a Gaussian model have been studied in
Section 2.1, and inference about multiple variance changes has been studied
in Section 2.2. In this section, inference about the multiple mean and variance
changes is discussed. To be specific, the interest here is to test the hypothesis
(Chen and Gupta, 1999):

H0 : μ1 = · · · = μn = μ and σ2
1 = · · · = σ2

n = σ2(μ, σ2 unknown) (2.32)

versus the alternative:

HA : μ1 = · · · = μk1 �= μk1+1 = · · · = μk2 �= · · · �= μkq+1 = · · · = μn

and

σ2
1 = · · · = σ2

k1
�= σ2

k1+1 = · · · = σ2
k2

�= · · · �= σ2
kq+1 = · · · = σ2

n.
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As discussed in previous sections, the binary segmentation procedure can be
applied to this situation. Then it suffices to test (2.30) versus the alternative:

H1 : μ1 = · · · = μk �= μk+1 = · · · = μn

and
σ2

1 = · · · = σ2
k �= σ2

k+1 = · · · = σ2
n. (2.33)

2.3.1 Likelihood-Ratio Procedure

Under H0, the log likelihood function is

logL0(μ, σ2) = −n

2
log 2π − n

2
log σ2 − 1

2σ2

n∑
i=1

(xi − μ)2.

Denote the MLEs of μ and σ2 by μ̂ and σ̂2; then

μ̂ = x =
1
n

n∑
i=1

xi,

σ̂2 =
1
n

n∑
i=1

(xi − x)2,

and the maximum log likelihood is:

logL0(μ̂, σ̂2) = −n

2
log 2π − n

2
log σ̂2 − n

2
.

Under H1, the log likelihood function is:

logL1(μ1, μn, σ
2
1 , σ

2
n) = −n

2
log 2π − k

2
log σ2

1 − (n− k)
2

log σ2
n

− 1
2σ2

1

k∑
i=1

(xi − μ1)2 − 1
2σ2

n

n∑
i=k+1

(xi − μn)2.

Let μ̂1, μ̂n, σ̂2
1 , and σ̂2

n be the MLEs under H1 of μ1, μn, σ
2
1 , and σ2

n, respec-
tively. Then

μ̂1 = xk =
1
k

k∑
i=1

xi, σ̂2
1 =

1
k

k∑
i=1

(xi − xk)2,

μ̂n = xn−k, σ̂2
n =

1
n− k

n∑
i=k+1

(xi − xn−k)2,

2
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and the maximum log likelihood is

logL1(μ̂1, μ̂n, σ̂
2
1 , σ̂

2
n) = −n

2
log 2π − k

2
log σ̂2

1 − n− k

2
log σ̂2

n − n

2
.

The likelihood-ratio procedure (Lehmann, 1986, p. 16) statistic is

Λn = max
2≤k≤n−2

σ̂n

σ̂k
1 σ̂

n−k
n

.

Horváth (1993) derived the asymptotic null distribution of a function of Λn.
The exact null distribution of Λn is not yet available in the literature. There-
fore, in the following, Horváth’s main theorem is presented and its detailed
proof is given.

For large n, the asymptotic null distribution of λn, where

λn = (2 logΛn)1/2 =
[

max
2≤k≤n−2

(n log σ̂2 − k log σ̂2
k − (n− k) log σ̂2

n−k)
]1/2

is derived. However, it is convenient to simplify λn and to prove the following
results first. Throughout, “AD= ” means “asymptotically distributed as”. Under
H0;

λ2
n = max

1<k<n−1

[
n log

σ̂2

σ2
− k log

σ̂2
k

σ2
− (n− k) log

σ̂2
n−k

σ2

]
D= max

1<k<n−1

[
n log

1
n
χ2

n−1 − k log
1
k
χ2

k−1 − (n− k) log
1

n− k
χ2

n−k−1

]
,

where χ2
j denote the chi-square random variable with j degrees of freedom.

Let

χ2
n−1 =

n∑
i=1

(zi − z)2,

χ2
k−1 =

k∑
i=1

(zi − zk)2,

χ2
n−k−1 =

n∑
i=k+1

(zi − zn−k)2,

where z1, . . . , zn are iid N(0, 1) random variables, and

z =
1
n

n∑
i=1

zi, zk =
1
k

k∑
i=1

zi and zn−k =
1

n− k

n∑
i=k+1

zi.
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Then

λ2
n

D= max
1<k<n−1

[
n log

1
n

n∑
i=1

(zi − z)2 − k log
1
k

k∑
i=1

(zi − zk)2

−(n− k) log
1

n− k

n∑
i=k+1

(zi − zn−k)2
]
.

Let

ξk = n log
1
n

n∑
i=1

(zi − z)2 − k log
1
k

k∑
i=1

(zi − zk)2

− (n− k) log
1

n− k

n∑
i=k+1

(zi − zn−k)2.

Using the three-term Taylor expansion, we have

ξk = n

[
1
n

n∑
i=1

(zi − z)2 − 1

]
− n

2

[
1
n

n∑
i=1

(zi − z)2 − 1

]2

+
n

3
(Q(1)

n )−3

[
1
n

n∑
i=1

(zi − z)2 − 1

]3

− k

[
1
k

k∑
i=1

(zi − zk)2 − 1

]

+
k

2

[
1
k

k∑
i=1

(zi − zk)2 − 1

]2

− k

3
(Q(2)

k )−2

[
1
k

k∑
i=1

(zi − zk)2 − 1

]3

− (n− k)

[
1

n− k

n∑
i=k+1

(zi − zn−k)2 − 1

]

+
n− k

2

[
1

n− k

n∑
i=k+1

(zi − zn−k)2 − 1

]2

− n− k

3
(Q(2)

n−k)−3

[
1

n− k

n∑
i=k+1

(zi − zn−k)2 + 1

]2

,

where |Q(1)
n − 1| ≤ |(1/n)

∑n
i=1(zi − z)2 − 1|, |Q(2)

k − 1| ≤ |(1/k)∑k
i=1(zi − zk)2 − 1|, and |Q(2)

n−k − 1| ≤ |(1/(n− k))
∑n

i=k+1(zi − zn−k)2 − 1
∣∣.

After some algebraic simplification,

2
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ξk = kz2
k + (n− k)z2

n−k − nz2 − 1
2n

[
n∑

i=1

(z2
i − 1)

]2

+
1
2k

[
k∑

i=1

(z2
i − 1)

]2

+
1

2(n− k)

[
n∑

i=k+1

(z2
i − 1)

]2

+ z2
n∑

i=1

(z2
i − 1) − n

2
z4 − z2

k

k∑
i=1

(z2
i − 1)

+
k

2
z4

k +
n

3
(Q(1)

n )−3(tn−1 − 1)3 − k

3
(Q(2)

k )−3(tk−1)3 +
n− k

2
z4

n−k

− z2
n−k

n∑
i=k+1

(z2
i − 1) +

n− k

3
(Q(2)

n−k)−3(tn−k−1 − 1)3

= W
(1)
k +W

(2)
k +Q

(1)
k +Q

(2)
k ,

where

W
(1)
k = kz2

k + (n− k)z2
n−k − nz2,

W
(2)
k = − 1

2n

[
n∑

i=1

(z2
i −1)

]2

+
1
2k

[
k∑

i=1

(z2
i −1)

]2

+
1

2(n−k)

[
n∑

i=k+1

(z2
i −1)

]2

,

Q
(1)
k = z

n∑
i=1

(z2
i − 1) − n

2
z4 − z2

k

k∑
i=1

(z2
i − 1) +

k

2
z4

k

+
n

3
(θ(1)

n )−3(tn−1 − 1)3 − k

3
(θ(2)

k )−3(tk−1 − 1)3,

Q
(2)
k =

n− k

2
z4

n−k − z4
n−k

n∑
i=k+1

(z2
i − 1) +

n− k

3
(θ(3)

n−k)−3(tn−k−1 − 1)3,

tn−1 =
1
n

n∑
i=1

(zi − z)2,

tk−1 =
1
k

k∑
i=1

(zi − zk)2, and

tn−k−1 =
1

n− k

n∑
i=k+1

(zi − zn−k)2.

Next, we propose the following lemmas for the properties of the above-listed
quantities.
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Lemma 2.21

(i) max1<k<n k
1/2(log log k)−(3/2)|Q(1)

k | = Op(1).
(ii) max1<k<n(n− k)1/2[log log(n− k)]−(3/2)|Q(2)

k | = Op(1).

Proof. (i) Because ktk−1=

∑k
i=1(z

(j)
i −z(j)

k )2 AD= χ2
k for large k, E(ktk−1) = k,

or E[k(tk−1 − 1)] = 0, and Var[k(tk−1 − 1)] = 2k. From the law of iterated
logarithm,

max
1<k<n

|(Q(2)
k )−1k(tk−1 − 1)|
(k log log k)1/2

= Qp(1).

Hence,

max
1<k<n

|(Q(2)
k )−3k3(tk−1 − 1)3|
(k log log k)3/2

= Op(1);

that is,

max
1<k<n

k1/2(log log k)−(3/2)|(Q(2)
k )−3k(tk−1 − 1)3| = Op(1) (2.34)

Inasmuch as zk is distributed as N(0, 1/k), E(kzk) = 0,Var(kzk) = k. From
the law of iterated logarithm,

max
1<k<n

kzk

(k log log k)1/2
= Op(1).

Therefore,

max
1<k<n

k2z2
k

(k log log k)
= Op(1), (2.35)

and

max
1<k<n

k4z4
k

(k log log k)2
= Op(1). (2.36)

From (2.35),

max
1<k<n

(
k

(log log k

)
z2

k = Op(1). (2.37)

The law of iterated logarithm also implies

max
1<k<n

∑k
i=1(z

2
i − 1)

(k log log k)1/2
= Op(1), (2.38)

therefore combining (2.37) and (2.38), we obtain

max
1<k<n

k1/2(log log k)−(3/2)z2
k

k∑
i=1

(z2
i − 1) = Op(1). (2.39)

2
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Considering the fact that limn→∞(log log k/k)1/2 = 0 and combining it with
(2.36), we thus obtain:

max
1<k<n

k1/2(log log k)−(3/2)kz4
k = Op(1). (2.40)

Similar to (2.35), (2.39), and (2.40), from the law of iterated logarithm, we
can show that

n1/2(log logn)−(3/2)|(Q(1)
n )−3n(tn−1 − 1)3| = Op(1),

n1/2(log logn)−(3/2)z2
n

n∑
i=1

(z2
i − 1) = Op(1),

and
n1/2(log logn)−(3/2)nz4

n = Op(1).

Due to the inequality: k1/2(log log k)−(3/2) ≤ n1/2(log logn)−(3/2), for 1 <
k < n, we thus conclude:

max
1<k<n

k1/2(log log k)−(3/2)|(θ(1)
n )−3n(tn−1 − 1)3| = Op(1), (2.41)

max
1<k<n

k1/2(log log k)−(3/2)z(j)2

n

n∑
i=1

(z2
i − 1) = Op(1), (2.42)

and
max

1<k<n
k1/2(log log k)−(3/2)nz4

n = Op(1). (2.43)

Also, (2.34) and (2.39) through (2.43) together give us

max
1<k<n

k1/2(log log k)−(3/2)|θ(1)
k | = Op(1).

(ii) Proceeding as in (i), we obtain

max
1<k<n

(n−k)1/2[log log(n−k)]−(3/2)|(θ(3)
n−k)−3(n− k)(t(j)n−k−1−1)3| = Op(1)

max
1<k<n

(n− k)1/2[log log(n− k)]−(3/2)z
(5)2

n−k

n∑
i=k+1

(z(j)2

i = Op(1)

max
1<k<n

(n− k)1/2[log log(n− k)]−(3/2)(n− k)z(j)4

n−k = Op(1).

Hence,
max

1<k<n
(n− k)1/2[log log(n− k)]−(3/2)|θ(2)

k | = Op(1).

�
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Lemma 2.22 For all x ∈ R, as n → ∞,

(i) a2(logn)max1<k<log n(W (1)
k +W

(2)
k ) − [x+ b(logn)]2

p−→ −∞,
(ii) a2(logn)max1<k<log n ξk − [x+ b(logn)]2

p−→ −∞,
(iii) a2(logn)maxn−log n<k<n(W (1)

k +W
(2)
k ) − [x+ b(logn)]2

p−→ −∞,
(iv) a2(logn)maxn−log n<k<n ξk − [x+ b(logn)]2

p−→ −∞,

where

a(log n) = (2 log logn)1/2, (2.44)

b(logn) = 2 log logn+ log log log n. (2.45)

Proof. (i) Recall W (1)
k = kz2

k + (n − k)z2
n−k − nz2

n. Because kz2
k ∼ x2

1,

E(kz2
k) = 1, we have kz2

k
P−→ 1 as k → ∞. But 1/log k → 0 as k → ∞,

hence kz2
k/log k P−→ 0 as k → ∞. There exists a constant c, 0 < c < 1, such

that kz2
k/log k

P
< c for large k. Meanwhile,

a2(logn)max1<k<log n kz
2
k

[b(logn)]2
≤ 2 log logn · max1<k<log n kz

2
k

(2 log logn)2

≤ max
1<k<log n

kz2
k

log logn

≤ max
1<k<log n

kz2
k

log k

P
< c = 1 −M, 0 < M < 1.

Hence,

a2(log n) max
1<k<log n

kz2
k − [x+ b(logn)]2

P
< −M [x+ b(logn)]2;

that is,

a2(logn) max
1<k<log n

kz2
k − [x+ b(logn)]2 P−→ −∞, as n → ∞. (2.46)

Similarly, we can show that

a2(logn) max
1<k<log n

(n− k)z2
n−k − [x+ b(logn)]2 P−→ −∞ as n → ∞. (2.47)

Because nz2
n ∼ χ2

1, E(nz2
n) = 1. Then nz2

n
P−→ 1 as n → ∞, −nz2

n
P−→ −1

as n → ∞. But a2(logn) → ∞ and [x+ b(logn)]2 → ∞ as n → ∞. Hence,

a2(log n)(−nz2
n) − [x+ b(logn)]2 P−→ −∞ as n → ∞. (2.48)

2
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Combining (2.46) through (2.48), we thus obtain

a2(logn) max
1<k<log n

(W (1)
k ) − [x+ b(logn)]2 P−→ −∞ as n → ∞. (2.49)

Recall again

W
(2)
k =− 1

2n

[
n∑

i=1

(z2
i −1)

]2

+
1
2k

[
k∑

i=1

(z2
i −1)

]2

+
1

2(n− k)

[
n∑

i=k+1

(z2
i −1)

]2

.

Inasmuch as z2
i ∼ χ2

1, E
[∑k

i=1(z
2
i − 1)

]
= 0. Then

E

⎧⎨⎩1
k

[
k∑

i=1

(z2
i − 1)

]2
⎫⎬⎭ = Var

⎧⎨⎩1
k

[
k∑

i=1

(z2
i − 1)

]2
⎫⎬⎭ = 2

as k → ∞, and [∑k
i=1(z

2
i − 1)

]2
k log k

P−→ 0

as n → ∞. Therefore, there exists a constant c, 0 < c < 1, such that

0 <

[∑k
i=1(z

2
i − 1)

]2
k log k

< 1 − c

for large k. Now,

a2(logn)max1<k<log n
1
k

[∑k
i=1(z

2
i − 1)

]2
[b(logn)]2

≤ 2 log lognmax1<k<log n
1
k

[∑k
i=1(z

2
i − 1)

]2
(2 log logn)2

< max
1<k<log n

[∑k
i=1(z

2
i − 1)

]2
k log logn

< max
1<k<log n

[∑k
i=1(z

2
i − 1)

]2
k log k

P
< 1 − c.

Hence, as n → ∞,

a2(logn) max
1<k<log n

1
k

[
k∑

i=1

(z2
i − 1)

]2

− [x+ b(logn)]2 P−→ −∞. (2.50)



66 Univariate Normal Model

Similarly, as n → ∞, we have

a2(logn) max
1<k<log n

1
n− k

[
n∑

i=k+1

(z2
i − 1)

]2

− [x+ b(logn)]2 P−→ −∞. (2.51)

Moreover,
[∑n

i=1(z
2
i − 1)

]2 P−→ 0, as n → ∞, therefore a2(logn)(1/n)[∑n
i=1(z

2
i − 1)

]2 P−→ 0 as n → ∞. Hence, as n → ∞,

a2(log n)

⎧⎨⎩− 1
2n

[
n∑

i=k+1

(z2
i − 1)

]2
⎫⎬⎭− [x+ b(logn)]2 P−→ −∞. (2.52)

Then, (2.50) through (2.52) together give us, as n → ∞,

a2(logn) max
1<k<log n

W
(2)
k − [x+ b(logn)]2 P−→ −∞. (2.53)

From (2.49) and (2.53), as n → ∞, we obtain:

a2(logn) max
1<k<log n

(W (1)
k +W

(2)
k ) − [x+ b(logn)]2 P−→ −∞.

This completes the proof of (i).
Now recall ξk = W

(1)
k +W

(2)
k +Q

(1)
k +Q

(2)
k and from Lemma 2.22,

max
1<k<log n

k1/2(log log k)−(3/2)|Q(1)
k | = Op(1).

Then

a2(log n)max1<k<log n |Q(1)
k |

[b(logn]2

≤ 2 log lognmax1<k<log n |Q(1)
k |

(2 log logn)2

≤ 1
log logn

· max
1<k<log n

(log log k)3/2

k1/2
· k1/2(log log k)−(3/2)|Q(1)

k |

≤ (log log logn)(3/2)

log logn
· max
1<k<log n

k1/2(log log k)−(3/2)|Q(1)
k |.

Notice that

lim
n→∞

(log log log n)3/2

log logn
= 0;

2
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then, there exists a constant M , 0 < M < 1, such that

0 <
a2(logn)max1<k<log n |Q(1)

k |
[b(logn)]2

< 1 −M for large n.

Hence, as n → ∞,

a2(logn) max
1<k<log n

|Q(1)
k | − [x+ b(logn)]2 P−→ −∞. (2.54)

From Lemma 2.22,

max
1<k<log n

(n− k)1/2[log log(n− k)]−(3/2)|Q(2)
k | = Op(1).

Hence,

a2(logn)max1<k<log n |Q(2)
k |

[b(logn)]2

≤ 1
log log n

max
1<k<log n

|Q(2)
k |

=
1

log log n
max

1<k<log n

[log log(n−k)]3/2

(n−k)1/2
· (n−k)1/2[log log(n−k)]−(3/2)|Q(2)

k |

≤ (log logn)3/2

(log logn)(n− logn)1/2
max

1<k<log n
(n− k)1/2[log log(n− k)]−(3/2)|Q(2)

k |

=
(

log logn
n− logn

)1/2

max
1<k<log n

(n− k)1/2[log log(n− k)]−(3/2)|Q(2)
k |.

Because limn→∞(log logn)/(n− logn) = 0, there exists a constant M , 0 <
M < 1, such that for large n,

0 <
a2(log n)max1<k<log n |Q(2)

k |
[b(logn)]2

< 1 −M.

Then, as n → ∞,

a2(logn) max
1<k<log n

|Q(2)
k | − [x+ b(logn)]2 P−→ −∞. (2.55)

Combining (2.54), (2.55), and (i), we thus conclude that (ii) holds.
Next, recall that

W
(1)
k = kz2

k + (n− k) − z2
n−k − nz2

n.
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Because kz2
k ∼ χ2

1, E(kz2
k)2 = 1, and kz2

k
P−→

k→∞
1, as k → ∞, then

max
n−log n<k<n

kz2
k

P−→ 1

as n → ∞. But limn→∞(1/log log k) = 0 and k → ∞, as n → ∞, hence there
exists a constant M , 0 < M < 1, such that for large n

max
n−log n<k<n

kz2
k

log log k
< 1 −M.

Now,

a2(logn)maxn−log n<k<n kz
2
k

[b(logn)]2
<

1
log logn

max
n−log n<k<n

kz2
k

= max
n−log n<k<n

kz2
k

log log n

< max
n−log n<k<n

kz2
k

log log k

< 1 −M ;

then, as n → ∞,

a2(log n) max
n−log n<k<n

kz2
k − [x+ b(logn)]2 P−→ −∞.

Similarly, we have as n → ∞,

a2(logn) max
n−log n<k<n

(n− k)z2
n−k − [x+ b(logn)]2 P−→ −∞,

and

a2(log n) max
n−log n<k<n

(−nz2
n) − [x+ b(logn)]2 P−→ −∞ as n→ ∞.

Therefore, as n → ∞,

a2(log n) max
n−log n<k<n

W
(1)
k − [x+ b(logn)]2 P−→ −∞.

Similarly, we can show that as n → ∞,

a2(log n) max
n−log n<k<n

W
(2)
k − [x+ b(logn)]2 P−→ −∞,

and (iii) is established.

2
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To prove (iv), we start with Lemma 2.22,

max
n−log n<k<n

k1/2(log log k)−(3/2)|Q(1)
k | = Op(1).

Then,

a2(logn)maxn−log n<k<n |Q(1)
k |

[b(logn)]2

≤ 1
log logn

max
n−log n<k<n

|Q(1)
k |

=
1

log logn
· max

n−log n<k<n

(log log k)3/2

k1/2
· k1/2(log log k)−(3/2)|Q(1)

k |

≤
(

log log n
n− logn

)1/2

max
n−log n<k<n

k1/2(log log k)−(3/2)|Q(1)
k |.

There exists a constant M , 0 < M < 1, such that

a2(logn)maxn−log n<k<n |Q(1)
k |

[b(logn)]2
< 1 −M ;

therefore, as n → ∞,

a2(log n) max
n−log n<k<n

|Q(1)
k | − [x+ b(logn)]2 P−→ −∞.

Starting with Lemma 2.22, we obtain

a2(log n) max
n−log n<k<n

|Q(2)
k | − [x+ b(logn)]2 P−→ −∞.

In view of (iii), we thus conclude that (iv) holds. �

Lemma 2.23 As n→ ∞, the following hold.

(i) a2(logn)maxlog n≤k≤n−log n |ξk − (W (1)
k +W

(2)
k )| = op(1).

(ii) a2(logn)max1<k<n/log n |(n− k)z2
n−k − nz2

n| = op(1), j = 1, . . . ,m.
(iii) a2(logn)max1<k<n/log n | 1

n−k

[∑n
i=k+1(z

2
i − 1)

]2 − 1
n

[∑n
i=1(z

2
i − 1)

]2| =
op(1), j = 1, . . . ,m.

Proof. (i) Clearly, ξk − (W (1)
k +W

(2)
k ) = Q

(1)
k +Q

(2)
k .

0 ≤ a2(logn) max
log n≤k≤n−log n

|Q(1)
k +Q

(2)
k |

≤ 2 log logn max
log n≤k≤n−log n

|Q(1)
k | + 2 log logn · max

log n≤k≤n−log n
|Q(2)

k |
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= 2 log logn · max
log n≤k≤n−log n

(log log k)3/2

k1/2
· k1/2(log log k)−(3/2)|Q(1)

k |

+ 2 log logn · max
log n≤k≤n−log n

[log log(n− k)]3/2

(n− k)1/2
· (n− k)1/2

· [log log(n− k)]−(3/2)|Q(2)
k |

≤ 2(log logn)5/2

(logn)1/2
· max
log n≤k≤n−log n

k1/2(log log k)−(3/2)|Q(1)
k |

+
2(log logn)5/2

(log n)1/2
max

log n≤k≤n−log n
(n− k)1/2[log log(n− k)]−(3/2)|Q(2)

k |.

Because limn→∞ (log logn)5/2/(lnn)1/2 = 0, in view of Lemma 2.22, we
then obtain

lim
n→∞ a2(logn) max

log n≤k≤n−log n
|ξk − (W (1)

k +W
(2)
k )| = 0 in probability.

Therefore (i) holds.
(ii) First, observe that

(n− k)z2
n−k − nz2

n =
k

n(n− k)

(
n∑

i=1

zi

)2

− 2
n− k

(
n∑

i=1

zi

)(
k∑

i=1

zi

)
+

1
n− k

(
k∑

i=1

zi

)2

.

From the law of iterated logarithm,∑n
i=1 zi

(n log logn)1/2
= Op(1), (2.56)

and hence, (∑n
i=1 zi

)2
n log logn

= Op(1).

Furthermore,

0 < a2(logn) max
1<k<n/log n

k

n(n− k)

(
n∑

i=1

zi

)2

≤ 2 log logn ·
n

log n

n
(
n− n

log n

) ( n∑
i=1

zi

)

≤ 2(log logn)2

logn
·
∑n

i=1 zi

n log logn
.

2
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Because limn→∞((log logn)2/logn) = 0, we obtain that

lim
n→∞ a2(log n) max

1<k<(n/log n)
(k/n(n− k))

(
n∑

i=1

zi

)2

= 0 in probability.

From the law of iterated logarithm again, we have

max
1<k<n/log n

∑k
i=1 zi

(k log log k)1/2
= Op(1). (2.57)

Then

0 ≤ a2(log n) max
1<k<n/log n

2
n− k

n∑
i=1

|zi| ·
∣∣∣∣∣

k∑
i=1

zi

∣∣∣∣∣
≤ 4 log logn

n− n
log n

max
1<k<n/log n

∣∣∣∣∣
n∑

i=1

zi

∣∣∣∣∣ · max
1<k<n/log n

∣∣∣∣∣
k∑

i=1

zi

∣∣∣∣∣
=

4n
1
2 (log logn)3/2

n− n
log n

|∑n
i=1 zi|

(n log logn)1/2

· max
1<k<(n/log n)

(k log log k)1/2 |∑k
i=1 zi|

(k log log k)

≤ 4(log logn)2(logn)1/2

logn− 1
|∑n

i=1 zi|
(n log logn)1/2

· max
1<k<n/log n

|∑k
i=1 zi|

(k log log k)
.

Combining limn→∞ (log logn)2(log n)
1
2 /(logn− 1) = 0 with (2.56) and (2.57),

we obtain:

lim
n→∞ a2(log n) max

1<k<(n/log n)
|(n− k)z(j)2

n−k − nz(j)2

n | = 0 in probability;

that is, (ii) holds.
(iii) Because

E

⎧⎨⎩ 1
n− k

[
n∑

i=k+1

(z2
i − 1)

]2

− 1
n

[
n∑

i=1

(z2
i − 1)

]2
⎫⎬⎭

= E

⎧⎨⎩ 1
n−k

n∑
i=k+1

(z2
i −1)2 +

1
n−k

∑
i�=ι

(z2
i −1)(z2

ι − 1) − 1
n

n∑
i=1

(z2
i − 1)

⎤⎦2

− 1
n

∑
i�=ι

(z2
i − 1)(z2

ι − 1)
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=
1

n− k

n∑
i=k+1

Var(z2
i ) +

1
n− k

∑
i�=ι

E(z2
i − 1)E(z2

ι − 1) − 1
n

n∑
i=1

Var(z2
i )

− 1
n

∑
i�=ι

E(z2
i − 1)E(z2

ι − 1)

=
1

n− k

n∑
i=k+1

2 − 1
n

n∑
i=1

2 = 0 for all n and all k,

we have, E〈a2(logn)
{
(1/(n− k))

[∑n
i=k+1(z

2
i − 1)

]2 − (1/n)
[∑n

i=1(z
2
i −

1)
]2}〉 = 0 for all n and all k. Hence,

a2(logn)

∣∣∣∣∣∣ 1
n− k

[
n∑

i=k+1

(z2
i − 1)

]2

− 1
n

[
n∑

i=1

(z2
i − 1)

]2
∣∣∣∣∣∣ P−→ 0

as n → ∞ for all k, 1 < k < n/logn. That is,

a2(log n) max
1<k<(n/log n)

∣∣∣∣∣∣ 1
n− k

[
n∑

i=k+1

(z2
i −1)

]2

− 1
n

[
n∑

i=1

(z2
i −1)

]2
∣∣∣∣∣∣ = op(1).

�

Lemma 2.24 For all x ∈ R, as n → ∞,

a2(logn) max
n/log n<k<n−n/log n

(W (1)
k +W

(2)
k ) − [x+ b(logn)]2 P−→ −∞.

Proof. Note that W (1)
k = kz2

k + (n − k)z2
n−k − nz2

n. Let’s consider term by
term:

kz2
k =

⎛⎜⎜⎜⎝
∣∣∣∣ k∑

i=1

zi

∣∣∣∣
k1/2

⎞⎟⎟⎟⎠
2

.

From Theorem 2 of Darling and Erdös (1956) we have

P

[
max

n/log n<k<n−(n/log n)
kz2

k

<

[
(2 log logn)1/2 +

log log logn
2(2 log logn)1/2

+
x

(2 log logn)1/2

]2]

= e−(1/
√

π)e−x · x ∈ R.

2
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Then,

P

[
a2(log n)max(n/log n)<k<n−(n/log n) kz

2
k

[b(log n) + x]2

<

[
2 log logn + 1

2 log log logn+ x

b(logn) + x

]2]

= e−(1/
√

π)e−x

.

Because b(logn) = 2 log logn + log log logn, we can choose n large enough,
such that[

2 log logn+ 1
2 log log logn+ x

b(logn) + x

]2
< 1 −M, 0 < M < 1.

Therefore,

P

{
a2(logn)max(n/log n)<k<n−(n/log n) kz

2
k

[x+ b(logn)]2
< 1 −M

}
= e−(1/

√
π)e−x

.

Letting x → ∞, we then obtain

P

[
a2(logn) max

n/log n<k<n−n/log n
kz2

k

− [x+ b(logn)]2 < −M [x+ b(logn)]2
]

= 1.

Hence, as n → ∞,

a2(logn) max
n/log n<k<n−n/log n

kz2
k − [x+ b(logn)]2 P−→ −∞.

For the next term (n− k)z2
n−k, observe that

(n− k)z2
n−k =

[ |∑n
i=k+1 zi|

(n− k)1/2

]2
and

n

logn
< n− k < n− n

logn
;

then, proceeding in the same manner as above, we can show that, as n → ∞,

a2(log n) max
n/log n<k<n−n/log n

(n− k)z2
n−k − [x+ b(logn)]2 P−→ −∞.

For the last term −nz2
n, applying the law of iterated logarithm, we have

nzn/(n log logn)1/2 = Op(1); that is, nz2
n/log logn = Op(1). Therefore, as

n → ∞,
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a2(log n) max
n/log n<k<n−n/log n

(−nz2
n) P−→ −∞,

and

a2(logn) max
n/log n<k<n−n/log n

(−nz2
n) − [x+ b(logn)]2 P−→ −∞.

Then we conclude from all of the above that as n→ ∞,

a2(logn) max
n/log n<k<n−n/log n

W
(1)
k − [x+ b(logn)]2 P−→ −∞.

Similarly, we can show that as n → ∞,

a2(logn) max
n/log n<k<n−n/log n

W
(2)
k − [x+ b(logn)]2 P−→ −∞.

Thus the lemma is proved. �

Similar to Lemma 2.22(ii) and (iii), we obtain the following results.

Lemma 2.25

(i) a2(logn)maxn−(n/log n)<k<n |kz2
k − nz2

n| = Op(1), j = 1, . . . ,m.

(ii) a2(logn)maxn−(n/log n)<k<n |(1/k)
[∑k

i=1(z
2
i − 1)

]2
− (1/n)[∑n

i=1(z
2
i − 1)

]2 |, = Op(1), j = 1, . . . ,m.

Proof. (i) Start with the identity:

kz2
k − nz2

n =
n− k

kn

(
n∑

i=1

zi

)2

− 2
k

(
n∑

i=1

zi

)(
n∑

i=k+1

zi

)
+

1
k

(
n∑

i=k+1

zi

)2

.

The law of iterated logarithm yields
∑n

i=1 zi/(n log logn)1/2 = 0p(1). Then,
(
∑n

i=1 zi)2/(n log logn) = Op(1). Moreover,

0 < a2(logn) max
n− n

log n <k<n

n− k

kn

(
n∑

i=1

zi

)2

< 2 log logn ·
n

log n

(n− n
log n )n

(
n∑

i=1

zi

)2

=
2(log logn)2

logn− 1
· (
∑n

i=1 zi)2

n log logn
P−→ 0, as n → ∞.

Hence,

a2(logn) max
n−(n/log n)<k<n

n− k

kn

(
n∑

i=1

zi

)2

= op(1).

2
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Proceeding similarly, we can show that

a2(log n) max
n−(n/log n)<k<n

2
k

∣∣∣∣∣
n∑

i=1

zi

∣∣∣∣∣
∣∣∣∣∣

n∑
i=k+1

zi

∣∣∣∣∣ = op(1),

and

a2(logn) max
n−(n/log n)<k<n

1
k

(
n∑

i=k+1

zi

)2

= op(1).

Thus, (i) holds.
(ii) Similar to the proof of Lemma 2.22(iii), one can easily obtain (ii)

here. �

Finally, we state without proof Lemma 2.2 of Horváth (1993).

Theorem 2.26 Under the null hypothesis H0, when n→ ∞,

lim
n→∞P [a(logn)λn − b(logn) ≤ x] = exp{−2e−x}

for x ∈ R, where a(logn) and b(logn) are defined in (2.44) and (2.45).

Proof. First, observe that

{1 < k < n} = {1 < k ≤ lnn} ∪ {log ≤ k ≤ n− logn} ∪ {n− logn < k < n}.

From Lemma 2.21(ii) and (iii), we obtain:

max
1<k<n

ξk
D= max

log n≤k≤n−log n
ξk.

From Lemma 2.22(i), then

max
1<k<n

ξk
D= max

log n≤k≤n−log n
(W (1)

k +W
(2)
k ).

But, for large n, we have

| logn ≤ k ≤ n− log n| =
{

logn ≤ k ≤ n

logn

}
∪
{

n

logn
< k ≤ n− n

logn

}
∪
{
n− n

logn
< k ≤ n− logn

}
,

and {
logn ≤ k ≤ n

logn

}
⊆
{

1 ≤ k ≤ n

log n

}
.
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From Lemma 2.22(ii) and (iii), we have

max
log n≤k≤(n/log n)

(W (1)
k +W

(2)
k )

D= max
log n≤k≤(n/log n)

⎧⎨⎩kz2
k +

1
2k

[
k∑

i=1

(z2
i − 1)

]2
⎫⎬⎭ . (2.58)

In view of Lemma 2.23, we have

max
log n≤k≤n−log n

(W (1)
k +W

(2)
k ) D=

[
max

log n≤k≤(n/log n)
(W (1)

k +W
(2)
k )

]

∨
[

max
n−(n/log n)≤k≤n−log n

(W (1)
k +W

(2)
k )

]
, (2.59)

where a ∨ b ≡ max{a, b}. Because{
n− n

logn
≤ k ≤ n− logn

}
⊆
{
n− n

logn
≤ k ≤ n

}
,

applying Lemma 2.24(i) and (ii), we obtain:

max
n−(n/log n)≤k≤n−log n

(W (1)
k +W

(2)
k )

D= max
n−(n/log n)≤k≤n−log n

⎧⎨⎩(n− k)z2
n−k +

1
2(n− k)

[
n∑

i=k+1

(z2
i − 1)

]2
⎫⎬⎭ .

(2.60)

Combining (2.58) through (2.60), we thus have

max
log n≤k≤n−log n

(W (1)
k +W

(2)
k ) D= max

{
max

1≤k<(n/log n)

[
kz2

k +
1
2k

k∑
i=1

(z2
i − 1)

]
,

max
n−(n/log n)≤k<n

⎡⎣(n− k)z2
n−k +

1
2(n− k)

[
n∑

i=k+1

(z2
i − 1)

]2
⎤⎦⎫⎬⎭ .

Then,

lim
n→∞P{a(logn)λn − b(logn) ≤ x}

= lim
n→∞P

{
a(logn) max

1<k<n−1
ξ
1/2
k − b(logn) ≤ x

}

2
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= lim
n→∞P

{
a2(log n) max

1<k<n
ξk ≤ [x+ b(logn)]2

}
= lim

n→∞P

{
a2(log n) max

log n≤k<n−log n
(W (1)

k +W
(2)
k ) ≤ [x+ b(logn)]2

}

= lim
n→∞P

{
a2(logn)max

{
max

1≤k<(n/log n)
[kz2

k +
1
2k

k∑
i=1

(z2
i − 1)],

max
n−(n/log n)≤k<n

⎡⎣(n− k)z2
n−k +

1
2(n− k)

[
n∑

i=k+1

(z2
i − 1)

]2
⎤⎦⎫⎬⎭

≤ [x+ b(logn)]2
}
. (2.61)

Because {zi,1 ≤ i < (n/logn)} and {zi, n − (n/lnn) ≤ i ≤ n
}

are indepen-
dent, (2.61) reduces to

lim
n→∞P

⎧⎨⎩a2(logn) max
1≤k<(n/log n)

⎛⎝kz2
k+

1
2k

[
k∑

i=1

(z2
i −1)

]2
⎞⎠≤ [x+b(logn)]2

⎫⎬⎭
· lim

n→∞P

{[
a2(logn) max

n−(n/log n)≤k<n

[
(n− k)z2

n−k

+
1

2(n− k)

[
n∑

i=k+1

(z2
i − 1)

]2 ]
≤ [x+ b(logn)]2

⎫⎬⎭
= lim

n→∞P

⎧⎪⎨⎪⎩a(logn) max
1≤k<(n/log n)

⎛⎝kz2
k+

1
2k

[
k∑

i=1

(z2
i −1)

]2
⎞⎠1/2

−b(logn)≤x

⎫⎪⎬⎪⎭
· lim

n→∞P

{
a(log n) max

n−(n/log n)≤k<n
{(n− k)z2

n−k

+
1

2(n− k)

[
n∑

i=k+1

(z2
i − 1)

]2

}1/2 − b(logn) ≤ x

⎫⎬⎭ . (2.62)

Denote the first term of (2.62) by (a) and the second by (b). Let’s consider
(a) first. Note that

kz2
k +

1
2k

[
k∑

i=1

(z2
i − 1)

]2

=

(
k∑

i=1

zi√
k

)2

+

(
k∑

i=1

z2
i − 1√

2k

)2

.
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Let vi = (zi, ((z2
i − 1)/

√
2)), 1 ≤ i < ∞, then {vi, 1 ≤ i < ∞} is a

sequence of iid d-dimensional random vectors with d = 2, and v(1)
i = zi,

v(2)
i = (z

2

i − 1)/
√

2. Now, E[v(1)
i ] = E(zi) = o for all i, E[v(2)

i ] =
E((z2

i − 1/
√

2)) = (1 − 1)/
√

2 = o for all i. Hence, E[v(j)
i ] = o for j = 1, 2

and all i. Cov(v(j)
i ,v(ι)

i ) = o for 1 ≤ j �= ι ≤ 2. If j = 1, ι = 2,
Cov(v(j)

i ,v(ι)
i ) = E(zi, (zi − 1)/

√
2) = E((z3

i − zi)/
√

2)) = o. Therefore, the
covariance matrix of vi is the 2×2 identity matrix. And clearly, E|v(j)

i |r < ∞
for j = 1, 2 and r > 2; Let S(j)

i =
∑k

i=1 v(j)
i for j = 1, 2; then

2∑
j=1

(
S

(j)
i√
k

)2

= kz2
k +

1
2k

[
k∑

i=1

(z2
i − 1)

]2

.

In view of Lemma 2.18, we thus obtain (a) = exp{−e−x}. Similarly, (b) =
exp{−e−x}. This completes the proof of the theorem. �

2.3.2 Informational Approach

(i) SICs

Under H0, the MLEs for μ and σ2 are

μ̂ = x =
1
n

n∑
i=1

xi and σ̂2 =
1
n

n∑
i=1

(xi − x)2,

respectively. Then denoting that SIC under H0 by SIC(n), we have:

SIC(n) = n log 2π + n log σ̂2 + n+ 2 logn. (2.63)

Under H1, we use SIC(k) to denote the SICs, for 2 ≤ k ≤ n− 2. Then after
some simple computations, we have:

SIC(k) = n log 2π + k log σ̂2
1 + (n− k) log σ̂2

n + n + 4 logn, (2.64)

where σ̂2
1 = (1/k)

∑k
i=1(xi − xk)2, xk = (1/k)

∑k
i=1 xi, σ̂2

n = (1/(n− k))∑n
i=k+1(xi − xn−k)2, and xn−k = (1/(n− k))

∑n
i=k+1 xi are the MLEs for

σ̂2
1 , μ1, σ2

n, and μn, respectively. Now, we estimate k by k̂ such that

SIC(k̂) = min
2≤k≤n−2

{SIC(k)}. (2.65)

It is noted that in order to obtain the MLEs, we can only detect change that
is located at k for 2 ≤ k ≤ n− 2.

2
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(ii) Asymptotic Null Distribution

Let Δn = min2≤k≤n−2[SIC(k) − SIC(n)]. The asymptotic distribution of a
function of Δn is given in the following theorem. Note that

Δn = − max
2≤k≤n−2

[SIC(k) − SIC(n)]

= λ2
n + 2 logn,

where

λ2
n =

[
max

2≤k≤n−2
〈n log σ̂2 − k log σ̂2

1 − (n− k) log σ̂2
n〉
]1/2

.

λn = (2 logn−Δn)1/2, thus we have the following.

Theorem 2.27 Under H0, for all x ∈ R,

lim
n→∞P [a(logn)(2 logn−Δn)1/2 − b(logn) ≤ x] = exp(−2e−x), (2.66)

where a(log n) = (2 log logn)1/2, and b(logn) = 2 log log n+ log log logn.

Proof. This is an immediate corollary of Theorem 2.26. �

We point out (see Gupta and Chen, 1996) that information criteria, such
as SIC, provide a remarkable way for exploratory data analysis with no need
to resort to either the distribution or the significant level α. On the other
hand, when the SICs are very close, one may question that the small difference
among the SICs might be caused by the fluctuation of the data, and therefore
there may be no change at all. To make the conclusion about change point
statistically convincing, we introduce the significant level α and its associated
critical value cα. Instead of accepting H0 when SIC(n) < min2≤k≤n−2 SIC(k),
we accept H0, if SIC(n) < min2≤k≤n−2 SIC(k)+ cα, where cα and α have the
relationship:

1 − α = P [SIC(n) < min
2≤k≤n−2

SIC(k) + cα|H0 holds]. (2.67)

From (2.66) and (2.67)

1 − α = P

{
− max

2<k<n−2
[SIC(n) − SIC(k)] > −cα|H0 holds

]
= P [Δn > −cα|H0 holds]

= P [−λ2
n + 2 logn > −cα|H0 holds]

= P [0 < λn < (cα + 2 logn)1/2|H0 holds]
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= P [−b(logn) < a(log n)λn − b(logn)

< a(logn)(cα + 2 logn)1/2 − b(logn)|H0 holds]

∼= exp{−2 exp[b(logn) − a(logn)(cα + 2 logn)1/2]}
− exp{−2 exp(b logn)}.

Hence,

exp{−2 exp[b(logn) − a(log n)(cα + 2 logn)1/2]}
∼= 1 − α+ exp{−2 exp[b(logn)]}.

Solving for cα, we obtain:

cα ∼=
{
− 1
a(logn)

log log[1 − α+ exp(−2 exp(b(logn)))]−(1/2)

+
b(logn)
a(logn)

}2

− 2 logn.

For different significant levels α = 0.01, 0.025, 0.05, and 0.1, and different
sample sizes n = 7, . . . , 200, we computed the critical values for SICs, and
listed them in Table 2.4.

(iii) Unbiased SICs

Recall from previous sections, we mentioned that to derive the informa-
tion criterion AIC, Akaike (1973) used logL(θ̂) as an estimate of J =
E
�θ[∫ f(y|θ0) log f(y|θ̂)dy], where f(y|θ0) is the probability density of the

future observations y = (y1, y2, . . . , yn) of the same size and distribution as
the xs, x = (x1, x2, . . . , xn), and x and y are independent. The expectation
is taken under the distribution of x when H0 is true; that is, θ0 ∈ H0. Unfor-
tunately, logL(θ̂) is not an unbiased estimator of J . When the sample size
n is finite, Sugiura (1978) proposed unbiased versions, finite corrections of
AIC, for different model selection problems.

In this section, we derive the unbiased version of SIC under our H0 and
H1, denoted by u− SIC(Hi), i = 0, 1.
(1) u− SIC(H0)

J = E
�θ[Eθ0 |y(logL(θ̂))]

= Ex

[
Ey

{
−1

2
n log 2π − n

2
log σ̂2 − 1

2

n∑
i=1

(yi − x)2

σ̂2

}]

= Ex

{
−1

2
n log 2π − n

2
log σ̂2 − n

2
+
n

2
− 1

2
Ey

n∑
i=1

(yi − x)2

σ̂2

}
.

2
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Table 2.4 Approximate Critical Values of SIC

n/α 0.010 0.025 0.050 0.100

7 35.699 19.631 12.909 7.758
8 25.976 17.232 11.925 7.405
9 23.948 16.423 11.540 7.262

10 23.071 15.994 11.313 7.168
11 22.524 15.691 11.139 7.087
12 22.108 15.445 10.989 7.010
13 21.763 15.233 10.854 6.936
14 21.463 15.044 10.731 6.863
15 21.198 14.873 10.617 6.793
16 20.960 14.717 10.511 6.725
17 20.744 14.574 10.411 6.660
18 20.546 14.441 10.317 6.597
19 20.364 14.317 10.228 6.536
20 20.195 14.201 10.144 6.477
21 20.038 14.092 10.064 6.420
22 19.891 13.989 9.988 6.364
23 19.753 13.892 9.916 6.311
24 19.623 13.799 9.846 6.259
25 19.501 13.711 9.779 6.209
26 19.384 13.627 9.715 6.160
27 19.274 13.547 9.653 6.113
28 19.169 13.470 9.593 6.067
29 19.069 13.397 9.536 6.023
30 18.973 13.326 9.480 5.979
35 18.548 13.008 9.227 5.778
40 18.193 12.737 9.008 5.600
45 17.888 12.501 8.814 5.439
50 17.622 12.292 8.640 5.293
55 17.386 12.104 8.482 5.160
60 17.173 11.934 8.338 5.036
70 16.804 11.635 8.082 4.815
80 16.490 11.377 7.859 4.620
90 16.218 11.151 7.662 4.446

100 15.977 10.950 7.486 4.289
120 15.567 10.604 7.179 4.015
140 15.225 10.313 6.919 3.780
160 14.933 10.061 6.693 3.574
180 14.678 9.840 6.493 3.391
200 14.451 9.643 6.313 3.227

Notice that, because the xis and yis are independent, and are all distributed
as N(μ, σ2), we have yi − x ∼ N(0, ((n + 1)/n)σ2). Therefore,

n

n+ 1

n∑
i=1

(yi − x)2

σ̂2
∼ χ2

n,
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and hence

J = E
�θ

[
logL(θ̂) +

n

2
− 1

2
(n+ 1)σ2

σ̂2

]
= E

�θ[logL(θ̂) +
n

2
− n+ 1

2
E
�θ

(
σ2

σ̂2

)
= E

�θ[logL(θ̂)] +
n

2
− n+ 1

2
n

n− 3

= E
�θ[logL(θ̂)] − 2n

n− 3
.

Therefore, logL(θ̂) − 2n/(n− 3) is unbiased for J , or −2 logL(θ̂)+
4n/(n− 3) is unbiased for −2J . We have

u− SIC(H0) = −2 logL(θ̂) +
4n

n− 3

= SIC(n) +
4n

n− 3
− 2 logn.

(2) u− SIC(H1)

J = E
�θ

[
Ey

{
−1

2
n log 2π − k

2
log σ̂2

1 − n− k

2
log σ̂2

n − 1
2

k∑
i=1

(yi − xk)2

σ̂2
1

− 1
2

n∑
i=k+1

(yi − xn−k)2

σ̂2
1

}]

= E
�θ

{
−1

2
n log 2π − k

2
log σ̂2

1 − n− k

2
log σ̂2

n − n

2
+
n

2

−1
2
Ey

[
k∑

i=1

(yi − xk)2

σ̂2
1

]
− 1

2
Ey

[
n∑

i=k+1

(yi − xn−k)2

σ̂2
1

]}
.

Now,

yi − xk ∼ N(0,
k + 1
k

σ2
1) and

k + 1
k

k∑
i=1

(yi − xk)2

σ̂2
1

∼ χ2
k,

and therefore,

Ey

[
k∑

i=1

(yi − xk)2

σ̂2
1

]
= (k + 1)

σ2
1

σ̂2
1

.

2
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Similarly,

Ey

[
n∑

i=k+1

(yi − xn−k)2

σ̂2
1

]
= (n− k + 1)

σ2
1

σ̂2
1

.

Thus,

J = E
�θ[logL(θ̂)] +

n

2
− k + 1

2
E
�θ

[
σ2

1

σ̂2
1

]
− n− k + 1

2
E
�θ

[
σ2

1

σ̂2
1

]
= E

�θ[logL(θ̂)] +
n

2
− k + 1

2
k

k − 3
− n− k + 1

2
n− k

n− k − 3

= E
�θ[logL(θ̂)] − k(k + 1)(n− k − 3) + (k − 3)(n− k)(n− k + 1)

(k − 3)(n− k − 3)

− n(k − 3)(n− k − 3)
(k − 3)(n− k − 3)

.

Hence,

u− SIC(H1) = −2 logL(θ̂)

+ 2
k(k + 1)(n− k − 3) + (k − 3)(n− k)(n− k + 1)

(k − 3)(n− k − 3)

− 2
n(k − 3)(n− k − 3)
(k − 3)(n− k − 3)

.

(iv) Data Analysis

Example 2.1 As an application of SIC for change point analysis, we analyze
the tensile strength data given in Shewhart (1931). There are 60 observations.
Assume that the data are normally distributed with means μ1, μ2, . . . , μ60 and
variances σ2

1 , σ
2
2 , . . . , σ

2
60, respectively. Then we test the following hypothesis,

H0 :μ1 = μ2 = · · · = μ60 = μ and

σ2
1 = σ2

2 = · · · = σ2
60 = σ2,

versus the alternative hypothesis

H1 :μ1 = · · · = μk �= μk+1 = · · · = μ60 and

σ2
1 = · · · = σ2

k �= σ2
k+1 = · · · = σ2

60.

Using the method developed here, we obtain the SIC(n), and SIC(k),
for 2 ≤ k ≤ n − 1, and list them in Table 2.5 along with the original
data values, where the starred value is the minimum SIC value. Clearly,
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Table 2.5 SIC Values for the Tensile Strength Data

xk k SIC(k) xk k SIC(k) xk k SIC(k)

29314 1 – 25770 21 1180.2 29668 41 1177.7
34860 2 1181.7 23690 22 1177.3 32622 42 1179.1
36818 3 1181.4 28650 23 1177.4 32822 43 1179.6
30120 4 1181.2 32380 24 1178.6 30380 44 1178.5
34020 5 1180.7 28210 25 1177.3 38580 45 1183.2
30824 6 1180.2 34002 26 1178.9 28202 46 1178.7
35396 7 1179.8 34470 27 1179.9 29190 47 1177.9
31260 8 1179.1 29248 28 1178.8 35636 48 1182.0
32184 9 1178.2 28710 29 1178.0 34332 49 1182.6
33424 10 1177.1 29830 30 1177.9 34750 50 1183.9
37694 11 1177.8 29250 31 1177.1 40578 51 1189.3
34876 12 1176.3 27992 32 1175.6 28900 52 1184.4
24660 13 1180.2 31852 33 1176.5 34648 53 1188.1
34760 14 1180.3 27646 34 1174.1 31244 54 1186.9
38020 15 1179.9 31698 35 1174.9 33802 55 1188.1
25680 16 1180.6 30844 36 1174.3 34850 56 1188.7
25810 17 1181.5 31988 37 1174.6 36690 57 1189.6
26460 18 1181.8 36640 38 1177.6 32344 58 1187.5
28070 19 1182.0 41578 39 1181.6 34440 59 —
24640 20 1181.0 30496 40 1178.5 34650 60 1172.6∗

∗Indicates the minimum SIC value

min2≤k≤58 SIC(k) = SIC(34) = 1174.1. Then SIC(n) = SIC(60) = 1172.6 <
min2≤k≤58 SIC(k), and these two values are very close. What decision should
we make? Use our Table 2.4, for any α, because cα > 0, then SIC(n) <
min2≤k≤58 SIC(k) + cα. Therefore, we fail to reject H0, and conclude that
there is no change in both mean and variance of the tensile strength. This
conclusion matches the one drawn in Shewhart (1931).

2.3.3 Application to Biomedical Data

We show an application of the mean and variance change point model to
the analysis of aCGH data introduced in Section 2.1.3. In Linn et al. (2003)
and Olshen et al. (2004), DNA copy number changes were viewed as a mean
change point model (MCM) with a fixed variance in the distributions of
the sequence {Xi}. As pointed out by Hodgson et al. (2001), the aCGH
technology may not guarantee the aCGH data to have a constant variance; it
is more reasonable to analyze the DNA copy number changes using the mean
and variance change model (MVCM) proposed in Chen and Wang (2009) for
the distributions of the sequence {Xi}. Observing the following normalized
log-ratio intensities obtained through aCGH experiments of Lucito et al.
(2003) on breast cancer cell line SK-BR-3 (see Figure 2.13), it is evident
that both mean and variance of the sequence have changed.

2
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Fig. 2.13 Genome of the fibroblast cell line GM07408 Snijders et al. (2001)

The multiple DNA copy number changes in the sequence of log ratio inten-
sities can be defined as the hypothesis testing problem stated earlier in this
section (see (2.32)). Specifically, using BSP, we just need to focus on how to
detect the single change (the most significant one), specified by testing (2.32)
versus (2.33), each time and repeat the searching scheme of BSP to get all
the significant changes. Here, μ and σ2 are the unknown common mean and
variance under the null hypothesis, and k, 1 < k < n, is the unknown position
of the single change at each single stage. For a given significance level α, when
H0 is not rejected, there is no change in the DNA copy number sequence and
the search scheme stops at this stage. If H0 is rejected at a given significance
level α, there is a significant change in the DNA copy number sequence and
the search scheme of the BSP continues until no more significant changes are
found.

As pointed out in Chen and Wang (2009), the advantage of using the
MVCM model is that MVCM leads to fewer change points than that of the
mean change point model (MCM) as MCM tends to divide large segments
into smaller pieces so that the homogeneous variance assumption for all seg-
ments can be met (Picard et al., 2005). Therefore, the MVCM model has
the potential to give fewer false positives than MCM. Adding the variance
component in the change point analysis will improve the estimation of the
change point location even if just the mean shifts greatly. This is because in
the MVCM model, the variances under the alternative hypothesis are esti-
mated for each subsequence without pooling all subsequences (with possible
different means) together, whereas in MCM the homogeneous variance under
the alternative hypothesis is estimated by pooling all subsequences with dif-
ferent means together. Using either MVCM or MCM also depends on the
biological experiment in which the scientists may have prior knowledge on
whether there are potential variance changes. In that case, the MVCM model
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is proposed as an alternative to MCM when possible variance changes exist
in the sequence.

To carry out the hypothesis testing of the null hypothesis (2.32), which
claims no DNA copy number changes, versus the alternative hypothesis
(2.33), the research hypothesis that there is a change in the mean and variance
and hence a change in the DNA copy number, Chen and Wang introduced
the SIC-based procedure along with an approximate p-value given by

p− value = 1 − exp{−2 exp[b(logn) − a(log n)λ1/2
n ]}, (2.68)

where λn = 2 logn − Δn, Δn = min2≤k≤n−2[SIC(k) − SIC(n)], and SIC(k)
and SIC(n) are given by (2.63) and (2.64), respectively.

The applications of the SIC method to the detection of change point loci
in the 15 fibroblast cell lines (Snijders et al., 2001) and other known aCGH
data are given in Chen and Wang (2009). There are also comparisons of using
the mean and variance change point model with the CBS method which is
based on a mean change point model in Chen and Wang (2009).

There are important aCGH copy number experiments conducted by
Snijders et al. (2001) on 15 fibroblast cell lines, namely GM03563, GM00143,
GM05296, GM07408, GM01750, GM03134, GM13330, GM03576, GM01535,
GM07081, GM02948, GM04435, GM10315, GM13031, and GM01524, and
the obtained aCGH data on the genome of all such cell lines are regarded as
benchmark aCGH datasets. There are many different computational and sta-
tistical methodology research articles published on how to analyze such aCGH
datasets. The change point methods, CBS and MVCM, which were used for
the analysis of the fibroblast aCGH data, were compared in Chen and Wang
(2009) in terms of the change loci identified, the sensitivity, and specificity of
the two methods. Two applications of the SIC approach are presented below
and a predetermined significant level of α = .001 is used.

The first one is a chromosomewide copy number change search using SIC
in MVCM on chromosome 4 of the fibroblast cell line GM13330. There are
167 genomic positions on which log base 2 ratio of intensities were recorded.
The SIC values at all of the genomic locations were calculated according
to expressions (2.63) and (2.64). The minimum SIC occurred at location
index 150 with minSIC = −299.8695 and corresponding p-value (according
to (2.68)) of 6.465314×10−9. The graph of SIC values for this chromosome is
given in Figure 2.14. Transferring back to the log ratio intensities, a scatter-
plot of the log ratio intensities of chromosome 4 of the fibroblast cell line
GM13330 is provided as Figure 2.15 with the red circle indicating the change
point identified.

The second application is a genomewide CNV search using SIC in MVCM
on the cell line GM07408. It is found that the minimum SIC value of the
whole sequence of 2027 log ratio intensity values occurs at locus 1841 with
the p-value of 0.00000. The BSP is applied to the searching process. For the
subsequence containing the first through the 1841st observations, the search

2
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Fig. 2.14 SIC values for every locus on chromosome 4 of the fibroblast cell line GM13330

Fig. 2.15 Chromosome 4 of the fibroblast cell line GM13330 (Snijders et al., 2001)

Fig. 2.16 Genome of the fibroblast cell line GM07408 with changes identified by red
circles
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locates no significant CNV, and for the subsequence consisting of the 1842nd
through the 2027th log ratio intensity value, the minimum SIC occurs at the
1927th locus of the original sequence with the p-value of 5.246360×10−5. After
the identification of the 1927th change location, the subsequence is further
broken into two subsubsequences and a third change is found at locus 1975
with the p-value of 2.75359× 10−6. These three loci are circled as red in the
scatterplot, Figure 2.16, of the genome of the fibroblast cell line GM07408.

2



Chapter 3

Multivariate Normal Model

In Chapter 2, we have discussed the inferences about change point(s) for a
univariate normal model in different situations. In this chapter, we investigate
change point(s) problems when the underlying distribution is a multivariate
normal distribution.

3.1 Mean Vector Change

Let x1,x2, . . . ,xn be a sequence of independent m-dimensional normal
random vectors with parameters (μ1, Σ1), (μ2, Σ2), . . . , (μn, Σn), respectively.
Assume Σ1 = Σ2 = · · · = Σn = Σ and Σ is unknown. We are concerned
with any changes that might be presented in the sequence. In other words,
it is desired to test the following hypothesis,

H0 : μ1 = μ2 = · · · = μn = μ (unknown) (3.1)

versus the alternative:

HA : μ1 = · · · = μk1 �= μk1+1 = · · · = μk2 �= · · · �= μkq+1 = · · · = μkq+1 = μn,

where q, 1 ≤ q ≤ n− 1, is the unknown number of changes and k1, k2, . . . , kq

are the unknown positions of the change points. Similar to the discussion in
Chapter 2, by means of the binary segmentation procedure, we just need to
test the single change point hypothesis and then repeat the procedure for each
subsequence. Hence, we turn to the testing of (3.1) against the alternative:

H1 : μ1 = · · · = μk �= μk+1 = · · · = μn (3.2)

where k now represents the position of the single change point at each
stage, 1 ≤ k ≤ n − 1. This single change point hypothesis about the mean
vector change has been studied by some authors in the literature. Sen and

- _ , 
, J. Chen and A. . Gupta Parametric Statistical Change Point Analysis: With Applications

to Genetics, Medicine, and Finance, DOI 10.1007/978-0-8176-4801 5
89

3
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Srivastava (1973) studied the problem of a single mean vector change for a
sequence of independent normal random vectors using a Bayesian test statis-
tic, and derived the exact and asymptotic null distribution of the test statis-
tic. Srivastava and Worsley (1986) applied likelihood ratio tests for detecting
a change in the mean vector of a sequence of independent normal random
vectors. Zhao, Krishnaiah, and Bai (1986a,b) studied the problem of detec-
tion of the number of signals in the presence of white noise and when the noise
covariance matrix is arbitrary. Krishnaiah, Miao, and Zhao (1990) suggested
a local likelihood method for estimating the change point in the multivari-
ate normal mean. James, James, and Siegmund (1992) obtained asymptotic
approximations for likelihood ratio tests and confidence regions for the change
in the multivariate normal mean.

In this chapter, we discuss the detection of the change point in multivariate
normal means by the likelihood-ratio procedure approach and information
criterion approach.

3.1.1 Likelihood-Ratio Procedure

(i) The Test Statistic

Under H0, the likelihood function is

L0(μ,Σ) = (2π)−mn/2|Σ|−n/2 exp

{
−1

2

n∑
i=1

(xi − μ)′Σ−1(xi − μ)

}
,

and the MLEs of μ and Σ are

μ̂ ≡ x =
1
n

n∑
i=1

xi, Σ̂ =
1
n

n∑
i=1

(xi − μ)(xi − μ)′.

The maximum likelihood under H0 is then

L0(μ̂, Σ̂) = (2π)−mn/2|Σ̂|−n/2e−mn/2.

Under H1, the likelihood function is

L1(μ1, μn, Σ1)

= (2π)−mn/2|Σ1|−n/2

· exp

{
−1

2

[
k∑

i=1

(xi − μ1)′Σ−1
1 (xi − μ1) +

n∑
i=k+1

(xi − μn)′Σ−1
1 (xi − μn)

]}
,
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and the MLEs of μ1, μn, Σ1 for m < k < n−m are

μ̂1 ≡ xk =
1
k

k∑
i=1

xi,

μ̂n ≡ xn−k =
1

n− k

n∑
i=k+1

xi,

Σ̂1 =
1
n

[
k∑

i=1

(xi − xk)(xi − xk)′ +
n∑

i=k+1

(xi − xn−k)(xi − xn−k)′
]
.

Then the maximum likelihood under H1 is

L1(μ̂1, μ̂n, Σ̂1) = (2π)−mn/2|Σ̂1|−n/2e−mn/2.

For fixed k, the alternative can be viewed as claiming that a sample of size
k is from a normal distribution with mean vector μ1, and an independent
sample of size n – k is from a normal distribution with mean vector μn,
where μ1 �= μn. Then the Hotelling’s T 2 test can be used, which is based
on the likelihood-ratio test. Let the standardized difference between the two
samples (before and after the change point k) be denoted by

yk =

√
k(n− k)

n
(xk − xn−k),

and also let

Wk =
1

n− 2

[
k∑

i=1

(xi − xk)(xi − xk)′ +
n∑

i=k+1

(xi − xn−k)(xi − xn−k)′
]
.

Then the Hotelling’s T 2 test statistic for testing the hypotheses is

T 2
k = y′kW

−1
k yk, for k = 1, . . . , n− 1,

and H0 is rejected for
max

1≤k≤n−1
T 2

k > c,

where c is a constant to be determined by the null distribution of max1≤k≤n−1

T 2
k , and the unknown position of the change point k is estimated by k̂ such

that
T 2
�k

= max
1≤k≤n−1

T 2
k .

Many authors tried to obtain the null distribution of max1≤k≤n−1 T
2
k in the

past, and obtained different approximations. We present a relatively good
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approximation to the null distribution of a function of max1≤k≤n−1 T
2
k due

to Srivastava and Worsley (1986). We need the following basic lemmas.

Lemma 3.1 Let Sk = y′kV
−1yk, with V =

∑n
i=1(xi − x)(xi − x)′, for k =

1, . . . , n− 1; then

Sk =
T 2

k

n− 2 + T 2
k

.

Proof. Inasmuch as

T 2
k

n− 2 + T 2
k

=
y′kW

−1
k yk

n− 2 + y′kW
−1
k yk

=
y′kW

∗−1
k yk

1 + y′kW
∗−1
k yk

,

where W ∗
k = (n− 2)Wk, it suffices to show that

y′kW
∗−1
k yk

1 + y′kW
∗−1
k yk

= y′kV
−1yk.

After some algebra, it is seen that

x =
kxk + (n− k)xn−k

n
,

k∑
i=1

(xi − xk)(xi − xk)′ =
k∑

i=1

(xi − x)(xi − x)′

− (n− k)[(x − xn−k)(x − xn−k)

+ (xk − x)(x − xn−k)′

− (x − xn−k)(x − xn−k)′],
n∑

i=k+1

(xi − xn−k)(xi − xn−k)′ =
n∑

i=k+1

(xi − x)(xi − x)′

− k[(x − xk)(xn−k − x)′

+ (xn−k − x)(x − xk)′

− (x − xk)(x − xk)′],

W ∗
k = V − yky′k,

and hence
V −W ∗

k − yky′k = 0.

Therefore,
y′kW

∗−1
k [V −W ∗

k − yky′k]V −1yk = 0,
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which leads to

y′kW
∗−1
k yk − y′kV

−1yk − (y′kW
∗−1
k y)(y′kV

−1yk) = 0,

and finally
y′kW

∗−1
k yk

1 + y′kW
∗−1
k yk

= y′kV
−1yk. �

Sk is increasing in T 2
k , therefore equivalently, H0 is rejected for

max
1≤k≤n−1

Sk > c,

where c is a constant to be determined by the null distribution of max1≤k≤n−1

Sk, and the unknown position of the change point k is estimated by k̂ such
that

S
�k = max

1≤k≤n−1
Sk.

To be able to obtain the c values, we need to know the null distribution
of S

�k.

(ii) Approximate Null Distribution of S
�k

An approximation to the null distribution of S
�k is given in this section.

We first present the following lemma.

Lemma 3.2 Under H0, the distribution of Sk is beta with parameters 1
2m,

and 1
2 (n−m− 1), for k = 1, . . . , n− 1.

Proof. Let

Y =
T 2

k

n− 2
· n−m− 1

m
;

then from Anderson (1984), under H0, Y is distributed as a central
F-distribution with parameters m and n – m – 1.

Clearly,

Sk =
mY

n−m− 1 +mY
,

and from the variable transformation theory, the pdf of Sk is found as

fSk
(s) =

Γ (n−1
2 )

Γ (m
2 )Γ (n−m−1

2 )
sm/2−1(1 − s)(n−m−1)/2−1I(0,1)(s).

Therefore the lemma is proven. �

There are different approximations to the null distribution of S
�k. One

popular approximation is from the Bonferroni inequality. Srivastava and
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Worsley (1986) derived an approximate null distribution of S
�k which improves

the Bonferroni inequality approximation.

Theorem 3.3 Under H0,

P (S
�k > c) � 1 −Gm,ν(c) + q1

n−2∑
k=1

tk − q2

n−2∑
k=1

t3k,

where

ν =
n−m− 1

2
,

q1 = gm,υ{2c(1 − c)/π}1/2Γ{(m+ ν − 1)/2}/Γ{(m+ ν)/2},
q2 = q1{(m2 − 1)/c+ (υ2 − 1)/(1 − c) − (m+ ν)(m + ν − 1)}

/{12(m+ ν)},

gm,υ(·) is the pdf of beta (m/2, ν/2), and Gm,ν(·) is the cdf of beta (m/2, ν/2).

Proof. The derivation of this theorem is given in Srivastava and Worsley
(1986). �

3.1.2 Informational Approach

(i) Expressions of SIC

As before, the information criterion such as SIC provides a remarkable way
to locate the change point when the inference of a change point is viewed as
a model selection problem. We derive the SIC under H0, denoted by SIC(n),
as follows.

SIC(n) = mn log 2π +mn+ n log |Σ̂| + 1
2
m(m + 3) logn,

where Σ̂ is the MLE of Σ obtained in previous section.
Similarly, we derive the SIC under H1, denoted by SIC(k), for 1 ≤ k ≤ n,

as
SIC(k) = mn log 2π +mn + n log |Σ̂1| + 1

2
m(m + 5) logn,

where Σ̂1 is the MLE of Σ1 obtained in the previous section.
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3.1.3 Applications to Geology and Literature Data

In this section, we apply the results obtained in the previous section to two
real-world problems of searching for mean vector change points as presented
in Gupta and Chen (1996).

Example 3.1 We first apply the SIC procedure to a set of geological data and
estimate the change points. The reader is referred to Chernoff (1973) for the
original dataset.

Chernoff analyzed a sequence of assays of seven mineral contents of a
4500-foot core drilled from a Colorado mountain side by the “faces” method,
and visually estimated the number and location of change points. Srivastava
and Worsley (1986) analyzed the same data by using the likelihood-ratio
test based on the maximum Hotelling’s T 2 and found the change points at
different significance levels. As in Srivastava and Worsley, we also choose
m = 5 variables z1, z8, z9, z10, and z12 which are of the highest assays. So we
have a sample of size n = 53 of five-dimensional independent normal random
vectors. In our calculations, we drop constants mn log 2π and mn from the
expressions of SIC(n) and SIC(k). The computational results are given in
Table 3.1. Please note that in Table 3.1, ∗ indicates where the minimum SIC

Table 3.1 SIC Values of Example 3.1

Obs. 1–53 1–24 1–18 1–12

1 2541.8 1051.3 697.0 453.0
2 2538.5 1050.2 695.9 456.1
3 2534.5 1050.3 696.7 458.0

4 2534.4 1049.4 694.6 454.8
5 2527.7 1043.8 690.0 450.6
6 2515.8 1031.8 679.5 441.5*
7 2510.3 1027.6 676.8 444.3
8 2510.0 1029.0 681.4 449.5
9 2506.4 1032.2 683.1 454.1

10 2504.8 1032.9 679.5 446.4
11 2501.1 1033.0 680.3 444.5
12 2501.7 1032.4 675.9* 447.5
13 2499.3 1033.7 683.8
14 2497.6 1031.3 685.4
15 2493.7 1035.5 694.2
16 2494.3 1028.0 695.7
17 2486.4 1021.2 694.6
18 2473.4 1000.1* 686.2
19 2464.0 1015.6
20 2455.1 1001.7
21 2458.9 1023.4
22 2452.6 1042.3
23 2446.3 1033.9
24 2439.5* 1039.7
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Table 3.1 Continued

Obs. 1–53 25–53 25–32

25 2454.7 1374.6 327.7
26 2448.4 1354.4 314.0
27 2446.5 1352.6 312.2
28 2457.9 1352.7 304.6*
29 2468.5 1356.6 308.4
30 2474.4 1352.5 318.3
31 2477.7 1339.5 316.8
32 2475.4 1326.1* 322.3

33–53

33 2466.4 1339.9 958.0
34 2462.2 1336.4 946.0*

35–53 35–46 35–43 35–41

35 2469.6 1343.7 956.5 862.9 548.1 404.6 271.6
36 2474.6 1340.5 948.5 852.2 538.8 398.5 255.6
37 2481.9 1349.5 956.5 856.5 541.4 390.3 252.0
38 2495.0 1357.5 961.5 859.4 547.4 396.6 264.5
39 2507.4 1364.5 964.1 860.6 550.4 397.1 249.5*

40 2508.2 1361.6 961.3 857.4 549.3 385.2 266.6
41 2509.3 1357.8 958.2 853.6 543.8 380.7* 270.4
42 2516.5 1366.6 963.1 857.8 540.4 390.7
43 2521.4 1368.5 957.8 852.1 531.2* 398.5
44 2524.8 1370.3 956.8 851.2 532.6
45 2525.3 1369.3 954.9 849.3 543.2
46 2523.1 1366.9 954.4 847.9* 540.2

47–53

47 2524.6 1367.1 957.2 850.8 272.3
48 2521.6 1362.7 955.1 848.6 177.9*
49 2526.5 1369.3 962.8 855.3 264.8
50 2527.2 1368.6 960.1 852.7 251.8
51 2531.0 1371.2 963.8 856.2 278.4
52 2536.7 1376.6 967.7 858.9 278.7
53 2524.2 1365.5 959.9 851.7 278.9

occurs in each sequence, hence the corresponding observation index is the
position of a change point.

From Table 3.1, it is noted that there are twelve change points that are
located at the 6th, 12th, 18th, 24th, 28th, 32nd, 34th, 39th, 41st, 43rd, 46th,
and 48th sites. In Table 3.2 we list the results of Chernoff, Srivastava, and
Worsley, and ours for the position of change points.

From Table 3.3 it is noted that the SIC procedure is able to detect all
the possible change points that Srivastava and Worsley have detected, plus
some more. Chernoff’s detection was visual and therefore at best approxi-
mate. Consequently, to be safe, one ought to check all the change points
obtained from our procedure for any decision. Just as Chernoff pointed out,
the observations from site 36 to 53 could be characterized by a different
constellation of special features, and his method might have disguised some
of the phenomena clearly observable. The change points we obtained (i.e., the
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Table 3.2 SIC Values of Example 3.2

Obs. 1–38 1–14 2–14

1 −2011.4 −756.2*
2 −2011.1 −756.1 −705.8
3 −2009.2 −742.6 −697.9
4 −2004.0 −737.4 −695.3
5 −2005.6 −735.7 −692.3
6 −2009.4 −738.9 −695.8
7 −2009.7 −738.9 −695.3
8 −2011.8 −739.0 −695.6
9 −2016.7 −738.2 −695.1

10 −2019.2 −744.8 −703.3
11 −2026.5 −750.1 −706.7
12 −2022.1 −738.8 −696.7
13 −2027.2 −741.2 −698.6
14 −2030.2* −751.3 −708.6*

15–38 15–23

15 −2027.1 −1247.3 −536.1
16 −2020.9 −1249.4 −519.9
17 −2019.9 −1251.4 −604.2*
18 −2024.1 −1254.8 −559.7
19 −2017.4 −1252.7 −556.2
20 −2016.3 −1255.0 −528.6
21 −2012.8 −1252.6 −516.7
22 −2012.4 −1259.5 −542.3
23 −2018.2 −1267.7* −521.0

24–38

24 −2019.8 −1265.9 −767.3

25 −2017.4 −1263.1 −767.3
26 −2015.4 −1264.1 −779.9*

27–38

27 −2014.4 −1260.7 −769.0 −619.3
28 −2013.4 −1255.9 −763.7 −632.8
29 −2015.8 −1259.4 −777.7 −640.2
30 −2020.2 −1266.5 −771.5 −625.5
31 −2013.8 −1263.2 −678.0 −626.9
32 −2009.7 −1258.1 −762.5 −627.4
33 −2016.3 −1264.1 −765.8 −649.4*
34 −2015.1 −1256.8 −764.5 −637.5
35 −2012.0 −1256.3 −764.5 −624.8
36 −2014.5 −1259.0 −770.3 −638.6
37 −2007.8 −1250.1 −758.0 −621.3
38 −2023.2 −1261.6 −769.1 −628.6

39th, 41st, 43rd, 46th, and 48th sites) are in the group Chernoff mentioned
(see Chernoff, 1979, p. 362). Furthermore, through observing the “faces”
Chernoff obtained, one can visually notice that those additional sites (39, 41,
43, 46, and 48) picked up by our procedure appear to be reasonable change
points.
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Table 3.3 Change Points of Example 3.1

Chernoff Srivastava & Worsley Gupta & Chen

6

12 b 12

20 18 a 18

24 24 a 24

28

32 32 a 32

35 34 b 34

39
41

43

46

48
aSignificant at level α = .01.
bSignificant at level α = .05

Table 3.4 Change Point Locations of Example 3.2

Scholars (Charney) Srivastava & Worsley Gupta & Chen

1 2 a 1

14 14 b 14

23 a 17
23

25 26 a 26

29 a

35 33
aSignificant at level α = .01.
bSignificant at level α = .05

Example 3.2 In this example, we apply the results obtained in Section 3.2 to
a set of data consisting of the frequencies of pronouns in 38 dramas of Shake-
speare. Our purpose here is to find the changes in Shakespeare’s play-writing
style by examining the frequencies of different pronouns in his dramas, which
are taken in the order as they appear in the First Folio edition of 1623; see
Spevack (1968). In 1979, Brainerd presented a paper with a frequency table
of pronouns used by Shakespeare in his dramas using discriminant analysis.
Later in 1986, Srivastava and Worsley employed the statistics K2r to analyze
the same data and perceived change points at different significance levels.
Here, we adopt Srivastava and Worsley’s formulation and assume that the
random variables Xi, i = 1, . . . , 7, are independent. However, if we do not
assume independence, our results remain unchanged. As in Example 1, here
we cannot detect a change for a sequence with less than nine observations.
We also drop the constants mn log 2π and mn from the expressions of SIC(n)
and SIC(k). The SICs at each stage are displayed in Table 3.2 and our results
are listed in Table 3.4 along with those of Srivastava and Worsley and other
scholars for comparison. Please note that in Table 3.2, ∗ indicates where the
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minimum SIC occurs in each sequence, hence the corresponding observation
index is the position of a change point.

From Table 3.4, we conclude that the first stage change point occurs at the
14th play (The Winter’s Tale). Two more changes take place at the first play
(The Tempest) and 23rd play (The Life and Death of King Richard III). It is
noted that the method of Srivastava and Worsley missed the change at the
1st play, whereas our procedure did pick it up. Three further changes occur
at the 17th, 26th, and 33rd play. In Charney (1993) The Tempest and The
Winter’s Tale are classified as romance, and all plays in between are classified
as comedies. The plays after The Winter’s Tale and before Coriolanus (the
26th play) are classified as histories except Troilus and Cressida (the 25th
play). All plays after Troilus and Cressida and before King Lear including
the next two plays (Othello, the Moor of Venice and Antony and Cleopatra)
are tragedies and the last three plays (Cymbeline, Pericles, and The Two
Noble Kinsmen) are romances. Therefore, our results match with the scholars’
classification very well.

3.2 Covariance Change

Let x1,x2, . . . ,xn be a sequence of independent m-dimensional normal
random vectors with parameters (μ1, Σ1), (μ2, Σ2), . . . , (μn, Σn), respectively.
Assume μ1 = μ2 = · · · = μn = μ and μ is known; then without loss of gene-
rality, take μ = 0. It is desired to test the following hypothesis (see Gupta,
Chattopadhyay, and Krishnaiah, 1975; Tang and Gupta, 1984):

H0 : Σ1 = Σ2 = · · · = Σn = Σ (unknown) (3.3)

versus the alternative:

HA : Σ1 = · · · = Σk1 �= Σk1+1 = · · · = Σk2 �= · · · �= Σkq+1

= · · · = Σkq+1 = Σn,

where q,m < q < n−m, is the unknown number of changes and k1, k2, . . . , kq

are the unknown positions of the change points. Similar to the discussion in
Chapter 2, by means of the binary segmentation procedure, we just need
to test the single change point hypothesis and then repeat the procedure
for each subsequence. Hence, we turn to the testing of (3.3) against the
alternative:

H1 : Σ1 = · · · = Σk �= Σk+1 = · · · = Σn, (3.4)

where k now represents the position of the single change point at each stage,
m < k < n−m.
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3.2.1 Likelihood-Ratio Procedure

(i) The Test Statistic

Under H0,x1,x2, . . . ,xn are iid Nm(0, Σ). The log likelihood function is:

logL0(Σ) = −1
2
mn log 2π − n

2
log |Σ| − 1

2

n∑
i=1

x′iΣ
−1xi,

and the MLE of Σ is Σ̂ = (1/n)
∑n

i=1 xix′i. Hence the maximum log likeli-
hood is

logL0(Σ̂) = −1
2
mn log 2π − n

2
log

∣∣∣∣∣ 1n
n∑

i=1

xix
′
i

∣∣∣∣∣− n

2
.

Under H1,x1,x2, . . . ,xk are iid Nm(0, Σ1), and xk+1,xk+2, . . . ,xn are iid
Nm(0, Σn). The log likelihood function is:

logL1(Σ1, Σn) = −mn

2
log 2π − k

2
log |Σ1| − n− k

2
log |Σn|

− 1
2

[
k∑

i=1

x′iΣ
−1
1 xi +

n∑
i=k+1

x′iΣ
−1
n xi

]
,

and the MLEs of Σ1 and Σn are Σ̂1 and Σ̂n, respectively, where

Σ̂1 =
1
k

k∑
i=1

xix′i and Σ̂n =
1

n− k

n∑
i=k+1

xix′i.

Hence, the maximum log likelihood is:

logL1(Σ̂1, Σ̂n) = −mn

2
log 2π − k

2
log

∣∣∣∣∣1k
k∑

i=1

xix′i

∣∣∣∣∣
− n− k

2
log

∣∣∣∣∣ 1
n− k

n∑
i=k+1

xix′i

∣∣∣∣∣− n

2
.

Then the log likelihood procedure statistic is

λn = max
m<k<n−m

⎛⎜⎜⎜⎜⎜⎝log

∣∣∣∣ 1n n∑
i=1

xix′i

∣∣∣∣n∣∣∣∣ 1k k∑
i=1

xix′i

∣∣∣∣k
∣∣∣∣∣ 1
n−k

n∑
i=k+1

xix′i

∣∣∣∣∣
n−k

⎞⎟⎟⎟⎟⎟⎠
1/2

. (3.5)
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As before, to be able to obtain the MLEs, we can detect changes only for
m < k < n − m. From the principle of minimum information criterion, we
estimate the change point position by k̂ such that (3.5) attains its maximum.

(ii) Asymptotic Null Distribution of the Test Statistics

Based on Chen and Gupta (2004), we first derive the asymptotic null distri-
bution of λn, where λn is given by (3.5). We assume that m is fixed. To prove
the main theorem of this section, we need the following results.

Lemma 3.4 Under H0, when n → ∞, k → ∞ such that (k/n) → 0, λ2
n is

asymptotically distributed as

max
m<k<n−m

⎧⎨⎩
m∑

j=1

[
n log

χ
2(j)
n

n
− k log

χ
2(j)

k

k
− (n− k) log

χ
2(j)

n−k

n− k

]⎫⎬⎭ ,

where χ
2(j)
n , χ

2(j)

k , and χ
2(j)

n−k are distributed as chi-square random variables

with n, k, n − k degrees of freedom, respectively, and χ
2(j)

k and χ
2(j)

n−k are

independent. Furthermore, {χ2(j)
n , χ

2(j)

k , χ
2(j)

n−k}, j = 1, . . . ,m, are also inde-
pendent.

Proof. From Anderson (1984, Chapter 7), we obtain:∣∣∣∣ 1n n∑
i=1

xix
′
i

∣∣∣∣ D=
|Σ|
nm

χ2
nχ

2
n−1, . . . , χ

2
n−m+1, where χ2

n, χ
2
n−1, . . . , χ

2
n−m+1 are

independent,∣∣∣∣ 1k k∑
i=1

xix
′
i

∣∣∣∣ D= |Σ1|
km χ2

kχ
2
k−1, . . . , χ

2
k−m+1, where χ2

k, χ
2
k−1, . . . , χ

2
k−m+1 are

independent, and∣∣∣∣∣ 1
n−k

n∑
i=k+1

xix
′
i

∣∣∣∣∣ D= |Σn|
(n−k)mχ2

n−kχ
2
n−k−1 . . . χ

2
n−k−m+1, where χ2

n−k,

χ2
n−k−1, . . . , χ

2
n−k−m+1 are independent.

Under H0, then

λ2
n

D= max
m<k<n−m

{
log

|χ2
nχ

2
n−1 . . . χ

2
n−m+1|n

|χ2
kχ

2
k−1 . . . χ

2
k−m+1|k|χ2

n−kχ
2
n−k−1 . . . χ

2
n−k−m+1|n−k

+ log
kmk(n− k)m(n−k)

nmn

}
.

Because χ2
n−ι

AD= χ2
n, χ

2
k−ι

AD= χ2
k, χ

2
n−k−ι

AD= χ2
n−k as n → ∞, k → ∞ such

that (k/n) → 0, for ι = 1, 2, . . . ,m − 1, where “AD= ” means “asymptotically
distributed as,” we have
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λ2
n

D= max
m<k<n−1

⎧⎨⎩
m∑

j=1

[n logχ2(j)
n − k logχ2(j)

k − (n− k) logχ2(j)

n−k]

+ log
kmk(n− k)m(n−k)

nmn

⎫⎬⎭
D= max

1<k<n−1

⎧⎨⎩
m∑

j=1

[
n log

χ
2(j)
n

n
− k log

χ
2(j)

k

k
− (n− k) log

χ
2(j)

n−k

n− k

]⎫⎬⎭ ,

where {χ2(j)
n , χ

2(j)

k , χ
2(j)

n−k}, j = 1, . . . ,m, are independent. �

Denote χ
2(j)
n =

∑n
i=1 y

(j)
i , χ

2(j)

k =
∑k

i=1 y
(j)
i , χ

2(j)

n−k =
∑n

i=k+1 y
(j)
i , where

y
(j)
i s are iid chi-square random variables with 1 degree of freedom for all
i = 1, . . . , n, j = 1,m. Let

ξ
(j)
k = n log

n∑
i=1

y
(j)
i

n
− k log

k∑
i=1

y
(j)
i

k
− (n− k) log

n∑
i=k+1

y
(j)
i

n− k
,

then λ2
n = max1<k<n−1

{∑m
j=1 ξ

(j)
k

}
. Now, for each ξ

(j)
k , j = 1, 2, . . . ,m,

using the three-term Taylor expansion, we obtain:

ξ
(j)
k = n

⎛⎜⎜⎝
n∑

i=1

y
(j)
i

n
− 1

⎞⎟⎟⎠− n

2

⎛⎜⎜⎝
n∑

i=1

y
(j)
i

n
− 1

⎞⎟⎟⎠
2

+
n

3
(θ(1)

n )−3

⎛⎜⎜⎝
n∑

i=1

y
(j)
i

n
− 1

⎞⎟⎟⎠
3

− k

⎛⎜⎜⎜⎝
k∑

i=1

y
(j)
i

k
−1

⎞⎟⎟⎟⎠+
k

2

⎛⎜⎜⎜⎝
k∑

i=1

y
(j)
i

k
−1

⎞⎟⎟⎟⎠
2

− k

3
(θ(2)

k )−3

⎛⎜⎜⎜⎝
k∑

i=1

y
(j)
i

k
−1

⎞⎟⎟⎟⎠
3

− (n− k)

⎛⎜⎜⎝
n∑

i=k+1

y
(j)
i

n− k
− 1

⎞⎟⎟⎠+
n− k

2

⎛⎜⎜⎝
n∑

i=k+1

y
(j)
i

n− k
− 1

⎞⎟⎟⎠
2

− n− k

3
(θ(3)

n−k)−3

⎛⎜⎜⎝
n∑

i=k+1

y
(j)
i

n− k
− 1

⎞⎟⎟⎠
3

,
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where

|θ(1)
n − 1| <

∣∣∣∣∣∣∣∣
n∑

i=1

y
(j)
i

n
− 1

∣∣∣∣∣∣∣∣ , |θ(1)
k − 1| <

∣∣∣∣∣∣∣∣∣
k∑

i=1

y
(j)
i

k
− 1

∣∣∣∣∣∣∣∣∣ , and

|θ(3)
n−k − 1| <

∣∣∣∣∣∣∣∣
n∑

i=k+1

y
(j)
i

n− k
− 1

∣∣∣∣∣∣∣∣ for j = 1, 2, . . . ,m.

Then clearly,

ξ
(j)
k = − 1

2n

[
n∑

i=1

(y(j)
i −1)

]2

+
1
2k

[
k∑

i=1

(y(j)
i −1)

]2

+
1

2(n−k)

[
n∑

i=k+1

(y(j)
i −1)

]2

+
n

3
(θ(1)

n )−3

⎛⎜⎜⎝
n∑

i=1

y
(j)
i

n
− 1

⎞⎟⎟⎠
3

− k

3
(θ(2)

k )−3

⎛⎜⎜⎜⎝
k∑

i=1

y
(j)
i

k
− 1

⎞⎟⎟⎟⎠
3

− n− k

3
(θ(3)

n−k)−3

⎛⎜⎜⎝
n∑

i=k+1

y
(j)
i

n− k
− 1

⎞⎟⎟⎠
3

.

Let

W
(j)
k = − 1

2n

[
n∑

i=1

(y(j)
i − 1)

]2

+
1
2k

[
k∑

i=1

(y(j)
i − 1)

]2

+
1

2(n− k)

[
n∑

i=k+1

(y(j)
i − 1)

]2

Q
(j)
k =

n

3
(θ(1)

n )−3

⎛⎜⎜⎝
n∑

i=1

y
(j)
i

n
− 1

⎞⎟⎟⎠
3

− k

3
(θ(2)

k )−3

⎛⎜⎜⎜⎝
k∑

i=1

y
(j)
i

k
− 1

⎞⎟⎟⎟⎠
3

R
(j)
k = −n− k

3
(θ(3)

n−k)−3

⎛⎜⎜⎝
n∑

i=k+1

y
(j)
i

n− k
− 1

⎞⎟⎟⎠
3

;

then λ2
n = max1<k<n−1

{∑m
j=1 W

(j)
k +

∑m
j=1 Q

(j)
k +

∑m
j=1 R

(j)
k

}
.



104 3 Multivariate Normal Model

For fixed m, we can establish and prove the following lemmas which are
similar to the ones we proved in Section 2.2 of Chapter 2. Here, we just state
those lemmas as follows.

Lemma 3.5

(i) max
1<k<n

k1/2(log log k)−(3/2)

∣∣∣∣∣ m∑
j=1

Q
(j)
k

∣∣∣∣∣ = Op(1).

(ii) max
1<k<n

(n− k)1/2[log log(n− k)]−(3/2)

∣∣∣∣∣ m∑
j=1

R
(j)
k

∣∣∣∣∣ = Op(1).

Lemma 3.6 For all x ∈ R, as n → ∞, the following hold.

(i) a2(logn) max
1<k<log n

(
m∑

j=1

W
(j)
k

)
− [x+ bm(logn)]2 P→ ∞,

(ii) a2(logn) max
1<k<log n

(
m∑

j=1

ξ
(j)
k

)
− [x+ bm(log n)]2 P→ ∞,

(iii) a2(logn) max
n−log n<k<n

(
m∑

j=1

W
(j)
k

)
− [x+ bm(logn)]2 P→ ∞,

(iv) a2(logn) max
n−log n<k<n

(
m∑

j=1

ξ
(j)
k

)
− [x+ bm(log n)]2 P→ ∞,

where a(logn) = (2 log logn)1/2, and
bm(logn) = 2 log logn+ (m/2) log log logn− logΓ (m/2).

Lemma 3.7 As n → ∞, the following hold.

(i) a2(logn) max
log n≤k≤n−log n

∣∣∣∣∣ m∑
j=1

(ξ(j)
k −W

(j)
k )

∣∣∣∣∣ = Op(1),

(ii) a2(logn) max
1<k<n/ log n

∣∣∣∣∣∣ 1
n− k

[
n∑

i=k+1

(y(j)
i − 1)

]2

− 1
n

[
n∑

i=1

(y(j)
i − 1)

]2∣∣∣∣∣∣ =

Op(1), for j = 1, . . . ,m,

(iii) a2(logn) max
n−n/ log n<k<n

∣∣∣∣∣1k
[

k∑
i=1

(y(j)
i − 1)

]2
− 1
n

[
n∑

i=1

(y(j)
i − 1)

]2∣∣∣∣∣ =

Op(1), for j = 1, . . . ,m.

Lemma 3.8 For all x ∈ R, as n → ∞,

a2(logn) max
(n/ log n)<k<n−n/ log n

⎛⎝ m∑
j=1

W
(j)
k

⎞⎠− (x+ bm(logn))2 P→ −∞.

Now, we are in a position to state and prove the main result of this section.
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Theorem 3.9 Under the null hypothesis H0, when n → ∞, k → ∞ such
that (k/n) → 0,

lim
n→∞P{a(logn)λn − bm(logn) ≤ x} = exp{−2e−x},

for all x ∈ R, where a(logn) and bm(logn) are defined in Lemma 3.6.

Proof. From Lemma 3.6 (ii) and (iii), we obtain

max
1<k<n

m∑
j=1

ξ
(j)
k

D= max
log n<k<n−log n

m∑
j=1

ξ
(j)
k .

From Lemma 3.7 (i), we have

max
1<k<n

m∑
j=1

ξ
(j)
k

D= max
log n<k<n−log n

m∑
j=1

W
(j)
k .

and Lemma 3.7 (ii) indicates:

max
log n<k<n/ log n

m∑
j=1

W
(j)
k

D= max
log n<k<n−log n

m∑
j=1

1
2k

[
k∑

i=1

(y(j)
i − 1)

]2

. (3.6)

In view of Lemma 3.8, we obtain

max
log n<k<n−log n

⎛⎝ m∑
j=1

W
(j)
k

⎞⎠ D=

⎡⎣ max
log n<k<(n/ log n)

⎛⎝ m∑
j=1

W
(j)
k

⎞⎠⎤⎦
∨
⎡⎣ max

n−(n/ log n)<k<n−log n

⎛⎝ m∑
j=1

W
(j)
k

⎞⎠⎤⎦ ,
(3.7)

where a ∨ b ≡ max{a, b}. Applying Lemma 3.7, we then have

max
n−n/ log n<k<n−log n

m∑
j=1

W
(j)
k

D= max
n−n/ log n<k<n−log n

m∑
j=1

1
2(n− k)

[
n∑

i=k+1

(y(j)
i − 1)

]2

. (3.8)
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Combining (3.6) through (3.8), we get

max
log n<k<n−log n

m∑
j=1

W
(j)
k

D= max

⎧⎨⎩ max
1<k<n/ log n

m∑
j=1

1
2k

[
k∑

i=1

(y(j)
i − 1)

]2

,

max
n−n/ log n<k<n

m∑
j=1

1
2(n−k)

[
n∑

i=k+1

(y(j)
i −1)

]2
⎫⎬⎭ .

Therefore,

lim
n→∞P{a(logn)λn − bm(log n) ≤ x}

= lim
n→∞P

⎧⎪⎨⎪⎩a(logn) max
1<k<n

⎛⎝ m∑
j=1

W
(j)
k

⎞⎠1/2

− bm(logn) ≤ x

⎫⎪⎬⎪⎭
= lim

n→∞P

⎧⎨⎩a2(logn) max
1<k<n

m∑
j=1

ξ
(1)
k ≤ [x+ bm(log n)]2

⎫⎬⎭
= lim

n→∞P

⎡⎣a2(logn)max

⎧⎨⎩ max
1<k<n/ log n

m∑
j=1

1
2k

[
k∑

i=1

(y(j)
i − 1)

]2

,

max
n−n/ log n<k<n

m∑
j=1

1
2(n− k)

[
n∑

i=k+1

(y(j)
i −1)

]2
⎫⎬⎭ ≤ (x+bm(logn))2

⎤⎦ .
(3.9)

{y(j)
i , 1 ≤ i ≤ k, 1 ≤ k ≤ (n/ logn)} and {y(j)

i , k+ 1 ≤ i ≤ n, n− (n/ logn) ≤
k ≤ n} are independent, therefore (3.9) reduces to

lim
n→∞P

⎧⎪⎪⎪⎨⎪⎪⎪⎩a
2(logn) max

1<k<n/ log n

m∑
j=1

[
k∑

i=1

(y(j)
i − 1)

]2
2k

≤ (x + bm(log n))2

⎫⎪⎪⎪⎬⎪⎪⎪⎭

· lim
n→∞P

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
a2(logn) max

n−n/ log n<k<n

m∑
j=1

[
n∑

i=k+1

(y(j)
i −1)

]2

2(n− k)
≤ (x+bm(log n))2

⎫⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎭
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= lim
n→∞P

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩a(logn) max
1<k<n/ log n

⎛⎜⎜⎜⎝
m∑

j=1

[
k∑

i=1

(y(j)
i −1)

]2
2k

⎞⎟⎟⎟⎠
1/2

− bm(log n) ≤ x

⎫⎪⎪⎪⎪⎬⎪⎪⎪⎪⎭

· lim
n→∞P

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩
a(logn) max

n−n/ log n<k<n

⎛⎜⎜⎜⎜⎜⎝
m∑

j=1

[
n∑

i=k+1

(y(j)
i −1)

]2

2(n− k)

⎞⎟⎟⎟⎟⎟⎠
1/2

− bm(logn)≤ x

⎫⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎭
.

(3.10)

Denote the first term of (3.10) by (c) and the second by (d). Let’s consider
(c) first. Notice that

1
2k

[
k∑

i=1

(y(j)
i − 1)

]2

=

[
k∑

i=1

(y(j)
i − 1)√

2k

]2

.

Let

vi =

(
y
(1)
i − 1√

2
,
y
(2)
i − 1√

2
, . . . ,

y
(m)
i − 1√

2

)
, 1 ≤ i < ∞,

then {vi, 1 ≤ i < ∞} is a sequence of iid m-dimensional random vectors with

v(1)
i =

y
(1)
i − 1√

2
, v(2)

i =
y
(2)
i − 1√

2
, . . . ,v(m)

i =
y
(m)
i − 1√

2
.

Now,

E(v(j)
i ) = E

[
y
(j)
i − 1√

2

]
= 0 for j = 1, . . . ,m and i = 1, . . . , n.

Var(v(j)
i ) = V

[
y
(j)
i − 1√

2

]
=

1
2
V (y(j)

i ) = 1, for j = 1, . . . ,m and all i.

Cov(v(j)
i ,v(ι)

i ) = E

[
y
(j)
i − 1√

2
· y

(ι)
i − 1√

2

]
= 0, for 1 ≤ j �= ι ≤ m.

Hence the covariance matrix of vi is the identity matrix. And obviously,
E|v(j)

i |r < ∞ for all j and some r > 2. Let S(j)
i =

∑k
i=1 v(j)

i for 1 ≤ j ≤ m,
then
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m∑
j=1

(
S

(j)
i√
k

)2

=
m∑

j=1

1
2k

[
k∑

i=1

(y(j)
i − 1)

]2

.

Using Lemma 2.18 of Chapter 2, we thus obtain: (c) = exp{−e−x}. Similarly,
we can show that (d) = exp{−e−x}. This completes the proof of the theorem.

�

(iii) Unknown Mean Case

In practice, it is more likely that μ remains common under the two hypotheses
but unknown. Under this situation, the likelihood procedure is still applicable.

Under H0, the maximum likelihood is easily obtained as

L0(Σ̂) = −mn

2
log 2π − n

2
log |Σ̂| − n

2
, where Σ̂ =

1
n

n∑
i=1

xix′i.

Under H1, the log likelihood function is

logL1(μ,Σ1, Σn) = −mn

2
log 2π − k

2
log |Σ1| − n− k

2
log |Σn|

− 1
2

[
k∑

i=1

(xi − μ)′Σ−1
1 (xi − μ)

+
n∑

i=k+1

(xi − μ)′Σ−1
n (xi − μ)

]
.

Differentiating logL1(μ,Σ1, Σn) with respect to μ,Σ1, and Σn, we obtain
the following equations in terms of the MLEs μ̂, Σ̂1, Σ̂n,

k∑
i=1

Σ̂−1
1 (xi − μ̂) +

k∑
i=k+1

Σ̂−1
1 (xi − μ̂) = 0,

kIm −
k∑

i=1

Σ̂−1
1 (xi − μ̂)(xi − μ̂)′ = Om,

(n− k)Im −
k∑

i=1

Σ̂−1
1 (xi − μ̂)(xi − μ̂)′ = Om,

where Im is the m ×m identity matrix, and Om is the m ×m zero matrix.
There are no closed-form solutions for μ̂, Σ̂1, Σ̂n from the above equations.
In practice, we have to use the numerical method to obtain approximate
solutions for μ̂, Σ̂1, Σ̂n. Because μ̂ is a vector, and Σ̂1, Σ̂n are matrices,
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the numerical iteration may be tedious for large m. Once we obtain the
unique solutions μ̂, Σ̂1, Σ̂n, the problem of change points can be solved
accordingly.

3.2.2 Informational Approach

(i) SICs Under the Two Hypotheses

Under H0,x1,x2, . . . ,xn are iid Nm(0, Σ). The log likelihood function is

logL0(Σ) = −1
2
mn log 2π − n

2
log |Σ| − 1

2

n∑
i=1

x′iΣ
−1xi,

and the MLE of Σ is Σ̂ = (1/n)
∑n

i=1 xix′i. Hence the maximum log likeli-
hood is:

logL0(Σ̂) = −1
2
mn log 2π − n

2
log

∣∣∣∣∣ 1n
n∑

i=1

xix′i

∣∣∣∣∣− n

2
,

and the SIC(n) under H0 is:

SIC(n) = mn log 2π + n log

∣∣∣∣∣ 1n
n∑

i=1

xix′i

∣∣∣∣∣+ n+
m(m + 1)

2
logn. (3.11)

Under H1,x1,x2, . . . ,xk are iid Nm(0, Σ1), and xk+1,xk+2, . . . ,xn are iid
Nm(0, Σn). The log likelihood function is

logL1(Σ1, Σ2) = −mn

2
log 2π − k

2
log |Σ1| − n− k

2
log |Σn|

− 1
2

[
k∑

i=1

x′iΣ
−1
1 xi +

n∑
i=k+1

x′iΣ
−1
1 xi

]
,

and the MLEs of Σ1 and Σn are Σ̂1 and Σ̂n, respectively, where

Σ̂1 =
1
k

k∑
i=1

xix′i and Σ̂n =
1

n− k

n∑
i=k+1

xix′i.
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Hence, the maximum log likelihood is

logL1(Σ̂1, Σ̂n) = −mn

2
log 2π − k

2
log

∣∣∣∣∣1k
k∑

i=1

xix′i

∣∣∣∣∣
− n− k

2
log

∣∣∣∣∣ 1
n− k

n∑
i=1

xix′i

∣∣∣∣∣− n

2
,

and the SIC(k) under H1, m < k < n−m, is

SIC(k) = mn log 2π + k log

∣∣∣∣∣1k
k∑

i=1

xix′i

∣∣∣∣∣+ (n− k) log

∣∣∣∣∣ 1
n− k

n∑
i=1

xix′i

∣∣∣∣∣
+ n+m(m + 1) logn. (3.12)

As before, to be able to obtain the MLEs, we can detect changes only for m <
k < n−m. From the principle of minimum information criterion, we accept
H0 if SIC(n) < minm<k<n−m SIC(k), and accept H1 if SIC(n) > SIC(k) for
some k and estimate the change point position by k̂ such that

SIC(k̂) = min
m<k<n−m

SIC(k). (3.13)

The following theorem is an immediate corollary of Theorem 3.9.

Theorem 3.10 Let Δn = minm<k<n−m[SIC(k) − SIC(n)], where SIC(k) is
defined by (3.12), and SIC(n) by (3.11). Then under H0,

lim
n→∞P

{
a(logn)

[
m(m+ 1)

2
logn−Δn

]1/2

− bm(logn) ≤ x

}
= exp{−2e−x},

where a(log n) and bm(log n) are defined in Lemma 3.6.

As in the previous chapter, we modify the minimum SIC procedure by
introducing the significant level α and its associated critical values cα. Then
we accept H0 if SIC(n) < minm<k<n−m SIC(k) + cα, where cα ≥ 0 and is
determined by

1 − α = P (SIC(n) < min
m<k<n−m

SIC(k) + cα|H0 holds).

Using Theorem 3.10,

1 − α = P (Δn > −cα|H0)

= P

(
λ2

n <
m(m+ 1)

2
logn+ cα|H0

)
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= P

(
0 < λn <

[
m(m+ 1)

2
logn+ cα

]1/2

|H0

)

= P

{
−bm(logn) < a(logn)λn − bm(logn) < a(logn)

·
[
m(m+ 1)

2
logn+ cα

]1/2

− bm(logn)

}

∼= exp

{
−2 exp

〈
−a(logn)

[
m(m + 1)

2
logn+ cα

]1/2

+ bm(log n)

〉}
− exp{−2 exp[bm(log n)]}.

Solving for cα cα, we obtain:

cα =
{
− 1
a(logn)

log log [1 − α+ exp(−2 exp(bm(log n)))] +
bm(logn)
a(log n)

}
− m(m + 1)

2
logn.

For selected values of α and n, the values of cα have been computed and are
given in Table 3.5 for m = 2 and in Table 3.6 for m = 3.

(ii) Unbiased Version of SICs

As in the previous chapter, for the hypotheses (3.3) and (3.4), and finite
sample size n, we derive the unbiased versions u − SIC(n) and u − SIC(k).
m < k < n−m, respectively.

(1) Unbiased SIC Under H0 − u− SIC(n)

Let Y = (y1,y2, . . . ,yn) be a sample of the same size and distribution as
the Xs, X = (x1,x2, . . . ,xn), and that Y is independent of X . That is,
y1,y2, . . . ,yn are also iid Nm(0, Σ).

J = E θ̂[Eθ0|Y (logL0(θ̂))]

= Eθ̂

[
Eθ0|Y

{
−mn

2
log 2π − n

2
log

∣∣∣∣∣ 1n
n∑

i=1

xix′i

∣∣∣∣∣− 1
2

n∑
i=1

y′iΣ̂
−1yi

}]

= Eθ̂[logL0(θ̂)] +
n

2
− 1

2
Eθ0|Y

{
n∑

i=1

y′iΣ̂
−1yi

}
,
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Table 3.5 Approximate Critical Values of SIC,
m = 2

n/α 0.010 0.025 0.050 0.100

10 20.768 13.692 9.010 4.866
11 20.126 13.294 8.741 4.689
12 19.623 12.961 8.504 4.525
13 19.198 12.668 8.289 4.371
14 18.824 12.405 8.092 4.224
15 18.490 12.165 7.909 4.085
16 18.187 11.945 7.738 3.953
17 17.910 11.740 7.578 3.827
18 17.655 11.550 7.427 3.706
19 17.419 11.372 7.284 3.591
20 17.199 11.205 7.149 3.481
21 16.993 11.047 7.020 3.375
22 16.800 10.898 6.897 3.273
23 16.618 10.756 6.780 3.175
24 16.445 10.621 6.668 3.081
25 16.282 10.492 6.560 2.990
26 16.126 10.369 6.457 2.902
27 15.978 10.251 6.357 2.817
28 15.837 10.138 6.261 2.735
29 15.701 10.029 6.169 2.655
30 15.571 9.924 6.079 2.578
35 14.992 9.452 5.672 2.223
40 14.504 9.048 5.319 1.911
45 14.082 8.694 5.007 1.632
50 13.710 8.380 4.728 1.381
55 13.378 8.097 4.475 1.152
60 13.079 7.840 4.244 0.942
70 12.555 7.386 3.833 0.566
80 12.108 6.995 3.477 0.238
90 11.718 6.652 3.162 0.000

100 11.372 6.345 2.881 0.000
120 10.780 5.817 2.392 0.000
140 10.284 5.371 1.977 0.000
160 9.858 4.986 1.617 0.000
180 9.485 4.647 1.300 0.000

200 9.152 4.344 1.015 0.0000

where

Σ̂ =
1
n

n∑
i=1

xix′i,

and
L0(θ̂) = −mn

2
log 2π − n

2
log |Σ̂| − n

2
.

Here, xis are iid Nm(0, Σ), yis are iid Nm(0, Σ), for i = 1, 2, . . . , n and X

is independent of Y . Now let T 2 = y′iΣ̂
−1yi; then from Theorem 5.2.2 of

Anderson (1984) we have:
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T 2

n

n−m + 1
m

∼ Fm,n−m+1;

that is,
T 2 ∼ mn

n−m+ 1
Fm,n−m+1.

Hence,

Eθ0|Y {y′iΣ̂−1yi} =
mn

n−m+ 1
n−m + 1
n−m− 1

=
mn

n−m− 1
.

Then, J is reduced to

J = Eθ̂[logL0(θ̂)] +
n

2
− mn2

2(n−m− 1)

= Eθ̂[logL0(θ̂)] − n(mn− n+m + 1)
2(n−m− 1)

.

Table 3.6 Approximate Critical Values
of SIC, m = 3

n/α 0.01 0.025 0.05

10 14.077 6.986 2.284
11 13.344 6.465 1.871
12 12.735 6.001 1.488
13 12.192 5.574 1.128
14 11.697 5.178 0.788
15 11.242 4.807 0.466
16 10.819 4.458 0.161
17 10.425 4.130 0.000
18 10.056 3.819 0.000
19 9.708 3.525 0.000
20 9.380 3.245 0.000
21 9.069 2.978 0.000
22 8.773 2.723 0.000
23 8.492 2.479 0.000
24 8.224 2.245 0.000
25 7.967 2.020 0.000
26 7.721 1.804 0.000
27 7.485 1.596 0.000
28 7.257 1.395 0.000

29 7.039 1.201 0.000
30 6.828 1.013 0.000
35 5.873 0.159 0.000
40 5.052 0.000 0.000
45 4.331 0.000 0.000
50 3.688 0.000 0.000
55 3.108 0.000 0.000
60 2.581 0.000 0.000
70 1.648 0.000 0.000
80 0.843 0.000 0.000
90 0.135 0.000 0.000
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Thus, logL0(θ̂)− ((n(mn−n+m+1))/(2(n−m−1))) is unbiased for J and
we define, under H0, the u− SIC(n) by

u− SIC(n) = −2 logL0(θ̂) +
n(mn− n +m+ 1)

n−m− 1

= SIC(n) +
n(mn− n+m + 1)

n−m− 1
− m(m + 1)

2
logn,

where SIC(n) is given in (3.11).

(2) Unbiased SIC Under H1 − u− SIC(k)

Under H1, let Y = (y1,y2, . . . ,yn) be a sample of the same size and dis-
tribution as the Xs, X = (x1,x2, . . . ,xn), and Y be independent of X .
That is, x1,x2, . . . ,xk, y1,y2, . . . ,yk are iid Nm(0, Σ1) random vectors, and
xk+1,xk+2, . . . ,xn, yk+1,yk+2, . . . ,yn are iid Nm(0, Σn) random vectors.

J = Eθ̂[Eθ0|Y (logL1(θ̂)]

= Eθ̂

[
Eθ0|Y

{
−mn

2
log 2π − k

2
log

∣∣∣∣∣1k
k∑

i=1

xix′i

∣∣∣∣∣
−n− k

2
log

∣∣∣∣∣ 1
n− k

n∑
i=k+1

xix′i

∣∣∣∣∣− 1
2

k∑
i=1

y′iΣ̂
−1yi − 1

2

n∑
i=k+1

y′iΣ̂
−1
1 yi

}]
,

where

Σ̂1 =
1
k

k∑
i=1

xix′i and Σ̂n =
1

n− k

n∑
i=k+1

xix′i.

Because for i = 1, 2, . . . , k,

y′iΣ̂
−1
1 yi

k

k −m+ 1
m

∼ Fm,k−m+1,

and for i = k + 1, . . . , n,

y′iΣ̂
−1
n yi

n− k

n− k − k + 1
m

∼ Fm,n−k−m+1,

we have for i = 1, . . . ,m,

E[y′iΣ̂
−1
1 yi] =

km

k −m+ 1
k −m+ 1
k −m− 1

=
km

k −m− 1
,
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and for i = 1, . . . ,m,

E[y′iΣ̂
−1
n yi] =

(n− k)m
n− k −m+ 1

n− k −m+ 1
n− k −m− 1

=
(n− k)m

n− k −m+ 1
.

Then J is reduced to

J = Eθ̂[logL1(θ̂)] +
n

2
− 1

2
k2

k −m− 1
− 1

2
(n− k)2m

n− k −m− 1

= Eθ̂[logL1(θ̂)] − c

2
,

where

logL1(θ̂) = −mn

2
log 2π − k

2
log |Σ̂1| − n− k

2
log |Σ̂n| − n

2
,

and

c =
k2m(n− k −m− 1) + (n− k)2m(k −m− 1)

(k −m− 1)(n− k −m− 1)

− n(k −m− 1)(n− k −m− 1)
(k −m− 1)(n− k −m− 1)

.

Therefore, we define the unbiased SIC(k) as

u− SIC(k) = −2 logL1(θ̂) + c

for m < k < n−m, or

u− SIC(k) = SIC(k) + c−m(m + 1) logn,

where SIC(k) is given in (3.12).

3.2.3 Application to Multivariate Stock Market Data

Now, we illustrate an application of our test procedure. We collect the Friday
closing prices from January, 1990 through December, 1991 for two stocks
(Exxon and General Dynamics) from Daily Stock Price Record: New York
Stock Exchange, published quarterly by Standard & Poor’s. The prices are
listed in Table 3.7, in which the digit following the dash denotes eights. The
3D scatterplot of the bivariate stock prices is given in Figure 3.1.
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Table 3.7 Friday Closing Price, Jan. 1, 1990–Dec. 31, 1991

Obs. Exxon General Dynamics Obs. Exxon General Dynamics

1 48–06 45–05 53 51–04 25–03
2 47–06 41–05 54 49–07 20–07
3 48–05 41–04 55 51–05 25–02
4 46–06 39–07 56 52–05 27–04
5 47–07 39–06 57 50–04 28–04
6 48–02 37 58 53–01 27–04
7 48 36–06 59 53–03 25–04
8 47–01 36–02 60 53–06 26–02
9 46–06 38 61 55–06 24–04

10 46–03 37–06 62 55–03 23–05
11 47–04 37–07 63 57–01 28–07
12 46–01 37–05 64 57–07 29–04
13 46–01 37–04 65 58–04 33–04
14 46–01 37–06 66 57–03 32
15 45–06 37–03 67 59–06 33–04
16 46–03 37–02 68 60–01 35–02
17 45 35–04 69 59–04 36–04
18 46–04 34–04 70 59–02 39
19 47–07 33–04 71 57–07 38–04
20 47–06 34–05 72 58 39
21 46–04 34–03 73 58–05 39
22 47–06 35 74 58–02 38–03
23 47 36 75 57–04 39–02
24 47–07 35–05 76 58–02 38–06
25 47–07 33–04 77 58–04 41–05
26 47–07 32 78 58–01 41–07
27 47–06 32–01 79 57–04 42–02
28 48–06 31–05 80 58–06 43–06
29 48–05 31–06 81 59–05 44–03
30 49–02 27–03 82 58–06 43–03
31 53–01 29 83 58–06 44
32 51–05 27–04 84 57–04 44–01
33 52–01 26–01 85 57–04 44–02
34 48–07 26–02 86 59 42–03
35 50 24–07 87 58–02 42–04
36 50–07 25–05 88 59 42–02
37 51–03 25–03 89 58–03 40–06
38 51–02 26–04 90 59 40–07
39 49 23–05 91 58–06 46–02
40 49–07 25–04 92 59–01 48–04

41 48–04 22–07 93 60–01 47–02
42 49–07 20–06 94 61–04 50–01
43 47–02 22–03 95 60–05 47–07
44 49–05 23–04 96 60–04 51–05
45 50–03 23–07 97 60–01 51–04
46 50–03 22–05 98 57–02 50–04
47 51–01 23 99 57–06 47–04
48 50–05 23–03 100 58–05 48–06
49 49–02 24–05 101 57–01 50
50 50–06 25–03 102 58 52–07
51 50–06 26 103 59–01 52–01
52 51–05 25 104 58–02 52–03
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Fig. 3.1 The scatterplot of the original stock prices of the two stocks

The weekly rates of return for these two stocks are analyzed for any change
points, where the weekly rates of return Rt = (Rt1 , Rt2), Rtj of stock j,
j = 1, 2, is defined as (Johnson and Wichern, 1988)

Rtj =
Current Friday closing price − Previous Friday closing price

Previous Friday closing price
.

The 3D scatterplot of the return series is given in Figure 3.2.

Fig. 3.2 The scatterplot of the return series of the two stocks
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Assuming bivariate normal distribution with mean 0 for the Rt series,
t = 1, 2, . . . , 103, we test the following hypothesis,

H0 : Σ1 = Σ2 = · · · = Σ103 = Σ (unknown),

versus the alternative:

H1 : Σ1 = Σk1 �= Σk1+1 = Σk2 �= · · · �= Σkq+1 = · · · = Σkq+1 = Σ103,

where q, m < q < n−m, is the unknown number of changes and k1, k2, . . . , kq

are the unknown positions of the change points, and n = 103.
The SIC(k) for 3 ≤ k ≤ 100, and SIC(103) are obtained and listed in

Table 3.8. Here SIC(103) = −871.6174 > min3≤k≤103 SIC(k) = SIC(66) =
−877.8032. If we choose α = 0.025, according to Table 3.5, we still have
SIC(103) > min3≤k≤103 SIC(k)+ cα. Hence, the 66th observation is a change
point for the return series. At the same α level, eight more change points
are found; they are the 3rd, 23rd, 27th, 28th, 70th, 90th, 94th, and 95th
observations of the Rt series.

Transferring back to the Friday closing price and the corresponding dates,
we conclude that there are nine significant (α = 0.025) changes in the stock

Table 3.8 SIC Values of Example 3.3 at the First Stage

k SIC(k) k SIC(k) k SIC(k) k SIC(k)

3 −859.2419 28 −875.7469 53 −863.0627 78 −865.6730
4 −859.3577 29 −867.7354 54 −861.7981 79 −865.4149
5 −858.1211 30 −864.9223 55 −861.8698 80 −864.5139
6 −858.6054 31 −864.9908 56 −863.1338 81 −863.7539
7 −859.2951 32 −864.9012 57 −867.1126 82 −862.6420
8 −859.2241 33 −867.1411 58 −866.5134 83 −862.1341
9 −860.2009 34 −867.2714 59 −865.6375 84 −861.1433

10 −860.8116 35 −867.6294 60 −868.8383 85 −861.1606
11 −861.4430 36 −868.2560 61 −867.8304 86 −860.4344
12 −862.7146 37 −868.2560 62 −873.0662 87 −859.8044
13 −864.1533 38 −865.9297 63 −871.8757 88 −859.3132
14 −865.7002 39 −864.9329 64 −875.6297 89 −858.8113
15 −867.1564 40 −863.5814 65 −875.1426 90 −860.5685
16 −867.4550 41 −862.3220 66 −877.8032 91 −860.2412
17 −866.6043 42 −864.5585 67 −876.9840 92 −869.7628
18 −866.6930 43 −866.4932 68 −875.8014 93 −859.9674

19 −867.4225 44 −866.5224 69 −875.7610 94 −859.7997
20 −868.5823 45 −866.5224 70 −875.1666 95 −861.4867
21 −869.6860 46 −866.0638 71 −873.4096 96 −860.4341
22 −870.4244 47 −866.1460 72 −871.9115 97 −860.5178
23 −871.7620 48 −866.9320 73 −870.4108 98 −860.8406
24 −870.8104 49 −867.6632 74 −869.2914 99 −859.9722
25 −871.1048 50 −867.8991 75 −868.1249 100 −859.6739
26 −872.7699 51 −867.8991 76 −868.2891 103 −871.6174
27 −873.9515 52 −867.9753 77 −866.8725
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price for these two companies. These changes occurred during Jan. 29 to
Feb. 11 of 1990, Jul. 23 to Aug. 5 of 1990, Apr. 8 to May 3 of 1991, Sep. 16
to Sep. 23 of 1991, and Oct. 13 to Oct. 28 of 1991. Historical materials
showed that during these five periods several important economic, political,
and social events happened, which might cause the changes in the price of
the two stocks. In the first period, from Jan. 29 to Feb. 11 of 1990, interest
rates around the world had suddenly surged, sending stock prices tumbling
on exchanges from Tokyo to London and threatening to put the sickly U.S.
economy into the intensive-care ward. In the second period, from Jul. 23 to
Aug. 5 of 1990, Saddam Hussein called out the troops to frighten Kuwait, and
his tactic raised oil prices. On Aug. 2, Iraqi troops invaded Kuwait. World
stock and currency markets gyrated nervously in response to the news of
Iraq’s invasion. The sluggish American economy was in danger of recession.
The third period, from Apr. 8 to May 3 of 1991, was called a period “from
war fare to fare wars.” After staying home through a bleak winter of conflict
and recession, Americans were eager to bust loose, and travel companies were
wooing them. In the fourth period, from Sep. 16 to Sep. 23 of 1990, mortgage
rates had plunged sharply since 1984, and in September it was found that the
pipeline to quick refinancing became more jammed. The number of qualified
appraisers in many areas could barely keep up with demand. Despite such
inconvenience, experts expected the rush to refinancing to continue, especially
if interest rates dropped by another half percentage point. Finally, in the last
period, from Oct. 13 to Oct. 28, the recovery of the recession was very slow.
Even if President Bush continued to lower interest rates, the effects would
not be felt until next spring. (Note, for historical evidence, see Times 1990
and 1991).

Furthermore, for the bivariate return series (Rt1 , Rt2), we used Mardia’s
test (see Mardia, 1970) to check the multivariate normality assumption for
every subsequence (separated by the change points). Our results show that
the normality assumption is indeed valid.

3.3 Mean Vector and Covariance Change

In Chapter 2, Section 2.3, we investigated the change point problem of
mean and variance for a sequence of normal random variables by using
the information criterion, SIC, and studied some properties of the corres-
ponding statistic. In this section, we study the problem of simultaneous
changes in the mean vector and covariance matrix of a multivariate Gaussian
model.

Suppose x1,x2, . . . ,xn is a sequence of independent m-dimensional normal
random vectors with parameters (μ1, Σ1), (μ2, Σ2), . . . , (μn, Σn), respectively.
We are interested in testing the following hypothesis,
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H0 : μ1 = μ2 = · · · = μn and Σ1 = Σ2 = · · · = Σn(μ,Σ unknown)
(3.14)

versus the alternative:

HA : μ1 = · · · = μk1 �= μk1+1 = · · · = μk2 �= · · · �= μkq+1

= · · · = μkq+1 = μn

and

Σ1 = · · · = Σk1 �= Σk1+1 = · · · = Σk2 �= · · · �= Σkq+1 = · · · = Σkq+1 = Σn,

where q,m < q < n−m are the unknown number of changes and k1, k2, . . . , kq

are the unknown positions of the change points. Similar to the previous dis-
cussion, by means of the binary segmentation procedure, we just need to test
the single change point hypothesis and then repeat the procedure for each
subsequence. Hence, we turn to test (3.14) against the alternative:

H1 : μ1 = · · · = μk �= μk+1 = · · · = μn

and Σ1 = · · · = Σk �= Σk+1 = · · · = Σn, (3.15)

where m < k < n−m.

3.3.1 Likelihood-Ratio Procedure

Under H0, the log likelihood function is given by

logL0(θ) = −1
2
mn log 2π − n

2
log |Σ| − 1

2

n∑
i=1

(xi − μ)′Σ−1(xi − μ),

where θ = (μ,Σ). Let θ̂ = (μ̂, Σ̂) be the MLE of θ, then

μ̂ = x and Σ̂ =
1
n

n∑
i=1

(xi − x)(xi − x)′.

Hence, the maximum log likelihood is:

logL0(θ̂) = −1
2
mn log 2π − n

2
log |Σ̂| − n

2
.
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Under H1, the log likelihood function is:

logL1(θ) = −1
2
mn log 2π − k

2
log |Σ1| − n− k

2
log |Σn|

− 1
2

k∑
i=1

(xi − μ1)′Σ−1
1 (xi − μ1)

− 1
2

n∑
i=k+1

(xi − μn)′Σ−1
n (xi − μn).

Here, θ = (μ1, μn, Σ1, Σn). Denote the MLE of θ by θ̂ = (μ̂1, μ̂n, Σ̂1, Σ̂n);
then

μ̂1 = xk =
1
k

k∑
i=1

xi, Σ̂1 =
1
k

k∑
i=1

(xi − xk)(xi − xk)′,

μ̂n = xn−k =
1

n− k

n∑
i=k+1

xi, Σ̂n =
1

n− k

n∑
i=k+1

(xi − xn−k)(xi − xn−k)′.

Then the maximum log likelihood is:

logL1(θ̂) = −1
2
mn log 2π − k

2
log |Σ̂1| − n− k

2
log |Σ̂n| − n/2.

Then the log likelihood procedure statistic is

λn =

(
max

m<k<n−m
log

|Σ̂|n
|Σ̂1|k|Σ̂|n−k

)1/2

.

Notice that, in order to obtain the MLEs here, we can detect changes only
when m < k < n −m. The position of the change point is estimated by k̂,
where k̂ is the value of k such that λn attains its maximum.

(i) Asymptotic Null Distribution of the Test Statistic

Lemma 3.11 Under H0, when n → ∞, k → ∞ such that (k/n) → 0, λ2
n is

asymptotically distributed as

max
1<k<n−1

⎧⎨⎩
m∑

j=1

[n log t(j)n−1 − k log t(j)k−1 − (n− k) log t(j)n−k−1]

⎫⎬⎭ ,

where nt
(j)
n−1, kt

(j)
k−1, and (n− k)t(j)n−k−1 are distributed as chi-square random

variables with n − 1, k − 1, and n − k − 1 degrees of freedom, respectively,
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and t
(j)
k−1 and t

(j)
n−k−1 are independent. Furthermore, {t(j)n−1, t

(j)
k−1, t

(j)
n−k−1},

j = 1, . . . ,m, are also independent.

Proof. From Theorem 7.5.3 in Anderson (1984), under H0, we obtain

λ2
n

D= max
m<k<n−m

{
n logχ2

n−1 − k logχ2
k−1 − (n− k) logχ2

n−k−1]

+ [n logχ2
n−2 − k logχ2

k−2 − (n− k) logχ2
n−k−2]

...

+ [n logχ2
n−m − k logχ2

k−m − (n− k) logχ2
n−k−m]

+ log
kmk(n− k)m(n−k)

nmn

}
,

where χ2
n−js, j = 1, . . . ,m, are independent, χ2

k−js, j = 1, . . . ,m, are

independent, and χ2
n−k−js, j = 1, . . . ,m, are independent; and “D=” means

“distributed as.” Because, χ2
n−l

AD= χ2
n−1, χ

2
k−l

AD= χ2
k−1, and χ2

n−k−l
AD=

χ2
n−k−1 for l = 1, 2, . . . ,m, where “AD= ” means “asymptotically distributed

as,” we have

λ2
n

AD= max
1<k<n

⎧⎨⎩
m∑

j=1

[n logχ2(j)

n−1 − k logχ2(j)

k−1 − (n− k) logχ2(j)

n−k−1]

+ log
kkm(n− k)m(n−k)

nmn

⎫⎬⎭
D= max

1<k<n−1

⎧⎨⎩
m∑

j=1

[n log t(j)n−1 − k log t(j)k−1 − (n− k) log t(j)n−k−1]

⎫⎬⎭ ,

where {t(j)n−1, t
(j)
k−1, t

(j)
n−k−1}, j = 1, . . . ,m are independent. �

Let ξ(j)
k = n log t(j)n−1−k log t(j)k−1−(n−k) log t(j)n−k−1; then λ2

n = max1<k<n−1

{∑m
j=1 ξ

(j)
k }. Now for each ξ

(j)
k , j = 1, 2, . . . ,m, using the three-term Taylor

expansion, we obtain:

ξ
(j)
k = n(t(j)n−1 − 1) − n

2
(t(j)n−1 − 1)2 +

1
3
(θ(1)

n )−3n(t(j)n−1 − 1)3

− k(t(j)k−1 − 1) +
k

2
(t(j)k−1 − 1)2 − 1

3
(θ(2)

k )−3k(t(j)k−1 − 1)3
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− (n− k)(t(j)n−k−1 − 1) +
n− k

2
(t(j)n−k−1 − 1)2

− 1
3
(θ(3)

n−k)−3(n− k)(t(j)n−k−1 − 1)3,

where |θ(1)
n −1| < |t(j)n−1−1|, |θ(2)

k −1| < |t(j)k−1−1|, and |θ(3)
n−k−1| < |t(j)n−k−1−1|.

Next denote

t
(j)
n−1 =

1
n

n∑
i=1

(z(j)
i − z

(j)
k )2, z(j)

n =
1
n

n∑
i=1

z
(i)
i

t
(j)
k−1 =

1
k

k∑
i=1

(z(j)
i − z

(j)
k )2, z

(j)
k =

k∑
i=1

z
(j)
i

t
(j)
n−k−1 =

1
n− k

n∑
i=k+1

(z(j)
i − z

(j)
n−k)2, z

(j)
n−k =

1
n− k

n∑
i=k+1

z
(j)
i ,

where z(j)
i s are iid N(0, 1) random variables, i = 1, . . . , n, j = 1, . . . ,m. Then

ξ
(j)
k = jW

(1)
k + jW

(2)
k + jQ

(1)
k + jQ

(2)
k ,

where

jW
(1)
k = kz

(j)2

k + (n− k)z(j)2

n−k − nz(j)2

n ,

jW
(2)
k = − 1

2n

[
n∑

i=1

(z(j)2

i − 1)

]2

+
1
2k

[
k∑

i=1

(z(j)2

i − 1)

]2

+
1

2(n− k)

[
n∑

i=k+1

(z(j)
i − 1)

]2

,

jQ
(1)
k =

n

3
(θ(1)

n )−3(t(j)n−1 − 1)3 − k

3
(θ(2)

k )−3(t(j)k−1 − 1)3 + z(j)2

n

n∑
i=1

(z(j)2

i − 1)

+
n

2
z(j)4

n − z
(j)2

k

k∑
i=1

(z(j)2

i − 1) +
k

2
z
(j)4

k ,

jQ
(2)
k =

(n− k)
3

(θ(3)
n−k)−3(t(j)n−k−1 − 1)3 +

(n− k)
2

z
(j)4

n−k

− z
(j)2

n−k

n∑
i=k+1

(z(j)2

i − 1).
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Let ξk =
∑m

j=1 ξ
(j)
k ,W

(1)
k =

∑m
j=1 jW

(1)
k , W

(2)
k =

∑m
j=1 W

(2)
k , Q

(1)
k =∑m

j=1 jQ
(1)
k , and Q

(2)
k =

∑m
j=1 jQ

(2)
k ; then ξk = W

(1)
k + W

(2)
k + Q

(1)
k + Q

(2)
k

and λ2
n = max1<k<n−1 ξk.

Lemma 3.12 max1≤k≤n k
1/2(log log k)−(3/2)|Q(1)

k | = Op(1).

Proof. From the law of iterated logarithm, one can easily establish that:

max
1<k<n

k1/2(log log k)−(3/2)|(θ(2)
k )−3k(t(j)k−1 − 1)3| = Op(1), (3.16)

max
1<k<n

k1/2(log log k)−(3/2)z
(j)2

k

k∑
i=1

(z(j)2

k − 1) = Op(1), (3.17)

max
1<k<n

k1/2(log log k)−(3/2)kz
(j)4

k = Op(1), (3.18)

max
1<k<n

k1/2(log log k)−(3/2)|(θ(1)
n )−3n(t(j)n−1 − 1)3| = Op(1), (3.19)

max
1<k<n

k1/2(log log k)−(3/2)z(j)2

n

n∑
i=1

(z(j)2

i − 1) = Op(1), (3.20)

max
1<k<n

k1/2(log log k)−(3/2)nz(j)4

n = Op(1). (3.21)

Hence,
max

1<k<n
k1/2(log log k)−(3/2)|jQ(1)

k | = Op(1).

Therefore, for m fixed,

max
1<k<n

k1/2(log log k)−(3/2)|Q(1)
k | = Op(1). �

Lemma 3.13 max1<k<n(n− k)1/2(log log(n− k))−(3/2)|Q(2)
k | = Op(1).

Proof. Proceeding as in Lemma 3.12, we obtain

max
1<k<n

(n− k)1/2(log log(n− k)−(3/2))|(θ(3)
n−k)−3|(n− k)(t(j)n−k−1 − 1)3|

= Op(1), (3.22)

max
1<k<n

(n− k)1/2(log log(n− k)−(3/2))z(j)2

n−k

n∑
i=k+1

(z(j)2

i − 1) = Op(1), (3.23)

max
1<k<n

(n− k)1/2(log log(n− k)−(3/2))(n− k)z(j)4

n−k = Op(1). (3.24)
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Hence,
max

1<k<n
(n− k)1/2(log log(n− k)−(3/2))|Q(2)

k | = Op(1).

Q.E.D. �

Lemma 3.14 a2(log n)max1<k<log n(W (1)
k +W

(2)
k )− (x+ b2m(logn))2 P→ ∞

as n → ∞, where x ∈ R,

a(logn) = (2 log logn)1/2, (3.25)

and
b2m(logn) = 2 log logn +m log log log n− logΓ (m). (3.26)

Proof. Convergence properties imply that as n → ∞,

a2(logn) max
1<k<log n

kz
(j)2

k + (x+ b2m(logn))2 P→ −∞, (3.27)

and

a2(log n) max
1<k<log n

(n− k)z(j)2

n−k − (x+ b2m(logn))2 P→ −∞. (3.28)

Moreover,

a2(logn) max
1<k<log n

(−nz(j)2

n ) − (x+ b2m(log n))2 P→ −∞. (3.29)

Hence,
a2(logn) max

1<k<log n
W

(1)
k − (x+ b2m(logn))2 P→ −∞. (3.30)

Similarly,

a2(logn) max
1<k<log n

W
(2)
k − (x+ b2m(logn))2 P→ −∞. (3.31)

Therefore, as n → ∞

a2(logn) max
1<k<log n

(W (1)
k +W

(2)
k ) − (x+ b2m(logn))2 P→ −∞. �

Lemma 3.15 For all x ∈ R, as n → ∞, the following hold.

(i) a2(logn)max1<k<log n ξk − (x+ b2m(logn))2 P→ −∞;

(ii) a2(logn)maxn−log n<k<n(W (1)
k +W

(2)
k ) − (x+ b2m(logn))2 P→ −∞;

(iii) a2(logn)maxn−log n<k<n ξk − (x+ b2m(logn))2 P→ −∞.

Proof. From Lemma 3.13 and Lemma 3.14, one can obtain (i).
Proceeding in the same manner as in the proof of Lemma 3.14, one can

immediately obtain (ii).
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Now from Lemma 3.13, Lemma 3.14, and the law of iterated logarithm,
one can obtain:

a2(log n) max
n−log n<k<n

Q
(1)
k − (x+ b2m(logn))2 P→ −∞, (3.32)

and
a2(log n) max

n−log n<k<n
Q

(2)
k − (x+ b2m(logn))2 P→ −∞, (3.33)

as n → ∞, for all x ∈ R. In view of (ii) above, we thus conclude that (iii)
holds. �

Lemma 3.16 We have the following results.

(i) a2(logn) max
log n≤k≤n−log n

|ξk −W
(1)
k +W

(2)
k | = Op(1);

(ii) a2(logn) max
1≤k< n

log n

|(n− k)z(j)2

n−k − nz
(j)2

n | = Op(1), j = 1, 2, . . . ,m;

(iii) for j = 1, 2, . . . ,m,

a2(logn) max
1≤k<(n/ log n)

∣∣∣∣∣∣ 1
n−k

[
n∑

i=k+1

(z(j)2

i − 1)

]2

− 1
n

[
n∑

i=1

(z(j)2

i − 1)
]2∣∣∣∣∣∣ =

Op(1).

Proof. From Lemmas 3.14 and 3.15, we have

max
1≤k<(n/ log n)

k1/2(log log k)−(3/2)|ξk − (W (1)
k +W

(2)
k )| = Op(1). (3.34)

Hence, after some calculations, we obtain (i).
Starting with the identity

(n− k)z(j)2

n−k − nz(j)2

n =
k

n(n− k)

(
n∑

i=1

z
(j)
i

)2

− 2
n− k

(
n∑

i=1

z
(j)
i

)(
k∑

i=1

z
(j)
i

)

+
1

n− k

(
k∑

i=1

z
(j)
i

)2

, j = 1, 2, . . . ,m,

and combining it with the law of iterated logarithm, we can obtain (ii).
Similar to (ii), we can easily prove (iii). �

Lemma 3.17 As n→ ∞, for all x ∈ R, we have

a2(logn) max
n/ log n<k<n−n/ log n

(W (1)
k +W

(2)
k ) − (x+ b2m(logn))2 P→ −∞.

Proof. From Theorem 2 of Darling and Erdös (1956), we obtain:

a2(logn) max
n/ log n<k<n−n/ log n

|W (1)
k +W

(2)
k | = Op((log log logn)2). (3.35)
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Therefore, one can conclude that

a2(log n) max
n/ log n<k<n−n/ log n

(W (1)
k +W

(2)
k ) − (x+ b2m(logn))2 P→ −∞

as n → ∞ for x ∈ R. �

Similar to Lemma 3.16(ii) and (iii), we obtain the following result.

Lemma 3.18

(i) a2(logn)maxn−n/ log n≤k<n |kz(j)2

k − nz
(j)2

n | = Op(1), j = 1, . . . ,m.

(ii) a2(logn) maxn−n/ log n≤k<n |1/k[∑k
i=1(z

(j)2

i − 1)
]2 − 1/n

[∑n
i=1

(z(j)2

i − 1)]2| = Op(1).
j = 1, . . . ,m,

Now we are in a position to state and prove our main result.

Theorem 3.19 Under the null hypothesis H0, when n → ∞, k → ∞ such
that (k/n) → 0, then

lim
n→∞P{a(logn)λn − b2m(logn) ≤ x} = exp{−2e−x}

for x ∈ R, where a(logn) and b2m(logn) are defined in (3.25) and (3.26),
respectively.

Proof. Because of the above Lemmas 3.13–3.18, it suffices to show that

lim
n→∞P

{
a(logn) max

log n≤k<n−log n
(W (1)

k +W
(2)
k )1/2−b2m(logn) ≤ x

}
= e−2e−x

.

(3.36)

The left-hand side of (3.36) is equivalent to

lim
n→∞P

{
a2(logn) max

log n≤k<n−log n
(W (1)

k +W
(2)
k ) ≤ (x+ b2m(logn))2

}

= lim
n→∞P

⎧⎨⎩a2(logn)

⎡⎣ max
1≤k<n−log n

⎛⎝ m∑
j=1

[
kz

(j)2

k +
1
2k

(
k∑

i=1

(z(j)2

i − 1)2
])

,

max
n−n/ log n≤k<n

⎛⎝ m∑
j=1

[
(n− k)z(j)2

n−k +
1

2(n− k)

(
n∑

i=k+1

(z(j)2

i − 1)2
])⎤⎦

≤ [x+ b2m(log n)]2

⎫⎬⎭ . (3.37)
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Because {z(j)
i , 1 ≤ i < (n/ logn)} and {z(j)

i , n − (n/ logn) ≤ i ≤ n} are
independent, (3.37) reduces to

lim
n→∞P

⎧⎨⎩a2(log n) max
1≤k<n/ log n

⎡⎣ m∑
j=1

(
kz

(j)2

k +
1
2k

(
k∑

i=1

(z(j)2

i − 1)2
)]

≤ (x+ b2m(logn))2

⎫⎬⎭
· lim

n→∞P

⎧⎨⎩a2(logn) max
n−n/ log n≤k<n

⎡⎣ m∑
j=1

(n− k)z(j)2

n−k

+
1

2(n− k)

n∑
i=k+1

(z(j)2

i − 1)2
]
≤ (x+ b2m(logn))2

}

= lim
n→∞P

⎧⎨⎩a(logn) max
1≤k<n/ log n

⎡⎣ m∑
j=1

(kz(j)2

k

+
1
2k

(
k∑

i=1

(z(j)2

i − 1)2)

]1/2

− b2m(logn) ≤ x

⎫⎬⎭
· lim

n→∞P

⎧⎨⎩a(logn) max
n−n/ log n≤k<n

⎡⎣ m∑
j=1

(n− k)z(j)2

n−k

+
1

2(n− k)

(
n∑

i=k+1

(z(j)2

i − 1)2
)]1/2

− b2m(log n) ≤ x

⎫⎬⎭ .

(3.38)

On the R.H.S. of (3.38) denote the first term by (e), and the second by (f).
Let us consider (e) first

kz
(j)2

k +
1
2k

(
k∑

i=1

(z(j)2

i − 1)2
)

=

(
k∑

i=1

z
(j)
i√
k

)2

+

(
k∑

i=1

z
(j)2

i − 1√
2k

)2

.

Let

vi =

(
z
(1)
i , . . . , z

(m)
i ,

z
(1)2

i − 1√
2

, . . . ,
z
(m)2

i − 1√
2

)
, 1 ≤ i < ∞;
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then {vi, 1 ≤ i < ∞} is a sequence of iid d-dimensional random vectors with
d = 2m, and

v
(1)
i = z

(1)
i , . . . , v

(m)
i = z

(m)
i ,

v(m+1)
i =

z(1)2

i − 1√
2

, . . . ,v(2m)
i =

z(m)2

i − 1√
2

.

After some computations, we have E[v(j)
i ] = 0,Var[v(j)

i ] = 1 for 1 ≤ j ≤ 2m,
and cov(v(j)

i , v
(1)
i ) = 1 for j �= 1, 1 < j, 1 < 2m. Hence, the covariance matrix

of vi is the identity matrix. And clearly, E|v(j)
i |r < ∞ for all j and some

r > 2.
Let S(j)

i =
∑k

i=1 v
(j)
i for 1 ≤ j ≤ 2m; then

2m∑
j=1

(
S

(j)
i√
k

)2

= kz
(j)2

k +
1
2k

k∑
i=1

(z(j)2

i − 1)2.

Hence, in view of Lemma 2.18, we have

(e) = exp{−e−x}.

Similarly, we can show that (f) = exp{−e−x}. This completes the proof of
the theorem. �

3.3.2 Informational Approach

(i) Derivation of the SICs

Under H0, the log likelihood function is given by

logL0(θ) = −1
2
mn log 2π − n

2
log |Σ| − 1

2

n∑
i=1

(xi−μ)′Σ−1(xi−μ),

where θ = (μ,Σ). Let θ̂ = (μ̂, Σ̂) be the MLE of θ; then μ̂ = x and Σ̂ =
(1/n)

∑n
i=1(xi − x)(xi − x)′. Hence, the maximum log likelihood is

logL0(θ̂) = −1
2
mn log 2π − n

2
log |Σ̂| − n

2
,

and the SIC under H0 is

SIC(n) = mn log 2π + n log |Σ̂| + n+
m(m+ 3)

2
logn. (3.39)
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Under H1, the log likelihood function is

logL1(θ) = −1
2
mn log 2π − k

2
log |Σ1| − n− k

2
log |Σn|

− 1
2

k∑
i=1

(xi−μ1)′Σ−1
1 (xi−μ1)− 1

2

n∑
i=k+1

(xi − μn)′Σ−1
1 (xi − μn).

Here, θ = (μ1, μn, Σ1, Σn). Denote the MLE of θ by θ̂ = (μ̂1, μ̂n, Σ̂1, Σ̂n);
then

μ̂1 = xk =
1
k

k∑
i=1

xi, μ̂n = xn−k =
1

n− k

n∑
i=k+1

xi,

Σ̂1 =
1
k

k∑
i=1

(xi − xk)(xi − xk)′, and

Σ̂n =
1

n− k

n∑
i=k+1

(xi − xn−k)(xi − xn−k)′.

Then the maximum log likelihood is

logL1(θ̂) = −1
2
mn log 2π − k

2
log |Σ̂1| − n− k

2
log |Σ̂n| + n;

hence, the SICs under H1 are:

SIC(k) = mn log 2π+k log |Σ̂1|+(n−k) log |Σ̂n|+n+m(m+3) logn, (3.40)

where m < k < n−m.
Notice that, in order to obtain the MLEs here, we can detect changes only

when m < K < n −m. According to the principle of information criterion,
we accept H0 if

SIC(n) < min
m<k<n−m

SIC(k),

and we accept H1 if
SIC(n) > SIC(k)

for some k and estimate the position of the change point by k̂ such that

SIC(k̂) = min
m<k<n−m

SIC(k). (3.41)
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(ii) Asymptotic property of the SIC

In this section, we provide an asymptotic property of the SIC derived in (i).
Because λn = [(m(m+ 3))/2 logn−Δn]1/2, we obtain the following theorem
as a Corollary of Theorem 3.20.

Theorem 3.20 Let Δn = minm<k<n−m[SIC(k) − SIC(n)], where SIC(k) is
given by (3.40), and SIC(n) by (3.39). Under H0, then

lim
n→∞P

[
a(logn)

[
m(m + 3)

2
logn−Δn

]1/2

− b2m(log n) ≤ x

]
= exp{−2e−x}, (3.42)

where a(log n) and b2m(logn) are defined in (3.25) and (3.26).

(iii) Approximate Critical Values cα

As in Chapter 2, we modify the minimum SIC procedure by introducing the
significant level α and its associate critical value cα. Then we accept H0 if
SIC(n) < minm<k<n−m SIC(k) + cα, where cα is determined by

1 − α = P

(
SIC(n) < min

m<k<n−m
SIC(k) + cα|H0

)
.

Using Theorem 3.21,

1 − α = P (Δn > −cα|H0)

= P

(
m(m+ 3)

2
logn−Δn <

m(m + 3)
2

logn+ cα|H0

)
= P

(
λ2

n <

[
m(m+ 3)

2
logn+ cα

]1/2

|H0

)

= P

(
−b2m(log n)<a(logn)λn−b2m<a(logn)

[
m(m+3)

2
logn+cα]1/2

− b2m(logn)

∼= exp

(
−2 exp

[
−a(logn)

{
m(m+ 3)

2
logn+ cα

}1/2

+ b2m(log n)

])
− exp(−2 exp[b2m(logn)]).
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Solving for cα, we get

cα =
{
− 1
a(logn)

log log[1−α+exp(−2 exp(b2m(logn)))]−(1/2)+
b2m(log n)
a(logn)

}
− m(m + 3)

2
log n.

For a different α and sample size n, we computed cα and listed them in
Table 3.7 for m = 2.

(iv) Unbiased Version of SICs

As in Chapter 2, for the hypotheses (3.14) and (3.15), and finite sample size
n, we derived the unbiased version u−SIC(n) and u−SIC(k), m < k < n−m,
respectively.

(1) u− SIC(n)

Let Y = (y1,y2, . . . ,yn) be a sample of the same size and distribution as the
Xs, where X = (x1,x2, . . . ,xn), and Y be independent of X .

Under H0 given by (3.14),

J = E
�θ[Eθ0|Y (logL0(θ̂))]

= E
�θ

[
Eθ0|Y

{
−1

2
mn log 2π − n

2
log |Σ̂| − 1

2

n∑
i=1

(yi − μ̂)′Σ̂−1(yi − μ̂)

}]

= E
�θ

[
−1

2
mn log 2π − n

2
log |Σ̂| − n

2
+
n

2

−1
2
Eθ0|Y

{
n∑

i=1

(yi − μ̂)′Σ̂−1(yi − μ̂)

}]

= E
�θ

[
logL0(θ̂) +

n

2
− 1

2
Eθ0|Y

{
n∑

i=1

(yi − μ̂)′Σ̂−1(yi − μ̂)

}]
,

where

Σ̂ =
1
n

n∑
i=1

(xi − x)(xi − x)′, μ̂ = x,

and
logL0(θ̂) = −1

2
mn log 2π − n

2
log |Σ̂| − n

2
.
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Here xis are iid Nm(μ,Σ), and yis are iid Nm(μ,Σ) for i = 1, 2, . . . , n,
and X is independent of Y , thus we have yi − x ∼ Nm(0, ((n+ 1)/n)Σ) and√

n+ 1
n

(yi − x) ∼ Nm(0, Σ).

Now,

(n− 1)S =
n∑

i=1

(xi − x)(xi − x)′ = nΣ̂

is distributed as
∑n−1

i=1 ziz′i, where zis are iid Nm(0, Σ) random vectors,
and S is independent of x. But S is also independent of Y , therefore, Σ̂ =
((n− 1)/n)S is independent of yi −x for i = 1, 2, . . . , n. From Theorem 5.2.2
in Anderson (1984), by letting

T 2 =
n

n + 1
(yi − x)′S−1(yi − x),

then we have
T 2

n− 1
n−m

m
∼ Fm,n−m.

That is,
n

n+1 (yi − x)′S−1(yi − x)
n− 1

n−m

m
∼ Fm,n−m,

or
n−m

(n + 1)m
(yi − x)′Σ̂−1(yi − x) ∼ Fm,n−m.

Hence,

Eθ0|Y [(yi − x)′Σ̂−1(yi − x)] =
(n + 1)m
n−m− 2

.

Then, J is simplified to

J = E
�θ

[
logL0(θ̂) +

n

2
− mn(n+ 1)

2(n−m− 2)

]
= E

�θ[logL0(θ̂)] − n(mn+ 2m+ 2 − n)
2(n−m− 2)

.

Thus, logL0(θ̂)− (n(mn+2m+2−n))/(2(n−m− 2)) is unbiased for J and
we define the u− SIC(n) as

u− SIC(n) = −2 logL0(θ̂) +
n(mn+ 2m+ 2 − n)

n−m− 2

= SIC(n) +
n(mn+ 2m+ 2 − n)

n−m− 2
− m(m+ 3)

2
logn,

where SIC(n) is defined in (3.39).
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(2) u− SIC(k),m < k < n−m

Let Y = (y1,y2, . . . ,yn) be a sample of the same size and distribution as the
Xs, where X = (x1,x2, . . . ,xn), and Y be independent of X . That is, under
H1,x1,x2, . . . ,xk, y1,y2, . . . ,yk are iid Nm(μ1, Σ1) random vectors, and
xk+1,xk+2, . . . ,xn,yk+1,yk+2, . . . ,yn are iid Nm(μn, Σn) random vectors.

J = E
�θ[Eθ0|Y (logL1(θ̂))]

= E
�θ

{
−1

2
mn log 2π − k

2
log |Σ̂1| − n− k

2
log |Σ̂n|

−1
2

n∑
i=1

(yi−xk)′Σ̂−1
1 (yi−xk)− 1

2

n∑
i=k+1

(yi−xn−k)′Σ̂−1
1 (yi−xn−k)

]}

= E
�θ

{
logL1(θ̂) +

n

2
+ Eθ0|Y

[
−1

2

n∑
i=1

(yi − xk)′Σ̂−1
1 (yi − xk)

−1
2

n∑
i=k+1

(yi − xn−k)′Σ̂−1
1 (yi − xn−k)

]}
.

Because

yi − xk ∼ iidNm

(
0,
k + 1
k

Σ1

)
, i = 1, 2, . . . , k,

and

(k − 1)S1 =
k∑

i=1

(x1 − xk)(x1 − xk)′ = kΣ̂1 ∼
k−1∑
i=1

ziz′i,

where zis are iid Nm(0, Σ1) for i = 1, 2, . . . , k − 1. Furthermore, S1 and xk

are independent, and Σ̂1 is independent of yi − xk for i = 1, 2, . . . , k. From
Theorem 5.2.2 in Anderson (1984), by letting

T 2 =
k

k + 1
(yi − xk)′S−1

1 (yi − xk),

we have
T 2

k − 1
k −m

m
∼ Fm,k−m.

Therefore,
k

k+1 (yi − xk)′S−1
1 (yi − xk)

k − 1
k −m

m
∼ Fm,k−m.

Then,

Eθ0|Y

[
n∑

i=1

(yi − xk)′Σ̂−1
1 (yi − xk)

]
=

m(k + 1)
k −m− 2

for i = 1, 2, . . . , k.
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Similarly, we obtain:

Eθ0|Y

[
n∑

i=k+1

(yi − xn−k)′Σ̂−1
1 (yi − xn−k)

]

=
m(n− k − 1)
n− k −m− 2

for i = k + 1, . . . , n.

Therefore, J reduces to:

J = Eθ̂{logL1(θ̂)} +
n

2
− km(k + 1)

2(k −m− 2)
− m(n− k)(n− k + 1)

2(n− k −m− 2)

= Eθ̂{logL1(θ̂)} − c

2
,

where logL1(θ̂) is defined as before, and

c =
m[k(k+1)(n−k−m−2)+(n−k)(n−k+1)(k−m−2)]−n(k−m−2)(n−k−m−2)

(k−m−2)(n−k−m−2)
.

Because logL1(θ̂) − (c/2) is unbiased for J , we define:

u− SIC(k) = −2 logL1(θ̂) + c, for m < k < n−m

or

u− SIC(k) = SIC(k) + c−m(m + 3) logn, for m < k < n−m.

3.3.3 Examples

In this section, we carry out the data analysis of change points for the
following examples by using the SIC procedure.

Example 3.3 As in Anderson (1984), two-dimensional data from Shewhart
(1931) are analyzed for testing any change in mean vector and covariance
matrix. These are the tensile strength data we analyzed in Chapter 2. But
here, in addition to the tensile strength, the hardness of the tensile is also
taken into consideration. We test (3.14) against (3.15). The SIC(k), 3 ≤ k ≤
57, at the first stage, along with SIC(60), are listed in Table 3.8.

From Table 3.8, we obtain that SIC(60) = 1553.3,min3≤k≤57 SIC(k) =
SIC(47) = 1556.9. SIC(60) < min3≤k≤57 SIC(k) + cα for any α, therefore we
fail to reject H0, and conclude that there is no change in both mean vectors
and covariance matrix among the 60 tensile strength specimen. Clearly, our
conclusion agrees with that of Anderson.
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Example 3.4 As a second example in this chapter, we take the Indian agricul-
tural data analyzed in Giri (1977). There were 27 randomly selected plants
of Sonolika, a late-sown variety of wheat, which are observed on six different
characters in two consecutive years (1971, 1972). These six different charac-
ters are:

x1: plant height at harvesting (cm)
x2: number of effective tillers
x3: length of ear (cm)

Table 3.9 Approximate Critical Values
of SIC, m = 2

n/α 0.010 0.025 0.050

10 15.105 7.966 3.363
11 14.367 7.620 3.159
12 13.951 7.372 2.985
13 13.621 7.148 2.814
14 13.324 6.933 2.642
15 13.046 6.725 2.472
16 12.783 6.523 2.303
17 12.534 6.328 2.138

18 12.296 6.139 1.976
19 12.069 5.956 1.818
20 11.852 5.780 1.664
21 11.645 5.610 1.514
22 11.446 5.445 1.369
23 11.255 5.286 1.227
24 11.072 5.131 1.089
25 10.895 4.982 0.955
26 10.724 4.837 0.825
27 10.560 4.696 0.698
28 10.401 4.560 0.574
29 10.247 4.427 0.454
30 10.098 4.299 0.337
35 9.416 3.703 0.000
40 8.821 3.176 0.000
45 8.293 2.704 0.000
50 7.818 2.277 0.000
55 7.386 1.887 0.000
60 6.992 1.527 0.000
70 6.289 0.884 0.000
80 5.678 0.321 0.000
90 5.137 0.000 0.000

100 4.562 0.000 0.000
120 3.810 0.000 0.000
140 3.096 0.000 0.000
160 2.476 0.000 0.000
180 1.928 0.000 0.000
200 1.436 0.000 0.000
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x4: number of fertile spikelets per 10 ears
x5: number of grains per 10 ears
x6: weight of grains per 10 ears.

We view these observations as taken in a sequence from 1971 to 1972. Then
we have a sequence of 54 observations where the 28th through 54th obser-
vations correspond to the observations obtained in 1972. Assuming that the
observations form a sample from a six-dimensional normal distribution, we
test:

H0 : μ1 = μ2 = · · · = μ54 = μ (unknown)

and Σ1 = Σ2 = · · · = Σ54 = Σ (unknown)

versus the alternative:

H1 : μ1 = · · · = μk1 �= μk1+1 = · · · = μk2 �= · · · �= μkq+1 = · · · = μkq+1 = μ54

and

Σ1 = · · · = Σk1 �= Σk1+1 = · · · = Σk2 �= · · · �= Σkq+1 = · · · = Σkq+1 = Σ54,

According to the binary segmentation procedure, at the first stage we
detect a single change between the 7th and 47th observations. The SIC(k), 7 ≤
k ≤ 47, along with SIC(54) are listed in Table 3.9.

From Table 3.9, we obtain that SIC(54) = 1474.0, min7≤k≤47 SIC(k), we
reject H0, and conclude that at the first stage, there is one change point
which is located at the 27th observation. Next, two subsequences, from the
1st observation through the 27th observation, and from the 28th observation
through the 54th observation, were tested for change but no change point
was found.

Table 3.10 SIC Values of Example 3.3 at the First Stage

k SIC(k) k SIC(k) k SIC(k) k SIC(K)

3 1566.3 17 1572.5 31 1566.8 45 1566.4
4 1562.4 18 1572.6 32 1565.4 46 1564.1
5 1564.5 19 1572.5 33 1565.5 47 1556.9
6 1563.3 20 1572.1 34 1563.9 48 1557.0
7 1562.8 21 1570.6 35 1564.2 49 1559.9
8 1560.4 22 1568.1 36 1563.8 50 1561.7
9 1565.6 23 1567.8 37 1564.0 51 1560.9

10 1563.7 24 1568.1 38 1565.9 52 1559.3
11 1564.5 25 1567.6 39 1567.0 53 1562.2
12 1562.8 26 1568.7 40 1566.7 54 1561.3
13 1568.1 27 1569.2 41 1565.1 55 1563.5
14 1569.1 28 1568.5 42 1565.2 56 1557.5
15 1568.6 29 1567.6 43 1564.2 57 1558.7
16 1569.6 30 1567.5 44 1564.5 60 1553.3
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Table 3.11 SIC Values of Example 3.4 at the First
Stage

k SIC(k) k SIC(k) k SIC(k)

7 1527.7 21 1496.5 35 1480.7
8 1529.1 22 1489.8 36 1480.2
9 1517.2 23 1465.4 37 1484.5

10 1515.3 24 1464.0 38 1488.9
11 1518.7 25 1456.5 39 1501.4
12 1512.8 26 1445.9 40 1506.7
13 1509.0 27 1433.3 41 1498.7
14 1507.1 28 1452.2 42 1492.0
15 1503.1 29 1466.6 43 1484.9
16 1499.7 30 1479.3 44 1491.2
17 1492.3 31 1485.3 45 1504.0
18 1486.9 32 1475.3 46 1509.2
19 1493.1 33 1472.8 47 1496.0
20 1496.3 34 1476.8 54 1474.0

In other words, our conclusion simply says that the observations made
in 1971 are different from those in 1972. This conclusion agrees with Giri’s
conclusion in his analysis.



Chapter 4

Regression Models

4.1 Literature Review

Regression analysis is an important statistical application employed in many
disciplines. Before the introduction of a change point hypothesis into the
regression study, the statistician faced problems of being unable to establish
a regression model for some observed datasets. If the data structure has
changed after a certain point of time, then using one regression model to study
the data obviously leaves the data unfitted or leaves them poorly explained
by a regression model. Ever since the change point hypothesis was introduced
into statistical analyses, the study of switching regression models has taken
place in regression analysis. This made some previously poorly fitted regres-
sion models better fitted to some datasets after the change point was been
located in the regression models.

In the literature, many authors have studied the change point problem
associated with regression models. Quandt (1958, 1960) derived a likelihood
ratio-based test for testing and estimation about a linear regression model
obeying two separate regimes. Ferreira (1975) studied a switching regression
model from the Bayesian point of view with the assumption of a known
number of regimes. Brown, Durbin, and Evans (1975) introduced a method
of recursive residuals to test change points in multiple regression models.
Hawkins (1989) used a union and intersection approach to test changes in
a linear regression model. Kim (1994) considered a test for a change point
in linear regression by using the likelihood ratio statistic, and studied the
asymptotic behavior of the LRT statistic.

In this chapter, we present the change point problem in regression models
by combining the work of Quandt (1958, 1960), Ferreira (1975), Hawkins
(1989), Brown, Durbin, and Evans (1975), Kim (1994), and Chen (1998).
Specifically, we discuss the change point problem for the simple linear
regression model, as well as for the multiple linear regression model mainly
by using the Schwarz information criterion, and by a Bayesian approach.
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4.2 Simple Linear Regression Model

Let (x1, y1), (x2, y2), . . . , (xn, yn) be a sequence of observations obtained in a
practical situation. The researcher currently might be interested in fitting a
linear regression model to these data,

yi = β0 + β1xi + εi, i = 1, . . . , n,

where xi, i = 1, . . . , n, is a nonstochastic variable, β0 and β1 are unknown
regression parameters, εi, i = 1, . . . , n, is a random error distributed as
N(0, σ2), with σ2 unknown, and εis are uncorrelated from observation to
observation. That is, yi, i = 1, . . . , n, is a random variable distributed as
N(β0+β1xi, σ

2). The nature of the data might cause the researcher to ponder
that the regression coefficients have changed after a certain point, say k, of the
observations, therefore, the following hypothesis testing might be interesting
to work on. That is, we want to test the null hypothesis:

H0 : μyi = β0 + β1xi, for i = 1, . . . , n

versus the alternative hypothesis:

H0 : μyi = β1
0 + β1

1xi, for i = 1, . . . , k

and μyi = β∗0 + β∗1xi, for i = k + 1, . . . , n,

where k, k = 2, . . . , n−2, is the location of the change point; β0, β1, β
1
0 , β

1
1 , β

∗
0 ,

and β∗1 are unknown regression parameters. In the following sections we study
several methods of locating the change point k.

4.2.1 Informational Approach

Again, if we use an information criterion such as SIC, we can locate the
change point position by using the minimum SIC principle.

Under H0, the likelihood function is

L0(β0, β1, σ
2) =

n∏
i=1

fYi(yi;β0, β1, σ
2)

=
n∏

i=1

1√
2πσ2

e−(((yi−β0−β1xi)
2)/2σ2)

=
1

(
√

2πσ2)n
exp

[
−

n∑
i=1

(yi − β0 − β1xi)2/2σ2

]
,
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and the maximum likelihood estimates of β0, β1, and σ2 are, respectively,

b1 � β̂1 =
Sxy

Sx
,

b0 � β̂0 = y − b1x,

σ̂2 =
1
n

n∑
i=1

(yi − b0 − b1xi)2,

where

x =
1
n

n∑
i=1

xi,

y =
1
n

n∑
i=1

yi,

Sx =
n∑

i=1

(xi − x)2,

Sxy =
n∑

i=1

(xi − x)(yi − y).

It is clear to see that the MLEs obtained above coincide with least square
estimates of β0, β1, and σ2.

Therefore, the maximum likelihood under H0 is

supL0(β0, β1, σ
2) = L0(β̂0, β̂1, σ̂

2)

=
nn/2e−n/2

√
2π

n
[

n∑
i=1

(yi − b0 − b1xi)2
]n/2

,

and the SIC under H0, denoted by SIC(n), is obtained as

SIC(n) = −2 logL0(β̂0, β̂1, σ̂
2) + 3 logn

= n log 2π + n log

(
n∑

i=1

(yi − b0 − b1xi)2
)

+ n + 3 logn− n logn.

Under H1, the likelihood function is

L1(β1
0 , β

1
1 , β

∗
0 , β

∗
1 , σ

2)

=
n∏

i=1

fYi(yi;β1
0 , β

1
1 , β

∗
0 , β

∗
1 , σ

2)
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=
k∏

i=1

1√
2πσ2

e−(((yi−β1
0−β1

1xi)
2)/2σ2)

n∏
i=k+1

1√
2πσ2

e−(((yi−β∗0−β∗1xi)
2)/2σ2)

=
1

(
√

2πσ2)n
exp

[
−

k∑
i=1

(yi − β1
0 − β1

1xi)2/2σ2

]

· exp

[
−

n∑
i=k+1

(yi − β∗0 − β∗1xi)2/2σ2

]
.

Similar calculations give the MLEs of β1
0 , β

1
1 , β

∗
0 , β

∗
1 , and σ2 as the following,

respectively.

b11 � β̂1
1 = kSxy

kSx
,

b10 � β̂1
0 = yk − b11xk,

b∗1 � β̂∗1 = n−kSxy

n−kSx
,

b∗0 � β̂∗0 = yn−k − b∗1xn−k,

σ̂2 =
1
n

[
k∑

i=1

(yi − b10 − b11xi)2+
n∑

i=k+1

(yi − b∗0 − b∗1xi)2
]
,

where

xk =
1
k

k∑
i=1

xi,

yk =
1
k

k∑
i=1

yi,

xn−k =
1

n− k

n∑
i=k+1

xi,

yn−k =
1

n− k

n∑
i=k+1

yi,

kSx =
k∑

i=1

(xi − xk)2,

kSxy =
k∑

i=1

(xi − xk)(yi − yk),
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n−kSx =
n∑

i=k+1

(xi − xn−k)2,

n−kSxy =
n∑

i=k+1

(xi − xn−k)(yi − yn−k).

Hence, we obtain the SIC under H1, denoted by SIC(k), for k = 2, . . . , n− 2,
as follows.

SIC(k) = −2 logL1(β̂1
0 , β̂

1
1 , β̂

∗
0 , β̂

∗
1 , σ̂

2) + 5 logn

= n log 2π + n log

[
k∑

i=1

(yi − b10 − b11xi)2+
n∑

i=k+1

(yi − b∗0 − b∗1xi)2
]

+ n+ 5 logn− n logn.

With the implementation of this information criterion, SIC, we trans-
formed our task of hypothesis testing into a model selection process. The
null hypothesis H0 corresponds to a regression model with no change in the
parameters, and the alternative hypothesis H1 is represented by n – 1 regres-
sion models with a change point at position 2, or 3, . . . , or n – 2. Therefore
the decision rule for selecting one of the n regression models is: select the
model with no change (or accept H0) if SIC(n) < SIC(k), for all k; select a
model with a change at k̂ if SIC(k̂) = min1<k<n−1 SIC(k) < SIC(n), where
k̂ = 2, . . . , n− 2.

4.2.2 Bayesian Approach

In addition to the classical and informational approaches to the switching
simple linear regression model, several authors proposed the solution of such
problems from a Bayesian point of view. Chin Choy and Broemeling (1980)
studied Bayesian inference for a switching linear model. Holbert (1982) inves-
tigated the switching simple linear regression model and multiple regression
model by employing Bayesian methodology. We give a detailed presentation
of the Bayesian approach on the basis of Holbert’s work.

In the Bayesian settings, a change in the regression model is assumed to
have taken place. The problem is to find where this change point is located.
It is more appropriate to present the problem in the following setting.

μyi = β0 + β1xi, for i = 1, . . . , k and

μyi = β∗0 + β∗1xi; for i = k + 1, . . . , n,

for k = 2, . . . , n − 2, where β0, β1, β
∗
0 , and β∗1 are unknown regression para-

meters. Our goal here is to find the value of k, or an estimated value of k
according to the data information.
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The following general vague prior probability densities π0(·) are assigned
to the parameters.

π0(β0, β1, β
∗
0 , β

∗
1 |k, σ2) ∝ constant, −∞ < β0, β1, β

∗
0 , β

∗
1 < ∞,

π0(k) =

{
1

n−3 , k = 2, . . . , n− 2

0, otherwise
,

π0(σ2|k) ∝
{

1
σ2 , 0 < σ2 < ∞
0, otherwise

.

Because Yi, i = 1, . . . , k,∼ iid N(β0 + β1xi, σ
2), Yj , j = k + 1, . . . , n,

∼ iid N(β∗0 + β∗1xj , σ
2), the joint density function (likelihood function) of

the data given the parameters is

L(β0, β1, β
∗
0 , β

∗
1 , k, σ

2) = f(y1, . . . , yn|β0, β1, β
∗
0 , β

∗
1 , k, σ

2)

=
1

(
√

2πσ2)n
exp

[
−

k∑
i=1

(yi − β0 − β1xi)2/2σ2

]

· exp

[
−

n∑
i=k+1

(yi − β∗0 − β∗1xi)2/2σ2

]
.

Then, the joint posterior density of all the parameters is

π1(k, β0, β1, β
∗
0 , β

∗
1 , σ

2)

= f(k, β0, β1, β
∗
0 , β

∗
1 , σ

2|y1, . . . , yn)

=
f(y1, . . . , yn|β0, β1, β

∗
0 , β

∗
1 , k, σ

2) · f(β0, β1, β
∗
0 , β

∗
1 , k, σ

2)
f(y1, . . . , yn)

∝ f(y1, . . . , yn|β0, β1, β
∗
0 , β

∗
1 , k, σ

2) · f(β0, β1, β
∗
0 , β

∗
1 , k, σ

2)

= π0(k) · π0(σ2|k) · π0(β0, β1, β
∗
0 , β

∗
1 |k, σ2) · L(β0, β1, β

∗
0 , β

∗
1 , k, σ

2)

∝ 1
n− 3

· 1
σ2

· 1

(
√

2πσ2)n
· exp

[
−

k∑
i=1

(yi − β0 − β1xi)2/2σ2

]

· exp

[
−

n∑
i=k+1

(yi − β∗0 − β∗1xi)2/2σ2

]

∝
(

1
σ2

)n/2+1

· exp

[
−

k∑
i=1

(yi − β0 − β1xi)2/2σ2

]

· exp

[
−

n∑
i=k+1

(yi − β∗0 − β∗1xi)2/2σ2

]
.
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Now, integrating π1(k, β0, β1, β
∗
0 , β

∗
1 , σ

2) with respect to β0, β1, β
∗
0 , β

∗
1 , and

σ2, we obtain the posterior density of the change point location k as

π1(k)

= f(k|y1, . . . , yn)

=
∫ ∞

−∞

∫ ∞

−∞

∫ ∞

−∞

∫ ∞

−∞

∫ ∞

−∞
Π1(k, β0, β1, β

∗
0 , β

∗
1 , σ

2)dβ0dβ1dβ
∗
0dβ

∗
1dσ

2

∝
∫ ∞

0

∫ ∞

−∞

∫ ∞

−∞

∫ ∞

−∞

∫ ∞

−∞

(
1
σ2

)n/2+1

· exp

[
−

k∑
i=1

(yi − β0 − β1xi)2/2σ2

]

· exp

[
−

n∑
i=k+1

(yi − β∗0 − β∗1xi)2/2σ2

]
dβ0dβ1dβ

∗
0dβ

∗
1dσ

2

� I.

To simplify the expression I, we calculate the following.∫ ∞

−∞

1√
σ2

exp

[
−

k∑
i=1

(yi − β0 − β1xi)2/2σ2

]
dβ0

=
∫ ∞

−∞

1√
σ2

exp

{
−
[√

kβ0 −
(

k

Σ
i=1

yi − β1

k

Σ
i=1

xi

)
1√
k

]2/
2σ2

}

· exp{−[(
√

kSxβ1 −
√

kSxβ̂1)2 − β̂2
1kSx +k Sy]/2σ2}dβ0

=

√
2π
k

· exp{−[(
√

kSxβ1 −
√

kSxβ̂1)2 − β̂2
1kSx +k Sy]/2σ2},

and ∫ ∞

−∞

1√
σ2

√
2π
k

· exp{−[(
√

kSxβ1 −
√

kSxβ̂1)2

− β̂2
1kSx +k Sy]/2σ2}dβ1

=
2π√
kkSx

exp{−(kSy − β̂2
1kSx)/2σ2}.

Moreover, ∫ ∞

−∞

1√
σ2

exp

[
−

n∑
i=k+1

(yi − β∗0 − β∗1xi)2/2σ2

]
dβ∗0
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=

√
2π

n− k
· exp{−[(

√
n−kSxβ

∗
1 −

√
n−kSxβ̂

∗
1 )2

−n−k Sx(β̂∗21 ) +n−k Sy]/2σ2},

and ∫ ∞

−∞

1√
σ2

exp{−[(
√

n−kSxβ
∗
1 −

√
n−kSxβ̂

∗
1 )2

−n−k Sx(β̂∗21 ) +n−k Sy]/2σ2}dβ∗1

=

√
2π

n−kSx
exp{−[n−kSx −n−k Sx(β̂∗21 )]/2σ2},

where kSx, and n−kSx were given in the previous section, and

kSy =
k∑

i=1

(yi − yk)2, n−kSy =
n∑

i=k+1

(yi − yn−k)2.

Then, I reduces to

I =
(2π)2√

k(n− k)kSxn−kSx

·
∫ ∞

0

(
1
σ2

)n/2+1

exp{−[kSy − β̂2
1kSx +n−k Sy

−n−k Sxβ̂
∗2
1 ]/2σ2}dσ2.

After some algebraic simplifications, we obtain

D �k Sy − β̂2
1kSx +n−k Sy −n−k Sx(β̂∗21 )

=
k∑

i=1

(yi − ŷi(1,k))2+
n∑

i=k+1

(yi − ŷi(k+1,n))2,

where
ŷi(1,k) = β̂0 + β̂1xi, for i = 1, . . . , k,

and
ŷi(k+1,n) = β̂∗0 + β̂∗1xi, for i = k + 1, . . . , n.

Therefore,

I =
(2π)2√

k(n− k)kSx ·n−k Sx

∫ ∞

0

(
1
σ2

)n/2−1

exp{−D/2σ2}dσ2.
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Note that to be able to build two regression models, it is required that both
n > 2, and n− 2 > 2; hence, we have n ≥ 5.

For n = 2m, with m = 3, 4, . . . ,∫ ∞

0

(
1
σ2

)n/2−1

exp{−D/2σ2}dσ2

=
(m− 3)!

(D/2)m−2

=
(n/2 − 3)!

(D/2)(n−4)/2

∝ D−((n−4)/2),

For n = 2m− 1, with m = 3, 4, . . . ,∫ ∞

0

(
1
σ2

)n/2−1

exp{−D/2σ2}dσ2 =
√

2π(2m− 7)!!
Dm−5/2

∝ D−((n−4)/2).

Finally, we obtain:

I ∝ [k(n− k)kSx ·n−k Sx]−1/2D−((n−4)/2), for k = 2, . . . , n− 2;

that is,

π1(k) ∝ [k(n− k)kSx ·n−k Sx]−1/2D−((n−4)/2), for k = 2, . . . , n− 2.

From the values of π1(k), a change point is located at k̂ if π1(k̂) = max2≤k≤n−2

π1(k).

4.2.3 Application to Stock Market Data

Holbert (1982) studied the switching simple linear regression models and
switching linear model from a Bayesian point of view. He assigned some
vague prior densities to the unknown position of the change point and to
the unknown parameters of the model, and obtained the posterior density
of the change point. He analyzed the dataset on stock market sales volumes
to illustrate the estimation of the change point in two-phase regression by
calculating the posterior density of the change point. He found out that the
maximum posterior density occurred at position 24, which corresponded to
the calendar month of December of 1968, and concluded that it is a change
point caused by the abolition of give-ups (commission splitting) in December
of 1968.
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We take the same data that Holbert used to illustrate the SIC method
for locating the switching change point in linear regression. The monthly
dollar volume of sales (in millions) on the Boston Stock Exchange (BSE) is
considered as the response variable, and the combined New York American
Stock Exchange (NYAMSE) is considered as the regressor. The computed
SIC values are listed in Table 4.1 along with the original BSE and NYAMSE
values given in Holbert (1982). The starred SIC value in this table is the
minimum SIC value, which corresponds to time point 23, hence the regression
model change starts at the time point 24, which is December of 1968. This
conclusion coincides with the one drawn by Holbert using his method. As the
reader may notice, the minimum SIC principle leads us firmly to the conclu-
sion on the change point. Although Holbert (1982) found the same change

Table 4.1 NYAMSE and BSE Values, Computed SIC Values

Time Point Calendar Month NYAMSE BSE SIC

1 Jan. 1967 10581.6 78.8 —
2 Feb. 1967 10234.3 69.1 368.5736
3 Mar. 1967 13299.5 87.6 368.0028
4 Apr. 1967 10746.5 72.8 367.9975
5 May 1967 13310.7 79.4 366.8166
6 Jun. 1967 12835.5 85.6 366.1827
7 Jul. 1967 12194.2 75.0 365.3197
8 Aug. 1967 12860.4 85.3 364.4143
9 Set. 1967 11955.6 86.9 364.0418

10 Oct. 1967 13351.5 107.8 364.0670
11 Nov. 1967 13285.9 128.7 365.1320
12 Dec. 1967 13784.4 134.5 365.8783
13 Jan. 1968 16336.7 148.7 365.7791
14 Feb. 1968 11040.5 94.2 366.0318
15 Mar. 1968 11525.3 128.1 367.1252
16 Apr. 1968 16056.4 154.1 367.2805
17 May 1968 18464.3 191.3 367.4632
18 Jun. 1968 17092.2 191.9 367.6615
19 Jul. 1968 15178.8 159.6 367.8082
20 Aug. 1968 12774.8 185.5 368.8873
21 Sep. 1968 12377.8 178.0 368.9790
22 Oct. 1968 16856.3 271.8 364.2126
23 Nov. 1968 14635.3 212.3 359.3774*
24 Dec. 1968 17436.9 139.4 362.7803
25 Jan. 1969 16482.2 106.0 366.7591
26 Feb. 1969 13905.4 112.1 367.4118
27 Mar. 1969 11973.7 103.5 367.6757
28 Apr. 1969 12573.6 92.5 368.4138
29 May 1969 16566.8 116.9 370.6948
30 Jun. 1969 13558.7 78.9 372.0000
31 Jul. 1969 11530.9 57.4 372.1517
32 Aug. 1969 11278.0 75.9 371.8513
33 Sep. 1969 11263.7 109.8 372.1726
34 Oct. 1969 15649.5 129.2 —
35 Nov. 1969 12197.1 115.1 361.4956
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point as here, his conclusion is less affirmative. As he pointed out, there is a
tendency of a relative maximum at the endpoints using the Bayesian posterior
density.

4.3 Multiple Linear Regression Model

As an analogue to the simple linear regression model, we consider the
switching multiple linear regression model in this section. The model we
discuss is

yi = x′iβ + εi, i = 1, . . . , n,

where xi i = 1, . . . , n is a nonstochastic (p + 1)-vector variable with x′i =
(1, x1i, x2i, . . . , xpi), β′ = (β0, β1, . . . , βp) is a (p + 1) unknown regression
vector, εi, i = 1, . . . , n is a random error which is distributed as N(0, σ2), with
σ2 unknown, and εis are uncorrelated from observation to observation. That
is, yi i = 1, . . . , n, is a random variable distributed as N(x′iβ, σ

2). Situations
arise in which we would like to check if there is a change at location k in the
regression model. Then, we test the null hypothesis:

H0 : μyi = x′iβ for i = 1, . . . , n,

versus the alternative hypothesis:

H1 : μyi = x′iβ1 for i = 1, . . . , k,

and μyi = x′iβ2 for i = k + 1, . . . , n,

where k, k = p + 1, . . . , n− p is the location of the change point, and β, β1,
and β2 are unknown regression parameters. In the following sections we give
a method to locate the change point k.

4.3.1 Informational Approach

An alternate approach for this multiple regression change point problem
is to use the Schwarz information criterion, SIC. It is a simple approach
that reduces computations in comparison with the likelihood-ratio procedure
approach.

Let

y =

⎛⎜⎜⎜⎜⎝
y1

y2

...
yn

⎞⎟⎟⎟⎟⎠ , X =

⎛⎜⎜⎜⎜⎝
1 x11 · · · xp1

1 x12 · · · xp2

...
...

...
...

1 x1n · · · xpn

⎞⎟⎟⎟⎟⎠ ≡

⎛⎜⎜⎜⎜⎝
x′1
x′2
...

x′n

⎞⎟⎟⎟⎟⎠ , and β =

⎛⎜⎜⎜⎜⎝
β0

β1

...
βp

⎞⎟⎟⎟⎟⎠ ;
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then the null hypothesis H0 corresponds to the model

μy = Xβ,

where

μy =

⎛⎜⎜⎜⎜⎝
μy1

μy2

...
μyn

⎞⎟⎟⎟⎟⎠ .

Obviously, the likelihood function under H0 in matrix notation is

L0(β, σ2) = f(y1, y2, . . . , yn;β, σ2)

= (2π)−n/2(σ2)−n/2 exp{−(y −Xβ)′(y −Xβ)/2σ2},

and the MLEs of β, and σ2 are, respectively,

b � β̂ = (X ′X)−1X ′y,

σ̂2 =
1
n

(y −Xb)′(y −Xb).

Then, the maximum likelihood under H0 is

L0(β̂, σ̂2) ≡ L0(b, σ̂2)

= (2π)−n/2

[
1
n

(y −Xb)′(y −Xb)
]−n/2

e−n/2.

Therefore, under H0 the Schwarz information criterion, denoted by SIC(n),
is obtained as

SIC(n) = −2 logL0(b, σ̂2) + (p+ 2) logn

= n log[(y −Xb)′(y −Xb)] + n(log 2π + 1) + (p + 2 − n) logn.

Let

y1 =

⎛⎜⎜⎜⎜⎝
y1

y2

...
yk

⎞⎟⎟⎟⎟⎠ , y2 =

⎛⎜⎜⎜⎜⎝
yk+1

yk+2

...
yn

⎞⎟⎟⎟⎟⎠ ,

X1 =

⎛⎜⎜⎜⎜⎝
1 x11 · · · xp1

1 x12 · · · xp2

...
...

...
...

1 x1k · · · xpk

⎞⎟⎟⎟⎟⎠ ≡

⎛⎜⎜⎜⎜⎝
x′1
x′2
...

x′k

⎞⎟⎟⎟⎟⎠ ,
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X2 =

⎛⎜⎜⎜⎜⎝
1 x11 · · · xp(k+1)

1 x12 · · · xp(k+2)

...
...

...
...

1 x1k · · · xpn

⎞⎟⎟⎟⎟⎠ ≡

⎛⎜⎜⎜⎜⎝
x′k+1

x′k+2

...
x′n

⎞⎟⎟⎟⎟⎠

β1 =

⎛⎜⎜⎜⎜⎝
β0

β1

...
βp

⎞⎟⎟⎟⎟⎠ , β2 =

⎛⎜⎜⎜⎜⎝
β∗0
β∗1
...
β∗p

⎞⎟⎟⎟⎟⎠ , and β =

⎛⎜⎜⎜⎜⎝
β0

β1

...
βp

⎞⎟⎟⎟⎟⎠ ,

for k = p + 1, . . . , n − p; then the alternative hypothesis H1 corresponds to
the following models.

μy1 = X1β1 and μy2 = X2β2, for k = p + 1, . . . , n− p,

where

μy1 =

⎛⎜⎜⎜⎜⎝
μy1

μy2

...
μyk

⎞⎟⎟⎟⎟⎠ and μy2 =

⎛⎜⎜⎜⎜⎝
μyk+1

μyk+2

...
μyn

⎞⎟⎟⎟⎟⎠ .

In this case, the likelihood function is found to be

L1(β1, β2, σ
2) = f(y1, y2, . . . , yn;β1, β2, σ

2)

= (2π)−n/2(σ2)−n/2 exp{−(y1 −X1β1)′(y1 −X1β1)/2σ2}
· exp{−(y2 −X2β2)′(y2 −X2β2)/2σ2},

and the MLEs of the parameters are, respectively,

b1 � β̂1 = (X ′1X1)−1X ′1y1,

b2 � β̂2 = (X ′2X2)−1X ′2y2,

σ̂2 =
1
n

[(y1 −X1b1)′(y1 −X1b1) + (y2 −X2b2)′(y2 −X2b2)].

Then the maximum likelihood is

L1(β̂1, β̂2, σ̂
2) ≡ L1(b1,b2, σ̂

2)

= (2π)−n/2

{
1
n

[(y1 −X1b1)′(y1 −X1b1)

+ (y2 −X2b2)′(y2 −X2b2)]
}−n/2

e−n/2.
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Therefore, under H1 the Schwarz information criterion, denoted by SIC(k)
for k = p+ 1, . . . , n− p, is obtained as

SIC(k) = −2 logL1(b1,b2, σ̂
2) + (2p+ 3) logn

= n log[(y1 −X1b1)′(y1 −X1b1) + (y2 −X2b2)′(y2 −X2b2)]

+ n(log 2π + 1) + (2p+ 3 − n) logn.

According to the principle of information criterion in model selection, H0 will
be accepted if SIC(n) ≤ minp+1≤k≤n−p SIC(k), and H1 will be accepted if
SIC(n) > minp+1≤k≤n−p SIC(k). When H1 is accepted, the estimated posi-
tion of the switching linear model will be k̂ such that

SIC(k̂) = min
p+1≤k≤n−p

SIC(k).

4.3.2 Bayesian Approach

Holbert (1982) also investigated the switching multiple linear regression
models from a Bayesian point of view. In the Bayesian setting, a change
in the regression model is assumed to have taken place. The problem is to
search where this change point is located. It is more appropriate to present
the problem in the following setting.

μyi
= x′iβ1 for i = 1, . . . , k and μyi

= x′iβ2 for i = k + 1, . . . , n,

for k = p+ 1, . . . , n− p.
Let

y =
(
y1

y2

)
, β =

(
β1

β2

)
, and R =

1
σ2

,

where y1,y2, β1, and β2 are defined in the previous section. We first assign
a discrete uniform prior to the change point position k:

π0(k) =

{
1

n−2p , k = p+ 1, . . . , n− p

0, otherwise
.

We also assume that the 2(p+1) parameter vector β and the parameter R are
jointly independent of the change point position k. Finally, we assume that
the parameter R has a prior distribution which is gamma with parameters a
and b, and the conditional prior of β given R = r is a 2(p + 1)-dimensional
normal distribution with mean vector β∗, and covariance matrix (1/r)τ−1,
where τ is (p+ 1) × (p+ 1) positive definite; that is,
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π0(R) =

{
ba

Γ (b)r
a−1e−br, r > 0

0, otherwise
,

and

π0(β|R = r) =
rp+1|τ |p+1

(2π)p+1
exp

{
− r

2
(β − β∗)′τ(β − β)∗

}
.

Therefore, the joint prior of β and R can be written as

π0(β,R) =
ba

Γ (b)
ra−1e−br · r

p+1|τ |p+1

(2π)p+1
exp

{
− r

2
(β − β∗)′τ(β − β∗)

}
∝ ra+p exp

{
(−r)

[
b+

1
2
(β − β∗)′τ(β − β∗)

]}
.

By introducing the n× (2p+ 2) matrix X(k):

X(k) =
(
X1 01

02 X2

)
,

where X1, X2 are defined in the previous section, 01 is a k × (p + 1) zero
matrix, and 02 is a (n− k)× (p+ 1) zero matrix. In this case, the likelihood
function is

L1(β,R, k) = L1(β1, β2, R, k)

= f(y1, y2, . . . , yn;β1, β2, R, k)

= (2π)−n/2rn/2 exp{−r(y1 −X1β1)′(y1 −X1β1)/2}
· exp{−r(y2 −X2β2)′(y2 −X2β2)/2}

= (2π)−n/2r−n/2 exp{−r(y −X(k)β)′(y −X(k)β)/2},

hence, the joint posterior density of the parameters is

π1(β,R, k) = f(β,R, k|y1, y2, . . . , yn)

∝ L1(β,R, k)π0(β,R)π0(k)

∝ ra+p+n/2 · exp
{

(−r)
[
b+

1
2
(β − β∗)′τ(β − β∗)

+
1
2
(y −X(k)β)′(y −X(k)β)

]}
.

Integrating π1(β,R, k) with respect to β and R, and simplifying, we obtain
the posterior density of the change point k as
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π1(k) = f(k|y1, y2, . . . , yn)

∝ D(k)−a∗ |X(k)′X(k) + τ |−1/2, for k = p+ 1, . . . , n− p,

where

a∗ = a + 1 + n/2,

D(k) = b+
1
2
{[y − ŷ(k)]′[y − ŷ(k)] + [β̂(k) − β∗]′w(k)[β̂(k) − β∗]},

w(k) = X(k)′X(k)[X(k)′X(k) + τ ]−1τ,

β̂(k) = [X(k)′X(k)]−1X(k)′y,

ŷ(k) = X(k)β̂(k).

Interested readers are referred to Chin Choy (1977), and Chin Choy and
Broemeling (1980) for the details.



Chapter 5

Gamma Model

5.1 Problem

In the previous chapters, we introduced the multiple change-point problem
for both univariate and multivariate Gaussian models. Now, let us turn our
attention away from Gaussian models, and study another important model,
the gamma distribution.

Suppose that x1, x2, . . . , xn is a sequence of independent random variables
from gamma distributions with parameters (θ1, ξ), (θ2, ξ), . . . , and (θn, ξ),
respectively, where ξ is known, and the pdf of X ′is is

f(x, ξ, θi) =
1

θξ
i Γ (ξ)

xξ−1e−(x/θi), ξ, θi > 0, x > 0, i = 1, . . . , n.

We are interested in testing

H0 : θ1 = θ2 = · · · = θn = θ0 (5.1)

against the alternative:

H1 : θ1 = · · · = θk = θ0 �= θk+1 = · · · = θn = θ0 + δ > 0, (5.2)

where k is the unknown position of a change point, θ0 unknown, and |δ| > 0.
The above formulation of the change point problem was posted by Kander

and Zacks (1966) when they studied the model from an exponential family.
Later, Hsu (1979) adopted their assumption and their general result, and
studied the change point problem under the same formulation for the gamma
model. In this chapter, we base our discussion on the above-mentioned
authors’ work, and present the following sections of interest.

- _ , 
, J. Chen and A. . Gupta Parametric Statistical Change Point Analysis: With Applications

to Genetics, Medicine, and Finance, DOI 10.1007/978-0-8176-4801 5
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5.2 A Solution

Assume that the location of the change point k has an equal chance to fall
at any of the possible points j = 1, 2, . . . , n− 1. That is, a prior is put on the
location of the change point:

πn(j) =

{
1

n−1 , j = 1, 2, . . . , n− 1

0, otherwise
(5.3)

Under (5.2), the likelihood function is

L1(θ0, δ)

= f(x1, . . . , xn; θ0, δ)

=
n−1∑
j=1

πn(j)f(x1, . . . , xn; θ0, δ|j)

=
1

n− 1

n−1∑
j=1

[(
j

Π
i=1

1

θξ
i Γ (ξ)

xξ−1
i e−(xi/θi)

)(
n

Π
i=j+1

1

θξ
i Γ (ξ)

xξ−1
i e−(xi/θi)

)]

=
1

n− 1

n−1∑
j=1

[(
j

Π
i=1

1

θξ
i Γ (ξ)

xξ−1
i e−(xi/θi)

)

·
(

n

Π
i=j+1

1
(θ0 + δ)ξΓ (ξ)

xξ−1
i e−(xi/(θ0+δ))

)]

=
1

n− 1

n

Π
i=1

xξ−1
i

Γn(ξ)

n−1∑
j=1

exp

[
j∑

i=1

(
−xi

θ0
− ln θξ

0

)]

· exp

⎡⎣ n∑
i=j+1

(
− xi

θ0 + δ
− ln(θ0 + δ)ξ

)⎤⎦ .
The Taylor expansion of −(xi/(θ0 + δ)) − ln(θ0 + δ)ξ for (δ/θ0) → 0 is

− xi

θ0 + δ
− ln(θ0 + δ)ξ = −xi

θ0
− ln θξ

0 + δ

(
xi

θ2
0

− ξ

θ0

)
+ o

(
δ

θ0

)
.
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Then,

L1(θ0, δ) =
1

n− 1

n

Π
i=1

xξ−1
i

Γn(ξ)

n−1∑
j=1

{
exp

[
j∑

i=1

(
−xi

θ0
− ln θξ

0

)]

· exp

⎡⎣ n∑
i=j+1

(
−xi

θ0
− ln θξ

0 +
xiδ

θ2
0

− ξδ

θ0
+ o(δ)

)⎤⎦⎫⎬⎭
Under (5.1), the likelihood function is

L0(θ0) =

n

Π
i=1

xξ−1
i

Γn(ξ)
exp

[
n∑

i=1

(
−xi

θ0
− ln θξ

0

)]

Then, the ratio of L1 to L0 is

Λ =
L1(θ0, δ)
L0(θ0)

=
1

n− 1

n−1∑
j=1

exp

⎡⎣ n∑
i=j+1

δxi

θ2
0

− ξδ

θ0
+ o(δ)

⎤⎦
=

n−1∑
j=1

1
n− 1

⎧⎨⎩1+
n∑

i=j+1

[
δxi

θ2
0

− ξδ

θ0

]
+ (n− j)o(δ)

⎫⎬⎭
=

n−1∑
j=1

1
n− 1

⎧⎨⎩1+
n∑

i=j+1

[
δxi

θ2
0

− ξδ

θ0

]
+ o(δ)

⎫⎬⎭
= 1 +

1
n− 1

n−1∑
j=1

n∑
i=j+1

[
δxi

θ2
0

− ξδ

θ0

]
+ o(δ)

= 1 +
δ

θ0

⎡⎣ 1
(n− 1)θ0

n−1∑
j=1

n∑
i=j+1

xi − nξ

2

⎤⎦+ o(δ).

Clearly, Λ is a monotone function of (1/θ0)
∑n−1

j=1

∑n
i=j+1 xi. Then we can

choose the likelihood-ratio based test statistic as

λ =
1
θ0

n−1∑
j=1

n∑
i=j+1

xi =
1
θ0

n∑
i=2

(i− 1)xi
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=
1
θ0

n−1∑
i=1

ixi+1

=
1
θ0

n∑
i=1

(i− 1)xi.

When θ0 is unknown, it is estimated under (5.1) by its MLE

θ̂0 =
x

ξ
=

n∑
i=1

xi

nξ
.

Then, the test statistic becomes

λ =
nξ

n∑
i=1

xi

n∑
i=1

(i− 1)xi.

For simplicity, let nξ = 1/(n− 1); hence the test statistic finally becomes:

T =

n∑
i=1

(i− 1)xi

(n− 1)
n∑

i=1

xi

.

Next, we intend to derive the approximate null distribution of T. Under
H0, the joint pdf of x1, . . . , xn is

f(x1, . . . , xn) =
1

θnξ
0 Γn(ξ)

(
n

Π
i=1

xi

)ξ−1

e−(Σxi/θ0), xi > 0, ξ > 0, θ0 > 0.

Let us carry out the following transformation,

y2 =
x2

n∑
i=1

xi

,

y3 =
x3

n∑
i=1

xi

,

...

yn =
xn

n∑
i=1

xi

,
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z =
n∑

i=1

xi.

Then the inverse transformation is

x1 = z

⎛⎝1−
n∑

j=1

yj

⎞⎠ ,

x2 = zy2,

x3 = zy3,

...

xn = zyn.

The Jacobian of this transformation is

J =

∣∣∣∣∣∣∣∣∣∣∣∣∣

−z −z . . . −z 1−
n∑

j=2

yi

z 0 . . . 0 y2

0 z . . . 0 y3

. . . . . . . . . . . . . . .

0 0 . . . z yn

∣∣∣∣∣∣∣∣∣∣∣∣∣
= (−1)n−1zn−1.

So, the joint pdf of y2, . . . , yn, z is

g(y2, . . . , yn, z)

= |J |f
⎛⎝z
⎛⎝1−

n∑
j=2

yi

⎞⎠ , zy2, . . . , zyn

⎞⎠

= zn−1 1

θnξ
0 Γ (ξ)

⎡⎢⎣znξ−1

(
n

Π
j=2

yj

)ξ−1
⎛⎝1−

n∑
j=2

yi

⎞⎠ξ−1
⎤⎥⎦ e−(z/θ0)

=
1

θnξ
0 Γn(ξ)

znξ−1

(
n

Π
j=2

yj

)ξ−1
⎛⎝1−

n∑
j=2

yi

⎞⎠ξ−1

e−(z/θ0).

Then, the joint distribution of y2, . . . , yn is

g(y2, . . . , yn) =
∫ ∞

0

g(y2, . . . , yn, z)dz
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=

Γ (nξ)
n

Π
j=2

yξ−1
j

(
1−

n∑
j=2

yi

)ξ−1

Γn(ξ)

∫ z

0

znξ−1e−(x/θ0) · 1

θnξ
0 Γ (nξ)

dz

=
Γ (nξ)
Γn(ξ)

n

Π
j=2

yξ−1
j

⎛⎝1−
n∑

j=2

yi

⎞⎠ξ−1

.

Obviously, the joint distribution of y2, . . . , yn is Dirichlet D(ξ, . . . , ξ; ξ).
Therefore, under H0, the test statistic T is a linear combination of Dirichlet
variates, in fact, T =

∑n
i=2((i−1)/(n−1))yi. From Johnson and Kotz (1972,

p. 233), the mixed moment of (y2, . . . , yn) is given by

E[yr2
2 yr3

3 , . . . , yrn
n ] =

Γ (nξ)
Γn−1(ξ)

· Γ (ξ + r2) · · ·Γ (ξ + rn)
Γ (nξ + r2 + · · · + rn)

,

where r2, r3, . . . , rn ≥ 0. We can therefore obtain the following moments of
T under H0.

μ1(T ) = E(T ) =
n∑

i=2

i− 1
n− 1

E(yi)

=
n∑

i=2

i− 1
n− 1

Γ (nξ)
Γn−1(ξ)

· Γ
n−2(ξ)Γ (ξ + 1)
Γ (nξ + 1)

=
n∑

i=2

i− 1
n− 1

· 1
n

=
1
2
.

μ2(T ) = Var(T ) = E(T − ET )2

= E

[
n∑

i=2

i− 1
n− 1

yi − 1
2

]2

= E

⎡⎣( n∑
i=2

i− 1
n− 1

yi

)2

−
n∑

i=2

i− 1
n− 1

yi +
1
4

⎤⎦
= E

(
n∑

i=2

i− 1
n− 1

yi

)2

− 1
4

=
n∑

i=2

(
i− 1
n− 1

)2

Ey2
i +

∑
i�=j

(i− 1)(j − 1)
(n− 1)2

E(yiyj) − 1
4



5.2 A Solution 161

=
n∑

i=2

(
i− 1
n− 1

)2

· Γ (nξ)Γn−2(ξ)Γ (ξ + 2)
Γn−1(ξ)Γ (nξ + 2)

+
∑
i�=j

(i− 1)(j − 1)
(n− 1)2

Γ (nξ)Γn−2(ξ)Γ (ξ + 1)
Γn−1(ξ)Γ (nξ + 2)

− 1
4

=
n∑

i=2

(
i− 1
n− 1

)2

+
ξ + 1

n(nξ + 1)
+
∑
i�=j

(i− 1)(j − 1)
(n− 1)2

ξ

n(nξ + 1)
− 1

4

=
ξ

n(nξ + 1)

[
n∑

i=2

(
i− 1
n− 1

]2
+

1
n(nξ + 1)

n∑
i=2

(
i− 1
n− 1

)2

− 1
4

=
nξ

4(nξ + 1)
+

2n− 1
6(n− 1)(nξ + 1)

− 1
4

=
(n + 1)

12(n− 1)(nξ + 1)
.

Hence, we have

E(T 2) =
3nξ(n− 1) + 2(2n− 1)

12(n− 1)(nξ + 1)
.

μ3(T ) = E(T − ET )3

= E

(
T − 1

2

)3

= E(T 3) − 3
2
E(T 2) +

3
4
E(T ) − 1

8

= E

[
n∑

i=2

i− 1
n− 1

yi

]3

− 3
2

3nξ(n− 1) + 2(2n− 1)
12(n− 1)(nξ + 1)

+
1
4

=
n∑

i=2

(
i− 1
n− 1

)3

E(y3
i ) + 3

∑
i�=k

(i− 1)2(k − 1)
(n− 1)3

E(y2
i yk)

+
∑

i�=j �=k

(i− 1)(j − 1)(k − 1)
(n− 1)3

E(yiyjyk)

− 3nξ(n− 1) + 2(2n− 1)
8(n− 1)(nξ + 1)

+
1
4

=
n∑

i=2

(
i− 1
n− 1

)3
Γ (nξ)Γn−2(ξ)Γ (ξ + 3)
Γn−1(ξ)Γ (nξ + 3)
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+ 3
∑
i�=k

(i− 1)2(k − 1)
(n− 1)2

Γ (nξ)Γn−3(ξ)Γ (ξ + 2)Γ (ξ + 1)
Γn−1(ξ)Γ (nξ + 3)

+
∑

i�=j �=k

(i− 1)(j − 1)(k − 1)
(n− 1)3

Γ (nξ)Γn−4(ξ)Γ 3(ξ + 1)
Γn−1(ξ)Γ (nξ + 3)

− 3nξ(n− 1) + 2(2n− 1)
8(n− 1)(nξ + 1)

+
1
4

=
n∑

i=2

(
i− 1
n− 1

)3 (ξ + 1)(ξ + 2)
n(nξ + 1)(nξ + 2)

+ 3
∑
i�=k

(i− 1)2(k − 1)
(n− 1)3

ξ(ξ + 1)
n(nξ + 1)(nξ + 2)

+
∑

i�=j �=k

(i− 1)(j − 1)(k − 1)
n(nξ + 1)(nξ + 2)

ξ2

n(nξ + 1)(nξ + 2)

− 3nξ(n− 1) + 2(2n− 1)
8(n− 1)(nξ + 1)

+
1
4
.

Continuing with more calculations, we have:

μ3(T ) =
ξ2

n(nξ + 1)(nξ + 2)

[
n∑

i=2

i− 1
n− 1

]3

+
3ξ

n(nξ + 1)(nξ + 2)

[
n∑

i=2

(i− 1)2

(n− 1)2

][
n∑

k=2

k − 1
n− 1

]

+
2

n(nξ + 1)(nξ + 2)

n∑
i=2

(i− 1)3

(n− 1)3

− 3nξ(n− 1) + 2(2n− 1)
8(n− 1)(nξ + 1)

+
1
4

=
ξ2

n(nξ + 1)(nξ + 2)

[n
2

]3
+

3ξ
n(nξ + 1)(nξ + 2)

· 1
(n− 1)3

· 1
6
(n− 1)n(2n− 1) · n(n− 1)

2

+
2

n(nξ + 1)(nξ + 2)
· 1
(n− 1)3

[
1
2
(n− 1)n

]2
− 3nξ(n− 1) + 2(2n− 1)

8(n− 1)(nξ + 1)
+

1
4

= 0
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Then, the skewness γ1(T ) = (μ3(T ))/(
√
μ2(T )) = 0.

μ4(T ) = E(T − ET )4 = E

(
T − 1

2

)4

= E(T 4) − 2E
[
T − 1

2

]3
− 3

2
E(T 2) + E(T ) − 3

16

= E

[
n∑

i=2

i− 1
n− 1

yi

]4

− 3nξ(n− 1) + 2(2n− 1)
8(n− 1)(nξ + 1)

+
5
16

=
n∑

i=2

(
i− 1
n− 1

)4

E(y4
i ) + 3

∑
i�=j

(i− 1)2(j − 1)2

(n− 1)4
E(y2

i y
2
i )

+ 4
∑
i�=j

(i− 1)2(j − 1)
(n− 1)4

E(y3
i yi)

+ 6
∑

i�=j �=k

(i− 1)2(j − 1)(k − 1)
(n− 1)4

E(y2
i yjyk)

+
∑

i�=j �=k �=l

(i− 1)(j − 1)(k − 1)(l − 1)
(n− 1)4

E(yiyjykyl)

− 3nξ(n− 1) + 2(2n− 1)
8(n− 1)(nξ + 1)

+
5
16

=
n∑

i=2

(
i− 1
n− 1

)4
Γ (nξ)Γn−2(ξ)Γ (ξ + 4)
Γn−1(ξ)Γ (nξ + 4)

+ 4
∑
i�=j

(i− 1)3(j − 1)
(n− 1)4

Γ (nξ)Γn−3(ξ)Γ (ξ + 3)Γ (ξ + 1)
Γn−1(ξ)Γ (nξ + 4)

+ 3
∑
i�=j

(i− 1)2(j − 1)2

(n− 1)4
Γ (nξ)Γn−3(ξ)Γ 2(ξ + 2)

Γn−1(ξ)Γ (nξ + 4)

+ 6
∑

i�=j �=k

(i− 1)2(j − 1)(k − 1)
(n− 1)4

Γ (nξ)Γn−4(ξ)Γ (ξ + 2)Γ 2(ξ + 1)
Γn−1(ξ)Γ (nξ + 4)

+
∑

i�=j �=k �=l

(i− 1)(j − 1)(k − 1)(l − 1)
(n− 1)4

Γ (nξ)Γn−5(ξ)Γ 4(ξ + 1)
Γn−1(ξ)Γ (nξ + 4)

− 3nξ(n− 1) + 2(2n− 1)
8(n− 1)(nξ + 1)

+
5
16
.
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More simplification leads to

μ4(T ) =
1

n(n− 1)4(nξ + 1)(nξ + 2)(nξ + 3)

[
(ξ+1)(ξ+2)(ξ+3)

n∑
i=2

(i− 1)4

+ 4ξ(ξ+1)(ξ + 2)
∑
i�=j

(i− 1)3(j − 1) + 3ξ(ξ + 1)2
∑
i�=j

(i− 1)2(i− 1)2

× 6ξ2(ξ + 1)
∑

i�=j �=k

(i− 1)2(j − 1)(k − 1)

+ξ3
∑

i�=j �=k �=l

(i− 1)(j − 1)(k − 1)(l − 1)

⎤⎦
− 3nξ(n− 1) + 2(2n− 1)

8(n− 1)(nξ + 1)
+

5
16

=
3(n+ 1)[5ξ(n− 1)n(n+ 1) + 6(3n2 − 4)]

720(n− 1)3(nξ + 1)(nξ + 2)(nξ + 3)
.

Hence, the kurtosis

γ2(T ) =
μ4(T )

[μ2(T )]2
− 3 =

3(nξ + 1)[5ξ(n− 1)n(n+ 1) + 6(3n2 − 4)]
5(n− 1)(n+ 1)(nξ + 2)(nξ + 3)

− 3.

Note that the skewness of the distribution of T, γ1(T ) = 0, and kurtosis
γ2(T ) −→ 0, as n −→ ∞. Then, under H0, for sufficiently large n, the
distribution of (T − (1/2))/

√
Var(T ) can be approximated by the standard

normal distribution.
The test is based on the likelihood ratio, therefore the inherent properties

of the test are still valid. For example, it is locally the most powerful test at
level α. A practical example of change point analysis for the gamma model
is given in Hsu (1979).

5.3 Informational Approach

For the gamma model, we are interested in testing

H0 : θ1 = θ2 = · · · = θn = θ0

against the alternative:

H1 : θ1 = · · · = θk �= θk+1 = · · · = θn,
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where k is the unknown position of a change point; θ0, θ1, and θn are
unknown. For testing H0 against H1, it is equivalent to selecting the best
model among n proposed models, as H0 corresponds to a model of no change
point and H1 corresponds to n – 1 models each revealing a change point at
the location k, for k = 1, . . . , n− 1.

We derive the informational approach-SIC as follows.
Under H0, the likelihood function L0(θ0) is

L0(θ0) =
n∏

i=1

1

θξ
0Γ (ξ)

xξ−1
i e−(xi/θ0)

=
∏n

i=1 x
ξ−1
i

Γn(ξ)
exp

[
n∑

i=1

(
−xi

θ0
− ln θξ

0

)]
,

and the MLE of θ0 is

θ̂0 =
∑n

i=1 xi

nξ
.

Therefore, denoting the SIC under H0 by SIC(n), we have

SIC(n) = −2 logL0(θ̂0) + logn

= 2nξ logΣxi − 2(ξ − 1)
n∑

i=1

log xi − log
ne2nξξ2n(ξ)

(nξ)2nξ
.

Under H1 the MLEs of θ1 and θn are obtained as

θ̂1 =
∑k

i=1 xi

kξ
, θ̂n =

∑n
i=k+1 xi

(n− k)ξ
.

Therefore, letting SIC under H1 be denoted by SIC(k), for 1 ≤ k ≤ n−1, we
obtain:

SIC(k) = −2 logL1(θ̂1, θ̂n) + 2 logn

= 2kξ log
k∑

i=1

xi + 2(n− k)ξ log
n∑

i=k+1

xi − 2(ξ − 1)
n∑

i=1

log xi

+ log
n2e2nξξ2n(ξ)

(nξ)2kξ [(n− k)ξ]2(n−k)ξ
.

According to the minimum information criterion principle, H0 is not
rejected if SIC(n) ≤ min1≤k≤n−1 SIC(k), and hence it is concluded that
there is no change in the scale parameter of the gamma model. H0 is rejected
if SIC(n) > min1≤k≤n−1 SIC(k), and therefore it is concluded that there is a
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change in the scale parameter of the gamma model. The location of the
change point is estimated at k̂, where k̂ is such that

SIC(k̂) = min
1≤k≤n−1

SIC(k).

5.4 Bayesian Approach

A similar change point problem with regard to the gamma distribution
defined in Section 5.1 was later studied by Diaz (1982). The approach is
completely Bayesian, which gives us an alternate way of finding the change
point in this situation. The work of Diaz (1982) is presented in detail as
follows.

Let x1, . . . , xn be a sequence of independent random variables from gamma
distributions. Specifically, let Xi have the pdf f(x; θ2) for j = k + 1, . . . , n,
where

f(x; θ) =
xξ−1e−(x/θ)

θξΓ (ξ)
, ξ > 0, θ > 0, x > 0.

ξ is known, θ unknown, and k is the unknown position of the change point.
Our interest here is to test the following hypotheses,

H0 : k = n versus H1 : 1 ≤ k ≤ n− 1.

The following prior distributions are assumed for k, θ1, and θ2.
Let k have prior pdf g0(k) given by

g0(k) =

{
p if k = n
1−p
n−1 if k �= n

,

where p is known such that 0 ≤ p ≤ 1. When k = n, θ1 = θ2, and the prior
density of θ1 is

g1(θ1) =
e1/θ1α1

αr1
1 Γ (r1)θr1+1

1

, θ1 > 0

and if k �= n, θ1 and θ2 are assumed independent, the prior density of θ2 is
given by

g2(θ2) =
e1/θ2α2

αr2
2 Γ (r2)θr2+1

2

, θ2 > 0,

and the prior density of θ1 is the same as in the case of k = n. The parameters
α1, r1, α2, and r2 are positive and known. The reason for choosing such g1(·)
and g2(·) is that they are conjugate priors. Then, the joint prior density of
x1, . . . , xn given k, θ1, and θ2 is
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f(x1, . . . , xn|k, θ1, θ2)

=

⎧⎨⎩θ
−nξ
1 Γ−n(ξ)(

∏n
1 xi)ξ−1e−(1/θ1)Σ

n
1 xi if k = n

θ−kξ
1 θ

−(n−k)ξ
2 Γ−n(ξ)(

∏n
1 xi)ξ−1e−(1/θ1)Σ

k
1 xi−(1/θ2)Σ

n
k+1xi if 1≤k≤n−1

.

Therefore, the joint prior density of λ, θ1, and θ2 is given by

h0(k, θ1, θ2|x1, . . . , xn) =
f(x1, . . . , xn|k, θ1, θ2)g(k, θ1, θ2)∑n

k=1

∫ ∫
f(x1, . . . , xn|k, θ1, θ2)g(k, θ1, θ2)dθ1dθ2

=
{
h1, k = n

h2, 1 ≤ k ≤ n− 1
,

where

h1 =
1∫∞

0 α−r1
1 Γ−1(r1) · θ−(nξ+r1+1)

1 e−(1/θ1)Σn
1 xi−1/(θ1α1)dθ1

· pθ−nξ
1 e−(1/θ1)Σ

n
1 xi · α−r1

1 Γ−1(r1)θ−r1−1
1 e−1/(θ1α1),

and

h2 =
1∑n−1

k=1
1−p
n−1

∫∞
0

∫∞
0

e−(1/θ1)Σk
1 xi−1/(θ1α1)

α
r1
1 Γ (r1)θ

kξ̄+r1+1
1

· e
−(1/θ2)Σn

k+1xi−1/(θ2α2)

α
r2
2 Γ (r2)θ

(n−k)ξ̄+r2+1
2

dθ1dθ2

· 1 − p

n− 1
e−(1/θ1)Σ

k
1 xi−(1/θ2)Σ

n
k+1xi

θλξ
1 θ

(n−λ)ξ
2

· e−1/(θ1α1)

αr1
1 Γ (r1)θr1+1

1

e−1/(θ2α2)

αr2
2 Γ (r2)θr2+1

2

+ p

∫ ∞

0

1
αr1

1 ξ(r1)
· e
−(1/θ1)Σ

k
1 xi−1/(θ1α1)

θkξ+r1+1
1

dθ1.

After some calculation, h0(k, θ1, θ2|x1, . . . , xn) simplifies to

h0(k, θ1, θ2|x1, . . . , xn)

=

⎧⎪⎪⎨⎪⎪⎩
p · const · θ−(nξ+r1+1)

1 e−(1/θ1)Σ
n
1 xi−1/(θ1α1), k = n

1−p
n−1 · const · θ−(kξ+r1+1)

1 e−(1/θ1)Σ
k
1 xi−1/(θ1α1)

·θ−[(n−λ)ξ+r2+1]
2 α−r2

2 Γ−1(r2)e−(1/θ2)Σ
n
k+1xi−1/(θ2α2),

1≤k≤ n−1
.
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Therefore, the posterior density of the change point k is given by:

h(k|x) =
∫ ∞

0

∫ ∞

0

h0(k, θ1, θ2|x1, . . . , xn)dθ1dθ2

=
{
h3, k = n

h4 1 ≤ k ≤ n− 1
,

where

h3 = p · const ·
∫ ∞

0

θ
−(nξ+r1+1)
1 e−(1/θ1)(Σ

n
1 xi+1/α1)dθ1

= p · const · Γ (nξ + r1)(∑n
1 xi + 1/α1

)nξ+r1

·
∫ ∞

0

(∑n
1 xi + 1/α1

)nξ+r1

Γ (nξ + r1)

(
1
θ1

)nξ+r1−1

e−(1/θ1)(Σ
n
1 xi+1/α1)d

(
1
θ1

)

= p · const · Γ (nξ + r1)

(
n∑
1

xi + 1/α1

)−(nξ+r1)

,

and

h4 =
1 − p

n− 1
· const ·

∫ ∞

0

θ
−(kξ+r1+1)
1 e−(1/θ1)(Σ

k
1 xi+1/α1)dθ1

·
∫ ∞

0

θ
−[(n−k)ξ̄+r2+1]
2 α−r2

2 Γ−1(r2)e−(1/θ2)(Σ
n
k+1xi+1/α2)dθ2

=
1 − p

n− 1
· const · Γ (kξ + r1)

(
k∑
1

xi + 1/α1

)−(kξ+r1)

·
∫ ∞

0

(∑k
1 xi + 1/α1

)(kξ+r1)

Γ (kξ + r1)

(
1
θ1

)kξ+r1−1

e−(1/θ1)(Σ
k
1 xi+1/α1)d

(
1
θ1

)

· Γ ((n− k)ξ + r2)

(
n∑

k+1

xi + 1/α2

)−[(n−k)ξ+r2]

· 1
αr2

2 Γ (r2)

·
∫ ∞

0

(∑n
k+1 xi + 1/α2

)(n−λ)ξ+r2

Γ ((n− k)ξ + r2)

(
1
θ2

)(n−λ)ξ+r2−1

× e−(1/θ2)(Σ
n
k+1xi+1/α2)d

(
1
θ2

)
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=
1 − p

n− 1
· const · Γ (kξ + r1)(∑k

1 xi + 1/α1

)(kξ+r1)

· Γ ((n− k)ξ + r2)(∑n
k+1 xi + 1/α2

)(n−λ)ξ+r2
· 1
αr2

2 Γ (r2)
.

That is,

h(k |x) ∝

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

p · Γ (nξ + r1)
(∑n

1 xi + 1/α1

)−(nξ+r1)
, k = n

(1−p)Γ (kξ+r1)

(n−1)
(�

k
1 xi+1/α1

)(kξ+r1) ·

Γ ((n−k)ξ+r2)(�n
k+1 xi+1/α2

)(n−λ)ξ+r2
· 1

α
r2
2 Γ (r2)

,
1 ≤ k ≤ n− 1.

It is worth noting that, in many practical situations, one may take an
improper (noninformative) prior g(θi) ∝ (1/θi)(i = 1, 2) for θ1 and θ2, and
assume the independence of θ1 and θ2. In this case, the posterior density of
the change point k is given by

h(λ|x) ∝

⎧⎪⎨⎪⎩
pΓ (nξ)

(∑n
1 xi

)−nξ
, k = n

(1−p)Γ (kξ)

(n−1)
(�

k
1 xi

)kξ

Γ ((n−k)ξ)(�
n
k+1 xi

)(n−k)ξ , 1 ≤ k ≤ n− 1
.

The examples analyzed by Hsu (1979) were also analyzed by Diaz (1982),
and their conclusions matched.

5.5 Application to Stock Market and Air Traffic Data

Hsu (1979) analyzed stock market data and air traffic flow data to illustrate
the method given in Section 5.1. Diaz (1982) reanalyzed those two datasets for
change point by using the Bayesian approach, and both authors’ conclusions
matched. Here, those two datasets are analyzed again to illustrate how to
implement the SIC procedure to detect and locate the change point.

Example 5.1 The first dataset to be analyzed is given in Appendix A of
Hsu (1979). This dataset contains Friday closing values of the Dow-Jones
Industrial Average (DJIA) from July 1, 1971 through August 2, 1974.
Let Pt be the Friday closing value of DJIA during that period (total
162 values), then according to Hsu (1979), the return series {Rt}, where
Rt = (Pt+1 − Pt)/Pt, t = 1, . . . , 161, is a sequence of independent normal
random variables with mean 0 and unknown variance σ2. Simple derivation
shows that R2

t is a gamma random variable with shape parameter γ = 1
2 ,

and scale parameter λ = (2σ2)−1. Then one can find out if there is a
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change in the scale parameters of the gamma random sequence {R2
t } by

testing:
H0 : λ1 = λ2 = · · · = λ161 = λ0

against the alternative:

H1 : λ1 = · · · = λk �= λk+1 = · · · = λ161.

The values of SIC(n), n = 161, and SIC(k), k = 1, . . . , 160, are computed. It is
found that SIC(161) = −2245.2 > min1≤k≤160 SIC(k) = SIC(89) = −2267.1.
Therefore, there is a change in the scale parameter and the location of the
change point in {R2

t } is k̂ = 89, which corresponds to the week when the
Watergate event took place. This conclusion matches those of Hsu (1979)
and Diaz (1982).

Example 5.2 The second dataset to be analyzed is given in Appendix B
of Hsu (1979). This dataset contains 213 airplane arrival times collected
from a low-altitude transitional control sector (near Newark airport) for the
period from noon to 8:00 PM on April 30, 1969. Hsu has examined the data
and concluded that the interarrival times are independently exponentially
distributed. That is, if Ti denotes the arrival time, then xi = Ti+1 − Ti, i =
1, . . . , 212, is a gamma random variable with shape parameter γ = 1 and
scale parameter λ. To see if the air traffic densities are constant over time,
one can test:

H0 : λ1 = λ2 = · · · = λ212 = λ0

against the alternative:

H1 : λ1 = · · · = λk �= λk+1 = · · · = λ212

for the sequence {xi}. The values of SIC(n), for n = 212, and SIC(k), for
k = 1, . . . , 211, are computed. It is found that

SIC(212) = 2504.1 < min
1≤k≤211

SIC(k) = 2505.1.

Therefore, there is no change in the scale parameters; that is, the air traffic
densities are constant over time. This conclusion again matches those of Hsu
(1979) and Diaz (1982).

5.6 Another Type of Change

So far our discussion about the change points has been limited to the sudden
changes in a sequence of random variables from different models. Here,
we would like to pinpoint briefly a different type of change point problem
under the assumption of gamma distribution, and hope this reveals the rich
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resources of change point problems, and gives the readers a peek at one of
the other considerations that may be encountered in some situations.

Let x1, . . . , xn be a sequence of independent random variables from the
gamma distributions with parameters (θ1, ξ), (θ1, ξ), . . . , and (θn, ξ),
respectively. As before, ξ is assumed to be known, and the pdf of
X ′is is

f(x, ξ, θi) =
1

θξ
i Γ (ξ)

xξ−1e−(x/θi), ξ, θi > 0, x > 0,

for i = 1, . . . , n.
We now intend to test H0 given in (5.1) versus the alternative:

H2 : θi = θ0e
{β(i−1)}, β �= 0, i = 1, 2, . . . , n, (5.4)

with β > 0 meaning a continuous exponential increase in the parameter θ,
and β < 0 meaning a continuous exponential decrease in the parameter θ.

The likelihood function under (5.4) is

L2(θ0, β) =
1

θnξ
0 e(n(n−1)/2)ξβΓn(ξ)

(
n∏

i=1

xi

)ξ−1

e−(1/θ0)
n∑

i=1

xi/(eβ(i−1));

that is,

logL2(θ0, β) = −nξ log θ0 − n(n− 1)
2

ξβ − n logΓ (ξ)

+ (ξ − 1)
n∑

i=1

log xi − 1
θ0

n∑
i=1

xi

eβ(i−1)
,

and

∂ logL2(θ0, β)
∂β

= −n(n− 1)
2

ξ +
1
θ0

n∑
i=1

(i− 1)xi

eβ(i−1)

∂ logL2(θ0, β)
∂θ0

= −nξ

θ0
+

1
θ2
0

n∑
i=1

xi

eβ(i−1)
,

which gives

θ̂0 =
1
nξ

n∑
i=1

xi

eβ(i−1)
.

Note that

∂2 logL2(θ0, β)
∂θ2

0

∣∣∣∣
θ0=�θ0

=
nξ

θ̂2
0

− 2

θ̂3
0

n∑
i=1

xi

eβ(i−1)
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=
n3ξ3(∑n

i=1
xi

eβ(i−1)

)2 − 2n3ξ3(∑n
i=1

xi

eβ(i−1)

)2
= − n3ξ3(∑n

i=1
xi

eβ(i−1)

)2 < 0,

hence θ̂0 = (1/nξ)
∑n

i=1(xi/(eβ(i−1))) is the MLE of θ0 under (5.4). Now

∂ logL2(θ0, β)
∂β

∣∣∣∣
θ0=�θ0,β=0

= −n(n− 1)
2

ξ + nξ

∑n
i=1(i− 1)xi∑n

i=1 xi

= −n(n− 1)ξ
2

+ nξ · (n− 1)T

= n(n− 1)ξ
(
T − 1

2

)
,

where

T =
∑n

i=1(i− 1)xi

(n− 1)
∑n

i=1 xi

as defined in Section 5.2.
According to Cox and Hinkley (1974),

∂ logL2(θ0, β)
∂β

∣∣∣∣
θ0=�θ0,β=0

,

the likelihood-derivative test (LDT), is asymptotically equivalent to the
likelihood-ratio test (LRT). Hence, we can make use of the asymptotic
distribution of T obtained in Section 5.2 to obtain an asymptotic test for
H0 given by (5.1) versus H2 given by (5.4).



Chapter 6

Exponential Model

6.1 Problem

Change point problems occur in various situations and scientific disciplines.
In earlier chapters of this monograph, the change point problems associ-
ated with the univariate normal, multivariate normal, linear regression, and
gamma models were discussed. In this chapter, the change point occurring
in an exponential model is studied. An exponential model is useful and
appropriate in some experimental sciences, therefore, it is desirable to make
an inference about a change point for an exponential model.

In the literature, several authors have studied some aspects of a change
point occurring in an exponential model. For instance, Worsley (1986) used
maximum likelihood methods to test for a change point in a sequence of
independent exponential family random variables, with an emphasis on the
exponential distribution. Haccou, Meelis, and Geer (1988) investigated the
change point problem for a sequence of exponential random variables by
using the likelihood-ratio test, and obtained the asymptotic null distribu-
tion of the test statistic. Haccou and Meelis (1988) gave a procedure for
testing the number of change points in a sequence of exponential random
variables based on partitioning of the likelihood according to a hierarchy of
subhypothesis. Ramanayake and Gupta (2003) studied the epidemic change
using the likelihood-ratio procedure method.

In the following, we introduce several effective methods for detecting the
change point in a sequence of exponential random variables based on the
work of Worsley (1986), Haccou, Meelis, and Geer (1988), and Haccou and
Meelis (1988).

6.2 Likelihood-Ratio Procedure

Let x1, x2, . . . , xn+1 be a sequence of independent exponentially distributed
random variables. We are interested in testing the null hypothesis:

- _ , 
, J. Chen and A. . Gupta Parametric Statistical Change Point Analysis: With Applications

to Genetics, Medicine, and Finance, DOI 10.1007/978-0-8176-4801 5
173

6
© Springer Science+Business Media, LLC 20

K

12



174 Exponential Model

H0 : x1, x2, . . . , xn+1 ∼ iid f(x;λ) = λe−λx,

against the alternative:

H1 : x1, x2, . . . , xk ∼ iid f(x;λ1) = λ1e
−λ1x, and

xk+1, xk+2, . . . , xn+1 ∼ iid f(x;λ2) = λ2e
−λ2x, 1 ≤ k ≤ n.

Under H0, the likelihood function is

L0(λ) =
n+1∏
i=1

f(xi;λ) = λn+1e−λ
�n+1

i=1 xi ,

and the MLE of λ is easily found to be:

λ̂ =
n+ 1∑n+1
i=1 xi

.

Under H1, the likelihood function is

L1(λ1, λ2) = λk
1e
−λ1
�k

i=1 xi · λn−k
2 e−λ2

�n+1
i=k+1 xi ,

and the MLEs of λ1 and λ2 are

λ̂1 =
k∑k

i=1 xi

and λ̂2 =
n− k + 1∑n+1

i=k+1 xi

.

Hence, the maximum likelihood-ratio procedure test statistic is

LPT =
L0(λ̂)

L1(λ̂1, λ̂2)
,

and

2LPT = 2 log

⎡⎣( n + 1∑n+1
i=1 xi

)n+1(∑k
i=1 xi

k

)k(∑n+1
i=k+1 xi

n− k + 1

)n−k+1
⎤⎦

= 2 log

⎡⎣(∑k
i=1 xi∑n+1
i=1 xi

)k (
n+ 1
k

)k

·
(∑n+1

i=k+1 xi∑n+1
i=1 xii

)n−k+1 (
n+ 1

n− k + 1

)n−k+1
⎤⎦

6
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= 2 log

⎡⎣( k

n+ 1

)−k
(∑k

i=1 xi∑n+1
i=1 xi

)k (
1 − k

n+ 1

)−(n−k+1)

·
(

1 −
∑k

i=1 xi∑n+1
i=1 xi

)n−k+1
⎤⎦ .

Let

βn(x; k) =
∑k

i=1 xi∑n+1
i=1 xi

and rn(k) =
k

n + 1
;

then,

2 logLPT

= 2 log[r−k
n (k)βk

n(x; k)(1 − βn(x; k))n−k+1(1 − rn(k))−(n−k+1)]

= 2 log[βn(x; k)/rn(k)]k + 2 log[(1 − βn(x; k))/(1 − rn(k))]n−k+1

= 2(n+ 1) log[βn(x; k)/rn(k)]rn(k)

+ 2(n+ 1) log[(1 − βn(x; k))/(1 − rn(k))]1−rn(k)

= 2(n+ 1){rn(k) log[βn(x; k)/rn(k)]

+ (1 − rn(k)) log[(1 − βn(x; k))/(1 − rn(k))]}.

Let

fn(x; k) = −2 logLPT

= 2(n+ 1){−rn(k) log[βn(x; k)/rn(k)]

− (1 − rn(k)) log[(1 − βn(x; k))/(1 − rn(k))]},

and take a second-order Taylor expansion of fn(x, k) at the point rn(k) while
viewing fn(x; k) as a function of βn(x; k); we obtain:

fn(x; k) = fn(x; k)|βn(x;k)=rn(k)

+
∂fn

∂β

∣∣∣∣
βn(x;k)=rn(k)

(βn(x; k) − rn(k))

+
1
2!
∂2fn

∂β2

∣∣∣∣
βn(x;k)=rn(k)

(βn(x; k) − rn(k))2

+
1
3!
∂3fn

∂β3

∣∣∣∣
βn(x;k)=rn(k)

(1 − ξ2m(k))3(βn(x; k) − rn(k))3
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= 2(n+ 1)
[
− rn(k)
βn(x; k)

+ (1 − rn(k))
1

1 − βn(x; k)

]∣∣∣∣
βn(x;k)=rn(k)

· (βn(x; k) − rn(k))

+
1
2
· 2(n+ 1)

[
rn(k)
β2

n(x; k)
+

1 − rn(k)
(1 − βn(x; k))2

]∣∣∣∣
βn(x;k)=rn(k)

· (βn(x; k) − rn(k))2

+
1
6
· 2(n+ 1)

[
−2

2rn(k)
β3

n(x; k)
+

2(1 − rn(k))
(1 − βn(x; k))3

]∣∣∣∣
βn(x;k)=ξ

(1 − θ)3

· (βn(x; k) − rn(k))3

= (n+ 1)(βn(x; k) − rn(k))2[rn(k)(1 − rn(k)]

+
2
3
(n+ 1)

[
1 − rn(k)
(1 − ξ)3

− rn(k)
ξ3

]
(rn(k)(1 − rn(k))3(1 − ξ2,n(k))3

= (n+ 1)
(βn(x; k) − rn(k))2

[rn(k)(1 − rn(k)]
·
{

1 +
2
3
(βn(x; k) − rn(k))

·[rn(k)(1 − rn(k)] · ξ
3(1 − rn(k)) − (1 − ξ)3(rn(k))

ξ3(1 − ξ)3
(1 − ξ)3

}
,

where 0 < θ < 1, and ξ = rn(k) + θ(βn − rn). Hence,

fn(x; k) = (n+ 1)
(βn(x; k) − rn(k))3

[rn(k)(1 − rn(k))]
·
{

1 +
2
3
(βn(x; k) − rn(k))

·[rn(k)(1 − rn(k))]2
(

1 − θ

1 − ξ

)3

− r2n(k)(1 − rn(k))
(

1 − θ

ξ

)3
}
.

Here,(
1 − θ

1 − ξ

)3
Δ=

1
(1 − ξ2,n(k))3(

1 − θ

ξ

)3
Δ=

1
ξ3
1,n(k)

Rn(k) Δ=
2
3
(βn(x; k) − rn(k))

· [rn(k)(1 − rn(k))]2
(

1 − θ

1 − ξ

)3

− r2n(k)(1 − rn(k))
(

1 − θ

ξ

)3

,

6
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where

ξ2,n(k) =
ξ − θ

1 − θ
=

rn(k)θ(βn(x; k) − rn(k)) − θ

1 − θ

= rn(k) +
θ

1 − θ
[1 − βn(x; k)]

ξ1,n(k) =
ξ

1 − θ
=

rn(k) + θ(β − rn(k))
1 − θ

= rn(k) +
θ

1 − θ
βn(x; k);

that is, ξ1,n(k) and ξ2,n(k) are between rn(k) and βn(x; k), and then

fn(x; k) =
(n+ 1)[βn(x; k) − rn(k)]3

[rn(k)(1 − rn(k)](1 + rn(k))
· (1 +Rn(k)).

Let Un(k) be the kth order statistic of a random sample of size n from
unif(0,1), and

f(u) = I(0,1)(u) and F (u) =

⎧⎨⎩
0, u ≤ 0
u, 0 < u < 1
1, u ≥ 1

be the pdf and cdf of uniform(0,1), respectively. Then, the pdf of Un(k) is

fUn(k)(x) =
n!

(k − 1)!(n− k)!
[F (x)]k−1[1 − F (x)]n−kf(x)

=
n!

(k − 1)!(n− k)!
uk−1(1 − u)n−k · 1

=
Γ (n+ 1)

Γ (k)Γ (n+ 1 − k)
uk−1(1 − u)n−k, 0 < u < 1,

which is the pdf of Beta(k, n+ 1). It is easy to see that

βn(x; k) =

k∑
i=1

xi

n+1∑
i=1

xi

∼ Beta(k, n+ 1);

that is,
βn(x; k) D= Un(k).
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Define the following functions.

Un(y) =

{
Un(k), for k−1

n < y ≤ k
n

0, for y = 0

zn(y) =

{
k

n+1 , for k−1
n < y ≤ k

n

0, for y ≤ 0
,

xn(y) = (n + 1)1/2(Un(y) − zn(y)),

ζn(y) = [zn(y)(1 − zn(y))]1/2.

Then, consider the process defined by

f̃n(y) = [xn(y)/ζn(y)]2(1 +Rn(y)), 0 ≤ y ≤ 1,

with

Rn(y) =
2
3
xn(y)(n+ 1)−1/2[{zn(y)(1 − zn(y))2/(1 − ξ2,n(y))3}

− {(zn(y))2(1 − zn(y))/(ξ1,n(y))3}],

and ξ1,n(y) and ξ2,n(y) between zn(y) and Un(y). Therefore,

max
1≤k≤n

fn(x; k) D= max
0≤y≤1

f̃n(y).

Note that the uniform quantile process is defined as

Ũn(y) = n1/2(Un(y) − y), 0 ≤ y ≤ 1,

and the asymptotic distribution of fn(x; k) can be derived by using limit
theorems concerning the uniform quantile process Ũn(y).

The following lemmas are needed for the derivation of the asymptotic
distribution of fn(x; k).

Lemma 6.1

lim sup
n→∞

sup
εn≤y≤1−εn

{(log logn)−1/2|xn(y)/ζn(y)|} < 5
√

2, a.s.,

where εn = (log log n)4/n.

Proof. This is a direct modification of a theorem proved in Csörgö and Révész
(1981). �
Lemma 6.2

lim sup
n→∞

sup
εn≤y≤1−εn

{(log logn)|Rn(y)|} = 0, a.s.

6
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Proof. Note that

Rn(y)

=
2
3
zn(y)(n + 1)−(1/2)

[{
zn(y)(1 − zn(y))2

(1 − ξ2,n(y))3

}
−
{

(zn(y))2(1 − zn(y))
(ξ1,n(y))3

}]

=
2
3

zn(y)(n+ 1)−(1/2)

[zn(y)(1 − zn(y))]1/2
· [z(y)

n (1 − zn(y))]1/2 ·
[{

zn(y)(1 − zn(y))2

(1 − ξ2,n(y))3

}
−
{

(zn(y))2(1 − zn(y))
(ξ1,n(y))3

}]

=
2
3
zn(y)
ξn(y)

[
(zn(y))3/2

{
(1 − zn(y))
(1 − ξ2,n(y))

}3

{(1 − zn(y))(n + 1)}−(1/2)

−(1 − zn(y))3/2

{
zn(y)
ξ1,n(y)

}3

{zn(y)(n + 1)}−(1/2)

]
;

that is,

Rn(y) =
2
3

[
zn(y)
ξn(y)

]
[r2,n(y) − r1,n(y)].

Now,

0 < r1,n(y) = (1 − zn(y))3/2(zn(y)/ξ1,n(y))3(zn(y)(n + 1))−(1/2)

< (log logn)−2(zn(y)/ξ1,n(y))3 uniformly in yθ[En, 1 − En].

Because ξ1,n(y) is between zn(y) and Un(y),

(log logn)−2(zn(y)/ξ1,n(y))3 = 0{(log logn)−2}
for y s.t. zn(y) < Un(y);

otherwise

0 < zn(y)/ξ1,n(y) ≤ zn(y)/(zn(y) − |Un(y) − zn(y)|)
= 1 + |zn(y)|/((n+ 1)1/2zn(y) − |zn(y)|),

where

r1,n(y) = (1 − zn(y))3/2

{
zn(y)
ξ1,n(y)

}3

{zn(y)(n+ 1)}−(1/2),

r2,n(y) = (zn(y))3/2

{
(1 − zn(y))
(1 − ξ2,n(y))

}3

{(1 − zn(y))(n + 1)}−(1/2). �
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Theorem 6.3 Let

a(n) = (2 log logn)1/2, and b(n) = 2 log logn +
1
2

log log logn− 1
2

log π;

then

lim
n→∞P

{
max

1≤k≤n
a(n)[fn(x; k) − b(n)] < t

}
= e−2e−t

, −∞ < t < ∞.

Proof. The reader is referred to Haccou et al. (1988). �

It is interesting to note that the asymptotic distribution obtained in this
case is the same as we have obtained in Chapters 2 and 3.

6.3 An Alternate Approach

Because of the slow convergence rate of the asymptotic distribution derived
in the previous section, to the Gumbel distribution, efforts have been made to
search other methods of detecting change points for the exponential model.
We are especially interested in detecting multiple change points when the
exponential model is assumed. Haccou and Meelis (1988) proposed a proce-
dure that is based on partitioning the likelihood according to a hierarchy of
sub-hypotheses. They considered a maximum of a two change points hypo-
thesis against one change point and then one change against none.

The general formulation of a hierarchy of subhypotheses was extensively
studied by Hogg (1961). Suppose a parameter vector θ ∈ Ω, and Ω∗ is a
subspace of Ω. To test H0 : θ ∈ Ω∗ versus H1 : θ ∈ Ω − Ω∗, assume that
there are certain intermediate hypotheses we also wish to investigate, or say,
the null hypothesis H0 can be resolved as follows. Let {Ωi, i = 1, 2, . . . , k} be
a sequence of nested subspaces of Ω, so that

Ω = Ω0 ⊃ Ω1 ⊃ Ω2 ⊃ · · · ⊃ Ωk = Ω∗,

where each Ωi, i = 1, 2, . . . , k, corresponds to an hypothesis:

Hi
0 : θ ∈ Ωi versus Hi

1 : θ ∈ Ωi−1 −Ωi, i = 1, 2, . . . , k.

Then to test H0 versus H1, we first test

H1
0 : θ ∈ Ω1 versus H1

1 : θ ∈ Ω0 −Ω1

and if H1
0 is accepted, we second test

H2
0 : θ ∈ Ω2 versus H2

1 : θ ∈ Ω1 −Ω

6
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and if H2
0 is accepted, . . . , and if Hi−1

0 is accepted, we continue to test,

Hi
0 : θ ∈ Ωi versus Hi

1 : θ ∈ Ωi−1 −Ωi

...

H0 = Hk
0 : θ ∈ Ωk = Ω∗ versus Hk

1 : θ ∈ Ωk−1 −Ωk.

So, we reject H0 if any one of the Hi
0s is rejected, and accept H0 if H1

0 , . . . , H
k
0

are all accepted.
The test statistic used for Hi

0 versus Hi
1 is the generalized likelihood-ratio

(GLR) statistic:

λi =
L(Ω̂i)

L(Ω̂i−1)
, for i = 1, 2, . . . , k.

Then, the GLR for H0 versus H1 is given by

λ =
L(Ω̂k)

L(Ω̂0)
=

k∏
i=1

[
L(Ω̂i)

L(Ω̂i−1)

]
=

k∏
i=1

λi,

and

−2 logλ =
k∑

i=1

(−2 logλi).

Here, λ1, . . . , λk are mutually independent test statistics, and if the signifi-
cance level for each subtest is αi, then the significance level of H0 versus H1

is 1 −∏k
i=1(1 − αi) or 1 − (1 − α)k if α1 = · · · = αk = α.

Now, let x1, . . . , xn be an independent sequence, where each xi has pdf

f(x; vi) = vie
−vix

and
vi = ν for τj ≤ i ≤ τj+1, j = 0, . . . ,m.

Hence, the location of change points are τ1, τ2, . . . , τm, so, there are m change
points and m+ 1 unknown parameters ν1, . . . , νm+1.

Let ki = τ1/n and ρi = (νi+1)/νi, (“ρi = 1” ⇐⇒ no change from i to i+1),
and θ = (k1, . . . , km, ρ1, . . . , ρm)(“ρi �= 1” ⇐⇒ there is a change). Further
let Ωm be the parameter space corresponding to m or fewer change points.
Then, after the reparameterization initiated by ki and ρi, we have Ωl ⊂ Ωm

for l < m; that is, now

Ωm =
{
k, e|ki =

τi
n

and ρi =
νi+1

νi

}
.
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For example,

Ω0 = {k, ρ|ρ = 1 and k = 0 or k = 1}
Ω1 = {k, ρ|ρ = 1 and k = 0 or k = 1 or ρ �= 1 and 0 < k < 1}

and Ω0 ⊂ Ω1; that is, we have Ωn−1 ⊃ Ωn−2 ⊃ · · · ⊃ Ω2 ⊃ Ω1 ⊃ Ω0, where
each Ωi, i = 1, 2, . . . , n− 1, corresponds to:

Hi
0 : θ ∈ Ωi versus Hi

1 : θ ∈ Ωi+1,

where Hi
0 is the same as Hi−1

1 . The hypotheses we are interested in here are:

H0 : θ ∈ Ω0(no change) versus H1 : θ ∈ Ωn−1(at most n− 1 changes).

We use the likelihood-ratio procedure test (LPT) statistic as our test statistic.

Λ =
max

k1,...,kn−1
L(0)

max
k1,...,kn−1

L(n− 1)
,

where L(0) denotes the maximum likelihood function under H0, and L(n−1)
denotes the maximum likelihood function under H1. Or, equivalently, we can
use λ = −2 logΛ to form the test statistic; that is,

λ = −2 logΛ

= −2
[

max
k1,...,kn−1

logL(0) − max
k1,...,kn−1

logL(n− 1)

� 2[�(n− 1) − �(0)].

To obtain �(n − 1), we derive �(m) for 0 ≤ m ≤ n − 1 corresponding to
Hm

0 : θ ∈ Ωm. Note that

L(θ) =
m

Π
j=0

kj+1

Π
i=kj+1

f(xi, νj+1)

=
m

Π
j=0

kj+1

Π
i=kj+1

νj+1e
−νj+1xi

=
m

Π
j=0

ν
kj+1−kj

j+1 e
−νj+1

�kj+1
i=kj+1 xi

,

and hence

logL(θ) =
m∑

j=0

⎡⎣(kj+1 − kj) ln νj+1 − νj+1

kj+1∑
i=kj+1

xi

⎤⎦ .

6
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∂ logL(θ)
∂νj+1

=
kj+1 − kj

νj+1
−

kj+1∑
i=kj+1

xi

set= 0.

Therefore

ν̂j+1 =

⎛⎜⎜⎜⎜⎝
kj+1∑

i=kj+1

xi

kj+1 − kj

⎞⎟⎟⎟⎟⎠
−1

.

Because
∂2 logL(θ)
∂ν2

j+1

∣∣∣∣∣
�νj+1

= −kj+1 − kj

ν2
j+1

< 0,

ν̂j+1 obtained above is the MLE of νj+1 under Ωm. Therefore,

�(m) = max
k1,...,kn−1

logL(m)

= max
k1,...,kn−1

m∑
j=0

kj+1∑
i=kj+1

[log ν̂j+1 − xiν̂j+1].

Hence, for testing H0 versus H1 : θ ∈ Ωn−1, we use λ = 2[�(m)− �(0)] as our
test statistic.

Suppose now we consider the nested hypotheses with parameter spaces as
Ωn−1 ⊃ Ωn−2 ⊃ · · · ⊃ Ω2 ⊃ Ω1 ⊃ Ω0. The test statistic λ can be partitioned
into

λ =
n−1∑
j=1

λj ,

where
λ1 = 2[�(1) − �(0)]

is the test statistic for testing H0 = H0
0 : θ ∈ Ω0 versus H0

1 : θ ∈ Ω1,

λ2 = 2[�(2) − �(1)]

is the test statistic for testing H1
0 : θ ∈ Ω1 versus H1

1 : θ ∈ Ω2,

...
λm = 2[�(m) − �(m− 1)]
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is the test statistic for testing Hm−1
0 : θ ∈ Ωm−1 versus Hm−1

1 : θ ∈ Ωm,

...

and,
λn−1 = 2[�(n− 1) − �(n− 2)]

is the test statistic for testing Hn−2
0 : θ ∈ Ωn−2 versus Hn−2

1 = H1 : θ ∈
Ωn−1.

These tests are performed successively, and we reject H0 if any one of the
Hi

0s is rejected and accept H0 if and only if H1
0 , . . . , H

n−1
0 are all accepted.

In particular, if we just consider the following hypotheses,

H0
0 : θ ∈ Ω0 versus H0

1 : θ ∈ Ω1,

H1
0 : θ ∈ Ω1 versus H1

1 : θ ∈ Ω2,

H2
0 : θ ∈ Ω2 versus Hn−1

1 : θ ∈ Ωn−11,

then the test statistic
λ = λ1 + λ2 + λ3,

where

λ1 = 2[�(1) − �(0)],

λ2 = 2[�(2) − �(1)],

and
λ3 = 2[�(n− 1) − �(2)].

These four nested hypotheses are indeed testing 0 change against 1 change,
1 change against 2 changes, and 2 changes against more than 2 changes.

To be able to obtain the critical values of λi, i = 1, 2, 3, we take the fol-
lowing approach.

Let di be the decision that there are i changes, i = 0, 1, 2, and d3 the
decision that there are more than two changes. Define the decision function
Φ(i|x) as

Φ(i|x) = P [D = di|x]

= I(λ∗ ∈ Δi),

where x = (x1, . . . , xn), D is the decision variable that takes values d0, d1, d2,
or d3, I(·) is the indicator function, λ∗ = (λ1, λ2, λ3),

Δ0 = {λi ≤ ki,αi ; i = 1, 2, 3},
Δ1 = {λ1 > k1,α1 , λ2 ≤ k2,α2 and λ3 ≤ k3,α3},
Δ2 = {λ2 > k2,α2 and λ3 ≤ k3,α3},

6
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Δ1 = {λ3 > k3,α3},

and ki,αi is the critical value of λi at significance level αi, i = 1, 2, 3.
Based on the above, Haccou and Meelis (1988) obtained simulated critical

values of λ1, λ2, λ3 for different sample sizes and different α1, α2, α3 values.
The interested reader can found these values in their paper.

6.4 Informational Approach

As before, the informational approach of change point hypotheses for the
exponential model provides an alternative for modern statistical analysis of
change point. Let’s test the hypothesis

H0 : x1, . . . , xn+1 ∼ iid f(x;λ) = λe−λx,

versus

H1 : x1, . . . , xk ∼ iid f(x;λ1) = λ1e
−λ1x

xk+1, . . . , xn+1 ∼ iid f(x;λ2) = λ2e
−λ2x, 1 ≤ k ≤ n.

From Section 6.2 of this chapter, we have:

L0(λ̂) =

(
n+ 1∑n+1
i=1 xi

)n+1

e−n−1,

L1(λ̂1, λ̂2) =

(
k∑k

i=1 xi

)k(
n− k + 1∑n+1

i=k+1 xi

)n−k+1

e−n−1;

then

SIC(n+ 1) = −2 logL0(λ̂) + log(n + 1)

= 2(n+ 1) log
n+1∑
i=1

xi + 2(n+ 1) − (2n+ 1) log(n+ 1),

and

SIC(k) = −2 logL1(λ̂1, λ̂2) + 2 log(n + 1)

= 2k log
k∑

i=1

xi + 2(n− k + 1) log
n+1∑

i=k+1

xi + 2(n+ 1)

− 2k log k − 2(n− k + 1) log(n− k + 1) + 2 log(n+ 1);
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for k = 1, 2, . . . , n. Then, if

min SIC = min{SIC(n + 1), SIC(k), k = 1, 2, . . . , n}

is attained at SIC(n+1), H0 is accepted; and if min SIC is attained at SIC(k),
for k = 1, 2, . . . , n, H0 is rejected and there is a change point at k̂ when k̂ is
such that SIC(k̂) = min1≤k≤nSIC(k).

6.5 Application to Air Traffic Data

In this section, examples are given to show the implementation of the SIC
method proposed in the previous section.

Example 6.1 The first dataset to be analyzed is given in Appendix B of Hsu
(1979). This dataset contains 213 airplanes’ arrival times collected from a low-
altitude transitional control sector (near Newark airport) for the period from
noon to 8:00PM on April 30, 1969. Hsu has examined the data and concluded
that the interarrival times are independently exponentially distributed. That
is, if Ti is the arrival time, then xi = Ti+1−Ti, i = 1, . . . , 212, is an exponential
random variable with parameter βi. To see if the air traffic densities are
constant over time, one can test:

H0 : β1 = β2 = · · · = β212 = β0

against the alternative:

H1 : β1 = · · · = βk �= βk+1 = · · · = β212

for the sequence {xi}. After the computation of the SIC values, it is found
that SIC(212) = 2504.1 < min1≤k≤211 SIC(k) = 2505.1. Therefore, there is
no change in the values of the parameters, or the air traffic densities are
constant over time. It is noted that this conclusion is the same as given in
Hsu (1979) and a gamma model with shape parameter 1 and unknown scale
parameter were considered for the data.

Example 6.2 The second dataset to be used is artificial data generated by
computer. The following exponential observations are generated by using
β = 1 for observations 1 through 23 and β = 2 for observations 24
through 40:

0.4065 4.4628 0.2296 0.5782 1.2425 0.8781 1.1375 0.6644 0.3297 0.1719
1.4615 0.7657 0.9852 2.9949 2.6057 1.5973 0.5688 0.1845 0.8614 0.1749

1.2274 1.7082 1.0285 0.0341 0.2643 0.4984 0.3850 0.2327 0.0286 0.4510
1.4931 0.4050 0.2588 0.1450 0.0730 1.0162 1.1289 0.2038 0.0911 0.2731

6
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After the computation of the SIC values, it is found that

SIC(40) = 68.8918 > min
1≤k≤39

SIC(k) = SIC(23) = 63.2195.

Therefore, there is a change in the values of the parameters and the location
of the change point is 23. This certainly matches the situation.



Chapter 7

Change Point Model for Hazard
Function

7.1 Introduction

In the previous chapters, we presented change point analyses for various
models. In this chapter, we introduce another change point problem, often
encountered in reliability analysis, the problem of estimating the change point
in a failure rate or hazard function.

Let T1, T2, . . . , Tn be a random sample of size n from a lifetime distribution
with probability distribution function F (·) and density function f(·). The
hazard function of F is defined as

r(t) = f(t)/(1 − F (t)) for t ≥ 0.

It is of our concern whether the hazard function maintains at a rate a for
0 ≤ t ≤ τ , and later keeps at a lower rate b for t ≥ τ , where a > b ≥ 0.
Formally, we are interested in investigating if

r(t) =
{
a for 0 ≤ t ≤ τ
b for t > τ

, (7.1)

where τ is defined as the change point or threshold of the failure rate function
r(t).

This change point is different from the discrete change point discussed in
the usual literature of the change point models. It is a continuous time in
nature, and its “discrete” realization is the change point location we want to
estimate.

For testing whether a new leukemia therapy produces a departure from
a constant relapse rate after induction of remission, Matthews and Farewell
(1982) proposed to study the above model for the relapse rate of leukemia
patients and estimated the threshold τ by a numerical method. Nguyen,
Rogers, and Walker (1984) estimated the parameters in the above model
using the analysis of mixture model. Matthews, Farewell, and Pyke (1985)
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190 Hazard Function Change Point Model

considered the inference of the change point in hazard models using a
score-statistic process. Basu, Ghosh, and Joshi (1988; BGJ) investigated the
estimation of such a change point by semiparametric methods. Ghosh and
Joshi (1992) further studied the asymptotic distribution of one of the estima-
tors proposed by BGJ. From the simulation studies of the estimates proposed
by these authors, one can see that the estimates are not as good as expected
for all occasions.

In a review article by Muller and Wang (1994), it was pointed out that
the likelihood of the change point model (7.1) of hazard rate functions is
unbounded based on the work of Matthews and Farewell (1982), Worsley
(1988), and Henderson (1990) unless a > b. Such a hazard function is plotted
in Figure 7.1.

Fig. 7.1 A typical hazard rate function with one change point

Furthermore, it is noted that the likelihood-based estimation of τ does not
have a closed form. Therefore, the Bayesian approach for the estimation of
the change point τ in the hazard function (7.1) became quite popular and
many works were done in the Bayesian framework. For this reason, we present
the Bayesian approach of Ghosh, Joshi, and Mukhopadhyay (1993) for the
estimation of τ in the following section.

7.2 The Bayesian Approach

For simplicity, we denote the order statistics of the random sample
T1, T2, . . . , Tn, taken from a lifetime distribution with probability distribution
function F (·) and density function f(·), as t1, t2, . . . , tn with a clear under-
standing that t1 ≤ t2 ≤ · · · ≤ tn.

7
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Note that there are several classical estimators of the location τ of the
change point model (7.1) in the literature.

First, an estimator of τ , denoted τ̂ , was obtained in Nguyen et al. (1984)
as the value of τ̂ such that the stochastic process Yn(τ) approaches 0 at τ̂ ,
where for 0 ≤ r ≤ n− 1, Yn(tr) = Xn(tr) with

Xn(t) = S(t)
[
(n− r) log

{
n

n− r

}
− r

]
n−1

+ r
M(t)
n

− Zn

[
log
{

n

n− r

}]
n−1,

M(t) =
n∑

i=r+1

ti
n− r

,

S2(t) =
n∑

i=r+1

t2i
n− r

−M(t)2,

and
Zn = (t1 + · · · + tn)/n.

For tr ≤ t < tr+1, Yn(t) is defined by linear interpolation. For t ≥ tn, Yn(t)
is defined by

Yn(t) = Xn(tn) +
[Xn(tn) −Xn(tn−1)](t− tn)

tn − tn−1
.

The estimator τ̂ was shown to be consistent in Nguyen et al. (1984).
However, this estimate relies on the asympototic properties of the estimate.
As noted in Nguyen et al. (1984), for their model, the likelihood is unbounded
as the MLE τ̂ → Tn. For this and other reasons, Ghosh et al. (1993) proposed
a Bayesian approach for the estimation of the change position τ .

Let the sample {T1, T2, . . . , Tn} be denoted as D, and T0 = 0, Tn+1 = ∞.
It is clear that corresponding to the hazard rate change point model (7.1),
the pdf of each of the random variable Ti is given by

fTi(ti; a, b, τ) =

{
ae−ati for 0 ≤ ti ≤ τ

be−bti−(a−b)τ for ti > τ
. (7.2)

Then, the likelihood function of the parameters a, b, τ over the natural
parameter space (a, b, τ)|0 < b < a < ∞, 0 < τ < ∞ is given by

L(a, b, τ |D) =
n∏

i=1

fTi(ti; a, b, τ)

= aR(τ)e−aQ(τ)bn−R(τ)e−b(T−Q(τ)),
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where

R(τ) =
n∑

i=1

I[Ti≤τ ],

M(τ) =
n∑

i=1

TiI[Ti≤τ ],

Q(τ) = M(τ) + (n−R(τ))τ,

T =
n∑

i=1

Ti.

To obtain the Bayesian estimate of the change point location τ , Ghosh
et al. (1993) first placed the following prior distribution, π(a, b, τ), on the
parameters (a, b, τ) over the natural parameter space (a, b, τ)|0 < b < a < ∞,
0 < τ < ∞ as the following.

π(a, b, τ) =
1
ab
, 0 < b < a < ∞, 0 < τ < ∞.

Then, the joint posterior distribution, π(a, b, τ |D), of (a, b, τ) can be
obtained as

π(a, b, τ |D) ∝ L(a, b, τ |D) · π(a, b, τ)

= aR(τ)−1e−aQ(τ)bn−R(τ)−1e−b(T−Q(τ)). (7.3)

Next, we proceed to obtain the joint posterior of (b, τ) by integrating the
right-hand side (R.H.S.) of expression (7.3) with respect to a on its natural
range (b,∞). This can be done in two situations as the following.

(I). For 0 < τ < T1.
For this situation, the joint posterior, π(b, τ |D), of (b, τ) was derived in

Ghosh et al. (1993) as

π(b, τ |D) =
∫ ∞

b

π(a, b, τ |D)da

∝
∫ ∞

b

n∏
i=1

be−bti−(a−b)τ · 1
ab
da

=
∫ ∞

b

bne−b
�n

1 ti−anτ+bnτa−1b−1da

=
∫ ∞

b

a−1e−anτbn−1e−b(T−nτ)da

= bn−1e−b(T−nτ)g(b), (7.4)

7
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where
g(b) =

∫ ∞

b

a−1e−anτda.

(II). For Ti < τ < Ti+1, i = 1, . . . , n.
For this situation, the joint posterior, π(b, τ |D), of (b, τ) was also derived

in Ghosh et al. (1993) as

π(b, τ |D) ∝
∫ ∞

b

aR(τ)−1e−aQ(τ)bn−R(τ)−1e−b(T−Q(τ))da

=
(i− 1)!
(Q(τ))i

i−1∑
j=0

(Q(τ))j

j!
bn−i+j−1e−Tb. (7.5)

Note that for Tn ≤ τ < ∞, the R.H.S. of expression (7.5) is clearly,

R.H.S. of (7.5) =
(n− 1)!
T n

n−1∑
j=0

T j

j!
bj−1e−Tb. (7.6)

When integrating (7.6) with respect to b, the first term is∫ ∞

0

b−1e−Tbdb,

which diverges. For this reason, a restriction on the parameter b was imposed
by Ghosh et al. (1993). This restriction is that for a positive constant b0,
we require 0 < b0 ≤ b. With this restriction and the above-obtained joint
posterior π(b, τ |D) of (b, τ), the posterior density of τ , π(τ |D), was obtained
in Ghosh et al. (1993) for the following three cases.

Case 1. When 0 < τ < T1.
In this case, using expression (7.4), the posterior density of τ , π(τ |D) was

given as

π(τ |D) ∝
∫ ∞

b0

bn−1e−b(T−nτ)g(b)db. (7.7)

Note that the integral given by expression (7.7) does not have a closed
form, therefore, the posterior of τ can only be obtained numerically. To assure
the existence of π(τ |D) in this case, Ghosh et al. (1993) have shown that
π(τ |D) is finite, along with some other properties of π(τ |D) evidenced by
Propositions 4.1–4.5 in Ghosh et al. (1993). During the course of establishing
these propositions, another restriction, namely, τ ≥ c > 0 for a constant c
was imposed on τ as if τ = 0; the model is nonidentifiable.

Case 2. When Ti < τ < Ti+1, i = 1, . . . , n− 1.
In this case, π(τ |D) was obtained by integrating expression (7.5) with

respect to b over the range [b0,∞):
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π(τ |D) ∝
∫ ∞

b0

(i− 1)!
(Q(τ))i

i−1∑
j=0

(Q(τ))j

j!
bn−i+j−1e−Tbdb

=
(i− 1)!
(Q(τ))i

e−Tb0

i−1∑
j=0

[{
n−i+j−1∑

k=0

(Tb0)k

k!

}
(n− i+ j − 1)!

j!
(Q(τ))j

T n−i+j

]
.

(7.8)

Case 3. When τ ≥ Tn.
In this case, π(τ |D) was obtained by integrating expression (7.6) with

respect to b over the range [b0,∞):

π(τ |D) ∝
∫ ∞

b0

(n− 1)!
T n

n−1∑
j=0

T j

j!
bj−1e−Tbdb

=
(n− 1)!
T n

⎡⎣h(b0) + e−Tb0

n−1∑
j=1

{
j−1∑
k=0

(Tb0)k

k!

}
1
j!

⎤⎦ , (7.9)

where
h(b0) =

∫ ∞

b0

b−1e−TBdb.

Due to the constancy of π(τ |D) over the interval [Tn,∞), Ghosh et al.
(1993) placed a third restriction on τ : τ ≤ d < ∞ for a finite constant d.

Summing all of the considerations above, the prior π(a, b, τ) on the para-
meters (a, b, τ) should now be completely restated as

π(a, b, τ) =
1
ab
, 0 < b0 ≤ b < a < ∞, 0 < c ≤ τ ≤ d < ∞.

Under this prior, the posterior π(τ |D) is given by expressions (7.7), (7.8),
and (7.9), respectively, for the three cases of τ . Then, the Bayesian estimate
of the change point τ is obtained by either the posterior mean or posterior
mode. Ghosh et al. (1993) have given computational details on how to obtain
such an estimate using (7.7)–(7.9). Note that the computation itself is quite
tedious as is the case for Bayesian computation. So, in the next section,
an alternative estimate of τ , given in Chen (2003) is presented in light of the
Schwarz information criterion (SIC).

7.3 The Informational Approach

In the literature, the change point of the hazard function is written as an
inference problem of testing

H0 : τ = 0 against H1 : τ > 0.

7



7.3 The Informational Approach 195

Several test statistics and estimates were proposed for the inference. The most
interesting aspect of the inference is to estimate the true change point τ . For
this reason, a model selection method using SIC proposed in Chen (2003) is
presented herein.

Recall from the previous chapter that the SIC is defined as

SIC = −2 logL(Θ̂) + p logn,

where p is the number of free parameters that need to be estimated under the
model. Its penalty term p logn takes the information from the sample size.

Now, we introduce an estimate for τ based on the SIC. If a lifetime random
variable T has a hazard function given by (7.1), then it is clear that the
probability density function of T is

f(t) =
{
a exp{−at} 0 ≤ t ≤ τ

b exp{−aτ − b(t− τ) τ < t < ∞ . (7.10)

Because a random sample T1, T2, . . . , Tn is available from the lifetime distri-
bution function in (7.2), the order statistics of this sample can be denoted by
T(1) ≤ T(2) ≤ · · · ≤ T(n). Now, let τ0 be the point such that T(k) ≤ τ0 < T(k+1)

for some k with k = 1, . . . , n − 1. Then we can truncate the values at τ0 if
such a k can be found and use it to estimate the true τ .

The likelihood function L(·) of a, b, k is given by

L(a, b, k)
= L(a, b, k| t(1), . . . , t(n))
= fT(1),...,T(n)(t(1), . . . , t(n))

= n!

(
k∏

i=1

f(t(i))

)⎛⎝ n∏
j=k+1

f(t(j))

⎞⎠
= n!ak exp

{
−a

k∑
i=1

t(i)

}
· bn−k exp

⎧⎨⎩−(n− k)aτ0 − b
n∑

j=k+1

(t(j) − τ0)

⎫⎬⎭ ,

where t(1), . . . , t(n) are the sample realizations of the order statistics T(1) ≤
T(2) ≤ · · · ≤ T(n). The log of the likelihood function is clearly

l(a, b, k) = logL(a, b, τ0)

= logn! + k log a− a

[
k∑

i=1

t(i) + (n− k)τ0

]

+ (n− k) log b− b

⎡⎣ n∑
j=k+1

t(j) − (n− k)τ0

⎤⎦ .
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For each k, the maximum likelihood estimates (MLEs) of a and b are
obtained as

â =
k

(n− k)τ0 +
∑k

i=1 t(i)

and
b̂ =

n− k∑n
j=k+1 t(j) − (n− k)τ0

.

Define the SIC for the change point hazard function model as

SIC(k; τ0) = −2l(â, b̂, τ0) + 3 logn

= −2(n− k) log

⎧⎨⎩(n− k)
/⎡⎣ n∑

j=k+1

t(j) − (n− k)τ0

⎤⎦⎫⎬⎭
− 2k log

{
k

/[
(n− k)τ0 +

k∑
i=1

t(i)

]}
− 2 logn! + 2n+ 3 logn,

with an empirical choice of τ0. The next step of the procedure is to find k̂
such that

SIC(k̂; τ0) = min
1≤k≤n−1

SIC(k; τ0). (7.11)

Then the true change point τ of the hazard is estimated by

τ̂ =
k̂
∑n

j=�k+1 t(j) − (n− k̂)
∑�k

i=1 t(i)

n(n− k̂)
, (7.12)

which minimizes SIC(k̂; τ) at τ = τ̂ , and (7.12) is obtained by solving

∂

∂τ0
SIC(k̂; τ0)

∣∣∣∣
τ0=�τ

= 0.

This estimate (7.12) is optimal by the model selection principle. Three choices
of τ0 are suggested here:

τ01 = t(k), τ02 = (t(k) + t(k+1))/2, or τ03 = 0.618t(k) + 0.382t(k+1),

where τ03 is designed according to the weighted average with empirically
more weight towards the kth order statistic value t(k).

This estimator of the change in hazard function is very appealing to prac-
tioners due to its simplicity and ease of computation.

7
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Table 7.1 The Estimates �τ1, �τ2, �τ3 in Chen and �τ in GJ

a b True τ �τ1 (MSE) �τ2 (MSE) �τ3 (MSE) �τ (MSE)

3 2 .15 .1229 .0033 .1270 .0123 .1276 .0129 .1379 .0078
3 2 .10 .1080 .0382 .1120 .0501 .1044 .0373 .1173 .0092
3 1 .15 .0547 .2017 .0533 .1918 .0533 .1918 .1828 .0119
3 1 .10 .1755 .8167 .1875 .9928 .1967 .0585 .1970 .0409
3 1.5 .15 .0082 .0201 .0152 .0297 .0076 .0203 .1584 .0085
3 1.5 .10 .0301 .0394 .0228 .0299 .0216 .0247 .1475 .0179
2 1.5 .20 .1548 .1932 .1555 .1652 .1461 .1362 .1605 .0197
2 1.5 .15 .1095 .0637 .1075 .0958 .1098 .0957 .1479 .0177
2 1.5 .10 .0751 .0640 .0776 .0796 .0783 .0796 .1538 .0254
2 1 .20 .3074 .0163 .3010 .0167 .3016 .0168 .2229 .0261
2 1 .15 .2144 .0069 .2093 .0066 .2096 .0066 .1923 .0316
2 1 .10 .1693 .0389 .1620 .0392 .1618 .0392 .2135 .0607
2 .5 .20 .5051 .1535 .5007 .1507 .4688 .1335 .3136 .0743
2 .5 .15 .3516 .0715 .3162 .0592 .3104 .0581 .3147 .1325
2 .5 .10 .2143 .0280 .2114 .0261 .2112 .0258 .3225 .2049
1 .5 .30 .6061 .1460 .6083 .2211 .6086 .2216 .4465 .1720
1 .5 .20 .3519 .1286 .3503 .2742 .3224 .1212 .4079 .2444
1 .5 .15 .3243 .7067 .3296 .8190 .3310 .8190 .3825 .2636

7.4 Simulation Results

A simulation study is given to show the feasibility of these new estimates τ̂1,
τ̂2, and τ̂3 (with respect to τ01, τ02, and τ03) in comparison with the estimates
obtained in Ghosh and Joshi (1992; GJ) and in BGJ. The simulation results
are given in Table 7.1, where τ̂1, τ̂2, and τ̂3 are the new estimates proposed
in Section 7.2 and τ̂ is the estimate in Table I of GJ. One can observe that
the new estimates τ̂1, τ̂2, and τ̂3 are quite compatible with the estimate τ̂ in
GJ and τ̂1, τ̂2 in BGJ; and they are better than the estimates τ̂3 and τ̂4 in
BGJ (see the simulation results given in BGJ). However, the new estimates
perform better only when a ≥ 3, a − b ≥ 1, and τ ≥ .15. Thus, it is still
desirable to find good estimates for other values of a, b, and τ . A further
study for the properties of the new estimates τ̂1, τ̂2, and τ̂3 is also needed.



Chapter 8

Discrete Models

8.1 Introduction

In previous chapters, we have focused on the change point problems for vari-
ous continuous probability models. In this chapter we study the change point
problem for two discrete probability models, namely, binomial and Poisson
models.

A survey of the literature of change point analysis reveals that much more
work has been done for continuous probability models than for discrete proba-
bility models. There are a few notable authors who have contributed to change
point analysis for discrete models. Hinkley and Hinkley (1970) studied the
inference about the change point for binomial distribution using the maxi-
mum likelihood ratio method. Smith (1975) considered a similar problem from
a Bayesian’s point of view. Pettitt (1980), on the other hand, investigated this
problem by means of the cumulative sum statistic. Worsley (1983) discussed
the power of the likelihood ratio and cumulative sum tests for the change
point problem incurred for a binomial probability model. Fu and Curnow
(1990) derived the null and nonnull distributions of the log likelihood ratio
statistic for locating the change point in a binomial model.

In this chapter, we discuss the change point problem for a binomial model
in Section 8.2, and for a Poisson model in Section 8.3 based on the work of
the above-mentioned authors.

8.2 Binomial Model

8.2.1 Likelihood-Ratio Procedure

Suppose that there are c binomial variables, say xi ∼ bin(ni, pi) and xi = mi

for i = 1, . . . , c, where xi = # of successes among ni trials. Let us test the
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following null hypothesis,

H0 : p1 = p2 = · · · = pc = p,

against the alternative hypothesis

H1 : p1 = · · · = pk = p �= pk+1 = · · · = pc = p′.

Denote by Mk =
∑k

i=1 mi, Nk =
∑k

i=1 ni(k = 1, . . . , c) and M ≡ Mc, N ≡
Nc, M ′

k = M −Mk, N ′k = N−Nk. Then, under H0, the likelihood function is

L0(p) =
c

Π
i=1

(
ni

mi

)
pmi(1 − p)ni−mi .

The following straightforward calculations lead us to obtain the MLE of p:

logL(p) =
c∑

i=1

(
log
(
ni

mi

)
+ mi log p+ (ni −mi) log(1 − p)

)
∂ logL(p)

∂p
=

c∑
i=1

[
mi

1
p

+ (ni −mi)
1

1 − p

]

=
1
p

c∑
i=1

mi − 1
1 − p

c∑
i=1

(ni −mi)

=
1
p
M − 1

1 − p
(N −M)

set= 0

⇒ p(N −M) = (1 − p)M

⇒ p̂ =
M

N
.

Under H1, the likelihood function is:

L1(p, p′) =
k

Π
i=1

(
ni

mi

)
pmi(1 − p)ni−mi ·

c

Π
j=k+1

(
nj

mj

)
(p′)mj (1 − p′)nj−mj ,

and the MLEs of p and p′ are obtained as follows.

logL1(p, p′) =
k∑

i=1

[
log
(
ni

mi

)
+mi log p+ (ni −mi) log(1 − p)

]

+
c∑

j=k+1

[
log
(
nj

mj

)
+mj log p′ + (nj −mj) log(1 − p′)

]

8
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∂ logL1(p, p′)
∂p

=
k∑

i=1

mi

p
−

k∑
i=1

nj −mj

1 − p

set= 0

⇒ p̂ =
Mk

Nk

∂ logL1(p, p′)
∂p′

=
c∑

j=k+1

mj

p′
−

c∑
j=k+1

nj −mj

1 − p

=
1
p′

⎡⎣ c∑
j=1

mj−
k∑

j=1

mj

⎤⎦− 1
1−p′

⎡⎣ c∑
j=1

(nj−mj)−
k∑

j=1

(nj−mj)

⎤⎦
=

1
p′

[M −Mk] − 1
1 − p′

[N −M − (Nk −Mk)]

set= 0

⇒ p̂′ =
M −Nk

N −Nk
=

M ′
k

N ′k
.

Then the log maximum likelihood ratio is obtained as

log
L0(p̂)

L1(p̂, p̂′)
= logL0(p̂) − logL1(p̂, p̂′)

=
c∑

i=1

[
mi log

m

n
+ (ni −mi) log

(
1 − M

N

)]

=
k∑

i=1

[
mi log

Mk

Nk
+ (ni −mi) log

(
1 − Mk

Nk

)]

−
c∑

i=k+1

[
mi log

M ′
k

N ′k
+ (ni −mi) log

(
1 − M ′

k

N ′k

)]

= M log
M

N
+ (N −M) log

N −M

N

−Mk log
Mk

Nk
− (Nk −Mk) log

Nk −Mk

Nk

− (M −Mk) log
M ′

k

N ′k
− [N −M − (Nk −Mk)] log

N ′k −M ′
k

N ′k
= M logM + (N −M) log(N −M) −N logN

−Mk logMk − (Nk −Mk) log(Nk −Mk) +Nk logNk

−M ′
k lnM ′

k − (N ′k −M ′
k) ln(N ′k −M ′

k) + N ′k lnN ′k.
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Define l(n,m) = m logm + (n−m) log(n−m) − n logn, then

Lk ≡ −2 log
L0(p̂)

L1(p̂, p̂′)
= 2[l(Nk,Mk) + l(N ′k,M

′
k) − l(N,M)],

is the −2 log maximum likelihood ratio, which has chi-square distribution as
its asymptotic distribution. Therefore, the change point position k̂ is esti-
mated such that L = L

�k = maxl≤k≤l−1 Lk, and H0 is rejected if L
�k > C1,

where C1 is a constant determined by the null distribution of L and a given
significance level α. Later in this chapter, the asymptotic null distribution of
L is given.

8.2.2 Cumulative Sum Test (CUSUM)

The cumulative sum test is a frequently used method in change point analysis.
In the following, we provide the readers with this alternative approach.

Under the current model, the CUSUM statistic Qk at time k is the cumu-
lative sum Mk of all successes minus the proportion rkM , where rn = Nk/N
of all successes up to and including time k, divided by the sample standard
derivation

√
Np0(1 − p0), where p0 = M

N ; that is,

Qk =
Mk − rkM√
Np0(1 − p0)

for k = 1, . . . , c− 1.
If we let S2

k = rk(1− rk), then Q2
k/S

2
k is the usual Pearson χ2 statistic for

testing the equality of p and p′ conditional on M , and that asymptotically
Q2

k/S
2
k and Lk are equivalent. Then k is estimated by k̂ such that Q = Q

�k =
max1≤k≤c−1 |Qk|, and we reject H0 if Q

�k > C2, where C2 is some constant
to be obtained from the null distribution of Q for a given significance level α.

To be able to obtain the values of C1 and C2, we derive the null distribu-
tions of L and Q in the following based on the work of Worsley (1983).

8.2.3 Null Distributions of L and Q

First of all, it is easy to verify that M is sufficient for the nuisance parameter
p when H0 is true. Then the conditional distribution of L and Q do not
depend on p. Second, Mk and M ′

k are sufficient for p and p′ if K = k, so L
and Q depend on Mk and M ′

k only. When M is fixed, because M ′
k = M−Mk,

L and Q depend on Mk only. Therefore, we can express the events {Lk < x}
and {Qk < q} as

{Lk < x} Δ= Ak = {Mk : ak ≤ Mk ≤ bk}, (8.1)

8
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where ak = inf{Mk : Lk < x}, and bk = sup{Mk : Lk < x}, and

{Qk < q} Δ= A′k = {Mk : a′k ≤ Mk ≤ b′k}, (8.2)

where a′k = inf{Mk : |Qk| < q}, and b′k = sup{Mk : |Qk| < q}. Then,
{L < x} = ∩c

k=1Ak, where A′ks are defined as in (8.2).
Therefore, our goal now is to evaluate P (∩c

k=1Ak) conditional on M = m.
Let

Fk(ν) = P

(
k∩

i=1
Ai | Mk = ν

)
, k = 1, . . . , c,

so that F1(ν) = 1 if a1 ≤ ν ≤ b1, and Fc(m) = P (∩c
k=1Ak), where Fk(ν) is

the conditional probability of {L < x} or {Q < q} given Mk = ν.
A general iterative procedure for evaluating Fk(ν) is given in Lemma 8.1

below.

Lemma 8.1 For k ≤ c− 1, if pi = p(i = 1, . . . , k + 1), then

Fk+1(ν) =
bk∑

u=ak

Fk(u)hk(u, ν), ak+1 ≤ ν ≤ bk+1,

where, for 0 ≤ u ≤ Nk, 0 ≤ ν − u ≤ nk+1,

hk(u, ν) =
(
Nk

u

)(
nk+1

ν − u

)/(
Nk+1

ν

)
.

Proof. If ak+1 ≤ ν ≤ bk+1, then

Fk+1(ν) = P

(
k+1∩
i=1

Ai | Mk+1 = ν

)
= P

(
k∩

i=1
Ai ∩Ak+1 | Mk+1 = ν

)
= P

(
k∩

i=1
Ai | Mk+1 = ν

)

=
bk∑

u=ak

P

(
k∩

i=1
Ai | Mk = u,Mk+1 = ν

)
P (Mk = u | Mk+1 = ν) .

Conditional on Mk and M,M1, . . . ,Mk are independent of Mk+1; then

P

(
k∩

i=1
Ai | Mk = u,Mk+1 = ν

)
= P

(
k∩

i=1
Ai | Mk = u

)
= Fk(u)
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and conditional on Mk+1,Mk has the hypergeometric distribution with
Nk+1, Nk, Nk+1 −Nk = nk+1; that is,

P (Mk = u | Mk+1 = ν) =

(
Nk

u

)(
nk+1

ν−u

)
(

Nk+1

ν

) .

Therefore,

Fk+1(ν) =
bk∑

u=ak

Fk(u)hk(u, ν), ak+1 ≤ ν ≤ bk+1,

where

hk(u, ν) =

(
Nk

u

)(
nk+1

ν−u

)
(

Nk+1

ν

) .

�

Lemma 8.1 then can be used iteratively for k = 1, . . . , c − 2 to evaluate
Fk(ν) for ak ≤ ν ≤ bk. Based on these iterations, a final iteration for k = c−1
at ν = m will give the value of Fc(m), where Fc(m) = P (∩c

k=1Ak) = P (A) =
P (L < x) or P (Q < q), depending on the definition of Ak.

It is noted that the above iterative computations can be reduced by using
the recurrence properties of the hypergeometric probability function:

hk(0, ν + 1) = [(nk+1 − ν)/(Nk+1 − ν)]hk(0, ν),

hk(u + 1, ν) =
(ν − u)(Nk − u)

(u+ 1)(nk+1 − ν + u+ 1)hk(0, ν)
.

8.2.4 Alternative Distribution Functions of L and Q

If there is a change after period k, then Lemma 8.1 can still be used iteratively
to find Fk(ν) for k = 1, . . . , k−1. Now, consider the sequence from k to c−1,
conditional on M , and let

F ′k(ν) = P

(
c−1∩
i=k

Ai | Mk = ν

)
, k = 1, . . . , c− 1.

The following Lemma 8.2 gives an iterative formula to compute F ′k(ν).

Lemma 8.2 For k ≥ z, if pi = p′(i = k − 1, . . . , c), then

F ′k+1(ν) =
bk∑

u=ak

F ′k(u)h′k(u, ν), (ak−1 ≤ ν ≤ bk−1),

8
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where, for 0 ≤ m− u ≤ N ′k, 0 ≤ u− ν ≤ nk, and

h′k(u, ν) =
(

N ′k
m− u

)(
nk

u− ν

)/(
N ′k−1

m− ν

)
.

Proof. If ak−1 ≤ ν ≤ bk−1, then

F ′k−1(ν) = P

(
c−1∩

i=k−1
Ai | Mk−1 = ν

)
= P

(
c−1∩
i=k

Ai ∩Ak−1 | Mk−1 = ν

)
= P

(
c−1∩
i=k

Ai | Mk−1 = ν

)

=
bk∑

u=ak

P

(
c−1∩
i=k

Ai | Mk = u,Mk−1 = ν

)
P (Mk = u | Mk−1 = ν).

Conditional on M,Mk−1,Mk, . . . ,Mc−1 are independent of Mk−1. Therefore

P

(
c−1∩
i=k

Ai | Mk = u,Mk−1 = ν

)
= P

(
c−1∩
i=k

Ai | Mk = u

)
= F ′k(u),

and conditional on Mk−1 = ν,Mk = u has the hypergeometric distribution
with parameters N ′k−1, N

′
k, nk = N ′k−1 − N ′k = N − Nk−1 − N + Nk =

Nk −Nk−1; that is,

P (Mk = u | Mk−1 = ν) =

(
N ′k

m−u

)(
nk

u−ν

)
(

N ′k−1

m−ν

) .

Therefore,

F ′k−1(ν) =
bk∑

u=ak

F ′k(u)h′k(u, ν),

where

h′k(u, ν) =

(
N ′k

m−u

)(
nk

u−ν

)
(

N ′k−1

m−ν

) .

�

Lemma 8.2 then can be used iteratively for k = c − 1, . . . , k + 1 to find
F ′k(ν). Combining Fk(ν) and F ′k(ν), we can calculate P (∩c

k=1Ak) under the
alternative hypothesis H1.
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Theorem 8.3 Under H1, conditional on M = m,

P

(
c∩

k=1
Ak

)
=

bk∑
ν=ak

Fk(ν)F ′k(ν)Hk(ν)Δ−ν

/ m∑
ν=0

Hk(ν)Δ−ν ,

where, for 0 ≤ ν ≤ Nk, 0 ≤ m− u ≤ N ′k,

Hk =
(
Nk

ν

)(
n′k

m− ν

)/(
N
m

)
and Δ = (p′/(1 − p′))/(p/(1 − p)) is the odds ratio or relation risk.

Proof.

P

(
c∩

k=1
Ak

)
=

bk∑
ν=ak

P

(
c∩

k=1
Ak | Mk = ν

)
· P (Mk = ν).

Conditional on Mk = ν and M = m, Mi is independent of Mj for i < k < j,
and then

P

(
c∩

k=1
Ak | Mk = ν

)
= P

([
k∩

j=k
Ai

]
∩
[

c−1∩
j=k

Ai

]
| Mk = ν

)
= P

(
k∩

i=1
Ai | Mk = ν

)
· P
(

c−1∩
j=k

Aj | Mk = ν

)
= Fk(ν)F ′k(ν).

Conditional on M = m, from Bayes’ formula, we have

P (Mk = ν | M = m) =
P (Mk = ν,M = m)∑m

ν=0 P (M = m)
=

P (Mk = ν)∑m
ν=0 P (Mk = ν)

=

(
Nk

ν

)
pν(1−p)Nk−ν

�
n′k

m−ν

�
p′m−ν(1−p′)N′k−m+ν(

N
m

)
p′m(1−p′)N′

k−m (1−p)Nk

∑m
ν=0

(
Nk

ν

)
pν(1−p)Nk−ν

�
n′k

m−ν

�
p′m−ν (1−p′)N′

k−m+ν(
N
m

)
p′m(1−p′)N′

k−m (1−p)Nk

=

(
Nk

ν

)�
n′k

m−ν

�(
N
m

) (
p(1−p′)
p′(1−p)

)ν

∑m
ν=0

(
Nk

ν

)�
n′k

m−ν

�(
N
m

) (
p(1−p′)
p′(1−p)

)ν

=
Hk(ν)Δ−ν∑m

ν=0 Hk(ν)Δ−ν
.

8
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Therefore, conditional on M = m, we get

P

(
c∩

k=1
Ak

)
=

bk∑
ν=ak

Fk(ν)F ′k(ν)Hk(ν)Δ−ν

/ m∑
ν=0

Hk(ν)Δ−ν .

�

For small M or M −N (say either is less than 200), the alternative distri-
bution of either L or Q can be calculated by using Theorem 8.3.

First, the sequence of bounds ak, bk is determined for the value of desired
statistic L orQ. Second, the sequences of functions F1, . . . , Fc−1 and F ′c−1,...,F

′
1

are calculated by using Lemma 8.1 and Lemma 8.2, They need only be evalu-
ated between ak and bk because the remaining values are zero. Thirdly, given
an odds ratio Δ, the alternative distribution of L or Q then can be evaluated
at each change point k.

The approximate null distributions of L and Q, as well as the approximate
alternative distributions of L and Q were obtained by Worsley (1983), and
the readers can refer to that article for some useful details.

8.3 Poisson Model

Let x1, . . . , xc be a sequence of independent random variables from Poisson
distribution with mean λi, i = 1, 2, . . . , c. We now test the following
hypotheses H0 versus H1 for possible change in mean or variance λi. That is,
we want to test:

H0 : λ1 = λ2 = · · · = λc = λ

versus the alternative:

H1 : λ1 = · · · = λk = λ �= λk+1 = · · · = λc = λ′.

8.3.1 Likelihood-Ratio Procedure

Under H0, the likelihood function is:

L0(λ) =
c∏

i=1

e−λλxi

xi!

=
e−cλλ

�c
1 xi∏c

i=1 xi!
,
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and the MLE of λ is given by

λ̂ =
∑c

1 xi

c
.

Under H1, the likelihood function is:

L1(λ, λ′) =
k∏

i=1

e−λλxi

xi!

c∏
i=k+1

e−λ′λ′xi

xi!

=
e−kλλ

�k
1 xi∏k

i=1 xi!
· e
−(c−k)λ′λ′

�c
k+1 xi∏c

k+1 xi!
,

and the MLEs of λ, and λ′ are found to be:

λ̂ =
∑k

1 xi

k
and λ̂′ =

∑c
k+1 xi

c− k
.

Denote by Mk =
∑k

i=1 xi, M = Mc, and M ′
k = M −Mk =

∑c
i=k+1 xi; then

under H0,

λ̂ =
M

c
,

and under H1,

λ̂ =
Mk

c
, λ̂′ =

M ′
k

c− k
.

Then,

log
L0(λ̂)

L1(λ̂, λ̂′)
= logL0(λ̂) − logL1(λ̂, x̂) = M(logM − log c)

− [Mk(logMk − log k) +M ′
k(logM ′

k − log(c− k))]

= −Mk log
Mk

k
−M ′

k log
M ′

k

c− k
+M log

M

c
,

and −2 log maximum likelihood-ratio procedure statistic Lk is:

Lk = −2 log
L0(λ̂)

L1(λ̂, λ̂′)
= 2

{
Mk log

Mk

k
+M ′

k log
M ′

k

c− k
−M log

M

c

}
.

The change point position k is estimated by k̂ s.t.

L = L�k = max
1≤k≤c−1

Lk

and H0 is rejected if L�k < C,C is some constant that will be determined by
the size of the test and the null distribution of L.

8
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8.3.2 Null Distribution of L

Next, we can derive the null distribution of L in a way similar to that in
Section 8.2.2 and the work outlined in Worsley (1983), Durbin (1973), and
Pettie and Stephens (1977). Again, the parameter we want to estimate is the
change point position k, and λ is viewed as an nuisance parameter. Clearly,
M is sufficient for λ under H0; then the conditional distribution of L does not
depend on λ. Because Mk and M ′

k are sufficient for λ and λ′ when K = k,
then, conditional on M , the likelihood procedure statistic L depends on Mk

only. Now we can have the following expression for {L < x},

{L < x} = ∩
k
Ak,

where Ak = {ak ≤ Mk ≤ bn} with ak = inf{Mk : Lk < x} and bk =
sup{Mk:Lk < x}. Then, we have the following two lemmas.

Conditional on M = m, let Fk(ν) = P (∩k
1Ai | Mk = ν)(k = 1, . . . , c),

so that F1(ν) = 1 if a1 ≤ a1 ≤ ν ≤ b1, and Fc(m) = P (∩c
k=1Ak).

Lemma 8.4 For k ≤ c− 1 if λi = λ(i = 1, . . . , k + 1),

Fk+1(ν) =
bk∑

u=ak

Fk(u)h∗k(u, ν), ak+1 ≤ ν ≤ kn+1,

where, for 0 ≤ u ≤ ν ≤ m,

h∗k(u, ν) =
(
ν
u

)
ku

(k + 1)ν
.

Proof. Proceed exactly as in the proof of Lemma 8.1 except that, now condi-
tional on Mk=1 and M , Mk has a binomial distribution with ν independent
trials and success probability k/(k + 1); that is,

P (Mk = u | Mk+1 = ν) =
(
ν
u

)(
k

k + 1

)u

,

(
1 − k

k + 1

)ν−u

=
(
ν
u

)
ku

(k + 1)ν
= h∗(u, ν).

�
Now, the conditional null distribution of L is obtained iteratively by using

Lemma 8.4.
Under H1, there is a change after period k; consider the reversed sequence

of time periods, and let

F ′k(ν) = P

(
c−1∩
i=k

Ai | Mk = ν

)
k = 1, . . . , c− 1.

We have the following result.
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Lemma 8.5 For k ≥ 2, if λi = λ′(i = k − 1, . . . , c),

F ′k−1(ν) =
bk∑

u=ak

F ′k(u)h∗∗k (u, ν), an−1 ≤ ν ≤ bk−1,

where 0 ≤ ν ≤ u ≤ m, 0 ≤ u ≤ m− ν,

h∗∗k (u, ν) =
(
m− ν
u

)
(k − 1)u

km−ν
.

Proof. Proceed exactly as in the proof of Lemma 8.2 except that, now condi-
tional on M and Mk−1, Mk has a binomial distribution with m− ν indepen-
dent trial and success probability (k − 1)/k; that is,

P (Mk = u | Mk−1 = ν) =
(
m− ν
u

)(
k − 1
k

)u(
1 − k − 1

k

)m−ν−u

=
(
m− ν
u

)
(k − 1)u

km−ν
= h∗∗k (u, ν).

�

Now, using F ′k(ν) in Lemma 8.5 combining with Fk(ν) obtained in
Lemma 8.4, the alternative distribution of L can be obtained similarly as
in Theorem 8.3, and we give the result in the following Theorem 8.6.

Theorem 8.6 Under H1, conditional on M = m,

P

(
c∩

k=1
Ak

)
=

∑bk

u=ak
Fk(ν)F ′k(ν)H∗k (ν)Δ∗−ν∑bk

u=ak
H∗k (ν)Δ∗−ν

,

where for 0 ≤ ν ≤ m, 0 ≤ m− u ≤ ν, 0 ≤ u ≤ ν ≤ m,

H∗k (ν) =
(
m
v

)
kν(c− k)m−ν/cm and Δ∗ =

λ′

λ
.

8.4 Informational Approach

As the readers may note, throughout this monograph we prefer the use of the
information criterion approach for change point analysis because the testing
of change point hypotheses can be treated as a model selection problem.
The information criterion is an excellent tool for model selection and is
computationally effective. In this section we derive the SIC for the change
point problem associated with both the binomial model and the Poisson
model.

8
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(i) Binomial Model

Here the same assumptions and notations are used as in Section 8.2. Suppose
that there are c binomial random variables, say xi ∼ binomial(ni, pi) and
xi = mi for i = 1, . . . , c, where xi = # of successes. Let’s test the following
null hypothesis,

H0 : p1 = p2 = · · · = pc = p,

against the alternative hypothesis

H1 : p1 = · · · = pk = p �= pk+1 = · · · = pc = p′.

Under H0, the maximum likelihood function has been obtained as

L0(p̂) =
c

Π
i=1

(
ni

mi

)
p̂mi(1 − p̂)ni−mi ,

where p̂ = M/N . Therefore, the Schwarz information criterion under H0,
denoted by SIC(c), is obtained as

SIC(c) = −2 logL0(p̂) + log c

= −2
c∑

i=1

log
(
ni

mi

)
− 2M log

M

N

− 2(N −M) log
N −M

N
+ log c.

Under H1, the maximum likelihood function has been obtained as

L1(p̂, p̂′) =
k

Π
i=1

(
ni

mi

)
p̂mi(1 − p̂)ni−mi ·

c

Π
j=k+1

(
nj

mj

)
p̂′mj(1 − p̂′)nj−mj ,

where p̂ = Mk/Nk and p̂′ = M ′
k/N

′
k. Therefore, the Schwarz information

criterion under H1, denoted by SIC(k), for k = 1, . . . , c− 1, is obtained as

SIC(k) = −2 logL1(p̂, p̂′) + 2 log c

= −2
c∑

i=1

log
(
ni

mi

)
− 2Mk log

Mk

Nk
− 2(Nk −Mk) log

Nk −Mk

Nk

− 2M ′
k log

M ′
k

N ′k
− 2(N ′k −M ′

k) log
N ′k −M ′

k

N ′k
+ 2 log c.

According to the minimum information criterion principle, we reject H0 if

SIC(c) > min
1≤k≤c−1

SIC(k),
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or if
min

1≤k≤c−1
Δ(k) < 0,

where

Δ(k) = M logM + (N −M) log(N −M) −N logN

−Mk logMk − (Nk −Mk) log(Nk −Mk) +Nk logNk

−M ′
k logM ′

k − (N ′k −M ′
k) log(N ′k −M ′

k) +N ′k logN ′k

− 1
2

log
1
c
.

When H0 is rejected, the estimated change point position is k̂ such that

Δ(k̂) = min
1≤k≤c−1

Δ(k).

(ii) Poisson Model

As stated in Section 8.3, let x1, . . . , xc be a sequence of independent random
variables coming from a Poisson distribution with mean λi, i = 1, 2, . . . , c;
we test the following hypothesis H0 versus H1 for possible change in mean
or variance λi. That is, we test:

H0 : λ1 = λ2 = · · · = λc = λ

versus the alternative:

H1 : λ1 = · · · = λk = λ �= λk+1 = · · · = λc = λ′.

Under H0, the maximum likelihood function is given by

L0(λ̂) =
e−c�λλ̂

�c
1 xi∏c

i=1 xi!
,

where λ̂ = M/c with M =
∑c

1 xi. Therefore, the Schwarz information
criterion under H0, denoted by SIC(c), is obtained as

SIC(c) = −2 logL0(λ̂) + log c

= 2M − 2M log
(
M

c

)
+ 2 log

c∏
i=1

xi! + log c.

Under H1, the maximum likelihood function is

L1(λ̂, λ̂′) =
e−k�λλ̂

�k
1 xi∏k

1 xi!
· e
−(c−k)�λ′ λ̂′

�c
k+1 xi∏c

k+1 xi!
,

8



8.5 Application to Medical Data 213

Table 8.1 Dataset and Δ(k) Values

Year i mi ni Δ(k)

1960 1 8 2409 1.0399

1961 2 3 2453 −2.0785
1962 3 9 2290 −1.5289
1963 4 12 2171 −0.0234
1964 5 6 2084 −0.9095
1965 6 4 1993 −2.7511*
1966 7 14 2157 −0.6740
1967 8 12 2091 0.1898
1968 9 7 2152 −0.5198
1969 10 5 2007 −2.0086
1970 11 13 2027 −0.6181
1971 12 11 1963 −0.0351
1972 13 12 1982 0.6741
1973 14 9 1974 0.5833
1974 15 6 1932 −0.7964
1975 16 13 1807 0.7130
1976 17 12 1919 –

where λ̂ = Mk/k, and λ̂′ = M ′
k/(c− k) with Mk =

∑c
1 xi andM ′

k =
∑c

k+1 xi.
Therefore, the Schwarz information criterion under H1, denoted by SIC(k),
for k = 1, . . . , c− 1, is obtained as

SIC(k) = −2 logL1(λ̂, λ̂′) + 2 log c

= 2Mk − 2Mk log
Mk

k
+ 2M ′

k −M ′
k log

M ′
k

c− k

× 2 log
c

Π
i=1

xi! + 2 log c.

According to the minimum information criterion principle, we will reject
H0 if

SIC(c) > min
1≤k≤c−1

SIC(k),

or

min
1≤k≤n−1

[
M log

M

c
−Mk log

Mk

k
−M ′

k log
M ′

k

c− k

]
<

1
2

log
1
c
,

and estimate the change point position by k̂ such that

SIC(k̂) = min
1≤k≤c−1

SIC(k).

8.5 Application to Medical Data

In Hanify et al. (1981), a set of data, which gives the number of cases
of the birth deformity club foot in the first month of pregnancy and the
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total number of all births for the years from 1960 to 1976 in the northern
region of New Zealand was studied. There was a high correlation between the
club feet incidence and the amount of 2,4,5-T used in that region. Worsley
(1983) analyzed these data by assuming the binomial model, and used both
the likelihood-ratio test statistic L and the CUSUM test statistic Q to
locate a change point, which was found to be the sixth observation (corres-
ponding to the year 1965 when the herbicide 2,4,5-T was first used in the
region).

Here, we use the same dataset, and apply the SIC model selection cri-
terion given in the current section. The calculations show that Δ(k̂) =
min1≤k≤c−1 Δ(k) holds for k = 6. Therefore, the change point is success-
fully located as in Worsley (1983). The calculated Δ(k) values are listed
in Table 7.1 along with the original dataset given in Worsley (1983). The
starred Δ(k) value is the minimum negative Δ(k), which corresponds to the
time point k = 6.

8



Chapter 9

Other Change Point Models

9.1 The Smooth-and-Abrupt Change Point Model

9.1.1 Introduction

Many investigations of change point models consider an abrupt change point
or multiple abrupt change points in the parameters of various distributions
such as the ones discussed in previous chapters of this monograph. One of the
reasons for such consideration is that an abrupt change or multiple abrupt
change points are commonly occurring changes in many models across from
different disciplines.

In addition to the abrupt change point(s) problem, a smooth change model,
mixed with an abrupt change, is also very practical. In a recent paper of the
authors (Chen and Gupta, 2007), we studied a smooth change point model
mixed with an abrupt change, or the Smooth-and-Abrupt Change Point
(SACP) model, for a sequence of normally distributed random variables. The
smooth change point problems have been discussed in the literature by some
authors. Vilasuso (1996) studied a smooth mean change model that is clearly
different from our proposed model. In this section, we present the result of
Chen and Gupta (2007) regarding the analysis of the SACP model.

Assume thatX1, X2, . . . , Xn is a sequence of normal random variables with
parameters (μ1, σ

2
1), (μ2, σ

2
2), . . . , (μn, σ

2
n), respectively. Assuming common

variances (i.e., σ2
1 = σ2

2 = · · · = σ2
n = σ2 (unknown)), we are interested in

testing the null hypothesis of no change in the means:

H0 : μ1 = μ2 = · · · = μn = μ (9.1)

versus the hypothesis of a linear trend change and an abrupt change in the
means:

- _ , 
, J. Chen and A. . Gupta Parametric Statistical Change Point Analysis: With Applications

to Genetics, Medicine, and Finance, DOI 10.1007/978-0-8176-4801 5
215

9
© Springer Science+Business Media, LLC 20

K
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H1 : μi =

⎧⎪⎨⎪⎩
μ, 1 ≤ i ≤ k1

μ+ β(i− k1), k1 + 1 ≤ i ≤ k2

μ, k2 + 1 ≤ i ≤ n

, (9.2)

where β is the slope of the linear trend change starting at an unknown position
k1 and ending at an unknown position k2 (the position of the abrupt change).
It is a model with a common mean μ before position k1 and linear trend mean
with slope β between positions k1 and k2; after position k2 the model resumes
mean μ as before. At position k2, the change is an abrupt change. Figure 9.1
gives a hypothetical SACP model, which is a simulated random sample of
size 60 from a normal distribution with repair structure with the parameters
μ = 4, σ = 2, β = 10, k1 = 20, and k2 = 39.

Fig. 9.1 The data structure of a hypothetical SACP model

Note that when k1 = 1, and k2 = n, the SACP model becomes an ordinary
linear regression model. When k2 = k1+1, the SACP model becomes a normal
model with an outlier at position k2 = k1 + 1. For these reasons, we assume
1 ≤ k1 ≤ n− 2, k1 < k2 ≤ n− 1, and n ≥ 3 in the SACP model.

This SACP model is very useful in many disciplines. For instance, in a
continuous production process, the measure of a certain product follows a
common mean. For some reason, the measure starts to change according to
a linear trend. After the measure reaches a certain level, an action has to be
taken; then the measure drops back to the original common mean. In genetic
studies, gene expression profiles of a cell line may be obtained and biologists
may be interested in different gene expression patterns of some genes. Some
genes may maintain a constant level of expression before a time point a and
then upregulate starting at time point a, and continue to upregulate linearly
until another time point b when the gene expression drops back to the original
constant level of expression. This biological process can be described by our
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SACP model as well. The main goal of a statistical analysis of such a SACP
model is to estimate locations of the two change points.

9.1.2 A Bayesian Solution to the SACP Model

Not much investigation has been carried out about the SACP model so far in
the literature. In this section, we present a Bayesian approach for analyzing
such a SACP model as given in Chen and Gupta (2007).

Again, let X1, X2, . . . , Xn, n ≥ 3, be a sequence of normal random varia-
bles with parameters (μ1, σ

2
1), (μ2, σ

2
2), . . . , (μn, σ

2
n), respectively. Assume

common variances, that is, σ2
1 = σ2

2 = · · · = σ2
n = σ2, and σ2 is unknown.

We also assume that μ and β are unknown.
When it is known that the change points in such a model exist, we want

to find the locations of the change points in the SACP model specified by
(9.2). Assume that the two change points (k1, k2) are uniformly distributed;
that is, the prior distribution of (k1, k2) is assumed to be

π0(k1, k2) =

{
2

(n−1)(n−2) , 1 ≤ k1 ≤ n− 2, k1 + 1 ≤ k2 ≤ n− 1

0, otherwise
. (9.3)

We also assign the noninformative prior distributions for σ2, μ, and β as
follows:

π0(σ2|k1, k2) ∝
{

1
σ2 , σ2 > 0

0, otherwise
, (9.4)

π0(μ, β|σ2, k1, k2) ∝ constant. (9.5)

Our main result is presented in the following Theorem 9.1.

Theorem 9.1 For the SACP model specified by (9.2), under the prior distri-
butions (9.3) through (9.5), the posterior density of the two points (k1, k2),
where 1 ≤ k1 ≤ n− 2, k1 < k2 ≤ n− 1, and n ≥ 3, is given by

π1(k1, k2) =
π∗1(k1, k2)∑n−2

k1=1

∑n−1
k2=k1+1 π

∗
1(k1, k2)

, (9.6)

where

π∗1(k1, k2) =
{

12
λ[2n(2t + 1) − 3λ]

}1/2

·

⎧⎪⎨⎪⎩
n∑

i=1

X2
i − 1

�

⎛⎝ t∑
j=1

jXj+k1

⎞⎠2

− κ

⎫⎪⎬⎪⎭
−((n−2)/2)

.
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with
t = k2 − k1, λ = t(t + 1), � =

1
6
t(t + 1)(2t+ 1),

and

κ =
2
[
(2t + 1)nX − 3

∑t
j=1 jXj+k1

]2
[2n(2t+ 1) − 3λ](2t+ 1)

.

Proof of Theorem 9.1 First of all, the likelihood function for the parameters
based on the sample is

L1(μ, β, σ2) = f(X1, X2, . . . , Xn|μ, β, σ2, k1, k2)

= (2π)−n/2(σ2)−n/2

· exp

⎧⎨⎩− 1
2σ2

⎡⎣ n∑
i=1

(Xi − μ)2 − 2β
t∑

j=1

jXj+k1 + λβμ +�β2

⎤⎦⎫⎬⎭.
From the priors (9.3)–(9.5) and the likelihood function, we obtain the joint
posterior density of the parameters (including the unknown change point
locations) as

π1(μ, β, σ2, k1, k2) ∝ L1(μ, β, σ2)π0(σ2|k1, k2).

Note that ∫ ∞

−∞
(σ2)−n/2−1 exp

{
− 1

2σ2

[
n∑

i=1

(Xi − μ)2

−2β
t∑

j=1

jXj+k1 + λβμ +�β2

⎤⎦⎫⎬⎭ dβ

∝ (σ2)−((n+1)/2)�−1/2 exp

{
− 1

2σ2

[
n∑

i=1

(Xi − μ)2

−6
[∑t

j=1 jXj+k1 − 3λμ
]2

36�

]}
, (9.7)

and ∫ ∞

−∞
(σ2)−((n+1)/2)�−1/2 exp

{
− 1

2σ2

[
n∑

i=1

(Xi − μ)2

−6
[∑t

j=1 jXj+k1 − 3λμ
]2

36�

]}
dμ
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∝ (σ2)−n/2�−1/2

[
n− 3λ

2(2t+ 1)

]−1/2

· exp

⎧⎪⎨⎪⎩− 1
2σ2

⎡⎢⎣ n∑
i=1

X2
i − 1

�

⎛⎝ t∑
j=1

jXj+k1

⎞⎠2

− κ

⎤⎥⎦
⎫⎪⎬⎪⎭ . (9.8)

Integration of π1(μ, β, σ2, k1, k2) with respect to μ, β, and σ2, in light of
(9.7) and (9.8), yields the posterior density of the change point locations
(k1, k2):

π1(k1, k2) ∝
∫ ∞

0

∫ ∞

−∞

∫ ∞

−∞
L1(μ, β, σ2)π0(σ2|k1, k2)dβdμ1dσ

2

∝
{

12
λ[2n(2t+ 1) − 3λ]

}1/2

·

⎧⎪⎨⎪⎩
n∑

i=1

X2
i − 1

�

⎛⎝ t∑
j=1

jXj+k1

⎞⎠2

− κ

⎫⎪⎬⎪⎭
−((n−2)/2)

. (9.9)

Let the right-hand side of (9.9) be

π∗1(k1, k2) =
{

12
λ[2n(2t+ 1) − 3λ]

}1/2

·

⎧⎪⎨⎪⎩
n∑

i=1

X2
i − 1

�

⎛⎝ t∑
j=1

jXj+k1

⎞⎠2

− κ

⎫⎪⎬⎪⎭
−((n−2)/2)

.

The posterior density is therefore given by (9.6); that is,

π1(k1, k2) =
π∗1(k1, k2)∑n−2

k1=1

∑n−1
k2=k1+1 π

∗
1(k1, k2)

.

This completes the proof of Theorem 9.1. �

As an immediate application of Theorem 9.1, π1(k1, k2) can be calculated
for all (k1, k2) with 1 ≤ k1 ≤ n − 2, k1 + 1 ≤ k2 ≤ n − 1. Then the change
point locations in the SACP model can be estimated by (k̂1, k̂2) such that

π1(k̂1, k̂2) = max
k1,k2

π1(k1, k2).
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9.1.3 Empirical Evaluation of the Change Point
Location Estimates

To evaluate how close the change point location estimates obtained by the
proposed Bayesian approach are to the true change point locations, Chen and
Gupta (2007) provided a simulation study. They simulated 10,000 random
samples, each of sample size n = 40, from a normal distribution with the
SACP model structure. Specifically, the two true change point positions are at
k1 = 14 and k2 = 29. Other parameters used are μ = 4, σ = 2, β = 8. The
simulation is done using MATLAB�. The average of k̂1 and the average of k̂2

obtained using the posterior density π1(k1, k2) given by Equation (9.6) are
13.759 and 28.6843, respectively. Therefore, the posterior density π1(k1, k2)
given by (9.6) successfully picks up the true change point locations in the
SACP model.

9.2 Application of SACP Model to Gene Expression
Data

To illustrate the proposed approach for locating the change points in a SACP
model, Chen and Gupta (2007) gave an example of using the SACP model
to detect the gene expression pattern for a specific gene. The data used are
from the yeast Saccharomyces cerevisiae microarray experiments of Spellman
et al. (1998). There are interesting periodic genes found from the four yeast
microarray experiments, namely CDC15, CDC28, alpha, and elution (see
Spellman et al., 1998; Wichert Folianos, and Strimmer, 2004; and Chen,
2005). Also, in Chen (2005), genes of patterns other than periodic in these
four datasets are identified. We now pick one gene (probe ID: YJR152W), the
DAL5 gene, from the CDC15 dataset and analyze it for changes as specified
by the SACP model. This gene is observed on 24 equally spaced time points
(with a time interval of 20 minutes), and the normalized log expression of
this gene can be downloaded from the yeast genome website http://genome-
www.stanford.edu/cellcycle. To study if the gene expression of the probe
YJR152W is upregulated during a certain period of the time course of the
experiment, we test the null hypothesis

H0 : μ1 = μ2 = · · · = μ24

versus

H1 : μi =

⎧⎪⎨⎪⎩
μ, 1 ≤ i ≤ k1

μ+ β(i− k1), k1 + 1 ≤ i ≤ k2

μ, k2 + 1 ≤ i ≤ 24
.

The Bayesian approach is applied to the expression of the DAL5 gene,
the maximum posterior value of Equation (9.6) occurs at k̂1 = 11, and
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Fig. 9.2 The plot of the gene expression of the DAL5 gene (probe ID: YJR152W)

k̂2 = 14. These change point location estimates reflect the reality shown in
the expression of the DAL5 gene very well. The expression of this DAL5 gene
on the 24 observed time points is given in Figure 9.2 and the two changes are
pointed to by arrows. Biologically, it is known that the DAL5 gene encodes
a necessary component of the allantoate transport system in Saccharomyces
cerevisiae (Rai et al., 1987), upon a certain time of upregulation (the smooth
change segment), and then it drops back (at the second change point) to a
steady-state level. These biological explanations of the DAL5 gene exactly
verify that the gene expression of the DAL5 gene is reasonably well described
by our proposed SACP model.

9.3 The Epidemic Change Point Model for Exponential
Distribution

Another frequently studied change point model is the so-called epidemic
change point model, first studied by Levin and Kline (1985). Broemeling and
Tsurumi (1987) described a number of applications of this model in econo-
metrics. Later, Yao (1993) proposed some test statistics and large deriva-
tion approximations to the significance level and powers, for the normal
distribution. Aly and Bouzar (1992) have proposed statistics for the exponen-
tial family of distributions. The epidemic change point model is popular
and practical. For instance, certain flu may break out at a time point, the
mortality rate may start to change at that breakout time, endure that change
for a certain time, and then drop back to the original constant rate after
the flu dies out.

Ramanayake and Gupta (2003) studied the epidemic change point model
for a sequence of exponentially distributed random variables and they later
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(2004) studied the epidemic change point model for the exponential family of
distributions. The epidemic change point model for the exponential distribu-
tion can be formally introduced this way (Ramanayake and Gupta, 2003):
Let X1, . . . , Xn be a sequence of independent exponential random variables
with density function,

f(xi, θi) =
1
θi
e−xi/θi , i = 1, . . . , n,

where θi and xi are positive real numbers. An epidemic change model with
changes occurring during an unknown period of time (p, q) can be stated as
an inference problem of testing the null hypothesis:

H0 : θi = θ, i = 1, . . . , n,

versus the alternative hypothesis

HA : θi =

⎧⎪⎨⎪⎩
θ i ≤ p

θ + δ p < i ≤ q

θ q < i ≤ n

,

where p, q are the unknown change points such that 1 ≤ p < q ≤ n and θ
and δ are the unknown parameters such that θ, δ > 0.

A typical exponentially distributed data pattern with epidemic change is
illustrated in Figure 9.3.

Fig. 9.3 A simulated sequence of observations from an exponential distribution with
θ = 1, δ = 4, p = 40, q = 60, n = 100



9.3 The Epidemic Change Point Model for Exponential Distribution 223

Ramanayake and Gupta (2003) studied four test statistics, based on the
likelihood ratio, for the detection of an epidemic change in a sequence of inde-
pendent exponential variables. We present the detailed work of Ramanayake
and Gupta (2003) in the following subsections.

9.3.1 A Likelihood-Ratio-Based Statistic T

Suppose that the change points (p, q) are fixed; then the likelihood function
under H0 above is L0(θ;x) = θ−n exp((−Sn)/θ), and the likelihood function
HA above is given by

LA(θ, δ, p, q;x) = θ−n exp
−Sn

θ

(
θ

θ + δ

)q−p

exp
{

(Sq − Sp)
(

1
θ
− 1
θ + δ

)}
,

where Sp =
∑p

i=1 Xi , Sq =
∑q

i=1 Xi, and Sn =
∑n

i=1 Xi.
As the locations of the changes are usually unknown, we next assume that

(p, q) has an equal chance to fall at any possible points p = 1, . . . , n− 2 and
q = p+ 1, . . . , n− 1. Then the marginal likelihood function under HA is

fA(θ, δ;x) = θ−n exp
−Sn

θ

∏
p,q

(
θ

θ + δ

)q−p

exp
{

(Sq − Sp)
(

1
θ
− 1
θ + δ

)}
,

and the log likelihood ratio under HA, to that under H0, is obtained as

lnR(θ, δ, p, q;x) = (q − p) ln
(

θ

θ + δ

)
+ (Sq − Sp)

1
θ

δ

θ

(
1 +

δ

θ

)−1

.

Therefore, the log likelihood ratio under HA, to that under H0 as (δ/θ) →
0+ can be expressed as

lnL(θ, δ;x) = −N−
n−1∑
q=2

q−1∑
p=1

{
(q − p) ln

(
θ

θ + δ

)
+(Sq − Sp)

1
θ

δ

θ

(
1 +

δ

θ

)−1
}

= −N +
δ

θ

[
n−1∑
q=2

q−1∑
p=1

{
−(q − p) +

(Sq − Sp)
θ

}]
+ op

(
δ

θ

)
,

where N = (n − 1)(n − 2)/2. As the first term, q − p, in parentheses is a
known constant, an equivalent test statistic was thus proposed as

T0 =
n−1∑
q=2

q−1∑
p=1

(Sq − Sp)
θ

=
1
θ

n−1∑
q=2

(n− i)(i− 1)Xi.
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However, in many practical situations it is very unlikely that θ would be
known. Thus Ramanayake and Gupta (2003) suggested that θ in the above
expression be replaced by the maximum likelihood estimator of θ under H0,
that is, by X̄ = (1/n)

∑n
i=1 Xi, and denoted the modified statistic by

T =
n−1∑
i=2

(n− i)(i− 1)Xi

M
∑n

i=1 Xi
,

where M = (2/n)
∑n−1

i=1 (n− i)(i− 1) = 1
3 (n− 1)(n− 2). Note that if we let

Yi =
Xi∑n
i=1 Xi

, i = 1, . . . , n− 1,

then under the null hypothesis we have that (Y1, . . . , Yn−1) ∼ a Dirichlet
distribution, Dn−1(1/2, . . . , 1/2). Hence the moments of (Y1, . . . , Yn−1) can
be written as (according to Johnson and Kotz, 1972, Ch. 40, Sec. 5),

μr1,...,rn−1 = E(Y1
r1Y2

r2 , . . . , Yn−1
rn−1) =

∏n−1
i=1 1[ri]

(n)[
�n−1

i=1 ri]
,

where a[r] = a(a+ 1) · · · (a+ r− 1). According to this formula, the moments
of Yis can be obtained as follows.

μ1 = E(Yi) =
1
n

μ2 = E(Yi
2) =

3
n(n+ 2)

μ11 = E(YiYj) =
1

n(n+ 2)

μ3 = E(Yi
3) =

1
n(n+ 2)(n+ 4)

μ21 = E(Yi
2Yj) =

15
n(n+ 2)(n + 4)

μ111 = E(YiYjYk) =
1

n(n+ 2)(n+ 4)

μ4 = E(Yi
4) =

105
n(n+ 2)(n+ 4)(n + 6)

μ31 = E(Yi
3Yj) =

15
n(n+ 2)(n + 4)(n+ 6)
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μ22 = E(Yi
2Yj

2) =
9

n(n + 2)(n+ 4)(n + 6)

μ211 = E(Yi
2YjYk) =

3
n(n + 2)(n+ 4)(n+ 6)

μ1111 = E(YiYjYkYl) =
1

n(n+ 2)(n+ 4)(n + 6)
.

Therefore, when H0 is true, the first moments μ1(T ), μ2(T ), and the
coefficients of skewness and kurtosis β1(T ) and β2(T ) of the statistic T are
obtained as

μ1(T ) = E(T ) =
1
2

μ2(T ) = Var(T ) =
n+ 1

10(n− 1)(n− 2)

β1(T ) =
μ3

2(T )
μ2

3(T )
=

160(n− 4)2

49(n+ 1)(n− 1)(n− 2)

=
160
49

n−1 + o(n−1)

β2(T ) =
μ4(T )
μ2

2(T )
=

3
7

7n3 − 10n2 − 103n+ 250
(n+ 1)(n− 1)(n− 2)

= 3 +
12
7
n−1 + o(n−1), as n → ∞.

From the distribution of T it is noted that T takes values between 0 and
1. And from β1(T ) and β2(T ), it is noticed that the null distribution of T has
positive skewness and kurtosis (γ2 = β2 − 3), which tend to zero as n → ∞.

The Null Distribution of Statistic T

For the above-defined test statistic T , the null distribution needs to be derived
when T is going to be used in practice as the test statistic for the epidemic
change point model. Define the statistics, T1, as

T1 =
T − 0.5√
Var(T )

,

and obviously, T1 is the standardized statistic corresponding to statistic T .
From the Lyapounov central limit theorem and Slutsky’s theorem, one can
get that the statistic T1, under H0 follows an asymptotic normal distribution
as n → ∞. The test statistic is based on the likelihood ratio for small changes
in the ratio δ/θ, thus a test that rejects H0 in favor of HA that δ > 0, for large
values of T1, will give the locally most powerful one-sided test as δ/θ → 0+.
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Also a test that rejects H0 for large |T1| is the locally most powerful unbiased
test against the two-sided alternatives for small values of |δ/θ|.

The null cumulative distribution function (CDF), FT1 (x), of the test
statistic T1 was approximated in Ramanayake and Gupta (2003) using a
three-term Edgeworth expansion (Johnson and Kotz, 1972) of T1 as the
following.

FT1(x) = Φ(x) −
{√

β1(T1)
6

(x2 − 1) +
1
24

(β2(T1) − 3)(x3 − 3x)

+
1
72
β1(T1)(x5 − 10x3 + 15x)

}
φ(x)

= Φ(x) −
{

2
21

√
10(n− 4)2

(n+ 1)(n− 1)(n− 2)
(x2 − 1)

+
1
14

(n2 − 24n+ 59)
(n+ 1)(n− 1)(n− 2)

(x3 − 3x)

+
20(n− 4)2

441(n+ 1)(n− 1)(n− 2)
(x5 − 10x3 + 15x)

}
φ(x),

where Φ(x) and φ(x) are CDF and pdf of the standard normal random
distribution, respectively. The critical values cα, according to the above
Edgeworth expansion of the CDF of T1 for the standardized statistic T1, can
be obtained according to

∫∞
cα

f(x)dx = α, with the pdf f(·) being obtained
using the CDF FT1(·) above. For selected moderate sample sizes, the critical
values were tabulated in Ramanayake and Gupta (2003) and are redisplayed
in Table 9.1.

Table 9.1 Approximate Critical Values of the T1 Test

n c0.01 c0.025 c0.05 c0.10 c0.25

25 2.527 2.092 1.729 1.320 0.653
50 2.487 2.065 1.710 1.309 0.656
75 2.463 2.049 1.700 1.304 0.658

100 2.447 2.039 1.693 1.301 0.660
125 2.436 2.031 1.689 1.299 0.661
150 2.427 2.026 1.685 1.298 0.662
175 2.420 2.021 1.682 1.296 0.663
200 2.415 2.018 1.680 1.295 0.664
225 2.410 2.014 1.678 1.295 0.664
250 2.406 2.012 1.676 1.294 0.665
∞ 2.326 1.960 1.645 1.282 0.674
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Asymptotic Distribution of T Under the Alternative Hypothesis

Under the alternative hypothesisHA, X1, . . . , Xn follow independent exponen-
tial distributions with mean θi, where

θi =

⎧⎪⎨⎪⎩
θ i ≤ p

θ + δ p+ 1 ≤ i ≤ q, δ > 0
θ q + 1 ≤ i ≤ n

.

For simplicity in notation, we let ai = (n− i)(i− 1)/M, i = 1, . . . , n,
then the statistic T can be rewritten as

T =
∑n

i=1 aiXi∑n
i=1 Xi

.

In the following theorem, we give the asymptotic nonnull distribution of
the statistics T .

Theorem 9.2 Suppose that HA holds and as n → ∞, p/n→ λ1 and q/n →
λ2 such that 0 < λ1 < λ2 < 1. Then the statistic (

√
n(T − μ∗))/σ∗ converges

to a standard normal distribution as n → ∞, where

μ∗ =
1
2
{
θ−δ(λ2−λ1)(2λ2

2−3λ2 + 2λ1λ2−3λ1 + 2λ1
2)
} {θ + δ(λ2−λ1)}−1

,

and

σ∗2 =
3
10

{θ2 + δ(2θ + δ)(λ2 − λ1)

· (−15λ2
2λ1 + 10λ1λ2 + 10λ2

2−15λ2
3 + 6λ2

4 + 6λ1
4 + 10λ1

2 − 15λ1
3

+ 6λ1λ2
3 + 6λ1

2λ2
2 + 6λ2λ1

2 − 15λ1
2λ2)}{θ + δ(λ2 − λ1)}−2

.

Proof. From the Lyapounov central limit theorem we have:{∑n
i=1 aiXi −

∑n
i=1 aiθi

}[∑n
i=1 a

2
i θ

2
i

] 1/2
D→ N(0, 1)

and from the weak law of large of numbers we get

X̄

E(X̄)
P−→ 1,

where

E(X̄) =
1
n

n∑
i=1

θi = θ +
δ

n
(q − p).
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Therefore, from Slutsky’s theorem, we obtain,

T − μn

σn

D→ N(0, 1),

where

μn =
∑n

i=1 aiθi∑n
i=1 θi

=
1
2

[
θ − (q − p)δ

n

(2q2 − 3nq + 2pq − 2 + 3n− 3np+ 2p2)
(n− 1)(n− 2)

]

·
[
θ +

(q − p)δ
n

]−1

and

σn
2 =

∑n
i=1 ai

2θi
2[∑n

i=1 θi

]2
=

3
10

[
(n2 − 2n+ 2)
n(n− 2)(n− 1)

θ2 +
(q − p)

n
(2δθ + δ2)

× (−10pq + 10npq + 10nq2 + 15np− 10p2 + 10np2 − 15nq2p− 10q2

+ 15nq − 10n+ 4 + 10n2pq + 5n2 − 15n2q + 10n2q2 − 15nq3 + 6q4

+ 6p4 − 15n2p + 10n2p2 − 15np3 + 6pq3 + 6p2q2 + 6qp3 − 15np2q)

· (n− 1)−2(n− 2)−2

] [
θ +

(q − p)δ
n

]−2

.

Finally, if we assume that as n → ∞, q/n = (q(n))/n → λ2 and p/n =
(p(n))/n → λ1, where 0 < λ1 < λ2 < 1, we get the desired result. �

After the null and nonnull distributions of the test statistic T are esta-
blished, we examine a property of the test and present it in the following
Theorem 9.3.

Theorem 9.3 Test based on T is consistent for testing H0 versus HA if

3(λ1 + λ2) − 2(λ1λ2 + λ1
2 + λ2

2) > 1.

Proof. Under the null hypothesis we have that,
√
n(T − 0.5)√

0.3
D→ N(0, 1).
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Fig. 9.4 The plot of 3(λ1 + λ2)− 2(λ1λ2 + λ2
2 + λ1

2) > 1, indicated by the shaded area

Now let α be the level of the test; then we have that the power of the test at
level α can be expressed as

β(α) = P

{√
n(T − μ∗)

σ∗
≥

√
0.3
σ∗

zα −
√
n

σ∗
(μ∗ − 0.5)

}
→ 1,

as n → ∞, and if μ∗−0.5 > 0, we have ⇐⇒ 3(λ1+λ2)−2(λ1λ2+λ2
2+λ1

2) >
1, for δ > 0, where zα is given by the equation, α =

∫∞
zα

φ(x)dx. Notice that
the condition 3(λ1 + λ2) − 2(λ1λ2 + λ2

2 + λ1
2) > 1 holds if λ1 and λ2 occur

in the middle of the sequence and the shaded area in Figure 9.4. Illustrate
the region corresponding to 3(λ1 + λ2) − 2(λ1λ2 + λ2

2 + λ1
2) > 1. �

Note that the parameter space on which the asymptotic nonnull distribu-
tion of T converges as indicated in Theorem 9.2 and on which the test statistic
T is also consistent as indicated in Theorem 9.3 above is the region R, where
R = {(λ1, λ2) : 0 < λ1 < λ2 < 1, 3(λ1 +λ2)− 2(λ1λ2 + λ2

2 +λ1
2) > 1}. This

region R is illustrated in Figure 9.5.

9.3.2 Likelihood-Ratio Test Statistic

In this subsection, we present the likelihood-ratio test statistics. Note that
under H0 the maximum likelihood estimator (MLE) of θ is clearly

θ̂0 =
Sn

n
,
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Fig. 9.5 The plot of region R, indicated by the shaded area

and under HA, the MLE of (θ + δ) is easily obtained as

̂θ + δ =
Sq − Sp

q − p

and the MLE of θ is

θ̂ =
Sn − (Sq − Sp)
n− (q − p)

.

Hence, the log likelihood ratio of HA over H0, for fixed (p, q) is

lnΛpq = n ln X̄n − (q − p) ln X̄pq − (n− q + p) ln X̄∗pq,

where,

X̄pq =
Sq − Sp

q − p
, X̄∗pq =

Sn − (Sq − Sp)
n− (q − p)

and X̄n =
Sn

n
.

Therefore, the likelihood-ratio test (LRT) statistic for unknown (p, q) such
that 1 ≤ p < q ≤ n can be written as T2 = max1≤p<q≤n lnΛpq. In the
following, we give the asymptotic null distribution of the LRT T2.

In obtaining the asymptotic null distribution of T2 we use the following
result.

Theorem 9.4 Suppose Y1, . . . , Yn are independent random variables from a
normal distribution with mean 0 and variance 1. Set S(k) =

∑k
i=1 Yi where

i = 1, . . . , n. Define
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Z∗p,q
2 =

{
S(q) − S(p) − q−p

n S(n)
}2

(q − p)
(
1 − q−p

n

)
for all 1 ≤ p < q ≤ n. Let n → ∞; then for b =

√
nc, with c ∈ (0, 1) fixed,

we have

P0

{
max

1≤p<q≤n
|Z∗pq| ≥ b

}
∼ b3

2
√

2π
(1 − c3)

(n/2)−3
∫ 1

0

ν2
[

c
t(1−t)(1−c2)

]
t2(1 − t)

dt.

Here

ν(x) = 2x−2 exp

{
−2

∞∑
n=1

1
n
Φ

(
−x

√
n

2

)}
, x > 0.

The function ν(x) can be approximated by exp(−0.583x) + o(x2) as x → 0
and Φ denotes the standard normal distribution function.

Proof. See Yao (1993) and Siegmund (1988a). �
Lemma 9.5 If H0 holds then max1≤p<q≤n |2 lnΛp,q + Z∗p,q

2| = op(1).

Proof. By a second-order Taylor series expansion of ln(X̄n), ln(X̄p,q), and
ln(X̄∗p,q) around θ we get,

2 lnΛp,q =
1
θ2

{−n(X̄n − θ)2 + (q − p)(X̄p,q − θ)2

+ (n− q + p)(X̄∗p,q − θ)2} + op(1)

=
(q − p)n

(n− q + p)

{(
X̄p,q − θ

θ

)
−
(
X̄n − θ

θ

)}2

+ op(1)

= Z∗2p,q + op(1)

Now by the central limit theorem we get the desired result. �
Theorem 9.6 Suppose that n → ∞; then for b = c

√
n, with c ∈ (0, 1) fixed,

we have

P0

{
max

1≤p<q≤n
−2 lnΛpq ≥ b2

}
∼ b3

2
√

2π
(1 − c3)

(n/2)−3
∫ 1

0

ν2
[

c
t(1−t)(1−c2)

]
t2(1 − t)

dt.

Proof. Follows as a consequence of Theorem 3. �
Next we consider the two modified likelihood ratio test statistics proposed

by Aly and Bouzar (1992). These two statistics are

T3 = max
1≤p<q≤n

[
(q − p)(n− q + p)

n2
2 lnΛpq

]1/2

,

and T4 = (2/n4)
∑

1≤p<q≤n(q − p)(n− q + p) lnΛpq.
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From Theorem 3.1 of Aly and Bouzar (1992), we have that,

T3
D→ sup

0≤t<s≤1
‖B(s) −B(t)‖ = E1

and
T4

D→
∫

0≤t<s≤1

‖B(s) −B(t)‖ = E2,

where B(·) is a Brownian bridge process. Hence,

P (E1 > x) = 2
∞∑

r=1

(4r2x2 − 1) exp{−2r2x2}, x ≥ 0,

and

P (E2 ≤ x) =

√
8
πx

∞∑
j=0

exp
{

2
x

(j + 0.5)2
}
.

Table 9.2 gives the critical values of the distribution of E1 and E2 for
α = 0.01, 0.025, 0.05, 0.10, 0.25.

Table 9.2 Critical Values of
the E1 and E2 Tests

α cα,E1 cα,E2

0.01 2.0009 1.0737
0.025 1.8624 0.8880
0.05 1.7473 0.7475
0.10 1.6196 0.6070
0.25 1.4205 0.4210

9.3.3 Power Comparisons of the Four Tests

Table 9.3 compares the powers of the statistics T1, T2, T3, and T4 with the
result of 5000 repetition Monte Carlo experiments. In order to keep the
table to a reasonable size, only the case of sample size n = 50 and θ = 1
with a significance level α = 0.05 is considered. Based on the simulation
results of Table 9.3, we see that the test based on the likelihood-ratio type
statistic T1, outperforms the others when (p, q) are in the middle of the
sequence. This difference is more significant for small δ values. But if both
p and q occur either very early or late in the sequence then all the other
three tests do better than T1. This difference is more significant for large
values of δ. On the other hand, T2, T3, T4 seem to be quite similar to one
another in terms of power. Other simulation results, not reported here, show
that these conclusions are unchanged over a range of sample sizes and (δ, θ)
values.
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Table 9.3 Power of the Tests Based on T1, T2, T3, T4 with Significance Level of 0.05,
Right-Tailed

δ = 1 δ = 3
a b T1 T2 T3 T4 T1 T2 T3 T4

4 20 0.0570 0.3734 0.4340 0.2748 0.0806 0.9516 0.9652 0.9110
4 40 0.4448 0.2970 0.2496 0.1926 0.8594 0.8936 0.7302 0.7792
8 24 0.2464 0.3652 0.4214 0.2586 0.6860 0.9472 0.9636 0.9046
8 40 0.6132 0.3912 0.3674 0.2444 0.9856 0.9614 0.9148 0.8886

12 24 0.3034 0.2894 0.3488 0.2382 0.8006 0.8790 0.9162 0.8474
12 40 0.6780 0.4434 0.4378 0.2732 0.9964 0.9796 0.9686 0.9272
16 24 0.2644 0.1806 0.2332 0.1742 0.7216 0.7004 0.7770 0.7078
16 40 0.6322 0.4492 0.4718 0.2802 0.9906 0.9828 0.9810 0.9328
20 28 0.3054 0.1802 0.2254 0.1604 0.7886 0.7014 0.7782 0.7032
20 40 0.5238 0.4286 0.4774 0.2934 0.9690 0.9766 0.9794 0.9324
24 32 0.2874 0.1838 0.2266 0.1562 0.7656 0.6944 0.7714 0.7062
24 40 0.3810 0.3692 0.4248 0.2612 0.8756 0.9538 0.9674 0.9116
28 36 0.2138 0.1838 0.2296 0.1712 0.6352 0.6960 0.7832 0.7190
28 44 0.1308 0.3674 0.4246 0.2666 0.3348 0.9522 0.9656 0.9056
32 40 0.0476 0.0974 0.1096 0.1008 0.0656 0.8830 0.9270 0.8560

Thus it is recommended that one should use T1 if the epidemic duration
falls around the center of the sequence and use any one of T2, T3, T4 otherwise.
However, statistic T3 is slightly preferred in this situation because it performs
better than T2 and T4, when the epidemic duration occurs either very early
or late in the sequence.

In Ramanayake and Gupta (2003), two data analyses were given to
illustrate the use of the proposed four test statistics here. The two datasets
used were aircraft arrival times collected from a low-altitude transitional
control sector for the period from noon through 8 PM on April 30, 1969
used in Hsu (1979), and the Stanford heart transplant data taken from The
Statistical Analysis of Failure Time Data by Kalbfleisch and Prentice (1980,
Appendix I, pp. 230–232).

9.4 The Epidemic Change Point Model for the
Exponential Family

Ramanayake and Gupta (2004) further studied the epidemic change point
model for the exponential family. This work provided thorough investigation
of the statistical inference problem associated with such an epidemic change
point model. We provide the details of the work of Ramanayake and Gupta
(2004) here in this section.

Let X1, . . . , Xn be a sequence of independent random variables with the
density function that belongs to the one-parameter exponential family of the
specific form:
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f(xi, θi) = exp{T (xi)θi −A(θi) + S(xi)}I{xi ∈ C} i = 1, . . . , n, (9.10)

where xi, θi, T (xi) ∈ � for all i = 1, . . . , n, and C ⊆ �. Here our interest is
to test the null hypothesis of “no change” against the epidemic change in the
parameter θi. The null and alternative hypotheses can be described in more
formal terms as

H0 : θi = θ0, i = 1, . . . , n

HA : ∃ p, q ∈ Z such that 1 ≤ p < q ≤ n and

θi =

⎧⎪⎨⎪⎩
θ0 i ≤ p

θ∗ p < i ≤ q

θ0 q < i ≤ n

,

where θ0, θ∗ are fixed such that θ0, θ∗ ∈ int(Θ).
Using the ideas of Gombay and Hovarth (1996) for the single change in the

exponential family, Ramanayake and Gupta (2004) generalized the results to
the epidemic change point model for the exponential family. In the following
sections, we give the details of the later study.

9.4.1 Derivation of the LRT Statistic

When it comes to the investigation of the hypothesis testing problem for
a change point model, it is often convenient to use the likelihood-ratio
procedure (LRP) test statistic (see Lehmann, 1986), as mentioned in previous
chapters. Although others used this LRT without distinguishing it from the
generalized likelihood ratio (GLR) based on the context, we now interchange
the terms of LPT and GMLR and in general refer to it as the likelihood-ratio
test (LRT) according to the context.

If (p = p∗, q = q∗) are known, the generalized maximum likelihood ratio
(GMLR) for testing H0 against HA can be written as

Λp,q =

[
supθ0

∏p
i=1 f(xi, θ0)

][
supθ∗

∏q
i=p+1 f(xi, θ

∗)
][

supθ0

∏n
i=q+1 f(xi, θ0)

]
supθ0

∏n
i=1 f(xi, θ0)

But because p∗, q∗ are unknown, we reject the null hypothesis for large values
of the statistic,

Qn = max
1≤p<q≤n

{2 lnΛp,q}. (9.11)

Next we define ˆ̂
θ0 as the maximum likelihood estimator (MLE) of θ0 under

H0. Let θ̂0 and θ̂∗ be the MLEs of θ0 and θ∗ under HA, respectively. Then
the logarithm of the GLR for known (p, q) can be written as
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lnΛp,q =
p∑

i=1

ln f(xi, θ̂0) +
n∑

i=q+1

ln f(xi, θ̂0)

+
q∑

i=p+1

ln f(xi, θ̂
∗) −

n∑
i=1

ln f(xi,
ˆ̂
θ0)

= θ̂0

p∑
i=1

T (xi) +
p∑

i=1

S(xi) −A(θ̂0)p + θ̂0

n∑
i=q+1

T (xi) +
n∑

i=q+1

S(xi)

−A(θ̂0)(n− q) + θ0

q∑
i=p+1

T (xi) +
q∑

i=p+1

S(xi) −A(θ̂∗)(q − p)

− ˆ̂
θ∗

n∑
i=1

T (xi) −
n∑

i=1

S(xi) +A( ˆ̂
θ0)n. (9.12)

Next for simplicity in notation, we set

Bp,q =
1

(q − p)

q∑
i=p+1

T (xi)

B∗p,q =
1

(n− q + p)

⎧⎨⎩
p∑

i=1

T (xi) +
n∑

i=q+1

T (xi)

⎫⎬⎭ and Bn = B1,n.

Define A′(θ) = (∂/∂θ)A(θ). In order to get a simpler expression for Λp,q we
assume the following regularity conditions.

C1. inv A′(θ), the unique inverse of A′(θ) exists for each θ ∈ Θ.
C2. ∃ ε > 0 such that H ′′′ exists and H ′′ is positive on

T ∗ = {τ : |τ − (sτ1 + (1 − s)τ2)| ≤ ε, for some 0 ≤ s ≤ 1}.

C3. H ′(τ2)(τ1 − τ2) +H(τ2) −H(τ1) < 0.
C4. H ′(τ1)(τ2 − τ1) +H(τ1) −H(τ2) < 0.
C5. For every ε such that 0 < ε < 1/2,

sup
ε≤s≤1−ε

{H(sτ1 + (1 − s)τ2) − sH(τ1) − (1 − s)H(τ2)} < 0.

Here H(x) = x invA′(x) − A[invA′(x)], τ1 = A′(θ0), τ2 = A′(θ∗), and τ =
A′(θ). Note that under HA, E(Bp,q) = τ2 and E(B∗p,q) = τ1. Thus we have

that θ̂0 = invA′(B∗p,q), θ̂∗ = invA′(Bp,q), and ˆ̂
θ0 = invA′(Bn). Now in terms

of the new notation we can rewrite (9.12) as
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lnΛp,q = θ̂0(n− q + p)B∗p,q − (n− q + p)A[invA′(B∗p,q)] + θ̂∗(q − p)Bp,q

− (q − p)A[invA′(Bp,q)] − ˆ̂
θ0nBn − nA[invA′(Bn)] (9.13)

= (q − p)H(Bp,q) + (n− q + p)H(B∗p,q) − nH(Bn).

Next assume that p∗ = p∗(n) and q∗ = q∗(n) are such that

lim
n→∞

p∗(n)
n

= λ1 and lim
n→∞

q∗(n)
n

= λ2,

where 0 < λ1 < λ2 < 1. Also let,

Vp,q = lnΛp,q − lnΛp∗,q∗ , 1 ≤ p < q ≤ n, (9.14)

and
μ∗ = (q∗ − p∗)H(τ2) + (n− q∗ + p∗)H(τ1). (9.15)

Finally, we denote μp,q as the following.
If 1 < p < q ≤ p∗ < q∗ < n,

μp,q = (q − p)H(τ1) + (n− q + p)H
(

q∗ − p∗

n− q + p
τ2 +

n− q + p− q∗ + p∗

n− q + p
τ1

)
− (q∗ − p∗)H(τ2) − (n− q∗ + p∗)H(τ1),

if 1 < p ≤ p∗ < q < q∗ < n,

μp,q = (q − p)H
(
p∗ − p

q − p
τ1 +

q − p∗

q − p
τ2

)
+ (n− q + p)H

(
q∗ − q

n− q + p
τ2

+
n+ p− q∗

n− q + p
τ1

)
− (q∗ − p∗)H(τ2) − (n− q∗ + p∗)H(τ1),

if 1 < p ≤ p∗ < q∗ ≤ q < n,

μp,q = (q − p)H
(
q∗ − p∗

q − p
τ2 +

q − p− q∗ + p∗

q − p
τ1

)
+ (n− q + p)H(τ1)

− (q∗ − p∗)H(τ2) − (n− q∗ + p∗)H(τ1),

if 1 < p∗ ≤ p < q ≤ q∗ < n,

μp,q = (q − p)H(τ2) + (n− q + p)H
(
n− q∗ + p∗

n− q + p
τ1 +

q∗ − p∗ − q + p

n− q + p
τ2

)
− (q∗ − p∗)H(τ2) − (n− q∗ + p∗)H(τ1),
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if 1 < p∗ ≤ p < q∗ ≤ q < n,

μp,q = (q − p)H
(
q − q∗

q − p
τ1 +

q∗ − p

q − p
τ2

)
+ (n− q + p)H

(
p− p∗

n− q + p
τ2

+
n− q + p∗

n− q + p
τ1

)
− (q∗ − p∗)H(τ2) − (n− q∗ + p∗)H(τ1),

and if 1 < p∗ < q∗ ≤ p < q < n,

μp,q = (q − p)H(τ1) + (n− q + p)H
(

q∗ − p∗

n− q + p
τ2 +

n− q + p− q∗ + p∗

n− q + p
τ1

)
− (q∗ − p∗)H(τ2) − (n− q∗ + p∗)H(τ1). (9.16)

With all of the above preparations, we present the investigation on the
properties of the LRT statistic Qn in the following subsections.

9.4.2 Asymptotic Null Distribution of the Statistic Qn

To obtain the asymptotic null distribution of Qn we first prove the following
lemmas.

Lemma 9.7 Assume that conditions C1–C2 hold. Then under H0, we have

max
1≤p<q≤n

∣∣∣∣2 lnΛp,q

A′′(θ0)
−H ′′(θ0)Z∗p,q

2

∣∣∣∣ = op(1).

Proof. The second-order Taylor series expansion of lnΛp,q gives

lnΛp,q = (q − p)
{
H(θ0) +H ′(θ0)(Bp,q − θ0) +

1
2
H ′′(θ0)(Bp,q − θ0)

2

}
+ (n− q + p)

{
H(θ0) +H ′(θ0)(B∗p,q − θ0)

− n

{
H(θ0) +

1
2
H ′′(θ0)(B∗p,q − θ0)

2

}
+H ′(θ0)(Bn − θ0) +

1
2
H ′′(θ0)(Bn − θ0)

2

}
+ op(1),

as n(Bn − θ0)
2+γ = [

√
n(Bn − θ0)]

2(Bn − θ0)
γ
, γ ≥ 1 converges in proba-

bility to 0, by the central limit theorem (CLT) and the weak law of large
numbers, we can write
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2 lnΛp,q = H ′′(θ0){(q − p)(Bp,q − θ0)
2 + (n− q + p)(B∗p,q − θ0)

2

− n(Bn − θ0)
2} + op(1).

Next because (q − p)Bp,q + (n− q + p)B∗p,q = nBn, we can write

(B∗p,q − θ0)2 =
{
nBn − (q − p)Bp,q

n− q + p
− θ0

}2

=
{

n

n− q + p
(Bn − θ0) − q − p

n− q + p
(Bp,q − θ0)

}2

=
(

n

n− q + p

)2

(Bn − θ0)
2 +

(
q − p

n− q + p

)2

(Bp,q − θ0)
2

− 2n(q − p)

(n− q + p)2
(Bn − θ0)(Bp,q − θ0).

Hence we have that

2 lnΛp,q = H ′′(θ0)
{

(q − p)(Bp,q − θ0)
2 +

n2

n− q + p
(Bn − θ0)

2

+
(q − p)2

n− q + p
(Bp,q − θ0)

2 − 2(q − p)n
n− q + p

(Bn − θ0)(Bp,q − θ0)

−n(Bn − θ0)
2

}
+ op(1)

= H ′′(θ0)
n(q − p)
n− q + p

{(Bp,q − θ0)
2 + (Bn − θ0)

2

− 2(Bn − θ0)(Bp,q − θ0)} + op(1). (9.17)

Next note that we can write

Z∗p,q =

{
S(q)−S(p)

q−p − S(n)
n

}2

n−q+p
(q−p)n

=
n(q − p)
n− q + p

{(
S(q) − S(p)

q − p

)2

+
(
S(n)
n

)2

−2
(
S(q) − S(p)

q − p

)(
S(n)
n

)}
.

Now by the weak law of large numbers and (9.17), we have the result. �



9.4 The Epidemic Change Point Model for the Exponential Family 239

Theorem 9.8 Suppose Y1, . . . , Yn are independent random variables from a
normal distribution with mean 0 and variance 1. Set S(k) =

∑k
i=1 Yi where

k = 1, . . . , n. Define

Z∗p,q
2 =

{
S(q) − S(p) − q−p

n S(n)
}2

(q − p)
(
1 − q−p

n

)
for all 1 ≤ p < q ≤ n. Then if c = b/

√
n converges to a fixed constant between

0 and 1, as n → ∞ and b → ∞ we have

P0

{
max

1≤p<q≤n
Z∗p,q ≥ b

}
∼ b3

2
√

2π
(1 − c3)

(n/2)−3
∫ 1

0

ν2
[

c
t(1−t)(1−c2)

]
t2(1 − t)

dt.

Here ν(x) = 2x−2 exp{−2
∑∞

n=1(1/n)Φ(−x(
√
n/2)}, for x > 0. The function

ν(x) can be approximated by exp(−0.583x) + o(x2) as x → 0 and Φ denotes
the standard normal distribution function.

Proof. See Yao (1993) or Siegmund (1988a, b). �

Finally, we can obtain the asymptotic null distribution of the statistic Qn

in the following theorem.

Theorem 9.9 Assume that conditions C1–C2 hold. Then under H0, if c =
b/
√
n converges to a fixed constant between 0 and 1, as n → ∞ and b → ∞

we have

P0

{
max

1≤p<q≤n

2 lnΛp,q

A′′(θ0)H ′′(θ0)
≥ b2

}

∼ b3

2
√

2π
(1 − c3)

(n/2)−3

1∫
0

ν2
[

c
t(1−t)(1−c2)

]
t2(1 − t)

dt.

Proof. Follows as a consequence of Theorem 9.7 and Lemma 9.8. �

9.4.3 Asymptotic Behavior of the MLEs of the Change
Points

If H0 does not hold, we may want to estimate the locations and the duration
of the epidemic change. Let p̂ and q̂ be the maximum likelihood estimators
of p and q, respectively; then essentially it means that p̂ and q̂ are such that:

(p̂, q̂) = min{(p, q) : Qn = 2 lnΛp,q}. (9.18)

The following major theorem gives the property of the change point
location estimators (p̂, q̂).



240 9 Other Change Point Models

Theorem 9.10 Assume that conditions C1–C5 hold. Then under HA,

|p̂− p∗| = Op(1) and |q̂ − q∗| = Op(1).

In order to prove this major theorem, we first need to establish the
following lemmas.

Lemma 9.11 If 1 < p ≤ p∗ < q ≤ q∗ ≤ n and the conditions of Theorem 9.10
are satisfied, then ∃c1, c2 < 0 such that μp,q ≤ c1(p∗ − p) + c2(q∗ − q).

Proof. If 1 < p ≤ p∗ < q ≤ q∗ ≤ n, then by (9.16) we have that

μp,q = (q−p)H(ν1)+(n− q+p)H(ν2)− (q∗−p∗)H(τ2)− (n− q∗+p∗)H(τ1),

where

ν1 =
p∗ − p

q − p
τ1 +

q − p∗

q − p
τ2 and ν2 =

q∗ − q

n− q + p
τ2 +

n + p− q∗

n− q + p
τ1.

Next define

μ1,pq = (q − p)H(ν1) − (p∗ − p)H(τ1) − (q − p∗)H(τ2)

μ2,pq = (n− q + p)H(ν2) − (q∗ − q)H(τ2) − (n− q∗ + p)H(τ1).

Then we have μp,q = μ1,pq + μ2,pq. Now by the Taylor series expansion of
H(ν1) around τ2 we get

μ1,pq = (q − p)
{
H(τ2) +H ′(τ2)(ν1 − τ2) +

1
2
H ′′(τ∗2 )(ν1 − τ2)

2

}
− (p∗ − p)H(τ1) − (q − p∗)H(τ2),

where τ∗2 is on the interval connecting τ2 and ν1. Next, by the continuity of
H ′′ we can find a constant c > 0 such that∣∣∣∣(q − p)

1
2
H ′′(τ∗2 )(τ2 − ν1)

2

∣∣∣∣ =
∣∣∣∣∣12H ′′(τ∗2 )

(p∗ − p)2

(q − p)
(τ1 − τ2)

2

∣∣∣∣∣
≤ c

(p∗ − p)2

(q − p)
.

Thus we have

μ1,pq ≤ (p∗ − p)
{
H(τ2) −H(τ1) +H ′(τ2)(τ1 − τ2) + c

(
p∗ − p

q − p

)}
.

Now we can choose α small enough such that for nα ≤ p ≤ p∗,

c

(
p∗ − p

q − p

)
<

1
2
|H(τ2) −H(τ1) +H ′(τ2)(τ1 − τ2)|.
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Thus if nα ≤ p ≤ p∗, it is easy to see that

μ1,pq ≤ 1
2
(p∗ − p){H(τ2) −H(τ1) +H ′(τ2)(τ1 − τ2)}.

Now by C4 we have that μ1,pq ≤ (p∗−p)c∗1 if nα ≤ p ≤ p∗. Next if 1 ≤ p ≤ nα,
from C5 we get

μ1,pq = (q − p)
{
H

(
p∗ − p

q − p
τ1 +

q − p∗

q − p
τ2

)
− p∗ − p

q − p
H(τ1) − q − p∗

q − p
H(τ2)

}
≤ (q − p) sup

p∗−nα
q−nα ≤s≤ p∗

q

{H(sτ1 + (1 − s)τ2) − sH(τ1) − (1 − s)H(τ2)}

≤ (q − p) c∗2.

Thus we have μ1,pq ≤ (p∗ − p)c1 where c1 < 0. Similarly we can prove that
μp,q ≤ (q∗ − q)c2, where c2 < 0. Hence we have that,

μp,q ≤ (p∗ − p)c1 + (q∗ − q)c2, where c1, c2 < 0. �

Lemma 9.12 If 1 ≤ p ≤ p∗ < q ≤ q∗ ≤ n and if conditions of Theorem 9.10
are satisfied then, for every α such that 1

2 < α < 1 we have,

max
1≤p<p∗<q≤q∗<n

Vp,q − μp,q

(p∗ − p)α + (q∗ − q)α
= Op(1).

Proof. By (9.13)–(9.16) we can write,

Vp,q − μp,q = (q − p)H(Bp,q) + (n− q + p)H(B∗p,q) − (q∗ − p∗)H(Bp∗,q∗)

− (n− q∗ + p∗)H(B∗p∗,q∗) − (q − p)H(ν1)

− (n− q + p)H(ν2) + (q∗ − p∗)H(τ2)

+ (n− q∗ + p∗)H(τ1).

Taylor series expansions of H(Bp,q) around ν1, H(Bp∗,q∗) around ν2,
H(Bp∗,q∗), around τ2 and H(B∗p∗,q∗), and around τ1 gives

Vp,q − μp,q = (q − p)
{
H ′(ν1)(Bp,q − ν1) +

1
2
H ′′(ν1)(Bp,q − ν1)

2

}
+ (n− q + p)

{
H ′(ν2)(B∗p,q − ν2) +

1
2
H ′′(ν2)(B∗p,q − ν2)

2

}
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− (q∗ − p∗)
{
H ′(τ2)(Bp∗,q∗ − τ2) +

1
2
H ′′(τ1)(Bp∗,q∗ − τ2)

2

}
− (n− q∗ + p∗)

{
H ′(τ1)(B∗p∗,q∗ − τ1) +

1
2
H ′′(τ1)(B∗p∗,q∗ − τ1)

2

}
+Rpq,1.

(9.19)

Note that by the iterated law of logarithm we have,

(Bp,q − ν1)
3(q − p) =

{∑q
i=p+1[T (xi) − ν1]

}3

(q − p)2

=

{∑q
i=p+1[T (xi) − ν1]

(q − p)2/3

}3

= Op(1).

Thus by a similar argument we get,

max
1≤p≤p∗<q≤q∗≤n

|Rpq,1| = Op(1). (9.20)

Next let

Rpq,2 = (q − p){H ′(ν1)(Bp,q − ν1)} − (q∗ − p∗){H ′(τ2)(Bp∗,q∗ − τ2)}

= H ′(ν1)
q∑

i=p+1

[T (xi) − ν1)] −H ′(τ2)
q∗∑

i=p∗+1

[T (xi) − τ2)]

= H ′(ν1)
p∗∑

i=p+1

[T (xi) − τ1)] + [H ′(ν1) −H ′(τ2)]
q∑

i=p∗+1

[T (xi) − τ2)]

−H ′(τ2)
q∗∑

i=q+1

[T (xi) − τ2)].

Now, using the iterated law of logarithm again we can write, for 1/2 < α < 1,

max
1≤p<p∗<q≤q∗<n

|Rpq,2|
(p∗ − p)α + (q∗ − q)α

= Op(1). (9.21)

A similar argument gives

max
1≤p<p∗<q≤q∗<n

|Rpq,3|
(p∗ − p)α + (q∗ − q)α

= Op(1), (9.22)

where Rpq,3 = (q − p)H ′′(ν1)(Bp,q − ν1)
2 − (q∗ − p∗)H ′′(τ2)(Bp∗,q∗ − τ2)

2.
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Next let

Rpq,4 = (n− q + p){H ′(ν2)(B∗p,q − ν2)}
− (n− q∗ + p∗){H ′(τ1)(B∗p∗,q∗ − τ1)}

= H ′(ν2)

⎧⎨⎩
p∑

i=1

[T (xi) − τ1)] +
q∗∑

i=q+1

[T (xi) − τ2)]

+
n∑

i=q∗+1

[T (xi) − τ1)]

⎫⎬⎭+H ′(τ1)

⎧⎨⎩
p∑

i=1

[T (xi) − τ1)]

−
p∗∑

i=p+1

[T (xi) − τ1)] +
n∑

i=q∗+1

[T (xi) − τ1)]

⎫⎬⎭ .

Hence by the iterated law of logarithm for 1
2 < α < 1 we have

max
1≤p<p∗<q≤q∗<n

|Rpq,4|
(p∗ − p)α + (q∗ − q)α

= Op(1). (9.23)

A similar argument gives

max
1≤p<p∗<q≤q∗<n

|Rpq,5|
(p∗ − p)α + (q∗ − q)α

= Op(1), (9.24)

where

Rpq,5 = (n− q + p)H ′′(ν1)(B∗p,q − ν1)
2−(n− q∗ + p∗)H ′′(τ2)(Bp∗,q∗ − τ2)

2
.

Now by (9.19)–(9.24) we have the result. �

Lemma 9.13 If 1 ≤ p ≤ p∗ < q ≤ q∗ < n and if the conditions of
Theorem 9.10 are satisfied, then

lim
k1,k2→∞

lim sup
n→∞

P{p̂ < p∗ − k1, q̂ < q∗ − k2} = 0.

Proof. From Lemma 9.12 we know that, for each ε > 0, ∃ηε > 0 such that

P{Vp,q − μp,q ≤ [(p∗ − p)α + (q∗ − q)α]ηε, 1 ≤ p ≤ p∗ < q ≤ q∗ < n} > 1−ε,
(9.25)

for large n. But by Lemma 9.10, we have that μp,q ≤ c1(p∗ − p) + c2(q∗ − q).
Thus we get

lim
n→∞P{Vp,q ≤ c11(p∗ − p) + (c22(q∗ − q), 1 ≤ p ≤ p∗ < q ≤ q∗ < n} = 1,

(9.26)



244 9 Other Change Point Models

where c11 < 0 and c22 < 0. Thus for every M > 0,

lim
k1,k2→∞

lim sup
n→∞

P{maxVp,q > −M} = 0. (9.27)

Also notice that we can write,

{p̂ < p∗ − k1, q̂ < q∗ − k2} =
{

max
1≤p<q≤n

Vp,q = maxVp,q

}
=
[
{maxVp,q} ∩

{
max

1≤p<q≤n
Vp,q > −M

}]
∪
[
{maxVp,q} ∩

{
max

1≤p<q≤n
Vp,q ≤ −M

}]
⊆ {maxVp,q > −M} ∪

{
max

1≤p<q≤n
Vp,q ≤−M

}
,

and by (9.27) the limsup of the first term on the right-hand side tends to 0
as k1, k2 → ∞, and the second term is op(1) because Vp∗,q∗ = 0. Thus we get
that

lim
k1,k2→∞

lim sup
n→∞

P{p̂ < p∗ − k1, q̂ < q∗ − k2} = 0. �

The following lemmas are stated without proof, because their proofs are
similar to the proof of Lemma 9.15.

Lemma 9.14 If 1 < p∗ ≤ p < q∗ ≤ q < n and if the conditions of
Theorem 9.10 are satisfied, then limk1,k2→∞ lim supn→∞ P{p̂ < p∗ − k1, q̂ >
q∗ + k2} = 0.

Lemma 9.15 If 1 < p∗ ≤ p < q ≤ q∗ < n and if the conditions of
Theorem 9.10 are satisfied, then limk1,k2→∞ lim supn→∞ P{p̂ > p∗ + k1, q̂ >
q∗ − k2} = 0.

Lemma 9.16 If 1 < p ≤ p∗ < q∗ ≤ q < n and if the conditions of
Theorem 9.10 are satisfied, then limk1,k2→∞ lim supn→∞ P{p̂ < p∗ − k1, q̂ >
q∗ + k2} = 0.

Lemma 9.17 If the conditions of Theorem 9.10 are satisfied, then

lim sup
n→∞

P{1 ≤ p̂ < q̂ ≤ p∗ < q∗ < n} = 0.

Proof. Suppose 1 ≤ p < q ≤ p∗ < q∗ < n. Then by (9.16) we have that

μp,q = (n− q + p)
{
H

(
q∗ − p∗

n− q + p
τ2 +

n− q + p− q∗ + p∗

n− q + p
τ1

)
− (q∗ − p∗)
n− q + p

H(τ2) − (n− q∗ + p∗)
n− q + p

H(τ1)
}
.
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Now by C5 we get,

μpq ≤ (n− q + p) sup
q∗−p∗

n ≤s≤ q∗−p∗
n−p∗+1

{H(sτ1 + (1 − s)τ2) − sH(τ1)

− (1 − s)H(τ2)}
≤ (n− q + p)c, (9.28)

where c < 0. Next by a similar argument as in Lemma 9.12 we can show that

max
1≤p<q≤p∗<q∗<n

Vp,q − μp,q

(n− q + p)α
= Op(1). (9.29)

Hence, for every ε > 0, ∃ηε > 0 such that

P{Vp,q − μp,q ≤ (n− q + p)α
ηε, 1 ≤ p < q ≤ p∗ < q∗ < n} > 1 − ε

for large n. But by (9.28), we get

lim
n→∞P{Vp,q ≤ c∗(n− q + p), 1 ≤ p < q ≤ p∗ < q∗ < n} = 1,

where c∗ < 0. Thus for every M > 0,

lim sup
n→∞

P

{
max

1≤p<q≤p∗
Vp,q > −M

}
= 0. (9.30)

Also notice that we can write,

{1 ≤ p̂ < q̂ ≤ p∗ < q∗ < n}

=
{

max
1≤p<q≤n

Vp,q = max
1≤p<q≤p∗<q∗<n

Vp,q

}
=
[{

max
1≤p<q≤p∗<q∗<n

Vp,q

}
∩
{

max
1≤p<q≤n

Vp,q > −M
}]

∪
[{

max
1≤p<q≤p∗<q∗<n

Vp,q

}
∩
{

max
1≤p<q≤n

Vp,q ≤ −M
}]

⊆
{

max
1≤p<q≤p∗<q∗<n

Vp,q > −M
}
∪
{

max
1≤p<q≤n

Vp,q ≤ −M
}
,

and by (9.30) the limsup of the first term on the right-hand side tends to 0,
and the second term is op(1) because Vp∗,q∗ = 0. Thus we get the result. �

Lemma 9.18 If the conditions of Theorem 9.10 are satisfied, then

lim sup
n→∞

P{1 < p∗ < q∗ ≤< p̂ < q̂ < n} = 0.
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Proof. By symmetry to the conditions in Lemma 9.17 we get the result. �

After the establishment of the preceding lemmas, we are now in a position
to prove the major theorem, Theorem 9.10.

Proof of Theorem 9.10 Note that we can write

P{p̂ < p∗ − k1} = P{p̂ < p∗ − k1, q̂ > q∗ + k2}+P{p̂ < p∗ − k1, q̂ ≤ q∗ + k2}
≤ P{p̂ < p∗ − k1, q̂ > q∗ + k2}+P{p̂ < p∗−k1, q̂ < q∗ − k2}.

Now by Lemmas 9.15 and 9.16 we get

lim
k1→∞

lim sup
n→∞

P{p̂ < p∗ − k1} = 0. (9.31)

Similarly, by Lemmas 9.17 and 9.18 we get

lim
k1→∞

lim sup
n→∞

P{p̂ > p∗ + k1} = 0. (9.32)

Now by (9.31) and (9.32) we get

|p̂− p∗| = Op(1).

By similar arguments we can prove that

|q̂ − q∗| = Op(1).

This completes the proof of Theorem 9.10. �

9.4.4 Asymptotic Nonnull Distribution of Qn

In this subsection, we present the derivation of the nonnull distribution of
Qn. We first define the following, in order to prove the theorem that presents
the asymptotic nonnull distribution of Qn. Let {Yi, i > 0} be a sequence of
independent and identically distributed (iid) random variables with density
function f(x; θ0) and let {Yi, i < 0} be a sequence of iid random variables with
density function f(x; θ∗). Also let {Zi, i > 0} be a sequence of iid random
variables with density function f(x; θ∗) and {Zi, i < 0} be iid random vari-
ables with density function f(x; θ0). Further assume that the four sequences
{Yi, i > 0}, {Yi, i < 0}, {Zi, i > 0}, and {Zi, i < 0} are independent of one
another. We now define Zp,q as the following.
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If k1 ≥ 0, k2 > 0,

Zp,q = [H ′(τ2) −H ′(τ1)]

{
k1∑

i=1

(T (Yi) − τ1) −
k2∑

i=1

(T (Zi) − τ2)

}
+ k1{H(τ2) −H(τ1) + H ′(τ2)(τ1 − τ2)}
+ k2{H(τ1) −H(τ2) + H ′(τ1)(τ2 − τ1)},

if k1 < 0, k2 ≥ 0,

Zp,q = [H ′(τ2) −H ′(τ1)]

{ −1∑
i=−k1

(T (Yi) − τ2) −
k2∑
i=1

(T (Zi) − τ2)

}

+ (k2 − k1){H(τ1) −H(τ2) +H ′(τ1)(τ2 − τ1)},

if k1 ≤ 0, k2 < 0,

Zp,q = [H ′(τ2) −H ′(τ1)]

{ −1∑
i=−k1

(T (Yi) − τ2) −
−1∑

i=−k2

(T (Zi) − τ1)

}

− k1{H(τ1) −H(τ2) +H ′(τ2)(τ1 − τ2)}
− k2{H(τ2) −H(τ1) +H ′(τ1)(τ2 − τ1)},

if k1 > 0, k2 ≤ 0,

Zp,q = [H ′(τ2) −H ′(τ1)]

{
k1∑

i=1

(T (Yi) − τ1) −
−1∑

i=−k1

(T (Zi) − τ2)

}

+ (k1 − k2){H(τ2) −H(τ1) +H ′(τ2)(τ1 − τ2)},

and if k1 = 0, k2 = 0,

Zp,q = 0.

We present the following theorem that will serve as a foundation for the
derivation of the nonnull distribution of Qn.

Theorem 9.19 Assume that conditions C1–C5 hold. Then under HA, for
every N1, N2 ∈ N,{

Vp∗−p,q∗−q :
p = 0,±1, . . . ,±N1,

q = 0,±1, . . . ,±N2,
1 ≤ p < q ≤ n

}
D→

{
Zp,q :

p = 0,±1, . . . ,±N1,

q = 0,±1, . . . ,±N2,
1 ≤ p < q ≤ n

}
.



248 9 Other Change Point Models

Proof. We consider the following cases.

Case 1. p∗ − p ≥ 0, q∗ − q ≥ 0.
Let N1, N2 be two positive integers. Suppose that 1 ≤ p∗ − p ≤ N1 and
0 ≤ q∗ − q ≤ N2; then we have that 0 < p ≤ p∗ < q ≤ q∗ < n. Now consider

Vp,q − μp,q = (q − p)H(Bp,q) + (n− q + p)H(B∗p,q) − (q∗ − p∗)H(Bp∗q∗)

− (n− q∗ + p∗)H(B∗p∗q∗) − (q − p)H(ν1) + (n− q + p)H(ν2)

− (q∗ − p∗)H(τ2) − (n− q∗ + p∗)H(τ1).

Next we use a Taylor series expansion of H(Bp,q) around ν1, H(B∗p,q) around
ν2, H(Bp,q) around τ2, and H(B∗p∗q∗) around τ1 to get, for each N1, N2 ∈ N,

max
p∗−N1≤p≤p∗,q∗−N2≤q≤q∗

|Vp,q−μp,q−Vpq,1−Vpq,2−Vpq,3−Vpq,4|=Op(n−(1/2)),

(9.33)
where

Vpq,1 = H ′(ν1)
q∑

i=p+1

(T (xi) − ν1) −H ′(τ2)
q∗∑

i=p∗+1

(T (xi) − τ2)

Vpq,2 =
H ′′(ν1)
2(q − p)

⎡⎣ q∑
i=p+1

(T (xi) − ν1)

⎤⎦2

− H ′′(τ2)
2(q∗ − p∗)

⎡⎣ q∗∑
i=p∗+1

(T (xi) − τ2)

⎤⎦2

Vpq,3 = H ′(ν2)

⎡⎣ p∑
i=1

(T (xi) − ν2) +
n∑

i=q+1

(T (xi) − ν2)

⎤⎦2

−H ′(τ1)

⎡⎣ p∗∑
i=1

(T (xi) − τ1) +
n∑

i=q∗+1

(T (xi) − τ1)

⎤⎦2

Vpq,4 =
H ′′(ν2)

2(n− q + p)

⎡⎣ p∑
i=1

(T (xi) − ν2) +
n∑

i=q+1

(T (xi) − ν2)

⎤⎦2

− H ′′(τ1)
2(n− q∗ + p∗)

⎡⎣ p∗∑
i=1

(T (xi) − τ1) +
n∑

i=q∗+1

(T (xi) − τ1)

⎤⎦2

.

But from the central limit theorem (CLT) we get,

max
p∗−N1≤p≤p∗,q∗−N2≤q≤q∗

|Vpq,2 + Vpq,4| = op(1). (9.34)
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Next note that

Vpq,1 = H ′(ν1)

⎧⎨⎩
q∑

i=p+1

T (xi) − (p∗ − p)τ1 − (q − p∗)τ2

⎫⎬⎭
−H ′(τ2)

⎧⎨⎩
q∗∑

i=p∗+1

T (xi) − (q∗ − p∗)τ2

⎫⎬⎭
= {H ′(ν1) −H ′(τ2)}

q∑
i=p∗+1

(T (xi) − τ2) +H ′(ν1)
p∗∑

i=p+1

(T (xi) − τ1)

−H ′(τ2)
q∗∑

i=q+1

(T (xi) − τ2),

and

Vpq,3 = H ′(ν2)

⎧⎨⎩
p∑

i=1

T (xi) +
n∑

i=q+1

T (xi) − (q∗ − q)τ2 − (n− q∗ + p)τ1

⎫⎬⎭
−H ′(τ1)

⎧⎨⎩
p∗∑
i=1

T (xi) +
n∑

i=q∗+1

T (xi) − (n− q∗ + p∗)τ1

⎫⎬⎭
= {H ′(ν2) −H ′(τ1)}

⎡⎣ p∑
i=1

(T (xi) − τ1) +
n∑

i=q+1

(T (xi) − ν2)

⎤⎦
−H ′(τ1)

p∗∑
i=p+1

(T (xi) − τ1) +H ′(ν2)
q∗∑

i=q+1

(T (xi) − τ2).

Thus by the CLT, for all p∗ −N1 ≤ p < p∗ < q∗ −N2 ≤ q ≤ q∗ we have∣∣∣∣∣∣Vpq,3 + Vpq,1 −
⎧⎨⎩H ′(τ2)

p∗∑
i=p+1

(T (xi) − τ1) −H ′(τ2)
q∗∑

i=q+1

(T (xi) − τ2)

−H ′(τ1)
p∗∑

i=p+1

(T (xi) − τ1) +H ′(τ1)
q∗∑

i=q+1

(T (xi) − τ2)

⎫⎬⎭
∣∣∣∣∣∣ = op(1),
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which gives us∣∣∣∣∣∣Vpq,3 + Vpq,1 − {H ′(τ2) −H ′(τ1)}
⎧⎨⎩

p∗∑
i=p+1

(T (xi) − τ1)

−
q∗∑

i=q+1

(T (xi) − τ2)

⎫⎬⎭
∣∣∣∣∣∣ = op(1). (9.35)

Also note that we can rewrite μp,q defined by (9.16) as

μp,q = (q − p)H(ν1) + (n− q + p)H(ν2) − (q∗ − p∗)H(τ2)

− (n− q∗ + p∗)H(τ1)

= {(q − p) − (q∗ − p∗)}H(τ2) − {(q − p) − (q∗ − p∗)}H(τ1)

+ (p∗ − p)H ′(τ2)(τ1 − τ2) +
1
2

(p∗ − p)2

q − p
H ′′(τ2∗)(τ1 − τ2)

2

+ (q∗ − q)H ′(τ1)(τ2 − τ1) +
1
2

(q∗ − q)2

n− q + p
H ′′(τ1∗)(τ2 − τ1)

2
.

But because H ′′ is continuous, we can find c′ and c such that∣∣∣∣∣12 (p∗ − p)2

q − p
H ′′(τ2∗)(τ1 − τ2)

2

∣∣∣∣∣ ≤ c′
(p∗ − p)2

q − p
= o(1)

∣∣∣∣∣12 (q∗ − q)2

n− q + p
H ′′(τ1∗)(τ2 − τ1)

2

∣∣∣∣∣ ≤ c
(q∗ − q)2

n− q + p
= o(1)

for p∗ −N1 ≤ p < p∗ and q∗ −N2 < q < q∗. So we have

max
p∗−N1≤p≤p∗,q∗−N2≤q≤q∗

|μp,q − (q ∗ −q){H(τ1) −H(τ2) +H ′(τ1)(τ2 − τ1)}

− (p∗ − p){H(τ2) −H(τ1) +H ′(τ2)(τ1 − τ2)}| = o(1). (9.36)

Finally by putting (9.34), (9.35), and (9.36) together we get

max
p∗−N1≤p≤p∗,q∗−N2≤q≤q∗

∣∣∣∣∣∣Vp,q − (q ∗ −q){H(τ1) −H(τ2) +H ′(τ1)(τ2 − τ1)}

− (p ∗ −p){H(τ2) −H(τ1) +H ′(τ2)(τ1 − τ2)} − {H ′(τ2) −H ′(τ1)}
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×
⎧⎨⎩

p∗∑
i=p+1

(T (xi) − τ1) −
q∗∑

i=q+1

(T (xi) − τ2)

⎫⎬⎭
∣∣∣∣∣∣

= op(1), (9.37)

and therefore we get the desired result.

Case 2. p∗ − p ≤ 0, q∗ − q ≥ 0.
Let N1, N2 be two positive integers and suppose that |p∗ − p| ≤ N1 and
|q∗ − q| ≤ N2; then we have that 1 ≤ p∗ ≤ p < q ≤ q∗ ≤ n. Then consider

Vp,q − μp,q = (q − p)H(Bp,q) + (n− q + p)H(B∗p,q) − (q∗ − p∗)H(Bp∗q∗)

− (n− q∗ − p∗)H(B∗p∗q∗) − (q − p)H(ν1) + (n− q + p)H(ζ1)

− (q∗ − p∗)H(τ2) − (n− q∗ − p∗)H(τ1),

where
ζ1 =

n− q∗ + p∗

n− q + p
τ1 +

q∗ − p∗ − q + p

n− q + p
τ2.

Next if we use the Taylor series expansion, we get

max
p∗≤p≤p∗+N1,q∗−N2≤q<q∗

|Vp,q−μp,q−V1−V2−V3−V4| = Op(n−(1/2)), (9.38)

where

V1 = H ′(τ2)
q∑

i=p+1

(T (xi) − τ2) −H ′(τ2)
q∗∑

i=p∗+1

(T (xi) − τ2)

V2 =
H ′′(τ2)
2(q − p)

⎡⎣ q∑
i=p+1

(T (xi) − τ2)

⎤⎦2

− H ′′(τ2)
2(q∗ − p∗)

⎡⎣ q∗∑
i=p∗+1

(T (xi) − τ2)

⎤⎦2

V3 = H ′(ζ1)

⎡⎣ p∑
i=1

(T (xi) − ζ1) +
n∑

i=q+1

(T (xi) − ζ1)

⎤⎦
−H ′(τ1)

⎡⎣ p∗∑
i=1

(T (xi) − τ1) +
n∑

i=q∗+1

(T (xi) − τ1)

⎤⎦

V4 =
H ′′(ζ1)

2(n− q + p)

⎡⎣ p∑
i=1

(T (xi) − ζ1) +
n∑

i=q+1

(T (xi) − ζ1)

⎤⎦2

− H ′′(τ2)
2(n− q∗ + p∗)

⎡⎣ p∗∑
i=1

(T (xi) − τ1) +
n∑

i=q∗+1

(T (xi) − τ1)

⎤⎦2

.
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Now by the CLT we get,

max
p∗≤p≤p∗+N1,q∗−N2≤q<q∗

|V2 + V4| = op(1). (9.39)

Next consider

V1 + V3 = [H ′(ζ1) −H ′(τ1)]

⎡⎣ p∗∑
i=1

(T (xi) − τ1)

+
n∑

i=q∗+1

(T (xi) − τ1)

⎤⎦+ [H ′(ζ1) −H ′(τ1)]

×
⎡⎣ p∑

i=p∗+1

(T (xi) − τ2) +
q∗∑

i=q+1

(T (xi) − τ2)

⎤⎦ . (9.40)

So we have

max
p∗≤p≤p∗+N1,q∗−N2≤q<q∗

∣∣∣∣∣∣V1 + V3 − [H ′(τ1) −H ′(τ2)]

×
⎡⎣ p∑

i=p∗+1

(T (xi) − τ2) +
q∗∑

i=q+1

(T (xi) − τ2)

⎤⎦∣∣∣∣∣∣ = op(1). (9.41)

Rewrite μp,q defined by (9.13) to get

μp,q = (q − p)H(τ2) + (n− q + p)H(ζ1)

+ (q∗ − p∗)H(τ2) − (n− q∗ + p∗)H(τ1)

= {(q − p) − (q∗ − p∗)}H(τ2)

+ (n− q + p)

{
H(τ1) +

q∗ − q + p∗ − p

n− q + p
H ′(τ1)

× (τ2 − τ1) +
1
2

(
q∗ − q + p∗ − p

n− q + p

)2

× H ′′(τ∗1 )(τ2 − τ1)

}
− (n− q∗ + p∗)H(τ1)

= {(q∗ − q) − (p∗ − p)}{H(τ1) −H(τ2) +H ′(τ1)(τ2 − τ1)} + o(1).
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This indicates that

max
p∗≤p≤p∗+N1,q∗−N2≤q<q∗

|μp,q − {(q∗ − q) − (p∗ − p)}{H(τ1)

−H(τ2) +H ′(τ1)(τ2 − τ1)}| = o(1). (9.42)

Then by combining (9.38)–(9.42) we get the result.

Case 3. p∗ − p ≤ 0, q∗ − q ≤ 0.
Suppose that |p∗ − p| ≤ N1 and |q∗ − q| ≤ N2; then we have that 1 ≤ p∗ ≤
p < q∗ ≤ q ≤ n. Then consider

Vp,q − μp,q = (q − p)H(Bp,q) + (n− q + p)H(B∗p,q) − (q∗ − p∗)H(Bp∗q∗)

− (n− q∗ − p∗)H(B∗p∗q∗) − (q − p)H(η1) + (n− q + p)H(η2)

− (q∗ − p∗)H(τ2) − (n− q∗ − p∗)H(τ1),

where

η1 =
q∗ − p

q − p
τ2 +

q − q∗

q − p
τ1 and η2 =

p− p∗

n− q + p
τ2 +

n− q + p∗

n− q + p
τ1.

Similarly as in (9.37) and (9.38) we get

max
p∗≤p<p∗+N1,q∗≤q<q∗+N2

|Vp,q − μp,q|

= H ′(η1)

⎧⎨⎩
q∗∑

i=p+1

(T (xi) − τ2) +
q∑

i=q∗+1

(T (xi) − τ1)

⎫⎬⎭
+H ′(η2)

⎧⎨⎩
p∗∑

i=1

(T (xi) − τ1) +
n∑

i=q+1

(T (xi) − τ1) +
p∑

i=p∗+1

(T (xi) − τ2)

⎫⎬⎭
−H ′(τ2)

⎧⎨⎩
p∑

i=p∗+1

(T (xi) − τ2) +
q∗∑

i=p+1

(T (xi) − τ2)

⎫⎬⎭
−H ′(τ1)

⎧⎨⎩
p∗∑

i=1

(T (xi) − τ1) +
n∑

i=q+1

(T (xi) − τ2)

⎫⎬⎭+ op(1)

= {H ′(τ1) −H ′(τ2)}
⎧⎨⎩

p∑
i=p∗+1

(T (xi) − τ2) +
q∑

i=q∗+1

(T (xi) − τ1)

⎫⎬⎭+ op(1).

(9.43)
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Thus we have

max
p∗≤p<p∗+N1,q∗≤q<q∗+N2

∣∣∣∣∣∣Vp,q − μp,q − {H ′(τ2) −H ′(τ1)}

×
⎧⎨⎩

p∑
i=p∗+1

(T (xi) − τ2) +
q∑

i=q∗+1

(T (xi) − τ1)

⎫⎬⎭
∣∣∣∣∣∣ = op(1). (9.44)

Also notice that we can write

μp,q = (q − p)
{
H(τ2) +H ′(τ2)(η1 − τ2) +

1
2
H ′′(τ2∗)(η1 − τ2)

2

}
+ (n− q + p)

{
H(τ1) + +H ′(τ1)(η2 − τ1) +

1
2
H ′′(τ1∗)(η2 − τ1)

2

}
− (q∗ − p∗)H(τ2) − (n− q∗ + p∗)H(τ1) + op(1)

= (q − q∗){H(τ2) −H(τ1) +H ′(τ2)(τ1 − τ2)}
+ (p− p∗){H(τ1) −H(τ2) +H ′(τ1)(τ2 − τ1)} + o(1). (9.45)

Now by combining (9.42)–(9.45) we get the result.

Case 4. p∗ − p ≥ 0, q∗ − q ≤ 0.
Suppose that |p∗ − p| ≤ N1 and |q∗ − q| ≤ N2; then we have that 1 ≤ p ≤
p∗ < q∗ ≤ q ≤ n. And now by symmetry to Case (2) we get the result. �

Lemma 9.20 If conditions of Theorem 9.10 hold, then

n−(1/2){lnΛp∗q∗ − μ∗} D−→ N(0, σ1
2),

where

σ2
1 = (λ2 − λ1){H ′(τ1) −H ′[(λ2 − λ1)τ2 + (1 − λ2 + λ1)τ1]}2

A′′(θ0)

+ (1 − λ2 + λ1)
{
H ′(τ1)

−H ′[(λ2 − λ1)τ2 + (1 − λ2 + λ1)τ1]}2A′′(θ∗) (9.46)

and μ∗ is given in (9.15).
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Proof. Consider

lnΛp∗q∗ − μ∗

= (q∗ − p∗){H(Bp∗q∗) −H(τ2)}
+ (n− q∗ + p∗){H(B∗p∗q∗) −H(τ1)}

− n

{
H(Bn) −H

(
q∗ − p∗

n
τ2 +

n− q∗ + p∗

n
τ1

)}

=
{
H ′(τ2) −H ′

(
q∗ − p∗

n
τ2 +

n− q∗ + p∗

n
τ1

)}⎧⎨⎩
q∗∑

i=p∗+1

(T (xi) − τ2)

⎫⎬⎭
+
{
H ′(τ1) −H ′

(
q∗ − p∗

n
τ2 +

n− q∗ + p∗

n
τ1

)}

×
⎧⎨⎩

p∗∑
i=1

(T (xi) − τ1) +
n∑

i=q∗+1

(T (xi) − τ1)

⎫⎬⎭+Op(1).

Now by the CLT we get the result. �

Theorem 9.21 If the conditions of Theorem 9.10 hold, then

(p̂− p∗, q̂ − q∗) D−→ (ζp, ζq),

where

(ζp, ζq) = inf

{
(p, q) : Zp,q = sup

−∞<ip<iq<∞
Zip,iq

}
.

Proof. By combining Theorems 9.10 and 9.21 with (9.18) we get the
result. �

Theorem 9.22 If the conditions of Theorem 9.10 hold, then

n−(1/2){Q)n − 2μ∗} D−→ N(0, 4σ1
2).

Proof. By combining Theorems 9.10 and 9.23 and Lemma 9.22 we get the
result. �

As the exponential family contains a rich collection of distributions such
as the normal and exponential distributions, the results presented here
in Section 9.4 are very useful for studying epidemic change point models
characterized by a distribution that belongs to the exponential family.
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Csörgö, 178
Curnow, 199

D
Darling, 16, 41, 72, 126
Davis, 14, 35, 52
Dennis Jr., 46
Diaz, 166, 169, 170
Durbin, 139

E
Erdös, 16, 41, 72, 126
Evans, 139

F
Folianos, 220
Fu, 199

G
Galea, 4
Gardner, 9
Geer, 173
Ghosh, 190–194, 197
Giri, 136
Goldenshluyer, 4
Gombay, 234
Guan, 4
Gupta, 4, 9, 22, 35, 46–48, 55,

57, 79, 99, 173, 215, 217,
220–224, 226, 233, 234

Gurevich, 4

H
Haccou, 173, 180, 185
Hall, 4
Hanify, 213
Hannan, 47
Hawkins, 3, 4, 10, 139
Henderson, 190
Hinkley, 172, 199
Hodgson, 84
Hogg, 180
Holbert, 143, 147, 148, 152
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