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Preface

In this book, I highlight the developments in Kalman filtering subject to general
linear constraints. Essentially, the material to be presented is almost entirely
based on the results and examples originally developed in Pizzinga et al. (2008a),
Cerqueira et al. (2009), Pizzinga (2009, 2010), Souza et al. (2011), Pizzinga et al.
(2011), and Pizzinga (2012). There are fundamentally three kinds of topics: (a)
new proofs for already established results within the restricted Kalman filtering
literature; (b) additional results that are should shed light on theoretical and
methodological frameworks for linear state space modeling under linear restrictions;
and (c) applications in investment analysis and in macroeconomics, where the
proposed methods are illustrated and evaluated. At the end, I briefly discuss some
extensions in the subject, which, again, step into theory, methods, and applications.

It is important to mention that my doctoral thesis, of which this book is a major
revision, would not have been completed without the financial support from CNPq
and FAPERJ. I would like to thank my friends and colleagues who have been
important in my professional and personal life. I’d rather not list each one of them
here, because they know who they are – and I refuse to run the risk of failing to
mention someone.

I am especially indebted to certain professors who have greatly influenced and
furthered my education and professional success. Some of them have become
good friends over the years. In alphabetical order, I am grateful to Adherbal
Filho, Antonio Dias, Ali Messaoudi, Carlos Kubrusly, Claudio Landim, Cristiano
Fernandes, Edson Relvas, Eduardo Campos, Fernando Albuquerque, Frederico
Cavalcanti, Hedibert Lopes, Inez Costa Chaves, Kaizo Beltrao, Leonardo Rolla,
Luiz Carlos da Rocha, Marcelo Medeiros, Nei Carlos Rocha, Sergio Volchan,
Waldir Lobao, and Zelia Bianchini.

Very special thanks go to my friends and colleagues from the Institute of
Mathematics and Statistics of Fluminense Federal University. These folks gave me
such a warm welcome: : : Honestly, when I am at work, I feel as if I am home.

Finally, I am grateful to my parents, Rose Nanie Heringer da Silva and Rodolfo
Domenico Pizzinga, for their support. Furthermore, I must dedicate this book to my
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mother, to whom I am eternally indebted for her remarkable help and understanding
throughout my life – and also for her invaluable support on proofreading my
scientific texts, including this book.

Rio de Janeiro, Brazil Adrian Pizzinga
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Chapter 1
Introduction

1.1 Motivation

In some relevant practical situations in areas such as economics, finance, actuarial
science, and engineering, some state space models (Harvey 1989; Brockwell and
Davis 1991; and Durbin and Koopman 2001) would make more sense if they were
estimated under some meaningful restrictions on the state vector.

Some examples:

• One may consider state space models to conduct time-varying econometric
models where well-established economic restrictions on the coefficients should
be at least attested.

• Statistical models generated from physical considerations sometimes make sense
only if considered under symmetry constraints on their parameters, whenever
they are fixed or stochastically varying (cf. Pizzinga et al. 2005).

• In the claims reserving problem, some dynamic models for runoff data
(cf. de Jong and Zehnwirth 1983) may have columns or nonnegativity restrictions
in the development/delay effect.

• Dynamic factor models for portfolio on-line recovery should be at least subject
to accounting restrictions (e.g., the portfolio allocations must add up to one for
every time period; cf. Pizzinga and Fernandes 2006).

And whenever one attempts to perform such constrained state estimation, some
questions naturally arise. How should this constrained estimation be implemented?
When should this estimation be done? Which statistical properties do these methods
of estimation share? Which theoretical or computational complications could
emerge? Can all possible types of restrictions be handled? Can the imposed restric-
tions be checked for their plausibility under a specific method? And what could be
said about the initialization of the recursions from these restricted estimations?

This book focuses on methods concerning restricted Kalman filtering appropriate
to problems that require linear restrictions in the setting of linear state space models.

A. Pizzinga, Restricted Kalman Filtering: Theory, Methods, and Application,
SpringerBriefs in Statistics 12, DOI 10.1007/978-1-4614-4738-2 1,
© Springer Science+Business Media New York 2012
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2 1 Introduction

And the foregoing questions are addressed by a thorough analysis of theoretical
results and methods, as well as by illustrative applications.

In the sequel, every topic discussed is examined in detail. But, first, without
assuring complete coverage, let me review some literature on the subject.

1.2 A Glimpse at the Literature

Basically, the literature on linear state space models under restrictions has taken
two directions – one is more “statistical-like” and the other is more “engineering-
like.” Since cross-references between these two fields have been rare, there is some
overlap between contributions coming from both “worlds.”

1.2.1 Statistics Papers

From a statistics/econometric standpoint, Doran (1992) is a seminal paper on the
subject in which restricted Kalman filtering by augmentation was proved, under
intense use of matrix algebra, for update and smoothing equations. At the end of
his paper, Doran also made an attempt to further extend his approach to cases
of nonlinear restrictions, but at least first-order differentiable. Over the ensuing 5
years, Doran published two other papers. In Doran (1996), his previous approach
was used in a problem of estimating Australian provincial populations according
to the annual national population. And in Doran and Rambaldi (1997), the same
approach was once more evoked to solve the problem of estimating time-varying
econometric models (demand systems to be exact) also under time-varying and quite
interpretable restrictions; in that same paper, the authors also discussed the relevant
question concerning numerical optimization for the maximum-likelihood estimation
of unknown parameters. These three important papers – mainly the first one – have
been cited regularly in the literature, and Doran’s approach has been revisited as
well; see, for instance, the book by Durbin and Koopman (2001), Sect. 6.5.

Other works on the subject are the papers by Pandher (2002, 2007), who also
cited Doran in his bibliographic review. In those papers, Pandher was fully
concerned about forecasting multivariate time series under linear restrictions. His
approach is different from the one proposed by Doran, although some augmentation
strategy under a structural modeling framework can be noted again. In the first
of his two papers, Pandher gave some results on the statistical efficiency of state
prediction under restrictions and on the observability of the state vector under his
method. Lastly, Pandher recognized a previous and relevant work when he cited
Leybourne (1993), who had tackled univariate state space models under time-
invariant restrictions over a random-walk state vector.

Five recent papers in the statistics literature are Pizzinga et al. (2008a), Pizzinga
(2009, 2010), Koop et al. (2010), and Pizzinga (2012). In Pizzinga et al. (2008a),
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Doran’s augmenting approach was demonstrated under elementary Hilbert space
geometry without any Kalman equation, an approach that led to great generality
on the types of linear constraints and of state vector smoothing. Pizzinga (2009)
attempted to contribute to the theme by (a) giving another proof of Doran’s
approach, based entirely on quite elementary matrix operations; (b) establishing
the statistical efficiency of the constrained Kalman filtering and smoothing under
a purely geometrical perspective; and (c) suggesting an alternative approach to
dealing with time-invariant constraints over random-walk state vectors. In Pizzinga
(2010), the theme focused on four topics: the constrained Kalman filtering versus
the recursive restricted least squares estimator; a new proof of the constrained
Kalman filtering under a conditional expectation framework; linear constraints
under a reduced state space modeling; and state vector prediction under linear
constraints. Koop et al. (2010), instead, focused on Bayesian methods, where the
posterior probability that a linear restriction holds at a particular time instant, given
all the information available from the data set, is tackled. The authors also provided
ways of generalizing their approach to cases where the restrictions are nonlinear
or involve more than a time instant. Finally, Pizzinga (2012) investigated how the
use of an initial diffuse state vector affects the use of the Kalman smoother under
linear restrictions. It was established that it is still possible to obtain restricted
smoothed state vectors in the “diffuse” period under quite general conditions, and
this extension of the restricted Kalman smoother proved to preserve the conditional
statistical efficiency.

1.2.2 Engineering Papers

Now, let us take a closer look at engineering articles about constrained Kalman
filtering. First, there are the papers by Massicotte et al. (1995), who proposed a
method for imposing positivity constraints, and by Geeter et al. (1997), in which
a smoothly constrained Kalman filter for nonlinear constraints was developed.
Stepping further, Simon and Chia (2002) derived at least two different versions of
constrained Kalman filtering by alternative perspectives, all of them remaining on
the Lagrange multipliers approach. Their first version of Kalman filtering is, in fact,
quite similar to that originally obtained by Doran (1992) for the updating equations;
this is only one example of the aforementioned overlap found in the literature.
Simon and Chia presented five theorems that reveal good properties of their
developed constrained Kalman filtering; four of them are related to mean square
error efficiency. The methodological/theoretical part of that paper was closed by a
discussion on how nonlinear identities could be encompassed by their constrained
Kalman filtering. As a continuation, Simon and Simon (2004) tried to incorporate
inequality constraints in Kalman filtering. The authors accomplished the task using
quadratic programming, and it is interesting that the problem actually remains as a
special case of imposing equality constraints.
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More recently, Julier and Laviola (2007) concentrated almost entirely on non-
linear constraints. The authors developed a two-stage state estimation under fairly
general equality constraints. In that same year, Ko and Bitmead (2007) developed
an alternative and quite intriguing approach to dealing with time-invariant and
“homogeneous” linear constraints on a state vector. Their resulting constrained
Kalman filtering was duly compared, in terms of statistical efficiency, with the
unconstrained Kalman equations and with the best of all proposals from Simon and
Chia (2002); under some theoretical conditions, Ko and Bitmead have established
the superiority of their approach, which was illustrated by a specific numerical
example.

Finally, the two most recent works were both published in 2009. First, the paper
by Teixeira et al. (2009), whose contributions are as follows: (a) the recognition
that linear constraints can arise from a reduction in the rank of one of the system
matrices; (b) the derivation of a constrained Kalman filtering from the viewpoint
of a maximum-a-posteriori solution; (c) the connections between their constrained
Kalman filtering, the approach by Ko and Bitmead (2007), the approach by Simon
and Chia (2002), and the augmented model approach raised from Theorem 3.1; and
(d) a treatment of nonlinear constraints with generalizations of a well-established
method for dealing with a nonlinear state space model, namely, unscented Kalman
filtering (Julier and Uhlmann 2004). Second, the survey offered by Simon (2009) on
several ways of imposing constraints, whether linear or nonlinear, on the state vector
estimation. Simon discussed many of the approaches revisited in this subsection,
providing detailed descriptions and numerical examples of the methods considered
in his survey.

1.3 The Book’s Contents

The specific contributions of this book consist of gathering most of the theoretical
developments offered in Pizzinga et al. (2008a) and Pizzinga (2009, 2010, 2012).
Also, three applications, previously tackled by Cerqueira et al. (2009), Pizzinga
(2010), Souza et al. (2011), and Pizzinga et al. (2011), are presented and discussed
as well. To be more precise, the focus is on the investigation and development of the
following topics:

1. A more general and elegant proof of restricted Kalman filtering (updating and
smoothing equations) that uses Hilbert space geometry. This proof is compared
with those from Doran (1992).

2. An alternative proof based on Kalman recursions of restricted Kalman filtering.
Its importance lies in the idea of rewriting the augmented model in a useful
and equivalent way, which would be the building block for other methods and
results within restricted Kalman filtering.

3. Two proofs of the statistical efficiency from restricted Kalman filtering.
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4. An alternative approach to imposing time-invariant restrictions to the estima-
tion of random-walk state vectors.

5. A comparison between restricted Kalman filtering and the restricted recursive
least squares, and the establishment of the equivalence between both techniques
under a particular, albeit relevant, case.

6. Development and implementation of a new restricted Kalman filtering under
a reduced modeling approach. Such a method, originally proposed by Doran
and Rambaldi (1997), is directly compared with the usual restricted Kalman
filtering by augmentation.

7. A restricted Kalman predictor applicable to general situations that encompasses
the method by Pandher (2002) as a particular case.

8. An alternative, “parametric,” very short, and quite general proof of restricted
Kalman filtering under a conditional expectation framework, followed by
comparisons with previous demonstrations.

9. The proof that the initial exact Kalman smoother (cf. Durbin and Koopman
2001, Chap. 5) still yields restricted smoothed state vectors within the “diffuse”
period whenever applied to an appropriate augmented model.

10. A practical illustration in finance, in which a dynamic factor model under a
linear and interpretable restriction is used to understand the style of Brazilian
exchange rate funds.

11. An application in macroeconomics, in which dynamic models for exchange rate
pass-through are proposed and estimated using Brazilian price indexes.

12. A practical illustration in macroeconomics, in which a univariate benchmarking
model, recognized as a linear state space model under restrictions, is used to
predict Brazil’s Gross Domestic Product.

The foregoing topics could be classified into the following three groups:

• Topics 1–3, 5, 8, and 9 full under theory.
• Topics 4, 6, and 7 cover methods.
• Topics 10–12 offer three applications.

1.4 Organization

This book is organized as follows. Chapter 2 revisits the essentials of linear state
space models and Kalman filtering. Chapter 3 is totally dedicated to the theoretical
issues concerning the imposition of linear restrictions on the Kalman equations, in
which alternative proofs for already established results are given and, in addition,
some additional results are derived. Chapter 4 focuses on some methods that
can be potentially useful in situations of linear state space modeling under linear
restrictions on the state vector. Chapter 5 offers the aforementioned applications
in finance and macroeconomics, which illustrate the performance of some methods
discussed in Chap. 4. Finally, Chap. 6 closes the book by suggesting some additional
research topics.



Chapter 2
Linear State Space Models and Kalman
Filtering

2.1 The Model

A linear wide-sense state space model for an observablep-variate stochastic process
Yt , defined on an appropriate probability space .˝;F ;P/, is described by the
following set of equations:

Yt D Zt˛t C dt C "t ;

˛tC1 D Tt˛t C ct CRt�t :
(2.1)

The first equation is usually called the measurement equation, and the second is
known as the state equation. The unobservable m-variate process ˛t is termed
the state vector and is such that E.˛1/ D a1 and Var.˛1/ D P1. The error
terms "t and �t are respectively p-variate and r-variate second-order processes
that are uncorrelated in time and from each other, with var."t / D Ht and
var.�t / D Qt . The remaining system matrices Zt ; dt ;Ht ; Tt ; ct ; Rt , and Qt evolve
deterministically.

2.2 Kalman Equations

In this book, I will adopt the following notation:

• at jj is an (equivalence class of) random vector(s) with coordinates ati jj , i D
1; : : : ; m, representing the unique linear orthogonal projection (cf. Kubrusly
2001, Theorem 5.52), evaluated on each (equivalence class of) coordinate(s) ˛ti
of ˛t , onto S 0 � spanf1; Y11; : : : ; Y1p; : : : ; Yj1; : : : ; Yjpg � L2 � L2.˝;F ;P/;
the subjacent topology is that induced by the usual inner product, which is
given by

< X; Y >� E.XY / D
Z
˝

X.!/Y.!/P.d!/;8X; Y 2 L2I

A. Pizzinga, Restricted Kalman Filtering: Theory, Methods, and Application,
SpringerBriefs in Statistics 12, DOI 10.1007/978-1-4614-4738-2 2,
© Springer Science+Business Media New York 2012
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8 2 Linear State Space Models and Kalman Filtering

• Pt jj � E
�
.˛t � at jj /.˛t � at jj /0

�
;

• �t � Yt � Ztat jt�1 � dt (this is the innovation vector) and Ft � E.�t�
0

t / D
ZtPt jt�1Z

0

t CHt .

Kalman filtering (prediction, updating, and smoothing) gives the preceding orthog-
onal projection evaluations and the corresponding mean square error matrices. The
corresponding equations are given as follows:

• Prediction equations:

atC1jt D Ttat jt C ct ;

PtC1jt D TtPt jt T
0

t CRtQtR
0

t :
(2.2)

• Updating or filtering equations:

at jt D at jt�1 C Pt jt�1Z
0

t F
�1
t �t ;

Pt jt D Pt jt�1 � Pt jt�1Z
0

t F
�1
t ZtPt jt�1:

(2.3)

• Smoothing equations (for a given n � t):

at jn D at jt�1 C Pt jt�1rt�1;

rt�1 D Z
0

t F
�1
t �t C .Tt � TtPt jt�1Z

0

t F
�1
t Zt /

0rt ;

Pt jn D Pt jt�1 � Pt jt�1Nt�1Pt jt�1;

Nt�1 D Z
0

t F
�1
t Zt C .Tt � TtPt jt�1Z0

t F
�1
t Zt /

0Nt.Tt � TtPt jt�1Z0

t F
�1
t Zt /;

rn D 0 and Nn D 0: (2.4)

Details concerning the derivations of these formulae are found in Harvey (1989),
de Jong (1989), Brockwell and Davis (1991), Harvey (1993), Hamilton (1994),
Tanizaki (1996), Durbin and Koopman (2001), Brockwell and Davis (2003), and
Shumway and Stoffer (2006).

2.3 Introducing Linear Restrictions

Henceforth it is assumed that the process ˛t in (2.1) satisfies linear restrictions as
follows:

Assumption 2.1. The random vectors ˛t satisfy the following (possibly time-
varying) linear restrictions:

At˛t D qt ; (2.5)

where, for each t , At is a k �m matrix and qt is a k � 1 (possibly random) vector.
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Observe that the restrictions enunciated in Eq. (2.5) are rather general. In fact, it
encapsulates affine restrictions of the kind At˛t C bt D qt by defining q0

t D qt � bt
and allows the number of restrictions k to be time-varying. In practical situations,
justification of such constraints in (2.5) arises naturally from the characteristics of
the problem being modeled; see, for instance, the restrictions imposed on a demand
system problem in Doran and Rambaldi (1997).

In the remainder of the book, Assumption 2.1 will be considered in almost every
topic to be discussed and, in due course, may be added with some further structure.



Chapter 3
Restricted Kalman Filtering: Theoretical Issues

This entire chapter will be devoted to a discussion of several topics concerning
the theory of imposing linear restrictions enunciated under a quite general form in
(2.5) from Assumption 2.1. In Sect. 3.1, I will present and compare three different
derivations of the restricted Kalman updating and smoothing equations under an
augmented modeling approach. In Sect. 3.2, the statistical efficiency due to the
imposition of restrictions is proved, and this shall be done using a geometrical
framework. Moving forward, I try in Sect. 3.3 to establish the equivalence between
restricted Kalman filtering and something that could be termed a recursive restricted
least squares estimator. Finally, in Sect. 3.4, I investigate how initial diffuse state
vectors affect the use of the Kalman smoother under linear restrictions.

3.1 Augmented Restricted Kalman Filtering: Alternative
Proofs

3.1.1 Geometrical Proof

When estimating state space models under linear restrictions as given in Eq. (2.5),
the natural task is to impose these very restrictions on the state estimators given by
the Kalman equations to obtain a more meaningful result. The following theorem
guarantees that such a task is possible for the updating and smoothing equations
whenever one adopts an augmented measurement equation:

Theorem 3.1. If the measurement vectors Yt are replaced by Y �
t D .Y 0

t ; q
0
t /

0,
the matrices Zt are replaced by Z�

t D ŒZ0
t A

0
t �

0, the vectors dt are replaced
by d�

t D .d 0
t ; 0

0/0, and the measurement equation error vectors "t are replaced
by "�

t D ."0
t ; 0

0/0, then the Kalman updating and smoothing equations applied
to the new linear state space models satisfy the same linear restrictions given in
(2.5), that is,
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12 3 Restricted Kalman Filtering: Theoretical Issues

Atat jt D qt ; (3.1)

Atat jn D qt : (3.2)

First proof of Theorem 3.1. Denote the subspace generated by the augmented
measurements up to time j , where j 2 ft; t C 1; : : : ; ng, by

S 00 D spanf1; Y11; : : : ; Y1p; q11; : : : ; q1k; : : : ; Yj1; : : : ; Yjp; qj1; : : : ; qjkg;

the unique linear orthogonal projection onto S 00 by �S 00 , and the i th row from At
by Ati D Œcti1 : : : ctim�. Then, making use of the linearity of �S 00 and of the linear
restrictions established in Assumption 2.1, it follows that

Atiat jj D cti1at1jj C � � � C ctimatmjj D cti1�S 00.˛t1/C � � � C ctim�S 00.˛tm/

D �S 00.cti1˛t1 C � � � C ctim˛tm/ D �S 00.Ati˛t / D �S 00.qti /

D qti ;

where the last equality comes from the fact that qti belongs toR.�S 00/ D S 00. Since i
is arbitrary, the theorem is proved. �

Theorem 3.1 was originally due to Doran (1992, pp. 570 and 571), but the proof
presented above, which was given in Pizzinga et al. (2008a), also reveals some gains:

1. It does not presume that Ft is invertible for all t .
2. It unifies in a single argument both updating and (any type of ) smoothing

equations.
3. It does not make any explicit use of Kalman updating or smoothing equations.
4. It is a shorter and, consequently, more elegant proof.

Item 1 above states a methodological contribution of this proof, namely, the
guarantee that the augmented measurement procedure is able to deal with any
type of linear restriction. Many examples of restrictions that would decrease the
rank of Ft are of a deterministic nature, whether they originate from economic
theories or not (to be even more specific: consider for instance the portfolio
accounting restriction in time-varying extensions of the asset class factor models
due to Sharpe 1992). A second contribution, related to item 2, is that any set of state
smoothing (e.g., the traditional fixed-interval, fixed-point, and fixed-lag estimators;
cf. Anderson and Moore 1979) must yield restricted estimated state vectors.

The following consequence of Theorem 3.1 has already proved to be useful,
once it had been conveniently used by Doran (1996) in a state space estimation
of population totals.

Corollary 3.2. (“Perfect measurements”) If some univariate equations of the
measurement vector Yt have errors with zero variance, then

Zt2at jt D Yt2 and Zt2at jn D Yt2; (3.3)
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where Zt2 is the block from Zt that corresponds to the block Yt2 from Yt whose
coordinates have null variance errors.

Proof. It is enough to see that Yt can be written as ŒY 0
t1 Y

0
t2�

0 and that Zt , in turn,
can be written as ŒZ0

t1 Z
0
t2�

0. Establishing that At D Zt2 and qt D Yt2, Theorem 3.1
guarantees the desired result. �

3.1.2 Computational Proof

In this subsection, I will consider the following structure in addition to the
restrictions in (2.5):

Assumption 3.3. The linear restrictions in (2.5) are such that the coordinates of
qt are linearly independent in L2 and from 1; Y11; : : : ; Y1p; : : : ; Yt1; : : : ; Ytp. Also,
suppose that Ft > 0 for all t .

For the Kalman updating and smoothing equations, it is in fact an attainable
task, as stated by Theorem 3.1, to carry out Kalman filtering estimations under the
preceding linear restrictions. Here, this is now proved by explicitly using updating
and smoothing equations, though under strategies somewhat different from those
tackled by Doran (1992).

Second proof of Theorem 3.1. Uncouple the augmented model by recognizing
that, for all t , qt is a “new” measurement vector that is observed “after” Yt and
“before” YtC1. This recognition leads to a new linear state space representation
entirely equivalent to the augmented model. The measurement equation for this
representation is defined by

Yt;j D Zt;j ˛t;j C dt;j C "t;j ; "t;j � WN.0;Ht;j /: (3.4)

When j D 1, nothing is changed from the measurement equation from (2.1) of
Sect. 2.1. But for j D 2 we must have

Yt;2 D qt ; Zt;2 D At ; dt;2 D 0 andHt;2 D 0: (3.5)

Regarding the state equation, notice that, for all t , ˛t;2 D ˛t;1 and ˛tC1;1 D Tt˛t;2 C
ct C Rt�t , �t � .0;Qt/. Within this equivalent framework, it becomes possible to
treat the imposition of the linear restriction in time t as a new update of the state
vector. Consider the state updating equation given in (2.3), already applied to the
preceding equivalent model for t fixed and j D 2:

at;2jt;2 D at jt�1;2 C Pt jt�1;2Z0
t;2F

�1
t;2 .Yt;2 �Zt;2at jt�1;2/

D at jt�1;2 C Pt jt�1;2Z0
t;2.Zt;2Pt jt�1;2Z0

t;2 CHt;2/
�1.Yt;2 �Zt;2at jt�1;2/
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D at jt�1;2 C Pt jt�1;2A0
t .AtPt jt�1;2A0

t /
�1.qt � Atat jt�1;2/;

where the second equality comes from the very expression of Ft (cf. the established
notation in Sect. 2.2) and the third comes from (3.5). Now, since .AtPt jt�1;2A0

t /
�1

is a genuine inverse (cf. Assumption 3.3) and at;2jt;2 D at jt , this last updated state
vector being the one associated with the augmented model, premultiply both sides
of the last identity by At to obtain (3.1).

Now rephrase the state smoothing equations in (2.4) for the augmented model as
follows:

at jn D at jt�1 C Pt jt�1rt�1;

r t�1 D Z�0

t F
�1
t �t C

�
Tt � TtPt jt�1Z�0

t F
�1
t Z�

t

�0
rt ; where Z�

t D
�
Zt
At

�
:

Of course, other quantities would also have deserved asterisks, but they are
suppressed for ease of notation. Placing the expression of rt in at jn, it follows that

at jn D at jt�1 C Pt jt�1.Z�0

t F
�1
t �t C .Tt � TtPt jt�1Z�0

t F
�1
t Z�

t /
0rt /

D at jt�1 C Pt jt�1Z�0

t F
�1
t �t C Pt jt�1.Tt � TtPt jt�1Z�0

t F
�1
t Z�

t /
0rt

D at jt C .Pt jt�1T
0

t � Pt jt�1Z�0

t F
�1
t Z�

t Pt jt�1T
0

t /rt ;

where the last equality follows from the Kalman updating equation in (2.3).
Premultiplying both sides by At , it follows that

Atat jn D Atat jt C .AtPt jt�1T
0

t �AtPt jt�1Z�0

t F
�1
t Z�

t Pt jt�1T
0

t /rt :

According to Doran (1992), Eq. (22) (from Assumption 3.3, Ft from the augmented

model is invertible), AtPt jt�1Z�0

t F
�1
t D

�
0
kxp

I
kxk

�
: Use this together with (3.1),

which was already proved, to obtain

Atat jn D qt C
�
AtPt jt�1T

0

t � Œ0 I �

�
Zt
At

�
Pt jt�1T

0

t

	
rt

D qt C
�
AtPt jt�1T

0

t � AtPt jt�1T
0

t

�
rt D qt ;

which gives identity (3.2) �

There is no methodological novelty here. In turn, the contribution offered comes
from this second proof, which was offered in Pizzinga (2009) and deserves some
qualification. Although it does not encompass significant generalizations like those
verified in the first proof and is considerably longer, this second proof makes use
of simple matrix operations, which illustrate potentially useful strategies that could
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be evoked in future research. Indeed, the same decomposition, which was used in
that part of the proof that was related to the updating equations, has been equally
important for the well-known treatment of multivariate state space models under
a univariate framework (cf. Durbin and Koopman 2001, Sect. 6.4). In addition,
linear state space models for benchmarking proposed by Durbin and Queenneville
(1997) and later revisited by Durbin and Koopman (2001), Sect. 3.8, are based on
such a rearrangement as well. On the other hand, the part related to the smoothing
equation is entirely based on de Jong (1989)’s smoothing recursions, which are
mathematically transparent and computationally efficient.

3.1.3 Conditional Expectation Proof

The main goal of this subsection is to give a third and final proof for augmented
restricted Kalman filtering. For this, I must add another structure (quite “traditional,”
we would say) to the linear state space model in (2.1).

Assumption 3.4. "t and �t are independent (in time, between each other, and of
˛1) Gaussian stochastic processes. Also, ˛1 is a Gaussian random vector.

In addition to considering this new “parametric” framework, denote by Fj the
�-field generated by the measurement vectors up to time j ; that is,Fj � � .Y1; : : : ;

Yj


. Also, set Oat jj � E

�
˛t jFj



and OPt jj � V

�
˛t jFj



. Under Assumption 3.4, the

Kalman recursions are versions of these conditional moments when j D t � 1,
j D t , and j D n; see Anderson and Moore (1979), Harvey (1989, 1993), Tanizaki
(1996), and Durbin and Koopman (2001). Consequently, Pizzinga (2010) made use
of some standard properties of the conditional expectation to obtain a very quick
proof of Theorem 3.1.

Third proof of Theorem 3.1. Let t be an arbitrary time instant. Define F�
j �

�
�
Y1; q1; : : : ; Yj ; qj



. Fixing j in ft; t C 1; : : : ; ng, it follows with probability 1

that

At Oat jj D AtE
�
˛t jF�

j

�
D E

�
At˛t jF�

j

�
D E

�
qt jF�

j

�
D qt ; (3.6)

where the third equality is due to the restrictions in (2.5) and the fourth equality
naturally comes from the very F�

j -measurability of qt . Finally set j D t and
j Dn. �

The most evident comparison between this third proof and the previous proofs
is concerned with length and elegance. In addition, it maintains the same generality
in terms of linear restrictions and state smoothing, which was guaranteed already
by the first proof given in Sect. 3.1.1. There are two reasons for this smaller
length: (a) �

�
Y1; : : : ; Yj


 D �
�
Y11; : : : ; Y1p; : : : ; Yj1; : : : ; Yjp



and (b) there is

no lack of algebraic structure by taking conditional expectations of vectors of
one particular dimension conditioned on �-fields generated by vectors of entirely
different dimensions.
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Now, regarding the potential usefulness of this third proof:

1. The additional normality and independence assumptions, although slightly
limiting the scope of Theorem 3.1, can be considered an asset because these
are straightforwardly generalizable to other types of state space models – the
non-Gaussian or nonlinear state space models. The only drawback is that most
statistical techniques designed to handle more general state space models require
the existence of an expression for the conditional laws p .yt j˛t /, which are
obscured by the “singularity” incurred in the augmenting procedure.

2. Finally, the third proof plainly reveals that the Bayesian approach for state
space modeling (cf. West and Harrison 1997; Durbin and Koopman 2001; and
Shumway and Stoffer 2006) can also deal with linear restrictions by adopting
augmented measurement equations as well. Yet, in one such case we will be
aware of some unavoidable singularities.

3.2 Statistical Efficiency

In this section, the statistical efficiency – in terms of mean square estimation error
– of the restricted Kalman filtering discussed so far is demonstrated. For this, I will
make use of a geometrical perspective, something that might be general enough,
while still grasping at intuition and simplicity. For what follows, it is important to
bear in mind that Kalman recursions, in addition to being recursive computational
formulae from an operational standpoint, give linear orthogonal projections evalua-
tions on some specific subspaces spanned by the model measurements.

Let me begin by recalling the following well-established and useful fact:

Lemma 3.5. Take a Hilbert space H, two subspaces M;N of H, and the linear
orthogonal projections �M and �N . If M � N , then, for each x 2 H,
�M .�N .x// D �M .x/.

Proof. N is, by itself, a Hilbert space (because it is closed) and M is a closed
subspace of N . Then, using the orthogonal projection theorem (cf. Theorem 5.20
of Kubrusly 2001), we obtain N D MC �M? \ N 


. Thus, from Proposition 5.58
of Kubrusly (2001) it follows that �N D �M C �M?\N ; tautologically, for each
x 2 H,

�N .x/ D �M .x/C �M?\N .x/ : (3.7)

Now, apply �M to both sides of (3.7). �

Some additional notation must also be set:

• at jj , Pt jj , and S 0 are defined as previously and relate to the standard state space
model.

• a�
t jj , P �

t jj , and S 00 are obtained with the augmented state space model associated
with Theorem 3.1.
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Now, everything needed for formally guaranteeing statistical efficiency has been
gathered. Two demonstrations were given in Pizzinga (2009), and both are revisited
here. These proofs rely on a strong geometrical appeal and have an inductive style, in
the sense that, firstly, individual coordinates of the state vector are tackled and then,
in a second moment, the strategy is generalized for arbitrary linear combinations of
these coordinates. But they do differ in some aspects. The first proof concentrates
on the optimality of the linear orthogonal projection that comes directly from first
principles, while the second proof is rather “constructive,” uses Lemma 3.5, and
focuses on a standard decomposition.

Theorem 3.6. P �
t jj 	 Pt jj in the usual ordering of symmetric matrices.

First proof of Theorem 3.6. Let i D 1; : : : ; m. Since the set containing the original
model measurements until time j is contained in the corresponding set from the
augmented model, it follows that

S 0 � S 00 � spanf1; Y11; : : : ; Y1p; q11; : : : ; q1k; : : : ; Yj1; : : : ; Yjp; qj1; : : : ; qjkg:

Therefore, from Theorem 5.53 of Kubrusly (2001),

E

��
˛ti � a�

t i jj
�2� D inf

Y2S 00

E
h
.˛ti � Y /2

i
	 E

h�
˛ti � ati jj


2i
:

Generalizing: take x D .x1; : : : ; xm/
0 2 Rm. Using linearity, the linear orthogonal

projections onto S 0 and onto S 00, both evaluated in x0˛t D x1˛t1 C � � � C xm˛tm, are
given by

x0at jj D x1at1jj C � � � C xmatmjj
and

x0a�
t jj D x1a

�
t1jj C � � � C xma

�
tmjj :

Observing that x0at jj 2 S 00 (because ati jj 2 S 0 � S 008i D 1; : : : ; m and S 00 is a
linear manifold), it follows that

x0P �
t jj x D x0E

h
.˛t � a�

t jj /.˛t � a�
t jj /

0
i
x D E

h
x0.˛t � a�

t jj /.˛t � a�
t jj /

0x
i

D E
h
.x0˛t � x0a�

t jj /.x
0˛t � x0a�

t jj /
0
i

D E

��
x0˛t � x0a�

t jj
�2�

D inf
Y2S 00

E
h�
x0˛t � Y


2i 	 E
h�
x0˛t � x0at jj


2i

D E
�
.x0˛t � x0at jj /.x0˛t � x0at jj /0

� D E
�
x0.˛t � at jj /.˛t � at jj /0x

�
D x0E

�
.˛t � at jj /.˛t � at jj /0

�
x D x0Pt jj x:
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Since x is arbitrary, the conclusion is that P �
t jj is, in fact, “less than or equal to”

Pt jj . �
Second proof of Theorem 3.6. Consider again an arbitrary i D 1; : : : ; m. Recall
once more that S 0 and S 00, already defined, are subspaces (closed linear manifolds)
of L2 and that S 0 � S 00. Theorem 5.20 of Kubrusly (2001) asserts the existence of
� 2 S 00? such that

˛ti D a�
t i jj C �: (3.8)

Also, Theorem 5.20 of Kubrusly (2001) and Lemma 3.5 (make H D L2, M D S 0,
N D S 00, and x D ˛ti ) assure the existence of � 2 S 00 \ S 0? such that

a�
t i jj D ati jj C �: (3.9)

From the decomposition (3.8) we obtain

E

��
˛ti � a�

t i jj
�2� D E

�
�2



: (3.10)

Now, add both decompositions (3.8) and (3.9) to obtain ˛ti � ati jj D � C �, and
evoke the Pythagorean theorem – which is licit since � and � are orthogonal – to
obtain

E
h�
˛ti � ati jj


2i D E
�
�2


 C E
�
�2



: (3.11)

Identities (3.10) and (3.11) assert the claimed efficiency for each coordinate
estimation of the state vector. The case of an arbitrary linear combinations x0˛t
is dealt with in a similar fashion. �

Looking at cases in which j � t , the last theorem shows that Kalman updating
and smoothing equations, when used with the augmented model, besides respecting
the linear restrictions from Eq. (3.1), give more accurate estimators.

3.3 Restricted Kalman Filtering Versus Restricted Recursive
Least Squares

Consider the following univariate special case of model (2.1) where the state vector
is time invariant and Zt � x0

t is a row vector of exogenous explanatory variables:

Yt D x0
t ˇt C "t ; "t � .0; �2/;

ˇtC1 D ˇt :
(3.12)

This model can and should be viewed as a linear regression model written in a
linear state space representation. It is known (Harvey 1981, 1993) that application
of the Kalman state updating equation to (3.12) numerically coincides with the
method of recursive least squares. Back in the days when matrix inversion was
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a computational burden, this equivalence proved useful since it turned out to be
possible to estimate a regression model with no need to invert a “big” X 0X matrix.
In addition, this made attainable the updating of ordinary least squares (OLS )
estimates whenever new observations were added to the data set. Nowadays this
equivalence still deserves its merits in regression analysis and econometrics. Firstly,
depending on the ill-conditioning of the regressors, it still may be difficult to invert
“big” X 0X matrices, a problem that justifies recursive estimation. Secondly, this
equivalence is in full connection with the traditional coefficient stability test of
Brown et al. (1975).

The purpose of this section is to revisit the generalization of the foregoing parallel
addressed by Pizzinga (2010) in the context of linear restrictions. Thus, it is assumed
that the coefficient vector of a regression model is supposed to obey certain linear
restrictions that are enunciated as

Aˇ D q; (3.13)

where A is a known k �m matrix, k 	 m, and q D .q1; : : : ; qk/
0 is a known k � 1

vector. Since the main objective is to bridge the restricted recursive estimation to
the restricted Kalman filtering, structures (3.12) and (3.13) are now taken together
to generate the following augmented measurement equation:

�
Yt
q

	
D

�
x0
t

A

	
ˇt C

�
"t
0

	
;

�
"t
0

	
�

��
0

0

	 �
�2 0

0 0

		
: (3.14)

From Theorem 3.1, the application of the Kalman updating equation to the model
in (3.14) produces updated state vectors that satisfy Abt jt D q. But, in fact, there
is more: the terms of the sequence

�
bt jt



are the output from online successive

applications of restricted least squares. To establish this link, the restricted least
squares (RLS ) estimator and its covariance matrix for a linear regression model
Y D Xˇ C ", " � .0; �2I /, where ˇ obeys (3.13), is recalled below:

Ǒ
RLS D Ǒ

OLS C .X 0X/�1A0ŒA.X 0X/�1A0��1.q � A Ǒ
OLS/; (3.15)

Var
� Ǒ

RLS

�
D �2.X 0X/�1 � .X 0X/�1A0ŒA.X 0X/�1A0��1A.X 0X/�1:

The derivation of the expression in (3.15) is presented in virtually all books on
econometrics. See, for instance, Johnston and Dinardo (1997) or Greene (2003).

This section’s result:

Theorem 3.7. Under the state space model in (3.14), the Kalman state updating
equation is identical to a recursive application of (3.15).

Proof. The model in (3.14) can be decomposed in such a way that recognizes q as
a “new” measurement vector obtained/observed just “after” Yt and right “before”
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YtC1. Thus, the measurement equation is recast as

Yt;j D Zt;j ˇt;j C "t;j ; "t;j � .0;Ht;j /: (3.16)

Notice that Yt;1 D Yt , Zt;1 D x0
t and Ht;1 D �2; on the other hand, Yt;2 D q,

Zt;2 D A, and Ht;2 D 0. The new state equation is written in the same way as
before.

It now becomes possible to regard imposing the linear restrictions as a new
update of the state vector. In fact, for an arbitrary t , denote the output of
the Kalman updating using all the measurements from Eq. (3.16) up to Yt;1 by
Ǒ
t;1jt;1, which, as was already discussed, equals the output of the recursive least

squares – and consequently the OLS estimator – applied to the “observations”
fY1; q1; : : : ; qk; : : : ; Yt�1; q1; : : : ; qk; Yt g. The state equation implies that Ǒ

t;2jt;1 D
Ǒ
t;1jt;1. Then, as Yt;2 D q arrives, and because Pt;2jt;1 D Pt;1jt;1 D �2

�
X 0
t Xt


�1
,

Zt;2 D A and �t;2 D q � A Ǒ
t;2jt;1, and Ft;2 D A�2

�
X 0
t Xt


�1
A0, the Kalman state

updating equation in (2.3) becomes

Ǒ
t;2jt;2 D Ǒ

t;1jt;1 C �
X 0
t Xt


�1
A0 �

A
�
X 0
t Xt


�1
A0��1 �

q � A Ǒ
t;1jt;1

�
: (3.17)

But, as was just mentioned, Ǒ
t;1jt;1 D Ǒ

MQO . Therefore, the conclusion is that the
Kalman updating in (3.17) is indeed an application of the RLS estimator of (3.15).
The equivalence between covariance matrices can be established analogously. �

Some conceptual and practical consequences follow from this proof, which
was previously offered in Pizzinga (2010). First of all, it now becomes clear that
restricted Kalman filtering is indeed a generalization of the RLS estimator, a state-
ment that, albeit intuitive, requires proper formalization. In addition, Theorem 3.7
also shows that a regression model with random-walk time-varying coefficients
under restrictions (set ˇtC1 D ˇt C �t , �t � WN .0;Q/, as the state equation for
model (3.14)) does encapsulate the regression model with static coefficients, still
under the same restrictions. Then, whenever restricted Kalman filtering is applied
to the time-varying version, both models can be compared as usual – to estimate
the static model, just set Q � 0. Finally, note that the recursive residuals obtained
from the recursive application of (3.15) are automatically uncorrelated – indeed,
Theorem 3.7 says they are innovations. This is a desirable property in paving the
way toward the development of a generalization of the stability test by Brown et al.
(1975).
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3.4 Initialization

3.4.1 Motivation

Besides considering the linear restrictions in Eq. (2.5), in this section it is assumed
that some coordinates of the initial state vector ˛1 have infinity variances. This
is the basic setup of the so-called diffuse initialization of Kalman recursions, a
subject extensively studied in Ansley and Kohn (1985), de Jong (1988), Harvey
(1989), de Jong (1991), Koopman (1997), Durbin and Koopman (2001), Koopman
and Durbin (2003), and de Jong and Chu-Chun-Lin (2003). Under these at least
partially unspecified initial conditions, the question arises as to whether the methods
of imposing linear restrictions can be derived from the very beginning. Observe that,
once some elements of P1 explode, there will no longer be an L2 theory available,
nor could the traditional Kalman equations even be tackled, at least in the period
when the effect of diffuseness – which lasts for an initial portion of the data – has
not yet vanished. Thus, the strategies used in proofs by Doran (1992), Pizzinga
et al. (2008a), and Pizzinga (2009) – the latter two already revisited in this book
in Sects. 3.1.1 and 3.1.2, respectively – for augmented restricted Kalman filtering
(cf. Theorem 3.1) unfortunately become useless now. The purpose of this section
is to address this theoretical issue precisely, much in the same way as was done
in Pizzinga (2012): exploring the conditions that allow one to extend the restricted
estimation to diffuse initializations and by working out appropriately the modified
versions of the Kalman equations, that is, the proof of the main result will be
“computational” instead of “geometrical.”

3.4.2 Reviewing the Initial Exact Kalman Smoother

Henceforth, the initial state vector is modeled as

˛1 D a C Bı CR0�0;

where (a) a is known; (b) ı and �0 are zero-mean random vectors such that Var .ı/ D
	Iq , Var .�0/ D Q0, and Cov .ı; �0/ D 0; and (c)B andR0 arem�q andm�.m�q/
selection matrices, respectively, such that B 0˛1 D ı. In general, ı consists of initial
conditions for the nonstationary terms of the m-variate process ˛t . Under this fix
and assuming Ft > 0, the exact initial Kalman filter and smoother, obtained when
	 �! C1, are, in the notation of Durbin and Koopman (2001),

�
.0/
t D Yt �Zta.0/t � dt ; F�;t D ZtP�;tZ0

t CHt ;

F1;t D ZtP1;tZ
0
t ; L

.0/
t D Tt � TtP1;tZ

0
tF

�11;tZt ;
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L
.1/
t D �TtP�;tZ0

tF
�11;tZt C TtP1;tZ

0
tF

�11;t F�;tF�11;tZt ;

a
.0/
tC1 D Tta

.0/
t C ct C TtP1;tZ

0
tF

�11;t �
.0/
t ;

P�;tC1 D TtP1;tL
.1/0

t C TtP�;tL.0/
0

t CRtQtR
0
t ;

P1;tC1 D TtP1;tL
.0/0

t ; t D 1; : : : ; n;

(3.18)

r
.0/
t�1 D L

.0/0

t r
.0/
t ; r

.1/
t�1 D ZtF

�11;t �
.0/
t C L

.0/0

t r
.1/
t C L

.1/0

t r
.0/
t ;

at jn D a
.0/
t C P�;t r .0/t�1 C P1;t r

.1/
t�1; r.0/n D 0; r.1/n D 0; t D n; : : : ; 1;

(3.19)

whenever F1;t just defined is nonsingular. Otherwise, changes must take place
in recursions (3.18) and (3.19) (cf. Koopman and Durbin 2003). According to
Koopman (1997), there exists a time instant d after which the preceding recursions
collapse to the traditional Kalman smoother; therefore, P1;t D 0 for t > d

necessarily. The set of time instants D � f1; : : : ; d g is termed the diffuse period.
The presented recursions constitute the paradigm proposed in Koopman (1997),

Durbin and Koopman (2001, Sect. 5.3), and Koopman and Durbin (2003) for the
treatment of state smoothing diffuse initialization. For an alternative approach,
based on the augmentation of the measurement equation, see de Jong and Chu-
Chun-Lin (2003).

3.4.3 Combining Exact Initialization with Linear Restrictions

Before going to the main result of this Sect. 3.4, some preliminary steps must be
addressed. The first is to list and to discuss the conditions under which it will be
possible to combine diffuse initial conditions for the Kalman smoothing equations
with the imposition of linear restrictions. Let them be enunciated and, without any
loss of generality, consider them valid for all t D 1; : : : ; n.

Assumption 3.8. fqti ; : : : ; qtkg is a linearly independent set of observable random
variables.

Assumption 3.9. 8i D 1; : : : ; k W qti … spanf1; Y11; : : : ; Y1p; q11; : : : ; q1k; : : : ;
Yt�1;1; : : : ; Yt�1;p; qt�1;1; : : : ; qt�1;k; Yt;1; : : : ; Yt;pg.

Assumption 3.10. 8i D 1; : : : ; p W rowi .Zt / … spanfrow1.At /; : : : ; rowk.At /g �
<m.

Assumption 3.11. Range .˛t / D <m.

Assumption 3.12. P1;t ¤ 0 ) AtP1;tA
0
t > 0:
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For a full discussion about the generality and plausibility of the preceding
assumptions, the reader is referred to Pizzinga (2012). But, essentially, Assump-
tions 3.8–3.12 guarantee that the linear restrictions are nonredundant, observable,
and handleable by augmented restricted Kalman filtering (cf. Theorem 3.1); in
addition, they assure that Eqs. (3.18) and (3.19) will always be valid for state vector
estimation in the diffuse period.

Before we proceed, three auxiliary results, whose proofs are given in Pizzinga
(2012) and Doran (1992), are needed. The first is basic for embedding the problem
of imposing restrictions on the theory of the exact initial Kalman filter.

Lemma 3.13. Consider a state space model with the augmented measurement
equation suggested in Theorem 3.1 and a finite initial covariance matrix P1. Under
Assumptions 3.8 and 3.9, AtPt jt�1A0

t > 0.

The second result will guarantee that no other versions of the exact initial Kalman
filter and smoother, unlike those given in (3.18) and (3.18) (which assumeF1;t > 0),
will be required.

Lemma 3.14. Consider a state space model with the augmented measurement
equation suggested in Theorem 3.1 and a finite initial covariance matrix P1. Under
Assumptions 3.10 and 3.11, AtPt jt�1A0

t > 0 implies
�
Z0
t;iA

0
t

�0
Pt jt�1

�
Z0
t;iA

0
t

�
> 0

for each i D 1; : : : ; p, where Zt;i � rowi .Zt /.

The third result is actually a rephrasing of Eq. (22) from Doran (1992), which
has already proved to be key in other situations concerning the theory of state space
models under restrictions (see Pizzinga 2009).

Lemma 3.15. Consider a state space model with the augmented measurement
equation suggested in Theorem 3.1 and a finite initial covariance matrix P1. If
Ft > 0, then AtPt jt�1

�
Z0
t A

0
t

�
F �1
t D �

0k�p Ik�k
�
.

Finally, here is the main result concerning initialization:

Theorem 3.16. (“The initial exact restricted Kalman smoother”) Suppose the
augmented state space model suggested in Theorem 3.1 satisfies Assumptions 3.8–
3.12. Then the initial exact Kalman smoother in (3.19) yields

Atat jn D qt : (3.20)

Proof. Consider first the case of t 2 D, where D corresponds to the augmented
model. From Lemma 3.13, prior to letting 	 �! 1 the covariance matrix Ft
associated with the augmented model is positive definite, which assures that the
exact initial Kalman filter and smoother can be considered in what follows. Define
QZt D �

Z0
t A

0
t

�0
. Other quantities would have also deserved tildes, but they are

dropped to conserve notation. Define an auxiliary (augmented) state space model
with system matrices given by Z


t D QZt , d
t D �
d 0
t 0

0
0
, H


t D 0.pCk/�.pCk/,
T


t D Tt , c



t D ct , and Q


t D 0, and also with initial conditions a
1 D 0 and

P


1 D P1;1 D BB 0. Notice that P1;t in (3.18) is the Kalman mean square



24 3 Restricted Kalman Filtering: Theoretical Issues

error prediction equation [cf. Durbin and Koopman 2001, Eq. (4.11)] applied to
the auxiliary model, and recall that, from Assumption 3.12, F1;t cannot be a zero
matrix. Supposing first F1;t is nonsingular, take the recursive formulae of r.0/t�1 and

r
.1/
t�1 in (3.19) and place them in the expression of at jn, which gives

at jn D a
.0/
t C P1;t

QZ0
tF

�11;t �
.0/
t C P1;tL

.0/0

t r
.1/
t C P1;tL

.1/0

t r
.0/
t C P�;tL.0/

0

t r
.0/
t :

(3.21)
From (3.21), identity (3.20) will be proved whenever the following three claims are
established.

Claim 1 At

�
a
.0/
t C P1;t

QZ0
tF

�11;t �
.0/
t

�
D qt .

Proof. Define a.0/
t jt � a

.0/
t CP1;t

QZ0
tF

�11;t �
.0/
t . Looking at the recursions in (3.18), it

follows that a.0/
t jt is the Kalman updating equation [cf. Durbin and Koopman 2001,

Eq. (4.14)] applied to the auxiliary model. �

Claim 2 AtP1;tL
.0/0

t D 0.

Proof. Still considering the auxiliary model, use the expression ofL.0/t in (3.18) and
Lemma 3.15 to obtain

AtP1;tL
.0/0

t D AtP1;t T
0
t �AtP1;t

QZ0
tF

�11;t
QZtP1;t T

0
t

D AtP1;t T
0
t � �

0k�p Ik�k
� QZtP1;t T

0
t

D 0:

�

Claim 3 At

�
P1;tL

.1/0

t C P�;tL.0/
0

t

�
D 0.

Proof. From the expression of L.1/
0

t in (3.18) it follows that

AtP1;tL
.1/0

t D �AtP1;t
QZ0
tF

�11;t
QZtP�;t T 0

t CAtP1;t
QZ0
tF

�11;t F�;tF �11;t
QZtP1;t T

0
t

D � �
0k�p Ik�k

� QZtP�;t T 0
t C �

0k�p Ik�k
�

� QZtP�;t QZ0
t C diag .Ht ; 0k�k/

�
F �11;t

QZtP1;t T
0
t

D �AtP�;t T 0
t CAtP�;t QZ0

tF
�11;t

QZtP1;t T
0
t ;

(3.22)
where the second equality comes from Lemma 3.15 used with the auxiliary model
and from the expression of F�;t in (3.18) associated with the augmented model. On
the other hand, the expression of L.0/t implies

AtP�;tL.0/
0

t D AtP�;t T 0
t � AtP�;t QZ0

t F
�11;t

QZtP1;t T
0
t : (3.23)

Add (3.22) and (3.23). �
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If F1;t is singular, then uncouple the augmented measurement
�
Y 0
t ; q

0
t


0
in such a

way that

Yt;1; : : : ; Yt;p�1;
�
Yt;p; q

0
t


0
:

Since the new F1;t , associated with
�
Yt;p; q

0
t


0
, is nonsingular (cf. Lemma 3.14),

proceed exactly as previously to obtain (3.20).
Take now an arbitrary t > d . In such a case, the recursions in (3.19) convert to de
Jong’s version of the Kalman smoother [cf. de Jong 1989; Durbin and Koopman
2001, Eq. (4.26)] and, therefore, (3.21) assumes the simpler form

at jn D at jt�1 C .Pt jt�1T
0

t � Pt jt�1 QZ0

t F
�1
t

QZtPt jt�1T 0

t /rt ;

where rt�1 D QZ0
t F

�1
t �t C �

Tt � TtPt jt�1 QZ0
tF

�1
t

QZt

0
rt , with rn D 0. Using almost

the same arguments, prove slight modifications of Claims 1 and 3 to obtain identity
(3.20); Claim 2 is trivially satisfied, given that P1;t D 0 in this case. This completes
the proof. �

From a practical perspective, a point coming from this last result that must be
reinforced is that, under quite general conditions, it is always possible to yield
restricted smoothed state vectors even when the estimation lies in the diffuse period
(that is, for t D 1; : : : d , whatever d may be). Stated in other words: the beginning
of the series is not critical anyway to obtaining more interpretable results (which
is certainly the case whenever estimated state vectors under meaningful restrictions
are achieved).

In Pizzinga (2012), the issue of the statistical efficiency of this initial exact
restricted Kalman smoother is dealt with in terms of conditional expectation
theory. The main result is that, under some specific �-fields (or information sets),
conditional mean square errors associated with state vector smoothing – even in
the diffuse period D – are always improved whenever one considers an augmented
model suggested in Theorem 3.1.



Chapter 4
Restricted Kalman Filtering: Methodological
Issues

This chapter is concerned with some methods for imposing linear restrictions in
state space modeling. The plan I will follow is this. In Sect. 4.1, I discuss an
alternative restricted Kalman filtering that is indicated for situations where the
linear restrictions are time-invariant and the state vector follows a general random
walk. This approach was first featured in Pizzinga (2009). In Sect. 4.2, I present
another alternative restricted Kalman filtering, this time due to Pizzinga (2010),
that is based on a reduced linear state space model; this method will be compared
with the previous augmented restricted Kalman filtering from several standpoints.
Finally, Sect. 4.3 deals with a method developed in Pizzinga (2010) to impose linear
restrictions in the prediction of a state vector.

4.1 Random-Walk State Vectors Under Time-Invariant
Restrictions

In this section, the paradigm of augmenting the measurement equation, in order
to accomplish linear restrictions in state vector estimation, changes. Actually, this
brief change in course deserves some attention because it may highlight a potential
framework in restricted Kalman filtering.

The result of this section, whose proof is still carried out by elementary Hilbert
space theory, is as follows.

Theorem 4.1. If the linear state space model in (2.1) is such that ct D 0 and
Tt D Rt D I , then (i) A˛1 D q (with q deterministic) and (ii) AQtA

0 D 0 for all
t=1,2,. . . are sufficient to yield

Aat jj D q for al l t; j D 1; 2: : : : (4.1)

A. Pizzinga, Restricted Kalman Filtering: Theory, Methods, and Application,
SpringerBriefs in Statistics 12, DOI 10.1007/978-1-4614-4738-2 4,
© Springer Science+Business Media New York 2012
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Proof. Fix t and j . Once again, denote by �S 0 the linear orthogonal projection
onto S 0. Now observe that, from a trivial recursion on the state equation,

˛t D ˛1 C
t�1X
jD1

�t�j : (4.2)

Premultiplying both sides of (4.2) by A implies

A˛t D A˛1 C
t�1X
jD1

A�t�j D q C 0 D q; (4.3)

where the second equality comes from hypotheses (i) and (ii). Denoting the i th row
from A by Ai D Œci1 : : : cim�, it follows that

Aiat jj D ci1at1jj C � � � C cimatmjj D ci1�S 0.˛t1/C � � � C cim�S 0.˛tm/

D �S 0.ci1˛t1 C � � � C cim˛tm/ D �S 0.Ai˛t / D �S 0.qi /

D qi ;

where the third, fifth, and sixth equalities come respectively from the linearity of
�S 0 , from (4.3), and from the fact that qi 2 R.�S 0/ D S 0. Since t , j , and i were
taken arbitrarily, the theorem is proved. �

I should make explicit some practical gains from this last proposition – which
was given and proved in Pizzinga (2009) – applicable to models in which the state
vector evolves as (possibly heteroscedastic) random walks. The first bonus is that
there is no longer any need to increase the dimension of the measurement equation.
The second plus is that, by imposing the enunciated restrictions on the initial state
vector and on the covariance matrices of the error terms from the state equation,
maximum likelihood estimation can be sharply enhanced whenever some of the
unknown parameters belong to those matrices. The third advantage is that the
restrictions are satisfied by any type of state estimation, whether it is a prediction,
updating, or smoothing.

4.2 Reduced Restricted Kalman Filtering

4.2.1 Motivation

In dealing with a linear regression model under linear restrictions, there are two
ways to estimate. Actually, both prove to be numerically equivalent and are known
by the name of restricted least squares. The first way was already revisited in
Sect. 3.3 [cf. expressions in (3.15)], while the second is implemented by rewriting a
reduced model with transformed data and then applying the usual OLS estimation
to the transformed data (cf. Davidson and Mackinnon 1993).
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Following Pizzinga (2010), this section presents a restricted Kalman filtering
under a reduced modeling framework. If the usual restricted Kalman filtering by
augmentation discussed so far can be viewed as a generalization of the first way
to impose linear restrictions in a static linear regression model, the approach to be
discussed now, in turn, resembles the second. One feature to be listed among others
is that, even though both approaches to restricted least squares produce exactly the
same result, the two restricted Kalman filtering (the augmented and the reduced) do
not always result in the same estimated state vectors.

4.2.2 The Method

In the remainder of this Sect. 4.2, consider the measurement equation in (2.1), the
restrictions in (2.5), and the following assumption.

Assumption 4.2. The (possibly random) vector qt D .qt1; : : : ; qtk/
0 is such that

qti 2 spanf1; Y11; : : : ; Y1p; : : : ; Yt1; : : : ; Ytpg, for all i D 1; : : : ; k and t D
1; 2; : : : .

The basic perspective behind the alternative restricted Kalman filtering is
much the same as that of the reduced modeling in linear regression under linear
restrictions: some state coordinates are rewritten as affine functions of the others
and the result is appropriately placed in the measurement equation.

The method:
Let t be an arbitrary time index.

1. Without loss of generality write the linear restrictions in (2.5) as

At;1˛t;1 C At;2˛t;2 D ŒAt;1 At;2�
�
˛0
t;1; ˛

0
t;2


0 D qt ; (4.4)

where At;1 is a k � k full rank matrix.
2. Solve (4.4) for ˛t;1, which should result in

˛t;1 D A�1
t;1 qt � A�1

t;1 At;2˛t;2: (4.5)

3. Take (4.5) and put it in the measurement equation of the model in (2.1) – from
which dt is dropped without loss of generality – aiming to obtain

Yt D Zt;1˛t;1 CZt;2˛t;2 C "t

D Zt;1
�
A�1
t;1 qt � A�1

t;1 At;2˛t;2

 CZt;2˛t;2 C "t

D Zt;1A
�1
t;1 qt �Zt;1A

�1
t;1 At;2˛t;2 CZt;2˛t;2 C "t

) Y �
t � Yt �Zt;1A

�1
t;1 qt D �

Zt;2 �Zt;1A�1
t;1 At;2



˛t;2 C "t

� Z�
t;1˛t;2 C "t :
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4. Postulate a transition equation for the unrestricted state vector ˛t;2. This equation
leads to the following reduced linear state space model:

Y �
t D Z�

t;2˛t;2 C "t ; "t � WN.0;Ht /;

˛tC1;2 D Tt;2˛t;2 C ct;2 CRt;2�t;2 ; �t;2 � WN.0;Qt;2/;
(4.6)

where E .˛1;2/ D a1;2 and Var .˛1;2/ D P1;2.
5. For the reduced model in (4.6), apply the usual Kalman filtering to obtain at;2jj

and Pt;2jj , for all j � t .
6. Reconstitute the estimate at;1jj and its mean square error matrix Pt;1jj by means

of the affine relation given in (4.5):

at;1jj D A�1
t;1 qt � A�1

t;1 At;2at;2jj ;

Pt;1jj D .A�1
t;1 At;2/Pt;2jj .A�1

t;1 At;2/
0:

(4.7)

Some comments on this algorithm are in order. First, the approach, which is taken
from Pizzinga (2010) under the same notations, was first considered by Leybourne
(1993) and by Doran and Rambaldi (1997); what Pizzinga (2010) did was to put it
in a more general framework. In addition, observe that j does have to be greater
than or equal to t due to steps 5 and 6 (cf. Assumption 4.2). Another aspect is
that the specification for the state equation in step 4 could be extracted from the
complete state equation in (2.1), but if one does not want to think or worry about a
full transition system, then one could concentrate only on modeling the block ˛t;2.

4.2.3 Reducing Versus Augmenting

As cited in Pizzinga (2010), there are several advantages of the reduced model
approach over the augmented model:

• Mathematical consistency. Once the state equation is chosen after the reducing
task, the method avoids any risk of obtaining measurement and state equations
theoretically inconsistent with each other.

• Computational efficiency. While the augmenting approach increases the dimen-
sion of the practical problem (the length of the measurement vectors increases
from p to p C k!), the reduced model approach goes in an opposite direction
by not altering the size of the measurement equation and shortening the size of
the state equation (from m to m � k). In other words, the augmenting approach
“augments” the dimensions of the practical problem while the reduced model
approach “reduces” them.

• Model selection. The reduced model approach enables one to investigate the
plausibility of the assumed linear restrictions by using information criteria (e.g.,
AIC and BIC). The competing model would be the unrestricted one as given
by (2.1), the (quasi-)likelihood function of which is surely comparable with that
from the restricted model in Eq. (4.6).
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Stepping further toward the comparison between the reducing and the
augmenting approaches, two results are demonstrated in Pizzinga (2010). Both are
related to the augmented model suggested in Theorem 3.1 and reveal that, for certain
types of state restrictions, that model is much less flexible. The first proposition
concerns limitations on the state equation. Note that the first three conditions listed
below are quite general since they are verified for several state space specifications
(e.g., zero-mean initial state vectors, whether diffuse or nondiffuse) and for many
types of linear restrictions (e.g., all the deterministic ones).

Proposition 4.3. Suppose the partition in (4.4) is such that At;1 � A1. Also, admit
the following conditions:

(i) Tt D diag .Tt;1; Tt;2/, where Tt;1 is k � k.

(ii)
�
A�1
1 AtC1;2Tt;2 � Tt;1A�1

1 At;2


E .˛t;2/C �

Ik�k A�1
1 AtC1;2

�
ct D 0.

(iii) E .qt / D E .qtC1/ D Nq.
Then (i), (ii), and (iii) are sufficient for Tt;1 D Ik�k . Now, suppose (i), (ii), and
(iii) are valid for all t � 1 and consider the following additional conditions:

(iv) 8t � 1 W At;2 � A2, such that A2 has null kernel.

(v) 8t � 1 W qt � q (possibly random).
Now, (i)–(v) are sufficient for Tt D Im�m.

It becomes clear from Proposition 4.3 that, if one chooses the augmenting
approach for dealing with important types of restrictions, there would be no
possibility left but a random-walk evolution for at least a block of the state vector.

The second proposition is stated below. Its condition (vii), as one can directly
see, is a quite natural setup since this avoids some pathological behaviors from the
measurement equation, such as nonergodic stationarity:

Proposition 4.4. Suppose conditions (i)–(iii) of Proposition 4.3 are valid for all
t � 1, as well as (iv) and (v), with q deterministic. Also assume that

(vi) 8t � 1 W Qt � diag
�
�2t1; : : : ; �

2
tm



and Rt D Im�m;

(vii) 8t � 1 and 8i D 1; : : : ; m W �21i D � � � D �2ti D 0 ) Var .˛1i / D 0.

Then,Qt D Om�m for all t � 1.

This last result rules out any possibility of nondegenerated state vectors under
contemporaneously uncorrelated errors �t1; : : : ; �tm. This limitation, as that previ-
ously raised from Proposition 4.3, surely does not arise under the reducing approach.

A final comment about this reducing approach is that it also has a strong
geometrical appeal, under which it becomes possible to interpret such a method
as a “two-stage” state vector estimation – or a “partitioned” projection of the state
vector. For more details, the reader is referred to Pizzinga (2010).
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4.3 Predictions from a Restricted State Space Model

The original proposal for adopting an augmented model, which I reevoke again in
this section, does not, in general, guarantee that linear restrictions on the state vector
will be carried over to the Kalman prediction equations (immediate example: there
is no extension of Corollary 3.2 for the prediction equations when one is dealing
with any of the structural models – cf. Harvey (1989), Chaps. 2 and 4 – put in their
respective state space forms).

In this section I present a strategy to further extend (that is, for any type of linear
state space model) restricted Kalman filtering and smoothing up to schemes aimed
at prediction. The approach was previously presented in Pizzinga (2010) and is built
on the ideas of missing values state space treatment and of the decomposition used
in the second proof of Theorem 3.1 and in the proof of Theorem 3.7.

Consider that one is willing to extrapolate the state vector or the measurements
up to h steps ahead in the future; that is, one wants to obtain anC1jn; : : : ; anChjn
or OYnC1jn; : : : ; OYnChjn. But, like everything that has been done so far in this book,
it is known a priori that, for all j D 1; : : : ; h, AnCj ˛nCj D qnCj , where AnCj
is a k � m matrix and qtCj is a k � 1 (possibly random) vector; this knowledge
is simply the confirmation that Assumption 2.1 is not confined to a particular time
series of size n. So the question is how to make anC1jn; : : : ; anChjn satisfy those
same theoretical constraints.

Everything starts again with the adoption of an augmented model. The aug-
mented version of (2.1) is rewritten to accomplish the “future” restrictions:

�
Yt
qt

	
D

�
Zt
At

	
˛t C

�
dt
0

	
C

�
"t
0

	
;

�
"t
0

	
� WN

��
0

0

	
;

�
Ht 0

0 0

		
(4.8)

˛tC1 D Tt˛t C ct CRt�t ; �t � WN.0;Qt/;

t D 1; : : : ; n; nC 1; : : : ; nC h:

Moving ahead, observe now that the model in (4.8) can be decomposed in a way
that stresses that one is actually dealing with the (possibly multivariate) series

Y1; q1; Y2; q2; : : : ; Yn; qn; YnC1; qnC1; YnC2; qnC2; : : : ; YnCh; qnCh; (4.9)

which has missing measurements; YnC1; YnC2; : : : ; YnCh are obviously absent. So
the series in (4.9) presents blanks and should be appropriately recast as

Y1; q1; Y2; q2; : : : ; Yn; qn; ; qnC1; ; qnC2; : : : ; ; qnCh: (4.10)
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The obtention of anC1jn; anC2jn; : : : ; anChjn is then almost equivalent to the applica-
tion of Kalman smoothing to the “incomplete” series in (4.10) using the following
equivalent version of (4.8). The measurement equation is defined by

Yt;i D Zt;i˛t;i C dt;i C "t;i ; "t;i � WN.0;Ht;i /:

When i D 1, nothing is changed from the measurement equation in (2.1) of
Sect. 2.1. But for i D 2 we must have

Yt;2 D qt ; Zt;2 D At ; dt;2 D 0 andHt;2 D 0:

Regarding the state equation, for all t , ˛t;2 D ˛t;1, and ˛tC1;1 D Tt˛t;2 C ct CRt�t ,
�t � WN.0;Qt/. The use of the word “almost” is justified by the fact that the
information from qnC1; : : : ; qnCh does enter into the Kalman estimation; so the
result does not necessarily equal anC1jn; anC2jn; : : : ; anChjn, which theoretically use
the information only up to qn. The modifications in the original Kalman equations
due to missing observations are discussed in Durbin and Koopman (2001), Sect. 4.8.
Finally, notice that, from Theorem 3.1, it follows that, for all j D 1; : : : ; h,
AnCj anCj jn D qnCj . For the reasons just explained in this paragraph, “nC j jn” is
an abuse of notation.

The earlier method can be gathered into the following algorithm:

1. Decompose the model in (4.8) aiming to get the series in (4.10).
2. Store the “new” observations while respecting the missing-value positions.
3. Apply the Kalman smoothing equation to the stored observations, appropriately

modified to account for the missing values.
4. Take the smoothed states corresponding to the missing-value positions as the

predicted state vectors under linear restrictions.



Chapter 5
Applications

Following the presentation and discussion of several theoretical and methodological
issues of previous chapters, this chapter will be devoted entirely to some practical
examples, where the two methods from Chap. 4 – reduced restricted Kalman filter-
ing and the restricted Kalman prediction equations – are considered, implemented,
and evaluated. The remainder of this chapter is structured as follows. Section 5.1
presents an application, previously conducted in Pizzinga et al. (2011), where a
time-varying factor modeling for dynamic style analysis is implemented. In this
application, an accounting restriction on the coefficients is tackled by reduced
restricted Kalman filtering. In Sect. 5.2, the time-varying econometric models
proposed in Souza et al. (2011) are considered for the estimation and interpretation
of the dynamic exchange-rate pass-through over Brazilian price indexes; again,
reduced restricted Kalman filtering is key to accessing some economic hypotheses
imposed under two specific restrictions. And, in Sect. 5.3, the material concerning
restricted predictions from Sect. 4.3 is conveniently implemented for obtaining
predictions of quarterly gross domestic product (GDP) that must be somehow
consistent with the annual GDP (that is, for each year, the sum of quarterly GDP
data must equal the annual GDP), much in the same way as was done in one of the
applications conducted in Pizzinga (2010).

The models to be discussed in the sequel were implemented using the Ox 3.0 lan-
guage (cf. Doornick 2001) with occasional use of the Ssfpack 3.0 library for linear
state space modeling (Koopman et al. 2002). The implementations were carried out
on an Athlon XP 2200 MHz, with 378 MB RAM. The computational efficiency of
the estimations are separately analyzed and discussed in the appropriate sections.
All the estimations were done under the exact maximum-likelihood estimation and
the exact initial Kalman filter (cf. Durbin and Koopman 2001, Chaps. 5 and 7).

A. Pizzinga, Restricted Kalman Filtering: Theory, Methods, and Application,
SpringerBriefs in Statistics 12, DOI 10.1007/978-1-4614-4738-2 5,
© Springer Science+Business Media New York 2012
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5.1 Case I: Semistrong Dynamic Style Analysis

5.1.1 Motivation

Depending on the type of investment fund under investigation, detailed informa-
tion on the actual portfolio composition is not usually available. Return-based
style analysis, or simply style analysis, is a statistical method for the estima-
tion/approximation of the unknown composition of an investment fund portfolio.
The standard practice in style analysis only uses the so-called external information,
which is represented by the fund returns and some market index returns, and is
implemented by the asset class factor model (cf. Sharpe 1988, 1992). Later, this was
modified by the addition of an intercept term (cf. de Roon et al. 2004), as follows:

RPt D ˛ C ˇ1Rt1 C ˇ2Rt2 C � � � C ˇmRtm C "t : (5.1)

Assumptions: The process RPt is the portfolio return. The m-variate process Rt D
.Rt1; Rt2; : : : ; Rtm/

0 represents some asset class index returns, which should satisfy
the assumptions of exhaustiveness, mutual exclusiveness, and different behavior
(cf. Sharpe 1988, 1992). The coefficients ˇ1; ˇ2; : : : ; ˇm are the unknown alloca-
tions/exposures that are sometimes supposed to satisfy an accounting constraint
known as the portfolio restriction, that is,

Pm
iD1 ˇi D 1. There is also a short-

sale restriction, which is sometimes considered and is implemented by forcing the
nonnegativeness of ˇ1; ˇ2; : : : ; ˇm. But, as this restriction is not always meaningful
(e.g., most hedge funds take positions in derivative markets), this practice is not
adopted here. The intercept ˛ is the Jensen measure or Jensen alpha (cf. Jensen
1968; Carhart 1997; de Roon et al. 2004; and Elton et al. 2006) and represents the
idiosyncratic fund return, i.e., it measures how much the fund gains – or loses – by
means of its selectivity strategies. Finally, "t is a typical random error process with
finite second moments.

Although it is a widely used tool in investment analysis, model (5.1) has a
drawback: it ignores the fact that asset class exposures and selectivity do change
over time, reflecting the very plausible and possible reallocations of the assets by the
portfolio manager – an idea that was also evoked in Pizzinga and Fernandes (2006)
and in Swinkels and Van der Sluis (2006). Later, in Pizzinga et al. (2008b), a class
of semistrong style analysis models – meaning that only the portfolio restriction is
imposed; cf. the style analysis taxonomy proposed by de Roon et al. (2004) – was
proposed whose exposures and Jensen’s measure were both made stochastically
time-varying as a (vector) random walk. This represented a direct generalization
of the static model (5.1). Empirical illustrations were presented using return series
of Brazilian real/US dollar exchange-rate funds. Among several points, there was
clear visual evidence that the time-varying exposures to US dollar/real exchange-
rate markets behaved under different autoregressive regimes, one of those directly
associated to the 2002 Brazilian presidential election, a period of some political
turbulence and high volatility.
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This section’s exercise is mostly based on the results of Pizzinga et al. (2011).
First, evidence on switching regimes for the time-varying exposures of Brazilian
real/US dollar exchange-rate funds is revealed and, second, an interpretation of the
estimated exposures from the “more appropriate” model is given. The dynamics to
be evaluated for the time-varying restricted exposures are as follows: (1) random
walk, (2) simply autoregressive, (3) autoregressive with abrupt switching regimes,
and (4) nonlinear under a general smoothing transition function. The elected regime-
switching variable for the third and fourth models is the AR(1)-GARCH(1,1)
volatility of the US dollar/real exchange rate.

5.1.2 Competing Models

I now present the analytical expressions of several time-varying asset class factor
models for semistrong dynamic style analysis. In what follows, the reducing method
from Sect. 4.2.2 has been evoked to make the portfolio restriction attainable.

Let us first obtain the expression corresponding to the portfolio restriction on
the state vector, which I will denote in this section by �t and whose coordinates
represent the exposures and Jensen’s measure. To do this, we use steps 1 and 2 of
the algorithm from Sect. 4.2.2:

1 D Œ1 1 : : : 1 0� .ˇt1; ˇt2; : : : ; ˇtm; ˛t /
0

) 1 D ˇt1 C Œ1 : : : 1 0� .ˇt2; : : : ; ˇtm; ˛t /
0

) ˇt1 D 1 � Œ1 : : : 1 0� .ˇt2; : : : ; ˇtm; ˛t /0
) �t;1 D 1 � Œ1 : : : 1 0� �t;2:

We now move on to the measurement equation of the reduced model by making use
of step 3 of the algorithm in conjunction with the last equality obtained previously:

Rct D Rt1ˇt;1 C ŒRt2 : : : Rtm 1� .ˇt2; : : : ; ˇtm; ˛t /
0 C "t

D Rt1 � Rt1 Œ1 : : : 1 0� .ˇt2; : : : ; ˇtm; ˛t /
0

C ŒRt2 : : : Rtm 1� .ˇt2; : : : ; ˇtm; ˛t /
0 C "t

) Rct � Rt1 D ŒRt2 �Rt1 : : : Rtm � Rt1 1� .ˇt2; : : : ; ˇtm; ˛t /
0 C "t

) Rct � Rt1 D ŒRt2 �Rt1 : : : Rtm � Rt1 1� �t;2 C "t :

Finally, combining a rather encompassing state equation with the preceding expres-
sion, we arrive at the following general structure:
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RPt � Rt;1 D ŒRt2 � Rt1 : : : Rtm � Rt1 1� �t;2 C "t ; "t � NID.0; �2Xt/

�tC1;2 D diag
�
T
ˇ
t ; 1

�
�t;2 C �t ; �t � NID.0;Q/

�t;1 D 1 � Œ1 : : : 1 0� �t;2:
(5.2)

We enumerate some features of model (5.2). Firstly, it should be reinforced that
the last coordinate of �t is the time-varying Jensen measure ˛t and the remaining
coordinates are the time-varying exposures ˇt1; ˇt2; : : : ; ˇtm. Secondly, as can be
directly seen from the second line of (5.2), the Jensen measure follows a random
walk. And thirdly, Xt in the measurement error’s variance is some nonnegative
variable that must respond to occasional heteroscedastic behavior, and Q can be
set full. Pizzinga et al. (2011) defend the idea that the impacts on the exposures,
represented by the components of �t , “do ‘communicate’ among themselves –
it would be unreasonable to assume that investment decisions (and hence the
exposures) are related only by the portfolio restriction (which is an accounting
constraint), since they reflect the same underlying shocks.”

The decision toward the random walk for the evolution of the Jensen measure
was justified in Pizzinga et al. (2011) as follows. Although such choice seems
too simple and perhaps “unrealistic” at first glance. Three reasons support such a
judgment. The first is that of parsimony and simplicity, as there is no additional clue
to guide one in choosing a more complex dynamic. The second is the allowance for
the possibility of fundamental selectivity changes over time due to nonstationarity.
The third is almost surely nonexplosiveness since for “large” series the smoothed
Jensen measure must intercept the time x-line infinitely often with probability 1
(cf. Chung 2001, Chap. 8).

The remaining part of model (5.2)’s specification lies on the transition submatrix
T
ˇ
t � diag .�t2; : : : ; �tm/, which drives the evolution of the unrestricted block

of time-varying exposures in �t;2. Let us first enumerate the possibilities to be
investigated and, in the sequel, give appropriate rationalities to each of them:

1. Random walk (RW ): T ˇt � I.m�1/�.m�1/.
2. Purely autoregressive (AR): T ˇt � diag .�2; : : : ; �m/, where j�i j < 1 for all i .
3. Autoregressive with abrupt switching regimes: some diagonal entries of T ˇt take

the form �i1 C �i2dti , where dti D 1 if some exogenous variable zt assumes
certain values and dti D 0 otherwise.

4. Nonlinear under a general smoothing transition function: some diagonal entries
of T ˇt take the form �i;1 C �i;2zt C �i;3z2t , where zt is some exogenous variable.

The first model is clearly the most parsimonious and has already been used by
Pizzinga et al. (2008b) within this same style analysis framework. According to
Swinkels and Van der Sluis (2006), this specification should be used if one believes
that exposures can increase or decrease over time when responding to shocks (that
turn out to exert a permanent effect). In contrast, if one believes that exposures
can deviate for some time from normal (or “steady-state”) levels but will forcefully
come back to them (which means that shocks exert a transitory effect), then a variant
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like the second model should be used. As pointed out by Pizzinga et al. (2008b),
two Brazilian real/US dollar exchange-rate funds had their time-varying Jensen
measures and exposures analyzed. As was already indicated, exposures estimated
under this framework seem to follow two different patterns, one during the months
near the 2002 Brazilian presidential election (when exposures to US dollar/real
markets appeared to be more erratic and less persistent), and the other during the
remaining months (in which exposures were much more stable). This “stylized
fact” was interpreted as a suggestion that more sophisticated dynamics (especially
regime-switching models) should be considered.

The second model captures situations in which managers try to target “steady-
state” exposures. When compared with the first model, the number of parameters
grows by m � 1 autoregressive coefficients. Since the eigenvalues of T ˇt have ab-
solute values strictly smaller than 1 (one), nonstationarity or “explosive” behaviors
for the exposures are ruled out, which is something that brings some inferential
attractiveness. In addition, this second model can be understood as a bridge to the
last models.

The third and fourth models undoubtedly add complexity to the process of
parameter estimation but are justified by their ability to capture the state-dependent
behavior of managers and investors (which generates the aforementioned possibility
of multiple regimes in exposure dynamics). One might recall that the nonlinear
processes used here are respectively the threshold autoregressive (TAR) model
and a general smoothing transition autoregressive (STAR) model, in which the
second-order polynomial on zt is an attempt to approximate a more general
“smooth” transition function. For a comprehensive treatment of these types of
regime-switching proposals outside the state space framework, see Enders (2004).
Carefully note that, even though they are nonlinear processes (i.e., there is no
corresponding Gaussian nor i.i.d. Wold decomposition – cf. Brockwell and Davis
1991, 2003), these choices for the state equation still provide us with a Gaussian
“linear” space model. Once these dynamics are postulated to the state equation,
parameter estimation can be accomplished under the usual paradigm of maximizing
the prediction error decomposition form of the likelihood (see, for example, Harvey
1989, Chap. 3; and Durbin and Koopman 2001, Chap. 7).

5.1.3 Model Selection

As there are four ways to describe the time-varying exposures, we must discuss how
to decide in practice which model seems to be the most appropriate one. We adopt
the following selection mechanism:

• Likelihood-ratio (LR) tests to validate or refuse the nonlinear proposals 3 and 4.
• Information criteria such as AIC and BIC.
• Predictive power by comparing pseudo-R2 and MSE measures.
• Diagnostic tests over the standardized innovations.
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The listed strategies were fully discussed in Harvey (1989), Chap. 5. Here, the
null for the LR test will beH0: “The parameters associated to the switching regimes
are all zero.” Consequently, our test aims at comparing the “reduced” model 2
with the “complete” models 3 and 4. There is strong theoretical evidence that,
asymptotically, LR D 2

�
logLMax;Comp � logLMax;Red

� � 
2k , where k is the
number of parameters set to zero under the null, since at least the reduced model
maintains the standards for good properties of maximum-likelihood estimation (cf.
Pagan 1980).

5.1.4 Empirical Results

The asset class indexes were the CDI (the average rate charged in overnight
transactions between depository institutions), the US dollar/real exchange rate (in
percentage points), and observed variations in two financial indicators, Quantum
Cambial and Quantum Fixed Income. The data comprise 209 observations on
weekly returns from 2001 to 2004 and were obtained from Quantum Axis (www.
quantumfundos.com.br). Two US dollar/real exchange-rate funds inside the Brazil-
ian industry were considered: HSBC Cambial FIF and Itau Matrix US Hedge FIF.
Since the fund Itau Matrix US Hedge FIF was bought by another fund – Itau B
Cambial FI – at the end of 2004, the corresponding estimation was implemented
with data up to the first week of November 2003 (149 observations). Additional
information can be obtained at the National Association of Investment Banks (www.
anbid.com).

The covariance matrix Q [cf. the state equation in (5.2)] was considered full in
all the estimations. The Xt heteroscedastic variable [cf. the measurement equation
of (5.2)] was chosen to be the US dollar/real AR(1)-GARCH(1,1) volatility in
the analyzed period, and its standardized version was used as the zt switching
regime variable for the exposures to the US dollar/real exchange rate and the
Quantum Cambial. The dummy variable dt from the TAR specification takes 1
whenever zt � 1:3, and 0 otherwise. This calibration was chosen to capture the
period of high volatility, which took place from the last week of September 2002
(located around the 90th observation) to the third week of February 2003 (located
around the 110th observation). An estimate of the threshold value could have been
attempted, but that would have demanded more periods of high volatility in the data.
Figure 5.1, which helps in recognizing these patterns, also illustrates what happened
throughout the period. Note that the second half of 2002 was marked by a confidence
crisis that surged on the eve of the Brazilian presidential elections. This crisis
found very fertile ground in which to grow due to fears about the macroeconomic
policies that could follow the election of the candidate leading in the polls, Luis
Inacio Lula da Silva. When agents perceived that a Lula administration would
not change economic fundamentals like the floating exchange rate and inflation-
targeting regimes, expectations about future economic developments became more
favorable, financial market indicators turned positive, and volatility dropped.

www.quantumfundos.com.br
www.quantumfundos.com.br
www.anbid.com
www.anbid.com
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Fig. 5.1 US dollar/real volatility under the AR(1)-GARCH(1,1) model

Table 5.1 Results from estimations with HSBC FIF Cambial

Attribute RW AR TAR STAR

Log-likelihood �149.462 �148.124 �143.421 �143.657
Computational time 0.61 3.85 6.76 10.66
Pseudo-R2 0.905 0.907 0.905 0.905
MSE 0.549 0.534 0.545 0.550
AIC 1.516 1.561 1.554 1.576
BIC 1.756 1.801 1.858 1.912
Linearity LR test – – 9.406 (0.009) 8.935 (0.063)
Ljung–Box test (30 lags) 54.984 (0.004) 52.910 (0.006) 61.172 (0.001) 51.236 (0.009)
Homoscedasticity F test 0.435 (0.010) 0.481 (0.02) 0.384 (0.003) 0.442 (0.011)
Jarque–Bera test 18.694 (0.000) 18.478 (0.000) 60.247 (0.000) 11.182 (0.004)

Upon careful inspection of the information presented in Tables 5.1 and 5.2,
several points emerge. Looking first at the computational efficiency, it is clear
that the computation times, even though larger for the nonlinear proposals, remain
essentially negligible. This could be of great value should one try to use/implement
these dynamic style-analysis proposals in practice.

Moving further, one should note that the predictive power of the competing
proposals gives us no clue as to which model is the most adequate – it seems that,
for these particular estimations, all models can reproduce the data almost under
similar capabilities (cf. pseudo-R2 and MSE measures). Also, the use of AIC and
BIC criteria is of no help in deciding which model should be considered since none
of them is much larger – or smaller – than the others.
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Table 5.2 Results from the estimations with Itau Matrix US Hedge FIF

Attribute RW AR TAR STAR

Log-likelihood �243.201 �242.417 �234.786 �233.996
Computational time 0.33 0.77 11.1 5.44
Pseudo-R2 0.697 0.679 0.761 0.684
MSE 3.008 3.029 2.366 3.009
AIC 3.489 3.479 3.430 3.446
BIC 3.793 3.782 3.814 3.871
Linearity LR test – – 15.262 (0.000) 16.841 (0.002)
Ljung–Box test (30 lags) 32.144 (0.361) 37.576 (0.161) 31.757 (0.379) 37.376 (0.166)
Homoscedasticity F test 0.670 (0.210) 0.899 (0.738) 0.944 (0.857) 0.779 (0.434)
Jarque–Bera test 6.286 (0.043) 4.242 (0.120) 7.412 (0.024) 2.618 (0.270)

The diagnostic tests in the last three lines, which were applied with the standard-
ized innovations, though, uncover important aspects. They actually indicate that,
in terms of basic model assumptions, the STAR proposal systematically behaves
better than the others. This is an indication that, in the analyzed period, exchange-
rate exposures were driven by some switching regime nonlinear process.

Finally, looking at the results from the LR linearity test, there is evidence, at
least under a 10% significance level, that the STAR specification is supported by
the data.

Taking into account these findings, there is no option left but to accept, among the
four considered proposals, the STAR model as the best description of the exposures
to the exchange-rate markets.

Figures 5.2 and 5.3 depict time plots for the restricted Kalman smoothing
estimates of Jensen’s measure and of the exposures to US dollar/real exchange-rate
spot markets and Quantum Cambial. Visual inspection suggests that the investment
strategy followed by the managers of HSBC FIF Cambial is such that exposures to
US dollar/real exchange-rate spot markets were negligible throughout the sample,
except during the period of higher volatility, when a significant long position
was taken. Furthermore, exposures to Quantum Cambial were always significant,
hovering around a share of approximately 75% of the portfolio throughout the
period. This outcome probably reflects preventive measures taken by fund managers
during the crisis, which protected the portfolio against the losses caused by the
decrease in the market value of dollar-indexed bonds issued by the Brazilian
government. Managers of Itau Matrix US Hedge FIF, in turn, followed an investment
strategy in which the exposures to US dollar/real exchange-rate spot markets
hovered around 75 to 80% of the portfolio throughout the sample (even though
the large confidence intervals observed during the period prevent ascertaining this);
on the other hand, exposures to Quantum Cambial were negative and significant at
several occasions.

Now, looking at the information extracted by the model on selectivity skills by
analyzing the time path of Jensen’s measure, the graphs at the top of Figs. 5.2
and 5.3 suggest that managers of HSBC FIF Cambial and Itau Matrix US Hedge
FIF revealed a slight tendency to generate gains during the period marked by the
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Fig. 5.2 Smoothed STAR exposures and Jensen’s measure for HSBC FIF Cambial with respec-
tive 95% confidence intervals
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Fig. 5.3 Smoothed STAR exposures and Jensen’s measure for Itau Matrix US Hedge FIF with
respective 95% confidence intervals
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confidence crisis. One can understand these facts concerning HSBC and Itau funds
by recalling that it is precisely during periods of increased volatility that managers
have significant profit opportunities by engaging in high-frequency operations (e.g.,
day-trade transactions).

5.2 Case II: Estimation of Dynamic Exchange-Rate
Pass-Through

5.2.1 Motivation

In this section, linear state space models are proposed to estimate the pass-through
of Brazilian price indexes against the US dollar/real exchange rate from 1996 to
2005. The methodological framework encompasses the reduced restricted Kalman
filtering from Sect. 4.2, which permits one to check some economic hypotheses. The
results of this section were featured originally in Souza et al. (2011).

In an open economy, domestic prices can be affected by external shocks, whether
from relative currency price adjustments or from movements of international
supply and demand. The exchange rate is a quite volatile economic variable in
macroeconomic policy. How much does the exchange rate affect the economy?
One of the faster channels is into prices. This channel is called the exchange-rate
pass-through. Few studies have been conducted on this effect in Brazil in which the
response of prices to a change in the exchange rate is suitably examined.

The importance of pass-through estimation has increased since the adoption of
inflation-targeting regimes (cf. Fraga et al. 2003) and the recognition that it is crucial
for inflation forecasting. In addition to these motivations, there is some evidence of
a time-varying pass-through, though few studies have considered this assumption.
Indeed, as Parsley (1995) points out, the stability of exchange-rate pass-through
has not been well tested in common econometric specifications of pass-through
equations.

The three main objectives of Souza et al. (2011), which are replicated here, are
to decide whether models of null (or full) pass-through are acceptable to the price
indexes investigated; to carry out likelihood ratio tests for the significance of some
exogenous economic variables, which will be termed determinants in this paper and
which are theoretically associated with the pass-through; and to analyze the behavior
of the estimated pass-through from the best models.

According to Menon (1996), Taylor (2000), and Campa and Goldberg (1995),
the main drivers of price sensitivity to exchange-rate changes can be inferred. In
light of the literature with a macroeconomic approach, the pass-through depends on
inflation persistence, the degree of openness of the economy, the output gap, and
real exchange-rate disalignments. From the standpoint of disaggregated analysis,
the exchange-rate pass-through is also associated with the degree of competition of
each industry and with firms’ market power (with the elasticity price-demand).
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In light of the considerations of the last paragraph, Souza et al. (2011) proposed
the following state space model for the exchange-rate pass-through for a given index
price:

� log pt D
mX
kD1

ˇkt� log et�k C  0 C  1� log.apt /C �t ; �t � NID.0; �2/; (5.3)

ˇtC1 D ˇt C �1� log.IPAt /1q�1 C �2� log.ipt /1q�1
C�3� log.ret /1q�1 C �4� log.ot /1q�1 C �t ; �t � NID.0;Q/: (5.4)

The first equation linearly relates the observed monthly log-variation of price to the
log-variation of exchange rate until time t � m and to an exogenous variable, the
log-variation of the American price index, apt . The coefficients of � log et�k in
Eq. (5.4) are the state coordinates, which represent the components of the pass-
through (their sum is termed long-run pass-through) and whose dynamics are given
in Eq. (5.4), which also sets the impact from the following determinants: IPA series
that represents the inflationary environment; ipt is the industrial production index,
ret is the exchange-rate disalignment, and ot is the openness of the economy. The
matrix Qm�m is set diagonal, even though the components from the pass-through
(i.e., the state coordinates) do maintain degrees of dependency due to the presence
of common determinants in the state equation.

Reduced restricted Kalman filtering must be evoked to make the restrictions
of full pass-through (

Pm
iD1 ˇit D 1) and of null pass-through (

Pm
iD1 ˇit D 0)

attainable. The completeness of the exchange-rate pass-through (the first restriction)
means that all the variation of the exchange rate is passed to the domestic
prices. This is key from the standpoint of economic theory since it means that
the purchasing power parity (PPP) hypothesis is acceptable. On the other hand,
accepting that the null exchange-rate pass-through model is the most adequate
scenario implies that exchange-rate movements do not have any effect on domestic
prices, and so the monetary authority need not be concerned with exchange-rate
movements to make monetary policy with such price indexes.

In addition to verifying the hypotheses of completeness (or absence) of
exchange-rate pass-through, another purpose of this application is to identify the
most adequate number of lags of the exchange rate, that is, the value of m. For this,
the same steps listed in Sect. 5.1.3 will be used.

Finally, the significance of the parameters  0,  1, �1, �2, �3, and �4 will be
tested under a likelihood ratio (LR) testing approach. Since both the reduced
and the complete model maintain the standards for good properties of maximum-
likelihood estimation (cf. Pagan 1980), it follows that, asymptotically, LR �
2

�
logLMax;Comp � logLMax;Red

� � 
21, in which logLMax;Red represents the
maximum of the log-likelihood for a model with a particular explanatory variable
dropped from the specification.
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Fig. 5.4 IPA smoothed betas

5.2.2 Empirical Results

The analyzed data contain monthly observations from August 1999 to January
2007 of the Brazilian wholesale price index (IPA), the Brazilian consumer price
index (IPC), the American price index, the exchange rate between the Brazilian
real and the American dollar, the Brazilian industrial production index, and a
measure of openness, which is the sum of imports and exports as a proportion of
the GDP. The decision to use data since August 1999 is justified by the inflation-
targeting system adopted by the Banco Central (counterpart to the American Federal
Reserve in Brazil) in June 1999. The data were obtained from IPEA Data (www.
ipeadata.gov.br), and each estimation took less than 2 s, something that highlights
the computational efficiency of the adopted state space framework.

5.2.2.1 Overall IPA

The most adequate model for the IPA series is a model with seven lags on the
exchange rate. Even though only the first four state vector coordinates (that is,
the first four components of the pass-through) have a confidence interval that does
not contain zero, the decision to retain seven lags was based on the lack of serial
correlation for the residuals. Figure 5.4 shows the evolution of the coefficients
over time. The pseudo-R2 D 0:64 suggests that the model provides a reasonable

www.ipeadata.gov.br
www.ipeadata.gov.br
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Table 5.3 IPA information
criteria of unrestricted and
restricted models

Criterion Unrestricted
P7

iD1 ˇi;t D 0
P7

iD1 ˇi;t D 1

AIC 3.000 3.746 4.326
BIC 3.583 4.274 4.854

Table 5.4 IPA estimated parameters, with corresponding p-values in parentheses

 1 �1 �2 �3 �4

0.001 (0.999) 0.000 (0.999) 0.001 (0.999) 0.001 (0.505) 0.000 (0.999)

adjustment for the IPA. The long-run pass-through given in Fig. 5.5 has some
variation when we compare the beginning of the sample to the end with an edge
at 2002, the year of elections preceding the Lula administration in Brazil, a period
of great volatility in the exchange rate.

The restricted models were estimated to verify whether the hypothesis of null and
full exchange-rate pass-through had support from the data. The information criteria
shown in Table 5.3 provide no evidence that these extremes allow a better fit. The
LR significance tests are given in Table 5.4. The p-values reveal no evidence that
the proposed determinants help to explain the behavior of the pass-through.

5.2.2.2 First-Level IPA Disaggregation

To evaluate the disaggregation effects on the exchange-rate pass-through, Souza
et al. (2011) considered its estimation for some groups of products. The first level
of disaggregation splits the overall IPA into two main groups: consumption and
production goods.
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Table 5.5 IPA consumption-estimated parameters, with corresponding p-values in
parentheses

 1 �1 �2 �3 �4

0.561 (0.000) �0.0004 (0.000) 0.012 (0.061) 0.005 (0.006) �0.002 (0.347)

The more adequate model for the IPA consumption series has only a lag in the
exchange rate since it has the lower information criteria values and its residuals
show no serial correlation. The pseudo-R2 D 0:62 provides evidence in favor
of goodness-of-fit. Since the decision to have only one lag for the exchange rate,
the short- and long-run exchange-rate pass-through is the same. Its variation over
time can be seen in Fig. 5.6. During 2002, the exchange-rate pass-through presented
higher values compared to the rest of the sample period, probably due to the same
explanations already given. Also, there is some indication of seasonal patterns since
the pass-through seems to be close to zero at the very beginning of each year.

As shown in Table 5.5, the LR significance tests reveal that three proposed
determinants are supported by the data. In addition, the inertial parameter  1 is
statistically significant for the measurement equation.

As happened with the IPA consumption series, the most adequate model of the
IPA production series was the model with only one lag in the exchange-rate pass-
through. Again, the high value of the pseudo-R2 D 0:729 provides us with some
confidence that the model fits the data in a proper way. The pass-through variation
over time can be seen in Fig. 5.7. This indicates some aspects similar to those found
in the previous analysis, except for the lack of evidence on seasonality.
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Table 5.6 IPA production-estimated parameters, with corresponding p-values in
parentheses

 1 �1 �2 �3 �4

0.590 (0.000) �0.001 (0.699) 0.002 (0.000) 0.002 (0.000) �0.001 (0.823)

The LR significance tests shown in Table 5.6 provide us with two statistically sig-
nificant determinants. Still, the inertial parameter 1 is again statistically significant
in the measurement equation.

5.2.2.3 IPC

The model adjusted with two lags in the exchange rate shows that the IPC does not
seem to be responding to the exchange-rate movements. As can be seen in Fig. 5.8,
the states corresponding to all lags vary around zero within the whole sample period.
The long-run pass-through presented in Fig. 5.9 also oscillates around zero. This will
be taken as the first symptom of an absence of pass-through, and this is reinforced
by the application of restricted Kalman filtering since the model with a null pass-
through restriction has the best information criteria (Table 5.7).
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Table 5.7 IPC information
criteria of unrestricted and
restricted models

Criterion Unrestricted
P2

iD1 ˇi;t D 0
P2

iD1 ˇi;t D 1

AIC 2.838 2.801 5.291
BIC 3.144 3.051 5.541
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5.3 Case III: GDP Benchmarking Estimation and Prediction

5.3.1 Motivation

I close the applications of this book by revisiting the GDP quarterly prediction
considered in Pizzinga (2010). Here is the setting. There are two series, a quarterly
series of GDP that is subject to measurement error and an annual total series of
the same economic variable that is “accurately” recorded. The goal is to produce
a quarterly GDP free from those measurement errors, and this is should be
accomplished by conveniently using the information from the annual totals. This
is in fact a benchmarking problem, and its general formulation was examined in a
rather comprehensive state space fashion by Durbin and Queenneville (1997) and
revisited in Durbin and Koopman (2001), Chap. 3.

5.3.2 Model Setup

Here the focus is on making predictions under this benchmarking framework that
will generate quarterly predictions based on GDP free from measurement error
and under consistency (that is, the estimated quarterly GDP must sum up to the
annual GDP totals). For this purpose, Pizzinga (2010) use the restricted Kalman
predictor of Sect. 4.3 with an alternative state space form. This representation
is an augmented state space model whose augmentations only appear in time
period multiples of 4 (four): that is, in these time periods the information from
the annual GDP totals is attached to the measurement equation (this makes use
of the time- and size-varying flexibility of augmented restricted Kalman filtering).
In this sense, the measurements would be Yt if we “are not” in 4i and .Yt ; Xt/

0
if we “are” in 4i , where Yt represents some quarterly GDP, Xt represents the
total GDP of some year, and i D 1; 2; : : : . The state vector would be ˛t �
.�t ; �t�1; �t�2; �t�3; �t ; �t�1; �t�2; �t�3; "t ; "t�1; "t�2; "t�3; �t /0, where �t is a lo-
cal level, �t is a dummy seasonal effect, "t is a Gaussian white noise irregular
component, and �t represents the AR.1/ measurement error. In addition, one must
set Ht � 0, dt � 0 and ct � 0. Finally, verify below the Zt matrices for this
alternative restricted state space form:

Zt D

8̂
<̂
ˆ̂:

�
1 0 0 0 1 0 0 0 1 0 0 0 1

�
; if t ¤ 4i; i D 1; 2; : : :

�
1 0 0 0 1 0 0 0 1 0 0 0 1

1 1 1 1 1 1 1 1 1 1 1 1 0

�
; if t D 4i; i D 1; 2; : : :

The matrices Tt � T and Rt � R and Qt � Q are obvious and are omitted to
save space. Observe that the specification is based purely on the structural modeling
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Table 5.8 Results of
benchmarking prediction

Year/quarter 1st 2nd 3rd 4th Annual total

1995 1,066 1,153 1,129 1,096 4,444
1996 1,030 1,165 1,167 1,139 4,502

framework (see Harvey 1989, Chap. 2) for the quarterly GDP series. Also notice
that the theoretical consistency correction acts on a time index multiple of four.
From Theorem 3.1 and from the computational algorithm described at the end of
Sect. 4.3, the empirical consistency correction is achieved with in-sample and out-
of-sample periods (the latter would be the prediction) whenever Kalman updating
and smoothing equations actuate on a series extended in the way proposed in (4.10)
(notice that qt D Xt for every t multiple of 4).

5.3.3 Empirical Results

To illustrate the proposed benchmarking prediction model, Pizzinga (2010) applied
it to the Brazilian GDP series constructed by the methodology proposed in Cerqueira
et al. (2009). This original series was obtained from IBGE (www.ibge.gov.br) and
IPEADATA (www.ipeadata.gov.br).The model estimation was performed using 140
observations ranging from the first quarter of 1960 to the fourth quarter of 1994, a
21.7-s task. In the sequel, a restricted Kalman predictor for the next 2 years using
the annual totals of 1995 and 1996 was used to satisfy the consistency restrictions.
Table 5.8 presents the prediction results. The reader can easily confirm that the
predicted quarterly GDP is consistent with the annual totals.

www.ibge.gov.br
www.ipeadata.gov.br


Chapter 6
Further Extensions

At the end of this book, I list some potential research themes about restricted
Kalman filtering. Some of them may already be under investigation.

Firstly, I cite additional theoretical points that sound interesting within the theme.
These are as follows:

• A study on state observability and parameter identification, which are two
important issues to firmly establish the inferential grounds for state space models
under linear restrictions.

• A formal investigation into the possible connections between the results in Simon
and Chia (2002) and the proofs of restricted Kalman filtering revisited in this
book.

• Formal analytical or Monte Carlo investigations into how the presumed
additional information due to the use of augmented restricted Kalman filtering
translates into improvements for (quasi) maximum-likelihood estimators.

• Derivation of results on combining diffuse initialization and linear restrictions
under the approach by de Jong and Chu-Chun-Lin (2003) and, consequently, an
analysis of how the new assumptions needed are more or less stringent than those
considered in Sect. 3.4.

Now, I concentrate on additional methods:

• Implementation of an extended restricted Kalman filtering to obtain not only
nonlinear equality constraints but also inequality constraints. In this respect,
specific topics of interest would be the investigation of the convergence of this
extended approach and how this should be combined with quasi maximum-
likelihood estimation for fixed parameters.

• Derivation of new tests for coefficient stability under linear restrictions, for which
the material from Sect. 3.3 could be of some value.

Lastly, I believe the following applications would be relevant to further illustrate
and validate already developed methodologies.

A. Pizzinga, Restricted Kalman Filtering: Theory, Methods, and Application,
SpringerBriefs in Statistics 12, DOI 10.1007/978-1-4614-4738-2 6,
© Springer Science+Business Media New York 2012
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• Estimation of a dynamic factor model with an exact smoothing transition
coefficient under the same linear and interpretable portfolio restrictions and also
under some linear restrictions regarding leverage/hedge.

• Formulation and estimation of multivariate benchmarking models aimed at
prediction.
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