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Preface

This monograph is concerned with the theory and applications of the Borel–
Cantelli Lemma, hereafter referred to as BCL, although the applications of BCL to
the strong laws of large numbers and the laws of the iterated logarithms will not be
mentioned here. BCL is indispensible for deriving results on, the almost sure
behavior of random variables. Hence almost all textbooks on probability theory
contain a discussion on BCL. However, I have tried to include here as an extensive
a treatment of BCL as possible. I have attempted to make this monograph self-
contained by introducing some standard facts on probability theory in Chap. 1.
A special feature of this treatise is a very exhaustive list of research papers and
books on BCL; however, if there is any important omission in this regard, it is due
to the lack of my knowledge and I sincerely apologize for it.

Attempts have been made to make the discussion lucid, simple, and thorough;
the proofs are given in great detail and are completely rigorous. Any advanced
undergraduate student learning probability theory will be able to understand a
large part of this monograph.

I am grateful to my colleagues Sreela Gangopadhyay and Gour Mohan Saha for
their great help. Thanks are also due to Prasanta Kumar Sen for doing an excellent
typing.

I learnt the introductory probability from Anil Kumar Bhattacharyya, my tea-
cher at Presidency College, Kolkata, India. Then I learnt the measure theoretic and
advanced probability from Ashok Maitra of the Indian Statistical Institute, Kolk-
ata, India. I am indebted to them for my current state of understanding, probability
theory. I gratefully dedicate this monograph to the loving memory of these two
great teachers and respectable personalities.

March 2012 T. K. Chandra
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Chapter 1
Introductory Chapter

1.1 Probability Spaces

Let � be a nonempty (abstract) set. Let A be a σ -field of subsets of �; i.e., A is a
family of subsets of � such that

(a) � ∈ A;
(b) A ∈ A ⇒ Ac ∈ A; and
(c) An ∈ A∀n ≥ 1 ⇒ ∪∞

n=1 An ∈ A.

Let P be a probability measure defined on A; i.e., P is a set function defined on
A into R such that

(d) P(A) ≥ 0∀A ∈ A;
(e) P(�) = 1; and
(f) whenever {An}n≥1 is a sequence of pairwise disjoint sets in A, one has

∞∑

n=1

P(An) converges to P

( ∞∪
n=1

An

)
.

The triplet (�,A, P) is called a probability space. It has the following interpre-
tation. We have a random experiment in mind (an experiment is called random if the
set of all possible outcomes of it is known but it is impossible to foretel which one of
these outcomes will occur in case the experiment is performed once). Then � will
stand for its sample space, i.e., the set of all possible outcomes of the experiment; the
family A will stand for the set of all possible events; and P will denote the chance
mechanism governing the occurrence of the random outcomes (or the events). By an
event A, we shall mean that A ∈ A. This axiomatization of a probability space is
due to Kolmogorov (1933).

We shall be concerned with some of the basic properties of the probability space.
First, A is closed under finitely many or countably many set operations. Second,

T. K. Chandra, The Borel–Cantelli Lemma, SpringerBriefs in Statistics, 1
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2 1 Introductory Chapter

P(∅) = 0 and P is finitely additive. Also,

(g) P(A\B) = P(A) − P(B) if B ⊂ A, and B, A ∈ A;
(h) (the truncation inequality) P(A) ≤ P(A ∩ B) + P(Bc) if A, B ∈ A; and so

|P(A) − P(B)| ≤ P(A�B) if A, B ∈ A,

� being the symmetric difference operator;

(i) P(B) ≤ P(A) if B ⊂ A, and B, A ∈ A;
(j) P(Ac) = 1 − P(A) if A ∈ A;
(k) (Boole’s inequality) if An ∈ A∀n ≥ 1, then

P

( ∞∪
n=1

An

)
≤

∞∑

n=1

P(An);

in particular, if A1, . . . , An ∈ A, then

P

(
n∪

i=1
Ai

)
≤

n∑

i=1

P(Ai );

(l) if An ⊂ An+1 and An ∈ A∀n ≥ 1, then

P(An) → P

( ∞∪
n=1

An

)
;

(m) if An+1 ⊂ An and An ∈ A∀n ≥ 1, then

P(An) → P

( ∞∩
n=1

An

)
;

(n) P(A ∪ B) = P(A) + P(B) − P(A ∩ B) if A, B ∈ A.

The facts (l) and (m) are known as the continuity properties of the set function
P . If An ⊂ An+1∀n ≥ 1, one says that {An}n≥1 is increasing, and writes An ↑ A
where A = ∪∞

n=1 An; if An+1 ⊂ An∀n ≥ 1, one says that {An}n≥1 is decreasing,
and writes An ↓ A where A = ∩∞

n=1 An .

The sequence {An}n≥1 is called monotone if it is either increasing or decreasing.
Thus (l), (m) together say that

{An}n≥1 is monotone, An ∈ A∀ n ≥ 1 and An → A ⇒ P(An) → P(A).

The proofs of (g)–(j) and (n) are elementary. To prove (k), put

Bn = An\
(

n−1∪
i=0

Ai

)
, n ≥ 1
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where A0 = ∅; the sets Bn are obtained from the An successively by the process of
disjointification. Obviously, Bn ∈ A ∀n ≥ 1, Bn ⊂ An and ∪∞

n=1 An = ∪∞
n=1 Bn ;

furthermore, Bn ∩ Bm = ∅ if n �= m, for, n ≤ m − 1 ⇒ Bm ⊂ Ac
n . Thus

P

( ∞∪
n=1

An

)
= P

( ∞∪
n=1

Bn

)
=

∞∑

n=1

P(Bn) ≤
∞∑

n=1

P(An).

The fact (l) can be established thus: Define Bn = An\An−1 ∀n ≥ 1 where A0 = ∅.

Then Bn ∈ A ∀n ≥ 1, the sets Bn are pairwise disjoint, ∪∞
n=1 Bn = ∪∞

n=1 An and
∪n

i=1 Bi = An, ∀n ≥ 1. Thus

P

( ∞∪
n=1

An

)
= P

( ∞∪
n=1

Bn

)
=

∞∑

n=1

P(Bn)

= lim
n→∞

n∑

i=1

P(Bi ) = lim
n→∞ P

(
n∪

i=1
Bi

)
= lim

n→∞ P(An).

The fact (m) follows from (l) and (j) as can be seen thus: Put Bn = Ac
n, n ≥ 1.

Then {Bn} is increasing so that, by (l),

P(Bn) → P

( ∞∪
n=1

Bn

)

and hence 1 − P(An) → 1 − P
(∩∞

n=1 An
)

by (j) and de Morgan’s law.
We note that if An ∈ A ∀n ≥ 1, then

P

( ∞∪
n=1

An

)
= 0 ⇔ P(An) = 0 ∀n ≥ 1; and

P

( ∞∩
n=1

An

)
= 1 ⇔ P(An) = 1 ∀n ≥ 1.

Indicator Functions
There is a very nice, elegant, and useful duality between sets and functions in the

context of an abstract set, which emphasizes their algebraic properties.
Let A ⊂ �. By the indicator function, IA, of A, we shall mean a function from

� into {0, 1} such that

IA(ω) =
{

1 if ω ∈ A;
0 if ω /∈ A.

Many useful properties of indicator functions are known. We mention the follow-
ing one only: If T �= ∅, then with A = ∪t∈T At and B = ∩t∈T At

IA = sup
t∈T

IAt , IB = inf
t∈T

IAt .
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In a probability space (�,A, P), for a subset A of � one has

IAis a random variable ⇔ A is an event.

At this stage it is recommended that the reader should go through Sects. 15, 16,
20, and 21 of Billingsley (1995).

Lemma 1.1.1 Let X be a non-negative random variable.

(a) (The Expectation Identity) If
∑∞

n=0 P(X = n) = 1, then

E(X) =
∞∑

n=1

P(X ≥ n).

In general,

E([X ]) =
∞∑

n=1

P(X ≥ n),

where [X ] is the integer part of X.

(b) (The Expectation Inequality)

∞∑

n=1

P(X ≥ n) ≤ E(X) ≤ 1 +
∞∑

n=1

P(X ≥ n).

In particular, E(|X |) < ∞ ⇔
∞∑

n=1

P(|X | ≥ n) < ∞.

Proof (a) Note that

E(X) =
∞∑

n=1

n P(X = n) =
∞∑

n=1

(
n∑

i=1

1

)
P(X = n)

=
∞∑

i=1

∞∑

n=i

P(X = n) =
∞∑

i=1

P(X ≥ i),

and

E([X ]) =
∞∑

n=1

P([X ] ≥ n) =
∞∑

n=1

P(X ≥ n).

(b) This is immediate, since [X ] ≤ X ≤ 1 + [X ]. �
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Lemma 1.1.2 The events A1, . . . , An (n ≥ 2) are independent iff

P

(
n∩

i=1
Bi

)
=

n∏

i=1

P(Bi )

for all choices of the Bi such that Bi = Ai or Ac
i for 1 ≤ i ≤ n.

Lemma 1.1.3 A random variable X is degenerate iff for each real x, P(X ≤ x) is
0 or 1.

1.2 Lim Sup and Lim Inf of a Sequence of Sets

We shall introduce the important notions of “lim sup” and “lim inf” of a sequence
of subsets of an abstract set �. This involves set-theoretic operations only, although
we shall use these notions in various contexts freely.

Let � be an abstract set.

Definition 1.2.1 Let {An}n≥1 be a sequence of subsets of the set �.

(a) We define lim supn→∞ An = ∩∞
n=1 ∪∞

m=n Am .
(b) We define lim infn→∞ An = ∪∞

n=1 ∩∞
m=n Am .

(c) We say that limn→∞ An exists if lim supn→∞ An = lim infn→∞ An ; in this case
we write limn→∞ An = lim supn→∞ An .
When there is no chance of confusion, we replace

lim sup
n→∞

An, lim inf
n→∞ Anand lim

n→∞ An

by, respectively,
lim sup An, lim inf Anand lim An .

We shall often write An → A in case limn→∞ An = A.

To bring the analogy with the “lim sup” and “lim inf” of real sequences, recall
that

lim sup an = inf
n≥1

sup
m≥n

am, lim inf an = sup
n≥1

inf
m≥n

am .

(We shall be concerned below with only bounded sequences {an}n≥1.)
The relationship between the above definitions is given below:

Ilim sup An = lim sup IAn , Ilim inf An = lim inf IAn .

and
An → A ⇔ IAn → IA.
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Furthermore, if {An}n≥1 is increasing, then

lim sup An = lim inf An = ∞∪
n=1

An,

while if {An}n≥1 is decreasing, then

lim sup An = lim inf An = ∞∩
n=1

An .

In general,

∞∪
m=n

Am ↓ lim sup An,
∞∩

m=n
Am ↑ lim inf An . (�)

By de Morgan’s laws, it is obvious that

(lim inf An)c = lim sup Ac
n, (lim sup An)c = lim inf Ac

n .

Thus, in a sense, one of the two notions suffices.
Finally, note that

(A) ω ∈ lim sup An

⇔ for each n ≥ 1, there is an integer m ≥ n such that ω ∈ Am

⇔ ω ∈ An for infinitely many values of n;
(B) ω ∈ lim inf An

⇔ there is an integer n ≥ 1 such that ω ∈ Am ∀m ≥ n
⇔ ω ∈ An for all sufficiently large n (or, simply, ω ∈ An eventually).

Incidentally, the above alternative descriptions of lim sup An and lim inf An show
that

(C) these two sets are free from any particular enumeration of the sets An as a
sequence;

(D) these two sets remain unaffected, even if we change the sets An for only finitely
many values of n;

(E) lim inf An ⊂ lim sup An ; and
(F) if n1 < n2 < · · · , then lim sup Ank ⊂ lim sup An .

In the language of probability,

lim sup An = [Ani.o.(n)] = [An i.o.] if there is no confusion;

i.o. = infinitely often;

lim inf An = [An eventually (n)] = [An eventually ] if there is no confusion.

If now there is a σ -field A of subsets of �, and An ∈ A ∀n ≥ 1, then lim sup
An ∈ A and lim inf An ∈ A (and An → A ⇒ A ∈ A).
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Lemma 1.2.1 Let (�,A, P) be a probability space, and An ∈ A ∀n ≥ 1. Then

(a)

P(lim inf An) ≤ lim inf P(An) ≤ lim sup P(An) ≤ P(lim sup An); (1.2.1)

in particular, An → A ⇒ P(An) → P(An)(and P(An�A) → 0); (1.2.2)

also, P(lim sup An) = 0 ⇒ P(An) → 0; and (1.2.3)

lim inf P(An) = 0 ⇒ P(lim inf An) = 0; (1.2.4)

(b) if A ∈ A,

P((lim sup An) ∩ Ac) = 0 ⇒ P(An ∩ Ac) → 0,

P((lim inf An)c ∩ A) = 0 ⇒ P(Ac
n ∩ A) → 0, (1.2.5)

(thus (1.2.5) is an extension of (1.2.2));
(c) P(An) ≥ δ > 0 ∀ n ≥ 1 where δ is free from n ⇒ lim sup An �= ∅;
(d) P(lim sup An) = lim P

(∪∞
m=n Am

)
, P(lim inf An) = limn→∞ P

(∩∞
m=n Am

)
.

Proof (a) This follows from earlier results (see (�) of p. 6 and (m) of Sect. 1.1) in
the following way:

P(lim sup An) = lim
n→∞ P

( ∞∪
m=n

Am

)
≥ lim sup P(An).

Also,

P(lim inf An) = 1 − P(lim sup Ac
n)

≤ 1 − lim sup P(Ac
n) by what has been proved

= lim inf P(An).

The remaining parts of (a) are now easy to prove.
(b) Note that

0 = P((lim sup An) ∩ Ac) = P(lim sup(An ∩ Ac))

and hence P(An ∩ Ac) → 0 by (1.2.2). Now replacing An by Ac
n for each n ≥ 1

and A by Ac, we get

P((lim sup Ac
n) ∩ A) = 0 ⇒ P(Ac

n ∩ A) → 0.

We now get (1.2.5).
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(c) This is immediate since

P(lim sup An) ≥ lim sup P(An) ≥ δ > 0.

(d) It follows from (l) and (m) of Sect. 1.1; see the proof of (a). �

We next state a few facts for later uses:

An⊂Bn∀n ≥ 1⇒ lim sup An ⊂ lim sup Bn, lim inf An⊂ lim inf Bn, (1.2.6)

(lim sup An) ∪ (lim sup Bn) = lim sup(An ∪ Bn), (1.2.7)

(lim inf An) ∩ (lim inf Bn) = lim inf(An ∩ Bn), (1.2.8)

(lim sup An) ∩ (lim sup Bn) ⊃ lim sup(An ∩ Bn), (1.2.9)

(lim inf An) ∪ (lim inf Bn) ⊂ lim inf(An ∪ Bn), (1.2.10)

(The two inclusions may be strict.)

An → A, Bn → B ⇒ An ∪ Bn → A ∪ B, An ∩ Bn → A ∩ B. (1.2.11)

Lemma 1.2.2 The following is true for any sequence of sets {An}n≥1.

(lim sup An) ∩ (lim sup Ac
n) = lim sup(An ∩ Ac

n+1)

= lim sup(Ac
n ∩ An+1).

Proof In view of (1.2.6), it suffices to show that

(lim sup An) ∩ (lim sup Ac
n) ⊂ lim sup(An ∩ Ac

n+1), (1.2.12)

(lim sup An) ∩ (lim sup Ac
n) ⊂ lim sup(Ac

n ∩ An+1). (1.2.13)

The inclusion in (1.2.13) follows from that of (1.2.12) by replacing An by Ac
n for

each n ≥ 1. It remains to prove (1.2.12). To this end, let ω ∈ LHS of (1.2.12). Fix an
integer n ≥ 1. There is an integer m ≥ n and that ω ∈ Am (as ω ∈ lim supi→∞ Ai ).
Put

k = inf{ j > m : ω ∈ Ac
j }.

As ω ∈ lim supi→∞ Ac
i , there is an integer j ≥ m + 1 such that ω ∈ Ac

j ; thus k
is finite and k ≥ m + 1 ≥ 2. Now observe that

ω ∈ Ac
k ∩ Ak−1,

by considering the following two cases:

Case 1 k = m + 1.

Then ω ∈ Ac
k ∩ Am = Ac

k ∩ Ak−1.
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Case 2 k ≥ m + 2.

Then k − 1 ≥ m + 1 so that ω /∈ Ac
k−1. Thus ω ∈ Ac

k ∩ Ak−1.

As k ≥ m + 1 ≥ n + 1 ≥ n, we must have ω ∈ RHS of (1.2.12).

Example 1.2.1 Show that if P(lim inf An) = P(lim sup Bn) = 1, then

P(lim sup(An ∩ Bn)) = 1.

Solution: As P((lim inf An) ∩ (lim sup Bn)) = 1, it suffices to show that

(lim inf An) ∩ (lim sup Bn) ⊂ lim sup(An ∩ Bn). (1.2.14)

But if ω is in the left side, then there is an integer k ≥ 1 such that ω ∈ An ∀n ≥ k,

and ω ∈ Bn for n = n1, n2, . . . where n1 < n2 < · · · Thus ω ∈ An ∩ Bn for
n = n j , n j+1, . . . where j ≥ 1 is such that n j ≥ k.

Example 1.2.2 Let {An}n≥1 and {Bn}n≥1 be two sequences of events such that there
is an integer m ≥ 1 satisfying An is independent of {Bn, Bn+1, . . .} ∀ n ≥ m. Show
that

P(lim sup(An ∩ Bn)) ≥ lim inf P(An)P(lim sup Bn).

Solution: Fix an integer n ≥ m. Note that for each i ≥ 1,

P

( ∞∪
k=n

(Ak ∩ Bk)

)
≥ P

(
n+i∪
k=n

(Ak ∩ Bk)

)

=
n+i−1∑

k=n

P((Ak ∩ Bk) ∩ n+i∩
j=k+1

(A j ∩ B j )
c)

+ P(An+i ∩ Bn+i )

by a standard disjointificaion of the sets (An+i ∩ Bn+i ), . . . , (An ∩ Bn); see, e.g.,
the proof of Boole’s inequality in p. 2.

Thus for each i ≥ 1,

P

( ∞∪
k=n

(Ak ∩ Bk)

)
≥

n+i−1∑

k=n

P

(
(Ak ∩ Bk) ∩ n+i∩

j=k+1
Bc

j

)
+ P(An+i ∩ Bn+i )

=
n+i−1∑

k=n

P(Ak)P

(
Bk ∩ n+i∩

j=k+1
Bc

j

)
+ P(An+i )P(Bn+i )

≥ inf
k≥n

P(Ak)

[
n+i−1∑

k=n

P

(
Bk ∩ n+i∩

j=k+1
Bc

j

)
+ P(Bn+i )

]

= inf
k≥n

P(Ak)P

(
n+i∪
k=n

Bk

)
.
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Letting i → ∞, we get

P

( ∞∪
k=n

(Ak ∩ Bk)

)
≥ inf

k≥n
P(Ak)P

( ∞∪
k=n

Bk

)

≥ inf
k≥n

P(Ak)P (lim sup Bn) .

Now letting n → ∞, we get the desired result.
The above example is closely related to a result of Feller and Chung; see, in this

connection, pp. 69–70 of Chow and Teicher (1997).
To illustrate how the use of “lim sup” and “lim inf” makes complicated statements

very transparent, we first recall the following well-known definitions.
Let each Xn and X be random variables defined on (�,A, P).

Definition 1.2.2 We say that {Xn}n≥1 converges almost surely to X , written Xn →
X a.s. [P], if there is an event A ∈ A such that P(A) = 1 and

A ⊂ [Xn → X ].

Since each of the Xn and X are measurable functions, the set [Xn → X ] lies in
A (see (1.2.16) on p. 11 below); thus

Xn → X a.s. [P] ⇔ P(Xn → X) = 1.

Definition 1.2.3 We say that {Xn}n≥1 converges in probability to X , written
Xn →P X, if for each ε > 0

P(|Xn − X | > ε) → 0. (1.2.15)

Let 0 < δ < ∞; then

Xn →P X ⇔ P(|Xn − X | > ε) → 0 ∀ 0 < ε < δ.

In other words, in (1.2.15) one may require ε to be sufficiently small.
At this stage, it is instructive to supply the details of the following examples.

Example 1.2.3 Let {Xn}n≥1 satisfy

P(|Xn| > x) ≤ P(|Y | > x) ∀ x > 0, n ≥ 1

and E(|Y |p) < ∞ for some p > 0. If Yn = max(|X1|, . . . , |Xn|) for n ≥ 1, then
show that n−1/pYn →P 0.

Example 1.2.4 Assume that for each i = 1, 2, . . . , {X1,i , . . . , Xni ,i } be indepen-
dent. Show that
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max
1≤ j≤nk

|X j,k | →P 0 iff
nk∑

j=1

P(|X j,k | > ε) → 0 ∀ ε > 0.

Lemma 1.2.3 Let Xn → X a.s.[P]. Then

(a) P(|Xn − X | ≥ ε i.o.) = 0 for each ε > 0;
(b) Xn →P X.

Proof (a) Let ε > 0, and put An = [|Xn−X | ≥ ε], n ≥ 1. Then An ∈ A∀ n ≥ 1,

and obviously
lim sup An ⊂ [Xn �→ X ].

As Xn → X a.s. [P], P(Xn �→ X) = 0 so that P(lim sup An) = 0.
(b) Let ε > 0, and define An as above. Then P(lim sup An) = 0 by (a), and so

P(An) → 0 by (1.2.3). This means that Xn →P X . �

Theorem 1.2.1 Let εm → 0+ as m → ∞. Then the following are equivalent:

(a) Xn → X a.s. [P].
(b) P(|Xn − X | > ε i.o.) = 0 ∀ ε > 0. Or, P(|Xn − X | ≥ ε i.o.) = 0 ∀ ε > 0.

(c) P(|Xn − X | > εm i.o. (n)) = 0 ∀ m ≥ 1.

(d) P
(∩∞

m=1 ∪∞
k=1 ∩∞

n=k [|Xn − X | ≤ εm]
) = 1.

Proof It is clear that (a) and (d) are equivalent, since

an → a as n → ∞

iff for each m ≥ 1, there exists an integer k ≥ 1 such that

|an − a| ≤ εm ∀ n ≥ k,

which implies that

[Xn → X ] = ∞∩
m=1

∞∪
k=1

∞∩
n=k

[|Xn − X | ≤ εm] . (1.2.16)

[Note that (1.2.16) is true for any sequence of functions from � into R.]

(a) ⇒ (b): See Lemma 1.2.3 (a).
(b) ⇒ (c): Trivially true.
(c) ⇒ (d): Let Am = [|Xn − X | > εm i.o.(n)], m ≥ 1. Then

P(Am) = 0 ∀ m ≥ 1 by (c). Hence P
(∪∞

m=1 Am
) = 0; i.e.,

1 = P

( ∞∩
m=1

Ac
m

)
= P

( ∞∩
m=1

∞∪
k=1

m∩
n=k

[|Xn − X | ≤ εm]
)

. �
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There is an analogue of (1.2.16) for “the Cauchy condition” for {Xn}n≥1: Let
{Xn}n≥1 be any sequence of funcions from � into R. Then

[{Xn} is Cauchy ] = ∞∩
m=1

∞∪
n=1

∞∩
k=n+1

[|Xn − Xk | ≤ εm]
= ∞∩

m=1

∞∪
n=1

∞∩
k=n+1

[ max
n<i≤k

|Xn − Xi | ≤ εm]

where εm → 0+ is a fixed real sequence. Now assume, furthermore, that εm ↓ 0,

and the Xn are measurable; then

P({Xn} is Cauchy ) = lim
m→∞ P

( ∞∪
n=1

∞∩
k=n+1

[|Xn − Xk | ≤ εm]
)

= lim
m→∞ lim

n→∞ lim
k→∞ P

(
max

n<i≤k
|Xn − Xi | ≤ εm

)
.

These facts are straightforward to verify. Since for a real sequence {an}n≥1, it is
known that lim an exists and is finite ⇔ {an} is Cauchy, we have

∃X such that Xn → Xa.s. ⇔ P({Xn} is Cauchy) = 1.

[We have thus obtained a criterion for the a.s. convergence of {Xn} in terms
of the finite dimensional distributions of {Xn}.]

We conclude this section with some applications of the above results.

Example 1.2.5 Let Xn → X a.s. and the distribution of (X1, . . . , Xn) be identical
with that of (Y1, . . . , Yn) for each n ≥ 1 (the Yn are defined possibly on a second
probability space). Show that ∃ a random variable Y such that Yn → Y a.s. and

X
d= Y.

Solution: As observed earlier,

Xn → X a.s. ⇔ lim
m→∞ lim

n→∞ lim
k→∞ P

(
max

n<i≤k
|Xn − Xi | ≤ 1

m

)
= 1.

As the distributions of (X1, . . . , Xk) and (Y1, . . . , Yk) are same, so are those
of (Xn, . . . , Xk) and (Yn, . . . , Yk) where 1 ≤ n < k < ∞. Therefore, for each
1 ≤ n < k < ∞ and m ≥ 1

P

(
max

n<i≤k
|Xn − Xi | ≤ 1

m

)
= P

(
max

n<i≤k
|Yn − Yi | ≤ 1

m

)
.

This implies

lim
m→∞ lim

n→∞ lim
k→∞ P

(
max

n<i≤k
|Yn − Yi | ≤ 1/m

)
= 1

i.e., ∃ a random variable Y such that Yn → Y a.s.
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Example 1.2.6 (Shuster (1970)) If {An}n≥1 is such that

P(A) > 0 ⇒
∞∑

n=1

P(An ∩ A) = ∞,

then P(lim sup An) = 1.

[Note that {An}n≥1 need not be independent; compare with the second Borel–
Cantelli lemma (of the next section) where the independence of the An is needed.]

Solution: It suffices to show that

P

( ∞∪
k=m

Ak

)
= 1 ∀ m ≥ 1. (1.2.17)

Suppose this is false. Then ∃ an integer m ≥ 2 such that P
(∪∞

k=m Ak
)

< 1. Put
A = ∩∞

k=m Ac
k . Then P(A) > 0, but

∞∑

n=1

P(An ∩ A) =
m−1∑

n=1

P(An ∩ A) < ∞.

This contradicts the given condition.

Remark 1.2.1 Let
∑

P(An) = ∞ and suppose that for each event B

lim inf
n∑

i=1

(P(Ai ∩ B) − P(Ai )P(B)) �= −∞.

Then P(lim sup An) = 1. This is immediate from Example 1.2.6, since one has with
dn = ∑n

i=1(P(Ai ∩ B) − P(Ai )P(B))

P(B) > 0 ⇒
n∑

i=1

P(Ai ∩ B) =
(

n∑

i=1

P(Ai )

)
P(B) + dn → ∞.

Example 1.2.7 Let {An}n≥1 be a sequence of independent events such that P(An) <

1 ∀ n ≥ 1. Show that

P(lim sup An) = 1 ⇔ P

( ∞∪
n=1

An

)
= 1.

Solution: We shall show the implicaion ⇐. So let P
(∪∞

n=1 An
) = 1. It is enough to

show (1.2.17). The result is true for m = 1. Let it be true for m(≥ 1). We now show
that P

(∪∞
n=m+1 An

) = 1.
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To this end, note that

1 = P

( ∞∪
n=m

An

)
= lim

k→∞ P

(
m+k∪
n=m

An

)

= lim
k→∞

[
P(Am) + P

(
m+k∪

n=m+1
An

)
− P(Am) P

(
m+k∪

n=m+1
An

)]

by the independence {Am, Am+1, . . . , Am+k}. Thus

1 = P(Am) + P

( ∞∪
n=m+1

An

)
− P(Am) P

( ∞∪
n=m+1

An

)

or,

(1 − P(Am))

(
1 − P

( ∞∪
n=m+1

An

))
= 0.

As P(Am) < 1, we must have P
(∪∞

n=m+1 An
) = 1.

Example 1.2.8 (a) Suppose that whenever r < s,

P([Xn < r i.o.] ∩ [Xn > s i.o.]) = 0.

Then P(lim Xn exists in R̄) = 1.

(b) Suppose that for some r < s,

P(Xn < r i.o.) = 1, P(Xn > s i.o.) = 1.

Then P(lim Xn exists in R̄) = 0.

Solution:

(a) Let Q be the set of all rationals. For r < s, let

Nr,s = [Xn < r i.o.] ∩ [Xn > si.o.].

Observe now that P
(∪r,s∈Q Nr,s

) = 0 by the given condition, and that

[lim inf Xn < lim sup Xn] ⊂ ∪
r,s∈Q

Nr,s .

(b) It suffices to observe that the given conditions imply that

P(lim inf Xn ≤ r) = 1, P(lim sup Xn ≥ s) = 1,

and that

[lim inf Xn < lim sup Xn] ⊂ [lim inf Xn ≤ r < s ≤ lim sup Xn].
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1.3 The Borel–Cantelli Lemma

We now turn to the celebrated Borel–Cantelli lemma, the central theme of this mono-
graph. We first introduce a useful definition: by an event A in a probability space
(�,A, P), we mean that A ∈ A.

Theorem 1.3.1 (The Borel–Cantelli Lemma). Let (�,A, P) be a probability space,
and {An}n≥1 a sequence of events.

(a) If
∑∞

n=1 P(An) converges, then P(lim sup An) = 0.

(b) If the events An are independent and
∑∞

n=1 P(An) diverges (i.e.,
∑∞

n=1 P(An)

= ∞), then P(lim sup An) = 1.

Proof (a) First, note that lim sup An ⊂ ∪∞
m=k Am ∀ k ≥ 1. Thus for each integer

k ≥ 1,

P(lim sup An) ≤ P

( ∞∪
m=k

Am

)
≤

∞∑

m=k

P(Am) (1.3.1)

by Boole’s inequality. As
∑∞

n=1 P(An) converges, the tails
∑∞

m=k P(Am) → 0
as k → ∞. Letting k → ∞ in (1.3.1), we get the desired result.

(b) We show that P((lim sup An)c) = 0. But by definition,

(lim sup An)c = ∞∪
n=1

∞∩
m=n

Ac
m,

(use the de Morgan laws). It, therefore, suffices to show that for each n ≥ 1,

P

( ∞∩
m=n

Ac
m

)
= 0. (1.3.2)

Fix such an n ≥ 1. Since 1 + x ≤ exp(x) for each real x , we have for each
j ≥ 1,

P

( ∞∩
m=n

Ac
m

)
≤ P

(
n+ j∩
m=n

Ac
m

)

=
n+ j∏

m=n

(1 − P(Am)) by the independence of An, . . . , An+ j

≤ exp

⎛

⎝−
n+ j∑

m=n

P(Am)

⎞

⎠ .

(Note that An, . . . , An+ j are independent and use Lemma 1.1.2.) As
∑∞

n=1

P(An) diverges,
∑∞

m=n P(Am) = ∞ so that
∑n+ j

m=n P(Am) → ∞ as j → ∞.
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Since limx→∞ exp(−x) = 0, we get (1.3.2) by letting j → ∞ in the above
inequality. �

The parts (a) and (b) together are known as the Borel–Cantelli lemma, in short
BCL, the former the “convergence part” and the latter “the divergence part”. However,
it will be convenient to refer to (a) as the the first Borel–Cantelli lemma while to
refer to the nontrivial part (b) as the second Borel–Cantelli lemma.

These two results are obtained by Borel (1909, 1912) and Cantelli (1917); see
the historical remark at the end of this section. The two Borel–Cantelli lemmas
are very useful, indeed often unavoidable, for deducing results about almost sure
convergences (the so-called strong limit theorems); in particular, these lemmas are
needed crucially in establishing the strong laws of large numbers and the laws of
iterated logarithms. The first one is more widely applicable since the events there
may be completely arbitrary; note that it is valid for any measure space—indeed,
it holds for an arbitrary outer measure, since only the countable subadditivitiy and
monotonicity of the set function P were used in the proof of (a) above; see p. 165 of
Billingsley (1995), for the relevant definitions.

Remark 1.3.1 The first Borel–Cantelli lemma is a special case of the Monotone
Convergence Theorem of measure theory applied to the series of nonnegative terms
(see, e.g., Theorem 16.6 of Billingsley (1995)): By the given condition,

E

( ∞∑

n=1

IAn

)
=

∞∑

n=1

E(IAn ) =
∞∑

n=1

P(An) < ∞;

so P
(∑∞

n=1 IAn = ∞) = 0. But obviously

[ ∞∑

n=1

IAn = ∞
]

= lim sup An . (1.3.3)

Indeed, we have shown that if Xn ≥ 0 ∀ n ≥ 1, and
∑∞

n=1 E(Xn) < ∞, then∑
n Xn converges with probability one (see Problem 22.3 on p. 294 of Billingsley

(1995)).

Remark 1.3.2 The converse of the first Borel–Cantelli lemma would run as fol-
lows: If P(lim sup An) = 0, then

∑
n P(An) converges; but this is equivalent to

the assertion that if
∑∞

n=1 P(An) = ∞, then P(lim sup An) > 0. The second
Borel–Cantelli lemma shows that, under the additional assumption of the inde-
pendence of the events An , one has P(lim sup An) = 1; in this sense, the sec-
ond Borel–Cantelli lemma is often regarded as a partial converse of the first
Borel–Cantelli lemma. However, the converse of the first Borel–Cantelli lemma
is false as is easily seen from the example: Let � = (0, 1), P be the uniform
distribution on �, An = (0, 1/n) ∀ n ≥ 1; then An ↓ ∅ so that lim sup An = ∅,
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although
∑

P(An) = ∑
1/n = ∞. It should be clear from this example, by taking

An = (c, c +1/n) ∀ n ≥ m where m is a fixed integer > 1/(1− c), that if
∑

P(An)

diverges then P(limsupAn) can be any number in [0,1]; it follows from this ob-
servation that the second Borel–Cantelli lemma is false without the assumption of
independence (this is also immediate from the example that if 0 < P(A) < 1 and
An = A ∀ n ≥ 1, then lim sup An = A and

∑
P(An) = ∞; the reader may con-

struct other nontrivial examples; see, e.g., Exercise 11 of Chung (2001, p. 82)). A
clear picture about the converse of the first Borel–Cantelli lemma can be obtained
from the arguments of Remark 1.3.1: Let N = ∑∞

n=1 IAn ; then P(N < ∞) = 1
need not imply E(N ) < ∞—there are plenty of such random variables N (e.g.,
define a random variable N by P(N = n) = cn−2 ∀ n ≥ 1 where c is a suitable pos-
itive real such that

∑∞
n=1 P(N = n) = 1, and note that E(N ) = ∞ and, finally, let

An = [N ≥ n] ∀ n ≥ 1 so that An ↓ and lim sup An = ∩∞
n=1 An = [N = ∞] = ∅,

while
∑∞

n=1 P(An) = E(N ) = ∞; see Lemma 1.1.1(a)).

Remark 1.3.3 The first Borel–Cantelli lemma is false under the sole (and weaker)
assumption that P(An) → 0. To see this, let � = [0, 1] and P be the uniform
distribution on �; let

An =
[

n − 2k−1

2k−1 ,
n + 1 − 2k−1

2k−1

]
if 2k−1 ≤ n < 2k for some k ≥ 1;

i.e., A1 = [0, 1], A2 = [0, 1/2], A3 = [1/2, 1], A4 = [0, 1/4], A5 = [1/4, 1/2],
A6 = [1/2, 3/4], A7 = [3/4, 1], and so on. Then it is easy to verify that
P(An) → 0 and lim sup An = �. The reader may also verify that given any
c ∈ [0, 1], there exists a sequence {An}n≥1 of events such that P(An) → 0 but
P(lim sup An) = c.

Remark 1.3.4 The second Borel–Cantelli lemma is a consequence of the Kol-
mogorov strong law of large numbers (SLLN) for a sequence of independent random
variables (see, e.g., Theorem II A, p. 250 of Loève (1977)). For, if we set

Nn =
n∑

i=1

IAi , n ≥ 1

so that E(Nn) = ∑n
i=1 P(Ai ) → ∞, then, using Lemma 15 on p. 278 of Petrov

(1975a), or otherwise directly,

∞∑

n=1

var(IAn )(E(Nn))−2 ≤
∞∑

n=1

P(An)

(
n∑

i=1

P(Ai )

)−2

< ∞

and hence (Nn − E(Nn))/E(Nn) → 0 a.s., i.e., Nn/E(Nn) → 1 a.s. But then
Nn → ∞ with probability 1 since E(Nn) → ∞; i.e., P(lim sup An) = 1. (See
(4.1.2) of Chap. 4, p. 85 for details.)

http://dx.doi.org/10.1007/978-81-322-0677-4_4
http://dx.doi.org/10.1007/978-81-322-0677-4_4
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Historical Remarks
Nash (1954) stated the following remark. See, also, the first paragraph on p. 173

of Móri and Székeley (1983).
Let P(An|IA1 , . . . , IAn−1) denote the conditional probability of An , given the

outcomes of the previous (n − 1) trials. When n = 1, the expression is P(A1). The
1912 Borel criterion stated:

If 0 < p′
n ≤ P(An |IA1 , . . . , IAn−1 ) ≤ p′′

n < 1 for every n, whatever be A1, . . . , An−1,

then
∑

j p′′
j < ∞ implies that P(lim sup An) = 0, and

∑
j p′

j = ∞ implies that
P(lim sup An) = 1.

Cantelli proved that
∑

j P(A j ) < ∞ always implies that P(lim sup An) = 0.

Chung and Erdös (1952) remarked the following.
As Borel already noticed (Borel (1926), p. 48 ff), the assumption of independence

in the second Borel–Cantelli lemma can be removed if we assume that

∑

k

P(Ak |Ac
1 ∩ · · · ∩ Ac

k−1) = ∞.

· · · Although Borel used this condition successfully in his pioneering work on the
metric theory of continued fractions, it is too stringent for many purposes.

The Second Borel–Cantelli Lemma and Subsequences
We conclude this section with one more trivial, but useful, result. In case one

wishes to show P(lim sup An) = 1 where the whole sequence A1, A2, . . . is not
independent, it is sometimes possible to get a suitable subsequence of these events
which is independent. The following theorem can then be applied; see Examples
1.6.7 and 1.6.8. See Fact (F) on p. 6.

Theorem 1.3.2 Let {An}n≥1 be a sequence of events. Suppose there exists a subse-
quence of natural numbers, say, n1 < n2 < · · · , such that {Ank }k≥1 are independent
and

∑
k P(Ank ) = ∞. Then

P(lim sup An) = 1.

1.4 Some Basic Inequalities

In this section, we collect some probability inequalities which will be used later. Fix
a probability space (�,A, P).

Lemma 1.4.1 (Markov’s inequality) If X ≥ 0 and a > 0, then P(X ≥ a) ≤
E(X)/a. A better inequality is

a P(X ≥ a) ≤
∫

[X≥a]
XdP
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which is valid for any X and any real a. In fact, one has

A ∈ A and A ⊂ [X ≥ a] ⇒ a P(A) ≤
∫

A

XdP,

since then a IA ≤ X IA.

Example 1.4.1 Let An ∈ A ∀ n ≥ 1, and Bm be the event that at least m of these
events occur (m = 1, 2, . . .). Then

P(Bm) ≤ m−1
∞∑

n=1

P(An).

(If m = 1, one gets Boole’s inequality).

Solution: Note that Bm = [N ≥ m] where N = ∑∞
n=1 IAn . By Markov’s

inequality,

P(Bm) = P(N ≥ m) ≤ m−1 E(N ) = m−1
∞∑

n=1

P(An)

by the Monotone Convergence Theorem (see, e.g., Theorem 16.6 of Billingsley
(1995)). Note that E(N ) may be ∞ in this example.

Some equivalent forms of Markov’s inequality are noted below.
First Alternative Form: If a > 0 and b is real, then for a > 0

P(|X − b| ≥ a) ≤ E(|X − b|r )/ar f oranyr > 0.

(This is known as the Chebyshev–Markov inequality.)
Second Alternative Form: If g : [0,∞) → [0,∞) is a function such that

g(a) > 0 for a > 0, and g is nondecreasing, then for a > 0

P(|X | ≥ a) ≤ E(g(|X |))/g(a).

The last inequality has an important companion, known as the Elementary
Kolmogorov inequality, namely,

If g : [0,∞) → [0,∞) is nondecreasing and P(g(|X |) ≤ M) = 1 where M > 0,

then P(|X | > a) ≥ (E(g(|X |)) − g(a))/M, a ≥ 0.

For

E(g(|X |)) = E(g(|X |) : |X | > a) + E(g(|X |) : |X | ≤ a)

≤ M P(|X | > a) + g(a).
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Here

E(g(|X |) : |X | > a) =
∫

[|X |>a]
g(|X |)d P, etc.

(In general, we shall replace the usual notation E(X IA) by E(X : A).) As an
application of this inequality, we mention the following:

E

( |X |r
1 + |X |r

)
− ar

1 + ar
≤ P(|X | > a) ≤ 1 + ar

ar
E

( |X |r
1 + |X |r

)
for r, a > 0.

(Take g(x) = xr/(1+xr ) for x ≥ 0.) From this, we get the following well-known
result:

Xn →P X ⇔ E

( |Xn − X |r
1 + |Xn − X |r

)
→ 0 for some r > 0 (or, all r > 0).

For generalizations of Markov’s inequality, see Eisenberg and Ghosh (2001).
Chebyshev’s inequality
We now turn to the Chebyshev inequality which is, in fact, the special case of the

First Alternative Form of Markov’s inequality when r = 2 and b = E(X) provided
E(|X |) < ∞. [Often the special case of the First Alternative Form when r = 2 is
referred to as the Extended Chebyshev inequality.]

Lemma 1.4.2 (Chebyshev’s inequality) If E(|X |) < ∞, E(X) = μ and var(X) =
σ 2 then for any a > 0

P(|X − μ| ≥ a) ≤ σ 2/a2.

(A better inequality is a2 P(|X − μ| ≥ a) ≤ E((X − μ)2 : |X − μ| ≥ a).)

Hölder’s and Minkowski’s inequalities
Below we put ||X ||p = (E(|X |p))1/p for p �= 0.

We begin with a special case of Jensen’s inequality. For this we recall the following
definition.

Definition 1.4.1 Let X : � → [0,∞) be a random variable on (�,A, P).

(a) G is called the GM (geometric mean) of X if

log G = E(log X)

provided the right-hand side exists and is finite.
(b) H is called the HM (harmonic mean) of X if

1

H
= E

(
1

X

)

provided the right-hand side is finite.
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Theorem 1.4.1 Let X : � → [a, b] be a random variable where −∞ ≤ a < b ≤
∞ (If a = −∞, the interval is open at a; similarly, when b = +∞).

(a) (A special case of Jensen’s inequality) If G : [a, b] → R is such that G ′′(x) ≥
0 ∀ x ∈ (a, b) and G ′(x) is continuous on [a, b], and E(|X |) < ∞, then
E(G(X)) exists and

E(G(X)) ≥ G(E(X)).

(b) Let E(|X |) < ∞, a = −∞ and b = +∞. Then

E(exp(X)) ≥ exp(E(X)).

In particular,

exp

( ∞∑

i=1

xi pi

)
≤

∞∑

i=1

pi exp(xi ) (1.4.1)

where pi ≥ 0 ∀ i ≥ 1,
∑∞

i=1 pi = 1, the xi are distinct and
∑∞

i=1 |xi |pi < ∞.

Proof (a) By Taylor’s theorem

G(u) = G(u0)+ (u −u0)G
′(u0)+ 1

2
(u −u0)

2G ′′(ξ), a ≤ u ≤ b, a < u0 < b,

for some ξ ∈ (a, b). As the third term on the right side is ≥ 0, we must have

G(u) ≥ G(u0) + (u − u0)G
′(u0) for a ≤ u ≤ b, a < u0 < b.

Now take u = X (ω) where ω ∈ � and u0 = E(X) which is finite.
We consider the case where a < E(X) < b; the other cases are easy to deal
with. Then

G(X (ω)) ≥ G(E(X)) + (X (ω) − E(X))G ′(u0) ∀ ω ∈ �.

The expectation of the right-hand side is G(E(X)) which is finite. So E(G(X))

exists (see Theorem 1.5.9 (b), p. 42, of Ash and Doléans-Dade (2000)), and we
have E(G(X)) ≥ G(E(X)).

(b) follows from (a). �

It is an easy exercise to deduce the following inequality which is valid for X ≥ 0.

H.M. ≤ G.M. ≤ A.M. provided E(log X) is finite.

In (1.4.1), take xi = log ai for i = 1, . . . , m and pi = 0 ∀ i ≥ m +1 and conclude
that



22 1 Introductory Chapter

m∏

i=1

a pi
i ≤

m∑

i=1

pi ai , provided 0 < ai < ∞, pi ≥ 0,
∑

pi = 1. (1.4.2)

This is the discrete version of the so-called AM-GM inequality. From this, it
follows that

a1a2 . . . am ≤
m∑

i=1

a pi
i

pi
if ai ≥ 0, pi > 1 and

∑ 1

pi
= 1. (1.4.3)

An alternative way to deduce (1.4.3) is to observe that exp(x) is convex on R and so

a1 a2 . . . am = exp

(
m∑

i=1

1

pi
log a pi

i

)

≤
m∑

i=1

(1/pi ) exp(log a pi
i ) =

m∑

i=1

a pi
i /pi .

We next show that

ab ≥ a p

p
+ bq

q
if a ≥ 0, b ≥ 0, p < 1, p �= 0, q = p/(p − 1).

To this end, we can assume that a > 0, b > 0. By Taylor’s theorem,

tm = 1 + m(t − 1) + m(m − 1)ξ for t > 0

where ξ is a suitable positive real. If m > 1 or m < 0, then m(m − 1)ξ > 0 so that
tm > mt + (1 − m) for t > 0, m > 1 or m < 0. Now take t = a pb−q , m = 1/p to
deduce

ab−q/p ≥ 1

p
a pb−q + 1

q
.

Multiplying both sides by bq > 0 we get the desired inequality.

Theorem 1.4.2 (a) (Hölder’s inequality) If p > 1 and 1
p + 1

q = 1, then

||XY ||1 ≤ ||X ||p||Y ||q .

The inequality is reversed if p < 1, p �= 0 and q = p/(p − 1). [If p = q = 2,

then Hölder’s inequality is known as Cauchy-Schwarz’s inequality.]
More generally, if pi > 1 for i = 1, . . . , m and

∑ 1
pi

= 1, then

||
m∏

i=1

Xi ||1 ≤
m∏

i=1

||Xi ||pi .
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An equivalent form of the last inequality is

E

(
m∏

i=1

|Xi |θi

)
≤

m∏

i=1

(E(|Xi |))θi if 0 < θi < 1 ∀ i and
∑

θi = 1.

(b) (Minkowski’s inequality) If p ≥ 1, then

||X + Y ||p ≤ ||X ||p + ||Y ||p.

The inequality is reversed if 0 < p < 1.

For the proofs of (a) and (b) above, see Rudin (1987) and Royden (1988); see,
also, Rubel (1964). For some extensions, see Petrov (1995).

We next note that

E(|X |p) ≥ (E(|X |))p for p ≥ 1, (1.4.4)

the inequality sign being reversed if p < 1 and p �= 0. To see this, apply Theorem
1.4.2 (a) with Y ≡ 1; an alternative way is to consider the function G(x) = x p for
x ≥ 0 and use Theorem 1.4.1 (a). The inequality (1.4.4) implies that

[E(|X |p)/(E(|X |))p]1/(1−p) ≤ 1 if 0 < E(|X |) < ∞ and p > 0, p �= 1, (1.4.5)

the inequality being reversed if p < 0.

From (1.4.4), one can deduce the Liapounov inequality:

||X ||r ≤ ||X ||s if 0 < r < s. (1.4.6)

To see this, put p = s/r > 1, and apply (1.4.4) with |X | replaced by |X |r . For
some refinements of (1.4.6), see Petrov (1975b, 2007a,b) and Arnold (1978).

The following example is important in the large deviation theory.

Example 1.4.2 Let M(t) = E(exp(t X)) be the moment generating function of X .
Then M(t) is convex and log-convex.

Solution: That M(t) is a convex function follows from the convexity of the expo-
nential function. Next, if 0 < θ < 1,

M(tθ + u(1 − θ))

=
∫

exp(tθ X + u(1 − θ)X)dP

≤
(∫

exp(t X)dP

)θ (∫
exp(u X)dP

)1−θ

by Hölder’s inequality

= (M(t))θ (M(u))1−θ .
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Hence M(t) is log-convex.

Theorem 1.4.3 (a) If P(X = 0) < 1 and E(X) is finite, then

P(X �= 0) ≥ (E(|X |))2/E(X2),

P(X �= 0) ≥ ((E(|X |))p/E(|X |p))1/(p−1) f or p �= 1, p �= 0.

(This generalizes the Schwarz inequality, namely, E(|X |) ≤ √
E(X2).)

(b) (Paley and Zygmund (1932)) If b ≤ E(X), E(X) is finite and P(X = 0) < 1,

P(X > b) ≥ (E(X) − b)2/E(X2).

(c) Let S = ∑n
i=1 Xi , E(Xi ) be finite for each i and P(S = 0) < 1. Then

P(∪[Xi �= 0]) ≥
(

n∑

i=1

E(Xi )

)2

/E(S2).

(d) (Chung and Erdös (1952)) If P(Ac
1 ∩ · · · ∩ Ac

n) < 1, then

P

(
n∪

i=1
Ai

)
≥

(
n∑

i=1

P(Ai )

)
/

n∑

i=1

n∑

j=1

P(Ai ∩ A j ).

(e) (Weighted Chung-Erdös inequality; Feng et al. (2009)). Let A1, . . . , An be
events and w1, . . . , wn real weights. If P

(∑n
i=1 wi IAi = 0

)
< 1, then

P

(
n∪

i=1
Ai

)
≥

(
n∑

i=1

wi P(Ai )

)2

/

n∑

i=1

n∑

j=1

wiw j P(Ai ∩ A j ).

Proof (a) Note that E(|X |) = E(|X |I[X �=0]). Now apply Hölder’s inequality.
(b) We have

0 ≤ E(X) − b ≤ E(X) − E(X : X ≤ b) = E(X I[X>b])

≤ (E(X2)P(X > b))1/2

by Cauchy-Schwarz’s inequality.
(c) Note that [S �= 0] ⊂ ∪n

i=1[Xi �= 0].
(d) In (c), take Xi = IAi ∀ i.
(e) In (c), take Xi = wi IAi ∀ i. �

For a generalization of the Chung-Erdös inequality, see Petrov (2007b) and
Dawson and Sankoff (1967).
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Lemma 1.4.1 (Chandra (1999)) Let c1, c2 be non-negative reals, c3 ∈ R and satisfy

P(Ai ∩ A j )

≤ (c1 P(Ai ) + c2 P(A j ))P(A j−i ) + c3 P(Ai )P(A j ) (1.4.7)

whenever 1 ≤ i < j ≤ n. Then

P

(
n∪

i=1
Ai

)
≥ s2

s + cs2 − c3
∑n

i=1(P(Ai ))2

where s = ∑n
i=1 P(Ai ) > 0 and c = c3 + 2(c1 + c2).

Proof As s > 0, P(Ac
i ) < 1 for some i , and so P(Ac

1 ∩ · · · ∩ Ac
n) < 1. By the

Chung-Erdös inequality,

P

(
n∪

i=1
Ai

)
≥ s2/

n∑

i=1

n∑

j=1

P(Ai ∩ A j ) = s2/(s + 2
∑

1≤i< j≤n

P(Ai ∩ A j )).

Next,

∑

1≤i< j≤n

P(Ai ∩ A j )

≤
∑

1≤i< j≤n

[(c1 P(Ai ) + c2 P(A j ))P(A j−i ) + c3 P(Ai )P(A j )]

= c1

n−1∑

i=1

P(Ai )

n∑

j=i+1

P(A j−i ) + c2

n∑

j=2

P(A j )

j−1∑

i=1

P(A j−i )

+ 1

2
c3

(
s2 −

n∑

i=1

(P(Ai ))
2

)

≤
(

1

2
c3 + (c1 + c2)

)
s2 − 1

2
c3

n∑

i=1

(P(Ai ))
2. �

Erdös and Renyi (1959) consider the condition (1.4.7) with c1 = c2 = 0 and
c3 = 1. For other examples, see Kochen and Stone (1964, Examples 1 and 2) and
Lamperti (1963, p. 62). See, also, Examples 3.3.1 and 3.3.2.

Remark 1.4.1 If (1.4.7) holds ∀ n ≥ 1 and
∑∞

n=1 P(An) = ∞, then c ≥ 1. For,
s2

n ≤ ∑n
1

∑n
1 P(Ai ∩ A j ) ≤ sn +cs2

n −c3
∑n

i=1(P(Ai ))
2 (by Schwarz’s inequality)

where sn = ∑n
1 P(Ai ) now divide by s2

n and let n → ∞.
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1.5 Applications of the BCL

In this section, we shall discuss some simple and basic applications of the two Borel–
Cantelli lemmas. The results discussed below are all well known.

Theorem 1.5.1 (a) Let εm → 0+ as m → ∞. Then

∞∑

n=1

P(|Xn − X | > εm) < ∞ ∀ m ≥ 1 ⇒ Xn → X a.s.;

(b)
∑∞

n=1 P(|Xn − X | > ε) < ∞ ∀ ε > 0 ⇒ Xn → X a.s.;
(c)

∑∞
n=1 E(|Xn − X |r ) < ∞ for some r > 0 ⇒ Xn → X a.s.;

(d) Let εn → 0+ as n → ∞. Then

∞∑

n=1

P(|Xn − X | > εn) < ∞ ⇒ Xn → X a.s.;
∞∑

n=1

E(|Xn − X |r )/εr
n < ∞ f or somer > 0 ⇒ Xn → X a.s.;

(e) If
∑∞

n=1 P(|Xn+1−Xn| > εn) < ∞ (a fortiori, if
∑∞

n=1 E(|Xn+1−Xn|r )/εr
n <

∞ f orr > 0) for some sequence {εn}n≥1 of positive reals such that
∑∞

n=1 εn <

∞, then there is a random variable X such that Xn → X a.s.;
(f) Converses of(a) and (d) are false.

Proof (a) By the first Borel–Canteli lemma,

P(|Xn − X | > εm i.o.(n)) = 0 ∀ m ≥ 1.

Theorem 1.2.1 now implies that Xn → X a.s.
(b) is a special case of (a).
(c) By the Chebyshev–Markov inequality,

P(|Xn − X | > ε) ≤ E(|Xn − X |r )/εr ∀ ε > 0.

Thus
∑∞

n=1 P(|Xn − X | > ε) < ∞ ∀ε > 0 by the given condition. By (b), we
then have Xn → X a.s.
Alternative Proof : By the Monotone Convergence Theorem,

P

( ∞∑

n=1

|Xn − X |r < ∞
)

= 1
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see Remark 1.3.1. But
[ ∞∑

n=1

|Xn − X |r < ∞
]

⊂ [|Xn − X |r → 0
] = [Xn → X ].

So P(Xn → X) = 1.

(d) In view of the first Borel–Cantelli lemma, P(|Xn − X | > εn i.o.) = 0. It is,
therefore, enough to show that

[Xn �→ X ] ⊂ lim sup[|Xn − X | > εn].

To this end, let ω lie outside the set on the right side. Then ω ∈ lim inf[|Xn −
X | ≤ εn]. So ∃ an integer k ≥ 1 such that |Xn(ω) − X (ω)| ≤ εn ∀ n ≥ k;
letting n → ∞, we get

lim sup
n→∞

|Xn(ω) − X (ω)| ≤ 0, i.e. , Xn(ω) → X (ω).

(e) Put An = [|Xn+1 − Xn| > εn], n ≥ 1. Then An ∈ A ∀ n ≥ 1. By the first
Borel–Cantelli lemma, P(An i.o.) = 0, i.e., P(lim inf Ac

n) = 1. We argue
below that

lim inf Ac
n ⊂ [lim

n
Xn exists and is finite ].

Let ω ∈ lim inf Ac
n . Then ∃ an integer k ≥ 1 such that

|Xn+1(ω) − Xn(ω)| ≤ εn ∀ n ≥ k.

So,
∑∞

n=k |Xn(ω) − Xn+1(ω)| ≤ ∑∞
n=k εn < ∞. Hence the series

∑∞
n=1|Xn+1(ω) − Xn(ω)| converges; i.e.,

lim
n→∞

n−1∑

i=1

(Xi+1(ω) − Xi (ω))exists and is finite.

This is equivalent to saying that lim
n

Xn(ω) exists and is finite.

(f) Consider the example: Let X follow the uniform distribution on (0, 1). Put Xn =
1An where An = [(n−1)/n < X < 1], n ≥ 1. Then for any ω ∈ (0, 1), ω /∈ An

for all sufficiently large n, and so Xn(ω) → 0. For any ε, 0 < ε < 1, one has
[|Xn| > ε] = [Xn = 1] = An which implies that

∞∑

n=1

P(|Xn| > ε) =
∞∑

n=1

P(An) =
∞∑

n=1

n−1 = ∞.

Thus the converse of (b) (and hence that of (a)) is false.
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Consider again the above example: Let εn → 0 + . Then ∃ an integer k ≥ 1 such
that εn < 1/2 ∀ n ≥ k. Consequently,

[|Xn| > εn] = [Xn = 1] = An for n ≥ k,

and so
∑∞

n=1 P(|Xn| > εn) = ∞. �

Parts (a)–(c) of the above theorem are due to Cantelli.

Theorem 1.5.2 (a) If Xn →P X, then there is a subsequence {nk}k≥1 of positive
integers such that Xnk → X a.s.

(b) Xn →P X iff given any subsequence {nk}k≥1 of positive integers, there is a
further subsequence {nkm } of {nk} such that Xnkm

→ X a.s.

Proof (a) Let n1 = 1, and define {nk}k≥1 inductively such that

P(|Xnk − X | > 2−k) ≤ 2−k ∀ k ≥ 2.

To this end, suppose that n1 < n2 < · · · < nk−1 are defined with this property
for some k ≥ 2. As Xn →P X,

P(|Xn − X | > 2−k) → 0 as n → ∞.

So there is an integer nk > nk−1 such that P(|Xnk − X | > 2−k) ≤ 2−k . Then∑
k P(|Xnk − X | > 2−k) < ∞. By Theorem 1.5.1 (d), Xnk → X a.s.

(b) ‘If’ Part:
Suppose, by way of contradiction, that {Xn}n≥1 does not converge X in probability.

Then ∃ an ε > 0 such that P(|Xn − X | > ε) does not tend to 0 as n → ∞. So
∃ δ > 0 such that

P(|Xn − X | > ε) ≥ δ for infinitely many values of n.

It is now easy to verify that there is a subsequence {n(k)}k≥1 of positive integers
such that

P(|Xn(k) − X | > ε) ≥ δ ∀ k ≥ 1. (1.5.1)

By the given condition, there is a subsequence {n(k(m))}m≥1 of {n(k)}k≥1
such that Xn(k(m)) → X a.s. as m → ∞. Hence Xn(k(m)) →P X , and so
P(|Xn(k(m)) − X | > ε) → 0 as m → ∞. Thus ∃ an integer m0 ≥ 1 such that

P(|Xn(k(m)) − X | > ε) < δ ∀ m ≥ m0. (1.5.2)

But since {n(k(m))}m≥1 is a subsequence of {n(k)}k≥1, we get from (1.5.1) that

P(|Xn(k(m)) − X | > ε) ≥ δ ∀ m ≥ 1. (1.5.3)
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The statements (1.5.2) and (1.5.3) are contradictory.
‘Only If’ Part:
Let Xn →P X. Then Xnk →P X as well. By (a), there a subsequence

{n(k(m))}m≥1 of {nk}k≥1 and that Xnkm
→ X a.s. �

Theorem 1.5.2 (b) may appear, at a first glance, to be of theoretical value only.
However, this is not the case, and this result is very useful. As an illustration, we
prove the following theorem. To this end, recall that if g : R → R is any function
then the set, Dg, of all discontinuity points of g is an Fσ -set (i.e., a countable union
of closed subsets of R), and hence is a Borel set.

Theorem 1.5.3 If Xn →P X and g : R → R is a Borel measureable function
such that P(X ∈ Dg) = 0 where Dg is the set of all discontinuity points of g, then
g(Xn) →P g(X).

Proof We shall use the full force of Theorem 1.5.2 (b). So let {n(k)}k≥1 be a subse-
quence of positive integers. By the “sufficiency part” of Theorem 1.5.2 (b), we only
need to show the existence of a further subsequence {n(k(m))}m≥1 of {n(k)}k≥1 such
that

g
(
Xn(k(m))

) → g(X) a.s. as m → ∞. (1.5.4)

To this end, begin by noting that as Xn →P X, the “necessary part” of Theorem
1.5.2 (b) implies that there is a subsequence {n(k(m))}m≥1 of {n(k)}k≥1 such that

Xn(k(m)) → X a.s. as m → ∞.

Let A = [Xn(k(m)) → X ]; then P(A) = 1. Let B = A ∩ [X /∈ Dg].
As P(X ∈ Dg) = 0, P(B) = 1. To show (1.5.4), it suffices to show that

B ⊂ [g(Xn(k(m))) → g(X)]. (1.5.5)

So let ω ∈ B. As ω ∈ A, Xn(k(m))(ω) → X (ω). This fact and the fact that
ω ∈ [X /∈ Dg], i.e., that g is continuous at X (ω) imply that ω lies in set on the right
side of (1.5.5). �

Example 1.5.1 Let {Xn}n≥1 be any sequence of random variables defined on the
same probability space. Show that ∃ a sequence {an}n≥1 of positive reals such that
Xn/an → 0 a.s .

Solution: Fix an integer n ≥ 1. Clearly, ∃ dn > 0 such that P(|Xn| > dn) ≤ n−2.

Put an = ndn > 0, n ≥ 1. Then
∑∞

n=1 P(|Xn|/an > 1/n) < ∞. By Theorem 1.5.1
(d), Xn/an → 0 a.s. [If the Xn are defined on different probability spaces, ∃ {an}n≥1
such that an > 0 ∀ n ≥ 1 and Xn/an →P 0.]
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Example 1.5.2 Let
∑

P(Xn > can) < ∞ where c > 0, an > 0. Then show that

lim sup
Xn

an
≤ c a.s.

Solution: By the first Borel–Cantelli lemma,

P(Xn > c an i.o.) = 0, i.e., P(Xn ≤ c an eventually) = 1.

But [Xn ≤ c an eventually ] ⊂ [lim sup Xn
an

≤ c].
In the next section, we shall give some typical examples on the Borel–Cantelli

lemmas. For the application of the second one, we shall make a remark. First a
definition is needed.

Recall that a sequence {Xn}n≥1 is called pairwise negative quadrant dependent
(pairwise NQD) if ∀ i �= j, s, t ∈ R

P(Xi > s, X j > t) ≤ P(Xi > s)P(X j > t).

A sequence {An}n≥1 of events is called pairwise NQD if {IAn }n≥1 is so. Clearly,
{An}n≥1 is pairwise NQD iff

P(Ai ∩ A j ) ≤ P(Ai )P(A j ) ∀ i �= j. (1.5.6)

A sequence {An}n≥1 of pairwise independent events is pairwise N Q D ((1.5.6)
then holds with equality in place of ≤). Also, if {An}n≥1 are pairwise N Q D, so are
{Ac

n}n≥1.

Remark 1.5.1 The second Borel–Cantelli lemma holds if ‘independence of {An}’ is
replaced by ‘{An} is pairwise N Q D’. This was first noted by Erdös and Renyi (1959),
and can be proved in several ways. These will be discussed in Chap. 3. Variants of
this result will be proved in Chap. 3 where other dependence conditions on {An}n≥1
will be assumed and one can then only conclude that P(lim sup An) > 0, and this
suffices in many examples. These facts should be remembered carefully while going
through the examples of the next section.

Theorem 1.5.4 Let {Xn}n≥1 be pairwise independent with the distribution functions
{Fn}n≥1. Then Xn → 0 a.s. ⇔ ∑

P(|Xn| > ε) < ∞ ∀ ε > 0 ⇔ ∑
(1 − Fn(ε) +

Fn(−ε)) < ∞ ∀ ε > 0. Also lim sup |Xn| = ∞ a.s. ⇔ ∑
P(|Xn| > ε) = ∞ ∀ ε >

0.

Proof Note that

Xn → 0 a.s. ⇔ P(|Xn| > ε i.o.) = 0 ∀ ε > 0

⇔
∑

P(|Xn| > ε) < ∞ ∀ ε > 0

by the Borel–Cantelli lemmas.

http://dx.doi.org/10.1007/978-81-322-0677-4_3
http://dx.doi.org/10.1007/978-81-322-0677-4_3
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If
∑

(1 − Fn(ε) + Fn(−ε)) < ∞∀ε > 0, then
∑

P(|Xn| > ε) < ∞∀ε > 0
since P(|Xn| > ε) ≤ 1 − Fn(ε) + Fn(−ε), and so Xn → 0 a.s If Xn → 0 a.s.,
then P(|Xn| ≥ ε i.o.) = 0∀ε > 0 and so

∑
P(|Xn| ≥ ε) < ∞∀ε > 0 implying∑

(1 − Fn(ε) + Fn(−ε)) < ∞∀ε > 0.

Finally,
∑

P(|Xn| > ε) = ∞ ∀ ε > 0 ⇔ P(|Xn| > ε i.o.) = 1∀ε > 0.

⇔ P
(∩∞

m=1 [|Xn| > mi.o.(n)]
) = 1 ⇔ P(lim sup |Xn| = ∞) = 1.

For some additional applications of the Borel–Cantelli lemmas, see pp. 100–104
of Gut (2005).

1.6 Examples

Varieties of problems can be solved by the Borel–Cantelli lemmas. We discuss below
a few of them.

Example 1.6.1 Assume that each Xn takes only finitely many (distinct) values, say,
a, x1, . . . , xm . Then

(a) Xn →P a ⇔ P(Xn �= a) → 0;
(b) Xn → a a.s., if

∑
P(Xn �= a) < ∞;

(c) Converse of (b) holds if the events [Xn = a] are pairwise NQD; more precisely,∑
P(Xn �= a) = ∞ ⇒ P(Xn → a) = 0 (under this assumption);

(d) if {An} is pairwise NQD, IAn → 0 a.s. ⇔ ∑
P(An) < ∞;

(e) let m = 1, a < x1 and show that P(lim inf Xn = a, lim sup Xn = x1) = 1 ⇒∑
P(Xn = a) = ∞ and

∑
P(Xn = x1) = ∞; the reverse implication is true if

the events [Xn = a] are pairwise NQD. (In case Xn’s are Bernoulli variables and
the Xn are pairwise independent with P(Xn = 1) → 0 and

∑
P(Xn = 1) = ∞,

we may then conclude that {Xn}n≥1 continues to visit both 0 and 1 over and over
infinitely often with probability one).

Solution:

(a) Let ε = 1
2 min{|a − x1|, . . . , |a − xm |} > 0. Then

P(|Xn − a| > ε) ≥ P(Xn �= a).

This proves the implication ⇒; the reverse implication is always true.
(b) This is always true. By the first Borel–Cantelli lemma, P(Xn = a eventually)=1.

So P(Xn → a) = 1. Alternatively, ∞ >
∑∞

1 P(An) = E
(∑

IAn

)
and so∑

IAn < ∞ a.s. implying that IAn → 0 a.s.; but then Xn → a a.s. Here
An = [Xn �= a].

(c) By the second Borel–Cantelli Lemma in conjunction with Remark 1.5.1,

∑
P(Xn �= a) = ∞ ⇒ P(Xn �= a i.o.) = 1 ⇔ P(Xn = a eventually) = 0.
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Now note that [Xn → a] = [Xn = a eventually].
(d) See the solution of (c).
(e) Assume the given conditions. Then

P([Xn = a i.o.] ∩ [Xn = x1 i.o.]) = 1.

The implication ⇒ follows by the first Borel–Cantelli lemma. The reverse impli-
cation is true by the second Borel–Cantelli lemma.

Example 1.6.2 Xn →P 0 �⇒ Xn → 0 a.s.

Solution: Let P(Xn = 0) = 1
n = 1 − P(Xn = 1) for n ≥ 1, and let {Xn}n≥1 be

pairwise independent. Then Xn →P 0 by Example 1.6.1(a), and lim sup Xn = 1
a.s. by the solution of Example 1.6.1.(c).

Example 1.6.3 (Shuster (1970)) The following are equivalent:

(a) For each ε > 0, ∃ an event A such that P(A) ≥ 1−ε and
∑∞

n=1 P(An ∩ A) <

∞.

(b) P(lim sup An) = 0.

(c) P(lim inf Ac
n) = 1.

Solution: (a) ⇒ (b) Let ε > 0. If suffices to show that P(lim sup An) ≤ ε. By
(a), ∃ an event A such that P(A) ≥ 1 − ε and

∑∞
n=1 P(An ∩ A) < ∞. Then

P(lim sup(An ∩ A)) = 0. But then

P(lim sup An) ≤ P((lim sup An) ∩ A) + P(Ac) ≤ ε.

(b) ⇒ (c): Obvious. (c) ⇒ (a): Let ε > 0. By (c), P
(∩∞

k=n Ac
k

) ↑ 1. So ∃ an integer
n ≥ 2 such that P

(∩∞
k=n Ac

k

) ≥ 1 − ε. Put A = ∩∞
k=n Ac

k . Then P(A) ≥ 1 − ε, and

∞∑

m=1

P(Am ∩ A) =
n−1∑

m=1

P(Am ∩ A) < ∞.

[We have, therefore, shown that if
∑

n P(A ∩ An) < ∞, then P(lim sup An) ≤
1 − P(A). It then follows that

P(lim sup An) = 1 − sup{P(A) : A ∈ F}

where F is the set of all events A satisfying
∑∞

n=1 P(A ∩ An) < ∞; for, the sets
∩∞

k=n Ac
k for each n ≥ 1 belong to F , and

P(lim inf Ac
n) = supn≥1 P

( ∞∩
k=n

Ac
k

)
.]
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Example 1.6.4 Let {Xn} be pairwise independent. Show that for each real a,

P(Xn → a) = 0 or 1.

Solution: Fix a real a. Note that by (1.2.16)

[Xn → a] = ∞∩
m=1

lim inf
n→∞ [|Xn − a| ≤ 1/m] = ∞∩

m=1
lim inf
n→∞ An,m (say) . (1.6.1)

Case 1 For each m ≥ 1, we have
∑∞

n=1 P(Ac
n,m) < ∞. Then P(Ac

n,m i.o. (n)) =
0 ∀ m ≥ 1 which implies that P(lim infn→∞ An,m) = 1 ∀ m ≥ 1, and so P(X →
a) = 1 by (1.6.1).

Case 2 ∃ an integer m ≥ 1 such that
∑∞

n=1 P(Ac
n,m) = ∞. Clearly, {Ac

n,m}n≥1 are
pairwise independent. So

P(Ac
n,m i.o.(n)) = 1, i.e. , P(lim infn→∞ An,m) = 0.

By (1.6.1), [Xn → a] ⊂ lim infn→∞ An,m; so P(Xn → a) = 0.

Example 1.6.5 Let P, Q be two probabilities on a measurable space (�,A). Then
the following are equivalent:

(a) A ∈ A and P(A) = 0 ⇒ Q(A) = 0.

(b) For each ε > 0, ∃ δ > 0 such that A ∈ A and P(A) < δ ⇒ Q(A) < ε.

(c) An ∈ A ∀ n ≥ 1 and P(An) → 0 ⇒ Q(An) → 0.

Solution:

(a) ⇒ (b) Suppose that the negation of (b) holds. Then ∃ ε > 0 such that for
each δ > 0 there exists an event A ∈ A with the property that P(A) < δ

but Q(A) ≥ ε. Taking δ = 1, ( 1
2 )2, ( 1

3 )2, . . . successively, we get a sequence
{Ak}k≥1 of events in A such that P(Ak) < k−2 and Q(Ak) ≥ ε ∀ k ≥ 1. So
P(lim sup Ak) = 0 and Q(lim sup Ak) ≥ lim sup Q(Ak) ≥ ε > 0. Thus the
negation of (a) holds.

(b) ⇒ (c): Let An ∈ A ∀ n ≥ 1 and P(An) → 0. We show that Q(An) → 0. Let
ε > 0. In view of (b), ∃ δ > 0 such that A ∈ A and P(A) < δ ⇒ Q(A) < ε.

As P(An) → 0, ∃ an integer m ≥ 1 such that P(An) < δ ∀ n ≥ m. So
Q(An) < ε ∀ n ≥ m. Hence Q(An) → 0.

(c) ⇒ (a): Let A ∈ A and P(A) = 0. Put An = A ∀ n ≥ 1. Then P(An) → 0. So
by (c), Q(An) → 0; i.e., Q(A) = 0.

Example 1.6.6 Let {Xn}n≥1 be pairwise independent and identically distributed. Let
E(|X1|) = ∞. Show that if Sn = X1 + · · · + Xn and X̄n = n−1Sn, n ≥ 1,

(a) For each a > 0, P(lim sup[|Xn| > na]) = 1;
(b) For each a > 0, P(lim sup[|Sn| > na]) = 1; and
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(c) P(lim X̄n exists and is finite) = 0.
[Indeed, P(lim sup |X̄n| = ∞) = 1.]

Solution:

(a) Fix a real a. Since the events {[|Xn| > na]}n≥1 are pairwise independent, it
suffices to show that

∑∞
n=1 P(|Xn| > na) = ∞. As the Xn are identically

distributed, it suffices to show that
∑∞

n=1 P(|X1| > na) = ∞. But

∞∑

n=1

P(|X1| > na) ≥
∞∑

n=1

P(|X1/a| ≥ n + 1) ≥ E(|X1/a|) − 1 − P(|X1| ≥ a) = ∞.

(b) Fix a real a. Note that

[|Sn| ≤ na eventually] ⊂ [|Xn| ≤ 2na eventually].

For, if ω lies in the set on the left side, then ∃ an integer m ≥ 1 such that
|Sn(ω)| ≤ na ∀ n ≥ m, and then

|Sn−1(ω)| ≤ (n − 1)a ≤ na ∀n ≥ +1

so that
|Xn(ω)| = |Sn(ω) − Sn−1(ω)| ≤ 2na ∀n ≥ +1.

Consequently,

P(lim sup[|Sn| > na]) ≥ P(lim sup[|Xn| > 2na]) = 1 by (a).

(c) It suffices to note that

[ lim X̄n exists and is finite ] ⊂ [ lim sup |X̄n| is finite ].

[Under the assumptions of Example 1.6.6, it is possible that {n−1Sn} is stochastically
bounded; consider, e.g., the Cauchy distribution.]

Example 1.6.7 Let P(Xn = 1) = p = 1 − P(Xn = 0) with 0 < p < 1. Let the Xn

be independent. Let β be a fixed k × 1 vector whose components are 0 or 1. Show
that P((Xn, . . . , Xn+k−1) = β i.o. (n)) = 1.

Solution: Let An = [(Xn, . . . , Xn+k−1) = β], Bn = [(X(n−1)k+1, . . . , Xnk) =
β], n ≥ 1. Obviously, the events {Bn}n≥1 are independent (but the events {An}n≥1 are
not). Also, [Bn i.o.] ⊂ [An i.o.]. It, therefore, suffices to show that

∑
P(Bn) = ∞.

As P(Bn) = P(B1) > 0 ∀ n ≥ 1, we are done. (See Theorem 1.3.2.)
[At this stage, it is instructive to read the story on “The Monkey and the Type-

writter” in Sect. 18.2 of Chap. 2 of Gut (2005).]
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Example 1.6.8 (Breiman (1968)) Consider Example 1.6.7. Let Yn = 2Xn −1, n ≥ 1
(i.e., in terms of successive independent coin-tossing experiment, Yn = +1 or −1
according as the nth toss leads to a head or a tail). Put Sn = Y1 + · · · + Yn, n ≥ 1.

Show that

(a) if p �= 1/2, then P(Sn = 0 i.o.) = 0; and
(b) if p = 1/2, then P(Sn = 0 i.o.) = 1.

Solution: (a) Let S̄n = X1 + · · · + Xn, n ≥ 1. Below we write an ∼ bn in case
an/bn → 1. Then

P(S2n = 0) = P(S̄2n = n)

=
(

2n
n

)
pn(1 − p)n

∼ (2n)2n+1/2 exp(−2n)√
2π

(
nn+1/2 exp(−n)

)2 (p(1 − p))n

= (nπ)1/2(4p(1 − p))n,

where we have used Stirling’s formula for factorials, namely,

n! ∼ √
2πnn+1/2 exp(−n).

Thus
∑

P(S2n = 0) ≤ ∑
π1/2(4p(1 − p))n < ∞ as 0 < p < 1. Thus

P(S2n = 0 i.o.) = 0. Since
Sn = 0 ⇒ n is even ,

[S2n = 0 i.o.] = [Sn = 0 i.o.].SoP(Sn = 0 i.o.) = 0.

(b) We first show that ∃ a sequence {r(n)}n≥1 of integers ≥ 1 such that P(|Sr(n)| <

n) ≤ 1/2 ∀ n ≥ 1.

To this end, let i be an integer and put qn = P(Sn = i). Then

qn = P(S̄n = (n + i)/2)

= n!
((n + i)/2)!((n − i)/2)! (1/2)n, provided (n + i) is even.

Hence for large n with (n + i) even, we can write by Stirling’s formula

log qn = − log(2π)/2 + (n + 1/2) log n − ((n + i + 1)/2) log((n + i)/2)

− ((n − i + 1)/2) log((n − i)/2) − n log 2 + o(1)

= − log(2π)/2 + log 2 − (log n)/2 − ((n + i + 1)(i/(2n) + o(n−1))
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− (n − i + 1)(−i/(2n) + o(n−1)) + o(1)

= − log(2π)/2 + log 2 − (log n)/2 + o(1) → −∞.

Hence qn → 0 ∀ i ≥ 1. Thus

P(|Sn| < k) =
∑

i :|i |<k

P(|Sn| = i) → 0 ∀ k ≥ 1.

Thus given any k ≥ 1, ∃ an integer r(k) ≥ 1 such that P(|Sr(k)| < k) ≤ 1/2.

Now let n1 = 1, mk = nk + r(nk) and nk+1 = mk + r(mk) for k ≥ 1. Then
nk < mk < nk+1 ∀ k ≥ 1. Define

Bk =
⎡

⎣
mk∑

i=nk+1

Yi ≤ −nk,

nk+1∑

i=mk+1

Yi ≥ mk

⎤

⎦ , k ≥ 1.

Then Bk ⊂ [Sn = 0 for some n with mk ≤ n ≤ nk+1]. For, if ω ∈ Bk, Smk (ω) =∑nk
i=1 Yi + ∑mk

i=nk+1 Yi ≤ nk + (−nk) = 0, as well as, Snk+1(ω) ≥ −mk + mk = 0.

Thus [Bn i.o.] ⊂ [Sn = 0 i.o.].
It is, therefore, enough to show that P(Bn i.o.) = 1. Clearly, the events {Bk}k≥1

are independent (and the events {[Sn = 0]}n≥1 are not). The proof will be complete
if we show that

∑
P(Bn) = ∞. But

P(Bn) = P

⎛

⎝
mk∑

i=nk+1

Yi ≤ −nk

⎞

⎠ P

⎛

⎝
nk+1∑

i=mk+1

Yi ≥ mk

⎞

⎠

= 1

4
P

⎛

⎝|
mk∑

i=nk+1

Yi | ≥ nk

⎞

⎠ P

⎛

⎝|
nk+1∑

i=mk+1

Yi | ≥ mk

⎞

⎠

= 1

4
P

(|Smk−nk | ≥ nk
)

P
(|Snk+1−mk | ≥ mk

)

= 1

4
P

(|Sr(nk )| ≥ nk
)

P
(|Sr(mk )| ≥ mk

)

≥ 1/16 by the definition of {r(n)}n≥1.

Example 1.6.9 (a) Let P(|Xn| > a) ≤ P(|Y | > a) for each a > 0 and n ≥ 1
(a fortiori, let {Xn} be identically distributed). Put Yn = n−1 Xn . Show that
Yn →P 0.

(b) If {Xn} are pairwise independent and identically distributed and Yn = n−1 Xn,

then Yn → 0 a.s. ⇔ E(|X1|) < ∞.

Solution: (a) Let ε > 0. Note that

P(|Yn| > ε) = P(|Xn| > nε) ≤ P(|Y | > nε) → 0.



1.6 Examples 37

(b) We shall use Lemma 1.1.1(b), p. 4. Now

Yn → 0 a.s. ⇔ P(|Yn| ≥ ε i.o.) = 0 ∀ ε > 0 by Theorem 1.2.1

⇔
∞∑

n=1

P(|Yn| ≥ ε) < ∞∀ ε > 0

by the Borel–Cantelli lemmas

⇔
∞∑

n=1

P(|Xn| ≥ n ε) < ∞∀ ε > 0

⇔
∞∑

n=1

P(|X1| ≥ n ε) < ∞∀ ε > 0

⇔ E(|X1/ε|) < ∞∀ ε > 0

⇔ E(|X1|) < ∞.

Example 1.6.10 Let {Xn}n≥1 be iid and put Yn = n−1 max
1≤i≤n

|Xi |. Then

(a) Yn →P 0 ⇔ n P(|X1| > n) → 0;
(b) Yn → 0 a.s. ⇔ E(|X1|) < ∞; and

(c) if E(|X1|) < ∞ and E(X1) �= 0, max1≤i≤n|Xi |/
(

n∑

i=1

Xi

)
→ 0 a.s .

Solution:

(a) We first prove the following preliminary results.
(i) n P(|X1| > n) → 0 ⇒ x P(|X1| > x) → 0 as x → ∞.

(ii) If 0 ≤ an ≤ 1 ∀ n ≥ 1, then nan → 0 ⇔ (1 − an)n → 1.

To show (i), note that if x ≥ 1

x P(|X1| > x) ≤ 2[x]P(|X1| > x) ≤ 2[x]P(|X1| > [x]) → 0 as x → ∞.

To show (ii), note that if nan → 0

|1 − (1 − an)n| ≤ nan → 0

as (1 − h)n ≥ 1 − nh for h ≥ 0,

while if (1−an)n → 1, then n log(1−an) → 0, and so nan ≤ −n log(1−an) →
0. (Recall that log x ≤ x − 1 for 0 ≤ x < ∞.)

We now prove (a). If Yn →P 0, then

P(|Yn| > 1) → 0 ⇒ P(|Yn| ≤ 1) → 1

⇒ (P(|X1| ≤ n))n → 1
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⇒ (1 − P(|X1| > n))n → 1

⇒ n P(|X1| > n) → 0 by (ii) above.

Conversely, if n P(|X1| > n) → 0 and ε > 0

P(|Yn| > ε) = 1 − (1 − P(|X1| > n ε))n → 1 − 1 = 0 (by (ii) above)

since x P(|X1| > x) → 0 as x → ∞ (by (i) above) and so n P(|X1| > n ε) →
0.

(b) First note that if 0 < sn ↑ ∞, then

an/sn → 0 ⇒ max
1≤i≤n

|ai |/sn → 0; (1.6.2)

for, if ε > 0, ∃ an integer m ≥ 1 such that |an|/sn < ε ∀ n ≥ m, which implies that
for n ≥ m

(
max

1≤i≤n
|ai |

)
/sn =

(
max

1≤i≤m
|ai |

)
/sn +

(
max

m≤i≤n
|ai |

)
/sn

<

(
max

1≤i≤m
|ai |

)
/sn + ε

which, in turn, implies that

lim sup

((
max

1≤i≤n
|ai |

)
/sn

)
≤ ε

and so we are done.
We now establish (b). Note that

E(|X1|) < ∞ ⇔ n−1 Xn → 0 a.s. by Example 1.6.9 (b)

⇔
(

max
1≤i≤n

|Xi |
)

/n → 0 a.s. by (1.6.2).

(c) The SLLN as given in p. 282 of Billingsley (1995) will be usual. By (b),

n−1 max
1≤i≤n

|Xi | → 0 a.s.

By the above SLLN, n−1Sn → E(X1) a.s. As E(X1) �= 0, we are done.

Remark 1.6.1 Let {Xn}n≥1 be pairwise independent and identically distributed and
α > 0. Then n−1/α Xn → 0 a.s. iff E(|X1|α) < ∞, and n−1/α Xn → ∞ a.s. iff
E(|X1|α) = ∞. [This is a sort of a zero-one law.]
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Remark 1.6.2 For a sequence, Y, X1, X2, . . . , of random variables and a real r > 0,
consider the following statements:

(a) n−1/r Xn → 0 a.s.
(b) P(|Xn| > n1/r ε i.o.) = 0 ∀ε > 0.

(c)
∑

P(|Y | > n1/r ε) < ∞ ∀ε > 0.

(d)
∑

P(|X1| > n1/r ε) < ∞ ∀ε > 0.

(e) E(|Y |r ) < ∞.

(f) E(|X1|r ) < ∞.

(g) n−1/r max
1≤i≤n

|Xi | → 0 a.s.

Then (g) ⇔ (a) ⇔ (b), and (e) ⇔ (c), ( f ) ⇔ (d) hold. If

P(|Xn| > x) ≤ P(|Y | > x) ∀ x > 0, n ≥ 1,

then (c) ⇒ (b) holds. If {Xn}n≥1 are pairwise independent and identically distrib-
uted, then (b) ⇔ (d) holds.

[See the solution of Example 1.6.10(b) and Remark 1.6.1.]

Example 1.6.11 If {Xn}n≥1 are pairwise independent and

a−1
n (X1 + · · · + Xn) → 0 a.s.

where an > 0 and {an−1/an}n≥1 is bounded, then
∑

P(|Xn| ≥ an) < ∞.

Solution: Clearly,

a−1
n Xn = a−1

n (X1 + · · · + Xn) − (an−1/an)a−1
n−1(X1 + · · · + Xn−1) → 0 a.s.

Put A = [a−1
n Xn → 0]. Then P(A) = 1, and A ⊂ [a−1

n |Xn| < 1 eventually].
Thus P(|Xn| ≥ an i.o.) = 0.

Suppose the conclusion is false. Then
∑

P(|Xn| ≥ an) = ∞ and so P(|Xn| ≥
an i.o.) = 1,which is a contradiction. [The conclusion holds if a−1

n (X1+· · ·+Xn) →
μ a.s. and an−1/an → 1.]
Example 1.6.12 Show that there are examples of independent random variables
{Yn}n≥1 such that Yn →P 0 and P(lim sup Yn = ∞, lim inf Yn = −∞) = 1.

Solution: Let the {Xn}n≥1 be independent and Xn follow Bin(1; 1/n), n ≥ 1. Put
Yn = (−1)nn Xn . Then P(Yn �= 0) = 1/n → 0 but

∑
P(Y2n = 2n) = ∞ and∑

P(Y2n+1 = −(2n + 1)) = ∞. So the second Borel–Cantelli lemma implies
that P(lim sup Yn = ∞, lim inf Yn = −∞) = 1, [It is now clear how to construct
{Yn}n≥1 with these properties and having absolutely continuous distributions.]

Example 1.6.13 (Chow and Teicher (1997))

(a) If {An}n≥1 and {Bn}n≥1 are two sequences of events satisfying
∑

P(An) = ∞
and ∃ an integer k ≥ 1 such that
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P

(
Ai ∩

( ∞∪
j=1

Ai+ jk

))
≤ P(Ai )P

( ∞∪
j=k

B j

)
for all sufficiently largei,

then P

( ∞∪
j=k

B j

)
= 1.

(b) Let {Xn}n≥1 be iid random variables and Sn = X1 + · · · + Xn, n ≥ 1. Then for
any ε ≥ 0,

P(|Sn| ≤ ε i.o.) = 0 or 1

according as
∑∞

n=1 P(|Sn| ≤ ε) < ∞ or = ∞.

Solution: Put Ci = Ai ∩
(
∩∞

j=1 Ac
i+ jk

)
, i ≥ 1. Note that Ci ∩ Ci+ jk = ∅ for

i, j = 1, 2, . . . . So for each n ≥ 1

∞∑

i=nk+1

P(Ci ) =
∞∑

i=n

k∑

m=1

P(Cm+ik)

=
k∑

m=1

P

( ∞∪
i=n

Cm+ik

)
≤ k.

Thus for all sufficiently large n,

k ≥
∞∑

i=nk+1

[
P(Ai ) − P

(
Ai ∩

( ∞∪
j=1

Ai+ jk

))]

≥
( ∞∑

i=nk+1

P(Ai )

)(
1 − P

( ∞∪
j=k

B j

))

by the given condition.

As the series on the right side is ∞, we must have P
(
∪∞

j=k B j

)
= 1.

(b) It suffices to consider the case when
∑∞

n=1 P(|Sn| ≤ ε) = ∞. To this end, it
may be assumed that

∑∞
n=1 P(0 ≤ Sn ≤ ε) = ∞, since otherwise

∑∞
n=1 P(−ε ≤

Sn ≤ 0) = ∞ and then we can replace Xn by −Xn for each n ≥ 1.

Put Ai = [0 ≤ Si ≤ ε], Bi = [|Si | ≤ ε], Ci j = [|S j − Si | ≤ ε]. Note that for
each k ≥ 1,

P

(
Ai ∩

( ∞∪
j=1

Ai+ jk

))
≤ P

(
Ai ∩

( ∞∪
j=i+k

A j

))

≤ P

(
Ai ∩

( ∞∪
j=i+k

Ci j

))
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= P(Ai )P

( ∞∪
j=i+k

Ci j

)

= P(Ai )P

( ∞∪
j=i+k

B j−i

)
.

By (a), P
(
∪∞

j=k B j

)
= 1 ∀ k ≥ 1; i.e., P(Bn i.o.) = 1.

Example 1.6.14 Let {Xn} be iid with the common distribution function F . Let

a = sup{x ∈ R : F(x) < 1},−∞ < a ≤ ∞.

(a) If a < ∞, show that max(X1, . . . , Xn) → a a.s.
(b) If a = ∞, show that max(X1, . . . , Xn) → ∞ a.s.

Solution: (a) Let ε > 0. We shall show that
∑

P(|Yn − a| > ε) < ∞ where
Yn = max(X1, . . . , Xn). First observe that by definition of a, P(X1 ≤ a + ε) = 1.

So

P(|Yn − a| < ε) = P(Yn ≤ a − ε) = (P(X1 ≤ a − ε))n = pn (say).

As ∃ a real x such that F(x) < 1 and a −ε < x, P(X1 ≤ a −ε) ≤ P(X1 ≤ x) < 1;
so 0 ≤ p < 1 and

∑
pn < ∞. (b) Let Yn be as in (a). We show that ∃ A ∈ A such

that P(A) = 0 and
Ac ⊂ [Yn → ∞]. (1.6.3)

Firstly, F(m) < 1 ∀ m ≥ 1 (as a = ∞). So
∑

P(Yn ≤ m) = ∑
(F(m))n < ∞.

Then P(Yn ≤ m i.o.(n)) = 0 ∀m ≥ 1. Put A = ∪∞
m=1[Yn ≤ m i.o.(n)]. Then

P(A) = 0 and (1.6.3) holds; for, Ac = [∀ m ≥ 1, Yn > m eventually] ⊂ [Yn → ∞].
Example 1.6.15 Let {Xn} be pairwise independent, identically distributed and X1
nondegenerate. Then show that

P({Xn} converges) = 0.

Solution: We show that

P(lim inf Xn < lim sup Xn) = 1. (1.6.4)

As X1 is nondegenerate, ∃ a ∈ R such that 0 < P(X1 ≤ a) < 1 (see Lemma
1.1.3). As 1 > P(X1 ≤ a) = lim

n
P(X1 ≤ a + 1/n), ∃ an integer n ≥ 1 such that

P(X1 ≤ a +1/n) < 1. So ∃ a, b ∈ R such that a < b and P(X1 ≤ a) > 0, P(X1 ≥
b) > 0. Thus

∑
P(Xn ≤ a) =

∑
P(X1 ≤ a) = ∞,

∑
P(Xn ≥ b) =

∑
P(X1 ≥ b) = ∞.
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As the Xn are pairwise independent, we must have

P(Xn ≤ a i.o.) = 1, P(Xn ≥ b i.o.) = 1.

So
P(lim inf Xn ≤ a) = 1, P(lim sup Xn ≥ b) = 1,

and hence
P(lim inf Xn ≤ a < b ≤ lim sup Xn) = 1

implying (1.6.4).

Example 1.6.16 Let {Xn} be pairwise independent. Show that

P({Xn} converges ) is 0 or 1.

Solution: Let, with the usual convention regarding the empty set,

x0 = inf{r ∈ R : P(Xn > r i.o.) = 0},−∞ ≤ x0 ≤ ∞,

y0 = sup{r ∈ R : P(Xn < r i.o.) = 0},−∞ ≤ y0 ≤ ∞.

Then
P(lim sup Xn ≤ x0) = 1, P(lim inf Xn ≥ y0) = 1, (1.6.5)

(and so y0 ≤ x0). We verify the first equality, the proof of the second being similar.
To this end, let x0 ∈ R and k ≥ 1 be an integer. Then ∃ an r0 ∈ R such that
r0 < x0 + 1/k and P(Xn > r0 i.o.) = 0. So

P(Xn > x0 + 1/k i.o. (n)) ≤ P(Xn > r0 i.o.) = 0;

i.e., P(Xn ≤ x0 + 1/k eventually (n)) = 1 implying that

P(lim sup Xn ≤ x0 + 1/k) = 1.

As k ≥ 1 is arbitrary, we can conclude that P(lim sup Xn ≤ x0) = 1. It, therefore,
remains to consider the case x0 = −∞. Let γm → −∞ be such that P(Xn >

γm i.o.(n)) = 0 ∀ m ≥ 1. So

P(Xn ≤ γm eventually (n)∀ m ≥ 1) = 1

which implies that P(lim sup Xn = −∞) = 1.

Clearly, (1.6.5) implies that if x0 = −∞ or y0 = +∞, then P({Xn} converges)
= 0. Now, let y0 = x0 ∈ R; then (1.6.5) implies that P({Xn} converges) = 1. Finally,
assume that y0 < x0. Then ∃ reals u, v such that y0 < u < v < x0. By the definitions
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of x0 and y0, it then follows that

P(Xn < u i.o.) > 0, P(Xn > v i.o.) > 0.

By the Borel zero-one law (see Theorem 3.1.2), we have

P(Xn < u i.o.) = 1, P(Xn > v i.o.) = 1;

i.e.,
P(lim inf Xn ≤ u) = 1, P(lim sup Xn ≥ v) = 1.

As u < v, we must have P(lim inf Xn < lim sup Xn) = 1. i.e.,

P({Xn}converges) = 0.

[Under the given conditions, we, therefore, have

P(lim Xn exists in the extended real number system) = 0 or 1.]

Example 1.6.17 (Due to D.J. Newman; see Feller (1968, p. 210)) Let {Xn}n≥1 be a
sequence of independent Bernoulli variables with P(Xn = 1) = p = 1 − P(Xn =
0). Define Yn to be the length of the maximal run of successes starting at the nth
trial:

Yn(ω) = j iff Xi (ω) = 1 for i = n, . . . , n + j − 1

and Xn+ j (ω) = 0 ( j ≥ 1),

Yn(ω) = 0 iff Xn(ω) = 0.

Let log n stand for the logarithm of n to the base 1/p, 0 < p < 1. Then show
that lim sup(Yn/ log n) = 1 a.s. (See, also, Example 3.1.1 on p. 64.)
Solution: For each a > 1, we have

P(Yn > a log n) =
∞∑

j=m

(1 − p)p j = pm ≤ pa log n = n−a

where m = inf{ j ≥ 1 : j > a log n}. So P(Yn > a log n i.o.) = 0. Since a > 1 is
arbitrary, we must have

P(lim sup(Yn/ log n) ≤ 1) = 1.

Now let jn = [n log n], the greatest integer ≤ n log n. Put

log2 n = log log n.
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Let 0 < b < 1. Note that

jn+1 − jn ≥ (n + 1) log n − 1 − n log n

≥ [b log jn] + log n − 1 − b(log n + log2 n)

= [b log jn] + (1 − b) log n

[
1 − 1 + b log2 n

(1 − b) log n

]
.

The second term on the right side above tends to ∞ as n → ∞, so that ∃ an
integer m ≥ 1 such that it is > 1 whenever n ≥ m. We assume below that n ≥ m.

Put j∗n = jn + [b log jn]. Note that

An := [Y jn > j∗n − jn + 1] = [X jn = 1, . . . , X j∗n = 1]

which depends only on X jn , . . . , X j∗n ; this immediately implies that the events
{An}n≥1 are independent. Also,

P(An) = p[b log jn ]+1 ≥ p(n log n)−b.

An application of the second Borel–Cantelli lemma yields that

P(An i.o.) = 1,

and hence that P(lim sup[Yn > b log jn]) = 1. As b ∈ (0, 1) is arbitrary, we get

P(lim sup(Yn/ log n) ≥ 1)

≥ P(lim sup(Y jn / log jn) ≥ 1) = 1.

Example 1.6.18 Let {Xn}n≥1 be pairwise independent and identically distributed
with E(|X1|) = ∞. Let Sn = X1 + · · · + Xn, n ≥ 1. Let {an}n≥1 be a sequence of
positive reals such that n−1an is nondecreasing. Then

∑
P(|X1| > an) = ∞ ⇒ lim sup(|Sn|/an) = ∞ a.s.

Solution: As akn/(kn) ≥ an/n ∀ k ≥ 1, we must have akn ≥ k an ∀ n, k ≥ 1. Hence

∞∑

n=1

P(|X1| > kan) ≥
∞∑

n=1

P(|X1| > akn) ≥ k−1
∞∑

m=k

P(|X1| > am) = ∞

since

k(n+1)∑

m=kn

P(|X1| > am) ≥
k(n+1)∑

m=kn

P(|X1| > akn) = k P(|X1| > akn).
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Thus
∑

P(|Xn| ≥ k an) = ∞, and so P(|Xn| ≥ k an i.o.) = 1. Proceeding as
in Example 1.6.6, one gets the desired result.

Example 1.6.19 Let
∑

P(Xn �= Yn) < ∞. Then

(a)
∑

(Xn − Yn)Zn converges a.s.;
(b) if an → ∞ and {mn}n≥1 is a sequence of positive integers tending to +∞,

1

an

mn∑

i=1

(Xi − Yi )Zi → 0 a.s.;

(c) (Xn − Yn)Zn → 0 a.s.;
(d) with probability one,

∑
Xn Zn or

1

an

n∑

i=1

Xi Zi or Xn Zn

converges, tends to +∞ or −∞, or fluctuates in the same way as

∑
Yn Zn or

1

an

n∑

i=1

Yi Zi or Yn Zn

, respectively, where an → +∞;
(e)

n∑

i=1

Xi/an →P X ⇔
n∑

i=1

Yi/an →P X.

Solution: By the first Borel–Cantelli lemma, P(Xn �= Yn i.o.) = 0. Thus P(A) = 1
where A = lim inf[Xn = Yn]. Now note that

A ⊂ [
∑

(Xn − Yn)Zn converges],

A ⊂
[ mn∑

i=1

(Xi − Yi )Zi/an → 0

]

A ⊂ [(Xn − Yn)Zn → 0].

Parts (d) and (e) follow from Parts (a)–(c).

Example 1.6.20 Let X be a random variable satisfying the condition that ∃ a se-
quence {dn}n≥1 of non-negative reals such that P(|X | ≥ dn) > 0 ∀ n ≥ 1 and∑∞

n=1 P(|X | ≥ dn) < ∞. Let {an}n≥1 be a given sequence of reals. Then ∃ a se-
quence {Xn}n≥1 of random variables such that Xn → X a.s. and E(Xn) = an ∀ n≥ 1.

Solution: Define

Xn = X I[|X |<dn ] + an − αn

P(|X | ≥ dn)
I[|X |≥dn ], n ≥ 1,
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where αn = E(X I[|X |<dn ]) ; note that the random variable X I[|X |<dn ] is bounded (by
dn) and hence has a finite expectation.

Clearly, E(Xn) = an, n ≥ 1. Also, Xn → X a.s., since for any ε > 0

∑
P(|Xn − X | > ε) ≤

∑
P(|X | ≥ dn) < ∞.

Example 1.6.21 Let P(Xn ≥ x) ≤ P(Y ≥ x) ∀x > 0, n ≥ 1. Let Yn =
max(X1, . . . , Xn), n ≥ 1. If E(Y +) < ∞, then n−1 Yn → 0 a.s.

Solution: Note that if ε > 0,

∑
P(Xn ≥ nε) ≤

∑
P(Y ≥ n ε) ≤ E(Y +/ε) < ∞ by Lemma 1.1.1 (b).

So P(Xn ≥ n ε i.o.) = 0. Hence P(A) = 1 where

A = [Xn < n/m i.o.(n)∀ m ≥ 1].

We now show that
A ⊂

[
lim sup(n−1Yn) ≤ 0

]
.

To this end, let ω ∈ A. Let m ≥ 1. Then ∃ an integer N (ω) ≥ 1 such that
Xn < n/m ∀ n ≥ N (ω), and so

n−1Yn(ω) ≤ max(n−1YN (ω)(ω), 1/m)∀ n ≥ N (ω)

which implies that
lim sup(n−1Yn(ω)) ≤ 1/m.

As m ≥ 1 is arbitrary, we must have lim sup(n−1Yn(ω)) ≤ 0.

Thus lim sup(n−1Yn) ≤ 0 a.s. But

lim inf(n−1Yn) ≥ lim inf(n−1 X1) = 0.

So n−1Yn → 0 a.s.

Example 1.6.22 (a) If
∑

P(Xn ≥ A) < ∞ for some real A, then

P

(
sup

n
Xn < ∞

)
= 1.

(b) If the events [Xn > A] are pairwise NQD and
∑

P(Xn > A) = ∞ for each

real A, then P

(
sup

n
Xn < ∞

)
= 0.

Solution: This is immediate from the Borel–Cantelli lemmas.
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Example 1.6.23 (a) If P(An) → 1, then ∃ a subsequence {nk}k≥1 of positive inte-
gers such that P

(∩∞
k=1 Ank

)
> 0.

(b) The sufficient condition of (a) cannot be replaced by ‘P(An) ≥ ε ∀n ≥ 1 for
some ε > 0’.

Solution: (a) As P(Ac
n) → 0, ∃ a subsequence {mk}k≥1 of positive integers such

that P(Ac
mk

) ≤ k−2 ∀ k ≥ 1. Then P(lim inf Amk ) = 1. Thus

P

( ∞∩
j=k

Am j

)
→ 1 as k → ∞.

Hence ∃ k0 ≥ 1 such that P
(
∩∞

j=k0
Am j

)
> 0. Then we consider the subseuence

mk0 , mk0+1, mk0+2, . . .

(b) Let us consider the experiment of independent coin-tossing with the same
coin. Let An = [ a Head appears at the n-th toss], n ≥ 1. Then the events An are
independent and P(An) = 1/2 ∀ n ≥ 1. So we can take ε = 1/2. Yet, for any
subsequence n1 < n2 < · · · , we have

P

( ∞∩
k=1

Ank

)
≤ P

(
An1 ∩ · · · ∩ Ank

) ∀k ≥ 1

=
(

1

2

)k

∀k ≥ 1,

which implies that P
(∩∞

k=1 Ank

) = 0.

Example 1.6.24 In a sequence of iid Bernoulli random variables {Xn}n≥1 with
P(X1 = 1) = p, let An be the event that a run of n consecutive 1’s occurs
between the 2n-th and 2n+1-th trials, n ≥ 1. If p ≥ 1/2, then P(An i.o.) = 1.

Solution: Clearly, the events An are independent. So it suffices to show that∑
P(An) = ∞. We now show that

P(Ac
n) ≤ exp(−(2p)n/(2n)), n ≥ 1.

To this end, note that

Ac
n = [ for each i = 2n, 2n + 1, . . . , 2n+1 − n + 1, there is at least

one zero between the i-th and (i + n − 1)-th trials ]
⊂ [for each i = 2n, 2n + n, 2n + 2n, . . . , 2n + rn, there is

at least one zero between the i-th and (i + n − 1)-th trials ]

where r is the largest integer such that 2n + rn ≥ 2n+1 − n + 1, and so r ≥
(2n − n + 1)/n ≥ 2n/(2n)—note that 2n−1 ≥ n − 1 for n ≥ 1 as an induction on n
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shows. Hence

P(Ac
n) ≤ (1 − pn)r ≤ (1 − p)2n/(2n) ≤ exp(−(2p)n/(2n)).

Case 1 p = 1/2

Then P(An) ≥ (1/(2n))/(1 + 1/(2n)) so that
∑

P(An) = ∞.

Case 2 p > 1/2

Then P(Ac
n) → 0 so that

∑
P(An) = ∞.

Example 1.6.25 (a) Let Yn = max{X1, . . . , Xn}, n ≥ 1 and λn ↑ ∞. Then [Yn >

λn i.o.] = [Xn > λn i.o.]
(b) If

∑
P(Xn > λn) < ∞, then P(Yn > λn i.o.) = 0; if

∑
P(Xn > λn) = ∞

and the events [Xn > λn] are pairwise NQD, then P(Yn > λn i.o.) = 1.

Solution: (a) If suffices to show that

[Yn > λn i.o.] ⊂ [Xn > λn i.o.].

So let Yn(ω) > λn for n = n1, n2, . . . where n1 < n2 < . . . Then ∃ an integer k such
that 1 ≤ k ≤ n1 and Xk(ω) > λn1, and so Xk(ω) > λk (as λk ≤ λn1). Put m1 = k.

Suppose that ∃ m1 < m2 < · · · < m j such that

Xn(ω) > λn for n = m1, . . . , m j .

Then ∃ an integer ni such that λni ≥ Ym j (ω) (this is possible since λn → ∞). As
Yni (ω) > λni , there must be an integer p ≥ 1 such that p ≤ ni and X p(ω) > λni .

Clearly, p > m j . We can let m j+1 = p. Therefore, by mathematical induction,
∃ m1 < m2 < . . . such that Xn(ω) > λn for n = m1, m2, . . .

(b) It is now immediate from (a).

Example 1.6.26 Let { fn}n≥1 be q sequence of functions from � into R. Let bn >

0 ∀ n ≥ 1.

(a) If lim inf(an/bn) > 1, then

[ fn ≥ an i.o.] ⊂ [ fn > bn i.o.].

(b) If lim sup(an/bn) < 1, then

[ fn ≤ an i.o.] ⊂ [ fn < bn i.o.].

Solution: This is immediate.
Additional problems on BCL can be found in Athreya and Lahiri (2006, p. 43)

and Stein and Shakarchi (2005, p. 46).
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Chapter 2
Extensions of the First BCL

2.1 A Result of Barndorff-Nielsen

The first Borel–Cantelli lemma is simple and almost trivial. Yet, it is necessary to
weaken its sufficient condition to tackle some problems of probability theory. The
first of such extensions is due to Barndorff-Nielsen (1961), and will be stated below.

Theorem 2.1.1 Let {An}n≥1 be a sequence of events such that lim inf P(An) = 0
and

∑
P(An ∩ Ac

n+1) < ∞. Then

P(lim sup An) = 0 and P(An) → 0.

Proof Put Bn = An ∩ Ac
n+1, n ≥ 1. Then Bn ∈ A∀n ≥ 1, and P(lim sup Bn) = 0

by the first Borel–Cantelli lemma. By (1.2.12) on page 8,

(lim sup An) ∩ (lim sup Ac
n) ⊂ lim sup Bn .

Therefore, inequality (h) of Sect. 1.1 on page 2 implies that

P(lim sup An) ≤ P(lim sup Bn) + P(lim inf An).

This completes the proof, since P(lim inf An) = 0 by (1.2.4) on page 7. �
The above proof suggests the following extension of Theorem 2.1.1.

Theorem 2.1.2 Assume that

(a) P(lim inf An) = 0 (a fortiori, lim inf P(An) = 0); and
(b) P(lim sup(An ∩ Ac

n+1)) = 0 or P(lim sup(Ac
n ∩ An+1)) = 0.

Then P(lim sup An) = 0. �

The paper by Barndorff-Nielsen (1961) contains an application of Theorem 2.1.1.
It is worthwhile to state the following analog of Theorem 2.1.1.

T. K. Chandra, The Borel–Cantelli Lemma, SpringerBriefs in Statistics, 51
DOI: 10.1007/978-81-322-0677-4_2, © The Author(s) 2012
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Theorem 2.1.1′ If lim inf P(An) = 0 and
∑

n P(Ac
n ∩ An+1) < ∞, then

P(lim sup An) = 0. �

There is a short proof of the above result which is due to Balakrishnan and Stepanov
(2010). This runs as follows: For each n ≥ 1,

P(lim sup An) ≤ P

( ∞∪
m=n

Am

)
= P(An) + P(An+1 ∩ Ac

n)

+ P(An+2 ∩ Ac
n+1 ∩ Ac

n) + · · ·
≤ P(An) +

∞∑

i=n

P(Ac
i ∩ Ai+1).

As
∑

n

P(Ac
n ∩ An+1) < ∞, lim

n→∞

∞∑

i=n

P(Ac
i ∩ Ai+1) = 0. So

P(lim sup An) ≤ lim inf P(An) + lim
n→∞

∞∑

i=n

P(Ac
i ∩ Ai+1) = 0.

Replacing An by A ∩ An for n ≥ 1 in Theorem 2.1.2, and using

P(lim sup An) ≤ P((lim sup An) ∩ A) + P(Ac),

we get a further refinement of Theorem 2.1.2.

Theorem 2.1.3 Assume that

(a) P(lim inf(A ∩ An)) = 0 (a fortiori, lim inf P(A ∩ An) = 0); and
(b) P(lim sup(A ∩ An ∩ Ac

n+1)) = 0 or P(lim sup(A ∩ Ac
n ∩ An+1)) = 0.

Then P(lim sup An) ≤ 1 − P(A), lim sup P(An) ≤ 1 − P(A). �

Theorem 2.1.4 (Balakrishnan and Stepanov 2010) If P(An) → 0 and

∞∑

n=1

P(Ac
n ∩ Ac

n+1 ∩ · · · ∩ Ac
n+m−1 ∩ An+m) < ∞ (2.1.1)

for some m ≥ 1, then P(An i.o.) = 0.

Proof Note that for each n ≥ 1,
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P(An i.o.) ≤ P

( ∞∪
k=n

Ak

)

= P(An) + P(Ac
n ∩ An+1) + P(Ac

n ∩ Ac
n+1 ∩ An+2) + · · ·

≤ P(An) + P(An+1) + · · · + P(An+m−1)

+
∞∑

k=n

P(Ac
k ∩ Ac

k+1 ∩ · · · ∩ Ac
k+m−1 ∩ Ak+m)

→ 0 as n → ∞. �

The proof of Theorem 2.1.4 shows that

P(An i.o.) = lim
n→∞

[
P(An) +

∞∑

k=1

P(Ac
n ∩ Ac

n+1 ∩ · · · ∩ Ac
n+k−1 ∩ An+k)

]
.

There is a dual of Theorem 2.1.4. Before stating it, we shall give an alternative
proof of Theorem 2.1.4. The rest of this section is due to Riddhipratim Basu, a
graduate student of the Indian Statistical Institute.

Lemma 2.1.1 Let for some m ≥ 1,

Cn = m∪
j=1

An+ j ,

Bn = Ac
n ∩ Ac

n+1 ∩ · · · ∩ Ac
n+m−1 ∩ An+m, n ≥ 1.

Then
lim sup An ⊂ (lim sup Bn) ∪ (lim inf Cn).

Proof Let ω lie in LHS. Then ω ∈ An for infinitely many values of n. Let

{n ≥ 1 : ω ∈ An} = {n1, n2, . . .} where n1 < n2 < · · ·

Let k = lim sup
i→∞

{ni − ni−1}.

Case 1 k ≥ m + 1.

Then ∃ a subsequence {ni j } j≥1 of {ni }i≥1 such that ni1 ≥ m +1 and ni j −ni j −1 ≥
m + 1∀ j ≥ 1; one can verify this by considering the three subcases ‘k = ∞’, ‘k =
m +1’, and ‘k ≥ m +2’. Then ω ∈ Bni j −m ,∀ j ≥ 1; for, if we fix a j ≥ 1, ω ∈ Ani j

,

and as ni j −1 ≤ ni j − m − 1, we get by the definition of {ni }n≥1

ω /∈ Ani j −m , ω /∈ Ani j −m+1 , . . ., ω /∈ Ani j −1 .

So ω ∈ lim sup Bn .

Case 2 1 ≤ k ≤ m.
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Then lim sup
i→∞

{ni − ni−1} < m + 1

2
so that ∃i0 ≥ 1 such that ni0 ≥ m + 1 and

ni − ni−1 ≤ m∀i ≥ i0. But then

ω ∈ Cn−m∀n ≥ ni0 .

To verify this, fix an integer n ≥ ni0 .∃ j ≥ 1 such that n j ≤ n < n j+1 for some
j ≥ i0. Now note that that ω ∈ An j , and so ω ∈ Cn−m since n − m + 1 ≤
n j+1 − 1 − m + 1 ≤ n j which implies that n j ∈ {n − m + 1, . . . , n} and so
Cn−m ⊃ An j .

Hence ω ∈ lim inf Cn . �
The above lemma immediately implies the following result.

Theorem 2.1.4′ If P(lim inf Cn) = 0 and for some m ≥ 1, (2.1.1) holds, then

P(An i.o.) = 0,

where Cn is as in Lemma 2.1.1. �

Lemma 2.1.2 Let Cn be as in Lemma 2.1.1, and let

B∗
n = An ∩ Ac

n+1 ∩ · · · Ac
n+m f or some m ≥ 1.

Then
lim sup An ⊂ (lim sup B∗

n ) ∪ (lim inf Cn).

Proof Let ω ∈ lim sup An and ω /∈ lim sup B∗
n . Then ∃ an integer m ≥ 1 such that

ω /∈ B∗
n ∀n > m. Also, ∃n0 > m such that ω ∈ An0 and so ω /∈ Cn0−1. We assert

that ω /∈ Cn∀n ≥ n0 − 1. Suppose this is false. Then ∃ an integer n1 ≥ n0 such that
ω /∈ Cn1 . Hence

ω /∈ An1+1, . . . , ω /∈ An1+m .

Let n2 be the largest integers less than n1 + 1 such that ω ∈ An2 . Then

ω ∈ Ac
n2+1, ω ∈ Ac

n2+2, . . . , ω ∈ Ac
n2+m .

(Distinguish between two cases, e.g., n2 + m ≤ n1 or n2 + m > n1; in the latter
case, note that n2 + m ≤ n1 + m.) Thus ω ∈ B∗

n2
but n2 ≥ n0 > m. This is a

contradiction. �

We have thus proved.

Theorem 2.1.5 If P(lim inf Cn) = 0 and for some m ≥ 1,

∑
P(B∗

n ) < ∞,
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then P(An i.o.) = 0 where Cn and B∗
n are as in Lemma 2.1.2. �

We can combine Theorems 2.1.4′ and 2.1.5 in the following way:

Theorem 2.1.6 If P(lim inf Cn) = 0 and

P(lim sup Bn) = 0 or P(lim sup B∗
n ) = 0,

then P(An i.o.) = 0 where Cn, Bn and B∗
n are as in Lemmas 2.1.1. and 2.1.2. �

Remark 2.1.1 This remark is related to Theorems 2.1.4 and 2.1.5. Suppose that
P(An) → 0 and ∑

P(Bn ∩ Bn+1 ∩ · · · ∩ Bn+m) < ∞

where each Bi is either Ai and Ac
i and at least two of the Bi for i = n, . . . , n + m

are the corresponding Ai . Then it need not true that P(An i.o.) = 0. For, we have
the counterexample : Let {An}n≥1 be independent and P(An) = 1

n , n ≥ 1; then the
above conditions hold, but P(An i.o.) = 1.

We now give two applications of Theorem 2.1.1.

Example 2.1.1 Let {Xn}n≥1 be pairwise independent, and assume that for each
n ≥ 1,

P(Xn > u) = e−u, 0 < u < ∞.

(a) Show that

lim sup(Xn/ log n) = 1 a.s. and lim inf(Xn/ log n) = 0 a.s. (2.1.2)

(b) Let X(n) = max(X1, . . . , Xn), n ≥ 1. If {Xn}n≥1 is independent, then

X(n)/ log n → 1 a.s.

Solution: (a) By the Borel-Cantelli lemmas, we have

P(Xn > a log n i.o.) = 0 or 1 according as a > 1 or 0 < a ≤ 1.

This implies the first part of (2.1.2). Since for any a > 0, P(Xn < a log n) → 1,

and so
∑

P(Xn < a log n) = ∞, P(Xn < a log n i.o.) = 1∀a > 0. Therefore,

lim inf(Xn/ log n) ≤ 0 a.s.

which is tantamount to the second part of (2.1.2).
(b) By Example 1.6.25 (a) on page 48, the above arguments yield that P(X(n) >

a log n i.o.) = 0 and hence

lim sup(X(n)/ log n) ≤ 1 a.s.
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We show below that lim inf(X(n)/ log n) ≥ 1 a.s. For this, it suffices to show that
P(X(n) > a log n eventually) = 1 for each a ∈ (0, 1). By Theorem 2.1.2, it is enough
to show that, for 0 < a < 1,

∑
P(An ∩ Ac

n+1) < ∞ and P(Ac
n i.o.) = 1, (2.1.3)

where An = [X(n) ≤ a log n], n ≥ 1. By Example 1.6.25 (a), we have

P(Ac
n i.o) = P(Xn > a log n i.o.) = 1 for 0 < a < 1.

Finally,

∞∑

n=1

P(An ∩ Ac
n+1) =

∞∑

n=1

P(An ∩ [Xn+1 > a log(n + 1)])

=
∞∑

n=1

P(An)P(Xn+1 > a log(n + 1))

=
∞∑

n=1

(1 − n−a)n(n + 1)−a

≤
∞∑

n=1

n−a exp(−n1−a)

≤
∞∑

n=1

∫ n

n−1
x−a exp(−x1−a)dx (why?)

= ∫ ∞
0 x−a exp(−x1−a)dx

= ∫ ∞
0 e−ydy/(1 − a) = 1/(1 − a) < ∞.

Example 2.1.2 Let {Xn} be pairwise independent and each Xn follow N (0; 1)

distribution.

(a) Show that

lim sup(Xn/(
√

2 log n)) = 1 a.s., and lim inf(Xn/(
√

2 log n)) = −1 a.s.
(2.1.4)

(b) Show that, if X(n) = max(X1, . . . , Xn), n ≥ 1 and {Xn}n≥1 is independent then

X(n)/
√

2 log n → 1 a.s.

Solution: We shall use the inequality (1.8) on page 175 of Feller (1968).

(a) Since P(N (0; 1) > x) ≤ 1√
2π

exp(− 1
2 x2) for x ≥ 1, we have

P(Xn > a
√

2 log n) = 0 or 1 according as a > 1 or 0 < a ≤ 1
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which implies the first part of (2.1.3). Replacing Xn by −Xn for each n ≥ 1, we
get the second part of (2.1.3).

(b) Following the steps of Example 2.1.1 (b), it suffices to show that for each a ∈
(0, 1) ∑

P(An ∩ Ac
n+1) < ∞

where An = [X(n) ≤ a
√

2 log n], n ≥ 1. To do this, note that for a suitable m ≥ 1

∞∑

n=m

P(An ∩ Ac
n+1) ≤

∞∑

n=m

(
1 − 1

2a
√

2π
√

2 log n
exp(−a2 log n)

)n

× 1√
2π

exp(−a2 log(n + 1))

≤ d
∞∑

n=m

n−a2
exp(−cn−a2+1/

√
log n)

(2.1.5)

where c > 0, d > 0 are suitable constants. In (2.1.5), we have used the fact that

P(N (0; 1) > x) ≥ 1√
2π

exp(−1

2
x2)

(
1

x
− 1

x3

)
for x ≥ 1

and m is an integer such that (1 − 1/(2a2 log n)) ≥ 1/2 ∀n ≥ m. Since

n−a2
exp(−cn(1−a2)/

√
log n) ≤ n−2 for all sufficiently large n

which is implied by the following fact

exp
(

cn(1−a2)/
√

log n
)

/n2−a2 → ∞ for each a ∈ (0, 1),

(Proof take logarithm of both sides and use the fact that

nα(log n)−β → ∞ if α > 0, β > 0.),

the desired result follows. �

2.2 Another Result of Barndorff-Nielsen

Theorem 2.1.1 is a special case of

Theorem 2.2.1 If {An}n≥1 is a sequence of events such that P(An) → 0 and∑
P(An ∩ Ac

n+νn
) < ∞ for some sequence {νn}n≥1 of positive integers, then

P(An i.o.) = 0.
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Proof For every k ≥ 1, define a sequence of integers {ik,n}n≥1 as follows:

ik,n =
{

k if n = 1;
ik,n−1 + νik,n−1 if n ≥ 2.

We have P(An ∩ Ac
n+νn

i.o.) = 0. As

Aik,n ∩ Aik,n+1 = Aik,n ∩ Ac
ik,n+νik,n

,

we have, by Theorem 2.1.1, P(Aik,n i.o.(n)) = 0. So

P
(∩∞

n=1 Aik,n

) = 0 and hence P
(∪∞

k=1 ∩∞
n=1 Aik,n

) = 0.

The proof will be complete if we show that

lim sup An ⊂ (∪∞
k=1 ∩∞

n=1 Aik,n

) ∪ [An ∩ Ac
n+νn

i.o.].

To this end, let ω ∈ lim sup An and ω /∈ lim sup(An ∩ Ac
n+νn

). Then ∃ an integer
m ≥ 1 such that ω /∈ An ∩ Ac

n+νn
∀n > m. Let p > m be such that ω ∈ Ap. So

ω ∈ Ap+νp = Ai p,2 and hence

ω ∈ Ai p,2 + νi p,2 = Ai p,3 ,

and so on. Thus ω ∈ ∞∩
n=1

Ai p,n and so ω ∈ ∞∪
k=1

∞∩
n=1

Aik,n . �

2.3 Results of Loève and Nash

We shall first discuss a result of Loève (1951), as stated in Nash (1954); it gives a
necessary and sufficient condition for P(lim sup An) = 0.

The necessary part runs as follows: If P(lim sup An) = 0, then there exists an
integer m ≥ 1 such that whenever n ≥ m,

P(Ac
n ∩ Ac

n+1 ∩ · · · ∩ Ac
k−1) > 0 ∀k > n (2.3.1)

and

lim
n→∞

∞∑

k=n

pnk = 0 (2.3.2)

where for k > n

pnk = P(Ak |Ac
n ∩ Ac

n+1 ∩ · · · ∩ Ac
k−1), and pnn = P(An). (2.3.3)
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For a proof, first recall from the remark after the proof of Theorem 2.1.4 that

P(lim sup An) = 0 ⇔ lim
n→∞

[
pnn +

∞∑

k=n+1

P(Ac
n ∩ · · · ∩ Ac

k−1 ∩ Ak)

]
= 0.

As P(lim sup An) = lim
n→∞ P

( ∞∪
k=n

Ak

)
= 0, ∃ an integer m ≥ 1 such that

P

( ∞∪
k=n

Ak

)
< 1∀n ≥ m. Then (2.3.1) holds, since

(Ac
n ∩ · · · ∩ Ac

k−1) ⊃
( ∞∪

k=n
Ak

)c

.

Now note that if k > n,

pnk ≤ P(Ac
n ∩ · · · ∩ Ac

k−1 ∩ Ak)/

[
1 − P

( ∞∪
k=n

Ak

)]

so that

∞∑

k=n

pnk ≤
[

P(An) +
∞∑

k=n+1

P(Ac
n ∩ · · · ∩ Ac

k−1 ∩ Ak)

]
/

[
1 − P

( ∞∪
k=n

Ak

)]

and hence (2.3.2) follows by letting n → ∞ in the above inequality.
The converse runs as follows: If ∃ an integer m ≥ 1 such that (2.3.1) holds and

if (2.3.2) holds, then P(lim sup An) = 0. For a proof, we need to only note that if
k > n,

P(Ac
n ∩ · · · ∩ Ac

k−1 ∩ Ak) ≤ pnk .

We next turn the main result of Nash (1954). We first introduce a notation. Let
A0 = Ac and A1 = A, and define

Aε = ∞∩
n=1

Aεn
n

where each εn is 0 or 1 and ε = (ε1, ε2, . . .); here {An}n≥1 is any given sequence of
events. Let

H = {ε : εi = 1 for finitely many values of i},
H0 = {ε ∈ H : P

(
Aε1

1 ∩ · · · ∩ Aεn
n

)
> 0 ∀n ≥ 1}.

Then it is well known that H is countably infinite. Clearly,
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P

(
∪

ε∈H\H0

Aε

)
= 0. (2.3.4)

Next, assume that ε ∈ H0. Then P(Aε |Aε1
1 ∩ · · · ∩ Aεn

n ) is well defined for each
n ≥ 1, and

P(Aε) = P(Aε1
1 )

∞∏

n=2

(
1 − P

(
A1−εn

n |Aε1
1 ∩ · · · ∩ Aεn−1

n−1

))
.

Thus, using Theorem 8.52 on page 208 of Apostol (1974),

P(Aε) = 0 ⇔
∞∑

n=2

P
(

A1−εn
n |Aε1

1 ∩ · · · ∩ Aεn−1
n−1

)
= ∞

⇔
∞∑

n=2

P
(

An|Aε1
1 ∩ · · · ∩ Aεn−1

n−1

) = ∞

since ε ∈ H and hence A1−εn
n = An for all sufficiently large n. Now observe that

lim inf Ac
n = ∪{Aε |ε ∈ H} since

ω ∈ lim inf Ac
n ⇔ ∃ an integer m(ω) ≥ 1 such that ω /∈ An∀n ≥ m(ω)

⇔ ω ∈ Aε for some ε ∈ H.

Thus,

P(lim inf Ac
n) = 0 ⇔ P

(
∪

ε∈H0
Aε

)
= 0 (by (2.3.4))

⇔ P(Aε) = 0 ∀ε ∈ H0
⇔ ∑

P(An|Aε1
1 ∩ · · · ∩ Aεn

n ) = ∞∀ε ∈ H0.

We have thus proved the result of Nash, namely, P(lim sup An) = 1 iff
∑

P(
An|Aε1

1 ∩ · · · ∩ Aεn−1
n−1

) = ∞∀ε ∈ H0. A related result is given in Bruss (1980).
We next give an application of Nash’s result. There are two urns each containing

a red and b black balls. A ball is drawn at random from the first urn. This is repeated
until a black ball is drawn. Each time a red ball is drawn from the first urn, the number
of balls in the second run is doubled by putting in as many red balls as there are balls
of either color in the second urn before. Once a black ball is drawn from the first urn,
all further draws are made at random from the second urn with replacement after
each draw, and no further change is made in the composition of the contents of the
second urn. Let An be the event of drawing a black ball in the nth trial. We show
below that P(lim sup An) = 1. Note that

P
(

An|Aε1
1 ∩ Aε2

2 ∩ · · · ∩ Aεn−1
n−1

) =
{

1/2 if n < k;
2−k if n ≥ k,
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where k > 1 is such that a black ball is drawn for the first time at (k −1)th trial. (This
is true, because the second urn will contain 2k balls at the kth trial and thereafter,
2k −1 red and 1 black balls.) Then p′

n := inf
n>1

P(An|A1∩· · ·∩ An−1) = 2−n > 0; but
∑

p′
n = 1 < ∞, so that the hypothesis of Borel’s criterion (stated in the historical

remarks on page 18) does not hold. However,

∑
P

(
An|Aε1

1 ∩ · · · ∩ Aεn−1
n−1

) = ∞∀ε,

and so P(lim sup An) = 1.

We conclude this section with a result of Martikainen and Petrov (1990).

Theorem 2.3.1 (Martikainen and Petrov 1990) Let 0 < α ≤ 1.

(a) The following are equivalent:

(i) P(An i.o.) ≥ α.

(ii)
∑

P(An ∩ B) = ∞ for any event B satisfying P(B) > 1 − α.

(iii) P(An ∩ B) > 0 for infinitely many values of n for every event B satisfying
P(B) > 1 − α.

(b) The following are equivalent:

(iv) P(An i.o.) = α

(v) Statement (ii) holds and for each ε > 0, ∃ an event B0 such that P(B0) >

1 − α − ε and
∑

P(An ∩ B0) < ∞.

(vi) Statement (iii) holds and for each ε > 0, ∃ an event B0 such that P(B0) >

1 − α − ε and P(An ∩ B0) = 0 for all sufficiently large n.

Proof (a) See Petrov (1995, p. 201).
(b) (v) ⇒ (iv): Clearly, P(An i.o.) ≥ α by (a). If possible, let P(An i.o.) > α.

Then ∃ an ε > 0 such that P(An i.o.) ≥ α + ε. By (a),
∑

P(An ∩ B) = ∞
for every event B satisfying P(B) > 1 − α − ε. This contradicts the second
condition of (v).

(vi) ⇒ (v): This is clear.
(iv) ⇒ (vi): Clearly, Statement (iii) holds by (c). If possible, let the second condi-

tion of (vi) fail. Then ∃ an ε > 0 such that P(An ∩ B) > 0 for infinitely many value
of n for every event B satisfying P(B) > 1 − α − ε. Then P(An i.o.) ≥ α + ε by
(a), contradicting (iv). �
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Chapter 3
Variants of the Second BCL

3.1 Pairwise Independence

We shall show here that the second Borel–Cantelli lemma holds for a sequence of
events which are pairwise independent. Actually, weaker conditions will suffice.

Theorem 3.1.1 (Chandra (1999)) If

P(Ai ∩ A j )

≤ (c1 P(Ai ) + c2 P(A j ))P(A j−i ) + c3 P(Ai )P(A j ) for 1 ≤ i < j,

where c1, c2 are non-negative reals and c3 ∈ R, and
∑

P(An) = ∞, then c :=
c3 + 2(c1 + c2) ≥ 1 and P(lim sup An) ≥ 1/c.

Proof Fix an integer m ≥ 1. Let sn = ∑m+n
i=m P(Ai ) for n ≥ 1. As

∑∞
i=m P(Ai ) =

∞, ∃ n0 ≥ 1 such that sn > 0 ∀n ≥ n0. Then for n ≥ n0,

P

( ∞∪
i=m

Ai

)
≥ P

(
m+n∪
i=m

Ai

)
≥ s2

n

sn + cs2
n − c3

∑m+n
i=m (P(Ai ))2

by Lemma 1.4.1, p. 25. Letting n → ∞, we get P

( ∞∪
i=m

Ai

)
≥ 1/c since sn → ∞.

So c ≥ 1. Now letting m → ∞, we get the desired result. �

Special cases of Theorem 3.1.1 have been discussed by several authors. See, e.g.,
Erdös and Rényi (1959), Chow and Teicher (1997 Exercise 16, p. 102), Chung (2001
Exercise 11, p. 83), Lamperti (1963), and Petrov (2002).

Following theorem is now immediate.

Theorem 3.1.2 (Borel’s Zero-One Law) Assume that either (a) or (b) below holds:

(a) {An}n≥1 is pairwise NQD ( a fortiori, {An} is pairwise independent);
(b) ∃ α ≥ 0 and β ≥ 0 with α + β = 1 such that

T. K. Chandra, The Borel–Cantelli Lemma, SpringerBriefs in Statistics, 63
DOI: 10.1007/978-81-322-0677-4_3, © The Author(s) 2012
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P(Ai ∩ A j ) ≤ 1

2
(αP(Ai ) + β P(A j ))P(A j−i ) for 1 ≤ i < j.

Then P(lim sup An) = 0 or 1 according as
∑

P(An) converges or diverges.

(For an alternative proof of Theorem 3.1.2 (a), see p. 73 of Khoshnevisan (2007)).
The above result is only one of the many 0-1 laws of probability theory. However,

it is not a consequence of any such 0-1 law, since it deals with a dependent sequence
of events.

The next result is a classical one, and is a special case of Theorem 3.2.1 below. So
we shall not prove it now; see Rényi (1970 p. 391). For applications, see Billingsely
(1995 p. 89).

Theorem 3.1.3 (Erdös and Rényi (1959)) If
∑

P(An) = ∞ and

lim sup

(∑n
i=1 P(Ai )

)2

∑∑
1≤i, j≤n P(Ai ∩ A j )

≥ 1, (3.1.1)

then P(lim sup An) = 1.

The above theorem implies the extension of the second Borel-Cantelli lemma for
pairwise NQD events. To see this, assume that P(Ai ∩ A j ) ≤ P(Ai )P(A j ) ∀i �= j
and

∑
P(An) = ∞. Then

n∑

i=1

n∑

j=1

P(Ai ∩ A j ) ≤
n∑

i=1

P(Ai ) +
∑

1≤i �= j≤n

P(Ai )P(A j )

=
n∑

i=1

P(Ai ) +
(

n∑

i=1

P(Ai )

)2

−
n∑

i=1

(P(Ai ))
2

≤
(

n∑

i=1

P(Ai )

) (
1 +

n∑

i=1

P(Ai )

)

so that 3.1.1 holds. Hence P(lim sup An) = 1.

Remark 3.1.1 Let Nn = ∑n
i=1 IAi , n ≥ 1. Then

Var(Nn) =
∑

1≤i≤n

∑

1≤ j≤n

P(Ai ∩ A j ) −
(

n∑

i=1

P(Ai )

)2

≥ 0

so if
∑n

i=1 P(Ai ) > 0, then the ratio in 3.1.1 is ≤1. Thus in Theorem 3.1.3, the lim
sup on the right side of 3.1.1 is actually 1.

Example 3.1.1 (Newman) Let {Xn} be iid Bernoulli variables with P(X1 = 1) =
p, p > 0. We say that a success run of length m ≥ 1 occurs at trial n iff
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Xn = 1, . . . , Xn+m−1 = 1, Xn+m = 0.

Let Ln be the length of the success run at trial n (Ln = 0 iff Xn = 0).

(a) Let rn ≥ 0 be integers. Show that P(Ln > rn i.o.) = 0 or 1 according as the
series

∑∞
n=1 prn converges or diverges.

(b) P(lim sup(Ln/ log n) = 1/(− log p)) = 1, 0 < p < 1.

Solution:

(a) Clearly, P(Ln > rn) = prn . So it suffices to show that P(Ln > rn i.o.) = 1 if∑
prn = ∞.

To this end, let An = [Ln > rn], n ≥ 1. Suppose that j + r j < k; then the
events A j = [X j = 1, . . . , Xr j + j = 1] and Ak = [Xk = 1, . . . , Xrk+k = 1]
are independent so that P(A j ∩ Ak) = P(A j )P(Ak). If j < k < r j + j and
m = max{ j + r j , k + rk}, then

A j ∩ Ak = [X j = 1, . . . , Xm = 1]

so that
P(A j ∩ Ak) = pm− j+1 ≤ pk+rk− j+1 = pk− j P(Ak).

Observe next that if sn = ∑n
n=1 P(Ai ),

n∑

j=1

n∑

k=1

P(A j ∩ Ak) ≤ sn + 2
∑

j+k≤n
j+r j <k

P(A j ∩ Ak) + 2
∑

j<k≤n
k≤r j + j

P(A j ∩ Ak).

The second term on the right side is ≤ s2
n , while the third term on the right side is

≤ (1 − p)−1sn . Hence

the ratio in (3.1.1) ≥ 1/{(1 + (1 − p)−1)s−1
n + 1} → 1

so that 3.1.1 holds. By Theorem 3.1.3, P(Ln > rn i.o.) = 1.

(b) Let rn ≥ 0 be a real, n ≥ 1. Then
∑

prn and
∑

p[rn ] either both converge
or both diverge. Consequently, by (a), P(Ln > rn i.o.) = 0 or 1 according as∑

prn converges or diverges.

Put α = − log p. Let ε > 0. Taking rn = ((1 + ε)/α) log n, and noting that
prn = exp(−αrn) = n−(1+ε), we get

P

(
Ln >

1 + ε

α
log n i.o.

)
= 0,

and so
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P

(
lim sup

Ln

log n
≤ 1 + ε

α

)
= 1, ∀ε > 0;

putting ε = 1/ i for i ≥ 1, we have

P

(
lim sup

Ln

log n
≤ 1/α

)
= 1.

Next, taking rn = (1/α) log n, we get

P

(
Ln >

1

α
log n i.o.

)
= 1;

thus

P

(
lim sup

Ln

log n
≥ 1/α

)
= 1. (3.1.2)

Example 3.1.2 Let {Xn}n≥1 be a sequence of strictly positive, integer valued iid
random variables, and let Ei = [X1 + · · · + Xk = i for some k ≥ 1], i ≥ 1. Then,
clearly,

P(Ei ∩ E j ) = P(Ei )P(E j−i ), 1 ≤ i < j.

Let {mn}n≥1 be any subsequence satisfying
∑∞

n=1 P(Emn ) = ∞. Then P(Emn

i.o.(n)) ≥ 1/2 > 0 by Theorem 3.1.1. An application of the Hewitt-Savage zero-
one law (see Billingsley (1995 p. 496)) now shows that P(Emn i.o.(n)) = 1.

3.2 Extended Rényi-Lamperti Lemma

Here we investigate those cases where
∑

P(An) = ∞ but P(lim sup An) > 0.

These constitute partial converses of the first Borel-Cantelli lemma.
The following result is a special case of a result of Kochen and Stone (1964). We

give a direct proof. See, in this connection, Spitzer (1964 p. 319).

Theorem 3.2.1 (Extended Rényi-Lamperti Lemma) Let

lim inf

∑n
i=1

∑n
j=1 P(Ai ∩ A j )

(∑n
i=1 P(Ai )

)2 = c,

and
∑

P(An) = ∞. Then c ≥ 1 and P(lim sup An) ≥ 1/c.

(The Rényi-Lamperti lemma concludes that P(lim sup An) ≥ 2−c; see Billings-
ley (1991, p. 87).)

Proof Let 0 < ε < 1. Define
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N =
∞∑

n=1

IAn , Nn =
n∑

i=1

IAi , sn = E(Nn) =
n∑

i=1

P(Ai ), n ≥ 1.

Let Bn = [Nn ≥ ε sn], n ≥ 1. Note that [N = ∞] = lim sup An and

E(N 2
n ) =

n∑

i=1

n∑

j=1

P(Ai ∩ A j ), n ≥ 1.

Also,

P(N ≥ ε sn) ≥ P(Nn ≥ ε sn)

≥ (1 − ε)2(E(Nn))2/E(N 2
n ) by Paley-Zygmund′s inequality.

Since sn ↑ ∞,

P(N = ∞) = lim P(N ≥ ε sn) ≥ (1 − ε)2 lim sup
(E(Nn))2

E(N 2
n )

= (1 − ε2)/c.

Letting ε → 0, we see that the desired inequality is true.
That c ≥ 1 follows from the fact that if sn > 0, then the ratio in (3.1.1) is ≤ 1.

Alternative Proof. (Due to Yan (2006))
This is based on the Chung-Erdös inequality. We shall use the above notation.
Note as E(Nn) → ∞, E(N 2

n ) → ∞. Now note that

n∑ n∑

i, j=m+1

P(Ai ∩ A j ) ≤ E(N 2
n ) − E(N 2

m).

So by the Chung-Erdös inequality,

P

( ∞∪
k=m+1

Ak

)
≥ P

(
n∪

k=m+1
Ak

)
∀n ≥ m + 1

≥ (E(Nn) − E(Nm))2/(E(N 2
n ) − E(N 2

m)).

So

P

( ∞∪
k=m+1

Ak

)
≥ lim sup

n→∞
(E(Nn))2

E(N 2
n )

.

Letting m → ∞, we get the desired inequality. �
Note that if

∑∞
i=1 P(Ai ) = ∞,
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lim sup

(∑n
i=1 P(Ai )

)2

∑n
i=1

∑n
j=1 P(Ai ∩ A j )

= lim sup

∑
1≤i< j≤n P(Ai )P(A j )∑
1≤i< j≤n P(Ai ∩ A j )

;

for, as
∑n

i=1 P(Ai ) → ∞, and

(
n∑

i=1

P(Ai )

)2

≤ 2
∑

1≤i< j≤n

P(Ai )P(A j ) +
n∑

i=1

P(Ai )

we have

lim

∑n
i=1 P(Ai )∑

1≤i< j≤n P(Ai )P(A j )
= 0

and

lim

∑n
i=1(P(Ai ))

2
∑

1≤i< j≤n P(Ai )P(A j )
= 0.

Theorem 3.1.1 is a special case of Theorem 3.2.1, since then

n∑

i=1

n∑

j=1

P(Ai ∩ A j ) ≤ sn + cs2
n − c3

n∑

i=1

(P(Ai ))
2

(see the proof, on p. 25, of Lemma 1.4.1) where c = c3 + 2(c1 + c2), and the ratio
in (3.1.1) ≥ s2

n/(sn + cs2
n − c3

∑n
i=1(P(Ai ))

2) → 1/c.

Theorem 3.2.2 (Petrov (2004)) Let
∑∞

i=1 P(Ai ) = ∞ and H be a real number.
Put

αH = lim inf

∑
1≤i< j≤n(P(Ai ∩ A j ) − H P(Ai )P(A j ))

(∑n
i=1 P(Ai )

)2 . (3.2.1)

Then P(lim sup An) ≥ 1/(H + 2αH ).

Proof (Due to Yan (2006)) Note that, if sn = ∑n
i=1 P(Ai ),

H + 2αH = lim inf

⎧
⎨

⎩

⎛

⎝
n∑

i=1

n∑

j=1

P(Ai ∩ A j )

⎞

⎠ /s2
n − 1/sn

+H

(
n∑

i=1

(P(Ai ))
2

)
/s2

n

}

= lim inf

∑n
1
∑n

1 P(Ai ∩ A j )
(∑n

i=1 P(Ai )
)2 .

Thus Theorem 3.2.1 completes the proof. �
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The following result, due to Ortega and Wschebor (1983), follows from Theo-
rem 3.2.2. This paper contains an application as well.

Theorem 3.2.3 Let
∑

P(An) = ∞ and α1 ≤ 0 where αH is given by (3.2.1). Then
P(An i.o.) = 1.

On the other hand, Theorem 3.2.2 follows from the next one.

Theorem 3.2.4 Chandra (2008) Let
∑

P(An) = ∞ and let

lim inf

∑
1≤i< j≤n(P(Ai ∩ A j ) − ai j )

(∑
1≤i≤n P(Ai )

)2 = L ,

where

ai j = (c1 P(Ai ) + c2 P(A j ))P(A j−i ) + c3 P(Ai )P(A j ), 1 ≤ i < j,

c1 ≥ 0, c2 ≥ 0 and c3 being constants (L may depend on c1, c2 and c3). Assume
that L is finite. Then c + 2L ≥ 1 and

P(An i.o.) ≥ 1/(c + 2L)

where c = c3 + 2(c1 + c2).

Proof As seen in proof of Lemma 1.4.1 on p. 25,

∑

1≤i< j≤n

ai j ≤ 1

2
cs2

n − c3

n∑

i=1

(P(Ai ))
2,

where sn = ∑n
i=1 P(Ai ), n ≥ 1. So,

c + 2L = lim inf

⎧
⎨

⎩

n∑

i=1

n∑

j=1

P(Ai ∩ A j )/s2
n

−1/sn + c3

(
n∑

i=1

(P(Ai ))
2

)
/s2

n

}

= lim inf

∑n
i=1

∑n
j=1 P(Ai ∩ A j )

(∑n
i=1 P(Ai )

)2 .

Thus Theorem 3.2.1 completes the proof. �

It is needless to remark here that Theorem 3.2.2 (and hence Theorem 3.2.4) implies
Theorem 3.2.1 (take H = 0). Also, Theorem 3.2.4 implies Theorem 3.1.1.



70 3 Variants of the Second BCL

3.3 Results of Kochen and Stone

In this section, we shall discuss the finding of Kochen and Stone (1964). We begin
with an inequality based on Paley-Zygmund’s inequality, p. 24.

Lemma 3.3.1 Let each of the Xn has non-zero finite mean. Then

P(lim sup(Xn/E(Xn)) > 0) ≥ lim sup((E(Xn))2/E(X2
n)).

Proof Put Yn = Xn/E(Xn), n ≥ 1. Then E(Yn) = 1. Let 0 < c < 1. Then

P(lim sup Yn ≥ c) ≥ lim sup P(Yn ≥ c)

≥ (1 − c)2 lim sup(E(Y 2
n ))−1 by Theorem 1.4.3 (b).

Now let c = 1/m and then let m → ∞. �

Now assume that each of the Xn has non-zero mean and positive finite second
moment, and that

lim sup((E(Xn))2/E(X2
n)) ≥ 1. (3.3.1)

Then lim inf (var(Xn)/(E(Xn))2) ≤ 0. We now show that ∃ a subsequence
{nk}k≥1 of positive integers such that ∀k ≥ 1

var(Xnk )/(E(Xnk ))
2 ≤ 1/k2. (3.3.2)

To this end, we shall use the mathematical induction on k. As

lim inf(var(Xn)/(E(Xn))2) < 1,

we must have var(Xn)/(E(Xn))2 ≤ 1 for infinitely many values of n. So ∃ an integer
n1 ≥ 1 such that (3.3.2) holds for k = 1. Now, suppose that ∃n1 < n2 < · · · < nm

such that (3.3.2) holds for k = 1, . . . , m. As

lim inf(var(Xn)/(E(Xn))2) < 1/(m + 1)2,

we can conclude as above that ∃ an integer nm+1 > nm such that (3.3.2) holds for
k = m + 1.

Then
∑

var (Xnk )/(E(Xnk ))
2 < ∞ so that

Xnk /E(Xnk ) → 1 a.s. by Theorem 1.5.1 (c), p. 26.

Hence
lim inf(Xn/E(Xn)) ≤ 1 ≤ lim sup(Xn/E(Xn)) a.s.
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If, furthermore, E(Xn) → ∞, then it follows that lim sup Xn = ∞ a.s. We have,
therefore, obtained the following extension of the Erdös-Rényi Theorem: Assume
the setup of Theorem 3.1.3; then

lim sup(Nn/sn) ≥ 1 a.s.

where we have used the notation of the proof of Theorem 3.2.1.
Assume next the setup of Theorem 3.2.1. Using the notation of the last paragraph,

note that as E(Nn) → ∞,

[
lim sup(Nn/E(Nn)) > 0

] ⊂ [Nn → ∞] = lim sup An;

so Lemma 3.3.1 implies Theorem 3.2.1.

Theorem 3.3.1 Let each of the Xn have non-zero mean and positive finite second
moment. Assume that lim sup((E(Xn))2/E(X2

n)) > 0. Then

(a) P(lim inf(Xn/E(Xn)) ≤ 1) > 0; and
(b) P(lim sup(Xn/E(Xn)) ≥ 1) > 0.

If, in addition, lim inf(Xn/E(Xn)) and lim sup(Xn/E(Xn)) are a.s. constants, then

lim inf(Xn/E(Xn)) ≤ 1 a.s., and lim sup(Xn/E(Xn)) ≥ 1 a.s.

Proof Let Yn = Xn/E(Xn), n ≥ 1. Then E(Yn) = 1 and M := lim inf E(Y 2
n ) <

∞. Let a > 0, and Zn = Yn I[Yn≤a], n ≥ 1. Then

1 = E(Yn) ≤ E(Zn) + E(Y 2
n I[Yn≥a])/a ≤ E(Zn) + E(Y 2

n )/a.

Thus
1 − M/a ≤ lim sup E(Zn) ≤ E(lim sup Zn) ≤ E(lim sup Yn)

by Fatou’s lemma applied to {(a − Zn)}n≥1; here we have used the fact that Zn ≤ Yn

which is immediate from Yn − Zn = Yn I[Yn>a] ≥ a > 0. Letting a → ∞, we get
E(lim sup Yn) ≥ 1 so that P(lim sup Yn ≥ 1) > 0. This establishes (b); the proof of
(a) is similar. �

For the next corollary, we need a definition.

Definition 3.3.1 A sequence {En}n≥1 of events is called a system of recurrent
events if there exist iid positive integer valued random variables {Yn}n≥1 such that
for each k ≥ 1

Ek = [Y1 + · · · + Y j = k for some j ≥ 1].

For such a system, one has P(Ei ∩ E j ) = P(Ei )P(E j−i ) for 1 ≤ i < j.

Corollary 1 Let {En}n≥1 be a system of recurrent events. Let {mn}n≥1 be a subse-
quence such that

∑
P(Emn ) = ∞. Then
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lim sup

(∑
1≤k≤n P(Emk )

)2

∑
1≤i< j≤n P(Emi )P(Em j −mi )

> 0 (3.3.3)

and so with probability 1,

lim inf
Mn∑

1≤k≤n P(Emk )
≤ 1 ≤ lim sup

Mn∑
1≤k≤n P(Emk )

, (3.3.4)

where Mn denotes the number of Em1 , . . . , Emn which occur.

Proof It is immediate from the last part of Theorem 3.3.1 (take Xn = Mn) and
the Hewitt-Savage 0-1 law (see, e.g., Billingsley (1995, p. 496)). See, also, Example
3.1.2. �

Example 3.3.1 Let Ek be the event that the simple random walk in one dimension
is at the origin at time 2k (k ≥ 1). The Ek form a system of recurrent events and
P(Ek) ∼ (πk)−1/2. If mn is the nth prime number, then

∑
n≥1 m−1/2

n = ∞. Thus,
with probability 1, the simple random walk is at the origin at time 2p for infinitely
many primes p. The same method shows that this result holds for the simple random
walk in R

2 where P(Ek) ∼ (πk)−1.

Example 3.3.2 Let Ek be the event that the simple random walk in R
3 hits the point

(k, 0, 0), k ≥ 1. Then P(Ek) ∼ ck−1 for some positive constant c (see, e.g., Itô and
McKean (1960)). The Ek are not recurrent events, but one has

P(Ei ∩ E j ) ≤ (P(Ei ) + P(E j ))P(E j−i ) for 1 ≤ i < j.

Let mn be the nth prime number. Then the Hewitt-Savage 0-1 law implies that
(3.3.4) is valid. In particular, with probability 1, the random walk visits (p, 0, 0) for
an infinite number of primes p. This result was first suggested by Itô and McKean
(1960) and was verified by Erdös (1961) and Mckean (1961).

3.4 Results of Chandra (2008)

In this section, we derive another version of the second Borel–Cantelli lemma under
a suitable dependence condition using Chebyshev’s inequality.

Lemma 3.4.1 Let {Xn}n≥1 be a sequence of non-negative random variables with
finite E(X2

n), and put Sn = ∑n
i=1 Xi , n ≥ 1. Assume that

∑
E(Xn) = ∞ and

lim inf var(Sn)/(E(Sn))2 = 0. (3.4.1)

Then P
(∑∞

n=1 Xn = ∞) = 1.
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Proof Note that

P

( ∞∑

n=1

Xn < ∞
)

= lim P

( ∞∑

n=1

Xn ≤ 1

2
E(Sn)

)
as E(Sn) ↑ ∞

≤ lim inf P(Sn ≤ 1

2
E(Sn))

≤ lim inf P(|Sn − E(Sn)| ≥ 1

2
E(Sn))

≤ lim inf

(
4var(Sn)

(E(Sn))2

)
= 0. �

Lemma 3.4.2 Let {Xn}n≥1 be a sequence of non-negative random variables with
finite E(X2

n), and put Sn = ∑n
i=1 Xi , n ≥ 1. Assume that

∑
E(Xn) = ∞.

(a) Assume, furthermore, that
n∑

i=1

E(X2
i ) ≤ kn E(Sn)∀n ≥ 1, (3.4.2)

n∑

j=2

n∑

i=1

cov(Xi , X j ) − 1

2

n∑

i=1

(E(Xi ))
2 ≤ cn E(Sn) ∀n ≥ 2 (3.4.3)

and
lim inf((kn + 2cn)/E(Sn)) = 0. (3.4.4)

Then P
(∑∞

n=1 Xn = ∞) = 1.

If 0 ≤ Xn ≤ kn ∀n ≥ 1 where {kn}n≥1 is nondecreasing, then (3.4.2) holds.

(b) If 0 ≤ Xn ≤ kn∀n ≥ 1 where {kn}n≥1 is nondecreasing, and {q(n)}n≥1, {an}n≥1
and {bn}n≥1 are non-negative sequences such that

cov(Xi , X j ) ≤ q( j − i)(ai + b j ) + (E(X j ))
2

2( j − 1)
if 1 ≤ i < j, (3.4.5)

lim inf

⎛

⎝
∑n−1

i=1 q(i)
(∑n−1

i=1 ai + ∑n
j=2 b j

)

(E(Sn))2

⎞

⎠ = 0, (3.4.6)

and
kn/E(Sn) → 0, (3.4.7)

then P
(∑∞

n=1 Xn = ∞) = 1.
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Proof (a) This is immediate from Lemma 3.4.1: For, if n ≥ 2

var(Sn) =
n∑

i=1

E(X2
i ) + 2

n∑

j=2

j−1∑

i=1

cov(Xi , X j ) −
n∑

i=1

(E(Xi ))
2

≤ (kn + 2cn)E(Sn).

For the last part, note that
∑n

i=1 E(X2
i ) ≤ ∑n

i=1 E(Xi ki ) ≤ kn E(Sn).

(b) This follows from Part (a) and the following observation: If n ≥ 2,

n∑

j=2

j−1∑

i=1

cov(Xi , X j ) − 1

2

n∑

i=2

(E(Xi ))
2

=
n∑

j=2

j−1∑

i=1

(
cov(Xi , X j ) − (E(X j ))

2

2( j − 1)

)

≤
n∑

j=2

j−1∑

i=1

q( j − i)(ai + b j )

=
n−1∑

k=1

q(k)

n∑

j=k+1

(a j−k + b j )

≤
n−1∑

k=1

q(k)

⎛

⎝
n−1∑

i=1

ai +
n∑

j=2

b j

⎞

⎠ . �

The following result is now obvious.

Theorem 3.4.2 (a) Let {An}n≥1 be a sequence of events such that
∑

P(An) = ∞,

and for each 1 ≤ i < j,

P(Ai ∩ A j ) − P(Ai )P(A j ) − (P(Ai ))
2

2( j − 1)

≤ q( j − i)[P(Ai ) + P(Ai+1) + P(A j ) + P(A j−1)], (3.4.8)

and

lim inf

( ∑n−1
i=1 q(i)∑n

i=1 P(Ai )

)
= 0

(
a fortiori,

∞∑

i=1

q(i) = ∞
)

.

Then P(lim sup An) = 1.

(b) If
∑

P(An) = ∞, (3.4.8) holds for 1 ≤ i < j and ∃ an integer m ≥ 1 such
that

P(Ai ∩ A j ) ≤ P(Ai )P(A j ) i f |i − j | > m

then P(lim sup An) = 1.
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(In Lemma 3.4.2 (b), take am = E(Xm) + E(Xm+1), bm = E(Xm) + E(Xm−1)

where Xn = IAn for n ≥ 1, so that

n−1∑

i=1

ai ≤ 2E(Sn),

n∑

j=2

b j ≤ 2E(Sn).)

3.5 A Weighted Version of BCL

We first note an extension of Paley-Zygmund’s inequality. So let b ≤ E(X), E(X)

be finite and P(X = 0) < 1. Let p > 1. Then

P(X > b) ≥ [(E(X) − b)p/E(|X |p)]1/(p−1). (3.5.1)

For a proof, note that

0 ≤ E(X) − b ≤ E(X I[X>b]) ≤ E(|X |I[X>b]) ≤ (E(|X |p))1/p(P(X > b))(p−1)/p

by Hölder’s inequality, and we are done.
Xie (2008) stated (with a wrong proof) a bilateral inequality on the Borel–Cantelli

lemma. Later Xie (2009) stated (with an incomplete proof) the following general
bilateral inequality for a bounded non-negative sequence of random variables. See,
also, Hu et al. (2009).

Theorem 3.5.1 Let {Xn}n≥1 be a uniformly bounded sequence of non-negative ran-
dom variables, and assume that

∑
E(Xn) = ∞. Then for p > 1 or 0 < p < 1,

P(lim sup{Xn �= 0}) ≥ lim sup
n→∞

Tn,p; (3.5.2)

for p < 0
P(lim sup{Xn �= 0}) ≤ lim inf

n→∞ Tn,p. (3.5.3)

Here
Tn,p = [E(S p

n )/(E(Sn))p]1/(1−p) (3.5.4)

where Sn = ∑n
i=1 Xi , n ≥ 1.

However, Tn,p ≥ 1 if p < 0 by (1.4.5), p. 23. Hence the upper bound in (3.5.3)
is trivial. (Note that Tn,p ≤ 1 for p > 0 and p �= 1.)

We now prove an extension of the above theorem when p > 1.

Theorem 3.5.2 (Liu (2011)) Let {Xn}n≥1 be a sequence of non-negative random
variables satisfying

∑
E(Xn) = ∞. Then for p > 1,

http://dx.doi.org/10.1007/978-81-322-0677-4_1
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P

( ∞∑

n=1

Xn = ∞
)

≥ lim supn→∞Tn,p

where Tn,p is given by (3.5.4).

Proof Let Sn = ∑n
i=1 Xi , n ≥ 1, and 0 < a < 1. Then

P

( ∞∑

n=1

Xn = ∞
)

= lim
n→∞ P

( ∞∑

n=1

Xn > aE(Sn)

)
as E(Sn) ↑ ∞

≥ lim sup P(Sn > aE(Sn))

≥ (1 − a)p/(p−1)lim supn→∞Tn,p

by (3.5.1) with X = Sn and b = aE(Sn). As a ∈ (0, 1) is arbitrary, the proof is
complete. �

Let Xn be as in Theorem 3.5.2. As

[ ∞∑

n=1

Xn = ∞
]

⊂ lim sup[Xn �= 0],

we have, taking p = 2 in Theorem 3.5.2,

P(lim sup[Xn �= 0])

≥ lim sup

(∑n
i, j=1 wiw j E(Xi )E(X j )∑n

i, j=1 wiw j E(Xi X j )

)

where each wn is nonnegative and nonrandom. The next result generalizes the
above inequality, and is based on ideas of Feng, Li, and Shen (2009).

Theorem 3.5.3 (Weighted version of the extended Rényi-Lamperti Lemma) Let
{Xn}n≥1 be a sequence of integrable random variables such that

lim
n→∞

∑n

i=1
Xi = ∞ or −∞. (3.5.5)

Then

P(lim sup[Xn �= 0]) ≥ lim sup

( (∑n
i=1 E(Xi )

)2

∑n
i, j=1 E(Xi X j )

)
. (3.5.6)

Proof We shall first prove the following facts.
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(i) If the matrix, [
A C
CT B

]

is positive semi-definite where A and B are square matrices, then

(�(C))2 ≤ �(A)�(B),

where, for any matrix E, �(E) is the sum of all its entries.
(ii) Under (3.5.5),

lim
n→∞

(∑n
i, j=1 E(Xi X j )∑n
i, j=2 E(Xi X j )

)
= 1; and (3.5.7)

lim sup

(∑n
i=1 E(Xi )

)2

∑n
i, j=1 E(Xi X j )

= lim sup

(∑n
i=m E(Xi )

)2

∑n
i, j=m E(Xi X j )

∀ m ≥ 2.

To prove (i), note that for reals x, y,

0 ≤ (x, . . . , x, y, . . . , y)

(
A C
CT B

)
(x, . . . , x, y, . . . , y)T

= �(A)x2 + 2�(C)xy + �(B)y2.

To prove (ii), note that the matrix

Fn := (
E(Xi X j )

)
n×n =

[
A1×1 Cn

CT
n B(n−1)×(n−1)

]

is positive semi-definite. So by (i), (�(Cn))
2 ≤ A�(Bn) ∀ n ≥ 1.

By Schwarz’s inequality, �(Bn) ≥ (
∑n

i=2 E(Xi ))
2 → ∞, and so A/�(Bn) → 0

and �(Cn)/�(Bn) → 0. So

�(Fn)

�(Bn)
= A + �(Bn) + 2�(Cn)

�(Bn)
→ 1,

establishing (3.5.7). The last part now follows.
We now prove the theorem. Note that

P(lim sup[Xn �= 0])
= lim

m→∞ lim
n→∞ P

(
n∪

k=m
[Xk �= 0]

)

≥ lim
m→∞ lim sup

n→∞

( (∑n
k=m E(Xk)

)2

∑n
i, j=m E(Xi X j )

)
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= lim sup
n→∞

( (∑n
k=1 E(Xk)

)2

∑n
i, j=1 E(Xi X j )

)
. �

Remark 3.5.1 Replacing each Xi by wi Xi for i ≥ 1 where {wn}n≥1 is a sequence of
real-valued random weights, one gets the weighted version of the extended Rényi-
Lamperti lemma. This inequality is sharp, as shown by the following example.

Let A, B be two events such that P(A ∪ B) > 0. Let

A3n−2 = A, A3n−1 = A3n = B for n ≥ 1.

Take Xn = IAn ∀ n ≥ 1 and consider the weight sequence {wn}n≥1 as

1, 1,−IA, 1, 1,−IA, 1, 1,−IA, . . .

Then
∑∞

n=1 E(wn Xn) = limn→∞ n P(A ∪ B) = ∞, and lim sup An = A ∪ B.

By the above-mentioned inequality,

P(lim sup An) ≥ lim
n→∞

n2(P(A) + P(B) − P(A ∩ B))2

n2(P(A) + P(B) − P(A ∩ B))

= P(A ∪ B) = P(lim sup An).

3.6 Weakly ∗-Mixing Sequence

This section is based on Blum et al. (1963).

Definition 3.6.1 A sequence {Xn}n≥1 of random variables is called weakly ∗-
mixing if ∃ δ > 0 and integers N ≥ 1, k ≥ 1 such that

P(A ∩ B) ≥ δP(A)P(B), ∀A ∈ σ(X N , . . . , Xn), B ∈ σ(Xn+k), ∀n ≥ N .

Theorem 3.6.1 Let {An}n≥1 be a sequence of events such that
∑

P(An) = ∞ and
{IAn }n≥1 is weakly ∗-mixing. Then P(lim sup An) = 1.

Proof Let δ, N , k be as in Definition 3.6.1. We can assume that δ < 1. Get j ∈
{1, . . . , k} such that

∑
P(Ank+ j ) = ∞; this is possible since

∑
P(An) = ∞. Put

Dn = Ank+ j , n ≥ 1. It suffices to show that P(lim sup Dn) = 1. If not, ∃ an integer
m such that mk ≥ N and P(∪∞

i=m Di ) < 1. Fix an integer t ≥ 2; then
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P
(∪∞

i=m Di
) ≥ P

(∪m+t
i=m Di

)

= P(Dm) + P(Dc
m ∩ Dm+1) + P(Dc

m ∩ Dc
m+1 ∩ Dm+2)

+ · · · + P(Dc
m ∩ Dc

m+1 ∩ · · · ∩ Dc
m+t−1 ∩ Dm+t )

≥ δ P(Dm) + δP(Dc
m)P(Dm+1) + δP(Dc

m ∩ Dc
m+1)P(Dm+2)

+ · · · + δP(Dc
m ∩ · · · ∩ Dc

m+t−1)P(Dm+t )

≥ δP(Dc
m ∩ · · · ∩ Dc

m+t−1)

m+t∑

i=m

P(Di )

≥ δ
(
1 − P(∪∞

i=m Di )
) m+t∑

i=m

P(Di ).

Letting t → ∞, we get

P

( ∞∪
i=m

Di

)
≥ δ

(
1 − P(

∞∪
i=m

Di )

) ∞∑

i=m

P(Di ) = ∞

as P
(∪∞

i=m Di
)

< 1 and
∑∞

i=m P(Di ) = ∞. This is a contradiction. �

Remark 3.6.2 Examples 1.6.4, 1.6.15, and 1.6.16 hold if the assumption ‘{Xn}n≥1
are pairwise independent’ is replaced by ‘{Xn}n≥1 are weakly ∗-mixing’.

Some results (with applications) related to Theorem 3.6.1 are obtained by Cohn
(1972) and Yoshihara (1979).

3.7 Results of Fischler

We first state a definition. Let (	,A, P) be a probability space.

Definition 3.7.1 A sequence of events {Bn}n≥1 is said to be mixing of density α, if
P(Bn ∩ A) → αP(A) ∀A ∈ A.

The above definition is due to Rényi (1958). Note that this implies P(Bn) → α

(and so 0 ≤ α ≤ 1).

Lemma 3.7.1 If {Bn}n≥1 is mixing of density α, and P(lim sup Bn) < 1, then ∃ an
event D such that P(D) > 0 and P(Bn ∩ D) = 0 for all sufficiently large n.

Proof Let E = lim inf Bc
n . Then P(E) > 0. For each finite subset S of N, the set

of all natural numbers, let

DS =
(

∩
i∈S

Bi

)
∩

(
∩

i /∈S
Bc

i

)
.
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Then it follows that S �= S′ ⇒ DS ∩ DS′ = φ, and that ∪ DS = E . As the set of all
such S’s is countable, we must have P(DS0) > 0 for some such S0. Put D = DS0 .

This D works. �

Theorem 3.7.1 Let {Bn}n≥1 be mixing with density α.

(a) If α > 0, then P(lim sup Bn) = 1.

(b) If α < 1, then P(lim inf Bn) = 0.

Proof (a) Suppose that P(lim sup Bn) < 1. This will lead to a contradiction. By
the above lemma, ∃ an event D such that P(D) > 0 and P(Bn ∩ D) → 0. But
P(Bn ∩ D) → αP(D) so that αP(D) = 0. This is a contradiction.

(b) Note that {Bc
n} is mixing with density (1 − α). �

Definition 3.7.2 A sequence of events {Bn}n≥1 is called stable with local density α

if P(Bn ∩ A) → ∫
A αd P ∀A ∈ A.

The above definition is due to Rényi (1963). The following is an analog of Theorem
3.7.1 for stable sequences.

Theorem 3.7.2 If {Bn}n≥1 is stable with local density α, then

P(lim sup Bn) ≥ P(α > 0), P(lim inf Bn) ≤ 1 − P(α < 1).

Proof To establish the first inequality, note that we can assume P(α > 0) > 0.

Suppose that P(lim sup Bn) < P(α > 0) ≤ 1. By the above lemma, ∃ an event
D such that P(D) > 0 and P(Bn ∩ D) → 0. So

∫
D αd P = 0. As P(D) > 0 and

P(α > 0) > 0, we must have
∫

D αd P > 0. This is a contradiction. The second
inequality now follows, since {Bc

n}n≥1 is stable with local density (1 − α). �

Definition 3.7.3 A sequence of events {Bn}n≥1 is called mixing if

P(Bn ∩ A) − P(Bn)P(A) → 0 ∀A ∈ A.

Clearly, mixing with density α implies mixing. Also, if P(Bn) → 0 then {Bn}n≥1 is
mixing.

Theorem 3.7.3 Let {Bn}n≥1 be mixing and
∑

P(Bn) = ∞.

(a) If P(Bn) �→ 0, then P(lim sup Bn) = 1.

(b) If P(Bn) → 0, then P(lim sup Bn) can be arbitrary.

Proof (a) Note that lim inf P(Bn) < lim sup P(Bn) so that at least one of these
two numbers is not 0. Consequently, ∃ a subsequence {Bnk }k≥1 such that
P(Bnk ) → α for some α > 0. But then {Bnk }k≥1 will be mixing with den-
sity α. Theorem 3.7.1 (a) now completes the proof.

(b) Consider the unit interval [0,1] with the Lebesgue measure. Let 0 ≤ t ≤ 1.

Split [0,t] into two equal parts B1, B2; then split [0, t] into four equal parts
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B3, B4, B5, B6, and so on. Then
∑

P(Bn) = ∞, and {Bn}n≥1 is mixing (see,
also, the remark below). But lim sup Bn = [0, t]. �

Remark 3.7.1 If the defining condition of mixing holds for each A = Bk, k =
1, 2, . . . , then {Bn}n≥1 is mixing; see Rényi (1958). It follows that pairwise inde-
pendence implies mixing.

The above results are due to Fischler (1967b). For an alternative proof of Theo-
rem 3.7.1, see Fischler (1967a).

3.8 Results of Martikainen and Petrov

Following Martikainen and Petrov (1990), we first discuss properties of a character-
istic, d(X), of a random variable X . Let

d(X) = (E(X))2/E(X2),

provided P(X = 0) < 1 and E(|X |) < ∞. Then 0 ≤ d(X) ≤ 1 and d(X) depends
on X only through the distribution of X . We have, furthermore,

(a) d(X + Y ) ≥ min(d(X), d(Y )) if X ≥ 0, Y ≥ 0;
(b) d(X1 + · · · + Xn) ≥ (∑n

i=1 E(Xi )
)
/
(
1 + ∑n

i=1 E(Xi )
)
, provided

cov (Xi , X j ) ≤ 0 ∀i �= j and E(X2
i ) ≤ E(Xi ) ∀i.

For a proof, note that (a) follows from

d(X + Y ) ≥ (E(X) + E(Y ))2/(E(X2) + E(Y 2) + 2(E(X2)E(Y 2))1/2)

= (E(X) + E(Y ))2/(
√

E(X2) +
√

E(Y 2))2

≥ (min(E(X)/
√

E(X2), E(Y )/
√

E(Y 2)))2

since if E(X)/
√

E(X2) ≤ E(Y )/
√

E(Y 2), then

(
√

E(Y 2) +
√

E(X2))/
√

E(X2) ≤ (E(Y ) + E(X))/E(X),

while (b) follows from

E(X1 + · · · + Xn)2 =
∑

i �= j

E(Xi X j ) +
n∑

i=1

E(X2
i )

≤
∑

i �= j

E(Xi )E(X j ) +
n∑

i=1

E(Xi )
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≤
(

n∑

i=1

E(Xi )

)2

+
n∑

i=1

E(Xi ).

Anděl and Dupač (1989) have obtained the following result: For a given sequence
of events {An}n≥1, assume that there exists a sequence of independent events {Bn}n≥1
such that An ⊂ Bn ∀n ≥ 1, P(An)/P(Bn) → 1, and

∑
P(Bn) = ∞; then

P(An i.o.) = 1. Corollary 1 below extends it.

Theorem 3.8.1 (Martikainen and Petrov (1990)) Let {An}n≥1 be a sequence of
events. Assume that exists a sequence of events {Bn}n≥1 such that P(Bn∩Ac

n)/P(Bn)

→ 0 and
∑

P(Bn) = ∞. Then P(An i.o.) ≥ dM for each M > 0 where

dM = lim
k→∞ sup d

⎛

⎝
∑

j∈S

IB j

⎞

⎠

the supremum being taken over all finite subsets S of {k, k + 1, k + 2, . . .} such that∑
j∈S P(B j ) ≤ M.

Proof Let k ≥ 1 be an integer. Then ∃ a finite subset Sk of {k, k + 1, . . .} such that
∑

j∈Sk
P(B j ) ≤ M and d

(∑
j∈Sk

IB j

)
≥ sup d

(∑
j∈S IB j

)
− k−1. Now

P

(
∪

j∈Sk

B j

)
≥ d

⎛

⎝
∑

j∈Sk

IB j

⎞

⎠ → dM as k → ∞.

But
∑

j∈Sk
P(B j ∩ Ac

j ) → 0 as k → ∞, and

P

(
∪

j∈Sk

A j

)
≥ P

(
∪

j∈Sk

B j

)
−

∑

j∈Sk

P(B j ∩ Ac
j ),

asB j ⊂ A j ∪ (B j ∩ Ac
j ) ∀ j.

Therefore,

P(An i.o.) ≥ lim sup P
(∪ j∈Sk A j

) ≥ dM . �

Corollary 1 Let {An}n≥1 be a sequence of events. Assume that ∃ a sequence of
events {Bn}n≥1 such that P(Bn ∩ Ac

n) = o(P(Bn)),
∑

P(Bn) = ∞ and {Bn}n≥1 is
pairwise NQD. Then P(An i.o.) = 1.

Proof By the property (b) above, we have dM ≥ (1 + M−1)−1 ∀M > 0. So
P(An i.o.) ≥ (1 + M−1)−1 ∀ M > 0. Letting M → ∞, we get the desired
result. �
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Remark 3.8.1 From the above theorem, we get the result that if
∑

P(An) = ∞,

then P(An i.o.) ≥ limk→∞
(

sup d
(∑

j∈S IA j

))
∀ M > 0 where the supremum

is taken over all finite subsets S of {k, k + 1, . . .} such that
∑

j∈S P(A j ) ≤ M.

Martikainen and Petrov (1990) remark that this extends Theorem 3.2.1. They also
remark that ∃ a sequence of events {An}n≥1 such that

∑
P(An) = ∞ and

lim sup

(∑n
i=1 P(Ai )

)2

∑n
i=1

∑n
j=1 P(Ai ∩ A j )

= 0,

but

sup
M>0

lim
k→∞

⎛

⎝sup d

⎛

⎝
∑

j∈S

IA j

⎞

⎠

⎞

⎠ = 1,

the innermost supremum being taken as above. However, they did not supply any
justification.

We conclude this section with four references. In Móri and Székeley (1983), one
gets several lower bounds for P(lim sup An). A similar remark holds for Amghibech
(2006) as well. These papers are related to Theorem 3.2.1. A version of the Borel–
Cantelli lemmas for capacities is proved in Song (2010); this paper is related to Petrov
(2004). A quantitative form of the BCL has been obtained by Phillipp (1967).

References to Stirling’s numbers are made in Amghibech (2006); see, in this
connection, Van Lint and Wilson (2001).
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Chapter 4
A Strengthend Form of BCL

4.1 Pairwise Independence

Let {An}n≥1 be a sequence of events. Put

Nn =
n∑

k=1

IAk , sn = E(Nn) =
n∑

k=1

P(Ak), n ≥ 1. (4.1.1)

Then if
∑∞

k=1 P(Ak) = ∞,

[
Nn

E(Nn)
→ 1

]
⊂ [Nn → ∞] = lim sup An . (4.1.2)

To verify this, let Nn(ω)/E(Nn) → 1. Then ∃ an integer m ≥ 1 such that
Nn(ω)/E(Nn) ≥ 1/2 and E(Nn) > 0 ∀n ≥ m, and hence ∀ n ≥ m

Nn(ω) ≥ 1

2
E(Nn) → ∞

since E(Nn) =
n∑

k=1
P(Ak) → ∞ by the given condition.

Henceforth, we shall assume that
∞∑

k=1
P(Ak) = ∞, and consider additional suf-

ficient conditions on {An}n≥1 so as to guarantee

Nn/E(Nn) → 1 a.s. (4.1.3)

By (4.1.2), this will strengthen the conclusion of the second Borel-Cantelli lemma.
The first result extends a part of Theorem 3.1.2, page 63; see, also, Corollary 1(a) of
Theorem 4.1.2 below.

T. K. Chandra, The Borel–Cantelli Lemma, SpringerBriefs in Statistics, 85
DOI: 10.1007/978-81-322-0677-4_4, © The Author(s) 2012
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Theorem 4.1.1 Let {An}n≥1 be a sequence of events such that

(a)
∑

P(An) = ∞; and
(b) {An}n≥1 is pairwise NQD, i.e.,

P(Ai ∩ A j ) ≤ P(Ai )P(A j ) ∀ i 
= j

(a fortiori, {An}n≥1 is pairwise independent). Then (4.1.3) holds where Nn is
given by (4.1.1). �

The proof of the above theorem is elementary and is based on the method of
subsequences which uses only Chebyshev’s inequality and Theorem 1.5.1 (c), page
26. See, e.g., Durrett (2005, p. 50) and Chandra (2012, p. 118). For some applications
of this method, see pp. 51–54 of Durrett (2005).

We shall show below that minor modifications of these arguments lead to a con-
siderably general result.

Theorem 4.1.2 Let {Xn}n≥1 be a sequence of nonnegative random variables such

that
∞∑

n=1
E(Xn) = ∞. Let Sn = X1 + · · · + Xn, n ≥ 1. Let αn ↑ ∞ and r > 0 be a

real.

(a) If there exist constants c > 0 and d ∈ [r − 1, r) and an integer p ≥ 1 such that

E |Sn − αn|r ≤ cαd
n ∀ n ≥ p (4.1.4)

then Sn/αn → 1 a.s.
(b) Let αn = E(Sn), n ≥ 1. If, whenever 1 ≤ i < j,

cov(Xi , X j ) ≤ q( j − i)(ai + b j ) + (E(X j ))
2

2( j − 1)
(4.1.5)

where {an}n≥1, {bn}n≥1, and {q(n)}n≥1 are non-negative sequences, and for
some α ∈ [1, 2), one has

n∑

i=1

E(X2
i ) = 0((E(Sn))α) as n → ∞, (4.1.6)

(
n∑

i=1

q(i)

) ⎛

⎝
n−1∑

i=1

ai +
n∑

j=2

b j

⎞

⎠ = 0((E(Sn))α) as n → ∞, (4.1.7)

then Sn/E(Sn) → 1 a.s.

Proof (a) Let m be an integer ≥ p such that αn > 0 ∀n ≥ m; such an m exists
since αn → ∞. Let β > 1/(r − d) ≥ 1. Define inductively
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n1 = inf{n ≥ 1 : αn > 1}, nk = inf{n > nk−1 : αn > kβ} for k ≥ 2.

(4.1.8)
Then each nk is well defined, and {nk}k≥1 is a subsequence of natural numbers.
Put Yn = Sn/αn, n ≥ m. Now

∑

k

E |Ynk − 1|r ≤ c
∑

αd−r
nk

≤ c
∑

k

kβ(d−r) as αnk ≥ kβ and d < r

< ∞ as β(r − d) > 1.

By Theorem 1.5.1(c), page 26,

Ynk → 1 a.s. (4.1.9)

We now show that

[
Ynk → 1 as k → ∞] ⊂ [ Yn → 1 as n → ∞], (4.1.10)

so that (4.1.9) and the definition of Yn together imply that Sn/αn → 1 a.s.
To verify (4.1.10), let Ynk (ω) → 1 as k → ∞. Let ε > 0. We show that ∃ an
integer t ≥ m such that for each n ≥ t

1 − ε ≤ Yn ≤ 1 + ε; (4.1.11)

i.e., Yn(ω) → 1 as n → ∞.

Let k0 ≥ 1 be such that |Ynk (ω) − 1| ≤ ε/2 and nk0 ≥ m ∀ k ≥ k0. Let k1 ≥ k0
be an integer such that

(1 − ε/2)kβ/(k + 1)β ≥ 1 − ε, and (1 + ε/2)(k + 1)β/kβ ≤ 1 + ε ∀k ≥ k1.

Put t = nk1 . Let n ≥ t. If
n = nk for some k ≥ 1, then (4.1.11) holds. Let n /∈ {nk : k ≥ 1}. Then ∃ k ≥ k1
such that nk < n ≤ nk+1 − 1. By the given condition, Snk ≤ Sn ≤ Snk+1−1,

and kβ ≤ αnk ≤ αn ≤ αnk+1−1 ≤ (k + 1)β . So (1 − ε/2)kβ/(k + 1)β ≤
(αnk /αnk+1−1)Ynk ≤ Yn ≤ Ynk+1−1(αnk+1−1/αnk ) ≤ (1 − ε/2)(k + 1)β/kβ so
that (4.1.11) again holds.

(b) In view of Part (a), it suffices to show that (4.1.5)–(4.1.7) together imply (4.1.4).
Let m ≥ 2 be an integer such that E(Sn) ≥ 1 ∀n ≥ m. Then if n ≥ m,
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var(Sn) =
n∑

i=1

E(X2
i ) + 2

n∑

j=2

j−1∑

i=1

(
cov(Xi , X j ) − (E(X j ))

2

2( j − 1)

)

≤
n∑

i=1

E(X2
i ) + 2

n∑

j=2

j−1∑

i=1

q( j − i)(ai + b j )

=
n∑

i=1

E(X2
i ) + 2

n∑

j=2

j−1∑

k=1

q(k)(a j−k + b j )

=
n∑

i=1

E(X2
i ) + 2

n−1∑

k=1

q(k)

n∑

j=k+1

(a j−k + b j )

≤
n∑

i=1

E(X2
i ) + 2

n−1∑

k=1

q(k)

⎛

⎝
n−1∑

j=1

a j +
n∑

j=2

b j

⎞

⎠

= 0((E(Sn))α). �

Corollary 1 Let {An}n≥1 be a sequence of events such that
∑

P(An) = ∞.

(a) If there exists an integer m ≥ 0 such that P(Ai ∩ A j ) ≤ P(Ai )P(A j )

∀ |i − j | > m, then (4.1.3) holds where Nn is given by (4.1.1).
(b) More generally, assume that ∃ an α ∈ [1, 2) such that

n∑

j=2

j−1∑

i=1

(
P(Ai ∩ A j ) − P(Ai )P(A j )

) − 1

2

n∑

i=1

(P(Ai ))
2 = 0(sα

n ), (4.1.12)

where sn = E(Nn) =
n∑

k=1

P(Ak), n ≥ 1. Then (4.1.3) holds.

Proof (a) We use Theorem 4.1.2 (a). First, assume m = 0. So put Xn = IAn , n ≥ 1;
then Nn = X1 + · · ·+ Xn, n ≥ 1, and

∑
E(Xn) = ∞, {E(Xn)}n≥1 is bounded

by 1 and cov (Xi , X j ) ≤ 0 for i 
= j. Then if n ≥ 2,

varNn =
n∑

i=1

var(Xi ) +
∑

i 
= j

cov(Xi , X j )

≤
n∑

i=1

var(Xi ) ≤
n∑

i=1

E(X2
i ) =

n∑

i=1

E(Xi ) = sn

so that (4.1.4) holds with p = 2, c = 1 and α = 1.

Now assume that m ≥ 1. Then, with the above notation, for n ≥ m + 1
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var(Nn) ≤ sn +
n∑

i, j=1,|i− j |≤m

cov(Xi , X j )

≤ sn +
n∑

i, j=1,|i− j |≤m

P(Ai ∩ A j )

≤ sn + 2
n∑

i=1

m∑

k=1

P(Ai ∩ Ai+k)

≤ sn + 2
n∑

i=1

m∑

k=1

P(Ai ) = (2 + 2m)sn .

Thus, Theorem 4.1.2 (a) is, again, applicable.
(b) We again use Theorem 4.1.2 (a) with Xn = IAn , n ≥ 1. It suffices to show that

(4.1.4) holds. Let m ≥ 2 be an integer such that sn := E(Nn) = ∑n
i=1 P(Ai ) ≥

1∀n ≥ m. Then if n ≥ m,

var(Nn)

=
n∑

i=1

P(Ai ) −
n∑

i=1

(P(Ai ))
2 + 2

n∑

j=2

j−1∑

i=1

(P(Ai ∩ A j ) − P(Ai )P(A j ))

= sn + 0(sα
n ) = 0(sα

n ).

Thus (4.1.4) holds. �
We next apply Theorem 4.1.2 (a) to improve the above Corollary 1 (a) on page
88 considerably.

Theorem 4.1.3 Let {An}n≥1 be a sequence of events such that
∑

P(An) = ∞.

Assume that ∃ an integer m ≥ 1, a non-negative sequence {q(n)}n≥1 and a constant
α ∈ [1, 2) such that

P(Ai ∩ A j ) − P(Ai )P(A j ) − (P(A j ))
2/(2( j − 1))

≤ q(|i − j |)[P(Ai ) + P(Ai+1) + P(A j ) + P(A j−1)] if |i − j | > m
(4.1.13)

and
n−1∑
i=1

q(i) = 0(sα−1
n ) where sn =

n∑
i=1

P(Ai ), n ≥ 1. Then (4.1.3) holds where Nn

is as in (4.1.1).

Proof We apply Theorem 4.1.2 with Xn = IAn , n ≥ 1; see also the proof of
Corollary 1 (a). Put ai = P(Ai ) + P(Ai+1), b j = P(A j ) + P(A j−1), i ≥ 1, j ≥
2. Then (4.1.12) reduces to (4.1.5); (4.1.6) holds, since

n∑
i=1

E(X2
i ) = E(Nn) =

0((E(Nn))α). Finally, (4.1.7) holds, since
n−1∑
i=1

ai ≤ 2sn,
n∑

j=2
b j ≤ 2sn . �

For extensions of Theorem 4.1.2 (a), see Petrov 2008; 2009.
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Example 4.1.1 Let {Xn}n≥1 be a sequence of nonnegative random variables such
that E(Xi − λi )(X j − λ j ) ≤ 0 ∀ i 
= j and E(Xi − λi )

2 ≤ cλi ∀i ≥ 1 where

c > 0 and λi ≥ 0 ∀ i ≥ 1. Assume that
∞∑

i=1
λi = ∞. Then Sn/an → 1 a.s. where

Sn = X1 + · · · + Xn, an = λ1 + · · · + λn for n ≥ 1.

Solution: We shall apply Theorem 4.1.2 (a) with r = 2 and d = 1. To this end, note
that for n ≥ 1

E(Sn − an)2 =
∞∑

i=1

E(Xi − λi )
2 +

∑

i 
= j

E(Xi − λi )(X j − λ j )

≤ c an .

Example 4.1.2 Let {Xn}n≥1 be a sequence of pairwise independent random variables
such that Xn follows the Poisson distribution with mean λn for each n ≥ 1. If∑
n

λn = ∞, then Sn/an → 1 a.s. where Sn and an are as in Example 4.1.1.

Solution: This is immediate from Example 4.1.1.

Remark 4.1.1 Assume, in Example 4.1.2, that the Xn is independent. Then the result
is immediate from the SLLN of Kolmogorov. An alternative proof runs as follows:
Let n j = [λ j ], the integer part of λ j , and then replace {Xn} by a sequence {Yn}n≥1 of
independent random variables with Y1, . . . , Yn1 following the Poisson (1) distribu-
tion, Yn1+1 following the Poisson (〈λ1〉) distribution, Yn1+2, . . . , Yn1+n2+1 following
the Poisson (1) distribution, Yn1+n2+2 following the Poisson (〈λ2〉) distribution, and
so on; here 〈x〉 stands for the fractional part of x . Then the means of the Yn are
bounded by 1 and the proof of Theorem 4.1.1 goes through.

4.2 A Strong Law and the Second BCL

We shall use a modification, due to Chandra and Goswami (1992), of the SLLN of
Csörgö et al. (1983).

Theorem 4.2.1 Let {Xn}n≥1 be a sequence of non-negative random variables and
{ f (n)}n≥1 is a nondecreasing sequence of positive reals such that

(a) f (n) → ∞;
(b) ∃ a double sequence {ρi j } of nonnegative reals satisfying

var(Sn) ≤
n∑

i=1

n∑

j=1

ρi j , n ≥ 1; and

(c) supn≥1
(∑n

k=1 E(Xk)/ f (n)
)

< ∞.
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Assume that ∃ q(m) ≥ 0, c j ≥ 0 ∀m ≥ 1, ∀ j ≥ 1 such that
(d) ρ j−m, j ≤ q(m)c j for m = 1, . . . , j − 1 and j ≥ 2;
(e)

∞∑
j=1

ρ j j/( f ( j))2 < ∞; and

(f)
∞∑

m=1
q(m)

∑∞
j=m+1 c j/( f ( j))2 < ∞. Then (Sn − E(Sn))/ f (n) → 0 a.s. where

Sn = X1 + · · · + Xn, n ≥ 1.

Proof See pages 102–103 of Chandra (2012). �
The following result is an extension of Remark 1 of Etemadi (1983).

Theorem 4.2.2 (Chandra and Ghosal (1993)) Let {An}n≥1 be a sequence of events
satisfying

P(Ai ∩ A j ) − P(Ai )P(A j ) ≤ q( j − i)P(A j ) ∀i < j (4.2.1)

where q(n) ≥ 0 ∀n ≥ 1 and
∞∑

n=1
q(n)/sn < ∞, sn being as in (4.1.1). If

∑
P(An) = ∞, then (4.1.3) holds.

Proof There exists an integer m ≥ 1 such that sn > 0 ∀n ≥ m. We now apply
Theorem 4.2.1 with f (n) = sn ↑ ∞. Put Xn = IAn , n ≥ 1. Let

ρi j = 2(cov(Xi , X j ))
+ if i ≤ j; = 0 otherwise.

Then Sn = Nn , and Conditions (b) and (c) of Theorem 4.2.1 hold. Also,

ρi j ≤ 2q( j − i)P(A j ) ∀ i < j

so that Condition (d) holds with c j = 2P(A j ), j ≥ 2. Now

∞∑

j=m+1

var(X j )/s2
j ≤

∞∑

j=m+1

P(A j )/s2
j

≤
∞∑

j=m+1

s j∫

s j−1

x−2dx =
∞∫

sm

x−2dx = 1/sm < ∞.

Also, by the same arguments,

∞∑

n=m

q(n)

∞∑

j=n+1

c j/s2
j ≤ 2

∞∑

n=m

q(n)/sn < ∞.

Thus Conditions (e) and (f) hold. �
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The proof of Theorem 4.2.2 shows that the following result is true: If {Xn}n≥1 are
nonnegative and uniformly bounded sequence of random variables satisfying

cov(Xi , X j ) ≤ q( j − i)E X j ∀ i > j,

and
∑

E Xn = ∞,
∑

q(m)/E(Sm) < ∞ where q(n) ≥ 0 ∀n ≥ 1, then
Sn/E(Sn) → 1 a.s. where Sn = X1 + · · · + Xn, n ≥ 1.

We now state the following useful consequences of the above theorem.

Corollary 1 Let
∑

P(An) = ∞, and (4.2.1) hold where {q(n)}n≥1 is a nonnegative
non-increasing sequence of reals.

(a) If
∞∑

n=1
q(n) < ∞, then Nn/sn → 1 a.s.;

(b) If lim sup(nα P(An)) > 0 and
∞∑

n=1
q(n) nα−1 < ∞ for some α ∈ [0, 1), then

P(lim sup An) = 1;
(c) If lim sup(n P(An)) > 0 and

∞∑
n=1

q(n) log n < ∞ then P(lim sup An) = 1.

Proof Part (a) follows, trivially, as
∞∑

n=1
q(n)/sn ≤

∞∑
n=1

q(n)/s1 < ∞.

For (b), get a subsequence {nk}k≥1 of natural numbers and ε > 0 such that

P(Am) > εm−α, ∀ m = n1, n2, . . .

Set Bk = Ank , k ≥ 1. It suffices to show that P(lim sup Bk) = 1. Note that for all
i < j,

P(Bi ∩ B j ) − P(Bi )P(B j ) ≤ q(n j − ni )P(B j ) ≤ q( j − i)P(B j );

here we have used the fact that {q(n)}n≥1 is nonincreasing. Also,

k∑

j=1

P(B j ) ≥ δ k1−α for some δ > 0.

Thus,
∞∑

m=1

⎛

⎝q(m)/

m∑

j=1

P(B j )

⎞

⎠ ≤ δ−1
∞∑

m=1

q(m)mα−1 < ∞.

Hence, applying Theorem 4.2.2 to {Bk}k≥1, we get the desired result.
The proof of Part (c) is similar; see, e.g., page 70 of Chandra and Ghosal (1998).

�
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Example 4.2.2 Let {Xn}n≥1 be a sequence of random variables such that ∃ a
sequence {q(m)}m≥1 of non-negative reals satisfying

∑∞
m=1 q(m) < ∞ and

P(Xi > s, X j > t) − P(Xi > s)P(X j > t) ≤ q( j − i)P(X j > t),

P(Xi < s, X j < t) − P(Xi < s)P(X j < t) ≤ q( j − i)P(X j < t)

for all i < j, s, t ∈ R. Then for any real a, P(Xn → a) = 0 or 1.
(If the Xn are pairwise m-dependent or pairwise NQD, then the above conditions

are, trivially, satisfied.)

Solution: It suffices to show that

P(lim sup Xn ≤ a) = 0 or 1, P(lim inf Xn ≥ a) = 0 or 1.

To prove the first part, observe that

[
lim sup Xn > a

] = ∞∩
m=1

[Xn > a + 1/m i.o. (n)] .

If
∞∑

n=1
P(Xn > a + 1/m) < ∞ ∀m ≥ 1, then P(lim sup Xn ≤ a) = 1.

If ∃ an integer m ≥ 1 such that
∞∑

n=1
P(Xn > a + 1/m) = ∞, then

P(lim sup Xn ≤ a) = 0, as the events {[Xn > a +1/m]}n≥1 satisfy the hypothe-
ses of Corollary 1(a) of Theorem 4.2.2.

The second part can be proved from the first part applied to {−Xn}n≥1 and −a.

Remark 4.2.2 Assume that {Xn}n≥1 satisfies the conditions of the last example. Then
P({Xn} converges to a finite limit) = 0 or 1; see Example 1.6.16.

A similar remark holds for Example 1.6.15.
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Chapter 5
The Conditional BCL

5.1 Lévy’s Result

The assumption of ‘independence of the An’ in the second Borel–Cantelli lemma
was replaced by weaker assumptions of some ‘dependence’ structures on An’s in
Chap. 3. An alternative way to get around this assumption is to use conditioning,
which is, essentially, due to P. Lévy; see Lévy (1937, Corollary 68, p. 249) or Doob
(1953, Corollary 2, p. 324).

To understand this form of Borel–Cantelli lemma, it is necessary to know the
theory of conditional expectations and probabilities, and the theory of martingales;
see, e.g., Chap. 6 of Billingsley (1995). In particular, any conditional probability will
be a random variable, and not a numerical constant.

We shall use the following result about martingales; see, e.g., Theorem 5.2.8 on
page 96 of Breiman (1968).

Theorem 5.1.1 Let {(Xn,Fn)}n≥1 be a martingale such that

E

(
sup
n≥1

|Xn+1 − Xn|
)

< ∞.

If

A = {lim Xn exists and is finite ],
B = [lim sup Xn = ∞, lim inf Xn = −∞],

then P(A ∪ B) = 1.

(The above theorem resembles a zero-one law.)

T. K. Chandra, The Borel–Cantelli Lemma, SpringerBriefs in Statistics, 95
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http://dx.doi.org/10.1007/978-81-322-0677-4_3


96 5 The Conditional BCL

Theorem 5.1.2 (The Conditional Borel–Cantelli Lemma) Let (�,A, P) be a prob-
ability space, and let {Fn}n≥1 be an increasing sequence of sub-σ -fields of A,F0 ⊂
F1 ⊂ . . . where F0 = {∅,�}. Then with probability one

∑

n

1An = ∞ iff
∑

n

P(An+1|Fn) = ∞.

Proof Let Zn = IAn − P(An|Fn−1), n ≥ 1. Then |Zn| ≤ 1 a.s. and {Zn}n≥1 is a
martingale-difference sequence so that

Xn =
n∑

i=1

Zi , n ≥ 1

is a martingale satisfying the condition of Theorem 5.1.1. Define A and B as in
Theorem 5.1.1. Clearly, if ω ∈ A then

∞∑

n=1

IAn (ω) = ∞ iff
∞∑

n=1

P(An+1|Fn)(ω) = ∞.

If ω ∈ B, then
∑∞

n=1 IAn (ω) = ∞ and
∞∑

n=1

P(An+1|Fn)(ω) = ∞; use the facts that

n∑

i=1

IAi ≥ Xn,

n∑

i=1

P(Ai |Fi−1) ≥ −Xn .

Since P(A ∪ B) = 1 by Theorem 5.1.1, the proof is complete. �

Lévy’s theorem implies the usual Borel–Cantelli lemma. For, if
∑

P(An)

< ∞ then E(
∑

P(An|Fn−1)) < ∞ and so P(
∑

P(An|Fn−1) < ∞) = 1
which implies, in view of Lévy’s theorem, that P(

∑
1An < ∞) = 1, i.e., that

P(lim sup An) = 0; if {An}n≥1 are independent and
∑

P(An) = ∞, then taking
F0 = {∅,�} and Fn = σ({A1, . . . , An}) for n ≥ 1 we get

∑
P(An|Fn−1) =∑

P(An) a.s. so that P(
∑

1An = ∞) = 1, i.e., P(lim sup An) = 1. Lévy’s result
is, however, more widely applicable, as the following example demonstrates.

Example 5.1.1 Let {Xn}n≥1 be iid with the common distribution U (0, 1), the uni-
form distribution over (0, 1). Then X1, . . . , Xn splits (0, 1) into (n + 1) subinter-
vals. Let An = [Xn+1 ∈ In] where In is the largest of these subintervals. Show that
P(lim sup An) = 1.

Solution: Clearly, the length of In is ≥ 1/(n + 1), and

P(An|Fn−1) = the length of In ≥ 1/(n + 1) a.s.



5.1 Lévy’s Result 97

where Fn = σ({X1, . . . , Xn}), n ≥ 1. Thus,
∑

P(An|Fn−1) = ∞ a.s. and hence∑
1An = ∞ a.s. by Lévy’s theorem. So P(lim sup An) = 1. �
We now give a very simple and elementary proof, due to Chen (1978), of a slightly

more general form of Theorem 5.1.2 (see, also, Meyer (1972) and Freedman (1973)).

Theorem 5.1.3 (Chen (1978)) Let {Xn}n≥1 be a sequence of non-negative random
variables defined on (�,A, P). Let {Fn}n≥0 be a sequence of sub-σ -fields of A. Let
Mn = E(Xn|Fn−1) for n ≥ 1.

If {Fn}n≥0 is increasing, i.e., if Fn ⊂ Fn+1 ∀n ≥ 0, then

∞∑

n=1

Xn < ∞ a.s. on

[ ∞∑

n=1

Mn < ∞
]

.

Conversely, if Y := sup
n≥1

(Xn/(1 + X1 +· · ·+ Xn−1)) is integrable and σ(X1 +· · ·+
Xn) ⊂ Fn ∀n ≥ 1, then

∞∑

n=1

Mn < ∞ a.s. on

[ ∞∑

n=1

Xn < ∞
]

.

(Xn need not be, in general, Fn-measurable.)

Proof Let M0 ≡ 1. Note that

∞∑

n=1

Mn/(Sn−1Sn) ≤ 1

where Sn =
n∑

i=0

Mi , n ≥ 0; this is true, since the above series is telescoping and its

sum is 1 −
( ∞∑

n=0

Mn

)−1

. Therefore,

1 ≥ E

( ∞∑

n=1

Mn/(Sn−1Sn)

)

= E

( ∞∑

n=1

Xn/(Sn−1Sn)

)
≥ E

⎛

⎝
( ∞∑

n=1

Xn

)
/

( ∞∑

n=0

Mn

)2
⎞

⎠ .

[Here we have used the Monotone Convergence Theorem (applied to a nonnegative
series), and the fact that
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E (Xn/(Sn−1Sn)) = E(E(Xn/(Sn−1Sn)|Fn−1))

= E(Mn/(Sn−1Sn)).]

Therefore, P

([
∑∞

n=1 Xn = ∞
]

∩
[ ∞∑

n=1

Mn < ∞
])

= 0.

To prove the converse, let X0 ≡ 1. Note that, if S∗
n =

n∑

i=0

Xi for n ≥ 0,

E

⎛

⎝
( ∞∑

n=1

Mn

)
/

( ∞∑

n=0

Xn

)2
⎞

⎠ ≤ E

( ∞∑

n=1

Mn/S∗2
n−1

)

= E

( ∞∑

n=1

Xn/S∗2
n−1

)

= E

( ∞∑

n=1

(Xn/(S∗
n−1S∗

n ))(1 + Xn/S∗
n−1)

)

≤ E

(
(1 + Y )

∞∑

n=1

Xn/(S∗
n−1S∗

n )

)

≤ E(1 + Y ) < ∞.

This implies that P

([ ∞∑

n=1

Mn = ∞
]

∩
[ ∞∑

n=1

Xn < ∞
])

= 0. �

(See the last paragraph on page 700 of Chen (1978) for some useful remarks.)

Corollary 1 Let {Xn}n≥1 be a sequence of nonnegative random variables defined
on (�,A, P) and let there be an increasing sequence {Fn}n≥0 of sub-σ -fields of A.

Let G0 ⊂ A be any σ -field, and for n ≥ 1, let Gn = σ(X1 + . . .+ Xn). Suppose that
E(Y ) < ∞ where Y is as in Theorem 5.1.3. Then

[ ∞∑

n=1

E(Xn|Fn−1) < ∞
]

⊂P

[ ∞∑

n=1

E(Xn|Gn−1) < ∞
]

where A ⊂P B means that P(A ∩ Bc) = 0.

Proof This is immediate from the above theorem:

[ ∞∑

n=1

E(Xn|Fn−1) < ∞
]

⊂P

[∑
Xn < ∞

]
⊂P

[ ∞∑

n=1

E(Xn|Gn−1) < ∞
]

. �
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We next state a result of Dubins and Freedman (1965).

Theorem 5.1.4 Let (�,A, P) be a probability space. Let {An}n≥1 be a sequence
of events such that An ∈ Fn ∀n ≥ 1 where {Fn}n≥0 is an increasing sequence of
sub-σ -fields of A. Let pn = P(An|Fn−1), n ≥ 1 and assume that 0 < p1 < 1,F0 =
{∅,�}. Then

(IA1 + · · · + IAn )/(p1 + · · · + pn)

converges to a finite limit L a.s. and in rth mean (0 < r < ∞). Also, L = 1 a.s. on[ ∞∑

1

pn = ∞
]

.

A part of this theorem is proved in Athreya and Lahiri (2006, pp. 235–236). For
generalizations, see Freedman (1973, Proposition 39 and Theorem 40 on pages 920
and 921 respectively; see, also, Proposition 52 on page 925).

5.2 A Result of Serfling

We first introduce a notation. For random variables X and Y , let

d(X, Y ) = sup
B∈B

|P(X ∈ B) − P(Y ∈ B)|

where B is the Borel σ -field on R. Then

(a) d(X, Y ) ≤ P(X 
= Y ), provided X, Y are defined on the same probability space,
and

(b) d(X, Z) ≤ d(X, Y ) + d(Y, Z).

Thus, d(X, Y ) can be regarded as a distance, called the total variation distance,
between X and Y (or, more precisely, between the distributions of X and Y ).

Results of this section are due to Serfling (1975).

Lemma 5.2.1 Let X1, . . . , Xn be non-negative integer-valued random variables
defined on a probability space (�,A, P). Put

p1 = P(X1 = 1), pi = P(Xi = 1|Fi−1) for 2 ≤ i ≤ n,

where Fi = σ(X1, . . . , Xi ). Let X∗
1, . . . , X∗

n be independent Bernoulli variables
with respective success probabilities p∗

1, . . . , p∗
n . Then

d

(
n∑

i=1

Xi ,

n∑

i=1

X∗
i

)
≤

n∑

i=1

E |pi − p∗
i | +

n∑

i=1

P(Xi ≥ 2).
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Proof Write X ′
i = I[Xi =1] for 1 ≤ i ≤ n, and put

p′
1 = p1, p′

i = P(X ′
i = 1|F ′

i−1) for 2 ≤ i ≤ n

where F ′
i = σ(X ′

1, . . . , X ′
i ). Clearly, F ′

i ⊂ Fi and so

p′
i = E(pi |F ′

i−1)) for 2 ≤ i ≤ n.

Now note that

d

(
n∑

i=1

Xi ,

n∑

i=1

X ′
i

)
≤ P

(
n∑

i=1

Xi 
=
n∑

i=1

X ′
i

)

≤
n∑

i=1

P(Xi 
= X ′
i ) =

n∑

i=1

P(Xi ≥ 2).

We next proceed to construct X ′
i and X∗

i for 1 ≤ i ≤ n on a common probability
space. Let R1, . . . , Rn be iid random variables following the uniform distribution on
[0,1]. Set

X∗
i = I[Ri ≤p∗

i ] for 1 ≤ i ≤ n, and

X ′
1 = I[R1≤p′

1], X ′
i = I[Ri ≤p′

i (X ′
1,...,X ′

i−1)], 2 ≤ i ≤ n

where, for 2 ≤ i ≤ n,

p′
i (x ′

1, . . . , x ′
i−1) = P(x ′

i = 1|x ′
1 = x ′

1, . . . , x ′
i−1 = x ′

i−1),

x ′
j = 0 or 1, 1 ≤ j ≤ i − 1.

Now observe that

P(X ′
i 
= X∗

i ) = E(P(X ′
i 
= X∗

i |F ′
i−1)) ≤ E(|p′

i − p∗
i |)

and that
E(|p′

i − p∗
i |) = E(|(pi − p∗

i |F ′
i−1)|) ≤ E(|pi − p∗

i |)

Thus d

(
n∑

i=1

X ′
i ,

n∑

i=1

X∗
i

)
≤

n∑

i=1

E(|pi − p∗
i |). �

The following result is due to Iosifescu and Theodorescu (1969, p. 2): let φ1 = 0,

and for n ≥ 2

φn = sup{|P(An|F) − P(An)| : F ∈ Fn−1, P(F) > 0}
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where Fn = σ(A1, . . . , An), A1, A2, . . . being a given sequence of events; if∑
φn < ∞, then P(An i.o.) = 1. The next result, due to Serfling (1975), gives

an extension of the above; see Remark 5.2.1 below.

Theorem 5.2.1 Let {An}n≥1 be a sequence of events. Put

p1 = P(A1), pn = P(An|Fn−1) for n ≥ 2.

If
∞∑

n=1

E(|pn − P(An)|) < ∞ and
∑

P(An) = ∞, then P(An i.o.) = 1. Here

Fn = σ({A1, . . . , An}), n ≥ 1.

Proof It suffices to show that P

( ∞∩
n=m

Ac
n

)
→ 0 as m → ∞. To this end, let

Xn = IAn , n ≥ 1. Then F1,F2, . . . and p1, p2, . . . as defined above also correspond
to X1, X2, . . . as in Lemma 5.2.1. Hence,

P

(
M∩

n=m
Ac

n

)
= P

(
M∑

n=m

Xn = 0

)

≤ P

(
M∑

n=m

X∗
n = 0

)
+ d

(
M∑

n=m

Xn,

M∑

n=m

X∗
n

)

≤ P

(
M∑

n=m

X∗
n = 0

)
+

M∑

n=m

E
(|pn − p∗

n |)

where X∗
1, X∗

2, . . . are independent Bernoulli variables with respective success prob-
abilities P(A1) = p∗

1, P(A2) = p∗
2, . . . Using the independence,

P

(
M∑

n=m

X∗
n = 0

)
=

M∏

n=m

(1 − P(An)) ≤ exp

(
−

M∑

n=m

P(An)

)
.

Letting M → ∞, we get in view of
∑

P(An) = ∞

P

( ∞∩
n=m

Ac
n

)
≤

∞∑

n=m

E(|pn − P(An)|).

Letting m → ∞, we get the desired result. �

Remark 5.2.1 Note that |pn − P(An)| ≤ φn a.s. This can be seen in the following
way: let n ≥ 2, and note that Fn−1 is atomic; let the atoms of it having non-zero

probabilities be E1, . . . , Ek . Then
k∑

j=1

IE j = 1 a.s., and
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P(An|Fn−1) =
k∑

j=1

IE j P(An|E j ) a.s.

so that

|pn − P(An)| = |
k∑

j=1

(P(An|E j ) − P(An))IE j | a.s.

≤
k∑

j=1

IE j φn = φn a.s.
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