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Preface to the Series 

Springer's Selected Works in Probability and Statistics series offers scientists and 
scholars the opportunity of assembling and commenting upon major classical works in 
statistics, and honors the work of distinguished scholars in probability and statistics. 
Each volume contains the original papers, original commentary by experts on the 
subject's papers, and relevant biographies and bibliographies. 

Springer is committed to maintaining the volumes in the series with free access of 
SpringerLink, as well as to the distribution of print volumes. The full text of the volumes 
is available on SpringerLink with the exception of a small number of articles for which 
links to their original publisher are included instead. These publishers have gra-
ciously agreed to make the articles freely available on their websites. The goal is 
maximum dissemination of this material. 

The subjects of the volumes have been selected by an editorial board consisting of 
Anirban DasGupta, Peter Hall, Jim Pitman, Michael Sorensen, and Jon Wellner. 
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Preface 

When I was asked to put together a Selected Works volume for David Brillinger, 
I never even considered saying no. But I realized that the hardest part of the job would 
be to convince David to let me do it. "The question that I keep asking myself is 'Is that 
really me?'" he wrote to me. But eventually he relented, when I argued that this would 
make some of his interesting papers, that are now hard to find, available to everyone. 
He started sending me thick envelopes full of papers. Going through all of them was 
pure joy. The breadth of David's contributions is incredible. Selecting which 600 pages 
out of the 224 entries in his bibliography (when I write this-when you read it there are 
undoubtedly more) to include was not so much joy. Some of his richest papers are just 
too long ([104] with Tukey, Spectrum analysis in the presence of noise: some issues 
and examples, is 141 pages, but can be found in Tukey's Collected Works that David 
edited; [53] Comparative aspects of the study of ordinary time series and of point 
processes is 101. Both these papers are full of new ideas, many of which have not yet 
been fully developed). However, after a sequence of emails and a long session at a 
Berkeley coffee shop, we agreed on the current selection. It was fortunate that Victor 
Panaretos' interview with David for Statistical Science was finished during this 
process, and could be included in this volume. 

The selection contains all of David's named lectures (Wald, Fisher, Herzberg, Hunter 
and Neyman), in which he carefully presents material from his research, always con-
taining important answers to scientific questions and illustrated with LOTS of pictures. 
In addition, there are papers from his main methodological areas: time series and point 
processes; and from his three main scientific interests: neurophysiology, seismology 
and population biology. We tried to make sure that there were papers with the main 
people he has worked with: Bruce Bolt, Jose Segundo, Alan Ager, Brett Stewart and 
Haiganoush Preisler. Some important work, for example his papers in demography, or 
on using wavelets, there simply was not room for. As I said, his scientific work is very 
broad. 

I was fortunate to have both Jerzy Neyman and David Brillinger as teachers and 
advisers. The principal lesson I learned from both of them is the importance of working 
hard at understanding the science behind the questions you are trying to address. 
Collaboration is key to modern statistical science. 
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x Preface 

In finding appropriate researchers to comment on David's papers I needed not go 
beyond his list of former PhD students (39 at last count). David's more theoretical 
work is discussed by Victor Panaretos (PhD 2007), a Greek working in Switzerland. 
Time series papers are discussed by Pedro Morettin (PhD 1973) from Brazil, a country 
David loves and visits as often as he can. Some biological papers are addressed by Tore 
Schweder (PhD 1975) from Norway, another country that David frequently visits, 
assisted by Haiganoush Preisler (PhD 1977), a Palestinian working in the US, while I 
(PhD 1980), a Swede working in the US, deal with point processes, neurophysiology 
and earth sciences. 

David is a very close friend of mine. Apart from statistics, we share interests in poli-
tics, hockey, and soccer, which we discuss at great length in person or briefly in emails. 
When he recently was selected as honorary member of the Canadian Statistical Society, 
he remarked to me "Somehow that's all about another person. I am just me, a kid from 
Toronto who a lot of people have helped." Well, the kid from Toronto is a member of 
the Canadian, Brazilian and Norwegian Academies, has three honorary doctorates, and 
a share of the Nobel Peace Prize for work done for the IPCC [112]. Not only is he a 
most accomplished scientist, but he is the epitome of the modern statistical scientist. 

So David, this is for you. We all hope you will enjoy it. Thanks for teaching us what 
a statistician can and should be, being there for us to talk about science, soccer, and 
survival, writing poetry in a dissertation or signing in Hollerith. We owe you so 
much. 

Peter Guttorp 
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Statistical Science Interview 

A Conversation with David R. Brillinger 
Victor M . Panaretos 

Ecole Polytechnique Federate de Lausanne 

Abstract. David Ross Brillinger way born on the 27th of October 1937, 
in Toronto, Canada. In 1955, he entered the University of Toronto, 
graduating with a 13.A. with Honours in Pure Mathematics in 1959, 
while also serving as a Lieutenant in the Royal Canadian Naval Re-
serve. He was one of the five winners of the Putnam mathematical 
competition in 1958. He then went on to Obtain his M.A. and Ph.D. 
in Mathematics at Princeton University, in 1960 and 1961, the latter 
under the guidance of John W, Tukey. During the period 1962-1964 he 
held halftime appointments as a Lecturer in Mathematics at Prince-
ton, and a Member of Technical Staff at Bell Telephone Laboratories, 
Murray Hill, New Jersey. In 1961, he was appointed Lecturer and, two 
years later. Reader in Statistics at the London School of Economics. 
After spending a sabbatical year at Berkeley in 1967-68, he returned to 
become Professor of Statistics in 1970, and hits been there ever since. 
During his -10 years (and counting) as a faculty member at Berkeley, 
he has supervised 40 doctoral theses. He has a record of academic and 
professional service and has received a number of honors and awards. 

This conversation took place on September 9th 2009, 
in the Swiss Alps of Valais, during David's visit to 
give a doctoral course on "Modeling Random Tra-
jectories" in the Swiss Doctoral School in Statistics 
and Applied Probability. 

1. GROWING UP IN TORONTO 

Vic to r : 1 suppose this is an interesting setting to be 
doing this, as one story would suggest you originally 
come not from very far from here... 
David: Indeed! Now I don't know the specifics, but 
there were Brillingers in Basel at the end of 1400's. 
Once wc were in Zurich, at Peter Buhlmann's invi-
tation, and we saw a statue that was close: B-U-L-
L-I-N-G-E-R. Now, the Brillingers in Basel became 
protestant at the time of Martin Luther. The next 
time I find them is in the 1700's when Brillingers 

Victor M. Panaretos is Assistant Professor of 
Mathematical Statistics, Institut de Mathematiques, 
Ecole Poly technique Federate de Lausanne. 
EPFL-IMA-SMAT Station 8, 1015 Switzerland 
(e-mail: victor.panaretos&'epfl. ch). 

went to Pennsylvania as Mennonites. They finally 
got up to Canada after the American Revolution. 
They were the original draft dodgers. You sec then, 
in America, men had to be in the militia, but the 
Brillingers were pacifists. So they went to Ontario 
where they could practice their religion as they 
wished. So I'd like to think that there is some Swiss 
background and presumably it would have been 
through some great-great uncle who was "R.ektor* 
of the University of Basel. 
V ic to r : I see, I see, so it would then be Brillinger 
[German pronunciation] rather than Brillinger 
[French pronunciation]? 
David: That 's right. And you Victor told me that 
you've seen a truck on the Swiss highway with 
Brillinger on it. Also Alessandro [Villa] told rne he 
saw a mailbox with Brillinger on it, or something 
like that. 
V ic to r : Jumping much further into the future: yon 
grew up in Canada. 
Dav id : Yes! 
Vic to r : Could you tell us a hit about your family? 
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David: My father died let's just work it out when 
I was 7 months old, so this was very harsh on my 
mother. She woke up in the middle of the night 
and he seemed to be in some trouble, but then she 
fell back asleep and I think she felt guilty about 
that ever after. I doubt there was anything that 
could have been done back then because he died of 
a cerebral hemorrhage. I wish I could have gotten 
to know them together better. You know, they had 
their house, a cottage, a dog and so on. They had 
a Harley motorcycle and went off on that on their 
honeymoon, they had a sailing canoe... Lakes, and 
Canadian things were very much part of their lives. 
My mother was actually a very beautiful woman, 
when you see the pictures, with smiles [Figure 1]. 
But the smiles mostly disappeared after my father's 
death. Then, it was World War II times and most 
of the men were gone. It's hard for me to imagine 
she wouldn't have remarried. But it just never hap-
pened. 

She really cared a great deal about my education 
and structured things so that I got a fine education. 
At the start, there was a bit of money because my 
father was going to be an actuary, so she had some 
insurance money. I went to a private boys' school in 
Toronto until the money ran out. Then, there was 
this school for bright kids in Toronto, the University 
of Toronto Schools (UTS). 1 took the exam and got 
into it. UTS was very important for me. I should 
mention that my maternal grandmother was also 
very important, and perhaps she raised me. She had 
had her husband die in the great flu epidemic and 
found herself with five children to raise. So I had, 
I think, a beginning that made me appreciate be-
ing alive and not really expecting too much to come 
from it. 1 really have been pretty content and non-
aggressive about things in my life and feel very lucky. 
You know, all four of my uncles and I've decided 
they were my role-models- were taxi cab drivers at 
some point in their lives. The way they could just 
talk to anybody and the way they engaged people, 
to some extent formulated the way I have become. 1 
had a lot of paying jobs as I was growing up includ-
ing eaddying, delivering prescriptions, salesperson in 
a small shop. 

I had a lot of cousins that were important to inc 
because 1 didn't have siblings. And there were a lot 
of wonderful mother's side familv gatherings. So, I 

don't think I really thought about not having a fa-
ther when young, but I do wish I could have asked 
my father certain questions since we did not have 
much contact with the Brillinger side of the family. 
That was a shame. 
Vic to r : Did you have any influential teachers at 
school? 
David: Oh, yes! There is one very influential teacher 
who taught me when I was at Upper Canada College 

that was the private boy's school. 1 had not started 
the year there and when I transferred, he found out 
that I was not very good at fractions. So, he spent-
some time tutoring me. Now he was also an impor-
tant person in Ontario hockey. And after tutoring 
me he came in the class one day and said he had 
5 hockey rulebooks and he was going to give one 
of them to whoever answered a mathematical prob-
lem first. So first question, my hand went up, one 
rulebook; second question, second rulebook: third 
question, third rulebook! So he said "David that 's 
it, you can't get anymore of those"! I really learned 
I was good at sports. Or no, actually, I wasn't good 
at sports, I was good at math, but I was very moti-
vated when it came to sports! [laughs]. The teacher's 
name was H. Earl Elliott . 
Vic tor : And those were the same rulebook? 
David: [laughs] Oh yes! I don't know what I was 
going to do with all of them! He had not specified 
any rules, so I had three and gave my cousins two! I 
had realised I was good at math, and I loved work-
ing on math problems, A lot of books had problems 
without the solutions in the back. I had a lot of fun 
doing them. Perhaps I had more time to do that 
because the weather was bad in the winter and I 
did not have siblings. Afterwards, I went to UTS. I 
said that was for bright kids, but part of the def-
inition of "bright kids" then was being male [both 
laugh]... Luckily things changed, although UTS no 
longer wins the Toronto high school hockey champi-
onship like it used to! I had a very influential math-
ematics teacher there. Bruce McLean. He was also 
the hockey coach and is still alive. He would just let 
me work at the back of the room on my own. Every-
body else was up towards the front, but he would 
just leave me alone at this table and bring these 
books full of problems, [e.g. Loney (1930)]. Statistics 
was one of the topics. And there were these British 
problems that vou've probably seen in the Tripos, 
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But at the end of the meal he got this incredibly se-
rious look on his face. So I 'm thinking "What's this 
all about?" And he says "David, when you were at 
school, there was something I really worried about, 
I worried about it for a long time". So I 'm sitting 
there with my eyes rolled back and wondering. He 
continued "I really wanted you on the hockey team, 
but there mire a lot of good players that year!" [both 
laugh]. I just grin when I remember that. And indeed 
the team was good. They won the Toronto champi-
onship. I just wanted to get the sweater, go to prac-
tice, and, if we're winning 7-2, get to skate around 
a bit. But I had to wait until Princeton to do that. 

2. UNIVERSITY OF TORONTO AND THE 
CANADIAN NAVY 

Vic to r : You mentioned before that you were in the 
Navy, can you tell us a bit more about that? 
David: That was at University. I knew that by 
joining the Navy 1 was going to get to go outside 
of Toronto and perhaps Canada for a bit; because 
Toronto was really a bit boring back then. Canada 
did not have a draft -still doesn' t- so the way the 
government thought they could get officers for the 
regular military was by having army, navy and air 
force programs at the universities. That was a bit 
like Boy Scouts, and I'd been a Cub [Figure 1], and 
a Boy Scout. For me, it was obvious to join the Navy 
because I loved to canoe and sail, and you got to go 
to Europe and Mexico. Whereas if you were in the 
Army you got to march around in the dust of On-
tario; and if you were in the Air force, you were in 
Saskatchewan, which is flat, and with not so much 
to do then. So, I was on my way to seeing the world 
and at the same time got paid very well, the food 
and the clothing were obviously provided. Plus it 
was a lot of fun, I just loved it. 1 mean guns were 
only 5% or less of the life. So it was a no-brainer 
to be in the Navy. Second year I was based on the 
West Coast [Figure 2]. In the program there was a 
prize for the person who was best in navigation and 
I think I won probably easily as I had taken an as-
tronomy course and had learned all this spherical 
trigonometry previously. The way things worked I 
ended up being a communications officer learning 
about radio and coding. This was great since I had 
been learning physics as well as mathematics. You 
know, in my career I've gotten to st.udv mostly the 

things I was good at and enjoyed, 1 was principally 
good at math, and it was obvious what my career 
was to be. 
Vic to r : You once told me a story about doing some 
very applied statistics in the Navy. 
David: That w-as my first independent statistical 
research activity. I would say! So let's think. My 
fourth summer, I had already gone through a lot 
of basic training, becoming a communications spe-
cialist and a sub lieutenant. I was going to be in the 
aircraft carrier, the Bonnaventure, and we were sup-
posed to sail into the middle of Atlantic because the 
Queen was going to fly over there on her way to visit 
Canada. And so we were to be stationed out there. 
I don't know why, maybe in case she leapt out with 
a parachute or something like that! I mean it was 
awfully ill-defined! [both laugh] 
Vic to r : ...after all it is the Royal Canadian Navy! 
David: Exactly! So we had to toast to the Queen at 
banquets and such and such. Anyway, they had to 
find something for me to do during the open period 
before the mission. So, they decided that, since I 
was studying statistics, they would like to know how 
many messages were sent out by the fleet weekly for 
several years. They took me to this room, and here 
were these huge stacks of signals by week, I would 
still be counting them if I had done it directly! But 
instead I thought why don't I just get 100 and weigh 
them and estimate a weight per signal. And then 
I asked for a scale, which they found. And I just 
measured how heavy the piles were, and so I gave 
them nice graphs. When the fleet was at sea, there 
were a lot more signals, and things like that. I guess 
it sounds nutty to be saying the following, I mean 
I'm totally a pacifist and I think I've been that all 
my life but I did enjoy the Navy! I suppose back 
then Canada was doing peace keeping. Like Brazil's 
these days that was the Canadian role then. Our 
Prime Minister Lester Pearson won the Nobel peace 
prize for the idea of creating a UN Peace Force. My 
thought was that the world needs policemen, and 
since Canada was not in an aggressive posture at 
that point, I signed up. By the way, in the remaining 
time before the cruise, I did a lot of dinghy sailing 
in Halifax harbor. 

Vic to r : Shall we talk a bit about the University of 
Toronto (U of T)? You did your bachelors honours in 
pure mathematics. I recall you telling me in Berkeley 
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ail experiment might have gone wrong. His course 
was very maturing for me. It's important to have 
some training in criticism when you're an applied 
statistician. 
Vic tor : So, that means that you would have had 
quite a rigorous maths background but also would 
have been exposed to quite a bit of statistics, which 
is rather atypical for that time period. 
David: Although I was in pure mathematics - that ' s 
what my degree was in- I went to all the statis-
tics courses. As a matter of fact, I probably went to 
all the courses, including the actuarial ones. Back 
then, 1 could just sit there and absorb things. It 's 
not as though I'm boasting; I used to feel embar-
rassed about saying things like that, but I think I 
was just lucky: it was not really anything I did, it's 
just the way it was. I wish I could have played hockey 
better, but I didn't get that skill nor the ability to 
run 100 meters in less than 10 seconds. I guess I 'm 
saying there may be a gene that I was lucky enough 
to get. 

V ic to r : Do you recall any lectures that you partic-
ularly enjoyed? Coxeter had a fine reputation as a 
lecture]' I suppose, 
David: Oh yes, Coxeter was wonderful. He had left 
England after World War II. Also Tutte, who is an-
other geometer, was great. In fact, Tutte had broken 
one of the important Nazi codes in World War II 
and none of us knew that. But some people in the 
class were mean to him because he was a little shy, 
and they teased him. I 'm sure if they had known 
about his breaking the code, they would have been 
more like "wow" instead. Hegarding Coxeter, 1 re-
member one funny story, where he was talking about 
a particular geometry lot many classes. His course 
became his book [Coxeter (1961)] or the book was 
part of his course. So. there was this particular fi-
nite geometry he was talking about a lot, with very 
bare assumptions and he was talking about it dur-
ing a number of classes. So, finally, I asked "Why are 
you spending so much time on this, is it that impor-
tant?" And he said something like: "Well you seemed 
so interested, Mr. Brillinger!" I mean, I was just ask-
ing questions to keep up with where he was going! I 
was intending to become an actuary for many years, 
in part because my father worked for Imperial Life. 
And they were very good to my mother and me. 1 
had realized that if you are poor but good at math-

ematics then an actuarial career was a route to the 
middle class. I'm not sure I was after being middle 
class, but I needed to help my mother, so I was go-
ing to be an actuary. But Don FYaser, who had great 
influence on me, said something like: "Well David, 
sure that 's nice, that you're going to be an actuary, 
but why don't you go to Princeton first?" So, I did! 
I went to Princeton, the plan being to become an 
actuary after I was done with all this childish fun, 
namely mathematics. 
Vic to r : Apparently it was too much fun...! 
David: I guess that 's right. And I realized at some 
point that anything I could do as an actuary, I couid 
probably do as a statistician - with the added benefit 
that I would get to travel and be an academic. I did 
take enough of the exams to become an Associate of 
the Society of Actuaries. 
Vic to r : Just before going off to Princeton, you were 
among the winning 5 of the Putnam competition of 
Spring '58. 
David ; It was again Coleman, who got me involved. 
Vic to r : And I recognized a couple of other famous 
names on the same honours list, Richard Dudley and 
Larry Shepp. 
David: Yes, I got to know them both. You see, both 
of them went to Princeton for graduate studies. I re-
ally had no idea of what was involved. I just went 
and took the exam! 1 remember that Erdos visited 
Toronto for a month and he gave a course. One of 
the problems he taught us was on the Putnam exam! 
[laughs] Some number theory thing [continues laugh-
ing]... So on the exam day that one was out of the 
way pretty quickly! He was just a real gem, a real 
role model, I mean he had these simple direct ways 
to approach problems, and would advocate that you 
should take a breath before you start writing down 
a lot of equations and things like that. U of T was 
absolutely super. I got a super education in mathe-
matics there and at high school. I mean some people 
might think of Canada its being a backwater, or as 
having been one, but there were some very fine re-
searchers and teachers. You know. Coleman had also 
gone to Princeton just before the War started. I was 
lucky. 

I can't resist adding that, while I was at U of T, I 
was actually at Victoria University. There, 1 earned 
a letter for playing on the soccer and squash teams, 
each for four years. I can show the letter to you! 
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person, unlike any other person I had ever met. He 
was from New England, very Canadian in a lot of 
ways. He had pride in his background. He was care-
ful with money, and he had apple pie for breakfast. 
So I went to his time series course and this involved 
a lot of Fourier analysis - and I had a strong back-
ground in trigonometry and that made the course 
attractive. 
Vic to r : Did you attend any of these courses along 
with David Freedman? 
David : Oh yes! David F. was a year ahead of me, 
and he was influential on me [pauses and reflects 
for a moment]. I guess, oh my, most of these peo-
ple are dead now, goodness. OK, whatever. I have 
these two stories about David, one involving Frank 
Anscombe and the other John Tukey. Now, David 
was a year ahead of me at Princeton. He was from 
Montreal, I was from Toronto so we were natural 
"rivals", right from the beginning! That 's just the 
way it was. Of course I don't mean that in a bad 
way. Anyway, Frank had asked David F. to be his 
teaching assistant in a course. And David said: but 
I am on a scholarship, I don't have to do that! "OK, 
fine.", said Frank, and then Frank asked me [laughs]. 
And I knew what David had said, and got to give 
the same answer! David analyzed a lot of situations 
very clearly, and I observed David as I do a lot of 
people. 

David F. never changed in terms of his intellectual 
calibre and wit, and the character of his questions. 
David was also in Tukey's time series course. Early 
in the term Tukey used the word spectrum several 
times. And David after, I don't know, 20 minutes or 
some such, asked what the definition of a spectrum 
was. So, Tukey said something like: "Well, suppose 
you've got a radar transmitting signals up and it 
bounces off an airplane and a signal returns ... so you 
see... well that 's a spectrum". So, David's manner 
was "Well, ok." Then the next class the same thing 
happened. Tukey mentioned the spectrum, David 
wanted a definition, and Tukey said: "Well, suppose 
you have a sonar system and it bounces a signal off a 
submarine, or some such"... David never came back! 
[both laugh] 

That was really pure David F., wanting clear ex-
plicit definitions. Tukey and David were the oppo-
sites of each other. You see, Tukey believed in vague 
concepts. He believed that if you tried to define 

something too precisely, then you would have lost 
important aspects going along with it. But David 
didn't think that you could talk about things prop-
erly unless you were completely clear. Of course, 
Tukey's and David's great confrontation was over 
census adjustment. I picture that David took a strict 
interpretation over what was required while J W T 
was after an effective estimate of the counts. It is 
no surprise that David was debating champion at 
McGill. He surely could have been a fine lawyer, and 
then a judge, and then ... 

V ic to r : He did get involved with statistics and the 
law. 
David : Yes, he was involved in statistics and eco-
nomics, too. He worked at the Bank of Canada for a 
while. I think he might have expected that he would 
be going down that road. He probably thought that 
being a statistician you can do anything you want 
to - that was my own reason for choosing statistics. 

David was a very sweet person. I am thinking just 
now of his taking Lorie and me out to dinner in a 
nice Princeton restaurant after we got back from our 
honeymoon. 
Vic to r : Going back to Tukey, what did you learn 
from him as a researcher, what was his style? 
David : I learned that there are novel ways to solve 
most problems. I think J W T could add two four-
digit numbers in ten different ways that no one else 
in human history would ever have thought of! I mean 
he was like Richard Feynman. He was of the same 
ilk. There are people, and there are lots of histori-
cal examples, who just think differently than almost 
everyone else. Also what I have learned from Tukey 
is that there is a physical interpretation of so many 
of these concepts when you look at the history of 
mathematics. That 's what I tried to bring up in my 
talk this morning about how some of these things 
came out of Kepler and Lagrange and so on [David 
was lecturing on SDE modeling of random trajecto-
ries using potential functions]. That you can under-
stand a lot of this contemporary work if you think 
about how it had been generated in the first place. I 
think Tukey often found himself explaining things to 
people who didn't know much mathematics. I paid 
attention to how he did that. I would like to think 
that I 'm not bad at doing that too. In a sense, you 
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in me. but it was social conservatism, not polities] 
conservatism. 
Vic to r : Well, it would appear that Tukey had a 
very high opinion of you. It has been rumoured that 
he used a "milli-Brillingers" scale to measure people 
up? 
David: Jlaughs] Yes, I have heard that from several 
people, including Mike Godfrey and Bill Williams, 
but what does one say? Bill told ine that once Tukey 
asked about a prospective student, "How many milli-
Brillingcrs?". Bill's reply was "four or five hundred 
mB's". John responded with something like, "Well 
that 's very good." I don't know, I guess that I was 
quick on my feet, I don't mean at running. If I had 
to do something I would go and do it. 
Vic tor : What about Sam Wilks whom you just 
mentioned earlier? 
David: Sam was wonderful too. He was just a gem. 
It's a shame that he died way too soon. One story 
is that he was taking shingles medicine and drank 
some alcohol that night and there was a bad synergy. 
Another is that there was an unpleasant meeting 
over the admission of a student to the program. Sam 
was conservative politically, but that was never an 
issue. He had me work on these problems in the draft 
of his book as I mentioned. I also sat in on the course 
that was based on the book he was writing. He was 
a social animal. I can tell you one story. The Tukeys 

God knows for what reason had decided to have 
a come-as-your-spouse party. So Lorie was supposed 
to dress like me and I like Lorie, and so on and so 
forth, Mrs, Tukey like John Tukey, and John Tukey 
like Mrs. Tukey. That happened, but Gen a and Sam 
Wilks came along as themselves! Near the end of my 
studying, I went off for an interview at the University 
of Michigan, before I knew whether I would receive 
a postdoc. Jimmy Savage was there then. I told him 
about the party. And I think he went like this [David 
holding his chin down] and said: "I know too much 
Freud to ever do something like that!" I didn't know 
a lot about Freud and I still don't know what Savage 
meant, but he did know a great deal about many of 
things. 

Vic to r : So how did you meet Lorie? 
David: Blind date! and we're both proud of that! 
One has to take risks sometimes. She went to An-
tioch College with its work-study program. She was 
studying sociology and had taken a statistics course 

using Mood and Graybill not an easy book. She 
was in Princeton in the "work" component at the 
commercial side of the Gallup Poll. The Riehms in-
troduced us. Carl was in mathematics, eventually 
becoming a professor at McMaster University, and 
Elaine was also working at Gallup. I think hers and 
Lorie's desks were next to each other. The Riehms 
were often trying to get Lorie and me together, but 
Elaine kept complaining because I was always out of 
town! I went back to Toronto a lot no course re-
sponsibilities, remember? Lorie was attractive and 
we found lots of things to talk about. Anyway, it 
was a blind date. And, I don't know, we just hit it 
off quickly! One thing that I loved about Lorie was 
that she was very political -my politics weren't well 
formed at all yet- and she was also very analytical. 
Her parents even more so! Later, we realized that we 
each had a parent who had been born in China, the 
child of Methodist missionaries. 
Vic to r : What a coincidence! 

Dav id : Oh yes! They were, in fact, in the same 
part of China: Sichuan province. And now with the 
web, you can find surprising things. So, I entered my 
Brillinger grandfather's name and her Yard grand-
father's name, into Google, and then found them in 
the same book! (Bondfield (1912)]. Lorie's grandfa-
ther was in an American missionary and my grand-
father was a Canadian medical missionary. Her par-
ents were very political and they had a huge wealth 
of political literature. Probably like the literature 
you, Victor, grew up with. I was a bit shy with them, 
and since they had all these magazines and books on 
the coffee table, I could always check something out 
while I was listening. So, there was a very politi-
cal side to it all, too. Anyway, we fell in love and 
it's been good. Almost 50 year's now! People often 
say about us that we don't need to talk, that we 
just simply communicate. Lorie changed her career 
goals quite drastically after meeting me. If she had 
returned to Antioch College then I would have gone 
to Yellow Springs with her, probably to teach statis-
tics. But in the meantime, I completed my PhD and 
had applied for a post-doctoral fellowship at Lon-
don, which I was awarded, Lorie decided she pre-
ferred to go to London. She was actually studying 
British Trade Unions at Oxford when I asked her to 
marry me, so she got back to England quite quickly. 
Vic to r : Indeed you really dashed through your PhD 
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Fx; 5. David in his Princeton PUD Regalia in 1961. 

in less than two years! How did that work? Did the 
lack of course work requirements have anything to do 
with that? 
Dav id : I don't think so. 
Vic to r : I guess that your "milli-Brillingers" had! 
Dav id : [laughs] Aaaah, I don't know, I guess Tukey 
gave me a problem, and said "see what you can do 
with it". So, I graduated that following May. Why 
didn't lie give me something like Fermat's last theo-
rem, I don't know! But I actually had a try at prov-
ing that in high school. I read a lot of the history of 
mathematics. 

Vic to r : I suppose nowadays in Berkeley, as well as 
many other US universities, there is quite a bit of 
structure with a lot of coursework and exams. How 
do you compare those two different systems? 
Dav id : Well Freedman and I talked about that once. 
And we agreed that we would not have gone to 
Berkeley, which is pathetic. But that 's the system. 
Plus Princeton was very selective when I went there, 
I think, two statisticians admitted each year. 

11 

Victor : David Cox once told me that the less struc-
tured approach is appropriate for the very brightest 
of students. 
David: Yes, I think so, but 1 certainly don't claim 
to be a member of that group. 
Vic tor : What do you think happened with the 
Princeton group? 
Dav id : FVom hearsay, I think I can make a reasoned 
guess. Tukey was a dominating figure. I know he had 
tremendous respect for Sam Wilks. but I 'm not sure 
about some of the other people there. Also, he had 
the mathematicians to contend with. Yet, he needed 
people. He asked Don Fraser various times to go to 
Princeton, he asked Art Dempster various times, he 
asked me several times. Clearly, I can only speak for 
myself. I just wanted to do some things that were 
mine. It sounds selfish, but Tukey was so dominant 
and so quick, I don't think that he thought any less 
of me because I refused. A lot of people were afraid 
of him. For example, if they had a cockeyed idea, he 
didn't mince words. He told me once that he thought 
the best way to get a scientific discussion going on 
something was to start an argument . Now that 's just 
the reverse of my personality. I did see him do a lot 
of that. It was possibly he wanted to get beyond the 
early pleasantries that go on. He did run over quite 
a number of people. He liked to argue and expected 
to win. I think that he wanted to win because he 
had a goal and wanted to get there quickly. I did 
love interacting with him during my thesis research. 
I found 1 could communicate very easily with him. 
But still, I felt a need to do my own thing. Princeton 
did get a viable group at one point, and it became a 
department. The members included Geoff Watson, 
Peter Bloomfield and Don McNeil. They each had 
a definite presence in the statistics world. However, 
I think that Peter Bloomfield just got fed up with 
being Department Chair. So he went off to a large 
department at North Carolina State. And McNeil 
went back to Australia. Also, I gather that Watson 
was treated quite terribly by the Mathematics De-
partment. I was very sad when Geoff died for he had 
spoken truth many times. Eventually. Tukey was the 
only senior person left and when he retired the de-
partment went away. So, it is a sad story, bu t part of 
Princeton's strength in statistics was that the peo-
ple it wras producing for many years came through 
mathematics, so there was no messing with them in 
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terms of mathematical stuff, but yet these people 
wanted to apply mathematics as opposed to doing 
research in some mathematical specialty. To deviate 
from the present topic slightly, 1 have long found 
classical applied mathematics a bit boring and old-
fashioned, but I do know that Fisher, [Fisher (1925)] 
wrote that "statistics is essentially a branch of Ap-
plied Mathematics". Nowadays, one might say that 
statistics is a combination of applied mathematics 
and applied computing, the two driving the field. 
A Princeton review committee was set up, and rec-
ommended against continuing the Statistics Depart-
ment, and that was that. Bat I did have a lot of fun 
at Princeton. 

4. BELL LABS 

Victor:Could you please tell us a bit about your 
summers at Bell Labs? 
David: The first summer in grad school, there was 
a group of us from Princeton that had summer jobs 
at Bell Labs. I would drive up there with my friend 
Carl Rich in, an engineer and a logician. I don't know 
if the Labs had this program to find future employ-
ees or if it was just a good deed for science. I had 
learned some computing at Toronto on their IBM 
050. Toronto had these computing services very early 
on, for example, they had a Feranti from the mid 
'50's. So, I had started out learning computing in a 
course in the physics department. This was before 
Fortran existed, so we were using machine language. 
Princeton had a 650 also, which I didn't really use 
that much I guess I was a lot more interested in 
group theory then. But when I went to my summer 
job at Bell Labs, they had an IBM 701. Fortran got 
created and so they had me programming various 
things for Tukey. That was pretty much the story 
during my first summer; it was nice to make the 
money. Then, the second summer... Let's think... I 
guess the second summer Lorie had appeared on the 
scene! So, we had a lot of fun. I think that 's when 
Tukey had tne writing some programs involved in 
discriminating earthquakes from underground explo-
sions. He was then involved in the Geneva negotia-
tions for a nuclear test ban treaty with the Russians. 
Tukey had one of those out of the box ideas, the 
oepstrum. He thought this might also work for pitch 
detection. That ' s what I was doing. Specifically, tak-
ing speech signal, digitizing it, doing things to it on 

the computer, then reconstituting it and listening to 
it. Really, the spectrum and a lot of these time series 
things had a real meaning for me at that point. I also 
golfed a lot. The Labs had a short 3 hole course. 
Vic to r : You got experience with getting your hands 
dirty with data. 
David: Oh yes, right away. I really loved that. But, 
more importantly, I got exposed to a whole cast of 
characters creating exploratory data analysis! John 
Tukey, was the leader, obviously. But there were oth-
ers right up there with him, Martin Wilk, iti partic-
ular he WTote some important papers with John. 
There were also Roger Pinkam, Bill Williams my 
buddy, Dick Hamming, Ram Gnanadesikan, Colin 
Mallows who had a strong influence on me. I was in 
an olfice with Colin so that was enjoyable and edu-
cational. And lunch was where I became a statisti-
cian, really. The whole group of us would go down 
to the cafeteria and sit around a hig circular table. 
So, lunch was about this oommunal group trying to 
help each other with their scientific and statistical 
problems. Then, people would go back to their of-
fices and do their own things. I mean the old Bell 
Labs worked wonderfully and it's just pathetic that 
it went away. There was an open door policy and ev-
erybody shared the problem they were working on. 
We had a lot of fun playing pranks up there, too. 
Yon know, it was all a gentler world back then in 
the early 60's. It had an incredible influence on my 
becoming a statistician because really they were cre-
ating a lot of applied statistics. I was very lucky. I 
mean I got onto a pretty good escalator going up. 
You don't realize at that time how special it all is 
scientifically and socially. When I've talked to some 
of the other Bell Labs people we've all said "Those 
were magic years.", and that we were so lucky to he 
right in the middle of them. Bell Labs was clearly 
years ahead of people in digital signal processing. 
Tukey coming up with the Fast Fourier Transform 
was just part of it. He was working on EDA methods 
too... 

V ic to r : Did you "witness" the FFT being devel-
oped? 
David: Tukey's form, yes. In his time series course, 
John had some way of doing it by complex demod-
ulation. Filtering this and filtering that and then 
putting things together. But one day in '63, he 
turned up at a class with an iterative algebraic ap-
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proach to computing the discrete Fourier transform 
for the case when one could factor the number of 
observations into a product of two integers [Tukey 
(1903)]. It turned out that F. Yates and I.J. Good 
had a related way for getting the effects in factorial 
experiments. The FFT idea switched a lot of Bell 
Labs effort from analogue to digital signal process-
ing. It was wonderful to be there. It gave me things 
to do in statistics. The people involved got to be 
five years, maybe even more, ahead of the rest of 
the world. 

5. LONDON SCHOOL OF ECONOMICS 

Vic to r : How did England come about? 
Dav id : Well, part of the Canadian educational per-
spective and maybe you felt this too even though 
you are from Greece- was that your education wasn't 
complete until you spent some time in England. It 
was that simple. So, I finished my doctorate, aj>-
plied for a post-doc and got one! And then Lorie 
and I were off to England and to the London School 
of Economics, Actually, come to think of it, I've ap-
plied for only one job in my life that I wasn't of-
fered. See I've been in the Navy, and then Lorie and 
I met up. She had strong political beliefs and 1 had 
strong social ones. Both of us were concerned with 
doing things about poverty and helping the devel-
oping world. So, I applied for a job at the United 
Nations - they were advertising for a statistician. 
Didn't even get interviewed! Didn't get it! Some-
times I think of how different our lives would have 
been. It is impossible to know, but things have cer-
tainly worked out. 
V ic to r : ...for statistics definitely, but maybe not so 
for the United Nations! 
David: [laughs] Sample surveys, 1 think that 's what 
they were looking for. 
V ic to r : But you've been involved in the Interna-
tional Statistical Institute, which has this attitude 
of Solidarity too. 
David: Oh, yes, definitely! That 's been traditional 
and I 'm glad I've had the chance to get involved 
in that. Anyway, England was about completing my 
education and I guess something led me to the Lon-
don School of Economics. I am not sure just what it 
was, but that was wonderful. Because Kendall had 
just retired but was still around, Jim Durbin had 
just become a Professor. Alan Stuart was about to 
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become one too. Maurice Quenouille was a Reader, 
Claus Moser was a Professor, as was R. G. D. Allen, 
I was surrounded by these senior people who were 
right in the middle of analyzing fundamental eco-
nomic and political structures. It was pretty good, 
exciting even. They used to call these grants "post-
doctoral drinking fellowships" [both laugh]. Lorie 
and I bought a Renault Dauphine and we went all 
over Europe. It was pretty cheap and safe then. Fred 
Mosteller wanted to offer me a job at Harvard when 
I came back, but he could never track me down. We 
were traveling to Austria for skiing! 
Vic to r : Was there any difficulty in adjusting to the 
British view on statistics having been raised to the 
American attitude? 

Davirl: No, not really. I mean in Toronto then there 
was a very British background culture was there. 
Dan DeLury was a common sense person who said 
once that he re-read Fisher's Design of Experiments 
every year. I think I was different from the other 
British statisticians at the time, however, as I knew 
a fair amount of mathematics. Nowadays there are a 
lot of British statisticians who know a lot of math-
ematics. I'm afraid it sounds like I'm boasting too 
much just now. I saw Jim Durbin one time and he 
had some paper. He said he had tried to figure out 
something in it a few times but failed. He asked me: 
"David can you explain this?" I could tell at a glance 
that it was incorrect and said so. Jim said, "I wish I 
had your confidence." What he didn't have was my 
training, that 's what the difference was. 
Vic to r : Did you enjoy the RSS meetings? 
David: Very much. I had never seen anything like 
them before in my life. There were people like Jack 
Good. He would stand up and be coming from a 
totally outside-the-box angle. I respected that be-
cause I had seen Tukey doing that all the time. 
At this point in my life, I believe that I have read 
most of Good's papers. I was honored to be asked to 
speak at his 65th birthday. I paid a lot of attention 
to what David Cox, Maurice Bartlett and George 
Barnard had to say, in particular. The way the meet-
ings worked back then was that people could get the 
galleys of a meeting's paper before it was presented. 
So, you could compete with all these famous guys. 
You could read the papers and see if you had some-
thing to add to the discussion. That was a lot of 
fun. I 'm not sure whether they do that now. I mean 
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there certainly are discussions that go on. Back then, 
it seemed mostly in a spirit of friendliness, but now 
there seems to be real antagonism in the discussions 
as well as in referees' reports. They would make some 
strong remarks, but I wouldn't say they were mean 
then. Being a postdoc in England in the early six-
ties was great. We had a wonderful time. During the 
summer we went to the International Congress of 
Mathematicians in Stockholm. I found that I was 
reasonably well prepared for the level of the talks, 
having been to the various Princeton and Institute 
for Advanced Study seminars. It was exciting to see 
faces attached to many of the names that I had only 
read before. Hadamard is one I can mention. I went 
to one lecture in Stockholm - I think it was Lin-
nik's. I got there early and talked with him. After 
1 sat down, in comes Cramer, who sits right next 
to me! Then, in comes Kohnogorov and he sits on 
the other side of me! [both laugh] I was speechless! 
As you well know, I am usually quite talkative. I 
guess that I could have asked for autographs. That 
would have surprised them 1 am sure. Sadly I don't 
have a photograph to preserve the moment. It was 
pretty special and perhaps justified my having got-
ten a doctorate. 

Then, we went back to Princeton. Lorie was preg-
nant so our life was going to change a lot. I went back 
to a job that was half time at Bell Labs, as Mem-
ber of Technical Staff, and half time as a Lecturer in 
Mathematics at Princeton, teaching. The two posi-
tions were complementary in important ways. Tukey 
had created such a structure for himself; however, 
he was probably half-time in Princeton, half-time at 
Bell Labs and half-time in Washington. I guess that 
1 then set out to have my own research career. I 
had done some writing of papers before, but now I 
settled into a more adult research program. 
Vic to r : You seemed to be quite spread out at 
the time, I can see stuff in asymptotics [Brillinger 
(1962a)], Lie group invariance [Brillinger (1963a)], 
fiducial probability [Brillinger (1962b)], resampling 
[Brillinger (1963b)]... Really going off into many di-
rections. 

Dav id : Well that was based on material I had 
learned. I would pick up a journal and see somebody 
had done something and if I thought there would be 
a way to contribute I would try. The Lie group ma-
terial was motivated by Don Eraser. He was creat-

ing this area he called structural probability. I was 
trying to see if fiducial probability could be more 
formalized. R- A. Fisher kept pushing the idea of 
fiducial probability. It seemed as if in all his exam-
ples the fiducial probability was a Haar measure. So 
that was a natural thing to do. The Lie group paper 
arose also because people had wondered whether or 
not working with the correlation coefficient would 
lead to a fiducial distribution. I showed there was 
no prior - a t least no Lie group measure that lead to 
one. But I was still solving problems, minor ones I 
suppose. 
Vic to r : You mentioned reading papers and thinking 
about, problems. I remember reading Tukey's Sta-
tistical Science interview [Fernholz Morgenthaler 
(2000)] where he said that he would pick up journals 
and read papers, but not really study them. Which 
did you do? 
Dav id : I think I read them over. Because I had a 
reasonable memory and I could read quite quickly. 
So, a lot of my life has been working on some-
thing and then suddenly thinking: "Oh, yes. I've seen 
something like? that before..." That ' s a problem with 
changing universities: because in Princeton library, 
I might have picked up some journal, but. then hav-
ing moved on to, say, LSE I had to search seriously. 
Anyway, I would pick up some journal, and read a 
paper that I sought in it, then, just as 1 was taught 
to read the dictionary, I'd look at the paper just be-
fore and the paper just after. That way you build up 
your knowledge. Also, when I have a journal issue in 
my hand, 1 don't think I read it to study it; rather. 
I read it to enjoy it. 

Vic tor : And then came the baby and a decision to 
make: moving back to England. 
Dav id : Yes, that 's right. Returning was an easy de-
cision. Because Lorie and I both had loved living in 
London. Her being from New York city, and me from 
Toronto, we were used to "Which movie do we want 
to see? Then, where is it showing? OK, let's go!" 
Princeton was a small town and Lorie felt pretty 
restricted. Now we had the baby at home, but her 
parents lived up near New York City. I think it was 
pretty hard for her. Now women do keep working al-
beit part time or volunteering. But back then, they 
were right in the middle of the world, interacting 
with many people and ideas. Then, all of a sudden, 
they were at. home for many hours with a baby. Well, 
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Jim Durbin wrote me about there being a lecture-
ship at the LSE, and was I interested. I think Lorie 
and I just had to look at each other for a moment 
to know we were interested, I stayed at Bell Labs 
through that summer to finish some projects and to 
build up some savings to go to England with. We 
had a VW van, so we were ahead of the hippies, and 
we shipped it over with us. We were driving around 
London for six years with this left hand drive big red 
VW van. 

1 have remarked many times that Bell Labs was 
the best, job I had had in my life. Stimulating fa-
cilities, stimulating colleagues, stimulating problems 
and minimal restrictions on what one worked 011. It 
is just that Murray Hill was in the middle of New 
Jersey. We were very fortunate to have the opportu-
nity to decide how important was the choice of job 
as compared with the choice of where to live. My 
salary went down considerably of course. 
Vic to r : What was life as a lecturer at the LSE like, 
mid what wits the contrast, with Princeton? 
David: Well, there were students of both sexes 
in the classroom at the LSE! They were left, not 
rightwing. In both cases, the students were very 
bright. Bill Cleveland was in a class that I took 
over when Sam Wilks died, Princeton and LSE were 
very different in many ways. I did prefer the En-
glish system in important ones. The thing I remem-
ber most about LSE is that there were five perhaps 
six of us, who were lecturers at the same time. We 
were of about the same age, having kids at the same 
time, watching the same TV programs. When Monty 
Python came along, we would all be talking about it 
the following Monday morning. They were teaching 
me about foot ball/soccer and were learning about 
hockey and frisbee from Alastair Scott and me. We 
pretty much have all had successful careers. Fred 
Smith became the President of the Royal Statistical 
Society, Alastair Scott went hack to New Zealand 
and was elected to the Royal Society of New Zealand, 
Graham Karlton moved to the Survey Research Cen-
ter at the University of Michigan and became promi-
nent in the US survey community, Wynn Lewis died 
young, Ken Wallace the econometrician amongst us 
was elected a Fellow of the British Academy [Most 
of the LSE statistics group in Fall 1969 are pictured 
and listed in Figure 6]. We were all together, all the 
time. We would go to the morning coffee, then have 
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lunch and then afternoon tea again together. We 
drove across and around London to visit each other. 
At Princeton I was pretty much alone as a young 
person doing statistics. 

V ic to r : But did your decidedly mathematical out-
look tie in well with what was expected to be pub-
lished in the British stats journals at the time? 
Dav id : i think that I know what you have in mind 
with that question. Just before we moved to Eng-
land, I had submitted a paper to the Series B of the 
Journal of the Royal Statistical Society. It wasn't all 
that complicated, it wits doing factor analysis with 
time series, getting latent values of spectral density 
matrices. I had in mind the problems Tukey had 
had me thinking about, concerning a signal from an 
earthquake or an explosion coming across an array 
of sensors. In an appendix, there was a derivation 
of approximate distributions of spectral estimates 
using prolate spheroidal functions, which Pollack 
and Slepian had come up with [Slepian fe Pollack 
(1961)]. The referee said he didn't understand it 
and the paper was rejected! And I mean back then 
1 didn't know about protesting an Editor's or Ref-
eree's decision. I prohahly should have re-written it, 
and sent it back to JRSSB, but what docs it matter? 
I did give a talk at an RSS meeting. Eventually. I put 
it on my website, and it's still there now. I developed 
the dimension reduction aspect further and have a 
paper on that in one of the multivariate analysis 
symposia and a chapter in my book. I don't think 
this occurrence affected me too much, but some of 
my students have been very disappointed by similar 
things in their career. Best I can tell them is that 
parts of life are arbitrary, resubmit. 
V ic to r : By that time, you had been doing quite a lot 
of work on spectral analysis and then in '65 came the 
influential paper on polyspectra. That sounds like a 
Tukey term. 

Dav id : Yes, that is a Tukey term. One of the first 
things Alan Stuart said to me in London you know-
how picky the English can be- was: '"David, poly is a 
Greek prefix and spectrum is a Latin word. You are 
committing linguistic miscegenation!" He was just 
teasing me. But in Volume 1 of Kendall and Stu-
art [Kendall & Stuart (1963)] they say this against 
Tukey regarding "fc-statistics". 
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the invitation. The work was concerned with the per-
manent income hypothesis and we had developed a 
time series spectral analysis formulation. After the 
talk, Friedman came up and said something like: "I 
didn't, understand any of that but I am sure it was 
good!" [laughing] There is another paper with Mi-
ehio [Brillinger i ; Hatanaka (1969)]. Data analyses 
were involved. My period at the LSE was by far' the 
most theoretical in my career. 1 think because the 
time scries data just weren't there. I was working 
as a consultant with the seismology group at Black-
ness. It was mi offshoot of the Alder mas toil Atomic 
Weapons Research Establishment outside that base. 
At one point, I provided an effective scheme for them 
to use with array data, but I guess that I wasn't 
able to explain it well enough. That 's often been the 
story of my ideas. I don't know, Manny Parzen once 
quoted someone as saying: "First you have an idea 
and then you go out and sell it." But that was never 
mc. I do try to ask myself: "Why am I writing this 
paper?" In the end I think that I am writing for 
John Tukey. 

Vic to r : You've often mentioned the influence of sci-
entific heroes. 
David: Feynman would be one. I have read a lot by 
him and about him. I know that he enjoyed going to 
Brazil, as I have, 
Vic to r : You didn't have a chance to meet him at 
Princeton, though. 
Dav id : No, he was long gone. He was there in 
the early war years, and left during them for Los 
Alamos. He ended up at Caltech . When I was asked 
to give a talk in Caltech once, he had died before. 1 
might have been too intimidated to go talk to him 
anyway. Although I did talk to... Goodness, proba-
bly you know the name better than me. Who's the 
MIT linguist, who is in the news all the time? 
Vic to r : Chomsky? 
David: Yes Chomsky! I took Chomsky out for cof-
fee once. It turned out that he and Tukey had or-
ganized a seminar on linguistics at the Institute for 
Advanced Study. This was when I was doing all these 
memorial articles about Tukey (Brillinger (2002)). I 
had noticed that Chomsky came to Berkeley regu-
larly. So, I called a mutual friend and asked if they 
could arrange for a meeting next time Chomsky was 
in Berkeley. They did. Eventually, I met Chomsky at 
the linguistics department and took him over to this 

coffee place run by Palestinians. Victor, you have 
been there. While we were there, all these people 
were looking at Chomsky. One woman couldn't resist 
expressing her admiration for his work. He was such 
a humble sweet person. I asked him whether Tukey 
had any impact on the seminar. Chomsky said he sat 
there and grinned, I guess one takes that for what it 
is! So, being a Tukey student has given me entree to 
countless situations. I'll tell you a story concerning 
that: just as I was finishing my studies at Princeton, 
I was invited to speak at the University of Michigan 
- I am sure due to Tukey interacting with Jimmy 
Savage. Jimmy Savage did a bit of political analy-
sis of Lorie and me, and decided that our politics 
were on the left. He quickly organized for us to meet 
with Leslie Kish, sociologist in the Survey Research 
Center. That ' s when our close friendship started. 
Vic tor : Leslie Kish had fought as a volunteer in the 
Spanish civil war. 

Dav id : That 's right, and he was a leader of the 
Campaign for a Sane Nuclear Policy. So, Leslie had 
come to London and was giving a talk somewhere 
there. He later told me that he saw that I was in 
the hist row doing something else. He said he got 
annoyed, but then immediately thought: "Oh no, he 
is a Tukey student, so that 's all right!" [laughs] Now 
actually I was listening! Tukey could do three things 
at a time, I could maybe do two, sometimes. 
Vic to r : Another name you often mentioned is David 
Cox. 
Dav id : Oil yes, he is another hero of mine. He too 
visited Bell Labs when I was working there. He was 
not a professor yet. He clearly had special things to 
say. Others might have done some of the things he 
did in a more mathematical way and subsequently 
gotten their names attached to them. I don't think 
he had a problem with that. I am thinking of things 
like getting approximate distributions of maximum 
likelihood estimators when the model is incorrect. 
He did that early on in a Berkeley Symposium pa-
per [Cox (1961)]. Then, in another Berkeley Sympo-
sium, Hubcr came along and did it in a more for-
mal way. Cox's paper has a wonderful statement, 
"Discussion of regularity conditions will not be at-
tempted." There were very few, if any, of David's 
talks or papers that didn't have something clever 
in them. It's as if when he did something, if there 
wasn't, anything clever in it [David thrusts his hand 

imsart-sts ver. 2009/08/13 f i l e : BrilliiagerPanaretos_Coiaversation-tex date: March 15, 2010 



Statistical Science Interview lvii 

A CONVERSATION WITH D.R.. BRILLINGER 31 

as if throwing away a piece of paper] then, no! Out 
of the window. He does it all in a very humble way. 
I have been on several committees with him and he 
would say few things for a while, but he would ac-
cumulate information and then he would come up 
with a proposition: "Well you could say ... maybe we 
could do ..." And everybody would agree. He could 
merge a lot of different opinions and information. He 
is one of my statistical heroes. He did reject a cou-
ple of papers that I submitted to Biometrika. I took 
that as saying, you can do better. 

6. GOING TO CALIFORNIA 

Vic to r : I understand that you would have been very 
happy to stay in London, but then things changed. 
David : Yes, well my mother retired. She had had a 
hard life. She was a very bright woman, but because 
my maternal grandfather died in the great flu eped-
imic leaving my grandmother with five children, my 
mother had to go to typing school to help the family 
survive. Many years later, she went to adult school 
and got to be a country schoolteacher. We were send-
ing her some money, but when she retired her pen-
sion was tiny. Even though I had become a Reader 
at LSE, there was just no way I made enough to 
make up what she needed. We had Jef and Matthew 
at that point, we were living quite happily, had a 
nice house a block away from Wimbledon Common. 
We were going to the theatre and concerts regularly. 
But there just was no way to be able to also support 
my mother. So I had to look for a higher income. 
Berkeley had already invited me several times. Ac-
tually, David Blackwell had called me just before I 
finished at Princeton. Now in the late sixties Berke-
ley was the place to be with the free speech move-
ment, rock concerts, experimentation in the arts and 
all that. We had learned that when we were there on 
sabbatical in '67-'68. There were a growing number 
of protests against the Vietnam war, and Lorie was 
quite involved. So we knew Berkeley, and they knew 
me. And when Henry Scheffe asked me about mov-
ing there, we agreed. A person high in the academic 
totem pole told me once that a senior department 
member had said that I was the most influential ap-
pointment in the '70s. There were lots of mathemat-
ical things going on and I enjoyed that, but I was 
strongly interested in applications of mathematics. 
I immediately fell into place with Lucien Le Cam 

and Jerzy Neyman and all their visitors - they had 
a lot of important ones. So, we left London because 
we needed a higher income, but we landed in a very 
special place. Our older son, Jef, loved England. He 
was very sad about the move and that made Lorie 
and me sad. I think we expected that eventually he 
would move there. 

V ic to r : So tell us a bit about your early Berkeley 
years. 
David : The earliest years were '67-'68 when I was 
a visitor on leave from LSE and we have already 
talked about them. We moved to Berkeley perma-
nently arriving by ship in January 1970 to be met 
by Erich Lehmann on one of the piers. At that time, 
there were a number of individuals who were then 
Assistant Professors but who did not get promoted 
to tenure, i.e. had to pack their bags and leave town. 
They were able academics so their non-retention was 
quite a shock for me. Actually, it seemed inhumane. 
Some of these people had children already at school. 
I was used to the English system where, if you were 
a Lecturer, and you had passed across the bar af-
ter three years, then you had tenure. You would hit 
the top salary of the lecturer scale but you might 
stay in your department the rest of your career -
you had tenure. Some people did take advantage of 
that. We lost Berkeley friends that we had made and 
that was a great shock. Apart from that we were re-
ally enjoying the department, Berkeley and the Bay 
Area. The department seminars and the quality of 
the discussions in the lunch room was top notch. In 
these early years Kjell Doksum and his family be-
came close friends. 

V ic to r : Did you thus quickly forget about London? 
David : No, not really. In fact, when in 1971 David 
Cox wrote that a professorial chair was available at 
Imperial College, and asked if I was interested, I was 
very interested! But going through the sums, with 
Alan Stuart 's help, we just could not afford to re-
turn. Our old house was now worth more than twice 
as much as we had sold it for, within that short pe-
riod. We couldn't afford to buy a comparable house. 

I have sometimes wondered how things would 
have worked out with Jef 's brain tumor had we re-
turned. Cor mack had just developed the first CT 
scanner at Atkinson Morley Hospital just down the 
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FIG 8. David with Lorie along with David Blachwelt and Maria Eulalia Ifares. 

onder you are supposed to criticize the paper's con-
tent. Victor, you've probably been to these things. 
So I read David's very seriously. I don't think I had 
much in the way of criticizing, but it got me very 
interested in temporal point processes. 

At Berkeley, Neyman and Scott had done path 
breaking work on spatial point processes, particu-
larly in astronomy. Six months after my arrival in 
Berkeley in January the Sixth Berkeley Symposium 
took place. I presented a paper showing a way for-
ward for making inferences based on data for pro-
cesses with stationary increments. [Brillinger (1972)] 
This included stationary point processes. Around 
that time I also had a student, Tore Schweder, who 
was looking into that point process material when 
modeling whale tracks. To continue the story while 
Betty Scott was still department chair she asked me 
if there was anyone it would be good to invite to 
Berkeley for a term. I suggested David Vere-Jones. 
He and Daryl Daly came, and a whole world of point 
process work got started. In particular, David and 
Daryl organized a seminar series. Peter Lewis and 
"Pepe" Jose Segundo were important speakers. Pe-
ter's energy and enthusiasm and broad knowledge 
captivated the audience. Pepe came with specific 
problems and data concerning the firing of nerve 
cells. Pepe was a Professor in the Brain Research 
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hill from our Wimbledon house. That technology 
wasn't yet available in the US, and might have 
helped. 
Vic to r : But you found data at Berkeley. 
David: Yes, I found data and fine applied scien-
tists to work with at Berkeley. On reflection, I had 
reached the career that Tukey and Bell Labs had 
been training me for. Soon after arrival, I just wan-
dered over to the seismographic station where I met 
this Australian fellow, Bruce Bolt, He and his family 
became deal' friends. He was a sailor also, so we spent 
time on the Bay in his boat. Our families mingled. 
Bruce was religious, and I was no longer. However, 
we didn't seem to have the slightest difficulty talking 
about religion and other serious topics. He got me 
working on time series and other problems in seis-
mology. We wrote several joint papers, but affected 
each other's research quite generally. 
Vic to r : Was that around the time you wrote 
your invited paper on point process identification? 
[Brillinger (1975)] 

David: There is a history to my work on point pro-
cesses both in London and Berkeley. David Vere-
Jones, another dear friend, another influence, pre-
sented an Invited Paper at a meeting of the Royal 
Statistical Society, [Vere-Jones (1970)]. I was asked 
to second the vote of thanks. When you are the sec-
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Institute at UCLA, And he had all these wonder-
fid data on nerve cells firing. And I just said, well 
this model that I have been fitting for earthquakes 
might be good. So then he sent me these massive 
piles of boxes of computer cards! They took up per-
haps 10% of my office for many years! The thing 
that was interesting was that second-order spec-
tral analysis seemed to be quite effective. So. I was 
working on point process data from seismology and 
point process data from neurophysiology at the same 
time. My students Rice and Akisik worked on these 
models/data also. The advantage of neurophysiol-
ogy case was that it was a designed experiment sit-
uation, and thus you could repeat the experiment. 
So, that collaboration resulted because I was work-
ing on point processes from seismology. To my mind, 
one of the major successes was that the concept of 
partial coherency analysis could be extended quite 
directly to the point process case [Britlinger (1975)], 
and it let one infer the causal structure of networks 
of neurons, [Brillinger et al. (1970)]. 

Pepe had a daughter who died in a plane crash 
at Puerto Vallarta. At that time, I had a son with 
a brain tumour that could not be removed. These 
tragedies brought us very close together. Having a 
child die is pretty hard. Pepe and I had our scientific 
conversations to keep us focused on one good side of 
life, 
V ic to r : Would you like to talk about Jef? 
David: [David pauses and speaks with a broken 
voice] Well, yes. 1 mean it really affected Lorie, 
Matthew and me as well as Jef 's and our friends. 
We have cared a lot about other people always. I 
don't believe that it is an accident that Lorie be-
came a nurse midwife or that I started working with 
nerve cell spike trains. One works to fight for politi-
cal ideals and to improve the system, but it is totally 
humbling to care so much about a child and not be 
able to help them in their time of greatest need. 

Jef 's illness went on many year's. The first hint was 
in 1968 and he eventually died in 1988. It was not 
diagnosed as a brain tumor until 1973. He had three 
bouts of brain surgery and radiation between 1973 
and 1988. In 1973 he was supposed to die within 6 
months, but he just kept coming back. The night he 
died I didn't think he was going to die. He graduated 
from UC Santa Cruz in 1988, just two years behind 
his class. Everyone did everything imaginable. The 
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doctors, his brother Matthew, Lorie and her nursing 
friends, our friends. The doctors made home visits. 
Nobody wants to see a child die. Many, many people 
attended the memorial. 

Jef had a motorcycle, just as my mother and fa-
ther had. I sometimes think about his motorcycle. 
I knew that I wasn't going to get on it but I knew 
about it. Jef rode it back and forth to Santa Cruz in 
part over a mountain. Once, there was a heavy rain 
storm and he thought that he might die. Another 
time, someone in the back of a pickup truck threw a 
bottle at him. He could have died on that motorcycle 
so easily. Then it would have been: if only, if only, if 
only... That 's what our memories would have been. 
But our memory is that everybody did the best they 
could. Including Jef, Lorie has been really hard hit 
with death. She's had to nurse her dying parents, 
her son ant I her sister now. 

Vic tor : Practically, everybody wrho's met you will 
attest to what an uplifting person you are; how it 
seems that you are always smiling. 
David: Not always but most of the time. Probably 
my life was all fun until 1973 when Jef was diagnosed 
with the brain tumor. Science and researching kept 
me going through those times. Nowadays, I just have 
to think about my grandchildren and a smile surely 
appears on my face. Having gone through all this, 
I do go to a lot of effort to communicate with the 
Berkeley students about the importance of enjoying 
every day and realizing how lucky they are. In one 
of my classes in Berkeley, I realized that I was as-
signing a great number of problems. What I did at 
the spur of the moment was to say "OK, your prob-
lem assignment for this week is to go to a movie 
and then write on a piece of paper the name of the 
movie you've been to!" I think they just thought I 
was kidding. I wasn't. I have a hard time convincing 
today's students to put things into perspective. They 
seem quite terrified and not having all the fun that 
I had as a student. They are overly worried about 
getting registered in a class, about finding a thesis 
topic, about getting a post-doc, about getting a job, 
then about getting tenure, about getting a grant, 
getting to be a professor, getting to he invited to 
conferences. They have the problems of old people 
on their shoulders already! I am just sad for them. 
Things do work out. 1 hope you're trying to get your 
students to enjoy life, follow sports, things like that! 
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Vic to r : Well, I've had good advice, and try to pass 
on what I learned. Did research and sport help you 
at all during that difficult period? 
Dav id : When I was recently preparing an encyclo-
pedia article on "soccer/world football" - t ha t was 
the title I was given- and I was pulling out a lot of 
books, I found that there was a book by a couple of 
Russians 011 applications of mathematics to sports 
[Sadovskii & Sadovskii (1993)], because it has some 
material on soccer. When I read the introduction, I 
found them saying that to do mathematics well you 
want to be healthy and fit.. 1 have known this for 
many years, but it was reassuring to see it in print, 
I think that participating in sports is important. You 
know, running around and interacting with others. I 
think of Shiryaev. since we're talking about the Rus-
sian point of view. He is a very good skier. He re-
ceived a medal for it. There is something specific I 'd 
like to feed into our conversation just now. I played a 
lot of intramural and informal soccer over the years. 
One year, two teams the Statistics Department was 
involved with met in the final. However, I stopped 
playing after Jef died. I wanted to be alone. Friends 
would come by my office to try to get me to play, 
but I just wanted to be alone. But iny office looks 
over the Bay and much of the time I could see peo-
ple sailing and windsurfing. I thought "Why don't I 
try windsurfing again?" I had tried once before and 
it hadn't really stuck. But when I tried again I got 
the basics. Windsurfing is one of those things where 
if you don't know what to try to do then you are in 
big trouble. What I found personally was that if I 
thought of anything else when I was windsurfing I 
would fall into the water. After I windsurfed for 2 
hours I was just high. One day when I went back to 
Evans Hall, I saw Andrew Gel man and said some-
thing like: "I windsurfed all the way to Emeryville 
today!" Andrew said: "Well I climbed up the out-
side of Evans Hall today!" [laughs] It was that male 
thing, if someone is boasting too much, they get 
brought down. I do recommend to anyone who has 
some tragic situation to deal with, and they do like 
outdoor activity, that they take up windsurfing. 
Vic to r : What was it like to arrive at Berkeley in 
the late 60's early 70's? 

David: Super. Rock concerts, progressive politics, 
long hair, hippies, tear gas. 1 was teaching once in 
a room in Wheeler Hall and all of a sudden there 

was some strange unfamiliar smell. I didn't know 
what was going on until someone in the class said: 
that 's tear gas! It was really something. There had 
been "troubles" at LSE, but none with tear gas. I 
remember one friend I have, especially. When there 
was something radical going on I was out of there, 
headed away from the trouble. But I would invari-
ably see him heading the opposite way i.e. in the 
direction of the trouble. I did see some bad things. 
Through my then office window on the third floor in 
the Physics building, I saw a sheriff's deputy club a 
young nnui who was just sitting under a tree read-
ing a book, 1 think officers were totally frustrated 
because the demonstrators where leading them in a 
chase across campus. I do have to say that some were 
throwing rocks and that 's not cool. The deputies 
chased but they could not catch these guys. So, they 
just got more and more frustrated. Here's another 
story from that time period, A1 Bowker had be-
come Chancellor and joined our department. He had 
to deal with various ticklish situations during his 
tenure. Somehow, he always found a way. Evans was 
a new building and its inside walls were stark. One 
weekend some of the mathematicians came in and 
painted some murals. There was one of the death 
of Galois. The custodians cleaned them off. But the 
mathematicians re-painted the murals. A battle of 
wills was developing. Bowker said just leave them. 
Long after the murals were painted over when the 
building was refurbished and I don't know that there 
was any fuss. 

Vic to r : A1 [Bowker] told me a story about some 
students who were demonstrating. They came into 
his office wearing dark sunglasses - I suppose it was 
some sort of statement. But then A1 caught them off 
guard: to their surprise he was already wearing dark 
sunglasses himself! [both laugh] 

Dav id : I had some fun like that too. When I was 
department chair, Lorie's brother was working for 
a video company that had produced a movie titled 
"Take This Job and Shove It". He mentioned that 
they were giving away hats with the movie title em-
bossed, I asked if he could get me one of those, he 
did. One crisis that developed in my chairmanship 
occurred when the campus wished half of our space 
back - I confess that Betty Scott had been too ef-
fective in getting us space in the new Evans Hall. 
Anyway, when I went to see the Vice Chancellor I 
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wore the hat and then passed it on to him! [both 
laugh] We ended up losing a quarter of our space. 
Vic to r : What about departmental life? For exam-
ple, Jerzy Neyman? 
David: As far as I was concerned, being around him 
was a treat. One of Neyman's goals was "to find 
a model describing the data". In contrast, Tukey's 
goal was to "discover surprises in the data". Ney-
man was more for formalization, whereas Tukey was 
more for intuition. Surely, both are needed. I saw 
the two masters of these things at work. I attended 
the Neyman Seminar regularly and went for drinks 
afterwards. Neyman had a host of really wonderful 
visitors coming to Berkeley. 1 had total respect for 
that man. 
Vic to r : And Neyman was one of the people you had 
gotten closer with along with Le Cam and Scott? 
David: Yes. For one thing, they were always in the 
coffee room at lunch time, often with famous visi-
tors eating Neyman's hard boiled eggs. The talk was 
lively, what with Neyman knowing so much about 
European history, all his languages and poems, and 
Betty being so full of heart and caring for people; 
Lucien being very French in such positive ways. The 
three cared so much about the students. Surely, the 
best part of Berkeley has always been the students. 
Once when 1 was in the coffee room, with Neyman 
and Le Cam, a student came in whose father was 
having a medical problem. Lucien and I were chip-
ping in suggestions. After listening a while, Neyman 
remarked, "Isn't it wonderful that the professors are 
helping out the students with their personal prob-
lems?" All three would jump to help with student's 
personal difficulties. They were wonderful. 1 have 
heen a bit unsatisfied with the Neyman biographies. 
They don't seem to bring out the essence of the man. 
I said this to Betty and Lucien once and they agreed. 
Biographies of scientists, by their nature, seem to fo-
cus on the science side. Setting down the human side 
is surely much harder. 

I'll tell you one of the funny things that came 
to my head just now: somebody asked me once if I 
thought that Betty Scott and Jerzy Neyman were 
lovers. My immediate response was "I hope so!". 
Vic to r : You had been exposed to two of three main 
schools of thought in statistics: Tukey-esque, British, 
and then came the third: Berkeley. What was that 
encounter like? 

2 3 

FIG 9 David with John Tukey (left) and Jerzy Neyman (cen-
ter). 

David: I would like to start by replacing "Tukey-
esque" with Tukey-Bell-Labs-esque. That 's the 
school that I learned EDA in. OK the encounter. 
1 start by quoting Le Cam at this point. Once, at 
lunch, 1 told him about some research that I had 
just seen suggesting that cigarette smoking wasn't 
bad for one's health and at about the same time an-
other report that suggested it was bad. What did he 
think about that? He replied: "They're both right!" 
The three schools ate all right. We need each. I think 
it is important for people to travel and experience all 
three. The RSS meetings, for example, are a way to 
learn the British school. One meets these people and 
Compares their discussions of the same paper A lot 
of things exist in the scientific air, but are not writ-
ten down, particularly heuristics. And it's very im-
portant to have heuristics along the way to nailing a 
problem flown. Often, when you go to another center 
and are in a discussion, they quickly draw a little di-
agram and then you have picked that representation 
up. The thing is that you could go a whole career and 
never know that something could be simplified that 
much. As the years have passed, the British statistics 
school has become a lot more American. For exam-
ple, consider measure theory and theorems. There 
have always been a lot of wonderful probabilists in 
England but they did not appear to have much in-
fluence on the statisticians until recently. One thing 
that I particularly respect about the English system, 
including people who aren't famous, is how well they 
can ask questions. There would be someone at a sem-
inar, and then there would often be someone with a 
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British accent who would put their finger on a cru-
cial point that 's going on in the science. Not so much 
the mathematics, but the science of the situation. I 
have a lot of respect for that. What was the en-
counter like? I flitted amongst each of these schools. 
I am a scavenger. I have the luxury of trying a Tukey 
approach, trying a Cox approach, and trying a Ney-
man approach to problems. The Bell Labs group was 
influenced strongly by Cox, by Kempthorne and by 
Tukey. They weren't much influenced by Berkeley or 
Box. 

Vic to r : 1975, Time Series: Data analysis and The-
ory [Brillinger (1975)]. 
David: Well, that book has got blood on every page! 
I wrote it when I was in England during the late 
sixties. It took too long to be published. I did enjoy 
working on it, 1 was going to LSE two days a week. 
We had a three-story town house, I would sit down 
on the top floor listening to the BBC's wonderful ra-
dio programs, working away on the book, while Lorie 
would be two floors down with Jef and Matthew. In 
the afternoon, I would be all involved with the kids. 
It was so enjoyable. The book started from my re-
search, which got simplified for my lectures at LSE. 
Before reaching Berkeley in my 67-68 sabbatical, we 
spent the summer in Princeton. Tukey and I were 
supposed to be writing something up. But Tukey 
decided to go off somewhere, and there I was at Bell 
Lahs. Ram Gnanadesikan asked me to give a course 
on time series. Luckily for me, somebody at the Labs 
was available to type up the notes. This provided a 
fine star t to the book. There were all these wonderful 
computing facilities. The fast Fourier transform, a 
fast computer and graphics all came together there. 
Then I got back to England in the summer of 1968 
and I guess that 's when the serious filling in of mate-
rial was done. The manuscript went to the publisher 
in '72 after I had made a serious attempt to have 
the references complete. It was printed in '74, but 
they put a date of '75 on it. It has now been with 4 
publishers! That sounds amazing but Holt-Reinhart 
gave up their statistics list, Holden-Day went broke, 
and then it went to McGraw & Hill who put their 
binding on it but didn't do much else. It is now writh 
SIAM and called a classic. How about that? There 
were some surprising benefits, like not having to do 
much preparation for lectures for many years. The 
thing that I enjoyed the very most wras making up 

the problems at the ends of the chapters. Because 
I'd be thinking "Maybe there is a problem sort of 
like this", or "Maybe reasonable assumptions are 
something like these", and lastly "Maybe a solution 
could go as follows." The thing is one is negotiating 
with these three different vague items. It turned out 
that solving a problem was a lot easier than creat-
ing one! Victor, I did a vain thing the other day, 1 
typed "Time Series: Data analysis and Theory" into 
Google. It claimed to have located 136,001) results! 
Vic tor : You must have taught the time series grad-
uate course "Stat 248" at Berkeley lor many years. 
Dav id : I think every single year, except when I was 
on sabbatical. I believe Bob Shumway came then. 
Vic tor : So did you change it quite a bit? I remember 
sitting in on three different versions. 
Dav id : Oh yes. I design it totally differently every 
year - and no one seems to notice! To allow variable 
content I call it "Random processes: data analysis 
and theory". A couple of students, not you of course, 
have s;iid they should have come back. I try to tie 
it in to something I 'm excited about at the time. 
Perhaps trajectories, perhaps point processes, per-
haps spatial-temporal data and so on. I think if you 
are not excited about something, or if it is something 
you have done a long time ago it's boring. Nowadays, 
there arc all these wonderful data sets and graphical 
devices to employ. It can take some time to prepare 
a display, but it would be a great shame not to. 
Vic tor : You spent some time as a Visiting Professor 
of Mathematics in New Zealand. I know you are in 
love with New Zealand, is that when it started? 
Dav id : Yes. Alastair and Margaret Scott became 
dear friends in London. Alastair and I were Lectur-
ers together. We had met at Bell Labs, and when 1 
arrived in London he wrote me wondering if there 
were any jobs. So, I asked Jim Durbin, and there 
was a Lecturer position. Alastair stayed a couple of 
years longer than me. When Jef had the first surgery, 
he was really set back a long way. We wanted to 
go somewhere gentle, and that was New Zealand. 
There, his energy came back and he could do things 
like play basketball at a boys club Friday evenings 
and come home alone on the bus. He was about 12-
13 years old then. It was the way things had been for 
ine when I was that age. The Scott's friends became 
our friends right from the start, Alastair and I tried 
to collaborate on a paper once, but we never seemed 
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to talk statistics. It wasn't that we didn't want to or 
couldn't, we just seemed to get talking about other 
things. But I do believe that we have influenced each 
other statistically a lot. So, New Zealand became our 
home away from home. NZ is where Lorie and I re-
treated to in 1988. That year was horrible. Lorie's 
father died, Jef died and my mother died. It has 
been important to Matthew, too. When Matthew 
decided he wanted to do a doctoral thesis in litera-
ture on Nabokov it turned out that the world's ex-
pert on Nabokov was in Auckland! To tie the knot 
even tighter we have three Kiwi grandchildren. 

Another place I have a strong connection with is 
Brazil. It began in the context of graduate students. 
I had three Brazilian graduate students pretty early 
in my career. For many years, they were inviting me 
to come visit. I would tell them I was not going to 
any dictatorship. But eventually, the generals went 
away and luckily I was asked again. I went that time 
and had a wonderful visit. Brazilians and Canadi-
ans are very similar in many ways it turned out. In 
particular, they both have very high levels of teach-
ing and research in statistics and of course sports 
are very important in both countries. Then, I got 
invited to another meeting and Pedro Morettin pro-
posed that we apply for a joint NSF-CNPq (stet) 
grant. When the grant was funded for 3-4 years I 
decided it would be rude to have that grant and not 
make some attempt to learn Portuguese and took 
two courses. I have given talks in Portuguese there 
and they have been very patient with me. One of 
the days that I was most proud of professionally 
was when I got elected to the Brazilian Academy 
of Sciences. That was quite a surprise!! 
Vic to r : You also chaired the department at Berke-
ley for a couple of years. How was that? 
David : I liked some parts of it, a lot. I got to know 
the staff very well, which I hadn't before. I got to 
know all the grad students very well, and many un-
der gr ads. I had many pleasant interactions with my 
colleagues also. But I couldn't do any research. Be-
cause whenever I tried to do research all of a sudden 
the day became too short or I was interrupted too 
often. I had agreed to do it for one year. The "candi-
dates" had come down to David Freedman and me. 
David Blackwell said: "Well, it's you two. Time to 
chose." David and I each agreed to take it on for 
one year. I thought it was unfair that I was being 
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expected to take it on then, because I had so many 
projects in process. David Freedman probably felt 
the same concerning himself. In the end I, did it for 
two years. David F. did it for five. As I just said, I 
did enjoy the job, but only after accepting not doing 
much research. The person whose model I followed 
in the job was Erich Lehmann. He had been chair-
man perhaps for four years and I just liked the way 
he did it. He would be in the coffee room at 10 am 
in case any of the students or faculty wanted to see 
him. One needs role models for how to do these dif-
ferent things, and Erich was my model for the chair 
position. 

I just remembered a story. Actually during Erich's 
term I was (Acting) Chair for half a day. Erich had 
felt compelled to resign over some matter. I was Vice 
Chair which I guess made me Chair in a sense. How-
ever Erich didn't tell me that he had resigned until 
my "term" was virtually up. 
V ic to r : So what is your opinion on leadership in 
academic departments? There's a sort of patriarchal 
paradigm with a dominant personality at the top 
and a democratic paradigm - e.g. Neyman years vs 
post-Neyman years. What 's your take on that? 
Dav id : There is also an anarchist model. In fact 
when I first came to the Department there was some-
thing of an anarchist attitude - everything was be-
ing challenged, like language requirements. Barankin 
gave a stirring speech, which got rid of them. I be-
lieve that Neyman created some things that might 
never have existed without him. That was very spe-
cial and what the right great leaders do. I don't feel 
that the faculty resented it too much, but I don't 
know. I liked being at the LSE rather than some 
other English university, because then there were 
something like 5 professors in the department [Fig-
ure 6]. Also mathematics was growing out of statis-
tics there, not the other way around. The profes-
sors rotated the position around being chair for three 
years. What I tend to say when people tell me that 
they have been asked to be chair is: well, if you can 
do it, you have to. The thing is if the people who 
could do it manage to get out of doing so then the 
system of good governance collapses. Anyone who 
could do it has to take their turn. An advantage is 
that different things are emphasized depending on 
who is the chair. In my term, I put a lot of depart-
ment resources into computing It seemed the time 
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Vic to r : Some consider you as a theoretical statisti-
cian, others consider you as an applied statistician. 
Which one is it? Always learn new theory? 
Dav id : Oh yes? Where did you get that ?!? [both 
laugh]. That 's my motto: always learn theory, for 
the theory becomes the practice. I can provide a lot 
of evidence about that and I think it is what places 
the Berkeley students in a good position when they 
finish. Because other places will create students who 
are really up to date the moment they finish, but not 
ready for new things that come along. It's harder for 
them to keep on top of tilings. They may well fed 
intimidated and struggling to keep up. I think the 
students coming to Berkeley get a lot of gifts from 
the people here. One can mention LeCam with his 
abstract approach to things and depth of thought. I 
had great respect for him for a lot of reasons. One 
of them is he could sit in his office and he could 
dream of these incredible mathematical problems, 
and dream up solutions. Whereas my tiling to do 
is to find a parallel scientific situation where that 
problem exists. This can give important clues about 
how to approach the problem. Lucien always seemed 
able to generalize these things in such a way that he 
would encompass so many things. I would take some 
of his work and particularize it to a specific situation. 
Vic to r : Is that your research strategy? How do you 
attack problems? How do you find or choose them? 
David: I find them by people interacting with me, 
or by my asking them. As I mentioned earlier when 
I arrived in Berkeley, I went over to the Seismo-
graphic Station. They didn't come to me. 1 think 
that with a consulting service you don't really get 
the special people coming. You have to go over to 
them, to the scientists. You have to present your-
self to them. Terry Speed and I agreed on this once. 
Terry was chasing across campus some time after he 
arrived, interacting with people, particularly in biol-
ogy. When 1 think about my recent work: risk anal-
ysis was motivated by interactions with Bruce Bolt 
of the Seismographic Stations,the trajectory mod-
elling was based on data collected by Brent Stewart 
of Hubbs Sea World,while both topics involved Alan 
Ager and Haiganoush Preisler of the US Forest Ser-
vice. The work on sports statistics is based on data 
that I collected on my own. At a certain point you've 
got all the problems you can handle. It seems in any 
case that if you want to work with good people, then 

you have to go after them. So I've just come to know 
a lot of people. Various of my papers may be found 
in [Guttorp (2010)]. 

Now, I am a member of the scientific advisory 
panel this new center of excellence for evolutionary 
biology at the University of Oslo, and there is a flood 
of new problems coming into my head from that. It 
is just wonderful. But I was wondering: why me on 
this panel? And then I thought: oh evolution that is 
time-series, isn't it? It is just a totally different group 
of scientists from any I have been involved with be-
fore. Now I own a great thick book on evolutionary 
biology. 
Vic to r : In a recent article [Dyson (2009)], FYee-
man Dyson classifies mathematicians as frogs and 
birds; or as Erich Lehmann put it [Lehman (2008)]: 
problem solvers and system builders. Where do you 
stand? 
Dav id : I like to be a bit of both. I like solving prob-
lems, but yet from my math background I like to 
abstract things, I like to transfer information be-
tween fields. So, I have worked at the same time 
with a seismologist, Bruce Bolt, and with a neuro-
scientist, Walter Freeman. Walter works with EEG 
[electroencephalogram] analysis, I would be telling 
Walter some of the clever things the seismologists 
were doing and I would be telling Bruce some of 
the clever things that the neuroscientists were doing. 
They each could then be thinking of applying these 
things to their own data. Abstraction was the route 
between the two fields. Transfer of knowledge is a 
topical goal and the politicians like it a lot. It prob-
ably makes sense because you can "start sooner" in 
a different field. Dyson by the way is another hero. I 
think I read various of his books and papers, I used 
to look a lot at the physics literature. 
Vic tor : Do you have a favorite paper? 
Dav id : I believe that my favorite papers are the 
ones that I had to work the hardest to get the result, 
I believe I told you I had solved all the problems, ex-
cept one, in Sam Wilk's book. The one which was 
about getting an asymptotic joint distribution of the 
median and the mean. I did not know how to get that 
and when 1 told Sam 1 don't think he knew how ei-
ther. He said he had found the result in a paper by 
some Hungarians. I never found that paper either. 
Eventually, I ran into the notions of strong approxi-
mations. later called coupling, and read a report by 
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ROIL Pyke another role model of mine- and one of 
his students, on getting a strong approximation for 
the empirical CDF using tied down Brownian mo-
tion. But for the problem I was concerned with, I 
needed an error term. I think I was the first to set 
down that approximation with an error term. The 
Hungarians then referred to my work and general-
ized it to get a lot of wonderful results. 
V ic to r : You're referring to your early Bulletin of 
the AMS paper on the representation of ail empirical 
distribution function [Brillinger (1969)]? 
Dav id : That 's right. That 's one of my favorites. 
It just opened up a whole host of things. Then, of 
course, when you get such a result you can improve 
it a great deal. But. this strong approximation just 
lets you write down results using standard calculus. 
That was an important one to me. 
Vic to r : And what about a "favorite rejected pa-
per", or to put it differently, is there an instance 
when you might have felt angry at a referee? 
David: No, never anger at an academic referee, 
sometimes anger at a soccer referee [Victor laughs]. I 
had a paper once, that I thought was quite interest-
ing, on a representation for polymeasures. So poly-
measures do relate to polyspectra, but really it was 
more useful for non-linear' operators. I mean there's 
this huge world of linear operators, but polymea-
sures provide you with representations for an impor-
tant class of polynomial operators. And then, since 
1 was just about to move to England, 1 thought it 
would make sense to send it to the Journal of the 
London Mathematical Society. To this day, I think 
that if I had actually been at LSE and sent it from 
there, they would have accepted it. But I just got a 
referee's report back saying that they were just not 
interested in that type of paper, I was young, I was 
learning. I still had the attitude that I'd rather be 
playing hockey than doing this stuff, and that stood 
me a good stead. Really, that 's not made up. Plus I 
had Tukey telling me that he had many papers re-
jected, I think I read somewhere that Rob Tibshirani 
said that his first ten papers were rejected. Tukey's 
thing was resubmit somewhere else. I sent it to the 
Proceedings of the American Mathematical Society 
and they accepted it directly, [Brillinger (1967)]. 

Tukey and I had a paper rejected by two jour-
nals [Brillinger k Tukey (1985)]. He told me not to 
worry, it could appear in his Collected Works, and 
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it did, 
Vic tor : Going in the other direction, was there a 
paper that you found had much more impact than 
what you would have expected? 
Dav id : I just love to do math problems. All through 
High School and University, there were problems 
from the American Mathematical Monthly that I 
would try to solve. So, I was doing it for my amuse-
ment. You know, you could send a solution and 
sometimes they would publish it. So, I think in many 
cases that 's why I was doing things: there was a 
problem, and I was there. So, the polyspectra pa-
per [Brillinger (1965)], just started out from having 
fun. I found that cumulants were a way to go. They 
had this property that, if there was a multivariate 
variable, and if some set of its variables was indepen-
dent of the rest, then the joint cumulant was zero. 
This takes one directly to a definition of mixing for 
general stationary processes. Perhaps the Russians 
knew that result, but anyway. But I was working 
on this for fun. At one point, Tukey mentioned the 
word, polyspectra, and I made the connection - and 
wrote that paper. That paper might have helped me 
get some invitations to speak and job offers and pro-
motions. It surely led to my collaborating with Mur-
ray Rosenblatt. 

Vic tor : Well, it's been cited over 200 times, I think! 
Dav id : I remember I gave a talk on that research 
at Cambridge. David Kendall, whose work you know 
well, had invited me. When I was done with the talk, 
I think he was as baffled as most other people were 
by what I was up to. Maybe I was just not good at 
explaining it. Hopefully, I eventually learned how to 
do so. Anyway, Kendall said something like "Now 
let's go have some poly-tea in our poly-cups". So 
that broke the ice [laughs]. Most of these great peo-
ple have a sense of humor. They can seem pretty 
serious because one has to think hard to do the re-
search. But you realize that basically they're peo-
ple wrho have families, and have fun with their chil-
dren at the playground. There is a human side to 
all of them. So, in the beginning, very few people 
would refer to that paper at all. I think Kolmogorov 
knew about it, and I had a bit of an interaction with 
Zurbenko about it. But that was pretty much it. But 
then, in the early '80's all of a sudden I get this fiood 
of reprint requests! This was when people still used 
reprints, they didn't have things on the web. And 

imsart-sts ver, 2009/0S/13 f i l e : BrilliTQgerPauaretos_Conversation.tex date: March 15, 2010 



lxviii Statistical Science Interview 

3 0 

so. all of a sudden I'm being invited to these con-
ferences, some of them in exotic places, on "Higher 
Order Spectra" - that 's what they called it. My pref-
erence is cumulant spectra. I remember saying things 
at some of these conferences, like "Nothing matters 
unless you show it used on a real data set". And I re-
member seeing some of the engineers looking at each 
other. Because in so many cases they would tend to 
use proof by simulation. That gave them the feeling 
they had done their duty in terms of a proof. I don't 
put them down, I have a huge amount of respect for 
engineers. My favorite committees are engineering 
committees because they have something better to 
do than being on the committees! And they have this 
attitude, that A11 in Cornell, an earthquake engineer 
expressed to me once, the attitude that every engi-
neering problem has a solution. And I think Tukey 
was showing me that many times over in the form 
that every statistics problem has a solution. And 
that it's the statistician's responsibility to find it. 
You can't just abandon a scientist and their data. 
Vic to r : On your office door in Evans Hall there is a 
sticker: 2rr ^ 1. Would you care to elaborate oti this 
for the uninitiated? 

David: Oh well, yes, that 's my logo! I usually like 
to make people figure it out. It. goes back a long way. 
Here's one story, this student, Raffa [Irizarry] whom 
I have mentioned already, was just a joy, I would 
hear loud footsteps of someone running down the 
corridor towards my office. And then Raffa would 
appear, slide me off my chair, and open a window 
on my computer saying "You have got to see this!" 
One day he ran into my office saying: "I found it! 

is not 11". He had discovered what was going 
wrong in his computations by simulating the basic 
procedure countless times for a known case. His an-
swer was out by a multiple of 2it. Rafa w~as already 
a modern statistician using Mathematica and simu-
lation to deal with analytic problems. By the way, 
he just received COPSS* Young Statisticians Award. 
That made me very proud. Peter Guttorp just got an 
honorary degree from his home University of Lund. 
The grad students have been my great joy at Berke-
ley. Ross Ihaka received the Pickering Medal in New 
Zealand for his work in developing the statistical 
package R. Others too. I mean my students make me 
proud for their research and professional contribu-
tions. John Rice has excelled in those two areas and 

just completed a second successful term as our De-
partment Chair. They are grandchildren of Tukey's, 
and a lot of what they are getting from me is what 
I learned from Tukey. For example, you've seen me 
filing papers with these plastic ziplock bags? Well 
this is a Tukey idea from many years ago! Victor, 
does Stephan [Morgenthaler] ever do that? 
Vic to r : 1 don't recall, I'll make sure to check! 
David: Well, you can tease him about it. If he says 
no, tell him that Brillinger says he would have a bet-
ter career using these bags! He will have an answer 
to that, I'm sure! [both laugh] 
Vic to r : Churchill [(Churchill, 1930, p. IT)] wrote 
something like "All students should learn English, 
and then the clever ones should take Latin as an 
honour and Greek as a treat". Translated into math-
ematical or statistical topics, what would be your 
pick? 
David: You could probably ask me that 5 times and 
get 5 totally different answers! Because right now 1 
think it's puzzles. As a youngster, I was always doing 
problems in the newspaper, you know: "three men 
are in a room and they can't see what 's on their own 
head ...", and things like that. I had a lot of fun in 
doing that and a lot of good intellectual exercise. 
Perhaps the exercises in my book was the part I en-
joyed most. It was the hardest part too. The things 
I had to work hardest on arc the ones I respect the 
most, I developed an estimation method and a paper 
once, on my bike ride home. I had the idea, went to 
the typewriter upstairs, sat down, and typed it up. I 
sent it to Biological Cybernetics directly [Brillinger 
(197S)]. All done in a couple of hours! That didn't 
impress me. Then, there are some other things like 
how to handle the "integrate and fire" model in neu-
roscience [Brillinger k Segundo (1979)], which took 
quite a while to come along. 

Vic to r : As we already mentioned, you will have 
supervised 40 PhD dissert at ions by next January. 
What would be your advice to the next generation? 
David: It seems to me that learning mathematics 
is nowadays being replaced by learning computer 
science. I think it would be good for students to 
learn near equal amounts of each of these. Com-
puter science lets one cheek out proposed methods, 
learn about data structures - after all the data arc 
typically in a computer - and get approximate an-
swers. But I am not sure it really takes you to the 
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FIG 12. !'(::•>u and Victor with the Swiss Alps in baekgixtund. Photo taken during the -INTERN EW JESGICIIJ SEPTEMBER 2009. 
David is proudly wearing the Canadian Soccer team shirt. 

essence of a lot of situations. Think of the neural 
net models. They can be justified by the science, as 
in the threshold case mentioned above. However, I 
am uneasy about throwing everything in there and 
getting an answer without a scientific interpretation. 
I would rather use something tha t has scientifically 
interpretable parameters. Let me add though that 
I am certainly not averse to using some tool to see 
what it can do for me. I would like to see students 
come back to studying more serious mathematics. 
I 'm astonished that some students in the computer 
science community don't know elementary trigono-
metric identities. For them, the Fourier transform 
is just the FFT: you put this in and you get this 
out. People learn a lot by just doing something and 
seeing what you get. That 's a system identification 
approach where one inputs a signal and sees what 
comes out. I think it is a lot more rewarding to re-
ally get some understanding of why it is happen-
ing. Although in science it doesn't always work that 
way. I remember FYcd Mosteller saying many years 
ago that nobody ktiew then wily aspirin worked, but 
that of course we are going to use it because it ap-
peared to work. Hut still I think learning what the 
thing was doing is fundamental, because then you 
can improve on it. 

My bottom line is: have fun! That sounds trite 
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but I'm serious. If you are worried about something 
consider what you can do about it. If there is some-
thing, do it. If not, what's the point of worrying? 
When you have a child die after a very long battle 
with cancer, as Lorie and I did, you simplify a lot 
of things. You take things to their essence. Don't 
be afraid to cry. It is another thing you learn going 
through a tragedy. Many say crying is hard some-
times. For me, it just happens. 
Vic tor : David, thank you very much for sharing 
these memories of your remarkable life and career. 
But I have to ask one last question: would you still 
rather have been a hockey player? 
David: Oh yes!!! [laughs out loud] There is noooooo 
doubt in that! I gave the after-dinner talk at one or 
the Canadian Statistical Society meetings and the 
title was: "Why I became a Statistician". You can 
guess what the punchline was! 
Vic tor : Thanks again, David 
Dav id : Thank you Victor. You had some good ques-
tions. I mentioned only some of my students. I prob-
ably have an anecdote about each, but I'll save those 
for another time. 
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Commentary by Victor M. Panaretos

Necessary and sufficient conditions for a statistical problem to be invariant under a
Lie group [1963]

David began working on this paper while he held ap poi nt ments at Princeton and Bell Lab s,
and complete d it at the London Schoo l of Economics. He recalls (Pana retos [16]) that his motivation
to consider t his pro blem came from Don Fras er's program of struc tural probabilit y, and in particular
from the issue of formalising aspec ts of Fis her's fiducia l probability. A particular example that
David had in mind was that of the correlation coefficient : could Fraser 's resul ts be used to show
that Fisher 's fiducial dist ribu tion (F isher [7]) can be ob tained as a Bayesian poster ior for some pri or
- as is often the case when a un ique sufficient st at ist ic exist s? Lindl ey [15] had proved that , in the
real case, a fiducial distribution would arise as a posterior if and only if t he stat istical problem were
invari an t , and so David set ou t to find conditi ons for invariance. To st udy t he general case , and
since most of Fisher 's exam ples seemed to essen tially involve a Haar measure, David was naturally
led to consider the invariance of stat istical decision pro blems wit h ma nifold parameter/sample
spaces being acted upon by a suit able Lie group. In the general case , David 's necessary condit ions
amo unted to requiring t hat: (a) the loss function vanish under the action of the infinitesimal
generator of t he pro duct Lie gro up (i.o. the Lie gro up sim ultaneously acti ng on the sample space,
act ion space and parameter space) , and (b) t hat t he image of t he log-likelihood function under t he
infin itesimal generator of the product Lie gro up acting on the parameter and samp le space be equal
to minus the derivative of t he action of t he Lie group on the sample space. In short, t he sufficient
conditio ns (which ar e of interest for the applica tio n that David had in mind ) essent ially requ ire
that t here exist linear differenti al op erators (understo od as infinit esimal generato rs of t he cand idate
Lie group) such that the necessar y condit ions hold true plu s the additiona l requirement that these
generate a global gro up. Conditions for t he generation of a local gro up (Lie's second Fundamental
T heorem) were given, and t hen two recipes for at t empting to est ablish that the local gro up is
in fac t a global group were described. 'When t he parameter and sample spaces are Euclidean, the
conditions simplify significant ly. Applying his resul ts to t he sp ecial case of the corre lation coefficient
of bivari ate Gau ssian data , David was then able to conclude that t here exists no prior dist ribution
such that Fisher 's fiducial dist ribution be int erpret ed as a Bayesian post er ior. On ce in a talk of
his at a Bell Labs semina r in the '60's , David recalls someone chasing him around a bit during the
talk, and Mar tin Wilk say ing something in t he lines of "watch out or David will trap you in a Lie
group" . "That turn ed out not to be necessary" David remarked when tellin g me this story.

An asymptotic r epresentation of the sample distribution function [1969]
This paper was published in 1969, communicated by David Blackwell , when David Brillin ger

was a lecturer at t he London School of Economics. It s story, however , can be t raced ten years
back to an anecdote dating just before David start ed his PhD at Princeto n. David had just

P. Guttorp and D. Brillinger (eds .), Selected Work,' ofDavid Brillinger , Selected Works in Probability 3
and Statistics, 001 10.1007/978-1-46 14-1344-8_1 , © Springer Science+Business Media, LLC 20 12



arrived in New Jersey and Sam W ilks asked him to go through all the problems in the book he
was preparing on Mat hematical Statistics, and come up with solutions . David man aged to finish
them all excep t for one: proving that the mean and median where jointly asymptotically Gaussian.
This problem was left out of the book, and as David later recalled "it took me a while until I
found a neat way to do that " (Pan are tos [16]). This neat approach is the topic of this paper.
It consist s in the constructing a coupling between the uniform empirical pro cess and a Brownian
bridge such that , with probabili ty 1, t heir uniform distan ce decreases like n -l/4VlognVloglogn.
Obviously, applicat ion of the probability int egral tr an sform for a general dist ribu tion function would
then allow the application of this result to the st udy of the asymptotic behavior of functionals
of arbit rary cont inuous distributions. The coupling relies on a so-called renewal construct ion:
the empirical process is represented through the partial sums of independent exponent ial random
variab les. This type of construction can be found in Breiman 's book [5, p. 285], but it was Brillinger
who independently realised that such a representation could be employed for t he purpose of proving
uniform central limit rates. The coupling allows the use of the Skorokhod-Strassen approximation
theorem (e.g. Shorack & Wellner [21, p. 60]) to obtain the desired rate. This rate was later improved
through a different technique known as the Hunga rian constru ction (see Gaenssler and Stute [8, par .
3.5]). A side remark is that the Brownian motion, say {B(x)} , in David 's coupling is dep endent on
n thro ugh B(x ) == B (n ,x) = n - 1/ 2W(nJ;), where W is standard Brownian motion. T he Brownian
bridge transformation of this process, lBS(n, x) = n- I / 2[B(n, x)-xB(n, 1)] = n- 1/ 2[W(nx) -xW(n)],
allowing for n to take real values, has become known as the Brillinger process (Shora ck & Wellner
[21, p. 33]). In our recent conversat ion (Panaretos [16]), David mentioned that this was one of his
favourite papers.

The spectral analysis of stationary interval functions [1972]
In the summer of 1970, six months afte r David 's arrival at Berkeley as a perman ent fac­

ulty memb er , the Sixth (and last ) Berkeley Symposium took place, wit h a glit tering line-up of
par ticipants, including Anderson , Bartlett , Burkholder, Birnbaum , Chern off, Cochr an , D.R. Cox ,
Daniels, Doob, Dvoret zky, Gani, Gn edenko , Hajek, Hammersley, Ito, Kac, Kakutani , Kin gman ,
Levy, Lipster , Meyer , C.R . Rao , Rosenblatt , Savage, Shiryaev, Stein and Varadhan, to mention a
few - and of course the all-star Berkeley faculty, including the la ter Nob el Prize winner in economics
Gerard Debreu. David 's cont ribut ion to the symposium was "a way forward for making inferences
based on data for processes with stationary increme nts " (Pan aretos [16]). Much of the work had
been ca rried out in London, where David was motivated by the work of Bar tlet t , Cox, Lewis and
Vere-Jones. David in fact recalls David Cox , Maurice Bartlett , Toby Lewis, John Kin gman and
Henry Daniels being in the audience for his talk. His st udy is carried out in t he (equivalent ) frame­
work of st at ionary int erval pro cesses, that is, vector-valued random pr ocesses defined on bo unded
sub-intervals of the real line, {X(6)} with 6 = (a,;]]' a,;] E lR? - David was influenced in his
approach by Bochner 's [4] book on harmonic analysis and probability, and Kolrno gorov 's [14] work
on curves in Hilb ert space. Under mom ent assumptions, he demonstrated that st a t ionary interval
pro cesses admit a spect ral rep resenta tion ana logous to that of Kolmogorov 's for real processes wit h
st at ionary increments. This representation was then used in conjunction wit h mixing assumpt ions
(for well-separated int ervals) to extend distributional asy mptot ics on finit e Fourier transforms of
continuous stationary processes to t he inte rval function case . The exploitation of such results for
st at ist ical inference was then considered . Bartlett [1, 2, 3] had fairl y recent ly initiated the fre­
quency approach to inference on stationa ry point pro cesses, and David 's resu lts appear to be the
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first inst ance of an asymptotic theory for spect ral inference on general second-order st at iona ry point
pro cesses (Bart let t [2] had only bri efly described periodogram asympto t ics in the special case of
Cox processes on the real line) . T hus David 's work has been fundamental for inference in point
processes - a search in the literature on formal inference for point processes (st at ist ical t ests, for
example) revea ls the significant extent to which his result s have underpinned many methods that
are being put to use. However , David 's resul ts ap ply more generally to ot her sit uations - for exam­
ple, int egrals of cont inous-ti me t ime series X (b.) = It:>. Y (t)dt , and hybrids of cont inuous processes
and point processes, such as X(b.) = It:>. Y (t )II (dt ). These special cases , including t heir regression­
like ma nifesta tio ns (t ime-invariant filtering) , are treated in some depth as particular examples of
appli cation of the general results. At the end of his t alk , David mad e the throw-away remark
that in much of what he was doing he was in essence rep lacing the empirical Fourier transform

'r T
J~ e-iAtXtdt by J~ e-iAtdX(t). Herman Rubin then approached him and asked "why didn't you
say that from the beginning?".

On the number of so lutions of systems of random equations [1972]
This is one of the first few papers that David wrote afte r having moved from the LSE to

Berkeley in the la te '60s. The problem under consideration was det ermining expressions for the
expec tat ion and factorial moment s of the number of solutions of r i rea l equa t ions in r i unknowns. For
random fields that are almost everyw here differentiable, such expressions can be exploited in order
to st udy the behavior of t heir crit ical points, or indeed provide bounds for crossing pr obabilities.
Within the latter context , the results in David's paper can be int erpret ed as a generalisat ion of
Rice's fo rmula [19], applicable to t he non-st ationary and non-G aussian vect or field case . David was
well awar e of t he work of a number of probabilist s on crossings of stochastic pr ocesses at the time
- Cyril Offord had become t he first Professor of Mathem at ics at t he LSE short ly before David 's
departure, and he had read his pap ers, including a famous one wit h Lit tlewood. David had also
att ended Leadbet t er 's Berkeley Symposium talk . Although he recalls t hat much of t his he had
done "for amusem ent" , he t hen came across one of the new acquisit ions in the Berkeley Maths
library on Geomet ric Measure Theory, by H. Federer [6]. Skimming t hrough the book , he rea lised
that one of Federer 's results on count ing zeroes could be adapted into a stochast ic var iant and also
be applied to level curves. For a random system Y(x ) = Yo, where Y is an JR!.n- valued field and
x , y E JR!.n , one may define a spatial point proce ss N (A; Yo) over t he Borel subsets of JR!.n, which
counts the number of solutions of the syste m fallin g in A. In this cont ext , David generalised Ka c's
[11] approach (via Federer) to count ing root s an d showed that t he mean measure, lE [N (A)], can
be expressed as I.Rn IAItl f( y o, t ;x )dtdx , where f(y , t ;x ) is the joint density function of Y (x ) and
T (x ) = [J Y](x ), the la tter denoting t he J acobian ofY at x . Not ice t hat , although lE [N (A)] reflects
an essent ially global property of Y on A, t his expression requires only t he marginal distribution
of t he random JR!.n+ l - vector (Y (x ),T (x )) (which , of cours e, is t hen int egrated w.r .t . x). The
expression for the factorial moments is of similar "philosophy" . In the sta t iona ry non-Gau ssian
one-dimension al case, and taking A = [0, 1], Rice' s formula becomes lE [N ([O, 1])] = Iooo tf (yo, t)dt ,
where f(y , t ) is the joint density of Y and its derivative Y' - a special case of David 's formula .
Condit ions for such a formula to hold true can be rather intricate and hard to verify, and David 's
pap er appea rs to be t he first to conside r the valid ity of such typ es of formulae for almost all Yo
rather than for each specific value - allowing for great simplificat ion of the sufficient condit ions
for validity (t he requirement bein g Lipschitz cont inuity and existe nce of the joint density; similar
ap proaches were subsequent ly considered by Gem an & Horowitz [9] and lat er Zahle [22]). That
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being said, David also provided sufficient condit ions in this paper for his formula to be valid for any
parti cular value Yo. An interesting remark is that his acqua intance wit h Moe Hirsch, a Berkeley
mathematician whom David acknowledges at the end of the paper for pointing ou t a useful lemma,
was made during an anti-war demonstration at Berkeley.

Asymptotic Normality of Finite Fourier Transforms of Stationary Generalized Pro­
cesses. [1982]

In one of our first meetings at Berkeley, during a general discussion on potential PhD thesis
topics, I recall David st ress ing: "you want to be thinking of data as anything that can be mathe­
matically expressed - thinking of a stochastic process X, as X and t being in arbitrary spaces with
some general structure that can be taken advantag e o]", David points out (P an aretos [16]) that
he was influenced to think t his way by reading Bourbaki already as a first yea r undergraduate
at Toronto, on t he encouragement of A.J . Coleman. In many ways, t his philosoph y exemplifies
a theme th at characterises much of David 's resear ch, namely using mathematical machin ery that
might not be considered par t of the standard statist ica l toolbox with a concret e dat a-an alytic goa l
in mind. This pap er - communicated by Murray Rosenbl at- is an inst an ce of this approac h in one of
David 's ma in field s of expert ise: t he spectral ana lysis of stationa ry processes. Four ier t ransforming
a process {Xt} requires in principle X to have realisations lyin g in a suitable function space (ideally
a Schwartz space), and t belonging in a space wit h a group st ruct ure (e.g. Rudin [20]). The lat ter
also allowing to make sense of the notion of stationarity , as invar ian ce under the act ion of the
group onto it self ). David conside rs stat ionary processes wit h a "t ime index" belon ging in a locally
compact Ab elian top ological group - quite a general set t ing extending the usual choices of lR or
Z. The "paths" of the pro cess are consequent ly ass umed to belong to the class of Schwar tz-Bruhat
distributions, the generalisation of t he notion of Schwartz distributions in the case where t he do­
main is a locally compact Abelian group inst ead of a real vect or space (Osbo rne [17]). In t he more
tradit iona l setting of t in lRd or Z, one has th e celebrated resul t th at the finite Fourier tran sform
of a stationa ry mixing process is asy mptot ically (complex) Gau ssian and ind ependent for differen t
frequencies - op ening the doo r for the use of "iid technology" for statist ical inferences based on
observed sample paths. David had developed similar ty pes of resul t s for various types of stationa ry
processes and was seeking in t his pap er to find a general unifying framework. He thus provided a
mixing condition in this more abstract setting for ana logous results to hold . T he condit ions and
results require qu ite some techn ical prerequisites to be exposed , bu t can be seen to be simila r in
nature wit h the more "usua l cases" , once the concepts involved have been suitably generalised. An
int eresting aspect is how to make sense of the stateme nt t -> 00, which is form alised by David
t hrough suitable nets of tape rs (as David notes in the paper, a Fourier transform not based on
a net might fail to be Gau ssian ). 'When I asked David in t he end of that meeting which courses
he thought I should take, he replied "sit in as many math courses as you can, and also take the
applied statistics course":

A particle migrating randomly on a sphere [1997]
In t he mid '90's, David began a collaboration with Br ent Stewar t of the Hubbs-Sea 'World

Research Insti tute on the modeling and ana lysis of the movem ent of elephant sea ls. Every year,
elephant sea ls t rave l enormous dist an ces migrating from the southern Californian coast to the
northeastern Pacific. 'With the except ion of min or perturbations du e to foraging, their course seems
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to lie on grea t circles connecting their depar ture point and destination. Modeling their t raject ories
is of interest since it provides insigh t into whether the seals have the ability to somehow continually
move "st raight ah ead " on a geodesic path - a ship, for inst an ce, would need to iteratively correct it s
course to stay close to a geod esic path. In this paper , David set down the probabilisti c framework
for the ana lyses later conducted considering st ochastic differential equations on the sphere attract ed
to a cap of the sphere. In a sense , his work can be seen to be the "spherical complement" of that
of D.G . Kendall [12] who considered the scenario of an attractive pole on the plan e in order to
model bird navigation (indeed , David demonst rated how his model approximated th at of Kendall 's
when the radius of the sphere grows to infinity) . Diffusion s on spheres and homogeneous spac es
have a long history start ing wit h Perrin's [18] investigation of rotat ional Brown ian motion and
have been the subject of much st udy (also see Kendall [13] and Hsu [10]). David first provid ed
an overview of the approaches to Brownian motion on the sphere: intrinsic definition, definition
through embedding in IR3 , definition t hrough setting the spherical Laplacian as the generator, and
definition through invarian ce arguments. He then pro ceeded to develop the Ito equa t ions for a
spherical diffusion drifting towards the north pole and subjec t to Brownian disturban ces. From
these, expression s for t he generator, the invarian t density and the likelihood ratio were determined.
From the latter , David also proposed estimators for th e par amet ers of int ere st when a complete
path is observed and suggested approaches to est imat ion when only partial observation of the path
is feasible (as would be the case in practice) . This paper marks the beginning of a long resear ch
program of David 's involving t he use of st ochastic differential equ ation-based models for animal
movement - a program that he is still actively pursuing to date.

Some statistical methods for random process data from seismology and neurophysiol­
ogy [1988]

Soon afte r arriving at Berkeley, David begun long and fruitful collaborat ions wit h a seismol­
ogist , Bruce Bol t , and a neurophysiologist , Jose Segundo, on statist ical problems arising in t heir
work. When he was asked to give the 1983 Wald Memorial Lectures, he decided to pr esent an
overvi ew of the output of these collaborat ions with the aim of bringing out the unifying features of
stat ist ics, and the tran sfer of technology it enables. A cent ral theme that permeates the pap er is
the use of spect ral techniques. David placed significant emphasis on the need for the statist ician to
have a serious understanding of and genuine interest in the applied mat ter under st udy. T he actua l
lectures were given in Toron to, and David recalls many old teachers as well as colleagues from Bell
Lab s and Princeton attending . It is worthwhile mentioning that , alt hough the lectures were given
in 1983, they start off by a phrase that one would usually expect to find in papers wri tten about
fifteen years later : "the basic data are curves and surfaces. If n denot es the sampl e size and p
denot es the dim ension , then the concern is with the case of n much less than p". The extent of his
work in the areas is reflect ed in t he staggering 54 page length of the overview - upon reading th e
print version Terry Speed remarked that never before had he seen so much material go into such
lectures. Among the topics that David cons ide rs are: the use of asy mptot ic properties of Fourier
tran sforms of stat iona ry processes to est imate the frequencies in the Earth's free oscillations using
nonlinear least squa res, given knowledge of basic physical par ameters describing t he st ructure of the
ear th; the balancing of the bias /varian ce tradeoff as t his manife st s it self through regulari sa tion in
the corr esponding inverse problem of est imat ing t he perturbations of t he previously known physical
paramet ers given a perturbed estimate of the frequency of the free oscillation; the use of probit
ana lysis in the estimation of fault plane par ameters, with special interest in de termining whet her
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the first seismic motion was compress ion or dil ation; t he employment of non-lin ear prob it models
as a mean s to formally (as opposed to gra phica lly) estimate basic parameters corresponding to an
earthquake fault -plane given t he direct ion of first motion of the earthquake and related qu an tit ies;
the esti mation of "size" related seismic qu an ti t ies such as t he seismic moment and stress drop using
asy mptotic results in spec t ral analysis , when noise in the spec t ral domain is het ero skedast ic even
asy mptotically ; t he frequ ency-wavenumber analysis of seismic velocity vectors from non -stationar y
array dat a ; t he use of spec t ral deconvolu tion methods to attack the inverse problem of exploration
seismology, i.e. t he probing of importan t geological characteristics of a region (e.g. presence of gas
or oil) given seismic data relat ed to that region ; t he investigation of interactions wit hin small net­
works of neurons by mean s of ana lysis of t he cross intensity of the multidimension al point process of
their firing ti mes , and of regre ssion modeling of t he condi t iona l int ensity fun ct ions of t hese t imes,
fit t ed by spec t ral method s; the elucidat ion of the direction of influ ence in such small neuronal
network s by focusing on t he partial coherency fun ctions st emming from the joint point process
model ; max imum likelihood inference on the neuronal firin g t hr eshold and the firing filt er in an
int egrate-and-fire set ti ng , wh ere curr ent flow and firin g pattern are recorded ; and the use of filt er
ident ification to the aim of answe ring fundamental qu estions on the neuronal responses evoked by
a variety of external st imuli. T he paper concludes wit h the visionar y statement t hat "it seems that
the future will see m any of the traditional statis tical techniques extended to apply to datum of more
complicated [orms - specifically to curoes, moving surfuce», point clouds und the like."

The paper is ded icated to Jeff, David 's elde r SOIL J eff died in 1988 afte r a fifte en year st ru ggle
with brain cancer. He was able to see the print copy before he passed away.
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NECESSARY AND SUFFICIENT CONDITIONS FOR A STATISTICAL
PROBLEM TO BE INVARIANT UNDER A LIE onotn»

By DAVIn R. BRILLINGER

Bell Telephone Laboratories and Princeton University

1. Introduction and summary. Although a great deal has been written con­
cerning the theory of tests, decisions and inference for statistical problems in­
variant under the action of some group, (see for example [4]-[7], [9], [12]-[14],
[16]), no great amount of literature exists concerning the problem of discerning
whether or not a given problem is actually invariant under some group. In fact
the literature seems to consist of one abstract [8] and one paper [15].

In this paper necessary and sufficient conditions are developed that a statisti­
cal problem must satisfy in order that it be invariant, in a precise sense to be
defined later, under a fairly general class of transformation groups, Lie trans­
formation groups. It must be added, however, that.the sufficient conditions are
to some extent tautological. In addition two methods of actually constructing
the group, if it can be shown to exist, are given, and the main theorem is illus­
trated by a variety of examples.

One of the examples yields the interesting result that the fiducial distribution
of the correlation coefficient derived from a sample from a bivariate normal dis­
tribution by R. A. Fisher is not a Bayes' distribution for any prior distribution.

2. The definition of a Lie group. The following definitions are essential to
what follows.

A group G is said to be a transformation group on the set E if G is a subgroup
of the group of all 1 - 1 mappings of E onto itself.

Let F be any subset of E, then the set of all elements gx for g e G, z e F, is
called the orbit of F under G.

A topological group is a group which is also a Hausdorff space and the maps,
(i) g, h --* gh: G X G --* G
(ii) g --* g-l: G --* G

are continuous.
Let G be a topological group and X a Hausdorff space. Assume that for each

g e G there exists a homeomorphism of X onto X, To: X --* X: x --* ~(x, g) =
T oX such that

(i) T. = identity = I, e the identity of G
(ii) Tot T 02 = T Ot02
(iii) The function (g, x ) --* ~(x, g) : G X X --* X is continuous, then e: G X X

Received November 3,1961; revised December 27, 1962.
t Part of this research was carried out while the author was at the London School of

Economics with the support of a Research Training Fellowship of the Social Science Re ­
search Council.

492

P. Guttorp and O. Bri llinger (eds .). Selected Works ofDavid Brillinger, Selected Works in Probability 11
and Statistics, 001 10.1 007197R-1-4614- 1344-R_2, © Spr inger Science-Business Media, LLC 2012



PROBLEM INVARIANT UNDER A LIE GROUP 493

.--7 X is called a topological transformation group of G acting on X by the func­
tion lp.

1£ in addition,
(iv) To = I<=> g = e, then G acts effectively on X.
A topological transformation group G is transitive on a space X if for every

x, y e X there is age G such that gx = y. The space X is then called a homoge­
neous space.

In what follows, differentiable should always be understood to refer to that
of class C",

An n-dimensional manifold M", is a Hausdorff space which is locally n-dimen­
sional Euclidian at each point. Because M n is locally Euclidian, every point p has
a neighborhood with a system of coordinates xi " .. , x~ . .

A manifold, together with a set of overlapping coordinate systems, which
cover the entire manifold and has the property that the transformation between
any two overlapping coordinate systems is differentiable is called a differentiable
manifold.

A Lie group is a topological group which is also a differentiable manifold and
such that,

(i) a, h .--7 gh: G X G .--7 G
(ii) g.--7g-1:G.--7G

are differentiable maps.
Let G be a Lie group and M" a differentiable manifold. Assume that for each

g e G there exists a diffeomorphism of Mnonto M", To: M" -~ M": x .--7lp(x, g)
such that:

(i) lp: G X M " -~ M n is a topological transformation group,
(ii) The function (g, x) .--7 lp(x, g): G X M" .--7 M n is differentiable, then

lp: G X M n
.--7 M" is a Lie transformation group.

Examples of Lie transformation groups include all affine transformations of
R" and all orthogonal transformations of B",

Associated with any Lie transformation group G: M -~ M, is a set of infinitesi­
mal generators defined as follows: the mapping (g, x) .--7 gx = y, g e G, x, y e M
is differentiable. Let (g) = (l, l, ... , gr) denote a set of coordinates at e e G
and (z) = (x\ x2

, • • • , z") be a set of coordinates at some point Xo of M. The
mapping can now be expressed as follows, v" = lpa(g, x) a = 1, .: . , n, with
lpa different iable. Put

f f( x ) = [alpa( g, z) / agi]o=e

X i = La if; f(x) (a/ax a) is called an infinitesimal generator of the Lie trans­
formation group G over the manifold M. It is a differential operator acting on
the space of differentiable functions of x.

Lie groups appear to be natural groups for a statistician to be concerned with.
They are locally compact and hence possess the Haar measure required in the
Hunt-Stein Theorem [9] or in Fraser's work on fiducial probability, [4], [5] for
example. The transformations they induce are defined on a manifold, the type of
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space, the sample space or parameter space usually is in a statistical problem.
Finally the transformations induced by a Lie group are continuous, a property
that seems sensible for transformations applied to random variables or pa­
rameters in a real problem.

3. An invariant statistical problem. In what follows the essential components
of a statistical decision problem will be defined and necessary and sufficient
conditions that such a problem be invariant given, for most statistical problems
are generally made up of some of these basic components.

Let X be the set of all experimental outcomes, Boc a e-algebra of subsets of
X, 8 the set of states of nature, and P (.,.), the specification, a real-valued
function defined on Boc X 8, such that for each 0 e 8, P ( ., 0) is a probability
measure on Boc . Let A be the set of actions available to the statistician, BAa
e-algebra of subsets of A, and L, the loss function, a real -valued function on
8 X A X X such that L(O, a, x) is the loss to the statistician when he takes
action a, after observing x, and 0 is the true state of nature. L is assumed jointly
measurable in a and x. Let D be the class of randomized decision functions from
X X B A into the unit interval, such that for each x, 0", is a probability measure on
(A, BA ) and such that for fixed a, oa is a measurable function of x. The associated
risk R( 0, 0) for 0 e 8 is defined by,

R(O,o) = JJ L(O, a, x) d(x, a) dP(x, 0).

The above statistical decision problem is said to be invariant under the group
G if,

(i) G is a transformation group on each of X, 8, A,
(ii) g: X ~ X and g: A ~ A are each measurable transformations on the

respective spaces,
(iii) P(gB, gO) = P(B, 0), B e Boc, 0 e 8 whereg belongs to the transformation

group G on 8 X A X X obtained by defining g(O, a, x) = (gO, ga, gx) and
(iv) L(gO, ga, gx) = L(O, a, x).

If in addition go = 0 for all g e G the decision procedure 0 will be said to be in­
variant under G.

The goal of this paper is to find necessary and sufficient conditions that a
statistical decision problem, in which 8, A, and X are differentiable manifolds,
must satisfy, in order that it be invariant under the action of some Lie trans­
formation group.

The following lemmas will be required later.
LEMMA 1. If G is a Lie tran8{ormation group over the manifolds, 8, A, X its

infinitesimal generators, when it is considered a Lie transformation group over
8 X A X X, are of the form,

Xi = ~ if;'t(0) cl~a , + ~ p~(a) a~ + ~ ul(x) a~-r'
i.e., Xi is the sum of the infinitesimal generators of Gover 8, A, X respectively..
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PROOF. This is an immediate result of the particular nature of,

G: e X A X OC ---t e X A X OC.

LEMMA 2. Let F beany real-valued differentiablefunction defined on e X A X rc,
If F is invariant under the Lie group G, i.e., F(g(), ga, gx) = F«(), a, x) for all
g e G, then XiF = 0, where the Xi are the infinitesimal generators of G. If X;F =
oand G is connected, then the converse is true, namely F is invariant under G.

PROOF. If F«(), a, x) is invariant under G then F(g(), ga, gx) is independent of
g. That is, aF(g(), ga, gx) /al = O. But [aF(g(), ga, gx) /agi]g=. = X;F, thus
XiF = 0 for all i.

Conversely suppose X;F == 0 for all i. Now,

F(gh()o, qha« ,ghxo) = F(g()l , gal, gXI) ,

where ()l = h()o, al = ha«, Xl = hx«, Thus

[aF(gh()o, qha«, ghxo)/agi]g=. = [XjF]a=Ol ...~l.""~""l = O.

Now

aF(hBo, ha«, hxo) /ahi = [aF(gh()o, qha«, ghxo) /a(gh) i]g=.

= LHaF(ghBo, gha" ,~rhxo) /al]· [agi/a(gh) in g=•.
i

Thus aF(h()o, ha«, hxo) /ahi = 0 for all j, and since G is connected F is
invariant.

The main theorem of the paper is the following.
THEOREM. Let the random variable X have a density f(x, ()) with respect to Le­

besgue measure, and let f and the loss function L be differentiable functions. If the
statistical decision problem is invariant under a Lie transformation group G then,

(1)

(2)

'" .,,~«()) aL + '" ~(a) aL + '" rrY(x) aL = 0 f tu
~ 'Y' a()a ~ p. aaf! L.;" ax"Y or a 1"

L 1/Ii(()) a log f + L rrl(x) a log f = _ L arrl(x)
a a()a "Y ax"Y "Y axr

for all i,

where the linear differential operators

(3) Xi = L 1/Ii(8) aa()a + L pII(a) aafJ + L rrl(x) aa"Y
a fJ a "Y x

a = 1 '" S' (3 = 1 ... t· 'Y = 1 '" u· i = 1 ... v are the in.f:nitesimal
, " , " , " " '.I"

generators of G.
Conversely, if there exist differentiable functions, 1/I't(()) , p~(a), rrl(x) j a = 1,

.•• , Sj {3 = 1, ... , tj 'Y = 1, '" , Uj i = 1, ... , v such that

( 1') ( 1) and (2) above are satisfied

(2') thereexist constantsc}d,j,k = 1,'" ,rsuchthatXkXj- XjXk = ~iC}kXi
the Xi being given by (3)
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(3') the X i generate a connected group G, then, the statistical problem defined
previously is invariant under G.

PROOF. The measure induced by the density functionf (x, 8) is invariant under
the action of G, if and only iff(x, 8) = f (gx, g8) Det (aq/'( g, x)/ax"') .

Differentiating this relation with respect to gi and setting g = e one obtains,

o = Xd + f[L (ao1(x)/ax "') ]..,

This is equivalent to (2) . (1) follows immediately from Lemma 2, completing
the proof of the necessary part of the theorem.

It was stated in the introduction of the paper that the sufficient conditions
that would be developed were somewhat tautological. The following discussion
should indicate the reason for this statement.

In the second lemma it was shown that if the differentiable function F (8, a, x )
is invariant under the Lie group G, then it must be such that X~ = 0 for X i any
infinitesimal generator of G. It is not however true that if a fun ction F is such
that X iF = 0 for a set of linear differential operators of the form und er considera­
tion, then there is a Lie group of t ransformations G under which F is invariant.
The linear operators may not generate a (global) group of transformations, but
only a local one (i.e., one for which inverses etc. are only defined in a neighbor­
hood ) , or perhaps nothing significant at all. The condit ion (2') above is the
necessary and sufficient condition that a local group be generated (this is Lie 's
Second Fundamental Theorem). Necessary and sufficient conditions have been
given for a global group to be generated (see [11]) , however these condit ions do
not seem to be easy to apply. If one does have a particular set of linear operators
sat isfying (2') the most efficient method of finding out if they generate a global
group appears to be t o generate the local group and then to check to see if it is
actually global. Two methods of doing this follow later.

The sufficiency part of the theorem relative to the loss function now follows
from the above considerations and Lemma 2. To complete the proof of the
theorem it must now be shown that the probability measure induced by f (x, 8) is
invariant or that , f (x, 8) = f (hx, he) Det (aepa(h, x) /ax"' ) for all h.

Now,

iJf(hx, he) / ahi = [af(ghx, gh8) ja(gh) i] u=e

= L /[af(ghx , gh8) / agi
] . [agija (gh)1}u=e = L [agi/a (gh) i]u=e[X d ]x= I.8=81

i i

where Xl = hx, 81 = 11,8.
Similarly,

(a/ ahi) Det (aepa(h, x)/ax"')

L [agi/a (gh) i] u=e(I: o1(hx)) Det (aepa(h, x )/ax"') .
i ..,
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Using the above relations and (2) ,

a
h

, {f(hx, he) Det (acpa(h, x)jax'Y)} = o.a 1
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Thereforef(hx, he) Det (acpa(h, x)/ax'Y) is a constant with respect to h, and
setting h = e, and using the fact that G is connected, it equals f (x , 8). The proof
of the theorem is now completed.

The theorem has the following corollary for the case in which X is a real
random variable with cdf F(x).

COROLLARY. Let X be a real random variable with c.d.f. F (x, 8) . The statistical
problem is invariant under the connected group G if and only if Fx/Fe = a(8) /b(x)
i.e., Fx/Fe factors into a function of x times a function of 8 and b(x ) (a/ ax) +
a( 8) (a/ aB) generatesG.

PROOF. This corollary follows immediately from Lemma 2 and the fact that
for a real random variable invariance of the probability measure and invariance
of the c.d.f. are equivalent. This corollary is inherent in [10].

The reader will have noted that derivatives of all orders have been assumed to
exist in the definition of a Lie t ransformation group. One can in fact proceed
with fewer derivatives than this. M inimal conditions are a topic of current
research in the theory of Lie groups.

Two methods of actually generating the local group from a given set of linear
operators now follow:

Method 1. Let the local group G be generated by the r linear operators Xl,
.. . ,XT • If x = g(x ), then,

X i = exp (lXI + g2X2+ ... + gTXT )x i for i = 1, . . . , n ,

i.e.,

Xi = L [(gIXI + ... + gTXT) "[m !] Xi
m

Method 2. Let t he local group G be generated by Xl, ... , X r once again. Find
the integrals CPI, ... , CPn of (lXI + '" + g'Xr )u = 1 then solve

i = 1, . , . ,n

for x.
The following example illustrates the first method and the corollary.
EXAMPLE 1. Suppose one is concerned with the Pareto distribution F (x ) =

1 - ( 1/x a
) x ~ 1 a > 0, i.e. , one wishes to find if it is inva riant under some

group. Now Fx/Fa = (a/x) In z, i.e., Fx/ Fa factors as required ; t herefore F (x )
may be invariant under some local Lie t ransformation group. Let us try to gen­
erate this group by Method 1 given above.

Its infinitesimal generator is X = - a(a/aa ) + x In x( a/ ax), €X =
exp{- g[a ajaa - x In x (ajax ) ]a} = exp[- qa ajaa]a = a - qa + la/2 !
- la/ 3 ! ... = ae- o, X = exp[gx In x (a/ ax]x = Lm(l/ m !)[gxln x(a/ ax) ]mx.

16
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(5)

Let In In x = y, x = Lm(1jm!) (g ajay) mexpt e") = exp(ev+O
) = «; i.e., the

local group is given by ex = Ca, X = x
l lc

, C > 0, which is actually a group.
EXAMPLE 2. A problem that is of interest in the field of statistical inference is

to find out if the c.d.f , of the correlation coefficient r, estimated from a sample of
size N from a bivariate normal distribution with correlation coefficient p is
invariant under .some group of transformations. This problem is of interest for
two reasons, first if such a group exists and it is locally compact the Haar measure
on it provides a particularly appealing prior measure to use in the application of
Bayes' theorem. Secondly if the group exists and it satisfies certain properties a
fiducial distribution for p may be constructed following Fraser [4] [5] and it
would be of interest to compare this fiducial distribution with the one given by
Fisher in his original paper on fiducial probability [3].

The density of the correlation coefficient may be written as,

(4) f ( ) = 2
n-2(1

- /),n(1 - r
2)Hn-3}

~ (2pr)" 'r2[1. ( + )]
\ n r, P ( _ 2)! L-i, 2 n an.1r a=O a.

where n = N - 1. (See [1].)
The c.d.f. will be invariant under a Lie transformation group only if there

exist differentiable functions a(r), b(p) such that ,

d d
dr [a(r)fn(r, p)] = b(p) dpfn(r, p).

Writefn as, K n(1 - p2)!n(1 - r2)Hn-3}C(2pr). Therefore

(1- p2)~n ;[a(r)(1- r2)!(n-3)C(2pr)]

= b(p)(1 - r2)Hn-3}[(1 - p2),nC'(2pr)2r - (1 - /),n-InpC(2pr)].

Set p = 0

Therefore,

C(0)a(r)(1 - r2)Hn-3) = - b(0)(1 - r2)Hn-I)C'(0)2j(n - 1) + K.

Equation (5) becomes

(6) (1 - /)[b(0)C'(0)2rC(2pr)jC(0)

- b(0)(1 - r2)C'(0)4pC'(2pr)jC(0)(n - 1) + 2pKC'(2pr)jC(0)]

= b(p)[(1 - /)C' (2pr)2r - npC(2pr)].

Set r = 0, yielding b(p) = (1 - /) X a constant.
Setting p = 0 the constant = b(O) , i.e., b(p) = (1 - /)b(O). Substitute in

(6),
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(7) b(O)C' (O) 2rC' (2pr) I C(O)

- b(O) (1 - r2)C'(O)4pC' (2pr)IC (O) (n - 1) + 2pKC'(2pr)

= (1 - / )b (O)[ (1 - / )C' (2pr)2r - npC(2pr) ].

Equating the coefficient of p1·
2 on both sides of (7) ,

b(O) C' (O)r2[H n + 1) ]/C(O ) + b(O) C' (O)r2[H n + 1) ]/C (O)(n - 1)

= b(O) r 2[H n + 2)].

Therefore b(O) = 0 or,

r 4[!(n + 1)]nl (n - 1) = r 2[H n + 2)]r2[!n].

The lat t er is easily seen to be impossible, consequently b(O) = 0 implying
b(p) = O. It therefore follows that the c.d .f. of the correlation coefficient is
invariant under no Lie transformation group.

Lindley in [10] proved a theorem to the effect that for real random variables
a fiducial distribution is a Bayes' posterior distribution if and only if t he problem
is invariant.

Applying this theorem here one can now say that the fiducial distribution for
p is not a Bayes' posterior distribution for any prior distribution.

This example also demonstrates that a possibility suggested to me by Dr. J.
Berkson is not true in general. Namely, that when the fiducial distribution pro­
vides a frequency interpretable probabili ty, that probability is the one given by
the Bayes' formula with a uniform distribution of the prior probabilit ies.

EXAMPLE 3. I n [2] an example is given to demonstrate that the above men­
tioned theorem of Lindley does not extend to spaces of dimension higher than
one. Unfortunately the theorem quoted in [2], from which it follows that the
given example is in fact a counterexample, is not general enough. The theorem
proved above is of sufficient generality. Doubtlessly the given example still
provides a counterexample ; however it seems useful to give an example to which
the above theorem may be applied more easily.

Consider

j( x, y, a, (j) = (211") - lo- ( a) exp[-!(x - a)2] exp[-!o-2(a) ( y _ (j)2]

where o- (a) is selected as in [2]. One may easily verify that Condition (1) of the
theorem above leads to a contradiction.

I would like to thank David Lowdenslager for looking over a section of this
paper, and the referee for a number of suggestions.
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AN ASYMPTOTIC REPRESENTATION OF THE
SAMPLE DISTRIBUTION FUNCTION

BY DAVID R. BRILLINGER

Communicated by David Blackwell, January 10, 1969

1. Let Xl' ... , X; be independent observations from the uniform
distribution on [0, 1]. Let Fn(x) =the proportion of the Xi<x. We
will prove

THEOREM. There is a random function {Gn(x); O~x~1}, with the
same distribution as {Fn(x) ; 0 ~ x ~ 1 } for each n, and there is a Brown­
ian motion W, such that for the Brownian B(x) = n-I/ 2W(nx)

(1)

sup In l / 2 [Gn(x) - x] - [B(x) - xB(I)] I
O;:lz:i!l

= O[n-1/4(log n)1/2(log log n)1/4]

almost surely as n~ 00 •

This theorem is of use in the investigation of the asymptotic be­
havior of functionals of {Fn(x); 0~x < 1}, especially functionals
dependent on n.

2. We construct Gn(x) as follows; let Y., Y2, ••• be independent
exponential variables with mean 1. Let S(k) = YI + ... +Yk , k
= 1,2, ... and let S(O)=0. Set

if S(k)/S(n + 1) ~ x < S(k + 1)/S(n + 1).

This {Gn(x); 0 <x~ I} has the same distribution as {Fn(x); 0 <x~ I}
for eac.h n. We now record a series of lemmas.

LEMMA 1. There is a Brownian motion W such that

(2) sup Ik - S(k) - W(k) I = O[n l / 4(log n)I/2(log log n)I/4]
I :it:!,.

almost surely as n~ 00 •

PROOF. This result is deducible from Theorem 1.5 of Strassen [8].

LEMMA 2. Almost surely as n~oo

(3) sup IS(nGn(x» - xS(n + 1) I = O[n l / 4] .
O~:r~l

545

P. Guttorp and D. Brillin ger (eds.), Selected Work,· ofDavid Brillinger, Selected Works in Probability 2 I
and Statistics, 0 01 10.1007/978-1-4614-1344-8_3, © Springer Science+Business Media, LLC 2012



546 D. R. BRILLINGER [May

PROOF.

IS(nG,,(x» - xS(n + 1) I
= IS(k) - xS(n + 1) I
::;; S(k + 1) - S(k)

::;; max Yk
l~t~n

if S(k) ::;; xS(n + 1) < S(k + 1)

if S(k) ~ xS(n + 1) < S(k + 1).

= O[nl / 4(1og n)1/2(1og log n)1/4].
(4)

and one sees, by elementary calculations, that this last = 0 [nIH]
almost surely as n~ ex:> •

LEMMA 3. Almost surely as n~ co

sup InGn(x) - S(nGn(x» - W(nGn(x» I
O~%~l

PROOF.

InGn(x) - S(nG,,(x» - W(nGn(x» I
= Ik - S(k) - W(k) I if S(k) < xS(n + 1) < S(k + 1)

;;i sup I k - S(k) - W(k) I
l~i:~,.

and (4) follows from (2).

LEMMA 4. A lmost surety as n~ oo

(5) sup IGn(x) - x I = o[n-1/2(1og log n)1/2].
O~%~l

PROOF. See Theorem 2* in Chung [3].
We next define the Brownian motion B by B(x) =n-1/ 2W(nx) and

then have

LEMMA 5. Almost surely as n~ co

(6) sup IB(Gn(x» - B(x) I = O[n-1/4(log n)1/2(log log n)1/4].
O~%~l

PROOF. (6) follows from (5) and Levy's Holder condition for
Brownian motion (see Ito and McKean [4]) extended to apply to the
interval [0, n].

PROOF OF THEOREM. Up to an error term

O[n-I / 4(log n)1/2(log log n)1/4],

that is uniform in x, almost surely as n~ eo
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n 112Gn(x) = n-1 / 2S(nGn(x» + n-1 / 2W(nGn(x» from (4),

= n-1/2xS(n + 1) + B(Gn(x» from (3),

= n-1/ 2x[(n + 1) - Wen + 1)] + B(x) from (2) and (6),

=nl/2x - xB(1) + B(x),

giving (1).

3. We may use the probability integral transformation to deduce a
representation of the sample distribution function of observations
from any continuous distribution. The results of Rosenkrantz [7]
may be adapted to obtain rates of convergence in distribution for
certain functionals of Fn(x) . The announcement of Kiefer [5] suggests
that the error term in (1) may be best possible.

Bickel [1] and Billingsley [2] consider the weak convergence of the
process nl/2 [Fn(x) -x] to W(x) -xW(1). Pyke and Root [6] let the
distribution of Y depend on n and then prove

sup In1 / 2[G
n(x) - x] - [W(x) - xW(1)] I = 0(1)

O~z~l

almost surely as n~ co. I would like to thank Professor Pyke for the
remark that B, as constructed above, depends on n;

REFERENCES

1. P. J. Bickel, Some contributions to the theory of order statistics, Proc. Fifth
Berkeley Sympos. Math. Statist. and Probability (Berkeley, Calif ., 1965/66), vol. I :
Statistics, Univ. of California Press, Berkeley, Calif., 1967, pp. 575-591.

2. P. Billingsley , Convergence of probability measures, Wiley, New York, 1968.
3. K. L . Chung, An estimate concerning the Kolmogorov limit distribution, Trans.

Amer. Math. Soc. 67 (1949),36-50.
4. K. It6 and H. P. McKean, Jr., Diffusion processes and their sample paths,

Springer-Verlag, Berlin, 1965.
5. J . Kiefer, The deviations in Skorokhod-Strassen approximation, Notices Arner.

Math. Soc. 15 (1968),936-937.
6. R. Pyke and D. Root, A n application of stopping times to obtain weak con­

vergence, Technical Report No. 16, University of Washington, Seattle, Wash ., 1968.
7. W. A. Rosenkrantz, On rates of convergence for the invariance principle, Trans.

Arner. Math. Soc. 129 (1967),542-552.
8. V. Strassen, Almost sure behavior of sums of independent random variables and

martingales, Proc. Fifth Berkeley Sympos. Math. Statist. and Probability (Berkeley,
Calif., 1965/66), vol. II: Contributions to probability theory, Part 1, Univ. of California
Press, Berkeley, CaliL, 1967, pp. 315-343.

TIm LONDON SCHOOL OF ECONOMICS AND POLITICAL SCIENCE,

ALDWYCH, ENGLAND

23



THE SPECTRAL ANALYSIS OF
STATIONARY INTERVAL FUNCTIONS

DAVID R . BRILLIXGER
l"NIVERSITY OF CALIFORNIA , BERKELEY

1. Introduction and summary

We conside r stationa ry. additive. interval fun ctions X(d) . These are vector
valu ed stochastic processes having real intervals d = (« , fJ] as domain , having
finite dimensional distributions invariant under time translation and sat isfying

(1.1 )

for disjoint intervals d l : d 2 ' Such processes are cons ide red in some detail in
Bochner [5]. Sett ing

(1.2) X(t) = X(O , t],

- 00 < t < 00 , and in the reverse direction sett ing

(1.3) X(iX, fJ] = X(fJ) - X(iX),

we see that a consideration of stationary interval fun ctions is equivalent with a
consideration of processes X(t), - 00 < t < 00, having sta tionary increments.
These last are discussed in Yaglom [24] for exa mple. Important examples of
processes of the type under consideration are provided by the point processes.
Here the components of X(d) give the number of events of various sort s that
occur in the interv al d . A variety of properties and applications of point pro­
cesses may be found in Cox and Lewis [11], Bartlett [4], and Srinivasan [21].

The paper is divided into various sections. In Section 2 we introduce a key
assumption for the processes ; specifically we require that all the moments of
X(L\) exist and have particular integral representations. We are then able to
define

(1.4)

- 00 < Aj < 00, at , ... , ak = 1, . .. , r, the cumulant spec tra of order k of the
r vector valued X(L\) . These turn out to be generalizat ions of the cumula nt spectra
of order k of a continuous time series discussed in Brillinger and Rosenblatt
[9]. We then present a spectral representation for X(L\). This representation was
introduced in Kolmogorov [17] for real valued processes with stationary incre­
ments. It takes the form

(1.5) X(O, t] = f~oo [ex
p {i:2 - 1] dZx(A),
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with Zx(A) , - 00 < A < 00, a vector valued process. The process Zx(A) relates
to the cumulant spectrum (1.4) through the expression

(1.6) cum {dZa1(Ad, .. . ,dZak(Ak)}

= t5(tAi) fa... .. ,ak()'" ... , Ak) o; ... ,o;

with t5(A) denoting the Dirac delta function.
In Section 3 of the paper we indicate how the theory developed applies to

integrated continuous time series, to point processes, and to processes that are
hybrids of these last two, In the case of point processes we relate the cumulant
spectra to important parameters that have been introduced by Bahba [1] and by
Kuznetsov and Stratonovich [18].

Section 4 of the paper discusses various asymptotic properties of the statistic

(1.7)

based on an observed stretch of an X(.~) process. It will be seen to behave in a
similar manner to the finite Fourier transform of a stretch of a continuous
stationary series. It follows that the estimates of the various cumulant spectra
of X(l'1) may be formed in the manner of Brillinger and Rosenblatt [9] and that
the properties developed in that paper, such as asymptotic normality, will con­
tinue to hold. A selection of results that therefore become available is provided,
In particular results relating to the linear time invariant regression of one
stationary interval function on another are given. Because point processes are
particular cases ofthe processes under consideration it follows that an asymptotic
theory for the spectral estimates of order two of point processes has now been
provided.

In Section 5 we apply the previously mentioned asymptotic results to develop
estimates ofthe parameters suggested by Bahba and by Kuznetsov and Stratono­
vich for point processes. In Section 6 we consider the problem of the estimation
of the second order spectra ofa continuous time series when its values are avail­
able only for random times that are the occasions of events of an independent
point process.

Section 7 discusses briefly some practical implications and extensions of the
results of the paper. The proofs of the various lemmas and theorems ofthe paper
are given in Section 8.

I would like to thank P. A. W . Lewis for a variety of helpful comments on the
point process sections of the paper.

2. Random interval functions

Let L\ denote the collection of finite intervals of the form l'1 = («, {J]. We
consider r vector valued stochastic processes X(l'1), l'1 E L\ with the additivity
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(2.1 )
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for d, d l, d2 E Ii with d = dl Vd2 ' dl f'\d2 = 0. Suc h a process will be ca lled
an r vector valued additive stochas tic interval f unction. As one example we mention

(2.2) X (d) = It.Y(t ) dt .

where Y(t) , - 00 < t < 00 . is a continuo us r vector valued time series . As a
second example we co ns ide r X(d) = N(d) where N(d) is an r vector va lued point
process with N o(d ) giving the number of eve nts of the ath component of th e
process that o ccur in the interval d . As a final exa mple we mention

(2 .3) X(d) =It. Y(t) dN(t),

where Y(t) , - 00 < t < 00 , is an r vector valued co ntinuo us time series and
N( d) , dEli, is a point process. If '1 - ·· · _r, denote the times of eve nts of th e
process N (d ) in th e interval d. then X(d) equals

(2 .4 )

in this case .
In connect ion with the process X (d ), dEli, we set d own
A SSU M PTION 2.1. The proce.ss X (d ), dEli , is an I' rector valued stochastic

interval f unction po ssessing 'moments of all orders such that [o r d I' ... . d k Eli ;
a I ' . . . , ak = 1, . . . , r ; k = 1, 2, . . . ,

for some fun ction 111 0 1 , ... . Ok (t I ' .. . , tk ), - 00 < t j < 00. of bounded variation in
finit e int ervals.

In the case that X(d) sat isfies this assumption and 4>o(t) is bounded and con ­
tinuous for t in some interval of Ii and 0 outside the interval , we may defin e
stochasti c integrals of the form

(2.6)

(2.7)

as th e limit in mean (of any order v > 0) of a ppro ximating Ri em ann su ms

n

L cPo(tj ) Xo (d j),
j = 1

where r. e aj and e , v· ·· vdn is a part it ion of the support of 4>o(t ), a = 1, " ' , r .
(See Cramer and Leadbetter [12] , p. 86 for the case v = 2.) These integrals have
the property
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(2.8) E{I cPal(td dXa1(td IcPak(tk ) dXak(tk ) }

= I I cPc (td .. . cPak(tk ) dMal. . . ...,«. ... ,td ,

for a I ' . . . , ak = 1,' . . , r.

For t:. = (0: , f3] in ~ we denote the translated interval (0: + t , f3 + t] by t:. + t
for - 00 < t < 00 . We will now say that an r vector valued additive stochastic
interval function is stationary if the joint di stributions of all finite collections of
variates

(2.9) X(t:. l + t) , ... , X(t:. k + t) ,

t:. 1 , ••• , t:. k E~, - 00 < t < 00 , and k = 1, 2, ... , do not depend on t. In this
connect ion we have

LEMMA 2.1. If X(t:.) , t:. E ~, is a stationary r vector valued additive interval
function satisfying Assumption 2.1 , thenfora l , · · · , ak = I,"', r;k = 1,2,"',

(2.10) E{Xa1(t:.d ... Xak(t:. k)}

= r ... r dM~I . .. . ,ak(t l - tk , .•• , tk - l - tk) dtb
J.~l i,

fo r some function JV1~ l ' ''' ,ak(u l , ... , uk- d, - 00 < Uj < cc. of bounded variation
in finite interoals,

In the case k = I , the lemma indicates that

(2 .]] )

for some constant C~ . a = I , ... , r with It:. Idenoting the length of the interval t:. .
It follows from this lemma that one can write

(2.12) cum {Xat(t:. d , ... , Xak(t:. k)}

= r ... r dC~ l . . .. ,ak(t l - tk, . .. , tk- l - td dtb
J~l J~k

(2.13)

for a function C~t . .. . . ak (u I' . . . , Uk _Il, of bounded variation in finite intervals.
In differential notation we may write this last as

cum {dXat(u l + t) , ... , dXak _.(Uk- 1 + t) , dXak(t)}

= dC~l . . .. .ak(UI ' ... , uk- d dt.

Taking note of Lemma 2.1 and (2.12) we set down the key assumption of our
work. It is

.AsscMPTIO~ 2.2. The process X(t:.) , t:. E ~, is a stationary r vector valued addi­
tive interval fun ction satisfying A ssumption 2.1 and such that C~ l , ...,ak(UI ' ... , Uk- d
of (2.12 ) satisfies

(2.14)

for j = t ,' " , k : a l , " ' , ak = t ,'" , 1' ; k = 2,3,'" .
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This assumption has the nature of a mixing condition on the increments of
X( t), that is, increments that are well separated in time are only weakly dependent.

In view of condition (2.13) we can define the Fourier transforms

(2.15) fat ..... ak().·1 . . . . , Ak)

= (21t)-k+1 f~oo ... f exp{- /~l AjUj}dC~t, ak(Ul'·"'Uk-Il,

for - 00 < )'1' ... , Ak < 00, where we understand A1 + + Ak = 0 in the
definition. For completeness we set

(2.16)

where C~ was defined in (2.11), a = 1, .,. ,r. The transform jj, .... , ak(Al , · · · ,Ad
is called a curnulant spectrum of order k of the process X(~), ~ E.1.. We will
sometimes find it convenient to adopt the unsymmetrie notation

(2.17)

The second order cumulant spectra,f~.b().), - 00 < A < 00, are of particular
importance. It is convenient to collect them together into the r x r spectral
density matrix

(2.18)

We also collect the first order spectra together into the r vector

(2.19) f~ = [f~J.

There is an intimate connection between stationary interval functions and
stationary series. Suppose that, X(~), ~ E .1., satisfies Assumption 2.2. and has
cumulant spectra

(2.20) fat . .. .. ak(A1 , ••• ,Ak)'

Suppose the real valued , ¢a(t), - 00 < t < 00, satisfies

(2.21 ) f Itll¢a(t)1 dt < 00,

for a = 1, ... , r. Then the r vector valued times series, Y(t), - 00 < t < cc ,with
components

(2.22)

a = 1, ... , r may be seen to be stationary and such that

(2.23) cum {Yat(t + td , ... , Yak_.(t + tk- Il, Yak(t)}

= f··· f ¢al(t 1 - utl··· ¢ak _t(tk- 1 - Uk-1) ¢ak(Uk)

29



488 SIXTH BERKELEY SYMPOSIUM: BRILLINGER

Taking a Fourier transform, we see that the cumulant spectra of Y(t), in the
sense of Brillinger and Rosenblatt [9J, are given by

(2.24) C1>al(Ad'" C1>ak(Ak)falo .... ak(At' ... ,Ak),

where

(2.25) C1>a(l) = f exp {-ilt} 4>a(t) dt,

(2.26)

for a = 1, . .. , r .

A variety of authors (including Kolmogorov [17], Doob [14] p. 551, Ito
[16], Yaglom [24J, [25J p. 86, Bochner [5J p. 159) have given spectral repre­
sentations for stationary interval functions (or processes with stationary incre­
ments). In this connection we mention

THEOREM 2.1. Let the process X(~) , ~ E ti, satisfy Assumption 2.2. Let

fT [1 - exp {- iAt}]
Z~r>(A) = (2n)-t -T -it dX(t),

for - 00 < A < 00. Then there exists, Zx(A), - 00 < l < 00, such that Zrl(A)
tends to Zx(l) in mean order v, for any v > 0. Zx(l) satisfies

[or a .. . a = 1 . . . r : k = 1 2 ... Alsol' . ' k , " ".

(2.28)

(2.29)

(2.30)

(2.31)

with probability one.
In differential notation particular cases of (2.27) include :

E dZX(A) = b(l)fx o:
Cov {d Zx(A) , d Zx(p)} = b(A - p)f~.x(A) dA dp ;

cum {dZa1(Ad, . . . , dZak(Ad}

= b(AI + . . . + Ak).falo ... .ak (At, .... , Ak - d dAI •.. dAk '

Also if we set X(t) = X(O, t], then (2.28) takes the form

(2.32) X(t) = f[exp {i:2 - 1] dZx(l),

for - 00 < t < 00.
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The representation (2.28) is useful for displaying th e effect of linear ti me in ­
variant operations on the process, X(~) , ~ E .1. Suppose a(~) , ~ E .1, is an 8 x r

matrix valued interval function of bounded variation satisfying

(2.33)

Set

(2.34)

I It Idla(t)1 < 00 .

A (A) = Iexp { -iAt} da (t ),

for - 00 < A < 00. The 8 vector valued interval fun ction

(2.35) Y(~) = a * x(~)

= I a(~ - u) dX(u) ,

~ E .1, may be seen to satisfy Assumption 2.2. Also th e process Z y(),) , - IX, <
), < 00 , of its spectral representation may be see n to satisfy ,

(2.36)

We may infer from this last that the spectral density matrices of X(~) and Y(~)

are related by

(2.37)

This last relation has th e iden ti cal form with th at giving t he effect of linear time
inva rian t operations on the spectral den sity matrices of t ime ser ies.

We conclude th is section by remarking that the fun ction M~t''''.ak(Ut ' . . . , Uk- d
of (2.10 ) may be determined as

(2.38) M~t . · ·· .ak (u t, . .. , Uk ': d

= E{T-t IoT

Xat(t, t + U t ] · · · Xak_t(l. t + Uk-I] dXak(t)}.

3. Some examples

E X AMPLE 3.1. Suppose th at Y (t) , - 00 < t < 00 . is an r vector va lued
stationary time series possessing moments of a ll orders. If

(3.1) C~ t ... .. ak(UI '··· ' uk-d = cum {Ya.(t + ud , "' , Yak_t(t + uk-d , Yak(t) } ,

satisfies
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the cumulant spectra of the series, Y(t), - 00 < t < 00, are given by

(3.3) L; .. · .ak().1' ... , ).k)

= (21t)-k+1 f ... f exp {-i k~1 ljUj} c~I" ".ak(U1' ·· · , uk-d

dU1 . . . dUk-1 ,

understanding L, + ... + ).k = 0 (see Brillinger and Rosenblatt [9]). Also the
Cramer representation of Y(t) is given by

(3.4)

where

(3.5)

Y(t) = f exp {ilt} dZ y().),

f T [exp {-i).t} - IJZy().) = l.i.m. (21t) -1 . Y(t) dt.
T-oo - T -'tl

Suppose we construct the interval process

(3.6) X(~) = LY(t) dt,

then we quickly see that this process satisfies Assumption 2.2 with

(3.7) C~I... ·,ak(U1 , . . . , Uk- d = f: I
•• • fOUk

-

1

C~I. · .. ,ak(u 1, . . . , Uk- d

dU1 ·· · duk- 1·

The cumulant spectra of the interval process, X(~), ~ E L\, are therefore the same
as the cumulant spectra of the time series Y(t), - 00 < t < 00.

A comparison of expressions (3.5) and (2.26) indicates that Zx().) of the
spectral representation ofX(~) is equivalent with Zy().) of the Cramer represent­
ation of Y(t) .

In a later section we will see that our proposed empirical analysis of the process,
X(~), ~ E L\, reduces to the usual empirical analysis of the continuous series
Y(t), -00 < t < 00.

EXAMPLE 3.2. Consider an r vector valued point process, N(~), ~ E L\. Here
Na(~) represents the number of events ofthe ath sort that occur in the interval a.
If we let la denote a vector with 1 as its ath component and 0 elsewhere, then
we may set down

ASSUMPTION 3.1. The point process, N(~) , ~ E L\, possesses moments of all
orders and is such that if ~ l ' ... , ~k are disjoint intervals with I~ 11, ... I~kI ~
(j < 00,

(3.8) P{N(~d = D1 , •• • , N(~k) = Dk} < K~I~111Ild ... I~dlllki

for some finite K{) and for D 1, •• • , Dk having nonnegative integral coordinates.
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Also if tj E 11j,for such 11 1, .. . , 11k , there is afunction POlo"', Ok (tl, ... , tk ) , bounded
in finite intervals, such that

(3.9) lim 111 11"':1 .. '/l1k l-1p{N(l1d = 10 1 , " ' , N(l1 k ) = I"J
IAi!-' 0

= POI,.. · ,Ok(t 1 , ••• , tk ) ,

uniformly in t l' ... , tk •

The functions POlo "', Ok (t l ' .... tk ) have been called product density functions,
see Srinivasan [21]. The function Po(t), - 00 < t < 00, is called the density of
events of the ath sort at time t, a = 1, ... , r .

We note that the process satisfies

(3.10)

and is therefore orderly (events tend not to happen simultaneously) . Also we
have

(3.11)

and

(3.12)

In the theorem below we let b{x} denote the Kronecker delta b{x} = 1 if
x = 0 and b{x} = 0 otherwise. We let lA('!) denote the indicator function
lA('!) = 1 if'! E 11 , lA('!) = 0 otherwise. We have

THEOREM 3.1. Let the r vector valued point process N(I1), 11 E~, satisfy
Assumption 3.1. Then

(3.13)
k r

E{N"I(l1d ... N"k(l1 k ) } = L L [TI b{Cl 1 - aj}] .. . [TI b{Clt - aj}]
t = 1 "I , · · ·. "e = 1 jew I jewe

with the sum extending over all partitions (V1' . . . , Vt ) of the set (1, ... , k).
We see that the moments of N(I1), 11 E~, have the integral representation

required in Assumption 2.1. Particular cases of this theorem include

(3.14)

(3.15)

ENo(l1) = fl o ('!) d» ,

E{No(l1dNo(112)} = i i Po,"('!1 ' '!2) d'!1 d'!2 + i Po('!) dt ,
AI A~ AI"A2

(3.16) if a =1= b ,
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k

(3.17) E{Na(a)k} = L !/~k) i ... r»; .. ..a('r 1,··· , 't) dt , . . . d.t ,
t= 1 & J&

where !/~k) denotes a Stirling number of the second kind. Expression (3.17)
was set down by Ramakrishnan [20] and Kuznetsov and Stratonovich [18].

Kuznetsov and Stratonovich [18] remarked that it might prove more useful
to consider the cumulant functions

(3.18)

where the summation extends over all partitions (v l ' • •• , Vt) of (1, ... , k) . These
functions have the property oftending to 0 as Iti - tjl ---. 00 in the case that the
increments of N(t) are tending to become independent as they separate in time.
Particular cases of the functions include

(3.19)

(3.20)

The inverse relation to (3.18) is

(3.21)
k

PaJ, ... ,ak(tl , ... , tk ) = L qaj;jevl(tj ;j E VI) ... qaj;jev)tj ;j E vt )·
t=1

We have
THEOREM 3.2. Let the r vector valued point process N(a), a E L\, satisf y

Assumption 3.1. Then

(3.22)
k r

cum {Na,(a!l , . .. , N ak(ak)} = L L Hl <5{lX1 - aj}] . , . Hl <5{ lXt - aj}]
t= 1cxJ,'" .cx~ = 1 jevi jev~

f ·.. f [D X&j('!l] . . . [D X&j('t)] qcxl.·· ·.cx ('1' ... , 't) dt , ... drt
Jevi Jev~ ~

where the summation extends over all partitions (v1 , ••• , vt ) of the set (1, ... , k).
The relation (3.22) has the same form as the relation (3.13). As particular

cases we mention

(3.23)

(3.24)

(3.25)
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(3.26)

This last expression was given by Kuznetsov and Stratonovich [18]. We remark
that in differential notation , (3.22) has the form

(3.27) cum {dNa1(td,' " , dNak(tk)} = qal . .. . ,ak(t l ' · · · , tk) dt l . .. dtk,

if the tj are distinct . As a further implication of the theorem we have
COROLLARY 3.1. Under the conditions of the theorem and if <Pa(t) is continuous

with finite support, a = 1, .. . , k, then

(3.28) cum {f <Pdt) dNal(t) , ... , f <Pdt) dNak(t)}

k r

= t~l :<I"'~(l =ICJJ b{cxI- aJ]· ·· CJJ b{cxt - aj}] f' " f[jD. <Pj(Td]

... [Tl <Pj(Tt)] q:<I, · .. . :<t(T I . · · · , Tt ) dT I .. , dTt
jevt

where the summation is over all partitions (v, . . . . . vt) of (1. ... , k) .
If the point process N(~), ~ E 11. is stationary, then

(3.29)

and

(3.30)

for all real t , t I ' ... , tk. In this case we set

(3.31)

(3.32)

The parameter ra is called the mean intensity of the process Na(~)' ~ E 11: ra.a(u)
is called the covariance density of the process Na(a) , ~ E 11 ; and ra. b (u), for a =1= b,
is called the cross covariance density of the component Na(~) with the component

Nb(~)'

We now set down
ASSUMPTION 3.2. N(~), ~ E 11, is an r vector valued stationary point process

satisfying Assumption 3.1 and such that

f .. .f lujllra l • · .. ,ak(UI, , Uk- dl du , .. . dUk-, < 00

for ai' ... , ak = 1, . . . , 1'; k = 2,3, .
If the process N(~) , ~ E 11, satisfies this assumption , then we may define the
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Fourier transforms

(3.33) gal ..... aJ~·I ' ... , Ak)

= f··· f exp { -i k~1 AjUj} r., ... .. ak(Ul'··· ,_uk-d dUI . . . dUk-l ,

understanding Al + . . . + Ak = O. For completeness we set

(3.34)

(3.36)

(3.37)

in the case k = 1. We now have
THEOREM 3.3. Let the point process N(~) , ~ E L\ , satisfy Assumption 3.2. Then

the process satisfies Assumption 2.2. Its cumulant spectra are given by

(3.35) L,... ..ak(A 1, ... ,Ak)
k r

= (21t)-k+ 1 L L [0 <5{ex 1 - aj}]
t= 1 0<1. · .. • 0<,..= 1 jevi

... [0 <5{ext - aJ] gO<I . .. ·.:xJ L Aj'''' , L Aj],
jev( jevi jev(

with the summation extending over all partitions (v 1 , • •• , Vt) of (1, . . '. , k).
As particular cases of the cumulant spectra we mention

f~.a(A) = (21t)-I[g~.a(A) + ga]

= (21t)-I[f exp {-iAt} ra.a(t) dt + raJ

in agreement with Bartlett [4], p. 183. Also

(3.38)

and

if a =1= b,

(3.39) f~.a.a(Al' A2) = (21t)-2 [g~.a.a(Al' A2) + g~.a(Ad + g~.a(A2)

+ g~.a( -AI - A2) + g~] ,

We have the following relation, inverse to (3.35),

(3.40) gal . .... ak(Al ' ... , Ad
k r

= L L (_1)t-l(( - 1)! (21t)k-t[0 <5{ex 1 - aj}]
t=IO<I ... ·.o<,,=1 jevi

.. .[n <5{ext - aj}]-fo<lo .. · . O< (L Aj, .. " L Aj)'
jev( ( jevi jev(

where the summation is again over all partitions (v l ' ••• , Vt) of the integers
(1, ... , k).

In Section 2 we discussed a class linear time invariant operations on stationary
interval processes. It may be of interest to indicate a subclass ofthese operations
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which carry point processes over into point processes. Let (Jj ' j = 0, ± 1, ... ,
be a sequence of real numbers. Let

(3.41)

then.

a(&) = the number of (Jj E & ,

(3.42) Y(&) = a *N(&)

= f a(& - u) dN(u)

will be a real valued point process in the case that N(&) , & E L\, is one. If Lj'

j = 0, ± 1, ... , denote the times of events of a realization of N(&) , then events
of this Y(&) occur at the times Lj + (Jk,j, k = 0, ± 1,···.

Daley [13] discusses the second order spectral theory of point processes, con­
siders operations on point processes, and presents a variety of examples.

EXAMPLE 3.3. Suppose that Y(t). - 00 < t < 00, is an r vector valued
stationary time series satisfying the conditions of Example 3.1 and having
Cramer representation

(3.43) Y(t) = f exp {iAt} dZy(A).

(3.44)

(3.45)

(3.46)

Suppose N(&), & E'L\, is an independent stationary point process satisfying
Assumption 3.2 and having spectral representation

N(&) = f[L exp {iAt} dtJ dZN(A).

In Section 6 of the paper we will consider the process

X(&) = LY(t) dN(t)

= Y(Ld + .. , + Y(L n ) ,

if Ll, .•. ,Ln are the events of N(&) in the interval &. One can check that this
process satisfies Assumption 2.2. If its spectral representation is

X(&) = f [L exp {iAt} dtJ dZx(A),

then we see directly that

(3.4-7)

for - 00 < A < 00 . Expression (3.47) may be used to determine the cumulant
spectra of X(&) in terms of those of Y(t) and N(&) .

We mention that Walker suggested the consideration of real valued processes
of the form (3.45) in the discussion of Bartlett [3].
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4. Stochastic properties of finite Fourier transforms

We now turn to an investigation of certain statistics useful in the estimation of
the cumulant spectra of a stationary interval function X(.~), L'1 E ~. We will sup­
pose that the values of X(L'1) are available for L'1 contained in the support of a
function h(t/T), T = 1,2, ... . We set down,

ASSUMPTION 4.1. The function h(t), - o: < t < 00, is measurable in t.
bounded , zero for Itl > 1 and there exists a finite K such that

(4.1 ) f Ih(t + u) - h(t)1 dt < Klul

(4.4)

for all real u ,
The inequality (4.1) will be satisfied if h(t) is of bounded variation, for example.
For given 1~ , the function h(t/T) has been called a taper by Tukey [22]. It has
also been called a data window .

The principal statistics of our analysis of interval processes are the finite
Fourier transforms,

(4.2) d~Tl(A) = f ha(t/T) exp { -iAt} dXa(t),

a = 1, ... , r, - oc < A < co.Tn the case of Example 3.1, the statistic (4.2) takes
the form

(4.3) dfl(A) = f ha(t/T) exp { -iAt} Ya(t) dt,

that is, it is the Fourier transform of the tapered values that was considered in
Brillinger and Rosenblatt [9]. In the case of Example 3.2 , if we let La(l) , ' . . , La(na)
denote the times of events of the ath sort that occur in the support of ha(t/T) ,
then the statistic (4.2) has the form

na

L ha(La(j)/'l') exp { -iXra(j)}·
j= 1

This statistic, excluding the taper, was considered in Bartlett [3J for the case
r = 1 and suggested for the case of general r by Jenkins in the discussion of that
paper. In the case of Example 3.3, the statistic has the form

(4 .5)
n

L ha(Lj/T) exp { -iALj} Ya(Tj),
j= 1

if Ll"" ,Ln denote the times of events of the process N(L'1) in the support of
ha(t/T).

We next present a basic theorem indicating the asymptotic joint cumulants of
the Fourier transform (4.2). In the theorem we let

(4.6)
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(4.8)

TH EOR EM 4.1. L et the process X (d) , d E ~ , sa tisJy Assump tion 2.2. L et ha(t ),
a = 1," ' , 1' , - 00 < t < 00 , satisJy A ssumption 4.1. Then as T -+ 00

(4.7) cum {d~;l(}, d, , d~~l (}'k )}

= rtt; ak ( T t Aj ) (2n)k - IJal .· · ·. aJA I . · · · . Ak-tl + O(l )

[or a l , ' " ,ak = 1, ' " ,1' : k = 1,2, .. .. The O(l ) term is uniJormly bounded
in AI' .. . , Ak •

We see th at the joint cum ulants are of reduced order unless ~~ Aj is near
zero . We see from (4.6) and (4.7) that the joint cumulants based on disjoint
st retches of data are of reduced order as well.

If ha(t) = 1 for 0 ~ t ~ 1 and ha(t) = 0 otherwise, then this th eorem has
identical nature with the key theorem used in Brillinger and Rosenblatt [9] ,
Brillinger [6] , Brillinger [7] to develop properties of spectra l est imates. The
results of th ese papers therefore become directly ava ila ble. We indicate a se lection
of results th at now hold .

We begin by conside ring the asymptotic distribution of the finit e Fourier
t ran sform. Let N; (II , I:) denote th e co mplex r var iate normal distribution with
mean II and covariance matrix I:. We have

THEOREM 4.2. Let X(d) , d E ~ , be an I' vec tor valued interval process sa tisJyin g
A ssumption 2.2. L et sj(T ) be an integer wi th Aj(T ) = 2nsj(T)/T -+ )' j as T -+ 00

Jor j = I , ... , J . Suppose Aj(T) ± Ak(T) i= 0 Jor j , k = 1, ... , J. L et

df l(A) = f: exp { - iAt } dX (t )

[o r - 00 < A < cc . Then dY'l(}'j(T)). j = I , ... , J are asymp to tica lly indepen­
dent N; (O, 2nTf~.x(A)) variates , respective ly . A lso dVl(O) = X(O, T] is asymp­
tot ically Nr (Tf~, 2nTf~.x(O)) independently oj the previous varia tes.

This theorem has the nature of a centra l limit theorem. Let TV; (n , I:) de note
th e complex Wishart distribution of dimensions I' x 1', degrees of freedom n
and co variance matrix I:. Define the matrix of periodograms

(4.9)

We have the following corolla ry .
COROLLARY 4 .1. Under the conditions oj Theorem 4.2, iJ Al

and iJ

(4.10)
J

fx
lT• lx (' ) = J- I " l iT) ( ' (T) )II. L. x, X II. j ,

j= 1

fl~~ (A ) is asymptoticall y J- I WrC( J, f~.x(A)) as T -+ 00 .

This corollary makes precise the chi square approximat ion for th e d ist ribution
of second order spectra l densitie s of point processes suggested by Bartlett [3].
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We next construct consistent asymptotically normal estimates of the cumulant
spectra of different orders of an interval process X(~), ~ E ~. We begin by letting
W(u l , .•• , Uk) be a weight function satisfying

ASSUMPTION 4.2. Thefunction W(u l, ... , Uk) ' - CC < uj < 00 , is summetric
in u 1 , ' •. , Uk' is concentrated on the plane ~~ uj = 0, and is such. that

(4.11) f_oooc ...fW(Ul'·· · · Uk) o(tUj) dU 1 .. . dUk = 1

and

(4.12)

for some A , e > 0, t = 1, . . . , k.
Given the sequence of nonnegative numbers Bl,frl, T = 2,3.. .. , we set

(4.13) WT(U1, " ',Uk) = (Bl,frl-k+l W(Bl,frI-IU1, · ·· ,Bl,fr,-I Uk).

We suppose B!il ~ B!i) ~ .. '. Next we set \f(u 1 , ' " , Uk) = 1 if ~~ Uj = 0
but no proper subset of the uj has sum 0. and set it = °otherwise. Let

(4.14)

Finally set

(4.15)

dVI(A) =I: exp {-iAt} dX(t).

k

I~~! ... .ak(Al' ··· ' Ak) = (2n)-k+ lT- l nd~~I(A).
i > 1

As an estimate of fa, . .... ak(A1, .. . , Ak) we now take

(4.16) f~:'I '''.ak(Al , · .. , Ak)

(
2n) k- l (= - L'" L WT Al
T SI Sk

In connection with this estimate we have the theorem ,
THEOREM 4.3. Let X(~), ~ E~, satisfy Assumption 2.2 . Let W(u 1,' " , ukl

satisfy Assumption 4.2. Let f~~l .... ak (A l , ... • Ad be given by (4.16). Let Bl,frl --. 0 ,
(Bl,frl)k - 1 T --. 00 as T --. 00 , then

(4.17) Ef~~I "'.ak(Al'···' Ak)
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= f· ·· f Wr(A I - ai ' . . . , Ak - ak)fal,.. ·,ak(a l · .... ak)

. b(a l + . .. + ad dal ... dak + O(B~)-IT)

(4.18) .J.~ (B~»)k- IT Cov {j~:! ak ()ol ' ... , Ad , f~r.) ... .ad J.ll' .. . , J.lk)}

= 2n L b{ Al - J.lP, d b{ Ak - J.lP, df~lap. 1 (Ad' . . f~kap . k (Ak)
p

f ... f W(U I · •.. , Ud2b(tuj ) dU I • •• dUk '

where the summation is over all permutation", P of the inteqers 1, ... , k. Collections
of spectral estimates are asymptotically jointly normally distributed as T - 00

with estimates of different orders asymptotically independent and estimates of the
same order having covariance structure given by (4.18).

We next turn to the development of an empirica l analysis of the lineal' time
invariant model ,

(4.19) Y(/\) = a*X(/\) + £(/\)

= f a(/\ - u) dX(u) + 8(£\),

with X(/\), 8(/\), /\ E D., independent stationary interval processes and

(4.20) f lui dla(u)1 < 00 .

In differential notation we may write (4.19) as

(4.21 )

(4.22)

dY(t) = f [da(t - u)J dX(u) + d8(t) .

Denote the cross spectral density matrix of the process

[
X(/\)]
Y(/\) ,

/\ E D. , by

(4.23)

and that of £(/\) , /\ E D.. by fL ,(I.) . Set

(4.24) A(}.) = f exp { - iAt} da(t) .
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Then (4.19) gives

(4.25)

(4.26)
- - t

f~. y(A) = A(A)f~, x (A)A(A) + f;,E(}')'

These last suggest that we may base estimates of A(A) and f; .E(A) on an estimate
of th e spec tra l density matrix (4.23). We co uld construct an estimate of this
last in the manner of (4.16) ; however, in order to display an alternate form of
spec t ra l estimate of order two we proceed slightly differently.

In constructing this alternate est ima te we let h(t) , - 00 < t < cc . be a tapering
function satisfying Assumption 4.1. We th en set

(4.27)

for - ex; < A < cc. We next set

(4.28)

d~[>(A) = f h(tjT) exp { -i)J} «xu;

dVI(}.) = f h(t jT) exp { - iAt} dY(t):

and we let W(tX) be a weight fun ction satisfying
ASSUMPTION 4.3 . W(tX), - ex; < tX < XJ, is real valued , even . ab.'iolutely inte­

grable , has an absolutely integrable first derivative, and

(4.29)

The variate (4.22) has mean

(4.30)

Estimates of f~ , f~ based on tapered values are provided by

(4.31 )

fy) = f h(t jT) dX(t)jf h(tjT) dt = dVI(O)j[TlI\ (0)].

f~T) = f h(t jT) dY(t) j f h(t jT) dt = d~TI(O)j[TII\ (0)] ,

respectively. The Fourier transform of th e process (4.22) corrected for its sample
mean is then given by

(4.32) eV)(A) = f exp { -iAt}h(tjT) [dX(t) - fV) dt]

= dVI(A) - dV)(O)H \(Tl)jH dO),
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eV)(A) = f exp { -iAt}h(t/T) [dY(t) - fV) dt]

= dV)().) - d'{)(0)HdT).)/H 1(0).

501

Let B T be a sequence of nonnegative numbers tending to 0 as T -+ 00. Set

(4.33)

As an estimate of the cross spectral density matrix (4.23) we now propose
---'T

[
f iT) ().) flTl ().) ] f [e

IT
)(lX)] [e

IT
)(lX)](4.34) x ,x x, Y = WITl(). _ lX) (2n:T) -1 x X da.

ff~(A) ff~().) eV)(lX) eV)(lX)

As estimates of A()'), f;.£().), we then take

(4.35) AIT)().) = fV.\.()')f~?x(),) -1,

(4.36) gIT)().) = fiT) ().) _ fiT) ().)flTl ().)-1 fiT) ().).e.e r, Y r, x x, x x, r

We can now state the following theorem.
THEOREM 4.4. Let the process X(.1), .1 E !J., satisfy Assumption 2.2. Suppose

fx,x().) is nonsingular. Let the process £(.1), .1 E!J., satisfy Assumption 2.2., have
mean 0 and be statistically independent of the process X(.1), .1 E !J.. Let a(.1) satisfy
(4.20). Let Y(.1) be given by (4.19). Let W(lX) satisfy Assumption 4.3 and h(t)
satisfy Assumption 4.1. Then if B T -+ 0, BTT -+ 00 as T -+ 00,

(4.37) lim ave AIT)().) = A()'),
T-+ co

(4.38) lim BTT cot {vec AIT)().), vec AIT)(Jl)}
T-+ co

(4.39) lim aVe g~:l().) = f;.£().),
T-+ co

(4.40) lim BTT cot- {g~:l().), g~Z?n(Jl)}
T'rr a»

= 21tH4(O)H2 (0) - 2(b{)' - Jl}[f;.£().)]i.m [f;,£(- ).)]k,n

+ b{)' + Jl} [f:.£().)]i,n [f:, e ( -).)]k,m) f W(lX)2 d« ,

(4.41) lim BTT cot- {vec AIT)().), g~:l(Jl)} = 0,
T-+co

for j, k , m, n = 1, ... ,s. Also the variates AIT)().), g~:l(Jl) are asymptotically
jointly normal with the above covariance structure.

43



502 SIXTH BERKELEY SYMP OSIU M: BRILLINGER

(In th is theorem aVe, Cov have tec hnica l definitions allowing the use of Taylor
series expans ions in determining asymptotic momen ts . See Brillinger and Tukey
[10].)

In the case r = s = I , we may define the coherency of X(~ ) with Y(~ ) at
frequen cy ). by

(4.42)
I
R A12 = If Y. x (A)jl

r . x () Lr~. x ()·)fY.y().)l

(4 .43)

As an estimate of the coherency we conside r th e statistic

I
R T) ), 12 = IfVl(A)jl

y.x ( ) [f~;~ (l)f~:f ( A )J '

We th en have from the th eorem
C OR OLLARY 4.2. Under the conditions of the theorem and ~ff~ . x (A)·fY. y (A) =1= O.

IR~~)x (A)jl is asymptotically norma/with

(4.44 )

and

(4.45)

lim ave IRV,\( A)12 = IRy ,x (A)12

T-+ 00

lim BTT Cov IlRV'~ ().)12 , IRV'~ (Jl)jl}
T -+ oo

= 4nH4 (O)H 2(o )- 2[t5 {A - Jl }

+ c5 {A. + Jl}] IRy,x( A)1 2[1 - [Ry. x (AW J2f W(o:)2 da .

A comparison of th e results of this theorem a nd its co ro llary. with th e corre­
sponding results fo r the regression of one vector va lued stationa ry time series
on another, shows tha t they a re identical. This will a lso be the case for the
interval process exte nsion of many of th e asymptotic results of th e ana lysis of
sta tionary tim e seri es.

5. Estimation of product densities

Let N(d) , d E~ , be a stationa ry po int process satisfying Assumption 3.2. We
have defined various cha racteristics of such a proeess. Th ese may be summa rized
as follows:

(5.1) PU 1 . .. .. U k (iI ' . . . , td
= lim p {dNul(tIl = 1, . . . , dNuk(ik ) = 1}/(di 1 ••• dik )

dl j-+ 0

for t 1 • •• • , tk distinct:

(5 .2) qulo ... .U k ( i l • • • • , tk )

k

= L ( - l)( - I(t - l )!PUj; j€\' l (tj: jEv Il''' Puj;jEvr(t j : jE V() :
( = 1
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(5.3) Pal..... ak(il' ... , ik)
k

= " qa '·j·Evl(ij.;j E Vd'" qa"j'Ev (iJ.;j E Vt);t~1 J. J. (

(5.4)

(5.5)

(5.6)

Also

[n b{lX l - aj}] ... [n b{lXt - aj}]
jEv, jEvl

. gal ... ·.O<" [L Aj. . . . . L ).J:
jEV, jEV,

(5.9)

(5.7) gab'" .ak(A 1, . .. , Ad = g~I ... · .ak(AI "', Ak-l)

understanding ~~ Aj = O. Continuing

(5.8) L; ... .ak(Al' ... ,Ad
k r

= (2n:)-H 1 L L
t=1 al.· .. . o<,,=1

k r

= L L (_I)t-l(t" - l)![n b{lX l - aj}]'" [n b{lXt - aj}]
t= 1 al.· ·· .a,,=1 jEvI iE\,!

. (2n:)k-tt.. ... .. 7J .L Aj• . . . . .L Aj].
jE\'1 JEV,

The summations in (5.2), (5.3) , (5.8), (5.9) are over all partitions (VI • • • • , Vt ) of
the integers (I, .. . ,k).

In the previous section we developed an estimate offal . .... ak (AI • . . . , Ak)' Let
us now put this work to use in developing estimates of the various functions
listed above. As an estimate of gal.. ... ak(AI• . . . , Ak)' in the light of (5.9) , we
may consider

(5.10) g~~~ ' ''.ak(Al' ... , Ak)
k r

= L L (- 1)t - 1(t - I)! [n s{a 1 - aj)] . . . Ifl s{(Xt - ai}]
t=lal.··· .7(=1 jEVI iE\',

. (2n:)k-tf;~) ... .7, CL I.j. . .. , .L Aj] '
JEVI jE\',
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(5.11 )

where the !;;,) " ,,11., (/11' ... , /1{), t = 1," . ,k, are formed in the manner of
Theorem 4.3. From that theorem we see that

Eg~~! , . . .ak(Al' . ... )'k)

= gal .. " .ak (AI' ... . Ak) + 0 (B~l) + 0 (B~) - I T - 1);

and because estimates of order less than k have asymptotic variance of smaller
order than that of estimates of order k . the covariance of g~~! .... ak(AI' .... Ad

with g~~! .. ,.b..(/11' ... ,/1{) will be asymptotically equivalent to that of fa~! ,. ,.ak

(AI' .. .• Ak)withf~;') ",. be (/11' . . . . /1{) as given in Theorem 4.3. Also the estimates
will be asymptotically normal and estimates of different orders will be asymp­
totically independent.

Suppose next that g~I"" ,ak(J'I ' . . . • Ak- d vanishes for IAjl > A. As an esti­
mate of r a .. .. . , ak (U 1 • . . . , Uk _ tl we can then consider

(5.12)

From (5.11) this estimate will be asymptotically unbiased .
By analogy with Theorem 5.2 of Brillinger [6], we would expect , for example,

that

(5.13) lim T Cov{r~~\l(utl , r~;\2(uZ)}
T- oo ' ,

= fA exp {ict(u 1 - u2)}f~ .. a2(ct)!b .. b2( -ct) da
-A

+ 2n ff:A exp {i(ctlUl + ct2uz)}f~I,b i - a2.b2(ctl' -ct l · ctz) dct1dctz,

in the case k = 2 and aj =1= bj •

Next one can take

(5.14)

(5.15)
k

p~~! , .. .ak(tl '·· · , tk ) = I q~~!jEVI(tj;j E vd'" q~~)jEV((tj;jE Vi)
(=1

as an estimate ofPal.'" ,ak(tl , ... , tk ) ·

In the case k = 1, we would estimate r a by Na(O, T]/T. In Theorem 4.2 we
saw that this statistic was asymptotically normal with mean r a and variance
2nT-l!~.a(O).
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6. Estimation of second order spectra from sampled values

Let Y(t) , - 00 < t < 00, be a real valued time series satisfying the conditions
of Example 3.1, having mean c~ and autocovariance function c~.y(u), - 00

< u < 00. Let N(/1), /1 E~, be an independent real valued point process satis­
fying Assumption 3.2, having mean intensity rN and autocovariance density
rN,N(u), - 00 < U < 00. Suppose that events of a realization of the process N(/1)
occur at the times Tl' •.• , Tn in the interval (0, T]. Consider the problem of esti­
matingtheautocovariancec~.y(u),- 00 < U < oo.und power spectrumj'jvt.l),
- 00 < A < 00, of the series Y(t) from the values

(6.1 )

and

(6.2)

T1' • .. ,Tn

We can construct a stationary interval process X(/1), /1 E ~, in the manner of
Example 3.3 by setting

(6.3) X(/1) = f/1 Y(t) dN(t),

or, in differential notation, by setting

(6.4) dX(t) = Y(t) dN(t) .

The first and second order measures of this process satisfy

(6.5) c~ dt = c~rN dt,

and

(6 .6) dC~.x(u) dt = (c~,y(u)rN.N(u) + cXy(u)rNb(u) + C~,y(u)r~

+ (c~)2rN.N(u) + (c~)2rNb(u)) du dt .

The measure C~.x(u) is seen to have absolutely continuous part and an atom
of mass C~,y(O)rN + (c~)2rN at u = O. If we let rx.x(u) denote the derivative of
the absolutely continuous part of C~.x(u) then, from (6.6) ,

(6.7) rx.x(u) = c~.y(u)rN.N(u) + c~.y(u)r~ + (c~)2rN.N(u)

for - 00 < u < 00. For convenience set

(6.8)

If

(6.9)

then, from (6.7),

(6.10)
, h(u)

c (u) - ----'----'-----~
Y, Y - [rN.N(u) + r~] '
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We see, from (6.8) and (6.10), that an estimate of c~, y(u) may be constructed
from estimates of rx,x(u), c~, rN.N(u), rN' One can then proceed to form an esti­
mate off~, y(A,) .

Alternatively we could proceed directly to the frequency domain and note
that the power spectrum of the process X(A) is given by

(6.I I) f~, x(A,) = (2n) - 1 [5 TX, x(u) exp { -i),u} du + c~. y(O)rN + (c~ )2rN]

= 5f~, y(). - ex)g~.N(ex) da + f~. y(A,)r~ + (c~)2fN,N(A,)
+ (2n) -lc~.y(0)rN'

for - X) < A, < Xi. If we rewrite this in the form

(6.12) f~,y(A)r~ + 5f~,y(ex)g~,N(A - ex) d«

= f~,x(A) - (c~)2fN,N(A) - (2n)-lC~,y(0)rN

= H().) ,

then we have an integral equation for f~, y(A). This equation may be solved for
f~. y(A), under the condition (6.9), as follows: set

(6.13)

then

(6.14)

P(A) = (2n)-1 5exp {-iAu}rN.N(u)/[r~+ rN.N(U)] du,

Once estimates of TN' rN.N(u), c~. C~. y(O), fN .N(}')' f~,x(A), are available an esti­
mate off~. y(A,) may be constructed from, (6.14). The estimates may be determined
as follows:

(6 .15) rIP = «n:
(6.16) c~T) = [Y(rd + + Y(rn)]/n :

(6 .17) m~~)y(O) = [Y(rtl 2 + + Y(r n )2] / n ;

(6.18) cV}(O) = mV}(O) - CV)2 ;

and finally estimatesf~,J:>N(A),J~:>X(A) may be constructed in the manner of (4.16)
or (4.34).

A problem related to the one just considered is that of obtaining as estimate
of the cross spectrumf~l.Y2 (A) ofa series Yd/) with a series Y 2 (I) from the values

(6.19)

(6.20)
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(6.21)

(6.22)

In this case the expression (6.11) is replaced by

f'x IoX2().) = f f~I'Y2(). - tx)gN,N(tx) da + f~I'Y2().)r~

+ (C~I)(c~2)fN.N().) + (21l)-lc~I.Y2(O)rN·

A second related problem would be to construct an estimate off~IoY2().) from
the values

(6.23)

(6.24)

(6.25)

(6.26)

Y 1(O'd, .. . , YdO'm),

Y2 (r d , ' " , Y2 (r n ) ,

(6.27)

where 0'1"" 'O'm are the times of events in (0, T] ofa point process N 1(11 ) and
r l' . . . , rn are the times of events in (0, T] of a related point process N 2 (11) with
the bivariate point process satisfying Assumption 3.2. In this case expression,
(6.11) is replaced by the simpler expression

f'x I,X2().) = f h Io Y2(). - tx)gN IoN2(tx) da + f~IoY2().)rNlrN2

+ CYI CyJ N1,N2().)·

7. Further considerations

We next discuss briefly some practical implications and extensions of the
previous results. We saw, in Section 2, that if X(I1), 11 E~, was a stationary
interval process with cumulant spectra

(7.1)

then

(7.2)

a = 1, .. . , r, - 00 < t < 00 , was a stationary time series with cumulant spectra

(7.3) fy ... Y ().1'···' ).k) = <l»al().d ... <l»ak().k)fx .. . x ().-1'···' ).k)·
4., , Ok OJ' , ale

This suggests that one might estimate the spectrum (7.1) by a statistic of the
form

(7.4)
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having formed

(7 .5) .fr:) ... .. ya (At,"', Ak)

in the manner of Brillinger and Rosenblatt [9]. (In the case k = 2 this sug­
gestion was made by Priestly in the discussion of Bartlett [3].) This procedure
is seen to be analogous with the technique of prewhitening a time series prior
to estimating its spectrum. This analogy suggests that we should choose the
rPa(A) so that the spectrum (7.3) is near constant for Aj in some finite region .
The estimate (7.4) is seen to have the important advantage of allowing the use
of existing spectral programs and also of allowing a simultaneous prewhitening
of the data.

The proposed analysis may be related to the analysis of a continuous time
series in another way. The basic statistic of our analysis is

(7.6) foT
exp { -iJ.t}h(t/1') dX(t).

If we approximate (7.6) by a Stieltjes sum , then we obtain

(7.7)
T-l
L exp { -iAt}h(t/T)[X(t + I) - X(t)].

1=0

An examination of expression (7.7) shows that it corresponds to carrying out an
empirical spectral analysis on the time series of first differences. This procedure
is common in the analysis of economic time series.

Computations involved in forming (7.6) may be prohibitive. Therefore there
is much to be said for a procedure involving splitting the data into ]I; segments
of length S, forming an estimate

(7.8) f~~! ... ak(A t · ... , Ak)n

for the nth segment, n = I , ... , N , and taking

(7.9)
N

s:' L f~~! ... ak(A t• ···· }·dn
n=t

as a final estimate. Authors recommending such a procedure include : Bartlett
[2], Welch [23]. Lewis [19] , and Huber et at [15]. The asymptotics of such
estimates are directly determinable from the results of Theorem 4.3 because,
following the remark after Theorem 4.1, Fourier transforms based on disjoint
stretches of data are asymptotically independent. A variety of further remarks
concerning practical aspects of the calculations in the case of a point proeess are
made in Lewis [19].

We remark that the calculations proposed in this paper reduce . in the case that
the interval process X(~), ~ E L\, is an integral of a continuous time series, to
the usual calculations of. the frequency analysis of time series.

Extensions of the definitions and theorems of this paper to a case in which t
is vector valued , t E RP, appear fairly immediate if one takes the approach of
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Brillinger [7]' A different sort of extension would result from a consideration of
processes whose differences of higher order than the first are stationary (see
Yaglom [24J).

8. Proofs

PROOF OF LEMMA 2.1. If Mal •. . .. ak(t1'··· ,. l k) corresponds to the measure
determined by the coordinates is .>: >. tk, let N a1... .. ak(U1' · · · ' Uk-I, tk) co rre­
spond to the measure determined by the coordinates U1 = t 1 - tk,' .. , Uk- l =
tk- j - tk, lk' The initial measure is invariant under the transformation
t I ' ... , tk - t 1 + t , ... , tk + t. The second measure is therefore invariant
under the transformation tk - tk + t. We see therefore that

(8.1) N a1, .... ak(U1'···, Uk-I ' td - Na1,... •aJU j '···, Uk-I, 0)

= Nal .. . .. ak(Uj'··· , Uk-I, tk + t) - .Nal•...• ak(UI'···. Uk-I, t).

Suppressing a j, ... , ak, U j , ..• , Uk _ I this last may be written

(8.2) N(tk + t) = N(lk) + N(t) - N(O).

(8.4 )

Under the given conditions , all solutions of this functional equation have the
form

(8.3) N(tk) = M'tk + N(O) ,

giving the indicated result.
PROOF OF THEOREM 2.1. Assume the results of Theorem 4.1 hold. It will be

proved later. Ret

dV")(}.) = f:T exp {-ill} dX(t),

using the notation of Section 4 with h(t) = 1 for It I ~ 1 and h(t) = 0 otherwise.
One has therefore

(8.5)

One now uses expression (4.7) to see that

(8.6) EIZ~T)(A.) - Z~S)(l)12k - 0

as S , T - 00 for k = 1,2, ... ; a = 1, ... , r. It follows that there exists Zx(l)
such that ZV")(l) - Zx(A.) in mean of order v for any v > O.

One next checks that

(8.7) cum {Z~;)(}.d, ... . Z~~)(A.k)}

- fa). I ••• f:·k 0(* CXj)fal . .... ak(CX I '··· , cxk ) do., ... da,

as T - 00 , again using expression (4.7). This gives (2.27).
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(8.8)

Finally one checks that

EIXa(a) - f _OCJoo [t exp {ilt} dt] dZ~T)(lW - 0

as T - 00. This gives (2.28).
PROOl<' OF THEOREM 3.1 . We first state and prove a lemma.
LEMMA 8.1. With the conditions and notation of Assumption 3.1,

(8.9)

(8.12)

uniformly in t1 , ••• , tk for integers 1 ~ lUI < m2 < . . . < lUk-1 < lUk '
PROOF. Suppose first that

(8.10)

Kow

(8.11) E{N~I(adml ... N"k(ak)mk-mk- I
}

= L nT" " n;:'k-mk -'P[N",(al) = nl·· · · . N2k(ad = nk]
nj~ 1

= P[N~I(ad = 1,"' , N"k(ak) = 1] + L nTl . . . n;:'k-mk- 'L(nl' nd.

with the second summation extending over some nj ~ :2 and with IL(n I nk)I~
K blal ln l

••• lakl n k from (3.8), and so

lim la l-l" 'la 1- 1E {N (a )ml···N (a t 1k
-

mk- ' }!<1jl .... O 1 k "1 1 2k k

= PIX, .··· .~k(tl' ... ,lk)'

uniformly in t 1 , ••• , tk from (3.9). Continuing if (8.10) is not satisfied for some
(Xl ' ••• , (Xk> then one can see from (3.8) that the limit in (8.9) is 0 uniformly in
t1 , ••. , tk • This completes the proof of the lemma.

Turning to the proof of the theorem ; let cPj(t) be continuous is some interval
of ~ and 0 elsewhere for j = I, ... , k. We have

(8.13)
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(8.17)

By bounded convergence,

(8.14) E{J ¢1(t) dNal(t) ... J cPk(t) dNak(t)}

= lim 2> .. L cPl(i 1e) '" cPk(ike)E{Nal(ile, i1e + e]··· Nak(ike , ike + e]}
£ .... 0 il ik

k r

= lim L L [0 b{aj - IXtl] . . . [0 b{aj - IX..}]
£ .... 0 .. =1 CZIo ' '',cz =1 jevi jev~

.L' " L [0 lPj(i 1e)]'" [0 cPj(i.. e)]PCZ1, .. · , cz (i 1e , • • • ,i..e)',
il i~ jevi jev~

where the summation extends over partitions (VI' ••• , V.. ) of (1, ... ,k) if we
separate out terms in (8.14) with the same argument and use Lemma 8.1. We
now see that expression (8.14) equals

k r

(8.15) L L [0 b{aj - IXtl] ... [D b{aj - IX}]
.. = 1 cz 10 . ... cz~ = 1 jev 1 jev~

.J .. . J [D ¢lrd] ' .. [D ¢lr..)]Pczlo· · ·.cz~('l:l' ·· · ,'1:..) d'l:l ... d'l:...
jevi Jev~

Expression (3.13) now follows from (8.15) taking the cPj(t) to be indicator
functions .

PROOF OF THEOREM 3.2. One proves (3.28) from (8.15) and then obtains
(3.22) by taking the ¢j(t) to be indicator functions.

PROOF OF THEOREM 3.3. This follows directly from (3.28).
PROOF OF THEbREM 4.1. Let h~T)(t) = ha(t/T) . The cumulant at issue is

given by

(8.16) J ... J h~~)(td . .. h~~)(tk)

. exp{-i ~ Ajtj} dC~Io '" ,ak(t1 ~ tk, ... ,tk- 1 - tk) dtk

= f··· J[i h~~)(Ul + t) ... h~~~ I(Uk-l + t)h~~)(t)

-exp { -itAjt} dt] exp { -i k*1 AjUj} dc~I, .. . .ak(Ul' .. . ,uk-t>.

The indicated result now follows as

If. {h(T)(u + t) ... h(T) (u + t)h(T)(t)al 1 ak-I k-l ak
t

I
k-l

- h~;)(t) ... h~~)(t) exp {-iAt} dt ~ C t IUj!,

for some finite C following Assumption 4.1.
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PROOF OF THEOREM 4.2. This follows directly from Theorem 4.1 in the
manner of corresponding results in Brillinger [7] and Brillinger [8].

PROOF OF THEOREM 4.3. This follows directly from Theorem 4.1 III the
manner of the principal theorems in Brillinger and Rosenblatt [9].

PROOF OF THEOREM 4.4. This follows directly from Theorem 4.1 III the
manner of corresponding results in Brillinger [7J and Brillinger [8J.
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ON THE NUMBER OF SOLUTIONS OF SYSTEMS
OF RANDOM EQUATIONS

By DAVID R. BRILLINGER

University 0/ California, Berkeley

Let {f(x, w); x ERn, wEn } be an n vector-valued stochastic process
defined over a probability space (n , ....W': p). Let N(f IA , y) denote the
number of elements in the set A n f-I(y ), that is the number of distinct
solutions ofthe system ofequationsf(x, w)=y for x, y ERn. We develop
express ions for E {N(f IA , y)} and certain higher-order moments of
N([ IA, y) under regularity conditions.

1. Introduction. A variety of statistical properties have been developed for
the number of solutions of an equation

(1.1 ) /(x) = Y

in the case that x, y E Rand / is a random function. See, for example, Kac
(1943), Rice (1945), Cramer and Leadbetter (1967) . Properties have also been
developed in the case that x, y E C and / is a random analytic function, see
Paley and Wiener (1934, page 178), Littlewood and Offord (1948), Offord
(1965), Offord (1967). In this case (1.1) is equivalent with two real random
equations in two real unknowns . Here we determine the expected value and
the factorial moments of the number of solutions of n real random equations
in n real unknowns under regularity conditions. The results obtained have
application to the investigation of the number of extreme points of a random
surface defined over R», for the extreme points are the solutions of the n
equations resulting from setting the first derivatives of the surface to zero .
We note that Longuett-Higgins (1957) has investigated the expected number
of extreme points for certain random surfaces.

The proofs of the lemmas and theorems of Sections 2 and 3 of the paper
have been collected in Section 4.

2. The non-stochastic case. In this section we develop an expression for the
number of solutions of a system of n fixed equations in n unknowns. The
expression provides a generalization of one due to Kac (1943). In what
follows; if y = (YI'" ',Yn)ERn, the region IYII, "', IYnl < e is denoted
lyl < c. If A c s-, and I maps Rn into s», the restriction of/ to A is denoted
/ 1A. Iffi R: _ Rn is Lipschitz, see Federer (1969), its Jacobian determinant
existing almost everywhere is denoted Jj. The number of elements in the set
A n / -I(y), Y E s -, A c s-, is denoted N(f I A, y). This is the desired number
of distinct solutions of (1.1) in the set A.

Received November 16, 1970; rev ised Septemb er 19, 1971.
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SYSTEMS OF RANDOM EQUATIONS

For s > 0, vERn set

535

(2.1 )

Also set

N,(f l A, y) = (2s)-n ~ l vl <' N(f l A, y + v)dv .

(2.2) ¢ ,(v) = 1

=0

for Ivl < s,

otherwise.
Then we have,

LEMMA 2.1 . Let A be a measurable subset of R" and f : A ~ R» be Lipschitz.
Then

(2.3) N,(f I A, y) = (2s)-n ~ A ¢ ,[f(x) - y] !Jf(x)!dx.

If in addition

(2.4)

then

L IJf (x )ldx < 00 ,

(2.5) N(f I A, y) = lim,-.o (2s)-n ~A¢,[f(x) - y] IJf(x)[dx

for almost all y and indeed

(2.6) lim,-.o ~ IN(f I A, y) - N,(f I A, Y)ldy = 0 .

Finally if N(fl A, u) is continuous u = y, then (2.5) folds for that y.

Expression (2.5) is the promised formula for the number of solutions of in­
terest. The next lemma indicates one set of conditions under which N(f l A, u) is
continuous at u = y. We say that a continuously differentiable f: Rn -~ Rn is
normal above y E Rn if Jf(x) "* 0 for x Ef-l(y), (see Whitney (1957), page 145).

LEMMA 2.2 . Let A be an open bounded subset of R" and let f : A -~ R: be
normal over y . Then N(f IA, u) is continuous at u = y.

This lemma, together with Lemma 2.1, indicates that (2.5) holds for given
y if f is normal above y.

3. The stochastic case. We now turn to a determination of the mean number
of solutions of a random equation f(x , w) = y falling in a set A in the case
that f(x, w) is a vector-valued stochastic process. We have,

THEOREM 3.1. Let A be a measurable subset ofR» , Let {f(x, «i); x ERn; W E O}
be an n vector-valued stochastic process defined over a probability space (0, .J¥; p.).
Let f(x, w) be Lipschitz with probability one for x EA. Let the variates a =
f(x, w), (j = Jf(x, w) havejointdensity p(a; (j; x), a ERn, (j E R, XE A, satisfying

(3.1) ~~~ A I{j lp(a;J3;x)dad{jdx< 00.

Then

(3.2) E{N(f IA, y)} = ~ L l{jlp (y ; {j; x)d{jdx

for almost all y E R» ,
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Expression (3.2) was set down by Rice (1945 ) in the case n = 1. We remark
that if pt«; x) denotes the density of a = fix, w), then an alternate form for
(3.2), involving a conditional expected value, is

(3.3) E{N(fl A , y)} = Lp(y; x)E( IJf(x) I:f(x) = y}dx.

The solutions of f(x, w) = y determine a multidimensional point process in
R n . (These are discussed in Srinivasavan (1969 ).) If A is taken to be a small
parallelipiped of volume IAI and x E A, then from (3.2)

(3.4) E{N(f / A , y)} = IAI ~ 1/1 /p (y ; /1 ; x)d/1 ,

showing that the intensity parameter of this point process is ~ 1/1 1p(y; /1; x)d/1.
One application of (3.2) is to provide a bound for crossing probabilities of

the form Prob [f(x, w) = y for some x E A]. Clearly this probability is less
than or equal to E{N(f l A , y )}. We may conclude, for example, that the
probability is zero if (3.2) holds and p(y; /1; x) = 0 for almost all/1 ERn, x E A.

Theorem 3.1 provides the expected number of solutions for almost all y E

R n. If some particular value of y is of interest, then the following result may
be of use.

COROLLARY 3.1. Under the conditions of the theorem and if (i) N(f l A, u) is

continuous at u = y with probability one , (ii) E{N(f l A, u)l+O} < 00 for some

o> 0 and for u in a neighborhood ofy, (iii) ~ L 1/1l p (u; /1; x)d/1dx is continuous
at u = y , then (3.2) holds.

We remark that it follows from Lemma 2.2 that (i ) holds if the sample
paths f (x; w) are normal over y for almost all o»,

We next turn to the investigation of a function related to the higher order
moments of the number of solutions. Given measurable subsets AI' "', A k of
R n and f : R" _ s» consider the number of solutions of the system of equations
(3.5 ) f(xl ) = Yl> ... , f (xk) = Yk

for Yu ... 'Yk E R n with xi E Ai' Xi =t= Xi' 1 s;, i < j < k. In the case that the
Ai are disjoint, the number of solutions is

(3.6) N(f l AUYI) '" N(f l Ak'Yk)'

In the case that Ai = A, Y i = y, N = N(f IA, y) the number of solutions is

(3.7 ) N(N- 1) ... (N + k + 1).

Letting B = {(Xl' ... , xk) : Xi E Ai' Xi =t= Xi' 1 < i < j < k}, denoting the map
of (3.5) by I: R nk - R nk and letting N(f l B, Yu .. " Yk) denote the number of
solutions of (3.5) falling in B we have,

THEOREM 3.2. Let Au .. " A k be measurable subsets of s -. Let {f(x, w);
X E R»; w E O} be an n vector-valued stochastic process defined over the probability

space (0, .J¥; fl ). Let f(x , w) be Lipschitz with probability one for X E Al ... Ak·
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Let the variates a j = f(x j, w), f3j = Jf(xj, w), j = 1, "', k have joint density
p(al' .. " ak; 131' .. " 13k; Xl' .. " Xk) for distinct Xj' Xj E A j with

(3.8) ~ ... ~ ~Al ... ~Ak 11311 ... If3klp(al, .. " ak; 131' .. " 13k; Xl' .. " Xk)

X In (da jdf3jdxj)
finite. Then

E{N(/I E, Yl' .. " Yk)} = ~ ... ~ L
l

••• ~Ak 11311 ••• If3kl

(3.9) X P(Yl' .. " Yk; 131' .. " 13k; Xl' ... , Xk)

X In (df3 jdxj )

(3.10)

for almost all Yl' ... , Yk E R",

As one implication of this theorem, we mention that if A!, .. " Ak are
small disjoint parallelipipeds of volumes IAll, .. " IAkl and x j E Aj , then

E{N(f I AI' Yl) N(f 1 Ak, Yk)}

= JAIl IAkl ~ ... ~ 11311 ••• If3kl

and so

(3.11) ~ ... ~lf3II"'lf3klp(yl'""Yk;f3l' ···,f3k;Xl, ... ,xk)df3l··· df3k

may be interpreted as a product density of order k (see Srinivasavan (1969))
of the multidimensional point process resulting from the solutions of (3.5).

If one is interested in the factorial moment of order k of N = N(f 1 A , y )
for some prespecified Y one has,

COROLLARY3.2 . Under the conditions of the theorem and if (i) N(/ IE, Ul, .. "
Uk) is continuous at (U1 • • " Uk) = (y, ... , Y ) with probability one, (ii) E{N(/ IE,
Ul' .. " uk)l+ O} < 00 for some 0 > 0 and f or Ul' .. " Uk in a neighborhood of
(Y, .. " y), (iii) ~ ... ~ ~A ... ~A 11311 ••• If3klp(ul, .. " Uk; 131' .. " 13k; Xl •• " Xk)
df3l ... df3kdxl ... dx; is continuous at (ul, .. " Uk) = (y, ... ,y), then

E{N(N - 1) (N - k +1)}

(3.12) = ~ ~ L ... L 11311 ••• If3kl

X p(y, .. " y; 131' .. " 13k; Xl' •• " xk)df3l ... df3kdxl ... dx; .

We mention that / will be normal above (y, . . " y ) whenfis normal above
Y and so following Lemma 2.2 (i) above will hold in the case that A!, ... , Ak
are open and bounded andfis normal above Y with probability one. Expression
(3.12) was set down by Cramer and Leadbetter (1967) in the case of Gaussian
f(x, w) and n = 1.

4. Proofs. We begin with a proof of Lemma 2.1.

PROOF OF LEMMA 2.1. Kirszbaum's Theorem (see Federer (1969), page 201)
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indicates the existence of a Lipschitz extension of fwith domain Rr, Theorem
3.2.5 of Federer (1969) (or Theorem 2, page 374 in Rado and Reichelderfer
(1955)) then applies to give

(4.1) L g[f(x)] IJf (x )ldx = ~ Rn g(u)N(f l A, u)du

for measurable g: R» -~ R. Taking g(u) = (2c)-nep,(u - y) in (4.1) gives (2 .3)
after a change in variable.

Taking g(u) = 1, shows that

(4.2) ~ N(f l A, u)du = L IJf (x )ldx

and so N(f IA , u) is integrable in view of (2.4) . The conclusions of the lemma
now follow from a standard convergence theorem (see, for example, Theorems
1.1.1,1.3 .2 in Bochner (1960).)

PROOF OF LEMMA 2.2. Under the stated conditions the set of solutions can
have no limit points for the Jacobian would then vanish at some solution.
The solutions are therefore isolated and finite in number. The Inverse Function
Theorem then applies to give the existence of a continuously differentiable
inverse in the neighborhood of each solution. If y is altered by a sufficiently
small amount, it follows that the number of solutions is unchanged and so N
is continuous.

PROOF OF THEOREM 3.1. We begin by noting, from (2.1), (4.2), that

(4.3) ~ N(f l A, u)du. ~ N,(f l A, u)du = L IJf(x) ldx

and therefore, in view of (3.1) ,

(4.4) EO N(f l A, u)du} , EO N,(f l A , u)du} < 00 •

In consequence, it follows from bounded convergence, Fubini's Theorem and
(2.6) that

lim,_o ~ IE{N(fl A, u)} - E{N,(f l A, u)}ldu

(4.5) = lim,_o EO IN(fl A, u) - N,(f IA, u)ldu}

=0

At the same time, we have from (2.3),

(4.6) E{N,(f l A, y)} = (2c)-n SSL 1-',( 0: - y) It9 lp(a ; t9 ; x)dadt9dx

and so

(4.7) lim,_o ~ IE{JV, (fl A, y)} - ~ L 1t9l p(y ; t9 ; x)dt9dxldy = 0

(by Theorem 1.3.2 of Bochner (1960).) Expressions (4.5) and (4.6) together
now give

(4.8) ~ IE{N(f l A, y)} - ~ ~ A 1t9l p(y ; t9; x)dt9dxldy = 0

and thence the conclusion of the theorem.
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PROOF OF COROLLARY 3.1. Under the sta ted conditions

E{N(f l A , y )} = E{limu~lIN(f l A , un
= limu~ lI E{N(f l A, u)}

= SSA1,Bl p(y ; f3 ; x )d,Bdx .
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PROOF OF THEOREM 3.2. B is a measurable subset of Rr", The Jacobian of
the map! is given by Jj(x1) • • • Jf(x k ) . The conclusion of the theorem now
follows directly from Theorem 3.1 taking n to be nk, A to be Band fto be f.

PROOF OF COROLLARY 3.2 . This result follows directly from Corollary 3.1
in the above manner.

5. Concluding remarks. We note here that the results obtained are easily
modified, in the manner of Leadbetter (1966), to yield the moments of the
number of solutions of the equation

(5.1) f (x ) = g(x)

for a fixed measurable n vector-valued function g.

The reader will have noted that the results obtained required expression
(4.1) in an essential manner. In fact Federer, Theorem 3.2.5 develops ex­
pression (4.1) in the more general setting of maps f: Rm_ R'" with m S n
using Hausdorf m-measure. This suggests the possibility of extending the
Theorems of this paper to apply to n vector-valued stochastic processes
ftx , ill) , x e R", m S n,

In another direction we mention that if A is a bounded open set, f: A _ R'"
is continuously differentiable and p(f IA , y ) is the topological index of the
mapping f with domain A at the point y (see Rado and Reichelderfer (1955),
page 125), then as an analog of (4.1) one has

(5.2) L g[f(x)]Jf(x)dx = Sg(u)p(f IA, u)du

(ibid. page 374) and so one has , for example, under the conditions of Theorem
3.1

(5.3) E{p(f l A, y )} = SSAf3p( y ; f3 ; x )d,Bdx.

I would like to thank Professor M. W. Hirsch for suggesting Lemma 2.2 to
me.
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Asymptotic Normality of Finite Fourier Transforms
of Stationary Generalized Processes*

DAVID R. BRILLINGER
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This paper indicates a mixing condition under which a net of Fourier transforms,
of a stationary generalized process over an abelian locally compact group, has a
limiting normal distr ibution.

1. INTRODUCTION

Finite Fourier transforms of stationary mixing processes have been shown
to be asymptotically normal in quite a variety of circumstances . The case of
a time series X(t) with t in R is considered in. for example. Leonov and
Shiryaev [12J. Picinbono [16J. Rosenblatt [19]. Rozanov [21). The case of t
in Z is considered in Hannan IS. Chap.Iv ], in Hannan and Thomson [9]. in
Brillinger [5J. The case of t in RP is investigated in Brillinger [2J and in
Pichard [17J. Morettin [13J considers the case of t in a non-compact locally
compact second countable group. In extensions of another sort Brillinger [3]
indicates conditions leading to asymptotic normality in the case of stationary
random measures on Rand Brillinger [4] in the case of stationary random
Schwartz distributions with t in RP. This paper provides a central limit
theorem for Fourier transforms of stationary random Schwartz-Bruhat
distributions over a locally compact abelian group G. In the general case
nets of Fourier transforms are shown to be asymptotically normal. When G
is a-compact the nets become sequences. The Fourier transforms need not be
asymptotically normal. Rosenblatt [201 derives a non-Gaussian limit for the
transform of a process with long range dependence.

* Prepared with the partial support of National Science Foundation Grant PFR 7901642.
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In this work G denotes a locally compact abelian group, A denotes its
dual. Haar measures on these two groups are denoted by dg and dA, respec­
tively. The group operation is denoted by "+". Characters of: the groups are
denoted by (g, A) for gin G and A in A. The Fourier transform of a function
'1/ in L 1(G) is defined by

Y'(A) = f(g, -A) 'I/(g) dg.

If Y' belongs to L 1(A) one has the inversion formula

",(g) = f(g, A.) Y'(~) cit

(1.1)

(1.2)

In the case of Euclidean space, the infinitely differentiable functions of
rapid decrease provide a setting "par excellence" (Schwartz [22, p. 104Dfor
harmonic analysis. Similar functions exist in the group case and may be
defined as follows (Osborne [15D.

First one defines A(G) the space of functions whose L oo norm decreases
rapidly off powers of a compact set Specifically 1/1 E A(G) if there exists a
compact set C(~) c G such that for each positive integer n there is a
constant M" such that for each integer k: ~ 1

(1.3)

One has, for example, A(G) c Lp(G), p ~ 1, Loo(G)· A(G) cA(G) and
A(G) *A(G) c A(G). A(G) is translation invariant.

The Schwartz-Bruhat space, S(G), of rapidly decreasing test functions
consists of functions '" E A(G) with Fourier transforms 'P E A(A). The space
has a topology arising from the inequalities defining A(G) and A(A). One
has S(G) c A(G), A(G) * S(G) c S(G), S(G) . S(G) c S(G). S(G) is tran­
slation invariant.

A Schwartz-Bruhat tempered distribution is a continuous linear functional
on S(G). Such a distribution x(I/I), '" E S(G) has a Fourier transform X('P) ,
Y'E S(11), whose (inverse) Fourier transform is x(",) in turn.

A final space that will be made use of is D(G) = S(G) n K (G), where
K(G) denotes the space of continuous functions of compact ,support on G.
One introduces a finer topology on D(G) than that of S(G). (See the
references below.) One has D(G) *D(G) c D(G) and D(G) . D(G) c D(G),
and D(G) is dense in S(G). A Schwartz-Bruhat (ordinary) distribution is a
continuous linear functional on D(G). A tempered distribution is an
(ordinary) distribution which is continuous with respect to the S(G)­
topology.
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The above concepts are discussed in Bruhat [6], Wawrzynczyk [25 [,
Osborne [151, Argabright and Gil de Lampard [1\.

2. STATIONARY GENERALIZED PROCESSES

This paper is concerned with random Schwartz-Bruhat distributions.
These are defined as mean-square continuous (in the D(G)-topology)
random linear functionals on D(G), whose values are equivalence classes of
complex-valued random variables of second-order defined on some
probability space (n, U, P) and which form a Hilbert space L 2(D). (See
Ponomarenko 118].) In the stationary case the covariance function of such a
process has a spectral representation

(2.1 )

F 2 has a non-negative measure on A and the process itself has a spectral
representation

x( '11) = r 'P(A) Z(dA) = X( '1') (2.2)

with Z a stochastic measure satisfying cov{Z(A), Z(B)f = Fl(A li B ). The
domain of x may be expanded to '11 E S(G) and to lfI with 'JI E L 2(F2) . In the
case that the process x is real Z(dA) = Z(-dl). (See Ponomarenko [18].)

The above spectral representations were developed by Kampe de Feriet
[11] for the case of a stationary ordinary process over a group G and by
Niemi 1141 for the case of a stationary random measure on a group G and
by Cramer 17] originally.

A mixing condition will be required in order to develop the central limit
theorems of this paper. It is,

ASSUMPTION I. x is a real stationary generalized process. For k: = 1,2,...
the cumulant of order k + 1 of xCV') is assumed to exist and be given by

with

vrai sup I ~"().l) ' " ~"(A,lJ 'P(A. 1+ ... +A. 1e ) fk +I(AI"'" A. Ie )1< ex) (2.4)

for all 'P E SeA ).
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The functions j::, {- 1 are called the cumulant spectra of the process x. They
are given in terms of the stochastic measure Z by

cum {Z(dA 1)"'" Z (dA k + I)}

=t5(A,1 +... + A.k+I) ! k+1(A,1 '·"').k)dA 1... dA,'c +1' (2.5)

where b is the Dirac delta function.

Making an observation on the process x will be viewed as being able to
compute x( 'II) for all 'II in D(G) having support within a given compact set T,
(the domain of observation). The sample sum will be viewed as the value
x(lJF) with IjI near 1 throughout T. The finite Fourier transform will be taken
to be

x«g,--W)IjI) =f If'(w-).)Z(d)')=X(lf'(w- .» (2.6)

for such a 'II. The function v will need to be in D(G) and will be called a
taper.

In the case that G is not compact and that T is large the finite Fourier
transform (2.5) might be expected to be approximately normally distributed
when the process x is mixing. The notion that T is large will be formalized
by basing the Fourier transform on a net of tapers {'!'.. } such that
lim e Q( g) = 1 (pointwise) for all g E G. (In the case that G is a-compact the
net may be taken to be a sequence.) It will be seen that nets of tapers exist
such that the finite Fourier transform is asymptotically normal.

3. THE ASYMPTOTIC NORMALITY

The following regularity conditions will be required in connection with the
net of tapers.

ASSUMPTION II. {If'a} is a net of functions in S(A) with the property
that 'P::: may be written 'IIQ = l/>Q If' with epQ' If'E S(A), If'(0) = 1

(3.1 )

for U any neighborhood of 0 in A and

(3.2)
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In Appendix 1 of the paper such a net will be constructed in the case of
non-compact G with the further properties that 'IIa E D(G) and that 'IIa( g ) is
proportional to a function with limit = 1 for g E G. In the case of a-compact
G, the net may be taken to be a sequence.

The principal result of the paper may now be stated.

THEOREM. Let the stationary generalized process x satisfy Assumption I
and have mean O. Suppose further that the second-order spectrum fl()") is
continuous at the distinct points A= co 1 , ..., W J and does not vantsh at those
points. Let the net (or sequence) {!I'a} satisfy Assumption II. Then the finite
Fourier transforms X('1'a(wJ - •)), j = 1,..., J are asymptotically independent
normals with zero means and variances f2(w j ) , j = 1,...,J, respectively.

Proof. The argument proceeds by showing that the cumulants of order
greater than 2 tend to 0 and that those of order 2 tend to the values
indicated. Because the normal distribution is determined by its cumulants
(those of order greater than 2 vanish), and because the cumulants exist and
tend to 0 as indicated, the corresponding net of probability measures is tight
and asymptotic normality follows. The argument is carried through for the
univariate case. The joint normality argument may be reduced to this case.
Using abbreviated notation, one has for cumulants of order k + I

[cum {X('1'a)'"''X(ljItk) II

= II!l'a(A.) ,,· 'I'o(Ak) !l'a(~. + .. .+ Ak)fk+.(A. ,...,Ak)dl1 • • • dAk l

from (2.3)

~M I14>aO·]) ." 4>~(Ak) 4>a(At + .. . +Ak)1 dA l .. . a, from (2.4)

~ M «I(f>a (A.~ (k + l)/k dA.rfrom Appendix 2.

Now (J14>I(k+l)/k)k~fl4>12(f14>l)k-lby Holder's Inequality and so the
cumulant indicated tends to 0 from (3.2) in the case k > 1. (Use is also made
here of the fact that the space S(G) is translation invariant.)

In the case k = 1

= f I f1Jo(w - 1)1 2
1F(w - A)I'l2().) en.
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tending to/2(w ) at points of continuity off2 in view of (3.1), the approximate
identity nature of the net If/)a 1

2
• In the covariance case one has

Icov{X('1'a(W] - .»,X(Y'a(W2 - •»}1

= If'1'a(W I - l) '1'a(w2 -1)12(A.) tLt /

<. M fIt,f)a(w l - l) t,f)a(w 1 - l)1 cIA.

from (2.4). This last integral may be seen to tend to 0 for c.v I *' w 2 by
splitting it up into an integral over a neighborhood of WI not containing W 2

and a remainder and then using Schwarz's Inequality separately on each
integral.

This completes the proof of the Theorem.

4. EXTENSIONS

The theorem extends to the case of vector-valued processes by means of
the same arguments. This extension includes the complex-valued case.

ApPENDIX 1

This Appendix demonstrates the existence of a net of functions,
'Pa E SeA) satisfying Assumption II. .

Simon [24] and Hewitt and Ross [10, p. 298) construct nets, raE L 1(A ),
such that: (i) ra~O, fra(A.)d).= 1; (ii) O~Yo(g)~ 1, y.. EK(G); (iii)
given U a neighborhood of 0 in A and fJ > 0, there is an a o such that for
a>ao one has furo(l)tLt> I-fJ and ro(l)<fJ for lEA/U; (iv)
lim }'o(g) = 1 uniformly on compact subsets of G; and (v) the net becomes a
sequence for G a-compact.

Bruhat [6] demonstrates the existence of functions 8 E D(G) such that
e~ 0 and f 8(g) dg = 1 and one has 181 ~ 1.

Now set

One sees that Yo *8(g) ~ 0 and tends to f 8(g) dg = 1. This implies that
fr~ 9 2 tends to 00 for non-compact G. Further, from (iii),
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r T~&2 ~fJ(l-fJ)
I,t/ll

giving (3.1). Next, JITaBI~ Jr; ~ 1 and (3.2) follows.
The construction is completed by taking IJI = e.

ApPENDIX 2

LEMMA. Let k be a positive integer and 4' in LP(A) with p = (k + 1)/k.
Theil

kf ... f I<P(AI ) '" <P(l.J 4'{l l + ... + lk~ a, ... a, ~ (f I tP ()' ~P dA.) .

Proof The result follows from Holder's Inequality, namely,

(a) II/gill ~ II/lip II gllq , lip + Ilq = I, Young's inequality (Segal and
Kunze 123, p. 204\ , namely,

(b) II! * gllr~II/lIpllg l)q, I/r= lip + l/q-I ~O and Fubini. Define
Ho(l) = «P(l),

and note that if the integral exists it is given by f I(/>(l) Hk_I(A)1 dA.. Now,

JI4'()') Hk_I(..l)!d). ~ II«Pl jp IIHk- IIlk+ I

II Hk -lllk+ I ~ II«P lip II Hk-zll(k+ 11/2 ~ ••• ~ II «P II~ -l II Ho ll(k+II /k

= 1I«P11:.
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A Particle Migrating Randomly on a Sphere

David R. Brillinger1

Consider a particle moving on the surface of the unit sphere in R' and heading
towards a specific destination with a constant average speed. but subject 10 ran­
dom deviations. The motion is modeled as a diffusion with drift restricted to the
surface of the sphere. Expressions are set down for various characteristics of
the process including expected travel time to a cap. the limiting distribution. the
likelihood ratio and some estimates for parameters appearing in the model.

KEY WORDS: Drift; great circle path; likelihood ratio; pole-seeking; skew
product; spherical Brownian motion; stochastic differential equation; travel
time.

1. INTRODUCTION

There are marine mammals, such as elephant seals, that travel great distan­
ces and arc tracked. It is of interest to biologists to describe the routes. One
can wonder for example if the animals follow great circle paths. The
animals will be foraging along the way, Le., pulled away from the direct
route from origin to destination, and this may be modeled as stochastic
fluctuations. The great circle route is the geodesic, providing the shortest
trip. A ship needs to be changing course continually to stay on it. It is
intriguing that some animals apparently do not need to change course,
they can keep going straight ahead.

An issue that arises in modeling the physical world is whether to work
employing the Ito or the Stratonovich calculus . Reasons have been pre­
sented in various places to the effect that, when developing physical
applications, it is simpler to start with the Stratonovich form and then
switch to the Ito for developing properties of the process. See the discussions
in: Bartholdi et al.I ' 9 ) Karlin and Taylor.'?'

To start, some of the previous work on the planar case with drift and
the spherical case without drift will be presented.

I Statistics Department. University of California. Berkeley, California 94720-3860.
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2. THE PLANAR CASE

Brillinger

(2.1 )

KendaH!10) considers the case of a Brownian motion on the plane with
an "attractive" polar drift. He works with polar coordinates, (r, ¢J) ,
centered at the target center. The particle, in his case a bird, starts at loca­
tion (D, 0). In a time interval of length dt it moves a distance J dt towards
the target, then is subject to random Gaussian disturbance, of amount
a dll, towards the target and amount a dl/, at right angles to the path.
Here U, and Vr are independent standard Brownian motions and 0'2 their
common variance. In Ito form the motion may be described by

drr=(;:r-J) dt-s- a dll,

It will be noted later that these equations correspond approximately to
motion on a sphere of large radius. The infinitesimal generator of the r r

process IS

Using the criteria developed in Karlin and Taylor'?' or Bhattacharya and
Waymire, ':" for this process the point 0 is unreachable, but an entrance
point.

Next suppose that there is a circle of radius a about the target, then
among the results of the Kendall paper is that the time to get from (D, 0)
to the circle has expected value

(D -a +~; log Dja)!J (2.2)

This result may be obtained directly from the formulas recorded in
Appendix T, with

and

fx 1 {2J}s(x)= a ~exp zO'2 dz

m'(x) = x 3.- exp {-x 2J}
0'2 0'2
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x > O. Here (2.3) is the exponential integral Ei( .). The naive expression for
the expected travel time is (D-a)/o corresponding to 0"=0 in (2.2).
Kendall also derives an expression for the variance of the travel time.

The invariant distribution of the process is proportional to m' (x)

above, i.e., a gamma. The likelihood ratio relative to the case 0 = 0 is

fTIl fT I (' 200"2)? ( - 0) dr, - - ? 0- - -- ds
o 0"- 2 0 0"- 1',

following the Cameron-Martin-Girsanov formula recorded in Appendix I.
This is maximized by the choice

e 1 ( 'IT 1 )o=T rO-r T+O"- --:- ds
o t s

When 0 = 0 the equations considered are the polar coordinate form of
Brownian motion in the plane and for r, one has the case n = 2 of the
Bessel process discussed for example in Karlin and Taylor. (<)l The transition
density function for that process is given there and is

p(t; q; r) = g(r) f r. e - ;.c/ 2G(I.q ) G(Ar) g(A) dA
o

t> 0 with

g(r)=r,

3. FORMS OF SPHERICAL BROWNIAN MOTION

Perrin '!" working from a model of a randomly rotating sphere, deter­
mines the density of the angle, W" subtended at the center of the sphere
between the initial position of a point on the surface and its position t time
units later. He finds that density, relative to the measure sin W dco d¢ on the
sphere is

2n!(w, t)

with I satisfying

X6U/IO/2-12
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(3.1 )



432 Brillingcr

Perrin shows the solution of (3.1 ), with appropriate initial conditions, is

1 o: 1

!(W, t) = 4n L (2n + 1) PII(cos w) e -- //( n + I) trr-/2 (3.2)
/1=0

for t > 0 where P; is the Legendre polynomial of order n. Perrin provides
some graphs of this function. He also shows that

Esin 2 w =l(l-e- J3"-" )I :;

and further remarks that one can get other moments of Legendre polyno­
mials in cos WI by integrating them against expression (3.2).

Yosida' P" determines spherical Brownian motion as the unique tem­
porally and spatially homogeneous diffusion process on S2. Suppose () and
t/J denote longitude and colatitude respectively, 0:::;;; (} :::;;; nand 0:::;;; t/J < Zn.
Yosida finds the transition density from the position (0, t/J) at time 0 to the
position (e', <p') at time t to be

rr: k

p(t;B,¢J;e',q/)= L L e- klk+ lltYZI(O,¢J) y%'(e',¢J') (3.3)
k = () //I = - k

Here y~;l( (), ¢J) is the spherical harmonic

for n = 0, 1, 2,..., 1mI~ n, and P;;' is the associated Legendre function and
P~=PII' see Terras. F'" The representations (3.2 ) and (3.3) are seen to
correspond when one uses the addition formula for spherical harmonics.
Yosida(23) gives the infinitesimal generator of the process as (J2 L1 */2 where
L1 * is the spherical Laplacian

(3.4 )

o< e< n, The y~:J are the eigenfunctions of the operator L1 *, showing one
source of the formula (3.3).

The Ito equations for the process are

(J

dt/J t = ----:--e dV,
sm I

with V I and VI independent Brownians.
76
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The motion of e is what Ito and McKean!!!) call the Legendre process
on [0, z ]. It has generator

Writing

f
' 1

l(t) = . 2 ll( }ds
o sm 17 S

and with t/J circular Brownian (that is oB, (mod 2n), where B, is a Brownian),
they show that spherical Brownian may be represented as

[e, ¢] = [e, t/J(/)] (3.7)

Stroock' 18) works with Y in R J
• He obtains the spherical Brownian as

the solution of the Ito equation

dY = (I - YY'/(Y'Y)} dB - (Y/(Y'Y)) dt (3.8 )

supposing Y =F 0 and that B is Brownian R - R J
• In this case the

Stratonovich form is

(S) dY = (I - YY'/(Y'Y)) dB (3.9)

(Here and in the following (8) indicates that the Stratonovich form of equa­
tion is being employed.) This process stays on the surface and the final term
of (3.8) may be thought of as pulling the process back onto the sphere.

With the change to polar coordinates defined by Y = (R sin esin ¢,
R sin ecos ¢, R cos e) expression (3.9) becomes

(S)dR,=O

If one sets e, = r 1/R and takes R large, these become

(S) dr, ~ a[ sin ¢, dB: + cos ¢, dB~]

(S) d¢, ~ a [cos ¢, dB: - sin ¢, dB~]
r

I 77
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If one converts to the Ito form and b = 0, these become (2.1). In another
approach, Oksendal, (14) [pp. 142-143] obtains spherical Brownian as
B/IBI with a particular time change.

Suppose next that one is focusing on the distance, 0" to the North
Pole . With the change of variables, XI =cos f)" (3 .5) becomes

(3.10 )

on [-1, 1]. This process is considered in Karlin and Taylor, (9) and
Matthews.'!" Its infinitesimal generator is

The eigenfunctions are the Legendre polynomials, PI/(x) with eigenvalue
A.n = n(n + 1), see Karlin and Taylor.'?' One sees another connection with
(3.2). The so-called scale and speed functions, defined in Appendix I, are

1 l+x
se x) =-log--

2 I-x

and

respectively. The invariant density, proportional to m'(x), is the uniform.
The points ±1 constitute an entrance boundary and are unreachable.
Using the expression (A.3) of the Appendix and carrying out the required
integrations, the expected time to travel from x to the point dis

2 I-x
a

210g
1- d

-l<x<d<l.
Roberts and Ursell( 16) investigate random walks on the sphere with all

directions of movement assumed equally probable. They obtain the
formula (3.2) as the limit when the step size gets small and suggest an
approximation to distribution of WI' Hartman and Watson(?) develop
various properties of the approximate distribution. [See also Bingham, (4 )

Watson.(22)]

4. THE GREAT CIRCLE CASE

Suppose that a particle on the sphere is migrating directly towards the
North Pole at speed 0 and subject to Brownian disturbances. The North
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Pole is taken for convenience. The Ito differential equations for the process
are

(4.1 )
(J

d4> I = -;-----f) dVI
sm I

so long as () I =1= 0 and with 4> I defined mod 211:. It will be supposed that the
particle does not start at () = 0 or 11:. (These points are inaccessible.) The
equations extend (3.4).

The infinitesimal generator of the process is

(4.2)

Clearly the process is bounded, simplifying derivations.
Figure I shows a simulation corresponding to the application motivat­

ing this research. It refers to elephant seals migrating from the California
coast into the NW Pacific. One notices the particle meandering once it
reaches the neighborhood of its destination, as was to be anticipated.
Meandering around the destination may be thought of as the animal
foraging there .

45

40

35

-145 -140 -135 -130 -125 -120

Fig. 1. Simulation of diffusion with drift on sphere.
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With the change of variables XI = cos 01' and using Ito's lemma,
Eq. (4.1) becomes

whose infinitesimal generator is

on [-1,1]. This reduces to (3.10) when 0=0.
In the case of a sphere of large radius R, if one writes 01 = r j R one

sees that the Eq. (4.1) become

1 ((J2 R )-dr -;:::'(JdU + ---0 dt
R 1 I 2 '1

and replacing R(J by (J and Ro by 0 leads back to (2.1). The endpoints of
the interval here are inaccessible, but following the general discussion of
the topic in Karlin and Taylor"? can be treated as points of entry. The
process is recurrent.

Various characteristics may be derived from the expressions in the
Appendix. Following that material one has

The scale function is given by

Jx {20 } 1s(x) = exp 2 cos - I Z 1 _ 2 dz
xo (J Z

and the speed function by

1 JX {20 }m(x)=2 exp - 2COS -1 Z dz
(J xo (J
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The invariant density of the process is proportional to

437

m'(x) = exp { - ~~ cos - I x}

-1 < x < 1. For b/(J2 small, the density is approximately uniform.
Consider next the expected travel time for the process. Suppose the

process starts at x and heads to d, I> d> x > -1. Following the expres­
sion (A.4) in the Appendix this may be evaluated to

fd 2 [f)' {20 }] {20 } Ix (J2 _ I exp - (J2 cos - 1 Z dz exp (J2 cos - I Y 1_ y2 dy

In the case that 0 = 0, it is

2 I-x
a

210g
1- d

as given in Section 3.
The skew product representation (3.7) given earlier holds in the

present case as well. The proof of Ito and McKean;Sl [p.200], applies
equally.

5. DETERMINATION OF THE PARAMETERS

Following the expression (A.5) in Appendix I, the likelihood ratio of
the process, relative to that of the case 0 = 0, is

1 [ fT 1fT (20(J2 )]2 (-0) dOs - - - --+02 ds
a 0 2 0 tan Os

This leads to the maximum likelihood estimate

Because the particle reaches the region of its destination eventually, this
estimate becomes unreasonable as T ~ 00.

One can obtain an exact estimate of a2 on the basis of the usual sort
of result for quadratic variation

v r z - 2 P 2 IT 1'i' [<,D(i+I-<,DtJ ~ a 0 sin28sds
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derived in the Appendix. Here {t i } is a partition of the interval that gets
finer under the limiting process , the result is conditional on the (con­
tinuous) realization of 8.n 0 ~ s ~ T, and it is assumed that there exists e > 0
such that [sin Osl ~ e. The curve ;j, refers to a continuous curve obtained
from the curve 4> t by either patching together continuous segments or by
reflecting ¢, whenever it reaches the barriers ¢ = 0, n. (It is assumed that
0< cPo< 2n.) These two constructions are illustrated in Fig. 2. The top

·2

100 150 300

.F=====================================t

·2

100 150

100 150

Fig. 2.
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graph represents a realization of <p,. The middle results from joining the
two segments continuously and the bottom from reflecting.

When working in practice the data will be available at discrete time
points and the above likelihood ratio is not obtainable. However if one has
an expression for the transition density, then it can be employed to obtain
the likelihood function and estimates of the parameters obtained. An
approximate approach here is to do what a ship's navigator has done tradi­
tionally. Specifically at the start of a day based on a ship's position the
navigator determines the great circle course and that is followed for a day.
The next day the navigator determines the ship's new position, again the
great circle course based on that position is determined and followed for a
day . Unless the ship is heading due north or south, during the course of the
days it will be pulled off the great circle route, but with the course revisions
the destination is approached. This method leads to approximating the
desired transition density by a succession of motions in the plane.

Other approaches to approximating the transition density include:
numerical solution of the partial differential equations, some form of quad­
rature (e.g., that of Dawson!") and simulation.

6. NAVIGATOR'S COORDINATES

To obtain the planar approximation just referred to and to prepare
Fig. I provided earlier, traditional coordinates are helpful. The relations for
these are as follows. Let <P and 8 refer to longitude and latitude on the
sphere, in radians, 0 ~ <P < 2n and -n12 ~ 0~ n12. Suppose that a ship is at
location <P" 8, at time t heading towards position r/>, e. The great circle
distance, p" and course, 1]" satisfy

cos p, =cos (~- B,) cos (~-e)

+ sin (~- 8,) sin (~- e) cos( r/> - <P, )

cos 1], = [ cos (~- e)- cos (~ - 0,) cos p ,] I[sin (~- 8I ) sin p, ]

with appropriate choice of quadrant in the latter case. These formulas
come from spherical trigonometry and are developed, for example, in
Various.':" )
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7. DISCUSSION

Rrillinger

Corresponding Ito, Stratonovich and differential equation developments
have been presented. Each has something to offer and will be employed in
the practical study of elephant seal paths in progress.

Another paper working with a diffusion on the sphere, with drift, is
Le Gall and Yor. (11) They add general drift terms to Brownian on the
sphere and study the equations

1
dfiJ'=---:----B (dV,+c 2(B" fiJi) dt)sm ,

They obtain asymptotic properties of the windings of the process.
Rogers and Williams'l7) develop Brownian motion on submanifolds of

Rei via a Stratonovich equation. This could be extended to include motion
preferring one direction.

APPENDIX

Appendix I-Some Formulas

General results for diffusion processes are developed in Gihman and
Skorokhod,( 6 ) Karlin and Taylor, (9 l and Bhatacharya and Waymire'? ' for
example. The notation of the latter work is used here.

Consider a diffusion process X, on the line satisfying

(A.I)

where B, is Brownian motion. Define

J21l(Y)
lex, z) = ---z-() dy

x (7 y

Then the scale function is given by

sex) =rexp{ -l(xo , z)} dz
xo
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and the speed function by

441

(A.3)

Following Bhatacharya and Waymire':" the expected travel time may
be written

J"(m( y) -m( -1» ds(y )
.v

(A.4)

if - 1 is the lower bound of the state space.
The Cameron-Martin-Girsanov formula for the log likelihood ratio of

the process (A.I), relative to the case of J1(x) =J.1o(x), leads to the expression

See also Gihman and Skorokhod'?' [po90].

Appendix II-Determining G

One reference is Basawa and Rao. (2) Consider the quantity

(A.6)

Its behavior will be considered conditional on the continuous realization
{en 0 ~ t ~ T} satisfying [sin ell ~ e for some e > O.

The expected value of (A.6) is

which is ~ a2T/e2
. The variance of (A.6) is bounded by 2a4T

max {t, + 1 - t;} /e4 which tends to 0 as the partition gets finer. This gives the
result. The conclusion is basically a result for the quadratic variation of a
martingale.
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The purpose 01statistics, ... , is to describe certain real phenomena.
A. Wald (1952)

The concern of these lectures is raw data distributed in time and/or space.
The basic data are curves and surfaces. If n denotes the sample size and p
denotes the dimension, then the concern is with the case of n much less than p.
In the situations addressed, the phenomena have developed or are developing in
time or space. They are complex, so that subject matter plays essential roles in
the analyses made and in the interpretations and conclusions drawn. There need
to be combinations of both physical and statistical reasoning. Indeed, a principal
goal of the lectures is to bring out the key role that subject matter plays in the
analysis of random process data. A further intention is to show that the fields of
seismology and neurophysiology are rich in problems for statisticians, particu­
larly those individuals with some interest in applied mathematics. The work
presented involves a mixture of data analysis and structural modeling. The
problems discussed are specific, but the techniques employed are broadly appli­
cable. The data concerned is of high quality, so that detailed analyses are
possible. The material presented consists of personal (collaborative) work and a
few success stories of other particular methods that serve to tie the development
together. An attempt is made to present problems from a unified point of view.
Emphasis is on techniques, rather than novel substantive results.

The study of random process data provides a major interface of statistics with
science and technology. Indeed, there has been an explosion in the collection of
spatial-temporal measurements (corresponding in part to much of modern
technology having become digital). Some particular issues and procedures be­
come emphasized as a result of the interaction of statistics with technology.
These include system identification, systems analysis, inverse problems, Fourier
inference, bias versus variability (resolution versus precision), averaging func­
tions, dynamics and micro-versus-macro study. These strains run through the
examples presented. There is also a desire to display the broad range of data
types with whose analysis statisticians must now be concerned.

Some provisos are necessary. There is no claim made that the analyses are
definitive. What is presented is an overview, rather than specific details. Further­
more, there is little presentation of formalism, The reader is referred to the
papers referenced for greater detail.

There are two lectures. The first concentrates on some statistical methods in
seismology, the second on some corresponding methods in neurophysiology. It is
interesting to see the same methods playing central roles in the analysis of data
from two quite disparate fields. Indeed, one of the principal goals of the lectures
was to bring out the universality of statistical techniques-by examples from
these two fields.



SEISMOLOGY AND NEUROPHYSIOLOGY

II. Seismology

Jeffreys. .. attention to scientific method and statistical detail has been one
of the main forces through which Seismology has attained its present level of
precision.

Bullen and Bolt (1985)

3

1. The field and its goals. The term seismology refers to the scientific
investigation of earthquakes and related phenomena. It has been defined as the
"science based on data called seismograms, which are records of mechanical
vibrations of the Earth" [Aki and Richards (1980)]. This latter definition allows
the admission that seismologists also study vibrations caused by the sea, by
volcanoes or by man. One further definition that has been given is: the science of
strain-wave propagation in the Earth.

Whatever the definition, the broad goals of seismology are to learn the Earth's
and a planet's interior composition and to predict the time, size, location and
strength of ground motion in future earthquakes. Workers in the field seek to
provide valid explanations of earthquake-related phenomena and to understand
these phenomena so that life may be made safer.

Specific problems addressed include the detection, location and quantification
of earthquakes, the distinguishing of earthquakes from nuclear explosions and
the determination of wave velocity in the Earth's interior as a function of depth.

The accumulation of knowledge in seismology has displayed a steady back­
and-forth between new insight concerning the waves and new insight concerning
the media through which the waves propagate. Among major "discoveries" one
can list are the inner core, the liquid central core, the Mohorovic discontinuity,
the movement of tectonic plates causing earthquakes themselves and the locat­
ing of numerous gas and oil fields.

The field is largely observational, with the basic instruments the seismogram
and clock. There are important experiments too, where tailored impulses are
input to the Earth and the resulting vibrations studied. The field experienced
the "digital revolution" in the 19508 and now poses problems exceeding the
capabilities of even today's supercomputers.

Statistical methods have played an important role in seismology for many
years-in large part due to the efforts of Harold Jeffreys [see Jeffreys (1977), for
example]. Vere-Jones and Smith (1981) provide a review of many contemporary
instances. Statistics enters for a variety of reasons. The data sets are massive.
There is substantial inherent variability and measurement error. Models need to
be refined, fitted and revised. Inverse problems need to be addressed. Experi­
ments need to be designed. Sometimes the researcher must fall back on simula­
tions. The basic quantity of concern is often a (risk) probability. In particular, it
may be pointed out, that in the construction of the Jeffreys and Bullen (1940)
travel time tables, one has an early, perhaps greatest success, of the use of
robust/resistant methods. [B. A. Bolt's (1976) presidential address "Abnormal
seismology" is well worth reading in this connection.]

Seismologists deal with data of a variety of types. The important forms are
digital waveforms from spatial arrays of seismometers of various dimensions
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(where the instruments have been arranged in such a fashion that an earthquake
signal may be seen as a moving, changing entity) and catalogs (containing lists of
an event's times, locations, sizes and other characteristics) for geographic regions
of interest.

Seismology is not without its controversies. There are fundamental ones, such
as whether or not plate tectonics is a validated theory. There are practical ones,
such as does the size of the motion of an earthquake increase steadily as one
approaches the fault or does it level off? As is so often the case, the existing data
and analysis methods prove inadequate to resolve these disputes conclusively.

A general reference that provides much of the pertinent seismological back­
ground is Bullen and Bolt (1985). We turn to a presentation of some specific
problems and techniques.

2. Free oscillations of the Earth. This subject is one of the principal
developments in seismology over the last 25 years. Whenever there is a great
earthquake, the Earth vibrates for days afterwards. The seismogram then
consists, approximately, of a sum of an infinite number of exponentially decaying
cosinusoids plus noise; see expression (2). The frequencies of the cosinusoids and
the corresponding rates of decay relate to the Earth's composition. Measured
values may be used to make inferences about that composition. The techniques
of complex demodulation, nonlinear regression and regularization may be em­
ployed in this connection. Some details on these techniques will follow.

As is the case with many natural systems, the vibratory motion of the Earth
may be described by a system of equations of the form

(1)
dY(t)

dt = AY(t) + X(t),

with X(·) a (vector-valued) input. In the case that the input is b8(t), with 8(·)
the Dirac delta function (corresponding to the earthquake shock) and initial
conditions Y(o-) = 0, the general solution of (1) may be written as

Y(t) = exp{At}b

= L~jexp{J-tl}Uj'
j

t> 0,

where J-tj, u j are the (assumed distinct) latents of the matrix A. The spectrum
occurring is discrete because of the finiteness of the Earth as a body. Focusing on
one of the coordinates of Y(t) and assuming the presence of noise, one has

(2) Y(t) = Lakexp{ -13kt}cos(Ykt+ 15k) + e(t),
k

with - 13k and Yk the real and imaginary parts of the J-tj and e(·) the noise. This
model may be checked by complex demodulation of the series Y( t) in the
neighborhood of frequencies rk' as estimated from the periodogram. Provided the
bandwidth of the demodulation is not too great, a single cosinusoid should be
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1960 Chilean Earthquake

5

8
o.....

o

o
8.....

I 0 20 40

timeelapsed (hours)

60 80

FIG. 1. Record of the Chilean great earthquake of May 22, 1960, as recorded by the tiltmeter in the
Grotta Gigante at Trieste. The tides have been partially removed.

included, the log amplitude should fall off linearly with time and the phase angle
should be approximately constant. Details are given later, specifically at (5).

Figure 1 is a plot of the seismogram recorded at Trieste of the 1960 Chilean
great earthquake after partially removing the tides. Details re the data and the
tidal removal procedure may be found in Bolt and Marussi (1962). Figure 2, a
plot of the lower-frequency portion of the periodogram of this data, suggests the

Periodogram - Chilean Data
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FIG. 2. The periodogram of the data of Figure 1 based on 2548 data values. Only ordinates
corresponding to frequencies less than 8 cyclesjh have been graphed. The y-axis is logarithmic.
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(5)

presence of a variety of periodic components. The periodogram of a stretch of
time-series values Yet), t = 0, . .. , T - 1, is defined as follows. Set

T -l

(3) d~(A) = L Y(t)exp{ -iAt}, -00 < A < 00 .

t=O

Then the periodogram at frequency A is defined as

(4) I~y(A) = (27TT) - 1 I d~ ( A ) 1 2 .

For data from the model (2), I~y(A) may be expected to show peaks for A near
the Yh '

The basic ideas of complex demodulation are frequency isolation by narrow­
band filtering to focus on a single term in expression (2), followed by frequency
translation to slow the oscillations down. The specific steps are: (i) Yet) -+

Y(t)exp{iAt} (modulation), followed by (ii) local smoothing in t of Y(t)exp{iAt}
to obtain Yet, A), the complex demodulate at frequency A. In the case that
Y(t) = aexp{ -f3t}cos(yt + 8), one has

Y( t, A) :::::: ~a e i 8 «:" ei(A -y)t, for Anear y

:::::: 0, otherwise.

Hence 10gIY(t, A)I :::::: log(a/2) - pt and arg{Y(t, A)} :::::: 8 + (A - y)t. Plots of
these quantities versus t provide checks on model adequacy and provide pre­
liminary estimates of parameters. Figures 3 and 4 present such plots for the
Chilean data at two frequencies, 3.885 and 5.6775 cycles/h. These frequencies
were determined by noticing the locations of peaks in the periodogram, setting A
equal to them, demodulating and then in some cases employing a nearby Ato get
a more nearly horizontal phase plot. The fluctuations in the amplitude plot can
be due to noise, to leakage from other frequency components or to split peaks
among other things. The rate of decay f3 is found to generally vary with
frequency in the present seismological situation. Results for the Chilean data for
a variety of frequencies may be found in Bolt and Brillinger (1979).

The parameters could be estimated from the complex demodulate pictures, for
example, by fitting regression lines. It is generally more effective to proceed via
nonlinear regression. This has the further advantage of providing estimated
standard errors. Suppose one has a model

Y(t) = S(t; (J) + e(t) ,

with S( ·) known up to the finite-dimensional parameter (J and e( ·) a noise series.
In the present case, Set) = a exp{- Pt}cos(yt + 8) and (J = {a, p, y, 8}. For the
next step, it is convenient to take Aj = 27Tj/T and to write 1j = d~(Aj)'

Ej = d;(A) and Si8) = d'f(A). One will estimate 8 by minimizing

(6) L 11j - S) (J)1 2
,

jin J

for J a range of subscripts with Aj near y. The logic of this is as follows. There
are a variety of central limit theorems for empirical Fourier transforms [see, for
example, Brillinger (1983)]. Suppose that the noise series e(·) is stationary and
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Log Amplitude at 3.885 cycles/hour
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FIG. 3. The result of complex demodulating the data of Figure 1 at a frequency of 3.885 cycles/h .
The upper graph gives the logarithm of the running amplitude. The lower graph gives the running
phase. The bandwidth of the filter employed is 0.594 cycles/h.

mixing with power spectrum t.iA). Then for large T, Ej is approximately
complex normal with mean 0 and variance 2'1TTt.l Aj ) . Further the variates
Ej , Ek are approximately independent. It follows that the determination of an
estimate of (J to minimize expression (6) is approximately the maximum likeli­
hood procedure. The statistical properties of such estimates were indicated in
Bolt and Brillinger (1979) and developed in detail in Hasan (1982). For example,
one finds the asymptotic variance of "Y to be proportional to

4'1Tt••(y)
T 3a2 '
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Log Amplitude at 5.6775 cycles/hour
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FIG. 4. Complex demodulation as for Figure 3, but at the frequency of 5.6775 cycles/h .

having considered a limiting process with fi = cp/T as T - 00. The inverse cubic
dependence on sample size is on first glance surprising. It comes from the
narrowness of the peaks when they are present.

Complex demodulation is an exploratory technique. Hence one has to be
conscious of the possibility of employing it at frequencies of "false" peaks. In
practice, it is found that the nearness of the phase plot to a straight line is a
highly sensitive indicator of the presence of a periodic component.

Earlier in the paper, it was noted that progress in seismology shows a
to-and-fro between new knowledge of waves and new knowledge of the structure
of the Earth. This occurs in the case of free oscillations. Suppose one has an
initial model for the Earth in terms of some physical parameters, e.g., expres-
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Earth Model CAL8
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FIG. 5. The CAL 8 Earth model. The curvesgive the assumed density (grams per cubic centimeter),
P-wave velocity (kilometers per second) and S-wave velocity (kilometers per second) as a function
of depth assuming a spherical Earth. Given such a model, one can compute implied periods of free
oscillation. Of interest is the inverse problem, given periods what is a corresponding Earth model?

sions for density, shear wave velocity and compression wave velocity as functions
of depth, say p(r), cs(r) and cJ...r), respectively, r denoting depth. Figure 5,
based on the data in Tables 3 and 4 of Bolt (1982), shows what is meant by an
Earth model. Given such a model, one can compute the implied frequencies of
free oscillation Yk' How to do this is described in Chapter 6 of Lapwood and
Usami (1981), for example. The relationship involved is nonlinear, but perturba­
tions may be expressed linearly via kernels. Specifically, suppose one perturbs
the parameters by amounts /).p, /).cs and /).cp , respectively, then the perturbation
of the frequency of the k th free oscillation is given by

/).Yk"'" l
R
Ak(r) /).p(r) dr + lRBk(r) /).cs(r) dr + lRCk(r) /).cp(r) dr,

o 0 0

for kernels A k, Bk and Ck. This expression is said to layout the "direct
problem": Given /).p, /).cs and /).cp find /).Yk' Now suppose a great earthquake
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occurs. Then new estimates of the frequencies Yk are available. One has the
"inverse problem": Given the observed llYk' find IIp, llcs and llcp • Because the
new frequencies are just estimates, one seeks a model only approximately
achieving them. It seems worth setting out the type of problem involved here in
a specific notation. Let Y and e denote normed spaces. Let X denote a map from
e to Y, Y = XO. The values Y and X are given, a value for °is desired. Let ex
denote a scalar. Some, basically similar, methods for selecting a °currently being
employed include: (a) regularization, choose 0 to minimize IIY - XO ll 2 + ex1lO1l 2;
(b) sieve, choose 0 subject to 11011 ~ ex to minimize IIY - XOII; (c) residual, choose°subject to IIY - XOII ~ ex to minimize 11011. A characteristic of the solutions
obtained is that one has to be content with the estimation of some form of
average of the unknown 0. Chapter 12 of Aki and Richards (1980) contains a
discussion of inverse problems in geophysics. A characteristic that distinguishes
the present Earth model problem, from the usual inverse problems, is that there
are discontinuities present in the model-corresponding to the Earth's layers.
The above perturbation approach of a nonlinear problem to a linear one has been
employed by geophysicists for many years; see Jeffreys and Bullen (1940), for
example.

Several other references to the study of free oscillations may be noted . Hansen
(1982) extends the procedure of Bolt and Brillinger (1979) to handle the case of
several eigenfrequencies present in the nonlinear regression fit. Dahlen (1982)
sets down the asymptotic results for the case of tapered data, that is, when
convergence factors have been introduced into the Fourier transform computa­
tions. Zadro and Caputo (1968) look for nonlinearities via bispectral analysis.

3. Estimation of fault-plane parameters. That there exists a see-saw
between the study of the Earth's structure and the study of earthquake sources
was pointed out earlier. In this section it will be indicated how a (nonlinear)
probit analysis may be employed to estimate basic characteristics of the source
of an earthquake.

An important quantity read off the seismic trace of an earthquake at a
particular observatory is the sign of the increment at the arrival of the first
energy from the event. This sign corresponds to whether the initial motion is a
compression or a dilation. In many cases, following the observation of an
earthquake at a number of stations, if the observed signs of first motion are
plotted on a map centered at the epicenter of the event a (radiation) pattern
results. Figure 6, taken from Brillinger, Udias and Bolt (1980), provides such a
plot for one of the aftershocks (event 4) of the Good Friday 1964 Alaskan event.
(Unfortunately, due to the locations of the particular stations recording the
event, this figure does not provide a particularly good example of the ideal
radiation pattern, but the data were of special interest. Were the stations well
scattered, in an ideal circumstance one would see mainly solid circles in two
opposite quadrants and mainly open circles in the other two quadrants. In this
case only two of the four quadrants have been covered. The implication will be
that one of the planes will be poorly determined.) Following Byerly (1926), plots
such as this have been employed to learn about the source. Before describing
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FIG. 6. The P-wave jirst-rrwtiondata for the earthquake of the Alaskan sequence that took place
March 30, 1964 at 0200. The solid circles refer to compressions, i.e ., first motion upward , the open
circles to dilations, i.e., first motion downward. [Reproduced with permission from Brillinger, Udias
and Bolt (1980).]

what may be learned, some details of the earthquake process will be set down.
The usual assumption (the elastic rebound theory) is that earthquakes are due to
faulting. A crack initiates at a point and (in the case of pure slip) spreads out to
form a fault plane. As the crack passes a given point, slip takes place (on the
fault plane) resulting in a stress drop and the radiation of seismic waves. The
radiated (P-) waves may be shown to have a quadrantal pattern with one of the
axes parallel and the other perpendicular to the fault plane of the event. It
follows, and this is what Byerly (1926) contributed, that the data may be used to
estimate the fault-plane orientation. Having an estimate of the fault plane and
the direction of motion on that plane is important to geology and geophysics.
Researchers seek to tie together surface and subsurface features, to consider
regional stress directions and to use the results to confirm and extend the theory
of plate tectonics. The results can be crucial to seismic risk computations.

Byerly proceeded graphically and this has continued to generally be the
working approach. However, the results so obtained are subjective, have no
attached measure of uncertainty and may not be easily combined with estimates
derived from other events at the same site.
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The problem may be approached in formal statistical fashion as follows. The
data available consist of hypocenter of earthquake, locations of observatories,
directions of observed first motions (compressions or dilations) at the observato­
ries and a store of knowledge concerning the Earth's structure [velocity models
as given in Jeffreys and Bullen (1940), for example] . It may further be argued
that seismographic noise is approximately Gaussian [see Haubrich (1965)]. Let a
fault plane be described by three angles (Or, tPr, Op). Let A i/Or, tPr, Op) denote
the theoretical expression for the wave amplitude on the focal sphere for event i
at station j. This expression may be found in Brillinger, Udias and Bolt (1980).
(The focal sphere is a "little" sphere of unit radius around the hypocenter. In
carrying out the amplitude computation, one has to trace the ray from the
hypocenter to the observatory through the focal sphere.) Let Y;j denote the
realized amplitude of the seismogram at the onset of the event. Then one can
write Y;j = (XijAij + fij' with (Xij a scale factor and fij normal mean 0 and
variance 0i) variate. Here (Xij reflects the attenuation the signal experiences in
traveling from the source to the observing station, whereas fij represents noise
caused by disturbances unrelated to the earthquake of concern. Let Yij = 1 if
Y;j> 0 and = 0 otherwise. It follows that

Prob{Y ·· = I} = Prob{ y . > o} = <I>(p oOA oO)
lJ lJ lJ lJ '

writing Pij = (Xijl(Jii' for this signal-to-noise ratio. The model may be further
expanded by including a term Yij to allow for reader and recorder errors, now
writing

(7) Prob{YoO = 1} = YoO + (1 - 2y. .)<I>(p . .A . .)lJ lJ IJ IJ IJ •

Precise data correspond to y and (J small (hence P large) and imprecise to y near
0.5 or P near O.

The model is seen to take the form of a nonlinear probit (with a term y
corresponding to "natural mortality"). An example of a corresponding likelihood
is provided by

(8) n<l>(PiAiir
i j (l - <I>(PiAij))l -Yij ,

if

assuming P to depend on event alone and y = O. One can now proceed to
estimate the unknown parameters Or, tPr, (Jp, Pi by maximum likelihood.

Figure 6 includes the fitted planes for the case of event 4 of the Alaska
sequence. These particular estimates were computed restricting the likelihood (8)
to the observations of event i = 4 and including a y term as in (7).

It is critical to assess the fit of any model. In Brillinger, Udias and Bolt (1980),
this was done by comparing the theoretical and estimated probability functions.
Figure 7 is based on a pooled analysis of some 16 of the Alaskan events (labeled
by i previously) that seemed to go together. It has been assumed that the Pi are
all equal in the fit studied. The figure provides the empirical probability that the
observed first motion agrees with the theoretical as a function of amplitude. The
fitted values z = pAij have been grouped into cells of width 0.1 in the analysis.

100



SEISMOLOGY AND NEUROPHYSIOLOGY

Empirical Probability of Correct First Motion
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FIG. 7. A plot of the statistic (9) of Section 3 and <ll(z) for the data of 16 events of the Alaskan
sequence of 1964. The plot is meant to assess the validity of the model (7). Here z refers to the values
pAijo

What is plotted are ~(z) and

# {( i, j)lsgn Yi j
(9)

= sgn Ai j , Z - h < "Aij < Z + h}/# {(i, j)lz - h < "Aij < z + h},

for h = 0.5. Here A refers to A(8r , ~r, 8p ) and # refers to the count of the
number of elements in the set. The fit seems adequate.

The results of further computations of this type may be found in Brillinger,
Udias and Bolt (1980) and Buforn (1982). The maximization program VA09A of
the Harwell subroutine library, see Hopper (1980), proved effective in determin­
ing the maximum likelihood values. The estimates were, however, nonunique and
poorly determined in some cases of small data sets.

An important by-product of such analyses is to form clusters of like fault-plane
solutions for events in the same region, in order to get at motions occurring on
the same fault plane; see Udias, Munoz and Buforn (1985), for example. The
maximum likelihood standard errors are useful in this connection. The practical
implication of the work just reported is that first motions for large collections of
events may be handled routinely and that geophysical conjectures may be
checked formally. The final fault-plane solution may be plotted in traditional
fashion allowing examination of the data for difficulties. What remains is for
more realistic seismic source models than the one treated in the papers listed to
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be fitted statistically. An elementary reference to the subject matter of concern
here is Boore (1977).

4. Quantification of earthquakes. One of the important and difficult ques­
tions of seismology is how to measure the "size" of an earthquake. Size is an
essential feature that a seismologist makes use of in attempts to deal with
earthquake hazards and to understand the basic phenomena of concern. Specifi­
cally, the seismologist is not only interested in estimating the direction of
movement at the source, he is further interested in the overall deformation that
took place and the amount of energy that was released. Among the physical
quantities of interest for a given earthquake are the seismic moment (a measure
of the seismic energy released from the entire fault) and the stress drop
(difference between the initial and final stress.)

For a variety of seismic source models, seismologists have related the seismic
moment and stress drop to characteristics of the amplitude spectrum 18(:\)1, the
modulus of the Fourier transform of the signal. Suppose that the seismogram is
written as

Y(t) = s(t; fJ) + e(t) ,

where s(·) is the signal, fJ is an unknown parameter and e(·) is a noise
disturbance. If 8(:\; fJ) denotes the Fourier transform of s(t; fJ), then what is
given, from the source model, is the functional form of 18(:\, fJ)l. A reason for
working in the Fourier domain here is that distracting phase information is
eliminated. Common forms (for displacement measurements) include

18(:\; fJ)1 = alb + (:\/:\o)p and a/{l + (:\/:\0)2},

with fJ = {a, {3, :\o}. The seminal paper on the determination of such functional
forms and on the relationship of their parameters to the "size" of the earthquake
is Brune (1970/1971). Estimates of the seismic moment and stress drop may be
determined once estimates of a and :\0 are available. That the parameters relate
to size and duration will be seen for a particular functional form in the discussion
that follows. The empirical practice has been to estimate the unknowns graphi­
cally from a plot of the modulus of the amplitude of the empirical Fourier
transform Id~(:\)I. The following formal procedure was suggested in Brillinger
and lhaka (1982).

The asymptotic distribution of Id~(:\)1 may be evaluated in the case of
stationary e using a central limit theorem of the type mentioned in Section 2.
The asymptotic distribution is found to depend on 18(:\; fJ)! and fe.(:\ ) alone.
Hence one needs an expression only for the modulus of 8, and as stated above,
this is what the seismologist generally provides. Next, with the model Y(t) =

s( t; 8) + e(t) and small noise,

Id~(:\)1 = 18(:\; fJ)1 + (d'[(:\) + d'[( -:\))/2 + . . . ,
showing variation around 181 not depending on 181. However, when deviations of
Id~1 from a final fitted form are plotted versus the fitted values, dependence of
the error on 181 is apparent. An example is provided in Figure 8. This is the
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Taiwan Event - Transverse Shear Wave - 29January 1981, Magnitude 6.7
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FIG. 8. The upper graph gives the transverse S-wave component of the vibrations of the January 29,
1981, magnitude 6.7, Taiwan earthquake as recorded by the central accelerometers of the Smart 1
array. The array is approximately 30 km northuiest of the epicenter of the event. The lower graph
plots the differences between the amplitudes of the Fourier transform of the data and corresponding
(final) fitted values. The data stretch consisted of 256 points.

result of computations for an earthquake of magnitude 6.7 that occurred in
Taiwan on January 29, 1981. The data were recorded by one of the instruments
of the Smart 1 array; see Bolt, Tsai, Yeh and Hsu (1982). The upper graph of the
figure provides the transverse S-wave portion of the recorded accelerations. The
lower graph provides the deviations plot just referred to. This plot suggests that
the noise is in part "signal generated" in this case. There are various physical
phenomena that can lead to signal-generated noise. These include multipath
transmission, reflection and scattering. The following is an example of a model
that includes signal-generated noise:

(10) Y(t) = s(t) + L(YkS(t - Tk) + 8ks H(t - Tk») + e(t),
k

with the Tk time delays, with SH the Hilbert transform of s and with Yk,8k
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reflecting the vagaries of the transmission process. [The inclusion of the Hilbert
transform allows the presence of phase shifts. The Hilbert transform is discussed,
for example, in Brillinger (1975a), page 32]. With the Yk' Sk' 7'k random and after
evaluating the large sample variance, one is led to approximate the distribution
of 1j = d~(A) by a complex normal with mean S(Aj; () and variance f j =
21TT(p2IS(A} ()1 2 + 0

2), where now E has been assumed to be white noise (of
variance 0

2), and also it is assumed that EYk, E Sk = 0 and that the process 7'k is
Poisson. The ratio p2/ (J 2 measures the relative importance of signal-generated
noise. This variance is seen to depend on the "signal" through IS\ and leads to

Taiwan Event - Amplitude Spectrum
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FIG. 9. The upper graph provides the amplitudes of the Fourier transforms of the Taiwan data of
Figure 8 and the corresponding fitted expected values as computed for the model of Section 4. Both
scales of the plot are logarithmic. The louiergraph provides the fitted pulse s( t ).
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wedging of the type present in Figure 8. One can proceed to estimate 8 by
deriving the marginal likelihood based on the Iljl. This likelihood may be
evaluated and found to be

TI ( (
- Iljl2 + lSi) (2IljIISjl)~)

i exp f . 10 f . f .'
) ))

where 10 denotes a modified Bessel function. The upper graph of Figure 9 shows
a fit of the model IS(A)I = aIAI/(l + (A/AO)4) to the data of Figure 8. This
functional form was settled on after the degree of fit of two more elementary
forms was examined.

Details may be found in Ihaka (1985). We remark that this model fit
corresponds to a time domain pulse set) = aA2

0p(Aot ), where

p(t) = [Sin_
t

- tSin(-t + ~)l e- t/ /2Ii Ii 4 '

for t> 0 and p(t) = 0 otherwise. The expression set) = aA2op (Aot ) indicates
how AO corresponds (inversely) to the duration of the event and how a corre­
sponds to size. The lower graph of Figure 9 provides a plot of the fitted pulse.
Once estimates of a, AO are at hand, these may be converted to estimates of the
seismic moment and stress drop via theoretical relationships developed by
geophysicists.

The maximum likelihood fit of the model was carried out by a computer
program written by Ihaka. This program also generates standard error estimates
and standardized residuals. These later may be used to assess the goodness of fit
of the model. Figure 10 provides a plot of the standardized residuals against the

Standardized Residual Plot
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FIG. 10. A standardized residual plot, based on the model (10), corresponding to the lowergraph of
Figure 8. The differences between the amplitudes of the Fourier transform values and their fitted
expected values have been divided by their fitted standard deviations to obtain standardized
residuals.
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fitted values of the same format as the residual plot of Figure 8. The wedging
corresponding to signal-generated noise in the later plot is no longer present;
however, there is a definite suggestion that the fit might be improved in the
region where the signal has low amplitude. Luckily, this is the region of least
importance. It awaits future analysis. It might be handled by allowing the series
E(t) to have a nonconstant spectrum.

5. Array data. Today it would be a strange thing indeed for an earthquake
to be recorded on just one seismometer. In fact, from the very earliest days,
readings of the same event at geographically scattered observatories have been
made use of. Since the 19608, seismometers have been deliberately arranged in
geometric designs over distances of the order of miles to hundreds of miles in
order to allow extraction of traditional information and sometimes ellicitation of
new information.

An important use has been the estimation of the direction from which a
seismic signal is arriving and the velocity with which it is moving. One manner in
which this is done is by the computation of estimates of frequency-wavenumber
spectra. The procedure may be described as follows. Suppose one has array data;
Y(xi , YjJ t), j = 0, . .. , J and t = 0, ... , T - 1. Here (Xi' Yi) denotes the coordi­
nates of the location of the jth sensor. The frequency-wavenumber periodogram
of this data is given by

(11) -00 <f.L,p,A<oo.

A motivation for this definition is the following. Suppose one has a plane wave
Y(x, Y, t) = Pcos(ax + fJy + yt + «5) of temporal frequency y and wavenumber
Ie = (a, fJ). Then the periodogram will have a peak near (a , fJ, y) . (Incidentally,
this wave is moving with apparent velocity yI la2 + fJ2 from azimuth given by
tan ep = fJla.) An example of array data is given by Figure 11. What is plotted
are the locations of nine of the seismometers of the Smart 1 array located in
Taiwan. Also plotted are the portions of the traces used in the computations.
These traces correspond to the vertical P-wave part, of the January 29, 1981
earthquake. (The initial near-flat part is the noise, saved in a buffer, just before
the onset of the wave.) The estimated epicenter of this earthquake was 30 km
southeast of the array. Figure 12 gives a central portion of the frequency-wave­
number periodogram, for this data, as computed via formula (11), at frequency A
corresponding to 1.944 cycles/so(The temporal frequency 1.944 was picked on
the basis of a times-series analysis of the individual seismograms.) There is seen
to be a large peak in the southeast quadrant, at an azimuth that turns out to
correspond to that of the epicenter of the event. The radial distance corresponds
to the velocity of P-waves.

Seismologists working with this type of data have often preferred to employ,
what they call, the "high-resolution" or "Capon" statistic [see Capon (1969)]
instead of the periodogram (11). The high-resolution statistic typically shows
more dramatic peaks than the periodogram. Before defining it, we introduce
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Taiwan Array and Event of 29 January 1981
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FIG. 11. The vertical P-wave portion of the January 29 Taiwan earthquake as recorded at nine of
the sensors of the Smart 1 array. The ..bullets " are plotted at the physical locations of the sensors .
Noise immediately preceding the arrival of energy from the event had been saved in a buffer .

some notation. Let Y(t) denote the j-vector [Y(Xj' Yj' t)]. Set

T-l {2"'kt}
Yk = T - 1 E Y(t)exp -iT'

t = O

for k = 0,2, .... Further let B = [exp{-i(/Lxj + vY.t2H If A= 2."Z/T, Z an
integer, then the periodograrn (11) is proportional to IBTYlI2• Next define

M = EYkYk",

with the sum over k with 2."k/T near A. Now the high-resolution statistic at
frequency A may be defined as 1/BTM - 1B. If Y(x, Y, t) = P cos(ax + f3y +
yt + 8) + noise, this statistic may be expected to show a peak for (/L, v) near
(a, f3) and A near y. This statistic has been introduced, in part, in order to be
able to present the next example.
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Frequency-Wavenumber Periodogram : Taiwan Event
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FIG. 12. The frequency-wavenumber periodogram of the data of Figure 11. The time series
stretches contain 720 points. The temporal frequency employed is 1.94 cycles/so

Figure 13 is reproduced from Scheimer and Landers (1974). It shows the
high-resolution statistic computed for two portions of data recorded by the
Large Aperture Seismic Array (LASA) in Montana following a strip-mining
blast. These computations confirmed the validity of the high-resolution ap­
proach. The statistic for one portion shows a single large peak in the direction of
the blast. The statistic for the following portion shows energy arriving from
various directions. This analysis provided empirical proof of the existence of
scattering of seismic waves. That this phenomenon existed had been theorized
for years. A frequency-wavenumber data analysis has provided the confirmation.

Spectral analyses are (too) often thought of as being appropriate only for
stationary data. AI; the preceding example shows, the technique may be highly
useful in nonstationary cases as well. As a second example we mention the results
of Bolt, Tsai, Yeh and Hsu (1982). If, in fact, an earthquake is caused by
faulting, then the direction of the source of seismic energy will be changing as
the fault is ripping, that is, as the fault tip is advancing. In the paper cited, Bolt,
Tsai, Yeh and Hsu present high-resolution spectra for succeeding time stretches
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FIG. 13. The high-resolution (or Capon) spectrum computed for S-wave data recorded, following a
strip-mining blast , at the Large Aperture Seismic Array located in Montana. The temporal
frequency was 1.25 cycles!s (corresponding to the principal frequency of the S-wave).

of the January 29, 1981 Smart 1 event. There is an apparent shift in direction
with time. Their work may have been the first experimental measurement of a
seismic dislocation moving along a rupturing fault.

In each of the preceding two examples, frequency-wavenumber analysis has
allowed researchers to confirm the presence of suspected scientific phenomena.

6. Exploration seismology (reft.ection seismology). The problem of
learning the Earth's crustal structure can be approached as one of system
identification. The approach to be described takes advantage of the fact that the
Earth happens to be made up of layered strata. Signals, such as powerful
impacts or explosions, can be deliberately input to the Earth and the consequent
vibrations recorded by an array of seismometers or geophones. Such experiments
may be carried out in a search for gas and oil, or in a scientific study of the
general geological makeup of a region of interest. The results of these experi­
ments may be viewed as one of the grand success stories for statistical techniques
generally, and of least squares particularly. An unusual aspect of the inferences
made is that in many cases one gets to examine their validity, by the later
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drilling of a well. No worked example is presented in this section of the paper, in
large part because data sets are hard to come by. The material is presented,
however, because it provides a case where a rather complete solution (design
through confirmation) can be presented and because the basic experimental
technique is also employed in the neurophysiological case, where so much less is
known.

In its simplest form, the energy of an initiated seismic disturbance propagates
through the Earth with a spreading wavefront. When it meets an interface
between geological strata, part of the energy may be reflected back and part
continue forward due to the difference in acoustic impedance at the interface.
The sensors record the returning reflected energy echoes. Knowledge of sub­
surface velocities allows estimation of the depths and angles of inclination of the
various reflectors, whereas knowledge of the locations of reflectors allows estima­
tion of velocities. (One notes again a see-saw in the collection of knowledge.) In
practice, the initiating impacts will be repeated a number of times at the same
location and at points of a grid. The power of averaging is again used.

If the input signal is taken to be X(t) and if Yet) denotes the corresponding
output, then the two may be modeled as related, assuming linearity and time
invariance, by

(12) Y(t) = ja(t-s)X(s)ds.

The function a(·) is called the impulse response, since if the Dirac delta function
~(t) is taken as input, then the resulting output is Yet) = aCt). The function a(·)
evidences the reflectors and velocities in the earth beneath the source and
receiver. The model and its interpretation may be motivated as follows. Suppose
a pulse is applied at time T. Suppose in consequence a wave is generated, travels
at velocity "1 to a reflector at distance d, and a proportion a l is reflected back.
With X(t) = ~(t - T), then Yet) = a l 8(t - T - 2d l / " 1)' (This is actually the
naive model for radar or sonar.) Suppose further that the transmitted portion
continues downward at velocity "2 to a reflector at distance d2 and a portion of
its energy is reflected back, some of which is transmitted by the first reflector to
reach the receiver. Now the response has the form Yet) = a18( t - T - 2dl/ "1) +
a 28( t - T- 2dl/ "1- 2d2l"2)' This last is seen to correspond to the system
of expression (12) with impulse response aCt) = a18(t - 2dl / " 1) + a2~(t­

2dl/ "1 - 2d2/ "2)' One can clearly extend this model to situations with many
layers, many velocities and many corresponding transmission and reflection
coefficients. Peaks in the function a( t) may be seen as corresponding to reflec­
tors. (It must be noted that unfortunately such an elementary interpretation is
likely to be complicated in practice by interfering phenomena such as ghost
reflections. Some techniques have been developed to handle these.) The basics of
exploration seismology are discussed in Wood and Treitel (1975), Waters (1978)
and Robinson (1983).

The problem has now been formulated as one of system identification; given
stretches of corresponding input X and output Y, determine an estimate of the
impulse response a(·). In the case that a pulse close to a Dirac ~ may be
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generated and that the function a(·) drops off to 0 reasonably quickly, a
convenient procedure results from taking

M

X(t) = L 8(t - mil),
m -I

as input, and the "average evoked response"

1 M
a(s) = M L Y(s + mil),

m=1

as an estimate of a(s). This input corresponds to applying pulses periodically.
The estimate corresponds to stacking and averaging.

Suppose one sets myx(t) = Y* X(t) for some convolution operation" *."
Then from (12) one has

and one has a deconvolution (or inverse) problem to solve. Suppose one decides
to seek an X(·) such that

ja(t- s)mxx(s)ds == a(t),

to allow elementary processing. In terms of Fourier transforms, the left-hand
side here may be expressed as jexp{iAt}A(A)Mxx(A) dA, with Mxx a Fourier
transform of m xx- Then what is wanted is an X such that Mxx(A) == 1 on the
support of A( ·). If A(A) is known to be near 0 for 0 < A< AO and for A> AI'
then a possible function is the "chirp" signal

X(t) = COS([A O + (AI - Ao)~]t), forO s t s: T.

In the seismic case, the values of AO' Al have been determined in various
experiments. The chirp probe originated in radar work during World War II [see
Cook and Berenfield (1967)]. It may be seen to attach near equal power to the
frequencies between AO and AI' In the seismic case special devices have been
developed to input the chirp signal to the earth. The signal is input repeatedly
and the results averaged. The response is then convolved with the chirp function,
that is, myx is formed to estimate a(·). Structure can appear dramatically
during the cross-correlation processing described here.

In practice, subtle further processing is employed to handle wavefront curva­
ture, ghost reflections and other natural phenomena that may be present.

7. Other topics. There are other problems arising in seismology to which
statistical methodology can be applied fruitfully. These include analysis of the
coda (i.e., of the irregular trailing part of the disturbance), analysis of scattering,
risk analysis, nonlinear phenomena, point process studies, polarization, cepstral
analysis, discrimination of earthquakes from explosions [see, e.g., Tjestheim
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(1981)], seismicity study, travel time table construction, attenuation laws, earth­
quake location and azimuthal dependence of characteristics. Vere-Jones and
Smith (1981) discuss several of these problems. In some cases work has begun.

8. Discussion. Seismologists have long been serious users of statistical
methods. One finds Harold Jeffreys making the following statement in the entry,
"Seismology, statistical methods," in the International Dictionary of Geo­
physics: "The uncertainty is as important a part of the result as the estimate
itself. . .. An estimate without a standard error is practically meaningless."
Hudson (1981) remarks: "The success of the Jeffreys-Bullen travel time tables
was due in large part to Jeffreys' consistent use of sound statistical methods."
When I asked my colleague B. A. Bolt what he saw as the role of statistics in
seismology, he replied: "Seismology is largely an inferential science.... The role
of statistics in seismology is to provide a rigorous procedure for turning observa­
tions on seismic waves, etc., into probabilistic statements about properties of the
(real) Earth."

One may note that work in seismology is characterized by massive data sets,
inherent variability and measurement error, defining/fitting/refining models,
design of experiments, simulation, probabilistic description, needs for robust/re­
sistant procedures, predictive situations, inverse problems and combination of
observations. Statistics has much to offer in all these connections.

9. Update. Since the lectures were presented in 1983, work has progressed
on various of the topics covered. Abrahamson (1985) has employed Smart 1 data
to better see the movement of the fault rupture tip. Chiu (1986) studies the
problem of estimating the parameters of a moving energy source. Lindberg (1986)
develops "optimal" tapers to employ in the estimation of the frequencies of free
oscillations. The approach of Kitagawa and Gersch (1985) to nonstationary data
seems likely to prove of broad practical applicability. The book by Udias, Munoz
and Buforn (1985) goes into substantial detail over the formal estimation of
fault-plane parameters. Copas (1983) sets down an expression for the variance of
a statistic like that of (9). Brillinger (1985) develops a maximum likelihood
statistic for detection and estimation of a plane wave given array data. Donoho,
Chambers and Lamer (1986) develop a robust/resistant procedure for better
aligning the seismic traces of a section. Mendel (1983, 1986) presents maximum
likelihood state space-based methods for handling the data of reflection seismol­
ogy. Shumway and Der (1985) indicate how the EM method may be employed to
deconvolve pulses hidden in seismic traces. The nongaussianity of seismograms
obtained in reflection seismology is being taken specific advantage of; see
Giannakis and Mendel (1986). The techniques of Donoho (1981) and Lii and
Rosenblatt (1982) seem bound to prove useful in the seismological case. The
thesis, Ihaka (1985), has been completed. Ogata [e.g., Ogata (1983) and Ogata
and Katsura (1986)] has carried out a variety of likelihood-based analyses of
earthquake times as a point process. Many statisticians have begun working on
statistical aspects of inverse problems. We specifically mention O'Sullivan (1986).
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One can speculate on where the field of statistical seismology will go in the
coming years. It seems clear that there will be much concern with non-Gaussian
noise and signals, that vector-valued spatial-temporal data and analysis will
become the norm, that large-scale conceptual models will be set down and that
there will be a variety of techniques developed for borrowing strength in
situations with scanty data, e.g., risk estimation.

III. Neurophysiology

•• •, TTUXkrn biometry is the interdisciplina ry endeavor to build structural
stochastic TTUXkls 0/ biological phenomena.

J. Neyman (1974)

10. The field and its goals. Neurophysiology is the branch of science
concerned with how the elements of the nervous system function and work
together. The functioning is seen to involve chemical mechanisms, electrical
mechanisms and physical arrangement. The studies extend from the movements
of individual ions, through to the mass behavior of the components of the brain.

The goals of neurophysiologists range to the heroic: how to explain things like
memory, emotion, learning, sleep, expectation, behavior. At a less ambitious
level, neurophysiologists are concerned with how a single nerve cell responds to
stimuli, transmits information and changes with alterations of the environment.

The neuron is both the functional and structural unit of the nervous system.
The brain is a multiprocessor of dramatic complexity. The elements of the
nervous system may be said to differ from those in the seismic case, in that they
apparently have purposes.

The field is largely experimental with researchers collecting varied and exten­
sive data sets. The data include photographs made via electron microscopes,
fluctuating voltages and current levels within single nerve cells and finally
electroencephalograms (the brain's electrical potential at points near the skull.)
The studies are sometimes simply observational, but often complex experimental
designs are employed.

Important techniques that are made use of include staining to identify
individual neurons, insertion of microelectrodes to make measurements within
individual cells and the averaging of whole suites of responses to a stimulus of
interest in order to reduce what can be the dominant effects of noise. Many
experiments are computer controlled and computer processed.

Discoveries made by neuroscientists include the following. Nerve cells com­
municate with each other in both a chemical and electrical fashion, the voltage
pulse that travels along a neuron's output fiber is of near constant shape and
there are a broad variety of nonlinear phenomena that occur. A number of
verifiable physical laws and effective deterministic models (such as the
Hodgkins-Huxley equations) have been set down. Much insight has been gained,
especially at the level of small groups of neurons. At the level of the brain itself,
knowledge is mainly phenomenological. Here the brain is viewed as a black box
and studied by system identification techniques. Whatever the approach,
discoveries have been made leading to lifesaving and life-improving clinical
diagnoses.
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Statistical methods entered with the quantification of the field. No single
individual scientist seems to have had a dominating effect, rather there have
been many contributing workers-researchers concerned with electroencephalo­
grams (EEGs) and researchers concerned with small collections of neurons.
Statistical methods entered both because of high noise levels and because a
variety of phenomena seemed to be inherently stochastic. Evidence for this last
is presented in Burns (1968) and Holden (1976). Pertinent books on neurophysi­
ology include Freeman (1975), Aidley (1978) and Segundo (1984). General reviews
of statistical models and methods in neurophysiology are given in Moore, Perkel
and Segundo (1966) for the cases of single neurons and of small groups of neurons
and by Glaser and Ruchkin (1976) for EEGs. Statistical methods for classifica­
tion and pattern recognition, for handling artifacts and for data summarization
are in common use.

Neurobiology is one of the most active branches of science. The physiological
phenomena with which it is concerned are fundamental and in most cases barely
understood.

11. Neuronal signaling. One of the important means by which nerve cells
communicate is via spike trains. The inlays at the tops of the three graphs of
Figure 14 give examples of spike times representative of three different sorts of
neuronal behavior; pacemaker (near-periodic), bursting (activity occurs in bursts)
and bursting with acceleration (of firing within bursts).

Suppose that a neuron fires at times 'Tn' n = 0, ± 1, ±2, .. .. A convenient
formal representation of its temporal behavior is provided by writing

n

with 8( .) the Dirac delta function. This representation leads to results analogous
to ordinary time-series results in many cases. In the case that the 'Tn are random ,
one has a stochastic point process {'Tn}' A principal descriptor of a point process
is provided by its rate function. This is given by

lim Prob{point in (t , t + h]} !h,
h

as h tends to O. In the stationary case, where the stochastic properties of the
process do not depend on the time origin, the rate function is constant and so
only crudely useful then.

The autointensity function is an important parameter in the stationary case.
It is defined as

lim Prob{point in (t, t + h ]1 point at O} !h,
h

as h tends to O. It is a point process analog of the autocovariance function of
time-series analysis in a general sense. This parameter may be used , for example,
to describe the behavior of spontaneously firing neurons. Figure 14 presents
examples for three cases. In the first case, the neuron is firing approximately
periodically. The (estimate of) the autointensity is seen to oscillate (with period
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FIG. 14. Point process data (spike train) from tirenerve cell UO of Aplysia caldomica. The cell is
behaving in three different fashions. Tire inlays at tire tops of tire three graphs give brief stretches of
the data (but not on the same time scales as the autointensities). Tire functions plotted are estimates
of the autointensity functions based on 1538, 1019, 1631 spikes, respectively.
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equal to the interval between the points). In the second case, the neuron is
evidencing activity in bursts. The probability that the neuron fires again soon
after it has fired is high. In the third case, the neuron is also firing in bursts;
however, now there is structure within the bursts, the rate of firing is seen to
increase therein. The bursts here are at regular intervals.

The autointensity functions have been estimated, for this figure, by the
statistic

# {ITn - Tm - tl < h/2} INh,

with N the total number of points, with h a small binwidth and with t lag.
(Here # refers to the count of the number of points in the set.) The data
analyzed are for the cell LlO of Aplysia caliiornica, the sea hare. They were
collected and previously analyzed by Bryant, Marcos and Segundo (1973). The
experimental procedures and details of the data preparation may be found in
that reference.

A question that arises in the study of small networks of neurons is which
neurons are interacting with which? In other words, which spike trains are
associated with which others? A useful parameter to employ in the study of such
questions is provided by the cross-intensity function. Supposing one has spike
trains named M and N, then the cross-intensity function of N given M at lag t
is defined as

lim Prob {N point in (t , t + hJIM point at O}Ih,
h

as h tends to O. If the M spike train consists of points am and the N train of
points Tn' then this cross-intensity may be estimated by

# {ITn - am - tl < h/2} IMh,

with M denoting the number of M points in the data set, with h a small
binwidth and with t lag. Figure 15 presents three examples of estimated
cross-intensity functions. The first graph refers to data from cells L3 and LI0 of
Aplysia caliiornica. The behavior exhibited here is that of negative association;
LIO's firing is inhibiting the firing of L3 (for approximately 0.5 s). If one asks
whether the values at negative lags differ from the level of no-association by
more than sampling fluctuations, one finds they do not. This result is consistent
with the cell LIO driving the cell L3. The middle graph corresponds to positive
association. It is for a cell in the right visceropleural connective (RVP) and cell
RI5. The first cell tends to excite the second for about 0.25 s. The final graph
represents a more complicated (polyphasic) situation. These data sets were also
analyzed in Bryant, Marcos and Segundo (1973), where further details may be
found. The approximate sampling distributions of such statistics were developed
in Brillinger (1975b). It was found, for example, that it could be more convenient
to graph the square root of the estimate in some circumstances.

The cross-intensity function, being a point process analog of covariance, may
be expected to be an inadequate measure of relationship (as usual, correlation
does not imply causation). In the case of elementary statistical data, it is usual
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FIG. 15. Estimates of the cross-intensity functions for three pairs of Aplysia neurons. The estimates
are based on (1746,302), (1101,288), (1019,993) spikes in the pairs of trains, respectively.
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to turn to regression as a better technique. In the point process case it is possible
to carry out regression-type analyses. For example, one may :fit the following
form of model:

lim Prob{N spike in (t, t + h)IM spike train} /h = p. + I:a(t - om)'
h m

as h tends to O. The function a(t) appearing in this model is referred to as the
impulse response. This model may be :fit as follows. Set

M

dk(A) = L exp{ -iAOm },

m=l
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FIG. 16. The estimated coherence and impulse response for the data of the upper graph of Figure
15. The horizontal line gives an estimate of the level exceeded by chance only 5% of the time when the
spike trains are independent.
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with a similar definition for dJ,(X). These are point process analogs of the
empirical Fourier transform (3) of time-series data. The eross-periodogram of the
given data at frequency X is defined as

I~M(X) = (2'1TT)-ldJ,(X)dj;(X).

If the cross-periodogram is smoothed to obtain tJM(X), then tJM(X) is an
estimate of the cross-spectrum in the case that {M, N} is a bivariate stationary
point process. Now A(X), the Fourier transform of the impulse response a(t),
may be estimated by tJM(X)tJM(X)-l. The impulse response itself may be
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FIG. 17. The estimated coherenceand impulse response for the data of the middle graph of Figure
14. The horizontal line in the upper graph gives the approximate upper 95% null point of the
distribution of the sample coherence.
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(13)

estimated by back Fourier transforming AT. The strength of the relationship
proposed in the model may be measured, at frequency A, by the sample
coherency function RtM(A) = tJM(A)/ VtJM(A)tJN(A). Its modulus squared
is called the sample coherence. The coherence lies between 0 and 1, being nearer
to 1 the stronger the relationship. More details of these computations may be
found in Brillinger (1975b) and Brillinger, Bryant and Segundo (1976). [We here
follow the use of the terms "coherency" and "coherence" in Wiener (1930).]

Figures 16 and 17 provide the results of such an analysis for the first two data
sets of Figure 15. In each case the first graph is of the sample coherence. The
coherences are at some distance from the value 1.0, but above the 95% null
significance level (given by the horizontal lines in the figures). The relationship is
inherently nonlinear, so it could have been anticipated that the coherence
estimate would not be close to 1.0. Further discussion of these and similar
analyses may be found in Brillinger, Bryant and Segundo (1976).

12. Assessing connectivities. Questions that can arise with small net­
works of neurons include; is one neuron driving the rest and if one apparently is,
which one is it? The next data analysis to be presented addresses this question
for three Aplysia cells L2, L3 and LI0. From other experiments the neurophysi­
ologists knew that cell LI0 was driving cells L2 and L3. It was not known if there
were any direct connections between L2 and L3. The first three graphs of Figure
18 present estimates of the three coherences, LI0 with L2, L2 with L3 and LI0
with L3. As might have been anticipated, these suggest relationship exists in
each case.

It is possible to address the question of the direct connection of cells L2 and
L3, in the presence of LI0, by partial coherence analysis. Suppose that {A, B, C}
is a trivariate stationary point process. Let RAB(A) denote the coherency
function of processes A and B, with similar definitions of R AC and R BC' Then
the partial coherency of the processes B and C, having removed the (linear time
invariant) effects of process A, is given by

R BC - RBARAC
R -t=F======;=7===~BqA - ./( 2)( 2) ,

Y 1 - IRBAI 1 - IRcAI

suppressing the dependence on A. This definition may be motivated several
ways. For example, it is the coherency between the processes resulting when
their best linear predictors based on A are removed. Or, it is given by

2

lim {d
T _ tBA d T d T _ tCA d T }corr B t A' C t A •

T- 00 AA AA

Here corr denote the (complex) correlation coefficient and tBA/tAA, tCA/tAA are
approximate regression coefficients. An estimate may be determined by sub­
stituting estimates for the quantities appearing on the right-hand side of expres­
sion (13). If there is no connection between the processes Band C beyond their
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FIG. 18. Data for a network of three Aplysia neurons . The partial coherence estimate is based on
expression (13) of Section 12. In each case the horizontal solid line gives the approximate upper 95%
nuU level.

joint dependence on A, then the sample partial coherence R~C\A may be
expected to be near zero.

The final graph of Figure 18 provides the results of the computation for the
cells L2, L3 and LIO. There is no suggestion of a direct connection being present.
On reflection, it is quite astonishing the degree to which the linear models and
quadratic statistics have apparently captured the dependency in a highly nonlin­
ear situation. Further discussion and other examples of partial coherence compu­
tations may be found in Brillinger, Bryant and Segundo (1976).
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13. A structural stochastic model. The analyses of neuronal firing, so far
presented, are of the correlation and regression type. Parameters with direct
biological interpretations have not been introduced. In Brillinger and Segundo
(1979), a conceptual model is constructed and fitted by the method of maximum
likelihood. The model involves the following elements.

Input to a nerve cell leads to electrical-current genesis. This current flows to a
trigger zone, being filtered in the course of its passage. When the voltage level at
the current zone exceeds a threshold value, the nerve cell fires. The neuron
remembers back only to the time of previous firing. This process may be specified
analytically as follows. Let U(t) denote the voltage (membrane potential) at the
trigger zone at time t. Let B( t) denote the time elapsed since the neuron last
fired. Let X(t) denote the (measured) input to the cell. Then, assuming linearity
and time invariance, one can write

[B(t)
U(t) =)0 a(s)X(t - s) cis,

for some summation function (impulse response) a(·). The neuron fires when the
process U(t) crosses a threshold level O(t). Depending on the level at which the
threshold is set and the internal mechanics of the nerve cell, the input will either
accelerate (excite) or slow (inhibit) the firing. In Brillinger and Segundo (1979),
this mechanism was completed and discretized as follows. Input to the cell was
written Xt, t = 0, .. . , T - 1. Corresponding output was "fe, t = 0, ... , T - 1,
with "fe = 1 if there was a firing in the (small) interval immediate to t and with
Ye = 0 otherwise. With B, denoting the time elapsed at t since the preceding
time that Y = 1, they set

Bt -1

ti, = L asXt - s '
s = O

The presence of B, in the model had the effect of introducing a form of feedback.
Finally, they assumed that the threshold function had the form 0t = () + Ct with
the e's independent normals having mean 0, variance 1 and cumulative distribu­
tion function 4J(.).

The likelihood function of the given data and the model then took the form
T -1n 4J(lJ, - ())Yt(l - 4J(U

t
_ ()))l -Yt.

t=O

Parameter estimates were determined by maximizing this likelihood with respect
to 0 and the as' Approximate standard errors were determined by procedures
traditional to maximum likelihood.

Figure 19 presents the results of one such analysis. In this case fluctuating
current X(t) was injected directly into the cell R2 of Aplysia. The current level
was taken to have marginal distribution that was approximately uniform (but
that is not crucial to the technique). The sampling rate was 50 samples/so The
upper graph of the figure gives a stretch of the noise signal injected and the
corresponding times at which the neuron fired. Details of the experiments are
given in Bryant and Segundo (1976). It is very difficult, if not impossible, to see a

122



SEISMOLOGY AND NEUROPHYSIOLOGY

NeuronR2 • NoiseDriven

35

~r---------------------------.

~1-----~~--+-------+-+---+--+--+-+--------1

o

~IL...- ----' ---'- ...L..- --J. --'

o 3

-<-I

Summation Function
0

C!
0

§
0

§
0

~
0

~
0

'"0
~
0
• 0.0 0.2 0.4 0.6 0.6 1.0

lag (seconds)

Empirical Probability of Firing

s

(II!
0

-300 ·200 ·100 0 50 100 200 300

linear predictDt

FIG. 19. The results of fitting the neuron modelof Section 13 to data obtained in an experiment with
the ceU R2 of AplysUz. The upper graph is a segment of the data. Noise (lower trace) is injected into
the cell, The upper trace gives corresponding obseroed firing times. The middle graph gives the
maximum likeliJwod estimate of the sU17l1JU1tion function a( '), estimated at 25 lags. The lower graph
provides the statistic (14) of Section 13 and the curoe ~(U - 8) with 6 the estimated mean
threshold. The verticallin.e is at U = 6.

123



36 D. R. BRILLINGER

connection between these two stretches of data. The middle graph gives the
estimated summation function as' The lower graph is one means of assessing the
fit of the model. It is analogous to expression (9) of Section 3, and given by

(14) # {~ = 1 with U - h < Ut < U + h} 1# {t with U - h < Ut < U + h},

for small h, plotted versus U. Here

B,-1

Ut = L asXt - s
s=o

is the fitted linear predictor. The smooth curve is the corresponding ip(U - 0).
The fit may be described as adequate. The computations were carried out by a
variant of the program developed for handling the seismic first-motion data of
Section 3. Further examples and discussion may be found in Brillinger and
Segundo (1979). Other types of input are employed and alternate estimating
procedures compared there.

The large-sample properties of such estimates may be studied as in Sagalov­
sky (1982). A great advantage of the model-building approach, of this section, is
that the parameters introduced and estimated have biological interpretations. A
further advantage of the maximum likelihood approach, over that of partial
coherency, is that the spike trains involved can be highly nonstationary.

14. Analysis of evoked responses. A traditional means of studying the
nervous system involves applying sensory stimuli to a subject and examining the
ongoing electroencephalogram for an evoked response. The stimulus may be
auditory, visual (e.g., light flash, checkerboard pattern), olfactory, somatosensory
(e.g., an electrical shock), gustatory or a task. Generally, the stimulus is applied
for a time interval that is brief in comparison to the duration of the response.
Evoked-response experiments play an essential role in quantitative biology.
Because the experimenter is able to choose which stimuli to apply and when to
apply them, conclusions can pass beyond associations noted, to formal inferences
concerning causal mechanisms. These experiments are formally the same as the
seismological reflection experiments described in Section 6.

Some dramatic success stories of the technique may be mentioned. One is
presented in Bergamini, Bergamasco, Fra, Gandiglio and Mutani (1967). Siamese
twins were joined in such a way that it was not possible to determine by
traditional means if the peripheral nervous pathways were interconnected.
Before operating, it was crucial to determine the interconnections of the twins.
Ongoing EEGs were recorded for each. A series of trials were carried out in
which each of the twins' legs was stimulated in turn by electrical shocks. What
was found was that when a leg of one twin was stimulated, response was noted
only in her EEG. On the basis of this information, the twins were
separated-successfully. A second notable example of the use of the evoked
response technique is provided by hearing exams for newborn infants (including
infants asleep.) EEGs are recorded. These are examined for responses after loud
clicks are made near the infants' ears. Rapin and Graziani (1967) present an
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example for an infant with hearing difficulties, both wearing and not wearing a
hearing aid. The hearing aid is found to have an objectively measurable effect.

Figure 20 presents an example of evoked-response data recorded at a 4 X 4
array of sensors implanted in a rabbit. In this case the stimulus was an odor and
the sensors were implanted in order to study the rabbit's olfactory system. These
responses were recorded concurrently. A second example is given in Figure 21. It
gives the 20 successive responses evoked by applying a current pulse to the
lateral olfactory tract of a rabbit and recording from a sensor implanted in the
depth of the pre-piriform cortex. The signal is fairly pronounced in Figure 20. In
Figure 21 the strength of the stimulus was weak and the signal is not apparent.
Both of these data sets were collected in the laboratory of W. J. Freeman,
University of California, Berkeley. Some details of his experiments may be found
in Freeman and Schneider (1982).

Crucial to many evoked response experiments is the fact that it is generally
insufficient to apply a stimulus once. Rather it must be applied repeatedly
(perhaps thousands of times) and the responses averaged. (This is also true in the
case of reflection seismology as mentioned earlier.) In the twins and infant
examples discussed previously, M equaled 250 and 100, respectively. Formally, if
Y(t) denotes the measured EEG and the stimulus is applied at times crm ,

m = 1, ... , M, then it is usual to take as the basic statistic, the average evoked
response

1 M
Y( s) = M L Y( s + crm ) ·

m-l

The left-hand column in Figure 22 presents the results of averaging the data of
Figure 21 with M = 3, 5, 10, 20 and 38. With increasing averaging a signal is
slowly appearing from the noise. Some alternate evidence for the presence of a
signal is provided by the results of the right-hand column. These are averages of
38 responses, where the stimulus has been applied at a succession of increasing
strengths.

A variety of questions, which have statistical formulations, arise in the course
of work with evoked responses. (1) Does an applied stimulus elicit a response? (2)
Do two different stimuli elicit the same response? (3) Is the same response
elicited at two different sensor locations? (4) Is the response stationary? (5) If the
order of stimuli application is altered, are the corresponding responses altered?
(6) Are the effects of different stimuli additive? (7) How does the response
depend on the stimulus intensity? (8) How do the responses depend on exogenous
variables? To go with answers to these questions, researchers seek quick efficient
data collection, precise estimates and indications of variability. Difficulties that
commonly arise include small response, large noise, variability in response,
artifacts present and superposed effects. Next in this section, two formal set-ups
will be presented that may be employed to address the situation.

Suppose, to begin, that there is a single stimulus and that it is applied
at times Om' Let a( ·) denote the response in a single-shock experiment. If
the system is time invariant and the effects of the various shocks additive
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Rabbit Olfactory System - Responses at 4 by 4 Array
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FIG. 20. The bursts of electroencephalographic activity recorded at the 16 sensors of a 4 X 4 array
implanted in a rabbit, folkJwing the stimulation of the rabbit byan odor. The units of the x-axis are
in seconds.
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Individual Responses - Rabbit Pre-piriform Cortex
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FIG. 21. Twenty successive responses evoked in the pre-piriform cortex by (electrically) stimulating
a rabbit. The x-axis units are in seconds.
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Average Evoked Responses - Several M's, Several Intensities
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FIG. 22. The various graphs here are meant to SMW the effects 01changing the number 01responses
averaged (lelt column) and the strength 01stimulus applied (right column) lor data such as that 01
Figure 21.
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(superposable), then a model for consideration is
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(15) yet) = p. + La(t - om) + e(t),
m

with y(.) denoting the ongoing EEG and e(·) denoting noise. In the case of the
EEG this model seems to have to be empirically verified, rather than being an
implication of basic biology. (In the seismological case it came out of a concep­
tual framework.) For example, the assumption of superposability may be ex­
amined as follows for the animal studied. To begin, carry out some single-shock
experiments, i.e., apply the shocks at times far enough apart that their individ­
ual effects seem likely to have died off. Let a(s) denote the average of the
responses evoked, with s lag since stimulus application. Now carry out some
two-shock experiments, i.e., apply shocks say Ii time units apart. Let b(s, Ii)
denote the average of the responses evoked. To examine the assumption of
superposability compare a(s) + a(s - Ii) with b(s, Ii). The results of carrying
out such a check, in an experimental situation, are given in Biedenbach and
Freeman (1965). They form averages of M = 150 responses and do not note
departure from superposability.

We now turn to one formal analysis of the model (15). If one writes

X(t) = L 8(t - om),
m

then (15) takes the form

yet) =p.+ ja(t-s)X(s)ds+e(t),

i.e., it is seen to be the model of cross-spectral analysis. Taking Fourier trans­
forms, one has

d~(A) :::: A(A) d'k(A) + d;(A),

for A > 0, with A(A) denoting the Fourier transform of a( . ). Consider a number
of frequencies Ak = 2'fTkjT near A. Then, assuming A(·) smooth, one has the
approximate linear model

with

T -l {2'fTkt}
Yk = L Y(t)exp -iT'

t =O

and similar definitions of X k , E k • Next, via a central limit theorem for empirical
Fourier transforms, the noise variates Ek may be approximated by independent
(complex) normals having mean 0 and variance 2'fTTf.iA). All the inference
procedures for the linear model become available. For example, as an estimate of
the transfer function A( A), one has

A(A) = LYkXk/LXkXk
k k
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and this variate will be approximately distributed as complex normal with mean
A(A) and variance 2'1TTfeeCA)/LkIXkI2. This formulation has a variety of conveni­
ent properties. It directly extends to the cases of multiple stimuli and multiple
responses. It handles stimuli of varying intensity. It allows the individual
responses of the separate shocks to overlap. Formal inference procedures, such as
tests, are available. Complex experiments may be designed and analyzed-com­
plexities handled such as blocking, rotation, factorial treatment structure, mea­
sured covariates. Formal checks for interaction are available. Finally, one can
turn to the question of optimal design.

It is sometimes convenient to adopt a different viewpoint for the problem.
Suppose that the shocks are applied at times such that 0m+ 1 - Om > V with
a(s) = 0 for s > V and s < O. Write

Ym(s) = Y(s + om)'

Then Ym( s) = J.L + a(s) + Em(s) for 0 ~ s ~ V. The average evoked response is
now conveniently denoted Y(s). As an example of the use of this formulation,
suppose there are I different stimuli and that each are applied J times, then one
is led to set down the model

Y;}s) = J.Lij + a(s) + bi(s) + Eij(S) ,

with i indexing stimuli and j indexing replicates. Other methodologies, such as
grown curves and discriminant analysis, are seen to become available with this
formulation.

It was mentioned that evoked-responsedata may be contaminated by artifacts.
It is perhaps worth noting that robust/resistant estimates are directly available.
Suppose one has a measure of distance, such as

IIY - all 2 = ~V[Y(s) - a(s )]2ds

and an estimate of scale p. Then a family of robust/resistant estimates is
provided by

a(s) = LWmYm(S)!LWm,
m m

with Wm= W(IIYm - a\l/p) and W(·) a univariate set of multipliers for
robust/resistance. The estimate will need to be computed recursively. An ele­
mentary example is provided by the" trimmed mean"

a(s) = L'Ym(s)/,BM,

with E' over the PM smallest IIYm - all. This class of estimates was proposed in
Brillinger (1979, 1981a) and investigated in Folledo (1983). The upper graph of
Figure 23 provides an example of this estimate with 50% trimming (,B = 0.5), in
the case of data like that of Figure 21 (but with a stimulus of strength 122% of
the threshold stimulus). The solid curve denotes the average evoked response,
the dashed one the trimmed statistic. The two curves are nearly identical,
although when examined, the individual responses are found to differ noticeably.
Fifty-percent trimming was employed, because this is usually considered a highly
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Average Evoked Response and Robust/Resistant Variant
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FIG. 23. The upper graph compares the average evoked response with the 50% trimmed mean for
the data taken at 122% of a threshold stimulation value. The lower graph contrasts the 50% trimmed
mean statistic with a value computed recursively.

resistant level in the case of elementary statistics. The fact that the trimming
had such little effect on the final answer suggests that there were no substantial
outlying curves in the data set. Had a curve been far removed from the rest, then
it would have been rejected from the average. It is to be remarked that in this
case of present concern, whole curves are being eliminated from the average, not
just outlying points that some curves might have.

It is to be noted that a "real-time" version of such a trimmed mean may be
computed; see Brillinger (1981a). This statistic is given recursively for m =
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1,2, ... by
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Pm +l = Pm + L jm

otherwise, and by

1
am+l(s) = am(s) + fJm (Ym+l(s) - am(s)) ,

if IIYm+l - amll ~ Pm' and

am+1(s) = am(s)

otherwise. (In preparing a worked example, it was found more convenient in the
choice of L to replace p by its logarithm.) The lower graph of Figure 23 gives the
result for the same data as that of the upper graph. The algorithm was run
setting ales) = Yl ( s) and L = 0.15. The real-time estimate, given by the solid
line, has performed virtually as well as the dead-time estimate in this case. One
can remark again that had there been some highly dissimilar curves present,
then this estimate would have differed from the sample average. Following the
advice sometimes given in connection with resistant regression estimates, it
would seem sensible to compute both the ordinary and the resistant forms. If the
two are similar, then there is no difficulty. If the two differ noticeably, then the
situation should be examined in some detail.

Brillinger (1979) proposed the preceding techniques and various others. Bril ­
linger (1981a, b) were based on that lecture and cover some other statistical
problems arising from evoked-response methods. Tukey (1978) also addresses
statistical issues and proposes some procedures.

15. A confirmed (Fourier) inference. Muscle cells are electrochemical
devices. If the chemical acetylcholine is applied at the neuromuscular junction,
measurable voltage fluctuations result. Specifically, acetylcholine release causes
postsynaptic membrane channels to open leading to voltage fluctuations. Katz
and Miledi (1971, 1972) measured voltage fluctuations associated with this
phenomenon and found that the power spectrum could be approximated by the
functional form aj(fJ2 + X2

) . [An example of the fit of this function to such data
and a description of a fitting procedure may be found in Bevan, Kullberg and
Rice (1979).] They proposed the model

Y(t) = Ea(t - om) ,
m

with the Om points of a Poisson process and with aCt) = exp{ - fJt}. This a(·)
function corresponds to the effectiveness of an open channel decaying exponen­
tially and leads to a power spectrum of the indicated form. Katz and Miledi
mentioned that the pulses might actually be rectangular of random duration, but
they preferred to deal with the exponential form. Stevens (1972) proposed the
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also with {Om} Poisson, but now with am(t) = 1 for 0 < t < Tm and am(t) = 0
otherwise. The Tm are independent exponentials of mean 1/f3 and correspond to
the lengths of time that the channels are open. Stevens noted that this model
also led to a power spectrum of the form al(f32 + A2

) . The models were
indistinguishable with the data collected.

The problem was later resolved by improved experimental technique. Neher
and Sakman (1976) developed a technique that allowed the opening and closings
of individual channels to be seen. They found that the channels remained
equally effective and open for time periods of varying lengths. The two proposed
models could be distinguished.

Examples of single-channel data and the corresponding estimated power
spectrum may be found in Lecar (1981). Jackson and Lecar (1979) present results
confirming the exponential duration of the openings.

16. Other topics. Spatial-temporal data are commonly collected by neuro­
scientists. One form is the electroencephalogram recorded by an array of sensors
on the scalp. Figure 19 presented an example of data collected for the olfactory
system of the rabbit. The stimulus was release of the odor ethylacetate. An 8 X 8
array of electrodes was imbedded in the animal. The data, already presented in
Figure 19, give the responses for the sensors at the positions with x-coordinates
2, 4, 6 and 8 and y-coordinates 1, 3, 5 and 7 of Figure 23. One procedure that
Freeman has found helpful for understanding this type of data is the computing
of empirical orthogonal functions; see Freeman (1980). Figure 24 gives an
example. These results are derived by stacking the responses into a matrix X
with rows corresponding to sensor and columns to time, and then computing the
singular value decomposition X = UDV", of that matrix. The U for a particular
component, say the first, are then plotted versus sensor location as in the upper
graph of Figure 23. The V values are similarly plotted versus time and appear in
the lower graph. The results of Figure 23 are based on 64 series, not just the 16 of
Figure 19. The contour plot suggests the presence of a focus of activity. The
time-series component elicited may be seen lurking in the individual responses of
Figure 19. (It may be mentioned that meteorologists have long computed
empirical orthogonal functions for spatial-temporal data and used them in
forecasting; see Lorentz (1956), for example. A number of other references are
given in Jolliffe (1986).]

Childers has also made use of array data in studying the neural system. In
Childers (1977), he estimates the frequency-wavenumber spectrum for responses
evoked by visual stimuli (light flashes) in the human EEG. He was concerned
with estimating the speed and direction of propagating waves. In the paper cited
he first notes an apparent high-velocity wave. After this wave has been "re­
moved," he notes the presence of a pair of waves moving in opposite directions.
His research is directed at developing a diagnostic procedure for various visual
disorders and obtaining insight concerning how the visual system functions.
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FIG. 24. The results of a singular value decomposition of the full set of the data from which the
bursts of Figure 20 were taken. The values graphed are for the first components. The axes in the
upper graph give spatial location.

The decaying cosine model of Section 2 has also found a use in neurophysi­
010gy. In his work with the olfactory system, Freeman (1972, 1975, 1979) found
that the average evoked response could be well fitted by the sum of a few
decaying cosine terms. He developed a model involving spike-to-wave conversion,
involving collections of constant coefficient second-order differential equations,
involving feedforward and feedback and involving wave-to-spike conversion. He
employed nonlinear regression in the time domain to estimate the unknowns. In
one case, involving two cosines, he was led to view the stronger wave as
representing intracortical negative feedback and the weaker as representing a

134



SEISMOLOGY AND NEUROPHYSIOLOGY 47

second feedback loop. Of interest in this type of work is what happens to the
frequencies and the decay rates when the experimental conditions are altered. A
second reference to decaying cosines is Childers and Pao (1972). They consider
the model

¥(t) = Laktexp{ -Pkt}COS(Ykt + 8k) + e(t), t> 0,
k

for visual evoked responses monitored over the occipital region. In particular,
they study the data by complex demodulation.

Brief reference will be made to several other topics. Dumermuth, Huber,
Kleiner and Gasser (1971) estimate the bispectrum of human EEGs. de Weerd
and Kap (1981) discuss the computation of some time-varying quantities.
Marmarelis and Naka (1974) consider the case of biological systems with several
inputs. An extreme case of this occurs when the input is varying in both time
and space. This circumstance is considered in Yasui, Davis and Naka (1979). The
book by Marmarelis and Marmarelis (1978) goes into great detail concerning the
identification of systems that are polynomial and time invariant in the input.
They emphasize the advantages resulting from employing a Gaussian white-noise
input. The dedication of the book is worth mentioning-"To an ambitious new
breed: SYSTEMS PHYSIOLOGISTS".

Another area of research activity has been that of control. The works by
Poggio and Reichardt (1981) and Wehrhahn, Poggio and Bulthoff (1982) may be
noted. They are concerned with data that are three-dimensional trajectories.

17. Discussion. As the examples presented indicate, a broad range of data
types arise in the neurosciences. Furthermore, data are collected at both the
micro and macro level. The procedures developed often have the opportunity to
move on to direct clinical use.

It is particularly interesting to note the evolution of the analysis in the case of
the neuronal signaling analysis as presented in Sections 11 and 13. One can
recognize the stages of (1) (feature) description; (2) correlation/association; (3)
(ad hoc) regression; (4) conceptual model. These stages are usual in many
elementary situations.

The field of neurophysiology has the satisfying aspect that in many cases
controlled laboratory experiments are possible and repeatable. Furthermore,
there are opportunities for the design of experiments. In the field, statistics has
been seen to provide techniques for model formation and validation, for measur­
ing uncertainty in conclusions and for addressing questions of causality. Statisti­
cal techniques have led to insight concerning the underlying physiology. In this
connection it seems important to note the following proviso of my collaborator
J. P. Segundo, however, " .... The maxim of all of the above is that the power of
available mathematics (and of the instrumentation that implements them)
should be used exhaustively, guided by an unflagging biological realism, mis­
trustful and stubborn, and keeping in mind that the ultimate goal is understand­
ing in strictly biological terms." [See Segundo (1984), page 294.]

It seems likely that in the neurosciences, more often than not, notable
advances will come from the carrying out of novel experiments, rather than from
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novel analytic methods. Experiments will be carried out measuring things at new
orders of smallness. More complex stimuli will be invoked. Nonlinear systems
will be the norm. Neural networks will be a major concern. Luckily, for us
statisticians, digital computers have become common in the laboratory and this
seems to be bringing a move toward quantization of other aspects of the work
beyond the simple recording of the data.

18. Update. The analysis of single ion-channel data, briefly referred to in
Section 15, has become a whole industry. Models with several states are now
routinely fitted. References include Coloquhoun and Hawkes (1983), Labarca,
Rice, Fredkin and Montal (1986) and Milne, Edeson and Madsen (1986). Extend­
ing the work of Section 13, Brillinger (1986) presents a number of examples of
the maximum likelihood fitting of a neural model employing corresponding spike
train input and output data. Smith and Chen (1986) study a more complicated
neural model. The chirp signal was propounded as being of substantial impor­
tance in seismic exploration . Some use of it has been made recently in physiologi­
cal studies. In Norcia and Tyler (1985), a lO-sspatial frequency sweep stimulus is
employed and the corresponding visual evoked potential measured. Th. Gasser
and collaborators have now carried out a substantial number of statistical and
substantive analyses of evoked responses. We mention in particular the papers
by Mocks, Tuan and Gasser (1984), Gasser, Mocks, Kohler and de Weerd (1986)
and Gasser, Mocks and Kohler (1986). Finally, we note that Grajski, Breiman,
di Prisco and Freeman (1986) apply modern classification procedures to study
the effects of applying different odors on the olfactory bulb EEGs of rabbits
and that Gevins, Morgan, Bressler, Cutillo, White, Illes, Greer, Doyle and
Zeitlin (1987) relate human performance accuracy to brain electrical patterns
just before a task.

IV. Concluding remarks. In this article we have presented a number of
examples, drawn mainly from our personal experience, showing the use of the
same statistical technique in the rather separate sciences of seismology and
neurophysiology. It now seems appropriate to ask what, if anything, have the
three sciences-statistics, seismology, neurophysiology-gained from each other
as a result of connections even though they are indirect? Having in mind a
broader class of examples than those discussed in this paper, one can say that: (i)
statistics is richer for having been led to develop and study various novel
methods to handle specific problems arising in seismology or neurophysiology;
(ii) both seismology and neurophysiology are the richer for the other's field
having generated a problem for the statistician to abstract sufficiently that the
result's applicability to their field became apparent; (iii) either seismology or
neurophysiology benefit from a statistical formulation because various of their
problems seem necessarily to need to be stated in terms of probabilities (e.g.,
neither neuron firings nor earthquakes seem deterministic) and because these
fields need procedures to validate results and to fit conceptual models. That the
methods of statistics can lead to important insight and understanding in sub­
stantive problems seems agreed.

136



SEISMOLOGY AND NEUROPHYSIOLOGY 49

It may be remarked that the applicability of statistical procedures to these
two substantive fields has further grown in direct consequence of their move to
greater quantification and digital data collection. The data sets analyzed were of
high quality. The fact that the analyses were informative to an extent here bodes
well for the use of such techniques in fields with data of lesser quality. I need to
remark how crucial, in working with the data sets discussed., I have found it to
be to plot the data in its original form. Something special seemed to be learned
in each case from doing so. This is why for the various analyses, I have sought to
provide data plots as parts of the presentation.

The reader will have noted that some of the analyses were time-side and some
were frequency-side. Each domain has its advantages. It seems worth pointing
out specifically that stationarity was not required for some of the frequency-side
procedures. It would seem that most time series and point process situations
would benefit from carrying out simultaneous time-side and frequency-side
analyses.

On review it may be seen that the techniques employed for time-series data
and for point process data in many cases are not that different. Brillinger (1978)
presents some comparative discussion of the techniques for the two cases. Our
presentation is somewhat remiss in the seismological case in not presenting some
worked examples of auto- and cross-intensity estimation. Examples could have
been provided.

It should be apparent that major data management and computational efforts
were required in the derivation of all results presented. I have been impressed by
the way that the neuroscientists could turn to their lab book kept during the
experiments and pull out crucial details, sometimes many years after the experi­
ments had been completed. My analyses also extend over many years now. I
have found it very useful recently to maintain a "Readme" file in the various
computer directories for the data sets, wherein I list what the various programs
do, future wishes concerning the programs and all of the things that I think I
will never forget.

Turning to thoughts concerning developments to come, it seems that the
future will see many of the traditional statistical techniques extended to apply to
datum of more complicated forms-specifically, to curves, moving surfaces, point
clouds and the like. It seems that techniques developed in one field will continue
to be transferred (by statisticians?) to other fields. For example, I expect to see
the results developed by neuroscientists for arrays on a curved surface (the skull)
to be taken up by the seismologists as they need to take specific note of the
Earth's curvature. If I have found anything lacking in our current toolkit of
statistical methods and devices, it is a collection of techniques that suggest what
to do next when a model fails a validation check. Perhaps the future will see such
techniques developed in an organized fashion.
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Part II 
Time Series Papers 



Commentary by Pedro A. Morettin

This volume honors the work of David Brillinger in several areas, but
most not ably in the fields of point processes and of t ime series analysis and
applications. It has been a privilege to me to have been his PhD student at
Berkeley and t hen become a friend for t he past 40 years . It has been qui t e
a journey. David 's work on t ime series has been influenti al to many people,
espec ially for his students(over forty) , many of t hem who pursued careers
in t ime series and relat ed fields. He is well know in Brazil, for his constant
visit s and valuabl e collaboration over the years . His book "T ime Series: Data
Analysis and Theory" became a classic and I was very fortunate to attend
his classes using an earlier draft of the book.

In his assessment of t he works of John W . Tukey, David wrot e: "Anyone
who has been involved with John has indeed been fortunat e. They have
probably remarked upon his rapid domination of t he sit uation at hand,
his extensive knowledge of pertinent physical background, his leaps in un­
t hought of directi ons to concrete procedures, his vocabulary and possibly
even his humor." I could not writ e anything more perfect that applies to
David himself. His works pervaded several areas and disciplines, and some
of them will be discussed in this volume.

I will concentrate on some articles in t ime series analysis, starting from
some seminal works on second order spectra and polyspectra . Some of t he
papers are t he kind of work t hat David likes to writ e on: t hey bring examples
illust rating the interplay between the t heory of t ime ser ies, point processes,
spatial processes and areas of applications, like geophysics, neurophysiology,
sports, physics etc. I had read most of the pap ers, but reading them again
was a wonderful experience and I hop e t his will be t he case for t he readers
of this book.

An Introduction to polyspectra [1965]
I begin with t his pap er , because I t hink it is one of t he most influenti al

papers writ t en by David. The purpose of the work is to derive: a) certain
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mathematical properties of polyspectra ; b) est imates of po lyspectra based
on an observed stretch of a time ser ies; c) certain statistica l properties of
proposed estimates and d) several applications of the res ults obtained .

The term polyspectrum is due to John Tukey. Polyspectra generalizes
spect rum and bispect rum for a single time series and cross-spect ra for a pair
of t ime series. The author discusses why to use cumulants and not moments
in the definition of polyspectra.

A particular class of dis cret e or continuous k-d imensional complex-valued
processes is defined , and for members of this class the polyspectrum is de­
fined as t he Fourier transform of a cumulant of some order , assumed to exist.
Some est imat ion procedures ar e considered (e. g. moment-type est imators
and est imators based on complex demodulation) and asymptotic (complex)
normal distributions are derived for the estimators.

Curiously enough t he paper concludes with a note of pessimism on the
use of polyspectra.

Asymptotic Theory of Estimates of k-t h order Spectra [1967]
This work considers a vector of strict ly stationary processes , all mo­

ments exist ing. Under mixing condit ions given in terms of cumulants , the
k-th order cumulant sp ectral density is defined as the Fourier transform of
the corresponding k-th order cumulant of the process. Estimates for the
cumulant sp ectral densit ies are provided and their properties derived . The
proposed est imates ar e weighted averages of periodograms and asymptotic
unbiasedness , joint normality and covariance structure are obtained . Some
remarks on aliasing and previous works are made.

Asymptotic Properties of Spectral Estimates of Second Order
[1969]

This article considers an r -variate strict ly stationary, zero mean, stochas­
ti c process, satisfying some mixing condit ion. From t he finite Fourier trans­
form of T observations of the process, t he periodogram and other estimates
are proposed , namely estimates of t he spectral measure, the autocovariance
function and spectral density.

T he asymptotic unb iased ness an d asymptotic distribut ions of t he esti­
mates are derived . Under additional conditions, t he asymptotic distribution
of the periodogram is complex Wishart , for t he spect ral measure estimate is
multivariate normal, the same for the autocovariance est imates and sp ectral
density est imates. Some departures from the ass umptions ar e commented
on.
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Fourier Analysis of Stationary Processes [1974]
This is an invited review paper on Fourier analysis (FA) of station­

ary processes written for the Proceedings of the IEEE. It begins with a
description of important procedures in FA, including the estimation of the
spectrum, fitting of parametric models and identification of linear systems.

The topics surveyed include: stationary real-valued discrete time series ,
the finite Fourier transform, the estimation of the spectrum, parametric
models, linear models, vector-valued continuous spatial series, stationary
point processes and stationary random Schwartz distributions.

Enphasis is on the large sample properties of est imat ors. Final remarks
are made on higher order spectra and nonlinear systems.

The Digital Rainbow: Some History and Applications of N umeri­
cal Spectrum Analysis [1993]

This paper focus on the spectrum of a phenomenon. This is viewed as a
display of the intensity of the phenomenon versus frequency. Some historical
development of the field of spectrum analysis is given, with contributions of
Michelson (1892) , Schuster (1898) , Einstein (1914), Fisher (1929) , Bartlet
(1950), Tukey (1958) and Yaglom (1987).

Some applications are given on : a) the free oscillations of the Earth,
with an example of the 1960 Chilean earthquake; b) seismic surface waves
(earthquake waves whose energy is trapped near the Earth's surface) and c)
nuclear magnetic resonance (NMR) spectroscopy.

The paper concludes with some discussion on future prospects.

An Investigation of the Second-and Higher-order Spectra of Music
[1998]

In this work the authors describe the two basic representations of music
(signal and score representations), review some previous investigations and
then present results of modelling second and higher order spectra in order to
assess Gaussianity and linearity. They also discuss time series and marked
point process representations. Four models for the sp ectra are considered
(one of them being the 1/ f noise model) and these are fitted to some scores ,
in particular the Bach's Coffee Cantata. Another feature is the fit of 1/ f
model to 12 music scores, ranging from Baroque to Latin music , concluding
that it fits well.
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Some Examples of Empirical Fourier Analysis in Scientific Prob­
lems [1999]

This is another paper describing some interesting applications of Fourier
analysis in real problems. The article starts by stating the importance of
Fourier analysis and them reviews some physical examples of the methodol­
ogy. It continues giving some analytical background on Fourier and wavelet
analysis and moves to stationary processes, central limit theorems and shrink­
ing. Finally gives four examples, in electron microscopy, seismic surface
waves , nuclear magnetic resonance spectroscopy and a wavelet analysis of
microtubule movement (linear polymers basic to cell motility). The paper
is concluded with some open problems.

Some Examples of Random Process Environmental Data Analysis
[2000]

This paper presents examples in the environmental scienc es. The pro­
cesses analyzed range from point and marked point processes, to time series ,
spatial-temporal processes and particle processes. Preliminary some basic
concepts and methods on random processes and inference are set down.

For the point process case an example from space science is given. The
data consists of counts of orbiting debris , that may cause problems for space
crafts . Statistics as the average periodogram, autointensity and coherence
estimates are employed. Interest lie in the type of point process that bet­
ter represent the data, the size of the particles (marks) and questions of
independence of marks and times, and of altitudes and sizes.

In the case of a time series , the example is from Public Health. The data
for analysis consists of average number of daily births in Toronto in 1986.
The interest is in high level of cesarean deliveries. The counts are modelled
by a Poisson with trending mean.

For spatio-temporal processes it is given an example from Neuroscience,
concerning the olfactory system, data collected of the response of rabbits
sniffing an odor. A random effects model is proposed followed by Fourier
transformation.

Finally, for particle processes (path or trajectory of an object moving
along aline) , an example from Ecology is given, namely the migration path
of an elephant seal. The proposed model is a nonlinear state space model.

The paper concludes with a discussion of other types of processes, data
and techniques.
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AN INTRODUCTION TO POLYSPECTRA1

By DAVIn R. BRILLINGER

The London School of Economics and Political Science

1. Introduction and summary. The subject of this paper is the higher-order
spectra or polyspectra of multivariate stationary time series. The intent is to
derive (i) certain mathematical properties of polyspectra, (ii) estimates of
polyspectra based on an observed stretch of time series, (iii) certain statistical
properties of the proposed estimates and (iv) several applications of the results
obtained.

As might be expected, in lower order eases the polyspectrum reduces to spectra
already considered. If one is considering a single time series, the first order poly­
spectrum is the usual power spectrum considered in [2J, [14], [22], while the second
order polyspectrum is the bispectrum considered in [12], [23], [28]. Also, if one
is considering a pair of time series the first order polyspectrum is the cross-spec­
trum considered in [6], [10], [15].

For the case of a single time series the idea of a higher-order spectrum occurs
in [3]. The idea has since been developed to a higher level of algebraic and analytic
detail in [24]. Also in [24] the notion of considering a spectral representation for
a cumulant rather than for a product moment occurs and is acknowledged to
be due to Kolmogorov. Another related early paper is [18].

The present paper generalizes the definitions of these papers in the sense that
k-dimensional time series are considered. Another contribution is a theorem
indicating that for a broad class of processes one is wise to restrict consideration
to cumulants rather than product moments .

Finally it should be noted that the term polyspectrum is due to J . W. Tukey.
I have perhaps used the term in a more restricted sense than he would wish in
that I have reserved it for the Fourier transform of a cumulant (at the expense
of other functions of moments).

2. General motivation. In a heuristic sense the harmonic analysis of a time
series X(t) may be looked upon as the consideration of a representation of the
series in the form,

(2.1 )

This consideration gains some validity from a theorem of Cramer's [9] to the
effect that any covariance stationary time series X (t) with mean 0, has a repre­
sentation in the form

Received 13 July 1964; revised 2 April 1965.
1 This research was commenced when the author had a joint appointment at the Bell

Telephone Laboratories and Princeton University , At Princeton the research received the
support of National Science Foundation Grant NSF-GS30 and Army Research Office
Contract DA 36-034-0RD-2297.
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(2.2)

DAVID R. BRILLINGER

X(t) = f eiw t dZ(w)

where Z (w) is a sto chastic function.
A further aspect of harmonic analysis is that one often acts as if the various

terms, Rk exp [i( wkt + cPk )], appearing in (2.1) are independent of one another.
This simplifying thought is possibly instigated by the knowledge that Z (tv )
appearing in (2.2) is such that

(2.3) E{dZ(w) dZ*(w')} = 0,
,

w ~ w,

implying independence in the real-valued Gaussian case. Or perhaps it is due to
the fact that one often imagines a series as being generated by a number of linear
time invariant operations on a Wiener process and one knows that such operations
do not mix up frequencies. (See [21], p. 83 for example.)

In practice however the frequency components of a time series do not always
appear to be independent. In a study of ocean wave records, [12], Hasselmann,
Munk and MacDonald have found empirically various wave components related
to one another. In a study of the effect of introducing a signal into the eye [31]
Van der Tweel has found that the responses at 5 ci s and 10 cis are related to one
another. Many economists have noted a seasonal effect in economic time series of
persistent non-cosinusoidal shape. This finding perhaps indicates that the various
harmonics of 1 cycle/year are in some form of fixed relation with one another.

A simple form of tying together of frequency components occurs if a number of
independent frequency components, R k exp [i(Wkt + cPk)], instead of simply
adding together to produce a series X(t), as in (2.1), add together and also
multiply together in pairs to produce the series

(2.4) L s, exp [i(wkt + cPk)]

+ L A ik exp (1'aik)RiRk exp [i(wi + Wk) + i(cPi + cPk)]'

That is, we are moving away from an additive model to a model containing
second order product interactions.

The reader will note that, in the expression (2.4), the correlation between the
product of the components at frequencies Wi and Wk with the component at fre­
quency Wi + Wk is one, provided the sum of no other pair of frequencies present is
Wi + ui; . This observation will later lead us directly to the polyspectrum.

Continuing to consider (2.4), a simple means of producing a time series con­
taining terms such as those in (2.4) is to take a series X(t) with a simple har­
monic analysis and then to form the series

(2.5) Yet) = j[X(t)]

where j is a non-linear function. In a situation in which one is given the series
Y(t), one would like to find the functionjin order to be able to remove the non­
additivity that it has introduced. A coefficient will be proposed for this purpose
in Section 6.

As a final point, people often introduce the power spectrum by noting the ease
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with which linear time invariant operations may be described in terms of it. If
one wishes to describe easily the effect of a multilinear or polynomial (in the
sense of [20]) operation, one finds oneself led to higher order spectra. Tukey in
[30] has commenced the development of a calculus relating polynomial operations
to higher order spectra.

3. Definitions. Various classes of stochastic processes have been introduced
in order to deal with higher order spectral moments. Specifically the classes
T(k), s», and <t>(k) defined below have been discussed in [24]. However we shall
require a new class. Before defining this new class '!'(k), let us present the defi­
nitions of r": s», and <t>(k) as they will also be needed in the paper.

Let U(t) be a real measurable random process, - 00 < t < 00.

Then
T(k) denotes the class of processes U(t) for which

(3.1) E IU(t)!k ~ c, < 00;

S(k) denotes the class of processes U(t) belonging to T(k) and such that for
1 ~ j ~ k, - 00 < u < 00,

(3 .2) EU(tl) ... U(t;) = EU(tl + u) ... U(t; + u);

<t>(k) denotes the class of processes U(t) belonging to T (k) and such that for
1 ~ j ~ k, there exist functions M<i)(WI, ... , Wj) of bounded variation such
that

(3.3) EU(tl)··· U(tJ ) = I ... I exp [i(Wlt l + ... +Wjt; ) ] dM<i)(Wl, '" , Wi)'

Before defining '!'(k) the following notation will be required:
(i) (VI, •.• , vJ ) denotes a grouping of the integers 1, 2, ... , k into j groups

VI , ••• , VJ ;

(ii) tv = (th
l

, ••• , th n ) when V corresponds to the grouping (hI, " . , hn ) .

For example if V = (1,8, 9) then tv = (t l, ts , t9 ) ;

(iii) {Xl(t), ... , Xk(t)} stands for a k-dimensional complex-valued stochastic
process;

(iv ) 1nl...k(tl, "', lk) denotes the kth order product moment EXl(tt)
... Xk(tk);

(v) cl..Atl, ... ,tk ) denotes the kth order cumulant

(3.4) L (-1)P-\p - l)!mvl ( tvJ "'1nv p ( tv p )

where the summation extends over all groupings of the integers 1, ... , k.
'!'(k ) is now defined as the class of discrete or continuous time k-dimensional

complex-valued processes fXl(t), , Xk(t) I such that
(a) for 1 ~ j ~ k and 1 ~ hs , , h; ~ k, mhl ...hj(tl, ... , t;) exists,
(b) for 1 ~ j ~ k and - 00 < u < 00 in the continuous case or u = 0, ±1,

±2, .. . in the discrete case

mhl ...hj(lt + u, .,. , tj + u) = mhl ...hj(tl, ... , tj),
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(c) for 1 ~ j ~ k there exist measures O(WI + ... + Wj)Ch1 ...hj(WI, .•. ,Wj)
dWI ... dWj absolutely continuous with respect to Lebesgue measure on the
plane WI + '" + io, = 0 such that Chl ...h/tl, •.. , ti) equals

(3.5) f··· f exp [i(Wllt + ... + w}tj)]

'O(WI + ... + Wj)Ch1 ...hj(WI, ... , Wj) dWI .•. dWj.

(Throughout the paper o(w) denotes the Dirac delta function. The reader may
easily see that the condition (b) above implies that the measure must in fact
have support on the plane WI + ... + ui, = 0.)

. (k )
If a process {X1(t), ... , Xk(t)} belongs to 'It then C1 ...k(Wl, ••• , Wk) IS

defined to be the (k - 1) th order polyspectrum of the process.
A number of comments may be made about 'It(k).

(i) In the integrals above, the range of the arguments W is -11" ~ W ~ 1l" in
the discrete case and - 00 < W < 00 in the continuous case.

(ii) If the series involved are real

(3.6)

(iii) If the series are identical, C1 ...k(WI, ... , Wk) is symmetric in its argu­
ments.

(iv) If a process {X1(t), ... , Xk(t)} satisfies (a) and (b) above and for ljJ

equal both c and C,

f ... f IljJh1·· .hj(tl, •.• , ti-l, 0)1 dtl ..• dti-l < 00

in the continuous case, or

L: ... L: /ljJhj.: .hj(tl , ... , tj-l, 0)1 < 00

in the discrete case, then the process belongs to 'It(k). In this case the Fourier rela­
tion (3.5) may in fact be inverted;

(v) C1 ...k(Wl, ... ,Wk) being a complex number, for some purposes it may be
useful to express it in terms of an amplitude and phase;

(vi) If {X1(t), .~. , Xk(t)} is in fact {X(t), ... , X(t)}, i.e. all of the com­
ponents are identical, and if X (t) is real then 'It(k) reduces to the class ~ (k) intro­
duced by Kolmogorov (see [24].)

This section will be concluded with a number of examples of polyspectra.
EXAMPLE 1. Suppose {X(t), X ( t)} denotes a two dimensional real process with

identical components, then the first order polyspectrum Cu( WI , W2) reduces to
the power spectrum of X ( t) .

EXAMPLE 2. Suppose {X1(t), X 2(t)} denotes a two dimensional real process,
then the first order polyspectrum C12( WI, W2) reduces to the cross-spectrum of the
two series X1(t) and X 2( t ) .

EXAMPLE 3. Suppose X(t) = f get - u) dY(u) where f Ig(u)1 du < 00 and
Y (u) is a process with stationary and independent increments. Denote the jth
cumulant of Y(l) - YeO) by K, (it being assumed to exist). The (j - l)th
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order polyspectrum of X(t) (really of (X(t), ... , X(t)}) is given by

(3.7) K/l(wl) G(Wi)

where G(w) = f e-iwUg(u) du and WI + + ui, = O.
This result may be demonstrated by making use of the characteristic functional

of the process as derived in [1], p. 148 for example.
EXAMPLE 4. Suppose

(3.8) X(t) = f aCt - u) dW(u) + f f bet - u, t - v) dW(u) dW(v)

where Wet) is a Wiener process, a(u) and b(u, v) have Fourier transforms A(w),
B(WI, W2) respectively and b(u, v) is assumed symmetric in u and v for con­
venience. In this case the second order polyspectrum or bispectrum of X(t) is
given by,

2fA(Wl)A(W2)B( -WI, -W2) + A(W2)A(wa)B( -W2, -Wa)

(3.9) + A(Wa)A(WI)B( -Wa, -WI)]

+ 8 f Bt io, WI - W)B(W2 + 'W, -w)B(w - WI, -w - W2) dw

where the bar denotes the mean of all permutations of (WI, W2 , wa).
This result may be demonstrated by making use of the formula for the kth

order product moment of a Wiener process (see [32]).
EXAMPLE 5. Suppose

XI(t) = f a(t - u) dW1(u ),

(3.10) X 2( t) = f bet - u) dW2(u),

Xa(t) = f f e(t - u, t - v) dWI( u) dW2(v),

where WI(t) and W 2( t) are independent Wiener processes and where a(u), b(u)
and c(u, v) have Fourier transforms A(w), B(w) and C(WI, W2) respectively. In
this case the second order polyspectrum of {XI(t), X 2(t), Xa(t)} is given by,

(3.11)

If in fact W 1( t) and W2(t ) are not independent, but are completely dependent,
WI(t) = W 2(t), then the polyspectrum is given by,

(3.12)

or if c(u, v) is symmetric inu and v by,

(3.13)

4. Estimation. In this section it will be supposed that an observed stretch
{XI(t), ... ,Xk(t); 0 ~ t ~ Tl of a real discrete time series belonging to W(k ),
k ~ 2, is available. (The corresponding procedures for a stretch of a continuous
time series are immediately apparent.) Three distinct techniques for the esti­
mation of polyspeetra will be proposed.
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The first technique follows directly from the definition (3.5) which indicates
that the polyspectrum C1...k(WI , ... , Wk), L: Wj = 0, is the (k - 1)-dimensional
Fourier transform of Cl ...k(tl, , tk-l, 0). The technique is the following; esti -
mate the product moment ml k(h, ... , tk- 1 , 0), and all necessary lower order
product moments by formulae of the form,

(4.1) 1Y/.i ...k( t1, · · · , tk-l, 0) = T-1 L::=o X1(t1 + t) •.. X k-1(tk-1+ t )Xk(t)

where s = T - max {tj}, and for (t1, .. . , tk-l) in a set I to be specified later.
The joint cumulant Cl ...k(t1, . .. , tk-1, 0) may now be estimated by substituting
in (3.4), i.e. by forming

(4.2) Cl ...k( tl , · · · , tk-l, 0) = L: (_1y-l(p - 1)! mVl(tvl) ... mv/tvp)

where the summation extends over all grouping of the integers 1, ... , k and
tk = O. (Some workers may wish to divide by T - s + 1 rather than T in the
expression (4.1). For a discussion of this point in the first order case see [29].
Also some workers may perhaps wish to substitute into the formulas for Fisher's
k-statistics. For a definition of these latter see [16].) The estimate (4.2) has
one undesirable property, namely it is not invariant under changes Xj(t) ~
X j(t) + hj , whereas the corresponding population cumulant is. This defect may
be remedied by first subtracting the sample means from the series before calcu­
lating the estimate. In this case the summation in (3.4) extends only over group­
ings containing no first-order elements.

From (3.5) we see that Cl k( tc, ... , tk- 1 , 0) is estimating

(4.3) f··· f exp [i(W1tl + + Wk- ltk- l ) ]C1...k(WI , . .. , wd dWl ... clWk_l

where L: Wj = O. That is it is estimating the coefficient of a term in the Fourier
series expansion of C1 ...k(Wl, . .. ,Wk), L: ui , = O. The sum of a number of such
terms may be used to approximate the function itself; however classical Fourier
analysis indicates that the use of a summability technique may well improve the
approximation (see [13] for example). This leads one to consider estimates of the
form,

(4.4) (1 /211" )k-l L:l A~~')"lk_l exp [-i(Wlt1 + ... + Wk-1tk-d]

.Cl ...k(tl, . . . , tk-l , 0)

where the A~~'>"lk_l are the convergence factors of a summability method.
Convergence factors that seem appropriate for this situation include;
(a) a product of one dimensional convergence factors, i.e.

(4 ) ,,(n ) ,, (n ) ,, (n)
.5 "Il· .. tk_l = "11 ... "Ik_l

where for example (Fejer summability)

(4.6) A~n) = 1 - Itlln,
= 0 otherwise
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or (Tukey summability)

(4.7) A~n) = .54 + .46 cos lI"tjn,

= 0 otherwise;

o ~ ItI ~ n

o ~ ItI ~ nA~:.>.. tk_l = (1 - ItI2j n2 )m,

= 0 otherwise

(b) a genuine multidimensional factor such as (Bochner-Riess summability,
see [4])

(4.8)

where Itl2 = t1
2 + ... + tLl .

This last factor has the advantage that the convergence of the approximating
series at a specified point depends only on the behaviour of the function in the
neighborhood of the point.

We see that the set I mentioned earlier is in fact determined by the non-zero
values of the convergence factors.

Before describing the second estimation technique, let us introduce another
means of looking at the polyspectrum. Because '!'(k ) C '!'(2), the series (Xj ( t)} has
a Cramer representation

(4.9)

where Zj(w ) is a stochastic function.
In terms of this representation the cumulant Cl .. .k ( t l , • •• , t k) may be written

(4.10) f··· f exp [i(Wltl + ... + Wktk )]e (dZ l(Wl ), ,dZk(Wk»)

where e(Xl, .. , , Xk) denotes the joint cumulant of Xl , , Xk. (This results
from the fact that the joint cumulant of Yl , . . . , Ym where Yk = L aikkXikk is
given by

(4.11) ~ ... ~a·l···a· ID(X'l ... z. )L.,; L-J '1 l.mmv '1' ,1.mm .

In fact (4.11) would appear to be one of the main reasons why cumulants prove
so useful. It states that one can write down immediately the joint cumulant of a
number of linear combinations of independent or dependent random variables,
in terms of their joint cumulants.)

Comparing (3.5) and (4.10) and assuming that the Fourier transform is
unique almost everywhere,

(4.12) (l(Wl + ... + Wk )Cl...k(Wl, .. , , Wk) dWl ... dWk

= e(dZl(Wl), ... ,dZk(Wk)) (almost everywhere).

This indicates that with realizations of the spectral functions dZ;(w;) and a
proper normalization one can estimate the polyspectrum.

After this introduction, it can be stated that the second proposed technique of
estimating polyspectra is based upon obtaining realizations of the spectral func-
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tions by means of the procedure of complex demodulation ([8], [29]). Given an
observed stretch of series IXj(t), 0 ~ t ~ Tl the steps are as follows:

(i) form Xj(t) cos wot and Xj(t) sin wot, 0 ~ t ~ T,
(ii) form the series,

(4.13) Uj(t, wo) = (2k + 1)-1 :L:=-k Ai~.Xj(S) cos WoS,

(4.14) ut(t, wo) = (2k + 1)-1 :L~--k A~~.Xj(S) sin wss,

k ~ t ~ T - k, where for example Aik) is given by (4.6) or (4.7). AZj(Wj) may
now be approximated by Uj(t, Wj) + iUt (t, Wj).

(iii) C,...k(W1, "', 'Wk), :L Wi = 0, is now estimated by forming

(4.15)

the summation extending over all groupings of 1, 2, . .. , k and mv is given by,

(4.16) r: :Li':-kk {Uh1(t, Wh 1) + iUf1(t, Whl)} ... {Uhp(t, Whp) + iUfp(t, Whp)I
where v = (h l , •.. , hp ) .

The final technique proposed for the estimation of a polyspectrum is based
upon the fact that the expression (4.12) is also equal to

(4.17) e(eiw1t dZl(Wl), ... ,eiwkt dZk(Wk».

The polyspectrum can consequently be estimated by obtaining realizations of the
frequency components eiWjtAZj(Wj). These realizations may be obtained by de­
riving estimates of Xj(t, wo), the component of frequency Wo in the series Xj(t)
and xt(t, wo) the corresponding Hilbert transform (see [8]). A useful technique
for obtaining Xj(t, wo) and xt(t, wo) is described below:

eiWjtAZj(wj) may be estimated by Xj(t, Wi) + iXt(t, Wj).

C,...k(Wl, .. . , Wk), :L Wj = 0, may be estimated by forming the expression
(4.15) where U and UH in (4.16) are replaced by X and X H respectively.

The promised technique for obtaining X j( t, wo) and xt(t, wo) evolves from a
procedure suggested in [11], pp. 77-78. Define

(4.18) am(t) = N-1
:L~=-NX(t + s) cos7rms/N, m = 0, 1,, ", N ,

(4.19) bm(t) = N-1 :L~=-N X(t + s) sin 7rms/N, m = 1, .. . , N - 1,
where Wo = 7rm/N . The advantage of this definition is that the am(t), bm(t) may
be generated by recursion,

(4 .20) am(t + 1) = am(t) cos 7rm/N + bm(t) sin 7rm/N

+ [( -1)m/N][X(N + 1 + t) - X( -N + t)],

(4.21) bm(t + 1) = -am(t) sin nmfN + bm(t) cos mnfN,

Use of these recursion relations greatly decreases the number of arithmetical
operations involved.
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The proposed estimates of X(t, wo) and XH(t, wo) are now,
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(4.22)

(4.23)

.23am_l(t) + .54am ( t) + .23am+l(t),

.23bm _ 1(t) + .54bm( t) + .23bm+1(t),

respectively. (The coefficients .23 and .54 used here are derived from Tukey's
weights.)

For later reference it is noted here that in terms of the spectral representation
am(t, wo) + ibm(t, wo) may be written,

(4.24) f exp (iwt + i!O) [sin NOjN sin !O] dZ(w)

where 0 = w + wo. This means that X(t, wo) + tx" (i, wo) equals

(4.25 ) J eiW1Q(w + wo) dZ(w)

with an elementary function Q(w).
The final two estimation techniques proposed above have several advantages

over the first. They are easily adapted to obtain running estimates of the poly­
spectrum and so the presence of nonstationarities may be investigated. Also once
an initial effort has been made to obtain the series XCi, wo) + iXH(t, wo) or
Vet, wo) + ar«, wo), they may be put to a variety of uses with few additional
calculations; for example polyspectra of various orders, involving various series
may be calculated. These series should have to be calculated only once in the
history of a series, provided enough foresight is shown in the bandwidths of the
filters employed. The series U + iVH has a further advantage; typically it is
fairly smooth so not every value need necessarily be retained.

5. Some statistical properties of the proposed estimates. The discussion in
this section will be restricted to the discrete case; however the continuous case
follows in an identical manner, sums in the time domain being replaced by
integrals, and integrals in the frequency domain having their range increased
from -7T', 7T' to - 00, 00.

Suppose a stretch of a time series {X1(t), ... Xk(t); - T' ~ t ~ T'I is avail­
able. When the second and third estimates of Section 4 are examined in detail for
this case, it is seen that they have the form,

(5.1) C1 k = L (_l)P-l(p - 1)!nv 1 ••• nv p

where when v = (jl, ,jm),

(5.2)

with

(5.3)

for (complex valued) functions g,(t) related to the filters employed and where
T' > T > O.

We will restrict consideration to estimates of this form throughout this section.
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The gj(t) appearing in (5.3) will be said to be absolutely summable if they are
such that

(5.4)

Also if the time series {XI(t), ... , Xk(t)} is such that for joint cumulants of all
orders and all sets of subscripts (iI, , im ) ,

(5.5) Lt2 ... Ltm /ci1 im(0, t2, ... ,tm) 1 < 00.

Then the series is said to satisfy Condition A.
Expressions will be required for the joint cumulants of a number of non­

elementary random variables. Before presenting these expressions however, let us
introduce some terminology of (17].

Consider the two-way table

(5.6)
(1, 1) (1, k l )

(j, 1) (j, k j )

and a partition PI U P 2 U •• • U Ps. of its elements. We shall say that the sets P/
and P i 2 of the partition hook if there exist (il ,jl) E P i1and (i2 ,j2) E Pi2 such that
i l = i«.We shall say that the sets P i' and Pi" communicate if there exists a sequence
of sets P i 1 = P i' , P i2 , ••• , Pi, = Pi" such that P i j and P i j +1 hook for eachj. A
partition is said to be indecomposable if and only if all its sets communicate.

If the rows of table (5.6) are denoted by R I , ••• , Ii, then {PI, ... , Pm} is
indecomposable if and only if there exist no sets P i l , •.. , P c, (r < m) and rows
R· . .. R· (s < J') with11 , 'J.
(5.7)

The indecomposable partitions correspond to the arrays of (16], Rule 3, p. 283,
when the rule is extended to the higher dimensional case.

LEMMA 5.1. Consider a (not necessarily rectangular) array Ilxmnll of random
variables Xmn . Consider the j random variables

(5.8) IIkmYm = n-l Xmn ·

The joint jth order cumulant e(Yl, ... , Yi) is given by

(5.9)

where ev = e(xa 1 , ••• , xam) whenv = (aI, ... , am), (the a's are pairs of integers
selected from table (5.6)), and the summation in (5.9) extends over all the inde­
composable partitions of (5.6).

PROOF. This result follows immediately from a theorem of (17].
LEMMA 5.2. Consider series Zl(t), ... , Zk(t) of the form

(5.10) Zj(t) = L hj(t - u)Xj(u)

with hj(t) complex-valued, bounded2 and absolutely summable. Suppose that the

2 The boundness follows from the absolute summability in fact.
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series {XI(t) , ... , X k(t )} satisfies Condition A and let (VI , ... , Vp) denote an
indecomposable partition of table (5.6) and f v,(sv,), (SI = 0 ), the joint cumulant of
elements selectedfrom the table

(5.11)

ZI(O) . . . Zk(O )

ZI(S2) .. , Zk(S2)

(5.14)

ZI (Sj) ... Zk(Sj )

in accordance with Vi . Under these conditions

L:2=-00 .. . L ::=-oo If"l(sv.) ... f vp(s vp )I < 00.

PROOF. If V = {(iI, jl), ••• , ( im, jm)}, define fi,, (tv) as

(5.12) hh(til.h) ... hjm(tim,jm)'

Now L S2 ... L sifv l(SVl) ... fvp(svp)

(5.13 ) = LtIl ... Ltik L S2 ... LSi i; (SVI - tv1;

... livp(s., - tvp) C"l( tv1) ... CVp(tvp)

Luv • •• L uv L tl'" LIp LS2 ... L Si !i"l (SVl - U"l - tl )
1 p

... !ivp(Svp - UVp - tp)C"l(U"l ) ... cVp( uvp),

where ti is one of the arguments of tv, and U'" = t", - t i • (We are here taking
advantage of the stat ionarity of the process. ) Now in the arguments of the h's
there occur a variety of s, - tm • Since the partition is indecomposable, there exist
p + j - 1 of these such that the relationship

(5. 15) S in - tm n = an,

n = 1, ... , p + j - 1 is non-singular.
Let us substitute the a's into (5 .14 ) retaining p + j - 1 h's with arguments

of the form am - U n and note that the remaining h's are bounded. Thus the
absolute value of (5.13 ) is

(5. 16) s M L u• . .. Luv IC"l(U"l) ... CVp(Uvp)!
1 p

.L al .. . L ap+i-l Ih(al - u 11lJ '" h(ap-H-I - UmP+j _l )1.

That (5 .16) is bounded now follows from the discrete analog of Theorem 33 of
[5]. The interchanges of the various summations in this lemma may be justified
by Fubini's theorem.

Define aT to be

(5 .17) (2T + 1) -1 L'::T YI (t ) ... Y k(t)

- Lp>l II}'=1 L '" L gVj( -tv) C./t"i )·

THEOREM 5.1. Consider the real-valued random variable aaT + a*ar* where the
gj(t) are bounded' and absolutely summable and the series {XI(t), ... , X k(t)}

3 The boundness follows from the absolute summability in fact.
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(5.19)

satisfies Condition A . Under these conditions the jth cumulant of (aaT + a*aT*) .
(2T + 1)1-;-1 approaches

(5.18) L" L, LS2 ... Llj a'i '" a'j e;(S"l) ... d"p( s"p)

where E = (El, ••• , Ej) ranges over Ei = "blank" or "*", v ranges over the indecom ­
posable partitions (VI, ... , vp ) of the table

(1,1) (1, k)

(j, 1) (j, k)

and d".(s",) denotes the joint cumulant of elements selected from the table

Yl<I(O) . .. y k<l(O)

(5.20)

in accordance with Vi •

PROOF. Consider the case j = 1 first.

(5.21) el(aaT + a*aT*) = E(aaT + a*aT*)

= aEaT + a*(EaT)*

where

(5.22) EaT = Ltl ..• Llk gl( -tl) ... gk(-tk)Cl...k(tl, "', tk),

giving the stated result. Next, if j > 1, using the result of Lemma 5.1
ei(aaT + a*aT*) equals

(5.23) (2T + l)-;L'::T ., . L'::TL:"L:< a'l .. . a'j dV1(tVJ ... dVp(tvp)'

Taking advantage of the stationarity of the series involved, (5.23) may be
written

(5.24) (2T + 1)-;L:vL:,L::2=-OO . .. L:j=-ooL~I=-<t>a'l ... a'j dvl(svJ

.. . dvp(svp)ep(tdT)epr(tl + s2)ITj '" ep[(tl + si)ITj

where ep(x) = 1 for Ixl ~ 1 and = 0 otherwise, and where s; = is >: tl. In turn
(5.24) equals

(5.25) (2T + 1)-;+1 L:vL:,L:82 ... LSj a<t ... a'j dV1(SVI)

... dVp(SVp)4!T(S2IT , . . . , SilT)

where 4!T(S2/T, ... , SilT) is given by

(5.26) (2T + I)-IL, ep(tIT)ep[(t + s2)/Tj . . . ep[(t + sJ)IT] .

(5.26) may be seen to be measurable, uniformly bounded in T and convergent
to 1. Taking advantage of the absolute summability result of Lemma 5.2,
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Lebesgue's bounded convergence theorem may be applied and the stated result
seen to be true.

COROLLARY 5.1.1. Under the assumptions of the theorem, aT is asymptotically
complex Gaussian with mean (5.22) and variance covariance matrix

(5.27)

where

(5.28) rn = l:L~L.L. d~l(S~l) dvp(s~p),

(5 .29) r12 = (l/4i) L vL. [d~l(S~l) dvp(s~p) - d:1(svJ . .. d:p(s~p)],

(5.30) r22 = l:LVL:fL:.d~1(SV1) dvp(S~p)exflexf\

with ex = I/i in (5.30). In (5.28), (5.30) E = (EI, E2) extends over Ei = "blank"
or "*". In (5.28), (5.29), (5.30), v extendsover all indecomposable partitions selected
from the table

(5.31) (1, 1)

(2,1)

(1, k)

(2, k) .

In (5.28 ), (5.30) d~i(SV,) denotes the joint cumulant of elements selected from the
table

(5.32) y1fl(0) YA;f1 (0)

Y1
f2(S) YA;f 2(S)

in accordance with v,. In (5.29) d~i (Stl.) denotes the joint cumulant of elements
selected from the table

(5.33) Y1(0) Yk(O)

Y1(s) Yk(s)

in accordance with Vi •

(As in the case of this corollary table (5.31) has but two rows, v extends over
partitions such that at least one set of the partition has an element from both
row 1 and row 2.)

This corollary results from the fact that the cumulants of order > 2 of
(2T + 1 )laT tend to O.

Let

(5.34)

(5.35)

bT = (2T + 1)-1 L:~T Y i 1(t) Yi,(t),

CT = (2T + l)-IL:~T Yh(t) Yj,(t).

COROLLARY 5.1.2. Under the assumptions of the theorem, bT and CT are asymp­
totically joint complex Gaussian.

This result may be demonstrated by considering the joint cumulants of bT
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and CT. The result obviously extends to the case of more than two estimates as
well.

COROLLARY 5.1.3. Under the conditions of the theorem

(5.36) (2T + 1)-lL':T Yj(t)

is asymptotically complex Gaussian for all j.
LEMMA 5.3. The estimate C1 ...k given in (5.1) may be written in the form

l,",T '"' ~ ~(5.37) (2T + 1)- LJ-T Y1(t) ... Yk(t) - LJp>l Cv ! • • • CVp '

PROOF. C1••• k and 11, (as defined in (5.2)) are actually the cumulant and mo­
ments of the random variable taking on the values

(5.38) IY1(t), ... , Yk(t)} , -T ~ t ~ T,

with probability (2T + 1)-1. Applying the moment-cumulantrelation inverse to
(3.4) to the variable (5.38) yields

(5.39)

where the summation extends over all partitions of the integers 1, 2, ... , k.
The stated result is now evident.

THEOREM 5.2. Consider the estimate C1. . .k given at (5.1) where the gj(t) are
boundecf and absolutely summable and where the series {X1(t), "', Xk(t) I
satisfies Condition A. C1•• .k is asymptotically complex Gaussian with mean (5 .22)
and variance-covariance matrix (5.27).

PROOF. Corollary 5.1.3 indicates that the stated result is true for k = 1.
Lemma 5.4 yields the representation (5.37). We will use this representation to

prove the stated result by means of induction. Suppose that the result is true for
K ~ k - 1; therefore the c. appearing on the right hand side of (5.37) are
asymptotically normal. Now on consideration of (2T + 1) iC.. ! ••• C"p, and
the rate at which the c, are tending to asymptotic normality, one sees that

(5.40) C,,!··· c., = II}'=l L ... L g"j( -t"i)CV/tVj) + op(2T + 1)-t.

Thus the asymptotic distribution of CI" ' k is the same as that of

(2T + 1)-1 L':T Y1(t) ... Yk(t) - Lp>l II}'=l
(5.41)

The distribution of (5.41) was derived in Theorem 5.1.
COROLLARY 5.2.1. Consider a pair of estimates CV! , C"2 of lower order poly­

spectra. Under the conditions of the theorem these estimates have asymptotically a
joint complex Gaussian distribution.

THEOREM 5.3. In the frequency domain expressions (5.22), (5.28), (5.29),
(5 .30) take the form

4 The boundness follows from the absolute summability in fact.
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(5.42) f':" ,··· f':" O(U'1 + .. . + Wk)GI(WI)

... Gk(Wk)CI...k(WI, ••• , Wk) dWI '" dWk ,

(5.43) tfWI fW 2GI(Wn) . . . Gk(Wlk)GI(W21) ... Gk(W2k)L<LvDvI(WVl)

. .. Dv/Wvp),

(5.44) (1 /4i) f WI f W2 [GI ( Wll) ••• Gk(Wlk)GI(W21) ••• Gk(W2k)]

' [L v o(wvJ Cvl(wVI) ... o(wvp)Cvp(wvp) - O(-WVI)CVI(-WVI)

... o( -wvp)Cvp(-wvp)] dWn .. , dW2k,

(5.45) tfwi f W2GI(Wll) ... Gk(Wlk)GI(W21) .. . Gk(W2k)L.LvDvI(WVI)

D ( ) <I <2. . . Vp Wvp a a, a = Iii.

(5.46)

In (5.43), (5.45) E = (EI' E2) extends over Ei = "+1" or "-I". In (5.43),
(5.44), (5.45), v extends over all indecomposable partitions selected from table
(5.31) . In (5.43) and (5.45) Dv;(wv;) denotes the joint cumulant of elements
selected from the table

dZI(EIWll) ... dZk(EIWlk)

dZ1( E2W21) ••• dZk(E2W2k)

in accordance with Vi. Zi(W) comes from the spectral representation of X i(t), and
gj(t) is given by

(5.47)

with Gj( w) real.
PROOF. This result may be proved by noting that

(5.48) Yj(t) = f':" eiwtGj(w) dZj(w).

The reader will have noted that throughout this section a limiting process
leading to estimates of averaged polyspectra (as in (5.42» was used rather than
one actually leading to C1" ,k(WI, "', Wk). One could obtain CI"'k in the
limit by letting the g/s employed depend on 'I'; however it is felt that the limiting
procedure employed yields results more representative of the finite Tease.

It is perhaps of interest to mention the paper [1] where it is shown that the
moment estimates derived from a stationary Gaussian process are asymptotically
Gaussian.

6. Applications of the theory. The intention of this section is to present a
number of situations in which the estimation of polyspectra or associated poly­
spectral coefficients may be of use.

Suppose that we are interested in a real-valued time series X(t). Are we wise
to carry out a harmonic analysis of X(t) or does some function of X(t ), say
log X (t) , have a simpler harmonic analysis? This question may be answered
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to a limited extent by evaluating certain polyspectra. To begin, note that many
functional relationships may be approximated by relationships of the form

(6.1 ) k-1
X = Y + ay ,

where a is small. Consider the time series relationship

(6.2) XU) = Yet) + a[Y(t)t-\

where a is small and Yet) is a simpler series than X(t); simpler in the sense that
cumulants of order i, 2 < j ~ k are negligible. Evaluating the (k - 1) th order
polyspectrum of X(t) in terms of the polyspectra of Yet), using (6.2) and re­
taining terms of first and lower order gives

(6.3) C(Wl, "', 10k) = at]: - l)Lf(1Oh) ... f(w1k_J

where C(WI, ... ,10k) denotes the (k - 1)th order polyspectrum of X(t), f( 10)
denotes the power spectrum of X (t), and in (6.3) the summation extends over
the indices 1, ... , k taken (k - 1) at a time. (Remember that in the case of a
single series XU), when we are considering the (k - l)th order polyspectrum
we are really thinking of the series as {X(t), ... ,XU)}.) Thus we see that if a
relationship of the form (6.2) holds, a is given approximately by

(6.4)

This coefficient may be estimated by substituting estimates of the (k - l )th
order polyspectrum and the power spectrum of X (t) into (6.4).

In this connection we have,
THEOREM 6.1. Let X(t) denote a time series satisfying the conditions of Theorems

5.2, 5.3. Let 6(101, '" , 10k), ij(Wj) denote estimates of C(W1, ... ,10k), f(Wj)
respectively of the form of the estimates of Theorem .5.2. The random variable

(6.5) 6(101, ... ,wk)/(k - 1) Lih(WjJ .,. iik_I(Wik_l)

tends to

in probability, where

(6.7)

(6.5) is also asymptotically complex Gaussian.
PROOF. This theorem results from Theorem 5 and Corollary 3 of [19] and

Theorems 5.2 and 5.3 of this paper.
Turning to another application of the theory, consider the following heuristic

model of a frequency component being produced by the beating or multiplica­
tion together of a number of individual frequency components. Suppose we are
considering real-valued time series X 1( t ) , ... , Xk(t) with spectral representa-
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Consider the following question, does the component at frequency Wk in the
series Xk(t) come about as the product of. the components at frequencies -Wi
in the series Xi(t), j = 1, ... , k - 1, where L Wi = O?

In terms of the spectral functions Zi(W), we are wondering if LlZk(Wk) IS

of the approximate form

(6.9)

for some constant {3 where

((3.10 )

(6.13)

Since the series involved are real, (6.9) may be written

(6.11) f3LlZ1*(Wl) ... LlZ:-1(Wk_l).

The linear regression coefficient of LlZk(wd on (6.10) is therefore

(6.12) ELlZl(Wl) ... LlZk(Wk)/EILlZl(i~Jt) . . . LlZk_l(Wk_l)12

and the coefficient of determination is

E III Zl(Wl) ... LlZk-1(Wk-l)1
2E ILlZk(Wk)/2'

If the Wi satisfy no relation of the form

(6.14) (s < k)

and the Llw; are small then (6.12) and (6.13) are given by

(6.15)

and

respectively.
Thus when one is considering the question of frequency components beating

together, one is led to consider the coefficients (6.15) and

(G.17) IC1...,,(Wl, ... ,wdI2/fl(wl) ... fk(wk)'

This latter represents the relative appropriateness at various polyfrequencies of
the beating together of frequency components model. (Relative because of the
additional factor in (6.16).)

These coefficients may be estimated by substituting estimates of the required
polyspectra, and we may prove,

THEOREM 6.2. Let {Xl(t), ... , Xk(t) I denote a time series satisfying the con­
ditions of Theorems 5.2, 5.3. Let C1...k(Wl, ... , Wk), Ji(Wi) denote estimates of
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Cl...k(Wl, ... , Wk), !i(Wj) respectively of the form of the estimates considered in
Theorem 5.2. The random variables

(6.18)

and

(6.19)

(6.20)

tend in probability to

J...JO(Wl + ... +Wk)Gl(Wl) ... Gk(Wk)Cl",k(Wl, ... ,Wk) dWl ... dWk

hl ( Wl) '" hk_l(Wk-l)

and

(6.21)
IJ· ..JO(Wl + ... +Wk)Gl(Wl) Gk(Wk)Cl",k(Wl, ... Wk) dWl '" dW{

hl ( Wl) hk(Wk) ,

respectively where

(6.22)

Moreover, asymptotically the estimates are joint complex Gaussian.

PROOF. The proof proceeds on the same lines as the proof of Theorem 6.1.
It is perhaps of interest to point out the values of (6.15) and (6.17) in the

case of one of the examples considered earlier. Suppose X (t) is the process of
Example 3, Section 3. In this case (6.15) and (6.17) are given by

(6.23) [K k/(K2 )k- l]·Gk(Wk)/ \Gl(Wl) .. , Gk-l(Wk-l) \

and

(6.24)

and we see that an examination of the coefficients (6.19) for constancy provides
a test for the model of this example.

The reader will have noted that in the derivation of the coefficients (6.15)
and (6.17) it was assumed that the ui, satisfy no relation of the form (6.14).
This assumption is reasonable in view of the fact that if the process satisfies
an ergodicity requirement to be presented in the next section, then components
whose frequencies are such that (6.14) is true, are uncorrelated with the remain­
ing components and a relation of the form (6.9) is then inconsistent.

7. Moments or cumulants? At this point the reader is no doubt wondering
why the polyspectrum was defined as the Fourier transform of the cumulant
rather than of the product moment or of the central product moment. In this
section a justification of this definition will be provided for a class of processes.
The essential property that these processes have is a form of ergodicity.
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Let us begin by noting that the Fourier transform of at most one of the product
moment, central product moment or eumulant can be "nice" in the sense of
being a proper function. Suppose for example that the polyspectra are proper
functions and consider the Fourier transform of ml ...k(ll, ... , tk)' As derived
from the relation inverse to (3.4) it is,

(7.1) O(WI + ... + wdM(WI' ... , wd

= L o(WV1) '" o(WVp)CV1(WV1) .. , Cvp(wvp)

where wv = Wil + ... + Wij if v denotes the grouping (iI, .,. , ij ) . 111 (WI,
••• , Wk) is seen to contain many delta functions if the lower order polyspectra
do not vanish (as the ordinary power spectrum must not). Thus we see that
if the polyspectra are proper functions, then the Fourier transforms of the prod­
uct moments are not. The converse of this statement may be seen to be true by
considering the expansion (3.4). By considering similar expansions involving
central moments, we are led to the conclusion that at most one of the definitions
may lead to proper functions.

It will now be shown that for processes satisfying a form of ergodicity re­
quirement, the property of having a proper function as a polyspectrum is not
evidently inconsistent, whereas the corresponding property for moments and
central moments is inconsistent. The class '!'(k) introduced earlier is thus perhaps
a reasonable one so far as ergodic type processes are concerned.

The following notation will be adhered to in the remainder of this section:
(a) if v denotes a group of distinct integers (iI, ... , ij ) selected from

(1, '" ,k), then Xv(tv) denotes the product Xil(ti l) ... Xi;Ctij)'
(b) if u, v denote distinct groupings, then the refinement grouping obtained

by inserting the subdivisions of u into v will be denoted by u ® v,
(c) if u is the grouping (UI, U2) and t = (tl, ... , tk ) , then t will denote

(tl, ... , tk ) where t i = ti + r if i E UI and ti = t, if i E U2 .
The process X(t) = IX1(t), ... , Xk(t)} is said to satisfy Condition I(k)

if the joint moments of order ~ k exist, and for all groupings U and v (u con­
sisting of two subgroups), and the X's corresponding to the different subgroups
Vj of v being from independent realizations of X(t),

(7.2) (2T)-1 f':T U( r ) dr

approaches

(7.3)

in probability where r = UI ® v and U( r ) denotes the product of the individual
X terms in X"l(tVl) ... XVp(tv p) involving r.

Condition I(k) is seen to be a form of ergodicity requirement. In fact if we
are concerned with a univariate weakly mixing process X(t) belonging to
<1>("') n S(",), then X (t) satisfies Condition I (k) for every k (see [7]).

The process X(t) = IX1(t), ... ,Xk(t)} is said to satisfy Condition II(k) if,
(i) there exists 0 > 0 such that for j ~ k and distinct indices is , ... , i k
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selected from 1, . .. , k,

(7.4 ) EjXi\(h) ... X ii (tj)!I+6 < co,

(ii) there exists To and M > 0 such th at for T > To,

(7.5) (2T)-J f~TEIfX"\(t,,J IIH ... E p !X"p(t"p)!I+6 dr < M

for all groupings v, where the subscripts on the expected value operators denote
independent realizations of the process.

The following lemma will be required.
LEMMA 7.1. Let IUn} be a sequence of random. variables tending to p. in probability.

Let V be a random variable such that (i) for some 5 > 0, EIV11H exists, (ii) there
ex ist Nand M > 0 such that for n > N, Ej U; VII+6 < M, then EU n V -+ p.EV.

PROOF.

IEUnV - p.EV! = !E(Un - p.)V1 ~ E!(Un - p.)V!

(7.6) = f Iu, - p.1·1V1 dPn ( U, V)

= f lu-I',;;;.IU - p. j·1V1 dPn(U, V)

+ f lu-I',>. IU - p.1·1V1 dPn(U, V)

where Pn(U, V) denotes the join t cdf of U'; and V . The first term in (7.6) is
~ EElV I and consequently may be made arbitrarily small by a choice of E.

The second term is less than or equal to

(7.7) {f ,u-I' I>. dPn(U, V)}6WH'{f IU - p.11HIVI\H dPn(U, V)Il/u+6'.

The first term in (7.7) may be made arbitrarily small as a result of the con­
vergence in probability of {Un} to p., while the second term remains bounded.
Consequently (7.6) may be made arbitrarily small and the lemma follows.

THEOREM 7.1. Consider the process X(t) = {XI(t), . . . , Xk(t) I that satisfies
Conditions l(k) and lICk). For any groupings (VI, "', vp) and (UI, uz) of
(I, ... , k),

(7.8) limT-+"" (2T)-1 f~Tm,,\(t.,\) ... m"p(tvp) dr

= mTi(tTi) '" 1nrp(trp)1ns\(t.\) ... mSp(t.p)

uhere r = UI ® v and s = uz ® V.
PROOF.

(7.9) (2T)-J f':T m,,\(t,,\) ... m"p(tvp) dr

= (2T )- 1 f':T EIX"I (t,,\) ... E~vp(t"p) dr

(7.10) = EI ... E p(2T)-1 f':TX ,,\(t"l) ... XVp(tvp) tlr ,

since under the stated conditions Tonelli's theorem applies.
The result now follows from the lemma taking U T to be (7.2) and U( r ) to

be the product of the individual X terms in X"l(t,,\) .. , X"p(t"p) involving r.
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Let us next prove,
THEOREM 7.2. Consider the process X(t) = lXl(t), ... , Xk(t)} satisfying

Conditions I(k) and II(k).

(7.11) limT_oo (2T)-1 jr, Cl"'k(t) dr = °
for any grouping (Ul , U2).

PROOF.

(7.12) Cl .. .k(t) = L (_1)P-l(p - 1)!mv1(lvl) ... m"/t,,p) '

Thus,

(7.13) (2T)-1 f::T Cl ...k(t) dr

= L (_1)p-l(p - I)! (2T)-1 f::TmV1(tv1) ... m"p(lvp) dr.

From the preceding theorem this tends to

(7.14) L (_1)P-l(p - 1)! mr1(trJ ... mrp(t'p)m8 1 (t8J ... m'p(t.p)

where r = Ul ® v and s = U2 ® v.
We note that (7.14) is the joint kth order cumulant of the process X(t)

{X1(t), ... ,Xk(t)} wherein the components with subscripts in Ul are statistically
independent of those with subscripts in U2 • The expression must consequently be°as this cumulant is 0.

Before proceeding to the next theorem, let us make one last definition:
cPk(k) denotes the class of k-dimensional processes X(t) = {Xl(t), ... , X k(t)j

with finite kth order absolute moments and such that for v = (il , "', i;)
any group of j distinct integers from 1, ... , k there exist complex totally finite
measures M,,(Q) such that

(7.15) EXi1(tl)'" Xi;(tj)

= f ... f exp [i(wlh + ... + wjtj)]M,,(dwl, ... , dWj).

As in [24] it is possible to introduce in an obvious manner a polyspectral
measure

(7.16) L (_l)P-I(p - I)! M"l X .,. X M"p(Q)

for this class where Q is a Borel set of Rk
•

THEOREM 7.3. Consider the process X(t) = lXl(t),"', Xk(t) j belonging to
tI>k(k) and satisfying Conditions I(k) and II(k). Given the grouping (UI, U2), let Q1 be
thefiat WU 1 = 0, Q2 thefiat WU 2 = 0, and Q a measurable subset of Ql X Q2 , then

(7.17)

PROOF.

(7.18) Cl ...k(tl,···, tk) = f ... f exp [i(t1'W1 + ... + tkWk)]

.L (_l)1'-l(p - I)! M"l X ... X M"p(dw),
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7.19) (2T)-1 f':r Cl ...k(tl, .. . , tk) dT = f . . . f exp [i(t1Wl + ' " + tkWk)]

.L (_l)P-l(p - I)! 111"1 X ... X M"p(dw)(2T)-1 f':r exp [iw"IT]dT.

But

(7.20)

Thus we have

(7.21) f··· f exp [i(tlWl + ... + tkWk)]E(W"I)

.L (-IY-\p - I)! M"1 X ... X lIfv/ dw) = 0 for all t

and

(7.22) f ··· f X(Q)E(W"J L (_l)P-l(p - 1)1 MV1 X ... X M"p(dw) = 0

for any measurable set Q of the flat L ui, = 0, where x(Q) is the characteristic
function of Q, and we see that

L (_ly-l(p - I)! M"1 X ... X M"p(Q) = 0

if in fact Q C Q1 X Q2 •

This argument parallels an argument in [25].
Now the Lebesgue measure of the set Q of this theorem is 0, consequently the

measure L (_l)P-l(p - I)! M", X . .. X M"p(dw) satisfies a necessary con­
dition for it to be absolutely continuous with respect to (k - 1)-dimensional
Lebesgue measure . We conclude that the polyspectrum, which is an attempt to
provide a density of this measure with respect to Lebesgue measure, is not evi­
dently inconsistent.

The ergodicity of stationary processes is also investigated in [26].
A different type of justification of the use of cumulants is the following; in the

Gaussian case all the information is contained in the first two moments. Conse­
quently a kth order product moment k > 2, has no new information to provide,
nor does its Fourier transform. The kth order cumulant is a function of the prod­
uct moments of orders k and less which is zero in the Gaussian case. The con­
sideration of the cumulant in this case is not liable to deceive one into believing
that he has gained some information. In the non-Gaussian case the cumulant pro­
vides an indication of the non-Gaussianity. The cumulants appear to provide a
form of harmonic analysis of the distribution in fact.

It seems appropriate to end the paper on a note of pessimism. Experience with
real random variables indicates that higher order moments are typically not
efficient estimates of scientifically relevant parameters; consequently as the
specifications of stochastic processes become tighter, polyspectra are likely to
prove less pertinent in a similar manner.

8. Acknowledgment. The author would like to acknowledge many conversa­
tions with Professor John ,V. Tukey and Dr. Michael Godfrey that were most
helpful in the preparation of this paper.
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ASYMPTOTIC THEORY OF ESTIMATES OF kTH-ORDER SPECTRA *
By D. R. BRILLINGER AND M. ROSENBLATTt

LONDON SCHOOL OF ECONOMICS, UNIVERSITY OF CALIFP'lNIA, SAN DIEGO ( LA JOLLA),

AND UNIVERSITY COLLEGE, LONDON

Communicated by John W. 'j'ukey, December5, 1966

1. N otatioii and Assumptions.-Let X(t) be a strictly stationary r-vector valued
process with real-valued components. All moments are assumed to exist . While
t may be discrete or continuous, principal results are stated only in the discrete
case (t running through the integers) though the obvious parallels in the continuous
case are valid, provided X(t) is assumed to be continuous in mean square.

Existence of second-order moments implies that X(t) has a vector-valued Fourier
representation

x (t) = f eitJo. dZ (A) (1.1)

in mean square with Z (A) an r-vector valued process with orthogonal increments.
Let c(Z) = c(Zr, . .. , Zk) denote the kth-order cumulant of Z = (ZI, . . . ,Zk), and
for a = (aI, ... ,ak) , t = (t1, ,t k ) let

Ck,a(t) = Call' .. ,ak(tI, ,tk) = ca,., .. ,ak(T + tI, . . . ,T + tk) = c(Xa(t» (1.2)

be the kth-order cumulant of Xa(t) = (Xa,(tI) , ... ,Xak(tk» . Using stationarity,
write its asymmetric form as

C'k,a(t') = Cab' ...ak(T + tI, ... ,T + tk-I,T),

where t' = (tI,t2, ••• ,tk-I).
ASSUMPTION I. For each j = 1, ... ,k - 1 and any k-tuple aI,. . . ,ak let

L:ItjC'k.a(t')I < w,
t'

where k = 2,3, ....
Assumption I implies that all cumulant spectral densities

f' k.a(W') = f' all' .• ,ak(WI, . . . ,Wk-I) = fk,a(w) = fall' .. ,ak(WI, . . . ,Wk)

(1.3)

(1.4)

k - 1

(211")-k+I L: C'k,a(t') exp (-i L: tjWj) (1.5)
V j = 1

exist where it is understood that
k

L: Wj = 0 mod 211" J = 1, ... ,k
j = 1

(1.6)

in formula (1.5). Further, Assumption I implies that all the cumulant spectral
densities are continuous and continuously differentiable. The cumulant

where 71(X)

k

c(dZa(w» = fk.u<w)1l'L. Wj)dw,
1

co

} : o(x + 2j1l") with o(x) the Dirac delta function and dw

206

(1.7)
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Let
T-1

daF >CAj) = 1: Xai(t) exp (-iXjt)
, - 0

and
k

Ik ,a(T)(X) = (2,r)-k+lT-l n daj(T) (Xj)
j - 1

207

(1.8)

(1.9)

.t
with Y: A, = 0 mod 2'7l". The function IE~(A) is a kth-order analogue of the

; 71 .
second-order periodogram and cross-periodogram. The following lemma is useful
in analyzing the asymptotic behavior of a kth-order periodogram and est imates of
kth-order spectra based on the periodogram.

LEMMA. Suppose Assumption I is satisfied. Then the cumulant

c(da.(T) (AI) , ... da}T)(Ak))

T - 1 k

= (2'7l")-I<+I1' .I; ,a(X') L: exp (-i L: Xj) + 0(1), (1.10)
, - 0 I

where the error term 0(1) is uniform in XI, .. •,X.I; as T _ eo ,

2. A Class of Estimates.-Let W (u) be a bounded continuous weight funct ion
k

on the plane L: Uj = 0 symmetric about zero, W(u) = W( -u) with
1

f W(U)o(*Uj)dU = 1.

ASSUMPTION II. Let W(u) be continuously differentiable with

IujW(u) I, I"'() W(u) I ~ M(l + lIull) -k + 1 -',
VUj

k

IIull (L: Ul) 112
, unifnrmly in j and u = (Ul , . . . ,U.l;) where M , E> O. Set

I

(2.1)

(2.2)

(2.3)

k

where the summation is over j = VI,. .. ,i,;} such that L: (j a + UJ = 0 and B T is
1

chosen so that B T - 0 as T - (X) but BT.I;-IT - (X) as T _ co ,
k

The estimates of fl.a(X), L: Xj == 0 mod 2'7l", that we consider take the form
1

(
2'7l"SI 2'7l"S.t) I (T)(2'7l"SI 2?l"Sl)

X <I> T" .. , T 1,0. T , ... , T ' (2.4)

k

where <I>(u) is zero unless u is on the manifold L: Uj == 0 mod 2'7l", but not on a
174 1
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proper submanifold L U; =- 0 mod 271" with I a proper nOnV1H'UOUS subset of
j.1

(1, . .. ,k), in which case it if, one.
THEOHEM 1. Let X (t) be an r-vecior valued strictly stationary processsatisfying As­

sumption I . Let fk ,a(T\X) be an estimate of fk,a(A) of the type given in (2.4) with
weight function W sati.'!fying Assumption II. If BrT - co as B r - 0 and T _ co,

then

(2.;)

Thus we have a class of asymptotically unbiased estimates under the assumption
made in Theorem 1. The following results describe the asymptotic' behavior of
the covariance of two such estimates. It is remarkable that to the first order the
asymptotic behavior of covariances of kth-order eumulant spectral density esti­
mates depends only on second-order spectra under the assumptions made. The
covariance of two complex-valued random variables X ,Y is taken to be cov (X, Y)
= EXY - (EX)(EY) .

THEOREM 2. Let X(t) bean r-vector valued strictly stationary procees satisfying As­
sumption I. Let fk ,a(T) (X) and fA·.h(T) (J,t) be estimates of fk ,a (X) and I,» (J,t). respec­
tively, of the type given in formula (2.4) wuh. weight function W r satisfying A ssunip­
ium. II . Then

cov [fk,aCT) (X) , fA',h(T) (IL)] = 271" 7'-1 L f w7'(X - a) W r(J,t - m7/(t aj)
r J 1

k

X (n 7/(aj - (Pfj)N'aj,CPh)j(a j»da dfj + O(Br-k+2T-I), (2.6)
I

where the summation is over all permutations P on the integer.'! 1, .. . ,k (Pb = (bpI,
k k

... ,bPk» , and the error term is uniform in X and fJ subjeci to LXj, LJJ-; = 0 mod 271".
1 I

COROLLAHY. Under the assumptions of Theorem. 2,

lim Brk-IT env [fk./T)(X),fA,h(T)(J,t)] = 27l'L
T-- (X) P

k

(Il 7/1 Xj - (PJ,t)Af'Uj ,CPh)j(Xj»
j = I

f W(I~)W(PI~)0(tfjJdI3, (2.7)

uhere the summation is Oller all permutations P on the integers 1, . . . ,k . Here 7/1 xl =
00

I: 01 X+ 2,j71"} with. 01 X} the Kronecker delta.

Consider estimates of cumulant spectra of orders k, ~ k2 ::;; , • • ~ k« of the form
given in (2.4) with seale faetors Br(l) ~ . .. ~ B/m

). Write thejth such estimate
in the form

fA/T)(X Cj) = C;Yj-I LWr(j) (X(j) - ~71";~~) <f>(~~~) I A/ T)e71";cj)).

where A j denotes the indiees of the k, series involved in the jth estimate. The
scale factors of two estimates of the same order will be taken to be the same.

THEOREM 3. Let X(t) be an r-oecior valued strictly stationary processsatisfying As-
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sumption I . Let fAF>C)..,(j)) , j = 1, . . . .m, be estimates as given by (2.8) whose weight
functions W TO) satisfy Assumption II. Then the estimates are asymptotically jointly
normally distributed as T - co with estimates of different orders asymptotically inde­
pendent and estimates of the same order having covariance structure given by (2.7) .

The results given above are for discrete parameter processes . Using the analogue
of Assumption I for a continuous parameter process and Assumption II , parallel
results for a continuous parameter process continuous in the mean are valid, with
7J in formulas (2.8) and (2.9) replaced by ~.

3. Aliasing.--Qften a continuous time parameter strictly stationary process
X(t) is sampled discretely at time points jh, j = 0, ± 1, ... , where h > O. The
analogue of Assumption I for a continuous time parameter process implies that the

k

corresponding cumulant spectral densities gt .a(')..,) , L Aa = 0, - co < Aa < a" exist ,
I

are continuous and continuously differentiable. In addition, we will require
ASSUMPTION III. Let

and

Iglc.a(A) I ~ M(1 + IIAII)-k + 1-.

Ic'J..a(t') I ~ M(l + lit'!!) -k + I - •

(3.1)

(3.2)

(3.3)

uniformly in Aand t' with M ,E > O.
Under Assumption III the cumulants for the continuous time parameter process

X(t) have the following Fourier representation in terms of the cumulant spectral
densities

\ f k k
Ck,a(t) = exp (ij~ ItjAj)gJ..a(A)~(2t Aj)dA.

The discretely sampled process X(jh) has cumulants with the corresponding
Fourier representation

f exp (i
a
t!.,hAa)(i(~ A))(Jk.a(A)dA

= f~~:hf exp (i
a
t/aAah)7]~t I hAa)flc .a()..,)dA

in terms of the corresponding curnulant spectral density of X(jh)

(3.4)

(3.5)

k k

where the sum in (3))) is over j = (jl' .. . ,j/c) such that ) :j,~ = - (h/21r)L Aa •
I

4. Previous Work .-:Moments of order k of the dZa(w) have been considered by
Blane-Lapierre and Fortet.' The third-order spectral density, or bispectrum, is
defined in Tukey," and asymptotic properties of a class of estimates are given in
Rosenblatt and Van Kess. 3 Asymptotic properties of a class of estimates of the
kth-order cumulant spectra have been considered in Brillinger.!
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Summary.-Under appropriate assumptions the asymptotic variance and bias
of a class of estimates of the kth-order cumulant spectra of a stationary random
process are obtained. The estimates are shown to be distributed asymptotically as
complex-valued Gaussian variables. Remarks are made on aliasing.
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Asymptotic properties of spectral estimates of second order

By DAVID R. BRILLINGER

London School of Economics and Political Science

SUMMARY

Let X(t) (t=O, ± 1, ... ) be a zero mean, r vector-valued, strictly stationary time series
satisfying a particular assumption about the near-independence of widely separated values.
Given the values X(t) (t= 0,1, ... , T -1), we construct the statistics: I1.k(i\.) (-00 < i\. < 00),
the matrix of second-order periodograms, F~1 (i\.), the matrix of sample spectral measures,
f~l(i\.), the matrix of sample spectral densities and c<f~(u) (u= 0, ± 1, ... ), the matrix of
sample covariances. In the paper expressions are derived for the first- and second-order
moments and the asymptotic distributions of 11.k(i\.), F~i1(i\.), f~l(i\.) and c~1(u). Our
purpose is to determine the form of these moments and to indicate the appearance of the
Wishart distribution as an exact limiting distribution for f<f.k(i\.). It has previously been
suggested as an approximation.

1. INTRODUCTION

We consider asymptotic properties of second-order statistics based on sample values from
a strictly stationary vector-valued time series. The series is assumed to possess moments
of all orders and to be such that values of the series, well separated in time, are nearly
stochastically independent. This weak span of dependence requirement is formulated as
Assumption I. It is a principal and unifying assumption of the theorems presented.

The statistics considered are based on the matrix of second-order periodograms. Our
method of proceeding is to derive a general theorem on the asymptotic behaviour of the
periodogram, including a necessary uniform error term, and then to deduce the behaviour
of the other statistics from this. In fact, the periodograms are based on the discrete Fourier
transform ofthe sample. A lemma of Brillinger & Rosenblatt (1967) indicates the elementary
asymptotic sampling properties of this transform. The work of'l'ukey (1967) indicates the
extreme rapidity with which it may be calculated and the consequent quick calculation of
the statistics of this paper. In addition the pleasant analytic properties of Fourier trans­
forms are well known. We have therefore been led to take the periodogram as the basis of
our work for three distinct and important reasons. Our work differs from much of the
previous work in giving the periodogram such an important position. A further important
distinction from previous work is that no assumption about the linearity of the underlying
process is required for the results presented here.

We prove that distinct values of the periodogram tend to be asymptotically independent
and have Wishart distributions. The sample spectral measure, F~l(i\.), tends to be Gaussian
with a spectrum of order four, a trispectrum, appearing in its distribution. The sample
autocovariance function, c1.k(u), is also seen to be asymptotically Gaussian, the distribu­
tion again involving a trispectrum. We demonstrate the convergence of these statistics,
considered as random functions of i\. and u respectively, to limiting Gaussian processes.

Two limiting distributions are seen to appear in the case of the sample spectral density
24 Biom. 56
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matrix . Under one limiting process it tends t o be Gauss ian and under a second it tends to
have a Wish art distributi on.

We commence t o set down notation. L et X(t) (t= 0, ±1, . . .) be a strictly stationary
r vec tor-valued t ime series all of whose momen t s exist. Set

Suppose

E{X(t )} = cx ,

E [{X( t+u) - cx }{X(t) - cx}'] = cx x (u) (t ,u = 0, ± 1, . . .).

u = - co

(1'1)

(1·2)

(1·3)

H ere Icxx(u )! denotes t he matrix of absolute values. We may then define f x x(i\) , t he r x r
matrix of second-order spectral den siti es, by

co

f x x(i\) = (21T)-1 ~ cx x(u) exp(- ii\u) (-oo<i\< oo)
u =- co

(1'4)

and Fxx(i\ ), the matrix of second -order spectral measures, by

F x x(i\) = Cfx x(a)da (0~i\~1T). (1·5)
.0

We suppose t hat X(t ) has a weak span of time dependen ce as indicat ed by Assumption 1.
W e cons t ruct est imates c<g'~(u) , f<g'l-(i\) and F<g'~(i\) of cx x(u ), fxx(i\ ) and Fxx(i\) . These

estimates are based on I<g'1:-(i\), t he matrix of second-order periodograms. This last is deri ved
from the fini t e Fourier t ransform of an observed stretch of dat a , X(t) (t= 0,1 , ... , T -1).

We determine asymptotic expressions for the cumulants of c<g'l-(u) , I<g'~(i\) , F <g'l-(i\) and
f <g'1-(i\) and from these cumulants are able to iden t ify the limi ting distribut ions of t he
appropriately standardized estimates. We also consider the weak convergence of t he
sequences of stochastic processes

{c~l(u) (u=O, ± 1, . .. )}, {F<g'l-(i\) (0~i\~1T)} and {f<g'l- (i\)( - oo<i\< oo)}.

'We do not ass ume tha t X(t ) is a linear process.
In t he paper }y':(v, ~) will denote an r x r symmetric matrix-valued Wish art varia te with

variance-covariance matrix ~ and v degrees of free dom . Let Wf'(v,~) denote an r x r
H ermitian matrix-valued complex Wish art variate with variance-cov ariance matrix ~ and
v degrees of freedom . This last distribution is discussed by Goodman (1963). For real
matrices A, Band Z = A + iB , write

ZR=[_~ ~l
then the two are connect ed by Wf'(v , ~)R = W2T(v, ~R). We set

T-1
,!\(Tl(i\) = ~ exp ( - i i\ t),

1=0

(i\ ) = {I (i\ == 0,.mod 21T),}
r; ° otherwise.

(1' 6)

(1'7)

For (Yv 1';, .. .,Yk ) a random variable wit h real or complex components, we denote it s joint
cumulant of order k by )cum (Y1, Y2, • • . , Yk ) . (1·8

This is the coefficient of t1t2 ••• tk in t he expansion of it s cumulant generating funct ion . F or
X , Y complex -valued, cov (X , Y) = E [{(X -E(X)}{Y -E( Y)}'] .
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2. PARAMETERS AND ESTIMATES

Let the r vector-valued series X(t) have real-valued components Xa(t) (a= 1, 2, ... , r). All
moments are assumed to exist and we set

Cal> "'1 ak(tl , ... , tk-l ) = cum {Xa1(t l +7), ... , Xak_Yk-1 +7), X ak(7)}

(aI' . .. ,ak = 1,2, ... , r; t l , ... , tk _ I, 7 = 0, ± 1, ... ; k= 1, 2, ... ) (2·1)

using the assumed stationarity. We then set down

ASSUMPTION 1. X(t) is a strictly stationary series all of whose moments exist. For each
j = 1,2, ... , k-l and any k-tuple aI' a2, ••• , ak we have

2: Itjca1, .... ak_l(tl ' ... ,tk-I)1 < 00 (Ie = 2,3, ... ).
th . .. ,tk-l

(2·2)

Because cumulants are measures of the joint dependence of random variables, (2'2) is
seen to be a form of mixing or asymptotic independence requirement for values ofX(t) well
separated in time. In the case of a Gaussian series, because cumulants of order greater than
2 vanish, Assumption I is satisfied if one requires only

co

2: Itcaa(t)I < 00,
I=-co

(2'3)

where caa(t) is the autocovariance function of Xa(t) (a = 1, 2, ... , r).
IfX(t) satisfies Assumption I we may define its cumulant spectral densities by

(-oo<i\. <00; aI' ... ,ak= 1, 2, ... , r; k= 1, 2, .. . ). (2'4)

(2'5)
T-I

d<;P(i\.) = 2: exp (-ii\.t) X(t),
1=0

If Ie = 2, the cross-spectrafala.(i\.) are collected together in the matrix fxx(i\.) of (1·4).
Suppose now that a stretch, X(t) (t= 0,1, ... , T -1) of the series X(t) is available. For

- 00 < i\. < 00, we define

the finite Fourier transform of the given stretch of data. Denote the entries of d<jl(i\.) by
d~Tl(i\.) (a= 1, 2, ... , r). Following Brillinger & Rosenblatt (1967) one has

(2·7)

(2'6)

LEMMA 2·1. Suppose Assumption I is satisfied, then

cum{d~'fl(i\.l)' .. .,d~'fl(i\.k)} = (27T)k-Ifal> ...,ak(i\.I' ... ,i\.k-I)~(T) (~~j)+0(1).

The error term O(1) is uniform in 1\,...,i\." as T --+ 00.
Suppose that E{X(t)} = 0; then this lemma indicates that one might base estimates of

fxx(i\.) upon

the matrix of second-order periodograms; the bar denotes complex conjugate. As an estimate
of Fxx(i\.) we consider

(2'8)
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As an estimate of cxx(u), in this case where E{X(t)} = 0, we consider

m~flr(u) = L: X(t+u)X'(t)
O,,;t,t+u";'l' -1

= I~"I<g'lr(a) exp (iua) da, (2'9)

Before constructing an estimate Offxx(A), we set down

ASSUMPTION II. Let H(a) (-1T < a ~ 1T) be a weight function that is bounded, is symmetric
about 0, has a bounded first derivative and is such that

Given B T > 0, we then set

I~"H(a)da = 1. (2'10)

(2'11)

(2'12)

In later sections we will consider the cases: B'l' = KIT; B T ~ 0, BTT -> 00 as T ~ 00;

B'l' constant with respect to T.
As an estimate Offxx(A), we take

f<g'lr(i\) = I:"H(T)(a)I<g'l(A-a)da

T-l I"= (21T)-1 U=~T+l m~n·(u) exp (-iUA) _" H(T)(a) exp (-iua)da .

We have been led to consider a variety of statistics based on I<Ilr(A), the matrix of second­
order periodograms, and therefore turn to an investigation of its asymptotic properties.

We note that Bartlett (1966, p. 337) has suggested handling the sampling theory of
vector-valued series X(t) by means of arbitrary linear combinations ex'X(t), with ex an r
vector.

3. THE PERIODOGRA:iYI

Because all of the moments of X(t) are finite, all of the moments of I<g'lr(A) will be finite.
We turn to a determination of the asymptotic cumulants Ofl<g'1:(A) . We do this by using the
rules developed by Leonov & Shiryaev (1959) for determining the joint cumulants of
polynomial functions of random variables.

Denote the entry in the ath row andbth column ofl<I.1:(A) by I~'f;>(A) (a, b= 1, 2, .. ., r). We
then have

THEOREM 3·1. Let X(t) satisfy Assumption I and have mean O. Then.

E{I~fJl(Al)} =fa
1b1(A1)+O(T-l), (3'1)

with O(T-l) uniform in A1>

cov{n~;;l(Al)' I~~J2(A2)} = T-2jil(T)(AI-A2)!2fala2(Al)fblb2( -AI)

+T- 2Iil(T)(A1+A2)!2falb2(Al)fbla2( -AI)

+ 21TT-lfalbla2b2(Al' -A1> -A2)+T-2R('l')(A1>A2), (3'2)

where there is a finite K such that

jR(T)(A1, A2)i ~ K{lil(T)(A1+A2) 1+ lil(T)(A1 - A2)i} (3'3)
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and cum {n~}) (i\I)' ... , I~rJk(i\k)}

= T-k'I:,f:.,.(T)(JtI + VI) . .. f:.,.(T)(Jtk +vk)fc1d1(JtI) .. . fckdk(Jtk)+O(T-l). (3'4)

Here the summation in (3'5) extends over all partitions

(3·5)

into pairs, of the quantities

(3'6)

excluding the cases with Jtj = - Vj = i\,nforsomej, m , The error term, O(T-l), in (3'4) is uniform

in i\v .. . , i\k'
The proofs are given in §8.
From (3'4) we can derive the following corollary.

COROLLARY. Under the conditions of the theorem, if one of i\j+i\m == 0 (mod zer) or
i\j - i\m == 0 (mod 21T) is not true for each j, m. = 1, ... , r, then

cum {n~J,(i\l)' ... ,I~~6/i\k)}-+ 0 as T -+ 00 (k = 3, 4, ... ). (3'7)

Let us now determine the limiting distribution ofl~1:(i\)on the basis of the limiting values
of its cumulants. We have,

THEOREM 3·2. Let X(t) satisfy Assumption I and have mean O.
If 0 ~ i\1 < i\2 < ... < i\k ~ 1T, then I<11(i\1)' ... , I~1:(i\k) are asymptotically independent.

If i\ =1= 0 (mod 1T), then I<1'1:(i\) tends , in distribution, to Wf{l , fxx(i\)}. If i\ == 0 (mod 1T), then
it tends in distribution to T¥,:{1, fxx(i\)} .

The different asymptotic distributions in the cases i\ =1= 0 (mod 1T) and i\ == 0 (mod 1T) reflect
the fact that fxx(i\) and I~1:(i\) are real-valued in the latter case.

The asymptotic behaviour of the periodogram, I~~)(i\), of Xa(t) has been considered by
Bartlett (1966, p. 304), Grenander & Rosenblatt (1957), Hannan (1960, p. 52) and Kawata
(1959). Walker (1965) determines the asymptotic distribution of n~)(i\) for Xa(t) a linear
process. Rao (1967) considers asymptotic properties ofthe cross-periodogram I~t)(i\), a =1= b
of Xa(t) and Xb(t); see also Slutsky (1934) and Olshen (1967).

4. THE SPECTRAL MEASURE

If the series X(t)(t = 0, ± 1, .. . ) has spectral density matrix fxx(i\), then Fxx(i\) , the
matrix of spectral measures, is given by

(4·1)

Outside this range Fxx(i\) is taken to have period 21T and satisfy Fxx( - i\) = F'xx(i\). In
view of (3'1) one can consider estimating Fxx(i\) by

(4·2)

Because of its elementary dependence on I<11(i\),we can determine the asymptotic moments
ofF~l(i\)directly from Theorem 3·1. We have
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380 D AVID R. BRILLINGER

THEOREM 4·1. L et X( t) satisfy A ssumption I and have mean O. Then

E{F~~Jl (i\I)} = Fa1 b.(i\I) + O(T-I ), (4·3 )

and

+f:'f:'fa1 b1a2 b2(a , - a , - P)da dP}+o(T - llog T)

cum{F~~dl (i\I) ' ...,F~r6k(i\k)} = O(T- k+l ) (k = 1, 2, . . . ).

(4·4)

(4' 5)

We see that F <J1(i\ ) is an asymptot ically unbiased and consistent estimate of Fxx(i\) .
In fact one has

CO ROLLARY. Under the conditions of the theorem

and, in fa ct,

pro b { lim F <J1:(i\) = Fxx(i\)} = 1 (0 :::; i\ :::; 1T)
T -->oo

prob {lim sup IF~.k(i\)-Fxx(i\)I=O}=1.
T~OC) O ~ A~ l1

(4·6)

(4'7)

We see that F~.k(i\) is a strongly consiste nt estimate of Fxx(i\ ) with the convergence
uniform in i\.

Let us now turn t o t he consideration of the asymptot ic distribution of F<I.k(i\). We may
use Theorem 4·1 to evaluate the limit s of the cumulants of T !{F<I.k(i\) - Fxx(i\)}. Th e limits
of cumulants of order greater t han two are seen t o vanish and we may conclude

T H E ORE ?>I 4·2 . L et X(t ) (t= 0, ± 1, ••• ) satisfy A ssumption I and have mean O. Then

T!{F~.k(i\I ) - FXX (i\ I )}' ... ,Ti{F~.\:(i\k) - FXX(i\k)}

are asymptotically jointly multivariate normal with covariance structure given by

(#1'#2 = i\I' ... , i\k ; aj' bj = 1,2, . . . , r ; j = 1,2, .. . , k; k = 1,2 , .. . ). (4' 8)

This theorem indicates the asymptot ic normality of finit e collect ions of the FSf .k(i\). We
turn to st ronger results concerning the convergence of the stochast ic process

to a certain Gau ssian process. We first set down some te rminology .
For 0 < a :::; 1, Lip~x r(o, 1T) will denote the Banach space of r x r matrix-valued fun ctions

Y(i\ ) (0 < i\ :::; 1T) , Y(O) = 0, wit h norm

II Y(i\)11 = sup IY(i\)1 + sup lel-a IY(i\+e) - Y(i\)I.
0 ';,1. <" 0 ';,1., ,1.+." "

In t he case r = 1, this space is discussed by Lamperti (1962).
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(4'10)lim E[ff{Y(1')}] = E{ff(Y)}
T -+ro

A sequence {Y(1'l(A)(0 ~ A ~ 7T)} (T = 1, 2, . . .) of stochastic processes, with values in
Lip~xr(o, 7T), is said to converge weakly in the topologyofLip~xr to a process Y(A), with values
in Lip~x "(O, 7T), if

for any bounded real-valued function ff(. ), continuous on Lip~xr(o, 7T).
We may now state

THEOREM 4·3. Let X(t) (t= 0, ±1, . . . ) satisfy Assumption I and have mean 0. Then, for any
ex with °< ex < t , the sequence ofprocesses

[Tk{F<g'~(A) - F xx(A)} (0 ~ A ~ 7T)]

converges weakly in the topologyof Lip~xr to an r x r matrix-valued Gaussian process

{Y(A) (0 ~ A ~ 7T)}
with mean °and

(mUdA!, A.)
cov {Ya1b1(A1 ) , Ya•b.(A2 )} = 27TJ0 fala.(ex)fb1b.( - ex) da

+27TfA'fAfae a b(ex, -ex, -fJ)dexdfJ (aj,bj = 1,2, . . . ,r; j = 1,2). (4'11)
o 0 l 1 • •

IfX(t) satisfies the condition of the theorem, we are now able to assert the convergence in
distribution of funetionals such as

(4,12)

(4,13)

to corresponding functionals based on the Gaussian process Y(A) of the theorem.
Because

(4'14)

we may expect I<g'l(A) to exhibit some ofthe properties ofthe (generalized) derivative ofthe
process Y(A).

Ifr = 1 and X(t) is a linear process, then Grenander & Rosenblatt (1957) demonstrated
the weak convergence ofT~IF(T)(A)-F(A)I to a Gaussian process in the coarser topology of
uniform convergence. Ibragimov (1963) and Malevich (1964, 1965) have considered the
weak convergence of T![F(T)(A)-F(A)I in the case that X(t) is Gaussian with square
integrable spectral density.

5. THE AUTOCOVARIANCE FUNCTION

Let X(t) (t= 0, ± 1, ... ) denote an r vector-valued stationary series with autocovariance
function

cxx(u) = E([X(t+u)-E{X(t+u)}] [X(t)-E{X(t)}J') (u=O, ±1, ... ). (5'1)

If E{X(t)} = 0, and the values X(t) (t= 0,1, . .. , T -1) are available, then we can consider
estimating cxx(u) by

m<g'l(u) = T-l ~ X(t+u)X'(t) (u=O,t1, ... ). (5·2)
o,;;t,t+u';;T-l
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m~~(u) =J:" Ill.H x)exp (iua)da

and sowe may determine the statistical properties ofm~l- (u) from those ofI~l-(a). Theorem
3·1 gives directly

THEOREM 5 ·1. Let X(t) (t = 0, t 1 , .. . ) satisfy Assumption I and have m ean o. Then

E{mf.J1(u1)} = malbl(ul)+O(T-l), (5·4)

382

and

cov{m~~Jl(ul)' m~~J2(u2)}

= T -l [J:" exp {ia (u 1 - u2)}fala2(a)fblb2( - a) da

+ (2" exp {ia (u1 +u2)}fa b (a)fb ao( -a) daJ0 1 0 J

+ 27TJ:"J:"exp {i(a1u1+a2u2)}falbla2b2(al ' - a l> a 2>:da 1 da2]+ O(T - 210g T )

cum {mf.d1 (u1), ... ,m~r;'k(uk)} = O(T-k+1)

(5·5)

(5·6)

for U j = 0, t 1, ... ; aj' bj = 1,2, . . . , r;j = 1, . .. , k and k = 1,2, . . . . The error terms are uniform
in each case .

C OROLLAR Y . Under the conditions of the theorem

prob { lim m <,·n (u ) = m x x (u )} = 1 (u=O, t 1, .. . ).
T ->oo

(5·7)

Also prob [lim supl u-l{m:l~(u) - m x x (u )}I = 0] = 1.
'] ' - >00 1<'\'0

(5·S)

Let us now turn to an investigation of the asymptotic distribution of finite collections of
the m <.11 (u ).

T HE ORE M 5·2. L et X(t) (t =O, tI , .. . ) satisfy A ssumption I and have m ean o. Then

T!{m~~(ul) - m XX(u1)}, ... , T!{m~~(uk) - m XX (uk)}

Let us turn to the derivation of a theorem concerning the asymptotic behaviour of the
function {m<.ll-(u)(u= 0, t 1, .. . )}. We first introduce d~x r. This is the image of Lip~xr(o, 7T)
by the Fourier-Stieltjes transform, that is the space of r x r matrix-valued sequences
{y (u ) (u= 0, t 1, . .. )} of the form

y( u) = J:exp (iua) dY(a) , (5·10)

where Y(a) E Lip~x r(o, 7T) for 0 < a ~ 1. As norm of this y(u) we take IIY(A)II .
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Elementary calculat ions indicate t hat d'~xr is a subspace of the Banach space of r x r
matrix-valued sequences, y(u) (u = 0, ± 1, . .. ), with norm

W e have

Ily (u)ll" = sup ly (u )1 + sup lu - H" y(u )l·
u u ",o

(5·11 )

(5·12)

THEO RE M 5·3. L et X (t ) satisfy A ssumption I and have mean 0. Then , f or any a with°< a < !, the sequence of p rocesses {T !{m <[1-(u ) - m x x (u )} (u = 0, ± 1, )}converges weakly
in the topology of d'~x r to a zero mean Gaussian p rocess {y (u ) (u=O, ± 1, )} with

cov {Ya,b,(u1 ) , Ya. b.(U2 )}

J
217 J 217

= ° exp {ia(u1-u2)}fa,a.(a)fb
1b

.( -a)da+ ° exp{ia(u l +u2)}fa,b.(a)fb, a.( - a)da

f
217 f 217

+21T exp {i(alu1 + a 2u 2 )}fa b a b (aI ' - a v ( 2 )da l da 2•
o 0 " • •

Turning to related work and the case of a real-valued series X a(t), we note that Slutsky
(1934) considered asymptotic properties of m~~)(u) in the Gaussian case. Parzen (1961) gave
conditions for the convergence of m~~)(u) with probability 1. Bartlett (1946; 1966, p . 285)
and Parzen (1957b) developed formulae for the asymptotic variance of m~~)(u). Walker
(1954) , Lomnicki & Zaremba (1957 ,1959) , Parzen (19 57a) and Anderson & Walker (1964)
cons idered t he asymptotic normali ty of m~~) (u) in the case wh ere X a(t) was a lin ear process.
Rosenblatt (196 2) considered asymptotic normality in the case where X a(t) is Gaussian.

Bartlett (1966, p. 286) not ed that, if instead of the aut ocovariance function m~~)(u ), one
cons ide red the aut ocorrelation function m~~) (u)/m~~)(O), and X a(t) was a linear process, then
only seco nd -orde r sp ectra appear in the asymptotic variance formula. Elementary calcula ­
ti ons based on (5'9) indicate that t his result do es not continue t o hold in the case that X a(t) is
not a lin ear pro cess .

6. THE SPEC TRAL DENSITY

We turn t o the investi gation of est imates of fXX(A) t he matrix of second-order spectral
densities. Let H(a) (-1T < a ~1T) be a weight function sat isfy ing Assumption II. Let B T
be a scale factor depending on T . Suppose X(t) (t=O, ±1, . .. ) has mean O. Let

h(T)(u) = J:
l7

H<T)(a )eXP ( - iUa )da , (6'1)

where H(T)(a) is given by (2'11). As an estimate off<[1-(a), we propose

T - l
f~l (A ) = (21T)-1 ~ h('l')(u) m <[1-(u) exp ( - iUA)

u = - T +l

(6·2)

that is a weighted average of the periodogram. W e may prove

THE OR EM 6·1. L et X(t) (t = 0, ± 1, . .. ) satisf y A ssumption I and have m ean 0. L etf<[1-(A) be
constructed in the manner of (6' 2), where H(a) satisfies A ssumption II . Then

(6·3)
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cov {f~~~(Al),f~~~(A2)}

= t-» U:"H(a) H(A2-Al-a)fala2(Al-a)fblb2(a-Al) da

+ f:" H(a) Il(A 2+A l -a)fa1b2(Al - a)fb1a2(a - AI) da}

+ 27TT-lf f:"H(a J ) H(a2)falbla2b2(Al -aI' a l- AI'a2- A2) dal da2

+O(T-2log T) (BT= 1), (6'4)

cov {f~~J..(Al),f~;J.(A2)} = Bi,1T-l U:"H(a)2 da} [1J(Al - A2)fa,a2(Al)fb1b2( - AI)

+1J(Al +A2)falb2(Al)fbJa2( -AI)]

+O(BT
211-2) (BT-+O, BT1'-+ 00 as T-+oo).

Al {.f(T) (A ) .f(T) A } _ {O(T-k+l) (BT = 1),
so cum Ja1b1 l' ·" ,Jakbk( k) - O(BTk+lT-k+l) (BT-+O, BTT-+oo as T-+oo).

Turning to the asymptotic distribution offg±(A), we have

THEOREM 6·2. Let X(t) (t=O, ± 1, ... ) satisfy Assumption I and have mean O. Let

f~1(Al)' ... , fg±(Ak)

be constructed in the manner of (6·2), where H(a) satisfies Assumption II . If BTT -+ 00 as
T -+ 00, then

(BTT)! [f~±(Al)-E{f~±(Al)}]'... , (BTT)! [fg±(Ak)-E{f~±(Ak)}] (k= 1, 2, ... )

is asymptotically normal with mean 0 and covariance structure indicated by (6·4).
On occasion an alternative form ofasymptotic distribution mayprove relevant. Suppose we

estimate fxx(A) by a simple average of periodograms. For example, with s(T), m integers
and 27TS(T)/T near A, consider

and

Then one has

m
(2m+l)-1 ~ I~H27T{s(T)+s}/T] (A=I=O,mod7T)

s=-m

(2m + 2)-1 {I<i1(A)+s~m Ig±(A + 27TS/T)} (A=0, mod 7T) .

(6'5)

(6'6)

THEOREM 6·3. Let X(t) (t=O, ± 1, ... ) satisfy Assumption I and have mean O. Letmbefixed
and 27TS(T)/T -+ A as T -+ 00. If A =1= 0 (mod n), (6'5) tends in distribution to

(2m+l)-1 Wf{2m+l,fx x(A)} .

If A =0 (mod zr), (6'6) tends in distribution to (2m+ 1)-1 fY,:{2m+ l,fxx(A)}.
In the notation of (6·2), the estimates (6'5), (6'6) correspond to a B T of order T-l.
One may prove a theorem concerning the weak convergence of the process

{fg±(A) (-00 < A< (f)))

in the case B T = 1. The theorem follows directly from the weak convergence of

{Fg±(A) (O~A~7T)}
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and the representation

f 1.'[>(I,<) = f:H(a)d{F~p(A-a)+Fb~)(A- a)}. (6'7)

The theorem involves t he weak convergence of T![f~~(A)-E{f~1- (A)}] to a zero mean
Gaussian process with covariance structure indicated by (6·4) and is clear in view of our
previous results.

The asym ptotic mean and vari an ce of power spectral estimates were investigated by
Grenander & Rosenblat t (1957) , P arzen (1957a, b) and Blackman & Tukey (1958, p. 16) .
Asymptotic normality has been demonstrated , under various condit ions, by Rosenblatt
(1959) and Brillinger (196 5, 1968). Bartlett (1950) made use of the X2 distribution for
smoot hed periodogram est imates. The approximation of the distribution of f~.k(A) by a
complex Wishart was suggeste d by Goodman (1963 ). Wahba (196 8) proves t ha t expression
(6'5) has the form (2m+ 1)-1 Wf{2m+ 1,fx x(A)} + Op(T-I) + Op(m- I ). This does not yield our
Theorem 6,3, however .

7. DEPARTURES FRO1\'[ ASS UMPTIONS

(7·1)(t=O,l,oo. ,T-l )
T - I

y eT) = T -I ~ Y(t)
1=0

The most common departure from the assumptions of this paper will be for the series to
have non-zero mean.

Let Y(t) sat isfy Assumption 1. Let X(t ) = Y( t) -E{Y(t )}, then X(t ) will have zero mean
and the results of the paper will apply to it. Suppose Y (t) (t = 0,1, ... , T -1) are available.
Set

and Y (T)(t ) = Y (t) - y eT) = X(t )+ [E{Y( t)} - y (T)] (t = 0, 1, ... , T - 1). (7·2)

Our procedure will be to replace the statist ics, of t he paper, based on X(t ) (t= 0, 1, ... , T - 1)
by statist ics based on y (l ) (t) (t = 0, 1, ... , T -1 ).

In many cases the difference y eT)- E{Y (t)} is asymptotically negligible and the result s
of the paper cont inue to hold. See the discussion of Walker (1965), P arzen (1957a,b),
Hannan (1967 ), for example.

There are immediate extensions of the theorems of this paper to apply to the case of a
cont inuous t ime process X(t) ( - 00 < t < (0) sat isfying

r oof Itjca" ....ak(tI ' . . ., tk- I ) 1 dtI .. · dtk_I < 00 (aI ' . oo , ak = 1,2, oo ., r; k = 1,2, . .. ).

iI' .. . , lk - l
(7'3)

8. PROOFS

In this sect ion we present proofs of t he various theorems of the paper .

P roof of Theorem 3·1. Let us determine

cum {d~;) (AI) db';) ( - AI)' .. . , d~~)(Ak) db~)( - Ak )}

as (3' 1), (3·2 ), (3' 3) follow directly from it. We use a result of Leonov & Shiryaev (1959) and
argue as did Brillinger (1965), Brillinger & Rosenb latt (1967) and Brillinger (1968) . The
cumulant in question is given by

~ cum (OVl) .. . cum (Ovp)' (8' 1)
v
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where (OV1' ... , 0vp] is an indecomposable partition of the elements of the table

d~~)(Al)' d~~)( - AI)
(8'2)

(8'3)

(8'4)

det (I - 2i~e)-!v

(Anderson, 1958), while that of a Wf(v, ~) variate is given (Goodman, 1963) by

det (I - i~e)-v.

d~r)(Ale)' d~f)( - Ale)

and the summation in (8'1) extends over all such indecomposable partitions. We may now
use Lemma 2·1 to evaluate cum (Ow) and obtain (3'1), (3·2) , (3'3) by retaining only the

J
principal terms.

Proof ofOorollary. This follows from the fact that T-ll~(T)(A)1 -+ 0 unless A == 0 (mod 217).
Before turning to a proof of Theorem 3,2, we first note that the characteristic function of

a }f,:(v, ~) variate is given by

These are both analytic in a neighbourhood of the origin so the variates are determined by
their moments.

We can now turn to

Proof of Th eorem 3·2. The stated asymptotic independence follows from the Corollary
of Theorem 3·1.

Suppose A =1= 0 (mod 17), then from (3'4), it follows that

lim cum{I~~61(A), .. .,I~rtk(A)} = ~fc1d1(A) .. .f ckdj;(A), (8'5)
T_ro

where the summation in (8'5) extends over permutations (cl , ... , cle) of (av ... , ale)' permuta­
tions (dv ... , dk ) of (bv ... , bk ) , no dj = bm if aj = am' The rules of Leonov & Shiryaev
indicate that (8'5) is cum (lfa1b1' ... , lfakbk)' where W is Wf{1 , fxx(A)}. Because the complex
Wishart is determined by its moments, the proof is completed in the case A =1= 0 (mod 17).
The case A == 0 (mod 17) follows in a similar manner.

Before proceeding to the proof of Theorem 4,1, we note two properties of the function
~(T)(a).

To begin, we have (Edwards, 1967, p. 80)

f: 1~(T)(a2-al)1 002 = o(logT) . (8·6)

Also for 0 ~ aI' A2 ~ 17

J
A' T-l l ~(T)(a -a )1200 = {O(T-l) (A2<al) }
o 1 2 2 217 +O(T-l) (A2>al) .

This last expression follows from the fact (Edwards, 1967, p. 79) that

f:" T-ll~(T)(a)12da = 217.

Proof of Theorem 4·1. We note that

(8'7)

(8'8)

(j= 1, 2, .. . , k), (8·9)

and so results may be made to follow from corresponding results concerning 1~;b~(ai)'
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Relation (4'3) is seen to follow directly from relations (4·2) and (3·1) . Turning to (4'4), from
(3·2) one has

coV{F~~J,(Al) ' F~~2(A2)}

= f:'fa1a2(a1)fb1b.( -a1) U:'T-2Iil(T)(al-a2)12da2} da1

+J:'falb2(al)fbl ao( -a1) {foA' T-2INT)(a1 +a2)12da2} da1

+ 21TT-IJA'JA'falb a b.(aV -av -a2)dalda2+0(T-2logT), (8'10)
o 0 1 •

and the indicated result follows from the previous discussion.
Expression (4'5) follows from (3'4) directly.

Proof of Oorollary. Equation (4'6) states that F~.k(A) tends to Fxx(A) with probability
one . Now (4'3), (4'4) and (4'5) indicate that

E{IF~;6,(Al)-Fa,b,(Al)14} = O(T-2) (~, b1 = 1,2, ... , r) .

Equation (4'6) now follows from the convergent series criterion.
Because Fxx(A) is a continuous bounded monotonic function of A, (4'6) implies (4'7)

following a theorem of Polya.
In the proof of Theorem 4'3 we will make use of the identity

E(Y1J';. .. Yk) = ~ cum{Yj (jevl)} . .. cum{Yj (jevp )},
v

(8'11)

where the summation is over all partitions (vv V2, .. . , vp ) (p = 1,2, ... , k) of the integers
1,2, ... , k.

Proof of Theorem 4·3. We note that the various cumulant spectra of X(t) are bounded
following Assumption 1. If we note this and use (8'11) above with Theorem 4'3 , then for
n a positive integer

ITnE([I~'P(al) - E{I~'p(al)}] . . . [I~~)(a2n) - E{I~i>(a2n)}]) I
~ icz {lil(T)(a~± av.)12 .. . lil(T)(avznp ±av2n)12} (8'12)

for some K> 0, where the summation extends over all permutations (vv v2, ... , v2n) of
(1,2, .. . , 2n) and all choices of ±.

Therefore,

(8'13)

for some L > 0 as we may integrate out n of the a's to remove the il(T) fun ctions and then
note that the remaining a's range from # to A.

It follows from (3'1) that there exists M > 0 such that

I[E{F~P(A)}-F~~)(A)]- [E{F~1;>(p,)} -F~)(#)]I ~ MIA - #1. (8'14)
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The combination of (8'13) and (8'14) gives

TnE I{F~)(A)-Fab(A)}-{F~P(ft)-]i~b(ft)}12n~ N IA-ftl n (8'15)

for some N > O.
The indicated theorem now follows from the multivariate extension of the principal

theorem of Lamperti (1962).

Proof of Theorem 5·1 . We note that

m~f~(uJ) = J~/lJ~(aj) exp (iua j) daj (j = 1, 2, ... , k), (8'16)

and so (5'4), (5'5) and (5'6) follow directly by the arguments used in the proofof Theorem 4·1.

Proof of Oorollary. We may write

mlJ'~(uj) = J: exp(iua)d{F~f~(a)+FbfJ/a)}

= {FlJ'~(1T)+Fbf~(1T)}-iuJ: {F~f~(a)+Fbf~(a)}exp(iua)da (8·17)

if one integrates by parts. Equations (5·7) and (5'8) now follow from (4'6) and (4·7).

Proof of Theorem 5·2. This follows directly as did the proof of Theorem 4·2.

Proof of Theorem 5·3. Because the mapping of Lip~xr(o, 1T) to d~xr indicated by (5'10) is
continuous, Theorem 5·3 follows directly from Theorem 5·4 once we note that

T~{m~:!'6J.(Uj)- ma·b·(Uj)} = I7T exp (iua) dT?;{F~;J.(a) - F(J~b.(a) +Fb'!'J·(a) - Fb·(J)a)}.
-J J J 0 -J J " J .1 J J J -J

(8'18)

Proof of Theorem 6·1. Expression (6' 3) follows directly from (6' 2), (3'1) and the definition
of H(T)(a). Turning to (6'4), from (6·2) we have

cov {.f~~Jl(AI),f~~J.(A2)} = JJ:7T H<11(al) H<T)(a2) cov {I~~Jl(AI - all, I~~J.(i\2- ( 2)}dal da2·

(8'19)

We will substitute into this expression from (3'2). Now in the case that BTT -7- 00 we have

Also

J:7T H(T)(a) T-II~(11(y-a)12da = H(11(y) +O(B;z.2T-I) (-1T ~ Y ~1T).

J~)H(1')(a)II~(1')(y-a)lda = O(B;z.1 log T) .

(8'20)

(8'21)

These two indicate that the covariance in question is given by

T-I {J:7T H<T)(a)H(T)(A2-AI-a)fala.(AI-al)fblb.(al-AI)da

+J:7T H(11(a) H(1')(A2+Al -a)fa1b.(AI -a)fb1a.(a- AI)da}

+ 21TT-IJJ:7TH(11(al) H(1')(a2)fa1b1a.b.(AI-av a l - x, a2-A2) dal da2

+ O(B;z.2T-2) +O(B;z.IT-310 g T) (8·22)

from which (6'4) follows.
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Expression (6'5) follows by a similar, but cruder, argument using (3'4).

Proof of Theorem 6·2. We note that all cumulants of order greater than two tend to 0 as
T -+ 00. This gives the result.

Proof of Theorem 6·3. This follows directly from Theorem 3·2.

I would like to thank Professor J. Durbin for a number of helpful comments.
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Fourier Analysis of Stationary Processes
DAVID R. BRILLINGER

Invited Paper

Abmtlet-Thls paperbeIfna with a dtacription of lOme of the impcw'
bDt procedures of the Fourlermal>'* of ftlIkoaIDed ItatioDay dilcrete
lime ...... lb_ proceduresinclDde the tIItimatIonof the paws spec­
trum, the flttlna of flDlW parameter modeIa, mel the identification of
linear time iIrndult I)'1temI. AmlnIll the reaIIts emplwlzeclll the ODe
that the lap IIZIIpIo IbtiItkaI properties of the Fourler tnmlonn lie
limpler than thole of the __ ilIeIf. The procedures lie next .....
enlIzed to apply to the _ of .,ector-nlnecl --. ma1tld.imeluional
lime eeria or lPatiII --. point p-. nndom m-, mel
rmally to Itatlonary rmdom Sdnrartz dillributionl. It II _ that the
releftnt Fomier tnIIIforma lie enIuated by diffemlt fonnulu in~
furtIIer cues, but that the _ lXlllltructiona are caaIecIout after their
enIuatIon mel the _ Itatlltlca1 reaIIts hold. SuchpmnIizationa
De of in_ t>eaa.e of euttelIt wod: in the 6eIdI of pldme ptO<:eM­

ioI mel poIIe-code modulation.

I. INTRODUCTION

T HE FOURIER analysis of data has a long history, dat­
ing back to Stokes [II and Schuster [2I. for example.
It has been done by means of arithmetical formulas

(Whittaker and Robinson [31. Cooley and Tukey (4», by
means of a mechanical device (Michelson [5 I ), and by means
of real-time fllters (Newton [61. Pupin [7 )) . It has been car­
ried out on discrete data , such as monthly rainfall In the Ohio
valley (Moore [81), on continuous data , such as radiated light
(Michelson (5», on vectcr-valued data, such as vertical and
horizontal components of wind speed (Panofsky and McCor·
mick [91), on spatial data , such as satellite photographs (Leese
and Epstein [10», on point processes , such as the times at
which vehicles pass a position on a road (Bartlett [III ), and on

ThLJ Invited paper U OM of41.rU~ pliJnned on topk! 01 general Inter ­
en-TIu! Ed itor.

Manusalpt rocolnd June 7, 1974; revised A......t 13 , 1974. TbllI
Piper wu prepared whDe tbe autbor wu I Miller Research Profeuor
and _Iupported by NSF under Granl GP·31411 .

The lutbor II wltb tbe Department of Stltiltlcs, Unlvel'llty of Ca1i­
fornia, Berkeley. Clilf. 94720.

point processes in space, such as the positions of pine trees in a
field (Bartlett (12)). It has even been carried out on the
logarithm of a Fourier transform (Oppenheim et al. [13 1) and
on the logarithm of a power spectrum estimate (Bogert et al,
[14».

The summary sta tistic examined has been : the Fourier trans­
form itself (Stokes [ II). the modulus of the transform
(Schuster [2)), the smoothed modulus squared (Bartl ett
[IS]), the smoothed product of two transforms (Jones (16)),
and the smoothed product of three transforms (Hasselman
et al. [17)).

The summary statistics are evaluated in an attempt to mea­
sure population parameters of interest. Foremost among these
parameters is the power spectrum. This parameter was initially
defin ed for real-valued-time phenomena (Wiener [181). In re­
cent years it has been defined and shown useful for spatial
series , point processes , and random measures as well. Our de­
velopment in this paper is such that the defini tions set down
and mathematics employed are virtually the same for all of
these cases.

Our method of approach to the top ic is to present f'trSt an
extensive discussion of the Fourier analysis of real-valued
discrete-time series emphasizing those aspects that extend di­
rectly to the cases of vector-valued series, of continuous spatial
series, of point processes , and fmally of random distributions.
We then present extensions to the processes just Indicated.
Throughout, we indicate aspects of the analysis that are pecu­
liar to the particular process under consideration. We also
mention higher order spectra and nonlinear systems. Wold
[191 provides a bibliography of papers on time series analysis
written prio r to 1960 . Brillinger [201 presents a detailed de­
scription of the Fourier analysis of vector-valued discrete-time
series.

We now indicate several reasons that suggest why Fourier
analysis has proved so useful in the analysis of time series.

P. Guttorp and D. Brillinger (eds.), Selected Works ofDavid Brillinger, Selected Works in Probability 195
and Statistics, DOl 10.1007/978-1-4614-1344-8_13, © Springer Scicnce+Busincss Media, LLC 2012
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giving the average level about which the values of the series are
distributed and its auto covariancefunction

III. STATIONARY REAL·VALUED DISCRETE-TIME SERIES

Suppose that we are interested in analyzing T real-valued
measurements made at the equispaced times t = 0, •. . , T - 1.
Suppose that we are prepared to model these measurements by
the corresponding values of a realization of a stationary
discrete-time series X(t), t = 0, ±I, ±2, . . ' . Important param­
eters of such a series include its mean,

II. WHY THE FOURIER TRANSFORM?

Several arguments can be advanced as to why the Fourier
transform has proved so useful in the analysis of empirical
functions. For one thing , many experiments of interest have
the property that their essential character is not changed by
moderate translations in time or space. Random functions
produced by such experiments are called stationary. (A defini­
tion of this term is given later.) Let us begin by looking for a
class of functions that behave simply under translation. If, for
example, we wish

ret + u) = Cuf(t), t, u = 0, ±l , ±2,···

with C I *" 0, then by recursion

ret) = CI[(t - l) = C,[(t - 2) = ... = Cf[(O)

for t ~ 0 and so ret) =[(0) exp {ad. for Q =In CI. If f(t) is to
be bounded, then Q = iX, for i =~ and X real . We have been
led to the functions exp {iXt} . Fourier analysis is concerned
with such functions and their linear combinations.

On the other hand, we might note that many of the opera­
tions we would like to apply to empirical functions are linear
and translation invariant, that is such that ; if X I (t) ... YI (t)
and X,(t) ... Y,(t) then QIXI(t) + a,X,(t) ... QI Ydt) +
Q, Y,(t) and if X(t) ... Y(t) then X(t - u) ... yet - u). Such op­
erations are called linear filters. It follows from these condi-
tions that if X(t) = exp {iXt} YA(t) then

X(t + u) = exp { iXu} X(t) exp {jXt} YA(t) =Y(t +u).

Setting u = t , t = 0 gives YA(t) = exp {iAt} YA(O). In sum­
mary , exp {iXt} the complex exponential of frequency X is
carried over into a simple multiple of itself by a linear filter.
A(A) = YA(O) is called the transfer [unction of the filter , If the
function X(t) is a Fourier transform, X(t) =Jexp {jar} x(a)
da, then from the linearity (and some continuity) X(t) ...
Jexp toa A(a) x(a) da . We see that the effect of a linear filter
is easily described for a function that is a Fourier transform.

In the following sections, we will see another reason for deal­
ing with the Fourier transforms of empirical functions,
namely, in the case 'that the functions are realizations of a sta­
tionary process, the large sample statistical properties of the
transforms are ' simpler than the properties of the functions
themselves.

Finally, we mention that with the discovery of fast Fourier
transform algorithms (Cooley and Tukey [4]), the transforms
may often be computed exceedingly rapidly.

then we can check that

(7)

(6)

otherwise

la±XIC;;~

{

I ,
A(a):

0,

with ~ small. Then the variance of the output series yet), of
the filter, is given by

var yet) =eyy(O)

=Jfry(a)dQ

=f IA(a)l'fxx(a) d«

= 4~fxx(X).

In words, the power spectrum of the series X(t) at frequency X
is proportional to the variance of the output of a narrow band.
pass filter of frequency X. In the case that X*" 0, ±211, ±411•• .•

under some regularity conditions. Expression (6), the Ire­
quency domain description of linear filtering, is seen to be
much nicer than (5), the time-domain description.

Expressions (4) and (6) may be combined to obtain an inter­
pretation of the power spectrum at frequency X. Suppose that
we consider a narrow band-pass filter at frequency X having
transfer function

~

fxx(X) =(211)-1 L cxx(u)exp {-iXu} , -"<X<"
u·-oo

(3)

and , by taking Fourier transforms, that

fry(X) = IA(A)I'fxX<X)

A (X) = L a(u) exp {-iXu}
u

Cyy{u) = L L a(u + II) a(w) cxX<w - II) (5)
u v

Cxx(u) = i" exp {iau} fxx(Q) d« (4)

-"

with well-defined transfer function

to be defined. The parameter f Xx(X) is called the power spec­
trum of the series X(t) at frequency X. It is symmetric about 0
and has period 211. The definition (3) may be inverted to ob­
tain the representation

of the autocovariance function in terms of the power
spectrum.

If the series X(t) is passed through the linear filter

X(t) ... YU) =L aCt- u) X(u)
u

providing a measure of the degree of dependence of values of
the process Iu I time units apart. (These parameters do not de­
pend on t because of the assumed stationarity of the series.)
In many cases of interest the series is mixing, that is, such that
values well separated in time are only weakly dependent in a
formal statistical sense to be described later. Suppose, in par­
ticular, that cxx(u) ... 0 sufficiently rapidly as lui ..... for

(I)

(2)

u = 0, ±I ,'"

ex = EX(t)

cxx(u) = cov {X(t + u), X(t)}

= E{[X(t + u) - cx1[X(t) - cxn,
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the mean of tile output series is 0 and the variance of the out­
put series is tile same as its mean-squared value. Expression
(7) shows incidentally that the power spectrum is nonnegative.

We mention, in connection with the representation (4) , that
Khintchine [211 shows that for X(t) a stationary discrete time
series with finite second order moments, we necessarily have

cxx(Il) =i" exp {iQII} dFxx(a) (8)....
where FXxCa) is a monotonic nondeereasing function.
FxxCX) is called tile spectral measure. Its derivative is tile
power spectrum. Going along with (8), Cramer [221 demon­
strated that tile series itself has a Fourier representation

X(t) ={" exp {iat}dZxCa) , t=O,±I, ·· · (9)
....

where Zx(A) is a random function with tile properties ;

EdZxCX) =f/(A) cx dX (10)

cov {dZxCA), dZx{J.I)} "'1l(A- p.)dFxx(X) dp.. (11)

(In these last expressions, if 6(A) is tile Dirac delta function
then 'f/<A) =E 6(X - '21rj) is the Kronecker comb.) Also expres­
sion (II) concerns the covariance of two complex-varied vari·
ates, Such a covariance is defined by cov {X, y} =
E{(X - EX) (y- En}.) Expression (9) writes the series X(t)
as a Fourier transform. We can see that if the series X(t) is
passed through a linear filter with transfer function A (X), then
the output series has Fourier representation

f. "exp {iat} A (a) dZx(a), t =0, ±I, ....
....

In Section XV, we will see that the first and second-order rela­
tions (10), (11) may be-extended to kth order relations with
the definition of kth order spectra.

IV. THE FINITE FOURIER TRANSFORM

Let the values of the series X(t) be available for t .. 0, I, 2,
... , T - I where T is an integer. The finit« Fourier transform
of this stretch of series is defined to be

T-I
d~T)(X)= L X(t)exp HXt}, -oo<X<oo. (12)

toO

A number of interpretations may be given for this variate . For
example, suppose we take a linear filter witll transfer function
concentrated at the frequency X, namely A (a) • 6(a - X). The
corresponding time domain coefficients of this mter are

a(Il)· (2lTf lfA (a) exp {illa} aa

'" (2lT)-1 exp {iuX}, Il =O,:t I, .. . .

The output of this filter is the series

(2lTf' LX(Il) exp { iX<t - u)}:, (2lTf' exp {iAr} d~T)(X) .
u

These remarks show that the finite Fourier transform may be
interpreted as, essentially, the result of narrow band-pass filter­
ing the series.

PROCEEDINGS OF THE IEEE, DECEMBER 1974

Before presenting a second interpretation, we flrst remark
that the sample covariance of pairs of values X(t), yet ), t .. 0,
I, . .. , T - I is given by I' E X(t) yet), when the yet) values
have 0 mean . This quantity is a measure of the degree of linear
relationship of the X(r) and Y(r) values. The finite Fourier
transform is essentially, then, tile sample covariance between
the X(r) values and the complex exponential of frequency X.
It provides some measure of the degree of linear relationship
of the series X(r) and phenomena of exact frequency X.

In the case that X.. 0, the finite Fourier transform (12) is
the sample sum. The central limit theorem indicates condi­
tions under which a sum of random variables is asymptotically
nonnal as the sample size ¥J0ws to 00. Likewise, there are
theorems indicating that d~ )(X) is asymptotically normal as
T -+ 00. Before indicating some aspects of these theorems we
set down a definition. A complex-valued variate w is called
complex n0171llZ1 with mean 0 and variance cJl when its real
and imaginary parts are independent normal variates with
mean 0 and variance 0 2 /2. The density function of w is pro­
portional to exp {-lwI2 /cJl }. The variate Iwl2 is exponential
with mean 0 2 in this case.

In the case that the series X(r) is stationary, with finite
second-order moments, and mixing (that is, well-separated
values are only weakly dependent) the finite Fourier transfonn
has the following useful asymptotic properties as T -+ 00:

a) d~T)(O) - TcX is asymptotically normal with mean 0 and
variance 2lT1)'xx(0);

b) for X*' 0, ±IT, ±2lT, .• . , d(:P (X) is asymptotically com­
plex nonnal with mean 0 and variance 2lT1)'xx(A) ;

c) for I(n, t» I,···,J integers with '1I(T). 2lT/(T)IT-+
X*' 0, ±IT, ±2lT, • •• the variates d~T)(XI (T» , • • • ,
d~T)(AJ(T» are asymptotically independent complex
normals with mean 0 and variance 2lTT!xx(X),

d) for X*' 0, b, ±2lT, .. . and U· TIl and integer, the
variates

u-,
tlxU)(''A, n> L X(u + i ll) exp HAu}, i • 0, ... ,J - I

u-O

are asymptotically. independent complex nonnals with
mean 0 and variance 2lTU!xx(A).

These results are developed in Brillinger [201 . Related re­
sults are given in Section XV and proved in the Appendix.
Other references include: Leonov and Shiryaev [231 , Picin­
bono [24], Rosenblatt [251, Brillinger [261 Hannan and
Thomson [27] . We have seen that exp {jAr} d~T)(A) may be
interpreted as the result of narrow band-pass filtering the
series X(r). It follows that the preceding result b) is consistent
with the "engineering folk" theorem to the effect that narrow
band-pass noise is approximately Gaussian.

Result a) suggests estimating the mean ex by

T-IcSr> =r : L XCt)
toO

and approximating the distribution of this estimate by a nor­
mal distribution with mean 0 and variance 2lT!Xx(O)/T. Re­
sult b) suggests estimating the power spectrum !xxCA) by the
periodogram

(13)

in the case A*' 0, ±2lT, • . ' . We will say more about this sta­
tistic later. It is interesting to note, from c) and d) , that
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asymptotically independent statistics with mean 0 and vari­
ance proportional to the power spectrum at frequency A may
be obtained by either computing the Fourier transform at
particular distinct frequencies near Aor by computing them at
the frequency A but based on different time domains. We
warn the reader that the results a)-<I) are asymptotic. They
are to be evaluated in the sense that they might prove reason­
able approximations in practice when the domain of observa­
tion is large and when values of the series well separated in the
domain are only weakly dependent.

On a variety of occasions we will taper the data before com­
puting its Fourier transform. This means that we take a data
window .p<n(t) vanishing for t < 0, t > T - I, and compute the
transform

iP(A) =L.p<n(t) exp HAt} X(t) (14)
I

for selected values of A. One intention of tapering is to reduce
the interference of neighboring frequency components. If

<I>(T)(A) = L .p(T)(t) exp {-iAt}
I

where X~J denotes a chi-squared variate with 2J degrees of
freedom. The variance of the variate (17) is

(18)

if U =TIJ. By choice of J the experimenter can seek to obtain
an estimate of which the sampling fluctuations are small
enough for his needs. From the standpoint of practice , it
seems to be useful to compute the estimate (16) for a number
of values of J. This allows us to tailor the choice of J to the
situation at hand and even to use different values of J for dif­
ferent frequency ranges. Result d) suggests our consideration
of the estimate

J-I
rll(A) =rl L (211U)-l ldiY)(A,M . (19)

J-o

It too will have the asymptotic distribution (17) with variance
(18).

We must note that it is not sensible to take J in (16) and
(19) arbitrarily large as the preceding arguments might have
suggested. It may be seen from (15) that

(15) where

then the Cramer representation (9) shows that (14) may be
written

J" J
Ef}/)(A) = r l L Fr<>!(T)- a)fxx(a)da. (21)

..." J=I

n 2

sin-
2

. Asm­
2

is the Fejer kernel. This kernel, or frequency window, is non­
negative, integrates to I, and has most of its mass in the inter­
val (-211IT, 2111T). The term in c~ may be neglected for A*' 0,
±211, •.• and T large. From (16) and (20) we now see that

If we are averaging J periodogram values at frequencies 2111T
apart and centered at A, then the bandwidth of the kernel of
(21) will be approximately 411JIT. If J is large and fxx(a)
varies substantially in the interval -211JIT <a - A< 211JjT,
then the value of (21) can be very far from the desiredfxx(A).
In practice we will seek to have J large SO that the estimate is
reasonably stable, but not so large that it has appreciable bias.
This same remark applies to the estimate (19). Panen (28)
constructed a class of estimates such that Erll(A) ....fXX(A)
and var f;ll(A) ....O. These estimates have an asymptotic dis­
tribution that is normal, rather than X2

, Rosenblatt [291.
Using the notation preceding these estimates correspond to
having J depend on T in such a way thatJT ....00, but JTIT ....0
asT-+oo.

Estimates of the power spectrum have proved useful ; i) as
simple descriptive statistics, ii) in informal testing and discrim­
ination, iii) in the estimation of unknown parameters, and Iv)
in the search for hidden periodicities . As an example of i), we
mention their use in the description of the color of an object,
Wright [301 . In connection with ii) we mention the estima­
tion of the spectrum of the seismic record of an event in at­
tempt to see if the event was an earthquake or a nuclear explo-

EI¥)(A) = i"F r<A - a) f Xx(a) da +F r<A) c~ (20)
-e

(17)

(16)
J

rll(A) =r l L I§cT)(>!(T»
J-I

will be distributed asymptotically as the average of J indepen­
dent exponential variates having mean f XX(A). That is, it will
be distributed as

V. EsrIMATION OF THE PoWER SPECTRUM

In the previous section, we mentioned the periodogram ,
I.Vl(A), as a possible estimate of the power spectrumfXX(A)
in the case that A*' 0, ±211, .• '. If result b) holds true, then
I¥l(A), being a continuous function of ,fp(A), will be dis­
tributed asymptotically as Iw12 , where w is a complex normal
variate with mean 0 and variance fXx<A). That is I¥l(A) will
be distributed asymptotically as an exponential variate with
mean fXX(A). From the practical standpoint this is interest­
ing, but not satisfactory. It suggests that no matter how large
the sample size T is, the variate I¥J!.A) will tend to be dis­
tributed about fxx(A) with an appreciable scatter. Luckily,
results c) and d) suggest means around this difficulty. Follow­
ing c), the variates I¥l(>!(T», i =I, . . . ,J are distributed
asymptotically as independent exponential variates with mean
f XX(A) . Their average

From what we have just said, we will want to choose .p(T)(t)
SO that <I>(T)(a) is concentrated near a = 0, ±211, • . '. (One
convenient choice of .p(T)(t) takes the form .p(tIT) where
<p(u) = 0 for u < 0, u .. I.) The asymptotic effect of tapering
may be seen to be to replace the variance in b) by
211 ~ .p<n(t)2fxx(A).

Hannan and Thomson [27] investigate the asymptotic dis­
tribution of the Fourier transform of tapered data in a case
where f X X(A) depends on T in a particular manner . The hope
is to obtain better approximations to the distribution.
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sion, Carpenter (31), Lampert et al. [32]. In case ill), we
mention that Munlc and MacDonald [33] derived estimates of
the fundamental parameters of the rotation of the Earth from
the periodograrn. Turning to iv), we remind the reader that
the original problem that led to the definition of the power
spectrum, was that of the search for hidden periodicities. As a
modern example, we mention the examination of spectral es­
tintates for the periods of the fundamental vibrations of the
Earth, MacDonald and Ness [34] .

VI. OTHER ESTIMATES OF THE POWER SPECTRUM

We begin by mentioning minor modifications that can be
made to the estimates of Section V. The periodograms of (16)
may be computed at frequencies other than those of the form
2rrs/T, S an integer, and they may be weighted unequally. The
periodograms of the estimate (19) may be based on overlap­
ping stretches of data . The asymptotic distributions are not so
simple when these modifications are made, but the estimate is
often improved. The estimate (19) has another interpretation.
We saw in Section IV that exp {iXt} dCf>(X,j) might be inter­
preted as the output of a narrow band-pass filter centered at X.
This suggests that (19) is essentially the first power spectral
estimate widely employed in practice, the average of the
squared output of a narrow band-pass filter (Wegel and Moore
[35]). We next tum to a discussion of some spectral estimates
of quite different character.

We saw in Section III that if the series X(t) was passed
through a linear filter with transfer function A (X), then the
output series Y(t) had power spectrum given by !yy(X) '"
IA(X>l 2!xx(X). In Section V, we saw that the estimates (16) ,
(19) could have substantial bias were there appreciable varia­
tion in the value of the population power spectrum. These reo
marks suggest a means of constructing an improved estimate,
namely : we use our knowledge of the situation at hand to de­
vise a filter, with transfer function A(X), such that the output
series Y(t) has spectrum nearer to being constant. We then
estimate the power spectrum of the r.t1~ered series in the man­
ner of Section V and take IA(X)r2.rl'fO.)as our estimate of
fX X(X) . This procedure is called spectral estimation by pre­
whitening and is due to Tukey (see Panofsky and McCormick
[9]). We mention that in many situations we will be content
to just examine .tV't(X). This would be necessary were
A(X) '" O.

One useful means of determining an A (X) is to fit an auto­
regressive scheme to the data by least squares. That is, for
some K , choose ~(I), ... ,~(K) to minimize

L [X(t) + a( I) X(t - I) + .. . + a(K) X(t - K)I'

where the summation extends over the available data. In this
case A(X) '" I +~(I) exp {-IX} + •. . +~(K) exp {-I>-K}. An
algorithm for efficient computation of the ~(u) is given in
Wiener [36, p. 136]. This procedure should prove especially
effective when the series X(t) is near to being an autoregressive
scheme of order K. Related procedures are discussed in
Grenander and Rosenblatt [37, p. 270J, Parzen [38], Lacoss
[39] , and Burg [40 1. Berk [41] d~sses the asymptotic dis­
tribution of the estimate IA(X)r'(2rrT)-1 1: [X(t) +
?(I) X(t - I) + . .. + :1:(K) X(t - K)12 • Its asymptotic variance
is shown to be (18) with U'" 2K.

Pisarenko [42) has proposed a broad class of estimates in­
eluding the high resolution estimate of Capon [43] as a par­
ticular case. Suppose £is an estimate of the covariance matrix
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of the variate

[
X?)J
X(U)

determined from the sample values X(O), . .. , X(T - I) . Sup­
pose Iiu. cr", u '" I , .. . , U are the latent roots and vectors of

i . Suppose H(JJ), 0 <JJ<.., is a strictly monotonic function
with inverse h(·). Pisarenko proposed the estimate

h(£H(~)(2rrUrl l i. Quiexp {-IXj},I'). (22)
u-l ,-I

He presents an argument indicating that the asymptotic vari·
ance of this estimate is also (18). The hope is that it is less
biased. Its character is that of a nonlinear average of periodo­
gram values in contrast to the simple average of (16) and (19).
The estimates (16) and (19) essentially correspond to the case
H(JJ) '" JJ. The high resolution estimate of Capon [43 ) corre­
sponds to H(Il) '" JJ-1•

The autoregressive estimate, the high-resolution estimate and
the Pisarenlco estimates are not likely to be better than an
ordinary spectral estimate involving steps of pre whitening,
tapering, naive spectral estimation and recoloring. They are
probably better than a naive spectral estimate for a series that
is a sum of sine waves and noise.

VII. FINITE PARAMETER MODELS

Sometimes a situation arises in which we feel that the fonn
of the power spectrum is known except for the value of a finite
dimensional parameter O. For example existing theory may
suggest that the series X(t) is generated by the mixed moving
average autoregressive scheme

X(t)+a(l)X(t- 1)+ "'+a(K)X(t-K)"'E(t)+b(l)E(t-1)

+ .. . + b(L)E(t - L) (23)

where U, V are nonnegative integers and E(t) is a series of
independent variates with mean 0 and variance a'. The power
spectrum of this series is

a2 \I + b(l) exp {-iN + + b(L) exp {- iXL}I'
fxx(X ;O)'" 2rr II + a(l) exp {-IX} + +a(K) exp {-iXK} I'

(24)

with 0 '" a2, a( I) , . .. , a(K ), b(l),' ... b(L). A number of
procedures have been suggested for estimating the parameters
of the model (23), see Hannan (44) and Anderson [45], for
example.

The following procedure is useful in situations more general
than the above. It is a slight modification of a procedure of
Whittle [461 . Choose as an estimate of e the value that
maximizes

o<rlT/2 fxx(2;S ;of exp {-I-We;S)fxxC;S;orl

(25)

Expression (25) is the likelihood corresponding to the assump­
tion that the periodograrn values I-W(21rs/T) ,0 <S< T/2. are
independent exponential variates with means !xx(21rs/T;0),
0< S < T/2, respectively. Under regularity conditions we can
show that this estimate, fJ, is asymptotically normal with mean
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o and covariance matrix 271'r l "C1(A + B)A-1 where ; if
'i1fxxCI..; 0) is the gradient vector with respect to 0 and Ixxxx
the 4th order cumulant spectrum (see Section XV)

A = 1" Vfxx(a ; 0)' 'i1fxx(a; O)fxx(a ;or2 d«
o

B =If i" vtxx(a; 8) . vtxx«3; O)fxx(a ; Or2fxx«3 ; Or2

.txxxxw. - u, -fJ) aa dfJ.

We may carry out the maximization of (25) by a number of
computer algorithms, see the discussion in Chambers [47) . In
[48] , we used the method of scoring. Other papers investi­
gating estimates of this type are Whittle [49], Walker [50],
and Dzaparidze [5 I).

The power spectrum itself may now be estimated by
fxx(X; ~). This estimate will be asymptotically normal with
mean fxx(X; 0) and variance 21Tr l Vfxx(X ; 0)'A-1(A + B) .
A-1Vfxx (X; 0) following the preceding asymptotic normal dis­
tribution for O. In the case that we model the series by an
autoregressive scheme and proceed in the same way, the esti­
mate fxx(X ; §) has the character of the autoregressive estimate
of the previous section .

VIII. LINEAR MODELS

In some circumstances we may find ourselves considering a
linear time invariant model of the form

~

X(I) = Il + L a(l- u)S(u) + £(1) (26)
101---

where the values X(t) , S(I), 1- 0, I , " . , T - I are given, £(1)
is an unknown stationary error series with mean 0 and power
spectrum fu(X) , the a(u) are unknown coefficients.jz is an un­
known parameter, and S(I) is a fixed funct ion. For example ,
we might consider the linear trend model

X(I) = Il -rat + £(1)

with Il and a unknown, and be interested in estimatingf••(X).
Or we might have taken S(I) to be the input series to a linear
filter with unknown impulse-response function a(u), u = 0,
±I, . . . in an attempt to identify the system , that is, to estimate
the transfer function A(X) =1: a(u) exp {-IXu} and the a(u).
The model (26) for the series X(I) differs in an important way
from the previous models of this paper. The series X(I) is not
generally stationary, because EX(I) - Il + 1:a(1 - u)S(u).

Estimates of the preceding parameters may be constructed
as follows: define

T-I
d~P(X) = L X(I) exp {-IXI}

t-o

with similar definitions for 4T)(X), dr)(X). Then (26) leads
to the approximate relationship

T-I
drp(X)':J.l L exp{-iXI}+A(X)4T)(X)+d~T)(X). (27)

t=O

Suppose XI(T), .. . , '>J(T),: Xare as in Section IV. Then

df[>('>J(T»,: A(X)4T)('>J(T» + d~T><'>J(T» (28)

1633

for i = I, . . ' ,1. Following b) of Section IV, the df)o!(T»
are, for large T, approximately independent complex normal
variates with mean 0 and variance 21TTfee(X) . The approximate
model (28) is seen to take the form of linear regression. The
results of linear least-squares theory now suggest our considera­
tion of the estimates ,

(2 9)

and

where

J ---
fJ.P(X) =r: L (21TTfI dY)('>J(T»d§[>('>J(T»

I-I

with similar definitions for rJ!s) , rJ!i ,rg) . The impulse re­
sponse could be estimated by an expression such as

P-I (271'P) {-121TPU}a(T)(u)=p-1 k A(T) P exp -p-

for some integer P. In some circumstances it may be appro­
priate to taper the data prior to computing the Fourier trans­
form. In others it might make sense to base the Fourier
transforms on disjoint stretches of data in the manner of d) of
Section IV.

Under regularity conditions the estimate A(T)(X) may be
shown to be asymptotically complex normal with mean A (X)
and variance r1f•• (X)rg)(Xrl (see (20)). The degree of fit
of the model (26) at frequency X may be measured by the
sample coherence function

IRfl(X)!2 = 1rJ!s)(X)12/[rg)(X)rJ!i(X)]

satisfying

This function provides a time series analog of the squared
coefficient of correlation of two variates (see Koopmans
[52] ).

The procedure of prefiltering is often essential in the estima­
tion of the parameters of the model (26 ). Consider a common
relationship in which the series X(I) is essentially a delayed
version of the series S(I), namely

X(I) = as(1 - e) + £(1)

for some u, In this case

A(X) =a exp {-IXv} ,

drfl('>J(T» =a exp {-O!(T)v}df)('>J(T» + dV)O!(T»

and

rJ!s)(X) =«r' L exp {-O!(T)v}IJP('>J(T»
I

If v is large, the complex exponential fluctuates rapidly about
o as i changes and the first term on the right-hand side of (30)
may be near 0 instead of the desired a exp {- iXv}rgl(X). A
useful prefiltering for this situation is to estimate v by G, the
lag that maximizes the magnitude of the sample cross-covari­
ance function , and then to carry out the spectral computations
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Let

and the spectral density matrix

the aurocovariance [unction

«x = EX(t)

(33)hy(X) = A (X)!xx(X)A(X)' .

yet) = fexp {i<a, t}}A(a) dZx{a).

X{t) = Jexp {j(a, t}} dZx(a)

where ·Zx(X) is an r vector-valued random function with the
properties

As in Section lll, expressions (32) and (33) may be combined
to see that the entry in row j, column k of the matrix [xx(X)
may be interpreted as the covariance of the series resulting
from passing the jth and kth components of X(t) through nar­
row band-pass filters with transfer functionsA(a) = 0(£1 - X).

The series has a Cramer representation

denote the transfer function of this filter. Then the spectral
density matrix of the series Y(t) may be seen to be

A(X) " Ja(u) exp {-i(X , u}} du

in the case that the integral exists . (The integral will exist
when well-separated values of the series are sufficiently weakly
dependent.) The inverse of the relationship (31) is

cxx(u) = Jexp {i(X, al}!xx(a) da. (32)

X(r) -+ yet) =faCt - u)X(u) du

be a linear filter carrying the r vector-valued series X(r) into
the s vector-valued series Y(r). Let

The limits of integrals will be from -00 to 00 , unless indicated
otherwise.

We will proceed by paralleling the development of Sections
III and IV. Suppose that we are interested in analyzing mea­
surements made simultaneously on r series of interest at loca­
tion t , for all locations in some subset of the hypercube
o < t" ... , tP < T. Suppose that we are prepared to model
the measurements by the corresponding values of a realization
of an r vector-valued stationary continuous spatial series X(t) ,
t E RP. We define the mean

!xx(X) = (2rrfPfexp {-i(X,u}}cxx(u)du, XERP (31)

cxx(u) = cov {X(t + u) , X(t)}

E dZx{X) = o(X)cx dX

cov {dZx(X), dZx(IJ.)} = o(X - 1J.)!xx(X) ax du .

If yet) is the filtered version of X(t), then it has Cramer
representation

X{t) m IJ. + P, sin (Olt +£1,) + ... + PK sin (OKt + aK) + e(t)

with IJ., P, , O. ,£11 , ... ,PK, OK, O'K unknown. The estimation
of these unknowns and [••0..) is considered in Whittle [49] .
It allows us to handle hidden periodicities.

IX. VECTOR-VALUED CONTINUOUS SPATIAL SERIES

In this sect ion we move on from a consideration of real­
valued discrete time series to series with a more complicated do­
main , namely p-dimensional Euclidean space , and with a more
complicated range, namely r-dimensional Euclidean space. This
step will allow us to consider data such as: that received by an
array of antennas or seismometers, picture or TV, holographic,
turbulent field .

Provided we set down our notation judiciously, the changes
involved are not dramatic. The notation that we shall adopt
includes the following: boldface letters such as X, a, A will
denote vectors and matrices. A' will denote the transpose of a
matrix A, tr A will denote its trace, det A will denote its de­
terminant. EX will denote the vector whose entries are the
expected values of the corresponding entries of the vector­
valued variate X . cov {X, Y} = E{(X - EXXY - EY)'} will
denote the covariance matrix of the two vector-valued variates
X, Y (that may have complex entries). t, u, X will lie in p­
dimensional Euclidean space, RP, with

t " o. .... , tp) dt =dt, ... dt p

u " (UI, •• • , up) du = du• . . . dup

X= (XI> • • . , Xp) dX = dX, . .. dXp

(X, t) = X,r, + + Xptp

(X, u) =X'u, + + Xpup

lui =(ur + + u~)1/2

IXI= (Xf + + X~)1/2.

on the data X(t) , set - IJ), see Akaike and Yamanouchi [53]
and Tick [54 J. In general , one should prefilter the X(t) series
or the Set) series or both, so that the relationship between the
filtered series is as near to being instantaneous as is possi ble.

The most important use of the calculations we have described
is in the identification of linear systems. It used to be the case
that the transfer function of a linear system was estimated by
probing the system with pure sine waves in a succession of
experiments. Expression (29) shows , howe ver, that we can
estimate the transfer function , for all X, by simply employing
a single input series Set) such that f~P(X)"* o.

In some situations we may have reason to believe that the
system (26) is realizable that is a(u) = 0 for u < O. The factor­
ization techniques of Wiener (36) may be paralleled on the
data in order to obtain estimates of A(X), a(u) appropriate to
this case, see Bhansali [55]. In Sect ion IX, we will discuss a
model like (26), but for the case of stochastic Set).

Another useful linear model is

X(t) =Od'. (t) + . . . + 0K'h:{t) + e(t)

with If;" (r), .. . ,'h:{t) given functions and 01>"', OK un­
known. The estimation of these unknowns and fuCA) is con­
sidered in Hannan [44 J and Anderson [45]. This model
allows us to handle trends and seasonal effects.

Yet another useful model is
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We tum to a discussion of useful computations when values
of the series X(t) are available for t in some subset of the
hypercube 0 < t, ,' .. , tp < T. Let ¢(T)(t) be a data window
whose support (that is the region of locations where ¢(T)~ *"
0) is the region of observation of X(t) . (We might take ¢( (t)
of the form ¢(tlT) where ¢(t) .. 0 outside 0 < t.. . . . , tp < I.)
We consider the Fourier transform

Result a') suggests estimating the mean ex by

(35)

Result b') suggests the consideration of the periodogram matrix

as an estimate of fxx(X) when X*" O. From b') its asymptotic
distribution is complex Wishart with I degree of freedom and
parameter fxx(X). This estimate is often inappropriate because
of its instability and singularity. Result c') suggests the con­
sideration of the estimate

(37)ff)(X) =r l t 1f)(>I(T»

where J is chosen large enough to obtain acceptable stability,
but not so large that the estimate becomes overly biased .
From c') the asymptotic distribution of the estimate (37) is
complex Wishart with J degrees of freedom and parameter
fxx(X) . In the case J .. I this asymptotic distribution is that
of fxx(X)x~JI2J. Result d') suggests the consideration of the
periodogram matrices

drpC>") =fX(t)¢(T)(t) exp {-I(X, t)} dt

based on the observed sample values.
Before indicating an approximate large sample distribution

for d;P(X), we must first define the complex multivariate
normal distribution and the complex Wishart distribution. We
say that a vector-valued variate X, with complex entries, is
multivariate complex normal with mean 0 and covariance
matrix 1: when it has probability density proportional to
exp {-XT1;""" I X}. We shall say that a matrix-valued variate is
complex Wishart with n degrees of freedom and parameter 1:
when it has the form X,X{ +... + XnX,r, where XI, . . . , Xn
are independent multivariate complex normal variates with
mean 0 and covariance matrix 1:. In the one dimensional case,
the complex Wishart with n degrees of freedom is a multiple of
a chi-squared variate with 2n degrees of freedom.

In the case that well-separated values of the series X(t) are
only weakly dependent, the d;P(X) have useful asymptotic
properties as T -+ 00. These include:

a') d;P(O) is asymptotically multivariate normal with mean
j¢(T)(t)dtex and covariance matrix (21ft f ¢(T)(t)2 dtfxx(O);

b') for X*" 0, dnX) is asymptotically multivariate complex
normal with mean 0 and covariance matrix

(39)

(21ftf ¢(T)(t)2 dt fxx(X);

c') for >I(T) -+ X *" 0, with >I(T) - XIe(T) not tending to 0
too raj,idly• I <t < k < J, the variates d¥)(AI(T».· . . ,
dJrT)(X (T» are asymptotically independent multivariate com­
plex normal with mean 0 and covariance matrix

(21ftf ¢(T)(t)2 dt fxx(X);

d') if ¢f)(t)¢f)(t) =O. for all r, I <I <k <J, and UX*"O
the variates

dl)(x,n =fX(t)¢f)(t) exp H(X. tl}dt (34)

1.. I, . .. , J are asymptotically independent multivariate com­
plex normal with mean 0 and respective covariance matrices
(21ft H(T)(t.n2dtfxx(X),; = I.···,J.

Specific conditions under which these results hold are given
in Section XV. A proof is given in the Appendix.

Results a'), b') are forms of the central limit theorem. In
result d') the Fourier transforms are based on values of X(t)
over disjoint domains . It is interesting to note, from c') and
d') that asymptotically independent statistics may be obtained
by either taking the Fourier transform at distinct frequencies
or at the same frequency, but over disjoint domains.

I .. I, • • . •J as estimates of fxx(X), X*" O. The estimate

J
f¥l(X) .. r l "EJf)(A.;)

/-1

will have as asymptotic distribution r ' times a complex
Wishart with J degrees of freedom and parameter fxx(X) fol­
lowing result d'). We could clearly modify the estimates (37).
(39) by using a finer spacing of frequencies and by averaging
periodograrns based on data over nondisjoint domains. The
exact asymptotic distributions will not be so simple in these
cases.

The method of fitting finite parameter models, described in
Section VII, extends directly to this vector-valued situation.
Result b') suggests the replacement of the likelihood function
(25) by

n det txx (2;S;8r
0<,,<8/

. exp {-tr4~e;S)fxxe;S;8r} (40)

in this new case for some large values SI • . . . ,Sp such that
there is little power left beyond the cutoff frequency
(21fStIT• . . . , 21fSpIT). Suppose that e is the value of 8
leading to the maximum of (40). Under regularity conditions,
we can show that eis asymptotically normal with mean 8 and
covariance matrix 2'1l'T-IA- t(A + B)A-I where if A/Ie,B/1e are
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' drxdll

row t, column k of A, B

for some s vector IJ and some s X r matrix-valued function
a(u). The model says that the average level of the series X(t)
at position t, given the series S(t), is a linear filtered version of
the series Set). If (41) is a stationary series and if A(A) is the
transfer function of the fIltera(u), then (42) implies (51)

. 1(p-1)/'l(lAlluDfxx(A) diA l.

The simplified character of fxx(A) in the isotropic case makes
its estimation and display much simpler. We can estimate it
by an expression such as

• dAn+1 • • • dA p •

We see that we obtain the spectral density of the marginal
process by integrating the complete spectra! density. The same

(271)....J..JCXx(UI>.•. , u", 0, •. . , 0)

. exp {-i(AIUl + . . . + Anu,,)} dUI' • • du"

=J.Jfxx<1I.t,· . " An , An+!, ' .. ,Ap )

CXx<u) = (271)P/'lluj(1-p )/1 l~ IAIP/2
o

X. ADDITIONAL REsULTS IN THE SPATIAL SERIES CASE

The results of the previous section have not taken any essen­
tial notice of the fact that the argument t of the random func­
tion under consideration is multidimensional. We now indicate
some new results pertinent to the multidimensional character.

In some situations, we may be prepared to assume that the
series X(t) , t E RP, is isotropic, that is the autocovariance
function cxx(u) = COy {X(I + u),X(t)} is a function of lu i only .
In this case the spectral density matrix fxx(A) is also rotation­
ally symmetric, depending only on 111.1 . In fact (see in Bochner
and Chandrasekharan [58, p. 69)

fxx(A) =(271fP!2IAI(1-p)!2 1~ lulP/2

o

•1(p-1)/'l (IAllul)cxx(u) dlul (50)

where I/I;(t) is the Bessel function of the first kind of order k.
The relationship (50) may be inverted as follows,

r l i: Il1]o!(T)
j-I

where the >.I(T) are distinct, but with I>.I(T)I near 111.1. There
are many more )./(n with I)./(nl near 111.1 than there are )./(n
with >.I(T) near A. It follows that we generally obtain a much
better estimate of the spectrum in this case over the estimate in
the general case. Also the number of >.I(T) with I>.I(T)I near 111.1
increases as 111.1increases . If follows that the estimate formed
will generally be more stable for the frequencies with [AI large.
Examples of power spectra estimated in this manner may be
found in Mannos [59].

Another different thing that can occur in the general p
dimensional case is the definition of marginal processes and
marginal spectra. We are presently considering processes
X(rl> .. . , tp). Suppose that for some n, 1 ... n < p, we are
interested in the process with t"+I' . .. , tp flxed, say at 0, ... ,
0. By inspection we see that the marginal process X(r!> ... , I" ,
0, . .. ,0) has autocovariance function cxx(u!> ..• , u" , 0 , . . . ,
0). The spectral density matrix of the marginal process is,
therefore,

(42)

(41)

(43)

(44)

[
s et )]

X(t)

E{X(t)IS(u), u ERP} =IJ + ja(t - u)S(u) du

e(r) = X(t) - IJ - ja(t - u)S(u) du

satisfying a linear model of the form

Cx =IJ + A(O)cS

fxSO\) =A(A)fss(A).

If we define the error series £(t) by

with C.bj(rx) the entry in row a column b of

f(rxr1 a~~~) f(rxf1 .
I

In a number of situations we find ourselves led to consider
an (r +r) vector-valued series,

then the degree of fit of the model (42) may be measured by
the error spectral density

f..,(A) =fxx(A) - fxs(A)fss(Ar1fsx(A). (45)

The relationships (43)-{45) suggest the estimates

A (T)(A) = f.@(A)fJsT)(Ar l (46)

IJ(T) = c1n - A(T)(O)ciT) (47)

f~P(A) - f11](A) - f.@(A)fJsT)(Af1fJJ?(A) (48)

respectively. The asymptotic distributions of these statistics
are given in [26).

If there is a possibility that the matrix f.~p(A) might become
nearly singular , then we would be better off replacing the esti­
mate (46) by a frequency domain analog of the ridge regression
estimate (Hoerl and Kennard [56), Hunt [57), such as

f!;cA)[f~'p(A) +uri (49)

for some k > 0 and I the identity matrix. This estimate in­
troduces further bias, over what was already present, but it is
hoped that its increased stability more than accounts for this .
In some circumstances we might choose k to depend on Aand
to be matrix-valued.
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remar k applies to the Cramer representation for

X(tl> ' .. . i«, 0,' . . ,0) =J.Jexp {i(t,X1+ . .. + tnXn)}

Vector-valued series with multidimensional domain are dis­
cussed in Hannan (44) and Brillinger [26] .

XI. ADDITIONAL RESULTS IN THE VECTOR CASE

In the case that the series X(t) is r vector-valued with r > I,
we can describe analogs of the classical procedures of multi­
variate analysis including for example ; i) partial correlation,
ti) principal component analysis, iii) canonical correlation anal­
ysis, iv) cluster analysis, v) discrintinant analysis, vi) multi­
variate analysis of variance, and vii) simultaneous equations.
These analogs proceed from c') or d') of earlier section. The
procedures listed are often developed for samples from multi­
variate normal distributions. We obtain the time series pro­
cedure by identifying the d¥>O!(T», I = I, . . . , J or d¥>O" j),
I = 0, .. . ,J - I with independent multivariate normals having
mean 0 and covariance matrix (21ft f !fl(T>(t)2 dt fxx(X) and
substituting into the formulas developed for the classical situa­
tion . For example, stationary time series analogs of correlation
coefficients are provided by the

Rjk(X) =lik(X)/.,ffiJ(X)!kk(X)

- cov {dfT)(X), df>(X)}/'Ivar d?>(X) var df>(X)

the coherency at frequency X of the Ith component with the
kth component of X(t), where lik(X) is the entry in row I,
column k of !xx(X) and d?>O') is the entry in row I of d¥>(X)
for I, k = I ," ' , r. The parameter R/k(X) satisfies 0 .;;
IRjkO.)1 .;; I and is seen to provide a measure of the degree of
linear relationship of the series X/(t) with the series Xk(t) at
frequency X. Its modulus squared, lRik(X)12 , is called the
coherence . It may be estimated by

Rfr(X) = !/{>(X)/V!f>(h)~P(X)

where r/J>(X) is an estimate of !;k(X),
As time series papers on corresponding multivariate topics,

we mention in case i) Tick [601, Granger [611, Goodman
[621, Bendat and Piersol [631, Groves and Hannan (64) , and
Gersch (65) ; in case ii) Goodman [66] , Brillinger [67] , [20J,
and Priestley et al. [68]; in case iii) Brillinger [671, [201,
Miyata [691, and Priestley et al. (68);in case iv) Ligett [70];
in case v) Brillinger (20); in case vi) Brillinger (71) ; in case
vii) Brillinger and Hatanaka (72) , and Hannan and Terrell (73) .

Instead of reviewing each of the time series analogs we con­
tent ourselves by indicating a form of discrintinant analysis
that can be carried out in the time series situation. Suppose
that a segment of the r vector-valued series X(t) is available
and that its spectral density matrix may be anyone of !,(X),
i = 1, ' " ,I. Suppose that we wish to construct a rule for
assigning X(t) to one of the !t(X).

In the case of a variate U coming from one of I multivariate
normal populations with mean 0 and covariance matrix 2:/,
i = 1 ••• ' Qr n tn m n n rHcr";1"n lnAt;nn nT'nrp"h,,.p i ll; tn i1pfinp Q
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discriminant score

-t log det 2:;- t u"2:i 1U

for the i th population and then to assign the observation U to
the population for which the discrintinant score has the highest
value (see Rao [74, p. 488]). The discriminant score is essen­
tially the logarithm of the probability density of the i tlt
population.

Result 2) suggests a time series analog for this procedure . If
tlte srctral density of the series X(t) is !t(X), the log density
of dk >(X) is essentially

-Iog det Ji(X) - tr IJl)(X)!t(Xr'. (52)

This provides a discrintinant score for each frequency X. A
more stable score would be provided by the smoothed version

-r' log det [,(X) - tr fJl)(X)!/(Xr l

with fJlji(X) given by (37) or (39). These scores could be
plotted against X for i = I, " ',I in order to carry out the
required discrintination. In the case that tlte Ji(X) are unknown,
tlteir values could be replaced by estimates in (52).

XII. ADDITIONAL RESULTS IN THE CONTINUOUS CASE

In Section IX, we changed to a continuous domain in con­
trast to the discrete domain we began with in Section III. In
many problems, we must deal with both sorts of domains,
because while the phenomenon of interest may correspond to
a continuous domain, observational and computational con­
siderations may force us to deal witlt the values of tlte process
for a discrete domain. This occurrence gives rise to the com­
plication of aliasing. Let Z denote tlte set of integers, Z =
0, ±I, . . '. Suppose X(t) , t E RP, is a stationary continuous
spatial series with spectral density matrix fxx(X) and Cramer
representation

X(t) =fexp {j(a, t)} dZx(a).

Suppose X(t) is observable only for t E Zp. For these values
oft

X(t) =J exp {i(a, t)} L dZx(a + 2ltj).
(-IT,lTf ie zP

This is the Cramer representation of a discrete series with
spectral density matrix

L fxx(X + 2lfj).
/ezp

We see that if the series X(t) is observable only for t E ZP, tlten
tltere is no way of untangling tlte frequencies

X+2ltj,/EZP.

These frequencies are called tlte aliases of tlte fundamental
frequency X.

XIII. STATIONARY POINT PROCESSES

A variety of problems, such as tltose of traffic systems ,
queues, nerve pulses , shot noise, impulse noise, and micro­
scopic theory of gases lead us to data tltat has tlte character of
times or positions in space at which certain events have oc­
r UM"Pn W,. hi'"" nnw tn i nciirJlt inp' hnw t h,. fnnnn b < WP. hAV"
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We may compute Fourier transforms for different domains in
which case we define

q>(A, I ) " J4>y>U) exp {- i(A, tl}dX ( t). (61)

sx is called the mean intensity of the process ,

dCxx(u) dt =cov {dX(t +u) , dX(t )} (54)

IxxC~)" (2ttfP Jexp {-i(A, ul} dCxx(u) (55)

It follows that

_
dC..J./:.::.k(..:...U..:...)_+~CJ!...C:.::.k_d_u =Pr [event of sort I in

ck (t + U, t + U + du] given an event
of sort k in (r, t + dtll . (62)

In the case that the processes Xj(t) and X k(t) are independent ,
expression (62 ) is equal to cjdu .

If the derivative Cjk(U ) .. dCjk (u )/du exists for u ~ 0 it is
called the cross-covariance density of the two processes in the
case I ~ k and the autocovariance density in the case I " k, For
many processes

dCI/(u) =cj6 (u) du + cl/(u) du

and so the power spectrum of the process Xj (t ) is given by

fl/(A) • (2tt)-P [ cJ+Jexp {-i (A, ul}cl/(u) dul
For a Poisson process cl/(u) = 0 and so IXX(A) =(2tt)-Pex .

The parameter (2tt)Plxx(0)/cx is useful in the classification
of real-valued point processes . From 1)

var X(T, .. . , T) - (2tt)pTPfxx(0).

It follows that, for large T, (2tt)Pfxx(0)/cx is the rat io of the
variance of the number of points in the hypercube (0, T]P for
the process XU) to the variance of the number of points in the
same hypercube for a Poisson process with the same intensity
«x- For this reason we say that the process X(t) is under­
dispersed or clustered if the ratio is greater than I and over­
dispersed if the ratio is less than I .

The estimation procedure described in Section XI for models
with a finite number of parameters is especially useful in the

The change in going from the case of spatial series to the
case of point processes is seen to be the replacement of X(t ) dt
by dX(t ). In the case that well-separated incre:ne~ts of the
process are only weakly dependent, the results a )-d) of Sec­
tion IX hold without further redefinition .

References to the theory of stationary point processes in­
clude : Cox and Lewis [75], Brillinger [761. Daley and Vere­
Jones [771, and Fisher [78]. We remark that the material of
this section applies equally to the case in which dX(t) is a
general stat ionary random measure, for example with p, r » I ,
we might take dX(t ) to be the amount of energy released by
earthquakes in the time interval (t, t + dt) . In the next section
we indicate some results that do take note of the specific
character of a point process .

XIV. NEW THINGS IN TIlE POINT PROCESS CASE

In the case of a point process, the parameters ex, Cxx(u)
have interpretations further to their definitions (53), (54).
Suppose that the process is orderly, that is the probability that
a small region contains more than one point is very small.
Then , for small dt

Cjdt » E dXlr),;, Pr (there is an event of type I in (t, t +dt]].

It follows that Cj may be interpreted as the intensity with
which points of type i are occurring. Likewise, for u ~ 0

dCjlc(u) dt = cov {dXjU + u) , dXk(t)}

'" Pr [there is an event of type I in
( r + U, t + u +du] and an event of type k in
(r , t +dtlJ - CJCk dt du o

(53)

(60)

(59)

ex dt = E dX(t)

de(t) " dX(t) - [Jl +JaU - u) dS(U)]dt.

We next indicate some statistics that it is useful to calculate
when the process X(f) has been observed over some region.
The Fourier transform is now

dfl(A) "J 4>(T)(r)exp {-i(A, tl}dX(t)

for the data window 4>(T)(t)whose support corresponds to the
domain of observation. If r " I and points occur at the posi­
tions 1'1, 1'2, • • • , then this last has the form

1jl(Tl(TI) exp {-.o, TIl} + Ijl(T)(1'2) exp {-i(A, T2l} + ... .

... [exp {i~ptp} - I]
lAp

• dZX(A.. . . • , Ap ) (56)

dX(t) cJexp {i<A, t>}dZX(A) dt (57)

E{dX(t)!S(u) , u ERl'} c [Jl +JaCt - U)dS(U)] dt , (58)

This last refers to an (r + s) vector-valued point process. It
says that the instantaneous intensity of the series X(t ) at posi­
tion t, given the location of all the points of the process S(u),
is a linear trans1ation invariant function of the process S(u) .
The locations of the points of X(t) are affected by where the
points of S(u) are located. We may define here a stationary
random measure de(t) by

presented so far in this paper must be modified to apply to
data of this new character.

Suppose that we are recording the positions in p-dimensional
Euclidean space at which events of r distinct types occur. For
f = I , · · ·, r let X~t) = X~t.. · · " tp ) denote the number of
events of the I th type that occur in the hypercube (0, tl] X
... X (0, tp I. Let dX~r) denote the number that occur in the
small hypercube (t .. t , + dtt! X . .. X (tp , tp +dtp I. Suppose
that joint distributions of variates such as dX(tll, . . . , dX (l ' )
are unaffected by simple trans1ation of t l , . . • t , we then say
that X(t) is a stationary point process .

Stationary point process analogs of definitions set down
previously include
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for some nonnegative integer k, and finally Zx(A) is a random
function satisfying

where «x is an r vector, exx( ') is an r X r matrix of tempered
distributions, FXX (X) is a nonnegative matrix-valued measure
satisfying

E dZx(X) = Ii0..) eXdA (68)

cov {dZx(X), dZx(,u)}= Ii (A- j.I) dFxx(A) du. (69)

The spatial series of Section IX is a random Schwartz dis­
tribution corresponding to the functional

BRlLLINGER: FOURlER ANALYSIS OF STATIONARY PROCESSES

point process case as, typically, convenient time domain
estimation procedures do not exist at all. Results of applying
such a procedure are indicated in [79].

XV. STATIONARY RANDOM ScHWARTZ DiSTRIBUTIONS

In this section, we present the theory of Schwartz distribu­
tions (or generalized functions) needed to develop properties
of the Fourier transforms of random Schwartz distributions.
These last are important as they contain the processes dis­
cussed so far in this paper as particular cases. In add ition they
contain other interesting processes as particular cases, such as
processes whose components are a combination of the processes
discussed so far and such as the processes with stationary in­
crements that are useful in the study of turbulence, see
Yaglom [801. A further advantage of this abstract approach is
that the assumptions needed to develop results are cut back to
essentials. References to the theory of Schwartz distributions
include Schwartz [81] and Papoulis [82] .

Let :D denote the space of infinitely differentiable functions
on RP with compact support. Let S denote the space of in­
finitely differentiable functions on RP with rapid decrease,
that is such that if ¢(q)(t) denotes a derivative of order q then

lim (I + I tl)n¢(q)(t) ..... 0 for all n, q.
Itl--

and

cov { X (¢), XCVi)} = cxx(¢ • Vi1

=J«I>(-a)'I' (-a) dFxx(a)

X(¢) =J«I> (-a) dZx(a)

fO + Ia I)-I: dFXX(a) <ee

1639

(64)

(65)

(66)

(67)

A continuous linear functional on :D is called a Schwartz dis­
tribution or generalized function. The Dirac delta function
that we have been using throughout the paper is an example.
A continuous linear functional on :D is called a tempered
distribution .

Suppose now that a random experiment is being carried out,
the possible results of which are continuous linear maps X
from :D to L 2 (P), the space of square integrable functions for a
probability measure P. Suppose that r of these maps are col­
lected into an r vector, X(¢). We call X(¢) an r vector-valued
random Scnwarrz distribution . It is possible to talk about
things such as E X(¢) , cov { X (¢ ), X(1/I)} in this case. An im­
portant family of transformations on :D consists of the shifts
S" defined by S"1>(t) = 1>(t + u), t , u E RP. The random
Schwartz distribution is called wide-sense stationary when

E X(S"¢) = E X(¢)

cov {X(S"¢), X(S"1/J)} =cov {X(¢), X(1/J)}

for all u E RP and ¢, 1/1 E:D. It is called strictly stationary
When all the distributions of finite numbers of values are in­
variant under the shifts.

Let us denote the convolution of two functions ¢, 1/1 E:D by

¢ • Vi(t) =f1>(t- u)~ du

and the Fourier transform of a function in S by the corre­
sponding capital letter

«I>(X)=f<fl(u) exp {-i (X, u)} du

X(¢) =fX(t)1>(t) dt

for ¢ E :D. The representations indicated in that section may
be deduced from the results of Theorem I. It may be shown
that Ieof (67) may be taken to be 0 for this case.

The stationary point process of Section XiI is likewise a
random Schwartz distribution corresponding to the functional

X(¢) =f ¢(t) dX(t)

for ¢ E :D . The representations of Section XII may be deduced
from Theorem I. It may be shown that Ie of (67) may be
taken to be 2 for this case.

Gelfand and Vilenkin [84] is a general reference to the
theory of random Schwartz distributions. Theorem I is
proved there.

A linear model that extends those of (42) and (58) to the
present situation is one in which the (r + s) vector-valued sta­
tionary random Schwartz distribution

[
S(¢)]

X(¢)

satisfies

E {X(¢) IS(Vi),1/JE :D }= j.IJ<fl(t)dt + S(¢ • a)

= j.L«I>(O) +f«I>(-a)A(a)dZs(a). (70)

(63) suggesting that the system may be identified if the spectral
density may be estimated. We next set down a mixing assump-

In the case that the spectral measure is differentiable this last
implies that

then we can set down the following Theorem.
Theorem 1: (Ito [83J, Yaglom [80].) If X(¢), ¢ E:D is a

wide-sense stationary random Schwartz distribution, then

E X(¢) = exf <fl(t)dt

fxs(A) =.4. (A)fss(A) (71)
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tion, before constructing such an estimate and determining its
asymptotic properties.

Given k variates XI, ...• X" let cum { X I •. . . ,X,,} denote
their joint cumulant or semi-invariant. Cumulants are defined
and discussed in Kendall and Stuart [85] and Brillinger [20].
They are the elementary functions of the moments of the
variates that vanish when the variates are independent. As
such they provide measures of the degree of dependence of
variates. We will make use of

Assumption 1. X(ifl) is a stationary random Schwartz dis­
tribution with the property that for ifl l. · · .• ifl" E S and
al ,··· ,Qk = 1,'" ,r;k= 2, 3, ' " I

cum {X
G1
(~d," .• XG,,(cjl,,)} =r.J4>1 (-al) .. .

. 4>"_l(-at-l)4>,,(a l + .. . +at-l)

. !G""G,,(a l, ' ..• at-I) da l . .. da"-I (72)

with

(I + Ia l I)-m, . . . (I + Iat-I n-m"-I I!G,'''G"

. (a l, '" •at-I) I<L"

for some finite mi •...• m"_1>L".
In the case that the spectral measure Pxx (A)is differentiable.

relation (65) corresponds to the case k = 2 of (72). The char­
acter of Assumption I is one of limiting the size of the cumu­
lants of the functionals of the process X(~). It will be shown
that it is a form of weak dependence requirement, for func­
tionals of the process that are far apart in t , in the Appendix.
The function f G, ' '' G'' (). I, .. . ,)." -1) appearing in (72) is called
a cumulant spectrum of order k, see Brillinger [86] and the
references therein . From (66) we see that it is also given by

cum {dZG, (AI) • . . . , dZ
G
,,( )." ) } = 6 (AI + ... + ).")

·!G, ...G,,().I , ... • )."-l)d).1 · ··dA". (73)

The fact that it only depends on k - I arguments results from
the assumed stationarity of the process.

Let ifl(Tl(t) = ~tIT) with ifl E ~. As an analog of the Fourier
transforms of Sections IX and XII we now define

dfl(A)=X(exp {-i(A, ')}cjl(Tl) (74)

for the stationary random Schwartz distribution X(cjl). We can
now state the following theorem.

Theorem 2: If Assumption I is satisfied, if dfl().) is given
by (74) and if T I>I(n - A"(n I ..... "", I .;; j < k <. J, then
1}-4) of Section IX hold.

This theorem is proved in the Appendix . It provides a justi­
fication for the estimation procedures suggested in the paper
and for the large sample approximations suggested for the dis­
tributions of the estimates.

We end this section by mentioning that a point process with
events at positions T", k = I,'" may be represented by the
generalized function

the sampled function of Section III may be represented by the
generalized function

L XU)6(t- j)
j---
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and that a point process with associated variate S may be
represented by

see Beutler and Leneman [87] . Matheron [92] discusses the
use of random Schwartz distributions in the smoothing of maps.

XVI. HIGHER ORDER SPECTRA AND NONLINEAR SYSTEMS

In the previous section we have introduced the higher order
cumulant spectra of stationary random Schwartz distributions.
In this section we will briefly discuss the use of such spectra
and how they may be estimated.

In the case that the process under consideration is Gaussian.
the cumulant spectra of order greater than two are identically
O. In the non-Gaussian case, the higher order spectra provide
us with important information concerning the distribution of
the process. For example were the process real-valued Poisson
on the line with intensity «s, then the cumulant spectrum of
order k would be constant equal to CN(21T)1-". Were the
process the result of passing a series of independent identically
distributed variates through a filter with transfer function
A(A), then the cumulant spectrum of order k would be pro­
portional to

A(Al ) .. . A(A"-I)A (-AI - .. . _)."-1).

Such hypotheses might be checked by estimating higher cumu­
lant spectra.

An important use of higher order spectra is in the identifica­
tion of polynomial systems such as those discussed in
Wiener [88] and Brillinger [86] and Halme [89]. Tick [90]
shows that if Set) is a stationary real-valued Gaussian series. if
E(t) is an independent stationary series and if the series X(t)
is given by

X(t) = /J +f aCt- u)S(u) du

+11 bet - u. t - u)S(u)S(u) du du +E(t) (75)

then

tWA) = A(- A)!ss().)

!ssx()../J) =28(-)., -/J)!SS(A)!ss{IJ)

where

A(A)= fa(u)exp {-iXu}du

B(A./J)=II b(u. e) exp {-i(Xu + IJU)} du d»

and !ssx<A, IJ) is a third-order cumulant spectrum. It follows
that both the linear transfer function A()') and the bitransfer
function B(A, /J) of the system may be estimated. from
estimates of second- and third-order spectra, following the
probing of the system by a single Gaussian series. References
to the identification of systems of order greater than 2. and
to the case of non-Gaussian Set) are given in [861 .

We turn to the problem of constructing an estimate of a kth
order cumulant spectrum. In the course of the proof of
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Theorem 2 given in the Appendix. we will see that

· (-a l - ••. -a"-I - X")f., ....,,(a l ••••• a"-I)

· da l • •• da"-I

· dfll . .. dfl"-I [., .... ,..<X I , . •. • X"-I),

for Xl + +X" = 0

for Xl + +Xk *' O.

=TPJ- .J<1>1 «31) ••• <1>"-1 «3"-1) <1>"

• (-fll - . • • -fl" -I - T(X I + .. . + X") f. , "

· (Xl + T-Ifll •... • X"-1 + rlfl"-I) dfll dfl"-I

- TPr.J<1>1 «31) •• • <1>"-1 «3"-1) <I>,,(-fl l - • •• _fl"-I)

when the supports of ¢I, . . . • 1/1"-1 are farther away from that
of ¢" than some number p. This means that the distribution e
has compact support. By the Schwartz-Paley-Wiener theorem,
e is, therefore. the Fourier transform of a function of slow
growth, say f. , ....,,(XI , ... • X"-I) and we may write the rela­
tion (72) . In the case that values of the process X(¢) at a dis­
tance from each other are only weakly dependent, we can ex­
pect the cumulant to be small and for the representation (72)
to hold with (73) satisfied .

Proof of Theorem 2: We see from (66) and (73)

cum { d~;)(X I ), . .. • d~;)(X") }

=f.. J<I>\T)(al - XI) ... <l>k~~(a"-I - Xk-I)<I>~t)

It follows from this last that the standardized joint cumulants
of order greater than 2 tend to 0 and so the Fourier transforms
are asymptotically normal.

1 of

¢I.· ..• 1/1" E iJ

APPENDIX

{

(21T)P(" - I ) f 4l(T)(t)" dt f., ...•,,0,I • . . . • X"-I).

cum {d~;)(XI), . . . •d~;)(A")}-

O.

Suppose that no proper subset of XI • . . . , X" sums to O. It
then follows from the principal relation connecting moments
and cumulants that

is continuous in each of its arguments. Being a continuous
multilinear functional it can be written

. dt f., ...•,,(XI • • • • • X"-I)

provided XI + . . . + Xk = O. This last one suggests the use of
kth order periodogram

I~~'.k(XI • •. . • X"-I) = (21T)-P("-I) (f¢(T)(t)"dt)-1

. d~;)(XI) ... d~~~l (X"-I)

X d~~)(-XI _ • .• _Xk - 1) (76)

as a naive estimate of the spectrum f., ....,,(XI, • • •• AIr-I) pro­

vided that no proper subset of XI •..•• X"-1 sums to O. From
what we have seen in the case k = 2 this estimate will be un­
stable . It follows that we should in fact construct an estimate
by smoothing the periodogram (76) over (k - I )-tuples of fre­
quencies in the neighborhood of XI • .. . , X"-I , but such that
no proper subset of the (k " I)-tuple sums to O. Details of this
construction are given in Brillinger and Rosenblatt [91] for
the discrete time case. We could equally well have constructed
an estimate using the Fourier transforms d¥)(X, j) based on
disjoint domains.

We begin by providing a motivation for Assumption
Section XIV. Suppose that

cum { X. , (¢I).· . . , X . ,,(¢,,) }.

C., .... ,,(I/II ~ ¢1 ~ .. . ~ 'ilk)

where c., ....k is a Schwartz distribution on iJ(RPk), from the
Schwartz nuclear theorem. If the process is stationary this
distribution satisfies

C., ... .,,(S"I/II ~S"¢2 ~ . . . ~S"I/Ik) = c.,...."
'(¢I ~¢2~'" ~¢,,).

It follows that it has the form

e(J¢(t + u l
•• • • • t + u"-I. t) dt)

for ¢ E iJ(RP") where e is a distribution on iJ(RP(" - Ilj.
Now consider the case in which the process X(¢) has the

property that

cum { X. , (¢I).· . . ,X.,,(¢,,)} = 0

(I)

(2)

(31

(4 1

(5)

(6]
[71

[81

(91

[IO!

[111
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Ab,trrlCt-A lIltoria1 review of the de and Ie eleclJic.<lriv. fldd lapre­
_ted, The pi is to preent fuDdamenDi concepu, principle COIl­
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plete drlore I)'Ilem la cIJIcu..t a10ng with drJore.oyllem chuacteriallca
md methodJ for analyzing perfomance. Finally, I0Il1. appIicatlon
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l. INTRODUCTION

THE GROWTH of electric drives has closely paralleled
the growth of automation in industry. Electric-drive
systems provide a convenient means for controlling the

operation of industrial machinery . The high reliability and
great versatility of electric drives has resulted in their wide­
spread application. In size, electric drives range all the way
from fractions of one horsepower up to thousands of horse­
power . Speeds range from stalled positioning systems up to
I5 000 revImin and higher .

Historically, the first electric-drive system to gain real prom­
inence was the Ward Leonard System, patented by H. Ward
Leonard in the 1890's. The history of de electric drives pro­
ceeded from the basic Ward Leonard principle to various modi­
fications thereof, in approximately the following steps :

I) rheostat control of generator field ;
2) tandem field rheostat control of generator field and

motor field ;

17I1.r Invlt.d paper I.r 011< 01 a _ri., plann.d on toptc.r 01 grneral tn­
terest-« tn« Editor.

ManUlCript recelv.d March 16, 1973; t .....d April ~6 , 1974 and
AlII\11l 6, 1974.

lb. authon are with the Reliance Electric Company, On-eland,
Ohio44117.

3) thyratron control of generator and motor fields and later
thyraton control of the armature voltage of small dc
motors;

4) ignitron and mercury pool control of the armature voltage
of de machines too large for thyratrons ;

5) magnetic amplifier control of generator field and motor
armature voltage; and

6) thyristor control of generator and motor fields and later
thyristor control of armature voltage.

During the latter part of the era of the thyratron, the tran­
sistor started to replace vacuum tubes in drive regulators.
Now solid-state electronic circuits are used to implement
special compensating circuits that significantly improve feed ­
back control system response. Microelectronic circuits, par·
ticularly operational amplifiers, are used extensively in drive
systems today. The operational amplifier circuits are the key
to drive-system response , sta bility, and regulation.

The ac motor variable speed drive development is very sim­
ilar to the de.

Initially , the motor alternator set with field rheostats was
used to control the ac motor speed . Then other methods of
ac motor control were developed. They are as follows :

I) wound rotor resistance control to vary speed with torque
load ;

2) methods of replacing the resistor in the rotor with other
rotating machinery or rectifiers to pump the power back
into the ac line;

3) ae motor stator voltage control by the use of resistors,
reactors, magnetic amplifiers, thyratrans, ignitrons, mer­
cury-pool tubes or thyristors ; and

4) replacement of the motor-il1temator set for varying volt­
age and frequency to the motor with static devices.
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ABSTRACT

Stati stical concepts and techniques are basi c to scientific investigation. One concept that enj oys
both a theoretical and a physical existence is the spectrum. A spectrum may be described as
a display of the inten sity or variability of a phenomenon versus period or frequency. Spectra
are parti cul arly useful in the study of sys tems subject to resonance, but have many other uses.
Thi s paper begins with some of the histori cal development of the field , describing a sequence
of contributions by Michel son, Schu ster , Ein stein, Fisher, Bartle tt, Tuke y, and Whittle. The paper
next pre sent s collaborative appli cations to the study of the free oscill ations of the earth, to the
dispersion of seismic surface waves and to nucle ar-m agnetic-resonance spectrosc opy. Finall y, there
is mention of open prob lems and opinions on future direction s.

RESUME

Les concepts et les techniques statistiques sont ala base de toute etude sc ientifique. Le concept de
spectre exi ste tant dan s un cadre theorique que dans un cadre physique. Un spec tre peut etre decrit
co mme etant la representation de l'intensite ou de la variabilite d'un phenomeme en foncti on
de la periode ou de la frequcnce . Les spectres sont particulierement utile s lors de l'etude de
systemes soumis aune reson ance, mai s ont egalernent bien d' autres emplois. Cet artic le debute
par un historique des developpernents dan s Ie domaine, decrivant les contributions de Michelson ,
Schuster, Einstein, Fisher, Bartlett, Tukey et Whittle. Cet historique est suivi dapplications de s
spectres al'etude des osci llations libre s de la Terre, ala dispersion des ondes sismiques de surface
et a la spectroscopie de resonance rnagnetique nucleaire. Entin, questions et opinions pour des
recherches futures sont mentionnees,

1. INTRODUCTION

Gerhard Herzberg 's research field is the analysis of the spectra of molecules in order to
determine their structure. He did this experimentally by passing light through a prism, as
Newton had so many years earlier. On the other hand, statisticians have been concerned
primarily with spectra as theoretical parameters. It is noteworthy for a concept to have
these distinct existences.

To begin, this paper presents a historical development. A recent highlight of the history
of spectra is a just -noticed paper by Albert Einstein . This paper, written in 1914, laid out

' Th is paper is based on the Herzberg Lectu re presented at Carlet on University 14 February 1992. The lecture
is meant as a vehicle for scie ntists speak ing on top ics of general interest to academics and to the publ ic at
large. This research was supponed in pan by the National Scien ce Foundation Gra nt DMS- 8900613.

P. Guttorp and D. Brillinger (eds .), Selected Workv ofDavid Brillinger, Selected Works in Probability 211
and Statistics, DOl 10.1007/978-1-4614-1344-8_ 14, © Springer Sciencc+B usiness Media, LL C 2012
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a practical definition of the power spectrum and a corresponding estimation procedure;
see Yaglom (1987a, b). An estimate of the spectrum of sunspot numbers, computed
as Einstein might have, is provided here. The work of A.A. Michelson, A. Schuster,
R.A. Fisher, M.S. Bartlett, J.W. Tukey, and P. Whittle is highlighted. The second part
of the paper provides applications of spectral techniques to the phenomena of free
oscillations of the earth, of seismic surface waves, and of nuclear-magnetic resonance
spectroscopy. The applications each show a progression from a spectrum analysis to a
conceptual-model-based analysis.

By presenting a combination of history and examples it is hoped to interest other
statisticians in the topic and to display how statistical concepts can interact with scientific
ones.

2. HISTORICAL DEVELOPMENT

Spectrum analysis has its roots in physical science. In 1666, when Newton employed a
prism to cast the rainbow on the wall, he coined the term spectrum and began the formal
study of the subject. His work was part quantitative, with the counting of the number of
colors and the measurement of the widths of the bands; see Topper (1990). In 1801 J.F.W.
Herschel measured the temperature at various positions along the image; see Sobel (1989) .
Herschel's work is more in line with the idea of the spectrum as measuring intensity. A
related important step was provided by Gouy (1886) , who proposed the representation
of light by a Fourier expansion.

2. 1. Early Numerical Work.

Michelson (1892) was concerned with finding a length standard. To this end he caused
particular substances to emit light. Then, via a mirror, he superposed that light on itself
with a time delay. When the superposed light was viewed appropriately, fringes could
be seen. The phenomenon is referred to as interference and is understood if one views
the original signal as cos At and hence after superposition as cos At + cos A(t + u), t
denoting time, u delay and A frequency. As Michelson changed u the clearness of the
fringes varied and was recorded. This gave a function V(u), the visibility curve. A variety
of examples of the visibility curves he found are presented in Michelson (1892, 1902).

Supposing j'(X) = g(A - 1.0) to denote the spectrum (for the moment undefined) of the
light source at frequency A to be narrow and centered at 1.0, Michelson (1891) argued
that the visibility curve is given by

V(u) = J{f cos uA g(A.) dA}2 + {f sin uA g(A) dAV (I)

Michelson called the problem of determining g(.) from V( ·) an inverse problem and
obtained answers by guessing. One of his most important inferences was that the red
hydrogen line was a doublet. This inference of splitting led ultimately to important
developments in quantum mechanics. Rayleigh (1892) however pointed out that the
inverse problem of (I) did not necessarily have a unique solution.

2.2. The Periodogram.

By 1898 Michel son had developed a "harmonic analyser" (Michel son and Stratton
1898). In Michelson (1913) it was employed to compute Schuster's periodogram for
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FIGURE I: The top graph shows monthly relative sunspot numbers for 1750 to 1910. The bottom
graph is the periodogram computed for those data. The periods listed are those that
Michelson (1913) indicated.

some sunspot data studied by Kimura (1913) . For data Y(t), t = 0, . . . , T - 1, and period
r, the Schuster periodogram is given by

pT(") ~ (~ Y(t) cos 2~')' + (~ Y(tl sin 2~r (2)

The square root of this quantity was introduced in Schuster (1898). The basic components,
in (2), are seen to be correlations of the time-series data with cosine and sine functions
respectively. In consequence the periodogram may be expected to highlight periodicities
in a series Y(t) .

Figure 1 presents the stretch of data analyzed by Michelson, and an attempt at repro­
ducing the periodogram he computed. There were 161 observations in the series . The
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periodogram of Figure I was derived numerically, while Michelson employed the har­
monic analyzer. Because Michelson 's analyzer could handle only 80 observations and
there are 161 here, the reproduction is necessarily approximate. The numbers in the figure
are the periods that Michelson mentions, and he seems to mention one for each bump in
his estimate. The main hump, in the center of the picture, is near the traditional period
of II years. The large value near frequency 0 occurs because Michelson did not remove
the mean of the data prior to the Fourier analysis.

2.3. The Dark Ages.

Michelson (1913) listed 11 periods for the sunspot series. In a like manner Beveridge
(1922) lists 19 periods for a wheat price index. Figure 2 provides Beveridge's data and its
periodogram. Many peaks are apparent. Another early researcher eager to ascribe peaks
in a periodogram to periodicitie s was Brownlee (1917), who listed 7 periods for measles
data for 1838 to 1913 and in fact remarked:

It might also be said, in the language of VOLTAIRE, that. if these periods were not found, they
would require to be invented.

Frightening words to a statistician. Of such period-chasing, Tukey (1980) remarks:

More lives have been lost looking at the raw periodogram than by any other action involving
time series!

Something was clearly amiss with the naive use of the periodogram.

2.4. Progress to Understanding.

In fact Schuster (1898) had been concerned with whether peaks in the periodogram
might simply be due to chance. For an individual t he assessed their significance
(prob-value) via the result

{
pT(t) } - x

Prob T >x ~ e ,
ave(P )

(3)

where ave(pT) refers to the average of all the periodogram values.
Later Fisher (1929) recognized that the periodogram was being examined not just at

a single period , but as a function of r. He derived the more pertinent expression for

{
p Te! ) }

Prob max T > X •
r ave(P)

(4)

Both of the results (3) and (4) were derived for the case of Gaussian white noise. It was
for Whittle (1952) to derive the needed result for a stationary time series. He found that
in Fisher's result one replaces pT(t) by pT(t)/f(2rc/t), with j'(») being the true spectrum
of the series.

2.5. Definition and Estimation of the Spectrum.

In a remarkable paper Einstein (1914), mentioning sunspots as a motivating example,
may be seen to define the spectrum and to provide an estimate. He sets down a "mean
value"

c(u) = ave {Y(t+u)Y(u)}
I

214
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FIGURE 2: The top graph shows the wheat price index data of Beveridge (1922). The bottom graph
is the corresponding periodogram, on a linear scale.

and then considers its Fourier transform

fe)...) = Jcos AU c(u) du, (6)

(7)0 < t < T.Y(t) = I: An cos (1t;t) ,
n

referring to the intensity of Y (.).
To estimate f( '), Einstein proposed taking the "mean value" near n of the A~ of the

development

These An are given by

I iT (n1tt)- cos-
T oT
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Sunspots: Einstein estimate
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FI GURE 3: An estimate of the spectrum of the sunspot data, smoothing the A~ of (7) over the
indicated bandwidth .

Here An corresponds to fluctuations at frequency J... = mr./T. For the sunspot data
considered above, the results of computing the A~, employing a discrete approximation
to (8), are given in Figure 3 as the dashed line. The solid line corresponds to taking a
"mean value" over the interval indicated by "bandwidth" on the figure, which produces
a much less pronounced l l-year period (0.09 cycles/year).

As provisos, one has to say that Einstein does not make it clear what the "mean value"
referred to is, nor whether he had stochastic functions in mind . The notation employed
here differs from his.

2.6. The Modern Era.

The modem era of spectrum analysis may be said to begin in the research of Maurice
Bartlett and John Tukey in the late 19408. In particular one may point to the references
Tukey and Hamming (1949), Bartlett (1950), and Tukey (1950). The work of these
individuals provided an effective estimate of the power spectrum of a stationary time
series, given sufficient data. Their research further determined useful approximations to
the sampling fluctuations of the estimates. Figure 4 provides an estimate for the sunspot
data analyzed earlier. The dashed lines provide approximate 95% confidence limits for
each frequency about a heavily smoothed version of the periodogram. From the figure it
is apparent that sunspots are far from having a precise period of 11 years. Examination
of the series itself shows the lengths of the cycles to vary from 7 to 14 years and for the
cycles to be of different shapes.

2.7. Discussion.

It now seems that (6), the formal definition of the power spectrum, is due to Einstein,
216
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Sunspots: spectrum estimate - 95% limits
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FI GURE 4: An estimate of the power spectrum of the sunspot series with (marginal) confidence
bounds indicated.

not Wiener (1930) as had been thought. It also appears that the first effective estimate is
due to Einstein , not Wiener (1930) or Daniell (1946) as might be claimed. However, it
was Wiener 's work that had the influence on the development of the subject. Also some
(Masani 1986) doubt Einstein 's priority.

It needs to be mentioned that various researchers have made notable contributions to
the statistical study of power spectra . One reference to the history and details of others'
work is Yaglom (1987b) . Another reference on the general history of spectrum analysis
is Robinson (1982).

3. SOME APPLICATIONS

Three analyses of scientific data are now presented. This work required close col­
laboration with substantive scientists . The examples have in common: that frequency
analysis elucidates the situation , that a physically based model later provides insight, that
a numerical approach is highly flexible, and that a statistical approach handles error and
uncertainty.

3.1. Free Oscillations of the Earth.

The empirical spectral analysis of the earth 's motion following the great Chilean
earthquake of 1960 is viewed by many as the success story of numerical spectrum analysis
of the sixties. See Tukey (1966), Bath (1974), for example.

After a great earthquake , the Earth "rings" for days at various resonance frequencies
(Press 1965). The particular resonance frequencies depend on the structure of the Earth.
It is this structure which has long intrigued geophysicists and seismologists . In particular
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FIG URE 5: The trace of the great Chilean earthquake, corrected for tides, and the corresponding
periodogram, on a linear scale.

they have studied the inverse problem of inferring the Earth's structure from the resonance
frequencies .

Figure 5 presents a record of the Chilean event recorded at Trieste. The data is
described in Bolt and Marusi (1962) . The lower figure is the periodogram of that
record, graphed against period. (This is the usual seismologist's display.) A variety
of peaks are apparent. Values for the periods may be read off, and it seems that the
values have varying uncertainty. The periodogram is clearly an important display for
assessing the situation, but the trace is far from stationary, and more is needed. In
an attempt to estimate the uncertainty (and this is why the seismologist turned to a
statistician), one is led to the following steps.

The equations of motion of the earth are approximately linear with constant coefficients
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- see Aki and Richards (1980). Such equations have solutions of the form

L:a ke- J3, 1 cos('fk! + <h), t > 0; (9)
k

Jf(Yk)jarT3,

where f (·) is the noise spectrum. The estimate of Yk is more precise for small roo. for
large cu, and for large T.

The derived frequency estimates and associated standard errors can now be taken as
input data to the inverse problem of determining the structure of the earth.

see Hochstadt (1975). One is thus lead to choose estimates of the a, ~, y, 0 so that (9)
is near Y(t) for the given data.

A likelihood-motivated analysis of the Chilean data is carried out in Bolt and Brillinger
(1979), separately by frequency band. The approximate standard deviations of Uk and
PkjT, when derived, are found to have an interesting and intuitive form, Namely they
are both proportional to

3.2. Seismic Surface Waves.

Seismic surface waves are earthquake waves whose energy is trapped near the Earth's
surface. They have the property that their velocity of transmission depends on frequency.
Figure 6 presents an example of the velocity-frequency relationship for one earth model
and Rayleigh waves.

The relationship may be validated by the computation of an empirical dynamic spec­
trum. This is a display of the estimated intensity of the phenomenon as a function of
both time and frequency. A naive way to compute such a spectrum is as

( ~>(I- u) CDS l.ur+ (~>(I- u) sin l.u)'. (10)

where u sums over a restricted time interval. Ridges will appear if the different frequency
components travel with different velocities. Figure 7 presents, at the top, the vertical
displacement trace of the 7 December 1988 magnitude-7.0 Armenian earthquake, as
recorded at Berkeley. Below, on the same time scale, is the corresponding dynamic
spectrum. One sees the lower-frequency components arriving first, about 1000 seconds
after the record starts. In this computation, first a running autoregression was fitted, then
(10) was computed based on residuals. The statistic (10) was then corrected for the
autoregressive fit. This prewhitening and recoloring is done in order to reduce the bias .

The geophysicist and seimologist hope to learn about the structure of the earth from
such data. Figure 8 provides an example of a simple earth model, one of a homogeneous
surface layer above an infinite underlayer. For given values of depth h, compressional
velocities ai, az, shear velocities ~I , ~z, and densities PI, pz one can compute curves
such as the one of Figure 6; see Bolt and Butcher (1960). This suggests that one should
be able to put together the arrival times of the various frequency components with the
theoretical arrival times for a given earth model parameter 8, and thereby estimate 8.

In particular one can proceed as follows: determine i(A), the time at which the fre­
quency A component arrives. One knows the distance x from the observatory to the
earthquake location. Thus velocities [; (A) = x ji(A) may be computed. Next , suppose
one measures the nearness of model parameter 8 to the true value by the sum of squares

L:)[;(A) - U(AI8 )}Z,
A.
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FIGURE 6: Velocity as a function of frequency for an earth model of the form of Figure 8.

summing over the various A, and then estimates eby the minimizing value. Figure 9 gives
the V(A) and the fitted curve V(Ale) for the Berkeley station . The fit appears reasonable,
particularly at the lower frequencies where the signal-to-noise ratio is greatest. One can
aggregate the data for several stations to obtain a group solution and further obtain
estimated standard errors for the parameters. Details are provided in Brillinger (1993).
A full likelihood procedure for the semiparametric modelling of the seismogram itself is
currently under development with B.A. Bolt.

In this example the idea of spectrum has been central to the development of an
estimation procedure for parameters which have direct physical interpretation.

3.3. NMR Spectroscopy.

Nuclear magnetic resonance (NMR) is a quantum-mechanical phenomenon. A res­
onance effect occurs in particular substances when an oscillation frequency of a sur­
rounding radio frequency field coincides with a nuclear precession frequency of the
substance. The purpose of the spectroscopy is to infer the structure of the substance. The
data consist of the fluctuating voltage response yet) to an applied magnetic field X(t) .
Various inputs X(·) are employed, e.g., a pulse, sequences of fluctuating pulses, and sine
waves. Becker and Farrar (1972) is one review paper.
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F IGURE 7: The top graph gives the trace of the 7 December 1988 earthquake in northern Armenia.
Below, on the same time scale, is a dynamical spectrum expressed as a contour plot.

Ernst and Anderson ( 1966) proposed the computation of the periodogram

(~>Ct) cos Atr+ (~>(t) sin Atr
o :::; A :::; n, for such data following a pulse input. An example is given in Figure lO in
the case of a simulated model for the substance 2,3-dibromothiophene (2,3-DBT). The
top graph is the response itself, the bottom the absolute value of the Fourier transform
of the response. There are two doublets. These result from two hydrogen atoms of the
2,3-DBT. It is much easier to read the lower graph than to puzzle out the structure from
the upper one.
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FIGURE 9: For each frequency, the points give the velocity at which the dynamic spectrum is largest.
The line is the fitted curve.

Later Ernst (1970) and Kaiser (1970) proposed taking the input X(·) to be random or
pseudorandom and employing a form of cross-correlation analysis. Figure 11 shows 4
seconds of actual response of an experimental sample of 2,3-DBT to binary-noise input.
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FIGURE 10: Top: plot of response of a simulated 2,3-DBT molecule to a pulse. Bottom: the absolute
value Fourier transform of the response .

The lower part of the figure provides the square root of the periodogram. As in Figure 10,
two doublets are apparent, but reading their locations is not easy. Since the input X(·)
is available, cross-spectral analysis is a more appropriate tool. Figure 12 provides an
estimate of the modulus of the transfer function of the system,

Ilyx (A-)I
l xxC'A) ,

where lyx(A-) is obtained by smoothing the cross-periodogram

(2n1T' (~Y(t)e -'~) (~x(t)e'~)
223
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FIGURE II: Top graph: response of 2,3-DBT to white-noise input. Bottom graph: absolute value of
the Fourier transform of the response.

with lxxo a similar smoo thed periodo gram of X( ·). This figure is much nearer to the
ideal of Figure 10.

In fact there exists substantial theory concern ing the NMR phenomenon . In particular
it may be described by the Bloch equations, which take the form

dS(t)
-- = a + A S(t) + BS(t )X (t ),

dt

Y(t) = Re{cTS(t )}
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FIGURE 12: Graph of the statistic ( I I).

for S(-) a 16-dimensional state vector with complex entries, and X(·), Y(-) corresponding
input and output of the system. The parameters of interest are entries of A, B. The vector
c is given by the experimental setup. The parametrization of A, B is provided by the
chemist.

The estimation problem may now be approached by nonlinear regression. For given
A, B and initial state 8(0), the solution of (12) may be determined numericalIy in the
case that the input XU is piecewise constant, as it is here. Then the parameters may be
estimated by putting the data Y(.), t = 0, . .. , T - I, up against the value determined from
(13) and the numerical solution. In this way one obtains estimates and associated standard
errors. Further details on this work may be found in BrilIinger and Kaiser (1992).

3.4. Discussion.

These examples each involve a progression from a naive (spectral) analysis to a
likelihood analysis founded on substantive subject matter. This last leads to efficiency,
uncertainty estimation, and the ability to make general statistical inferences.

Because of the complication of the basic circumstances, it seems necessary to colIab­
orate with substantive scientists on these problems. In these cases it was not the data
analysis that suggested the model, rather it came from the scientific background.

4. FUTURE PROSPECTS

So what is ahead for spectrum analysis in the pot of gold at the end of the rainbow?
Spectrum analysis has already found many uses , and there are quite a number of questions
it can address . John Tukey, for example, has emphasized its role in the discovery of
phenomena; see Tukey (1966, 1980). Tukey (1980) contains other speculations on the
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future of time series. Brillinger (1987) mentions a variety of specific problems related to
Fourier inference. They are repeated below and some additional ones added.

Turning to future possibilities, there are near-immediate generalizations of the vast
majority of time-series techniques to other types of "function" data, such as images,
point processes, moving surfaces, and tesselations.

One can speculate on various aspects of contemporary and future research on the
spectrum analysis of time series . Many times it has been said that statistical spectrum
analysis is part art and part science. The need to be an artist is likely to diminish
as automatic bandwidth selection algorithms are developed, analagous to those coming
into use in density and nonparametric regression estimation. For making inferences it is
necessary to have some indication of the sampling variability of the statistics computed.
Various jackknife, perturbation and bootstrap techniques are under development. It will
be some time before that research is finished, for procedures will be required for infinite­
dimensional parameters and nonstationary series. In connection with nonstationarity, it
may be remarked that effective procedures for estimating spectra from short stretches of
data are needed, because many series appear to be at most locally stationary. Perhaps those
estimates will come from semiparametric approaches involing both finite- and infinite­
dimensional parameters. An examination of the contemporary literature shows much work
being carried out on non-Gaussian series, on long memory series, on nonlinear models,
and on self-similar processes. Finally, new scientific devices, such as lasers and nonlinear
crystals, are leading to high-quality data sets with unusual inference problems.

Some particular research problems related to the topics of the paper are:

1. Diagnostics, influence, robust/resistant procedures.
2. Missing values, quantization, jitter.
3. Estimation of dimension, e.g ., by Ale.
4. Inverse-problem formulations, e.g., ridge regression.
5. Local asymptotic normality, contiguity.
6. Adaptive procedures.
7. The absorption model.
8. Signal-dependent noise.
9. Law of the iterated logarithm, large deviations, rates of convergence for the

estimates.
10. Random-effects models.
11. Vector-valued cases.
12. Partially parametric formulations, e.g., the periodic case.
13. Models for point-process and telegraph-signal cases.
14. Expansions for distributions.
15. Distributions of test statistics, e.g ., of

or of

sup
p,"-

IE pte-ilJY(t)1

T-I

Lp2t
1=0
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16. Properties of the estimate s when the model is untrue.
17. The broadband-signal case.
18. Parametric analysis of the frequency case.
19. Approximate distribution of the likelihood-ratio test statistic for the presence of a

plane wave crossing an array.
20. Sampling properties of the NMR estimates.
2 1. Techniques for handl ing small amounts of nonstationary data and massive amounts

of regular data.
22. Uncertainty evaluation for the non-i.i.d, case.
23. Errors in variables.
24. Irregularly observed values.
25. Parametric models for nonstandard processes.
26 . Asymptotics when the parameter dimension tends to infinity.
27. Characterization of covariance and spectrum functions for O-l-valued serie s.
28. Characterization of the spectrum of a stationary point process.
29. Properties of i.i.d.-motivated techniques in dependent case s.
30. Aliasing regions for higher-order spectra of stat ionary spatial processes .
31. Simulation of processes with given higher-order spectra.
32. Combination of groups of experiments.
33. Populations that are mixtures.
34. Design, e.g., of NMR input.
35. Study of causal networks of general processes.
36. Less-biased estimates of coherence.
37. Detection of long lags between series.
38. Properties of empirical Fourier transforms of unusual processes.
39. Stable algorithm s for fitting ARMAs.
40 . Employment of contemporary optimization methods.
41. Special models for abstract-valued processes.
42. Automatic determination of bandwidth parameters.
43. Modelling of wildly nonstationary values, e.g. , TV signals or computer tasks.
44 . Analysis of qualitative-valued processes.
45. How to define "trend" and "period".
46. Fast computation of Fourier transforms for irregularly placed data.
47. Assessing goodness of fit for process models.
48. Measuring association of abstract-valued processes.
49. Strong approximations for statistics based on process values.
50. Detecting change in, or the presence of, a signal.
51. Incorporation of symmetries and invariance.
52. Analysis of censored data.
53. Improved estimates.
54. Relating processes observed at different locations.
55. Study of multivalued random functions.
56. Stati stical aspects of determining g (. ) from V( ·) in (I ), including the case when

V (0) is unestimated.

5. CONCLUSIONS

Stati stics has long had an intimate connection with the physical sciences. Some statis­
tical concepts, like the spectrum, have been moti vated by physical considerations; others
have arisen abstractly and gone on to influence practice. (The cross-spectrum and bispec­
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trum might be mentioned as examples of the latter.) Statistics researchers benefit from
looking towards science for suggestions of new concepts and techniques. There is often
a further bonus: the scientific circumstance suggests a path towards a solution. Students
are often surprised that statistical concepts have direct physical interpretations.

This paper is part historical and part contemporary collaborat ive research material.
One learns from history. In the case of the present topic one sees the important ideas
of spectrum, direct spectrum estimate, and FFf missed for a number of years. [For a
discussion of the FFf case see Heideman et al. (1984).] It is important to know the
past; otherwise gems are missed. Further, history can be a stimulating pedagogic tool for
introducing the important concepts and ideas, and often the independent reader will find
the original writers much clearer than the later ones.

The applications had in common that a spectral analysis started the investigation, then
substantive subject matter was employed to develop a conceptual model and a likelihood
analysis carried out to complete the work.
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Abst rac t

For a variety of mu sical pieces the follo wing questions a re addressed : Are the power spectra of IIJ form ? Are the
p roc esses G au ssian? Are th e higher-order spectra of Ilffo rm? Are the processes linear? Is lon g-r an ge depend ence present ?
Bo th sco re and aco ustical signa l rep resentations of mu sic ar e di scussed and considered, P a rametric forms ar e fit to
sample spectra. Approximate di stributions of the qu an tities compute d are basic to dr aw ing inferences. In summary, Ilf
seems to be a reasona ble appro ximation to thc overall spectr a of a num be r of pieces selected to be rep resenta tive of
a broad population. Th e checks for Gaussianity, rea lly for bispectrum 0, in each ca se reject that hypothesis. T he checks
for linea rity, really for constan t bico herenc c, reject th at hypoth esis in th e case of th e instantaneous power of the
aco ustical signa l but no t for the zero crossings of the signa l or th e score represen tatio n. © 1998 Elsevier Science B.V. All
rights reserved.

Zu sammenfassun g

Fu r ein e Anzahl vo n Musikstiicken werden die folge nden Frage stellungen be handelt: Gehorchen die Leistungsdichte­
spek tren einem Ilf-Ge setz? Sind die Prozesse gaufsvertei lt? Besitzen die Spektren hoh erer Ordnung IIJ-Form? Sind
die Prozesse linea r? Sind lan gfristige Abha ngig kcitcn vor ha nde n? Sowohl Partituren als auch ak ustische Signa ldarstel­
lun gen von Mu sik werden betrachtet und d isku tier t. Par ametr ische Darstellun gen wer den an Spektren vo n Musterfunk­
tio nen angepafst . Na herungsweise Verteilun gen der berechneten Grofl en sind grundlegend fur statistische Riickschlu sse.
Z usammenfassend scheint eine Ilf Form eine sinnvolle Naherung fur die Spektren einer Anza hl von Stticken zu sein,
die als reprasentativ fur einen gro tlen Bestand au sgewahlt wurden. D ie Te sts bez iiglich Gaulsverteilung (eigentlich
beziiglich verschwi ndendem Bispe k trum) weisen eine solche H ypothese immer zur iick . Di e Tests beziiglich Linear itat
(eigent lich bcziig lich konstantcr Bikohiircn z) weisen die se H yp othese im Fall der M orncn tanl cistung de s akustischen
Signa ls zuruck, nic ht a ber fur d ie N ulld urc hgange des Signa ls oder fur d ie Part itu r. © 1998 Elsev ier Science B.V. All
rights reserved.

Resum e

Les questions suivantes sont po sees po ur une variete de mo rceaux de mu sique: Les spectres de puissa nce sont-ils de la
forme IIJ?Les processus so nt-ils ga ussien s? Les spectres d'ordre superieur sont-ils de la forme IIJ? Les processu s so nt- ils
lineaires? La dependan ce a long terme est-elle presente? Les rep resent at ions de musique sous forme de partitio n et de
signa l acoustiq ue so nt toutes deu x discutees et examinees. Des forme s pa rametriques sont aju stee s a ux spectres
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experimentaux. Les distr ibutions approximatives des quantites calculees sont essentielles pour tirer des conclusion s. En
resume, la forme cn l /f semble etre une approximation raisonn able des spectres globaux d'un certain nombre de
morceaux selectionnes comme rcprescntatifs d'un e popul ation etendue. Les verifications de gaussianite, en verite de
bispectr e nul, rejettent dan s chaqu e cas cette hypothe se. Les verifications de linearite, en verite de bicoherence constante,
rejettent cette hypot hese da ns Ie cas de la puissance instan tanee du signal acoustique mais pas pour passages par zero du
signal ou de la representation par partition. © 1998 Elsevier Science B.Y. All rights reserved.

Keywords: Bicoherence; Bispectrum ; Linear pro cess; Music; Parametric model; Spectral analysis

I. Introduction

What is music? Probably nobody will ever give
a final answer to this question, but something in­
side of us tells us when a sound we hear is music
and when it is not. Most people hear the sound of
cars passing by on a road and do not think it is
music, but it only take s them a moment after
a rad io is turned on to identify the sound coming
out as music. Certain sounds we classify as music
others we do not. In this pap er we examine some
statistical properties of two different numerical rep­
resentations of music to see if we can shine some
light on the property that make s music, music.

We are able to process music in a data analytic
fashion becau se the time is at hand when music can
be treated directly as dat a to be analyzed by con­
tempora ry sta tistical procedures and packages.

The paper begins with a description of the two
basic representations of music, moves on to some
review of previous investigation s, then presents the
results of modeling the second-order spectra and
finally employs higher-order spectr a to assess
Gaussianity and linearity.

The pieces investigated included: Baroque, Clas­
sical, Romantic, Aton al, Spanish Guitar, Jazz,
Latin, Rock & Roll and Hip Hop .

2. Representations of music

Certainly music is sound. Every sound we hear is
the consequence of pressure fluctuations traveling
through the air and hitting our ear drums. The
signal representation takes this property of sound
to represent music as a continuous function.

For years composers ha ve transcribed the music
they hear in their heads using what is known as
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common practice notation (CPN). We use such 'nu­
merical' representations of music for our analyses.

2.1. Signal representation

The function describing the audible pressure
fluctuations of air is called a 'sound wave'. The
energy tran smitted by this 'sound wave' can be
transformed into a voltage Y(t), which will be
a continuous function in time. Compact Disks are
proof of how effective quantized samples of this
function arc. Th is time series Y(t) ,O < t < T , will
be called the signal representat ion of music.
Th roughout this paper we will be using a discrete
version of the function, Y" t = 0,1, ...

When such fluctuations of air are approximately
periodic we hear a sound with a definite musical
pitch . Instruments play different pitches by chang­
ing the fundamental frequency of the 'sound wave'
they are creating [15]. Some cultures, e.g. Western
cultures, have quantized these pitche s and created
'notes'. This has permitted composers to write with
a notat ion that an instrumentalist can then turn
into sounds. Thi s notation provides the other rep­
resentation of music, the score representation.

2.2. Score representation

Most instruments known to us have the capabil­
ity to play different 'notes'. In all 'melodic' instru­
ment s, for example violins, pianos, trumpets, sita rs,
ctc., as mentioned above different notes correspond
to different fundamental frequenc ies or pitches. The
pitch corresponding to 440 Hz has been called
A (concert pitch A). Any frequency that holds a 2":1
relation with A is also called A, but in another
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octave , Western music uses the 12 tone equal-tem­
pered scale in which the frequencies between, say
440 Hz (concert pitch A) and 880 Hz (an octave
above concert pitch A) have been divided into 12
notes corresponding to frequencies with the same
ratio between them. These 12 notes are A, A1! (A
sharp), B, C,0, D, tn, E, F,F1!, G,G1! and that
brings us back to A (an octave above). If you look
at a piano the black keys correspond to the sharps
and you wil1 see a twelve white-black keys pattern
repeating 7 times. Adjacent notes are said to be
a half-step apart or a semi-tone away, see [15].

The human audible range can hear about 4 oc­
taves below concert pitch A and about 6 octa ves
above (this is for the keenest of ears). This means
that there are about 100 notes that we can hear.
Western composers have found a universal way of
representing these notes, namely, what is known as
common practice notation (CPN) . Probably most if
not al1 sheet music you have seen uses this notation,
With this notation a composer tel1s a performer
what pitch his instrument should play. Represent­
ing notes as numbers is now straightforward. The
MIDI standard (see more detail below) assigns to
concert pitch A the number 69 and for every adjac­
ent note adds or subtracts one,

To transcribe a melody we also need the rhythm.
CPN also provides symbols to denote how long
each note is going to be played and also for how
long nothing will be played (rests). In Western
music the time domain is divided into measures
and beats and into sub-beats. For any given song
one could find the smallest subdivision of the
beat. We will call this a tatum (as defined by Hilmes
in his master's thesis [IJ), such that any distance
between any two notes can be represented as
k tatums, k an integer. This is usual1yeasy to do by
looking at the score. As an example consider a song
that has 5 measures . Each measure is divided into
3 beats . Say that a tatum is equivalent to a quarter
of a beat. Then each beat is 4 tatums long, each
measure is 4 x 3 tatums and the song is 3 x 4 x 5
tatums long.

Even with this representation we will not have
a one-to-one correspondence with sounds . Each
note can have millions of different sounds (timbre):
loudness, tremolo, staccato, varying with different
instruments, who's playing (for some it is not hard
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to distinguish the timbre of two different players),
etc, The same occurs for the rhythm: decrescendos,
accelerandos, rubato, swing, etc. Even though
a one-to-one correspondence does not exist we can
make a good approximation using the MIDI stan­
dard.

2.2.1. The MiDI standard
The MIDI (Musical Instrument Digital Inter­

face) standard is a hardware specification and
communications protocol that allows computers,
controllers, and synthesis gear to pass information
amongst themselves, see [13]. MIDI uses repres­
entations based on the concept of notes by defining
a pitch and a velocity (volume) that go on and off.
MIDI is mostly controlled by keyboard instru­
ments which can be represented by a series of
switches. Each separate key is treated as a switch.
When a key is depressed, a Note 011 message is
sent out , indicating the note assoeiated with that
key and with what velocity it was struck. When the
key is released, a Note Off message is tran smitted
with the key number and velocity O. In a similar
way MIDI can be used to go from a score repres­
entation of sound to an acoustic signal. The way
MIDI, together with sound synthesis techniques,
converts scores to music is rather complicated. In
the fol1owing section we present a method of con­
verting a series of notes represented in a MIDI
score to an acoustical signal representation of
a sine tone instrument (i.e. an instrument with no
harmonics).

2.2.2. Time series representation
The time series representation X j , where j is the

tatum number, is defined by X, = note at tatum j.
This representation does not characterize the score
exactly, since it makes no distinction between two
contiguous identical notes with durations d1 and
dz and that note with duration d1 + dz.

As a numerical representation of a note we could
use the MIDI-Note number. In this case an in­
crease of a step would represent a jump to the note
a semi-tone away. This presents a problem when
dealing with rests. Rests do not have Midi-Note
numbers . We could not just assign 0 to rests be­
cause then this would be representing a note corres­
ponding to MIDI-number O. Even though this note
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2.2.3. Marked point process representation
Suppose we ha ve a series of triplets (note, dura­

tion , volume), then we can construct an acoustica l
signal representation via the following definitions:

is below the audible range it does not correspond to
ofrequency thus its cho ice is quite arb itrary since
notes with MIDI-note numbers smaller than I6
cor respond to note s below the aud ible range and
using Eq. (1) below we see that the MIDI-note
number corresponding to 0 frequency is - CfJ. One
way to get around this is to prolong the duration of
note s preceding rests. In a song with few rests of
short duration this would no t make much of a dif­
ference.

An alternative numerical representation, that is
more in accordance with the signal representation, is
using the fundamental frequency of the pitch deter­
mined by the notes. For example a note of MIDI­
number X would be represented by frequency

440 x2( X-6 9l/ 12 = 8.175799 X 2X/12 Hz, (I)

see [15]. In this case frequencies related to rests
could be set to 0 since a sound wave with 0 fre­
quenc y has no fluctuations and thu s is silent. It
would be interesting to note how robust our analy­
sis is to this arbitrary assignment.

(
t - T')Y(t) = ~ V)1~ cos },it - Tj ),

h(. ) = a taper function , (2)

through the speakers of a Spare work-station using
the Matl ab command sound. See Appendix A for
some details .)

One reason the taper function is introduced in
Eq. (2) is to avoid hearing clicks at instantaneous
changes of pitch . It also expresses the restricted
duration of a particular note .

2.2.4. An example
The following is the common practice not ation

(CP N) for the first two bars of Mozart's Sonata in
C-majo r, K545:1

The melody in these two bars is played by the
right hand (shown in the upp er clef). In this case the
tatum would correspond to a six teenth note , or
a quarter of a beat. If the song were played at an
Allegro tempo (about 144 quarter notes per minute)
then a tatum would have a duration of 60 (s)/
144(quarter notes per beat) x 1/4(tatums per beat)
~ 0.10 seconds . The not e and duration in tatum

pairs are the following: (C,4), (rest,4), (E,4), (0 ,4),
(B,6), (C,l), (D,l), (C,8).

The time series representation using MIDI-num­
bers would be:

72, 72, 72, 72, NA, NA, NA, NA,

where Tj is the time of comm encement of the jth
note , }'j is the frequency of the j th note , V j is the
volume of the jth note and (J j is the duration of the
jth note. Here {Tj} will be a point process corres­
ponding to times of jumps between not es. For time
t near Tj the signal will look like a cosine wave of
frequenc y Aj and amplitude Vj. The units t here
could be seconds as well as tatums in which case we
could represent changes in tempo by using time
maps that assign a du ration in seconds to each
ta tum , see [21].

To compute the frequenc y Aj from midi-number
X, we use Eq. (1). (We used this conversion method
to check for mistakes in the data entry. By convert­
ing the entered data and forming the signal produc­
ed by relation Eq. (2) we then played the signal
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76, 76,76,76 ,79 ,79 ,79 ,79,

71,71 ,71 ,71 ,71 ,71 ,

72, 74, 72,72 ,72 ,72 , 72,72,72 ,72 .

Here the NAs represent rests.
The time series representation using frequencies

of the pitches would be:

523,523,523 ,523 ,0,0 ,0,0 ,

659,659 ,659 ,659 , 783, 783,783,783 ,

493,493,493 ,493 ,493 ,493 ,523 ,

587,523 ,523 ,523 ,523 ,523,523,523 ,523 .

1 The actual song starts with a half not e C and no rest. We put
in the rest for illustr ati ve purposes.
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A marked point process representation with time
measured in tatums characterizes the score. For
the sonata we have {rj ,(Vj,Aj,O)}: {0,(l,523,4)},
{8,(l , 659,4)}, {12,(1 , 783,4)}, {16,(1 ,493, 6)}, {22,
(1,523 , I)}, {23, (1,587, I)}, {24, (1,523 , 8)}, (We ha ve
set the volume to 1, this choice is completely arbit­
rary. This part of the score does not ask for certain
notes to be played louder than others, In practice
accents are always present.)

3. Some previous work

Electronic musicians have used random pro­
cesses to create melodies. Completely uncorrelated
processes, with constant spectra, seem to create
'melodies' with no structure, 'Melodies' produced
with random walk s, i.e. spectru m I/f z, seem to be
too predictable. In between these two processes is
so called l /f noise .

Voss studied the po ssibilit y of mu sic having a III
spectrum [22-24]. He took the signal representa­
tion s yet) of a variety of songs and obtained the
'instantaneous' audio power of mus ic. In order to
measure it, the audio signal yet) was passed
through a bandpass filter in the range 100 Hz to
10 kHz. The output voltage was squ ared, and fil­
tered with a 20 Hz low-pass filter. Voss remarked
that correlations of the resulting process represent­
ed correlations of the audio power of successive
notes. For a discus sion of some properties of this
filtering technique see Appendix A.

Another qu antity Voss examined was the 'in­
stantaneous' frequency. He mea sured th is by the
rate , Z (t), of zero crossings of the audio signal.
He remarked that in the case of music , correlations
of Z(t) represented correlations in the frequencies
of successive notes. This is rea son able because if
say frequency A dominates at time t, the signal
will be approximately p COS(At + ¢) and the rate
of zero crossings (or cycles) is }.j2n per unit time.
Of course problems may arise when more than
one stream of notes is pla yed at the same time,
for example in Mozart's Sonata above you ha ve
the right hand pla ying a stream of notes cor­
responding to the melody and the left hand play­
ing a stream of notes cor responding to the ac­
companiment.
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These two methods, of seeking information of the
melody from the audio signal, work well when the
melody is being played by one instrument with no
harmonics, as we see in Fig. 1. In a case where the
audio signal contains more than one instrument
and the sound produced by these instruments con­
tains man y harmonics, these methods do not work
as well. In Fig . 1 we see the 4 time series plots. Th e
first is the score representation, using frequencies,
of the first 10 measures of the melody line of
Mozart's Eine Kl eine Nachtmusik, the second is the
smoothed zero crossings of the signal created using
Eq. (2) on the score representation, the third is the
smoothed zero cro ssing of the audio signal of an
actual orchestra pla ying the song and finally the
fourth plot is the 'instantaneous' power ofthe audio
signal. Notice how well the zero cro ssings method
works when the sound signal con tains only one
instrument with no harmonics. In the third plot we
see that the method does not work well when there
is more than one instrument playing. Notice also
that at the beginn ing of the song, when all the
instruments are playing the same notes (first
4 measures), the method works better than when
the re is more than one strea m present. (See Appen­
dix A for the procedure used to obtain these fig­
ures).

In another form al study of music Hsu and Hsu
[9J study the fract al nature of the intervals between
successive notes. This corresponds to the intervals
in the score representation using the MIDI-note
numbers. If in Eq. (2) we used the MIDI-note num­
bers M j instead of the frequencies Aj, then these
intervals would be defined by l , = M j + 1 - M j for
j = I , .. . ,N - I, whe re N is the number of notes in
the whole piece.

4. Second-order spectra

The second-order spectrum or power spectrum
of a stationary process yet), - 00 < t < 00 , is
given by

cov{yet + u),yet)} = f~cocos(Au)fz(A)d). , (3)

with u the lag. The ph ysical meaning of the spec­
trum is that fz( }.)dA represents the contribution to
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(5)

In the case thnt the stationary process Y, has
mean 0 11 naive estima te of the spectrum is provided
by the pcriodogrum.

Jf(i.) = - '-ldf (i.W ,',T

4./. Estimatesthe variance or power of Y(tl components with
frequencies in the ranges (1. , 1. + d;.) and ( - i.,
- ;. + Ji).

These definitions extend directly to the case of
a locally stationary process. Crudely the (overall)
spect rum of the proccvs Eq. (2) will be proportional

'0

The pcriodogram is an asymptotically unbiased but
inconsistent estimate (unless f lli.) = 0) since
Var[J IU.)] ~flli.) l as T -> 00 .

(4)

where 0( ' ) is the Dirac delta function and the
process will have III spectrum to the extent that
VJa; falls of as 1/) j' The process itself will be locally
stationary with instantaneous frequenc y I j for
r near fj.

where
,

df(i.) = L exp : - ii.l }v,,-, (6)
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If the seri es Y, is mixing (see e.g. cond it ions in
[3J ), the varia tes

JI(A,)!f2(}")' i., = 2m/T for t = 1, 2,... (7)

3. J2(A; a, b, c, \I.) = i."/(1 + \l.Abr,
4. J2(}';a,b, .. . ,\1., fJ, ...)

= (i."/(l + \l.i.bn( I/(1 + fJi.d )').

are approximately ind ependent exponentials wit h
mean 1.

4.2. Parametric modeling

By choice of func tional form an d pa rameter values,
these mo dels a re able to describe a fairly broad
ra nge of behavio r.

In all the models 0 .:; i. .:; 1t with J2 symmetric
and of period 21t. Notice that the first model is the
' II!' noise model.

Voss proposed th at the spect rum of mu sic has
a l!f (or 1/.1) param etric form . Co nsider the prob­
lem of fitti ng parametric mod els to spec tra. We ca n
find estima tes by maximizing the approx imate log
likelih ood

r - I [ I rf;.,)J
LAO) = - I log(J2(A,; 8)) +r2(}";0) ,

4.3. Signal rep resentation

So ngs fro m a variety of mu sical styles were
ch osen in our study of th e po wer spec tru m of th e
signa l represen ta tion . These songs included :

as T -> co, where

I. J2(i.;\I., fJ) = \l. j).P,
2. J2(A;\I., fJ) = \1./( I + }.p),

I I X 0 0
r o[k , I] = 41t - xofh logJ2()';8) ao/logJ2(i,;8) di .. (10)

1. Bar oque: J.S. Bach, Ca ntata N o. 211 (Co ffee
Ca nta ta) BWV 211, Recita tioo: Weml Du mil'
nicht den Coffee and Ca ntata bur lesqu e (Peas­
ant Cantat a) BWV 212, Aria: Heute noch,
Lieber Vater, tilt es doch. Performed by ba ri­
to ne Kevi n McMillan, soprano Dorothea
Roschrnann and L e Vio lins du R oy cha mber
o rches tra .

2. Classical: J .F . H aydn, Son ata in D- mayor Hob.
XV I/37 , Fina le an d Sonata in F-mayor Hob.
XVI/23 , Fina le. Both perfo rmed on Pian o by
Dominique Co rnil .

3. Rom anti c: C. Debussy, Sui te bergamasq ue L. 75,
Passepeid an d Images L. 87, L ent . Both per­
for med on Piano by Z6ltan Kocsis.

4. Atonal: A. Schoenberg, O rchesterst iicke op. 16,
Vorqefiihle an d O rchesterstiicke op. 16,
Peripeti e. Both perfo rm ed by Berl in Phila r­
monte.

5. Span ish G uitar: L. M ilan , Paean No .6 and
Paean No. 5. Both performed on Gui tar by
Andres Segovia.

6. Jazz: Wayne Shorter, Footprints and M iles
D avis, Four . Footprint s performed by Mil es
Davis. Four perfo rmed by Sonny Rollins. In
both cases we recorded just th e head (I n most
Jazz tunes a song starts off with a fixed melod y,
ca lled the head , an d then imp rovisat ion s a re
played).

(9)

(8)
. 2m
1l' =T '

Th e estimate is asy mpto tica lly efficient in the G au s­
sian case.

The goodness of fit of a parti cul a r pa ramet ric
mod el may be assessed by graphing the estimate,
l I(i,), as well as the param et ric esti ma te J2(i" 8)
surrounded by confidenc e bounds fo r the forme r.
This will be done in th e exampl es that follow.

4.2. I . Models for spectra
We consider the followin g models for the over all

power spectru m of mu sic:

see [6]. With 0 est imat ed by (j = arg max, L r(O),
un der certain conditions (includi ng that the trispec­
trum is 0), (j is consis tent and asy mpto tica lly no r­
mal
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7. Afro-Cuban: Juan Mesa, Amalia and Florencia
Calle, Baba Cuello Mao. Both performed by Los
Muiiequitos de Matanza.

8. Rock and Roll: Chuck Berry, Let it Rock and
Chuck Berry, Bye Bye Johnny. Both performed
by Chuck Berry.

9. Hip-Hop/Rap: R. Stewart, E. Wilcox, R. Jack­
son, T. Ha rdson, R. Robin son and J. Martinez,
It 's Jiggaboo Time and If I Were President.
Both Performed by The Pharcyde.

We sampled the audio signal of the mentioned
songs at 8000 samples per second. The sampled
signal was then filtered using the two methods of
Voss described above. It is important to note that
the units of the signal Y , are arb itrary. (See Appen­
dix A for the details of these computations.) First
we determined Y, to be the smoothed zero cross­
ings of the signal. Then we calculated the periodo­
gram of Y, and minimized the negati ve of the ap­
proxim ate log likelihood given in Eq. (8) restricting

Model 1

1()113

-l!l1()ll1
:e
~1()11-1
-c

1()11-3

A to (0,20) Hz since frequencies over 20 Hz where
filtered out. Using Powell's algorithm, see [16J, the
four models were fitted. The results of these fits in
the case of Bach's Coffee Cantata can be seen in
Fig. 2. The goodness of fit may be assessed by the
approximate 95% confidence intervals which are
given as the dashed lines. Model I seems to fit well
here. The same was done for the 'instantaneous'
audio power of the signals, the four models were
fitted. The results of the fits for the Coffee Cantata
can be seen in Fig. 3. Again Model I seems to fit
well.

We fitted the Ilf model for the smoothed zero
crossings obtained from the signal representations
of the 18 pieces listed above . A fit for each style can
be seen in Fig. 4. Approximate standard errors are
calculated using Eq. (10). The I/fmodel appears to
be performing well.

The values obt ained for Pare given in Table 1.
The fraction of points out side the (approximate)
95% interv als ranges from 4.6% to 6.3%.

Model 2

1()113

-l!l1()111
:e
~1()11-1
«

1()11-3

0.05 0.50 5.00 0.05 0.50 5.00

1()113

-l!l1()111
~

~1()11-1
-c

1()11-3

Frequency in Hz.
Beta = 1.19 • Points outside c.L : 5%

Model 3

1()113

-l!l1()111
:e
~1()11-1
«

1()11-3

Frequency in Hz.
Points outside c.i. : 17%

Model 4

0.05 0.50 5.00 0.05 0.50 5.00

Frequency in Hz.
Points outside c.i. : 5 %

Number of points graphed: 1310

Frequency in Hz.
Points outside c.i. : 5%

Fig. 2. Fitted models for the smoothed zero crossings obta ined from Bach's Coffee Canta ta signal.
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Model 1 Model 2
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Frequency in Hz.
Points outside c.l.: 5 %

Number of points graphed : 1310

Fig . 3. Fi tt ed models for th e 'instantaneous' power ob tain ed for Bach' s Coffee Cantata sig nal.

4.4. Score representation

We next looked at the time series expressions of
various songs representative of several styles of
music. In the following list we give the composer,
title of composition, title of the specific part (when
applicable), the key, time signature and tempo
given in the score, and what type of note corres­
ponds to a tatum.

1. Baroque
1.1. J.S. Bach Cant ata No 211 (Coffee Cantata),

Be Silent All, Reeitativo: Wenn du mir nicht
den Coffee, D-major, 4/4, Tempo = 70,
Tatum = 1/16.

1.2. J.S. Bach, French Suites, Suite 11, Courante,
C-minor, 3/4, Tempo = 144, Tatum = 1/8.

2. Classical
2.1. F.J. Haydn, La Roxelane: Air and Vari­

at ions, Theme, C-minor , 2/4, Tempo = ISO
(Allegretto), Tatum = 1/16.

2.2. F.J. Haydn , La Roxelane: Air and Vari­
ations, Var I, C-major, 2/4, Tempo = ISO
(Allegretto), Tatum = 1/16.

2.3. FJ. Haydn, La Roxelane: Air and Vari­
ations , Var II, C-mino r, 2/4, Tempo = 150
(Allegretto), Tatum = 1/16.

3. Romantic
3.1 . Claude Debussy, Suite Bergamasque,

Passepeid, F-minor, 4/4, Tempo = 150 (Al­
legretto rna non troppo) , Tatum = 1/8,
(Note : this is an app roximation to the mel­
ody. Triplet s were ignored and replaced by
the first note.)

4. Spanish Guitar
4.1. Luis de Milan, Pavan no. 5, in Tone VIII ,

"La bella Franccsca" (Fo\. [G vi'] ), G­
minor , Complex meter varies between 2/4
3/4, Tempo = 120 (Allegro Moderato),
Tatum = 1/16.

4.2. Luis de Milan, Pavan no. 6, in Tone VIII,
(Fo\. [G vi' ] ), G-minor, Complex meter
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Frequency In Hz.
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Fig. 4. Fitted I/fmodel for the smoothed zero cross ings of 9 style types.

We used the frequency version of the time
series repre sen tation of the score . Defining Y, as
follows:

with respect to the representation Eq. (2), Y, would
be the )'j of the Tj near t.

First we calculated the per iodo gram of Y, and
min imized the negative of the approximate log like­
lihood give in Eq. (8) ab ove. The results for Bach's
Coffee To cata can be seen in Fig . 5. Again the 1/!
model is fitting well.

va ries between 2/4 3/4 , Tempo = 120 (Al­
legro Moderato) , Tatum = 1/8 .

5. Ja zz
5.1. Miles Davi s, Four, Eb-rnajor, 4/4, Tempo =

178 (Medium Swing), Tatum = 1/8.
5.2. Wayne Shorter, Footprints, E b-major, 6/4,

Tempo = 178 (Medium Swing), Tatum =

1/8. In both case s we use the score of the
head.

6. Lat in
6.1. Perez Prad o, Mambo No. 5, Eb-rnajor, 2/2 ,

tempo = 240, tatum = 1/8.
6.2. Perez Prado, Mambo No. 8, F-major , 2/2 ,

Tempo = 240, tatum = 1/8.

Y, = frequency at tatum t

= 0 if a rest occurred at time t ,

(11)

(12)
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Table 1 Next we fitted the Ilf model to the 12 score
Results of fitting the power spect rum representa tions listed above, The results can be

Song p SE Tot. Pts. %not in c.i.
seen in Fig. 6, Again the Ilf model appears plaus-
ible. The values obt ained for fJ are listed in Tabl e 2.

Baroque 1 1.192739 0.0391 1310 5.0 The lowest was for Four and the highest was for
Baroq ue 2 1.066802 0.0391 1310 5.8 Foo tprints (the two Jazz tun es). Again the Ilfmod el
Classical I 1.190916 0.0276 2621 6.5 appears to be perform ing reasonably,
Cla ssical 2 1.244281 0.0276 2621 5.8
Romantic I 1.185097 0.0276 2621 4.7
Roma ntic 2 1.085337 0.0276 2621 5.7
Atonal I 1.083865 0.0276 2621 4.8 5. Third-order spectra
Atonal 2 1.143627 0.0276 2621 5.2
Spa nish Guitar 1.228339 0.0391 1310 4.6 Non-Ga ussian aspects of music do not appear to
Spanish G uita r 1.236005 0.0391 1310 6.0

have been investigated. In this conn ection theJazz I 1.121480 0.039 1 1310 5.4
Jazz 2 1.217540 0.0276 2621 5.6 bispeetrum and bieoherenee are pertinent para-
Afro-Cuba n I 1.116375 0.0276 2621 5.8 meters. They are useful in both discern ing non-
Afro-Cuban 2 1.169583 0.0276 2621 6.3 Ga ussianity and in examining for nonlinearity,
Rock & Roll 1.000069 0.0276 2621 6.1 Definitions and estimates are given in Appendix A.
Rock & Roll 1.109331 0.0276 2621 5.6
Hip Hop 1.022285 0.0276 2621 5.8 Suppose the process Y, is linear, that is

Hip Hop 1.075118 0.039 1 1310 6.0

Y, = fa,-udDu, (13)

Model 1 Model 2
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Frequency in Hz.
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Points outside c.l . : 4.2 %
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0.05 0.50 0.05 0.50

Frequen cy in Hz.
Points outside c.l, : 6.3%

Number of Points: 143

Frequen cy in Hz.
Points outs ide c .l, : 3.5%

Fig. 5. Fi tted mode ls for the time series representation using frequencies of the score repre sen tat ion of the Coffee Calltata.
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Fig. 6. Fitt ed IIFmodel for the scores of the 12 pieces listed.

where E, is a process with independent increments Table 2

having mean 0, variance (12, and third moment K , Results of fitting the power spectr um

(In the Gaussian case K = 0.) Then the power spec-
fJtrum of Y , is Song SE Tot. Pt s. 0/0 not in c.i.

(12 Baroque 1 1.330 0.1180 143 6.3

f 2(}') = 2rc IA(},)I2 (14) Baroque 2 0.904 0.1080 171 8.2
Cla ssical 1 1.510 0.1590 79 14
Classical 2 1.620 0.1780 63 18

and the bispectrum is Classical 3 1.590 0.1590 79 3.8
Rom antic 1.170 0.0571 613 7.8

K Span ish G uitar 1 1.630 0.1530 85 5.88
f 3(}" J.I.) = (2rc)2A(A)A(J.I.)A(A + J.I.) , (15) Spani sh Gu itar 2 1.540 0.1710 68 5.88

Jazz 1 0.726 0.1250 129 7.8

where Jazz 2 1.670 0.1680 71 8.4
Mam bo 1 0.970 0.0833 288 9.3

A(}.) = f e - ii.UUudU.
Mambo 2 1.240 0.1080 171 9.4

(16)
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is defined an d const an t for this linear process
ca se, see [2]. ln thc case that the process Y, is

T he spect rum may be estimated a nd exa mined to
sec if it is 0 (Gaus sian process). Supposing that the
denominator does no t vanish, the bicohcrcncc

rj' l"{'r.~ibk {probabilistic properties of 1Y, l and
{Y_,} the same }. the imagina ry par t of the bispcc­
tru m is identica lly O. Sec [4]. Reversibility is not the
property of most music.

T he process {2l will ha ve nonze ro bispcctrum to
the exten t that the frequencies i.j , present for I near
Tjo satisfy relations such as i.j + i I = i' j"'

Under regulari ty conditions (including stationar­
ity an d mixing)estimates fl(i.),fJU.Il) of the power
and bispcctra may be const ructed that arc asymp­
totically independent an d normal. T hese may be
used to form the bicohcrcncc estimate. IB1(i.,/1)12,

whose approximate statistical properties are in­
dicated in Append ix A.

Fo r a given sample value of the bicoherence,
18 rp., /1)1 2

, one may com pute the approximate
prob -valuc of achieving a value as large or
larger in the null Ga ussia n case. T he null dis­
tr ibut ion is an exponential. sec Appendix A. Such

(17)

( IX)

" I I I
(21'1}2 i f 2 /IP:2U + /1)P:2'

If. for example, A(i.) = l /i,m and the process is
linear , then the power spectrum is 1/2:rrif an d the
bispcctrum
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lhe , nw<>l hc'<llCm c",,, ,ng, of lhe Co!k.. C"",,,,,,.
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pro b-valuc s arc contoured in Figs. 7-9. for the Cof
je c Call/IIII/.

Likewise to assess the possibility that the basic
process is linear . one may compute

(19)

with the average over all bicohcrcnce estimates and
thcn compute the approxi mate thc prob-valuc cor­
responding to the deviate I IBf(i.,}/lll - ;-l Again
thc prob-valucs a re contoured for the Coffee Call­
Ill/II. Details of the approximation arc given in
Appendix A.

Th ese procedures. of using test statistics that
arc functions of (;..11), rather than some global
statistic, have the advantage of indicating the char­
actor of departure if the null hypothesis appears
rejected.

Nikias and Mendel [ 14] prov ide a review of
higher orde r spectra and some of their uses.

Sqrt{Bicoherence}

5. J, Siglllli representation

We checked for non-Gaussianity and nonf!n­
carny in the time series used in Section 4. T hc series
studied. Coffee ClI/lllIln, lasted 64.15 s and was sam­
pled at 8000 Hz. Aftcr applying thc Voss filter every
200th observation was retai ned. 2566 data points
in aiL T he spectra were estimated from this data.
T he resulting estimates can be seen in Figs. 7 and 8.
For the zero crossings data, Gaussianity is being
rejected. hut no t linearity. Fo r the instantaneous
power both Gaussianity and linea rity arc being
rejected.

5.1. Score representation

Some simila r computations were done for the
SCOfe representation. In estimating the bicohcrcncc

Examining Gaussianity
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we took 10 stretches. As a consequence the
stretches were short . ranging from 12 to 120 points.
Thc resulting estimates for thc score of the Coffee
Camala can be seen in Fig. 9. now graphing rhc 50
and 90% contours. In this case Gaussianity ap­
pears rejected but not linearity.

6. Discussion and conclusions

We began with the question of what makes mu­
sic, music. To address it we considered whether
certain parametric forms fitted well, whether asso­
ciatcd timc series were Gaussian and whether they
were linear. Broadly ranging selections of pieces
were analyzed. Thc model II! ' with fi ncar I ap­
peared to lit the scores well. as opposed to alterna­
rives allowing more curvature or flatness at low
frequencies, The sume can be said for the derived
processes of zero crossings and instantaneous

power. ln each. the hypothesis of Gaussianity
(really 0 hispcctrum) was rejected. The conclusions
regarding linearity were not so clear.

We have acted as if the processes involved were
stationary. To the extent that they arc not. the
parameters and estimates may be treated as if they
arc focussed on an average of instantancous spectra
obtaining for the processes involved. The stuustical
packages of Mutlab and S-plus were employed.

ln future work the trispcctru m will be con­
sidered. It will allow further asscsmcnt of linearity.
Other values for the passband of the lowpass filter.
here 20 Hz. will also beconsidered. The signal com­
putations were carried through only for Coffee
Call1ala. The othcr pieces will be studied as well.

Wc thank David Wessel and Steven Clark for
a variety of helpful remarks . We thank Ofcr Licht
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for help in entering the CD music . The work of
David R, Brillinger was supported by NSF grants
DMS-9300002 and DMS-9625774. The work of
Rafael A. Irizarry was supported by a National
Science Foundation Graduate Research Fellow­
ship.

for I = 0, ... ,L - 1.Then form the third-order peri­
odogram of the lth stretch,

where h3 = Sh(U)3duo The estimate of the bispec­
trum is now

Appendix A

A.I . Third-order spectra
(A.6)

(A.1)

Th e bispectrum at bifrequency ()" fl) is defined by

(A.7)

One reference is [11]. In form ing the estimate of the
bicoherence, the power spectrum is estimated by
similarly aver aging the second-order periodograms
of the L str etches.

In our empirical work no taper was employed,
ra ther the series were prefiltered by fitt ing an
autoregressive, prior to computing the spectral
qu antities. Such a linear filtering retains the °bi­
spect ral property of a Gaussian process and the
linearity property of a linear process .

A. I.2. Statistical properties of the estimates
Suppose that the bispectrum is estimated, as

above, by averaging the thi rd-o rder periodograms
of L contiguous segmen ts of length V of a series of
length T = LV. Then, for ()., fl) not on the bound­
ar y of the fundamental domain,f[(.1., fl) is asymp­
tot ically complex normal with mean f3()', fl) and
variance

(A.2)

We provide the basic definitions and properties
in order that others can directly reproduce such
a study.

A.I .I. Definitions and estimates
Bispectral Analysis is of use in discerning non­

Gaussianity of a time series and also in examining
the series for nonlinearity.

Let Y" t = 0, ± I , ± 2, ... , denote a sta tionary
time series. Let it have mean C b co-variance func­
tion C2(U) and third moment function

f( ,1 II) = _ l_ ", ,,, c (u v )e - i(ui. +v p )
3 ' w (2re)2L..L.. 3 , ,

and the bicoherence by

(A.3)

The fund amental domain of these parameters is
o:;::; fl :;::; )., J. + fll2 :;::; re.

There are a variety of fashions by which the
bispectrum may be estimated. A convenient one is:
let the data be broken into L stretches of length V,
so that T = LV. Next compute the tapered Fourier
Transform of the lth stretch ,

provided V , LIV ---+ CfJ as T ---+ CfJ. It is not ewor thy
that for con sistenc y a large number, L , of individual
stretches will be req uired. Further estimates at dis­
tinct frequencies are asymptotically independent.

It follows that when f 3(.1. , fl) = 0, If I(/., flW is
asymptotically

(A.8)

dV(kl) = V~ l h(~)Y .e - iv .l
, v~o V + 1 LV+ v

(A.4)

which result may be used to exam ine the hypothesis
f 3()" fl) = 0. In the examples, prob-values based on
this distribution are graphed,
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In the case thatf3(}. ,II) =I0 the variate Iff'{A,IIW
will be approximately normal with mean If3(A,II)12

and variance

In other words the large sample distribution of
the bicoherence estimate

trum-based tests for the non-Gaussianity and non­
linearity of a stationary process. Rao and Gabr
structured the problem as assessing whether all
components of a multivariate normal have the
same mean. Hinich (see also [5J) based tests on the
interquantile range of sample bicoherence values .
Terdik and Math [20J note that the bispectrum of
a process , such that the linear predictor is the
quadratic, satisfies a particular algebraic identity
and use this to assess possible linearity.

(A.10)
A,2. Obtaining the numerical representations

and variance

will be approximately exponential with mean

This approximation follows via the delta method.

A.2.2. Score representation
A piece of music was selected . Then using an

EMU Proteus Keyboard, a Mac Power Book 520
and a program we wrote in Max (see [19J for some
information on Max) we saved the midi-numbers
and duration into text files. We used MIDI-note
number 36 (lower than the lowest note in any of
the score) to denote rests . These files where made

A.2.1. Signal representation
A song was chosen from a Compact Disc. It was

down-loaded into a Mono .au file sampled at
8000 Hz using a CD-ROM and software for the
Spare machines. To go from stereo to a mono
signal the two channels were averaged. Our statist­
ical analysis was done mostly by S-Plus which
cannot read .au files. We altered Thau's program
xplay, a sound player for Sun Spare machines,
which can handle Al FF, .au, and some WAVE
files, so that it would save a file with the numbers
corresponding to the sampled signal in a file read­
able to S-Plus . Due to technical details of the way
Compact Discs are recorded and the way xplay
works the units of the sampled audio signal are
completely arbitrary.

To obtain the smoothed zero crossings or 'in­
stantaneous' pitch and power from the sampled
signals we wrote C programs that performed the
zero crossing calculation, the bandpass filtering, the
squaring and the lowpass filtering relatively quick­
ly. The filtering was done by calculating the FFT of
the signal , setting the coefficients of the pertinent
frequencies to zero and then performing the inverse
FFT.

(A.14)

(A.II)

(A.13)

(A.12)

2 /16 .!': I If3(}"IIW
/1~ L 2nfz(A)f2(/l)f2(A+ 11)

when f3(A ,II) =I O. The quantity IBT(}.,II)I will then
be approximately normal with mean IB(A, II)I and
variance

/1 6 V 1

/1~L 2n

when f3(}" 11) = O. It will be approximately normal
with mean, the bicoherence,

A.I.3. Related work
Rosenblatt and Van Ness [I8J developed vari­

ous asymptotic properties of bispectral estimates,
as did Brillinger [2J for higher-order spectral esti­
mates. Huber et al. [10J considered the estimation
of the bicoherence and in particular suggested ap­
proximating its distribution, when the population
value was 0, by a X~. Elgar and Guza [7J investi­
gated the accuracy of this approximation. Rao and
Gabr [17J and Hinich [8J proposed global bispec-

1/16 I V

2/1~ 2nT
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readable to S-Plu s and Matlab using Pearl. Using
S-Plu s we crea ted various functions that con­
verted the raw data into objects of the time
series and marke d point process represe nta tions,
respectively.

A.3. Notes 0/1 the Voss techniqu e

Suppose the signal may be written

Y(t) = R(t)cos(Z(t)t + rjJ(t)) (A.1S)
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1
Some Examples of Empirical Fourier

Analysis in Scientific Problems

DAVID R. BRILLlNGER University of California, Berkeley, California

" One can FT anything-s-often meaningfully ."

J. W . Tukey

1. INTRODUCTION

As a concept and as a tool, the Fourier transform is pervasive in applied
mathematics, computing, mathematics, probability and statistics as well as
in substantive sciences such as chemistry, geophysics and physics. This
chapter presents a review of such applications and then four personal ana­
lyses of scientific data based on Fourier transforms. Specific points made
include: Fourier analysis is conceptually simple, its concepts often have
direct physical interpretations, useful statistical properties are available,
and there are various interesting connections between the mathematical
and physical concepts.

By Fourier analysis is meant ,the study of spaces and functions, making
substantial use of sine and cosine functions . The subject has a long and
glorious history. In particular, fundamental work has been carried out by
both mathematicians and applied scientists. Fourier analysis remains of
interest to mathematicians because generalizations seem inexhaustible and
because there are continual surprises. Classic works by mathematicians
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2 Brillinger

include: Wiener (1933), Bochner (1959, 1960) and Zygmund (1968). These
particular authors are concerned with functions on the line or on a general
Euclid ian space. Works on extensions to general groups include: Loomis
(1953) , Rudin (1962), Hewitt and Ross (1963), Katznelson (1976). More
recent books are Terras (1988) and Korner (1989), the former particularly
addressing the nonabelian case , the latter presenting a variety of historical
examples and essays on specific topics.

In contrast, the Fourier transform is of interest to statisticians because it
proves inordinately useful in the analysis of data and eases the development
of various theoretical results. Noteworthy contributions to statistics have
been made by Slutsky (1934) , Cramer (1942), Good (1958), Yaglom (1961),
Tukey (1963), Hannan (1965, 1966), Priestley (1965), Bloomfield (1976),
Diaconnis (1988, 1989). Slutsky developed some of the statistical properties
of the Fourier transform of a stretch of time series values . Cramer set down
a Fourier representation (see Sec. 4.1) for stationary processes. The repre­
sentation admitted many extensions and made transparent the effect of a
variety of operations on processes. Good and Tukey indicated how the
transform could be computed recursively and hence quickly in certain cir­
cumstances. Yaglom extended the domain of application to processes
defined on compact and locally compact groups. Hannan considered prob­
lems for other groups than Yaglom and presented material relevant to
practical applications. Priestley provided a frequency domain representation
to describe nonstationary processes. Bloomfield made complicated results
available to a broad audience. Diaconnis considered symmetric and permu­
tation groups and the analysis of ordered data.

Particular uses of the empirical Fourier transform include: the develop­
ment of estimates of finite dimensional parameters appearing in time series
models (Whittle (1952), Dzhaparidze (1986), Feuerverger (1990», the assess­
ment of goodness of fit of models (Feigin and Heathcote (1976», and the
deconvolution of random mea surements (Fan (1992». Fourier analysis has
a special place amongst the tools of statistics for the concepts often ha ve
their own phy sical existence.

There are special computational, mathematical and statistical properties
and surprises associated with the Fourier transform. These include: the
central limit theorems for the stationary case with approximate indepen­
dence at particular frequencies, the existence of fast Fourier transforms,
(Good (1958), Tukey (1963), Cooley and Tukey (1965), Rockmore (1990»
the need for convergence factors , the ideas of aliasing.

Section 2 concerns some particular physical situations. Section 3
contains pertinent background from analysis. Section 4 contains stochastic
background . Section 5 presents analyses of four data sets from the
natural sciences and the author' s experience. The examples highlight
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Examples of Empirical Fourier Analysis 3

approximation, shrinkage estimation, the method of stationary phase, cen­
tral limit theorems and uncertainty estimation. The first example, concern­
ing crystalographic data, involves the empirical representation of a basic
function on the plane by an expansion in sines and cosines. This makes
sense because of periodicities inherent in the crystal structure. The example
also involves shrinkage of the coefficients of the expansion in order to obtain
improved estimates. The second analysis is of a record of an earthquake that
took place in Siberia as recorded at Uppsala, Sweden. The oscillatory char­
acter of the data may be understood heuristically via the method of sta­
tionary phase, to be described below. A model of the transmission medium
is constructed and model assessment carried out by a sliding or dynamic
Fourier analysis. This last may be viewed as a form of wavelet analysis. The
third analysis, concerned with nuclear magnetic resonance (NMR) spectro­
scopy, employs Fourier analysis to obtain physical insight into the behavior
of an input-output system, and then makes use of cross-spectral analysis to
estimate the transfer function of the system . The periodogram of the resi­
duals is employed to assess the fit. The final example involves both wavelet
and Fourier analysis. It is concerned with the question of whether a micro­
tubule moves steadily or via jumps. The Fourier analysis is employed in this
case to obtain uncertainty estimates in the presence of stationary noise .
Section 6 contains conclusions and indicates open problems.

2. SOME PHYSICAL EXAMPLES OF FOURIER ANALYSIS

Cycles, periods, and resonances have long been noted in scientific discussions
of astronomy, vibrations, oceanography, sound, light and crystalography
amongst other fields. In technology oscillations occur often for example in
telephone, radio, TV and laser engineering. Natural operations occur com­
monly that correspond with linear and time invariant systems as defined in
Section 3 below . These are the eigenoperations of Fourier analysis.

Fourier analysis is sometimes tied specifically to the physics of a problem.
For example Bazin et al. (1986) physically demonstrate the operations!
concepts of translation, linearity, similarity, convolution and Parseval's
theorem for the Fourier transform via diffraction experiments with laser
light. The Fourier transform here is formed via a lens. See Goodman
(1968) Shankar et al. (1982) , Glaeser (1985) for a discussion of the optics
involved .

An important example arises in radio astronomy. Suppose there is an
array of receivers. Suppose there is a small incoherent source, at great dis­
tance, producing a plane travelling wave . If Y(x ,y, 1) denotes the radio field
measurement made at time 1 on a telescope located at position (x,y ), then
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E{ Y(x + tI , ), + v , I) Y(x ,)', I)} = JJf(a , (3)ei
(tlo +

tJmda d(3

Brillinger

(2.1)

where (a , (3) are the coordinates of the source of interest in the sky andf(a , (3 )
is its brightness distribution as a function of (a, (3). In other words, the Fourier
transform is the quantity observed . The result Eq . (2.1) is known as the van
Cittert-Zernike Theorem, see Born and Wolf (1964).

Linear time invariant systems abound in nature. They have the property
of carrying cosinusoids into cosinusoids. Nowadays in science there is much
concern with nonlinear operations and phenomena. Impressively, the classic
trigonometric identity

[cos AI]2 = !cos 2Al + ! (2.2)

is "demonstrated" in Yariv (1975) via a color plate showing red laser light
becoming blue on passing through a crystal. The crystal involved squares
the si~nal as in Eq. (2.2). A wavelength of 6940 A (red) becomes one of
3970 A (blue) . Bloembergen (1982), Moloney and Newell (1989) discuss
such nonlinear aspects of light. The appearance of harmonics such as in
Eq. (2.2) leads to a consideration of higher-order spectra.

The Fourier transform is continually employed in the solution ofequations
of motion associated with physical phenomena and mathematicians have
focussed on consequent cycles and harmonics. For example, Hirsch (1984)
has remarked that "Dynamicists have always been fascinated (not to say
obsessed) by periodicity." In that connection Ruelle (1989) makes effective
use of the Fourier transform in the study of dynamic systems, specifically
addressing aspects of chaos, periods and scaling.

The Fourier transform leads to entities with direct physical interpreta­
tions . One can point to a variety of success stories of the application of
Fourier analysis . Michaelson (189Ia, b) measured visibility curves, essen­
tially the modulus of a Fourier transform, and after an inversion thereby
inferred that the red hyd rogen line was a doublet. This inference of splitting
ultimately led to important developments in quantum mechanics. Tidal
components caused by the sun, moon and planets have been isolated by
Fourier analysis, see Cartwright (1982), Bath (1974), Bracewell (1989). Katz
and Miledi (1971) inferred the mechanism of acetylcholine release via a
Fourier analysis. Bolt et al. (1982) saw a fault rupturing in an earthquake
by a frequency-wavenumber spectral analysis . Finally it may be noted that
R. R. Ernst received the 1991 Nobel Prize in Chemistry for developing the
technique of Fourier transform spectroscopy, see Amato (1991). A discus­
sion of a variety of other physical examples may be found in Lanczos (1966),
Bath (1974), Bracewell (1989).
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3. SOME ANALYTIC BACKGROUND

3.1 The Fourier Case

5

(3.1)

Consider a square integrable function g(x),°::; x < 21T. In this simple case
Fourier analysis is built upon the values

I f2IT '..Ck = - e-1k\g(x) dx
21T 0

k = 0, ± I , ±2, . . . , and Fourier synthesis on expansions
oc

g(x):::::: L Ck eiXk

k=- x,
(3.2)

(3.3)

(3.4)

The functions exp{ ikx}, k = 0, ± I, ±2, ... here are orthogonal on [0,21T)
and this connects Eqns. (3.1) and (3.2).

One important use of Fourier methods is the approximation of functions.
If the values Ckl k = 0, ± I , .. . ± K of Eq . (3.1) are available, a naive approxi­
mation to g(x) is provided by

K

L Ck
eixk

k= -K

However early researchers found that the approximation of Eq . (3.3) was
often improved by inserting multipliers, wf, such as I - IklfK, into the
expansion and employing

K

gK(X) = L WfCkCixk.
k= -K

instead of Eq . (3.3). Defining the kernel

K

WK(x) = L II'f/\k
k=-K

Eq. (3.4) can be written

J~ IT WK (y - x)g(x) dx (3.5)

and one sees that Eq . (3.4) is a weighted average of the desired g( .). The
effect of the multipliers, in some cases, is to improve the approximation by
damping down the more rapidly oscillating terms in the expansion. This idea
of damping down will recur b'elow in the consideration of shrinking to
improve estimates. The expression of Eq. (3.5) may be used to study directly
the effect of the kernel function on the approximation. Timan (1963), Butzer
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and Nessel (1971) are books specifically concerned with approximations
based on Fourier expressions.

In work with data values Y1 observed at t = 0, . .. , T - lone might
replace Eq. (3.1) with

I ~ { -i2rrkt } YT L.. exp --T- 1

1=0

having written g(2rrt/T) = YI • As referred to earlier there are fast algor­
ithms to evaluate this.

A second important use of Fourier analysis is in the study of time invar­
iant systems. A simple linear time invariant system is described by

oc

YI = L cl_SX,.
I=-OC

i.e., a convolution. The response of this system to the input XI = exp{ iAt} is

YI = C(A)X1

with C(A) the Fourier transform

oc

C(A) = L e-o.... c,
s= - :x,

(3.6)

for °:::; A < 2rr. This function is referred to as the transfer function of the
system. Cosinusoids, exp{ iAt} , are seen to be carried into cosinusoids. A
variety of physical systems have this property to a good approximation.

Nonlinear time invariant systems may sometimes be approximated by
Volterra expansions of the form

oc oc X

Y, = L c1 _Sx., + L L dl_.u_lX,Xs' + ...
s= - x s= -oc s' = -:x;.

The input X, = exp{ iAl} here leads to the output

C(A)eiAI+ D(A, A)ei2AI+ ...

where C(A) is given above and

D(A, /1) = L L e-iAS-i/IS' ds.s'

s s'

In such a nonlinear system one sees harmonics of the frequencies in the
input appearing in the output. The laser example of Sec. 2 involved a system
that was quadratic.
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Examples of Empirical Fourier Analysis 7

Fourier analysis is useful in work with constant coefficient differential
equations. These show the occurrence of oscillations and are often effective
models of physical systems. Consider for example the linear system

dS(t) = AS(t) + BX(t)
dt

with S( ·) vector-valued and X( ·) scalar. Supposing

and

by Fourier analysis one has the solution directly as

S(A) = (iAI- A)-IBx(A)

Supposing X(A) constant and the latent values, Mi' of A to be distinct this
may be written

S(t ) = 2:a;/ll/
j

for some vectors ai.One sees the occurrence of oscillations at frequencies
Re Mj ' One reference concerning such differential equations is Hochstadt
(1964).

Turning to a further technique of Fourier analysis, that will be basic in
one of the examples below, suppose that one is considering, for large x, an
integral of the form

J eik(A)XR(A) d);

The method of stationary phase approximates this by

esgn k"(AO)i1r/ 4J27f/ (xlk"(AOI)R(Ao)eik(AO)X.

where AO satisfies k' (AO) = O. References include Barndorff-Nielsen and Cox
(1989) and Aki and Richards (1980). The idea is that unless the k(A) is near
o the rapidly oscillating multipliers cos k(A) ,sin k(A) will give the integral
value O.
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3.2 The Wavelet Case

Brillinger

Wavelet analysis is enjoying a surge of contemporary investigation and is a
competitor of Fourier analysis. It may be viewed as Fourier analysis with
the sine and cosine functions replaced by other families of (orthogonal)
functions . There are many similarities between Fourier and wavelet analysis.
Consider the expansion in Eq . (3.2) with the coefficients in Eq. (3.1). The
expansion is based on the fact that the sine and cosine functions provide a
basis for L2[0, 271-). In wavelet analysis other systems of functions are used,
see e.g., Strichartz (1993), Benedetto and Frazier (1994). Wavelets are of
practical importance because they can sometimes provide more parsi­
monious descriptions than Fourier ones.

Wavelets often focus on local versus global behavior and in particular
can pick up transient behavior. Basic is a (mother) wavelet 1P( .) nonzero
only on say the unit interval [0, I). Given a square-integrable function g(x) ,
one considers an expansion

cc oc

g(x) = L L (3jk1P;d x )
;=- x k= - x

(3.7)

with

'l/;;dx) = 2!/2 'l/;(2!x - k)

and

(3;k = J1P;k(X)g(X) dx (3.8)

The family {1Pjk (.)} is taken to be orthonormal and complete, see e.g .,
Daubechies (1992) , Walter (1992 , 1994), Strichartz (1993) , Benedetto and
Frazier (1994) .

The expansion in Eq . (3.7) represents g(.) in terms of functions with
support individually on dyadic intervals [k/2!, (k + 1)/2J j for j.k integers.
It suggests an approximation

lK(X) = L L (3;k'l/;;k(X)
1i19 1kl~K

to g(x). This may be written as

e" (x) = fWJK(x ,y)g(y) dy

the kernel being

W JK(x,y) = L 'l/;jk(X)'l/;;k(Y)
j, k
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Examples of Empirical Fourier Analysis 9

This kernel will tend to a delta function in various circumstances, see Walter
(1992). Equation (3.10) can be used to study the degree of approximation
directly as could Eq . (3.5) in the Fourier case . Equations (3.10) and (3.11)
are wavelet analogs of Eqns. (3.4) and (3.5).

In the case of a discontinuous function , as will occur in Example 5.4,
a particular wavelet analysis is especially suitable, namely Haar wavelet
analysis . This analysis is based on the function

1jJ(x ) = I forO::;x <~

- I for ~ ::; x < I

° otherwise

In the Haar case the kernel is

W,,(x,y) = 2"¢(2"y - [2"x]) (3.12)

(3.15)

with [.J here referring to integral part and g,,(x) of Eq . (3.10) a local
mean, g,,(x) = 11\ -1 SI g(y) dy, x being in the particular interval
1= [m/2" , (m + 1)/2"), see Fine (1949) , Walter (1992) .

There are empirical versions of Eq. (3.8) for use when discrete time data
YI , t = 0, . . . , T - I are avail able . One computes for example

IT- I

/3jk = T L: 1jJjd t/ T) Y/
1=0

Just as there are fast Fourier transforms, there are fast wavelet transforms,
Strang (1993). Also one can write pi for i above, with no real change in
concept, but improved approximations in practice. The dynamic spectrum
analysis of Example 5.2 is one type of wavelet analysis with .i=.io and
1jJ(x) = exp{ - i27TX}.

Insertion of multipliers, as in Eq. (3.4) for Fourier approximation, is
fundamental. This will be discussed later.

4. STOCHASTICS AND STATISTICS

In this section the quantities being transformed will be random .

4.1 Stationary Processes

Fourier analysis is basic to dealing with stationary random processes. A
process, Y

"
is said to be second-order stationary if cov{ YI+II , Y/} exists

for t , U = 0, ± I , ±2, ... and does not depend on t . In practice this
often appears a reasonable working assumption. In the case of

259



(4.2)

10 Brillinger

Y" t = 0, ± 1, ±2, . . . a second-order stationary process, following Cra­
mer (1942), one has the Fourier representation

Y,= f"ei').,dZ(>. ) (4.1)

with 2( ·) a random function such that

cov{dZ(>'), dZ(fl)} = b(>' - fl)[ (>') d). du

-1f < >., fl ::; 1f,j( .) being the power spectrum of Y and b(·) the Dirac delta
function . The Cramer representation has the advantage of taking one
directly to the Fourier domain and thereby making some operations on
the process clearer. The series Y, may be vector-valued . Then the cross­
spectral density matrix, f( ·), is given by

cov{dZ(>'), dZ(fl)} = b(>' - fl)f(>') d); du

Cross-spectrum analysis is useful for system analysis, i.e., estimating for
example the transfer function of a linear time invariant system .

Higher-order spectra may be defined directly via Z( ·), e.g., the bi­
spectrum f(>' , fl) at frequency A, fl is given by

cum{dZ(>'), d2(fl), dZ(v)} = 7](>' + fl + v)f(>' , fl)d>' du du

where 7](>') is the 21f periodic extension of the Dirac delta function.
Empirical Fourier analysis, e.g., of residuals of a fit, provides a diagnostic

using in particular the result that if the process is white noise, the power
spectrum is constant in frequency, >. .

Blackman and Tukey (1959), Bath (1974), Brillinger (1975) and Bloom­
field (1976) are books focussing on the empirical Fourier analysis of time
series

4.2 Central Limit Theorems

In classic forms the central limit theorem is concerned with the distributions
of sums of independent random variables

ST = Yo+ Y 1 + .. .+ YT - 1

and their approximate normality with variance Ta2 for large T . It is usual to
assume that the Y's are identically distributed.

At some point engineers began promulgating a folk theorem to the
effect that narrow-band noise is approximately Gaussian, [see Leonov and
Shiryaev (1960), Picinbono (1960), Rosenblatt (1961)]. One fashion to for­
mulate this remark is as a statement that

S ( ' ) v - i )., y - i )., (T- l l yT /\ = lo+e I + ' ''+e T -I
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o~ -\ < 27f, is approximately (complex) normal for each -\. Under station­
arity and mixing assumptions for the series Y t , the variance of Eq . (4.2) is
approximately

27fTf(-\) (4.3)

withf(-\) the power spectrum of Eq . (4.1) at frequency -\. Surprisingly, the
values of Sr(-\) at distinct frequencies of the form -\ = 27fj/T, are approxi­
mately independent. Problems involving stationary mixing processes may
thus be converted into ones involving (approximately) independent normal
random variables. Empirical Fourier transforms such as Eq . (4.2) have
many uses and several are indicated in this paper. A fundamental use is
to estimate a power spectrum by smoothing the squared-modulus.

Early work on the asymptotic properties of finite Fourier transforms
includes that of Slutsky (1934) , Leonov and Shiryaev (1960), Rosenblatt
(1961), Good (1963), Hannan (1969), Brillinger (1969), Hannan and Thom­
son (1971), Hannan (1972) .

There has been some consideration of the cases of long range dependence
and stable distributions. References include: Rosenblatt (1981), Freedman
and Lane (1981), Fox and Taqqu (1986), Yajima (1989), Shao and Nikias
(1993). The case of random generalized functions, which includes for
example point processes and random measures, is considered in Brillinger
(1982).

In the case of wavelets and a model

Y, = g(t /T) + Ct (4.4)

with c, stationary noise having power spectrum f (-\), under regularity con­
ditions, the statistic /3;k of Eq . (3.13) may be shown to be asymptotically
normal with mean /3;k and variance

27f f(O)
T

see Brillinger (1996) . The variance is the same as that of Eq. (4.4) . Further
when the functions 'I/J;kO and 'l/Jj'k'(') are orthogonal, the coefficients /3;k' /3j'k'
are approximately independent for distinct (j,k) and (j ' ,kl This last
results suggests that an estimate of f(O) may be obtained by averaging the

A 2
values T I/3;kl / T for which /3jk = O.

4.3 Shrinking

Among surprises in working with Fourier transforms is the importance of
convergence factors . These are the II'f of Eq . (3.4) . In Eq. (3.4) they shrink
the coefficients of the exp{ ixk} towards 0 as k increases. Such multipliers are
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12 Brillinger

also important in the stochastic case, see: Tukey (1959), Brillinger (1975),
Bloomfield (1976), Dahlhaus (1984, 1989).

A related concept is shrinking. In a regression context Tukey (1979)
distinguishes three types of shrinking. Crudely: "first shrinkage" cor­
responds to pretesting and selection of regressor variables, " second shrink­
age" corresponds to a type of Wiener filtering and "third shrinkage"
corresponds to borrowing strength from other coefficients to improve the
collection of coefficients . In this last case the multipliers are not meant for
attenuating high frequencies, rather they are meant for attenuating un­
certain terms. A common characteristic is that the estimates become biased ;
however, biased estimates have long been dominant in time series analysis .

Second shr inkage plays an important role in two of the examples that
follow . A particular second shrinkage estimate, introduced in Tukey (1979),
may be motivated as follows . Consider a classic simple regression model

y = f3x + c

with b an estimate of f3 and s an estimate of its standard error. Seek a
multiplier m such that mbx is an improved estimate of f3x . The mean­
squared error of the new estimate is

which may be estimated by

x2
{( I - m) 2 [h2

- i] + nls2
}

This is minimized by the choice m = I - i /b2
. One would prefer to take m

to be the positive part

(4.5)

This multiplier has the reasonable property of being 0 for b less than its
standard error.

In Sec. 3.1 convergence factors , wf, were inserted into trigonometric
expressions to obtain improved approximation. In Example 5.1 such multi­
pliers based on the reliability of estimated coefficients Ck will be inserted to
obtain an improved estimate. To estimate g(x) of Eq . (4:4) one considers,
for example,

g(x) = L lI'(ck/sdckeiXk (4.6)
k

where sr is an estimate of the variance of Ck and w(u) is a function that is
near I for large u and near 0 for small u. Examples of functions 11'( .) are
given in Fig. I.
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Figure 1. Graph of the multipliers Egns (5.7) and Eq . (5.8), as a functions
of the amplitude of the estimate divided by its estimated standard error.

In work to obtain improved wavelet-based estimates, Donoho and John­
stone (1990), Hall and Patil (1995) create shrinkage estimates involving
multipliers, there referred to as "thresholders". The estimates take the form

L L W(I~jkl/sjd~jk?/Jjk(X) (4.7)
1i 19 1kl ~K

where Sjk is an estimate of var ~jk and 0 :::; 11'( .) :::; I .
There are many classical references to selection of variables and pretest­

ing, i.e., first shrinkage. References to second shrinkage include: Whittle
(1962), Thompson (1968), King (1972), Ott and Kronmall (1976), Tukey
(1979), Zidek (1983), Donoho and Johnstone (1990), Stoffer (1991), Hall
and Patil (1993), Donoho et al. (1995). References to third shrinkage
include: Stein (1955), Efron and Morris (1977), Copas (1983), Saleh (1992).

5. EXAMPLES

In this Section four biological and physical examples are presented .

5.1 Electron Microscopy

Electron microscopy is-a tool for studying the placements of atoms within
molecules. It is mainly carried out with crystalline (periodic) material. One
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14 Brillinger

(5.3)

(5.4)

problem is to obtain improved images and that is the concern of the present
example. Glaeser (1985), Henderson et al. (1986), Hovrnoller (1990) are
references describing the basics of electron microscopy.

In the planar case, the principal theoretical concept is the projected
(Coulomb) density distribution

V(x, Y) = L Fh,ke21fi("x+ky)/A (5.1)
h,k

h,k = 0, ±I, ±2, ... with (x,y) planar coordinates and with 6 the period of
the crystal. The function V(·) is real-valued and has various symmetries.
The h,k in Eq . (5.1) are referred to as the Miller indices, while the F",k are
referred to as structure factors. One wishes to estimate V(x,y) over
OS; x,y < 6.

The datum is an image, Y(x,y), with °S; x < X,O S; y < Y. The image
rnay be written as

Y(x,y) = V(x,y) + noise (5.2)

The empirical Fourier transform is

F",k =1:rY(x,y)e- 27fi(hx+ky) /Adx dy

which may be written

JAfA L Y(x + m6,y + n6)e- 2rr i(!t\+ky) /Adx dy
o 0 m,1I

The synthesis corresponding to the analysis Eq . (5.3) is

"F e2rri("x+ky) /A
L..- ",k
h.k

(5.5)

(5.6)

°S; x < 6, °S; y < 6 .
There has been concern to form an improved image. In this connection

Blow and Crick (1959), Hayward and Stroud (1981) introduced "multi­
pliers", w('), into expressions like Eq . (5.5), forming

V(x y) = "w(IF liT )F e21fi("x+ky) /A, L..- " ,k ",k ",k
hk

where the iT",k are estimates of the standard errors of the Fh,k' This is a
second shrinkage estimate. Consideration of the mean-squared error, as in
Eq . (4.5), leads to the multiplier

w(IFI/iT) = (1 - ~22) (5.7)
IFI +
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which by analogy with Wiener filtering will be called the Wiener multiplier.
By Bayesian arguments Blow and Crick (1959) and Hayward and Stroud
(1981) were lead to the multiplier

(5.8)

with 'Y = IFI/ a-, and 1o, I} modified Bessel functions, see Brillinger et al.
(1989, 1990). It and Eq. (5.7) are graphed in Fig . l. These multipliers
approach I as the uncertainty approaches O.

Estimates employing Eqns (5.7) and (5.8) are illustrated in Fig. 2 for
images of the protein bacteriorhodopsin . This substance occurs naturally

Wiener image

Blow-Crick image

Final image, n = 42

Figure 2. Estimates of the basic cell of bacteriorhodopsin. The upper left
panel is the naive estimate as shown in Eq . (5.5). The upper right panel is the
estimate Eq. (5.6) with the multiplier, Eq . (5.8). The bottom left panel is the
estimate Eq. (5.6) with the multiplier, Eq . (5.7). The last panel is Eq . (5.6),
with Eq . (5.8), obtained by combining 42 individual images.

265



16 Brillinger

as a two-dimensional crystalline array within the cell membrane of
Halobacterium halobrium . Together with accompanying lipid molecules, it
is known as "purple membrane". This crystal is based on a hexagonal
lattice. In Fig . 2 only the positive contours are shown. (Negative density
features signify the absence of atoms and thus have no direct usefulness
when the density map is interpreted.) The first panel of Fig. 2 shows the
elementary estimate of Eq. (5.5). The top right shows Eq . (5.6) with w(-) of
Eq . (5.7). The third, lower left, shows Eq . (5.6) with w(·) of (5.8). The final
panel provides an estimate based on combining 42 individual images. This
last image may be viewed as what the earlier estimates based on a single
image ascribe to be.

Through the inclusion of the multipliers, the peaks have become
more substantial and better separated. Also, the estimates show better
approximations to a three-fold symmetry. Details of the data collection
and further details of the analysis may be found in Brillinger et al.. (1989,
1990).

The Fourier transform is useful in this example firstly because of the
lattice periodicities and secondly for the central limit theorem result suggest­
ing specific estimates of the Shk of Eq. (5.6) namely for S J,k one takes the
average of the squared moduli of Fourier coefficients thought to be signal
free .

There are extensions to the 3D case, see Henderson et al. (1990), Wenk et
al. (1992) .

5.2 Seismic Surface Waves

Various sound waves are transmitted through the Earth following a seis­
mic disturbance, in particular surface (or Rayleigh) waves. These are
vibrations whose energy is trapped and propagated just under the sur­
face . The waves have sinusoidal form and are prominent in the later part
of a seismogram. For example see Fig . 3 for an event that was recorded
in Uppsala, Sweden. These waves have the interesting aspect of having
been discovered mathematically. For basic details see Aki and Richards
(1980) and Bullen and Bolt (1985).

Consider modelling that part of a seismogram where the Rayleigh waves
occur. Let Y(x, t) denote the vibrations recorded at distance x from the
earthquake source, as a function of time t. With a layered crust model the
theoretical seismogram is a solution of a system of differential equations
with associated boundary conditions and may be represented as

Je -i(),t -k (),)x) R()..) d)"
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Figure 3. The Siberia-Upsalla dyn amic spectru m us a function of fre­
quency and velocity as co mputed fro m Eq. (5.11). The vertica l trace is the
seismogram as a function of velocity.

Here. when .c = 0

represent s the vibrat ions at the earthq uake source. Th e solution in Eq . (5.9)
comes from substituting a particular solution exp{ - i{At - kx)} into the
differentia l eq ua tions and match ing bounda ry conditions. see Aki and
Richards (1980). One writes k()') = >./c(), ) with c( ),) the (phase) velocity
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18 Brillinger

with which the wave of frequency A travels. The functions k(·) and c(-)
depend on the transmission medium .

In the case that x is large one can use-the method-of-stationary phase,
described in Section 3.1, to see the sinusoidal form of the waves. Specificall y
for large x, Eq. (5.9) is approximately

R(A,) exp{ - i (A,1 - k(\ )x)} (5. 10)

with A, the solution of

d
dA {,\I - k('\ )x} = 0

that is k' ('\, ) = I / X = I /U (,\/ ). Here U('\ ) is the group velocity, the velocity
with which the energy travels, at frequency '\ . The phenomenon of waves
with different frequencies travelling with different velocities, as occurs here,
is called dispersion.

Given an earth model, (), that is a collection of layer depth, velocity and
density parameters, one can compute the group velocity U('\I()), see Bolt
and Butcher (1960), Aki and Richards (1980) . For frequency ,\ and param­
eter () there may be several possible dispersion curves U,,('\I()),II = 0, 1,2 , . . .
called modes. Dynamic Fourier analysis provides a way to see these
modes, and is presented in Fig . 3. The concern of the example of thi s
section is to estimate ().

The event studied originated in Siberia, 20 April 1989, and the trace was
recorded at Uppsa1a, Sweden. Figure 3 provides a grey scale display of
energy as a function of velocity and frequency. It is computed as

(5.11)

with I = xo/ v , v velocity, Xo distance to source and 11(-) a convergence factor.
One sees wave s of a bout 0.07 cycles/second arriving first. Figure 3 also
shows the dispersion curves U,,('\IO) for one fitted earth model. Some further
details are given in Brillinger (1993) .

The velocity-frequency curves, Un (,\I()) , may be inverted to frequency­
time curves ,\ = '\,(tl()). To estimate () one can then consider choosing (), Q

to minimize

where Q is some parametrization of the source motion . One approach is to
approximating the integral in Eq . (5.9), is to take R(·) piecewise constant,
linear in Q . Figure 4 provides the result s of such an analysis. Graphed are
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Siberian Event al UppsaJa April 20,1989
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Figure 4. The top trace is the seismogram as a function of time . The middle
is the fit based on Eq . (5.9). The bottom is the difference of these two.
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20 Brillinger

the series, the fit and the residuals. The standard errors might be computed
as in Richards (1961), focussing on the nonlinear parameters ()and acting as
if the noise series was white. An improved estimation procedure is needed,
for the residual series of Fig . 4 suggests the presence of signal-generated
noise .

Even though this particular situation is clearly nonstationary, Fourier
analysis has been basic to addressing it. This is a consequence of the pres­
ence of dispersion. The example is also of additional interest since one has a
Fourier transform of two variables whose support lies on several curves, see
Fig. 3. This type of plot allows inference of the presence of higher modes
and assessment of the fit as well.

5.3 NMR Spectroscopy

Nuclear magnetic resonance is a quantum mechanical phenomenon
employed to study the structure of various molecules. In an experiment,
one creates a fluctuating magnetic field, X(/), encompasing a substance
and then observes an induced voltage, Y(/) . Hennel and Klinowski (1993)
is one general reference.

If S(t) is a vector describing the state of the system at time I, then the
fluctuations are described by the Bloch equations

dS(/)
~ = a + AS(t) + BS(/)X(t)

and the measurements by

Y(t) = CTS(/) + noise

(5.12)

(5.13)

with c depending on the geometry of the experiment. The principal param­
eters are frequencies of oscillation and decay rates . The parameters of
interest sit in the matrices A and B, see Brillinger and Kaiser (1992). The
entries of A and B have physical interpretations, e.g., the diagonal entries of
A represent occupancy probabilities.

Equations (5.12) is interesting for being bilinear. It can be solved , sym­
bolically, by successive substitutions, obtaining

J
f JI JJS(/) = C + eA(I -J)CX(s) ds+ eA(I-I)Be.4(I-r )CX(r)X(s) drds + ...

with C = -A- l ao If A is written UeAU - 1 with A diagonal, then the pulse
response, S(/), is seen to be a sum of complex exponentials and various of
their powers and products. The real parts of the entries of A will lead to the
decay of these components while the imaginary parts represent resonance
frequencies .
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Examples of Empirical Fourier Analysis 21

The problem is to estimate the parameters of Eq. (5.12) and thereby, to
characterize the su bs tance. Some of the parameters may be estimated by
cro ss-spectral analysis and others by likelihood analysis .

Brillinger and Kaiser (1992) present results from a study of 2,3-dibro­
mothiophene. The matrices A and Bare 4 x 4 with complex-valued entries.
The parameters include a coupling constant, J and frequencies WA and W B '

In the experiment the input employed was a sequence of pulses

X(I ) = L M ;b(1 - j 6.)
;

with 6. = 1/150 s, I in seconds and M; the m-sequence given by
M; = M;_IM;_4M;_sM;_12 starting at M; = - 1 forj = 1, . . . , 12.

Figure 5 presents corresponding stretches of input and output together
with the results of a cross-spectral analysis. Specifically the first-order trans­
fer function estimate

is given in Fig. 5. Theoretically its peaks are located at the frequencies

and the widths of the peaks relate to a damping constant T2.

In a more detailed analysis the parameters of the model, including initial
state values, were estimated by least squares seeking

mjn L IY(/ ) - cT S(/10)12

t

(5. 14)

() referring to the unknown parameters. In the computations the state vector,
S(IIO) was evaluated recursively . Figure 6 shows the amplitude of the
Fourier transform of the data and of the corresponding fit. (I t is usual
to graph an unsmoothed estimate in the NMR literature in order to
obtain high resolution of peaks.) There is an intriguing small peak just
above 60 Hz which recurs when the time series is broken down into
contiguous segments. NMR researchers refer to such a phenomenon as
a "birdie", but had no explanation for its source in the present case.
Further details may be found in Brillinger and Kaiser (1992).

There are extensions of the cross-spectral approach to the 2, 3. 4, .. . and
higher dimensional ca ses , see Bliimich (1985).
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Figure 5. Results of a nuclear magnetic resonance study of 2,3-dibro­
mothiophene. The top left is a segment of the input and below is the cor­
responding output. The right column provides the estimated amplitude and
phase of the (linear) transfer function .
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Figure 6. The modulus of the Fourier transform of the output and of the
corresponding fit derived from Eq . (5.14).
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Microtubule movement
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Figure 7. The top trace is the estimated movement of a microtubule as a
function of time. The middle provides the fit with no shrinkage. The bottom
panel provides a shrunken fit. Th e dashed lines provide approximate ±2
standard error limit s.
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In this example the Fourier transform is useful for examining resonance, for
assessing goodness of fit and for understanding the nonlinearity involved.

5.4 Microtubule Movement

As an illustration of wavelet analysis, consider the problem of searching for
jumps in records of microtubule movement. Microtubules are linear poly­
mers basic to cell motility. A concern is whether movement is smooth, or
rather via a series of jumps, see Malik et al. (1994) .

If Y(r) denotes the distance a microtubule has travelled at time t. the
model considered is

Y(r) = 0;/ + g(t /T) + noise (5.15)

r = 0, ... , T - I with (1 a parameter related to diffusion motion and g( .) a
step function. The model in Eq. (5 .15) will be approximated by

Y(r) = of + L 'Yllk¢lIk(r/ T) + noise (5.16)
k

for some fl . Because of the presence of the term of in Eq . (5 .16) the analysis
in the present case is not so immediate, but still all that one needs are local
means. The least squares estimates are obtained by regression of Y on the
¢lIl;(r/ T) and on r made orthogonal to the ¢lIk' Further details on the fitting
are given in the Appendix to this chapter.

In the experiments of concern samples were taken from the bovine brain .
Specifics may be found in Malik et al. (1994) . The top panel of Fig . 7
provides a data trace . Next is an estimate gll(t /T ) with \I'(lI ), of Eq . (4 .7),
identically I. The final panel an improved estimate based on the multiplier
\1' (11 ) = ( I - 1/1I2)+. The value of 11 = 3 was chosen having in mind a search
for isolated jumps for this particular data set. Also indicated are approx­
imate ±2 standard error limits around the fitted straight line . There is little
evidence for the presence of isolated jumps. The construction of the stan­
dard error estimate is described in the Appendix to this chapter.

The Fourier transform was used here to develop uncertainty estimates,
following on an assumption that the noise was stationary.

6. SOME OPEN PROBLEMS

This Section briefly lists a number of topics, motivated by the examples of
the paper, that appear fruitTul for more development.

Foremost among the topics calling out for further research is the theor­
etical and practical development of shrinkage estimates. The ideas are basic.
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The effects are substantial, see Fig. 2 for example. One wonders about
"optimal" choice of the multipliers/shrinkage factors. Perhaps optimal
rates of convergence may be determined and then it be checked which multi­
pliers lead to those. This paper has focused on second shrinkage. Berger and.
Wolpert (1983) develop third shrinkage estimates in random function cases.
Lillestol (1977) studies time series in one case.

In both the surface wave and nuclear magnetic resonance examples,
examination of residuals suggests the presence of signal-generated noise.
Better estimates are needed. Either because the ones used are inefficient or
because the signal-generated noise is basic. In the latter case an appropriate
likelihood function needs to be developed. Ihaka (1993) does this for one
case in seismology. If the noise is indeed nonstationary and autocorrelated,
then a novel form of uncertainty estimation technique will be needed. In the
case of the "improved" wavelet estimate, the uncertainty was estimated as if
the shrinkage factors were constant, see Appendix to this chapter. Perhaps a
useful bootstrap procedure could be developed, based on an assumption of
stationary innovations being present.

Quite a different type of problem is the following: develop the aliasing
structure for higher-order spectra in the case of a process observed on a
lattice. This will be particularly complicated in the case of lattices in RP with
p > I. Another problem in the case of image estimates, is how to visualize
the associated ·uncertainty.

The Fourier transforms studied have all been scalar-valued . There are
central limit theorems for processes taking on values in a group. It would be
of interest to obtain corresponding results for group-valued Fourier trans­
forms , e.g., in the p-adic case.

7. DISCUSSION AND SUMMARY

The principal interest of the examples of the paper has been in problem
formulation and in addressing particular scientific questions. In each of
the examples, an empirical Fourier transform has played a central role .
With its broad collection of understood properties this transform has
assisted the analyses greatly. The usefulness of second shrinkage, analogous
to the use of convergence factors in Fourier approximation, is also note­
worthy.

The particular groups of the examples have been abelian. General group
theoretic ideas and empirical Fourier analysis have been discussed for other
groups. For the case of the symmetric group see Diaconnis (1988, 1989) and
Kim and Chapman (1993) . For the locally compact abelian case see Bril­
linger (1982). For p-adics see Brillinger (1992). The use of p-adics in signal
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processing is discussed in Gorgui-Naguib (1990) . For other cases see
Hannan (1969) . Ke y distinctions that ari se are abeli an versu s nonabelian
groups, compact versus locall y compact groups, and whether t is in a group
or Y is in a group.

The re are other tran sforms that are useful in pract ice. These include: the
Laplace , Hilbert, Stieltjes, Mellin , with some work ha ving been done for
abstract groups, see Loomis (1953).

The case of lacunar y trigonometric series is somewha t like the case of
point processes. Here the Fourier transform ha s a different form, e.g., for
point process data {TI < T2 < .. . < TN } it is given by

N

L exp{-iATi}
i=l

-00 < A < oc . Such a transform is used in Rosenberg ct al. (1989) for
example.

Unemphasized, but important, topics include: the Poisson summation
formula useful in understanding aliasing and the sampling theorem
(Hannan (1965)) , abstract fast algorithms (Rockmore (1990)), spherical
functions (Terras (1988)), uncertainty principles (Smith (1990)).

In conclusion we quote J. B. Fourier (1822) , Theorie Analytique de la
Chaleur: " L" etude approfondie de la nature est la source la plus feconde
des decouvertes mathematiques." There is so much evidence in favor of thi s
remark today.
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APPENDIX

The estimate presented in the middle panel of Fig . 7 is ordinary least
squares. (In many time series situations such estimates are asymptotically
efficien1.)

The model shown in Eq . (5.16) is linear in ex and the ' "k.' It may be written

y = X, + Z ex + c

taking Z = [t - t ] and X = [Xld , with Xlk. = I for k 12" ::; tiT < (k + I) IT
and 0 otherwise. It is seen to have the form of an analysis of covariance
model. The least squares estimates may be written

6 = (ZlpZ) -1Z'Py

i = (X'Xr'X'(y - Z6)

with P = I - X(X'X) -'X'.
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Some Examples of Random Process Environmental Data Analysis

David R. Brillinger

1. Introduction

Data of process type are now routinely collected and analyzed in the

environmental sciences. This is a consequence, in part, of today's general

availabilty of sophisticated computing, storage, display and analysis equip­

ment. At the same time stochastic models have been developed that take

detailed note of the special characteristics of such data and hence allow

more appropriate and efficient analyses to be carried through. The prob­

lems can be difficult, but often an aproach is suggested by basic scientific

background and the parameters have physical interpretations. Recognizing

a process type is an important step along the way to its analysis. The goal

of this work is to bring out some basic ideas by presenting a number of

elementary examples of random process data analysis.

The work proceeds by describing some basic types of stochastic

processes and then presenting some techniques for addressing general

problems arising. The emphasis is on processes, their characteristics and

understanding their nature by descriptive statistics and elementary analyses

rather than by developing background theory. By presenting examples,

from different fields, and doing so in comparative fashion the intention is

to bring out both similarities and differences. The examples have differing

goals.

Concern will be with how the data might be presented visually and

described analytically. The next section presents a few basic formal con­

cepts . Section 3 is concerned with temporal point and marked point
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processes and an application to a risk assessment problem in space SCI­

ence. Section 4 is concerned with a count-valued time series relating to

concerns with childbirth risk. Section 5 focuses on spatial-temporal

processes with an example from neuroscience. Section 6 focuses on parti­

cle processes with an example from marine biology and the beginnings of

an example from pest management. Finally there are some general

remarks and discussion.

Techniques highlighted include: plotting the data, likelihood analysis,

the EM method, generalized linear modeling, Fourier inference and state

space modelling.

2. Some Basic Concepts and Methods

A classical and effective approach for addressing a broad variety of

environmental problems is to view the data that have come to hand as part

of a realization of a stochastic process. In simplest terms a

random process is a family of random variables indexed by a label. In

the present work the label will refer to time or space-time. The data of

concern may be real-valued, vector-valued, categorical-valued, or general­

ized function-valued amongst other possibilities.

A random process may be described as a family of jointly distributed

random variables. The values it takes on and the character of the index

labelling the members of the family are what provide special features. For

example a temporal point process, referring to the occurence times of

some event of interest, might be described by providing the joint distribu­

tions of the count-valued random variables N(A 1)' ..., N(Ak ) where

A l' "' , Ak , k in Z = {O,±1,±2,...}, refer to any Borel subsets of

R = (-00,00) and N (A) is the number of occurences of the event in the set
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A. Of course the distributions must be consistent for the process to be

well-defined. In the stationary case these distributions will be invariant

under translations in time. Stationarity is basic to the definition of impor­

tant parameters describing processes and to the derivation of the statistical

properties of quantities computed from process data. In Section 6 an

example of points distributed in both the plane and time is considered.

Then the Borel subsets are contained in R 3.

Two general approaches will be made use of in the analyses

presented. In the Method of Moments basic use is made of moments and

cumulants to define parameters of importance and to develop properties of

polynomial-type statistics based on data at hand. In Likelihood Analysis a

serious attempt is made to set down a full model and thereby obtain

efficient procedures. Bayesians would recomend multiplying the likeli­

hood further by a prior distribution.

3. Point Processes and Marked Point Processes

3.1. Background

A temporal point process IS a collection of occurrence times of

events, {'Lj } , supposed distinct and ordered by 'Lj < 'Lj +i- j in Z and

'Lj in R.

Practically, it is often useful to describe a point process via its

conditional intensity function. Among those introducing this approach

into statistics were Cox and Lewis (1972), Rubin (1972) and Snyder

(1975). To describe the conditional intensity of a temporal point process

write

N (t) =# {'Lj in [O,t)} =N [O,t)
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and H, = {'tj with 'tj ::; t}. This last is referred to as the history of the

process up to time t . When it exists, the conditional intensity , J.l(t IHt ),

is given by

with the interpretation that J.l(t IHt) is the rate of occurence of events at

time t given the history until and including then. With occurrence times

o::; 'tj < T and supposing the process distribution to depend on a parame­

ter 8 the likelihood function is given by

T

r.r J.l('tj Iu,,8) exp{- fJ.l(t In,,8)dt}
J 0

It may be used to make inferences concerning 8.

Important characteri stics of a stationary point procss may sometimes

be inferred from an estimate of its autointensity function

m(u) = Prob{dN(t+u) = 11 dN(t) = OYdt (3 .1)

giving the rate at which points occur at lag u after an existing point. It

may be estimated directly, see Brillinger (1978).

A marked temporal point process is a sequence of pairs {('tj'~)}'

with 'tj in R refering to the j-th time and ~ an associated quantity (or

mark) at that time. The likelihood function may be based on the probabil­

ityelement

Prob{dN(t) = 1 and m < M N(t) < m+dm Ht} = vet ,dm IHt)dt

(3 .2)

see Fishman and Snyder (1976). For example one then has

t+Uoo

Prob {no point in (t ,t +u ) with mark e m IHt} = exp{- f f v(s ,dm I tt, )ds}
t m
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(3.3)
Writing

o (s ,dm IHt ) = E {yeS ,dm IHt )}

the probability (3.3) is bounded by

t+u 00

f f0 (s ,dm In, )ds
t m

see Brillinger (1982).

(3.4)

(3.5)

A common question is whether the temporal and mark variations are

statistically independent.

3.2. An Example From Space Science

Astronauts living and working in space are subject to a wide variety

of risks of which an important one is that they, or their space craft, may

be hit by orbiting debris. To assess this risk NASA sampled the popula­

tion of orbiting objects, see Committee on Orbital Debris (1995). A nar­

row radar beam was used to detect and estimate characteristics of debris,

data being collected over a number of observation periods when the Hays­

tack telescope was avaiable.

Figure 1a displays, N (t), the cumulative count of times at which

pieces of orbital debris, at altitudes between 700 and 1100 km, passed

through the field of view of a radar beam for one observation period. For

the data graphed 33 pieces were detected passing through in 160.1

minutes. In the stationary case the step function should fluctuate around a

straight line, as appears reasonably the case here.

Were the process homogeneous Poisson the intervals would be

independent exponentials with the same mean. Figure Ib provides a plot

of the points (YU),jl(n+l)) where the YU) are the order statistics of the

intervals, T'j+l-'Cj ' between successive times. In preparing the figure the
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data for all the observation periods were employed. The plot would be

approximately linear were the intervals homogeneous exponentials. A

straight line has been applied to the plot as a reference and the exponential

appears a reasonable working hypothesis, but there is a hint of departure.

A point process may be a renewal process, that is the intervals

independent and identically distributed. Turning to this possibility the

presence of serial correlation amongst the intervals is assessed. Given a

stretch of values, Yj , j=O, ...,J-I, the periodogram is defined by

2:U IL Yjexp{-iAj} 1
2

In the case of independence this statistic will fluctuate about a constant

level. Figure 2a provides the average of the periodograms of the

sequences of intervals between objects averaging over the observation

stretches . Also included on the plot is an estimate of that constant level

and approximate 90% confidence interval lines assuming the basic pro­

cess stationary and mixing. There is little evidence against the assumption

of a renewal process for this data set.

The autointensity function (3.1) may also be used to examine the

Poisson assumption. In the Poisson case it would be constant at the mean

rate of the process. Figure 2b provides an estimate of the square root.

The estimate employed merges the data from all observation periods.

Approximate 90% confidence limits are indicated by the dotted lines. One

sees a suggestion that the intensity is raised at lags .04 to .08, but the

suggestion is not strong. A possibility is that the process could be

renewal with a non-exponential interval distribution. The square root has

been graphed here because in the case of reasonably lengthy stretches of

data the sampling fluctuations are approximately constant.
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In summary, a homogeneous Poisson process appears a plausible

working hypothesis for the point process of passage times of these objects.

3.3 Continuing the Space Science Example

Figure 3a provides the times of passage of the same particles as in

Figure la, but now the estimated altitudes of the particles are also indi­

cated by the heights of the vertical lines. In collecting the data the sizes

of the objects were also estimated, by the so-called radar cross section.

This measure has an (imperfect) connection with the physical size, see

Levanon (1988). Figure 3b extends Figure 3a by including the sizes of

the particles. The altitude is still indicated by the y -axis height but the

sizes of the objects are indicated by the radii of circles. The data here

may be viewed as part of a realization of a marked point process with

mark M = (altitude , radar cross section).

Questions of interest include whether the sequence of marks {~} is

independent of the sequence of times {T.j } , and whether the sequences of

altitudes and sizes are themselves independent and identically distributed

(i.i.d.). The first question was raised in the context of earthquake

sequences by Vere-Jones (1970). As will be seen below it may be

addressed by spectrum analysis . Figures 4a and 4b provide average

periodograms of the altitude and size values in the manner of Figure 2a.

They both have the character of white noise processes. The estimates are

almost totally within the approximate 90% confidence limits.

As mentioned above it is of interest to ask whether the sequence of

mark values is independent of the temporal point process. One might

wonder for example do larger sized objects tend to follow longer gaps?

This question may be addressed via cross-spectral analysis in the case that

it appears plausible to assume the inherent process stationary . Figures 4c
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and 4d are estimates of the coherences of the sequence of intervals,

Yj = 'rj +l-'rj , with the altitude and size sequences respectively. These

figures provide no evidence of substantial dependence.

Having an approximate model one can now use expressions (3.3),

(3.4) to estimate some risks of interest. Taking as working model the

basic point process to be Poisson of rate u, the altitude sequence as

independently i.i.d. with density fA (a) and the sizes as further indepen­

dently i.i.d. with density fs(s), the intensity function 0 of (3.2) is given

by

J..lfA (a)fs(s)

as IS 0 of (3.4). The quantities appearing here may be estimated simply

and thereby bounds such as (3.5) estimated.

The strength of the data analyses presented is that a broad class of

alternative possibilities have been considered prior to obtaining a very

simple working model.

4. Time Series

4.1. Background

A time series is a wiggly line, {Y(t)}, with Y (t) in Rand t in Z or

in R. If Y(t) is binary, taking on the values 0, 1, and the l' s are rare

then the series Y appears like a temporal point process .

Given expressions for the conditional mass or density functions, such

as

Prob{y ~Y(t+l)<y+dy IHt,8}=p(t+lIHt,8)dy

in the case of t in Z, one can express the likelihood as
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IT p (t+l IHt'8) (4.1)
t

Here H, is the history {Y(u), u:S;t}. The likelihood can be used to make

inferences concerning 8.

4.2 Example from Public Health

The United States has a worrying high level of cesarean deliveries

compared to most developed nations, Clarke and Taffel (1995). This

shows itself in a substantially reduced number of babies born on week­

ends. Besides cesareans, the increased proportion of weekday births may

be due to the number of births that are induced. Both of these are causes

of concern because of increased maternal and infant health risks, ibid.

The preceding authors list average numbers of births each day of the week

for the whole USA from Sunday to Saturday as 8754, 11398, 12333,

11957, 11895, 11957, 9420 respectively for the year 1992.

In this section the dependence of delivery day on the day of the week

is studied for the city of Toronto in 1986. Figure 5a graphs the number of

births for each day of the year. One notes a rapid oscillation and a bow­

ing up in the middle. The bowing corresponds to more births in the sum­

mer. The apparent dependence of the number of births on the time of

year, in addition to day of the week, is something that has been noted

various times before. The smooth curve added is an estimate of an under-

lying slowly changing rate as obtained by the function lowesst) of the sta­

tistical package S, see Becker, Chambers and Wilks (1988), Cleveland et

al (1992). Figure 5b provides parallel box plots of the birth counts for

each day of the week. The lower counts for the first and last days

correspond to the reduced number of Saturday and Sunday births. The

weekday-weekend phenomenon mentioned is quite pronounced here.
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The series values, Y(t), are actually counts and so it appears sensible

to employ a model taking some note of this. Consider modelling the

count on day t as Poisson with mean

where T, is a slowly varying trend component and S<I> refers to day of

week effect, <t> being the day of the week date t falls on. Further con­

sider modelling the sucessive daily counts as statistically independent.

Because of the assumed independence expression (4.1) simplifies to

n 1 (II /(1 )exp{-II }
t Y(t)! t-"I rt

This model may be fit directly via the function gamt) of S, Hastie (1992) .

The estimates T
"

S<I> obtained are similar to those suggested by Fig­

ure 5. To examine the Poisson assumption the residuals of the fit may be

examined for overdispersion. The estimate of the overdispersion parame­

ter is 1.07502 so any overdispersion appears mild.

Figure 6a provides the periodogram of the original count values. The

weekly effect is apparent through the presence of the peaks near 1/7 and

2/7 . The trend shows itself in the higher values near frequency O. Figure

6b is the periodogram of the Pearson residuals, having removed the

estimated trend and day of the week effects. Included on the plot are

approximate 95% confidence limits about the independent noise level.

There is no strong suggestion of autocorrelation amongst the residuals.

The model of independent Poisson counts therefore appears useful.

Were some autocorrelation suggested in the latter plot one could use

the function gami) of S to include it by approximating the series by 0-1

series and including lagged values in the predictor, see Brillinger and
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Segundo (1979). Becker (1986) fits an epidemic process via a conditional

binomial generalized linear model.

A model such as the one obtained may be used, for example, to esti­

mate possible changes in costs resulting from fewer elective cesareans.

5. Spatial-temporal Processes

5.1 Background

Spatial-temporal process data may be written Y(r,t) with r = (x ,y)

or (x ,y ,2 ) and (r,t) in some subset of R 3 or R4. One argument, t, has a

privileged character. Such data may often be conveniently displayed by a

sequence of images, by a video or by spinning a surface .

The process may be available everywhere in a lattice or correspond to

irregularly placed points. The latter case corresonds to a spatial-temporal

point process {(rj ,tj ) == (xj 'Yj ,tj n. Let H, denote the history of this pro­

cess up to and including time t . The conditional intensity is given by

Prob {dN (x ,Y ,t ) = 1 IHt } = vex ,y,t IH, )dxdydt

An example of spatial-temporal point process data will be presented III

Section 6.3. References include: Fishman and Snyder (1976), Vere-Jones

and Thomson (1984), Rathburn (1993).

5.2 Example from Neuroscience

The next example concerns the olfactory system, that is the sense of

smell. Data were collected of the response of a rabbit's sniffing an odor.

The rabbitt was conditioned to respond to a particular odor. An array of

sensors was applied to the brain above the olfactory bulb and electroen­

cepholograms recorded. The array had 64 sensors laid out in an 8 by 8

latice , 3.5 mm by 3.5 mm. Bursts between breaths were measured with
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values taken 2 ms apart. There were T = 38 temporal values recorded for

each burst and J = 12 replicates. For a description of the experiments see

Freeman and Grajski (1987).

The data may be written [1) (x ,y ,I)] with (x,y) location, 1 time and j

replicate, x,y = 1,...,8, 1 = 1,...,38, j = 1,..,12. Figure 7 shows the data of

the first replicate. One notes oscillations at a possibly common frequency,

with the amplitude of the oscillations varying with position in the array.

The analysis presented focuses on the separation of space and time

variation. In spatial-temporal circumstances separation of variables is an

important analytic technique.

For the j -th replicate, consider the model

1)(x,y,l) = a(x,y)Yj(l) + Ej(X,y,l) (5.1)

with a (.), fixed and standardized by L a (x ,y)2 = 1, with the Yj (.)

independent stationary time series of common power spectrum f (.) and

with the Ej (.) independent white noise processes of variance (52.

The relationship (5.1) is a form of random effects model. In the case

that the Yj' Ej are Gaussian one can consider estimating the unknowns by

maximum likelihood. This fitting is conveniently carried out in the fre­

quency domain employing the EM method (Dempster et al (1977). The

steps are: first Fourier transform with respect to 1 to obtain

Yj (x ,y ,'A) = a (x ,y )1j ('A) + Ej (x ,y ,'A)

with 'A taking the values 21tjJ38. Then having some initial values compute

a(x,y) = L 1)(X,y,'A)1j('AYC
j,A

followed by
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t j (A) = [It Yj (x ,y ,A)a (x ,y)lf (AYCf (A) + ()2)
x,y

and

J(A) = It I rj(A) 1
2/J

j

02 = It I Yj(x ,y ,A) - a(x ,y)rj(A) 1
2/JXYA

j,x,y,,,

respectively. Finally iterate to convergence. The divisor C is chosen so

that It a(x,y)2 = 1, while J = 12, A = 19 andX,Y = 8.

Figures 8 and 9 show the results of the computations. Figure 8

displays the fitted spatial function, a (x ,y) in both perspective and contour

fashion. It shows an apparent focus of activity. Figure 9 contains the

twelve estimated time series components, Yj (t). The estimated replicate

time series show oscillations, as was to be anticipated from Figure 7. The

amplitudes do vary noticeably with replicate.

Figure 10 shows the residual series Y(x ,y ,I) - a (x ,y )YI (I), for the

first replicate on the same scale as Figure 7. One sees the amplitudes to

be much reduced and the series to be noisier.

Following a classic approximation one can act as if the empirical

Fourier transform values Ej are approximately Gaussian, with values at

the Fourier frequencies independent, but the assumption of Gaussian y is

basic to the maximum likelihood analysis presented.

This type of work may be seen as establishing base values preparatory

to seeking possible changes from base values resulting from some treat-

ment.

6. Particle Processes
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6.1 Background

A particle process represents the path or trajectory of an object mov­

ing along a line, around in a plane or about in space. In the case of the

plane the trajectory may be represented by (X(t ),Y(t)) where X (t) and

Y(t) give the x -y coordinates of the particle's location at time t. The

particle could be meandering or pole-seeking. The representation

(X(t ),Y(t)) is that of a bivariate time series, but the conceptualization of

the problem is often quite different.

An example on a grand scale is provided in Eddy and Que (1995)

where there is discussion of how to display and analyse aircraft flights

over the continental United States. The process is a collection of paths,

(J0(t),Yj(t),Z/t)), in R3.

6.2 An Example from Ecology

Next an example from ecology is presented - the migration path of an

elephant seal. These animals were near extinct at the turn of the century

so there is a societal need to learn more about their behavior. Figure 11

graphs the path of one animal as an example. The animal starts from the

Channel Islands off Santa Barbara, California, proceeds to the northwest

and then returns. A great circle route has been added to the figure for

reference. This animal seems to know surprisingly well where she is

going. The problem of how to describe such paths is of interest.

In Brillinger and Stewart (1998) a pole seeking model on the sphere is

considered. Suppose e, <1>, 8 respectively denote longitude, colatitude and

speed in a coordinate system such that the animal is traveling to the North

Pole. Since the method of estimating the noontime location is quite

indirect, (based on times of sunrise, noon, sunset recovered when the

animal returns) there is measurement error involved. The equations set
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down in Brillinger and Stewart (1998) have the form

(6.1)

(6.2)

(6.3)

(6.4)

with e, y, e', i unit variance independent Gaussian noise processes. The

latter two processes correspond to measurement error .

First the model (6.3-4) for the case of no measurement error is fit by

maximum likelihood. The values obtained are:

8= .0112(.0011)radians

cr = .00805radians

The full model (6.3-4) is a nonlinear state space model, see ego Har-

vey (1989). A likelihood may be found based on it once one has an

expression for the conditional density, p (8 t +1' ,<I>t+1' IH, ,8,0,1), as in (4.1).

This is not directly available but may be estimated by Monte Carlo by

generating realizations of the processes 8, <I> and then averaging.

In the case with measurement error, and supposing the outbound

speed is 8 while the inbound is 8], the estimates are:

8= .0126(.0001)

81 = .0109(.0001)

cr = .000489(.000004)
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t = .0175(.0011)

all in radians. Now the measurement errors, e,', y/ appear dominant, not

the foraging movement given by the e and y of (6.3-4).

More complex Monte Carlo sampling schemes are available to use

here, see ego Stoffer and Wall (1991), Kitagawa (1996), but were unneces­

sary because of the small sample size and number of parameters involved.

6.3 Example from Pest Management

This last example is not developed as much as the preceding ones. It

IS meant to illustrate a data type and the beginnings of model develop­

ment. It could also have been presented in Section 5.

In 1975 a medfly epidemic took place in the Los Angeles area of Cal­

ifornia, see Routhier (1977), Hagen et al. (1981). It covered the period

September 24 to December 1. Figure 12a plots the locations at which

medflies or their larvae were discovered. The map is the area north of

Santa Monica and the shaded area is the Pacific Ocean. The incident

began in the lower part of the figure in Culver City, and ended with trap­

pings at the lower and upper reaches of the region. Figure 12b graphs the

numbers observed each day, with a peak the 37th day. These data are

once again spatial-temporal. Figure 12 separates the spatial and temporal

variables.

To bring out the joint spatial-temporal character Figure 13 shows the

locations of medfly sightings for successive nine day periods. Figure 14

plots the distances from the location of the initial sighting for the succes­

sive sightings. One sees sightings at a distance as the epidemic ends. A

lowess line has been added as a reference.

The interpretation of this data set is complicated by many things
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including: the locations of the traps, the inefficencies of the traps (often

described as low), the timing of visits to the traps and the eradication

treatment. Treatment began early in October with application of malathion

to host plants. It was soon realized that this approach was too slow to

acieve eradication. In November a sterile fly release program began and

eventually about 20 million such flues were being released each week.

Alltold 500 million sterile flies were released and some 280,000 of these

were trapped in the eight months of the program, see Routhier (1977).

The basic entomological and geographical processes are interesting.

The bugs will be spreading by flying, sometimes assisted by the wind.

Also the numbers will be increasing rapidly as eggs are laid and become

adults. Adults will be dieing. If at some time a bug flies near a trap they

may be attracted and caught. The data will become available only when a

trap is examined. The bug trajectories might be modelled as particle

processes, as the elephant seal migration was above. The locations of the

traps, the ranges of the traps and the timing of trap examinations all affect

the data obtained. The eradication effort will need to be included in the

models. The mathematics of the spatial-temporal birth and death process

are pertinent, see ego Cox and Isham (1980).

One problem is how to use such data to estimate the characteristics of

the overall population.

7. Other Types of Processes, Data and Techniques

There are various other data sets and associated processes that could

well have been discssed in the spirit of the paper. Perhaps foremost are

the spatial processes, Y(r) with r = (x ,y) or (x ,y ,z). One can also men­

tion line processes, hybrids ego sampled values, Y('tj ) , processes on
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graphs, trees, shapes, tesselations and other geometric entities. Stoyan et

al. (1987) is one reference .

Another topic that might have been presented is the case where the

values of a process are discrete, falling into categories. The categories

may be ordered, that is the values ordinal.

Difficulties arising in working with data have not been discussed.

There are problems with: biased estimates, long range dependence,

outliers, missing values, ...

8. Discussion

The goal of this paper has been to present in comparative, parallel

fashion examples where the basic data may be seen as part of a realization

of a random process. Statistics texts often contain substantial material on

descriptive statistics, focusing on numerical quantities and figures

separately from any stochastic modelling. In part this has been the

approach of the present paper. The classic problems of uncertainty esti­

mation and goodness of fit are ever present, but the paper has not focused

on these.
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Figure Legends

Figure 1. The top graph, la, plots the cumulative count of debris pieces

passing through the field of view of the radar after observing has

started for some period. Figure 1b is an exponential probability plot

for all the observed intervals between successive objects passing.

Figure 2a is the average of the periodograms for the data of the various

observation periods. Also included are approximate 95% marginal

confidence limits. Figure 2b is the estimated autointensity function

with approximate 95% confidence limits.

Figure 3a represents the times of objects passing through and the

corresponding altitude . Figure 3b is as Figure 3a, but now circles are

included to represent the sizes of the objects.

Figures 4a and 4b are the averages of the periodograms of the altitudes

and sizes, averaging over the available observation periods. Figures

4c and 4d are coherence estimates for the intervals beween successive

passages with the altitude and size series repectively. The upper null

95% marginal confidence line has been added.

Figure 5a provides the number of births in Toronto 1986 for each day of

the year. A smooth lowess curve has been superposed. Figure 5b

presents parallel stem-and-leafs split by day of the week.

Figure 6a is the periodogram of the series of Figure 5a. Figure 6b is the

periodogram of the residuals having removed an estimated trend and

the daily effects .

Figure 7. The electroencephalograms of the first replicate of the experi­

ment for the 8 by 8 array.
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Figure 8. The estimated spatial function, a (x ,y), of the model (5.1).

Figure 9. The estimated latent series for the 12 replicates.

Figure 10. The residual series having fit the model (5.1).

Figure 11. The outbound and inbound tracks of an elephant seal heading

into the Northwest Pacific from near Santa Barbara, California.

Figure 12a is a plot of the locations of trappings of medflies, adults and

larvae, during an outbreak in 1975. The shaded region is the Pacific

Ocean. Figure 12b graphs the counts noted each day during the epi­

demic.

Figure 13. The plot of Figure 12a, but for successive 9 day periods.

Figure 14. The distances of each sighting from the original, for each day.
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Part III 
Population Biology and Environment 



Commentary: Introductory Comments to Some Applied
Papers by David R. Brillinger, by Tore Schweder and

Haiganoush Preisler

In addit ion to st ati stics, David took care in developing my att itude as a
scientist - and he wrote a poem of his own in my draft t hesis about whales
and statis tics . He also cared for us personally. We were invited to use Lorie's
and David 's house when they went to New Zealand in the summer of 1973.
Our newborn child spent her first time out of Alt a Bates hospital in their
house. David also gave me support in a more touchy matter. I was on a US
Navy grant , and felt uneasy when I realized that I had to acknowledge the
grant in a publication. Strike it in the last galley, was David 's advice - which
I in the end did not follow. And there was fun, also outside the soccer field.
David suggested t he movie "T he harder they come". My son , an aspiring
reggae musician, was happy to find the Jimmy Cliff LP in my old stock. In
the last couple of years we have been lucky to have David as an advisor in
our Centre for Ecological and Evolutionary Synthesis in Oslo, and to have
David repeatedly visiting.

E mpirical mod ellin g of popula t ion t im e series data: The case of
age and density dependent vital rates [1980]

A stochastic matrix model is used to study a population of sheep
blowfly observed over two years in a lab. The flies were kept in a cage, and
fed on a constant diet . The population experienced substantial fluctuations
in size over the observational period. Matrix models for stage-structured
populations like the sheep blowfly have become popular (Caswell (2000) Ma­
trix Population Models: Construction, Analysis, and Interpretation, is cited
some 1900 times).

The hypothesis behind the experiment was t hat competition for resources
would occur only in egg laying and that the population fluctuations were
due to variability in recruitment . Mortality was thought only to depend

P. Guttorp and D. Brillinger (eds.) , Selected Work,· ofDavid Brillinger , Selected Works in Probability 325
and Stat istics, 001 10.1007/978-1-4614-1344-8_ 18,© Springer Science+Bus iness Media. LLC 20 12



on age. By fitting a product model to age-and abundance specific survival
probabili ti es by weighted least squares, it is found t hat age-spec ific mortality
does depend on abundance, and also on abundance two days earlier. By
residual analysis it is also found that there are further dependencies.

The present pap er is an early st udy with vit al parameters, particularly the
mortality rate, depending on population size and being affected by random
vari ation. It has influenced the field of population dynamics to make more
use of rather standard statistical methodology.

Learning a Potential Function from a Trajectory [2007] This short
Signal Processing Let ter presents stochasti c differential equation models for
moving objects where the drift term is the negative gradient of a potential
function, providing a form al background and a general discussion missing in
t he lit erature. These models can have regions of att raction , absorbt ion or
repulsion. Various interesting and useful potential func tions that are linear
combinations of given differenti al functions are considered. Being linear in
unknown parameters, they can be est imated by linear regression alt hough
with stochasti c regressors. Asymptotic t heory is present ed for t he pot ential
function estimator based on st andard assumptions on condit ional indepen­
dence and zero mean residuals. A similar regression model is used in the
soccer st udy (Brillinger 2007b) discussed below. For curved potential func­
t ions one might wonder whether the residual terms really have zero mean .
Ano ther question is how the asymptot ics of the estimated potential depends
on the potenti al funct ion it self. If t he att raction, say to a point , is sufficient ly
strong, a single t rajectory might for example not provide enough information
to allow first order convergence to normality.

A Potential Function Approach to the Flow of Play in Soccer [2007]
Soccer , or football as we say outside USA and Can ada where t his game is by
far the most popular of sports, is a game played by two teams of 11 players
each. The play field is rect angular about 105 by 68 m, with a goal at each
short end. The purpose is for each team to have the ball inside the goal of
t he other team as many times as possible, and have the ball inside its own
goal as few t imes as possible. The ball is passed from player to player within
a team, usually by the kick of a foot , until a goal is scored, the ball get s off
t he field or is picked up by t he other team or is lost because an arm or hand
is used or some other rule is broken.
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David got interested in soccer during h is years a t LSE. In the early 1970s
we were severa l Norwegian students at the Berkeley department. \Ve got a
Norwegian newspaper to t he coffee room, and David was quick to grab it to
get Hews of soc-cer ill England.

T he purpose of t his art icle is to esta blish a sta t ist ica l framework for de­
scribing and simu lat ing how a game of soccer develops. This is don e by
breaking t he ga me out in spells of hall occupancy. A spell is a successsion of
passes of t he ball wit hin a team. All unu sually long spell ill t he 2006 World
Cup gamc between Argentina and Serbia-Montenegro is stud ied in detail . It
had 25 passscs and ended wit h a goal for Arge nt ina. The spell is characterized
by the position Ti of th e ball when pass i is init ia ted , and also the time t i . A
potential Function H that describes t he spatia l succession r , - r l+J for given
times is IIS Sl111l('d :

The pot ential fu nction is assu med linear ill so me parameters , and so is the
gradient. These parameters are estimated by least sq uares from t he posi t ion s
an d times of the spel l. T he es t imated pot ential fu nct ion is a hi t skewed
towards th e left of t he field seen from th e Argent inia n side, a nd might be
symmetrized when used to simulate a game. To simula te a game, a poten tia l
fu nction is a lso need ed for the ot her team, and also a way to simulate ti me
points wit hin spells aw l a sto pping time for spells.

Slnco passes general ly are made towards t he opposing goal where the
poten tial function is steepest, t he least squares approach taken ill the paper
will bias the est imated potenti al funct ion towards less stee pness. A part ia l fi x
is to also include th e curva ture (t he Hessian) ill the regression. Another point
to be made is tha t simulating soccer games are done in di fferent comp uter
games. How are these simulat ions carried out relative to ti le met hod proposed
her e'!

Analyzing games of soccer , i.e. pu lling t hem a part ill their basic cle ment s
like spells . and characteriz ing teams by t heir estimated poten tial fu nctions
and other characte r ist ics might be useful for understandi ng games and for
the traini ng of a team. O ne point of particu lar int erest might be to identi fy
to what degree and in what aspects gamc results arc determined by simply
combining t he features of each team wit hout further interaction t hai I ind o­
penden t s uccession of spells, and ill what aspects more complex inte raction
must be invoked . If no such further int eract ions are of importance , a team
sho uld be trained wit hout regards to qualities of t he next opposing team.
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The use of potential functions in modelling animal movement [2001]
Potential functions are used in the physical sciences to model the motion of
planet s or particles in a field of gravitat ion or other forces determining veloc­
ity and direction. A two-dimensional st ochast ic differential equat ion (SDE)
provides a st ochast ic version of the deterministic potential function model.
The drift term in the SDE is then the negative gradient of the potential func­
tion. The aut hors use an SDE to model the motion of elk (and mule deer)
in an enclosed forest . The exte nsive data was obtain ed from researchers who
fitted a number of animals with collars cont aining Loran -C receivers . The
position of a t agged elk is recorded about every minute, but with a measure­
ment error of some 50 meters. Under the SDE model, the assumed potential
function is est imate d from the spat ial distribution of elk positions, assuming
this distribution to be the st ationary distribution of the SDE. An interest­
ing question is whether the function est imated this way by a kernel method
really could be an est imate of a proper potential function. This is tested
somewhat informally by the Student stat ist ic found by comparing the two
cross differentials of the estimated function. The aut hors find that the ex­
ist ence of a potential function cannot be rejected . Gray scale graphs depict
the est imate d potential function showing that elks t end to be in the northern
end of the area during day, while more to the south during night.

Do individual elks move about according to a Markov process, sayan
SDE, and independently of each other? The potential function model as­
sumes this. Although these basic assumptions cannot be tested within the
SDE model, the model is very useful in summarizing position data for t agged
animals to elucidate questions about habitat select ion and foraging behavior ,
and also the effect s of vehicular traffic and fences on animal behavior.

The paper shows how the SDE model might be used for animal motion
data , and it finds it s place in the sequence of related papers on models and
numerical methods that David has together with biologist s and fellow stat is­
ticians.

Elephant-seal movements: Modelling migration [1998] Elephant
seals migrate between their rookeries at the California coast and their feeding
areas in the North Pacific close to the Aleutian islands twice a year . Data
from individuals fitted with t ags measuring light conditions by time of the
day when sur facing to breath, in addition to other vari ables were considered.
The dat a allow the migration route to be tracked by est imat ing the position
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each morning by the length of daylight and the time of sunrise. The seals
are essentially following a great circle between foraging area and haul-out .
How they manage to navigate as precisely as they do is not known, but the
authors speculate that the seals utilize the global magnetic field. In order to
develop testable hypotheses for seal migration, formal models are developed.
These models are cast in the form of stochastic differential equations for dif­
fusion on the surface of the globe . They are of the Ornstein-Uhlenbeck type.
From Brillinger (1997), the basic model for the case of steady drift along a
meridian is set down :

(J"

dePt = . (8) dvtsm t

for latitude 8 and longitude eP and standard Brownian motions U and V,
all measured in radians. In this formulation the speed c5 is negative when
the motion is towards the North Pole. An alternative model is discussed
below. If the target and the point of departure are at different meridians, the
equations for the diffusion along a great circle are obtained by a trigonometric
transformation of the above equations.

In this model, including measurement errors in the daily positions, ap­
proximate maximum likelihood estimators are obtained. Based on data from
a seal migrating from the foraging area towards its rookery, estimates are
obtained for speed along the great circle c5 and for the diffusion standard
deviation (J" . The point of departure for this seal was estimated as the mean
position over the days thought to be spent on foraging ahead of the migration
towards the California rookery. The target , the seal 's rookery, is a precise
point , but the point of departure needs perhaps not be a well defined point .
It might be preferable to model the foraging area as an area and not a point ,
say by a bivariate normal distribution located at the center of the foraging
area.

In case navigation is done continuously by the magnetic field, continuous
time modelling as above is appropriate. If however navigation is done celes­
tially, discrete time modelling might be preferable. In that case navigation is
prevented during daylight when the stars are invisible, and also those nights
with clouds on the sky.

Tag technology has developed considerably since the elephant seal data
were obtained. Modern tags would measure position by GPS at each sur­
facing , with very little measurement error. Such tags are widely used to
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u nderstand an imal behavior . an d diffusion models for migration on a sphere
like the OIlC above should be in conside rable demand.

An a lternative model for an Omsrcin-Uhlcnbcck process on the sphere
wit h d rift. towards the Xort h Pole a nd with attraction to a meridian a t. lon­
git ude TIl is dOl = i5dt + mlUt- d9t = l (m - 9d + d\~ . Here HI is latitndo and
cPt is distance from (Bt,m) along a great. circle perpendi cular to the merid­
ia n, an d dU is rando m laritudinal disturbance a nd dV is the sa me along t he
perpendicular great circle. In this model, B is causally independent. of cp, and
is therefore a one- dimensional linear SDE process . The exact. likelih ood for
observat ions a t. discret e points in time is available. T he ex pected velocity
along the great cir cle is 6 ami t he push of rever ting hack to the meridian
a t m along a perpendicular grea t circle at position cPt is 'Y. This model is,
perhap s, a more transparen t model tha n that in the paper .

R andom process m ethods a nd e nviro n mental d ata : the 1996 Hunter
lecture (199 71 Environmental processes like weather , river flow, ea rth
quake damage etc. arc essent ial ly dyn amic and nearly always affected hy
random varia t ion, and random processes are fundamental in modelling them .
T his is t he basic message of t he paper , and three environmental processes arc
considered to illust ra te th e use of stochast ic process models and statistical
inference in cnvironmontul science.

In the first. analysis nearly a century of daily r iver heigh t of Rio Negro at
Manaus , Brazil arc an alyzed . The question is whet her there is a n increasing
trend in the now of wate r out of th e Amazon bas in. There is considerable sea­
sonal var iat ion in river flow, and the approach is to fit. a model wit h a trend
plus a seasonal componen t a nd one for daily variability, Rath er th an mod­
ell ing these compo nents parametri cally, year specific seaso na l compo nent arc
estimated by the med ian an nual curve. The trend is only assum ed to be non­
decreasing a nd is est imated non-parametrically from the seasonally adj usted
ser ies. The estimated trend curve is by construction non-decreasing, and to
judge whether it es t imates a truly increasing trend, data were simula ted from
the model assuming no trend . The simulated d a ta were an alyzed in the same
way as the observed data, a nd from visual comparison, the con clusion is that.
there is a soupcon (touch of) significance. This ingenious non-parametric
t ime series a nalysis could he generalized . O ne might. ask whether it yield
ot her conclusion th an more traditional paramet ric an alyzes?

Damage du e to the Loma Prieta ea rt hquake wit h epi center d ose to Santa
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Cruz, California, is the theme of the second analysis. At various localities
in the greater Bay area the earth quake damage was measured on an ordi­
nal scale with 12 levels of increasing severity. The purpose of the analysis
is to ext rapolate these damage measurements to the whole of the affect ed
area. The degree of dam age at an affected locality at (x,y) is modelled as
a multinomial based on a smooth spatial function g(x ,y) plus an extreme
value distributed random variable. The contours of the est imated damage
function 9 are shown. Perhaps the predicted value of the ordinal damage
score might have been be more interesting. Other distributions than the ex­
treme valu e could act ually have been chosen. The predicted damage score is
broadly invariant to the choice of distribution, while 9 has the scale of the
chosen distribution.

In the third analysis the problem is to estimate the average velocity at
which weather moves from west to east on the Glob e. The data consist of
500 millib ar pressure fields across the surface of the earth over a five day
period, with two measurements (pressure fields) per day. The pressure field
is modelled as Y(x, t) = g(x) + h(x - vt) + noise, where x is longitude in
radians , v is velocity in radian /hour and t is time in hours . The longitude
specific component 9 cancels in the difference Y(x, t + 1) - Y(x, t) and these
differences are used to estimate the velocity by least squares.

David describes st atistics as t he science of using data wisely. He further
makes the basic general remark that for problems such as those considered in
the paper, the importance of collaboration and learning the pertinent subject
matter cannot be overemphasized . Agreed! Whether dat a are used wisely is
in fact not only a st atistical matter. A st atistical applicat ion is good to the
extent it is statistically sound and is also helpful for the subject matter field.
Wi thout basic language and understanding of the field the risk of irrelevance
is high. In his Hunter lecture David provid es t hree wise analyzes, as he
also does in his many other applied papers. He has evidently an intimate
knowledge of importan t areas of environmental science as well as the areas
in biology, earth science and other fields where he has cont ribute d , and he
cooperates well with subject matter scientists.

The 2005 Neyman Lecture: Dynamic Indeterminism in Science
[2008] Jerzy Neyman (1894 to 1981) founded the Statistic s Dep artment at
Berkeley in 1938 aft er 4 successful but t urbulent years in London following
his early years in Poland. Neyman's life history and some of his contribu-
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tions to applied statistics are reviewed, with emphasis on his use of dynamic
stochastic modelling in his applied work in astronomy, fisheries science and
weather modification. Neyman was concerned with phenomena developing
in time and space . David briefly presnts stochastic differential equat ions
(SDEs) as a background to Neyman's applied work , and as a common thread
in his own applied work, not the least what he presents in the paper to
expand on Neyman' s work and to support the case for dynamic indetermin­
ism in science. "Indeterminist ic" was for Neyman broadly synonymous with
"stochast ic" and "st atistical". Chaos or other non-probabilistic indeterminism
are not mentioned , perhaps for good reasons since Neyman was a practical
man who sought empirical knowledge in the many fields of science where he
worked. David is also a practical man, and he uses finit e differences to obtain
likelihood functions in his SDE models.

Two of the three examples of Neyman's applied statistics works were done
together with Elizabeth Scott . Together with astronomers they developed the
Neyman-Scot t model for clustered point pro cesses when studying the spatial
distribution of galaxies. From graphical comparison of photographic images
of the sky and images obtained by simul ating their model, they found that
more clustering was needed, and they developed a two-stage Neyman-Scot t
model. Weather modification was another area they investigated together.
Through a randomized experiment of cloud seeding in Switzerland they dis­
covered a "far-away" effect of increased rainfall far away from the seeding.
The third study was don e before Scott entered the Berkeley Department as
a PhD. Here, Neyman developed and est imated an age-structured model for
the population dynamics of Californian sardines that was subject to heavy
exploitation. This study predates the seminal book: Beverton, R. J. H.;
Holt, S. J. (1957) On the Dynamics of Exploited Fish Populations.

David follows up on Neyman's sardine st udy with his own study of sheep
blowflies by way of a population matrix model. This is discussed above
(Brillinger, Guckenheimer, Guttorp and Oster, 1980) . David expands on the
weather modification st udy of Neyman and Scott by using a model for trans­
forming a point pro cess model of seed particles above Ti cinino in Switz erland
to a point process of rain drops in clouds blown to Zurich, and estimates the
expected delay time from seeding to increased rainfall in Zurich. David 's
third example is a study of spatial motion of elks fitt ed with GPS collars in
the enclosed Starkey Experimental Forest . An SDE model was employed and
the velocity field of elk motion est imated. To what extend does recreational
use of the area , i.e. driving ATVs, affect elk behavior? This was studied in
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an experiment were a driven ATV was tracked and its trajectory introduced
as an explanatory vari able in the SDE model for t he motion of an elk during
t he experiment al period. The elk was significantly affected by t he ATV , and
the effect is graphically quantified. In his final example David studies the
foraging behavior of Hawaiian monk seals fitted with GPS tags, by way of an
SDE model cast in potential function form . This and the previous example
is akin to Brillinger , Preisler and Ager (2001) discussed above. The poten­
t ial function was modelled as a linear combination of basic functions, and
was estimated by least squares. Synthetic plots, i.e. simulated tracks, from
t he fitted motion were found not unlike observed tracks where unreasonabl e
satellite recorded position are cleaned up.

Sympathy and admiration for Neyman shines through the pap er , but in
his modest way David does not say how he was inspired and influenced by
Neyman. From similarities in their appet ite for applicat ions to subst antive
sciences and in their great contribut ions, also to what we used to call math­
ematical statis ti cs, the influence must have been subst antial - or they were
similarly gifted and born under the same star.
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EMPIRICAL MODE LLI NG OF POP ULATION TIME SE RIE S DATA :

THE CASE OF AGE AND DE NSITY DEP ENDEN T VIT AL RATES

David R. Brillinger , John Guckenheimer,
1

Peter Guttorp, George Oster

ABSTRACT . The total numbers of births and deaths in a
population are give n at discrete equispac ed time intervals.
It is assumed th at the birth a nd death rates depend on age,
the population si ze and possibly time. Further it is assumed
that th e rates fluctuate r andomly from individual to individual.
The problem is to estimate av e r ag e birth and death rates a nd
the age structure of t he e vol ving population. Results are pre­
s ented for a population of sheep blow-flies maintained under
s t able conditions for a two yea r period (361 observations) by
A. J. Nicholson.

1. INTRODUCTION. Statistical analyse s of population data have ge ne r al ly

concent rated on th e cases where birth a nd death r ates depend on age alone

(s ee for exampl e Chi an g (1968), Gane (1975), Pollard (1973» or linearly

on popu la tion s i ze alo ne (s ee fo r exampl e Bartlett (19(;6), Keiding (1975».

In the fir st c as e th e ages of the individual s co nc e rned have been as sumed

known. In th e s ec ond case the age st ructu r e is ignored.

In a va r ie t y of practical sit uations bi rth and deat h r at e s a re non­

l inear function s of bot h a ge and popu lation s i ze . A va r iety of theoretical

a nd s imulate d r esults have been derived for such populations in the de ­

terministic (nonstocha stic) case. Os te r (1977) presents a r eview of this

c ase . Supp os ing N(t , x) to be th e nu mber alive in th e populati on at time
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t aged x such studies have typically been based on the system of equations

aN(t,x)
at

aN(t,x) = _ ~(t,x)N(t,x),

ax

N(t,O) = f (j(t,X) N(t,x)dx

with ~ (,) the death rate (force of mortality) per individual and (j (,) the

corresponding birth rate, Functions (N (t,x» satisfying the above equations,

for plausible cases of ~ (.) and f3 (,), can evidence an extremely broad

range of behavior with a rich bifurcation structure as parameters are

varied. (See Guckenheimer, Oster and Ipaktchi (1977).) The results that

have been obtained are instructive; however their usefulness in practical

situations is not clear because, among other things, (i) measurement

error is ever present, (ii) individuals differ drastically in propensity

to die, (iii) in general only aggregate data(i, e. non age structured) is

available, (accurate life tables for populations with nonstationary age

distributions are extremely rare in the ecological literature) (iv) adequate

criteria for comparing models and data are lacking and (v) the solutions

are unstable, so estimation of parameters is virtually impossible.

This paper is concerned with the problem of estimating nonstationary

age structures and age-and-density-dependent death rates given aggregate

stochastic data. The most detailed set of experiments in the age-and­

density-dependent case were undoubtedly carried out by A. J. Nicholson,

(Nicholson (1950». This data has been modelled deterraintsttcally by

Auslander et al (1974) with a variety of models. These models share

many of the apparent qualitative features of the data. Here we begin a

more quantitative assessment of the data and immediately find that some

of the earlier assumptions are questionable.

2. NICHOLSON'S EXPERIMENTS. During the 1950'S the Australian

entomologist A.J. Nicholson carried out an extensive series of experi­

ments concerning the population variation of Lucilia cuprina (the sheep

blowfly) under various conditions. Nicholson maintained populations of the

flies on various diets (some constant, some fluctuating), experiencing
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different forms of competition (between larvae and adults, for egg laying

space, etc ,) , and under many other conditions. One list that we have shows

145 major experiments. In this paper we report on the analysis of one

cage of Nicholson's L97 experiment, "influence of periodic environmental

changes of intrinsic oscillations". This cage was actually a control main­

tained under constant conditions.

The blowfly's life cycle is made up of a number of stages of varying

durations (see Mackerras (1933». The principal stages and their approx­

imate durations are listed in table 1.

Table 1.
Stage

egg

larva

pupa

immature adult

mature adult

Duration

12-24 hours

5-10 days

6- 8 days

4 days

1-35 days

The durations listed are only meant to be suggestive. Great variations

are observed, for example with temperature. The observed time to emer­

gence (from egg to immature adult) for the population studied in this paper

varied between 10 and 1li days.

Since the sex ratio is elose to 1:1, we shall assume equal numbers of

males and females in the models, Macke r ras (1933). The development

of the reproductive organs in the Icmule is dependent on diet: sufficient

protein is required for egg development. Egg laying in sexually mature

females occurs in bursts several days apart, with the interval increasing

as the female ages. The death rates for the larval and pupal stages are

low. Table 3 in the Appendix gives an indication of the dependence of the

adult mortality on age.

We turn now to the specific details of Nicholson's L97 cage I experi­

ment. On Hl May 195~ 1000 pupae were set up in a perspex box with a

bal sa wood grid on top of them to retain pupal cases. Food consisted of

lump sugar and moistened cotton wool pad. Practically all flies emerged
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overnight. Adult food consisting of .4 gram ground liver, dried in a desi­

cator, was added to the cage on 20 May. This quantity was added daily.

Measurements were first made on 21 May. The basic data recorded were

total counts of emerged or dead flies at two day intervals and the dates

when the emerged flies had been laid as eggs. The experiment continued

until 10 May 1956. Table 3 provides the bidaily data on adult population

size, adults emerging, eggs laid and adults dying. Nicholson's final

count of the flies in the cage was 6701. (This differs from the figure of

6806 derived by accumulating emergences and deaths.)

*Figure 1 presents graphs of the square roots of the basic data.

The adult population is seen to oscillate dramatically with a period of

approximately 35-40 days. The population was maintained on a restricted

protein diet. The competition for food when the population size was large

meant that the females did not receive enough protein to realize their

maximum fecundity. Indeed a comparison of adult population with eggs

laid, shows that at the beginning of the experiment virtually no eggs were

laid when the population size exceeded a certain level. The few eggs laid

meant that the population would soon drop sharply. The subsequent gen­

eration however, being smaller, faced less intense competition for food

and their fecundity increased. An alternation of large and small genera­

tions resulted and hence the oscillations evident in the Figure.

From the Figure the egg, emergence and death series also oscillate

with periods of 35-40 days, the egg series leading the adult series by 12­

14 days; emergences lead adults by 0-2 days and deaths lag adults by

0-4 days. These intervals are in accord with the averages indicated in

table 1.

3. INITIAL DATA ANALYSES. Foremost in Nicholson's design of

experiment I was the notion that competition was to occur in egg laying

only, death rates were to depend on age alone. Figure 2 presents gr aphs

of the birth and death rates and of the proportion of eggs not emerging.

*The square root is graphed to provide more
nearly constant variability in the series.
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The latter series flu ctuates about the level of 10 per c ent throughout

most of the s e r ies (the var ious spike s occur when the number of eggs is

small). Howev er, towards the end there is a definite ri s e, suggest ing that

*Nicholson's experiment might be collapsing.

The birth r ate series varies immensely with the population series,

just as Nicholson arranged. During the last 200 days th ere is a clear

sugge stion that th e flies a re now laying eggs at population sizes whic h

ear li e r would ha ve inhibited egg laying. Nic holson (1960) regards this

as evidence th at selection ha d occu r r ed fa voring fl ie s able to lay eggs at

hi gher population le vel s (I. e. lo wer protein). (Later in the paper it will

be see n th at th e populat io n is younge r at th e later stages so that this rise

may be caused by younge r flie s being more fecund. We r emark that at th e

end of thi s ex pe r iment , Nicholson carried out a further experiment and

found that th e s e fl ie s coul d lay eggs with much less protein.)

The simple death r ate series is also qu ite variable. T His is expected

bec au se of th e varying age composition. However , clos e examination of

the upper two graphs of F igure 2 suggests that th e death r at e is ge ne r al ly

highe r when the population s ize is large. F igu re 3 is a scatter di agram of

death r ate and population s ize . It presents a c lear indication that the adult

deat h r at e is indeed density de pe ndent - contrary to Nic holso n'S de s ign .

Later we wil l co ns t ruct a model of th e dependence of the death r at e on

age and population s ize .

4 . A DETERMINISTIC APPHOACH TO AN AGE ST RUCTURE D POP-

ULATION. We co nsider the case of d iscrete t ime , t = 0 , 1 , 2, • • • • Let

Nt = the adu lt population s i ze at time t ,

£!t = the population vector . The entry in row i gives the numbe r of

popu la tion members aged i- I at t ime t, i=I, ... , I.

E
t

= the numbe r of en trants (pupae emerging) , aged 0, to th e adul t

popula t io n in the ti me period (t- l . t ) .

12t = the ent r an t vecto r , having Et in r ow 1 and 0 in th e other rows.

*Nic holson (1960) observed tha t t he fli es left at th e end of th e exper iment
la id eggs with a muc h hi ghe r propo r tion never emerging t han the origina l
s t r a in of nics . It may be thi s t hat causes the rise .
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Dt = the number dying in the time period (t-l, t),

E (t!) = the survival matrix. If the population vector is ~,then the

entry in row HI, column i gives the proportion surviving from age i to age

i+l. The remaining entries are O.

The population variation is described by

t!t + 1 =£(~t) ~t + £;t + 1 ,t!O =.Q.

The population size at time t is

(1)

(2)

with! the unit vector .

The complete trajectory of the population may be projected from the

sequence of entrants, Ett if the survival matrix £ (.) is given. The death

series is given by

(3)

These equations do not represent a complete system for determining

future population sizes from current ones. We still need an expression for

tomorrow's entrants Et + 1 in terms of the population history:

Et + 1 = f(!::!t , t!t-l, • •• ). (4)

Nicholson's assumptions about his experiments cor r es pond to the hypoth­

eses that E (~t) is a constant matrix and that f(~) is a nonlinear function

which tends to zero with increasing population size.

Models of this kind for experiments similar to Nicholson's were studied

by Wu (1976). He conducted population experiments with blowflies which

attempted to realize a model in which competition was within a single

cohort during the larval stage of the insect. He measured, independently,

the mortality parameters and the function (4) describing emergences for

the blowflies on which his experiments wer e conducted. Wu car r ied out

s imulations and found them to present a s imil a r aspect of periodic ity and

irregularity as the experiments. Indeed ,in these experiments there is

good quantitative agreement between the data and the model.

With Nicholson's experiments, estimates of the model parameters

must be based upon the population data itself and independent experiments
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testing the model's assumptions cannot be done with the same flies.

Ipaktchi et al (1980) have investigated deterministic models for Nicholson's

data. They estimated the model parameters by no criteria other than

producing final simulations which gave qualitatively the correct visual

appearance. In this paper we attempt to investigate Nicholson's data in a

more systematic fashion.

Note that models can produce simulations which appear irregular or

"chaotic" despite the fact that they are deterministic (Guckenheimer, et

al, 1977). Thus it is a reasonable hypothesis that the aperiodicity of

Nicholson's data is primarily a consequence of deterministic causes. The

underlying dynamical system described by equations (1) and (4) seems to

be one which possesses "sensitivity to initial conditions": individual

trajectories diverge from one another with increasing time. Future

asymptotic behavior can be predicted only in a statistical sense. Our

eventual aim is to assess the validity of this hypothesis, but adequate

tests to do so have yet to be developed. We begin here by examining the

statistics of Nicholson's data in order to determine whether his assump­

tions are consistent with the experimental results. Our analysis will show

that modifications to the deterministic model should be made to allow for

density dependent mortality.

In the remainder of the paper we shall focus upon the relationship

between the death series Dt and the population series Nt. This is an

important step in reconstructing the age structure & of the population

from the experimental data Et, Dt. Without a model for the mortality of

individuals of different ages, one cannot recover an estimate of the tra­

jectory of the population through the phase space of the deterministic

model. The aggregate data for Nt must be split into age classes to obtain

&. As noted above, Nicholson assumed that adults were well supplied

with the resources of survival so that per capita mortality should have

been independent of population size. This assumption is embodied in a

deterministic model with constant matrix ~. Let us turn now to an

analysis of the data via stochastic models which call into question this

independence of .£ on .t!t.
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5. A STOCHASTIC APPROACH. In any real population the age structure

vector ~t + 1 will not be uniquely determined by values of Et + 1 and ~t,

as equations (1) and (4) imply. Rather it is appropriate to replace equation

(1) by

~t + 1 =~ (~) & + gt + 1 +!.. t + I (5)

with..t t + 1 an error variate. Supposing E (~t + 1 I!:!t> =~, and arguing

conditionally on the emergence series, equation (1) is replaced by

E (& + 11&) = E (~t> l::!t +gt + r.
The extent to which the population will follow a trajectory determined by

iterating equation (1) will depend on the stochastic variability of,t t-

Given only the data for total emergences and total adult population,

(Et, Nt), t = 1, • . , T we shall now present a method for forecasting the

population size and estimating both the age and density dependent survival

matrix and the population age-structure vector ~. We emphasize that the

method is not restricted to stationary age distributions.

Suppose that the survival matrix depends on ~ only through the popula­

tion size N =1' ~. Then the model takes the form

& + 1 = £(Nt) tl:t + ~t + 1 +!..t + 1 (6)

Nt = i ~. (7)

In control systems engineering terminology equation (6) is called the state

equation and (7) the observation equation. The methodology of that field

su ggests an approach to the problems of forecasting and estimation.

Were the matrix E (~) =Et nonrandom and the process !,t Gaussian

white noise with covar iance matrix Yt> then one could use the Kalman­

Bucy filter:

E [ ~t+ 1 1 Nu' u ;§ t + 1 ] = !Et+1

= I\ !Et + ~t+1 + ~tl(Nt+1 = Et+1- l ' E m)/ l ' .bt l .

with

!Eo =Q');,o =Q.l't =var[~tINU' u ;§t1,

At = V t + Pt Yt Pt' = var [ Nt lIN. u ;§ d .
- - -- - - + U
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T I 2 _2
S = ~ (Dt - }; qi-l (Nt-I; 8)m i-i t-l) / rrt - l (12)

t=2 i=i •
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(See Liptser and Shiryayev (1978), page 66.)

The above expressions assume £t. Yt to be known . In the case that they

are unknown but can be parametrized so that the model is identifiable,

the parameters may be estimated by maximizing the log likelihood

T 2 T 2 2
- 1/2 t ~ 2 log (1 t - 1/2 t ~2 (Nt -!..I £!!1t -1 -Et) /(1 t + C (10)

with C a constant. (1 f = £~t-l1 = var INt INu • US e-r] subject to the

conditions (8), (9). (See for example Gupta and Mehra (1974).)

Theorem 13.4 of Liptser and Shiryayev (1968) shows that the express­

ions (8), (9) continue to hold when £t = E(Nt>; Yt = Y(Nt) .However with

respect to the problem under consideration in this paper. a substantial

departure from the assumptions is caused by the undoubted variation in

Y (.) with .t::!t-l not just with Nt-I. (The departure from a Gaussian dis­

tribution is expected to be less important.) Below. a bootstrap procedure

will be developed for dealing with this difficulty.

We have assumed that the survival matrix depends only on the popula­

tion size N. Now, suppose that its functional form is known up to a finite

dimensional parameter', (). Specifically write it as ,g (N; () .

The updating equation (8) is not appropriate since Y (.) depends on the

full population vector .t::!. An intuitively reasonable alternative is

wherein the projectedvalues are updated proportionately, to yield the

me asured total Nt + 1. Equation (11) may be obtained from (8) by choosing

,&1 proportional to £(Nt )mt. (Were the entries of <.t::!t + 1 give n Nu• us t)

independent Poisson variables then ~tl = £ (Nt)~t.)

Empirical evidence. to be presented later, suggests that it is reason­

able to take at in equation (10) proportional to Nt_I' Hence maximizing

expression (10) comes down to minimizing

T 2 ,2
}; (Nt-1:'£(Nt-l;O)mt-l) / N t-l

t = 2
or equivalently
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where qi (N;0 )=Prob Iindividual aged i, dies aged i given population size

NI.

The data fitting procedure we employ below can be described as follows:

1) Evaluate the rot via expression (11) employing a trial value of (J.

2) Determine an estimate of (J by minimizing expression (12) using the

evaluated rot.

3) Take the estimate of (J as the new trial value in 1). Iterate until the

trial value and the estimate becomes the same.

The values mt evaluated via expression (11) at the final stage, provide

estimates of the age structure of the population throughout the time period

of observation. They will be used to fit an age and size dependent fertility

function.

6. RESULTS.Two death rate models were fitted to the adult data:

(a) an additive model

qx, N, N «(J)=ax+tJN+'YN_ (13)

and (b) a multiplicative model

q «(J) = 1 - (I-a) (1- tJN) (l-...,N_). (14)x,N.N_ x

Here x is age, N is the population size at beginning of the current interval

and N_ the population size at the beginning of the preceding interval. The

first model was selected because of its simplicity, and the second because

it corresponds to independent age and size mortality forces operating on

the flies.

The parameter values tJ, 'Y =0 correspond to the case of no density

dependence. If ax = a for all x , then age plays no role in mortality.

Figures 4 and 5 show q N N «(J) for the two models in the case of
x, .

a small population N, N_ = 1, a large population N, N_= 8000, an increasing

population N = 5000, N = 2000 and a decreasing population N =2000, N_=

5000.

In terms of the criterion (12), the product model (14) provides the

better fit, (see Table 2), however the lower three curves of the two

figures are almost identical.
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The dominant feature is the apparent substantial dependence of death

rate on the population size; contradicting Nicholson's desired experimental

setup.

Table 2 provides a listing of various of the models that were fit to the

data. The S corresponding to ''Persistence'' is defined as

~ (Dt -Dt_l)2 Im-l .
t=2

If one views the problem as one of developing a predictor for the death

series, this S measures the adequacy of predicting by the most recent

value. The case of a x corresponds to (Nicholson's desired) dependence of

mortality on age alone. The case a +BN corresponds to random age­

independent mortality.

Table 2

S for various models

persistence

a

a + B N

I-(I-a x) (1-.BN)

ax +.B N

ax +{1N +'YN_ I
1- (I-ax) (I-{1N) (I-'YN_ I)

ARMA (1,1)

10 age intervals

S

13.964

7.011

6.688

5.605

3.894

3.843

3.609

3.531

3.001

7. DIAGNOSTICS. Figure 6a provides a graph of the observed death series,

Dt and the fitted series Dt (one-step predictor), based on the product

model of the previous section. The two series are generally quite close

together. Even split peaks are traced fairly accurately.

Figure 6b plots the values (Dt-i>t>/Nt-l of weighted residuals between

the model and the data. This graph makes it clear that a fair amount of

autocorrelation remains in the error. If the model fit the data very well,
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such autocorrelation would not be present. From the stand-point of pre­

diction there is information remaining in the data that has not been utilized.

Autoregressive moving average models were fit to this residual series

and an ARMA (1,1) scheme was found to fit fairly well. S was further

reduced by this procedure as shown in Table 2.

Figures 7 and 8 provide scatter diagrams of the values (Dt-Dt, Nt-I)

and«DT-1\)/Nt_l' Nt-I) . The wedging apparent in Figure 7 suggests

strong dependence of the residual variance on the population size. This

dependence is still present when the residuals are normalizedby~

It is not apparent in Figure 8, suggesting that the standard error may be

taken as proportional to the population size. This remark is the source of

the Nf-l term in S of (12). Parenthetically, were the variation in the

numbers dying multinomial, then one would have

var IDt I~t I = 2: Nt, x qx (l-qx ).
x

These values, when estimated, are considerably smaller than the empirical

values (Dt-Dt)2. The extra variation in the population may be ascribed to,

among other things, the variable sex ratio in the population and the inherent

variability between individuals of the population. Taking note of the ages

of individuals and the population sizes of the preceding two time periods

leaves a fair amount of variation.

8. DISCUSSION. A variety of things become possible OIIce the death

probability function q has been estimated. Foremost among these is the

construction of the age structure Nx t = the estimated number aged x at,
time t , These values are important, for example,in understanding the

dependence of birth intensity on age and population size. This was the

principal focus of Nicholson's experimental design in this case.

F igures 9a, b show the Nx t: initially each of these series oscillates -,
as successive cohorts march along in time. Eventually the numbers in

the older age classes appear to stabilize somewhat. Further, it is clear

that in the later stages of the experiment very few insects were surviving

to a very old age. Note that the population is not becoming stable.

Figure 10 makes this last remark more apparent. It is a graph of the
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average age of the population as a function of time. After an initial
period of strong oscillations, this function settles down; moreover the

population is apparently becoming younger.

It was remarked earlier that the flies were apparently being selected

to lay eggs at low protein levels, as the experiment progressed. Figure

10 shows that it is also possible that this change in egg laying behavior

might have been due to younger flies being more effective at egg laying.

9. FURTHER WORK. Quite a number of interesting problems remain

to be studied. These include:

a) the statistical properties of the estimates,

b) estimation of the birth rate function and other parameters of the

complete life cycle,

c) the relevance, if any, of the deterministic dynamic behavior of the

mean values,

d) the statistical properties of forecasted population sizes based on the

fitted model,

e) the form of the optimal controller (timing, amount, age-dependence),

f) the improvement, if any, resulting from the use of alternate estimates

of the age structure (e. g. based on all, not just past data),

g) developing nonparametric estimates of the dependence of the vital

rates on age and population size .
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APPENDIX

Table 3

EGGS NONEMERGING EGGS EMERGING DEATHS TOTAL

O. O. '4e. o. 948.
o. o. 4. 10. 942.
o. D. o. 31. 911.
o. o. o. 53. 858.

2149. 121. o. 57. 801.
4627. 260. o. 125. 676.
4523. 281. o. 172. 504.
603C. 458. o. 107. 397.
26e4. 120. o. 149. 248.
3373. 176. o. 102. 146.

446. 9. 1763. 108. lila I.
133. 2. 4487. 53. 6235.

17. I. 1830. 2091. 5974.
56. 2. 7952. 5005. 8921.
58. 10. 1953. 4264. 6610.

c. o. 2419. 3056. 5973.
6. I. 1966. 2266. 5673.

25. 3. 132. 1930. 3875.
30. I. 36. 1550. 2361.
o. o. 16. 1025. 1352.
o. o. e5. 211. 1226.

548. 30. 17. 331. lH2.
461. 47. o. 391. 521.

163E. 111. 5. 163. 363.
1524. 66. 41. 175. 229.
2338. 270. 10. 97. 14 a.
1473. 105. o. 60. ea.
3287. J46. 494. 34. 542.
1367. 220. 424. 27. 939.
617. 52. 1541. 49. 2431.
936. 76. 1317. 61. 361l7.
112. 4. 2016. 1160. 4543.
91. 8. 1496. 1504. 4535.

o. o. 21198. 1992. 5441.
o. o. e55. 1884. 4412.
o. o. 469. 1859. 3022.
I. I. 925. 1291. 2656.

47. 2. 522. 1211. 1967.
e. I. 55. 727. 1295.
o. o. 45. 425. 915.

77. 3. o. 364. 551.
598. 37. o. 238. 313.

6814. S13. O. 146. 167.
1537. 91. 5. 77. 95.
1296. 48. 45. 47. 93.
451. I I. 2. 35. eo.

1863. 185. 47. 39. 611.
24011. 303. 5205. 14. 5259.
358. 29. 1496. 82. 6673.
847. 19. 1957. 31119. 5441.

14. 14. 855. 2309. 3987.
o. o. 501. 1536. 2952.

62. 5. 1771. 1075. 36411.
4. 2. 1607. 1033. 4222.

39. 2. 674. 1007. 3889.
o. o. 197. 1791. 2295.
o. O. 700. 1486. 1509.

107. o. o. 561. 928.
172. IS. 16. 20S. 7351.
828. 69. 43. 216. 566.

1216. 108. o. 183. 383.
2109. 12~. 37. 146. 274.
3460. 251. o. 82. 192.
2438. 229. 105. 7 I • 226.
3234. 175. 326. 33. 519.
1574. 1.30. 729. 24. 1224.
7445. 900. 1072. 60. 2236.
2019. 167. 1747. 165. 381S.
672. 62. 3794. 1404. 6208.

o. o. 2576. 2788. 5996.
O. O. 2220. 2427. 5789.
o. o. 3248. 2385. 6652.
O. o. 480S. 3521. 7939.

33. S. 1052. 4123. 486S.
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EGGS NONEMERGING EGGS EMERGI NG DEATH S TOTAL

26. 5. 1270. 2186. 3952.
32. 6. 9!). 1335. 2712.

O. O. 3. 981. 1134.
321. 10. o. 510. 1224.
230. 25. O. 521. 103.
392. 30. 18. 213. 508.
253. 16. 10. 152. 366.
324. 6~. 19. 106. 219.

1369. 155. 27. 63. 243.
1252. 94. 120. 20. 343.
977. 92. 435. 17. 161.

1336. 48. 2ge. 34. 1025.
1450. 155. 247. 51. 1221.
2520. 2e7. 456. 77. 1600.
3057. 419. e97. 230. 2267.

302. 19. 1459. 436. 3290.
166. 19. 721. 540. 3471.

20. 4. 1258. 1092. 3637.
27. 3. 1045. 979. 3703.
70. O. 2300. 1127. 4876.

4. o. 1782. 1294. 5364.
38. 2. 12!l2. 1726. 4890.
5. 2. 232. :0>093. 3029.

48. 3. 53. 1132. 1950.
115. 6. 23. 748. 1225.
364. 17. 50. 199. 1076.

1034. 65. 30. ~Ol. 905.
1295. II O. 39. 172. 772.
23e3. •• 4. o. 144 • 628.
2435. 1e8. 33. 188. .7:!.
2535. 104. I 13. 47. S39.
1701. 110. 3e3. 97. 825.
1601. 152. 92e. 51. 1702.
580. 62. UOI. 35. 2868.
• 60. 55. 2175. !l70• 4473.
363. 18. 1668. 920 . 5221.

O. O. 2980. 1609. 6592.
106. 2. 1872. 20e4. e40V.
eo. o. 1228. 2876. 4752.

O. o. 46 I. 1692. :!lS21.
303. 16. 660. 1462. 27"'1.
1S5. 77. 165. 9S3. 19n.
5:36. 34. 16. 447. 1500.
802. 96. 106. 524. 1082.
688. 38. 78. 311. 849.

1244. 172. o. 75. 774.
1662. 145. 247. 1!i7. e64.
5050. 432. 623. 179. 1308.

926. 101. 479. iC3. 1624.
3011. 224. 77S. 17S. 2224.
1461. 134. 67e. 479. 2423.
526. 4e. 1078. 542. 29Stil.
107. 10. 1504. 916. 3547.
136. 29. 4771. 1081. 7237.

o. o. 612 . 2631. 5218.
o. o. 2869. 2776. 5311.
8. 3. 1149. 2181. 4273.

10. 2. 592. 1595. 3270.
41B. 44. 224. 1213. 2281.
616. 2e. 47. 779. 1549.

1319. 113. 3. 461. 1091.
396. 35. O. 295. 796.

1636. 90. 3. 1e9. 61C.
1249. 76. 10. 175. 445.
975. 76. 621. 172. B94.
813. ~2. 6e8. loe. 1454.
6'il9. 55. 865. 51. 2262.

1908. 147. 227. 126. 2363.
952. 62. 1724. 240. 3847.
_77. 66. 1136. 1 107. 31176.
206. 24. 855. 796. 3935.
121. I I. 746. 1202. ~47~.

39. 3. 794. B5e. J4J!>.
70. C. 1466. 1020. 3861.

162. 15. 759. IC49. 3571.
J. o. 636. 1094. 3113.

170. 16. .72. 966. 2319.
300. 19. 127. 81e. 111130.
417. 25. 110. .... 3. 1297 •
623. 49. 50. 486. 861.

1061. 93. 118. 218. 761.
1852. 172. 79. lei. eS9.

349



80 D.R. BRILLINGER, J. GUCKENHEIMER, P. GUTTORP, G. OSTER

EGGS NONEMERGING EGGS EMERGING DEAT"~ TOTAL

1 766. 155. 1.. 7. 10~. 701.
26SI. JIJ. I .. J. S2. 762.
2577. 302. 52 ... se, 1188.
233J. 293. 69... 1 D4. 1778.
138J. 153. 758. lOS. 2 .. 28.
5915. "22. 1661. 283. 3e06.
12.. 1. 135. 1.... 3. 730. ..519.

38. 5. 2 .... 0. 1313. '6U'l.
10e. 5. 1628. 2 .. 23. ..851.

10. 2. 2180. 1657. '37".
2. 2. 1235. 1896. ..713.

65. 5. ..323. 1669. 7367.
128. 11. 2193. 232 ... 7236.

6. 4. S06. 2797. 52 .. 5.
71. 1 • 99. 1708. 363C>.

336. 31. "5. 126 ... 2 .. 17.
3"3~ 23. O. 1159. 1258.
9'l1. 52. 1. 493. 766.

1709. 17... 61. 3 .. 8. "79.
766. 51. 115. 1'l2. ..02.
7"9. 62. 2. If.6. 2 .. e.

6267. 573. 87. 81. 25 ...
3750. .... 0. 3'l7 • 47. 60 ...
.. 393. 559. 783. "I. 13 ..6.
1527. 153. 10~7 • 61. 23.. 2.
5520. 635. 1161. 175. 3328.

756. 66. 1075. 80... :!599.
1166. 96. 1762. 1280. ..08 I.
129 ... 9 ... 5589. 2027. 76 .. 3.
206. 17. 4573. 42'l7. 7919.
253. 18. 1412. 3233. 6098.
233. "7. 5092. 42'l4. 6896.

1024. 76. 1218. 2 .. eo. ~634.

1 es; 1 1. 834. 1334. 513 ...
112. 1 I • 805. 1751. ..Ule.
521. 43. e43. 1562. 3 ..69.
281. 26. 311. 1338. 2 .... 2.
650. 36. 46. 557. 1931.

125... 63. 806. 'l"7. 1790.
1977. 145. 431. 499. 1722.
976. es. 161. 395. 1.. 88.

2880. 23 ... 165. 237. 1 .. le.
2505. 25 ... ..63. ~10. 1369.
139". 132. 545. 24E. le66.
2233. 199. 1247. 266. 2627.
629. 37. 1888. 675. 3840.
683. "5. 938. 734. ..044.
397. 16. 2693. 1806. 492'l.
725. "8. 1828. 1646. 5111.

14. 3. 1649. 3608. 3152.
7. 3. 1906. 596. .. .. 62.

1 ..6. 13. 556. 936. 4082.
285. Ie. 451. 1513. ~O26.

694. 57. 492. 1929. 1589.
558. 31. 775. 289. 2075.

1221. 85. 176. 422. 1829.
901. 70. 16. 457. 138e.

1754. 166. 28. ~().,. 1149.
2066. 242. 260. 441. 968.
1311. 142. 476. 274. 1170.
452. 24. 611. 316. 1"65.

3092. 3 I 7. 403. 192. 1676.
3747. 303. 1659. 260. 3075.

541. 3 I • 1470. 730. ')815.
1606. 115. 1943. 11 19. 4639.
88... 69. 1130. 13 .. 5. .. .. 24.
675. .. ... 550. 219 O. 276 ...

1037. 7 ... .... 82. 1406. 58eD•
180 ... 117. 1393. 1472. 5781.
765. "8. 10 07. 1891. ..897.
733. 38. 100 I. 1978. 3920.
981. 63. II ..... 1229. 3835.
581. 35. 907. 112 ... !61e.
311. 3 ... 557. 1125. 3050.

1313. 119. 1550. 828. 3772.
9 .. 6. 56. 757. 1012. 3~11.

7~5. 51. 919. IOE6. 3J50.
951. 143. Bl". 11 ..6. ~O18.

422. 8. 43 ... 827. 2625.
330. 16. 3~8. 571. 2 .. 12.
18e. 13. e26. e17. 2221.

16 .. 3. 99. 100... eat. 2619.
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EGGS NONEMERGING EGGS EMERGING DEATHS TOTAL

1178. 90. 1126. ~42. 320~.
18610 II o, 364. 8e I. 2706.
1717. 196. 909. 696. 2717.
1031. 90. 323. 66~. 217~.
2973. 280. 196. 743. 1628.
2225. 254. 1507. 747. 23e8.
1983. 243. 19~9. 670. 3677.
1745. 174. 291. IlI2. 3156.
1321. 82. 2078. 962. 4272.
1942. 130. 1122. 1623. 3771.
433. 33. 2525. 1341. 4955.

2009. 194. .016. 1387. !Se4.
2~4. 19. 641. 2~34. 3891.
248. 9. 1579. 1969. 3501.

2511. 2211. 2121. 1186. 4436.
2404. 163. 1367. 1434. 4369.
1652. 138. 814. 1789. 3394.
2657. 186. 1771. 1296. 3869.
4169. 484. 405. 1352. 2922.
2~2~. ~71. 165. 1244. 1843.
1907. 188. 1863. B69. 2837.
1498. 161. 2703. e~Q. 4690.
1197. 70. 1409. 980. 5119.
323E. 346. 2229. 1~09. !!839.

476. 38. 3787. 4237. 5389.
819. 60. IS68. 1964. 4993.

1094. 59. 1234. 17et. 4446.
12311. 99. 2 IJ 1. 1726. 48~1.
1167. 84. 965. 1593. 4243.
C082. ~O9. 2216. 1839. 4620.
3168. 225. 1424. 119~. 4849.
1645. 252. 600. 1785. 3664.
3892. 642. 391. 1039. JOI6.
4603. 53~. 1060. 1195. 2881.
2717. 416. 1779. e39. 3821.
2162. 376. 1510. ICJ1. 4300.
1998. 192. 971. 1103. 4168.
3~47. 407. 2668. 1390. S446.
2825. 361. 2713. 2682. ~477.

4377. 376. 5117. 2015. 8579.
1189. 100. 1907. 2953. 7533.
1460. ISS. 2606. 3255. 6884.
279. 28. 11011. 31165. 4127.
1811. 29. 3394. 1975. 5546.

11<;0. ISS • 2097. 1:330. 6313.
• 50. 37. 3062. 2725. 6650.

C 1 (9. 259. 2320. 2666. 6304.
1276. 103. 1444. 2906. 4842.
2174. 291. 938. 1428. ·4352.
2731. 254. 230. 1367. 3215.
2822. 2B I. 577. 1140. 2652.
2460. 274. 610. 932. 2330.
1793. 199. 1695. 902. 3123.
603. 39. 1226. 394. :!95S.
509. 42. 1445. 906. 4494.

1194. 139. 1967. 1681. 4780.
2047. 218. 3093. 2120. ~153.

160 I. I 17. 2302. 2500. 5555.
631. 77. 171 I. 1554. 5712.

1711. 125. 102. 1628. 47E6.
1560. 203. 722. 1442. 4066.
2512. 191. 347. 1522. 2891.
2617. 27E. 1502. 1123. 3270.
4033. 427. 2083. ~"9. 4404.
e103. 795. 1001. 1007. 43911.
7991. 745. 841. I 127. 4112.

10546. 1020. lse3. 1294. 4401.
5230. 504. 2725. 1347. 5779.

10857. 944. 2293. 1415. 6597.
J 167. 330. 3782. 2288. 8091.
2164. 223. 6819. 3628. 11282.
1405. 114. H38. 6414. 12446.
3E9. 21. 9769. 8503. 13712.

O. O. 41~e. 7423. 1 rc 17.
156. 21. 10346. 6680. 14683.

2. O. 2216. 9641. 72se.
676. 36. 1314. 2377. 6195.
652. 47. 2166. 2399. 5962.

2622. 215. 377. 2126. 4213.
lt3. 105. 34. 1472. 2775.

2109. 155. 90. 1084. 1761.
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EGGS NONEMERGING EGGS EMERGING OEATHS TOTAL

2293. 262. 72. '17. ..36.
152. 76. 571. 609. 891.

1926. II •• 565. 303. 1160.
3.2e. 413. 2260. 262. 3151.
3465. 3e3. 577. ~49. 3386.
3454. 341. 2192. 10310 4547.
125e. 1011. 1415. 1199. 4a23.
1711. 175. 1479. 1332. 4910.
1019. 96. 1624. 16S4. 4940.
952. 65. 2206. 13~3. S193.

1167. 238. 4270. 222'. '136.
1351. 121. 1'93. 5112. 4457.
812. 18. 4769. 2325. 6901.
331. 18. 4361. 3071. 8191.
427. 40. 1340. 2765. 6166.
626. 47. 1271. 2ale. ll165.
6311. 92. 11112. 340e. 291V.
609. 79. 1213. 1". 3415.

1!20. 152. 636. 620. 3431.
4004. 505. 630. 1199. 3162.
3131. 394. 244. &81. 2521h
2882. 206. !!il2. e07. 2290.
2813. :!70. 351. 692. 1955.
2543. 280. 625. 644. 1936.
4525. 432. 1053. 60S. 23114.
4127. 844. 2930. 648. 4666.
1729. 300. 3606. 1053. 7219.
2899. 506. 2587. 1500. 8306.
3383. 178. 2232. 2511. 8021.
3361. 656. lae4. 2901. 7010.
2623. 510. 3451. 2312. 11149.
4005. 600. 3192. 2392. 8949.
34119. 516. 2070. 4914. 6105.
5893. 2704. 2259. 3C4C. 5324.
S1I01. 1..55. 2610. 2168. 5166.
36'1. 1522. 1942. 1494. 6214.

7. o. • 994. 2201 • 700'.
o. o. 3250. 2103. 1154.
O. o. 3510. 24515. 9049.
O. O. 2319. 4485. 6183.
O. o. 49451. 3747. 8107>.
o. O. 2483. 3183. 6803.
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Learning a Potential Function From a Trajectory
o..vid R. Brillingcr

I. ....,RO DUn lON

ha"in g " "..... mOO \ '( r ) di lTerenliable and wilh '\ ....nmin t; lhe
grnd iem In.c neg<lli..... ..ign in (I ) is trad itio ....l j The " nlily
dr(t)/ dt is cened a vector held, Wherl/ ' == 2. lhc Ic,,'"surfaces

""".......TipI m:<lwm Do.CQIlxr t l :!IX""~ A.1"'12. 2007. n.: ......
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r (I, ... ) - r (I, ) "" - '\V (.-(I ;) )(t ,... -I,)

+ (1,... _ I , )I /2,,-Z;+1 (4 )

rlT( l) "" 1&1'-(1» .11+ rJ (.-(t J)dlJ( t ) . (3)

for loOmc different,able I " 'ft it"lJ{t ) ... , ,-dimc nsio nnl Browmnn
moIion and o a p by p maln ~ , Ex pn:~~ion (2 1is a p.1fticular case
ornc ~t()[ ha"i~ differe ntial equat ion (S DE)

.IT(I ) "" - n "(T(I» dt + u (T(t ))dIJ(t ) (2)

of tlie polen tial fun.:lion arc coll'lCUlcnlly di~p13l'C d in contour
f,.-m and i... gn.tli""l armw~ lin a grid ("'-"'" Fig~. 2 ~nd 3).

n,., .":timali,,n m " tl '" be prese n'ed colD h" mOlivated hy
' IOC.....Ulc gradient "Y""'m,. lluT.is. ~Y""'m.< Ihal can be w,illen
in lh" nme invariant case ll'i

Wh31 di" ingui. ...., lh" traditio ....l S DE w",i fl1lm the pre.ent
"'udy is lhal lIl"drin lerm I' here h"" lbe ~pecial for m - V'F for
<orne re...I-\I3.lued functi on 1'_It will be ''''''' iharthc modeling
situation is simph licd whCTIsuch ...V i, ...ssueed 10 exist.

II . P ROIlIJ :M AND A PPRQA("H

The basic problem "" ,",mes lbe model (2) ...nd seeks to learn
Veri givcn dolla (Ii. r( I;).;: "" I. · · · , n ). The sc cam will be
" i"", oo '" I"l' al ion~ al M ..."Cl" ....i\'C Ii,""". { I ,}. of ~n objcCl
mowint; along a Ir.l.jec uory"f lhe PI"""'''' (2). One ,eeb both
\"l"Clm lield and p" l" otial functi" n e" in", :es.

Supposi ng lluT. V'\ ' (T) is ... lmOO1h funct ion of T. nnd that
lhc eescoeuon times ...rc c1O!'C lOgeth.:r. one c...n set down the
followi n~ :1ppr"O~ imation 10 ( 2 ):

Fox- l. r" bul"" '"'" ........ , •. /I.E "'""'.."" of ,,,,,~ El.".,rimc"'al Fore"
In 01<",... L oul...... WCK <'>Ii "W""iPoaIcly <wry "" 0 ooUI' and arc
jnio><d by _ .. d~ "">if" I.......

(I )dT(t ) == - n :(r(t»).!t

Ab.,.....' - Th ;.,; I~lln ...."" n .... lh~ of ,>h""a-lic I':ra";~nl "..-
I....... in l h~ ...oddinl:"'lh~ pal"" ..I 0 ;01:pa rli....... and ••~ ....0 -
...,,,...,.,1 imali".. of a p.oI~nl".II ..",,'ion. Th~ .. orl; p......,...s.,; ~
...,lIio!': n a ram ' i< or n". pu lIm i. " "'" "or lhr ....r n-
li..l ru. rl i rl h ;. ,,011'1••di ",.1 "";101". "";11:1': '-d
.ona Ii " . " ..odd ,"" "'.... <qua..".. .:~pla tori a ll.;"<1.......
and ..., 11 y "" iar"""" 11;,..,..,1:0' .•.• • 1.0' 1:< nlp'" dr.l ri-
hnl l"n of , .,...imal"" p," r nlia l rum1;... ;.,; 1" "';""'" un ' ...-
n ll l _ n'p l ........ n..,.., arr " i~ ." Ir "";..", I" up,bt inle, ;111:
.. i . .. ..... adap';'". n,h." l, a nd """ I-lin ";a nl... An r oa mpl. a n-
alpi..: ' lor pal" .... a n «I";"; 1'."""01....

Imkx Tn "to-M,,"i li.,· d . n' ih on"l:. P'" r Dlia! Inocti".. .
. .... ha. lir .. ilfr ......' ial ....~ali ' ....h"";r 1:'""";"" .,,,,_.

L OC AT ION ~ignal ~ of movin~ objccI~. cbtamcd for ex·
...mplc by GPS or LOR AN. b;m: ba.'0111C co mmon in

pr.h:l i~". Tn lic ally. one""" SC>ItI..,..,d pusili<ln~ al ~ trnjO:Clo-
ri" , of!h" objo:clo;. Th" 'l uc....itJlll; uf how 10 sum ril", how
I" predlCl and how lO simulme such ""' n' ''''ls ari"" . Th,s
hdwen~ P"JIicula rly when a num~r of p"1 ..., in\"Ol\'cd lIT

lIle Il'lth oran object is a t:1C~le. Sec Fig. J. which shows 1571
locati on, O\'Cr" period of a molllb alon~ tho: tr.ld of an cit in
Slartey Project in Owt:tJn. ( Refen-Ol"e111pruvidn !he PIl~ect 'S

wet>, ile ........,,,"" .)
Thi~ lette r p...."idl:s a unitll:d app....acb fo rdC'al in~ wi.b ""'''''''

n' ,," . mOOcling and aseoctcted dna. The ficlds in which 0101:.,..

mcnl data havc .:triscn include .:mimallr.lCbr.~ 121. [31and soccer
141. The re are paper< lk-veloping " stali.. i~al po!enli:ll approacb
10 lracks. l1le .... ioclude 12]. [3 1. and refen: oces lbe ,ein Th is
I"Uer p'ovid"" some f, .-mal bac kg,,, und uri, . ing iu 111""" JI'I­
pc..... d iscu, "';ou. and ...n "llampk .

Let r oc nole ...po in. in !(P. t in the m;nhc......uc...1exprc!lSiom
bd_. ...lI th.: \lttlon. 3ppC:1Iing arc co lum n \'CC!o"" and "" I in
b" ld r;tCl".) A p, ....ntu.1 fUOltion. q r). i~ a real-vdlucd function
"f"lCali" n. I"' u", can I"ad I" _impler ..,.,c:senlali""""f""" ion
lIlan lh""" ba-ed ,m mode1 in~ "e1oc;. i"" d,rect ly On" ca n nOle
lIlat in the o,"Crdampcd case.the cq Udlion of molion of a Il'll1icle
io Ihe poICDlial lic1d. ' ·(r ). is
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BRILLINGER: LEARNING A POTENTIAL FUNCTION FROMA TRAJECTORY

Reference [4J studies the motion of a soccer ball during a very
excit ing World Cup moment. The potentia l function used is

with d(r ) the shortest distance to the goa lmouth from
r = (x , y f . The first two terms lead to attraction to the
goalmouth and the remaining to general motion on the field.

Potent ial function and vector field estimates are provided in
each of the papers ju st referenced . The function V (r ) is linear in
the parameter, and least squares is employed as the estimation
procedure in each case. The function could be nonlinear, and
then, nonlinear least squares could be employed. Reference 18J
develops asymptotic results pertinent to the nonlinear case. Al­
ternately, the {Zd in (5) could be non-Gaussian and maximum
likelihood estimation employed.

IV. ESTIMATIO~

The representat ion (4) with r in RPand V'V(r ) = V't/>(ril ' (-J
will be employed. The values r (li ) will be written ri oConsider
the P by I vector (ri+l - ril / (ti+l - t ;)I/2. Following expres­
sion (5) , the model has the form

i = I ,· · · , n - 1 involving the L by I vector (-J , the L by l'
matrix V'rp(ri ), the l' by l' matrix o , and the l' by I vector Z i+l .
Suppose a = oI with ,iT posi tiv~ ~?d I the ~?r/' identity matrix.
Stack the n - I values I,r '+ l - ro! IJ'~ l - f,' r ' -:Z = 1" ", n - I
vertically to form the (n - l )l' by 1 array Y n . Stack the n - 1
matrices - V'rp(r;)T( Ii+ l - 1;) 1/2 to form the (n - l)l' by L
matrix X n . Stack the n - I values (T Z i+l to form e n' Then one
has the regression model

869

with N (O, 1) the standard normal. This leads to the approximate
100(1 - n )% confidence interval

where Zo/2 denotes the lOOn / 2 percent point of the standard
normal. As mentioned in [91, one could usc the F distribution
to construct an approximate confidence region for a collection
of values {4>(rk)T/3}.

V. EXAMPLE

The Starkey Project is a large area in Oregon set aside to
study the interactions of elk, deer, cows, and man sharing an
environment IlJ. Fig. I shows a sampled trajectory of one of
the elk in the NE Pasture. There were 1571 GPS locations and
times of location obtained with a time interval of approximately
two hours between successive locations. It is recognized that the
theory connecting the sampled times case to the continuous time
case expects the times to be elose together. It is still anticipated
that the discrete model studied is of interest in its own right and
will provide results of practical use.

A potential function V(r ) was approximated by a thin plate
radial basis spline employing the kernel function of (6) with l'
and q = 2, and L = 36. The x and Y components of the u;
were taken to be the 100m /7, m = 1, · · · , 6 percentiles of the
standardized 1; and y values. These values were chosen was for
illustrative purposes.

The coefficients {-J/ were estimated by ordinary least squares
employing the model (5) with a = (T J. The results are provided
in Figs. 2 and 3. One sees the confusion of Fig. 1 much reduced.
A point of attraction appears near the point (7.5,11.0). When one
looks at a topographic plot of elevations, the point of attraction
appear s to be a valley/canyon of sorts. Fig. 3 provides an image
plot of the potential function. Now one sees the point of attrac­
tion immediately.

The confusion of Fig. I has been referred to. An empirical
gradient plot is similarly confused.

with the difference from ordinary regression that Y n and X n

are statistically dependent. Using a generalized inverse, if
necessary, one can compute an ordinar y least-squares estimate
b = (X~Xn ) - 1X~Yn of {-J , and then, if rp(r )T(-J is estimable,
rp(r )Tb is a reasonable estimate of V (r ).

Supposing the individual entries of en to be independen t, zero
mean, variance (T2 variates, asymptotic properties of rp(r )Tb
may be obtained from [9, Theorem 31. The theorem is given in
the Appendix.

Let Yj denote thejth row ofYn . Let X] denote the jth row of
X~ . One can compute s;, = ((n _ 1)p )- 1 E (Yj -X]b )T(y] ­
x]b) as an estimate of (T 2 and, for example, set down a confi­
dence interval for rp(r )T/3 using the results of [9]. Specifically,
provided lim log .\max (X~Xn ) /n --; 0 almost surely, one has
S n --; a almost surely and by a Slutsky Theorem

Y n = X n{-J + en (8)
VI. EXTE~SIONS AND CO:-.lCLUSIO:-.l

Various genera lizations of the letter' s results may be men­
tioned. One could set down an expansion for V employing
wavelet functions. One could consider updating method s for
real-time work, c.g., those based on a Kalman filter. One
could envisage a potential function as a spatial state variable
and the paths of objects determined by the measurement
equation. If the potential function is changing slowly, one
could consider a sliding window estimate [10]. Estimates that
are robust to non-normailty and resistant estimation can be
considered. In video analysis, one might consider the model
I (r , I) = I o(r ) + 6(r (t,) - r ) with I indexing the video frames
and 6 the Dirac delta . The term 10 represents a stationary
background and r (l ) the location of an object moving around
in the scene [ Ll ].

This letter presents an estimation method for handling
moving objects. The computations may be implemented by
the least-squares algorithm. The model may be viewed as
parametric or nonparametric.
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ApPE:-JDIX

Because of the statistical dependence of the location of the
object at lime t i on past locations, one needs special argumenls
10 get the asymptotic distrib ution . For the simple cases of the
letter, results based on martingale arguments are available in [9].
A result is [9, Theorem 3].

Theorem. Consider the regression mode l Yj = x J {3+ £j , j =

1, 2, . . . with the {£j } martingale differences with respect
to an increasing sequence of zr-fields {FN}. Suppose that
sUPnE( II£N II"'IFN- I ) < 00 almos t surely for some ex > 2.
Suppose further that lim n~oo var (£N I f< ~v_tl = o- ~ almost
surely for some nonstochastic 0- . Define X N = [X l " ,XN]T .
Assume that x , is a Fj - 1 -rneasurable rando m variab le and
that there exists a nonrandom positive definite symmetric
L by L matrix B N for which BI;/ (X~XN ) I/2 -, I , sup
l<:i<:N IIB 1\,1 XN II - , 0 in probability. Then as N - > 00

in distribution .
Note that zero-mean independent observations like the suc­

cessive entries of £ n of (9) form a marting ale difference se­
quence with respec t to the rr-field generated by the preceding
locations.

Reference [15] shows that under the further assumption , lim
log " max (X~Xn ) /n -; 0 almos t surely, one has 8 n -; 0­

almost surely.
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A Potential Function Approach to the Flow of
Play in Soccer*

David R. Brillinger

Abstract

There is a growing literature on the statistical analysis ofdata from association-football/soccer
games , seasons or groups of seasons. In contrast this paper is concerned with a single play, that
is a sequence of successful passes. The play studied contained 25 passes and ended in a goal for
Argentina in World Cup 2006 . One question addressed is how to describe analytically the spatial­
temporal movement of such a particular sequence of passes.

The basic data are points in the plane , successively joined by straight lines. The resulting fig­
ure represents the trajectory of the moving soccer ball . The approach of this study is to develop a
useful potential function, a concept arising from physics and engineering. In particular the poten­
tial function leads to a regression model that may be fit directly by linear least squares.

The resulting potential function may be used for simple description, summary, comparison, sim­
ulation, prediction, model appraisal, bootstrapping, and employed for estimating quantities of
interest. The purpose illustrated here is to simulate play in a game where the ball goes back and
forth between two teams each having their own potential function .

KEYWORDS: Argentina, association football , exploratory data analysis, potential function , re­
gression model, Serbia-Montenegro, simulation, soccer, vector field, World Cup 2006, 25-pass
play.
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Brillinger: The Flow of Play in Soccer

1. Introduction

The 2006 World Cup included some grand moments. One of the most spectacular
was the 25-pass scoring play of Argentina in the Serbia-Montenegro (S-M) game
on 16 June. The shot that ended the play was a goal scored by Cambiasso, but
some 8 players worked hard to get the ball into position for his shot. The play has
been described as: "one of the all time great World Cup goals", "the play of the
tournament", "a joy forever", "a glorious goal", "mesmerizing", and "a string of
pearls" . Not long after the game, sketches of the path of the ball started to appear
in newspapers (e.g. Expressen, Sweden) and magazines (e.g. Cambia, Columbia).
Purposes of this paper are to develop an analytic description and model for such a
play and to explore its uses, e.g. for simulation of plays where the ball changes
sides.

The play began in the Argentine half of the field with Maxi passing back to
Heinze. The sequence of players involved then was: Mascherano, Riquelme,
Maxi, Sorin, Maxi, Sorin, Mascherano, Riquelme, Ayala, Maxi, Mascherano,
Maxi, Sorin, Maxi, Cambiasso, Riquelme, Mascherano, Sorin, Saviola, Rique1me,
Saviola, Cambiasso, Crespo, Cambiasso with Cambiasso scoring. Maxi was
involved 6 times, while Requilme, Masherano and Sorin contributed 4 passes
each. Videos of the goal may be found at YouTube, see YouTube (2006a, 2006b).

Figure 1 below provides the estimated locations of where the passes initiated
during the play. (How the estimation was carried out will be described below.)
The locations are denoted by small circles. Straight lines join them in order of
time. The track is meant to represent the path of the ball being played about the
field as seen from above. One notes that the ball generally moved towards the S­
M goal with passes going off in many directions and some back passes being
made. There are no very short passes, the shortest being 5.6m .

There is a growing literature on the statistical modeling of aspects of soccer
matches. One highly quoted study was performed by Reep and Benjamin (1968).
They investigated data on goal scoring and lengths of passing sequences from
3213 games. They summarize the counts of successful passes by the negative
binomial distribution and, for example, conclude that "it takes 10 shots to score 1
goal." Hughes, M. and Franks, I. (2005) describe the Reep and Benjamin paper as
a "landmark", but in a discussion of the 'long-ball game' versus 'direct play'
complain about various of Reep and Benjamin's conclusions and their impact.
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Flgure 1. The trajectory of the play. The ball ends in the S-M goal represented by
a box on the right hand side of the figure. The circles represent the positions of
players initiating passes.

Lee (1997) fits Poisson models for the number of goals scored in games for the
1995-96 season to assess the strengths of various teams. Karlis and Ntzoufras
(2003) fit bivariate Poissons to the pairs, (X Yj, of goals scored where X is the
number of goals scored by one team and Y by the other. Hirotsu and Wright have
a succession of papers.

One paper, Hirotsu and Wright (2002), modeled the progress of play in a game
as a continuous time Markov process with four states. The four states were: each
team is in possession of the ball, and when each team scores a goal. Another
paper, Hirotsu and Wright (2006) applies game theory to develop effective
strategies.

Brillinger (2006a) viewed the results of games as ordinal (win, tie, loss) and fit
a model for such data to the Norwegian League results for the 2003 season. A
setup of quite a different type altogether is that of Kozlov et al. (1993). They

http://www.bepress.com/jqas /voI3/iss 1/3
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consider an abstract version of a soccer match. The field is infinite with the usual
two goals. The path of the ball is planar Brownian motion. They consider the
variance of the number of goals and discuss its dependence on the width of the
goal for example.

It appears that most of the existing published papers study whole games,
tournaments, seasons, or groups of seasons. The initial purpose of this paper was
to study that one play in that one game, but the purpose went on to include using
the results to develop a flexible model including changes of possession, variable
play lengths

There is concern about focusing on a highly unusual play, on an outlier.. It was
unusual, it was highly exciting, it contained an unusual number of passes, and it
lead to an important goal. Now in statistical data analyses an outlier is to be noted
and studied. The analysis should split with a part dropping or weighting down the
outlier, and a part looking into it. In DeVeaux et al (2006) one can read, page 534,

"An analysis of the nonoutlying points, along with a separate discussion of the
outliers, is often more informative, and can reveal important aspects ofthe data. "

Briefly, there are things to be learned by analyzing outliers.
The path in Figure 1 may be viewed as a realization of a stochastic process

described by the time t, at which the i-th pass was initiated and (X(ti),y(ti)) the
location where the pass was started on the field for i = 1, ...1. A statistical question
is how to describe such a trajectory, that is one involving points connected by
straight lines.

The approach employed here involves potential functions motivated by classical
mechanics and advanced calculus. It lets one describe instantaneous velocity at an
arbitrat place and time. Where will the particle head next and at what speed? This
method has proven helpful in describing the motion of a broad variety of objects.
Books discussing potential functions include Taylor (2005) and Stewart (1995)
while Brillinger et al. (2001) the potential function approach was proposed to
describe the motion of elk in a large reserve. Brillinger et al. (2006b) fits a
potential function, like the one of this paper, to the motion of a Hawaiian Monk
seal.

The potential plus statistical model approach allows simulation of future paths.
Take the fitted potential of the play, symmetrize about the middle, use for each

team (different) ends of the field. Show, with additional data, can simulate the
flow in a game with the ball changing sides.

After this Introduction the sections of the paper are: The Data, Some Formal
Background, Results, Further Developments, Limitations of the Study, Discussion
and Summary.
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2. The Data

Consideration turns to how the data were obtained and to providing some
elementary descriptive statistics. The Argentina Serbia-Montenegro game was
played at Gelsenkirchen, Germany. Their field is 105 by 68 m. The data of the
play will be denoted by (ti' X(ti), y(tD) where (x(t),y(t)) denotes the position of the
ball on the field at time t and the t, are taken to be the times at which the passes
were initiated, i = 1,...,25 . There is also t26, the time that Cambiasso shot. Figure
1 shows the discrete location points where the passes were initiated joined by
straight lines to approximate the movement of the ball.

Estimation of the (ti' X(ti), yCtD) was done in two parts. Both used the computer
program World 3D Cup 2006, Ascensio System Limited (2006). First, to obtain
the (x(tD,y(tj)), screen dumps were made at the moments of pass initiation. The
desired coordinates were then read off using the Windows program Paint. Next
the times, tj, of initiation of the passes were estimated by running the program
again, and again, stopping it at the times of pass initiation. The video moved at 25
frames per second so the times could be estimated to .04 of a second.

Figures 2, 3 and 4 present some elementary descriptive statistics concerning the
play. The cumulative count panel of Figure 2 may be used to assess whether the
rate of passing is changing as a function of time passed. The dashed line joining
the first and last points is useful in doing this. It suggests that the rate of passing
was increasing towards the final moves of the play. One also sees a long time gap
in the middle. This gap corresponds to the longest pass of the play, one from Maxi
to Sorin.

The right hand panel provides the stem-and-leaf of the lengths of the various
passes. One sees there is an apparent minimum length and a long tail to the
distribution. That there is a minimum length to the passes is also apparent in
Figure 1. The shortest pass, estimated from the data, was 5.6 m. The distribution
also has a long tail with the longest pass 27.9 m . Figure 3 is a stem-and-leaf
display of the times between successive paths. It will prove useful in the
simulations later. One sees an outlier of 8.2 seconds and that most of the times are
less than 3 seconds.
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Figure 2. Cumulative counts of passes as a function of time and a stem-and-Ieaf
of the lengths of the passes of the play in meters.

Consideration next turns to the speed of motion of the ball. Figure 4 shows the
estimated speed between the time points 1;+1 and u, computed as

~{(x(t" /)-x(t;))2+()'(t" /)_y(t;) 2} 1(1;, r- I;)

In the left panel, speed is graphed as a function of time from start of the play and
in the right as a function of distance from the S-M goal. One sees an apparent
slowing after the start of the play followed by a a general speeding up of the flow
of the ball as time progresses. There is a related speeding up as the ball gets closer
to the S-M goal. Lowess lines, Chambers et al. (1983), have been added to the
two plots. The speed ranges from 1.87 m/see to 15.56 m/sec. The outlier, 15.56
m/sec, at the top of both panels, is the long pass from Saviola to Cambiosso near
the end of the play.
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Figure 3. Times between successive passes in seconds .

3. Some Formal Background

Potential functions have long been employed in physics and engineering to
describe the motion of particles. These are scalar-valued functions whose dips
correspond to points of attraction and peaks correspond to points of repulsion. In
the papers , Brillinger et al. (2001), Brillinger (2006b) it was been shown that
setting down a potential function allows a consequent setting down of a regression
model. The approach there was motivated by consideration of stochastic
differential equations .

The classical potential function of Newtonian gravity is given by - 1l1rl with r
= (x,y), r denoting a 2D row vector and Irl = --J(x2+/ ). This particular potential
goes to negative infinity as Irl goes to O. A particle moving in its field will be
attracted to the origin, (0,0). A class of potential functions, of which the
Newtonian is a member is provided by ± Irl 0 .

http ://www.bepress.com/jqas/voI3/iss I/3
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16 16
0 0

14 14

12 12

g 10 U
100 0 Ql 0 0m m-. -..s .s

""0 0 ""0 0

Ql 8 Ql 8
Ql 0

0
Ql 0 0a. a.

m 0 m 0

0 0
6 6 0

0 0
0 0

0 0

4
0

0 4
0

0
0 0 0 0

0 0
0 0 0 0

2 0 2 0

0 10 20 30 40 50 60 20 40 60 80

time (sec) since start of play distance from the goal (m)

Figure 4. Speed (m/sec) vs. time of play from the start time (left panel) and
versus distance from the nearest point of S-M's goalmouth (right panel) . Lowess
lines have been added in each case.

However the potential function that will be employed in this work includes the
term

a log Irl + ~rl (1)

for r real-valued. With a positive it will have a point of attraction at O. It is
motivated by formulas on bird navigation in D. G. Kendall (1974). The function is
graphed in Figure 5 for the particular values a= 176.21 and /3= -11.13. These
values were estimated from the data at hand. In the figure one sees the function
falling off slowly at first, and then rapidly as one moves from left to right. The
"0" on the right is the point of attraction at 105m.
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Figure 5. A plot of the estimated Kendall potential function, (I), along the length
of the soccer field. (Field ends are indicated by the o's.)

The form (1) may by made more flexible by adding a general quadratic term,
specifically by writing

H(r) = a log Irl + Plrl + YIX + Y2Y + YIIX
2

+ Yl2XY + Y22i (2)

with r = (x,y).This potential is linear in the parameters considerably simplifying
its fitting. In the modeling of the play the S-M goalmouth, as seen in Figure I, is
taken as the attractor.

The negative gradient of a potential function H, namely f.1 = - V'H =­

(8HI8x,8HI8x), at location r gives the velocity of the object at r. Specifically it
gives information on how speed and direction vary with location. It is useful to
show velocity on a grid as arrows, the so-called vector field. Th is is another way
to show the flow of motion. Vector fields are discussed in Stewart (1995) for
example.
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Consideration now turns to setting up a specific model for this type of data. Let
r(t) denote the location (x(t),y(t)) and consider the model

for the changes of position with Jl the gradient of a specified parametric potential
function, 'l i a stochastic noise and the t, the times of pass initiation.

In the fitting and conceptualization it proves more convenient to write

(3)

This expression makes it clear that Jl has the interpretation as average velocity at
r. Regarding these noise values it will be assumed, for the moment, that the x- and
y-components are independent normals with mean 0 and variance (i. Residual
plots will be employed to assess whether the variance does not appear constant.
Later, expression (3) will be used for simulation purposes.

As expression (2) is linear in the parameters, so too will be its gradient with the
implication that simple least squares may be used to estimate the parameters. The
variance may be estimated by the standardized sum of the squared residuals of the
fit of (3).

4. Results

Figure 6 below provides the estimated potential function , H, employing

expressions (2) and (3). The redder/darker the colors the lower the value of fI.
The S-M goalmouth is a line of attraction. The distance Irl of (1) and (2) is taken
to be shortest distance to the goal mouth from the location (x,y).
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Figure 6. The redder/darker the color is, the smaller the value of the potential

estimate if . The ball' s track has been superposed. The dashed vertical line is
midfi eld.

The potential function (2) was fit by linear regression with the total number of
observat ions 50 and 7 linear parameters. The resulting estimate is shown in Figure
6. One sees a funneling/descending valley leading downwards toward the
goalmouth. The actual path of the play is also shown. The potentia l estimate
appears quite consistent with the data. The estimate of (J' for the model (3) is a- =

4.27 mls.
Besides comparing the estimated function with the data, as in Figure 6, various

residual plots were prepared, e.g. residual versus time diffe rence and versus its
square root. There was no evidence that weights were needed in the model fitting.
Stem and leaf displays of residuals were also examined. The variability of the x­
and y-noise component residuals is comparable supporting the assumption of a
common a; however there was some skewing to the left. This ultimately led to a
change of noise distribution in the simulations of Section 5. The independence
assumption of the x- and y- components was examined via estimating the

http://www.bepress.com/jqas/voI3/iss I13
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correlation coefficient and the value obtained was -.026 . The method of
simulation will be employed in the next section to assess the model fit.

The estimated vector field is shown in Figure 7. It provides information at the
selected locations on how the average speed and direction of the ball vary with
location in the field. One sees average movement from the left hand side towards
the S-M goal with a speeding up as one gets closer. The value being an average,
the estimated speed (arrow' s length) is small where there is back-and-forth
motion in a particular area, for example in the middle of the top half of the field.
One docs see the to-ing and fro-ing in Figure I.

60 I / ///
1/1, \ \!

E 40
, , , , ,

~I"s: I[ t~
, , , r , I / ' ''.--,

I / ! Kr:0• • ,
~

I r I r \~, , I20
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, r r 1 , 1

1 1 \ \
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o 20 40 60

field length (m)

80 100

Figure 7. The arrows represent the negative gradient, it = - \7 H . for the
locations (x,y) the arrows' directions they provide the estimated average direction
and their lengths the average speed of the motion,

5. Further Developments

It would be nice to be able to fit potential functions to the data for other segments
of some game. Once the data are available a way to do the fitting is clear, but the
difficulty is obtaining the data, Still one can use the potential function, estimated
above, for other purposes as follows.
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Concerning the play and the estimated potential function Michelle Morgan,
women's soccer coach at Amherst College, remarked that its development was
highly unusual in coming down just one side of the field. This behavior by the
players leads to the particular shape of the estimated potential function as shown
in Figure 6. To obtain another potential function of interest one can symmetrize
that estimate by reflection and addition. The result obtained is Figure 8.

60

20

o

o 20 40 60

field length (m)

80 100

Figure 8. The result of symmetrizing the potential function of Figure 6 by
reflecting about the horizontal center line and adding the two.

It would be nice to be able to include the behavior of the other team in the
study. The opponent would have a different potential function, one pointing to the
Argentinean goal. It would come into use when the ball changed sides. A
potential function to consider may be obtained by symmetrizing Figure 8 about
midfield line.

To bring in an opposing team one needs information on the relative lengths of
the various possessions. Figure 2 in Hughes and Franks (2005) may be used to
estimate the probabilities of various lengths. Their data are for the 1990 and 1994
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World Cups. Table 1, adapted from their Figure 2, gives estimates of individual
probabilities up to 8 passes and the proportion remaining.

Table 1. The top line is the length of possession. The second line provides
estimates of the proportion that have the indicated possession length.

The next table, based on Table 1, provides estimates of the corresponding
conditional probabilities of the play ending at that possession number as a
function of the number of passes already completed.

Table 2. The top line refers to the number of passes so far completed. The second
line provides estimates of the probability that the possession ends.

0 1 2 3 4 5 6 7 8
.398 .323 .303 .304 .313 .295 .323 .333 .357

The numbers have the interpretation of being estimates of the probability the
player will lose the ball after the indicated number of complete passes. This will
be needed in the simulations to be developed. The values of the table are
surprisingly constant around .3 .

Also needed are times between successive passes. These were provided in the
stem-and-leaf ofFigure 2 for the 25 pass play.

6. Simulation

One gains further understanding of a phenomenon when one can produce
plausible simulations. A further objective of this work then is to be able to
simulate plays similar to the Argentinean one, as well as other types of plays that
might occur in the course of a game .

The estimation procedure employed was made specific by an assumption of
normal noise in model (3). This meant that all the distances between successive
locations were possible. However as the stem-and-leaf in Figure 2 shows, and
common knowledge suggests , there typically appears to be some noticeable
minimum length pass in plays . Further the definition of a pass in this paper
includes the dribbling by the player receiving the ball. Dribbling adds to both the
time and the distance . For this reason, in the simulations presented, a minimum
pass length was employed. A few initial simulations had shown that if the length
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was allowed to be very short, synthetic runs did not resemble soccer plays well. A
minimum length of 5m is consequently employed in the simulations.

The field's boundaries are also an issue. Plays can end: by the ball going out of
bounds, by a goal, by the ball going to an opponent, and by a referee's whistle.
There are various formal ways of dealing with boundaries when simulating
realizations. The case of continuous time is reviewed in Brillinger (2003). In the
present case random numbers leading to passes of length less than 5m will be
rejected, as will those of passes longer than 5m that go out of bounds. One effect
of this is that the noise distribution now depends on the field position in contrast
to that of the model (3) which assumed common variance normal errors.

The specific steps of the simulation procedure employed are:

l.The estimates a, /J, f, a- are obtained by running a standard least squares
program employing the model (3).
2. The differences between the pass times employed, the t'i+1 - t'i , are sampled
from those of the Argentinean play, i.e. from those of Figure 3.
3. The starting field location of a simulation run is taken to be r(t/) = r(tl)'
4. A tentative value generated is

i = 1, ... with the Z's independent bivariate standard normals.
If the pass generated was less than 5m, or "the ball" goes out of bounds, then that
iteration is ignored and a new Z generated.
5. A negative binomial variate is generated to determine how many passes are in a
sequence. (In the simulations the probability is .2 .)
6. At this point one switches to the mirror image potential function.
7. One continues until the ball changes hands a second time.

7. Further Results

The results for the first six simulation runs are provided in Figure 9. In the panels
blue represents Argentina in possession of the ball and red Serbia-Montenegro. A
simulation ended with either the ball changing sides a second time or a goal.

As indicated at step 5 above the simulations took the conditional probability of a
pass being incomplete as .2, despite .3 or so being suggested by Table 2. This
was to give the plays of Figure 9 greater length for illustrative purposes.

Panel 1 shows Argentina losing possession just as they enter the S-M half
followed by an S-M shot. Panel 2 shows Argentina losing possession directly, and
then an S-M shot. Panel 3 shows Argentina losing possession immediately
followed by S-M doing the same. Panel 5 shows a representation like that of the
actual goal with Argentina keeping the ball and shooting at the S-M goal..
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In the simulations and figure one could have had the simulation run with the
ball changing side more than once, but then the figures would have become
cluttered. A video is called for when the ball changes hands more than twice.

8. Limitations of the Study

It would be remiss not to mention some of the limitations of this study. To begin,
just one play is studied. The reasons for this are twofold: the excitement of the
particular play and the unavailability, just now, of other data to study. As more
data become available further empirical studies may be carried out directly. In the
meantime the results of the 25 play analysis can be employed to generate other
potential functions, as in Section 6. Also of soccer know how can be used to set
down and study other potential functions. Further it can be noted that the play
studied did cover much of the field and thereby contains information on the
behavior of an attacking team over a substantial part of the defending teams half.

In drawing conclusions, one needs to remember that one is dealing with shots
on goal, not actual goals. Shot on goals include both goals and the ball going over
the crossbar. One could include goals in the simulation by having a shot become a
goal with some probability, for example the 1110 of Reep and Benjamin (1968).
Also it needs to be remembered that the dribbling after receipt of the ball is
included in the definition of a pass.

There is measurement error, due to the discretization of the Ascensio
representation. This could be studied in some detail, but it does not seem that the
conclusions of the paper, for example Figures 6 and 7, are likely to change a great
deal.

Lastly it is to be noted that formal models are but mimics of actuality. Real
people are involved. There is diving, professional fouling, anticipation, and delays
of the game. In the work of the paper such effects go into the error term of
expression (2).

Published by The Berkeley Electronic Press, 2007
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Figure 9. In the panels blue represents Argentina in possession of the ball and
red-dashed Serbia-Montenegro. The lines going through the goal are shots on
goal. The solid circle corresponds to the ball changing hands.
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9. Discussion and Summary

In this paper soccer has been viewed as a dynamical system with its details such
as: regions of attraction, boundaries, and repulsion. The work of this paper
suggests that there are analytic and conceptual advantages to employing a
potential function in the description and simulation of the motion of a soccer ball.
The potential is scalar-valued making it simpler to set down an expression for the
instantaneous velocity as a function oflocation (x,y). Substantive knowledge may
be employed to set down a form for a potential function and to interpret one that
has been estimated. The method provides a flexible approach that is direct to
invoke when other data sets come along .

So much is known about the particular sport of soccer that it provides a useful
test case for the potential function approach in other sports' contexts. The
approach could lead to comparative studies, classifications of plays, and further
empirical studies . The approach has further led to a viable method for simulation,
e.g. for bootstrapping and model appraisal. Details include: i) as an analytic
formula, (2), is available for the potential function plays may be followed for any
position (x.y) on the field, and ii) the potential function may change with time as
in the simulations of Figure 9.

One would like interpretations of the results. One can ask what might the
potential function and vector field be used for and represent? Simulation use has
already been emphasized. Perhaps computer-based training might be introduced
to teach strategy. Perhaps the function can be used to summarize history, tactics,
and even players' intuition.

Following its use in ice hockey, Thomas (2006) , possession time might be
another important explanatory in broader soccer studies. The possession time of
the Argentinean goal was 59.6 sec. This particular goal had substantial elements
of both patience and speed .

References

Ascensio System Limited (2006) World 3D Cup 2006 Player. Available at
http:www.footballsoftpro.com

David R. Brillinger, Haiganoush K. Preisler, Alan A. Ager, and John Kie (2001)
"The Use of Potential Functions in Modelling Animal Movement" Data
Analysis From Statistical Foundations, 369-386. Available at:
http://www.stat.berkeley.edu/-brill/papers.html

Published by The Berkeley Electronic Press, 2007
382

17



Journal ofQuantitative Analysis in Sports, Vol. 3 [2007], Iss. I, Art. 3

David R. Brillinger (2003). "Simulating Constrained Animal Motion Using
Stochastic Differential Equations." Probability, Statistics and their
Applications (Eds. K. Athreya, M. Majumdar, M. Puri and E. Waymire)
Institute of Mathematical Statistics, Beachwood. Available at:
http://www .stat.berkeley.edu/e-brill/papers.html

David R. Brillinger (2006a) "Modelling Some Norwegian Soccer Data" Doksum
Festschrift, forthcoming. Available at:
http : //www.stat.berkeley.edu/~brill/papers.html

David R. Brillinger (2006b) "A Meandering Hylje", Festschriftjor Tarmo Pukkila
on His 60th Birthday (Eds. E. P. Liski, 1. Isotalo, S. Puntanen, and G.P.H.
Styan) Dept. of Mathematics, Statistics and Philosophy, Univ. of Tampere,
Finland. Available at: http ://www.stat.berkeley.edu/c-brill/Papers/hylje 1.pdf

John M. Chambers, William S. Cleveland, Beat Kleiner and Paul A. Tukey
(1983). Graphical Methods For Data Analysis. Duxbury, Boston.

Richard D. De Veaux, Paul F. Velleman and David E. Bock (2006). Intro Stats.
Pearson, Boston.

D. Karlis, and J. Ntzoufras (2003) "Analysis of Sports Data Using Bivariate
Poisson Models" The Statistician 52, 381-393.

Nobuyoshi Hirotsu and Mike B. Wright (2002) "Using a Markov process model
of an Association Football Match to determine the Optimal Timing of
Substitution and Tactical Decisions" Journal of the Operational Research
Society: Vol. 53: No.1 , 88-96 .

Nobuyoshi Hirotsu and Mike B. Wright (2006) "Modeling Tactical Changes of
Formation in Association Football as a Zero-Sum Game", Journal oj
Quantitative Analysis in Sports: Vol. 2: No.2, Article 4. Available at:
http://www.bepress.com/jqas/voI2/iss2/4

M. Hughes and I. Franks (2005) . "Analysis of Passing Sequences, Shots and
Goals in Soccer". Journal ojSports Sciences 23,509-514.

David G. Kendall (1974) . "Pole-seeking Brownian Motion and Bird Navigation."
Journal ojthe Royal Statistical Society B: Vol. 36, 365-417.

http://www.bepress.com/jqas/vo13/issl /3

383

18



Brillinger : The Flow of Play in Soccer

S. Kozlov, J. Pitman and M. Yor (1993) "Wiener Football". Probability Theory
and its Applications 40,530-533.

Alan 1. Lee (1997). "Modelling Scores in the Premier League: Is Manchester
United Really the Best?" Chance: Vol. 10, 15-19.

C. Reep and B. Benjamin (1968) "Skill and chance in association football"
Journal ofthe Royal Statistical Society A, 131 581- 585

James Stewart (1995) Calculus: Early Transcendentals, Third Edition. Brooks
Cole, Pacific Grove.

John R. Taylor (2005) Classical Mechanics University Science, Sausalito.

Andrew C. Thomas (2006) "The Impact of Puck Possession and Location on Ice
Hockey Strategy," Journal of Quantitative Analysis in Sports: Vol. 2: No .1
Article 6. Available at: http: //www.bepress.com/jqas/voI2/iss1l6

YouTube (2006a) . Video of the play. Available at
http: //youtube.com/watch?v=2uC5mUFye50&search=world%20cup%20006

YouTube (2006b). Video of the play.
http: //www.youtube.com/watch?v=EoL8Lr9LVM4

Published by The Berkeley Electronic Press, 2007
384

Available at:

19



1

TIm US I~ OF POTENTIA L FUNCTIONS IN MODELLING AN IM A L

MOVEMEN'f

D. R. BRILLINGER, H. K. PREISLER , A. A. AGE R , J . G. KIE

D EP ART MENT OF S TATI STI CS

U NIVER SIT Y OF CALIFO R NIA

B ERKELEY, CA , 94720-38 60

PACIFIC N ORT HW EST RESEARCH STAT ION

USDA FOREST SERVICE

L A GRANDE , on 97850

P ACIFIC S OUTHW EST R ESEARCH S TATIO N

U S D A F OREST S ERVIC E

A LBANY, C A 94 7 1 0

PACIF IC N ORTHWEST RESEARCH STATIO N

U S D A F OREST SERVICE

LA GRANDE , OR 9 7 8 5 0

SUMMARY

Potential functions are a physi ca l science concept ofte n used in mod elling the

motion of particles and planet s. In the work of this pap er pot ential funct ion based

P. Guttorp and D. Brillinger (eds.), Selected Works ofDavid Brillinger, Selected Works in Probability 385
and Statistics, DOl 10.1007/978-1-4614-1344-8_22, © Springer Science+Business Media, LLC 2012



2

models are considered for the movem ent of free-ranging elk in a large, fenced ex­

perimental for est. Equations of motion ar e set down and the parameters involved

ar e estimated nonparametrically. T he question of whether a potential function

is plausible for describing the elk m oti on is considered. The conclusion is that it

is not possible to reject this hyp othesis [or the dat a set and estim ates considered .

Key Words and Phrases: animal movem ent , diffusi on mod els , elk , for ce field ,

non parametric regression, pot ential fun cti ons, st ochasti c differential equations,

telemet ry data.

1. INTRODUCTION

The problem of interest is the description of the movem ent of elk , C cr vu s ela­

phus , in a large free-ranging environme nt. Models of animal movem ent ar e be­

com ing important tools in the st udy of a variety of ecological problems, esp ecially

habitat selection , animal migration and disp ersal in het erogeneous landscap es.

Specific qu estions that wildlife biologists have include: How to allocate forage

amongst competing spec ies? What is the effect of vehicular traffic? Is change

taking place? What is the sequ ence of habitat use? The physical and biological

mechanisms that regulat e such movem ents ar e clearly com plex .

The data available are the locati ons of .M elk, lab elled by m = 1, ... , .M,

record ed at ti m es, tmk, k = 1, ..., K m. .More sp ecifically the data consist of t he lo­

ca tions l'mk = (X (tmk),Y(t mk)), corr espo nding to the UTM (Universal Tr an s­

verse Mercator] coordinates of t he k-th time measurem ent of th e m-th elk. Ex­

plan atory vari ables describing veget ation , top ography, and other habit at fea tures

(e.g ., distance to road , dis tance to water) known to influence elk movement , ar e

also available .
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The approach developed in this work is to assume t hat t he animals are moving

in a po tent ial field, H (r , t ), that controls their direct ion and sp eed of motion. T he

pot ential field may have po ints , lines or regions of attraction or repul sion an d may

include barr iers. The barriers may represent act ual physical const ructions (e.g.,

fences or be natural ). Stochast ic differential equat ions (SDEs) ar e used to include

var iability in th e model such as attractors and repellors not in th e potential H.

The estimated SDEs may be used to produce estimates of ot her parame te rs ,

ego speed , to predict spatial and temporal patterns of an imal distribution and

habit at pr eferences, to simulate traj ectories and to study the directionality of

the move me nt, amo ngst ot her possibilit ies. Later in t he pap er simulations of the

traj ectories will be used to est imate t he potential function .

The paper begins wit h a description of both determinist ic and stochastic meth­

ods for describing th e paths followed by particles under th e influence of a poten­

t ial field. Next t he experiment in whi ch the elk data were collected is describ ed .

Section 4 provides details of the statistical methods employed in the problem.

Sect ion 5 presents th e result s obtained . A key examinat ion of t he assumption

that a potential function exists is a comparison of second-order partial deriva­

t ives t aken in the two possi ble orders, separately for daytime and nigh t ti me data .

The final sect ion revie ws some of the merits and lim it ations of employing the

potenti al funct ion to model animal movement.

References describing models for animal move ment include: [6, 9, 10, 18, 27].

Reference [18] sets down det erminist ic differentia l equat ions (DDEs) for density

fun cti ons describing the expecte d pattern of space use by coyotes being influenced

by the accumulation and decay of scent m arks, also described by DDEs. T his is

to be contrasted wit h t he approach in [4, 20] where stochastic equat ions were
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set down describing t he individu al realizations or trajectories, for elephant seals

migrating and female bar k beetles responding to male pheromones emit ted from

a point source, respectively.

2 . SOME MATHEMATICS OF MOVING PARTICLES

Both deterministic and stochastic approaches are avai lab le for describing the

traj ectories of moving particles.

2.1 Deterministic case.

Motion in Newtonian dynamics has often been described by a po tent ia l fun cti on ,

H(r ,t) , see [19]. Here r = (x, y) is locat ion and t is time. The equat ion of motion

takes the form

dr(t) v (t )dt

dv(t) = - j3v (l )dl - j3\lH(r(l), t)dl

with r(t) the particle's location at time t, v (t ) th e particle 's veloc ity and - j3\lH

the external for ce field act ing on the par ti cle, j3 being the coefficient of fri cti on ,

[19]. Here \l = (8/ox, 8/8y) is t he gradient operator . T he function H is seen

to cont rol t he particle's direct ion and velocity. For exam ple H(r ) = 11' - al2

corresponds is a po int of at t ract ion at a and H(r) = 1/11' - al2 is a potential

funct ion with a point of repul sion at a .

In t he case that j3 is lar ge, t he equations are ap proximately

dr(t) = - V H (r(t ),t)dt (2.1)

and only the locat ion , r(t ), at time t is involved.

T here exists conside rable mathematical developme nt in the t ime stat ionary

case. A force fi eld , F , may be given and the quest ion arises whet her th ere exists
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a real-valu ed fun cti on H, such t hat F = V H . Wh en it does t he field is called

conservative. Such a field t hen has the property th at line integrals

rF · dr
.Ie

depend only on th e init ial an d terminal point s of t he cur ve C, see [~6], and·

refers to the fact that a line integral is involved .

Tn this case th e fun ction H may be obtained from its partial derivatives,

F in. ,H y ) , [25,26] . Specifically for motion in an open connected region the

pot ent ial function may be obtained, up to an additive constant, as

j
(X,y )

H (:1.;, y) = F . dr
(a,b)

(2 .2)

where (a, b) is a point in the region. When a potent ial fun ction exists, t he path of

the line integral t aken from the start ing point (a,b) to the termin al point (x,y)

will not affect th e final result . T he fun ction H may also be est imated, given

H x , H y via simulation experiments as describ ed below.

If F has com ponent s H x , H y , then a necessary condition for t he existe nce of

a corresponding potential fun ction is that

a . a ..
'"""iJ H x = '"""iJ H y
u y uX

(2.3)

[25, 26]. In the case t ha t t he region is simply connected, this condit ion is also

sufficient .

2.2 Stochastic case .

A pertinent probabilistic concept for dynamic situations is a stochastic differ-

ent ia l equat ion (SDE), see [3, 16]. Such equ ations lead to Markov processes and

take the form

dr(t) J-L(r(t)~ t)dt + ~(r~ t)dB(t)
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with J-t the drift parameter , ~ the variance or diffusion paramet er and B bivariate

Brownian motion . Here r, J-t, B are vectors whil e ~ is a matrix.

The par ameters have th e interp ret ati ons

E{ dr (t ) l1-£ t} = J-t(r(t), t)dt

var{dr(t)l1-£t} = ~(r(t), t)dt

with 'H; represent ing the time his tory of the pro cess. Sin ce the pro cess is Markov ,

th ese conditional par am et ers dep end only on t he previous position , as ind icated.

Many properties are known concern ing solutions of SDEs, for example in the

present context when H does not depend on I and ~ = IT6I , there may be an

invariant densi ty

7r(r) = c exp{- 2H (r )j lT6} (2.5)

representing t he long ru n density of locations t he par ticl e visit s, [3]. T hus, by

modelling movements, population distributions m ay be est imated . At th e same

tim e given J-t = (-Hoz, - Hy ) and a ITo , real izations of the process (2.4) may be

generated , from whi ch t he density 7r(r) may be est im ate d from the reali zations

and then (2.5) invert ed to obtain an est imate of H .

There m ay be barriers restraining the motion. Also t he stimulus , here repre­

sented by ~ (r, t) dB (I) , may have periodic proper ties in t.

A par ti cular case of an SDE is provid ed by t he mean- reverting Ornst ein ­

Uhl enbeck (0-U) process where

J-t(r, t) A(a - r(t»

~(r, t) = ~
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and the mean is a . T he papers [9, 10] propose t he O-U process as a model for

animal motion and develop maximum likelihod estimates of the parameters. The

0-U process becomes the random walk wh en A = 0 , i.e., when the drift term,

11,(1', t), is O.

If A is sym m et ric, the potential fun ction corresp onding to an 0-U process is

H( r ,t) = (a - rVA(a - 1')/2

Its invariant distribution is mult ivaria te norm al , N (a, w), where

see [3], p . 597 . If ~ = 0-61, then W = 0-6A - 1/ 2.

The situation of a particle being affecte d by the for ce field of a potential func-

tion is convenient ly visu aliz ed by picturing a ball rolling around in the in teri or

of a perspective plot of the potential function . Some simulations are provided

below.

To derive sim ula te d paths on can proceed as follows. Consider a one-

dimensional process dx(t) = J-l(x ,t)dt + o-(x, t )dB(t). Suppose that at time t

the particle is a t loca t ion x(l) = x . Now for the loca tion at time t + dl t ake

x(t + dt) = x ± o-(x, t)Vdi with prob -2
1 ± J-l( x ,l) Vdi

20-(x ,t)

See [17, 22]. In the bivariate cas e one gener ates x and y processes .

Figure 1 presents exam ples of such sim ulat ions in the case of the process

dr(t) = - V H(r)dt + dB(t)

and two par ti cular pot ential fun ctions. In the first exam ple IJ(1' ,l) = 1'71' , i.e.

th e process is Ornstein-U hl enbeck revert ing to the origin . T he t raj ectory is seen
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to meander ar ound the origin and one can imagin e a ball rolling ar ound in the

interior of the parabaloid in the left column of the Figure 1.

In t he second exam ple a mound has been added at t he origin . Now the t ra-

j ector y is seen to circle around the mound st aying in the groove of the bo ttom

of H .

Keeping in mind these examples one can visualize the mot ion of part icles given

parti cular po tent ial functi ons .

2.3 Random pot ential/environm ent.

The discussion above provides a means of in terp reti ng t he drift term of a

bivariate SD E. It is also im portant to have an un derstand ing of what phenomena

can lead to the var ian ce/diffusion term .

Suppose that a t t imet there are ot her parti cles an d t hat they ar e at random

positions r j (t) . These particles mi gh t be at t racted to wards ea ch ot her followin g

t he existence of a potent ial fun cti on

.J

H(r, t) = 0: (1') L 11' - r j (tW
j = l

for some pertinent fun cti on 0: (.). Followin g equation (2.1)

d1' (t) = - V H(r ,t )dt

wit h V H (1', t) approximately norm al for large J via some Central Limit Theorem .

On e has , app rox im ately, an SDE such as (2.4) wit h no drift term .

The concept of other particles in t he field might be used to por tray th e at-

traction amo ng elk tr avelin g together in a herd for exam ple. Conversely, it could

be used to portray repulsion between two different species of animals wh ere, be-

cause of socia l interact ions , individuals of one species are avoiding ind ividuals of

t he other species .
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3. THE EXPERIMENT

T he m ain st udy area at Starkey Experimental Forest and Ran ge consist s of

7,762 ha in the Blu e Mountains of northeastern Oregon [23] . It was enclosed wit h

a gameprooffence in 1988 and radio-telemetry st ud ies were initiated . Each spring

a sample of the resident po pulation of elk an d mule deer ( Odocoileus hemionIls)

are fitted wit h colla rs containing Loran- C receivers . A sample of the domest ic

cat t le herd bro ught to Starkey Fores t each summer is also fitt ed with collars .

T he colla rs are instructed at regular intervals to intercept Lor an-C broadcsts

and relay these signals to a cent ral receiver. Locations ar e t hen computed from

the Loran-C time delay. T hey have a mean error about 50 m [12]. T he telemetry

system attem pts to locate some animal every 20 seconds, and thus cycles through

app roximate ly 190 collared elk, deer , and cattle in abo ut 60-65 minutes. The

st udy ar ea is also managed for a var iety of public uses such as recreation , hunting,

forest man agem ent , cattle graz ing , and ot her activit ies. An extensive dat abase

was built describing vegetation , topography, and location of roads , streams and

other features relevan t to the st udy of elk [23]. T he data used in the work of

th is pap er were collecte d fro m t he analyses in 1994 an d involve 53 female elk.

Ob servations were omitted from th e analysis for 30 days when hu nting of elk

by rifle occurred in t he for est , and also when time intervals between successive

locati ons were grea ter than 1.5 hour s. This was done in an attem pt to make the

sit uation more uniform and reduce the difficult ies of interpreting widely spaced

observations . Figure 2 illu st rat es the success ive movements for two ty pical elk

durin g 1994. T wo small ga me-p roof exclosures wit hin t he st udy area are shown

in whi te. Elk 43 is seen to spe nd mu ch of its time below the larger fenced off

area on the right. The t raj ectory plot ted is a sequence of straight line segm ents
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and j agged . T his discret eness resul ts from t he fact that locati on est imates are

available but every 1-1. hours.

Tur nin g to Elk 42, it is seen to spend most of t he time in t he nort hern part

of the forest . The implicati ons of the time sampling are particularly apparent in

this case in t he upper right corn er. It is not that t he elk is jumping th e fence,

rather the loca tions are at time poin ts an hour or so apart. Elk 42 does stay

within the Starkey Forest (at least as far as is known).

Figure 3 shows separately the dayti me an d nighttime locati ons visited by all

53 elk , but rest rict ing the points plot t ed to t hose less than 1.5 hours apart and

excluding the days with hu nting .

The point s plotted have been jit tered to make their ap parent density clearer .

A vari ety of heavily used an d and also sparse ly used regions m ay be seen . Wh en

a detailed map is consul ted it can be seen t hat some of these regions rela te

to the locations of road s and other habitat features. This circumstance will be

addr essed in la ter research . T here is also an ap parent difference between day an d

night distributions , whi ch is no surprise because the animals forage at dawn and

dusk and rest in the daytime.

4. THE STATISTICAL METHODS USED

Kernel methods , [14], m ay be employed to form an est imate of the lon grun den-

sity of elk locations. Estimates t ake t he form

1t(r) = 2.: K(r - r(tmk)) / 2.: 1 (4.1)
m,k m,k

for some kern el funct ion K (.). Such an est im ate will be em ployed later in t he

paper , together wit h the realtion (2.5) , to obtain an est imated of t he (ass ume d

to exist ) potential function .
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Turning to t he SDE (2.4) its solution may be approximated by

I = 1, 2, .. . with tl < t z < t3 < ...sampling t imes and wit h Z a bivariate standard

normal. In terms of the individual components of r one can write

~X(t) = Pl(X, Y ) + noise
~t

~Y (t ) = 1'2(X, Y) +
~t

noise

further assum ing ti me invariance. If t he dr ift functions , P I , /1 2, are smooth , one

has a nonparametric regr ession problem . The fun ctions PI , /12 m ay be estimated

via loess(.) , [7], or by a kernel method , [14].

Acting as if H exist s, from est im ates of PI, 1'2 one has an est im ate of H 's

gradient (Hx ,Hy ) = - (/1 1,[12) . The fun ction H itself may then be estimated

following (2.2), specifically one cou ld em ploy

'" if ( x · y ·)fc, x · + '" II ( x· y .)fc,y.L...J x' z, z z L...J y z, z z

i

for some path of points (X i ,ud, i = 0, 1,2, ... from (a,b) to (x ,u) staying within

the region having taken some starting point (a, b) in th e region , i.c. standardized

t he est imate by H(a ,b) = O. Depending on t he character of the region complex

paths m ay he needed . This is the case for th e region of this pap er .

References to inferential methods for diffusion processes include : [1, 2, 5, 8,

13, 15, 24].

5. RESULTS

T he results of t he m odel fitt ing and assess ment ar e provi ded in Figur es 4-7 .
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Following expression (2.5), and under assumptions leading to its existence,

the potential function may be estimated up to an additive constant by

-log 1i-(r) (5.1)

with 1i-( .) the density estimate, usin gthe kernel estimate. The results are given

in Figure 5 separately for days and nights. The hotspots of Figures 3 go over

into the depressions , i.e . coldspots , of Figure 4.

Figure 5 provides H as estimated by simulation following the method de­

scribed in Section 2.2 having used loess( .) to estimate the gradient of H . In the

estimate provided the starting point was taken to be the center point of the re­

gion. The value of 0'0 was 20 pixel units, to be sure the trajectory roamed around

the region widely. The points of the trajectory were picked to remain within the

outer boundary of Starkey by resampling an increment if it led to a point outside

of the region.

In both Figures 4 and 5 the hotspots (lighter areas) are in the north of Starkey

in daytime and in the south in nightime. One sees the main attractors. The ex­

tent of agreement relates in part to the question of whether a potential function

actually exists, for this assumption underlies the computations leading to Figure

5. If a potential function does not exist then one needs a different method of esti­

mating 7l'(r) because one cannot simply integrate up. The question of statistical

uncertainty will be addressed below .

Expression (2.3) suggests one way to address the question of the existence

of a potential function. Figure 6 takes u; H y and further computes fj.yHx

and fj.xHy. (Here fj.x, fj.y are the z and y difference operators.) There is some

agreement. The daytime plots are on the same grey scale, as are the nighttime

396



13

plots .

It is clear th at some discussion of sampling un certainty is needed in order to

make plausib le inferences. In the work the jackknife, [11]' was em ployed to exam­

ine th e hypothesis of t he existe nce of a potential function . In its implimentation

50 of the elk t racks were used, 5 t racks were dropped each time in the eval uations

of the 10 pseudo est imates.

Given est imates of t he variances of the quantities graphed in Figure 6, they

may be com pared by taking th e difference and dividing by th e est imate of th e

st andard deviation of the difference, point by point and separ ately [or day and

night . Figure 7 graphs the locat ions where the absolute values of t-st at isti cs

obtained exceed the 95 percent point of the Student-t distribution with 9 degrees

of freedom. There are not a lot , the proportions of po int exceedances ar e .036

and .026, [or day and night respect ively to be contrasted with the nom inal .05 .

On e doesn 't noti ce mu ch st ruct ure in where the exeedances are located .

The concl usion of the analysis is that wit h the data set an d est imates consid­

ered , it is not possible to reject t he hypothesis t hat a potential function exists

that may be used to describ e the motion of the elk.

6. DISCUSSION AND SUMMARY

A basic advantage of working with a potentia l function , H, is that H is scalar­

valued , as opposed to t he bivariate p, of (2.4) . T hat is one has to model but a

single real-valued function . The funct ion can incl ude individ ual effects , ego at­

traction, repul sion , barriers , and t his will be don e in future work. T he est imates

computed here are non paramet ric. In practice the resul ts obtained can be ex­

pect ed to somet imes sugg est part icula r explanatories to include in paramet ric
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forms.

A disadvantage of the work is that such an H may not exist. In such a case one

needs an alt ernate meth od of est imat ing 'iT( .) given est im ates of t he parameters

of the SDE. The concept of pot ential comes from the " much simpler" physical

sciences. The motion of com plex biological entit ies is surely m any t imes more

com plicated than that of a falli ng ball , for example . A fur t her difficulty arises

in the dr awing of conclusions. An elk 's locations are available a t successive t ime

points , but they ar e 1-4 hours ap art . The elk can be many different places between

the t im es at which locations are est imated. T his complication showed its elf in

Figure 2, where th e track plotted would suggest that Elk 42 jumped some fences.

The assum ption of a potenti al fun cti on led to the set ting down of a st ochasti c

differenti al equat ion for a diffusion pr ocess. Such an SDE assumption was needed

both in mo t ivat ing the est imates com pute d an d in est imat ing the pot ential fun c­

tion itself. But diffusion processes ar e Markov , whereas more realistic equat ions

would involve t ime lags an d th e process t herefore not be Mark ov .

Some relate d results ar e presented in [21]. In current work t he SDE approach is

being further develop ed as a convenient way to include covariates in the models .
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Potential functions and simulated trajectories
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Starxey Project area and trajectory examples
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ABSTRACT

Elephant seals migrate over vast areas of the eastern North Pacific Ocean between rookeries in
southern California and distant northern foraging areas. Several models of particle movement were
evaluated and a model for great-circle motion found to give reasonable results for the movement
of an adult female . This model takes specific account of the fact that the movement is on the
surface of a sphere and that the animal is apparently heading toward a particular destination. The
parameters of the motion were estimated. Such a great-circle path of migration may imply that

these seals have the ability to assess their position with respect to some global or celestial cues,
allowing them to continually adjust their course and achieve the most direct geodesic route between
origin and destination of migration. But the navigational mechanism actually used by these seals
10 accomplish such feats is as yet unknown.

RESUME

Deux fois par an nee , lcs elephants de mer entreprennent de longues migrations au nord de
l'ocean Pacifique. Plusieurs sont porteurs dinstruments qui enregistrent la profondeur et lintcnsite
lumineuse a intervalles reguliers, Ces instruments sontensuite recuperes et permeuent de faire
plusieurs estimations, par exemple les positions ami-journee. Dans cet expose on sinteressera a
la modelisation des itineraires de surface des animaux a l'aide d'equutions differenticlles stochas­
tiqcus , Les distances sont suffisarnent importantes pour etrc incluses dans Ie modele la nature
spherique de la surface tcrrestre. Une question interessante est de determiner si les itineraires sont
des grands cercles de la sphere terrestre .

1. INTRODUCTION

Many marine mammals travel great distances each year between breeding and calving
areas and seasonally productive foraging areas. Northern elephant seals (Mirounga an­
gustirostris), for example, are exceptional migrators. They spend most of each year at
sea and range over vast areas of the eastern North Pacific Ocean during double annual
migrations between California rookeries and distant northern foraging areas (Stewart
and DeLong 1995, Stewart 1996). Similarly, southern elephant seals (Mirounga lemina)

*This research was supported by Office of Naval Research Grant NIXXI14-94-1-(Xl42 and National Science
Foundation Grants DMS-9625774. 97-(l4739 (D.R.B .). Elephant-seal dive data were collected in previous studies
with partial support of a contract of B.S.S. from the Space and Missile Command. U.S. Department of the Air
Force. Part of the material was presented in the 1997 President's Invited Talk. Annual Meeting of the Statistical
Society of Canada. Fredericton, New Brunswick .

P,Guttorp and D. Brillinger (eds.), Selected Works ofDavid Brillinger, Selected Works in Probability 411
and Statistics, DOl 10.1007/978-1-4614-1344-8_23, © Springer Science+Business Media, LLC 2012
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range over vast areas of the Southern Ocean (e.g. , McConnell and Fedak 1996, Bester and
Pansegrouw 1992). Although the navigational mechanisms involved in these remarkable
migrational feats are as yet unknown , an initial step of describing the migratory trajecto­
ries with various formal models may help to develop testable hypotheses. One possibility
is that the seals follow great-circle paths. If so, this would imply that they are able to
assess their position relative to some astronomical or global magnetic background and
constantly make course corrections, as do oceangoing ships when navigating, to achieve
the shortest geodesic distance provided by such a route . Elephant seals dive and forage
continuously while migrating. Such behaviour could pull them away from the direct route
from origin to destination, and it could be modelled as stochastic fluctuation . Here the
fit of the great-circle model of particle movement is evaluated for a particular northern
elephant seal, in part to examine the hypothesis that such animals can migrate along
great-circle paths.

The top graph of Figure I presents the surface track for one seal during the post­
breeding-season migration. This figure led to speculation that the seals would sometimes
follow a great-circle path . A great-circle path is indicated in the bottom graph for
reference.

The paper first mentions some of the work of previous authors on the stochastic mod­
elling of particle tracks. Then some material concerning stochastic differential equations
is recorded. Section 3 concerns the motion of a particle on the sphere for the case of
the particle heading towards a particular destination. Section 4 focuses on the problem
of estimating the parameters of the spherical motion . The next section reviews the data
and data-collection procedures. Section 6 describes the analysis and presents results, the
principal one being an examination of the hypothesis that the motion is a great circle. The
statistical analysis presented involves a rotation of the spherical coordinates so that the
destination is the North Pole, followed by a search for systematic departure of longitude
changes from noise of mean O. Section 7 provides some introductory remarks on dealing
with measurement error. Finally there is discussion, an appendix on rotating spherical
coordinates, and an appendix presenting the data.

2. MODELS FOR PARTICLE MOVEMENT

Various authors have employed random-walk models for animal movement. Some par­
ticular cases follow. Okubo (1980) devotes a chapter to the topic. Kareiva and Shigesada
(1983) studied butterflies and caterpillars. A general reference is Levin (1986). McCul­
loch and Cain (1989) studied swallowtails, butterflies and goldenrod. Dunn and Gipson
(1977) modelled deer movements, assuming that such data were generated by a multi­
variate Ornstein-Uhlenbeck diffusion process (see also Dunn and Brisbin 1985). Moore
(1985) and Zwiers (1985) modelled iceberg movements as vector ARIMA processes.
Some authors (e.g ., Hadeler et al. 1980, Niwa 1996), sought to describe annual move­
ments by variants of Newton's equations of motion, with Niwa evaluating fish movements.
Preisler and Akers (1995) employed an autoregressive scheme to model the heading of
a bark beetle attracted towards a source . Malik et al. (1994) investigated the motion of
microtubules. Oceanographers have studied drifting-buoy movements; see Brink et al.
(1991). Wagner (1986) and Wehrhahn et al . (1982) studied the motion of one fly pur­
suing another. Bril (1995) , in studying hurricane tracks, considered a state-space model
with a randomly varying drift.

An original term for "stochastic process" is "trajectory", so it is interesting to be re­
turning to the roots of the subject. Stochastic differential equations (SDEs) are a powerful
tool for conceptualizing processes and investigating trajectories. These equations have
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Seal 91510: days 54 - 128
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FIG URE I : The top graph is the track of one seal heading from an island off Santa Barbara to a
region in the Northwest Pacific and return . The bottom graph is a great-circle route, for
reference.

some surprising properties. Their solutions, when continuous and Markov, are referred
to as diffusion processes.

By way of introduction, consider representing a random walk in the plane by a bivariate
Brownian. Letting (X/, Y/) represent a particle's location at time t, the SDE for the motion
may be written

dx, = o dil.,

dY/ = o dv,

(1)

(2)

with {VI} and {VI} independent standard univariate Brownians, i.e., Gaussian processes
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with mean 0 and covariance function min{s, t}. Suppose one changes to polar coordinates,

r, = jx,2+ y?, 4>, = atan ( Y" X,); then the SDEs (I), (2) become

0 2

dr, = - dt+odU"
2rl

o
d4>1 = - dVIr,

(3)

(4)

via Ito's lemma (see Karlin and Taylor 1981, Bhattacharya and Waymire 1990, Oksendal
1995). The appearance of the drift term 0

2/ 2rl in (3) is perhaps surprising. This term
dominates the behaviour of r, near the origin, pushing the particle away. In the case of
4>1 the change is highly variable when the particle is near the origin. The process {rl } is
known as the two-dimensional Bessel process .

Now consider motion in IR. 3. One important process, the Langevin or Ornstein­
Uhlenbeck, is defined by the SDE

dX I = -~XI dt + r dBI (5)

with X representing location, X representing velocity, -~X representing dynamical fric­
tion, r a 3-by-3 matrix and BI Brownian motion in IR. 3; see Chandrasekhar (1943) for
example. It may be that the particle is moving in a force field, in which case a term
K(X/o t) dt is added to the right-hand side of (5).

What distinguishes the present work is that the particle is supposed to be heading for
a specific destination. Kendall (1974) considered the case of a Brownian motion on the
plane with an "attractive" polar drift. He worked with polar coordinates (r,4» centered
at the target center. The particle, in his case a bird, started at location (D,O). In a time
interval of length dt it moved a distance b dt towards the target, then was subject to
random Gaussian disturbance, of amount 0 dU I towards the target and amount 0 dVI at
right angles to the path. Here UI and VI are independent Brownians with variance 0 2. In
Ito form the motion may be described by

dr, = (;;, - b) dt + 0 au, (6)

o
d4>1 = - dVI · (7)

r,

These equations reduce to (3), (4) when b = O.
For basic material on diffusion processes see Karlin and Taylor (1981), Bhattacharya

and Waymire (1990) or Oksendal (1995). Papers and books on inferential aspects of
diffusion processes include Basawa and Rao (1980), Burgiere (1993), Dohnal (1987) ,
Genon-Catalot et al . (1992), Heyde (1994).

3. DIFFUSION ON A SPHERE

The description of a particle moving randomly on the surface of a sphere has been
considered by a number of authors , beginning with Perrin (1928) . The infinitesimal
generator and transition density for spherical Brownian motion were given in Yosida
(1949) . Following directly from the infinitesimal generator are the Ito SDEs

0 2

del = 2 e dt + 0 dll.,
tan I

o
d4>1 = -:--e av..

SIn ,
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Simulation of return journey
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FIGURE 2: A simulation of the process (8. 9) for a seal heading back to the Channel Islands.

Suppose that a particle on the sphere is migrating directly towards the North Pole at
speed 6 and subject to Brownian disturbances. (The North Pole is taken for convenience.)
In analogy with the model of Kendal (1974), the following Ito differential equations are
set down in Brillinger (1997) :

dO, = ( 0

2

- 0) dt + 0 su, (8)
2 tan e,
o

d4>, = -'-0av..
SIn /

so long as 0, =J 0 and with 4>/ defined mod 2n. It will be supposed that the particle does
not start at 0 = 0 or n. The latitude , 0/, is analogous to r, of (6, 7). If one considers a
sphere of infinite radius , the planar and spherical formulations coincide.

Because distances around a constant latitude decrease with increasing latitude, the
I/sin 0 term appears in (9). Figure 2 presents a simulation of the process (8), (9) meant
to represent a return trip of a seal to the Channel Islands off southern California. The
standard error 0 here has been taken to be 0.005 rad.

Consider, for example, the expected travel time for the process (8), (9). Suppose the
particle starts at cos 8 = x and heads to cos 0 = d, I > d > x > -I . In Brillinger (1997)
it is shown that the expected travel time is given by

l
d 2 1.1' (20 ) ( 20 ) I- exp -- COS-I Z d; exp - COS-I Y -- dy,

• x 02 _ I 02 02 I - y2

which may be evaluated in specific cases.

4. ESTIMATION

Following Brillinger (1997), the log likelihood ratio of the process, relative to that of
the case 0 = 0, is

~{(-O) (dO.\-~ ((_200
2

+02) dS}U ./0 2 ./0 tan 8,
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In the case that 0 is known this leads to the maximum-likelihood estimate

A I ( ' iT I )b = - (80 - 8T ) + (J -- ds .
T . () tan 8.<

(12)

Because the particle reaches the region of its destination eventually, this estimate becomes
unreasonable in practice if T --t 00.

One can actually obtain an exact estimate of 0 2; specifically, it is the case that

(13)

Here {t;} is a partition of the interval that gets finer under the limiting process. The
stated result is conditional on the given (continuous) realization of 8."0 :s s :s T, and
it is assumed that there exists e > 0 such that I sin 8.< I 2: f. The curve ~t refers to
a continuous curve obtained from the curve <P, either by patching together continuous
segments or by reflecting <P, whenever it reaches the barriers <p = 0,31:. (It is assumed that
o< <Po < 231:.)

In practice the data will be available at discrete time points and the above likelihood
ratio (II) is not available. However, with a model such as (14)-(15) below, describing
the position of the particle's successive time steps, one can set down the likelihood
function and obtain estimates of the parameters. An approximate approach is to do what
a ship 's navigator has done traditionally. Specifically, at the start of a day, based on
a ship' s position, thc navigator determines the heading of the great-circle course. That
heading is followed for the whole day. The next day the navigator determines the ship' s
new position, then the great-circle course based on that position. The new heading is
followed for that day. Unless the ship is heading due north or south, during its travels
it will be pulled off the great circle route, but with the course revisions the destination
is approached. This method lead s to approximating the desired conditional density by a
succession of planar motions with different headings.

A discrete approximation to the model (8), (9) is provided by

0 2

8'+1 - 8t = 2 tan 8, - b + Oft+l,

o
<Pt+1 - <Pt = - '-8-'I1t+I'

Sin ,

(14)

(15)

t = 0, 1,2 , ..., with the errors independent standard white noise processes and the e, 'I1t
independent normal with mean 0 and variance 1. One notes that the conditional expected
value of 8t+1 given the past is -b + 0 2/ (2 tan 8,) and that the conditional variances of
the increments are 0 2 and 0 2/(sin2 8,) respectively. Estimates of the parameters may be
derived by the method of moments or by maximizing the likelihood. In this discrete case
an "exact" estimate of 0 2 is not available. Then minus twice the log likelihood is

2 I L . 2 2 I L ( 0
2

) 22T log 0 + -:;- (Sin 8,)(<Pt+1 - <Pt) + -:;- 8t+ 1- 8t + b - 2 8
o- 0- tan t

which may be minimized to obtain estimates of band o. Such estimates will be presented
for the data of Figure 1.
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The data studied in the present work are from the postbreeding migration of an
adult elephant-seal female (Mirounga angustirostris) . This species breeds on offshore
islands and at a few mainland sites along the coasts of California and Baja California
(Stewart and Huber 1993, Stewart et al. 1994, Stewart 1996). Adults are ashore briefly
in winter to breed, and again in spring (females) or summer (males) to molt, but they
spend the remainder of the year, 8-10 months, at sea foraging . They make two precise,
long-distance migrations each year between islands in southern California and offshore
foraging locations in the mid North Pacific, in the Gulf of Alaska and along the Aleutian
Islands, covering 18,000 to 20,000 km (surface movements alone) during the double
migrations (Stewart and DeLong 1995). The navigational mechanisms employed by these
superlative migrators are, as yet, unknown .

The data on diving and movements studied were obtained by a microprocessor­
controlled event recorder which was harmlessly glued to a seal's hair (e.g., Stewart
and DeLong 1995, Bengtson and Stewart 1992, Stewart et al. 1989). The instrument was
attached at the end of the breeding season and then recovered when the animal returned
to land several months later.

An estimate of daily location was computed from measurements of ambient daylight
made and stored in the recording instruments. Briefly, estimates of sunrise, sunset, and
local apparent noon were made from those data, and then latitude and longitude were
computed [see DeLong et al. (1992) and Stewart and DeLong (1995) for description of
methods]. The error varies with season and latitude .

The movement data for the journey of the seal studied in our work are given in
Appendix B. It is to be noted that days 85 and III are missing . This was handled in
this preliminary study by simply using the average of the adjacent values. Brillinger and
Stewart (1996) carry out some frequency-domain studies of the series of depth values
recorded during this particular migration, and Brillinger and Stewart (1997) develop
typical shapes for individual dives and study their temporal occurrence.

6. RESULTS OF SOME ANALYSES

To begin, consider the path of the top graph of Figure I. Figure 3 provides a cor­
responding smoothed path. This smooth path was determined via the procedure loess
of Cleveland et al. (1990). One notes the bowing of the route typical of great-circle
travel. The variability represented in Figure 1 represents both foraging movements and
measurement error for location.

For the next analysis it is necessary to take note of the fact that the seal's positions are
given in latitude and longitude with the destination not the North Pole as was assumed
the model in (8), (9). Appendix A indicates the formulae for the necessary change of
coordinates to make the data correspond to the North Pole model. The rotated coordinates
are denoted by 4>/ and 8/.

The model (14), (15) was fitted to the outbound and inbound daily positions, merged
appropriately, by minimizing the minus twice the log likelihood (16). The estimates
obtained are

b= -0.0113 rad/day = -72.0 kmiday,

6 = 0.00805 rad/day = 51.3 kmJday.

The estimated standard error of b is 0.00 II.
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Seal 91510: smoothed track
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FIGURE 3: Smoothed track of seal 91510.

Figure 4 plots the values
(sin 8,)(<PI+ I - <p/)

0-
(17)

for t = 0, 1, ..., separately for the outbound and inbound trips . This plot provides a
means to examine the hypothesis of a great-circle route . For the great-circle case the
points plotted should simply fluctuate about O. A smoothed loess line has been added
to each figure to provide an estimate of some systematic route . Also graphed are ±2­
standard-error levels placed about O. One does not see evidence against the great-circle
hypothesis.

In these computations the procedure adopted is to act as if the uncertainty in the
destinations is negligible . The seal appears to have the location of its rookery specifically
in mind when it begins the return movement, so the assumption is certainly reasonable
then. In the case of the outbound trip the destination was taken as the average of the
extreme points in the Northwest.

7. MEASUREMENT NOISE

A difficulty is the presence of measurement noise. It and the foraging variability are
confounded in the above analysis. One way to take note of measurement error is to set
down the additional equations

, ,j., ' /. 8'<1>/ = '1" + 11, SIn ,

(18)

with (8;, <1>;) now representing the available data and supposing ';,11; noise. If these last
arc assumed independent normals with mean 0 and variances "(2 , then , amongst other
procedures, a Kalman-filter-type analysis may be employed to develop a full likelihood
and corresponding estimates. The results of this analysis arc presented in Brillinger
(1998). The Kalman filter is employed with wildlife data in Anderson-Sprecher (1994)
and Anderson-Sprecher and Lcdolter (1991).
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Standardized longitude residuals - outbound
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FI GURE 4: The scaled longitude differences of (17) with a smoothed line as produced by loess . The
dashed lines are ± 2 standard error limits about o.

8. DISCUSSION

Future work will incorporate explanatory variables in the model, will employ a
recursive filter, will better handle the missing values and will analyze other data sets.

The great-circle path hypothesi s was not contradicted by the immigration of one
northern elephant seal female . The results suggest that a great-circl e path model is a
possible navigational strategy in this specie s. They also suggest that the seals have a
destination in mind when departing from an origin (i.e., terrestrial rookery or haulout
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and pelagic foraging area) and that they are able to continually adjust course en route
to achieve the most direct route . Further, they imply that natural selection has favoured
the development of neural and sensory mechanisms that permit great-circle navigation.
However, the sensory clues actually used are as yet unknown, although several have
been suggested and studied to various extents in a variety of other animal taxa (e.g.,
Able 1996, Dingle 1996, Dittman and Quin 1996, Lohmann and Lohmann 1996, Wehner
et al. 1996, Weindler et al. 1996, Wiltschko and Wiltschko 1996).

Navigation by learned reference to geophysical characteristics would seem to play
only a minor role, as elephant seals are generally far from coastlines and in areas of
great water depth and little submarine features during most of their migrations. But
the fit of a great-circle model suggests that some kind of compass may be central to
the seal s' rather precise migration and navigational performances, allowing them to
continually determine the appropriate direction of each subsequent movement to keep
en route to the shortest distance between origin and destination. Celestial navigation
may be involved to some extent, but the brief and sporadic appearance of migrating
seals at the sea surface, where such clues could be assessed, and their propensity to
travel mostly at great depths, where such cues are obscured, would argue that it is not a
primary mechanism. Large-scale magnetic field orientation may be the most plausible of
potential compasses. But the rather precise navigation of the seals may also imply either
the existence of a cognitive map to apply the compass to or perhaps simply remarkable
fidelity to vectors and assessment of distance travelled, independent of any map. At
present, no such mechanism of magnetic sensory ability or cognitive mapping is known
for elephant seals. However, knowledge of the ecological and physiological conditions
under which northern elephant seals find their way while migrating and foraging, which
have come to be known recently (e.g., Stewart and DeLong 1995, Stewart 1996), coupled
with the descriptive theoretical model of navigational strategy developed here, can help
focus questions properly on navigational and orientational mechanisms in this and other
long-distance, deep-dwelling ocean migrators.

APPENDIX A. THE CHANGE OF COORDINATES

A transformation (<jJ,8) --> (~, 8) is constructed. Suppose that the sphere is rotated
so that the particular point (<1>,8) becomes the North Pole (0,0), and the great circle
(<jJ,8) to (<1>,8) becomes the great circle (0,0) to (0,8). The required change of variables
may be derived to be

cos e= cos 8 cos 8 + sin 8 sin 8 cos (<jJ - <1»,

- sin 8 sin (<jJ - <1»
tan <jJ = cos <1> sin 8 cos (<jJ - <1» - sin 8 cos 8 '

Retaining the signs of the numerator and denominator in the last expression will lead to
an appropriate choice of quadrant for the transformed longitude.

APPENDIX B. NUMERICAL DATA

The data are shown in Table 1.

ACKNOWLEDGEMENT

We thank Haiganoush Preisler and the two referees for some very helpful comments.

420



1998 ELEPHANT-SEAL MOVEMENTS 441

TABLE I

Day Latitude (N) Longitude (W) Day Latitude (N) Longitude (W )

54 34.0 120.0 92 40.5 140.3

55 35.0 121.3 93 47.0 147.1

50 30.0 122.0 94 40.7 147.2

57 30.5 123.0 95 40.0 140.7

5R 30.R 124.0 90 40.R 140.0
59 30.9 125.4 97 40.2 145.7
00 37.0 125.9 9R 40 .5 145.0
01 37.2 120.1 99 40.5 144.0
02 3R.1 120.4 100 40.2 144.4
03 40 .1 127.0 101 40.2 143.4
M 40.3 12R.5 102 45.R 142.5
05 40 .0 129.9 103 45.0 142.0
tit) 40.5 131.3 104 44 .5 141.5
07 40 .9 131.9 105 44 .0 141.2
oR 40.5 133.4 106 44 .0 140.2
09 40.R 133.R 107 43.0 139.4
70 41.3 134.1 lOR 43.0 13R.7
71 41.9 134.3 109 43.5 137.6
72 42.0 136.0 110 43.4 136.4
73 42.9 136.R 112 42.1 130.4
74 43.0 130.9 113 42 .1 134.0
75 42.9 137.0 114 42.3 134.2
76 43 .5 !3R.5 115 42 .0 132.R
77 44.1 139.2 110 41.6 132.2
7S 44.3 139.4 117 41.1 132.5
79 45.0 139.2 IIR 39.5 131.5
RO 45 .0 141.7 119 39.6 !30.0
RI 45 .5 141.0 120 39.0 129.R
R2 40.1 142.X 121 39.6 129.4
X3 46 .3 143.1 122 3X.5 127.2
X4 40.1 143.6 123 37.1 126.4
XO 40 .1 144.4 124 30.5 125.0
X7 40 .5 144.X 125 30.0 124.6
RX 40 .7 144.9 120 35.0 124.0
X9 40 .X 145.5 127 34.0 122.9
90 46.X 145.5 12X 34.0 120.0
91 46.2 145.0
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RANDOM PROCESS METHODS AND ENVIRONMENTAL
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SUMMARY

Random processes arc basic to the study of environmental data, particularly data in time and space. This
work pre sents three data analyses based on random process models: (a) a trend analysis, ba sed on fitting a
monotonic trend to river heights; (b) an analysis of point process data, with ordinal-valued marks, for
damage assessment follo wing an earthq uake , and (c) an an alysis of spatial-temporal meteorological data to
estim ate th e speed of motion of a 500 mb ar surface . There is discussion of stochastic processes generally.
© 1997 by John Wiley & Sons , Ltd .
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I . INTRODUCTION

Random processes are fundamental to studying data in time and space and such data are basic to
environmental problems. These processes provide a majo r interface of the field of statistics with
the worlds of science and technology. They are emplo yed in practice to address questions arising
in environmental science, questions such as is there : trend? change? association? cau sation?
high risk? predictability? periodicity? structure?

In this paper three examples of random process data analysis are presented. The first analysis
addresses the question of whether the mean level of the Rio Negro is increasing, perhaps as
a consequence of deforestation of the Amazon Basin . Figure I presents a graph of the mean
monthly river stage or level. The second analysis goes on to compute a smoo th display of damage
following the Loma Prieta earthquake and develops an estimate of damage risk as a function of
distance from the earthquake source . This earthquake occurred near San Francisco. The basic
data are interesting for being ordinal-valued . Some of them are graphed in Figure 2. The final
example is a study of world weather as described by the height of the 500 mbar geopotential
surface. One image is displayed in Figure 3.

The character of the paper, as was the Lecture, is expository. It was an honour to be asked to
present the Hunter Lecture, particularly since I was privileged to know Stu Hunter at Princeton .
He has done so much for the field he named environmetrics.
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2. RANDOM PROCESSES

Random processes and accompanying statistical analyses benefit from formal development.
Some of the basic concepts involved are next described.

By data are understood facts or measurements. Statistics may then be described as the science
of using data wisely. A process is a collection of indexed values . For example, the index may
be time or space or both . Particular cases include functions, curves , surfaces and changing
surfaces . By process data are meant the measurements of (part) of a process . Some types of
process data are: time series; point processes; images; spatial-temporal fields; marked point
processes. A system is a collection of interacting processes. There may be a recognizable input and
output. It is often useful to take a systems approach when working with process data.

In analysing data it can be convenient to introduce a probabilistic description. Byprobability is
meant chance or long run frequency. A stochastic or random process is a probabilistic entity
whose realizations are processes, in other words an indexed family of chance quantities or
random variables. A random function is an example. It is usual to describe random processes by
some of: joint densities; joint moments; stochastic difference and differential equations, or
functional transforms. For example, the first two of these are given by:

and

respectively, for a time series {Y(t)}. A stochastic model is a probabilistic description of a
circumstance. In working with stochastic process data it is often convenient to develop a
stochastic model. The examples of Sections 3.1, 3.2 and 3.3 involve 'signal plus noise' models.

© 1997 by John Wiley & Sons, Ltd.
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Random process methodology allows a researcher to address problems involving spatial
or temporal dependence. The process might be denoted as Y(x, y, t) with (x, y) representing
location (e.g. latitude and longitude) and t time . The analyses presented below involve a time
series , {Y(t)}, a spatial marked point process, {(Xj, y), M j } and a time series of images ,
{Y(x , y , t)}, respectively. Using the Dirac delta function, the second process may be written in
more familiar form as

Y(x, y) = L M/>(x - xj)b(y - y).
j

A broad variety of statistical methods are employed in the analysis of random process data:
regression; smoothing; asymptotics; transforms; displays; likelihood.

3. SOME ANALYSES

3.1. Rio Negro water height

A gauge situated at the end of a pier in Manaus, Brazil, has been employed by the Manaus
Harbour Limited to measure the daily height (or stage) of the Rio Negro river since 1903, see
Sternberg (1987) . The monthly mean levels for the period 1903-1992 are graphed in Figure 1.
The values show a strong annual variation, of the order of magnitude of 10 metres. An environ­
mental question, that these data might be useful in addressing, is whether the mean level of the
river is rising as time is passing. This could be happening as a consequence of the deforestation.

The basic random process is a time series, Y(t), with the index t referring to day . There are
T = 32,874 daily values in all that were employed in the computations presented. A 'signal plus
noise' model for the situation is

Y(t) = A(t) + S(t) + s(t)

with A(t) the annual component, S(t) a monotonic non-decreasing trend component and
s(t), t = 0, ± 1, ± 2, .. . a zero mean noise process. The mean level is

E{ Y(t)} = A(t) + S(t).

The question of interest may now be written:

Is SO == O?

The analysis proceeds by first estimating and then 'removing' the annual curve , A(t) . The
estimate of A(t) used is the median annual curve as described in Brillinger (1988). The series
Y(t) - A(t) is graphed in Figure 4(a). No clear trend is apparent, but that issue will now be
addressed. A monotonic estimate of S(t) is computed, employing the 'pool the first violator and
backaverage' algorithm of Friedman and Tibshirani (1984) based on the Y(t) - A(t) values. The
resulting fitted monotonic trend, S(t) , is graphed in Figure 4(b) . Necessarily it shows a trend, but
is it significant?

To address the question of whether SO == 0, the uncertainty level of the estimate, SO, is
critical. Difficulties in determining such are that the estimate SO is non-linear and that serial
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Figure 4. (a) The seasonally adjusted Rio Negro stages. (b) The fitted monotonic function 05(1)

correlation is likely to be present. To assess the uncertaint y the following procedure was
employed:

(i) Na ive residuals, ii(t) = yet) - A(t) - T(t), were obtained. Here TO is an 8 year running
mean of the daily data, see Brillinger (1988).

(ii) These values were modelled as a (long) autoregressive process

u
L a(u)B(t - u) = 1J(t) , a(O) = 1.
11 =0

(I)

In the computations the value U = 250 was used. The estimated innova tions ~( t) of this
fit were obtained.

(iii) The ~( t) were permuted rand omly and a reconstituted series, ep(t), formed recursively

u
ep(t ) = ~pet) - L a(u)ep(t - u).

u= 1

© 1997 by John Wiley & Sons, Ltd .
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Figure 5. Nineteen fitted monotonic function s based on permuting the estimated innovations of the model (I)

(iv) Next an estimated monotonic mean level, Sp(t) , based on the 8p(t) was computed .
(v) This was done 19 times and the resultant Sp(t) graphed.

Figure 5 provides the 19simulated estimates, Spet), on the same scale as Figure 4. One notices a
higher level of variability in the early and the late time periods. Including the original estimate,
Set) , there are 20 curves . One can ask whether the original curve is the most extreme of these and
be working at the 1 in 20, i.e. 5 per cent level of significance. The conclusion, as in the analyses of
Brillinger (1988, 1989), is that there is a soupcon of an increasing trend.

The logic of the resampling procedure is that the innovations, 11(t), of (I) are white noise and
hence their distribution permutable. A naive justification of the procedure in the simplest case is
provided in the Appendix. Research is in progress on the general case.

An alternative approach is suggested by the work of Biihlmann (1996). He develops a
bootstrap procedure for estimates of smooth trend functions , via applying a bootstrapping to
the residuals of fitted (long) autoregressive processes. His scheme involves resampling the
estimated innovations, with replacement. In contrast the scheme in this paper involves randomly
permuting the estimated innovations. Other estimates for the function S(t) might be considered,
e.g. monotone splines (Ramsay, 1988), or smoothed estimates (Mukerjec, 1988; Mammen, 1991).

Depending on the scientific guestion of interest, variants of the bootstrap might be employed
to estimate the uncertainty of Set) itself, rather than as here , where the variability is assessed in
the case that no monotonic trend is present.

3.2. The Lorna Prieta earthquake

After a sizeable earthquake observations are made of its effects on buildings and people.
The observations are recorded on a descriptive scale, the scale of modified Mercalli (MM)
intensities. The MM scale has 12 ordinal levels of increasing severity . For example the description
of MMvJJJ reads :

'Damage slight in specially designed structures; considerable in ordinary substant ial
buildings, with partial collapse; great in poorly built structures. Disturbs persons driving
motor cars. Fall of chimneys , . . . '
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Wh en such intensity data are examined , there is found to be a general fall-off in severity of
effect with distance from the earthquake source. Figure 2 shows selected observations for the
Loma Prieta event of 17 October 1989 and one can see that phenomenon . (Not all values were
plotted there so as to redu ce the effects of overst riking.) This event took place near Santa Cruz,
California . The source of epicentre of the earthquake is marked in Figure 2 by a large dot. The
event had magnitude 6·9, duration 10 seconds, and led to 63 deaths, 1300 buildings destroyed and
5·9 billion dollars damage. The largest MM intensity recorded was IX. There were 921 observa­
tions of MM intensity in all.

If (.\j ,y) is the location of the j th measurement and M , the MM intensity, then one can
consider the data as a realization ofa spatial marke d point pro cess, {(Xj , y), M j }. A basic fact to be
incorporated into the modelling of this circumstance is that the intensities are ordinal-v alued.
A convenient model leading to ordinal-valued data is the following. Let (x , y ) denote location.
Consider a latent variable

,=g(x, y) + 6

where D has an extreme value distribution. Suppose that the intensity, L, at that particular
location is i if ai-l < , ~ a, for some cut values {ad . Then

Prob{! = i} = Prob{ ai-i < , ~ ad

in this case leading to

loge-log(1 - Prob{J ;:" i I (x , y ) })) = (X i + g(x, y ) (2)

for some constants (Xi . Grouped continuous models were considered in McCullagh (1980) and
McCullagh and Neider (1989) . Th e extreme value distribution lead s to a generalized linear model
with the compliment ary log-log link . By conditioning one may act as if the successive cell values
are independent, see Pregibon (1980), and fit via the usual GLM algorithms supposing the 'ito
be independent of each other. The spatial dependence in this case is introduced via the
smoothness of the function gO. Th e moti vat ion for the state variable' and the extreme valu e
dist ribution is th at ' repre sents the strength of the earthquake effect at (x , y). The extreme value
distribution is employed because the intensity recorded is the maximum ob served at a site.

The model may be fit by a locally weighted analysis. To estimate g(x, y ) and the (Xi one can form
a log-likelihood with the terms inversely weighted to how far this location, (xi , y) is from (x , y),
see Cleveland et al. (1992) and Brillinge r (1994b) . Specifically in the calcul ations presented the
procedure game ) with the loess( ) smoother of S-plus was employed, see Hastie (1992) . Figure 6
provides the contours of the estimate g(x, y ). As anticipated one sees a fall off of effect with
distance from source.

Once the model has been fit, risk probabil ities and expected losses ma y be estimated . Further
an alysis suggests that the fit may be reasona bly approximated by the functional form

loge-log(1 - Prob{J ;:" i})) = (Xj + fJd + y log(d)

where d is the distance from a site to the earthquake source. F igure 7 gives the fit of this
relationship for the cases i = 0, V, VIII. (0 corresponds to no earthqua ke effect noted .)

Using assumed loss ratio values for buildings of some type of interest, one may now estim ate
the expected loss for such a building situ ated a given distance from an earthquake source.

© 1997 by John Wiley & Sons, Ltd.
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Brillinger (1993, 1994b) estimated isoseismals for these data previously, but the ordinal
character of the data was not taken specific account of.

3.3. The 500 mbar geopotential height

The weather moves from west to east and it can be of interest to estimate the velocity of that
motion based on a sequence of images. The data now studied are a five day sequence of 0000 and
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1200 Greenwich Mean Time (GMT) geopotential analyses . These are spatially interpolated
estimates of the height of the 500 millibar (mbar) pressure field across the surface of the earth.
This quantity provides the thickness of the atmosphere between the sea level and the 500 mbar
level. It relates to temperature, being low for cold values and high for warm values. The period
covered is 1200 GMT 1 January 1986 to 0000 GMT 6 January 1986. The time interval between
images is 12 hours and there are 10 time slices. The measurements of 1200 GMT I January are
graphed as contours in Figure 3. Values 5300 metres and below are indicated by dashed lines. The
contours are 100 m apart. One sees, for example, a depression over Hudson Bay in Northern
Canada. Further examination of the 10 such images shows the depression to move eastward and
fill in over the eastern Atlantic on 5 January.

The problem of concern is how to estimate the velocity of a moving phenomenon, such as this
500 mbar field. Denote the data by Y(x, y , t). One has a spatial-temporal process with index
(x , y , t) . Suppose one restricts attention to motion along a single latitude. Denote the values
along a given latitude, y , by Y(x, t) with t referring to time and x to longitude east. Being on the
sphere, this process is periodic in x .

Consider a signal plus noise model with

E{ Y(x, t)} = g(x) + h(x - vt) (3)

where x is longitude, v is velocity and g(.) , h(·) are smooth and periodic. The function gO
corresponds to stable features in the field, while h(·) refers to dynamic ones. The problem is to
estimate the velocity, v. Because the principal parameter, v, is real-valued , what was done here was
the following . First the g( .) term in (3) was 'eliminated' by taking first differences, i.e. the series

y '(x, t) = Y(x + 1, t) - Y(x , t)

was studied. A corresponding model is now

Y '(x, t) = h'(» - vt) + 8(t) (4)

with 8(t) representing noise. For given v and smooth periodic h'0 there are a variety of ways to
estimate h'(t) , see Hastie and Tibshirani (1990) . In the present case the function loess( ), see
Cleveland et al. (1992) , is employed to estimate h'( ·). For each v let

R(V)2 = 1 - ~(Y'(x , t) - k(x - vt))2/~(y'(x, t) _ Y)2 . (5)

Figure 8 graphs this function for six different latitudes. In each case one sees a hump. The
location of its peak may be taken to be the estimate of v. The estimated velocities, in units of
degrees per day, are given in Table 1. The bracketed figures are the estimated standard errors.

Table 1.

© 1997 by Joh n Wiley & Sons, Ltd .

Latitude

36·0
41-4
47·1
52·6
58·\
63·7

433

Velocity

13-9 (5·0)
17·3 (H)
18·7 (14·0)
22·8 (16·6)
19·4 (10·4)
18·8 (10·6)
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Figure 8. The function R(v)2 of (5) as a functi on of velocity, v

These last are determined from the profile likelihood in the man ner of Richards (196I). The idea
of that paper is that for given v the other unknowns of the problems may be estimated and
substituted for , leaving v as the sole unknown. To obtain the entries of Table I, it has been
assumed that the e(t) are independent normals with mean 0 and common variance. Richards
shows its variance may then be estimated ignoring the presence of the other un knowns. A genera l
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conclusion is that the surface, around the latitude of 50 degrees north, is moving eastward with a
velocity of about 20 degrees/day.

More details on this example may be found in Brillinger (1997) . The estimate and preliminary
computations with it were presented in the 1989 Wilks Lectures at Princeton University.

4. VARIANTS AND PROBLEMS

In practice various difficulties arise. The data to be studied may be irregular, e.g. the values may
have been aggregated, there may be bias in the collection procedures, there may be missing values,
or censoring, or measurement noise. It is of interest to develop procedures for dealing with these
possi bilities .

There are variants of the techniques presented that may be considered including: non-linear
relationships; random effects; replicated responses; data collected in an experimental design;
wavelet versions. It is of interest to develop techniques for dealing with these.

Spatial-temporal data arise for processes of more general character. In particular one can
consider graph-, tesselation- and colour-valued processes. The process of the earthquake data
was ordinal-valued. A process might be proportion-, count-, categorical- or non-negative-valued .
The time series proportion case is considered in Grunwald et al. (1993).

5. DISCUSSION AND SUMMARY

Questions of trend existence, risk assessment and motion estimation have been addressed.
A defining aspect for the problems was the dependence of the data on time and space. Random
process concepts and techniques were found to be a powerful way to conceptualize and address
these situations.

The approach to the problems studied has been that of building, fitting and manipulating
stochastic models for curves, surfaces and point masses. Dependence has been introduced into
the models by including signals (here S(t), g(x, y), h(x - vt)) .

Looking towards the future one can say that it has never been easier to work with large
complex data sets, one has such an array of computing devices, display devices , sto rage devices
and analytic tools to employ.

A basic general remark is that in problems such as these the importance of collaboration and
learning the pertinent subject matter cannot be overemphasized.

APPENDIX

The resampling procedure for assessing uncertainty described in Section 3.1 is here motivated for
one simple ca se.

Consider the naive trend model

Y(t) = o: + f3t + s(t), t = 0, . . . , T - 1

with 8(') noise . The least squares estimate of fi is

fi = L Y(t)(t - I) j L(t - 1)2
t t

= f3 + L e(t)(t - I) j L(t - 1)2.
t t

One is interested in the permutation distribution of [1.

© 1997 by John Wiley & Sons, Ltd.
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Let {Gp(O), ... , Gp(T - I)} denote a random permutation of {c(O), ... , G(T - I)}. One has

and after some computations

and so

One reference for the computations is Kendall and Stuart (1961), Section 31.19. In the case that
the G(t) are assumed i.i.d . with variance (j2

It is seen that this last may be estimated by an estimate of

var fip

which may in turn be estimated by evaluating the estimate for various randomly selected
permutations. The asymptotic normality of the estimate under the permutation distribution
follows from the results of Ho and Chen (1978).
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Abs tract. Jerzy Neyman's life history and some of his contributions to ap­
plied statistics are reviewed. In a 1960 article he wrote: "Currently in the
period of dynamic indeterminism in science, there is hardly a serious piece
of research which , if treated realistically. does not involve operations on sto­
chastic processes. The time has arrived f or the theory ofstochast ic processes
to become an item of usual equipment of every applied statistician." The
emphasis in this article is on stochastic processes and on stochastic process
data analysis. A number of data sets and corresponding substantive questions
are addressed. The data sets concern sardine depletion, blowfly dynamics,
weather modification, elk movement and seal journeying. Three of the ex­
amples are from Neyman's work and four from the author's jo int work with
collaborators.
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1. INTRODUCTION

This paper is meant to be a tribute to Jerzy Neyman's
substantive work with data sets. There is an emphasis
on scientific questions, statistical modeling and infer­
ence for stochastic processes .

The title of this work comes from Neyman (\ 960)
where one finds,

"The essence of dynamic indeterminism
in science consists in an effort to invent
a hypothetical chance mechanism, called
a 's tochastic model,' operating on various
clearly defined hypothetical entities, such
that the resulting frequencies of various pos­
sible outcomes correspond approximately
to those actually observed."

Here and elsewhere Neyman appeared to use the ad­
jec tive "indeterministic" where others would use "sto­
chastic," "statistical" or "nondeterministic" ; see, for
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example, Neyman and Scott ( 1959). Perhaps Neyman
had some deeper or historical context in mind, but that
is not clear. In this paper the emphasis is on the word
"dynamic."

Jerzy Neyman (IN) led a full life. Reid (1998) con­
tains many details and anecdotes, a lot of them in
Neyman's own words. Other sources include the pa­
pers: Neyman (\ 970), Le Cam and Lehmann (\ 974),
Kendall, Bartlett and Page (1982), Scott (1985),
Lehmann (l994) and Le Cam ( 1995).

The article has six sections: 1. Introduction, 2. Jerzy
Neyman, 3. Some formal methods, 4. Three examples
of IN's applied statistics work, 5. Four examples of
random process data analysis, 6. Conclusion . The fo­
cus is on applied work in the environmental sciences
and phenomena. This last is a word that Neyman often
employed.

In particular the examples show how random process
modeling can prove both helpful and not all that dif­
ficult to implement. The thought driving this paper
is that by examining a number of examples, unify­
ing methods and principles may become apparent. One
connecting thread is "synthe tic" data, in the language
of Neyman, Scott and Shane (1953) and Neyman and
Scott (1956). Synthetic data, based on simulations, are

P. Guttorp and D. Brillinger (eds.), Selected Works ofDavid Brillinger, Selected Works in Probability 439
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an exploratory tool for model validation that has the
advantage of suggesting how to crea te another model
if the resemblance of the simulation to the actual data
is not good .

There are quotes throughout to create a flavor of IN's
statistica l approaches.

2. JERZY NEYMAN

"His devotion to Poland and its culture and
traditions was very marked, and when his
influence on statistics and statisticians had
become worldwide it was fashionable ... to
say that 'we have all learned to speak sta­
tistics with a Polish accent' . . . " (Kendall,
Bartlett and Page, 1982).

The life of Neyman is well documented by IN and
others ; see, for example, Reid (1998), LeCam and
Lehmann ( 1974) and Scott ( 1985). Other sources are
cited later, Neyman was of Polish ancestry and as the
above quote makes clear he was very Polish! Table I
records some of the basic events of his life. One sees
a flow from Poland to London to Berkeley with many
sidetrips intermingled throughout his life. These details
are from Scott (1985) and Reid ( 1998).

Neyman's education involved a lot of formal mathe­
matics (integration, analysis, .. . ) and probability. He
often mentioned the book, The Grammar of Science
(Pearson, 1900) as having been very importa nt for his
scientific and statistical work. He described Lebesgue's
Lecons sur l' integration as "the most beautiful mono­
graph that I ever read."

The Author's Note to the Early Statistical Papers
(Neyman, 1967) comments on the famous and influen­
tial teachers he had at Kharkov. They included S. Bern­
stein ("my teacher in probability"), C. K. Russyan, and
A. Przeborski. Others he mentions as influential in­
clude E. Borel, R. von Mises, A. N. Kolmogorov, E.
S. Pearson and R. A. Fisher.

Neyman came to Berkeley in 1938. That appoint­
ment had been preceded by a triumphant U.S. tour
in 1937. The book Neyman (I 938b) resulted from the
tour. After Neyman's arrival, internationally renowned
probabi lists and statisticians began to visit Berkeley
regularly and contributed much to its research at­
mosphere and work ethic.

In Neyman's time the lunch room used to play an
important role in the Berkeley Department. IN, Betty
Scott (ELS) and Lucien Le Cam enthralled students,
colleagues, visitors and the like with their conversation.
They involved everyone in the stories and discussions.

Neyman had a seminar Wednesday afternoons. It be­
gan with coffee and cakes. Then there was a talk, often
by a substantive scientist, but theoretical talks did oc­
cur from time to time. The talk 's discussion was fol­
lowed by drinks at the Faculty Club including the fa­
mous Neyman toasts. "To the speaker. To the interna­
tional intellectual community. To the ladies present and
some ladies absent." Up until perhaps the mid-1970s
there was a dinner to end the event.

Neyman's work ethic was very strong. It typically
included Saturdays in the Department, and for those
who came to work also there were cakes at 3 pm.

3. SOME FORMAL METHODS

Date

1894
1916
19 17- 192 1
1921-1 923

1923
1923- 1934

1934-1 938
1938- 1961
1955
1961-1 981

1981

T A BLE I
A timeline ofJerzy Neyman 's life

Event

Born, Bendery, Monrovia
Candidate in Mathematics, University of Kharkov
Lectu rer, Institute of Technolo gy. Kharkov
Stat istician, Agricu ltural Research Institute,
Bydgoszcz , Poland
Ph.D . in Mathematics, University of Warsaw
Lecturer, University of Warsaw
Head, Biometric Laboratory, Nencki Institute
Lecturer, then Reader, University College, Londo n
Professor. University of Californi a. Berke ley
Berkeley Stat istics Department formed
Professor Emeritus. University of California,
Berkeley
Died. Oakland, Cali forn ia
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"Every attempt at a mathematical treatment
of phenomena must begin by building a
simplified mathematical model of the phe­
nomena." (Neyman, 1947).

This section provides a few of the technical ideas and
methods that are basic to the examples presented. The
examples involve dynamics, time, spatial movement ,
Markov processes, state-space models, stochastic dif­
ferential equations (SDEs) and phenomena.

3.1 Random Process Methods

". . . , modern science and technology pro­
vide statistical problems with observable
random variables taking their values in
functional spaces ." (Neyman, 1966).

By a random process is meant a random function.
Their importance was already referred to in Section I.
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(3)

In particular Neyman was concerned with "phenomena
developing in time and space" (Neyman, 1960). The
random processes describing these are the backbone of
much of modem science.

3.2 Markov Processes

Neyman was taken with Markov processes . Reid
(1998) quotes him as saying,

"So what Markov did-he considered chan­
ges from one position to another position .
A simple example . You consider a particle.
It's maybe human. And it can be in any
number of states. And this set of states may
be finite, may be infinite. Now when it's
Markov-Markov is when the probability
of going-let's say-between today and to­
morrow, whatever, depends only on where
you are today. That's Markovian . If it de­
pends on something that happened yester­
day, or before yesterday, that is a general­
ization of Markovian ."

Time and Markovs play key roles in Fix and Ney­
man (1951). An advantage of working with a Markov
process is that when there is a parameter one can set
down a likelihood function directly.

3.3 Stochastic Differential Equations (SDEs)

"It seems to me that the proper way of ap­
proaching economic problems mathemati­
cally is by equations of the above type, in
finite or infinitesimal differences , with co­
efficients that are not constants , but ran­
dom variables; or what is called random or
stochastic equations.. . .The theory of ran­
dom differential and other equations, and
the theory of random curves, are just start­
ing." (Neyman, 1938a).

To give an example, let ret) refer to the location of
a particle at time t in R" space. The path that it maps
out as t increases is called the trajectory. (Trajectory is
an old word used for a stochastic process.) Its vector­
valued velocity will be denoted

/L(t) = dr(t) /dt .

Rewriting this equation in terms of increments and
adding a random disturbance leads to a so-called sto­
chastic differential equation

(I) dr(t) = /L(r(t) , t) dt + u(r(t), t) dE(t)
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or in integrated form,

(2) ret) = r'(O) +{ /L(r(s), s) ds +{ u(r, s) dB(s) .

If, for example , the process B is Brownian, that is,
the increments B(ti +l) - B(ti) are I N(O, (ti+1 - ti)I),
then, under conditions on /L and a , a solution of the
equation exists and is a Markov process . The function
/L is called the drift rate and a the diffusion coefficient.

A particular case of an SDE is the Ornstein-Uhlen­
beck process given by

dr(t) = a(a - r(t») dt + a dB(t)

with a > 0 and a a scalar. This models a particle be­
ing attracted to the point a with the motion disturbed
randomly.

An approximate solution to (I) is given, recursively,
by

r(ti+1) - r (r.) "'" /L(r(ti), ti)(ti+l - ti)

+ u(r(ti) , ti)Ziv'ti+l - ti

with the t, an increasing sequence of time points filling
in the time domain of the problem; see Kloeden and
Platen (1995). The Zi are independent p-variate stan­
dard normals . This solution procedure to (I) is known
as the Euler method. In fact Ito (1951) used an expres­
sion like (3) to demonstrate that, under conditions, (I)
had a unique solution.

There has been a substantial amount of work on sta­
tistical inference for SDEs; references include Heyde
(1994) and Sorensen (1997). There are parametric and
nonparametric fitting methods. Inferential work may
be motivated by setting down the above approximation
and taking the ti to be the times of observation of the
process.

Assuming that /L(r, t) = /L(r), that u(r(t), t) = o I,
a scalar, and that r is p vector-valued, one can consider
as an estimate of a 2

A 2 1 '" II Aa = - L... r(ti+l) - r(ti) - /L(r(ti»

(4) pi i

. (ti+l - ti) f / (ti+ l - ti) ,

i = I, .. . , I , having determined an estimate of /L.
If the region of motion, say D, is bounded with

boundary oD; one can proceed via the SDE

dr(t) = /L(r(t), t) dt + u(r(t), t) dE(t) +dA(t)

with the support of A on the boundary aD. This con­
struction pushes the particle into D.
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3.4 A Potential Function Approach

The choice of the function JL in ( I) may be mo­
tivated by Newton ian dynamics. Suppose there is a
scalar-valued potential function , H (r (t ) , r) : see Taylor
(2005). Such a function H can control a particle's di­
rection and velocity.

In a particular physical situation the Newtonian
equations of motion may take the form

d r(t) = v(r) dt ,

(5) dv(r) = - f3v (r) dt - f3\1H (r(r ) , r) dt ,

with r (t ) the particle' s location at time t, v(t) the parti­
cle's velocity and - f3\1H the external force field acting
on the particle. The parameter f3 represents the coeffi­
cient of friction. Here \1 = (a/ax , B/By)" is the gradi­
ent operator. For example, Nelson (1967) makes use of
the form (5).

In the case that the relaxation time, f3- ', is small
(or in other words, the friction is high), (5) is approxi­
mately

d r(t) = - \1H (r(t),t) dt = JL (r , t ) dt .

Writing the velocity v(t) = JL (r , r ) one is led to a sto­
chastic gradient system

dr(t) = - \1H (r(r) , t) dt + a dB(t) .

The function H might be a linear combination of
elementary known functions, a combination of thin
plate splines placed around a regular grid or based on
a kernel function. Example 7 below will indicate the
method. The method is further elaborated in Brillinger
(2007a,2007b).

4. THREE EXAMPLES OF IN'S APPLIED
STATISTICSWORK

". . . the delight I experience in trying to
fathom the chance mechanisms of phe­
nomena in the empirical world." (Neyman,
1970).

Neyman was both an exceptional mathematical sta­
tistician and an exceptional applied statistician. The
applied work commenced right at the beginning of
his career and continued until the very end. This sec­
tion presents examples from astronomy, fisheries and
weather modification. These examples were chosen as
they are interesting and they blend into the later exam­
ples in the paper.

Neyman's work was specia l in applied statistics
in that he set down specific "postulates" or assump­
tions. Tools of his applied work included sampling,
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best asympot ically normal (BAN) estimators, C(a)
tests, chi-squared, randomization and synthetic data.
His work was further characterized by the very care­
ful preparation of the data by his Statistical Labora tory
workers.

IN's applied papers typically include substant ial in­
troductions to the scientific field of concern . Topics in­
clude farfield effects of cloud seeding , estimation of
the dispersion of the redshift of galaxies. higher-order
clustering of galaxies, and sardine depletion.

Given Neyman 's concern with the scientific method,
one can wonder how he validated or appraised his mod­
els. On reading his papers, hypothesis testing seems
to include assessment. There were lots of data, and
fit components (observed-expected) and chi-squared
(residuals). There was smooth chi-squared to get alter­
native hypotheses. There was often the remark, "ap­
pears reasonable."

4.1 Example 1. ASTRONOMY

"By far the strongest and most sustained ef­
fort expended for us in studying natural phe­
nomena through appropriately selected as­
pects of the process of clustering referred
to astronomy, specifically to galaxies.. .. ,
the stimulus came from the substantive sci­
entists, that is from astronomers." (Neyman
and Scott, 1972).

The work of Neyman , and his collaborators in this
case, is a model for applied statistics. The question is
made clear. Substantive science is involved. Statistical
theory is employed and developed as necessary. Em­
pirical analyses are carr ied out.

In a series of papers Neyman, Scott, Shane and
Swanson addressed the issue of galaxy cluster ing.
They applied mathematical models to the Lick galaxy
counts of Shane and Wirtanen. They were the first to
compare the observed galaxy distribution to synthetic
images of the Universe. They assumed that clusters
occur around centers distributed as a spatial Poisson
process. Each center was assigned a random number of
galaxies and the latter placed independentl y at random
distances from the center. This model, the so-called
Neyman-Scott model, seemed to fit reasonably. How­
ever, when Neyman and Scott produced a simulated
realization, or synthetic plate, of the sky from their
model they were surprised. The actual pictures of the
sky were a lot more lumpy than those their simulation
had produced.
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FI G. I . Left-h and panel is an image oj an actual photographic plate. The right-hand panel is a synthetic plate. See Scott, Shane and
Wirtanen (1954).

TABLE 2

Seasonal catch oj California sardines
1943-1 948 in 1000 tons

canne ries and commerce of the workers alon g the west
coast of the United States.

In particul ar IN was consulted regarding the natur al
and fishing mortality of the sardines . A speci fic pur­
pose of his work was ".. . to study the methods of esti­
mating the death rates of the sardines." I N wrote three
report s on sardine fishery. They are collected in Ney­
man ( 1948) and titled, I. Evaluations and Observa­
tions of Material and Data Available 01 1 the Sardine
Fishery, 2. Natura l and Fishing Mortality of the Sar­
dines, and 3. Contribution to the Problem of Estimat­
ing Populations of Fish with Particular Reference to
Fish Caught in Schools, Such as Sardines. A revision
of the third report appeared as Ney man (1949).

At the outset of Neyman (1949) , he provides Table 2.
From it he infers a "rapid decline .. . observed in spite
of a reported increas e in fishing effort . . . " A seco nd
table, Table 3, gives the amount (in arbitrary units) of
sardin es landed on the West Coast in the seasons 1941­
1946 , classified by age and season. Figure 2 grap hs the

"When the calculated scheme of distribu­
tion was compared with the actual distribu­
tion of galaxies . .. , it became apparent that
the simple mech ani sm postulated could not
produce a distribution resembling the one
we see" (Ney man and Sco tt, 1956).

More clustering was needed in the model. Ney man
and Sco tt proceeded to introduce it. With a two-s tage
clu stering process the sim ulated appearance of the sky
looked much more realistic. Figure I , taken from Scott,
Shane and Wirtanen (1954), present s an exa mple .

In summary,

". .. it was shown that the visual appeara nce
of a 'sy nthetic ' photograph ic plate, obtained
by mea ns of a large-scale sampling experi­
ment, conforming exactly with the assump­
tions of the theory, is very similar to that of
an actual plate" (Ney man, Sco tt and Shane
1954) .

4.2 Example 2. SARDINE DEPLETION

"Biometry is an interdisciplinary domain
aimed at the understanding of biolo gical
phenomena in term s of chance mecha­
nisms." (Neyman, 1976).

In 1947-1948 Neyman was called upon by the Cali­
fornia Council of the Congress of Industrial Organiza­
tions to study the decrease in sardine catche s. The de­
crease was of great concern and strongly affected the
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Year

1943- 1944
1944--1945
1945-1946
1946-1947
1947- 1948

Seasonal catch

579
614
440
248
110
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amounts with line, joining the value, for the same sar­
dine age . One sees the high numbers in the early 1940s
followed by decl ine. The interpretation is tricky be­
cause the numbers reflect both the fish available and
the effort put into catching them. Neyman (1948) dis­
cussed the effect of migration and concluded that it wux
unimportant for his current purposes.

Turning to analy sis Neyman remar ks.

"Certain publications deali ng with the sur­
vival rates of the sardines begin with the as­
sumpt ion that both the natura l death rate and
the fi shing mortality are independent of the
age of the sardines. at least beginning with
a certain initial age ." (Neyman, 1948 ).

To address the independence issue, and poss ibly mo­
tivarcd by Table 3, Neyman sets up a formal structure
as follows. Let N/,,, be "the number of fish available
aged a at the beginning of seUSOII 1 and exposed to
the risk of being caught." Here these numbers are col­
lected into a vector, N(t) = IN'.Il] ' Next n,." is set to
be the expected number of sard ines aged a caught dur­
ing season I , and P, = I - Q, set to be the " fishing
survival mte in the IIh year." Continuing, p" = I - 'I"
denotes the "natural survival rate at age a" and 'I" the
"rate of disappearance." The rate of mass emigration
durin g season 1 is denoted by M,.

The following null hypothesis may be set down con­
cerning the mortality rates.

HO:q,~, =q",,+ I = "' =qll ' a > Clo.

Specific ass umptions Neyman considered were:

(i) Q, = 11,.,, / N,,,,. season 1 fishing mortality.
(ii ) N, + I,,)+ I = N,.,,(I - Q /)( I - q,,),

(iii ) N, + I,,,+ I = N' .a(l - Q ,)( I - M ,)( l - 'I,, ).

Assumption, (ii I and (iii) involve separation of the age
and season variables. For identifiabi lity of the model
Neyman writes

with

Well coast sa,dlne oatolles

and goes on to say,

"In the present note a method is suggested
whereby it is possible to a (sic) test the hy­
pothes is that the natural death rate is indc ­
pendent of the age of the sard ines" (Ney­
man. 1949).

R, =

TABLE 4
fu "'tIIe1er e., /i"''''e.'· (theu " f<' /1.11' ,,, I."e>'oi>t" irled irlm l<·"I"ti"" ,,·

j o' tM. ,,'tide)

P,(I - M,)
Q, Q , +I,

One notes from these express ions that 11 ' + 1."+ 1/11, .,,
sepa rates into a functio n of 1 and a func tion of a . This
last led Neyman to work with logs of ratios in his
analyses. (There will be more on this choice later.) He
estimates p,~ = RI p" . which is proportional to 1'" un­
der his definitions. from the data.

The r; estimates arc provided in Table 4 and
graphed in Figure 3. One sees a steady decrease with
age. Table 5 provides il /,,, based on assumpt ions (i) and
(ii) lor (i ) and (iii) l.

Neyman ' s concl usions included.
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age

0.40 -<-, ~-----~-----,._J

TABLE 5
Estima tes of the n t ,a , the expected numbers ofsardine s

4.3 Example 3. WEATHER MODIFICATION

"The meteorological aspects of planning an
experiment with cloud seeding depend upon
the past experience , upon what the exper­
imenter is prepared to adopt as a working
hypothesis and upon the questions that one
wishes to have answered by the experiment"
(Neyman and Scott, 1965-1966).

Cloud seeding became an interest of Jerzy Neyman
starting in the early 1950s. He and his collaborators
studied data from the Santa Barbara and Arizona rain­
fall experiments . Neyman and Scott moved on to study
data from a Swiss weather modification experiment
that had been designed to see if cloud seeding could
reduce hailfalI. The experiment was carried out in the
Canton of Ticino during the period 1957-1963 and was
called Grossversuch III.

The experimental design involved each day deciding
whether conditions were suitable to define an "experi­
mental day." If a day was suitable seeding was or was
not carried out the following day, randomly. Seeding, if
any, lasted from 0730 to 2130 hours local time. Rain­
fall measurements that had been made in Zurich, about
120 km away from Ticino, were studied.

In the course of their work Neyman and Scott discov­
ered so-called "far-away effects," that is, an apparent
increase in amount of rainfall at a distance . See Ney­
man, Scott and Wells (1969).

Figure 4 provides a reconstruction of a graph that
Neyman and Scott (1974) employed to highlight the re­
sult. It presents average hourly rainfall totals smoothed
by a running mean of 3, for the experimental days
when a "warm" stability layer and southerly winds
were present.

To obtain the data of Figure 4 the values were read
off a graph in Neyman and Scott (1974). The solid
curve refers to experiment al days with seeding, the
dashed to those without. There were 53 experimental
days with seeding and 38 without.

What Neyman and Scott focused on in the figure was
an apparent effect of seeding in Zurich starting about
1400 hours in the afternoon .

They wrote as follows,

Natural survival rate by age

54

060

0.55

.~
:B

~
0.50

;;:

0.45

"While in certain instances the differences
between Tables IV (here Table 3) and VII
(here Table 5) are considerable, it will be
recognized that the general character of
variation in the figures of both tables is
essentially similar" (Neyman, 1948, pages
14-15).

Fro . 3. Estimates ofthe natural survival rate, p* as a fu nction of
age.

No formal test of Ho was set down, but Neyman con-
cludes that,

"Since the estimates of the p; decrease
rather regularly, it seems that the true nat­
ural survival rates must decrease with the
increase in age... " (Neyman, 1948).

Basic elements of this example include working with
empirical data, noting the age and season structure ex­
plicitly, and working with a Markov-like setup. Inter­
estingly Neyman talks of an expected value, but no full
probability model is set down.

In part this example is meant to get the reader in the
mood for an age-structured population analysis to ap­
pear later in the paper.

The final example taken from Neyman's work fol­
lows.

Season 2 3 4 5

age, 3 2810.0 3556.3 2117 .9 1761.6
4 1059.3 1684.3 2611.7 1355.7 661.0
5 383.7 514.2 1001.7 1355.7 412.5
6 91.9 77.6 291.6 495.9 391.7
7 37.3 88.2 126.5 125.9

". .. the curves. . . represent averages of a
number of independent realizations of cer­
tain stochastic processes. The 'seeded' cur­
ves are a sample from a population of one
kind of processes and the 'not seeded' curve
a sample from another. For an initial pe­
riod of a number of hours. . . the two kinds
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Hourly rainfall rate "Compared with the old style experiments ,
characterized by the attitude 'to prove,' the
proposed experiment would be substantially
richer... .This, then, will implement the at­
titude 'to explore' contrasted with that 'to
prove' " (Neyman and Scott, 1965-1966).
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"We emphasize that such an investigation
is only exploratory ; whatever may be found
are only clues which must be studied further
and hopefully verified in other experiments"
(Dawkins , Neyman and Scott, 1977).

IN did not seem to use residuals much. However, in
Neyman (1980) one does find,

FIG. 5. Comparisons of Table 3, x-values and Tahle 5, y-values.
The left panel plots (x - y) versus (x + y) / 2 and the right Ix - yl
versus (x + y )/ 2.

". .. one can observe a substantial number
of consecutive differences that are all neg­
ative while all the others are positive. . . . the
'goodness of fit' is subject to a rather strong
doubt, irrespective of the actual computed
value of X2, even if it happens to be small"
(Neyman, 1980).

Neyman et al. (1953) proposed an innovative EDA
method to examine variability : specifically, given val­
ues X and Y with the same units, plot X - Y and
IX - YI versus (X + y) 12. Figure 5 compares Tables 3
and 5 of the sardine analysis this way. In the two pan­
els one sees wedging, that is, an increase of variabil­
ity with size. This suggests that a transformation of the
data might simplify the matter. Neyman did employ the
log transform in his analysis of the sardine data consis­
tent with the multiplicative character of the model.
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of processes coincide. Thereafte r, at some
unknown time T, the two processes may be­
come different. Presumably, all the experi­
mental days differ from each other, possi­
bly depending on the direction and veloc­
ity of prevailing winds. Therefore , the time
T must be considered as a random variable
with some unknown distribution . The theo ­
retical problem is to deduce the confidence
interval for the expectation of T, . . . " (Ney­
man and Scott, 1974).

This problem will be returned to later in the paper.

4.4 Neyman and Exploratory Data Analysis (EDA)

Given my statistical background it would be remiss
not to provide some discussion of EDA in Neyman 's
work. Quotes are one way to bring out pertinent aspects
of Neyman's attitude to EDA. One ean conclude that
exploratory data analysis was one of his talents.

" . . . while hunting for a big problem I cer­
tainly established the habit, . .. , to neglect
rigour" (Neyman, 1967).

"PAGE asked whether the elimination of
outliers-supposed projected foreground or
background objects recognized by discor­
dant velocities-would not in itself introduce
unwanted selection effects . NEYMAN ad­
vised that the investigator try calculations
with and without outliers, then make up his
mind 'which he likes best', while retaining
both."

FIG. 4 . Comparison of seeded and not seeded hourly precipita­
tion amounts on days with southerly upper winds. The solid line
is rainfall for seeded days and the dashed line f or unseeded. The
horizontal line with arrowheads represents the seeding period at
Ticino. A three-hour moving average had been employed 10smooth
hourly lotals.

446



56 D. BRILLTh"GER

5. FOUR EXAMPLES OF RANDOM PROCESS
DATA ANALYSIS

T ABLE 6
Life stages and their lengths for sheep blowfiies

The followi ng examples report so me of my work,
typically with co llaborators. Th ey were suggested in
part by my exposure to JI\' and to the preceding exa m­
ples .

5.1 Example 4. SHEEP BLOWFLIES

In Example 2 above Ney man stud ied data on sar­
dines that inclu ded the actual age inform ation . How­
ever, it can be the case that , eve n tho ugh a population
is age-s tructured, only aggrega te data are avai lab le, and
actua l age inform ation is unavailable. This is the case
in the example that follows. To deal with it a state­
space model is set down . The (unobserved) state vector
is taken to be the counts of individuals in the var ious
age gro ups. Th e story and details follow.

The tale begins with the mathematician John Guck­
enhe imer and the then entomologist George Oster com­
ing to meet with ORB . The y had in hand data on a pop­
ulation of lucilia cuprina (Austra lian shee p blowflies).
Th e data co nce rned an exper iment maintained from
1954 to 1956 under co nstan t, but limited conditio ns by
A. J . Nic ho lson, then Chief Division of Entomology,
CS IRO, Australia .

At the begi nning of the experim ent 1000 eggs were
placed in a cage. Every other day co unts were made
of the number of eggs, of nonemerging flies' eggs, of
the number of adult flies emerging, and of the number
of adu lt fly deaths. The life stages, and corresponding
time periods, of these insec ts are given in Table 6. Fur­
ther details of the experiment may be found in Nic hol­
son (1957) . To get digital values Oster and a student
took a photo of one of the figures in that paper. The
photo was then projec ted on a wall and numerical val­
ues read off. Unfo rtunately some of the pop ulations '
sizes went off the top of the figure. The values for these
cases were obta ined when ORB later visited CS IRO.

Gucke nheimer and Oster 's question was whether
these data displayed the presence of a stra nge attrac ­
tor, a con cep t from nonlinear dynamic syste ms analy­
sis; see Brillinger et al. ( 1980) and Gucke nhe imer and

700600
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500300 400

d',

300 400

d',

Emerging flies

Adult popu lati on

200
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' 00

100

Holmes ( 1983) . The behavior evidenc ed in the seco nd
half of the series gra phed in Fig ure 6 is what attrac ted
Guckenheimer and Oster's attention. The initi al osc il­
lations co me fro m the usual life span of the adults .

In the particular experiment studied here the amo unt
of food put in the fly cage was de liberately restricted.
Thi s meant that the fecundity of the fema les was re­
duced. When much food was available many eggs were
laid. With insufficient food the number of eggs was re­
duced . Th is led to boo m periods and bust periods in the
pop ulatio n size.

Figu re 6 graphs the square roo ts of total adu lt popu ­
lation count , as well as of the num ber of flies emerg­
ing. The time points are every other day over a pe­
riod of approximately two years. In the graphs one sees
an initial periodic behavior in both series followed by
rather irreg ular behavior. The square roo ts were plot­
ted to make the varia bility of the display more nearly
co nsta nt.

Brillin ger et al. (198 1) proceeded by setting dow n a
for mal state-space model for the situatio n as fo llows :

t = 0, I, 2, .. . , represents time , observations being
made every other day,

E t , the num ber of emerg ing flies in time period
(t , t + I],

Et , the entra nt co lumn vector; it has E, in row I and
oelsewhere,

Ni, the ad ult popul ation at time t .
Cons tructs include:
NI = [N i l]' the state vector; in it row i gives the num ­

ber of popul at ion memb ers aged i - I at time t ,

PI = P(Ht ) = [Pi,l ], the survival matrix. The entry
in row i + I, co lumn i gives the proportion survivi ng

FIG. 6 . Square roots ofcounts f or the Nichol son blowfly data . The
top panel provides the number ofadults and the bottom the numb er
ofemerging pupae.

Lengt h

12-24 hours
5- 10 days
6-8 days
1- 35 days

Life stage

egg
larva
pupa
adu lt
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Death series and synthetic death series using the model

Neyman and Scott's problem referred to in Exam­
ple 3 was addressed in Brillinger (1995). At issue was
making inferences concerning the travel time of seed­
ing effects from Ticino to Zurich. The approach of the
paper was to envisage a succession of travel time ef­
fects that started at times throughout the seeding pe­
riod. This way one had replicates to allow employ­
ment of statistical characteristics. A conceptual model
involving a gamma density for the travel velocity of
the seeding effect was employed. The data themselves
were graphed in Figure 4 above.

The model employed is the following. Suppose that
"rain particles" created at Ticino move off toward
Zurich with a possibility of leading to a cluster of rain
drops there. Suppose that the particles are born at Ti­
cino at the times O"j of a point process M, at rate PM (t ) .
Suppose that the travel times from the particles' times
of creation, U], to Zurich are independent of each other

FIG. 7.
(6) .

the synthetic series are so close to the actual series re­
lates to the use of the common stimulus series, E t •

A byproduct of this analysis is that because the mea­
surement equation, N, = I 'Nf, is of simple addition
form by this analysis one has developed a decompo­
sition of the population total series into individual age
series. These are graphed in Brillinger et al. (1980).

The fitted death rates were nonlinear in the popula­
tion size, so mathematically a strange attractor might
be present (Brillinger, 1981).

In this situation one is actually dealing with a non­
linear closed loop feedback system with time lags. Gut­
torp (1980), in his doctoral thesis, completed the analy­
sis of the feedback loop modeling the births.

5.2 Example 5. WEATHER MODIFICATION
REVISITED

2

mjn~ (Dt+ l - ;;=qim;.t) I N?,

This model allows survival dependence on age, i , on
the current population size, N, and on the preceding
population size, Ni.:«, The final term allows the possi­
bility that it takes some time for the limited or excess
food situation to take effect.

Weighted least squares was employed in the fitting of
model (6). On the basis of residual plots weights were
taken to be N?- Hence writing D, = Nt- l - N, + E,
one seeks

where e = {a i , P, y} and nu, is the conditional ex­
pected value, E {Ni.rIHtl . Graphs of the estimates of
the individual entries of N, are provided in Brillinger
et al. ( 1980).

Synthetic series were computed to assess the reason­
ableness of the model (6). In the simulations counts of
deaths in the time period (t - I , t j, are computed. The
deaths, Dt , are plotted in the top panel of Figure 7. The
value D t is thought of as fluctuating about the value

where Ni,t is the population aged i at time t.
The results of two simulations are provided in Fig­

ure 7. In the first, the middle series, the variability is
taken as binomial. In the second, the bottom series,
the variability is taken as independent normal, mean
0, standard deviation 0- N, with 0- estimated from the
weighted least squares results. That the appearances of

"q' NL l ,t l , t

age i to age i + 1. P, is taken as depending on the his­
tory H, ; that is, the collection of the data values up to
and including time t .

The available data are E, and Nt.
The measurement equation, corresponding to the ob­

served population size is, N, = l iNt. The dynamic
equation is

Nt+l =P,Nt + Et+l -s- ftuctuations.

This expression updates the counts of adult flies in each
age group, starting from No = O. The fluctuations rep­
resent variabilities in those numbers.

In one analysis (Brillinger et aI., 1980), the following
nonlinear age and density model was employed:

Pi.r = 1 - Prob{individllal aged i ,

dies aged i at lime IIH t }
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(7)

Writing PM(t) = C for A < t < B (here A = 7.5 and
B = 21.5 hr) one has the regression function

Synthetic hourly rainfall rateFitte d hourly rainfa ll rate

0.6 0.6

i
~

0.4
~

0.4

0.2 0.2

0.0 0.0

10 15 20 25 30 10 15 20 25 30

hour hour

f FU(U)dU=X [I -G(~,S) ]

- s ~ I [I- G(~, s - I)l

il = 4.78(0.47) hr,

S= 6.68(5 .12) ,

Ii = 0.24(0 .02) ,

~ = 1.69(0.19) .

E{Y(t)} = a + £/LR [I
I

+
1

-

A

Fu(u)du
3 1-2- A

_11
+

1
-

B
Fu(U)dU ] ,

1- 2- /1

where FuO denotes the distribution function of U, in
the case of seeding and a is the natural level of rain­
fall. With the assumed Weibull velocity distribution,
(8) may be evaluated in terms of G the distribution
function of the Weibull. Specifically,

(To derive this one replaces Prob(I /W :'0 u) by
Prob(W 2: I /u} and integrates by parts.)

The estimates of the unknowns u. = er((s - I)/ s )
(the average travel time), s , a, fJ = C f1.R /3 were deter­
mined by ordinary least squares, weighting the seeded
terms by 53 and the unsceded by 38 to handle the un­
equal numbers of seeded and unseeded cases.

Figure 8, left-hand panel, presents the data (solid
curve) and the fitted (dotted) curve. The parameter es­
timates obtained are:

FIG. 8. Left panel-actaal and fitted (dotted line) rainfall when
seeding. Right panel-actaal and synthetic in the case of seeding
(dotted line).

(8)

for t = 2, 3, . . . . Its expected value is

1
,+ 1

~ px(v)dv
1- 2

= ~ f1. R 11+1 JPM(V - u)fu(u)dudv .
1- 2

E{X(t)} = fa' px(v)d v.

Turning to Figure 4, Neyman and Scott employed a
running mean of order 3 of the hourly totals to get the
values graphed . These are the data available for analy­
sis. (The hourly values appear to be lost.) The running
mean may be written

yet) = ~(X(t + I ) - X(t - 2»)

with density f uO . Let N denote the point process of
times, Tj , at which the particles arrive at Zurich and
PN(t) denote the rate of that process.

If the jth particle moves with velocity vj and the
distance to be traveled is ll. , then its travel time is u j =
ll. / Vj and since

L 8(t - Tj) = L 8(t - a j - U j)

j j

One can now view the Neyman-Scott problem as re­
lated to estimating f u 0 of (7), that is, estimating the
travel time density given the available data.

To proceed, the seeding rate PM(t) will be taken
to be constant on the time interval from 0730 to
2I30 hours and to be 0 otherwise. It will be further
assumed that the travel time of U has the form e/ W
with e a parameter, and with W Weibull, having scale
I, and shape s. Brillinger (1995) took the gamma as the
density, but a review of the literature of wind speeds
suggests that the Weibull would be more appropriate.

with 80 the Dirac delta, one has

PN(t) = JPM(t - u)fu(u)du .

Let the amounts, Rj ; of rain falling at Zurich associ­
ated with the individual particles, be statistically inde­
pendent of the particles. Let u.R denote E {R j }. Then
the rate of rainfall at Zurich at time t is

PX(t)=f1.R JPM(t -u)fu(u)du.

Next let X (t) denote the cumulative amount of rain
falling at Zurich from time 0 to time t . Its expected
value is
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5.0 5.5 6~ 6~ ~ 75 M SD ~ aD 6.5 7.0 7.5 8.0

Elk on C-control days Velocity field

FIG. 9. Northeast pasture of the Starkey Reserve and the elk mo­
tion on control days. The left panel shows the paths ofS elk , super­
posed. The right panel displays the estimated velocity field jl(r) as
a vector field.

10 10

analysis to be presented quantifies the effect of the dis­
turbance . The locations of both the ATV and the elk
were monitored by GPS methods .

There were 8 elk in the study. The ATV was in­
troduced into the meadow over 5-day periods. This
was followed by 9-day "control" periods with no ATV.
In the control periods the animals were located every
2 hours . In the ATV case elk locations were estimated
about every 5 min. The ATV's locations were deter­
mined every second.

Figure 9, left-hand panel, shows observed elk tra­
jectories superposed. One sees the animals constrained
by the fence, but moving about most of the Reserve.
They often visit the SE corner. The straight line seg­
ments result from the locations being obtained only
every 2 hours in this control case.

The animal motion will be modeled by the SDE

(9) dr(t) = Jt(r(t)) dt +a dB(t)

with r(t) the location at time t, B a bivariate standard
Brownian motion and a a scalar. The function Jt is as­
sumed to be smooth . The discrete approximation (3)
becomes a generalized additive model with Gaussian
errors ; see Hastie and Tibshirani (1990).

The resulting estimate is displayed as a velocity vec­
tor field (iLl (r), iL2(r)) in the right-hand panel of Fig­
ure 9 employing arrows. One sees the animals moving
along the boundary and toward the center of the pas­
ture. The fence can be ignored in this data analysis .

The fence is important in preparing a synthetic tra­
jectory. What was done in that connection was to em­
ploy the relation (3) with the proviso that if it generated
a point outside the boundary, then another point was

11 11

12 12

13 13

4.78 ± 2 *0.47 hours .

More work needs to be done with this example . A indi­
cation of how to proceed is provided by Figure 8. The
data graph is pointed, whereas the fitted is flat-topped.

5.3 Example 6. ELK MOTION

The data now studied were collected at the Starkey
Experimental Forest and Range (Starkey), in North­
eastern Oregon. Quoting from the website, fs.fed.usl
pnw/starkeyIpublicationslby_keywordlModelling_
Pubs.shtml.

Starkey was set up by the US Forest Service for

"Long-term studies of elk, deer, and cattle­
examining the effects of ungulates on ecosys­
tems."

A specific management question of concern is whether
recreational uses by humans would affect the animals
there substantially. Further details about Starkey and
the recreation experiment may be found in Brillinger
et al. (200Ia, 2001b, 2004), Preisler et al. (2004) and
Wisdom (2005).

In the first analysis presented the elk were not delib­
erately disturbed and their paths were sampled at dis­
crete times. This gave control data for an experiment.
An all-terrain vehicle (ATV) was introduced and driven
around on the roads in the NE Meadow of Starkey. The

[The standard errors, assumed the errors to be LLd.]
One sees in the left-hand panel that the actual data

have a peak near 1800 during 0730 and 2130 hr,
whereas the fitted has a flat top. Perhaps the birthrate ,
PM(t) , of particles is not approximately constant as as­
sumed above. Perhaps the distribution, fu(u), depends
on time. Perhaps the result is due to natural variability.

A synthetic plot is generated to examine the fit.
Specifically the fluctuations of the unseeded days have
been added to the fitted curve and graphed in the right­
hand panel of Figure 8. Still the fitted curve is quite flat
on the top, in contrast to the Neyman-Scott data curve
which is noticeably peaked . The added fluctuations do
not bring the curve up to the data level.

Returning to the Neyman-Scott problem of Sec­
tion 3, the second quotation there refers to T , a ran­
dom time at which seeding first shows up in Zurich .
The U's represent the lengths of time it takes for an ef­
fect just initiated to arrive. One can take the expected
value, EV , to be ET . Using the parameter estimates
above, an approximate 95% confidence interval for the
expectation of T is
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F IG. I O. The first three panels display the tracks of the indicated
animals. The final panel, lower right, is a synthetic path.

Hawaiian monk seals are endemic to the Hawaiian
Islands. The species is endangered and has been declin-

of the Meadow. The right-hand panel provides the su­
perposed trajectories of the 8 elk. One sees, for exam­
ple, the elk heading to the NE comer, possibly seeking
refuge. The noise of the ATV is surely a repellor when
it is close to an elk, but one wonders at what distance
does the repulsion begin?

The following model was employed to study that
question. Let r (t ) denote the location of an elk, and
x(t) the location of the ATV, both at time t . Let T be a
time lag to be studied. Consider

dr(t ) = It (r(t »dt + v(lr(t ) - x(t - T) I)dt
(10)

+udB (t ) .

The times of observation differ for the elk and the
ATY. They are every 5 minutes for the elk when the
ATV is present and every I sec for the ATV itself. In
the approach adopted location values, x(t), of the ATV
are estimated for the elk observation times via inter­
polation. The ATV observed times are close in time,
namely I second, so the interpolation should be rea­
sonablyaccurate.

Expression ( 10) allows the change in speed of an
elk to be affected by the location of the ATV T time
units earlier. Assuming that It and v in (10) are smooth
functions, then the model may be fit as a general­
ized additive model. Figure 12 graphs Iv(d )1, d be­
ing the distance of the elk from the ATY. (The norm

Ivl= Jv?+vi here.) One sees an apparent increase in
the speed of the elk, particularly when an elk and the
ATV are close to each another. The increased speed is
apparent at distances out to about 1.5 km. An upper
95% null level is indicated in Figure 12 by a dashed
line. One sees less precise measurement at increasing
large values of T .

The estimation of Iv(d )1was also carried out in the
absence of the It term in the model. The results were
very similar. This gives some validity to interpreting
the estimate v(d) on its own despite the presence of It
in the model.

In conclusion, the ATV is having an apparent effect
and it has been quantified to an extent by the graphs of
Figure 12.

These results were presented in Brillinger et al.
(2004). Also Wisdom (2005) and Preisler et al. (2004)
modeled the probability of elk response to ATVs in a
different way. They used data for the year 2002, and
measured the presence of an effect in another manner.

5.4 Example 7. MONK SEALS: A POTENTIAL
FUNCTION APPROACH

D. BRILLI NGER

Elk 765

Elk on ATV days

Synthetic path
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generated until one stayed within the boundary. This is
a naive but effective method if the tt of (3) are close
enough together. Better ways for dealing with bound­
aries are reviewed in Brillinger (2003).

Figure 10 shows the trajectories of three of the an­
imals. The lower right panel presents a synthetic path
generated including 188 location points. The synthetic
trajectory does not appear unreasonable.

Consideration now turns an analog of regression
analysis for trajectories, that is, there is an explanatory
variable. The explanatory variable is the changing loca­
tion, x(t ), of the ATY. The left-hand panel of Figure II
shows the routes of the ATV cruising around the roads

F IG. I I . The left panel shows the ATV's route, while the right
shows the elk paths in the presence of the ATv. The ATV passes ill
and out some gates Oil the lefthand side.
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r i G. 12. The function Ivi of (I O)for the time lags 0, 5, 10, 15 minutes.

ing for several decades. It now numbers about 1300.
One hypothesis accounting for the decline in numbers
is the poor growth and survival of young seals owing
to poor foraging success, In consequence of the decline
data have been collected recently on the foraging habi­
tats, movements, and behaviors of these seals through­
out the Hawaiian Islands Archipelago. Specific ques­
tions that have been posed regarding the species in­
clude :

What are the geographic and vertical marine habitats
that Hawaiian monk seals use?

How long is a foraging trip?
For more biological detail see Stewart et al, (2006)

and Brillinger, Stewart and Litnnan (2006, 2008) ,
The data set studied is for the west side of the main

Hawaiian Island of Molokai. The work proceeds by fit­
ting an SDE that mimics some aspects of the behavior
of seals , It employs GPS location data collected for one
seal. An SDE is found by developing a potential func­
tion,

The data are from a three-month journey of a juve­
nile male while he foraged and occasionally hauled out
onshore, The track started 13 April 2004 and ended 27
July 2004, The animal was tagged and released at the
southwest corner of Molokai; see Figure 13, top left
panel. The track is indicated for six contiguous 15-day
periods , The seal had a satellite-linked radio transmit­
ter glued to his dorsal pelage, It was used to document
geographic and vertical movements as proxies of for­
aging behavior,

There were 754 location estimates provided by the
Argos satellite service , but many were suspicious. As­
sociated with a location estimate is a prediction of the
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location 's error (LC or location class) , The LC index
takes on the values 3, 2, 1,0, A, B, Z, When LC = 3, 2
or I the error in the location is predicted to be I km or
less, and these are the cases employed in the analysis
here ,

The estimated times of locations are irregularly
spaced and not as close together as one might like, This
can lead to difficulties of analysis and interpretation,

The motivating SDE of the analysis is

(II) dr(t) = ft(r(t))dt + a dB(t), r(t) E F ,

with ft = - \7H, H a potential function, a scalar, B
bivariate Brownian and F the region inside the 200­
fathom line up to Molokai . There was discussion of the
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FIG, 13, Plots of the seal' s well-determined locations f or sue,
cessive 15-day periods, The dashed line is the 200 jathom line. It
corresponds to Penguin Bank,
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potential approach in Section 3. The potential function
employed here is

H (x . y) = tho); +~f1Y + fhox 2

(12)

where dM is the shortest d istance to Molokai Irom the
location (x .y). The fi nal term in (12) is meantto keep
the animal off Molokai.

The mod el was til by ordinary least squ ares taking
C = 7.5. ln the analysis the number of data points was
142 and the parameter estimates obtained were /J =
(93.53.11'<Xl. - 0.47. 0.47. - 0.4 1), and if = 4.64 km.
Figure 14 sho ws the estima ted pote ntia l function, Ii .
This seal is pulled into the middle of the concentric
co ntours. with the Brownian term push ing it ab out.

Synthet ic plots were ge nerated to lhSC'S the reason­
ableness of the model and to suggest departures. Fig­
ure 15 shows the results of a simulat ion of the process
(only one path was genera ted) having taken the para ­
meter values to be those estimated and having broken
the overall trajectory down into six segments as in Fig­
ure 13, to which it may be co mpared. The sampling
interval. til , employed in the numerical integration of
the hued SDE is I hour. The paths were constrained
to not go outsid e the 2(X)-fathom line and not to go on
the isla nd. (Sec Brillingcr. 2003 , for methods of doing

Est imated potenti al function

FIG. 1-1 . l1,e Ji" ",I f'<!lelllillljim, "im, o /'tlIirred'Hili g ,lie 1,,"ell1illl
f illid i"" (121. Ti,e darker lhe mIlle.' lIrt',lhe duper ,lie I",u,"illl
f illid i",' i." Ti,e .,·"mud Ii"e "'g i"" i.I·M"I"/.;,,i

","yo U to 1 ~ Dop l ~ to:lO ,,"yo:!O 'o '~

~
T ~'- ~'.. ".. '.."".. ,.), ,. j· . . l' . .'.., t .. ..,· ' . ..., .. . ..

,,., ' .. ' so '''' ,,., '.. ,,., ,'" ,,., ' .. ,,., ,..,. . .
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fm1l'lio" ( t21. Ti,e lim e. a rt' ,III'.,e 'if,h.-, .-IIlwoj Figll'" I.' .

rhis.) The locations of the nmc points of the synthetic
track arc the times of the observed locat ion s. T his a l­
lows di rect comparison with the data plot of Figure 13.
The variab ility of Figure 15 is not unlike that of Fig­
ure 13.

In this work the scattered, somet imes unreasonable,
sate llite loca tion, have been cleaned up and summa ­
rized by a potential function. The gc ncrulmotion of the
animal on a foraging trip has bee n inferred and simu­
lated. It has been learned thatthe an ima l stays mostly
within Penguin Bank and tend s to remain in an area off
the wes t coast of Molokai.

T here are other examples of potential function esti­
matio n in Brfllingcr. Stewart and Littnnan (2006, 2(Xl8)
arul Brillinger (2(Xl7a, 2(XI7bj .

6, CONCLUSION

" Say what you are going to say. say it. then
say what you said" (Neyman. Personal corn­
munic ation).

It was a great honor to be invite d to present the Ney ­
man Lecture. I atten ded many Neym an Seminars and
made quite a few prese ntations as well. A s ide effect
of the wor k was the very pleas ant experience of read­
ing throu gh many of Ney man's pape rs in the cou rse of
preparing the lec ture and the article. So many personal
memories returned.

T he emphas is has been placed on dynamic and spa­
tial situa tions . There are three exa mples of I N and
ELS; two concern te mpora l functions and one spatial.
Four exam ples are provided of the work of DRB with
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collaborators . Two are temporal and two are spatial­
temporal. The data are from astronomy, fisheries, me­
teorology, insect biology, animal biology and marine
biology. The models and analyses were not all that dif­
ficult. The statistical package R was employed.

The field of sampling was another one to which Ney­
man made major contributions; see Neyman (1934,
1938a). It can be argued that work in sampling had a
more profound impact on the United States than any of
his other applied work. I looked hard but did not find
reference to repeated sample surveys in IN' s work. Had
I, there would have been some discussion of dynamic
sample survey.

The reader cannot have missed the many references
to Elizabeth Scott. In fact in many places in my lecture
the title could have been the Neyman- Scott Lecture.
From the year 1948 on, 55 out of 140 of IN 's papers
were with her. Some 11 8 of Betty 's publications are
listed in Billard and Ferber (1991). One in the spirit
of this lecture, Scott (1957), concerns the Scott effect,
a biasing effect that occurs in galaxy observations be­
cause at greatest distances only the brightest would be
observed. She developed a correction method (Scott,
1957).

I end with a wonderful and enlightening story con­
cerning Jerzy Neyman. It was told by Alan Izenman
at the lecture in Minneapolis. In the early 1970s the
Berkeley Statistics Department voted to do away with
language requirements. (There had been exams in two
non-English languages.) In response in the graduate
class that IN was teaching he announced that he was
going to ask various people to give their presentation
in their native, non-English, language. This continued
for a number of weeks and languages.
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Part IV 
Point Processes 



Comment ary by Peter Guttorp

T his part will start wit h a coup le of earth sciences papers. We t hen
proceed via an influenti al methodology pap er to describing some work in
neurophysiology. In addit ion, a paper on latent vari ables and two on robust­
ness of regression to misspecification of the regression function are discussed.

An empirical investigation of the Chandler wobble and two pro­
posed excitation processes [1973]

David was not so keen on including t his pap er , since it does not solve
t he problem of what excites the Chandler wobble: the periodic deviation of
Ear th's pole from it s mean direct ion. I like it , because it illust rates very
clearly the power of frequency analysis tools. T he wobble has two dominant
frequencies, one corresponding to the annual cycle, and t he other with the
Chandler period of about 14.1 months.

Describing t he pole of rot ation of Earth at t ime t by Z(t) , a complex
number with the real par t corresponding to deviation towards Greenwich ,
t he imaginary par t t he perpendicular dir ection , t his has been modeled by
t he stochastic differenti al equation

dZ(t) = aZ( t )dt + dcI>(t)

where a = {3 + ii, (3 > O. Assuming that t he excitation fun ction <I>(t) has
stationary increment s (see Brillinger 1972a for t he analysis of such processes) ,
it is easy to see that Z will inheri t t he peaks of <1> , plus a new peak at
frequency r with spread {3. To model the spect rum, David looks at first
differences of a seasonally adjusted series, and fits t he corresponding model
using exponent ial likelihood, approximately valid for Fourier frequencies of
t he periodogram.

P. Guttorp and D. Brillin ger (eds.), Selected Work,' ofDavid Brillinger, Selected Works in Probability 459
and Statistics, 001 10.1007/978-1-46 14-1344-8_26, © Springer Science+Business Media. LLC 20 12



A complex demodulat ion at the estimated Chandler frequency shows high
amplitudes 1910-14 and very high 1948-55, with the phase lower for lower
amplitude. To exp lain the Chandler wobb le, two proposed excitation pro­
cesses are earthquakes or atmospheric motion. Data on the times of large
eart hquakes, although forming a point process , can be demodulated simi larly
to t he observed deviations . There is lit tle similarity between t hese two de­
modulations, indicating t hat this is not t he actual excit at ion, at least not by
itself. To see if atmospheric motion (or more precisely its moment of inertia)
could be the cause, demodulation shows again no simi larity to the wobble,
although the motion of course has a strong annual frequency.

Estimation of uncertainties in eigenspectr a est im ates fr om decaying
geophysical time series [1979]

T his is one of the papers David wrote with long-t erm collaborator and
dear friend Bruce Bolt . They consider the fundamental seismological prob­
lem of est imat ing the eigenfrequencies of t he eart h. T he response of the
earth to an earthquake is essentially a linear combination of cosines at these
frequencies wit h decaying parameters . In order to estimate simultaneously
both frequencies and decay rates, they propose to do a complex demodu lation
(at preliminary estimates of the frequencies), with the phase diagram help­
ing to assess both decay rates and amplitudes. T he results yield est imate s
and standard errors of these parameters for the first time in the geophysical
literature.

Statistical inference for st a t ion a ry point p rocesses [1975]
This is probably the paper of David's I have gone back to the most.

Here he sets out some parameters for point processes on the line with points
of k different types. For example, the kth order product density is

After working out the details for a couple of examples, he turns to the
stationary case, where one can start looking at spectral properties , setting
down cross spectra as the Fourier transform of t he corresponding product
density. One can use the spectral representation to compare point process to
corresponding time series parameters (Brillinger 1978e).

460



David shows how to write down interesting models based on linear sys­
tems. Let

This model lets the intensity of type 1 points near t be dependent on
the process of type 2 points. If there is a causal connection we must have
a(u) = 0, u < 0. The sign of a determines whether type 2 points tend
to inhibit or excite points of type 1. When a 0, type 1 points are not
dynamically influenced by type 2 points, so the series are casually unaffected.

The paper then turns to inference. Under a mixing condition (which
sometimes can be hard to check) the natural histogram-type est imat or for
a kth order paramet er will be asymptotically Poisson or normal , depending
on which bandwidth conditions are used. Estimators at lags sufficiently sep­
arated are asymptotically independent . Spectral tools enable est imat ion of
the function a in the linear system , and Whittle type approximate likelihood
tools (using the periodogram) are presented.

Once you master the techniques in this paper, no analysis of point pro­
cesses on the line will ever seem too daunting!

The identification of point process systems [1975]
The linear model which was used as an example in the previous pa­

per comes to extensive use in this one. It was motivated by the study of
systems of connected nerve cells . The tools in the previous paper: spectral
analysis to identify the excitation function a, and Whittle likelihood to esti­
mate parametric models, are applied (a rare enough phenomenon in Annals
of Probability) to two neighboring nerve cells of a sea slug, with neurophys­
iological and causal interpretations.

Measuring the association of point processes, a case history [1976]
The lovely pedagogic structure of this paper is as follows: here is

a problem (testing the association of two neural spike trains). Here is a
model (stationary point processes on the line) , and a relevant paramet er
(PNM(U) /PNPM) . Next an est imate, which asymptotically is Poisson, so a
square root transformation should give approximate normality and constant

variance in u: Finally, a plot of JpNM (u)/PNPM with associated confidence
v
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band shows quite clearl y the inhibitory effect of one spike t ra in on the ot her.

Empirical examination of the threshold model of neuron firing
[1979]

Jo se Segundo is the other main scient ific collaborator (as well as an­
other dear friend) of David 's . This pap er models the idea that a nerve cell
fires when a membrane pot ential U(t ) up crosses a threshold B(t). U(t ) is
modeled as a linear functional of the input current , and the goal is to esti­
mate the kernel of t his functional , the average thr eshold , and the probability
of firing as a function of U from data on input currents and observed firings.
Tools include likelihood, spectral and correlat ional analysis, all of which re­
quire different simplifying assumpt ions but give similar result s. There is an
indication that an input of un iform white noise is bet ter than Gaussian white
noise at estimating the firing probability.

Nerve cell spike train data analysis: a progression of techniques
[1992]

T he Fisher lecture, given at the Joint Stati stical Meet ings in Atlant a
in 1991, is a typical Brillinger production: a tour de force through neuro­
physiology, point process t heory, an extended nonpar amet ric analysis from
t hat in t he previous pap er , causal analysis and coherence in a system of three
neurons, and finally some tools to study a network of eight nerve cells. As
always in David 's pap ers, t he right picture is used to illust rate the points.

A generalized linear model with "G a ussia n" regressor variables
[1982]
The identification of a particular nonlinear time series systems
[1977]

T hese two pap ers were really the beginning of what today is called
model robustness. The basic to ol is a simple identi ty for bivar iate normal
variables V and U and a real function G:

Cov(G(U), V) = Cov(G(U), U)Cov(U, V)jVar(V)
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This now can be used in regression, to show that regression coefficients
even when the regression is a nonlinear function of a linear combination of re­
gressors are proportional to the coefficients of the linear combination, at least
as long as the regressors ar e normal or "behave like" normals. The second
paper extends the result to the time series case, where a nonlinear function
of an autoregressive function again allows you to est imate the relative sizes
of the autoregressive coefficients. David tells me that when he told Jerzy
Neyman and Erich Lehmann about this result , they did not believe him!
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An Empirical Investigation of the Chandler Wobble and Two
Proposed Excitation Processes

By

David R. Brillinger, Berkeley, U.S.A.

1. Introduction

The axis of instantaneous rotation of the Earth does not remain fixed
relative to the body of the Earth, rather, its points of interception with the
surface wander about within a region approximately the size of a tennis­
court. This wandering was predicted by Euler -in 1765 and confirmed by
observation in 1891. The top gra ph of Figure I provides the x and y coordinates
of the deviation of the North pole from its mean position for the period
1960-1969. (In units of 0" .001 = .101 ft.) The motion of the pole produces
a variation in the latitude which may be used to deduce the time path of the
pole. We mention briefly how this is done.

The zenith is the direction opposite to local gravity. The altitude of a star
is the complement of its zenith distance. The fundamental method of de­
termining the latitude of an observatory is to take the average of the altitudes
of a circumpolar star when it crosses the meridian above and below the pole.
Since 1899 the International Latitude Service has measured the variation of
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latitude at five stations apread along 3<}O()8' north latitude. A conventional
pole of rotation (the c.I.O.) has been adopted. Suppose X (t) denotes the
displacement of the instantaneous north pole at time t from the c.I.O. towards
Greenwich and Y (t) the displacement towards 9()0 west of Greenwich. Let
!HI) (t) denote the increment in latitude at observatory j, from its mean
latitude. Then estimates x (t), y (t) of X (t), Y (I) are determined by the least
squares fit of the regression equation

L1rp) (r) = Z (t) + X (t) cos I, + Y (I) sin).) + f) (I) (1.1)

j = 1, . . . , 5 where ).) denotes the longitude of the j-th observatory. For.r at
monthly intervals, these values are given in Vicente and Yumi (1969, 1970),
which is the source of the data used in the computations of this paper. The
values of x (r) and y (t) fall in the intervals -0".37, 0".47 and -0".28. 0".50
respectively. The probable errors given in Table 12 of Yumi, Ishii and Sato
(1968) may be used to deduce the standard errors of x (r) , y (t) from the
above linear fit. These are 0".057 and 0".048 respectively.

Chandler (1891) suggested that the polar motion was made up of two
principal components with periods one year and 428 days . 14 months
respectively . Figure 3 below gives the logarithm of the periodogram of the
data. Two peaks, at frequencies near these periods are apparent. In the next
section we shall set down a differential equation that describes the motion
of the pole when the Earth is subjected to arbitrary excitations. Scientific
workers seem to be agreed that the component of the motion with period
one year results from the excitation function possessing a strong seasonal
component. 428 days corresponds to the Euler frequency of vibration of
the Earth; however the source of the energy that stimulates the natural
vibration is not agreed upon. We shall consider earthquakes and shifts of
the mass of the atmosphere as possible sources of the energy. This 428 day
component is called the Chandler component. The associated motion of the
Earth is called the Chandler wobble.

In the next section we present a variety of harmonic analyses of the polar
variation including; power spectrum estimation, maximum likelihood fit
of a model of the spectrum, bispectrum estimation and complex demodulation.
In Section 3 we carry out cross-spectrum analysis of the polar motion series
with two earthquake series as well as complex demodulation of the latter.
In Section 4 we repeat this analysis with an atmospheric series.

Munk and MacDonald (1960) is an excellent source of basic material con­
cerning the rotation of the Earth. The proceedings of two symposia on the
topic have appeared. These are Mansinha, Smylie and Beck (1970) and Melchior
and Yumi (1972). These works show that the problem of understanding the
rotation of the Earth is exceedingly rich in geophysical terms. It is also rich
in statistical aspects. We mention the papers; Walker and Young (1955, 1957).
Arato, Kolmogorov and Sinai (1962). Mandlebroit and McCamy (I 970).
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2. Analyses of the Polar Motion

The position of the pole of rotation at time t is conveniently described by
the complex number

Z(t) = X(t) + i yet) (2.1)

where X (t), Y (t) are the displacements from the c.I.O. towards Greenwich
and towards 9()0 west of Greenwich respectively. Munk and MacDonald
have investigated the dynamics of the spinning Earth. Let eI» (t) denote an
excitation function whose increments, de» (t), describe the change in the
Earth's inertia tensor in the time interval (t, t + dt) . del» (t) is complex-valued
with Re d~ (t) giving the change towards Greenwich and Im de» (t) the
change towards 900 west of Greenwich. [In the next section we shall make
use of a formula for del» (t) when the change results from a shift of mass in an
earthquake.J From classical mechanics, Munk and MacDonald deduce the
equation of motion

dZ (r) = a Z (t) dt + de» (1) (2.2)

with a = -{3 + iy complex-valued and fJ > 0. If eI» (t) = 0, then a solution
of (2.2) is provided by

Z (t) = eat = e- fJ1 (cos yt + i sin yt) (2.3)

This motion is one of a damped oscillation of requency y. The greater (3, the
greater will be the damping.

Suppose now that eI» (t), - ro < t < 00, is a random process with stationary
increments and power spectrum f H (}.). [See Brillinger (1970) for a discussion
of the spectral analysis of processes with stationary increments. The definitions
given there must be modified trivially to apply to complex-valued processes.]
Then (2.2) will have a solution with stationary increments and power spectrum

fzz ().) = I il - a 1-2f~ (A) = ({32 + (l - y)lJ -lf~ (l) (2.4)

This expression shows that fzz (A) may be expected to inherit the peaks of
fH (J.) and to possess a new peak, of spread {3, at l = y.

Were Z (t) available for an interval 0 < t ~ T, we would be led to base a
spectral analysis of it on the Fourier-Stieltjes transform

T
I exp {-i l t} dZ (t) (2.5)
o

The polar motion values we use are given at monthly intervals, and so we
are led to take as basic statistic the finite Fourier transform of the first dif­
ferences of Z (r), namely

T-I

tJ<F(l) = ~exp {-iAI} [(Zt + 1) - Z(t)J
1-0

(2.6)

- co < l < co. The second graph of Figure 1 is a plot of the series
Z (t + 1) - Z (r) for the time period 1960-1969. The first graph of Figure 2
is a plot of I Z(t + 1) - Z(n I for the period 1902-1969.
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In Figure 3 we have plotted IOglO of the periodogram Ik2 ().) =

(2:rT)-1 I d~Tl().) 12 for .88 ~ J../2:r ~ 1.00. Ik'2(J.) may be considered to be a highly
unstable estimate ofIzz (}.). In the case that the process ,z, (r), - 00 < t < 00,

is mixing, the periodogram will be asymptotically exponential with mean
Izz (J..). The standard deviation of the curve in Figure 3 will be approximately
.43. Peaks are present in this graph at frequencies J..!2n = .917, .929 cor-
responding to rotations in a negative direction with periods . 12 months,
14.1 months respectively. It has long been understood that the process ,z, (r),
- 00 < t < 00, would contain a strong component of period 12 months
because of the seasonal variation of the loading of the Earth through, shifts
of the atmosphere, melting of snow, tides and the like. [See Jefferys (1959).]
This would account for the peak in Figure 3 corresponding to a period of
12 months. Before smoothing the periodogram in order to obtain a more
stable estimate of the power spectrum, we therefore removed the seasonal
variation from the series of first differences by subtracting monthly means.
The values subtracted are given in Table 1. They correspond to a figure of
ellipsoidal shape. Figure 4 is 10glO of the spectral estimate obtained by

Table 1

(units of 0".(01)

Jan. Feb . March April May June July Aug. Sept. Oct. Nov. Dec.

x -41 -17 -2 22 33 43 49 31 -2 -34 -40 -42
r 11 28 43 34 22 7 -12 -35 -40 -45 -19 5
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smoothing 8 adjacent periodogram ordinates based on the seasonally cor­
rected values . The bandwidth of this estimate is .Ot cycles/month. Its
asymptotic standard error is .15.

The smooth curve in Figure 4 corresponds to a fitted model whose construc­
tion we now describe. Suppose that we denote the seasonally corrected version
of Z (r), 41 (r) by Z' (1), ,z,' (r) respectively. The second graph of Figure 2 is
a plot of I Z ' (1 + 1) - Z ' (t)l, the amplitude of the seasonally adjusted
first differences . It is seen to peak around the years 1910 and 1950. The model
(2.2) retains the form

dZ' (r) = a 2' (t) + d,z,' (r)

We may solve the equation (2.7) and obtain

(2.7)

t
Z' (t) = J ea(t-Jl) d4J' (u) (2.8)

-00

Noting the assumed removal of seasonal components from 41 (1), we now
assume that 41' (r) is a noise process with stationary orthogonal increments
and var {d<P' (t)} = (]2 . [Were we to assume it Gaussian as well, then (2.7)
would be the model of Arato et al. (1962).] Consider the series of increments

L1Z' (r) = Z' (t + 1) - Z' (t) (2.9)
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t = 0, ± I, .... We see from the representation (2.8) that this series has
autocovariance function

C,dZ'.AZ' (u) = a2 exp {-,8 Iu I} exp {i y u}/2,8 (2.10)

u = 0, ± I, ... and hence power spectrum

fAZ',AZ' (A) =

(J2 1 - exp {-2,B}
= 2n 2,8

1

1 - 2 exp {-,B} cos (A - y) + exp {-2,B}

(2.12)

for - 00 < A. < 00.

We have mentioned previously that the series Z (I) is not observed directly,
but is measured subject to error. Let

:' (t) = Z' (t) + e (I) (2.11)

denote the observed series, corrected for seasonal effects, where we assume
that e (I), I = 0, ± 1, ... is a stationary noise series with var e (t) = 'JP'. It
follows that the power spectrum of the first differences of:' (t) will be given by

f.u Ar (A) = fAZ' AZ' (l) + 2
vfl

11 - e-
11

12. • n
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This last constitutes our proposed model for the spectrum of Figure 4. It is
seen to involve four unknown parameters; y the frequency of the Chandler
wobble, fJ the damping constant, (J the standard deviation of the seasonally
corrected excitation function and V' the standard deviation of the measurement
errors.

We fit the model by the metbod of maximum likelihood. Set

i = I,V,.1r' (2;S),.f, =f.1:"~r'(2;S)

for s = 0, ... , T - 1. Under a variety of conditions, the variates !,/.f"
s = 0, . .. , T - 1 are approximately independent standard exponentials. The
likelihood function of the data therefore has the approximate form

L = II1;\ exp {- !,/fs}
•

Let 0, f)' denote any two of the parameters, then

8 log L = _ ~ (f, - f,) 8 .f,

of) s J: of)

[
8 10g L 810gL] = 1: -2 01'-. oJ:

E a () a8' Is 8 0 8 ()'

(2.13)

The maximum likelihood equations are obtained by setting (2.13) equal
to 0 for tbe various parameters. We solve these equations by the method
of scoring [see Rao (1965), p.302]. This procedure has the advantage of
producing estimates of the asymptotic standard errors incidentally. We began
the recursion with estimates determined by the method of moments. The
procedure stabilised after two rounds. We obtained the following results.

Table 2

parameter

estimate
s, e.

r /21t

.9294

.0026

p

.0050

.0023
7.1

.33
31.9

.62

The indicated results for y lead to a 95 per cent confidence interval for the
Chandler period to be from 13.2 months to 15.3 months. A 95 per cent con­
fidence interval for fJ is from .0005 month-1 to .0095 month-I. It has not been
determined accurately at all . The estimate of (J is important in searching for
the source of the excitation of the whobble. It suggests that the non-seasonal
fluctuations of the excitation have standard deviation of order 0"JXJ7 for
monthly values. It is interesting to compare the magnitude of the standard
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(2.14)

deviation of the observational errors as estimated here with the values 0".057,
0".048 mentioned in the introduction. In the present notation they correspond
to VJ = 0".075 a value larger than the 0".032 found here. In either case the
observational errors are large compared to the magnitude of the phenomenon
under study.

In Figure 4 we have plotted expression (2.12) using the parameter values
of Table 2. The fit seems consistent with the standard error .15 of the estimate
except for the peak just to the left of the Chandler peak. Surprisingly, this
peak is centered at a frequency, (.846) (27t) that is near the sum of the seasonal
and Chandler frequencies. This occurrence led us to suspect the presence
of a non-linear phenomenon. We therefore estimated the modulus of the
bicoherency

V!Jz.4Z ()>1)!.dz.Jz ().2)!.1z,Jr ()., + Jd

(See the Appendix for the definition of the third-order spectrum appearing
here.) Table 3 below presents an estimate for frequencies in the immediate
neighborhood of the seasonal, the Chandler and the seasonal plus the Chandler.
The bandwidth of the estimate is .01. In tbe null case the square of the estimate
is distributed asymptotically as an exponential with mean Tj27tN, if N denotes
the number of third-order periodograms averaged in forming the estimate.
[The sampling properties of such estimates are discussed in Brillinger and
Rosenblatt (1967) and Huber et al. (1970).] The 99 per cent point for the values
of Table 3 is 2.52, corresponding to N = 95. There is a clear suggestion that
the values of Table 3 are larger than would be expected in the null case . No
dramatic peaks are present in the table however. Our conclusion is that the
excitation process or the measurement error process, is not quite normal.
Table 4 presents an estimate of (2.14) covering the whole frequency domain.
Here tbe bandwidth adopted was .05 and N = 1950. The 99 per cent point
of the null distribution is now .56. Again there are no dramatic peaks in the
function, rather the whole collection of values is larger than would be expected
in the null case. It appears that the data are somewhat non-normal.

Table 3
frequency/2it

.87 .88 .89 .90 .91 .92 .93 .94 .95 .96

.87 2.5 .7 .2 .7 .9 1.2 1.6 1.6 .9 1.5

.88 1.1 1.1 .3 2.1 .4 .9 1.3 .9 .2

.89 2.3 .7 .6 1.3 1.8 .7 .9 .5

.90 1.1 .8 .4 2.6 1.1 2.2 1.2

.91 .s 1.4 I.3 .9 2.2 .5

.92 2.9 2.5 2.7 .1 1.9

.93 .8 .2 1.5 .3

.94 I.3 .6 .S

.95 2.5 2.3

.96 .7
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.00

.OS

.10

.IS

.20

.25

.30

.3S
~ .40
w .45

.SO

.55

.60

.65

.10

.7S

.80

.85

.90

.95

Table 4
frequencyf2n

.00 .05 .10 .15 .20 .2S .30 .35 .40 .45 .50 .55 .60 .65 .70 .75 .80 .85 .90 .95

1.9 .7 .8 .3 .4 .S .3 .6 .5 .5 .9 .8 .7 .7 .6 .5 .4 .3 .4 •.5
.2 .2 .3 .3 .3 .3 .S .1 .2 .2 .4 .4 .2 .2 .4 .3 .S .1 .1

.5 .2 .3 .0 .4 .3 .2 .2 .1 .2 .3 .2 .2 .6 .2 .S .2 .3
.3 .4 .1 .3 .3 .1 .2 .6 .3 .3 .6 .3 .4 .1 .2 .7 .3

.6 .3 .3 .1 .2 .1 .2 .I .4 .3 . .1 · .2 .4 .3· .1 .4
.3 .3 .3 .2 .2 .2 .5 .1 .6 ' .3 .I .f' , .3 .1 .3

.3 .2 .4 .3 .2 .2 .2 .3 .I .3 .3 .2 .2 .2
.6 .2 .3 .1 .3 .2 .6 .4 .1 .2 .4 .4 .2

.8 .6 .5 .0 .2 .5 .4 .I .I .4 .3 .1
.I .I .3 .4 .3 .4 .6 .3 .2 .2 .4

.8 .2 .2 .3 .3 .0 .4 .3 .7 .3
.3 .4 .5 .3 .2 .5 .2 .5 .3

.7 .5 .1 .2 .1 .2 .2 .3
.4 .2 .2 .1 .1 .1 .2

.1 .5 .4 .5 .3 .2
.4 .I .3 .3 •.5

.2 .0 .4 .2
.3 .4 .4

1.1 .8
.0

~-
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(2.15)

In order to be able to better understand the behavior of the polar motion
and in order to get an idea of the character of the excitation process, fZJ (t) ,
we carried out a complex demodulation of the series L1z (t) at several fre­
quencies. [This procedure is described for real-valued series in Tukey (1961).]
Specifically we formed the series

1
bJ: (t, l) = V2n (2L.-J..., I) 1: L1z (u) exp {-iu I.}

11-£1 1~L

t = 0,1, , T - 1 for a variety of;. and L = 48. We Dote that I b.az (t, J.) 12
t = 0, , T - 1, is a running periodogram for the data at frequency l .
Its average across the whole time domain would provide an alternate estimate
of f.az ..az (J.). Variations in it are indicative of temporal variations in the power
at frequency l. The time path of arg bar (t , ,,) gives information concerning
the value of the dominant frequency component in the neighborhood of l.
IT its path is a straight line with slope v for some time period, then the com­
ponent with frequency" -+- v is dominant in that time period.

Figure 5 is a plot of I bH (t, }.) 12, arg ;.r.l:' (t, l), t = 0, . . . , T - 1 for
1/2n = .9294, the Chandler frequency. The Chandler component is seen
to be strong in the period 1910-1914 and very strong in the period 1948- 1955.
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(2.16)

The second graph suggests that the Chandler frequency decreased in the
period 1925-1940 when the power was low. Figure 6 is a plot of I ~.1: (t, ).) 12

and arg ~.1: (t, l) for Aj2n = .9167, the annual component. The power of
the seasonal component is seen to be reasonably stationary across the whole
period. Figure 7 is especially interesting. It is a plot of J ~Jz' (I, A) 12, arg ~.:1:' (t, J.)
for l/2n = .8460, corresponding to the Chandler frequency plus the seasonal.
The component at this frequency is seen to be present effectively only for the
period 1905-1914. I have no explanation for this behavior. Perhaps it is
due to a fault in the data processing for the early years. A perturbation analysis
of the equations of motion leading to (2.2) suggests that non-linearities would
lead to the appearance of harmonics of the seasonal, but not the appearance
of a seasonal plus Chandler frequency component.

We now turn to the problem of discerning, if possible, the character of
the excitation process ~ (t). An examination of expression (2.12), (with the
parameter values of Table 2), as plotted in Figure 4 suggests that the true
process Z' (t) dominates only for frequencies in the immediate neighborhood
of the Chandler frequency. It follows that we will have

~4t' (t , l) . ~.1r' (t, l)
. (iA - a)-I b4~ (t, J.)
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for, and only for, A12'll = .9294. Figure 5 is therefore especially important
in the search for the process, <I'l (r), exciting the Chandler wobble. The
instantaneous power of this process , at frequency .9294, must have behaved
in the manner of the top graph of Figure 5, namely been high for the period
1910-1914 and very high for the period 1948-1955. 1 do not know of a
process that has behaved in this manner. I would appreciate suggestions
that anyone has. In the next sections I examine two processes that have been
proposed.
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3. Excitation by Earthquakes

Earthquakes were proposed at an early time as a cause of the Ch andler
wobble [see Cecchini (1928)]. A number of serious investigations of this
possibility have been carried out recently [see Mansinha et al. (1970), Dahlen
(1971, 1972) for example]. We begin this section with an examination of a
series of monthly earthquake energy. We computed such a series from values
given in Dubourdieu (1972), which were based on the data in Duda (1965).
The series is one of earthquake energy (in ergs) released per month by earth­
quakes of magnitude ~ 7.0 throughout the world in the period 1904-1965.
Figure 8 is a plot of the square of an 8 year running average of this series .
We notice that the energy released was greatest in the period 1904-1910.

Figure 9 gives I ' (t, }.) i2, arg z' (t, ).), t = 0, . 0 . , T - 1 for this series with
). corresponding to the Chandler frequency . The instantaneous power at this
frequency is seen to be greatest for the periods 1914-1925, 1946-1954.
A comparison of this plot with the top graph of Figure 5 suggests that the
two do not match too well with respect to either shape or timing. Figure 10
is a graph of IOg10 of the estimated power spectrum of this series. The ap­
proximate standard error of this estimate is .09, suggesting that the population
spectrum is not far from constant. The bandwidth is .05.

Clearly the effect any earthquake has on the motion of the pole will depend
on the location of the earthquake within the Earth and on the direction of
its movement. The above analysis takes no note of this dependence. Dahlen
(1971, 1972) has developed expressions for the change in the Earth's inertia
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426 D. R. Brillinger

tensor as a function of an earthquake's latitude, longitude, depth, strike,
dip, slip and magnitude. Let OJ denote all of these parameters for the j-th earth­
quake. Let Tj denote the time of occurrence of the j-th earthquake. Dahlen
(1972) has derived an expression for C (0), the change in the Earth's inertia
tensor for an earthquake with parameter e. The excitation function <1>' (t)
may now be written '

<1>' (1) - <1>' (s) = ]; C(O})
I <Tj."r

.... '"S'M""

...........................................~!~.~!~..~.~ _ .
~a .. •

:(3.1 )

.....

.....

....,

.....

----:=.---1----------------·--:-----··­.........................................................................................................
•: :..... :.. ,,.,IUII:" :.. :..

'Ul..tlp JUW'U tum.. ."a,

The model (2.11) therefore takes the form

Z' (1) = Z' (1) + E (t)

with
dZ' (t) = a Z' (1) + d<l>' (1)

(3.2)

(3.3)

and d<l>' (r) given. This is a model of a linear causal relationship involving
two observed processes, z' (r), <1>' (t). If we assume that these processes have
stationary increments, then we can carry out a frequency domain analysis
of the processes in the manner of Section 4 of Brillinger (1970).

A difficulty presents itself at the beginning of the analysis. Not all of the
components of e are available for most of the earthquakes. After reading
Dahlen (1971) and discussions with Professor B. A. Bolt, Professor T. V.
McEvilly and W. Peppin, I have approached this difficulty as follows. Earth­
quakes tend to occur in belts along the edges of great plates on the Earth's
surface [see Calder (1972)]. I constructed 11 strips at plate to plate boundaries
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within which the majority of the events occurred (166 out of 187) using the
map of Chase (1972). (I took as basic data the earthquakes of magnitude
~ 7.9 occurring in the period 1900-1971.) For the unknown components
of 0, I then took the parameters suggested by the direction and overall motion
of the plates. I read average strike angles from the map of Chase (1972).
I used the dip angles of Davies and Brune (197]). I assigned slip angles by
assuming that the oceanic plates were plunging at a 45° angle under the
continental plates at the oceanic transform faults. The remaining 19 events
had unknown parameters assigned at random.

- ' . ____-:~I~r!-1:...1 _
.._ .._ ..._., ••••• r ......-.....-.- •

~~ , .. .-----_......._----_... ...-. -~-_.····-----I---t-------------------·---··
-----+--lJ"-~'r_:'---__:::~~-------- !'"":---

·-- - --....::..._----~~~~=---~~~~=:'~-_ ..-" ---.....__.__......._._---..__..------...-........-----_.
:6I't'" ..:... ..:.. ,..p ...:.. ..:., ,..:.

Figure 11 is a plot of the square of an 8 year running average of tbe energy
released by earthquakes of magnitude ~ 7.9 for the period 1900-1971.
Notice the large value of tbis function for the period 1904-1911. Figure 12
is an estimate of the IOglO spectrum of the series of times of these events .
The horizontal line is an estimate of the asymptote of the curve. The ap­
proximate standard error of the estimate is .072. The graph is suggestive
that the corresponding population curve is near constant. (It would be constant
for a stationary Poisson process.)

Figure 13 is a plot of the complex demodulate at the Chandler frequency
of the process (f) ' (r) . Because of the point process with ancillary variate
character of (f)' (t) we compute the demodulate differently from (2.I5). We
compute instead

1
;~. (t, A) = 1/2 (2 L . 1) ~ C (OJ) exp {-n. Tj } (3.4)

f n -r I I-'fj I ~ L

Figure 13 has no semblance with Figure 5, as it should were the earthquakes
exciting the pole. Figure 14 is an estimate of the spectrum of the process (f)' (r),
The bandwidth is .05 and approximate standard error .086. The Figure sug­
gests that the population spectrum is near constant. The average level suggests
a monthly excitation standard error of .74, far below the value 7.1 found
from the polar coordinate data in Section 2. Figure 15 gives an estimate of
the coherence between Z' (1) and (f)' (1) computed in the manner of Brillinger
(1970). Notice the low level of the curve. The 95 per cent point of the approx-
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imate null distribution is .069. We have no evidence for a linear time invariant
connection between the process z' (t) and the computed series of earthquake
effect. Perhaps the most telling thing against earthquakes being a principal
cause of the Chandler wobble is an elementary comparison of Figures 11
and 2. Earthquake energy was high at the beginning of this century and has
been trailing off since. The wobble amplitude has not been trailing off, in fact
it reached its highest level around 1950.

4. Excitation by the Atmosphere

In 1901 Spitaler suggested that the seasonal component of polar motion
was due to changes in the inertia tensor of the atmosphere. Hassan (I 960)
estimated the atmospheric product of inertia, tp (r), on a monthly basis for
the period 1900-1950. Munk and Hassan (1961) carried out a cross-spectral
analysis of this data with the polar motion. We carry out a further analysis
here. Figure 16 gives Jogl o of the estimated power spectrum of this atmospheric
data. The bandwidth of the estimate is .02. The approximate standard error
of the curve is .13. The peaks appearing occur at the seasonal frequency
and its harmonics. Figure 17 gives I;" (t, ),) 12, arg b" (t, ),) for), at the seasonal
frequency and L = 48. The instantaneous power is quite level after 1913.
The phase is near constant also. The coherence between the series Llz (1) and
the series tp (t) is .88 at the seasonal frequency corresponding to polar motion
in a negative direction. Figure 18 gives I;,,· (r, ).)12, arg s",' (t,),) for). the
Chandler frequency. There is clearly not much power at this frequency, nor
does its variation appear the same as that of the Chandler wobble. Figure 19
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gives an estimate of the coherence between the process Ltz' (t) and the seasonally
corrected process '1" (r), The bandwidth here is .05. The 95 per cent point
of the Dull distribution is .095. We have DO evidence to suggest that there
exists a linear time invariant relation between the polar series and the atmos­
pheric series at any but the seasonal frequency .
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Appendix on Complex-Valued Processes

The simplest approach to the definition of the spectral parameters of a complex-valued
process is through the spectral representation. Let W (1), - 00 < 1 < co, be a complex­
valued process with stationary increments and spectral representation

elJ.t - ]
W(t)=J iA dZW(A)

Then the spectrum f w... w, w... wO'l , ••• , Ak+l_ I ) ' where there are k W's before the
comma and I after, is given by

cum {dZWO l ) , ••• ,dZw()·k), dZwO'k+l), •.. , dZW()'k+r)} =

l5()'1 + .. .+ Ak - Ak+l-'" - Al+k)fw...w, w ... W(AJ, ... ,Ak+1-1) d). ••• d)·1H·

In particular, the power spectrum of a zero mean series is given by

E dZW(Al) dZW(A2) = () (J'1 - ).iJfw. WO.l) dAl d).2

Sinai (1963) discusses some aspects of the spectral theory of complex-valued processes.
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Summary

D. R. Brillinger

The axis of rotation of the Earth does not remain fixed relative to the body of the Earth.
Instead it bas a motion composed of a movement with period 12 months and another move­
ment with period 14.2 months (the Chandler wobble). The 12 month component appears
to result from annual fluctuations in the loading of the Earth. The period 14.2 months cor­
responds to the fundamental frequency of vibration of the Earth. Scientific workers are Dot
agreed upon the cause of the vibration however.

In this paper we use harmonic analysis to examine the possibility that either major earth­
quakes or annual fluctuations of the atmosphere are the cause. Our computations suggest
that neither of these phenomena provides the source of the energy for the vibration.

Vue de rotation de la Terre ne reste pas fixe par rapport au globe terrestre. Son rnouve­
ment Be decompose en deux composants: un mouvernent de periode 12 mois et un autre
mouvement de periode 14,2 mois (Ie mouvement de Chandler). La premiere composante
provient des fluctuations annuelles dans la repatition des masses de la Terre. La deuxierne
composante correspond Ii la frequence fondamentale de vibration de la Terre . Les chercheurs
scientifiques ne sont pas d'accord sur Ie cause de la vibration a Ia frequence fondamentale.

Dans cet article, nous utilisons l'analyse harmoniqucs pour examiner la possibilite que
eette vibration proviendre de grands tremblements de terre ou de fluctuations annuelles
de l'atmosphere. Nos ca1culs indiquent qu'auncune de ces series n'est la source d'energie
de la vibration.
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Estimation of uncertainties in eigenspectral estimates
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Summary. The response of many dynamical systems to an impulse is a linear
combination of decaying cosines. The frequencies of the cosines have
generally been estimated in geophysics by periodogram analysis and little
formal indication of uncertainty has been provided. This work presents an
estimation procedure by the methods of complex demodulation and non­
linear regression that specifically incorporates in the basic model the decaying
aspect of the cosines (periodogram analysis does not). The use of plots of the
instantaneous phase as a function of time is shown to greatly enhance
resolution. Expressions for the variances of eigenfrequencies, amplitudes,
phases and damping constants Q are derived by non-linear least-squares. The
results are illustrated, for the problem of the free oscillations of the Earth,
by computations with the record made at Trieste of the Chilean earthquake
of 1960 May 22. Sample values are periods and standard errors of 737.79 ±
0.13 s, 506.25 ± 0.13 s and 429.60 ± 0.14 s for oTs, oT13 and OTI6 with Q
values and standard errors of200 ± 14,230 ± 28 and 215 ± 30, respectively .

Introduction

A basic need in the measurement of terrestrial eigenspectra is a general algorithm for
simultaneously estimating eigenfrequencies, amplitudes, phases and damping coefficients.
This paper provides such a method, formulated in a statistical context so that variances of
each estimate can also be obtained. The method also has wider applications.

From the beginning of work on the Earth's free vibrations, the emphasis has been on
estimation of the spectral eigenfrequencies (Derr 1969; Ruland & Gilbert 1978) , but few
estimates have been accompanied by statistical uncertainties. This requirement is important
because independent frequency estimates have been seen to differ by up to 0.5 per cent on
occasion (e.g., 2 s for OT14, OT17) and it is difficult to know how to combine the separate
estimates.

P. Guttorp and O. Brilli nger (eds .), Selected WorksofDavid Brillinger, Selected Works in Probability 487
and Statistics. 0 01 10.1007/97R-1-4614-1344-R_2R.© Springer Science+Business Media. LLC 2012



594 B. A. Bolt and D. R. Brillinger

Many fewer measurements are available of the actual ground displacements in each eigen­
vibration (Nowroozi 1974), partly because some key recording instruments were not
calibrated for impulse response, but also because some methods of spectrum estimation used
could not provide the true amplitudes. New work on terrestrial eigenvibrations is stressing
not only measurements of the ground amplitudes but also the damping of amplitudes. As
emphasized by several authors (Jobert & Roult 1976; Anderson & Hart 1978), even the most
recent estimates of the damping constant (usually given in seismology as the specific dissipa­
tion constant Q) show considerable scatter and indicate the great difficulty of precise
measurements of the amplitude decay rate. Further, there are questions of whether Q

depends on frequency. Progress clearly depends upon the more systematic use of statistical
analysis of the time series (Bolt & Brillinger 1975).

The procedures and formula developed in this paper were motivated by the problem of
spectral estimation of damped terrestrial eigenvibrations. In particular, the computer
programs were tested on the time series obtained by the long-period pendulums at the
Grotta Gigante, Trieste, following the 1960 Chile earthquake (Bolt & Marussi 1962). These
data have provided some of the best estimates of the gravest torsional eigenfrequencies to
the present time. It is hardly necessary to point out, however, that the methodology
developed is of a general nature and is applicable to a wide class of geophysical time series .

Our procedure depends heavily on the ability of complex demodulation (Tukey 1961)
not only to locate as precise a value of an eigenfrequency as the data permit, but often to
allow an assessment of whether difficulties in resolution are arising from such physical
causes as multiple energy sources or splitting of peaks due to Earth inhomogeneities and
rotation. We investigate especially the use of the instantaneous phase spectrum for decisions
on resolution. This is a sensitive method that seems to have received little use in the analysis
of geophysical periodicities previously . We set out an informative way of comparison
between demodulate estimates of the amplitudes, frequencies and damping factors of the
oscillations and with estimates obtained by the technique of non-linear regression (see
Draper & Smith 1966). The latter technique allows the relative uncertainties between
individual calculated eigenfrequencies to be estimated. The former gives a way to select
the most closely resolved modes.

The model

The impulse response, set), of a wide variety of stable geophysical, mechanical and electro­
magnetic linear systems with finite dissipation is a linear combination of decaying cosine
waves,

K
s(t;8) = I Cl.kexP {-13kt} cos {'Ykt+Ok}, t;;.O,

k=l

(1)

where 8 = {Cl.k' 13k, 'Yk> Ok> k = 1, .. . , K} with Qk> 13k> 'Yk > 0, 0 -c Ok < 21T and 'Yk distinct.
(See Lamb 1920, pp. 230-239; Whittaker 1944, pp . 230-234; Lancaster 1966, Chapter 9.)
The 'Yk are the eigenfrequencies of the system . The 13k determine the rate of decay of the
oscillations and are often redefined as

(2)

in terms of Qk damping factors.
A traditional means of estimating the 'Yk of equation (l) in geophysics has been the

searching for peaks in the periodograms , or smoothed periodograms, calculated from the
geophysical time series (see e.g. Zadro & Caputo 1968; Dziewonski & Gilbert 1972). The
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Uncertainties in eigenspectral estimates 595

usual numerical procedure has been to calculate the amplitude Fourier spectrum only,
using an FFT algorithm . A less usual method involves the fitting of a long autoregressive
scheme to the digital record (Burg 1972; Bolt & Currie 1975). None of these estimation
procedures have taken specific note of the presence of the damping factor ~k in equation (1),
even though, as Dahlen (1978) has lately shown, the concept of damped sinusoids is valuable
in theoretical discussions of terrestrial eigenvibrations and multiplets. Also, as mentioned
above, their use has generally not been accompanied by the provision of formal indications
of the statistical variability of the estimates.

The suggested approach is multi-stage. Assume that one of the traditional methods has
been used to determine frequencies that perhaps correspond to eigenvibrations. Then
complex demodulation (discussed in the next section) is carried out at the determined
frequencies . Examination of the results of complex demodulation suggests whether an
individual frequency is reasonable and allows initial estimation of a precise value for the
frequency, decay, phase and amplitude. Finally non-linear regression, based on the Fourier
transform values in the neighbourhood of a given frequency, is carried out in order to de­
termine fmal estimates of the spectral parameters and their standard errors .

Complex demodulation

Given a record XU), t::. I, . .. , T, the complex demodulate at frequency A of that record is
the time series WU, A), t » I, 2, " . , that results from low-pass filtering the series X(t) exp
{- iAt l. The complex demodulate W(t, A) will be much smoother than the original time
series. The technique is described in detail in Bingham, Godfrey & Tukey (1967), Brillinger
(1975, p. 33), Bloomfield (1976, Chapter 6), for example.

In the present application, suppose the low-pass filter adopted has impulse response
bU), transfer function B(A) with sufficiently small bandwidth and suppose A is near an
eigenfrequency 'Yk. The demodulate may be written

Wet, A) = ~b(t - u)X(u) exp {-iAn.

For the signal s(t, 8) of equation (1), the result of demodulating is

Z(t, A) ce ~B(O)~k exp {-~kt} exp {i('Yk - A)t + iok }.

(3)

(4)

Standardize the low-pass fllter by B(O) =2 as we may. Then, from the complex de­
modulate, one sees the following forms for the instantaneous phase function

arg Z(t, A) ce ('Yk - A)t +Ok

and for the logarithm of the instantaneous amplitude function

(5)

(6)

It follows that plots of arg W(t, A) and log IW(t , A) I against t can provide evidence of the
presence of a damped periodicity in a time series of interest. Indeed, successive variations
of the demodulate frequency A lead to parameter trajectories from which Q , 13, I and °can
be estimated in some optimal sense. If the plots (see Figs 1-4) of arg W(t , A) and 10!\e
IWet, A) I are made nearly linear over the record duration T, especially where the signal
amplitude is large, the damped vibration is close to the adopted model. If the plot of W(t, A)
is erratic, there is a suggestion that the record is just noise. If the plots have regular non­
linear behaviour, there is some violation of the basic simple model , perhaps beating between
signal and noise harmonics with nearly equal frequencies, perhaps the injection of new
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energy into the system by applied forces (perhaps an aftershock arrived), perhaps there is
time dependent dispersion.

The slope of the logarithm of the instantaneous amplitude curve givesan estimate of the
decay constant (3,,: the intercept gives the log instantaneous amplitude of the oscillation at
the beginning of the movement. Similarly, the intercept of the instantaneous phase plot
yields the relative phase of the oscillation. In addition, it should be noted that some idea of
the uncertainty of these estimates is given by the variation of the complex demodulate
curves about the fitted straight lines over the selected time interval.

Non-linearregression

Consider first, data generated by a model

Yj =fj(O) + ej,

j =1, ... , J where the Yj are observed, where the fj(O) are known except for the K­
dimensional parameter 0, and where the ej are unobserved, uncorrelated random errors with
mean °and common variance a2

• The least squares estimate of 0 is the value providing the
minimum of the expression

J

2: IYj - fj(O) 1
2

•

;""1

Suppose that the functionfj(O) is differentiable with derivatives

g'k(6) = 3fj(0)
I 30k

k = 1, ... , K . Collect the Yj together into the J-vector y, the fj(O) into the J-vector f(O)
and the 8,k(0) into the Jx K matrix g(O). One means of determining an extreme value of 0
is through the Gauss-Newton iteration procedure

(7)

n =0, 1, 2, . .. , having started with some initial value 0°. (Other procedures are described
in Chambers (1973).) Under regularity conditions this estimate will be approximately
normal with mean 0 and covariance matrix that may be estimated by

[g(On)*g(On)r l 2: IYj - fj(On) 1
2/(1 - K)

j

(8)

(see Jennrich 1969).
In the present case, where the noise is not uncorrelated and K is very large, it seems

appropriate to modify the above approach as follows. Suppose

X(t) = set. 8) + e(t) t = 1, ... , T

where set, 8) is given by equation (1) and e(t) is a stationary noise series with mean 0
and power spectrum leeCA). Define

T
~T(A) = L exp {-IAt}

t=1

T

dIc>.-) = L X(t) exp {-IAt},
t= 1
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(10)

(11)
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0" r.." 21T, with similar definitions for d;(II.), d;(II.). By Parseval's formula

T T 1I (2') 2.) /2L IX(t) - s(t, (1) 12 =T-1 ,I if'!!!" - iI('!!- .
("'1 1=0 T T

Minimizing the left-hand side of this expression is equivalent to minimizing the right-hand
side. Now d;(A)is a sum of the terms

T . T - TL eLk exp {-~kt} cos h'k t +Ok} exp {-IAt} =bkt:. (II. - Xk) + bkt:. (A+ Xk),
("'1

k = 1, .. . ,K, where bk = 1Zak exp {i0k}, Xk= 'Yk + i{3k ' By inspection, the term in t:.T(A - Xk)
has appreciable magnitude only for Anear 'Yk' This means that the minimum of equation (9)
may be obtained approximately by simultaneously minimizing the expressions

EIdie;) - bkt:.TC; - Xk) 1

2

where It. ... ,Ik are disjoint frequency intervals making up the interval [0, 1T], and 21Ti/T, Ak
belong to Ik. In addition, for 21Ti/T in Ik,

T(21Ti) T (21Ti) T(21Ti )de - ee dx - - bkt:. - - Xk
T T T

are approximately independent complex normal variates with zero mean and common
variance 21TT!ee(A). (See Brillinger 1975, Theorem 4.4.1. This approximation seems to work
very well in practice, ibid.)

We proceed by computing the di(21Ti/T) using a fast Fourier transform algorithm,
identifying the intervals Ik from the periodogram of the record X(t) and then estimating
bk, Xk by minimizing expression (10) using a Gauss-Newton iteration procedure. The
covariance matrix of these estimates may be estimated by an expression analogous to
equation (8).

If we think of {3k as fractions of T, say ~k =<Pk/T as seems reasonable in practice (for
otherwise the signal s(t, 8) would quickly become a negligible part of X(t) as t increases)
then if Cxk, ~k' ik' 5k denote the least squares estimates it can be shown, by direct extension
of the arguments of Hannan (1973) that

var &k - r '41T!ee('Yk)l2(<Pk)J(<Pkr '

var ~k - r I41T!ee('Yk)a;/ l o(<Pk)J (<Pkr l

var ik - r 341T!ee('Yk)a,/ Io(<Pk)J (<Pk )-1

cov {ak, ~k} - r 141T!ee('Yk)a,/ II(<Pk )J(<Pkr l

COY {i'k, 8k } - r 241T!eeC'Yk)ai/ I1(lPk)J(<Pk)- 1,

k =1,. " ,K with all other covariances asymptotically negligible, where

u» = J: u l exp (- 2<pu} du

1= 0, 1,2

J(<p) = lo(lP)/~(lP) - 11«(/1)2,

491
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Expressions analogous to those of equation (11) are derived for the case of ~k =0, k = 1, ... ,
K in Whittle (1954), Walker(1971), Hannan (1973).

In the case that a separate record of the noise process, e(t), is available, it may be used
to estimate !elkr) directly and alternate estimates of the variances of interest may be con­
structed through the formulas of equation (11). This should be done whenever possible as
it seems that the variance estimates should be more robust than those produced by the non­
linear regression. Wewere unable to do this in the present case of the Trieste data.

Numerical results

The steps outlined in the paper were applied to the Trieste record of the 1960 May 22
Chilean earthquake. The data were digitized at a time interval of 2 min and tides were
removed. The number of data points was 2548 points. The periodogram of the record was
examined for peaks. Demodulation was carried out at the peak frequencies (Bolt & Currie
1975). A representative selection of the results is described below. The coefficients bet)
of equation (3) were taken proportional to 1+ cos (nulL) for Iu I < L and were 0 otherwise
with L = 200. (For a lengthy stretch of data , it would have been advantageous to employ
a fast Fourier transform in the computations (see Bingham et al. 1967».

Consider first the demodulates for 014 shown in Fig. 1. The instantaneous phase remains
almost constant until about 25 hr from the onset. This is followed by small variations in
phase until almost 40 hr when the phase increases sharply, becoming erratic at about 50 hr.
There is thus evidence that there is almost a pure harmonic, at about the demodulation
frequency chosen, for at least 25 hr and perhaps for another 10. The behaviour of the
instantaneous amplitude is consistent with the phase information; a straight line equation (6)
might well be fitted to the first 25-35 hr and a decay rate (3k measured. After this time the
amplitudes become erratic with large fluctuations which suggest the level of background
noise has been reached. Some variation in the fitting of the line equation (6) even to the first
part of the spectrum is, however, clearly permissible and numerical fits of straight lines
indicate slopes corresponding to Q values between extremes of 300 and 400 are perhaps
allowable. If a longer period of recording were used, however, Fig. 1 indicates that a lower
decay rate might be calculated (i.e., a false high Q). Comparison with similar plots shows

Instantaneous Amplitude

:1 j
• ~O=-- -'-- ---'- 1....- _

Instantaneous Phose

~~rl
zO 40 ~ eo

Time since Onset in Hours

Figure 1. Results of complex demodulation for the mode .T. at a demodulation period of 1303 .15 s
from the N-S horizontal Trieste record of the 1964 Chilean earthquake. The upper plot gives the log i o

instantaneous ground amplitude as a function of time in hours from the beginning of the record. The
lower plot shows the variation in instantaneous phase between - 1T and 1T with time in hours .
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oT.
Instantaneous Amplitude

'::1 ]
-1.09

rnstontoneol,Js Phose

:°1 I20
,

0 40 60 80
Time since Onset In Hours

Figure 2. Complex demodulation for oT. at a demodulation period of 925.65 s for the Trieste data.

that the oT4 mode gives one of the more stable instantaneous plots calculated from the
Trieste data. In this regard it should be noted that this eigenvibration is well separated from
neighbouring torsional and spheroidal modes (see Fig. 1, Bolt & Currie 1975) so that no
interference is expected.

Now, consider the similarly isolated oT6 mode, demodulated in Fig. 2. Here there is even
more stability of instantaneous phase and amplitude than for oT4• There is only a slight drift
in phase over the first 65 hr. (This slight drift may indicate that the demodulation frequency
adopted could be improved slightly.) The decay for oT6 is clearly similar to that for oT4 (note
different vertical scales), and a straight line can be fitted to the instantaneous amplitude up
to 60 hr with comparable precision. Overall, we would expect the estimate of the oT6

frequency to be more reliable than that of oT4 •

In Fig. 3, the instantaneous spectra for the demodulates of the spheroidal mode 089 are
shown. In this case, apart from a hiatus near the beginning of the record, the phase is almost
constant near -O.71T throughout the record. We thus have an assurance that we are
measuring a single coherent decaying sinusoid throughout most of the recording. Further
study of the instantaneous amplitude confirms this, although there is a more rapid decrease

In s ta n t ane ous Amplitude

I
14Zr

92r

42l~_-----,-_-.L__~~
lnstantdneous Phase

=,
20 40 60 80

Time since Onset in Houts

Figure 3. Complex demodulation for oS. at a demodulation period of 634.90 s for the Trieste data.
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Instantaneous Amplitude

In stantaneous Phose

o

~ ...
20

I

40

Figure 4. Complex demodulation for oT is at a demodulation period of 391.45 s for the Trieste data.

in amplitude after about 60 hr . Some allowance for this change can be made in estimating
the decay rate 13k' The observed Q is clearly significantly higher for 089 than for 014 and oT6

and appears moderately well resolved in the sense of the straight line fit equation (6). The
explanation of the change in slope at 60 hr remains unknown, but presumably the effect of
interfering signals (noise?) has become more important.

The fourth demodulate presented (Fig. 4) is an illustration of a mode for which the
instantaneous phase plot detects major difficulties in resolution. Even 20 hr after the onset
the phase angle begins to change rapidly and thereafter cannot be followed. (Note that phase
moves continuously from the top to the bottom of the plot.) The conclusion is that only the
first 20 hr of amplitudes should be used to estimate Q for this mode. A mean Q value of
only about 190 is indicated by the slope of a fitted line. Thereafter the amplitude decays
more slowly with large fluctuations. It is interesting that the spectral peak of OT !8 is very
near that of its neighbour 08\7 and it is feasible that some cross modulation (or leakage)
is occurring.

Table 1 gives the non-linear least squares estimates of the periods, Q-factors, and relative
initial amplitudes and phases for the modes that complex demodulation suggested were truly
present and were not multiple. The figures in brackets below give estimates of the
corresponding standard errors. (The model was reparameterized to estimate eigenperiods,
rather than frequencies, as these seem to be the more usual values discussed .)

The iteration scheme converged exceedingly rapidly. In the case of the modes indicated,
the results presented are those obtained after 10 iterations. The case of split peaks might
have been handled by fitting the sum of two decaying cosine waves within a frequency
interval Z;

Conclusions

The present paper demonstrates the advant ages of the complex demodulation technique
for the spectral analysis of geophysical time series composed of damped harmonic terms in
the presence of noise. The discussion here focused on the critical problem of improving
estimates of amplitudes, frequencies and Q values for the modes of damped eigenvibrations
of the Earth. When comparison is possible (Bolt & Currie 1975), it is found that recent
estimates of eigenfrequencies for some modes (e.g., OT14 , oT\7) differ by up to 0.5 per cent.
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Table 1. Spectral estimates f or the Trieste data (standard errors in parentheses).

Complex Initial
Demodul ate Ampli t ude Pha.se

Mode Pe r i od (s e c ) Q ( a r b i t r a ry unic s ) ( rad i a ns )

oT4
130 3 .1 50 347.8 30.64 . 216

( .697) ( 20 . 3) (4.63) ( . 151)

oT 5 10 78 . 816 185 . 0 62 . 01 1.973
( .371 ) (23 . 6) (8 .07) ( . 130 )

0
5

6
96 3 . 00 5 336 .2 23 . 41 1. 094

( .267) ( 6 2.7) (4 . 30) ( . 184 )

oT6
925.65 1 357. 2 25 .55 . 160

( . 332 ) (91.4) ( 6 . 43) ( . 252)

oT7
81 8 . 377 124 .8 12 7 .38 - 2 . 624

(.4 27) ( 16 .2) (17.35) ( . 137)

oT8
737 .7 91 199. 6 11 9.37 2.786

( . 129) (1 4 .0) (8 .7 4) ( .07 3)

,,58 707 .4 58 376 . 2 46 .73 2. 764
( .202 ) (81. 0) ( 10 . 10) ( . 21 7)

0
5

6
659 . 908 18 4 . 4 125. 91 - 2. 9 21

( . 20 7) (21.3) ( 15.36) ( . 1 22 )

0
5

9
63 4 .087 658.1 23. 18 - 2 .155

( . 086) ( 11 7 . 3) (3 . 92 ) (. 169)

oT10
619 . 20 2 187.6 160 . 62 - 3 . 049

( . 13 4 ) (15.2) (13 .77) ( .086)

oT13
506 . 251 230. 3 14 0.77 . 532

( . 134) ( 28. 1) (17 . 88) ( . 12 7)

2
58 486 . 827 159. 4 106.21 - . 944

(. 11 8) (12 . 3) (9 .33) ( . 088)

oT15
452 .4 16 172 . 2 126. 21 .040

( . 109) (14 . 3) (11. 41) ( .091 )

oT 16 429 .604 214. 5 155.35 2 . 940
( . 141 ) (30. 1 ) (22.94) ( .1 48 )

oT18
391. 447 188 . 3 119 .32 1. 92 9

(. 088) (16.0) ( lO. 76) ( . 09 1)

oT20
359 . 399 248 . 7 84 .1 5 - 2. 558

( .0 41) (14. 2) ( 5 .0 5) ( .061)

However, it is difficult to combine the independent estimates because of the lack of com­
parable probability models. It is recommended that the present method be used so that
pooling with appropriate weights can be made.

Studies of terrestrial eigenspectra have now advanced to the stage when analysis of a long
record of free oscillations must provide more than a set of mean eigenfrequencies. Not only
does the rotation and ellipticity of the Earth produce frequency multiplets about the central
(degenerate) frequency, but lateral inhomogeneities split the peaks also. Earthquake sources
of various types and at various locat ions generate at different seismographic stations
different relative strengths in the multiplets. As well, variat ions in long-period noise spectra ,
activation of new sources, and rota tion of the nodal lines, relative to the receiver, all produce
fluctuations which complicate the meaning to be attached to a simple mean eigenfrequency
estimate. It is demonstrated in this paper that the plots of the real and imaginary parts of the
complex demodulates of each mode provide a powerful way to detect and explore such
fluctuations. The eccentric behaviou r is not 'swept under the rug' as occurs with most
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traditional methods. Already some progress in the geophysical interpretation of these plots
has been made (Hansen 1978).

Formulae in the present paper enable programs to be written to compute relatively
quickly the complex demodulates and, by non-linear least squares, variances of the spectral
parameters. By repetition at successive steps in the demodulating frequency, the set of
instantaneous amplitude and phase plots allows a decision to be made on the best eigen­
frequency resolution available from the data and the quality of the damping factor Q and
amplitude of ground motion that can be obtained. Clearly more experience with the method
is needed before specific rules for decisions can be given.
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statistical Inrerence ror
Stationary Point processesl

by David R. Brillinger

The University of California, Berkeley

types
I. Point Process Para~eters

Consider isolated points of r difrerent
randomly distributed along the real line, R.

Introduction
This work is divided into three principal

sections waich also correspond to the three lectures
given at Bloomington. The topics cover, some userul
point process parameters and their properties,
estimation or time domain pa.rameters and the
estimation of frequence domain parameters. The
work may be viewed as an extension of some of the
results in Cox ~~d Lewis (1966, 1972) to apply to
vector-valued processes and to higher order
parameters. It wIll proceed at a heuristic level
rather than rormal. A fonnal approach may be found
in Daley and Vere-Jones (1972) for example. The
notation Sr will be used for S f(x) d~(x), ~ being
Lebesgue measure. A general lemma concerning the ex­
istence or consistent estimates is given in Section
IV.

1Prepared while the author was a Miller Research
Professor and wIth the support of N.S.F. Grant GP­
31411.
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Examples that We have in mind include, the time3 of
heart beats or earthquakes in the case r ~ 1, the
times of nerve p~lses released by a netwvrk of r
nerve cells in the case of general r. Let Na(A)
denote the number of points of type a falling in

the interval A C R and let Na(t) = Na(O,tJ for a =
l, ••• ,r.
1. Suppose

Pr-ob (point of type a in (t,t +h]} -P a(t)h
as h 1 0 • Pa(t) provides a measure of the intensity
wIth which points of type a occur ~ear t. We can
often conclude that

2. Suppose, for t
l

~ t 2

. Prob (point of type a in (tl, t l + hI J and point of
type b in (t2, t 2 + h2 ]}

as hI' h2 10. Pab(tl,t2) provf.ce s a measure of the
intensity wIth w~1ich points of type a occur near .
t l and simultaneously points of type b occur near

t 2 •
A related usefUl measure is provided by

Prob (point of type a in (t1 , t l + h J I po Lnt of
type b at t?}
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500



for
a , b

STATISTICAL INTERFERENCE

as h I O. The ratio Pab(tl,t2)/Pb(t2) is seen to
provide a measure of the intensity wIth which type
a points occur neal" t l , given that there is a type
b point at t 2- In the case that type a points are
distributed independently of type b points,

Pab(tl,t2) = Pa(tl)P~(t2)' and the ratio becomes
Pa(tl), the first order intensity. The functio~

Pab(tl,t2) is like the second order moment functio~

of ordinal"y time series; however in practise it
seems to be much more useful as it has a further
interpretation as a probability. Often it is true
that

t t
E Na(t) Nb(t) = So Io Pab(tl,t2)dtldt2

t t
= Io JoPab(tl,t2)dtldt2 +

t
J Pa(t) dt for a = b
o

3. Suppose next that, for tl, ••• ,tk distinct and
vl, ••• ,vr no~-negative integers wIth sum k

Prob(type a point in each of (tj,tj+hjJ,

j = r Vb + 1, ••• , r ~ and a = l, ••• ,r}
b<a b sa

(v1)···(v)(t t)h ~- p r 1'···' k l···-K (1)

as hl' ••• '~ I 0; k = 1,2,.... (An alte~ate

notation, consistent wIth the cases k = 1,2 above is
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Prob{type a. point in (t .,t.+ h.1 j = 1, ••• ,k}
J J J J,

- Pal••• ak(tl,···,tk) hl···~

as hl' ••• '~ ! 0; k = 1,2, •••• ) The function

p(\ll)···(\lr) is called a prodtwt d€~'1s-i..ty 0l or.der k ,

Such a function was introduced by S. O. Rice in a
particular situation and by A. Ramakr-Lshnan in a
general situation, see Srinivasan (1974). No claim
is made that the probability in (1) always .dep ends

on hl, ••·",hk in such a direct manne r , Rather it is
the claim that this happens for an interesting class
of exailples. Brlllinger (1972) gives an expression
for

E N (tl ) ••• N (tk)
a l ~

4. The probability generating functional of the

process ~(t) = (Nl(t), ••• ,Nr(t)} is defined by

G[Sl' ••• '~r) == E[exp(! loggl(t) dNl(t) + ••• +

I log ~r(t) dNr(t)}]

for s~itable functions ~l •• o~r. Writing it as

r
ECfT rr (1 + (~(T)-l)}]
a=l T type a point a
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where we define

This functional is of use in comp~ting probabilities
of interest for the process. For example setting

~a(t) = za for tEA

= 1 for t ~ A

jl jr
and determining the coefficient of zl ••• zr we
see that

•

v -jr r

(2)

We may likewise determine conditional pro1uct
densities such as
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.eo)/(2)

These conditional product densities are useful in
statistical inference. They provide likelihood
functions and also allo", the investigation of the
distribution of statistics conditionally on the
observed number of points. (Were N(A) = 0, one
wouldn't want to claim much, )

The integrated product densities give the
factorial moments of the process. For example,

if N(v) = N(N-l) ••• (N-v+l), then

(VI) • •• (vr)
E Nl(A)(v ) •••Nr(A)(v ) = Jp

1 r Ak

Also of use are the c~~lant densities,
(VI)··. (v r)q (tl, ••• ,tk) given by

V ir·
1

o ••
log G[~1,··o'~r1 = ~ --v~l~~~~

vl, ••• ,vr 1

(3)
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They measure the degree of dependence of increments
of the process at different t j•

Certain other conditional product densities
are of use. We mention

Prob(type a point in each of (tj,tj+hjJ, j =

t vb + 1, ••• , t vb and a = 1, ••• ,r\NI(O} = 1}1
b<a b~

and for 't"l' ••• ' 't"k ~ t

Prob(type 1 point in (t,t+h] I vI points of type
1, v2 points of type 2, ••• at 't"l' 't"2' ••• , 't"k
respectively}fn

(Vl +l ) (v2) · · · (v )
...., p r (t,'t"I,'t"2' ••• ' 't"k)1

(vI)···(vr)
p ('t"l,···,'t"k)

If all points up to t are included, this becomes the
complete intensity

lim Prob(type I point in (t,t+hJ I N(U), u ~ t}
h~O ....,

5. Certain probabilities and moments are of special
interest. We list some of these.
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(i) the renewal functions

Uab(t) = E{Na(t) \ Nb(O} = l} for t > 0

t
= J Pab(U'O) du / Po(O) a,b=l, ••• ,r.

o

The renewal density is Pab(t,O)/pb(O) •

the forward recurrence time distributio~ is
given by

Prob{event before or at t}
= Prob{time of next event from 0 is ~ t}
= 1 - Prob{N(t) = O}

= 1 _ ~ .i;.;lv r p(v)
v~ v s (6,t]v

(iii) the survivor function (or distribution of
lifetime)

Prob{time of next event from 0 is > t I N[O} = I}
= Prob{N(t) = 0 I N{O} = l}

= p(O)-l ~ (~~)V J p(V+l)(O,.o.
V~ • (O,t]v

= 1 - F(t) say.

(iv) the hazard function or force of mortality

~(t) = f(t)/(l - F(t»

- Prob{point in (t,t+hl I N{O} = 1,

N(t) = O}/h

where F(t) is given in (iii) and f(t) is its
derivative.
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(v) the variance time curve

var N(t) = E,N(t)(N(t) - 1) + E N(t) - (E N(t))2

t t (2) t
= J J p (tl,t?)dt l dt2 + J p(t) dt
00- 0t

(J P (t) dt) 2

o

(vi) the Palm functions

ql(jl, ••• ,jr ; t)

(vl+l)(v2) · · · (Vr)
J vl+••• +vr

P (0' •• 0

(0, t 1

6. We next indicate the values of a few of these
p~rameters for some examples of interest.
Example 1. The Poisson process with mean intensity
p(t)oThe numbers of points in disjoint intervals
Il,o •• ,Ik are independent Poisson variates with
means P(Il), ••• ,P(Ik ) respectively where P(I) =
J p(t) dt. Here

I

and so

G[E] = exp(J(~(t) - 1) p(t) dtl
1 .

Prob (N(A) = j} =~ P(A)J exp(-P(A)}
J •

(k) . 'J ~ ~
p (tl,.oo,tk I N(A) = J) =~:~•••~
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If P(t) = stp(t) dt and Nt(s), s E R+ is a
o

Poisson process with mean intensity 1, then the
general process may be represented as

N(t) = Nt (P(t))

Example 2. The doubly stochastic Poisson process.
Suppose (xl(t), ••• ,xr(t)}, t E R+, is a process with
non-negative sample paths, moments

m(vl)···(vr)(tl,···,tk) = E(Xl(tl)···Xl(tvl)

x2(tv +l)···xr(tk)}1

and moment generating fUnctional

M[6l , o•• ,6r] = E[exp(!Al(t)xl(t)dt + ••• +

Jer (t )xr (t ) dt J1

Suppose after a realization of this process is
obtained, independent Poissons wIth mean intensities
xl(t), ••• ,xr(t) are generated. Then

(v1)···(vr) (v1)···(vr)p (tl, ••• ,tk) = m (tl, ••• ,tk)

G[~1,·.o'~r1 = M[~1-1'···'~r-1J

= E[exp(I(~1(t)-1)xl(t)dt+••• }1

If Xa(t) = ~ Xa(t)dt, and Ni(s), ••• ,N~(S) are

independent Poissons with mean intensities 1, then
this process may be represented as
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This process seems to be useful for checking out
general formulas that have been developed, such as
(2) and (3), among other things.
Example 3. The cluster process. Suppose Ni(t), ••• ,
N;(t) is a primary process of cluster centers with
probability generating functional G[~l' ••• '~r].

Suppose that secondary points are generated in
independent clusters centered at the points of N' •
Suppose that the p.g.f. for cluster points of
type a centered at t is Ga[~ltl. Then the p.g.f.
of the overall process is

G[~l'···'~r] == E(n~l[cr~+"~k]···n ~r[crj+"jklJ
j,k j,k

== E[~Jl[~llcr~] ••• ~ GrEsrlcrjJJ

== G[Gl[~ll·J, ••• ,Gr[~rl·]J

If r == 2, and the first component is the primary
process and the second component corresponds to
clusters of one member, then we have a process of
the character of the G/G/oo queue.
Example 4. The renewal process. Here the points
correspond to the partial sums of a random walk
with positive steps. Suppose r = 1, t l < t 2 < •••

< t k, then
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p(2)(t
3,t2)

p(1)(t
2)

the case in
is, probabi1­
translations

Pab(t1-t2)

(v1)···(vr)
p (t1-tk , · · · ,

t
k

_
1-tk

)

DAVID R. BRILLINGER

p(k) (t
1,

••• ,t
k)

= p(l) (t
1)p(2)

(t2,t1)

p(1)(t
1)

p(2)(t
k,tk_1)

p(1)(t
k

_
1

)

where p(l) and p(2) satisfy renewal equations, see

p. 35 in Srinivasan (1974).
Example 5. Zero crossing processes. Expressions
may be set down for the product densities of point
processes corresponding to the zeros of random

functions, see Leadbetter (1972).
7. We now turn to a consideration of
which the process is stationary, that
ity distributions are invariant under
of t. This means for example,

Pa(t) = Pa

Pab(t1,t2) =

(v1)···(vr)
p (t1 , · · · , t k ) =

and if SU denotes the shift transformation,
SU~(t) = ~(t+u), then

As the process has stationary increments, it has a
spectral representation

66

510



STATISTICAL INTERFERENCE

co

Na(t) = J[(exp(itA}-l)/(iA)] dZa(A)
_co

for a = l, ••• ,r. We may define cumulant spectra of
order k by

(\.11)··· (\.Ir)6(Al+••• +Ak) f (Al, ••• ,Ak_l)dAl••• dAk

= cum(dZl(Al),· •• ,dZl(A\.I ), ••• ,dZr(Ak)}
1

with 6(e) the Dirac delta function. Alternately,

making use of product densities, we might define the
power spectra by

faa(A) = (2TT)-1[Pa + Ico(Paa(u) - p;)exp(-iAu)dA1
-co

-CO<A<CO, a = l, ••• ,r, since

and cross-spectra by

co
fab(A) = (2~)-lJ (Pab(u)-PaPb) exp(-iAu)du

_co

-CO<A<C:O, 1 !.: a f b s r, since

The functions qab(u) = Pab(u) - PaPb tend to 0 as
luI ~ co and are integrable for many processes
(processes whose distant increments are only weakly
dependerrt , ) In this connect Lon we set down the
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mixing condition,

Assumption I. B(t), t E R, is an r vector-valued
stationary point process satisfying (1), whose
cumulant densities of (3) satisfy

(vl)···(vr)J;k:i Iq (ul,···,uk_l) !dul···dUk_l < =

The second-order spectra of
fab(A), possess many of the same
spectra of ordinary time series.
some differences, we mention that

lim f (A)
\AI ....= aa

for mixing point processes instead of the 0 limit
for mixing ordinary time series.

The spectral representation ~ay be used to
relate the point process to the associated ordinary
time series

~(t) = h-1E(t-~, t +~) = J exp (iAt)[ (sin hA/2) /

(hA/2) Jd~(A)

t E R. This shows, for example, that the cross-
spectrum of the a-th and b-th components of !(t) is

8. A key indicator of the appearance of the process
of points of type 1, say, is provided by
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h small

the empirical intensity with which points of type
1 are seen to occur near t. Models for the process
may usefully involve models for this variate. A
simple statement says

Prob (point of type 1 in (t, t+h)} - Plh

for h small. A more complicated statement is

Prob(point of type 1 in (t,t+h1 I point of type
a at T}

- Pla (t-T)h/Pa

In the case that the process 1, near t, is
independent of the process a, near T, this last is
-Plh, the marginal intensity. This hap~ens often
as It-TI ~~. An even more complicated statement
involves

Prob(point of type 1 in (t,t+h1 I vl points of type
1, v2 points of type 2, ••• at Tl, T2 , ••• , Tk
respectively}
(vl+l)(v2)···(vr)

- p (t-Tk,Tl-Tk,···,Tk_l-Tk)h/

(vl)···(vr)
p (Tl-Tk,···,Tk_l-Tk)

Suppose r = 2. A useful simple model here is;
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Prob[point of type 1 in (t,t+hJ I N2(U),
_CXl<u<c. J

- {~ + J a(t-u) dN2(U)}h (4)

- (~+ ~ a(t-Tj)}h
j

where the Tj are the times of the events of the
second process. This model allows the intensity,
near t, of points of type 1 to be affected in a
direct maxL~er by points of type 2. If the system
is causal, then a(u) = 0, u < O. The second process
may excite or inhibit the first process depending
on the sign of a(u).

The model implies, for example,

(5)

showing that u may be interpreted as the intensity
with which type 1 points woald occur where P2 = o.
Also

If

A(A) = I a(u) exp{-iAu)du

then (5) and (6) lead to
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suggesting how the para~eters ~, A(A) might be
identified. If P22(u) is constant, as in the
Poisson case, then (6) leads to

and a(t) may be measured directly.
As an example of the model (4) we mention the

G/G/oo queue with Nl referring to the process of
exit times, N2 to the process of entry times, a(-u)
referring to the density of service times and
~ = O. Clearly, here

Pro~(customer leaves in the interval (t,t+h) I
N

2
(U) , _00 < u < ~}

- (~a(t-"j)}h
J

An interesting problem is that of measuring the
degree of association of two point processes. A
measure suggested by the preceding model is the
co~erence

see Brillinger (1974a). This parameter also appears
as a measure of the degree of linear predictability
of the process Nl by the process N2• It satisfies

2o ~ lR12 ( A) lSI. Other measures of association
could be based on the nearness of the functio~

P12(u) - PlP2 to O.
We mention next the self-exciting urocesses

introduced by HaWkes, see Hawkes (1972). For
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r = 1, these satisfy

Prob(point in (t,t+h] I N(u), u ~ t)
t

- (~ + J a(t-u) dN(u))h

- (~ + ~ a(t-~j))h
~jst

If we have more than one process, then we
could also set up multivariate linear models and
define partial parameters. As another extension,
we could consider non-linear models such as

Prob(point of type 1 in (t,t+h] I N2 (U) , -=<u<=)

-{aO + J al(t-u) dN2 (U) +u~ a2(t-u,t-v) dN2 (U)

dN2 (V) }h •

More details concerning such extensions may be f~~nd

in Brillinger (1974b).

9. We end by mentioning that some, possibly
unexpected, relationships exist between certain of
the parameters that have been defined. These are
the Palm-Khinchin relations,

=
Prob(N(t) S j} = p ! Prob(N(u) = j I N{O} = l}du

t t
= I-pIa Prob(N(u) = j I N(O} =l}du

Prob(N(t) > j I N(O} = I} = 1 + n+(p-l ~ (j+l-k) 0

j=O

Prob (N(t) = k}}

E(N(t)(N(t)-l) 000 (N(t) - k)} =
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= (k+l) P Jt E(N(u) (N(u) - 1) ••• (N(u) - k + 1) I
o

N(O} = I} du

Such relationships are discussed in Cramer,
Leadbetter and Serfling (1971).

In this first section of the paper we have
sought to provide a framework within which
stationary point processes may be handled when the
only element of statistical independence is
asymptotic.

II. Estimation of Time Domain Parameters for
Stationary Processes

We consider the estimation of certain time
domain parameters given a realization of a process
!(t) over the interval (O,TJ, i.e. given the
observed times of events in (O,TJ. We begin
with the first order mean intensities p ,a
a z:: l, ••• ,r.
1. Obvious estimates of the Pa' a = l, ••• ,r, are

the

a = l, ••• ,r. In connection with these ~e have,

Theorem 1. Suppose the process satisfies
Assumption I. Then [Pl, ••• ,PrJ is asymptotically

as T .. cr.
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This theorem, as are those given later, is
proved in the final section of the paper. The
estimates are asymptotically normal. The asymptotic
variance of p is 2~ T-lf (0). Were increments of

a aa -1 '
the process uncorrelated, this would be T Pa. We
will see how to estimate f (A) next section. Wereaa
T large, we might set T = JU and take

J-l
(TU(J-l))-l L: (N (jU,(j+l)UJ -N(0,TJ/J)2 ,..,

j=O a

2n T-lfaa(O)X~_l/(J-l) •

The ratio 2nf (O)/p is ~seful in describingaa a
certain aspects of the process Na• If it is
greater than 1, the process is said to be clustered
or underdispersed. If it is less than 1, the
process is called overdisperaed.
2. In the second order case we are interested in
estimating

Pab(u) "" ,Prob(type a in (t+u,t+u+hl] and tiype b in

(t,t+h2]}/(hlh2) for u # 0 and

Pab (u)/pb - Prob (type a in (t+u, t+u+h] I type b

at t}/h for u # O.
It seems natural to base estimates of these on

J~b(U) = #((j,k) such that u - e
and 'l"j .,. 'l"~}

a b
< 'l"j - 'l"k < u + S

(7)

for aome small bin wldth 26 > O. On the CDC 6400,
this statistic can be computed about twice as fast
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as a direct convolution based on N(T) values.
In connection with this variate we have,

Theorem 2. Suppose the process ~ satisfies
Ass~~ption I and that p b(·) is a continuous

a T
function for a,b = l, ••• ,r. SUppose Jab(u) is
given by (7) with e = 8 depending on T. Suppose

ui" uk with lu~ - ui'IT~ 28T for 1 S k < k' S K.

Then as T .. ~, (i) if 8T = LIT, L fixed, the
T T T

variates J a b (ul),···,J b (uT) are asymptotically
1 1 ax K K .

independent Poissons with means 28TT P~bk(uk)'

k = l, ••• ,K and (ii) if aT .. 0, but aTT .. 00, the
variates are as~nptotically independent normals with

variances 28TT P~bk(uk)' k = 1, ••• ,K.

The two asymptotic distributions are consistent
for large ~TT, becoolse a Poisson variate with large
mean is approxlmately normal. The result in (i) is
not unexpected because {Ie are counting "rare"
events. It is surprising that such a general result
is so simple however.

The theorem leads us to estimate Pab(u) by

and to approximate the distribution of this variate
by

(2STT)-1 P(28 TTPab(u)) or N(Pab(u), (28 TT)-1

Pab (u) ),

where P(~) here denotes a Poisson distribution with
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mean U. This estimate should prove reasonable so
long as Iu 1« T. In the case that u has noticeable
magnitude compared to T it might be better to

replace J~b(u) by T J~b(u) /(T - lui) or by

J;b(u) + PaPb1u\2ST (8)

The use of the variate of (8) is suggested by the
usual estimate of the autocovariance function of an
ordinary time series. Its construction is based on
the observation that qab(u) ~ 0 as lui ~ ~ for many
processes. It should have better overall mean­
squared error properties for such processes.

We remark that we are here essentially
carrying out histogram construction. Considerations
of that topic are relevant here. For example, we

~ht choose to construct a rootogram based on
Jab(u) to get stable variance. (If there may be

some cells with low counts, we might follow Tukey

and use J2 + 4 J~b (u) ). The variate JPab (u) I will
have approximately stable variance of (8STT)- •

The :heorem likewise leads us to estimate Pab(u)/Pb
by J;b(u)/(2STNb(T)) and to approximate the
distribution of this estimate by

(2STT Pb) -1 P(2STT Pab (u)) or N(Pab (u)/~,

(2STT p;)-IPab(u)).

The variance of JJ;b(u)/(2STNb(T)) will be
approximately stable and may be estimated by
(8STNb (T))-1.

The above results may be used to set
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approximate confidence intervals and multiple
confidence intervals for the estimates. In the
case that the increment of the process N isa
independent of the increment of the process Nb, u

time units away, Pab (u)/Pb = Pa. We may examine
this hypothesis by plotting

JJ;b(u)/(2STNb(T)) , JPa ' JJ~b(u)/(2eTNb(T)) :i:

on the same graph for example. This sort of graph
r

is useful in checking for some degree of association
between the process Na and the process Nb•

What we have been doing may be viewed as
estimating the probability density function of the
times between a events and b events from the
observed differences

Cox (1965) suggested that one could also consider
"window estimates. II Let W(u) be bounded and
absolutely integrable. Let WT(u) = W(u/S T) for
the sequence of scale factors BT, T = 1,2, ••••
It is now natural to base estimates on

or T( a b)Jab (u ) = ~ W u - 'l"j + 'I"k
a~ bo <'I"j'"'l"ksT

= II WT(u-a+'I")dNa(a) dNb('I")
O<'Tia~

(The previous J~b(u) corresponds to W(u) = 1 for
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lui < 1.) The variances of the asymptotic
distributions of (ii) of Theorem 2 are now replaced

by $TT Jw(U)2du Pab(Uk), k = 1,.oo,K. By direct
computation we see that

T
E JTb(U) = J (T_lpl)WT(u_p) Pab(p)dP

a -T

- $T(T - [u I) (Pab (u) JW( p)dp - $TP~b (u)

JpW(p)do + aip~b(u)Jp2W(P)dP/2 +•• }

suggesting that bias may become a problem when

Pab(O) varies substantially in the neighborhood of
u or when u is of appreciable magnitude compared
to To We have already discussed one modification
to handle this last case.

The asymptotic distribution determined in
Theorem 2 is an unconditional one. In practise the
worker may feel that the conditional distributio~,

conditional on the observed Na(T), Nb(T) is the
appropriate one. In I.4 we set do~ the form of
product densities in the conditional case. It
sh~uld be possible to make use of these to determine
the form of the large sample conditional distribu­
tion.

Cox and Lewis (1972) discuss some aspects of
the problem of estimating second-order product
densities for a vector-valued process.
3. In the k-th order case we might consider the
statistic
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T T ~T
Jal ••• ~(Ul,··o'Uk_l) = J .;.J W (u1-crl+crk,···,

uk_l-crk_l+crk) dNal(crl) ••• dN~(crk) (9)

where WT(u1, ••• ,uk_l) = W(ul/ST' ••• 'Uk_l/ST)
and the ,I in (9) indicates that the range of
integration is over distinct cr j •

Theorem 3. Suppose the process ~ satisfies Assump-
tion I and that p a (.) is continuous at

a l • • • k
(ul, ••• ,uk_l). Then as T ~ ~, (i) if 8~-lT = L,

L fixed, if W(ul, ••• ,uk_l) = 1 for Iujl < 1, the
variate of (9) is asymptotically Poisson with mean
(28 T)k-IT p (ul, ••• ,uk_ l) and (ii) if

al···ak
aT ~ 0, but a~-lT ~ ~, the variate is asymptotically
normal with mean

T T T
TIT··· ITw (uI-Pl,···,uk_1 -~k-l)Pal ••• ak

(Pl, ••• ,Pk_l)dPl ••• dOk_l (10)

k-l rr.T2 ( )and variance aT T J" Pal ••• a
k

ul' ••• 'Uk_ l •

The integral of (10) may be expected to be near

suggesting the consideration of the estimate
~ T
Pa a (ul,··.,Uk 1) = J a a (ul,···,Uk 1)I

1 • •• k - 1 • • ·k -

(8~-1 Tk- l SW)
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4. Let A denote the interval (O,TJ and suppose that

the points observed in A are: Yl of type 1 at

t l, ••• , t y ; ••• ; Yr of type r at ••• , t k• Then,
using the ~xpressions of Section I, the likelihood

function here is B/C where

\I ~Yr r

(tl, ••• ,t ; ••• :t y +l,···,t + ; ••• : •••
Yl 1 Yl Y2

and

C ==

Let us consider the approximate value of the

likelihood function, B/C, for large T. In the case

of large T

suggesting that for large T, the likelihood function

is approximately
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4. In this section we will propose estimates of the
parameters described in Section I.5 in the case
that a realization of a stationary process is
available for the time interval (O,T].
(i) We begin with the renewal fUnction,

t
Uab (t) = E (Na (t ) I Nb [ O} = 11 = l pab (u) du / Pb

A natural estimate to consider is

" a bUab(t) = #[t ~ ~j - ~k > O}/Nb(T)

T-t t
= J J dNa(U+W) dNb(u)/Nb(T)

o 0

To determine the asymptotic distribution of Uab(t)
we will need the joint asymptotic distribution of

#(.} and Nb(T). It is fairly clear that under
Assumption I, the variate is asymptotically normal
with asymptotic variance that is O(T-l). However
the form of the asymptotic variance seems very
messy. In practise one would probably have to
estimate it by segmenting the data.
(ii) Let us next estimate the survivor fUnction

1 - F(t) = Prob[N(t) = 0 1 N(O} = I}

= Prob[~i+l - ~i > t}
= 1 - Prob [ ~ i +1 - r i s t}
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This last suggests the estimate
,.
F(t) = #[Ti+l - Ti $ t ; i = 1, ... , N(T)-l}/N(T)

This estimate is based on the interarrival times

Xi = Ti+l- Ti• The process Xi' i = 0,:: 1,... is
stationary. If it is mixing in some sense then

,.
1 - F(t) will be as~ptotically normal, see Deo
(1973), for example. This last suggests the
interesting problem of relating a mixing condition
for a stationary point process to some mixing
condition for the corresponding process of inter­
arrival times.

(iii) The following is a plausible estimate for the
hazard function, with BT a small positive number,

~(t) =#[t-BT< Ti +l- Ti <t+BT; i=l, ••• ,N(T) -l}

2 BT#[Ti+l - Ti > t ; i=l, ••• ,N(T) -l}

(iv) Next consider the estimation of the forward
recurrence time distribution

= O}G(t) = 1 - Prob[N(t)

= p Jt (1 - F (u)) du t
= P[ (1 - F(t ) ) t 1 + PJu dF (u )

where we use a Palm-Khinchin

I.9 and integrate by parts.
suggests the estimate
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~ ~ A ~

G(t) =p[(1-F(t))t1 + p ~ (Ti+l- Ti) I(N(T)-l)

Ti+l-Ti ~ t

.... t # ( Ti +1- Ti > t }IT + ~ ( 'T"i +1- Ti) IT
Ti+l-Ti ~ t

III. Estimation of Frequency Domain Parameters
1. We begin with a discussion of first order
statistics. Suppose T = JU, 3 an integer. Set

(j+l)U

d~O.,j) =jJ exp(-ixt} dNa(t) j =0, ••• , J-l

=

jU< Ta ~(j+l)U

= Sexp(-i(X-a:)(j +t)}(sin(X-O:)U/2)1

((X-o:)/2) dZa(o:)

using the spectral representation at the last step.
In the case that 3 = 1, U = T, we shall write

d~(X). We have,

Theorem 4. Let the
I. Suppose X ~ o.
are asymptotically
normal with mean 0

process ~(t) satisfy Assumption
Then ~U(x,j), j = 0, ••• ,3-1

independent r variate complex
and covariance matrix

2nU[fab(X)] as T ~~. Also variates at frequencies
of the form 2nu/U, are asymptotically independent
for u distinct positive integers.

2. Suppose we are interested in estimating the
second order spectrum fab(X). Various procedures
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suggest themselves, based either on the expression

or the expression
CD 2

CPa + J (Paa(u) - Pal exp I-d.xu] dU)/(2rr) = faa(A)
-CD

CD

(J (Pab(u) - PaPb) exp(-iAu) du ] 1(2rr) = fab(A) a,b
-CD

Procedure I. Set IU(A,j) = (2"'U)-1~U(A,j)~U(A,j)~

for A , 0 and consider the estimate

J-l
!U(A) = J-l ~ IU(A,j)

j=O

From Theorem 4, as T ~ CD, but J remains fixed
rU(A) tends to J-lw~(J, !(A» where W~ denotes the
complex Wishart. ~

Procedure II. Set IT(A) = (2rrT)-1~T(A)£T(A). For
2rrs j/T distinct, ~ 0, non-negative and all ~ A set

From Theorem 4, as T ~

J-lw~( J ,!( A) )
Both of the above estimates are asymptotically

normal if the limiting conditions are as T ~ CD,

J ~ CD, but J/T ~ O.
In the above procedures we sometimes choose

to weight the periodogram ordinates unequally.
For example in Procedure II we might take
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!Tp,) = 5f 5 WT(A _ 2;S) 1?(2;S)
s r- 0

with WT(~) = B;lw(a/BT) where Jw = 1. If BT ~ 0,
BTT ~ 0:> as T ~ 0:>, this estimate is asymptotically
normal, see Brillinger (1972).

Procedure III. Let Pa , Pab(u) be given by the
expressions of II.l, II.2 respectively. Let
wT(u) = w(BTU) be a convergence factor. Set

f~b(A) = {2~T l.:{Pab(2~Tj) - Pa~b)exP(-iA2~Tj)
j

wT(28
Tj))/(2ff) a ~ b

~ ~ ~2

= (Pa + 2~T E(Paa(2~Tj) - Pa}exp(-iA2~Tj}
j

W
T(2STj ) )/ (2n ) a = b

Because of the periodicities involved, it only makes
sense to compute this estimate for \A\ S n/~T. The
choice of bin width 2ST is seen to show itself in
the Nyquist frequency n/sT• This estimate is
asymptotically normal under conditions including
BT, ~T ~ 0, BTT ~ 0:> as T ~ 0:>. This estimate is the
one computed most rapidly. It has the disadvantage
of possibly leading to negative power spectrum
estimates and coherences bigger than 1, even if
W(o:) ~ O.
Procedure IV. Compute the spectrum of the ordinary
process

X(t) = h-1N(t -~,t +~) t=0,:h,:2h, •••

but remember that

85

529



DAVID R. BRILLINGER

Problems of aliasing clearly arise here.
Tapering and prefiltering play essential roles

in the estimation of the spectra of ordinary time
series. It is not entirely obvious how to apply

these techniques in the point process case (with the
exception of tapering for Procedures I and II.)

If the complete intensity

>..(t)h - Prob(point in (t,t+h)l I N(u), u ~ t}

exists and can be evaluated, then with

t
J\(t) = J>..(t) dt

the transformation N(t) ~ N(J\(t)) carries N over
into a Poisson process with unit intensity, and
constant power spectrum. (This transformation is
analagous to the conditional probability integral
transformation to uniform variates in the case of
ordinary time series.) For the doubly stochastic

Poisson process >..(t) = x(t).
Prefiltering procedures carried out entirely

in the frequency domain, for ordinary time series,
clearly have point process analogs. For example,
if we can think of a g(>..) near f(>..), then we might
form the estimate
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Detrending can be very important. Lewis (1972)
contains important advice on these matters.
3. W~ next turn to a brief discussion of the estima­
tion of the parameters of the model

Prob(type 1 event in (t,t+hJ I N2(u), u ~ t}

- (~ + J a(t-u) dN2(u))h

as h ~ O. If P22(u) is not constant, then we
estimate a(u), a time domain parameter by going
through the frequency domain. We have the relations

A(A) = J a(u) exp(-iAu}du

= \..1 + A(O)P2

= A(A) f 22(A)
= (2TT) -1 J A(a) exp(iua}da

suggesting the estimates

,., T T
A(A) = f 12(A)/f22(A)

,.. ,.. " ,..
~ = PI - A(O) P2

a(u) = (2TT)-1 BT ~ A(kBT) exp(iukBT} vT(kBT)k

where vT(a) = v(cTa) is a convergence factor. More
details on this procedure may be found in Brillinger

(1974 a).
4. On occasion we may be led to model the process in
some manner involving a finite dimensional parameter
8. We would then like to be able to estimate 8.
Sometimes such a model will lead to a tractible form
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for the second-order spectra. For example, suppose
we have a cluster process with primary process
Poisson and the secondary process independent
exponentials from the cluster centers, then the
power spectrum of the process has the form

involving the three dimensional parameter a =
(a,b,c). We now describe one method of estimating
a. Related methods are given in Whittle (1953),
Walker (1964), Hawkes and Adamopoulos (1973).

Let the true value of a be a l • Suppose

lim f(A;a) = ~(a)

IAI .. CD

and ~(a') = p/(2~) where p is the mean intensity of
the process. ~(a') may be estimated by ~ = p/(2~).

The periodograms IT(2~s/T), s = 1,2, ••• are
asymptotically independent exponentials with means
f(2~s/T; SI), s = 1,2, •••• The scaled variates

s = 1,2, •••

are therefore asymptotically independent exponentia~

with means

f ( 2~sIT; eI ) Iu ( eI ) s = 1,2, •••

This result suggests our setting down the following
approximate "log likelihood" function
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ST T
- L {log f(2~S~T;6) + ~(6j I (2~S/T)} (11)
s=l \l( ) f( TTS T; 8) 0

"and taking as an estimate of 6, the value 8 that

maximizes (11).
In the theorem below we set g(A; 6) =

f(A; 8)/1-1(8) and

S T"
I\T (6) = _ 2iT ~T {lOg g(2iTS/T; 6) + I b2iTS/ T) / \l

T s=l g( iTs/T; 8)

(12)

The e maximizing (11) also maximizes (12).

Theorem 5. If (a) the process N(t), -~ < t < ~, has
mean intensity 1-1(6') and power spectrum f(A; 6'),
(b) f(A;8), 6 E e C RL,is non-negative and

\l ( 8) = lim f (A; A)

IAI" ee

exists, (c) with g(A; e) = f(A; ~)/I-1(e),

1\ ( 6) = - J{log g ( A; 8) + ~ ~ ~ ~ ~;) - I} dA

exists as a Lebesgue integral, has a unique maximum
at 9' and is such that

max 1\( e") .. 1\( e)

a" EU

as the neighborhood U of 8 shrinks to {B}, (d)
I\T(8) ~ 1\(8) at e' and uniformly near other e (e) BEe

maximizing (11) is bounded in probability, then
"e ~ 8' in probability as T ~ ~,
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Condition (d) is satisfied for processes
satisfyin~ Assumption I, provided g(A;8) is a
sufficiently regular function of A.

We next turn to the large sample distribution
"of 8. To this end set,

Because of (c) above,
= o.

T 0
2

r?(8) )Aj k(8) = oSjoA
k

(13

generally A
j(8 ') = oA(8 ')/08 j

Theorem 6. Suppose the conditions of Theorem 5 are
satisfied. Suppose also (f) the derivatives of (13)
exist, (g) A}k( CT) .. Aj k for any sequence CT of
variates tending to 8' in probability, (h) with

~ = [Aj k1,JT{J\i(8
l

) , • • • ,AI(a l
) } .. NL(Q, A+~), then

e is asymptotically normal with mean a ' and co­
variance matrix T-l ! -1 (A + J2.)A -1 •

For processes satisfying Assumption I and
g(A;a) a sufficiently regular function of A we have

ex>
olo~g(ex;e') o log ~(ex;a')Aj k = J dexoe j 06k

ex> ex>
o log g (ex; 8 I ) log g(e;a l )Bj k 2TTl J 0= 08' 06'j k

f (4) ~ex -0. -e' e I ) dex def(Ct; 'j fta;~')

The above procedure provides us with a further
"estimate, ~(A) = f(A;e) of the power spectrum.

Under the conditions of the theorem, this estimate
will be asymptotically normal with mean f(A;e') and
variance
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L:
j,k

of ( >.. . e ') of ( >.. . e ' )
oS} oe~

In the case of a vector-valued process, instead of
maximizing (11) we would maximize

S T
- L: (log Det ~(2ns/T;e) + tr(~ (2ns/T) ~(2ns/T;e))}

s=l
where

5. We mention briefly that the par~meters of a self­
exciting process may be estimated via a frequency
domain analysis. Such a process is defined by a
relationship

t
E(dN(t) I N(u), u $ t} = (~ + Ja(t-u)dN(u)) dt

_00

where ~, a(u) ~ 0; J a(u) du < 1 ; a(u) = 0 for
u < O. Let

co

A(>..) = Ja(u) exp(-i>"u}du

For this process ~ = pel - A(O)] and

f(>") = p/(2n\1 - A(>") 1
2 )

Because A(>..) is the Fourier transform of a one­
sided function, the problem of estimating A(>..) from
f T(>..), is seen to involve the factorization of
f
T(>..).

Rice (1973) carried out this empirically and
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found the asymptotic distribution of the estimate.
This procedure also provides a further spectral

A ,.. ,.. 2
estimate, namely f(A) = p/(2nll -A(A) I ).
6. We next turn to the problem of estimating the

variance time curve given by var N(t) as a function
of t. Using the spectral representation, we see
that

V(t) = var N(t) = ~(Si~/2t/2)2 f(a) da
-a>

= tp + r'(sina7~/2)2(f(a)-~)da
_a>

The following type of estimate is considered by

Torres-Melo (1974),

r 2( T A) 2 ~ (Sin Bst/2)2V(t) = tp + BLt .f (0) --& + Co Bs/2
s=l

(fT(BS) - In)J
He finds the asymptotic distribution of this
estimate.
7. Product densities may be estimated in a similar
manner to the variance time curve. We have

p(u) = Ja>(f(a) _ ~)exp(iua} dcr + p2
_a>

suggesting the estimate

"s A

p(u) = B[(fT(O)_~) + 2 L: (fT(BS) -&)cos Bs]
s=l

This estimate would undoubtedly be improved by the

insertion of convergence factors.
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Finally we remark that we may sometimes wish
to estimate the spectral measure

F ( A) = JAf (a) do;

o
The obvious estimate is

F(A) = B t fT(BS)

Bs SA

IV. Proofs

1. Proof of Theorem 1. The joint factorial cumulant

of Na (T), ••• ,Na (T) is
1 k

T TJ ... J qal ••• ak(tl,···,tk)dtl ···dtk = O(T)

in view of Assumption I. The ordinary joint

cumulant of these same variates is a sum of

multiples of lower order factorial cumulants. It
follows that it too is O(T) as T ... 00. This means
that the standardized joint cumulants of order k
of these variates are O(TI-k/2) ... 0 as T ... 00 for
k > 2, and so the variates are asymptotically
jointly normal.

2. Proof of Theorem 2. The variate J;b(u) may be
represented as

J dNa(o ) dNb ( ,.)
G

where G is the set (u - ~t < cr - ,. < u + $T' cr # ,.}.
It follows from this representation, Assumption I
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and the rules of Leonov and Shiryaev (1959) that
the joint fa.ctorial moment of order k of J~b(u) is
of order O(l3?). An ordinary cumulant of order k,
c k' is connected to corresponding factorial

cumulants, c(k)' through

k
ck = L:

j=l

where S~ is a Stirling number. If l3 - L/T, thenJ T -

E J~b(uT) ~ 2L Pab(u) as T ~ ~, when uT ~ u. It
follows, that in this case the cumulant of order k

of J;b(uT) ~ 2L Pa.b(u) and so the variate is
asymptotically Poisson. In the case l3TT ~ ~, the
standardized joint cumulant of order k is
O(l3TT)1-k/2 ~ 0 for k > 2. It follows that the

variate is asymptotically normal. The indicated
asymptotic independence follows on evaluating joint
second-order cumulants.
3. Theorem 3 is proved in the same manner that
Theorem 2 is proved.
4. Theorem 4 is proved by evaluating the joint
cumulants of the d~. A related result, Theorem 4.2,
is proved in Brillinger (1972).
5. Before proving Theorem 5, we prove a lemma of
some independent interest.
Lemma 1. If (i) e is locally compact, complete,
separable, metric, (ii) (O,a,p) is a probability
space with 0 complete, separable, metric, (iii)
QT(S,w) is real-valued, Borel measurable for (S,w)

E e x 0 and all T, (iv) Q(S) is real-valued, lower
semi-continuous, Q(S) > Q(Sf) for S I aI, (v)
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QT ( 8 ' , w) = Q( e ') + 0 P(1 ), QT( S, w) ~ Q( S) + 0 P(1) ,

S ~ S' as T ~ ~, (vi) given e,h > 0, Sl ~ S', there
exists U

1
a neighborhood of Sl and there exists TO

such that

,.
(vii) for each wand T there exists S such that

T ,. T
Q (S,w) = inf Q (e,w)

e E e

(viii) given h > 0, there exists a compact set C ~ ~

and T such that Prob{8 ~ C} < h, for T > To, then
,. 0
S = S' + 0 (1).p
Proof. The measurability of A results from Theorem
2 of Brown and Purves (1973). Let U ~ C be an open
neighborhood of e'. From (iv) there exists y > 0

such that Q(Sl) - Q(9') ~ 3y for S E C\U. Suppose
81 E C\U. Then from (v)

lim prob{QT(Sl'w) - QT(8',w) ~ 2y} = 0
T ~ ~

From this and (v) there exists a neighborhood U
1

of
81 such that

lim Prob { inf
T ~ ~ S E U1

T T
Q (S,w) - Q (S',w) s y}=O

(14 )
Using the fact that C is compact, select a finite
number of points S , s = 1, ••• ,N with neighborhoodss
Us' s = 1, ••• ,N covering C\U. From (14)
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lim Prob[ inf QT(e,w) - QT(el,w) ~y}=o (15)
T"a> eEC\U

Now from (vii)

Prob[6 i U or e\c) ~ Prob( inf QT(e,w)
e E C\U

QT(e',w) !S:y}

From (15) this last tends to O. From (viii),
Prob(6 E e\C} tends to O. This gives the result.

Theorem 5 now follows from this Lemma.
6. Theorem 6 follows from the relation

with ~ between e and e'.
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THE IDENTIFICATION OF POINT PROCESS SYSTEMS!

By DAVID R. BRILLINGER

The University of California , Berkeley

A point process system is a random operator assigning a nonnegative
integer-valued measure to a random nonnegative integer-valued measure.
We define certain parameters for such a system and discuss the problem
of estimating these parameters. We also consider the related problem of
measuring the degree of association of two point processes .

1. Introduction and summary. A (stochastic) point process M is a random
nonnegative integer-valued measure. If a point process M influences an appa­
ratus Y' (perhaps real, perhaps conceptual, typically incorporating stochastic
features), to give rise to another point process N, we write

N= Y[M]

and say that the point process N is the output of the system .9'operating on the
input process M . We write M(A) to denote the measure of the time interval A

for a realization of the input process and N(A) the corresponding measure for
N. In practice M(A) refers to the number of occurrences in A of some phenom­
enon of interest and N(A) to the corresponding number of occurrences of some
second phenomenon. We illustrate with two examples, one specific, the other
more vague.

EXAMPLE 1. Let M have single points (corresponding to isolated occurrences)
located at a j ' j = 0, ± I , . .. and suppose that rj are real-valued random vari­
ables. Then

N(A)=#{j:a j+rj in A}

(i.e., N(A) denotes the number of points a j which when moved by rs lie in the
set A) defines a point process system. This particular system is called a random
translation or motion.

EXAMPLE 2. The pulse discharges of many nerve cells have large amplitudes
and are of short duration, so that they can be conveniently described as a point
process. If we take two nerve cells that have a certain physiological configura­
tion (e.g. proximity, or electrically connected), then it may be the case that the
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910 DAVID R. BRILLINGER

point process M of pulses from one cell influence the point process N of pulses
emitted by another cell. Beyond postulating that N = .9" [M], we may have
little notion of the system operator /7 until investigation is undertaken. We
discuss such a problem in Section 7.

We say that the system is deterministic if 9 incorporates no random feature .
Its input, M, may of course still be random. We say that the system is time

invariant when the bivariate process (M, N) is stationary for stationary M .

By the problem of the identification of a point process system we shall mean
that of determining characteristics of the system from observations of inputs and
corresponding outputs. In the case that the system, Y , is stochastic, the most
that we can hope for is to determine average quantities or parameters that char­
acterize the statistical properties of ..9: Complete identification is not possible
in general.

In Section 2 we define certain parameters of stochastic point processes. In
Section 3 we set down a number of useful parameters for point process systems
and indicate how they might be estimated. In Section 4 we discuss the related
problem of measuring the degree of association of two point processes. In Sec­
tion 5 we consider the identification of systems having multidimensional input
or output. The problem of identification is sometimes taken to be that of deter­
mining an estimate of a finite dimensional parameter that characterizes the be­
havior of a process or system. In Section 6 we present one approach to this
problem. The final Section, 7, presents some results concerning the identification
of the point process system corresponding to a nerve cell with a single input
nerve fibre.

We do not discuss the interesting problems of "on line" (or recursive) iden­
tification, of the identification of systems with feedback, nor of special procedures
for realizable systems. We do not give specific references to well-known results.
These may be found in Bartlett (1963) , Cox and Lewis (1966), Lewis (1972).

2. Stochastic point process parameters. Before discussing specific identifi­
cation procedures, we must first introduce certain parameters that describe
stochastic point processes. We will restrict ourselves to parameters of stationary
bivariate processes with isolated points. (In the point process literature, such
processes are referred to as orderly.)

Let (M, N) be a stationary bivariate point process on the real line with differ­
ential increments at time t given by {dM(t), dN(t)} = {M(t , t + dt], Ni], t + dt]}.

The mean intensity, PM' of the process M is defined by

(2.1 ) E{dM(t)} = P,II dt .

Because the points of the process have been assumed to be isolated , expression
(2.1) may be interpreted as

Prob {M point in (t, t + dt]) .

The mean intensity, PN' of the N process is defined in a similar manner.
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The second-order cross product density at lag u, PNM(U), is defined by

911

(2.2) E{dN(t + u) dM(t)} = PNM(U) du dt , u =I=- 0.

Expression (2.2) may also be interpreted as giving

Prob {N point in (t + u, t + u + du] and M point in (t, t + dt]) .

The other second-order product densities, PMM(U), PNN(U) are defined through
(2.2) by equating M and N.

These parameters may be used to define the conditional mean intensity

(2.3) E{dN(t + u) IM{t} = I} = PNM(U) dufpM , u =I=- 0,

which may be interpreted as

Prob {N point in (t + u, t + u + du] IM event at t}.

As lui -----+ 00, the increments dN(t + u) and dM(t) are tending to become inde­
pendent for many processes. This phenomenon leads to the definition of the
cross-covariance density

(2.4) U=l=-O

(2.5)

which tends to °as lul -----+ 00. The autocovariance densities, qMM(U), qNN(U) are
defined similar!y .

Provided M points and N points do not occur simultaneously we can write

dCNM(U) dt = Cov (dN(t + u), dM(t)} = qNM(U) du dt .

However in the case of the components themselves we must write

dCMM(U) dt = Cov (dM(t + u), dM(t)} = (o(u) + qMM(U)) du dt

dCNN(U) dt = Cov (dN(t + u), dN(t)} = (o(u) + qNN(U)) du dt ,

where 0(.) is the Dirac delta function, to take account of the singularity at

u = 0.
The cross-spectrum of the two process at frequency A, INM(A), is now defined by

f VM(J..) = (2nt 1
~ exp{ -iuA} dCNM(U)

= (2n)-1 ~ exp{ -iuA} qn(u) du

for - 00 < A < 00, provided the integral exists. The power spectrum of the
process M, f,Hf(J..), is defined by

(2.6) IMM(A) = (2nt1 ~ exp{-iuA} dC'lfM(U)

= (2nt1PM + (2n) -1 ~ exp{ -iuJ..}qMM(u) du

with a similar definition for INAA).
We may continue in the previous manner arid define higher-order parameters

such as the third-order product density

(2.7) PMHM(U, v) = E{dM(t + u) dM(t + v) dM(t)}fdt du dv ,

u =I=- v, u =I=- 0, v =I=- °,
547
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the third order cumulant density

(2.8) qMM ,Au, v) = cum {dM(t + u), dM(t + v), dM(t)}/dt du dv ,

u =I=- v, u =I=- 0, v =I=- 0 ,

and even higher-order spectra, see Brillinger (1972) .
The parameters defined in (2.1), (2.2), (2.3), (2.7) have the advantage, over

corresponding parameters defined in the case of ordinary time series, of possess­
ing a further interpretation as probabilities.

Given a segment {M(O, t], N(O, t]}, 0 < t :::::; T, of a realization of an M, N
process satisfying some regularity conditions, each of the parameters defined
above may be estimated consistently as T ----> 00, and the asymptotic distributions
of the estimates are known, see Cox and Lewis (1966, 1972) and Bril1inger (1972,
1975 b). Estimates of third-order densities are given in Brill inger (1975 a). In
this section, like Bartlett (1963), we have eschewed the mathematical problems
about existence of mean intensities, autocovariance density functions, etc . Lewis
(1972) contains papers concerned with these issues.

3. System parameters and system identification. Suppose that we are dealing
with a time invariant system with input process M and output process N. A key
element of the character of such a system is provided by

Prob {N point in (t, t + dt] IM} ,.., E{dN(t) 1M} .

In connection with it we suppose

(3.1 ) lim h l O Prob {N point in (t, t + h) IM}/h = f1M(t)

for given input process M E ~ y. Let us discuss plausible forms for f1 M(t) for a
succession of input processes.

(i) Suppose we take as input to the system M(.) =0, that is no input events.
Then we might be willing to assume that f1 M(t) exists and is equal to a constant,

(3.2)

The system is here assumed to be emitting points at rate SO.

(ii) Next, suppose we take as input to the system, M corresponding to a single
event at time (J . Then we might alter (3.2) to

(3.3)

Sj( t) represents the effect , on the output intensity, of inputting a single point at
time O. For example, in a service system with service time density g(t), we have
(3 .3) with So = 0, Sj(t) = g(t).

(iii) Suppose next we take as input to the system, M corresponding to points
at times (Jj and (12. Were there no interaction of the two points we might be
prepared to write (3.1) as

(3.4) f1M(t) = So + St(t - (1j) + St(t - (12) = So + ~ Sl(t - u) dM(u) .
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For example if the service system has 2 or more servers, then (3.4) holds with
So = 0, Sl(t) = g(t).

If there were an interaction, then we might write (3.1) as

(3.5) flM(t) = So + s.(t - 0"1) + s.(t - (/ 2) + S2(t - 0"1' t - 0"2)

= So + ~ Sl(t - u) dM(u) + ~ ~ u* v S2(t - u, t - v) dM(u) dM(v)

where the function S2( . ) gives the effect of the interaction. If the service system
above has but I server, then (3.1) has the form

fl.•r(t) = g(t - 0"1) + ~ ~2 g(v - (/I)g(t - v) dv , 0"1 < 0"2 < t,

which is of the form of (3.5).
(iv) It is now evident that we may proceed in a recursive manner building

up a succession of models for (3.1) of the form

(3.6) flJ[(t) = So + L;f=1 ~ •• • ~ UI " " ' Uk; d is ti nct Sk(t - U,I' . • • ,

t - Uk) dM(u l) . .. dM(u k)

where the function SKU - 0"1' . . " t - aK) may be interpreted as the interaction
effect at time t when the input process consists of K events at times 0"1' . . ',0" K'
The expansion of (3.6) is a point process analog of the Volterra expansions
considered in Wiener (1958) for Gaussian processes.

We shall say that the system is linear when K = 1 in (3 .6) , that is

(3.7) limh l OProb {N event in (t, t + h] IM}/h = So + ~ Sl(t - u) dM(u) .

By analogy with the terminology of the ordinary time series case, we might call
SI(.) in (3.7), the average impulse response of the system. We remark that (3.7)
is an average property of the system, not a sample path property. We say that
the system is realizable or causal, when SI(U) = °for u < 0.

EXAMPLE 3. The G/G/= queue. Suppose that the jth customer of a service
facility arrives at time 0" j and experiences service time rj' j = 0, + I, .. '. Sup­
pose that the t s are random variables with density function g(u). Then,
symbolically,

dN(t) = (L;j 0(1 - 0" j - rj» dt ,
and so

E{dN(t)IM} = (L;j ~ o(t - O" j - r)g(r)dr)dt

= (L; j g(t - 0" j») dt

= (~ g(t - u) dM(u» dt .

Thisisofthc form of(3 .7) with So = O,SI(U) = g(u) andanexamplcofthc random
translation of Example 1.

EXAMPLE 4. A Hawkes ' process. Suppose the system may be described by

(3.8) flM(t) = fl + ~: '" a(t - u) dN(u) + ~: '" b(t - u) dM(u)

and that it generates a stationary process N( •) when a stationary M(.) is taken
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as input. Expression (3.8) leads to

P,Il(t) =).1 + ~ ~=C(t - u)dM(u)

where PN = P + A(O)PN+ B(O)p .l1 = ).I + qO)P,lfl qA) = (1 - A(A» -IB(A); A(.),
B( .), q.) being the Fourier transforms of a(.) , b(.), c(.) respectively; see
Hawkes (1972) for further details and references.

EXAMPLE 5. For some a, 6. > 0

P,II(t) = aM(t - 6., t]

The output intensity is here assumed to be proportional to the number of input
points in the immediately previous time interval of length 6.. This model has
the form of (3.7) with So = 0,

O ::;;u<6.

otherwise.

We now turn to the problem of identifying the linear system (3.7). Provided
the process N(.) is well-defined, the relationship (3.7) leads to the equalities,

PN = So + P,I/ ~ SI(U) du

(3.9) PN.I/(t) = SOP ,II + SI(t)P,\/ + ~ SI(t - U)P.lLlI(U) du

q:Of(t) = SI(t)PM + ~ St(t - u)q,lf,lf(u) du

J:V,If(A) = St(A)!,Llf(A)

where SI( •) is the Fourier transform of SI( .). These relations suggest the estimates

S\(A) = ! N.lI(A)!.If.1/(A)-1

So = ftN - ft.l/S\(O)
SI(t) = (2n)-1 ~ S\(A)exp{itA}dA

where ft,'fl ftN'!.I/J/(A)'!N,If(A) are estimates of P,11' PN'!II .II(A)'!",1/(A). Details of
this estimation procedure may be found in Brillinger (1974). An example of its
use with neurophysiological data is given in Section 7 of this paper.

An alternate identification procedure that maybe of use in certain situations
is the following. Suppose that it is known that SI(U) vanishes for lui > 6.. Suppose
that the input points are spaced farther than 26. apart. Then the individual
terms of

P.II(t) = So + ~ St(t - u)dM(u) = So + I; jSI(t - a j )

do not interfere. This suggests that So + St(u) can be estimated, reasonably, by
an expression such as

#{I' k - a j - ul < p}/(2{3 M(0, T])

for some small (3 , where the ' kdenote the times of observed output events from
the system. This estimate is suggested by first principles. It is also suggested
by the second equation of expression (3.9) as p.If .lf(u) = 0 for lui ::;; 26. here.
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Even when the model (3.7) is not satisfied, the function Sl(') satisfying (3.9)
is of some interest. It provides the best linear mean-squared error predictor of
the process Nbased on M. The relations (3.9), most especially the third, suggest
that the simplest way to identify the system is to take Poisson noise as input to
the system, for then qMM(U) = 0 identically, and so Sl(t) = qNM(t)/PW Finally
we remark that (3.8) gives an answer to the interesting question of what sort
of input behavior is most likely to lead to an output point, say at O. We see
that the increments dM(t) should mimic the shape of a( - t) .

The above discussion indicates that, provided one has sufficient data, a linear
point process system may be identified fairly directly. Unfortunately things are
not so nice in the nonlinear case. Consider the model (3.6) with K = 2. It is
convenient to set it down in an alternate form. With M'(u) = M(u) - UPM' we
write it as

(3.10) flM(t) = ro + ~ rj(t - u) dM'(u) + ~ ~u*v r2(t - u, t - v) dM'(u) dM'(v) .

Supposing r2(u, v) = r2(v, u), expression (3.10) leads to

PN = ro + ~ ~ r2( -u, -V)qJHf(U - v) du dv

qNJf(t) = rj(t)PM + ~ rj(t - U)qMM(U) du + 2 ~ r2(t, t - V)qMM(V) dv

+ ~ ~ r2(t - u, t - V)q ,IIMM(U, v) du dv

qNMM(S, t) = rj(s - t)qMM(O) + rj(s)qMM(t) + ~ rj(s - U)qMMJt(U, t) du

+ 2r2(s, s - t)PM 2 + 2 ~ ris - u, s - t)qMM(U) du

+ 2 ~ r2(s, s - t - V)qMM(V) dv

+ 2 ~ ~ rls - u, s - t - V)q,I/M(U)qMM(V) dv du

+ 2 ~ r2(s - u, S)qMJHf(U, t) du + 2 ~ r2(s - u, s - t)qMMM(U, t)du

+ ~ ~ r2(s - u, t - V)qMMMM(U, v, t) du dv .

It is not at all apparent how we could make direct use of these relationships
without making further assumptions. We do note that if qMM(U), qMMM(U, v),
qMMMM(U, v, w) are all identically 0, as would be the case for a process with
independent increments, such as the Poisson , then the relationships give

ro = PN

r1(u) = qNM(U)/PM

r2(u, v) = qNJ[,I/(U, u - v)/(2pJ/)

and the functions r1 and r2 may be identified directly. The above discussion
suggests that we should probe a point process system with Poisson noise whenever
possible. Unfortunately in practise this is often not possible because the noise
generating device has a "dead time", that is a nonnegligible minimum interval
between points. Other procedures for identifying polynomial systems involving
ordinary time series are given in Brillinger (1970). It is not presently clear if
these may be adapted to the point process case usefully. The Fourier-Hermite
orthogonal polynomials discussed there for Gaussian processes (and introduced
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916 DAVID R. BRILLINGER

into the context of system identification by Wiener (1958)) could be replaced
by the Poisson-Charlier polynomials (see Hida (1970)) for Poisson noise.

An alternate nonlinear model for the conditional intensity (3.1) is the mul­
tiplicative model

fl.lf(t) = p IL b(t - (J j)

= exp{a + Sa(t - u) dM(u)}

with a = log p, a(u) = logob(u) . If we expand the exponential, then we see that
this corresponds to the model (3.6) with K = 00 . In the case that M is Poisson,
this model leads to the relationships

PN = exp{a + PM S [b(u) - 1] du}

PNJ/(U) = PMPNb(U) .

Another nonlinear model of some interest is provided by

if M(t - D., t] ;::;;; k

otherwise

for some D. > O. An output point occurs here only if there are at least k input
events in the previous time interval of length D..

So far we have only discussed models for the first-order system parameter
(3.1) . A related second-order parameter is the following,

(3.11) flM(S,t)=limh j oProb{N points in (s,s+h 1 ]

and (t, t + hz] IM}/(h.h z) •

This parameter would be especially useful were input points stimulating pairs
of output points. From what has been said already we might consider modelling
(3.11) by

ro(s - t) + S r1(s - u, t - u) dM'(u)

where M'(u) = M(u) - uhf' ro( -u) = ro(u), r1(s, t) = r1(t, s). This model leads
to the relationships

PN = Iim,,_oo ro(u)

PNN(U) = ro(u)

PNNM(S, t) - PNN(S - t)PM = PMrl(S, t) + S r1(s - u, t - U)qMM(U) du .

Denoting the Fourier transform of r1 by R1 and of the left hand side of the last
expression by P, we see that

RP'l' Az) = P(A1 , Az)/(2rrj',IHf(A l + Az)) .

We end this section by mentioning that there is a growing literature concerning
a martingale approach to point processes. (See Segall et al. (1975), Segall and
Kailath (1975), Boel et al. (1973), Van Schuppen and Wong (1974), Dolvio (1974),
for exarnple.) It makes use of the Doob-Meyer decomposition of submartingales
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and results of Doleans-Dade and Meyer (1970) among other things. It is con­
cerned with formalizing representations of the form

N(O , t] = A(t) + w(t)

where A(t), w(t) are respectively a predictable increasing process and a zero
mean martingale on some a-algebras~ C L: {1\'(SI ;S;:;; W The cases where A(t) is
differentiable are analagous to our assumption of (3.1) . The topics covered in
the literature include: detection, control, forecasting, likelihood ratios and the
representation of martingales in the basic process .

4. The measurement of association. A problem of some interest is the meas­
urement of the degree of interdependence of two point processes. This involves
addressing ourselves to the question of whether the input to a point process
system affects the output at all and if it does to what degree?

We begin by noting that

corr {dN(t + u), dM(u)} = (PNM(U) dt du - PNPMdt dU)/(PNdt hI du)~

ex PNM(U) - PNPM.

This remark suggests our considering the measurePNM(U) - PNPM' This particular
measure may also be interpreted as

Prob {dN(t + u) = I and dM(t) = l} - Prob {dN(t + u) = l} Prob {dM(t) = l}
dtdu

An equivalent measure is

Pn(u) _ PN = (Prob {dN(t + u) = II dM(t) = l} - Prob {dN(t + u) = I D/dt .
PM

Both of these measures are 0 in the case of independence.
The problem can also be viewed as one of looking for association in the 2 X 2

table :

dM(t)
dN(t + u) Totals

0

0 1 PMdt 1
1 PNdu PNM(u) dt du PNdu

Totals PM(Jt

A variety of measures of association have been suggested for 2 X 2 tables, see
pages 536-540 in Kendall and Stuart (1961). In the present context, these lead
to

(i) the cross-product ratio

a(u) = PNM(U)/[PNP;\{] ,
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918 DA VID R. BRILLINGER

(ii) Yule's coefficient of association

Q(u) = [PN,If(U) - PNP,If]/[PN,If(U) + PNP,If] ,

(iii) Yule's coefficient of colligation

Y(u) = [(PN,If(U))~ - (PNP,If)~]/[(PN,If(U))~ + (PNPJ/)~] ,

(iv) Pearson's (jJ2

¢J2(U) = [PNJ/(U) - PNP,If]2/[PNPJ/] .

The "null" values of these measures occur in the case that PN,If(U) = PNPJI"
An alternate manner in which to proceed is to look at the degree of correla­

tion of certain combinations of the values of the process. For example if we set

then

lim , [corr {d T(A) d T(A)}1 2 = lim . ICov {~v~3)'~NT_(A)}I~
7 ~OO ,If' ,v 7 ~oo Var d,lf T ( A) Var dN7' ( A)

(4.1) = If,lfN(A)j2/lf,lf,lf(A)fNN(AW

= IR,If ,v(A)12.

This last measure is called the coherence of the two processes at frequency A.
Its values lie between 0 and 1, with 0 occurring in the case of independence.

5. Multidimensional systems. So far we have been considering the case in
which the system has a single input and a single output. In many interesting
situations, the input and output processes are multidimensional. No great dif­
ficulties appear in extending the linear system of (3.7) to the multidimensional
case. Specifically, we might postulate

(5.1) Iimh ! O E{N(t, t + h]/h I M} = So + ~ Sj(t - u) dM(u)

with the process M being r dimensional, the process N being s dimensional, So

being an s vector and Sj(.) being an s X r matrix. If 51 denotes the Fourier
transform of S1> if f,lf,lf(A) denotes the spectral density matrix of the process M
and if fNM(A) denotes the cross-spectral density matrix of the two processes, then
the relation (5.1) leads to the equality fNM(A) = 5j(A)(u(A), showing that the
system may be identified through estimating spectral density matrices.

In the multidimensional case we may be interested in certain partial param­
eters. Consider a univariate process M and a bivariate process N with component
N j and N2 , corresponding to M being input to two systems~ and 9';; with outputs
N j and N2 respectively. In practise, the outputs Nj and N2 may appear to be
related. However this association may only be due to the fact that the two
systems had the same input M and not due to any further connection. Partial
spectra provide a tool for checking into this possibility. Consider the model

dNJ(t) = (Pj + ~ aj(t - u) dM(u)) dt + dCj(t)

dN2(t) = (P2 + ~ alt - u) dM(u)) dt + dC2(t)
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where 8 1 and 82are processes with stationary increments. This model leads to
the relationships

! 'j'/).) = f Vj Nk ·,\{().)

= ! NjNk().) - ! Nj,\{().)!,\{Nk().)/f,f,\{().)

for j, k = 1, 2. In the case that the processes Cl and C2 are uncorrelated the
partial cross-spectrumfVll'l2 ',\f().) and consequently the partial coherence

(5.2)

will be identically °allowing an examination of the hypothesis through estimates
of these functions . An example of the checking of such a hypothesis for some
neurophysiological data is given in Section 7.

6. Finite parameter models. On occasion we may find ourselves in a situation
where a system of interest is characterized by a finite dimensional parameter O.
Suppose that in such a situation we may derive the form of the spectral density
matrix assuming stationary input and output processes and that it is given by

Suppose further that

limI A I~oof,fftf().; 0) = flM(O) ,

Set

a,\{ "f().; 0) = f,f.If().; O)/flM(O) , aNN().; 0) = ! NN().; O)/flN(O)

aNM(). ; 0) = I»M().; O)/(flN(O)fl.lf(O))~ •

Let PM = M(O, T] /T and PN = N(O, T]/T, then under regularity conditions (see
Brillinger (1975 b) ) the variate h T

( ). ) = {dM T().) /(PM)~' dNT().)/(PN)~} is asymptotic­
ally bivariate complex normal with mean 0 and covariance matrix

T [aMM().; 0) aMN( ~ ; O)J = Tg().; 0)
aNM(J.; 0) aNN(A.; 0)

for). =1= 0. This suggests setting down the following approximate "log likelihood"
function

where JT().) = hT().YhT(I j, and then estimating 0 bye, the value maximizing
expression (6.1). This procedure is a point process version of a procedure sug­
gested by Whittle (1953, 1961) for ordinary time series. Under regularity condi­
tions (see Brillinger (1975 b) )it may be shown that the estimate eis consistent and
asymptotically normal with mean 0 and covariance matrix 2trT-IA-\A + B)A-I
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where A, B are matrices with entries

A jk = ~~"SIT tr (ag(a) g(a)-l ~~(~ g(a)-l) da
au j eo,

s, = ~ I:a I:b I: c I: d Cab;(a)Ccdk(j3)gabcia, -a, - 13) da dj3

with Cab j(a) the entry in row a, column b of the matrix

g(a)-I ag(a)_g(a)-l .
aU j

Estimates constructed in the above manner cannot be expected to be efficient
as they are based only upon first and second order parameters and statistics . It
would be interesting to construct a procedure involving third order parameters
as well.

7. Some examples based on neurophysiological data. The field of neurophys­
iology is an excellent source of problems and data relating to point process
systems. The paper by Bryant et al. (1973) is a good example of recent quanti­
tative work in the field. The data discussed below were provided to this worker
by those authors.

When a microelectrode is inserted into a nerve cell, a changing voltage may
be recorded. Figure 1 is an example of such records for two neighboring cells,
(LlO, L3), of the sea slug i Aplysia californicav . Here, and in many cases, the
records are made up of pulses of large amplitude and short duration. Conse­
quently the times of the pulses may reasonably be thought of as reaiizations of
point processes. Figure 2 provides estimates of certain of the parameters men­
tioned in this paper with M referring to the times at which the cell L I0 of a sea
slug fired and N referring to the corresponding times at which L3 fired. In all
there were 2548 M events and 1532 N events corresponding to mean rates of
PM = 2.21 and PN = 1.33 events/sec . respectively. A and B are estimates of
(P.wJt(u)/p}[)~, (PNN(U)/PN)!' 0 ~ U < 12.5 sec . respectively. The construction of
such estimates is described in Brillinger (1975 b). The square roots are taken,
because the estimates then have stable variance, ibid. The graphs have dips near
o because of the cells' dead times. (There is a refractory period, after a nerve
cell has fired, during which it cannot fire again .) The horizontal lines of A and
B are at the levels (p,It)~, (PN)~ respectively corresponding to estimates of the
level for processes with orthogonal increments. The L 10 cell was here stimulated

J~--'L---__ll..--_-\..-_

FIG. I.
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922 DAVID R . BRILLINGER

to fire in as Poisson a manner as possible . C is an estimate of(PN,If(u)/p.lf)~' The
horizontal line is at the level (PN)~ corresponding to unassociated M and N
processes. The graph suggests that there is a drop in the rate of N events for
up to 5 sec. after the occurrence of an M event. D provides an estimate of the
average impulse response function, Sl(')' of (3.7). The estimate suggests that
SI(U) is near 0 for u < 0, in accordance with the neurophysiologists' understanding
of the relationship between the cells, and it suggests that the rate of L3 pulses
drops for a period after the arrival of an L I 0 pulse. E is an estimate of the
coherence function, IRMN(A)I\ of (4.1). The estimate is significantly different
from 0.0, at the 95 per cent level , for 94 of the 100 points plotted. The apparent
coherence at low frequencies is surprisingly large, considering that coherence
is a measure of degree of linear association and the system is nonlinear here.
(Other such coherences may be found in Figure 3.) Graphs C and D are here
so similar because the input is near Poisson.

Figure 3 presents some of the results of an analysis of the sort described in
Section 5 for a three cell network, (LlO, L3, L2), of the sea slug . In the nota­
tion of that section, M corresponds to LlO, N1 to L3 and Nz to L2. Graphs A,
B, C are estimates of the coherences IR .l1NPW, IRJlNPW, IRN1Nz(AW respectively.
The horizontal line corresponds to the 95 per cent point of the null distribution
in each case . These graphs suggests that the three cells are intercorrelated . The
neurophysiologists suspected, for these particular cells, that LlO was driving
both L3 and L2 and that there was no direct path between L3 and L2 . Graph
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D is in accord with the suspicion. It is an estimate of the partial coherence,
IRNtN2.M(AW, of (5 .2). The horizontal line corresponds to the 95 per cent point
of the null distribution. There is no suggestion that the partial coherence is
not 0.0 .
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H . L. Bryant, Jr. of the V .C.L.A. Brain Research Institute for many stimulating
conversations on the topics of nerve cell network analysis and point processes
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DEPARTMENT OF STATISTICS,
UNIVERSITY OF CALIFORNIA,
BERKELEY, CALIFORNIA 94720

DISCUSSION ON PROFESSOR BRILLINGER'S PAPER

D. R. Cox (Imperial College, London) My comments concern the statistical
aspects of Dr. Brillinger's interesting paper. First, when it is required to study
the dependence of a process {N} on an explanatory process {M}, there are often
strong arguments for arguing conditionally on the observed process {m}. In
particular, assumptions about {M} itself are avoided; even its stationarity is not
required so long as the interrelations are time-invariant.

Secondly, some qualification seems desirable of. Dr. Brillinger's blanket re­
commendation that {M} should, where possible, be chosen to be Poisson. Will
not much depend on the constraints on observation and on the nature of the
interrelations? For instance, one can envisage situations where it would be
more informative to take {M} as a regular sequence of widely spread points, sup­
plemented, perhaps, by some pairs of points close together to examine linearity.

Thirdly, an alternative to the study of interrelations is via the modulation of
simple models for {N} (Cox, 1972). In this the intensity of the {N} process is
modified by a factor depending on relevant aspects of the {M} process. Two
advantages of this approach are that in certain cases likelihood functions can be
obtained and that simple relations, nonlinear in Dr. Brillinger's special sense,
can be accommodated; for example, the backward recurrence time in the {M}
process may be particularly relevant. An advantage of Dr. Brillinger 's approach
is that special assumptions about {N} are avoided.
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Cox, D. R . (1972). The statistical analysis of dependences in point processes. In Stochastic Point
Processes, P. A . W. Lewis, ed. Wiley, New York.

P. Z . MARMARELIS (California Institute of Technology) Professor Brillinger's
well-written paper on the identification of point process systems fulfills, among
others, a long-standing need for such work in the field of neurophysiological
system analysis. I expect that many applications of these techniques on point
process systems (certainly on neural systems) will come to fruition following
Brillinger's work.
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MEASURING THE ASSOCIATION OF POINT PROCESSES: A CASE HISTORY

DAVID R. BRILLINGER

1. Introduction. Modernapplied statistics typically involves elementsof computation,probabil­
ity theory, statistical theory and collaboration with specialists in the subject matter of some
substantive field . In this article I shalldescribe part of a continuing experienceof collaborationwith
two neurophysiologists from V.C.L.A., H. L. Bryant Jr. and J. P. Segundo. In formal terms, the
problem considered is one of measuring the degree of association of points of two different sorts
distributed along a straight line in an irregular manner. In real terms, the problem is one of
investigating the behavior of a simple nerve cell network in a sea slug (Aplysia californica). The
paper discusses a summary measure of association that has proved useful in assessingwhether two
nerve cells are behaving in a related manner or are behaving independently. The experiments by
means of which the data were collected are described in Bryant, Ruiz Marcos and Segundo [4], as
are the results of preliminary statistical analyses. The paper [4] is representative of the extent to
which quantification is now occuring in the life sciences.

20
ImV

>-------<1
1sec

FIG. I. A typical record of the changing voltage level of a nerve cell .

2. Some neurophysiology. The nerve cell (or neuron) is the basic unit of the animal involved in
the transmission of information. Described schematically, it consists of a central cell body (or
soma), branches (calIed dendrites) carrying impulses to the body and a long outgrowth (the axon)
conducting impulses from the body. One way information is transmitted through the dendrites and
axon is through changes in electrical activity. Figure 1 is an example of the changing voltage
recorded when a microelectrode is inserted into a nerve cell. The record is seen to be made up of
pulses of large amplitude compared to their duration. Because of its appearance, such a record is
often calIed a spike train.

I I
I

III I
II

1111I
III I I I II III H....'---r"'--lr-MU.---I..u...r-.&.....,J-I I I I I

1sec

FIG. 2. A record of the times of spikes of two simultaneously firing nerve cells.

The junction whereby one neuron may influence another is calIed the synapse. When a pulse
reaches the terminalpoint of an axon it provokes the release of a transmitter substance whichalters
the permeability of the dendriteof the next celIto certain ions. The resulting flow of ionsgeneratesa
small electric current which moves down the dendrite to the soma. If the junction is excitory, the
spike activity of the second celI is increased, if inhibitory it is decreased. Figure 2 is an example of
the timesof spikes for two nearby celIs, the timesfor one celIcorrespondingto spikesabove the line
and for the other corresponding to spikes below. In practise,giventwo neurons, it may not be known
whether either is influencing the other and it may be of interest to determine if there is some
influence or association. Doing this by eye from records such as those of Figure 2 can be very
difficult. Researchers have therefore been led to compute summary values from the records (see
Griffith and Horn [9] for example) and this is the concern of the present paper.

The data discussed is recorded simultaneously on celIs L3 and UO of the sea hare. This
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particular animal and these particular cells were used because the cells may be identifiedin different
specimens and consequently experiments may be repeated. The experimental methods are described
in detail in [4]. Further information concerning neurons and synapses may be found in Eccles [7] .

3. Someprobability theory. Commonly in his work on applied problems, a statistician brings the
apparatus of probability theory into use. This involves his asking the experimentalists and himself
whether or not it is reasonable to talk about random outcomes and probabilities of events connected
with outcomes. The statistician seeks to bring probability theory into a problem because it provides
a precise means of defining parameters and models and it allows him to interpret and assess various
manipulations of experimental data. Not all problems of data analysis require the introduction of
probability theory, but many seem to benefit from its appearance-among the latter are problems
concerning nerve cell spike trains.

The branch of probability theory concerned with entities like irregular spike trains is that of
stochastic point processes. A stochastic point process is a random, non-negative, integer-valued
measure. If I is an interval of the real line and w is a random element, then the values of this
measure may be denoted by Ntl, w), with N(I, w) denoting the number of points in the interval I for
the realization corresponding to w. Here the atoms of the measure N(l, w) correspond to the times
of spikes of a particular spike train. Repeating the experiment would most likely yield a different set
of spike times and consequently a different measure N(l, w') . In this sense N is a random measure.
(We remark that in many problems one can suppress the dependence of N on w, however, it is an
essential element of the approach.) Point processes were considered recently in the MONTHLY by
Chung [5]and are discussed in Cox and Lewis [6]and in a volume [11] edited by Lewis, for example.

For nerve cell trains, it is appropriate to assume that the point process is without multiplepoints;
that is, the spike times are isolated, separated by positive distances. Because the spikes proceed
from no inherent origin, it also seems appropriate to assume that the point process is stationary in
time in the sense that the probability distribution of the random vector

is the same as that of the shifted vector

{N(ll + t,w),"', Ntl; + t,w)}

for all t and k = 1,2, .. " where 1+ t denotes the interval (a + t, b + t) if I = (a, b) .
Important parameters of a stationary point process N include the mean intensity, PN, and the

second-order product density, PNN(U), given by

(1)

and

(2)

PN = lim Prob{point in the interval (t, t +h)}{ h
h 4-0

PNN(U)= lim Prob{point in (t + U - h, t +U + h) and point in (t - h', t +h')}{(4hh')
h,h' 4-0

- 00 < U < 00, respectively when-these limits exist.
In fact we shall be concerned with two different types of points, say M points and N points, with

M(l, w) referring to the number of M points in the interval I and N(l, w) the number of N points in
the interval 1. We denote the mean intensity of M points by PM and the second-order product
density of M points by PMM(U) . We also define a cross-product density, PMN(U) , by

(3) PMN(U) = lim Prob{M point in (t + U - h, t +U + h) and N point in (t - h', t +h')}{(4hh').
s:« 4- 0

The parameters in (I), (2), (3) do not depend on t because the process is stationary.
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(4)

(5)

The first thing that one tends to notice when examining a spike train is whether there are a lot of
spikes or only a few. The mean intensity of the process gives information in this connection.
Expression (1) implies that the probabilityof there beingan N point in a small interval of length h is
approximately llNh. The next thing that one tends to notice is the relative positioning of pairs of
spikes of a single train or from one train to another. Expressions (2)and (3)give information in this
connection. From expression (3), for example, we have

Prob{M point in (t + U - h, t + U +h) and N point in (t - h', t +h')}

- PMN(U)4hh '

for h, h' non-negative and small. Using the definition of conditional probabilityand (1), this implies
that

Prob{M point in (t + U - h, t + U+ h) given an N point at t}

- 2hpMN(U)/PN.

In the case that the M points are distributed independently of the N points, the probability referred
to in expression (5) is just Prob{M point in (t + U - h, t + U +h)} and so

(6) PMN(U)/PN = PM or PMN(U) = PMPN

for all u. This last suggests that the function PMN(U), and related functions such as

(7) or

mightprove useful measures of the degree of association of points of the M process with points of
the N process. They are identically 1.00 in the case of independence.

We remark that, since we have assumed the points of the processes to be isolated, we can replace
the probabilities of expressions (1)-(3) by expected values, for example we could write for (3)

PMN(U) = lim E {N(t +U - h, t + U +h) N(t - h', t +h')}/(4hh') .
h.h' .0

4. Some statistical theory. The preceding section described a mathematical idealization that
could be of use in examining the degree of relationship of two given'spike trains. The idealization
suggestedthe definition of parameters PM, PN, PMN(U) based on the probabilities of certain events. In
order to make concrete use of these parameters we need to have some idea of their values for the
spike trains at hand.

Statistical theory has long been concerned with the problem of estimating the probability of an
event given experimental results. In elementary situations one estimates the probability of an event
A by nA / n, where nA denotes the number of times the event A occurred out of n times when it
might/have occurred. Let us use this approach to construct estimates of PM, PN, PMN(U).

Suppose that spike trains M and N are observed throughout the time interval (0, T). Let
SI < S2 < . .. < SM(T) be the observed times of M spikes and t, < t 2 < .. .< tN(T) be the observed
times of N spikes where we have observed M(T) M spikes and N(T) N spikes in all. Let h be small
and imagine the interval (0, T) divided into Tlh intervals of length h. The number of times the event
"M spike in small interval of length h" occurred is M(T) . It might have occurred T/h times. This
suggests estimating PMh by M(T)/(T/h) and so estimating PM by

(8) PM = M(T)/T.

Likewise we could estimate PN by pN = N(T)/T.
Next we consider the estimation of PMN(U) . For small h, let
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(10)

(9) n(u, h) = the number of s; such that t, + U - h < s, < tj + U + h for some j,

then the probability of expression (5) may be estimated by n(u, h)/N(T). This suggests the
estimation of PMN(U) by

• ()_n(u,h)PN_ n(u,h)
PMN U - N(T)2h - 2hT .

This estimate may be used in turn to construct estimates of the functions of expression (7) if so
desired. We must not forget, however, that we have not measured PMN(U) exactly. Rather we have
constructed an expression that should be near it, especially in the case that T is large. We must also
remember that were we to repeat the experiment, almost certainly, we would obtain a different value
for PMN(U). This last variation is called sampling fluctuation. Figure 3 is a graph of PMN(U)/(PMPN)
for the nerve cell data described in Section 2. Here N(T) = 1232, M(T) = 816, PN = 1.77 events/sec.
and PM = 1.17 events/sec. . The Figure suggests that the probability of occurrence of an M event is
depressed for about 5 seconds after the occurrence of an N event. However, before we can come to
a belief that the outputs of the two nerve cells are in fact related, we must first have some confidence
that the deviation of the function from the value 1.00is not due simply to sampling fluctuations.

- 12.50 -7.50 - 2.50 O. 2.50 7.50 12.50
• £1.35 :•......•....•................................................................•......••..............:

1.00

.65 : :......................................................................................................
• .& • • • •

- 12.50 -7.50 - 2.50 O. 2.50 7.50 12.50

FIG. 3. An example of PMN(U)/(PMPN) for cells L3 and LIO of Aplysia californica. The horizontal axis gives U in
seconds.

The estimate (10) was proposed in Griffith and Horn [9]. Its direct computation involves the
comparison of M(T)· N(T) values. In many of the experiments referred to M(D and N(D are
both about 1000, so fairly clearly a high speed computer must be used in its computation. Hugh
Bryant, Jr: has noted that if the spike times are recorded by increasing time, with a simple indicator
to say whether a spike was an M or an N, then there exists a direct algorithm for computing (9) with
one pass through the data. Suppose the data is denoted (uj, aj) , j = 1,2, . .. where UI < U2 < U3...
and u, is an s, if a, = 0, u, is a t« if a, = I. The algorithm is the following: (I) initialize.n(lh, h) to 0
for 1=0,±1,±3,''', (2) for j=I,2,'" and k=j+l,j+2, '" if aj=l, ak=O compute 1=
[(Uk - u,)/(2h)] and set n(lh, h) = nilh, h) + I or if a, = 0, ak = I compute I = - [(Uk - uj)/(2h) + 1/2]
and set n(lh, h) = n(lh, h) + I. (Here [x] means the integral part of the number x.)

5. Some more probability theory. Figure 3 is a graph of an estimate of PMN(U)/(PMPN) rather than
the function itself. Part of the irregular nature of the figure is undoubtedly due to sampling
fluctuations. Before we can come to a reasonable decision that the two spike trains are related, with
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a spike of the N train associated with an apparent depression in the rate of M spikes for example,
we must assess the magnitude of sampling fluctuations. The key random variate appearing in
PMN (u )/(PMPN) is n(u, h) given by expression (9). Let us attempt to approximate the distribution of
this variate for large T.

ntu, h) is a counting variate. As h is small it is counting rare events. Now in many situations,
counts of rare events are approximately Poisson (see for example Feller [8] p. 282). Volkonskiand
Rozanov [12] demonstrate the related result that if N T(1, w), T = 1,2,' . . is a sequence of point
processes with mean intensities p ~...,.. 0 as T...,.. 00, then under a further regularity condition, the
sequence of processes with rescaled time, NT (1/P;:., w), T = 1,2, . . . tends to a Poisson process.
Perhaps n(u, h) here is approximately Poisson with mean 2hTpMN(U).

Supposing h = L / T, with L constant, we definea sequence of processes NT (1, w) by sayingthat
N T

( • ,w) has a spike at t, if N( ', w) has a spike at t and if M(·, w) has a spike in the interval
(t +U - L/T, t + u +LIT). The mean intensity of the process N T

( . , w) is - PMN(U) 2L/T...,..0. In
Brillinger [2] it is shown that the result of Volkonski and Rozanov [12] may be applied to conclude
that for large T the process N T(1T, w) is approximately Poisson and in particular n(u, n­
NT«O, T),w) is approximately Poisson with mean 2hTpMN(U).

6, Somestatistical inference, A common procedure that a statistician employs to communicate
an interval of plausible values for an unknown parameter, in the light of data collected, is a
confidenceinterval. For example, a 95 per cent confidenceinterval has the formal interpretation that
95 is the long run percentage of such intervals that actually contained the true parameter value. At
this point we could use Table 40 of Biometrika Tables, based on the Poisson distribution, to
construct a confidence interval for PMN(U) and by division through by PMPN a confidence interval
for PMN(U)/(PMPN).

A less troublesome way in which to proceed is to take advantage of the fact that if P is a Poisson
variate with mean jJ" then VP is approximately a normal variate with mean V jJ, and standard
deviation 1/2 (see pp. 88-96 in Kendall and Stuart [10]). The application of this square root
transformation has two advantages; tables of the normal distribution are widely available for
constructing confidence intervals, and the approximate standard deviation does not depend on the
unknown parameter. Allof this suggestsa consideration of the estimate VPMN(U )/(PMPN) and of the
approximation of its distribution by a normal with mean V PMN(U )/(PMPN) and standard deviation
1/(2Y2hTpMPN). Approximate 95 per cent confidence intervals are constructed by adding and
subtracting I.96/(2V2hpMPN) along the curve.

- 12.50 -7.50 - 2.50 O. 2.50 7.50 12.50
.I •••1.20 :............. ........................................................................•.. ...... .......

1.00

.80 ....................................................................................................... .. . .
- 12.50 -7.50 - ·2.50 O. 2.50 7.50 12.50

FIG. 4. Vp.fN(U)!(PMPN) and 95 per cent confidence limits about the level 1.00.
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In the case of independenceof the two processes PMN(U )/(PMPN) = I and this hypothesis may be
easily checked into by plottinghorizontal lines at the levels 1.00 ± 1.96/(2Y2hTpMPN). This has been
done in Figure4, for the data of Figure 3. This new Figure is stronglysuggestive of the association of
a reduced rate of M spikes for a period after the occurrence of an N spike.

- 12.50 -7.50 - 2.50 O. 2.50 7.50 12.50. ... . . . .1.20 ............•..•.........•..•.........•.....•...... .•........ ................••.....................•.

1.00

.80 . .......................................................................................................
&. •

- 12.50 -7.50 - 2.50 O. 2.50 7.50 12.50

FIG. 5. VPMN(U)/(PMPN) and 95 per cent confidence limits about a smoothed version of these values.

We mighthave chosen to indicate samplingfluctuations in the manner of Figure 5 where we have
plotted ± 1.96/(2Y2hTpMPN) limits around a heavily smoothed version of the estimate. The points
where the upper line is below 1.00 might be assessed significant. Figure 5 is also suggestive of a
direction of causation for the two cells, namely the N spikes seem to be associated only with later M
spikes (i.e., at positive u). This last is consistent with the neurophysiologists' understanding of the
relation of the two particular cells for which this data was collected.

7. Final remarks. In this article I have sought to describe some of the stages involved in a
modern applied statistics problem. These include: (i) the experimenter collects interesting data,
(ii) the experimenter recognizes reievent scientific parameters to estimate, (iii) the experimenter
consults a statistician as to whether or not his estimates are significant, (iv) the statistician suggests
means of assessing sampling fluctuations and possibly suggests transformations in order that the
data be more simplydescribed and (v) the experimenter and statistician collaborate to determine and
fit a statistical model and to design future experiments to confirm that model. The distinction
between these stages is not always apparent nor is it clear whose ideas are whose. The experimenter
must learn a fair amount of statistical methodology and the statistician must learn a fair amount of
the experimenter's subject matter before real progress can be made.

Previous to my involvement in this work and the carrying out of the research leading to [3] ,
another applied statistician, Peter Lewis, was involved. He suggested, [4], some clever and widely
applicable alternate procedures for assessing the significance of the estimate (10). These were: (i)
look at the variations of n(u, h) for IU I large enough that the interactions of the two cells are
independent, (ii) substitute for the N train, a spike train of N(n independent spikes and examine
the variation of n(u, h) here, (iii) split the observed trains into J (say 20)pairs of shorter records and
examine the variation of n(u, h) when computed for the shorter records. The easiest of these
procedures to carry out is (i). When done, it does lead to an estimate of the variation of the same
order of magnitude as that of this paper.

Reference [3] is a joint paper carrying the analysis of the data described in this paper
considerably further forward. I should like to thank Hugh Bryant, Jr. and Jose Segundofor the great
pleasure I have derived from working with them on this problem.
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Empirical Examination of the Threshold Model of Neuron Firing*
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with 0, the threshold at time t and H(II) the Hea vyside
function that equals I for u~O and 0 ot herwise.

It is of interest to estimate the summation functi on
a, itself, the overall threshold level and other character­
istics such as Prob {Y, = 1IU,}, the probability of firing
as a function of potential, from a stretch of data (X t, Y,),

t=O, ± I , ± 2, .. ., with B, =t-1[, where 1[ , is the time of
the spike immediately preceding t. In discrete time the
spike train, or the synaptic currents it evokes , can be
identified with a series of O's and 1's, 1 if a spike
occurred at the cor responding time, and may be
repre sent ed by

Let 8(t) denote the thre shold potential a t time t. A
naive model for the firing times of the neuron is to take
them to be the times at which U(t) crosses 8(t) in a
particular direction with Oft) assumed constant, for
examp le.

The analyses to be discussed were carried out on a
digital computer a nd so it is necessary to replace
expression (1.1) with the sampled version

by the summa tion function art). The function art)
describes the course that the potential would follow
after a current impulse. The linearity assumption
requires that the effects of current pulses at different
times be additive, and will be made precise shortly. Let
B(t) denote the time elapsed at time t since the neuron
last fired . (The backward recurrence time at t.) LetX(t)
denote the level of the input current at time t. Then
U(t), the membrane potential at the trigger zone at
time t, may be represented as

(1.1)

(1.2)

(1.3)

B(,)

U(t)= S a(II)X(t-u)du.
o

Y,= H(U,-O,) ,

Bt ~ 1

U,= L «x. s. ,
u=o

Abstract. An elementary model of neuronal activity
involves temporal and spatial summation of post­
synaptic currents that are elicited by pres ynaptic spi­
kcs and that, in turn, elicit pos tsynaptic potentials at a
trigger zone ; when the potential at the trigge r zone
exceeds a "threshold" level, a postsynaptic spike is
generated. This paper describes three methods of
estimating the "summation function", that is, the func­
tion of time that converts the synaptic current into
pote ntia l at the trigger zone: name ly, maximum like­
lihood, cross -correlation analysis and cross-spectra l
analysis. All three methods, when applied to input­
output data collected on vario us neurons of Aplysia
californica, give comparable result s. As estimated, the
summation funct ion involved in the explo red cells has
an early positive-goin g swing that is large and brie f. In
the cell L5, but not in R2 , there was also a la te
negative-going swing of longer duration .

Prepared with the part ial suppo rt of the Nat ional Science
Fo undat ion Grant MCS 77-22986 to ORB and " SF and NIH
grants to JPS

1. Introduction

A classical anal ytica l model for a neuron firing im­
pulses when subjected to presynaptic influences in­
volves i) linear summation of synaptic currents and
exponential decay to provide membrane pot ential and
ii) firing when the latter exceeds a threshold with
resetting of memb rane potential to init ial value. The
model is referred to as "leaky integrator" and is
discussed in Holden (1976) for example.

In the experiments to be discu ssed, current is
inserted directly into the soma of a living cell. Let the
process taking the soma tic current, (at the insertion
site), over to potential a t the trigger zone and the
evolution ofthe latter be assumed linear and descr ibed

0340-1200/79/0035 /0213/$01.60

P. Guttorp and D. Brillinger (eds.) , Selec ted Work,' ofDavid Brillinger, Selected Works in Probability 569
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t=O, ... ,T-1. This specific estima tion problem, in­
volving summation back to the previous firing, does
not appea r to have been con sidered previou sly. Knox
(1974) and Rubio and Holden (1975) have investigated
models involving summation of all previou s input.

2. Maximum Likelihood Fit

and the spike train may be approxim ated by li(Y, - 0,).
Suppose fur ther, and this is a key assumption, that the
input series X , is sta tionary Gaussian. Finally suppose
the threshold series 0, is sta tistically independent of the
series X "

Becau se of the Gaussianity of the series X , one ma y
write

and the conditional prob ability of (2.1) estim ated in
turn . Examples of th is will also be presented lat er.

where <P( . ) is the cumulative distrib ution function of a
no rmal variate with mean 0 and variance 1 from the
assumption re 0,. Co nditiona l on theX, value s at hand,
the probab ility of observing the stretch 1';,
t=O,I , ... ,T-1 is

(3.3)

(3.2)

(3.4)
co

= L L aucxx(v - u)
u=o

CD

= L aucxx(v - u)/uyy
14 = 0

with m; b; cons tants

bv=cov {Y" X, _v}/var Y,

and, wha t is crucial, with 8, sta tistically independent of
V; (see Brillinger , 1977). Here cxx(u)= cov {X ,+u,x,}. It
follows that

cyx(v)= eov O;,X,-J
= eov {ll(V;- O,),X ,_J

= bvcov {H(V, - 0,), Y,}

4. A Cross-correlation Approach

Suppose tha t the signal, X " dri ving th e neuro n has
been tak en to be Gaussian white noise. Then the
relati onship (3.4) will continue to hold, but further the

q;( .) the normal density]. What is of interest here is that
the final result of (3.4) is, up to a sca le factor , the identifi­
cation relationship of a linear time invar iant system.
[Th is sort of result has been pointed out in de Boer
and Ku yper (1968), Korenb erg (1973), Brillinger (1977)
under va rying levels of ass umptions.]

Given the stretch of data (X" 1';), t = O, l , ... , T-l
the summa tion func tion au' ma y be estimated (up to
the unk nown scale factor L) via cross-spectra l analysis
[see for examp le Chap. 8 of Brillinger (1975)]. Given
the estimates au' the fitted potential may be computed
via expression (2.3) and the firing probability of (2.1)
estimated in turn.

In fact the relationship (3.4) holds for a n exceed­
ingly broad class of instantaneous ope rators on the
seies V;. Whatever th reshold cha racter the operator
may have remains to be inferred from further calcu­
la tions, such as estimating the prob ability of (2.1) as
presented late r.

with L a constant [which may be evalu ated as

"'(01 Vu,,+o-yy),

(2.2)

(2.3)

(3.1)

(2.1)

T ~ In 4>( U,- W '[l - 1'(U, -O)]I -Y, .
r=O

Ht -l

Cr,= L ii,x,-u
u=o

As a function of the unknown parameter s of the mod el
(here the au an d 0) an d evaluated at the observed
values, expre ssion (2.2) is called the likeliho od functio n
of the data. A traditional mean s of estimati ng the
unknown param eters of a statistical model is the tak e
as estimat es the values of the parameter s that maxim­
ize the likelihood [see for example Rao (1965)].
Examples of such estimates will be provided later in
the pap er.

Once est ima tes iiu are at hand, the poten tial at time
t may be estimated by

'"
Y,= L a,x,-u

u=o

Suppose that the th reshold ser ies °fluctuates about a
constant level 0, specifically tha t th e successive values
of 0, are independ ent normal var ia tes with mean 0 and
var iance 1. (Variance 1 is no restriction as the au ma y
be scaled arbitrarily.) Then, for example,

Pro b { Y, = I IU,} = Prob {U, - 0,~O}

= <P(U,- O) ,

3. A Cross-spectral Approach

Th e maximum likelihood fitting procedure although
effective, is a fairly time consuming procedure for the
mod el of this paper and the lengthy data sets at hand.
In consequence it is worth inves tigating alt ernate
fitting pro cedu res.

Suppose that the thr eshold level, 0, is high enough
that the B, are genera lly lar ge an d that the a, die off
reaso nably rapidly as t increases. Then the potential
U" of (1.2), may be approxima ted by
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autocovariance function of the input will be given by
cxx(O) = <1xx, cxx(U)= 0 for u oj=O. The relation ship (3.4)
hence reduces to

(4.1)

Ther e is no need then to carry out a cross-spectral
anal ysis to estimate the summation function au(up to a
scale factor ). An estimate of the cross-covariance func­
tio n of the output series with the input provides a
direct estimate.

It may be remarked that the theoretical justifi­
cation of the estimates of this and of the previous
section are based firmly on how well the experiment er
can generate input signals with specified stochastic
properties and the degree to which one can replace B,
of (1.2) by co. On the other hand the maximum
likelihood approach allows arbitrary input character­
istics and deals with the scientifically relevant model.
Empirical calculat ions to be presented later suggest
that in some circumstances the Gaussian assumpti on is
not crucial to the cross-spectral and cross-correlat ion
approac hes nor do great difficulties result from the
replacement of B, by co,

5. Experimental Methods

Experiments were performed on the identified neurons
referred to as R2 and L5 of the abdom inal ganglion of
Apl ysia californica, isolated with nerves and connec­
tives, immersed in artificial sea water (ASW, pH 7.6),
and maint ained at 17°C using a servo-cont rolled
Peltier device. To facilitate multip le-electrode penet­
ration of certain cells the ganglia were typically placed
in a 1%solut ion of Pronnase for l o-15min in order to
soften the connective tissue capsule.

Cells were impaled with separa te stimulating and
recording electrodes (KCl, 5- 10 MQ). The stimulating
electrode was used to inject a continuously varying
cur rent. Int racellular recordings were obtained as pre­
viously described (Bryant et aI., 1973). The stimulating
current and corres ponding tran smembrane poten tial
were stored on analog tape for later computer
processing.

In the experiments to be discussed in this paper the
input curr ent injected was modu lated as either
Gaussian or uniform white noise. The specific input
employed was produced by either a Hewlett-Packard
noise generator (Model 8057A) if Gaussian or the
computer if uniform. Pure white noise with an every­
where constant power spectrum is not physically re­
alizable, and bandlimited is the most that can be
achieved. The bandpass of the input employed was
determined by the frequency on an external clock
(Bryant and Segundo , 1976).

215

6. Statis tical Methods

The analog recordin gs were digitized (at either 32 or
50 Hz) and the output series, y" taken to be 1 if an
action potential occurred in the corresponding time
interval and to be 0 otherwise. Each of the three
meth ods of fit, maximum likelihood, cross-spectral
analysis, cross-correlat ion an alysis were applied in the
cases discussed below.

In the maximum likelihood ap proach the like­
lihood function (2.2) is to be maximized as a function
of IJ and the auintroduced via (1.2). On the basis of the
cross-spectra l and cross-correla tion ana lyses to be
presented later it was decided to assume uu =O for
u> 25 [making (2.2) a function of 26 unknown
paramete rs]. To reduce the amo unt of comp uting
required , maximum likelihood estimat es were deter­
mined separa tely for conti guous stretches of 1900 X,
values : this has the further advantage of allowing the
direct assessment of the variability of the estimates
computed. The derivatives of the function (2.2) were
evaluated analytically as requi red by the particul a r
maximizat ion procedure employed (i.e. the
FORTRAN subroutine VA09 A of the Har well lib­
rary). This procedure further requires choosing initial
values for the parameters : several sets of initial values
were tried for the first stretch of data and the program
converged to the same extreme values in every case.
For each subsequent stretch of data, the initial values
were taken to be the average of the estimates of the
already processed stretches . [C omputationa l and stat­
istical prop erties of maximum likelihood estimat es are
presented in Chambers (1977).] Overall estimates of
the au were constructed by averaging together the
maximum likelihood values for the various stretches
and then hanning the values corresponding to the a,:s.
"Hanning" refers to a runnin g smoo thing employing
the weights 1/4, 1/2, 1/4 (Tukey, 1977) that suppresses
the ripling introduced by the sampling pro cess.

The cross-spectral anal ysis of time series data
(X" Y,), 1=0,1 , ... , 7'- 1 is now classical. An effective
way to proceed is (i) to Fo urier transform the corre­
sponding stretches of data (employing a fast Fourier
transform algorithm ), (ii) to form the auto- and cross­
periodograms from the Fourier transforms, (iii) to
smooth these periodograms to obtain estimates of the
auto - and cross-spectra flx()')' f[y()'), f[x()')' (iv) to
back Fou rier transform l;x().)j!Jx()') to obtain an
estimate of the impulse response au' For the part icular
data sets at hand , because of series/length, the periodo­
grams were computed for separate stretches of 1024
observations and then averaged together across all the
data. Hanning was emplo yed at the final stage here as
well. Estimates of the sampling variability of these
estimates arc available (Brillinger, 1975).
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7. Results

and a 12.5 Hz bandpass. A43 min long stretch of
record con taining some 2017 action potentials was
digitized at 32 Hz for analysis. The running rate of the
cell was estimated by counting the number of action
potent ials in 200 contiguous time intervals of about
13s and found to fluctuate but narrowly about a
constant level ; this provided a check for stationarity.
The autointensity function of the spike train was
estimated (Bryant et aI., 1973) and had the character of
that of a delayed Po isson process, 0 at the smallest lags
(corresponding to a refractory period of about 0.4 s
and essentially constant (at the overall ra te) thereafter.

Figure 1a is a graph of the function a. estimated by
the method of maximum likelihoo d. The shape obtain­
ed is biphasic , with a strong narrow positive-going
peak just before firing and a broad peak of opposite
polari ty commencing at about 0.75 s. As indicated
earlier this function represents the curre nt to potential
transform at ion as affected by the spatia l transmission
from the soma to the trigger zone and by the temporal
decay. Under the conditions of the experiment and the
nature of the model (and the relatively long spacing
between spikes) it represents the response of the trans­
membrane potent ial at the trigger zone to a pulse of
positivegoing current injected in the soma.

Figure I b presents the result of estima ting au by
cross-spectral ana lysis. It has the same shape as that
found by the method of maximum likelihoo d with the
exception that it dies to 0 slightly earl ier. Th is attenua­
tion is undo ubtedly caused by the replacement of VI of
(1.2) by V, of (3.1). The cross-spectral analysis weights
in 0 values for var ious of the au'

Figure l c is the statistic (6.1) of the cross­
correlation approach, because the inpu t signal was
ap proxima tely white. The computation time required
to produce Fig. I c was negligeable compa red to that of
the ot her two approaches. Th e advantage of driving
the neuron with Ga ussian white noise is app aren t.
Further the examp les computed by cross-correlation
in Bryant and Segund o (1976) are plausibly seen to
have a broader interpretati on as prov iding summation
functions prior to a thr eshold crossing.

The second set of result s to be presented involve
experiments with the cell R2 . Once aga in Ga ussian
"white" noise was applied as a stimulus; in addition
however white noise with a uniform marg inal distr i­
but ion was applied too - to the identical cell that
received Ga ussian noise. Amongst other thin gs it is of
interest to exam ine how robust the fitting procedur es
of Sects. 3 and 4 are to depar tur es from normality.
Figure 2a pro vides the summation function, aU' as
estimated by the method of maximum likelihood for
the case of uniform input. In this case the function is
unidirectional weighting immediate values most hea­
vily with the weighting extending perhaps O.4 s.

(6.1)

(6.2)

The cross-correlation approach is by far the most
direct and rapid. One simply computes

N

L X (tj - u)/N
j = 1

Prob {Y, = l 1V, = V} .

for u=O, 1,2, .. . where t.,t2, • .• , tN arc thc observed t
values for which Y, = 1.

The cross-spectral and cross-correlation ap­
proaches do not produce direct estimates of the th resh­
old level O. They are further based on the assumption
that the upper summation limit in expression (2.3) has
no effect. To check the reasonableness of the pro cedure
in the face of this assumption, simulations were carri ed
out. Summation functions au were selected. For
stret ches of XI generated for the Aplysia experiments
the values VI of (2.3) were formed and Y, set to 1 if a
threshold was exceeded. Various thres hold values, 0
were tried. Simulations were also carried out with a
variety of refractory period s. The thr esholds (and
refractory periods) were selected to give results com­
parable with those ob tained in the experiments. In all
of these simulations the cross-spectral and cross­
cor relation app roaches bot h produced estima tes that
were close to the "known" au.

The threshold character of the neuron may be
investigated via the firing probability function,

Were it a threshold device with consta nt threshold e,
this (conditional) probability would be given by the
step function H(V - e). Were the threshold a normal
variate with mean e and variance 1, the pro bability
would be given by <1>(V -0), with <1>( . ) the nor mal
cumulative, as in expression (2.1). The probability (6.2)
may be estimat ed as follows ; compute fitted values, 0"
of V, via expression (2.3); compute the pro porti on of t
with 1;= 1 and V -rx < 0,< V +rx, a small. Graph s of
this pro porti on versus V are presented later in the
paper and are in accord with a th reshold model.

The procedure s described in this paper were applied to
a broad variet y of dat a sets obt ained from identified
Aplysia neurons. Results will be presented for cells L5
and R2 whose disimilar and even contrasting be­
haviors are typical of results obtained in the remaining
cells (e.g. LlO).

L5 is foun d in the left rostral quadrant of the left
hemiganglion , an d the results of imposing con­
tinuously varying current upon it are repor ted in
Bryant an d Segund o (1976). In the experiment whose
analysis will be presented here L5 was driven by a
Ga ussian white noise current having ±25 nA range
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Fig. 2a-c. Estimated summation function for cell is R2. a and b
Driven by uniform noise. Estimate formed by averaging maximum
likelihood estimates for 25 consecutive stretches of 1900 sampled
values and then harming (a). Estimate determined by cross-spectral
analysis ; the spectral estimates have 1200' of freedom and band­
width 0.50Hz (b). c Driven by Gaussian noise. Estimate determined
by cross-spectral analysis; the spectral estimates have 1200' of
freedom and bandwidth 0.50Hz

10080'0 60
LAG (1/32 SECQNDJ

20
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C

Fig. 1a-c. Estimated summation function for cell L5 driven by
Gaussian noise. a Formed by averaging maximum likelihood es­
timates for 43 consecutive stretches of 1900 sampled values and then
hanning, b Determined by cross-spectral analysis; the spectral
estimates have 1200" of freedom and bandwidth 0.32 Hz. c
Determined by cross-correlation

Whether one applies uniform or Gaussian input
makes no difference as to the logic of the maximum
likelihood approach. For nonlinear systems, however ,
statistics based on cross-spectral or cross-correlation
analysis cannot be expected to be independent of the

input signal characteristics. Figures 2b and c provide
the function au as estimated in the same cell by cross­
spectral analysis for the cases of uniform and Gaussian
input respectively. The curves are very similar to each
other and to the maximum likelihood estima te of Fig.
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2a. Th e one substantial difference with the latte r is that
it tails off more slowly. This undoub tedly relates, as
indicated earlier, to the cross-spectral estimate weight­
ing in noise values beyond the last time of firing.

f igure 3 presents estimates of the prob abilit y of the
neurons firing as a function of the estima ted con­
current potentiaL The potent ial was estimated by

with the ii" values resulting from the maximum like­
lihood fit. The vertical line is placed at the value, 0, of
the estimated threshold mean. Figure 3a is for the case
of cell L5. The graph has the form of the lower half of a
sigmoid function in agreement with expression (2.1).
Substan tial samplin g fluctuation s are apparent in the
estimate for the larger values of the pot ential : the
experiment was such that few values of 0 where ob­
served in that region. Further no values of 0 were
observed at all once one got a bit beyond iJ : this cell (in
contrast to R2 as described below) was never pushed
into a region of firing with probability one, apparently.

•'ig. 3a and b. Estimated firing probability as a function of fitted
membrane potential.The binwidth along the horizontal axis is 10.24.
In a and b, the data an d estimated summation function are those of
Fig. I a and 2a, respectively

B t --- l

0,= L ii"x,-u
u=o

I

!
u

c-ITTEO POTENT] AL lJALUE

o
FI TTED POTENTIAL VALUE

(7.1)

512

:-,12

Figure 3b presents the estimated firing probability
for the case of cell R2 driven by uniform input. In this
case a full sigmoid shape is apparent. When the
potential gets large enough the cell is seen to fire with
probabili ty one. This last figure provides substantial
evidence towards the reasonableness of the threshold
modeL

In deriving the estimates the threshold, 0" has been
assumed to fluctuate about a constant level O. On
occasion other workers have assumed exponential
decay for the threshold following an action potential,
In an examination of this possibility scalier diagrams
for various experiments were prepared of the values
(tj - t j _ l' 0,) where the t j were the observed spike
times. No exponen tial decay was apparent. The dia­
grams were consistent with the relation ship et=o+ o"
the series 0t being zero mean.

Figure 4 presents estimates of the coherence func­
tion of the inpu t current series with the output spike
train as computed in the spectral analyses of the
L5-Gaussian, R2-uniform, R2-Gaussian dat a sets.
The coherence measures the degree of linear time
invariant association of the input and output as a
function of frequency. Given the essential nonlinearit y
of the present situation, the coherenc es arc surprisingly
large. In cach case the input and output appear most
strongly related at the low frequencies with the re­
lationship extendin g up to 3- 4 Hz.

Figure 4b and c are for the cases of uniform and
Gaussian input respectively. Once again the figures are
surprisingly similar suggesting that the Ga ussian as­
sumption invoked in the analytic derivations of Sect. 3
and 4 is not crucial. The principal distinct ion between
the two stimuli was found to occur in the estimates of
firing prob ability such as those of Fig. 3. With the
uniform stimuli more large values of 0 occurred with
the effect that the estimate was more stable at the ends.

ll. Conclusions

The th reshold model has been fit to certain Aplysia
neuronal data. Figure 3a and b derived from the fit
provide evidence that the neurons studied are indeed
firing with a probability that depend s on the re­
lation ship of an internal variate, denoted by V, in th is
paper and called a pot ential, to a thr eshold level. The
summation function describing the transformat ion of
presynaptic current at one site to potential at the
trigger zone has been found to be estimable and as
evidenced in Fig. 1 and 2 to depend upon the particu­
lar cell studied.

From a physiological viewpoint the summation
function represents the potential fluctuations that
would occur at the trigger zone had a positive-going
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F urther th e use of input with a unifor m distribution
has been found to be more efficien t, than a Gaussian,
for the est imation of certa in parameters of interest (e.g.
the firing pro ba bility).

Fig. 4a-e. Estimated coherence functions a, b, an d c were de­
termi ned in the course of constru cting Fig. 1b, Fig. 2b, an d Fig. 2c,
respectively

b

a

curr en t imp ulse been injec ted into the soma . At a
syna pse the initial change provoked by the ar rival of a
presynaptic spike is a loca l con ductance increase asso­
ciated with a rapid synaptic current whose electronic
repe rcusion is the more durable postsynaptic poten tial,
as dem onst ra ted in lobster card iac ganglion cells
where synapses occ ur on bo th soma and dend rites
(Hagiwara et a I., 1959). It seems reason abl e, therefore,
to propos e th at th e summation func tion s of F ig. 1 and
2 approxima tes the excita to ry postsynaptic potent ials
tha t woul d be encountered were the synapses located
upon the Aplysia cell so ma.

The form of th e summation function sugges ts two
comments. The first is that its durat ion (e.g. around
0.6 s) is far sma ller than that (e.g. over LOs) of PSP's of
comparable amplitudes observed in the same neu rons.
Our int erpretati on is that the different prop erti es of the
membranes resp onsible for the "soma-to -trigger zone"
and th e "neurophil-to -trigger zo ne" tran sform ati on s
lea d to such a con trast. The second is that th e sum­
mati on funct ion (in L 5, for exa mple Fig . 1) can be
bipha sic, exh ibiting an earl y rapid swing of one po­
larity and a lat e slower one of th e op posite po la ri ty.
T his do uble effect can be responsible for part of the
biphasic rate changes associated with PSP's (Bryan t et
al ., 1973).

Th e soma-axon coupling in living neurons (Junge,
1976) has been represented by an RC soma mode l
connected to an infin itely long cable-like axon. In
Aplysia neuro ns the cell bo dy do mina tes the potential
res ponse to constant injected currents sim ply beca use
the somatic con ductance is far greater than that of the
in itial axon. T he situa tion may cha nge somewha t when
bandlimi ted whi te no ise is delivered but, even if it were
to change litt le, it is not prudent to assimilat e un criti­
ca lly th is "soma-to-trigger zone " con version to th at
occur ing naturally fro m "neuropil-to -tr igger zo ne" in
the sam e neuro n. The physiological inte rest of the
present observatio ns arises mainly from conclusions
that ar e applicabl e to thi s large cla ss of other neurons
where 'the synaptic currents a re genera ted pri ncip ally
in a dominant so ma .

From a sta tis tical viewpoint, it is worth not ing th at
the functi on s pr oduced by cross-spectral (or cro ss­
corre lation) ana lysis have the sa me essenti al tim e
course as those produced by the specific mod elling an d
fitting of a thresho ld mo del. The former functions may
be com puted mu ch more easi ly and ra pidly than th ose
using the method of maximum likeli hood. The results
of delive r ing a Gaussian white noise input , used pre ­
viously in severa l other neurophysiologica l systems
(e.g. Marmarelis and Marmarelis, 1978), have been
foun d here to have a broad er applicability than might
have been expe cted - a thresho ld model invo lving
su mmation back to the previous firing on ly may be fit.

575



220

Brillinger, D.R. : Time series: data anal ysis and theory. New York :
Holt, Rinehart, and Winston 1975

Brillinger, D.R. : The identification of a particular nonlinear time
series system . Biometrika 64, 509-515 (1977)
Bryant, H.L., Segundo, lP.: Spike initiation by transmembrane

current: a white noise analysis. J, Physiol, 260, 279-314 (1976)
Bryant, H.L., Segundo, J.P.: An anal ysis of spike triggering in

neurons using Gaussian and uniform white noise stimulation.
To appear (1979)

Bryant, H.L., Ruiz Marcos, A., Segundo , lP.: Correlations of
neuronal spike discharges produced by mon osynaptic connec­
tion s and by common inputs. J. Neurophysiol. 36, 205-225
(1973)

Chambers, J.M. : Computational methods for data analysis. New
York : Wiley 1977

Hagiwara, S., Watanabe , A., Saito, N.: Potential cbanges in syncytial
neurons of lobster cardiac ganglion. J. Ncurophysiol. 22,
554- 572 (1959)

Holden, A.V. : Models for the stochastic activity of neurones. Berlin :
Spri nger 1976

Ju nge, D .: Nerve and mu scle excitation. Sund erland : Sinauer
Associates 1976

576

Knox, C.K. : Cross-correl ation funct ions for a neuronal model.
Biophys. J. 14, 567-582 (1974)

Korenberg, MJ. : Cro ss-correlation analysis of neural cascades.
Proc. Ann . Rock y Mount. Bioeng. Symp . 10, 47-71 (1973)

Marmarelis, p.z., Marmarelis, V.Z. : Anal ysis of physiological sys­
tems . New York : Plenum 1978

Rao , C.R . : Linear statistical inference and its applications. New
York: Wiley 1965

Rubio, l E., Ho lden, A.V.: The response of a mod el neur one to a
white noise input. BioI. Cybernetics 19, 191-195 (1975)

Tukcy, J .W.: Exploratory data analysis. Readi ng : Addi son-Wesley
1977

Received: Angust 16, 1979

Prof. D. R. Brillinger
Statistics Department
Uni versit y of California
Berkeley, CA 94720, USA



Nerve Cell Spike Train Data Analysis:
A Progression of Technique

DAVID R. BRILLINGER*

Collections of occurrence times of events taking place irregularly in time provide a fairly common, but not broadly discussed, data
type. This article is concerned with the particula r circumstance of firing times in nerve cells that interact and form networks. The
article reviews a progression of statistical analysis techniques: description, association as measured by momentsand correlation,
regression, and finally likelihood . The data is point process, but may be seen as that of regression and of multivariate analysis in
standard parlance . A simple description of data collected simultaneously for one or more cells is provided.

KEY WORDS : Binary data ; Nerve cell; Network ; Point process; Probit analysis; Semiparametric model.

".. . the purpose of inductive reasoning, based on empirical ob­
servations, is to improve our unde rstanding ofthe systems from
which these observations are drawn ."
Sir R. A. Fisher (1956)

The above statement sets down the spirit of applied sta­
tistics. The related goal of this article is a better understanding
of the nerve cell system and the construction of better quan­
titative models of the neuronal firing phenomenon. On the
substantive side, the author's collaborator J. P. Segundo has
remarked that " the biological goal is understanding in strictly
biological terms." This may be viewed as an ultimate goal.
The models will change, but the biology will remain .

R. A. Fisher was central to the development of stat istics,
in part icular to the progression of data anal ysis techniques
from description and simple measures of association to the
tools of association and regression anal ysis and finally to
likelihood analysis. This article aims to illustrate the same
progression for a data type of some contemporary interest­
point process data-and to continue on to nonparametric
and semiparametric likelihood analysis.

The article is concerned with a particular biological sys­
tem-small networks of neurons communicating with each
other and responding to stimul i. The system studied is of
basic interest on both scientific and theoretical grounds. Sci­
entific interest follows from a concern as to how the nervous
system works; theoretical interest results in part from the
system's strong nonlinearity.

Data from two different living preparations are studied.
First discussed are some data for the cat collected by
A. E. P. Villa at Lausanne, Switzerland . In Villa's experi­
ments , cats were subjected to sound stimuli and data for
eight nerve cells recorded simultaneously (Villa 1988, 1990).
Also studied are simultaneous data for networks of two and
three identified nerve cells (in particular cells L2, U, L5,
and L10) of Aplysia californica (the sea hare) collected by
J. P. Segundo at the University of California , Los Angeles
(Bryant, Ruiz Marcos, and Segundo 1973; Bryant and Se-

• David R. Brillinger is Professor of Statistics, University of California ,
Berkeley, CA 94720. This article formed the R. A. Fisher Lecture given in
Atlanta, Georgia, in August 1991. The research was partially supported by
the National Science Foundation Grant DMS-8900613. The computations
were performed at the Statistical Computing Facility, University of California,
Berkeley, unde r the directorship of Leo Breiman . Th e figures were prepared
employing S; seeBecker, Chamb ers, and Wilks (1988). The author thanks
the many individuals who provided help and advice with the computing
and the presentation of the material . The author particularly thank s J. P.
Segundo, Depart ment of Anatomy & Cell Biology, UCLA, who for almost
20 years has helped him with the intricacies of the pertinent neuroph ysiology.

gundo 1976). Aplysia is commonly studied by neurophysi­
ologists because the nerve cells are large and accessible and
a number are repeatedly identifiable.

As is the pleasant feature of most time series analyses, a
broad variety of figures are presented . These figures are cen­
tral to the anal ysis.

Important aspects of nerve cell firing not addressed in this
article include spatial effectsand intracellular data collection
and analysis.

1. WHAT IS A NERVE CELL?

Neurons (or nerve cells) are basic building blocks of an
animal's central communication system. They are input­
output systems of a particular structure having important
functions . It is pertinent to discuss both structure and func­
tion, because in biology often the two seem directly related .
Functions include accumulating, processing, and transmit­
ting information. A nerve cell receives messages through its
dendrites, root-like strings susceptible to chemical stimulus.
The messages propagate to the cell body, or soma. Out of
the soma grows the axon , with man y branches ending at
synapses, the junctions of neural networks. Figure I, taken
from Cajal (1895), shows a collection of neighboring neurons .
The arrows indicate the flow of information. The cell bodies
are the five blobs, four of which are labeled A, B, C, and D.
The axons run vertically downward from the bodies-except
for E, which is an axon entering from a distance . The den­
drites include the three treelike structures at the top suscep­
tible to influence from E.

The dendrites absorb input from other neurons through
chemical processes that change ionic conductances and
thereby induce current flows. The input is thence converted
to a membranepotential throughout the soma. At the axon
hillock (or trigger zone), the membrane potential occasionally
reaches a threshold and the neuron fires, that is, generates
an action potential (or spike). This action potential propagates
along the axon to synapses, at which point a chemical trans­
mitter is released to affect other neurons. The action poten­
tials are of near-identical size and shape; see the spikes in
Figure 2, which shows measured voltage fluctuations within
cell R2 of Aplysia (Bryant and Segundo 1976). It may be
argued that, because ofreduced sensitivity to noise, the firing
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Ge neral refere nces for pert inent neuro physiological back ­
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2. WHAT ARE POINT PROCESS DATA?
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I . Can an analyt ic model incorporat ing the haslc features
of neuron beha " ior be develnpW a nd iiI?

2. Gi\cn the firing tunes of a net wor k of neu rons. can
one infer their causal co nnections?

limes are the crucia l vari ates in com m unica t ion among neu­
rons. Som e discussion of the redu ction to point processes i~

give n in Segundo. Altshuler . Stiller, and Garlinke11199 11.
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is, depending on the type of co nnection, the firing of o ne
neu ron ma y make a second ne uro n either more lilr.d y or less
likely to fire. Neuro ns also ma y fire spontaneously with no
outside: st im ulus . Furt her i5 the phen om eno n of rcfracum­
""1$, wherein after a neuro n h:LS fired . the chance of it firing
again is red ucW lperhaps to zero) for a period.

Qu e,<;lions ofinterest incl ude:

A st retch of poin t process data is a set of ordered numtlfl';
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to he tho ught ot as tile timesofeventsthat occurred in some
ti me int erva l. say 10. n. Usual examples are the tim es of
telephone calls an d the tim es of part icle em ission try so me
radioactive material. A nai ve descripti ve statis tic derived
from such data is 1l1cobserved rate. i!'ve n here by k11: This
sta tistic has dimen sions of co unts per uml of t ime and is
useful in elem ental) ' com parisons of pomt pn.....ess behavior.
For the data studied ;1'1 th is art icle. the rates range (rom about
I spike per -.econd to abo ut 20 spikes per second. Figure 2
she....s 7 spikes in abo ut 14 seconds.

Descriptive statis tics conducive to insight ar e provided by
the plots in Figure 3. These plo ts are based 01'1 dat a collected
in experi ments stu dyi ng lhe auditorv system ofthe cat . Mi.
ceoelectrodes were inserted in a cal'S brain at a locat ion re­
latrd ttl h..ann g. The plot s refer to firil'lg tim es for a single
pa rtic ular nerve cell (cell 7) which the probe hap pened upon.
11'1 the case of the 1eftha nd plot . there ISno applied fT imul u'J.
To describe the pint . su~ thatlh..~alion period is
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segmen t. of the !..i h spike of that segment. The points plotted
ar e now l( rl/ . k ), k '=' I. .. . , Kr} for I '" I. . . . . L. No
dramatic structure is apparent in the leflhand pan el. T he
second pan el of Figure 3 refers to the sam e expe riment hut
with a noise st im ulus introd uced into the ea rs of th .. cat
every 1,000 millisecond s. T he points are plott ed as before.
wit h 1" referring to the time elapsed sin ce each stim ulus pre­
sentation. This pictu re shows that this neu ron typicall y fires
a short t ime afte r the ap plication of the st im ulus. Then there
is a tim e period during which the neu ron is unlikely to fire
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and those of poi nl pr ocess ;ma lys;s; sec Brillingcl"(1918). as
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dill" COt. and lewis ( 966 ).

3 ASSOO AllON-SECO ND ORDER MOMENTS

In tht ea!C of a blYaria:C sloCt-.u t ie poi nt process (M. N )
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da+oed ..Vo't_ and~......, rtlt"CWdror_ pI;ic:M &:>oul,...
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5. LIKELIHOOD-CONCEPTUAL MODELING

Figure 5. The distinction is that, as is the case in ordinary
regression analysis , one is nearer to an object unaffected by
elementary reexpressions. This analysis for this particular
data set is not dramatically enlightening, but interesting ex­
amples ma y be found in Brillinger, Bryant, and Segundo
(1976). The following section presents a more satisfying
analysis of the present data in an y case.

(5.2)

(5.1)U(t) = 2.: a(t - uJl.

The quantity U(t) is meant to represent the membrane po­
tential at time t at the trigger zone ofthe neuron whose firing
is of interest. Here , a(·) is a summationfunction, meant to
represent the various processes involved in the influence of
M 's firing on N 's firing. The character of the function affects
whether the firing of the neuron M increases (excites) or
decreases (inhibits) the chance of the neuron N firing. The
threshold deca y is represented by the function b( • ).

Figure 8 provides a layout of the situation. The bottom
two panels give hypothetical a( • ) and b( • ) for the case of an
inhibitory synapse. (Shortly, empirical estimates of a( • ) and
b( • ) will be provided.) The vertical asterisks of the top plot
are the firing times of the input neuron, M . The hook-sh aped
curves are the translates of the function b(· ), with a new
translate introduced with each firing of the principal neuron,
N. If -y,denotes the time elapsed since N 's last firing, then
the threshold curve may be represented by O(t) = b(-y,). The
lower continuous curve of the figure is U(t). One is concerned
with the membrane potential, U(t) , crossing O(t).

Consideration turns to developing a stoch astic version of
this model and of a corresponding likelihood function to
employ in analyzing available data . Suppose first that the
point processes are simplified to discrete time (1 = 0, ± I,
±2, . . . ) and to 0-1 valued series. That is, a sampling in­
terval of small length is selected such that only °or 1 points
occur within each interval, and one defines M , = I if there
is a point in the unit interval starting at t and M, = °if there
is no point, for t = 0, ± I, ±2, . . . . Corresponding discrete
versions of N and a( • ) are similarly defined. Now

A model with a long histo ry in neurophysiology invol ves
a neuron firing when the membrane potential at its trigger
zone exceeds a threshold. The threshold is a time-varying
quantity that is reset to a high level on the neuron's firing
and then is subject to slow (although not always monotonic)
decay. The effect of the reset is to prevent firing from recur­
ring immediately, and thus to incorporate the phenomenon
of refractoriness. The model may be described in formal
terms as follows: Let M = {Uj} refer to the times at which a
first (or input) neuron fires. Given the function a( • ), consider
the following time-varying state variable

Impulseresponseof L3 given L10

....•.....•.................._......_........_..- ...........................

.......- ..........._._....- ........."" ......>.1•."'1.....\:;.......v>:

V

of the null distribution of the estim ate , Except in the case of
simple translation of all the events by a common amount,
mappings between realizat ions of point processes are inher­
entl y nonl inear. In view of this , the high magnitude here of
the coherence estim ate at the low frequencies is surprising.

CoherenceL10 and L3

Consider next a model

lim Pr{Npoint in (r, 1 + hIIM} /h = 11 + 2.: a(l- Uj) '
hl O j

(4.1)

4. REGRESSION-A LINEAR MODEL

frequency (cycles/ second)

This model is linear and time-invariant. The function a( • )
is meant to represent the various chemical, electrical, spatial ,
and temporal delay processes involved in the influence of
neuron M's firing on neuron N's firing. For example, if the
T'S were given by T) = Uj + lj, with the Y's independent and
of density function a( ·), then the result (4.1) would hold
with 11 = 0, see Brillinger (1974) . The model (4.1) may be
fit by cross-spectral analysis (Brillinger 1974). The resulting
estim ate of a( • ) for the Aplysia data addressed in Section 3
is given in Figure 7. The estim ate is seen to mimic that in

Figure6. AnEstimateof theCoherenceof Neurons L10 andL3 Obtained
in theFashion Described inBri/linger, Bryant, andSegundo(1976) . Dashed
line gives 95% null point.

-4 ·2

time (seconds)

and it is convenient to represent the effect of the threshold
by

Figure 7. An Estimate of the Function a( ·) of (4.1) Obtained in the
Fashion Described in Bri//inger, Bryant, and Segundo(1976).

y ,

0, = 2.: bvN,- v,
v=l

(5.3)
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Membrane potential and threshold function

time (seconds)
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the N's (or U's) firing. This effect ofLlO appears to last for
approx imately one second. No apparent rebound effect is
present . Th e estimate of the decay function hu is OCJ for the
first five coefficients, reflecting the fact that no output spikes
occurred closer tha n .49 second for this particular data set.
The standard errors are estimated via the usual formulas of
prob it analysis. For convenience of display, in the case of iiu
the errors are graphed about the horizontal axis.

The preceding analysis invo lved the assum ption that the
pertu rbing noise values had a stand ard normal distribution .
Suppose, however, that the noise comes from an unknown
distribution and that it is desired to estimate that distribution.
It is convenient to write tha t distribution as

P(if;) = <I>(g(if;)), (5.6)

v
g

L
"l 5l

~

0
"l '"';" g

in
;>

~

time (seconds)

Summation function

.0 .4 .8 1.2 .0

Decay function

.4 .8 1.2

time (seconds)

with the consequence that g( • ) will be linear if the noise is
in fact normal. (The function g( •) is not assumed monotonic
here.)

The estimation procedure employed in this case is locally
weighted maximum likelihood. The computations are carried
out recursively. To begin, set i(if;) = if;and g'(if;) = I.

Step 1. Given N" i(.), i'(') obtain estimates of the re­
maining parameters of the model, and in particular if;" by
ordinary maximum likelihood.

Step 2. Given N" if;, obtain i( . ), g'( •) to maximize the
locally weighted log-likelihood

Figure8. TheThreshold Model.Thelower curveof the toppanelgives
Vet) of (5.1) with a(·) given by the lower left function. Thehook-shaped
functionsof the top panelare translates of too functionof the lower right
panel initiatedeachtime the curve V(t) is crossed.Thespikesof the top
panelare the timesof M ffring.

with 'Y, again the time elapsed since the last N firing. (That
the expression (5.3) is linear in the parameters aids in their
estimation.)

Suppose that there is noise, with c.d.f. P( • ), superposed
on the threshold. This makes the model stochastic. The con­
ditional probability of the neuron firing, given the past, is
taken to be

P, = Pr{N, = l ithe past} = P(if;,), (5.4)

where

The log-likelihood is

L [N,log P, + (l - N,)log(l - P,)]. (5.5)

Estimates of the a's and b's may now be determined by the
maximization of(5.5), employing iteratively reweighted least
squares algorithms such as those described in McCullagh
and Neider (1989).

Figure 9 presents the results of these computations, taking
P( •) to be ~ . ), the standard normal cumulative (as in probit
analysis) and the sampling interval to be .075 seconds. The
estimated summation function iiu is seen to swing negative
directly. This corresponds to M's (or LlO's) firing inhibiting

Summation function

. - ._. ..._._ __..~_ __._.---_._._.__.._.__._.._.._--_ _-_•.._ _- .

.0 .2 .. .6 .8 1.0 1.2 1.4

time (seconds)

Decay function

~\
';" '\ -,-,

\'\.
...~~....

')'
-, ..............................

.......~

"? .............
........

"t

.0 .2 .. .6 .8 1.0 1.2 1.'

time (seconds)

Figure9. Estimates of the Functions auand b; of (5.2) and (5.3). The
dashedlinesprovide two standarderror limits.
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L: w("p - .],,)[N,log P, + (I - N,)log(l - P,)], (5.7) Summation function

with w(.) a weight function concentrated near 0 and with
g("p) = a + tJif;assumed (locally) linear. (This assumption of
linearity means that except for the additional weight term,
the computations are usual probit ones .) The weight function
focuses the local estimation towards the center of the func­
tion 's support. The estimate of g("p) is now taken to be lx",
+ S",,,p;the estimate of the derivative, S", .

Step 3. Return to Step I unt il convergence is achieved.
The function estimation procedure of Step 2 here may be

found, at various stages ofdevelopment, in Gilchrist (1967),
Cleveland and Kleiner (1975), Brillinger (1977), Cleveland
(1979) , Hastie and Tibshirani (1984), Tibshirani and Hastie
(1987), and Staniswalis (1989). An early version of GAIM
(Almudevar and Tibshirani 1990) gave the author confidence
that this procedure was feasible for the present situation.
The weight function of(5.7) was taken to be the tricube, as
in Cleveland and Devlin (1988).

Figures 10 and II present the results of these computa­
tions. The dashed lines give estimated ±2 standard error
lim its. In the case of i'( . ), they are placed about the level
1.0. The derivative estimate i'( . ) is seen to not deviate much
from 1.0 in the region of apparent probability mass . The
computations are seen to support an assumption oflinearity
of g( •) and hence of normality. This is further reflected in

.0

.0

.2

.2

.4

.4

.6 .8

time(seconds)

Decay function

.6 .8

10

1.0

1 2

1.2

14

1.4

time(seconds)

Derivative, g'( .) Figure 11. Estimates of auand b, for the Case of UnknownP( •)

1.4 ....·....···

1.2

1: ----/ -
.6~ ..- ~.- _..~ ~_._ __." .

.4

.2~--~~--~--~--~--~--.,-J

(5.9)

(5.8)

"p, = V, - d - e"(, - id - gy;,

with X the input noise and "p, the corresponding linear pre­
dictor

u<'

the similarity of Figures 9 and II giving the respective esti­
mates of au and bu. The approximate standard errors were
determined via the jackknife (Mosteller and Tukey 1977).
In this case, replicates were based on 99% of the data, and
20 replicates were formed.

Consideration next turns to an alternate type of experi­
ment involving Aplysia with a different stimulus and a cor­
respondingly altered state variable. In the experiment, noise
current is fed directly into the neuron L5 and evoked spike
times are recorded. Some input and corresponding output
are provided in Figure 12. Numerous neurophysiological ex­
periments have suggested that neuronal firing depends on
more than a single-state variable, such as the membrane po­
tential's crossing a threshold. For example, the speed of the
crossing, perhaps quantified via the derivatives of the func­
tions involved, also appears to be pertinent (Segundo 1968).
The preceding threshold model suggests consideration ofthe
state variable

-1

-1

-1

-2

-2

-2-3

-3

-3

Transform , g(.)

-4

-4

-4

Probability function, P

-5

-5

-5

-6

-6

10

.8

.6

.4

.2

.0

-6

Figure10. Estimates of theFunctions g( .) andP( ·) of (5.6) and of the
Derivativeof g ( .)

where 0, is here restricted to have cubic form . (In these com­
putations it was convenient to take the threshold decay func-
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Neuron L5 - Noise Driven Empirical Firing Probab ility

output

II II II I 11I1 III I1I1 II II

10 15 20 25 30

time (seconds)

Figure 12. Input and Output of a Neuron. The neuron L5 of Aplysia is
stimulateddirectly by the Gaussian noise of the lower panel and fires as
in the upper panel.

Theoretical Firing Probab ility

tion to be cubic in order to avoid excessive computations.)
Consider also a second state variable

Suppose further that

PriNt = l ithe past} = <I>(1ft)<I>(vt)

(5.10)

(5.11)

'"
'"..,
"!

a(.), first function
Figure 14. Firing Probability. The bottom panel gives the right side of

(5.11). Thetoppanelprovidesthe observedproportionof times the neuron
fires as a function of the first and second linear predictor values.

as a naive extension of( 5.4). It is assumed that appro ximating
the actions of the two state variables as independent will not
lead to wildly deviating estimates. Figure 13 gives the results
of fitting this model. The fitting here is carried out iteratively,
first assuming the coeficients of 1ftgiven and estimat ing those
of Vt, then assuming the coeficients of Vt given and estimating
those of 1ft. In both cases, the estimation procedures are
probi t. The second panel gives the estimate of c, with two
standard error limits set about O. There is evidence for the
presence of a second state variable, although in the case of
the present computations it does not have the appearance
of the derivative of the first. The estimate of augiven in the
first panel shows how the noise current is exciting the neuron .

The problem of assessing goodness of fit has not yet been
commented on. Figure 14 provides an informal procedure
for the model (5.11). The top panel is a plot of(5.11), the
bottom panel gives the emp irical firing probability as a func­
tion of the first and second predictors. To obtain this, one
bins the values of the predictors and computes the corre­
sponding prop ortion of firing occurrences. The agreement
does seem reasonable. One could proceed to forma l good­
ness-of-fit tests based on the quantities just graphed , such as
chi-squared statistic, but this seems premature because the
temporal dependency leaves the sampling properties in
doubt.

Brillinger and Segundo (1979) fit the threshold model to
some Aplysia data by maximum likelihood. Brillinger

~

0
................. .._....._..__...

.0 .1 .2 .3 .. .5 .6
time(seconds)

c(.), second function

~

~
~_.._._-_.._....._.._....

~
.0 .2 .3 .. .5 .6

time(seconds)

Decay function

'"<ri

"'vi

'".f
.0 .1 .2 .3 .4 .5 .6

time (seconds)

Figure 13. Estimates of auand c, of (5.8) and (5.10) and of the Cubic
DecayFunction of (5.9).
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Network connections f causal models m(.) and 0(.)

26 7

N

n ! n

"~: ; ::

0

\ /

Figure 15. A Network of Three Neurons. Neuron M influencesneurons
Nand 0, but one wonders if there is a direct connection from N to°or
vice versa.

.0 .5

lag (seconds)

1.0 1.5

(1988b) provides a number of references to the threshold
modeling of nerve cells' actions and presents further empir­
ical examples.

6. NETWORKS-3 CEll

Suppose one has three neurons, M, N, 0 , which may be
influencing each other. In the experiment analyzed below
(seeBrillinger, Bryant, and Segundo 1976), it was understood
that neuron M was driving both neurons N and 0 , but it
was not known if there were direct connections from N to '"

Decay function

.0 .5 1.0 1.5

Coherence N and 0 Coherence M and N

1.0 1.0

.8 .8

.6 .6

.4

h ...
.2

.0 .0

frequency (Hz) frequency (Hz)

Coherence M and 0 Partial coherence N & 0

1.0 1.0

.8

~
.8

.6

.4 .4

.0 .0

frequency (Hz) frequency (Hz)

Figure 16. Coherences of ThreeNeurons. Thefirst threepanelsprovide
estimates of the indicated coherences. The finalpanef is an estimate of
the partiaf coherence of N and °" removing" the effects of the input M.
The dashed linegives the upper 95% point of the nuffdistribution.

lag (seconds)

Figure 17. Estimates of m(·) and0( ' ) of (6.2) andof theCubic Decay
Function of (6.3).

o or vice versa. The scheme of the situation has been illus­
trated in Figure 15. One tool for addressing questions of
connectivity is part ial coherence. The partial coherency at
frequency ;\ of point processes M and N, given the point
process 0 , is defined as

R - RNO- RNMR/v,D (
NOIM - Vo _ IRNMI2)(1 _ IRoMI 2) ' 6.1)

Here, RNOdenotes a coherency of two stationary point pro­
cesses as before. Dependence on ;\ has been surpressed to
simplify the display (6.1). The partial coherency may be in­
terpreted via

RN0 1M = lim corr{4 - adL, d'S- {3dL},
T-""

with

d1( ;\) = L e-i'"J,
j

for example, as before. Here a and 6 are the regression coef­
ficients of dJ. on dL and of d'S on dIf. The intent of their
inclusion is to remove the (linear) effects of the Fourier
transform of M from those of N and O.

Figure 16 provides the results of such computatio ns for
data on a network of cells 0 = L2, N = L3, and M = Ll 0
of Aplysia. The particular experiments are discussed in Bril­
linger et al. (1976). The effectof the analysisis quite dramatic.
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Figure 18. Rastor Plots of the Firings of Eight Cells Following Application of a Noise Stimulus Every 1,000 msec.
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and suppose

Pr{N, = lithe past} = <I>(V, - d - e"ft - ht - g'Y[),

(6.3)

From the fourth panel , one can infer that the apparent as­
sociation of cells Nand 0 , as shown in the first panel , is due
to their common association with cell M .

This problem can also be addressed from a likelihood ap­
proach by employing a threshold model. Suppose the firing
times of cell M are denoted by {o'j} and those of cell 0 by
{PI}, Consider the membrane potential of cell N at time t to
be given by

.. .tJ\ .

o 20 40 60 80 100

frequency (cycles/sec)

Coherence, no input

Coherence

.10

.15

.25

.30

.20

o 200

lag (msec)

-400

Partial coherence

Cells 2&6, sqrt(crossint)

16

.14

.12

.18

.20

(6.2)Vet) = L: m(t .- (Tj) + L: o(t - PI),
j I

1', being the elapsed time since N last fired. Here, m( • ) and
0( • ) are summation functions associated with the effects of
neurons M and 0. One wonders if the function 0( • ) == O.

Figure 17 on page 267 gives the maximum likelihood es­
timates of mu , o. , and the decay function. The two standard
error limits for the cell 0 = L2, set at about 0, suggest an
insignificant effect. This is consistent with the results of the
coherence analysis. One could do a similar analysis relating
o to M and N and achieve the same result.

Various references relating to network analysis are given
in Brillinger (1988a), as are further examples . Tick (1963) is
an early reference to partial coherence analysis. Gersch (1972)

.30

.25

.20

.15

.10

.05

\ ..

o 20 40 60 80 100

frequency (cycles/sec)

.30

.25

.20

.15

.10

05 11....
o 20 40 60 80 100

frequency (cycles/sec)

Figure20. Statisticsto Investigate the Associationof Cells 2 and 6.

Cells 2&7. sqrt(crossint) Coherence

Figure 19. Statisticsto Investigate the Associationof Cells 2 and 7.

7. NETWORKS-8 CEll

Inthe next analyses presented (albeit preliminarily, as this
is work in progress), data were collected in an attempt to
understand the auditory pathways of the cat. Microelectrodes
were inserted with location tuned to an apparent response
to sound and to anatomical knowledge, and responding neu­
rons were located.

The animal was stimulated by white noise bursts of 200
msec duration and at the rate of one per second , through
speakers inserted in the ears. The stimulus was applied 364
times. For the eight cells located, Figure 18 on preceding
page provides rastor displays of firing times for lags up to
1,000 msec followingstimulus application . Various behaviors
are exhibited , ranging from the strong association of cells I,
2, and 6 to the weak association of cell 8. One sees excitation,
inhibition, and rebounding.

This work has defined various measures of association of
point processes. Figures 19-21 provide them for a selected
three of the 28 possible cell pairs. In Figure 19, concerning
cells 2 and 7, the cross-intensity and coherence show asso­
ciation . Not much is present , however, when the stimulus is
"removed" by partial coherence analysis. This inference is

discusses empirical partial coherence analysis as a tool to
study causality in electrophysiological signal analysis. More
examples are provided in Rosenberg, Amjad, Breeze, Bril­
linger, and Haliday (1989).
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Cells 2&8, sqrt(crossint)
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.16
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.30
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.05

Coherence

..•./1......._n..

Work ahead includes inferring causal connections for the
8-cell cat network (taking note of the issues and techniques
mentioned in Wold 1956, for example), maximum likelihood
analysis of the cat data, modeling at the ionic level and, as
is topical in contemporary statistical work, improving esti­
mates by borrowing strength (e.g., via random effects
models).

[Received September1991. RevisedOctober 1991.]
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confirmed by the directly measured coherence between the
two cells in the case of no applied experimental noise stim­
ulus. Figure 20 provides the same information for cells 2
and 6. Again, the cross-intensity and coherence estimates
show association. In this case, however, the partial coherence
does suggest that the cellsare related beyond the dependence
introduced by the common noise stimulus. This inference
is again confirmed by the coherence for the case of no ex­
perimental stimulus. Figure 21, based on cells 2 and 8, sug­
gests little, if any, connection for these cells.This is consistent
with the apparent weak dependence of cell 8 on the stimulus,
as shown in Figure 18.

The article has sought to follow the historical statistical
progression of description , association , regression, and like­
lihood analysis. It then continues to the contemporary topics
of semiparametric maximum likelihood and causal structure
recognition. The data is of a particular type-point process­
and is taken from the field of neurophysiology . The paper
has illustrated that a calculus is available for point process
data analysis and that the calculus allows the computation
of standard errors to provide uncertainty measures .

It has been seen that linear techniques-specifically co­
herence analysis-can elucidate highly nonlinear situations.
It has also been seen that stochastic models incorporating
basic features of neuron firing and network connections can
be set down .

587



Brillinger : Spike Troin Dolo Anotvsls

Segundo , J. P. (1968), "Functional Possibilities for Communication and
Coding of Neuronal Properties and Interactions," Acta Neurologica
Latinoamericana. 14, 340-344.

-- (1984), La Neurofisiologia: Alguno Supuestosy Bases. Recovecos e
Implicaciones, Mexico City: SECEP .

- - - (1986), "What Can Neurons Do to Serve as Integrating Devices?"
Journal of Theoretical Neurobiology, 5, I-59.

Segundo, J. P., Altshuler, E., Stiber , M., and Garfinkel , A. (1991), "Periodic
Inhibition of Living Pacemaker Neurons: I. Locked, Intermittent, Messy,
and Hopping Behaviors," Intemational Journalof Bifurcation and Chaos,
1,549-581.

Staniswalis, J. G . (1989), "The Kernel Estimate of a Regression Function
in Likelihood -Based Models," Journalof the American StatisticalAsso­
ciation, 84, 276-283.

Stein , R. B. (1972), "The Stochastic Properties of Spike Trains Recorded

271

From Nerve Cells," in Stochastic Point Processes. ed. P. A. W. Lewis,
New York : John Wiley, pp. 700-731.

Tihshirani , R., and Hastie, T. (1987), "Local Likelihood Estimation," Journal
of the American Statistical Association. 82, 559-567.

Tick, L 1. (1963), "Conditional Spectra, linear Systems, and Coherency," in
TimeSeriesAnalysis, ed. M. Rosenblatt,New York: John Wiley, pp. 197-203.

Villa, A. E. P. (1988), Influence de l'Ecorce Cerebralesur l'Activite Spontanee
et Evoquee du Thalamus Auditif du Chat, unpublished thesis, Uni versity
of Lausanne, Faculty of Sciences.

- -- (1990), "Physiological Different iation Within the Auditory Part of
the Thalamic Reticular Nucleu s ofthe Cat," Brain Research Reviews. 15,
25-40.

Wold, H. (1956), "Causal Inferen ce From Observati onal Data : A Review
of Ends and Means," Journalof the Royal StatisticalSociety, Ser. A, 119,
28-61.

588



A GENERALIZED LINEAR MODEL
WITH "GAUSSIAN" REGRESSOR
VARIABLES

David R. Brillinger
University of California. Berkeley

ABSTRACT

A model in which the conditional expected value of a response

variate is an unknown nonlinear function of an unknown linear

combination of regressor variates is considered. It is shown that

in the case that the regressors are stochastic and jointly Gaussian,

or are deterministic and quasi-Gaussian, the ordinary least squares

estimates provide useful estimates of the coefficients of the

linear combination up to an arbitrary multiplier. The cases of

both conditional and unconditional inference are investigated.

KEY WORDS: Gaussian regr~ssors~ Generatized tinear modet~

Muttipte regression, Quasi-Gaussian regressors.

1. INTRODUCTION

Multiple regression is one of the most powerful of statistical

techniques. The procedure has been given numerous justifications

and interpretations. The traditional approach to it rests on a

linear model

y. = a + ax. + E. J

J J J
(1.1 )

with the y., x., j=l, ... ,n observed, with a, a unknown
J J

parameters of interest, with the E. zero mean error variates,
J

with the x
j

p column-vectors, and with a a prow-vector.
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98 Linear Model with "Gaussian" Regressor Variables

Letting
n

x = l: x.ln ,
j=l J

"the ordinary least squares estimate, S, satisfies

( 1.2)

" T
S l: (x. - x)(x. - x)

. J J
J

T

=l:y.(x.-x)
. J J
J

(1.3 )

with T denoting the operation of matrix transposition. In some

circumstances the entries of S have causal interpretations,

though these must be exercised cautiously (see Box, 1966 and

Mosteller and Tukey, 1977, Chapter 13). It seems that substantive

scientists have gotten more service out of ordinary least squares

estimates than the narrow assumptions of the traditional approach

might lead one to suspect possible. In many of these situations it

is not the actual value of the coefficients that is of interest,

rather it is their relative values, which are somehow measuring the

relative importance of the regressor variates of interest. In this

paper it is demonstrated that, in the case where the regressors are

jointly "Gaussian," the ordinary least squares estimates have a

working interpretation for a broader class of models then one might

have imagined. The solution, ~, of (1.3) is shown to provide an

estimate of a in the model

y. = g( a + Sx.) + c. ,
J J J

(1.4 )

up to an unknown constant of proportionality. The practical

implication is that if the regressors are chosen to be Gaussian,

or happen to be approximately so, then despite the possible
.....

presence of an unknown nonlinearity, S still reflects the relative

importance of the regressor variates .
.....

After computing S, one may go on to prepare a scatter plot

of the points (Bx.,y.), j=l, ... ,n and look for a functional form
J J

for g(.). Alternatively, one might compute a nonparametric

estimate of g( u ) by smoothing the

590

y.
J

values with near u.



Brillinger 99

It is the usual statistical practice to examine the sampling

properties of the least squares estimate conditional on the x

values that come to hand. Both the unconditional and conditional

distributions are investigated in the paper. Interesting questions

arise in the present context, because the fact that the xs are

Gaussian is an integral part of the study. It will be seen that it

is not convenient to construct confidence regions conditional on a

realization of a Gaussian sequence; however, useful regions may be

constructed if ~,x2' ..• is a deterministic quasi-Gaussian

sequence of a particular sort.

The paper further investigates the extent to which the results

require an assumption of normality and describes an application of

the results to an identification problem in neurophysiology and an

estimation problem in economics.

2. AN ELEMENTARY LEJ..tAA

The whole basis of the procedure is the following simple result

given in Brillinger (1977).

LeTTU11a 1. Let (U,V) be bivariate normal. with U nondeqenet-at:e ,

Let g(.) be a meaeurab Le function wi th E{ Ig( U) I} and

E{!g(u)ul} < =. Then

cov{g(U),V} = cov{U,V} cov{g(U),U}/var U . (2.1 )

Proof. One has E{VIU} = ~ + 0U- with 0 = cov{U,V}/var U.

Now

cov{g(U),V} = cov{g(U),E{V/U}} = 0 cov{g(U),U} ,

giving the result.

That the regression of V on U is linear is key to the

result. It is perhaps worth noting that for g(.), an almost

differentiable function (defined in Stein, 1981) satisfying

E{lg'(U)j} < 00, one may write

cov{g(U),U}/var U

591

E{g'(U)} (2.2 )
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This last is an identity that Stein (1981) makes use of in his

construction of improved estimates of the mean of a multivariate

Gaussian.

Now consider the model (1.4) with

matrix E and c.
J

independent of x .•
J

x. Gaussian of covariance
J
Then, from (2.1),

cov{y.,x.} = ~E cov{g(U),U}/var U (2.3)
J J

with U = a + Sx.. (Here cov{y,x} = E{(y - u )(x - U )T}.) The
J y x

linear regression coefficient of y on x is proportional to S
of expression (1.4). Provided cov{g(U),U} t 0, the ~onstant of

proportionality will not be O. If consistent estimates of

cov{y,x} and r are constructed, then a consistent estimate of

a (up to an arbitrary multiplier) may be constructed. The details

of the estimate are presented in the next section for the uncon­

ditional case.

3. UNCONDITIONAL INFERENCE

The estimate of interest is the ordinary least squares estimate

defined by (1.3). Its properties will be investigated when the

variates are related by

are Gaussian.

y. = g(a + 8x.) + c.
J J J

and when the x.
J

Asswrption I. ~,x2"" are Lndependenti mormale with mean ux
and nonsingul.ar covariance matrix E. E:

1
, E:

2
, ... are independent

of the xs and have .finite variance 0
2 • E{x:x.1 g( a + 8x.) 1

2} < co
J J J

for j = 1,2, ..•
From expressions (1.3) and (2.3) one can see that, almost

,..
surely, the ordinary least squares estimate 8 tends to

cov{y,x}r-l = kB, where

k cov{g(a + ~x),a + 8x}/var{a + 8x} .

"That is, 8 is a strongly consistent estimate of 8, up to a
"constant, k, of proportionality" For ~ to be useful, one needs

k f O.
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Turning to the question of the asymptotic distribution of
"a, set

hex) = g(a + ax) - y - ox

where a = ka and y = E{g(a + ax) - ox}. Then one has

(3.2 )

Theorem 1. Suppose Asswrrption I is satisfied. Let

y. = g(a + ax.) + £., j = 1,2,... Let 8 be given by (1.3)
J J J

and k by (3.V. Then hi(S - ka) is asymptoticaLly normal lJJith

mean 0 and covariance matrix

2 -1 -L{)2 )( )l} -1o ~ + ~ "E h( x (x - 1.I x - 1.I ~ •x x (3.3 )

This theorem may be demonstrated using a result of Freedman

(1981). The proof is presented in the Appendix. In the case that

g(.) is a linear function, the second term in (3.3) will be absent

and one has the usual expression for the asymptotic covariance

matrix of a least squares estimate.

For the estimate B to be of practical use, one needs some

estimate of its covariance matr~x. Several general methods are

available for obtaining the latter: the delta method, the jack­

knife, and the bootstrap. B is a function of U-statistics, hence

the use of the jackknife estimate of the covariance matrix is

justified by the results of Arvesen (1969). With a further

assumption of· E{lg(a + ax)1 4} < 00, the use of the bootstrap

estimate is justified by the results of Freedman (1981). The delta

method estimate will now be constructed.

Write expression (1.3) as

" " t tj ]

T 1
~ y.[lx}l

1
(3.4 )[l.I a] [1 X.l - -

j oj n . J n
J

,.. ,..
or [l.I alA = B. Here A and B are means of (matrix-valued)

sample values. As A and B are means, the variances and

covariances of all their entries may be estimated directly, by the

usual expressions. Now if AO' B
O

denote the expected values of

A and B respectively, then one has the perturbation expansion

593
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[~ Bl = BA-l = BOA~l + (8 - BO)A~l - BoA~l(A - AO)A~l + ..••

(3.5)

,..
This gives 6 as an (approximate) linear function of A and B,

whose covariance matrix may now be estimated using the estimates

of the variances and covariances of the entries of A and B and

replacing A
O'

B
O

by A, B respectively.

Having an approximation to the la~gesample distribution of

B and an estimate of its covariance matrix, one can go on to

construct approximate confidence intervals, test hypotheses, and

the like.

A concern with these results, however, is that they are

unconditional- averaging over all realizations of the xs , Yet

in practice, xl' ..0. , x
n

rill usually be ancillary and one would

like to carry out inference conditional on its value at hand. The

next section considers this issue.

4. CONDITIONAL INFERENCE

Let X = {~, x2, ... } denote the sequence of regressor

variables. This section is concerned with inferences conditional

on X. To begin, consider the case where Xl' x
2,

... are

independent realizations of a p-variate normal with mean ~x and

covariance matrix E. Directly from expression (1.3) one has

vade Ixl 2
0- [E (x.

j J

~ (X)
n

(4.1 )

(".2 )

The variance is the usual least squares expression. In the case

that g(.) is linear, the conditional expected value is Bj

however it will generally be different from 6 or kB. A question

of interest is how close may it be expected to be to k8?
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...

The asymptotic conditional distribution of B is normal.

Specifically one has:

Theorem 2. Suppose Asswnption I is satisfied. Then almost sU:t'ely

normal cumul.atsiiie ,

as n + <X>I iahere

- lJ (X»S (X)-1/2/:J < blx} + cI>(bl) ... ~(bp) (4.3)
n n -

b = (bl / ... /bp) and ~(.) is the e tandard

This result provides information concerning th~ deviations of

B from lJ (X)
n

deviations of

for a given
",

B from kB.

X. However I one is interested in the

The next lemma indicates that while

is proved in the Appendix of the paper.

it is not generally 0 ( 1/hi) and so
a·s~

in conditional inference questions

u (X) - kB = 0 ( 1 ) I
n a·s·

(4.3) is not of great use

coneerning B. Theorem 2

= kB + Y?nI + 0 (J:..)a·s· Irl I

be independent normals

matrix E. Suppose

:::; 1,2,... . Then

LeTlTTla 2. Le t xI' "z ...
and nonsinqul.ar covariance

E{x:x.1 g( a.+Bx. )I2} < <X>, j
J J J

E{S!xl = lJ (X)
n

with mean lJx

tahere k 1.5 given by (J.1) and W is norma], UJith mean 0 and

covariance matrix

E-IE{h(X)2(x - lJ )(x - lJ )T}I:-l I

x x

hex) being given by (3.2).

The deviations of lJ (X) from kB are seen to be of order
n

l/J.n, generally. One implication of this is that the result (4.3)
cannot be used to construct approximate confidence regions for kB.
Some other approach is needed. The lemma is proved in the Appendix.

As the lemma and discussion make clear, for a typical

realization of the Gaussian process X, lJ (X) does not tend to
n

kB rapidly enough to be useful. Consider expression (4.1). The

term

E g( a. + 6x . )x.ln
j J J

595



104 Linear Model with "Gaussian" Regressor Variables

may be considered an approximation to the integral, or expected

value, E{g(n + Sx)x}. This suggests that by choosing a sequence

~, x
2

, corresponding to a clever numerical integration rule,

one might be able to have E{Slx} closer to kB than 0 (lin).
a·s·

This does turn out to be possible.

Halton (1960) has demonstrated the existence of a sequence of

points u
l

' u2 ' in the unit cube [O,l]P with the property

that

(4.6 )
n

H( ul ' ... ,un E: I)
------- lJ(I)/ =sup

I£J
D =

n

where J is the family of all subintervals of [0,1] p and where

lJ(I) is the Lebesgue measure of I. (A computer algorithm for

generating the sequence is given in Halton and Smith, 1964.) The

usefulness of this s~quence is that for a-function, f, with

variation, V(f), in the sense of Hardy and Krause (see

Neiderreiter, 1978, p. 967), one has

1 nI - r f( u.)
n . 1 JJ=

J f(u)dul ~ V(f)Dn
O(n -l( log nf)

for bounded V(f). The sequence u
l

' u
2

, ... may be said to be

quasi-uniform. Writing u. = (u.l, ... ,u. ) and x. = (x.l, ... ,X. )
-1 J J JP J J. JP

with xj k = ~ (uj k), the seq~ence ~, x
2,

..• may be sald to be

quasi-Gaussian. Letting h(x.) = f(u.), one has from (4.7),
J J

I~ ~ h(x.) - J h(x)ep(x.. )•.. ep(x )dx = O(n-l(log n)p) (4.8)
n j=l J ~ P

for h(~-l(~),•.. ,~-l(up)) of bounded variation with $(0)

denoting the standard normal densi ty . One might say that for

P > 1, quasi-MOnte Carlo techniques exist that outperform naive

Monte Carlo.
"Returning to the question of the estimation of B of the

model (1.4), suppose now that the values of the regressors may be

chosen by the experimenter. Suppose he takes

the above quasi-Gaussian sequence. Consider

~, x2 , ..•

B satisfying

to be
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(There is no need to correct for the mean with this sequence.) One

has

En: y.x:/n
j J J

T
L g(a + Sxj)xj/n
j

= I g(a + sx)xT~(~) ... ~(Xp)dx + O(n-l(log n)p)

= kS + O(n-l(log n)p)

from (4.8), provided g is of bounded variation as required.

Similarly ,

TL x.x./n
j J J

In summary, for the deterministic quasi-Gaussian sequence indicated

above, one has

E 6 = kS + O(n-l(log n)p) .

. . . fa· a2[~ T]-lThe var1ance-covarlance matr1x 0 ~ 1S L x.x. ,
j J J

the conclusion of Theorem 2 becomes

(4.10 )

and hence

" T 1/2Prob{(S - kS)[E x.x.] /a < b} + ¢(b
1)

... ¢(b ) •
J J - Pj

(4.11 )

Once an estimate of a is at hand, approximate confidence regions

for kB may be constructed using (4.11).

With an estimate of g(o), a2 may be estimated from the

residuals of the fit. Various nonparametric estimates of a

regression function are available. A bibliographic review of these

is given in Co1lomb (1981). In the present context one might form

n "n "
g(u) = E y.W (u - Sx.)/ L W (u - ex.)

j=l J n J j=l n J
(4.12 )

for example, with W a sequence of weight functions becoming
n

concentrated at 0 as n increases. For large n, g( u ) may

be expected to be near g(a + u/k). The error variance may be
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estimated by
n
z

j=l

'" '" 2
[y. - g( Bx, )] In

J J
(4.13 )

A procedure for constructing approximate confidence regions for

kB has been set down.

5• DISCUSSION

Section 3 discussed inference in the unconditionsl case when

~, x
2

' was any realization of a sequence of independent

p-variate normals. Section 4 developed inference for the case

that xl' x2 ' ... WaS a very particular deterministic sequence

(that was quasi-Gaussian). It would appear that the latter

condi tional inference procedure is the preferred one -as is the

case in the usual (linear) regression situation-since ~",.,xn

is generally an ancillary statistic. Lehmann (1981) comments on

some aspects of ancillaries and conditional inference.

If the form of the function g(o) is known, then one will be

able to determine other estimates of 8, for example, the maximum

likelihood. These other estimates may be expected to be more

efficient. There have been at least two studies in which the

ordinary least squares estimate has been compared with the maximum

likelihood estimate. In both cases it has been found to perform

well, even when the xs were not Gaussian.

Greene (1981) considered ~he model

y. = max{O, a + 8x. + E.}
J J J

(5.1 )

with the £s independent normals of mean 0 and variance 2a .

He derived both the ordinary least squares and the maximum

likelihood estimate of 8 for a set of data from a study of female

labor supply. Here y was the number of hours worked in a survey

year. The

variables. )

xs are listed in Table 1. (Eight of them are dummy

The estimate, 6, has been standardized to SSL = 1.

The proportion of nontruncated observations was .460.
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There is close agreement between the results of least squares

and maximum likelihood. This occurs despite some of the xs having

far from normal distributions. Greene (1981) is able to construct

an estimate for of (3.1), since gee) is known, and so obtain an

estimate of a itself.

Table 1

Variable Maximum Likelihood Least Squares

xl small child -.4140 -.3831

~
health -.5072 -.4472

x
3

= other income .0005 .0008

x4 wage .5156 .6053

x
5

= south .2953 .2989

x6
= farm -.2266 -.2218

~
= urban .0554 .0523

x8 age .0097 .0094

x
9

education .0113 .0125

~O
reI. wage .1438 .1346

XlI 2nd marriage .0127 .0143

,x12 = mean divorce prob. .2416 .2381

~3
high divorce prob. .2906 .2652

Bril1inger and Segundo (1979) present an example of a

successful application of the estimation procedure discussed in

this paper, in a more complicated situation. A neuron was

stimulated by a fluctuating current, causing it to fire every so

often. The stimulating current was taken to be stationary Gaussian.

In the classic model of neuron firing, the input current X(t) is

filtered to form the membrane potential

f
B( t )

U(t) = 0 a(u)X(t-u)du
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with B(t) the time elapsed at time t since the neuron last

fired. The neuron then fires next when U(t) crosses an

approximately constant threshold. It is of interest to estimate

the function aCe) of (5.1) and to confirm the presence of a

threshold.

A time series analog of the procedure considered in this paper

was applied to experimental data consisting of a record of the

current taken as input and the times at which the neuron fired.

Strictly speaking, the model is not appropriate here because of

correlation introduced by B(t) being present in (5.1). A

maximum likelihood procedure was developed to deal with this

difficulty. It was found that the results of the procedure of

this paper were quite consistent with the maximum likelihood

results. In the principal experiment, the input current was taken

to be Gaussian. In a second experiment, the input current was

taken to have a uniform distribution. Figure 1 gives the time

series analog of the regression estimate of aCe) when X(t) is

Gaussian. Figure 2 gives it for X(t) uniform. The two estimates

are surprisingly close, suggesting that the procedure may be robust.

In a part of the study analagous to the estimation of the

function gee), the nonlinearity was estimated and found to have

a threshold character. Sampling fluctuations of the estimates were

estimated by splitting the data up into a number of segments and

estimating the parameters separately for each segment, rather than

attempting to use any of the procedures of Section 3.

6. A PARTIAL CONVERSE

The development of the results of this paper made essential use

of an assumption of normality for the xs. A question of some

interest is whether there is any other distribution leading to

similar results. The following theorem indicates that normality

is required for regressor variates of one important type.
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Theorem J. Let the p-va:riate x be of the [orm a + be: with a

a p-vector~ b pxp~ and nonsingulaT'~ and the entries of E

in.depen.dent~ identically distributed of mean O~ and finite nonzero

variance. Let L: denote the covariance matiri:x of x, Suppose

p > 1 and

for some

exp{i t.u},

cov{g(ax),x} = kaE (6.1)

a i O~ some k I O~ and an g( u ) of the [arm

t real-valued. There, x 1-S normal/lq distributed.

This theorem is proved in the Appendix. This result is far

from a converse; however, it does suggest strongly tha~ normal

regressors will prove the most useful.

7. CONCLUDING REMARKS

So far, the work of this paper has been predicated on the assumption

(1.4) of a model with an additive error. When the xs were

Gaussian and independent of the error, this model led to the

relationship cov{y,x} ka var x, on which the estimation

procedure proposed was based. In fact, this relationship follows

from the weaker assumption that

E{ylx} = g(~ + ax) . (7.1 )

The estimation procedure is now seen to be of use in a broader

class of situations. Consider, for example, the binomial response

(or regression) model. Here y = 1 or 0 with

Prob{y = llx} = g(~ + ax) (7.2 )

with g(.) normal for the probit model and logistic for the logit

model. From what has gone before in the paper, one sees that if

g(.) is unknown and x is Gaussian, then a may be estimated, up

to a constant of proportionality, by ordinary least squares. As a

second example, consider the Cox (1972) model of proportional

hazards. This involves a random variate y (a survival time),

and associated covariates x, with
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FO(o) being an unknown codof. (This class of models is sometimes

referred to as the class of Lehmann alternatives, introduced in

Lehmann, 1953.) It is clear that, when the expected value exists,

E{ylx} = g(Sx), for some g(o). If x is taken to be Gaussian

and associated ys recorded, then the procedure of this paper

allows the estimation of kS. As a final example, one has linear

regression with a censored dependent variate; for example,

y a + ~x + E:

o
if the right-hand side is nonnegative

otherwise

Such models are discussed in Green (1981), Nelson (1981), and

references given therein. It is clear that E{ylx} = g(a + ~x)

and that ordinary least squares estimates are of use in the

Gaussian case once again.

APPENDIX

Proof of Theorem 1. By writing expression (1.3) in the form (3.4),
'" A

without the lin's one has [~S) of the form of the statistic

B(n) considered on page 1219 of Freedman (1981). His result gives
A

the asymptotic normality of S. His expression for the asymptotic

covariance matrix may be manipulated to give (3.3).

Proof of Theorem 2. Expand the equations (1.3) to the form (3.4)
once again, that is, to the form of the usual normal equations of

multiple regression. If a= [~S] and ex = E{elx}, this gives

T[1 x.)
J

T
E e:. [1 x.)
. J J
J

This corresponds to standard multiple regression with the regression
A

coefficient O. That e - eX
stated conditions of the xs

is asymptotically normal under the

and ss is shown in Miller (1974).
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Proof of lemma 2. Taking a ~ 0 in Theorem I, it follows that

hi( ~ (X) kS) is asymptotically normal with mean 0 and
n

covariance matrix (4.5). That ~ (X) then has the representation
n

(4.4) follows from a theorem of Skorokhod (1956) (see also Wichura,

1970 ).

Proof of Theorem 3. One can assume a ~ E{x} O. Then, from (6.1),

( A.l)

Set L
P

Ll,···,Lp
one has

Sx and L. ~ y.x with the
J J

are mutually uncorrelated.

y. chosen so that
J - 1"

Multiplying (A.l) by Yj ,

From Lemma 1.1.1 of Kagan et a1 (1973),

E{g(Sx)L.} ~ kE{L L.} = 0
J P J

and so E{g(L )L.} = O.
P J

this last gives E{L.IL} = O. That x is necessarily normal now
J p

follows from Theorem 5.5.3 of Kagan et al or Theorem 2 of Cacoullos

(1967).
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2

SUMMATION FUNCTION UIA CROSS-SPECTRAL ANALYSIS

1

1008020
- 1L..--_--'-__-'--_---L__-'--__'-_--'-__-'-_--''--_--'-_---'

a

Figure 1. Estimate of the summation function a(o)
obtained with Gaussian input.
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2

SUMMATION FUNCTION UIA CROSS-SPECTRAL ANALYSIS

1

1008020
-1 "-_--'-__...1-_---lL...--_--'-__....L..-_-...1__...J-__.1..-_-I..__-'

o

Figure 2. Estimate of the summation function aCo)
obtained with uniform input.
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SUMMARY

A nonlinear time series system is considered. The system has the property that the output
series corresponding to a given input series is the sum of a noise series and the result of applying
in turn the operations of linear filtering, instantaneous functional composition and linear
filtering to the input series. Given a stretch of Gaussian input series and corresponding output
series, estimates are constructed of the transfer functions of the linear filters, up to constant
multipliers. The investigation discloses that for such a system, the best linear predictor of
the output given Gaussian input, has a broader interpretation than might be suspected. The
result is derived from a simple expression for the covariance function of a normal variate
with a function of a jointly normal variate.

Some key icords : Cumulant; Gaussian series; Multiple regression; K onlincar system; X ormal variate;
Stationary time series; System identification.

1. INTRODUOTION

Let (U, V) be a bivariate normal with U nondegeneratc. Then one can write V = pU +10
with 10 independent of U and p = cov (U, V)jvar (U). Let G(u) (- 00 < u < 00) be a real­
valued function. Then one has

cov{G(U), V} = cov{G(U),PU +e} = cov{G(U), U)}cov(U, V)jvar(U), (1·1)

provided that E{IG(U)I} and E{IG(U) UI} < 00. Suppose next that

Y = ft+G(.~ CXjXj) +10,
J~l

with (Xl' ... ,X J ) multivariate normal, with e a zero mean, finite second-order moment variate
independent of (Xl' ... , X J ) and with u, CXv ... , cxJ constants. It follows from (1·1) that

.J
cov(Y,Xk) = ~CXjCoV(Xj,Xk)COV{G(U),U}jvar(U) (k=1, ... ,J) (1·3)

j~l

with U = 'L.cxjXj. Now, in linear regression theory the regression coefficients of the variate
Yon (XV"" X J ) are determined by solving the system of equations

J
cov(Y,Xk ) = ~ cxjcov(Xj,X/c)'

j~l

It follows from (1'3) that whcn the nonlinear model (1'2) applies, the linear regression coeffi­
cients of Yon (Xv ... ,XJ ) are proportional to the cx's of (1'2). Provided cov{G(U), U} =F 0,
the constant of proportionality will not be zero. One implication ofthis result is that when the
independent variates of a regression analysis are jointly normal, estimates of the linear regres­
sion coefficients are relevant to the linear parameters of a broader class of models than might
have been suspected.

P. Guttorp and D. Brillinger (eds.), Selected Works ofDavid Brillinger, Selected Works in Probability 607
and Statistics, DOl 10.1007/978-1-4614-1344-8_35, © Springer Science+Business Media, LLC 2012
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When data (J'i, XiI' ... ,XiJ ) (i = 1, ... ,n) are available and estimates aI' ... ,aJ are deter­
mined by solving the usual normal equations, the form ofthe function G(u) may be examined
by plotting the points (kajXij, J'i) (i = 1, ... ,n). The unknown constant of proportionality
may here be considered part of the function G(u).

Consider next the model
J

Y = #+ ~ ajG(Xj ) +e,
j=1

(1'5)

with the previous assumptions and in addition the assumption that the X j have identical
distributions. It follows from (1·1) that

J

cov(Y,Xk) = ~ ajcov (Xj,Xk)cov{G(X),X}jvar (X),
j=1

(1'6)

where X denotes a variate with the distribution of the Xj' Once again the linear regression
coefficients are seen to be proportional to those of a broader model, when the independent
variates are normal.

Expressions (1'3) and (1'6) follow directly from (1·1). This expression was derived under a
normality assumption; however, an examination of the argument shows that the key require­
ment is that

cov{G(U), V-flU} = 0 (1'7)

for fl, the linear regression coefficient, cov(U, V)jvar(U). The relationship (1'7) may
be expected to hold, approximately, for a broad class of variates U, V and functions G(u).

In §2 the relationship (1·1) is generalized to cumulants and functions of several variables.
In §3 it is applied to certain time invariant nonlinear time series models. In § 4, the asymptotic
distributions of certain estimates ofthe parameters of the time series models are investigated.

2. A PARTICULAR CUMULA"'T

Let cum (Ul> ... , UJ ) denote the joint cumulant of order J of the variates llr, ... , UJ . ThL-;
functional has the properties of vanishing if some subset ofthe U's is statistically independent
of the remainder and of being multilinear in its arguments (Brillinger, 1975, §2'3). These
two properties lead to the following lemma.

LEMMA 2·1. Let (U1 , ... , UJ , l{, ... ,VK) be multivariate normal with llr, ... , UJ nondegenerate
and statistically independent of each other. Set (J"jk = COV (~, Tk). Let G(u1 , •.• , u J ) be a measurable
function of (ul> ... , u J) satisfying

(2·1)

for Zl' ... , ZL any subset of (llr, ... , UJ, -y;:, ... ,VK)· Then, for J, K 3 1,

J

cum {G(Ul> ... , UJ), l{, ... ,VK)} = ~ cum {G(llr, ... , UJ)'~' .. ·,.~}(J"jl'" (J"jKj{var(~)}K. (2·2)
j=1

Proof. The cumulant of (2'2) exists in view of (2·1). Applying the Gram-Schmidt ortho­
gonalization procedure to the variates llr, ... , UJ> -y;:, ... ,v:K one sees that one can write

and
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I dentijication of a nonlinear time series system 511

with the 6'8 independent standard normal variates. Hence the cumulant on the left-hand side
of (2·2) is given by

J J

~ cum {G(a161, ... ,aJ6J),fi1j6 j, .. ·,fiKj6j} = ~ cum {G(llr, ... , UJ)'~' ... , ~}fi1j'" fiKj{af·
j~ 1 j=l

The result (2'1) now follows because coy (~, ~)= a j fikj'
Expression (1·1) corresponds to the result of this lemma with J, K = 1. The case of de­

pendent llr, ... , UJ may be handled similarly, for one may write G(llr, ... , UJ) = H(lli, ... ,WJ )

with lli, ...,WJ independent and obtained from U1> ... , UJ by a Gram-Schmidt orthogonaliza­
tion procedure.

3. A TIME SERIES SYSTEM

A time series system is a collection of a space of input series, a space of output series, and an
operation carrying an input series into an output series. Suppose X(t) (t = 0, ± 1, ... ) denotes
an input series and Y(t) (t = 0, ± 1, ... ) the corresponding output series. Then a common time
series system has the form

00

Y(t) = fl+ ~ a(t-u) X(u) +6(t) (t = 0, ± 1, ... ),
U=:I-C:O

(3·1)

for some sequence of filter coefficients a(u) (u = 0, ± 1, ... ), for some constant u, and for some
zero mean noise series e(t) (t = 0, ± 1, ... ). The problem of system identification is that of
determining characteristics of the system from corresponding stretches of input and output
series, say, {X(t), Y(t)} (t = 0, ... , T -1).

Suppose that the series X ( . ) and e(. ) are stationary and independent. Let

CXy(u) = cov{X(t+u), Y(t)}

denote the crosscovariance function of the two series and let the autocovariance functions
cxx(u) and Cyy(u) be defined similarly. Then the system (3'1) leads to the relationship

for suitable a( . ). Let
fXy(A) = (27T)-1L;u cxy(u)e-iAu (-00 < A< (0),

(3·2)

(3'3)

denote the cross-spectrum of the series X ( .) with the series Y (.) and make corresponding
definitions ofthe power spectrafxx(A),fyy(A). Let

(3·4)

denote the transfer function of the filter. Then the relationship (3·2) leads to

fXy(A) = A( -A)fxx(A),

or, iffxx(A) =1= 0, to A(A) = fyx(A){fxx(A)}-l. The parameter iYX(A) {fxX(A)}-l is called the
complex regression coefficient of the series Y (. ) on the series X (. ) at frequency A. It provides
the transfer function of the best linear filter for predicting the series Y(.) from the series
X(.) (Brillinger, 1975, §8'3).

The remainder of this paper is concerned with the identification of the following system,
generalizing (3'1), for t = 0, ± 1, ... ,

U(t) = L;ua(t-u)X(u), V(t) = G{U(t)},

Y(t) = fl+L;ub(t-u) V(u) +6(t),

609
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where G(.) is a function from reals to reals, and where €(.) is a stationary noise series in­
dependent of the stationary series X(.). The system (3'1) corresponds to G(u) = u, the identity
transformation, and to b(O) = 1, b(u) = °for u =l= 0, the identity filter. Suppose now that the
series X(.) is stationary Gaussian; then Lemma 2·1 gives the relationship

CXy(u) = Ll~W~Va(w)b(v)cxx(w+v+u), (3'6)

where L 1 = cov {U(O), V(O)}/var {U(O)}, provided, for example, that all of

~ulcxx(u)l, ~ula(u)l, ~ulb(u)l, E[/G{U(t)}!], E[I U(t+u) G{U(t)}J] (3'7)

are bounded. Formation of the Fourier transform ofthe relationship (3'6) gives

(3'8)

That is, for the system (3'5), the complex regression coefficient!yx(A) {jxx(A)}-lis proportional
to the product A(A)B(A) of the transfer functions of the two linear filters of the system. It is
interesting that in this situation, the best linear predictor corresponds to the composition of
the two linear components of the system. It may be remarked that for the relationship (3'8)
to be meaningful it should be the case that L 1 =!= 0. An expression equivalent to (3'6) was set
down by Korenberg (1973) for the case of X(.) a continuous time white noise process, G(u)
a polynomial in u and €(. ) identically zero.

When one ofthefiltersa(.) and b(.) is the identity, expression (3'8) indicates that the transfer
function of the other is proportional to the complex regression coefficient !YX(A) {jXX(A)}-l.
The transfer function may be estimated, up to a constant, once estimates of the second-order
spectra have been constructed. An indeterminate constant is to be expected since no restrictions
have been placed on the function G(u). The character of the function G(u) may be examined
by using the estimate of the unknown filter to determine approximately the series U(.), or
V(.), and by plotting the values {U(t), V(t)} (t = 0,1, ... , T -1).

The relationship (3'8) is not sufficient to construct individual estimates of A(A) and B(A).
Further relationships involving these parameters exist, however. First, some further para­
meters must be defined. Given a trivariate stationary series {X(t), Y(t), Z(t)} (t = 0, ± 1, ... ), let

CXyz(u, v) = E([X(t+u) -E{X(t+u)}][Y(t+v) -E{Y(t +v)}][Z(t) -E{Z(t)}])

= cum {X(t+u), Y(t+v),Z(t)},

for t, u, v = 0, ± 1, ... , denote the third-order cumulant function of the series and

!XYZ(A, v) = (21T)-2~u~vCXyz(u,v) exp{-i(AU+VV)} (-00 < A, v < 00),

the corresponding third-order cumulant spectrum. Now Lemma 2·1 leads to the relationship

CXXy(u,v) = L2~W~X~ya(x)a(y)cxx(x+u+w)cxx(y+v+w)b(w), (3'9)

where L 2 = cum {U(O), U(O), V(O)}/[var {U(0)}]2. An expression equivalent to this was given by
Korenberg (1973) when X(.) is a continuous time white noise process, G(u) a polynomial in u
and €(. ) identically zero. The relationship "ill be valid provided in addition to the conditions
of (3·7) one has E[I U(t+u) U(t+v) G{U(t)}l] < 00. Formation ofthe Fourier transform of the
relationship (3'9) gives

!XXy(A, v) = L 2A( -A)A( -v)B( -A-V)!xx(A)!xX(V). (3·10)

Notice that (3'10) is not symmetric in A(.) and B(.). It may not be hoped to identify the
filters a(.) and b(.) completely, even with this added relationship, for it is clear that with the
model (3'5) when the filter a(.) is translated 7 time units to form the filter a(. +7), and the
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filter b(.) is translated to b(. - T), then the output series is unaffected. It does follow from
(3'8) and (3'9) though, that, provided Lv fxy(A +v), fxx(A) , fxx(v) 9= 0, then

and by setting v = - A

fxxy(A, v)fxx(A +v)
fxy(A +v)fxx(A)fxx(v)

L 2A( -A)A( -v)
L1A(-A-v) ,

(3·11)

{L 2 IA(A)\2}j{L1A(0)} = UXXy(A, -A)fxx(0)}jUxy(0)fxx(A)2}.

Therefore, up to a constant multiplier, the gain of the filter, IA(A) I, is given by

Ifxxy(A, -A)\!!fxx(A). (3·12)

It should be remarked that for this result to be meaningful, it is necessary that Lv L 2 9= O.
For the problem of identifying A(A) beyond its modulus, let ¢(A) = arg{A(A)} and let

¥(A, v) = argUxxy(A, v)!fxy(A + v)}. Then from (3·11), ¢(A + v) - ¢(A) - ¢(v) = ¥(A, v) (mod rr).
It may be checked by simple substitution that the formula

(3'13)

provides a recursive means of obtaining ¢(A) given ¢(a) (0:::; a < A). The formula (3'13)
provides a determination of the phase with ¢'(O) = O. In the next section estimates of the
filters A(.) and B(.) will be constructed using the relationships (3'12) and (3·14). In some
circumstances, the context of the problem may suggest that the filter a(.) is realizable, that
is a(u) = 0 for u < 0, and one may be willing to assume further that the filter is of minimum
phase type. Then the phase ¢(A) may be determined from the amplitude IA(.)\; see Solodov­
nikov (1960, §13) or Robinson (1962, Chapter VII).

The particular cases of the system when the filter a(. ) or the filter b(.) is the identity were
mentioned earlier. These possibilities may be investigated to some extent. If the filter b(.)
is the identity, then from (3'8) and (3·10)

fxxy(A, v)fxx(A)fxx(v) fxxy(A, v)
fxx(A)fxx(v)fxy(A)fxy(v) = fxy(A)fxy(v)

(3·14)

will be constant as a function of A and v. On the other hand, if the filter a(.) is the identity
then from (3'11)

Uxxy(A, v)fxx(A + v)}jUxy(A +v)fxx(A)fxx(v)} (3·15)

will be constant as a function of A and v.
In the general case, from (3·11) and (3'12),

{lfxxy(A,v)llfxxy(A+v, -A-v)li}j{lfxy(A+v)llfxxy(A, -A)fxxy(v, -v)I!} (3'16)

will be constant as a function of A,v. It is apparent that estimates of the expressions (3·14),
(3·15) and (3'16) may be formed to examine the plausibilities of the respective models. The
next section considers the construction of such estimates.

4. ESTIMATION THEORY

Brillinger (1975, Chapter 8) constructed consistent and asymptotically normal estimates,
based on data {X(t), Y(t)} (t = 0,1, ... , T -1) forfyx(A)Uxx(A)}-l, equal to L 1A(A) B(A) here,
and of its inverse Fourier transform, equal to L 1 a *b(u) here, when the series {X(.), Y(.)} is
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stationary with

~'" ••• ~"J (1 + IUtI + ... + IUJ\) [jcum {X(H Ut), ... , X(HuJ)' X(t)}1
+ Icum{Y(t+uI)' ... , Y(t+uJ)' Y(t)}IJ < 00,

~'" ••• ~UJ~Vl ••• ~vK(1+ lUll + ... + [uJI + Iv11 + ... + IVKIHlcum{X(t+Ut), ... , X(t+uJ)'
Y(t+v1 ) , •.• , Y(t+vK), Y(t)}IJ < 00, (4·1)

for J, K = 1, 2, .... In the present situation the series X(.) is Gaussian and so its cumulant
functions of order greater than two vanish. In connexion with it therefore it is only necessary
to assume ~(1 + lui) Icxx(u) I < 00. Suppose further that the noise series €(.) satisfies

~Ul ••• ~UJ(1 + lUll+ ... + IUJi) !cum{€(Hu1) , ... ,€(HuJ),€(t)}1 < 00, (4·2)

for J = 1,2, ... , and that the function G(.) has the property E[iG{U(t)}lkJ < 00 (k = 1,2, ... ).
Then the method employed in the proof of Lemma 1 of Brillinger (1968), invoking Kibble's
(1945) extension of Mehler's Theorem, may be used to show that the condition on G(.) and
(4·2) imply (4·1).

The preceding discussion is relevant to the case in which one of a(.), b(.) and G(.) is the
identity. In the general case, from expression (3·12) it is seen that IA(A)! may be estimated,
up to a constant multiplier, by

(4·3)

where J'fxy(A, v) is an estimate of the third-order cumulant spectrum fxxy(A, v). Suppose
that f.fxy(A, v) is constructed as by Brillinger & Rosenblatt (1967) by smoothing the third­
order periodogram using the weight function ST(a,jJ). Then Theorems 1 and 4 of Brillinger
& Rosenblatt (1967) may be used to show that the estimate (4·3) is consistent and asymptotic­
ally normal with variance

KAT-IlrrII ST(a,jJ)2dadjJfxx(0)/!fxxy(A, -A)I,

where K A = 1 if A 9= 0, tt and K o = 6, K; = 2.
As an estimate of ¢(A) = arg{A(A)}, expression (3·13) suggests the consideration of

¢T(21TSjS) = {2 ~ ¢T(2rrjjS) +1jrT(2rrj/S, 2rr(s - j)/S)} S (21TS)-1,
1<j<8

for S a large integer, s = 2,3, ... , with ¢T(21T/S) = 0 and

1jrT(a,A-a) = arg{f.fxy(a,A-a)/f.fy(A)}.

As an estimate of A(A), up to a constant multiplier, now take

AT(A) = exp {i¢T(A)} If.fxy(A, - A)!!!flx(A).

As an estimate of IB(A)I,up to a constant multiplier, take Ifix (A) I/If.fxy (A, -A)lt and as an
estimate of arg {B(A)} (mod rr) take arg {fI: x (A)} - ¢T(A).

5. CONCLUDING RK'\fARKS

The results of the previous section indicate that the proposed identification procedure will
be most satisfying when one of the filters a(. ) and b(. ) is the identity. The results also indicate
that the procedures of cross-spectral analysis have a much broader domain of applicability
than might be expected wherever the input series is Gaussian.

For the particular case G(u) = a1 U +a2u
2 of a quadratic system, there already exist results
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concerning identification by means of Gaussian input (Tick, 1961; Brillinger, 1970). It may
be checked readily that those results agree with the present ones.

This research was carried out at the University of Auckland. It was partially supported by
the J. S. Guggenheim Memorial Foundation and a National Science Foundation Grant.
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