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Preface

Julian Schwinger was already the world’s leading nuclear theorist when he
joined the Radiation Laboratory at MIT in 1943, at the ripe age of 25. Just
2 years earlier he had joined the faculty at Purdue, after a postdoc with
Oppenheimer in Berkeley, and graduate study at Columbia. An early semester
at Wisconsin had confirmed his penchant to work at night, so as not to have
to interact with Breit and Wigner there. He was to perfect his iconoclastic
habits in his more than 2 years at the Rad Lab.1

Despite its deliberately misleading name, the Rad Lab was not involved
in nuclear physics, which was imagined then by the educated public as a
esoteric science without possible military application. Rather, the subject at
hand was the perfection of radar, the beaming and reflection of microwaves
which had already saved Britain from the German onslaught. Here was a
technology which won the war, rather than one that prematurely ended it, at
a still incalculable cost. It was partly for that reason that Schwinger joined
this effort, rather than what might have appeared to be the more natural
project for his awesome talents, the development of nuclear weapons at Los
Alamos. He had got a bit of a taste of that at the “Metallurgical Laboratory”
in Chicago, and did not much like it. Perhaps more important for his decision
to go to and stay at MIT during the war was its less regimented and isolated
environment. He could come into the lab at night, when everyone else was
leaving, and leave in the morning, and security arrangements were minimal.

It was a fortunate decision. Schwinger accomplished a remarkable amount
in 2 years, so much so that when he left for Harvard after the war was over, he
brought an assistant along (Harold Levine) to help finish projects begun a mile
away in Cambridge. Not only did he bring the theory of microwave cavities
to a new level of perfection, but he found a way of expressing the results in a
way that the engineers who would actually build the devices could understand,
in terms of familiar circuit concepts of impedance and admittance. And he
1 For a comprehensive treatment of Schwinger’s life and work, see [1]. Selections of

his writings appear in [2,3].
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laid the groundwork for subsequent developments in nuclear and theoretical
physics, including the perfection of variational methods and the effective range
formulation of scattering.

The biggest “impedance matching” problem was that of Schwinger’s hours,
orthogonal to those of nearly everyone else. Communication was achieved by
leaving notes on Schwinger’s desk, remarkable solutions to which problems
often appearing the very next day.2 But this was too unsystematic. A com-
promise was worked out whereby Schwinger would come in at 4:00 p.m., and
give a seminar on his work to the other members of the group. David Saxon,
then a graduate student, took it on himself to type up the lectures. At first,
Schwinger insisted on an infinite, nonconverging, series of corrections of these
notes, but upon Uhlenbeck’s insistence, he began to behave in a timely man-
ner. Eventually, a small portion of these notes appeared as a slim volume
entitled Discontinuities in Waveguides [5].

As the war wound down, Schwinger, like the other physicists, started think-
ing about applications of the newly developed technology to nuclear physics
research. Thus Schwinger realized that microwaves could be used to accelerate
charged particles, and invented what was dubbed the microtron. (Veksler is
usually credited as author of the idea.) Everyone by then had realized that the
cyclotron had been pushed to its limits by Lawrence, and schemes for circular
accelerators, the betatron (for accelerating electrons by a changing magnetic
field) and the synchrotron (in which microwave cavities accelerate electrons or
protons, guided in a circular path by magnetic fields) were conceived by many
people. There was the issue of whether electromagnetic radiation by such de-
vices would provide a limit to the maximum energy to which an electron could
be accelerated – Was the radiation coherent or not? Schwinger settled the is-
sue, although it took years before his papers were properly published. His
classical relativistic treatment of self-action was important for his later devel-
opment of quantum electrodynamics. He gave a famous set of lectures on both
accelerators and the concomitant radiation, as well as on waveguides, at Los
Alamos on a visit there in 1945, where he and Feynman first met. Feynman,
who was of the same age as Schwinger, was somewhat intimidated, because
he felt that Schwinger had already accomplished so much more than he had.

The lab was supposed to publish a comprehensive series of volumes on the
work accomplished during its existence, and Schwinger’s closest collaborator
and friend at the lab, Nathan Marcuvitz, was to be the editor of the Waveguide
2 A noteworthy example of this was supplied by Mark Kac [4]. He had a query

about a difficult evaluation of integrals of Bessel functions left on Schwinger’s
desk. Schwinger supplied a 40-page solution the following morning, which, unfor-
tunately, did not agree with a limit known by Kac. Schwinger insisted he could
not possibly have made an error, but after Kac had taught himself enough about
Bessel functions he found the mistake: Schwinger had interpreted an indefinite
integral in Watson’s Treatise on the Theory of Bessel Functions as a definite one.
Schwinger thereafter never lifted a formula from a book, but derived everything
on the spot from first principles, a characteristic of his lectures throughout his
career.
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Handbook [6]. Marcuvitz kept insisting that Schwinger write up his work as
The Theory of Wave Guides, which would complement Marcuvitz’ practical
handbook. Schwinger did labor mightily on the project for a time, and com-
pleted more than two long chapters before abandoning the enterprise. When
he joined Harvard in February 1946, he taught a course on electromagnetic
waves and waveguides at least twice. But the emerging problems of quantum
electrodynamics caught his attention, and he never returned to classical elec-
trodynamics while at Harvard. He did often recount how his experience with
understanding radiation theory from his solution of synchrotron radiation led
almost directly to his solution of quantum electrodynamics in terms of renor-
malization theory. In this, he had an advantage over Feynman, who insisted
until quite late that vacuum polarization was not real, while Schwinger had
demonstrated its reality already in 1939 in Berkeley [7].

It was not until some years after Schwinger moved to UCLA in 1971 that he
seriously returned to classical electrodynamics.3 It was probably my father-
in-law Alfredo Baños Jr., who had been a part of the theory group at the
Rad Lab, who in his capacity as Vice-Chairman of the Physics Department
at the time suggested that Schwinger teach such a graduate course. I was
Schwinger’s postdoc then, and, with my colleagues, suggested that he turn
those inspiring lectures into a book. The completion of that project took
more than 20 years [9], and was only brought to fruition because of the efforts
of the present author. In the meantime, Schwinger had undertaken a massive
revision, on his own, on what was a completed, accepted manuscript, only to
leave it unfinished in the mid-1980s.

These two instances of uncompleted book manuscripts are part of a larger
pattern. In the early 1950s, he started to write a textbook on quantum me-
chanics/quantum field theory, part of which formed the basis for his famous
lectures at Les Houches in 1955. The latter appeared in part only in 1970,
as Quantum Kinematics and Dynamics [10], and only because Robert Kohler
urged him to publish the notes and assisted in the process. Presumably this
was envisaged at one time as part of a book on quantum field theory he had
promised Addison-Wesley in 1955. At around the same time he agreed to write
a long article on the “Quantum Theory of Wave Fields” for the Handbuch der
Physik, but as Roy Glauber once told me, the real part of this volume was
written by Källén, the imaginary part by Schwinger.

When he felt he really needed to set the record straight, Schwinger was
able to complete a book project. He edited, with an introductory essay, a
collection of papers called Quantum Electrodynamics [11] in 1956; and more
substantially, when he had completed the initial development of source theory
in the late 1960s, began writing what is now the three volumes of Particles,
Sources, and Fields [12], because he felt that was the only way to spread his
new gospel. But, in general, his excessive perfectionism may have rendered it
3 That move to the West Coast also resulted in his first teaching of undergraduate

courses since his first faculty job at Purdue. The resulting quantum lectures have
been recently published by Springer [8].
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nearly impossible to complete a textbook or monograph. This I have elsewhere
termed tragic [1], because his lectures on a variety of topics have inspired
generations of students, many of whom went on to become leaders in many
fields. His reach could have been even wider had he had a less demanding view
of what his written word should be like. But instead he typically polished and
repolished his written prose until it bore little of the apparently spontaneous
brilliance of his lectures (I say apparently, since his lectures were actually
fully rehearsed and committed to memory), and then he would abandon the
manuscript half-completed.

The current project was suggested by my editors, Alex Chao from SLAC
and Chris Caron of Springer, although they had been anticipated a bit by
the heroic effort of Miguel Furman at LBL who transcribed Schwinger’s first
fading synchrotron radiation manuscript into a form fit for publication in [2].
In spite of the antiquity of the material, they, and I, felt that there was much
here that is still fresh and relevant. Since I had already made good use of the
UCLA archives, it was easy to extract some more information from that rich
source (28 boxes worth) of Schwinger material. I profusely thank Charlotte
Brown, Curator of Special Collections, University Research Library, Univer-
sity of California at Los Angeles, for her invaluable help. The files from the Rad
Lab now reside at the NE branch of the National Archives (NARA–Northeast
Region), and I thank Joan Gearin, Archivist, for her help there. I thank the
original publishers of the papers included in this volume, John Wiley and
Sons, the American Physical Society, the American Institute of Physics, and
Elsevier Science Publishers, for granting permission to reprint Schwinger’s pa-
pers here. Special thanks go to the editor of Annals of Physics, Frank Wilczek,
and the Senior Editorial Assistant for that journal, Eve Sullivan, for extraor-
dinary assistance in making republication of the papers originally published
there possible.4 Throughout this project I have benefited from enthusiastic
support from Schwinger’s widow, Clarice. Most of all, I thank my wife, Mar-
garita Baños-Milton, for her infinite patience as I continue to take on more
projects than seems humanly achievable.

A brief remark about the assembly of this volume is called for. As indicated
above, the heart of the present volume consists of those clearly typed and
edited pages that were to make up the Rad Lab book. These manuscript
pages were dated in the Winter 1945 and Spring 1946, before Schwinger left
for Harvard. The bulk of Chaps. 6, 7, and 10 arise from this source. Some
missing fragments were rescued from portions of hand-written manuscript.
Chapter 8 seems to have lived through the years as a separate typescript
entitled “Waveguides with Simple Cross Sections.” Chapter 1 is based on
another typed manuscript which may have been a somewhat later attempt to
complete this book project. Chapter 15 is obviously based on “Radiation by
Electrons in a Betatron,” which is reprinted in Part II of this volume.5 Most
4,5 Refers to the hardcover edition which includes in addition the reprints of seminal

papers by J. Schwinger on these topics.
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of Chap. 11 is an extension of Chap. 25 of [9], the typescript of which was
not discovered by me when I was writing that book. Chapters 2 and 12 were
manuscripts intended for that same book. Other chapters are more or less
based on various fragmentary materials, sometimes hard to decipher, found
in the UCLA and Boston archives. For example, Chap. 16 is based on lectures
Schwinger gave at the Rad Lab in Spring 1945, while the first part of Chap. 17
was a contract report submitted to the US Army Signal Corps in 1956. The
many problems are based on those given many years later by Schwinger in
his UCLA course in the early 1980s, as well as problems I have given in my
recent courses at the University of Oklahoma. I have made every effort to put
this material together as seamlessly as possible, but there is necessarily an
unevenness to the level, a variation, to quote the Reader’s Guide to [9], that
“seems entirely appropriate.” I hope the reader, be he student or experienced
researcher, will find much of value in this volume.

Besides the subject matter, electromagnetic radiation theory, the reader
will discover a second underlying theme, which formed the foundation of
nearly all of Schwinger’s work. That is the centrality of variational or ac-
tion principles. We will see them in the first chapter, where they are used
to derive conservation laws; in Chap. 4, where variational principles for har-
monically varying Maxwell fields in media are deduced; in Chap. 10, where
variational methods are used as an efficient calculational device for eigenval-
ues; in Chap. 16, where a variational principle is employed to calculate dif-
fraction; and in the last chapter, where Schwinger’s famous quantum action
principle plays a central role in estimating quantum corrections. Indeed the
entire enterprise is informed by the conceit that the proper formulation of any
physical problem is in terms of a differential variational principle, and that
such principles are not merely devices for determining equations of motion
and symmetry principles, but they may be used directly as the most efficient
calculational tool, because they automatically minimize errors.

I have, of course, tried to adopt uniform notations as much as possible,
and adopt a consistent system of units. It is, as the recent example of the
3rd edition of David Jackson’s Electrodynamics [13] demonstrates, impossible
not to be somewhat schizophrenic about electrodynamics units. In the end,
I decided to follow the path Schwinger followed in the first chapter which
follows: For the microscopic theory, I use rationalized Heaviside–Lorentz units,
which has the virtue that, for example, the electric and magnetic fields have
the same units, and 4π does not appear in Maxwell’s equations. However, when
discussion is directed at practical devices, rationalized SI units are adopted.
An Appendix concludes the text explaining the different systems, and how to
convert easily from one to another.

St. Louis, Missouri, USA Kimball A. Milton
February 2006
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1

Maxwell’s Equations

1.1 Microscopic Electrodynamics

Electromagnetic phenomena involving matter in bulk are approximately de-
scribed by the Maxwell field equations, in SI units,1

∇ × H =
∂

∂t
D + J , ∇ · D = ρ , (1.1a)

∇ × E = − ∂

∂t
B , ∇ · B = 0 , (1.1b)

together with constitutive equations of the medium which in their most com-
mon form are

D = εE , B = µH , J = σE . (1.2)

This theory takes no cognizance of the atomic structure of matter, but rather
regards matter as a continuous medium that is completely characterized by the
three constants ε, µ, and σ. Here ε is the electric permittivity (or “dielectric
constant”), µ is the magnetic permeability, and σ is the electric conductivity.
The dependence of these material parameters on the nature of the substance,
density, temperature, oscillation frequency, and so forth, is to be determined
empirically. Opposed to this point of view, which we shall call macroscopic,
is that initiated by Lorentz as an attempt to predict the properties of gross
matter from the postulated behavior of atomic constituents. It is the twofold
purpose of such a theory to deduce the Maxwell equations as an approximate
consequence of more fundamental microscopic field equations and to relate
the macroscopic parameters ε, µ, and σ to atomic properties. Although the
macroscopic theory forms an entirely adequate basis for our work in this
monograph, the qualitative information given by simple atomic models is of
such value that we begin with an account of the microscopic theory.
1 See the Appendix for a discussion of the different unit systems still commonly

employed for electromagnetic phenomena.
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1.1.1 Microscopic Charges

That attribute of matter which interacts with an electromagnetic field is elec-
tric charge. Charge is described by two quantities, the charge density ρ(r, t)
and the current density j(r, t). The charge density is defined by the statement
that the total charge Q, within an arbitrary volume V at the time t, is rep-
resented by the volume integral [(dr) = dxdy dz is the element of volume]

Q =
∫

V

(dr) ρ(r, t) . (1.3)

Of particular interest is the point charge distribution which is such that the
total charge in any region including a fixed point R is equal to a constant
q, independent of the size of the region, while the total charge in any region
that does not include the point R vanishes. The charge density of the point
distribution will be written

ρ(r) = q δ(r − R) , (1.4)

with the δ function defined by the statements
∫

V

(dr) δ(r − R) =
{

1 , RwithinV ,
0 , RnotwithinV .

(1.5)

It is a consequence of this definition that the δ function vanishes at every point
save R, and must there be sufficiently infinite to make its volume integral
unity. No such function exists, of course, but it can be approximated with
arbitrary precision. We need only consider, for example, the discontinuous
function defined by

δε(r − R) =

{
0 , |r − R| > ε ,
1

4
3 πε3

, |r − R| < ε , (1.6)

in the limit as ε → 0. Other possible representations are

δ(r − R) = lim
ε→0

1
π2

ε

(|r − R|2 + ε2)2
, (1.7a)

δ(r − R) = lim
ε→0

1
ε3

e−π|r−R|2/ε2 . (1.7b)

We shall not hesitate to treat the δ function as an ordinary, differentiable
function.

The elementary constituents of matter, which for our purposes may be
considered to be electrons and atomic nuclei, can ordinarily be treated as point
charges, for their linear dimensions (∼ 10−13 cm) are negligible in comparison
with atomic distances (∼ 10−8 cm). The charge density of a number of point
charges with charges qa located at the points ra, a = 1, . . . , n, is
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ρ(r) =
n∑

a=1

qaδ(r − ra) . (1.8)

If the charges are in motion, the charge density will vary in time in consequence
of the time dependence of ra(t). The time derivative, for fixed r, is

∂

∂t
ρ(r, t) =

n∑
a=1

qava · ∇ra
δ(r − ra) = −

n∑
a=1

qava · ∇rδ(r − ra) , (1.9)

or
∂

∂t
ρ(r, t) + ∇r ·

n∑
a=1

qavaδ(r − ra) = 0 , (1.10)

where va = d
dtra is the velocity of the ath point charge.

Charge in motion constitutes a current. The current density or charge flux
vector j(r, t) is defined by the equation

I =
∫

S

dS n · j(r, t) , (1.11)

where I dt is the net charge crossing an arbitrary surface S in the time interval
dt. Positive charge crossing the surface in the direction of the normal n, or
negative charge moving in the opposite direction, make a positive contribution
to the total current I, while charges with the reversed motion from these are
assigned negative weight factors in computing I. The total charge leaving an
arbitrary region bounded by the closed surface S, in the time interval dt, is

dQ = dt

∮
S

dS n · j(r, t) , (1.12)

where n is the outward-drawn normal to the surface S. The fundamental
property of charge, indeed its defining characteristic, is indestructibility. Thus
the net amount of charge that flows across the surface S bounding V must
equal the loss of charge within the volume. Hence

∮
S

dS n · j(r, t) ≡
∫

V

(dr)∇ · j(r, t) = − ∂

∂t

∫
V

(dr) ρ(r, t) , (1.13)

in which we have also employed the divergence theorem relating surface and
volume integrals. Since the statement must be valid for an arbitrary volume,
we obtain as the conservation equation of electric charge

∇ · j(r, t) +
∂

∂t
ρ(r, t) = 0 . (1.14)

It will be noted that an equation of precisely this form has been obtained for
an assembly of point charges in (1.10), with
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j(r, t) =
n∑

a=1

qavaδ(r − ra) . (1.15)

Thus, for a single point charge,

j = ρv . (1.16)

The elementary charged constituents of matter possess inertia. Associated
with charges in motion, therefore, are the mechanical properties of kinetic
energy, linear momentum, and angular momentum. The definitions of these
quantities for a system of n particles with masses ma, a = 1, . . . , n, are,
respectively,

E =
n∑

a=1

1
2
mav2

a , (1.17a)

p =
n∑

a=1

mava , (1.17b)

L =
n∑

a=1

mara × va , (1.17c)

provided all particle velocities are small in comparison with c, the velocity of
light in vacuo. The more rigorous relativistic expressions are

E =
n∑

a=1

mac2

(
1√

1 − v2
a/c2

− 1

)
, (1.18a)

p =
n∑

a=1

ma√
1 − v2

a/c2
va , (1.18b)

L =
n∑

a=1

ma√
1 − v2

a/c2
ra × va , (1.18c)

but this refinement is rarely required in studies of atomic structure.

1.1.2 The Field Equations

The electromagnetic field is described by two vectors, the electric field in-
tensity (or electric field strength) e(r, t) and the magnetic field intensity
(or magnetic induction) b(r, t). [In this chapter, for pedagogical purposes, we
will use lowercase letters to denote the microscopic fields, for which we will
use (rationalized) Heaviside–Lorentz units. See the Appendix.] The equations
defining these vectors in relation to each other and to the charge–current
distribution are postulated to be
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∇ × b =
1
c

∂

∂t
e +

1
c
j , ∇ · e = ρ , (1.19a)

∇ × e = −1
c

∂

∂t
b , ∇ · b = 0 , (1.19b)

which are known variously as the microscopic field equations, or the Maxwell–
Lorentz equations. Correspondence is established with the physical world by
the further postulate that an electromagnetic field possesses the mechanical
attributes of energy and momentum. These quantities are considered to be
spatially distributed in the field, and it is therefore necessary to introduce
not only measures of density, analogous to the charge density, but in addition
measures of flux, analogous to the current density. We define

• energy density:

U =
e2 + b2

2
, (1.20a)

• energy flux vector or the Poynting vector:

S = c e × b , (1.20b)

• linear momentum density:

G =
1
c
e × b , (1.20c)

• linear momentum flux dyadic or the stress dyadic:

T = 1
e2 + b2

2
− ee − bb , (1.20d)

The symbol 1 indicates the unit dyadic. The basis for these definitions are
certain differential identities, valid in the absence of charge and current, which
have the form of conservation equations, analogous to that for electric charge.
It may be directly verified that (ρ = 0, j = 0)

∂

∂t
U + ∇ · S = 0 ,

∂

∂t
G + ∇ · T = 0 , (1.21)

on employing the identities

∇ · (A × B) = (∇ × A) · B − (∇ × B) · A , (1.22a)

(∇ × A) × A = −A × (∇ × A) = (A · ∇)A − ∇1
2
A2 . (1.22b)

The total energy,

E =
∫

(dr)U , (1.23)

and the total linear momentum,
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p =
∫

(dr)G , (1.24)

of an electromagnetic field confined to a finite region of space, are constant in
time, for no energy or momentum flows through a surface enclosing the entire
field. Energy and momentum, like charge, are recognized by the property of
permanence.

The relation between the energy and momentum quantities expressed by

S = c2G (1.25)

is a consequence of, or at least is consistent with, the relativistic connection
between energy and mass,

E = mc2 . (1.26)

This may be seen from the remark that the momentum density can also be
considered a mass flux vector, or alternatively, by the following considera-
tions. On multiplying the energy conservation equation in (1.21) by r and
rearranging terms, we obtain

∂

∂t
rU + ∇ · (Sr) = S = c2G , (1.27)

which, on integration over a volume enclosing the entire field, yields

p =
d
dt

∫
(dr) r

U

c2
=

E

c2

dR
dt

=
E

c2
V , (1.28)

where
R =

1
E

∫
(dr) rU (1.29)

is the energy center of gravity of the field, which moves with velocity V =
dR/dt. Here we have the conventional relation between momentum and ve-
locity, with E/c2 playing the role of the total mass of the electromagnetic
field.

The velocity of the energy center of gravity, V, which we shall term the
group velocity of the field, is necessarily less in magnitude than the velocity
of light. This is a result of the identity

(e × b)2 =
(

e2 + b2

2

)2

−
(

e2 − b2

2

)2

− (e · b)2 , (1.30)

and the consequent inequality

|e × b| ≤ e2 + b2

2
, (1.31)

for from (1.24)
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|p| ≤ 1
c

∫
(dr) |e × b| ≤ E

c
, (1.32)

and therefore
|V| ≤ c . (1.33)

Equality of |V| with c is obtained only when e · b = 0, e2 = b2, and e × b
has the same direction everywhere. That is, the electric and magnetic field
intensities must be equal in magnitude, perpendicular to each other, and to a
fixed direction in space, as is the case for an ideal plane wave. More generally,
we call such a configuration a unidirectional light pulse, for which further
properties are given in Problem 1.34.

Another velocity associated with the field can be defined in terms of the
center of gravity of the momentum distribution. We proceed from the conser-
vation of momentum equation in (1.21) written, for manipulatory convenience,
in component form,

∂

∂t
Gj +

3∑
i=1

∂

∂xi
Tij = 0 , j = 1, 2, 3 . (1.34)

On multiplying this equation by xj , and summing with respect to the index
j, we obtain

∂

∂t

∑
i

xiGi +
∑
i,j

∂

∂xi
(Tijxj) =

∑
i

Tii ≡ Tr T , (1.35)

(which introduces the concept of the trace of the dyadic T, Tr T) or, returning
to vector notation,

∂

∂t
(r · G) + ∇ · (T · r) = U , (1.36)

for (note that we do not use the summation convention over repeated indices
here)

Tii = U − (e2
i + b2

i ) , Tr T = U . (1.37)

The relation (1.36) thus established between the energy density and momen-
tum quantities we shall call the virial theorem. On integration over the entire
region occupied by the field, we find

E =
d
dt

∫
(dr) r · G ≡ W · p , (1.38)

which defines a velocity W, or at least its component parallel to p, which we
shall term the phase velocity of the field. Combining the two relations between
the total energy and momentum, (1.28) and (1.38), we obtain

W · V = c2 , (1.39)

which implies that the magnitude of the phase velocity is never less than the
speed of light.
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A further conservation theorem, which is to be identified as that for an-
gular momentum, can be deduced from the linear momentum conservation
theorem. Multiplying the jth component of (1.34) by xi and subtracting a
similar equation with i and j interchanged, we obtain

∂

∂t
(xiGj − xjGi) =

∑
k

∂

∂xk
(Tkixj − Tkjxi) + Tij − Tji , (1.40)

However, the stress dyadic is symmetrical,

Tij = δij
e2 + b2

2
− eiej − bibj = Tji , (1.41)

and therefore (in vector notation)

∂

∂t
(r × G) + ∇ · (−T × r) = 0 , (1.42)

which implies that the total angular momentum

L =
∫

(dr) r × G (1.43)

of a field confined to a finite spatial volume is constant in time.
In the presence of electric charge, the energy and momentum of the elec-

tromagnetic field are no longer conserved. It is easily shown that

∂

∂t
U + ∇ · S = −j · e , (1.44a)

∂

∂t
G + ∇ · T = −(ρ e +

1
c
j × b) , (1.44b)

implying that electromagnetic energy is destroyed at the rate of j · e per unit
volume, and that ρ e+ 1

c j × b measures the rate of annihilation of linear elec-
tromagnetic momentum, per unit volume. In a region that includes only the
ath elementary charge, electromagnetic energy and momentum disappear at
a rate qava · e(ra), and qa

(
e(ra) + 1

cva × b(ra)
)
, respectively. If the inde-

structibility of energy and momentum is to be preserved, these expressions
must equal the rate of increase of the energy and linear momentum of the ath
elementary charge,

dEa

dt
= qava · e(ra) , (1.45a)

dpa

dt
= qa

(
e(ra) +

1
c
va × b(ra)

)
= Fa , (1.45b)

which determines the force, Fa, exerted on the ath charge by the electromag-
netic field, in terms of the rate of change of mechanical momentum pa = mava.
The consistency of the definitions adopted for field energy and momentum is
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verified by the observation that the rate of increase of the energy of the ath
particle, in accord with mechanical principles, is equal to the rate at which
the force Fa does work on the particle,

dEa

dt
= Fa · va . (1.46)

In a similar fashion, the rate of loss of electromagnetic angular momentum
per unit volume r ×

(
ρ e + 1

c j × b
)
, when integrated over a region enclosing

the ath charge, must equal the rate of increase of La, the angular momentum
of the particle,

dLa

dt
= qara ×

(
e(ra) +

1
c
va × b(ra)

)
= ra × Fa . (1.47)

The identification of electromagnetic angular momentum is confirmed by this
result, that the rate at which the angular momentum of the particle increases
equals the moment of the force acting on it. For a further discussion of the
local conservation of energy and momentum, see Problem 1.31.

1.2 Variational Principle

The equations of motion of the field and matter can be expressed in the
compact form of a variational principle or Hamilton’s principle. It is first con-
venient to introduce suitable coordinates for the field. These we shall choose
as the vector potential a and the scalar potential φ, defined by

e = −1
c

∂

∂t
a − ∇φ , b = ∇ × a , (1.48)

which ensures that the second set of field equations (1.19b) is satisfied identi-
cally. The potentials are not uniquely determined by these equations; rather,
the set of potentials

a′ = a − ∇ψ , φ′ = φ +
1
c

∂

∂t
ψ (1.49)

leads to the same field intensities as a and φ, for arbitrary ψ. Such a modifica-
tion of the potentials is referred to as a gauge transformation, and those quan-
tities which are unaltered by the transformation are called gauge invariant.
The absence of a precise definition for the potentials will cause no difficulty
provided that all physical quantities expressed in terms of the potentials are
required to be gauge invariant.

A mechanical system is completely characterized by a Lagrangian L, which
is such that

∫ t1
t0

dt L is an extremal for the actual motion of the system, in com-
parison with all neighboring states with prescribed values of the coordinates
at times t0 and t1,
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δ

∫ t1

t0

dt L = 0 . (1.50)

We consider a general Lagrangian for the system of fields and matter which
depends upon the positions and velocities of the particles, and the potentials
and field quantities descriptive of the field. From the standpoint of the field,
the Lagrangian is best regarded as the volume integral of a Lagrangian density
L. Thus, the effect of an arbitrary variation of the vector potential is expressed
by

δaL =
∫

(dr)
(

∂L
∂a

· δa +
∂L
∂b

· ∇ × δa − 1
c

∂L
∂e

· δȧ
)

=
∫

(dr)
(

δL

δa
· δa +

δL

δȧ
· δȧ
)

, (1.51)

in which we have introduced the variational derivatives,

δL

δa
=

∂L
∂a

+ ∇ × ∂L
∂b

, (1.52a)

δL

δȧ
= −1

c

∂L
∂e

, (1.52b)

and discarded a surface integral by requiring that all variations vanish on the
spatial boundary of the region, as well as at the initial and terminal times t0
and t1. In a similar fashion,

δφL =
∫

(dr)
(

∂L
∂φ

δφ − ∂L
∂e

· ∇δφ

)
=
∫

(dr)
δL

δφ
δφ , (1.53)

with
δL

δφ
=

∂L
∂φ

+ ∇ ·
(

∂L
∂e

)
, (1.54)

provided the time derivative of the scalar potential is absent in the Lagrangian.
These relations, (1.51) and (1.53), expressed in terms of variational deriva-
tives, are formally analogous to the variation of a Lagrangian associated with
a material particle’s coordinates,

δra
L =

∂L

∂ra
· δra +

∂L

∂va
· d
dt

δra . (1.55)

Therefore, the condition expressing the stationary character of
∫ t1

t0
dt L for

variations of ra, subject to the vanishing of all variations at the termini,

d
dt

∂L

∂va
=

∂L

∂ra
, (1.56)

has a formally similar aspect for variations of a and φ,
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∂

∂t

δL

δȧ
=

δL

δa
, 0 =

δL

δφ
. (1.57)

Hence, the field equations deduced from a variational principle are

−∇ × ∂L
∂b

=
1
c

∂

∂t

∂L
∂e

+
∂L
∂a

, ∇ · ∂L
∂e

= −∂L
∂φ

, (1.58)

which are identical with the Maxwell–Lorentz equations (1.19a) if

L =
e2 − b2

2
− ρφ +

1
c
j · a . (1.59)

The Lagrangian thus consists of a part involving only the field quantities,

Lf =
∫

(dr)
e2 − b2

2
, (1.60)

a part containing the coordinates of both field and matter,

Lfm = −
∫

(dr)
(

ρφ − 1
c
j · a
)

= −
∑

a

qa

(
φ(ra) − 1

c
va · a(ra)

)
, (1.61)

and a part involving only material quantities, which, as we shall verify, is for
nonrelativistic particles

Lm =
∑

a

1
2
mav2

a . (1.62)

(For the relativistic generalization, see Problem 1.32.) The Lagrangian form
of the ath particle’s equation of motion (1.56) is

d
dt

(
mava +

qa

c
a(ra)

)
= −qa∇ra

(
φ(ra) − 1

c
va · a(ra)

)
, (1.63)

where we see the appearance of the canonical momentum,

πa = mava +
qa

c
a(ra) . (1.64)

However,

d
dt

a(ra, t) =
∂

∂t
a + va · ∇a =

∂

∂t
a − va × b + ∇(va · a) , (1.65)

for in computing the time derivative, the implicit dependence of the particle’s
position on the time cannot be ignored. It is thus confirmed that the Lorentz
force law (1.45b) holds,

d
dt

mava = qa

(
e(ra) +

1
c
va × b(ra)

)
. (1.66)
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1.3 Conservation Theorems

The various conservation laws, those of charge, energy, linear momentum, and
angular momentum, are consequences of the invariance of Hamilton’s principle
under certain transformations. These are, respectively, gauge transformations,
temporal displacements, spatial translations, and spatial rotations. A gauge
transformation (1.49) induces the variation

δa = −∇ψ , δφ =
1
c

∂

∂t
ψ , (1.67a)

δe = δb = 0 , (1.67b)

whence

δL =
∫

(dr)
(

∇ · ∂L
∂a

− 1
c

∂

∂t

∂L
∂φ

)
ψ +

1
c

d
dt

∫
(dr)

∂L
∂φ

ψ , (1.68)

from which we can infer from (1.59) that the local charge conservation equa-
tion,

∇ ·
(

c
∂L
∂a

)
+

∂

∂t

(
−∂L

∂φ

)
= ∇ · j +

∂

∂t
ρ = 0 , (1.69)

must be a consequence of the field equations, for
∫ t1

t0
dt L is stationary with

respect to arbitrary independent variations of a and φ.
The value of

∫ t1
t0

dt L is in no way affected by an alteration of the time
origin, ∫ t1−δt

t0−δt

dt L(t + δt) −
∫ t1

t0

dt L(t) = 0 , (1.70)

where δt is an arbitrary constant. We may conceive of the time displacement as
a variation of the system’s coordinates which consists in replacing the actual
values at time t by the actual values which the system will assume at time
t + δt. The statement of invariance with respect to the origin of time now
reads ∫ t1

t0

dt δL = δt (L(t1) − L(t0)) = δt

∫ t1

t0

dt
dL

dt
, (1.71)

where δL is the consequence of the variations

δa = δt ȧ , δφ = δt φ̇ , δra = δtva , (1.72a)

δL = δt

[∫
(dr)

(
δL

δa
· ȧ +

δL

δȧ
· ä +

δL

δφ
· φ̇
)

+
∑

a

(
∂L

∂ra
· va +

∂L

∂va
· v̇a

)]
.

(1.72b)

In writing this expression for δL various surface integrals have been discarded.
This can no longer be justified by the statement that the variation vanishes at
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the surface of the integration region, for it is not possible to satisfy this condi-
tion with the limited type of variation that is being contemplated. Rather, it
is assumed for simplicity that the volume integration encompasses the entire
field. On rearranging the terms of δL and employing the Lagrangian equations
of motion (1.56) and (1.57), we obtain

δL = δt
d
dt

(∫
(dr)

δL

δȧ
· ȧ +

∑
a

∂L

∂va
· va

)
, (1.73)

from which it follows from (1.71) that

E =
∫

(dr)
δL

δȧ
· ȧ +

∑
a

∂L

∂va
· va − L (1.74)

is independent of time. It is easily verified from (1.59) that E is the total
energy of the system,

E =
∫

(dr)
e2 + b2

2
+
∑

a

1
2
mav2

a . (1.75)

The Lagrangian is unaltered by an arbitrary translation of the position
variable of integration, that is, if r is replaced by r + δr, with δr an arbitrary
constant vector. The region of integration must be suitably modified, of course,
but this need not be considered if the entire field is included, for the limits
of integration are then effectively infinite. Under this substitution, the matter
part of the Lagrangian, which corresponds to the Lagrange density Lm(r) =
Lm(r) δ(r − ra), is replaced by Lm(r + δr) δ(r + δr − ra). Hence, viewed as
the variation

δa = (δr · ∇)a , δφ = (δr · ∇)φ , δra = −δr , (1.76)

the translation of the space coordinate system induces a variation of

δL =
∫

(dr)
[
δL

δa
· (δr · ∇)a +

δL

δȧ
· (δr · ∇)ȧ +

δL

δφ
(δr · ∇)φ

]

−
∑

a

∂L

∂ra
· δr , (1.77)

which must be zero. As a consequence of the Lagrangian equations of motion
(1.56) and (1.57) and the relations

(δr · ∇)a = ∇(δr · a) + b × δr , (1.78a)

∇ ·
(

δL

δȧ

)
= −1

c
∇ ·
(

∂L
∂e

)
= −1

c
ρ , (1.78b)

we obtain
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δL = − d
dt

[
−
∫

(dr)
δL

δȧ
× b +

∑
a

(
∂L

∂va
− 1

c
qaa(ra)

)]
· δr = 0 . (1.79)

Therefore,

P = −
∫

(dr)
δL

δȧ
× b +

∑
a

(
∂L

∂va
− 1

c
qaa(ra)

)

=
∫

(dr)
1
c
e × b +

∑
a

mava , (1.80)

the total linear momentum of the system, must be constant in time.
Similar considerations are applicable to a rotation of the coordinate sys-

tem. The infinitesimal rotation

r → r + ε × r (1.81)

induces the variation (because a, like ra, is a vector)

δa = (ε × r · ∇)a − ε × a , δφ = (ε × r · ∇)φ , δra = −ε × ra , (1.82)

which must leave the Lagrangian unaltered,

δL =
∫

(dr)
{

δL

δa
· [(ε · r × ∇)a − ε × a] +

δL

δȧ
· [(ε · r × ∇)ȧ − ε × ȧ]

+
δL

δφ
(ε · r × ∇)φ

}
−
∑

a

ε · ra × ∂L

∂ra
−
∑

a

ε · va × ∂L

∂va
= 0 .

(1.83)

However, again using (1.78b),

δL = − d
dt

[
−
∫

(dr) r ×
(

δL

δȧ
× b
)

+
∑

a

ra ×
(

∂L

∂va
− 1

c
qaa(ra)

)]
· ε ,

(1.84)
in consequence of the identity

(ε · r × ∇)a − ε × a = ∇(ε · r × a) + b × (ε × r) , (1.85)

we conclude that

L =
∫

(dr) r ×
(

1
c
e × b

)
+
∑

a

mara × va , (1.86)

the total angular momentum is unchanged in time.
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1.4 Delta Function

Preparatory to determining the fields produced by given distributions of
charge and current, it is useful to consider some properties of the δ func-
tion, and in particular, its connections with the Fourier integral theorem. A
one-dimensional δ function is defined by the statements

∫ x1

x0

dx δ(x) =
{

1 , x1 > 0 > x0 ,
0 , x1 > x0 > 0 , or 0 > x1 > x0 ,

(1.87)

that is, the integral vanishes unless the domain of integration includes the
origin, when the value assumed by the integral is unity. The function δ(x−x′)
has corresponding properties relative to the point x′. Particular examples of
functions possessing these attributes in the limit are

δ(x) = lim
ε→0

1
π

ε

x2 + ε2
, (1.88a)

δ(x) = lim
ε→0

1
ε
e−πx2/ε2 . (1.88b)

An integral representation for δ(x) can be constructed from the formulae

1
π

ε

x2 + ε2
=

1
2π

∫ ∞

−∞
dk eikxe−ε|k| , (1.89a)

1
ε
e−πx2/ε2 =

1
2π

∫
dk eikxe−ε2k2/4π . (1.89b)

If we perform the limiting operation under the integral sign, either expression
yields

δ(x) =
1
2π

∫ ∞

−∞
dk eikx =

1
π

∫ ∞

0

dk cos kx . (1.90)

The three-dimensional δ function already introduced, (1.5), is correctly
represented by

δ(r) = δ(x)δ(y)δ(z) , (1.91)

for δ(r) certainly vanishes unless x, y, and z are simultaneously zero, and the
integral over any volume enclosing the origin is unity. More generally,

δ(r − r′) = δ(x − x′)δ(y − y′)δ(z − z′) . (1.92)

The representation for δ(r), obtained by multiplying individual integrals (1.90)
for the one-dimensional delta functions can be regarded as an integral ex-
tended over the entirety of the space associated with the vector k,

δ(r) =
1

(2π)3

∫
(dk) eik·r . (1.93)

The functional representations mentioned previously, (1.7a) and (1.7b), are
consequences of the formulae
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1
π2

ε

(r2 + ε2)2
=

1
(2π)3

∫
(dk) eik·re−εk , (1.94a)

1
ε3

e−πr2/ε2 =
1

(2π)3

∫
(dk) eik·re−ε2k2/4π . (1.94b)

An arbitrary function of a coordinate x can be represented by a linear
superposition of δ functions,

f(x) =
∫ ∞

−∞
dx′ δ(x − x′)f(x′) , (1.95)

for the entire contribution to the integral comes from the point x′ = x. On
employing the integral representation (1.90) for δ(x − x′), we obtain

f(x) =
1
2π

∫ ∞

−∞
dk eikx

∫ ∞

−∞
dx′ e−ikx′

f(x′) , (1.96)

which states the possibility of constructing an arbitrary function from the
elementary periodic function eikx – the Fourier integral theorem. The corre-
sponding statements in three dimensions are

f(r) =
∫

(dr′) δ(r − r′)f(r′)

=
1

(2π)3

∫
(dk) eik·r

∫
(dr′) e−ik·r′f(r′) , (1.97)

while a function of space and time is represented by

f(r, t) =
∫

(dr′) dt′ δ(r − r′)δ(t − t′)f(r′, t′)

=
1

(2π)4

∫
(dk) dω ei(k·r−ωt)

∫
(dr′) dt′ e−i(k·r′−ωt′)f(r′, t′) .

(1.98)

Thus, an arbitrary function f(r, t) can be synthesized by a proper su-
perposition of the functions exp[i(k · r − ωt)], which are the mathematical
descriptions of plane waves, harmonic disturbances propagating in the direc-
tion of the vector k, with a space periodicity length or wavelength λ = 2π/|k|,
and a time periodicity or period T = 2π/ω.

1.5 Radiation Fields

The treatment of an electrodynamic problem involves two preliminary stages;
the evaluation of the fields produced by a given array of charges moving in
a prescribed fashion, and the determination of the motion of a charge acted
on by a given electromagnetic field. The correct solution of the problem is
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obtained when these two aspects of the situation are consistent, that is, when
the charges move in such a way that the fields they generate produce precisely
this state of motion. We turn to a discussion of the first stage, the calculation
of the fields produced by a given distribution of charge and current.

The auxiliary quantities, the vector and scalar potentials, have been intro-
duced in order to satisfy identically the second set of field equations (1.19b).
Determining equations for the potentials are obtained on substituting the rep-
resentations (1.48) for e and b in the first set of equations (1.19a), with the
result (

∇2 − 1
c2

∂2

∂t2

)
φ = −1

c

∂

∂t

(
∇ · a +

1
c

∂

∂t
φ

)
− ρ , (1.99a)

(
∇2 − 1

c2

∂2

∂t2

)
a = ∇

(
∇ · a +

1
c

∂

∂t
φ

)
− 1

c
j . (1.99b)

It is always possible to impose the condition

∇ · a +
1
c

∂

∂t
φ = 0 , (1.100)

for if this quantity does not vanish, one can, by a suitable gauge transfor-
mation, introduce new potentials for which the condition is valid. Thus if a′,
φ′ are obtained from a and φ by a gauge transformation associated with the
function ψ, as in (1.49)

∇ · a′ +
1
c

∂

∂t
φ′ = ∇ · a +

1
c

∂

∂t
φ −

(
∇2 − 1

c2

∂2

∂t2

)
ψ , (1.101)

and ψ can always be chosen to produce the desired result. With this restric-
tion upon the potentials, which is referred to as the Lorenz condition,2 the
determining equations for the potentials become

(
∇2 − 1

c2

∂2

∂t2

)
φ = −ρ , (1.102a)

(
∇2 − 1

c2

∂2

∂t2

)
a = −1

c
j . (1.102b)

It should be noted that the potentials are still not unique, for a gauge trans-
formation, with the scalar function ψ satisfying

(
∇2 − 1

c2

∂2

∂t2

)
ψ = 0 (1.103)

is compatible with the Lorenz condition.
The charge and current densities, as prescribed functions of the space and

time coordinates, can be represented in terms of plane waves as in (1.98).
Thus,
2 Often mistakenly attributed to H. A. Lorentz, the Lorenz condition actually orig-

inated with L.V. Lorenz.



18 1 Maxwell’s Equations

ρ(r, t) =
1

(2π)4

∫
(dr′) dt′

∫
(dk) dω eik·(r−r′)−iω(t−t′)ρ(r′, t′) . (1.104)

The advantage of this Fourier integral representation is that a particular so-
lution for the potentials can be constructed by inspection. For example, from
(1.102a),

φ(r, t) =
1

(2π)4

∫
(dk) dω

∫
(dr′) dt′

eik·(r−r′)−iω(t−t′)

k2 − ω2/c2
ρ(r′, t′) . (1.105)

As a first step in the simplification of this result, consider the Green’s function

G(r) =
∫

(dk)
(2π)3

eik·r

k2 − ω2/c2
, (1.106)

which is a solution of the differential equation
(
∇2 +

ω2

c2

)
G(r) = −δ(r) . (1.107)

Upon introducing polar coordinates in the k space, we obtain

G(r) =
1

(2π)3

∫
dθ sin θ 2π k2dk

eikr cos θ

k2 − ω2/c2
=

1
2π2r

∫ ∞

0

k dk
sin kr

k2 − ω2/c2
,

(1.108)
or, equivalently,

G(r) = − i

8π2r

∫ ∞

−∞
dk

(
eikr

k − ω/c
+

eikr

k + ω/c

)
. (1.109)

An essential complication can no longer be ignored; the integrand becomes
infinite at k = ±ω/c. The difficulty can be avoided in a purely formal manner
by supposing that 1/c has a small imaginary part which will be eventually
be allowed to vanish. If the imaginary part of 1/c is positive,3 the integrand,
considered as a function of the complex variable k, has a simple pole at ω/c in
the upper half plane, and a simple pole at −ω/c in the lower half plane. The
path of integration along the real axis can be closed by an infinite semicircle
drawn in the upper half plane without affecting the value of the integral, since
r is positive. Within this closed contour the integrand is everywhere analytic
save at the simple pole at k = ω/c. Hence, by the theorem of residues,

G(r) =
eiωr/c

4πr
. (1.110)

If the imaginary part of 1/c is negative, the position of the poles is reflected
in the real axis, and the pole at k = −ω/c lies in the upper half plane. For
this situation,
3 This is equivalent to distorting the k contour to avoid the poles by passing below

the pole at +ω/c, and above the pole at −ω/c.
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G(r) =
e−iωr/c

4πr
. (1.111)

It can be directly verified that the two functions e±iωr/c/(4πr) are solutions
of the differential equation (1.107) for G(r). It must be shown that (∇2 +
ω2/c2)e±iωr/c/(4πr) has the properties of −δ(r), which will be achieved on
demonstrating that

∫
(dr)

(
∇2 +

ω2

c2

)
e±iωr/c

4πr
= −1 (1.112)

for any region of integration that includes the origin. It is sufficient to consider
a sphere of arbitrary radius R. Thus, we are required to prove that

R2 d
dR

(
e±iωR/c

R

)
+

ω2

c2

∫ R

0

r dr e±iωr/c = −1 , (1.113)

which is easily checked. It is apparent, then, that the difficulty encountered by
the Fourier integral method arises from the existence of two solutions for G(r)
and, in consequence, for the potentials. Which of these solutions to adopt can
only be decided by additional physical considerations.

Tentatively choosing (1.110), we obtain from (1.105)

φ(r, t) =
1
2π

∫
dω (dr′) dt′

eiω|r−r′|/c−iω(t−t′)

4π|r − r′| ρ(r′, t′) . (1.114)

The integral with respect to ω is recognized as that of a delta function,

φ(r, t) =
∫

(dr′) dt′
δ (t′ − t + |r − r′|/c)

4π|r − r′| ρ(r′, t′) , (1.115)

and if the integration with respect to t′ is performed,

φ(r, t) =
∫

(dr′)
ρ (r′, t − |r − r′|/c)

4π|r − r′| . (1.116)

This result expresses the scalar potential at the point r and time t in terms
of the charge density at other points of space and earlier times, the time
interval being just that required to traverse the spatial separation at the
speed c. The formula thus contains a concise description of the propagation
of electromagnetic fields at the speed of light. Evidently, had the solution
e−iωr/c/(4πr) been adopted for G(r), the evaluation of the potential at a time
t would have involved a knowledge of the charge density at later times. This
possibility must be rejected, for it requires information which, by the nature
of the physical world, is unavailable.4 The corresponding solution of (1.102b)
for the vector potential, in its several stages of development, is
4 However, it is actually possible to use advanced Green’s functions, with suitable

boundary conditions, to describe classical physics (see [14]). This led Feynman to
the discovery of the causal or Feynman propagator (see Problem 1.37).
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a(r, t) =
1
2π

∫
dω (dr′) dt′

eiω|r−r′|/c−iω(t−t′)

4π|r − r′|
1
c
j(r′, t′)

=
∫

(dr′) dt′
δ (t′ − t + |r − r′|/c)

4π|r − r′|
1
c
j(r′, t′)

=
1
c

∫
(dr′)

j (r′, t − |r − r′|/c)
4π|r − r′| . (1.117)

These solutions for the vector and scalar potentials, the so-called retarded
potentials, satisfy the Lorenz condition. This is most easily demonstrated
with the form the potentials assume before the integration with respect to
the time t′. The quantity δ (t′ − t + |r − r′|/c) /(4π|r − r′|) involves only the
difference of time and space coordinates. Therefore derivatives with respect to
t or r can be replaced by corresponding derivatives acting on t′ and r′, with
a compensating sign change. Hence, with a suitable integration by parts,

∇ · a(r, t) +
1
c

∂

∂t
φ(r, t) =

1
c

∫
(dr′) dt′

δ (t′ − t + |r − r′|/c)
4π|r − r′|

×
(

∇′ · j(r′, t′) +
∂

∂t′
ρ(r′, t′)

)
= 0 , (1.118)

in consequence of the conservation of charge, (1.14).
As a particular example, consider a point charge moving in a prescribed

fashion, that is, its position r(t) and velocity v(t) are given functions of time.
The charge and current densities are, accordingly, represented by

ρ(r, t) = q δ(r − r(t)) , j(r, t) = q v(t)δ(r − r(t)) . (1.119)

The most convenient form for the potentials is, again, that involving the delta
function. On integrating over the space variable r′, we obtain from (1.115)
and (1.117)

φ(r, t) =
q

4π

∫
dt′

δ(t′ − t + |r − r(t′)|/c)
|r − r(t′)| , (1.120a)

a(r, t) =
q

4π

∫
dt′

v(t′)
c

δ(t′ − t + |r − r(t′)|/c)
|r − r(t′)| . (1.120b)

The entire contribution to these integrals comes from the time τ defined by

t − τ =
|r − r(τ)|

c
, (1.121)

which is evidently the time at which an electromagnetic field, moving at the
speed c, must leave the position of the charge in order to reach the point of
observation r at the time t. In performing the final integration with respect
to t′, one must be careful to observe that dt′ is not the differential of the δ
function’s argument, and that therefore a change of variable is required. Thus
calling
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η(t′) = t′ − t +
|r − r(t′)|

c
, (1.122)

we obtain for the scalar potential

φ(r, t) =
q

4π

(
dt′

dη

|r − r(t′)|

)

t′=τ

. (1.123)

However,
dη

dt′
= 1 − v(t′)

c
· r − r(t′)
|r − r(t′)| , (1.124)

and therefore

φ(r, t) =
q

4π

1
|r − r(τ)| − v(τ) · (r − r(τ))/c

. (1.125)

Similarly,

a(r, t) =
q

4π

1
cv(τ)

|r − r(τ)| − v(τ) · (r − r(τ))/c
=

v(τ)
c

φ(r, t) . (1.126)

The direct evaluation of the fields from these potentials, the so-called
Liénard–Wiechert potentials, is rather involved, for the retarded time τ is
an implicit function of r and t. The calculation proceeds more easily by first
deriving the fields from the δ function representation of the potentials and
then performing the integration with respect to t′. However, no details will be
given (see Problems 1.7 and 1.8).

1.5.1 Multipole Radiation

A problem of greater interest is that of a distribution of charge with a spa-
tial extension sufficiently small so that the charge distribution changes only
slightly in the time required for light to traverse it. Otherwise expressed, the
largest frequency ν = ω/2π that occurs in the time Fourier decomposition of
the charge density must be such that νa/c � 1, where a is a length, repre-
sentative of the system’s linear dimensions. Equivalently, the corresponding
wavelength λ = c/ν must be large in comparison with a. Molecular systems
(a ∼ 10−8 cm) possess this property for optical and even for ultraviolet fre-
quencies (λ ∼ 10−6 cm), and the condition λ � a is more than adequately
fulfilled for wavelengths in the microwave region (λ ∼ 1 cm). Under these con-
ditions, the difference in retarded time t−|r − r′|/c between various parts of a
molecule is of secondary importance, and to a first approximation all retarded
times can be identified with that of some fixed point in the molecule, which
we shall choose as the origin of coordinates. In a more precise treatment, the
difference between t − |r − r′|/c and t − r/c can be taken into account by
expansion of the charge and current densities, as follows:
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ρ(r′, t−|r − r′|/c) = ρ(r′, t−r/c)+(r−|r − r′|)1
c

∂

∂t
ρ(r′, t−r/c)+· · · . (1.127)

However, we shall be concerned primarily with the field at a great distance
from the center of the molecule (considered to be at rest). Rather than intro-
duce our approximation in two steps, we proceed more directly by regarding
r′ as small in comparison with r wherever it occurs in the retarded potential
expressions. It must not be forgotten that two approximations are thereby
introduced, r � a and λ � a. With these remarks, we insert the Taylor series
expansion

ρ(r′, t − |r − r′|/c)
|r − r′| =

(
1 − r′ · ∇ +

1
2
(r′ · ∇)2 − · · ·

)
ρ(r′, t − r/c)

r
(1.128)

in the retarded scalar potential integral (1.116)

4πφ(r, t) =
∫

(dr′) ρ(r′, t − r/c)
r

− ∇ ·
∫

(dr′) r′ ρ(r′, t − r/c)
r

+
1
2
∇∇:

∫
(dr′) r′r′ρ(r′, t − r/c)

r
− · · · . (1.129)

In terms of the total charge, electric dipole moment, and electric quadrupole
moment dyadic,5

q =
∫

(dr) ρ(r, t) , (1.131a)

d(t) =
∫

(dr) r ρ(r, t) , (1.131b)

Q(t) =
∫

(dr) r r ρ(r, t) , (1.131c)

the first three terms of the expansion are

4πφ(r, t) =
q

r
− ∇ · d(t − r/c)

r
+

1
2
∇∇:

Q(t − r/c)
r

. (1.132)

The notation A:B for dyadics designates the scalar product,

A:B =
∑
i,j

AijBji . (1.133)

In a similar fashion, the expansion of the vector potential (1.117) is

5 Usually, the electric quadrupole dyadic is defined by

Q = 3

∫
(dr)

(
rr − 1

3
r21
)

ρ (1.130)

so that Tr Q = 0 [see (2.48)].
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4πa(r, t) =
1
c

∫
(dr′) j(r′, t − r/c)

r
−∇· 1

c

∫
(dr′) r′ j(r′, t − r/c)

r
+· · · . (1.134)

Two terms suffice to give the same degree of approximation as the first three
terms in the scalar potential expansion. The integrals can be re-expressed in
convenient form with the aid of the conservation equation,

∇ · j +
∂

∂t
ρ = 0 . (1.135)

Multiplying (1.135) by r and rearranging the terms, we obtain

∂

∂t
rρ + ∇ · (jr) = j . (1.136)

The process of volume integration, extended over the entire region occupied
by the charge distribution, yields

∫
(dr) j(r, t) =

d
dt

d(t) . (1.137)

Corresponding operations with r replaced by the dyadic rr give, successively,

∂

∂t
rr ρ + ∇ · (jrr) = rj + jr , (1.138a)∫

(dr) (rj(r, t) + j(r, t)r) =
d
dt

Q(t) . (1.138b)

Now,

rj =
rj + jr

2
+

rj − jr
2

=
rj + jr

2
− 1

2
1 × (r × j) , (1.139)

and therefore

4πa(r, t) =
1
c

∂

∂t

d(t − r/c)
r

+∇×m(t − r/c)
r

− 1
2c

∂

∂t
∇ · Q(t − r/c)

r
, (1.140)

where
m(t) =

1
2c

∫
(dr) r × j(r, t) (1.141)

is the magnetic dipole moment of the system.
For a neutral molecule, q = 0, and the dominant term in the scalar poten-

tial expansion (1.132) is that associated with the electric dipole moment. The
quadrupole moment contribution is smaller by a factor of the same magnitude
as the larger of the two ratios a/λ, a/r, and will be discarded. The electric
dipole moment term predominates in the vector potential expansion (1.140)
save for static or quasistatic phenomena when the magnetic dipole moment
effect may assume importance. The quadrupole moment term will also be dis-
carded here. Thus, under the conditions contemplated, the potentials can be
expressed in terms of two vectors, the electric and magnetic Hertz vectors,
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Πe(r, t) =
1

4πr
d(t − r/c) , (1.142a)

Πm(r, t) =
1

4πr
m(t − r/c) , (1.142b)

by

φ(r, t) = −∇ · Πe(r, t) , (1.143a)

a(r, t) =
1
c

∂

∂t
Πe(r, t) + ∇ × Πm(r, t) . (1.143b)

The consistency of the approximations for the vector and scalar potentials
is verified on noting that these expressions satisfy the Lorenz condition (this
statement also applies to the discarded quadrupole moment terms). The elec-
tric and magnetic field intensities are given by

e = ∇∇ · Πe −
1
c2

∂2

∂t2
Πe −

1
c

∂

∂t
∇ × Πm , (1.144a)

b = ∇ × (∇ × Πm) +
1
c

∂

∂t
∇ × Πe

= ∇∇ · Πm −∇2Πm +
1
c

∂

∂t
∇ × Πe . (1.144b)

The Hertz vectors can be considered as the retarded solutions of the dif-
ferential equations, because −∇21/r = 4πδ(r),

(
∇2 − 1

c2

∂2

∂t2

)
Πe(r, t) = −d(t)δ(r) ≡ −d(r, t) , (1.145a)

(
∇2 − 1

c2

∂2

∂t2

)
Πm(r, t) = −m(t)δ(r) ≡ −m(r, t) . (1.145b)

The fields associated with the Hertz vectors can be regarded as produced by
point distributions of charge and current. Since

∇ × b − 1
c

∂

∂t
e = −1

c

∂

∂t

(
∇2 − 1

c2

∂2

∂t2

)
Πe − ∇ ×

(
∇2 − 1

c2

∂2

∂t2

)
Πm

=
1
c

∂

∂t
p(r, t) + ∇ × m(r, t) (1.146)

and

∇ · e = ∇ ·
(
∇2 − 1

c2

∂2

∂t2

)
Πe = −∇ · d(r, t) , (1.147)

the required distributions are

ρeff = −∇ · d(r, t) , (1.148a)

jeff =
∂

∂t
p(r, t) + c∇ × m(r, t) . (1.148b)
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Notice that the dipole moments of this effective distribution are those of the
original molecule,

∫
(dr) r ρeff = −

∫
(dr) r∇ · d(r, t) =

∫
(dr)d(r, t)

= d(t) , (1.149a)
1
2c

∫
(dr) r × jeff =

1
2

∫
(dr) r × [∇ × m(r, t)] =

∫
(dr)m(r, t)

= m(t) . (1.149b)

Use has been made of the two identities

r∇ · A = ∇ · (Ar) − A , (1.150a)
r × (∇ × A) = ∇(A · r) − ∇ · (rA) + 2A , (1.150b)

and of the fact that ∫
(dr) r δ(r) = 0 . (1.151)

Therefore, the actual charge–current distribution in the molecule can be re-
placed by the effective point distribution without altering the values of the
moments, or of the field at a sufficient distance from the molecule (r � a,
λ � a).

Although the fields deduced from the effective distribution do not agree
with the actual fields in the neighborhood of the molecule, nevertheless cer-
tain average properties of the fields are correctly represented. We shall show
that the field intensities averaged over the volume contained in a sphere that
includes the molecule, but is small in comparison with all wavelengths, is
given correctly by the fields calculated from the effective distribution. It will
follow, a fortiori, that the same property is maintained for any larger region
of integration. In the immediate vicinity of the molecule, the potentials can
be calculated, to a first approximation, by ignoring the finite propagation
velocity of light,

φ(r, t) =
∫

(dr′)
ρ(r′, t)

4π|r − r′| , (1.152a)

a(r, t) =
1
c

∫
(dr′)

j(r′, t)
4π|r − r′| . (1.152b)

The fields are, correspondingly,

e(r, t) = −∇
∫

(dr′)
ρ(r′, t)

4π|r − r′| =
∫

(dr′) ρ(r′, t)∇′ 1
4π|r − r′| , (1.153a)

b(r, t) = ∇ × 1
c

∫
(dr′)

j(r′, t)
4π|r − r′| =

1
c

∫
(dr′) j(r′, t) × ∇′ 1

4π|r − r′| .

(1.153b)
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The vector potential contribution to the electric field has been discarded in
comparison with the electrostatic field. These fields are to be integrated over
the volume VS of a sphere which includes the entire molecule. The center of
the sphere bears no necessary relation to the molecule. The integration for
both fields requires an evaluation of

∫
VS

(dr)
4π|r − r′| , (1.154)

extended over the sphere. On remarking that

∇′2 1
4π|r − r′| = −δ(r − r′) (1.155)

as the static limit of the differential equation satisfied by G(r), (1.107), it is
observed that

∇′2
∫

VS

(dr)
4π|r − r′| = −1 , (1.156)

provided that the point r′ is within the sphere, as required by the assumption
that the sphere encompasses the entire molecule. If the origin of coordinates
is temporarily moved to the center of the sphere, it may be inferred that

∫
VS

(dr)
4π|r − r′| = −r′2

6
+ ψ(r′) , (1.157)

where ψ(r′) is a solution of Laplace’s equation,

∇′2ψ(r′) = 0 , (1.158)

which, by symmetry, can depend only on the distance to the center of the
sphere. Such a function must be a constant, for on integration of Laplace’s
equation over a sphere of radius r, and employing the divergence theorem,
one obtains

4πr2 d
dr

ψ(r) = 0 , (1.159)

which establishes the constancy of ψ(r) within the sphere. Therefore,

∇′
∫

VS

(dr)
4π|r − r′| = −1

3
r′ , (1.160)

which is independent of the radius of the sphere. It immediately follows from
(1.153a) and (1.153b) that

∫
VS

(dr) e(r, t) = −1
3

∫
(dr′) r′ ρ(r′, t) , (1.161a)

∫
VS

(dr)b(r, t) =
1
3c

∫
(dr′) r′ × j(r′, t) . (1.161b)
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The vector r′ is referred to the center of the sphere as origin. To return to
the origin of coordinates established at the center of the molecule, r′ must
be replaced by r′ + R, where R is the position vector of the center of the
molecule relative to the center of the sphere. Finally, then, using (1.137),

∫
VS

(dr) e(r, t) = −1
3
d(t) , (1.162a)

∫
VS

(dr)b(r, t) =
2
3
m(t) +

1
3c

R × ḋ(t) , (1.162b)

provided that the molecule is electrically neutral. The essential result of this
calculation is that the volume integrals depend only upon the moments of the
system, not upon the detailed charge–current distribution. Now the effective
point distribution, (1.148a) and (1.148b), predicts the correct values of the
moments, and must therefore lead to the same integrated field intensities.

The explicit calculation of the fields derived by (1.144a) and (1.144b) from
the electric Hertz vector (1.142a) gives

4πe =
(

3r r · d
r5

− d
r3

)
+

1
c

(
3r r · ḋ

r4
− ḋ

r2

)
+

1
c2

r × (r × d̈)
r3

,

(1.163a)

4πb = −1
c

r × ḋ
r3

− 1
c2

r × d̈
r2

. (1.163b)

The electric dipole moment and its time derivative are to be evaluated at the
retarded time t − r/c. The relative orders of magnitude of the three types of
terms in the electric field are determined by the ratio r/λ. For r/λ � 1 (but
r/a � 1), the electric field is essentially that of a static dipole. However, if
r/λ � 1, the last term in both fields predominates, and

4πe =
1
c2

r × (r × d̈)
r3

=
1
c2

n × (n × d̈)
r

, (1.164a)

4πb = − 1
c2

r × d̈
r2

= − 1
c2

n × d̈
r

, (1.164b)

where
n =

r
r

(1.165)

is a radial unit vector. Note that at these large distances, the electric and
magnetic fields are transverse to the direction of observation and to each
other, and equal in magnitude,

e = b × n , b = n × e . (1.166)

Therefore, the energy flux vector
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S = c e × b = n c e2 =
n

4πr2

(n × d̈)2

4πc3
(1.167)

is directed radially outward from the molecule and the net amount of energy
which leaves a sphere of radius r per unit time is

P =
∮

dS n · S =
∫ π

0

2πr2 sin θ dθ

4πr2

(d̈)2

4πc3
sin2 θ =

2
3c3

1
4π

(d̈)2 . (1.168)

This expression is independent of the radius of the sphere, except insofar as
the radius r determines the time of emission of the field under observation,
and represents the rate at which the molecule loses energy by radiation. In
the particular situation of a dipole moment that oscillates harmonically with
a single frequency,

d(t) = d0 cos ωt , (1.169)

the rate of emission of energy is

P =
2

3c3

ω4

4π
(d0)2 cos2 ω(t − r/c) , (1.170)

which fluctuates about the average value

P =
ω4

3c3

1
4π

(d0)2 . (1.171)

The fields generated by a magnetic dipole moment can be obtained from
the electric dipole fields by the substitutions6

d → m , e → b , b → −e , (1.172)

that is

4πb =
(

3r r · m
r5

− m
r3

)
+

1
c

(
3r r · ṁ

r4
− ṁ

r2

)
+

1
c2

r × (r × m̈)
r3

,

(1.173a)

4πe =
1
c

r × ṁ
r3

+
1
c2

r × m̈
r2

, (1.173b)

and correspondingly, the rate of radiation is

P =
2

3c3

1
4π

(m̈)2 . (1.174)

6 See (1.144a) and (1.144b), and the fact that the Hertz vectors satisfy the wave
equation away from the origin, (1.145a) and (1.145b). This symmetry is an ex-
ample of electromagnetic duality, which is further explored in Problems 1.23 and
1.25.
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If oscillating electric and magnetic dipoles are present simultaneously, the
total energy radiated per unit time is the sum of the individual radiation
rates, for the outward energy flux is

n · S = c e2 =
1

4πr2

1
4πc3

[
(n × d̈)2 + (n × m̈)2 + 2n · (d̈ × m̈)

]
, (1.175)

and the interference term disappears on integration over all directions of emis-
sion.

1.5.2 Work Done by Charges

It is instructive to calculate the rate of radiation by a system in a quite
different manner, which involve evaluating the rate at which the charges in the
molecule do work on the field and thus supply the energy which is dissipated
in radiation. The precise statement of the consequence of energy conservation
is obtained from (1.44a)

−
∫

V

(dr) e · j =
d
dt

E + P , (1.176)

in which the integration is extended over a region V encompassing the mole-
cule, and from (1.20a)

E =
∫

V

(dr)
e2 + b2

2
(1.177)

is the total electromagnetic energy associated with the molecule, while from
(1.20b), the integral extended over the surface S bounding V

P =
∮

S

dS n · c e × b (1.178)

is the desired amount of energy leaving the system per unit time. This ap-
proach to the problem has the advantage of determining E and P simultane-
ously. In the evaluation of

∫
(dr) e · j, we are concerned only with the fields

within the region occupied by charge. The effect of retardation, or the fi-
nite speed of light, is slight and the difference between the charge density at
the retarded time and at the local time can be expressed by a power series
expansion, with 1/c regarded as a small parameter,

ρ(r′, t − |r − r′|/c) = ρ(r′, t) − |r − r′|
c

∂

∂t
ρ(r′, t)

+
|r − r′|2

2c2

∂2

∂t2
ρ(r′, t) − |r − r′|3

6c3

∂3

∂t3
ρ(r′, t) + · · · .

(1.179)

Hence, from (1.116),
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4πφ(r, t) =
∫

(dr′)
ρ(r′, t)
|r − r′| +

1
2c2

∂2

∂t2

∫
(dr′) |r − r′|ρ(r′, t)

− 1
6c3

∂3

∂t3

∫
(dr′) |r − r′|2ρ(r′, t) + · · · , (1.180)

on employing charge conservation to discard the second term in the expansion.
To the same order of approximation it is sufficient to write from (1.117)

4πa(r, t) =
1
c

∫
(dr′)

j(r′, t)
|r − r′| −

1
c2

d
dt

∫
(dr′) j(r′, t)

=
1
c

∫
(dr′)

j(r′, t)
|r − r′| −

1
c2

d2

dt2
d(t) , (1.181)

which uses (1.137), for we have consistently retained terms of the order 1/c3

in the electric field intensity, from (1.48)

4πe(r, t) = −∇
∫

(dr′)
ρ(r′, t)
|r − r′| −

1
2c2

∂2

∂t2

∫
(dr′)

r − r′

|r − r′|ρ(r′, t)

+
1

3c3

∂3

∂t3

∫
(dr′) (r − r′)ρ(r′, t) − 1

c2

∂

∂t

∫
(dr′)

j(r′, t)
|r − r′|

+
1
c3

d3

dt3
d(t) . (1.182)

Now,

∂

∂t

∫
(dr′) (r − r′)ρ(r′, t) = r

d
dt

∫
(dr′) ρ(r′, t) − d

dt

∫
(dr′) r′ ρ(r′, t)

= − d
dt

d(t) (1.183)

and

∂

∂t

∫
(dr′)

r − r′

|r − r′|ρ(r′, t) = −
∫

(dr′)
r − r′

|r − r′|∇
′ · j(r′, t) = −

∫
(dr′)

j(r′, t)
|r − r′|

+
∫

(dr′)
(r − r′)(r − r′) · j(r′, t)

|r − r′|3 , (1.184)

whence

4πe(r, t) = −∇
∫

(dr′)
ρ(r′, t)
|r − r′| −

1
2c2

∂

∂t

∫
(dr′)

[
j(r′, t)
|r − r′|

+
(r − r′)(r − r′) · j(r′, t)

|r − r′|3

]
+

2
3c3

d3

dt3
d(t) . (1.185)

Therefore, in (1.176) we encounter
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−4π

∫
(dr) j · e =

d
dt

[
1
2

∫
(dr) (dr′)

ρ(r, t)ρ(r′, t)
|r − r′|

+
1

4c2

∫
(dr) (dr′)

{
j(r, t) · j(r′, t)

|r − r′|

+
(r − r′) · j(r, t) (r − r′) · j(r′, t)

|r − r′|3

}]
− 2

3c3
ḋ(t) · ˙̈d(t) ,

(1.186)

for
∫

(dr) j(r, t) · ∇
∫

(dr′)
ρ(r′, t)
|r − r′| = −

∫
(dr) (dr′)∇ · j(r, t) ρ(r′, t)

|r − r′|

=
d
dt

1
2

∫
(dr) (dr′)

ρ(r, t)ρ(r′, t)
|r − r′| ,

(1.187)

and we have used (1.137) again. As a last rearrangement,

− 2
3c3

ḋ · ˙̈d = − d
dt

(
2

3c3
ḋ · d̈

)
+

2
3c3

(d̈)2 . (1.188)

The integral −
∫

(dr) j · e has thus been expressed in the desired form (1.176)
as the time derivative of a quantity plus a positive definite expression which
is to be identified with the rate of radiation,

P =
2

3c3

1
4π

(d̈)2 . (1.189)

Correct to terms of order 1/c2 the electromagnetic energy of the molecule is7

E =
1
2

∫
(dr) (dr′)

ρ(r, t)ρ(r′, t)
4π|r − r′|

+
1

4c2

∫
(dr) (dr′)

(
j(r, t) · j(r′, t)

4π|r − r′| +
(r − r′) · j(r, t) (r − r′) · j(r′, t)

4π|r − r′|3

)
.

(1.191)

Magnetic dipole radiation first appears in that approximation which retains
terms of the order 1/c5, with the expected result (1.174).
7 It is the presence of the third term in (1.191) that results in the attraction between

like currents, described by the magnetostatic energy

E = − 1

2c2

∫
(dr) (dr′)

J(r) · J(r′)

4π|r − r′| . (1.190)

See [9], Chap. 33.
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1.6 Macroscopic Fields

The electromagnetic fields within material bodies, composed of enormous
numbers of individual particles, are extremely complicated functions of posi-
tion and time, on an atomic scale. Even if the formidable task of construct-
ing the fields in a given situation could be performed, the description thus
obtained would be unnecessarily elaborate, for it would contain information
that could not be verified by our gross, macroscopic measuring instruments
which respond only to the effects of many elementary particles. A macroscopic
measurement of the instantaneous value of the field at a point is, in reality, a
measurement of an average field within a region containing many atoms and
extending over an interval of time large in comparison with atomic periods.
It is natural, then, to seek an approximate form of the theory, so devised that
the quantities which are the object of calculation are such averaged fields from
which microscopic inhomogeneities have been removed, rather than the actual
fields themselves. Such a program can be carried out if a length L and a time
interval T exist which are small in comparison with distances and times in
which macroscopic properties change appreciably, but large compared with
atomic distances and times. These conditions are adequately satisfied under
ordinary circumstances, failing only for matter of very low density or peri-
odic fields of extremely short wavelength. Any quantity exhibiting enormous
microscopic fluctuations, such as a field intensity, can be replaced by a mi-
croscopically smoothed quantity possessing only macroscopic variations by an
averaging process conducted over a temporal interval T and a spatial region
of linear extension L. Thus

f(r, t) =
1
V

∫
|r′|<L/2

(dr′)
1
T

∫ T/2

−T/2

dt′ F (r + r′, t + t′) (1.192)

defines a space–time average of the function f(r, t), extended through the
time interval from t − T/2 to t + T/2, and over a spatial region of volume V
which may be considered a sphere of diameter L drawn about the point r.
This averaging process has the important property expressed by

∇f(r, t) = ∇f(r, t) ,
∂

∂t
f(r, t) =

∂

∂t
f(r, t) , (1.193)

providing that the averaging domains are identical for all points of space and
time. Hence, any linear differential equation connecting field variables can be
replaced by formally identical equations for the averaged fields. Thus, in terms
of the averaged field intensities,

e(r, t) =
√

ε0 E(r, t) , b(r, t) =
1

√
µ0

B(r, t) , (1.194)

the averaged Maxwell–Lorentz equations (1.19a) and (1.19b) read
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∇ × 1
µ0

B =
∂

∂t
ε0E +

√
ε0 j , ∇ · ε0E =

√
ε0 ρ , (1.195a)

∇ × E = − ∂

∂t
B , ∇ · B = 0 , (1.195b)

in which we have introduced two new constants, ε0 and µ0, related by

ε0µ0 =
1
c2

, (1.196)

in order to facilitate the eventual adoption of a convenient system of units (SI)
for macroscopic applications. Such averaged equations will be meaningful to
the extent that they are independent of the precise size of the space–time
averaging regions, within certain limits. This will be true if the sources of the
macroscopic fields E and B, namely the averaged charge and current densities,
can be expressed entirely in terms of the macroscopic field quantities and other
large scale variables (temperature, density, etc.).

The actual charge distribution within a material medium arises not only
from the charges within neutral atoms and molecules, which we shall call the
bound charge, but also from relatively freely moving electrons (conduction
electrons) and the charged atoms (ions) from which they have been removed.8

The latter source of charge will be termed the free charge. We have already
shown that the true bound charge–current distribution within a molecule can
be replaced by an equivalent point distribution without affecting the values
of integrated fields, or averaged fields, within a region large compared to the
molecule. Hence, for the purpose of evaluating ρ and j, the actual charge–
current distribution can be written as the sum of a free charge distribution
and the equivalent point distributions for the neutral molecules (and the ions,
save for their net charge), given in (1.148a) and (1.148b),

ρ(r, t) = ρf (r, t) − ∇ · d(r, t) , (1.197a)

j(r, t) = jf (r, t) +
∂

∂t
d(r, t) + c∇ × m(r, t) , (1.197b)

where, summed over the molecules,

d(r, t) =
∑

a

da(t) δ(r − ra) , m(r, t) =
∑

a

ma(t) δ(r − ra) . (1.198)

The averaged charge and current densities will be expressed, in the same form,
in terms of averaged free charge and current densities and

d(r, t) = nd , m(r, t) = nm (1.199)

are the average dipole moments of a molecule within the smoothing region
(in addition to the time average, a statistical average among the molecules is

8 Holes in a semiconductor could also be contemplated.
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implied), multiplied by the average density n of molecules at the macroscopic
point in question. With the notation

ρf (r, t) =
1√
ε0

ρ(r, t) , jf (r, t) =
1√
ε0

J(r, t) , (1.200a)

d(r, t) =
1√
ε0

P(r, t) , m(r, t) =
√

µ0 M(r, t) (1.200b)

for the macroscopic quantities measuring the free charge and current densities,
and the electric and magnetic intensities of polarization (dipole moment per
unit volume),9 the averaged charge and current densities are

√
ε0 ρ = ρ − ∇ · P , (1.201a)

√
ε0 j = J +

∂

∂t
P + ∇ × M . (1.201b)

Therefore, the first set of the averaged microscopic field equations (1.195a) –
the Maxwell equations – read

∇ × H =
∂

∂t
D + J , ∇ · D = ρ , (1.202a)

where
H =

1
µ0

B − M , D = ε0E + P , (1.202b)

while the second set (1.195b) are unchanged. Thus the starting equations
(1.1a) and (1.1b) are recovered.

We also record the SI forms of the energy, energy flux vector, and momen-
tum in vacuum (M = P = 0):

U =
1
2
(ε0E

2 + µ0H
2) , (1.203a)

S = E × H , (1.203b)
G = D × B . (1.203c)

The form of energy and momentum conservation in a medium is much more
subtle, and will be treated subsequently.

1.7 Problems for Chap. 1

Note – In these problems, and in following chapters, we will use E, B, and
A to denote the electric and magnetic fields, and the vector potential, both
in macroscopic and microscopic situations, and we will use Heaviside–Lorentz
9 P and M are also referred to as the electric polarization and the magnetization,

respectively.
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units for both, except in waveguide applications, which have a more engineer-
ing flavor. Again we remind the reader of the simple conversion factors nec-
essary to pass between SI, Heaviside–Lorentz, and Gaussian units, described
in the Appendix.

1. Verify the representations (1.7a) and (1.7b) for the three-dimensional
delta function. Alternatively, derive them from the Fourier representa-
tions (1.94a) and (1.94b).

2. Establish the identities (1.22a) and (1.22b), and then prove the conserva-
tion statements (1.21) in empty space.

3. Prove the local statements of field energy and momentum nonconservation
(1.44a) and (1.44b) from the inhomogeneous Maxwell equations (1.19a)
and (1.19b).

4. Show that the energy is given by (1.75) by inserting (1.59) into (1.74);
similarly, fill in the steps leading to (1.80) and (1.86).

5. Without reference to potentials, show that

−�2E =
(
−∇ρ − 1

c2

∂

∂t
j
)

, (1.204a)

−�2B =
1
c
∇ × j . (1.204b)

Here we have introduced the “d’Alembertian,” or wave operator,

�2 = − ∂2

c2∂t2
+ ∇2 . (1.205)

Use the retarded solution of these equations to arrive at the asymptotic
radiation fields of a bounded current distribution. (Do not forget charge
conservation, ∂

∂tρ + ∇ · j = 0.)
6. Starting from the Liénard–Wiechert potentials (1.125) and (1.126), work

out ∂τ/∂t and ∇τ and so recognize that
{

φ
A

}
(r, t) =

q

4π

1
|r − r(τ)|

{
∂τ/∂t

1
c∂r(τ)/∂t

}
. (1.206)

Check that

(∇τ)2 −
(

1
c

∂

∂t
τ

)2

= 0 . (1.207)

7. Work out the magnetic field of a moving point charge e by differentiating
the δ-function form for the potentials, (1.120a) and (1.120b). Get the
radiation field part by considering only the derivative of the δ function,
and show that

B(r, t) ∼ − e

4πc2

1
|r − r(τ)|n×

d2r(τ)
dt2

, where n =
r − r(τ)
|r − r(τ)| . (1.208)

Note carefully that d2r(τ)/dt2 is not d2r(τ)/dτ2.
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8. What is the associated electric field as found by an analogous asymptotic
computation from the potentials? Compare with (1.206).

9. Let Ec be the instantaneous Coulomb field due to the charge density ρ.
Demonstrate that (1.204a) can be presented as

−�2(E − Ec) = − 1
c2

∂

∂t

(
j +

∂

∂t
Ec

)
. (1.209)

Begin with the retarded solution of this equation and derive the expres-
sions for the electromagnetic energy and radiation power of a small current
distribution.

10. Use the radiation fields derived above to compute the energy flux at large
distances, per unit solid angle, for a point particle of charge e in terms
of the acceleration and velocity of the particle at the retarded time – the
emission time. Convert this energy per unit detection time into energy per
unit emission time to get the power radiated into a given solid angle,

dP

dΩ
=

e2

(4π)2c3

[
v̇2

(1 − n · v/c)3
+ 2

n · v̇ 1
cv · v̇

(1 − n · v/c)4

−
(

1 − v2

c2

)
(n · v̇)2

(1 − n · v/c)5

]
. (1.210)

Show that this reduces to the formula for dipole radiation in the nonrel-
ativistic limit, v/c � 1. For another expression of this result, see (3.111).

11. Integrate (1.210) over all directions to arrive at the expected result.
12. Use the result (1.210) to show, for the situation of linear acceleration,

that is, when v̇ is in the same direction as v, which makes an angle θ with
respect to the direction of observation, that (β = v/c)

− d2E

dt dΩ

∣∣∣∣
rad

=
e2

(4π)2c3

(
dv
dt

)2 sin2 θ

(1 − β cos θ)5
. (1.211)

Integrate this over all solid angles to arrive at the energy loss rate for this
circumstance.

13. Derive the dipole radiation formula for radiation emitted at a given fre-
quency,

dErad

dω
=

2
3π

1
4π

1
c3

|d̈(ω)|2. (1.212)

Apply this formula to an instantaneous collision of two particles, one with
mass m1 and charge e1, the second with mass m2 and charge e2 in the
center of mass frame (i.e., the total momentum is zero). Let the angle of
scattering of either particle be θ. Ignoring radiation reaction, both parti-
cles have the same momentum magnitude p before and after the collision.
What happens if e1/m1 = e2/m2? From the photon viewpoint, how does
the assumption that the kinetic energy of the particles is not changed
restrict the radiation frequencies to which your result can be applied?
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14. Consider a particle undergoing an instantaneous reversal in direction,
changing from velocity v to velocity −v in negligible time. Derive the
following formula for the number of photons with energy h̄ω emitted into
a frequency interval dω and into an element of solid angle dΩ making an
angle θ with respect to the direction specified by v: (α = e2/4πh̄c)

d2N

dΩ dω
=

α

4π2

1
ω

{
2

1 + β2

1 − (β cos θ)2

− (1 − β2)
[

1
(1 − β cos θ)2

+
1

(1 + β cos θ)2

]}
.(1.213)

15. What is the result of integrating (1.213) over all angles, for any β < 1.
Does your photon spectrum agree with the known result for β � 1? What
does it become for β ≈ 1? Can you understand this result by looking at
the approximate form derived from (1.213) for β ≈ 1, θ � 1, π − θ � 1?

16. Now suppose the charged particle stops on impact. Find the analog of
the formula (1.213). Again, integrate it over all angles and look at the
limits of β � 1 and β ≈ 1. Are the last two results what you would have
expected? Explain.

17. Point charges e and −e are created at r = 0, t = 0, and then move with
constant velocities v and −v, respectively. Derive the distribution in fre-
quency and angle of the emitted radiation. Describe the angular distrib-
ution for v/c ≈ 1. Repeat for one charge created at rest, the other with
velocity v.

18. Charge e is distributed uniformly over the surface of a sphere of radius a,
which is rotating about an axis with constant angular velocity ω. Compute
the power radiated, either by applying a general method or by considering
electric and magnetic dipole radiation.

19. A free electron at rest acted on by a light wave, and also the radiation
reaction force, is described by

mv̇ = eReEe−iωt +
1
4π

2
3

e2

c3
v̈ . (1.214)

Solve this equation to get the total scattering cross section, defined as
the ratio of the total power removed from the incident field, Ptot, to the
incident flux, |S|,

σtot =
Ptot

|S| . (1.215)

Express the cross section in terms of the so-called classical radius of the
electron, r0 = e2/4πmc2 and the reduced wavelength λ̄ = λ/(2π). What
is the limiting form for λ̄ � r0?

20. Calculate the total cross section for the scattering of a plane wave by a
dielectric sphere, assuming that the wavelength is large compared to the
radius of the sphere.
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21. Define a complex vector field by

F = E + iB , F∗ = E − iB . (1.216)

Identify the scalar, vector, and dyadic, given by

1
2
F∗ · F ,

1
2i

F∗ × F , and
1
2
(FF∗ + F∗ F) , (1.217)

respectively. What happens to these quantities if F is replaced by e−iφF,
φ being a constant?

22. What magnetic field is described, almost everywhere, by the vector po-
tential

A(r) = ∇ × g

4π
n log(r − n · r) , (1.218)

where g is a constant and n is a unit vector?
23. Consider Maxwell’s equations with both electric (ρe, je) and magnetic

(ρm, jm) charges. Show that these equations retain their form under the
electromagnetic rotation (duality transformation) under which electric (E)
and magnetic (M) quantities are redefined according to

E → E cos φ + M sin φ , M → M cos φ − E sin φ . (1.219)

Check that the generalized Lorentz force

F = e
(
E +

v
c
× B

)
+ g
(
B − v

c
× E

)
(1.220)

also retains its form under this rotation. Can you give a two-dimensional
geometrical interpretation of the latter fact? A unidirectional electromag-
netic pulse [recall the discussion after (1.33)] is characterized by the rela-
tions

E2 − B2 = 0 , E · B = 0 . (1.221)

How do these properties respond to the electromagnetic rotation? For
general electromagnetic fields, how do U , G, and T respond to electro-
magnetic rotations?

24. From the Maxwell equations with both electric and magnetic charges con-
sidered in the previous problem, derive second-order differential equations
for E and for B. Show that

E = −∇φe −
1
c

∂

∂t
Ae − ∇ × Am , (1.222a)

B = −∇φm − 1
c

∂

∂t
Am + ∇ × Ae , (1.222b)

and exhibit the differential equations for these potentials in the Lorenz
gauge, and in the radiation gauge, where ∇ · A = 0.
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25. Solve for the above potentials in some gauge, and find the asymptotic
radiation field. Now what is the relationship between E and B? Construct
the spectral–angular distribution of the radiated power. How do it change
under the duality transformation (1.219)?

26. A point magnetic charge g is at rest, at the origin. A point electric charge
e, carried by a particle of mass m is in motion about the electric charge.
What is the Newton–Lorentz equation of motion? By taking the moment
of this equation, verify that the conserved angular momentum is

J = r × mv − eg

4πc

r
r

. (1.223)

What follows if quantum ideas about angular momentum are applied to
the radial component of J?

27. Consider the relative motion of two particles with masses and electric and
magnetic charges m1, e1, g1, and m2, e2, and g2, respectively. In deriving
the equation of relative motion, which involves the reduced mass, remem-
ber that moving electric (magnetic) charges produce magnetic (electric)
fields, but do not retain more than one factor of v1/c or v2/c. How do the
combinations of e’s and g’s in this equation respond to the electromagnetic
rotations of (1.219)? What is the conserved angular momentum?

28. A point magnetic charge g is located at the origin; a point electric charge
e is located at the fixed point R. What is the electromagnetic momentum
density G at an arbitrary position r? Write this vector as a curl. [This
implies that G is divergenceless; why is that?] Now construct the total
electromagnetic angular momentum as the integrated moment of G, sim-
plified by partial integration. You will recognize the remaining integral as
the electric field at R produced by a charge density proportional to 1/|r|.
Use spherical symmetry to solve the differential equation for the electric
field (follow the known example of constant density). Compare your result
with that of Problem 1.26.

29. Consider Maxwell’s equations in vacuum with both electric and magnetic
charges and currents, ρe, je, ρm, and jm. Write the similar Maxwell equa-
tions satisfied by

E′ = E − Es , B′ = B − Bs , (1.224)

where Es and Bs are the respective static fields at time t produced by the
electric and magnetic charge densities at time t. That is,

∇ · Bs(r, t) = ρm(r, t) , ∇ × Bs(r, t) = 0 , (1.225)

and so on. What is ∇ · E′, ∇ · B′? Then what can you say about je, jm,
the currents that appear in the Maxwell equations obeyed by E′, B′? Use
that property to redefine E′ so that you are left with the Maxwell equa-
tions without magnetic charge and current. Recognize that these fields
can be constructed from a vector potential in the radiation gauge, and
then exhibit E and B.
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30. An electron moves at speed v � c, in a circular orbit of radius r, about
an infinitely massive proton. Compute the rate of radiation – the rate of
energy loss – first, in terms of v and r, and then in terms of the electron
energy E (recall the virial theorem). Integrate the resulting differential
equation for E to find the time it takes an electron, initially of energy E0,
to fall into the nucleus of this classical hydrogen atom. State the collapse
time in seconds when the initial energy is that of the first Bohr orbit.
(Here is one reason for inventing quantum mechanics.)

31. Demonstrate that

Ucharges =
∑

a

δ(r − ra(t))Ea(t) , (1.226a)

Scharges =
∑

a

δ(r − ra(t))Ea(t)va(t) , (1.226b)

obey
∂

∂t
Uch + ∇ · Sch = j · E . (1.227)

How does this lead to a direct proof of local total energy conservation?
Proceed similarly with

Gch =
∑

a

δ(r − ra)mava , (1.228a)

Tch =
∑

a

δ(r − ra)mavava . (1.228b)

32. Use the relativistic Lagrangian

L = −m0c
2
√

1 − v2/c2 − eφ +
e

c
v · A , v =

dr
dt

, (1.229)

to deduce the Einstein–Lorentz equation of motion.
33. The inference of the fundamental field equations discloses that imparting

a small velocity δv to the system changes the fields by

δB =
δv
c

× E , δE = −δv
c

× B . (1.230)

Show that Maxwell’s equations, first without charge and current, retain
their form if the meaning of the derivatives is also slightly altered:

δ(∇) = −δv
c

1
c

∂

∂t
, δ

(
1
c

∂

∂t

)
= −δv

c
· ∇ . (1.231)

Interpret this in terms of coordinate changes, δr, δt. [Hint: ∇t = 0,
∂r/∂t = 0.] Now show that all this remains true in the presence of charges,
provided

δj = δvρ , δρ =
δv
c

· 1
c
j , (1.232)
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the first of which is expected. This is a first suggestion of the Lorentz
transformations of Einstein relativity, which will be explored further in
Chap. 3.

34. Consider the stress dyadic T and the electromagnetic field of a unidirec-
tional light pulse. Show that

T · E = 0 , T · B = 0 , T · E × B = UE × B . (1.233)

Thus, in this situation, E × B is an eigenvector of T with the eigenvalue
U , E and B are eigenvectors with the eigenvalue zero. Are these properties
consistent with TrT = U , (1.37)? What is the value of detT for the light
pulse field?

35. Prove that the last result is unique to the light pulse by demonstrating,
for an arbitrary field, that

det T = −U [U2 − (cG)2] ≤ 0 . (1.234)

[Hint: find the eigenvalues of T.] When does the equality sign hold? What
is the value of TrT2?

36. Work out the three-dimensional Coulomb Green’s function in the vacuum,

G(r) =
∫

(dk)
(2π)3

eik·r

k2
, (1.235)

by writing
1
k2

=
∫ ∞

0

dλ e−λk2
, (1.236)

and then performing first the three integrations over the rectangular co-
ordinates of k. Repeat this calculation in four dimensions. Use your result
to verify explicitly that

∫ ∞

−∞
dx4 G(x1, x2, x3, x4) = G(r) . (1.237)

Make this understandable by considering the four-dimensional differential
equation that G(x1, x2, x3, x4) obeys.

37. Besides the advanced and retarded Green’s functions considered in (1.106)
et seq., another important Green’s function is the causal or Feynman
Green’s function, defined by the 3 + 1 dimensional Fourier integral

G+(r − r′, t − t′) =
∫

(dk)
(2π)3

dω

2π

ei[k·(r−r′)−ω(t−t′)]

k2 − ω2/c2 − iε
. (1.238)

Evaluate this as

G+ =
ic

4π2

1
(r − r′)2 − c2(t − t′)2 + iε

. (1.239)
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Write the analogous definition and form of G− = G∗
+. Check that

1
2
(G+ + G−) =

1
2
(Gret + Gadv) , (1.240)

where

Gret,adv =
δ(t − t′ ∓ |r − r′|/c)

4π|r − r′| . (1.241)

38. Solve the differential equation

(−∇2 + γ2)G(r) = δ(r) , (1.242)

by Fourier transformation followed by a contour integration.
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Spherical Harmonics

Although spherical harmonics will not appear explicitly in the sequel, it seems
impossible to write a textbook on the subject of electromagnetic theory with-
out a brief account of some of their most fundamental features.

2.1 Connection to Bessel Functions

The ancient belief in the flatness of the Earth had a simple geometrical ba-
sis. A plane surface and a sphere of radius a are indistinguishable on or near
the surface, within a region of linear dimensions that are small compared to
a. There is a lesson here for us in electrostatics. It is elementary to solve
the problem of the transition between the vacuum and a homogeneous di-
electric medium, for both a plane and a spherical surface of contact. Under
the geometrical restriction just cited for the Earth, the two solutions must
be equivalent. And that implies a limiting relationship between the types of
functions involved in the two situations.

Let us write, side by side, the electrostatic Green’s functions referring to
the plane surface, above the dielectric (see, e.g., (14.24) and (16.4) of [9])
z, z′ > 0:

G(r, r′) =
∫ ∞

0

dk J0(kP )
[
e−k(z>−z<) − ε − 1

ε + 1
e−k(z+z′)

]
, (2.1)

where P is the transverse distance between the two points,

P = |(r − r′)⊥| =
√

ρ2 + ρ′2 − 2ρρ′ cos(φ − φ′) , (2.2)

in cylindrical coordinates, and that for the exterior of a dielectric sphere,
r, r′ > a, ((23.99) of [9])

G(r, r′) =
∞∑

l=0

Pl(cos Θ)
[

rl
<

rl+1
>

− (ε − 1)l
(ε + 1)l + 1

a2l+1

rl+1r′l+1

]
, (2.3)
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where Θ is the angle between the two directions of r and r′,

cos Θ = cos θ cos θ′ + sin θ sin θ′ cos(φ − φ′) , (2.4)

in terms of the spherical angles. In addition to the spherical coordinate system
with its origin at the center of the sphere, we erect a rectangular coordinate
system at the point on the spherical surface with θ = 0, that is, at the north
pole. The z-axis continues the line from the center of the sphere to that point,
and the x–y plane is the tangential to the sphere. Under the restrictions

z � a , ρ = (x2 + y2)1/2 � a , (2.5)

the distance from the center of the sphere to any point, with rectangular
coordinates x, y, z, is

r = [(a + z)2 + ρ2]1/2 ≈ a + z +
ρ2

2a
≈ a + z , (2.6)

where ρ2/2a is omitted as being negligible compared to z.
Now note that

rl
< ≈ al

(
1 +

z<

a

)l

≈ ale(l/a)z< , (2.7a)

and
r−l−1
> ≈ a−l−1

(
1 +

z>

a

)−l−1

≈ a−l−1e−(l/a)z> , (2.7b)

based on the equivalence between 1 + t and exp t, for small values of t. The
consequences

rl
<

r−l−1
>

≈ 1
a
e−(l/a)(z>−z<) , (2.8a)

and
a2l+1

rl+1r′l+1
≈ 1

a
e−(l/a)(z+z′) , (2.8b)

display the asymptotic connection between the variables of (2.1) and (2.3),

l

a
→ k . (2.9)

Indeed, the factor of 1/a appearing in (2.8a) and (2.8b) tells us that any
particular value of l makes a negligible contribution in the limit of interest; l
must range over a wide spectrum, corresponding to the continuous nature of
k. The replacement of the l summation by the k integral is expressed by

δl = 1 :
δl

a
→ dk . (2.10)

Then, if we use the geometrical relations,
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θ ≈ ρ

a
, θ′ ≈ ρ′

a
, Θ ≈ P

a
, (2.11)

we are led the asymptotic correspondence,

Θ � 1 , l � 1 : Pl(cos Θ) → J0(lΘ) . (2.12)

Of course, had obtaining this result been the only objective, it would have
sufficed to set ε = 1.

We can extend the connection (2.12) by comparing the addition theorems
for the two types of functions ((16.69) of [9])

J0(kP ) =
∞∑

m=−∞
Jm(kρ)Jm(kρ′)eim(φ−φ′) , (2.13a)

and

Pl(cos Θ) =
4π

2l + 1

l∑
m=−l

Ylm(θ, φ)Ylm(θ′, φ′)∗

=
1

l + 1/2

l∑
m=−l

Θlm(θ)Θlm(θ′)eim(φ−φ′) , (2.13b)

where we have separated variables in defining

Ylm(θ, φ) =
1√
2π

eimφΘlm(θ) , (2.14)

Θlm(θ) being essentially the associated Legendre function. It is clear that,
within an algebraic sign (which we anticipate), one has

θ � 1 , l � 1 : (−1)m 1
(l + 1/2)1/2

Θlm(θ) → Jm(lθ) , (2.15)

and (2.12) is recovered for m = 0,

Θl0(θ) =

√
2l + 1

2
Pl(cos θ) . (2.16)

Reference to the initial terms in the small variable behavior of the two func-
tions, for m > 0:

t � 1 : Jm(t) ∼
(

1
2 t
)m

m!
, (2.17a)

θ � 1 :
1

(l + 1/2)1/2
Θlm(θ) ∼

[
(l + m)!
(l − m)!

]1/2 (− 1
2θ
)m

m!
, (2.17b)
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suffices to show the need for the (−1)m factor in (2.15) (along with the re-
mark that the relation between negative and positive m is the same for both
functions).

The completeness statements in the forms
∫ ∞

0

dk k J0(kρ) =
1
ρ
δ(ρ) , (2.18a)

∞∑
l=0

(
l +

1
2

)
Pl(cos θ) =

1
sin θ

δ(θ) , (2.18b)

are also connected by this correspondence, as are the differential equations for
Jm(kρ) and Θlm(θ),

[
1
ρ

d
dρ

(
ρ

d
dρ

)
− m2

ρ2
+ k2

]
Jm(kρ) = 0 , (2.19a)

[
1

sin θ

d
dθ

(
sin θ

d
dθ

)
− m2

sin2 θ
+ l(l + 1)

]
Θlm(θ) = 0 . (2.19b)

Here is another way to arrive at the correspondence (2.15). First, we return
to the initial definition of the spherical harmonics

(
ν∗ · r

r

)l
l!

=
l∑

m=−l

ψ∗
lm

(
4π

2l + 1

)1/2

Ylm(θ, φ) , (2.20)

where ν is a complex null vector constructed according to

νx + iνy = −ψ2
+ , νx − iνy = ψ2

− , νz = ψ+ψ− , (2.21)

from which the ψlm are constructed,

ψlm =
ψl+m

+ ψl−m
−

[(l + m)!(l − m)!]1/2
. (2.22)

If we insert into this

ψ+ = i , ψ− = 1 : νx = 1 , νy = 0 , νz = i . (2.23)

Then (2.20), multiplied by ill!, becomes

(cos θ + i sin θ cos φ)l =
l∑

m=−l

(−i)m l!
[(l + m)!(l − m)!]1/2

Θlm(θ)eimφ

(l + 1/2)1/2
, (2.24)

a Fourier series, from which we deduce

im
l!

[(l + m)!(l − m)!]1/2

(−1)mΘlm(θ)
(l + 1/2)1/2

=
∫ 2π

0

dφ

2π
e−imφ(cos θ + i sin θ cos φ)l .

(2.25)
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We note the specialization to m = 0:

Pl(cos θ) =
∫ 2π

0

dφ

2π
(cos θ + i sin θ cos φ)l , (2.26)

which is known as Laplace’s first integral representation. What is called
Laplace’s second integral representation, the result of the substitution l →
−l − 1, was pointed out by Jacobi in 1843 (see Problem 2.1).

Now let us recall that

imJm(t) =
∫ 2π

0

dφ

2π
e−imφeit cos φ , (2.27)

from which we derive, for any function f represented by a power series, that

f

(
d
dt

)
imJm(t)

∣∣∣∣
t=0

=
∫ 2π

0

dφ

2π
e−imφf(i cos φ) . (2.28)

This is immediately applicable to (2.25) and yields

l!
[(l + m)!(l − m)!]1/2

(−1)m Θlm(θ)
(l + 1/2)1/2

=
(

cos θ + sin θ
d
dt

)l

Jm(t)
∣∣∣∣
t=0

,

(2.29)
with the m = 0 specialization

Pl(cos θ) =
(

cos θ + sin θ
d
dt

)l

J0(t)
∣∣∣∣
t=0

. (2.30)

An elementary example of the latter is

P2(cos θ) =
(

cos2 θ + 2 cos θ sin θ
d
dt

+ sin2 θ
d2

dt2

)(
1 − 1

4
t2 + · · ·

) ∣∣∣∣
t=0

= cos2 θ − 1
2

sin2 θ =
1
2
(3 cos2 θ − 1) . (2.31)

What we are looking for is realized by setting θ = s/l, and, for fixed s,
proceeding to the limit l → ∞. First we observe, for example, that

lim
l→∞

(l!)2

(l + 1)!(l − 1)!
= lim

l→∞

l

l + 1
= 1 , (2.32)

and the outcome is the same for any given value of m. Accordingly, we get

lim
l→∞

(−1)m 1
(l + 1/2)1/2

Θlm

(s

l

)
= lim

l→∞

(
1 +

s

l

d
dt

)l

Jm(t)
∣∣∣∣
t=0

= es d
dt Jm(t)

∣∣∣∣
t=0

, (2.33)

or
lim
l→∞

(−1)m 1
(l + 1/2)1/2

Θlm

(s

l

)
= Jm(s) , (2.34)

which is a precise version of (2.15).
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2.2 Multipole Harmonics

The introduction of spherical harmonics may be motivated by an expansion
of Coulomb’s potential, as expressed symbolically by

r > r′ :
1

|r − r′| =
∞∑

l=0

(−r′ · ∇)l

l!
1
r

=
∞∑

l=0

(−1)l

l!
{r′}l � {∇}l 1

r
. (2.35)

The latter version introduces a notation (one can read � as “scalar product
all around”) to express for arbitrary l what for l = 2, is the scalar dyadic
product,

r′r′ � ∇∇ = (r′ · ∇)2 . (2.36)

[This notation is a slight generalization of that introduced in (1.133).] This
is just the aspect of the Coulomb potential that is involved in expressing the
potential φ(r) at points external to a bounded distribution of charge density
ρ(r),

φ(r) =
∫

(dr′)
1

4π|r − r′|ρ(r′) . (2.37)

It is desirable to choose the coordinate origin in the interior of the charge
distribution. Then the introduction of the expansion (2.35) presents us with
this related expansion of the potential:

φ(r) =
∞∑

l=0

(−1)l

l!

[∫
(dr′){r′}lρ(r′)

]
� {∇}l 1

4πr
, (2.38)

which involves the successive moments of the charge distribution. The first of
these is familiar:

l = 0 :
∫

(dr′) ρ(r′) = e , (2.39)

the total charge, or electric monopole moment;

l = 1 :
∫

(dr′) r′ρ(r′) = d , (2.40)

the electric dipole moment (1.131b). And the contribution to the potential of
these first moments is exhibited in

4πφ(r) =
e

r
− d · ∇1

r
+ · · ·

=
e

r
+ d · r

r3
+ · · · , (2.41)

as is familiar [see (1.132)].
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Before continuing, let us ask this question: Given a system for which the
potential exterior to the charge distribution is adequately represented by the
two terms displayed in (2.41), what fictitious charge distribution, ‘ρ(r)’, would
produce this potential if the latter were imagined to be valid everywhere? And
what are the monopole and dipole moments of that fictitious distribution? The
answer to the first question is immediate:

‘ρ(r)’ = − 1
4π

∇2

[
e

r
− d · ∇1

r

]

= eδ(r) − d · ∇δ(r) . (2.42)

Then the implied monopole moment is∫
(dr) ‘ρ(r)’ =

∫
(dr) [eδ(r) − ∇ · (d δ(r))]

= e , (2.43)

the surface integral resulting from the second, divergence term, being zero,
and the dipole moment emerges as∫

(dr) r ‘ρ(r)’ =
∫

(dr) r[eδ(r) − ∇ · (d δ(r))]

=
∫

(dr)[−∇ · (d δ(r) r) + d δ(r)]

= d ; (2.44)

they are the actual moments of the system. We shall see that this property,
to which we referred in the previous chapter, extends to all the multipole
moments we are in the process of developing.

A closely related remark is that the force and torque exerted on the fic-
titious charge distribution by an externally applied electric field are identical
with those acting on the actual system in the presence of a sufficiently slowly
varying field. Thus we have

F =
∫

(dr) ‘ρ(r)’E(r)

=
∫

(dr)[eδ(r) − ∇ · (d δ(r))]E(r)

= eE + d · ∇E , (2.45)

where the final evaluation, referring to the origin, the reference point within
the given charge distribution, can be recognized as the two leading terms in
the force on the actual distribution; and

τ =
∫

(dr) r × ‘ρ(r)’E(r)

= −
∫

(dr)∇ · (d δ(r)) r × E(r)

= d × E , (2.46)
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again as expected.
The l = 2 term in (2.38) involves the symmetric dyadic

∇∇1
r

=
3rr − 1r2

r5
, (2.47)

which has 9 − 3 = 6 components. There is, however, one relation among
these components, stemming from Laplace’s equation; the sum of the diagonal
elements, three referring to the same components of the two vectors, vanishes.
(This is, of course, the recognition that there are only five spherical harmonics
for l = 2.) In consequence of the zero value of the diagonal sum – the so-called
trace – any multiple of the unit dyadic in

∫
(dr′)r′r′ρ(r′) occurring in (2.38)

will make no contribution. That permits us to introduce the traceless dyadic
structure

Q =
∫

(dr′)(3r′r′ − 1r′2)ρ(r′) , (2.48)

the quadrupole moment dyadic. Adding this contribution to the expansion of
the potential gives us

4πφ(r) =
e

r
+ d · r

r3
+

1
6
Q � 3rr − 1r2

r5
+ · · · . (2.49)

For the following considerations it will be helpful to designate the reference
point within the charge distribution, which we have been using as the origin of
coordinates, by the vector R. That only requires replacing r by r − R. Then
the interaction energy of the charge distribution with a remote point charge
e1 that is situated at r1 appears as

E = e1φ(r1) =
ee1

4π|r1 − R| + d · e1(r1 − R)
4π|r1 − R|3

+
1
6
Q � e1[3(r1 − R)(r1 − R) − 1(r1 − R)2]

4π|(r1 − R)|5 + · · · , (2.50)

or, in terms of the potential and electric field produced at R by the point
charge,

φ(R) =
e1

4π|R − r1|
, E(R) = e1

R − r1

4π|R − r1|3
, (2.51)

we have
E = eφ(R) − d · E(R) − 1

6
Q � ∇RE(R) + · · · . (2.52)

Although we have used the field of a point charge in arriving at the inter-
action energy (2.52), it holds quite generally inasmuch as any electric poten-
tial or field is the superposition of the contributions of point charges. As an
example, that part of the interaction energy between nonoverlapping charge
distributions 1 and 2 that is attributed to their dipole moments is (r = r1−r2)
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4πEdd = −d1 ·
(
−∇1d2 ·

r
r3

)

= −3d1 · rd2 · r − d1 · d2 r2

r5
. (2.53)

Let us also note the symmetrical, derivative form of this energy,

4πEdd = d1 · ∇1 d2 · ∇2
1

|r1 − r2|
, (2.54)

and the version of the explicit result in which the direction of r is chosen as
the z-axis:

4πEdd = −2d1zd2z − d1xd2x − d1yd2y

r3
. (2.55)

2.3 Spherical Harmonics

Although the procedure we have been following could be continued to higher
multipoles, it rapidly become unwieldy. It is preferable to use spherical har-
monics, in which the restrictions associated with Laplace’s equation are al-
ready incorporated. Accordingly, the expansion (2.35) is now presented as

r > r′ :
1

|r − r′| =
∑
lm

r′l

rl+1

(
4π

2l + 1

)1/2

Ylm(θ, φ)
(

4π

2l + 1

)1/2

Ylm(θ′, φ′)∗ ,

(2.56)
leading the expansion of the potential (2.37)

4πφ(r) =
∑
lm

1
rl+1

(
4π

2l + 1

)1/2

Ylm(θ, φ)ρlm , (2.57)

where (omitting primes) the lmth electric multipole moment is

ρlm =
∫

(dr) rl

(
4π

2l + 1

)1/2

Ylm(θ, φ)∗ρ(r) . (2.58)

The connection between this systematic definition of multipole moments
and the few already discussed can be read off from the explicit construction
of the first few spherical harmonics:

l = 0 : ρ00 = e , (2.59a)

l = 1 :




ρ11 = −2−1/2(dx − idy) ,
ρ10 = dz ,
ρ1,−1 = 2−1/2(dx + idy) ,

(2.59b)

l = 2 :




ρ22 = (24)−1/2(Qxx − Qyy − 2iQxy) ,
ρ21 = −6−1/2(Qxz − iQyz) ,
ρ20 = 1

2Qzz = − 1
2 (Qxx + Qyy) ,

ρ2,−1 = 6−1/2(Qxz + iQyz) ,
ρ2,−2 = (24)−1/2(Qxx − Qyy + 2iQxy) .

(2.59c)
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For a complete expression of the general connection we use the spherical har-
monic definition (2.20),

(ν · r)l

l!
=

l∑
m=−l

ψlmrl

(
4π

2l + 1

)1/2

Ylm(θ, φ)∗ , (2.60)

which enables us to present (2.58) as
∑
m

ψlmρlm =
∫

(dr)
(ν · r)l

l!
ρ(r) =

1
l!
{ν}l �

∫
(dr){r}lρ(r) . (2.61)

In the simple example of l = 1, this reads, according to (2.21) and (2.22),

ψ2
+

21/2
ρ11 + ψ+ψ−ρ10 +

ψ2
−

21/2
ρ1,−1

= −1
2
ψ2

+(dx − idy) + ψ+ψ−dz +
1
2
ψ2
−(dx + idy) , (2.62)

from which the l = 1 entries in (2.59b) are recovered.
A necessary preliminary to a general derivation of the fictitious charge

density ‘ρ(r)’ is the construction of an alternative spherical harmonic rep-
resentation. It is useful to introduce a notation for the homogeneous solid
harmonics of degrees l and −l − 1,

Ylm(r) = rlYlm

(r
r

)
, (2.63a)

Y−l−1,m(r) = r−l−1Y−l−1,m

(r
r

)
, (2.63b)

respectively, where

Ylm

(r
r

)
= Y−l−1,m

(r
r

)
= Ylm(θ, φ) . (2.64)

This notation is used in writing (2.20) as

(ν∗ · r)l

l!
=

l∑
m=−l

ψ∗
lm

(
4π

2l + 1

)1/2

Ylm(r) , (2.65a)

and
(ν∗ · r)l

l!
1

r2l+1
=

l∑
m=−l

ψ∗
lm

(
4π

2l + 1

)1/2

Y−l−1,m(r) . (2.65b)

Now consider [recall (ν∗)2 = 0]

(ν∗ · ∇)l

l!
1
r

= − (ν∗ · ∇)l−1

l!
ν∗ · r 1

r3

= (−1)l1 · 3 · 5 · · · (2l − 1)
(ν∗ · r)l

l!
1

r2l+1

= (−1)l (2l)!
2ll!

l∑
m=−l

ψ∗
lm

(
4π

2l + 1

)1/2

Y−l−1,m(r) . (2.66)
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But the left-hand side of (2.66) can also be written as

l∑
m=−l

ψ∗
lm

(
4π

2l + 1

)1/2

Ylm(∇)
1
r

, (2.67)

which gives us the desired representation,

Y−l−1,m(r) = (−1)l 2ll!
(2l)!

Ylm(∇)
1
r

. (2.68)

A simple illustration, for l = m = 1, is [a common factor of (3/8π)1/2 is
omitted]

−x + iy
r3

=
(

∂

∂x
+ i

∂

∂y

)
1
r

. (2.69)

Another useful result involves the structure

Yl′m′(∇)Ylm(r)∗
∣∣∣∣
r=0

= δll′Ylm′(∇)Ylm(r)∗
∣∣∣∣
r=0

, (2.70)

which already conveys the fact that it vanishes for l′ = l. Indeed, for l′ > l,
there are more derivatives than coordinates, while for l′ < l, some coordinates
remain after differentiation, which are then set equal to zero. To study the
l′ = l situation, we evaluate

(ν∗ · ∇)l

l!
(ν · r)l

l!
=

(ν∗ · ∇)l−1

l!
(ν · r)l−1

(l − 1)!
ν∗ · ν

=
(ν∗ · ν)l

l!
=

(2l)!
2ll!

l∑
m=−l

ψ∗
lmψlm , (2.71)

where the last step follows from the definition of the ψlm, (2.21) and (2.22).
Accordingly, we have

∑
mm′

ψ∗
lm′

(
4π

2l + 1

)1/2

Ylm′(∇)Ylm(r)∗
(

4π

2l + 1

)1/2

ψlm =
(2l)!
2ll!

∑
m

ψ∗
lmψlm ,

(2.72)
which, together with (2.70), tells us that

Yl′m′(∇)Ylm(r)∗
∣∣∣∣
r=0

= δll′δmm′
1
4π

(2l + 1)!
2ll!

. (2.73)

In the example of l = m = l′ = m′ = 1, this states that

(
3
8π

)1/2(
∂

∂x
+ i

∂

∂y

)(
3
8π

)1/2

(x − iy) =
3
4π

. (2.74)
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Now we turn to the expression (2.56), (2.57), this time using (2.68) to
write it as

4πφ(r) =
∑
lm

ρlm

(
4π

2l + 1

)1/2 2ll!
(2l)!

(−1)lYlm(∇)
1
r

, (2.75)

and then proceed to compute the fictitious charge density,

‘ρ(r)’ = −∇2φ(r) =
∑
lm

ρlm

(
4π

2l + 1

)1/2 2ll!
(2l)!

(−1)lYlm(∇)δ(r) , (2.76)

which is the generalization of (2.42). The moments of this charge density are

‘ρlm’ =
∫

(dr)
(

4π

2l + 1

)1/2

Ylm(r)∗‘ρ(r)’

=
∫

(dr)
(

4π

2l + 1

)1/2

Ylm(r)∗
∑
l′m′

Yl′m′(−∇)δ(r)
2l′ l′!
(2l′)!

(
4π

2l′ + 1

)1/2

ρl′m′ .

(2.77)

Partial integration then transfers Yl′m′(−∇), acting on δ(r), to Yl′m′(∇),
acting on Ylm(r)∗, which invokes (2.73) in view of the restriction to r = 0
that is enforced by δ(r). The combination of factors in (2.73) and (2.77) is
such that

‘ρlm’ = ρlm , (2.78)

as previously stated.
Before proceeding to the next stage, the generalization of energy expres-

sions, let us again pause to devise yet another spherical harmonic representa-
tion. We know from (2.56) that

(−r′ · ∇)l

l!
1
r

=
l∑

m=−l

(
4π

2l + 1

)1/2

Y−l−1,m(r)
(

4π

2l + 1

)1/2

Ylm(r′)∗ . (2.79)

On the other hand, inasmuch as ∇ acts as a null vector in this context, we
can also apply (2.60), with r → r′, to produce

(−r′ · ∇)l

l!
1
r

= (−1)l
∑
m

(
4π

2l + 1

)1/2

Ylm(r′)∗ψlm(∇)
1
r

, (2.80)

where ψlm(∇) is constructed from the components of the vector ∇ in the
same manner that ψlm is constructed from the components of ν. Comparison
with the right-hand side of (2.79) then yields

(
4π

2l + 1

)1/2

Y−l−1,m(r) = (−1)lψlm(∇)
1
r

, (2.81)
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as an alternative version of (2.68). Which is to say that (with the operand 1/r
understood) (

4π

2l + 1

)1/2

Ylm(∇) =
(2l)!
2ll!

ψlm(∇) . (2.82)

Notice that (2.75) now has the simpler appearance,

4πφ(r) =
∑
lm

ρlm(−1)lψlm(∇)
1
r

, (2.83)

as follows directly from (2.35) and (2.80), and (2.73) becomes

ψl′m′(∇)
(

4π

2l + 1

)1/2

Ylm(r)∗
∣∣∣∣
r=0

= δll′δmm′ . (2.84)

Perhaps, then, we should have begun with ψlm(∇), rather than Ylm(∇), but
the latter does seem to be a more immediate concept. Incidentally, a direct
path to (2.81) could start from (2.66) by regarding the left-hand side as con-
structed from the product of two null vectors (Problem 2.5).

The m = 0 specialization of (2.82) reads

Pl(∇) =
(2l)!
2ll!

ψl0(∇)

=
(2l)!
2ll!

1
l!

(ψ+ψ− → ∇z)l , (2.85)

and indeed, from the highest powers of the Legendre polynomial as produced
by

Pl(µ) =
(

d
dµ

)l
µ2l − lµ2l−2 + · · ·

2ll!

=
(2l)!

2l(l!)2
µl − (2l − 2)!

2l(l − 1)!(l − 2)!
µl−2 + · · · , (2.86)

we get

Pl(∇) =
(2l)!

2l(l!)2
(∇z)l − (2l − 2)!

2l(l − 1)!(l − 2)!
(∇z)l−2∇2 + · · · , (2.87)

which is (2.85) in view of the effective null value of ∇2. The explicit form that
(2.81) yields for m = 0 is

1
rl+1

Pl(cos θ) = (−1)l 1
l!

∂l

∂zl

1
r

, (2.88)

which can also be seen directly: Both sides of the equations are solutions of
Laplace’s equation (r > 0) that are homogeneous of degree −l− 1 and do not
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involve the azimuthal angle φ; then, with θ = 0, z = r, the evaluation of the
right-hand side completes the identification.

We shall present an application of (2.88), one that is facilitated by using
the integral representation, for z > 0,

1
(z2 + ρ2)1/2

=
∫ ∞

0

dk J0(kρ)e−kz

=
∫ 2π

0

dφ

2π

∫ ∞

0

dk e−k(z+iρ cos φ)

=
∫ 2π

0

dφ

2π

1
z + iρ cos φ

. (2.89)

(For an alternative derivation, see Problem 2.6.) Now the differentiations in
(2.88), in which ρ is held fixed, can be performed, with the result

1
rl+1

Pl(cos θ) =
∫ 2π

0

dφ

2π

1
(z + iρ cos φ)l+1

. (2.90)

Then the introduction of spherical coordinates for z and ρ gives

Pl(cos θ) =
∫ 2π

0

dφ

2π

1
(cos θ + i sin θ cos φ)l+1

, (2.91)

which, as mentioned in the context of (2.26), is Laplace’s second integral,
produced by the substitution of l → −l − 1 in the latter equation. The need
for the restriction z > 0, which is cos θ > 0, must be emphasized; changing
the sign of cos θ in the integral does not reproduce the known behavior of
Pl(cos θ) (see Problem 2.2).

If we consider m > 0 in (2.81) and use for m > 0

ψlm(∇) =
1

[(l + m)!(l − m)!]1/2
ψ2m

+ (ψ+ψ−)l−m

=
1

[(l + m)!(l − m)!]1/2
[−(∇x + i∇y)]m∇l−m

z , (2.92)

we get

1
rl+1

Θlm(θ)eimφ

(l + 1/2)1/2
=

(−1)l−m

[(l + m)!(l − m)!]1/2

(
∂

∂x
+ i

∂

∂y

)m(
∂

∂z

)l−m 1
r

.

(2.93)
The choice m = l is particularly simple,

1
rl+1

1
(l + 1/2)1/2

Θll(θ)eilφ =
1

[(2l)!]1/2

(
∂

∂x
+ i

∂

∂y

)l 1
r

, (2.94)

where [this is an example of (2.66)]
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(
∂

∂x
+ i

∂

∂y

)l 1
r

= −
(

∂

∂x
+ i

∂

∂y

)l−1
x + iy

r3

= (−1)l (2l)!
2ll!

(x + iy)l

r2l+1
, (2.95)

yields the familiar result

Θll(θ) = (−1)l

[
1
2
(2l + 1)!

]1/2 sinl θ

2ll!
. (2.96)

One can extend (2.93) to negative m by complex conjugation, the positive
m value appearing in this equation then being interpreted as |m|. In effect,
(2.93) continues to apply, with the understanding that

(
∂

∂x
+ i

∂

∂y

)−1
∂2

∂z2
= −

(
∂

∂x
− i

∂

∂y

)
. (2.97)

For the version of Laplace’s second integral that is applicable to m 
= 0 see
Problem 2.3.

2.4 Multipole Interactions

The generalization of (2.52), the expansion of the energy of a charge distri-
bution in a given externally produced potential φ(r), begins with the energy
expression

E =
∫

(dr)ρ(r)φ(r) . (2.98)

Now, within the charge distribution ρ, φ obeys Laplace’s equation inasmuch
as its sources are outside of ρ. Accordingly, φ(r) can be presented as a series
of solid harmonics relative to the reference point R in the interior of ρ:

φ(r) =
∑
lm

(
4π

2l + 1

)1/2

Ylm(r − R)φlm . (2.99)

The coefficients φlm are produced by an application of the complex conjugate
form of (2.84), with r → r − R,

φlm = ψlm(∇)∗φ(r)
∣∣∣∣
r=R

= ψlm(∇R)∗φ(R) , (2.100)

where, indeed, φ00 = φ(R), the three φ1m are combinations of the components
of E(R), and so on. The desired expansion is now realized as

E =
∑
lm

ρ∗lmφlm =
∑
lm

ρlmφ∗
lm . (2.101)
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As for the generalization of the force on the charge distribution, (2.45), let
us begin with

F =
∫

(dr)ρ(r)E(r) , (2.102)

and use the expansion

E(r) =
∞∑

l=0

[(r − R) · ∇R]l

l!
E(R)

=
∑
lm

(
4π

2l + 1

)1/2

Ylm(r − R)∗ψlm(∇R)E(R) , (2.103)

to arrive at
F =

∑
lm

ρlmψlm(∇R)E(R) . (2.104)

Had we employed a similar procedure for E, we would have come to the second
version of (2.101). Inasmuch as only the moments of ρ appear in this structure,
the use of the fictitious density ‘ρ’ would yield the same result.

The latter remark also applies to the generalization of the torque,

τ =
∫

(dr)(r − R) × ρ(r)E(r) , (2.105)

where we encounter the expansion

r × E(r) − R × E(r)

=
∑
m

(
4π

2l + 1

)1/2

Ylm(r − R)∗
[
ψlm(∇R)R × E(R)

− R × ψlm(∇R)E(R)
]

. (2.106)

This confronts us with the symbolic combination

ψlm(∇R)R − Rψlm(∇R) =
∂

∂∇R
ψlm(∇R) , (2.107)

in which the derivative with respect to ∇R serves to pick out in ψlm(∇R)
the gradient component that differentiates R with unit result. The ensuing
expansion is

τ =
∑
lm

ρlm

[
∂

∂∇R
ψlm(∇R)

]
× E(R) , (2.108)

and we record, for an arbitrary null vector ν, the needed derivatives (see
Problem 2.7)
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(
∂

∂νx
+ i

∂

∂νy

)
ψlm =

|m| − m

[(l − m)(l − m − 1)]1/2
ψl−1,m+1 , (2.109a)

(
∂

∂νx
− i

∂

∂νy

)
ψlm = − |m| + m

[(l + m)(l + m − 1)]1/2
ψl−1,m−1 , (2.109b)

∂

∂νz
ψlm =

(
l − |m|
l + |m|

)1/2

ψl−1,m . (2.109c)

While we are at it, let us also note that

(νx + iνy)ψlm = −[(l + m + 2)(l + m + 1)]1/2ψl+1,m+1 , (2.110a)

(νx − iνy)ψlm = [(l − m + 2)(l − m + 1)]1/2ψl+1,m−1 , (2.110b)

νzψlm = [(l + m + 1)(l − m + 1)]1/2ψl+1,m ; (2.110c)

both sets enter in checking that

ν · ∂

∂ν
ψlm = lψlm , (2.111)

the statement of homogeneity for the monomials ψlm(ν).
Finally, we want to relate the φlm in the energy expression (2.101) to

the moments of the charge distribution that produces the potential, thereby
leading to the generalization of the dipole–dipole interaction energy (2.53),
(2.54) and (2.55). The symmetry of the latter in the properties of the two
charge distributions invites us to produce a formulation that exhibits such
symmetry. To this end, let r1 and r2 be position vectors directed from reference
points within the charge distributions ρ1 and ρ2, respectively, while r locates
one such center with respect to the other, as shown in Fig. 2.1. Then the

r1

r

r2

Fig. 2.1. Position vectors locating the charge density within two charge distribu-
tions, ρ1 and ρ2, and the relative positions of the two distributions

interaction energy of the two nonoverlapping charge distributions is

E =
∫

(dr1)(dr2)
ρ1(r1)ρ2(r2)

4π|r + r1 − r2|
, (2.112)

which has the required symmetry under the interchange 1 → 2, r → −r.
We now proceed to introduce a double expansion
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1
|r + r1 − r2|

=
∞∑

l1,l2=0

(r1 · ∇)l1

l1!
(−r2 · ∇)l2

l2!
1
r

=
∑

l1,m1

∑
l2,m2

(
4π

2l1 + 1

)1/2

Yl1m1(r1)∗(−1)l2

(
4π

2l2 + 1

)1/2

×Yl2m2(r2)∗ψl1m1(∇)ψl2m2(∇)
1
r

, (2.113)

with a twofold application of (2.80). To simplify the combining of the two
monomials ψl1m1 and ψl2m2 , we employ the notation

[lm] = [(l + m)!(l − m)!]1/2 = [l,−m] , (2.114)

and also
L = l1 + l2 , M = m1 + m2 , (2.115)

so that

ψl1m1ψl2m2 =
[LM ]

[l1m1][l2m2]
ψLM . (2.116)

Then the action of ψLM (∇) on 1/r, as given by (2.81), and the spatial integra-
tions that produce the individual multipole moments ρ1l1m1 , ρ2l2m2 , combine
to yield the energy expression

E =
∑

l1,m1;l2,m2

1
rL+1

(
4π

2L + 1

)1/2

YLM (θ, φ)[LM ](−1)l1
ρ1l1m1

[l1m1]
ρ2l2m2

[l2m2]
.

(2.117)

Notice that L, which specifies the distance and angle dependence of the
contributions, can generally be realized in a number of ways. Of course, for
L = 0 there is only l1 = l2 = 0, which leads to the Coulomb charge–charge
interaction. With L = 1, we have l1 = 1, l2 = 0 and l1 = 0, l2 = 1; the two
possibilities of charge–dipole interaction. Then, for L = 2, there is l1 = 2,
l2 = 0 and l1 = 0, l2 = 2 – the two variants of charge–quadrupole interaction;
and l1 = l2 = 1 – dipole–dipole interaction. In general, the total number is
L + 1. If, however, we give but a single count to the two variants of the same
physical situation, the number of distinct multipole pairs is given by [L/2]+1,
where the bracket indicates the largest integer contained in the given number,
which is just L

2 for L even, and 1
2 (L − 1) for L odd.

We must also comment on the particular form taken by the interaction
energy when, as in (2.55), the z-axis is chosen to coincide with the line between
the two centers. With θ = 0, only M = 0 contributes in (2.117), thus requiring
that m1 = −m2 = m, and the energy expression reduces to

E =
∑

l1l2m

L!
rL+1

(−1)l1
1

[l1m]
ρ1l1m

1
[l2m]

ρ2l2−m . (2.118)

One easily checks that the l1 = l2 = 1 term reproduces (2.55).



2.5 Problems for Chap. 2 61

2.5 Problems for Chap. 2

1. Prove Laplace’s second integral representation, the result of substitution
l → −l − 1 in (2.26), namely (2.91).

2. What happens in the latter representation if the sign of cos θ is reversed?
Does one still obtain a solution of Laplace’s equation?

3. Provide a generalization of Laplace’s second integral to m 
= 0.
4. Spherical harmonics are defined by (2.20), so show that

ν∗ · r
l + 1

l∑
m=−l

ψ∗
lm

√
4π

2l + 1
rlYlm(θ, φ)

=
l+1∑

m=−l−1

ψ∗
l+1,m

√
4π

2(l + 1) + 1
rl+1Yl+1,m(θ, φ), (2.119)

where

ν · r =
1
2
r(sin θ eiφψ2

− − sin θ e−iφψ2
+ + 2 cos θ ψ+ψ−) . (2.120)

Write out the explicit constructions this gives for the spherical harmonics
of degree l + 1 in terms of those of degree l. [As a hint, one of the three
terms in the answer is

√
2l + 3
2l + 1

√
(l + 1 + m)(l + 1 − m) cos θ Ylm(θ, φ) .] (2.121)

Begin with Y00 = 1/
√

4π and construct the three Y1m, and then find one
or more of the five Y2m.

5. Prove (2.81) by regarding the left-hand side of (2.66) as constructed from
the product of two null vectors.

6. Provide an alternative derivation of (2.89) by converting the integral over
φ into a closed contour integral.

7. Verify (2.109a)–(2.110c). Hint: write

ψl+m
+ ψl−m

− = νl−|m|
z (−νx − iνy)(m+|m|)/2(νx − iνy)(|m|−m)/2 . (2.122)
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Relativistic Transformations

Most of this book is written in three-dimensional notation, which is en-
tirely appropriate for practical applications. However, electrodynamics was
the birthplace of Einstein’s special relativity so it is fitting to give here a
brief account of the relativistically covariant formulation of the theory. Al-
though special relativity implied a modification of Newton’s laws of motion,
no change, of course, is made in Maxwell’s theory in such a reformulation.

3.1 Four-Dimensional Notation

A space–time coordinate can be represented by a contravariant vector,

xµ : x0 = ct , x1 = x , x2 = y , x3 = z , (3.1)

where µ is an index which takes on the values 0, 1, 2, 3. The corresponding
covariant vector is

xµ : x0 = −ct , x1 = x , x2 = y , x3 = z . (3.2)

The contravariant and covariant vector components are related by the metric
tensor gµν ,

xµ = gµνxν , (3.3)

which uses the Einstein summation convention of summing over repeated
covariant and contravariant indices,

gµνxν =
3∑

ν=0

gµνxν . (3.4)

From the above explicit forms for xµ and xν we read off, in matrix form (here
the first index labels the rows, the second the columns, both enumerated from
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0 to 3)1

gµν =




−1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1


 , (3.5)

where evidently gµν is symmetric,

gµν = gνµ . (3.6)

Similarly,
xµ = gµνxν , (3.7)

where

gµν =




−1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1


 , gµν = gνµ . (3.8)

The four-dimensional analog of a rotationally invariant length is the proper
length s or the proper time τ :

s2 = −c2τ2 = xµxµ = xµgµνxν = xµgµνxν = r · r − (ct)2 . (3.9)

Recall the transformation of a scalar field under a coordinate displace-
ment,2 as in (1.76),

δφ(r) = −δr · ∇φ(r), ∇ =
∂

∂r
. (3.11)

The corresponding four-dimensional statement is

δφ(x) = −δxµ∂µφ(x) ∂µ =
∂

∂xµ
, (3.12)

which shows the definition of the covariant gradient operator, so defined in
order that ∂µxµ be invariant. The corresponding contravariant gradient is

∂µ = gµν∂ν =
∂

∂xµ
. (3.13)

1 In this book, we use what could be referred to as the democratic metric (formerly
the East-coast metric), in which the signature is dictated by the larger number
of entries.

2 There is a sign change relative to what appears in Chap. 1. That is because we are
now considering passive transformations. Thus, under an infinitesimal coordinate
displacement, a scalar field transforms according to φ(x + δx) = φ(x), while δφ
is defined at the same coordinate:

δφ(x) = φ(x) − φ(x) = φ(x − δx) − φ(x) . (3.10)
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Using these operators we can write the equation of electric current con-
servation, (1.14),

∇ · j +
∂

∂t
ρ = 0 , (3.14)

in the four-dimensional form
∂µjµ = 0 , (3.15)

where we define the components of the electric current four-vector as

jµ : j0 = cρ , {ji} = j , (3.16)

where we have adopted the convention that Latin indices run over the values
1, 2, 3, corresponding to the three spatial directions. Note that (3.16) is quite
analogous to the construction of the position four-vector (3.1).

The invariant interaction term (1.61)

Lint = −ρφ +
1
c
j · A (3.17)

has the four-dimensional form

1
c
jµAµ , (3.18)

where
Aµ = gµνAν , A0 = φ , {Ai} = A . (3.19)

The four-dimensional generalization of

B = ∇ × A (3.20)

is the tensor construction

Fµν = ∂µAν − ∂νAµ , (3.21)

where the antisymmetric field strength tensor

Fµν = −Fνµ (3.22)

contains the magnetic field components as

F23 = B1 , F31 = B2 , F12 = B3 , (3.23)

which may be presented more succinctly as

Fij = εijkBk , (3.24)

which uses the totally antisymmetric Levi-Cività symbol:

ε123 = ε231 = ε312 = −ε213 = −ε132 = −ε321 = 1 , (3.25)
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all other components being zero. The construction (3.21) includes the other
potential statement (1.48),

E = −∇φ − 1
c

∂

∂t
A , (3.26)

provided
F0i = −Ei . (3.27)

Alternatively, with
Fµ

ν = gµλFλν , (3.28)

we have
F 0

i = Ei . (3.29)

Maxwell’s equations with only electric currents present are summarized by

∂νFµν =
1
c
jµ , (3.30a)

∂λFµν + ∂µFνλ + ∂νFλµ = 0 , (3.30b)

where
Fµν = Fµ

λgλν = gµκFκλgλν . (3.31)

It is convenient to define a dual field strength tensor by

∗Fµν =
1
2
εµνκλFκλ = −∗F νµ , (3.32)

where εµνκλ is the four-dimensional totally antisymmetric Levi-Cività symbol,
which therefore vanishes if any two of the indices are equal, normalized by

ε0123 = +1 . (3.33)

We now have

∗F 01 = F23 = B1 , ∗F 02 = F31 = B2 , ∗F 03 = F12 = B3 , (3.34)

and

∗F 23 = F01 = −E1 , ∗F 31 = F02 = −E2 , ∗F 12 = F03 = −E3 , (3.35)

so indeed the dual transformation corresponds to the replacement

E → B , B → −E . (3.36)

[This is a special case of the duality rotation (1.219).] Note that two dual
operations brings you back to the beginning:

∗(∗Fµν) = −Fµν . (3.37)
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Using the dual, Maxwell’s equations including both the electric (jµ) and
the magnetic (∗jµ) currents (called je and jm in the problems in Chap. 1) are
given by

∂νFµν =
1
c
jµ , ∂ν

∗Fµν =
1
c
∗jµ , (3.38)

where both currents must be conserved,

∂µjµ = c∂µ∂νFµν = 0 , (3.39a)
∂µ

∗jµ = c∂µ∂ν
∗Fµν = 0 , (3.39b)

because of the symmetry in µ and ν of ∂µ∂ν and the antisymmetry of Fµν

and ∗Fµν .
We had earlier in (3.9) introduced the proper time. The corresponding

differential statement is

dτ =
1
c

√
−dxµdxµ = dt

√
1 − v2

c2
, (3.40)

which is an invariant time interval. The particle equations of motion using τ
as the time parameter read (see Problem 3.1)

m0
d2xµ

dτ2
=

e

c
Fµ

ν
dxν

dτ
, (3.41)

to which is to be added g
c
∗Fµ

νdxν/dτ if the particle possesses magnetic charge
g. We can write down three alternative forms for the action of the particle:

W12 =
∫ 1

2

(
−m0c

2dτ +
e

c
Aµdxµ

)
(3.42a)

=
∫ 1

2

dτ

[
1
2
m0

(
dxµ

dτ

dxµ

dτ
− c2

)
+

e

c
Aµ

dxµ

dτ

]
(3.42b)

=
∫ 1

2

dτ

[
pµ

(
dxµ

dτ
− vµ

)
+

1
2
m0

(
vµvµ − c2

)
+

e

c
Aµvµ

]
.(3.42c)

In the last two forms, τ is an independent parameter, with the added require-
ment that each generator G [recall the action principle states δW12 = G1−G2]
is independent of δτ . In the third version, where xµ, vµ, and pµ are indepen-
dent dynamical variables, it is a consequence of the action principle that

vµ =
dxµ

dτ
, pµ = m0v

µ +
e

c
Aµ , vµvµ = −c2 , (3.43a)

dpµ

dτ
=

e

c
∂µAλvλ . (3.43b)

The invariant Lagrange function for the electromagnetic field (1.60) is

Lf = −1
4
FµνFµν =

E2 − B2

2
. (3.44)



68 3 Relativistic Transformations

The energy–momentum, or stress tensor, subsumes the energy density, the
momentum density (or energy flux vector) and the three-dimensional stress
tensor:

Tµν = T νµ = FµλF ν
λ − gµν 1

4
FκλFκλ ; (3.45)

It has the property of being traceless:

Tµ
µ = gµνTµν = 0 , (3.46)

and has the following explicit components:

T 00 = U , T 0
k =

1
c
Sk = cGk , Tij = Tij , (3.47)

in terms of the energy density, (1.20a), the energy flux vector (1.20b) or mo-
mentum density (1.20c), and the stress tensor (1.20d). It satisfies the equation

∂νTµν = −Fµν 1
c
jν , (3.48)

which restates the energy and momentum conservation laws (1.44a) and
(1.44b).

3.2 Field Transformations

A Lorentz transformation, or more properly a boost, is a transformation that
mixes the time and space coordinates without changing the invariant distance
s2. An infinitesimal transformation of this class is

δr = δvt , δt =
1
c2

δv · r , (3.49)

where −δv is the velocity with which the new coordinate frame moves relative
to the old one. (It is assumed that the two coordinate frames coincide at
t = 0.) In terms of the four-vector position, xµ = (ct, r), we can write this
result compactly as

δxµ = δωµνxν , (3.50)

where the only nonzero components of the transformation parameter δωµν are

δω0i = −δωi0 =
δvi

c
. (3.51)

Ordinary rotations of course also preserve s2, so they must be included in the
transformations (3.50), and they are, corresponding to δωµν having no time
components, and spatial components

δωij = −εijkδωk , (3.52)
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so, as in (1.81),
δr = δω × r . (3.53)

In fact, the only property δωµν must have in order to preserve the invariant
length s2 is antisymmetry:

δωµν = −δωνµ , (3.54)

for
δ(xµxµ) = 2δωµνxµxν = 0 , (3.55)

and a scalar product, such as that in jµAµ is similarly invariant. Any infinites-
imal transformation with this property we will dub a Lorentz transformation.

Now consider the transformation of a four-vector field, such as the vec-
tor potential, Aµ = (φ,A). This field undergoes the same transformation as
given by the coordinate four-vector, but one must also transform to the new
coordinate representing the same physical point. That is, under a Lorentz
transformation,

Aµ(x) → A
µ
(x) = Aµ(x) + δωµνAν(x) , (3.56)

where
xµ = xµ + δxµ = xµ + δωµνxν . (3.57)

So that the transformation may be considered a field variation only, we define
the change in the field at the same coordinate value (which refers to different
physical points in the two frames):

δAµ(x) = A
µ
(x) − Aµ(x)

= Aµ(x − δx) + δωµνAν(x) − Aµ(x)
= −δxν∂νAµ(x) + δωµνAν(x) . (3.58)

The four-vector current jµ = (cρ, j) must transform in the same way:

δjµ = −δxν∂νjµ(x) + δωµνjν(x) . (3.59)

A scalar field, λ(x), on the other hand only undergoes the coordinate
transformation:

λ(x) → λ(x) = λ(x) , (3.60)

so
δλ(x) = −δxν∂νλ(x) . (3.61)

Because a vector potential can be changed by a gauge transformation,

Aµ → Aµ + ∂µλ , (3.62)

without altering any physical quantity, in particular the field strength tensor
Fµν , the transformation law for the vector potential must follow by differen-
tiating that of λ, and indeed it does.
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What about the transformation property of the field strength tensor?
Again, it follows by direct differentiation:

δFµν = δ(∂µAν − ∂νAµ)
= −δxλ∂λFµν − (∂µδxλ)∂λAν + (∂νδxλ)∂λAµ + δωνλ∂µAλ − δωµλ∂νAλ

= −δxλ∂λFµν + δωµ
λFλν + δων

λFµλ . (3.63)

So we see that each index of a tensor transforms like that of a vector. From
this it is easy to work out how the components of the electric and magnetic
fields transform under a boost (3.51). Apart from the coordinate change –
which just says we are evaluating fields at the same physical point – we see
[cf. (1.230)]

‘δ’E = −δv
c

× B , (3.64a)

‘δ’B =
δv
c

× E . (3.64b)

The proof of the Lorentz invariance for the relativistic Lagrangian is now
immediate. That is,

δL = −δxλ∂λL , (3.65)

which just says that L(x) = L(x), implying that δW = δ
∫

(dx)L(x) = 0. We
have already remarked that ‘δ’Lint = 0. The invariance of the field Lagrangian
(3.44) is simply the statement

‘δ’Lf = δωµνFµλF ν
λ = 0 , (3.66)

and the particle action in (3.42a)–(3.42c) is manifestly invariant.

3.3 Problems for Chap. 3

1. Show that the time and space components of (3.41) are equivalent to the
equations of motion (1.45a) and (1.45b) provided the relativistic form
of the particle kinetic energy and momentum, (1.18a) and (1.18b), are
employed.

2. Derive the first form of the particle action (3.42a) from the relativistic
particle Lagrangian −m0c

2
√

1 − v2/c2 and the interaction (3.17).
3. Obtain the equations resulting from variations of the second form of the

particle action (3.42b) with respect to both xµ and τ variations, and verify
that these are as expected.

4. A covariant form for the current vector of a moving point charge e is the
proper-time integral

1
c
jµ(x) =

∫ ∞

−∞
dτ e

dxµ(τ)
dτ

δ(x − x(τ)) . (3.67)
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Verify that
∂µjµ = 0 , (3.68)

under the assumption that the charge is infinitely remote at τ = ±∞.
Show that ∫

(dr)
1
c
j0(x) = e , (3.69)

provided dx0(τ)/dτ is always positive. The stress tensor Tµν for a mass
point is given analogously by

Tµν(x) =
∫ ∞

−∞
dτ m0c

dxµ(τ)
dτ

dxν(τ)
dτ

δ(x − x(τ)) . (3.70)

Verify that
∂νTµν(x) = 0 , (3.71)

provided the particle is unaccelerated (d2xµ(τ)/dτ2 = 0). Then show that∫
(dr)T 0ν = m0c

dxν(τ)
dτ

. (3.72)

Does this comprise the expected values for the energy and momentum
(multiplied by c) of a uniformly moving particle?

5. Suppose the particle of the previous problem is accelerated – it carries
charge e and moves in an electromagnetic field. Use the covariant equa-
tions of motion (3.41) to show that

∂νTµν
part =

1
c
Fµ

νjν . (3.73)

What do you conclude by comparison with the corresponding divergence
of the electromagnetic stress tensor (3.48)?

6. The next several problems refer to a purely electromagnetic model of the
electron described first in [15]. A spherically symmetrical distribution of
charge e at rest has the potentials φ = ef(r2), A = 0, where, at distances
large compared with its size, f(r2) ∼ 1/

√
r2. As observed in a frame in

uniform relative motion, the potentials are

Aµ(x) =
e

c
vµf(ξ2) , ξµ = xµ +

vµ

c

(
vλ

c
xλ

)
, (3.74)

where

vλξλ = 0 , ξ2 = x2 +
(

vλ

c
xλ

)2

. (3.75)

Check that for motion along the z-axis with velocity v,

ξ2 = x2 + y2 +
(z − vt)2

1 − v2/c2
, (3.76)

as could be inferred from Problem 31.1 of [9]. Compute the field strengths
Fµν and evaluate the electromagnetic field stress tensor (3.45).
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7. From the previous problem, use the field equation (3.30a) to produce
jµ(x). Check that ∂µjµ = 0. Construct Fµν 1

c jν and note that its vector
nature lets one write

Fµν 1
c
jν = −∂µt(ξ2) . (3.77)

Exhibit t(ξ2) for the example f(ξ2) = (ξ2 +a2)−1/2. Inasmuch as the field
tensor obeys (3.48)

∂νTµν
f = −Fµν 1

c
jν = ∂µt , (3.78)

one has realized a divergenceless electromagnetic tensor:

Tµν = Tµν
f − gµνt , ∂νTµν = 0 . (3.79)

It is the basis of a purely electromagnetic relativistic model of mass. There
is, however, an ambiguity, because from (3.75)

∂ν

(
vµ

c

vν

c
t(ξ2)

)
= 0 . (3.80)

Therefore,

Tµν = Tµν
f −

(
gµν +

vµ

c

vν

c

)
t , (3.81)

for example, is also a possible electromagnetic tensor. Choice (3.79) has
the property that the momentum density of the moving system (multiplied
by c) is just that of the field,

T 0k = T 0k
f = (E × B)k . (3.82)

Choice (3.81) is such that the energy density of the system at rest is just
that of the field,

v = 0 : T 00 = T 00
f =

E2

2
. (3.83)

One cannot have both. That requires t = 0; that is, no charge. The system
then is an electromagnetic pulse – it moves at the speed c.

8. Without specializing f(ξ2), integrate over all space (by introducing the
variable z′ = (z − vt)/

√
1 − v2/c2) to show that, whether one uses tensor

(3.79) or (3.81),

E =
∫

(dr)T 00 =
mc2√

1 − v2/c2
, pk =

1
c

∫
(dr)T 0

k =
mvk√

1 − v2/c2
.

(3.84)
What numerical factor relates m in scheme (3.79) to that in scheme (3.81)?

9. Repeat the action discussion following from (3.42c) with m0 = 0 and
unspecified f(ξ2). What mass emerges?
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10. Verify that the Maxwell equations involving magnetic currents, the second
set in (3.38), can also be given by

∂λFµν + ∂µFνλ + ∂νFλµ = εµνλκ
1
c
∗jκ . (3.85)

11. A particle has velocity components vx = dx
dt and vz = dz

dt in one coordinate
frame. There is a second frame with relative velocity v along the z-axis.
What are the velocity components v′

x = dx′

dt′ and v′
z = dz′

dt′ in this frame?
Give a simple interpretation of the v′

x result for vz = 0.
12. Let the motion referred to in the previous problem be that of light, moving

at angle θ with respect to the z-axis. Find cos θ′ and sin θ′ in terms of
cos θ and sin θ. Check that cos2 θ′ +sin2 θ′ = 1. Exhibit θ′ explicitly when
β = v/c � 1.

13. The infinitesimal transformation contained in (3.51)

δp =
δv
c

E

c
,

δE

c
=

δv
c

· p , (3.86)

identify the four-vector of momentum pµ = (E/c,p) What is the value of
the invariant pµpµ for a particle of rest mass m0? Apply the analog of the
space–time transformation equations

t′ =
t + v · r/c2√

1 − v2/c2
, v · r′ = v · r + vt√

1 − v2/c2
(3.87)

to find the energy and momentum of a moving particle from their values
when the particle is at rest.

14. A body of mass M is at rest relative to one observer. Two photons, each of
energy ε, moving in opposite directions along the x-axis, fall on the body,
and are absorbed. Since the photons carry equal and opposite momenta,
no net momentum is transferred to the body, and it remains at rest.
Another observer is moving slowly along the y-axis. Relative to him, the
two photons and the body, both before and after the absorption act, have
a common velocity v (|v| � c) along the y-axis, Reconcile conservation
of the y-component of momentum with the fact that the velocity of the
body does not change when the photons are absorbed.

15. Show, very simply, that B, the magnetic field of a uniformly moving charge
is 1

cv × E. Then consider two charges, moving with a common velocity v
along parallel tracks, and show that the magnetic force between them is
opposite to the electric force, and smaller by a factor of v2/c2. (This is an
example of the rule that like charges repel, like currents attract.) Can you
derive the same result by Lorentz transforming the equation of motion in
the common rest frame of the two charges? (Hint: Coordinates perpendic-
ular to the line of relative motion are unaffected by the transformation.)
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16. This continues Problems 1.13–1.17. The relativistic formula

dN =
(dk)
k0

α

4π2

(
v1

kv1
− v2

kv2

)2

(3.88)

describes the number of photons emitted with momentum kµ under the
deflection of a particle: vµ

1 → vµ
2 . (Here, the scalar product is denoted

by kv1 = kµv1µ, etc.) More realistic is a collision of two particles, with
masses ma, mb and charges ea and eb. When, as a result of a collision in
which the particle velocities change from va2, vb2 to va1, vb1, what is dN?
Suppose this collision satisfies the conservation of energy–momentum,
(pµ

a + pµ
b )1 = (pµ

a + pµ
b )2. Rewrite your expression for dN in terms of

the pµ rather than the vµ. What follows if it should happen that e/kp has
the same value for both particles, before and after the collision? Connect
the nonrelativistic limit of this circumstance with Problem 1.13. Verify
that this special circumstance does hold relativistically in the head-on,
center-of-mass collision, where all momenta are of equal magnitude, for
radiation perpendicular to the line of motion of the particles, provided
ea/Ea = eb/Eb. What restriction does this impose on the energy if the
particles are identical (same charge and rest mass)?

17. Use the fact that

kµ

(
vµ
1

kv1
− vµ

2

kv2

)
= 0 (3.89)

for example to show that
(

v1

kv1
− v2

kv2

)2

=
(
n ×

(
v1

kv1
− v2

kv2

))2

. (3.90)

Repeat the calculation of Problem 1.16, using this form and show the
identity of the two results.

18. From the response of a particle momentum to an infinitesimal Lorentz
transformation (3.86), find the infinitesimal change of the particle velocity
V when V and δv are in the same direction. Compare your result with
the implication of the formula for the relativistic addition of velocities.

19. Light travels at the speed c/n in a stationary, nondispersive medium.
What is the speed of light when this medium is moving at speed v parallel
or antiparallel to the direction of the light? To what does this simplify
when v/c � 1?

20. An infinitesimal Lorentz transformation (boost) is characterized by a pa-
rameter δθ = δv/c. Assuming that δv lies along the z-direction, construct
and solve the first-order differential equations obeyed by ct(θ)±z(θ). What
do the solutions tell you about the relation between θ and v/c? How does
the addition of velocity formula read in terms of the corresponding θs?
(The angle θ is often referred to as the “rapidity.”)

21. The frequency ω and the propagation vector k of a plane wave form a
four-vector: kµ = (ω/c,k). Check that kµkµ = 0 and that exp(ikµxµ) =



3.3 Problems for Chap. 3 75

exp[i(k · r − ωt)]. Use Lorentz transformations to show that radiation, of
frequency ω, propagating at an angle θ with respect to the z-axis, will, to
an observer moving with relative velocity v = βc along the z-axis, have
the frequency

ω′ =
1√

1 − β2
ω(1 − β cos θ) (3.91)

(this is the Doppler effect) and an angle relative to the z-axis given by

cos θ′ =
cos θ − β

1 − β cos θ
(3.92)

(this is aberration). Find θ′ explicitly for |β| � 1.
22. By writing the angle relation (3.92) as

cos θ − cos θ′ = β(1 − cos θ cos θ′) , (3.93)

show that

tan
1
2
θ′ =

√
1 + β

1 − β
tan

1
2
θ , (3.94)

or, replacing the angle θ for the direction of travel by the angle α = π− θ
for the direction of arrival,

tan
1
2
α′ =

√
1 − β

1 + β
tan

1
2
α . (3.95)

23. An ellipse of eccentricity β is inscribed in a circle. The major axis of the
ellipse lies along the x-axis, the origin of which is the center of the circle.
A line drawn from the origin to a point on the circle makes an angle α
with the x-axis. Now one finds a related point on the ellipse by moving
down, perpendicularly to the x-axis, from the point on the circle. A line
drawn from the left-hand focus of the ellipse to this point on the ellipse
makes an angle α′ with the x-axis. Show that the relation between α and
α′ is that of (3.95).

24. Show that the four-potential produced by a charged particle with four-
velocity vµ is

Aµ(x) =
1
4π

∫
ds′η(x0 − x0′(s′))2δ[(x − x′(s′))2]evµ(s′)

= − e

4π

vµ(s′)
(x − x′(s′))v(s′)

. (3.96)

Here η is the unit step function (the corresponding capital letter looks like
the initial letter of Heaviside)

η(x) =
{

1 , x > 0 ,
0 , x < 0 .

(3.97)
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Make explicit what is left implicit in the result (3.96). Write the result
in 3 + 1 dimensional notation and compare with the Liénard–Wiechert
potentials (1.125) and (1.126).

25. A charge at rest scatters radiation with unchanged frequency. Give a rel-
ativistically invariant form to this statement. Then deduce that radiation
of frequency ω0, moving in the direction of unit vector n0, which is scat-
tered by a charge with velocity v into the direction of unit vector n, has
the frequency

ω = ω0

1 − n0 · v
c

1 − n · v
c

. (3.98)

26. Find the total scattering cross section for the scattering of radiation by a
charge that is moving with velocity v in the direction of the incident radi-
ation. Assume that β = v/c is small so that is an essentially nonrelativistic
calculation.

27. Repeat the above using a relativistic calculational method. Check the
consistency of the result with that of the β � 1 calculation.

28. The classical statement that light is scattered with unchanged frequency
by a charge at rest appears generally as, in four-vector notation,

v2 = −c2 : kv = k0v , or v(k − k0) = 0 . (3.99)

Now think of a photon scattered by a charged particle. If initial momenta
are denoted by a subscript 0, the statement of energy–momentum conser-
vation reads

(h̄k + p)µ = (h̄k0 + p0)µ , (3.100)

where
k2 = k2

0 = 0 , p2 = p2
0 = −m2

0 , (3.101)

where m0 is the rest mass of the particle. Show that

(p + p0)(k − k0) = 0 , (3.102)

or in terms of four-velocities, given by pµ = m0v
µ, pµ

0 = m0v
µ
0 , that

1
2
(v + v0)(k − k0) = 0 . (3.103)

Thus the classical result (3.99) appears when the difference between vµ

and vµ
0 can be neglected in

(
1
2
(v + v0)

)2

+
(

1
2
(v − v0)

)2

= −c2 . (3.104)

The nearest quantum equivalent to the classical rest frame occurs when
p0 = −p. In that frame let k0 and k each make an angle 1

2θ with respect
to the plane perpendicular to p. Check that (3.102) implies ω = ω0. What
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is the value of |p| = |p0| in terms of ω0 and the photon scattering angle
θ? Under what circumstances can the equal and opposite velocities v and
v0 be regarded as negligible? (This is the underlying principle of the Free
Electron Laser [16].)

29. Integrate the invariant (dk)2δ(k2), where (dk) = dk0(dk), over all k0 > 0
to arrive at the invariant

(dk)
|k| =

ω dω

c2
dΩ , ω = kc , (3.105)

in which dΩ is an element of solid angle. Use the Doppler effect formula
(3.91) to deduce the solid angle transformation law,

dΩ′ =
1 − β2

(1 − β cos θ)2
dΩ . (3.106)

Then get it directly from the aberration formula (3.92). What did you
assume about the azimuthal angle φ, and why? Check that the above
relation is consistent with the requirement that

∫
dΩ′ = 4π.

30. Let vµ be the four-vector velocity γ(c,v), γ = (1−v2/c2)−1/2 of a physical
system. Use the invariance of kµvµ, in relating ω′, a frequency observed
when the system is at rest, to quantities measured when the system is in
motion along the z-axis with velocity v. Compare with a result found in
Problem 3.21. Show that the invariant

I =
dpµ

dτ

dpµ

dτ
−
(

mc
kµdpµ/dτ

kνpν

)2

, (3.107a)

is written as

I =
(

E

mc2

)2
[
ṗ2 −

(
1
c
Ė

)2

−
(

mc2

E

)2 (n · ṗ − Ė/c)2

(1 − n · pc/E)2

]
, (3.107b)

where m is the rest mass, and n is the direction of k, which appears in
the angular distribution given in (3.111).

31. Verify that the energy radiated per unit time into a unit solid angle, by a
system that is momentarily at rest, is given, in any coordinate frame, by
the invariant expression

− d2pµ

dτ dΩ′ vµ , (3.108)

where vµ is the velocity four-vector of the system; dΩ′ refers to the rest
frame. Then use the relation between the momentum and the energy of
the radiation moving in a given direction (unit vector n) to write the
above radiation quantity, for a system moving with velocity v, as

d2E

dt dΩ′
1 − n · v/c

1 − v2/c2
. (3.109)
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32. The power radiated in the direction n, per unit solid angle dΩ′, by an
accelerated charge that is momentarily at rest, is given by (1.167) or

e2

(4π)2c3
(n × v̇)2 =

e2

(4π)2c3
[v̇2 − (n · v̇)2] . (3.110)

Now combine this with the results of (3.109), (3.106), and (3.107b) to
produce the power radiated into a solid angle dΩ,

dP

dΩ
=

e2

(4π)2m2c3

(
mc2

E

)2
[

ṗ2 − (Ė/c)2

(1 − n · pc/E)3
−
(

mc2

E

)2 (n · ṗ − Ė/c)2

(1 − n · pc/E)5

]
.

(3.111)
This result is the same as that given in (1.210) upon substituting there
v = pc2/E.



4

Variational Principles for Harmonic Time
Dependence

Throughout the remainder of the book we shall be primarily concerned with
fields possessing a simple harmonic time dependence. Since the time depen-
dence of all fields and currents must be the same, it is useful to suppress the
common time factor with the aid of complex notation. We shall write the real
quantity A(t) as

A(t) =
1
2
(
Ae−iωt + A∗eiωt

)
= Re Ae−iωt , (4.1)

where A∗ is the complex conjugate of the amplitude A, that is, the sign of i
is reversed, and Re symbolizes the operation of constructing the real part of
the following complex number. Linear relations between quantities, such as

A(t) + B(t) = C(t) , (4.2a)
d
dt

F (t) = G(t) , (4.2b)

can then be written as

A + B = C , (4.3a)
−iωF = G , (4.3b)

with the understanding that the exponential time factor must be supplied and
the real part obtained to give the equation meaning. Quadratic quantities,
such as A(t)B(t), will vary with time, consisting partly of a constant term,
and partly of terms oscillating harmonically with angular frequency 2ω,

A(t)B(t) =
1
4

(AB∗ + A∗B) +
1
4
(
ABe−2iωt + A∗B∗e2iωt

)
. (4.4)

We shall invariably be concerned only with the constant part, or time average
of these products, for the rapidly oscillating component of physical quantities
like electric flux is not readily susceptible of observation. Hence
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A(t)B(t) =
1
4

(AB∗ + A∗B) =
1
2
Re AB∗ =

1
2
Re A∗B . (4.5)

In particular

(A(t))2 =
1
2
|A|2. (4.6)

With these conventions, the harmonic form of the Maxwell equations (1.1a)
and (1.1b) is, in SI units,1

∇ × H = −iωεE + J , (4.7a)
∇ × E = iωµH , (4.7b)

and the equation of charge conservation (1.14) reads

∇ · J = iωρ . (4.8)

The remaining set of Maxwell equations, the divergence equations,

∇ · εE = ρ , ∇ · µH = 0 , (4.9)

are immediate consequences of the curl equations for nonstatic fields. For a
conducting medium it is useful to indicate explicitly the conduction current
density σE,

∇ × H = (σ − iωε)E + J , (4.10)

where J now denotes the impressed current density, arising from all other
causes. The average intensity of energy flow (1.203b) is

S =
1
2
ReE × H∗ , (4.11)

while the average density of electromagnetic energy is (proved in Problem 6.2)

U =
1
4

(
∂ωε

∂ω
|E|2 +

∂ωµ

∂ω
|H|2

)
. (4.12)

4.1 Variational Principles

The Maxwell equations in complex, or harmonic, form can be derived from a
variational principle without the intervention of auxiliary potentials. Indeed,
almost no further use of potentials will be made in the sequel. The variational
principle can be cast into a variety of forms of which a rather general example
is

δL ≡ δ

∫
V

(dr)
(

1
2
iωµH2 − 1

2
iωεE2 − E · ∇ × H +

1
2
σE2 + J · E

)
, (4.13)

1 Note that because the sign of ω is without significance, we may, without loss of
generality, take ω ≥ 0.
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in which E and H are subject to independent variations within the volume
V , and J, the impressed current density, is a prescribed function of position.
In performing the variation the components of H tangential to the surface S
bounding the region V are to be regarded as prescribed functions,

n × δH = 0 on S , (4.14)

where n is the normal to the surface. The direct evaluation of the variation
gives

∫
V

(dr) [δH · (iωµH − ∇ × E) + δE · (−iωεE + σE + J − ∇ × H)]

−
∮

S

dS (n × δH) · E = 0 , (4.15)

on employing the identity

A · ∇ × B − B · ∇ × A = ∇ · (B × A) . (4.16)

The surface integral vanishes in virtue of the restricted nature of the variation
(4.14) and the condition that the volume integral equals zero for arbitrary
δE and δH yields the two curl equations (4.10) and (4.7b), which are the
fundamental set of the Maxwell equations. In the surface condition imposed
on the variation, we have an indication of the uniqueness theorem, which
states that the fields within a region are completely determined by the value
of the magnetic field tangential to the surface enclosing the region.

It often occurs that the fields within a region are required subject to the
boundary condition that the electric field components tangential to the bound-
ing surface be zero,

n × E = 0 on S . (4.17)

On writing the surface integral contribution to the variation (4.15) as
∮

S

dS δH · n × E , (4.18)

it is apparent that the requirement that the Lagrangian be stationary for
completely arbitrary variations, in the interior of the region and on the surface,
will yield both the Maxwell equations and the boundary condition (4.17). More
general boundary conditions of this type are of the form

n × E = Z · H on S , (4.19)

where Z is a symmetrical dyadic possessing no components normal to the
surface S, that is, the boundary condition is a relation between tangential
components of E and H. To derive this boundary condition from a variational
principle, the Lagrangian must be extended to
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L =
∫

V

(dr)
(

1
2
iωµH2 − 1

2
iωεE2 − E · ∇ × H +

1
2
σE2 + J · E

)

−
∮

S

dS
1
2
H · Z · H . (4.20)

The Maxwell equations for the interior of the region are obtained as before,
but the surface integral contribution to the variation is now

∮
S

dS δH · (n × E − Z · H) , (4.21)

and the requirement that this vanish for arbitrary surface variations yields
the desired boundary condition (4.19).

The roles of electric and magnetic fields relative to the surface conditions
can be interchanged by replacing the term E · ∇ × H in the Lagrangian
by H · ∇ × E. The sole effect of this alteration is that the surface integral
contribution to the variation now reads

−
∮

S

dS n × δE · H =
∮

S

dS δE · (n × H) , (4.22)

which vanishes if n × E is prescribed on the surface, indicating another aspect
of the uniqueness theorem. If boundary conditions of the type

n × H = −Y · E on S (4.23)

are given, with Y a symmetrical dyadic relating tangential components of E
and H, the appropriate Lagrangian is

L =
∫

V

(dr)
(

1
2
iωµH2 − 1

2
iωεE2 − H · ∇ × E +

1
2
σE2 + J · E

)

+
∮

S

dS
1
2
E · Y · E . (4.24)

The Lagrangian can be simplified by adopting one of the Maxwell equa-
tions as a defining equation and employing the variational principle to derive
the other equation. Thus, if H is defined in terms of E by (4.7b) or

∇ × E = iωµH , (4.25)

the variational principle (4.24) with Y = 0 becomes

δ

∫
V

(dr)
(
−1

2
iωµH2 − 1

2
iωεE2 +

1
2
σE2 + J · E

)

=
∫

V

(dr) δE · (−iωεE + σE + J − ∇ × H)

−
∮

S

dS n × δE · H = 0 , (4.26)
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in which H is varied according to its defining equation (4.25), yields the sec-
ond Maxwell equation (4.10) if n × E is prescribed on the boundary. The
discussion of homogeneous boundary conditions is unaltered. Note that the
correct Lagrangian for E as the only independent variable is identical with
the general Lagrangian save that H is now considered a function of E. In a
similar way, if E is defined in terms of H by (4.10)

∇ × H = (σ − iωε)E + J , (4.27)

the appropriate variational principle is from (4.13)

δ

∫
V

(dr)
(

1
2
iωµH2 +

1
2
iωεE2 − 1

2
σE2

)

=
∫

V

(dr) δH · (iωµH − ∇ × E) −
∮

S

dS n × δH · E = 0 . (4.28)

A somewhat different type of variational principle can be employed when
the medium is dissipationless, σ = 0, ε = ε∗, µ = µ∗. Consider the pure
imaginary Lagrangian

L =
∫

V

(dr)
(
− iωµH∗ · H − iωεE∗ · E + H∗ · ∇ × E − H · ∇ × E∗

+ J · E∗ − J∗ · E
)

, (4.29)

which is to be regarded as a function of the four independent variables E, E∗,
H, H∗. Performing the required variations,

δL =
∫

V

[
δH∗ · (−iωµH + ∇ × E) − δH · (iωµH∗ + ∇ × E∗)

+ δE∗ · (−iωεE + J − ∇ × H) − δE · (iωεE∗ + J∗ − ∇ × H∗)
]

+
∮

S

dS (n × δE · H∗ − n × δE∗ · H) , (4.30)

we obtain, as the stationary conditions for prescribed n × E and n × E∗ on
the boundary surface, both curl equations (4.25) and (4.27), and their complex
conjugates. Tangential boundary conditions of the type

n × H = iB · E on S (4.31)

with B a real symmetrical dyadic, can be derived from a variational principle
by the addition of

−
∮

S

dS iE∗ · B · E (4.32)

to the Lagrangian. If H and H∗ are defined in terms of E and E∗ by
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∇ × E = iωµH, ∇ × E∗ = −iωµH∗ , (4.33)

the simplified form of the Lagrangian (4.29) is

L =
∫

V

(dr) (iωµH∗ · H − iωεE∗ · E + J · E∗ − J∗ · E) . (4.34)

The appropriate Lagrangian if n × H and n × H∗ are prescribed on S is

L =
∫

V

(dr)
(
− iωµH∗ · H − iωεE∗ · E + E · ∇ × H∗ − E∗ · ∇ × H

+ J · E∗ − J∗ · E
)

. (4.35)

To derive boundary conditions of the form

n × E = −iX · H on S , (4.36)

with X a real symmetrical dyadic relating tangential components, it is neces-
sary to augment the Lagrangian by the term

−
∮

S

dS iH∗ · X · H . (4.37)

If E and E∗ are defined in terms of H and H∗ by

∇ × H = −iωεE + J , ∇ × H∗ = iωεE∗ + J∗ , (4.38)

the Lagrangian (4.35) reduces to

L =
∫

V

(dr) (−iωµH∗ · H + iωεE∗ · E) , (4.39)

as a function of H and H∗, which has the expected familiar form.

4.2 Boundary Conditions

Thus far, no restriction has been imposed upon the macroscopic parameters
ε, µ, and σ, which can be considered arbitrary continuous functions of po-
sition. However, spatial variations of these quantities usually arise through
the juxtaposition of two different homogeneous media, the entire region of
spatial dependence being confined to the immediate vicinity of the contact
surface. It is usually possible to neglect the thickness of the transition layer,
on a macroscopic scale, and thus treat the problem in terms of two completely
homogeneous media, the effect of the region of transition being expressed by
conditions relating the fields on opposite sides of the mutual boundary. The
appropriate boundary conditions can easily be derived from the variational
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principle. The variation of the Lagrangian will contain volume contributions
from the interiors of each of the media, which we shall distinguish by subscripts
1 and 2, and from the region of the transition layer. The stationary require-
ment on the Lagrangian will yield the Maxwell equations, with appropriate
values of the material constants, for variations within each of the substances;
the boundary conditions are an expression of the stationary character of the
Lagrangian for variations within the transition region. The parameters ε, µ,
and σ will be supposed to vary rapidly but continuously in the transition layer,
and accordingly the fields, although subject to sharp changes within the re-
gion, remain finite. The variations of the fields are finite, continuous functions
of position and therefore such contributions to the variation in the transition
layer as

∫
(dr) δH · iωµH are essentially proportional to the thickness of the

layer and may be discarded. However, when derivatives of the field occur the
volume integral can be independent of thickness, and therefore the essential
terms to be considered are, from (4.15)

−
∫

(dr)(δH · ∇ × E + δE · ∇ × H) = −
∫

(dr)∇ · (E × δH + H × δE)

−
∫

(dr)(E · ∇ × δH + H · ∇ × δE) , (4.40)

provided the impressed current density J is finite in the boundary region. In
the rearranged form indicated, the second integral contains the finite deriva-
tives of the field variations and will therefore be neglected. The final result,
then, is

−
∮

dS (n × E · δH + n × H · δE) =
∫

S12

dS

[
(n1 × E1 + n2 × E2) · δH

+ (n1 × H1 + n2 × H2) · δE
]

, (4.41)

an integral extended over the closed surface surrounding the discontinuity
region, which consists of the two surfaces on opposite sides of the contact
surface S12, as expressed by the second integral. In the latter, n1 and n2 are
unit normals at a common point on S12, drawn outward from the respective
regions. The stationary condition now requires that

n1 × E1 + n2 × E2 = n1 × (E1 − E2) = 0 on S , (4.42a)
n1 × H1 + n2 × H2 = n1 × (H1 − H2) = 0 on S , (4.42b)

or, the components of the electric and magnetic field tangential to the bound-
ary surface are continuous on traversing the surface.

Other boundary conditions can be derived from these fundamental ones.
A small area of the surface S12 can be considered a plane surface with a fixed
normal. Hence, on the side of S12 adjacent to region 1,

iωµ1n1 · H1 = n1 · ∇ × E1 = −∇ · n1 × E1 , (4.43)
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in which the divergence involves only derivatives tangential to the surface. On
adding a similar equation for the other side of S12 amd employing the conti-
nuity of the tangential electric field across the interface between the media,
we obtain

µ1n1 · H1 + µ2n2 · H2 = n1 · (µ1H1 − µ2H2) = 0 , (4.44)

or, the component of the magnetic induction normal to the surface is contin-
uous. In a similar way, from

(σ1 − iωε1)n1 · E1 = −∇ · n1 × H1 (4.45)

valid in the absence of impressed currents at the interface, one finds
(
ε1 + i

σ1

ω

)
n1 · E1 +

(
ε2 + i

σ2

ω

)
n2 · E2

= n1 ·
[(

ε1 + i
σ1

ω

)
E1 −

(
ε2 + i

σ2

ω

)
E2

]
= 0 .(4.46)

If both substances are nonconductors (σ1 = σ2 = 0), this relation states the
continuity of the normal component of the electric displacement. For conduct-
ing media, the normal component of D is discontinuous save in the exceptional
circumstance

σ1

ε1
=

σ2

ε2
, (4.47)

that is, when the charge relaxation times, ε/σ, of the two substances are
identical (see Problem 4.1). On integrating the divergence equation

∇ · D = ρ (4.48)

over the infinitesimal volume formed by two small surfaces drawn on either
side of S12, it becomes apparent that a discontinuity in the normal component
of D implies that a finite amount of charge per unit area is distributed in the
transition layer. Indeed,

n1 · D1 + n2 · D2 = n1 · (D1 − D2) = −τ , (4.49)

where τ is the surface density of charge. Hence, from (4.46),

τ =
i
ω

(σ1n1 · E1 + σ2n2 · E2) = −n1 · E1
ε1σ2 − ε2σ1

σ2 − iωε2

= −n2 · E2
ε2σ1 − ε1σ2

σ1 − iωε1
. (4.50)

The first of these relations when written in terms of the conduction current
density J = σE, reads

n1 · J1 + n2 · J2 = n1 · (J1 − J2) = −iωτ , (4.51)
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which is an immediate consequence of the charge conservation theorem (4.8)

∇ · J = iωρ. (4.52)

The idealization of perfect conductors (σ = ∞) often affords an excellent
first approximation in the description of good conductors. Within a perfect
conductor the electric field intensity, and in consequence the magnetic field
intensity, must be zero, else the conduction current density J = σE would
be infinite and infinite power would be dissipated in heat. At the interface
between an ordinary medium (region 1) and a perfect conductor (region 2),
boundary conditions of particular simplicity prevail. Continuity of the tan-
gential electric field and the normal magnetic induction requires that

n1 × E1 = 0 , n1 · H1 = 0 on S12 . (4.53)

With regard to the tangential magnetic field, it must be realized that a finite
surface current will flow in the infinitely thin region in which the conductivity
changes from the infinite value it possesses in the perfect conductor to the
finite value ascribed to region 2. The conduction current density is therefore
infinite in the transition layer and the continuity proof for the tangential
magnetic field must be modified. Consider a small effectively plane area on
the interface and let t be an arbitrary constant vector tangential to the surface.
On integrating the equation

t · ∇ × H = ∇ · (H × t) = −iωεE · t + J · t (4.54)

over the infinitesimal volume bounded by the two sides of the small surface,
we obtain

−n1 · H1 × t = K · t , (4.55)

or, since t is arbitrary,
n1 × H1 = −K , (4.56)

where K is the surface current density tangential to S12. The volume integral
of the tangential electric displacement has been discarded, for the latter is
finite within the transition layer. The normal component of D in region 1 is
related to the surface charge density by

n1 · D1 = −τ . (4.57)

The relation between the normal component of the conduction current and
the charge density must be altered by the presence of surface currents. The
appropriate result can be obtained by considering

∇ · K = n1 · ∇ × H1 = −iωn1 · D1 + n1 · J1 , (4.58)

in which ∇ · K involves only derivatives tangential to the interface. Hence

∇ · K − iωτ = n1 · J1 . (4.59)
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If medium 1 is a nonconductor, n1 · J1 = 0, and this result is a conservation
theorem for the surface charge. When the medium adjacent to the perfect
conductor has a finite conductivity, surface charge is lost at the rate

−n1 · J1 = −σ1n1 · E1 =
σ1

ε1
τ , (4.60)

per unit area, where again we see the appearance of the charge relaxation
time ε/σ.

A useful concept is that of a perfect conductor in the form of an infinitely
thin sheet. If a surface of this character, which we shall call an electric wall,
is inserted in a pre-existing field in such a fashion that at every point on
the surface the normal is in the direction of the established electric field, the
field structure will in no way be affected. Such an operation is advantageous
when, by symmetry considerations, the proper position for an electric wall is
immediately apparent, for the space occupied by the field can then be divided
in two parts with a consequent simplification in treatment.

An impressed current sheet is another concept of some utility. It is un-
derstood as an infinitely thin surface bearing a finite surface current. The
boundary conditions relating fields on opposite sides of the surface (regions 1
and 2) can be obtained from the variational principle. In our previous consid-
erations of the transition layer between two media, the current density was
assumed finite and therefore made a negligible contribution to the variation
of the Lagrangian arising from field variations in the transition layer. If, how-
ever, a surface current density K flows on the interface, the variation of the
Lagrangian must be supplemented by the term∫

S12

dS K · δE , (4.61)

and therefore the stationary requirement on the Lagrangian yields, instead of
(4.42b)

n1 × (E1 − E2) = 0 , (4.62a)
n1 × (H1 − H2) = −K , (4.62b)

that is, on crossing the current sheet the tangential magnetic field is dis-
continuous by an amount equal to the surface current density at that point;
the tangential electric field is continuous. Of course, these considerations are
equally applicable to the conduction current sheet flowing on the surface of a
perfect conductor, in which case

n2 × E2 = n2 × H2 = 0 , (4.63)

and so

n1 × E1 = 0 , (4.64a)
n1 × H1 = −K , (4.64b)

coinciding with (4.53) and (4.56).
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4.3 Babinet’s Principle

The Maxwell equations for a current-free region are essentially symmetrical
in the electric and magnetic field intensities.2 More precisely, if E and H form
a solution of the equations in a homogeneous medium characterized by the
constants ε and µ, then the fields

E′ =
√

µ

ε
H , H′ = −

√
ε

µ
E (4.65)

are also a solution of the equations. This symmetry aspect of the field equa-
tions we shall call Babinet’s principle. It is useful to extend Babinet’s principle
to the general situation by introducing hypothetical magnetic currents Jm as
the analog of electric currents Je. The generalized Maxwell equations are

∇ × H = −iωεE + Je , (4.66a)
∇ × E = iωµH − Jm . (4.66b)

The sign of Jm is so chosen that the magnetic charge density, related to the
magnetic current density by the conservation equation,

∇ · Jm = iωρm , (4.67)

obeys
∇ · B = ρm , (4.68a)

the analog of
∇ · D = ρe . (4.68b)

The extended field equations are invariant under the substitutions (ε and µ
are constant)

E′ =
√

µ

ε
H , J′

e =
√

ε

µ
Jm , ρ′e =

√
ε

µ
ρm , (4.69a)

H′ = −
√

ε

µ
E , J′

m = −
√

µ

ε
Je , ρ′m = −

√
µ

ε
ρe . (4.69b)

If the material constants ε and µ are real, the field equations (4.66a), (4.66b),
(4.68a), and (4.68b) are also invariant under the substitutions

E′ =
√

µ

ε
H∗ , J′

e = −
√

ε

µ
J∗

m , ρ′e =
√

ε

µ
ρ∗m , (4.70a)

H′ =
√

ε

µ
E∗ , J′

m = −
√

µ

ε
J∗

e , ρ′m =
√

µ

ε
ρ∗e , (4.70b)

2 This is what we referred to as electromagnetic duality in the Problems in Chap. 1
[see (1.219)].
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which can be considered the resultant of the first transformation and

E′ = −E∗ , J′
e = J∗

e , ρ′e = −ρ∗e , (4.71a)
H′ = H∗ , J′

m = −J∗
m , ρ′m = ρ∗m (4.71b)

applied in succession. The latter transformation, which leaves the field equa-
tions unchanged in form if ε and µ are real, can be considered a reversal in
the sense of time. It is to be expected that only in nondissipative media is a
possible state of the system thus obtained. That the transformation, (4.71a)
and (4.71b), is a time reversal operation can be seen on noting that the sub-
stitution reverses the sense of energy flow (4.11),

S
′
= Re

1
2
E′ × H′∗ = Re

1
2
(−E∗) × H = −S , (4.72)

while the average energy flux is unaltered under the Babinet substitution,
(4.69a) and (4.69b),

S′ = ReH × (−E∗) = S . (4.73)

The general field equations can be derived from a variational principle by
replacing J · E in (4.13) by

Je · E − Jm · H , (4.74)

or, for the variational principle appropriate to nondissipative media (4.29), on
replacing J · E∗ − J∗ · E with

(Je · E∗ − J∗
e · E) + (Jm · H∗ − J∗

m · H) . (4.75)

It will be noted that the extended Lagrangians are invariant [save for an alter-
ation in sign in (4.13) modified by (4.74)] under the Babinet transformations
(4.69a) and (4.69b). The Lagrangian (4.29) including (4.75) is also invariant
under a time-reversal substitution (4.71a) and (4.71b).

The principal application of magnetic currents is in the form of current
sheets. The conditions relating the fields on opposite sides of a surface bearing
a magnetic surface current density Km are

n1 × (E1 − E2) = Km , (4.76a)
n1 × (H1 − H2) = 0 . (4.76b)

More generally, if a surface supports electric and magnetic surface currents,
the discontinuity equations are

n1 × (E1 − E2) = Km , (4.77a)
n1 × (H1 − H2) = −Ke . (4.77b)

A magnetic wall, as the analog of an electric wall, is an infinitely thin sheet
to which the magnetic field must be normal and the electric field tangential,
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n × H = 0 , n · E = 0 . (4.78)

The structure of space containing electromagnetic fields can also be simpli-
fied by the introduction of magnetic walls if the proper position to insert the
barrier without disturbing the field can be ascertained by considerations of
symmetry. It should be noted that if Babinet’s principle is applied to the fields
in a region bounded by electric and magnetic walls, the interchange of the elec-
tric and magnetic fields also applies to the character of the bounding surfaces.
It is sometimes possible to regard the magnetic walls obtained from electric
barriers by the Babinet principle as the expression of symmetry conditions in
a larger space, and thus obtain a solution to a new (approximately) physically
realizable problems. We will see some applications of Babinet’s principle in
practical problems in Chap. 13, as well as in Chap. 16.

4.4 Reciprocity Theorems

A number of fundamental theorems can be obtained from the variational
principle by considering special types of variations. As a first example, let Ea

and Ha be the fields in a region occupied by impressed electric and magnetic
current densities Ja

e and Ja
m. Consider a small variation

δE = λEb , δH = λHb , (4.79)

where Eb and Hb are the proper fields corresponding to another distribution
of currents Jb

e, J
b
m, and λ is a small, arbitrary parameter. The variation of the

Lagrangian (4.13), including the magnetic current term (4.74), is

δL = λ

∫
V

(dr)(iωµHa · Hb − iωεEa · Eb − Ea · ∇ × Hb − Eb · ∇ × Ha

+ σEa · Eb + Ja
e · Eb − Ja

m · Hb) . (4.80)

On the other hand, this must equal, from (4.15),

λ

∮
S

dS n · Ea × Hb . (4.81)

Interchanging a and b and subtracting the resulting equation, we obtain
∫

V

(dr)
[
(Ja

e · Eb − Jb
e · Ea) − (Ja

m · Hb − Jb
m · Ha)

]

=
∮

S

dS n · (Ea × Hb − Eb × Ha) , (4.82)

or, in differential form,

∇ · (Ea ×Hb −Eb ×Ha) = (Ja
e ·Eb −Jb

e ·Ea)− (Ja
m ·Hb −Jb

m ·Ha) . (4.83)
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This result we shall call the reciprocity theorem. A related theorem can be
derived with the fields obtained from Eb and Hb by the operation of time
reversal (4.71a) and (4.71b), for σ, ε, µ real,

δE = −λE∗
b , δH = λH∗

b . (4.84)

This variation implies that
∫

V

(dr)
(

iωµHa · H∗
b + iωεEa · E∗

b + E∗
b · ∇ × Ha − Ea · ∇ × H∗

b

− σEa · E∗
b − Ja

e · E∗
b − Ja

m · H∗
b

)

=
∫

V

(dr)
(

iωµHa · H∗
b − iωεEa · E∗

b − σEa · E∗
b − Jb∗

e · Ea − Ja
m · H∗

b

)

=
∮

S

dS n · Ea × H∗
b . (4.85)

Here, in the second line we have used the Maxwell equation (4.66a). Adding
a similar equation with a and b interchanged and i replaced by −i, we get, in
differential form

∇ · (Ea × H∗
b + E∗

b × Ha) = −2σEa · E∗
b − (Ja

e · E∗
b + Jb∗

e · Ea)
− (Ja

m · H∗
b + Jb∗

m · Ha) . (4.86)

In a nondissipative medium (σ = 0), the two reciprocity theorems (4.83)
and (4.86) are essentially identical – see (4.71a) and (4.71b). Further aspects
of reciprocity will be explored later – in particular, in Chap. 13, reciprocity
between in and out currents and fields will be used to derive the symmetry of
the S-matrix.

4.5 Problems for Chap. 4

In these problems, Heaviside–Lorentz units are used.

1. Charge density ρ(r, t) is placed in a medium with conductivity σ and per-
meability ε. Show that the charge migrates to the surface of the region at
a characteristic rate σ/ε = γ, where we may call 1/γ the charge relaxation
time.

2. Derive the formula for the time average energy density in a dispersive
medium by direct calculation, employing as a simple model a gas with
N atoms per unit volume, each atom containing an electron of charge
e and mass m oscillating harmonically with angular frequency ω0. The
permittivity for such a medium is given by the plasma formula,

ε(ω) = 1 +
Ne2

m

1
ω2

0 − ω2
. (4.87)
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3. The Lorenz gauge potentials for a particle of charge e moving uniformly
in a dispersionless dielectric medium are determined by

A = ε
v
c
φ , −

(
∇2 − ε

c2

∂2

∂t2

)
φ =

e

ε
δ(r − vt) . (4.88)

Verify this. (Warning: The Lorenz gauge condition differs somewhat from
its vacuum form.) Let v point along the z-axis. Write the frequency trans-
form of the differential equation, solve it, and perform the inversion that
gives φ(r, t). Consider the circumstances of Čerenkov radiation and show
that φ, A and therefore the fields are zero if

vt − z < ρ
√

β2ε − 1 , ρ = |r⊥| . (4.89)

Recognize in this the conical surface of the trailing “shock wave,” and
demonstrate that the radiation moving perpendicularly to that surface
has the expected direction.

4. A charged particle moves at speed v = βc along the axis of a dielec-
tric cylinder. Suppose that Čerenkov radiation of some frequency is emit-
ted. What fraction of this radiation passes into the surrounding vacuum
through the cylindrical surface of radius R � λ̄?

5. Start from the macroscopic Maxwell equations, Fourier transformed in
time,

∇ × H(r, ω) = − iω
c

D(r, ω) +
1
c
J(r, ω) , ∇ · J(r, ω) − iωρ(r, ω) = 0 ,

(4.90a)

−∇ × E(r, ω) = − iω
c

B(r, ω) , ∇ · B(r, ω) = 0 . (4.90b)

Assume that µ = 1, so H = B, and that ε(ω) is independent of r. Show
that E(r, ω) obeys

−
(
∇2 +

ω2ε

c2

)
E =

iω
c2

(
J +

c2

ω2ε
∇∇ · J

)
. (4.91)

Write the solution of this equation that represents the retarded time
boundary condition. How is the latter related to the outgoing wave bound-
ary condition?

6. The total energy transferred from the current to the electromagnetic field
is (why?)

E = −
∫ ∞

−∞
dt

∫
(dr)E(r, t) · J(r, t) ; (4.92)

write this in terms of time Fourier transforms. Then substitute the solution
for E found in the previous problem and arrive at an expression for E as
a frequency integral, and a double spectral integral.
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7. Consider the current of a point electric charge e, moving at a uniform
velocity v. (Of course, since the current transfers energy to the electro-
magnetic field, the charge gradually slows down, but that need not be
made explicit here.) What is J(r, ω)? (Assume that the point charge is
moving along the z-axis.) Arrive at an expression for E that is a frequency
integral and a double integral over z and z′. By introducing the average
of z and z′, and the difference ζ = z− z′, identify the rate R at which the
charge loses energy, per unit distance, as

R = −
∫ ∞

−∞

dω

2π
iω

2e2

c2

(
1 − 1

β2ε(ω)

)∫ ∞

0

dζ
cos (ωζ/v) eiω

√
ε(ω)ζ/c

ζ
,

(4.93)
which breaks up into the following imaginary and real parts, R = R1+R2,

R1 = −
∫ ∞

−∞

dω

2π
iω

2e2

c2

(
1 − 1

β2ε

)∫ ∞

0

dζ
cos (ωζ/v) cos (ω

√
εζ/c)

ζ
,

(4.94a)

R2 =
∫ ∞

−∞

dω

2π
ω

2e2

c2

(
1 − 1

β2ε

)∫ ∞

0

dζ
cos (ωζ/v) sin (ω

√
εζ/c)

ζ
.

(4.94b)

The divergence of the ζ integral in R1 is a failure of the classical theory;
quantum mechanical uncertainty makes it finite. Notice that if ε(ω) were
an even, real function of ω, R1 would be zero. It is not zero because ε
has an odd, imaginary part, produced by dissipation. Thus R1 represents
energy transferred to the medium. For R2, it is sufficient to let ε(ω) be
an even real function. Show that this gives the Čerenkov effect.

8. Repeat the above analysis for a uniformly moving magnetic charge g.
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Transmission Lines

5.1 Dissipationless Line

In this brief chapter we shall consider some simple elements of low-frequency
transmission lines, and a prolegomenon to the considerations, in the following
chapter, of waveguides. Following the preceding chapter, we will here, and in
most of the following chapters, assume harmonic time dependence through
the implicit factor e−iωt.

A transmission line is a two-conductor system, with translational sym-
metry along an axis, the z-axis, as shown in Fig. 5.1. We assume that the

I(z) −I(z)

Fig. 5.1. Cross section of two-conductor transmission line. The z-direction is out
of the page; I(z) flows out of the page, −I(z) flows into the page

surrounding medium has constant electrical properties, characterized by a
permittivity ε and a permeability µ. To begin, we will suppose the conductors
have infinite conductivity. This means that the tangential electric field must
vanish at the surface of the conductors. Here we will treat only the lowest elec-
tromagnetic mode of the system, the so-called T (or TEM) mode. The higher
TE and TM modes will be the subject of the next chapter. This means that
the electric and magnetic fields lie entirely in the x–y plane; there are no lon-
gitudinal fields. It is convenient to decompose the fields into their transverse
and longitudinal dependence, which we do by writing

E = −∇⊥ϕ(x, y)V (z) , (5.1a)
H = −e × ∇⊥ϕ(x, y)I(z) , (5.1b)
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where we have introduced “current” and “voltage” functions I(z) and V (z).
Here, e is the unit vector in the direction of the line, that is, the z-axis.
Of course, this decomposition leaves the normalization of the latter functions
undetermined. We will find it convenient to normalize the transverse functions
by ∫

dσ(∇⊥ϕ)2 = 1 , (5.2)

where the integration extends over the entire plane bounded by the two con-
ductors.

The Maxwell equations determine these transmission line functions. Gauss’
law ∇ · E = 0 tells us immediately that ϕ is a harmonic function:

∇2
⊥ϕ = 0 . (5.3)

Because the conductors are assumed perfect, the potential ϕ must be constant
on either surface, but of course will assume different values on the two con-
ductors. The two curl equations, (4.7a) and (4.7b), outside the conductors,
supply the equations that determine the voltage and current functions,

d
dz

V (z) = iωµI(z) , (5.4a)

d
dz

I(z) = iωεV (z) . (5.4b)

From the form of these equations, we see that our system has an immediate
interpretation in terms of circuit elements. That is, there is a shunt capacitance
C⊥ per unit length of ε, and a series inductance Ls per unit length of µ. The
general dissipationless circuit diagram describing a general line is described as
follows. An ideal two-conductor transmission line can be thought of as a series
of elements, each of which consists of a series inductance Ls and capacitance
Cs, and a shunt inductance L⊥ and capacitance C⊥, as illustrated in Fig. 5.2.
Let the length of each element be ∆z. Then the voltage drop across the element
is, for a given frequency ω,

∆V = iωLs∆zI +
∆z

iωCs
I , (5.5a)

from which we infer a series impedance per unit length

−Zs = iωLs +
1

iωCs
. (5.5b)

Similarly, because the current shorted between the two conductors is

∆I = iωC⊥∆zV +
∆z

iωL⊥
V , (5.6a)

the shunt admittance per unit length is
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−Y⊥ = iωC⊥ +
1

iωL⊥
. (5.6b)

Here, only two of the parameters are finite:

C⊥ = ε , Ls = µ . (5.7)

Ls Cs Ls Cs

L⊥ C⊥ L⊥ C⊥

Fig. 5.2. Transmission line represented in terms of equivalent series and shunt
inductances and capacitances. Represented here are two elements, each of length
∆z, which are repeated indefinitely

Consider now a propagating wave,

I(z) = Ieiκz , V (z) = V eiκz . (5.8)

The dispersion relation following then from (5.4a) and (5.4b) is

κ2 = ω2µε =
ω2

c2
= k2 , (5.9)

which exhibits no cutoff; that is, waves of arbitrarily low frequency may be
transmitted. Moreover, from the ratio of V to I we infer the characteristic
impedance of the line,

V

I
=

κ

ωε
=
√

µ

ε
= ζ , (5.10)

which is simply the characteristic impedance of the medium.
Evidently, there is considerable ambiguity in defining the impedance of

the line. It might appear more natural to define Z as the ratio of the voltage
between the conductors, ∆ϕV , to the current flowing in one of the conductors,
as defined by Ampére’s law,

∮
C

ds · H. That is,

Z ′ =
∆ϕV (z)∮

C
ds (∂nϕ)I(z)

, (5.11)
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where the circuit encloses just one of the conductors, and the derivative is
with the respect to the normal to the surface of that conductor. We might
also define the inductance as the ratio of the magnetic flux crossing a plane
defined by a line connecting the two conductors and extended a unit length in
the z-direction, to the current, which gives for the inductance per unit length

L′ =
µ
∫

dl ∂lϕ∮
C

ds (∂nϕ)
=

µ∆ϕ∮
C

ds (∂nϕ)
=

Z ′

c
, (5.12)

where in the first form the integral in the numerator is along the line join-
ing the conductors, and the derivative there is taken tangential to that line.
Although these definitions seem quite physical, they cannot generally be ex-
tended to the waveguide situation, as we shall discuss in detail in the following
chapter.

5.2 Resistive Losses

Now let us include dissipation, by recognizing that realistic materials possess
a finite conductivity σ, so the signal is lost as it travels down the transmission
line. We can calculate the resistance per unit length by examining the flux of
energy into the conductors,

Pdiss =
1
2
Re
∮

C

ds(E × H∗) · n , (5.13)

where the integral extends over the boundary of the conductors, n being the
normal to that boundary. We will treat this problem perturbatively, by the
usual relation between the tangential electric field and the magnetic field at
the surface (e.g., see (42.19) of [9]),

n × E = ζ
kδ

2
(1 − i)H , (5.14)

where the skin depth is δ = (2/µωσ)1/2. This says immediately that

Pdiss =
1
2
R|I|2 , (5.15)

where the resistance per unit length is

R =
ζkδ

2

∮
C

ds (∂nϕ)2 . (5.16)

Because of this, the series impedance of the line becomes

Zs = R− iωLs , (5.17)

and the shunt admittance is unchanged,
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Y⊥ = −iωC⊥ . (5.18)

The modified transmission line equations,

dV

dz
= −ZsI ,

dI

dz
= −Y⊥V , (5.19)

then imply that the propagation constant is given by

κ2 = −ZsY⊥ . (5.20)

Regarding the resistance losses per unit length as small, we find

κ = ω
√

LsC⊥ + i
R
2

√
C⊥
Ls

, (5.21)

or inserting the values C⊥ = ε and Ls = µ,

κ = k + i
α

2
, α =

R
ζ

. (5.22)

The power transmitted down the line, then, is proportional to e−αz, so α is
called the attenuation constant.

5.3 Example: Coaxial Line

The simplest example of a two-conductor transmission line is a coaxial cable,
with inner radius a and outer radius b. In that case, the normalized potential
function is

ϕ =
ln r√

2π ln b/a
. (5.23)

The corresponding electric and magnetic fields are

E = − 1√
2π ln b/a

r̂
r
V (z) , (5.24a)

H = − 1√
2π ln b/a

φ̂

r
I(z) . (5.24b)

The alternative impedance Z ′ (5.11) is computed to be

Z ′ =
ζ

2π
ln

b

a
, (5.25)

which differs from Z = ζ by a factor

N =
1
2π

ln
b

a
, (5.26)
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while the alternative inductance per unit length (5.12) is

L′
s =

µ

2π
ln

b

a
, (5.27)

again differs from Ls = µ by the same factor N . The attenuation constant, or
the resistance per unit length, when a finite conductivity is included, is

α =
R
ζ

=
kδ

2
1

ln b
a

(
1
a

+
1
b

)
, (5.28)

where kδ = 2/ζσδ, where we have assumed that the two conductors have the
same skin depth.

5.4 Cutoff Frequencies

We have treated only the lowest T mode of the line in this chapter. In the
following chapter we will consider the higher modes; for a hollow waveguide,
in contrast to a coaxial cable, only the latter exist, and there is no T mode.
These higher modes cannot propagate if they have wavelengths longer than
a scale set by the dimensions of the guide, so there is a cutoff wavelength,
or a cutoff wavenumber below which no signal can be propagated. We can
see how this comes about by considering the general line equations (5.19)
with the general series impedance (5.5b) and shunt admittance (5.6b). The
corresponding propagation constant is (5.20), or

κ2 = ω2LsC⊥ −
(

C⊥
Cs

+
Ls

L⊥

)
+

1
ω2CsL⊥

. (5.29)

For a propagating mode, this must be positive. This will be true only if ω2

exceeds the larger of 1/LsCs and 1/L⊥C⊥, or is smaller than either of these
quantities. It will turn out that there are precisely two types of modes, E-
modes, so called because they possess a longitudinal electric field in addition
to transverse fields, and H-modes, due to the presence of a longitudinal com-
ponent of the magnetic field. The corresponding circuit parameters are

E mode: C⊥ = ε , Ls = µ , Cs =
ε

γ2
, L⊥ = ∞ , (5.30a)

H mode: C⊥ = ε , Ls = µ , Cs = ∞ , L⊥ =
µ

γ2
, (5.30b)

where the quantity γ2 is a characteristic eigenvalue of the transverse Laplacian
operator, corresponding to some typical inverse length squared. Therefore, in
either case, to have propagation, ω must exceed γc, or the intrinsic wavelength
of the radiation must be smaller than a cutoff wavelength

λc =
2π

γ
. (5.31)



5.5 Problems for Chap. 5 101

5.5 Problems for Chap. 5

1. Consider a transmission line composed of two parallel rectangular conduc-
tors, separated by a distance a, and with dimension b � a in the transverse
direction perpendicular to the separation. Calculate the potential function
ϕ, and compute the alternative impedance, and with dissipation included,
the attenuation constant.

2. Calculate the resistance per unit length for a single wire of radius ρ and
conductivity σ and compare with the result found for a coaxial cable,
(5.28).
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Waveguides and Equivalent Transmission Lines

A waveguide is a device for transferring electromagnetic energy from one point
to another without appreciable loss. In its simplest form it consists of a hollow
metallic tube of rectangular or circular cross section, within which electromag-
netic waves can propagate. The two-conductor transmission line discussed in
Chap. 5 is a particular type of waveguide, with special properties. The simple
physical concept implied by these examples may be extended to include any
region within which one-dimensional propagation of electromagnetic waves
can occur. It is the purpose of this chapter to establish the theory of simple
waveguides, expressed in the general transmission line nomenclature sketched
in Chap. 5.

This chapter will be devoted to the theory of uniform waveguides – cylin-
drical metallic tubes which have the same cross section in any plane perpen-
dicular to the axis of the guide. Initially, the simplifying assumption will be
made that the metallic walls of the waveguide are perfectly conducting. (We
will consider the effects of finite conductivity in Sect. 13.6.) Since the field is
then entirely confined to the interior of the waveguide, the guide is completely
described by specifying the curve C which defines a cross section σ of the inner
waveguide surface S. The curve C may be a simple closed curve, correspond-
ing to a hollow waveguide, or two unconnected curves, as in a coaxial line.
Particular simple examples will be the subject of Chaps. 7 and 8.

6.1 Transmission Line Formulation

We first consider the problem of finding the possible fields that can exist within
a waveguide, in the absence of any impressed currents. This is equivalent to
seeking the solutions of the Maxwell equations (4.7a) and (4.7b)

∇ × E = ikζH , (6.1a)
∇ × H = −ikηE , (6.1b)
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where we have defined (SI units)

k = ω
√

εµ =
ω

c
, (6.2a)

c being the speed of light in the medium inside the guide, and introduced the
abbreviations for the intrinsic impedance or admittance of the medium,

ζ =
√

µ

ε
, η =

√
ε

µ
= ζ−1 . (6.2b)

These equations are to be solved subject to the boundary condition (4.53)

n × E = 0 on S , (6.3)

where n is the unit normal to the surface S of the guide. Recall that the other
two Maxwell equations, in charge-free regions,

∇ · D = 0 , ∇ · B = 0 , (6.4)

are contained within these equations, as is the boundary condition n · B = 0.
The medium filling the waveguide is assumed to be uniform and nondissipa-
tive. In view of the cylindrical nature of the boundary surface, it is convenient
to separate the field equations into components parallel to the axis of the
guide, which we take as the z-axis, and components transverse to the guide
axis. This we achieve by scalar and vector multiplication with e, a unit vector
in the z-direction, thus obtaining

∇ · e × E = −ikζHz , (6.5a)
∇ · e × H = ikηEz , (6.5b)

and

∇Ez −
∂

∂z
E = ikζe × H , (6.6a)

∇Hz − ∂

∂z
H = −ikηe × E . (6.6b)

On substituting (6.5b) [(6.5a)] into (6.6a) [(6.6b)], one recasts the latter into
the form

∂

∂z
E = ikζ

(
1 +

1
k2

∇∇
)
· H × e , (6.7a)

∂

∂z
H = ikη

(
1 +

1
k2

∇∇
)
· e × E , (6.7b)

in which 1 denotes the unit dyadic. This set of equations is fully equivalent
to the original field equations, for it still contains (6.5a) and (6.5b) as its
z-component. The transverse components of (6.7a) and (6.7b) constitute a
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system of differential equations to determine the transverse components of the
electric and magnetic fields. These equations are in transmission line form, but
with the series impedance and the shunt admittance per unit length appearing
as dyadic differential operators. The subsequent analysis has for its aim the
replacement of the operator transmission line equations by an infinite set of
ordinary differential equations. This is performed by successively suppressing
the vectorial aspect of the equations and the explicit dependence on x and y,
the coordinates in a transverse plane.

Any two-component vector field, such as the transverse part of the electric
field E⊥, can be represented as a linear combination of two vectors derived
from a potential function and a stream function, respectively. Thus

E⊥ = −∇⊥V ′ + e × ∇V ′′ , (6.8)

where V ′(r) and V ′′(r) are two arbitrary scalar functions and ∇⊥ indicates
the transverse part of the gradient operator. In a similar way, we write

H⊥ = −e × ∇I ′ − ∇⊥I ′′ , (6.9a)

or
H × e = −∇⊥I ′ + e × ∇I ′′ , (6.9b)

with I ′(r) and I ′′(r) two new arbitrary scalar functions. This general repre-
sentation can be obtained by constructing the two-component characteristic
vectors (eigenvectors) of the operator 1 + 1

k2 ∇∇. Such vectors must satisfy
the eigenvector equation in the form

∇⊥∇ · A⊥ = γA⊥ . (6.10)

Hence, either ∇ ·A⊥ = 0 and γ = 0, implying that A⊥ is the curl of a vector
directed along the z-axis; or ∇ · A⊥ 
= 0, and A⊥ is the gradient of a scalar
function. The most general two-component vector A⊥ is a linear combination
of these two types, and e × A is still of the same form, as it must be. In
consequence of these observations, the substitution of the representation (6.8)
and (6.9a) into the differential equations (6.7a) and (6.7b) will produce a set
of equations in which every term has one or the other of these forms. This
yields a system of four scalar differential equations, which are grouped into
two pairs,

∂

∂z
I ′ = ikηV ′ ,

∂

∂z
V ′ = ikζ

(
1 +

1
k2

∇2
⊥

)
I ′ , (6.11a)

∂

∂z
I ′′ = ikη

(
1 +

1
k2

∇2
⊥

)
V ′′ ,

∂

∂z
V ′′ = ikζI ′′ , (6.11b)

where ∇2
⊥ is the Laplacian for the transverse coordinates x and y. (Any con-

stant annihilated by ∇⊥ is excluded because it would not contribute to the
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electric and magnetic fields.) The longitudinal field components may now be
written as

ikηEz = ∇2
⊥I ′ , (6.12a)

ikζHz = ∇2
⊥V ′′ . (6.12b)

The net effect of these operations is the decomposition of the field into
two independent parts derived, respectively, from the scalar functions V ′, I ′,
and V ′′, I ′′. Note that the first type of field in general possesses a longitudi-
nal component of electric field, but no longitudinal magnetic field, while the
situation is reversed with the second type of field. For this reason, the various
field configurations derived from V ′ and I ′ are designated as E modes, while
those obtained from V ′′ and I ′′ are called H modes; the nomenclature in each
case specifies the nonvanishing z-component of the field.1

The scalar quantities involved in (6.11a) and (6.11b) are functions of x, y,
and z. The final step in the reduction to one-dimensional equations consists
in representing the x, y dependence of these functions by an expansion in the
complete set of functions forming the eigenfunctions of ∇2

⊥. For the E mode,
let these functions be ϕa(x, y), satisfying

(∇2
⊥ + γ′2

a )ϕa(x, y) = 0 , (6.13)

and subject to boundary conditions, which we shall shortly determine. On
substituting the expansion

V ′(x, y, z) =
∑

a

ϕa(x, y)V ′
a(z) , (6.14a)

I ′(x, y, z) =
∑

a

ϕa(x, y)I ′a(z) , (6.14b)

into (6.11a), we immediately obtain the transmission line equations

d
dz

I ′a(z) = ikηV ′
a(z) , (6.15a)

d
dz

V ′
a(z) = ikζ

(
1 − γ′2

a

k2

)
I ′a(z) . (6.15b)

In a similar way, we introduce another set of eigenfunctions for ∇2
⊥:

(∇2
⊥ + γ′′2

a )ψa(x, y) = 0 . (6.16)

and expand the H-mode quantities in terms of them:
1 A more common terminology for E modes are TM modes, meaning “transverse

magnetic”; and for H modes, TE modes, for “transverse electric.” Still another
notation is ⊥ for “perpendicular,” referring to H modes, and ‖ for “parallel,”
referring to E modes.
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V ′′(x, y, z) =
∑

a

ψa(x, y)V ′′
a (z) , (6.17a)

I ′′(x, y, z) =
∑

a

ψa(x, y)I ′′a (z) . (6.17b)

The corresponding differential equations are

d
dz

I ′′a (z) = ikη

(
1 − γ′′2

a

k2

)
V ′′

a (z) , (6.18a)

d
dz

V ′′
a (z) = ikζI ′′a (z) . (6.18b)

The boundary conditions on the electric field require that

Ez = 0, Es = 0 on S , (6.19)

where Es is the component of the electric field tangential to the boundary
curve C. These conditions imply from (6.12a) and (6.8) that

∇2
⊥I ′ = 0,

∂

∂s
V ′ =

∂

∂n
V ′′ = 0 on S , (6.20)

where ∂
∂n is the derivative normal to the surface of the waveguide S, and

∂
∂s is the circumferential derivative, tangential to the curve C. Since these
equations must be satisfied for all z, they impose the following requirements
on the functions ϕa and ψa:

γ′2
a ϕa = 0 ,

∂

∂s
ϕa = 0 ,

∂

∂n
ψa = 0 on C . (6.21)

If we temporarily exclude the possibility γ′
a = 0, the second E-mode boundary

condition is automatically included in the first statement, that ϕa = 0 on the
boundary curve C. Hence, E modes are derived from scalar functions defined
by

(
∇2

⊥ + γ′2
a

)
ϕa(x, y) = 0 , (6.22a)
ϕa(x, y) = 0 on C , (6.22b)

while H modes are derived from functions satisfying
(
∇2

⊥ + γ′′2
a

)
ψa(x, y) = 0 , (6.23a)

∂

∂n
ψa(x, y) = 0 on C , (6.23b)

These equations are often encountered in physics. For example, they describe
the vibrations of a membrane bounded by the curve C, which is either rigidly
clamped at the boundary [(6.22b)], or completely free [(6.23b)]. Mathemat-
ically, these are referred to a Dirichlet and Neumann boundary conditions,
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respectively. Each equation defines an infinite set of eigenfunctions and eigen-
values ϕa, γ′

a and ψa, γ′′
a . Hence, a waveguide possesses a twofold infinity of

possible modes of electromagnetic oscillation, each completely characterized
by one of these scalar functions and its attendant eigenvalue.

We shall now show that the discarded possibility, γ′
a = 0, cannot occur

for hollow waveguides, but does correspond to an actual field configuration
in two-conductor lines, being in fact the T mode discussed in Chap. 5. The
scalar function ϕ associated with γ′

a = 0 satisfies Laplace’s equation

∇2
⊥ϕ(x, y) = 0 , (6.24)

and is restricted by the second boundary condition, ∂
∂sϕ(x, y) = 0 on C, or

ϕ(x, y) = constant on C . (6.25)

Since ϕ satisfies Laplace’s equation, we deduce that
∮

C

ds ϕ
∂

∂n
ϕ =

∫
σ

dσ (∇⊥ϕ)2 , (6.26)

in which the line integral is taken around the curve C and the surface integral
is extended over the guide cross section σ. For a hollow waveguide with a cross
section bounded by a single closed curve on which

ϕ = constant = ϕ0 , (6.27)

we conclude ∮
C

ds ϕ
∂

∂n
ϕ = ϕ0

∮
C

ds
∂

∂n
ϕ = ϕ0

∫
σ

dσ∇2
⊥ϕ = 0 , (6.28)

and therefore from (6.26) ∇⊥ϕ = 0 everywhere within the guide, which im-
plies that all field components vanish, effectively denying the existence of such
a mode. If, however, the contour C consists of two unconnected curves C1 and
C2, as in a coaxial line, the boundary condition, ∂

∂sϕ = 0 on C, requires that
ϕ be constant on each contour

ϕ = ϕ1 on C1, ϕ = ϕ2 on C2 , (6.29)

but does not demand that ϕ1 = ϕ2. Hence
∮

C

ds ϕ
∂

∂n
ϕ = ϕ1

∮
C1

ds
∂

∂n
ϕ + ϕ2

∮
C2

ds
∂

∂n
ϕ = (ϕ1 − ϕ2)

∮
C1

ds
∂

∂n
ϕ ,

(6.30)
since

0 =
∮

C

ds
∂

∂n
ϕ =

∮
C1

ds
∂

∂n
ϕ +

∮
C2

ds
∂

∂n
ϕ , (6.31)

and the preceding proof fails if ϕ1 
= ϕ2. The identification with the T mode
is completed by noting [(6.12a)] that Ez = Hz = 0.
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The preceding discussion has shown that the electromagnetic field within
a waveguide consists of a linear superposition of an infinite number of com-
pletely independent field configurations, or modes. Each mode has a character-
istic field pattern across any section of the guide, and the amplitude variations
of the fields along the guide are specified by “currents” and “voltages” which
satisfy transmission line equations. We shall summarize our results by collect-
ing together the fundamental equations describing a typical E mode and H
mode (omitting distinguishing indices for simplicity).

• E mode:

E⊥ = −∇⊥ϕ(x, y)V (z) , (6.32a)
H⊥ = −e × ∇ϕ(x, y)I(z) , (6.32b)

Ez = iζ
γ2

k
ϕ(x, y)I(z) , (6.32c)

Hz = 0 , (6.32d)
(∇2

⊥ + γ2)ϕ(x, y) = 0, ϕ(x, y) = 0 on C , (6.32e)
d
dz

I(z) = ikηV (z) , (6.32f)

d
dz

V (z) = ikζ

(
1 − γ2

k2

)
I(z) . (6.32g)

• H mode:

E⊥ = e × ∇ψ(x, y)V (z) , (6.33a)
H⊥ = −∇⊥ψ(x, y)I(z) , (6.33b)
Ez = 0 , (6.33c)

Hz = iη
γ2

k
ψ(x, y)V (z) , (6.33d)

(∇2
⊥ + γ2)ψ(x, y) = 0,

∂

∂n
ψ(x, y) = 0 on C , (6.33e)

d
dz

I(z) = ikη

(
1 − γ2

k2

)
V (z) , (6.33f)

d
dz

V (z) = ikζI(z) . (6.33g)

The T mode in a two-conductor line is to be regarded as an E mode with
γ = 0, and the boundary condition replaced by ∂

∂sϕ = 0. It may also be
considered an H mode with γ = 0.

The transmission line equations for the two mode types, written as

• E mode:
d
dz

I(z) = iωεV (z) , (6.34a)

d
dz

V (z) =
(

iωµ +
γ2

iωε

)
I(z) , (6.34b)
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• H mode:

d
dz

I(z) =
(

iωε +
γ2

iωµ

)
V (z) , (6.35a)

d
dz

V (z) = iωµI(z) , (6.35b)

are immediately recognized as the equations of the E and H type for the
distributed parameter circuits discussed in Chap. 5. The E-mode equivalent
transmission line has distributed parameters per unit length specified by a
shunt capacitance C = ε, and series inductance L = µ, and a series capaci-
tance C ′ = ε/γ2. The H-mode line distributed parameters are a series induc-
tance L = µ, a shunt capacitance C = ε, and a shunt inductance L′′ = µ/γ2,
all per unit length.2 Thus, if we consider a progressive wave, I ∝ eiκz, with
V = ZI, the propagation constant κ and characteristic impedance Z = 1/Y
associated with the two types of lines are

• E mode:

κ =
√

k2 − γ2 , (6.36a)

Z = ζ
κ

k
, (6.36b)

• H mode:

κ =
√

k2 − γ2 , (6.36c)

Y = η
κ

k
. (6.36d)

We may again remark on the filter property of these transmission lines,
which is discussed in Chap. 5. Actual transport of energy along a waveguide
in a particular mode can only occur if the wavenumber k exceeds the quantity
γ associated with the mode. The eigenvalue γ is therefore referred to as the
cutoff or critical wavenumber for the mode. Other quantities related to the
cutoff wavenumber are the cutoff wavelength,

λc =
2π

γ
, (6.37)

and the cutoff (angular) frequency

ωc = γ(εµ)−1/2 . (6.38)

When the frequency exceeds the cutoff frequency for a particular mode, the
wave motion on the transmission line, indicating the field variation along the
guide, is described by an associated wavelength
2 The vacuum value of the universal series inductance and shunt capacitance is

L0 = µ0 = 1.257 µH/m and C0 = ε0 = 8.854 pF/m, respectively.
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λg =
2π

κ
, (6.39)

which is called the guide wavelength. The relation between the guide wave-
length, intrinsic wavelength, and cutoff wavelength for a particular mode is,
according to (6.36a) or (6.36c),

1
λg

=

√
1
λ2

− 1
λ2

c

, (6.40a)

or
λg =

λ√
1 −
(

λ
λc

)2
. (6.40b)

Thus, at cutoff (λ = λc), the guide wavelength is infinite and becomes imagi-
nary at longer wavelengths, indicating attenuation, while at very short wave-
lengths (λ � λc), the guide wavelength is substantially equal to the intrin-
sic wavelength of the guide medium. Correspondingly, the characteristic im-
pedance for an E (H) mode is zero (infinite) at the cutoff frequency and is
imaginary at lower frequencies in the manner typical of a capacitance (induc-
tance). The characteristic impedance approaches the intrinsic impedance of
the medium ζ =

√
µ/ε for very short wavelengths. For ε = ε0, µ = µ0, the

latter reduces to the impedance of free space,

ζ0 =
1
η0

=
√

µ0

ε0
= 376.7Ω . (6.41)

The existence of a cutoff frequency for each mode involves the implicit
statement that γ2 is real and positive; γ is positive by definition. A proof is
easily supplied for both E and H modes with the aid of the identity

∮
C

ds f∗ ∂

∂n
f =

∫
σ

dσ |∇⊥f |2 − γ2

∫
σ

dσ |f |2 , (6.42)

where f stands for either an E-mode function ϕ or an H-mode function ψ. In
either event, the line integral vanishes and

γ2 =

∫
σ

dσ |∇⊥f |2∫
σ

dσ |f |2 , (6.43)

which establishes the theorem. It may be noted that we have admitted, in all
generality, that f may be complex. However, with the knowledge that γ2 is
real, it is evident from the form of the defining wave equation and boundary
conditions that real mode functions can always be chosen.

The impedance (admittance) at a given point on the transmission line
describing a particular mode,
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Z(z) =
1

Y (z)
=

V (z)
I(z)

, (6.44)

determines the ratio of the transverse electric and magnetic field components
at that point. According to (6.32a) and (6.32b), an E-mode magnetic field is
related to the transverse electric field by

E mode: H = Y (z)e × E , (6.45a)

which is a general vector relation since it correctly predicts that Hz = 0. The
analogous H-mode relation is

H mode: E = −Z(z)e × H . (6.45b)

For either type of mode, the connections between the rectangular components
of the transverse fields are

Ex = Z(z)Hy, Ey = −Z(z)Hx , (6.46a)
Hx = −Y (z)Ey, Hy = Y (z)Ex . (6.46b)

In the particular case of a progressive wave propagating (or attenuating) in
the positive z-direction, the impedance at every point equals the characteristic
impedance of the line, Z(z) = Z. The analogous relation Z(z) = −Z describes
a wave progressing in the negative direction.

6.2 Hertz Vectors

The reduction of the vector field equations to a set of transmission line equa-
tions, as set forth in Sect. 6.1, requires four scalar functions of z for its proper
presentation. However, it is often convenient to eliminate two of these func-
tions and exhibit the general electromagnetic field as derived from two scalar
functions of position, which appear in the role of single component Hertz vec-
tors. (Recall Sect. 1.5.1.) On eliminating the functions V ′(r) and I ′′(r) with
the aid of (6.11a) and (6.11b), the transverse components of E and H, (6.8)
and (6.9a), become

E⊥ =
i
k

ζ∇⊥
∂

∂z
I ′ + e × ∇V ′′ , (6.47a)

H⊥ = −e × ∇I ′ +
i
k

η∇⊥
∂

∂z
V ′′ , (6.47b)

which can be combined with the expressions for the longitudinal field compo-
nents, (6.12a) and (6.12b), into general vector equations3

3 Equations (6.48a) and (6.48b) agree with (1.144a) and (1.144b) when the wave
equation is satisfied, with the identification Π′ = Πe, Π′′ = Πm.
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E = ∇ × (∇ × Π′) + ikζ∇ × Π′′ , (6.48a)
H = −ikη∇ × Π′ + ∇ × (∇ × Π′′) . (6.48b)

The electric and magnetic Hertz vectors that appear in this formulation only
possess z-components, which are given by

Π′
z =

i
k

ζI ′ , Π′′
z =

i
k

ηV ′′ . (6.49)

The Maxwell equations are completely satisfied if the Hertz vector components
satisfy the scalar wave equation:

(∇2 + k2)Π′
z = 0 , (∇2 + k2)Π′′

z = 0 , (6.50)

which is verified by eliminating V ′ and I ′′ from (6.11a) and (6.11b). For a
particular E mode, the scalar function I ′ is proportional to the longitudinal
electric field and

E mode: Π′
z =

1
γ2

Ez . (6.51a)

Similarly, the other Hertz vector is determined:

H mode: Π′′
z =

1
γ2

Hz . (6.51b)

Hence the field structure of an E or H mode can be completely derived from
the corresponding longitudinal field component.

6.3 Orthonormality Relations

We turn to an examination of the fundamental physical quantities associated
with the electromagnetic field in a waveguide – energy density and energy
flux. In the course of the investigation we shall also derive certain orthogonal
properties possessed by the electric and magnetic field components of the
various modes. Inasmuch as these relations are based on similar orthogonal
properties of the scalar functions ϕa and ψa, we preface the discussion by a
derivation of the necessary theorems. Let us consider two E-mode functions
ϕa and ϕb, and construct the identity

∫
C

ds ϕa
∂

∂n
ϕb =

∫
σ

dσ ∇⊥ϕa · ∇⊥ϕb − γ′2
b

∫
σ

dσ ϕaϕb . (6.52)

If we temporarily exclude the T mode of a two-conductor guide, the line
integral vanishes by virtue of the boundary condition. On interchanging ϕa

and ϕb, and subtracting the resulting equation, we obtain

(γ′2
a − γ′2

b )
∫

σ

dσ ϕaϕb = 0 , (6.53)
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which demonstrates the orthogonality of two mode functions with different
eigenvalues. In consequence of the vanishing of the surface integral in (6.52),
we may write this orthogonal relation as

∫
σ

dσ ∇⊥ϕa · ∇⊥ϕb = 0 , γ′
a 
= γ′

b . (6.54)

If more than one linearly independent mode function is associated with a
particular eigenvalue – a situation which is referred to as “degeneracy” –
no guarantee of orthogonality for these eigenfunctions is supplied by (6.53).
However, a linear combination of degenerate eigenfunctions is again an eigen-
function, and such linear combinations can always be arranged to have the
orthogonal property. In this sense, the orthogonality theorem (6.54) is valid
for all pairs of different eigenfunctions. The theorem is also valid for the T
mode of a two-conductor system. To prove this, we return to (6.52) and choose
the mode a as an ordinary E mode (ϕa = 0 on C), and the mode b as the T
mode (γ′

b = 0); the desired relation follows immediately. Note, however, that
in this situation orthogonality in the form

∫
dσ ϕaϕb = 0 is not obtained.

Finally, then, the orthogonal relation, applicable to all E modes, is
∫

σ

dσ ∇⊥ϕa · ∇⊥ϕb = δab , (6.55)

which also contains a convention regarding the normalization of the E-mode
functions: ∫

σ

dσ (∇⊥ϕa)2 = 1 , (6.56)

a convenient choice for the subsequent discussion. With the exception of the
T mode, the normalization condition can also be written

γ′2
a

∫
σ

dσ ϕ2
a = 1 . (6.57)

The corresponding derivation for H modes proceeds on identical lines, with
results expressed by ∫

σ

dσ ∇⊥ψa · ∇⊥ψb = δab , (6.58)

which contains the normalization convention∫
σ

dσ (∇⊥ψa)2 = γ′′2
a

∫
σ

dσ ψ2
a = 1 . (6.59)

As we shall now see, no statement of orthogonality between E and H modes
is required.
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6.4 Energy Density and Flux

The energy quantities with which we shall be concerned are the linear energy
densities (i.e., the energy densities per unit length) obtained by integrating
the volume densities across a section of the guide. It is convenient to consider
separately the linear densities associated with the various electric and mag-
netic components of the field. Thus the linear electric energy density connected
with the longitudinal electric field is

WEz
=

ε

2

∫
σ

dσ
[
Re
(
Eze−iωt

)]2
=

ε

4

∫
σ

dσ |Ez|2 , (6.60)

where the oscillating terms are omitted due to time-averaging [(4.6)]. On
inserting the general superposition of individual E-mode fields [cf. (6.32c)],

Ez =
iζ
k

∑
a

γ′2
a ϕa(x, y)I ′a(z) , (6.61)

we find

WEz
=

ε

4
ζ2

k2

∑
a

γ′2
a |I ′a(z)|2 , (6.62)

in which the orthogonality and normalization (6.57) of the E-mode functions
has been used. The orthogonality of the longitudinal electric fields possessed
by different E modes is thus a trivial consequence of the corresponding prop-
erty of the scalar functions ϕa. The longitudinal electric field energy density
can also be written

WEz
=

1
4

∑
a

1
ω2C ′

a

|I ′a(z)|2 , (6.63)

by introducing the distributed series capacitance, C ′
a = ε/γ′2

a , associated with
the transmission line that describes the ath E mode. In a similar way, the
linear energy density

WHz
=

µ

4

∫
σ

dσ |Hz|2 (6.64)

derived from the longitudinal magnetic field [(6.33d)]

Hz =
iη
k

∑
a

γ′′2
a ψa(x, y)V ′′

z (z) (6.65)

reads

WHz
=

µ

4
η2

k2

∑
a

γ′′2
a |V ′′

a (z)|2 , (6.66)

in consequence of the normalization condition (6.59) for ψa and the orthogo-
nality of the longitudinal magnetic fields of different H modes. The insertion
of the distributed shunt inductance characteristic of the ath H-mode trans-
mission line, L′′

a = µ/γ′′2
a , transforms this energy density expression into



116 6 Waveguides and Equivalent Transmission Lines

WHz
=

1
4

∑
a

1
ω2L′′

a

|V ′′
a (z)|2 . (6.67)

To evaluate the linear energy density associated with the transverse electric
field

WE⊥ =
ε

4

∫
σ

dσ |E⊥|2 , (6.68)

it is convenient to first insert the general representation (6.8), thus obtaining

WE⊥ =
ε

4

[∫
σ

dσ |∇⊥V ′|2 +
∫

σ

dσ |e × ∇V ′′|2

− 2Re
∫

σ

dσ ∇⊥V ′ · e × ∇V ′′∗

]
. (6.69)

The last term of this expression, representing the mutual energy of the E and
H modes, may be proved to vanish by the following sequence of equations:
∫

σ

dσ ∇⊥V ′ · e × ∇V ′′∗ = −
∫

σ

dσ ∇⊥V ′′∗ · e × ∇V ′

= −
∫

σ

dσ ∇⊥ · (V ′′∗e × ∇V ′)

= −
∮

C

ds V ′′∗n · e × ∇V ′ =
∮

C

ds V ′′∗ ∂

∂s
V ′ = 0 ,

(6.70)

in which the last step involves the generally valid boundary condition, ∂
∂sV ′ =

0 on C, see (6.21). (A proof employing the boundary condition V ′ = 0 on C
would not apply to the T mode.) It has thus been shown that the transverse
electric field of an E mode is orthogonal to the transverse electric field of an
H mode. For the transverse electric field energy density of the E mode, we
have from (6.14a)

ε

4

∫
σ

dσ |∇⊥V ′|2 =
ε

4

∑
a

|V ′
a(z)|2 , (6.71)

as an immediate consequence of the orthonormality condition (6.55), which
demonstrates the orthogonality of the transverse electric fields of different E
modes. Similarly, from (6.17a) the transverse electric field energy density of
the H modes:

ε

4

∫
σ

dσ |e × ∇V ′′|2 =
ε

4

∫
σ

dσ |∇⊥V ′′|2 =
ε

4

∑
a

|V ′′(z)|2 , (6.72)

is a sum of individual mode contributions, indicating the orthogonality of the
transverse electric fields of different H modes. Finally, the transverse electric
field energy density is the sum of (6.71) and (6.72), or
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WE⊥ =
1
4

∑
a

C|V ′
a(z)|2 +

1
4

∑
a

C|V ′′
a (z)|2 , (6.73)

where C = ε is the distributed shunt capacitance common to all E- and H-
mode transmission lines.

The discussion of the transverse magnetic field energy density,

WH⊥ =
µ

4

∫
σ

dσ |H⊥|2 =
µ

4

∫
σ

dσ |H × e|2 , (6.74)

is precisely analogous and requires no detailed treatment, for in virtue of (6.8)
and (6.9b) it is merely necessary to make the substitutions V ′ → I ′, V ′′ → I ′′

(and ε → µ, of course) to obtain the desired result. The boundary condition
upon which the analog of (6.70) depends now reads ∂

∂sI ′ = 0 on C, which is
again an expression of the E-mode boundary condition. Hence

WH⊥ =
1
4

∑
a

L|I ′a(z)|2 +
1
4

∑
a

L|I ′′a (z)|2 , (6.75)

where L = µ is the distributed series inductance characteristic of all mode
transmission lines. The orthogonality of the transverse magnetic fields associ-
ated with two different modes, which is contained in the result, may also be
derived from the previously established transverse electric field orthogonal-
ity with the aid of the relations between transverse field components that is
exhibited in (6.45a) and (6.45b).

The complex power flowing along the waveguide is obtained from the lon-
gitudinal component of the complex Poynting vector [see (4.11)] by integration
across a guide section:

P =
1
2

∫
σ

dσ E × H∗ · e =
1
2

∫
σ

dσ E · (H × e)∗ , (6.76)

whence from (6.8) and (6.9b)

P =
1
2

[∫
σ

dσ ∇⊥V ′ · ∇⊥I ′∗ +
∫

σ

dσ e × ∇V ′′ · e × ∇I ′′∗

−
∫

σ

dσ ∇V ′ · e × ∇I ′′∗ −
∫

σ

dσ e × ∇V ′′ · ∇I ′∗

]

=
1
2

∑
a

V ′
a(z)I ′a(z)∗ +

1
2

∑
a

V ′′
a (z)I ′′a (z)∗ , (6.77)

which uses (6.14a), (6.14b) and (6.17a), (6.17b), the orthonormality relations
(6.55) and (6.58), and the analog of (6.70). Hence the complex power flow is
a sum of individual mode contributions, each having the proper transmission
line form; it will now be evident that the normalization conditions (6.56)
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and (6.59) were adopted in anticipation of this result. The orthogonality that
is implied by expression (6.77) is a simple consequence of the orthogonality
property of transverse electric fields, since H × e for an individual mode is
proportional to the corresponding transverse electric field.

6.5 Impedance Definitions

It will have been noticed that the linear energy densities associated with the
different field components are in full agreement with the energies stored per
unit length in the various elements of the distributed parameter circuits. Thus
the E- and H-type circuits give a complete pictorial description of the electro-
magnetic properties of E and H modes in the usual sense: Capacitance and
inductance represent electric and magnetic energy; series elements are asso-
ciated with longitudinal electric and transverse magnetic fields (longitudinal
displacement and conduction currents); shunt elements describe transverse
electric and longitudinal magnetic fields (transverse displacement and con-
duction currents). [See (6.63) and (6.75) for series and (6.67) and (6.73) for
shunt.] The air of precise definition attached to the line parameters, however,
is spurious. We are at liberty to multiply a transmission line voltage by a con-
stant and divide the associated current by the same constant without violating
the requirement that the complex power has the transmission line form. Thus,
let a mode voltage and current be replaced by N−1/2V (z) and N1/2I(z), re-
spectively, implying that the new voltage and current are obtained from the
old definitions through multiplication by N1/2 and N−1/2, respectively. In
order to preserve the form of the energy expressions, the inductance parame-
ters must be multiplied by N , and the capacitance parameters divided by N .
It follows from these statements that the characteristic impedance must be
multiplied by N , in agreement with its significance as a voltage–current ratio.
The propagation constant is unaffected by this alteration, of course. We may
conclude that one of the basic quantities that specifies the transmission line,
characteristic impedance, remains essentially undefined by any considerations
thus far introduced. The same situation arose in the field analysis of the two-
conductor transmission line and it was shown that a natural definition for the
characteristic impedance could be obtained by ascribing the customary phys-
ical meaning to either the current or voltage, the same result being obtained
in either event. This somewhat artificial procedure was employed in order to
emphasize the rather different character of waveguide fields for, as we shall
now show, a precise definition of characteristic impedance can be obtained by
ascribing a physical significance to either the current or the voltage, depending
on the type of mode, but not to both simultaneously.

An E mode is essentially characterized by Ez, from which all other field
components can be derived. Associated with the longitudinal electric field is
an electric displacement current Ḋ, the current density being [(6.32c)]

−iωεEz = γ2ϕ(x, y)N1/2I(z) . (6.78)
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In addition, there is a longitudinal electric conduction current on the metal
walls, with the surface density (4.64b), according to (6.32b),

−(n × H)z =
∂

∂n
ϕ(x, y)N1/2I(z) , (x, y) ∈ S . (6.79)

The total (conduction plus displacement) longitudinal electric current is zero,4

and it is natural to identify the total current flowing in the positive direction
with I(z), which leads to the following equation for N :

N1/2

[
γ2

∫
+

dσ ϕ +
∫

+

ds
∂

∂n
ϕ

]
= 1 , (6.80)

where the surface and line integrals, denoted by
∫
+

, are to be conducted over
those regions where ϕ and ∂

∂nϕ are positive. This equation is particularly
simple for the lowest E mode in any hollow waveguide, that is, the mode
of minimum cutoff frequency, for this mode has the property, established in
Problem 6.13, that the scalar function ϕ is nowhere negative, and vanishes
only on the boundary. It follows that the (outward) normal derivative on the
boundary cannot be positive. Hence the displacement current flows entirely
in the positive direction, and the conduction current entirely in the negative
direction. Consequently,

N =
1

γ4
(∫

σ
dσ ϕ

)2 =
1
γ2

∫
σ

dσ ϕ2

(∫
σ

dσ ϕ
)2 , (6.81)

on employing the normalization condition for ϕ, (6.57), to express N in a form
that is independent of the absolute scale of the function ϕ, Therefore, for the
lowest E mode in any guide, a natural choice of characteristic impedance is,
from (6.36b),

Z = ζ
κ

k

1
γ2

∫
σ

dσ ϕ2

(∫
σ

dσ ϕ
)2 . (6.82)

For the other E modes, the ϕ normalization condition can be used in an
analogous way to obtain

Z = ζ
κ

k

1
γ2

∫
σ

dσ ϕ2

(∫
+

dσ ϕ + 1
γ2

∫
+

ds ∂
∂nϕ
)2 . (6.83)

It may appear more natural to deal with the voltage rather than the cur-
rent in the search for a proper characteristic impedance definition, since the
transverse electric field of an E mode is derived from a potential [(6.32a)].

4 This follows from the fact that H = 0 in the conductor, so that
∮

C
ds · H =∫

σ
dσ · ∇ × H = 0, if the encircling C lies entirely inside the walls of the

waveguide, and so encloses both the conduction and displacement current.
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The voltage could then be defined as the potential of some fixed point with
respect to the wall in a given cross section, thus determining N . In a guide of
symmetrical cross section the only natural reference point is the center, which
entails the difficulty that there exists an infinite class of modes for which ϕ = 0
at the center, and the definition fails. In addition, when this does not occur,
as in the lowest E mode, the potential of the center point does not necessarily
equal the voltage, if the characteristic impedance is defined on a current ba-
sis as we have done. Hence, while significance can always be attached to the
E-mode current, no generally valid voltage definition can be offered.

By analogy with the E-mode discussion, we shall base a characteristic
admittance definition for H modes on the properties of Hz, which can be said
to define a longitudinal magnetic displacement current density, from (6.33d)

−iωµHz = γ2ψ(x, y)N−1/2V (z) . (6.84)

The total longitudinal magnetic displacement current is zero5 and we shall
identify the total magnetic current flowing in the positive direction with V (z).
The voltage thus defined equals the line integral of the electric field intensity
taken clockwise around all regions through which positive magnetic displace-
ment flows. Accordingly,

N = γ4

(∫
+

dσ ψ

)2

= γ2

(∫
+

dσ ψ
)2

∫
σ

dσ ψ2
(6.85)

and [cf. (6.36d)]

Y = η
κ

k

1
γ2

∫
σ

dσ ψ2

(∫
+

dσ ψ
)2 . (6.86)

It would also be possible to base an admittance definition on the identification
of the transmission line current with the total longitudinal electric conduction
current flowing in the positive direction on the metal walls. However, the
characteristic admittance so obtained will not agree in general with that just
obtained.

Although we have advanced rather reasonable definitions of characteristic
impedance and admittance, it is clear that these choices possess arbitrary fea-
tures and in no sense can be considered inevitable. This statement may convey
the impression that the theory under development is essentially vague and ill-
defined, which would be a misunderstanding. Physically observable quantities
can in no way depend on the precise definition of a characteristic impedance,
but this does not detract from its appearance in a theory which seeks to ex-
press its results in conventional circuit language. Indeed, the arbitrariness in
definition is a direct expression of the greater complexity of waveguide sys-
tems compared with low-frequency transmission lines. For example, in the
5 Because E = 0 in the conductor, so is

∮
C

ds · E =
∫

σ
dσ · ∇ × E.
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junction of two low-frequency transmission lines with different dimensions,
the conventional transmission line currents and voltages are continuous to a
high degree of approximation and hence the reflection properties of the junc-
tion are completely specified by the quantities which relate the current and
voltage in each line. In a corresponding waveguide situation, however, physi-
cal quantities with such simple continuity properties do not exist in general,
and it is therefore not possible to describe the properties of the junction in
terms of two quantities which are each characteristic of an individual guide.
Armed with this knowledge, which anticipates the results to be obtained in
Chap. 13, we are forced to the position that the characteristic impedance is
best regarded as a quantity chosen to simplify the electrical representation of
a particular situation, and that different definitions may be advantageously
employed in different circumstances. In particular, the impedance definition
implicitly adopted at the beginning of the chapter, corresponding to N = 1,
is most convenient for general theoretical discussion since it directly relates
the transverse electric and magnetic fields. This choice, which may be termed
the field impedance (admittance), will be adhered to in the remainder of this
chapter.

6.6 Complex Poynting and Energy Theorems

Before turning to the discussion of particular types of guides, we shall de-
rive a few simple properties of the electric and magnetic energies associated
with propagating and nonpropagating modes. The tools for the purpose are
provided by the complex Poynting vector theorem (ε, µ real)

∇ · (E × H∗) = iω
(
µ|H|2 − ε|E|2

)
, (6.87)

and the energy theorem (ignoring any dependence of ε and µ on the frequency)

∇ ·
(

∂E
∂ω

× H∗ + E∗ × ∂H
∂ω

)
= i
(
ε|E|2 + µ|H|2

)
. (6.88)

(Proofs and generalizations of these theorems are given in Problems 6.1 and
6.2.) If (6.87) is integrated over a cross section of the guide, only the longitu-
dinal component of the Poynting vector survives (because n × E vanishes on
S), and we obtain the transmission line form of the complex Poynting vector
theorem, as applied to a single mode [cf. (6.77)]:

d
dz

[
1
2
V (z)I(z)∗

]
=

d
dz

P = 2iω(WH − WE) , (6.89)

where WE and WH are the electric and magnetic linear energy densities. A
similar operation on (6.88) yields

d
dz

{
1
2

[
∂V (z)

∂ω
I(z)∗ + V ∗(z)

∂I(z)
∂ω

]}
= 2i(WE + WH) = 2iW , (6.90)
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since ∂E⊥/∂ω, for example, involves ∂V (z)/∂ω in the same way that E⊥
contains V (z), for the scalar mode functions do not depend upon the fre-
quency. As a first application of these equations we consider a propagating
wave progressing in the positive direction, that is,

V (z) = V eiκz ,
I(z) = Ieiκz ,

V = ZI . (6.91)

The complex power is real and independent of z:

P =
1
2
V I∗ =

1
2
Z|I|2 , (6.92)

whence we deduce from (6.89) that WE = WH ; the electric and magnetic
linear energy densities are equal in a progressive wave. To apply the energy
theorem we observe that

∂V (z)
∂ω

=
∂V

∂ω
eiκz + i

dκ

dω
zV eiκz , (6.93a)

∂I(z)
∂ω

=
∂I

∂ω
eiκz + i

dκ

dω
zIeiκz , (6.93b)

and that

1
2

[
∂V (z)

∂ω
I(z)∗ + V ∗(z)

∂I(z)
∂ω

]
=

1
2

(
∂V

∂ω
I∗ + V ∗ ∂I

∂ω

)

+ i
dκ

dω
z
1
2
(V I∗ + V ∗I) . (6.94)

Therefore, (6.90) implies

dκ

dω

1
4
(V I∗ + V ∗I) =

dκ

dω
P = W , (6.95)

or
P = vW , (6.96)

where
v =

dω

dκ
= c

dk

dκ
= c

κ

k
, (6.97)

with κ given by (6.36a) and (6.36c). The relation thus obtained expresses a
proportionality between the power transported by a progressive wave and the
linear energy density. The coefficient v must then be interpreted as the ve-
locity of energy transport. It is consistent with this interpretation that v is
always less than c, and vanishes at the cutoff frequency. At frequencies large
in comparison with the cutoff frequency, v approaches the intrinsic velocity
c of the medium. It is interesting to compare this velocity with the two ve-
locities already introduced in Chap. 1 in discussing the flow of energy and
momentum – the phase and group velocities. The phase velocity equals the
ratio of the angular frequency and the propagation constant:
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u =
ω

κ
= c

k

κ
, (6.98)

while the group velocity is the derivative of the angular frequency with respect
to the propagation constant:

v =
dω

dκ
. (6.99)

That the group velocity and energy transport velocity are equal is not unex-
pected. We notice that the phase velocity always exceeds the intrinsic velocity
of the medium, and indeed is infinite at the cutoff frequency of the mode. The
two velocities are related by

uv = c2 (6.100)

which coincides with (1.39). A simple physical picture for the phase and group
velocities will be offered in Chap. 7, see Fig. 7.3. See also Problem 6.4, (6.137).

Another derivation of the energy transport velocity, which makes more
explicit use of the waveguide fields, is suggested by the defining equation:

v =
P

W
=

1
2

∫
σ

dσ e · E × H∗

1
4

∫
σ

dσ (ε|E|2 + µ|H|2)
. (6.101)

In virtue of the equality of electric and magnetic linear energy densities, and
the relation e × E = ZH, which is valid for an E-mode field propagating in
the positive direction [(6.45a)], we find using (6.36b)

v =
Z

µ

∫
σ

dσ |H⊥|2∫
σ

dσ |H|2 = c
κ

k
, (6.102a)

since H has no longitudinal component. Similarly, the energy transport ve-
locity for an H mode is from (6.45b) and (6.36d)

v =
Y

ε

∫
σ

dσ |E⊥|2∫
σ

dσ |E|2 = c
κ

k
. (6.102b)

When the wave motion on the transmission line is not that of a simple
progressive wave, but the general superposition of standing waves (or running
waves) described by solutions of (6.34a) and (6.34b), or (6.35a) and (6.35b),

V (z) = V cos κz + iZI sin κz , (6.103a)
I(z) = I cos κz + iY V sin κz , (6.103b)

or

V (z) = (2Z)1/2
(
Aeiκz + Be−iκz

)
, (6.104a)

I(z) = (2Y )1/2
(
Aeiκz − Be−iκz

)
, (6.104b)
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the electric and magnetic linear energy densities are not equal, according to
(6.89), because the complex power is a function of position on the line:

P (z) =
1
2

[
V I∗ cos2 κz + V ∗I sin2 κz + i

1
2

sin 2κz
(
Z|I|2 − Y |V |2

)]
,

(6.105a)
or

P (z) = |A|2 − |B|2 − AB∗e2iκz + A∗Be−2iκz . (6.105b)

However, equality is obtained for the total electric and magnetic energies
stored in any length of line that is an integral multiple of 1

2λg. To prove this,
we observe that by integrating (6.89) over z from z1 to z2,

P (z2) − P (z1) = 2iω(EH − EE) , (6.106)

where EE and EH are the total electric and magnetic energies stored in the
length of transmission line between the points z1 and z2. Now, the complex
power is a periodic function of z with the periodicity interval π/κ = 1

2λg

[(6.39)], from which we conclude that P (z2) = P (z1) if the two points are
separated by an integral number of half guide wavelengths, which verifies
the statement. An equivalent form of this result is that the average electric
and magnetic energy densities are equal, providing the averaging process is
extended over an integral number of half guide wavelengths, or over a distance
large in comparison with 1

2λg.
An explicit expression for the average energy density can be obtained from

the energy theorem (6.88). The total energy E, stored in the guide between
the planes z = z1 and z = z2, is given by the integral of (6.90), or

E =
1
4i

[
∂V (z)

∂ω
I(z)∗ + V (z)∗

∂I(z)
∂ω

]z=z2

z=z1

. (6.107)

On differentiating the voltage and current expressions (6.103a) and (6.103b)
with respect to the frequency, we find

∂V (z)
∂ω

= iz
dκ

dω
ZI(z) +

[
cos κz

∂V

∂ω
+ i sin κz

∂ZI

∂ω

]
, (6.108a)

∂I(z)
∂ω

= iz
dκ

dω
Y V (z) +

[
cos κz

∂I

∂ω
+ i sin κz

∂Y V

∂ω

]
. (6.108b)

Hence

∂V (z)
∂ω

I(z)∗ + V (z)∗
∂I(z)
∂ω

= iz
dκ

dω

[
Z|I(z)|2 + Y |V (z)|2

]
+ · · · , (6.109)

where the unwritten part of this equation consists of those terms, arising from
the bracketed expressions in (6.108a) and (6.108b), which are periodic func-
tions of z with the period 1

2λg. Thus, if the points z1 and z2 are separated by
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a distance that is an integral multiple of 1
2λg, these terms make no contribu-

tion to the total energy. We also note that the quantity Z|I(z)|2 + Y |V (z)|2
is independent of z:

Z|I(z)|2 + Y |V (z)|2 = Z|I|2 + Y |V |2 = 4(|A|2 + |B|2) , (6.110)

from which we conclude that the total energy (6.107) stored in a length of
guide, l, which is an integral number of half guide wavelengths, is, in terms of
the energy velocity (6.97)

E = l
dκ

dω

1
4
(
Z|I|2 + Y |V |2

)
=

l

v

1
4
(
Z|I|2 + Y |V |2

)
=

l

v

(
|A|2 + |B|2

)
.

(6.111)
The average total linear energy density is W = E/l, which has a simple
physical significance in terms of running waves, being just the sum of the
energy densities associated with each progressive wave component if it alone
existed on the transmission line.

The energy relations for a nonpropagating mode are rather different; there
is a definite excess of electric or magnetic energy, depending on the type of
mode. The propagation constant for a nonpropagating (below cutoff) mode is
imaginary:

κ = i
√

γ2 − k2 = i|κ| , (6.112)

and a field that is attenuating in the positive z-direction is described by

V (z) = V e−|κ|z

I(z) = Ie−|κ|z V = ZI . (6.113)

The imaginary characteristic impedance (admittance) of an E (H) mode is
given by

E mode: Z = iζ
|κ|
k

= i|Z| , (6.114a)

H mode: Y = iη
|κ|
k

= i|Y | . (6.114b)

The energy quantities of interest are the total electric and magnetic energy
stored in the positive half of the guide (z > 0). The difference of these energies
is given by (6.106), where z1 = 0 and z2 → ∞. Since all field quantities
approach zero exponentially for increasing z, P (z2) → 0, and

EE − EH =
1

2iω
P (0) =

1
4iω

V I∗ . (6.115)

For an E mode
V I∗ = Z|I|2 = i|Z||I|2 , (6.116)

and so
E mode: EE − EH =

1
4ω

|Z||I|2 , (6.117)
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which is positive. Hence an E mode below cutoff has an excess of electric
energy, in agreement with the capacitive reactance form (see below) of the
characteristic impedance. Similarly, for an H mode,

V I∗ = Y ∗|V |2 = −i|Y ||V |2 , (6.118)

whence
H mode: EH − EE =

1
4ω

|Y ||V |2 , (6.119)

implying that an H mode below cutoff preponderantly stores magnetic energy,
as the inductive susceptance form (see below) of its characteristic admittance
would suggest.

To obtain the total energy stored in a nonpropagating mode, we employ
(6.107), again with z1 = 0 and z2 → ∞:

E =
i
4

(
∂V

∂ω
I∗ + V ∗ ∂I

∂ω

)
. (6.120)

On differentiating the relation V = ZI with respect to ω, and making appro-
priate substitutions in (6.120), we find

E =
i
4

[
dZ

dω
|I|2 + (Z + Z∗)

∂I

∂ω
I∗
]

. (6.121)

The imaginary form of Z (= i|Z| for an E mode) then implies that

E = −1
4

d|Z|
dω

|I|2 . (6.122)

We may note in passing that the positive nature of the total energy demands
that |Z| be a decreasing function of frequency, or better, that the reactance
characterizing Z (= iX) be a decreasing function of frequency. The require-
ment is verified by direct differentiation:

−d|Z|
dω

=
1
ω

γ2

γ2 − k2
|Z| , (6.123)

and

E mode: E =
1
4ω

γ2

γ2 − k2
|Z||I|2 . (6.124)

A comparison of this result with (6.117) shows that

2EH

E
=

k2

γ2
. (6.125)

Thus, the electric and magnetic energies are equal just at the cutoff frequency
(k = γ), and as the frequency diminishes, the magnetic energy steadily de-
creases in comparison with the electric energy. In conformity with the latter
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remark, the E-mode characteristic impedance approaches iζγ/k = iγ/ωε when
k/γ � 1, which implies that a transmission line describing an attenuated E
mode at a frequency considerably below the cutoff frequency behaves like a
lumped capacitance C = ε/γ = ελc/(2π).

The H-mode discussion is completely analogous, with the roles of electric
and magnetic fields interchanged. Thus the total stored energy is

E = −1
4

d|Y |
dω

|V |2 , (6.126)

implying that the susceptance characterizing Y (= −iB) must be an increasing
function of frequency. Explicitly,

H mode: E =
1
4ω

γ2

γ2 − k2
|Y ||V |2 , (6.127)

and
2EE

E
=

k2

γ2
. (6.128)

At frequencies well below the cutoff frequency, the electric energy is negligible
in comparison with the magnetic energy, and the characteristic admittance
becomes iηγ/k = iγ/ωµ. Thus, an H-mode transmission line under these cir-
cumstances behaves like a lumped inductance L = µ/γ = µλc/(2π).

6.7 Problems for Chap. 6

1. Prove the complex Poynting vector theorem, (6.87), and the energy the-
orem, (6.88), starting from the definitions of the Fourier transforms in
time:

E(ω) =
∫ ∞

−∞
dt eiωtE(t) , (6.129a)

H∗(ω) =
∫ ∞

−∞
dt e−iωtH(t) . (6.129b)

What are the general forms of these theorems if no connection is assumed
between D(ω) and E(ω) and between B(ω) and H(ω)?

2. Show that if dispersion be included, the generalization of (6.88) is

∇ ·
(

∂E(ω)
∂ω

× H∗(ω) + E∗ × ∂H(ω)
∂ω

)

= i
[(

d
dω

(ωε)
)
|E|2 +

(
d
dω

(ωµ)
)
|H|2

]
≡ 4iU . (6.130)
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3. The energy theorem (6.130) can be used to prove the uniqueness theorem:
the electric and magnetic fields in a region are completely determined by
specifying the values of the electric (or magnetic) field tangential to the
closed surface bounding that region. This was demonstrated in another
way in Chap. 4. This theorem is true save for sharply defined and isolated
values of the frequency. Prove this by noting first that if E1, H1 and E2,
H2 are two solutions of the Maxwell equations in the region, the difference
E = E1 − E2, H = H1 − H2 must satisfy the homogeneous equations

∇ × H = −iωεE , ∇ × E = iωµH , (6.131a)

as continuous functions of ω, while on the surrounding surface S we have
the homogeneous boundary condition

n × E = 0 on S , (6.132)

since both E1 and E2 have the same tangential values on S. Now show
that the integral form of the energy theorem, applied to the difference
fields, implies that

E = 0, H = 0 in V . (6.133)

Show that the same result obtains if the tangential magnetic field is pre-
scribed on the boundary, or if mixtures of the two kinds of boundaries
conditions are imposed. However, note that this result depends on con-
tinuity requirements, so that it may fail to hold at isolated values of ω.
Indeed there are infinitely many such exceptional solutions, for physically
they correspond to the normal modes of a cavity enclosed by perfectly
conducting walls coinciding with the surface S.

4. Consider a unidirectional light pulse, considered in the nondispersive case
in Chap. 1. Calculate the corresponding group velocity v, defined as the
ratio of the rate of energy flow or power

P =
1
2

∫
σ

dσ E × H∗ · e , (6.134)

where e is the direction of propagation of the electromagnetic disturbance
and the integration is over the corresponding perpendicular area σ, to the
energy per unit length,

W =
∫

σ

dσ U . (6.135)

Assuming that the time averaged electric and magnetic energies per unit
length are equal, show that

v =
c

1 − d ln c
d ln ω

, (6.136)
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where c is the speed of light in the medium. Alternatively, this can be
written as

v = c
n

d
dω (ωn)

, n =
(

ε(ω)µ(ω)
ε0µ0

)1/2

. (6.137)

Calculate this in the example of the plasma model, where ε = ε0(1 −
ω2

p/ω2), µ = µ0, in terms of the parameter called the plasma frequency
ωp, and show that v < c0.

5. The constant electrostatic field between parallel conducting plates at dif-
ferent potentials can be multiplied by eikxe−iωt, k = ω/c, to arrive at a
possible electric field Ez for any ω. Check this. What is the associated
magnetic field? Find the analogous electromagnetic wave between con-
centric cylindrical conductors. Interpret these waves in terms of E or H
modes, and give the corresponding impedances.

6. Begin with the macroscopic Maxwell equation for frequency ω and trans-
verse propagation vector k⊥, appropriate to ε = ε(z) and µ = µ0, and
arrive at

− ∂

∂z
H⊥ + iωεP · n × E⊥ = n × J⊥ , (6.138a)

∂

∂z
E⊥ + iωP · n × B⊥ = k⊥

1
ωε

Jz , (6.138b)

where

P = 1⊥ − c2

ω2
k⊥k⊥ . (6.139)

(Recall that c is the speed of light in the medium.) Check that another
version of these equations is

∂

∂z
n × H⊥ + iωεQ · E⊥ = J⊥ , (6.140a)

− ∂

∂z
n × E⊥ + iωQ · B⊥ = −n × k⊥

1
ωε

Jz , (6.140b)

in which

Q = 1⊥ − c2

ω2
n × k⊥n × k⊥ . (6.141)

7. Show that

P · Q = Q · P =
(

1 − c2k2
⊥

ω2

)
1⊥ , (6.142)

and that

P + Q =
(

2 − c2k2
⊥

ω2

)
1⊥ . (6.143)

Exhibit the quadratic equation that P and Q individually obey. The char-
acteristic (eigen) vectors and values of P and Q and defined by, for exam-
ple,
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P · V = λV . (6.144)

Find the eigenvectors and eigenvalues for P and Q. Do the eigenvalues
obey the quadratic equation? What is the geometrical relation between
the eigenvalues?

8. Consider a dielectric waveguide with a discontinuous dielectric constant:

ε(z) =
{

ε1, 0 < z < a,
ε2, z < 0, z > a.

(6.145)

suppose ε2 > ε1, and the frequency is so chosen that κ is real for 0 < z < a
but imaginary outside this range. The longitudinal mode functions for
this dielectric waveguide are of the form cos(κz − a) for 0 < z < a and
decrease exponentially, as specified by κ, for z < 0 and z > a. What are
the implications of the boundary conditions at z = 0 and a? Consider
both polarizations.

9. Dielectric 2, a slab of thickness 2a, is embedded in dielectric 1, which
contains sources of waves, with frequency ω and transverse propagation
vector k⊥, that are polarized parallel to the interfaces between the media
(⊥ polarization). Two symmetrical situations are considered:
(a) Equal but oppositely signed sources are disposed on the respective

sides of the slab, leading to the vanishing of the electric field at the
center of the slab.

(b) Equal sources are used, leading to a maximum of the electric field at
the center of the slab.

By adding the fields and sources of the two circumstances, find the trans-
mitted and reflected amplitudes of waves incident on the slab. Check con-
servation of energy, both when waves do, and do not, propagate in the
slab.

10. Consider a dielectric body in motion with velocity V. Show that it exhibits
an intensity of magnetization

M = P × V . (6.146)

Then recognize that another effect of such motion will be to alter the
relation between P and E into

P = (ε − ε0) (E + V × B) . (6.147)

Now write Maxwell’s equations for a wave of frequency ω and propagation
vector k parallel to V in source-free space, assuming that |V|/c � 1.
Conclude that, in the moving body, the light speed, ω/k, is

c′(V) =
c

n
+
(

1 − 1
n2

)
V ≡ c′ +

(
1 −
(

c′

c

)2
)

V . (6.148)

Is this familiar?
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11. The answer to the previous problem suffices if the medium is nondispersive
(n independent of ω). More generally, we must note that the electric field
determining the polarization,

E(r, t) ∼ ei(k·r−ωt) , (6.149)

is evaluated at points fixed in the moving body. Infer the correct form
of c′(V ) for light of frequency ω when the frequency dependence of n is
recognized.

12. The speed of energy transport in a dispersive medium is not c′ but

c′′ =
dω

dk
, (6.150)

according to (6.99). Show that

c′′(V ) = c′′ +

(
1 −
(

c′′

c

)2
)

V , (6.151)

and make explicit the implicit reference to frequency. Should this result
have been anticipated?

13. Prove that the lowest E mode of a hollow waveguide is characterized by a
function ϕ which is nowhere negative, and vanishes only on the boundary.
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Rectangular and Triangular Waveguides

To illustrate the general waveguide theory thus far developed, we shall deter-
mine the mode functions and associated eigenvalues for those few guide shapes
that permit exact analytical treatment. In this chapter we will discuss guides
constructed from plane surfaces. Circular boundaries will be the subject of
Chap. 8.

7.1 Rectangular Waveguide

The cross section of a rectangular guide with dimensions a and b is shown
in Fig. 7.1, together with a convenient coordinate system. The positive sense

a

b

(0, 0) (a, 0)

(0, b) (a, b)

Fig. 7.1. Cross section of a rectangular waveguide, with sides a and b, and coordi-
nates labeled (x, y). The direction of z comes out of the page

of the z-axis is assumed to be out of the plane of the page. The wave equa-
tions (6.22a) and (6.23a) can be separated in rectangular coordinates; that
is, particular solutions for both E-mode and H-mode functions can be found
in the form X(x)Y (y), where the two functions thus introduced satisfy one-
dimensional wave equations,

(
d2

dx2
+ γ2

x

)
X(x) = 0 , (7.1a)
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(
d2

dy2
+ γ2

x

)
Y (y) = 0 , (7.1b)

where
γ2 = γ2

x + γ2
y . (7.1c)

The E-mode functions are characterized by the boundary conditions

X(0) = X(a) = 0 , Y (0) = Y (b) = 0 , (7.2a)

while the H-mode functions are determined by

d
dx

X(0) =
d
dx

X(a) = 0 ,
d
dy

Y (0) =
d
dy

Y (b) = 0 . (7.2b)

The scalar mode functions that satisfy these requirements are (m,n =
0, 1, 2, . . .)

E mode: ϕ(x, y) = sin
mπx

a
sin

nπy

b
, (7.3a)

H mode: ψ(x, y) = cos
mπx

a
cos

nπy

b
, (7.3b)

and for both types of modes:

γ2 =
(mπ

a

)2

+
(nπ

b

)2

. (7.4)

The latter result can also be written as

1
λ2

c

=
(m

2a

)2

+
( n

2b

)2

, (7.5)

or the cutoff wavelength is

λc =
2ab√

(mb)2 + (na)2
. (7.6)

Observe that neither of the integers m or n can be zero for an E mode, or the
scalar function vanishes. Although no H mode corresponding to m = n = 0
exists, since a constant scalar function generates no electromagnetic field, one
of the integers can be zero. Thus, there exists a doubly infinite set of E modes
characterized by the integers m,n = 1, 2, 3, . . .; the general member of the set
is designated as the Emn mode, the two integers replacing the index a of the
general theory. Similarly, a doubly infinite set of H modes exists corresponding
to the various combinations of integers m,n = 0, 1, 2, . . ., with m = n = 0
excluded. A particular H mode characterized by m and n is called the Hmn

mode. The double subscript notation is extended to the various quantities
describing a mode; thus, the critical wavenumber of an Emn or Hmn mode is
written γmn.
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The scalar function associated with an Emn mode, normalized in accor-
dance with (6.57), is

ϕmn(x, y) =
2

γmn

√
ab

sin
mπx

a
sin

nπy

b

=
2
π

1√
m2 b

a + n2 a
b

sin
mπx

a
sin

nπy

b
, (7.7)

and the various field components for the Emn modes are from (6.32a)–(6.32g)

Ex = −2
a

m√
m2 b

a + n2 a
b

cos
mπx

a
sin

nπy

b
V (z) , (7.8a)

Ey = −2
b

n√
m2 b

a + n2 a
b

sin
mπx

a
cos

nπy

b
V (z) , (7.8b)

Hx =
2
b

n√
m2 b

a + n2 a
b

sin
mπx

a
cos

nπy

b
I(z) , (7.8c)

Hy = −2
a

m√
m2 b

a + n2 a
b

cos
mπx

a
sin

nπy

b
I(z) , (7.8d)

Ez =
iζ
k

2π

√
m2 b

a + n2 a
b

ab
sin

mπx

a
sin

nπy

b
I(z) , (7.8e)

Hz = 0 . (7.8f)

Of this set of waveguide fields, the E11 mode has the smallest cutoff wavenum-
ber,

γ11 = π

√
1
a2

+
1
b2

= π

√
a2 + b2

ab
, (7.9)

or, equivalently, the largest cutoff wavelength,

(λc)11 = 2
ab√

a2 + b2
. (7.10)

This wavelength may be designated as the absolute E-mode cutoff wavelength,
in the sense that if the intrinsic wavelength in the guide exceeds (λc)11, no
E modes can be propagated. The E11 mode is called the dominant E mode,
for in the frequency range between the absolute E-mode cutoff frequency and
the next smallest E-mode cutoff frequency (that of the E21 mode if a is the
larger dimension), E-mode wave propagation in the guide is restricted to the
E11 mode.

It is convenient to consider separately the Hmn modes for which neither
integer is zero, and the set of modes for which one integer vanishes, Hm0 and
H0n. The scalar function associated with a member of the former set is
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ψmn(x, y) =
2
π

1√
m2 b

a + n2 a
b

cos
mπx

a
cos

nπy

b
, m, n 
= 0 , (7.11)

normalized according to (6.59); the field components are, according to (6.33a)–
(6.33g)

Ex =
2
b

n√
m2 b

a + n2 a
b

cos
mπx

a
sin

nπy

b
V (z) , (7.12a)

Ey = −2
a

m√
m2 b

a + n2 a
b

sin
mπx

a
cos

nπy

b
V (z) , (7.12b)

Hx =
2
a

m√
m2 b

a + n2 a
b

sin
mπx

a
cos

nπy

b
I(z) , (7.12c)

Hy =
2
b

n√
m2 b

a + n2 a
b

cos
mπx

a
sin

nπy

b
I(z) , (7.12d)

Hz =
iη
k

2π

√
m2 b

a + n2 a
b

ab
cos

mπx

a
cos

nπy

b
V (z) , (7.12e)

Ez = 0 . (7.12f)

If n = 0, the appropriately normalized scalar function is

ψm0(x, y) =
1

mπ

√
2a

b
cos

mπx

a
, (7.13)

which differs by a factor of 1/
√

2 from the result obtained on placing n = 0
in (7.11). The field components of the Hm0 mode are

Ex = 0 , (7.14a)

Ey = −
√

2
ab

sin
mπx

a
V (z) , (7.14b)

Hx =

√
2
ab

sin
mπx

a
I(z) , (7.14c)

Hy = 0 , (7.14d)
Ez = 0 , (7.14e)

Hz =
iη
ka

mπ

√
2
ab

cos
mπx

a
V (z) , (7.14f)

of which the most notable feature is the absence of all electric field components
save Ey. We also observe that Hy = 0, whence the Hm0 modes behave like
E modes with respect to the y-axis. The field structure of the H0n modes is
analogous, with the x-axis as the preferred direction. The smallest H-mode
cutoff wavenumber is that of the H10 mode if a is the larger dimension:
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γ10 =
π

a
. (7.15)

Thus, the cutoff wavelength is simply

(λc)10 = 2a , (7.16)

and is independent of the dimension b, the height of the guide. We may des-
ignate (λc)10 both as the absolute H-mode cutoff wavelength, and as the
absolute cutoff wavelength of the guide, for the H10 has the smallest critical
frequency of all the waveguide modes. Thus the H10 mode is called the domi-
nant H mode, and the dominant mode of the guide, for in the frequency range
between the absolute cutoff frequency of the guide and the next smallest cutoff
frequency (which mode this represents depends upon the ratio b/a), only H10

wave propagation can occur. It is evident from the result (7.6) that a hollow
waveguide is intrinsically suited to microwave frequencies, if metal tubes of
convenient dimensions are to be employed. Furthermore, the frequency range
over which a rectangular guide can be operated as a simple transmission line
(only dominant mode propagation) is necessarily less than an octave, for the
restrictions thereby imposed on the wavelength are 2a > λ > a (expressing
the gap between the m = 1, n = 0 and the m = 2, n = 0 modes) and λ > 2b
(which marks the beginning of the m = 0, n = 1 mode). (If b > a/

√
3 the

m = 1, n = 1 mode sets in before λ gets as small as a.)
The field components of the H10 mode contained in (7.14a)–(7.14f) in-

volve voltages and currents defined with respect to the field impedance choice
of characteristic impedance. (Recall Sect. 6.5.) If the definition discussed in
(6.85) is adopted, N = 2b/a (because the + subscript on the integral in (6.85)
means that x ranges only from 0 to a/2), and the nonvanishing H10 mode
field components obtained by V → N−1/2V , I → N1/2I read

Ey = −1
b

sin
πx

a
V (z) , (7.17a)

Hx =
2
a

sin
πx

a
I(z) , (7.17b)

Hz = i
π

κa

2
a

cos
πx

a
Y V (z) , (7.17c)

where the characteristic admittance is obtained by dividing (6.36d) by N , or

Y = η
κ

k

a

2b
. (7.18)

Thus the voltage at a given cross section is defined as the (negative of the) line
integral of the electric field between the top and bottom faces of the guide
taken along the line of maximum field intensity, x = a/2. Some important
properties of the dominant mode emerge from a study of the surface current
flowing in the various guide walls. On the side walls, x = 0, a, the only tan-
gential magnetic field component is Hz and therefore from (4.64b) the surface
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current flows entirely in the y-direction. The surface current density on the
x = 0 face is Ky = −Hz, while that on the x = a face is Ky = Hz. However,
since Hz is of opposite sign on the two surfaces, the current flows in the same
direction on both side surfaces, with the density

x = 0, a : Ky = −i
π

κa

2
a
Y V (z) . (7.19)

On the top and bottom surfaces, y = b, 0, there are two tangential field com-
ponents, Hx and Hz, and correspondingly two components of surface current,
Kz = ±Hx and Kx = ∓Hz. The upper and lower signs refer to the top
and bottom surface, respectively. On the top surface (y = b), the lateral and
longitudinal components of surface current are

Kx = −i
π

κa

2
a

cos
πx

a
Y V (z) , (7.20a)

Kz =
2
a

sin
πx

a
I(z) . (7.20b)

Equal and opposite currents flow on the bottom surface y = 0. Since cos πx
a

has reversed signs on opposite sides of the center line x = a/2, and vanishes at
the latter point, it is clear that the transverse current flowing up the side walls
continues to move toward the center of the top surface, but with diminishing
magnitude, and vanishes at x = a/2. Thus the lines of current flow must turn
as the center is approached, the flow becoming entirely longitudinal at x =
a/2. In agreement with this, we observe that Kz vanishes at the boundaries of
the top surface x = 0, a, and is a maximum at the center line. As a function of
position along the guide, the direction of current flow reverses every half guide
wavelength in consequence of the corresponding behavior of the current and
voltage. The essential character of the current distribution can also be seen
by noting that the surface charge density τ = −n · D = −εn · E is confined
to the top and bottom surfaces where the charge densities are τ = ∓εEy,
respectively. Thus, at y = b

τ =
ε

b
sin

πx

a
V (z) . (7.21)

Hence, current flows around the circumference of the guide between the
charges of opposite sign residing on the top and bottom surfaces, and current
flows longitudinally on each surface between the oppositely charged regions
separated by half the guide wavelength. A contour plot of the intensity of
the current illustrating these general remarks is given in Fig. 7.2. The most
immediate practical conclusion to be drawn from this analysis follows from
the fact that no current crosses the center line of the top and bottom surfaces.
Thus, if the metal were cut along the center line no disturbance of the current
flow or of the field in the guide would result. In practice, a slot of apprecia-
ble dimensions can be cut in the guide wall without appreciable effect, which
permits the insertion of a probe to determine the state of the field, without
thereby markedly altering the field to be measured.
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Fig. 7.2. Contour plot of the current intensity flowing on the top surface of the
waveguide in the dominant mode H10, in units of 2I/a. Here we have chosen λg = 3a.
The coordinates shown are in units of a

The field of a propagating mode in a rectangular waveguide can be re-
garded as a superposition of elementary plane waves arising from successive
reflections at the various inner guide surfaces. This is illustrated most simply
for a progressive H10 wave, where the single component of the electric field
has the form, from (7.17a)

Ey = −V

b
sin

πx

a
eiκz =

i
2

V

b

[
ei(κz+πx/a) − ei(κz−πx/a)

]
, (7.22)

which is simply a superposition of the two plane waves exp[ik(cos θz± sin θx)]
that travel in the x–z-plane at an angle θ with respect to the z-axis. Here

cos θ =
κ

k
, sin θ =

1
k

π

a
(7.23)

which defines a real angle since κ < k, and in fact

k2 − κ2 = γ2
10 =

(π

a

)2

. (7.24)

Each plane wave results from the other on reflection at the two surfaces x = 0
and a, and each component is an elementary free-space wave with its electric
vector directed along the y-axis and its magnetic vector contained in the plane
of propagation. As an obvious generalization to be drawn from this simple
situation, we may regard the various propagating modes in a waveguide as
the result of the coherent interference of the secondary plane waves produced
by the successive reflection of an elementary wave at the guide walls. From
this point of view, the difference between E and H modes is just that of the
polarizations of the plane wave components. The plane wave point of view
also affords a simple picture of the phase and group velocities associated with
a guide mode. A study of Fig. 7.3, which depicts a plane wave moving with
speed c at an angle θ relative to the z-axis, shows that during the time interval
dt the z-projection of a point on an equiphase surface advances a distance
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θ
z

Fig. 7.3. Elementary wave propagating with angle θ with respect to z-axis

c cos θ dt, while the z-intercept of the equiphase surface advances a distance
c

cos θ dt. Thus the group velocity is

v = c cos θ = c
κ

k
, (7.25a)

while the phase velocity is

u =
c

cos θ
= c

k

κ
, (7.25b)

in agreement with our previous results (6.97) and (6.98). The different nature
of these velocities in particularly apparent at the cutoff frequency, where the
group velocity is zero and the phase velocity infinite. From the plane wave
viewpoint, the field then consists of elementary wave moving perpendicularly
to the guide axis. There is then no progression of waves along the guide – zero
group velocity – while all points on a line parallel to the z-axis have the same
phase – infinite phase velocity. Thus the essential difference between the two
velocities is contained in the statement that the former is a physical velocity,
the latter a geometrical velocity.

It has been remarked above that the Hm0 modes behave like E modes with
respect to the y-axis. A complete set of waveguide fields with E or H char-
acter relative to the y-axis can be constructed from those already obtained.
The Emn and Hmn modes associated with the same nonvanishing integers are
degenerate, since they possess equal critical frequencies and propagation con-
stants. Furthermore, the respective transverse field components manifest the
same dependence upon x and y, cf. (7.8a)–(7.8d) and (7.12a)–(7.12d). Hence,
by a suitable linear combination of these modes, it is possible to construct
fields for which either Ey or Hy vanishes. Similar remarks apply to the x-axis.
Thus, a decomposition into E and H modes can be performed with any of
the three axes as preferred directions. The result is to be anticipated from
the general analysis of Sect. 6.1, since a rectangular waveguide has cylindrical
symmetry with respect to all three axes.
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7.2 Isosceles Right Triangular Waveguide

A square waveguide, a = b, has a further type of degeneracy, since the Emn and
Enm modes have the same critical frequency, as do the Hmn and Hnm modes.
By suitable linear combinations of these degenerate modes, it is possible to
construct the mode functions appropriate to a guide with a cross section in
the form of an isosceles right triangle. The (unnormalized) mode function,

ϕmn(x, y) = sin
mπx

a
sin

nπy

a
− sin

nπx

a
sin

mπy

a
, (7.26)

describes a possible E mode in a square guide, with the cutoff wavenumber

γmn =
π

a

√
m2 + n2 . (7.27)

The function thus constructed vanishes on the line y = x as well as on the
boundaries y = 0, x = a, and therefore satisfies all the boundary conditions
for an E mode in an isosceles right triangular guide, as shown in Fig. 7.4. The

Fig. 7.4. Isosceles right triangular waveguide (shown in cross section) obtained by
bisecting a square waveguide by a plane diagonal to the square

linearly independent square guide E-mode function

sin
mπx

a
sin

nπy

a
+ sin

nπx

a
sin

mπy

a
, (7.28)

does not vanish on the line y = x, and therefore does not describe a possible
triangular mode. Note that the function (7.26) vanishes if m = n, and that
therefore an interchange of the integers produces a trivial change in sign of
the function. Hence the possible E modes of an isosceles right triangular guide
are obtained from (7.26) with the integers restricted by 0 < m < n. Thus the
dominant E mode corresponds to m = 1, n = 2, and has the cutoff wavelength
λc = 2√

5
a. The mode function

ψmn(x, y) = cos
mπx

a
cos

nπy

a
+ cos

nπx

a
cos

mπy

a
, (7.29)

describing an H mode in the square guide, has a vanishing derivative normal
to the line y = x:

∂

∂n
ψmn =

1√
2

(
− ∂

∂x
+

∂

∂y

)
ψmn = 0 , y = x , (7.30)
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and therefore satisfies all boundary conditions for an H mode in the triangular
guide under consideration. The linearly independent function

cos
mπx

a
cos

nπy

a
− cos

nπx

a
cos

mπy

a
, (7.31)

is not acceptable for this purpose. The function (7.29) is symmetrical in the
integers m and n, and therefore the possible H modes of an isosceles right
triangular guide are derived from (7.29) with the integers restricted by 0 ≤
m ≤ n, but with m = n = 0 excluded. Thus the dominant H mode, and
the dominant mode of the guide, corresponds to m = 0, n = 1, and has the
cutoff wavelength λc = 2a, which is identical with the dominant mode cutoff
wavelength of a rectangular guide with the maximum dimension a.

The discussion just presented may appear incomplete, for although we
have constructed a set of triangular modes from the modes of the square
guide, the possibility remains that there exist other modes not so obtainable.
We shall demonstrate that all the modes of the isosceles right triangle are
contained among those of the square, thereby introducing a method that will
prove fruitful in the derivation of the modes of an equilateral triangle. It will
be convenient to use a coordinate system in which the x-axis coincides with
the diagonal side of the triangle, the latter then occupying a space below
the x-axis. Let ϕ(x, y) be an E-mode function of the triangle, which there-
fore satisfies the wave equation (6.22a) and vanishes on the three triangular
boundaries. We now define the function ϕ(x, y) for positive y, in terms of its
known values within the triangle for negative y, by

ϕ(x, y) = −ϕ(x,−y) , y > 0 . (7.32)

The definition of the function is thereby extended to the triangle obtained
from the original triangle by reflection in the x-axis, the two regions together
forming a square, as seen in Fig. 7.4. The two parts of the extended function
are continuous and have continuous normal derivatives across the line y = 0,
since ϕ(x,+0) = 0, and

ϕy(x, y) ≡ ∂

∂y
ϕ(x, y) =

∂

∂(−y)
ϕ(x,−y) ≡ ϕy(x,−y) , (7.33)

whence ϕy(x,+0) = ϕy(x,−0). Furthermore, ϕ(x, y), y > 0, satisfies the wave
equation:
(

∂2

∂x2
+

∂2

∂y2
+ γ2

)
ϕ(x, y) = −

(
∂2

∂x2
+

∂2

∂(−y)2
+ γ2

)
ϕ(x,−y) = 0 ,

(7.34)
and clearly vanishes on the orthogonal sides of the triangle produced by re-
flection. Hence, the extended function satisfies all the requirements for an
E-mode function of the square, and thus our contention is proved, since every
triangular E-mode function generates an E mode of the square. The analogous
H-mode discussion employs the reflection
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ψ(x, y) = ψ(x,−y) , y > 0 (7.35)

to extend the definition of the function. All the necessary continuity and
boundary conditions are easily verified.

7.3 Equilateral Triangular Waveguide

The method just discussed may be used to great advantage in the construc-
tion of a complete set of E and H modes associated with a guide that has a
cross section in the form of an equilateral triangle. A mode function within the
triangle can be extended to three neighboring equilateral triangles by reflec-
tion about the three lines, parallel to the sides of the triangle, that intersect
the opposite vertices, as shown in Fig. 7.5. We now suppose that the func-
tion thus defined in these new regions is further extended by similar reflection
processes, and so on, indefinitely, as sketched in Fig. 7.6. It is apparent from
Fig. 7.6 that the infinite system of equilateral triangles so formed uniformly

Fig. 7.5. Reflected equilateral triangle

cover the entire x–y plane. Hence, a function has been defined which is fi-
nite, continuous, has continuous derivatives, and satisfies the wave equation
at every point of the x–y plane. Such a function must be composed of uni-
form plane waves, and therefore the modes of the equilateral triangle must be
constructible from such plane waves. To proceed further, we observe that the
extended mode function has special periodicity properties. Consider a row of
triangles parallel to one of the three sides of the triangle. The value of the
function at a point within a second neighboring parallel row is obtained by two
successive reflections from the value at a corresponding point in the original
row, and is therefore identical for both E and H modes. Hence the extended
mode function must be periodic with respect to the three dimensions normal
to the sides of the triangle, the periodicity interval being 2h, where h is the
length of the perpendicular from an apex to the opposite side. In terms of a,
the base length of the triangle, h =

√
3

2 a. To supply a mathematical proof for
these statements we need merely write the equations that provide the succes-
sive definitions of the extended function in one of the directions normal to the
sides of the triangle. Thus, for an E mode,
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Fig. 7.6. Repeated reflection of equilateral triangle

ϕ(x, y) = −ϕ(x, 2h − y) , h ≤ y ≤ 2h , (7.36a)
ϕ(x, y) = −ϕ(x, 4h − y) , 2h ≤ y ≤ 3h , (7.36b)

which relates the values of the function in three successive rows parallel to the
x-axis. On eliminating the value of the function in the center row, we obtain

ϕ(x, y) = ϕ(x, y + 2h) , 0 ≤ y ≤ h , (7.37)

which establishes the stated periodicity. The same proof is immediately ap-
plicable to translation in the other two directions, if a corresponding coordi-
nate system is employed. The verification for H modes is similar. To construct
a function having the desired periodicity properties, we introduce the three
unit vectors normal to the sides of the triangle, and oriented in an inward
sense (see Fig. 7.7)

e2

•

e3

e1

a

a a

Fig. 7.7. Cross section of equilateral triangular cylinder

e1 = j , e2 = −
√

3
2

i − 1
2
j , e3 =

√
3

2
i − 1

2
j , (7.38)
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and remark that the function of vectorial position in the plane, r

F (r) =
∑
λ,µ,ν

f(r − λ2he1 − µ2he2 − ν2he3) (7.39)

is unaltered by a translation of magnitude 2h in any of the directions specified
by e1, e2, and e3. The summation is to be extended over all integral values of
λ, µ, ν. If f(r) is a solution of the wave equation everywhere, F (r) will also
be a solution, with the proper periodicity. Furthermore, if f(r) is a uniform
plane wave, F (r) will also be of this form, and by a proper combination of
such elementary fields, we can construct the modes of the equilateral triangle.
Thus, assuming that

f(r) = eiγ·r , (7.40)

where the magnitude of the real vector γ is the cutoff wavenumber of the
mode, we find

F (r) = eiγ·r
∞∑

λ=−∞
e−2ihλe1·γ

∞∑
µ=−∞

e−2ihµe2·γ
∞∑

ν=−∞
e−2ihνe3·γ . (7.41)

Each summation is of the form
∞∑

µ=−∞
eiµx , (7.42)

which is a periodic function of x, with the periodicity 2π. Within the range
−π ≤ x < π, the series may be recognized as the Fourier series expansion of
2πδ(x):

δ(x) =
1
2π

∞∑
µ=−∞

eiµx

∫ π

−π

dx′e−iµx′
δ(x′) =

1
2π

∞∑
µ=−∞

eiµx . (7.43)

We can therefore write, for all x,

∞∑
µ=−∞

eiµx = 2π
∞∑

m=−∞
δ(x − 2πm) , (7.44)

since this equation reduces to (7.43) in the range −π ≤ x < π, all delta func-
tion terms but the m = 0 one being nowhere different from zero in this range,
and since both sides of the equation are periodic functions with periodicity
2π. The relation (7.44) is known as the Poisson sum formula. Applying this
result to the three summations contained in (7.41), we obtain

F (r) = eiγ·r(2π)3
∞∑

l=−∞

∞∑
m=−∞

∞∑
n=−∞

δ(2he1 · γ − 2πl)

×δ(2he2 · γ − 2πm)δ(2he3 · γ − 2πn) . (7.45)
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Hence, the function vanishes entirely unless the arguments of all three delta
functions vanish simultaneously, which requires that

e1 · γ =
πl

h
, e2 · γ =

πm

h
, e3 · γ =

πn

h
, (7.46)

where l, m, and n are integers, positive, negative, or zero. The three integers
may not be assigned independently, however, for

(e1 + e2 + e3) · γ =
π

h
(l + m + n) = 0 , (7.47)

since
e1 + e2 + e3 = 0 , (7.48)

which is evident from the geometry in Fig. 7.7, or from the explicit form of
the vectors, (7.38). Therefore,

l + m + n = 0 . (7.49)

With the relations (7.46) and (7.49) we have determined the cutoff wavenum-
bers of all E and H modes in the triangular guide. Thus

(e1 · γ)2 + (e2 · γ)2 + (e3 · γ)2 = γ · (e1e1 + e2e2 + e3e3) · γ

=
π2

h2
(l2 + m2 + n2) . (7.50)

However, it follows from the explicit form of the vectors that the dyadic

e1e1 + e2e2 + e3e3 =
3
2
(ii + jj) (7.51)

a multiple of the unit dyadic in two dimensions,1 whence

γ2 =
2
3

π2

h2
(l2 + m2 + n2) =

8
9

π2

a2
(l2 + m2 + n2) . (7.52)

If we wish, l can be eliminated by means of (7.49), with the result

γ =
4
3

π

a

√
m2 + mn + n2 . (7.53)

We have shown that the elementary functions from which the triangular
mode functions are to be constructed have the form

eiγ·r , (7.54)

with the components of γ determined by (7.46). In view of the latter relations,
and of (7.51), the quantity γ · r is conveniently rewritten as follows:
1 The fact that the multiple is not unity signifies the overcompleteness of the vectors

ea.
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γ · r = γ · (ii + jj) · r =
2
3
γ · (e1e1 + e2e2 + e3e3) · r

=
2
3

π

h
(le1 · r + me2 · r + ne3 · r) =

2
3

π

h
(lu + mv + nw) . (7.55)

The three new variables,

u = e1 · r = y , (7.56a)

v = e2 · r = −
√

3
2

x − 1
2
y , (7.56b)

w = e3 · r =
√

3
2

x − 1
2
y , (7.56c)

known as trilinear coordinates, are the projections of the position vector on
the three directions specified by the unit vectors e1, e2, e3, and are related
by

u + v + w = 0 . (7.57)

If the origin of coordinates is placed at the intersection of the three perpen-
diculars from each vertex to the opposite side, the trilinear coordinates of a
point are the perpendicular distances from the origin to the three lines drawn
through the point parallel to the sides of the triangle. A coordinate is consid-
ered negative if the line lies between the origin and the corresponding side;
thus, the equations for the sides of the triangle are u = −r, v = −r, w = −r,
where r is the radius of the inscribed circle (see Fig. 7.7)

r =
1
3
h =

a

2
√

3
. (7.58)

To construct the mode functions, we must attempt to satisfy the boundary
conditions by combining all functions of the form (7.45) that correspond to
the same value of γ. There are 12 such functions, of which six are obtained
from (7.54) and (7.55) by permutation of the integers l, m, and n, and another
six from these by a common sign reversal of l, m, and n, or equivalently, by
taking the complex conjugate, cf. (7.41). It would not be possible to reverse
the sign of l alone, for example, since the condition (7.49) would be violated.
We first consider E modes and construct pairs of functions that vanish on the
boundary u = −r. Thus

ei 2π
3h (lu+mv+nw−lh) − e−i 2π

3h (lu+nv+mw−lh) (7.59)

has this property, for in consequence of the relations (7.49) and (7.57) it can
be written

ei 2π
3h [l( 3

2 u−h)+(m−n) 1
2 (v−w)] − ei 2π

3h [−l( 3
2 u−h)+(m−n) 1

2 (v−w)]

= 2i sin
lπ

h

(
u − 2

3
h

)
ei 2π

3h (m−n) 1
2 (v−w) ,

(7.60)
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which clearly vanishes when u = − 1
3h. The two additional functions obtained

by a cyclic permutation of l, m, n also vanish on the boundary u = −r, as
do the complex conjugates of the three pairs of functions. Of course, the six
functions and their conjugates could also be grouped in pairs so that they
vanish on the boundary v = −r, or w = −r. It is now our task to construct
one or more functions that have the proper grouping relative to all three
boundaries, and are thus the desired general E-mode functions. It is easy to
verify that the required functions are

ϕ(x, y) = ei 2π
3h (lu+mv+nw−lh) − e−i 2π

3h (lu+nv+mw−lh)

+ ei 2π
3h (mu+nv+lw−mh) − e−i 2π

3h (mu+lv+nw−mh)

+ ei 2π
3h (nu+lv+mw−nh) − e−i 2π

3h (nu+mv+lw−nh) , (7.61)

and its complex conjugate. Each E mode is therefore twofold degenerate, and
the real and imaginary parts of (7.61) are equally admissible mode functions.
Note that permutations of the integers l, m, n yield no new functions, for
(7.61) is unchanged under the three cyclic permutations, and the other three
permutations convert (7.61) into its negative complex conjugate. On com-
bining the pairs of functions in the manner of (7.60), and taking real and
imaginary parts, we obtain the two E-mode functions associated with the
integers l, m, n in the form

ϕ(x, y) = sin
lπ

h

(
y − 2h

3

)
cos
sin

π√
3h

(m − n)x

+ sin
mπ

h

(
y − 2h

3

)
cos
sin

π√
3h

(n − l)x

+ sin
nπ

h

(
y − 2h

3

)
cos
sin

π√
3h

(l − m)x , (7.62)

where we have replaced u and v−w
2 by y and −

√
3

2 x, respectively, according
to (7.56a)–(7.56c).

To find the dominant E mode, we note that (7.62) vanishes identically if
any integer is zero, and therefore the E mode of lowest cutoff wavenumber
corresponds to m = n = 1, l = −2, and thus from (7.53) has the cutoff
wavelength λc =

√
3

2 a = h. It is important to observe that the E-mode function
constructed from the sine functions of x vanishes if two integers are equal.
Hence the dominant E mode is nondegenerate.

The H-mode function analogous to (7.61) is

ψ(x, y) = ei 2π
3h (lu+mv+nw−lh) + e−i 2π

3h (lu+nv+mw−lh)

+ ei 2π
3h (mu+nv+lw−mh) + e−i 2π

3h (mu+lv+nw−mh)

+ ei 2π
3h (nu+lv+mw−nh) + e−i 2π

3h (nu+mv+lw−mh) . (7.63)

To verify this statement, it must be shown that ψ(x, y) has vanishing deriva-
tives normal to each of the triangular sides. Now
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e1 · ∇ =
∂

∂y
=

∂

∂u
− 1

2
∂

∂v
− 1

2
∂

∂w
=

3
2

∂

∂u
, (7.64)

since the operator ∂
∂u + ∂

∂v + ∂
∂w annihilates all of the 12 plane waves in

consequence of l + m + n = 0. The symmetry of this relation is sufficient
assurance for the validity of

e2 · ∇ =
3
2

∂

∂v
, e3 · ∇ =

3
2

∂

∂w
. (7.65)

Thus, each normal derivative is proportional to the derivative with respect
to the corresponding trilinear coordinate, and the application of any of these
operators to (7.63) produces a form in which the same cancellation occurs on
the boundaries as for the E modes. The twofold degenerate mode functions
obtained as the real and imaginary parts of (7.63) are

ψ(x, y) = cos
lπ

h

(
y − 2h

3

)
cos
sin

π√
3h

(m − n)x

+ cos
mπ

h

(
y − 2h

3

)
cos
sin

π√
3h

(n − l)x

+ cos
nπ

h

(
y − 2h

3

)
cos
sin

π√
3h

(l − m)x . (7.66)

It should again be noted that a permutation of the integers produces no new
mode, the function (7.66) either remaining invariant or reversing sign under
such an operation. It is permissible for one integer to be zero, and therefore the
dominant H mode, which is also the dominant mode of the guide, corresponds
to m = 1, n = −1, l = 0, and has the cutoff wavelength λc = 3

2a. Unlike the
dominant E mode, the dominant H mode is doubly degenerate.

The mode functions of the equilateral triangle have interesting properties
relative to coordinate transformations that leave the triangle invariant. If, for
example, the coordinate system indicated in Fig. 7.7 is rotated counterclock-
wise through 120◦, the triangle has the same aspect relative to the new co-
ordinate system that it had in the original system. The relationship between
the unit vectors and trilinear coordinates in the two coordinate systems is
expressed by

e1 = e′3 , e2 = e′1 , e3 = e′2 , (7.67a)
u = w′ , v = u′ , w = v′ , (7.67b)

where primes indicate that the new reference system is involved. Now, the
wave equation is invariant in form under a rotation of coordinates and the
boundary conditions have the same form in the two systems. If therefore a
mode function f(u, v, w) is expressed in the new coordinates:

f(u, v, w) = f ′(u′, v′, w′) , (7.68)
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the new function f ′(u, v, w) must also be a possible mode function corre-
sponding to the same eigenvalue, and can therefore be expressed as a linear
combination of the degenerate mode functions associated with that eigenvalue.
This conclusion is most easily verified by considering the complex E- and H-
mode functions (7.61) and (7.63). It is not difficult to show that the effect of
the substitution (7.67b) is to produce a function of the primed coordinates
that has exactly the same form, save that each function is multiplied by the
constant

C = ei 2π
3 (n−m) = ei 2π

3 (l−n) = ei 2π
3 (m−l) . (7.69)

The equivalence of these expressions follows from

(n − m) − (l − n) = 3n , (7.70a)
(m − l) − (n − m) = 3m , (7.70b)
(l − n) − (m − l) = 3l . (7.70c)

Of course, the complex conjugate of a mode function is multiplied by C∗ =
ei2π(m−n)/3. If two such rotations are applied in succession, implying that the
coordinate system is rotated through 240◦, each mode function is multiplied
by C2. If a rotation through 360◦ is performed, we must expect that the mode
function preserve their original form, which requires that

C3 = 1 , (7.71)

as indeed it is. Hence all modes can be divided into three classes, depending on
whether the mode function is multiplied by 1, e2πi/3, or e4πi/3 = e−2πi/3, under
the influence of a rotation through 120◦. The corresponding classification of
n − m is that it is divisible by 3 with a remainder that is either 0, 1, or
2. Thus, the dominant E-mode functions (m = n = 1) are invariant under
rotation, while the dominant H-mode function (m = −n = 1) and its complex
conjugate are multiplied by e−2πi/3 and e2πi/3, respectively, under a rotation
through 120◦. It should be noted that although the complex functions (7.61)
and (7.63) are transformed into multiples of themselves by a rotation, the real
and imaginary parts will not have this simple behavior, save for the class that
is invariant under rotation.

Another coordinate transformation that leaves the triangle unaltered is
reflection. If, in the coordinate system of Fig. 7.7, the positive sense of the
x-axis is reversed, the triangle has the same aspect relative to the new system.
Again the wave equation is unaltered in form by the reflection transformation

x = −x′ , y = y′ , (7.72a)

or
u = u′ , v = w′ , w = v′ , (7.72b)

and we conclude that a mode function expressed in the new coordinates must
be a linear combination of the mode functions associated with the same
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eigenvalue. Indeed, the H-mode function (7.63) is converted into its com-
plex conjugate, while the E-mode function (7.61) becomes its negative com-
plex conjugate. However, it should be observed that now the real functions
(7.62) and (7.66) change into multiples of themselves under the transforma-
tion, either remaining unaltered in form or reversing sign. It follows that two
successive reflections produces no change in the mode function, as must be
required. Two other reflection operations exist, associated with the remaining
perpendiculars from the vertices to opposite sides. They are described by

u = w′ , v = v′ , w = u′ , (7.73a)

and
u = v′ , v = u′ , w = w′ . (7.73b)

Thus, the entire set of symmetry operations of the triangle, consisting of
three rotations and three reflections, are described by the six permutations of
the trilinear coordinates u, v, and w. Only two of these transformations are
independent, in the sense that successive application of them will generate
all the other transformations. Thus, a rotation through 120◦, u = w′, v =
u′, w = v′, (7.67b), followed by the reflection (7.72b), u′ = u′′, v′ = w′′,
w′ = v′′, is equivalent to u = v′′, v = u′′, w = w′′, the reflection (7.73b).
Similarly, a rotation through 240◦, which is the transformation (7.67b) applied
twice, followed by the reflection (7.72b), generates the reflection (7.73a). As a
particular consequence of these statements, note that a mode function which is
invariant with respect to rotations and one of the reflections, is also invariant
under the other two reflections.

In constructing the complete set of E and H modes for a guide with a cross
section in the form of an equilateral triangle, we have also obtained a complete
solution for the modes of a right angle triangle with angles of 30◦ and 60◦.
The connection between the two problems is the same as that between the
square and the isosceles right angle triangle. The set of equilateral E modes
(7.62) that involve sine functions of x vanish on the line x = 0 and therefore
satisfy all the boundary conditions for an E mode of the 30◦ and 60◦ triangles
thus obtained. To find the dominant E mode we must recall that no integer
can be zero and that no two integers can be equal for the mode that is an
odd function of x. Hence the dominant mode corresponds to m = 1, n = 2,
l = −3, and has from (7.53) the cutoff wavelength λc = 3

2
√

7
a, where a is

now the length of the diagonal side. The set of equilateral triangular H modes
(7.66) that contain cosine functions of x have vanishing derivatives normal
to the y-axis and therefore yield the H modes of a 30◦ and 60◦ triangle. The
dominant H mode of the latter triangle is the same as that of the equilateral
triangle (m = 1, n = −1, l = 0) and has the same cutoff wavelength λc = 3

2a.
The modes of the equilateral triangle also furnish us with modes for a guide
that has a cross section formed by any closed curve drawn along the lines of
Fig. 7.6. In particular, we obtain modes for a cross section in the form of a
regular hexagon, but only some of the modes are obtained in this way.
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7.4 Problems for Chap. 7

1. Verify the analysis concerning the current flow in the guide walls for the
H10 mode. In particular, show that the charge density (7.21) is consistent
with the conservation of surface current (4.59).

2. Verify that the H modes that satisfy (7.35) fulfill all the necessary require-
ments to be H modes for the square, and that therefore all the H modes
of the isosceles right triangle are contained within those for the square.



8

Electromagnetic Fields in Waveguides with
Circular Cross Sections

Waveguides with cross-sectional boundaries composed wholly, or in part, of
circular arcs are most conveniently discussed with the aid of polar coordinates
r and φ,

x = r cos φ, y = r sin φ . (8.1)

In terms of these coordinates, the wave equation satisfied by an E- or H-mode
function reads (

∂2

∂r2
+

1
r

∂

∂r
+

1
r2

∂2

∂φ2
+ γ2

)
F (r, φ) = 0 . (8.2)

This wave equation can be separated; particular solutions exist in the form

F (r, φ) = Φ(φ)Z(ξ) , (8.3)

where (
d2

dφ2
+ µ2

)
Φ(φ) = 0 , (8.4a)

(
d2

dξ2
+

1
ξ

d
dξ

+ 1 − µ2

ξ2

)
Z(ξ) = 0 , (8.4b)

and
ξ = γr . (8.5)

The solutions of (8.4a) are

Φ(φ) =
cos
sin µφ or Φ(φ) = e±iµφ , (8.6)

where µ is as yet unrestricted. Equation (8.4b) will be recognized as Bessel’s
equation and its general solutions Zµ(ξ) are known as circular cylinder func-
tions of order µ. The particular solution Jµ(ξ), as defined below, will be specifi-
cally called a Bessel function of order µ as distinguished from the other linearly
independent solutions of the equation.
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8.1 Cylinder Functions

Cylinder functions of the complex variable ξ and the complex order µ may be
defined as solutions of the pair of recurrence relations

Zµ−1(ξ) + Zµ+1(ξ) =
2µ

ξ
Zµ(ξ) , (8.7a)

Zµ−1(ξ) − Zµ+1(ξ) = 2
d
dξ

Zµ(ξ) , (8.7b)

or, equivalently, of

d
dξ

Zµ(ξ) +
µ

ξ
Zµ(ξ) = Zµ−1(ξ) , (8.8a)

− d
dξ

Zµ(ξ) +
µ

ξ
Zµ(ξ) = Zµ+1(ξ) . (8.8b)

It is an immediate consequence of these relations that
(

d2

dξ2
+

1
ξ

d
dξ

+ 1 − µ2

ξ2

)
Zµ(ξ) = 0 . (8.9)

A particular solution of (8.9), in the form of an ascending power series, is the
Bessel function

Jµ(ξ) =
∞∑

n=0

(−1)n

(
ξ
2

)µ+2n

n! Γ(µ + n + 1)
. (8.10)

If µ is not an integer, the function J−µ(ξ) provides the second independent
solution of (8.9), although it must be multiplied by an odd periodic function
of µ, with period unity, in order to satisfy the recurrence relations (8.8a) and
(8.8b). When µ = m is integral, however,

Jm(ξ) = (−1)mJ−m(ξ) , (8.11)

and an additional function is required. For this purpose, a second solution of
Bessel’s equation, called Neumann’s function, is defined by

Nµ(ξ) =
1

sin µπ
[cos µπJµ(ξ) − J−µ(ξ)] . (8.12)

The two independent cylinder functions Jµ, Nµ satisfy the Wronskian relation

ξ

[
Jµ(ξ)

d
dξ

Nµ(ξ) − Nµ(ξ)
d
dξ

Jµ(ξ)
]

=
2
π

. (8.13)

When µ is integral, the expression (8.12) is indeterminate, and the definition
of the Neumann function of integral order, obtained from (8.12) by a limiting
process, is
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Nm(ξ) =
1
π

[
∂

∂µ
Jµ(ξ) − (−1)m ∂

∂µ
J−µ(ξ)

]
µ=m

= (−1)mN−m(ξ) . (8.14)

In particular

N0(ξ) =
2
π

[
∂

∂µ
Jµ(ξ)

]
µ=0

. (8.15)

Expansions for the integral order Neumann functions, obtained in this manner,
are

N0(ξ) =
2
π

log
γξ

2
J0(ξ) +

2
π

∞∑
n=1

(−1)n+1

(
ξ
2

)2n

(n!)2

(
1 +

1
2

+ · · · + 1
n

)
, (8.16a)

Nm(ξ) =
2
π

log
γξ

2
Jm(ξ) − 1

π

m−1∑
n=0

(m − n − 1)!
n!

(
2
ξ

)m−2n

− 1
π

∞∑
n=0

(−1)n

(
ξ
2

)m+2n

n! (m + n)!

(
1 +

1
2

+ · · · + 1
n

+ 1 +
1
2

+ · · · + 1
n + m

)
.

(8.16b)

In the last summation the n = 0 term is to be understood as 1 + 1
2 + · · ·+ 1

m .
The quantity γ = 1.78107 . . . is related to the Eulerian constant C = log γ =
0.577216 . . ..

Bessel functions of integral order can also be defined with aid of the gen-
erating function

e
1
2 ξ(t−1/t) =

∞∑
m=−∞

Jm(ξ)tm . (8.17)

On placing t = ieiφ, we obtain the expansion

eiξ cos φ =
∞∑

m=−∞
imJm(ξ)eimφ = J0(ξ) + 2

∞∑
m=1

imJm(ξ) cos mφ . (8.18)

By regarding this as a Fourier expansion in φ, we get the integral representa-
tions

imJm(ξ) =
1
2π

∫ 2π

0

dφ eiξ cos φe−imφ =
1
π

∫ π

0

dφ eiξ cos φ cos mφ , (8.19)

or

(−1)m/2Jm(ξ) =
1
π

∫ π

0

dφ cos(ξ cos φ) cos mφ , m even , (8.20a)

(−1)(m−1)/2Jm(ξ) =
1
π

∫ π

0

dφ sin(ξ cos φ) cos mφ , m odd . (8.20b)

An equivalent integral representation is
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Jm(ξ) =

(
1
2ξ
)m

Γ
(
m + 1

2

)
Γ
(

1
2

)
∫ π

0

dφ cos(ξ cos φ) sin2m φ , (8.21)

which is also valid for a complex order, provided Reµ > − 1
2 .

In addition to the Bessel and Neumann functions, it is convenient to in-
troduce two new cylinder functions

H(1)
µ (ξ) = Jµ(ξ) + iNµ(ξ) , (8.22a)

H(2)
µ (ξ) = Jµ(ξ) − iNµ(ξ) , (8.22b)

known as Hankel’s functions of the first and second kind, respectively. They
may be defined directly in terms of Bessel functions by

H(1)
µ (ξ) =

i
sin µπ

[
e−µπiJµ(ξ) − J−µ(ξ)

]
, (8.23a)

H(2)
µ (ξ) = − i

sin µπ

[
eµπiJµ(ξ) − J−µ(ξ)

]
. (8.23b)

It follows from the latter forms that

H
(1)
−µ(ξ) = eµπiH(1)

µ (ξ) , H
(2)
−µ(ξ) = e−µπiH(2)

µ (ξ) , (8.24)

whereas similar relations only exist for Bessel and Neumann functions of in-
tegral order.

All cylinder functions, other than Bessel functions of integral order, are
multiple valued. It is apparent from the series (8.10) that Jµ(ξ)/ξµ is a single-
valued, even function of ξ, and therefore, the multiple-valued nature of Jµ(ξ)
is a consequence of the branch point possessed by ξµ at ξ = 0, when µ is not
an integer. The principal branch of ξµ = eµ log ξ, and correspondingly that of
Jµ(ξ), is defined by restricting the phase, or argument, of ξ to its principal
value:

−π < arg ξ ≤ π . (8.25)

It is convenient to define Jµ(ξ) when the argument of ξ is unrestricted by
giving the values of Jµ

(
ξenπi

)
where the argument of ξ has its principal value

and n is any integer. Since Jµ(ξ)/ξµ is an even single-valued function,

Jµ

(
ξenπi

)
= enµπiJµ(ξ) (8.26a)

and corresponding formulae for the Neumann and Hankel functions are ob-
tained from the defining equations (8.14) and (8.22a)–(8.22b):

Nµ

(
ξenπi

)
= e−nµπiNµ(ξ) + 2i sin nµπ cot µπJµ(ξ) , (8.26b)

H(1)
µ

(
ξenπi

)
= e−nµπiH(1)

µ (ξ) − 2e−µπi sin nµπ csc µπJµ(ξ) , (8.26c)

H(2)
µ

(
ξenπi

)
= e−nµπiH(2)

µ (ξ) + 2eµπi sin nµπ csc µπJµ(ξ) . (8.26d)

An important consequence of these formulae is that
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Jµ(αξ)Nµ(βξ) − Jµ(βξ)Nµ(αξ) (8.27)

is an even single-valued function of ξ.
The behavior of Jµ(ξ) near the origin is indicated by the first term in

(8.10):

Jµ(ξ) ∼ 1
Γ(µ + 1)

(
ξ

2

)µ

, |ξ| � 1 . (8.28)

Thus all Bessel functions remain finite at the origin, provided Re µ is not
negative. The form of the Neumann functions near the origin can be inferred
from the definition (8.12):

Nµ(ξ) ∼ −Γ(µ)
π

(
2
ξ

)µ

, Re µ > 0 , |ξ| � 1 , (8.29a)

N0(ξ) ∼
2
π

log
γξ

2
, |ξ| � 1 . (8.29b)

Hence no Neumann function remains finite at the origin. The latter statement
is also applicable to the Hankel functions:

H(1)
µ (ξ) ∼ −i

Γ(µ)
π

(
2
ξ

)µ

, H(2)
µ (ξ) ∼ i

Γ(µ)
π

(
2
ξ

)µ

, Re µ > 0 ,

|ξ| � 1 (8.30a)

H
(1)
0 (ξ) ∼ 2i

π
log

γξ

2i
, H

(2)
0 (ξ) ∼ −2i

π
log

iγξ

2
. (8.30b)

The values of the Hankel functions for sufficiently large magnitudes of ξ
can be obtained from the asymptotic expansions

H(1)
µ (ξ) ∼

√
2
πξ

ei(ξ−µπ/2−π/4) [Pµ(ξ) + iQµ(ξ)] , (8.31a)

|ξ| � 1 , |ξ| � µ

H(2)
µ (ξ) ∼

√
2
πξ

e−i(ξ−µπ/2−π/4) [Pµ(ξ) − iQµ(ξ)] , (8.31b)

where

Pµ(ξ) = 1 − (4µ2 − 1)(4µ2 − 9)
2! (8ξ)2

+
(4µ2 − 1)(4µ2 − 9)(4µ2 − 25)(4µ2 − 49)

4! (8ξ)4

− · · · , (8.32a)

Qµ(ξ) =
(4µ2 − 1)

8ξ
− (4µ2 − 1)(4µ2 − 9)(4µ2 − 25)

3! (8ξ)3
+ · · · . (8.32b)

These expansions are valid when the phase of ξ is restricted to the range
−π < arg ξ < 2π for H

(1)
µ (ξ), and −2π < arg ξ < π for H

(2)
µ (ξ). The analogous

expansions of the Bessel and Neumann functions are [cf. (8.22a)–(8.22b)]:
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Jµ(ξ) ∼
√

2
πξ

[
cos
(
ξ − µ

π

2
− π

4

)
Pµ(ξ) − sin

(
ξ − µ

π

2
− π

4

)
Qµ(ξ)

]
,

(8.33a)

Nµ(ξ) ∼
√

2
πξ

[
sin
(
ξ − µ

π

2
− π

4

)
Pµ(ξ) + cos

(
ξ − µ

π

2
− π

4

)
Qµ(ξ)

]
,

|ξ| � 1 , |arg ξ| < π . (8.33b)

The latter formulae are applicable in the phase interval common to the ex-
pansions of the two Hankel functions, −π < arg ξ < π. When µ is real and
nonnegative and ξ real and positive, the remainder after p terms of the ex-
pansion of Pµ(ξ) is of the same sign and numerically less than the (p + 1)th
term, provided that 2p > µ− 1

2 ; a corresponding statement applies to Qµ(ξ) if
2p > µ− 3

2 . Notice that the series for Pµ(ξ) and Qµ(ξ) terminate when 2µ is an
odd integer and therefore provide exact rather than asymptotic expansions.
Hence cylinder functions of half-integral order can be expressed in terms of
elementary functions. For example,

H
(1)
1/2(ξ) = −i

√
2
πξ

eiξ , H
(2)
1/2(ξ) = i

√
2
πξ

e−iξ , (8.34a)

J1/2(ξ) =
√

2
πξ

sin ξ , N1/2(ξ) = −
√

2
πξ

cos ξ . (8.34b)

Finally, we record two useful indefinite integrals:
∫

ξ dξ Zµ(αξ)Zµ(βξ) =
ξ

α2 − β2

[
Zµ(αξ)

d
dξ

Zµ(βξ) − Zµ(βξ)
d
dξ

Zµ(αξ)
]

,

(8.35a)∫
ξ dξ Z2

µ(ξ) =
1
2
ξ2

[(
1 − µ2

ξ2

)
Z2

µ(ξ) +
[

d
dξ

Zµ(ξ)
]2]

, (8.35b)

where Zµ and Zµ denote any two cylinder functions of order µ.

8.2 Circular Guide

The simplest example of a guide to which the solutions (8.3) are applicable
is one with a cross section in the form of a circle. Here, all values of φ are
permissible, and the angular coordinates φ and φ + 2π designate the same
physical point. In order that the mode functions be single valued, the quantity
µ must be an integer m = 0, 1, 2, . . .. Furthermore, the cylinder functions
must be restricted to the Bessel function solutions, for the Neumann functions
become infinite at the origin, implying that the wave equation is not satisfied
at the latter point. Hence the mode functions of a hollow circular guide are
of the form
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Jm(γr)
cos
sin mφ , m = 0, 1, 2, . . . . (8.36)

The E modes are obtained by the condition that the mode functions vanish
on the circular boundary of radius a:

E mode: Jm(γa) = 0 , (8.37a)

while the H modes are derived from the requirement that the radial derivative
vanish at r = a:

H mode: J ′
m(γa) = 0 . (8.37b)

Thus the E and H cutoff wavenumbers are found from the zeros and extrema
of the Bessel functions, respectively. In view of the oscillatory character of
these functions, as indicated by the asymptotic form (8.33a), it is clear that
for each m there exists an infinite number of modes of both types. The E
mode associated with the nth nonvanishing root of Jm will be designated as
the Emn mode, and the cutoff wavenumber correspondingly written γ′

mn; the
H mode associated with the nth nonvanishing root of J ′

m will be called the
Hmn mode and the cutoff wavenumber written γ′′

mn. Unlike the rectangular
guide, the cutoff wavenumbers of the E and H modes do not coincide, and
the notation must be complicated accordingly. Explicit formulae for the two
types of roots can be obtained from the Bessel function asymptotic formulae:

γ′
mna ∼

(
m + 2n − 1

2

)
π

2
− 4m2 − 1

4π
(
m + 2n − 1

2

) − (4m2 − 1)(28m2 − 31)

48π3
(
m + 2n − 1

2

)3
− · · · , (8.38a)

γ′′
mna ∼

(
m + 2n − 3

2

)
π

2
− 4m2 + 3

4π
(
m + 2n − 3

2

) − 112m4 + 328m2 − 9

48π3
(
m + 2n − 3

2

)3
− · · · . (8.38b)

For each value of m, the successive roots are obtained by placing n = 1, 2, . . .,
with the exception of the H0n modes, where the first nonvanishing root, 3.8317,
corresponds to n = 2 in (8.38b). To avoid this slight difficulty, we restrict the
applicability of (8.38b) to m > 0 and remark that the cutoff wavenumber of
the H0n mode equals that of the E1n mode, for the roots of J1 and J ′

0 = −J1

coincide. Numerical values for both types or roots are listed in Tables 8.1
and 8.2 for small values of m and n. It is apparent from Table 8.1 that the
dominant E mode is E01, with the cutoff wavelength (λc)′01 = 2.6127a, while
Table 8.2 assures us that the dominant H mode, and the dominant mode of
the guide, is H11, with the cutoff wavelength (λc)′′11 = 3.4126a.

The circular guide E-mode function ϕmn(r, φ), normalized in accordance
with (6.57), or

(γ′
mn)2

∫
σ

dσ ϕ2
mn = 1 (8.39)

is
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Table 8.1. γ′
mna: nth zero of Jm. Only those zeroes below 25 are given

m \ n 1 2 3 4 5 6 7 8

0 2.40483 5.52008 8.65373 11.79153 14.93092 18.07106 21.21164 24.35247
1 3.83171 7.01559 10.17347 13.32369 16.47063 19.61586 22.76008
2 5.13562 8.41724 11.61984 14.79595 17.95982 21.11700 24.27011
3 6.38016 9.76102 13.01520 16.22347 19.40942 22.58273
4 7.58834 11.06471 14.37254 17.61597 20.82693 24.01902
5 8.77148 12.33860 15.70017 18.98013 22.21780
6 9.93611 13.58929 17.00382 20.32079 23.58608
7 11.08637 14.82127 18.28758 21.64154 24.93493
8 12.22509 16.03778 19.55454 22.94517
9 13.35430 17.2412 20.8070 24.2339
10 14.47550 18.4335 22.0470
11 15.58985 19.6160 23.2759
12 16.6983 20.7899 24.4949
13 17.8014 21.9562
14 18.9000 21.1158
15 19.9944 24.2692
16 21.0851
17 22.1725
18 23.2568
19 24.3383

ϕmn(r, φ) =

√
2
π

1
γ′

mna

Jm(γ′
mnr)

Jm+1(γ′
mna)

cos
sin mφ , m > 0 , (8.40a)

and

ϕ0n(r, φ) =
1√
π

1
γ′
0na

J0(γ′
0nr)

J1(γ′
0na)

, (8.40b)

for the E0n modes. The verification of the normalization involves the integral
∫ a

0

r dr J2
m(γ′

mnr) =
1
2
a2 [J ′

m(γ′
mna)]2 =

1
2
a2J2

m+1(γ
′
mna) , (8.41)

deduced from (8.35b) and the recurrence relation (8.8b). In stating the fields
derived from these mode functions, it is convenient to resolve the transverse
parts of the electric and magnetic fields relative to the unit vectors er and eφ,
which are drawn at each point in the direction of increasing r and increasing
φ, respectively. The three vectors er, eφ, ez form a right-handed reference
system which differs from the usual reference system in that the directions of
er and eφ vary from point to point. The latter variation is expressed by the
relations

∂er

∂φ
= eφ ,

∂eφ

∂φ
= −er . (8.42)

The representation of the transverse part of the gradient operator, in this
coordinate system, is
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Table 8.2. γ′′
mna: nth zero of J ′

m. Except for the first row, only zeroes below 25 are
listed

m \ n 1 2 3 4 5 6 7 8

0 3.8317 7.0156 10.1735 13.3237 16.4706 19.6159 22.7601 25.9037
1 1.8412 5.3314 8.5363 11.7060 14.8636 18.0155 21.1644 24.3113
2 3.0542 6.7061 9.9695 13.1704 16.3475 19.5129 22.6721
3 4.2012 8.0152 11.3459 14.5859 17.7888 20.9724 24.1469
4 5.3175 9.2824 12.6819 15.9641 19.1960 22.4010
5 6.4156 10.5199 13.9872 17.3128 20.5755 23.8033
6 7.5013 11.7349 15.2682 18.6374 21.9318
7 8.5778 12.9324 16.5294 19.9419 23.2681
8 9.6474 14.1156 17.7740 21.2291 24.5872
9 10.7114 15.2868 19.0045 22.5014
10 11.7709 16.4479 20.2230 23.7608
11 12.8265 17.6003 21.4309
12 13.8788 18.7451 22.6293
13 14.9284 19.8832 23.8194
14 15.9754 21.0154
15 17.0203 22.1423
16 18.0633 23.2644
17 19.1045 24.3819
18 20.1441
19 21.1823
20 22.2191
21 23.2548
22 24.2894

∇⊥ = er
∂

∂r
+ eφ

1
r

∂

∂φ
(8.43a)

and
ez × ∇ = eφ

∂

∂r
− er

1
r

∂

∂φ
. (8.43b)

Hence the various field components of an Emn mode with m > 0 are (omitting
indices on γ for simplicity) are from (6.32a) to (6.32d)

Er = −
√

2
π

1
a

J ′
m(γr)

Jm+1(γa)
cos
sin mφV (z) , (8.44a)

Eφ = ±
√

2
π

m

γa

1
r

Jm(γr)
Jm+1(γa)

sin
cosmφV (z) , (8.44b)

Hr = ∓
√

2
π

m

γa

1
r

Jm(γr)
Jm+1(γa)

sin
cosmφI(z) , (8.44c)

Hφ = −
√

2
π

1
a

J ′
m(γr)

Jm+1(γa)
cos
sin mφI(z) , (8.44d)
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Ez = iζ
γ

ka

√
2
π

Jm(γr)
Jm+1(γa)

cos
sin mφI(z) , (8.44e)

Hz = 0 . (8.44f)

All Emn modes with m > 0 are doubly degenerate; either of the two trigono-
metric functions that describe the mode function’s dependence upon φ gener-
ates a possible mode. However, the E0n modes are nondegenerate since one of
the two possibilities now vanishes. The field components of an E0n mode are:

Er =
1√
π

1
a

J1(γr)
J1(γa)

V (z) , (8.45a)

Eφ = 0 , (8.45b)
Hr = 0 , (8.45c)

Hφ =
1√
π

1
a

J1(γr)
J1(γa)

I(z) , (8.45d)

Ez = iζ
γ

ka

1√
π

J0(γr)
J1(γa)

I(z) , (8.45e)

Hz = 0 . (8.45f)

It will be noticed that the only nonvanishing magnetic field component is Hφ,
and that Eφ = 0.

The normalization for the H-mode function is given by (6.59), or

(γ′′
mn)2

∫
σ

dσ ψ2
mn = 1 , (8.46)

so the normalized H-mode functions for m > 0 are

ψmn =

√
2
π

1√
(γ′′

mna)2 − m2

Jm(γ′′
mnr)

Jm(γ′′
mna)

cos
sin mφ , (8.47a)

which now uses
∫ a

0

dr r J2
m(γ′′

mnr) =
1
2
a2

(
1 − m2

γ′′
mna2

)
J2

m(γ′′
mna) , (8.47b)

derived from (8.35b), while, for m = 0, we write

ψ0n =
1√
π

1
γ′′

mna

J0(γ′′
0nr)

J0(γ′′
0na)

. (8.47c)

The field components of an Hmn mode, m > 0, are obtained from (6.33a) to
(6.33d) and (8.43a), (8.43b):

Er = ±
√

2
π

m√
(γa)2 − m2

1
r

Jm(γr)
Jm(γa)

sin
cosmφV (z) , (8.48a)
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Eφ =

√
2
π

γ√
(γa)2 − m2

J ′
m(γr)

Jm(γa)
cos
sin mφV (z) , (8.48b)

Hr = −
√

2
π

γ√
(γa)2 − m2

J ′
m(γr)

Jm(γa)
cos
sin mφI(z) , (8.48c)

Hφ = ±
√

2
π

m√
(γa)2 − m2

1
r

Jm(γr)
Jm(γa)

sin
cosmφI(z) , (8.48d)

Ez = 0 , (8.48e)

Hz = iη
γ

k

γ

(
√

(γa)2 − m2

√
2
π

Jm(γr)
Jm(γa)

cos
sin mφV (z) , (8.48f)

while those for an H0n mode are simply

Er = 0 , (8.49a)

Eφ = − 1√
π

1
a

J1(γr)
J0(γa)

V (z) , (8.49b)

Hr =
1√
π

1
a

J1(γr)
J0(γa)

I(z) , (8.49c)

Hφ = 0 , (8.49d)
Ez = 0 , (8.49e)

Hz = iη
γ

ka

1√
π

J0(γr)
J0(γa)

V (z) . (8.49f)

Thus, an H mode with m = 0 is characterized by the single electric field
component Eφ, and Hφ = 0.

8.3 Circular Guide with Metallic Cylindrical Wedge

Another type of waveguide, which can be rigorously described with the aid of
Bessel functions of nonintegral order, is constructed from the hollow circular
guide by the insertion of a metallic cylindrical wedge with its apex at the
center of the circle, as illustrated in Fig. 8.1. The external angle of the wedge

φ = 0

φ = α

Fig. 8.1. Cross section of circular guide with metal wedge of angle α inserted

is denoted by α, and it is supposed that the boundaries of the wedge coincide
with the radial planes φ = 0 and φ = α. The mode functions are of the form
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(8.3), and the function Φ(φ) is determined by the requirement that it vanish
at φ = 0 and φ = α for E modes, and that the derivative with respect to φ
vanish at φ = 0 and φ = α for H modes. Hence

E mode: Φ(φ) = sin
mπ

α
φ , m = 1, 2, . . . , (8.50a)

H mode: Φ(φ) = cos
mπ

α
φ , m = 0, 1, . . . , (8.50b)

and the allowed values of µ are of the form mπ/α with m a nonnegative integer
that may assume the value zero for H modes. The Neumann functions must
again be excluded in consequence of their lack of finiteness at r = 0, whence
the E- and H-mode scalar functions take the form

E mode: ϕ = Jmπ/α(γr) sin
mπ

α
φ , (8.51a)

H mode: ψ = Jmπ/α(γr) cos
mπ

α
φ . (8.51b)

The cutoff wavenumbers follow from the imposition of the boundary condi-
tions at r = a:

E mode: Jmπ/α(γa) = 0 , (8.52a)
H mode: J ′

mπ/α(γa) = 0 , (8.52b)

and are obtained from the zeros and extrema of the Bessel functions of order
mπ/α, m = 0, 1, . . .. The order is generally nonintegral save when α equals π
or a fraction thereof.

A particularly simple situation is α = π, which corresponds to a guide in
the form of a semicircle of radius a. The cutoff wavenumbers are found from
the zeros and extrema of Bessel functions of integral order and are therefore
identical with those of the original circular guide. The only exception to the
latter statement is that no E mode with m = 0 exists in the semicircular guide.
It is clear that the connection between the modes of the circular and semicric-
ular guides is identical with that already encountered in isosceles triangular
guides, see Sect. 7.2; modes of a given cross section possessing proper behav-
ior relative to a line of reflection symmetry form the modes of the semi-cross
section. The dominant E mode of the semicicular guide is an E11 mode of the
circular guide and has the cutoff wavelength (λc)′11 = 1.6398a. The dominant
H mode, and the dominant mode, of the semicircular guide is an H11 mode of
the circular guide and has the same cutoff wavelength (λc)′′11 = 3.4126a.

If α = 2π, the physical situation is that of a circular guide with a wall
of negligible thickness inserted along a radial plane from the center to the
circumference. The two kinds of cutoff wavenumbers are obtained from the
zeros and extrema of the Bessel functions of order m/2. If m is even, the order
is integral and the modes are those of the semicircle whose base coincides with
the wall. When m is odd, however, the order is half-integral, and a new set of
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modes is obtained. In particular, if the order is 1/2, the radial function that
enters into the mode function is [cf. (8.34b)]

J1/2(γr) =

√
2
π

sin γr
√

γr
, (8.53)

and therefore, the cutoff wavenumbers for the E modes of order 1/2 are de-
termined by

J1/2(γa) = 0 ⇒ sin γa = 0 , (8.54a)

while the H-mode cutoff wavenumbers are given by

J ′
1/2(γa) = 0 ⇒ tan γa = 2γa . (8.54b)

The minimum E-mode cutoff wavenumber of this type is found from the small-
est nonvanishing root of (8.54a), γa = π, which is less than the smallest root of
the Bessel function of order unity, and hence represents the absolute E-mode
cutoff wavenumber of the guide under discussion. The dominant E mode so
obtained is designated as E 1

2 1, and has the cutoff wavelength (λc)′1
21

= 2a. The
smallest nonvanishing solution of (8.54b) is γa = 1.1655 which gives the cutoff
wavenumber of the H 1

2 1 mode. On comparison with the cutoff wavenumber
of the H11 mode, it is apparent that the dominant H mode, and the domi-
nant mode, of the circular guide with a radial wall is H 1

21. The absolute cutoff
wavelength is (λc)′′1

2 1
= 5.3910a. It will be seen that the insertion of the radial

wall in the circular guide depresses the absolute H-mode cutoff wavenumber,
and raises the absolute E-mode cutoff wavenumber.

8.4 Coaxial Guide

The cylinder function solutions (8.3) can be used to describe the modes of a
guide that has a cross section in the form of two concentric circles, a coaxial
line. The dependence upon φ is identical with that of a circular guide, and, in
particular, µ is restricted to integral values. The radial dependence of the mode
functions must be such as to satisfy appropriate boundary conditions at the
outer and inner radii, a and b, respectively. In view of the double boundary
condition, a Bessel function alone will not suffice in general, and a linear
combination of Bessel and Neumann functions must be used. Furthermore,
the Neumann function can no longer be excluded by virtue of its singularity
at the origin, for the latter point is not within the region occupied by the
field. To construct a suitable E-mode function, we observe that

ϕ = [Jm(γr)Nm(γb) − Nm(γr)Jm(γb)]
cos
sin mφ (8.55)

vanishes at r = b, and will also vanish at r = a if
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Jm(γa)Nm(γb) = Nm(γa)Jm(γb) , (8.56a)

or
Jm(γa)
Nm(γa)

=
Jm(γb)
Nm(γb)

, (8.56b)

which is the equation that determines the cutoff wavenumbers of the various
E modes. Similarly,

ψ = [Jm(γr)N ′
m(γb) − Nm(γr)J ′

m(γb)]
cos
sin mφ (8.57)

has vanishing radial derivative at r = b, and will show similar behavior at
r = a if

J ′
m(γa)N ′

m(γb) = N ′
m(γa)J ′

m(γb) , (8.58a)

or
J ′

m(γa)
N ′

m(γa)
=

J ′
m(γb)

N ′
m(γb)

, (8.58b)

thus providing the eigenvalue equation for the H-mode cutoff wavenumbers.
A general idea of the nature of the mode functions and their eigenvalues

can be obtained by considering the situation in which the difference between
the radii, a and b, is small compared to the average radius, a − b � a+b

2 . In
this event, Bessel’s equation (8.4b) can be simplified to

(
d2

dr2
+ γ2 − m2

r2

)
Z = 0 , (8.59)

where r is some average radius, such as a+b
2 , and the term 1

r
d
dr Z has been

neglected, which will be justified by the ensuing results. The appropriate so-
lutions of (8.59) are

E mode: Z = sin
nπ

a − b
(r − b) , n = 1, 2, . . . , (8.60a)

H mode: Z = cos
nπ

a − b
(r − b) , n = 0, 1, . . . , (8.60b)

and

γ2 =
(

nπ

a − b

)2

+
(m

r

)2

. (8.60c)

Returning to the approximations involved in (8.59), we notice that Z is either
a constant, and 1

r
d
dr Z is zero, or Z is a trigonometric function of the argu-

ment nπ
a−b (r−b), whence 1

r
d
dr Z has the order of magnitude of nπ

a−b
1
r Z, which is

negligible compared with d2

dr2 Z = −
(

nπ
a−b

)2

Z, in consequence of the assump-
tion a − b � r. The modes obtained in this manner can be classified by the
integers m and n, forming the Emn amd Hmn modes. The dominant E mode
of the coaxial line (excluding the T mode, of course) is obtained by placing
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n = 1 and m = 0 and the approximate formula for the cutoff wavelength of
the dominant E01 modes is (λc)′01 = 2(a − b). The dominant H mode is H10,
corresponding to m = 1, n = 0. No H mode exists with both integers equal
to zero since the mode function is a constant. The cutoff wavelength of the
dominant H mode is (λc)′′10 = 2πr = π(a + b), or the average circumference
of the concentric circles. With the exception of the Hm0 modes, more precise
expressions for the cutoff wavenumbers can be obtained from the asymptotic
forms (8.38a) and (8.38b) employed in conjunction with (8.56b) and (8.58b).
The cutoff wavenumber of the Emn mode is given by

γ′
mn ∼ nπ

a − b
+

a − b

2nπ

m2 − 1/4
ab

+
(

a − b

2nπ

)3
m2 − 1/4

(ab)3

×
[
1
3

(
m2 − 25

4

)
(a2 + ab + b2) − 2

(
m2 − 1

4

)
ab

]
+ · · · ,

(8.61a)

and that of the Hmn mode is (n 
= 0)

γ′′
mn ∼ nπ

a − b
+

a − b

2nπ

m2 + 3/4
ab

+
(

a − b

2nπ

)3 1
(ab)3

×
[

1
3

(
m4 +

23
2

m2 − 63
16

)
(a2 + ab + b2) − 2

(
m2 +

3
4

)2

ab

]
+ · · · .

(8.61b)

Figure 8.2 contains graphs of a−b
nπ γ′

0n, as a function of a/b, for the first few
E0n modes. The E0n coaxial mode approaches the E0n circular guide mode
as b/a → 0. The cutoff wavenumber of the coaxial H10 mode, multiplied
by the average radius a+b

2 , is plotted in Fig. 8.3 as a function of b/a. As
the latter quantity approaches zero, the H10 coaxial mode becomes the H11

circular guide mode, and correspondingly, the intercept in Fig. 8.3 is 1.8412/2.
Finally, we may note that, as in a circular guide, all modes with m > 0 are
doubly degenerate, and the cutoff wavenumbers of the E modes with m = 1
coincide with those of the H modes with m = 0.

8.5 Coaxial Guide with Metallic Cylindrical Wedge

The insertion in the coaxial line of a metallic wedge formed by two radial
planes can be rigorously treated by cylinder functions of fractional order, as
in the corresponding circular guide case. In particular, if the external angle
of the wedge is α = 2π, we deal with a coaxial line that has inner and outer
cylinders connected by a radial plane of negligible thickness, as in Fig. 8.4.
Of course, no T mode exists in such circumstances. The dominant E mode is
derived from cylinder functions of order 1/2, and it is evident from (8.56b),
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Fig. 8.2. Plot of a−b
nπ

γ′
0n versus a/b where γ′

0n is the nth root of (8.56b) with m = 0,
a being the outer radius of the coaxial guide, and b the inner radius
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10 versus b/a where γ′′

10 is the first root of (8.58b) with m = 1



8.6 Elliptic and Parabolic Cylinder Coordinates 169

Fig. 8.4. Waveguide consisting of two concentric cylinders, connected by a radial
plane

which is also applicable to noninteger orders, that, according to (8.34b), the
cutoff wavenumbers of such modes are rigorously given by

γ′
1
2 n =

nπ

a − b
. (8.62)

Thus the cutoff wavelength of the dominant E 1
2 n mode is (λc)′1

2 1
= 2(a − b).

The H modes of order 1/2, a member of which is the dominant H mode, have
cutoff wavenumbers that are solutions of

tan γ(a − b)
γ(a − b)

=
2

4γ2ab + 1
. (8.63)

If a−b � a+b
2 , an approximate expression for the smallest solution of (8.63) is

γ = 1
2r or (λc)′′1

20
= 4πr = 2π(a + b); the cutoff wavenumber of the dominant

H mode is decreased by a factor of 2 owing to the insertion of the wall. As
b/a → 0, the H 1

20 mode of the connected coaxial cylinders approaches the
dominant mode of the circular guide with a radial wall, the mode that has
been called H 1

21 in Sect. 8.3 [see (8.54b)].

8.6 Elliptic and Parabolic Cylinder Coordinates

Thus far, two coordinate systems have been introduced that permit the sepa-
ration of the wave equation – rectangular and circular cylindrical coordinates.
It will now be shown that only two other coordinate systems exist with this
property, namely elliptic and parabolic cylinder coordinates. Further, since
parabolic and circular cylinder coordinates are, as we shall demonstrate, lim-
iting forms of elliptical cylinder coordinates, only two general types of co-
ordinate systems exist that permit the separation of the wave equation in
two dimensions – rectangular and elliptical cylinder coordinates. If the two-
dimensional wave equation

(∇2 + γ2)f = 0 (8.64)

is separable in the coordinates ξ and η, that is, if a solution can be found in
the form

f(ξ, η) = X(ξ)Y (η) , (8.65)
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the separate functions must satisfy second-order differential equations of the
type

(
d2

dξ2
+ F (ξ)

)
X(ξ) = 0 , (8.66a)

(
d2

dη2
+ G(η)

)
Y (η) = 0 . (8.66b)

First derivatives can be omitted without loss of generality since they can
always be eliminated by a suitable transformation of the wave functions. In
consequence of (8.66a) and (8.66b) the differential equation satisfied by (8.65)
is of the form

(
∂2

∂ξ2
+

∂2

∂η2
+ F (ξ) + G(ξ)

)
f(ξ, η) = 0 , (8.67)

which must be obtained from the wave equation (8.64) on expressing x and
y as a function ξ and η. Hence the relation between the coordinates must be
such that the Laplacian in the x, y coordinates transforms into a multiple of
the Laplacian in the ξ, η coordinates. Now, by direct transformation of the
Laplacian, we find

∇2 = (∇ξ)2
∂2

∂ξ2
+ (∇η)2

∂2

∂η2
+ 2∇ξ · ∇η

∂

∂ξ

∂

∂η
+ ∇2ξ

∂

∂ξ
+ ∇2η

∂

∂η
, (8.68)

and therefore, the coordinates ξ and η as functions of x and y are restricted
by

∇2ξ = 0 , ∇2η = 0 , (8.69a)
∇ξ · ∇η = 0 , (8.69b)

(∇ξ)2 = (∇η)2 . (8.69c)

The equation (8.69b) informs us, incidentally, that the contours of constant ξ
and constant η intersect orthogonally, for the vectors ∇ξ and ∇η are respec-
tively orthogonal to the lines of constant ξ and η. In rewriting the relation
(8.69b) in the form

∂ξ
∂x
∂η
∂y

= −
∂ξ
∂y

∂η
∂x

≡ µ , (8.70)

and employing this equation to replace the ξ derivatives by η derivatives in
(8.69c) we discover that

µ2 = 1 . (8.71)

Without loss of generality, we may choose µ = 1, for the opposite choice would
be equivalent to reversing the sign of η, say. Hence (8.69b) and (8.69c) are
combined in
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∂ξ

∂x
=

∂η

∂y
,

∂ξ

∂y
= −∂η

∂x
, (8.72)

from which we may immediately deduce (8.69a). Hence the restriction on ξ
and η as a function of x and y are entirely contained in (8.72), which will
be recognized as the Cauchy–Riemann equations, the conditions that the
complex variable ζ = ξ + iη be an analytic function of the complex variable
z = x + iy:

ζ = F (z) . (8.73)

It is well known that an analytic function, regarded as defining a mapping of
the x–y plane into the ξ–η plane, has the conformal property; an infinitesimal
neighborhood of a point in the former plane is mapped into a geometrically
similar neighborhood of a point in the latter plane.

Now that we have established a necessary relation between the coordinates
ξ, η and x, y, a functional relation between the complex variables ζ and z, it is
convenient to re-express the wave equation (8.64) in terms of the independent
coordinates z and z∗ = x − iy, transform to the variables ζ and ζ∗, and
compare the result with the form (8.67). Thus

∂2

∂x2
+

∂2

∂y2
= 4

∂

∂z

∂

∂z∗
= 4

dζ

dz

dζ∗

dz∗
∂

∂ζ

∂

∂ζ∗
=
∣∣∣∣dζ

dz

∣∣∣∣
2(

∂2

∂ξ2
+

∂2

∂η2

)
, (8.74)

whence (
∂2

∂ξ2
+

∂2

∂η2
+ γ2

∣∣∣∣dz

dζ

∣∣∣∣
2
)

f = 0 . (8.75)

In order that the wave equation be separable in the coordinates ξ and η,
it is necessary that |dz/dζ|2 be additively composed of two functions, each
containing a single variable. Hence, the quantity |dz/dζ|2 must be annihilated
by the differential operator

∂

∂ξ

∂

∂η
= i
(

∂2

∂ζ2
− ∂2

∂ζ∗2

)
, (8.76)

which requirement can be written as

dz∗

dζ∗
d2

dζ2

(
dz

dζ

)
=

dz

dζ

d2

dζ∗2

(
dz∗

dζ∗

)
, (8.77)

or
d2

dζ2

(
dz
dζ

)
dz
dζ

=
d2

dζ∗2

(
dz∗

dζ∗

)
dz∗

dζ∗

= ν2 , (8.78)

where ν2 must a real constant, since ζ and ζ∗ are independent variables. Two
possibilities must be distinguished, ν 
= 0 and ν = 0. In the former eventuality,

dz

dζ
= c sinh(νζ + c′) , (8.79)
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where c and c′ are arbitrary constants. The constant c′ may be placed equal to
zero without loss of generality, for it can be reinstated by a suitable translation
of the ξ–η reference system. Similarly, ν may be chosen as unity, since any
other value corresponds to a changed scale in the ξ–η plane. Finally,

z = c cosh ζ , (8.80)

again discarding a constant of integration. The transform (8.80) is equivalent
to the real equations, assuming c is real and positive

x = c cosh ξ cos η , y = c sinh ξ sin η , (8.81)

which exhibits a one-to-one correspondence between the entire x–y plane and
a strip in the ξ–η plane, ξ ≥ 0, −π ≤ η ≤ π. The restriction to positive ξ is
needed to avoid the duplicity in the x–y plane of the points ξ, η and −ξ, −η.
The curves of constant ξ,

x2

c2 cosh2 ξ
+

y2

c2 sinh2 ξ
= 1 , (8.82)

form a family of confocal ellipses, with semi-major and minor axes equal
to c cosh ξ and c sinh ξ, respectively, semi-focal distance c, and eccentricity
1/ cosh ξ. The contours of constant η,

x2

c2 cos2 η
− y2

c2 sin2 η
= 1 , (8.83)

form confocal hyperbolas, with η equal to the angle of the asymptotes. The
quantities ξ and η are called elliptic cylinder coordinates. In the limit as the
semi-focal distance c and the eccentricity of the ellipse 1/ cosh ξ become zero,
the semi-major and minor axes approach equality

c cosh ξ = c sinh ξ = r , (8.84)

and it is evident from (8.81) that the elliptic cylinder coordinates degenerate
into circular cylindrical coordinates (8.1), with η equal to the polar angle φ.

Returning to the second possibility ν = 0, which is already a limiting form
of the situation just discussed, we deduce that

dz

dζ
= α + βζ . (8.85)

Here α may be placed equal to zero and β equal to unity with no loss in
generality, whence

z =
1
2
ζ2 , (8.86)

or
x =

1
2
(ξ2 − η2) , y = ξη . (8.87)
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This transformation defines a one-to-one correspondence between the entire
x–y plane and the semi-infinite ξ–η plane ξ ≥ 0, −∞ < η < ∞. The curves of
constant ξ are

x =
1
2
ξ2 − y2

2ξ2
, (8.88)

and constant η

x = −1
2
η2 +

y2

2η2
, (8.89)

form families of parabolas that are symmetrical relative to the x-axis. In
particular the parabola ξ = 0 coincides with the negative x-axis, while η = 0
describes the positive x-axis.

The wave equation, in elliptical cylinder coordinates, from (8.75), and
dz/dζ = c sinh ζ, reads

[
∂2

∂ξ2
+

∂2

∂η2
+ (γc)2(cosh2 ξ − cos2 η)

]
f = 0 , (8.90)

which separates into

d2

dξ2
X(ξ) −

(
A − (γc)2 cosh2 ξ

)
X(ξ) = 0 , (8.91a)

d2

dη2
Y (η) +

(
A − (γc)2 cos2 η

)
Y (η) = 0 , (8.91b)

where A is an arbitrary constant. The two equations are of essentially the
same form, (8.91a) being obtained from (8.91b) on replacing η by iξ. The
solution of (8.91a) and (8.91b) is known as the elliptic cylinder function,
or Mathieu function.1 Expressed in parabolic cylinder coordinates, the wave
equation becomes, because dz/dζ = ζ,

[
∂2

∂ξ2
+

∂2

∂η2
+ γ2(ξ2 + η2)

]
f = 0 , (8.92)

or in separated form

d2

dξ2
X(ξ) + (A + γ2ξ2)X(ξ) = 0 , (8.93a)

d2

dη2
Y (η) + (−A + γ2η2)Y (η) = 0 , (8.93b)

where A again denotes an arbitrary constant. Solutions of (8.93a) and (8.93b)
are known as parabolic cylinder functions or Weber–Hermite functions.2

Elliptic cylinder functions are suitable for treating variously shaped guides
1 For example, see Whittaker and Watson [17], Chap. XIX.
2 See Whittaker and Watson [17], p. 347 et seq.
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bounded by elliptical and hyperbolic arcs, while parabolic cylinder func-
tions permit a discussion of guides with boundaries consisting of intersecting
parabolas. The importance of these problems is insufficient, however, to war-
rant the inclusion of the rather elaborate analysis necessary to obtain complete
numerical results. Parabolic shaped guides are of little interest, while elliptical
guides are of importance only insofar as they indicate the effects on circular
guides of a slight deviation from perfect symmetry. An adequate answer to
the latter problem is readily obtained by the approximation methods to which
attention will be turned in Chap. 10.

8.7 Problems for Chap. 8

1. Prove the following theorems for summing Bessel functions of integer or-
der: ∞∑

m=−∞
[Jm(t)]2 = 1 , (8.94a)

and, for n 
= 0 an integer,

∞∑
m=−∞

Jm+n(t)Jm(t) = 0 . (8.94b)

2. Prove the following statements, for t and a real numbers:

|a| < π :
∞∑

m=−∞
(−1)mJ0(t + ma) = 0 , (8.95a)

|a| < 2π :
∞∑

m=−∞
J0(t + ma) =

2
a

, (8.95b)

2π < |a| < 4π :
∞∑

m=−∞
J0(t + ma) =

2
a


1 +

2 cos 2πt
a√

1 −
(

2π
a

)2

 .

(8.95c)

3. Demonstrate that any two solutions of the Bessel differential equation, ϕ
and ψ, satisfy

t

[
ϕ

dψ

dt
− ψ

dϕ

dt

]
= const. (8.96)

Evaluate the constant for ϕ = Jm, ψ = Nm, by using their asymptotic
forms. Show that at a value of t such that Jm(t) = 0,

Nm(t) = − 2
πt

1
J ′

m(t)
. (8.97)
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Apply the known behavior of Jm(t), t � 1, given in (8.28), to learn that

t � 1 : m > 0 : Nm(t) ∼ − 1
π

(m − 1)!
(

2
t

)m

, (8.98a)

N0(t) ∼ − 2
π

log
2
t

+ const. , (8.98b)

which are the behaviors shown in (8.29a) and (8.29b).
4. To find the value of the latter constant, begin with

N0(t) = − 2
π

∫ ∞

0

ds
cos

√
s2 + t2√

s2 + t2
(8.99)

[this is the imaginary part of the representation (16.3)], divide the integral
into two parts at t � s1 � 1, and get

t � 1 : N0(t) ∼ − 2
π

(
log

2
t
− C

)
, (8.100)

where

C = −
[∫ ∞

s1

ds

s
cos s + log s1

]
= −

∫ ∞

0

ds

s

(
cos s − 1

1 + s

)
(8.101)

is Euler’s constant, C = 0.5772 . . ..
5. Use the information gained in Problem 8.3 to show that

3
2

> m > 0 :
∫ ∞

0

ds sm−1Jm(s) = 2m−1Γ (m) . (8.102)

Produce another proof of this by applying a recurrence relation.
6. Combine the differential equation obeyed by

G0(r, r′) =
eik|r−r′|

|r − r′| , (8.103)

with the analogous equation for Green’s function, appropriate to the lon-
gitudinal electric field in a circular pipe with perfectly conducting walls,
and arrive at an integral equation. What is the physical interpretation of
the surface charge density?

7. The modified Bessel function K0 may be taken to be defined by

K0(λP ) = 2π
∫

(dk⊥)
(2π)2

eik⊥·(r−r′)⊥

k2 + λ2
, (8.104)

where P (capital rho) is the distance between the two points in the plane,

P = |(r − r′)⊥| . (8.105)
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Choose (r − r′)⊥ to lie in the x-direction, integrate over ky, and get

K0(t) =
∫ ∞

0

dλ√
λ2 + 1

cos λt . (8.106)

Now think complex, and derive

K0(t) =
∫ ∞

1

dµ√
µ2 − 1

e−µt , (8.107)

from which you can infer the asymptotic form

t � 1 : K0(t) ∼
√

π

2t
e−t . (8.108)

[Another way of writing the form (8.107) of K0 is

K0(t) =
∫ ∞

0

dθ e−t cosh θ , (8.109)

which is reminiscent of J0. Verify that this construction of K0 obeys the
appropriate differential equation.]

8. The modified Bessel functions are also referred to as Bessel functions of
imaginary argument because they may be defined in terms of ordinary
Bessel functions by, for −π < arg z ≤ π/2,

Iν(z) = e−νπi/2Jν(zeπi/2) , (8.110a)

Kν(z) =
1
2
πieνπi/2H(1)

ν (zeπi/2) . (8.110b)

What differential equation do Iν and Kν satisfy? What are the behaviors
of these functions for large and small values of z? What is the correspond-
ing Wronskian?

9. This problem explores the toroidal coordinate system. Consider two points
A, B, separated by a distance 2c. If AP and BP are line segments from A
and B to an arbitrary point, respectively, define the toroidal coordinate
η by

η = ln
|AP |
|BP |

. (8.111)

The interior angle between the two lines locating P from A and B, re-
spectively, is the other toroidal coordinate ϑ (see Fig. 8.5). Show that the
contours of constant η define two circles, as shown in the figure, which
may be thought of as the cross section of a torus in a plane of constant
φ. Because |AB|/2 = c, show that the center of each circle is at distance
ρ from the vertical symmetry line of

ρ = R = c coth η , (8.112)
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A B

P

(ρ, z)

ϑ

c c

Fig. 8.5. Diagram defining the toroidal coordinates η and ϑ of a point P . Here
η is defined by (8.111), and ϑ is the angle between the lines PA and PB. The
circles represent lines of constant η. Point P is also located by the coordinates from
the horizontal and vertical symmetry axes, z and ρ, two of the three cylindrical
coordinates

and the radius of each circle is

r0 = c csch η , (8.113)

so we have

R

r0
= cosh η , η = ln


R

r0
+

√(
R

r0

)2

− 1


 . (8.114)

Express the cylindrical coordinates ρ and z in terms of toroidal coordinates
η and ϑ, and show that the three-dimensional line element has the form

ds2 = dz2 + dρ2 + ρ2dφ2

=
c2

(cosh η − cos ϑ)2
(
dη2 + dϑ2 + sinh2 η dϕ2

)
. (8.115)

Consider the action of the Laplacian on a scalar potential V , and show
that if the latter is redefined according to

V (ρ, φ, z) = (cosh η − cos ϑ)1/2U(η, ϑ, φ) , (8.116)

we have

∇2V =
1
c2

(cosh η − cos ϑ)5/2

×
(

∂2U

∂η2
+ coth η

∂U

∂η
+

∂2U

∂ϑ2
+

1
4
U +

1
sinh2 η

∂2U

∂φ2

)
.

(8.117)

We can separate variables in Laplace’s equation,

U = eimφeinϑH(η) ; (8.118)
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show that the solutions for H are linear combinations of

Pm
n−1/2(cosh η) , Qm

n−1/2(cosh η) , (8.119)

where P and Q are the associated Legendre functions of the first and
second kinds. Work out the corresponding Green’s function, that is, the
solution of

∇2G(r, r′) = −δ(r − r′) , (8.120)

in toroidal coordinates.
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Reflection and Refraction

In this chapter we take a brief digression to illustrate a familiar application of
the mode decomposition discussed in Chap. 6. The notions discussed here will
be significantly generalized in Chap. 13, when junctions between waveguides
will be considered.

Using the formalism developed in Chap. 6, it is easy to derive the laws of
reflection and refraction of a plane electromagnetic wave by a plane interface
separating two dielectric media. Consider the geometry shown in Fig. 9.1. Let

z

ε1 ε2

z = 0

Fig. 9.1. Plane interface between two dielectric media

us consider an E mode, propagating in a purely dielectric medium. Then from
(6.32a) to (6.32c) we have

E⊥ = −∇⊥ϕV , (9.1a)
H⊥ = −e × ∇ϕI , (9.1b)

Ez = i
γ2

ωε
ϕI . (9.1c)

Here, because there are no boundaries in the transverse (x–y) directions, we
may take ϕ to be a transverse plane wave:
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ϕ(x, y) = eik⊥·r⊥ , (9.2a)

and the corresponding eigenvalue of the transverse Laplacian is

γ2 = k2
⊥ . (9.2b)

Let us consider a plane wave incident on the interface from the left; there
will be a wave reflected by the interface, and one refracted into the region on
the right (see Fig. 9.2). Thus we take the wave on the left to be described by

k⊥

k⊥ k⊥

θ1

k1

θ3

k3

θ2

k2

z = 0

Fig. 9.2. Reflection and refraction of a plane wave by a plane interface

the current function

I = eiκ1z + re−iκ1z , z < 0 , (9.3a)

and that on the right to be

I = teiκ2z , z > 0 . (9.3b)

Here, from (6.36a) the longitudinal wavenumber in each medium is given by

κ2 = k2 − k2
⊥ , k =

ω

c

√
ε̃ ≡ ω

c
n , ε̃ =

ε

ε0
, (9.4)

where we have introduced the index of refraction n =
√

ε̃, and c is the speed
of light in vacuum (deviating from our practice elsewhere). The subscripts in
(9.3a) and (9.3b) refer to the media 1 and 2.

The laws of reflection,
θ1 = θ3 , (9.5)

and of refraction (Snell’s law),

k1 sin θ1 = k2 sin θ2 = k⊥ , (9.6)

or
n1 sin θ1 = n2 sin θ2 , (9.7)
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are geometrically obvious from Fig. 9.2.
Now we impose the boundary conditions on the electric field at the inter-

face. Recall from (4.42a) and (4.46) that

n × E is continuous , (9.8a)
n · εE is continuous . (9.8b)

Then from (9.1a) and (9.1c) we learn that both I and V must be continuous.
From the construction (9.3a) and (9.3b) we learn the continuity condition at
z = 0:

1 + r = t . (9.9)

The relation between the I and V functions, (6.32f), reads

V =
1

iωε

d
dz

I , (9.10)

then implies from (9.3a) and (9.3b) at z = 0

1
ε1

κ1(1 − r) =
1
ε2

κ2t , (9.11)

which when multiplied by (9.9) yields

1
ε1

κ1(1 − r2) =
1
ε2

κ2t
2 . (9.12)

Equations (9.9) and (9.12) are the usual equations for the reflection and trans-
mission coefficients, as for example given in [9], (41.96) and (41.97), for the
case of ‖ polarization (E⊥ lies in the plane of incidence, defined by k⊥ and n,
hence the name). These equations may be easily solved:

‖ polarization: r =
κ1/ε1 − κ2/ε2

κ1/ε1 + κ2/ε2
, t =

2κ1/ε1

κ1/ε1 + κ2/ε2
. (9.13)

Equation (9.12) actually is a statement of energy conservation. If we com-
pute the power (6.77) just to the left, and just to the right, of the interface
at z = 0, we obtain from (9.10)

1
2
V I∗ =

1
2

κ1

ωε1
(1 − r2) (at z = 0−)

=
1
2

κ2

ωε2
t2 (at z = 0+) , (9.14)

which is the desired equality.
Now we repeat this calculation for the H mode (⊥ polarization, since H⊥

lies in the plane of incidence). The fields are now given by
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Hz =
i

ωµ
k2
⊥eik⊥·r⊥V , (9.15a)

H⊥ = −ik⊥eik⊥·r⊥I , (9.15b)
E⊥ = e × ik⊥eik⊥·r⊥V , (9.15c)

which follow from (6.33a) to (6.33c) when we write

ψ = eik⊥·r⊥ . (9.16)

The continuity of E⊥ implies that of V , while the continuity of H⊥ [no surface
current – see (4.42b)] implies that I is continuous. Now we write1

V = eiκ1z + re−iκ1z , z < 0 , (9.17a)
V = teiκ2z , z > 0 , (9.17b)

so the continuity of V at z = 0 implies

1 + r = t , (9.18)

of the same form as (9.9). Using (6.33g), or

I =
1
i

1
ωµ

d
dz

V, (9.19)

we see that dV/dz must be continuous, or

κ1(1 − r) = κ2t . (9.20)

Multiplying (9.20) by (9.18) yields the equation of energy conservation,

κ1(1 − r2) = κ2t
2 , (9.21)

which follows from the continuity of the complex power, 1
2IV ∗. This time the

solution for the reflection and transmission coefficients is

⊥ polarization: r =
κ1 − κ2

κ1 + κ2
, t =

2κ1

κ1 + κ2
. (9.22)

For further discussion of these phenomena, the reader is referred to standard
textbooks, in particular [9].

9.1 Problems for Chap. 9

1. A wave of frequency ω, moving in the vacuum along the z-axis, is normally
incident on a plane mirror (perfect conductor) that is advancing with

1 Note that the way we have defined the reflection and transmission coefficients are
such that they refer to H⊥ for ‖ polarization, and to E⊥ for ⊥ polarization.
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constant speed v perpendicular to its plane. What is ω′, the frequency of
the reflected wave? (Here, it is enough to say that there is some linear
field condition at the conducting surface.) Extend this to a wave in the
z–x plane that is incident at angle θ; what relations specify ω′ and θ′

for the reflected wave? For definiteness consider ⊥ polarization. Give the
explicit forms of θ′ and ω′ for |β| � 1, and for arbitrary β when both θ
and θ′ are small.

2. Derive the results found in the previous problem by applying a Lorentz
transformation to a known situation.

3. Now let the mirror move with speed v along the x-axis, that is, parallel
to its plane. What are ω′, θ′ for given ω and θ?

4. Return to the wave normally incident on the mirror, moving perpendicular
to its plane. What is the boundary condition on the electric field vector?
Compute the ratio of the reflected to the incident electric field amplitudes
in terms of the velocity of the mirror, or in terms of ω, ω′.

5. Two homogeneous media with refractive indices n1 and n3 are separated
by a plane sheet of thickness d and refractive index n2. All substances
have unit permeability. Prove that a plane wave normally incident upon
the boundary surfaces is completely transmitted provided n2 =

√
n1n3

and d is an odd integral multiple of a quarter wavelength in the sheet.
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Variational Methods

10.1 Variational Principles

In view of the very limited number of guide shapes that are amenable to
exact analysis in terms of known functions, further progress requires the de-
velopment of approximation methods applicable to boundaries of more general
form. Although there are several special methods that serve this purpose, it
is convenient to discuss here a number of general principles that are partic-
ularly relevant to the determination of guide cutoff wavenumbers and mode
functions. These principles are fundamentally based on the variational for-
mulation of the field equations, as set forth in Chap. 4. It was there shown
that if one of the Maxwell equations be admitted as a definition of one field
variable, the other equation may be derived as the requirement that a certain
volume integral, the Lagrangian, be stationary with respect to variations of
the other field variable. For a dissipationless region enclosed by perfectly con-
ducting walls and devoid of internal currents, the variational principles (4.28)
and (4.26) state that

δ

∫
V

(dr)(εE2 + µH2) = 0 , (10.1)

where either the field quantity H is varied and E is defined by

∇ × H = −ikηE , (10.2)

or E is varied and H is defined by

∇ × E = ikζH . (10.3)

Furthermore, when H is the fundamental variable, the stationary requirement,
applied to surface variations, automatically yields the boundary conditions
(6.19) appropriate to metallic walls, while if E is the independent field quantity
subject to variation it is necessary to restrict the variation to fields that satisfy



186 10 Variational Methods

the boundary condition in order that the surface integral contribution to the
variation be removed [cf. (4.26)]. We shall apply these results to construct
two variational formulations of the wave equation and boundary conditions
satisfied by waveguide mode functions.

For this purpose, we consider the field components of a mode with the
intrinsic wavenumber equal to the cutoff wavenumber, k = γ, so that the
guide wavelength is infinite and all field quantities are independent of z. On
referring to (6.32g) and (6.33f), we see that an E-mode voltage and an H-mode
current vanish under these circumstances (zero characteristic impedance and
admittance, respectively) and that, from (6.32c), (6.32b), (6.33d), and (6.33a),
the only nonvanishing field components are proportional to

E mode: Ez = iγζϕ(x, y , H = −e × ∇ϕ(x, y) , (10.4a)
H mode: Hz = iγηψ(x, y) , E = e × ∇ψ(x, y) . (10.4b)

In this form, the E-mode field satisfies (6.1a) identically, while the H-mode
field satisfies (6.1b). To reverse this situation, we may, with equal validity,
write

E mode: Ez = −i
ζ

γ
∇2ϕ(x, y) , H = −e × ∇ϕ(x, y) , (10.5a)

H mode: Hz = −i
η

γ
∇2ψ(x, y) , E = e × ∇ψ(x, y) . (10.5b)

Since all field quantities are independent of z, the volume integral in (10.1)
degenerates into a surface integral extended across a section of the guide. On
substituting the representations (10.4a)–(10.4b) in (10.1), we obtain

δ

∫
σ

dσ [(∇f)2 − γ2f2] = 0 (10.6)

for both E (f = ϕ) and H (f = ψ) mode functions. However, since this
representation employs the electric and magnetic fields, respectively, as the
fundamental field variables for the E and H modes, the variational princi-
ple (10.6), applied to the E modes, excludes any variation that violates the
boundary condition ϕ = 0 on the boundary curve C, while automatically
yielding the H-mode boundary conditions, ∂

∂nψ = 0 on C, for unrestricted
variations on the boundary. Although we have derived this result from the
variational formulation of the field equations, in the interests of generality, it
is immediately confirmed on performing the variation,

−
∫

σ

dσ δf (∇2f + γ2f) +
∮

C

ds δf
∂

∂n
f = 0 , (10.7)

that the stationary requirement yields the wave equation and the H-mode
boundary condition, for unrestricted variations, and requires the imposition
of the boundary condition on the varied function, δf = 0, when dealing with
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E modes. Another variational formulation is provided by the representation
(10.5a)–(10.5b), which when substituted into (10.1) yields

δ

∫
σ

dσ
[
(∇2f)2 − γ2(∇f)2

]
= 0 , (10.8)

where now the variational principle yields the E-mode boundary condition
for unrestricted variations, and when applied to H modes, the variation must
not violate the boundary conditions. To confirm these statements directly, we
perform the indicated variations in (10.8), and obtain

−
∫

σ

dσ ∇(∇2f + γ2f) · δ(∇f) +
∮

C

ds δ

(
∂f

∂n

)
∇2f = 0 . (10.9)

The stationary requirement for arbitrary variations of ∇f in the interior of
the region yields

∇2f + γ2f = const. , (10.10)

which is fully equivalent to the wave equation, for the constant of integration
can be absorbed into the function f if γ is not zero. Indeed, it is apparent that
the variational principle (10.8) is unaffected by the addition of a constant to
f . The requirement that the line integral vanish for arbitrary variations of ∂f

∂n
on the boundary implies that ∇2f = 0 on the boundary C, which is equivalent
to the E-mode condition if γ 
= 0. In order that the variational principle be
applicable to H modes, the boundary condition, ∂

∂nf = 0 on C, must not be
violated by the variation.

We shall later find it advantageous to consider more general boundary
conditions of the type

∂

∂n
f + ρf = 0 on C , (10.11)

where ρ is a prescribed function of position on the boundary curve. The E-
mode and H-mode boundary conditions are particular forms of (10.11) cor-
responding to ρ = ∞ and ρ = 0, respectively. [The general linear boundary
condition was considered in (4.19) and (4.23).] This boundary condition can
be derived from the two variational principles by the addition of suitable line
integrals to the surface integrals of (10.6) and (10.8). Thus, the stationary
requirement expressed by the vanishing variation of

∫
σ

dσ
[
(∇f)2 − γ2f2

]
+
∮

C

ds ρ f2 , (10.12)

namely

−
∫

σ

dσ δf (∇2 + γ2)f +
∮

C

ds δf

(
∂

∂n
f + ρf

)
= 0 , (10.13)

yields the wave equation and the boundary condition, for arbitrary variations
within the region and on the boundary. Similarly, the stationary property of
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∫
σ

dσ
[
(∇2f)2 − γ2(∇f)2

]
− γ2

∮
C

ds
1
ρ

(
∂

∂n
f

)2

(10.14)

as expressed by

−
∫

σ

dσ ∇(∇2f + γ2f) · δ(∇f) +
∮

C

ds δ

(
∂

∂n
f

)(
∇2f − γ2

ρ

∂

∂n
f

)
= 0 ,

(10.15)
implies the wave equation and a boundary condition that is equivalent to
(10.11), if γ 
= 0. In both these more general variational principles, no restric-
tions are imposed upon the nature of the variation. If it be desired, however,
to let ρ approach ∞ in (10.12), in order to obtain the E-mode boundary con-
dition, the line integral can only be omitted if the boundary condition f = 0
is imposed on the varied function. Similarly, if the expression (10.14) is re-
stricted to the H-mode boundary condition by letting ρ approach zero, it is
necessary to rigidly impose the boundary condition ∂

∂nf = 0 before omitting
the line integral. It is in this way that the restrictions arise of the allowable
variations in (10.6) and (10.8) for E and H modes, respectively.

10.2 Rayleigh’s Principle

Before indicating the practical utility of these variational principles, it is neces-
sary to remark that the various quantities that are stationary in value relative
to variations about certain functions f have the value zero for such functions.
To demonstrate this, we need only observe that the expressions (10.12) and
(10.14), of which (10.6) and (10.8) are special variations, have the property of
being homogeneous in f . If, therefore, we consider a variation in f that is pro-
portional to itself, say δf = εf with ε an infinitesimal quantity, the variations
of the expressions (10.12) and (10.14) are a multiple of the original form, which
on the other hand must be zero, since the stationary property is independent
of the particular form of the variation. Thus the assertion is proved. Hence,
if f is a solution to the wave equation and satisfies the boundary condition
(10.11),

∫
σ

dσ
[
(∇f)2 − γ2f2

]
+
∮

C

ds ρf2 = 0 , (10.16a)

∫
σ

dσ
[
(∇2f)2 − γ2(∇f)2

]
− γ2

∮
C

ds
1
ρ

(
∂

∂n
f

)2

= 0 , (10.16b)

or

γ2 =

∫
σ

dσ (∇f)2 +
∮

C
ds ρf2∫

σ
dσ f2

, (10.17a)

γ2 =

∫
σ

dσ (∇2f)2∫
σ

dσ (∇f)2 +
∮

C
ds 1

ρ

(
∂

∂nf
)2 . (10.17b)
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When E- or H-mode boundary conditions obtain, the latter expressions reduce
to

γ2 =

∫
σ

dσ (∇f)2∫
σ

dσ f2
, (10.18a)

γ2 =

∫
σ

dσ (∇2f)2∫
σ

dσ (∇f)2
, (10.18b)

of which the first has already been stated in (6.43). Let us now choose an
arbitrary function f , subject to certain continuity restrictions, and define a
quantity γ associated with it by means of (10.17a) and (10.17b). Of the class
of arbitrary functions, the eigenfunctions f , which satisfy the wave equation
and the boundary condition, are unique in possessing the property that the
quantity γ is stationary with respect to arbitrary variations about f . Thus a
function that deviates from a true eigenfunction to the first-order of a small
quantity will enable a value of γ to be calculated that deviates from the correct
value only in the second-order of the small quantity. To prove this statement
we consider an infinitesimal deviation of f from an eigenfunction and calcu-
late the concomitant change in γ, in accordance with (10.17a) or (10.17b).
Now the expressions contained in the latter equations have the property of
being stationary relative to variations of the function f alone, and therefore
to preserve the equality the quantity γ must also be stationary. Conversely, in
order that γ be stationary, the right-hand members of (10.17a) and (10.17b)
must be stationary with respect to variations of f alone, which are the two
variational principles that yield the wave equation and the boundary condi-
tion. As a further property of (10.17a) and (10.17b) we remark that if ρ is
positive, or more particularly if E- or H-mode boundary conditions are opera-
tive, the expressions for γ2 are never negative and, therefore, of the functions
that render γ2 stationary there must exist one that makes γ2 an absolute
minimum. The eigenfunction that possesses this property is the mode func-
tion of minimum cutoff wavenumber, the dominant E or H mode of the guide.
(This statement is subject to important qualifications. See Sect. 10.4.) Any
other function must yield a larger value of γ2, that is, a function f that dif-
fers from the dominant mode function produces a value of γ2 in excess of
the true value. The stationary property of the cutoff wavenumbers, and the
minimum property of the absolute cutoff wavenumber, are aspects of what is
known as Rayleigh’s principle, which is generally applicable to the frequen-
cies of systems with dynamical equations that are obtained from a variational
principle.

The two expressions for the cutoff wavenumber can be given another sig-
nificance in the following manner. The quantity1

∫
dσ (∇2f + γ2f)2 (10.19)

1 Henceforward, in this chapter, when only surface integrals appear, we will under-
stand that they extend over the cross-sectional area σ.
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is evidently greater than zero unless f is a solution of the wave equation
and γ2 the corresponding eigenvalue. The eigenfunctions are therefore char-
acterized by the vanishing of (10.19). If f is not an eigenfunction, the best
approximation to γ2 is obtained by minimizing (10.19) with respect to γ. This
yields

γ2 = −
∫

dσ f∇2f∫
dσ f2

=
∫

dσ (∇f)2∫
dσ f2

, (10.20)

the latter form obtaining if E- or H-mode boundary conditions are imposed
on f . Furthermore, for this choice of γ2,

∫
dσ (∇2f + γ2f)2 =

∫
dσ (∇2f)2 −

[∫
dσ (∇f)2

]2
∫

dσ f2
, (10.21)

which shows that2 ∫
dσ (∇2f)2∫
dσ (∇f)2

≥
∫

dσ (∇f)2∫
dσ f2

. (10.23)

Hence the value of γ computed from an assumed function f by means of
(10.18a) never exceeds that obtained from (10.18b), and the two values of
γ2 are only equal if f is an eigenfunction with the common value of γ2 as
eigenvalue. Thus a measure of the extent to which a function approximates
an eigenfunction is provided by the degree of agreement between (10.18a) and
(10.18b). Similarly, ∫

dσ
[
∇(∇2f + γ2f)

]2
(10.24)

is greater than zero unless f is a solution of (10.10). For an assumed function
f , the minimum of (10.24) as a function of γ2 is obtained when

γ2 = −
∫

dσ ∇(∇2f) · ∇f∫
dσ (∇f)2

=
∫

dσ (∇2f)2∫
dσ (∇f)2

. (10.25)

In writing the latter form it is assumed that f satisfies H-mode boundary
conditions or that ∇2f obeys E-mode boundary conditions. With this value
of γ2,

∫
dσ
[
∇(∇2f + γ2f)

]2
=
∫

dσ
[
∇(∇2f)

]2 −
[∫

dσ (∇2f)2
]2

∫
dσ (∇f)2

, (10.26)

2 Mathematically, this is called the Cauchy–Schwarz–Bunyakovskii inequality,
which generally states that

∫
dσ |f |2

∫
dσ |g|2 ≥

∣∣∣∣
∫

dσ f∗g

∣∣∣∣
2

. (10.22)
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whence ∫
dσ
[
∇(∇2f)

]2
∫

dσ (∇2f)2
≥
∫

dσ (∇2f)2∫
dσ (∇f)2

≥
∫

dσ (∇f)2∫
dσ f2

, (10.27)

provided
∂

∂n
f = 0 on C , (10.28a)

or
f = 0 , ∇2f = 0 on C . (10.28b)

The equality signs hold only if f is a solution of the wave equation obeying
either E- or H-mode boundary conditions.

The eigenfunctions can be independently defined and, in principle, con-
structed by means of the stationary property of the eigenvalues. Thus, of
the class of admissible functions, those that are continuous and have section-
ally continuous derivatives, the function f1 that makes (10.17a) an absolute
minimum is a solution of the wave equation obeying the boundary condition
(10.11). The minimum value of (10.17a), γ2

1 , is the eigenvalue associated with
the function f1. If, now, the minimum of (10.17a) is sought among the class
of admissible functions that are orthogonal to f1:∫

dσ ff1 = 0 , (10.29)

the function f2 that meets these requirements is a solution of the wave equa-
tion, obeying the boundary conditions, and associated with the eigenvalue
γ2
2 ≥ γ2

1 . More generally, if (10.17a) is minimized among the class of admissi-
ble functions orthogonal to the first n eigenfunctions,∫

dσ ffi = 0 , i = 1, 2, . . . , n , (10.30)

the minimizing function fn+1 is a solution of the wave equation and the
concomitant boundary condition, associated with an eigenvalue γ2

n+1 which
exceeds or possibly equals the nth eigenvalue obtained by the minimizing
process. In this manner, an infinite set of eigenfunctions and eigenvalues is
obtained, arranged in ascending magnitude of the eigenvalues. That the set
of eigenfunctions formed in this way constitute the entire set of eigenfunc-
tions will be demonstrated shortly. To prove that the minimization process
indicated above generates successive eigenfunctions, we proceed by induction,
assuming that the first n functions, fi, i = 1, . . . , n are each solutions of the
wave equation and the boundary condition and that each function is orthog-
onal to the previous members of the set. Furthermore, it is assumed that the
eigenvalues form a monotonically increasing sequence, γ2

i+1 ≥ γ2
i . The varia-

tion equation (10.13) is a necessary condition that (10.17a) be a minimum,
which must be supplemented by the conditions deduced from (10.30):

∫
dσ δffi = 0 , i = 1, 2, . . . , n , (10.31)
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n equations of constraint on the arbitrary functions δf . On introducing the
Lagrangian multipliers αi, i = 1, . . . , n, we deduce that the conditions imposed
on f in order that (10.17a) be a minimum are

∂

∂n
f + ρf = 0 on C , (10.32a)

(∇2 + γ2)f =
n∑

j=1

αjfj , (10.32b)

where the αj are to be determined by the supplementary conditions (10.31).
The result of multiplying (10.32b) by fi, a member of the set of mutually
orthogonal functions, and integrating over the guide cross section, is

αi

∫
σ

dσ f2
i =

∫
σ

dσ f(∇2 + γ2)fi +
∮

C

ds

(
fi

∂

∂n
f − f

∂

∂n
fi

)

= (γ2 − γ2
i )
∫

σ

dσ ffi

+
∮

C

ds

[
fi

(
∂

∂n
f + ρf

)
− f

(
∂

∂n
fi + ρfi

)]
. (10.33)

Now the line integral is zero when both f and fi satisfy the boundary condition
(10.32a), and the surface integral is also zero, in consequence of (10.30). Hence
all the Lagrangian multipliers vanish, and the minimizing function fn+1 is a
solution of the wave equation and the boundary condition. Furthermore, it is
evident that if a quantity involving a function f is to be minimized among
a class of admissible functions, any restriction imposed on that class cannot
decrease the minimum value of the quantity, but either increases it or leaves
in unaffected. Since the functions fn+1 that yields the minimum of γ2, subject
to orthogonality with the first n eigenfunctions, is to be found among a more
restricted class of functions than fn, which is orthogonal to the first n − 1
eigenfunctions, we conclude that

γ2
n+1 ≥ γ2

n , (10.34)

and thus our assertions are verified.
The same process can be used with the expression (10.17b) for γ2. For

simplicity, we consider only E- or H-mode boundary conditions, so (10.18b)
applies. The class of admissible functions are those that have continuous first
derivatives and sectionally continuous second derivatives. In addition H-mode
functions must satisfy the proper boundary condition. The function that min-
imizes (10.18b) is the eigenfunction f1, to within an additive constant. The
second eigenfunction f2 is obtained by minimizing (10.18b) with f restricted
by the orthogonality condition,

∫
dσ ∇f · ∇f1 = 0 , (10.35)
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and, more generally, the eigenfunction fn+1 is found by minimizing (10.18b)
among the class of functions that satisfy

∫
dσ ∇f · ∇fi = 0 , i = 1, . . . , n . (10.36)

To prove the latter statement we combine (10.9), the minimum conditions for
γ2, with the supplementary conditions deduced from (10.36):

∫
dσ δ(∇f) · (∇fi) = 0 , i = 1, . . . , n , (10.37)

by means of the Lagrangian multipliers αi, and obtain the following equation
for the minimizing function f :

∇(∇2f + γ2f) =
n∑

j=1

αj∇fj , (10.38)

subject to the boundary conditions

E mode: ∇2f = 0 , (10.39a)

H mode:
∂

∂n
f = 0 . (10.39b)

The Lagrangian multipliers may be shown to vanish as before. We multiply
(10.38) by ∇fi and make use of the assumed orthogonality of the first n
eigenfunctions to obtain

αi

∫
σ

dσ (∇fi)2 =
∫

σ

dσ ∇fi · ∇(∇2 + γ2)f

=
∫

σ

dσ ∇(∇2 + γ2)fi · ∇f

+
∮

C

ds

(
∇2f

∂

∂n
fi −∇2fi

∂

∂n
f

)
= 0 , (10.40)

in consequence of the boundary conditions shared by the minimizing func-
tion and the first n eigenfunctions, and of the orthogonality condition (10.35)
combined with the wave equation satisfied by the eigenfunctions fi. Thus the
minimizing function fn+1 is a solution of the wave equation and the bound-
ary condition. The argument which demonstrates the monotonic nature of the
successive eigenvalues is equally applicable to this method of construction.

We have thus far ignored the possibility that the first eigenfunction yielded
by Rayleigh’s principle may correspond to γ = 0 and therefore be inadmissible
as a waveguide mode function. It is apparent that the absolute minimum
of (10.18a) is indeed γ = 0, which is attained with f equal to a constant.
This possibility is negated by the E-mode boundary condition, f = 0 on
C; the mode of zero cutoff wavenumber is a spurious H mode. Hence, the



194 10 Variational Methods

first physically significant H mode is the second mode yielded by Rayleigh’s
principle. To exclude the mode with γ = 0, we must require that the function
f be orthogonal to a constant, or

∫
dσ f = 0 . (10.41)

The eigenfunction found by minimizing (10.18a) subject to this condition
and to (10.39b) is the dominant H mode of the guide and will henceforth be
considered the first mode. The second H mode is found among those functions
that obey (10.41) and are orthogonal to the dominant mode function, and the
process continues as before. A similar difficulty confronts Rayleigh’s principle,
applied to (10.18b). The absolute minimum of (10.18b) is zero, attained by a
function f0 that satisfies

∇2f0 = 0 . (10.42)

When dealing with H modes, the function f0 is constrained by the boundary
condition

∂

∂n
f0 = 0 on C , (10.43)

and this implies that ∇f0 vanishes identically:
∫

σ

dσ (∇f0)2 =
∮

C

ds f0
∂

∂n
f0 −

∫
σ

dσ f0∇2f0 = 0 . (10.44)

Therefore, only a spurious E mode exists. To effectively remove this mode,
only such functions f are admitted that are orthogonal to f0 in the sense of
(10.36): ∫

σ

dσ ∇f · ∇f0 =
∮

C

ds f
∂

∂n
f0 = 0 . (10.45)

Now, since f0 is restricted only by (10.42), the normal derivative of f0 can
be arbitrarily assigned on the boundary and the general validity of (10.45)
can only be assured if f vanishes, or is constant [see (6.28)], on the boundary.
Hence, despite the fact that (10.18b) is stationary with respect to arbitrary
variations about an E-mode function, the function f must satisfy the E-mode
boundary condition if the absolute minimum of γ is to be the cutoff wavenum-
ber for the dominant E mode.

To summarize, for the validity of Rayleigh’s principle applied to the ex-
pression (10.18b), it is necessary that f satisfies E- or H-mode boundary
conditions. When applied to the expression (10.18a), the E-mode boundary
condition must not be violated, but no restriction is placed on H-mode func-
tions other than (10.41).3

3 We are excluding here the consideration of T modes, which can occur for coaxial
lines, for example. See Chap. 6.
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10.3 Proof of Completeness

It will now be shown that the set of eigenfunctions obtained with the aid
of Rayleigh’s principle is closed and complete. A function set {fn} is called
closed if there exists no function orthogonal to every member of the set, that
is, if ∫

dσ ffn = 0 , n = 1, 2, . . . (10.46)

implies that f = 0. A set of eigenfunctions is considered complete if any
function, subject to certain continuity and boundary conditions, can be ap-
proximated in the mean with arbitrary precision by a linear combination of
eigenfunctions. This statement is to be understood in the sense that constants
cn can be associated with any function f such that

lim
N→∞

∫
dσ

[
f −

N∑
n=1

cnfn

]2

= 0 , (10.47)

which may be written

l.i.mN→∞

N∑
n=1

cnfn(r) = f(r) , (10.48)

where l.i.m denotes the limit in the mean. We first note that the best ap-
proximation in the mean with a finite sum of eigenfunctions is obtained by
minimizing

∫
dσ

[
f −

N∑
n=1

cnfn

]2

=
∫

dσ f2 − 2
N∑

n=1

cn

∫
dσ fnf +

N∑
n=1

c2
n

∫
dσ f2

n ,

(10.49)
considered as a function of the constants cn. This yields

cn =
∫

dσ fnf∫
dσ f2

n

, (10.50)

or, more simply,

cn =
∫

dσ fnf , (10.51a)

if the eigenfunctions are normalized by
∫

dσ f2
n = 1 . (10.51b)

[Note we are using a different normalization than in (6.57) and (6.59).] Hence,
the coefficients are chosen in accordance with Fourier’s rule and are inde-
pendent of N , the number of terms in the approximating function. For these
values of cn,
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∫
dσ

[
f −

N∑
n=1

cnfn

]2

=
∫

dσ f2 −
N∑

n=1

c2
n ≥ 0 , (10.52)

from which we deduce that

N∑
n=1

c2
n ≤

∫
dσ f2 , (10.53)

a relation that is known as the Bessel inequality. Since this result is valid
for any N , we infer the convergence of the sum of the squares of the Fourier
coefficients associated with a function that is quadratically integrable:

∞∑
n=1

c2
n ≤

∫
dσ f2 . (10.54)

In order to demonstrate the completeness property of the eigenfunctions,
we must show that the latter relation is, in fact, an equality. For this purpose
we consider in more detail the difference between an arbitrary function f and
the approximating function constructed from the first N eigenfunctions:

gN = f −
N∑

n=1

cnfn , (10.55)

which has the property
∫

dσ fngN = 0 , n = 1, . . . , N , (10.56)

in consequence of (10.51a). Since gN is orthogonal to the first N eigenfunc-
tions, the value of γ2 computed from (10.18a) necessarily exceeds or equals
γN+1, in accordance with Rayleigh’s principle:

∫
dσ (∇gN )2∫

dσ g2
N

≥ γ2
N+1 . (10.57)

In order that the conditions of Rayleigh’s principle be met, the function f
must vanish on the boundary if E-mode functions are employed; no boundary
restriction on f is necessary if the eigenfunctions are H-mode functions. Now

∫
dσ (∇gN )2 =

∫
dσ (∇f)2 − 2

N∑
n=1

cn

∫
dσ ∇fn · ∇f +

N∑
n=1

γ2
nc2

n , (10.58)

for ∫
dσ ∇fn · ∇fm = γ2

n

∫
dσ fnfm = γ2

nδnm . (10.59)

Furthermore,
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∫
σ

dσ ∇fn · ∇f =
∮

C

ds f
∂

∂n
fn + γ2

n

∫
σ

dσ fnf = γ2
ncn , (10.60)

since the line integral vanishes both for E modes, where f = 0 on C, and for
H modes, where ∂

∂nfn = 0 on C. Hence from (10.58)

∫
dσ (∇gN )2 =

∫
dσ (∇f)2 −

N∑
n=1

γ2
nc2

n ≥ 0 , (10.61)

which implies that
N∑

n=1

γ2
nc2

n ≤
∫

dσ (∇f)2 . (10.62)

Therefore, if the gradient of f is quadratically integrable, the limit of the
summation occurring in (10.62) is convergent:

∞∑
n=1

γ2
nc2

n ≤
∫

dσ (∇f)2 . (10.63)

Equation (10.57), deduced from Rayleigh’s principle, now informs us that
∫

dσ g2
N ≤

∫
dσ (∇gN )2

γ2
N+1

<

∫
dσ (∇f)2

γ2
N+1

. (10.64)

An essential remark required for the completion of the proof is that the suc-
cessive eigenvalues have no upper bound, but increase monotonically without
limit:

lim
n→∞

γn = ∞ . (10.65)

No detailed demonstration of this statement will be given;4 the evidence of-
fered by the particular problems treated in Chaps. 7 and 8 is a sufficient
assurance of its general validity. Granted this property of the eigenvalues, the
proof is complete, for according to (10.64),

∫
dσ g2

N has an upper bound that
approaches zero as N → ∞:

lim
N→∞

∫
dσ g2

N = lim
N→∞

∫
dσ

[
f −

N∑
n=1

cnfn

]2

= 0 . (10.66)

Hence, from (10.52),
∞∑

n=1

c2
n =

∫
dσ f2 , (10.67)

a result known as Parseval’s theorem, or the completeness relation. A valuable
symbolic form of the completeness relation can be constructed by rewriting
(10.67) as
4 However, see the end of this section.



198 10 Variational Methods

∫
dσ f2(r) =

∞∑
n=1

[∫
dσ fn(r)f(r)

]2

=
∫

dσ dσ′ f(r)

[ ∞∑
n=1

fn(r)fn(r′)

]
f(r′) , (10.68)

whence ∞∑
n=1

fn(r)fn(r′) = δ(r − r′) , (10.69)

since (10.68) is valid for an arbitrary function, f(r). The closure property
(10.46) of the eigenfunction set {fn} follows immediately from the complete-
ness relation. If a function f is orthogonal to every eigenfunction, all Fourier
coefficients vanish and

∫
dσ f2 = 0, whence f = 0.

Further results can be obtained by using (10.18b) in conjunction with
Rayleigh’s principle. If f satisfies E- or H-mode boundary conditions, in view
of (10.59) and (10.60),

∫
dσ (∇2gN )2∫
dσ (∇gN )2

≥ γ2
N+1 . (10.70)

The numerator of the left-hand member may be rewritten by the following
sequence of operations

∇2gN = ∇2f +
N∑

n=1

γ2
ncnfn , (10.71a)

∫
dσ (∇2gN )2 =

∫
dσ (∇2f)2 + 2

N∑
n=1

γ2
ncn

∫
dσ fn∇2f +

N∑
n=1

γ4
nc2

n

=
∫

dσ (∇2f)2 −
N∑

n=1

γ4
nc2

n ≥ 0 , (10.71b)

since ∫
dσ fn∇2f =

∫
dσ f∇2fn = −γ2

ncn . (10.72)

Therefore,
N∑

n=1

γ4
nc2

n ≤
∫

dσ (∇2f)2 , (10.73)

which implies the convergence of the corresponding infinite series if f is such
that ∇2f is quadratically integrable:

∞∑
n=1

γ4
nc2

n ≤
∫

dσ (∇2f)2 . (10.74)
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We may now write from (10.70) that
∫

dσ (∇gN )2 ≤
∫

dσ (∇2gN )2

γ2
N+1

<

∫
dσ (∇2f)2

γ2
N+1

→ 0 , N → ∞ , (10.75)

which demonstrates from (10.61) that the inequality (10.63) is truly an equal-
ity:

∞∑
n=1

γ2
nc2

n =
∫

dσ (∇f)2 . (10.76)

We have shown that the set of functions supplied by Rayleigh’s principle
is closed and complete, and is therefore identical with the totality of solutions
of the wave equation and the associated boundary condition. Conversely, if
the completeness of the eigenfunctions be assumed, Rayleigh’s principle can
be deduced in a simple manner. In accordance with (10.76) and (10.67), the
expression of the completeness property of the eigenfunction system reads

γ2 =
∫

dσ (∇f)2∫
dσ f2

=
∑∞

n=1 γ2
nc2

n∑∞
n=1 c2

n

. (10.77)

If we seek the function f that renders γ2 stationary by regarding the Fourier
coefficients of f as arbitrary constants subject to independent variation, we
obtain

(γ2 − γ2
n)cn = 0 , n = 1, 2, . . . . (10.78)

Hence the possible values of γ2 are just the set of eigenvalues, and for each such
value the constants cn associated with other eigenvalues vanish; the functions
that possess the stationary property are the eigenfunctions and the station-
ary values of γ2 are the associated eigenvalues. To prove the second part of
Rayleigh’s principle we write

γ2 = γ2
1 +

∑∞
n=2(γ

2
n − γ2

1)c2
n∑∞

n=1 c2
n

≥ γ2
1 , (10.79)

that is, the value of γ2 computed from an arbitrary function can never be less
than the minimum eigenvalue. The equality sign holds only if c2 = c3 = . . . =
0; the function that makes (10.79) an absolute minimum is the eigenfunction
associated with the smallest eigenvalue. Furthermore, if f is restricted by

cn =
∫

dσ fnf = 0 , n = 1, . . . , N − 1 , (10.80)

it follows that

γ2 =
∑∞

n=N γ2
nc2

n∑∞
n=N c2

n

= γ2
N +

∑∞
n=N+1(γ

2
n − γ2

N )c2
n∑∞

n=N c2
n

≥ γ2
N . (10.81)

The minimum, γ = γN , is attained with f = fN .
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This formulation of Rayleigh’s principle enables one to offer a proof of the
statement that there exist no largest eigenvalue, (10.65). For if such an upper
limit existed:

γ2
n < γ2

∞ < ∞ , n = 1, 2, . . . , (10.82)

it would follow from

γ2 = γ2
∞ −

∑∞
n=1(γ

2
∞ − γ2

n)c2
n∑∞

n=1 c2
n

≤ γ2
∞ (10.83)

that the value of γ2 computed from (10.77) with an arbitrary function f could
not exceed the finite upper limit γ2

∞. Since it is possible, however, to exhibit an
admissible function that makes γ2 arbitrarily large, the assumption of a finite
upper bound is disproved. To exhibit such a function, we locate the origin of
coordinates in the interior of the region formed by the guide boundary and
choose a distance a which is less than the minimum distance from the origin
to the boundary. An admissible E- or H-mode function is defined by

f =
{

a2 − r2 , r ≤ a ,
0 , r ≥ a ,

(10.84)

since it is continuous, has sectionally continuous derivatives, and satisfies the
boundary conditions. The value of γ2 obtained,

γ2 =
4
∫ a

0
2πr dr r2∫ a

0
2πr dr (a2 − r2)2

=
6
a2

, (10.85)

which tends to infinity as a diminishes to zero.

10.4 Variation–Iteration Method

We shall now discuss a method of successive approximations, employed in
conjunction with Rayleigh’s principle, which yields steadily improving ap-
proximations to the dominant mode cutoff wavenumber and mode function,
the approximations ultimately converging to the true values.5 It will be con-
venient in what follows to use a more compact symbol for the eigenvalue γ2.
We shall denote it by λ; no confusion with the wavelength is possible. In order
to obtain an approximation to the dominant mode eigenvalue λ1, we choose
a function F

(0)
1 that satisfies the boundary condition in the E-mode case, and

is subject only to (10.41) if H modes are under discussion. In accordance with
Rayleigh’s principle:

λ
(0)
1 =

∫
dσ
(
∇F

(0)
1

)2

∫
dσ
(
F

(0)
1

)2 > λ1 , (10.86)

5 A discussion of this method in electrostatics is given in [9].
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and λ
(0)
1 forms the zeroth approximation to the eigenvalue λ1, derived from

F
(0)
1 , the zeroth approximation to the dominant mode function f1. The equal-

ity sign has been omitted from (10.86) on the assumption that the probability
of picking the correct dominant mode function by inspection is negligible. A
first approximation to f1 is now defined by

∇2F
(1)
1 + F

(0)
1 = 0 . (10.87)

It will be supposed that this equation can be solved for F
(1)
1 subject to either

E- or H-mode boundary conditions with the additional restriction (10.41) for
the H modes. A first approximation to λ1 is computed from F

(1)
1 by Rayleigh’s

principle:

λ
(1)
1 =

∫
dσ
(
∇F

(1)
1

)2

∫
dσ
(
F

(1)
1

)2 > λ1 . (10.88)

This process continues in the obvious manner; the nth approximation function
F

(n)
1 is derived from F

(n−1)
1 by

∇2F
(n)
1 + F

(n−1)
1 = 0 , (10.89)

subject to the various conditions already mentioned, and the nth approxima-
tion to λ1 is calculated from

λ
(n)
1 =

∫
dσ
(
∇F

(n)
1

)2

∫
dσ
(
F

(n)
1

)2 > λ1 . (10.90)

We may note that∫
σ

dσ
(
∇F

(n)
1

)2

=
∮

C

ds F
(n)
1

∂

∂n
F

(n)
1 −

∫
σ

dσ F
(n)
1 ∇2F

(n)
1

=
∫

σ

dσ F
(n)
1 F

(n−1)
1 , n ≥ 1 , (10.91)

since the functions that enter the line integral are constructed to satisfy E- or
H-mode boundary conditions. Hence

λ
(n)
1 =

∫
dσ F

(n)
1 F

(n−1)
1∫

dσ
(
F

(n)
1

)2 > λ1 , n ≥ 1 . (10.92)

It is easily shown that the successive approximations to λ1 decrease steadily.
If we place f = F

(n+1)
1 in the relation (10.27), we obtain

∫
dσ
(
∇F

(n)
1

)2

∫
dσ
(
F

(n)
1

)2 ≥

∫
dσ
(
F

(n)
1

)2

∫
dσ
(
∇F

(n+1)
1

)2 ≥

∫
dσ
(
∇F

(n+1)
1

)2

∫
dσ
(
F

(n+1)
1

)2 , (10.93)
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or
λ

(n)
1 ≥ λ

(n+1/2)
1 ≥ λ

(n+1)
1 , (10.94a)

where

λ
(n+1/2)
1 =

∫
dσ
(
F

(n)
1

)2

∫
dσ
(
∇F

(n+1)
1

)2 =

∫
dσ
(
F

(n)
1

)2

∫
dσ F

(n+1)
1 F

(n)
1

, n ≥ 0 , (10.94b)

is naturally called the n+ 1
2 th approximation to λ1. Now, since the successive

approximations to λ1 decrease monotonically but can never be less than λ1,
the sequence {λ(n)

1 } must approach a limit. We shall prove that this limit is
no other than λ1, unless F

(0)
1 , the generating function of the sequence of ap-

proximating functions, has unhappily been chosen orthogonal to the dominant
mode function f1. In this event, the sequence of eigenvalue approximations
will approach the smallest eigenvalue associated with those eigenfunctions to
which F

(0)
1 is not orthogonal.

To demonstrate this assertion, we construct the function

F1(r) =
∞∑

n=0

αnF
(n+1)
1 (r) , (10.95)

where α is an arbitrary parameter. In order to investigate the convergence
domain of (10.95) as a function of α, we require some information as to the
magnitude of F

(n+1)
1 (r). It will be shown in Problem 10.8 that

[
F

(n+1)
1 (r)

]2
< C(r)

∫
dσ
(
F

(n)
1

)2

, (10.96)

where C(r) is independent of n. Hence the series is absolutely and uniformly
convergent whenever

∞∑
n=0

αn

[∫
dσ
(
F

(n)
1

)2
]1/2

(10.97)

converges. The restriction thereby imposed on α is

α lim
n→∞



∫

dσ
(
F

(n+1)
1

)2

∫
dσ
(
F

(n)
1

)2




1/2

< 1 . (10.98)

However, ∫
dσ
(
F

(n)
1

)2

∫
dσ
(
F

(n+1)
1

)2 = λ
(n+1/2)
1 λ

(n+1)
1 , (10.99)

whence
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lim
n→∞

∫
dσ
(
F

(n)
1

)2

∫
dσ
(
F

(n+1)
1

)2 = µ2 , (10.100)

where µ is the limit approached by the sequence of eigenvalue approximations.
Therefore, (10.95) actually defines a function F1(r) for α < µ. The function
F1(r) is a solution of the differential equation

∇2F1 = −
∞∑

n=0

αnF
(n)
1 = −αF1 − F

(0)
1 . (10.101)

On multiplying this equation by the eigenfunction f1 and integrating over the
guide cross section, we obtain
∫

dσ F
(0)
1 f1 = −

∫
dσ F1(∇2 + α)f1 = −(α − λ1)

∫
dσ F1f1 . (10.102)

It can now be shown that µ actually equals λ1, provided the generating func-
tion F

(0)
1 is not orthogonal to the eigenfunction f1, a requirement that is easily

met in practice. If it be assumed that the sequence {λ(n)
1 } approaches a limit

that exceeds λ1, µ > λ1, then the series (10.95) converges for α = λ1 and
(10.102) supplies the information that

∫
dσ F

(0)
1 f1 = 0 , (10.103)

which contradicts the hypothesis that F
(0)
1 is not orthogonal to f1. Therefore,

µ = λ1. If F
(0)
1 is orthogonal to f1, but not to f2, the eigenvalue sequence will

converge to λ2, and more generally, it will converge to the smallest eigenvalue
not excluded by the orthogonality properties of F

(0)
1 .

We have shown that the method of successive approximations produces
a sequence of eigenvalue approximations which eventually converges to λ1.
The error at every stage is positive, that is, each member of the set {λ(n)

1 }
necessarily exceeds λ1, and therefore provides a steadily decreasing upper
limit to λ1. For the practical utilization of the method, it is desirable to
supply an estimate of the rate of convergence as well as of the maximum error
at each stage of the process. We shall show that the answer to both of these
problems involves the value of λ2, the second eigenvalue. To this end, we seek
the function f that minimizes

∫
dσ (∇2f + λ1f)(∇2f + λ2f) , (10.104)

under the hypothesis that f satisfies either E- or H-mode boundary condi-
tions, and that, as usual, f is restricted by (10.41) in the event that H modes
are under discussion. On performing the variation, we easily find that the
minimizing function satisfies
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(∇2 + λ1)(∇2 + λ2)f = 0 , (10.105)

and an additional boundary condition, which requires that ∇2f satisfies the
same boundary condition as f . The minimizing function is obviously a linear
combination of the first two eigenfunctions f1 and f2:

f = αf1 + βf2 . (10.106)

The value computed for (10.104) with this minimizing function is zero, which
may be confirmed by direct calculation or by invoking a theorem stated in
connection with (10.16a) and (10.16b): a homogeneous expression in f as-
sumes the value zero for those functions that render it stationary. Hence we
may assert that ∫

dσ (∇2f + λ1f)(∇2f + λ2f) ≥ 0 , (10.107)

and the equality sign holds only if f is of the form (10.106). An alternative
proof employs the completeness relation applied to the expansion of f and
∇2f in terms of the eigenfunctions fn. We proceed formally by substituting
the expansions

f =
∞∑

n=1

cnfn , ∇2f = −
∞∑

n=1

cnλnfn (10.108)

in (10.104), which yields

∫
dσ (∇2f + λ1f)(∇2f + λ2f) =

∞∑
n=3

(λn − λ1)(λn − λ2)c2
n ≥ 0 . (10.109)

The equality sign obtains only if c3 = c4 = . . . = 0, which implies, as before,
that the minimizing function is a linear combination of f1 and f2. A similar
theorem states that∫

dσ ∇(∇2f + λ1f) · ∇(∇2f + λ2f) ≥ 0 , (10.110)

provided that, for H modes, ∂
∂nf = 0 on C, and for E modes, f = ∇2f = 0

on C. The minimizing function satisfies

∇(∇2 + λ1)(∇2 + λ2)f = 0 , (10.111)

and the additional boundary conditions: for H modes, ∂
∂n∇2f = 0 on C, and

for E modes, ∇2∇2f = 0 on C. As in the previous theorem, the minimum is
reached when f is a linear combination of f1 and f2, save for a trivial additive
constant (Problem 10.9).

In consequence of the boundary conditions imposed on f in the two in-
equalities (10.107) and (10.110), they may be rewritten as
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∫
dσ (∇2f)2 − (λ1 + λ2)

∫
dσ (∇f)2 + λ1λ2

∫
dσ f2 ≥ 0 ,

(10.112a)∫
dσ (∇∇2f)2 − (λ1 + λ2)

∫
dσ (∇2f)2 + λ1λ2

∫
dσ (∇f)2 ≥ 0 ,

(10.112b)

or [∫
dσ (∇2f)2 − λ1

∫
dσ (∇f)2

]
− λ2

[∫
dσ (∇f)2 − λ1

∫
dσ f2

]

≥ 0 , (10.113a)[∫
dσ (∇∇2f)2 − λ1

∫
dσ (∇2f)2

]
− λ2

[∫
dσ (∇2f)2 − λ1

∫
dσ (∇f)2

]

≥ 0 . (10.113b)

It is a consequence of (10.27) and Rayleigh’s principle that the four quantities
enclosed in brackets are never negative. Hence the two inequalities imply that

λ2 ≤
∫

dσ(∇2f)2 − λ1

∫
dσ (∇f)2∫

dσ (∇f)2 − λ1

∫
dσ f2

=
∫

dσ (∇f)2∫
dσ f2

∫
dσ (∇2f)2∫
dσ (∇f)2

− λ1∫
dσ (∇f)2∫

dσ f2
− λ1

,

(10.114a)

λ2 ≤
∫

dσ (∇∇2f)2 − λ1

∫
dσ (∇2f)2∫

dσ (∇2f)2 − λ1

∫
dσ (∇f)2

=
∫

dσ (∇2f)2∫
dσ (∇f)2

∫
dσ (∇∇2f)2∫
dσ (∇2f)2

− λ1∫
dσ (∇2f)2∫
dσ (∇f)2

− λ1

. (10.114b)

Thus we have obtained two alternative forms of Rayleigh’s principle applied
to the second eigenvalue, which have the distinctive feature that no restric-
tions, other than boundary conditions, are imposed on the function f . These
relations supply the convergence rate information that we need. By virtue
of the postulated method of construction, the functions f = F

(n+1)
1 , n ≥ 0,

satisfy the boundary conditions necessary for the applicability of (10.114a)
and (10.114b). This statement is valid for both types of modes. A glance
at the definitions of the eigenvalue approximations λ

(n)
1 (10.90) and λ

(n+1/2)
1

(10.94b), shows that with this choice for f , the inequalities (10.114a) and
(10.114b) become

λ2 ≤ λ
(n+1)
1

λ
(n+1/2)
1 − λ1

λ
(n+1)
1 − λ1

, (10.115a)
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λ2 ≤ λ
(n+1/2)
1

λ
(n)
1 − λ1

λ
(n+1/2)
1 − λ1

. (10.115b)

It will be noticed that (10.115a) can be formally obtained from (10.115b) on
replacing n by n + 1/2. The inequalities can be combined by multiplication
into

λ
(n)
1 − λ1

λ
(n+1)
1 − λ1

≥ λ2
2

λ
(n+1/2)
1 λ

(n+1)
1

, (10.116)

which states that the error of the nth approximation to λ1, divided by the
error of the (n + 1)th approximation, exceeds a number which approaches
(λ2/λ1)2 = (γ2/γ1)4 as the approximations proceed. Thus the rapidity of
convergence of the successive approximation method is essentially determined
by the magnitude of the second eigenvalue relative to the first eigenvalue, the
convergence being the more rapid, the larger this ratio. Indeed, the number
(γ2/γ1)2 is usually rather large; it has, for example, the values 27.8 and 70.3
for the E and H modes of a circular guide, respectively.

It is important to realize in this connection that the second eigenvalue
referred to in the convergence criterion may exceed the true second eigen-
value of the guide. This situation will arise whenever the guide possesses
special symmetry properties that permit the decomposition of the eigenfunc-
tions into various symmetry classes. If the generating function F

(0)
1 possesses

the proper symmetry characteristics of the eigenfunction f1, so also will the
successive approximations F

(n)
1 . Every member of this sequence will be au-

tomatically orthogonal to the eigenfunctions of other symmetry classes, and
the relevant second mode is that possessing the same symmetry as f1. Fur-
thermore, in consequence of the automatic orthogonality between members of
different symmetry classes, our methods are applicable independently to the
dominant mode of each symmetry type. To illustrate these remarks, we may
consider a guide with circular symmetry. Each mode function has the angle

dependence
sin
cosmφ, and mode functions associated with different values of m

are automatically orthogonal, irrespective of the r dependence of the mode
functions. Thus the modes associated with each value of m form a symmetry
class, and Rayleigh’s principle is applicable to each class individually. Hence
in applying Rayleigh’s principle to construct the dominant E mode of a circu-
lar guide, E01, the second mode that determines the rapidity of convergence
is not the second E mode of the guide, E11, but E02, the second mode with
the same symmetry as E01. Similarly, in the construction of the dominant H
mode, H11, the relevant second H mode is H12, not H21. It is with this in mind
that the numbers mentioned in the preceding paragraph have been obtained.

10.4.1 Error Estimates

The inequalities (10.115a) and (10.115b) not only furnish a criterion for the
convergence rate of the successive approximation method, but also supply an
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estimate of error for each stage of the process, provided the second eigenvalue,
or a reasonably accurate lower limit to it, is known. To demonstrate this, we
remark that the inequalities can be rewritten in the form

(
λ2 − λ

(n+1/2)
1

)
λ

(n+1)
1 ≤ λ1

(
λ2 − λ

(n+1)
1

)
, (10.117a)(

λ2 − λ
(n)
1

)
λ

(n+1/2)
1 ≤ λ1

(
λ2 − λ

(n+1/2)
1

)
. (10.117b)

Now at some stage of the process, the eigenvalue approximations become less
than λ2, and all the quantities in parentheses are positive. This will ordinarily
be true even for the 0th approximation. To test the validity of this assumption
an estimate of λ2, in the form of a lower limit, must be available. Assuming
that this circumstance is ensured, we deduce that

λ1 ≥ λ
(n+1)
1

λ2 − λ
(n+1/2)
1

λ2 − λ
(n+1)
1

= λ
(n+1)
1 − λ

(n+1/2)
1 − λ

(n+1)
1

λ2

λ
(n+1)
1

− 1
, (10.118a)

λ1 ≥ λ
(n+1/2)
1

λ2 − λ
(n)
1

λ2 − λ
(n+1/2)
1

= λ
(n+1/2)
1 − λ

(n)
1 − λ

(n+1/2)
1

λ2

λ
(n+1/2)
1

− 1
,(10.118b)

which constitute lower limits for λ1. We may therefore state that, at the n+1st
stage of the approximation process, the eigenvalue λ1 has been located within
the limits:

λ
(n+1)
1 ≥ λ1 ≥ λ

(n+1)
1 − λ

(n+1/2)
1 − λ

(n+1)
1

λ2

λ
(n+1)
1

− 1
, (10.119)

which tend to coincidence as n increases. The similar approximant to the n+ 1
2

stage is obtained on replacing n + 1 with n + 1
2 . The sense of the inequality

(10.118b) is not affected if λ2 is replaced by a smaller quantity, provided the
lower bound to λ2 exceeds λ

(n+1/2)
1 .

A closely related theorem, which is somewhat wider in scope, results from
a consideration of the quantity

µ2 =
∫

dσ (∇2f + λf)2∫
dσ f2

, (10.120)

where λ is an arbitrary parameter. The function that minimizes µ2 among the
class of functions that satisfy E- or H-mode boundary conditions is such that

(∇2 + λ)2f = µ2f , (10.121)

where ∇2f satisfies the same boundary conditions as f . On rewriting (10.121)
as

(∇2 + λ + µ)(∇2 + λ − µ)f = 0 , (10.122)

it is apparent that the minimizing function is to be found among the eigen-
functions {fn}. Since the stationary values of µ2 are then
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µ2 = (λn − λ)2 , (10.123)

(10.120) is minimized by that eigenfunction fn, whose eigenvalue is nearest
to λ, in the sense that |λn − λ| is smallest. With λn understood to have this
significance, we may assert that∫

dσ (∇2f + λf)2∫
dσ f2

≥ (λn − λ)2 , (10.124)

or

λn ≤ λ +
[∫

dσ (∇2f + λf)2∫
dσ f2

]1/2

, λn ≥ λ , (10.125a)

λn ≥ λ −
[∫

dσ (∇2f + λf)2∫
dσ f2

]1/2

, λn ≤ λ . (10.125b)

Therefore, if an arbitrary choice of λ is less than the nearest eigenvalue,
(10.125a) provides an upper limit for that eigenvalue; on the other hand, if
λ has been chosen greater than the nearest eigenvalue, (10.125b) constitutes
a lower limit for that eigenvalue. The difficulty in applying this theorem lies,
of course, in the task of establishing which of these situations is realized, in
the absence of any knowledge of the eigenvalues. No difficulty exists, however,
in establishing an upper limit to the first eigenvalue, for if λ is not positive
the condition λ < λ1 is assured, since all eigenvalues are positive. Hence, for
λ ≤ 0,

λ1 < λ +
[
λ2 − 2λ

∫
dσ (∇f)2∫

dσ f2
+
∫

dσ (∇2f)2∫
dσ f2

]1/2

= λ +

{[∫
dσ (∇f)2∫

dσ f2
− λ

]2

+
∫

dσ (∇f)2∫
dσ f2

[∫
dσ (∇2f)2∫
dσ (∇f)2

−
∫

dσ (∇f)2∫
dσ f2

]}1/2

. (10.126)

Now the right-hand member of (10.126) is a monotonically increasing function
of λ, since its derivative with respect to λ,

1 −
(∫

dσ (∇f)2∫
dσ f2

− λ

){[∫
dσ (∇f)2∫

dσ f2
− λ

]2

+
∫

dσ (∇f)2∫
dσ f2

[∫
dσ (∇2f)2∫
dσ (∇f)2

−
∫

dσ (∇f)2∫
dσ f2

]}−1/2

, (10.127)

is essentially positive, in consequence of (10.27). Hence the upper limit steadily
decreases as λ approaches −∞, and the most stringent upper limit deduced
from (10.126) is the familiar expression of Rayleigh’s principle,
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λ1 <

∫
dσ (∇f)2∫

dσ f2
. (10.128)

If a value of λ can be selected in the range

λ1 ≤ λ ≤ λ1 + λ2

2
, (10.129)

(10.125b) offers a lower limit to the first eigenvalue:

λ1 > λ −
[
λ2 − 2λ

∫
dσ (∇f)2∫

dσ f2
+
∫

dσ (∇2f)2∫
dσ f2

]1/2

. (10.130)

It may be established, as in the preceding paragraph, that the right-hand
member of (10.130) is a monotonically increasing function of λ. Thus, the most
incisive lower limit is obtained from the largest value of λ that is compatible
with (10.129). That is, we must place

λ =
1
2
(λ1 + λ2) , (10.131)

where λ1 and λ2 are known to be lower limits to the first and second eigenval-
ues, respectively. Now (10.130) itself provides the best available value of λ1,
and by combining the latter equation with (10.131), one obtains

λ1 =
∫

dσ (∇f)2∫
dσ f2

λ2 −
∫

dσ (∇2f)2∫
dσ (∇f)2

λ2 −
∫

dσ (∇f)2∫
dσ f2

. (10.132)

On placing f = F
(n+1)
2 , this result becomes identical with (10.118a), save that

λ2 is properly replaced by the lower limit λ2:

λ1 = λ
(n+1)
1

λ2 − λ
(n+1/2)
1

λ2 − λ
(n+1)
1

= λ
(n+1)
1 − λ

(n+1/2)
1 − λ

(n+1)
1

λ2

λ
(n+1)
1

− 1
. (10.133)

In order that this result be valid, it is necessary that 1
2 (λ1 + λ2) > λ1, which

will be guaranteed if λ1 +λ2 > 2λ
(n+1)
1 . This restriction, taken in conjunction

with (10.133), determines the smallest lower limit to the second eigenvalue
that will be admissible in the latter equation:

λ2 ≥ λ
(n+1)
1 +

[
λ

(n+1)
1

(
λ

(n+1/2)
1 − λ

(n+1)
1

)]1/2

. (10.134)

That is, if a lower limit to the second eigenvalue is known, the formula (10.133)
cannot be safely applied unless (10.134) is satisfied. In the absence of any infor-
mation concerning the second eigenvalue, we may notice that the right-hand
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member of (10.134) eventually converges to λ1 and must therefore becomes
less than λ2 at some stage in the approximation procedure. Hence (10.134)
supplies a possible lower limit to λ2, which on substitution in (10.133) yields

λ1 = λ
(n+1)
1 −

[
λ

(n+1)
1

(
λ

(n+1/2)
1 − λ

(n+1)
1

)]1/2

. (10.135)

Note that this result is obtained immediately from (10.130) on placing λ =
λ

(n+1)
1 and f = F

(n+1)
1 , using (10.94b). This lower limit eventually converges

to λ1. However, it is a much poorer approximation than would be obtained
from (10.133) with a fixed value of λ2, since, in the latter event, the difference
between the upper limit λ1 = λ

(n+1)
1 and the lower limit (10.133) approaches

zero, as n increases, in the following manner:

λ1 − λ1 → λ
(n+1/2)
1 − λ

(n+1)
1

λ2
λ1

− 1
, (10.136)

which is much more rapid than that described by (10.135):

λ1 − λ1 →
[
λ1

(
λ

(n+1/2)
1 − λ

(n+1)
1

)]1/2

. (10.137)

Similar results can be found from a consideration of the quantity

µ2 =
∫

dσ [∇(∇2f + λ2f)]2∫
dσ (∇f)2

. (10.138)

We obtain in this way an equation analogous to (10.126) which leads to the
second form of Rayleigh’s principle for the lowest eigenvalue:

λ1 <

∫
dσ (∇2f)2∫
dσ (∇f)2

, (10.139)

and a lower limit to λ1 that is identical with (10.133).

10.5 Problems for Chap. 10

1. A conducting body embedded in the vacuum is characterized by the con-
stant potential φ0 on its surface S, which carries charge Q =

∮
S

dS σ. The
condition that the potential in the region V around the body,

φ(r) =
∮

S

dS′

4π

σ(r′)
|r − r′| , (10.140)

becomes the specified constant φ0 on S is an integral equation that de-
termines σ. Prove that a solution to this surface integral equation is the
solution by
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(a) comparing appropriate upper and lower limits to the energy, and
(b) examining

∫
V

(dr)(∇ϕ)2, where ϕ is the difference of two solutions.
2. The two-dimensional distance between two points in polar coordinates is

P =
√

ρ2 + ρ′2 − 2ρρ′ cos Φ , (10.141)

where Φ is the angle between the two directions. Use Bessel function prop-
erties to show that

∫ 2π

0

dΦ

2π

1
P

=
∫ 2π

0

∫ 2π

0

dφ

2π

dφ′

2π
πδ(ρ cos φ + ρ cos φ′) . (10.142)

3. Let x′ is the x-coordinate of a variable point on the surface of a sphere of
radius a. Verify the following solid angle integral over the surface of the
sphere: ∫

dΩ′ δ(x′ + x) =
2π

a
, (10.143)

where x is a fixed quantity, such that |x| < a. Hint: change the coordinate
system.

4. We will now use the preceding two problems to solve the integral equation
that determines the charge density on a conducting disk. Let the disk have
radius a. Write the integral equation of Problem 10.1 in polar coordinates
ρ, φ. Cylindrical symmetry indicates that σ(r) = σ(ρ). Introduce new
variables: ρ = a sin θ, ρ′ = a sin θ′ where θ and θ′ go from 0 to π/2. Now
combine the results from Problems 10.2 and 10.3. Recognize a simple
solution of the integral equation; according to Problem 10.1, it is the
solution. Compute the total charge Q and identify the capacitance C =
Q/φ0.

5. Show that the E-mode cutoff wavenumbers are given by

γ′2 =

∫
σ

dσ (∇⊥ϕ)2 − 2
∮

C
ds∂ϕ

∂nϕ∫
σ

dσ ϕ2
, (10.144)

which is stationary for variations about

(∇2
⊥ + γ′2)ϕ = 0 , ϕ = 0 on C , (10.145)

without requiring that ϕ obey this boundary condition (i.e., δϕ need not
vanish on C). Conclude that any outward (inward) displacement of the
boundary lowers (raises) the value of γ′2.

6. Illustrate the above theorem by considering, for E modes, a circular guide
of radius a bounded by inscribed and circumscribed square guides. Show
that the lowest value of γ′a is indeed intermediate between those of the
two squares.

7. Test the inequality of (10.23) for a one-dimensional problem, parallel plate
conductors, with trial function for the E mode
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ϕ0(x) = x(1 − x/a) , 0 < x < a . (10.146)

Then, how does it work out with the function produced by iteration, the
solution of

− d2

dx2
ϕ(x) = const. x(1 − x/a) ? (10.147)

8. Solve the iteration equation (10.89) for the function F (n+1) in terms of
F (n) and the Green’s function for the Laplacian operator,

F (n+1)(r) =
∫

dσ G(r, r′)F (n)(r′) . (10.148)

Then use the Cauchy–Schwarz inequality (10.22) to derive (10.96).
9. Prove that the minimum of (10.110) is achieved when f is a linear com-

bination of the two lowest mode functions.
10. Prove (10.139) and the remark following concerning the lower limit for λ1.
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Examples of Variational Calculations
for Circular Guide

We will now illustrate the method proposed in the previous chapter in a simple
realistic context.

11.1 E Modes

We consider a circular cylinder of radius a and discuss the mode of lowest
eigenvalue with m = 0:

ϕ01(ρ, φ) =
1

(2π)1/2
P01(ρ) , P01(a) = 0 . (11.1)

The equation defining the successive iterations (10.89) is (henceforth the sub-
scripts are omitted)

−1
ρ

d
dρ

ρ
d
dρ

P (n+1)(ρ) = P (n)(ρ) , (11.2)

and the required integrals are

[m + n] =
∫ a

0

dρ ρP (m)(ρ)P (n)(ρ) . (11.3)

Note that we may integrate by parts to show this is truly a function only of
m + n.

Inasmuch as a is the natural unit of length, and the various operations of
differentiation and integration are even in ρ, it is expedient to introduce the
variable

t = (ρ/a)2 , (11.4)

and define the functions

T (n)(t) =
(

4
a2

)n

P (n)(ρ) , (11.5)



214 11 Examples of Variational Calculations for Circular Guide

which obey the boundary condition

T (n)(1) = 0 , (11.6)

and the differential equation

− d
dt

t
d
dt

T (n+1)(t) = T (n)(t) . (11.7)

The integrals (11.3) now appear as

[m + n] = 2
(

a2

4

)m+n+1

〈m + n〉 , (11.8)

with

〈m + n〉 =
∫ 1

0

dt T (m)(t)T (n)(t) . (11.9)

In this notation, the nth approximation to the desired eigenvalue is given by

λ(n) =
[2n − 1]

[2n]
=

4
a2

〈2n − 1〉
〈2n〉 , (11.10)

which is valid both for integer and integer + 1
2 values of n.

We shall find it desirable to introduce a preiteration function, T (−1)(t),
according to

− d
dt

t
d
dt

T (0)(t) = T (−1)(t) , (11.11)

which function does not satisfy the boundary condition. Indeed, we use

T (−1)(t) = 1 , (11.12)

for that makes it the beginning of the line:

− d
dt

t
d
dt

T (−1)(t) = T (−2)(t) = 0 . (11.13)

To see what benefits emerge thereby, consider

〈k〉 =
∫ 1

0

dt T (k)(t)T (0)(t)

=
∫ 1

0

dt

[
− d

dt
t
d
dt

T (k+1)(t)
]

T (0)(t)

=
∫ 1

0

dt T (k+1)(t)T (−1)(t) , (11.14)

for both T (k+1) and T (0) obey the boundary condition. Then, with the choice
(11.12), we reach the simple evaluation



11.1 E Modes 215

〈k〉 =
∫ 1

0

dt

[
− d

dt
t
d
dt

T (k+2)(t)
]

= − d
dt

T (k+2)(1) . (11.15)

In carrying out the integrations required to produce the successive T (n)(t),
it suffices to note that

− d
dt

t
d
dt

[
− tn+1

(n + 1)2

]
= tn . (11.16)

Thus, the solution of (11.11) that obeys the boundary condition (11.6) is (here
n = 0)

T (0)(t) = 1 − t = T (−1)(t) − t . (11.17)

Then, we get in succession,

T (1)(t) = T (0)(t) +
1
22

(
t2 − T (−1)(t)

)
, (11.18a)

T (2)(t) = T (1)(t) − 1
22

T (0)(t) − 1
22

1
32

(
t3 − T (−1)(t)

)
, (11.18b)

T (3)(t) = T (2)(t) − 1
(2!)2

T (1)(t) +
1

(3!)2
T (0)(t) +

1
(4!)2

(
t4 − T (−1)(t)

)
,

(11.18c)

and, in general,

T (n)(t) =
n+1∑
l=1

(−1)l−1

(l!)2
T (n−l)(t) + (−1)n−1 tn+1

[(n + 1)!]2
. (11.19)

From this we deduce recurrence relations for the integrals as evaluated in
(11.15),

〈k〉 =
k+3∑
l=1

(−1)l−1

(l!)2
〈k − l〉 + (−1)k 1

(k + 2)! (k + 3)!
. (11.20)

The quantities appearing here with negative numbers, 〈−3〉, 〈−2〉, 〈−1〉, are
to be understood in the sense of the last version of (11.14), and therefore are
integrals of products with one factor of T (−1)(t),

〈−3〉 =
∫ 1

0

dt T (−2)(t)T (−1)(t) = 0 , (11.21a)

〈−2〉 =
∫ 1

0

dt T (−1)(t)T (−1)(t) = 1 , (11.21b)

〈−1〉 =
∫ 1

0

dt T (0)(t)T (−1)(t) =
1
2

, (11.21c)

and then we get
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〈0〉 =
1
2
− 1

(2!)2
+

1
2! 3!

=
1
3

, (11.22a)

〈1〉 =
1
3
− 1

(2!)2
1
2

+
1

(3!)2
− 1

3! 4!
=

11
48

, (11.22b)

〈2〉 =
11
48

− 1
(2!)2

1
3

+
1

(3!)2
1
2
− 1

(4!)2
+

1
4! 5!

=
19
120

, (11.22c)

〈3〉 =
19
120

− 1
(2!)2

11
48

+
1

(3!)2
1
3
− 1

(4!)2
1
2

+
1

(5!)2
− 1

5! 6!
=

473
4320

,

(11.22d)

〈4〉 =
473
4320

− 1
(2!)2

19
120

+
1

(3!)2
11
48

− 1
(4!)2

1
3

+
1

(5!)2
1
2
− 1

(6!)2
+

1
6! 7!

=
229
3024

, (11.22e)

〈5〉 =
229
3024

− 1
(2!)2

473
4320

+
1

(3!)2
19
120

− 1
(4!)2

11
48

+
1

(5!)2
1
3

− 1
(6!)2

1
2

+
1

(7!)2
− 1

7! 8!
=

101369
1935360

, (11.22f)

〈6〉 =
946523

26127360
, (11.22g)

〈7〉 =
64567219
261273600

; (11.22h)

these numbers are sufficient to produce four iterations with integer n, and
four with integer n plus 1/2.

These successive values of λ(n)a2 are

n = 0 : 4
〈−1〉
〈0〉 = 6 = 6.0 , (11.23a)

n =
1
2

: 4
〈0〉
〈1〉 =

64
11

= 5.8181818 , (11.23b)

n = 1 : 4
〈1〉
〈2〉 =

110
19

= 5.7894737 , (11.23c)

n =
3
2

: 4
〈2〉
〈3〉 =

2736
473

= 5.7843552 , (11.23d)

n = 2 : 4
〈3〉
〈4〉 =

6622
1145

= 5.7834061 , (11.23e)

n =
5
2

: 4
〈4〉
〈5〉 =

586240
101369

= 5.7832276 , (11.23f)

n = 3 : 4
〈5〉
〈6〉 =

5473926
946523

= 5.7831939 , (11.23g)

n =
7
2

: 4
〈6〉
〈7〉 =

378609200
65467219

= 5.7831875 . (11.23h)
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11.1.1 Bounds on Second Eigenvalue

In order to produce corresponding lower limits, we turn our attention to λ2.
The best result for λ2a

2 so far is obtained by comparison with a square, see
Problem 10.6. To do better, we apply the technique developed in Chap. 23
of [9]. We first state, and then derive the following equation referring to the
m = 0 modes of the circle of radius a:

∞∑
n=1

P0n(ρ)P0n(ρ′)
γ2
0n

= log
a

ρ>
, (11.24)

where

Pmn(ρ) =
√

2
a

Jm(γmnρ)
J ′

m(γmna)
. (11.25)

We recognize here, for m = 0, the k → 0 limit of the relation expressing the
equality of the eigenfunction expansion and the closed-form expressions for the
reduced Green’s function for the Coulomb problem in cylindrical coordinates
(see Problem 11.1):

∞∑
n=1

Pmn(ρ)Pmn(ρ′)
k2 + γ2

mn

= Im(kρ<)
[
Km(kρ>) − Im(kρ>)

Km(ka)
Im(ka)

]
, (11.26)

for ρ, ρ′ < a, subject to Dirichlet boundary conditions at ρ = a. Now according
to Problem 8.8, we have

t � 1 : K0(t) ∼ log
1
t

+ const. , I0(t) ∼ 1 , (11.27)

from which (11.24) follows.
This verification can, of course, be performed more directly. The left-hand

side of (11.24) – call it g0(ρ, ρ′) – obeys

−1
ρ

∂

∂ρ
ρ

∂

∂ρ
g0(ρ, ρ′) =

1
ρ
δ(ρ − ρ′) , (11.28a)

g0(a, ρ′) = 0 . (11.28b)

Then we see that log(a/ρ>) vanishes for ρ> = a, and that

−ρ
∂

∂ρ
log

a

ρ>
=
{

1, ρ > ρ′

0, ρ < ρ′
; (11.29)

the derivative of this discontinuous function produces the required delta func-
tion.

Now we derive, by integrating (11.24) with ρ = ρ′

∞∑
n=1

1
γ2
0n

=
∫ a

0

dρ ρ log
a

ρ
=

a2

4

∫ 1

0

dt log
1
t

=
a2

4
, (11.30)
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in which we have introduced the variable (11.4). Such a relation provides a
lower limit to λ2 in terms of an upper limit to λ1:

1
λ1a2

+
1

λ2a
2

=
1
4

. (11.31)

If we use the best upper limit in (11.23h), that is, for n = 7/2, we get λ2a
2 =

12.97, which is a very poor result. Accordingly, we try the next stage, which
involves integrating the square of (11.24):

∞∑
n=1

1
γ4
0n

= 2
∫ a

0

dρ ρ

∫ ρ

0

dρ′ ρ′
(

log
a

ρ

)2

=
a4

8

∫ 1

0

dt

∫ t

0

dt′
(

log
1
t

)2

=
a4

8

∫ 1

0

dt t

(
log

1
t

)2

=
a4

32
, (11.32)

the latter integral, like that of (11.30), being performed by partial integration,
or by a change of variable: t = exp(−x). Now we get

1
(λ1a2)2

+
1

(λ2a
2)2

=
1
32

, (11.33)

from which we get
λ2a

2 = 27.213 , (11.34)

considerably better than the 19.74 produced by comparison with a square.
But before we examine how well (11.34) performs, let us see what we can

learn from (11.26) by putting ρ = ρ′ and integrating, namely:

∞∑
n=1

1
k2 + γ2

mn

=
∫ a

0

dρ ρ Im(kρ)Km(kρ) , (11.35)

where

Km(t) = Km(t) − Im(t)
Km(ka)
Im(ka)

. (11.36)

The two functions that enter the integral of (11.35) obey the same differential
equation, for ρ > 0,

[
1
ρ

d
dρ

(
ρ

d
dρ

)
− k2 − m2

ρ2

]{
Im(kρ)
Km(kρ)

= 0 . (11.37)

We also need the differential equations obeyed by

∂

∂k
Im(kρ) = ρI ′m(kρ) ; (11.38)
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it is [
1
ρ

d
dρ

(
ρ

d
dρ

)
− k2 − m2

ρ2

]
ρI ′m(kρ) = 2kIm(kρ) . (11.39)

Then cross multiplication between the latter equation and that for Km yields

d
dρ

[
Km(kρ)ρ

d
dρ

ρI ′m(kρ) − ρI ′m(kρ)ρ
d
dρ

Km(kρ)
]

= 2kρIm(kρ)Km(kρ) ,

(11.40)
so that the integrand of (11.35) is a total differential.

At the upper limit of the integral, ρ = a,

Km(ka) = 0 , (11.41)

and

ρ
d
dρ

Km(kρ)
∣∣∣∣
ρ=a

= ka

[
K ′

m − I ′m
Km

Im

]
(ka) = − 1

Im(ka)
, (11.42)

according to the Wronskian (Problem 8.8). To handle the lower limit, ρ = 0,
we recognize that the structure being differentiated in (11.40) can, apart from
a factor of 1/k, be presented as

Km(t)
(

t
d
dt

)2

Im(t) − t
d
dt

Im(t) t
d
dt

Km(t) , (11.43)

for it is only through the singularity of Km(t) at t = 0 that a finite contribution
can emerge. Now, for small values of t, Im(t) ∼ tm, and

t � 1 : t
d
dt

Im(t) ∼ mIm(t) , (11.44)

so that (11.43) becomes

mt [Km(t)I ′m(t) − Im(t)K ′
m(t)] = m , (11.45)

which again employs the Wronskian. Thus the integral in (11.35) equals

1
2k

[
a
I ′m(ka)
Im(ka)

− m

k

]
. (11.46)

The result, presented as

I ′m(t)
Im(t)

=
m

t
+ 2t

∞∑
n=1

1
t2 + (γmna)2

, (11.47)

is not unfamiliar; we have derived the pole expansion of the logarithmic deriv-
ative of Im(t) in terms of the behavior at t = 0 and the imaginary roots at
±iγmn. Then, the initial terms of the power series expansion
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m ≥ 0 : Im(t) =

(
1
2 t
)m

m!

[
1 +

(
1
2 t
)2

m + 1
+

1
2

(
1
2 t
)4

(m + 1)(m + 2)
+ · · ·

]
, (11.48)

with its logarithmic consequence

I ′m(t)
Im(t)

=
m

t
+

1
2

t

m + 1
− 1

8
t3

(m + 1)2(m + 2)
+ · · · , (11.49)

give the first two of an infinite set of summations as

∞∑
n=1

1
λmna2

=
1
4

1
m + 1

, (11.50a)

∞∑
n=1

1
(λmna2)2

=
1
16

1
(m + 1)2(m + 2)

. (11.50b)

The results already obtained in (11.30) and (11.32) for m = 0 are repeated,
and, with the substitution m → l + 1

2 , we regain the spherical Bessel function
summations given in [9], (23.40) and (23.44).

We record, for convenience, the consecutive differences, λ(n)a2−λ(n+1/2)a2,
with n = 0, 1/2, . . . , 2, and the ratios of adjacent differences,

λ(n)a2 − λ(n+1/2)a2

λ(n+1/2)a2 − λ(n+1)a2
, (11.51)

as found in (11.23a)–(11.23f):

λ(0)a2 − λ(1/2)a2 = 0.1818182
: 6.333 , (11.52a)

λ(1/2)a2 − λ(1)a2 = 0.0287081
: 5.609 , (11.52b)

λ(1)a2 − λ(3/2)a2 = 0.0051185
: 5.393 , (11.52c)

λ(3/2)a2 − λ(2)a2 = 0.0009491
: 5.317 (11.52d)

λ(2)a2 − λ(5/2)a2 = 0.0001785
: 5.288 (11.52e)

λ(5/2)a2 − λ(3)a2 = 0.0000338
: 5.277 . (11.52f)

λ(3)a2 − λ(7/2)a2 = 0.0000064

Now let us adopt, provisionally, the lower limit of λ2 given in (11.34).
The following exhibits the lower bounds [(10.133)] thereby produced for n =
1
2 , . . . , 7

2 , along with the corresponding upper bounds:
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n =
1
2

: 5.8181818 > λ1a
2 > 5.7687375 , (11.53a)

n = 1 : 5.7894737 > λ1a
2 > 5.7817156 , (11.53b)

n =
3
2

: 5.7843552 > λ1a
2 > 5.7829735 , (11.53c)

n = 2 : 5.7834061 > λ1a
2 > 5.7831500 , (11.53d)

n =
5
2

: 5.7832276 > λ1a
2 > 5.7831794 , (11.53e)

n = 3 : 5.7831939 > λ1a
2 > 5.7831848 , (11.53f)

n =
7
2

: 5.7831875 > λ1a
2 > 5.7831858 . (11.53g)

We also give, analogously to (11.52a)–(11.52f), the consecutive differences and
their ratios:

λ(1)a2 − λ(1/2)a2 = 0.0129781
: 10.3 , (11.54a)

λ(3/2)a2 − λ(1)a2 = 0.0012579
: 7.11 , (11.54b)

λ(2)a2 − λ(3/2)a2 = 0.0001769
: 6.02 , (11.54c)

λ(5/2)a2 − λ(2)a2 = 0.0000294
: 5.44 , (11.54d)

λ(3)a2 − λ(5/2)a2 = 0.0000054
: 5.4 . (11.54e)

λ(7/2)a2 − λ(3)a2 = 0.0000010

All is as expected: With each additional iteration the upper bound decreases
and the lower bound increases. Notice also in (11.53a)–(11.53g) that the net
increase of the lower bound, 0.01445, is less than half of the net decrease
in the upper bound, 0.03499. This means that we have made not too bad
a choice of λ2. A related and more striking observation is the contrast be-
tween the smooth convergence of the upper limit ratios in (11.52a)–(11.52f),
and the initially more rapid descent of the lower limit ratios in (11.54a)–
(11.54e); this shows that the second mode is more suppressed in the lower
limit, becoming dominant only after several iterations have been performed.

And now the stage is set for an internal determination of λ2. According
to Problem 11.2, the asymptotic value for the ratios displayed in (11.52a)–
(11.52f) is λ2/λ1. The evident convergence makes it plain that λ2/λ1 ≤ 5.277,
or, using the six significant figures already established for λ1 in (11.53g), that
λ2a

2 ≤ 30.52.
First we test whether, as claimed in connection with (25.111) in [9], the

use of a λ2 value greater that λ2 will be made apparent by a qualitative
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change in the iteration process. Displayed below are the results of lower limit
computations employing λ2a

2 = 30.52, along with the consecutive differences
and their ratios:

n =
1
2

: 5.7753570

: 0.0073961
n = 1 : 5.7827530 : 18.3 ,

: 0.0004052

n =
3
2

: 5.7831582 : 15.6 ,

: 0.0000260
n = 2 : 5.7831842 : 16 , (11.55)

: 0.00000017

n =
5
2

: 5.78318588 : 20 ,

: 0.000000084
n = 3 : 5.78318597 : −70 .

: −0.0000000012

n =
7
2

: 5.783185965

The contrast with the ratios in (11.54a)–(11.54e) is eloquent. Clearly the
anticipated has happened: After an initial iterative increase in the “lower
limits,” that rise has ceased and the convergence to λ1 from above has begun.
As a result we learn that λ2a

2 < 30.52, and that

λ1a
2 < 5.783185965 , (11.56)

A computer search program would be most effective in the last step, the
quest for the transition from the qualitative behavior of (11.55) to that of
(11.54a)–(11.54e), which identifies λ2. Instead, we present just one example,
where the number 30.52 is reduced about 0.2% to 30.45:

n =
1
2

: 5.7752353

: 0.0074987
n = 1 : 5.7827340 : 17.8 ,

: 0.0004209

n =
3
2

: 5.7831548 : 14.6 ,

: 0.0000288
n = 2 : 5.7831836 : 13.2 , (11.57)

: 0.00000217

n =
5
2

: 5.7831858 : 12.1 ,
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: 0.00000018
n = 3 : 5.78318594 : 10.6 .

: 0.000000017

n =
7
2

: 5.783185961

The situation has become normal, and so we know that λ2a
2 > 30.45, and

that
λ1a

2 > 5.783185961 . (11.58)

What have we accomplished? The best determination of λ1a
2 in (11.53g)

can be presented as

λ1a
2 = 5.7831866 ± 0.0000009 , (11.59)

an accuracy of about one part in a ten million. Now, without any additional
input, λ1a

2 has, according to (11.56) and (11.58), been located at

λ1a
2 = 5.783185963 ± 0.000000002 , (11.60)

an accuracy of three parts in ten billion.
We have refrained from explicit use of the true values of λ1 and λ2, which

are the squares of γ01 and γ02, respectively:

λ1a
2 = 5.78318596297 , (11.61a)

λ2a
2 = 30.4712623438 . (11.61b)

That our choice of λ2 in (11.57) is very close to λ2 is quite apparent in the
significantly increased rate of convergence there, as compared with (11.54a)–
(11.54c). What happens if we use the actual λ2 value? The result of λ(7/2)

increases almost indiscernibly, the successive ratios somewhat more, in par-
ticular, the final ratio, 10.6, is raised to 13.2. And that is reasonable, for then
these ratios are converging toward (Problem 11.3)

λ3

λ1
= 12.949092 . (11.62)

11.2 H Modes

The restriction (10.41) on H modes is automatically satisfied for all but the
H0n modes of a circular guide. In the construction of the dominant mode of
the latter type, H01, which is actually the third highest H mode, after H11

and H21, each approximant function must obey the requirement
∫ a

0

R
(n)
1 (r) r dr = 0 , n = 0, 1, 2, . . . . (11.63)
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The successive approximant functions obtained from the defining equation
(

d2

dr2
+

1
r

d
dr

)
R

(n)
1 (r) =

1
r

d
dr

r
d
dr

R
(n)
1 (r) = −R

(n−1)
1 (r) (11.64)

automatically satisfies the boundary condition (10.43) in consequence of
(11.63). This is proved by multiplying (11.64) by r and integrating with re-
spect to r from 0 to a, whence

a
d
dr

R
(n)
1 (a) = −

∫ a

0

R(n−1)(r) r dr = 0 , n = 1, 2, . . . . (11.65)

A simple generating function, consistent with (11.63), is

R
(0)
1 (r) = a2 − 2r2 , (11.66)

and the first three approximation functions deduced from (11.64) subject to
(11.63), are

R
(1)
1 (r) =

1
8

(
2
3
a4 − 2a2r2 + r4

)
, (11.67a)

R
(2)
1 (r) =

1
288

(
7
4
a6 − 6a4r2 +

9
2
a2r4 − r6

)
, (11.67b)

R
(3)
1 (r) =

1
18432

(
39
5

a8 − 28a6r2 + 24a4r4 − 8a2r6 + r8

)
. (11.67c)

The successive approximations to γ1a as calculated from (10.90) using these
functions are

γ
(0)
1 a =

√
24 = 4.898980 , (11.68a)

γ
(1/2)
1 a =

√
16 = 4.0 , (11.68b)

γ
(1)
1 a =

√
15 = 3.872983 , (11.68c)

γ
(3/2)
1 a =

√
192
13

= 3.843076 , (11.68d)

γ
(2)
1 a =

√
1456
99

= 3.834980 , (11.68e)

γ
(5/2)
1 a =

√
9504
647

= 3.832667 , (11.68f)

γ
(3)
1 a =

√
116460
7931

= 3.831990 . (11.68g)

The third approximant exceeds the correct value, γ1a = 3.8317060, by
0.000284, an error of roughly 7 in 105. The 3/2 approximation is of sufficient
accuracy for most purposes, being in error by 0.025%. The relatively slow
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convergence, in contrast to that found for the E01 mode, is attributable to the
smaller value of (γ2/γ1)4, 11.24. Successive upper limits to γ2a, deduced from
(10.115a) and (10.115b) with the correct value of γ1a are: 10.6355, 7.8845,
7.3368, 7.1505, 7.0756, 7.0433. The last result exceeds the true value of γ2a,
7.015587, by 0.4%. A lower limit to the second eigenvalue is provided by the
result, to be established in Problem 11.4, that

∞∑
n=1

1
λ2

n

=
a4

192
, (11.69)

whence
1
λ2

1

+
1
λ2

2

<
a4

192
. (11.70)

If λ1 is replaced by the upper bound supplied by the third approximation,
we obtain γ2a > 6.4701. The lower limits to γ1a deduced from (10.133) are:
3.324252, 3.800209, 3.826674, 3.830588, 3.831416, 3.831625. On combining the
upper and lower limits, we find, as successive estimates to γ1a:

3.662126 ± 0.337874 , (11.71a)
3.836596 ± 0.036387 , (11.71b)
3.834875 ± 0.008201 , (11.71c)
3.832784 ± 0.002196 , (11.71d)
3.832042 ± 0.000626 , (11.71e)
3.831807 ± 0.000183 . (11.71f)

Thus the third approximation determines γ1a with an uncertainty of ±5 in
105.

11.3 Problems for Chap. 11

1. Work out the Coulomb Green’s function in cylindrical coordinates, by
finding the reduced Green’s function (i.e., the part depending on radial
coordinates) either directly or through an eigenfunction expansion. In this
way establish the equality (11.26).

2. By developing a perturbative argument, show that for large n, the suc-
cessive ratios of upper bounds,

λ(n−1/2) − λ(n)

λ(n) − λ(n+1/2)
(11.72)

approach λ2/λ1 from above.
3. In general, show that the successive ratios of lower bounds approach the

same limit, but more slowly. However, if the lower limit on λ2 is replaced
by the exact value of λ2, the convergence is much more rapid, and the
limiting value is λ3/λ1.

4. Establish the sum rule for the H-mode eigenvalues, (11.69).
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Steady Currents and Dissipation

12.1 Variational Principles for Current

Although the focus of this book is on radiation, the interaction of electro-
magnetic radiation with matter is described in terms of electric currents and
dissipation, so it is useful to first remind ourselves of the steady-state context.
Suppose we have a medium with a conductivity σ(r), which is defined in terms
of the linear relation between the electric field and the electric current:

J = σE . (12.1)

In statics, the electric field is derived from a scalar potential,

E = −∇φ , (12.2)

and in addition the current density is divergenceless,

∇ · J = 0 , (12.3)

which is the static version of the local conservation of charge, (1.14). This
implies that the potential obeys the equation

∇ · σ(−∇φ) = 0 . (12.4)

The rate at which the field does work on the current, or the power of Joule
heating, is given by

P =
∫

(dr)J · E =
∫

(dr)σE2 =
∫

(dr)
J2

σ
. (12.5)

The following construction of the power,

P [J, φ] =
∫

(dr)
[
2J · (−∇φ) − J2

σ

]
, (12.6)
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is stationary with respect to small variations in the current density and the
potential, leading to the following equations holding in the volume

δJ : J = σ(−∇φ) = σE , (12.7a)
δφ : ∇ · J = 0 . (12.7b)

Omitted here was a surface contribution

δP = −2
∫

(dr)∇ · (J δφ) = −2
∮

S

dSn · J δφ , (12.8)

where S is the surface surrounding the region of interest, and n is the outward
normal. Let us suppose that we insert, as part of that boundary, conducting
surfaces Si, electrodes, on which the potential is specified:

φ = φi = const on Si , (12.9)

that is, δφ is zero on Si. Let us denote the rest of the boundary as S′:

S = S′ +
∑

i

Si , (12.10)

so that (12.8) is

δP = −2
∫

S′
dS n · J δφ , (12.11)

where δφ is arbitrary. This will be zero, δP = 0, if

n · J = 0 on S′ , (12.12)

which is to say, no current flows out of or into the region of interest, except
through the electrodes.

With prescribed potentials φi on the electrode surfaces Si, P [J, φ] is sta-
tionary for variations about J = σE, ∇ · J = 0, n · J = 0 on S′. Suppose we
now accept (12.1) as given. Then the two terms in (12.6) combine to give

P [φ] =
∫

(dr)σ(−∇φ)2 , (12.13)

which when varied with respect to φ yields the current conditions (12.3) and
(12.12). Because P [φ] is stationary for infinitesimal variations, for finite vari-
ations about the true potential φ0,

P [φ0 + δφ] = P +
∫

(dr)σ(−∇δφ)2 > P ; (12.14)

the correct potential minimizes the power loss, with given potentials φi on the
electrodes. On the other hand, if we accept (12.3) and (12.12), we have
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P [J] = −2
∑

i

φi

∫
Si

dS n · J −
∫

(dr)
J2

σ
, (12.15)

which is stationary for infinitesimal variations in J (Problem 12.1), while for
finite variations,

P [J0 + δJ] = P −
∫

(dr)
(δJ)2

σ
< P , (12.16)

so the correct current makes P a maximum, for given φi.
From the latter form (12.15) by rescaling the current J → λJ and applying

the stationary principle at λ = 1 we learn that

0 = −2
∑

i

φi

∫
Si

dS n · J − 2
∫

(dr)
J2

σ
, (12.17)

or

P =
∫

(dr)
J2

σ
=
∑

i

φiIi , (12.18)

where
Ii = −

∫
Si

dS n · J (12.19)

is the current input at the ith electrode. Of course,

∑
i

Ii = −
∫

S

dS n · J = −
∫

(dr)∇ · J = 0 . (12.20)

And therefore only potential differences matter in (12.18), that is,
∑

i

(φi + const.)Ii =
∑

i

φiIi . (12.21)

Another stationary principle begins with

P = 2
∑

i

φiIi −
∫

(dr)
[
2J · (−∇φ) − J2

σ

]

= −2
∫

S

dS n · Jφ +
∫

(dr)
[
2∇ · (Jφ) − 2∇ · Jφ +

J2

φ

]
(12.22)

which leads us to

P [J, φ] =
∫

(dr)
[
J2

σ
− 2φ∇ · J

]
. (12.23)

Here

Ii = −
∫

Si

dS n · J is specified, and n · J = 0 on S′ . (12.24)
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If (12.23) undergoes infinitesimal variations, we recover the appropriate equa-
tions

δφ : ∇ · J = 0 , δJ : J = σ(−∇φ) . (12.25)

The latter follows from the volume variation. What is left is a surface integral:

δP = −2
∫

(dr)∇ · (φ δJ) = −2
∫

dS φn · δJ , (12.26)

subject to ∫
Si

dS n · δJ = 0 , n · δJ = 0 on S′ . (12.27)

Therefore
δP = −2

∑
i

∫
Si

dS n · δJφ = 0 , (12.28)

subject to the first constraint in (12.27), from which we conclude that on Si,
φ = φi, a constant.

Next, impose
J = σ(−∇φ) (12.29)

in (12.23). Then we have

P [φ] =
∫

(dr)
[
σ(−∇φ)2 − 2φ∇ · (σ(−∇φ))

]

= −2
∫

S

dS φn · σ(−∇φ) −
∫

(dr)σ(−∇φ)2

= −2
∑

i

∫
Si

dS φn · σ(−∇φ) −
∫

(dr)σ(−∇φ)2 . (12.30)

Here we have used on S′

0 = n · J = n · σ(−∇φ) . (12.31)

Now under a finite variation around the true potential φ0

P [φ0 + δφ] = P − 2
∑

i

∫
Si

dS δφn · σ(−∇δφ) −
∫

(dr)σ(−∇δφ)2 . (12.32)

Now if we only demand that δφ be constant on Si, that is, φ is constant but
not necessarily the correct potential, the first integral here vanishes:

−
∫

Si

dS δφn · σ(−∇δφ) = −δφ

∫
Si

dS n · σ(−∇δφ) = δφ δIi = 0 , (12.33)

so P [φ] < P ; for a given Ii the correct φ makes P maximum. On the other
hand, when we set ∇ · J = 0 in (12.23), then
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P [J] =
∫

(dr)
J2

σ
, (12.34)

and under a finite variation

P [J + δJ] = P +
∫

(dr)
(δJ)2

σ
> P , (12.35)

so the correct J makes P a minimum, again subject to given Ii. These results
are opposite to those obtaining in (12.14) and (12.16), in which the potentials
on the electrodes, not the currents supplied by them, are specified.

12.2 Green’s Functions

Suppose we now introduce a Green’s function for the potential, so that the
steady current condition

∇ · J = ∇ · σ(−∇φ) = 0 , (12.36)

corresponds to the following Green’s function equation

−∇ · [σ∇G(r, r′)] = δ(r − r′) . (12.37)

The boundary conditions on the Green’s function are

n · ∇G = 0 on S′ , G = 0 on Si , (12.38)

Dirichlet boundary conditions on Si and Neumann ones on S′. Multiply the
Green’s function equation (12.37) by φ(r) and the potential equation (12.36)
by G(r, r′) and subtract:

−φ(r)∇ · [σ∇G(r, r′)] + G(r, r′)∇ · [σ∇φ(r)] = δ(r − r′)φ(r′) . (12.39)

The left-hand side of this equation is a total divergence:

∇ · [G(r, r′)σ∇φ(r) − φ(r)σ∇G(r, r′)] , (12.40)

so when we integrate over the volume we obtain

φ(r′) =
∫

S′+
∑

i
Si

dS n · [G(r, r′)σ∇φ(r) − φ(r)σ∇G(r, r′)]

= −
∑

i

φi

∫
Si

dS σ(r)n · ∇G(r, r′) , (12.41)

because on S′

n · ∇φ = 0 , n · ∇G(r, r′) = 0 , (12.42)

while on Si
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φ = φi , G = 0 . (12.43)

Changing variables, and using the reciprocity relation (Problem 12.2)

G(r, r′) = G(r′, r) , (12.44)

we obtain
φ(r) =

∑
j

φj

∫
Sj

dS′ σ(r′)(−n′ · ∇′)G(r, r′) . (12.45)

Now compute the current input by the ith electrode,

Ii = −
∫

Si

dS n · J = −
∫

Si

dS σ n · (−∇φ) . (12.46)

Inserting (12.45) into this we obtain a linear relation between the current
input at the ith electrode and the potential on the jth:

Ii =
∑

j

Gijφj (12.47)

where the “coefficients of conductance” are given by

Gij = −
∫

Si

dS

∫
Sj

dS′ σ(r)n · ∇σ(r′)n′ · ∇′G(r, r′) = Gji . (12.48)

Then we can write the power as

P =
∑

i

φiIi =
∑
ij

φiGijφj . (12.49)

From this we see
∂P

∂φi
= 2Ii , (12.50)

which is consistent with (12.11). We already know from (12.20) that
∑

i Ii = 0,
for arbitrary φi. Therefore, ∑

i

Gij = 0 . (12.51)

A direct proof of this is as follows:

∑
i

Gij =
∫

Sj

dS′ σ(r′)n′ · ∇′
∫

S

dS n · σ(r)(−∇)G(r, r′)

=
∫

Sj

dS′ σ(r′)n′ · ∇′
∫

(dr)∇ · [σ(r)(−∇)G(r, r′)]

= 0 , (12.52)

since the last volume integral is 1.
Consider the case of two electrodes. Then
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G11 + G21 = 0 , G12 + G22 = 0 . (12.53)

Thus there is a single conductance, which we can take to be

G = −G12 = −G21 = G11 = G22 . (12.54)

The current in the two electrodes is

I1 = −I2 = G11φ1 + G12φ2 = G(φ1 − φ2) = GV = I . (12.55)

The resistance is defined as the inverse of the conductance, G = 1/R. Then
the power is

P =
∑

i

Iiφi = IV = GV 2 = RI2 . (12.56)

As an example consider a cylindrical conductor, of arbitrary cross section,
with σ varying arbitrarily across the section. The Green’s function equation
(12.37) is

− ∂

∂z
σ

∂

∂z
G − ∇⊥ · (σ∇⊥G) = δ(z − z′)δ(r⊥ − r′

⊥) . (12.57)

Now when we integrate this over the cross section of the cylinder we encounter
∫

(dr⊥)∇⊥ · (σ∇⊥G) =
∮

C

ds σ n · ∇⊥G = 0 , (12.58)

where the line integral is extended over the circumference C of the cylinder,
on which (12.42) applies, and n is perpendicular to the walls of the cylinder.
We are left with, under the assumption that σ does not depend on z,

− ∂2

∂z2

∫
(dr⊥)σG = δ(z − z′) . (12.59)

The solution of this equation is (Problem 12.3)
∫

(dr⊥)σ(r⊥)G(r, r′) =
z<(L − z>)

L
, (12.60)

where L is the length of the cylinder. We have imposed the boundary condition
(12.43), G = 0 at z = 0, L. Then the conductance is obtained from (12.48)

G =
1
R

= −
∫

z,z′=0

(dr′⊥) σ(r′
⊥)

∂

∂z

∂

∂z′

[
−zz′

L

]
=

1
L

∫
(dr⊥)σ(r⊥) , (12.61)

which is reminiscent of the corresponding formula for the capacitance,

C =
1
a

∫
(dr⊥) ε(r⊥) , (12.62)

a being the separation between the parallel plates of a capacitor, filled with
a dielectric of permittivity ε.
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12.3 Problems for Chap. 12

1. Use Lagrange multipliers to show that P [J ], (12.15), is stationary for
infinitesimal variations.

2. Prove the reciprocity relation (12.44) directly from the differential equa-
tion (12.37) and the boundary conditions (12.38).

3. Directly solve (12.59) for (12.60).
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The Impedance Concept in Waveguides

13.1 Waveguides and Equivalent Transmission Lines

In preceding chapters we have discussed the nature of the fields in a waveguide,
oriented along the z-axis,

E⊥(x, y, z) = E(x, y)
(
αeiκz + βe−iκz

)
, (13.1)

H⊥(x, y, z) = H(x, y)
(
αeiκz − βe−iκz

)
. (13.2)

In the mode description given in Chap. 6, for an H mode, in (6.33a) and
(6.33b),

H⊥ = −∇ψ , E⊥ = e × ∇ψ , (13.3a)

while for an E mode, (6.32a) and (6.32b) give

E⊥ = −∇ϕ , H⊥ = −e × ∇ϕ . (13.3b)

We discussed the analogy between the z-variation of the transverse electric
and magnetic field with that of voltage and current in a transmission line.
Factors in that identification are essentially arbitrary, and for example, the
characteristic impedance of the equivalent transmission line is dictated by
convenience only, although absolute factors are naturally fixed by the complex
power identification, (6.76) and (6.77),

1
2

∫
dσ · E × H∗ =

1
2
V I∗ . (13.4)

The analogy is applicable to more than one propagating mode and also to
attenuated modes, where the characteristic impedance and propagation con-
stant κ become imaginary. The analogy is also immediately applicable to pure
electrical discontinuities, that is, where the dielectric constant has discontinu-
ities in z. (See Chap. 9, for example.) There the continuity of the tangential
components of E and H become the continuity of the current and voltage if
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the characteristic impedance is ∝ k/κ (for H modes), the arbitrary factor be-
ing the same on both sides of the discontinuity. Simplification of this result lies
in the possibility of satisfying the boundary conditions with only one mode.
The equivalent transmission line problem is, rigorously, given by specifying
the impedance as Z = 1 for z < 0, and Z = κ/κ′ for z > 0, the discontinu-
ity lying at z = 0. This describes the actual fields everywhere. This concept
is less trivial, and its utility more apparent, in connection with geometrical
discontinuities, to which we now turn.

13.2 Geometrical Discontinuities and Equivalent Circuits

We now consider geometrical discontinuities, such as those provided by an
abrupt change in the radius of the guide, or a partial barrier, such as an iris.
What is the nature of the fields in the vicinity of such a geometrical discon-
tinuity? Higher mode fields must necessarily be present in order to satisfy
the boundary conditions. At a sufficient distance from the discontinuity the
field consists only of a propagating mode or modes. The problem can be for-
mulated as that of finding the amplitude of the fields moving away from the
discontinuity in terms of those falling on it, that is, to find all the reflection
and transmission coefficients. This formulation has two disadvantages:

• Restrictive conditions imposed by conservation of energy have a compli-
cated expression.

• The treatment of more than one discontinuity (which is the whole point
of the subject) is complicated, involving multiple reflections, etc.

Instead of dealing with incident and reflected lowest mode fields, let us in-
troduce total electric and magnetic fields of the lowest modes in the various
guides, that is, the voltages and currents. The relation between incident and
reflected fields becomes a relation between currents and voltages which have
the form of a circuit equation. Conservation of energy finds its usual simple
expression for a dissipationless network (or a dissipative one, for that mat-
ter), and the combinatorial problems are reduced to the conventional rules of
impedance combinations and transformations.

13.2.1 S-Matrix

In more detail, consider a general situation with n channels, all mutually con-
nected, with an arbitrary geometrical configuration within the mutual region,
as illustrated in Fig. 13.1. The far fields in the ith guide are

E⊥(x, y, z) = Ei(xi, yi)
(
αieiκizi + βie−iκizi

)
, (13.5a)

H⊥(x, y, z) = Hi(xi, yi)
(
αieiκizi − βie−iκizi

)
, (13.5b)

zi being a coordinate measured along the ith guide and with arbitrary origin in
or near the discontinuity region. The αis are arbitrary amplitudes of incident
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Fig. 13.1. Generic sketch of junction between waveguides

fields, and the βis are the amplitudes of reflected fields. In view of the linearity
of the problem,

βi =
∑

j

Sijαj . (13.6)

The scattering matrix Sij contains the ensemble of reflection and transmission
coefficients. In matrix form, with




α1

α2

.

.

.


 = ψ ,




β1

β2

.

.

.


 = φ , φ = Sψ . (13.7)

A general restriction on S is provided by the reciprocity theorem. If in each
guide, the fields are normalized such that

∫
dσi · Ei × H∗

i = 1 (13.8)

[this is the same normalization given in (6.56) and (6.59)], or at least the
integral is the same for all guides, then S is symmetric

Sij = Sji , ST = S , (13.9)

where T denotes transposition. If the system is dissipationless, it is required,
with this normalization, that

∑
i

|βi|2 = (φ, φ) =
∑

i

|αi|2 = (ψ,ψ) , (13.10)

that is, the matrix S is unitary,

S†S = S∗S = 1 . (13.11)

(The proof of this assertion appears in the following paragraph.) Introduce
now the current and voltage,
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Vi(zi) = αieiκizi + βie−iκizi , (13.12a)
Ii(zi) = αieiκizi − βie−iκizi , (13.12b)

where at zi = 0, Vi = αi + βi, Ii = αi − βi. These are essentially the actual
electric and magnetic fields in the ith channel, a wavelength back from the
origin. They do not represent the amplitudes of the actual fields at the origin,
since here the higher modes will be present. Now

V =




V1

V2

.

.

.


 = ψ + φ , I =




I1

I2

.

.

.


 = ψ − φ , (13.13)

or
V = (1 + S)ψ , I = (1 − S)ψ , (13.14)

that is,

V =
1 + S

1 − S
I = ZI . (13.15)

Thus we obtain the relation of circuit form between the voltage and current,
in terms of the impedance matrix Z = (1+S)/(1−S). Now it is apparent that

ZT = Z , Z∗ = −Z , (13.16)

which are restatements of the reciprocity theorem (13.9) and of energy con-
servation (13.10), respectively. Thus energy conservation here states simply
that all the elements of the impedance matrix are imaginary. Hence the reflec-
tivity property of the junction can be described in terms of a purely reactive
network as defined by Z. The reflections induced by the network on the trans-
mission lines will be identical with those induced in the actual guide by the
geometrical discontinuity.

Notice that we have arbitrarily chosen the characteristic impedance of each
guide as 1. This is neither necessary nor natural. Introduce a transformed
expression by [cf. (6.104a) and (6.104b)]

V ′
i =

√
ZiVi , I ′i =

1√
Zi

Ii . (13.17)

Then the new characteristic impedance in the ith guide is Zi. In matrix form,
introduce the diagonal matrix

z1/2 =




Z
1/2
i 0 0 . .

0 Z
1/2
2 0 . .

0 0 Z
1/2
3 . .

. . . . .

. . . . .




, (13.18)
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so that
V ′ = z1/2V , I ′ = z−1/2I . (13.19)

Hence, V ′ = z1/2Zz1/2I ′, or the new impedance matrix is

Z′ = z1/2Zz1/2 , Z ′
ij = Zij

√
ZiZj , (13.20)

which is still symmetric and purely imaginary, and represents an equally valid
description. It would, in fact, be better to introduce an arbitrary impedance,
from the beginning. Thus for the distant fields in the ith guide, we write,
instead of (13.5a) and (13.5b),

E⊥ = EiZ
1/2
i

(
αieiκizi + βie−iκizi

)
, (13.21a)

H⊥ = HiZ
−1/2
i

(
αieiκizi − βie−iκizi

)
, (13.21b)

with the normalization (13.8), with the normal toward the junction. Define

Vi(zi) = Z
1/2
i

(
αieiκizi + βie−iκizi

)
, (13.22a)

Ii(zi) = Z
−1/2
i

(
αieiκizi − βie−iκizi

)
, (13.22b)

with the zi = 0 values

Vi = Z
1/2
i (αi + βi) , (13.23a)

Ii = Y
1/2
i (αi − βi) , Yi = 1/Zi . (13.23b)

The net power flowing into the junction is

1
2
Re
∫

dσ · E × H∗ =
1
2

∑
i

(
|αi|2 − |βi|2

)
=

1
2

[(ψ,ψ) − (φ, φ)]

=
1
2
Re
∑

i

ViI
∗
i . (13.24)

As before, if the system is dissipationless, this must vanish, so S∗S = 1, or
Re Zij = 0. Now

z−1/2V = (1 + S)ψ , z1/2I = (1 − S)ψ , (13.25)

which implies

V = z1/2 1 + S

1 − S
z1/2I , (13.26)

that is, the impedance and admittance matrices are given by

Z = z1/2 1 + S

1 − S
z1/2 , Y = y1/2 1 − S

1 + S
y1/2 , (13.27)

which may be solved for the scattering matrix:
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S = z−1/2 Z − z

Z + z
z1/2 = y−1/2 y − Y

y + Y
y1/2 , (13.28)

a matrix generalization of the usual simple relation between reflection coeffi-
cients and impedance or admittance. Notice that in addition to the arbitrari-
ness in the assigned value of Zi, one also has the possibility of reversing the
positive direction of current and voltage in any channel. This does not change
the characteristic impedance and is equivalent to changing the sign of Z

1/2
i ,

which of course leaves the impedance matrix symmetric and imaginary. Hence
in the matrix z1/2, the signs of Z

1/2
i can be chosen arbitrarily. A further degree

of arbitrariness lies in the choice of reference point in each of the arms. One
is at liberty (and it may be convenient) to shift the choice in reference point,
thereby altering the definition of current and voltage and transforming the
impedance matrix, but of course without altering in the slightest its general
properties or the information contained therein.

13.3 Normal Modes

This transformation and other algebraic manipulations with the impedance
matrix are facilitated by introducing the concept of normal modes for the
system. By a normal mode we shall understand an assignment of incident
fields in each guide such that the amplitude of the reflected field in each guide
equals the amplitude of the incident field times a constant which is the same
for all guides, that is, the entire reflected field is a multiple of the incident
field, βi = Cαi. If energy conservation is to hold, there can only be a phase
shift, that is, C = e2iϑ. Thus if we choose a vector ψ such that φ = Cψ, this
means from (13.7) that we have chosen a characteristic vector (or eigenvector)
of the scattering matrix. One knows that for an n-dimensional unitary matrix
there are n such and they can be chosen normalized and orthogonal. Hence,
let the characteristic vectors of the scattering matrix be ψ(λ), with

(ψ(λ′), ψ(λ)) = δλλ′ , (13.29)

and let the characteristic values be

S(λ) = e2iϑλ . (13.30)

It now follows that a normal mode is also such that the input impedance
in each branch is the same, relative to the characteristic impedance of that
branch. For, since from (13.25)

V = z1/2(1 + S)ψ , I = z−1/2(1 − S)ψ , (13.31)

in the λ normal mode,
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V = z1/2(1 + S(λ))ψ(λ) , I = z−1/2(1−S(λ))ψ(λ) , and V = z
1 + S(λ)

1 − S(λ)
I .

(13.32)
Thus, the impedance matrix is diagonal, with the λth element

(
Z

z

)(λ)

=
1 + S(λ)

1 − S(λ)
,

(
Y

y

)(λ)

=
1 − S(λ)

1 + S(λ)
. (13.33)

The utility of this concept comes from the fact that a matrix may be con-
structed directly if its characteristic values and characteristic vectors are given.
Further, any algebraic function of that matrix can be constructed with equal
ease. Thus, we assert that

Sij =
∑

λ

S(λ)ψ
(λ)
i ψ

(λ)∗
j . (13.34)

We must show that the matrix thus defined also has the correct characteristic
vectors and values. Now

(Sψ(λ))i =
∑

j

Sijψ
(λ)
j =

∑
λ′,j

S(λ′)ψ
(λ′)
i ψ

(λ′)∗
j ψ

(λ)
j = S(λ)ψ

(λ)
i , (13.35)

in virtue of the orthogonality and normalization of the ψ(λ)s, (13.29). Any
algebraic function of S, f(S) has the same characteristic vectors, and the
characteristic values are f(S(λ)), that is,

[f(S)]ij =
∑

λ

f(S(λ))ψ(λ)
i ψ

(λ)∗
j . (13.36)

In particular

z−1/2Zz−1/2 =
1 + S

1 − S
and y−1/2Yy−1/2 =

1 − S

1 + S
(13.37)

are algebraic functions of S and therefore

[
z−1/2Zz−1/2

]
ij

=
Zij√
ZiZj

=
∑

λ

1 + S(λ)

1 − S(λ)
ψ

(λ)
i ψ

(λ)∗
j

= i
∑

λ

cot ϑλψ
(λ)
i ψ

(λ)∗
j , (13.38a)

[
y−1/2Yy−1/2

]
ij

=
Yij√
YiYj

=
∑

λ

1 − S(λ)

1 + S(λ)
ψ

(λ)
i ψ

(λ)∗
j

= −i
∑

λ

tan ϑλψ
(λ)
i ψ

(λ)∗
j . (13.38b)

This method is particularly useful in situations of high symmetry where the
characteristic vectors can be inferred by inspection.
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13.3.1 Shift of Reference Point

Consider now the change in the form of the impedance matrix produced by
a shift in the reference point. If the reference point in the ith guide is shifted
back a distance li, that is, zi = z′i − li, the voltage (13.22a) changes by

Vi(z) → Z
1/2
i

(
α′

ie
iκiz

′
i + β′

ie
−iκiz

′
i

)
, (13.39)

where
α′

i = αie−iκili , β′
i = βieiκili . (13.40)

In terms of the unitary matrix defined by (U)ij = eiκiliδij , ψ′ = U−1ψ, φ′ =
Uφ, and therefore the scattering matrix is transformed into S′ = USU, which
is not a unitary transformation. In general, this leads to a very complicated
transformation of the impedance matrix. Consider first, however, the simple
situation in which all the κili = ϕ are the same. Then U = eiϕ1 and S′ = e2iϕS.
Since the scattering matrix is changed only by a factor, the characteristic
vectors are unaltered and the characteristic values are changed to

S(λ)′ = e2iϕS(λ) = e2i(ϑλ+ϕ) , (13.41)

and therefore the new impedance matrix is given simply by

Z ′
ij√

ZiZj

= i
∑

λ

cot(ϑλ + ϕ)ψ(λ)
i ψ

(λ)∗
j . (13.42)

This is a matrix generalization of the usual impedance transformation from
one point to another. For just one guide, with Zi → z, this becomes

Z ′ = iz cot(ϑ + ϕ) = iz
cot ϑ cot ϕ − 1
cot ϑ + cot ϕ

= iz
Z
iz − tan κl

1 + Z
iz tan κl

, (13.43)

or
Z ′ =

Z − iz tan κl

1 − iZ
z tan κl

, (13.44)

which is the standard transformation.
Consider next the situation in which only one reference point is shifted,

that is,

U =




eiϕ 0 0 . .
0 1 0 . .
0 0 1 . .
. . . . .


 . (13.45)

Now the scattering matrix is essentially altered and the characteristic vectors
are altered. We shall proceed by trying to find the new characteristic vectors.
Let a new characteristic vector ψ′ be expressed in terms of the old ψ(λ)s by
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ψ′ =
∑

λ

cλU−1ψ(λ) . (13.46)

The equation to determine the new characteristic values of S is

S′ψ′ = S′ψ′ = USUψ′ = US
∑

λ

cλψ(λ) = U
∑

λ

S(λ)cλψ(λ) , (13.47)

or
S′
∑

λ

cλψ(λ) = U2
∑

λ

S(λ)cλψ(λ) . (13.48)

Hence
S′cλ =

∑
λ′

S(λ′)cλ′(ψ(λ),U2ψ(λ′)) , (13.49)

or [
S′ − S(λ)

]
cλ =

∑
λ′

S(λ′)cλ′
(
e2iϕ − 1

)
ψ

(λ)∗
1 ψ

(λ′)
1 . (13.50)

Hence, we may put [
S′ − S(λ)

]
cλ = ψ

(λ)∗
1 A , (13.51)

and the characteristic value equation to determine the new S′s is

1 =

[∑
λ

S(λ) |ψ(λ)
1 |2

S′ − S(λ)

] (
e2iϕ − 1

)
. (13.52)

Having found these, the characteristic vectors are given from (13.46) by

ψ′ = A
∑

λ

ψ
(λ)∗
1

S′ − S(λ)
U−1ψ(λ) , (13.53)

with A determined by (ψ′, ψ′) = 1, or

1 = |A|2
∑

λ

|ψ(λ)
1 |2

|S′ − S(λ)|2 = −|A|2S′
∑

λ

S(λ)|ψ(λ)
1 |2

(S′ − S(λ))2

= |A|2S′ d
dS′

1
e2iφ − 1

= −|A|2S′ 2ie2iϕ

(e2iϕ − 1)2
dϕ

dS′ , (13.54)

using (13.52) and the fact that |S′|2 = |S(λ)|2 = 1. The normalization factor
is therefore given by

|A|2 = −2i sin2 ϕ
1
S′

dS′

dϕ
, (13.55)

or writing S′ = e2iϑ′
,

|A|2 = 4 sin2 ϕ
dϑ′

dϕ
. (13.56)
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13.3.2 Lumped Network Description

This process combined with the previous ones enables one to shift each refer-
ence point. However, the above processes are somewhat intricate and it may
be advantageous to make use of the fact that shifting a reference point back
a distance l is equivalent to adding just this length of transmission line to the
system being represented by a lumped network. Now a length of transmission
line can be represented by a network which can then be added to the original
network and visually reduced back to the original form. Consider then the
simple illustrative problem of an equivalent network for a simple waveguide
of length l. For convenience choose the origin at the center. The voltage and
current will be of standard form

V (z) = z1/2
(
αeiκz + βe−iκz

)
, (13.57a)

I(z) = z−1/2
(
αeiκz − βe−iκz

)
. (13.57b)

At either end of the waveguide one sees incident and reflected waves, of re-
spective amplitudes

α1 = αe−iκl/2 , β1 = βeiκl/2 , (13.58a)
α2 = βe−iκl/2 , β2 = αeiκl/2 . (13.58b)

Thus
β1 = eiκlα2 , β2 = eiκlα1 , (13.59)

and the scattering matrix therefore has the form

S =
(

0 eiκl

eiκl 0

)
. (13.60)

It is evident from symmetry that the characteristic vectors of this matrix are

ψ(1) =
1√
2

(
1
1

)
, ψ(2) =

1√
2

(
1
−1

)
, (13.61)

and the characteristic values are

S(1) = eiκl , S(2) = −eiκl . (13.62)

Thus the characteristic values of the relative impedance matrix are from
(13.33) (

Z

z

)(1)

= i cot
κl

2
,

(
Z

z

)(2)

= −i tan
κl

2
. (13.63)

The elements of the relative impedance matrix are from (13.38a)

Z11

z
=

Z22

z
=

1
2

[(
Z

z

)(1)

+
(

Z

z

)(2)
]

= i cot κl , (13.64a)

Z12

z
=

Z21

z
=

1
2

[(
Z

z

)(1)

−
(

Z

z

)(2)
]

= i csc κl . (13.64b)
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Similarly, the elements of the relative admittance matrix are from (13.38b)

Y11

u
=

Y22

u
= i cot κl ,

Y12

u
=

Y21

u
= −i csc κl . (13.65)

In terms of the impedance matrix, the length of line can be represented by the
T section, shown in Fig. 13.2. Employing the admittance matrix we obtain a

Z11 − Z12 Z11 − Z12

Z12

Fig. 13.2. T section. Here, Z11 − Z12 = −iz tan κl/2 and Z12 = iz csc κl

Π-section representation, shown in Fig. 13.3. (See Problem 13.2.) Either of

−Y12

Y11 + Y12 Y11 + Y12

Fig. 13.3. Π section. Here, −Y12 = iu csc κl and Y11 + Y12 = −iu tan κl/2

these networks added to one of the terminals of an original network represent-
ing the system will produce a new network which corresponds to the reference
point of that transmission line moved back a distance l. Of course, l can be
negative (which is the same as shifting back a distance λg/2 − l). It is inter-
esting to consider the form of the circuit for a length l such that κl � 1. Then
the T section becomes that shown in Fig. 13.2, with Z11−Z12 → −izκl/2 and
Z12 → iz/κl. If the field quantities E and H are such that all the frequency
dependence is absorbed into the characteristic impedance z, then for an H
mode (i.e., the lowest mode), from (6.36d),

z =
K

c

ω

κc
=

K

c

ω√
ω2 − ω2

0

, (13.66)

where ω0 is the cutoff frequency and K is a pure number, an arbitrary function
of the geometry. Hence the series impedance is

−iz
κl

2
= −i

Kl

2c2
ω , (13.67)

which represents a pure inductance, see (5.5b). The shunt admittance is
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−iuκl = −i
l

K

(
ω − ω2

0

ω

)
, (13.68)

a parallel combination of capacitance and inductance, see (5.6b). [Recall the
discussion after (6.35b), where identical results are obtained if K = 1/ε.]
Hence, the circuit for a short length of waveguide, sustaining an H mode,
which describes its properties for all frequencies, subject to κl � 1, is given
by Fig. 13.4. Thus cutoff occurs at the parallel resonant frequency of the shunt

l
K

K
lω2

0

Kl
2c2

Kl
2c2

Fig. 13.4. Equivalent circuit for an H mode with κl � 1

element. It is interesting that this circuit is a direct pictorial description of
the property of an H mode. An H mode possesses longitudinal and transverse
H fields and a transverse E field. Thus we find the direct correspondence:

• Longitudinal H ≡ transverse conduction current ⇒ shunt inductance,
• Transverse H ≡ longitudinal conduction current ⇒ series inductance,
• Transverse E ≡ transverse displacement current ⇒ shunt capacitance.

The cutoff is now seen to arise from the shorting action of the transverse
conduction current. In the fundamental mode of a coax, there is no transverse
conduction current and no cutoff. The Π-section representation of the above
is shown in Fig. 13.5.

Kl
c2

l
2K

2K
lω2

0

l
2K

2K
lω2

0

Fig. 13.5. Equivalent Π-section circuit for an H mode with κl � 1

In a similar way for an E mode, the characteristic admittance is of the
form, from (6.36b),

u =
c

K ′
ω√

ω2 − ω2
0

, (13.69)

and the equivalent Π section is given in Fig. 13.6. Here the cutoff arises from
the series resonance of the series element. The T -section representation is
given in Fig. 13.7. [Identity with the results stated after (6.35b) is again
achieved if K ′ = 1/ε.] We again find a correspondence between the properties
of the mode and the circuit:
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l
2K

l
2K

K l
c2

c2

K lω2
0

Fig. 13.6. Equivalent Π-section circuit for an E mode with κl � 1

l
K

K l
2c2

K l
2c2

2c2

K lω2
0

2c2

K lω2
0

Fig. 13.7. Equivalent T -section circuit for an E mode with κl � 1

• Longitudinal E ≡ longitudinal displacement current ⇒ series capacitance,
• Transverse E ≡ transverse displacement current ⇒ shunt capacitance,
• Transverse H ≡ longitudinal conduction current ⇒ series inductance.

We must show how to include the prescription of the incident field into
the circuit. At z = 0, or λg back,

V = V inc + V refl , I = u(V inc − V refl) , (13.70)

or
V + zI = 2V inc , I + uV = 2I inc . (13.71)

The fact that V inc is independent of I, or I inc independent of V can be
represented by saying that the incident field is that produced by a constant
voltage generated in series with the line with generator voltage 2V inc, or a
constant current generator in shunt with the line, of generator current 2I inc,
as shown in Fig. 13.8. In the first case, since the generator is of constant

∼ ∼
2V inc

z

2I inc

u
→ I

↑ V

Fig. 13.8. Equivalent voltage and current generators

voltage it must be of zero impedance and

V = 2V inc − zI , or V + zI = 2V inc . (13.72)

In the second case, since the generator is of constant current it must be of
zero admittance and

I = 2I inc − uV , or I + uV = 2I inc . (13.73)
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13.3.3 Energy

The impedance (admittance) matrix representing a geometrical discontinuity
has all the general properties of ordinary low-frequency impedances (admit-
tances). Define the total reactive electrical energy associated with the discon-
tinuity by

EE =
ε

4

∫
(dr)|E|2 −

∑
i

li
k

8cκi

(
Yi|Vi|2 + Zi|Ii|2

)
, (13.74)

where the integral is extended over the entire region of the junction and out
to a distance li away from the origin in the ith guide. We take li to be a
half-integral number of guide wavelengths, sufficient in number that all higher
modes are attenuated. Under this condition, EE is independent of li. Similarly,
the total reactive magnetic energy is

EH =
µ

4

∫
(dr)|H|2 −

∑
i

li
k

8cκi

(
Yi|Vi|2 + Zi|Ii|2

)
. (13.75)

Of course, the additional terms represent the total electric or magnetic energy
associated with the propagating modes in the various guides, see (6.111). In
addition, we shall define a quantity Q as the average amount of energy being
dissipated per unit time in the region of the junction. Since we have neglected
dissipation along the guides themselves (but see Sect. 13.6), it is not necessary
to be precise about the region in question. Therefore, the dissipation (which
is really the extra dissipation associated with the junction) is assumed to be
localized. Now [see (6.115) and (6.106)]

1
2

∑
i

ViI
∗
i = Q− 2iω(EH − EE) . (13.76)

Hence,

1
2

∑
ij

ZijI
∗
i Ij = Q− 2iω(EH − EE) , (13.77a)

1
2

∑
ij

YijV
∗
i Vj = Q + 2iω(EH − EE) . (13.77b)

Breaking the impedance into resistive and reactive parts (and the admittance
into conductive and susceptive parts),

Zij = Rij + iXij , Yij = Gij − iBij , (13.78)

we have
1
2

∑
ij

RijI
∗
i Ij =

1
2

∑
ij

GijV
∗
i Vj = Q , (13.79a)

1
2

∑
ij

XijI
∗
i Ij =

1
2

∑
ij

BijV
∗
i Vj = −2ω(EH − EE) . (13.79b)
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Thus the resistive (conductive) matrix is positive definite (Q > 0). The reac-
tance (susceptance) matrix is positive definite if the electric energy exceeds
the magnetic. It is negative definite if the magnetic energy exceeds the electric.
Furthermore, neglecting dissipation, from the energy theorem (see Problem
13.3)

1
2

∑
ij

∂Xij

∂ω
I∗i Ij = −2(EH + EE) , (13.80a)

1
2

∑
ij

∂Bij

∂ω
V ∗

i Vj = 2(EH + EE) . (13.80b)

Hence the frequency derivative of the reactance matrix is always negative
definite, and the frequency derivative of the susceptance matrix is always pos-
itive definite. All these results are generalizations of well-known low-frequency
theorems. (See also Sect. 6.6.) The essential difference is that at low frequen-
cies there exist discontinuities (coils, condensers) with which are associated
only magnetic or electric energy. This is not possible, except to a first ap-
proximation, when the dimensions are comparable with the wavelength. It
is instructive to see how the assumption of pure magnetic or electric energy
leads to the conventional results for a simple impedance. Thus if EH = 0.

1
2
B|V |2 = 2ωEE ,

1
2

∂B

∂ω
|V |2 = 2EE ,

∂B

∂ω
=

B

ω
, (13.81)

so B = ωC and we have a pure capacitive energy

EE =
1
4
C|V |2 , (13.82)

that is, C > 0. If EE = 0,

1
2
X|I|2 = −2ωEH ,

1
2

∂X

∂ω
|I|2 = −2EH ,

∂X

∂ω
=

X

ω
, (13.83)

so X = −ωL and we have a pure inductive energy

EH =
1
4
L|I|2 , (13.84)

that is, L > 0.

13.4 Variational Principle

The relation (13.79b) between reactance (susceptance) and the difference be-
tween magnetic and electric energy is one of the most fundamental equations
of the theory for it forms the basis of the variational principle. Consider the
change in the values of Bij calculated from an electric field differing slightly
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from the true one, but with prescribed values of the voltages Vi, and satisfying
correspondingly the boundary conditions on metallic surfaces. Thus

1
2

∑
ij

δBijV
∗
i Vj = −ωε

2
δ

∫
(dr)

[
1
k2

|∇ × E|2 − |E|2
]

= − ωε

2k2

∫
(dr)

[
∇ × δE∗ · ∇ × E − k2δE∗ · E

]
+ c.c.

= − ωε

2k2

{∮
dS · δE∗ × (∇ × E)

+
∫

(dr) δE∗ ·
[
∇ × (∇ × E) − k2E

]
+ c.c.

}
.

(13.85)

Since E is the correct field, satisfying the wave equation, the volume integral
vanishes. The surface integral will vanish if n × E is zero on all metallic walls –
the boundary condition must be satisfied – and if the asymptotic form of the
fields is correct, for the value of n × E on the surface across a guide is fixed by
the voltage and is thus prescribed. Under these conditions – which are that
the deformed field still satisfies the boundary conditions on metallic walls and
at large distances (i.e., that the asymptotic forms of the fields are correct), but
need not satisfy the wave equation everywhere – the susceptance is stationary
with respect to small variations for prescribed voltages. In a similar way, based
on the magnetic field with the currents prescribed,

1
2

∑
ij

δXijI
∗
i Ij = −ωµ

2
δ

∫
(dr)

[
|H|2 − 1

k2
|∇ × H|2

]

=
ωµ

2k2

∫
(dr)

[
∇ × δH∗ · ∇ × H − k2δH∗ · H

]
+ c.c.

=
ωµ

2k2

{∮
dS · δH∗ × (∇ × H)

+
∫

(dr) δH∗ ·
[
∇ × (∇ × H) − k2H

]
+ c.c.

}
.

(13.86)

Since H is the correct field, the volume integral vanishes, and n × (∇ × H)
is zero on all metallic walls. In order that the integral across the section of a
guide vanishes, it is necessary that the field have the correct asymptotic form
for then n × δH is zero since the current is prescribed. Thus, under just the
condition that the asymptotic form of the field be correct, but that neither
the wave equation or the boundary condition be satisfied, the reactance is
stationary with respect to small variations for prescribed currents.
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13.5 Bifurcated Guide

Now consider a waveguide which bifurcates into two parallel guides at z = 0,
as diagrammed in Fig. 13.9. The simplicity of this situation is two fold. First,

3
2

1

↓

↑

2b ↑

↓
b

|
z = 0

Fig. 13.9. Bifurcated guide. The width of the two guides on the right, labeled 1
and 2, is half that of the guide on the left, labeled 3. The extent of the guide in the
x-direction, perpendicular to the page, is larger than the dimensions in the depicted
y-direction

for y being the coordinate in the plane shown transverse to the guide axes,
∫

3

dy Ey =
∫

1

dy Ey +
∫

2

dy Ey , (13.87)

where the integration is extended over the plane of the junction, where z =
0. Second, an H-mode wave moving to the right in region 3 is completely
transmitted. In region 3, in terms of the Green’s function vanishing on the
boundaries of region 3, including the junction plane z = 0 (see Problem 13.4)

ψ = α3

(
eiκz + e−iκz

)
− 1

2b

∞∑
n=−∞

∫
3

dy′ cos nπy
2b cos nπy′

2b

i
√

κ2 −
(

nπ
2b

)2 e−i
√

κ2−(nπ
2b )2

z ∂ψ

∂z
(y′) ,

(13.88)
excluding the common x-dependence, so for the n = 0 mode

β3 = α3+
i

2κb

∫
3

dy′ ∂ψ

∂z
, I3 = α3+β3 , V3 = 2κb(α3−β3) = −i

∫
3

dy′ ∂ψ

∂z
,

(13.89)
where we have made a convenient choice for the current and voltage, including
the characteristic impedance. In region 1

ψ = α1

(
eiκz + e−iκz

)
+

1
b

∞∑
n=−∞

∫
1

dy′ cos nπy
b cos nπy′

b

i
√

κ2 −
(

nπ
b

)2 ei
√

κ2−(nπ
b )2

z ∂ψ

∂z
(y′) ,

(13.90)
so for the lowest H mode

β1 = α1 −
i

κb

∫
1

dy′ ∂ψ

∂z
, I1 = α1 + β1 , V1 = κb(α1 − β1) = i

∫
1

dy′ ∂ψ

∂z
.

(13.91)
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In region 2

ψ = α2

(
eiκz + e−iκz

)
+

1
b

∞∑
n=−∞

∫
2

dy′ cos nπ
b (y − b) cos nπ

b (y′ − b)

i
√

κ2 −
(

nπ
b

)2

×ei
√

κ2−(nπ
b )2

z ∂ψ

∂z
(y′) , (13.92)

so again for the lowest n = 0 H mode

β2 = α2 −
i

κb

∫
2

dy′ ∂ψ

∂z
, I2 = α2 + β2 , V2 = κb(α2 − β2) = i

∫
2

dy′ ∂ψ

∂z
.

(13.93)
Therefore, because ∂ψ/∂z is continuous at z = 0,

V1 + V2 + V3 = 0 . (13.94)

The boundary condition that ψ be continuous at z = 0 reads

I3+
1
b

∞∑
n=1

∫
3

dy′ cos nπy
2b cos nπy′

2b√(
nπ
2b

)2 − κ2

∂ψ

∂z
= I1,2−

2
b

∞∑
n=1

∫
1,2

dy′ cos nπy
b cos nπy′

b√(
nπ
b

)2 − κ2

∂ψ

∂z
.

(13.95)
Consider the even situation, I1 = I2, V1 = V2. The obvious solution is
∂ψ/∂z = constant. Then I3 = I1, which, together with V3 + 2V1 = 0 implies
that β1 = α3, β3 = α1, that is, complete transmission. In the odd situation,
V1 = −V2, I1 = −I2, ∂ψ/∂z(1) = −∂ψ/∂z(2) at corresponding points. Hence
only odd modes are expected in the guide 3 and V3 = I3 = 0. The integral
equation is

1
b

∑
n odd

∫
3

dy′ cos nπy
2b cos nπy′

2b√(
nπ
2b

)2 − κ2

∂ψ

∂z
= I1 −

2
b

∞∑
n=1

∫
1

dy′ cos nπy
b cos nπy′

b√(
nπ
b

)2 − κ2

∂ψ

∂z
,

y < b , (13.96a)

= −I1 −
2
b

∞∑
n=1

∫
2

dy′ cos nπy
b cos nπy′

b√(
nπ
b

)2 − κ2

∂ψ

∂z
,

y > b . (13.96b)

The admittance matrix has the form

Y =


Y11 Y12 Y13

Y12 Y11 Y13

Y13 Y13 Y33


 . (13.97)

For the even case,

I1 = (Y11 + Y12)V1 + Y13V3 , (13.98a)
I3 = 2Y13V1 + Y33V3 . (13.98b)
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The solution of this must be I3 = I1, V3 = −2V1, so

(Y11 + Y12 − 2Y13)V1 = (Y33 − Y13)V3 = (2Y13 − 2Y33)V1 , (13.99)

so
Y11 + Y12

2
+ Y33 − 2Y13 = 0 (13.100)

is a necessary condition. Then

I1 = −2(Y33 − Y13)V1 + Y13(V3 + 2V1) , (13.101a)
I3 = (Y33 − Y13)V3 + Y13(V3 + 2V1) , (13.101b)

implying
I1 − I3 = (Y13 − Y33)(V3 + 2V1) . (13.102)

Thus V3 +2V1 = 0 implies I1 = I3, provided Y13−Y33 is finite, and if Y13−Y33

is finite, |Y13| = ∞ requires V3 + 2V1 = 0. Thus necessary and sufficient
conditions are that

|Y13| = ∞ , and
Y11 + Y12

2
− Y13 = Y13 − Y33 is finite . (13.103)

In the odd case, of course,

V1 = −V2 , I1 = −I2 , I3 = V3 = 0 , (13.104)

and
I1 = (Y11 − Y12)V1 . (13.105)

Now describe the above even situation in terms of the general six-terminal
circuit shown in Fig. 13.10. Here Y13 is infinite and the top arm can be replaced

Y11 − Y12 Y11 − Y12

Y12 − Y13

Y33 − Y13

Y13

Fig. 13.10. General six-terminal circuit describing the bifurcated guide

by a single admittance of

Y12 + Y33 − 2Y13 =
(

Y11 + Y12

2
+ Y33 − 2Y13

)
− Y11 − Y12

2
= −Y11 − Y12

2
,

(13.106)
according to (13.100). Hence, introducing an impedance relative to guide 1,
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3

2

1

−2z
z

z

Z = 1

Z = 1

Fig. 13.11. Six-terminal circuit corresponding to Fig. 13.9

1
z

= κb(Y11 − Y12) , (13.107)

the circuit becomes that shown in Fig. 13.11. Let us first inquire whether it is
possible to terminate 3 by a plunger corresponding to an impedance Zt and
match all the power from 1 to 2, with 2 matched of course. Hence from guide 1
we see the successive simplifications of impedances shown in Fig. 13.12, which
implies the impedance

Z =
z
(

z
z+1 − 2zZt

Zt−2z
)

z + z
z+1 − 2zZt

Zt−2z
= z

1
z+1 − 2Zt

Zt−2z
1 + 1

z+1 − 2Zt

Zt−2z

= z
(Zt − 2z) − 2Zt(z + 1)

(z + 1)(Zt − 2z) + (Zt − 2z) − 2Zt(z + 1)
=

Zt(2z + 1) + 2z
Zt + 2(z + 2)

.

(13.108)

The condition that this be unity is Zt = 2/z, which is pure imaginary! Hence,
the plunger must be placed back a distance l such that

Zt = −2i tan κl =
2
z

, (13.109)

or
tanκl =

i
z

= iκb(Y11 − Y12) . (13.110)

Second, let us inquire whether we can place a short somewhere in 2 and
produce complete reflection in 3 independently of the termination in 1. Let Z ′

t

be the required terminating impedance in 2. Then, from the point of view of

z

−2z z1

Zt

or
z

z
z+1

− 2zZt
Zt−2z

or
z

z
z+1

− 2zZt
Zt−2z

or
Z

Fig. 13.12. Impedance of plunger, Zt, such that all power from 1 is matched to 2
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−2z
z

z

Zt

Fig. 13.13. Short Z′
t in 2 required to produce total reflection in 3

3, we have the situation shown in Fig. 13.13. Evidently, if z and Z ′
t combine to

give infinite impedance, no current flows in the second branch independently
of the termination in 1, provided that one does not have “resonance.” Thus

Z ′
t = −z = −i tan κl′ , (13.111)

or
tanκl′ = −iz =

z
i

= cot κl , (13.112)

so
l′ =

π

2κ
− l =

λg

4
− l , (13.113)

or any equivalent length. The input impedance under these conditions is

−2z = −2i tan κl′ = −2i cot κl . (13.114)

How far x back do we have to go in guide 3 to see zero impedance? For this
we require

0 =
−2i cot κl − 2i tan κx

1 − i(−i) cot κl tan κx
, tan κx = − cot κl , x =

λg

4
+ l . (13.115)

This is illustrated in Fig. 13.14.

↑← λg

4
+ l →

← λg

4
− l →

3
2

1

Fig. 13.14. The vertical arrow indicates the effective position of the short in guide
3, resulting from a short in guide 2

Let us combine these ideas into the waveguide shown in Fig. 13.15. Under
these conditions all power is transferred from guide b to guide c, if the latter
is matched, independent of the condition in a, because there is an effective
short a distance l to the left of the b–c junction. Let us finally inquire what
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a

d

b

c

← λg

4
− l → ← λg

4
+ 2l →

Fig. 13.15. Junction of two bifurcated waveguides with a short

−2z
z

z

Zt

1

or −2z z
z+1

+
zZt
z+Z

t

Fig. 13.16. Equivalent impedance for the waveguide configuration shown in
Fig. 13.15 for reflection in a for b matched and an arbitrary terminating impedance
in c

is the reflection in a for b matched and an arbitrary terminating impedance
Z ′′

t in c. At the b–c junction we see the impedance shown in Fig. 13.16. The
equivalent impedance is

Z =
−2z2

(
1

z+1 + Z′′
t

z+Z′′
t

)

z
(
−2 + 1

z+1 + Z′′
t

z+Z′′
t

) = 2
1

z+1 + Z′′
t

z+Z′′
t

1
z+1 + 1

z+Z′′
t

. (13.116)

We will let the reader draw the evident conclusions.

13.6 Imperfect Conducting Walls

The preceding discussion has dealt exclusively with idealized guides composed
of perfectly conducting metallic walls. It is a matter of practical importance
to extend the circuit picture sufficiently to include the attenuating results
from the finite conductivity of the walls. The usual perturbative treatment
of skin effect losses assumes that the magnetic field components do not differ
sensibly from those of the idealized guide, but that the component of the
electric field tangent to the metallic wall is not zero, being related to the
tangential magnetic field component by (5.14), or

n × E = ζ
kδ

2
(1 − i)H , (13.117)

where δ is the skin depth, related to the conductivity by

δ =
√

2
µωσ

, (13.118)
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and n is the normal to the wall. The attenuation is then obtained by com-
puting the average flow of power into the walls, per unit length. We obtain
the circuit representation of this consideration by introducing resistive ele-
ments into the distributive parameter circuit, but neglecting the changes in
the reactive elements produced by the finite conductivity. This constitutes an
excellent approximation in the usual circumstance that the ratio of the skin
depth to the transverse guide dimension is an exceedingly small number.

The average power dissipated per unit length is obtained by evaluating
the real part of the line integral, taken around the guide periphery, of the
component of the complex Poynting vector normal to the walls, that is, (5.13),
or

Pdiss = Re
1
2

∮
C

ds (E × H∗) · n =
kδ

4
ζ

∮
C

ds |H|2 . (13.119)

This integral, to be computed from the fields of the idealized guide, involves
only the component of H tangential to the metal; the normal component is
zero in virtue of the boundary condition on E.

To illustrate these ideas, we consider the simpler situation of E modes,
when only one component of H contributes to the dissipation, associated with
the fact that there exists only a longitudinal conduction current. Hence from
(6.32b), taking into account the normalization (6.57),

Pdiss =
kδ

4

∮
C

ds (∂nϕ)2ζ|I|2 =
1
4
kδ

∮
C

ds (∂nϕ)2

γ′2
∫

dσ ϕ2
ζ|I|2 =

1
2
R|I|2 (13.120)

which defines a series resistance per unit length, generalizing (5.16),

R =
ζkδ

2

∮
C

ds (∂nϕ)2

γ′2
∫

dσ ϕ2
. (13.121)

Accordingly, the distributed parameter circuit representing an E mode is now
defined by

Zs = R− iωL +
i

ωC ′ , Y⊥ = −iωC , (13.122)

and the lumped constant network representing a short length ∆z is shown in
Fig. 13.17. The line constants κ and Z are no longer real, the imaginary part

C∆z
2

C∆z
2

R∆z L∆z C
∆z

Fig. 13.17. Lumped waveguide section including dissipation in walls

of κ describing the attenuation associated with the skin-effect power loss. We
shall write [cf. (5.20) and (5.22)]
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−i
√

(−Y⊥)(−Zs) = κ +
iα
2

(13.123)

to retain the symbol κ for the real part of the propagation constant. Of course
to the approximation considered here, it equals the propagation constant in
the idealized guide. The current and voltage describing a wave propagating
in the positive z-direction will now contain the factor

ei(κ+iα/2)z = e−αz/2eiκz . (13.124)

Therefore, 1
2α represents the attenuation constant for voltage or current, α is

the power attenuation constant. The fact that the Z now possesses a small
reactive component does not interest us, the only quantity of direct experi-
mental value being the attenuation constant. We may regard the introduction
of the quantity R into the series impedance per unit length as equivalent to
changing the inductance by the small amount iR/ω. Hence

α =
2R
ω

∂κ

∂L
, (13.125)

and remarking that

κ =

√
LCω2 − C

C ′ , (13.126)

we obtain using (6.36b), since C = ε,

α =
ω

κ
RC =

k

κ

R
ζ

=
R
Z

, (13.127)

which generalizes (5.22). The factor by which the power is reduced in a length
of guide l of total resistance R = Rl, is e−R/Z . Thus, the attenuation con-
stant is the ratio of the series resistance per unit length to the characteristic
impedance. We obtain another convenient representation by employing the
time required to transverse a distance z, thus permitting the calculation of
the conventional figure of merit, Q, as a measure of the power dissipated:

e−αz = e−αvt = e−ωt/Q . (13.128)

Here v, the wave velocity, must be understood not as the phase velocity, (6.98),

u =
ω

κ
= c

k

κ
> c , (13.129)

but rather as the group velocity (6.99),

v =
dω

dκ
= c

κ

k
< c , (13.130)

which is the measure of the velocity of energy transport. Hence
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Q =
ω

αv
=

ωζ

Rc
=

ωL

R , (13.131)

recalling that the series inductance of either an E or H mode is L = ζ/c = µ.
Now consider the change in the value of γ′ on moving all points of the

boundary inward a distance δn along the normal to the surface. Let ϕ be the
original ϕ and ϕ be the new eigenfunction. Thus we have

∇ · (ϕ∇ϕ − ϕ∇ϕ) = (γ′2 − γ′2)ϕϕ , (13.132)

which when integrated over the deformed region is

−
∮

C

ds ϕ∂nϕ = (γ′2 − γ′2)
∫

σ

dσ ϕϕ , (13.133)

because ϕ vanishes at the deformed boundary. At a point on the new boundary

ϕ = −δn ∂nϕ , (13.134)

hence, as δn → 0,

δn

∮
C

ds (∂nϕ)2 = δγ′2
∫

σ

dσ ϕ2 . (13.135)

Therefore we have the variational statement∮
C

ds(∂nϕ)2∫
σ

dσ ϕ2
=

δγ′2

δn
, (13.136)

which permits us to rewrite (13.121) as

R =
kδζ

2
1

γ′2
δγ′2

δn
. (13.137)

This permits us to write the following forms for the attenuation factor and
the figure of merit:

α =
k

κ

kδ

2
1

γ′2
δγ′2

δn
,

1
Q

=
δ

2
1

γ′2
δγ′2

δn
. (13.138)

Let us illustrate this for the case of a circular guide of radius a, with
γ′a = constant. Then

1
γ′2

δγ′2

δn
= −2

d
da

log γ′ =
2
a

. (13.139)

Then

Q =
a

δ
, α =

k2δ

κa
. (13.140)
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13.7 Conclusion

The reader will ask, how can we stop now, when we have barely begun! We
certainly could go on to discuss more general junctions and discontinuities in
waveguides. However, this is a subject of an already existing treatise [5], not
to mention more engineering-oriented books, starting with [6]. To these we
refer the reader, whose interest has hopefully been whetted, to learn more.

13.8 Problems for Chap. 13

1. Apply the ideas expressed in Sect. 13.1 to the purely electrical disconti-
nuity of the form

ε(z) =




1 , z < −a/2 ,
ε , −a/2 < z < a/2 ,
1 , a/2 < z ,

(13.141)

in an otherwise uniform cylindrical waveguide.
2. Derive the T and Π sections shown in Figs. 13.2 and 13.3, by consid-

ering the flow of current through the network, and the corresponding
low-frequency limits shown in Figs. 13.4–13.7.

3. Derive (13.80a) and (13.80b), specifying the frequency dependence of the
reactance and the susceptance, from the energy theorem (6.90).

4. Derive the Green’s function between two parallel planes, y = 0 and b, with
normal derivative vanishing on those surfaces and also vanishing on the
plane z = 0, and thereby derive (13.88).

5. Repeat the analysis of Sect. 13.6 for H modes. In this case, both the
longitudinal and transverse components of H contribute to the dissipation,
the corresponding contributions having the form

P⊥ =
1
2
R|I|2 , Ps =

1
2
G|V |2 . (13.142)

Give expressions for the resistance R and conductance G quantities in
terms of line and area integrals of the mode function ψ. Consider an
inward displacement of the boundary δn, and derive

k2

γ′′2
G
η
− R

ζ
=

kδ

2
1

γ′′2
δγ′′2

δn
. (13.143)

The quantities R and G thus are not determined independently in general,
although they may be easily worked out for special circumstances. Thus,
for a circular guide, in a mode with azimuthal mode number m, show that

G
η

=
kδ

a

γ′′2

k2

1
1 − (m/γ′′a)2

,
R
ζ

=
kδ

a

(m/γ′′a)2

1 − (m/γ′′a)2
. (13.144)
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Show that we now have a series impedance and shunt admittance,

Zs = R− iωL , Y⊥ = G − iωC +
i

ωL′ , (13.145)

so that the modified propagation constant is

iκ′ = i

√(
1 +

iR
ωL

)
(κ2 + iωLG) ≈ iκ − α

2
. (13.146)

Show that the attenuation constant may be written as

α =
k

κ

(
R
ζ

+
γ′′2

k2

kδ

2
1

γ′′2
δγ′′2

δn

)
. (13.147)

In general
R
ζ

= f
k2

γ′′2
G
η

, (13.148)

where f < 1 is given as a ratio of integrals of the mode function ψ. Then
derive the following expression for the attenuation constant and the Q
factor,

α =
k

κ

kδ

2
1

γ′′2
δγ′′2

δn

(
γ′′2

k2
+

f

1 − f

)
, (13.149a)

1
Q

=
δ

2
1

γ′′2
δγ′′2

δn

(
γ′′2

k2
+

f

1 − f

)
. (13.149b)

6. Construct an equivalent circuit for an E plane T junction and derive some
properties of the junction from the circuit.

7. Prove that the two E plane obstacles of negligible thickness indicated
by Figs. 13.18 and 13.19 have identical shunt admittances. (This is an
example of Babinet’s principle.)

b
δ/2

δ/2

Side view Cross section

Fig. 13.18. Waveguide with central obstacle

8. Formulate an integral equation and variational principle for an H plane
obstacle of negligible thickness, as shown in Fig. 13.20.
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bδ
(b − δ)/2

(b − δ)/2

Side view Cross section

Fig. 13.19. Waveguide with complementary obstacles

a1
2
δ

a

b

Top view Cross section

Fig. 13.20. Waveguide with H plane obstacles
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Accelerators: Microtrons and Synchrotrons

14.1 The Microtron

The following introductory remarks are based on lectures given by Schwinger
at the Los Alamos laboratory at the end of July 1945, about a week after the
first nuclear test, the Trinity experiment at Alamogordo. There he pointed out
ideas for a linear accelerator consisting of a succession of microwave cavities
driven by a traveling electromagnetic wave of wavelength λ ∼ 10 cm, where
the length of each cavity was λ/2, so that the phases of the wave, and hence
the polarities of the cavities, were reversed in successive cavities. Thus the
electron always meets an accelerating field. The total voltage developed by
the accelerator

∆V ∼
√

P
√

n , (14.1)

where P is the power put in a single cavity, and n is the number of cavities.
Schwinger estimated that to achieve 108 V, some 100 cavities were required.
Of course, precisely this idea is utilized in present-day linear accelerators.

However, at the time, Schwinger was concerned with the number of high-
power cavities, so he proposed an alternative. Rather than many cavities,
why not use one, and recycle the electron as in the cyclotron, by using a
magnetic field H. The schematic of the idea is sketched in Fig. 14.1. To bring
the electron back in phase they need to return to the cavity after a multiple
of the period T of the RF cavity. The time required for the electron of energy
E to complete one circuit is 2πE/eHc2, which for an accelerating voltage per
pass of ∆V = 3 MV, a wavelength λ = 10 cm, and a power P = 5 MW,
corresponds to a magnetic field strength H = 6 kG, a quite practical value for
the time. This scheme, which Schwinger and Alvarez dubbed the microtron,1

was realized, but it was rather immediately superseded by the more practical
synchrotron, with its fixed electron orbit, although there are still reportedly
microtrons in operation in Germany and Russia. Nevertheless, we will here
1 Apparently, it was independently invented by Veksler. For a bit more on the

conventional history of the microtron, see [18].
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Fig. 14.1. Sketch of the microtron. The box represents the microwave cavity,
and the successive circles, the orbits of the electron moving in a magnetic field
perpendicular to the plane of the drawing

recount some of the theory behind the device, believing that the analysis still
retains pedagogical value.

14.1.1 Cavity Resonators

Consider a circular cylindrical cavity of radius a, height b, and operating in
the lowest E mode, which is the lowest mode of the cavity if b/a < 2.03 (see
Problem 14.1). The fields are [cf. (8.45e), (8.45d), with I → V/iζ]

Ez = J0(γr)
V

b
, iζHφ = J1(γr)

V

b
, (14.2a)

k = γ =
2.405

a
, λ = 2.613a . (14.2b)

Here z-lies along the symmetry axis of the cylinder, and r is the radial coor-
dinate. The average stored energy is,

E =
1
4

∫
(dr)

(
ε|Ez|2 + µ|Hφ|2

)
=

ε

2

∫ a

0

dr r 2πb
V 2

b2
J2

0 (γr)

=
ε

2
V 2

b
πa2J2

1 (γa) , (14.3)

which uses (8.8a) and (8.41). The average power dissipated in skin effect losses
is from (13.119)

Pdiss =
kδ

4
ζ

∫
dS |Hφ|2 =

kδ

4
ζ

(
V

ζb

)2 [
J2

1 (γa)2πab + 2J2
1 (γa)πa2

]

=
kδ

4
η
V 2

b2
2πa2J2

1 (γa)
(

1 +
b

a

)
≡ ω

Q0
E , (14.4)

where the unloaded Q value is
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Q0 =
b

δ

1
1 + b

a

. (14.5)

The skin depth for a nonferromagnetic conductor is from (13.118)

δ =
√

2
kζσ

, ζ = 120π Ω , (14.6)

where the last number is approximate – see (6.41). For Ag at room tempera-
ture, σ = 6.14×105 mho

cm , whence δ = 3.71
√

λ×10−5 cm, with the wavelength
λ measured in cm. The loaded Q for a matched cavity is

Q =
1
2
Q0 =

b

2δ

1
1 + b

a

, (14.7)

for the circular cylinder. The manner in which the electric field in the cavity
builds up in time is indicated by

E(t) = E
(
1 − e−ωt/2Q

)
, E =

Q

ω
P . (14.8)

Therefore, the build-up time, defined for our purposes as the time required
for the field to reach 97% of the final value, is given by ωTbu/2Q = 3.5, or,
for the cylindrical cavity, using the Ag values

Tbu =
λ

c

3.5
2π

λ

δ

b

λ

1
1 + b

a

= 0.250λ3/2 2b

λ

1
1 + b

a

µs , λ in cm . (14.9)

The voltage across the cavity for a given input power, under matched condi-
tions, is determined by (14.3)

Q

ω
P = E =

ε

2
V 2

b
πa2J2

1 (γa) , (14.10)

or

P =
V 2

2R
, V =

√
2RP , (14.11)

which defines the shunt resistance

R = ζ
Q

π

b

a

1
γaJ2

1 (γa)
=

120
2.405(0.5191)2

b

a
QΩ = 185

b

a
QΩ , (14.12)

or recalling from (14.2b) that λ = 2.613a,

R = 1.63
√

λ

(
2b
λ

)2
1 + b

a

MΩ , λ in cm . (14.13)

Therefore, from (14.11)
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V = 1.81
2b
λ√

1 + b
a

λ1/4P 1/2 MV , λ in cm and P in MW . (14.14)

The maximum voltage transferred to an electron moving with the speed of
light through the cavity is less than V , for with t = z/c,

∆V =
∫ b/2

−b/2

dz
V

b
cos ωt =

V

b

∫ b/2

−b/2

dz cos kz

= V
sin kb

2
kb
2

= V
sin πb

λ
πb
λ

. (14.15)

Hence

∆V = 1.15
sin π

2
2b
λ√

1 + 1.306 2b
λ

λ1/4P 1/2 MV , (14.16)

and for a given λ and P , there is an optimum value of 2b/λ, obtained by
maximizing

sin x√
1 + 0.8317x

, x =
π

2
2b

λ
, (14.17)

which is given by the solution of

cot x =
0.4158

1 + 0.8317x
⇒ x = 1.38 , (14.18)

or b/λ = 0.439, which yields

∆V = 0.770λ1/4P 1/2 MV . (14.19)

The corresponding values of the quality factor, the build-up time, and the
resistance are

Q = 2.76 × 103
√

λ , Q0 = 5.51 × 103
√

λ , (14.20a)
Tbu = 0.102λ3/2 µs , (14.20b)

R = 0.586
√

λ MΩ , (14.20c)

R = 0.296
√

λ MΩ , (14.20d)

where R is the effective shunt resistance,

R = R

(
sin πb

λ
πb
λ

)2

, P =
(∆V )2

2R . (14.21)

The physically important quantities are Tbu and ∆V . A quantity of impor-
tance in connection with field emission is the maximum electric field strength
in the cavity E , a lower limit to the true maximum field:



14.1 The Microtron 267

E =
V

b
=

1
0.711

∆V

b
= 2.46λ−3/4P 1/2 MV/cm . (14.22)

The magnetic field required to establish resonance conditions is determined
by

λ =
2π∆E

eHc
=

2π

0.3
∆V

H
, (14.23)

for λ in cm, ∆V in MV, H in kG, or from (14.19)

H =
2π

0.3
∆V

λ
= 16.1λ−3/4P 1/2 kG . (14.24)

Since this can be written as

H =
2π

0.3
b

λ

∆V

b
, (14.25)

H is related to the maximum field strength (14.22) by

H = 6.55 E kG , E in MV/cm . (14.26)

14.1.2 Elementary Theory

Suppose the electron is injected at the proper phase with energy E0; the
energy after the first transit through the accelerating cavity is E0 + ∆E, and
the resulting time for revolution is

T1 =
2π

eHc2
(E0 + ∆E) = n1τ , (14.27)

if we require the revolution time to be a multiple, n1, of the period of the
cavity τ . After the second transit, the energy is E0 +2∆E, and the revolution
time now is

T2 =
2π

eHc2
(E0 + 2∆E) = n2τ . (14.28)

In general, after n transits,

Tn =
2π

eHc2
(E0 + n∆E) . (14.29)

Hence, the resonance conditions are

2π∆E

eHc2
= τ, 2τ . . . , λ =

2π∆E

eHc
=

2π

0.3
∆V

H
, (14.30a)

and assuming that the first option is satisfied,

2πE0

eHc2
= n0τ , or E0 = n0∆E . (14.30b)
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On the elementary theory, n0 = 0 is possible, that is, the electron starts from
rest, and

Tn = nτ , En = n∆E . (14.31)

The circumference of the nth orbit is nλ and the diameter is nλ/π. Hence
successive orbits are equally spaced on the symmetry axis. If the radius of the
magnet is R, the maximum number of transits is N :

2R = N
λ

π
, N =

2πR

λ
. (14.32)

The final energy is

N∆E =
2πR

λ

eHcλ

2π
= ecHR , (14.33)

as it should be. The total time taken to reach this energy is

T =
∞∑

n=1

Tn ≈ N2

2
τ , (14.34)

and the total distance traveled by the electron is N2λ/2.
If, for example, we consider N = 50 and λ = 10 cm, we find R = 0.796 m.

If the acceleration is supplied by two resonators, each of power P = 5 MW,
according to (14.19),

∆E = 0.77λ1/4(2P )1/2 MeV = 4.33MeV , (14.35)

and the energy attained is 2.17× 108 eV, at a magnetic field of 9.09 kG. The
total distance traveled by the electron is 0.125 km, and the time consumed is
T = 0.417µs.

The actual voltage available will be less than that considered, in conse-
quence of the cavity loading by the electrons. If I is the output current during
the acceleration period and V is the final voltage obtained, the actual avail-
able power is P − IV , or in terms of the efficiency of the device, ε = IV/P ,
the available power is (1 − ε)P . If we are willing to tolerate a 10% reduction
in voltage, ε can be 20% and I = 1

5
P
V . With P = 5 MW, and V = 200 MV,

I = 5 mA. If pulsed at the ratio of 1000 to 1 so that the average power is 5
kW, the average output current is 5µA. If say, 1% of a cycle is available for
accelerating electrons from rest, the input current must be 100× 5 mA = 0.5
A.

14.1.3 Vertical Defocusing

Vertical defocusing arises from the initial transverse velocities, and the elec-
tron will move with constant momentum perpendicular to the plane of the
orbit, in terms of the relativistic mass:

mvz = m0vz0 . (14.36)
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Hence the vertical displacement acquired on the n orbit is

∆z = Tnvn =
2πEn

eHc2
vn =

2πmn

eH
vn =

2πm0c
2

eHc

vz0

c
, (14.37)

from which follows the displacement after N orbits, according to (14.30a),

∆z =
2πm0c

2

eHc

vz0

c
N = λ

m0c
2

∆E

vz0

c
N . (14.38)

For example, with ∆E = 8m0c
2 ≈ 4 MeV, N = 50, and vz0/c = 10−3, we

find ∆z = 0.6 mm.

14.1.4 Radiation Losses

Radiation losses become important when the energy loss is sufficient to change
the phase at which the electron returns to the cavity by say 5◦, or when

δT =
2πδE

eHc2
= τ

δE

∆E
<

5
360

τ . (14.39)

Hence, we require the energy loss to satisfy

δE <
∆E

70
. (14.40)

But we know the energy loss per revolution for an electron moving in a circle
of radius R is given by (15.25),

δE =
1

3ε0

e2

R

(
E

m0c2

)4

=
1

3ε0

e2

E

(
E

m0c2

)4

eHc

=
8π2

3
e2/4πε0m0c

2

λ

(
E

m0c2

)3

∆E , (14.41)

according to (14.33) and (14.30a), so by comparison with (14.40) we see that
the energy must satisfy

8π2

3
r0

λ

(
E

m0c2

)3

< 10−2 , (14.42)

or putting in the numbers (r0 = e2/4πε0m0c
2 = 2.818 × 10−13 cm)

E

m0c2
< 1 × 103λ1/3 . (14.43)

For example, for λ = 10 cm, the energy achieved cannot exceed about 1 GeV.
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14.1.5 Phase Focusing

Here we consider a simplified model in which the acceleration region occupies
a negligible portion of the orbit.

Let E0 be the energy at injection, φn the phase at the nth transit, En the
energy after the nth transit, and Tn the time for a circumnavigation after the
nth transit:

Tn =
2πEn

eHc2
. (14.44)

In terms of ∆V , the voltage gain per transit,

E1 = E0 + e∆V cos φ1 , . . . , En = En−1 + e∆V cos φn , (14.45)

whence
Tn − Tn−1 =

2π∆V

Hc2
cos φn . (14.46)

Now the phase advance in the nth cycle is

φn+1 = φn + ωTn − 2π(n + 1) , (14.47)

if we subtract a suitable multiple of 2π in order that |φn| � 1, if resonance
is maintained (it is assumed that the resonance increase in the period of
revolution is one period of the accelerating field). Hence we have the difference
equation

φn+1 − 2φn + φn−1 = ω(Tn − Tn−1) − 2π =
2πω∆V

Hc2
cos φn − 2π . (14.48)

A necessary condition for resonance at the phase φn = φ is

ω∆V cos φ = Hc2 , or 2π∆V cos φ = Hλc . (14.49)

Putting φn = φ + ψn, and assuming |ψn| � 1, we find

ψn+1 − 2ψn + ψn+1 = 2π
(

cos φn

cos φ
− 1
)

= 2π (cos ψn − 1 − tan φ sin ψn)

≈ −2π tan φ ψn , (14.50)

which describes a stable oscillation if tanφ > 0, which implies that 0 < φ <
π/2, if H and ∆V are positive. The solution is of the form

ψn = eiγn , (14.51)

with
eiγ + e−iγ − 2 = −2(1 − cos γ) = −2π tan φ , (14.52)

or
2 sin

γ

2
=
√

2π tan φ . (14.53)
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However, in order that the oscillation be stable, not only must tanφ be pos-
itive, but it must be sufficiently small that sin γ

2 < 1. Hence the stability
requirement on ∆V , say, is from (14.49)

0.8436 <
Hλc

2π∆V
< 1 . (14.54)

To find the complete solution for ψn, we add the initial conditions,

ψ1 = φ1 − φ , (14.55a)

ψ2 − ψ1 = ωT1 − 4π =
2πω

eHc2
(E0 + e∆V cos φ1) − 4π

≈ 2π

(
ωE0

eHc2
− 1
)
− 2π tan φ ψ1 , (14.55b)

using (14.49), to

ψn = A sin γ(n − 1) + B cos γ(n − 1) , (14.56)

whence
B = φ1 − φ = ψ1 (14.57)

and using (14.49) yet again,

A sin γ + B(cos γ − 1) = A sin γ − 2ψ1 sin2 γ

2

= 2π
(

E0

e∆V cos φ
− 1
)
− 2π tan φ ψ1 , (14.58)

so from (14.53)

A sin γ = 2π
(

E0

e∆V cos φ
− 1
)
− π tan φ ψ1 . (14.59)

It is clear that to minimize the amplitude of the phase oscillation resulting
from an incorrect value of the injection energy, sin γ should be unity, or γ = π

2 ;
γ = 0, π correspond to the stability limits; γ = π/2 corresponds to tan φ = 1/π
or φ = 0.308.

14.2 Excitation of a Cavity by Electrons

Here we consider the excitation of a microwave cavity by electrons passing
through it, assumed to travel at speed c. In the Lorenz gauge, the vector
potential satisfies [see (1.102b), here in SI]

(
∇2 − 1

c2

∂2

∂t2

)
A = −J . (14.60)
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Expand the potential in normal modes,

A(r, t) =
∑

q(t)A(r) , (14.61)

where the mode functions are eigenfunctions of the Laplace operator,

∇2A(r) = −k2A(r) , (14.62)

and where they are normalized by
∫

(dr)A(r)2 = 1 . (14.63)

Thus the time dependence is governed by
(

k2 +
1
c2

d2

dt2

)
q(t) =

∫
(dr)J(r, t) · A(r) . (14.64)

For a single electron entering at time t0 and moving along the axis of a
simple cavity of length b in the z-direction

(
k2 +

1
c2

d2

dt2

)
q(t) =




0 t > t0 + b/c ,
ecAz(0, 0, c(t − t0)) , t0 < t < t0 + b/c ,

0 , t < t0 .
(14.65)

In the following, we consider only excitation of the lowest E mode, where Az

does not depend on z. Consider the Fourier transform
∫ ∞

−∞
dt e−iζtq(t) = q(ζ) , (14.66)

which is regular in the lower half plane. The transform satisfies
(

k2 − ζ2

c2

)
q(ζ) = ecAz

∫ t0+b/c

t0

dt e−iζt = ecAze−iζt0
1 − e−iζb/c

iζ
, (14.67)

so

q(t) =
1
2π

∫ ∞

−∞
dζ eiζt ecAze−iζt0

iζ
1 − e−iζb/c

k2 − ζ2/c2

= −ecAzc
2

2πi

∫ ∞

−∞
dζ

eiζ(t−t0)

ζ2 − ω2

1 − e−iζb/c

ζ
. (14.68)

We resolve the singularity at ζ = ω by requiring that q(t) = 0 for t < t0, where
the contour can be closed in the lower half plane, so both poles must be in
the upper half plane. So after the electron has exited the cavity, t > t0 + b/c,
the contour can be closed in the upper half plane, and
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q(t) = −ecAzc
2Re

eiω(t−t0)

ω2

(
1 − e−iωb/c

)

= −ecAz

k2
[cos ω(t − t0) − cos ω(t − t0 − b/c)] . (14.69)

The optimal conditions occur when the two terms here reinforce each other,
or

kb = π , or b =
1
2
λ , (14.70)

in which case
q(t) = −2ecAz

k2
cos ω(t − t0) . (14.71)

Hence the energy in the cavity after the passage of the electron is

E =
∫

(dr)µ0H2 = µ0k
2q2(t) = µ0

2e2c2A2
z

k2
. (14.72)

For a rectangular cavity, with transverse sides of length a, the E110 mode is
described by the vector potential (see Problem 14.2),

Az(x, y, z) =
cos πx/a cos πy/a√

ba
2

a
2

, (14.73)

so
A2

z(0, 0, z) =
4

a2b
=

16
λ3

, (14.74)

because from (14.70), b = λ/2, while the eigenvalue condition is a = λ/
√

2.
Therefore

E =
8

π2ε0

e2

λ
→ 32

π

e2

λ
, (14.75)

where the latter transformation marks the passage from SI units to Gaussian
ones, so then e is in esu (see Appendix). If n electrons enter spaced over a
time interval small compared to b/c, the energy of excitation is

E =
32
π

e2

λ
n2 . (14.76)

Thus, for λ = 10 cm, n = 107, we get E = 2.3 × 10−5 ergs or 1.5 × 107 eV,
or roughly 1 eV per particle. Note that the minimum energy detectable is
kT = 0.025 eV, so the smallest number of electrons detectable is about 400.

Suppose now that a succession of such pulses, spaced by the resonant
period, enter. What is the energy stored in the cavity in the steady state,
allowing for dissipation? We must solve

(
k2 +

k

Qc

d
dt

+
1
c2

d2

dt2

)
q(t) = ecn

∑
j

Az(0, 0, c(t − tj)) , (14.77)
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which corresponds to the Fourier-transformed equation [see (14.67)]
(

k2 +
ik
Qc

ζ − ζ2

c2

)
q(ζ) = ecAzn

1 − e−iζb/c

iζ

∑
j

e−iζtj . (14.78)

If tj = jτ , j = 0, 1, . . .,

∑
j

e−iζtj =
1

1 − e−iζτ
, (14.79)

and so

q(ζ) = −nec3Az

iζ
1 − e−iζb/c

1 − e−iζτ

1
ζ2 − iω

Q ζ − ω2
, (14.80)

so the time dependence is

q(t) = −nec3Az

2πi

∫ ∞

−∞
dζ

eiζt

ζ

1 − e−iζb/c

1 − e−iζτ

1
ζ2 − iω

Q ζ − ω2
. (14.81)

The only important contribution to the steady state is the pole of 1 − e−iζτ ,
corresponding to ζ = ±ω, that is, ζ = ±2π/τ (the other pole leads to damp-
ing):

q(t) = −2nec3AzRe

[
eiωt

ω

1 − e−iωb/c

τ

1
ω2

Q

]

= −2Q

π

nec

k2
Az cos ωt , (14.82)

where in the last line we used ωb/c = kb = π. That is, comparing with (14.71),
we see that Q/π pulses effectively contribute and the stored energy will be
that produced by a single electron times (nQ/π)2, that is,

E =
n2Q2

π2

32
π

e2

λ
, e in esu . (14.83)

This might be expressed in terms of the average input power P ,

P =
ω

Q
E =

64
π2

c
e2

λ2
n2Q erg/s . (14.84)

If λ = 10 cm, n = 107, Q = 5000, we obtain a power of about 20 W. Even for
one electron, P ≈ 2 × 10−13 W, which is detectable.

Quantum effects on the excitation of a cavity by a transiting electron will
be considered in Chap. 17.
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14.3 Microwave Synchrotron

14.3.1 Accelerating Cavities

Here, for simplicity, we suppose there are two accelerating cavities, one at
azimuthal angle ϕ = 0 and one at ϕ = π. Then the azimuthal electric field is

Eφ = − V

2R
[δ(ϕ) − δ(ϕ − π)] sinωt . (14.85)

If we resolve the delta functions in cosine series,

δ(ϕ) =
1
2π

∞∑
m=−∞

cos mϕ , δ(ϕ − π) =
1
2π

∞∑
m=−∞

(−1)m cos mϕ , (14.86)

the quantity appearing here is

δ(ϕ) − δ(ϕ − π) =
2
π

∑
m=1,3,5,...

cos mϕ . (14.87)

Then the accelerating field is

Eφ = − V

πR

∑
m=1,3,...

cos mϕ sin ωt

=
V

2πR

∑
m=±1,±3,...

sin(mϕ − ωt)

=
V

2πR

∑
m=1,3,...

{sin [(m − 1)ωt + mφ] − sin [(m + 1)ωt + mφ]} ,

(14.88)

where ϕ − ωt = φ. The term here explicitly independent of t is

Eφ =
V

2πR
sin φ + · · · = E sin φ + · · · . (14.89)

14.3.2 Motion of Electron

We consider the motion of a relativistic electron (v ≈ c) in a circular orbit
of radius r in a uniform magnetic field directed perpendicularly to the plane
of the orbit. The equations of motion are, in terms of the relativistic mass
m = m0(1 − v2/c2)−1/2, in Heaviside–Lorentz or Gaussian units

d
dt

(mṙ) =
mc2

r
− eH , (14.90a)

d
dt

(mc2) = eEc sin(µϕ − ωt) +
e

2πr
Φ̇ , (14.90b)

r
d
dt

ϕ = c , (14.90c)
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where Φ is the magnetic flux contained within the orbit,

Φ = 2π
∫ r

0

dr′ r′ H(r′) . (14.91)

From (14.90a) we write

mc2 = eHr + r
d
dt

(mṙ) , (14.92)

so if we look for small deviation from the equilibrium orbit, r = R + x,
|x|/R � 1, and assume a power-law profile for the magnetic field,

H = H0(t)
( r

R

)−n

, (14.93)

we have (here and in the following we assume radial derivatives are evaluated
at the equilibrium radius R)

Hr = H0R + x

(
H0 + R

∂H

∂r

)
= H0R + x(1 − n)H0 . (14.94)

Then (14.92) becomes

mc2 = eH0R + x(1 − n)eH0 + R
d
dt

(
eH0R

c2

dx

dt

)
. (14.95)

Now we can write, encompassing the situation discussed in the previous sub-
section,

φ = µϕ − ωt ,
dφ

dt
= µ

dϕ

dt
− ω =

µc

r
− ω , (14.96)

or approximately,
dφ

dt
=

µc

R
− ω − x

µc

R2
= −x

ω

R
, (14.97)

where we have used
µ =

ωR

c
=

2πR

λ
. (14.98)

Therefore, we can write (14.95) as

mc2 = eH0R − (1 − n)eH0R
1
ω

dφ

dt
− 1

ω

d
dt

(
eH0R

ω2
0

d2φ

dt2

)
, (14.99)

where we have written ω0 = c/R, ω = µω0.
We can do a similar expansion for the magnetic flux,

Φ

r
=

Φ0

R
+ x

(
−Φ0

R2
+ 2πH0

)
, (14.100)

and for the electric field
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E = E0 + x
∂E
∂r

. (14.101)

Then we deduce from (14.90b)

d
dt

mc2 =
e

2πR
Φ̇0 + ex

(
Ḣ0 −

Φ̇0

2πR2

)
+ eE0c sin φ + xec

∂E
∂r

sin φ .

(14.102)

This can be rewritten as, from (14.99),

eR
d
dt

H0 − (1 − n)eR
d
dt

H0
1
ω

dφ

dt
− (1 − n)eH0R

1
ω

d2φ

dt2

− 1
ω

d2

dt2

(
eH0R

ω2
0

d2φ

dt2

)

=
e

2πR

d
dt

Φ0 −
eR

ω

dφ

dt

(
dH0

dt
− 1

2πR2

dΦ0

dt

)
+ eE0c sin φ

− eRc

ω

∂E
∂r

dφ

dt
sin φ , (14.103)

or

1
ω

d2

dt2

(
eH0R

ω2
0

d2φ

dt2

)
+ (1 − n)

eR

ω

d
dt

(
H0

dφ

dt

)

− eR

ω

dφ

dt

(
dH0

dt
− 1

2πR2

dΦ0

dt

)
− eRc

ω

∂E
∂r

dφ

dt
sin φ + eE0c sin φ

= eR

(
dH0

dt
− 1

2πR2

dΦ0

dt

)
. (14.104)

Finally we have

1
ω2

0

d2

dt2

(
H0

d2φ

dt2

)
+ (1 − n)

d
dt

(
H0

dφ

dt

)
− dφ

dt

(
dH0

dt
− 1

2πR2

dΦ0

dt

)

− c
∂E
∂r

dφ

dt
sin φ + ωω0E0 sin φ = ω

(
dH0

dt
− 1

2πR2

dΦ0

dt

)
. (14.105)

We now briefly mention some special cases.

14.3.3 Betatron Regime: E0 = 0, Φ0 = 2πR2H0(t)

The oscillation equation (14.105) reduces to

d
dt

(
H0

dx

dt

)
+ (1 − n)ω2

0H0x = 0 , (14.106)

the solution of which is



278 14 Accelerators: Microtrons and Synchrotrons

x ∼ 1√
H0

sin(ωrt + const.) , ωr = ω0

√
1 − n , (14.107)

because if we treat H0 as slowly varying, (14.106) is approximately

d2

dt2

√
H0 x + ω2

r

√
H0 x = 0 . (14.108)

14.3.4 Betatron Regime and Constant H0

Here we neglect the variation of H0, and we obtain

1
ω2

0

d4φ

dt4
+ (1 − n)

d2φ

dt2
− c

H0

∂E
∂r

dφ

dt
sin φ +

ωω0E0

H0
sin φ = 0 . (14.109)

Consider small oscillations about φ = 0: sin φ ≈ φ, dφ
dt φ ≈ 0. Then the above

equation simplifies to

d4φ

dt4
+ (1 − n)ω2

0

d2φ

dt2
+ ωω3

0

E0

H0
φ = 0 , (14.110)

so if we seek a solution of the form φ = eiνt, ν is given by

ν2 =
1
2

[
(1 − n)ω2

0 ±
√

(1 − n)2ω4
0 − 4ωω3

0

E0

H0

]
. (14.111)

Stable oscillations require

ω
E0

H0
< ω0

(
1 − n

2

)2

, (14.112)

or, with V = 2πRE0,
V

λH0
<

(
1 − n

2

)2

. (14.113)

Thus with λ = 10 cm, H0 = 103 G, n = 1/2, the limit is V < 2×105 V (1 stat
volt equals 300 V), while if λ = 600 cm, H0 = 102 G, n = 1/2, the limit rises
to a million volts. If the electric field is small, the two roots are:

ω
E0

H0
� ω0

(
1 − n

2

)2

: ν2 = (1 − n)ω2
0 , ν2 =

ωω0

1 − n

E0

H0
. (14.114)

There is a high-frequency oscillation determined by the magnetic field, and
a low-frequency oscillation caused by the electric field. In treating the latter,
the fourth derivative term in (14.110) is neglected.

For further details, particularly the inclusion of radiation damping, see
the unpublished paper by Saxon and Schwinger, “Electron Orbits in the Syn-
chrotron,” printed in Part II.2

2 Refers to the hardcover edition which includes in addition the reprints of seminal
papers by J. Schwinger on these topics.
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14.4 Modern Developments

The present discussion is, of course, not reflective of the current high devel-
opment of the field of accelerator design. For a brief status report of cur-
rent accelerators and their design parameters, the interested reader is referred
to [19]. For recent treatises on the subject, we offer [20–22]. Our hope here in
resurrecting these old notes on the subject by Schwinger is that techniques he
invented in specific limited contexts may have applications elsewhere.

14.5 Problems for Chap. 14

1. Construct the E and H modes for a cylindrical cavity, and demonstrate
that the lowest E mode has the lowest frequency if b/a < 2.03.

2. Calculate the E modes in a rectangular cavity of sides a, b, c. These are
the modes that have no z-component of the magnetic field. Show that the
eigenfrequencies have the expected form,

k2 =
(

lπ

a

)2

+
(mπ

b

)2

+
(nπ

c

)2

. (14.115)

Show that the transverse components of H are derivable from a vector
potential which has only a z-component, Az. What is the corresponding
scalar potential so that E is derivable from the two potentials? For the
lowest mode when c < a, b, l = m = 1, n = 0, show that only a vector
potential is present, which for a = b here is exhibited in (14.73).

3. Investigate stability of electron orbits in the betatron regime with E0 vary-
ing. Here regard H0 as constant, and consider low-frequency oscillations.
Derive the governing equation from (14.105):

(1 − n)
d2φ

dt2
− c

H0

∂E
∂r

sin φ
dφ

dt
+

ωω0E0

H0
sin φ = 0 . (14.116)

What constraints are placed on the spatial variation of E0 by stability
requirements?
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Synchrotron Radiation

An accelerated particle radiates. This familiar fact became a concern to physi-
cists after the War as they contemplated building high-energy accelerators,
where such radiation might provide a limitation to the operation of such de-
vices. Nowadays, of course, dedicated synchrotron light sources have become
valuable tools for research. Here we present the elementary theory of syn-
chrotron radiation.

15.1 Relativistic Larmor Formula

In the first chapter, we showed that an accelerated charged particle radiates,
and that therefore radiation necessarily exerts a reactive force on the charged
particle. Accordingly, we should amend the Lorentz force law for a nonrel-
ativistic particle by including this radiation reaction, inferred from the first
term on the right side of (1.188), in Heaviside–Lorentz units,

m
dv
dt

= e
(
E +

v
c
× H

)
+

2
3

1
4π

e2

c3

d2v
dt2

, (15.1)

or
d
dt

p = e
(
E +

v
c
× H

)
, (15.2)

where

p = mv − 2
3

1
4π

e2

c3

dv
dt

. (15.3)

The statement of energy conservation is obtained from (15.1) by multiplying
by v:

d
dt

E = eE · v − 2
3

1
4π

e2

c3

(
dv
dt

)2

, (15.4)

where the energy is

E =
1
2
mv2 − 2

3
1
4π

e2

c3

d
dt

v2

2
. (15.5)
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Here the first term on the right side of (15.4) is the rate at which the applied
electric field does work on the charged particle, and the second term on the
right is the rate at which energy is radiated, corresponding to the Larmor
(dipole radiation) formula (1.189).

Now we must recast this in covariant form so we can describe a relativistic
particle. Recall the construction of the electromagnetic field strength tensor
in Chap. 3,

Fµν = −Fνµ , F0i = −Ei , Fij = εijkHk , (15.6)

and that position and momentum four-vectors are related to the corresponding
three-dimensional quantities by

xµ = (ct, r) , pµ = (E/c,p) . (15.7)

So the energy equation (15.4) may be written as

d
dt

E
c

=
e

c
F 0i dxi

dt
− 2

3
1
4π

e2

c4

(
d2xi

dt2

)2

. (15.8)

Recalling the relation between coordinate time and proper time intervals
(3.40), it is clear that (15.8) is the nonrelativistic version of the time compo-
nent of the covariant equation of motion

d
dτ

pµ =
e

c
Fµν dxν

dτ
− 2

3
1
4π

e2

c5

d2xν

dτ2

d2xν

dτ2

dxµ

dτ
. (15.9)

The energy (15.5) divided by c generalizes to the time component of

pµ = m0
dxµ

dτ
− 2

3
1
4π

e2

c3

d2xµ

dτ2
, (15.10)

because
d2

dτ2
ct =

d
dτ

c√
1 − v2/c2

≈ c
d
dt

1
2

v2

c2
. (15.11)

Evidently, the space components of (15.10) generalize p in (15.3), and satisfy
an equation of motion (15.9) which differs from the Lorentz force form (15.2)
by v2/c2 corrections.

We now substitute the four-momentum (15.10) into (15.9) to obtain the
third-order equation

m0
d2xµ

dτ2
=

e

c
Fµν dxν

dτ
+

2
3

1
4π

e2

c3

[
d3xµ

dτ3
− 1

c2

dxµ

dτ

(
d2xν

dτ2

d2xν

dτ2

)]
, (15.12)

or

m0
d2xµ

dτ2
=

e

c
(Fµν + fµν)

dxν

dτ
, (15.13)

where fµν is the “dissipative part of the electron’s self field,” first discovered
by Dirac,1 which upon using
1 Dirac [23] was referring to half the difference between the retarded and the ad-

vanced field of the point charge.
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dxν

dτ

dxν

dτ
= −c2 , (15.14)

and its consequence
d2xν

dτ2

dxν

dτ
= 0 , (15.15)

has the manifestly antisymmetrical form

fµν = −2
3

1
4π

e

c4

(
d3xµ

dτ3

dxν

dτ
− d3xν

dτ3

dxµ

dτ

)
. (15.16)

Note that the antisymmetry of the Fµν + fµν structure in (15.13) leads to
(15.15) upon multiplying by dxµ/dτ .

Let us return to (15.9), take its time component, and drop the radiation
reaction term in the energy and momentum:

dE
dt

= eE · v − 2
3

1
4π

e2c

(m0c2)2

(
E

m0c2

)2
[(

dp
dt

)2

− 1
c2

(
dE
dt

)2
]

. (15.17)

We identify the second term on the right as the power radiated, so we infer
the relativistic generalization of the Larmor formula (15.4),

P =
(
−dE

dt

)
rad

=
2
3

1
4π

e2

m2
0c

3

(
E

m0c2

)2
[(

dp
dt

)2

− 1
c2

(
dE
dt

)2
]

. (15.18)

15.2 Energy Loss by a Synchrotron

Let us now apply this to a synchrotron, where a particle of charge e moves in a
circular orbit of radius R with velocity v; the angular frequency of revolution is
ω0 = v/R. The circular motion is due to magnetic field B perpendicular to the
plane of the orbit, and so, neglecting radiation reaction and the accelerating
electric fields,

dp
dt

=
e

c
v × B , (15.19)

where the particle’s momentum and energy are related by p = Ev/c2. The
magnetic field does no work, so the energy is conserved, and hence we conclude
that

dv
dt

= −ec

E B × v , (15.20)

that is, the angular velocity of precession of v is

ω0 = −ec

E B , (15.21)
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the sign of which depends on that of the charge. The momentum of the particle
is given by the radius of the orbit,

p =
|e|
c

BR . (15.22)

Now we may insert (15.19), or

(
dp
dt

)2

= ω0β
3 E2

Rc
, (15.23)

into the relativistic Larmor formula (15.18), to obtain the formula for the
total power radiated in synchrotron radiation,

Prad =
2
3

1
4π

ω0
e2

R

(
E

m0c2

)4

β3 . (15.24)

Since the period of revolution is τ = 2π/ω0, the energy lost per revolution is
(β ≈ 1)

∆E = τP =
1
3

e2

R

(
E

m0c2

)4

. (15.25)

For an electron synchrotron this reads

∆Ee(keV) = 88.4
E4(GeV)

R(m)
, (15.26)

which gives a practical upper limit to the usefulness of an electron synchrotron.
For protons, radiation losses are much smaller:

∆Ep(eV) = 7.78
E4(TeV)
R(km)

; (15.27)

so at the Large Hadron Collider (LHC), where the design beam energy is
E = 7 TeV, and the radius is 4.2 km, the loss per cycle is only 4.4 keV.

15.3 Spectrum of Radiation Emitted by Synchrotron

Here we will consider in more detail the rate at which the accelerated elec-
tron does work on the field. We assume the following charge distribution in
cylindrical coordinates:

ρ(r, t) = eδ(r − re(t)) =
e

R
δ(r − R)δ(z)δ(ϕ − ϕ0 − ω0t) , (15.28)

where the delta function of the azimuthal coordinate is to be understood as
periodic, with period 2π, so [see (7.44)]
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δ(φ) =
1
2π

∞∑
m=−∞

eimϕ . (15.29)

Thus the time dependence of the charge density is seen to be given in the
form of a Fourier series:

ρ(r, t) =
∞∑

m=−∞
e−imω0tρm(r) , (15.30)

where
ρm(r) =

e

R
δ(r − R)δ(z)

1
2π

eim(ϕ−ϕ0) . (15.31)

The current density is given similarly:

j(r, t) = ρ(r, t)v(t) = ϕ̂vρ =
∞∑

m=−∞
e−imω0tjm(r) , (15.32)

where
jm(r) = ϕ̂v

e

R
δ(r − R)δ(z)

1
2π

eim(ϕ−ϕ0) , (15.33)

where ϕ̂ is the tangent vector to the circular orbit.
Now in the Lorenz gauge, the vector and scalar potentials are given in

terms of these currents by (1.117) and (1.116),
(

A
φ

)
(r, t) =

∫
(dr′)

1
4π|r − r′|

(
j
c
ρ

)(
r′, t − |r − r′|

c

)
, (15.34)

so in terms of the above Fourier series coefficients
(

Am

φm

)
(r) =

∫
(dr′)

1
4π|r − r′|e

imω0|r−r′|/c

(
jm
c

ρm

)
(r′) . (15.35)

The electric field, given by (1.48), or

E(r, t) = −1
c

∂

∂t
A(r, t) − ∇φ(r, t) , (15.36)

then has as its Fourier component

Em(r) =
imω0

c
Am(r) − ∇φm(r) . (15.37)

Inserting the Fourier series representation for the electric current and the
electric field, we can write the power dissipated by the electron, averaged over
one cycle, as

P = −
∫

(dr) j · E = −2Re
∞∑

m=1

∫
(dr) jm(r) · E∗

m(r) , (15.38)
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since no energy is carried by the m = 0 mode. Therefore, we can identify the
power radiated in the mth harmonic of the fundamental frequency, ω = mω0,
by

P =
∞∑

m=1

Pm , Pm = −2Re
∫

(dr) jm(r) · E∗
m(r) . (15.39)

We simplify the latter successively:

Pm = −2Re
∫

(dr) jm ·
(
−∇φ∗

m − imω0

c
A∗

m

)

= 2Re imω0

∫
(dr)

(
ρ∗mφm − 1

c
j∗m · Am

)
, (15.40)

which uses the equation for current conservation (1.14). Now inserting the
construction (15.35) and the explicit expressions for the charge and current
densities (15.31) and (15.33), we write this as

Pm = 2Re imω0

∫
(dr)(dr′)

eimω0|r−r′|/c

4π|r − r′|

[
ρ∗m(r)ρm(r′) − 1

c
j∗m(r) · 1

c
jm(r′)

]

= Re imω0
e2

4πR

∫
dϕ

2π

dϕ′

2π

e2imω0(R/c)| sin(ϕ−ϕ′)/2|

| sin(ϕ − ϕ′)/2|
×
[
1 − β2 cos(ϕ − ϕ′)

]
e−im(ϕ−ϕ′) . (15.41)

Here we have used the following obvious geometric facts:

|r − r′| = 2R| sin(ϕ − ϕ′)/2| , ϕ̂ · ϕ̂′ = cos(ϕ − ϕ′) . (15.42)

Using the symmetry of the ϕ integration, we can write the power radiated in
the mth harmonic as

Pm = −mω0
e2

4πR

∫ π

−π

dϕ

2π

sin(2mβ sin ϕ/2)
sin ϕ/2

(1 − β2 cos ϕ) cos mϕ

= −mω0e
2

4πR

[
(1 − β2)

∫ π

−π

dϕ

2π

sin(2mβ sin ϕ/2)
sin ϕ/2

cos mϕ

+ 2β2

∫ π

−π

dϕ

2π
sin(2mβ sin ϕ/2) sin ϕ/2 cos mϕ

]
. (15.43)

The integrals occurring here are immediately recognized as Bessel functions –
see [9], p. 408. Thus the result for the power emitted at frequency mω0, m =
1, 2, 3, . . ., is

Pm = mω0
e2

4πR

[
2β2J ′

2m(2mβ) − (1 − β2)
∫ 2mβ

0

dx J2m(x)

]
. (15.44)

A synchrotron works in the ultrarelativistic regime, where β is very close
to one. Therefore, one might naively think that in that circumstance we could
write
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Pm ∼ mω0e
2

4πR
2J2m(2m) , β → 1 . (15.45)

However, it is easy to prove ([9], p. 419) that for high harmonic numbers

J ′
2m(2m) ∼ 31/6

2π
Γ

(
2
3

)
m−2/3 , m � 1 , (15.46)

so then the total power radiated, obtained by summing Pm over all positive
m, will diverge. If one artificially puts a cutoff in the summation at mc, we
would have

P =
∞∑

m=1

Pm ∼
∼mc∑

m

m1/3 ∼ m4/3
c , mc � 1 , (15.47)

which upon comparison with the total power (15.24) says that

mc ∼
(

E
m0c2

)3

. (15.48)

The corresponding wavelength is in the x-ray range (∼ 1 nm) for a synchrotron
of 1 m radius and 1 GeV energy.

The resolution of this conundrum is to recognize that although 1− β may
be small, it is never zero, and eventually the largeness of m will compensate
for its smallness. Indeed, for m � 1,

J ′
2m(2mβ) ∼

{
(2π)−131/6Γ (2/3)m−2/3 , m(1 − β2)3/2 � 1 ,

(4πm)−1/2(1 − β2)1/4e−
2
3 m(1−β2)3/2

, m(1 − β2)3/2 � 1 ,
(15.49)

and indeed the peak of the spectrum occurs for a large harmonic number
characterized by

mc = (1 − β2)−3/2 =
(

E
m0c2

)3

(15.50)

and for m � mc the power decreases exponentially. For a 1 GeV electron
synchrotron, mc = 7.5 × 109. For a detailed derivation of (15.49), see [9],
Chap. 40.

A representation useful for verifying these assertions is the following:

J2m(2mβ) ∼ 1√
3π

(
3

2m

)1/3

ξ1/3K1/3(ξ) , m � 1 , (15.51)

where ξ = (2m/3)(m0c
2/E)3, so

J ′
2m(2mβ) ∼ 1√

3π

(
3

2m

)2/3

ξ2/3K2/3(ξ) , m � 1 . (15.52)

Hence, an asymptotic formula for the power radiated in the mth harmonic is
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Pm ∼ ω0

4π

e2

R

(
2m

3

)1/3 √
3

2π
ξ2/3

[
2K2/3(ξ) −

∫ ∞

ξ

dx K1/3(x)
]

, m � 1 .

(15.53)
The modified Bessel function here are otherwise called Airy functions:

K1/3(ξ) = π

√
3
z
Ai(z) =

√
3
z

∫ ∞

0

dt cos
(

1
3
t3 + zt

)
, (15.54a)

K2/3(ξ) = −π

√
3

z
Ai′(z) =

√
3

z

∫ ∞

0

dt t sin
(

1
3
t3 + zt

)
, (15.54b)

where z = (3ξ/2)2/3.
The results given in (15.49) now follow immediately from the properties of

the Bessel function of imaginary argument, the Macdonald function. Because
of the dominance of very large harmonic numbers, we may use the representa-
tion (15.53) to reproduce the total power radiated (15.24) using the integral

∫ ∞

0

dt tµ−1 Kν(t) = 2µ−2Γ

(
µ − ν

2

)
Γ

(
µ + ν

2

)
, (15.55)

that is,

P =
∞∑

m=1

Pm ≈ 3
2

(
E

m0c2

)3 ∫ ∞

0

dξ Pm

= ω0
e2

4πR

(
E

m0c2

)4 3
√

3
4π

∫ ∞

0

ξ dξ

[
2K2/3(ξ) −

∫ ∞

ξ

dx K1/3(x)
]

= ω0
e2

4πR

(
E

m0c2

)4 3
√

3
4π

[
2
∫ ∞

0

ξ dξ K2/3(ξ) −
1
2

∫ ∞

0

ξ2 dξ K1/3(ξ)
]

=
2
3
ω0

e2

4πR

(
E

m0c2

)4

. (15.56)

Numerically, it is interesting to compare the asymptotic formula (15.53) with
the exact result for the spectral distribution (15.44). In fact for a very modest
β of 0.999, the asymptotic formula is high by only 16% at m = 1, and the
discrepancy drops rapidly to 1 − β3 for larger harmonic numbers. (The error
at m = 100 is only 0.7%.) It is much faster to evaluate (15.53) than the exact
(15.44). In Fig. 15.1, we show the power spectrum for β = 0.999, corresponding
to an electron energy of 11 MeV, for which mc = 11, 200. Note that the error
in using (15.53) is 3% at the lowest harmonic number.

15.4 Angular Distribution of Radiated Power

To study the angular distribution of the radiation emitted by an electron in a
synchrotron, we may return to expression (15.35) and apply it to the region
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Fig. 15.1. Graph of the asymptotic power radiated, divided by ω0e
2/4πR, given by

(15.53), for β = 0.999

far from the synchrotron, where r � R. Thus we may approximate, in the
exponent,

|r − r′| ≈ r − n̂ · r′ , n̂ =
r
r

. (15.57)

Then the vector potential in the radiation zone is, according to (15.33)

Am(r) ∼ 1
4πrc

eiω0mr/c

∫
(dr′) jm(r′) e−imω0n̂·r′/c

=
1
4π

βe

2πr
eimω0r/c

∫ π

−π

dϕ′eim(ϕ′−ϕ0)ϕ̂′e−imβ sin θ cos(ϕ−ϕ′) .

(15.58)

Now we write the azimuthal unit vector in terms of fixed basis vectors:

ϕ̂′ = ϕ̂ cos(ϕ − ϕ′) + ρ̂ sin(ϕ − ϕ′) . (15.59)

The resulting angular integrals can be expressed in terms of the generating
function for the Bessel functions (8.19), or

i−mJm(z) =
∫ π

−π

dϕ′

2π
e−iz cos ϕ′

eimϕ′
, (15.60)

as follows:
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Am ∼ eβ

4πr
eimωor/ceim(ϕ−ϕ0−π/2)

[
iϕ̂J ′

m(mβ sin θ) + ρ̂
Jm(mβ sin θ)

β sin θ

]
,

(15.61)
which uses (8.7a). This implies

|Am|2 =
e2β2

(4π)2r2

[
(J ′

m(x))2 +
J2

m(x)
β2 sin2 θ

]
, (15.62a)

|n̂ · Am|2 =
e2

(4π)2r2
J2

m(x) , (15.62b)

with x = mβ sin θ.
From the potential, we can calculate the Fourier components of the electric

and magnetic fields, because in the radiation zone

∇Am ∼ imω0

c
n̂Am : (15.63)

Em = i
mω0

c
Am − 1

imωc/c
∇(∇ · Am)

∼ −i
mω0

c
n̂ × (n̂ × Am) , (15.64a)

Hm = ∇ × Am ∼ i
mω0

c
n̂ × Am . (15.64b)

Then the time-averaged Poynting vector (1.20b) is

S = cE × H = 2cRe
∞∑

m=1

E∗
m × Hm =

∞∑
m=1

Sm , (15.65)

so the power radiated per unit area into the mth harmonic is

Sm = 2n̂
m2ω2

0

c

(
|Am|2 − |n̂ · Am|2

)
, (15.66)

which involves just the combinations given in (15.62a) and (15.62b). Taking
the radial component of this, and multiplying by r2, we immediately obtain
the power radiated into a given solid angle at frequency mω0:

dPm

dΩ
=

ω0

2π

e2

4πR
β3m2

[
J ′2

m(mβ sin θ) +
cot2 θ

β2
J2

m(mβ sin θ)
]

. (15.67)

It turns out that the two terms here have physical significance ([9], Chap. 39):
They correspond to the power radiated in the polarization state correspond-
ing to the electric field in the plane of the orbit, characterized by a unit vector
e‖ perpendicular to the plane defined by ẑ and n̂, and by the electric field
in the plane defined by the normal to the orbit and the direction of observa-
tion, characterized by a unit vector e⊥ in that plane, respectively. (Both unit
vectors are necessarily perpendicular to n̂.) That is,
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(
dPm

dΩ

)
‖

=
ω0

2π

e2

4πR
β3m2 [J ′

m(mβ sin θ)]2 , (15.68a)

(
dPm

dΩ

)
⊥

=
ω0

2π

e2

4πR
β3m2

[
Jm(mβ sin θ)

β tan θ

]2
. (15.68b)

The total power radiated into these two polarizations are

P‖ =
6 + β2

8
P , P⊥ =

2 − β2

8
P , (15.69)

which means that the synchrotron radiation is predominantly polarized in the
plane of the orbit, the ratio of the power in the two polarizations being 7 in
the ultrarelativistic limit, and already 3 nonrelativistically.

The angular distribution of the high harmonics is of principal interest, for
we have seen that little energy is radiated in the longer wavelengths. The
general character of the radiation pattern is easily seen, for Bessel functions
of high order are very small if the argument is appreciably less than the order,
and therefore the radiation intensity is negligible unless sin θ is close to unity.
Hence the radiation is closely confined to the plane of the orbit. For a more
precise analysis, we employ the approximate Bessel function representation
already described in (15.51) and (15.52). Introducing the angle ψ = π/2 − θ
between the point of observation and the plane of the orbit, which we suppose
to be small, we write the power radiated into a unit angular range about the
angle ψ, in the mth harmonic, as

dPm

dΩ
(ψ) ∼ ω0

2π

e2

4πR

3
π2

(m

3

)2/3
[
ξ4/3K2

2/3(ξ) + ψ2
(m

3

)2/3

ξ2/3K2
1/3(ξ)

]
,

(15.70)
for m � 1 and ψ � 1, where

ξ =
m

3
(1 − β2 sin2 θ)3/2 ≈ m

3

[
ψ2 +

(
m0c

2

E

)2
]3/2

. (15.71)

In consequence of the properties of the cylinder functions, the radiation inten-
sity decreases rapidly when ξ becomes appreciably greater than unity. Hence,
for the modes of importance, m ∼ (E/m0c

2)3, the angular range within which
the energy is sensibly confined is of the order m−1/3. Within this angular
range, the intensity per unit angle is essentially independent of ψ and varies
with m as m2/3, which is consistent with the m1/3 variation of the total
power in a given harmonic. In virtue of the concentration of the radiation at
the higher harmonics, m ∼ mc, it is clear that the mean angular range for the
total radiation will be ∼ m

−1/3
c = m0c

2/E , which is approximately 0.03◦ for
an electron at E = 1 GeV. A plot of the angular distribution, for β = 0.999
and two different values of m, is shown in Fig. 15.2, illustrating the above
points.
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Fig. 15.2. The angular distribution of synchrotron radiation about the plane of the
orbit calculated from (15.70) for β = 0.999, for m = 1000, and m = 10,000. Recall
that mc = 11,200 characterizes the peak of the spectrum in this case. Plotted is the
power relative to (ω0/2π)(e2/4πR)

15.5 Historical Note

As the Second World War wound down, many physicists at the Rad Lab and
elsewhere started thinking again of fundamental physics, and of the necessity
of overcoming the nonrelativistic limit of Lawrence’s cyclotron. The betatron,
which used a time-varying magnetic field to produce an accelerating voltage
on electrons, was the first machine built on new principles, but devices using
microwave cavities which had been developed so highly were on many people’s
minds. We described Schwinger’s ideas in this regard in Chap. 14.

It appears to have been a conversation, in late 1944 or early 1945, with
Marcel Schein of Chicago that sparked Schwinger’s consideration of the ra-
diation produced by the electrons in a betatron. The thinking at the time
was that there would be little radiation because of destructive interference
between the different electrons. Schwinger finally had the time to examine the
problem in July 1945. He quickly developed the theory described here, and
immediately communicated the salient features to Schein [24]. The conclu-
sions were strikingly contrary to expectation: “(1) There is no interference,
and the electrons radiate independently; (2) The energy is radiated, not in
the micro-wave, but rather the infra-red region.”
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Later that month, actually the week after the Trinity test on July 16, 1945,
Schwinger traveled to Los Alamos, and gave his famous lectures on betatron
radiation and on waveguides [24]. He also wrote up a detailed paper, which
had only very limited circulation as a preprint, and was never published until
2000 [2]. He did publish in 1949 a quite different paper [25]. This chapter is
based in large measure on the original version, which is reprinted in Part II
of this volume, along with the 1949 Physical Review article.

Unknown to Schwinger at the time, parallel developments were taking
place in the Soviet Union at the same moment. D. Ivanenko and A. A. Sokolov
worked out the angular and spectral properties of synchrotron radiation [26];
for a history of this development, and a comprehensive treatment of syn-
chrotron radiation from a particularly Russian perspective see [27]. For recent
treatises on the subject, see [28,29].

15.6 Problems for Chap. 15

1. Use (15.25) to find how many revolutions are required for the energy of an
electron moving in a circular orbit without energy supplied to drop to half
the initial value through radiative loss.

2. Generalize the considerations in Chap. 1 to get the rate of radiative energy
loss:

−dE

dt

∣∣∣∣
rad

=
2
3

e2

4πc3

1
(1 − β2)3

[(
dv
dt

)2

−
(

v
c
× dv

dt

)2
]

. (15.72)

Consider a charge accelerated from rest by a constant electric field E, and
show that the rate of radiation does not change with increasing energy.
This is one reason that the successor to the LHC is projected to be a linear
collider.

Problems 15.3 through 15.6 refer to what is called the Wiggler, which
beside accelerator applications, has application to the free electron laser –
see Problem 3.28.

3. Consider a helical magnetic field, for 0 < z < L = Nλw, where N is an
integer, (λ̄ = λ/2π)

Bx = B cos
(

z

λ̄w

)
, By = B sin

(
z

λ̄w

)
. (15.73)

At t = 0, an electron enters the helical magnetic field at z = 0 with vz = v,
vx = vy = 0. Find the leading approximations for small displacements to
vx(t), vy(t), vz(t), and also z(t), for 0 < t < L/v.

4. Now apply the radiated energy formula for a point charge, (L = Nλω)

dE

dΩ dω
=

ω2

16π3c3

∣∣∣∣∣n ×
∫ L/v

0

dt eiωte−iωn·r(t)/cev(t)

∣∣∣∣∣
2

, (15.74)
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to radiation along the z-axis (nz = 1, nx = ny = 0) under the assumption
that 1−β2 � 1. At what value of ω (ω) is the radiation a maximum? State
that radiated energy, per unit solid angle and frequency, as a multiple of
N2.

5. What is the smallest fractional deviation of ω (positive or negative), δω/ω,
that reduces the radiated energy to zero? This is a rough measure of the
width of the spectral line centered around ω. Under the assumption that
δω/ω � 1 (what does that say about N?) carry out the integration over ω
to get dE/dΩ. Check that your result has the dimensions of energy.

6. Now suppose that the radiation is emitted at a very small angle (θ � 1)
relative to the z-axis. What is the frequency? How must θ be restricted so
that the frequency is changed by less than some given small fraction? After
integrating dE/dΩ over that small angular range, how does the resulting
radiated energy, Erad, vary with the relativistic energy of the electron?

7. The asymptotic formula for the power radiated by a synchrotron into the
mth harmonic is given in (15.53), where the modified Bessel function com-
bination given there can be alternatively written as

2K2/3(ξ) −
∫ ∞

ξ

dη K1/3(η) =
∫ ∞

ξ

dη K5/3(η) . (15.75)

Show that when we are considering parallel polarization, this combination
is replaced by

1
2

[
3K2/3(ξ) −

∫ ∞

ξ

dη K1/3(η)
]

=
1
4

∫ ∞

ξ

dη [3K5/3(η) + K1/3(η)] ,

(15.76)
while the remainder describes perpendicular polarization,

1
2

[
K2/3(ξ) −

∫ ∞

ξ

dη K1/3(η)
]

=
1
3

∫ ∞

ξ

dη

η
K2/3(η)

=
1
4

∫ ∞

ξ

dη [K5/3(η) − K1/3(η)] .

(15.77)

Show that the 7:1 ratio seen in (15.69) emerges on performing the frequency
integral.
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Diffraction

The wave nature of light is manifested by diffraction. Such problems are no-
toriously difficult to solve. Here we indicate two approaches – the first, based
on a variational principle, and the second, valid for short wavelengths, based
on the exact solution found by Sommerfeld in 1896 for the diffraction by a
straight edge.

16.1 Variational Principle for Scattering

In this chapter we will principally consider essentially two-dimensional situ-
ations, of scattering of waves by a thin conductor lying in the x = 0 plane,
with translational symmetry along the y-axis. Consider a scattering by an H
mode (⊥-mode), that is, the electric field of the incident electromagnetic wave
points along the y-axis, and is therefore tangential to the conducting surface.1

The geometry is sketched in Fig. 16.1. In terms of the current density in the
conductor, which then necessarily also points in the y-direction, the scattered
electric field intensity is, in Heaviside–Lorentz units with k = ω/c,

Escatt =
ik

4πc

∫
(dr′)

eik|r−r′|

|r − r′| J(r′) , (16.1)

which follows from the first line of (1.117). Since the conductor is infinitesi-
mally thin, we can immediately carry out the integral over x′,∫

dx′J(x′, z′) = K(z′) , (16.2)

in terms of the surface current density. Because the latter does not depend on
y′, we can carry out the corresponding integral in terms of the definition of
the Hankel function:
1 This notation is that of the analogous situation discussed in Chap. 9. However, in

view of the translational invariance along the y-direction, we could equally well
refer to this as an E mode, and indeed Schwinger did so in his original notes.
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y

Fig. 16.1. Coordinate system adopted to describe scattering by a thin conducting
screen containing an aperture. Grazing angles of the incident and scattered waves,
θ′ and θ′′, respectively, are shown

πiH(1)
0 (kρ) =

∫ ∞

−∞
dy′ eik

√
ρ2+(y′−y)2√

ρ2 + (y′ − y)2
. (16.3)

Therefore, in terms of the incident electric field Einc, we have the following
expression for the electric field amplitude,

E = Einc +
ik

4πc

∫ ∞

−∞
dz′ πiH(1)

0

(
k
√

x2 + (z − z′)2
)

K(z′) . (16.4)

Of course, the z′ integration is extended only over that portion of the x = 0
plane occupied by conductors. This expression is actually an integral equation,
since the current in the conductor is determined by the electric field itself. On
the conductor, E = 0, so we have

Einc(0, z) =
k

4c

∫
cond

dz′ H
(1)
0 (k|z − z′|)K(z′) , (16.5)

an integral equation for K(z). There is only one situation in which this equa-
tion has been solved exactly, that for a straight edge, where the conductor
extends along the negative z-axis, that is, K(y) = 0 for z > 0. This was
first worked out by Sommerfeld [30]; Schwinger’s solution of this problem is
recounted in Chap. 48 of [9].

In general, we will have to treat this problem approximately, and make
some intelligent guesses as to the form of the current distribution. For this
purpose, it will be convenient to recast the problem in the form of a varia-
tional principle in the current density, so that a first-order error in the current
translates into a second-order error in the scattering amplitude.

Let us consider a plane E-mode wave incident, with a propagation vector
making an angle θ′ with respect to the surface of the plane x = 0. The integral
equation (16.5) becomes

eikz cos θ′
=

k

4c

∫
cond

dz′ H
(1)
0 (k|z − z′|)K(z′) , (16.6)

for z on the conductor. From this follows, for arbitrary K ′,
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∫
cond

dz eikz cos θ′
K ′(z) =

k

4c

∫
cond

dz dz′ K ′(z)H(1)
0 (k|z − z′|)K(z′) . (16.7)

We are interested in the scattering amplitude describing fields far away
from the conductor, so we may use in (16.4) the asymptotic form of the
Hankel function:

H
(1)
0

(
k
√

x2 + (z − z′)2
)
∼
√

2
πik

eik[x2+(y−y′)2]1/2

[x2 + (y − y′)2]1/4
, kx � 1 . (16.8)

Furthermore, since z′ is a coordinate in the conductor, asymptotically far
away, √

x2 + (z − z′)2 ∼ ρ − z

ρ
z′ = ρ + z′ cos θ′′ , (16.9)

where ρ =
√

x2 + z2 � |z′|, and θ′′ is the angle of the scattered wave again
relative to the plane of the conductor. Thus, the Hankel function, in the
asymptotic region, may be replaced by

H
(1)
0

(
k
√

x2 + (z − z′)2
)
∼
√

2
πikρ

eikρeikz′ cos θ′′
. (16.10)

We now define the scattering amplitude by comparison with (16.4),

A(θ′, θ′′) =
ik
c

∫
cond

dz′eikz′ cos θ′′
K(z′) , (16.11)

which has been normalized so that the differential cross section is obtained
from it by

σ(θ′, θ′′) =
1

8πk
|A(θ′, θ′′)|2 , (16.12)

and the total cross section is related to the imaginary part of the forward
scattering amplitude by the optical theorem,

σ(θ′) =
1
k

Im A(θ′, θ′ + π) . (16.13)

In view of the integral equation (16.6), which determines the surface current
for the wave incident on the conductor with grazing angle θ′ (call that current
Kθ′), and the analogously defined

eikz cos θ′′
=

k

4c

∫
cond

dz′ H
(1)
0 (k|z − z′|)Kθ′′(z′) , (16.14)

we have from (16.7) the following equation, homogeneous in the two current
densities, for the scattering amplitude (16.11):

1
A(θ′, θ′′)

= − i
4

∫
dz dz′ Kθ′(z)H(1)

0 (k|z − z′|)Kθ′′(z′)∫
dz eikz cos θ′′Kθ′(z)

∫
dz′ eikz′ cos θ′Kθ′′(z′)

. (16.15)
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This form now is stationary with respect to both Kθ′ and Kθ′′ . That is, if
we make independent small variations in both of these currents, and use the
integral equation (16.14), as well as the analogous equation obtained by inter-
changing θ′ and θ′′, we get a vanishing result in first order. This means that a
relatively crude estimate for the surface current should lead to a considerably
more accurate estimate for the scattering amplitude, and for the cross section.

16.2 Scattering by a Strip

As an example of the use of this method, we consider a metallic strip of
width δ of negligible thickness and infinite length. The scattering amplitude
for an E-mode wave incident at an angle θ′ relative to the plane of the strip
and scattering at angle θ′′ is given by (16.15), with coordinates illustrated
in Fig. 16.1. If θ′ = θ′′ we are describing backscattering, which leads to the
“radar” cross section (so called because only backscattering is detected by a
radar receiver), while if π + θ′ = θ′′ we describe forward scattering, which by
the optical theorem [see (16.13)] represents the total cross section.

16.2.1 Normal Incidence

As a first example consider normal incidence, backscattering, θ′ = θ′′ = π
2 .

Assume Kπ/2(z) = constant. Then we have from (16.15) for the radar ampli-
tude

1
R

= − i
4δ2

∫
dz dz′ H

(1)
0 (k|z − z′|) . (16.16)

To evaluate this integral, introduce a rotation of π/4 by defining new variables

ξ =
z − z′√

2
, η =

z + z′√
2

, (16.17)

so (16.16) becomes

1
R

= − i
4δ2

∫ δ/
√

2

−δ/
√

2

dξ

∫ δ/
√

2−|ξ|

−(δ/
√

2−|ξ|)
dη H

(1)
0 (k

√
2|ξ|)

= − i
δ2

∫ δ/
√

2

0

dξ

(
δ√
2
− ξ

)
H

(1)
0 (k

√
2ξ)

= − i
2

∫ 1

0

dx (1 − x)H(1)
0 (kxδ) , (16.18)

where we have introduced ξ = xδ/
√

2. Now remember from (8.8a) that

d
dx

[
xH

(1)
1 (λx)

]
= λxH

(1)
0 (λx) , (16.19)



16.2 Scattering by a Strip 299

so ∫ 1

0

dx x H
(1)
0 (λx) =

1
λ

[
H

(1)
1 (λ) +

2i
πλ

]
, (16.20)

which uses (8.30a). The remaining integral can be evaluated in terms of Struve
functions. The fundamental such function is defined by

S0(x) =
2
π

∫ π/2

0

dϑ sin(x cos ϑ) , (16.21)

from which we deduce

dS0(x)
dx

=
2
π

∫ π/2

0

dϑ cos ϑ cos(x cos ϑ)

=
2
π
− 2

π
x

∫ π/2

0

dϑ sin2 ϑ sin(x cos ϑ) , (16.22)

after integration by parts. S1(x) is defined by

S1(x) =
2x

π

∫ π/2

0

dϑ sin2 ϑ sin(x cos ϑ) , (16.23)

so the differential equation for S1(x) is

d
dx

(xS1(x)) =
4x

π

∫ π/2

0

dϑ sin2 ϑ sin(x cos ϑ)

+
2x2

π

∫ π/2

0

dϑ cos ϑ sin2 ϑ cos(x cos ϑ)

= −2x

π

∫ π/2

0

d[sin(x cos ϑ)] sin ϑ cos ϑ

+
4x

π

∫ π/2

0

dϑ sin2 ϑ sin(x cos ϑ)

=
2x

π

∫ π/2

0

dϑ sin(x cos ϑ) = xS0(x) , (16.24)

after integrating by parts. Thus we have from (16.22) and (16.24)

dS0

dx
=

2
π
− S1 ,

d
dx

(xS1) = xS0 . (16.25)

If the constant were not present in the first of these relations, these equations
would be the same as the Bessel function recurrence relations (8.8a) and (8.8b)
with µ = 1 and 0, respectively. Therefore, the 0th Struve function satisfies
the differential equation

(
d2

dx2
+

1
x

d
dx

+ 1
)
S0(x) =

2
πx

, (16.26)
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which is to be compared with the equation satisfied by the 0th Hankel func-
tion: (

d2

dx2
+

1
x

d
dx

+ 1
)

H
(1)
0 (x) = 0 . (16.27)

Multiply the first of these equations by xH
(1)
0 and the second by xS0, and

subtract. Then, the left-hand side is a total differential,

d
dx

[
x

(
H

(1)
0 (x)

d
dx

S0(x) − S0(x)
d
dx

H
(1)
0 (x)

)]
=

2
π

H
(1)
0 (x) , (16.28)

and hence if we integrate this equation, we obtain

2
π

∫ x

0

dtH
(1)
0 (t) = x

{
H

(1)
0 (x)

[
2
π
− S1(x)

]
+ H

(1)
1 (x)S0(x)

}
. (16.29)

Now returning to (16.18), we find the backscattering amplitude to be, from
(16.20) and (16.29),

1
R

= − i
2kδ

[∫ kδ

0

dx H
(1)
0 (x) − H

(1)
1 (kδ) − 2i

πkδ

]

= − i
2kδ

[
kδH

(1)
0 (kδ) − H

(1)
1 (kδ)

+
π

2
kδ
(
H

(1)
1 (kδ)S0(kδ) − H

(1)
0 (kδ)S1(kδ)

)
− 2i

πkδ

]
. (16.30)

Consider first the short-wavelength limit, kδ � 1. Then, from the repre-
sentation2

H
(1)
0 (|x|) =

1
π

∫ ∞

−∞
dt

eixt

√
1 − t2

, (16.31)

we find ∫ ∞

0

dx H
(1)
0 (x) =

∫ ∞

−∞
dt

δ(t)√
1 − t2

= 1 , (16.32)

which is equivalent to
∫ ∞

0

dx J0(x) = 1 ,

∫ ∞

0

dx N0(x) = 0 . (16.33)

From (16.32) we get the geometrical limit entirely from the first term in the
first line of (16.30),

R = 2ikδ , (16.34)

and the backscattering cross section per unit angle is
2 The branch point is interpreted by setting in the square root 1 → 1 + iε. See [9],

p. 513, for example, for a derivation.
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σ
(π

2
,
π

2

)
=

1
8πk

|R|2 =
kδ2

2π
=

δ2

λ
. (16.35)

In the same limit, the total cross section is given by the optical theorem
(16.13),

σ
(π

2

)
=

1
k

Im (2ikδ) = 2δ . (16.36)

We use here the fact that as much is scattered forward as backward. The
reason for the factor of δ/λ in the backscattering cross section is that radiation
is scattering in a narrow width (specular reflection). The reason for the factor
of 2 in the total cross section is that there is a cross section δ for forward
scattering to make the shadow, and the backward scattering gives another δ.
We can easily get corrections to these results by using asymptotic forms of
the Hankel functions.

In the opposite limit, kδ � 1, it is easiest to go back to (16.18), where
from (8.30b):

1
R

≈ − i
2

∫ 1

0

dx (1 − x)
[
1 +

2i
π

log
(γ

2
xkδ
)]

= − i
4

[
1 +

2i
π

(
log

γkδ

2
− 3

2

)]
. (16.37)

Here we see the appearance of the Euler constant,

C = ln γ = 0.577216 . . . . (16.38)

The correct answer differs from this by the replacement of the factor multi-
plying 2i

π by log γkδ/4, which is to say that in place of 4 in the logarithm
we have here 2e3/2, an error in the ratio of 0.45, or an additive error in that
coefficient of 0.81. The backscattering cross section per unit angle is

σ
(π

2
,
π

2

)
=

1
8πk

16

1 + 4
π2

(
log γkδ

2 − 3
2

)2 , (16.39)

and from the optical theorem, the total cross section is

σ
(π

2

)
=

1
k

4

1 + 4
π2

(
log γkδ

2 − 3
2

)2 , (16.40)

which is 2πσ
(

π
2 , π

2

)
, which indicates that the scattering is uniform as is to be

expected in long-wavelength limit.

16.2.2 Grazing Incidence

Next, consider the problem of the wave incident at angle θ′ = 0. Let us assume
now that the surface currents are
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K0(z) = eikz , Kπ(z) = e−ikz , (16.41)

since K must be constant in the long-wavelength limit, and must be a plane
wave for short wavelength. The backscattering amplitude is given by (16.15),
or

1
A(0, 0)

= − i
4

∫ δ/2

−δ/2
dz dz′H

(1)
0 (k|z − z′|)eik(z+z′)

4
(

sin kδ
2k

)2 . (16.42)

Now we do the integral appearing in the numerator using the variables (16.17)

∫ δ/2

−δ/2

dz dz′eik(z+z′)H
(1)
0 (k|z − z′|) =

∫ δ/
√

2

−δ/
√

2

dξ

∫ δ/
√

2−|ξ|

−(δ/
√

2−|ξ|)
dη eik

√
2η

×H
(1)
0 (k

√
2|ξ|)

=
2
k2

∫ kδ

0

dtH
(1)
0 (t) sin(kδ − t) .

(16.43)

Now define a function F by

F (x) =
∫ x

0

dtH
(1)
0 (t) sin(x − t) . (16.44)

Its derivative is
F ′(x) =

∫ x

0

dtH
(1)
0 (t) cos(x − t) , (16.45)

and its second derivative is

F ′′(x) = −
∫ x

0

dtH
(1)
0 (t) sin(x − t) + H

(1)
0 (x) , (16.46)

leading to the differential equation

F (x) + F ′′(x) = H
(1)
0 (x) , (16.47)

so a particular solution is, according to (8.9) and (8.8a),

F (x) = xH
(1)
1 (x) . (16.48)

To get the general solution, add A cos x+B sin x as a solution to the homoge-
neous equation. Imposing the boundary condition F (0) = 0, we deduce from
(8.30a) that A = 2i/π, and F ′(0) = 0 implies B = 0. Thus,

F (x) = xH
(1)
1 (x) +

2i
π

cos x , (16.49)

The backscattering amplitude (16.42) therefore has the form
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1
A(0, 0)

= − i
2

kδ J1(kδ) + i
(
kδ N1(kδ) + 2

π cos kδ
)

sin2 kδ
, (16.50)

so the cross section per unit angle for backscattering is

σradar =
1

8πk

4 sin4 kδ

[kδ J1(kδ)]2 +
[
kδ N1(kδ) + 2

π cos kδ
]2 . (16.51)

For short wavelengths, we recall from (8.33a) and (8.33b) the asymptotic
behavior of the Bessel functions, kδ � 1:

J1(kδ) ∼
√

2
πkδ

cos
(

kδ − 3π

4

)
, (16.52a)

N1(kδ) ∼
√

2
πkδ

sin
(

kδ − 3π

4

)
. (16.52b)

Thus the backscattering cross section becomes in this limit

kδ � 1 : σradar =
1

2πk

sin4 kδ

2kδ/π
=

sin2 kδ

4k2δ
, (16.53)

so it is very small for short wavelength, as is to be expected.
For long wavelengths kδ � 1, we get the same answer (16.39) as for normal

incidence, so that as already anticipated the scattering is independent of the
angle in the static limit.

To obtain the total cross section, we need the forward scattering amplitude,

1
A(0, π)

= − i
4δ2

∫ δ/2

−δ/2

dz dz eik(z−z′)H
(1)
0 (k|z − z′|)

= − i
4δ2

2δ2

∫ 1

0

dx (1 − x) cos kxδ H
(1)
0 (kxδ) . (16.54)

First, we observe that
∫ x

0

dt cos tH
(1)
0 (t) = F (x) sin x + F ′(x) cos x

= x[H(1)
0 (x) cos x + H

(1)
1 (x) sin x] , (16.55)

which follows from (16.49) and its derivative. To obtain the second integral
in (16.54) consider

G(x) =
∫ x

0

dt tH
(1)
0 (t) sin(x − t) . (16.56)

As before, G satisfies

G′′(x) + G(x) = xH
(1)
0 (x) = [xH

(1)
1 (x)]′ , (16.57)
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the general solution of which has the form

G(x) =
x2

3
H

(1)
1 (x) + A cos x + B sin x . (16.58)

The boundary condition G(0) = 0 implies A = 0, while G′(0) = 0 implies
B = 2i/3π, that is,

G(x) =
x2

3
H

(1)
1 (x) +

2i
3π

sin x . (16.59)

As a result we can conclude∫ x

0

dt t cos tH
(1)
0 (t) = G(x) sin x + G′(x) cos x

=
x2

3

(
H

(1)
0 (x) cos x + H

(1)
1 (x) sin x

)

+
x

3
H

(1)
1 (x) cos x +

2i
3π

. (16.60)

From this we read off the forward scattering amplitude, with x = kδ,

A(0, π) =
3i

H
(1)
0 (x) cos x + H

(1)
1 (x) sin x − 1

2
cos x

x H
(1)
1 (x) − i

πx2

. (16.61)

By expanding this for small x, we find the static limit is the same as before,
(16.37). For x � 1, from (8.31a)

A(0, π) ≈ 3i√
2

πxei(x−π/4)(cos x − i sin x)

≈
√

πx

2
3i eπi/4 ≈ 3

2

√
πkδ(i − 1) . (16.62)

The total cross section is obtained from this by taking the imaginary part and
dividing by k:

σ(0) =
3
2

√
πδ

k
=

3
2

√
λδ

2
. (16.63)

This is the first diffraction result. The geometrical limit is zero, of course,

lim
δ→∞

σ

δ
= 0 . (16.64)

16.2.3 General Incident Angle

Now consider the general situation where the wave is incident at angle θ′,
and correspondingly assume Kθ′(z) = eik cos θ′z. Now we have for forward
scattering
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1
A(θ′, θ′ + π)

= − i
4

1
δ2

∫ δ/2

−δ/2

dz dz′ eik cos θ′|z−z′|H
(1)
0 (k|z − z′|)

= − i
2

∫ 1

0

dx (1 − x) cos(kxδ cos θ′)H(1)
0 (kxδ) . (16.65)

This cannot be evaluated in general. We can extract the high and low fre-
quency limits, however. Let us change variables to t = kxδ. Then

A(θ′, θ′ + π) =
2ikδ∫ kδ

0
dt
(
1 − t

kδ

)
cos(t cos θ′)H(1)

0 (t)
. (16.66)

For low frequency, we can get the result (16.37) by expanding in powers of
kδ. To get the high frequency limit, we want to discuss

f(x) =
∫ x

0

dt (x − t) cos λtH
(1)
0 (t) , (16.67)

which satisfies
f ′′(x) = cos λxH

(1)
0 (x) . (16.68)

Since we want the answer for large x, we need the asymptotic forms and
integral representations. We start from (16.31) or

H
(1)
0 (|x|) =

1
π

∫ ∞

−∞
dt

eixt

√
1 − t2

. (16.69)

We choose the branch lines to run along the real axis, from ±1 to ±∞ and the
path of integration to lie below the branch line on the positive real axis, and
above that on the negative real axis. Then, by Jordan’s lemma, we can rotate
the left-hand contour through the upper half plane, and obtain the contour
shown in Fig. 16.2. Hence we have the representation

→

√
1 − t2 = −i

√
t2 − 1

√
1 − t2 = i

√
t2 − 1

Fig. 16.2. Contour for defining the 0th Hankel function

H
(1)
0 (x) =

2
πi

∫ ∞

1

dt
eixt

√
t2 − 1

, (16.70)

from which follows

J0(x) =
2
π

∫ ∞

1

dt
sin xt√
t2 − 1

=
2
π

∫ ∞

0

dϑ sin(x cosh ϑ) , (16.71a)

N0(x) = − 2
π

∫ ∞

1

dt
cos xt√
t2 − 1

= − 2
π

∫ ∞

0

dϑ cos(x cosh ϑ) . (16.71b)



306 16 Diffraction

Now let t = 1 + ξ:

H
(1)
0 (x) =

2
πi

eix

∫ ∞

0

dξ
eixξ√

ξ(2 + ξ)
. (16.72)

For large x, the main contribution for ξ comes from the region of ξ near zero.
Hence we get the asymptotic series by expanding the denominator: The first
term in the series is, in terms of xξ = y,

H
(1)
0 (x) ∼ 2

πi
eix

√
2x

∫ ∞

0

dy
eiy

√
y

=

√
2

πx
eix−πi/4 , x � 1 , (16.73)

which is the known answer (8.31a). We can write the complete expression by
noting

ξeixξ =
d

d(ix)
eixξ , (16.74)

and then, symbolically, from (16.72)

H
(1)
0 (x) =

√
2
π

eix−πi/4 1√
1 + 1

2i
d
dx

1√
x

=

√
2
π

eix−πi/4

(
1 +

i
4

d
dx

+ · · ·
)

1√
x

=

√
2
π

eix−πi/4

(
1 − i

8x
+ · · ·

)
x−1/2 , (16.75)

etc., which reproduces the first correction embodied in (8.32b).
We will now use the same ideas for f in (16.67). From (16.68) and (16.70)

we have
f ′′(x) =

1
πi

∫ ∞

1

dt√
t2 − 1

[
eix(t+λ) + eix(t−λ)

]
(16.76)

and then

f(x) =
i
π

∫ ∞

1

dt√
t2 − 1

[
eix(t+λ)

(t + λ)2
+

eix(t−λ)

(t − λ)2

]
+ A + Bx . (16.77)

The boundary conditions are f(0) = f ′(0) = 0. Therefore

B =
2
π

∫ ∞

1

dt√
t2 − 1

t

t2 − λ2

=
2
π

∫ ∞

0

du

u2 + 1 − λ2
=

1√
1 − λ2

. (16.78)

The other constant is
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A = −2i
π

∫ ∞

1

dt√
t2 − 1

t2 + λ2

(t2 − λ2)2

= −2i
π

1
1 − λ2

(
1 +

λ√
1 − λ2

tan−1 λ√
1 − λ2

)
. (16.79)

To get the rest of the answer, we expand t in the integrand of (16.77) about
1 for large x. The approximation is valid provided x(1 − λ) � 1. So for the
first approximation,

∫ x

0

dt

(
1 − t

x

)
cos λtH

(1)
0 (t) =

1√
1 − λ2

[
1 − 2i

πx

1√
1 − λ2

×
(

1 +
λ√

1 − λ2
tan−1 λ√

1 − λ2

)

−
√

1 − λ2 e−iπ/4

x
√

2πx

(
ei(1+λ)x

(1 + λ)2
+

ei(1−λ)x

(1 − λ)2

)]
. (16.80)

If we insert this result in (16.66) and consider the kδ � 1 limit with
λ = cos θ′, we obtain from the optical theorem (16.13)

σ = 2δ sin θ′ , (16.81)

the obvious geometrical generalization of (16.36). To a better approximations,
since the correction to the real part of (16.80) comes only from the last term
there,

1
2σ

δ sin θ′
= 1 +

sin θ′

4
√

2π(kδ)3/2

[
cos(2kδ cos2 θ′/2 − π/4)

cos4 θ′/2

+
cos(2kδ sin2 θ′/2 − π/4)

sin4 θ′/2

]

∼ 1 +
cos(kδ − π/4)
2π2(δ/λ)3/2

, θ′ =
π

2
. (16.82)

Stopping at this level of approximation is good for δ/λ = 1 or even 1/2.
This calculation can be extended to other scattering angles to compute

A(θ′, θ′′), but this is a tedious calculation, so we will move on to a comple-
mentary problem.

16.3 Diffraction by a Slit

We have thus far used a rigorous variational method, useful for short wave-
lengths, λ � δ. We can also consider the opposite limit, λ � δ. We will
now develop a Fourier transform procedure, for δ � λ. We will treat the ex-
act half-plane solution [9, 30] as a basis – with a wide slit this gives a good
answer.
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Consider now a slit of width 2l = δ in a conducting screen lying in the
x = 0 plane. The geometry is sketched in Fig. 16.1. The condition for the
convergence of the method to be described is that the wavelength be short,
λ < 4l, and that we not have grazing incidence.

As usual, the scattering for H modes is described by (16.4), or

E = Einc −
k

4c

∫
dz′H

(1)
0 (k

√
(z − z′)2 + x2)K(z′) , (16.83)

where now the integration is over the entire range of z′ except for the slit,
−l < z′ < l. On the plane, E(0, z) = E(z), and we have the integral equation
(16.5), or

E(z) = Einc(0, z) − k

4c

∫
dz′H

(1)
0 (k|z − z′|)K(z′) = 0, |z| > l . (16.84)

Take for the incident field that of an incoming plane wave with grazing angle
θ′, as sketched in Fig. 16.1:

Einc = eik(cos θ′z+sin θ′x), Einc(0, z) = eik cos θ′z. (16.85)

Introduce a convergence factor e−ε|z| into Einc in order to simplify and regulate
the calculation. We will drop its explicit appearance later:

Einc(0, z) = eik cos θ′ze−ε|z| . (16.86)

Break up the surface current into two parts, one corresponding to each half
plane:

K(z) = K1(z) + K2(z) , K1 = 0 , z > −l , K2 = 0 , z < l . (16.87)

Introduce the Fourier transform of the field in the slit,

E(ζ) =
∫ l

−l

dz e−iζzE(z) , (16.88)

which is regular over all space. Examine the asymptotic forms, with ζ = ξ+iη:

η > 0 , |ζ| → ∞ : E(ζ) ∼ e−iζl 1
(−iζ)3/2

, (16.89a)

η < 0 , |ζ| → ∞ : E(ζ) ∼ eiζl 1
(iζ)3/2

, (16.89b)

which follow from the behavior of the electric field near the edge ([9], Chap. 48),

E(z) ∼
√

l − |z| , as |z| → l . (16.90)

The factors of i in (16.89a) and (16.89b) are inserted for convenience. Con-
versely, we can see that E(z) = 0 for |z| > l just from the behavior at infinity
of E(ζ), from the inverse transform,
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E(z) =
1
2π

∫ ∞

−∞
dζ eiζzE(ζ) , (16.91)

by closing the contour in the upper (or lower) half plane.
Now consider the transform of the current

K2(ζ) =
∫ ∞

l

dz e−iζzK2(z) , (16.92)

which is regular in the lower half plane, η = Im ζ < 0. Then using the same
argument, because K2(z) ∼ (z − l)−1/2 near the edge, and similarly for K1,
which is regular in the upper half plane, we see that

η < 0 , |ζ| → ∞ : K2(ζ) ∼ e−iζl 1√
iζ

, (16.93a)

η > 0 , |ζ| → ∞ : K1(ζ) ∼ eiζl 1√
−iζ

. (16.93b)

By the same argument as before we can show that K1 and K2 vanish properly
in the slit just from the exponential factor.

Now from Einc we see the transforms
∫

z>0

dz e−iζze−εz exists for η < ε , (16.94a)
∫

z<0

dz e−iζzeεz exists for η > −ε , (16.94b)

so the transform of Einc exists is the narrow band −ε < η < ε about the real
ζ axis. In the kernel of (16.83), we take k to be complex (lossy for the same
reason as Einc). Again the transform will exist in a narrow region,

|η| < Im k . (16.95)

Further K1(ζ) is regular for η > −ε, while K2(ζ) is regular for η < ε, since
the ε factor in the field will also influence the currents.

Now we are ready to calculate all the transforms. First, the incident field:

Einc(ζ) =
∫ 0

−∞
dz e−iζzeik cos θ′z+εz +

∫ ∞

0

dz e−iζzeik cos θ′z−εz

= − 1
i(ζ − k cos θ′ + iε)

+
1

i(ζ − k cos θ′ − iε)
, (16.96)

where the second term has a pole in the upper half plane, and the first in the
lower half plane. Call

ζ− = k cos θ′ − iε , ζ+ = k cos θ′ + iε , (16.97)

so
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Einc(ζ) = i
(

1
ζ − ζ−

− 1
ζ − ζ+

)
. (16.98)

Note for ζ real, ε → 0,

Einc(ζ) = 2πδ(ζ − k cos θ′) . (16.99)

Next, we recognize that the transform of H
(1)
0 (kz) occurs in the integral

representation, equivalent to (16.69),

H
(1)
0 (k|z|) =

1
π

∫ ∞

−∞
dζ

eiζz√
k2 − ζ2

, (16.100)

and so therefore the transform of the integral equation (16.84) is

E(ζ) = i
(

1
ζ − ζ−

− 1
ζ − ζ+

)
− k

2c

K1(ζ) + K2(ζ)√
k2 − ζ2

. (16.101)

Now we seek to separate this equation into parts regular in the upper and
lower half planes, as in the case of the straight edge. Define

I1(ζ) = i
k

c
e−iζlK1(ζ) , (16.102a)

I2(ζ) = i
k

c
eiζlK2(ζ) . (16.102b)

In order to focus attention on say K2(ζ) and consider K1(ζ) as part of
the integral equation (16.101), suppose we multiply the integral equation by
eiζl

√
k + ζ:

eiζl
√

k + ζE(ζ) = ieiζl

√
k + ζ

ζ − ζ−
− ieiζl

√
k + ζ

ζ − ζ+

+
i
2

I2(ζ)√
k − ζ

+
i
2

e2iζlI1(ζ)√
k − ζ

. (16.103)

The term on the left is regular for η > −Im k or η > −ε. (Henceforth we will
choose Im k > ε.) The first term on the right is regular for η > −ε, while the
third term on the right is regular for η < ε. The remaining two terms have no
particular character. We split the second term (times i)

eiζl
√

k + ζ

ζ − ζ+
=

eiζl
√

k + ζ − eiζ+l
√

k + ζ+

ζ − ζ+
+

eiζ+l
√

k + ζ+

ζ − ζ+
, (16.104)

where the first term is regular for η > −ε while the second is for η < ε. Next,
we work on the unknown function appearing as the last term in (16.103).
Suppose we have a function F (ζ) defined in a strip, −ε < η < ε, and suppose
as ξ → ±∞, |η| < ε, F (ζ) → 0. Let the lines η = ±ε be denoted σ± (actually
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choose them infinitesimally inside this strip). Then, by Cauchy’s theorem, for
ζ in the strip |η| < ε,

F (ζ) =
1

2πi

∫
σ+

dt
F (t)
t − ζ

+
1

2πi

∫
σ−

dt
F (t)
t − ζ

, (16.105)

where σ− is traversed in a positive sense, while σ+ is traversed in the negative
sense. The first term is an analytic function of ζ in the lower half plane, η < ε,
while the second is analytic in the upper half plane, η > −ε. Illustrate this
for the function (16.104): the second term in (16.105) is then

1
2πi

∫
σ−

dt

t − ζ
eitl

√
k + t

t − ζ+
; (16.106)

for η > −ε we can close the contour in the upper half plane, and thereby
obtain precisely the first term in (16.104). Similarly, for η < ε the first term
in (16.105) gives the second term in (16.104).

In this way we can pick out the part of the last term in (16.103) which is
regular in the upper half plane,

1
2πi

∫
σ−

dt

t − ζ

i
2

e2itlI1(t)√
k − t

. (16.107)

We close the contour in the upper half plane; the branch point appears in
the lower half plane. Similarly the σ+ integral gives a regular function for the
lower half plane. So the integral equation can be divided into a part that is
regular above and a part regular below; everything being regular in a common
strip. Thus writing this in the form

F+ = F− , (16.108)

we recognize that this defines an integral or entire function, regular every-
where. That is

i
2

I2(ζ)√
k − ζ

+
1
4π

∫
σ+

dt

t − ζ

e2itl

√
k − t

I1(t) − i
eiζ+l

√
k + ζ+

ζ − ζ+
(16.109)

is an integral function, and similarly for the – terms. We will show this is
zero, by examining the asymptotic form. In fact, I2(ζ) ∼ ζ−1/2, and then
every term here behaves as 1/ζ, so the whole function vanishes at infinity,
and therefore vanishes everywhere.

Now consider the σ+ integral in (16.109). The integrand has a branch point
at k, and vanishes at infinity in the upper half plane exponentially fast, and
hence we can close the contour above, and then bend it back as we did for
the Hankel function in Fig. 16.2. In that way that term becomes

i
2π

∫ ∞

k

dt

t − ζ

e2itl

√
t − k

I1(t) . (16.110)
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Then we recast (16.109) into

I2(ζ)√
k − ζ

+
1
π

∫ ∞

k

dt

t − ζ

e2itl

√
t − k

I1(t) =
2
√

k + ζ+ eiζ+l

ζ − ζ+
. (16.111)

Similarly for the other case, that is, where attention is focussed on K1 and
K2 is considered unexciting, we get (see Problem 16.2)

I1(ζ)√
k + ζ

+
1
π

∫ ∞

k

dt

t + ζ

e2itl

√
t − k

I2(−t) = −2
√

k − ζ− e−iζ−l

ζ − ζ−
, (16.112)

and these lead to two simultaneous integral equations for I1 and I2.

16.3.1 Approximate Field

Before proceeding with them, let us look at the expression for E(ζ), which we
obtain from the original transform equation (16.101) by substituting (16.111)
and (16.112):

E(ζ)=
i

ζ − ζ−

(
1 − ei(ζ−ζ−)l

√
k − ζ−
k − ζ

)
− i

ζ − ζ+

(
1 − e−i(ζ−ζ+)l

√
k + ζ+

k + ζ

)

− i
2π

[
eiζl

√
k − ζ

∫ ∞

k

dt

t + ζ
e2itl I2(−t)√

t − k
+

e−iζl

√
k + ζ

∫ ∞

k

dt

t − ζ
e2itl I1(t)√

t − k

]
.

(16.113)

The first term is regular, and hence there we can let ε → 0. Therefore, we can
set ζ− = ζ+ = ζ0 = k cos θ′, so that the first line of (16.113) can be written as

E(0)(ζ) =
i

ζ − ζ0

[
e−i(ζ−ζ0)l

√
k + ζ0

k + ζ
− ei(ζ−ζ0)l

√
k − ζ0

k − ζ

]
. (16.114)

We will shortly show that this term is the first approximation to the answer.

16.3.2 Transform of Scattered Field

Now return to (16.83), and write it in terms of Fourier transforms. Using the
integral representation derived in Problem 16.3 for H

(1)
0 , the term involving

that function is

− k

4πc

∫
dz′ dζ

eiζ(z−z′)+i
√

k2−ζ2|x|√
k2 − ζ2

K(z′) . (16.115)

Do the z′ integral first, so (16.83) becomes



16.3 Diffraction by a Slit 313

E = Einc −
k

4πc

∫ ∞

−∞
dζ

eiζz+i
√

k2−ζ2|x|√
k2 − ζ2

K(ζ) . (16.116)

Now recall the transformation equation (16.101) for ζ on the real axis:

− k

2c

K(ζ)√
k2 − ζ2

= E(ζ) − 2πδ(ζ − k cos θ′) . (16.117)

Then we get

E(x, z) = eik(cos θ′z+sin θ′x)

+
1
2π

∫
dζ eiζz+i

√
k2−ζ2|x| [−2πδ(ζ − k cos θ′) + E(ζ)] ,

(16.118)

and so

E(x, z) = eik(cos θ′z+sin θ′x) − eik(cos θ′z+sin θ′|x|)

+
1
2π

∫
dζ eiζz+i

√
k2−ζ2|x|E(ζ) . (16.119)

Again using the representation (16.192), we can write the last term here as

− i
2π

∂

∂x

∫
dζ

eiζz+i
√

k2−ζ2|x|√
k2 − ζ2

E(ζ) = − i
2

∂

∂x

∫
dz′H

(1)
0

(
k
√

(z − z′)2 + x2
)

×E(z′) , (16.120)

so the above comes directly from the Green’s function.
For x > 0 the first two terms in (16.119) cancel. For ρ � λ, using the

asymptotic form (16.8) of the Hankel function, we get (θ = θ′′ − π)

E(x, z) = − i
2

∂

∂x

∫
dz′
√

2
πkρ

eikρ−ikz′ cos θ−iπ/4E(z′)

=
k

2

√
2

πkρ
sin θ eikρ−iπ/4E(ζ = k cos θ) . (16.121)

16.3.3 Differential Cross Section

From this we can find the differential cross section per unit grazing angle θ
for an incident wave at grazing angle θ′ as

σ(θ, θ′) = |E|2ρ =
k

2π
sin2 θ|Eθ′(k cos θ)|2 . (16.122)

Instead of integrating over all angles to get the total “absorption” cross sec-
tion, corresponding to the energy that passes through the slit rather than
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being scattered through a grazing angle less than π, we can obtain the same
object by examining the scattered wave in the direction of incidence. We prove
this by looking at the Poynting vector,

S = cE∗∇
ik

E , ∇ · ReS = 0 . (16.123)

At large distances [cf. (1.167)] (in the radiation zone, ∇ → ikn),

S = cn|E|2 , (16.124)

where n is a unit vector in the direction of propagation. Then, since with a
unit plane wave incident the incident energy flux is c, the total cross section
per unit length is

σ(θ′) =
∫

C′
dsRen · E∗∇E

ik
, (16.125)

where C ′ is a semicircle at infinity. But this is the same as the energy passing
through the aperture since energy is conserved:

σ(θ′) =
∫

aperture

dz Re
1
ik

E∗ ∂

∂x
E . (16.126)

But in the aperture, from (16.85)

∂

∂x
E =

∂

∂x
Einc = ik sin θ′eikz cos θ′

, (16.127)

because the magnetic field in the aperture is equal to the incident field.3 Then

σ(θ′) = Re
∫

dz E∗ sin θ′eikz cos θ′

= Re sin θ′
∫

dz e−ikz cos θ′
E(z)

= sin θ′ Re E(ζ0 = k cos θ′) . (16.128)

16.3.4 First Approximation

Now return to (16.114), which was the first term of our expression for the
Fourier transform of the electric field. Let us use this as a first approximation.
It is easy to show that

Re E(0)(ζ0) = 2l = δ , (16.129)

and hence from (16.128) the total cross section is

σ(θ′) = δ sin θ′ , (16.130)

3 Bz is proportional to ∂E/∂x, and the x-derivative of H
(1)
0 (k

√
x2 + (z − z′)2)

vanishes at x = 0.
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as expected in the limit of geometrical optics, kδ � 1. Next, consider the
differential cross section (16.122):

σ(θ, θ′) =
1
πk

1 − cos(θ − θ′) + 2 sin θ sin θ′ sin2[kl(cos θ − cos θ′)]
(cos θ − cos θ′)2

. (16.131)

As θ → θ′,

σ(θ′, θ′) → 2
πk

(kl)2 sin2 θ′ . (16.132)

Thus we see in comparison with the total cross section that the forward scat-
tering is large, because kl is large. In the first lobe, θ − θ′ is small, but kl is
large so the sin2 term in the differential cross section is not expandable. If we
write

cos θ − cos θ′ ≈ − sin θ′(θ − θ′) , (16.133)

and call ψ = θ − θ′, the differential cross section is

σ(θ, θ′) ≈ 2
πk

sin2(kl sin θ′ψ)
ψ2

, (16.134)

which is strongly peaked about ψ = 0. We integrate this over ψ as a check to
get the total cross section (16.130):

σ ≈ 2
πk

∫ ∞

−∞
dψ

sin2(kl sin θ′ψ)
ψ2

=
2
π

l sin θ′
∫ ∞

−∞
dx

sin2 x

x2
= 2l sin θ′.

(16.135)
Now let us explore the connection between this and the Kirchhoff theory,

which assumes that the electric field in the aperture is the incident field,

E(z) =
{

eikz cos θ′
= eiζ0z , |z| < l ,

0 , |z| > l .
(16.136)

Hence the transformed field is

E(ζ) =
∫ l

−l

dz e−iζzeiζ0z

= 2
∫ l

0

dz cos(ζ − ζ0)z = 2
sin(ζ − ζ0)l

ζ − ζ0

=
i

ζ − ζ0

[
e−i(ζ−ζ0)l − ei(ζ−ζ0)l

]
, (16.137)

so in comparison with our result (16.114), we see that the Kirchhoff theory is
satisfactory when ζ ≈ ζ0, but not otherwise.

Note that in the long-wavelength limit, the Kirchhoff field (16.136) is con-
stant in the aperture, which is a bad feature, but it has the good feature of
vanishing on the metal. In contrast, our result has good behavior in the slit,
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behaving properly at the edges, but does not vanish on the metal. So our ap-
proximation is good only when the incident field does not come in at grazing
incidence. (But see below.) If it does not, the field in the metal is very small
and does not matter.

Let us calculate the electric field corresponding to our approximation.
Inverting the transform,

E(z) =
1
2π

∫ ∞

−∞
dζ eiζzE(ζ) . (16.138)

Consider the first term in (16.114),

i
2π

∫ ∞

−∞

dζ

ζ − ζ0
eiζze−i(ζ−ζ0)l

√
k + ζ0

k + ζ
. (16.139)

Each term in (16.114) has a pole at ζ = ζ0, but together they do not. To
handle each term separately, let us take ζ0 to be below the real axis so then
this term is

i
2π

√
k + ζ0 eiζ0l

∫ ∞

−∞

dζ√
k + ζ

eiζ(z−l)

ζ − ζ0
. (16.140)

This vanishes for z > l because we can close the contour in the upper half
plane, and no singularities are contained inside. (Remember, Im k > 0.) For
z < l we close the contour in the lower half plane, and encircle the branch
line beginning at −k and extending along the negative ζ axis. From the pole
at ζ0 we get eiζ0z, while from the branch line, we get

2
√

k + ζ0 eiζ0l 1
2π

∫ −k

−∞
dζ

eiζ(z−l)

√
−k − ζ (ζ − ζ0)

= −ei(k+ζ0)l
e−ikz

π

∫ ∞

0

dx√
x

ei(k+ζ0)(l−z)x

x + 1
, (16.141)

where we have substituted

ζ = −k − (k + ζ0)x . (16.142)

To evaluate this, consider

F (ξ) =
∫ ∞

0

dx√
x

eiξx

x + 1
, (16.143)

which satisfies the differential equation
(

d
dξ

+ i
)

F (ξ) = i
∫ ∞

0

dx√
x

eiξx = i
√

πeπi/4

√
ξ

. (16.144)

To solve this equation, multiply by eiξ and so
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d
dξ

(
eiξF (ξ)

)
=

i
√

π√
ξ

eiπ/4eiξ , (16.145)

and then, with a constant of integration C,

F (ξ)eiξ = −
√

πe−πi/4

∫ ξ

0

dx
eix

√
x

+ C

= C − 2
√

πe−iπ/4

∫ √
ξ

0

dx eix2
. (16.146)

Then, putting all this together, we find for the first term in (16.140), for z < l,

eiζ0z − eiζ0z

π

[
C − 2

√
πe−πi/4

∫ √
(k+ζ0)(l−z)

0

dx eix2

]
. (16.147)

Since this term is zero for z > l, and it must be continuous at z = l, we
determine the constant C = π, and we have, for z < l,

2√
π

eiζ0z−πi/4

∫ √
(k+ζ0)(l−z)

0

dx eix2
. (16.148)

Now we consider the transform (16.138) of the second term in (16.114),

− i
2π

√
k − ζ0 e−iζ0l

∫ ∞

−∞
dζ

eiζ(z+l)

(ζ − ζ0)
√

k − ζ
. (16.149)

Now for z + l < 0, we close the contour below, and get −eiζ0z from the pole
at ζ0. For z + l > 0 we close above and get from the branch line extending
along the positive real axis,

− i
π

√
k − ζ0 e−iζ0l

∫ ∞

k

dζ
eiζ(z+l)

(ζ − ζ0)i
√

ζ − k

= − 1
π

eiζ0zei(k−ζ0)(z+l)

∫ ∞

0

dx√
x

ei(k−ζ0)(z+l)x

1 + x

= − 2√
π

eiζ0z−πi/4

∫ ∞

√
(k−ζ0)(z+l)

dx eix2
, (16.150)

where in the second line we changed variables, ζ = k + (k − ζ0)x, and in the
third line used (16.146) together with continuity at z + l = 0.

Now we combine the first and second terms, from (16.147) and (16.150),
and obtain the following form for the electric field on the x = 0 plane:

E(0)(z) = − 2√
π

eiζ0z−πi/4

∫ ∞

√
(k−ζ0)(z+l)

dx eix2
, z > l , (16.151a)
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= − 2√
π

eiζ0z−πi/4

∫ ∞

√
(k+ζ0)(l−z)

dx eix2
, z < −l , (16.151b)

= eiζ0z − 2√
π

eiζ0z−πi/4

[ ∫ ∞

√
(k−ζ0)(z+l)

dx eix2

+
∫ ∞

√
(k+ζ0)(l−z)

dx eix2
]

, |z| < l . (16.151c)

The first two terms give the (nonzero) value of the electric field on the metal,
while the last gives the value in the aperture.

We now must investigate the values of these Fresnel integrals. We can do
this by repeatedly integrating by parts:

∫ ∞

ξ

dx eix2
=
∫ ∞

ξ

d(eix2
)

2ix
=

i
2ξ

eiξ2
+
∫ ∞

ξ

dx
eix2

2ix2

=
i

2ξ
eiξ2 −

∫ ∞

ξ

d(eix2
)

4x3
, (16.152)

and so on. Thus for large ξ,
∫ ∞

ξ

dx eix2
=

i
2ξ

eiξ2
+

1
4ξ3

eiξ2
+ · · · . (16.153)

To apply this for z > l we must require
√

(k − ζ0)2l must be large, so k =
ζ0 = k cos θ′ is forbidden, meaning no grazing incidence. For normal incidence,
ζ0 = 0, and then 2kl � 1, or 2πδ/λ � 1, which is reasonably well satisfied
even for δ = λ/2. The electric field on the metal, z > l, in this approximation
is given by

E(0)(z) = −eπi/4

√
π

ei(k−ζ0)leikz

√
k − ζ0

√
z + l

. (16.154)

At the edge,

|E(0)|z=l =
1√

π(k − ζ0)2l
≈ 1√

2π2δ/λ
. (16.155)

This should be small compared to unity. In fact, even for δ = λ this is only
about 20% of the incident field.

16.3.5 Exact Electric Field

Recall that the transform of the electric field was given exactly by (16.113),
or

E(ζ) = E(0)(ζ) − i
2π

[
eiζl

√
k − ζ

∫ ∞

k

dt

t + ζ
e2itl I2(−t)√

t − k

+
e−iζl

√
k + ζ

∫ ∞

k

dt

t − ζ
e2itl I1(t)√

t − k

]
. (16.156)
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The electric field corresponding to this transform must vanish on the walls,
and this is the integral equation [another sort from the type considered earlier
in (16.111) and (16.112)]. Thus inverting this transform

E(z) = E(0)(z) − i
4π2

∫ ∞

k

dt√
t − k

e2itlI2(−t)
∫ ∞

−∞

dζ

t + ζ

eiζ(z+l)

√
k − ζ

+
i

4π2

∫ ∞

k

dt√
t − k

e2itlI1(t)
∫ ∞

−∞

dζ

ζ − t

eiζ(z−l)

√
k + ζ

. (16.157)

We want to evaluate the integrals over ζ. To this end, consider functions F (z),
G(z), with transforms F (ζ), G(ζ), from which follows

1
2π

∫ ∞

−∞
dζ eiζzF (ζ)G(ζ) =

∫ ∞

−∞
dz′F (z − z′)G(z′) , (16.158)

the convolution theorem. Use this property to evaluate the above integrals,
by taking F (ζ) = 1/

√
k − ζ, G(ζ) = 1/(ζ + t), so

G(z) =
1
2π

∫ ∞

−∞
dζ

eizζ

ζ + t
. (16.159)

Suppose t has a positive imaginary part. Then

G(z) =
{

0 , z > 0 ,
−ie−itz , z < 0 .

(16.160)

Similarly

F (z) =
1
2π

∫ ∞

−∞
dζ

eiζz

√
k − ζ

, (16.161)

where the integrand possesses a branch point at ζ = k. Putting this, and the
associated branch line above the positive axis, we obtain

F (z) = 0 , z < 0 , (16.162a)

=
1
πi

∫ ∞

k

dζ
eiζz

√
ζ − k

=
e−πi/4

√
π

eikz

√
z

, z > 0. (16.162b)

Thus, with z< being the lesser of z and 0,

1
2π

∫ ∞

−∞
dζ eiζzF (ζ)G(ζ) = −

∫ z<

−∞
dz′ i

e−πi/4

√
π

eik(z−z′)

√
z − z′

e−itz′

= −i
e−itz

√
k + t

, z < 0 , (16.163a)

= −2
eπi/4

√
π

e−itz

√
k + t

∫ ∞

√
(k+t)z

dx eix2
, z > 0 .

(16.163b)
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We can similarly proceed with the second ζ integral in (16.157), with the
result

1
2π

∫ ∞

−∞
dζ

eiζz

√
k ± ζ(ζ ∓ t)

= ±i
e±itz

√
k + t

, ±z > 0 , (16.164a)

= ±2
eπi/4

√
π

e±itz

√
k + t

∫ ∞

√
∓(k+t)z

dx eix2
, ±z < 0 .

(16.164b)

Hence on the upper sheet, z > l,

E(z) = E(0)(z) − 1
2π

∫ ∞

k

dt√
t2 − k2

eit(z+l)I1(t)

− 1
2π

∫ ∞

k

dt√
t2 − k2

e2itlI2(−t)
e−πi/4

√
π

e−it(z+l)2
∫ ∞

√
(k+t)(z+l)

dx eix2
;

(16.165)

this should be zero and hence is an integral equation. On the lower sheet,
z < −l, by symmetry,

E(z) = E(0)(z) − 1
2π

∫ ∞

k

dt√
t2 − k2

eit(l−z)I2(−t)

− 1
2π

∫ ∞

k

dt√
t2 − k2

e2itlI1(t)
e−πi/4

√
π

e−it(l−z)2
∫ ∞

√
(k+t)(l−z)

dx eix2
.

(16.166)

This should also be zero and hence we have a pair of simultaneous inte-
gral equations. These are equivalent to the original pair of integral equations
(16.111) and (16.112). We will use this equivalence later.

16.3.6 Approximate Surface Current

We will now proceed with the approximation procedure. For large l, the only
rapidly varying functions under the integral signs for the original set of integral
equations are e2itl and

√
t − k, and the dominant value comes from t near k.

Thus, at ζ = ±k, we have from (16.112) and (16.111), respectively,

I1(k)√
2k

+
1
π

I2(−k)
2k

∫ ∞

k

dt
e2itl

√
t − k

= −2
e−iζ−l

√
k − ζ−

k − ζ−
, (16.167a)

I2(−k)√
2k

+
1
π

I1(k)
2k

∫ ∞

k

dt
e2itl

√
t − k

= −2
eiζ+l

√
k + ζ+

k + ζ+
. (16.167b)

The integrals are easily evaluated by introducing u = t − k as a variable
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e2ikl

∫ ∞

0

du
e2iul

√
u

=
e2ikl

√
2l

√
πeπi/4 . (16.168)

Now check to see how the electric field reacts to the same approximation
and how nearly it comes to vanishing. In the Fresnel integral in (16.165) the
lower limit is √

(k + t)(z + l) >
√

4kl , (16.169)

and we treat this as large. Thus, remembering from (16.153) that
∫ ∞

ξ

dx eix2 ∼ i
2ξ

eiξ2
, (16.170)

for large ξ, we see that the z-dependence separates out in the I2(−t) term and
the z-dependence is eikz

√
z+l

. We also showed in (16.154) that

E(0) ∼ −eπi/4

√
π

ei(k−ζ0)l

√
k − ζ0

eikz

√
z + l

, (16.171)

valid for |ζ0| < k and l/λ � 1. The remaining term in (16.165) is also approx-
imately

− 1
2π

∫ ∞

k

dt
eit(z+l)

√
t − k

I1(k)√
2k

∼ eik(z+l)

√
z + l

. (16.172)

The requirement that E(z) vanishes in this limit then leads back to the origi-
nal (simultaneous) equations for the transform, (16.167a) and (16.167b). (See
Problem 16.4.)

We will now show that the only essential assumption is in the use of the
asymptotic form for the Fresnel integrals. If the Fresnel integral is replaced
by its asymptotic form, then at any stage of approximation, the problem can
be rigorously solved. The requirement is that

√
kl � 1 (but not too much),

and this is the only approximation (no requirement is placed on the angle of
incidence).

Recall (16.112) and (16.111), which may be written as

I1(ζ)√
k + ζ

+
1
π

∫ ∞

k

dt

t + ζ

e2itlI2(−t)√
t − k

= −2e−iζ0l
√

k − ζ0

ζ − ζ0
, (16.173a)

I2(−ζ)√
k + ζ

+
1
π

∫ ∞

k

dt

t + ζ

e2itlI1(t)√
t − k

= −2eiζ0l
√

k + ζ0

ζ + ζ0
, (16.173b)

where on the left-hand side we have, as was discussed in the sentence before
(16.114), replaced ζ± by ζ0. The approximation in the Fresnel integral is
equivalent to replacing ζ by k in the above integral. That is, it is equivalent
to writing

1
ζ + t

=
1

k + t + (ζ − k)
=

1
k + t

(
1 − ζ − k

k + t
+ · · ·

)
. (16.174)
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The first approximation to (16.173a) and (16.173b) is then obtained by setting
ζ = k, which is a correction to that exhibited in (16.167a) and (16.167b), or

I1(ζ)√
k + ζ

= −2e−iζ0l
√

k − ζ0

ζ − ζ0
− C2

π
, (16.175a)

I2(−ζ)√
k + ζ

= −2eiζ0l
√

k + ζ0

ζ + ζ0
− C1

π
, (16.175b)

where

C2 =
∫ ∞

k

dt

k + t
e2itl I2(−t)√

t − k
, (16.176a)

C1 =
∫ ∞

k

dt

k + t
e2itl I1(t)√

t − k
. (16.176b)

Eliminating I1(t) in the latter by using (16.175a) we have

C1 =
∫ ∞

k

dζ√
ζ − k

e2iζl

√
ζ + k

(
−2e−iζ0l

√
k − ζ0

ζ − ζ0
− C2

π

)
, (16.177)

or, using (16.70), (δ = 2l)

C1 +
i
2
H

(1)
0 (kδ)C2 = −2

√
k − ζ0e−iζ0l

∫ ∞

k

dζ√
ζ2 − k2

e2iζl

ζ − ζ0
. (16.178a)

Similarly,

C2 +
i
2
H

(1)
0 (kδ)C1 = −2

√
k + ζ0eiζ0l

∫ ∞

k

dζ√
ζ2 − k2

e2iζl

ζ + ζ0
. (16.178b)

If we solve these two equations, we get C2 and C1. Next, calculate the trans-
form of the electric field. We need to evaluate the integrals in (16.156). We
need the values only for ζ = k cos θ, where θ is the angle of scattering, that
is, for |ζ| < k. Using (16.175a), we find the second integral to be

− i
2π

e−iζl

√
k + ζ

∫ ∞

k

dt

t − ζ
e2itl

√
t + k

t − k

[
−2

e−iζ0l
√

k − ζ0

t − ζ0
− C2

π

]
. (16.179)

So we are led to consider integrals of the type

∫ ∞

k

dt

t − ζ
eitδ

√
t + k

t − k
=
∫ ∞

k

dt

t − ζ

t − ζ + k + ζ√
t2 − k2

eitδ

=
πi
2

H
(1)
0 (kδ) + (k + ζ)

∫ ∞

k

dt

t − ζ

eitδ

√
t2 − k2

.

(16.180)
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The latter integral is the same as that appearing in the equations (16.178a)
and (16.178b) for C1 and C2. Let us denote this integral by

F (z) =
∫ ∞

k

dt√
t2 − k2

eitz

t − ζ
, (16.181)

which satisfies the differential equation
(

d
dz

− iζ
)

F (z) = i
∫ ∞

k

dt
eitz

√
t2 − k2

= −π

2
H

(1)
0 (kz) . (16.182)

Multiply both sides of this equation by the integrating factor e−iζz. Then

d
dz

(
e−iζzF (z)

)
= −π

2
H

(1)
0 (kz)e−iζz , (16.183)

so
F (z) =

π

2
eiζz

∫ ∞

z

dz′e−iζz′
H

(1)
0 (kz′) , (16.184)

since F (z) → 0 as z → ∞. This integral cannot be done exactly, but may be
evaluated asymptotically. Next, consider the remaining integral which appears
in E(ζ), (16.179). For simplicity, let us consider ζ = ζ0, so, by (16.128), we
are describing total scattering only. Then the integral we need is

∫ ∞

k

dt

(t − ζ)2
eitδ

√
t + k

t − k
= − d

dζ

∫ ∞

k

dt

t − ζ
eitδ

√
t + k

t − k
. (16.185)

Then, we obtain for this integral from (16.180) and (16.184)

π

2
eiζδ

∫ ∞

δ

dz′e−iζz′
H

(1)
0 (kz′) +

πi
2

(k + ζ)δ eiζδ

∫ ∞

δ

dz′e−iζz′
H

(1)
0 (kz′)

− πi
2

(k + ζ)eiζδ

∫ ∞

δ

dz′ z′e−iζz′
H

(1)
0 (kz′) .

(16.186)

Again for simplicity take normal incidence, so ζ = ζ0 = 0. For normal inci-
dence we obtain for the electric field from (16.156), (16.186), and (16.19) [the
two terms in square brackets in (16.156) give equal contributions in this case]

E(0) = E(0)(0) +
1
k

{
i
∫ ∞

kδ

dx H
(1)
0 (x) − kδ

∫ ∞

kδ

dx H
(1)
0 (x)

− kδ H
(1)
1 (kδ) − i

2

∫∞
kδ

dx H
(1)
0 (x)

1 + i
2H

(1)
0 (kδ)

[∫ ∞

kδ

dxH
(1)
0 (x) + iH(1)

0 (kδ)
]}

.

(16.187)

Here we have used, for normal incidence, from (16.178b) and (16.184),
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C1

[
1 +

i
2
H

(1)
0 (kδ)

]
= C2

[
1 +

i
2
H

(1)
0 (kδ)

]
= − π√

k

∫ ∞

kδ

dx H
(1)
0 (x) .

(16.188)
The first three correction terms in (16.187) are important here, so looking at
those, and taking the real part, we get the total cross section according to
(16.128) and (16.129),

σ = δ

[
1 −
∫ ∞

kδ

dx J0(x) − J1(kδ)
]
− 1

k

∫ ∞

kδ

dx N0(x) + · · ·

= δ

[
1 −
∫ ∞

kδ

dx

x
J1(x)

]
− 1

k

∫ ∞

kδ

dx N0(x) + · · · , (16.189)

where the remaining terms are small. For kδ large, we can use the asymptotic
form, from (8.33a) and (8.33b),

∫ ∞

kδ

dx N0(x) ∼
√

2
πkδ

cos
(
kδ − π

4

)
, (16.190a)

∫ ∞

kδ

dx

x
J1(x) ∼ 1

kδ

√
2

πkδ
cos
(
kδ − π

4

)
. (16.190b)

Adding these terms, we find

σ = δ − 4
k
√

2πkδ
cos
(
kδ − π

4

)
. (16.191)

This is sketched in Fig. 16.3, and indicates the principal correction to the
geometrical limit (16.130). Note that this result is very similar to the cross
section for a strip, given in (16.82), at normal incidence, θ′ = π

2 . For opposite
polarizations, the two cross sections must agree (apart from a factor of two
due to shadowing or forward scattering), according to Babinet’s principle.

We close this chapter by noting that in comparison with rigorous results
found by Morse and Rubenstein [31] (who incidentally used elliptic cylinder
coordinates and Mathieu functions), the Fourier transform method is satis-
factory down to δ < λ/4, where static methods apply, so the approximation
method works well over the whole range. We could now go on to discuss E (or
H, depending on one’s point of view) polarization, that is, where H is parallel
to the slit, but we will leave such considerations for Harold.4

16.4 Problems for Chap. 16

1. Use the formalism developed in this chapter to prove the optical theorem
relating the total cross section per unit length to the forward scattering
amplitude (16.13).

4 Harold, the “Hypothetical alert reader of limitless dedication,” was the name of
Schwinger’s older brother. Harold in this guise made his first appearance in [12].
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Fig. 16.3. Plot of the first correction to the total cross section per unit length for
H-mode scattering by a slit of width δ in a perfectly conducting screen. What is
plotted is the ratio of the cross section to the geometric cross section δ as a function
of δ/λ, where λ is the wavelength of the radiation

2. Derive the relation (16.112).
3. Derive the Fourier representation for the Hankel function,

H0(k
√

z2 + x2) =
1
π

∫ ∞

−∞
dζ eizζ ei

√
k2−ζ2|x|√
k2 − ζ2

, (16.192)

by showing successively that

∫ ∞

−∞
dz e−iζzH0(k

√
z2 + x2) =

1
πi

∫ ∞

−∞
dz

∫ ∞

−∞
dy e−iζz eik

√
x2+y2+z2

√
x2 + y2 + z2

=
4
i

∫ ∞

−∞
dz e−iζz

∫
dkx dkz

(2π)2

× eikzzeikxx

k2
x + k2

z − (k + iε)2

= 2
ei
√

k2−ζ2|x|√
k2 − ζ2

. (16.193)

4. Show that the condition that the electric field vanishes on the conducting
surfaces is equivalent to the integral equations (16.167a) and (16.167b),
in the approximation treated there.
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5. The differential cross section for transmission through an aperture of size
a in the circumstance λ̄ � a is

dσ

dΩ
=
(

k

2π

)2 ∣∣∣∣
∫

app

dS e−ik⊥·r⊥

∣∣∣∣
2

. (16.194)

Show that (cos θ ≈ 1)

dΩ ≈ (dk⊥)
k2

. (16.195)

Using this, prove that the total cross section equals the area of the aper-
ture, without regard to its shape.

6. An electromagnetic wave of reduced wavelength λ̄ falls normally on a
perfectly conducting flat disk of radius a and negligible thickness. In the
center of the shadow behind the disk, at a distance x such that a � x �
a2/λ̄, there is a bright spot of intensity equal to that of the incident beam.
Demonstrate this, by considering the appropriate approximation to the
surface current on the disk. Then find the smallest displacement from the
center that reduces the intensity of the bright spot to zero. (It involves
a zero of a Bessel function, of course.) Choose numbers to illustrate the
size of the central bright spot.

7. Two infinitely long parallel slits of width a and separation b � a are cut
in a perfectly conducting sheet of zero thickness. An electromagnetic wave
of frequency ω with its electric vector parallel to the slit edges is normally
incident on one side. Use physical reasoning to discuss the diffraction
pattern of the transmitted wave, as observed at a distance x from the
sheet, such that λ̄ � x � ab/λ̄. What is the value of the total cross
section? Then work out the differential cross section for x � b2/λ̄ �
ab/λ̄. Locate the zeroes and maxima of the interference pattern that are
attributable to the presence of both slits. Now what value do you find for
the total cross section?

8. A plane wave is normally incident on a plane screen containing a large
number of similar apertures arranged in a line, with constant spacing d.
Show that the diffracted wave observed at a large distance from the screen
is destroyed by interference, save in those directions specified by

d cos θ = nλ , n = 0,±1,±2, . . . , (16.196)

where θ is the angle between the line of apertures and the direction of
observation. (This is Bragg scattering.)

9. Babinet’s principle states that the diffraction pattern of an aperture in a
screen is identical, except in the direction of the incident wave, with that
of the complementary situation obtained by replacing the aperture with
an obstacle and removing the screen. Prove this by showing that the sum
of the field quantities describing the diffracted fields in the two situations
equals the incident field.



16.4 Problems for Chap. 16 327

10. Determine the diffraction pattern for light normally incident on a half
plane from the Fresnel–Kirchhoff theory, and compare the result with the
rigorous Sommerfeld solution.



17

Quantum Limitations on Microwave Oscillators

This book has been entirely devoted to classical electrodynamics. However,
we live in a quantum world, so it is fitting that we end this volume with a
discussion of the quantum nature of the interaction of charged particles with
the fields in a microwave cavity, represented here as a harmonic oscillator.

17.1 Introduction

The question of quantum limitations in microwave oscillators refers to an es-
sentially classical domain where the conventional types of quantum mechanical
description are inappropriate. For a dynamical system characterized by com-
plementary canonical variables q and p, the usual description employs states
for which the variables q, say, have definite values and, correspondingly, all
values of p are equally probable. This is at the opposite pole from the clas-
sical picture in which the q and p variables are simultaneously known. The
nearest equivalent to the latter is a quantum mechanical description in which
neither the q nor the p variables are precisely specified, but rather both are
determined to the optimum precision allowed by their incompatibility.

17.2 Coherent States

To characterize this new description, let A and B be operators symbolizing
any two incompatible quantities. For the state symbolized by the unit vector
Ψ , the expectation value and dispersion of property A is defined by

〈A〉 = Ψ †AΨ , (17.1a)
∆A = 〈(A − 〈A〉)2〉1/2 , (17.1b)

and it is known that
∆A∆B ≥ 1

2
|〈C〉| , (17.2)
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where
C =

1
i
[A,B] . (17.3)

The equality sign in (17.2) holds only when

(A − 〈A〉)Ψ = λ(B − 〈B〉)Ψ (17.4)

and
〈{A − 〈A〉, B − 〈B〉}〉 = 0 . (17.5)

These conditions imply that

(λ + λ∗)(∆B)2 = 0 , (17.6)

which requires that λ be pure imaginary,

λ = −iγ , γ = γ∗ . (17.7)

Thus, with ∆A∆B as a measure of the simultaneous specifiability of the two
physical quantities, the optimum state with minimum ∆A∆B is such that

(A + iγB)Ψ = (〈A〉 + iγ〈B〉)Ψ , (17.8)

which characterizes it as an eigenvector of the non-Hermitian operator A+iγB,
with the complex eigenvalue 〈A〉 + iγ〈B〉.

The magnitude of γ is determined by

(∆A)2 = γ2(∆B)2 , (17.9)

while the sign of γ is that of C. This follows from the equations

0 = 〈[A − 〈A〉 + iγ(B − 〈B〉)]2〉 = (∆A)2 − γ2(∆B)2 , (17.10a)

and

0 = 〈[A − 〈A〉 − iγ(B − 〈B〉)][A − 〈A〉 + iγ(B − 〈B〉)]〉
= (∆A)2 + γ2(∆B)2 − γ〈C〉 . (17.10b)

Thus

γ =
(∆A)2
1
2 〈C〉

=
1
2 〈C〉

(∆B)2
, (17.11)

which, of course, is consistent with the equality in (17.2).
On placing A = q, B = p, and C = −i[q, p] = h̄, we learn that the state

with ∆q ∆p = 1
2 h̄ is characterized by

(qd + ipd)Ψ = (〈qd〉 + i〈pd〉)Ψ , (17.12)

where
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qd =
q√
2∆q

, pd =
p√
2∆p

(17.13)

are dimensionless operators obeying the commutation relations

[qd, pd] = i . (17.14)

We are thus led to investigate the eigenvectors of the non-Hermitian op-
erators (working now with the dimensionless operators)

y = 2−1/2(q + ip) , iy† = 2−1/2(p + iq) , (17.15)

which obey the commutation property

[y, iy†] = i , (17.16)

characteristic of canonical variables. The possibility of introducing non-
Hermitian canonical variables appears more generally in terms of the La-
grangian operator (written for an arbitrary number of degrees of freedom)

L =
∑

k

1
2

(
pk.

dqk

dt
− dpk

dt
.qk

)
− H , (17.17)

where the dot indicates symmetrized multiplication. On writing

qk = 2−1/2(yk + y†
k) , pk = −i2−1/2(yk − y†

k) , (17.18)

we obtain

L =
∑

k

1
2

(
iy†

k.
dyk

dt
− i

dy†
k

dt
.yk

)
− H , (17.19)

which exhibits the same form as (17.17) with the substitution q → y, p → iy†.
Hence, every property derived from the Lagrangian operator, the equations
of motion, generators of infinitesimal transformations, and the commutation
relations, maintain their form on introducing the non-Hermitian variables.
What is not maintained, of course, are the Hermitian properties. In particular,
the infinitesimal generators,

Gq =
∑

k

pk δqk , Gp = −
∑

k

δpk qk , (17.20)

with meanings indicated by

1
i
[F (q, p), Gq] =

∑
k

∂F

∂qk
δqk = δqF (17.21)

and
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〈p′|iGp =
∑

k

δp′k
∂

∂pk
〈p′| = δp〈p′| , (17.22a)

δq|q′〉 = −iGq|q′〉 (17.22b)

imply the infinitesimal generators

Gy =
∑

k

iy†
kδyk , Gy† = −

∑
k

iδy†
kyk . (17.23)

The construction of the right eigenvectors of the operator y (returning to
one degree of freedom for simplicity),

y|y′〉 = y′|y′〉 , (17.24)

is equivalent to the construction of the transformation function 〈q′|y′〉. Now,
the dependence of the latter on the eigenvalues is given by

δ〈q′|y′〉 = i〈q′|(Gq − Gy)|y′〉 , (17.25)

where

iGq = ipδq′ = (21/2y − q)δq′ , (17.26a)

−iGy = y†δy′ = (21/2q − y)δy′ . (17.26b)

Hence, since the operators act directly on the eigenvectors, we get

δ〈q′|y′〉 = δ

[
−1

2
q′2 + 21/2q′y′ − 1

2
y′2
]
〈q′|y′〉 , (17.27)

and

〈q′|y′〉 = C exp
[
−1

2
q′2 + 21/2q′y′ − 1

2
y′2
]

. (17.28)

Now the adjoint of the right eigenvector equation for y (17.24) is the left
eigenvector equation y†:

〈y†′|y† = 〈y†′|y†′ , y†′ = y′∗ . (17.29)

Hence the complex conjugate of the transformation function 〈q′|y′〉 is

〈y†′|q′〉 = C∗ exp
[
−1

2
q′2 + 21/2y†′q′ − 1

2
y†′2
]

, (17.30)

and we conclude that

〈y†′|y′′〉 =
∫ ∞

−∞
〈y†′|q′〉dq′〈q′|y′′〉

= |C|2
∫ ∞

−∞
dq′ exp

[
−
(

q′ − y†′ + y′′
√

2

)2
]

ey†′y′′

=
√

π|C|2ey†′y′′
. (17.31)
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In particular,
〈y†′|y′〉 = ||y′||2 =

√
π|C|2e|y′|2 , (17.32)

which is finite for arbitrary complex eigenvalues y′. The vector |y′〉 of minimum
norm is the one with zero eigenvalue, and we adopt a normalization to unit
length for this vector. Hence, with a conventional choice of phase,

C = π−1/4 , (17.33)

and

〈y†′|y′′〉 = ey†′y′′
, (17.34a)

〈q′|y′〉 = π−1/4 exp
[
−1

2
q′2 + 21/2q′y′ − 1

2
y′2
]

. (17.34b)

We shall adopt a special notation for the vectors |y′〉e−|y′|2/2, which are of
unit length. On writing

y′ =
1

21/2
(q′ + ip′) , (17.35)

we define
|q′p′〉 = e−

1
2 |y

′|2 |y′〉 = e−
1
4 (p′2+q′2)|y′〉 . (17.36)

In this notation, the transformation functions we have evaluated read

〈q′p′|q′′p′′〉 = e−
1
2 |y

′|2〈y†′|y′′〉e− 1
2 |y

′′|2

= e
i
2 (q′p′′−p′q′′)e−

1
4 (q′−q′′)2− 1

4 (p′−p′′)2 (17.37a)

and

〈q′|q′′p′′〉 = 〈q′|y′′〉e− 1
2 |y

′′|2

= π−1/4ei(q′p′′− 1
2 q′′p′′)e−

1
2 (q′−q′′)2 . (17.37b)

The completeness property of the |qp〉 states can be inferred from the last
result, namely

1 =
∫

|qp〉dq dp

2π
〈qp| , (17.38)

since we find by direct calculation that
∫
〈q′|qp〉dq dp

2π
〈qp|q′′〉 = π−1/2

∫ ∞

−∞
dq e−

1
2 (q′−q)2− 1

2 (q′′−q)2
∫ ∞

−∞

dp

2π
ei(q′−q′′)p

= δ(q′ − q′′) . (17.39)

The usual probability interpretation would follow from this completeness
property of the vectors |qp〉 if they were also linearly independent. How-
ever, the transformation function 〈q′p′|q′′p′′〉, which equals unity for q′ = q′′,
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p′ = p′′, remains of this order for |q′ − q′′| ≤ 1, |p′ − p′′| ≤ 1, so that a dis-
placement of q′ or p′ of the order of unity or less does not create a new state.
On the other hand, the Gaussian factor in (17.37a) ensures that a change
in q′ or p′ which is large compared with unity certainly does produce a new
state. Thus in a sense there is one state associated with each eigenvalue in-
terval ∆q′∆p′/2π = 1. The precise construction of the individual states is not
necessary, however, if we are concerned only with a large number of states,
or eigenvalue intervals ∆q′∆p′/2π > 1, which is appropriate to essentially
classical measurements. Then we can assert that the wave function

Ψ(q′p′) = 〈q′p′|Ψ (17.40)

is a probability amplitude, giving, according to
∫

Ω

dq dp

2π
|Ψ(qp)|2 , (17.41)

the total probability that q and p measurements, performed on the state Ψ
with optimum compatibility, will give results lying within the region Ω of the
qp phase space.

17.3 Harmonic Oscillator

The simplest dynamical application of these methods appears for the harmonic
oscillator system described by the Hamiltonian

H = ω
1
2
(p2 + q2) = ω

(
y†y +

1
2

)
, (17.42)

which obeys the equation of motion

i
dy

dt
=

∂H

∂y† = ωy . (17.43)

The dynamical situation can be described by the transformation function
〈y†′t1|y′′t2〉, which varies with t1 in accordance with

i
∂

∂t1
〈y†′t1|y′′t2〉 = 〈y†′t1|H|y′′t2〉 . (17.44)

But, on applying the explicit solution of the equations of motion (17.43)

y(t1) = e−iωτy(t2) , τ = t1 − t2 , (17.45)

we can write

H = ω

(
y(t1)†y(t1) +

1
2

)
= ω

(
y(t1)†y(t2)e−iωτ +

1
2

)
, (17.46)
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which gives

i
∂

∂t1
〈y†′t1|y′′t2〉 = ω

(
y†′y′′e−iωτ +

1
2

)
〈y†′t2|y′′t2〉 . (17.47)

This has the solution

〈y†′t1|y′′t2〉 = e−iωτ/2 exp
[
y†′y′′e−iωτ

]
, (17.48)

which correctly reduces to 〈y†′|y′′〉, (17.34a), for equal times. From this result
we derive

〈q′p′t1|q′′p′′t2〉 = e−iωτ/2e−
1
2 |y

′|2e−
1
2 |y

′′|2 exp
[
y†′y′′e−iωτ

]
, (17.49)

and

|〈q′p′t1|q′′p′′t2〉|2 = exp
(
−|y′ − y′′e−iωτ |2

)

= exp
[
− 1

2
(q′ − q′′ cos ωτ − p′′ sin ωτ)2

− 1
2
(p′ − p′′ cos ωτ + q′′ sin ωτ)2

]
, (17.50)

which clearly show the limiting classical results and the differences.
The transformation function 〈y†′t1|y′′t2〉 also supplies complete informa-

tion about the state of definite energy, since

〈y†′t1| = 〈y†′t2|e−iHτ (17.51)

shows that

〈y†′t1|y′′t2〉 = 〈y†′|e−iHτ |y′′〉 =
∑
E

〈y†′|E〉e−iEτ 〈E|y′′〉 . (17.52)

Indeed, since (17.48) can be expanded as

〈y†′t1|y′′t2〉 =
∞∑

n=1

(y†′)n

√
n!

e−i(n+1/2)ωτ (y′′)n

√
n!

, (17.53)

we infer the energy spectrum

En =
(

n +
1
2

)
ω , n = 0, 1, . . . , (17.54)

and the wavefunctions,

〈y†′|n〉 =
(y†′)n

√
n!

, 〈n|y′′〉 =
(y′′)n

√
n!

. (17.55)

Hence,
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〈q′p′|n〉 = e−
1
2 |y

†′|2〈y†′|n〉 = e−
1
4 (q′2+p′2) (q′ − ip′)n

√
2nn!

, (17.56)

which gives the probability density

dq′dp′

2π
|〈q′p′|n〉|2 =

dq′dp′

2π
e−

1
2 (q′2+p′2)

(
1
2 (q′2 + p′2)

)n
n!

= dE′ (E
′)n

n!
e−E′

, (17.57)

where the last form refers to the distribution of the “energy,”

E′ =
1
2
(p′2 + q′2) . (17.58)

With increasing n, this Poisson distribution rapidly approaches the Gaussian
distribution

dE′
√

2πn
e−(E′−n)2/(2n) , (17.59)

characteristic of quantum phenomena.

17.4 Free Particle

For the dynamical system of a free particle, described by the Hamiltonian

H =
p2

2m
= − (y − y†)2

4m
, (17.60)

the equations of motion are

i
dy

dt
=

y − y†

2m
, i

dy†

dt
=

y − y†

2m
, (17.61)

which imply (writing y1 = y(t1), etc.)

y1 − y†
1 = y2 − y†

2 , (17.62a)

y1 − y2 = −i
τ

2m
(y1 − y†

1) . (17.62b)

Hence

y1 =
iτ
2my†

1 + y2

1 + iτ
2m

, y†
2 =

y†
1 + iτ

2my2

1 + iτ
2m

, (17.63)

so by commuting the first of these with y†
1, we infer that

[y2, y
†
1] = 1 +

iτ
2m

. (17.64)

Now we can write the Hamiltonian as
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H = − (y1 − y†
1)

2

4m
= − 1

4m

(
y2 − y†

1

1 + iτ
2m

)2

= − 1
4m

y†2
1 − 2y†

1y2 + y2
2(

1 + iτ
2m

)2 +
1

4m

1
1 + iτ

2m

, (17.65)

and therefore the Schrödinger equation is

i
∂

∂t
〈y†′t1|y′′t2〉 = 〈y†′t1|H|y′′t2〉

=

[
− 1

4m

(y†′ − y′′)2(
1 + iτ

2m

)2 +
1

4m

1
1 + iτ

2m

]
〈y†′t1|y′′t2〉 .

(17.66)

The solution is

〈y†′t1|y′′t2〉 =
1(

1 + iτ
2m

)1/2
exp

[
−1

2
(y†′ − y′′)2

1 + iτ
2m

+
1
2
(y†′2 + y′′2)

]
, (17.67)

where the time independent factor is determined by the initial condition.
Alternatively, from (17.23) and (17.63), we observe that

∂

∂y†′ 〈y
†′t1|y′′t2〉 = 〈y†′t1|y1|y′′t2〉

=
iτ
2my†′ + y′′

1 + iτ
2m

〈y†′t1|y′′t2〉 =

(
y†′ − y†′ − y′′

1 + iτ
2m

)
〈y†′t1|y′′t2〉 ,

(17.68)

which supplies the complete dependence upon the eigenvalue y†′, and similarly
for y′′. From this result we infer the transformation function

〈q′p′t1|q′′p′′t2〉 =
(

1 +
iτ
2m

)−1/2

exp
[

i
2
(q′p′′ − p′q′′)

]

× exp
(
−1

4
1

1 + iτ/2m

[
q′ − q′′ − τ

2m
(p′ + p′′)

]2)

× exp
[
−1

4
(p′ − p′′)2

]
exp

[
− iτ

2m

(
p′ + p′′

2

)2
]

,

(17.69)

and the probability distribution

|〈q′p′t1|q′′p′′t2〉|2 =
1[

1 +
(

τ
2m

)2]1/2
exp
[
−1

2
(p′ − p′′)2

]
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× exp

{
−1

2
1

1 +
(

τ
2m

)2
[
q′ − q′′ − τ

2m
(p′ + p′′)

]2}
.

(17.70)

Here again we recognize the limiting classical results, and a quantum difference
that grows in time, for the coordinate distribution.

On using the identity
∫ ∞

−∞
dx e−ax2+i

√
2xy =

√
π

a
e−y2/2a , (17.71)

the above transformation function (17.67) becomes

〈y†′t1|y′′t2〉 =
1√
π

e
1
2 y†′2

∫ ∞

−∞
dp exp

[
−
(

1 +
iτ
2m

)
p2 + i

√
2p(y†′ − y′′)

]

×e
1
2 y′′2

, (17.72)

from which we identify from (17.52) the energy spectrum for a free particle,

E =
p2

2m
, −∞ < p < ∞ , (17.73)

and then the wavefunction,

〈y†′|p〉 = π−1/4 exp
(

1
2
y†′2 + i

√
2py†′ − 1

2
p2

)
, (17.74a)

〈p|y′′〉 = π−1/4 exp
(

1
2
y′′2 − i

√
2py′′ − 1

2
p2

)
. (17.74b)

The implied probability distribution for an energy state occupying the mo-
mentum range dp is, essentially,

dq′ dp′

2π

∣∣∣〈q′p′|p〉[dp]1/2
∣∣∣2 =

dq′

2π/dp

dp′√
π

e−(p′−p)2 , (17.75)

where the normalization factor for the q′ distribution indicates that all values
of q′ are equally probable with a range given by 2π/dp. The various formulae
for the free particle are converted to conventional units by the substitution of

q → q√
2∆q

, p → p√
2∆p

, m → m
∆q

∆p
. (17.76)

17.5 Electron Interacting with an Oscillator

Now let us consider the dynamical problem described by
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H = ωy†y +
p2

2m
+ λ(y + y†)µ(q) , (17.77)

which is an idealization of an electron interacting with an electromagnetic
oscillator. On calling the non-Hermitian operators for the particle, defined by
q and p, by z and z†, this Hamiltonian becomes

H = ωy†y − (z − z†)2

4m
+ λ(y + y†)µ

(
z + z†√

2

)
. (17.78)

We shall make use of an approximate method, based upon the general
differential property of transformation functions, the quantum action principle
[8],

δH〈t1|t2〉 = −i〈t1|
∫ t1

t2

dt δH |t2〉 . (17.79)

Thus with H = H0 + λH1, we have

∂

∂λ
〈t1|t2〉 = −i〈t1|

∫ t1

t2

dtH1|t2〉 , (17.80)

and a first approximation is obtained by using the equation of motion for
λ = 0 to replace the operator H1(t) by numerical eigenvalues, say 〈H1(t)〉.
Then, the differential equation becomes

∂

∂λ
〈t1|t2〉 = −i

∫ t1

t2

dt 〈H1(t)〉〈t1|t2〉 , (17.81)

and the solution is then

〈t1|t2〉 = 〈t1|t2〉H0 exp
[
−i
∫ t1

t2

dt λ〈H1(t)〉
]

. (17.82)

Now here the perturbing Hamiltonian is

H1 = (y + y†)µ
(

z + z†√
2

)

=
(
e−iω(t−t2)y2 + e−iω(t1−t)y†

1

)
µ

((
1 + i t−t2

m

)
z†1 +

(
1 + i t1−t

m

)
z2√

2
(
1 + iτ

2m

)
)

,

(17.83)

in which we have, in particular, made use of the free particle solutions

z =

(
1 + i t1−t

2m

)
z2 +

(
i t−t2

2m

)
z†1

1 + iτ
2m

, (17.84a)

z† =
i t1−t

2m z2 +
(
1 + i t−t2

2m

)
z†1

1 + iτ
2m

. (17.84b)
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If we are constructing the transformation function 〈y†′z†′t1|y′′z′′t2〉, it is nec-
essary to evaluate, in the operator function µ, the noncommuting operators
z2 and z†1, using (17.64), or

[z2, z
†
1] = 1 +

iτ
2m

. (17.85)

We write
µ(q) =

∫ ∞

−∞
dk µ(k)eikq , µ(k)∗ = µ(−k) , (17.86)

and remark that

eikq = exp
(
ik[αz†1 + βz2]

)

= exp
(
ikαz†1

)
exp (ikβz2) exp

(
−k2

2
αβ[z2, z

†
1]
)

, (17.87)

which implies that

〈eikq〉 = exp
[
ik(αz†′ + βz′′)

]
exp
[
−k2

2
αβ
(
1 + i

τ

2m

)]

= eikq exp

[
−k2

4

(
1 + i t−t2

m

) (
1 + i t1−t

m

)
1 + iτ

2m

]
, (17.88)

where we have used the abbreviation

q =

(
1 + i t−t2

m

)
z†′ +

(
1 + i t1−t

m

)
z′′√

2
(
1 + iτ

2m

) = q′′ +
t − t2

m
p′′

− i
2
(p′ − p′′)

(
1 + i

t − t2
m

)
+

1
2

(
q′ − q′′ − τ

m

p′ + p′′

2

)
1 + i t−t2

m

1 + iτ
2m

.

(17.89)

Thus from (17.83)
∫ t1

t2

dt λ〈H1〉 =
∫ t1

t2

dt
(
e−iωt1y†′eiωt + eiωt2y′′e−iωt

) ∫ ∞

−∞
dk λµ(k)eikq

× exp

{
−k2

4

[
1 + i

τ

2m
+

[(t − t1+t2
2 )/m]2

1 + iτ
2m

]}

= e−iωt1y†′iγ1 − eiωt2y′′iγ∗
2 . (17.90)

With this last notation, our transformation function (17.82) is presented
as

〈y†′t1|y′′t2〉0〈z†′t1|z′′t2〉0 exp
(
e−iωt1y†′γ1 − eiωt2y′′γ∗

2

)
, (17.91)

from which we derive the probability distribution from (17.50) and (17.70)
(where we write y†′ = 1√

2
(q′−ip′) and omit the factors dq′′dp′′/2π, dq′dp′/2π)
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exp
(
−|y′eiωt1 − y′′eiωt2 |2

) [
1 +
( τ

2m

)2
]−1/2

× exp


−1

2

(
q′ − q′′ − τ

m
p′+p′′

2

)2

1 + (τ/2m)2


 exp

[
−1

2
(p′ − p′′)2

]

× exp
(
2Re [y′eiωt1γ∗

1 − y′′eiωt2γ∗
2 ]
)

= exp
(
−|y′eiωt1 − y′′eiωt2 − γ1|2

) [
1 +
( τ

2m

)2
]−1/2

× exp


−1

2

(
q′ − q′′ − τ

m
p′+p′′

2

)2

1 + (τ/2m)2


 exp

[
−1

2
(p′ − p′′)2

]

× exp
(
2Re[y′′eiωt2(γ∗

1 − γ∗
2 )]
)

, (17.92)

to within the approximation considered (|γ1|2 being omitted in the exponent).
Here from (17.90)

γ1 − γ2 =
∫ t1

t2

dt eiωt

∫ ∞

−∞
dk λµ(k)eikqr

× exp

(
−k2

4

[
1 +

([t − (t1 + t2)/2]/m)2

1 + (τ/2m)2

])

×2i sinh

(
kqi +

k2

4
iτ
2m

[
1 − ([t − (t1 + t2)/2]/m)2

1 + (τ/2m)2

])
,

(17.93)

and from (17.89)

qr = q′′ +
t − t2

m
p′′ + (p′ − p′′)

t − t2
2m

+
1
2

(
q′ − q′′ − τ

m

p′ + p′′

2

)
1 + t−t2

m
τ

2m

1 + (τ/2m)2
, (17.94a)

qi = −1
2
(p′ − p′′) +

(
q′ − q′′ − τ

m

p′ + p′′

2

)
(t − t1+t2

2 )/2m

1 + (τ/2m)2
,(17.94b)

are the real and imaginary parts of q.
From the significance of k [=

√
2k∆q] as a ratio of ∆q to a length of the

order of the distance over which µ(q) differs from zero, it is apparent that a
classical situation requires that |k| � 1. If we combine this with approxima-
tions valid for weak fields, p′ ≈ p′′, q′ ≈ q′′ + (τ/m)(p′ + p′′)/2, we obtain an
approximate computation of γ1 − γ2,

γ1 − γ2 ≈
∫ t1

t2

dt eiωt

∫
dk λµ(k) eik(q′′+(t−t2)p

′′/m)ik
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×
[
−(p′ − p′′) +

(
q′ − q′′ − τ

m

p′ + p′′

2

) (
t − t1+t2

2

)
/m

1 + (τ/2m)2

]

= −(p′ − p′′)
∫ t1

t2

dt eiωt ∂

∂q
λµ

(
q′′ +

t − t2
m

p′′
)

+

(
q′ − q′′ − τ

m
p′+p′′

2

)

1 + (τ/2m)2

∫ t1

t2

dt eiωt t −
t1+t2

2

m

× ∂

∂q
λµ

(
q′′ +

t − t2
m

p′′
)

, (17.95)

where, in the same approximation,

γ1 = −i
∫ t1

t2

dt eiωtλµ

(
q′′ +

t − t2
2

p′′
)

. (17.96)

The resulting probability distribution (17.92) can be written as

e−|y′−y′
c|
[
1 +
( τ

2m

)2
]−1/2

exp
[
−1

2
(q′ − q′c)

2

1 + (τ/2m)2

]
e−

1
2 (p′−p′

c)
2

, (17.97)

with

y′
c = y′′e−iωτ − i

∫ t1

t2

dt e−iω(t1−t)λµ

(
q′′ +

t − t2
m

p′′
)

, (17.98a)

q′c = q′′ +
τ

m
p′′ −

∫ t1

t2

dt
(
y′′e−iω(t−t2) + y′′∗eiω(t−t2)

) t1 − t

m

× ∂

∂q
λµ

(
q′′ +

t − t2
m

p′′
)

, (17.98b)

p′c = p′′ −
∫ t1

t2

dt
(
y′′e−iω(t−t2) + y′′∗eiω(t−t2)

) ∂

∂q
λµ

(
q′′ +

t − t2
m

p′′
)

,

(17.98c)

being the classical solutions of the equations of motion in a weak-coupling
approximation. The classical nature of the situation with k∆q � 1 is also
evident from the following considerations. If the terminal times t1 and t2 are
such that the particle has actually passed through the region where µ(q) differs
sensibly from zero (the cavity), the same integrals are of the form
∫ ∞

−∞
dt e−iωtµ

(
q′′ +

t − t2
m

p′′
)

=
∫ ∞

−∞
dk µ(k)

∫ ∞

−∞
dt e−iωteik(q′′+

t−t2
m p′′)

= 2π
∫ ∞

−∞
dk µ(k) eik(q′′− t2

m p′′)δ
(

ω − k
p′′

m

)
,

(17.99)
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which shows that only one value of k is significant,

k =
ω

v
, p′′ = mv . (17.100)

The implicit dispersion of p is

∆p =
h̄

∆q
� h̄k (17.101a)

v∆p = ∆E � h̄ω . (17.101b)

Hence under these conditions, the energy of the particle cannot be observed to
the precision necessary to detect the absorption or emission of single quanta,
and only effects arising from many quanta are significant.

17.5.1 Extreme Quantum Limit

The extreme quantum limit appears under conditions where all inequalities
are reversed,

∆E � h̄ω , k∆q � 1 . (17.102)

Since the initial particle momentum is precisely specified, a simple approach
is provided by the 〈q′t1|p′t2〉 representation for the particle. In the absence of
interactions, this transformation function is

〈q′t1|p′t2〉 = (2π)−1/2ei(q′p′−p′2τ/(2m)) . (17.103)

The first-order effect of the interaction requires the evaluation of

〈µ(q)〉 =
〈

µ

(
q1 −

t1 − t

m
p2

)〉
=
∫

dk µ(k) 〈eik(q1− t1−t

m p2)〉

=
∫

dk µ(k) eik(q′−(t1−t)p′/m)e−i(t1−t)k2/2m , (17.104)

using the identity shown in (17.87), since

[q1, p2] =
[
q2 +

τ

m
p2, p2

]
= i . (17.105)

If the significant values of k are very small compared with p′, we can neglect
the last factor to obtain

〈µ(q)〉 = µ

(
q′ − t1 − t

m
p′
)

, (17.106)

and the transformation function (17.82) is from (17.48), (17.103), and (17.83),

〈y†′q′t1|y′′p′t2〉 = ey†′y′′e−iωτ 1√
2π

ei(q′p′−p′2τ/2m)

× exp
{
−i
∫ t1

t2

dt
(
y′′e−iω(t−t2) + y†′e−iω(t1−t)

)
λµ

(
q′ − t1 − t

m
p′
)}

.

(17.107)
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If at the initial and final times

µ(q′) = µ(q′ − τv) = 0 , (17.108)

that is, the interaction disappears before or after the particle is in the cavity,
we have∫ t1

t2

dt e∓iωtµ

(
q′ − t1 − t

m
p′
)

=
∫ ∞

−∞
dt e∓iωt

∫ ∞

−∞
dk µ(k)eik(q′−(t1−t) p′

m )

=
∫

dk µ(k) eik(q′−t1p′/m)2πδ(kv ∓ ω) =
2π

v
e±i ω

v (q′−t1p′/m)µ(±ω/v) ,

(17.109)

which indicates that the neglect of the k2 term is justified if E � h̄ω. This
gives

〈y†′q′t1|y′′p′′t2〉 = ey†′e−iωt1y′′eiωt2 1√
2π

ei(q′p′−p′2τ/2m)

× exp
{
− 2πi

v

[
y′′eiωt2ei ω

v q′−iωt1λµ
(ω

v

)

+ y†′e−iωt1e−i ω
v q′+iωt1λµ∗

(ω

v

)]}

= ey†′e−iωt1y′′eiωt2 1√
2π

∑
n−n+

ei(p′+(n−−n+)ω/v)q′

×e−i(p′+(n−−n+)ω/v)2t1/2meip′2t2/2m 1
n−!

1
n+!

×
(
−2πi

v
λµ
(ω

v

)
y′′eiωt2

)n− (
−2πi

v
λµ∗

(ω

v

)
y†′e−iωt1

)n+

=
∑
∆n

1√
2π

ei(p′−∆nω/v)q′
e−i(p′−∆nω/v)2t1/2meip′2t2/2m

×ey†′e−iωt1y′′eiωt2

(
µ∗ (ω

v

)
µ
(

ω
v

) y†′e−iωt1

y′′eiωt2

)∆n/2

×(−i)|∆n|J|∆n|

(
4π

v
λ
∣∣∣µ
(ω

v

)∣∣∣√y†′e−iωt1y′′eiωt2

)
,

(17.110)

using the series representation for the Bessel function (8.10), in which we
recognize that (n−−n+)ω

v = −∆nω/v, a net change in momentum, resulting
in a corresponding small energy change for the particle. One can think of n−
and n+ as the number of quanta absorbed and emitted, respectively, by the
particle, with interference between all processes leading to a common energy
change. The simplification of the situation is that the individual emission and
absorption acts are uncorrelated.
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From this transformation function, the transition probability referring to
definite energy states for the oscillator can be derived, with the significance of
∆n appearing again as the increase in quantum numbers for the oscillator. The
result in the non-Hermitian representation can also be used directly, giving a
qp probability distribution for the oscillator when the final momentum of the
particle is known to be p′ − ∆nω/v,

e−|y′eiωt1−y′′eiωt2 |2
∣∣∣∣ y

′eiωt1

y′′eiωt2

∣∣∣∣
∆n ∣∣∣∣J∆n

(
4π

v
λ
∣∣∣µ
(ω

v

)∣∣∣√y†′e−iωt1y′′eiωt2

)∣∣∣∣
2

.

(17.111)
If the oscillator energy is large, initially, and changes by a small factor, we
can write, approximately,

∣∣∣∣ y
′eiωt1

y′′eiωt2

∣∣∣∣
∆n

= exp
(

∆nRe log
y′eiωt1

y′′eiωt2

)

= exp
[
∆n Re

y′eiωt1 − y′′eiωt2

y′′eiωt2

]
, (17.112)

which gives the probability distribution

exp


−
∣∣∣∣∣y′eiωt1 − y′′

√
1 +

∆n

|y′′|2 eiωt2

∣∣∣∣∣
2


[
J∆n

(
4π

v
λ|µ(ω/v)||y′′|

)]2
.

(17.113)
The latter shows that the oscillator energy is decreased by ∆n, and that the
probability for this momentum is given by the square of the Bessel function.

17.5.2 Correlations

We have discussed only the first approximation, in which correlations be-
tween successive emission and absorption acts are ignored. This is insufficient
to describe amplification by the oscillator, which depends upon just such cor-
relations. The completely formal description of a system with Hamiltonian
H = H0 + λH1 is given by

〈t1|t2〉 = 〈t1|
(

e
−i
∫ t1

t2
dt λH1(q)

)
+

|t2〉H0 , (17.114)

which is the matrix element of a time ordered product, with all operators and
states varying in accordance with the Hamiltonian H0. The general expansion
in successive correlations is indicated by

〈t1|t2〉 = 〈t1|t2〉H0 exp
{
− i
∫ t1

t2

dt λ〈H1(t)〉

− 1
2

∫ t1

t2

dt dt′ λ2 [〈(H2(t)H1(t′))+〉 − 〈H1(t)〉〈H1(t′)〉] + · · ·
}

.

(17.115)
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Alternatively, one can treat the two interacting systems asymmetrically. Thus,
with H1 = (y†+y)µ(q), an expansion in successive correlations for the particle
only gives

〈t1|t2〉 = 〈t1|
(

exp
{
− i
∫

dt λ(y† + y)(t)〈µ(t)〉 − 1
2

∫
dt dt′ λ2(y† + y)(t)

×(y† + y)(t′)[〈(µ(t)µ(t′))+〉 − 〈µ(t)〉〈µ(t′)〉] + · · ·
})

+

|t2〉H0 ,

(17.116)

which is identical with the result obtained from the effective action operator
referring only to the oscillator,

W =
∫

dt

[
iy†.

dy

dt
− ωy†.y − λ(y + y†)〈µ(t)〉

]

− i
2

∫
dt dt′ λ2

(
(y + y†)(t)(y + y†)(t′)

)
+

×[〈(µ(t)µ(t′))+〉 − 〈µ(t)〉〈µ(t′〉] +
1
i

log〈t1|t2〉part . (17.117)

Thus, from the latter, we derive, approximately, the effective oscillator equa-
tion of motion

i
dy

dt
= ωy + λ〈µ(t)〉 + iλ2

∫ t1

t2

dt[〈(µ(t)µ(t′))+〉 − 〈µ(t)〉〈µ(t′)〉](y + y†)(t)

(17.118)
that indicates the change in behavior produced by the presence of the particle.
Further elaborations will be left to Harold.

17.6 Problems for Chap. 17

1. Derive the Gaussian distribution (17.59) as the large n limit of the Poisson
distribution (17.57).

2. Verify the transformation function for a free particle, (17.69).
3. Verify the probability distribution for an electron interacting with an os-

cillator, (17.92), and then derive the approximate form (17.97).



Appendix

Electromagnetic Units

The question of electromagnetic units has been a vexing one for students of
electromagnetic theory for generations, and is likely to remain so for the fore-
seeable future. It was thought by the reformers of the 1930s, Sommerfeld [32]
and Stratton [33] in particular, that the rationalized system now encompassed
in the standard Système International (SI) would supplant the older cgs sys-
tems, principally the Gaussian (G) and Heaviside–Lorentz (HL) systems. This
has not occurred. This is largely because the latter are far more natural from
a relativistic point of view; theoretical physicists, at least of the high-energy
variety, use nearly exclusively rationalized or unrationalized cgs units. The
advantage of the two mentioned cgs systems (there are other systems, which
have completely fallen out of use) is that then all the electric and magnetic
fields, E, D, B, H, have the same units, which is only natural since electric
and magnetic fields transform into each other under Lorentz transformations.
Electric permittivities and magnetic permeabilities correspondingly are di-
mensionless. The reason for the continued survival of two systems of cgs units
lies in the question of “rationalization,” that is, the presence or absence of
4πs in Maxwell’s equations or in Coulomb’s law. The rationalized Heaviside–
Lorentz system is rather natural from a field theoretic point of view; but if
one’s interest is solely electromagnetism it is hard not to prefer Gaussian units.

In our previous book [9] we took a completely consistent approach of using
Gaussian units throughout. However, such consistency is not present in any
practitioner’s work. Jackson’s latest version of his classic text [13] changes
horses midstream. Here we have adopted what may appear to be an even
more schizophrenic approach: Where emphasis is on waveguide and transmis-
sion line descriptions, we use SI units, whereas more theoretical chapters are
written in the HL system. This reflects the diverse audiences addressed by the
materials upon which this book is based, engineers and physicists.

Thus we must live with disparate systems of electromagnetic units. The
problem, however, is not so very complicated as it may first appear. Let us
start by writing Maxwell’s equations in an arbitrary system:
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∇ · D = k1ρ , (A.1a)
∇ · B = 0 , (A.1b)

∇ × H = k2Ḋ + k1k2J , (A.1c)
−∇ × E = k2Ḃ , (A.1d)

while the constitutive relations are

D = k3E + k1P , (A.2a)
H = k4B − k1M . (A.2b)

The Lorentz force law is

F = e(E + k2v × B) . (A.3)

The values of the four constants in the various systems of units are displayed
in Table A.1. Here the constants appearing in the SI system have defined

Table A.1. Constants appearing in Maxwell’s equations and the Lorentz force law
in the different systems of units

constant SI HL Gaussian

k1 1 1 4π
k2 1 1

c
1
c

k3 ε0 1 1
k4

1
µ 0

1 1

values:

µ0 = 4π × 10−7 N A−2 , (A.4a)
1

√
ε0µ0

= c ≡ 299 792 458 m/s , (A.4b)

where the value of the speed of light is defined to be exactly the value given.
(It is the presence of the arbitrary additional constant µ0 which seems objec-
tionable on theoretical grounds.)

Now we can ask how the various electromagnetic quantities are rescaled
when we pass from one system of units to another. Suppose we take the SI
system as the base. Then, in another system the fields and charges are given
by

D = κDDSI , E = κEESI , (A.5a)
H = κHHSI , B = κBBSI , (A.5b)
P = κP PSI , M = κMMSI , (A.5c)
ρ = κρρ

SI , J = κJJSI . (A.5d)
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We insert these into the Maxwell equations, and determine the κs from the
constants in Table A.1. For the Gaussian system, the results are

κD =
√

ε0

4π
, (A.6a)

κE =
1√

4πε0
, (A.6b)

κH =
1√

4πµ0
, (A.6c)

κB =
√

µ0

4π
, (A.6d)

κP = κρ = κJ =
√

4πε0 , (A.6e)

κM =
√

4π

µ0
. (A.6f)

The conversion factors for HL units are the same except the various 4πs are
omitted. By multiplying by these factors any SI equation can be converted to
an equation in another system.

Here is a simple example of converting a formula. In SI, the skin depth of
an imperfect conductor is given by (13.118),

δ =
√

2
µωσ

. (A.7)

Converting into Gaussian units, the conductivity becomes

σ =
J

E
→ 4πε

J

E
= 4πεσ . (A.8)

Therefore, the skin depth becomes

δ →
√

2
4πεµσω

=
c√

2πσω
, (A.9)

which is the familiar Gaussian expression.
Let us illustrate how evaluation works in another simple example. The so-

called classical radius of the electron is given in terms of the mass and charge
on the electron, m and e, respectively,

r0 =
e2

4πε0mc2

∣∣∣∣
SI

=
e2

4πmc2

∣∣∣∣
HL

=
e2

mc2

∣∣∣∣
G

. (A.10)

where the charges are related by κρ in (A.6e). Let us evaluate the formula in
SI and G systems:
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r0 =
(1.602 × 10−19 C)2 × 10−7 NA−2

9.109 × 10−31 kg
= 2.818 × 10−15 m , (A.11a)

r0 =
(4.803 × 10−10 esu)2

9.109 × 10−28 g × (2.998 × 1010 cm/s)2
= 2.818 × 10−13 cm .

(A.11b)

It is even easier to evaluate this in terms of dimensionless quantities, such as
the fine structure constant

α =
e2

h̄c

∣∣∣∣
G

=
e2

4πh̄c

∣∣∣∣
HL

=
e2

4πε0h̄c

∣∣∣∣
SI

=
1

137.036
. (A.12)

The classical radius of the electron is then proportional to the Compton wave-
length of the electron,

λc =
h̄c

mc2
= 3.8616 × 10−13 m , (A.13)

where a convenient conversion factor is h̄c = 1.97327 × 10−5 eV cm. Thus

r0 = αλc = 2.818 × 10−15 m , (A.14)

which incidentally shows that the “classical radius” gives an unphysically
small measure of the “size” of an electron.

More discussion of electromagnetic units can be found in the Appendix
of [9]. For a rather complete discussion see [34].
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aberration 75
accelerators 263–279

linear 263
action 9

effective 346
relativistic particle 67

admittance
arbitrary definition 120, 121
characteristic 137
field 121
intrinsic 104
line 111
matrix 239, 245, 252
shunt 96, 245, 261

airy functions 288
Ampére’s law 97
amplification 345
analytic function 171, 311
angular momentum 4

conservation 8, 14
magnetic charge 39

associated Legendre functions 45, 56,
178

differential equation 46
small argument expansion 46

asymptotic correspondence
associated Legendre functions and

Bessel functions 47
Legendre polynomials and Bessel

functions 45
attenuation constant 99, 258, 259, 261

Babinet’s principle 89–91, 261, 324,
326

Bessel functions 43–47, 153–158, 165,
174–176, 217, 344

addition theorem 45

asymptotic expansion 157, 287, 303,
324

completeness relations 46

differential equation 46, 154

generating function 155

integer order 155

integral representation 47, 155, 156,
286, 289, 305

integrals 158, 160, 162, 300

modified 175, 176, 217, 218, 287

asymptotic expansion 176

differential equation 218

integral representation 176

integrals 288, 294

pole expansion 219

small argument expansion 217,
219

Wronskian 219

order 1/2 158

recurrence relations 154, 298

series 154

small argument expansion 45, 157

Wronskian 154, 174

zeros 160, 161

asymptotic 159

Bessel inequality 196

Bessel’s equation 46, 153, 154, 174

betatron 277, 292

bifurcated guide

equivalent circuit 253
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boost 68
boundary conditions 81–88, 104, 107,

108, 128, 159, 164, 181, 185–187,
189–194, 196, 201, 204, 205, 214,
250, 257

current 228
Dirichlet 108, 231
Neumann 108, 231
outgoing 93
retarded 93

boundary displacement
change of eigenvalue 211, 259

boundary layer 84
Bragg scattering 326
build-up time 265, 266

canonical momentum 11
capacitance 233

lumped 127
series 96, 110, 115, 247
shunt 96, 110, 246, 247, 258

capacitive reactance 126
Cauchy’s theorem 311
Cauchy–Riemann conditions 171
Cauchy–Schwarz–Bunyakovskii

inequality 190
cavity 128, 264–267

circular cylinder 264
excitation by electrons 271–274

Čerenkov radiation 93, 94
charge conservation 12, 65
charge density 2
charge relaxation time 86, 88, 92
circular cylinder functions 153–158
classical limit

free particle 338
classical radius of electron 37, 269, 349
closed set of eigenfunctions 195–200
coaxial line 99
coherent states 329–334
commutation relations 331
comparison method 217
complete set of eigenfunctions 195–200
completeness

coherent states 333
completeness relation 197

Bessel function 46
Legendre polynomials 46

Compton wavelength of electron 350

conductance 233, 248, 260
coefficients 232

conduction current 80, 86, 246, 247
electric 119

conductivity 1, 80, 98, 227–234, 256
conductors

perfect 87, 96
conformal mapping 171
conservation laws 12–14

angular momentum 8, 14
energy 8, 40
momentum 8, 40

conservation of charge 3, 67, 80, 87
magnetic 89

convergence of variation–iteration
method 202

conversion factor 350
convolution theorem 319
coordinate displacement

scalar field 64
correlations 345
Coulomb potential 48
cross section 37

absorption 314
aperture 326
dielectric sphere 37
differential 297
geometrical 300, 304, 307, 315
moving charge 76
radar 298
slit 313

first approximation 314
principal correction 324

strip
correction to geometrical 307

total 297
current density 3, 227–231

edge behavior 309
relativistic particle 70

current sheet 88, 90
cutoff wavelength 100, 110, 111, 134,

135, 137, 149, 151, 165, 246
cutoff wavenumber 100, 145

asymptotic 167

d’Alembertian 35
degeneracy 114, 149, 162
delta function 2, 15–16, 145, 284
destructive interference 292
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dielectric constant see permittivity
differential equation

associated Legendre function 46
Bessel function 46

diffraction 295–327
aperture 326
approximate electric field 312
differential cross section 313
disk 326
Fourier transform method 307–324
Kirchhoff theory 315, 327
slit 307–324
slits 326
straight edge 296, 327
strip 298–307

dipole moment
electric 22, 48–51
magnetic 23

dipole radiation
electric 28, 31, 36, 282
magnetic 28

dipole–dipole interaction 50
Dirac, P. A. M. 282
discontinuities

electrical 84, 130, 235, 260
geometrical 236–261

dispersion 127, 131, 329
displacement current 246, 247

electric 118
magnetic 120

dissipation 98–101, 227, 237, 248,
256–261, 264, 273, 282

E modes 257
H modes 260

dissipationless medium 83
dominant mode 137, 149, 159, 164,

165, 200
Doppler effect 75
duality transformation 28, 38, 66,

89–91
dyadic product 48

E mode 106, 109, 115, 116, 118,
133–135, 140–143, 148, 151, 179,
186–188, 193, 194, 204, 206, 211,
213–223, 235, 257, 272

cavity 264
circular guide 159–162
coax 165

cylindrical wedge 164
dominant 135, 148, 150, 159,

164–167, 169, 189
equivalent circuits 246

E plane obstacles 261
efficiency 268
eigenfunctions

Laplace operator 272
transverse Laplacian 106, 107

eigenvalues 192, 240
positivity 111
transverse Laplacian 100, 106, 180

eigenvectors 105, 129, 240, 244
Einstein summation convention 63
electric field

edge behavior 308
electric field intensity see electric field

strength
electric field strength 4
electric polarization 34
electric wall 88
electrodes 228
electromagnetic model of electron

71–72
electron interacting with oscillator

338–346
classical solutions 342
extreme quantum limit 343

ellipse 75, 172
elliptic cylinder coordinates 169–174,

324
elliptic cylinder function 173
energy 4

capacitive 249
electric 124, 125, 127, 248
excitation 273
inductive 249
magnetic 124–126, 248
magnetostatic 31
nonpropagating modes 125
stored 264, 273

energy conservation 8, 13, 181, 182,
236, 237, 281, 314

energy density 5, 68
dispersive 80, 92, 127
linear 115–117, 121, 125

energy flux vector see Poynting
vector, 68

energy spectrum



356 Index

free particle 338
energy theorem 121, 127, 249
energy–momentum tensor 68
entire function 311
equivalent circuit

bifurcated guide 253
equivalent voltage and current

generators 247
Euler’s constant 155, 175, 301
expectation value 329
exponential theorem 340

field strength tensor 65, 282
dual 66

figure of merit see Q
fine structure constant 350
force

Lorentz 8, 11
generalized 38

on electric dipole 49
radiation reaction 281

Fourier coefficients 195
Fourier integral theorem 16
free electron laser 77, 293
free particle 336–338

spectrum 338
wavefunctions 338

Fresnel integrals 318
asymptotic form 318, 321

Gamma function 288
gauge

Lorenz 17, 271, 285
medium 93

radiation 38, 39
gauge invariance 9
gauge transformation 9, 12, 69
Gaussian distribution 336
generating function

Bessel function 155
spherical harmonics 46, 52
variation–iteration method 202, 224

generator 67, 331, 332
constant current 247
constant voltage 247

Green’s function 231
advanced 19, 41
causal or Feynman 19, 41
Coulomb 41, 217

cylinder 313
dielectric sphere 43
electrostatic 43
Helmholtz equation 18, 175
Laplacian operator 212
retarded 19, 41, 295
semi-infinite rectangular region 251
toroidal coordinates 178
wave equation 18

group velocity 6, 122, 123, 128, 131,
140, 258

guide wavelength 110

H mode 106, 109, 116, 120, 135–143,
148, 151, 181, 186–188, 193, 194,
204, 206, 223–225, 235, 251

circular guide 162–163
coax 166
cylindrical wedge 164
dominant 137, 149, 150, 159, 164,

165, 167, 169, 189
equivalent circuits 246

H plane obstacle 261
Hamiltonian

electron interacting with oscillator
339

free particle 336
harmonic oscillator 334

Hankel functions 156
asymptotic expansion 157, 297, 306
differential equation 300
Fourier representation 325
integral representation 295, 300,

305, 310
integrals 300
order 1/2 158
recurrence relations 299
small argument expansion 157

harmonic function 96
harmonic oscillator 334–336

classical limit 335
excited by electron 338–346
spectrum 335
wavefunctions 335

harmonic time dependence 79–94
Harold 324, 346
Heaviside step function 75
Hertz vectors 24, 112
hyperbola 172
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impedance
arbitrary definition 97, 118–121,

137, 235, 238, 240
characteristic 97, 110, 111, 238
field 121
intrinsic 97, 104, 111, 265
line 111
matrix 238, 239, 244

eigenvalues 241
series 96, 245, 261
waveguides 235–261

incompatible variables 329
index of refraction 74, 180
inductance

arbitrary definition 98
lumped 127
series 96, 110, 117, 246, 247, 259
shunt 96, 110, 115, 246

inductive susceptance 126
integral equation 296

charge on conductor 210, 211
current 296, 308, 312, 319–321
electric field 319

Jacobi, K. G. J. 47
Joule heating 87, 227
junction between waveguides 236

Lagrange function 11
electromagnetic field 67
interaction 65

Lagrange multipliers 192
Lagrangian 9, 80–84

relativistic 40
Lagrangian operator 331
Laplace operator

eigenfunctions 272
Laplace’s equation 55

toroidal coordinates 177
Laplace’s first integral representation

47
Laplace’s second integral representation

47, 56
Larmor formula 282

relativistic 283
Legendre polynomials 43–47, 55, 56

addition theorem 45
completeness relations 46
integral representation 47

Levi-Cività symbol 65, 66
LHC 284, 293
light speed

moving body 130
limit in the mean 195
line element 177
local energy conservation 5
local momentum conservation 5
Lorentz force 8, 11, 281

magnetic charge 38
Lorentz invariance 70
Lorentz transformation 41, 68, 73, 183,

347
field strength 70
vector potential 69

lumped network 244–247
dissipative 257

Macdonald function 288
macroscopic fields 32–34
magnetic charge 38, 67, 73, 89–91, 94

angular momentum 39
magnetic field

resonance 267
magnetic field intensity see magnetic

induction
magnetic flux 276
magnetic induction 4
magnetic wall 90
magnetization 34, 130
Mathieu function 173, 324
Maxwell’s equations 1, 34

arbitrary units 348
covariant form 66
dyadic form 104, 129
harmonic form 80, 93, 103, 129, 185
microscopic 5

Maxwell–Lorentz equations 5
metric 63
microtron 263–271

elementary theory 267–268
phase focusing 270
radiation losses 269
vertical defocusing 268

mode
⊥ mode see H mode
‖ mode see E mode

momentum 4
momentum conservation 8, 14



358 Index

momentum density 5, 68
momentum flux dyadic see stress

tensor
monopole

electric 48
multipole expansion 48–61

energy 58, 60
force 58
torque 58

multipole moments
electric 51
potential 57

multipole radiation 21–31

Neumann function 154, 165
asymptotic expansion 157, 175
integral representation 175
order 1/2 158
small argument expansion 155, 157,

175
non-Hermitian operator 331

eigenvalues 330
eigenvectors 332

nonpropagating mode 125
normal modes 128, 240, 272
normalization 96, 237, 272

optical theorem 297
orthogonality relations 191, 192
orthonormality relations 240

E modes 113, 159
H modes 114, 162

oscillators
quantum 329–346

overcompleteness 146, 334

parabola 173
parabolic cylinder coordinates 169–

174
parabolic cylinder function 173
Parseval’s theorem 197
particle equations of motion 8
permeability 1

vacuum 348
permittivity 1, 92
phase shift 240
phase space 334
phase velocity 7, 122, 140, 258
plasma model 92, 129

plunger 254
Poisson distribution 336
Poisson sum formula 145
potential function 95, 105

periodicity 144
potentials 9

four-vector 65, 75
Liénard–Wiechert 21, 35, 76
retarded 20, 285
vector 272

power
complex 117, 122, 124, 235
dissipated 98, 257, 264
radiated by accelerated charge 36,

78, 283, 293
Poynting vector 5, 80, 90, 117, 239,

290, 314
complex 117, 127, 257
theorem 121

precession 283
probability distribution 334

electron interacting with oscillator
340, 342, 345

free particle 337
Gaussian 336
harmonic oscillator 335
Poisson 336

propagation constant 97, 99, 100, 110,
118, 258, 261

nonpropagating mode 125
propagator, Feynman or causal 19

Q 258, 259, 261, 264, 266, 274
loaded 265

quadrupole moment
electric 22, 50

quanta
absorbed or emitted 344

quantum action principle 339
quantum limit

extreme 343
quantum uncertainty 94

radiation fields 16–31
radiation losses 269
radiation reaction 37, 281
rapidity 74
Rayleigh’s principle 189, 193, 194, 196,

198–200, 205, 208, 210
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bounds on arbitrary eigenvalue 208
second eigenvalue 205

reactance 248
reactive network 238
reciprocity theorems 91, 92, 232, 237
reflection 139, 150, 179–183

specular 301
reflection coefficient 181, 182, 236, 237,

240
refraction 179–183
relativistic particle

equations of motion 67, 275, 282
relativity 63–78
resistance 98, 233, 248, 260, 266

series 257, 259
shunt 266

resonance 246, 267, 270
rotations 14

S-matrix see scattering matrix
scattering

charged particles 74
E mode 295
H mode 295
light by dielectric sphere 37
light by electron 37, 76
static limit 303
strip 298–307

scattering amplitude 297
scattering matrix 236–243

symmetric and unitary 237
Schein, M. 292
Schrödinger equation

free particle 337
harmonic oscillator 334

section
T section 245, 246
Π section 245, 246

self field 282
separability 133, 153, 169, 177
shadow 301
shift of reference point 242–247
skin depth 98, 256, 264

Gaussian units 349
slotted guide 138
Snell’s law 180
solid angle transformation 77
solid harmonics 52
Sommerfeld, A. 296

space translation 13
speed of light

moving body 130
moving medium 74
vacuum 348

spherical harmonics 46, 51–61
generating function 46

square waveguide 152
stream function 105
stress dyadic see stress tensor
stress tensor 5, 41, 68, 72

relativistic particle 71
Struve functions 299

differential equation 299
sum rule

inverse powers of eigenvalues 217,
218, 220, 225

surface charge density 86, 87, 210, 211
surface current density 87, 88, 295

distribution on waveguide 138
edge behavior 309

surface displacement theorem 211, 259
susceptance 248
symmetry

reflection 150
triangle 149

synchrotron 275–279, 283
phase stability 277, 278

synchrotron radiation 269, 281–294
angular distribution 288–291

high harmonics 291
angular power spectrum 290
characteristic harmonic number 287
polarization 290, 294
power spectrum 287, 288
radiation in mth harmonic 287
spectrum 284–294
total power 284, 288

T mode 95, 108, 109, 246
T section 245, 246
TE mode see H mode
TEM mode see T mode
time displacement 12
time ordered product 345
time reversal 90, 92
time-averaged quantities 80
TM mode see E mode
toroidal coordinates 176–178



360 Index

torque
on electric dipole 50

trace 7, 50
transformation function 332, 334, 338,

340, 344
transmission coefficient 181, 182, 236,

237
transmission line equations 96, 104,

106, 109
transmission lines 95–101, 103

equivalent 103–131, 235–261
triangular waveguide

30◦, 60◦, 90◦ triangle 151
equilateral 143–151
isosceles 141–143, 152

trilinear coordinates 147
trinity nuclear test 263, 293

unbounded eigenvalues 197, 200
uncertainty relation 329
unidirectional light pulse 7, 41, 128
uniqueness theorem 81, 82, 128
units 4, 347–350

Gaussian 347
Heaviside–Lorentz 35, 347
rationalized 347
SI 33, 34, 347

variation–iteration method 200–212
nth approximation to lowest

eigenvalue 201, 214
n + 1

2
th approximation to lowest

eigenvalue 202
bound on second eigenvalue 206
circular guide 213–225
error estimate 203–210, 220–223,

225
lower bounds on eigenvalues 209,

220
proof of convergence 202

variational derivatives 10
variational principle 9–14, 80–92,

185–212

current 227–231

eigenvalues 188–212

reactance 250

scattering amplitude 297

susceptance 249

vector

contravariant 63

covariant 63

null 46

virial theorem 7

voltage

imparted to electron 266

wave equation 17, 35, 169

circle 153

elliptic cylinder coordinates 173

parabolic cylinder equation 173

wave operator see d’Alembertian

wavefunction

free particle 338

harmonic oscillator 335

waveguide 103–131

bifurcated 251–256

shorted 254

circular 158–163, 213–225

coaxial 165–167

coaxial wedge 167–169

cylindrical wedge 163–165

dielectric 130

geometrical discontinuities 236–261

hexagonal 151

lumped network description 244–
261

rectangular 133–140

triangular 141–151

Weber–Hermite function 173

Wiggler 293

work done by charges on field 29, 93,
284

work done on charges by field 227,
282, 285




