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Chapter 1
Introduction

Abstract In this chapter, we give a brief introduction to the Behrens—Fisher
problem. An outline of the rest of the chapters is also provided. Since randomly
incomplete data is considered in the rest of the chapters, we thereafter clarify the
idea of “missing at random (MAR)” and “missing completely at random (MCAR).”
In particular, we demonstrate that if variables in a data set are all mutually
dependent, then an assumption of MAR is equivalent to the assumption of MCAR.

Keywords Behrens—Fisher problem ¢ Missing data ® MAR ¢ MCAR ¢ Multi-
variate * Normality

1.1 The Behrens—Fisher Problem

The Behrens—Fisher problem constitutes the problem of testing two or more
univariate normal or multivariate normal means for equality when there is evidence
to believe that the underlying variances or covariance matrices, respectively, are
not equal. When univariate normal means are compared, the problem is usually
known as ANOVA (analysis of variance), and when multivariate normal means
are compared, the problem is usually known as MANOVA (multivariate analysis
of variance). There is a vast amount of literature on the subject and it is not our
aim to survey all of it. We restrict ourself to fiducial approaches. There is only
one explicit fiducial approach in the literature and that is the approach of Li et al.
(2011). Moreover, this approach applies only to k-sample ANOVA, k > 2. Besides
the method of Li et al. a fiducial approach is implicit in Behrens (1929) and Fisher
(1935). The approaches of Behrens, Fisher, and Li et al. were all proposed for the
univariate case. It is our purpose to demonstrate how these three approaches can
be generalized to the multivariate case when the underlying data is complete or
randomly incomplete.

Since this is a monograph on parametric approaches to the Behrens—Fisher
problem, the rest of the monograph will proceed as follows:

T. Desai, A Multiple-Testing Approach to the Multivariate Behrens-Fisher Problem: 1
with Simulations and Examples in SAS®, SpringerBriefs in Statistics,
DOI 10.1007/978-1-4614-6443-3_1, © The Author 2013



2 1 Introduction

Chapter 2: This chapter will compare three existing approaches to testing multivari-
ate normality. Rejection resulting from these or any other test means that we cannot
proceed further with a parametric approach, and have to look at nonparametric
alternatives. The novelty in this chapter comes when one is testing for multivariate
normality in presence of randomly incomplete data; wherefore, a multiple-testing
approach is proposed.

Chapter 3: This chapter presents tests of equality of variances or covariance
matrices. Such a test is important, because if it doesn’t reject equality of vari-
ances/covariance matrices, then the variances/covariance matrices may be pooled
to yield a better test. The novelty in this chapter comes when comparing covariance
matrices in presence of randomly incomplete data. A new test based on multiple
testing is proposed for this purpose. It is noteworthy that this test may be used on
complete data as well.

Chapter 4: This chapter generalizes the fiducial approaches of Behrens, Fisher,
and Li et al. to the multivariate case. These approaches are recommended when a
suitable test of multivariate normality doesn’t lead to rejection and when a suitable
test of equality of variances/covariance matrices leads to rejection. Once again, the
novelty here is the use of multiple testing both in the complete and the randomly-
incomplete-data case.

1.2 A Note on Missingness at Random

Randomly incomplete data sets will be considered in this monograph. Here
“randomly incomplete” means in the sense of Rubin (1976, 1987). This notion
of MAR (missing at random) needs to be examined closely. Suppose we have a
data set W,= (W, ;.. Wy miss) where W, o5 and W, 55 denote the observed and
missing parts, respectively. Then we say that data is MAR if Pr(missingness|W,, ops,
W, miss) = Pr(missingness|W,, ,5). Now consider a bivariate normal random vector
W = (X.Y) such that E(W) = (1.2) and Covar(W) = [015 Oj
Y is missing whenever X > 1. Clearly, the probability of missingness depends on
X. Consider all pairs (x, yuiss) Where X = x is observed and ¥ =y, is not
observed. Let

i| . Suppose that

mu =1 + (05 X (1/2) X (ymiss - 2)

and
sigmasq = 1 — (0.5 % (1/2) % 0.5)

Then notice that for any pair (X, Yiss)»

X = mu 4+ y/sigmasq x z where z is some standard normal variate.
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Then, since mu depends on y,;, x depends on Vg, and so Pr(missingness
| Xi0bs» Xnmiss) 7 Pr(missingness|X, .ps). That is, the data is not MAR by virtue
of the fact that X and Y are dependent on each other. So if the components of a
random vector are all mutually dependent, an assumption of MAR, if true, implies
MCAR (missingness completely at random). In the rest of this monograph, any
assumption of MAR will be equivalent to the assumption of MCAR. This claim
becomes clearer if we examine a simulation example. We generated 1000000 two-
dimensional vectors from the above distribution. Before generating any missing
values, we generated a variable Y _miss such that Y _miss = Y. Then, if X > 1,
we set Y to be missing. We also define an indicator variable, R, such that R = 0 if
Y is missing and R = 1 otherwise. We then found that when X > 1, Y _miss ranges
from —3.95026 to 8.78385. Then consider the following table:

Table 1.1

x€Aandy € B Pr(R =0),Pr(R=1)
A={x:0<x <2}, B={ymiss: —3.95026 < y_miss <2} 0.4322, 0.5678
A={x:0<x <2}, B={ymiss:2 < y_miss <= 8.78385}  0.5693, 0.4307

The above table demonstrates that the probability of missingness in Y depends

on both X and Y _miss and not just on X. The SAS™ syntax that generates the
output in Table 1.1 is as follows:

data test;

doi =1 to 1000000;

x =14 (sqrt(1) = normal(0));
mu =2+ (0.5%(1/1) % (x —1));
sigma = 2 — (0.5 % (1/1) % 0.5);
y = mu + (sqrt(sigma) * normal(0));
y_miss = y;

ifx >=1theny =
ify=.thenr =0;elser = 1;
output;

end,;

rum;

proc univariate data=test;

var y _miss;

where x >= 1;

rum;

data one;

set test;

if°((0 <= x <= 2)&(—3.95026 <= y_miss <= 2)) then delete;
rum;

data two;
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set test;

if°((0 <= x <= 2)&((2 < y_miss <= 8.78385)) then delete;
rum;

proc freq data=one;

tables r;

rum;

proc freq data=two;

tables r;

rum;

Now suppose that, in the above example, we let E(W) = (1, 2) and Covar(W) =

|:(1) g} . Again, let Y _miss be such that Y _miss = Y. Then, if X > I, we set Y to
be missing. We then found that when X > 1, Y _miss ranges from —4.77984 to

8.83698. Then consider the following table:

Table 1.2

x€Aandy € B Pr(R =0),Pr(R=1)
A={x:0=<x <2}, B={ymiss: —4.77984 < y_miss <2}  0.4994, 0.5006
A={x:0=<x =<2}, B={y_miss:2 < y_miss <= 8.83698}  0.4997, 0.5003

Clearly, now the missingness doesn’t seem to depend on the missing data and,
indeed, the data is incomplete at random. In the rest of the monograph, MAR and
MCAR are treated as synonymous, unless otherwise noted. The code that generated
Table 1.2 is similar to the code that generated Table 1.1 and is left as an exercise to
the reader.

We end this chapter with a note about the number of simulations and the
significance level of hypothesis tests performed in the chapters that follow. Unless
otherwise indicated, a 1000 simulations are used to investigate Type I errors and
power of hypothesis tests. Furthermore, the significance level used is 5 % unless
otherwise indicated.



Chapter 2
On Testing for Multivariate Normality

Abstract In this chapter we compare and contrast three approaches for testing
multivariate normality. These are, namely, Mardia’s skewness and kurtosis statistics
and the Henze—Zirkler statistic. Type I errors and power are demonstrated using
simulations in both the complete-data and the randomly-incomplete-data cases. In
the randomly-incomplete-data case, we use Sidak’s method for multiple testing.
Examples are also provided.

Keywords Alternative hypothesis * Henze—Zirkler statistic * Mardia’s skewness
statistic * Mardia’s kurtosis statistic * Multivariate * Normality ¢ Null hypothesis
* Power ¢ Sidak’s method ¢ Type I error

2.1 The Complete-Data Case

Suppose X = (Xl, ey Xp) is a p-dimensional (p > 1) random vector that has
an unknown mean vector g = (i1,...,[,) and a positive-definite, symmetric
covariance matrix

2
Oy 021 *** Opl1
2
021 0'2 cee Gp2
O’ O" oo O"Z
pl Op2 P
Suppose we collect n data X; = (X;1,..., X;p),1 = 1,...,n, from the distribution

of X above. Consider the five-variate normal distribution with mean row vector {1
2 3 4 5} and covariance matrix

T. Desai, A Multiple-Testing Approach to the Multivariate Behrens-Fisher Problem: 5
with Simulations and Examples in SAS®, SpringerBriefs in Statistics,
DOI 10.1007/978-1-4614-6443-3_2, © The Author 2013
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05 1 050403

YX=104051 0504

030405 1 05
02030405 1

Table 2.1 below gives Type 1 error rates under the null hypothesis that a multivariate
random vector is from a multinormal distribution. For each sample size considered,
a 1000 simulations were run. The Type I error rates were obtained using Mardia’s
skewness and kurtosis statistics (Mardia 1974) and the Henze—Zirkler test (Henze
and Zirkler 1990). We will denote Mardia’s skewness and kurtosis statistics as S and
K, respectively. The Henze—Zirkler statistic will be denoted as HZ.

Table 2.1 Type 1 error rates

Sample size S K HZ

for complete data under the

null 6 0.000  0.000  0.000
10 0.013  0.000 0.012
20 0.061  0.008 0.022
30 0.077 0.018 0.018
40 0.073  0.021  0.027
50 0.077  0.039  0.030
75 0.060  0.027  0.038
100 0.063  0.033  0.039

The above table suggests that, when the null hypothesis of normality is true, K
and HZ tend to be conservative, while S tends to be a bit anti-conservative. The

SAS ™ code that generated the null distribution and Table 2.1 is given as follows.
Note that the simulation uses a sample size of 100. To use a different sample size,
modification of the code is simple and is left as an exercise for the reader.

proc iml;
sim = j(1000000, 5, 0);
sigmal = {10.50.40.30.2,
0.510.50.40.3,
0.40.510.504,
0.30.40.510.5,
0.20.30.40.51};
mul = {12345}
do i = 1to 1000000;
sim[i, 1] = mul[l, 1] + (sqrt(1) * normal(0));

mu = mul[l,2] 4 (sigmal[2, 1] * inv(sigmal[l, 1]) * (sim[i, 1] —mul[1, 1]));

s_sq = sigmal|2,2] — (sigmal|[2, 1] * inv(sigmal[l, 1]) * sigmal[l, 2]);
simli, 2] = mu + (sqrt(s-sq) * normal(0));

mu = mul[l,3] + (sigmal[3,1: 2] * inv(sigmal[l : 2,1 : 2]) * (sim[i, 1 : 2] —mul[1,1 : 2]"));
s-sq = sigmal|[3, 3] — (sigmal[3, 1 : 2] * inv(sigmal[l : 2,1 : 2]) * sigmal[l : 2,3]);

simli, 3] = mu + (sqrt(s_sq) * normal(0));
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mu = mul[l,4] + (sigmal[4,1 : 3] * inv(sigmal[1 : 3,1 : 3]) * (sim[i, 1 : 3]" —mul[1,1: 3]"));
s_sq = sigmal[4,4] — (sigmal[4, 1 : 3] * inv(sigmal[l : 3,1 : 3]) * sigmal|[l : 3, 4]);

simli, 4] = mu + (sqrt(s_sq) * normal(0));

mu = mul[l, 5] + (sigmal[5, 1 : 4] * inv(sigmal[l : 4,1 : 4]) * (sim[i, 1 : 4] —mul[1, 1 : 4]"));
s-sq = sigmall[5,5] — (sigmal[5,1 : 4] * inv(sigmal[l : 4,1 : 4]) * sigmal[l : 4, 5]);

simli, 5] = mu + (sqrt(s_sq) * normal(0));

end;

create complete typel from sim [col name = {'x1" 'x2' 'x3" 'x4' 'x5'}];
append from sim;

run;

quit;

Yomacro test;

YDodot =1 %to 1000;
ods listing close;

proc iml;

index = %syseval f(((&t — 1) * 100) 4 1) : %syseval f(&t * 100);
use complete_typel;

read point index var {x1 x2 x3 x4 x5} into sim;

create sim from sim [col name = {'x1’ *x2" 'x3' 'x4' 'x5'}];

append from sim;
run;
quit;

proc mod el data = sim;

x1 = parml;

x2 = parm?2;

x3 = parm3;

x4 = parm4;

x5 = parm5;

fit x1 x2 x3 x4 x5 / normal;
ods output NormalityTest = nt
run;

quit;

proc iml;

use nt;

read all var {Prob} into p;

est = p[6,]l|p[7.]lIp[8.];

create est&t from est [col name = {'s’ 'k’ "h7'}];
append from est;

run;

quit;

Poend,
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P%omend test;

Potest;

Yomacro cat;
%doi = 1%to 1000;
est&i
Yoend,
Y%mend cat;

data out_comp_tpl;
set %ocat;

i = n

run;

data null _;

set out_comp_tpl end = last,

if s <0.05¢thencl + 1;

if k <0.05then c2+ 1;

if hz <0.05thenc3+ 1;

if last then do; put cl c2 ¢3; end,

run;

Now we consider power under an alternative. Consider the mixture of normals
which has mean {1 2 3 4 5} with probability 0.5 and {-1 -2 -3 -4 -5} with probability

0.5. Let the covariance matrices be the same in both cases. The SAS ™~ code that
generates this data set is as follows:

proc iml;
sim = (1000000, 5,0);
sigmal = {10.50.40.30.2,
0.510.50.40.3,
0.40.510.50.4,
0.30.40.510.5,
0.20.30.40.51};
do i = 1to0 1000000;
r = rantbl(i * 10,0.5,0.5);
if r=1thenmul ={12345];
else mul = {—1 —2 —3 —4 —5};
sim[i, 1] = mul[l, 1] + (sqrt(1) * normal(0));
mu = mul[l,2] + (sigmal[2, 1] * inv(sigmal[l, 1]) * (sim[i, 1] — mul[1, 1]));
s_sq = sigmal|2,2] — (sigmal|[2, 1] * inv(sigmal[l, 1]) * sigmal[l, 2]);
simli, 2] = mu + (sqrt(s-sq) * normal(0));
mu = mul[l,3] + (sigmal[3,1: 2] % inv(sigmal[l : 2,1 :2]) * (sim[i, 1 : 2]" —mul[1,1 : 2]"));
s_sq = sigmal[3,3] — (sigmal[3,1: 2] % inv(sigmal[l : 2,1 : 2]) * sigmal([l : 2, 3]);
simli, 3] = mu + (sqrt(s-sq) * normal(0));
mu = mul[l, 4] + (sigmal[4,1 : 3] * inv(sigmal[l : 3,1 : 3]) * (sim[i, 1 : 3] —mul[1,1 : 3]"));
s-sq = sigmal[4,4] — (sigmal[4, 1 : 3] % inv(sigmal[l : 3,1 : 3]) * sigmal[l : 3, 4]);
simli, 4] = mu + (sqrt(s-sq) * normal(0));
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mu = mul[l, 5] + (sigmal[5,1 : 4] * inv(sigmal[l : 4,1 : 4]) * (sim[i, 1 : 4] —mul[1,1 : 4]"));
s_sq = sigmal[5,5] — (sigmal[5, 1 : 4] % inv(sigmal[l : 4,1 : 4]) * sigmal[l : 4,5]);
simli, 5] = mu + (sqrt(s-sq) * normal(0));

end;
create complete_power from sim [col name = {'x1’ *x2' 'x3' 'x4’ 'x5'}];
append from sim;

The macro fest which we used for examining Type I errors can be again used
here except that we replace the data set complete_typel with the data set generated
above, namely, complete_power.

Then we have the following power table:

Table 2.2 Power under an Sample size S K HZ

alternative for complete data 3 0000 0.000 _0.000
10 0.012 0.000 0.028
20 0.034 0.015 0.092
30 0.037 0.041 0.233
40 0.031 0.071 0.420
50 0.030 0.102 0.658
75 0.027 0.166 0.982
100 0.036  0.217 1.000

Note that in Table 2.2, S doesn’t seem to converge to any value, while K increases
very slowly compared to the HZ statistic.

2.1.1 Example: Rao’s Cork Data

This data set of (Rao, 1948; excerpted from Khattree and Naik, 1999) consists of
weights of cork borings in four directions for 28 trees. According to Khattree and
Naik, E.S. Pearson believed that this data is asymmetric. The data and the ensuing

tests of normality are provided in the SAS ™ code below:

data rao;
inputn e s w;
cards;
72667677
60 53 66 63
56 57 64 58
412936 38
32323536
30353426
39393127
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42433125
37403125
33292736
32303428
63457463
54 46 60 52
47515243
91 79100 75
56 68 47 50
79 6570 61
81 80 68 58
78 55 67 60
46 38 37 38
39353437
32303032
60 50 67 54
35374839
39363931
50343740
43373950
48 54 57 43

’

run;

proc model data = rao;

n = parml;

e = parm2;

s = parm3;

w = parmé;

fitn e sw / normal,
runm;

quit,

2 On Testing for Multivariate Normality

The p-values for Mardia’s skewness and kurtosis statistics, along with the
p-value for the Henze—Zirkler statistic, are, respectively, 0.2369, 0.6904, and
0.0222. Thus, at the 5 % significance level, the Henze—Zirkler statistic rejects four-
variate normality, while Mardia’s statistics fail to reject four-variate normality.

2.2 The Randomly-Incomplete-Data Case

To investigate this case, we generated the data set specified in the SAS

®

code

below. Note that with probability 0.7, all components are observed; with probability
0.10, the fifth component is set to missing; and with probability 0.2, the fourth and
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fifth components are set to missing. We approach this case using multiple imputation
(Rubin 1987) and multiple testing. Five imputations were generated for each
simulation. For each of the three statistics, since the five p-values corresponding to
five imputations are not mutually independent, one cannot use the FDR method of
Benjamini and Hochberg (1995). Rather, we chose to use Sidak’s procedure (Sidak,
1967). The code for generating the null data set is as follows:

proc iml;
sim = j(1000000, 6, 0);
sigmal = {10.50.40.30.2,
0.510.50.40.3,
0.40.510.50.4,
0.30.40.510.5,
0.20.30.40.51};
mul = {12345}
doi = 1to 1000000;
sim[i, 1] = mul[l, 1] + (sqrt(1) * normal(0));
mu = mul[l,2] + (sigmal[2, 1] * inv(sigmal[l, 1]) * (sim[i, 1] — mul[1, 1]));
s_sq = sigmal[2,2] — (sigmal|[2, 1] * inv(sigmal[l, 1]) * sigmal[l, 2]);
sim[i, 2] = mu + (sqrt(s_sq) * normal(0));
mu = mul[l,3] + (sigmal[3,1: 2] * inv(sigmal[l : 2,1 : 2]) * (sim[i, 1 : 2)" —mul[1,1:2]"));
s_sq = sigmal[3,3] — (sigmal[3, 1 : 2] % inv(sigmal[l : 2,1 : 2]) * sigmal[l : 2, 3]);
sim[i, 3] = mu + (sqrt(s-sq) * normal(0));
mu = mul[l,4] + (sigmal[4, 1 : 3] * inv(sigmal[l : 3,1 : 3]) * (sim[i, 1 : 3] —mul[1,1 : 3]"));
s_sq = sigmal[4,4] — (sigmal[4, 1 : 3] % inv(sigmal[l : 3,1 : 3]) * sigmal([l : 3, 4]);
sim[i, 4] = mu + (sqrt(s-sq) * normal(0));
mu = mul[l,5] + (sigmal[5,1: 4] * inv(sigmal[l : 4,1 : 4]) * (sim[i, 1 : 4] —mul[1, 1 : 4]"));
s_sq = sigmal[5,5] — (sigmal[5, 1 : 4] * inv(sigmal[l : 4,1 : 4]) * sigmal[l : 4,5]);
simli, 5] = mu + (sqrt(s_sq) * normal(0));
r = rantbl(0,0.7,0.1,0.2);
if r =2 then sim[i,5] =
if r =3 thendo;sim[i,4] = .; sim[i, 5] = .; end,
sim[i, 6] = r;

end;

create incomplete_typel from sim [col name = {'x1’ *x2" 'x3" 'x4' 'x5'}];
append from sim;

run;

quit;

The estimated Type I errors using five imputations are given below in Table 2.3.

Table 2.3 Type I error using Sample size  Statistic

five imputations n S K 1z
20 0.040 0.000 0.013
30 0.052  0.001 0.016
40 0.058  0.002 0.017
50 0.050 0.004 0.017
75 0.052  0.007 0.019

100 0.046  0.008  0.023
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The above table illustrates that the S statistic tends to remain near the nominal
level, whereas the K and HZ statistics tend to approach the nominal level extremely
slowly from below. However, none of the three statistics is anti-conservative.

The SAS® code for the macro that generated the above table is as follows:

Jomacro incomplete;

YDodot =1 %to 1000;
ods listing close;

proc iml;

index = %sysevalf(((&t — 1) * 100) + 1) : %sysevalf(&t * 100);
use incomplete _typel;

read point index var {x1 x2 x3 x4 x5 r} into x;

create x from x [colname = {'x1" 'x2" 'x3' 'x4' 'x5" 'r'}];
append from x;

run;

quit;

proc mi data = x nimpute = 5 out = bayes,
var x1 x2 x3 x4 x5;

memc;

run;

proc sort data = bayes;
by _Imputation_;
run;

proc model data = bayes;

x1 = parml;
x2 = parm?2;
x3 = parm3;
x4 = parm4;

x5 = parm5;

fit x1 x2 x3 x4 x5 / normal;
by _Imputation_;

ods output NormalityTest = ntl;
run;

quit;

proc sort data = ntl;
by test;
run;

proc iml;
use ntl;
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read all var {prob} into p;
est = p[l:15,];

13

create est&t from est [colname = {'hzl’ 'hz2' "hz3" "hz4' "hz5" 'mk1l’ 'mk2’ 'mk3’ 'mk4’ 'mk5’
'msl’ 'ms2 'ms3 'ms4’ 'ms5'}];

append from est;
run;
quit;

Yend,
Jomend incomplete;

Yoincomplete;

data out_incomp_tp1;
set %ocat;

i = n

run;

data _null_;

set out_incomp_tpl end = last,;

k=1—1(0.95* %(1/5));

if msl <korms2<korms3<kormsd <korms5<kthencl+1;

if mkl <kormk2<kormk3<kormkd <kormk5 <k then c2+ 1;

if hzl <k or hz2 <k or hz3 <k or hzd < k or hz5 < k then ¢3 + 1;
if last then do; put cl c2 ¢3; end;
run;

Table 2.4 below displays the power under the mixture alternative considered for
the complete-data case. Missing data was simulated in exactly the same manner as

for the null case considered above.

Table 2.4 Power using five Sample size  Statistic

imputations i S K HZ
20 0.021  0.000 0.049
30 0.021  0.000 0.160
40 0.031 0.008 0.317
50 0.032 0.018 0.527
75 0.019 0.059 0.936
100 0.031 0.092  0.999

Table 2.4 shows that of the three statistics, HZ is the most powerful. It is not
clear if the power of the S statistic increases with increase in sample size, whereas
the power of the K statistic increases very slowly with increasing sample size.



14 2 On Testing for Multivariate Normality
2.2.1 Example: Audiology Growth Data

Nunez-Anton and Woodworth (1994) present and analyze data from the Iowa
Cochlear Implant Project (Gantz et al. 1988). The data consist of percentages
of correct scores on a sentence test administered to two groups of deaf patients
fitted with two different cochlear implants. Measurements were made 1, 9, 18,

and 30 months after the fitting of implants. The data is presented in the SAS
data step below. Note that Nunez-Anton and Woodworth use data for only those
patients who reached at least 5 % understanding. Thus, of the total sample size
of 44, data for 9 patients were deleted bringing the total sample size down to 35.
Following the data step, the code for the tests of normality done using five Bayesian
imputations is presented for group 1. The corresponding code for group O is similar
and not presented. In the data step below, note that the variable r indicates the type
of missing-data pattern:

data audio;

input group x1 x2 x3 x4 r;
id =_n_

cards;

1 28.5753.00 57.83 59.22 1
1.13.0021.0026.502
160.3786.41..4
133.8755.6061.06 .3
11.610.69..4

126.04 61.98 67.28.3
1.59.00 66.80 83.202
111.2938.02..4
10.000.00 0.002.76 1
1.35.1037.7954.802

1 16.00 33.00 45.39 40.09 1
1 40.5550.69 41.70 52.07 1
13.9011.064.1514.90 1
11.802.302.532.531
10.00 17.74 44.70 48.85 1
1 64.7584.5092.40 95.391
138.2581.5789.63.3
167.5091.4792.86 .3
145.6258.00..4
10.000.00 37.00 . 3
151.1566.13. .4
10.0048.16..4
10.000.92..4
0.0.000.901.612
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00.000.000.00. 3
00.000.00. .4
08.7624.42. .4
00.0020.7927.4231.80 1
02.3012.6728.8024.42 1
012.9028.34..4
0.45.5043.3236.802

0 68.00 96.08 97.47 99.00 1
020.2841.01 51.1561.98 1
065.90 81.30 71.20 70.00 1
00.008.76 16.5914.75 1
00.000.000.000.00 1
09.2214.989.68 .3
011.2944.47 62.90 68.20 1
030.8829.72. .4
029.7241.40 64.00 . 3
00.0043.5548.16.3
00.000.00..4

08.76 60.00 . . 4
08.0025.00 30.88 55.53 1

bl

run;

data audio_;
set audio;
if n_in (5,9,14,23,24,25,26, 36, 42) then delete;

run;

data audiol;

set audio_;

if group = 0 then delete;
runm;

proc mi data = audiol nimpute = 5 out = bayesl;
var x1 x2 x3;

memc;

run;

proc sort data = bayesl;
by _Imputation_;
rum;
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proc model data = bayes|;

x1 = parm1;

X2 = parm?2;

x3 = parm3;

fit x1 x2 x3 / normal,

by _Imputation_;

ods output NormalityTest = ntl;
run;

quit,

proc sort data = ntl;
by test,
run;

Five imputations were drawn. The decisions reached by the S, K, and HZ
statistics using Sidak’s procedure for both groups are presented in Table 2.5 below.

Table 2.5 Decisions for tests Statistic
of mult%vanate normality of Grouwp S K HZ
the audiology data
1 Reject = No Reject = No Reject = No

0 Reject = No Reject = No Reject = No




Chapter 3
On Testing Equality of Covariance Matrices

Abstract In this chapter, we present two approaches for testing equality of
covariance matrices. In the complete-data case, Box’s M method is presented.
The Type I errors and power of Box’s M method are presented. In the randomly-
incomplete-data case, a new method is proposed. This method uses the False
Discovery Rate (FDR) algorithm of Benjamini and Hochberg (J. R. Stat. Soc. Series
B. 57, 1289-1300, 1995). The Type I errors and power in the randomly-incomplete-
case are also presented. An example is also provided.

Keywords Alternative hypothesis * Box’s M statistic * Covariance matrices ®
False discovery rate * Null hypothesis ® Power  Type I error

3.1 The Complete-Data Case

To test the equality of covariance matrices, we start with Box’s M test (Box 1949,
1950). A description of Box’s M test is given in Rencher (2002). To investigate the
Type I error rates under the null hypothesis that covariance matrices are the same, we
generate data from three 5-dimensional normal distributions with covariance matrix
used in Sect. 2.1. The mean vectors used are {1 2 3 4 5}, {—1 —2 —3 —4 —5} and
{000 00}. Table 3.1 below presents the Type I error rates for different combinations
of sample sizes. The significance level is set at 5 %.

Table 3.1 Type I error rates

nl n2 n3 Box’s M Type I error rate
under the null

10 15 20 0.053
20 30 40 0.051
40 60 80 0.054

T. Desai, A Multiple-Testing Approach to the Multivariate Behrens-Fisher Problem: 17
with Simulations and Examples in SAS®, SpringerBriefs in Statistics,
DOI 10.1007/978-1-4614-6443-3_3, © The Author 2013
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Table 3.1 suggests that Box’s M tends to achieve the desired Type I error rate.
The SAS ™ code that generated the above table is presented below:

Yomacro test,;

%dot =1 %to 1000;

ods listing close;

proc iml;

indexl = %syseval f ((&t — 1) * 10) + 1) : %syseval f (&t * 10);
use popl;

read point index1 var {x1 x2 x3 x4 x5} into sim1;

index2 = %syseval f ((&t — 1) % 15) + 1) : %syseval f (&t * 15);
use pop2;

read point index2 var {x1 x2 x3 x4 x5} into sim2;

index3 = %syseval f ((&t — 1) % 20) + 1) : %syseval f (&t * 20);
use pop3;

read point index3 var {x1 x2 x3 x4 x5} into sim3;

nl = nrow(siml);
n2 = nrow(sim?2);
n3 = nrow(sim3);

mul_ = (sum(siml[, 1])/nl)||(sum(siml[, 2])/ nl)||(sum(siml[, 3])/nl)||
(sum(siml[, 4])/nl)||(sum (siml][, 5])/nl);

mu2_ = (sum(sim2[, 1)/ n2)||(sum(sim2][, 2])/n2)||(sum (sim2[, 3])/n2)||
(sum(sim2[, 4])/n2)||(sum(sim2][, 5])/n2);

mu3_ = (sum(sim3[, 1)/ n3)||(sum(sim3[, 2])/n3)||(sum (sim3[, 3])/n3)||
(sum(sim3[, 4])/n3)||(sum(sim3[, 5])/n3);

mul = j(nl,1,1)@mul
mu2 = j(n2,1,1)@mu2_;
mu3 = j(n3,1,1)@mu3_;

sigmal = (siml — mul)* * (siml —mul)/(nl — 1);

sigma2 = (sim2 — mu2)* * (sim2 — mu2)/(n2 — 1);

sigma3 = (sim3 — mu3)‘ * (sim3 —mu3)/(n3 —1);

nul =nl —1;nu2 =n2 —1;nu3 =n3—1; p = nrow(sigmal); k =3

sigma_pool = ((nul * sigmal) + (nu2 * sigma2) + (nu3 = sigma3))/
(nl +n2 +n3 -3);
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m = (((det(sigmal) /det(sigma_pool)) x x(nul/2)) x ((det(sigma2)/
det(sigma_pool)) x x(nu2/2)) * ((det(sigma3)/
det(sigma_pool)) * x(nu3/2)));

df =05k -1 *p=*(p+1));

f1=(1/nul) + (1/nu2) + (1/nu3)) — (1/(nul + nu2 + nu3));

f2=(2*xp*xp)+Bxp)—1/(6*x(p+1) = (k—1)):

cl = f1x f2;

u=-2x(-—cl)xlog(m);

pval = 1 — probchi(u, df);

create est&t from pval [colname = {' p'}];
append from pval,

run;

quit,

Yoend,

Y%omend test;

Potest;

data out_null,;
set Yocat, i = _n_;
run;

data null_;

set out_-null end = last,

if p <0.05then cl + 1;

if last then do; put cl; end,

runm;

To test the power of Box’s M statistic, we first generated data sets popl, pop2,
and pop3 in the same way as in the aforementioned case, except that the following
covariance matrices were used, respectively:
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1 05 04 03 02 1 07 04 03 02

05 1 05 04 03 07 1 05 04 03
;=04 05 1 05 04],X,=|04 05 1 05 04
03 04 05 1 05 03 04 05 1 05

02 03 04 05 1 02 03 04 05 1

1 05 04 03 09

05 1 05 04 03
andX3=[04 05 1 05 04
03 04 05 1 05

09 03 04 05 1

The mean vectors were kept the same in the null case. The power achieved for
different combinations of sample sizes is given in Table 3.2 below:

Table 3.2 Power under the
alternative

nl  n2 n3 Box’s M Power

10 15 20 0.962
20 30 40 1.000

Table 3.2 demonstrates that even for relatively small sample sizes, Box’s M is

quite powerful. The SAS ™ code that generated Table 3.2 is the same as that which
generated Table 3.1, except that the multinormal observations used are from the
three aforementioned distributions with three different covariance matrices.

3.1.1 Example: Wisconsin Nursing Home Study

Johnson and Wichern (2002) present summary statistics of a study of nursing homes
in Wisconsin. A purpose of this study was to examine the effects of ownership or
certification (or both) on four types of costs: X; = cost of nursing labor, X, =
cost of dietary labor, X3 = cost of plant operation and maintenance labor, and
X4 = cost of housekeeping and laundry labor. The total sample size was 516
and the sample was divided into three groups based on type of ownership: private,
nonprofit, or government. The sample sizes of these three groups were nl = 271,
n2 = 138, and n3 = 107, respectively. The three sample covariance matrices were
the following:
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0291 —0.001 0.002 0.010 0.561 0.011 0.001 0.037
s - —0.001 0.011 0.000 0.003 5 = 0.011 0.025 0.004 0.007
"7 0002 0000 0001 0000 > |0001 0004 0.005 0.002

0.010  0.003 0.000 0.010 0.037 0.007 0.002 0.019

0.261 0.030 0.003 0.018
0.030 0.017 —0.000 0.006
0.003 —0.000 0.004 0.001
0.018 0.006  0.001 0.013

and X3 =

Box’s M test for the above summary statistics is performed using the following
code:

proc iml;

nl = 271;
n2 = 138;
n3 = 107;

sigmal = {0.291 —0.001 0.002 0.010,
—0.001 0.011 0.000 0.003,
0.002 0.000 0.001 0.000,
0.010 0.003 0.000 0.010};
sigma2 = {0.561 0.011 0.001 0.037,
0.011 0.025 0.004 0.007,
0.001 0.004 0.005 0.002,
0.037 0.007 0.002 0.019};
sigma3 = {0.261 0.030 0.003 0.018,
0.0300.017 —0.000 0.006,
0.003 —0.000 0.004 0.001,
0.018 0.006 0.001 0.013};

nul =nl — 1;nu2 =n2 — 1;nu3 =n3 —1; p = nrow(sigmal); k = 3;
sigma_pool = ((nul * sigmal) + (nu2 *x sigma2) + (nu3 = sigma3))/
(nl +n2+n3—k);

m = (((det(sigmal) /det(sigma_pool)) x *(nul/2)) x ((det(sigma2)/
det(sigma_pool)) x x(nu2/2)) * ((det(sigma3)/
det(sigma_pool)) x x(nu3/2)));

df =05 (k—1) % px(p+1));

f1=(1/nul) + (1/nu2) + (1/nu3)) — (1/(nul + nu2 + nu3));

f2=(2*xp*xp)+Bxp)—1/(6*x(p+1)=(k—1)):

cl = f1x f2;

u=-2x(-—cl)xlog(m);

pval = 1 — probchi(u, df);
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print pval,
rum;
quit,

The above code returns a p-value of 0, thus strongly rejecting homoscedasticity.

3.2 The Randomly-Incomplete-Data Case

Here we can try what we did in Sect.2.2. Namely, we can create five copies
of imputed data sets, perform Box’s M test for each copy and then subject the
5 p-values to a multiple-testing procedure. However, the author’s simulations show
that this approach fails here. Box’s M performed on imputed data sets returns highly
inflated Type I errors. Thus, we have to try something else. Let ¥ and p denote the
unknown covariance and correlation matrices of a multivariate normal distribution.
Letoyy,...,0,, be the variances of the p component variables. Let

D = diag(y/011, V022, ..., /Opp)-
Then it follows that (see Rencher 2002)

p=D"'ED !and T = DpD.

From the above two relations between X and p, it follows that two covariance
matrices are equal if and only if the corresponding diagonal elements of X
(individual variances) are equal and the corresponding off-diagonal elements of p
(the correlations) are equal. This fact allows us to take a multiple-testing approach
described shortly below. To investigate the Type I error, we consider three five-
variate normal distributions with the common covariance matrix below:

1 0.4 05 0.8 0.7
04 2 04 05 038
05 04 3 04 05
08 05 04 4 04
0.7 0.8 05 04 5

and mean vectors {12345}, {—1 -2 —3 —4 —5},and {0 0 0 0 0}. Next, we simulate
missing values in the data sets. In the data with mean {1 2 3 4 5} the fifth component
was set to missing with probability 0.1 and the fourth and fifth components were
set to missing with probability 0.2. All components are observed with probability
0.7. In the data with mean {—1 — 2 — 3 — 4 — 5}, all components are observed
with probability 0.75. The fifth component is set to missing with probability 0.1
and the fourth and fifth components are set to missing with probability 0.15. In the
data with mean vector {0 0 0 0 0}, all components were observed with probability
0.8. The fifth component was set to missing with probability 0.1, and the fourth
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and fifth components were set to missing with probability 0.1. If (X, X5, X3)
is a triple of data sets generated from the aforementioned three distributions,
then we generate m copies of imputed triples (X1, X2, X13), (X1, X22, X23),
(X31, X32, X33), (X41, X42, X43), ey (Xmly sz, Xm3). For each of the m triples,
we perform a test of equality of covariance matrices as follows. Note that since
we are testing equality of 3 covariance matrices, we are making p(p + 1) =
30 comparisons (comparing X; to X, and then comparing X; to X3). Of the
p(p + 1) comparisons, 10 are comparisons of component variances, and the rest
are comparisons between corresponding correlations between components. To test
equality of variances we use the well-known F test. To test equality of correlations
between two corresponding components, we use the well-known Fisher’s test.
For each triple (X;1,X;2,X;3), i = 1,...,m, we apply the FDR algorithm of
Benjamini and Hochberg to the resulting 30 p-values. We reach a decision to
either reject (R; = 1) or do not reject the null (R; = 0). Then we compute
R=(R +R+R;+ R+ ...+ Ry)/m.If R > 0.95, then we reject the
overall null hypothesis of equality of covariance matrices. Else, we do not reject.

Table 3.3 Type I error rates

; . Sample sizes Number of imputations
under the null using Bayesian — —
imputations and the FDR nl_n2 n3 m=> m=10
method 20 25 30 0.085 0.048

40 50 60  0.069 0.037
50 75 100 0.053 0.048

Table 3.3 demonstrates that for smaller sample sizes, five imputations yield
somewhat anti-conservative Type I error rates, but as the sample sizes increase, five
imputations yield error rates that are not significantly different from the nominal
level of 0.05. The table also illustrates that ten imputations yield error rates that are

close to 0.05 even for smaller sample sizes. The SAS™ code that generated the
above table is as follows:

Yomacro null,

%dot =1 %to 1000;

ods listing close;

proc iml;

index1 = %sysevalf(((&t — 1) x 20) + 1) : %sysevalf(&t * 20);
use popl;

read point index1 var{x1 x2 x3 x4 x5 r} into siml;

index2 = %sysevalf(((&t — 1) x 25) + 1) : %sysevalf(&t * 25);
use pop2;

read point index2 var {x1 x2 x3 x4 x5 r} into sim2;

index3 = Psysevalf(((&t — 1) % 30) + 1) : %sysevalf(&t * 30);
use pop3;
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read point index3 var {x1 x2 x3 x4 x5 r} into sim3;

create x1 from siml [colname = {'x1" 'x2' 'x3" 'x4' x5 'r'}];
append from siml;

create x2 from sim2 [colname = {'x1" 'x2' 'x3" x4’ 'x5'"'r'}];
append from sim2;

create x3 from sim3 [colname = {'x1" 'x2' 'x3" 'x4' 'x5'"'r'}];
append from sim3;

runm;

quit,

proc mi data = x1 out = bl nimpute = 5;
var x1 x2 x3 x4 x5;
run;

proc mi data = x2 out = b2 nimpute = 5;
var x1 x2 x3 x4 x5;
run;

proc mi data = x3 out = b3 nimpute = 5;
var x1 x2 x3 x4 x5;
run;

Y%do j =1 %to 5;
proc iml;

index1 = %sysevalf((&j — 1) x 20) + 1) : Yosysevalf(&] = 20);
use bl;

read point index1 var {x1 x2 x3 x4 x5 r} into imp1;

index2 = %sysevalf((&j — 1) x 25) + 1) : Yosysevalf(&] = 25);
use b2;

read point index2 var {x1 x2 x3 x4 x5 r} into imp2;

index3 = Psysevalf(((&j — 1) % 30) + 1) : %sysevalf(&j * 30);
use b3;

read point index3 var {x1 x2 x3 x4 x5 r} into imp3;

nl = nrow(impl);n2 = nrow(imp2); ;n3 = nrow(imp3);

mul_ = (sum(impl[, 1])/nD)||(sum(imp1[, 2])/nl)||(sum(imp1[, 3])/nl)||
(sum(imp1[, 4])/n1)||(sum(imp1[, 5])/nl);

mu2_ = (sum(imp2[, 1])/n2)||(sum(imp2|, 2])/ n2)||(sum(imp2][, 3])/n2)||
(sum(imp?2[, 4])/n2)||(sum(imp2[, 5])/n2);

mu3_ = (sum(imp3[, 1])/n3)||(sum(imp3], 2])/ n3)||(sum(imp3[, 3])/n3)||
(sum(imp3[, 4])/n3)||(sum(imp3][, 5])/n3);

mul = j(nl,1,1)@mul _;

mu2 = j(n2,1,1)@mu2_;
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mu3 = j(n3,1,1)@mu3_;

sigmal = (imp1[,1 : 5] — mul)‘ % (imp1[, 1 : 5] — mul)/nl;

d1 = diag(sqrt(sigmal[l, 1])/ /sqrt(sigmal|2,2])//sqrt(sigmal[3,3])//
sqrt(sigmall4,4])//sqrt(sigmall5, 5]));

corrl = inv(d1) * sigmal * inv(d1);

sigma2 = (imp2[, 1 : 5] — mu2)‘ % (imp2[, 1 : 5] — mu2)/n2;

d2 = diag(sqrt(sigma2[l, 1))/ /sqrt(sigma2[2,2])/ /sqrt(sigma2[3,3])//
sqrt(sigma2[4,4])/ /sqrt(sigma2[5, 5]));

corr2 = inv(d?2) x sigma?2 * inv(d?2);

sigma3 = (imp3[, 1 : 5] — mu3)‘ * (imp3[, 1 : 5] — mu3)/n3;

d3 = diag(sqrt(sigma3[1, 1))/ /sqrt(sigma3[2, 2])/ /sqrt(sigma3[3, 3])//
sqrt(sigma3[4,4])//sqrt(sigma3|(5, 5]));

corr3 = inv(d 3) * sigma3 * inv(d 3);

p = j(30,1,0);

f = sigmal[l, 1]/sigma2[1, 1];

P 1] = 1 — probf( funl — 1,02 —1);

trl = 0.5 % log((1 + corrl[2,1])/(1 — corrl[2, 1]));

tr2 = 0.5 x log((1 + corr2[2,1])/(1 — corr2[2, 1]));

7= (trl — tr2)/sqre((1/(n1 = 3)) + (1/(n2 — 3)));

p[2,1] = 2 % (1 — probnorm(abs(z)));

trl = 0.5 % log((1 + corrl[3,1])/(1 — corrl[3, 1]));

tr2 = 0.5 x log((1 + corr2[3,1]) /(1 — corr2[3, 1]));

7= (trl — tr2)/sqre((1/(n1 = 3)) + (1/(n2 — 3)));

p[3.1] = 2 * (1 — probnorm(abs(2)));

trl = 0.5 % log((1 + corrl[4,1])/(1 — corrl[4,1]));

tr2 = 0.5 x log((1 + corr2[4,1])/(1 — corr2[4, 1]));

7= (trl — tr2)/sqre((1/(n1 = 3)) + (1/(n2 — 3)));

pl4,1] = 2 % (1 — probnorm(abs(z)));

trl = 0.5 % log((1 + corrl[5,1])/(1 — corrl[5, 1]));

tr2 = 0.5 x log((1 + corr2[5,1]) /(1 — corr2[5, 1]));

7= (trl — r2)/sqre((1/(n1 = 3)) + (1/(n2 — 3)));

pl5.1] = 2 * (1 — probnorm(abs(2)));

f = sigmal|2,2]/sigma2[2,2];

pl6.1] = 1 — probf( finl — 1,n2 — 1);

trl = 0.5 % log((1 + corrl[3,2])/(1 — corrl[3,2]));

tr2 = 0.5 x log((1 + corr2[3,2])/(1 — corr2[3,2]));

7= (trl — tr2)/sqre((1/(n1 — 3)) + (1/(n2 — 3)));

pl7,1] = 2 % (1 — probnorm(abs(z)));

trl = 0.5 % log((1 + corrl[4,2])/(1 — corrl[4,2]));

tr2 = 0.5 x log((1 + corr2[4,2])/(1 — corr2[4,2]));

7= (trl — tr2)/sqre((1/(n1 — 3)) + (1/(n2 — 3)));

p[8.,1] = 2 * (1 — probnorm(abs(z)));

trl = 0.5 % log((1 + corrl[5,2])/(1 — corrl[5,2]));

tr2 = 0.5 x log((1 + corr2[5,2])/(1 — corr2[5,2]));

7= (trl — tr2)/sqre((1/(n1 = 3)) + (1/(n2 — 3)));
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p[9,1] = 2 * (1 — probnorm(abs(2)));

f = sigmal][3, 3]/sigma2[3, 3];

P[10,1] = 1 — probf( fnl — 1,02 — 1);

trl = 0.5 % log((1 + corrl[4,3])/(1 — corrl[4,3]));
tr2 = 0.5 % log((1 + corr2[4,3])/(1 — corr2[4,3]));
7= (trl — tr2)/sqre((1/(n1 = 3)) + (1/(n2 — 3)));
pl11,1] = 2 % (1 — probnorm(abs(z)));

trl = 0.5 % log((1 + corrl[5,3])/(1 — corrl[5, 3]));
tr2 = 0.5 x log((1 + corr2[5,3])/(1 — corr2[5, 3]));
7= (trl — tr2)/sqre((1/(n1 = 3)) + (1/(n2 — 3)));
pl12,1] = 2 % (1 — probnorm(abs(z)));

f = sigmall4,4]/sigma2[4, 4],

P[13.1] = 1 — probf( fnl — 1,02 — 1);

trl = 0.5 % log((1 + corrl[5,4])/(1 — corrl[5,4]));
tr2 = 0.5 x log((1 + corr2[5,4])/(1 — corr2[5,4]));
7= (trl — tr2)/sqre((1/(n1 = 3)) + (1/(n2 — 3)));
p[14,1] = 2 % (1 — probnorm(abs(z)));

f = sigmal][5, 5]/sigma2[5, 5];

P[15.1] = 1 — probf( fnl — 1,02 — 1);

ok K K Kk ok ok ok ok K K R R R K Rk ok ok ok ok ok ok ok ok ok ok ok K K K K R R R K Kk ok koK
f = sigmal[l, 1]/sigma3[1, 1];

p[16,1] = 1 — probf( funl — 1,n3 — 1);

trl = 0.5 % log((1 + corrl[2,1])/(1 — corrl[2, 1]));
tr2 = 0.5 % log((1 + corr3[2,1])/(1 — corr3[2, 1]));
7= (trl — tr2)/sqre((1/(n1 = 3)) + (1/(n3 — 3)));
p[17,1] = 2 x (1 — probnorm(abs(z)));

trl = 0.5 % log((1 + corrl[3,1])/(1 — corrl[3, 1]));
tr2 = 0.5 % log((1 + corr3[3,1]) /(1 — corr3[3, 1]));
7= (trl — tr2)/sqre((1/(n1 = 3)) + (1/(n3 — 3)));
p[18,1] = 2 % (1 — probnorm(abs(z)));

trl = 0.5 % log((1 + corrl[4,1])/(1 — corrl[4,1]));
tr2 = 0.5 x log((1 + corr3[4,1])/(1 — corr3[4, 1]));
7= (trl — tr2)/sqre((1/(n1 = 3)) + (1/(n3 — 3)));
p[19,1] = 2 % (1 — probnorm(abs(z)));

trl = 0.5 % log((1 + corrl[5,1])/(1 — corrl[5, 1]));
tr2 = 0.5 x log((1 + corr3[5,1]) /(1 — corr3[5, 1]));
7= (trl — tr2)/sqre((1/(n1 = 3)) + (1/(n3 — 3)));
p[20,1] = 2 % (1 — probnorm(abs(z)));

f = sigmal|2,2]/sigma3[2,2];

P21,1] = 1 — probf( fnl — 1,03 — 1);

trl = 0.5 % log((1 + corrl[3,2])/(1 — corrl[3,2]));
tr2 = 0.5 x log((1 + corr3[3,2])/(1 — corr3[3,2]));
7= (trl — r2)/sqre((1/(n1 = 3)) + (1/(n3 — 3)));
p[22,1] = 2 % (1 — probnorm(abs(z)));

trl = 0.5 % log((1 + corrl[4,2])/(1 — corrl[4,2]));
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tr2 = 0.5 % log((1 + corr3[4,2])/(1 — corr3[4,2]));
7= (trl — r2)/sqre((1/(n1 = 3)) + (1/(n3 — 3)));
p[23,1] = 2 % (1 — probnorm(abs(z)));

trl = 0.5 % log((1 + corrl[5,2])/(1 — corrl[5,2]));
tr2 = 0.5 % log((1 + corr3[5,2])/(1 — corr3[5,2]));
7= (trl — tr2)/sqre((1/(n1 = 3)) + (1/(n3 — 3)));
p[24,1] = 2 % (1 — probnorm(abs(z)));

f = sigmal][3,3]/sigma3[3, 3];

pl25.1] = 1 —probf(finl — 1,n3 — 1);

trl = 0.5 % log((1 + corrl[4,3])/(1 — corrl[4,3]));
tr2 = 0.5 % log((1 + corr3[4,3])/(1 — corr3[4,3]));
7= (trl — r2)/sqre((1/(n1 — 3)) + (1/(n3 — 3)));
p[26,1] = 2 % (1 — probnorm(abs(z)));

trl = 0.5 % log((1 + corrl[5,3])/(1 — corrl[5, 3]));
tr2 = 0.5 x log((1 + corr3[5,3])/(1 — corr3[5, 3]));
7= (trl — r2)/sqre((1/(n1 = 3)) + (1/(n3 — 3)));
p[27,1] = 2 * (1 — probnorm(abs(2)));

f = sigmal[4,4]/sigma3[4,4];

p[28,1] = 1 —probf(finl —1,n3 —1);

trl = 0.5 % log((1 + corrl[5,4])/(1 — corrl[5,4]));
tr2 = 0.5 x log((1 + corr3[5,4])/(1 — corr3[5,4]));
7= (trl — tr2)/sqre((1/(n1 = 3)) + (1/(n3 — 3)));
p[29,1] = 2 % (1 — probnorm(abs(z)));

f = sigmal][5, 5]/sigma3[5, 5];

p[30,1] = 1 —probf( finl —1,n3 — 1);

create p from p [colname = {' p'}];

append from p;

run;

quit,

proc sort data = p;

by p:

run;

proc iml;

use p;

read all var {p} into p;

n = nrow(p);

imaxl = 0;

doi =1ton;

if pli, 1] <= ((i/30) * 0.05) then imax1 = i;

end,

if imax1 = O then reject& j = 0; else reject&j = 1;
create r&j from reject& j [colname = {'r'}];
append from reject& j ;

run;

quit,

27
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Poend;

proc iml,

userl;

read all var {r} into r1;

use r2;

read all var {r} into r2;

use r3;

read all var {r} into r3;
use r4;

read all var {r} into r4;
users;

read all var {r} into r5;
reject = rl||r2||r3||r4||r5;
create est&t fromreject [colname = {'r1' 'r2' 'r3 'rd 'r5'}];
append from reject;

rum;

quit,

Yoend;

Y%omend null;
Jonull;

Jomacro cat;

%doi =1 %to 1000;

est&i

Yoend,

Yomend cat,

data out _nul l;

set %cat;

i =_n

runm;

data _null_;

set out_null end = last;
fa=@l+r24+r34+rd+r5)/5;
if fa > 0.95then f + 1;
iflast then do; put f;end,;

runm;

To investigate the power of the above method, we generated observations from
three multivariate normal distributions with the following three distinct matrices:
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1 04 05 08 0.7 1 04 05 08 1.7
04 2 04 05 038 04 2 04 05 038
¥ =]05 04 3 04 05],%,=]05 04 3 04 05],
08 05 04 4 04 08 05 04 4 04
07 08 05 04 5 1.7 0.8 05 04 5

1 04 05 08 0.7
04 2 04 05 28
and X3=[05 04 3 04 05
08 05 04 4 04
07 28 05 04 5

The respective mean vectors were {1 23 4 5}, {—1 -2 =3 —4 —5},and {0 0 0
0 0}. The power achieved for different sample sizes using Bayesian imputations is
given in Table 3.4 below:

Table 3.4 Power using

Bayesian imputations and the
FDR method nl n2 n3 m=5 m=10

20 25 30 0.622 0.548
40 50 60 0.965 0.954
50 75 100 0.999 0.989

Number of imputations

The above table demonstrates that while using ten imputations is less powerful
than using five imputations, the difference in power decreases as the sample sizes
increase. This suggests the following recommendation: If sample sizes are relatively
small, then it is better to use a number of imputations larger than 5, say 10, as this
will lessen the inflation in the Type I error rate; however, if the sample sizes are
relatively large, then five imputations should suffice as this will protect the Type I
error rate and will also yield good power. The code that generated Table 3.4 is the
same as that which generated Table 3.3, except that the multivariate observations
used are from the above 3 alternative distributions.



Chapter 4
On Heteroscedastic MANOVA

Abstract In this chapter, we introduce three fiducial approaches to heteroscedastic
ANOVA and MANOVA. The first approach is that of Li et al. (2011) which was
proposed for ANOVA but can be easily generalized to MANOVA. The second
approach is that implicit in Behrens (Landw. Jb. 68, 807-837, 1929) paper. The
third approach is that implicit in Fisher (Ann. Eugen. 6, 391-398, 1935) paper. As
a motivation, we begin with the two-sample ANOVA problem to which all the three
approaches are applied. As a further motivation, the k-sample ANOVA problem is
presented where k > 2. Finally, we present the heteroscedastic MANOVA problem
to which all the three approaches are applied. For the k-sample ANOVA problem,
k > 2, and for the heteroscedastic MANOVA problem, we use the FDR algorithm.
Type I errors and power for each method are also presented. Finally, two examples
are also presented.

Keywords ANOVA e« Behrens—Fisher problem e False discovery rate ¢ Hetero-
scedasticity ®* MANOVA e« Power * Type I errors

Suppose a data analyst wants to test for equality of multivariate mean vectors
when there is statistical evidence to believe that the underlying covariance matrices
are not equal, but that there is evidence that the distributions generating the data
are multivariate normal. This is the multivariate Behrens—Fisher problem. There
is considerable literature on this problem, but we focus only on three fiducial
approaches. The first one was hinted by Welch in his 1929 paper. The second one
was suggested by Fisher in his 1935 paper. To the best of the author’s knowledge,
there is no literature on a fiducial approach to the multivariate Behrens—Fisher
problem. However, in the univariate case (i.e., ANOVA), there is the fiducial
approach proposed by Li et al. (2011). This approach can be extended to the
multivariate version as we shall see a little later, and this will be our third approach.
We present the univariate case below because that will serve as motivation for the
multivariate approach.

T. Desai, A Multiple-Testing Approach to the Multivariate Behrens-Fisher Problem: 31
with Simulations and Examples in SAS®, SpringerBriefs in Statistics,
DOI 10.1007/978-1-4614-6443-3_4, © The Author 2013
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4.1 Motivation: k-Sample ANOVA, k = 2

Before we describe the univariate approach of Li et al. and that which were
suggested by Welch and Fisher, we establish some notation. Suppose there are k
samples indexed by i, i = 1,...,k. Let n; be the sample size, X; be the sample
mean, and 51'2 be the unbiased version of the sample variance, i = 1,...,k. The
approach of Li et al. is as follows:

k k 2 k
(a) Compute Ry = Z nf - (Z %) / (Z ’Z_Z)

i=1 i=1 i=1

(b) For some predecided M, perform the following operationsfor j = 1,..., M:

—- Fori = 1,...,k, generate t; from Student’s ¢ distribution with n; — 1

degrees of freedom.
2

k k k
—- Compute R; = thz - (Z @) /(Z z_i)
i=1 i=1 i=1

— IfR; > Rp,then W; = l;else W; = 0.

M
— Letp =) W; /M.
j=1

Then 7 is a simulated value of the p-value of the above test. This simulation of
p-values lie at the heart of fiducial approaches to ANOVA and MANOVA. We will
refer to the method of Li et al. as method A. Next, we present the approach suggested
by Welch for the two-sample case (it can be extended to the multisample case as
we shall see later). Suppose we have two independent samples of data from two
unknown but normal distributions. Suppose the unknown means are p; and [,.
Then it is a known fact that

M — X M2 —X>

T, = “ty—1and T, = - ly—1
51/\/”1 : 52/\/”2 :
Now let
W = = 2 = (1 = X2) and tan(0) = S/
i 4 ﬁ sZ/V”Z
ni ny

It then follows that

W = T sin(0) — T, cos(0)
Note that under the null hypothesis of no difference in means, it follows that
_ - %))

2 2
Sy 5
ni na

W2
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Method B is as follows:

(a) Let 8 = )tan_l (%)‘ . Let ¢ = 0. For some predecided, suitably large M,

perform the following operations for j =1,..., M.

(b) Generate ¢; and #, randomly from Student’s t distribution with n; — 1 degrees of
freedom, i = 1, 2, respectively.

(c) Compute

sz = (T} sin(f) — T» cos(0))>.

Iij2 > W2thenc =c¢ + 1.
(d) Atthe end of M iterations as described above, the simulated p-value is ¢/ M.

Method C is conceptually even simpler. Note that

(X1 — X2) (t o ) (t %2 )
1= M2 = 1 —AX2) = m—=17",—=1] = | tno—1— —
/“L I"L 1 \/n_l 2 \/n—z

Let

D =y — po — (X1 —%2)

Under the null hypothesis of no difference in means, it follows that

D? = (X1 — %)’

is the observed value of the D? statistic under the null of no difference in means.
Then method C proceeds as follows:

(a) Let ¢ = 0. For some predecided, suitably large M, perform the following
operations for j = 1,..., M.

(b) Generate ¢; and #, randomly from Student’s t distribution with n; — 1 degrees of
freedom, i = 1, 2, respectively.

(c) Compute
2
2 _ SN (52
2= ((v )~ (7))

If D? > D% thenc =c¢ + 1.
(d) At the end of M iterations, the simulated p-value is ¢/ M.

Table 4.1 below presents the Type I error rates under the null. The two samples used
in each simulation were generated from N (0, 1) and N(0, 2).

Table 4.1 exhibits a quaint property: when the two samples are equal, the Type
I error reported is 0.000 for all the three methods. When there is imbalance in the
sample sizes, the reported Type I error is close to the nominal level of 0.05.
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Table 4.1 Type I error rates
for the above three methods:
two-sample complete-data
case

The SAS® program that generated Table 4.1 is as follows:

data one;

doi = 1to 1000000;

x =04 (sqrt(1) * normal(i));
output;

end;

run;

data two;

doi = 1to 1000000;

x =04 (sqrt(2) * normal(i));
output;

end;

run;

YPomacro test;

%dot =1 %to 1000;

ods listing close;

prociml;

indexl = %syseval f (((&t — 1) * 60) + 1)
use one;

read point indexl var {x}into x1;
create x1 from x1 [colname = {'x'}];
append from x1;

index2 = %syseval f(((&t — 1) * 50) + 1)
use two;,

read point index2var {x}into x2;
create x2 from x2 [colname = {'x'}];
append from x2;

run;

quit;

proc iml;

4 On Heteroscedastic MANOVA

Sample size Method

n ny A B C

5 10 0.029 0.038  0.036
10 10 0.000  0.000  0.000
10 15 0.028 0.033  0.033
20 30 0.033 0.040 0.043
40 60 0.032 0.043 0.044
100 100 0.000  0.000  0.000
160 240  0.033  0.037 0.037
320 480  0.031  0.039  0.040
500 500  0.000  0.000  0.000
640 960  0.040  0.046  0.046
1000 1000  0.000  0.000  0.000

: %osyseval f (&t * 60);

: YDsyseval (&t * 50);
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use x1;

read all var {x} into x1;
nl = nrow(x1);

use x2;

read all var {x} into x2;
n2 = nrow(x2);

mul_ = (sum(x1[, 1])/nl);
mu2_ = (sum(x2[, 1])/n2);

mul = j(nl,1,1)@mul
mu2 = j(n2,1,1)@mu2_;
sigmal = (x1 —mul)‘ % (x1 —mul)/(nl —1);
sigma2 = (x2 —mu)* * (x2 —mu2)/(n2 —1);

diff- = ((mul[l, 1] — mu2[1, 1]) * x2);

r_= ((nl % (mul[l,1] % x2)/sigmal[l,1]) + (n2 * (mu2[1, 1] % x2)/
sigma?2[l,1]))

—((((nl * mul[1,1]/sigmal[l,1]) + (n2 * mu2[1, 1]/sigma2[l, 1])) * %2)

/((nl/sigmal[l,1]) + (n2/sigma2[l, 1])));

bf_= (((mul[l, 1] — mu2[1,1]) * x2)/((sigmal[l, 1]/nl)

+(sigma?2[l,1]/n2)));
cl =0;¢2=0;¢c3 =0;
do j = 1t0 1000;

tl = tinv(ranuni(7 = j),nl —1);

t2 = tinv(ranuni(10 * j),n2 —1);

dif f = (((sqrt(sigmal[l,1]/nl) xt1) — (sqrt(sigma?2[l,1]/n2) x t2)) x *2);
ifdiff >diff_thencl =cl+1;

tl = tinv(ranuni(10 % j),nl —1);

t2 =tinv(ranuni(11 * j),n2 —1);

r=((t1 % %2) 4+ (2 * x2))

—((((sqrt(nl/sigmal[l,1]) = t1) + (sqrt(n2/sigma?2[1, 1]) * t2)) % *2)
/((nl/sigmal(l,1]) + (n2/sigma2[l, 1])));

if r>=r_thenc2=c2+1;

tl = tinv(ranuni(7 = j),nl —1);

t2 = tinv(ranuni(10 * j),n2 —1);

theta = abs(atan(sqrt(sigmal[l, 1] x n2/(sigma2[l, 1] * nl))));
bf = (((t1 xsin(theta)) — (12 % cos(theta))) * %2);

ifbf >bf _thenc3 =c3+1;

end;

pl = ¢1/1000; p2 = ¢2/1000; p3 = ¢3/1000;

est = pl||p2||p3;

create est&t from est [colname = {' pl’’' p2' ' p3'}];

append from est;

run;

quit;
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%end ;

%mend test;

Potest;

Jomacro cat;

%doi = 1 %to 1000;
est&i

%end ;

%mend cat;

data concat;

set %cat;

i = _n

run;

data null_;

set concat end = last;
if p2<0.05thencl+1;
if p3<0.05then c2+1;
if pl <0.05then c3+1;
if last then

do;

put cl c2 c3;

end;

run;

4 On Heteroscedastic MANOVA

To investigate power, two samples were generated from N (0, 1) and N(1,2).
Power of the three procedures is illustrated in Table 4.2 below:

Table 4.2 Power under the
alternative: two-sample
complete-data case

Sample size Method

ni nyp A B C

5 10 0.201 0.232 0.228
10 15 0.432 0.479 0.488
15 20 0.594 0.640 0.641
50 40 0.945 0.956 0.953
60 50 0.984 0.990 0.988

Table 4.2 suggests that methods B and C may be more powerful than method A,
at least as far as two-sample comparisons are concerned. Also, in most cases,
method C is only slightly less powerful than method B. The code that generated
the above table is similar to the one that generated Table 4.1 except that we replace

the second data step with:

data two;
doi =1 to 1000000;

x =14 (sqrt(2) * normal(i));

output;
end;
run;
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4.2 Further Motivation: k-Sample ANOVA, k > 2
4.2.1 The Complete-Data Case

Consider the k univariate normal means: u, ..., ur. We want to test the following
hypothesis:

Hy:pr=...=

Method A is applicable to an arbitrary number of univariate samples, and so it
doesn’t require any modification. To use methods B or C, we conduct the (g) distinct

pairwise tests using methods B or C. This will yield us (g) p-values which we then
subject to the FDR algorithm. The FDR algorithm will in turn give us a decision as
to whether to reject or do not reject the null hypothesis above.

Suppose we generate observations from N (0, 1), N(0, 1.5), N(0,2), N(0,2.5),
and N(0, 3). Then the Type I errors corresponding to various sample size combina-
tions are given in Table 4.3 below:

Table 4.3 Type I errors in
the five-sample complete-data
case

Sample sizes Method

ni n, ns ng ns A B C

10 20 30 40 50 0.052 0.051 0.056
50 10 20 30 40 0.051 0.050 0.052
40 50 10 20 30 0.053 0.060 0.043
30 40 50 10 20 0.051 0.053 0.049
20 30 40 50 10 0.058 0.058 0.062
30 10 40 20 50 0.042 0.051 0.059

®

The SAS ™ code that generated the above table is as follows:

data one;

doi =1 to 1000000;

x =0+ (sqrt(l) * normal(i));
output;

end;

run;

data two;

doi =1 to 1000000;

x =0+ (sqrt(1.5) x normal(i));
output;

end;

run;

data three;

doi =1 to 1000000;
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x =0+ (sqrt(2) * normal(i));
output;

end;

run;

data four;

doi = 1to 1000000;

x =0+ (sqrt(2.5) * normal(i));
output;

end;

run;

data five;

doi = 1to 1000000;

x =0+ (sqrt(3) * normal(i));
output;

end;

run;

Yomacro test;

Y%dot =1 %to 1000;

ods listing close;

prociml;

indexl = %syseval f(((&t — 1) x20) + 1) :

use one;

read point indexl var {x}into x1;
create x1 from x1 [colname = {'x'}];
append from xl;

index2 = %syseval f(((&t —1) *50) + 1) :

use two;,

read point index2 var {x}into x2;
create x2 from x2 [colname = {'x'}];
append from x2;

index3 = %syseval f(((&t —1) x40) + 1) :

use three;

read point index3 var {x}into x3;
create x3 from x3 [colname = {'x'}];
append from x3;

index4 = %syseval f(((&t —1) *30) + 1) :

use four;

read point index4d var {x}into x4,
create x4 from x4 [colname = {'x'}];
append from x4,

index5 = %syseval f(((&t —1) * 10) + 1) :

use five;

read point index5var {x}into x5;
create x5 from x5 [colname = {'x'}];
append from x5;

4 On Heteroscedastic MANOVA

%syseval f(&t * 20);

%syseval f (&t * 50);

%syseval f (&t * 40);

%syseval f (&t * 30);

%syseval f(&t * 10);
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run;

quit;

prociml;

use x1;

read all var {x} into x1;
nl = nrow(xl);

use x2;

read all var {x} into x2;
n2 = nrow(x2);

use x3;

read all var {x} into x3;
n3 = nrow(x3);

use x4;

read all var {x} into x4;
n4 = nrow(x4);

use x5;

read all var {x} into x5;
n5 = nrow(x5);

mul_ = (sum(x1[, 1])/nl);
mu2_ = (sum(x2[, 1])/n2);
mu3_ = (sum(x3[, 1])/n3);
mud_ = (sum(x4[, 1])/n4);
mu5_ = (sum(x5[, 1])/n5);

mul = j(nl,1,1)@mul
mu2 = j(n2,1,1)@mu2_;
mu3 = j(n3,1,1)@mu3_;
mud = j(nd,1,1)@mud_;
mu5 = j(n5,1,1)@mu5_;
sigmal = (x1 —mul)‘ % (x1 —mul)/(nl —1);
sigma2 = (x2 —mu) * (x2 —mu2)/(n2 —1);
sigma3 = (x3 —mu3)‘ * (x3 —mu3)/(n3 —1);
sigmad = (x4 — mud)* * (x4 —mud)/(n4 —1);
sigma5 = (x5 — mu5)‘ * (x5 —mu5)/(n5—1);

diffl_ = (mul_— mu2_) % x2;
diff2_ = (mul_— mu3_) % x2;
diff3_ = (mul_— mud)) *x x2;
diffd_ = (mul_— mu5_) * x2;
diff5- = (mu2_— mu3_) % x2;
diffo_ = (mu2_— mud)) * x2;
diff1- = (mu2_— mu5_) * x2;
diff8_ = (mu3_— mud_) *x x2;
diff9_ = (mu3_— mu5_) * x2;
diffl10_ = (mud_ — mu5_) x *%2;
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ro= ((nl * (mul[l,1] % x2)/sigmal[l,1]) + (n2 * (mu2[1, 1] % x2)/
sigma2[l,1]) + (n3 * (mu3[1, 1] * %x2)/si gma3[1, 1])
+(nd x (mud[l, 1] x %2)/sigma4[1,1]) + (n5 * (mu5[1, 1] * x2)/
sigma5[1,1]))

—((((n1 * mul[1,1]/sigmal[l,1]) + (n2 * mu2[1, 1]/sigma2[l, 1]) + (n3 *

mu3[1,1]/sigma3[1,1]) + (n4 * mud[1, 1]/si gma4[l1, 1])

+(n5 * mu5[1, 1]/sigma5[1, 1])) * %2)

/((nl/sigmal(l,1]) + (n2/sigma?2[1,1]) + (n3/sigma3[1, 1])

+(n4/sigmad[l, 1]) + (n5/sigma5[1, 1])));
bfl_= (((mul_—mu2.) x x2)/((sigmal/nl) + (sigma2/n2)));

bf2_= (((mul_—mu3.) * x2)/((sigmal /nl) + (sigma3/n3)));
bf3_= (((mul_—mud_) * x2)/((sigmal /nl) + (sigmad/n4)));
bf4_= (((mul_—mu5.) x x2)/((sigmal/nl) + (sigma5/n5)));
bf5_= (((mu2-—mu3.) * x2)/((sigma2/n2) + (sigma3/n3)));

bf6_= (((mu2-—mud_) * x2)/((sigma2/n2) + (sigma4d/n4)));
bf7-= (((mu2-—mu5_) * x2)/((sigma2/n2) + (sigma5/n5)));
bf8_= (((mu3_—mud_) x x2)/((sigma3/n3) + (sigmad/n4)));
bf9_= (((mu3_—mu5_) *x x2)/((sigma3/n3) + (sigma5/n5)));
bf10_ = (((mud-—mu5_) x x2)/((sigma4d/nd) + (sigma5/n5)));
cl.1=0;c12=0;c13=0;c14=0;c15=0;c1.6=0;c1.7=0;c18 =
0;¢1.9 =0;c1_10 = 0;

c2=0;
c3.1=0;¢32=0;¢33=0;c34=0;c35=0;¢3.6=0;c3.7=0;c3.8 =
0;¢3.9=0;¢c3.10 =0;

do j = 1t0 1000;

tl = tinv(ranuni(7 = j),nl — 1);

t2 = tinv(ranuni(10 % j),n2 —1);

diffl = (((sqrt(sigmal/nl) xt1) — (sqrt(sigma2/n2) x t2)) x *x2);
if diffl > diffl_then cl_1 =cl1_1+1;

t1 =tinv(ranuni(7 * j),nl —1);

t3 =tinv(ranuni(10 % j),n3 —1);

diff2 = (((sqrt(sigmal/nl) * t1) — (sqrt(sigma3/n3) * t3)) * x2);
if diff2 > diff2_then c12 =c12+1;

t1 =tinv(ranuni(7 * j),nl —1);

t4 = tinv(ranuni(10 % j),n4 —1);

diff3 = (((sqrt(sigmal/nl) x t1) — (sqrt(sigmad/nd) x t4)) x x2);
if diff3 > diff3_then c13=c13+1;

t1 =tinv(ranuni(7 * j),nl —1);

t5 =tinv(ranuni(10 % j),n5 —1);

diff4 = (((sqrt(sigmal/nl) xt1) — (sqrt(sigma5/n5) x t5)) x *2);
if diffd > diffA_then c14 =cl 4+ 1;

t2 =tinv(ranuni(7 % j),n2 — 1);

t3 =tinv(ranuni(10 % j),n3 —1);

diff5 = (((sqrt(sigma2/n2) x t2) — (sqrt(sigma3/n3) x t3)) x x2);
if diff5 > diff5_then c1.5=c15+1;



4.2 Further Motivation: k-Sample ANOVA, k > 2 41

t2 =tinv(ranuni(7 % j),n2 — 1);

t4 = tinv(ranuni(10 % j),n4 —1);

diff6 = (((sqrt(sigma2/n2) x t2) — (sqrt(sigmad/nd) x t4)) * x2);
if diffo > diff6_then c1.6 = c1.6 + 1;

t2 =tinv(ranuni(7 % j),n2 — 1);

t5 =tinv(ranuni(10 % j),n5 —1);

diff7 = (((sqrt(sigma2/n2) x t2) — (sqrt(sigma5/n5) x t5)) x x2);
if diff1 > diffi-then c1.7 =17+ 1;

t3 =tinv(ranuni(7 % j),n3 —1);

t4 = tinv(ranuni(10 % j),n4 —1);

diff8 = (((sqrt(sigma3/n3) x t3) — (sqrt(sigmad/nd) x t4)) x x2);
if diff8 > diff8_then c1.8 = c1.8 + 1;

t3 =tinv(ranuni(7 % j),n3 —1);

t5 =tinv(ranuni(10 % j),n5 —1);

diff9 = (((sqrt(sigma3/n3) *xt3) — (sqrt(sigma5/n5) * t5)) * x2);
if diff9 > diff9_then c1.9 =c19+ 1,

t4 =tinv(ranuni(7 % j),n4 —1);

t5 =tinv(ranuni(10 % j),n5 —1);

diff10 = (((sqrt(sigma4d/n4) * t4) — (sqrt(sigma5/n5) x t5)) * *2);
if diffl0 > diff10_then c1.10 = ¢1_.10 + 1;

t1 = tinv(ranuni(10 * j),nl — 1);

t2 =tinv(ranuni(11 * j),n2 —1);

t3 =tinv(ranuni(12 x j),n3 —1);

t4 =tinv(ranuni(13 * j),n4 —1);

t5 =tinv(ranuni(14 * j),n5 —1);

r=((t1 % %2) 4+ (2 % *2) 4+ (¢3 * *x2) + (¢4 * x2) + (¢5 * x2))

—((((sgrt(nl/sigmal) * t1) + (sqrt(n2/sigma2) % t2)
+(sqgrt(n3/sigma3) x t3)

+(sqrt(nd/sigmad) x t4) + (sqrt(n5/sigma5) x t5)) x x2)/

((nl/sigmal) + (n2/sigma?2) + (n3/sigma3) + (n4/sigma4)
+(n5/si gmas)));

if r>=r_thenc2=c2+1;

t1 =tinv(ranuni(7 * j),nl —1);

t2 = tinv(ranuni(10 % j),n2 —1);

theta = abs(atan(sqrt(sigmal xn2/(sigma?2 * nl))));

bf1 = (((t1 x sin(theta)) — (12 * cos(theta))) * x2);

if bf1 >bfl1_thenc3.1 =c3.1+1;

t1 =tinv(ranuni(7 * j),nl —1);

t3 =tinv(ranuni(10 % j),n3 —1);

theta = abs(atan(sqrt(sigmal = n3/(sigma3 x nl))));

bf2 = (((t1 x sin(theta)) — (t3 x cos(theta))) * x2);

if bf2>bf2_thenc32=c32+1;

t1 =tinv(ranuni(7 * j),nl —1);

t4 = tinv(ranuni(10 % j),n4 —1);
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theta = abs(atan(sqrt(sigmal % n4/(sigma4 * nl))));
bf3 = (((t1 x sin(theta)) — (t4 x cos(theta))) * x2);

if bf3>bf3_thenc33=c33+1;

t1 =tinv(ranuni(7 * j),nl —1);

t5 =tinv(ranuni(10 % j),n5 —1);

theta = abs(atan(sqrt(sigmal = n5/(sigma5 % nl))));
bfd = (((t1 * sin(theta)) — (t5 * cos(theta))) * x2);

if bfd>bfa_then c34=c34+1;

t2 =tinv(ranuni(7 % j),n2 — 1);

t3 =tinv(ranuni(10 % j),n3 —1);

theta = abs(atan(sqrt(sigma?2 * n3/(sigma3 * n2))));
bf5 = (((t2 x sin(theta)) — (t3 x cos(theta))) * x2);
if bf5>bf5_then c3.5=c3.5+1;

t2 =tinv(ranuni(7 % j),n2 — 1);

t4 = tinv(ranuni(10 % j),n4 —1);

theta = abs(atan(sqrt(sigma?2 * nd/(sigma4 x n2))));
bf6 = (((t2 xsin(theta)) — (t4 x cos(theta))) * x2);
if bf6>bf6_then c3.6=c3.6+1;

t2 =tinv(ranuni(7 % j),n2 — 1);

t5 =tinv(ranuni(10 % j),n5 —1);

theta = abs(atan(sqrt(sigma?2 * n5/(sigma5 * n2))));
bf7 = (((t2 xsin(theta)) — (t5 % cos(theta))) * x2);
if bf7>bf7_then c¢3.7=c3.7+1;

t3 =tinv(ranuni(7 % j),n3 —1);

t4 = tinv(ranuni(10 % j),n4 —1);

theta = abs(atan(sqrt(sigma3 x nd/(sigma4d x n3))));
bf8 = (((t3 xsin(theta)) — (t4 x cos(theta))) * x2);
if bf8>bf8_ then 3.8 =c38+1;

t3 =tinv(ranuni(7 % j),n3 —1);

t5 =tinv(ranuni(10 % j),n5 —1);

theta = abs(atan(sqrt(sigma3 * n5/(sigma5 * n3))));
bf9 = (((t3 xsin(theta)) — (t5 x cos(theta))) * x2);
if bf9>bf9_then c3.9=c39+1;

t4 =tinv(ranuni(7 % j),n4 —1);

t5 =tinv(ranuni(10 % j),n5 —1);

theta = abs(atan(sqrt(sigmad x n5/(sigma5 * n4))));
bf10 = (((t4 x sin(theta)) — (t5 * cos(theta))) * *2);
if bf10 > bf10_then ¢3_.10 = ¢3.10 + 1;

end;

pl = j(10,1,0);

P11, 1] = ¢1.1/1000; p1[2, 1] = ¢12/1000; p1[3,1] = ¢1.3/1000; p1[4, 1] =
c1.4/1000; p1[5, 1] = ¢1.5/1000;

pl[6,1] = ¢1.6/1000; pl1[7, 1] = ¢1_7/1000; p1[8, 1] = ¢1.8/1000; p1[9, 1] =
c1.9/1000; p1[10, 1] = ¢1_10/1000;

p2 = ¢2/1000;
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if p2<0.05thenr2=1;elser2=0;

p3=j(10,1,0);

p3[1, 1] = ¢3.1/1000; p3[2, 1] = ¢3-2/1000; p3[3, 1]
= ¢3.3/1000; p3[4, 1] = ¢3-4/1000; p3[5, 1] = ¢3-5/1000;

p3[6, 1] = ¢3.6/1000; p3[7, 1] = ¢3-7/1000; p3[8, 1] = ¢3-8/1000; p3[9, 1]
= ¢3.9/1000; p3[10, 1] = ¢3-10/1000;

create pl from pl [colname = {p'}];

append from pl;

create r2 fromr2 [colname = {'r2'}];

append fromr2;

create p3 from p3 [colname = {p'}];

append from p3;

run;

quit;

proc sort data = pl;

by p:

run;

proc sort data = p3;

by p:

run;

prociml;

use pl;

read all var {p}into pl,;

use p3;

read all var {p}into p3;

nl = nrow(pl);n3 = nrow(p3);

imaxl = 0;

doi =1tonl;

if plli,1] <= ((i/10) % 0.05) then imax1 = i;
end;

if imax1 =0thenrl =0;elserl =1;
imax3 = 0;

doi =1ton3;

if p3li,1] <= ((i/10) % 0.05) then imax3 =i,
end;

if imax3=0thenr3 =0;elser3 =1;

use r2;

read all var {r2} into r2;

est = rl||r2||r3;

create est&t from est [colname = {'r1' 'r2' 'r3'}];
append from est,;

run;

quit;

%end;

Y%omend test;
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Potest;

Y%omacro cat;

Y%doi =1 %to 1000;
est&i

Pend ;

%mend cat;

data concat;

set %cat;

I =_n_

run;

data _null_;

set concat end = last;
if r2=1thencl +1;
if r3=1thenc2+1;
if rl =1thenc3+1;
if last then do;

put cl c2 c3;

end;

run;

4 On Heteroscedastic MANOVA

The power of the two methods is displayed in Table 4.4 below. The alternative
considered is obtained by generating observations from N(0, 1), N(0, 1.5), N(0, 2),

N(0,2.5),and N(1, 3).

Table 4.4 Power in the
five-sample complete-data
case

Sample sizes Method

ni ny ns ny ns A B C

10 20 30 40 50 0.742 0.763  0.775
50 10 20 30 40 0.678 0.716 0.723
40 50 10 20 30 0.545 0.628  0.581
30 40 50 10 20 0382 0437 0457
20 30 40 50 10 0.225 0.204 0.217
30 10 40 20 50 0730 0.772  0.795
50 20 40 10 30 0537 0.604 0.596
40 10 30 50 20 0374 0.436 0.460
10 30 20 50 40 0.673 0.712 0.746
20 50 40 30 10 0230 0.198 0.212

The above table suggests that although methods B and C are not uniformly better
than method A in terms of power, they are strong contenders against method A when
it comes to power against an alternative. The code that generated the above table is
the same as that which generated Table 4.3, except that we replace the fifth data

step with:

data five;
doi =1 to 1000000;
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x =14 (sqrt(3) * normal(i));
output;

end;

run;

4.2.2 The Randomly-Incomplete-Data Case

45

Suppose we generate observations from N (0, 1), N(0, 1.5), N(0, 2), N(0,2.5), and
N(0, 3), except that we set an observation to missing with probabilities 0.20, 0.25,
0.3, 0.15, and 0.10, respectively. We then perform our five-sample ANOVA using
only the observed data. The type I errors are given in Table 4.5 below:

Table 4.5 Type I errors in

Sample sizes Method

the five-sample

randomly-incomplete-data mi My 3 na ns A B C

case 10 20 30 40 50 0.030 0.028 0.030
50 10 20 30 40 0.028 0.032 0.034
40 50 10 20 30 0.029 0.031 0.035
30 40 50 10 20 0.032 0.035 0.037
20 30 40 50 10 0.036 0.032 0.036
30 10 40 20 50 0.030 0.026 0.029

The power of the two methods is displayed in Table 4.6 below. The alternative
considered is the same as in the complete-data case. Fractions of missingness are

the same as in the null case above.

Table 4.6 Power in the

Sample sizes Method

five-sample

randomly-incomplete-data m__ My N3 na s A B c

case 10 20 30 40 50 0.629 0.658 0.685
50 10 20 30 40 0.519 0.619 0.632
40 50 10 20 30 0399 0.524 0.481
30 40 50 10 20 0.298 0.357 0.372
20 30 40 50 10 0.201 0.172 0.183
30 10 40 20 50 0.597 0.682 0.718
50 20 40 10 30 0427 0498 0.512
40 10 30 50 20 0.279 0.342 0.358
10 30 20 50 40 0.547 0.617 0.639
20 50 40 30 10 0.199 0.165 0.187

Table 4.6 demonstrates that, just as in the complete-data case, methods B and C
prove to be strong contenders in terms of power vis-a-vis method A. The code that
generated Tables 4.5 and 4.6 is left to the reader as an exercise.
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4.2.3 Example: Temperature Recovery Times

This example and accompanying data appears in Westfall et al. (1999). Following a
surgical procedure, when anesthesia wears off, the temperature of a patient may dip.
To maintain the body temperature at an acceptable level, a company manufactured
specialized heating blankets. Four types of blankets were tried on surgical patients.
One of the four blankets was a standard one which was already in use in various
hospitals. The company’s interest was to compare the recovery times of patients
using the four different blankets. The data are as follows:

data blanket;

input blanket minutes @@;

cards;
1151131121161161171131131161 17
117119117115113112116110117112
21321629

353839
4144164164124741241341349416
413418413412413

’

run;

The analysis of the above data returns the values r1 = 1,72 = 0, and 73 = 1.
Note that r1 corresponds to method C, 72 to method A, and r3 to method B. Thus,
method A fails to reject equality of means, whereas method B and C reject the
equality of means.

4.3 Heteroscedastic MANOVA: The Multivariate
Behrens—Fisher Problem

Consider the k p-variate normal mean vectors: ; = (Ui1,...,[Hip)s. ., Ry =
(M1, ..., Mkp). We want to test the following hypothesis:

Hotpy = ... = py

Our approach is conceptually simple. To use approach A, we apply method A to
the k hypotheses:

Hop i = oo = pgts - Hop - pip = .00 = pip

To use method A, we apply it to each of the p hypotheses above. This will yield
us p p-values, which we subject to the FDR algorithm. The FDR algorithm will then
give us a decision as to whether to reject or not reject the equality of the k p-variate
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mean vectors. To use methods B or C, we conduct the p x (g) distinct pairwise tests

using methods B or C. This will yield us p x (];) p-values which we then subject to
the FDR algorithm. The FDR algorithm will in turn give us a decision as to whether
to reject or do not reject the null hypothesis above.

4.3.1 The Complete-Data Case

To investigate the Type I errors of the above method, the following three 5 x 5
covariance matrices were used:

1 04 05 08 0.7 1.5 04 05 08 1.7

04 2 04 05 038 04 25 04 05 08
=05 04 3 04 05|,%X,=|05 04 35 04 05],

08 05 04 4 04 08 05 04 4 04

| 0.7 08 05 04 5 1.7 08 05 04 5

2 04 05 08 07
04 3 04 05 28
and X3 =105 04 4 04 05
08 05 04 4 04
0.7 28 05 04 5

The three mean vectors were all equal to {0 0 0 0 0}. Table 4.7 below gives the
type I errors:

Table 4.7 Type I errors in Sample sizes Method
the three-multivariate-sample
ni ny ns A B C

complete-data case
10 20 30 0.055 0.052 0.043
10 30 20 0.049 0.048 0.040
20 10 30 0.027 0.042 0.032
20 30 10 0.030 0.043 0.030
30 10 20 0.029 0.042 0.026
30 20 10 0.032 0.046 0.025

The code that generated the above table is as follows:

YPomacro test;

%dot =1 %to 1000;
ods listing close;
%dow =1 %to 5;
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prociml;

indexl = %syseval f(((&t — 1) % 30) + 1) : %sysevalf (&t x 30);

use popl;

read point indexl var {x&w} into x1,;

createxl from x1 [colname = {'x'}];

append from xl1;

index2 = %syseval f (&t — 1) % 20) + 1) : %syseval f (&t * 20);

use pop2;

read point index2 var {x&w} into x2;

createx2 fromx2[colname = {'x'}];

append from x2;

index3 = %syseval f (&t — 1) % 10) + 1) : %syseval f (&t * 10);

use pop3;

read point index3 var {x&w}into x3;

create x3 from x3 [colname = {'x'}];

append from x3;

run;

quit;

prociml;

use x1;

read all var {x}into x1;

nl = nrow(x1);

use x2;

read all var {x}into x2;

n2 = nrow(x2);

use x3;

read all var {x}into x3;

n3 = nrow(x3);

mul_ = (sum(x1[,1])/nl);

mu2_ = (sum(x2[, 1])/n2);

mu3_ = (sum(x3[, 1])/n3);

mul = j(nl,1,1)@mul

mu2 = j(n2,1,1)@mu2_

mu3 = j(n3,1,1)@mu3_;

sigmal = (x1 —mul)‘ x (x1 —mul)/(nl —1);

sigma2 = (x2 —mu2)‘ x (x2 —mu)/(n2 —1);

sigma3 = (x3 —mu3)‘ x (x3 —mu3)/(n3 —1);

diff1_= (mul_—mu2_) x x2;

diff2_= (mul_—mu3_)) x x2;

diff3_.= (mu2_—mu3_) * %2;

r_= ((nl % (mul[l,1] % x2)/sigmal[l,1]) + (n2 * (mu2[1, 1] * x2)/
sigma2[l,1]) + (n3 = (mu3[1, 1] * x2)/sigma3[1, 1]))

—((((n1 * mul[1,1]/sigmal[l,1]) + (n2 * mu2[1, 1]/sigma2[l, 1]) + (n3 *

mu3[l, 1]/sigma3[l, 1])) * *2)

/((nl/sigmal(l,1]) + n2/sigma?2[1,1]) + (n3/sigma3[l, 1])));
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bfl. = (((mul-—mu2.) x x2)/((sigmal /nl) + (sigma2/n2)));

bf2_= (((mul-—mu3.) x x2)/((sigmal/nl) + (sigma3/n3)));

bf3_ = (((mu2-— mu3.) x x2)/((sigma2/n2) + (sigma3/n3)));

cl.1=0;¢c12=0;c1.3=0;

c2=0;

3.1 =0;¢32=0;¢33=0;

do j = 1t01000;

tl = tinv(ranuni(7 = j),nl — 1);

t2 = tinv(ranuni(10 % j),n2 —1);

diff1 = (((sqrt(sigmal/nl) xt1) — (sqrt(sigma2/n2) % t2)) x *2);

if diffl>diffl_thencl 1 =cl_1+1;

t1 = tinv(ranuni(7 = j),nl — 1);

t3 =tinv(ranuni(10 % j),n3 —1);

diff2 = (((sqrt(sigmal/nl) = t1) — (sqrt(sigma3/n3) * t3)) * x2);

if diff2>diff2_thencl2=cl12+1;

t2 =tinv(ranuni(7 % j),n2 — 1);

t3 =tinv(ranuni(10 % j),n3 —1);

diff3 = (((sqrt(sigma2/n2) xt2) — (sqrt(sigma3/n3) * t3)) x x2);

if diff3>diff3_thencl3=cl3+1;

t1 = tinv(ranuni(10 * j),nl — 1);

t2 =tinv(ranuni(11 * j),n2 —1);

t3 =tinv(ranuni(12 * j),n3 —1);

ro=((t1 % %2) + (12 % *2) + (¢3 * %2))

—((((sqrt(nl/sigmal) * t1) + (sqrt(n2/sigma2) % t2)
+(sqrt(n3/sigma3) * t3)) * x2)/

((nl/sigmal) + (n2/sigma?2) + (n3/sigma3’)));

if r>=r_thenc2=c2+1;

t1 =tinv(ranuni(7 * j),nl —1);

t2 = tinv(ranuni(10 % j),n2 —1);

theta = abs(atan(sqrt(sigmal xn2/(sigma?2 * nl))));

bf1 = (((t1 x sin(theta)) — (12 * cos(theta))) * x2);

if bf1 >bfl_thenc3.1 =c3.1+1;

t1 =tinv(ranuni(7 *x j),nl —1);

t3 =tinv(ranuni(10 % j),n3 —1);

theta = abs(atan(sqrt(sigmal = n3/(sigma3 x nl))));

bf2 = (((t1 x sin(theta)) — (t3 x cos(theta))) * x2);

if bf2>bf2_thenc32=c32+1;

t2 =tinv(ranuni(7 % j),n2 — 1);

t3 =tinv(ranuni(10 % j),n3 —1);

theta = abs(atan(sqrt(sigma?2 * n3/(sigma3 * n2))));

bf3 = (((t2 x sin(theta)) — (t3 x cos(theta))) * x2);

if bf3>bf3_thenc33=c33+1;

end;

pl=j(3.1,0);

pL[1,1] = c1_1/1000; p1[2, 1] = ¢1_2/1000; p1[3, 1] = ¢1_3/1000;
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p2 = ¢2/1000;

p3=j(3,1,0);

p3[1, 1] = ¢3.1/1000; p3[2, 1] = ¢3-2/1000; p3[3, 1] = ¢3-3/1000;
create pl_ &w from pl [colname = {'p'}];
append from pl;

create p2_&w from p2[colname = {p'}];
append from p2;

create p3_&w from p3 [colname = {p'}];
append from p3;

run;

quit;

%end;

data pl;

set pl_1 pl 2 p1.3 pl_4 pl.5;

run;

proc sort data = pl;

by p;

run;

data p2;

set p2_1 p2.2 p2.3 p2. 4 p2_5;

run;

proc sort data = p2;

by p;

run;

data p3;

set p3_1 p3.2 p3.3 p3.4 p3.5;

run;

proc sort data = p3;

by p;

run;

prociml;

use pl;

read all var {p}into pl,;

nl = nrow(pl);

imaxl = 0;

doi =1tonl;

if plli,1] <= ((i/15) % 0.05) then imax1 = i;
end;

if imax1 =0thenrl =0;elserl =1;

use p2;

read all var {p}into p2;

n2 = nrow(p2);

imax2 = 0;

doi =1ton2;

if p2[i,1] <= ((i/5) % 0.05) then imax2 = i,
end;
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if imax2 =0thenr2=0;elser2 =1;
use p3;

read all var {p}into p3;

n3 = nrow(p3);

imax3 = 0;

doi =1ton3;

if p3li,1] <= ((i/15) % 0.05) then imax3 = i
end;

if imax3=0thenr3 =0;elser3 =1;
est = rl||r2||r3;
create est&t from est [colname = {'r1" 'r2' 'r3'}];
append from est;
run;

quit;

Yend ;

Yomendtest;

Potest;

Jomacro cat;

%doi = 1 %to 1000;
est&i

%end ;

%mend cat;

data concat;

set %cat;

i = _n

run;

data null_;

set concat end = last;
if r2=1thencl +1;
if r3=1thenc2+1;
if rl =1thenc3+1;
if last then do;

put cl c2 c3;

end;

run;

To investigate the power of methods A, B, and C in the complete-data multivari-
ate case, we generate observations from the same three distributions that generated
Table 4.7 except that instead of letting all mean vectors equal to {0 0 0 0 0}, we let
the mean vectors to be {0000 0}, {0000 0}, and {1 1 1 0 0}, respectively. We call
this Alternative 1. The power is displayed in Table 4.8 below:

Another alternative we can consider is the one where the three covariance
matrices are the same as above, but the mean vectors are {1 0 0 0 0}, {0 1 0 0
0}, and {0 0 1 0 0}, respectively. We call this Alternative 2. The power generated is
given in Table 4.10 below:
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Table 4.8 ' Poyver in the Sample sizes Method

three-multivariate-sample

complete-data case for n Mt n3 A B ¢

Alternative 1 10 20 30 0.840 0.839 0.752
10 30 20 0.719 0.816 0.679
20 10 30 0.773 0.831 0.779
20 30 10 0424 0513 0.374
30 10 20 0.695 0.798 0.720
30 20 10 0.445 0.541 0.358

Table 4.9 ' Poyver in the Sample sizes Method

three-multivariate-sample

complete-data case for n m ny A B C

Alternative 2 10 20 30 0.655 0.647 0.567
10 30 20 0.648 0.635 0.597
20 10 30 0.720 0.819 0.778
20 30 10 0.734 0.788 0.783
30 10 20 0.763 0.824 0.744
30 20 10 0.764 0.832 0.752

Tables 4.8 and 4.9 demonstrate that while methods B and C, particularly
method B, are not uniformly better than method A in terms of power, method B

can be a strong contender to method A when it comes to performing heteroscedastic
MANOVA.

4.3.2 The Randomly-Incomplete-Data Case

To investigate Type I errors in the randomly-incomplete-data case, we generate
observations from the same three null distributions as considered in Sect.4.3.1.
There is no need to impute as we can just work with the observed data. Let M be
a five-variate missingness indicator such that a component is 1 if the corresponding
value in the data set is observed and is O if the corresponding value in the data set is
missing. Then we simulate missing data as given in Table 4.10 below:

Table 4.10 Simulation of missing data to investigate Type I error

Covariance

matrix Mean vector Pr(M ={11111}) Pr(M ={11110}) Pr(M ={11100})
Do {00000} 0.70 0.15 0.15

¥, {00000} 0.80 0.10 0.10

23 {00000} 0.90 0.05 0.05




4.3 Heteroscedastic MANOVA: The Multivariate Behrens—Fisher Problem 53

The type I errors are shown in Table 4.11 below:

Table 4.11 Type I errors in
the three-multivariate-sample
randomly-incomplete-data m_n ny A B c
case 10 20 30 0.052 0.049 0.039
10 30 20 0.046 0.057 0.041
20 10 30 0.029 0.036 0.026
20 30 10 0.021 0.035 0.020
30 10 20 0.031 0.041 0.028
30 20 10 0.022 0.034 0.024

Sample sizes Method

To investigate power, we consider two alternatives. To consider the first alterna-
tive, we generate data with the same covariance matrices as in Sect. 4.3.1, but the
mean vectors being {00000}, {0000 0},and {00 11 1}. The power for different
combinations of sample sizes is displayed in Table 4.12 below:

Table 4.12 Power in the
three-multivariate-sample
randomly-incomplete-data m_n ny A B c
case and Alternative 1 10 20 30 0.299 0.366 0.265
10 30 20 0.258 0.355 0.234
20 10 30 0.260 0.361 0.304
20 30 10 0.146 0.206 0.105
30 10 20 0.222 0329 0.257
30 20 10 0.151 0.213 0.114

Sample sizes Method

Table 4.12 demonstrates that method B can be a strong contender to method A in
terms of power for the type of alternative considered. Let us now consider another
alternative with mean vectors being {00 100}, {000 1 0}, and {000 0 1}. The
power is displayed in Table 4.13 below:

Table 4.13 Power in the
three-multivariate-sample
randomly-incomplete-data m_n ny A B c
case and Alternative 2 10 20 30 0.247 0.291 0.217
10 30 20 0.222 0.287 0.217
20 10 30 0.199 0277 0.223
20 30 10 0.218 0.305 0.266
30 10 20 0.218 0.274 0.212
30 20 10 0.213 0311 0.216

Sample sizes Method

The code which generated Tables 4.11-4.13 is left as an exercise to the reader.
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4.3.3 Example: Wisconsin Nursing Home Study Revisited

In Sect. 3.1.1, we tested for equality of three covariance matrices, and the result was
to reject equality. Therefore the method of Sect. 4.3.1 applies here. The three sample
mean vectors are {2.066 0.480 0.082 0.360}, {2.167 0.596 0.124 0.418}, and {2.273
0.521 0.125 0.383}. Using the methodology of Sect. 4.3.1, methods A, B, and C all
reject the null hypothesis of equality of the mean vectors at the 1 % significance
level.
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