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Preface (Second Edition)

Ten years ago, the small group of spatial data analysis enthusiasts who met
in Vienna at the Distributed Statistical Computing conference mentioned in
the preface to the first edition, considered that others might benefit from
coordinating software development in our fields. We were in no way prepared
for the dramatic and largely unexpected growth in use that software for
spatial data analysis with R has seen (R Core Team, 2013). Some of this
growth has come from the growth of R as a project, including growth in the
use of R within disciplines analysing spatial data.
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Fig. 1 Direct dependency counts of CRAN packages

We do however feel humbled by the realisation that updating the sp pack-
age can potentially upset the work of many unsuspecting users and devel-
opers. In our first edition, we were proud to include a figure (Fig.1.1, p.5)
showing the dependency tree of sp. In revising our book, we have been obliged
to drop this figure, as it is illegible at less than poster size. Fig. 1 gives the
current top ten ranking of counts of packages depending directly on CRAN

vii



viii Preface (Second Edition)

packages, using Dirk Eddelbuettel’s code.! The number of direct dependencies
for sp is 73, but if we include indirect dependencies and imports through the
dependency tree, we reach 148, and the total number of unique CRAN pack-
ages directly or indirectly depending on, importing or suggesting sp is 507.2
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Fig. 2 Monthly numbers of postings to the R-sig-geo mailing list

Another expression for the vitality of the R spatial data analysis commu-
nity is the development on the numbers of postings on the R-sig-geo mailing
list, shown in Fig. 2. Importantly, the proportion of follow-up messages con-
tributed by early participants has fallen, not because they have departed, but
because the community has grown. The raster package is an important con-
tribution that has taken raster processing and raster algebra to the next level
and extended R as a raster GIS; a noticeable amount of list traffic now con-
cerns use of this package. In addition, it seems that many courses have been
organised bringing developers and users together, among these the GeoStat
courses coordinated by Tom Hengl; we have benefitted from meeting users in
the flesh, not only on the list.

Over the few years since the first edition was coming into being, we see
clearly that spatial data, and the devices used for its collection, are becoming
pervasive. In 2008, we could ask students whether they had access to a Global
Positioning System (GPS) receiver. In 2013, we may ask how many GPS
receivers students use in smartphones, tablets, vehicle navigation devices,
etc. In 2008, Google Earth™ and Google Maps™ with others were seen as
resources to be used on computers rather than mobile devices. Now, the
failure of a smartphone manufacturer to handle spatial data satisfactorily is
a top news story and can prejudice the careers of top managers. Use and
handling of spatial data have grown greatly, but perhaps analysis is lagging,

1 http://dirk.eddelbuettel.com/blog/2012/08/16#counting_cran_depends_
followup
2 Use is made of functions in the pkgDepTools package.
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so work to make more and better analytical use of the positional data that
is now potentially available should be moved up the agenda.

In revising our book, we have made the incremental changes needed to
keep abreast of developments in the packages presented and discussed before.
In addition, we have modified Chap. 5 to introduce the new rgeos package for
handling operations on topologies. We have not attempted to cover the raster
package in the detail that it deserves, hoping that a raster book will appear
before long. We have replaced Chap.6 with a new chapter on representing
and handling spatio-temporal data, introducing the spacetime package; the
chapter from the first edition is now a vignette in sp. Since the publication
of Cressie and Wikle (2011) has provided new impetus to the analysis of
spatio-temporal data, we expect these topics to grow in importance rapidly
in coming years. We have also moved the detailed treatment of spatial neigh-
bours to a vignette in the spdep package, making room for the presentation of
new features now included in spdep. In Chap. 10, we have included worked ex-
amples of alternatives to WinBUGS for fitting Bayesian hierarchical models,
including INLA (Rue et al., 2009) and BayesX and their R interface packages.

Finally, we are pleased that we can now present coloured figures,? which
we hope add to the value of the completed volume; thanks to Hannah Bracken
for persevering with us in the revision process. The book website (http://
www . asdar-book.org) will continue to provide code, data sets, and errata
from this edition of our book; we will continue to run the code from the
book, with suitable updates where required, nightly on the released version
of R.

Bergen, Norway Roger S. Bivand
Miinster, Germany Edzer Pebesma
Albacete, Spain Virgilio Gémez-Rubio

3 Although reasonable care has been taken, the rendering of the colours may differ
between the published figures and on-screen reproduction in an R session.
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Preface (First Edition)

We began writing this book in parallel with developing software for handling
and analysing spatial data with R (R Development Core Team, 2008). Al-
though the book is now complete, software development will continue, in the
R community fashion, of rich and satisfying interaction with users around the
world, of rapid releases to resolve problems, and of the usual joys and frus-
trations of getting things done. There is little doubt that without pressure
from users, the development of R would not have reached its present scale,
and the same applies to analysing spatial data analysis with R.

It would, however, not be sufficient to describe the development of the
R project mainly in terms of narrowly defined utility. In addition to being
a community project concerned with the development of world-class data
analysis software implementations, it promotes specific choices with regard
to how data analysis is carried out. R is open source not only because open
source software development, including the dynamics of broad and inclusive
user and developer communities, is arguably an attractive and successful
development model.

R is also, or perhaps chiefly, open source because the analysis of empirical
and simulated data in science should be reproducible. As working researchers,
we are all too aware of the possibility of reaching inappropriate conclusions in
good faith because of user error or misjudgement. When the results of research
really matter, as in public health, in climate change, and in many other
fields involving spatial data, good research practice dictates that someone else
should be, at least in principle, able to check the results. Open source software
means that the methods used can, if required, be audited, and journaling
working sessions can ensure that we have a record of what we actually did,
not what we thought we did. Further, using Sweave* - a tool that permits the
embedding of R code for complete data analyses in documents — throughout
this book has provided crucial support (Leisch, 2002; Leisch and Rossini,
2003).

4 http://www.stat.uni-muenchen.de/~leisch/Sweave/
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We acknowledge our debt to the members of R-core for their continuing
commitment to the R project. In particular, the leadership and example of
Professor Brian Ripley has been important to us, although our admitted
‘muddling through’ contrasts with his peerless attention to detail. His inter-
ested support at the Distributed Statistical Computing conference in Vienna
in 2003 helped us to see that encouraging spatial data analysis in R was a
project worth pursuing. Kurt Hornik’s dedication to keep the Comprehensive
R Archive Network running smoothly, providing package maintainers with
superb, almost 24/7, service, and his dry humour when we blunder, have
meant that the useR community is provided with contributed software in an
unequalled fashion. We are also grateful to Martin Méchler for his help in
setting up and hosting the R-sig-geo mailing list, without which we would
have not had a channel for fostering the R spatial community.

We also owe a great debt to users participating in discussions on the mail-
ing list, sometimes for specific suggestions, often for fruitful questions, and
occasionally for perceptive bug reports or contributions. Other users contact
us directly, again with valuable input that leads both to a better understand-
ing on our part of their research realities and to the improvement of the
software involved. Finally, participants at R spatial courses, workshops, and
tutorials have been patient and constructive.

We are also indebted to colleagues who have contributed to improving the
final manuscript by commenting on earlier drafts and pointing out better pro-
cedures to follow in some examples. In particular, we would like to mention
Juanjo Abellan, Nicky Best, Peter J. Diggle, Paul Hiemstra, Rebeca Ramis,
Paulo J. Ribeiro Jr., Barry Rowlingson, and Jon O. Skgien. We are also
grateful to colleagues for agreeing to our use of their data sets. Support from
Luc Anselin has been important over a long period, including a very fruitful
CSISS workshop in Santa Barbara in 2002. Work by colleagues, such as the
first book known to us on using R for spatial data analysis (Kopczewska,
2006), provided further incentives both to simplify the software and to com-
plete its description. Without John Kimmel’s patient encouragement, it is
unlikely that we would have finished this book.

Even though we have benefitted from the help and advice of so many
people, there are bound to be things we have not yet grasped — so remaining
mistakes and omissions remain our sole responsibility. We would be grateful
for messages pointing out errors in this book; errata will be posted on the
book website (http://www.asdar-book.org).

Bergen, Norway Roger S. Bivand
Miinster, Germany Edzer Pebesma
London, UK Virgilio Gémez-Rubio
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Chapter 1
Hello World: Introducing Spatial Data

1.1 Applied Spatial Data Analysis

Spatial and spatio-temporal data are everywhere. Besides those we collect
ourselves (‘is it raining?’), they confront us on television, in newspapers, on
route planners, on computer screens, on mobile devices, and on plain pa-
per maps. Making a map that is suited to its purpose and does not distort
the underlying data unnecessarily is however not easy. Beyond creating and
viewing maps, spatial data analysis is concerned with questions not directly
answered by looking at the data themselves. These questions refer to hypo-
thetical processes that generate the observed data. Statistical inference for
such spatial processes is often challenging, but is necessary when we try to
draw conclusions about questions that interest us.
Possible questions that may arise include the following:

e Does the spatial patterning of disease incidences give rise to the conclusion
that they are clustered, and if so, are the clusters found related to factors
such as age, relative poverty, or pollution sources?

e Given a number of observed soil samples, which part of a study area is
polluted?

e Given scattered air quality measurements, how many people are exposed
to high levels of black smoke or particulate matter (e.g. PMyg),! and where
do they live?

e Do governments tend to compare their policies with those of their neigh-
bours, or do they behave independently?

In this book we will be concerned with applied spatial data analysis,
meaning that we will deal with data sets, explain the problems they confront
us with, and show how we can attempt to reach a conclusion. This book will
refer to the theoretical background of methods and models for data analy-
sis, but emphasise hands-on, do-it-yourself examples using R; readers needing

! Particulate matter smaller than about 10 um.

R.S. Bivand et al., Applied Spatial Data Analysis with R, Use R! 10, 1
DOI 10.1007/978-1-4614-7618-4_1,
© Springer Science+Business Media New York 2013



2 1 Hello World: Introducing Spatial Data

this background should consult the references. All data sets used in this book
and all examples given are available, and interested readers will be able to
reproduce them.

In this chapter we discuss the following:

(i) Why we use R for analysing spatial data

ii) The relation between R and geographical information systems (GIS)

iii) What spatial data are, and the types of spatial data we distinguish
)
)

S~

(

(iv) The challenges posed by their storage and display

(v) The analysis of observed spatial data in relation to processes thought to
have generated them

(vi) Sources of information about the use of R for spatial data analysis and

the structure of the book.

1.2 Why Do We Use R

1.2.1 ... In General?

The R system? (R Core Team, 2013) is a free software environment for
statistical computing and graphics. It is an implementation of the S lan-
guage for statistical computing and graphics (Becker et al., 1988). For data
analysis, it can be highly efficient to use a special-purpose language like S,
compared to using a general-purpose language.

For new R users without earlier scripting or programming experience,
meeting a programming language may be unsettling, but the investment? will
quickly pay off. The user soon discovers how analysis components — written
or copied from examples — can easily be stored, replayed, modified for an-
other data set, or extended. R can be extended easily with new dedicated
components, and can be used to develop and exchange data sets and data
analysis approaches. It is often much harder to achieve this with programs
that require long series of mouse clicks to operate.

R provides many standard and innovative statistical analysis methods. New
users may find access to both well-tried and trusted methods, and specula-
tive and novel approaches, worrying. This can, however, be a major strength,
because if required, innovations can be tested in a robust environment against
legacy techniques. Many methods for analysing spatial data are less frequently
used than the most common statistical techniques, and thus benefit propor-
tionally more from the nearness to both the data and the methods that
R permits. R uses well-known libraries for numerical analysis, and can easily
be extended by or linked to code written in S, C, C++4, Fortran, or Java.

2 http://wuw.r-project.org
3 A steep learning curve — the user learns a lot per unit time.


http://www.r-project.org

1.2 Why Do We Use R 3

Links to various relational data base systems and geographical information
systems exist, many well-known data formats can be read and/or written.

The level of voluntary support and the development speed of R are
high, and experience has shown R to be environment suitable for developing
professional, mission-critical software applications, both for the public and
the private sector. The S language can not only be used for low-level com-
putation on numbers, vectors, or matrices but can also be easily extended
with classes for new data types and analysis methods for these classes, such
as methods for summarising, plotting, printing, performing tests, or model
fitting (Chambers, 1998).

In addition to the core R software system, R is also a social movement,
with many participants on a continuum from useRs just beginning to analyse
data with R to developeRs contributing packages to the Comprehensive R
Archive Network? (CRAN) for others to download and employ.

Just as R itself benefits from the open source development model,
contributed package authors benefit from a world-class infrastructure,
allowing their work to be published and revised with improbable speed and
reliability, including the publication of source packages and binary packages
for many popular platforms. Contributed add-on packages are very much
part of the R community, and most core developers also write and maintain
contributed packages. A contributed package contains R functions, optional
sample data sets, and documentation including examples of how to use the
functions.

1.2.2 ... for Spatial Data Analysis?

For over 15 years, R has had an increasing number of contributed packages
for handling and analysing spatial data. Up to 2003, these packages all used
to make different assumptions about how spatial data were organised, and
R itself had no capabilities for distinguishing coordinates from other num-
bers. In addition, methods for plotting spatial data and other tasks were
scattered, made different assumptions on the organisation of the data, and
were rudimentary. This was not unlike the situation for time series data at
the time.

After some joint effort and wider discussion, a group® of R developers
have written the R package sp to extend R with classes and methods for
spatial data (Pebesma and Bivand, 2005). Classes specify a structure and
define how spatial data are organised and stored. Methods are instances of
functions specialised for a particular data class. For example, the summary
method for all spatial data classes may tell the range spanned by the spatial

4 CRAN mirrors are linked from http://www.r-project.org/

5 Mostly the authors of this book with help from Barry Rowlingson and Paulo J.
Ribeiro Jr.
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coordinates, and show which coordinate reference system is used (such as
degrees longitude/latitude, or the UTM zone). It may in addition show some
more details for objects of a specific spatial class. A plot method may, for
example create a map of the spatial data.

The sp package provides classes and methods for points, lines, polygons,
and grids (Sect. 1.4, Chap. 2). Adopting a single set of classes for spatial data
offers a number of important advantages:

(i) Tt is much easier to move data across spatial statistics packages. The
classes are either supported directly by the packages, reading and writing
data in the new spatial classes, or indirectly, for example by supplying
data conversion between the sp classes and the package’s classes in an
interface package. This last option requires one-to-many links between
the packages, which are easier to provide and maintain than many-to-
many links.

(ii) The new classes come with a well-tested set of methods and functions
for plotting, printing, subsetting, and summarising spatial objects, or
combining (overlaying) spatial objects.

(iii) Packages with interfaces to geographical information systems (GIS), for
reading and writing GIS file formats, and for coordinate (re)projection
code support the new classes.

(iv) The new methods include Lattice plots, conditioning plots, plot methods
that combine points, lines, polygons, and grids with map elements
(reference grids, scale bars, north arrows), degree symbols (as in 52°N)
in axis labels, etc.

Chapter 2 introduces the classes and methods provided by sp, and discusses
some of the implementation details. Further chapters will show the degree of
integration of sp classes and methods and the packages used for statistical
analysis of spatial data. Interfacing other packages for handling and analysing
spatial data is usually simple as we see in Part II.

In 2008 this book showed a graph depicting the R packages depending
on (reusing classes from) sp, and packages depending on those. In 2013, this
graph can no longer be shown on a book size paper: over 100 packages depend
on sp directly, and many more indirectly. Of the over 4,400 packages on
CRAN, sp has become one of the most reused packages, as noted in the
preface to this edition.

1.2.3 ... and for Reproducible Research?

One of the joys that novel R users experience when they are at the start
of the steep learning curve is the ability to communicate complete analyses
by providing the script that reruns the analysis. This can be used to ask
questions, share results, and trigger discussion, and not only demonstrates but
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also documents research and communication skills. Not only at the personal
level, but also at institutional and societal levels, scientific activity gains
credibility when research is reproducible, and may lose it when it is not.

After decades, maybe centuries where scientific quality was determined
only by the journal article — the one that we used to print on paper — we
currently see a shift where both the data and software needed to create the
published findings are seen as essential components. Publishing data and
software has become rewarding;:

e The European Commission has since a long time endorsed open source as
a development and dissemination model for funded research projects.

e In 2012 the National Science Foundation (USA) changed its requirements
for CVs from scientists applying for funding from listing only publications
to listing products, which can also include published data and software;
project proposals are required to describe a plan for publishing data and
software.

e The Journal of Statistical Software, an open access journal on the subject
of statistical software and algorithms publishes software alongside the jour-
nal paper. The journal has experienced exponential growth, and reached in
2011 the highest IST impact factor in the category probability and statistics.

e The number of citations papers on freely reusable data and software receive
motivates scientists to make data and software available, and to document
this process in scientific publications.

In a forum contribution, Pebesma et al. (2012) argue why the R Software
Environment is a good choice to carry out reproducible geoscientific research.
The main argument is that the combination of (i) being a free, open source,
cross-platform environment with clear software provenance, versioning and
archiving with (ii) maintaining open, documented, accessible and sustained
communication channels between users and developers, creates trust by indi-
viduals and organisations.

1.3 R and GIS

1.3.1 What Is GIS?

Storage and analysis of spatial data is traditionally done in Geographical
Information Systems (GIS). According to the toolbox-based definition of
Burrough and McDonnell (1998, p. 11), a GIS is ‘...a powerful set of tools
for collecting, storing, retrieving at will, transforming, and displaying spatial
data from the real world for a particular set of purposes’. Another defini-
tion mentioned in the same source refers to ‘... checking, manipulating, and
analysing data, which are spatially referenced to the Earth’.
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Its capacity to analyse and visualise data makes R a good choice for
spatial data analysis. For many spatial analysis projects, using only R may be
sufficient for the job. In other cases, R will be used in conjunction with GIS
software and possibly a GIS data base as well. Chapter 4 will show how spa-
tial data are imported from and exported to GIS file formats or data bases.
As is often the case in applied data analysis, the real issue is not whether a
given problem can be solved using an environment such as R, but whether it
can be solved efficiently and reproducibly with R. In some cases, combining
different software components in a workflow may be the most robust solution,
for example scripting in languages such as Python.

1.3.2 Service-Oriented Architectures

Today, much of the practice and research in geographical information systems
has moved from toolbox-centred architectures (think of the ‘classic’ Arc/Info™
or ArcGIS™ applications) towards service-centred architectures (such as
Google Earth™). In toolbox-centred architectures, the GIS application and
data are situated on the user’s computer or local area network. In service-
centred architectures, the tools and data are situated on remote computers
or virtual machines that may run a variety of operating systems, accessed
through Internet connections.

Reasons for this change are the increasing availability and bandwidth of
the Internet, and also ownership and maintenance of data and/or analysis
methods. For instance, data themselves may not be freely distributable, but
certain derived products (such as visualisations or generalisations) may be.
A service can be kept and maintained by the provider without end users hav-
ing to bother about updating their installed software or data bases. The R
system operates well under both toolbox-centred and service-centred architec-
tures. Several experiments integrating R in the sensor web and in web-based
workflows, either on the server side or on the client side, have been reported
(Pebesma et al., 2011; Niist et al., 2011; Bastin et al., 2013).

1.3.3 Further Reading on GIS

It seems appropriate to give some recommendations for further reading
concerning GIS, not least because a more systematic treatment would not
be appropriate here. Chrisman (2002) gives a concise and conceptually
elegant introduction to GIS, with weight on using the data stored in the
system; the domain focus is on land planning. A slightly older text by
Burrough and McDonnell (1998) remains thorough, comprehensive, and per-
haps a shade closer to the earth sciences in domain terms than Chrisman.
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Two newer comprehensive introductions to GIS cover much of the same
ground, but are published in colour. Heywood et al. (2006) contains less extra
material than Longley et al. (2005), but both provide very adequate coverage
of GIS as it is seen from within the GIS community today. To supplement
these, Wise (2002) provides a lot of very distilled experience on the technical-
ities of handling geometries in computers in a compact form, often without
dwelling on the computer science foundations; these foundations are given
by Worboys and Duckham (2004). Neteler and Mitasova (2008) provide an
excellent analytical introduction to GIS in their book, which also shows how
to use the open source GRASS GIS, and how it can be interfaced with R.
Krivoruchko (2011) gives a comprehensive guide to spatial statistical data
analysis, focussed chiefly on ESRI™ ArcGIS™, and including a chapter and
an appendix covering the use of R with ArcGIS™.

It is harder to provide guidance with regard to service-centred architectures
for GIS. The book by Shekar and Xiong (2008) is a monumental, forward-
looking collection with strong roots in computer and information science, and
reflects the ongoing embedding of GIS technologies into database systems far
more than the standard texts. Two hands-on alternatives show how service-
centred architectures can be implemented at low cost by non-specialists, work-
ing, for example in environmental advocacy groups, or volunteer search and
rescue teams (Mitchell, 2005; Erle et al., 2005); their approach is certainly
not academic, but gets the job done quickly and effectively.

In books describing the handling of spatial data for data analysts (looking
at GIS from the outside), Waller and Gotway (2004, pp. 38—67) cover most
of the key topics, with a useful set of references to more detailed treatments;
Banerjee et al. (2004, pp. 10-18) give a brief overview of cartography sufficient
to get readers started in the right direction.

45°N

Fig. 1.1 Volcanoes of the world with last known eruption 1964 or later (+) (Source:
National Geophysical Data Center)
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1.4 Types of Spatial Data

Spatial data have spatial reference: they have coordinate values and a system
of reference for these coordinates. As a fairly simple example, consider the
locations of volcano peaks on the Earth. We could list the coordinates for all
known volcanoes as pairs of longitude/latitude decimal degree values with
respect to the prime meridian at Greenwich and zero latitude at the equator.
The World Geodetic System (WGS84) is a frequently used representation of
the Earth.

Suppose we are interested in the volcanoes that have shown activity
between 1980 and 2000, according to some agreed seismic registration system.
This data set consists of points only. When we want to draw these points on a
(flat) map, we are faced with the problem of projection: we have to translate
from the spherical longitude/latitude system to a new, non-spherical coor-
dinate system, which inevitably changes their relative positions. In Fig. 1.1,
these data are projected using a Mollweide projection, and, for reference
purposes, coast lines have been added. Chapter 4 deals with coordinate ref-
erence systems, and with transformations between them.

If we also have the magnitude of the last observed eruption at the volcano,
this information is called an attribute: it is non-spatial in itself, but this
attribute information is believed to exist for each spatial entity (volcano).

Without explicit attributes, points usually carry implicit attributes, for
example all points in this map have the constant implicit attribute — they
mark a ‘volcano peak’, in contrast to other points that do not. We represent
the purely spatial information of entities by data models. The different types
of data models that we distinguish here include the following:

Point:  a single point location, such as a GPS reading or a geocoded address

Line:  a set of ordered points, connected by straight line segments

Polygon:  an area, marked by one or more enclosing lines, possibly containing
holes

Grid:  a collection of points or rectangular cells, organised in a regular lattice

The first three are vector data models and represent entities as exactly as
possible, while the final data model is a raster data model, representing con-
tinuous surfaces by using a regular tessellation. All spatial data consist of
positional information, answering the question ‘where is it?’. In many appli-
cations these will be extended by attributes, answering the question ‘what is
where?’; Chrisman (2002, pp. 37-69) distinguishes a range of spatial and
spatio-temporal queries of this kind. Examples for these four basic data
models and of types with attributes will now follow.

The location (x, y coordinates) of a volcano may be sufficient to establish
its position relative to other volcanoes on the Earth, but for describing a single
volcano we can use more information. Let us, for example try to describe the
topography of a volcano. Figure 1.2 shows a number of different ways to
represent a continuous surface (such as topography) in a computer.
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First, we can use a large number of points on a dense regular grid and
store the attribute altitude for each point to approximate the surface. Grey
tones are used to specify classes of these points on Fig. 1.2a.

Second, we can form contour lines connecting ordered points with equal
altitude; these are overlayed on the same figure, and separately shown on
Fig.1.2b. Note that in this case, the contour lines were derived from the
point values on the regular grid.

A polygon is formed when a set of line segments forms a closed object with
no lines intersecting. On Fig. 1.2a, the contour lines for higher altitudes are
closed and form polygons.

Lines and polygons may have attributes, for example the 140 contour line of
Fig. 1.2a may have the label ‘140 m above sea level’, or simply 140. Two closed
contour lines have the attribute 160 m, but within the domain of this study
area several non-closed contour lines have the attribute 110 m. The complete
area inside the 140 m polygon (Fig. 1.2¢) has the attribute ‘more than 140m
above sea level’, or >140. The area above the 160m contour is represented
by a polygon with a hole (Fig. 1.2d): its centre is part of the crater, which is
below 160 m.

Polygons formed by contour lines of volcanoes usually have a more or less
circular shape. In general, polygons can have arbitrary form, and may for
certain cases even overlap. A special, but common case is when they represent
the boundary of a single categorical variable, such as an administrative region.
In that case, they cannot overlap and should divide up the entire study area:
each point in the study area can and must be attributed to a single polygon,
or lies on a boundary of one or more polygons.

A special form to represent spatial data is that of a grid: the values in each
grid cell may represent an average over the area of the cell, or the value at
the midpoint of the cell, or something more vague — think of image sensors.
In the first case, we can see a grid as a special case of ordered points; in the
second case, they are a collection of rectangular polygons. In any case, we can
derive the position of each cell from the grid location, grid cell size, and the
organisation of the grid cells. Grids are a common way to tessellate a plane.
They are important because

— Devices such as digital cameras and remote sensing instruments register
data on a regular grid

— Computer screens and projectors show data on a grid

— Many spatial or spatio-temporal models, such as climate models, discretise
space by using a regular grid.

A comprehensive and up-to-date review of standards for representing
geographical information is given by Kresse et al. (2012), including the
relationship between the various standards.

Readers with a background in GI Science (Goodchild, 1992; Longley et al.,
2005) may note that we have so far not distinguished discrete objects and
events from continuous fields (Galton, 2004). Indeed, “point features with
attributes” may represent equally well earth quakes with magnitudes (ob-
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Fig. 1.2 Maunga Whau (Mt Eden) is one of about 50 volcanoes in the Auckland
volcanic field. (a) Topographic information (altitude, m) for Maunga Whau on a 10
x 10 m grid, (b) contour lines, (c) 140 m contour line: a closed polygon, (d) area
above 160 m (hashed): a polygon with a hole

jects/events, categorized as point patterns and dealt with in Chap.7) as tem-
perature readings from fixed sensors (fields, categorized as geostatistical data
and dealt with in Chap.8).

Representing these two very different types by one and the same class
may give room to meaningless analyses such as spatially interpolating earth
quake magnitudes, or summing temperatures over regions. As data coming
from various external sources usually do not come with an indication whether
a set of objects or a field is represented, automated mapping is not possible,
which would leave this burden to the user. Not imposing such type restrictions
may equally lead to error as to new findings.

1.5 Storage and Display

As R is open source, we can find out the meaning of every single bit and byte
manipulated by the software if we need to do so. Most users will, however,
be happy to find that this is unlikely to be required, and is left to a small
group of developers and experts. They will rely on the fact that many users
have seen, tested, or used the code before.

When running an R session, data are usually read or imported using
explicit commands, after which all data are kept in memory; users may choose
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to load a saved workspace or data objects. During an R session, the workspace
can be saved to disk or chosen objects can be saved in a portable binary form
for loading into the next session. When leaving an interactive R session, the
question Save workspace image? may be answered positively to save results
to disk. Saving the session history is a very useful way of documenting what
has been done, and is recommended as normal practice — even better is to
clean the file from mistyped commands, verify it is correct by rerunning it,
and to give it an informative file name.

Despite the fact that computers have greater memory capacity than they
used to, R may not be suitable for the analysis of massive data sets, because
data being analysed is held in memory. Massive data sets may, for example
come from satellite imagery, or detailed global coast line information. It is
in such cases necessary to have some idea about data size and memory man-
agement and requirements. Under such circumstances it is often still possible
to use R as an analysis engine on part of the data sets. Smaller useful data
sets can be obtained by selecting a certain region or by sub-sampling, aggre-
gating or generalising the original data. Chapters 2, 4 and 5 will give hints
on how to do this.

Spatial data are usually displayed on maps, where the z- and y-axes show
the coordinate values, with the aspect ratio chosen such that a unit in z
equals a unit in y. Another property of maps is that elements are added for
reference purposes, such as coast lines, rivers, administrative boundaries, or
even satellite images.

Display of spatial data in R is a challenge on its own, and is dealt with in
Chap. 3. For many users, the graphical display of statistical data is among
the most compelling reasons to use R, as maps are traditionally amongst the
strongest graphics we know.

The core R engine was not designed specifically for the display and analysis
of maps, and the limited interactive facilities it offers have drawbacks in this
area. Still, a large number of visualisations come naturally to R graphics,
while they would take a substantial effort to accomplish in legacy GIS. For one
thing, most GIS do not provide conditioning plots, where series of plots are
organised in a regular lattice, share axes, and legends, and allow for system-
atic comparison across a large number of settings, scenarios, time, or other
variables (e.g. Fig.3.10). R provides on-screen graphics and has many graph-
ics drivers, for example for vector graphics output to PostScript, Windows
metafiles, PDF, and many bitmapped graphics formats. And, as mentioned,
it works equally well as a front end or as a service providing back end for
statistical analysis.

1.6 Applied Spatial Data Analysis

Statistical inference is concerned with drawing conclusions based on data and
prior assumptions. The presence of a model of the data generating process
may be more or less acknowledged in the analysis, but its reality will make
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itself felt sooner or later. The model may be manifest in the design of data
collection, in the distributional assumptions employed, and in many other
ways. A key insight is that observations in space cannot in general be assumed
to be mutually independent, and that observations that are close to each other
are likely to be similar (ceteris paribus). This spatial patterning — spatial
autocorrelation — may be treated as useful information about unobserved
influences, but it does challenge the application of methods of statistical
inference that assume the mutual independence of observations.

Not infrequently, the prior assumptions are not made explicit, but are
rather taken for granted as part of the research tradition of a particular sci-
entific subdiscipline. Too little attention typically is paid to the assumptions,
and too much to superficial differences; for example Venables and Ripley
(2002, p. 428) comment on the difference between the covariance function
and the semi-variogram in geostatistics, that ‘{mJuch heat and little light
emerges from discussions of their comparison’.

To illustrate the kinds of debates that rage in disparate scientific
communities analysing spatial data, we sketch two current issues: red herrings
in geographical ecology and the interpretation of spatial autocorrelation in
urban economics.

The red herring debate in geographical ecology was ignited by Lennon
(2000), who claimed that substantive conclusions about the impact of en-
vironmental factors on, for example species richness had been undermined
by not taking spatial autocorrelation into account. Diniz-Filho et al. (2003)
replied challenging not only the interpretation of the problem in statisti-
cal terms, but pointing out that geographical ecology also involves the scale
problem, that the influence of environmental factors is moderated by spatial
scale.

They followed this up in a study in which the data were sub-sampled to
attempt to isolate the scale problem. But they begin: ‘It is important to
note that we do not present a formal evaluation of this issue using statistical
theory. .., our goal is to illustrate heuristically that the often presumed bias
due to spatial autocorrelation in OLS regression does not apply to real data
sets” (Hawkins et al., 2007, p. 376).

The debate continues with verve in Beale et al. (2007) and Diniz-Filho
et al. (2007). This is quite natural, as doubts about the impacts of environ-
mental drivers on species richness raise questions about, for example, the
effects of climate change. How to analyse spatial data is obviously of impor-
tance within geographical ecology. However, Diniz-Filho et al. (2007, p. 850)
conclude that ‘[w]hen multiple assumptions are not being met, as in the case
of virtually all geographical analyses, can a result from any single method
(whether spatial or non-spatial) be claimed to be better? ... If different spatial
methods themselves are unstable and generate conflicting results in real data,
it makes no sense to claim that any particular method is always superior to
any other’. Dray et al. (2012) review alternative views and suggest unifying
approaches to community ecology in multivariate multiscale spatial analysis.
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The urban economics debate is not as vigorous, but is of some practical
interest, as it concerns the efficiency of services provided by local govern-
ment. Revelli (2003) asks whether the spatial patterns observed in model
residuals are a reaction to model misspecification, or do they signal the pres-
ence of substantive interaction between observations in space? In doing so,
he reaches back to evocations of the same problem in the legacy literature
of spatial statistics. As Cliff and Ord (1981, pp. 141-142) put it, ‘two ad-
jacent supermarkets will compete for trade, and yet their turnover will be
a function of general factors such as the distribution of population and ac-
cessibility’. They stress that ‘the presence of spatial autocorrelation may be
attributable either to trends in the data or to interactions; ... [t]he choice of
model must involve the scientific judgement of the investigator and careful
testing of the assumptions’. When the fitted model is misspecified, it will be
hard to draw meaningful conclusions, and the care advised by Cliff and Ord
will be required.

One way of testing the assumptions is through changes in the policy
context over time, where a behavioural model predicts changes in spatial
autocorrelation — if the policy changes, the level of spatial interaction should
change (Bivand and Szymanski, 1997; Revelli, 2003). Alternatives include us-
ing multiple levels in local government (Revelli, 2003), or different electoral
settings, such as lame-duck administrations as controls (Bordignon et al.,
2003). A recent careful study has used answers to a questionnaire survey to
check whether interaction has occurred or not. It yields a clear finding that
the observed spatial patterning in local government efficiency scores is related
to the degree to which they compare their performance with that of other
local government entities (Revelli and Tovmo, 2007).

This book will not provide explicit guidance on the choice of models,
because the judgement of researchers in different scientific domains will vary.
One aspect shared by both examples is that the participants stress the impor-
tance of familiarity with the core literature of spatial statistics. It turns out
that many of the insights found there remain fundamental, despite the pas-
sage of time. Applied spatial data analysis seems to be an undertaking that,
from time to time, requires the analyst to make use of this core literature.

Without attempting to be exhaustive in reviewing key books covering all
the three acknowledged areas of spatial statistics — point processes, geostatis-
tics, and areal data — we can make some choices. Bivand (2008, pp. 16-17)
documents the enduring position of Ripley (1981)¢ and Cliff and Ord (1981)
in terms of paper citations. Ripley (1988) supplements and extends the
earlier work, and is worth careful attention. The comprehensive text by
Cressie (1993) is referred to very widely; careful reading of the often very
short passages of relevance to a research problem can be highly rewarding.
Schabenberger and Gotway (2005) cover much of the same material, incor-
porating advances made over the intervening period. Banerjee et al. (2004)

6 Reprinted in 2004.
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show how the Bayesian approach to statistics can be used in applied spa-
tial data analysis. A recent addition by Gaetan and Guyon (2010) shows
clearly how the availability of R spatial statistics software is now interacting
with the elaboration of statistical methods. The volume edited by Gelfand
et al. (2010) provides a comprehensive overview of spatial statistics. Both
Finkenstadt et al. (2006) and Cressie and Wikle (2011) provide recent mate-
rial on spatio-temporal statistics.

Beyond the core statistical literature, many disciplines have their own
traditions, often collated in widely used textbooks. Public health and disease
mapping are well provided for by Waller and Gotway (2004), as is ecology
by Fortin and Dale (2005). O’Sullivan and Unwin (2010) cover similar topics
from the point of view of geography and GIS. Like Banerjee et al. (2004), the
disciplinary texts differ from the core literature not only in the way theoretical
material is presented, but also in the availability of the data sets used in the
books for downloading and analysis. Haining (2003) is another book providing
some data sets, and an interesting bridge to the use of Bayesian approaches
in the geographies of health and crime. Despite its age, Bailey and Gatrell
(1995) remains a good text, with support for its data sets in R packages.

In an R News summary, Ripley (2001) said that one of the reasons for
the relatively limited availability of spatial statistics functions in R at that
time was the success of the S-PLUS™ spatial statistics module (Kaluzny et al.,
1998). Many of the methods for data handling and analysis are now available
in R complement and extend those in the legacy S-PLUS™ module.

To summarise the approach to applied spatial data analysis adopted here,
we can say that — as with the definition of geography as ‘what geographers
do’ — applied spatial data analysis can best be understood by observing what
practitioners do and how they do it. Since practitioners may choose to con-
duct analyses in different ways, it becomes vital to keep attention on ‘how
they do it’, which R facilitates, with its unrivalled closeness to both data and
the implementation of methods. It is equally important to create and main-
tain bridges between communities of practitioners, be they innovative statis-
ticians or dedicated field scientists, or (rarely) both in the same person. The R
Spatial community attempts to offer such opportunities, without necessarily
prescribing or proscribing particular methods, and this approach will be re-
flected in this book.

1.7 R Spatial Resources

There are a range of resources for analysing spatial data with R, one being this
book. In using the book, it is worth bearing in mind the close relationships
between the increase in the availability of software for spatial data analysis on
CRAN and the activities of the informal community of users interested in
spatial data analysis. Indeed, without contributions, advice, bug reports, and
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fruitful questions from users, very little would have been achieved. So before
going on to present the structure of the book, we mention some of the more
helpful online resources.

Since CRAN has grown to over 4,400 packages in March 2013, finding
resources is not simple. One opportunity is to use the collection of ‘Task
Views’ available on CRAN itself. One of these covers spatial data analysis,
and another spatio-temporal data. Both are kept up to date. Other task views
may also be relevant. These web pages are intended to be very concise, but
because they are linked to the resources listed, including packages on CRAN,
they can be considered as a kind of ‘shop window’. By installing the ctv
package and executing the command install.views("Spatial"), you will
install almost all the contributed packages needed to reproduce the examples
in this book (which may be downloaded from the book website).

The spatial task view is available on all CRAN mirrors, but may be
accessed directly”; it provides a very concise summary of available contributed
packages. It also specifically links another resources, a mailing list dedicated
to spatial data analysis with R. The R-sig-geo mailing list was started in 2003
after sessions on spatial statistics at the Distributed Statistical Computing
conference organised in Vienna earlier the same year. By late 2007, the mail-
ing list was being used by over 800 members; early 2013 this number has
grown to over 2,750. The R-sig-geo list is meant to off-load the spatial topic
traffic from the high-volume R-help mailing list (Fig. 2).

The archives of the mailing list are hosted in Zurich with the other R
mailing list archives, and copies are held on Gmane and Nabble. This means
that list traffic on an interesting thread can be accessed by general Internet
search engines; a Google™ search on R gstat kriging picks up list traffic
and relevant blogs easily.

1.8 Layout of the Book

This book is divided into two basic parts, the first presenting the shared R
packages, functions, classes, and methods for handling spatial data. This part
is of interest to users who need to access and visualise spatial data, but who
are not initially concerned with drawing conclusions from analysing spatial
data per se. The second part showcases more specialised kinds of spatial
data analysis, in which the relative position of observations in space may
contribute to understanding the data generation process. This part is not an
introduction to spatial statistics in itself, and should be read with relevant
textbooks and papers referred to in the chapters.

Chapters 2 through 6 introduce spatial data handling in R. Readers
needing to get to work quickly may choose to read Chap.4 first, and return

7 http://CRAN.R-project.org/view=Spatial
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to other chapters later to see how things work. Those who prefer to see the
naked structure first before using it will read the chapters in sequence, prob-
ably omitting technical subsections. The functions, classes, and methods are
indexed, and so navigation from one section to another should be feasible.

Chapter 2 discusses in detail the classes for spatial data in R, as
implemented in the sp package, and Chap.3 discusses a number of ways
of visualising for spatial data. Chapter 4 explains how coordinate reference
systems work in the sp representation of spatial data in R, how they can be
defined and how data can be transformed from one system to another, how
spatial data can be imported into R or exported from R to GIS formats, and
how R and the open source GRASS GIS are integrated. Chapter 5 covers
methods for handling the classes defined in Chap. 2, especially for combining
and integrating spatial data. Chapter 6 introduces the representation and
handling of spatio-temporal data.

If we use the classification of Cressie (1993), we can introduce the applied
spatial data analysis part of the book as follows: Chap. 7 covers the analysis
of spatial point patterns, in which the relative position of points is compared
with clustered, random, or regular generating processes. Chapter 8 presents
the analysis of geostatistical data, with interpolation from values at observa-
tion points to prediction points. Chapter 9 deals with the statistical analysis
of areal data, where the observed entities form a tessellation of the study area,
and are often containers for data arising at other scales; Chap. 10 covers the
special topic of disease mapping in R, and together they cover the analysis of
lattice data, here termed areal data.

Data sets and code for reproducing the examples in this book are available
from http://www.asdar-book.org; the website also includes support
material and errata.
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Handling Spatial Data

The key intuition underlying the development of the classes and methods in
the sp package, and its closer dependent packages, is that users approaching
R with experience of GIS will want to see ‘layers’, ‘coverages’, ‘rasters’, or
‘geometries’. Seen from this point of view, sp classes should be reasonably fa-
miliar, appearing to be well-known data models. On the other hand, for statis-
tician users of R, ‘everything’ is a data.frame, a rectangular table with rows
of observations on columns of variables. To permit the two disparate groups
of users to play together happily, classes have grown that look like GIS data
models to GIS and other spatial data people, and look and behave like data
frames from the point of view of applied statisticians and other data analysts.

This part of the book describes the classes and methods of the sp package,
and in doing so also provides a practical guide to the internal structure of
many GIS data models, as R permits the user to get as close as desired to the
data. However, users will not often need to know more than that of Chap.4
to read in their data and start work. Visualisation is covered in Chap. 3, and
so a statistician receiving a well-organised set of data from a collaborator
may even be able to start making maps in two lines of code, one to read the
data and one to plot the variable of interest using lattice graphics. Note that
complete code examples, data sets, and other support material may be found
on the book website.

If life was always so convenient, this part of the book could be much shorter
than it is. But combining spatial data from different sources often means that
much more insight is needed into the data models involved. The data models
themselves are described in Chap. 2, and methods for handling and combining
them are covered in Chap.5, with substantial discussion of functions and
operations provided in the rgeos package. Keeping track of which observation
belongs to which geometry is also discussed here, seen from the GIS side as
feature identifiers, and row names from the data frame side. In addition to
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data import and export, Chap.4 also describes the use and transformation
of coordinate reference systems for sp classes, and integration of the open
source GRASS GIS and R. Finally, Chap.6 explains how the methods and
classes introduced in Chap. 2 can be extended to spatio-temporal data.



Chapter 2
Classes for Spatial Data in R

2.1 Introduction

Many disciplines have influenced the representation of spatial data, both in
analogue and digital forms. Surveyors, navigators, and military and civil en-
gineers refined the fundamental concepts of mathematical geography, estab-
lished often centuries ago by some of the founders of science, for example by
al-Khwarizmi. Digital representations came into being for practical reasons
in computational geometry, in computer graphics and hardware-supported
gaming, and in computer-assisted design and virtual reality. The use of spa-
tial data as a business vehicle has been spurred early in the present century
by consumer wired and mobile broadband penetration and distributed server
farms, with examples being Google Earth™, Google Maps™, and others. There
are often interactions between the graphics hardware required and the services
offered, in particular for the fast rendering of scene views.

In addition, space and other airborne technologies have vastly increased
the volumes and kinds of spatial data available. Remote sensing satellites
continue to make great contributions to earth observation, with multi-spectral
images supplementing visible wavelengths. The Shuttle Radar Topography
Mission (SRTM) in February 2000 has provided elevation data for much of
the earth. Other satellite-borne sensor technologies are now vital for timely
storm warnings, amongst other things. These complement terrestrial networks
monitoring, for example, lightning strikes and the movement of precipitation
systems by radar.

Surveying in the field has largely been replaced by aerial photogram-
metry, mapping using air photographs usually exposed in pairs of stereo
images. Legacy aerial photogrammetry worked with analogue images, and
many research laboratories and mapping agencies have large archives of
air photographs with coverage beginning from the 1930s. These images
can be scanned to provide a digital representation at chosen resolutions.

R.S. Bivand et al., Applied Spatial Data Analysis with R, Use R! 10, 21
DOI 10.1007/978-1-4614-7618-4_2,
© Springer Science+Business Media New York 2013
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While satellite imagery usually contains metadata giving the scene frame —
the sensor direction in relation to the earth at scan time — air photographs
need to be registered to known ground control points.

These ground control points were ‘known’ from terrestrial triangulation,
but could be in error. The introduction of Global Positioning System (GPS)
satellites has made it possible to correct the positions of existing networks
of ground control points. The availability of GPS receivers has also made
it possible for data capture in the field to include accurate positional infor-
mation in a known coordinate reference system. This is conditioned by the
requirement of direct line-of-sight to a sufficient number of satellites, not easy
in mountain valleys or in city streets bounded by high buildings. Despite this
limitation, around the world the introduction of earth observation satellites
and revised ground control points have together caused breaks of series in
published maps, to take advantage of the greater accuracy now available.
This means that many older maps cannot be matched to freshly acquired
position data without adjustment.

All of these sources of spatial data involve points, usually two real numbers
representing position in a known coordinate reference system. It is possible
to go beyond this simple basis by combining pairs of points to form line
segments, combining line segments to form polylines, networks or polygons, or
regular grid centres. Grids can be defined within a regular polygon, usually a
rectangle, with given resolution — the size of the grid cells. All these definitions
imply choices of what are known in geographical information systems (GIS)
as data models, and these choices have most often been made for pragmatic
reasons. All the choices also involve trade-offs between accuracy, feasibility,
and cost. Standards for representing geographical information are reviewed
by Kresse et al. (2012).

Artificial objects are easiest to represent, like roads, bridges, buildings, or
similar structures. They are crisply defined, and are not subject to natural
change — unlike placing political borders along the centre lines or deepest
channels of meandering rivers. Shorelines are most often natural and cannot
be measured accurately without specifying measurement scale. Boundaries
between areas of differing natural land cover are frequently indeterminate,
with gradations from one land cover category to another. Say that we want
to examine the spatial distribution of a species by land cover category; our
data model of how to define the boundary between categories will affect the
outcome, possibly strongly. Something of the same affects remote sensing, be-
cause the reported values of the observed pixels will hide sub-pixel variation.

It is unusual for spatial data to be defined in three dimensions, because
of the close links between cartography and data models for spatial data.
When there are multiple observations on the same attribute at varying heights
or depths, they are most often treated as separate layers. GIS-based data
models do not fit time series data well either, even though some environmental
monitoring data series are observed in three dimensions and time. Some GIS
software can handle voxels, the 3D equivalent of pixels — 2D raster cells — but
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the third dimension in spatial data is not handled satisfactorily, as is the
case in computer-assisted design or medical imaging. On the other hand,
many GIS packages do provide a 2.5D intermediate solution for viewing, by
draping thematic layers, like land cover or a road network, over a digital
elevation model. In this case, however, there is no ‘depth’ in the data model,
as we can see when a road tunnel route is draped over the mountain it goes
through.

2.2 Classes and Methods in R

In Chap. 1, we described R as a language and environment for data analysis.
Although this is not the place to give an extended introduction to R, it will
be useful to highlight some of its features (see also Teetor, 2011, for an up-
to-date introduction). In this book, we will be quoting R commands in the
text, showing which commands a user could give, and how the non-graphical
output might be represented when printed to the console.

Of course, R can be used as a calculator to carry out simple tasks, where
no values are assigned to variables, and where the results are shown without
being saved, such as the area of a circle of radius 10:

> pi * 1072
[1] 314.1593

Luckily, 7 is a built-in constant in R called pi, and so entering a rounded
version is not needed. So this looks like a calculator, but appearances mislead.
The first misleading impression is that the arithmetic is simply being ‘done’,
while in fact it is being translated (parsed) into functions (operators) with
arguments first, and then evaluated:

> "x"(pi, "~"(10, 2))
[1] 314.1593

When the operators or functions permit, vectors of values may be used
as readily as scalar values (which are vectors of unit length) — here the ¢:’
operator is used to generate an integer sequence of values:
> pi * (1:10)°2

[1] 3.141593 12.566371 28.274334 50.265482 78.539816 113.097336
[7] 153.938040 201.061930 254.469005 314.159265

The second misapprehension is that what is printed to the console is the
‘result’, when it is actually the outcome of applying the appropriate print

1 Free documentation, including the very useful ‘An Introduction to R’ (Venables
et al., 2013), may be downloaded from CRAN.
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method for the class of the ‘result’, with default arguments. If we store the
value returned for the area of our circle in variable x using the assignment
operator <-, we can print x with the default number of digits, or withmore if
we so please. Just typing the variable name at the interactive prompt invokes
the appropriate print method, but we can also pass it to the print method
explicitly:

> x <- pi * 1072
> X

[1] 314.1593

> print(x)

[1] 314.1593

> print(x, digits = 12)
[1] 314.159265359

We can say that the variable x contains an object of a particular class, in this
case:

> class(x)
[1] "numeric"
> typeof (x)

[1] "double"

where typeof returns the storage mode of the object in variable x. It is the
class of the object that determines the method that will be used to handle
it; if there is no specific method for that class, it may be passed to a default
method. These methods are also known as generic functions, often including
at least print, plot, and summary methods. In the case of the print method,
numeric is not provided for explicitly, and so the default method is used.
The plot method, as its name suggests, will use the current graphics device
to make a visual display of the object, dispatching to a specific method for the
object class if provided. In comparison with the print method, the summary
method provides a qualified view of the data, highlighting the key features of
the object.

When the S language was first introduced, it did not use class/method
mechanisms at all. They were introduced in Chambers and Hastie (1992)
and S version 3, in a form that is known as S3 classes or old-style classes.
These classes were not formally defined, and ‘just grew’; the vast majority
of objects returned by model fitting functions belong to old-style classes.
Using a non-spatial example from the standard data set cars, we can see
that it is an object of class data.frame, stored in a 1list, which is a vector
whose components can be arbitrary objects; data.frame has both names and
summary methods:
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> class(cars)

[1] "data.frame"
> typeof (cars)

[1] "1list"

> names (cars)

[1] "speed" "dist"

> summary (cars)

speed dist
Min. : 4.0 Min. : 2.00
1st Qu.:12.0 1st Qu.: 26.00
Median :15.0 Median : 36.00
Mean :15.4 Mean : 42.98
3rd Qu.:19.0 3rd Qu.: 56.00
Max. :25.0 Max. :120.00

The data.frame contains two variables, one recording the speed of the
observed cars in mph, the other the stopping distance measured in feet — the
observations were made in the 1920s. When uncertain about the structure of
something in our R workspace, revealed for example by using the 1s function
for listing the contents of the workspace, the str? method often gives a clear
digest, including the size and class:

> str(cars)

'data.frame': 50 obs. of 2 variables:
$ speed: num 4 4 77 8 ...
$ dist : num 2 10 4 22 16 ...

Data frames are containers for data used everywhere in S since their full
introduction in Chambers and Hastie (1992, pp. 45-94). Recent and shorter
introductions to data frames are given by Adler (2010, pp. 87-88), Teetor
(2011, pp. 100-101, 122-143), and Dalgaard (2008, pp. 20-25) and in the
online documentation (Venables et al., 2013, pp. 29-31 in the R 3.0.0 release).
Data frames view the data as a rectangle of rows of observations on columns
of values of variables of interest. The representation of the values of the
variables of interest can include integer and floating point numeric types,
logical, character, and derived classes. One very useful derived class is the
factor, which is represented as integers pointing to character levels, such as
‘forest’ or ‘arable’. Printed, the values look like character values, but
are not — when a data frame is created, all character variables included in it
are converted to factor by default. Data frames also have unique row names,
represented as an integer or character vector or as an internal mechanism to

2 str can take additional arguments to control its output.
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signal that the sequence from 1 to the number of rows in the data frame are
used. The row.names function is used to access and assign data frame row
names.

One of the fundamental abstractions used in R is the formula introduced in
Chambers and Hastie (1992, pp. 13-44) — an online summary may be found
in Venables et al. (2013, pp. 54-56 in the R 3.0.0 release). The abstraction is
intended to make statistical modelling as natural and expressive as possible,
permitting the analyst to focus on the substantive problem at hand. Because
the formula abstraction is used in very many contexts, it is worth some
attention. A formula is most often two-sided, with a response variable to
the left of the ~ (tilde) operator, and in this case a determining variable on
the right:

> class(dist ~ speed)

[1] "formula"

These objects are typically used as the first argument to model fitting
functions, such as 1m, which is used to fit linear models. They will usually be
accompanied by a data argument, indicating where the variables are to be
found:

> Im(dist ~ speed, data = cars)

Call:
Im(formula = dist

speed, data = cars)

Coefficients:
(Intercept) speed
-17.579 3.932

This is a simple example, but very much more can be done with the formula
abstraction. If we create a factor for the speed variable by cutting it at
its quartiles, we can contrast how the plot method displays the relationship
between two numerical variables and a numerical variable and a factor (shown
in Fig.2.1):

> cars$gspeed <- cut(cars$speed, breaks = quantile(cars$speed),

+ include.lowest = TRUE)
> is.factor(cars$qspeed)

[1] TRUE

> plot(dist ~ speed, data = cars)
> plot(dist ~ gspeed, data = cars)

Finally, let us see how the formula with the right-hand side factor is
handled by 1m — it is converted into ‘dummy’ variable form automatically:

> 1lm(dist ~ gspeed, data = cars)
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Fig. 2.1 Plot methods for a formula with numerical (left panel) and factor (right
panel) right-hand side variables

Call:
Im(formula = dist ~ gspeed, data = cars)

Coefficients:
(Intercept) gspeed(12,15] gspeed(15,19] qgspeed(19,25]
18.20 21.98 31.97 51.13

Variables in the formula may also be transformed in different ways, for
example using log. The formula is carried through into the object returned
by model fitting functions to be used for prediction from new data provided in
a data.frame with the same column names as the right-hand side variables,
and the same level names if the variable is a factor.

New-style (S4) classes were introduced in the S language at release 4,
and in Chambers (1998), and are described by Venables and Ripley (2000,
pp. 75-121), by Chambers (2008, pp. 331-410), and in subsequent documen-
tation installed with R. Old-style classes are most often simply lists with at-
tributes; they are not defined formally. Although users usually do not change
values inside old-style classes, there is nothing to stop them doing so, for
example changing the representation of coordinates from floating point to
integer numbers. This means that functions need to check, among other
things, whether components of a class exist, and whether they are repre-
sented correctly, before they can be handled. The central advantage of new-
style classes is that they have formal definitions that specify the name and
type of the components, called slots, that they contain. This simplifies the
writing, maintenance, and use of the classes, because their format is known
from the definition.
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Because the classes provided by the sp package are new-style classes, we
will be seeing how such classes work in practice below. In particular, we
will be referring to the slots in class definitions; slots are specified in the
definition as the representation of what the class contains. Many methods
are written for the classes to be introduced in the remainder of this chapter,
in particular coercion methods for changing the way an object is represented
from one class to another. New-style classes can also check the validity of
objects being created, for example to stop the user from filling slots with
data that do not conform to the definition.

2.3 Spatial Objects

The foundation class is the Spatial class, with just two slots. The first
is a bounding box, a matrix of numerical coordinates with column names
c(‘min’, ‘max’), and at least two rows, with the first row eastings (z-axis)
and the second northings (y-axis). Most often the bounding box is gener-
ated automatically from the data in subclasses of Spatial. The second is a
CRS class object defining the coordinate reference system, and may be set
to ‘missing’, represented by NA in R, by CRS (as.character (NA)), its default
value. Operations on Spatial* objects should update or copy these values
to the new Spatial* objects being created. We can use getClass to return
the complete definition of a class, including its slot names and the types of
their contents:

> library(sp)

> getClass("Spatial")

Class "Spatial" [package "sp"]

Slots:
Name: bbox projéstring
Class: matrix CRS

Known Subclasses:

Class "SpatialPoints", directly

Class "SpatialGrid", directly

Class "SpatialLines", directly

Class "SpatialPolygons", directly

Class "SpatialPointsDataFrame", by class "SpatialPoints", distance 2

Class "SpatialPixels", by class "SpatialPoints", distance 2

Class "SpatialGridDataFrame", by class "SpatialGrid", distance 2

Class "SpatiallLinesDataFrame", by class "SpatialLines", distance 2

Class "SpatialPixelsDataFrame", by class "SpatialPoints", distance 3

Class "SpatialPolygonsDataFrame", by class "SpatialPolygons",
distance 2

As we see, getClass also returns known subclasses, showing the classes that
include the Spatial class in their definitions. This also shows where we are
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going in this chapter, moving from the foundation class to richer representa-
tions. But we should introduce the coordinate reference system (CRS) class
very briefly; we will return to its description in Chap. 4.

> getClass("CRS")

Class "CRS" [package "sp"l

Slots:

Name: projargs
Class: character
The class has a character string as its only slot value, which may be a missing
value. If it is not missing, it should be a PROJ.4-format string describing the
projection (more details are given in Sect.4.1.2). For geographical coordi-
nates, the simplest such string is "+proj=longlat", using "longlat", which
also shows that eastings always go before northings in sp classes. Let us
build a simple Spatial object from a bounding box matrix, and a missing
coordinate reference system:
> m <- matrix(c(0, 0, 1, 1), ncol = 2, dimnames = list(NULL,
+ C("min”, "maxll)))
> crs <- CRS(projargs = as.character(NA))
> crs
CRS arguments: NA
> S <- Spatial(bbox = m, proj4string = crs)
> S
An object of class "Spatial"
Slot "bbox":
min max
(1,1 o 1
2, o 1

Slot "proj4string":
CRS arguments: NA
We could have used new methods to create the objects, but prefer to use
helper functions with the same names as the classes that they instantiate.
If the object is known not to be projected, a sanity check is carried out on
the coordinate range (which here exceeds the feasible range for geographical
coordinates):
> bb <- matrix(c(350, 85, 370, 95), ncol = 2, dimnames = list(NULL,
+ c("min", "max")))
> Spatial(bb, proj4string = CRS("+proj=longlat"))
Error in validityMethod(object)

Geographical CRS given to non-conformant data: 370 95

The definition of this class, and classes inheriting from it, does not include
cartographic symbology, understood as specifications of symbols, their sizes,
shapes or colours (Slocum et al., 2005). In sp, choices affecting the symbolic
representation of objects are made when visualisation methods are used on
objects, explicitly as arguments to those methods as described in Chap. 3.
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2.4 SpatialPoints

The SpatialPoints class is the first subclass of Spatial, and a very
important one. The extension of SpatialPoints to other subclasses means
that explaining how this class works will yield benefits later on. In this section,
we also look at methods for Spatial* objects, and at extending Spatial*
objects to include attribute data, where each spatial entity, here a point, is
linked to a row in a data frame. We take Spatial* objects to be subclasses
of Spatial, and the best place to start is with SpatialPoints. Note also
that we will refer to spatial objects with which data may be associated as
features.

A two-dimensional point can be described by a pair of numbers (z,y),
defined over a known region. As Herring (2011, p. 20) puts it: “[a] point is a
0-dimensional geometric object and represents a single location in coordinate
space” (see also Kresse et al., 2012, pp. 505-506). To represent geographical
phenomena, the maximum known region is the earth, and the pair of numbers
measured in degrees are a geographical coordinate, showing where our point
is on the globe. The pair of numbers define the location on the sphere exactly,
but if we represent the globe more accurately by an ellipsoid model, such as
the World Geodetic System 1984 — introduced after satellite measurements
corrected our understanding of the shape of the earth — that position shifts
slightly. Geographical coordinates can extend from latitude 90° to —90° in
the north—south direction, and from longitude 0° to 360° or equivalently from
—180° to 180° in the east—west direction. The Poles are fixed, but where the
longitudes fall depends on the choice of prime meridian, most often Greenwich
just east of London. This means that geographical coordinates define a point
on the earth’s surface unequivocally if we also know which ellipsoid model
and prime meridian were used; the concept of datum, relating the ellipsoid
to the distance from the centre of the earth, is introduced on p. 84.

Using the standard read.table function, we read in a data file with the
positions of CRAN mirrors across the world in 2005. We extract the two
columns with the longitude and latitude values into a matrix, and use str to
view a digest:

> CRAN_df <- read.table("CRAN0O51001a.txt", header = TRUE)
> CRAN_mat <- cbind (CRAN_df$long, CRAN_df$lat)

> row.names (CRAN_mat) <- 1:nrow(CRAN_mat)

> str(CRAN_mat)

num [1:54, 1:2] 153 145 ...

- attr(*, "dimnames")=List of 2
..$ : chr [1:54] "im "2" ...
..$ : NULL

The SpatialPoints class extends the Spatial class by adding a coords slot,
into which a matrix of point coordinates can be inserted.

> getClass("SpatialPoints")
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Class "SpatialPoints" [package "sp"]

Slots:
Name: coords bbox projé4string
Class: matrix matrix CRS

Extends: "Spatial"

Known Subclasses:

Class "SpatialPointsDataFrame", directly

Class "SpatialPixels", directly

Class "SpatialPixelsDataFrame", by class "SpatialPixels", distance 2

It has a summary method that shows the bounding box, whether the object
is projected (here FALSE, because the string "longlat" is included in the
projection description), and the number of rows of coordinates. Classes in
sp are not atomic: there is no SpatialPoint class that is extended by Spa-
tialPoints. This is because R objects are vectorised by nature, not atomic.
A SpatialPoints object may, however, consist of a single point. This class
is in some ways similar to the MultiPoint definition given by Herring (2011,
p. 20) and Kresse et al. (2012, pp. 505-506), but is not taken formally as a
GeometryCollection in their terms.

> 11CRS <- CRS("+proj=longlat +ellps=WGSS4")
> CRAN_sp <- SpatialPoints(CRAN_mat, proj4string = 11CRS)
> summary (CRAN_sp)

Object of class SpatialPoints
Coordinates:
min max
coords.x1 -122.95000 153.0333
coords.x2 -37.81667 57.0500
Is projected: FALSE
proj4string : [+proj=longlat +ellps=WGS84]
Number of points: 54

SpatialPoints objects may have more than two dimensions, but plot meth-
ods for the class use only the first two.

2.4.1 Methods

Methods are available to access the values of the slots of Spatial objects.
The bbox method returns the bounding box of the object, and is used both
for preparing plotting methods (see Chap. 3) and internally in handling data
objects. The first row reports the west—east range and the second the south—
north direction. If we want to take a subset of the points in a SpatialPoints
object, the bounding box is reset, as we will see.

> bbox (CRAN_sp)
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min max
coords.xl -122.95000 153.0333
coords.x2 -37.81667 57.0500

First, the other generic method for all Spatial objects, proj4string,
will be introduced. The basic method reports the projection string contained
as a CRS object in the proj4string slot of the object, but it also has an
assignment form, allowing the user to alter the current value, which can also
be a CRS object containing a character NA value:

> proj4string (CRAN_sp)
[1] "+proj=longlat +ellps=WGS84"

> proj4string (CRAN_sp) <- CRS(as.character(NA))
> proj4string (CRAN_sp)

[1] NA
> proj4string(CRAN_sp) <- 11CRS

Extracting the coordinates from a SpatialPoints object as a numeric matrix
is as simple as using the coordinates method. Like all matrices, the indices
can be used to choose subsets, for example CRAN mirrors located in Brazil
in 2005:

> brazil <- which(CRAN_df$loc == "Brazil")
> brazil

[1] 456 7 8
> coordinates (CRAN_sp) [brazil, ]

coords.xl coords.x2
-49.26667 -25.41667
-42.86667 -20.75000
-43.20000 -22.90000
-47.63333 -22.71667
-46.63333 -23.53333

0w N O 0

In addition, a SpatialPoints object can also be accessed by index, using the
"[" operator, here on the coordinate values treated as an entity. The object
returned is of the same class, and retains the projection information, but has
a new bounding box:

> summary (CRAN_sp[brazil, ])

Object of class SpatialPoints
Coordinates:
min max
coords.x1l -49.26667 -42.86667
coords.x2 -25.41667 -20.75000
Is projected: FALSE
proj4string : [+proj=longlat +ellps=WGS84]
Number of points: 5
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The " [" operator also works for negative indices, which remove those coor-
dinates from the object, here by removing mirrors south of the Equator:

> south_of_equator <- which(coordinates(CRAN_sp)[, 2] <
+ 0)
> summary (CRAN_sp[-south_of_equator, ])

Object of class SpatialPoints
Coordinates:
min max
coords.x1l -122.95 140.10
coords.x2 24.15 57.05
Is projected: FALSE
proj4string : [+proj=longlat +ellps=WGS84]
Number of points: 45

Because summary and print methods are so common in R, we used them
here without special mention. They are provided for sp classes, with summary
reporting the number of spatial entities, the projection information, and the
bounding box, and print gives a view of the data in the object. As usual
in R, the actual underlying data and the output of the print method may
differ, for example in the number of digits shown.

An important group of methods for visualisation of Spatial* objects are
presented in detail in Chap. 3; each such object class has a plot method.
Other methods will also be introduced in Chap.5 for combining (overlaying)
different Spatial* objects — named over methods, and for sampling from
Spatial objects.

2.4.2 Data Frames for Spatial Point Data

We described data frames on p. 25, and we now show how our SpatialPoints
object can be taught to behave like a data.frame. Here we use numbers in
sequence to index the points and the rows of our data frame, because neither
the place names nor the countries are unique.

> str(row.names (CRAN_df))

chr [1:54] "1i" "2" ...

What we would like to do is to associate the correct rows of our data frame
object with ‘their’ point coordinates — it often happens that data are collected
from different sources, and the two need to be merged. The SpatialPoints-
DataFrame class is the container for this kind of spatial point information, and
can be constructed in a number of ways, for example from a data frame and a
matrix of coordinates. If the matrix of point coordinates has row names and
the match.ID argument is set to its default value of TRUE, then the matrix row
names are checked against the row names of the data frame. If they match,
but are not in the same order, the data frame rows are re-ordered to suit the
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points. If they do not match, no SpatialPointsDataFrame is constructed.
Note that the new object takes two indices, the first for the spatial object,
the second, if given, for the column. Giving a single index number, or range of
numbers, or column name or names returns a new SpatialPointsDataFrame
with the requested columns. Using other extraction operators, especially the
$ operator, returns the data frame column referred to. These operators mimic
the equivalent ones for other standard R classes as far as possible.

> CRAN_spdf1 <- SpatialPointsDataFrame (CRAN_mat, CRAN_df,
+ proj4string = 11CRS, match.ID = TRUE)
> CRAN_spdf1[4, ]

coordinates place north east loc long
4 (-49.2667, -25.4167) Curitiba 25d25'S 49d16'W Brazil -49.26667
lat
4 -25.41667

> str(CRAN_spdfi$loc)
Factor w/ 30 levels "Australia","Austria",..: 112 3 3 ...
> str(CRAN_spdf1[["loc"]])

Factor w/ 30 levels "Australia","Austria",..: 112 3 3 ...

If we re-order the data frame at random using sample, we still get the same
result, because the data frame is re-ordered to match the row names of the
points:

> s <- sample(nrow(CRAN_df))

> CRAN_spdf2 <- SpatialPointsDataFrame (CRAN_mat, CRAN_df[s,

+ 1, proj4string = 11CRS, match.ID = TRUE)
> all.equal (CRAN_spdf2, CRAN_spdf1)

[1] TRUE

> CRAN_spdf2[4, ]

coordinates place north east loc long

4 (-49.2667, -25.4167) Curitiba 25d25'S 49d16'W Brazil -49.26667
lat
4 -25.41667

But if we have non-matching ID values, created by pasting pairs of letters
together and sampling an appropriate number of them, the result is an error:

v

CRAN_df1 <- CRAN_df
row.names (CRAN_df1) <- sample(c(outer(letters, letters,
+ paste, sep = "")), nrow(CRAN_df1))

v

> CRAN_spdf3 <- SpatialPointsDataFrame (CRAN_mat, CRAN_df1,
+ proj4string = 11CRS, match.ID = TRUE)

Error in SpatialPointsDataFrame(CRAN_mat, CRAN_dfl,
proj4string = 11CRS, : row.names of data and coords do not
match



2.4 SpatialPoints 35

SpatialPointsDataFrame Spatial T
SpatialPoints = bbox
coords.nrs proj4string

> data

SpatialPoints

4{ data.frame coords

Spatial =

Fig. 2.2 Spatial points classes and their slots; arrows show subclass extensions

Let us examine the contents of objects of the SpatialPointsDataFrame
class, shown in Fig.2.2. Because the class extends SpatialPoints, it also
inherits the information contained in the Spatial class object. The data slot
is where the information from the data frame is kept, in a data.frame object.

> getClass("SpatialPointsDataFrame")

Class "SpatialPointsDataFrame" [package "sp"]

Slots:

Name: data coords.nrs coords bbox proj4string
Class: data.frame numeric matrix matrix CRS
Extends:

Class "SpatialPoints", directly
Class "Spatial", by class "SpatialPoints", distance 2

Known Subclasses:
Class "SpatialPixelsDataFrame", directly, with explicit coerce

The Spatial*DataFrame classes have been designed to behave as far as
possible like data frames, both with respect to standard methods such as
names, and more demanding modelling functions like model.frame used in
very many model fitting functions using formula and data arguments:

> names (CRAN_spdf1)
[1] "place" "north" "east" "loc" "long" "lat"
> str(model.frame(lat ~ long, data = CRAN_spdf1), give.attr = FALSE)

'data.frame': 54 obs. of 2 variables:
$ lat : num -27.5 -37.8 ...
$ long: num 153 145 ...

Making our SpatialPointsDataFrame object from a matrix of coordinates
and a data frame with or without ID checking is only one way to reach our
goal, and others may be more convenient. We can construct the object by
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giving the SpatialPointsDataFrame function a SpatialPoints object as its
first argument:

> CRAN_spdf4 <- SpatialPointsDataFrame (CRAN_sp, CRAN_df)
> all.equal (CRAN_spdf4, CRAN_spdf2)

[1] TRUE

We can also assign coordinates to a data frame — this approach modifies the
original data frame. The coordinate assignment function can take a matrix
of coordinates with the same number of rows as the data frame on the right-
hand side, or an integer vector of column numbers for the coordinates, or
equivalently a character vector of column names, assuming that the required
columns already belong to the data frame.

> CRAN_dfO <- CRAN_df

> coordinates (CRAN_df0O) <- CRAN_mat
> proj4string (CRAN_df0) <- 11CRS

> all.equal (CRAN_dfO, CRAN_spdf2)

[1] TRUE
> str(CRAN_dfO, max.level = 2)

Formal class 'SpatialPointsDataFrame' [package "sp"] with 5 slots
..@ data :'data.frame': 54 obs. of 6 variables:
..@ coords.nrs : num(0)
..@ coords : num [1:54, 1:2] 153 145 ...
..— attr(*, "dimnames")=List of 2
..@ bbox : num [1:2, 1:2] -123 -37.8 ...
..— attr(*, "dimnames")=List of 2
..@ proj4string:Formal class 'CRS' [package "sp"] with 1 slots

Objects created in this way differ slightly from those we have seen before,
because the coords.nrs slot is now used, and the coordinates are moved
from the data slot to the coords slot, but the objects are otherwise the same:

> CRAN_df1 <- CRAN_df
> names (CRAN_df1)

[1] "place" "north" "east" "loc" ||1ongn "lat"

> coordinates (CRAN_df1) <- c("long", "lat")
> proj4string (CRAN_df1) <- 11CRS
> str(CRAN_df1, max.level = 2)

Formal class 'SpatialPointsDataFrame' [package "sp"] with 5 slots
..@ data :'data.frame': 54 obs. of 4 variables:

..@ coords.nrs : int [1:2] 5 6

..@ coords : num [1:54, 1:2] 153 145 ...

.. ..— attr(*, "dimnames")=List of 2

..@ bbox : num [1:2, 1:2] -123 -37.8 ...

.. ..— attr(*, "dimnames")=List of 2

..@ proj4string:Formal class 'CRS' [package "sp"] with 1 slots
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Transect and tracking data may also be represented as points, because the
observation at each point contributes information that is associated with
the point itself, rather than the line as a whole. Sequence numbers can be
entered into the data frame to make it possible to trace the points in order,
for example as part of a SpatialLines object as we see in the Sect. 2.5.

As an example, we use a data set® from satellite telemetry of a single
loggerhead turtle crossing the Pacific from Mexico to Japan (Nichols et al.,
2000).

> turtle_df <- read.csv("seamapl105_mod.csv")
> summary (turtle_df)

id lat lon
Min. ¢ 1.00 Min. :21.57 Min. :-179.88
1st Qu.: 99.25 1st Qu.:24.36 1st Qu.:-147.38
Median :197.50 Median :25.64 Median :-119.64
Mean :197.50 Mean :27.21 Mean : -21.52
3rd Qu.:295.75 3rd Qu.:27.41 3rd Qu.: 153.66
Max. :394.00 Max . :39.84 Max . : 179.93

obs_date
01/02/1997 04:16:53:
01/02/1997 05:56:25:
01/04/1997 17:41:54:
01/05/1997 17:20:07:
01/06/1997 04:31:13:
01/06/1997 06:12:56:
(Other) :388

e

Before creating a SpatialPointsDataFrame, we will timestamp the observa-
tions, and re-order the input data frame by timestamp to make it easier to
add months to Fig.2.3, to show progress westwards across the Pacific (see
Chap. 6 for a full treatment of spatio-temporal data objects):

> timestamp <- as.POSIX1t(strptime(as.character (turtle_df$obs_date),
+ "m/%d/ %KY JH:ZM:%S"), "GMT")

> turtle_dfl <- data.frame(turtle_df, timestamp = timestamp)

> turtle_df1$lon <- ifelse(turtle_df1$lon < 0, turtle_dfi$lon +

+ 360, turtle_dfi$lon)

> turtle_sp <- turtle_dfl[order (turtle_dfi$timestamp),

+ ]

> coordinates(turtle_sp) <- c("lon", "lat")

> proj4string(turtle_sp) <- CRS("+proj=longlat +ellps=WGS84")

The input data file is as downloaded, but without columns with identical
values for all points, such as the number of the turtle (07667).

2.5 Spatiallines

Lines have been represented in S in a simple form as a sequence of points
(see Becker et al., 1988; Murrell, 2011, pp. 79-84), based on lowering the

3 Data downloaded with permission from SEAMAP (Read et al., 2003), data set 105.
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Fig. 2.3 Westward movements of a captive-raised adult loggerhead turtle (Caretta
caretta) from 10 August 1996 to 12 August 1997

graphic ‘pen’ at the first point and drawing to the successive points until an
NA is met. Then the pen is raised and moved to the next non-NA value, where
it is lowered, until the end of the set of points. While this is convenient for
graphics output, it is less so for associating lines with data values, because
the line is not subsetted into data objects in any other way than by NA values.
The approach adopted here is to start with a Line object that is a ma-
trix of 2D coordinates, without NA values. This corresponds to the line string
defined by Herring (2011, pp. 21-23) as “a one-dimensional geometric object
usually stored as a sequence of points ... with linear interpolation between
points” (see also Kresse et al., 2012, pp. 506-507). Linear interpolation means
that we assume that intermediate unobserved coordinates may be interpo-
lated by using a straight line between the coordinates at either end of the
line segment. This affects how we handle non-planar coordinates, usually ge-
ographical coordinates, for which another style of interpolation ought to be
used. A list of Line objects forms the Lines slot of a Lines object, and for-
mally corresponds to the MultiLineString definition of Herring (2011, p. 24).
An identifying character tag is also required, and will be used for construct-
ing SpatialLines objects using the same approach as was used above for
matching ID values for spatial points.
> getClass("Line")
Class "Line" [package "sp"]

Slots:

Name: coords
Class: matrix

Known Subclasses: "Polygon"

> getClass("Lines")
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Class "Lines" [package "sp"]

Slots:
Name: Lines ID
Class: list character

Neither Line nor Lines objects inherit from the Spatial class. It is the
SpatialLines object that contains the bounding box and projection infor-
mation for the list of Lines objects stored in its lines slot. This degree of
complexity is required to be able to add observation values in a data frame,
creating SpatiallinesDataFrame objects, and to use a range of extraction
methods on these objects.

> getClass("SpatialLines")

Class "SpatialLines" [package "sp"]

Slots:
Name: lines bbox projé4string
Class: list matrix CRS

Extends: "Spatial", "SpatialLinesNULL"
Known Subclasses: "SpatialLinesDataFrame"

Let us examine an example of an object of this class, created from lines
retrieved from the maps package world database, and converted to a Spa-
tialLines object using the map2SpatialLines function in maptools. We can
see that the 1ines slot of the object is a list of 51 components, each of which
must be a Lines object in a valid SpatialLines object.

> library (maps)

> japan <- map("world", "japan", plot = FALSE)

> p4s <- CRS("+proj=longlat +ellps=WGS84")

> library(maptools)

> SLjapan <- map2Spatiallines(japan, proj4string = p4s)
> str(SLjapan, max.level = 2)

Formal class 'Spatiallines' [package "sp"] with 3 slots
..0 lines :List of 51
..@ bbox : num [1:2, 1:2] 123 24.3 ...
..— attr(*, "dimnames")=List of 2
..@ proj4string:Formal class 'CRS' [package "sp"] with 1 slots

SpatialLines and SpatialPolygons objects are very similar, as can be
seen in Fig.2.4 — the lists of component entities stack up in a hierarchical
fashion. A very typical way of exploring the contents of these objects is to
use lapply or sapply in combination with slot. The lapply and sapply
functions apply their second argument, which is a function, to each of the
elements of their first argument. The command used here can be read as
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Fig. 2.4 SpatialLines and SpatialPolygons classes and slots; thin arrows show sub-
class extensions, thick arrows the inclusion of lists of objects

follows: return the length of the Lines slot — how many Line objects it
contains — of each Lines object in the list in the lines slot of SLjapan,
simplifying the result to a numeric vector. If lapply was used, the result
would have been a list. As we see, no Lines object contains more than one
Line object:

> Lines_len <- sapply(slot(SLjapan, "lines"), function(x) length(slot(x,
+ "Lines")))
> table(Lines_len)

Lines_len
1
51

We can use the ContourLines2SLDF function included in maptools in our
next example, converting data returned by the base graphics function con-
tourLines into a SpatialLinesDataFrame object; we used the volcano data
set in Chap. 1, Fig. 1.2:

> volcano_sl <- ContourLines2SLDF (contourLines (volcano))
> t(slot(volcano_sl, "data"))

c_1 Cc_2 Cc_3 C_4 C_5 C_6 Cc_7 Cc_8 Cc_9 c_10
level "100" "110" "120" "130" "140" "150" "160" "170" "180" "190"

We can see that there are ten separate contour level labels in the variable
in the data slot, stored as a factor in the data frame in the object’s data
slot. As mentioned above, sp classes are new-style classes, and so the slot
function can be used to look inside their slots.
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To import data that we will be using shortly, we use another utility
function in maptools, which reads shoreline data in ‘Mapgen’ format from the
National Geophysical Data Center coastline extractor? into a SpatialLines
object directly, here selected for the window shown as the object bounding
box:
> 11CRS <- CRS("+proj=longlat +ellps=WGS84")

> auck_shore <- MapGen2SL("auckland_mapgen.dat", 11CRS)
> summary (auck_shore)

Object of class SpatiallLines
Coordinates:

min max
x 174.2 175.3
y -37.5 -36.5
Is projected: FALSE
proj4string : [+proj=longlat +ellps=WGS84]
The shorelines are still just represented by lines, shown in Fig.2.5, and so
colour filling of apparent polygons formed by line rings is not possible. For this
we need a class of polygon objects, discussed in Sect.2.6. Lines, however,
can be generalised by removing detail that is not required for analysis or
visualisation — the maps, RArcInfo, maptools and rgeos packages contain
functions for line thinning. This operation can be performed successfully only
on lines, because neighbouring polygons may have their shared boundary
thinned differently. This leads to the creation of slivers, thin zones belonging
to neither polygon or to both, but which may not be visible when plotted.

2.6 SpatialPolygons

The basic representation of a polygon in Sand consequently in R is a closed
line, a sequence of point coordinates where the first point is the same as
the last point. A set of polygons is made of closed lines separated by NA
points. Like lines, it is not easy to work with polygons represented this way.
To have a data set to use for polygons, we first identify the lines imported
above representing the shoreline around Auckland. Many are islands, and so
have identical first and last coordinates.

> Ins <- slot(auck_shore, "lines")
> table(sapply(lns, function(x) length(slot(x, "Lines"))))

1
80
> islands_auck <- sapply(lns, function(x) {
+ crds <- slot(slot(x, "Lines")[[1]], "coords")
+ identical(crds[1, ], crds[nrow(crds), 1)
+ 31
> table(islands_auck)

4 http://www.ngdc.noaa.gov/mgg/shorelines/shorelines.html.
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a) b)

Fig. 2.5 Two maps of shorelines around Auckland: (a) line representation, (b) line
representation over-plotted with islands converted to polygons and shaded. Note that
Waiheke Island, the large island to the east, is not closed, and so not found as an
island

islands_auck
FALSE TRUE
16 64

Since all the Lines in the auck_shore object contain only single Line objects,
checking the equality of the first and last coordinates of the first Line object
in each Lines object tells us which sets of coordinates can validly be made
into polygons. The nesting of classes for polygons is the same as that for lines,
but the successive objects have more slots.

> getClass ("Polygon")

Class "Polygon" [package "sp"]
Slots:

Name: labpt area hole ringDir coords
Class: numeric numeric logical integer matrix

Extends: "Line"

The Polygon class extends the Line class by adding slots needed for polygons
and checking that the first and last coordinates are identical. The extra slots
are a label point, taken as the centroid of the polygon, the area of the polygon
in the metric of the coordinates, whether the polygon is declared as a hole or
not — the default value is a logical NA, and the ring direction of the polygon
(discussed later in Sect.2.6.2). No check is made of whether lines cross or
polygons have ‘errors’, in other words whether features are simple in the



2.6 SpatialPolygons 43

OpenGIS® (OpenGeoSpatial)® context; these are discussed briefly later on
p. 131. GIS should do this, and we assume that data read into R can be
trusted and contain only simple features. Polygon objects are LinearRing
objects as defined by Kresse et al. (2012, p. 506) and Herring (2011, p. 23),
that is a closed LineString, but we assume but do not check that it is simple.

> getClass("Polygons")

Class "Polygons" [package "sp"]

Slots:
Name: Polygons plotOrder labpt ID area
Class: list integer numeric character  numeric

The Polygons class contains a list of valid Polygon objects, an identifying

character string, a label point taken as the label point of the constituent
polygon with the largest area, and two slots used as helpers in plotting using
R graphics functions, given this representation of sets of polygons. These set
the order in which the polygons belonging to this object should be plotted,
and the gross area of the polygon, equal to the sum of all the constituent
polygons. A Polygons object may, for example, represent an administrative
district located on two sides of a river, or archipelago. Each of the parts
should be seen separately, but data are only available for the larger entity.
In formal terms, Polygons objects are MultiPolygon objects as defined by
Kresse et al. (2012, p. 507) and Herring (2011, p. 31).

> getClass("SpatialPolygons")

Class "SpatialPolygons" [package "sp"]

Slots:
Name: polygons  plotOrder bbox projé4string
Class: list integer matrix CRS

Extends: "Spatial", "SpatialPolygonsNULL"
Known Subclasses: "SpatialPolygonsDataFrame"

The top level representation of polygons is as a SpatialPolygons object,
a set of Polygons objects with the additional slots of a Spatial object to
contain the bounding box and projection information of the set as a whole.
Like the Polygons object, it has a plot order slot, defined by default to plot
its member polygons, stored in the polygons as a list of Polygons, in order of
gross area, from largest to smallest. Choosing only the lines in the Auckland
shoreline data set which are closed polygons, we can build a SpatialPolygons
object.

5 http://www.opengeospatial.org/
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> islands_sl <- auck_shore[islands_auck]
> list_of_Lines <- slot(islands_sl, "lines")
> islands_sp <- SpatialPolygons (lapply(list_of_Lines, function(x) {
+ Polygons (1ist (Polygon(slot(slot(x, "Lines")[[1]],
+ "coords"))), ID = slot(x, "ID"))
+ }), proj4string = CRS("+proj=longlat +ellps=WGS84"))
> summary (islands_sp)
Object of class SpatialPolygons
Coordinates:
min max
x 174.30297 175.22791
y -37.43877 -36.50033
Is projected: FALSE
proj4string : [+proj=longlat +ellps=WGS84]
> slot(islands_sp, "plotOrder")
[1] 45 54 37 28 38 27 12 11 59 53 5 25 26 46 7 55 17 34 30 16 6 43

[23] 14 40 32 19 61 42 15 50 21 18 62 23 22 29 24 44 13 2 36 9 63 58
[45] 56 64 52 39 51 1 8 3 4 20 47 35 41 48 60 31 49 57 10 33

> order(sapply(slot(islands_sp, "polygons"), function(x) slot(x,
+ "area")), decreasing = TRUE)

[1] 45 54 37 28 38 27 12 11 59 53 5 25 26 46 7 55 17 34 30 16 6 43
[23] 14 40 32 19 61 42 15 50 21 18 62 23 22 29 24 44 13 2 36 9 63 58
[45] 56 64 52 39 61 1 8 3 4 20 47 35 41 48 60 31 49 57 10 33

As we saw with the construction of SpatialLines objects from raw
coordinates, here we build a list of Polygon objects for each Polygons object,
corresponding to a single identifying tag. A list of these Polygons objects is
then passed to the SpatialPolygons function, with a coordinate reference
system, to create the SpatialPolygons object. Again, like SpatialLines
objects, SpatialPolygons objects are most often created by functions that
import or manipulate such data objects, and seldom from scratch.

2.6.1 SpatialPolygonsDataFrame Objects

As with other spatial data objects, SpatialPolygonsDataFrame objects bring
together the spatial representations of the polygons with data. The identifying
tags of the Polygons in the polygon slot of a SpatialPolygons object are
matched with the row names of the data frame to make sure that the correct
data rows are associated with the correct spatial objects. The data frame
is re-ordered by row to match the spatial objects if need be, provided all
the objects can be matched to row names. If any differences are found, an
error results. Both identifying tags and data frame row names are character
strings, and so their sort order is also character, meaning that "2" follows
"11" and "111".6

6 Some maptools functions use Gregory R. Warnes’ mixedorder sort from gtools to
sort integer-like strings in integer order.
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As an example, we take a set of scores by US state of 1999 Scholastic
Aptitude Test (SAT) used for spatial data analysis by Melanie Wall.” In the
data source, there are also results for Alaska, Hawaii, and for the US as a
whole. If we would like to associate the data with state boundary polygons
provided in the maps package, it is convenient to convert the boundaries to
a SpatialPolygons object — see also Chap. 4.

> library(maps)

> state.map <- map("state", plot = FALSE, fill = TRUE)

> IDs <- sapply(strsplit(state.map$names, ":"), function(x) x[1])
> library(maptools)

> state.sp <- map2SpatialPolygons(state.map, IDs = IDs,

+ proj4string = CRS("+proj=longlat +ellps=WGS84"))

Then we can use identifying tag matching to suit the rows of the data frame
to the SpatialPolygons. Here, we subset to the matched rows of the data
frame, to ensure that one row corresponds to each Polygons object, to achieve
one-to-one matching:

> sat <- read.table("state.sat.data_mod.txt", row.names = 5,
+ header = TRUE)

> str(sat)
'data.frame': 52 obs. of 4 variables:
$ oname : Factor w/ 52 levels "ala","alaska",..: 1 23 45 ...

$ vscore: int 561 516 524 563 497 ...
$ mscore: int 555 514 525 556 514 ...
$ pc : int 9 50 34 6 49 ...

> id <- match(row.names(sat), row.names(state.sp))
> row.names (sat) [is.na(id)]

[1] "alaska" "hawaii" "usa"

> satl <- sat[!is.na(id), ]
> state.spdf <- SpatialPolygonsDataFrame (state.sp, satl)
> str(slot(state.spdf, "data"))

'data.frame': 49 obs. of 4 variables:

$ oname : Factor w/ 52 levels "ala","alaska",..: 1 3456 ...
$ vscore: int 561 524 563 497 536

$ mscore: int 555 525 556 514 540 ...

$ pc : int 9 34 6 49 32 ...

> str(state.spdf, max.level = 2)

Formal class 'SpatialPolygonsDataFrame' [package "sp"] with 5 slots
..@ data :'data.frame': 49 obs. of 4 variables:

..Q@ polygons :List of 49

..@ plotOrder : int [1:49] 42 25 4 30 27 ...

..@ bbox : num [1:2, 1:2] -124.7 25.1

.. ..— attr(*, "dimnames")=List of 2

..@ proj4string:Formal class 'CRS' [package "sp"] with 1 slots

7 http://www.biostat.umn.edu/~brad/data/state-sat.dat, data here supple-
mented with variable names and state names as used in maps.
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If we modify the row name of ‘arizona’ in the data frame to ‘Arizona’,
there is no longer a match with a polygon identifying tag, and an error is
signalled.

> rownames (sat1) [2] <- "Arizona"
> SpatialPolygonsDataFrame(state.sp, satl)

Error in SpatialPolygonsDataFrame(state.sp, satl)
row.names of data and Polygons IDs do not match

In subsequent analysis, Wall (2004) also drops District of Columbia. Rather
than having to manipulate polygons and their data separately, when using a
SpatialPolygonsDataFrame object, we can say:

> DC <- "district of columbia

> not_dc <- !(row.names(state.spdf) == DC)
> state.spdfl <- state.spdf[not_dc, ]

> dim(state.spdf1)

[1] 48 4
> summary (state.spdf1)

Object of class SpatialPolygonsDataFrame
Coordinates:
min max
x -124.68134 -67.00742
y  25.12993 49.38323
Is projected: FALSE
proj4string : [+proj=longlat +ellps=WGS84]
Data attributes:

oname vscore mscore pc
ala 1 Min. :479.0 Min. :475.0 Min. : 4.00
ariz 1 1st Qu.:506.2 1st Qu.:505.2 1st Qu.: 9.00
ark 1 Median :530.5 Median :532.0 Median :28.50
calif 1 Mean :534.6 Mean :534.9 Mean :35.58
colo 1 3rd Qu.:563.0 3rd Qu.:558.5 3rd Qu.:63.50
conn 1 Max. :594.0 Max. :605.0 Max. :80.00
(Other) : 42

2.6.2 Holes and Ring Direction

The hole and ring direction slots are included in Polygon objects as heuristics
to address some of the difficulties arising from R not being a GIS. In a tra-
ditional vector GIS, and in the underlying structure of the data stored in
maps, boundaries between polygons are stored only once as arcs between
nodes (shared vertices between three or more polygons, possibly including
the external space), and the polygons are constructed on the fly from lists of
directed boundary arcs, including boundaries with the external space — void
— not included in any polygon. This is known as the topological representa-
tion of polygons, and is appropriate for GIS software, but arguably not for
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other software using spatial data. It was mentioned above that it is the user’s
responsibility to provide line coordinates such that the coordinates represent
the line object the user requires. If the user requires, for example, that a river
channel does not cross itself, the user has to impose that limitation. Other
users will not need such a limitation, as for example tracking data may very
well involve an animal crossing its tracks.

The approach that has been chosen in sp is to use two markers com-
monly encountered in practice, marking polygons as holes with a logical
(TRUE/FALSE) flag, the hole slot, and using ring direction — clockwise
rings are taken as not being holes, anti-clockwise as being holes. This is
needed because the non-topological representation of polygons has no easy
way of knowing that a polygon represents an internal boundary of an enclos-
ing polygon, a hole, or lake.

An approach that works when the relative status of polygons is known is
to set the hole slot directly. This is done in reading GSHHS shoreline data,
already used in Fig.2.3 and described in Chap.4. The data source includes
a variable for each polygon, where the levels are land: 1, lake: 2, island in
lake: 3, and lake on island in lake: 4. The following example takes a region of
interest on the northern, Canadian shore of Lake Huron, including Manitoulin
Island, and a number of lakes on the island, including Kongawong Lake.

> length(slot(manitoulin_sp, "polygons"))
[1]1 1

> sapply(slot(slot(manitoulin_sp, "polygons")[[1]], "Polygons"),
+ function(x) slot(x, "hole"))

[1] FALSE TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
[12] FALSE FALSE FALSE FALSE FALSE TRUE TRUE TRUE

> sapply(slot(slot(manitoulin_sp, "polygons")[[1]], "Polygons"),
+ function(x) slot(x, "ringDir"))

7y ¢+-1 1 11 11 11 1 1 1 1 1 1 1-1-1-1

The class definitions used for polygons in sp do not accord with those of
the simple features specification of the Open Geospatial Consortium (also
discussed on p. 131). The rgeos package, an interface to Geometry Engine —
Open Source (GEOS) to be presented in Sect.5.2.1, uses this specification,
in which each hole (interior ring) must be associated with its containing
exterior ring. In order to avoid introducing incompatible changes into the
class definition of Polygons objects, a comment has been added as a single
character string to each such object.

Here we can trust the data source to assign the hole status correctly, and
use the simple function createSPComment to add such comments to each
Polygons member of the polygons slot of this SpatialPolygons object.
Exterior rings are coded zero, while interior rings are coded with the 1-based
index of the exterior ring to which they belong. The right panel of Fig. 2.6
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shows the comment tags for all but the first two Polygon objects in the
single Polygons object in the data set. Almost all the Polygon objects are
islands in Lake Huron coded zero, but there are three lakes on Manitoulin
Island coded with its 1-based index; 1 is the mainland shore, and 2 is Lake
Huron, which has an indeterminate zero code, because here it is not fully
contained by the mainland. The use of such comments permits us to assign
the LinearRings in a MultiPolygon object to the correct member Polygon
object in the terminology of Kresse et al. (2012, p. 507) and Herring (2011,
pp. 26-28).

> library(rgeos)

> manitoulin_sp <- createSPComment (manitoulin_sp)
> sapply(slot(manitoulin_sp, "polygons"), comment)

[1] "01000000000000003 33"

In the left panel of Fig.2.6, there is only one Polygons object in the
polygons slot of manitoulin_sp, representing the continental landmass, ex-
posed along the northern edge, and containing the complete set of polygons.
Within this is a large section covered by Lake Huron, which in turn is covered
by islands and lakes on islands. Not having a full topological representation
means that for plotting, we paint the land first, then paint the lake, then the
islands, and finally the lakes on islands. Because the default plotting colour for
holes is ‘transparent’, they can appear to be merged into the surrounding
land — the same problem arises where the hole slot is wrongly assigned. The
plotOrder slots in Polygons and SpatialPolygons objects attempt to get
around this problem, but care is usually sensible if the spatial objects being
handled are complicated. Since R version 2.12.0, polygon plotting functions
have been able to choose to detect holes themselves, so that objects with
wrongly declared hole status may still be displayed correctly (Murrell, 2012).

2.7 SpatialGrid and SpatialPixel Objects

The point, line, and polygon objects we have considered until now have been
handled one-by-one. Grids are regular objects requiring much less informa-
tion to define their structure. Once the single point of origin is known,the
extent of the grid can be given by the cell resolution and the numbers of
rows and columns present in the full grid. This representation is typical for
remote sensing and raster GIS, and is used widely for storing data in regu-
lar rectangular cells, such as digital elevation models, satellite imagery, and
interpolated data from point measurements, as well as image processing.
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Fig. 2.6 The northern, Canadian shore of Lake Huron, including Manitoulin Island
and lakes on the island; islands (light blue) and lakes on islands (khaki); in the left

panel, some Polygon objects are marked with their GSHHS levels, in the right panel,
they are marked with their comment tags
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> getClass ("GridTopology")
Class "GridTopology" [package "sp"]

Slots:
Name: cellcentre.offset cellsize cells.dim
Class: numeric numeric integer

As an example, we make a GridTopology object from the bounding box of
the Manitoulin Island vector data set. If we choose a cell size of 0.01° in
each direction, we can offset the south-west cell centre to make sure that at
least the whole area is covered, and find a suitable number of cells in each
dimension.

> bb <- bbox(manitoulin_sp)

> bb

min max
x 277.0 278.0
y 45.7 46.2
> ¢cs <- ¢(0.01, 0.01)
> cc <= bb[, 1] + (cs/2)
> cd <- ceiling(diff(t(bb))/cs)
> manitoulin_grd <- GridTopology(cellcentre.offset = cc,
+ cellsize = cs, cells.dim = cd)
> manitoulin_grd

X y

cellcentre.offset 277.005 45.705
cellsize 0.010 0.010
cells.dim 100.000 50.000

The object describes the grid completely, and can be used to construct
a SpatialGrid object. A SpatialGrid object contains GridTopology and
Spatial objects.

> getClass("SpatialGrid")
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Class "SpatialGrid" [package "sp"]

Slots:
Name: grid bbox projé4string
Class: GridTopology matrix CRS

Extends: "Spatial"
Known Subclasses: "SpatialGridDataFrame"

Using the GridTopology object created above, and passing through the co-
ordinate reference system of the original GSHHS data, the bounding box is
created automatically, as we see from the summary of the object:

> p4s <- CRS(proj4string(manitoulin_sp))
> manitoulin_SG <- SpatialGrid(manitoulin_grd, proj4string = p4s)
> summary(manitoulin_SG)

Object of class SpatialGrid
Coordinates:
min  max

x 277.0 278.0
y 45.7 46.2
Is projected: FALSE
proj4string :
[+proj=longlat +datum=WGS84 +ellps=WGS84 +towgs84=0,0,0]
Grid attributes:

cellcentre.offset cellsize cells.dim
X 277.005 0.01 100
y 45.705 0.01 50

As an example of using these classes with imported data, we use an
excerpt from the Shuttle Radar Topography Mission (SRTM) flown in 2000,
for the Auckland area® (Fig.2.8). The data have been read from a Geotiff
file into a SpatialGridDataFrame object — a SpatialGrid object extended
with a data slot occupied by a data.frame object, filled with a single band
of data representing elevation in metres. After checking the class of the data
object, we examine in turn its slots. The grid slot contains the underlying
GridTopology object, with the lower left cell centre coordinates, the pair of
cell size resolution values, here both equal to 3 arcsec, and the numbers of
columns and rows:

> class(auck_ell)

[1] "SpatialGridDataFrame"
attr(,"package")
[1] "sp"

> slot(auck_ell, "grid")

8 Downloaded from the seamless data distribution system for 3arcsec ‘Finished’
(90m) data, http://earthexplorer.usgs.gov/; the data can be downloaded as 1°
square tiles.
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X y
cellcentre.offset 1.742004e+02 -3.749958e+01
cellsize 8.333333e-04 8.333333e-04
cells.dim 1.320000e+03 1.200000e+03

> slot(auck_ell, "bbox")

min max
x 174.2 175.3
y -37.5 -36.5

> object.size(auck_ell)

12677176 bytes

> object.size(slot (auck_ell, "data"))

12672672 bytes

The total size of the SpatialGridDataFrame object is just over 12 MB, almost
all of which is made up of the data slot.

> is.na(auck_ell$bandl) <- auck_ell$bandl <= 0
> summary (auck_ell$band1)

Min. 1st Qu. Median Mean 3rd Qu. Max. NA's
1 23 53 78 106 686 791938

Almost half of the data are at or below sea level, and should be set to NA.
Once this is done, about half of the data are missing. In other cases, even
larger proportions of raster grids are missing, suggesting that an alternative
representation of the same data might be attractive. One candidate from
Terralib, discussed further in Chap.4, is the cell representation of rasters,
where the raster cells with data are represented by the coordinates of the
cell centre, and by the sequence number of the cell among all the cells in
the raster. In this representation, missing data are discarded, and savings in
space and processing time can be large. It also permits cells to be stored, like
points, in an external database. The class is here termed SpatialPixels, and
has the same slots as SpatialGrid objects, but differently filled (Fig.2.7).
The SpatialPixelsDataFrame class is analogous.

> auck_el2 <- as(auck_ell, "SpatialPixelsDataFrame")
> object.size(auck_el2)

25351272 bytes

> object.size(slot (auck_el2, "grid.index"))

3168288 bytes

> object.size(slot (auck_el2, "coords"))

12673512 bytes

> sum(is.na(auck_ell$band1l)) + nrow(slot(auck_el2, "coords"))
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Fig. 2.7 SpatialGrid and SpatialPixel classes and their slots; arrows show subclass
extensions

[1] 1584000
> prod(slot(slot(auck_el2, "grid"), "cells.dim"))

[1] 1584000

Returning to our example, we can coerce our SpatialGridDataFrame object
to a SpatialPixelsDataFrame object. In this case, the proportion of missing
to occupied cells is unfavourable, and when the grid.index and coords slots
are populated with cell indices and coordinates, the output object is almost
twice as large as its SpatialGridDataFrame equivalent. We can also see that
the total number of cells — the product of the row and column dimensions —
is equal to the number of coordinates in the output object plus the number of
missing data values deleted by coercion. Had the number of attributes been
10, then the space saving relative to storing the full grid would have been
37 %; with 100 attributes it would have been 48 % for this particular case.

> auck_el_500 <- auck_el2[auck_el2$bandl > 500, ]
> summary (auck_el_500)

Object of class SpatialPixelsDataFrame
Coordinates:
min max

x 175.18917 175.24333
y -37.10333 -37.01833
Is projected: FALSE
proj4string :
[+proj=longlat +datum=WGS84 +no_defs +ellps=WGS84
+towgs84=0,0,0]
Number of points: 1114
Grid attributes:

cellcentre.offset cellsize cells.dim
X 174.20042 0.0008333333 1320
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y -37.49958 0.0008333333 1200
Data attributes:
Min. 1st Qu. Median Mean 3rd Qu. Max.

501.0 523.0 552.0 559.4 591.0 686.0
> object.size(auck_el_500)

40936 bytes

Taking just the raster cells over 500 m, of which there are very few, less than
1% of the total, yields a much smaller object. In this case it has a smaller
bounding box, and gaps between the pixels present.

We can also create a SpatialPixelsobject directly from a SpatialPoints
object. As our example, we use the Meuse bank data set provided with sp.
We can pass a SpatialPoints object to the SpatialPixels function, where
the Spatial object components are copied across, and the points checked to
see whether they lie on a regular grid. If they do, the function will return a
SpatialPixels object:

> data(meuse.grid)
> mg_SP <- SpatialPoints(cbind(meuse.grid$x, meuse.grid$y))
> summary (mg_SP)

Object of class SpatialPoints
Coordinates:

min max
coords.x1 178460 181540
coords.x2 329620 333740
Is projected: NA
proj4string : [NA]
Number of points: 3103

> mg_SPix0 <- SpatialPixels (mg_SP)
> summary (mg_SPix0)

Object of class SpatialPixels
Coordinates:
min max

coords.xl 178440 181560
coords.x2 329600 333760
Is projected: NA
proj4string : [NA]
Number of points: 3103
Grid attributes:

cellcentre.offset cellsize cells.dim
coords.x1 178460 40 78
coords.x2 329620 40 104

> prod(slot(slot(mg_SPix0, "grid"), "cells.dim"))

[1] 8112

As we can see from the product of the cell dimensions of the underlying grid,
over half of the full grid is not present in the SpatialPixels representation,

because many grid cells lie outside the study area. Alternatively, we can
coerce a SpatialPoints object to a SpatialPixels object:
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> mg_SPix1 <- as(mg_SP, "SpatialPixels")
> summary (mg_SPix1)

Object of class SpatialPixels
Coordinates:
min max

coords.xl 178440 181560
coords.x2 329600 333760
Is projected: NA
proj4string : [NA]
Number of points: 3103
Grid attributes:

cellcentre.offset cellsize cells.dim
coords.x1 178460 40 78
coords.x2 329620 40 104

2.8 Raster Objects and the raster Package

The raster was published on CRAN in 2010, and its users now generate a
good deal of traffic on the R-sig-geo mailing list. The package is documented
in a number of vignettes, which are available with the package, and online
from CRAN (Hijmans, 2012b).? It uses sp classes for vector data, and adds
new classes for raster data, together with many methods and functions for
data handling and analysis. A key advance made possible by this package is
that raster objects may be held on disk rather than in memory; options may
be used to control where the data are held (Hijmans, 2012¢). Returning to
the Shuttle Radar Topography Mission data for the Auckland area, we can
create a RasterLayer object by passing the name of a raster file to the raster
function; the file is accessed using functions in the rgdal package discussed in
detail in Chap. 4:

> library(raster)
> r <- raster("70042108.tif")
> class(r)

[1] "RasterLayer"
attr(,"package")
[1] "raster"

> inMemory (r)
[1] FALSE
> object.size(r)

11512 bytes

9 http://cran.r-project.org/web/packages/raster/index.html.
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> cellStats(r, max)
[1] 686

> cellStats(r, min)
[1] -3.402823e+38
> inMemory ()

[1] FALSE

The package provides a richer range of classes for collections of rasters called
stacks and bricks, and we return to them, and functions and methods for han-
dling this representation of raster data in Sects. 5.3.2 and 6.9.1. We need to
remove values of less than or equal to zero, since elevations are only recorded
on land. We can do this as described by Hijmans (2012c, p. 4) in blocks of
rows, storing the data of the new object in a temporary file:

out <- raster(r)
bs <- blockSize(out)
out <- writeStart(out, filename = tempfile(), overwrite = TRUE)
for (i in 1:bs$n) {
v <- getValues(r, row = bs$row[i], nrows = bs$nrows[i])
viv <= 0] <- NA
writeValues(out, v, bs$row[i])
}
out <- writeStop(out)
cellStats(out, min)

VV+ + + +VVVYyV

[1] 1

> cellStats(out, max)
[1] 686

> inMemory (out)

[1] FALSE

The raster package also provides convenient plot methods, which we use
to create Fig.2.8:

> plot(out, col = terrain.colors(100))

Coercion methods are available from and to SpatialGridDataFrame objects,
and between other classes defined in sp and raster. The RasterLayer object
can be coerced to SpatialGridDataFrame and back again:

> r1 <- as(out, "SpatialGridDataFrame")
> summary(ri1)
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Fig. 2.8 SRTM elevation data in metres for the Auckland isthmus over-plotted with
an excerpt from the GSHHS full resolution shoreline — there are detailed differences
stemming from the very different technologies underlying the two data sources

Object of class SpatialGridDataFrame
Coordinates:
min  max
sl 174.2 175.3
s2 -37.5 -36.5
Is projected: FALSE
proj4string :
[+proj=longlat +datum=WGS84 +no_defs +ellps=WGS84
+towgs84=0,0,0]
Grid attributes:

cellcentre.offset cellsize cells.dim
s1 174.20042 0.0008333333 1320
s2 -37.49958 0.0008333333 1200
Data attributes:
Min. 1st Qu. Median Mean 3rd Qu. Max. NA's
1 23 53 78 106 686 791938

> r2 <- as(rl, "RasterLayer")
> summary (r2)

layer
Min. 1
1st Qu. 23
Median 53

3rd Qu. 106
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Max. 686
NA's 791938

We have now described a coherent and consistent set of classes for spatial
data. Other representations are also used by R packages, and we show fur-
ther ways of converting between these representations and external formats in
Chap. 4. Before treating data import and export, we discuss graphical meth-
ods for sp classes, to show that the effort of putting the data in formal classes
may be justified by the relative ease with which we can make maps.



Chapter 3
Visualising Spatial Data

A major pleasure in working with spatial data is their visualisation. Maps
are amongst the most compelling graphics, because the space they map is
the space we think we live in, and maps may show things we cannot see oth-
erwise. Although one can work with all R plotting functions on the raw data,
for example extracted from Spatial classes by methods like coordinates
or as.data.frame, this chapter introduces the plotting methods for objects
inheriting from class Spatial that are provided by package sp.

R plots can be seen as following one of two systems. First, the ‘traditional’
plotting system, which allows incremental addition. Second, the systems that
use or build upon grid (Murrell 2011), and does not allow simple incremen-
tal addition. The main example of the second system is the Trellis Graphics
system, provided by package lattice (Sarkar 2008), present in default R instal-
lations. The ggplot2 package is increasingly popular (Wickham 2009, Fig. 1),
which builds on grid, and provides similar capabilities as lattice with different
defaults and a different user interface (Wilkinson 2005).

Traditional graphics are typically built incrementally: graphic elements are
added in several consecutive function calls. Trellis graphics and allow plotting
of high-dimensional data by providing conditioning plots: organised lattices
of plots with shared axes (Cleveland 1993, 1994). This feature is particularly
useful when multiple maps need to be compared, for example in case of a
spatial time series, comparison across a number of species or variables, or
comparison of different modelling scenarios or approaches. Trellis graphs are
designed to avoid wasting space by repetition of identical information. The
value of this feature, rarely found in other software, is hard to overestimate.
Waller and Gotway (2004, pp. 68-86) provide an introduction to statistical
mapping, which may be deepened with reference to Slocum et al. (2005).

Package sp provides plot methods that build on the traditional R plot-
ting system (plot, image, lines, points, etc.), as well as a ‘new’ generic
method called spplot that uses the Trellis system (notably xyplot or lev-
elplot from the lattice package) and can be used for conditioning plots.

R.S. Bivand et al., Applied Spatial Data Analysis with R, Use R! 10, 59
DOI 10.1007/978-1-4614-7618-4_3,
© Springer Science+Business Media New York 2013
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The spplot methods are introduced in a later sub-section, first we deal with
the traditional plot system.

3.1 The Traditional Plot System

3.1.1 Plotting Points, Lines, Polygons, and Grids

In the following example session, we create points, lines, polygons, and a
grid object, from data.frame objects, retrieved from the sp package by func-
tion data, and plot them. The four plots obtained by the plot and image
commands are shown in Fig. 3.1.

points lines polygons grid

Fig. 3.1 The meuse data set: sample points, the sample path (line), the Meuse river
(ring) and the gridded study area

> library(sp)

> data(meuse)

> coordinates(meuse) <- c("x", "y")
> plot (meuse)

> title("points")

The SpatialPointsDataFrame object used is created from a data.frame
provided with sp, and the plot method shows the points with the default
symbol.

> cc <- coordinates (meuse)

> m.sl <- SpatialLines(list(Lines(list(Line(cc)), "linel")))
> plot(m.sl)

> title("lines")
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A Spatiallines object is made by joining up the points in sequence, and
plot draws the resulting zig-zags.

> data(meuse.riv)

> meuse.lst <- list(Polygons(list(Polygon(meuse.riv)),
+ "meuse.riv"))

> meuse.pol <- SpatialPolygons (meuse.lst)

> plot(meuse.pol, col = "grey")

> title("polygons")

We make a SpatialPolygons object from data provided with sp outlining
the banks of the River Meuse.

> data(meuse.grid)

> coordinates (meuse.grid) <- c("x", "y")

> meuse.grid <- as(meuse.grid, "SpatialPixels")
> image (meuse.grid, col = "grey")

> title("grid")

Finally, we convert grid data for the same Meuse bank study area into a
SpatialPixels object and display it using the image method, with all cells
set to "grey".

On each map, one unit in the z-direction equals one unit in the y-direction.
This is the default when the coordinate reference system is not longlat
or is unknown. For unprojected data in geographical coordinates (longi-
tude/latitude), the default aspect ratio depends on the (mean) latitude of
the area plotted. The default aspect can be adjusted by passing the asp
argument.

A map becomes more readable when we combine several elements. We can
display elements from those created above by using the add = TRUE argument
in function calls:
> image (meuse.grid, col = "lightgrey")
> plot(meuse.pol, col = "grey", add = TRUE)
> plot(meuse, add = TRUE)
the result of which is shown in Fig. 3.2.

The over-plotting of polygons by points is the consequence of the order
of plot commands. Up to now, the plots only show the geometry (topology,
shapes) of the objects; we start plotting attributes (e.g. what has actually
been measured at the sample points) in Sect. 3.1.5.

As an alternative to plot (x,add=TRUE), one can use the commands lines
for objects of class SpatialLines and points for SpatialPoints; text ele-
ments can be added by text.

3.1.2 Axes and Layout Elements

Maps often do not have axes, as the information carried in map axes can often
be omitted. Especially, projected coordinates are usually long, hard to read
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Fig. 3.2 Map elements combined into a single map

and geographical reference is much easier when recognisable features such as
administrative boundaries, rivers, coast lines, etc. are present. In the standard
plot functions, the Boolean argument axes can be set to control axis plotting,
and the function axis can be called to add axes, fine-tuning their appearance
(tic placement, tic labels, and font size). The following commands result in
Fig. 3.3:

layout (matrix(c(1, 2), 1, 2))

plot(meuse.pol, axes = TRUE)

plot(meuse.pol, axes = FALSE)

axis(1, at = c(178000 + 0:2 * 2000), cex.axis 0.7)
axis(2, at = c(326000 + 0:3 * 4000), cex.axis = 0.7)
box ()

>
>
>
>
>
>

Not plotting axes does not increase the amount of space R used for plotting
the data.! R still reserves the necessary space for adding axes and titles
later on. We can, however, explicitly instruct R not to reserve this space by
using function par, which is intended to have side effects on the next plot on
the current device. The par-settable arguments that are useful for controlling

the physical size of the plot are listed in Table 3.1.
In Fig. 3.4, generated by

> oldpar = par(no.readonly = TRUE)
> layout(matrix(c(1, 2), 1, 2))

1 This is not true for Trellis plots; see Sect. 3.2.



3.1 The Traditional Plot System

axes = TRUE
o
o
o _|
oo}
(4]
™
o
o
o _|
<
(V]
(3]
o
o
o _|
o
(9]
[sp]
o
o
o _|
©
(3]
(3]
T T T I
179000 182000

Fig. 3.3 Default axes

330000 334000 338000

326000

63

axes added

T T
180000 182000

(left) and custom axes (right) for the meuse.riv data

Sample locations

332000

330000

T 1T 177
178500 180000 181500

Fig. 3.4 Plots covering the same amount of paper, with (left), and without (right)
the default space R reserves for axes and title(s)

Table 3.1 Graphic arguments useful for controlling figure and plotting region

Argument  Meaning Unit Length
fin Figure region Inch 2
pin Plotting region Inch 2
mai Plotting margins Inch 4
mar Plotting margins  Lines of text 4

see 7par for more information

> plot(meuse, axes = TRUE, cex = 0.6)
> plot(meuse.pol, add = TRUE)
> title("Sample locations")

> par(mar = c(0, 0, 0, 0) + 0.1)
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> plot(meuse, axes = FALSE, cex = 0.6)
> plot (meuse.pol, add = TRUE)

> box()

> par(oldpar)

the same data set is plotted twice within the same amount of space, at the
left-hand side with R’s default margins leaving space for axes, and on the
right-hand side with maximised plotting space and no axes drawn.

Modifying the margins by setting mar in the par command, for example to
par (mar=c(3,3,2,1)) further optimises space usage when axes are drawn,
leaving (little) space for a title. It should be noted that the margin sizes are
absolute, expressed in units the height of a line of text, and so their effect on
map scale decreases when the plotting region is enlarged.

The plot methods provided by package sp do not allow the printing of axis
labels, such as ‘Easting’ and ‘Northing’, or ‘x-coordinate’ and ‘y-coordinate’.
The reason for this is technical, but mentioning axis names is usually obsolete
once the graph is referred to as a map. The units of the coordinate reference
system (such as metres) should be equal for both axes and do not need
mentioning twice. Geographical coordinates are perhaps an exception, but
this is made explicit by axis tic labels such as 52°N, or by adding a reference
grid.

Fig. 3.5 Scale bar and north arrow as map elements

When we decide not to draw axes on a map, in addition to reference
boundaries, we can provide the reader of a map with a guidance for distance
and direction by plotting a scale bar and a north arrow, which can be placed
interactively using locator followed by a few well-chosen clicks in the map

(Fig. 3.5):
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> plot (meuse)

> plot(meuse.pol, add = TRUE)

> plot (meuse)

> SpatialPolygonsRescale(layout.scale.bar(), offset = locator(1),

+ scale = 1000, fill = c("transparent", "black"), plot.grid = FALSE)
> text(locator(1), "0")

> text(locator(1), "1 km")

> SpatialPolygonsRescale(layout.north.arrow(), offset = locator(1),

+ scale = 400, plot.grid = FALSE)

When large numbers of maps for identical areas have to be produced with
identical layout elements, it pays off to write a function that draws all layout
elements. As an alternative, one may use conditioning plots; see the spplot
method in Sect. 3.2.

3.1.3 Degrees in Axes Labels and Reference Grid

Unprojected data have coordinates in latitude and longitude degrees, with
negative degrees referring to degrees west (of the prime meridian) and south
(of the Equator). When unprojected spatial data are plotted using sp meth-
ods (plot or spplot), the axis label marks will give units in decimal degrees
N/S/E/W, for example 50.5°N. An example is shown in Fig.3.6, using
degAxis to control which tick-marks are to be drawn.

37°N

36°N

35°N

34°N

84w a2°w 80°W T8W T6W

Fig. 3.6 Decimal degrees in axis labels: the North Carolina SIDS data

When, for reference purposes, a grid needs to be added to a map, the
function gridlines can be used to generate an object of class Spatiallines.
By default it draws lines within the bounding box of the object at values
where the default axes labels are drawn; other values can be specified. Grid
lines may be latitude/longitude grids, and these are non-straight lines. This
is accomplished by generating a grid for unprojected data, projecting it, and
plotting it over the map shown. An example is given in Fig.1.1. This is the
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code used to define and draw projected latitude/longitude grid lines and grid
line labels for this figure, which uses the world map from package maps:

> library(maptools)

> library(maps)

> wrld <- map("world", interior = FALSE, xlim = c(-179,

+ 179), ylim = c(-89, 89), plot = FALSE)

> wrld_p <- pruneMap(wrld, xlim = c(-179, 179))

> 11CRS <- CRS("+proj=longlat +ellps=WGSS4")

> wrld_sp <- map2SpatialLlines(wrld_p, proj4string = 11CRS)
> prj_new <- CRS("+proj=moll")

> library(rgdal)

> wrld_proj <- spTransform(wrld_sp, prj_new)

> wrld_grd <- gridlines(wrld_sp, easts = c(-179, seq(-150,
+ 150, 50), 179.5), norths = seq(-75, 75, 15), ndiscr = 100)
> wrld_grd_proj <- spTransform(wrld_grd, prj_new)

> at_sp <- gridat(wrld_sp, easts = 0, norths = seq(-75,

+ 75, 15), offset = 0.3)

> at_proj <- spTransform(at_sp, prj_new)

> plot(wrld_proj, col = '"grey60")

> plot(wrld_grd_proj, add = TRUE, 1ty = 3, col = "grey70")
> text(coordinates(at_proj), pos = at_proj$pos, offset = at_proj$offset,
+ labels = parse(text = as.character(at_proj$labels)),
+ cex = 0.6)

Here, function gridat returns an object to draw the labels for these ‘gridded
curves’.

3.1.4 Plot Size, Plotting Area, Map Scale,
and Multiple Plots

R distinguishes between figure region, which is the size of the total figure
including axes, title, etc., and plotting region, which is the area where the
actual data are plotted. To control the total size of the figure, we can get and
set the figure size in inches:

> par("pin")

[1] 5.76 5.16

> par(pin = c(4, 4))

If we want to enlarge the plotting window, we may have to close the current
plotting device and re-open it specifying size, for example

> dev.off()
> X11(width = 10, height = 10)

on Unix machines; replace X11 with windows on MS-Windows computers and
with quartz on Mac OS X. When graphic output is written to files, we can
use, for example

> pdf("file.pdf", width = 5, height = 7)
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Fig. 3.7 Plotting region ezactly equal to sample location ranges: border point sym-
bols are clipped

The geographical (data) area that is shown on a plot is by default that of
the data, extended with a 4 % margin on each side. Because the plot size is
fixed before plotting, only one of the axes will cover the entire plotting region,
the other will be centred and have larger margins. We can control the data
area plotted by passing x1lim and ylim in a plot command, but by default
they will still be extended with 4 % on each side. To prevent this extension,
we can set par (xaxs="i") and par(yaxs="i"). In the following example
> pin <- par("pin")
> dxy <- apply(bbox(meuse), 1, diff)
> ratio <- dxy[1]/dxy[2]
> par(pin = c(ratio * pin[2], pin[2]), xaxs = "i", yaxs = "i")
> plot(meuse, pch = 1)
> box ()
we first set the aspect of the plotting region equal to that of the data points,
and then we plot the points without allowing for the 4% extension of the
range in all directions. The result (Fig. 3.7) is that in all four sides one plotting
symbol is clipped by the plot border.

If we want to create more than one map in a single figure, as was done
in Fig. 3.1, we can sub-divide the figure region into a number of sub-regions.
We can split the figure into two rows and three columns either by

> par(mfrow = c(2, 3))
or

> layout (matrix(1:6, 2, 3, byrow = TRUE))
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Table 3.2 Useful annotation arguments to be passed to plot or image methods

Class(es) Argument Meaning Further help
SpatialLinesDataFrame col Colour ?lines

lwd Line width ?lines

1ty Line type ?lines
SpatialPolygonsDataFrame border Border colour ?polygon

density Hashing density ?polygon

angle Hashing angle ?polygon

1ty Line type ?polygon

pbg Hole colour
SpatialPointsDataFrame pch Symbol ?points

col Colour 7points

bg Fill colour ?points

cex Symbol size 7points
SpatialPixelsDataFrame® zlim Attribute value limits 7image.default
and col Colours 7image.default
SpatialGridDataFrame breaks Break points 7image.default

aUse image to plot gridded data

Each time a plot command that would normally create a new plot is called
(i.e. without add = TRUE), a plot is drawn in a new sub-area; this is done
row-wise for this example, or column-wise when byrow = FALSE. Function
layout also allows us to vary the height and width of the sub-areas.

Map scale is the ratio between the length of one unit on the map and one
unit in the real world. It can only be controlled ahead of time when both
the size of the plotting region, which is by default only a part of the figure
size unless all margins are set to zero, and the plotting area are defined, or
otherwise exactly known.

3.1.5 Plotting Attributes and Map Legends

Up to now we have only plotted the geometry or topology of the spatial
objects. If in addition we want to show feature characteristics or attributes
of the objects, we need to use type, size, or colour of the symbols, lines, or
polygons. Grid cells are usually plotted as small adjacent squares, so their
plotting is in some sense a special case of plotting polygons. Table 3.2 lists the
graphic arguments that can be passed to the plot methods for the Spatial
classes with attributes. When a specific colour, size, or symbol type refers
to a specific numeric value or category label of an attribute, a map legend is
needed to communicate this information. Example code for function legend
is given below and shown in Fig. 3.8.

We provide image methods for objects of class SpatialPixelsDataFrame
and SpatialGridDataFrame. As an example, we can plot interpolated (see
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measured and interpolated zinc

interpolated, ppm
O 100-200
O 200-400
B 400-800
B 800-1800

Fig. 3.8 Sample data points for zinc (ppm) plotted over an interpolated image, with
symbol area proportional to measured concentration

Chap. 8) zinc concentration (zinc.idw) as a background image along with
the data:

grays = gray.colors(4, 0.55, 0.95)

image(zn.idw, col = grays, breaks = log(c(100, 200, 400,
800, 1800)))

plot (meuse.pol, add = TRUE)

plot(meuse, pch = 1, cex = sqrt(meuse$zinc)/20, add = TRUE)

legVals <- ¢(100, 200, 500, 1000, 2000)

legend("left", legend = legVals, pch = 1, pt.cex = sqrt(legVals)/20,
bty = "n", title = "measured")

legend("topleft", legend = c("100-200", "200-400", "400-800",
"800-1800"), fill = grays, bty = "n", title = "interpolated")

+ V+ VVVYV + VYV

the result of which is shown in Fig. 3.8. This example shows how the legend
command is used to place two legends, one for symbols and one for colours.
In this example, rather light grey tones are used in order not to mask the
black symbols drawn.

3.2 Trellis/Lattice Plots with spplot

Apart from the traditional plot methods provided by package sp, a sec-
ond method, called spplot, provides plotting of spatial data with attributes
through the Trellis graphics system (Cleveland 1993, 1994), which is for R
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provided (and extended) by package lattice (Sarkar 2008). Trellis plots are
a bit harder to deal with initially because plot annotation, the addition of
information like legend, lines, text, etc., is handled differently and needs
to be thought out first. The advantage they offer is that many maps can be
composed into single (sets of) graphs, easily and efficiently.

3.2.1 A Straight Trellis Example

Consider the plotting of two interpolation scenarios for the zinc variable in
the meuse data set, obtained on the direct scale and on the log scale. We can
do this either by the levelplot function from lattice, as in

> library(lattice)
> levelplot(z ~ x + y | name, spmap.to.lev(zn[c("direct",
+ "log")]), asp = "iso")

or equivalently by using spplot, which for grids is a simple wrapper around
levelplot and simplifies to

> spplot(zn[c("direct", "log")])

The results of this are shown in Fig.3.9. Function levelplot needs a
data.frame as second argument with the grid values for both maps in a
single column (z) and a factor (name) to distinguish between them. Helper
function spmap.to.lev converts the SpatialPixelsDataFrame object to this
format by replicating the coordinates, stacking the attribute variables, and
adding a factor to distinguish the two maps. Function spplot plots each
attribute passed in a single panel, which results in this case in two panels.

The spplot method does all this too, but hides many details. It provides a
simple access to the functions provided by package lattice for plotting objects
deriving from class Spatial, while retaining the flexibility offered by lattice.
It also allows for adding geographic reference elements to maps.

Note that the plot shows four dimensions: the geographic space spanning
2- and y-coordinates, the attribute values displayed in colour or grey tone,
and the panel identifier, here the interpolation scenario but which may be
used to denote, for example attribute variable or time.

3.2.2 Plotting Points, Lines, Polygons, and Grids

Function spplot plots spatial objects using colour (or grey tone) to denote
attribute values. The first argument therefore has to be a spatial object with
attributes.

Figure 3.10 shows a typical plot with four variables. If the goal is to com-
pare the absolute levels in ppm across the four heavy metal variables, it



3.2 Trellis/Lattice Plots with spplot

333000

332000

331000

330000

179000 180500
I T S N |

direct

log

F

o

P

.
d

1800
1600
1400
1200
1000
800
600
400
200

71

o T T B L
179000 180500

direct 1800

1600
1400
1200
1000
800
600
400
200

Fl -

oty | ot

Fig. 3.9 Two interpolation scenarios for the meuse data set, plotted on the same
total size. Top: plotted by levelplot, bottom: plotted by spplot, which turns off
drawing of axes scales

makes sense to plot them in a single figure with one legend. For such cases,
the conditioning plots of spplot are ideal. Other cases in which multiple sub-
maps are useful are, for example when different moments of time or different
modelling scenarios are used to define the factor that splits the data over
sub-plots (panels).

The first argument to spplot is a Spatial#*DataFrame object with points,
lines, polygons, or a grid. The second argument tells which attributes (column
names or numbers) should be used; if omitted, all attributes are plotted.
Further attributes control the plotting: colours, symbols, legend classes, size,
axes, and geographical reference items to be added.
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Fig. 3.10 Soil measurements for four heavy metals in the Meuse data set; upper: in
ppm units, lower: each variable scaled to mean zero and unit standard variance
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Fig. 3.11 Left: contour lines for distance to river Meuse, levels represented by grey
tones; middle: grid plot of a numerical variable; right: plot of the factor variable flood
frequency; note the different color key
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An example of a SpatialLinesDataFrame plot is shown in Fig.3.11 (left),
where the R function contourLines is used to calculate the contourlines:

library(maptools)

data(meuse.grid)

coordinates (meuse.grid) <- c("x", "y")

meuse.grid <- as(meuse.grid, "SpatialPixelsDataFrame")
im <- as.image.SpatialGridDataFrame (meuse.grid["dist"])
cl <- ContourLines2SLDF (contourLines (im))

spplot(cl)
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3.2.3 Adding Reference and Layout Elements to Plots

Method spplot takes a single argument, sp.layout, to annotate plots with
lines, points, grids, polygons, text, or combinations of these. This argument
contains either a single layout item or a list of layout items. A single layout
item is a list object. Its first component is the name of the layout function to
be called, followed by the object to be plotted and then optional arguments
to adjust colour, symbol, size, etc. The layout functions provided are the
following:

sp layout function Object class Useful arguments®
sp.points SpatialPoints pch, cex, col
sp.polygons SpatialPolygons 1ty, 1lwd, col
sp.lines Spatiallines 1ty, 1lwd, col
sp.text text (see panel.text)

aFor help, see 7par

An example of building an sp.layout structure is as follows:

> river <- list("sp.polygons", meuse.pol)

> north <- list("SpatialPolygonsRescale", layout.north.arrow(),
+ offset = c(178750, 332500), scale = 400)

> scale <- list("SpatialPolygonsRescale", layout.scale.bar(),

+ offset = c(180200, 329800), scale = 1000, fill = c("transparent",
+ "black"))

> txtl <- list("sp.text", c(180200, 329950), "0")

> txt2 <- list("sp.text", c(181200, 329950), "1 km")

> pts <- list("sp.points", meuse, pch = 3, col = "black")

> meuse.layout <- list(river, north, scale, txtl, txt2,

+ pts)

> spplot(zn["log"], sp.layout = meuse.layout)

the result of which is shown in Fig.3.12. Although the construction of this
is more elaborate than annotating base plots, as was done for Fig. 3.5, this
method seems better for the larger number of graphs as shown in Fig. 3.10.

A special layout element is which (integer), to control to which panel a
layout item should be added. If which is present in the top-level list it applies
to all layout items; in sub-lists with layout items it denotes the panel or set
of panels in which the layout item should be drawn. Without which, layout
items are drawn in each panel.

The order of items in the sp.layout argument matters; in principle objects
are drawn in the order they appear. By default, when the object of spplot has
points or lines, sp.layout items are drawn before the points to allow grids
and polygons drawn as a background. For grids and polygons, sp.layout
items are drawn afterwards (so the item will not be overdrawn by the grid
and/or polygon). For grids, adding a list element first = TRUE ensures that
the item is drawn before the grid is drawn (e.g. when filled polygons are
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Fig. 3.12 Interpolated spplot image with layout elements

added). Transparency may help when combining layers; it is available for the
PDF device and several other devices.

Function sp.theme returns a lattice theme that can be useful for plots
made by spplot;use trellis.par.set(sp.theme()) after a device is opened
or changed to make this effective. Currently, this only sets the colours to
bpy.colors.

3.2.4 Arranging Panel Layout

The default layout of spplot plots is computed by (i) the dimensions of the
graphics device and the size of each panel and (ii) a row-wise ordering, starting
top-left. The row-wise ordering can be started bottom-left if as.table = FALSE
is passed to the spplot call. Note that FALSE is the default value for functions
in lattice.

Besides as.table, panel layout can be modified with the layout and
skip arguments. Argument layout is a numeric vector with the number
of columns and the number of rows, for example layout = c(3,4) will
result in three columns and four rows. Argument skip can be used to
leave certain panels blank, in plotting order: layout = c(3,3), skip =
c(F,T,T,F,F,T,F,F,F) will plot six panels in a lower triangular 3 x 3 panel
matrix. Figure 8.10 gives an example of this. More information about layout,
skip, and as.table can be found in the help for lattice function xyplot.
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3.3 Alternatives Routes: ggplot, latticeExtra

Package ggplot2 (Wickham 2009) provides a suite of plotting methods that is
not very dissimilar to those in lattice, but have by default a notably different
look, and a very different interface. The main function, ggplot, takes an
object and will try to convert it to a data.frame using method fortify.
Several methods are provided, and we can see from

> library(ggplot2)
> methods (fortify)

that fortify methods exist for Line, Lines, Polygon, Polygons, Spa-
tialPolygons, SpatialLinesDataFrame, SpatialPolygonsDataFrame, and
for map objects. For SpatialPointsDataFrame objects such as in meuse, we
need to do the conversion ourselves, and

> m = as(meuse, "data.frame")
> ggplot(m, aes(x, y)) + geom_point() + coord_equal()

gives the map shown in Fig.3.13. In this command,

e aes is used to specify which variables need to be plotted on the x and
y-axis,

e geom_point () dictates that the plot should be a scatter plot, and
coord_equal () makes sure that units along the z-axis equal those along
the y-axis (data are projected).

An overview of all functions provided, with graphical examples, is found on
http://ggplot2.org/. The grey background with white lines is the default
in ggplot2.
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Fig. 3.13 ggplot of the meuse data points
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The gg in ggplot refers to grammar of graphics (Wilkinson 2005). We see
in the above expression that components are connected with a +, which may
be seen as a grammatical construct. More intuitively, the + can also be used
to add, as of putting one thing on top of another.

Another effort to combine different graphic elements with the + operator is
provided by latticeExtra. As objects returned by spplot are trellis objects,
they can be combined as follows:

> library(latticeExtra)

> p = spplot(meuse["zinc"])

> m = SpatialPolygonsDataFrame (meuse.pol, data.frame(col = 1),
+ match.ID = FALSE)

> 1 = spplot(m)

>1+p

>p +1

the result of which is shown in Fig. 3.14. Package rasterVis further uses lat-
ticExtra methods to improve visualisation of spatial data, in particular raster
maps based on raster.
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Fig. 3.14 Two plots produced by + from latticeExtra. Left: color key and extent are
taken from the river polygon; right: color key and extent are taken from the zinc
point measurements

3.4 Interactive Plots

The interaction R allows with plots in the traditional and lattice plot systems
is rather limited, compared with stand-alone software written for interacting
with data, or GIS. The main functionality is centred around which informa-
tion is present at the location where a mouse is clicked.
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Fig. 3.15 Interaction with point plots. Left: individual identification of points; right:
digitising a region, highlighted points included in the region

3.4.1 Interacting with Base Graphics

Base graphics has two functions to interact with interactive (i.e. screen)
graphic devices:

locator returns the locations of points clicked, in coordinates of the x-
and y-axis

identify plots and returns the labels (by default: row number) of the
items nearest to the location clicked, within a specified maximum distance
(0.251n. in plot units, by default).

Both functions wait for user input; left mouse clicks are registered; a right
mouse click ends the input. An example session for identify may look like
this:

> plot(meuse)
> meuse.id <- identify(coordinates (meuse))

and the result may look like the left side of Fig.3.15. An example digi-
tise session, followed by selection and re-plotting of points within the area
digitised may be as follows:

> plot(meuse)

> region <- locator(type = "o")

> n <- length(region$x)

> p <- Polygon(cbind(region$x, region$y)[c(1:n, 1), ],
+ hole = FALSE)

> ps <- Polygons(list(p), ID = "region")

> sps <- SpatialPolygons (1list(ps))

> plot(meuselsps, ], pch = 16, cex = 0.5, add = TRUE)

with results in the right-hand side of Fig. 3.15. Note that we ‘manually’ close
the polygon by adding the first point to the set of points digitised.
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To identify particular polygons, we can use locator and overlay the points
with the polygon layer shown in Fig. 3.6:
> library(maptools)
> prj <- CRS("+proj=longlat +datum=NAD27")
> nc_shp <- system.file("shapes/sids.shp", package = "maptools")[1]
> nc <- readShapePoly(nc_shp, proj4string = prj)

> plot(nc)
> pt <- locator(type = "p")
> print (pt)

$x
[1] -78.69484

$y

[1] 35.8044

> pt.sp = SpatialPoints(cbind(pt$x, pt$y), projéstring = prj)

> over(pt.sp, nc)
AREA PERIMETER CNTY_ CNTY_ID NAME FIPS FIPSNO CRESS_ID BIR74

1 0.219 2.13 1938 1938 Wake 37183 37183 92 14484
SID74 NWBIR74 BIR79 SID79 NWBIR79

1 16 4397 20857 31 6221

3.4.2 Interacting with spplot and Lattice Plots

In R, Trellis (lattice) plots have the same interaction functionality as base
plots. However, the process is a bit more elaborate because multiple panels
may be present. To select points with spplot, use

> ids <- spplot(meuse, "zinc", identify = TRUE)

This will show the points selected and return the selected points’ row num-
bers.

In essence, and what the above function hides, we first select a panel, then
identify within this panel, and finally unselect it, which is accomplished by
the lattice functions
> library(lattice)
> trellis.focus("panel", column = 1, row = 1)
> ids <- panel.identify()
> trellis.unfocus()

Digitising can be done by the function grid.locator from package grid,
which underlies the functionality in lattice. A single point is selected by
> library(grid)
> trellis.focus("panel", column = 1, row = 1)
> as.numeric(grid.locator())
> trellis.unfocus()

Package sp contains a simple function spplot.locator to return a digitised
area, simulating the base plot locator behaviour. It returns a two-column
matrix with spatial coordinates.
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3.5 Colour Palettes and Class Intervals

3.5.1 Colour Palettes

R provides a number of colour palettes, and the functions providing them
are self-descriptive: rainbow, grey.colors, heat.colors, terrain.colors,
topo.colors, and cm.colors (cm for cyan-magenta) — cm.colors are the
default palette in spplot and diverge from white.  For quantitative data,
shades in a single colour are usually preferred. These can be created by color-
RampPalette, which creates a color interpolating function taking the required
number of shades as argument, as in

> rw.colors <- colorRampPalette(c("red", "white"))
> image (meuse.grid["dist"], col = rw.colors(10))

Package RColorBrewer provides the palettes described (and printed) in
Brewer et al. (2003) for continuous, diverging, and categorical variables. An
interface for exploring how these palettes look on maps is found in the color-
brewer applet.?

It also has information on suitability of each of the palettes for colour-
blind people, black-and-white photo-copying, projecting by LCD projectors,
use on LCD or CRT screens, and for colour printing. Another, non-interactive,
overview is obtained by

> library(RColorBrewer)
> example (brewer.pal)

Package sp provides the ramp bpy.colors (blue-pink-yellow), which has the
advantage that it has many colors and that it prints well both on color and
black-and-white printers.

3.5.2 Class Intervals

Although we can mimic continuous variation by choosing many (e.g. 100 or
more) colours, matching map colours to individual colours in the legend is
approximate. If we want to communicate changes connected to certain fixed
levels, for example levels related to regulation, or if we for other reasons want
differentiable or identifiable class intervals, we should limit the number of
classes to, for example six or less.

Class intervals can be chosen in many ways, and some have been collected
for convenience in the classInt package. The first problem is to assign class
boundaries to values in a single dimension, for which many classification

2 See http://www.colorbrewer.org/.
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techniques may be used, including pretty, quantile, and natural breaks among
others, or even simple fixed values. From there, the intervals can be used to
generate colours from a colour palette as discussed earlier. Because there
are potentially many alternative class memberships even for a given number
of classes (by default from nclass.Sturges), choosing a communicative set
matters.

We try just two styles, quantiles and Fisher-Jenks natural breaks for five
classes (Slocum et al. 2005, pp. 85-86), among the many available — for further
documentation see the help page of the classIntervals function. They yield
quite different impressions, as we see:

> library(RColorBrewer)

> library(classInt)

> pal <- brewer.pal(5, "Reds")

> g5 <- classIntervals(meuse$zinc, n = 5, style = "quantile")

> g5

style: quantile
one of 14,891,626 possible partitions of this variable into 5 classes
[113,186.8) [186.8,246.4) [246.4,439.6) [439.6,737.2) [737.2,1839]

31 31 31 31 31

> diff(q5%brks)
[1] 73.8 59.6 193.2 297.6 1101.8
> plot(g5, pal = pal)

The empirical cumulative distribution function, used in the plot method for
the classIntervals object returned, suggests that using quantiles is not
necessarily a good idea. While of course the number of sites in each class is
equal by definition, the observed values are far from uniformly distributed.
Examining the widths of the classes using diff on the class breaks shows that
many sites with moderate zinc values will be assigned to the darkest colour
class. Figure 3.16 shows the plot of this class interval set compared with that
for a five-class Fisher-Jenks classification. There are two implementations of
this style, one named ‘fisher’, the other ¢ jenks’. This ‘natural breaks’ set
of class intervals is based on minimising the within-class variance, like many
of the other styles available.

> fj5 <- classIntervals(meuse$zinc, n = 5, style = "fisher")
> £j5

style: fisher
one of 14,891,626 possible partitions of this variable into 5 classes
[113,307.5) [307.5,573) [673,869.5) [869.5,1286.5)
75 32 29 12
[1286.5,1839]
7
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Fig. 3.16 Comparison of quantile and natural breaks methods for setting class in-
tervals, Meuse bank zinc ppm

> diff (£fj5$brks)
[1] 194.5 265.5 296.5 417.0 552.5
> plot(fj5, pal = pal)

Once we are satisfied with the chosen class intervals and palette, we can
go on to plot the data, using the findColours function to build a vector of
colours and attributes, which can be used in constructing a legend:

> g5Colours <- findColours(qg5, pal)

> plot(meuse, col = g5Colours, pch = 19)

> legend("topleft", fill = attr(q5Colours, "palette'),

+ legend = names(attr(g5Colours, "table")), bty = "n")

The output for these two classifications is shown in Fig. 3.17, and does show
that choice of representation matters. Using quantile-based class intervals, it
appears that almost all the river bank sites are equally polluted, while the
natural breaks intervals discriminate better.

For image, we can specify the breaks argument, as was done in Fig. 3.8.
While the classIntervals function can be used with raster data, it may
be prudent to search for class intervals using a sample of the input data,
including the extremities to save time; this heuristic is used by many GIS.
The default class interval style used by image is to divide the range into a
number of classes of equal width (equivalent to the equal or pretty styles
in classIntervals). With very skewed data, for example 2D density plots,
this may give the impression of the data having disappeared, because almost
all the cells will be in one extreme class, and only a few in other classes.
Changing the class intervals will ‘magically’ reveal the data.
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Fig. 3.17 Comparison of output maps made with quantile and natural breaks class
intervals, Meuse bank zinc ppm

For the spplot methods for lines, polygons, and grids, we can pass the
argument pretty = TRUE, which ensures that colour breaks coincide with
legend values (see right-hand side of Fig. 3.11). To specify class intervals with
spplot, for points data we can pass the cuts argument, and for lines, poly-
gons, or grids we can pass the at argument. To also control the key tic marks
and labels, we need to specify colorkey as well. For example, the middle plot
of Fig.3.11 was created by:

> cuts = (0:10)/10
> spplot (meuse.grid,
+ at = cuts)

"dist", colorkey = list(labels = list(at = cuts)),

Having provided a framework for handling and visualising spatial data in
R, we now move to demonstrate how user data may be imported into R, and
the results of analysis exported.



Chapter 4
Spatial Data Import and Export

Geographical information systems (GIS) and the types of spatial data they
handle were introduced in Chap.1. We now show how spatial data can be
moved between sp objects in R and external formats, including the ones
typically used by GIS. In this chapter, we first show how coordinate reference
systems can be handled portably for import and export, going on to transfer
vector and raster data, and finally consider ways of linking R and GIS more
closely.

Before we begin, it is worth noting the importance of open source projects
in making it possible to offer spatial data import and export functions in
R. Many of these projects are now gathered in the Open Source Geospatial
Foundation.! There are some projects which form the basis for the others,
in particular the Geospatial Data Abstraction Library? (GDAL, pronounced
Goodal, coordinated by Frank Warmerdam). Many of the projects also use
the PROJ.4 Cartographic Projections library,® originally written by Ger-
ald Evenden then of the United States Geological Survey, and modified and
maintained by Frank Warmerdam. Without access to such libraries and their
communities, it would not be possible to provide import or export facilities
for spatial data in R. Many of the open source toolkits are also introduced in
depth in Mitchell (2005) and Hall and Leahy (2008). As we proceed, further
links to relevant sources of information, such as mailing list archives, will be
given.

In this chapter, we consider the representation of coordinate reference
systems in a robust and portable way. Next, we show how spatial data may
be read into R, and be written from R, using the most popular formats.
The interface with GRASS GIS will be covered in detail, and finally the
export of data for visualisation will be described.

1 http://wuw.osgeo.org/.
2 http://wuw.gdal.org/.
3 http://trac.osgeo.org/proj/.
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DOI 10.1007/978-1-4614-7618-4_4,
© Springer Science+Business Media New York 2013


http://www.osgeo.org/
http://www.gdal.org/
http://trac.osgeo.org/proj/

84 4 Spatial Data Import and Export

First, we show how loading the package providing most of the interfaces
to the software of these open source projects, rgdal, reports their status:

> library(rgdal)

rgdal: version: 0.8-5, (SVN revision 449)

Geospatial Data Abstraction Library extensions to R successfully loaded
Loaded GDAL runtime: GDAL 1.9.2, released 2012/10/08

Path to GDAL shared files: /usr/local/share/gdal

Loaded PR0J.4 runtime: Rel. 4.8.0, 6 March 2012, [PJ_VERSION: 480]

Path to PR0OJ.4 shared files: (autodetected)

We see that the release version numbers and dates of the external dynamically
loaded libraries are reported. In addition, the values of the package version,
code revision number, and paths to GDAL and PROJ.4 metadata directories
are reported.?

4.1 Coordinate Reference Systems

Spatial data vary a great deal both in the ways in which their position
attributes are recorded and in the adequacy of documentation of how position
has been determined. This applies both to data acquired from secondary
sources and to Global Positioning System input, or data capture from ana-
logue maps by digitising. This also constitutes a specific difference from the
analysis say of medical imagery, which in general requires only a local coor-
dinate system; astronomy and the mapping of other planets also constitute a
separate but linked field. Knowledge about the coordinate reference system
is needed to establish the positional coordinates’ units of measurement, obvi-
ously needed for calculating distances between observations and for describing
the network topology of their relative positions. This knowledge is essential
for integrating spatial data for the same study area, but coming from differ-
ent sources. Waller and Gotway (2004, pp. 40-47) describe some of the key
concepts and features to be dealt with here in an accessible fashion.

Coordinate reference systems (CRS) are at the heart of geodetics and
cartography: how to represent a bumpy ellipsoid on the plane. We can speak
of geographical CRS expressed in degrees and associated with an ellipse —
a model of the shape of the earth, a prime meridian defining the origin in
longitude, and a datum. The concept of a datum is arbitrary and anchors a
specific geographical CRS to an origin point in three dimensions, including
an assumed height above the assumed centre of the earth or above a standard
measure of sea level. Since most of these quantities have only been subject
to accurate measurement since the use of satellites for surveying became
common, changes in ellipse and datum characteristics between legacy maps
and newly collected data are not unusual.

4 The report returned when loading rgdal may be suppressed by wrapping the call in
suppressPackageStartupMessages.
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In contrast, projected CRS are expressed by a specific geometric model
projecting to the plane and measures of length, as well as the underlying
ellipse, prime meridian, and datum. Most countries have multiple CRS, often
for very good reasons. Surveyors in cities have needed to establish a local
datum and a local triangulation network, and frequently these archaic systems
continue to be used, forming the basis for property boundaries and other legal
documents.

Cartography and surveying has seen the development of national triangu-
lations and of stipulated national projections, or sub-national or zoned pro-
jections for larger countries. Typically, problems arise where these regimes
meet. The choices of ellipse, prime meridian, and datum may differ, and the
chosen projection and metric may also differ, or have different key parameters
or origin offsets. On land, national borders tend to be described adequately
with reference to the topography, but at sea, things change. It was because
the coastal states around the North Sea basin had incompatible and not fully
defined CRS that the European Petroleum Survey Group (EPSG; now Oil &
Gas Producers (OGP) Surveying & Positioning Committee) began collecting
a geodetic parameter data set® starting in 1986, based on earlier work in
member companies.

The PROJ.4 library does not report the version of the EPSG list
distributed with releases of PROJ.4, but this may be discovered by read-
ing the NEWS file and extracting lines reporting the PROJ.4 release from
newest to oldest:

> NEWS <- "http://svn.osgeo.org/metacrs/proj/trunk/proj/NEWS"
> PROJ4_NEWS <- readLines (url(NEWS))

> 1lns <- grep("Release Notes|EPSG", PROJ4_NEWS)
> head (PROJ4_NEWS[1ns])

[1] "4.8.0 Release Notes"

[2] " o Upgrade to EPSG 7.9. Some changes in ideal datum selection."

[3] "4.7.0 Release Notes"

[4] " o Regenerated nad/epsg init file with EPSG 7.1 database,
including new"

[6] " support for Google Mercator (EPSG:3857)."

[6] "4.6.1 Release Notes"

4.1.1 Using the EPSG List

The EPSG list is under continuous development, with corrections being made
to existing entries, and new entries being added as required. Copies of the
list are provided in GDAL and PROJ.4, and in Windows and OSX binary

5 http://www.epsg.org/
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rgdal packages,® because the list permits the conversion of a large number of
CRS into the PROJ.4 style description used here. Since it allows for datum
transformation as well as projection, the number of different coordinate ref-
erence systems is very much larger than that in the mapproj package. Datum
transformation is based on transformation to the World Geodetic System of
1984 (WGS84), or inverse transformation from it to an alternative specified
datum. WGS84 was introduced after measurements of earth from space had
become very accurate, and forms a framework into which local and national
systems may be fitted.

The rgdal package copy of the EPSG list can be read into a data frame and
searched using grep, for example. We try to reproduce the example formerly
given by the Royal Netherlands Navy entitled ‘From ED50 towards WGS84,
or does your GPS receiver tell you the truth?’” A position has been read from a
chart in the ED50 datum about a nautical mile west of the jetties of IJmuiden,
but needs to be converted to the WGS84 datum for comparison with readings
from a GPS satellite navigation instrument. We need to transform the chart
coordinates in ED50 — ED50 is the European Datum 1950 — to coordinates
in the WGS84 datum (the concept of a datum is described on p. 84). In this
case to save space, the search string has been chosen to match exactly the
row needed; entering just ED50 gives 35 hits:

> EPSG <- make_EPSG()
> EPSG[grep(""# ED50$", EPSG$note), ]

code note
159 4230 # ED50

prj4
159 +proj=longlat +ellps=intl +towgs84=-87,-98,-121,0,0,0,0 +no_defs
The EPSG code is in the first column of the data frame and the PROJ.4
specification in the third column, with the known set of tags and values.

4.1.2 PROJ.} CRS Specification

The PROJ 4 library uses a ‘tag=value’ representation of coordinate reference
systems, with the tag and value pairs enclosed in a single character string.
This is parsed into the required parameters within the library itself. The only
values used autonomously in CRS class objects are whether the string is a char-
acter NA (missing) value for an unknown CRS, and whether it contains the
string longlat, in which case the CRS contains geographical coordinates.”
There are a number of different tags, always beginning with +, and separated
from the value with =, using white space to divide the tag/value pairs from

6 See installation note at chapter end, p. 125.

7 The value latlong is not used, although valid, because coordinates in sp class
objects are ordered with eastings first followed by northings.
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each other.® If we use the special tag +init with value epsg:4230, where
4230 is the EPSG code found above, the coordinate reference system will be
populated from the tables supplied with the libraries (PROJ.4 and GDAL)
and included in rgdal.

> CRS("+init=epsg:4230")
CRS arguments:

+init=epsg:4230 +proj=longlat +ellps=intl
+towgs84=-87,-98,-121,0,0,0,0 +no_defs

The three tags that are known in this version of the EPSG list are +proj
— projection, which takes the value longlat for geographical coordinates —
+ellps — ellipsoid, with value intl for the International Ellipsoid of 1909
(Hayford), and +towgs84, with a vector of three non-zero parameters for
spatial translation (in geocentric space, AX, AY, AZ). Had seven param-
eters been given, they would permit shifting by translation + rotation +
scaling; note that sources may vary in the signs of the parameters. There was
no +towgs84 tag given for this EPSG code in the first edition of this book,
using EPSG 6.13,° and so without further investigation it was then not be
possible to make the datum transformation. Lots of information about CRS
in general can be found in Grids & Datums,'® a regular column in Pho-
togrammetric Engineering & Remote Sensing. The February 2003 number
covers the Netherlands and gives a three-parameter transformation; adding
AX =87+3m, AY = -96+3m, AZ = —120 + 3m, with a sign change on
AX, gives an alternative specification (note that the EPSG +towgs84 values
are within the tolerances of the Grids & Datums values):

> ED50 <- CRS("+init=epsg:4230 +towgs84=-87,-96,-120,0,0,0,0")
> ED50

CRS arguments:
+init=epsg:4230 +towgs84=-87,-96,-120,0,0,0,0 +proj=longlat
+ellps=intl +no_defs

When rgdal is loaded in the running R session, the proposed tags are
verified against the valid set, and additions, as here, override those drawn
from the EPSG list. Datum transformation shifts coordinates between differ-
ently specified ellipsoids in all three dimensions, even if the data appear to be
only 2D, because 2D data are assumed to be on the surface of the ellipsoid.
It may seem unreasonable that the user is confronted with the complexities
of coordinate reference system specification in this way. The EPSG list pro-
vides a good deal of help, but assumes that wrong help is worse than no
help. Modern specifications are designed to avoid ambiguity, and so this issue
will become less troublesome with time, although old maps are going to be a
source of data for centuries to come.

8 In addition to the EPSG list, there are many examples at the PROJ.4 website, for
example: http://geotiff .maptools.org/proj_list/.

9 The version shipped with PROJ.4 4.8.0 is EPSG 7.9 as we saw above.
10 http://www.asprs.org/Grids-Datums.html.
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4.1.3 Projection and Transformation

In the Dutch navy case, we do not need to project because the input and
output coordinates are geographical:

IJ.east <- as(char2dms("4d31'00\"E"), "numeric")

IJ.north <- as(char2dms("52d28'00\"N"), "numeric")

IJ.ED50 <- SpatialPoints(cbind(x = IJ.east, y = IJ.north),
proj4string = ED50)

res <- spTransform(IJ.ED50, CRS("+proj=longlat +datum=WGS84"))

x <- as(dd2dms(coordinates(res)[1]), "character")

y <- as(dd2dms (coordinates(res) [2], TRUE), "character")

cat(x, y, "\n")

VV VYV +V VYV

4d30'55.294"E 52d27'567.195"N

> spDistsN1(coordinates (IJ.ED50), coordinates(res), longlat = TRUE) *
+ 1000

[1] 124.0994

> library(maptools)
> gzAzimuth (coordinates (IJ.ED50), coordinates(res))

X
-134.3674

Using correctly specified coordinate reference systems, we can reproduce the
example successfully, with a 124 m shift between a point plotted in the inap-
propriate WGS84 datum and the correct ED50 datum for the chart:

For example: one who has read his position 52d28'00”N/ 4d31'00"E
(ED50) from an ED50-chart, right in front of the jetties of IJmuiden, has to
adjust this co-ordinate about 125m to the Southwest .... The corresponding
co-ordinate in WGS84 is 52d27'57N/ 4d30’55" E.

The work is done by the spTransform method, taking any Spatialx
object, and returning an object with coordinates transformed to the target
CRS. There is no way of warping regular grid objects, because for arbitrary
transformations, the new positions will not form a regular grid. The solution
in this case is to convert the object to point locations, transform them to the
new CRS, and interpolate to a suitably specified grid in the new CRS.

Two helper functions are also used here to calculate the difference between
the points in ED50 and WGS84: spDistsN1 and gzAzimuth. Function
spDistsN1 measures distances between a matrix of points and a single point,
and uses Great Circle distances on the WGS84 ellipsoid if the longlat
argument is TRUE. It returns values in kilometres, and so we multiply by
1,000 here to obtain metres. gzAzimuth gives azimuths calculated on the
sphere between a matrix of points and a single point, which must be geo-
graphical coordinates, with north zero, and negative azimuths west of north.
If we use the three translation parameters provided by the current EPSG
list instead of those given in Grids and Datums, we find that the distance is
almost 2m greater, and the azimuth is slightly changed:
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> projdstring(IJ.ED50) <- CRS("+init=epsg:4230")

> res <- spTransform(IJ.ED50, CRS("+proj=longlat +datum=WGS84"))

> spDistsN1(coordinates(IJ.ED50), coordinates(res), longlat = TRUE) *
+ 1000

[1] 125.8692
> gzAzimuth(coordinates (IJ.ED50), coordinates(res))

X
-133.8915

So far in this section we have used an example with geographical coor-
dinates. There are many different projections to the plane, often chosen to
give an acceptable representation of the area being displayed. There exist
no all-purpose projections, all involve distortion when far from the centre of
the specified frame, and often the choice of projection is made by a public
mapping agency.

> EPSG[grep("Atlas", EPSG$note), 1:2]

code note
626 2163 # US National Atlas Equal Area
2328 3978 # NAD83 / Canada Atlas Lambert

2329 3979 # NAD83(CSRS) / Canada Atlas Lambert
> CRS("+init=epsg:2163")

+init=epsg:2163 +proj=laea +lat_0=45 +lon_0=-100 +x_0=0 +y_0=0
+a=6370997 +b=6370997 +units=m +no_defs

For example, the US National Atlas has chosen a particular CRS for its
view of the continental US, with a particular set of tags and values to suit.
The projection chosen has the value laea, which, like many other values
used to represent CRS in PROJ.4 and elsewhere, is rather cryptic. Provision
is made to access descriptions within the PROJ.4 library to make it easier to
interpret the values in the CRS. The projInfo function can return several
kinds of information in tabular form, and those tables can be examined to
shed a little more light on the tag values.

> proj <- projInfo("proj")
> projl[proj$name == "laea", ]

name description
52 laea Lambert Azimuthal Equal Area

> ellps <- projInfo("ellps")
> ellps[grep("a=6370997", ellps$major), ]

name major ell description
42 sphere a=6370997.0 b=6370997.0 Normal Sphere (r=6370997)
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It turns out that this CRS is in the Lambert Azimuthal Equal Area projection,
using the sphere rather than a more complex ellipsoid, with its centre at 100°
west and 45° north. This choice is well-suited to the needs of the Atlas, a com-
promise between coverage, visual communication, and positional accuracy.

All this detail may seem unnecessary, until the analysis we need to
complete turns out to depend on data in different coordinate reference sys-
tems. At that point, spending time establishing as clearly as possible the
CRS for our data will turn out to have been a wise investment. The same
consideration applies to importing and exporting data — if their CRS specifica-
tions are known, transferring positional data correctly becomes much easier.
Fortunately, for any study region the number of different CRS used in
archived maps is not large, growing only when the study region takes in
several jurisdictions. Even better, all modern data sources are much more
standardised (most use the WGS84 datum), and certainly much better at
documenting their CRS specifications.

4.1.4 Degrees, Minutes, and Seconds

In common use, the sign of the coordinate values may be removed and the
value given a suffix of E or N for positive values of longitude or latitude and
W or S for negative values. In addition, values are often recorded traditionally
not as decimal degrees, but as degrees, minutes, and decimal seconds, or some
truncation of this. These representations raise exactly the same questions as
for time series, although time can be mapped onto the infinite real line, while
geographical coordinates are cyclical — move 360° and you return to your
point of departure. For practical purposes, geographical coordinates should
be converted to decimal degree form; this example uses the Netherlands point
that we have already met:

> IJ.dms.E <- "4d31'00\"E"
> IJ.dms.N <- "52d28'00\"N"

We convert these character strings to class ‘DMS’ objects, using function
char2dms:

> IJ_east <- char2dms(IJ.dms.E)
> IJ_north <- char2dms(IJ.dms.N)
> IJ_east

[1] 4d31'E
> IJ_north
[1] 52428'N
> getSlots("DMS")

WS deg min sec NS

"logical" "numeric" "numeric" "numeric" "logical"
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The DMS class has slots to store representations of geographical coordinates,
however, they might arise, but the char2dms () function expects the character
input format to be as placed, permitting the degree, minute, and second
symbols to be given as arguments. We get decimal degrees by coercing from
class ‘DMS’ to class ‘numeric’ with the as() function:

> c(as(IJ_east, "numeric"), as(IJ_north, "numeric"))

[1] 4.516667 52.466667

4.2 Vector File Formats

Spatial vector data are points, lines, polygons, and fit the equivalent sp
classes. There are a number of commonly used file formats, most of them pro-
prietary, and some newer ones which are adequately documented. GIS are also
more and more handing off data storage to database management systems,
and some database systems now support spatial data formats. Vector formats
can also be converted outside R to formats for which import is feasible.

GIS vector data can be either topological or simple. Legacy GIS were
topological, desktop GIS were simple (sometimes known as spaghetti). The sp
vector classes are simple, meaning that for each polygon all coordinates are
stored without checking that boundaries have corresponding points. A topo-
logical representation in principal stores each point only once, and builds
arcs (lines between nodes) from points, polygons from arcs — the GRASS
open source GIS (GRASS Development Team, 2012) from version 6.0 and
subsequent releases has such a topological representation of vector features.
Only the RArcInfo package tries to keep some traces of topology in importing
legacy ESRI™ ArcInfo™ binary vector coverage data (or e00 format data) —
maps uses topology because that was how things were done when the under-
lying code was written. The import of ArcGIS™ coverages is described fully in
Gémez-Rubio and Lépez-Quilez (2005); conversion of imported features into
sp classes is handled by the pal2SpatialPolygons function in maptools.

It is often attractive to make use of the spatial databases in the maps
package. They can be converted to sp class objects using functions such as
map2SpatialPolygons in the maptools package. An alternative source of
coastlines is the Rgshhs function in maptools, interfacing binary databases
of varying resolution distributed by the ‘Global Self-consistent, Hierarchical,
High-resolution Shoreline Database’ project.!!

The best resolution databases are rather large, and so maptools ships only
with the coarse resolution one; users can install and use higher resolution
databases locally. Figures 2.3 and 2.8, among others in earlier chapters, have
been made using these sources.

11 http://www.soest.hawaii.edu/wessel/gshhs/.
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A format that is commonly used for exchanging vector data is the shapefile.
This file format has been specified by ESRI™, the publisher of ArcView™ and
ArcGIS™, which introduced it initially to support desktop mapping using
ArcView™.12 This format uses at least three files to represent the data, a
file of geometries with an *.shp extension, an index file to the geometries
*.shx, and a legacy *.dbf DBF III file for storing attribute data. Note that
there is no standard mechanism for specifying missing attribute values in
this format. If a *.prj file is present, it will contain an ESRI™ well-known
text CRS specification. The shapefile format is not fully compatible with
the OpenGIS® Simple Features Specification (see p. 131 for a discussion
of this specification). Its incompatibility is, however, the same as that of
the SpatialPolygons class, using a collection of polygons, both islands and
holes, to represent a single observation in terms of attribute data.

4.2.1 Using OGR Drivers in rgdal

Using the OGR vector functions of the Geospatial Data Abstraction Library,
interfaced in rgdal,'® lets us read spatial vector data for which drivers are
available. A driver is a software component plugged-in on demand — here
the OGR library tries to read the data using all the formats that it knows,
using the appropriate driver if available. OGR also supports the handling of
coordinate reference systems directly, so that if the imported data have a
specification, it will be read.

The availability of OGR drivers differs from platform to platform, and can
be listed using the ogrDrivers function. The function also lists whether the
driver supports the creation of output files. Because the drivers often depend
on external software, the choices available will depend on the local computer
installation. It is frequently convenient to convert from one external file for-
mat to another using utility programs such as ogr2ogr in binary OSGeodW
Windows releases, which typically include a wide range of drivers.!* On the
system used for building this book, the first 10 drivers listed by ogrDrivers
are:

> head(ogrDrivers(), n = 10)

name write

1 AeronavFAA FALSE
2 ARCGEN FALSE
3 AVCBin FALSE
4 AVCEOO FALSE
5 BNA TRUE

12 The format is fully described in this white paper:
http://www.esri.com/library/whitepapers/pdfs/shapefile.pdf.
13 See installation note at chapter end.

14 http://trac.osgeo.org/osgeodw/.
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6 CouchDB TRUE
7 CSV TRUE
8 DGN TRUE
9 DXF TRUE
10 EDIGEO FALSE

Functions using OGR are based on the concepts of data source name and
layer, both required to access data and metadata. In some circumstances, we
need to find out which layers are offered by a data source, using the function
ogrListLayers taking a data source name argument; an example is given
on p. 97. The ways in which the data source name and layer arguments are
specified and may differ forms for different drivers and it is worth reading the
relevant web pages'® for the format being imported. In some cases, a data
source name contains only one layer, but in other cases many layers may be
present.

Recent releases of OGR have included facilities for handling the encod-
ing of strings, both the values of string fields and of field names. These are
diffusing to drivers for different file formats slowly, but have already caused
difficulties for Windows users of CP1252 (a codepage specifying encoding)
and the ESRI™ Shapefile driver. An analysis of this issue is provided in a
vignette:

> vignette ("OGR_shape_encoding", package = "rgdal")

which explains how to prevent the OGR driver trying to modify the encoding,
thus making it possible to keep the data representation the same in R and
ArcGIS™.

The read0OGR and ogrInfo functions take at least two arguments — the
data source name (dsn) and the layer (layer). For ESRI™ shapefiles, dsn
is usually the name of the directory containing the three (or more) files to be
imported (given as "." if the working directory), and layer is the name of
the shapefile without the " . shp" extension. Additional examples are given on
the function help page for file formats, but it is worth noting that the same
functions can also be used where the data source name is a database connec-
tion, and the layer is a table, for example using PostGIS in a PostgreSQL
database.

We can use the classic Scottish lip cancer data set by district downloaded
from the additional materials page for Chap. 9 in Waller and Gotway (2004).16
There are three files making up the shapefile for Scottish district boundaries
at the time the data were collected — the original study and extra data in a
separate text file are taken from Clayton and Kaldor (1987):

> scot_dat <- read.table("scotland.dat", skip = 1)
> names(scot_dat) <- c("District", "Observed", "Expected",
+ "PcAFF", "Latitude", "Longitude")

15 http://www.gdal.org/ogr/ogr_formats.html.
16 http://www.sph.emory.edu/~1lwaller/WGindex.htm.
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We can use the ogrInfo function to show a summary of the layer before
we read it. The function returns an object containing information, shown
with a print method, and reporting the data source name, the layer name,
the driver, number of features, and featyre type. If a coordinate reference
system is associated with the layer, it is shown, but here, none is available.
The shapefile appears to be in geographical coordinates, as we see from its
extent, showing the coordinates of the bounding box of the vector features.
The LDID value for ESRI™ Shapefiles is explaining in the OGR encoding
vignette mentioned on p. 93.

> ogrInfo(".", "scot")

Source: ".", layer: "scot"
Driver: ESRI Shapefile number of rows 56
Feature type: wkbPolygon with 2 dimensions
Extent: (-8.621389 54.62722) - (-0.7530556 60.84444)
LDID: 0
Number of fields: 2
name type length typeName
1 NAME 4 16  String
2 ID 2 16 Real

We also see that ogrInfo retrieves information on the fields of attribute
data provided in the layer. The name of the field will be used in the "data"
slot of the imported object, and its type will be "integer" or "numeric"
for matching numeric input data, although many drivers return "numeric"
where "integer" would be more appropriate. In read0GR, input strings (in-
cluding all date and time fields read as strings) are converted to factors if
the stringsAsFactors argument is TRUE; the argument defaults to the value
returned by default.stringsAsFactors.

No *.prj file is present, so, after importing from the working directory
with a missing CRS value, we assign a suitable coordinate reference system.

> scot_LL <- readOGR(dsn = ".", layer = "scot")

OGR data source with driver: ESRI Shapefile
Source: ".", layer: "scot"

with 56 features and 2 fields

Feature type: wkbPolygon with 2 dimensions

> proj4string(scot_LL)
[1] NA
> proj4string(scot_LL) <- CRS("+proj=longlat +ellps=WGS84")

As indicated above, when we get the classes of variables in the "data" slot
of scot_LL, we see that the input string field has been converted to factor
representation, and the numeric ID field could just as well been an integer:

> sapply(slot(scot_LL, "data"), class)
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NAME ID
"factor" "numeric"

> scot_LL$ID

[1] 12 13 19 2 17 16 21 50 15 25 26 29 43 39 40 52 42 51 34 54 36 46
[23] 41 53 49 38 44 30 45 48 47 35 28 4 20 33 31 24 55 18 56 14 32 27
[456] 10 22 6 8 9 3 511 1 7 23 37

The Clayton and Kaldor data are for the same districts, but with the rows
ordered differently, so that before combining the data with the imported
polygons, they need to be matched first:

> scot_dat$District

[11 1 2 3 4 5 6 7 8 910 11 12 13 14 15 16 17 18 19 20 21 22
[23] 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44
[45] 45 46 47 48 49 50 51 52 53 54 55 56

> ID_D <- match(scot_LL$ID, scot_dat$District)
> scot_datl <- scot_dat[ID_D, ]

> row.names (scot_datl) <- row.names (scot_LL)

> library(maptools)

> scot_LLa <- spCbind(scot_LL, scot_dat1)

> all.equal(scot_LLa$ID, scot_LLa$District)

[1] TRUE
> names (scot_LLa)

[1] "NAME" "Ip" "District" "Observed" "Expected"
[6] "PcAFF" "Latitude" "Longitude"

Figure 4.1 compares the relative risk by district with the Empirical Bayes
smooth values — we return to the actual techniques involved in Chap. 10,
here the variables are being added to indicate how results may be exported
from R below. The relative risk does not take into account the possible uncer-
tainty associated with unusual incidence rates in counties with relatively small
populations at risk, while Empirical Bayes smoothing shrinks such values to-
wards the rate for all the counties taken together.

> library (spdep)

> 0 <- scot_LLa$0bserved

> E <- scot_LLa$Expected

> scot_LLa$SMR <- probmap(0, E)$relRisk/100
> library(DCluster)

> scot_LLa$smth <- empbaysmooth(0, E)$smthrr

Finally, we project the district boundaries to the British National Grid as
described by Waller and Gotway (2004):

> scot_BNG <- spTransform(scot_LLa, CRS("+init=epsg:27700"))
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SMR smth ’

0

Fig. 4.1 Comparison of relative risk (SMR) and EB smoothed relative risk (smth)
for Scottish lip cancer

We may export SpatialPointsDataFrame, SpatiallLinesDataFrame and
SpatialPolygonsDataFrame objects using the writeOGR function in rgdal to
file formats for which output drivers are implemented. As an example, we
can export the projected Scottish data set, including our added results, to a
shapefile, using driver="ESRI Shapefile", or to other file formats:

> drv <- "ESRI Shapefile"
> writeOGR(scot_BNG, dsn = ".", layer = "scot_BNG", driver = drv)

> list.files(pattern = "“scot_BNG")

[1] "scot_BNG.dbf" "scot_BNG.prj" "scot_BNG.shp" "scot_BNG.shx"

The output now contains a *.prj file with the fully specified coordinate refer-
ence system for the British National Grid, to which we projected the data ob-
ject. As mentioned above, the ogrDrivers function can be used to see which
drivers are available. Some, like driver="ESRI Shapefile", can represent
points, lines or polygons, and are intended for general vector data exchange.
The OpenGIS® specifications include several XML-based formats, initially
the Geography Markup Language (GML), but more recently followed by the
Keyhole Markup Language (KML) brought forward by Google™. The GML
format is also used within the OpenGIS®Web Feature Service (WFS), in
which the server is the data source name, and the layer is a table of geo-
graphical data. Let us use the OGR WFS driver to access European Forest
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Fire Information System data from the Joint Research Centre of the Euro-
pean Commission, adding a driver-specific prefix to the URL of the service;
we can use ogrListLayers to check for available layers:

> dsn <- "WFS:http://geohub. jrc.ec.europa.eu/effis/ows"
> ogrListLayers(dsn)

[1] "EFFIS:FireNews" "EFFIS:Fires30Days" "EFFIS:Fires7Days"
[4] "EFFIS:FiresAll" "EFFIS:HotspotsiDay" "EFFIS:Hotspots7Days"
[7] "EFFIS:HotspotsAll"

> Fires <- readOGR(dsn, "EFFIS:FiresAll")

OGR data source with driver: WFS

Source: "WFS:http://geohub.jrc.ec.europa.eu/effis/ows", layer:
"EFFIS:FiresAll"

with 1770 features and 11 fields

Feature type: wkbPoint with 2 dimensions

> names (Fires)

[1] "gml_iq" "FireDate" "Country" "Province" "Commune"
[6] "Area_ HA" "CountryFul" "Class" "X "y
[11] "LastUpdate"

The data downloaded are those in the current database,'” and will change
as new incidents accrue. First we create a bounding box covering the relevant
parts of Europe, and use it to make a spatial selection of only the coast-
lines and national boundaries taken from the wrld_simpl data set included
in maptools, falling within the box with gIntersection, a binary topologi-
cal operator in the rgeos package. Subsetting the coastlines reduces plotting
times, because the plotting method does not need to discard data far outside
its data window.

> x <- c(-15, -15, 38, 38, -15)
>y <- c(28, 62, 62, 28, 28)
> crds <- cbind(x = x, y = y)
> bb <- SpatialPolygons(1ist(Polygons(1ist(Polygon(coords = crds)),
+ "1")))

> library(maptools)
> data(wrld_simpl)

> proj4string(bb) <- CRS(proj4string(wrld_simpl))

> library(rgeos)

> slbb <- glntersection(bb, as(wrld_simpl, "SpatialLines"))
> spl <- list("sp.lines", slbb, 1lwd = 0.7, col = "khaki4")

Next we convert the input fire date to a Date object, then discard any
incidents on Réunion. Using the new space-time classes introduced in Chap. 6
and specified in the spacetime package, we can plot three incident maps using
the stplot method, conditioned by time quantiles, as shown in Fig.4.2:

17 Those used here were accessed on 2012-01-04.
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> Fires$dt <- as.Date(as.character(Fires$FireDate), format = "}d-/m-}4Y")
> FiresO <- Fires[-which(coordinates(Fires)[, 2] < 0),

+ ]

> Firesl <- FiresO[order (Fires0$dt), ]

> library(spacetime)

> Fires2 <- STIDF(as(Firesl1, "SpatialPoints"), Fires1$dt,

+ as(Firesl, "data.frame"))

> stplot(Fires2, number = 3, sp.layout = spl, cex = 0.5)
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Fig. 4.2 Space-time plot of forest fire incidents, conditioned on time by quantiles:
upper left panel — first third of incidents, upper right panel — second third, lower left
panel — final third

The OGR GPX driver may be used to exchange data with GPS devices,
using a simple XML representation. We may here prepare a file for upload-
ing the fire locations recorded for Greece, for example to permit sites to be
surveyed at fixed post-fire intervals; we must re-name the ID column to the
GPX mandatory "name":
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> names (Fires1) [1] <- "name"

> GR_Fires <- Firesl[Fires1$Country == "GR", ]
> writeOGR(GR_Fires, "EFFIS.gpx", "waypoints", driver = "GPX",
+ dataset_options = "GPX_USE_EXTENSIONS=YES")

The use of the dataset_options argument permits the inclusion of identify-
ing data in the GPX file, which may be accessed on suitable GPS devices. In
this case, the retrieved values for the first incident may be shown as:

> GR <- readOGR("EFFIS.gpx", "waypoints")

OGR data source with driver: GPX

Source: "EFFIS.gpx", layer: "waypoints"
with 89 features and 34 fields

Feature type: wkbPoint with 2 dimensions

> GR[1, c(5, 24:28)]

coordinates name ogr_FireDate ogr_Country

1 (22.261, 39.4258) FiresAll.1552  26-06-2011 GR
ogr_Province ogr_Commune ogr_Area_HA
1 Larisa Dimos Krannonos 376

The Keyhole Markup Language (KML) is a further XML-based OGR driver,
to which we return in Sect. 4.4 below.

4.2.2 Other Import/Export Functions

If the rgdal package is not available, there are two other packages that can
be used for reading and writing shapefiles. The shapefiles package is writ-
ten without external libraries, using file connections. It can be very useful
when a shapefile is malformed, because it gives access to the raw numbers.
The maptools package contains a local copy of the library used in OGR for
reading shapefiles (the DBF reader is in the foreign package), and provides
a helper function getinfo.shape to identify whether the shapefile contains
points, lines, or polygons.

> getinfo.shape("scot_BNG.shp")

Shapefile type: Polygon, (5), # of Shapes: 56

There is a function to read vector data from shapefiles: readShapeSpa-
tial. It is matched by an equivalent exporting function: writeSpatial-
Shape, using local copies of shapelib functions otherwise available in rgdal
in the OGR framework. The RArcInfo package also provides local access to
OGR functionality, for reading ArcGIS™ binary vector coverages, but with
the addition of a utility function for converting e00 format files into binary
coverages; full details are given in Gémez-Rubio and Lépez-Quilez (2005).
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4.3 Raster File Formats

There are very many raster and image formats; some allow only one band
of data, others assume that data bands are Red-Green-Blue (RGB), while
yet others are flexible and self-documenting. The simplest formats are just
rectangular blocks of uncompressed data, like a matrix, but sometimes with
row indexing reversed. Others are compressed, with multiple bands, and may
be interleaved so that subscenes can be retrieved without unpacking the whole
image. There are now a number of R packages that support image import
and export, such as the Readlmages and biOps packages and the EBImage
package in the Bioconductor project. The requirements for spatial raster data
handling include respecting the coordinate reference system of the image, so
that specific solutions are needed. There is, however, no direct support for
the transformation or ‘warping’ of raster data from one coordinate reference
system to another.

4.3.1 Using GDAL Drivers in rgdal

Many drivers are available in rgdal in the readGDAL function, which — like
readOGR — finds a usable driver if available and proceeds from there. Using
arguments to readGDAL, subregions or bands may be selected, and the data
may be decimated, which helps handle large rasters. The simplest approach
is just to read all the data into the R workspace — here we will the same
excerpt from the Shuttle Radar Topography Mission (SRTM) flown in 2000,
for the Auckland area as in Chap. 2.

> auck_ell <- readGDAL("70042108.tif")

70042108.tif has GDAL driver GTiff
and has 1200 rows and 1320 columns

> summary (auck_ell)

Object of class SpatialGridDataFrame
Coordinates:
min  max
x 174.2 175.3
y -37.5 -36.5
Is projected: FALSE
proj4string :
[+proj=longlat +datum=WGS84 +no_defs +ellps=WGS84
+towgs84=0,0,0]
Grid attributes:

cellcentre.offset cellsize cells.dim
X 174.20042 0.0008333333 1320
y -37.49958 0.0008333333 1200
Data attributes:
Min. 1st Qu. Median Mean 3rd Qu. Max.

-3.403e+38 0.000e+00 1.000e+00 -1.869e+34 5.300e+01 6.860e+02
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> is.na(auck_ell$bandl) <- auck_ell$bandl <= 0 | auck_ell$bandl >
+ 10000

The readGDAL function is actually a wrapper for substantially more powerful
R bindings for GDAL written by Timothy Keitt. The bindings allow us to
handle very large data sets by choosing sub-scenes and re-sampling, using
the offset, region.dim, and output.dim arguments. The bindings work by
opening a data set known by GDAL using a GDALDriver class object, but
only reading the required parts into the workspace.

> x <- GDAL.open("70042108.tif")
> xx <- getDriver(x)
> XX

An object of class "GDALDriver"
Slot "handle":
<pointer: 0x3145730>

> getDriverLongName (xx)
[1] "GeoTIFF"
> X

An object of class "GDALReadOnlyDataset"
Slot "handle":
<pointer: 0x85ad850>

> dim(x)
[1] 1200 1320

> GDAL.close(x)

Here, x is a derivative of a GDALDataset object, and is the GDAL data set
handle; the data are not in the R workspace, but all their features are there to
be read on demand. An open GDAL handle can be read into a SpatialGrid-
DataFrame, so that readGDAL may be done in pieces if needed. Information
about the file to be accessed may also be shown without the file being read,
using the GDAL bindings packaged in the utility function GDALinfo:

> GDALinfo("70042108.tif")

rows 1200

columns 1320

bands 1

lower left origin.x 174.2
lower left origin.y -37.5
res.x 0.0008333333

res.y 0.0008333333

ysign -1

oblique.x 0

oblique.y 0

driver GTiff

projection +proj=longlat +datum=WGS84 +no_defs
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file 70042108.tif
apparent band summary:
GDType hasNoDataValue NoDataValue blockSizel blockSize2

1 Float32 FALSE 0 1 1320
apparent band statistics:
Bmin Bmax Bmean Bsd
1 -4294967295 4294967295 NA NA
Metadata:

AREA_OR_POINT=Area

TIFFTAG_RESOLUTIONUNIT=1 (unitless)
TIFFTAG_SOFTWARE=IMAGINE TIFF Support

Copyright 1991 - 1999 by ERDAS, Inc. All Rights Reserved
Q(#)$RCSfile: etif.c $ $Revision: 1.11 $ $Date$
TIFFTAG_XRESOLUTION=1

TIFFTAG_YRESOLUTION=1

While Spatial objects do not contain a record of their symbolic represen-
tation (see p. 29), it is possible to quantise numerical bands and associate
them with colour tables when exporting raster data using some drivers. We
can see here that the same colour table is retrieved from a GTiff file; the ways
in which colour tables are handled varies considerably from driver to driver.
The colour table is placed in a list because they are associated with raster
bands, possibly one for each band in a multi-band raster, so the colorTable=
argument to writeGDAL must be NULL or a list of length equal to the number
of bands. Note that the integer raster values pointing to the colour table are
zero-based, that is, the index for looking up values in the colour table starts
at zero for the first colour, and so on. Care is needed to move the missing
value beyond values pointing to the colour table; note that the colours have
lost their alpha-channel settings. More examples are given in the writeGDAL
help page.

> brks <- c(0, 10, 20, 50, 100, 150, 200, 300, 400, 500,

+ 600, 700)
> pal <- terrain.colors(11)
> pal

[1] "#OOA600FF" "#2DB60OFF" "#63C600FF" "#AODBOOFF" "#EGEBOOFF"
[6] "#EBC727FF" "#EABG4EFF" "#ECB176FF" "#EEBOOFFF" "#FOCFC8FF"
[11] "#F2F2F2FF"

> length(pal) == length(brks) - 1

[1] TRUE

> auck_ell1$bandl <- findInterval (auck_ell$bandl, vec = brks,

+ all.inside = TRUE) - 1

> writeGDAL (auck_ell, "demIndex.tif", drivername = "GTiff",

+ type = "Byte", colorTable = list(pal), mvFlag = length(brks) -
+ 1)

> Gi <- GDALinfo("demIndex.tif", returnColorTable = TRUE)

> CT <- attr(Gi, "ColorTable")[[1]]

> CT[CT > "#000000"]
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[1] "#00A600" "#2DB600" "#63C600" "#AOD60O" "#EGE600" "#E8C727"
[7] "#EAB64E" "#ECB176" "#EEBOOF" "#FOCFC8" "#F2F2F2"

We use the Meuse grid data set to see how data may be written out
using GDAL.'® The writeGDAL function can be used directly for drivers that
support file creation. For other file formats, which can be made as copies
of a prototype, we need to create an intermediate GDAL data set using
create2GDAL, and then use functions operating on the GDAL data set handle
to complete. First we simply output inverse distance weighted interpolated
values of Meuse Bank logarithms of zinc ppm as a GeoTiff file.

> library(gstat)
> log_zinc <- idw(log(zinc) ~ 1, meuse, meuse.grid)["varl.pred"]

> summary(log_zinc)

Object of class SpatialPixelsDataFrame
Coordinates:
min max

x 178440 181560
y 329600 333760
Is projected: TRUE
proj4string :
[+init=epsg:28992 +proj=sterea +lat_0=52.15616055555555
+lon_0=5.38763888888889 +k=0.9999079 +x_0=155000 +y_0=463000
+ellps=bessel
+towgs84=565.417,50.3319,465.552,-0.398957,0.343988,-1.8774,4.0725
+units=m +no_defs]
Number of points: 3103
Grid attributes:

cellcentre.offset cellsize cells.dim

X 178460 40 78
y 329620 40 104
Data attributes:
Min. 1st Qu. Median Mean 3rd Qu. Max.

4.791 5.484 5.694 5.777 6.041 7.482

> writeGDAL(log_zinc, fname = "log_zinc.tif", drivername = "GTiff",
+ type = "Float32", options = "INTERLEAVE=PIXEL")

> GDALinfo("log_zinc.tif")

rows 104

columns 78

bands 1

lower left origin.x 178440
lower left origin.y 329600
res.x 40

res.y 40

ysign -1

oblique.x 0

18 The current EPSG list provides +towgs84 parameter values, which were not present
in earlier versions of that list.
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oblique.y 0
driver GTiff
projection +proj=sterea +lat_0=52.15616055555555
+lon_0=5.38763888888889 +k=0.9999079 +x_0=155000
+y_0=463000 +ellps=bessel
+towgs84=565.417,50.3319,465.552,-0.398957,0.343988,-1.8774,4.0725
+units=m +no_defs
file log_zinc.tif
apparent band summary:

GDType hasNoDataValue NoDataValue blockSizel

1 Float32 FALSE 0 26
blockSize2
1 78
apparent band statistics:
Bmin Bmax Bmean Bsd
1 -4294967295 4294967295 NA NA
Metadata:

AREA_OR_POINT=Area

The output file can for example be read into ENVI™ directly, or into

ArcGIS™ possibly via the ‘Calculate statistics’ tool in the Raster section
of the Toolbox, and displayed by adjusting the symbology classification.

In much the same way that writeGDAL can write per-band colour tables
to exported files for some drivers (see p. 102), the same can be done with
category names. The same remarks with respect to zero-based indexing also
apply, so that zero in the raster points to the first category name. On import
using readGDAL with the default value of the as.is= argument of FALSE,
the integer band will be associated with the category names in the file and
converted to "factor":

> Soil <- meuse.grid["soil"]
> table(Soil$soil)

1 2 3
1665 1084 354

Soil$soil <- as.integer(Soil$soil) - 1

Cn <- c("Rd10A", "Rd90C/VII", "Bkd26/VII")

writeGDAL(Soil, "Soil.tif", drivername = "GTiff", type = "Byte",
catNames = 1ist(Cn), mvFlag = length(Cn))

Gi <- GDALinfo("Soil.tif", returnCategoryNames = TRUE)

attr(Gi, "CATlist")[[1]]

vV V + VvV VvV

[1] "RdioA" "R490C/VII" "Bkd26/VII"
> summary(readGDAL ("Soil.tif"))

Soil.tif has GDAL driver GTiff

and has 104 rows and 78 columns
Input level values and names

0 Rd10A

1 Rd90C/VII

2 Bkd26/VII

Object of class SpatialGridDataFrame



4.3 Raster File Formats 105

Coordinates:
min max
x 178440 181560
y 329600 333760
Is projected: TRUE
proj4string :
[+proj=sterea +lat_0=52.15616055555555 +lon_0=5.38763888888889
+k=0.9999079 +x_0=155000 +y_0=463000 +ellps=bessel
+towgs84=565.417,50.3319,465.552,-0.398957,0.343988,-1.8774,4.0725
+units=m +no_defs]
Grid attributes:
cellcentre.offset cellsize cells.dim

X 178460 40 78
y 329620 40 104

Data attributes:
RA10A RA90C/VII Bkd26/VII NA's
1665 1084 354 5009

The range of drivers available for raster data is vast, and steadily increasing.
The gdalDrivers function shows those available, including chosen properties;
here are the first 10 on the book production platform:

> head(gdalDrivers(), n = 10)

name long_name create copy
1 AAIGrid Arc/Info ASCII Grid FALSE TRUE
2 ACE2 ACE2 FALSE FALSE
3 ADRG ARC Digitized Raster Graphics  TRUE FALSE
4 AIG Arc/Info Binary Grid FALSE FALSE
5  AirSAR AirSAR Polarimetric Image FALSE FALSE
6 BAG Bathymetry Attributed Grid FALSE FALSE
7 BIGGIF  Graphics Interchange Format (.gif) FALSE FALSE
8 BLX Magellan topo (.blx) FALSE TRUE
9 BMP MS Windows Device Independent Bitmap  TRUE FALSE
10 BSB Maptech BSB Nautical Charts FALSE FALSE

For example, there is now an R driver for storing portable SpatialGrid-
DataFrame objects:

> writeGDAL(log_zinc, fname = "log_zinc.rda", drivername = "R")

> GDALinfo("log_zinc.rda")

rows 104

columns 78

bands 1

lower left origin.x 178440
lower left origin.y 329600
res.x 40

res.y 40

ysign -1

oblique.x 0
oblique.y 0
driver R
projection +proj=sterea +lat_0=52.15616055555555
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+lon_0=5.38763888888889 +k=0.9999079 +x_0=155000
+y_0=463000 +ellps=bessel
+towgs84=565.417,50.3319,465.552,-0.398957,0.343988,-1.8774,4.0725
+units=m +no_defs
file log_zinc.rda
apparent band summary:

GDType hasNoDataValue NoDataValue blockSizel

1 Float64 FALSE 0 1
blockSize2
1 78
apparent band statistics:
Bmin Bmax Bmean Bsd
1 -4294967295 4294967295 NA NA
Metadata:

R_OBJECT_NAME=gg

As in the vector case, GDAL now supports a range of web services.
The OpenGIS®Web Map Service (WMS) driver can be used with a local
XML file describing the service, and customised offset, region size (both in
raster cells, ordered: northings, eastings), and output size. This example reads
a raster version of OpenStreetMap'® data for the centre of Bergen, Norway:

> service_xml <- "frmt_wms_openstreetmap_tms.xml"

> offset <- ¢(19339000, 34546000)

> osm <- readGDAL (service_xml, offset = offset, region.dim = c (2000,
+ 2000), output.dim = c(1000, 1000))

frmt_wms_openstreetmap_tms.xml has GDAL driver WMS
and has 67108864 rows and 67108864 columns

> summary (osm)

Object of class SpatialGridDataFrame
Coordinates:
min max
x 592129 593323.3
y 8487754 8488948.3
Is projected: TRUE
proj4string :
[+proj=merc +lon_0=0 +k=1 +x_0=0 +y_0=0 +a=6378137 +b=6378137
+units=m +no_defs]
Grid attributes:
cellcentre.offset cellsize cells.dim

X 592129.6 1.194329 1000
y 8487754.5 1.194329 1000
Data attributes:
band1 band2 band3
Min. : 0.0 Min. : 0.0 Min. : 0.0
1st Qu.:202.0 1st Qu.:208.0 1st Qu.:208.0
Median :240.0 Median :232.0 Median :227.0
Mean :223.5 Mean :219.3 Mean :215.
3rd Qu.:241.0 3rd Qu.:238.0 3rd Qu.:232.0
Max. :255.0 Max. :255.0 Max. :255.0

19 http://www.openstreetmap.org/, this selection corresponds to
http://www.openstreetmap.org/?lat=60.39542&lon=5.32233&zoom=16&layers=C.
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Figure 4.3 shows the retrieved data, which has been extracted from the tiled
OpenStreetMap global raster database.

Fig. 4.3 Use of the WMS GDAL driver to retrieve OpenStreetMap raster data for
the centre of Bergen, Norway (©OpenStreetMap contributors, CC-BY-SA)

4.3.2 Other Import/Export Functions

There is a simple readAsciiGrid function in maptools that reads ESRI™ Arc
ASCII grids into SpatialGridDataFrame objects; it does not handle CRS and
has a single band. The companion writeAsciiGrid is for writing Arc ASCII
grids. It is also possible to use connections to read and write arbitrary binary
files, provided that the content is not compressed. Functions in the R image
analysis packages referred to above may also be used to read and write a
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number of image formats. If the grid registration slots in objects of classes
defined in the pixmap package are entered manually, these objects may also
be used to hold raster data.

4.4 Google Earth™, Google Maps™ and Other Formats

As we have seen above, web-based services are becoming ever more important
channels for exchanging spatial data. We will examine two directions for
transfer, first the import of background maps into R, and next the export of
data for display on web-based mapping platforms.

The RgoogleMaps package provides tools to access Google Maps™data in
image form using the Google Static Maps API, in order to permit back-
ground maps to be used in R. The HTTP request issued specifies the image
required, which is then composed and downloaded for display in R graphics
devices. The object uses screen coordinates internally, but may be reshaped
as a SpatialGridDataFrame, permitting standard sp methods to be used
for overplotting. The package has been extended to issue HT'TP requests to
OpenStreetMap, but as yet without geographical registration, so that we can
retrieve images for the street layout of the centre of Bergen, Norway in this
way, in addition to using WMS from OpenStreetMap; the results are shown
in Fig.4.4:

v

library(RgoogleMaps)
myMap <- GetMap(center = c(60.395, 5.322), zoom = 16,
destfile = "MyTile2.png", maptype = "mobile")

+ Vv

BB <- do.call("rbind", myMap$BBOX)

dBB <- rev(diff(BB))

DIM12 <- dim(myMap$myTile) [1:2]

cs <- dBB/DIM12

cc <- c¢(BB[1, 2] + cs[1]/2, BB[1, 1] + cs[2]/2)

GT <- GridTopology(cc, cs, DIM12)

p4s <- CRS("+proj=longlat +datum=WGS84")

SG_myMap <- SpatialGridDataFrame(GT, proj4string = p4s,

data = data.frame(r = c(t(myMap$myTilel[, , 1])) *

255, g = c(t(myMap$myTile[, , 2])) * 255, b = c(t(myMap$myTilel,
, 3])) * 255))

+ + + VVVVVYVVYV

v

myMapl <- GetMap.0SM(lonR = c(5.319, 5.328), latR = c(60.392,
60.398), scale = 4000, destfile = "MyTile.png")

+

Vector data from OpenStreetMap is also available for download from the
recently contributed package osmar; the package is under active development.
If we retrieve a similar area to that sourced from Google Maps™, we should
be able to overlay the vector data after conversion to an sp class; we can
also see who had made most contributions of lines to OSM at the time this
snapshot was downloaded:



4.4 Google Earth™, Google Maps™ and Other Formats 109

library(osmar)

api <- osmsource_api()

box <- corner_bbox(5.319, 60.392, 5.328, 60.398)
torget <- get_osm(box, source = api)

vV V. Vv Vv

> torgetl <- as_sp(torget, "lines")
> sort(table(torgeti$user), decreasing = TRUE)[1:3]

Karl Ove Hufthammer M E Menk Bard Aase
a7 39 29

The package also provides methods for selection of particular kinds of
objects, so that we can find and select the city terminus of the light rail
route for overplotting in this way (using data downloaded as this chapter was
being revised, but not necessarily valid before or after, for example, the tag
"light_rail" appears to have been changed to "railway" at some stage,
and an inoperative museum tramway added):

bybane <- find(torget, way(tags(k == "light_rail")))
bybane <- find_down(torget, way(bybane))

bybane <- subset (torget, ids = bybane)

bybane <- as_sp(bybane, "lines")

>
>
>
>

Fig. 4.4 Background maps imported with functions in RgoogleMaps from Google
Maps™, overplotted with line data imported with functions in osmar with the light
rail terminus shown as an orange line; and OpenStreetMap for the centre of Bergen,
Norway (©Google™and ©)OpenStreetMap contributors, CC-BY-SA)

Data may be exported for display with Google Earth™and other systems in
the Keyhole Markup Language (KML) format. Vector data can be exported
directly in a number of ways, given that it is in geographical coordinates and
in the WGS84 datum. Point data may use the KML driver in OGR through
writeOGR, with the values of attributes shown in bubbles when displayed
points are clicked:
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Fig. 4.5 Forest fires in Europe from JRC database shown in Google Earth™

> writeOGR(Fires[, c("gml_id", "FireDate", "Area_HA")],
+ dsn = "fires.kml", layer = "fires", driver = "KML")

Figure 4.5 shows the KML file displayed in Google Earth™, and the reader
may try out the attribute query mechanism, as well as zooming in to regions
of interest in a running Google Earth application. Lines and Polygons may
also be exported with the KML driver and write0OGR, but there is only lim-
ited support for styles and attribute data. There are also three functions in
maptools, kmlPoints, kmlLine and kmlPolygon, that permit more control
over style but at the cost of more work setting arguments. The plotKML
package is now available on CRAN, providing unified methods for setting
styles and other display qualities, and handling space-time data.

Our next attempt, to export a raster, will be more ambitious; in fact we
can use this technique to export anything that can be plotted on a PNG
graphics device. We export a coloured raster of interpolated log zinc ppm
values to a PNG file with an alpha channel for viewing in Google Earth™.
Since the target software requires geographical coordinates, a number of steps
will be needed. First we make a polygon to bound the study area and project
it to geographical coordinates:

> library(maptools)

> grd <- as(meuse.grid, "SpatialPolygons")

> proj4string(grd) <- CRS(proj4string(meuse))

> grd.union <- unionSpatialPolygons(grd, rep("x", length(slot(grd,
+ "polygons"))))

> 11 <- CRS("+proj=longlat +datum=WGS84")

> grd.union.11l <- spTransform(grd.union, 11)



4.4 Google Earth™, Google Maps™ and Other Formats 111

Fig. 4.6 Interpolated log zinc ppm for the Meuse Bank data set shown in Google
Earth™

Next we construct a suitable grid in geographical coordinates, as our target
object for export, using the GE_SpatialGrid wrapper function. This grid is
also the container for the output PNG graphics file, so GE_SpatialGrid also
returns auxiliary values that will be used in setting up the png graphics device
within R. We use the over method to set grid cells outside the river bank
area to NA, and then discard them by coercion to a SpatialPixelsDataFrame:

11GRD <- GE_SpatialGrid(grd.union.11)

11GRD_in <- over (11GRD$SG, grd.union.11)

11SGDF <- SpatialGridDataFrame(grid = slot(11GRD$SG,
"grid"), proj4string = CRS(proj4string(11GRD$SG)),
data = data.frame(in0O = 11GRD_in))

11SPix <- as(11SGDF, "SpatialPixelsDataFrame")

vV + + Vv VvV

We use idw from the gstat package to make an inverse distance weighted
interpolation of zinc ppm values from the soil samples available, also, as here,
when the points are in geographical coordinates; interpolation will be fully
presented in Chap. 8 (the need for the : : notation is explained on Sect. 8.3.1):

> meuse_11 <- spTransform(meuse, CRS("+proj=longlat +datum=WGS84"))

> 11SPix$pred <- gstat::idw(log(zinc) ~ 1, meuse_11, 11SPix)$varl.pred
Since we have used GE_SpatialGrid to set up the size of an Rpng graph-
ics device, we can now use it as usual, here with image. In practice, any
base graphics methods and functions can be used to create an image overlay.
Finally, after closing the graphics device, we use km10verlay to write a * . kml
file giving the location of the overlay and which will load the image at that
position when opened in Google Earth™, as shown in Fig. 4.6:
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> png(file = "zinc_IDW.png", width = 11GRD$width, height = 11GRD$height,
+ bg = "transparent")

> par(mar = ¢(0, 0, 0, 0), xaxs = "i", yaxs = "i")

> image(11SPix, "pred", col = bpy.colors(20))

> dev.off ()

>

kmlOverlay (11GRD, "zinc_IDW.kml", "zinc_ IDW.png ")

4.5 Geographical Resources Analysis Support
System (GRASS)

GRASS? is a major open source GIS, originally developed as the Geographic
Resources Analysis Support System by the U.S. Army Construction Engi-
neering Research Laboratories (CERL, 1982-1995), and subsequently taken
over by its user community. GRASS has traditional strengths in raster data
handling, but two advances (floating point rasters and support for missing
values) were not completed when development by CERL was stopped. These
were added for many modules in the GRASS 5.0 release; from GRASS 6.0,
new vector support has been added. GRASS is a very large but very simple
system — it is run as a collection of separate programs built using shared
libraries of core functions. There is then no GRASS ‘program’, just a script
setting environment variables needed by the component programs. GRASS
does interact with the OSGeo stack of applications; for further reviews, see
Neteler et al. (2008, 2012) and Jolma et al. (2012).

An R package to interface with GRASS has been available on CRAN —
GRASS — since the release of GRASS 5.0. It provided a compiled interface to
raster and sites data, but not vector data, and included a frozen copy of the
core GRASS GIS C library, modified to suit the fact that its functions were
being used in an interactive, longer-running program like R. The GRASS
package is no longer being developed, but continues to work for users of
GRASS 5. The GRASS 5 interface is documented in Neteler and Mitasova
(2004, pp. 333-354) and Bivand (2000).

The current GRASS releases, from GRASS 6.0, with GRASS 6.4.2
released in early 2012, have a different interface, using the sp classes pre-
sented in Chap. 2. Neteler and Mitasova (2008) describe GRASS 6 fully, and
present this interface on pp. 353-364. The spgrass6 package depends on rgdal
for moving data, because GRASS also uses GDAL and OGR as its main im-
port/export mechanisms. The interface works by exchanging temporary files
in formats that both GRASS and rgdal know; a custom binary interface using
r.in.bin and r.out.bin is also available, and may be faster than using a
GDAL file format. This kind of loose coupling is less of a burden than it was
before, with smaller, slower machines. This is why the GRASS 5 interface
was tight-coupled, with R functions reading from and writing to the GRASS

20 nttp://grass.osgeo.org/.
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database directly. Using GRASS plug-in drivers in GDAL/OGR is another
possibility for reading GRASS data directly into R through rgdal, without
needing spgrass6; spgrass6 can use these plug-in drivers if present for reading
GRASS data.

GRASS uses the concept of a working region or window, specifying both
the viewing rectangle and — for raster data — the resolution. The data in
the GRASS database can be from a larger or smaller region and can have
a different resolution, and are re-sampled to match the working region for
analysis. This current window should determine the way in which raster data
are retrieved and transferred.

GRASS also uses the concepts of a location, with a fixed and uniform
coordinate reference system, and of mapsets within the location. The location
is typically chosen at the start of a work session, and with the location, the
user will have read access to possibly several mapsets, and write access to
some, probably fewer, to avoid overwriting the work of other users of the
location.

Intermediate temporary files are the chosen solution for interaction
between GRASS and R in spgrass6, and drivers may be chosen by the user.
Note that missing values are defined and supported for GRASS raster data,
but that missing values for vector data are not uniformly defined or sup-
ported. It does not yet seem to be possible to use mechanisms in rgdal to
interface colour tables or category names for rasters. Native Windows GRASS
is now firmly established for GRASS 6.4.*, and the interface functions well
on that platform; and spgrass6 binaries for Windows and Mac OSX are on
CRAN.

Each GRASS program takes a --interface-description flag, which
when run returns an XML description of its flags and parameters. These
descriptions are used by the GRASS GUI to populate its menus, and are also
used in spgrass6 to check that GRASS programs are used correctly. This also
means that the parseGRASS function can set up an object in a searchable list
on the R side of the interface, to avoid re-parsing interface descriptions that
have already been encountered in a session. The middle function is doGRASS,
which takes the flags and parameters chosen, checks their validity, and con-
structs a command string. Finally, execGRASS uses the system function to
execute the GRASS program with the chosen flag and parameter values.

The package may be used in two ways, either in an R session started from
within a GRASS session from the command line, or with the initGRASS
function. The function may be used with an existing GRASS location and
mapset, or with a one-time throw-away location, and takes the GRASS instal-
lation directory as its first argument; an example is given on p. 136. It then
starts a GRASS session within the R session, and is convenient for scripting
GRASS in R, rather than Python, which is be the GRASS scripting language
in development version GRASS 7.

R is started here from within a GRASS session from the command line,
and the spgrass6 loaded with its dependencies:
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> library(spgrass6)

> execGRASS("g.region", flags = "p")

projection: 1 (UTM)
zone: 13
datum: nad27
ellipsoid: clark66
north: 4928000
south: 4914020
west: 590010
east: 609000
nsres: 30
ewres: 30
rows: 466
cols: 633
cells: 294978

4 Spatial Data Import and Export

The examples used here are taken from the ‘Spearfish’ sample data location
(South Dakota, USA, 103.86W, 44.49N), perhaps the most typical for GRASS
demonstrations. Data moved from GRASS over the interface will be given
category labels if present. The interface does not support the transfer of fac-
tor level labels from R to GRASS, nor does it set colours or quantisation
rules. The readRAST6 command here reads elevation values into a Spatial-
GridDataFrame object, treating the values returned as floating point and the

geology categorical layer into a factor:

> spear <- readRAST6(c("elevation.dem", "geology"), cat = c(FALSE,

+ TRUE))
> summary (spear)

Object of class SpatialGridDataFrame
Coordinates:
min max

[1,] 590010 609000
[2,] 4914020 4928000
Is projected: TRUE
proj4string :
[+proj=utm +zone=13 +a=6378206.4 +rf=294.9786982 +no_defs
+nadgrids=/home/rsb/topics/grass/g642/grass-6.4.2/etc/nad/conus
+to_meter=1.0]
Grid attributes:

cellcentre.offset cellsize cells.dim
1 590025 30 633
2 4914035 30 466
Data attributes:

elevation.dem geology

Min. :1066 sandstone: 75062
1st Qu.:1200 limestone:61278
Median :1316 shale 146207
Mean :1354 sand 136706
3rd Qu.:1488 igneous :36394
Max. 11840 (Other) :37561

NA's 12661 NA's : 1770
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Fig. 4.7 Empirical cumulative distribution function of elevation for the Spearfish
location

> table(spear$geology)

metamorphic

+ Vv

¥ O 00 ~NO U WN =

When the cat argument is set to TRUE, the GRASS category labels are
imported and used as factor levels; checking back, we can see that they agree:

11556

shale sandy shale
46207 11340

transition

igneous sandstone limestone

36394 75062 61278
claysand sand
14523 36706

execGRASS("r.stats", input = "geology", flags = c("quiet",

"C", “l“))

metamorphic 11556
transition 142
igneous 36394
sandstone 75062
limestone 61278
shale 46207

sandy shale 11340
claysand 14523
sand 36706

no data 1770
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Fig. 4.8 Boxplots of elevation by geology category, Spearfish location

Figure 4.7 shows an empirical cumulative distribution plot of the elevation
values, giving readings of the proportion of the study area under chosen
elevations. In turn Fig.4.8 shows a simple boxplot of elevation by geology
category, with widths proportional to the share of the geology category in
the total area. We have used the readRAST6 function to read from GRASS
rasters into R; the writeRAST6 function allows a single named column of a
SpatialGridDataFrame object to be exported to GRASS.

The spgrass6 package also provides functions to move vector features and
associated attribute data to R and back again; unlike raster data, there is no
standard mechanism for handling missing values. The readVECT6 function
is used for importing vector data into R, and writeVECT6 for exporting to
GRASS. The first data set to be imported from GRASS contains the point
locations of sites where insects have been monitored, the second is a set of
stream channel centre-lines:

> bugsDF <- readVECT6("bugsites")

> vInfo("streams")

nodes points lines boundaries centroids areas
139 0 104 12 4 4
islands faces kernels primitives map3d
4 0 0 120 0
> streams <- readVECT6("streams", type = "line,boundary",

+ remove.duplicates = FALSE)
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The remove.duplicates argument is set to TRUE when there are only, for
example lines or areas, and the number present is greater than the data count
(the number of rows in the attribute data table). The type argument is used
to override type detection when multiple types are non-zero, as here, where
we choose lines and boundaries, but the function guesses areas, returning just
filled water bodies.

Because different mechanisms are used for passing information concerning
the GRASS location coordinate reference system for raster and vector data,
the PROJ.4 strings often differ slightly, even though the actual CRS is the
same. We can see that the representation for the point locations of beetle sites
does differ here; the vector representation is more in accord with standard
PROJ.4 notation than that for the raster layers, even though they are the
same. In the summary of the spear object above, the ellipsoid was represented
by +a and +rf tags instead of the +ellps tag using the clrk66 value:

> summary (bugsDF)

Object of class SpatialPointsDataFrame
Coordinates:
min max
coords.xl 590232 608471
coords.x2 4914096 4920512
Is projected: TRUE
proj4string :
[+proj=utm +zone=13 +datum=NAD27 +units=m +no_defs
+ellps=clrk66
+nadgrids=@conus,@alaska,@ntv2_0.gsb,@ntvl_can.dat]
Number of points: 90
Data attributes:
cat strl
Min. :1.00 Beetle site:90
1st Qu.:23.25
Median :45.50
Mean :45.50
3rd Qu.:67.75
Max. :90.00

This necessitates manual assignment from one representation to the other
in some occasions, and is due to GRASS using non-standard but equivalent
extensions to PROJ.4.

There are a number of helper functions in the spgrass6é package, one
gmeta2grd to generate a GridTopology object from the current GRASS
region settings. This is typically used for interpolation from point data to
a raster grid, and may be masked by coercion from a SpatialGrid to a Spa-
tialPixels object having set cells outside the study area to NA. A second
utility function for vector data uses the fact that GRASS 6 uses a topo-
logical vector data model. The vect2neigh function returns a data frame
with the left and right neighbours of arcs on polygon boundaries, together
with the length of the arcs. This can be used to modify the weighting of
polygon contiguities based on the length of shared boundaries. Like GRASS,
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GDAL/OGR, PROJ.4, and other OSGeo projects, the functions offered by
spgrass6 are changing, and current help pages should be consulted to check
correct usage.

The interface between GRASS 6 and R has been used in research in a num-
ber of fields, for example by Carrera-Herndndez and Gaskin (2008) in imple-
menting the Basin of Mexico hydrogeological database, and by Grohmann and
Steiner (2008) in SRTM resampling using short distance kriging. The work
by Haywood and Stone (2011) is interesting in that it uses the interface to
apply the Weka machine learning software suite, itself interfaced to R through
the RWeka package, to GIS data in GRASS; R then becomes a convenient
bridge between applications, with the GRASS-R interface opening up other
possibilities beyond R.

4.5.1 Broad Street Cholera Data

Even though we know that John Snow already had a working hypothesis
about cholera epidemics, his data remain interesting, especially if we use a
GIS to find the street distances from mortality dwellings to the Broad Street
pump in Soho in central London. Brody et al. (2000) point out that John
Snow did not use maps to ‘find’ the Broad Street pump, the polluted water
source behind the 1854 cholera epidemic, because he associated cholera with
water contaminated with sewage, based on earlier experience. The accepted
opinion of the time was that cholera was most probably caused by a ‘con-
centrated noxious atmospheric influence’, and maps could just as easily have
been interpreted in support of such a point source.

The specific difference between the two approaches is that the atmospheric
cause would examine straight-line aerial distances between the homes of the
deceased and an unknown point source, while a contaminated water source
would rather look at the walking distance along the street network to a
pump or pumps. The basic data to be used here were made available by
Jim Detwiler, who had collated them for David O’Sullivan for use on the
cover of O’Sullivan and Unwin (2003), based on earlier work by Waldo To-
bler and others. The files were a shapefile with counts of deaths at front doors
of houses and a georeferenced copy of the Snow map as an image; the files
were registered in the British National Grid CRS. The steps taken in GRASS
were to set up a suitable location in the CRS, to import the image file, the
file of mortalities, and the file of pump locations.

To measure street distances, the building contours were first digitised as
a vector layer, cleaned, converted to raster leaving the buildings outside the
street mask, buffered out 4m to include all the front door points within
the street mask, and finally distances measured from each raster cell in the
buffered street network to the Broad Street pump and to the nearest other
pump. These operations in summary were as follows:
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.digit -n map=vsnow4 bgcmd="d.rast map=snow"

.to.rast input=vsnow4 output=rfsnow use=val value=1

.buffer input=rfsnow output=buff2 distances=4

.cost -v input=buff2 output=snowcost_not_broad \
start_points=vpump_not_broad

r.cost -v input=buff2 output=snowcost_broad start_points=vpump_broad

R KRR < <4

The main operation here is r.cost, which uses the value of 2.5 m stored in
each cell of buf£2, which has a resolution of 2.5 m, to cumulate distances from
the start points in the output rasters. The operation is carried out for the
other pumps and for the Broad Street pump. This is equivalent to finding the
line of equal distances shown on the extracts from John Snow’s map shown
in Brody et al. (2000, p. 65). It is possible that there are passages through
buildings not captured by digitising, so the distances are only as accurate as
can now be reconstructed.

> sohoSG <- readRAST6(c("snowcost_broad", "snowcost_not_broad"))

> buildings <- readVECT6("vsnow4d")
> proj4string(sohoSG) <- CRS(proj4string(buildings))

For visualisation, we import the building outlines, and the two distance
rasters. Next we import the death coordinates and counts, and overlay the
deaths on the distances, to extract the distances for each house with mor-
talities — these are added to the deaths object, together with a logical vari-
able indicating whether the Broad Street pump was closer (for this distance
measure) or not:

> deaths <- readVECT6('"deaths3")

> o <- over(deaths, sohoSG)

> library(maptools)

> deaths <- spCbind(deaths, o)

> deaths$b_nearer <- deaths$snowcost_broad < deaths$snowcost_not_broad

> by(deaths$Num_Cases, deaths$b_nearer, sum)

deaths$b_nearer: FALSE
[1] 221

deaths$b_nearer: TRUE
[1] 357

> nb_pump <- readVECT6("vpump_not_broad")
> b_pump <- readVECT6 ("vpump_broad")

There are not only more mortalities in houses closer to the Broad Street
pump, but the distributions of distances are such that their inter-quartile
ranges do not overlap. This can be seen in Fig. 4.9, from which a remaining
question is why some of the cases appear to have used the Broad Street pump
in spite of having a shorter distance to an alternative. Finally, we import the
locations of the pumps to assemble a view of the situation, shown in Fig. 4.10.
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Fig. 4.9 Comparison of walking distances from homes of fatalities to the Broad
Street pump or another pump by whether the Broad Street pump was closer or not

The colour scaled streets indicate the distance of each 2.5m raster cell from
the Broad Street pump along the street network. The buildings are overlaid
on the raster, followed by proportional symbols for the number of mortalities
per affected house, coded for whether they are closer to the Broad Street
pump or not, and finally the pumps themselves.

It is possible to reproduce some of the analysis on the R side using rgeos
and gdistance, by importing the digitised building outlines from GRASS into
R, using gBuffer to buffer them in from the street so that the house points
with mortalities fall in the street, then an over method to define a street
raster.
library(rgeos)
vsnow4buf <- gBuffer(buildings, width = -4)

GRD <- gmeta2grd()
SG <- SpatialGrid(GRD, proj4string = CRS(proj4string(vsnow4dbuf)))
o <- over(SG, vsnow4buf)
crs <- CRS(proj4string(vsnow4buf)
SGDF <- SpatialGridDataFrame(GRD, proj4string = crs),
data = data.frame(o = o))
SGDF$o[is.na(SGDF$o0)] <- 2.5
SGDF$0 [SGDF$o == 1] <- NA

VV+VVVVVVYV

Finally, rSPDistance may be used to find cost distances from houses with
mortalities to pumps:
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Fig. 4.10 The 1854 London cholera outbreak near Golden Square

> library(gdistance)

> r <- as(SGDF, "RasterLayer")

> tr <- transition(r, mean, 8)

> d_b_pump <- rSPDistance(tr, deaths, b_pump, theta = le-12)
> d_nb_pump <- rSPDistance(tr, deaths, nb_pump, theta = le-12)

v

deaths$g_snowcost_broad <- d_b_pump[, 1]

deaths$g_snowcost_not_broad <- apply(d_nb_pump, 1, min)

> deaths$g_b_nearer <- deaths$g_snowcost_broad < deaths
$g_snowcost_not_broad

> by(deaths$Num_Cases, deaths$g_b_nearer, sum)

v

deaths$g_b_nearer: FALSE
[1] 272

deaths$g_b_nearer: TRUE
[1]1 306
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Neither the values nor the distances are the same as those yielded by the
GRASS module r. cost, but the conclusion is the same despite the differences
in implementations of cost distances.

4.6 Other Import/Export Interfaces

The classes for spatial data introduced in sp have made it easier to
implement and maintain the import and export functions described earlier in
this chapter. In addition, they have created opportunities for writing other
interfaces, because the structure of the objects in R is better documented.
In this section, a number of such interfaces will be presented, with others to
come in the future, hosted in maptools or other packages. Before going on
to discuss interfaces with external applications, conversion wrappers for R
packages will be mentioned.

The maptools package contains interface functions to convert selected sp
class objects to classes used in the spatstat for point pattern analysis — these
are written as coercion methods to and from spatstat ppp, owin, im and
psp classes. maptools also contains the SpatialLines2PolySet and Spa-
tialPolygons2PolySet functions to convert sp class objects to PolySet class
objects as defined in the PBSmapping package, and a pair of matching func-
tions in the other direction. This package provides a number of GIS proce-
dures needed in fisheries research (PBS is the name of the Pacific Biological
Station in Nanaimo, British Columbia, Canada).

The four successor packages to the adehabitat package: adehabitatHR,
adehabitatHS, adehabitatLT, and adehabitatMA, all depend on sp and use
sp classes directly. The original package was documented in Calenge (2006),
and includes many tools for the analysis of space and habitat use by animals.

4.6.1 Analysis and Visualisation Applications

While many kinds of data analysis can be carried out within the R environ-
ment, it is often very useful to be able to write out files for use in other
applications or for sharing with collaborators not using R. These functions
live in maptools and will be extended as required. The sp2tmap function con-
verts a SpatialPolygons object for use with the Stata™ tmap contributed
command,?! by creating a data frame with the required columns. The data
frame returned by the function is exported using write.dta from the foreign
package, which should also be used to export the attribute data with the

21 http://www.stata.com/search.cgi?query=tmap.
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polygon tagging key. The sp2WB function exports a SpatialPolygons object
as a text file in S-PLUS™ map format to be imported by WinBUGS.

The GeoXp package provides some possibilities for interactive statistical
data visualisation within R, including mapping (Laurent et al., 2012). The R
graphics facilities are perhaps better suited to non-interactive use, however,
especially as it is easy to write data out to Mondrian (Theus, 2002; Theus
and Urbanek, 2009).22 Mondrian provides fully linked multiple plots, and
although the screen can become quite ‘busy’, users find it easy to explore
their data in this environment. The function sp2Mondrian in maptools writes
out two files, one with the data, the other with the spatial objects from a
SpatialPolygonsDataFrame object for Mondrian to read; the polygon format
before Mondrian 1.0 used a single file and may still be used, controlled by an
additional argument.

4.6.2 TerraLib and aRT

The aRT package?? provides an advanced modular interface to TerraLib.?*
TerraLib is a GIS classes and functions library intended for the development
of multiple GIS tools. Its main aim is to enable the development of a new
generation of GIS applications, based on the technological advances on spatial
databases. TerraLib defines the way that spatial data are stored in a database
system, and can use MySQL, PostgreSQL, Oracle, or Access as a back-end.
The library itself can undertake a wide range of GIS operations on the data
stored in the database, as well as storing and retrieving the data as spatial
objects from the database system.

The aRT package interfaces sp classes with Terralib classes, permitting
data to flow between R, used as a front-end system interacting with the
user, through Terraliib and the back-end database system. One of the main
objectives of aRT is to do spatial queries and operations in R. Because these
operations are written to work efficiently in TerraLib, a wide range of overlay
and buffering operations can be carried out, without them being implemented
in R itself. Operations on the geometries, such as whether they touch, how
far apart they are, whether they contain holes, polygon unions, and many
others, can be handed off to TerraLib.

A further innovation is the provision of a wrapper for the R compute
engine, allowing R with aRT to be configured with TerraLib between the
back-end database system and a front-end application interacting with the
user. This application, for example TerraView, can provide access through
menus to spatial data analysis functionality coded in R using aRT.?® All of

22 nttp://rosuda.org/Mondrian/.

23 nttp://leg.ufpr.br/aRT/.

24 http://www.terralib.org/.

25 Andrade Neto and Ribeiro Jr. (2005).
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this software is released under open source licences, and offers considerable
opportunities for building non-proprietary customised systems for medium
and larger organisations able to commit resources to C++ programming.
Organisations running larger database systems are likely to have such re-
sources anyway, so aRT and TerraLib provide a real alternative for fresh
spatial data handling projects.

4.6.3 Other GIS Systems

An interface package - RSAGA — has been provided for SAGA GIS?%; like the
GRASS 6 interface, it uses system to pass commands to external software.
The R interface with SAGA has been used by Brenning (2009) for integrating
terrain analysis and multispectral remote sensing in automatic rock glacier
detection, using modern regression techniques — the availability of many var-
ied techniques in R permitted them to be evaluated rapidly. Goetz et al.
(2011) follow this up in integrating physical and empirical landslide models.
In a paper on geostatistical modelling of topography, Hengl et al. (2008) use
the interface between R and SAGA to benefit from the strengths of both
software components. Hengl et al. (2010) address the associated problem of
stream network uncertainty, when the stream networks are derived from in-
terpolated elevation data, again using the interface between SAGA and R; R
is also used extensively for scripting SAGA.

In connection with a comprehensive book on spatial statistical data
analysis based on ArcGIS™, Krivoruchko (2011, pp. 767-801) devotes Ap-
pendix 2 to the use of R with ArcGIS™, using both file transfer, and (D)COM
and Python interfaces. In addition, Chap. 16, pp. 676715 covers a range of
useful examples of R/ArcGIS use for spatial data analysis, with many code
examples. A link to updated code may be found on the website of this book.

In the discussion above, integration between R and GIS has principally
taken the form of file transfer. It is possible to use other mechanisms, similar
in nature to the embedding of R in TerraView using aRT. One example is
given by Tait et al. (2004), using the RStatConnector (D)COM mechanism
to use R as a back-end from ArcGIS™. The specific context is the need to
provide epidemiologists using ArcGIS™ for animal disease control and detec-
tion with point pattern analysis tools, using a GIS interface. The prototype
was a system using splancs running in R to calculate results from data passed
from ArcGIS™ with output passed back to ArcGIS™ for display. A practical
difficulty of embedding both R and splancs on multiple workstations is that
of software installation and maintenance.

26 http://www.saga-gis.org
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The marine geospatial ecology tools project?” follows up the work begun
in the concluded ArcRstats project, providing for execution in many environ-
ments (Roberts et al., 2010). It is not hard to write small Python scripts to
interface R and ArcGIS™ through temporary files and the system function.
This is illustrated by the RPyGeo package, which uses R to write Python
scripts for the ArcGIS™ geoprocessor.

4.7 Installing rgdal

Because rgdal depends on external libraries, on GDAL and PROJ.4, and
particular GDAL drivers may depend on further libraries, installation is not
as easy as with self-contained R packages. Thanks to sustained contributions
by Brian Ripley and Uwe Ligges, CRAN publishes a self-contained Windows
binary rgdal package for 32-bit and 64-bit architectures, with a substantial
range of drivers available. A similar range of drivers is available for Intel
architectures for Mac OSX in binary rgdal packages published on CRAN
thanks to continuing help from Simon Urbanek.

For Linux/Unix, it is necessary to install rgdal from source, after first
having installed the external dependencies. Users of open source GIS ap-
plications such as GRASS will already have GDAL and PROJ.4 installed
anyway, because they are required for such applications.

In general, GDAL and PROJ.4 will install from source without difficulty,
but care may be required to make sure that libraries needed for drivers
are available and function correctly. If the programs proj, gdalinfo, and
ogrinfo work correctly for data sources of interest after GDAL and PROJ.4
have been installed, then rgdal will also work correctly. Mac OSX users
may find William Kyngesburye’s frameworks?® a useful place to start should
additional drivers be required. More information is available by searching
the archives of the R-sig-geo mailing list, but frequent changes in rgdal may
render older postings less relevant.

Windows users needing other drivers, and for whom conversion using
programs in the OSGeo4dW?? binary for Windows is not useful, may choose to
install rgdal from source, compiling the rgdal DLL with VC++ and linking
against the OSGeo4W DLLs — see the inst/README. windows file in the source
package for details.

27 http://code.env.duke.edu/projects/mget.
28 http://www.kyngchaos . com/software/frameworks.
29 http://trac.osgeo.org/osgeodw/.
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Chapter 5

Further Methods for Handling
Spatial Data

This chapter is concerned with a more detailed explanation of some of the
methods that are provided for working with the spatial classes described in
Chap. 2. We first consider the question of the spatial support of observations,
going on to cover the handling and combination of features using in particular
the rgeos package. Next we consider map overlay, also known as spatial join
operations, including aggregation, extract operations in the raster package,
and spatial sampling.

5.1 Support

In data analysis in general, the relationship between the abstract constructs
we try to measure and the operational procedures used to make the measure-
ments is always important. Very often substantial metadata volumes are gen-
erated to document the performance of the instruments used to gather data.
Naturally, the same applies to spatial data. Positional data need as much care
in documenting their collection as other kinds of data. When approximations
are used, they need to be recorded as such. Part of the issue is the correct
recording of projection and datum, which are covered in Chap. 4. The time-
stamping of observations is typically useful, for example when administrative
boundaries change over time.

The recording of position for surveying, for example for a power company,
involves the inventorying of cables, pylons, transformer substations, and other
infrastructure. Much GIS software was developed to cater for such needs,
inventory rather than analysis. For inventory, arbitrary decisions, such as
placing the point coordinate locating a building by the right-hand doorpost
facing the door from the outside, have no further consequences. When, how-
ever, spatial data are to be used for analysis and inference, the differences
between arbitrary assumptions made during observation and other possible
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spatial representations of the phenomena of interest will feed through to
the conclusions. The adopted representation is known as its support, and is
discussed by Waller and Gotway (2004, pp. 38-39). The point support of a
dwelling may be taken as the point location of its right-hand doorpost, a
soil sample may have point support of a coordinate surveyed traditionally
or by GPS. But the dwelling perhaps should have polygonal support, and in
collecting soil samples, most often the point represents a central position in
the circle or square used to gather a number of different samples, which are
then bagged together for measurement.

An example of the effects of support is the impact of changes in voting
district boundaries in election systems, which are not strictly proportional.
The underlying voting behaviour is fixed, but different electoral results can
be achieved by tallying results in different configurations or aggregations of
the voters’ dwellings. The BARD package for automated redistricting and
heuristic exploration of redistricter revealed preference is an example of the
use of R for studying this problem (Altman and McDonald, 2011); the package
is archived on CRAN. When carried out to benefit particular candidates or
parties, this is known as gerrymandering. The aggregations are arbitrary poly-
gons, because they do not reflect a political entity as such. This is an example
of change of support, moving from the position of the dwelling of the voter
to some aggregation. Change of support is a significant issue in spatial data
analysis, and is introduced in Schabenberger and Gotway (2005, pp. 284-285).
A much more thorough treatment is given by Gotway and Young (2002), who
show how statistical methods can be used to carry through error associated
with change of support to further steps in analysis. In a very similar vein, it
can be argued that researchers in particular subject domains should consider
involving statisticians from the very beginning of their projects, to allow
sources of potential uncertainty to be instrumented if possible. One would
seek to control error propagation when trying to infer from the data col-
lected later during the analysis and reporting phase (Guttorp, 2003; Wikle,
2003). An example might be marine biologists and oceanographers not col-
lecting data at the same place and time, and hoping that data from different
places and times could be readily combined without introducing systematic
error.

One of the consequences of surveying as a profession being overtaken by
computers, and of surveying data spreading out to non-surveyor users, is
that understanding of the imprecision of positional data has been diluted.
Some of the imprecision comes from measurement error, which surveyors
know from their training and field experience. But a digital representation
of a coordinate looks very crisp and precise, deceptively so. Surveying and
cartographic representations are just a summary from available data. Where
no data were collected, the actual values are guesswork and can go badly
wrong, as users of maritime charts routinely find. Further, support is routinely
changed for purposes of visualisation: contours or filled contours representing
a grid make the data look much less ‘chunky’ than an image plot of the same
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Fig. 5.1 Image plot and contour plot representations of Maunga Whau from the
standard R volcano data set, for the same elevation class intervals (rotated to put
north at the top)

data, as Fig. 5.1 shows. In fact, the data were digitised from a paper map by
Ross Thaka, as much other digital elevation data have been, and the paper
map was itself a representation of available data, not an exact reproduction
of the terrain. Even SRTM data can realistically be used only after cleaning;
the 3arcsec data used in Sect. 2.7 were re-sampled from noisier 1 arcsec data
using a specific re-sampling and cleaning algorithm. A different algorithm
would yield a slightly different digital elevation model.

While we perhaps expect researchers wanting to use R to analyse spatial
data to be applied domain scientists, it is worth noting that geographical
information science, the field of study attempting to provide GIS with more
consistent foundations, is now actively incorporating error models into posi-
tion measurement, and into spatial queries based on error in observed values.
Say we are modelling crop yield based on soil type and other variables, and
our spatial query at point ¢ returns "sand", when in fact the correct value at
that location is "clay", our conclusions will be affected. The general applica-
tion of uncertainty to spatial data in a GIS context is reviewed by Worboys
and Duckham (2004, pp. 328-358), and attribute error propagation is dis-
cussed by Heuvelink (1998). In an open computing environment like R, it is
quite possible to think of ‘uncertain’ versions of the ‘crisp’ classes dealt with
so far, in which, for example point position could be represented as a value
drawn from a statistical model, allowing the impact of positional uncertainty
on other methods of analysis to be assessed (see for example Leung et al.,
2004).
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5.2 Handling and Combining Features

Moving from one spatial representation to another, and combining data
with different representations are typical operations performed with spatial
data. These operations involve combining congruent or non-congruent spatial
data objects, and only some are provided directly, chiefly for non-congruent
objects. Overlay operations, for example, are mentioned by Burrough and
McDonnell (1998, pp. 52-53) and covered in much more detail by O’Sullivan
and Unwin (2010, pp. 315-340) and Unwin (1996), who show how many
of the apparently deterministic inferential problems in overlay are actually
statistical in nature, as noted earlier.

The introduction of the raster and rgeos packages has provided R users
with a much broader range of GIS operations than earlier, many for handling,
combining and querying features. The raster package overloads arithmetic
operators to provide map algebra for congruent rasters, and supplements
these with focal operators. There are functions for rasterising vector objects
to permit operations to be carried out across types of representations; we will
return to these below. Details are given in the package documentation and
in Hijmans (2012b).

The rgeos package assumes that the features may be treated as planar,
so that distances are measured in map units. When raster is working with
congruent features, it is not important whether the coordinates are geograph-
ical or projected. When no coordinate reference system is declared, raster
assumes that the coordinates are geographical (see Sect. 4.1 for a discussion
of coordinate reference systems).

Two packages associated with raster try to address the problems that
arise in measuring distances on grids specified in geographical coordinates.
The gdistance package provides functions for calculating distances and routes
on such grids (van Etten, 2012). The geosphere package in turn contains func-
tions for spherical trigonometry for geographical applications, including the
calculation of the area, perimeter, and other characteristics of polygons speci-
fied with geographical coordinates (Hijmans, 2012a). Auxilliary functions are
described in Sect. 5.4.

5.2.1 The rgeos Package

The rgeos package was developed as a Google™ Summer of Coding project
in 2010 by Colin Rundel, and, like rgdal, is released on CRAN as a source
package to be installed using the GEOS (Geometry Engine — Open Source)
library! already present on the computer, and as self-contained Windows and

1 http://trac.osgeo.org/geos/.
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Mac OSX binary packages including a recent GEOS version by static linking.
On loading, the package shows its package version, and the version of the
underlying GEOS library.

> library(rgeos)

rgeos: version: 0.2-13, (SVN revision 376)
GEOS runtime version: 3.3.8-CAPI-1.7.8
Polygon checking: TRUE

It also reports the status of polygon checking, which will be explained briefly
below. First, we’ll present a summary of the basis for the GEOS library, which
is a C++ port of the Java Topology Suite (JTS).? Revisions to JTS pass to
GEOS fairly quickly, and GEOS releases occur quite often. Writing software
for processing linear geometry on the 2-dimensional Cartesian plane is hard,
because the predicates and operations for regular cases are only a small subset
of the cases that are met in practice. JTS, and GEOS, only handle planar
geometries, so spatial objects should be projected. Two design choices are
described in Davis and Aquino (2003) and Aquino (2003), the original JT'S
technical specifications and developer guide.®> The design choices are related
to the numerical issues raised by computational geometry, and to the stan-
dard used to represent features. One key issue is the identification of equal
coordinates — doing computational geometry on the real plane leads to the
minimum distance between coordinates permitted if they are to be seen as
identical. JTS and GEOS place coordinates on a very fine grid, scaling and
rounding them, so that sufficiently similar coordinates are placed on the same
grid node. The scaling factor can be returned by using getScale; we will see
below how it can be used:

> getScale()

[1] 1e+08

The second design choice taken in JTS and GEOS was to follow the
OpenGIS®* Simple Features Specification (Herring, 2011), in which poly-
gons may have one and only one exterior boundary ring, and an unlimited
number of interior boundaries — holes. As our Polygons objects are Multi-
Polygon objects as defined by Kresse et al. (2012, p. 507) and Herring (2011,
p. 31), we have no direct match to their Polygon object, defined in Kresse
et al. (2012, p. 507) and Herring (2011, pp. 26-28). This means that multiple
exterior boundaries — such as a county made up of several islands — are repre-
sented as multiple polygons. In the specification, they are linked to attribute
data through a look-up table pointing to the appropriate attribute data row.

2 http://tsusiatsoftware.net/jts/main.html.

3 These are still available at  http://www.vividsolutions.com/jts/
bin/JTSTechnicalSpecs.pdf, http://www.vividsolutions.com/jts/bin/
JTSDeveloperGuide.pdf.

4 See http://www.opengeospatial.org/standards/sfa.
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This differs from the Polygons class defined above (p. 43), and makes it
necessary for Polygons to have appropriately formatted comment attributes
to encode any holes with their enclosing exterior rings (see Sect.2.6.2 for a
further discussion).

This design choice only affects polygon representation, so points and lines
can be moved between the form used in sp and GEOS without change.
The rgeos package is provided with a snapshot of the tests published by
JTS and GEOS, and may be run when the package is loaded by running
them, turning off polygon checking because the input data are already in
GEOS well-known text (WKT) format:

> library(testthat)

> set_do_poly_check (FALSE)
> test_package("rgeos")

> set_do_poly_check (TRUE)

Warnings appear because the tests try to find out how the software handles
invalid features.

5.2.2 Using rgeos

In order to explore the use of functions in the rgeos package, we introduce
a new data set combining vector data from the Brazilian 2010 population
census with remotely sensed raster data. The data are from Olinda, which is a
historic city in the state of Pernambuco, on Brazil’s Atlantic coast. The census
data used here is from preliminary reports, and the sources are given in
detail on p. 366. The data have been subsetted and pre-processed to simplify
discussions of rgeos functionality, to an ESRI Shapefile for the vector data,
and to three GeoTiff files for the raster data. The vector data contains the
boundaries of the 2010 census enumeration districts (ED), ED identification
codes and a single residential population variable (Pessoas residentes).

> olinda <- readOGR(".", "olindal")

> proj4string(olinda) <- CRS("+init=epsg:4674")

> olinda_utm <- spTransform(olinda, CRS("+init=epsg:31985"))

The input vector data are in SIRGAS 2000 (effectively WGS84) geograph-
ical coordinates, and are projected to UTM 25S, as commonly used in this
part of Brazil. Using readOGR (see p.92), to read the vector data provides
information for the allocation of interior rings to exterior rings described in
Sect.2.6.2. This means that polygonal data read with readOGR should be
rgeos-ready, conformant with OGC SFS, without further processing. Polyg-
onal data from other sources may need to be pre-processed with the rgeos
function createSPComment, or the maptools function checkPolygonsHoles
applied listwise to the Polygons objects in the "polygons" slot of a Spa-
tialPolygons object. If polygonal data read with readOGR still fail in rgeos,
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Fig. 5.2 Screen capture of population density display for Olinda, 2010, IBGE —
Instituto Brasileiro de Geografia e Estatistica

it is worth trying the re-creation of the comments of the Polygons objects.
If that does not help, changing the GEOS scaling factor may help, as we will
see below, but if the input data are not clean, and contain slivers, dangles,
or other artefacts, it may be necessary to clean the data before use.

First, we will try to reproduce the online display of population density
shown in Fig. 5.2 using the downloaded data. Having projected the polygons
to UTM, we have a metre metric, but the display is in km?. Of course,
Polygons objects have an "area", so we can extract the areas by ED from
the SpatialPolygons object. We can also calculate them using the rgeos
function gArea, using the byid argument to return values by ED, rather
than for the whole city:

> Area <- gArea(olinda_utm, byid = TRUE)

> olinda_utm$area <- sapply(slot(olinda_utm, "polygons"),
+ slot, "area")

> all.equal (unname (Area), olinda_utm$area)

[1] TRUE

> olinda_utm$dens <- olinda_utm$V014/(olinda_utm$area/1e+06)

It is comforting to see that the areas by ED are the same, despite being
calculated with two different implementations of underlying computational
geometry methods. We can tally the ED densities by dividing the ED resident
populations by the area after conversion from m? to km?. Figure 5.3 may
be compared with the screen dump, and appears to show the same spatial
pattern, even though we have had to reconstruct the areas of the enumeration
districts.



134 5 Further Methods for Handling Spatial Data

60000

50000

40000

30000

20000

10000

Fig. 5.3 Population density, Olinda, 2010

The functions provided in JTS, GEOS, and rgeos fall into three main
classes: miscellaneous functions like gArea, topological predicates, and topo-
logical operations. Some predicates and operations are unary, taking one
vector object, while others are binary, taking two objects. Because there are
also numerous exceptions from this tidy scheme, short-cut functions are of-
ten provided. If we want to merge all the ED polygons to create a new Spa-
tialPolygons object for the city limits, we need a unary version of the binary
operation gUnion, because the two objects to which the union operation is
applied are the same. So we use gUnaryUnion, one of a number of short-cut
functions, to carry out this merge operation, also known as dissolving poly-
gons. The operation can also take an id argument, a character vector defining
id labels for the resulting features, which must be of the same length as the
number of Polygons objects in the input object.

> bounds <- gUnaryUnion(olinda_utm)
> gArea(olinda_utm)
[1] 41691721

> sapply(slot(slot(bounds, "polygons")[[1]], "Polygons"),
+ slot, "area")
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[1] 4.169172e+07 2.137516e-07 3.721028e-06 4.407639e-10 1.466113e-04
[6] 4.849594e-05 9.587388e-08

After merging the polygons, we find that we have a single Polygons object
with multiple Polygon object members, one with the area we expect, but
several other slivers. If we try the gOverlaps unary predicate, which tests
the Polygons objects in olinda_utm to see if they overlap with each other
excluding comparisons with the same Polygons object. As we see, they do
overlap, even though the input shapefile was downloaded from a reliable
source.

> pols_overlap <- gOverlaps(olinda_utm, byid = TRUE)
> any(pols_overlap)

[1] TRUE

The overlaps were not introduced during projection either — the reader may
check as an exercise. Recalling the design choices made in JTS and GEOS, we
can try to change the scaling factor, here by four orders of magnitude. Since at
this scaling we see no remaining overlaps, we may merge the polygons, create
the desired city limits object, and reset to scaling factor to its original value:

> oScale <- getScale()

> setScale(10000)

> pols_overlap <- gOverlaps(olinda_utm, byid = TRUE)
> any(pols_overlap)

[1] FALSE

> bounds <- gUnaryUnion(olinda_utm)

> setScale(oScale)

> sapply(slot(slot(bounds, "polygons")[[1]], "Polygons"),
+ slot, "area")

[1] 41691721

Next, let us read rasters containing Landsat 7 data, one with the 14.25m
resolution panchromatic band, and a second with 28.5m Enhanced Thematic
Mapper bands 1-5 and 7. Finally, the 90m resolution SRTM digital eleva-
tion model raster is also available; all have been cropped to a bounding box
including Olinda, and are all in the same projection. The coordinate refer-
ence system definitions are overwritten using that of the city limits object,
because identical projections are checked as strings rather than the equiva-
lence of arguments.
> pan <- readGDAL("L7_ETM8s.tif")
> proj4string(pan) <- CRS(proj4string(bounds))
> TM <- readGDAL("L7_ETMs.tif")
> proj4string(TM) <- CRS(proj4string(bounds))
> names(TM) <- c("TM1", "TM2", "TM3", "TM4", "TM5", "TM7")
> dem <- readGDAL("olinda_dem_utm25s.tif")
> proj4string(dem) <- CRS(proj4string(bounds))
> is.na(dem$bandl) <- dem$bandl <= 0
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We do not have a map layer of water channels, but may be interested in
finding out which enumeration districts are crossed by such channels, and
the proportion of the area of EDs within a buffer of channels. We can use
GRASS GIS to analyse the watersheds found in the digital elevation model,
so first create a throw-away location, and set its projection to that of the city
limits object:

> library(spgrass6)

> myGRASS <- "/home/rsb/topics/grass/g642/grass-6.4.2"

> loc <- initGRASS(myGRASS, tempdir(), SG = dem, override = TRUE)
> execGRASS("g.mapset", mapset = "PERMANENT")

> execGRASS("g.proj", flag = "c", proj4 = proj4string(bounds))

> execGRASS("g.mapset", mapset = 1oc$MAPSET)

> execGRASS("g.region", flag = "d")

First, however, we resample the digital elevation model from the input 90 m to
the 14.25m resolution of the Landsat panchromatic band, using a regularized
spline with tension method (Neteler and Mitasova, 2008, pp. 121-122, 247—
249):

writeRAST6(dem, "dem", flags = "o")

execGRASS ("g.region", rast = "dem")

respan <- gridparameters(pan)$cellsize

execGRASS ("r.resamp.rst", input = "dem", ew_res = respan[1],
ns_res = respan([2], elev = "DEM_resamp")

execGRASS ("g.region", rast = "DEM_resamp")

vV + VvV VvV

While this may introduce smoothing in the digital elevation model that differs
from the real land surface in Olinda, it permits us to carry out the watershed
analysis as the next step (Neteler and Mitasova, 2008, pp. 143-147). Here
we choose only to return the raster stream lines with parameter values that
appear to work well enough for this data set. Next we thin the raster streams,
and complete by converting them to a GRASS line vector:

> execGRASS("r.watershed", elevation = "DEM_resamp", stream = "stream",
+ threshold = 1000L, convergence = 5L, memory = 300L)

> execGRASS("r.thin", input = "stream", output = "streaml",

+ iterations = 200L)

> execGRASS("r.to.vect", input = "streaml", output = "stream",

+ feature = "line")

When we read the stream lines object back into the running R session, we
find that there are relatively many line segments. Examining the summary
of lengths of these lines, we see using glength that many are 14.25m long,
equal to the resolution of the resampled digital elevation model:

> stream_utm <- readVECT6("stream")
> proj4string(stream_utm) <- CRS("+init=epsg:31985")

> nrow(stream_utm)
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[1] 286
> summary (gLength(stream_utm, byid = TRUE))

Min. 1st Qu. Median Mean 3rd Qu. Max.
14.25 14.25 358.80 469.50 712.90 2644.00

Using the unary predicate gTouches, we can generate a matrix of touching
line segments; the points of contact are end nodes of all 14.25m segments:

> t0 <- gTouches(stream_utm, byid = TRUE)
> any(t0)

[1] TRUE

Using a utility function n.comp.nb in spdep (the spatial neighbour object
nb is discussed in Chap. 9), we can identify the connected graph components
after converting the matrix of touches to a graph neighbour object, showing
the number of components found:

> library (spdep)

> 1w <- mat2listw(t0)
> nComp <- n.comp.nb(lw$neighbours)
> nComp$nc

[1] 21

The gLineMerge function lets us join the stream channel segments into
continuous objects based on their membership of connected graphs. We see
that the distribution of lengths is now more plausible, and can confirm that
gLength yields the same values as SpatialLinesLengths:

> 1ns <- gLineMerge(stream_utm, id = as.character (nComp$comp.id))
> length(row.names (1ns))

[1] 21
> summary (gLength(lns, byid = TRUE))

Min. 1st Qu. Median Mean 3rd Qu. Max.
14.25 326.30 1230.00 6394.00 2336.00 57750.00

> all.equal(SpatiallLinesLengths(lns), unname(gLength(lns,
+ byid = TRUE)))

[1] TRUE

The stream channel lines will now be used with the enumeration district
boundaries to add a variable tallying the total length in metres of channels
by ED. We use the binary topological operation gIntersection, which here
returns a SpatialLines object with Lines objects for each of the EDs that
intersect with the water channels:

> GI <- glntersection(lns, olinda_utm, byid = TRUE)
> class(GI)
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[1] "SpatiallLines"
attr(, "package")
[1] n Sp"

> length(row.names (GI))

[1] 238

As not all EDs intersect with water channels, the IDs (row names) of the
SpatialLines object will be used to ensure that the lengths per ED are
assigned correctly. Pre-assigning a vector with zero in all elements, we split
the ID strings into two, choosing the second value, and incrementing it by
one. The incrementation is needed because the default IDs returned read0GR
are zero-based. After calculating the lengths with glength by ED containing
channels, we sum the channel lengths per ED using tapply, aggregating on
the ED IDs, and assign to the pre-assigned vector:

> res <- numeric(nrow(olinda_utm))
> head (row.names (GI))

[+ "10 1" ™10 9" "10 11" "10 14" "10 21" "10 24"

> range(as.integer (row.names (olinda_utm)))

[1] 0 469
> rnGI <- as.integer(sapply(strsplit(row.names(GI), " "),
+ "[r, 2)) + 1

> length(rnGI) == length(unique(rnGI))
[1] FALSE

> lens <- gLength(GI, byid = TRUE)

> tlens <- tapply(lens, rnGI, sum)

> res[as.integer(names(tlens))] <- unname(tlens)
> olinda_utm$stream_len <- res

> summary (olinda_utm$stream_len)

Min. 1st Qu. Median Mean 3rd Qu. Max.
0.0 0.0 0.0 144 .1 206.2 4205.0

In this case, the numbers of objects being handled by the binary topological
operation is not very large, so little time is saved by building and querying
a Sort-Tile-Recursive (STR) tree first (Leutenegger et al., 1997). The tree
returned is a vector of the same length of the second argument, with integer
vector components listing the IDs of stream Lines object bounding boxes
(known as envelopes in GEOS) intersecting each Polygons object bounding
box:

> tree <- gBinarySTRtreeQuery(lns, olinda_utm)
> table(sapply(tree, length))

0 1 2 3
1 223 232 14
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In this case, the bounding boxes of the Lines objects span much of the
city area, so all but one ED bounding box intersects one or more streams.
Here, knowing which candidate objects to which to apply gIntersection
saves little time; savings increase in proportion to the reduction of the degree
of overlap between bounding boxes. Looping over the Polygons objects, we
find their intersects with the subset of Lines objects found when querying
the tree, but no longer using byid=TRUE, to aggregate the line segments in
one step. As we see, the lengths found by ED are the same:

> resl <- numeric(length = length(tree))
> for (i in seq(along = res1)) {

+ if (lis.null(tree[[i]l])) {

+ gi <- gIntersection(lns[tree[[i]]], olinda_utm[i,
+ i

+ resi[i] <- ifelse(is.null(gi), 0, glength(gi))

+ }

+}

> all.equal(olinda_utm$stream_len, resi)

[1] TRUE

Next we construct a 50 m buffer on either side the stream channels using
the gBuffer function, with default round cap and join styles where features
end or join; these defaults affect the shape of the output object, as do the
numbers of points used to approximate quarter circles. The buffer object is
formed as a single Polygons object, simply including all areas within 50 m of
a stream channel:

> buf50m <- gBuffer(lns, width = 50)
> length(slot (buf50m, "polygons"))

[1] 1

Using the procedure described above, we can assign the areas within the buffer
by ID to the enumeration districts by intersection with gIntersection and
gArea, and then calculate the proportion of the district area within 50 m of
a water channel:

> GI1 <- glntersection(buf50m, olinda_utm, byid = TRUE)
> res <- numeric(length(slot(olinda_utm, "polygons")))
> head(row.names (GI1))

[1] "buffer 1" ‘"buffer 6" ‘"buffer 9" ‘"buffer 10" "buffer 11"
[6] "buffer 14"

> rnGI <- as.integer (sapply(strsplit(row.names(GI1), " "),
+ ", 2)) + 1
> length(rnGI) == length(unique(rnGI))

[1] TRUE

> res[rnGI] <- gArea(GI1, byid = TRUE)
> olinda_utm$buf_area <- res
> olinda_utm$prop_50m <- olinda_utm$buf_area/olinda_utm$area
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Fig. 5.4 Proportions of enumeration district areas within 50 m of stream channels,
and channel locations within Olinda

To complete data handling before visualization, we may clip the stream chan-
nels to the city bounds of Olinda, matching the extent of the enumeration
districts:

> stream_inside <- glntersection(lns, bounds)

Fig. 5.4 shows the proportions of enumeration district areas within 50m of
stream channels, and the channel locations within the city. It should be
recalled that the channels we have been using are derived from a smoothed
digital elevation model, so do not necessarily reflect the actual channels that
could be found by surveying or photogrammetry.

5.3 Map Overlay or Spatial Join

Numerical overlay or spatial join retrieves the indexes or attributes of one
spatial object at the locations of another. In particular, the overlay method
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> over(x, y)

or equivalently,

> x Jover] y

retrieves,

I In case y has no attributes, the indexes of the y corresponding to each
feature of x, or NA in case of no correspondence;

IT In case y has attributes, a data.frame with the attributes of y corre-
sponding to the locations of x, or an NA record in case of no correspon-
dence.

Correspondence means that two features spatially intersect (touch, overlap,
cover, includes, etc.). The length of the vector returned in case I and the
number of rows returned in case II equals length(x). This is identical to the
left outer join in SQL, where the matching is based on spatial intersection.

The implementation is provided partly by sp, partly by rgeos. Table 5.1
(Pebesma, 2012a) provides some details. In particular, in some cases Spa-
tialPixels or SpatialGrid objects are converted to points for a spatial
match, in other cases they are treated as cells (points in grid cells), in some
cases they are converted to polygons (lines intersecting grid cells). To over-
ride these defaults, objects can be explicitly converted to points or polygons
prior to calling over.

y: Points y: Lines y: Polygons y: Pixels y: Grid
x: Points s r s s s
x: Lines r r r ry riy
x: Polygons S r r sy sy
x: Pixels S:X r:x S:X S:X S:X
x: Grid S:X r:x S:X S:X SiIX

Table 5.1 over methods implemented for different x and y arguments. s: provided
by sp; r: provided by rgeos. s:x or s:y indicates that the x or y argument is converted
to grid cell center points; r:x or r:y indicates grids or pixels are converted to polygons

A typical use of over is to select features of one Spatial object that are
on or inside another. Suppose we want to select all the points in meuse falling
in the meuse.grid grid, we could do this by:

> sel = over(meuse, as(meuse.grid, "SpatialPixels"))
> meuse = meuse[!is.na(sel), ]

as this happens really frequently, the selection syntax for features was ex-
tended such that it understands:

> meuse = meuse[meuse.grid, ]
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as doing exactly this: select those points of meuse that coincide with (fall
within) grid cells of meuse.grid.

In the case where a feature (e.g. a polygon) of x matches multiple features
(e.g. points) in y, over(x, y) returns an arbitrary (the first) match. To ob-
tain all matches, one can specify over(x, y, returnList=TRUE) which then
returns a list of length length(x), with each list element an integer vector
with matching y indexes or a data.frame with all matching attribute values.
As the goal will typically be to merge these attribute values in some way, one
could pass a function, e.g. mean, as in over(x, y, fn = mean), in which
case all attribute records matching to each feature in x are aggregated using
this function. Binding these aggregated attributes to the original x object is
called spatial aggregation.

5.3.1 Spatial Aggregation

Spatial aggregation involves two elements: a grouping predicate and an aggre-
gation function. As we have seen in the previous section, grouping predicates
and grouped sets of attributes are obtained by using over. Aggregation func-
tions can be any R function returning a single value. Consider the case where
we want to obtain maximum measured zinc concentrations from the meuse
data set over 400 m grid cells:

gt <- GridTopology(c (178480, 329640), c(400, 400), c(8,
11))

coarseGrid <- SpatialGrid(gt, proj4string(meuse))

agg <- aggregate(meuse[c("zinc", "lead")], coarseGrid,
max)

+ V.V + VvV

the results of which are shown in Fig.5.5. It should be noted that these
methods for aggregation match do not account for partial overlapping of
polygons or grid cells: matching is true or false, and no weighting takes place.

Further aggregation methods are provided by raster, in particular the func-
tion rasterize converts points, lines and polygons values to raster cells, and
methods aggregate, disaggregate and resample allow one to go from one
grid cell resolution to another.

In the following examples, we will be querying SpatialPixel objects with
SpatialPolygons objects representing the Olinda enumeration districts.

Returning to the Olinda use case and illustrating how to combine polygon
and grid data using the over methods, we will construct some variables to
which it may be applied. The Normalized Difference Vegetation Index (NDVT)
is a ratio of sums and differences of Thematic Mapper visible red and near-
infrared bands, and can be interpreted to indicate the relative presence of
live green plant canopies, as usual qualified by sub-pixel variability.

> TM$ndvi <- (TM$TM4 - TM$TM3)/(TM$TM4 + TM$TM3)



5.3 Map Overlay or Spatial Join 143
zinc lead
o _ﬁ%%-'_ 1500
+ = TS
= P
A
e 1000
- ij+ +
¥+ g+
o £
e e+
++ At e - 500
+ +
iz o I R
+ + gl +
prAs s
Tt Tt Lo

Fig. 5.5 Maximum zinc and lead concentrations measured within 400 m grid cells

addition In addition, we can calculate the principal components of the six
Thematic Mapper bands available at 28.5m resolution, subsetting spatially
to the city limits. Figure 5.6 shows the spatial distribution of the first two
principal components.

TMO <- as(TM, "SpatialPixelsDataFrame")

TM1 <- TMO[bounds, ]

PC <- prcomp(as(TM1, "data.frame")[, 1:6], center

scale. = TRUE)

PCout <- predict (PC)

TM1$PC1 <- PCout[, 1]

TM1$PC2 <- PCout[, 2]

TM1$PC3 <- PCout[, 3]

TRUE,

VVVYV +V VYV

Recalling that when the second argument object has attributes, over
methods return a data.frame object, we can add aggregated principal
components values taken from the cell values falling into each enumera-
tion district, then binding that data.frame to the input SpatialPolygons-
DataFrame:

> o_mean <- over(olinda_utm, TM1[, c("PC1",
> str(o_mean)

npgon , "pC3 n)])

'data.frame': 470 obs.
$ PC1l: num 1.36 0.28 ...

$ PC2: num -0.432 0.699 ...
$ PC3: num 0.0755 0.1326 ...

>
>

of 3 variables:

row.names (o_mean) <- row.names (olinda_utm)
olinda_utmA <- spCbind(olinda_utm, o_mean)
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Fig. 5.6 Spatial distribution of the first two principal components, TM bands 1-5,

7

, Olinda

The default function used to reduce the set of cell values to a scalar is mean,
but others may be passed through the fn argument, here median:

>
+
>
>
>
>
>
>

o_median <- over(olinda_utm, TM1[, c("PC1i", "PC2", "PC3")],
fn = median)

row.names (o_median) <- row.names (olinda_utmA)

names (o_median) <- paste(names(o_median), "med", sep = "_")

olinda_utmB <- spCbind(olinda_utmA, o_median)

TM1$count <- 1

o_count <- over(olinda_utm, TM1[, "count"], fn = sum)

olinda_utmB$count <- o_count$count

Choosing relevant functions to aggregate the values by query feature is impor-
tant, as the distributional shapes and centres in each aggregate do vary, and
also reflect support issues, as we may see by comparing means and medians,
and the counts of cells:

>

summary (olinda_utmB[, grep(" PC|count", names(olinda_utmB))])

Object of class SpatialPolygonsDataFrame

C

X

y
I

p
[

+
D

oordinates:
min max
288712.2 298526

9110320.2 9120257
s projected: TRUE
roj4string :

+init=epsg:31985 +proj=utm +zone=25 +south +ellps=GRS80
towgs84=0,0,0,0,0,0,0 +units=m +no_defs]
ata attributes:
PC1 PC2 PC3
Min. :=3.7479  Min. :-3.5494  Min. :-3.28964

1st Qu.:-0.7436 1st Qu.:-0.7722 1st Qu.:-0.26779
Median : 0.7213 Median :-0.3086 Median : 0.13062
Mean : 0.4817 Mean :-0.2122 Mean : 0.08731
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3rd Qu.: 1.6019 3rd Qu.: 0.2772 3rd Qu.: 0.52835

Max. : 6.3413 Max. : 3.1913 Max. : 2.11267
PC1_med PC2_med PC3_med
Min. :-2.7084 Min. :-1.5478 Min. :-1.20463
1st Qu.:-0.2182 1st Qu.:-0.6229 1st Qu.:-0.03047
Median : 0.7264 Median :-0.2799 Median : 0.18651
Mean : 0.5387 Mean :=0.2419 Mean : 0.18797
3rd Qu.: 1.5250 3rd Qu.: 0.1260 3rd Qu.: 0.44002
Max. : 3.5291 Max . : 1.5978 Max . : 1.15698
count
Min. : 4.0
1st Qu.: 48.0
Median : 73.0
Mean : 109.1
3rd Qu.: 114.8
Max. :1851.0

Finally, we may add median elevation and median NDVT values by enumer-
ation district from SpatialGridDataFrame objects in the same way, where
one median elevation is NA, because at 90 m resolution, no cell centre point
falls into that enumeration district:

> o_dem_median <- over(olinda_utm, dem, fn = median)
> olinda_utmB$dem_median <- o_dem_median$bandl
> summary (olinda_utmB$dem_median)

Min. 1st Qu. Median Mean 3rd Qu. Max. NA's
4.00 8.50 11.50 19.11 27.00 73.00 1

> o_ndvi_median <- over(olinda_utm, TM1["ndvi"], fn = median)
> olinda_utmB$ndvi_median <- o_ndvi_median$ndvi

5.3.2 Using the raster Package for Extract Operations

It is possible to use extract methods from the raster package to aggregate
queried values; note that the arguments are reversed in order compared to
over methods in sp.

> library(raster)

raster version 2.1-16 (14-March-2013)

We convert our SpatialPixelsDataFrame object to a RasterStack object,
and obtain when querying with a SpatialPolygons object, a list of numeric
matrices with the values of all variables in rasters in the RasterStack object,
for all the cells with centres falling in each Polygons object:

> TMrs <- stack(TM1)
> el <- extract(TMrs, as(olinda_utm, "SpatialPolygons"))
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If we convert the single variable SpatialGridDataFrame object containing
the 90 m digital elevation model to a RasterLayer object, we obtain a list of
numeric vectors of different lengths, but, as we saw above, one enumeration
district contains no cell centres at this resolution:

> e2 <- extract(raster(dem), as(olinda_utm, "SpatialPolygons"))

> table(sapply(e2, is.null))

FALSE TRUE
469 1

As we can see by comparison, extract methods from the raster package
yield the same results as over methods in sp for 28.5m resolution counts
of cell centres, and NDVI medians, and 90 m resolution elevations by Poly-
gons object, once again with care needed to handle the Polygons object not
including any 90 m cell centre:

> all.equal(sapply(el, nrow), olinda_utmB$count)

[1] TRUE

> all.equal (sapply(el, function(x) median(x[, "ndvi"])),
+ olinda_utmB$ndvi_median)

[1] TRUE

> med <- sapply(e2, function(x) ifelse(is.null(x), as.numeric(NA),
+ median(x, na.rm = TRUE)))
> all.equal(med, olinda_utmB$dem_median)

[1] TRUE

5.3.3 Spatial Sampling

One way of trying to get control over data in a research setting like the
one described might be to sample points from the total study area, to be
able to examine whether the observed phenomena seem to be associated
with particular ranges of values of the supposed environmental ‘drivers’, or
to survey ‘ground truth’ values. Sample design is not typically paid much
attention in applied spatial data analysis, very often for practical reasons, for
example the need to handle incoming data as they flow in, rather than being
able to choose which data to use. In the case of veterinary epidemiology,
it is not easy to impose clear control because of the time pressure to offer
policy advice. Schemes for spatial sampling have been given in the literature,
for example by Ripley (1981, pp. 19-27), and they are available in sp using
generic method spsample. Five sampling schemes are available: "random",
which places the points at random within the sampling area; "regular",
termed a centric systematic sample by Ripley and for which the grid offset
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can be set, and "stratified" and "nonaligned", which are implemented
as variations on the "regular" scheme — "stratified" samples one point
at random in each cell, and "nonaligned" is a systematic masked scheme
using combinations of random x and y to yield a single coordinate in each
cell. The fifth scheme samples on a hexagonal lattice. The spatial data object
passed to the spsample method can be simply a Spatial object, in which
case sampling is carried out within its bounding box. It can be a line object,
when samples are taken along the line or lines. More typically, it is a polygon
object or a grid object, providing an observation window defining the study
area or areas.

Returning again to the Olinda data set, we take three samples of about
1,000 at random within the city bounds represented as a polygon, then
subsetting the digital elevation raster to the city limits and converting to
SpatialPixelsDataFrame representation, a random sample and a regular
sample within that object:

> set.seed(9876)
> p_r <- spsample(bounds, 1000, type = "random")
> length(p_r)

[1] 1000

> dem <- dem[bounds, ]

> dem_sp <- as(dem, "SpatialPixelsDataFrame")

> g_r <- spsample(dem_sp, 1000, type = "random")
> length(g_r)

[11 979

> g_rg <- spsample(dem_sp, 1000, type = "regular")
> length(g_rg)

[1] 1003

As we see, the numbers of samples output may not match exactly the number
requested. We extract the elevation values at the sample points for display as
empirical cumulative distribution functions in Fig.5.7; the figure also shows
the distributions of the sample points.

> p_r_dem <- over(p_r, dem)
> g_r_dem <- over(g_r, dem)
> g_rg_dem <- over(g_rg, dem)

We can also tabulate the values read from the elevation raster at the sample
points:

> tab <- rbind(polygon_random = c(fivenum(p_r_dem$bandl),

+ nrow(coordinates(p_r_dem))), grid_random = c(fivenum(g_r_dem$bandl),
+ nrow(coordinates(g_r_dem))), grid_regular = c(fivenum(g_rg_dem$bandl),
+ nrow(coordinates(g_rg_dem))))

> colnames(tab) <- c("minimum", "lower-hinge", "median",

+ "upper-hinge", "maximum", "n")

> tab
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Fig. 5.7 Spatial distributions of sample points for three sampling methods, Olinda;
Empirical cumulative distribution functions of elevations measured at sample points

from the 90 m resolution elevation raster

minimum lower-hinge median upper-hinge maximum n
polygon_random 1 9 13 33 74 1000
grid_random 1 9 14 33 77T 979
grid_regular 1 9 15 34 75 1003

Finally, we may cross-check using the random sample within the city limits
polygon to ensure that the point-in-polygon outcomes using the over method
and the rgeos binary predicate gContains agree. The over method returns
an integer vector, showing which Polygons object each sample point belongs
to. The gContains function with byid=TRUE returns a logical matrix show-
ing the same, again provided that no point falls into two Polygons objects.
Tabulation of the output from collapsing this matrix shows that there are no
such exceptions (which may occur when input features overlap), and the two

approaches yield the same result.
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> o_sp <- as(olinda_utm, "SpatialPolygons")

> whichPoly <- over(p_r, o_sp)

> whichPolyl <- gContains(o_sp, p_r, byid = TRUE)

> whichPolyla <- apply(unname(whichPolyl1), 1, which)
> table(sapply(whichPolyla, length))

1
1000

> all.equal(whichPoly, whichPolyla)

[1] TRUE

5.4 Auxiliary Functions

New functions and methods are added to maptools quite frequently, often
following suggestions and discussions on the R-sig-geo mailing list mentioned
in Chap. 1. When positions are represented by geographical coordinates, it is
often useful to be able to find the azimuth between them. The gzAzimuth
function is a simple implementation of standard algorithms for this purpose,
and gives azimuths calculated on the sphere between a matrix of points and
a single point.® The gcDestination function returns the geographical coor-
dinates of points at a given distance and bearing from given starting points.

A set of methods for matrices or SpatialPoints objects in geographical
coordinates has been contributed to give timings for sunrise, sunset, and other
solar measures for dates given as POSIXct objects:

> hels <- matrix(c(24.97, 60.17), nrow = 1)

> p4s <- CRS("+proj=longlat +datum=WGS84")

> Hels <- SpatialPoints(hels, proj4string = p4s)

> d041224 <- as.P0SIXct("2004-12-24", tz = "EET")

> sunriset (Hels, d041224, direction = "sunrise", POSIXct.out = TRUE)

day_frac time
newlon 0.3924249 2004-12-24 09:25:05

Finally, elide methods have been provided for translating, rotating, and
disguising coordinate positions in sp vector classes such as SpatialPoints.
The features can be shifted in two dimensions, scaled such that the longest
dimension is scaled [0, 1], flipped, reflected, and rotated, if desired in relation
to the bounding box of a different Spatial object. The methods can be
used for standardising displays, for example in point pattern analysis, or for
obfuscating position to meet in part privacy considerations. Since obscuring
position was a reason for providing the methods, they have been given a
suitably obscure name.

5 The function is based with permission on work by S. Abdali: The Correct Qibla,
http://patriot.net/users/abdali/ftp/qibla.pdf.
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The methods discussed in this chapter are intended to provide ways for
manipulating spatial objects to help in structuring analytical approaches to
support problems amongst others. These are not the only ways to organise
spatial data, do try to make it easier to concentrate on exploring and
analysing the data, rather than dealing with the intricacies of particular rep-
resentations peculiar to specific software or data providers.



Chapter 6
Spatio-Temporal Data

6.1 Introduction

Observations refer to properties or qualities at particular locations in space
and moments in time. In many cases, locations and/or times are not taken
into account explicitly, because they are not relevant. In other cases, they
are. Most of this book addresses the case where spatial location matters, and
temporal variation is not present or ignored. Texts on time series analysis
mostly do the reverse. This chapter will address first steps in handling spatio-
temporal data, and analysing them.

The fact that the areas of spatial statistics and time series analysis have
individually developed much further than that of spatio-temporal statistics
may have several reasons. Schabenberger and Gotway (2005) argue that
analysis of spatio-temporal data often happens conditionally, meaning that
either first the spatial aspect is analysed, after which the temporal aspects are
analysed, or reversed, but not in a joint, integral modelling approach, where
space and time are not separated. As a possible reason they mention the lack
of good software to handle, import, export, display and analyse such data.

The R package spacetime (Pebesma, 2012b), on CRAN since 2010, is a
start to fill this gap, and similar to sp has the ambition to provide easy
means for handling and communicating spatio-temporal data. Special pur-
pose packages for e.g. visualisation (plotKML) or geostatistical analysis
(gstat) are then relieved from some burden of handling data.

6.2 Types of Spatio-Temporal Data

Before we try to represent spatio-temporal data, we will spend some time on
defining properties of spatio-temporal data that are relevant.

R.S. Bivand et al., Applied Spatial Data Analysis with R, Use R! 10, 151
DOI 10.1007/978-1-4614-7618-4_6,
© Springer Science+Business Media New York 2013
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6.2.1 Spatial Point or Area, Time Instance or Interval

Both in space and time, it makes sense to think about whether an observation
is related to an atom, a point in space and instance in time, or to a larger
entity (a line, area, or volume in space; a period in time or time interval).
Although possibly all observations are related to a larger volume and non-zero
period because the act of observation takes space and time, in many cases this
volume and/or period is so small compared to the extent of the data, that it
is convenient to consider it to be atomic. Examples where “zero” volume or
point data are assumed are soil samples, rain gauge measurements, or earth
quake epicentres. Examples where “zero” time interval width or moment data
are assumed include lightning, accidents, birth and death.

6.2.2 Are Space and Time of Primary Interest?

Locations (points, areas) or times (moments, intervals) at which something
is recorded can be of primary interest, or rather a matter of convenience.
Examples where points and/or times are of primary interest are are: disease
cases, earth quakes, and lightning. An example where they are not of primary
interest are measurements of water temperature, or air quality.

The first type concerns objects and /or events, and their registered locations
and times indicate where and when they were or occurred, but also that at all
other, remaining locations in the observation window they were not. Spatio-
temporal point pattern analysis methods are used to analyse such data.

The second type concerns fields, which can in principle be measured at
arbitrary locations, but happen to be measured at a limited number of lo-
cations. Here, lack of measurement at some time/location does not indicate
anything about the field value. Typically, for the first type the count or sum
operation leads to a meaningful value, where for the second type it is not.

6.2.3 Regularity of Space-Time Layouts

Both spatial data as well as time series often have some regularity: spatial
grids or images have a regular layout of grid cells or pixels, many time series
data have a regular time discretisation.

Spatio-temporal data can have a regular space-time layout, meaning that
for each of a fixed set of n locations, the same time series of m observations is
available. In that case, the space-time locations form a regular n x m layout.
A regular space-time layout neither implies spatial locations are regular —
they can be of any type (points, lines, polygons, grids) — nor does it imply
that times are regular.
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When locations and times of the data set are of primary interest, they
will not be regular. For many reasons, such data are often aggregated to a
regular space-time layout before they are analysed. Examples may be the
earth quakes with magnitude above a certain threshold, counted over cells
on a regular grid and over a particular time period. In other cases, data
have been aggregated for privacy reasons, for instance in case of disease data
(e.g. disease cases aggregated to administrative regions, per year).

When locations and times are not of primary interest, i.e. where field prop-
erties such as air temperature are observed, the typical case is that sensors
are kept at a fixed location and measure over predefined time intervals (e.g.
an air quality parameter is recorded every half hour, temperature is recorded
as average value per minute). A reason to deviate from this may be that
network operation costs increase with measurement frequency (e.g. wireless
networks, or networks that communicate through SMS). If this is not the
case, the constant frequency is the common case, leading to regular space-
time layouts.

Aggregating spatio-temporal data with an irregular layout to a regular
layout, or aggregating data with a high resolution to a lower resolution often
helps us to understand these data or is required to visualise it.

6.2.4 Do Objects Change Location?

A second property is whether observations in space and time are connected,
because an object persists, and may for instance be moving. Movement may
be continuous (persons, cars), or sudden (capital of a country).

Giiting and Schneider (2005) distinguish a useful set of different data types
for spatio-temporal data. In particular, they define for point features

a An event without temporal duration (time is an instant), e.g., an accident,
a lightning, a birth, a death;

b An events with a temporal duration but no movement, e.g., a tree, a (point
in the) capital of a country, someone’s home address;

¢ A moving point, e.g., the trajectory of a persons, a car or a bird.

Giiting and Schneider (2005) obtain 10 different types by adding the set of
form for a and b, and doubling the resulting set of 5 by distinguishing area
from point features. It is not clear why ¢ did not get a plural form, which
would have resulted in 12 types. Also, a capital may move (sudden), but a
tree does not (by itself). Further, more complicated types could be formed
by introducing relations and evolution: rivers meander and branch, countries
can split or merge, persons meet other persons, and even multiply.
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6.3 Classes in spacetime

A set of classes for spatio-temporal data is implemented in spacetime (Fig.6.1).
In particular, this set supports:

Time represented by time intervals or time instances;

ODbjects containing single instances, or sets of these instances;

Regular and irregular layouts of space-time combinations;

A sparse regular layout for efficiency reasons;

Simple (sets of) trajectories;

Objects consisting of space/time points only, or with additional properties
(attributes).

e Attributes varying over space and time, or only over space, or only over
time.

The set of classes is shown in Fig. 6.1. All classes derive from an abstract class

ST

sp: Spatial
time: xts
endTime: POSIXct

Y
% 7777777777 \‘ vr 777777777777 M
STF full lattice <= STFDF
' |data: date?.frame
!
|

STS sparse Iat. ~ STSDF
index: matrix ! data: data.frame
I

data: data.frame
I

STT trajectory [*—|STTDF
| |data: data.frame
I

traj: list

L_|STI irregular < STIDF 1

Fig. 6.1 Classes for spatio-temporal data in package spacetime. Arrows denote in-
heritance, lower side of boxes list slot name and type, vertical lines indicate possible
coercion (both ways)

ST, a template for specific classes holding data. Spatial locations derive from
Spatial, and hence may reflect points, pixels, lines or polygons, but not a
mixture.!

! SpatialGrid objects will be converted to SpatialPixels, because only SpatialGrid
objects follow a different subsetting convention where x[i,] does not refer to grid
cell i, but to grid row i.
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The sp data slot may be an object of any Spatial*DataFrame class,? to
hold attribute data that does not vary over time. Slot time holds the (start)
times, and possibly attribute data that do not vary over space. It should be of
class xts, which is briefly discussed in the next section. Slot endTime of class
POSIXct indicates end times, and must be a vector having length identical to
the number of records in slot time. If all end times equal the times in time,
time is considered as instant time, otherwise time is considered to consist of
time intervals.

The simplest structure is the STI for irregular spatio-temporal layouts,
which is simply an unordered sequence of space/time locations. For this
object, the number of records in the sp slot and the time slot needs to be
identical, and identical to the number of records in the data slot of an STIDF
object.

Regular space-time layouts are represented by objects of class STF. If an
STF object has n locations in slot sp and m times in slot time, it means that
we have mn observations, with all time instances (or intervals) replicated for
each spatial location, and vice versa. The attribute corresponding to location
i and time j is record (row) (j — 1) *xn+ ¢, spatial locations cycling first. This
means that the full space-time lattice is filled.

Incomplete, or sparse spatio-temporal objects with regular layout can be
represented by class STS. Here, the index slot is a n X 2 matrix with in row ¢
the indices to the spatial and to the temporal reference in the first and second
column of the i-th observation.

Objects of class STT are meant to hold sets of trajectories. The actual
trajectories are held in a list traj, where each list element is an object of
class STI, or STIDF if attributes are present. The sp and time slot only contain
the extreme values to be able to compute a space-time bounding box for the
whole object. The implementation for the trajectories was inspired by the
ltraj class of package adehabitatLT.

Besides STT objects, which represent objects that move over time, STF,
STS and STI objects do not record whether they represent field variables or
objects/events. In particular the irregular STIDF could equally well reflect
a marked point pattern (earth quake location/times with magnitudes) or a
field variable (temperature readings over space and time).

A set of methods for these classes is shown in Table 6.1. The next sections
will discuss and illustrate those that are non-obvious.

6.4 Handling Time Series Data with xts

Two very powerful R packages are available for the handling and analysis of
time series data: zoo and xts. The time slot of ST objects is of class xts, from
package xts, which extends zoo objects from package zoo. Objects of class
xts can be constructed using any of the following time classes in R: Date,

2 Except for SpatialGridDataFrame.
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Method What it does
stConstruct Creates STFDF or STIDF objects from single or multiple tables, time
series, and spatial objects

L, 8, $<- Select or replace data values

[ Select spatial and/or temporal subsets, and/or data variables

as Coerce to other spatio-temporal objects, xts, Spatial, matrix, or
data.frame

stplot Create spatio-temporal plots, see Sect. 6.8

over Overlay: retrieve index or data values of one object at the locations

and times of another; see Sect. 6.7

aggregate  Aggregate data values over particular spatial, temporal, or spatio-
temporal domains; see Sect. 6.7

na.locf Fill NA value using last measured in time series

na.spline,

na.approx Replace NA with interpolated values

Table 6.1 Methods for spatio-temporal data in package spacetime

POSIXct, chron, yearmon, and yearqtr. Internally it represents time by a
P0SIXct index.

Objects of class xts have powerful selection mechanisms, e.g. by using ISO
86012 notation of time instance or intervals. This allows simple constructions
as x["2012"] to select observations from the full year of 2012, or "2012-05"
to denote the full month of May in 2012. As these objects extend zoo objects,
powerful aggregation methods for these are reused, e.g. to go from hourly to
monthly, or from daily to quarterly data using arbitrary aggregation func-
tions.

Neither zoo nor xts objects have a notion of the difference between time
instances or time intervals: they seem to serve their needs by keeping this
information implicit. For spatio-temporal data, it turned out to be easier to
make this explicit, and hence a POSIXct slot endTime is present in all ST
objects.

For regular space-time layouts (STF, STS), the default assumption is that
time reflects time intervals extending to the next observation in time. For all
other layouts time is assumed to reflect instances when no endTime is
specified.

6.5 Construction of ST Objects

The data used here are from the North American Breeding Bird Survey, for
the Eurasian Collared Dove, Streptopelia decaocto, for the years 1986-2003,
published by Cressie and Wikle (2011).4

3 http://en.wikipedia.org/wiki/IS0_8601

4 Downloaded from the book web site, ftp://ftp.wiley.com/public/sci_tech_med/
spatio_temporal_data/
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First we will import the longitude and latitudes of the
observation locations.

> ecd.ll <- as.matrix(read.table("ECDovelatlon.dat", header = FALSE))
> library(sp)

> ecd.11 <- SpatialPoints(ecd.11[, c(2, 1)])

> proj4string(ecd.11) <- CRS("+proj=longlat +datum=WGS84")

Next, we will specify the times, and convert them into Date format:

> library(xts)

> library(spacetime)

> ecd.years <- 1986:2003

> ecd.y <- as.Date(paste(ecd.years, "-01-01", sep = ""),
+ "3Y-Jm-7d")

Finally, we read the full data set, set missing values, and create the STFDF
object:

> ecd <- read.table("ECDoveBBS1986_2003.dat", header = FALSE)

> ecd[ecd == -1] <- NA

> ecd.st <- STFDF(ecd.l1l, ecd.y, data.frame(counts = as.vector
(as.matrix(ecd))))

> dim(ecd.st)

space time variables
253 18 1

which indicates that this data set has 253 spatial locations, 18 time replicates
at each location, and one attribute variable.

Functions STF, STFDF, STIDF etc. are used to create the objects with the
same name, from their components. An alternative way to construct the
objects from data.frame tables is by using stConstruct, as in

> ecd.st2 <- stConstruct(ecd, ecd.ll, list(counts = names(ecd)),
+ TimeObj = ecd.y, interval = TRUE)
> all.equal(ecd.st2, ecd.st)

[1] TRUE

where the first argument can be the data table either

In long form, where all attribute values are in one column,
In space-wide form, where different columns represent time series for
different locations, or

e In time-wide form, where different columns represent different moments or
periods in time.

The help page of stConstruct contains examples for each of these.
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6.6 Selection, Addition, and Replacement of Attributes

Subsets of STFDF, STSDF and STIDF objects are obtained by the syntax
obj[space, time, attr, drop = TRUE] where space, time and attr can
be numeric or logical vectors that indicate which locations, which times, and
which attribute variables need to be selected. In addition,

e space can be a character vector, to select the spatial locations with
matching row.names,

e space can be a Spatial object, to select the spatial locations that intersect
with this object,

e time can be a character string denoting time instance or time interval in
ISO 8601 notation, to select a time instance or interval,

e In case drop = FALSE, selection returns ST*DF objects, if TRUE a Spatial
object is returned in case of a single time step and an xts object is returned
in case of a single spatial location,

e Trajectories are selected or deselected as complete entities when part of
them matches the criteria.

As an example, we create a SpatialPolygons object with the state of
Florida, from the data available in maps:

> library(maps)

> m <- map("state", "florida", fill = TRUE, plot = FALSE)
> library(maptools)

> FL <- map2SpatialPolygons(m, "FL")

> proj4string (FL) <- proj4string(ecd.st)

we can use this object to select all the data points inside the state Florida,
as well as within the time period 1998-2003, and optionally select a variable
(of which we have only one):

> dim(ecd.st[FL, 1)

space time variables
58 18 1

> dim(ecd.st[, "1998::2003"])

space time variables
253 6 1

> dim(ecd.st[, , "counts"])

space time variables
253 18 1

> dim(ecd.st[FL, "1998::2003", "counts"])

space time variables
58 6 1

where the commas need to be placed as in the examples here. The vector of
data values is obtained by using double braces or $:
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> mode(ecd.st[[1]])

[1] "numeric"

> length(ecd.st[[1]])

[1] 4554

> length(ecd.st[["counts"]])
[1] 4554

> length(ecd.st$counts)

[1] 4554

and variables can be added (or replaced) by assigning them, as in

> ecd.st$sqrtcounts <- sqrt(ecd.st$counts)

6.7 Overlay and Aggregation

Similar to the over method for Spatial objects (Sect.5.3), spatio-temporal
objects have an over method to find matching space-time geometries, or
retrieve attribute values at these matching geometries. In

> over(x, y)

at the spatio-temporal locations of x, the index of y is retrieved if y has no
attribute values, or else the data.frame with the attribute values of y at
these locations is retrieved.

As an example, we want total Eurasian Collared Dove counts over the
state of Florida, for 2-year periods. We can construct a target space-time
geometry by

> bb <- STF(FL, ecd.ylc(4, 6, 8, 10, 12)])
Next, the naive approach would be to carry out
> over(bb, ecd.st)

counts sqrtcounts
0

g wWwN -
O O OO
O O O O o

but as bb contains many of the points in ecd. st, only the first one is returned,
which is little helpful. The full set would be obtained in the form of a list of
data.frames when argument returnlList = TRUE were added, but we can
process this list in the same step, as that is usually wanted anyway:
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> over(bb, ecd.st, fn = sum, na.rm = TRUE)

counts sqrtcounts
3 1.732051

5 4.414214

92 37.404228

176 64.018950
860 202.209044

g wWwN -

Then, we can assign this attribute table to create a new STFDF:

> bb.counts <- new("STFDF", bb, data = over(bb, ecd.st,
+ fn = sum, na.rm = TRUE))

We have now aggregated the data, and we can do the same thing using the
simpler syntax of method aggregate:

> aggregate(ecd.st, bb, sum, na.rm = TRUE)

counts sqrtcounts timeIndex

1989-01-01 3 1.7320561
1991-01-01 5 4.414214
1993-01-01 92 37.404228

1995-01-01 176 64.018950
1997-01-01 860 202.209044

g wWwN -

Here, the first argument ecd.st is aggregated using the aggregation (or
grouping) predicate of the second argument bb, and the aggregation function
sum of the third argument. Further arguments (na.rm = TRUE) are passed on
to this aggregation function.

The aggregate command returns a time series object of class xts in this
case, because we aggregate over one a single spatial geometry. By default
it returns a simplified structure (time series, or Spatial object) if possible,
unless simplify = FALSE is specified.

For the aggregate methods for ST*DF objects, the aggregation function
takes a vector as argument. The aggregation predicate can be

e An object deriving from ST, in which case the two spatio-temporal
geometries are matched,

e An object deriving from Spatial, in which case the spatial geometries are
matched,

e Character, indicating an aggregation period such as "1 week" or "2
years",

e A function, which, when applied to the time index of the object returns
the time classes.

For instance, the bird data aggregated (averaged) over 5-year periods when
omitting missing counts, which is shown in Fig. 6.2, is obtained by

> ecd.by <- aggregate(ecd.st, "5 years", mean, na.rm = TRUE)
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More information and examples are found in Pebesma (2012a), which is
obtained by

> vignette("sto")

and further information about temporal aggregation options are found in the
help pages of aggregate.zoo of zoo.

Just like the spatial matching with over explained in Sect. 5.3, spatio-
temporal geometry matching by over and the related application of aggre-
gate only carries out a boolean match: two space-time entities either match
or do not match, partial and complete matches are not distinguished.

Matching of time intervals is done by checking whether two time intervals
overlap. As time intervals are assumed to be left-closed and right-open, two
consecutive days do for instance not overlap when the end time of the first
day is identical to the start time of the second day. Interval overlapping uses
an on-the-fly indexing provided by package intervals.

When one or more of the endTimes are later then time, time is considered
to reflects time intervals. If, in that case, some intervals have zero duration
(meaning some have endTime equal to time), these are considered empty
intervals and are never matched to another interval, not even to themselves.
If time reflects time instances, matches are found by equality.

6.8 Visualisation

Objects deriving from ST have a plot method that plots the space-time
layout, i.e. the space index against the time index. The stplot methods
provides a number of higher-level plots, including multi-panel plots, similar
to how spplot does this for spatial data. A number of visualisation options
will now be discussed.

6.8.1 Multi-panel Plots

In multi-panel (lattice) plots, panels share z- and y-axis, a common legend or
key is used, and the strip above the panel indicates what the panel is about.
Three types are implemented for STFDF data, where panels indicate

Time: the z and y axis denote space, an example is shown in Fig. 6.2; this
method uses spplot in package sp, and inherits most of its options,

Feature: the x and y axis denote time and value; colours may indicate
different variables (mode="tp"); see Fig. 6.4 (left)

Attribute: 2z and y axis denote time and value; colours may denote
different features (mode="ts"), see Fig. 6.4 (right).
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Fig. 6.2 Counts of Eurasian Collared Dove in Florida, 1986-2003, yearly average
counts over 5-year periods

For both cases where time is on the y-axis, values over time for different
variables or features are connected with lines, as is usual with time series
plots. This can be changed to symbols by specifying type="p".

6.8.2 Space-Time Plots

Space-time plots show data in a space-time cross-section, with e.g., space
on the z-axis and time on the y-axis, or vice-versa. Hovmoéller diagrams
(Hovmoller, 1949) are an example of these for full space-time lattices, i.e.,
objects of class STFDF. As space receives one dimension in the plot, these
plots usually consider variation along some transect.

To obtain such a plot with stplot the arguments mode and scaleX should
be considered. By default, space is taken as the index of the spatial features;
some special care is needed when values along a certain transect, or features
in a particular order need to be plotted instead. Details are found in the
stplot documentation.

In the bird count example, we use count-weighted mean time, obtained
from n count-time observation pairs (¢;, t;) by

n n
D eti/ ) e
i=1 i=1
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Fig. 6.3 Eurasian Collared Dove counts in Florida, sites ordered by count-weighted
mean time; white cells indicating missing counts

to obtain an ordering measure (o) that combines abundance and early
presence:

> ecd.FL <- ecd.st[FL, , "sqrtcounts"]

> x <- as(ecd.FL, "xts")

> x[is.na(x)] <- 0

> o <- order(as.vector(1:18 7*}, x)/apply(x, 2, sum))

The corresponding Hovmoller diagram

> library (RColorBrewer)

> pal <- brewer.pal(6, "Reds")

> cuts <- c(0, 2, 4, 6, 8, 10, 12)

> ck <- list(at = cuts, labels = as.character(cuts~2))

> stplot(ecd.FL[o, ], mode = "xt", col.regions = pal, cuts = 6,
+ asp = 0.5, xlab = "Sites, ordered by time", colorkey = ck)

is shown in Fig.6.3 — note that the replacement of NA values is of influence,
and disputable.

6.8.3 Animated Plots

Animation is another way of displaying change over time. Books are notably
bad in communicate animating plots.

Animation can be interactive, or non-interactive. Using stplot, a sequence
of spplots, one for each time step, is displayed in a loop when the parameter
animate is set to a positive value. This value sets the time (seconds) of pause
between subsequent plots.

Package stpp has, beyond a function animation that adds points in a
non-interactive progressive loop, a function stan that allows interactive ani-
mation to view the temporal development of a spatio-temporal point pattern.
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Fig. 6.4 Two stplot examples for STFDF objects, using feature in panel (left:
mode="tp") and attribute in panel (right: mode="ts") (Data from Produc in plm,
see Pebesma (2012b); Baltagi (2001))

It colours the points in a particular time window, allows this window to be
manipulated (increase its width, shift it backwards and forwards in time),
and keeps the past points in a background colour.

Another platform that allows specifying a time interval and manipulating
it interactively is Google Earth™. Package plotKML exports STFDF and STIDF
objects into KML, which can be shown in Google Earth.

6.8.4 Time Series Plots

Time series plots are a fairly common type of plot in R. Package xts has a
plot method that allows univariate time series to be plotted. Many (if not
most) plot routines in R support time to be along the x- or y-axis.

6.9 Further Packages

An overview of around 50 packages that are relevant for manipulating,
analysing and/or viewing spatio-temporal data in R is maintained in the
spatio-temporal task view, http://cran.r-project.org/view=Spatio
Temporal. Some of these will be mentioned below, and/or in later chapters.


http://cran.r-project.org/view=Spatio
Temporal
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6.9.1 Handling Spatio- Temporal Data

Package raster has facilities to deal with sequences of raster images, called
RasterStack or RasterBrick. This sequence can correspond to moments (or
periods) in time. Coercion between STFDF objects and raster stack or bricks is
provided by raster and spacetime, as is an stplot method for RasterStack or
RasterBrick objects. Package rasterVis has several plot methods for raster
objects, building on lattice, some of which deal with time.

Several packages interface popular file formats for providing spatio-
temporal data, many are dedicated to a single data source or type. Package
sos4R provides methods to request data from a sensor observation service.
Packages ncdf, ncdf4 and RNetCDF allow reading and writing netcdf files;
pbdNCDF4 adds collective parallel read and write capability to ncdf4.

6.9.2 Analysing Spatio-Temporal Data

Section 8.12 lists options for spatial prediction (geostatistical analysis) of
spatio-temporal fields, mentions several relevant packages and points amongst
others to a vignette in package gstat about this topic. Section 10.7 describes
spatio-temporal approaches for disease mapping. Package surveillance pro-
vides temporal and spatio-temporal modelling and monitoring of epidemic
phenomena.

6.10 Outlook

In his outlook over researchable questions, Galton (2004) mentions:

First and foremost is the question of what data structures one should use to
represent multi-aspect phenomena. Hand in hand with this it is necessary to
specify operations on those data structures which can generate the multiple
aspects of those structures.

We believe that we made a start with ansering these, not by a top-down
approach that might start with designing an ontology for the phenomena
to be represented and their properties and relations, but by a bottom-up
approach, looking at what data analysts do, or, as Jim Gray (SzaLay and
Blakeley, 2009) put it, “starting with the 20 most important questions”.
These questions involved which spatial and temporal characteristics our
data have, how they are structured in space-time, how construction, selection,
combining and aggregation works, and how graphs of spatio-temporal data
can be created. We have not addressed how different phenomena should be
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distinguished (no distinction is made between objects, events or fields), and
many aspects such as (re)sampling data and the analysis of (sets of) trajecto-
ries have not yet been addressed. Depending on requirements, resources, and
on interactions within or outside the R ecosystem, these may be addressed in
the near future.



Part 11
Analysing Spatial Data



Analysing Spatial Data

The analysis of spatial data is usually undertaken to make inferences, that is
to try to draw conclusions about a hypothesised data generating process or to
use an estimated process to predict values at locations for which observations
are unavailable. In some cases, the conclusions are sufficient in themselves,
and in others, they are carried through to other hierarchical layers in the
model under scrutiny. Haining (2003, pp. 184-185) and Bivand (2002, p.
409) suggest (following Tukey, 1977) that our understanding of the data may
be partitioned into

data = smooth + rough.

If the data are spatial, we can see that there is room for another term, irre-
spective of whether we are more interested in the fit of the model itself or in
calibrating the model in order to predict for new data:

data = smooth + spatial smooth + rough.

The added term constitutes the ‘added value’ of spatial data analysis, bring-
ing better understanding or predictive accuracy at the price of using spe-
cialised methods for fitting the spatial smooth term. We will here be con-
cerned with methods for finding out whether fitting this term is worth the
effort, and, if so, how we might choose to go about doing so.

Before rushing off to apply such specialised methods, it is worth thinking
through the research problem thoroughly. We have already mentioned the
importance of the Distributed Statistical Computing conference in Vienna
in 2003 for our work. At that meeting, Bill Venables presented a fascinating
study of a real research problem in the management of tiger prawn fisheries.
The variable of interest was the proportion by weight of two species of tiger
prawn in the logbook on a given night at a given location. In a very careful
treatment of the context available, the ‘location’ was not simply taken as a
point in space with geographical coordinates:
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Rather than use latitude and longitude directly as predictors, we find it more
effective to represent station locations using the following two predictors:

e The shortest distance from the station to the coast (variable Rjnq), and
e The distance from an origin in the west to the nearest point to the station
along an arbitrary curve running nearly parallel to the coast (variable Rg;st)-

[...] Rather than use Rgjs; itself as a predictor, we use a natural spline basis
that allows the fitted linear predictor to depend on the variable in a flexible
curvilinear way.

[...] Similarly, we choose a natural spline term with four internal knots at the
quantiles of the corresponding variable for the logbook data for the “distance
from dry land” variable, Rja,q.

The major reason to use this system, which is adapted to the coastline, is
that interactions between Rj,,q and Rgjst are more likely to be negligible than
for latitude and longitude, thus simplifying the model. The fact that they do
not form a true co-ordinate system equivalent to latitude and longitude is no
real disadvantage for the models we propose. Venables and Dichmont (2004,
pp. 412-413)

The paper deserves to be required reading in its entirety for all spatial data
analysts, not least because of its sustained focus on the research problem at
hand. It also demonstrates that because applied spatial data analysis builds
on and extends applied data analysis, specifically spatial methods should be
used when the problem cannot be solved with general methods. Consequently,
familiarity with the modelling chapters of textbooks using R for analysis
will be of great help in distinguishing between situations calling for spatial
solutions, and those that do not, even though the data are spatial. Readers
will benefit from having one or more of Fox and Weisberg (2011), Dalgaard
(2008), Faraway (2004, 2006), or Venables and Ripley (2002) to refer to in
seeking guidance on making often difficult research decisions.

In introducing this part of the book — covering specialised spatial methods
but touching in places on non-spatial methods — we use the classification
of Cressie (1993) of spatial statistics into three areas, spatial point patterns,
covered here in Chap. 7, geostatistical data in Chap.8, and lattice data, here
termed areal data, in Chaps. 9 and 10. In Chap. 1, we mentioned a number of
central books on spatial statistics and spatial data analysis; Table I1.1 shows
very roughly which of our chapters contain material that illustrates some
of the methods presented in more recent spatial statistics books, including
treatments of all three areas of spatial statistics discussed earlier (see p. 14).

The coverage here is uneven, because only a limited number of the topics
covered in these books could be accommodated; the specialised literature
within the three areas will be referenced directly in the relevant chapters.
On the other hand, the implementations discussed below may be extended
to cover alternative methods; for example, the use of WinBUGS and INLA
with R is introduced in Chap. 10 in general forms capable of extension. The
choice of contributed packages is also uneven; we have used the packages that
we maintain, but this does not constitute a recommendation of these rather
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Chapter 7 8 9-10
Cressie (1993) 8 2-3 6-7
Schabenberger and Gotway (2005)| 3 4-5 1,6
Waller and Gotway (2004) 5 8 6,7,9
Fortin and Dale (2005) 2.1-2.2 3.5 3.1-3.4,5
O’Sullivan and Unwin (2010) 5-6 9-10 -8
Gaetan and Guyon (2010) 3,5.5 |1.1-6, 1.9, 5.1|1.7-8, 5.2-4, 5.6
Krivoruchko (2011) 13 7-10 11-12

Table II.1 Thematic cross-tabulation of chapters in this book with chapters and
sections of chosen books on spatial statistics and spatial data analysis

than other approaches. Note that complete code examples, data sets, and
other support material may be found on the book website.



Chapter 7
Spatial Point Pattern Analysis

7.1 Introduction

The analysis of point patterns appears in many different areas of research.
In ecology, for example, the interest may be focused on determining the spa-
tial distribution (and its causes) of a tree species for which the locations have
been obtained within a study area. Furthermore, if two or more species have
been recorded, it may also be of interest to assess whether these species are
equally distributed or competition exists between them. Other factors which
force each species to spread in particular areas of the study region may be
studied as well. In spatial epidemiology, a common problem is to determine
whether the cases of a certain disease are clustered. This can be assessed by
comparing the spatial distribution of the cases to the locations of a set of
controls taken at random from the population.

In this chapter, we describe how the basic steps in the analysis of point
patterns can be carried out using R. When introducing new ideas and concepts
we have tried to follow Diggle (2003) as much as possible because this text
offers a comprehensive description of point processes and applications in many
fields of research. The examples included in this chapter have also been taken
from that book and we have tried to reproduce some of the examples and
figures included there.

In general, a point process is a stochastic process in which we observe
the locations of some events of interest within a bounded region A. Diggle
(2003) defines a point process as a ‘stochastic mechanism which generates a
countable set of events’. Diggle (2003) and Moller and Waagepetersen (2003)
give proper definitions of different types of a point process and their main
properties. The locations of the events generated by a point process in the area
of study A will be called a point pattern. Sometimes, additional covariates may
have been recorded and they will be attached to the locations of the observed
events.

R.S. Bivand et al., Applied Spatial Data Analysis with R, Use R! 10, 173
DOI 10.1007/978-1-4614-7618-4_7,
© Springer Science+Business Media New York 2013
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The analysis of spatio-temporal point patterns are described in Gelfand
et al. (2010) and Illian et al. (2008). As described in Chap. 6, there are classes
for different types of spatio-temporal point patterns.

Other books covering this subject include Schabenberger and Gotway
(2005, Chap. 3), Waller and Gotway (2004, Chaps.5 and 6), O’Sullivan and
Unwin (2010, Chaps.5 and 6), Gaetan and Guyon (2010, Chaps. 3 and 5.5),
and Krivoruchko (2011, Chap.13). More recently, Cressie and Wikle (2011)
provide a comprehensive summary of the field, including space-time point
patterns.

7.2 Packages for the Analysis of Spatial Point Patterns

There are a number of packages for R which implement different functions
for the analysis of spatial point patterns. The spatial package provides func-
tions described in Venables and Ripley (2002, pp. 430-434), and splancs
(Rowlingson and Diggle, 1993) and spatstat (Baddeley and Turner, 2005)
provide other implementations and additional methods for the analysis of
different types of point processes. The Spatial Task View contains a com-
plete list of all the packages available in R for the analysis of point patterns.
Other packages worth mentioning include spatialkernel, which implements
different kernel functions and methods for the analysis of multivariate point
processes. Given that most of the examples included in this chapter have
been computed using splancs and spatstat, we focus particularly on these
packages.

These packages use different data structures to store the information of
a point pattern. Given that it would be tedious to rewrite all the code in-
cluded in these packages to use sp classes, we need a simple mechanism to
convert between formats. Package maptools offers some functions to convert
between ppp objects representing two-dimensional point patterns (from spat-
stat, which uses old-style classes, see p. 24) and sp classes. Note that, in
addition to the point coordinates, ppp objects include the boundary of the
region where the point data have been observed, whilst sp classes do not,
and it has to be stored separately. Data types used in splancs are based on
a two-column matrix for the coordinates of the point pattern plus a similar
matrix to store the boundary; the package was written before old-style classes
were introduced. Function as.points is provided to convert to this type of
structure. Hence, it is very simple to convert the coordinates from sp classes
to use functions included in splancs.

Section 2.4 describes different types of sp classes to work with point
data. They are SpatialPoints, for simple point data, and SpatialPoints-
DataFrame, when additional covariates are recorded. More information and
examples can be found in the referred section. Hence, it should not be difficult
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to have the data available in the format required for the analysis whatever
package is used.

To illustrate the use of some of the different techniques available for the
analysis of point patterns, we have selected some examples from forest ecol-
ogy, biology, and spatial epidemiology. The point patterns in Fig.7.1 show
the spatial distribution of cell centres (left), California redwood trees (right),
and Japanese black pine (middle). All data sets have been re-scaled to fit into
a one-by-one square. These data sets are described in Ripley (1977), Strauss
(1975), and Numata (1961) and all of them have been re-analysed in Diggle
(2003).

These data sets are available in package spatstat. This package uses ppp
objects to store point patterns, but package maptools provides some functions
to convert between ppp objects and SpatialPoints, as shown in the following
example. First we take the Japanese black pine saplings example, measured
in a square sampling region in a natural forest, reading in the data provided
with spatstat.

> library(spatstat)
> data(japanesepines)

> summary (japanesepines)

Planar point pattern: 65 points
Average intensity 65 points per square unit (one unit = 5.7 metres)

Coordinates are given to 2 decimal places
i.e. rounded to the nearest multiple of 0.01 units (one unit = 5.7 metres)

Window: rectangle = [0, 1] x [0, 1] units
Window area = 1 square unit
Unit of length: 5.7 metres

The summary shows the average intensity over the region of interest; this
region, known as an observation window, is also reported in the summary;
observation windows are stored in objects of class owin. In this case, the
points have been scaled to the unit square already, but the size of the sampling
square can be used to retrieve the actual measurements. Note that spatstat
windows may be of several forms, here the window is a rectangle. When we
coerce a ppp object with a rectangular window to a SpatialPoints object,
the point coordinates will by default be re-scaled to their original values.

> library(maptools)

> spjpines <- as(japanesepines, "SpatialPoints")
> summary (spjpines)

Object of class SpatialPoints
Coordinates:
min max
[1,] 0 5.7
[2,] 05.7
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Is projected: NA
proj4string : [NA]
Number of points: 65

We can get back to the unit square using the elide methods discussed in
Chap. 5 as the summary of the output object shows.

> spjpinesl <- elide(spjpines, scale = TRUE, unitsq = TRUE)
> summary (spjpines1)

Object of class SpatialPoints
Coordinates:
min max
[1,] 0 1
2,1 o 1
Is projected: NA
proj4string : [NA]
Number of points: 65

Getting back to a ppp object is also done by coercing, but if we want to
preserve the actual dimensions, we have to manipulate the owin object be-
longing to the ppp object directly. We return later to see how SpatialPoly-
gons objects may be coerced into owin objects, and how spatstat im objects
can interface with SpatialGrid objects.

> pppjap <- as(spjpinesl, "ppp")
> summary (pppjap)

Planar point pattern: 65 points
Average intensity 65 points per square unit

Coordinates are given to 2 decimal places
i.e. rounded to the nearest multiple of 0.01 units

Window: rectangle = [0, 1] x [0, 1] units
Window area = 1 square unit

These point patterns have been obtained by sampling in different regions,
but it is not rare to find examples in which we have different types of events in
the same region. In spatial epidemiology, for example, it is common to have
two types of points: cases of a certain disease and controls, which usually
reflect the spatial distribution of the population. In general, this kind of
point pattern is called a marked point pattern because each point is assigned
to a group and labelled accordingly.

The Asthma data set records the results of a case-control study carried out
in 1992 on the incidence of asthma in children in North Derbyshire (United
Kingdom). This data set has been studied by Diggle and Rowlingson (1994),
Singleton et al. (1995), and Diggle (2003) to explore the relationship between
asthma and the proximity to the main roads and three putative pollution
sources (a coking works, chemical plant, and waste treatment centre). In the
study, a number of relevant covariates were also collected by means of a
questionnaire that was completed by the parents of the children attending
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Fig. 7.1 Example of three point patterns re-scaled to fit in the unit square. On the
left, spatial distribution of the location of cell centres (Ripley, 1977); in the middle,
Japanese black pine saplings (Numata, 1961); and on the right, saplings of California
redwood trees (Strauss, 1975)

ten schools in the region. Children having suffered from asthma will act as
cases whilst the remainder of the children included in the study will form the
set of controls. Although this data set is introduced here, the spatial analysis
of case—control data is described in the final part of this chapter.

The data set is available from Prof. Peter J. Diggle’s website and comes
in anonymised form. Barry Rowlingson provided some of the road lines. The
original data were supplied by Dr. Joanna Briggs (University of Leeds, UK).
To avoid computational problems in some of the methods described in this
section, we have removed a very isolated point, which was one of the cases,
and we have selected an appropriate boundary region.

The next example shows how to display the point pattern, including the
boundary of the region (that we have created ourselves) and the location
of the pollution sources using different sp layouts and function spplot (see
Chap. 3 for more details). Given that the data set is a marked point pattern,
we have converted it to a SpatialPointsDataFrame to preserve the type
(case or control) of the events and all the other relevant information. In
addition, we have created a SpatialPolygons object to store the boundary
of the region and a SpatialPointsDataFrame object for the location of the
three pollution sources. Given that the main roads are available, we have
included them as well using a SpatialLines object. The final plot is shown
in Fig. 7.2.
> library(rgdal)
spasthma <- readOGR(".", "spasthma")
spbdry <- readOGR(".", "spbdry")
spsrc <- readOGR(".", "spsrc")
sproads <- readOGR(".", "sproads")
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Fig. 7.2 Locations of the residence of asthmatic (cases, orange filled tri-
angle) and non-asthmatic (controls, green cross) in North Derbyshire, 1992
Diggle and Rowlingson (1994). The boundary has been taken to contain all points
in the data set. The map shows the pollution sources (brown filled square) and the
main roads (grey lines)

7.3 Preliminary Analysis of a Point Pattern

The analysis of point patterns is focused on the spatial distribution of the
observed events and making inference about the underlying process that gen-
erated them. In particular, there are two main issues of interest: the distri-
bution of events in space and the existence of possible interactions between
them. For a merely descriptive analysis, we would represent the locations of
the point pattern in the study area. This will give us an idea of the distri-
bution of the points, and it can lead to possible hypothesis about the spatial
distribution of the events. Further statistical analyses can be done and they
are described in this section.
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7.3.1 Complete Spatial Randomness

When studying a point process, the most basic test that can be performed
is that of Complete Spatial Randomness (CSR, henceforth). Intuitively, by
CSR we mean that the events are distributed independently at random and
uniformly over the study area. This implies that there are no regions where
the events are more (or less) likely to occur and that the presence of a given
event does not modify the probability of other events appearing nearby.

Informally, this can be tested by plotting the point pattern and observing
whether the points tend to appear in clusters or, on the contrary, they follow a
regular pattern. In any of these cases, the points are not distributed uniformly
because they should be distributed filling all the space in the study area.
Usually, clustered patterns occur when there is attraction (i.e. ‘contagion’)
between points, whilst regular patterns occur when there is inhibition (i.e.
‘competition’) among points.

Figure 7.1 shows three examples of point patterns that have been gen-
erated by different biological mechanisms and seem to have different spatial
distributions. In particular, the plot of the Japanese pine trees (middle) seems
neither clustered nor regularly distributed, whilst the redwood seeds (right)
show a clustered pattern and the cells (left) a regular one. Hence, only the
spatial distribution of Japanese pine trees seems to be compatible with CSR.

To measure the degree of accomplishment of the CSR, several functions
can be computed on the data. These are described in the following sections,
together with methods to measure the uncertainty related to the observed
pattern.

Testing for CSR is covered in Waller and Gotway (2004, pp. 118-126),
O’Sullivan and Unwin (2010, pp. 99-108, including a discussion on
pp. 158-165), and Schabenberger and Gotway (2005, pp. 86-99, including
other methods not presented here).

7.3.2 G Function: Distance to the Nearest Event

The G function measures the distribution of the distances from an arbitrary
event to its nearest event. If these distances are defined as d;= min;{d;;, Vj#i},
i1=1,...,n, then the G function can be estimated as

G(T) _ #{dl : dl S r, Vl},

n
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where the numerator is the number of elements in the set of distances that
are lower than or equal to d and n is the total number of points. Under CSR,
the value of the G function is

G(r) = 1 — exp{—Mmr?},

where A represents the mean number of events per unit area (or intensity).

The compatibility with CSR of the point pattern can be assessed by
plotting the empirical function G’(d) against the theoretical expectation. In
addition, point-wise envelopes under CSR can be computed by repeatedly
simulating a CSR point process with the same estimated intensity A in the
study region (Diggle, 2003, p. 13) and check whether the empirical function
is contained inside. The next chunk of code shows how to compute this by
using spatstat functions Gest and envelope. The results have been merged
in a data frame in order to use conditional Lattice graphics.

> set.seed(120109)

> r <- seq(0, sqrt(2)/6, by = 0.005)

> envjap <- envelope(as(spjpinesl, "ppp"), fun = Gest,

+ r = r, nrank = 2, nsim = 99)

> envred <- envelope(as(spred, "ppp"), fun = Gest, r = r,
+ nrank = 2, nsim = 99)

> envcells <- envelope(as(spcells, "ppp"), fun = Gest,

+ r = r, nrank = 2, nsim = 99)

> Gresults <- rbind(envjap, envred, envcells)

> Gresults <- cbind(Gresults, y = rep(c("JAPANESE", "REDWOOD",
+ "CELLS"), each = length(r)))

Figure 7.3 shows the empirical function G’(r) against G(r) together with
the 96 % pointwise envelopes (because nrank=2) of the same point pattern
examined using the G function. The plot is produced by taking the pairs
(G(r), G(r)) for a set of reasonable values of the distance r, so that in the -
axis we have the values of the theoretical value of G(r) under CSR and in the
y-axis the empirical function G’(T) The results show that only the Japanese
trees seem to be homogeneously distributed, whilst the redwood seeds show
a clustered pattern (values of G(r) above the envelopes) and the location of
the cells shows a more regular pattern (values of G(r) below the envelopes).

envelope is a very flexible function that can be used to compute Monte
Carlo envelopes of a certain type of functions. Basically, it works by ran-
domly simulating a number of point patterns so that the summary function
is computed for all of them. The resulting values are then used to compute
point-wise (i.e. at different distances) or global Monte Carlo envelopes. en-
velope can be passed the way the point patterns are generated (by default,
CSR). The reader is referred to the manual page for more information.
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Fig. 7.3 Envelopes and observed values of the G function for three point patterns

7.3.3 F Function: Distance from a Point
to the Nearest Event

The F function measures the distribution of all distances from an arbitrary
point of the plane to its nearest event. This function is often called the empty
space function because it is a measure of the average space left between events.
Under CSR, the expected value of the F' function is

F(r) =1 —exp{—Arr?}.

Hence, we can compare the estimated value of the F' function to its theo-
retical value and compute simulation envelopes as before.

> set.seed(30)

> Fenvjap <- envelope(as(spjpinesl, "ppp"), fun = Fest,

+ r = r, nrank = 2, nsim = 99)

> Fenvred <- envelope(as(spred, "ppp"), fun = Fest, r = r,

+ nrank = 2, nsim = 99)

> Fenvcells <- envelope(as(spcells, "ppp"), fun = Fest,

+ r = r, nrank = 2, nsim = 99)

> Fresults <- rbind(Fenvjap, Fenvred, Fenvcells)

> Fresults <- cbind(Fresults, y = rep(c("JAPANESE", "REDWOOD",
+ "CELLS"), each = length(r)))

Figure 7.4 shows the empirical F' functions and their associated 96 % en-
velopes (because nrank=2) for the three data sets presented before. The
Japanese data are compatible with the CSR hypothesis, whereas the cells

point pattern shows a regular pattern (F'(r) is above the envelepes) and the
redwood points seem to be clustered, given the low values of F'(r).
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Fig. 7.4 Envelopes and observed values of the F' function for three point patterns

7.4 Statistical Analysis of Spatial Point Processes

A first description of the point pattern can be done by estimating the spatial
statistical density from the observed data. The spatial density has the same
properties as a univariate density, but its domain is the study area where the
point process takes place.

As an alternative function to measure the spatial distribution of the events,
we can work with the intensity A(z) of the point process, which is proportional
to its spatial density. The constant of proportionality is the expected number
of events of the point process in the area A. That is, for two point processes
with the same spatial density but different intensities, the number of events
observed will be higher for the process with the highest intensity.

The intensity and spatial density are part of the first-order properties
because they measure the distribution of events in the study region. Note
that neither the intensity nor the spatial density give any information on
the interaction between two arbitrary points. This is measured by second-
order properties, which reflect any tendency of the events to appear clustered,
independently, or regularly spaced.

First- and second-order properties are properly defined in, for example,
Diggle (2003, p. 43) and Moller and Waagepetersen (2003, Chap. 4). We fo-
cus on the estimation of the intensity and the assessment of clustering, as
explained in the following sections. Waller and Gotway (2004, pp. 130-146)
and Schabenberger and Gotway (2005, pp. 90-103, 110-112) discuss the es-
timation of the intensity of a point pattern and the assessment of clustering
as well.

The separation between first- and second-order properties can be difficult
to disentangle without further assumptions. For example, do groups of events
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appear at a specific location because the intensity is higher there or because
events are clustered? In general, it is assumed that interaction between points
occurs at small scale, while large-scale variation is reflected on the intensity
(Diggle, 2003, p. 143). Waller and Gotway (2004, 146-147) also discuss the
roles of first and second-order properties.

In the remainder of this chapter, we focus on Poisson processes because
they offer a simple approach to a wide range of problems. Loosely, we can dis-
tinguish between homogeneous and inhomogeneous Poisson point processes
(HPP and IPP, respectively). Both HPP and IPP assume that the events
occur independently and are distributed according to a given intensity. The
main difference between the two point processes is that the HPP assumes
that the intensity function is constant, while the intensity of an IPP varies
spatially. In a sense, the IPP is a generalisation of the HPP or, inversely, the
HPP can be regarded as an IPP with constant intensity. Poisson processes
are also described in Schabenberger and Gotway (2005, pp. 81-86, 107-110)
and Waller and Gotway (2004, pp. 126-130).

Note that other spatial processes may be required when more complex data
sets are to be analysed. For example, when events are clustered, points do
not occur independently of each other and a clustered process would be more
appropriate. See Diggle (2003, Chap. 5) and Moller and Waagepetersen (2003)
for a wider description of other spatial point processes. spatstat provides a
number of functions to fit some of the models described therein.

7.4.1 Homogeneous Poisson Processes

A homogeneous Poisson process is characterised as representing the kind of
point process in which all events are independently and uniformly distributed
in the region A where the point process occurs. This means that the location
of one point does not affect the probabilities of other points appearing nearby
and that there are no regions where events are more likely to appear.

More formally, Diggle (2003) describes an HPP in a region A as fulfilling:

1. The number of events in A, with area |A|, is Poisson distributed with
mean A|A|, where X is the constant intensity of the point process.
2. Given n observed events in region A, they are uniformly distributed in A.

The HPP is also stationary and isotropic. It is stationary because the in-
tensity is constant and the second-order intensity depends only on the relative
positions of two points (i.e. direction and distance). In addition, it is isotropic
because the second-order intensity is invariant to rotation. Hence, the point
process has constant intensity and its second-order intensity depends only on
the distance between the two points, regardless of the relative positions of
the points.
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These constraints reflect that the intensity of the point process is constant,
that is A(z) = A > 0,Vz € A, and that events appear independently of each
other. Hence, the HPP is the formal definition of a point process which is
CSR.

7.4.2 Inhomogeneous Poisson Processes

In most cases assuming that a point process under study is homogeneous
is not realistic. Clear examples are the distribution of the population in a
city or the location of trees in a forest. In both cases, different factors affect
the spatial distribution. In the case of the population, it can be the type of
housing, neighbourhood, etc., whilst in the case of the trees, it can be the
environmental factors such as humidity, quality of the soil, slope and others.

The IPP is a generalisation of the HPP, which allows for a non-constant
intensity. The same principle of independence between events holds, but now
the spatial variation can be more diverse, with events appearing more likely
in some areas than others. As a result, the intensity will be a generic function
A(z) that varies spatially.

7.4.3 Estimation of the Intensity

As stated previously, the intensity of an HPP point process is constant. Hence,
the problem of estimating the intensity is the problem of estimating a constant
function A such as the expected number of events in region A ([ 4 Adx) is equal
to the observed number of cases. This is the volume under the surface defined
by the intensity in region A. Once we have observed the (homogeneous) point
process, we have the locations of a set of n points. So, an unbiased estimator
of the intensity is n/|A|, where |A| is the area of region A. This ensures that
the expected number of points is, in fact, the observed number of points.

For IPP, the estimation of the intensity can be done in different ways. It
can be done non-parametrically by means of kernel smoothing or paramet-
rically by proposing a specific function for the intensity whose parameters
are estimated by maximising the likelihood of the point process. If we have
observed n points {x;} ;, the form of a kernel smoothing estimator is the
following (Diggle, 1985; Berman and Diggle, 1989):

) = g () e (7.1)

where x(u) is a bivariate and symmetrical kernel function. ¢(||z||) is a border
correction to compensate for the missing observations that occur when x
is close to the border of the region A. Bandwidth h measures the level of
smoothing. Small values will produce very peaky estimates, whilst large values
will produce very smooth functions.
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Silverman (1986) gives a detailed description of different kernel functions
and their properties. In the examples included in this chapter, we have used
a bivariate Gaussian kernel and the quartic kernel (also known as biweight),
whose expression in two dimensions is

21— ul®)?  ifue(-1,1)
i(u) = { 0 Otherwise

where ||u[|? denotes the squared norm of point u = (u1,u2) equal to
u? +u3. Figure 7.5 shows an example of estimation of the intensity by kernel
smoothing in a one-dimensional setting, but the same ideas are used in a
spatial framework.

12

Intensity

N =10 Bandwidth =0.1

Fig. 7.5 Example of the contribution of the different points to the estimate of the
intensity. Dashed lines represent the kernel around each observation, whilst the solid
line is the estimate of the intensity

Methods for the selection of the bandwidth of kernel smoothers in a general
setting are given by Silverman (1986). In the context of spatial analysis, a
few proposals have been made so far, but it is not clear how to choose an
optimal value for the bandwidth in the general case. It seems reasonable to
use several values depending on the process under consideration, and choose
a value that seems plausible.

Diggle (1985) and Berman and Diggle (1989) propose a criterion based on
minimising the Mean Square Error (MSE) of the kernel smoothing estimator
when the underlying point process in a stationary Cox process (see Diggle,
2003, p. 68, for details). However, it can still be used as a general exploratory
method and a guidance in order to choose the bandwidth. Kelsall and Diggle
(1995a,b, 1998) propose and compare different methods for the selection of
the bandwidth when a case—control point pattern is used. Clark and Lawson
(2004) have compared these and other methods for disease mapping, including
some methods for the automatic selection of the bandwidth.

We have applied the approach proposed by Berman and Diggle (1989),
which is implemented in functions mse2d (splancs) and bw.diggle (spatstat)
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to the redwood data set. Note that these two functions can provide differ-
ent optimal bandwidths because they rely on kernel2d (which implements a
quartic kernel) and density (which implements a Gaussian kernel), respec-
tively. This is shown in the following example:

> library(splancs)

> mserwq <- mse2d(as.points(coordinates(spred)), as.points(list(x = c(0,
+ 1, 1, 0), y = c(0, 0, 1, 1))), 100, 0.15)

> bwq <- mserwq$h[which.min(mserwq$mse)]

> bwq

[1] 0.039

> mserw <- bw.diggle(as(spred, "ppp"))
> bw <- as.numeric(mserw)
> bw

[1] 0.01977539

Figure 7.6 shows different values of the bandwidth and their associated
values of the MSE. The value that minimises it for the Gaussian kernel is
0.01978, but it should be noted that the curve is very flat around that point,
which means that many other values of the bandwidth are plausible. This is
a common problem in the analysis of real data sets.

Quartic kernel Gaussian kernel
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Fig. 7.6 Values of the mean square error for several values of the bandwidth using
the redwood data set. Thes values that minimise the MSE are 0.039 (quartic kernel)
and 0.0198 (Gaussian kernel) but many other values seem plausible, given the flatness
of the curves

It must be noted that when estimating the intensity by kernel smoothing,
the key choice is not that of the kernel function but the bandwidth. Different
kernels will produce very similar estimates for equivalent bandwidths, but the
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same kernel with different bandwidths will produce dramatically different

results. An example of this fact is shown in Fig.7.7, where four different

bandwidths have been used to estimate the intensity of the redwood data.
Kernel smoothing using a quartic kernel can be performed with function

spkernel2d (in package splancs) as follows:

> library(splancs)

> poly <- as.points(list(x = ¢c(0, 0, 1, 1), y = c(0, 1,

+ 1, 0)))

> sG <- Sobj_SpatialGrid(spred, maxDim = 100)$SG

> grd <- slot(sG, "grid")

> summary (grd)

> kO <- spkernel2d(spred, poly, hO = bw, grd)

>

>

>

>

>

>

k1 <- spkernel2d(spred, poly, hO = 0.05, grd)

k2 <- spkernel2d(spred, poly, hO = 0.1, grd)

k3 <- spkernel2d(spred, poly, hO = 0.15, grd)

df <- data.frame(k0 = kO, k1 = k1, k2 = k2, k3 = k3)
kernels <- SpatialGridDataFrame(grd, data = df)
summary (kernels)

Package spatstat provides similar functions to estimate the intensity by
kernel smoothing using an isotropic Gaussian kernel. We have empirically
adjusted the value of the bandwidth to make the kernel estimates compara-
ble. See Hérdle et al. (2004, Sect.3.4.2) for a full discussion. When calling
density on a ppp object (which in fact calls density.ppp), we have used
the additional arguments dimxy and xy to make sure that the grid used to
compute the estimates is compatible with that stored in kernels. Finally,
the kernel estimate is returned in an im class that is converted into a Spa-
tialGridDataFrame and the values incorporated into kernels.

> cc <- coordinates (kernels)

> xy <- list(x = cc[, 11, y = ccl, 2])

> k4 <- density(as(spred, "ppp"), 0.5 * bw, dimyx = c(100,
+ 100), xy = xy)

> kernels$k4 <- as(k4, "SpatialGridDataFrame")$v

> kb <- density(as(spred, "ppp"), 0.5 * 0.05, dimyx = c(100,
+ 100), xy = xy)

> kernels$k5 <- as(k5, "SpatialGridDataFrame")$v

> k6 <- density(as(spred, "ppp"), 0.5 * 0.1, dimyx = c(100,
+ 100), xy = xy)

> kernels$k6 <- as(k6, "SpatialGridDataFrame")$v

> k7 <- density(as(spred, "ppp"), 0.5 * 0.15, dimyx = c(100,
+ 100), xy = xy)

> kernels$k7 <- as(k7, "SpatialGridDataFrame")$v

> summary (kernels)

7.4.4 Likelthood of an Inhomogeneous Poisson Process

The previous procedure to estimate the intensity is essentially non-parametric.
Alternatively, a specific parametric or semi-parametric form for the intensity
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G bw=0.075

Fig. 7.7 Different estimates of the intensity of the redwood data set using Quartic
(Q) and Gaussian (G) kernels and different values of the bandwidth

may be of interest (e.g. to include available covariates). Standard statisti-
cal techniques, such as the maximisation of the likelihood, can be used to
estimate the parameters that appear in the expression of the intensity.

The expression of the likelihood can be difficult to work out for many point
processes. However, in the case of the IPP (and, hence, the HPP) it has a
very simple expression. The log-likelihood of a realisation of n independent
events of an IPP with intensity A(x) is (Diggle, 2003, p. 104)

A) = Zlog M) — /A Az) d,

where [, A(z)dz is the expected number of cases of the IPP with intensity
A(z) in reglon A.

When the intensity of the point process is estimated parametrically, the
likelihood can be maximised to obtain the estimates of the parameters of the
model. Diggle (2003, p. 104) suggests a log-linear model

log A(z Zﬁjzj

using covariates zj(z), j = 1,...,p measured at a location x. These models
can be fit using standard numerical integration techniques.

The following example defines the log-intensity (loglambda) at a given
point & = (x1, z2) using the parametric specification given by
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log AN(z) = a + B1a1 + Paws + B3] + Baws + Bswy * T2, (7.2)

This expression is in turn used to construct the likelihood of an IPP (L).
Function adaptIntegrate (from the cubature package) is used to compute
numerically the integral that appears in the expression of the likelihood.

> loglambda <- function(x, alpha, beta) {

+ 1 <- alpha + sum(beta * c(x, x * x, prod(x)))

+ return(1)

+ }

> L <- function(alphabeta, x) {

+ 1 <- apply(x, 1, loglambda, alpha = alphabetal1],

+ beta = alphabeta[-1])

+ 1 <- sum(1)

+ intl <- adaptIntegrate(lowerLimit = c(0, 0), upperLimit = c(1,

+ 1), fDim = 1, tol = 1e-08, f = function(x, alpha = alphabetal[1],
+ beta = alphabetal[-1]) {

+ exp(loglambda(x, alpha, beta))

+ »

+ 1 <- 1 - intL$integral

+ return(1)

+

}

The following example uses the locations of maple trees from the Lansing
Woods data set (Gerard, 1969) in order to show how to fit a parametric inten-
sity using (7.2). The parameters are estimated by maximising the likelihood
using function optim.

> library(cubature)
data(lansing)
x <- as.points(lansing[lansing$marks == "maple", ])

vV Vv

> optbeta <- optim(par = c(log(514), 0, 0, 0, 0, 0), fn =L,
control = list(maxit = 1000, fnscale = -1), x = x)

+

The values of the coefficients «, 81, ..., 85 are 5.56, 5.66, —0.963, —5.14,
—1.16, 0.959, for a value of the (maximised) likelihood of 2,778.3. Figure 7.8
shows the location of the maple trees and the estimated intensity according
to parametric model in (7.2). See Diggle (2003, Chap. 7) for a similar analysis
using all the tree species in the Lansing Woods data set.

The same example can be run using function ppm from spatstat as follows
(x and y representing the coordinates of the point pattern):

> lmaple <- lansing[lansing$marks == "maple", ]
> ppm(Q = lmaple, trend = “x +y + I(x"2) + I(y~2) + I(x *
+ y))

Nonstationary multitype Poisson process
Possible marks:
blackoak hickory maple misc redoak whiteoak

Trend formula: "x + y + I(x72) + I(y~2) + I(x * y)
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Fig. 7.8 Location of maple trees from the Lansing data set and their estimated
parametric intensity using model (7.2)

Fitted coefficients for trend formula:

(Intercept) x
3.7310742 5.6400643
I(x * y)
0.6375824
Estimate
(Intercept) 3.7310742
X 5.6400643
y -0.7663636
I(x"2) -5.0115142
I(y~2) -1.1983209
I(x *y) 0.6375824

.2542004
.7990009

.7011631
.6428053

0
0
0.
0
0
0.6989167

-0.7663636

S.E. Ztest
na
*kk

6990514
*okok

I(x"2)

-5.0115142

CI95.10
3.2328505
4.0740514

-2.1364792
-6.3857686
-2.4581962
-0.7322691

I(y~2)

-1.1983209

CI95.hi
4.22929795
7.20607727
0.60375200

-3.63725974

0.06155433
2.00743391

As the authors mention in the manual page, ppm can be compared to glm
because it can be used to fit a specific type of point process model to a
particular point pattern. In this case, the family argument used in glm to
define the model is substituted by interaction, which defines the point
process to be fit. By default, a Poisson point process is used, but many other
point processes can be fitted (see manual page for details).

7.4.5 Second-Order Properties

Second-order properties measure the strength and type of the interactions
between events of the point process. Hence, they are particularly interesting
if we are keen on studying clustering or competition between events.
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Informally, the second-order intensity of two points x and y reflects the
probability of any pair of events occurring in the vicinities of x and y, respec-
tively. Diggle (2003, p. 43) and Moller and Waagepetersen (2003, Chap. 4)
give a more formal description of the second-order intensity. Schabenberger
and Gotway (2005, pp. 99-103) and Waller and Gotway (2004, pp. 137-147)
also discuss second-order properties and the role of the K-function.

An alternative way of measuring second-order properties when the spatial
process is HPP is by means of the K-function (Ripley, 1976, 1977). The
K-function measures the number of events found up to a given distance of
any particular event and it is defined as

K(s) = A" E[No(s)],

where E[.] denotes the expectation and Ny(s) represents the number of fur-
ther events up to a distance s around an arbitrary event. To compute this
function, Ripley (1976) also proposed an unbiased estimate equal to

K(s) = (n(n —1)) A Y Y wi{ay : dlwsa)) < s}, (7.3)

i=1 j#i

where w;; are weights equal to the proportion of the area inside the region
A of the circle centred at z; and radius d(z;,z;), the distance between x;
and ;.

The value of the K-function for an HPP is K(s) = mws®. By comparing
the estimated value K (8) to the theoretical value we can assess what kind of
interaction exists. Usually, we assume that these interactions occur at small
scales, and so will be interested in relatively small values of s. Values of K (s)
higher than 7s? are characteristic of clustered processes, whilst values smaller
than that are found when there exists competition between events (regular
pattern).

> set.seed(30)

> Kenvjap <- envelope(as(spjpinesl, "ppp"), fun = Kest,

+ r = r, nrank = 2, nsim = 99)

> Kenvred <- envelope(as(spred, "ppp"), fun = Kest, r = r,

+ nrank = 2, nsim = 99)

> Kenvcells <- envelope(as(spcells, "ppp"), fun = Kest,

+ r = r, nrank = 2, nsim = 99)

> Kresults <- rbind(Kenvjap, Kenvred, Kenvcells)

> Kresults <- cbind(Kresults, y = rep(c("JAPANESE", "REDWOOD",
+ "CELLS"), each = length(r)))

Figure 7.9 shows the estimated K-function minus the theoretical value
under CSR of the three point patterns that we have considered before. Note
that the biological interpretations must be made cautiously because the un-
derlying mechanisms are quite different and the scale of the interactions (if
any) will probably be different for each point pattern. This is reflected in two
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Fig. 7.9 Envelopes and observed values of Ripley’s K-function for three point pat-
terns

ways: the width of the envelopes, which reflects the variability of the process
under the null hypothesis of CSR, and the scale of the interaction. This seems
to exist only for the cells, which follow a regular pattern, and the redwood
seeds, which seem to be clustered. The Japanese trees point pattern is com-
patible with CSR because the estimated K-function is contained within the
envelopes.

7.4.5.1 Inhomogeneous K-Function

Baddeley et al. (2000) propose a version of the K-function for non-homogeneous
point processes, in particular, for the class of point processes which are second-
order reweighted-stationary, which includes IPPs. This means that the second-
order intensity of two points, divided by their respective intensities, is
stationary. The inhomogeneous K-function is used in Sect. 7.5.5 in the anal-
ysis of case—control point patterns.

7.5 Some Applications in Spatial Epidemiology

In this section we focus on different applications of the analysis of point
patterns in Spatial Epidemiology. Gatrell et al. (1996) and Diggle (2003)
describe most of the methods contained here, but a comprehensive description
of spatial methods for the analysis of epidemiological data can be found in
Elliott et al. (2000) and Waller and Gotway (2004). Furthermore, Chap. 10
describes the analysis of epidemiological data when they are aggregated.
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The distribution of the cases of a certain disease can be regarded as the
realisation of a point process, which reflects the underlying distribution of
the population (which usually is not homogeneous) plus any other risk factors
related to the disease and that are likely to depend on the subjects. Hence, we
need to have accurate records of the locations of the disease cases, which can
also include additional information on the individuals such as age, gender,
and others.

In a spatial setting, the primary interest is on the spatial distribution of
the cases, but any underlying risk factor that affects this spatial distribution
should be taken into account. It is clear that looking solely at the spatial
distribution of the cases in order to detect areas of high incidence is use-
less because the distribution of the cases will reflect that of the population.
To overcome this problem, it would be necessary to have an estimate of the
spatial distribution of the population so that it can be compared to that of
the cases. For this reason, a set of controls can be randomly selected from
the population at risk so that its spatial variation can be estimated Prince
et al. (see, e.g. 2001).

Different authors have approached this problem in different ways. Diggle
and Chetwynd (1991), for example compute the difference of the homoge-
neous K-function of cases and controls. Kelsall and Diggle (1995a,b) use
non-parametric estimates of the distribution of the ratio between the inten-
sities of cases and controls (i.e. the relative risk). Kelsall and Diggle (1998)
propose a similar model and the use of binary regression and additive mod-
els to account for covariates and a smoothing term to model the residual
spatial variation. More recently, Diggle et al. (2007) use the inhomogeneous
K-function to compare the spatial distribution of cases and controls after
accounting for the effect of relevant covariates.

Many of these methods are also covered, including new examples, and dis-
cussed in Schabenberger and Gotway (2005, pp. 103-122), Waller and Gotway
(2004, Chap. 6), O’Sullivan and Unwin (2010, see the discussion in Chap. 6),
Mlian et al. (2008) and Cressie and Wikle (2011, Sect. 4.3). Several chapters
in Gelfand et al. (2010) also the analysis of case—control and marked point
patterns.

7.5.1 Case—Control Studies

As we need to estimate the spatial distribution of the population, a number
of individuals can be taken at random to make a set of controls. Controls are
often selected using the population register or, if it is not available, the events
of another non-related disease (Diggle, 1990). Furthermore, some strategies,
such as stratification and matching (Jarner et al., 2002), can be done in order
to account for other sources of confounding, such as age and sex. As discussed
by Diggle (2000) when matching is used in the selection of the controls, the



194 7 Spatial Point Pattern Analysis

hypothesis of random selection from the population is violated and specific
methods to handle this are required (Diggle et al., 2000; Jarner et al., 2002).

In general, we have a set of n; cases and ng controls. Conditioning on
the number of cases and controls, we can assume that they are realisations
of two IPP with intensities A;(x) and Ag(x), respectively. In this setting,
assuming that the distribution of cases and controls is the same means that
the intensities Aj(z) and Ao(z) are equal up to a proportionality constant,
which is equal to the ratio between n1 and no: Ai(z) = 7 Ao(2). Note that
the ratio between cases and controls is determined only by the study design.

7.5.1.1 Spatial Variation of the Relative Risk

Kelsall and Diggle (1995a,b) consider the estimator of the disease risk given by
the ratio between the intensity of the cases and controls p(x) = A1 (x)/Ao(x)
in order to assess the variation of the risk. Under the null hypothesis of equal
spatial distribution, the ratio is a constant pg = n1/no.

Alternatively, a risk estimate r(z) can be estimated by working with the
logarithm of the ratio of the densities of cases and controls:

r(z) =log(f(x)/g(x)), (7.4)

f(x) = M(2)/ [y Mi(z)de and g(x) = Ao(x)/ [, Ao(x) dz, respectively. In
this case, the null hypothesm of equal spatial distributions becomes r(x) = 0.
The advantage of this approach is that 0 is the reference value for equal spa-
tial distribution without regarding the number of cases and controls. Unfor-
tunately, this presents several computational problems because the intensity
of the controls may be zero at some points, as addressed by, for example,
Waller and Gotway (2004, pp. 165-166).

Kelsall and Diggle (1995a) propose the use of a kernel smoothing to es-
timate each intensity and evaluate different alternatives to estimate the op-
timum bandwidth for each kernel smoothing. They conclude that the best
option is to select the bandwidth by cross-validation and use the same band-
width in both cases.

They choose the bandwidth that minimises the following criterion:

CV(h) = / p(z)? de —2n] Zr (z:)/ f ()

ni+no ) )
gt Y0 @)y (),
1=ni+1
where the superscript —i means that the function is computed by removing
the ith point.
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As discussed in Diggle et al. (2007), these automatic methods should be
used as a guidance when estimating the bandwidth. For this reason, we have
preferred to set the bandwidth manually to a value of 0.06, which provides a
reasonable degree of smoothing. In the following example, we have also rela-
belled the point pattern marks so that the first point type is set to ‘control’.
We will need this later when using function relrisk to compute the binary
regression estimator.

> bwasthma <- 0.06

> pppasthma <- as(spasthma, "ppp")

> pppasthma$window <- as(spbdry, "owin")

> marks (pppasthma) <- relevel (pppasthma$marks$Asthma, "control")

The risk ratio can be computed easily by estimating the intensity of cases
and controls first, and then taking the ratio (as shown below) after using the
spkernel2d function from splancs or density from spatstat.

First of all, the point locations are divided between cases and controls and
the intensities of each subset calculated for grid cells lying within the study
area, using the chosen bandwidth. The splancs package uses a simple form of
single polygon boundary, while spatstat can use multiple separate polygons
(SpatialPolygons objects can be coerced to suitable owin objects). In the
following lines we show how to compute the intensity of cases and controls
and then the relative risk using density.

> cases <- unmark(subset (pppasthma, marks(pppasthma) ==

+ "case"))

> ncases <- npoints(cases)

> controls <- unmark(subset(pppasthma, marks(pppasthma) ==
+ "control"))

> ncontrols <- npoints(controls)

> kcases <- density(cases, bwasthma)

> kcontrols <- density(controls, bwasthma)

The results are in an im object (a Pixel Image Object), which is a square
grid with missing values in the points outside the study area. We can first co-
erce this object to a SpatialGridDataFrame object to hold them and coerce
to a SpatialPixelsDataFrame to drop the missing cells.

> spkratioO <- as(kcases, "SpatialGridDataFrame")

> names (spkratio0) <- "kcases"

> spkratioO$kcontrols <- as(kcontrols, "SpatialGridDataFrame")$v

> spkratio <- as(spkratioO, "SpatialPixelsDataFrame")

> spkratio$kratio <- spkratio$kcases/spkratio$kcontrols

> spkratio$logratio <- log(spkratio$kratio) - log(ncases/ncontrols)

To assess departure from the null hypothesis, they propose the following
test statistic:

T= /A(p(:v) — po)? da.
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This integral can be estimated up to a proportionality constant by computing
p(x) on a regular grid of points {s;,i = 1,...,p} and computing the sum of
the values {(p(si) — po)?,i=1,...,p}. Hence, an estimate of T is given by

T =le| Y (p(si) = po)*.

=1

where |c| is the area of the cells of the grid, po is n1/no, and p(z) the estimate
of the risk ratio.

Note that the former test is to assess whether there is constant risk all over
the study region. However, risk is likely to vary spatially and another appro-
priate test can be done by substituting pg for p(x) (Kelsall and Diggle, 1995a).
Now we are testing for significance of risk given that we assume that its vari-
ation is not homogeneous (i.e. equal to p(z)) and the test statistic is

Significance of the observed value of the test statistic can be computed by
means of a Monte Carlo test Kelsall and Diggle (1995b). In this test, we com-
pute k values of the test statistic T by re-labelling cases and controls (keeping
ny and ng fixed) and calculating a new risk ratio p;(x) ¢ = 1,...,n for each
new set of cases and controls. This will provide a series of values T, ..., T*
under the null hypothesis. If we call T the value of T for the observed data
set, the significance (p-value) can be computed by taking (t41)/(k+1), where
t is the number of values of T%, i = 1,...,n greater than T°.

The Monte Carlo test is based on the fact that cases and controls are
equally distributed under the null hypothesis. In that case, if we change the
label of a case to be a control (or vice versa), the new set of cases (or controls)
still have the same spatial distribution and will have the same risk function
p(x). If that is not the case, then the re-labelling of cases and controls will
produce different risk functions.

We will use the previous SpatialPixelsDataFrame, which only contain
points in the study area, to set up objects to hold the results for the re-
labelled cases and controls:

> niter <- 99

> ratio <- rep(NA, niter)

> pvaluemap <- rep(0, nrow(spkratio))

> rlabelratio <- matrix(NA, nrow = niter, ncol = nrow(spkratio))

The probability map is calculated by repeating the re-labelling process
niter times, and tallying the number of times that the observed kernel den-
sity ratio is less than the re-labelled ratios. In the loop, the first commands
carry out the re-labelling from the full set of points, and the remainder cal-
culate the ratio and store the results:
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> set.seed(1)
> for (i in 1:niter) {

+ pppasthma0 <- rlabel (pppasthma)

+ casesrel <- unmark(subset(pppasthmaO, marks(pppasthma0) ==

+ "case"))

+ controlsrel <- unmark(subset(pppasthma0O, marks(pppasthma0) ==
+ "control"))

+ kcasesrel <- density(casesrel, bwasthma)

+ kcontrolsrel <- density(controlsrel, bwasthma)

+ kratiorel <- eval.im(kcasesrel/kcontrolsrel)

+ rlabelratio[i, ] <- as(as(kratiorel, "SpatialGridDataFrame"),
+ "SpatialPixelsDataFrame")$v

+ pvaluemap <- pvaluemap + (spkratio$kratio < rlabelratioli,

+ D

+ }

Figure 7.10 shows the kernel ratio of cases and controls, using a bandwidth
of 0.06, as discussed before.

cellsize <- kcontrols$xstep * kcontrols$ystep
ratiorho <- cellsize * sum((spkratio$kratio - ncases/ncontrols) 2)
ratio <- cellsize * apply(rlabelratio, 1, function(X,
rho0) {
sum((X - rho0)"2)
}, rho0 = ncases/ncontrols)
pvaluerho <- (sum(ratio > ratiorho) + 1)/(niter + 1)

vV + + + Vv VvV

The results for the test with null hypothesis p = jg turned out to be
non-significant (p-value of 0.61), which means that the observed risk ratio is
consistent with a constant risk ratio. In principle, this agrees with the fact
that Diggle and Rowlingson (1994) did not find a significant association with
distance from main roads or two of the pollution sources and only a possible
association with the remaining site, which should be further investigated.
However, they found some relationship with other risk factors, but these were
not of a spatial nature and, hence, this particular test is unable to detect it.

Had the p-value of the test been significant, 90 % point confidence sur-
faces could be computed in a similar way to the envelopes shown before,
but considering the different values of the estimates of p(z) under random
labelling and computing the p-value at each point. The procedure computes,
for each point z; in the grid, the proportion of values p;(z;) that are lower
than p(z;), where the p;(z;),7 = 1,..., R are the estimated ratios obtained
by re-labelling cases and controls. Finally, the 0.05 and 0.95 contours of the
p-value surface can be displayed on the plot of p(z) to highlight areas of
significant low and high risk, respectively. This is shown in Fig.7.10.

The contour lines at a given value can be obtained using function con-
tourLines, which takes an image object. This will generate contour lines
that can be converted to SpatialLinesDataFrame objects so that they can
be added to a plot as a layout.
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Fig. 7.10 Kernel ratio of the intensity of cases and controls. The continuous and
dashed lines show the surfaces associated with 0.95 and 0.05 p-values, respectively,
grey crosses mark the pollution sources. The value of pp which marks a flat constant
risk is 0.2

spkratio$pvaluemap <- (pvaluemap + 1)/(niter + 1)
imgpvalue <- as.image.SpatialGridDataFrame (spkratio["pvaluemap"])
clpvalue <- contourLines (imgpvalue, levels = c(0, 0.05,
0.95, 1))
cl <- ContourLines2SLDF(clpvalue)

vV + Vv v Vv

7.5.2 Binary Regression Estimator

Kelsall and Diggle (1998) propose a binary regression estimator to estimate
the probability of being a case at a given location, which can be easily ex-
tended to allow for the incorporation of covariates. In principle, the probabil-
ities can be estimated by assuming that we have a variable Y;, which labels
cases (y; = 1) and controls (y; = 0) in a set of n = ny + na events. Condition-
ing on the point locations, Y; is a realisation of a Bernoulli variable Y; with
probability

)\1((&')

PO = 11X =) = ple) = s 3wy
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In practise, the following Nadaraya—Watson kernel estimator can be used:

S (e — )/
@) = S e (G —z)/h)

(7.5)

where kp,(u) is a kernel function. Note that p(x) is related to the log-ratio
relative risk r(x) as follows:

logit(p(z)) = log (16(—;3@> = log <iggg) = r(z) + log(n1 /ng).

Ppr(x) can be estimated as

A (z
Ph (:E) = #
AL(x) 4+ Ao(x)
To estimate the bandwidth that appears in this new estimator, Kelsall and
Diggle (1998) suggest another cross-validation criterion based on the value of
h that minimises

n —1/n
V() = [ ontGea = iy )
i=1

This criterion is available in function bw.relriskin the spatstat package.
> rrbw <- bw.relrisk(pppasthma, hmax = 0.5)

Using the new criterion we obtained a bandwidth of 0.209. However, we
believe that this value would over-smooth the data and we have set it to
0.06, as in the estimation of the relative risk ratio. The estimator for p(x)
can be computed easily, as is shown below. Figure 7.11 shows the resulting
estimate.

> bwasthmap <- 0.06

> rr <- relrisk(pppasthma, bwasthmap)
> spkratio$prob <- as(as(rr, "SpatialGridDataFrame"),
"SpatialPixelsDataFrame")$v

7.5.3 Binary Regression Using Generalised
Additive Models

This formulation allows the inclusion of covariates in the model by means
of standard logistic regression. In addition, the residual spatial variation can
be modelled by including a smooth spatial function. In other words, if u is a
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Fig. 7.11 Binary regression estimator using the probability of being a case at every
grid cell in the study region

vector of covariates observed at location z and g(x) is a smooth function not
dependent on the covariates, the formulation is

logit(p(z)) = u'f + g(x)-

If the covariates are missing, the former expression is just another way of
estimating the probability surface. Kelsall and Diggle (1998) estimate g(x)
using a kernel weighted regression. We have used package mgev (Wood, 2006)
to fit the Generalised Additive Model (GAM) models but, given that this
package lacks the same non-parametric estimator used in Kelsall and Diggle
(1998), we have preferred the use of a penalised spline instead.

The following example shows how to fit a GAM using the distance of the
events to the pollution sources and main roads, and controlling for known
and possible risk factors such as gender, age, previous events of hay fever,
and having at least one smoker in the house. Rows have been filtered so
that only children with a valid value of Gender (1 or 2) are used. We have
included the distance as a proxy of the actual exposure to any risk factor
caused by the pollution sources or the roads. Other models that consider a
special modelling for the distance are considered later.

> spasthma$y <- as.integer(!as.integer (spasthma$Asthma) -
+ 1)
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ccasthma <- coordinates (spasthma)

spasthma$x1 <- ccasthmal[, 1]

spasthma$x2 <- ccasthmal[, 2]

spasthma$distl <- sqrt(spasthma$d2sourcel)

spasthma$dist2 <- sqrt(spasthma$d2source2)

spasthma$dist3 <- sqrt(spasthma$d2source3)

spasthma$droads <- sqrt(spasthma$roaddist2)

spasthma$smoking <- as.factor(as.numeric(spasthma$Nsmokers >
0))

spasthma$Genderf <- as.factor (spasthma$Gender)

spasthma$HayFeverf <- as.factor(spasthma$HayFever)

VV+VVVVVVVYV

library(mgcv)
gasthma <- gam(y ~ 1 + distl + dist2 + dist3 + droads +
Genderf + Age + HayFeverf + smoking + s(x1, x2),
data = spasthma[spasthma$Gender == 1 | spasthma$Gender ==
2, ], family = binomial)

+ 4+ + Vv Vv

> summary (gasthma)

Family: binomial
Link function: logit

Formula:
y ~ 1 + distl + dist2 + dist3 + droads + Genderf + Age + HayFeverf +
smoking + s(x1, x2)

Parametric coefficients:
Estimate Std. Error z value Pr(>|zl|)
(Intercept) -2.0326790 0.9196841 -2.210 0.0271 =*

distl 0.9822130 6.0721457 0.162 0.8715

dist2 -9.5791583 5.7719999 -1.660 0.0970 .

dist3 11.2248253 7.8743652 1.425 0.1540

droads 0.0001479 0.0001717 0.861 0.3890

Genderf2 -0.3476861 0.1562020 -2.226 0.0260 =*

Age -0.0679031 0.0382349 -1.776 0.0757 .
HayFeverfl 1.1881333 0.1875415 6.335 2.37e-10 *x**
smokingl 0.1651213 0.1610364 1.025 0.3052

Signif. codes: 0 “**x' 0.001 “#x' 0.01 “*' 0.05 *.' 0.1 * ' 1

Approximate significance of smooth terms:
edf Ref.df Chi.sq p-value
s(x1,x2) 2.001 2.001 7.002 0.0302 *

Signif. codes: 0 “**x' 0.001 “#x' 0.01 “*' 0.056 *.' 0.1 * ' 1

R-sq.(adj) = 0.0403 Deviance explained = 4.94J
UBRE score = -0.12348 Scale est. =1 n = 1283

The results show that the significant variables are the presence of reported
hay fever (p-value 2.4e —10) and gender (p-value 0.026). The coefficient of
the second pollution source is marginally significant (p-value 0.097). The
smoothed residual term using splines is significant (p-value 0.0302), which
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suggests that there may have been some residual spatial variation unexplained
in the generalised linear model.

7.5.4 Point Source Pollution

In the previous model, we have shown how to consider the exposure to a
number of pollution sources by including the distance as a covariate in the
model. However, this approach does not allow for a more flexible parametric
modelling of the exposure according to the distance to a pollution source.
Diggle (1990) proposed the use of an IPP for the cases in which their intensity
accounts for the distance to the pollution sources. In particular, the intensity
is as follows:

Ai(z) = pAo(z) f(z — 20;0),

p measures the overall number of events per unit area, Ao () is the spatial vari-
ation of the underlying population (independent of the effect of the source),
and f(x — x;0) is a function of the distance from point = to the location of
the source zg and has parameters 6. Diggle (1990) uses a decaying function
with distance

fla = w030, B) = 1+ a exp(—Bllz — a0l ).

Parameters p, «, and 8 of A\;(x) can be estimated by maximising the likeli-
hood of the IPP, assuming that A\ (z) is estimated by kernel smoothing taking
a certain value hg of the bandwidth. That is, the value of hq is not obtained
by the maximisation procedure, but choosing a reasonable value for hy can
be difficult and it can have an important impact on the results.

A slightly different approach that does not require the choice of a band-
width is considered in Diggle and Rowlingson (1994). It is based on the previ-
ous scenario, but conditioning on the location of cases and controls to model
the probability of being a case at location z:

o) M@ pfla—mia.8)
M@ + (@) T+ pf (@ — o B)

As in the previous scenario, the remaining parameters of the model can be
estimated by maximising the log-likelihood:

L(p,0) = Zlog(p(xi)) + Z log(1 — p(z;)).
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This model can be fitted using function tribble from package splancs.
Given that Ao(z) vanishes we only need to pass the distances to the source
and the labels of cases and controls.

To compare models that may include different sets of pollution sources
or covariates, Diggle and Rowlingson (1994) compare the difference of the
log-likelihoods by means of a chi-square test. The following example shows
the results for the exposure model with distance to source two and another
model with only the covariate hay fever.

> D2_mat <- as.matrix(spasthma$dist2)

> RHO <- ncases/ncontrols

> expsource2 <- tribble(ccflag = spasthma$y, vars = D2_mat,
+ rho = RHO, alphas = 1, betas = 1)

> print(expsource2)

Call:

tribble(ccflag = spasthma$y, vars = D2_mat, alphas = 1, betas = 1,
rho = RHO)

Kcode = 2

Distance decay parameters:
Alpha Beta
[1,] 1.305824 25.14672

rho parameter : 0.163395847627903

log-likelihood : -580.495955916672
null log-likelihood : -581.406203518987

D = 2(L-Lo) : 1.82049520462942
> Hay_mat <- as.matrix(spasthma$HayFever)
> exphay <- tribble(ccflag = spasthma$y, rho = RHO, covars = Hay_mat,
+ thetas = 1)

> print (exphay)

Call:
tribble(ccflag = spasthma$y, rho = RHO, covars = Hay_mat, thetas = 1)
Kcode = 2

Covariate parameters:
[1] 1.103344

rho parameter : 0.163182953009354

log-likelihood : -564.368250327801
null log-likelihood : -581.406203518987

D = 2(L-Lo) : 34.0759063823707
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As the output shows, the log-likelihood for the model with exposure to
source 2 is —580.5, whilst for the model with the effect of hay fever is
only —564.4. This means that there is a significant difference between the
two models and that the model that accounts for the effect of hay fever is
preferable. Even though the second source has a significant impact on the
increase of the cases of asthma, its effect is not as important as the effect of
having suffered from hay fever. However, another model could be proposed
to account for both effects at the same time.

> expsource2hay <- tribble(ccflag = spasthma$y, vars = D2_mat,
+ rho = RHO, alphas = 1, betas = 1, covars = Hay_mat,
+ thetas = 1)

This new model (output not shown) has a log-likelihood of —563, with
two more parameters than the model with hay fever. Hence, the presence of
the second source has a small impact on the increase of cases of asthma after
adjusting for the effect of hay fever, which can be regarded as the main factor
related to asthma, and the model with hay fever only should be preferred.
The reader is referred to Diggle and Rowlingson (1994) and Diggle (2003, p.
137) for more details on how the models can be compared and results for
other models.

These types of models are extended by Diggle et al. (1997), who consider
further options for the choice of the function f(x — g, o, 8) to accommodate
different spatial variants of the risk around the source.

In our experience, these models can be very sensitive to the initial values
for certain data sets, especially if they are sparse. Hence, it is advised to
fit the model using different values for the initial values to ensure that the
algorithm is not trapped in a local maximum of the likelihood.

7.5.4.1 Assessment of General Spatial Clustering

As discussed by Diggle (2000), it is important to distinguish between spatial
variation of the risk and clustering. Spatial variation occurs when the risk
is not homogeneous in the study region (i.e. all individuals do not have the
same risk) but cases appear independently of each other according to this
risk surface, whilst clustering occurs when the occurrence of cases is not at
random and the presence of a case increases the probability of other cases
appearing nearby.

The former methods allow us to inspect a raised incidence in the num-
ber of cases around certain pre-specified sources. However, no such source is
identified a priori, and a different type of test is required to assess clustering
in the cases.

Diggle and Chetwynd (1991) propose a test based on the homogeneous K-
function to assess clustering of the cases as compared to the controls. The null
hypothesis is as before, that is cases and controls are two IPP that have the
same intensities up to a proportionality constant. Hence, they will produce



7.5 Some Applications in Spatial Epidemiology 205

the same K-functions. Note that the inverse is not always true, that is two
point processes with the same homogeneous K-function can be completely
different (Baddeley and Silverman, 1984). Diggle and Chetwynd (1991) take
the difference of the two K-functions to evaluate whether the cases tend
to cluster after considering the inhomogeneous distribution of the popula-
tion: D(s) = Ki(s) — Ko(s), where K;(s) and Ky(s) are the homogeneous
K-functions of cases and controls, respectively.
The test statistic is

D(s)

P= | D

ds,

where var[D(s)] is the variance of D(s) under the null hypothesis. Diggle and
Chetwynd (1991) compute the value of this variance under random labelling
of cases and controls so that the significance of the test statistic can be
assessed. Note that under the null hypothesis the expected value of the test
statistic D is zero. Finally, the integral is approximated in practice by a
discrete sum at a set of finite distances, as the T statistic was computed
before.

Significant departure from 0 means that there is a difference in the distri-
bution of cases and controls, with clustering occurring at the range of those
distances for which D(s) > 0. Furthermore, pointwise envelopes can be pro-
vided for the test statistic by the same Monte Carlo test so that the degree
of clustering can be assessed. Function Kenv. label (in splancs) also provides
envelopes for the difference of the K-functions but it does not carry out any
test of significance.

A similar test can be implemented using envelope in spatstat. First of all,
we will define function Kdif to compute the difference of the K-functions.
This function will take the point pattern, a vector of distance r at which
D(s) is computed and the desired edge correction to be used when calling to
Kest.

> Kdif <- function(Xppp, r, cr = "border") {

+ k1 <- Kest (Xppp [marks (Xppp) == "case"], r = r, correction = cr)
+ k2 <- Kest (Xppp[marks (Xppp) == "control"], r = r,

+ correction = cr)

+ res <- data.frame(r = r, D = ki[[cr]] - k2[[cr]])

+ return(fv(res, valu = "D", fname = "D"))

+}

In the call to envelope we will also keep the simulated values in order to
compute the variance of D(s) used in the test statistic.

> r <- seq(0, 0.15, by = 0.01)

> envKdif <- envelope(pppasthma, Kdif, r = r, nsim = 99,

+ cr = "iso", nrank = 2, savefuns = TRUE, simulate =
expression(rlabel (pppasthma)))
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> khcases <- Kest(cases, r = r, correction = "isotropic")
> khcontrols <- Kest(controls, r = r, correction = "isotropic")

Using the saved values ew are able to estimate the variance of D(s), the
test statistic for the observed data set and the tests statistics for the relabelled
data sets to conduct the Monte Carlo test.

> simfuns <- as.data.frame(attr(envKdif, "simfuns"))[,

+ -1]

> khcovdiag <- apply(simfuns, 1, var)

> TO <- sum(((khcases$iso - khcontrols$iso)/sqrt (khcovdiag)) [-1])
> T <- apply(simfuns, 2, function(X) {

+ sum( (X/sqrt (khcovdiag)) [-1])

+ 31

> pvalue <- (sum(T > TO) + 1)/(niter + 1)

envKdif
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Fig. 7.12 Actual value of D(s) with approximate 95 % confidence intervals (dashed
black lines) and 95 % envelopes (gray area)

The p-value for this data set is 0.31, meaning that there is no significant
difference between the distribution of cases and controls. The outcome is
consistent with the fact that the observed K-function is contained by the
simulation envelopes and approximated 95% confidence intervals, as shown
in Fig. 7.12.

7.5.5 Accounting for Confounding and Covariates

Diggle et al. (2007) propose a similar way of assessing clustering by means of
the inhomogeneous K-function K x(s) (Baddeley et al., 2000). For an IPP
with intensity A(x), it can be estimated as



7.5 Some Applications in Spatial Epidemiology 207

Krals) =147 33wy [{z; :)\c(l(xi,xj) <s}

P i) A(x;)

Note that this estimator is a generalisation of the estimator of the homoge-
neous K-function from expression (7.3) and that in fact reduces to it when
instead of an IPP we have an HPP (the intensity becomes A(z) = A). Simi-
larly, the value of K »(s) for an IPP with intensity A(s) is 7s%.

In practise the intensity A(z) needs to be estimated either parametrically

or non-parametrically, so that the estimator that we use is

~ _ n 71|{JI‘ d(xux)gs}'
K, 5(s) = 4] 15 E W '
A Py EANED)

Values of K 7.4(s) higher than 7s? will mean that the point pattern shows
more aggregation than that shown by A(z) and values lower than 7s? reflect
more relative homogeneity.

To be able to account for confounding and risk factors, Diggle et al. (2007)
propose the use of a semi-parametric estimator of the intensity in a case—
control setting. The basic assumption is that controls are drawn from an
IPP with spatially varying intensity Aog(z). The cases are assumed to appear
as a result of the inhomogeneous distribution of the population, measured
by Ao(z), plus other risk factors, measured by a set of spatially referenced
covariates z(x). Hence, the intensity of the cases is modelled as

M(z) = exp{a+ Bz(z) o (2),

where « and 3 are the intercept and covariate coefficients of the model,
respectively. When there are no covariates, the intensity of the cases
reduces to

ny

/\1({E) = —)\0(.%)

no
Note that it is possible to use any generic non-negative function f(z(x);0) to
account for other types of effects

Ai(z) = No(2) f(2(x);0).

This way it is possible to model non-linear and additive effects.

To estimate the parameters that appear in the intensity of the cases, we
can use the same working variables Y; that we have used before (see the binary
regression estimator in Sect. 7.5.2), with values 1 for cases and 0 for controls.
Conditioning on the locations of cases and controls, Y; is a realisation of a
Bernoulli process with probability
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M(z)  exp{la+Bz(z)}

P = oo 2(2) =p@) = S0 = T+ expla + B2@)

(7.6)

Hence, conditioning on the locations of cases and controls, the problem
is reformulated as a logistic regression and « and S can be estimated using
function glm.

Baddeley et al. (2000) estimate the intensity non-parametrically and
use the same data to estimate both the intensity and the inhomogeneous
K-function, but Diggle et al. (2007) show that this can give poor performance
in detecting clustering. This problem arises from the difficulty of disentan-
gling inhomogeneous spatial variation of process from clustering of the events
(Cox, 1955). Another problem that appears in practise is that the intensities
involved must be bounded away from zero. If kernel smoothing is used, a
good alternative to the quartic kernel is a Gaussian bivariate kernel.

The following piece of code shows how to estimate the inhomogeneous
K-function both without covariates and accounting for hay fever.

> glmasthma <- glm(y ~ HayFeverf, data = spasthma, family = "binomial")
> prob <- fitted(glmasthma)

> weights <- exp(glmasthma$linear.predictors)

> lambda0 <- interp.im(kcontrols, coords(cases)[, 1], coords(cases)[,

+ 21)

> lambdal <- weights[marks (pppasthma) == "case"] * lambdaO

> ratiocc <- ncases/ncontrols

> kihnocov <- Kinhom(cases, ratiocc * lambdaO, r = r)

> kih <- Kinhom(cases, lambdal, r = r)

To assess for any residual clustering left after adjusting for covariates,
Diggle et al. (2007) suggest the following test statistic:

p— [ K K, () ~ Bl |
/ V&I‘K])\ ))1/2 %

E[s] is the expectation of K I ;\1(5) under the null hypothesis. In principle,
it should be 7s?, but when kernel estimators are used in the computation
of the intensity, the estimate of K (s) may be biased. E[s] can be com-
puted as the average of all the estimates K I3 (s), which have been obtained
during the Monte Carlo simulations (as explained below). var(Kj x(s)) can
be computed in a similar way.

The Monte Carlo test proposed by Diggle et al. (2007) is similar to the one
that we used in the homogeneous case (see Sect. 7.5.4.1), with the difference
that the re-labelling must be done taking into account the effects of the
covariates. That is, when we relabel cases and controls, the probability of
being a case will not be the same for all points but it will depend on the
values of z(x). In particular, these probabilities are given by (7.6). The values
of the covariates are fixed to the values obtained by fitting the model with
the observed data set (i.e. they are not re-estimated when the points are re-
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labelled) because we are only interested in testing for the spatial variation
and not that related to the estimation of the coefficients of the covariates.

> rlabelp <- function(Xppp, ncases, prob) {

+ idxsel <- sample(1:npoints(Xppp), ncases, prob = prob)

+ marks (Xppp) <- "control"

+ marks (Xppp) [idxsel] <- "case"

+ return (Xppp)

+ }

> KIlambda <- function(Xppp, r, cr = "iso", weights, sigma) {

+ idxrel <- marks(Xppp) == "case"

+ casesrel <- unmark (Xpppl[idxrel])

+ controlsrel <- unmark(Xppp[!idxrell)

+ lambdaOrel <- interp.im(density(controlsrel, sigma),

+ coords(casesrel) [, 1], coords(casesrel)[, 2])

+ lambdalrel <- weights[idxrel] * lambdaOrel

+ KI <- Kinhom(casesrel, lambdalrel, r = r, correction = cr)
+ res <- data.frame(r = r, KI = KI[[cr]l])

+ return(fv(res, valu = "KI", fname = "K_[I,lambda]"))

+ }

> set.seed(4567)

> envKInocov <- envelope(pppasthma, KIlambda, r = r, cr = "iso",
+ weights = weights, sigma = bwasthma, nsim = 99, nrank = 2,
+ savefuns = TRUE, simulate = expression(rlabelp(pppasthma,
+ ncases = ncases, prob = rep(ratiocc, npoints(pppasthma)))))
> envKIcov <- envelope(pppasthma, KIlambda, r = r, cr = "iso",
+ weights = weights, sigma = bwasthma, nsim = 99, nrank = 2,
+ savefuns = TRUE, simulate = expression(rlabelp(pppasthma,
+ ncases = ncases, prob = prob)))

> kinhomrelnocov <- as.data.frame(attr(envKInocov, "simfuns"))[,
+ -1]

> kinhomrel <- as.data.frame(attr(envKIcov, "simfuns"))[,

+ -1]

kinhsdnocov <- apply(kinhomrelnocov, 1, sd)
DOnocov <- sum(((envKInocov$obs - envKInocov$mmean)/kinhsdnocov)[-1])
Dnocov <- apply(kinhomrelnocov, 2, function(X) {
sum(((X - envKInocov$mmean)/kinhsdnocov) [-1])
3

pvaluenocov <- (sum(Dnocov > DOnocov) + 1)/(niter + 1)

vV + + Vv VvV

kinhsd <- apply(kinhomrel, 1, sd)
DO <- sum(((envKIcov$obs - envKIcov$mmean)/kinhsd) [-1])
D <- apply(kinhomrel, 2, function(X) {
sum(((X - envKIcov$mmean)/kinhsd) [-1])
B
pvalue <- (sum(D > DO) + 1)/(niter + 1)

vV + + Vv Vv Vv

Figure 7.13 shows the estimated values of the inhomogeneous K-function
plus 95% envelopes under the null hypothesis. In both cases there are no
signs of spatial clustering. The p-values are 0.09 (no covariates) and 0.04
(with hay fever). The differences in the p-values are due to the fact that we
are adjusting for hay fever. This is consistent with the plots in Fig.7.13.
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Fig. 7.13 Results of the test based on the inhomogeneous K-function for the asthma
data set. The intensity has been modulated to account for the effect of suffering from
hay fever

7.6 Further Methods for the Analysis
of Point Patterns

In this chapter we have just covered some key examples but the analy-
sis of point patterns with R goes beyond this. Other important problems
that we have not discussed here are the analysis of marked point processes
(Schabenberger and Gotway 2005, pp. 118-122; Diggle 2003, pp. 82-85),
spatio-temporal analysis (see Schabenberger and Gotway 2005, pp. 442-445;
Diggle 2006), and complex model fitting and simulation from different point
processes (as extensively discussed in Moller and Waagepetersen, 2003). Bad-
deley et al. (2005) provide a recent compendium of theoretical problems and
applications of the analysis of point patterns, including a description of pack-
age spatstat. Some of the examples described therein should be reproducible
using the contents of this chapter. Gelfand et al. (2010) devote several chap-
ters to the analysis of spatial point patterns, including model fitting, marked
and spatio-temporal point patterns.

The analysis of spatio-temporal point patterns can be conducted with a
number of packages. Package spacetime provides some basic classes for spatio-
temporal point patterns with some basic subsetting and plotting capabilities
splancs provides functions for spatio-temporal kernel smoothing and the ho-
mogeneous spatio-temporal K-functions. Package stpp includes a number of
functions to simulate an visualize spatio-temporal point patterns (including
the possibility of creating animations) and compute the space-time inhomo-
geneous K-function, which can be used to assess clustering in space and time
(Gabriel and Diggle, 2009). Package lgep focuses on log-Gaussian Cox Pro-
cesses and it implements functions for model fitting and inference for spatial
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and spatio-temporal point processes. Finally, splancs includes data types for
three-dimensional and spatio-temporal point patterns.

The Spatial and Spatio-Temporal Task Views contain a list of other pack-
ages for the analysis and visualisation of point patterns. The reader is referred
there for updated information.



Chapter 8
Interpolation and Geostatistics

8.1 Introduction

Geostatistical data are data that could in principle be measured anywhere,
but that typically come as measurements at a limited number of observation
locations: think of gold grades in an ore body or particulate matter in air
samples. The pattern of observation locations is usually not of primary in-
terest, as it often results from considerations ranging from economical and
physical constraints to being ‘representative’ or random sampling varieties.
The interest is usually in inference of aspects of the variable that have not
been measured such as maps of the estimated values, exceedance probabili-
ties or estimates of aggregates over given regions, or inference of the process
that generated the data. Other problems include monitoring network op-
timisation: where should new observations be located or which observation
locations should be removed such that the operational value of the monitoring
network is maximised.
Typical spatial problems where geostatistics are used are the following:

e The estimation of ore grades over mineable units, based on drill hole data

e Interpolation of environmental variables from sample or monitoring net-
work data (e.g. air quality, soil pollution, ground water head, hydraulic
conductivity)

e Interpolation of physical or chemical variables from sample data

e Estimation of spatial averages from continuous, spatially correlated data

In this chapter we use the Meuse data set used by Burrough and McDon-
nell (1998). The notation we use follows mostly that of Christensen (1991),
as this text most closely links geostatistics to linear model theory. Good texts
on geostatistics are Chilés and Delfiner (2012), Christensen (1991), Cressie
(1993), and Journel and Huijbregts (1978). More applied texts are, for exam-
ple Isaaks and Strivastava (1989), Goovaerts (1997), and Deutsch and Journel
(1992).

R.S. Bivand et al., Applied Spatial Data Analysis with R, Use R! 10, 213
DOI 10.1007/978-1-4614-7618-4_8,
© Springer Science+Business Media New York 2013
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Geostatistics deals with the analysis of random fields Z(s), with Z random
and s the non-random spatial index. Typically, at a limited number of some-
times arbitrarily chosen sample locations, measurements on Z are available,
and prediction (interpolation) of Z is required at non-observed locations sy,
or the mean of Z is required over a specific region By. Geostatistical anal-
ysis involves estimation and modelling of spatial correlation (covariance or
semivariance), and evaluating whether simplifying assumptions such as sta-
tionarity can be justified or need refinement. More advanced topics include
the conditional simulation of Z(s), for example over locations on a grid, and
model-based inference, which propagates uncertainty of correlation parame-
ters through spatial predictions or simulations.

Much of this chapter will deal with package gstat, because it offers the
widest functionality in the geostatistics curriculum for R: it covers variogram
cloud diagnostics, variogram modelling, everything from global simple kriging
to local universal cokriging, multivariate geostatistics, block kriging, indica-
tor and Gaussian conditional simulation, and many combinations. Other R
packages that provide additional geostatistical functionality are mentioned
where relevant, and discussed at the end of this chapter.

8.2 Exploratory Data Analysis

Spatial exploratory data analysis starts with the plotting of maps with a
measured variable. To express the observed value, we can use colour or
symbol size:

library(lattice)

library(sp)

data (meuse)

coordinates (meuse) <- c("x", "y")

spplot (meuse, "zinc", do.log = T, colorkey = TRUE)
bubble (meuse, "zinc", do.log = T, key.space = "bottom")

V V.V VvyVvyVv

to produce plots with information similar to that of Fig. 3.8.

The evident structure here is that zinc concentration is larger close to the
river Meuse banks. In case of an evident spatial trend, such as the relation
between top soil zinc concentration and distance to the river here, we can also
plot maps with fitted values and with residuals (Cleveland, 1993), as shown
in Fig. 8.1, obtained by

xyplot (log(zinc) ~ sqrt(dist), as.data.frame(meuse))

zn.1m <- 1lm(log(zinc) ~ sqrt(dist), meuse)

meuse$fitted.s <- predict(zn.lm, meuse) - mean(predict(zn.lm,
meuse))

meuse$residuals <- residuals(zn.lm)

spplot (meuse, c("fitted.s", "residuals"))

vV V + VvV VvV

where the formula y ~ x indicates dependency of y on x. This figure reveals
that although the trend removes a large part of the variability, the residuals do
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Fig. 8.1 Zinc as a function of distance to river (left), and fitted-residual maps (fit-
ted.s: mean subtracted) for the linear regression model of log zinc and square-root
transformed distance to the river

not appear to behave as spatially unstructured or white noise: residuals with a
similar value occur regularly close to another. More exploratory analysis will
take place when we further analyse these data in the context of geostatistical
models; first we deal with simple, non-geostatistical interpolation approaches.

8.3 Non-geostatistical Interpolation Methods

Usually, interpolation is done on a regular grid. For the Meuse data set,
coordinates of points on a regular grid are already defined in the meuse.grid
data.frame, and are converted into a SpatialPixelsDataFrame by

> data(meuse.grid)
> coordinates (meuse.grid) <- c("x", "y")
> meuse.grid <- as(meuse.grid, "SpatialPixelsDataFrame")

Alternatively, we could interpolate to individual points, sets of irregularly
distributed points, or to averages over square or irregular areas (Sect. 8.5.6).

8.3.1 Inverse Distance Weighted Interpolation

Inverse distance-based weighted interpolation (IDW) computes a weighted
average,

Zso) = o),

0.5

0.0

-0.5
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where weights for observations are computed according to their distance to
the interpolation location,

w(si) = |[si — sol| 7,

with || - || indicating Euclidean distance and p an inverse distance weight-
ing power, defaulting to 2. If sy coincides with an observation location, the
observed value is returned to avoid infinite weights.

The inverse distance power determines the degree to which the nearer
point(s) are preferred over more distant points; for large values IDW con-
verges to the one-nearest-neighbour interpolation. It can be tuned, for ex-
ample using cross validation (Sect.8.7.1). IDW can also be used within local
search neighbourhoods (Sect. 8.5.5).

Because the spatstat package also offers a function called idw, we disam-
biguate the two, should spatstat have been loaded into the session workspace,
by calling the gstat function using the : : operator to choose the desired idw:

> library(gstat)
> idw.out <- gstat::idw(zinc ~ 1, meuse, meuse.grid, idp = 2.5)

[inverse distance weighted interpolation]

> as.data.frame(idw.out) [1:5, ]

X y varl.pred varl.var
1 181180 333740 701.9621 NA
2 181140 333700 799.9616 NA
3 181180 333700 723.5780 NA
4 181220 333700 655.3131 NA
5 181100 333660 942.0218 NA

The output variable is called varl.pred, and the varl.var values are NA
because inverse distance does not provide prediction error variances.

Inverse distance interpolation results usually in maps that are very similar
to kriged maps when a variogram with no or a small nugget is used. In contrast
to kriging, by only considering distances to the prediction location it ignores
the spatial configuration of observations; this may lead to undesired effects
if the observation locations are strongly clustered. Another difference is that
weights are guaranteed to be between 0 and 1, resulting in interpolated values
never outside the range of observed values.

8.3.2 Linear Regression

For spatial prediction using simple linear models, we can use the R function
1m:

> zn.1lm <- 1m(log(zinc) ~ sqrt(dist), meuse)
> meuse.grid$pred <- predict(zn.lm, meuse.grid)
> meuse.grid$se.fit <- predict(zn.lm, meuse.grid, se.fit = TRUE)$se.fit



8.4 Estimating Spatial Correlation: The Variogram 217

Alternatively, the predict method used here can provide the prediction or
confidence intervals for a given confidence level. Alternatively, we can use the
function krige in gstat for this,

> meuse.lm <- krige(log(zinc) ~ sqrt(dist), meuse, meuse.grid)
[ordinary or weighted least squares prediction]

that in this case does not krige as no variogram is specified, but uses linear
regression.

Used in this form, the result is identical to that of 1m. However, it can
also be used to predict with regression models that are refitted withinlocal
neighbourhoods around a prediction location (Sect.8.5.5) or provide mean
predicted values for spatial areas (Sect.8.5.6). The variance it returns is the
prediction error variance when predicting for points or the estimation error
variance when used for blocks.

A special form of linear regression is obtained when polynomials of spatial
coordinates are used for predictors, for example for a second-order polynomial

> meuse.tr2 <- krige(log(zinc) ~ 1, meuse, meuse.grid,
+ degree = 2)

[ordinary or weighted least squares prediction]

This form is called trend surface analysis.

It is possible to use 1m for trend surface analysis, for example for the
second-order trend with a formula using I to treat powers and products
‘as is’:

> Im(log(zinc) ~ I(x72) + I(y~2) + I(x * y) + x + y, meuse)
or the short form
> 1m(log(zinc) ~ poly(x, y, degree = 2), meuse)

In the first form 1m does not standardise coordinates, which often yields
huge numbers when powered. The second form does standardise coordinates
in such a way that it cannot be used in a subsequent predict call with
different coordinate ranges. Trend surface fitting is highly sensitive to outlying
observations. Another place to look for trend surface analysis is function
surf.ls in package spatial.

8.4 Estimating Spatial Correlation: The Variogram

In geostatistics the spatial correlation is modelled by the variogram instead of
a correlogram or covariogram, largely for historical reasons. Here, the word
variogram will be used synonymously with semivariogram. The variogram
plots semivariance as a function of distance.
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In standard statistical problems, correlation can be estimated from a scat-
terplot, when several data pairs {z,y} are available. The spatial correlation
between two observations of a variable z(s) at locations s; and sy cannot be
estimated, as only a single pair is available. To estimate spatial correlation
from observational data, we therefore need to make stationarity assumptions
before we can make any progress. One commonly used form of stationarity
is intrinsic stationarity, which assumes that the process that generated the
samples is a random function Z(s) composed of a mean and residual

Z(s) =m + e(s), (8.1)
with a constant mean
E(Z(s)) =m (8.2)
and a variogram defined as
1
~v(h) = §E(Z(s) — Z(s+ h))?. (8.3)

Under this assumption, we basically state that the variance of Z is constant,
and that spatial correlation of Z does not depend on location s, but only on
separation distance h. Then, we can form multiple pairs {z(s;), z(s;)} that
have (nearly) identical separation vectors h = s; — s, and estimate correlation
from them. If we further assume isotropy, which is direction independence of
semivariance, we can replace the vector h with its length, ||h|.

Under this assumption, the variogram can be estimated from N} sample
data pairs z(s;), z(s; + h) for a number of distances (or distance intervals)
]~7,j by

B 1 M B
¥(hi) = o D_(Z(si) = Z(si + h))?, Vh € h; (8.4)
h izt
and this estimate is called the sample variogram.

A wider class of models is obtained when the mean varies spatially, and

can, for example be modelled as a linear function of known predictors X (s),

as in
P

Z(s)=> X;(5)8; +el(s) = XB+e(s), (8.5)

Jj=0

with X(s) the known spatial regressors and §; unknown regression coeffi-
cients, usually containing an intercept for which Xy(s) = 1. The X;(s) form
the columns of the n x (p+ 1) design matrix X, g is the column vector with
p + 1 unknown coefficients.

For varying mean models, stationarity properties refer to the residual e(s),
and the sample variogram needs to be computed from estimated residuals.
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8.4.1 Exploratory Variogram Analysis

A simple way to acknowledge that spatial correlation is present or not is
to make scatter plots of pairs Z(s;) and Z(s;), grouped according to their
separation distance h;; = ||s; — s;||. This is done for the meuse data set in
Fig.8.2, by

> hscat(log(zinc) ~ 1, meuse, (0:9) * 100)

where the strip texts indicate the distance classes, and sample correlations
are shown in each panel.

lagged scatterplots
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Fig. 8.2 Lagged scatter plot for the log-zinc data in the meuse data set

A second way to explore spatial correlation is by plotting the variogram
and the variogram cloud. The variogram cloud is obtained by plotting all
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possible squared differences of observation pairs (Z(s;) — Z(s;))? against their
separation distance h;;. One such variogram cloud, obtained by

> hscat(log(zinc) ~ 1, meuse, (0:9) * 100)

is plotted in Fig.8.3 (top). The plot shows a lot of scatter, as could be ex-
pected: when Z(s) follows a Gaussian distribution, (Z(s;) — Z(s;))? follows a
x2(1) distribution. It does show, however, some increase of maximum values
for distances increasing up to 1,000 m.

sample variogram
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Fig. 8.3 Variogram cloud (top) and sample variogram (bottom) for log-zinc data,
numbers next to symbols refer to the value N, in (8.4)

Essentially, the sample variogram plot of (8.4) obtained by

> library(gstat)
> variogram(log(zinc) ~ 1, meuse, cloud = TRUE)

is nothing but a plot of averages of semivariogram cloud values over distance
intervals h; it is shown in Fig.8.3, bottom. It smooths the variation in the
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variogram cloud and provides an estimate of semivariance (8.3), although
Stein (1999) discourages this approach.

The ~ 1 defines a single constant predictor, leading to a spatially constant
mean coefficient, in accordance with (8.2); see p. 26 for a presentation of
formula objects.

As any point in the variogram cloud refers to a pair of points in the data set,
the variogram cloud can point us to areas with unusual high or low variability.
To do that, we need to select a subset of variogram cloud points. In

> sel <- plot(variogram(zinc ~ 1, meuse, cloud = TRUE),
+ digitize = TRUE)
> plot(sel, meuse)

the user is asked to digitise an area in the variogram cloud plot after the first
command. The second command plots the selected point pairs on the obser-
vations map. Figure 8.4 shows the output plots of such a session. The point
pairs with largest semivariance at short distances were selected, because they
indicate the areas with the strongest gradients. The map shows that these
areas are not spread randomly: they connect the maximum values closest to
the Meuse river with values usually more inland. This can be an indication
of non-stationarity or of anisotropy. Log-transformation or detrending may
remove this effect, as we see later.

In case of outlying observations, extreme variogram cloud values are eas-
ily identified to find the outliers. These may need removal, or else robust
measures for the sample variogram can be computed by passing the logical
argument cressie=TRUE to the variogram function call (Cressie, 1993).
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Fig. 8.4 Interactively selected point pairs on the variogram cloud (left), and map of
selected point pairs (right)
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A sample variogram 4(h) always contains a signal that results from the
true variogram ~y(h) and a sampling error, due to the fact that N, and s
are not infinite. To verify whether an increase in semivariance with distance
could possibly be attributed to chance, we can compute variograms from the
same data, after randomly re-assigning measurements to spatial locations.
If the sample variogram falls within the (say 95 %) range of these random
variograms, complete spatial randomness of the underlying process may be
a plausible hypothesis. Figure 8.5 shows an example of such a plot for the
log zinc data; here the hypothesis of absence of spatial correlation seems un-
likely. In general, however, concluding or even assuming that an underlying
process is completely spatially uncorrelated is quite unrealistic for real, nat-
ural processes. A common case is that the spatial correlation is difficult to
infer from sample data, because of their distribution, sample size, or spatial
configuration. In certain cases spatial correlation is nearly absent.

0.6 L

semivariance

0.2 4 -

T T T T
500 1000 1500

distance

Fig. 8.5 Sample variogram (bold) compared to 100 variograms for randomly
re-allocated data (grey lines)

8.4.2 Cutoff, Lag Width, Direction Dependence

Although the command

> plot(variogram(log(zinc) ~ 1, meuse))

simply computes and plots the sample variogram, it does make a number of
decisions by default. It decides that direction is ignored: point pairs are
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merged on the basis of distance, not direction. An alternative is, for example
to look in four different angles, as in

> plot(variogram(log(zinc) ~ 1, meuse, alpha = c(0, 45,
+ 90, 135)))

see Fig.8.7. Directions are now divided over their principal direction, e.g.,
any point pair between 22.5° and 67.5° is used for the 45° panel. You might
want to split into a finer direction subdivision, for example passing alpha
= seq(0,170,10), but then the noise component of resulting sample vari-
ograms will increase, as the number of point pairs for each separate estimate
decreases.

A similar issue is the cutoff distance, which is the maximum distance up
to which point pairs are considered and the width of distance interval over
which point pairs are averaged in bins.

The default value gstat uses for the cutoff value is one third of the largest
diagonal of the bounding box (or cube) of the data. Just as for time series
data autocorrelations are never computed for lags farther than half the series
length, there is little point in computing semivariances for long distances
other than mere curiosity: wild oscillations usually show up that reveal little
about the process under study. Good reasons to decrease the cutoff may be
when a local prediction method is foreseen, and only semivariances up to
a rather small distance are required. In this case, the modelling effort, and
hence the computing of sample variograms should be limited to this distance
(e.g. twice the radius of the planned search neighbourhood).

For the interval width, gstat uses a default of the cutoff value divided by 15.
Usually, these default values will result in some initial overview of the spatial
correlation. Choosing a smaller interval width will result in more detail, as
more estimates of y(h) appear, but also in estimates with more noise, as Np,
inevitably decreases. It should be noted that apparent local fluctuations of
consecutive 4(h) values may still be attributed to sampling error. The errors

A(hi) — v(h;) and 4(h;) — v(h;) will be correlated, because *y(izz) and ”y(izj)
usually share a large number of common points used to form pairs.
The default cutoff and interval width values may not be appropriate at

all, and can be overridden, for example by

> plot(variogram(log(zinc) ~ 1, meuse, cutoff = 1000, width = 50))

The distance vector does not have to be cut in regular intervals; one can
specify each interval by

> variogram(log(zinc) ~ 1, meuse, boundaries = c(0, 50,
+ 100, seq(250, 1500, 250)))

which is especially useful for data sets that have much information on short
distance variability: it allows one to zoom in on the short distance variogram
without revealing irrelevant details for the longer distances.
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8.4.3 Variogram Modelling

The variogram is often used for spatial prediction (interpolation) or simu-
lation of the observed process based on point observations. To ensure that
predictions are associated with non-negative prediction variances, the matrix
with semivariance values between all observation points and any possible pre-
diction point needs to be non-negative definite. For this, simply plugging in
sample variogram values from (8.4) is not sufficient. One common way is to
infer a parametric variogram model from the data. A non-parametric way,
using smoothing and cutting off negative frequencies in the spectral domain,
is given in Yao and Journel (1998); it will not be discussed here.

The traditional way of finding a suitable variogram model is to fit a para-
metric model to the sample variogram (8.4). An overview of the basic vari-
ogram models available in gstat is obtained by

> show.vgms ()
> show.vgms(model = "Mat", kappa.range = c(0.1, 0.2, 0.5,
+ 1, 2, 5, 10), max = 10)

where the second command gives an overview of various models in the Matérn
class.

In gstat, valid variogram models are constructed by using one or combina-
tions of two or more basic variogram models. Variogram models are derived
from data.frame objects, and are built as follows:

> vgm(1, "Sph", 300)

model psill range
1 Sph 1 300

> vgm(1, "Sph", 300, 0.5)

model psill range
1 Nug 0.5 0
Sph 1.0 300

> vl <- vgm(1, "Sph", 300, 0.5)
> v2 <- vgm(0.8, "Sph", 800, add.to = v1)
> v2

model psill range
1 DNug 0.5 0
2 Sph 1.0 300
3 Sph 0.8 800

> vgm(0.5, "Nug", 0)

model psill range
1 DNug 0.5 0

and so on. Each component (row) has a model type (‘Nug’, ‘Sph’, ...), fol-
lowed by a partial sill (the vertical extent of the model component) and a
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range parameter (the horizontal extent). Nugget variance can be defined in
two ways, because it is almost always present. It reflects usually measurement
error and/or micro-variability. Note that gstat uses range parameters, for ex-
ample for the exponential model with partial sill ¢ and range parameter a

~y(h) =¢(1 - e_h/“).

This implies that for this particular model the practical range, the value at
which this model reaches 95 % of its asymptotic value, is 3a; for the Gaussian
model the practical range is v/3a. A list of model types is obtained by

> vgm()

short long
1 Nug Nug (nugget)
2 Exp Exp (exponential)
3 Sph Sph (spherical)
4 Gau Gau (gaussian)
5 Exc Exclass (Exponential class)
6 Mat Mat (Matern)
7 Ste Mat (Matern, M. Stein's parameterization)
8 Cir Cir (circular)
9 Lin Lin (linear)
10 Bes Bes (bessel)
11 Pen Pen (pentaspherical)
12 Per Per (periodic)
13 Hol Hol (hole)
14 Log Log (logarithmic)
15  Pow Pow (power)
16  Spl Spl (spline)
17  Leg Leg (Legendre)
18  Err Err (Measurement error)
19 Int Int (Intercept)

Not all of these models are equally useful, in practice. Most practical studies
have so far used exponential, spherical, Gaussian, Matérn, or power models,
with or without a nugget, or a combination of those.

For weighted least squares fitting a variogram model to the sample vari-
ogram (Cressie, 1985), we need to take several steps:

1. Choose a suitable model (such as exponential, ...), with or without
nugget

2. Choose suitable initial values for partial sill(s), range(s), and possibly
nugget (Fig.8.6)

3. Fit this model, using one of the fitting criteria.

For the variogram obtained by

> v <- variogram(log(zinc) ~ 1, meuse)
> plot(v)

and shown in Fig. 8.6, the spherical model looks like a reasonable choice.
Initial values for the variogram fit are needed for fit.variogram, because
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for the spherical model (and many other models) fitting the range parameter
involves non-linear regression. The following fit works:

> fit.variogram(v, vgm(1, "Sph", 800, 1))

model psill range
1 Nug 0.05065923  0.0000
2  Sph 0.59060463 896.9976

but if we choose initial values too far off from reasonable values, as in
> fit.variogram(v, vgm(l, "Sph", 10, 1))

Warning: singular model in variogram fit
model psill range

1 Nug 1 0

2 Sph 1 10

the fit will not succeed. To stop execution in an automated fitting script, a
construct like

> v.fit <- fit.variogram(v, vgm(1, "Sph", 10, 1))
> if (attr(v.fit, "singular")) stop("singular fit")

will halt the script on this fitting problem.
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Fig. 8.6 Sample variogram (plus) and fitted model (line); blue arrows indicate the
model parameter values

The fitting method uses non-linear regression to fit the coefficients. For
this, a weighted sum of square errors Y-"_, w;(y(h) — 4(h))?, with ~(h) the
value according to the parametric model, is minimised. The optimisation
routine alternates the following two steps until convergence: (i) a direct fit
over the partial sills, and (ii) non-linear optimising of the range parameter(s)
given the last fit of partial sills. The minimised criterion is available as
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Table 8.1 Values for argument fit.method in function fit.variogram

fit.method Weight

1 N;
2 N; /{v(hy)}?
6 1

7 N; /h?

> attr(v.fit, "SSErr")
[1] 9.011194e-06

Different options for the weights w; are given in Table 8.1, the default value
chosen by gstat is 7. Two things should be noted: (i) for option 2, the weights
change after each iteration, which may confuse the optimisation routine, and
(ii) for the linear variogram with no nugget, option 7 is equivalent to option 2.
Option 7 is default as it seems to work in many cases; it will, however, give
rise to spurious fits when a sample semivariance estimate for distance (very
close to0) zero gives rise to an almost infinite weight. This may happen when
duplicate observations are available.

An alternative approach to fitting variograms is by visual fitting, the so-
called eyeball fit. Package geoR provides a graphical user interface for inter-
actively adjusting the parameters:
> library(geoR)
> v.eye <- eyefit(variog(as.geodata(meuse["zinc"]), max.dist = 1500))
> ve.fit <- as.vgm.variomodel(v.eye[[1]])

The last function converts the model saved in v.eye to a form readable
by gstat.

Typically, visual fitting will minimise |y(h) —4(h)| with emphasis on short
distance/small ~v(h) values, as opposed to a weighted squared difference, used
by most numerical fitting. An argument to prefer visual fitting over numerical
fitting may be that the person who fits has knowledge that goes beyond the
information in the data. This may for instance be related to information about
the nugget effect, which may be hard to infer from data when sample locations
are regularly spread. Information may be borrowed from other studies or
derived from measurement error characteristics for a specific device. In that
case, one could, however, also consider partial fitting, by keeping, for example
the nugget to a fixed value.

Partial fitting of variogram coefficients can be done with gstat. Suppose
we know for some reason that the partial sill for the nugget model (i.e. the
nugget variance) is 0.06, and we want to fit the remaining parameters, then
this is done by
> fit.variogram(v, vgm(1, "Sph", 800, 0.06), fit.sills = c(FALSE,

+ TRUE))

model psill range
1 Nug 0.0600000  0.0000
2 Sph 0.5845836 923.0066
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Alternatively, the range parameter(s) can be fixed using argument
Data set!Meuse bank fit.ranges.

Maximum likelihood fitting of variogram models does not need the sample
variogram as intermediate form, as it fits a model directly to a quadratic
form of the data, that is the variogram cloud. REML (restricted maximum
likelihood) fitting of only partial sills, not of ranges, can be done using gstat
function fit.variogram.reml:
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Fig. 8.7 Directional sample variogram (plus) and fitted model (line), for four direc-
tions (0 is North, 90 is East)

> fit.variogram.reml (log(zinc)
+ "Sph", 800, 0.06))

~ 1, meuse, model = vgm(0.6,

model psill range
1 Nug 0.0201109 0
2 Sph 0.5711620 800

Maximum likelihood or restricted maximum likelihood fitting of variogram
models, including the range parameters, can be done using function lik-
fit in package geoR, or with function fitvario in package RandomFields.
Maximum likelihood fitting is optimal under the assumption of a Gaussian
random field, and can be very time consuming for larger data sets.

8.4.4 Anisotropy

Anisotropy may be modelled by defining a range ellipse instead of a circular
or spherical range. In the following example

> v.dir <- variogram(log(zinc) ~ 1, meuse, alpha = (0:3) *
+ 45)

> v.anis <- vgm(0.6, "Sph", 1600, 0.05, anis = c(45, 0.3))

> plot(v.dir, v.anis)
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the result of which is shown in Fig.8.7, for four main directions. The fitted
model has a range in the principal direction (45°, NE) of 1,600, and of 0.3 x
1,600 = 480 in the minor direction (135°).

When more measurement information is available, one may consider plot-
ting a variogram map, as in

> plot(variogram(log(zinc) ~ 1, meuse, map = TRUE, cutoff = 1000,
+ width = 100))

which bins h vectors in square grid cells over x and y, meaning that distance
and direction are shown in much more detail. Help is available for the plotting
function plot.variogramMap.

Package gstat does not provide automatic fitting of anisotropy parameters.
Function 1ikfit in geoR does, by using (restricted) maximum likelihood.

8.4.5 Multivariable Variogram Modelling

We use the term multivariable geostatistics here for the case where multiple
dependent spatial variables are analysed jointly. The case where the trend of
a single dependent variable contains more than a constant only is not called
multivariable in this sense, and will be treated in Sect. 8.5.

The main tool for estimating semivariances between different variables is
the cross variogram, defined for collocated' data as

() = FEI(Zi(s) — Zils + M)(Z5(5) — Zy(s + W)

and for non-collocated data as
1
% (h) = SE[(Zi(s) —mi) = (Z;(s) — m;))?,

with m; and m; the means of the respective variables. Sample cross vari-
ograms are the obvious sums over the available pairs or cross pairs, in the
line of (8.4).

As multivariable analysis may involve numerous variables, we need to start
organising the available information. For that reason, we collect all the obser-
vation data specifications in a gstat object, created by the function gstat.
This function does nothing else than ordering (and actually, copying) infor-
mation needed later in a single object. Consider the following definitions of
four heavy metals:

> g <- gstat(NULL, "logCd", log(cadmium) ~ 1, meuse)
> g <- gstat(g, "logCu", log(copper) ~ 1, meuse)
> g <- gstat(g, "logPb", log(lead) ~ 1, meuse)

1 Each observation location has all variables measured.
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> g <- gstat(g, "logZn", log(zinc) ~ 1, meuse)

> 8

data:

logCd : formula = log(cadmium) ~'1 ; data dim = 155 x 14
logCu : formula = log(copper) ~'1 ; data dim = 155 x 14
logPb : formula = log(lead) ~"1 ; data dim = 155 x 14
logZn : formula = log(zinc)'~'1 ; data dim = 155 x 14

> vm <- variogram(g)

> vm.fit <- fit.lmc(vm, g, vgm(1, "Sph", 800, 1))

> plot(vm, vm.fit)

the plot of which is shown in Fig. 8.8. By default, variogram when passing a
gstat object computes all direct and cross variograms, but this can be turned
off. The function fit.1lmc fits a linear model of coregionalization, which is a
particular model that needs to have identical model components (here nugget,
and spherical with range 800), and needs to have positive definite partial sill
matrices, to ensure non-negative prediction variances when used for spatial
prediction (cokriging).

As the variograms in Fig. 8.8 indicate, the variables have a strong cross
correlation. Because these variables are collocated, we could compute direct
correlations:

> cor(as.data.frame (meuse) [c("cadmium", "copper", "lead",
+ "ZiIlC“)J)
cadmium copper lead zinc

cadmium 1.0000000 0.9254499 0.7989466 0.9162139
copper 0.9254499 1.0000000 0.8183069 0.9082695
lead 0.7989466 0.8183069 1.0000000 0.9546913
zinc 0.9162139 0.9082695 0.9546913 1.0000000
which confirm this, but ignore spatial components. For non-collocated data,
the direct correlations may be hard to compute.

The fit.lmc function fits positive definite coefficient matrices by first
fitting models individually (while fixing the ranges) and then replacing
non-positive definite coefficient matrices by their nearest positive definite ap-
proximation, taking out components that have a negative eigenvalue. When
eigenvalues of exactly zero occur, a small value may have to be added to the
direct variogram sill parameters; use the correct.diagonal argument for
this.

Variables do not need to have a constant mean but can have a trend
function specified, as explained in Sect. 8.4.6.

8.4.6 Residual Variogram Modelling

Residual variograms are calculated by default when a more complex model
for the trend is used, for example as in

> variogram(log(zinc) ~ sqrt(dist), meuse)
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Fig. 8.8 Direct variograms (diagonal) and cross variograms (off-diagonal) along with
fitted linear model of coregionalization (—)

where the trend is simple linear (Fig.8.1), for example reworking (8.5) to

log(Z(s)) = fo +/D(s)p1 + e(s),

with D(s) the distance to the river. For defining trends, the full range of R
formulas can be used: the right-hand side may contain factors, in which case
trends are calculated with respect to the factor level means, and may contain
interactions of all sorts; see p. 26 for explanation on SSformula syntax.

By default, the residuals gstat uses are ordinary least squares residuals
(i.e. regular regression residuals), meaning that for the sake of estimating
the trend, observations are considered independent. To honour a depen-
dence structure present, generalised least squares residuals can be calculated
instead. For this, a variogram model to define the covariance structure is
needed. In the following example

> f <- log(zinc) ~ sqrt(dist)
> vt <- variogram(f, meuse)
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> vt.fit <- fit.variogram(vt, vgm(1, "Exp", 300, 1))
> vt.fit

model psill range
1 Nug 0.05712231  0.0000
2  Exp 0.17641559 340.3201

> g.wls <- gstat(NULL, "log-zinc", f, meuse, model = vt.fit,
+ set = list(gls = 1))
> (variogram(g.wls)$gamma - vt$gamma)/mean (vt$gamma)

[1] 1.133887e-05 -6.800894e-05 -1.588582e-04 -2.520913e-04

[6] -5.461007e-05 -1.257573e-04 2.560629e-04 1.509185e-04

[9] 4.812184e-07 -5.292472e-05 -2.998868e-04 2.169712e-04
[13] -1.771773e-04 1.872195e-04 3.095021e-05

it is clear that the difference between the two approaches is marginal, but
this does not need to be the case in other examples.

For multivariable analysis, gstat objects can be formed where the trend
structure can be specified uniquely for each variable. If multivariable residuals
are calculated using weighted least squares, this is done on a per-variable
basis, ignoring cross correlations for trend estimation.

8.5 Spatial Prediction

Spatial prediction refers to the prediction of unknown quantities Z(sg), based
on sample data Z(s;) and assumptions regarding the form of the trend of Z
and its variance and spatial correlation.

Suppose we can write the trend as a linear regression function, as in (8.5).
If the predictor values for sy are available in the 1 x p row-vector z(sg), V is
the covariance matrix of Z(s) and v the covariance vector of Z(s) and Z(so),
then the best linear unbiased predictor of Z(sg) is

Z(s0) = 2(s0)B + 'V~ HZ(s) — X ), (8.6)

with 3 = (X'V-1X)~! X'V~1Z(s) the generalized least squares estimate of
the trend coefficients and where X’ is the transpose of the design matrix X.
The predictor consists of an estimated mean value for location sg, plus a
weighted mean of the residuals from the mean function, with weights v'V =1,
known as the simple kriging weights.

The predictor (8.6) has prediction error variance

0?(sg) = op — 'V o+ 6(X'VTIX)TL, (8.7)

where 032 is var(Z(so)), or the variance of the Z process, and where § =
z(sp) — v'V 71X, The term v'V~1v is zero if v is zero, that is if all obser-
vations are uncorrelated with Z(sg), and equals 02 when sq is identical to
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an observation location. The third term of (8.7) is the contribution of the
estimation error var(8 — 8) = (X'V1X)~! to the prediction (8.6): it is zero
if s is an observation location, and increases, for example when z(s¢) is more
distant from X, as when we extrapolate in the space of X.

8.5.1 Universal, Ordinary, and Simple Kriging

The instances of this best linear unbiased prediction method with the number
of predictors p > 0 are usually called universal kriging. Sometimes the term
kriging with external drift is used for the case where p = 1 and X does not
include coordinates.

A special case is that of (8.2), for which p = 0 and Xy = 1. The corre-
sponding prediction is called ordinary kriging.

Simple kriging is obtained when, for whatever reason, 3 is a priori assumed
to be known. The known 3 can then be substituted for 3 in (8.6). The simple
kriging variance is obtained by omitting the third term, which is associated
with the estimation error of 3 in (8.7).

Applying these techniques is much more straightforward than this compli-
cated jargon suggests, as an example will show:

> 1lz.sk <- krige(log(zinc) ~ 1, meuse, meuse.grid, v.fit,
+ beta = 5.9)

[using simple kriging]
> 1z.ok <- krige(log(zinc) ~ 1, meuse, meuse.grid, v.fit)
[using ordinary kriging]

> lz.uk <- krige(log(zinc) ~ sqrt(dist), meuse, meuse.grid,
+ vt.fit)

[using universal kriging]

Clearly, the krige command chooses the kriging method itself, depending on
the information it is provided with: are trend coefficients given? is the trend
constant or more complex? How this is done is shown in the decision tree of
Fig.8.9.

8.5.2 Multivariable Prediction: Cokriging

The kriging predictions equations can be simply extended to obtain mul-
tivariable prediction equations, see, for example Hoef and Cressie (1993)
and Pebesma (2004). The general idea is that multiple variables may be cross
correlated, meaning that they exhibit not only autocorrelation but that the
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Fig. 8.9 Decision tree for the gstat predict method

spatial variability of variable A is correlated with variable B, and can there-
fore be used for its prediction, and vice versa. Typically, both variables are
assumed to be measured on a limited set of locations, and the interpolation
addresses unmeasured locations.

The technique is not limited to two variables. For each prediction location,
multivariable prediction for ¢ variables yields a ¢ x 1 vector with a prediction
for each variable, and a ¢ X ¢ matrix with prediction error variances and
covariances from which we can obtain the error correlations:

> cok.maps <- predict(vm.fit, meuse.grid)

Linear Model of Coregionalization found. Good.
[using ordinary cokriging]

> names (cok.maps)

[1] "logCd.pred" "logCd.var" "logCu.pred"
[4] "logCu.var" "logPb.pred" "logPb.var"
[7] "logZn.pred" "logZn.var" "cov.logCd.logCu"

[10] "cov.logCd.logPb" "cov.logCu.logPb" "cov.logCd.logZn"
[13] "cov.logCu.logZn" "cov.logPb.logZn"

Here, only the unique matrix elements are stored; to get an overview of the
prediction error variance and covariances, a utility function wrapping spplot
is available; the output of

> spplot.vcov(cok.maps)

is given in Fig. 8.10.

Before the cokriging starts, gstat reports success in finding a Linear Model
of Coregionalization (LMC). This is good, as it will assure non-negative co-
kriging variances. If this is not the case, for example because the ranges differ,

> vm2.fit <- vm.fit
> vm2.fit$model [[3]]$range = c(0, 900)
> predict(vm2.fit, meuse.grid)
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Fig. 8.10 Cokriging variances (diagonal) and covariances (off-diagonal)
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will stop with an error message. Stopping on this check can be avoided by

> vm2.fit$set <- list(nmocheck = 1)
> x <- predict(vm2.fit, meuse.grid)

Warning: No Intrinsic Correlation or Linear Model of Coregionalization

found
Reason: ranges differ

Now checking for Cauchy-Schwartz inequalities:

variogram(var0,varil)
variogram(var0,var2)
variogram(varl,var2)
variogram(var0,var3)
variogram(varl,var3)
variogram(var2,var3)
[using ordinary cokri

passed
passed
passed
passed
passed
passed

ging]

Cauchy-Schwartz
Cauchy-Schwartz
Cauchy-Schwartz
Cauchy-Schwartz
Cauchy-Schwartz
Cauchy-Schwartz
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> names (as.data.frame(x))

(11 "x" ny "logCd.pred"
[4] "logCd.var" "logCu.pred" "logCu.var"
[7]1 "logPb.pred" "logPb.var" "logZn.pred"
[10] "logZn.var" "cov.logCd.logCu" "cov.logCd.logPb"

[13] "cov.logCu.logPb" "cov.logCd.logZn" "cov.logCu.logZn"
[16] "cov.logPb.logZn"

> any(as.data.frame(x)[c(2, 4, 6, 8)] < 0)

[1] FALSE

which does check for pairwise Cauchy-Schwartz inequalities, that is |y;; (k)| <
v/7i(h)v;(h), but will not stop on violations. Note that this latter check is
not sufficient to guarantee positive variances. The final check confirms that
we actually did not obtain any negative variances, for this particular case.

8.5.3 Collocated Cokriging

Collocated cokriging is a special case of cokriging, where a secondary variable
is available at all prediction locations, and instead of choosing all observations
of the secondary variable or those in a local neighbourhood, we restrict the
secondary variable search neighbourhood to this single value on the prediction
location. For instance, consider log(zinc) as primary and dist as secondary
variable:

> g.cc <- gstat(NULL, "log.zinc", log(zinc) ~ 1, meuse,
+ model = v.fit)

> meuse.grid$distn <- meuse.grid$dist - mean(meuse.grid$dist) +
+ mean (log (meuse$zinc))

> vd.fit <- v.fit

> vov <- var(meuse.grid$distn)/var(log(meuse$zinc))

> vd.fit$psill <- v.fit$psill * vov

> g.cc <- gstat(g.cc, "distn", distn ~ 1, meuse.grid, nmax = 1,

+ model = vd.fit, merge = c("log.zinc", "distn"))

> vx.fit <- v.fit

> vx.fit$psill <- sqrt(v.fit$psill * vd.fit$psill) * cor(meuse$dist,
+ log(meuse$zinc))

> g.cc <- gstat(g.cc, c("log.zinc", "distn"), model = vx.fit)

> x <- predict(g.cc, meuse.grid)

Intrinsic Correlation found. Good.
[using ordinary cokriging]

Figure 8.11 shows the predicted maps using ordinary kriging, collocated cok-
riging and universal cokriging, using log(zinc) ~ sqrt(dist) as trend.
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Fig. 8.11 Predictions for collocated cokriging, ordinary kriging and universal kriging

8.5.4 Cokriging Contrasts

Cokriging error covariances can be of value when we want to compute func-
tions of multiple predictions. Suppose Z; is measured on time 1, and Z5 on
time 2, and both are non-collocated. When we want to estimate the change
Zo — Z71, we can use the estimates for both moments. For the prediction error
of this difference, in addition to the prediction error variances for 7 and
Z we need the prediction error covariance. The function get.contr helps
computing the predicted value and prediction error variance for any linear
combination (contrast) in a set of predictors, obtained by cokriging. A demo
in gstat,

> demo (pcb)

gives a full space-time cokriging example that shows how time trends can
be estimated for PCB-138 concentration in sea floor sediment, from four
consecutive five-yearly rounds of monitoring, using universal cokriging.

8.5.5 Kriging in a Local Neighbourhood

By default, all spatial predictions method provided by gstat use all available
observations for each prediction. In many cases, it is more convenient to use
only the data in the neighbourhood of the prediction location. The reasons for
this may be statistical or computational. Statistical reasons include that the
hypothesis of constant mean or mean function should apply locally, or that
the assumed knowledge of the variogram is only valid up to a small distance.
Computational issues may involve both memory and speed: kriging for n data
requires solving an n X n system. For large n (say more than 1,000) this may
be too slow, and discarding anything but the closest say 100 observations
may not result in notable different predictions.
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It should be noted that for global kriging the matrix V needs to be decom-
posed only once, after which the result is re-used for each prediction location
to obtain V~1v. Decomposing a linear system of equations is an O(n?) op-
eration, solving another system O(n). Therefore, if a neighbourhood size is
chosen slightly smaller than the global neighbourhood, the computation time
may even increase, compared to using a global neighbourhood.

Neighbourhoods in gstat are defined by passing the arguments nmax, nmin,
and/or maxdist to functions like predict, krige, or gstat. Arguments nmax
and nmin define a neighbourhood size in terms of number of nearest points,
maxdist specifies a circular search range to select point. They may be com-
bined: when less than nmin points are found in a search radius, a missing
value is generated.

For finding neighbourhood selections fast, gstat first builds a PR bucket
quadtree, or for three-dimensional data octree search index (Hjaltason and
Samet, 1995). With this index it finds any neighbourhood selection with only
a small number of distance evaluations.

8.5.6 Change of Support: Block Kriging

Despite the fact that no measurement can ever be taken on something that
has size zero, in geostatistics, by default observations Z(s;) are treated as
being observed on point location. Kriging a value with a physical size equal
to that of the observations is called point kriging. In contrast, block kriging
predicts averages of larger areas or volumes. The term block kriging orig-
inates from mining, where early geostatistics was developed (Journel and
Huijbregts, 1978). In mines, predictions based on bore hole data had to be
made for mineable units, which tended to have a block shape. Change of sup-
port occurs when predictions are made for a larger physical support based on
small physical support observations. There is no particular reason why the
larger support needs to have a rectangular shape, but it is common.

Besides the practical relevance to the mining industry, a consideration in
many environmental applications has been that point kriging usually exhibits
large prediction errors. This is due to the larger variability in the observations.
When predicting averages over larger areas, much of the variability (i.e. that
within the blocks) averages out and block mean values have lower prediction
errors, while still revealing spatial patterns if the blocks are not too large.
In environmental problems, legislation may be related to means or medians
over larger areas, rather than to point values.

Block kriging (or other forms of prediction for blocks) can be obtained by
gstat in three ways:

1. For regular blocks, by specifying a block size
2. For irregular but constant ‘blocks’, by specifying points that discretise
the irregular form
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3. For blocks or areas of varying size, by passing an object of class Spa-
tialPolygons to the newdata argument (i.e. replacing meuse.grid)

Ordinary block kriging for blocks of size 40 x 40 is simply obtained by

> lz.ok <- krige(log(zinc) ~ 1, meuse, meuse.grid, v.fit,
+ block = c(40, 40))

[using ordinary kriging]

For a circular shape with radius 20, centred on the points of meuse.grid, one
could select points on a regular grid within a circle:

xy <- expand.grid(x = seq(-20, 20, 4), y = seq(-20, 20,
4))

xy <- xyl[(xy$x~2 + xy$y~2) <= 2072, ]

lz.ok <- krige(log(zinc) ~ 1, meuse, meuse.grid, v.fit,
block = xy)

+ V.V + VvV

[using ordinary kriging]

For block averages over varying regions, the newdata argument, usually a
grid, can be replaced by a polygons object. Suppose meuse . polygons contains
polygons for which we want to predict block averages, then this is done by

> 1lz.pols <- krige(log(zinc) ~ 1, meuse, meuse.polygons,
+ v.fit)

To discretise each (top level) Polygons object, coordinates that discretize the
polygon are obtained by

> spsample(polygon, n = 500, type = "regular", offset = c(0.5,
+ 0.5))

meaning that a regular discretisation is sought with approximately 500
points. These default arguments to spsample can be modified by altering
the sps.args argument to predict.gstat; spsample is described on p. 146.

A much less efficient way to obtain block kriging predictions and predic-
tion errors is to use Gaussian conditional simulation (Sect.8.8) over a fine
grid, calculate block means from each realisation, and obtain the mean and
variance from a large number of realisations. In the limit, this should equal
the analytical block kriging prediction.

When instead of a block average a non-linear spatial aggregation is re-
quired, such as a quantile value of points within a block, or the area fraction
of a block where points exceed a threshold (Sect. 8.8.2), the simulation path
is the more natural approach.



240 8 Interpolation and Geostatistics

8.5.7 Stratifying the Domain

When a categorical variable is available that splits the area of interest in a
number of disjoint areas, for example based on geology, soil type, land use or
some other factor, we might want to apply separate krigings to the different
units. This is called stratified kriging. The reason for doing kriging per-class
may be that the covariance structure (semivariogram) is different for the
different classes. In contrast to universal kriging with a categorical predictor,
no correlation is assumed between residuals from different classes.

The example assumes there is a variable part.a, which partitions the area
in two sub-areas, where part.a is 0 and where it is 1. First we can try to
find out in which grid cells the observations lie:

> meuse$part.a <- gstat::idw(part.a ~ 1, meuse.grid,
+ meuse, nmax = 1)$varl.pred

[inverse distance weighted interpolation]

here, any interpolation may do, as we basically use the first nearest neighbour
as predictor. A more robust approach may be to use the over method,

> meuse$part.a <- over(meuse, meuse.grid["part.a"])[[1]]
or equivalently,
> meuse$part.a <- meuse.grid$part.alover (meuse, geometry(meuse.grid))]

because assign NA to point values not in a grid cell.
Next, we can perform kriging for each of the sub-domains, store them in x1
and x2, and merge the result using rbind in their non-spatial representation:

> x1 <- krige(log(zinc) ~ 1, meuse[meuse$part.a == 0, ],
+ meuse.grid[meuse.grid$part.a == 0, ], model = vgm(0.548,
+ "Sph", 900, 0.0654), nmin = 20, nmax = 40, maxdist = 1000)

[using ordinary kriging]

> x2 <- krige(log(zinc) ~ 1, meuse[meuse$part.a == 1, ],
+ meuse.grid[meuse.grid$part.a == 1, ], model = vgm(0.716,
+ "Sph", 900), nmin = 20, nmax = 40, maxdist = 1000)

[using ordinary kriging]

> 1lz.stk <- rbind(as.data.frame(x1), as.data.frame(x2))
> coordinates(lz.stk) <- c("x", "y")
> lz.stk <- as(x, "SpatialPixelsDataFrame")

> spplot(lz.stk["varl.pred"], main = "stratified kriging predictions")
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8.5.8 Trend Functions and Their Coefficients

For cases of exploratory data analysis or analysis of specific regression di-
agnostics, it may be of interest to limit prediction to the trend component
x(so)B, ignoring the prediction of the residual, that is ignoring the second
term in the right-hand side of (8.6). This can be accomplished by setting
argument BLUE = TRUE to predict.gstat:

> g.tr <- gstat(formula = log(zinc) ~ sqrt(dist), data = meuse,
+ model = v.fit)
> predict(g.tr, meuse[1, ])

[using universal kriging]
coordinates varl.pred varl.var
1 (181072, 333611) 6.929517 2.409685e-34

> predict(g.tr, meuse[1, ], BLUE = TRUE)

[generalized least squares trend estimation]
coordinates varl.pred varl.var
1 (181072, 333611) 6.862085 0.06123864

The first output yields the observed value (with zero variance), the second
yields the generalised least squares trend component.

If we want to do significance testing of regression coeflicients under a full
model with spatially correlated residuals, we need to find out what the esti-
mated regression coefficients and their standard errors are. For this, we can
use gstat in a debug mode, in which case it will print a lot of information
about intermediate calculations to the screen; just try

> predict(g, meuse[1, ], BLUE = TRUE, debug = 32)

but this does not allow saving the actual coefficients as data in R. Another
way is to ‘fool’ the prediction mode with a specific contrast on the regression
coefficients, for example the vector 2(sg) = (0, 1), such that z(s¢)3 = 08y +
181 = B1. Both regression coefficient estimates are obtained by

meuse$Int <- rep(1, 155)
g.tr <- gstat(formula = log(zinc) ~ -1 + Int + sqrt(dist),
data = meuse, model = v.fit)
rn <- c("Intercept", "betal')
df <- data.frame(Int = c(0, 1), dist = c(1, 0), row.names = rn)
spdf <- SpatialPointsDataFrame (SpatialPoints(matrix(0,
2, 2)), df)
spdf

vV + VvVVV + VYV

coordinates Int dist
Intercept (0, 0) 0 1
betal (0, 0) 1 0

> predict(g.tr, spdf, BLUE = TRUE)
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[generalized least squares trend estimation]
coordinates varl.pred varl.var

1 (0, 0) -2.471753 0.20018883

2 (0, 0) 6.953173 0.06633691

The Int variable is a ‘manual’ intercept to replace the automatic intercept,
and the -1 in the formula removes the automatic intercept. This way, we
can control it and give it the zero value. The predictions now contain the
generalised least squares estimates of the regression model.

8.5.9 Non-linear Transforms of the Response Variable

For predictor variables, a non-linear transform simply yields a new variable
and one can proceed as if nothing has happened. Searching for a good trans-
form, such as using sqrt(dist) instead of direct dist values, may help in
approaching the relationship with a straight line. For dependent variables
this is not the case: because statistical expectation (‘averaging’) is a linear
operation, E(g(X)) = g(E(X)) only holds if g(-) is a linear operator. This
means that if we compute kriging predictors for zinc on the log scale, we do
not obtain the expected zinc concentration by taking the exponent of the
kriging predictor.

A large class of monotonous transformations is provided by the Box—Cox
family of transformations, which take a value A:

(y — 1)/Xif A #£0,
Fy: ) = {15(;;) if A= 0.

A likelihood profile plot for lambda is obtained by the boxcox method in the
package bundle MASS. For example, the plot resulting from

> library(MASS)
> boxcox(zinc ~ sqrt(dist), data = as.data.frame(meuse))

suggests that a Box—Cox transform with a slightly negative value for A, for
example A = —0.2, might be slightly better in approaching a log-normal
distribution.

Yet another transformation is the normal score transform (Goovaerts, 1997)
computed by the function qgnorm, defined as

> meuse$zinc.ns <- qqnorm(meuse$zinc, plot.it = FALSE)$x

Indeed, the resulting variable has mean zero, variance close to 1 (exactly one
if n is large), and plots a straight line on a normal probability plot. So simple
as this transform is, so complex can the back-transform be: it requires linear
interpolation between the sample points, and for the extrapolation of values
outside the data range the cited reference proposes several different models
for tail distributions, all with different coefficients. There seems to be little
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guidance as how to choose between them based on sample data. It should be
noted that back-transforming normal-score transformed values outside the
data range is less of a problem with interpolation, but more so for simulation
(Sect. 8.8).

Indicator kriging is obtained by indicator transforming a continuous vari-
able, or reducing a categorical variable to a binary variable. An example for
the indicator whether zinc is below 500 ppm is

> ind.f <- I(zinc < 500) ~ 1

> ind.fit <- fit.variogram(variogram(ind.f, meuse), vgm(1,
+ "Sph", 800, 1))

> ind.kr <- krige(ind.f, meuse, meuse.grid, ind.fit)

[using ordinary kriging]
> summary (ind.kr$varl.pred)

Min. 1st Qu. Median Mean 3rd Qu. Max.
-0.03472 0.47490 0.80730 0.70390 0.94540 1.08800

Clearly, this demonstrates the difficulty of interpreting the resulting estimates
of ones and zeros as probabilities, as one has to deal with negative values and
values larger than one.

When it comes to non-linear transformations such as the log transform, the
question whether to transform or not to transform is often a hard one. On the
one hand, it introduces the difficulties mentioned; on the other hand, transfor-
mation solves problems like negative predictions for non-negative variables,
and, for example heteroscedasticity: for non-negative variables the variability
is larger for areas with larger values, which opposes the stationarity assump-
tion where variability is independent from location.

When a continuous transform is taken, such as the log-transform or the
Box—Cox transform, it is possible to back-transform quantiles using the in-
verse transform. So, under log-normal assumptions the exponent of the krig-
ing mean on the log scale is an estimate of the median on the working scale.
From back-transforming a large number of quantiles, the mean value and
variance may be worked out.

8.5.10 Singular Matrixz Errors

Kriging cannot deal with duplicate observations, or observations that share
the same location, because they are perfectly correlated, and lead to singular
covariance matrices V', meaning that ¥ ~'v has no unique solution. Obtaining
errors due to a singular matrix is a common case.

> meuse.dup <- rbind(as.data.frame(meuse)[1, ], as.data.frame(meuse))
> coordinates(meuse.dup) = “x + y
> krige(log(zinc) ~ 1, meuse.dup, meuse[l, ], v.fit)
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will result in the output:

[using ordinary kriging]

"chfactor.c", line 130: singular matrix in function LDLfactor()
Error in predict.gstat(g, newdata=newdata, block=block, nsim=nsim:
LDLfactor

which points to the C function where the actual error occurred (LDLfactor).
The most common case where this happens is when duplicate observations
are present in the data set. Duplicate observations can be found by

> zd <- zerodist (meuse.dup)
> zd

[,11 [,2]
[1,] 1 2

> meuse0 <- meuse.dup[-zd[, 1], ]
> krige(log(zinc) ~ 1, meuse0, meuse[1l, ], v.fit)

[using ordinary kriging]
coordinates varl.pred varl.var
1 (181072, 333611) 6.929517 0

which tells that observations 1 and 2 have identical location; the third com-

mand removes the first of the pair. Near-duplicate observations are found by

increasing the zero argument of function zerodist to a very small threshold.
Other common causes for singular matrices are the following:

e The use of variogram models that cause observations to have nearly perfect
correlation, despite the fact that they do not share the same location, for
example from vgm(0, "Nug", 0) or vgm(1l, "Gau", 1e20). The Gaus-
sian model is always a suspect if errors occur when it is used; adding a
small nugget often helps.

e Using a regression model with perfectly correlated variables; note that,
for example a global regression model may lead to singularity in a local
neighbourhood where a predictor may be constant and correlate perfectly
with the intercept, or otherwise perfect correlation occurs.

Stopping execution on singular matrices is usually best: the cause needs
to be found and somehow resolved. An alternative is to skip those locations
and continue. For instance,

> setl <- list(cn_max = 1e+10)
> krige(log(zinc) ~ 1, meuse.dup, meuse[1l, ], v.fit, set = setL)

[using ordinary kriging]
Warning:
Covariance matrix (nearly) singular at location [181072,333611,0]:
skipping...
coordinates varl.pred varl.var
1 (181072, 333611) NA NA
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checks whether the estimated condition number for V and X'V ~!1X exceeds
10'°, in which case NA values are generated for prediction. Larger condition
numbers indicate that a matrix is closer to singular. This is by no means a
solution. It will also report whether V or X’V !X are singular; in the latter
case the cause is more likely related to collinear regressors, which reside in X.

Near-singularity may not be picked up, and can potentially lead to dra-
matically bad results: predictions that are orders of magnitude different from
the observation data. The causes should be sought in the same direction as
real singularity. Setting the cn_max value may help finding where this occurs.

8.6 Kriging, Filtering, Smoothing

Kriging results in spatially smooth interpolators that are, in case of a non-
zero nugget effect, discontinuous in the measurement points. At measurement
points, kriging prediction yields the measured value with a zero prediction
error variance. In the following code, we fit a variogram model, compute the
kriging prediction at the first observation location

> v <- variogram(log(zinc) ~ 1, meuse)
> v.fit <- fit.variogram(v, vgm(1, "Sph", 800, 1))
> v.fit

model psill range
1 Nug 0.05065923  0.0000
2  Sph 0.59060463 896.9976

> log(meuse$zinc[1])
[1] 6.929517
> krige(log(zinc) ~ 1, meuse, meuse[l, ], v.fit)

[using ordinary kriging]
coordinates varl.pred varl.var
1 (181072, 333611) 6.929517 0

If we would shift this first point spatially with any small amount, say 1m,
we would see a strongly different prediction:

> krige(log(zinc) ~ 1, meuse, meuse_shift[1, ], v.fit)

[using ordinary kriging]
coordinates varl.pred varl.var
1 (181073, 333612) 6.880461 0.089548

As a matter of fact, kriging in presence of a nugget effect, when considered
as prediction in a small region around a prediction location, is discontinuous
and hence not smooth. This effect goes unnoticed when data locations do not
coincide with the (gridded) prediction locations.

An alternative approach could conceive the measured process Z(s) as
Z(s) = U(s) + €(s), the sum of an underlying, smooth process U(s) and
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a (rough) measurement error €(s), and one could focus on predicting U(s)
rather than Z(s). The motivation for this is that the reproduction (predic-
tion) of measurement errors, even when known, is not of interest. Spatial
prediction, or filtering, now follows (8.6) and (8.7) but with v being the co-
variance vector of Z(s) and U(sg), which does not involve the discontinuity
of the nugget effect.

Predicting the U(s) process is obtained by rephrasing the nugget effect as
an error:

> err.fit <- fit.variogram(v, vgm(1, "Sph", 800, Err = 1))
> err.fit

model psill range
1 Err 0.05065923  0.0000
2  Sph 0.59060463 896.9976

> krige(log(zinc) ~ 1, meuse, meuse[l, ], err.fit)

[using ordinary kriging]
coordinates varl.pred varl.var
1 (181072, 333611) 6.884405 0.03648707

where one can see that the prediction is no longer equal to the data
value but very similar to the prediction at the minimally shifted prediction
location. The prediction variance is very similar to the kriging variance at the
minimally shifted prediction location minus the nugget variance (the variance
of €(s)).

One could also find some compromise between kriging and filtering, or
nugget and measurement error. When it is known that the measurement
error variance is 0.01, a nugget could still be fitted:

> v = fit.variogram(v, vgm(1, "Sph", 800, Err = 0.01, nugget = 1),
+ fit.sill = c(FALSE, TRUE, TRUE))
> v

model psill range

1 Err 0.01000000 0.0000
2  Nug 0.04065923 0.0000
3  Sph 0.59060463 896.9976

> krige(log(zinc) ~ 1, meusel[l, ], meuse[1l, ], v)
[using ordinary kriging]

coordinates varl.pred varl.var
1 (181072, 333611) 6.929517 0.01

Usually, nugget and measurement error cannot be fitted separately from typ-
ical datasets.
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8.7 Model Diagnostics

The model diagnostics we have seen so far are fitted and residual plots (for
linear regression models), spatial identification of groups of points in the
variogram cloud, visual and numerical inspection of variogram models, and
visual and numerical inspection of kriging results. Along the way, we have
seen many model decisions that needed to be made; the major ones being the
following:

e Possible transformation of the dependent variable
The form of the trend function
The cutoff, lag width, and possibly directional dependence for the sample
variogram
e The variogram model type
e The variogram model coefficient values, or fitting method
The size and criterion to define a local neighbourhood

and we have seen fairly little statistical guidance as to which choices are
better. To some extent we can ‘ask’ the data what a good decision is, and for
this we may use cross validation. We see that there are some model choices
that do not seem very important, and others that cross validation simply
cannot inform us about.

8.7.1 Cross Validation Residuals

Cross validation splits the data set into two sets: a modelling set and a vali-
dation set. The modelling set is used for variogram modelling and kriging on
the locations of the validation set, and then the validation measurements can
be compared to their predictions. If all went well, cross validation residuals
are small, have zero mean, and no apparent structure.

How should we choose or isolate a set for validation? A possibility is to
randomly partition the data in a model and test set. Let us try this for
the meuse data set, splitting it in 100 observations for modelling and 55 for
testing:

sell100 <- sample(1:155, 100)

m.model <- meuse[sell00, ]

m.valid <- meuse[-sell100, ]

v100.fit <- fit.variogram(variogram(log(zinc) ~ 1, m.model),
vgm(1, "Sph", 800, 1))

m.valid.pr <- krige(log(zinc) ~ 1, m.model, m.valid,
v100.fit)

+ VvV + Vv VvvVvy

[using ordinary kriging]

> resid.kr <- log(m.valid$zinc) - m.valid.pr$varl.pred
> summary(resid.kr)
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Min. 1st Qu. Median Mean 3rd Qu. Max.
-0.79990 -0.18240 -0.03922 -0.01881 0.19210 1.06900

> resid.mean <- log(m.valid$zinc) - mean(log(m.valid$zinc))
> R2 <- 1 - sum(resid.kr"2)/sum(resid.mean"2)
> R2

[1] 0.717017

which indicates that kriging prediction is a better predictor than the mean,
with an indicative R? of 0.72. Running this analysis again will result in dif-
ferent values, as another random sample is chosen. Also note that no visual
verification that the variogram model fit is sensible has been applied. A map
with cross validation residuals can be obtained by

> m.valid.pr$res <- resid.kr

> bubble(m.valid.pr, "res")

A similar map is shown for 155 residuals in Fig.8.12. Here, symbol size de-
notes residual size, with symbol area proportional to absolute value.

To use the data to a fuller extent, we would like to use all observations to
create a residual once; this may be used to find influential observations. It
can be done by replacing the first few lines in the example above with

> nfold <- 3

> part <- sample(1l:nfold, 155, replace = TRUE)
> sel <~ (part != 1)

> m.model <- meusel[sel, ]

> m.valid <- meuse[-sel, ]

and next define sel = (part !'= 2), etc. Again, the random splitting brings
in a random component to the outcomes. This procedure is threefold cross
validation, and it can be easily extended to n-fold cross validation. When n
equals the number of observations, the procedure is called leave-one-out cross
validation.

A more automated way to do this is provided by the gstat functions
krige.cv for univariate cross validation and gstat . cv for multivariable cross
validation:

> v.fit <- vgm(0.59, "Sph", 874, 0.04)
> cv155 <- krige.cv(log(zinc) ~ 1, meuse, v.fit, nfold = 5,
+ verbose = FALSE)

> bubble(cv155, "residual", main = "log(zinc): 5-fold CV residuals")

the result of which is shown in Fig.8.12. It should be noted that these func-
tions do not re-fit variograms for each fold; usually a variogram is fit on the
complete data set, and in that case validation residuals are not completely
independent from modelling data, as they already did contribute to the var-
iogram model fitting.
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Fig. 8.12 Cross validation residuals for fivefold cross validation; symbol size denotes

residual magnitude, positive residuals indicate under-prediction

8.7.2 Cross Validation z-Scores

The krige.cv object returns more than residuals alone:

> summary (cv155)

Object of class SpatialPointsDataFrame
Coordinates:
min max
x 178605 181390
y 329714 333611
Is projected: NA
proj4string : [NA]
Number of points: 155
Data attributes:

varl.pred varl.var observed residual
Min. :4.808 Min. :0.1102 Min. :4.727 Min. :-0.9556422
1st Qu.:5.380 1st Qu.:0.1519 1st Qu.:5.288 1st Qu.:-0.218794
Median :5.881 Median :0.1779 Median :5.787 Median :-0.010007
Mean :5.887 Mean :0.1914 Mean :5.886 Mean :=0.001047
3rd Qu.:6.333 3rd Qu.:0.2145 3rd Qu.:6.514 3rd Qu.: 0.213743
Max. :7.257 Max. :0.5370 Max . :7.517 Max. 1.611695
zscore fold
Min. :=-2.270139 Min. :1.000
1st Qu.:-0.508470 1st Qu.:2.000

Median

:-0.023781

Median :3.000
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Mean : 0.001421 Mean :2.987
3rd Qu.: 0.498811 3rd Qu.:4.000
Max. : 3.537729 Max. :5.000

the variable fold shows to which fold each record belonged, and the variable
zscore is the z-score, computed as

Z(Si) — Z[i] (Si)
o1 (si)

Zi = )

with Z i](si) the cross validation prediction for s;, and oy; (s;) the correspond-
ing kriging standard error. In contrast to standard residuals the z-score takes
the kriging variance into account: it is a standardised residual, and if the var-
iogram model is correct, the z-score should have mean and variance values
close to 0 and 1. If, in addition, Z(s) follows a normal distribution, so should
the z-score do.

8.7.3 Multivariable Cross Validation

Multivariable cross validation is obtained using the gstat.cv function:

> g.cv <- gstat.cv(g, nmax = 40)

Here, the neighbourhood size is set to the nearest 40 observations for compu-
tational reasons. With multivariable cross validation, two additional param-
eters need be considered:

e remove.all = FALSE By default only the first variable is cross-validated,
and all other variables are used to their full extent for prediction on the
validation locations; if set to TRUE, also secondary data at the validation
locations are removed.

e all.residuals = FALSE By default only residuals are computed and re-
turned for the primary variable; if set to TRUE, residuals are computed and
returned for all variables.

In a truly multivariable setting, where there is no hierarchy between the
different variables to be considered, both should be set to TRUE.

8.7.4 Limitations to Cross Validation

Cross validation can be useful to find artefacts in data, but it should be
used with caution for confirmatory purposes: one needs to be careful not
to conclude that our (variogram and regression) model is correct if cross
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validation does not lead to unexpected findings. It is for instance not good
at finding what is not in the data.

As an example, the Meuse data set does not contain point pairs with a
separation distance closer than 40. Therefore, the two variogram models

> vi.fit <- vgm(0.591, "Sph", 897, 0.0507)
> v2.fit <- vgm(0.591, "Sph", 897, add.to = vgm(0.0507,
+ "Sph n, 40))

that only differ with respect to the spatial correlation at distances smaller
than 40 m yield identical cross validation results:

> set.seed(13331)
> cv155.1 <- krige.cv(log(zinc) ~ 1, meuse, v1.fit, nfold = 5,
+ verbose = FALSE)
> set.seed(13331)
> ¢cv155.2 <- krige.cv(log(zinc) ~ 1, meuse, v2.fit, nfold = 5,
+ verbose = FALSE)
> summary(cv155.1$residual - cv155.28residual)

Min. 1st Qu. Median Mean 3rd Qu. Max.

0 0 0 0 0 0

Note that the set.seed(13331) was used here to force identical assignments
of the otherwise random folding. When used for block kriging, the behaviour
of the variogram at the origin is of utmost importance, and the two models
yield strongly differing results. As an example, consider block kriging predic-
tions at the meuse.grid cells:

> bl <- krige(log(zinc) ~ 1, meuse, meuse.grid, vl1.fit,
+ block = c(40, 40))$varl.var

[using ordinary kriging]

> b2 <- krige(log(zinc) ~ 1, meuse, meuse.grid, v2.fit,
+ block = c(40, 40))$varl.var

[using ordinary kriging]
> summary((b1 - b2)/b1)

Min. 1st Qu. Median Mean 3rd Qu. Max.
-0.4313 -0.2195 -0.1684 -0.1584 -0.1071 0.4374

where some kriging variances drop, but most increase, up to 30 % when using
the variogram without nugget instead of the one with a nugget. The decision
which variogram to choose for distances shorter than those available in the
data is up to the analyst, and matters.
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8.8 Geostatistical Simulation

Geostatistical simulation refers to the simulation of possible realisations of a
random field, given the specifications for that random field (e.g. mean struc-
ture, residual variogram, intrinsic stationarity) and possibly observation data.
Conditional simulation produces realisations that exactly honour observed
data at data locations, unconditional simulations ignore observations and
only reproduce means and prescribed variability.

Geostatistical simulation is fun to do, to see how much (or little) realisa-
tions can vary given the model description and data, but it is a poor means of
quantitatively communicating uncertainty: many realisations are needed and
there is no obvious ordering in which they can be viewed. They are, however,
often needed when the uncertainty of kriging predictions is, for example input
to a next level of analysis, and spatial correlation plays a role. An example
could be the use of rainfall fields as input to spatially distributed rainfall-
runoff models: interpolated values and their variances are of little value, but
running the rainfall-runoff model with a large number of simulated rainfall
fields may give a realistic assertion of the uncertainty in runoff, resulting from
uncertainty in the rainfall field.

Calculating runoff given rainfall and catchment characteristic can be seen
as a non-linear spatial aggregation process. Simpler non-linear aggregations
are, for example for a given area or block the fraction of the variable that
exceeds a critical limit, the 90th percentile within that area, or the actual area
where (or its size distribution for which) a measured concentration exceeds
a threshold. Simulation can give answers in terms of predictions as well as
predictive distributions for all these cases. Of course, the outcomes can never
be better than the degree to which the simulation model reflects reality.

The next subsection introduces sequential simulation, a very generic and
flexible method. Package RandomFields provides a large number of other
simulation algorithms; packages RandomFields and fields both contain imple-
mentations of the circulant embedding method (Dietrich and Newsam, 1993),
which is often preferred for its computational speed.

8.8.1 Sequential Simulation

For simulating random fields, package gstat only provides the sequential sim-
ulation algorithm (see, e.g. Goovaerts, 1997 for an explanation), and provides
this for Gaussian simulation and indicator simulation, possibly multivariable,
optionally with simulation of trend components, and optionally for block
mean values.

Sequential simulation proceeds as follows; following a random path through
the simulation locations, it repeats the following steps:
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1. Compute the conditional distribution given data and previously simulated
values, using simple kriging

2. Draw a value from this conditional distribution

3. Add this value to the data set

4. Go to the next unvisited location, and go back to 1

until all locations have been visited. In step 2, either the Gaussian distri-
bution is used or the indicator kriging estimates are used to approximate a
conditional distribution, interpreting kriging estimates as probabilities (after
some fudging!).

Step 1 of this algorithm will become the most computationally expensive
when all data (observed and previously simulated) are used. Also, as the
number of simulation nodes is usually much larger than the number of
observations, the simulation process will slow down more and more when
global neighbourhoods are used. To obtain simulations with a reasonable
speed, we need to set a maximum to the neighbourhood. This is best done
with the nmax argument, as spatial data density increases when more and
more simulated values are added. For simulation we again use the functions
krige or predict.gstat;the argument nsim indicates how many realisations
are requested:

> lzn.sim <- krige(log(zinc) ~ 1, meuse, meuse.grid, v.fit,
+ nsim = 6, nmax = 40)

drawing 6 GLS realisations of beta...
[using conditional Gaussian simulation]

> spplot(lzn.sim)

the result of which is shown in Fig. 8.13. It should be noted that these realisa-
tions are created following a single random path, in which case the expensive
results (V ~1v and the neighbourhood selection) can be re-used. Alternatively,
one could use six function calls, each with nsim = 1.

The simulation procedure above also gave the output line drawing 6 GLS
realisations of beta..., which confirms that prior to simulation of the
field for each realisation a trend vector (in this case a mean value only)
is drawn from the normal distribution with mean (X'V~1X)=1X'V~1Z(s)
and variance (X'V~1X)~! that is the generalised least squares estimate and
estimation variance. This procedure leads to simulations that have mean and
variance equal to the ordinary or universal kriging mean and variance, and
that have residual spatial correlation according to the variogram prescribed
(Abrahamsen and Benth, 2001). For simulations that omit the simulation of
the trend coefficients, the vector g should be passed, for example as beta =
5.9 to the krige function, as with the simple kriging example. In that case,
the simulated fields will follow the simple kriging mean and variance.
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sim6 |

Fig. 8.13 Six realisations of conditional Gaussian simulation for log-zinc

8.8.2 Non-linear Spatial Aggregation
and Block Averages

Suppose the area shown in Fig.8.14 is the target area for which we want
to know the fraction above a threshold; the area being available as a Spa-
tialPolygons object area. We can now compute the distribution of the
fraction of the area above a cutoff of 500 ppm by simulation:

> nsim <- 1000

> cutoff <- 500

> sel.grid <- meuse.grid[area.sp, ]

> lzn.sim <- krige(log(zinc) ~ 1, meuse, sel.grid, v.fit,

+ nsim = nsim, nmax = 40)

drawing 1000 GLS realisations of beta...
[using conditional Gaussian simulation]

> res <- apply(as.data.frame(lzn.sim) [1:nsim], 2, function(x) mean(x >
+ log(cutoff)))

> hist(res, main = paste("fraction above", cutoff), xlab = NULL,
+ ylab = NULL)

shown in the right-hand side of Fig. 8.14. Note that if we had been interested
in the probability of mean(x) > log(cutoff), which is a rather different
issue, then block kriging would have been sufficient:

> bkr <- krige(log(zinc) ~ 1, meuse, area.sp, v.fit)
[using ordinary kriging]
> 1 - pnorm(log(cutoff), bkr$varl.pred, sqrt(bkr$varl.var))

[1] 0.9998791
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Fig. 8.14 A non-rectangular area for which a non-linear aggregation is required (left:
red), and distribution of the fraction with zinc concentration above 500 ppm for this
area

Block averages can be simulated directly by supplying the block argu-
ment to krige; simulating points and aggregating these to block means
may be more efficient because simulating blocks calls for the calculation of
many block—block covariances, which involves the computation of quadruple
integrals.

8.8.3 Multivariable and Indicator Simulation

Multivariable simulation is as easy as cokriging, try

> cok.sims <- predict(vm.fit, meuse.grid, nsim = 1000)

after passing the nmax = 40, or something similar to the gstat calls used to
build up vm.fit (Sect.8.4.5).

Simulation of indicators is done along the same lines. Suppose we want to
simulate soil class 1, available in the Meuse data set:

> table(meuse$soil)

1 2 3
97 46 12
> s1.fit <- fit.variogram(variogram(I(soil == 1) ~ 1, meuse),
+ vgm(1, "Sph", 800, 1))
> s1.sim <- krige(I(soil == 1) ~ 1, meuse, meuse.grid,
+ s1.fit, nsim = 6, indicators = TRUE, nmax = 40)

drawing 6 GLS realisations of beta...
[using conditional indicator simulation]

> spplot(sl.sim)
which is shown in Fig. 8.15.
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Fig. 8.15 Six realisations of conditional indicator simulation for soil type 1

8.9 Model-Based Geostatistics and Bayesian Approaches

Up to now, we have only seen kriging approaches where it was assumed
that the variogram model, fitted from sample data, is assumed to be known
when we do the kriging or simulation: any uncertainty about it is ignored.
Diggle et al. (1998) give an approach, based on linear mixed and generalized
linear mixed models, to provide what they call model-based geostatistical
predictions. It incorporates the estimation error of the variogram coefficients.

When is uncertainty of the variogram an important issue? Obviously, when
the sample is small, or, for example when variogram modelling is problematic
due to the presence of extreme observations or data that come from a strongly
skewed distribution.

8.10 Monitoring Network Optimisation

NA Monitoring costs money. Monitoring programs have to be designed,
started, stopped, evaluated, and sometimes need to be enlarged or shrunken.
The difficulty of finding optimal network designs (Mateu and Miiller, 2013)
is that a quantitative criterion is often a priori not present. For example,
should one focus on mean kriging variances, or variance of some global mean
estimator, or rather on the ability to delineate a particular contour?

A very simple approach towards monitoring network optimisation is to
find the point whose removal leads to the smallest increase in mean kriging
variance:
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> m1 <- sapply(1:155, function(x) mean(krige(log(zinc) ~
+ 1, meuse[-x, ], meuse.grid, v.fit)$varl.var))
> which(ml == min(m1))

which will point to observation 72 as the first candidate for removal. Looking
at the sorted magnitudes of change in mean kriging variance, by

> plot(sort(m1))

will reveal that for several other candidate points their removal will have an
almost identical effect on the mean variance.

Another approach could be, for example to delineate say the 500 ppm
contour. We could, for example express the doubt about whether a location
is below or above 500 as the closeness of G((Z(s0) —500)/0(s0)) to 0.5, with
G(-) the Gaussian distribution function.

> cutoff <- 1000

> f <- function(x) {

+ kr = krige(log(zinc) ~ 1, meuse[-x, ], meuse.grid,

+ v.fit)

+ mean (abs (pnorm ((kr$varl.pred - log(cutoff))/sqrt(kr$varl.var)) -
+ 0.5))

+ }

> m2 <- sapply(1:155, f)

> which(m2 == max(m2))

Figure 8.16 shows that different objectives lead to different candidate
points. Also, deciding based on the kriging variance alone results in an out-
come that is highly predictable from the points configuration alone: points in
the densest areas are candidate for removal.

For adding observation points, one could loop over a fixed grid and find
the point that increases the objective most; this is more work as the number
of options for addition are much larger than that for removal. Evaluating on
the kriging variance is not a problem, as the observation value does not affect
the kriging variance. For the second criterion, it does.

The problem when two or more points have to be added or removed jointly
becomes computationally very intensive, as the sequential solution (first the
best point, then the second best) is not necessarily equal to the joint solution,
for example which configuration of n points is best. Instead of an exhaustive
search a more clever optimisation strategy such as simulated annealing or a
genetic algorithm should be used.

Package fields has a function cover.design that finds a set of points on
a finite grid that minimises a geometric space-filling criterion
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Fig. 8.16 Candidate points for removal. Left: for mean kriging variance, right:
for delineating the 1,000 ppm contour. Open, red circles: 10 % most favourite points;
closed, green circles: 10 % least favourite points

8.11 Other R Packages for Interpolation
and Geostatistics

8.11.1 Non-geostatistical Interpolation

Besides inverse distance weighted interpolation and kriging, other interpola-
tion methods may be used, for example based on generalised additive models
or smoothers, such as given in package mgcv. Additive models in coordi-
nates without interaction will not yield rotation-invariant solutions, but two-
dimensional smoothing splines will. The interested reader is referred to Wood
(2006).

Package fields also provides a function Tps, for thin plate (smoothing)
splines. Package akima provides interpolation methods based on bilinear or
bicubic splines (Akima, 1978); the package has a restricive license, and work
on an unencumbered replacement is planned.

Package stinepack provides a ‘consistently well behaved method of inter-
polation based on piecewise rational functions using Stineman’s algorithm’
(Stineman, 1980).

An interpolation method that also has this property but that does take
observation configuration into account is natural neighbour interpolation
(Sibson, 1981), but this is not available in R.

None of the packages mentioned in this sub-section accept or return data
in one of the Spatial classes of package sp.
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8.11.2 Spatial

Package spatial is part of the VR bundle that comes with Venables and Rip-
ley (2002) and is probably one of the oldest spatial packages available in R.
It provides calculation of spatial correlation using functions correlogram or
variogram. It allows ordinary and universal point kriging over a grid for
spherical, exponential, and Gaussian covariance models. For universal krig-
ing predictors it only allows polynomials in the spatial coordinates. Function
surf.gls fits a trend surface (i.e. a polynomial in the coordinates) by gen-
eralised least squares, and it has a predict method.

8.11.3 RandomF1ields

RandomFields offers sample variogram computation, variogram fitting by
least squares or maximum likelihood or restricted maximum likelihood. Sim-
ple and ordinary point kriging are provided, and unconditional and condi-
tional simulation using a large variety of modern simulation methods differ-
ent from sequential simulation, many of them based on spectral methods and
Fourier transforms; their abbreviated code is shown as column labels in the
table obtained by

> PrintModelList ()

an explanation of its output is available in the help for PrintMethodList.
The package provides a large set of covariance functions, shown as row labels
in the model list.

8.11.4 geoR and geoRglm

In addition to variogram estimation, variogram model function fitting using
least squares or (restricted) maximum likelihood (1ikfit), and ordinary and
universal point kriging, package geoR allows for Bayesian kriging (function
krige.bayes of (transformed) Gaussian variables). This requires the user
to specify priors for each of the variogram model parameters (but not for
the trend coefficients); krige.bayes will then compute the posterior kriging
distribution. The function documentation points to a long list of documents
that describe the implementation details. The book by Diggle and Ribeiro
Jr. (2007) describes more details and gives worked examples.

Package geoR wuses its own class for spatial data, called geodata.
It contains coercion method for point data in sp format, try, for example
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> library(geoR)
> plot(variog(as.geodata(meuse["zinc"]), max.dist = 1500))

Package geoR also has an xvalid function for leave-one-out cross valida-
tion that (optionally) allows for re-estimating model parameters (trend and
variogram coefficients) when leaving out each observation. It also provides
the eyefit, for interactive visual fitting of functions to sample variograms
(see Sect. 8.4.3).

Package geoRglm extends package geoR for binomial and Poisson pro-
cesses, and includes Bayesian and conventional kriging methods for trans-
Gaussian processes. It mostly uses MCMC approaches, and may be slow for
larger data sets.

8.11.5 Fields

Package fields is an R package for curve and function fitting with an emphasis
on spatial data. The main spatial prediction methods are thin plate splines
(function Tps) and kriging (function Krig and krig.image). The kriging
functions allow you to supply a covariance function that is written in native
code. Functions that are positive definite on a sphere (i.e. for unprojected
data) are available. Function cover.designis written for monitoring network
optimisation.

8.11.6 spBayes

Package spBayes fits univariate and multivariate models with Markov chain
Monte Carlo (MCMC). Core functions include univariate and multivariate
Gaussian regression with spatial random effects (functions spLM, spMvLM)
and univariate and multivariate logistic and Poisson regression with spatial
random effects (functions spGLM and spMvGLM).

8.12 Spatio-Temporal Prediction

Spatio-temporal prediction methods are provided by several R packages.
Package gstat contains a vignette that explains how to compute and fit
spatio-temporal variogram models, and use them in spatio-temporal kriging.
It uses the classes of spacetime for this. Variogram models include the metric,
product-sum, sum-metric, and separable model. The vignette is accessed by

> vignette("st", package = "gstat")
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Other packages providing particular space-time variogram model fitting
and prediction options include RandomFields, SpatioTemporal, and spTimer.
The SpatioTemporal task view on CRAN gives an overview of packages for
analyzing spatio-temporal data, which includes spatio-temporal geostatistics.
It is found at http://cran.r-project.org/view=SpatioTemporal.


http://cran.r-project.org/view=SpatioTemporal

Chapter 9
Modelling Areal Data

9.1 Introduction

Spatial data are often observed on polygon entities with defined boundaries.
The polygon boundaries are defined by the researcher in some fields of study,
may be arbitrary in others and may be administrative boundaries created
for very different purposes in others again. The observed data are frequently
aggregations within the boundaries, such as population counts. The areal
entities may themselves constitute the units of observation, for example when
studying local government behaviour where decisions are taken at the level
of the entity, for example setting local tax rates. By and large, though, areal
entities are aggregates, bins, used to tally measurements, like voting results
at polling stations. Very often, the areal entities are an exhaustive tessellation
of the study area, leaving no part of the total area unassigned to an entity. Of
course, areal entities may be made up of multiple geometrical entities, such
as islands belonging to the same county; they may also surround other areal
entities completely, and may contain holes, like lakes.

The boundaries of areal entities may be defined for some other purpose
than their use in data analysis. Postal code areas can be useful for analy-
sis, but were created to facilitate postal deliveries. It is only recently that
national census organisations have accepted that frequent, apparently justi-
fied, changes to boundaries are a major problem for longitudinal analyses.
In Sect. 5.1, we discussed the concept of spatial support, which here takes
the particular form of the modifiable areal unit problem (Waller and Got-
way, 2004, pp.104-108). Arbitrary areal unit boundaries are a problem if
their modification could lead to different results, with the case of political
gerrymandering being a sobering reminder of how changes in aggregation
may change outcomes.! They may also get in the way of the analysis if the

1 The BARD package for automated redistricting and heuristic exploration of redis-
tricter revealed preference is an example of the use of R for studying this problem.

R.S. Bivand et al., Applied Spatial Data Analysis with R, Use R! 10, 263
DOI 10.1007/978-1-4614-7618-4_9,
© Springer Science+Business Media New York 2013
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spatial scale or footprint of an underlying data generating process is not
matched by the chosen boundaries.

If data collection can be designed to match the areal entities to the data,
the influence of the choice of aggregates will be reduced. An example could be
the matching of labour market data to local labour markets, perhaps defined
by journeys to work. On the other hand, if we are obliged to use arbitrary
boundaries, often because there are no other feasible sources of secondary
data, we should be aware of potential difficulties. Such mismatches are among
the reasons for finding spatial autocorrelation in analysing areal aggregates;
other reasons include substantive spatial processes in which entities influence
each other by contagion, such as the adoption of similar policies by neigh-
bours, and model misspecification leaving spatially patterned information in
the model residuals. These causes of observed spatial autocorrelation can
occur in combination, making the correct identification of the actual spatial
processes an interesting undertaking; Dray et al. (2012) discuss many of the
issues involved in undertaking such identification.

A wide range of scientific disciplines have encountered spatial autocorre-
lation among areal entities, with the term ‘Galton’s problem’ used in several.
The problem is to establish how many effectively independent observations
are present, when arbitrary boundaries have been used to divide up a study
area. In his exchange with Tyler in 1889, Galton questioned whether obser-
vations of marriage laws across areal entities constituted independent obser-
vations, since they could just reflect a general pattern from which they had
all descended. So positive spatial dependence tends to reduce the amount of
information contained in the observations, because proximate observations
can in part be used to predict each other.

In Chap. 8, we have seen how distances on a continuous surface can be used
to structure spatial autocorrelation, for example with the variogram. Here we
will be concerned with areal entities that are defined as neighbours, for chosen
definitions of neighbours. On a continuous surface, all points are neighbours
of each other, though some may carry very little weight, because they are
very distant. On a tessellated surface, we can choose neighbour definitions
that partition the set of all entities (excluding observation ) into members
or non-members of the neighbour set of observation i. We can also decide to
give each neighbour relationship an equal weight, or vary the weights on the
arcs of the directed graph describing the spatial dependence.

The next section will cover the construction of neighbours and weights that
can be applied to neighbourhoods. Once this important and often demanding
prerequisite is in place, we go on to look at ways of measuring spatial auto-
correlation. While the tests build on models of spatial processes, we look at
tests first, and only subsequently move on to modelling. We will also be inter-
ested to show how spatial autocorrelation can be introduced into independent
data, so that simulations can be undertaken. It is worth bearing in mind that
the spatial patterning we find may only indicate that our current model of
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Fig. 9.1 (a) Major cities in the eight-county upper New York State study area;
(b) locations of 11 inactive hazardous waste sites in the study area

the data is not appropriate. This applies to areal units not fitting the data
generation process, to missing variables including variables with the wrong
functional form, and differences between our assumptions about the data and
their actual distributions, often shown as over-dispersion in count data. The
modelling of areal data will be dealt with in the subsequent sections, with
extensions in Chap. 10.

The 281 census tract data set for eight central New York State counties
featured prominently in Waller and Gotway (2004) will be used in many
of the examples,? supplemented with tract boundaries derived from TIGER
1992 and distributed by SEDAC/CIESIN. This file is not identical with the
boundaries used in the original source, but is very close and may be re-
distributed, unlike the version used in the book. The area has an extent of
about 160 km north—south and 120 km east—west; Fig.9.1 shows the major
cities in the study area and the location of 11 hazardous waste sites. The
figures in Waller and Gotway (2004) include water bodies, which are not
present in this version of the tract boundaries, in which tract boundaries
follow the centre lines of lakes, rather than their shores.

2 The boundaries have been projected from geographical coordinates to UTM zone 18.
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9.2 Spatial Neighbours and Spatial Weights

Creating spatial weights is a necessary step in using areal data, perhaps just
to check that there is no remaining spatial patterning in residuals. The first
step is to define which relationships between observations are to be given a
non-zero weight, that is to choose the neighbour criterion to be used; the
second is to assign weights to the identified neighbour links. Trying to detect
pattern in maps of residuals visually is not an acceptable choice, although
one sometimes hears comments explaining the lack of formal analysis such
as ‘they looked random’, or alternatively ‘I can see the clusters’. Making the
neighbours and weights is, however, not easy to do, and so a number of func-
tions are included in the spdep package to help. Further functions are found
in some ecology packages, such as the ade4 package — this package also pro-
vides nb2neig and neig2nb converters for interoperability. The construction
of spatial weights is touched on by Cressie (1993, pp. 384-385), Schabenberger
and Gotway (2005, p. 18), Waller and Gotway (2004, pp. 223-225), Fortin and
Dale (2005, pp. 113-118), O’Sullivan and Unwin (2010, pp. 200-204), Ward
and Gleditsch (2008, pp. 14-22), Chun and Griffith (2013, pp. 9, 57-59), and
Banerjee et al. (2004, pp. 70-71). The paucity of treatments in the literature
contrasts with the strength of the prior information being introduced by the
analyst at this stage. Since analysing areal data is dependent on the choices
made in constructing the spatial weights, we have chosen to move the detailed
discussion of the creation of neighbour objects included in the first edition of
this book to a vignette included in the spdep package. The vignettes: "nb",
"C069" and "sids" in spdep all include discussions of the creation and use
of spatial weights, and may be accessed by:

> vignette("nb", package = "spdep")

9.2.1 Neighbour Objects

In the spdep package, neighbour relationships between n observations are rep-
resented by an object of class nb; the class is an old-style class as presented
on p. 24. It is a list of length n with the index numbers of neighbours of each
component recorded as an integer vector. If any observation has no neigh-
bours, the component contains an integer zero. It also contains attributes,
typically a vector of character region identifiers, and a logical value indicat-
ing whether the relationships are symmetric. The region identifiers can be
used to check for integrity between the data themselves and the neighbour
object. The helper function card returns the cardinality of the neighbour set
for each object, that is, the number of neighbours; it differs from the applica-
tion of length to the list components because no-neighbour entries are coded
as a single element integer vector with the value of zero.
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v

library(spdep)

v

library(rgdal)
NY8 <- readOGR(".", "NY8_utm18")
NY_nb <- read.gal("NY_nb.gal", region.id = row.names(NY8))

Vv Vv

> summary (NY_nb)

Neighbour list object:

Number of regions: 281

Number of nonzero links: 1522
Percentage nonzero weights: 1.927534
Average number of links: 5.41637
Link number distribution:

1 2 3 4 5 6 7 8 91011

6 11 28 45 59 49 45 23 10 3 2
6 least connected regions:
55 97 100 101 244 245 with 1 link
2 most connected regions:
34 82 with 11 links

> plot(NY8, border = "grey60")
> plot(NY_nb, coordinates(NY8), pch = 19, cex = 0.6, add = TRUE)

Starting from the census tract queen contiguities, where all touching poly-
gons are neighbours, used in Waller and Gotway (2004) and provided as a
DBF file on their website, a GAL format file has been created and read into
R— we return to the import and export of neighbours and weights on p. 273.

Since we now have an nb object to examine, we can present the standard
methods for these objects. There are print, summary, plot, and other meth-
ods; the summary method presents a table of the link number distribution,
and both print and summary methods report asymmetry and the presence
of no-neighbour observations; asymmetry is present when ¢ is a neighbour
of j but j is not a neighbour of ¢. Figure 9.2 shows the complete neighbour
graph for the eight-county study area. For the sake of simplicity in showing
how to create neighbour objects, we work on a subset of the map consisting
of the census tracts within Syracuse, although the same principles apply to
the full data set. We retrieve the part of the neighbour list in Syracuse using
the subset method.

> Syracuse <- NY8[NYS8$AREANAME == "Syracuse city", ]
> SyO_nb <- subset (NY_nb, NY8$AREANAME == "Syracuse city")
> summary (SyO_nb)

Neighbour list object:

Number of regions: 63

Number of nonzero links: 346
Percentage nonzero weights: 8.717561
Average number of links: 5.492063
Link number distribution:
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Fig. 9.2 Census tract contiguities, New York eight-county census tracts

1 2 3 4 5 6 7 8 9
11 5 91417 9 6 1
1 least connected region:
164 with 1 link

1 most connected region:
136 with 9 links

For use later in this discussion, we create a number of neighbour objects in
other ways. Three are k nearest neighbour objects, taking k nearest points as
neighbours, for k£ = 1, 2,4 — this adapts across the study area, taking account
of differences in the densities of areal entities. Naturally, in the overwhelming
majority of cases, it leads to asymmetric neighbours, but will ensure that all
areas have k neighbours.

> coords <- coordinates (Syracuse)

> IDs <- row.names (Syracuse)

> Sy8_nb <- knn2nb(knearneigh(coords, k
> Sy9_nb <- knn2nb(knearneigh(coords, k

IDs)
IDs)

1), row.names
2), row.names



9.2 Spatial Neighbours and Spatial Weights 269

> Sy10_nb <- knn2nb(knearneigh(coords, k = 4), row.names = IDs)
> dsts <- unlist(nbdists(Sy8_nb, coords))

> Sy11_nb <- dnearneigh(coords, d1 = 0, d2 = 0.75 * max(dsts),
+ row.names = IDs)

The k& = 1 object is also useful in finding the minimum distance at which all
areas have a distance-based neighbour. Using the nbdists function, we can
calculate a list of vectors of distances corresponding to the neighbour object,
here for first nearest neighbours. The greatest value will be the minimum
distance needed to make sure that all the areas are linked to at least one
neighbour, so we can easily create an object with no-neighbour observations
by setting the upper threshold under this value.

9.2.2 Spatial Weights Objects

The literature on spatial weights is surprisingly small, given their importance
in measuring and modelling spatial dependence in areal data. Griffith (1995)
provides sound practical advice, while Bavaud (1998) seeks to insert concep-
tual foundations under ad hoc spatial weights. Spatial weights can be seen as
a list of weights indexed by a list of neighbours, where the weight of the link
between ¢ and j is the kth element of the ith weights list component, and k
tells us which of the ith neighbour list component values is equal to j. If j
is not present in the ¢th neighbour list component, j is not a neighbour of i.
Consequently, some weights w;; in the W weights matrix representation will
set to zero, where j is not a neighbour of i. Here, we follow Tiefelsdorf et al.
(1999) in our treatment, using their abstraction of spatial weights styles.

Once the list of sets of neighbours for our study area is established, we
proceed to assign spatial weights to each relationship. If we know little about
the assumed spatial process, we try to avoid moving far from the binary
representation of a weight of unity for neighbours (Bavaud, 1998), and zero
otherwise. In this section, we review the ways that weights objects — listw
objects — are constructed; the class is an old-style class as described on p. 24.
Next, the conversion of these objects into dense and sparse matrix represen-
tations will be shown, concluding with functions for importing and exporting
neighbour and weights objects.

The nb21istw function takes a neighbours list object and converts it into a
weights object. The default conversion style is W, where the weights for each
areal entity are standardised to sum to unity; this is also often called row
standardisation. The print method for 1listw objects shows the character-
istics of the underlying neighbours, the style of the spatial weights, and the
spatial weights constants used in calculating tests of spatial autocorrelation.
The neighbours component of the object is the underlying nb object, which
gives the indexing of the weights component.
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> SyO_lw_W <- nb2listw(Sy0O_nb)
> Sy0_Iw_W

Characteristics of weights list object:
Neighbour list object:

Number of regions: 63

Number of nonzero links: 346
Percentage nonzero weights: 8.717561
Average number of links: 5.492063

Weights style: W
Weights constants summary:

n nn SO S1 S2
W 63 3969 63 24.78291 258.564

> names (SyO_1w_W)
[1] "style" "neighbours" "weights"
> names (attributes (SyO_lw_W))

[1] "names" "class" "region.id" "call" "GeoDa"

For style="W", the weights vary between unity divided by the largest and
smallest numbers of neighbours, and the sums of weights for each areal entity
are unity. This spatial weights style can be interpreted as allowing the calcu-
lation of average values across neighbours. The weights for links originating
at areas with few neighbours are larger than those originating at areas with
many neighbours, perhaps boosting areal entities on the edge of the study
area unintentionally. This representation is no longer symmetric, but is sim-
ilar to symmetric — this matters as we see below in Sect.9.4.1.1.

> 1/rev(range(card (SyO_lw_W$neighbours)))
[1] 0.1111111 1.0000000
> summary(unlist (SyO_lw_W$weights))

Min. 1st Qu. Median Mean 3rd Qu. Max.
0.1111 0.1429 0.1667 0.1821 0.2000 1.0000

> summary (sapply (SyO_lw_W$weights, sum))

Min. 1st Qu. Median Mean 3rd Qu. Max.
1 1 1 1 1 1

Setting style="B" — ‘binary’ — retains a weight of unity for each neighbour
relationship, but in this case, the sums of weights for areas differ according
to the numbers of neighbour areas have.

> SyO0_lw_B <- nb2listw(SyO_nb, style = "B")
> summary(unlist (SyO_lw_B$weights))

Min. 1st Qu. Median Mean 3rd Qu. Max.
1 1 1 1 1 1
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> summary (sapply (SyO_lw_B$weights, sum))

Min. 1st Qu. Median Mean 3rd Qu. Max.
1.000 4.500 6.000 5.492 6.500 9.000

The glist argument can be used to pass a list of vectors of general weights
corresponding to the neighbour relationships to nb21istw. Say that we believe
that the strength of neighbour relationships attenuates with distance, one
of the cases considered by Cliff and Ord (1981, pp. 17-18) and O’Sullivan
and Unwin (2010, pp. 200-204) provide a similar discussion. We could set the
weights to be proportional to the inverse distance between points representing
the areas, using nbdists to calculate the distances for the given nb object.
Using lapply to invert the distances, we can obtain a different structure of
spatial weights from those above. If we have no reason to assume any more
knowledge about neighbour relations than their existence or absence, this step
is potentially misleading. If we do know, on the other hand, that migration
or commuting flows describe the spatial weights’ structure better than the
binary alternative, it may be worth using them as general weights; there may,
however, be symmetry problems, because such flows — unlike inverse distances
— are only rarely symmetric.

> dsts <- nbdists(SyO_nb, coordinates(Syracuse))

> idw <- lapply(dsts, function(x) 1/(x/1000))

> SyO_lw_idwB <- nb2listw(SyO_nb, glist = idw, style = "B")
> summary (unlist (SyO_lw_idwB$weights))

Min. 1st Qu. Median Mean 3rd Qu. Max.
0.3886 0.7374 0.9259 0.9963 1.1910 2.5270

> summary (sapply (SyO_lw_idwB$weights, sum))

Min. 1st Qu. Median Mean 3rd Qu. Max.
1.304 3.986 5.869 5.471 6.737 9.435

Figure 9.3 shows three representations of spatial weights for Syracuse dis-
played as matrices. The style="W" image on the left is evidently asymmetric,
with darker colours showing larger weights for areas with few neighbours. The
other two panels are symmetric, but express different assumptions about the
strengths of neighbour relationships.

The final argument to nb21listw allows us to handle neighbour lists with
no-neighbour areas. It is not obvious that the weight representation of the
empty set is zero — perhaps it should be NA, which would lead to problems
later.

For this reason, the default value of the argument is zero.policy=FALSE,
leading to an error when given an nb argument with areas with no neigh-
bours. Setting the argument to TRUE permits the creation of the spatial
weights object, with zero weights. The zero.policy argument will subse-
quently need to be used in each function called, unless set TRUE for the current
R session with set.ZeroPolicyOption(TRUE). The contrast between the set-
based understanding of neighbours and conversion to a matrix representation
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Fig. 9.3 Three spatial weights representations for Syracuse

is discussed by Bivand and Portnov (2004), and boils down to whether the
product of a no-neighbour area’s weights and an arbitrary n-vector should
be a missing value or numeric zero. As we see later (p. 279), keeping the
no-neighbour areal entities raises questions about the relevant size of n when
testing for autocorrelation, among other issues.

> Sy0_lw_D1 <- nb2listw(Syll_nb, style = "B")
Error in nb2listw(Syli_nb, style = "B") : Empty neighbour sets found

> Sy0_lw_D1 <- nb2listw(Sy1l_nb, style = "B", zero.policy = TRUE)
> print(SyO_1w_D1, zero.policy = TRUE)

Characteristics of weights list object:
Neighbour list object:

Number of regions: 63

Number of nonzero links: 230
Percentage nonzero weights: 5.794911
Average number of links: 3.650794

2 regions with no links:

154 168

Weights style: B

Weights constants summary:
n =nn SO S1 82

B 61 3721 230 460 4496

The parallel problem of data sets with missing values in variables but
with fully specified spatial weights is approached through the subset.listw
method, which re-generates the weights for the given subset of areas, for
example given by complete.cases. Knowing which observations are incom-
plete, the underlying neighbours and weights can be subsetted in some cases,
with the aim of avoiding the propagation of NA values when calculating spa-
tially lagged values. Many tests and model fitting functions can carry this
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out internally if the appropriate argument flag is set, although the careful
analyst will prefer to subset the input data and the weights before testing or
modelling.

9.2.3 Handling Spatial Weights Objects

There are several contributed packages providing support for sparse matrices,
among which Matrix, is a recommended package. The as_dgRMatrix_listw
wrapper converts a listw object to the Matrix sorted compressed row-
oriented form sparse matrix, as a dgRMatrix object, a subclass of the virtual
RsparseMatrix class. It is easier to make a row-oriented sparse matrix from a
spatial weights object as the weights are themselves row-oriented. A function
that is used a good deal within testing and model fitting functions is 1istw2U,
which returns a symmetric 1istw object representing the %(W +WT) spatial
weights matrix.

Neighbour and weights objects produced in other software can be imported
into R without difficulty, and such objects can be exported to other software
too. As examples, some files have been generated in GeoDa? from the Syra-
cuse census tracts written out as a shapefile, with the centroid used here
stored in the data frame. The first two are for contiguity neighbours, using
the queen and rook criteria, respectively. These so-called GAL-format files
contain only neighbour information, and are described in detail in the help
file accompanying the function read.gal.

> Sy14_nb <- read.gal("Sy_GeoDal.GAL")
> isTRUE(all.equal(SyO_nb, Syl4_nb, check.attributes = FALSE))

[1] TRUE

The write.nb.gal function is used to write GAL-format files from nb
objects. GeoDa also makes GWT-format files, described in the GeoDa docu-
mentation and the help file, which also contain distance information for the
link between the areas, and are stored in a three-column sparse representa-
tion. They can be read using read.gwt2nb, here for a four-nearest-neighbour
scheme, and only using the neighbour links.

> Sy16_nb <- read.gwt2nb("Sy_GeoDa4.GWT")
> isTRUE(all.equal(Sy10_nb, Sy16_nb, check.attributes = FALSE))

[1] TRUE

A similar set of functions is available for exchanging spatial weights with
the Spatial Econometrics Library.* The sparse representation of weights is
similar to the GWT-format and can be imported using read.dat2listw.

3 http://geodacenter.asu.edu/, Anselin et al. (2006).
4 http://www.spatial-econometrics.com
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Export to three different formats goes through the listw2sn function,
which converts a spatial weights object to a three-column sparse represen-
tation. The output data frame can be written as a GWT-format file with
write.sn2gwt or as a text representation of a sparse matrix for Matlab™ with
write.sn2dat. Files written using write.sn2gwt may be read into Stata™
with spmat import W using. There is a function called 1istw2WB for
creating a list of spatial weights for WinBUGS, to be written to file using
dput. For neighbour objects, nb2WB may be used, setting all weights to unity.
In a similar way, a neighbour object may be exported to file with nb2INLA,
in order to pass data to the graph argument for the "bym" model in fitting
using inla. It is also possible to use the nb2gra in the BayesX package to
convert nb objects to the gra graph format; the model estimation methods
using these objects are discussed in Chap. 10.

The mat2listw can be used to reverse the process, when a weights matrix
has been read into R, and needs to be made into a neighbour and weights
list object. Unfortunately, this function does not set the style of the listw
object to a known value, using M to signal this lack of knowledge. It is then
usual to rebuild the 1istw object, treating the neighbours component as an
nb object, the weights component as a list of general weights and setting
the style in the nb21istw function directly. It was used for the initial import
of the eight-county contiguities, as shown in detail on the NY_data help page
provided with spdep.

Finally, there is a function nb21lines to convert neighbour lists into Spa-
tiallLinesDataFrame objects, given point coordinates representing the areas.
This allows neighbour objects to be plotted in an alternative way, and if need
be, to be exported as shapefiles.

9.2.4 Using Weights to Simulate Spatial
Awutocorrelation

In Fig.9.3, use was made of listw2mat to turn a spatial weights object into
a dense matrix for display. The same function is used for constructing a
dense representation of the (I — pW) matrix to simulate spatial autocor-
relation within the invIrW function, where W is a weights matrix, p is
a spatial autocorrelation coefficient, and I is the identity matrix. This ap-
proach was introduced by Cliff and Ord (1973, pp. 146-147), and does not
impose strict conditions on the matrix to be inverted (only that it be non-
singular), and only applies to simulations from a simultaneous autoregressive
process. The underlying framework for the covariance representation used
here — simultaneous autoregression — will be presented in Sect.9.4.1.1.

Starting with a vector of random numbers corresponding to the number
of census tracts in Syracuse, we use the row-standardised contiguity weights
to introduce autocorrelation.
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Fig. 9.4 Simulating spatial autocorrelation: spatial lag plots, showing a locally
weighted smoother line

set.seed(987654)

n <- length(SyO_nb)

uncorr_x <- rnorm(n)

rho <- 0.5

autocorr_x <- invIrW(SyO_lw_W, rho) 7J*J, uncorr_x

vV V.V Vv Vv

The outcome is shown in Fig. 9.4, where the spatial lag plot of the original,
uncorrelated variable contrasts with that of the autocorrelated variable, which
now has a strong positive relationship between tract values and the spatial
lag — here the average of values of neighbouring tracts.

The lag method for listw objects creates ‘spatial lag’ values: lag(y;) =
ZjeNi w;;y; for observed values y;; Nj is the set of neighbours of 7. If the
weights object style is row-standardisation, the lag(y;) values will be averages
over the sets of neighbours for each i, rather like a moving window defined
by N; and including values weighted by w;;.

Analysing areal data is crucially dependent on the construction of the spa-
tial weights, which is why it has taken some time to describe the breadth of
choices facing the researcher. We can now go on to test for spatial autocorre-
lation, and to model using assumptions about underlying spatial processes.

9.3 Testing for Spatial Autocorrelation

Now that we have a range of ways of constructing spatial weights, we can
start using them to test for the presence of spatial autocorrelation. Before
doing anything serious, it would be very helpful to review the assumptions
being made in the tests; we will be using Moran’s I as an example, but
the consequences apply to other tests too. As Schabenberger and Gotway
(2005, pp. 19-23) explain clearly, tests assume that the mean model of the
data removes systematic spatial patterning from the data. If we are examin-
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ing ecological data, but neglect environmental drivers such as temperature,
precipitation, or elevation, we should not be surprised if the data seem to
display spatial autocorrelation (for a discussion, see Bivand, 2008, pp. 9-15).
Such misspecification of the mean model is not at all uncommon, and may
be unavoidable where observations on variables needed to specify it correctly
are not available. In fact, Cressie (1993, p.442) only discusses the testing of
residual autocorrelation, and then very briefly, preferring to approach auto-
correlation through modelling.

Another issue that can arise is that the spatial weights we use for testing
are not those that generated the autocorrelation — our chosen weights may;,
for example not suit the actual scales of interaction between areal entities.
This is a reflection of misspecification of the model of the variance of the
residuals from the mean model, which can also include making distributional
assumptions that are not appropriate for the data, for example assuming
homoskedasticity or regular shape parameters (for example, skewness and
kurtosis). Some of these can be addressed by transforming the data and by
using weighted estimation, but in any case, care is needed in interpreting ap-
parent spatial autocorrelation that may actually stem from misspecification.

The use of global tests for spatial autocorrelation is covered in much more
detail than the construction of spatial weights in the spatial data analy-
sis texts that we are tracking. Waller and Gotway (2004, pp.223-236) fol-
low up the problem of mistaking the misspecification of the mean model
for spatial autocorrelation. This is less evident in Fortin and Dale (2005,
pp- 122-132), Ward and Gleditsch (2008, pp. 23-24), Chun and Griffith (2013,
pp-9-14), and O’Sullivan and Unwin (2010, pp. 199-211). Banerjee et al.
(2004, pp.71-73) are, like Cressie (1993), more concerned with modelling
than testing.

We begin with the simulated variable for the Syracuse census tracts (see
Sect.9.2.4). Since the input variable is known to be drawn at random from
the Normal distribution, we can manipulate it to see what happens to test
results under different conditions. The test to be used in this introductory
discussion is Moran’s I, which is calculated as a ratio of the product of the
variable of interest and its spatial lag, with the cross-product of the variable
of interest, and adjusted for the spatial weights used:

_ n Dic 21 Wi (Yi — 9) (Y5 — 9)
>ic1 Z?:l Wi Y1 (i — 9)? 7

where y; is the ith observation, § is the mean of the variable of interest, and
wy; is the spatial weight of the link between ¢ and j. Centring on the mean is
equivalent to asserting that the correct model has a constant mean, and that
any remaining patterning after centring is caused by the spatial relationships
encoded in the spatial weights.

The results for Moran’s I are collated in Table 9.1 for five settings. The
first column contains the observed value of I, the second is the expectation,
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I E(I) var(I)  St. deviate p-value
uncorr_x —0.03329 —0.01613  0.00571 —0.227 0.59
autocorr_x 0.2182 —0.0161 0.0057 3.1  0.00096
autocorr_x k=1 0.1921 —0.0161 0.0125 1.86 0.031
trend_x 0.23747  —0.01613  0.00575 3.34  0.00041
Im(trend_x ~ et) —0.0538 —0.0309 0.0054 —0.312 0.62

Table 9.1 Moran’s I test results for five different data generating processes

which is —1/(n — 1) for the mean-centred cases, the third the variance of the
statistic under randomisation, next the standard deviate (I — E(I))/+/var(I),
and finally the p-value of the test for the alternative that I > E(I). The
test results are for the uncorrelated case first (uncorr_x) — there is no trace
of spatial dependence with these weights. Even though a random drawing
could show spatial autocorrelation, we would be unfortunate to find a pattern
corresponding to our spatial weights by chance for just one draw. When the
spatially autocorrelated variable is tested (autocorr_x), it shows, as one
would expect, a significant result for these spatial weights. If we use spatial
weights that differ from those used to generate the spatial autocorrelation
(autocorr_x k=1), the value of I falls, and although it is marginally sig-
nificant, it is worth remembering that, had the generating process been less
strong, we might have come to the wrong conclusion based on the choice of
spatial weights not matching the actual generating process.

> moran_u <- moran.test(uncorr_x, listw = SyO_lw_W)

> moran_a <- moran.test (autocorr_x, listw = SyO_lw_W)

> moran_al <- moran.test(autocorr_x, listw = nb2listw(Sy9_nb,
+ style = "W"))

The final two rows of Table 9.1 show what can happen when our as-
sumption of a constant mean is erroneous (Schabenberger and Gotway, 2005,
pp- 22-23). Introducing a gentle trend rising from west to east into the uncor-
related random variable, we have a situation in which there is no underlying
spatial autocorrelation, just a simple linear trend. If we assume a constant
mean, we reach the wrong conclusion shown in the fourth row of the table
(trend_x). The final row shows how we get back to the uncorrelated residuals
by including the trend in the mean, and again have uncorrelated residuals
(Im(trend_x ~ et)).

> et <- coords[, 1] - min(coords[, 1])

> trend_x <- uncorr_x + 0.00025 * et

> moran_t <- moran.test(trend_x, listw = SyO_lw_W)

> moran_t1 <- lm.morantest(lm(trend_x ~ et), listw = SyO_lw_W)

This shows how important it can be to understand that tests for spatial
autocorrelation can also react to a misspecified model of the mean, and that
the omission of a spatially patterned variable from the mean function will
‘look like’ spatial autocorrelation to the tests.
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9.3.1 Global Tests

Moran’s I — moran.test — is perhaps the most common global test, and
for this reason we continue to use it here. Other global tests implemented
in the spdep package include Geary’s C' (geary.test()), the global Getis-
Ord G (globalG.test()), and the spatial general cross product Mantel test,
which includes Moran’s I, Geary’s C, and the Sokal variant of Geary’s C' as
alternative forms (sp.mantel.mc()). All these are for continuous variables,
with moran.test () having an argument to use an adjustment for a ranked
continuous variable, that is where the metric of the variable is by the ranks
of its values rather than the values themselves. There are also join count
tests for categorical variables, with the variable of interest represented as
a factor (joincount.test() for same-colour joins, joincount.multi() for
same-colour and different colour joins).

The values of these statistics may be of some interest in themselves, but
are not directly interpretable. The approach taken most generally is to stan-
dardise the observed value by subtracting the analytical expected value, and
dividing the difference by the square root of the analytical variance for the
spatial weights used, for a set of assumptions. The result is a standard deviate,
and is compared with the Normal distribution to find the probability value
of the observed statistic under the null hypothesis of no spatial dependence
for the chosen spatial weights — most often the test is one-sided, with an al-
ternative hypothesis of the observed statistic being significantly greater than
its expected value.

As we see, outcomes can depend on the choices made, for example the
style of the weights and to what extent the assumptions made are satisfied.
It might seem that Monte Carlo or equivalently bootstrap permutation-based
tests, in which the values of the variable of interest are randomly assigned to
spatial entities, would provide protection against errors of inference. In fact,
because tests for spatial autocorrelation are sensitive to spatial patterning
in the variable of interest from any source, they are not necessarily — as we
saw above — good guides to decide what is going on in the data generation
process. Parametric bootstrapping or tests specifically tuned to the setting —
or better specification of the variable of interest — are sometimes needed.

A further problem for which there is no current best advice is how to
proceed if some areal entities have no neighbours. By default, test functions
in spdep do not accept spatial weights with no-neighbour entities unless the
zero.policy argument is set to TRUE. But even if the analyst accepts the
presence of rows and columns with only zero entries in the spatial weights
matrix, the correct size of n can be taken as the number of observations, or
may be reduced to reflect the fact that some of the observations are effec-
tively being ignored. By default, n is adjusted, but the adjust.n argument
may be set to FALSE. If n is not adjusted, for example for Moran’s I, the
absolute value of the statistic will increase, and the absolute value of its ex-
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pectation and variance will decrease. When measures of autocorrelation were
developed, it was generally assumed that all entities would have neighbours,
so what one should do when some do not, is not obvious. The problem is not
dissimilar to the choice of variogram bin widths and weights in geostatistics
(Sect. 8.4.3).

We have already used the New York state eight-county census tract data
set for examining the construction of neighbour lists and spatial weights.
Now we introduce the data themselves, based on Waller and Gotway (2004,
pp. 98, 345-353). There are 281 census tract observations, including as we
have seen sparsely populated rural areas contrasting with dense, small, ur-
ban tracts. The numbers of incident leukaemia cases are recorded by tract,
aggregated from census block groups, but because some cases could not be
placed, they were added proportionally to other block groups, leading to
non-integer counts. The counts are for the 5 years 1978-1982, while census
variables, such as the tract population, are just for 1980. Other census vari-
ables are the percentage aged over 65, and the percentage of the population
owning their own home. Exposure to TCE waste sites is represented as the
logarithm of 100 times the inverse of the distance from the tract centroid to
the nearest site. We return to these covariates in following sections.

The first example is of testing the number of cases by census tract (fol-
lowing Waller and Gotway, 2004, p. 231) for autocorrelation using the default
spatial weights style of row standardisation, and using the analytical randomi-
sation assumption in computing the variance of the statistic. The outcome,
as we see, is that the spatial patterning of the variable of interest is signifi-
cant, with neighbouring tracts very likely to have similar values for whatever
reason.

> moran.test (NY8$Cases, listw = nb2listw(NY_nb))

Moran's I test under randomisation

data: NY8$Cases
weights: nb2listw(NY_nb)

Moran I statistic standard deviate = 3.978, p-value = 3.477e-05
alternative hypothesis: greater
sample estimates:
Moran I statistic Expectation Variance
0.146883 -0.003571 0.001431

Changing the style of the spatial weights to make all weights equal and
summing to the number of observations, we see that the resulting probability
value is reduced about 20 times — we recall that row-standardisation favours
observations with few neighbours, and that styles ‘B’, ‘C’, and ‘U’ ‘weight
up’ observations with many neighbours. In this case, style ‘S’ comes down
between ‘C’> and ‘W’.
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> lw_B <- nb2listw(NY_nb, style = "B")
> moran.test (NY8$Cases, listw = lw_B)

Moran's I test under randomisation

data: NY8$Cases
weights: 1w_B

Moran I statistic standard deviate = 3.186, p-value = 0.0007207
alternative hypothesis: greater
sample estimates:
Moran I statistic Expectation Variance
0.110387 -0.003571 0.001279

By default, moran.test uses the randomisation assumption, which dif-
fers from the simpler normality assumption by introducing a correction term
based on the kurtosis of the variable of interest (here 3.63). When the kurtosis
value corresponds to that of a normally distributed variable, the two assump-
tions yield the same variance, but as the variable departs from normality, the
randomisation assumption compensates by increasing the variance and de-
creasing the standard deviate. In this case, there is little difference and the
two return similar outcomes.

> moran.test (NY8$Cases, listw = lw_B, randomisation = FALSE)

Moran's I test under normality

data: NY8$Cases
weights: 1w_B

Moran I statistic standard deviate = 3.183, p-value = 0.0007301
alternative hypothesis: greater
sample estimates:
Moran I statistic Expectation Variance
0.110387 -0.003571 0.001282

It is useful to show here that the standard test under normality is in
fact the same test as the Moran test for regression residuals for the model,
including only the intercept. Making this connection here shows that we could
introduce additional variables on the right-hand side of our model, over and
above the intercept, and potentially other ways of handling misspecification.

> 1lm.morantest(lm(Cases ~ 1, NY8), listw = 1lw_B)

Global Moran's I for regression residuals

data:
model: 1m(formula = Cases ~ 1, data = NY8)
weights: 1w_B

Moran I statistic standard deviate = 3.183, p-value = 0.0007301

alternative hypothesis: greater

sample estimates:

Observed Moran's I Expectation Variance
0.110387 -0.003571 0.001282
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Using the same construction, we can also use a Saddlepoint approximation
rather than the analytical normal assumption (Tiefelsdorf, 2002), and an ex-
act test (Tiefelsdorf, 1998, 2000; Hepple, 1998; Bivand et al., 2009). These
methods are substantially more demanding computationally, and were origi-
nally regarded as impractical. For moderately sized data sets such as the one
we are using, however, need less than double the time required for reaching
a result. In general, exact and Saddlepoint methods make little difference to
outcomes for global tests when the number of spatial entities is not small,
as here, with the probability value only changing by a factor of 2. We see
later that the impact of differences between the normality assumption and
the Saddlepoint approximation and exact test is stronger for local indicators
of spatial association.

> Im.morantest.sad(Ilm(Cases ~ 1, NY8), listw = 1lw_B)

Saddlepoint approximation for global Moran's I
(Barndorff-Nielsen formula)

data:
model:1lm(formula = Cases ~ 1, data = NY8)
weights: 1w_B

Saddlepoint approximation = 2.993, p-value = 0.001382
alternative hypothesis: greater
sample estimates:
Observed Moran's I
0.1104

> 1lm.morantest.exact(lm(Cases ~ 1, NY8), listw = 1lw_B)

Global Moran's I statistic with exact p-value

data:
model:1lm(formula = Cases ~ 1, data = NY8)
weights: 1w_B

Exact standard deviate = 2.992, p-value = 0.001384
alternative hypothesis: greater

sample estimates:

[1] 0.1104

We can also use a Monte Carlo test, a permutation bootstrap test, in
which the observed values are randomly assigned to tracts, and the statistic of
interest computed nsim times. Since, in the global case in contrast to the local,
we have enough observations and can repeat this permutation potentially very
many times without repetition.

> set.seed(1234)
> bperm <- moran.mc(NY8$Cases, listw = lw_B, nsim = 999)
> bperm

Monte-Carlo simulation of Moran's I
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data: NY8$Cases
weights: 1w_B
number of simulations + 1: 1000

statistic = 0.1104, observed rank = 998, p-value = 0.002
alternative hypothesis: greater

Waller and Gotway (2004, p.231) also include a Poisson constant risk
parametric bootstrap assessment of the significance of autocorrelation in the
case counts. The constant global rate r is calculated first, and used to create
expected counts for each census tract by multiplying by the population.

r <- sum(NY8$Cases)/sum(NYS8$POPS)

rni <- r * NY8$POP8

CR <- function(var, mle) rpois(length(var), lambda = mle)

MoranI.pboot <- function(var, i, listw, n, SO, ...) {
return(moran(x = var, listw = listw, n = n, SO = S0)$I)

F

set.seed(1234)

vV + + VvV VvVvy

> boot2 <- boot(NY8$Cases, statistic = MoranI.pboot,

+ R = 999, sim = "parametric", ran.gen = CR,

+ listw = 1w_B, n = length(NY8$Cases), SO = Szero(lw_B),
+ mle = rni)

> pnorm((boot2$t0 - mean(boot2$t))/sd(boot2$t[, 1]), lower.tail = FALSE)

[1] 0.1472

The expected counts can also be expressed as the fitted values of a null
Poisson regression with an offset set to the logarithm of tract population
— with a log-link, this shows the relationship to generalised linear models
(because Cases are not all integer, warnings are generated):

> rni <- fitted(glm(Cases ~ 1 + offset(log(POP8)), data = NY8,
+ family = "poisson"))

These expected counts rni are fed through to the lambda argument
to rpois to generate the synthetic data sets by sampling from the Pois-
son distribution. The output probability value is calculated from the same
observed Moran’s I minus the mean of the simulated I values, and divided by
their standard deviation. Figure 9.5 corresponds to Waller and Gotway (2004,
p.232, Fig. 7.8), with the parametric simulations shifting the distribution of
Moran’s I rightwards, because it is taking the impact of the heterogeneous
tract populations into account.

There is a version of Moran’s I adapted to use an Empirical Bayes rate by
Assungao and Reis (1999) that, unlike the rate results above, shrinks extreme
rates for tracts with small populations at risk towards the rate for the area
as a whole — it also uses Monte Carlo methods for inference:

> set.seed(1234)
> EBImoran.mc(n = NY8$Cases, x = NYS8$POPS, listw = nb2listw(NY_nb,
+ style = "B"), nsim = 999)
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Fig. 9.5 Histograms of simulated values of Moran’s I under random permutations
of the data and parametric samples from constant risk expected values; the observed
value of Moran’s I is marked by a vertical line

Monte-Carlo simulation of Empirical Bayes Index

data: cases: NY8$Cases, risk population: NY8$POP8
weights: nb2listw(NY_nb, style = "B")
number of simulations + 1: 1000

statistic = 0.0735, observed rank = 980, p-value = 0.02
alternative hypothesis: greater

The results for the Empirical Bayes rates suggest that one reason for the
lack of significance of the parametric bootstrapping of the constant risk
observed and expected values could be that unusual and extreme values
were observed in tracts with small populations. Once the rates have been
smoothed, some global autocorrelation is found.

Another approach is to plot and tabulate values of a measure of spa-
tial autocorrelation for higher orders of neighbours or bands of more distant
neighbours where the spatial entities are points, as discussed by Borcard et al.
(2011, pp. 232-236). The spdep package provides the first type as a wrapper
to nblag and moran.test, so that here the first-order contiguous neighbours
we have used until now are ‘stepped out’ to the required number of orders.
Figure 9.6 shows the output plot in the left panel, and suggests that second-
order neighbours are also positively autocorrelated (although the probability
values should be adjusted for multiple comparisons).

> cor8 <- sp.correlogram(neighbours = NY_nb, var = NY8$Cases,
+ order = 8, method = "I", style = "C")
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Fig. 9.6 Correlograms: (left) values of Moran’s I for eight successive lag orders of
contiguous neighbours; (right) values of Moran’s I for a sequence of distance band
neighbour pairs

The right panel in Fig.9.6 presents the output of the correlog function
in the pgirmess package by Patrick Giraudoux; the function is a wrapper for
dnearneigh and moran.test. The function automatically selects distance
bands of almost 10 km, spanning the whole study area. In this case, the first
two bands of 0-10 and 10-20km have significant values.

> library(pgirmess)
> corD <- correlog(coordinates(NY8), NY8$Cases, method = "Moran")

9.3.2 Local Tests

Global tests for spatial autocorrelation are calculated from the local rela-
tionships between the values observed at a spatial entity and its neighbours,
for the neighbour definition chosen. Because of this, we can break global
measures down into their components, and by extension, construct localised
tests intended to detect ‘clusters’ — observations with very similar neigh-
bours — and ‘hotspots’ — observations with very different neighbours. These
are discussed briefly by Schabenberger and Gotway (2005, pp. 23-25), and at
greater length by O’Sullivan and Unwin (2010, pp. 216-226), Waller and Got-
way (2004, pp. 236-242), Chun and Griffith (2013, pp. 94-98) and Fortin and
Dale (2005, pp. 153-159). They are covered in some detail by Lloyd (2007,
pp. 65-70) in a book concentrating on local models; further examples are
given by Bivand (2010, pp. 236-244).

First, let us examine a Moran scatterplot of the leukaemia case count vari-
able; for a discussion of Moran scatterplots, see Ward and Gleditsch (2008,
pp- 24-27). The plot (shown in Fig.9.7) by convention places the variable of
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Fig. 9.7 (Left) Moran scatterplot of leukaemia incidence; (right) tracts with influ-
ence by Moran scatterplot quadrant

interest on the x-axis, and the spatially weighted sum of values of neighbours
— the spatially lagged values — on the y-axis. Global Moran’s [ is a linear
relationship between these and is drawn as a slope. The plot is further parti-
tioned into quadrants at the mean values of the variable and its lagged values:
low—low, low-high, high-low, and high-high.

> moran.plot (NY8$Cases, listw = nb2listw(NY_nb, style = "C"))

Since global Moran’s I is, like similar correlation coefficients, a linear re-
lationship, we can also apply standard techniques for detecting observations
with unusually strong influence on the slope. Specifically, moran.plot calls
influence.measures on the linear model of lm(wx ~ x) providing the slope
coefficient, where wx is the spatially lagged value of x. This means that we can
see whether particular local relationships are able to influence the slope more
than proportionally. The map in the right panel of Fig. 9.7 shows tracts with
significant influence (using standard criteria) coded by their quadrant in the
Moran scatterplot.

Local Moran’s I; values are constructed as the n components summed to
reach global Moran’s I:

;- Wi 93wy~ 9)
i= S T ’

n
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where once again we assume that the global mean 3 is an adequate repre-
sentation of the variable of interest y. The two components in the numera-
tor, (y; — y) and Z?Zl w;j(y; — ¥), appear without centring in the Moran
scatterplot.

As with the global statistic, the local statistics can be tested for divergence
from expected values, under assumptions of normality, and randomisation
analytically, and using Saddlepoint approximations and exact methods. The
two latter methods can be of importance because the number of neighbours
of each observation is very small, and this in turn may make the adoption
of the normality assumption problematic. Using numerical methods, which
would previously have been considered demanding, the Saddlepoint approxi-
mation or exact local probability values can be found in well under 10 s, about
20 times slower than probability values based on normality or randomisation
assumptions, for this moderately sized data set.

Trying to detect residual local patterning in the presence of global spatial
autocorrelation is difficult. For this reason, results for local dependence are
not to be seen as ‘absolute’, but are conditioned at least by global spatial
autocorrelation, and more generally by the possible influence of spatial data
generating processes at a range of scales from global through local to depen-
dence not detected at the scale of the observations.

> Iml <- localmoran(NY8$Cases, listw = nb2listw(NY_nb,

+ style = "C"))

> Im2 <- as.data.frame(localmoran.sad(Ilm(Cases ~ 1, NY8),
+ nb = NY_nb, style = "C"))

> Im3 <- as.data.frame(localmoran.exact(lm(Cases ~ 1, NY8),
+ nb = NY_nb, style = "C"))

Waller and Gotway (2004, p.239) extend their constant risk hypothesis
treatment to local Moran’s I;, and we can follow their lead:

> r <- sum(NY8$Cases)/sum(NYS8$POP8)
> rni <- r * NY8$POP8

> lw <- nb2listw(NY_nb, style = "C")
> sdCR <- (NY8$Cases - rni)/sqrt(rni)
> wsdCR <- lag(lw, sdCR)

> I_CR <- sdCR * wsdCR

Figure 9.8 shows the two sets of values of local Moran’s I;, calculated in
the standard way and using the Poisson assumption for the constant risk
hypothesis. We already know that global Moran’s I can vary in value and in
inference depending on our assumptions — for example that inference should
take deviations from our distributional assumptions into account. The same
applies here to the assumption for the Poisson distribution that its mean and
standard deviation are equal, whereas over-dispersion seems to be a problem
in data also displaying autocorrelation. There are some sign changes between
the maps, with the constant risk hypothesis values somewhat farther from
Zero.
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Standard Constant_risk

Fig. 9.8 Local Moran’s I; values calculated directly and using the constant risk
hypothesis

We can also construct a simple Monte Carlo test of the constant risk
hypothesis local Moran’s I; values, simulating very much as in the global case,
but now retaining all of the local results. Once the simulation is completed,
we extract the rank of the observed constant risk local Moran’s I; value for
each tract, and calculate its probability value for the number of simulations
made. We use a parametric approach to simulating the local counts using
the local expected count as the parameter to rpois, because the neighbour
counts are very low and make permutation unwise. Carrying out permutation
testing using the whole data set also seems unwise, because we would then
be comparing like with unlike (Fig.9.9).

set.seed(1234)
nsim <- 999
N <- length(rni)
sims <- matrix(0, ncol = nsim, nrow = N)
for (i in 1:nsim) {
y <- rpois(N, lambda = rni)
sdCRi <- (y - rni)/sqrt(rni)
wsdCRi <- lag(lw, sdCRi)
sims[, i] <- sdCRi * wsdCRi
F
xrank <- apply(cbind(I_CR, sims), 1, function(x) rank(x)[1])
diff <- nsim - xrank
diff <- ifelse(diff > 0, diff, 0)
pval <- punif((diff + 1)/(nsim + 1))

VVVV+ ++ + +VVYVVYV

Finally, we zoom in to examine the local Moran’s I; probability values for
three calculation methods for the tracts in and near the city of Binghampton
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Fig. 9.9 Probability values for all census tracts, local Moran’s I;: normality and
randomisation assumptions, Saddlepoint approximation, exact values, and constant
risk hypothesis

(Fig.9.10). It appears that the use of the constant risk approach handles the
heterogeneity in the counts better than the alternatives. These results broadly
agree with those reached by Waller and Gotway (2004, p.241), but we note
that our underlying model is very simplistic. Finding spatial autocorrelation
is not a goal in itself, be it local or global, but rather just one step in a process
leading to a proper model. It is to this task that we now turn.

9.4 Fitting Models of Areal Data

We have seen above that the lack of independence between observations in
spatial data — spatial autocorrelation — is commonplace, and that tests are
available. In an ideal world, one would prefer to gather data in which the ob-
servations were mutually independent, and so avoid problems in inference
from analytical results. Most applied data analysts, however, do not have
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Fig. 9.10 Probability values for census tracts in and near the city of Binghampton,
local Moran’s I;: normality assumption, exact values, and constant risk hypothesis

this option, and must work with the data that are available, or that can
be collected with available technologies. It is quite often the case that obser-
vations on relevant covariates are not available at all, and that the detection
of spatial autocorrelation in data or model residuals in fact constitutes the
only way left to model the remaining variation.

In this section, we show how spatial structure in dependence between
observations may be modelled, in particular for areal data, but where
necessary also using alternative representations. We look at spatial econo-
metrics approaches separately, because the terminology used in that domain
differs somewhat from other areas of spatial statistics. In conclusion, we
mention some alternative methods, but leave Bayesian hierarchical models
until Chap. 10.

The problems we face when trying to fit models in the presence of spatial
autocorrelation are challenging, not least because the spatial autocorrelation
that we seem to have found may actually come from model misspecifica-
tion (see Sect.9.3). If this is the case, effort spent on modelling the spatial
structure would be better used on improving the model itself, perhaps by
handling heteroskedasticity, by adding a missing covariate, by revisiting the
functional form of included covariates, or by reconsidering the distributional
representation of the response variable.
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9.4.1 Spatial Statistics Approaches

Spatial dependence can be modelled in different ways using statistical mod-
els. In many cases, it is common to assume that observations are indepen-
dent and identically distributed, but this may not be the case when working
with spatial data. Observations are not independent because there may ex-
ist some correlation between neighbouring areas. It may also be difficult to
pick apart the impact of spatial autocorrelation and spatial differences in
the distribution of the observation. Cressie (1993, pp. 402-448, 458477, 548—
568) provides a very wide discussion of these approaches, including reviews
of the background for their development and comprehensive worked exam-
ples. Schabenberger and Gotway (2005, pp. 335-348) and Waller and Gotway
(2004, pp. 362-380) concentrate on the spatial autoregressive models to be
used in this section. Wall (2004) provides a useful comparative review of the
ways in which spatial processes for areal data are modelled. Banerjee et al.
(2004, pp. 79-87) also focus on these models, because the key features carry
through to hierarchical models. Fortin and Dale (2005, pp.229-233) indi-
cate that spatial autoregressive models may play a different role in ecology,
although reviews like Dormann et al. (2007) suggest that they may be of use.

In this section, we have followed Waller and Gotway (2004, Chap. 9) quite
closely, as their examples highlight issues such as transforming the response
variable and using weights to try to handle heteroskedasticity.

From a statistical point of view, it is possible to account for correlated
observations by considering a structure of the following kind in the model.
If the vector of response variables is multivariate normal, we can express the
model as follows:

Y=pu+e,

where  is the vector of area means, which can be modelled in different ways
and e is the vector of random errors, which we assume is normally distributed
with zero mean and generic variance V. The mean is often supposed to depend
on a linear term on some covariates X, so that we will substitute the mean
by XT3 in the model. On the other hand, correlation between areas is taken
into account by considering a specific form of the variance matrix V.

For the case of non-Normal variables, we could transform the original data
to achieve the desired Normality. Hence, the techniques described below can
still be applied on the transformed data. In principle, many correlation struc-
tures could be feasible in order to account for spatial correlation. However,
we focus on two approaches that are commonly used in practise, such as
SAR (Simultaneous Autoregressive)® and CAR (Conditionally Autoregres-
sive) models.

5 In spatial econometrics, the abbreviation SAR means Spatial Autoregressive, and
refers to the spatial lag model defined later in this chapter on p. 305.
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Earlier in this chapter, we took the mean of the counts of leukaemia cases
by tract as our best understanding of the data generation process, supple-
menting this with the constant risk approach to try to handle heterogeneity
coming from variations in tract populations. One of the alternatives exam-
ined by Waller and Gotway (2004, p. 348) is to take a log transformation of
the rate:

1000(Y; + 1)

K2

Z; =log

The transformed incidence proportions are not yet normal, with three out-
liers, tracts with small populations but unexpectedly large case counts. They
could be smoothed away, but may in fact be interesting, as the patterns they
display may be related to substantive covariates, such as closeness to TCE
locations. As covariates, we have used the inverse distance to the closest TCE
(PEXPOSURE), the proportion of people aged 65 or higher (PCTAGEG5P)
and the proportion of people who own their own home (PCTOWNHOME).

To set the scene, let us start with a linear model of the relationship be-
tween the transformed incidence proportions and the covariates. Note that
most model fitting functions accept Spatial*DataFrame objects as their data
argument values, and simply treat them as regular data.frame objects. This
is not by inheritance, but because the same access methods are provided (see
p. 35).

> nylm <- 1m(Z ~ PEXPOSURE + PCTAGE65P + PCTOWNHOME, data = NY8)
> summary (nylm)

Call:
Im(formula = Z ~ PEXPOSURE + PCTAGE65P + PCTOWNHOME, data = NY8)

Residuals:
Min 1Q Median 3Q Max
-1.742 -0.396 -0.033 0.335 4.140

Coefficients:

Estimate Std. Error t value Pr(>ltl)
(Intercept) -0.5173 0.1586 -3.26 0.0012 *x*
PEXPOSURE 0.0488 0.0351 1.39 0.1648
PCTAGE6G5P 3.9509 0.6055 6.53 3.2e-10 *xx*
PCTOWNHOME -0.5600 0.1703 -3.29 0.0011 **
Signif. codes: 0 “**x' 0.001 “#x' 0.01 “*' 0.056 ".' 0.1 * ' 1

Residual standard error: 0.657 on 277 degrees of freedom
Multiple R-squared: 0.193, Adjusted R-squared: 0.184
F-statistic: 22.1 on 3 and 277 DF, p-value: 7.31le-13

> NY8$lmresid <- residuals(nylm)

Figure 9.12 shows the spatial distribution of residual values for the study
area census tracts. The two census variables appear to contribute for ex-
plaining the variance in the response variable, but exposure to TCE does
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not. Moreover, although there is less spatial autocorrelation in the residuals
from the model with covariates than in the null model, it is clear that there
is information in the residuals that we should try to use. An exact test for
spatial autocorrelation in the residuals leads to similar conclusions.

Since the Moran test is intended to detect spatial autocorrelation, we can
try to fit a model taking this into account. We should not, however, forget that
the misspecifications detected by Moran’s I can have a range of causes (see
Sect. 9.3). It is also the case that if the fitted model exhibits multi-collinearity,
the results of the test may be affected because of the numerical consequences
of the model matrix not being of full rank for the expectation and variance
of the statistic.

> library (spdep)

> NYlistw <- nb2listw(NY_nb, style = "B")
> lm.morantest (nylm, NYlistw)

Global Moran's I for regression residuals

data:

model: 1lm(formula = Z ~ PEXPOSURE + PCTAGE65P + PCTOWNHOME,
data = NY8)

weights: NYlistw

Moran I statistic standard deviate = 2.638, p-value = 0.004169

alternative hypothesis: greater

sample estimates:

Observed Moran's I Expectation Variance
0.083090 -0.009891 0.001242

Before looking at model estimation in more detail, it is worth mentioning
the approximate profile-likelihood estimator introduced by Li et al. (2007)
and refined in further work (Li et al., 2012). Assuming that the variable of in-
terest has been detrended, and that the spatial weights are row-standardised,
the one-step estimator of the spatial regression parameter may yield more
comparative information than Moran’s I. For comparison, we show the max-
imum likelihood parameter estimate fitted using the same data:

> NYlistwW <- nb2listw(NY_nb, style = "W")
> aple(residuals(nylm), listw = NYlistwW)

[1] 0.2052

> spautolm(Z ~ PEXPOSURE + PCTAGE65P + PCTOWNHOME, data = NY8,
+ listw = NYlistwW)$lambda

lambda
0.2169
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9.4.1.1 Simultaneous Autoregressive Models

The SAR specification uses a regression on the values from the other areas to
account for the spatial dependence. This means that the error terms e; are
modelled so that they depend on each other in the following way:

m
e; = E bijei—i—ai.
=1

Here, ¢; are used to represent residual errors, which are assumed to be in-
dependently distributed according to a Normal distribution with zero mean
and diagonal covariance matrix Y. with elements Ugi ,i=1,...,m (the same
variance o2 is often considered though). The b;; values are used to represent
spatial dependence between areas. b;; must be set to zero so that each area
is not regressed on itself.

Note that if we express the error terms as e = B(Y — XT3) + ¢, the model
can also be expressed as

Y =XT8+B(Y - XTB) +«.
Hence, this model can be formulated in a matrix form as follows:
(I-B)(Y —-X'B) =¢,

where B is a matrix that contains the dependence parameters b;; and I is
the identity matrix of the required dimension. It is important to point out
that in order for this SAR model to be well defined, the matrix I — B must
be non-singular.

Under this model, Y is distributed according to a multivariate normal with
mean

ElY]=X"8
and covariance matrix
Var[Y] = (I — B)"'X.(I - B")~ L.

Often X. is taken to depend on a single parameter 2, so that X. = o21
and then Var[Y] simplifies to

Var[Y] = o*(I — B)"*(I - B*)"%.

It is also possible to specify Y. as a diagonal matrix of weights associated
with heterogeneity among the observations.

A useful re-parametrisation of this model can be obtained by writing
B = AW, where A is a spatial autocorrelation parameter and W is a matrix
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that represents spatial dependence — it is often assumed to be symmetric.
These structures can be chosen among those described above. With this spec-
ification, the variance of Y becomes

Var[Y] = o?(I = AW) 11 = xw™h)~L.

These models can be estimated efficiently by maximum likelihood. In R
this can be done by using function spautolm in package spdep. The model
can be specified using a formula for the linear predictor, whilst matrix W
must be passed as a listw object. To create this object from the list of
neighbours we can use function nb2listw, which will take an object of class
nb, as explained above.

The following code shows how to fit a simultaneous autoregression to the
chosen model. We have fitted the standard model and the weighted model
using the population size in 1980 (according to the US Census) in the areas
as weights. This reproduces the example developed in Waller and Gotway
(2004, Chap.9, pp.375-379), and the reader is referred to their discussion
for more information. In the call to nb21istw, we specified style = "B" to
construct W using a binary indicator of neighbourhood.

> nysar <- spautolm(Z ~ PEXPOSURE + PCTAGE65P + PCTOWNHOME,
+ data = NY8, listw = NYlistw)
> summary (nysar)

Call:
spautolm(formula = Z ~ PEXPOSURE + PCTAGE65P + PCTOWNHOME, data = NY8,
listw = NYlistw)

Residuals:
Min 1Q Median 3Q Max
-1.56754 -0.38239 -0.02643 0.33109 4.01219

Coefficients:

Estimate Std. Error z value Pr(>|zl|)
(Intercept) -0.618193 0.176784 -3.4969 0.0004707
PEXPOSURE 0.071014 0.042051 1.6888 0.0912635
PCTAGE6G5P 3.754200 0.624722 6.0094 1.862e-09
PCTOWNHOME -0.419890 0.191329 -2.1946 0.0281930

Lambda: 0.04049 LR test value: 5.244 p-value: 0.022026
Numerical Hessian standard error of lambda: 0.01718

Log likelihood: -276.1

ML residual variance (sigma squared): 0.4139, (sigma: 0.6433)
Number of observations: 281

Number of parameters estimated: 6

AIC: 564.2

According to the results obtained it seems that there is significant spatial
correlation in the residuals because the estimated value of A is 0.0405 and
the p-value of the likelihood ratio test is 0.022. In the likelihood ratio test
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we compare the model with no spatial autocorrelation (i.e. A = 0) to the
one which allows for it (i.e. the fitted model with non-zero autocorrelation
parameter).

The proximity to a TCE seems not to be significant, although its p-value
is close to being significant at the 95 % level and it would be advisable not to
discard a possible association and to conduct further research on this. The
other two covariates are significant, suggesting that census tracts with larger
percentages of older people and with lower percentages of house owners have
higher transformed incidence rates.

Figure 9.11 shows the two components of the fitted values of the SAR
model following Cressie (1993, p.564) and Haining (2003, p. 333). Recalling
our definition of the model above as:

Y = XT84+ MW (Y — XTB) +e.

the first term X Tf3 is the aspatial trend component, while AW (Y — XT3) is
the spatial stochastic component.

Trend Stochastic
3 1.0 0.3
' L 0.5 0.2
0.0 L 0.1
L 0.0
L 05
i [
~1.0 L

Fig. 9.11 (Left): Trend component of SAR model fitted values; (right): Spatial
stochastic component of SAR model fitted values

However, this model does not account for the heterogeneous distribution
of the population by tracts beyond the correction introduced in transforming
incidence proportions. Weighted version of these models can be fitted so that
tracts are weighted proportionally to the inverse of their population size.
For this purpose, we include the parameter weights=POP8 in the call to the
function 1m.

> nylmw <- 1m(Z ~ PEXPOSURE + PCTAGE65P + PCTOWNHOME, data = NY8,
+ weights = POP8)
> summary (nylmw)
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Call:
Im(formula = Z ~ PEXPOSURE + PCTAGE65P + PCTOWNHOME, data = NY8,
weights = POP8)

Weighted Residuals:
Min 1Q Median 3Q Max
-129.07 -14.71 5.82 25.62 70.72

Coefficients:

Estimate Std. Error t value Pr(>ltl)
(Intercept) -0.7784 0.1412 -5.51 8.0e-08 x**x
PEXPOSURE 0.0763 0.0273 2.79 0.0056 **
PCTAGE6G5P 3.8566 0.5713 6.75 8.6e-11 *xx*
PCTOWNHOME -0.3987 0.1531 -2.60 0.0097 *x*
Signif. codes: 0 “**x' 0.001 “#x' 0.01 “*' 0.056 *.' 0.1 * ' 1

Residual standard error: 33.5 on 277 degrees of freedom
Multiple R-squared: 0.198, Adjusted R-squared: 0.189
F-statistic: 22.8 on 3 and 277 DF, p-value: 3.38e-13

> NY8$Ilmwresid <- residuals(nylmw)

Starting with the weighted linear model, we can see that the TCE expo-
sure variable has become significant with the expected sign, indicating that
tracts closer to the TCE sites have slightly higher transformed incidence pro-
portions. The other two covariates now also have more significant coefficients.
The right panel of Fig. 9.12 shows that information has been shifted from the
model residuals to the model itself, with little remaining spatial structure
visible on the map.

> Im.morantest (nylmw, NYlistw)

Global Moran's I for regression residuals

data:

model: 1lm(formula = Z ~ PEXPOSURE + PCTAGE65P + PCTOWNHOME,
data = NY8, weights = POP8)

weights: NYlistw

Moran I statistic standard deviate = 0.4773, p-value = 0.3166

alternative hypothesis: greater

sample estimates:

Observed Moran's I Expectation Variance
0.007533 -0.009310 0.001245

The Moran tests for regression residuals can also be used with a weighted
linear model object. The results are interesting, suggesting that the mis-
specification detected by Moran’s [ is in fact related to heteroskedasticity
more than to spatial autocorrelation. We can check this for the SAR model
too, since spautolm also takes a weights argument:
> nysarw <- spautolm(Z ~ PEXPOSURE + PCTAGE65P + PCTOWNHOME,

+ data = NY8, listw = NYlistw, weights = POP8)
> summary (nysarw)
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Fig. 9.12 (Left): Residuals from the linear model of transformed incidence propor-
tions; (right): Residuals from the weighted linear model of transformed incidence
proportions; TCE site locations shown for comparative purposes

Call:
spautolm(formula = Z ~ PEXPOSURE + PCTAGE65P + PCTOWNHOME, data = NY8,
listw = NYlistw, weights = POP8)

Residuals:
Min 1Q Median 3Q Max
-1.48488 -0.26823 0.09489 0.46552 4.28343

Coefficients:

Estimate Std. Error z value Pr(>|zl|)
(Intercept) -0.797063 0.144054 -5.5331 3.146e-08
PEXPOSURE 0.080545 0.028334 2.8428 0.004473
PCTAGE6G5P 3.816731 0.576037 6.6258 3.453e-11
PCTOWNHOME -0.380778 0.156507 -2.4330 0.014975

Lambda: 0.009564 LR test value: 0.3266 p-value: 0.56764
Numerical Hessian standard error of lambda: 0.01625

Log likelihood: -251.6

ML residual variance (sigma squared): 1104, (sigma: 33.23)
Number of observations: 281

Number of parameters estimated: 6

AIC: 515.2

The coefficients of the covariates change slightly in the new model, and all
the coefficient p-values drop substantially. In this weighted SAR fit, proxim-
ity to a TCE site becomes significant. However, there are no traces of spatial
autocorrelation left after adjusting for the heterogeneous size of the popula-



298 9 Modelling Areal Data

Trend Stochastic
R 1.0 0.3
o - 0.5 0.2
L 0.0 - 0.1
- 0.0

- -0.5

= [

-1.0 —

Fig. 9.13 (Left): Trend component of weighted SAR model fitted values; (right):
Spatial stochastic component of weighted SAR model fitted values

tion, as Fig. 9.13 shows clearly when compared with Fig.9.11, using the same
break points and colours. This suggests that the spatial variation in popula-
tion between tracts is responsible for the observed residual spatial correlation
after adjusting for covariates.

To compare both models and choose the best one, we use Akaike’s In-
formation Criterion (AIC) reported in the model summaries. The AIC is a
weighted sum of the log-likelihood of the model and the number of fitted co-
efficients; according to the criterion, better models are those with the lower
values of the AIC. Hence, the weighted model provides a better fitting since
its AIC is considerably lower. This indicates the importance of accounting
for heterogeneous populations in the analysis of this type of lattice data.

9.4.1.2 Conditional Autoregressive Models

The CAR specification relies on the conditional distribution of the spatial
error terms. In this case, the distribution of e; conditioning on e_; (the vector
of all random error terms minus e; itself) is given. Instead of the whole e_;
vector, only the neighbours of area ¢, defined in a chosen way, are used.
We represent them by e;~;. Then, a simple way of putting the conditional
distribution of e; is

2
Cij€j Og.
ei|€j~i"\’N( —, — )
i 2 Ci | Do Ci

where ¢;; are dependence parameters similar to b;;. However, specifying the
conditional distributions of the error terms does not imply that the joint
distribution exists. To have a proper distribution some constraints must be set
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on the parameters of the model. The reader is referred to Schabenberger and
Gotway (2005, pp. 338-339) for a detailed description of CAR specifications.
For our modelling purposes, the previous guidelines will be enough to obtain
a proper CAR specification in most cases.

To fit a CAR model, we can use function spautolm again. This time we
set the argument family="CAR" to specify that we are fitting this type of
models.

> nycar <- spautolm(Z ~ PEXPOSURE + PCTAGE65P + PCTOWNHOME,
+ data = NY8, family = "CAR", listw = NYlistw)
> summary (nycar)

Call:
spautolm(formula = Z ~ PEXPOSURE + PCTAGE65P + PCTOWNHOME, data = NY8,
listw = NYlistw, family = "CAR")

Residuals:
Min 1Q Median 3Q Max
-1.539732 -0.384311 -0.030646 0.335126 3.808848

Coefficients:

Estimate Std. Error z value Pr(>|zl|)
(Intercept) -0.648362 0.181129 -3.5796 0.0003442
PEXPOSURE 0.077899 0.043692 1.7829 0.0745986
PCTAGE65P 3.703830 0.627185 5.9055 3.516e-09
PCTOWNHOME -0.382789 0.195564 -1.9574 0.0503053

Lambda: 0.08412 LR test value: 5.801 p-value: 0.016018
Numerical Hessian standard error of lambda: 0.03083

Log likelihood: -275.8

ML residual variance (sigma squared): 0.4076, (sigma: 0.6384)
Number of observations: 281

Number of parameters estimated: 6

AIC: 563.7

The estimated coefficients of the covariates in the model are very similar
to those obtained with the SAR models. Nevertheless, the p-values of two
covariates, the distance to the nearest TCE and the percentage of people
owning a home, are slightly above the 0.05 threshold. The likelihood ratio test
indicates that there is significant spatial autocorrelation and the estimated
value of A is 0.0841.

Considering a weighted regression, using the population size as weights,
for the same model to account for the heterogeneous distribution of the
population completely removes the spatial autocorrelation in the data.
The coefficients of the covariates do not change much and all of them become
significant. Hence, modelling spatial autocorrelation by means of SAR or
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CAR specifications does not change the results obtained; Waller and Gotway
(2004, pp. 375-379) give a complete discussion of these results.

> nycarw <- spautolm(Z ~ PEXPOSURE + PCTAGE65P + PCTOWNHOME,
+ data = NY8, family = "CAR", listw = NYlistw, weights = POP8)
> summary (nycarw)

Call:
spautolm(formula = Z ~ PEXPOSURE + PCTAGE65P + PCTOWNHOME, data = NY8,
listw = NYlistw, weights = POP8, family = "CAR")

Residuals:
Min 1Q Median 3Q Max
-1.491042 -0.270906 0.081435 0.451556 4.198134

Coefficients:

Estimate Std. Error z value Pr(>|zl|)
(Intercept) -0.790154 0.144862 -5.4545 4.910e-08
PEXPOSURE 0.081922 0.028593 2.8651 0.004169
PCTAGEG5P 3.825858 0.577720 6.6223 3.536e-11
PCTOWNHOME -0.386820 0.157436 -2.4570 0.014010

Lambda: 0.02242 LR test value: 0.3878 p-value: 0.53343
Numerical Hessian standard error of lambda: 0.03819

Log likelihood: -251.6

ML residual variance (sigma squared): 1103, (sigma: 33.21)
Number of observations: 281

Number of parameters estimated: 6

AIC: 515.1

9.4.1.3 Fitting Spatial Regression Models

The spautolm function fits spatial regression models by maximum likelihood,
by first finding the value of the spatial autoregressive coeflicient, which max-
imises the log likelihood function for the model family chosen, and then fitting
the other coefficients by generalised least squares at that point. This means
that the spatial autoregressive coefficient can be found by line search using
optimize, rather than by optimising over all the model parameters at the
same time.

The most demanding part of the functions called to optimise the spatial
autoregressive coefficient is the computation of the Jacobian, the log deter-
minant of the n x n matrix |I — B|, or |I — AW/| in our parametrisation (for
an extended discussion, see Bivand et al., 2013). As n increases, the use of
the short-cut of

6 The fitted coefficient values of the weighted CAR model do not exactly reproduce
those of Waller and Gotway (2004, p.379), although the spatial coefficient is repro-
duced.
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n

log (11 = AW]) = log ( [(1 = A¢),

i=1

where (; are the eigenvalues of W, becomes more difficult. The default method
of method="eigen" uses eigenvalues, and can thus also set the lower and up-
per bounds for the line search for A accurately (as [1/ min;((;), 1/ max;()]),
but is not feasible for large n. It should also be noted that complex eigenval-
ues are computed for intrinsically asymmetric spatial weights matrices, and
their imaginary parts are included, so that the values of the log determinant
are correct (see Bivand et al., 2013).

Alternative approaches involve finding the log determinant of a Cholesky
decomposition of the sparse matrix (I—A\W) directly. Here it is not possible to
pre-compute eigenvalues, so one log determinant is computed for each value of
A used, but the number needed is in general not excessive, and much larger n
become feasible on ordinary computers. A number of different sparse matrix
approaches have been tried, with the use of Matrix and method="Matrix",
the one suggested currently. All of the Cholesky decomposition approaches
to computing the Jacobian require that matrix W be symmetric or at least
similar to symmetric, thus providing for weights with "W" and "S" styles
based on symmetric neighbour lists and symmetric general spatial weights,
such as inverse distance. Matrices that are similar to symmetric have the
same eigenvalues, so that the eigenvalues of symmetric W* = D'/2WD'/?
and row-standardised W = DB are the same, for symmetric binary or general
weights matrix B, and D a diagonal matrix of inverse row sums of B, d;; =
1/ 2?21 bi; (Ord, 1975, p. 125).

> nysarwM <- spautolm(Z ~ PEXPOSURE + PCTAGE65P + PCTOWNHOME,
+ data = NY8, family = "SAR", listw = NYlistw, weights = POPS8,
+ method = "Matrix")

> summary (nysarwM)

Call:
spautolm(formula = Z ~ PEXPOSURE + PCTAGE65P + PCTOWNHOME, data = NY8,
listw = NYlistw, weights = POP8, family = "SAR", method = "Matrix")

Residuals:
Min 1Q Median 3Q Max
-1.48488 -0.26823 0.09489 0.46552 4.28343

Coefficients:

Estimate Std. Error z value Pr(>|zl|)
(Intercept) -0.797063 0.144054 -5.5331 3.146e-08
PEXPOSURE 0.080545 0.028334 2.8428 0.004473
PCTAGE65P 3.816730 0.576037 6.6258 3.453e-11
PCTOWNHOME -0.380777 0.156507 -2.4330 0.014975

Lambda: 0.009564 LR test value: 0.3266 p-value: 0.56764
Numerical Hessian standard error of lambda: 0.01384
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Fig. 9.14 Log likelihood values for a range of values of A\, weighted and unweighted
SAR models; fitted spatial coefficient values and maxima shown

Log likelihood: -251.6

ML residual variance (sigma squared): 1104, (sigma: 33.23)
Number of observations: 281

Number of parameters estimated: 6

AIC: 515.2

The output from fitting the weighted SAR model using functions from the
Matrix package is identical with that from using the eigenvalues of W.

If it is of interest to examine values of the log likelihood function for a
range of values of A, the 11prof argument may be used to give the number of
equally spaced A values to be chosen between the inverse of the smallest and
largest eigenvalues for method="eigen", or a sequence of such values more
generally.

> 1/range(eigenw(NYlistw))
[1] -0.3029 0.1550

> nysar_11 <- spautolm(Z ~ PEXPOSURE + PCTAGE65P + PCTOWNHOME,

+ data = NY8, family = "SAR", listw = NYlistw, llprof = 100)
> nysarw_11 <- spautolm(Z ~ PEXPOSURE + PCTAGE65P + PCTOWNHOME,

+ data = NY8, family = "SAR", listw = NYlistw, weights = POPS8,
+ 1llprof = 100)

Figure 9.14 shows the shape of the values of the log likelihood function
along the feasible range of A for the weighted and unweighted SAR models.
We can see easily that the curves are very flat at the maxima, meaning that
we could shift A a good deal without impacting the function value much. The
figure also shows the sharp fall-off in function values as the large negative
values of the Jacobian kick in close to the ends of the feasible range.

Finally, family="SMA" for simultaneous moving average models is also
available within the same general framework, but always involves handling
dense matrices for fitting.
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> nysmaw <- spautolm(Z ~ PEXPOSURE + PCTAGE65P + PCTOWNHOME,
+ data = NY8, family = "SMA", listw = NYlistw, weights = POP8)
> summary (nysmaw)

Call:
spautolm(formula = Z ~ PEXPOSURE + PCTAGE65P + PCTOWNHOME, data = NY8,
listw = NYlistw, weights = POP8, family = "SMA")
Residuals:
Min 1Q Median 3Q Max
-1.487080 -0.268990 0.093956 0.466055 4.284087

Coefficients:

Estimate Std. Error z value Pr(>|zl|)
(Intercept) -0.795243 0.143749 -5.5321 3.163e-08
PEXPOSURE 0.080153 0.028237 2.8386 0.004531
PCTAGE65P 3.820316 0.575463 6.6387 3.165e-11
PCTOWNHOME -0.382529 0.156160 -2.4496 0.014302

Lambda: 0.009184 LR test value: 0.3077 p-value: 0.57909
Numerical Hessian standard error of lambda: 0.01652

Log likelihood: -251.6

ML residual variance (sigma squared): 1105, (sigma: 33.24)
Number of observations: 281

Number of parameters estimated: 6

AIC: 515.2

9.4.2 Spatial Econometrics Approaches

One of the attractions of spatial data analysis is the wide range of sci-
entific disciplines involved. Naturally, this leads to multiple approaches to
many kinds of analysis, including accepted ways of applying tests and
model fitting methods. It also leads to some sub-communities choosing their
own sets of tools, not infrequently diverging from other sub-communities.
During the 2003 Distributed Computational Statistics meeting, surprise
and amusement was caused by the remark that the Internet domain www.
spatial-statistics.com contains material chiefly relating to real estate re-
search. But this connection is in fact quite reasonable, as real estate generates
a lot of spatial data, and requires suitable methods. Indeed, good understand-
ing of real estate markets and financing is arguably as important to society
as a good understanding of the spatial dimensions of disease incidence.

Spatial econometrics is described by Anselin (1988, 2002), and authorita-
tively advanced by LeSage and Pace (2009), with additional comments by
Bivand (2002, 2006) with regard to doing spatial econometrics in R. While
the use of case weights, as we have seen above, has resolved a serious model
mis-specification in this public health data case, it might be more typical in
a legacy econometrics framework to test first for heteroskedasticity, and to
try to relieve it by adjusting coefficient standard errors:


www.spatial-statistics.com
www.spatial-statistics.com
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> library(Imtest)
> bptest (nylm)

studentized Breusch-Pagan test

data: nylm
BP = 9.214, df = 3, p-value = 0.02658

The Breusch-Pagan test (Johnston and DiNardo, 1997, pp. 198-200) re-
sults indicate the presence of heteroskedasticity when the residuals from the
original linear model are regressed on the right-hand-side variables — the
default test set. This might suggest the need to adjust the estimated co-
efficient standard errors using a variance—covariance matrix (Zeileis, 2004)
taking heteroskedasticity into account:

> library(sandwich)
> coeftest (nylm)

t test of coefficients:

Estimate Std. Error t value Pr(>ltl)

(Intercept) -0.5173 0.1586 -3.26 0.0012 *x*
PEXPOSURE 0.0488 0.0351 1.39 0.1648

PCTAGE65P 3.9509 0.6055 6.53 3.2e-10 **x
PCTOWNHOME -0.5600 0.1703 -3.29 0.0011 *x*

Signif. codes: 0 “**x' 0.001 “#x' 0.01 “*' 0.056 *.' 0.1 * ' 1

> coeftest(nylm, vcov = vcovHC(nylm, type = "HC4"))

t test of coefficients:

Estimate Std. Error t value Pr(>|tl)

(Intercept) -0.5173 0.1617 -3.20 0.00154 =*x*
PEXPOSURE 0.0488 0.0343 1.42 0.15622

PCTAGE65P 3.9509 0.9992 3.95 9.8e-05 **x
PCTOWNHOME -0.5600 0.1672 -3.35 0.00092 **x*

Signif. codes: 0 “**x' 0.001 “#x' 0.01 “*' 0.056 *.' 0.1 * ' 1

There are only minor changes in the standard errors, and they do not affect
our inferences.”

In spatial econometrics, Moran’s I is supplemented by Lagrange Multiplier
tests fully described in Anselin (1988, 2002) and Anselin et al. (1996). The
development of these tests, as more generally in spatial econometrics, seems
to assume the use of row-standardised spatial weights, so we move from sym-
metric binary weights used above to row-standardised similar to symmetric
weights. A key concern is to try to see whether the data generating process
is a spatial error SAR or a spatial lag SAR. The former is the SAR that we

7 Full details of the test procedures can be found in the references to the function
documentation in lmtest and sandwich.
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have already met, while the spatial lag model includes only the endogenous
spatially lagged dependent variable in the model.

> NYlistwW <- nb2listw(NY_nb, style = "W")

> res <- lm.LMtests(nylm, listw = NYlistwW, test = "all")

> tres <- t(sapply(res, function(x) c(x$statistic, x$parameter,
+ x$p.value)))

> colnames (tres) <- c("Statistic", "df", "p-value")

> printCoefmat (tres)

Statistic df p-value

LMerr 5.17 1.00 0.02
LMlag 8.54 1.00 0.00
RLMerr 1.68 1.00 0.20
RLMlag 5.056 1.00 0.02
SARMA 10.22 2.00 0.01

The robust LM tests take into account the alternative possibility, that is
the LMerr test will respond to both an omitted spatially lagged dependent
variable and spatially autocorrelated residuals, while the robust RLMerr is
designed to test for spatially autocorrelated residuals in the possible presence
of an omitted spatially lagged dependent variable. The 1m.LMtests function
here returns a list of five LM tests, which seem to point to a spatial lag
specification. Further variants have been developed to take into account both
spatial autocorrelation and heteroskedasticity, but are not yet available in R.
Again, it is the case that if the fitted model exhibits multicollinearity, the
results of the tests will be affected.

The spatial lag model takes the following form:

y =pWy+X3+e,

where y is the endogenous variable, X is a matrix of exogenous variables,
and W is the spatial weights matrix. This contrasts with the spatial Durbin
model, including the spatial lags of the covariates (independent variables)
with coefficients ~:

y = pWy + X5+ WX~ + e,
and the spatial error model:
y — AWy = X3 - A\WXS + e,
(I-XAXW)y =(I-I\W)Xg +e,
which can also be written as
y =XB+u,

u= \Wu +e.
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All these models are simultaneous autoregressive models in the sense used
in the previous section. Let us now fit a spatial lag model by maximum like-
lihood, once again finding the spatial lag coefficient by line search, then the
remaining coefficients by generalised least squares. In this case, the impli-
cation of the spatial lag model is that the incidence rates by census tract
depend on one-another directly, not a realistic hypothesis® for this data set:

> nylag <- lagsarlm(Z ~ PEXPOSURE + PCTAGE65P + PCTOWNHOME,
+ data = NY8, listw = NYlistwW)
> summary (nylag)

Call:
lagsarlm(formula = Z ~ PEXPOSURE + PCTAGE65P + PCTOWNHOME, data = NY8,
listw = NYlistwW)

Residuals:
Min 1Q Median 3Q Max
-1.626029 -0.393321 -0.018767 0.326616 4.058315

Type: lag

Coefficients: (asymptotic standard errors)
Estimate Std. Error z value Pr(>|zl)

(Intercept) -0.505343 0.155850 -3.2425 0.001185

PEXPOSURE 0.045543 0.034433 1.3227 0.185943

PCTAGE65P 3.650055 0.599219 6.0914 1.12e-09

PCTOWNHOME -0.411829 0.169095 -2.4355 0.014872

Rho: 0.2252, LR test value: 7.75, p-value: 0.0053703
Asymptotic standard error: 0.07954

z-value: 2.831, p-value: 0.0046378
Wald statistic: 8.015, p-value: 0.0046378

Log likelihood: -274.9 for lag model

ML residual variance (sigma squared): 0.41, (sigma: 0.6403)
Number of observations: 281

Number of parameters estimated: 6

AIC: 561.7, (AIC for 1m: 567.5)

LM test for residual autocorrelation

test value: 0.6627, p-value: 0.41561

> bptest.sarlm(nylag)

studentized Breusch-Pagan test

data:
BP = 7.701, df = 3, p-value = 0.05261

8 One expects the spatial lag model and its extensions to propose a hypothesis of
spillover between observations of the response variable, such as contagion or competi-
tion, which is not the case for these leukemia incidence rates; the hypothesised spatial
process is modelled by distances from TCE sites (the PEXPOSURE variable).
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The spatial econometrics model fitting functions can also use sparse matrix
techniques, but when the eigenvalue technique is used, asymptotic standard
errors are calculated for the spatial coefficient. There is a numerical snag here,
that if the variables in the model are scaled such that the other coefficients are
scaled differently from the spatial autocorrelation coefficient, the inversion of
the coefficient variance—covariance matrix may fail. The correct resolution is
to re-scale the variables, but the tolerance of the inversion function called
internally may be relaxed. In addition, an LM test on the residuals is car-
ried out, suggesting that no spatial autocorrelation remains, and a spatial
Breusch—Pagan test shows a lessening of heteroskedasticity.

The McSpatial package is a welcome addition to the selection of packages
for spatial econometrics released on CRAN; we will return to some of its
notable features later in this section. The package provides a maximum like-
lihood function using eigenvalues to estimate the spatial lag model, yielding
the same results for the coeflicients as lagsarlm. Coeflicient standard errors
differ slightly when asymptotic variances are used in lagsarlm because sarml
always uses variances taken from the numerical Hessian of the optimisation.

> library(McSpatial)

> McRes <- sarml(Z ~ PEXPOSURE + PCTAGE65P + PCTOWNHOME,

+ wmat = listw2mat (NYlistwW), eigvar = eigenw(NYlistwW),
+ print = FALSE, data = NY8)
> c(McRes$beta, rho = McRes$rho, sig2 = McRes$sig2)
(Intercept) PEXPOSURE PCTAGE65P PCTOWNHOME rho
-0.50534 0.04554 3.65007 -0.41184 0.22518
sig2
0.40998

Fitting a spatial Durbin model, a spatial lag model including the spatially
lagged explanatory variables (but not the lagged intercept when the spatial
weights are row standardised), we see that the fit is not improved significantly.

> nymix <- lagsarlm(Z ~ PEXPOSURE + PCTAGE65P + PCTOWNHOME,

+ data = NY8, listw = NYlistwW, type = "mixed")
> nymix
Call:

lagsarlm(formula = Z ~ PEXPOSURE + PCTAGE65P + PCTOWNHOME, data = NY8,
listw = NYlistwW, type = "mixed")

Type: mixed
Coefficients:
rho (Intercept) PEXPOSURE PCTAGE65P
0.17578 -0.32260 0.09039 3.61356
PCTOWNHOME 1lag.PEXPOSURE 1lag.PCTAGE65P lag.PCTOWNHOME
-0.02687 -0.05188 0.13123 -0.69950

Log likelihood: -272.7
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> anova(nymix, nylag)

Model df AIC logLik Test L.Ratio p-value
nymix 1 9563 -273 1
nylag 2 6 562 -275 2 4.37 0.224

In fitting spatial lag and spatial Durbin models, it has emerged over time
that, unlike the spatial error model, the spatial dependence in the param-
eter p feeds back, obliging analysts to base interpretation not on the fitted
parameters 3, and v where appropriate, but rather on correctly formulated
impact measures (LeSage and Pace, 2009). Discussions of impacts are given
by LeSage and Fischer (2008), LeSage and Pace (2009), Anselin and Lozano-
Gracia (2008) and Elhorst (2010), as equilibrium effects by Ward and Gled-
itsch (2008, pp.44-50), and as emanating effects by Kelejian et al. (2006),
extended in Kelejian et al. (2013); an innovative use of impacts in ecology is
given by Folmer et al. (2012).

This feedback comes from the elements of the variance—covariance matrix
of the coefficients for the maximum likelihood spatial error model linking
A and 3 being zero, 9?//(0B0\) = 0, while in the spatial lag model (and
by extension, in the spatial Durbin model), 92¢/(83dp) # 0. In the spatial
error model, for right hand side variable r, Oy;/0z;, = 5, and 0y;/0z;r =0
for i # j; in the spatial lag model, dy;/dz;, = ((I — pW)"'13,);;, where
(I — pW)~! is known to be dense (LeSage and Pace, 2009, pp. 33-42).

The variance—covariance matrix of the coefficients and the series of traces of
the powered weights matrix are the key ingredients needed to compute impact
measures for spatial lag and spatial Durbin models. An estimate of the coeffi-
cient variance—covariance matrix is needed for Monte Carlo simulation of the
impact measures, although the measures themselves may be computed with-
out an estimate of this matrix. LeSage and Pace (2009, pp.33-42, 114-115)
and LeSage and Fischer (2008) provide the background and implementation
details for impact measures.

The awkward S, (W) = ((I— pW)~11f,) matrix term needed to calculate
impact measures for the lag model, and S,.(W) = (I— pW) "1 (I8, — W+,.))
for the spatial Durbin model, may be approximated using traces of powers of
the spatial weights matrix as well as analytically. The average direct impacts
are represented by the sum of the diagonal elements of the matrix divided by
N for each exogenous variable, the average total impacts are the sum of all
matrix elements divided by N for each exogenous variable, while the average
indirect impacts are the differences between these two impact vectors.

In spdep, impacts methods are available for ML spatial lag, spatial
Durbin, and other fitted model objects including the spatially lagged response
variable. The methods use truncated series of traces using different ways of
computing the traces, here powering a sparse matrix, which goes dense, to
get exact traces. After coercing the spatial weights to a sorted compressed
column-oriented sparse matrix, a form for which many functions and methods
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are available, the trW function may be used to calculate traces, for the default
m = 30 traces:

> W <- as(as_dgRMatrix_listw(NYlistwW), "CsparseMatrix")
> trMat <- trW(W, type = "mult")
> head (trMat)

[1] 0.00 52.45 16.46 23.58 14.94 15.38

Methods for calculating impacts have been written for all relevant spatial
econometrics estimators in spdep, all supporting the same Monte Carlo test-
ing mechanism as described by LeSage and Pace (2009). This involves sam-
pling from the multivariate Normal distribution given by the fitted coefficients
and their covariance matrix, to generate distributions of the impacts. The
simulated impacts are returned as mcmc objects as defined in the coda pack-
age (Best et al., 1995), and may be shown for example using HPDinterval
for Highest Posterior Density intervals:

> set.seed(987654)
> imps <- impacts(nymix, tr = trMat, R = 1999)
> imps

Impact measures (mixed, trace):
Direct Indirect Total
PEXPOSURE 0.08913 -0.0424 0.04673
PCTAGE65P 3.64049 0.9030 4.54346
PCTOWNHOME -0.05161 -0.8297 -0.88128

> HPDinterval (imps, choice = "direct")

lower upper
PEXPOSURE -0.1206 0.300
PCTAGE65P  2.2710 4.748
PCTOWNHOME -0.5329 0.399
attr(,"Probability")
[1] 0.95

> HPDinterval (imps, choice = "indirect")

lower upper
PEXPOSURE -0.2832 0.1923
PCTAGE65P -1.7058 3.3885
PCTOWNHOME -1.4729 -0.1646
attr(,"Probability")
[1] 0.95

> HPDinterval (imps, choice = "total")

lower upper
PEXPOSURE -0.04696 0.1346
PCTAGE65P 1.98627 6.9723
PCTOWNHOME -1.38824 -0.3637
attr(,"Probability")
[1] 0.95
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Examining the distributions of the direct impacts, the means of the diagonals
of the S,,(W) matrices, and of the indirect impacts, the sums of off-diagonal
elements divided by the number of observations, we often find sign differences.
Use of impact measures in spatial econometrics is now effectively mandatory
for applied analyses using the lagged dependent variable, as the interpretation
of the fitted coefficients on the independent variables is misleading if p # 0.

If we impose the Common Factor constraint on the spatial Durbin model,
that v = —pf, we fit the spatial error model:

> nyerr <- errorsarlm(Z ~ PEXPOSURE + PCTAGE65P + PCTOWNHOME,
+ data = NY8, listw = NYlistwW)
> summary (nyerr)

Call:errorsarlm(formula = Z ~ PEXPOSURE + PCTAGE65P + PCTOWNHOME,
data = NY8, listw = NYlistwW)

Residuals:
Min 1Q Median 3Q Max
-1.628589 -0.384745 -0.030234 0.324747 4.047906

Type: error

Coefficients: (asymptotic standard errors)
Estimate Std. Error z value Pr(>|zl|)

(Intercept) -0.58662 0.17471 -3.3577 0.000786

PEXPOSURE 0.05933 0.04226 1.4039 0.160335

PCTAGE6G5P 3.83746 0.62345 6.1552 7.496e-10

PCTOWNHOME -0.44428 0.18897 -2.3510 0.018721

Lambda: 0.2169, LR test value: 5.425, p-value: 0.019853
Asymptotic standard error: 0.08504

z-value: 2.551, p-value: 0.010749
Wald statistic: 6.506, p-value: 0.010749

Log likelihood: -276 for error model

ML residual variance (sigma squared): 0.4137, (sigma: 0.6432)
Number of observations: 281

Number of parameters estimated: 6

AIC: 564, (AIC for 1m: 567.5)

> LR.sarlm(nyerr, nymix)

Likelihood ratio for spatial linear models

data:

Likelihood ratio = -6.693, df = 3, p-value = 0.08234

sample estimates:

Log likelihood of nyerr Log likelihood of nymix
-276.0 -272.7

Both the spatial lag and Durbin models appear to fit the data somewhat
better than the spatial error model. However, in relation to our initial interest
in the relationship between transformed incidence proportions and exposure
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to TCE sites, we are no further forward than we were with the linear model,
and although we seem to have reduced the mis-specification found in the
linear model by choosing the spatial lag model, the reduction in error variance
is only moderate.

In considering impacts, LeSage and Pace (2009, pp.41-42) also suggest
interpreting the regression coefficients of the spatial error model with inde-
pendent and spatially lagged independent variables, a spatial Durbin error
model, as direct and indirect impacts respectively. The model also accommo-
dates modelling error autocorrelation:

> nyerrl <- errorsarlm(Z ~ PEXPOSURE + PCTAGE65P + PCTOWNHOME,
+ data = NY8, listw = NYlistwW, etype = "emixed")
> coef (nyerr1)

lambda (Intercept) PEXPOSURE PCTAGE65P
0.16152 -0.40046 0.09337 3.65813
PCTOWNHOME lag.PEXPOSURE 1lag.PCTAGE65P lag.PCTOWNHOME
-0.06921 -0.04791 0.79233 -0.77312

Once again we see negative indirect impact measures for the exposure vari-
able. We can draw MCMC samples with the MCMCsamp method for fitted spa-
tial regression models to examine the shape of the distributions od direct and
indirect impacts from the spatial Durbin error model. The MCMCsamp method
uses the rumetrop random walk Metropolis algorithm from the LearnBayes
package to sample the fitted model using the same function as that used to
compute its numerical Hessian. Figure 9.15 shows the similarity of the distri-
butions of direct and indirect impacts for the exposure variable of the spatial
Durbin error model and those of the spatial Durbin derived from the MC
simulation used to estimate impacts on p. 310.

> set.seed(987654)
> resMCMC <- MCMCsamp (nyerrl, mcmc = 5000, burnin = 500,
+ listw = NYlistwW)

Spatial econometrics has also seen the development of alternatives to max-
imum likelihood methods for fitting models. For example, the spatial lag
model may be fitted by analogy with two-stage least squares in a simulta-
neous system of equations, by using the spatial lags of the explanatory vari-
ables as instruments for the spatially lagged dependent variable; typically,
[X, WX, WWX] are used as instruments. The sphet package described in
detail by Piras (2010) and under active development, provides implementa-
tions of many of the estimators described by Kelejian and Prucha (2007),
Kelejian and Prucha (2010) and Arraiz et al. (2010); it is the convention in
this branch of the literature to reverse the names of the spatial coefficients
— p is here the spatial error coefficient, A the spatial lag coefficient. The
spreg estimator functions takes a number of arguments controlling the kind
of model to be fitted, also accommodating models handling heteroskedastic
innovations:
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Fig. 9.15 Impacts of the exposure (inverse distance to the closest TCE location)
variable for spatial Durbin error and spatial Durbin models: (Left) Direct; (right)
Indirect

> library(sphet)

> nyGMlag <- spreg(Z ~ PEXPOSURE + PCTAGE65P + PCTOWNHOME,
+ data = NY8, listw = NYlistwW, model = "lag", het = FALSE)
> summary (nyGMlag)

Stsls

Call:
spreg(formula = Z ~ PEXPOSURE + PCTAGE65P + PCTOWNHOME, data = NY8,
listw = NYlistwW, model = "lag", het = FALSE)

Residuals:
Min. 1st Qu. Median 3rd Qu. Max.
-1.7000 -0.3640 -0.0189 0.3370 3.9600

Coefficients:
Estimate Std. Error t-value Pr(>|tl)
(Intercept) -0.4912 0.1561 -3.15 0.0017 *x*
PEXPOSURE 0.0416 0.0346 1.20 0.2284
PCTAGE65P 3.2926 0.6360 5.18 2.3e-07 **x*
PCTOWNHOME -0.2357 0.2005 -1.18 0.2398
lambda 0.4928 0.1676 2.94 0.0033 *x*
Signif. codes: 0 “**x' 0.001 “#x' 0.01 “*' 0.05 *.' 0.1 * ' 1

The spreg function can also be used to fit a spatial error model using a
Generalised Moments (GM) estimator for the autoregressive parameter. It
uses a GM approach to optimise A and o2 jointly, and where the numerical
search surface is not too flat, can be an alternative to maximum likelihood
methods when n is large; heteroskedastic innovations can also be handled.
> nyGMerr <- spreg(Z ~ PEXPOSURE + PCTAGE65P + PCTOWNHOME,

+ data = NY8, listw = NYlistwW, model = "error", het = FALSE)
> summary (nyGMerr)
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Generalized stsls

Call:

Data 313

spreg(formula = Z ~ PEXPOSURE + PCTAGE65P + PCTOWNHOME, data = NY8,
listw = NYlistwW, model = "error", het = FALSE)

Residuals:
Min. 1st Qu. Median
-1.68 -0.40 -0.04

Coefficients:
Estimate Std.
(Intercept) -0.5781

PEXPOSURE 0.0580
PCTAGE65P 3.8485
PCTOWNHOME -0.4578
rho 0.2223

Signif. codes: 0 “*x*x' 0.

Mean 3rd Qu. Max.
0.00 0.34 4.17

Error t-value Pr(>ltl)
0.1752 -3.30 0.00097 **x*
0.0425 1.37 0.17209
0.6240 6.17 6.9e-10 *x*
0.1895 -2.42 0.01571 *
0.0942 2.36 0.01836 *

001 “*x' 0.01 “*' 0.05 *.' 0.1 > ' 1

Another recently published package, splm, provides spatial panel
estimators described by Millo and Piras (2012), extending the aspatial panel
estimator package plm (Croissant and Millo, 2008). Finally, the McSpa-
tial package provides functions for spatial quantile regression, described by
McMillen (2012, 2013), and several spatial probit estimators, which will not

be covered here.

> fit <- qregspiv(Z ~ PEXPOSURE + PCTAGE65P + PCTOWNHOME,
+ wmat = listw2mat (NYlistwW), data = NY8, tau = 0.5,

+ nboot = 200)

Kim and Muller Two-Stage
Coef. Boot
(Intercept) -0.63668
PEXPOSURE 0.08967
PCTAGE65P 3.14625

PCTOWNHOME -0.18028
wY 0.43563
Percentile-Lo
(Intercept) -0.95445
PEXPOSURE 0.03642
PCTAGE65P 1.32939
PCTOWNHOME -0.54874
wY 0.01448

Quantile Regression Results
strap SE Bootstrap Z-values Pr(>|zl)

0.18347 -3.470 0.0005201
0.02819 3.181 0.0014683
0.81257 3.872 0.0001080
0.17070 -1.056 0.2909145
0.21768 2.001 0.0453660
Percentile-Hi

-0.2222

0.1560

4.6766

0.1399

0.8997

The qregspiv function estimates a spatial quantile regression including the
lagged dependent variable using instruments [X, WX]. It does appear that
quantile regression may permit more insight into the relationship between
the exposure variable and the dependent variable, but as we can see from
the presentation in McMillen (2013), the possibilities of these methods will
become clearer when they have been used in more applied work.
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9.4.3 Other Methods

Other methods can be used to model dependency between areas. In this sec-
tion we introduce some of them, based in part on the applied survey reported
by Dormann et al. (2007). A specific difficulty that we met above when con-
sidering mixed-effects models is that available functions for model fitting use
point support rather than polygon support. This means that our prior des-
cription of the relationships between observations are distance-based, and so
very similar to those described in detail in Chap. 8, where the focus was more
on interpolation than modelling. These methods are discussed in the spatial
context by Schabenberger and Gotway (2005, pp. 352-382) and Waller and
Gotway (2004, pp. 380—-409), and hierarchical methods are being employed
with increasing frequency (Banerjee et al., 2004). The term geoadditive model
has begun to be used in recent years, to express the addition of a spatially
smoothed component to models of various kinds, see Kneib et al. (2009) and
Hothorn et al. (2011) for examples.

Generalised Additive Models (GAM) are very similar to generalised lin-
ear models, but they also allow for including non-linear terms in the linear
predictor term (Hastie and Tibshirani, 1990; Wood, 2006). It is worth noting
that the formula argument to linear, generalised linear, spatial, and many
other models may contain polynomial and spline terms if desired, but these
need to be configured manually. Different types of non-linear functions are
available, and may be chosen in the s() function in the formula. Here, an
isotropic thin plate regression spline is used effectively as a semi-parametric
trend surface to add smooth spatial structure from the residuals to the fit,
as in Chap. 7 (p. 200).
> library(mgcv)
> NY8$x <- coordinates(NY8)[, 1]/1000
> NY8$y <- coordinates(NY8) [, 2]/1000
> nyGAM1 <- gam(Z ~ PEXPOSURE + PCTAGE65P + PCTOWNHOME +
+
>

s(x, y), weights = POP8, data = NY8)
anova(nylmw, nyGAM1, test = "Chisq")

Analysis of Variance Table

Model 1: Z ~ PEXPOSURE + PCTAGE65P + PCTOWNHOME

Model 2: Z ~ PEXPOSURE + PCTAGE65P + PCTOWNHOME + s(x, y)
Res.Df RSS Df Sum of Sq Pr(>Chi)

1 277 310778

2 273 305229 3.81 5550 0.27

This does not add much to what we already knew from the weighted lin-
ear model, with the differences in the residual degrees of freedom showing
that the thin plate regression spline term only takes 3.81 estimated degrees
of freedom. This does not, however, exploit the real strengths of the tech-
nique. Because it can fit generalised models, we can step back from using the
transformed incidence proportions to use the case counts (admittedly not in-
teger because of the sharing-out of cases with unknown tract within blocks),
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offset by the logarithm of tract populations. Recall that we have said that
distributional assumptions about the response variable matter — our response
variable perhaps ought to be treated as discrete, so methods respecting this
may be more appropriate.

Using the Poisson Generalised Linear Model (GLM) fitting approach, we
fit first with glm; the Poisson model is introduced in Chap. 10. We can already
see that this GLM approach yields interesting insights and that the effects of
TCE exposure on the numbers of cases are significant (Fig.9.16).

> nyGLMp <- glm(Cases ~ PEXPOSURE + PCTAGE65P + PCTOWNHOME +
+ offset(log(POP8)), data = NY8, family = "poisson")

> summary (nyGLMp)

Call:
glm(formula = Cases ~ PEXPOSURE + PCTAGE65P + PCTOWNHOME +
offset(log(POP8)), family = "poisson", data = NY8)

Deviance Residuals:
Min 1Q Median 3Q Max
-2.678 -1.057 -0.198 0.633 3.266

Coefficients:

Estimate Std. Error z value Pr(>|zl|)
(Intercept) -8.1344 0.1826 -44.54 < 2e-16 **x
PEXPOSURE 0.1489 0.0312 4.77 1.8e-06 ***
PCTAGE65P 3.9982 0.5978 6.69 2.3e-11 *x*x
PCTOWNHOME -0.3571 0.1903 -1.88 0.061
Signif. codes: 0 “**x' 0.001 “#x' 0.01 “*' 0.05 *.' 0.1 * ' 1

(Dispersion parameter for poisson family taken to be 1)

Null deviance: 428.25 on 280 degrees of freedom
Residual deviance: 353.35 on 277 degrees of freedom
AIC: Inf

Number of Fisher Scoring iterations: 5

With the GLM to start from, we again add an isotropic thin plate regres-
sion spline in gam. There is little over-dispersion present — fitting with fam-
ily=quasipoisson, in which the dispersion parameter is not fixed at unity, so
they can model over-dispersion that does not result in large changes. Model
comparison shows that the presence of the spline term is now significant.
While the coeflicient values of the Poisson family fits are not directly com-
parable with the linear fits on the transformed incidence proportions, we can
see that exposure to TCE sites is clearly more significant.

> nyGAMp <- gam(Cases ~ PEXPOSURE + PCTAGE65P + PCTOWNHOME +
+ offset(log(POP8)) + s(x, y), data = NY8, family = "poisson")
> summary (nyGAMp)
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CE
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Fig. 9.16 Residuals from the Poisson regression model; TCE site locations shown
for comparative purposes

Family: poisson
Link function: log

Formula:
Cases ~ PEXPOSURE + PCTAGE65P + PCTOWNHOME + offset(log(POP8)) +
s(x, y)

Parametric coefficients:
Estimate Std. Error z value Pr(>|zl)

(Intercept) -8.1366 0.2147 -37.89 < 2e-16 **¥x*
PEXPOSURE 0.1681 0.0598 2.81 0.005 *x
PCTAGE65P 3.7199 0.6431 5.78 T7.3e-09 *x*x
PCTOWNHOME  -0.3602 0.1994 -1.81 0.071 .

Signif. codes: 0 “**x' 0.001 “#x' 0.01 “*' 0.056 *.' 0.1 * ' 1

Approximate significance of smooth terms:
edf Ref.df Chi.sq p-value
s(x,y) 7.71 10.7 8.64 0.63
R-sq. (adj) 0.394 Deviance explained = 21.4J
UBRE score 0.2815 Scale est. =1 n = 281
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> anova(nyGLMp, nyGAMp, test = "Chisq")
Analysis of Deviance Table

Model 1: Cases ~ PEXPOSURE + PCTAGE65P + PCTOWNHOME +
offset (log(POP8))

Model 2: Cases ~ PEXPOSURE + PCTAGE65P + PCTOWNHOME +
offset (Log(POP8)) + s(x, y)

Resid. Df Resid. Dev Df Deviance Pr(>Chi)
1 277 353
2 269 337 7.71 16.7 0.029 *

Generalised Estimating Equations (GEE) are an alternative to the
estimation of GLMs when we have correlated data. They are often used in
the analysis of longitudinal data, when we have several observations for the
same subject. In a spatial setting, the correlation arises between neighbouring
areas. The treatment in Dormann et al. (2007) is promising for the restricted
case of clusters of grid cells, but has not yet been extended to irregular point
or polygon support.

Generalised linear mixed-effect models (GLMM) extend GLMs by allowing
the incorporation of mixed effects into the linear predictor; see Waller and
Gotway (2004, pp. 387-392) and Schabenberger and Gotway (2005, pp. 359—
369). These random effects can account for correlation between observations.
GLMM have developed from mixed effects models described by Pinheiro and
Bates (2000) and Zuur et al. (2009) to GLMM, often estimated using Bayesian
methods (Zuur et al., 2012).

The Moran eigenvector approach (Dray et al., 2006; Griffith and Peres-
Neto, 2006) involves the spatial patterns represented by maps of eigenvectors
of the doubly-centred spatial weights matrix; by choosing suitable orthogonal
patterns and adding them to a linear or generalised linear model, the spa-
tial dependence present in the residuals can be moved into the model. Two
estimating functions are provided in spdep. In its general form, Spatial-
Filtering chooses the subset of the n eigenvectors that reduce the residual
spatial autocorrelation in the error of the model with covariates. The lag form
adds the covariates in assessment of which eigenvectors to choose, but does
not use them in constructing the eigenvectors. SpatialFiltering was im-
plemented and contributed by Yongwan Chun and Michael Tiefelsdorf, and
is presented in Tiefelsdorf and Griffith (2007); ME is based on Matlab code
by Pedro Peres-Neto and is discussed in Dray et al. (2006), Dormann et al.
(2007) and Griffith and Peres-Neto (2006). The use of these methods is cov-
ered in detail in Borcard et al. (2011, pp. 243-284) and reviewed in broader
context by Dray et al. (2012).

Geographically weighted regression is described by Fotheringham et al.
(2002) and involves first selecting a bandwidth for an isotropic spatial weights
kernel, typically a Gaussian kernel with a fixed bandwidth chosen by leave-
one-out cross-validation. Choice of the bandwidth can be very demanding,
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as n regressions must be fitted at each step. Alternative techniques are avail-
able, for example for adaptive bandwidths, but they may often be even more
compute-intensive. Estimating functions are provided in the spgwr package.
GWR is discussed by Schabenberger and Gotway (2005, pp.316-317) and
Waller and Gotway (2004, p. 434), O’Sullivan and Unwin (2010, pp. 226-233),
and presented with examples by Lloyd (2007, pp. 79-86). The weaknesses es-
tablished by Wheeler and Tiefelsdorf (2005) and Wheeler (2007) are in part
addressed in the gwrr package, which provides diagnostic tools. Paez et al.
(2011) report comprehensive simulation results indicating that geographically
weighted regression should only be used with caution, and only in certain sit-
uations as detailed in their article.

Further ways of using R for applying different methods for modelling areal
data are presented in Chap. 10. It is important to remember that the avail-
ability of implementations of methods does not mean that any of them are
‘best practice’ as such. It is the analyst who has responsibility for choices of
methods and implementations in relation to situation-specific requirements
and available data. What the availability of a range of methods in R does
make possible is that the analyst has choice and has tools for ensuring that
the research outcomes are fully reproducible.



Chapter 10
Disease Mapping

Spatial statistics have been widely applied in epidemiology to the study of
the distribution of disease. As we have already shown in Chap. 7, displaying
the spatial variation of the incidence of a disease can help us to detect areas
where the disease is particularly prevalent, which may lead to the detection of
previously unknown risk factors. As a result of the growing interest, Spatial
Epidemiology (Elliott et al., 2000) has been established as a new multidisci-
plinary area of research in recent years.

The importance of this field has been reflected in the appearance of dif-
ferent books and special issues in some scientific journals. To mention a few,
recent reviews on the subject can be found in Waller and Gotway (2004),
while the special issues of the journal Statistical Methods in Medical Research
(Lawson, A., editor, 2005) and Statistics in Medicine (Lawson, A., Gangnon,
R. E. and Wartenburg, D., editors, 2006) also summarise novel developments
in disease mapping and the detection of clusters of disease. Walter and Birnie
(1991) compared many different atlases of disease and they compile the main
issues to pay attention to when reporting disease maps. Banerjee et al. (2004,
pp. 88-97, 158-174) also tackle the problem of disease mapping and develop
examples that can be reproduced using S-PLUS™ SpatialStats (Kaluzny et al.,
1998) and WinBUGS (Spiegelhalter et al., 2003). In addition, some data sets
and code with examples available from the book website.! Haining (2003)
considers different issues in disease mapping, including a Bayesian approach
as well and provides examples, data and code to reproduce the examples
in the book. Schabenberger and Gotway (2005, pp. 394-399) briefly describe
the smoothing of disease rates. Finally, Lawson et al. (2003) provide a prac-
tical approach to diease mapping with a number of examples (with full data
sets and WinBUGS code) that the reader should be able to reproduce after
reading this chapter.

In this chapter we will refer to the analysis of data which have been
previously aggregated according to a set of administrative areas. The analysis

1 http://www.biostat.umn.edu/ brad/data2.html
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of data available at individual level requires different techniques which have
been described in Chap. 7. These kinds of aggregated data are continuously
collected by health authorities and usually cover mortality and morbidity
counts. Special registers have also been set up in several countries to record
the incidence of selected diseases, such as cancer or congenital malforma-
tions. Spatial Epidemiology often requires the integration of large amounts
of data, statistical methods and geographic information. R offers a unique
environment for the development of these types of analysis given its good
connectivity to databases and the different statistical methods implemented.

Therefore, the aim of this chapter is not to provide a detailed and compre-
hensive description of all the methods currently employed in Spatial Epidemi-
ology, but to show those which are widely used. A description as to how they
can be computed with R and how to display the results will be provided.
From this description, it will be straightforward for the user to adapt the
code provided in this chapter to make use of other methods. Other analysis
of health data, as well as contents on which this chapter is built, can be found
in Chap. 9.

The North Carolina SIDS data, which have already been displayed in
Chap. 3 (Fig. 3.6), will be used throughout this chapter in the examples that
accompany the statistical methodology described here. The SIDS data set
records the number of sudden infant deaths in North Carolina for 1974—
1978 and 1979-1984 and some other additional information. It is available as
nc.sids in package spdep and further information is available in the associ-
ated manual page. Cressie and Read (1985) and Cressie and Chan (1989), for
example, provide a description of the data and study whether there is any
clustered pattern of the cases.

10.1 Introduction

The aim of disease mapping is to provide a representation of the spatial
distribution of the risk of a disease in the study area, which we will assume
is divided into several non-overlapping smaller regions. The risk may reflect
actual deaths due to the disease (mortality) or, if it is not fatal, the number
of people who suffer from the disease (morbidity) in a certain period of time
for the population at risk.

Hence, basic data must include the population at risk and number of cases
in each area. These data are usually split according to different variables in
a number of groups or strata, which can be defined using sex, age and other
important variables. When available, a deprivation index (Carstairs, 2000)
is usually employed in the creation of the strata. By considering data in
different groups the importance of each variable can be explored and poten-
tial confounding factors can be removed (Elliott and Wakefield, 2000) before
doing any other analysis of the data. For example, if the age is divided into 13
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groups and sex is also considered, this will lead to 26 strata in the population.
Note that depending on the type of study the population at risk may be a
reduced subset of the total population. For example, in our examples, it is
reduced to the number of children born during the period of study.

Following this structure, we will denote by P;; and O;; the population and
observed number of cases in region ¢ and stratum j. Summing over all strata
j we can get the total population and number of cases per area, which we
will denote by P; and O;. Summing again over all the regions will give the
totals which will be denoted by P4 and Oj..

Representing the observed number of cases alone gives no information
about the risk of the disease given that the cases are mainly distributed
according to the underlying population. In order to obtain an estimate of the
risk, the observed number of cases must be compared to an ezpected number
of cases.

If P, and O; are already available, which is the simplest case, the expected
number of cases in region i can be calculated as E; = P;jry, where ri is

the overall incidence ratio equal to %. This is an example of the use of

indirect standardisation (Waller and Gotway, 2004, pp. 12-15) to compute
the expected number of cases for each area.

When data are grouped in strata, a similar procedure can be employed to
take into account the distribution of the cases and population in the differ-
ent strata. Instead of computing a global ratio % for all regions, a different

ratio is computed for each stratum as r; = %_IOD”] In other words, we could

compute the ratio between the sum of all cases at stratum j over the popu-
lation at stratum j. In this situation, the expected number of cases in region
i is given by E; =37, Pyr;.

This standardisation is also called internal standardisation because we have
used the same data to compute reference rates r;. Sometimes they are known
because another reference population has been used. For example, national
data can be used to compute the reference rates to be used later in regional
studies.

The following code, based on that available in the nc.sids manual page,
will read the SIDS data, boundaries of North Carolina and the adjacency
structure of the North Carolina counties (as in Cressie and Read, 1985) in
GAL format (see Chap.9).

library(maptools)
library(spdep)
nc_file <- system.file("shapes/sids.shp", package = "maptools")[1]
11CRS <- CRS("+proj=longlat +datum=NAD27")
nc <- readShapePoly(nc_file, ID = "FIPSNO", proj4string = 11CRS)
rn <- sapply(slot(nc, "polygons"), function(x) slot(x,
"ID"))
gal_file <- system.file("etc/weights/ncCR85.gal",
package = "spdep")[1]
ncCR85 <- read.gal(gal_file, region.id = rn)

V+V +VVVVVYy
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By using the argument region.id we made sure that the order of the list of
neighbours ncCR85 is the same as the areas in the SpatialPolygonDataFrame
object nc.

10.2 Statistical Models

A common statistical assumption to model the observed number of cases in
region ¢ and stratum j is that it is drawn from a Poisson distribution with
mean ¢;F;;, with 0; the relative risk. Thus, a relative risk of 1 means that
the risk is as the average in the reference region (from where the rates r; are
obtained) and it will be of interest to locate regions where the relative risk is
significantly higher than 1. This basic model is described in Banerjee et al.
(2004, pp. 158-159), Haining (2003, pp.194-199) and Lawson et al. (2003,
pp. 2-8).

Note that implicitly we are assuming that there is no interaction between
the risk and the population strata, i.e., the relative risk 6; only depends on
the region.

At this point, a basic estimate of the risk in a given region can be computed
as SMR; = O;/E;, which is known as the Standardised Mortality Ratio. This
is why the data involving the cases are often referred to as the numerator
and the data of the population as the demominator, because they are used
to compute a ratio that estimates the relative risk. Figure 10.1 shows the
SMRs of the SIDS data for the period 1974-1978. Waller and Gotway (2004,
pp. 11-18) describe in detail this and other types of standardisation, together
with other risk ratios frequently used in practise.

> nc$0bserved <- nc$SID74

The Population at risk is the number of births:

> nc$Population <- nc$BIR74
> r <- sum(nc$0bserved)/sum(nc$Population)
> nc$Expected <- nc$Population * r

and from that we can compute Standardised Mortality Ratio SMR;:

> nc$SMR <- nc$0bserved/nc$Expected

Using the fact that O; is Poisson distributed, we can obtain a confidence
interval for each SMR (using function pois.exact from package epitools).
Figure 10.2 displays the 95% confidence interval of the SMR computed for
each area. Highly significant risks (i.e., those whose confidence interval is
above one) have been drawn using a dashed line and the name of the county
has been added as a label. Anson county, which has been pointed out as a
clear extreme value in previous studies (Cressie and Chan, 1989), is the one
with the highest confidence interval.
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Fig. 10.1 Standardised Mortality Ratio of the North Carolina SIDS data in the
period 1974-1978
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Fig. 10.2 Confidence intervals of the SMR obtained with an exact formula. The dots
represent the SMR of each area. The confidence intervals red dots and dashed lines
are significantly higher than 1

10.2.1 Poisson-Gamma Model

Unfortunately, using a Poisson distribution implies further assumptions that
may not always hold. One key issue is that for this distribution the mean and
the variance of O; are supposed to be the same. It is often the case that data
are “over-dispersed”, meaning that the variance of the data is higher than
their mean and the statistical model needs to be expanded. A simple way to
allow for a higher variance is to use a Negative Binomial distribution instead
of the Poisson.
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The Negative Binomial distribution can also be regarded as a mixed model
in which a random effect following a Gamma distribution for each region is
considered. This formulation is known as the Poisson-Gamma (PG) model
because it can be structured as the following two-level model:

O;0;, E; ~ Po(0; E;)
0; ~ Ga(v,a)

In this model, we also consider the relative risk #; as a random variable
which is drawn from a Gamma distribution with mean v/a and variance
v/ o. Note that now the distribution of O; is conditioned on the value of 6;.
The unconditioned distribution for each O; is easy to derive and follows a
Negative Binomial distribution with size parameter  and probability 7.

In addition, the posterior distribution of 8;, i.e., its distribution given the
observed data {O; }_;, can also be derived and follows a Gamma distribution
with parameters v+ O; and o+ E;. In other words, the information provided
by observing the data has updated our prior knowledge or assumptions on 6;.
The posterior expectation of 8; is

v+ 0O;
Oé—I—EZ

El6;|0;, E;] =
which can also be expressed as a compromise between the prior mean of the

relative risks and SM R; so that this is a shrinkage estimator:

E; E;
" _SMR; + (1— :

E[0;]0:, Ei] = )2
@ @

Two issues should be noted from this estimator. First of all, when FE; is
small, as often happens in low population areas, a small variation in O; can
produce dramatic changes in the value of SMR;. For this reason, according
to the previous expectation, the SMR; will have a low weight, as compared
to that of the prior mean. Secondly, information is borrowed from all the
areas in order to construct the posterior estimates given that v and « are the
same for every region. This concept of borrowing strength can be modified
and extended to take into account a different set of areas or neighbours.

Given that v and a are unknown, we need a procedure to estimate them.
They can be easily estimated from the data using the Method of Moments
following formulae given by Clayton and Kaldor (1987) to produce Empirical
Bayes (EB)estimates, which is implemented in package DCluster:

> library(DCluster)

> eb <- empbaysmooth(nc$0bserved, nc$Expected)
> nc$EBPG <- eb$smthrr

> eb$nu

[1] 4.630656
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> eb$alpha
[1] 4.395646

In this example, the values are v = 4.6307 and o = 4.3956, which gives a
prior mean of the relative risks of 1.0535 (very close to 1).

Probability maps (Choynowski, 1959) are a convenient way of representing
the significance of the observed values. These maps show the probability of
a value being higher than the observed data according to the assumption
we have made about the model. In other words, probability maps show the
p-value of the observed number of cases under the current model. Figure 10.3
represents the probability maps for the Poisson and Poisson-Gamma mod-
els.We compare both maps to show how significance varies with the model.
We noted that the Poisson-Gamma model was more appropriate in this case
due to over-dispersion, and we should try to make inference based on this
model. As expected, the p-values for the Poisson-Gamma model are higher
because more variability is permitted. Nevertheless, there are still two zones
of high risk to the northeast and south.

pvalnegbin
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Fig. 10.3 Probability maps for the Poisson and Negative Binomial models

10.2.2 Log-Normal Model

Clayton and Kaldor (1987) proposed another risk estimator based on assuming
that the logarithm of the relative risks (3; = log(6;)) follows a multivariate
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normal distribution with common mean ¢ and variance o2. In this case, the
estimate of the log-relative risk is not taken as log(O;/F;) but log((O; +
1/2)/E;), because the former is not defined if O; is zero. The EM algorithm
is used to obtain estimates of the mean and variance of the model, which can
be plugged into the following Empirical Bayes estimator of 3;:

s, _ 9+ (0i+5)8%logl(0; + 5)/Ei] — 6°/2
1 +—(()i—F 5) 2

g

where (;3 and &2 are the estimates of the prior mean and variance, respectively.
These are given by

: IFA

= a2 b=
and

{ Z1+a20 +1/2)] 7 Z(bi—é)Q}

i=1

Estimates b; are updated successively using previous formulae until conver-
gence. Hence, the estimator for 0; is 6; = exp{3;}. Note that now information
is borrowed by estimating the common parameters ¢ and o2, and that the
resulting estimates are a combination of the local estimate of the log rela-
tive risk and . Unfortunately, the current estimator is more complex than
the previous one and it cannot be reduced to a shrinkage expression. It is
evaluated by:

> ebln <- lognormalEB(nc$0bserved, nc$Expected)
> nc$EBLN <- exp(ebln$smthrr)

10.2.3 Marshall’s Global EB Estimator

Marshall (1991) developed a new EB estimator assuming that the relative
risks 6; have a common prior mean p and variance o2, but without specifying
any distribution. By using the Method of Moments, he is able to work a new
estimator out employing a shrinkage estimator as follows:

0; = i+ Ci(SMR; — i) = (1 — Ci)fi + C; SMR;

where

=
I
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and
2 —p/E

Ci: - )
s*— /B + ) E;

where E stands for the mean of the E;’s and s? is the usual unbiased estimate
of the variance of the SMR;’s. Unfortunately, this estimator can produce
negative estimates of the relative risks when s? < ji/E, in which case 0; = i
is taken.

The shrinkage of this estimator highly depends (again) on the value of E;.
If it is high, which means that the SMR; is a reliable estimate, C; will be
close to 1 and the estimator will give more weight to the SMR;. On the other
hand, if E; is small, more weight is given to the estimate of the prior mean
it because the SMR; is less reliable and so it borrows more information from
other areas. We compute the Marshall risk estimator by:

> library(spdep)
> EBMarshall <- EBest(nc$0bserved, nc$Expected)
> nc$EBMarshall <- EBMarshalll[, 2]

EBLN EBMarshall 45
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Fig. 10.4 Comparison of different risk estimators. SMR displays the Standardised
Mortality Ratio, whilst EBPG, EBLN and EBMarshall show different empirical
Bayes estimates using the Poisson-Gamma model, the log-normal model and Mar-
shall’s global estimator, respectively

Figure 10.4 represents the different estimates obtained by the different
estimators described so far. All EB estimators seem to produce very similar
estimates in all the areas. By comparing those maps to the map that shows
the SMR it is possible to see how very extreme values (either high or low)
have been shifted towards the global mean. In other words, these values have
been smoothed by taking into account global information in the computation
of the estimate.

To compare the variability of the estimates produced by each method we
have created a boxplot of each set of values, which appear in Fig. 10.6. From
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the plot it is clear that the SMR is the most variable and that the other
three have been shrunk towards the global mean, which is approximately 1.
Hence, we might expect similar results when using any of the EB estima-
tors. As pointed by Marshall (1991), the estimation procedure based on the
Poisson-Gamma model proposed by Clayton and Kaldor (1987) may not con-
verge in some circumstances and another estimator should be used. The EB
proposed by Marshall (1991) can also be unfeasible in similar circumstances.
Hence, the EB estimator based on the log-Normal model seems to be the
most computationally stable and reliable.

All these EB estimators produce smoothed estimates of the risk rates
borrowing information from the global area but, depending on the size and ex-
tension of the total area under study, it could be more reasonable to consider
only a small set of areas which are close to each other. A common example
is to use only the areas that share a boundary with the current region to
compute its risk estimate. Unfortunately, this procedure involves the use of
more complex models that require the use of additional software and will be
discussed in the following sections.

10.3 Spatially Structured Statistical Models

Although borrowing strength globally can make sense in some cases, it is
usually better to consider a reduced set of areas to borrow information from.
A sensible choice is to take only neighbouring areas or areas which are within
a certain distance from the current area.

Marshall (1991) proposed another estimator that only requires local infor-
mation to be computed. For each region, a set of neighbours is defined and
local means, variances and shrinkage factors are defined in a similar way as
in the global estimator, but considering only the areas in the neighbourhood.
This produces a local shrinkage for each area, instead of the global shrinkage
provided by the previous estimator.

> nc$EBMrshloc <- EBlocal (nc$0bserved, nc$Expected, ncCR85)$est

The way this estimator is computed raises a new question about how areas
are related to each other. In the previous models, no account for how areas
were distributed in the study region was considered, so that the influence of a
region did not depend on its location at all. That is, we would obtain the same
estimates if the distribution of the regions were permutated at random. With
the new estimator the exact location of the areas is crucial, and different
locations of the regions will give different estimates as a result. The way
regions are placed in a map can be described by means of its topology, which
accounts for the neighbours of a given region. See Chap.9 for more details
on this and how to obtain it.
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Although neighbours are usually defined as two regions that share a com-
mon boundary, Cressie and Chan (1989) define two regions as neighbours if
the distance between their centroids is within 30 miles. This is not a trivial is-
sue since different definitions of neighbourhood will produce different results.

EBMrshloc
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Fig. 10.5 Marshall’s EB estimator using local (top) and global (bottom) information

The two estimators proposed by Marshall have been displayed in Fig. 10.5.
The version that uses only local information produces smoothed estimates of
the relative risks that are shrunk towards the local mean that turned out to
be less shrunk towards the global mean. In addition, the shrinkage produced
by the local estimator is in general lower than for the global estimator.

The boxplot presented in Fig. 10.6 compares the different EB estimators
discussed so far. Marshall’s local estimator also shows a general shift towards
the global mean, but it is less severe than for the others because only local
information is employed. In general, EB smoothed estimators have been crit-
icised because they fail to cope with the uncertainty of the parameters of the
model (Bernardinelli and Montomoli, 1992) and to produce an overshrink-
age since the parameters of the prior distributions are estimated from the
data and remain fixed. In order to solve this problem several constrained
EB estimators have been proposed to force the posterior distribution of the
smoothed estimates to resemble that of the raw data (Louis, 1984; Devine
and Louis, 1994; Devine et al., 1994).

Full Bayes methods allow setting the prior distributions for these param-
eters and, hence, permit a greater variability and produce more suitable
smoothed estimates. More standard smoothed risk estimators that borrow
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Fig. 10.6 Comparison of raw and EB estimators of the relative risk

information locally can be developed by resorting to Spatial Autoregressive
and Conditional Autoregressive specifications (Waller and Gotway, 2004).
Basically, these models condition the relative risk in an area to be similar
to the values of the neighbouring areas. More details are given in the next
sections of this chapter and in Chap. 9 for non-Bayesian models.

10.4 Bayesian Hierarchical Models

Bayesian Hierarchical Models make an appropriate framework for the devel-
opment of spatially structured models. The model is specified in different lay-
ers, so that each one accounts for different sources of variation. For example,
they can cope with covariates at the same time as borrowing strength from
neighbours to improve the quality of estimates. The use of these models
in disease mapping is considered in Haining (2003, pp.307-311, 367-376),
Waller and Gotway (2004, pp. 409-429), Banerjee et al. (2004, pp. 159-169)
and Schabenberger and Gotway (2005, pp.394-399). Lawson et al. (2003)
offer a specific volume on the subject with reproducible examples.

Besag et al. (1991), BYM henceforth, introduced in their seminal paper
a type of models that split the variability in a region as the sum of a spa-
tially correlated variable (which depends on the values of its neighbours) plus
an area-independent effect (which reflects local heterogeneity). Although di-
rect estimates of the variables in the model can seldom be obtained when
using Bayesian Hierarchical Models, their posterior distributions can be ob-
tained by means of Markov Chain Monte Carlo (MCMC) techniques. Basi-
cally, MCMC methods generate simulations of the parameters of the model
which, after a suitable burn-in period, become realisations of their posterior
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distributions. An introduction to MCMC and its main applications, including
disease mapping, can be found in Gilks et al. (1996).

WinBUGS (Spiegelhalter et al., 2003) is a software that uses MCMC
methods (in particular, Gibbs Sampling; Gelman et al., 2003) to simulate
from the posterior distributions of the parameters in the model. Starting
from a set of initial values, one sample of each variable is simulated at the
time using the full conditional distribution of the parameter given the other
parameters. After a suitable burn-in period, the simulations generated corre-
spond to the joint posterior distribution.

Although WinBUGS is the main software package, it was previously
known as BUGS and currently it comes in different flavours. OpenBUGS,
for example, is the open source alternative to WinBUGS and it is actually
a fork of the main WinBUGS software. Apart from the advantage of coming
with the source code, OpenBUGS can be called from R using package BRugs.
In addition, some specific plug-ins have been developed for WinBUGS to deal
with certain applications. It is worth mentioning GeoBUGS, which provides
a graphical interface to the management of maps and compute adjacency re-
lationships within WinBUGS and OpenBUGS, and can create maps with the
results. Lawson et al. (2003) have described extensively how to do a disease
mapping using Multilevel Models with WinBUGS (and MLwiN), and is a
comprehensive reference for those willing to go deeper in this subject.

A package for using WinBUGS from R is R2WinBUGS (Sturtz et al.,
2005). This package calls WinBUGS using its scripting facilities so that the
resulting log file containing all the results can be loaded into R after the
computations have finished. R2ZWinBUGS will be the package used in this
book. Finally, it is worth noting that Gelman and Hill (2007) provide a good
and accessible text on data analysis using Bayesian hierarchical models and,
in Chaps. 16 and 17, describe the use of R and WinBUGS via R2ZWinBUGS.

BayesX (Brezger et al., 2005; Belitz et al., 2012) is another interesting
software for Bayesian inference that can be used as an standalone software
or within R. BayesX is available from http://www.bayesx.org and it is
aimed at fitting structured additive regression models. Package BayesXsrc
(Adler et al., 2012) provides the source code, R2BayesX provides a link be-
tween BayesX and R and BayesX includes some functionalities to manipulate
data and ouput (for example, it provides functions to convert to the spatial
adjacency format used in BayesX). BayesX has also the possibility of fitting
models using MCMC, restricted maximum likelihood (REML) and penalised
least squares (PLS).

INLA is an R package for Bayesian inference based on the methods devel-
oped in Rue et al. (2009). Here, the authors propose a new method (called
the Integrated Nested Laplace Approximation, INLA) to approximate the
posterior marginals of the parameters in the model. Although INLA will not
provide the full posterior distribution, this is not needed in many applica-
tions, such as the estimation of relative risks is disease mapping. Furthermore,
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INLA provides accurate estimates in most cases at lower computational time.
Package INLA is available oft-CRAN from http://www.r-inla.org.

Finally, package CARBayes provides a number of functions for fitting some
widely used spatial models using MCMC. Although it is more limited than
the previous packages, it is entirely implemented in R and provides a simple
alternative to fitting spatial models for disease mapping.

10.4.1 The Poisson-Gamma Model Revisited

The following example shows a full Bayesian Poisson-Gamma formulation
(i.e., assigning priors to the parameters v and «) to produce smoothed esti-
mates of the relative risks that can be run from R using R2ZWinBUGS. In this
model, v and « have been assigned vague gamma priors so that as little prior
information as possible is introduced. The WinBUGS code needed to run the
Poisson-Gamma model is shown in Fig. 10.7.

model

{

for(i in 1:N)

{
observed[i] "dpois(mu[il)
mul[i]<-theta[i]*expected[i]
thetal[i] "dgamma(nu, alpha)

¥

nu~dgamma (.01, .01)
alpha~dgamma(.01, .01)

Fig. 10.7 Code of the Poisson-Gamma model for WinBUGS

The next chunk of code shows how to convert all the necessary data into
the structure used by WinBUGS. In addition, we need to set up the initial
values for some of the parameters of the model. Data and initial values must
be saved into a separated file.

v

library (R2WinBUGS)
N <- length(nc$0bserved)
d <- list(N = N, observed = nc$0Observed, expected = nc$Expected)

A2

> pgmodelfile <- paste(getwd(), "/PG-model.txt", sep = "")

> wdir <- paste(getwd(), "/PG", sep = "")

> if (!file.exists(wdir)) {

+ dir.create(wdir)

+}

> BugsDir <- "/home/asdar2/.wine/dosdevices/c:/Program Files/WinBUGS14"
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We can then run WinBUGS models by a call to bugs:

> MCMCres <- bugs(data = d, inits = list(list(nu = 1, alpha = 1)),
+ working.directory = wdir, parameters.to.save = c("theta",

+ "nu", "alpha"), n.chains = 1, n.iter = 20000,

+ n.burnin = 10000, n.thin = 10, model.file = pgmodelfile,

+ bugs.directory = BugsDir, WINEPATH = "/usr/bin/winepath")

Briefly, the bugs function takes as input data, initial values, model file
and other information required, and creates a script that will be run with
WinBUGS.? Function bugs will create the necessary files (data, initial values
and script) that will be placed under working.directory. After running
the model, the output will be stored here as well. The WinBUGS script
will check the syntax of the model, load the data and compile the model.
The following step is to read (or generate from the priors) the initial values for
the parameters of the model and generate 10,000 simulations of the Markov
Chain (keeping just 1 every 10). Note that the burn-in simulations are not
saved. Then, we specify that variables “nu”, “alpha” and “theta” will be saved
and 10,000 more simulations are generated, of which only 1 of every 10 are
saved to avoid autocorrelation and improve mixing and convergence. Finally,
the summary statistics and plots are saved into the log files under the working
directory. Two such files are created: an ODC file (WinBUGS format) with
summary statistics and plots, and an ASCII file with the summary statistics.
In addition, a summary of the output is stored as a series of lists in MCMCres.
The posterior mean and median of the relative risks can be extracted by

> nc$PGmean <- MCMCres$mean$theta
> nc$PGmedian <- MCMCres$median$theta

Although it will not be described here in detail, it is essential to check that
the Markov Chain has converged so that the values that we are using have
been drawn from the posterior distribution of the parameters. An example
using package coda (Best et al., 1995) is shown later when evaluating a more
complex model.

As we have obtained samples from the posterior distributions of v and
«, it is possible to compute pointwise estimates and probability intervals for
both parameters. For the sake of simplicity, and to be able to compare the
values obtained with those from the EB approach, the pointwise estimates
(posterior means) of these values were ¥ = 6.253 and & = 5.967, which
are slightly higher than the ones obtained with the EB estimator. Similar
estimates can be obtained for the relative risks but note that now they are
not based on single values of v and «, but that the relative risk estimates are
averaged over different values of those parameters.

Even though point estimates of the relative risks are usually very useful,
for most applications it is better to give a credible interval, for it can be used

2 Windows users must modify the paths in working.directory, model.file and
bugs.directory accordingly, and remove the argument WINEPATH, which is not needed.
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to detect areas of significantly high risk, if the interval is over 1. Figure 10.8
summarises the 95 % credible intervals for each region. The median has been
included (black dot), and the areas whose credible intervals are above 1 have
been highlighted using a dashed line and the county name displayed. As we
mentioned before, Anson county is of special interest because it shows the
highest risk.

Credible intervals of the relative risks
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Fig. 10.8 Ninety-five percent credible intervals of the relative risks obtained with
WinBUGS using a Full Bayes Poisson-Gamma model

In Fig. 10.9 we have compared the estimates of the relative risks provided
by the Poisson-Gamma model using both Empirical Bayes and Full Bayes
approaches. Both estimation procedures lead to very similar estimates and
they only differ in a few areas. Note how they all provide smoothed estimates
of the relative risks, as compared to the raw SMRs.

Fitting the Poisson-Gamma model exactly as described in Fig.10.7 may
be difficult with other software. However, the Poisson-Gamma model can be
regarded as a model with random effects in the log-scale, i.e., the terms log(6;)
can be seen as a set of random effects with a common prior distribution. For
example, we could formulate this model using Gaussian random effects as

follows:
Oi ~ PO(El 91)

log(0;) = a+u;
o~ N(0,02)
u; ~ N(0,02)
where the intercept « is included to model the overall risk and random effects

u; account for differences between the areas. This is a very simple model that
we will use to introduce the use of the BayesX, INLA and CARBayes.
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Fig. 10.9 Comparison of Empirical Bayes and Full Bayes estimates of the relative
risks using a Poisson-Gamma model

To fit models with BayesX we will use function bayesx, which works simi-
larly to function gam. The model to fit is included in a formula where different
types of effects can be included. Additive model terms can be included using
function sx and in the following example it is used to set a different random
effect for each area. This has been done by including an index variable in the
data set (AREAID). A full list of additive models available can be found in the
manual page for sx.

> library (R2BayesX)
> nc$AREAID <- 1:nrow(nc)

> pgbayesx <- bayesx(Observed”sx(AREAID, bs = "re"),
+ offset = log(nc$Expected), family = "poisson", data = as(mc,
+ "data.frame"))

INLA can be called using function inla. It works in a way similar to gam
and bayesx where models are defined via a formula and additive effects are
included using function f. After loading the package, we’ll show its version:

> library (INLA)
> inla.version()
INLA build date .........: Wed Feb 13 09:38:42 CET 2013

> pginla <- inla(Observed~offset(log(Expected)) - 1 +

+ f(AREAID, model = "iid"), family = "poisson", data = as(ac,
+ "data.frame"), control.predictor = list(compute = TRUE),
+ control.compute = list(dic = TRUE))

CARBayes provides a more limited interface and different functions are
needed to fit different types of models, depending on the latent effects
and the family used in the model. In this case, we have called function
poisson.independent to fit a model to Poisson data using independent
random effects:
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> library(CARBayes)

ncdf <- as(nc, "data.frame")

attach(ncdf)

pgcarbayes <- poisson.independent (formula = Observed~
offset (log(Expected)), burnin = 5000, n.sample = 10000)

detach (ncdf)

vV + VvV Vv Vv

All these functions return results in different data structures. In order to
compare the different estimates, we show how to access the results and display
the different estimates.

> nc$PGBAYESX <- pgbayesx$fitted.values[order (pgbayesx$bayesx.setup$order),
+ 2] /nc$Expected

> nc$PGINLA <- pginla$summary.fitted.values$mean/nc$Expected

> nc$PGCARBAYES <- pgcarbayes$fitted.values[, 1]/nc$Expected

Figure 10.10 shows the different estimates obtained with the Poisson-Gamma
model and the alternative model using Gaussian random effects. Note how
similar the estimates are accross models and software used.
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Fig. 10.10 Different estimates of the relative risks using a Poisson-Gamma model
(with WinBUGS) and similar models using Gaussian random effects fitted with other
software

10.4.2 Spatial Models

Additional spatial structure can be included by considering a CAR model
and covariates can be used to explain part of the variability of the relative
risks. Cressie and Chan (1989) considered the proportion of non-white births
as an important factor related to the incidence of SIDS. A full description of
these models can be found in Banerjee et al. (2004, Chap. 5). In general, these
models are far more complex than the Poisson-Gamma described before, and
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Fig. 10.11 Proportion of non-white births in Carolina, 1974-1978. Notice the similar
pattern to the relative risk estimates

they should be used with extreme caution because of the high number of
parameters and possible interactions between them.

As described in Sect.9.4.1.1, the CAR specification for a set of random
variables {v;}?_; can be written as follows:

WiiVs
Uilv—i ~ N(Z Z”wj__,di/zwij)
] j

gri

where w;; is a weight that measures the strength of the relationship between
(neighbour) regions i and j and o2 indicates the conditional variance of the
CAR specification.

Although the conditional distributions are proper, it is not the case for
the joint distribution. Nevertheless, this CAR specification is often used as
a prior distribution of the spatial random effects and it can lead to a proper
posterior under some constraints (Ghosh et al., 1998).

Given the structure of the CAR specification, it is necessary to know the
neighbours of each region. They can be defined in different ways, depending on
the type of relationship that exists between the areas. In our example, we will
use the same neighbourhood structure as in Cressie and Read (1985) which
can be found in package spdep. In addition, it is necessary to assign a weight
to each pair of neighbours which measure the strength of the interaction.
Following Besag et al. (1991) we will set all the weights to 1 if regions are
neighbours and 0 otherwise.

The flexibility of the Bayesian Hierarchical Models allows us to perform an
Ecologic Regression (English, 1992) at the same time as we consider random
and spatial effects. By including covariates in our model we aim to assess and
remove the effect of potential confounders or risk factors. The assessment of
the importance of a covariate is indicated by the estimated value of its coeffi-
cient and its associated probability interval. If, for example, the 95 % credible
interval does not contain the value 0, we may assume that the coefficient is
significant and, if greater than zero, it will indicate a positive relationship
between the risk and the variable.
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The results of an Ecologic Regression can be potentially misleading if we
try to make inference at the individual level since the effects that operate at
that level may not be the same as those reflected at the area level. In the ex-
treme case, the effects might even be reversed. A solution to this is to combine
the aggregated data with some individual data from a specific survey, which
can be also used to improve the estimation of the effects of the covariates
(Jackson et al., 2006).

In our example, we have available the number of non-white births in each
county. The variable ethnicity is often used in the United States as a surrogate
of the deprivation index (Krieger et al., 1997). Considering this variable in
our model may help to explain part of the spatial variability of the risk of
SIDS. In order to account for the total number of births, we will use the
proportion of non-white births in the area. This will also allow us to compare
the values for different counties. Figure 10.11 shows the spatial variation of
the proportion of non-white births. Notice how there exists a similar pattern
to that shown by the spatial distribution of the SMR and the different EB
estimates. Finally, the WinBUGS model used in this case can be found in
Fig.10.12. We have used the priors suggested in Best et al. (1999) to allow a
better identifiability of the random effects u; and v;.

model

{

for(i in 1:N)
{

observed[i] ~ dpois(mul[il)
log(theta[i]l) <- alpha + beta*nonwhite[i] + u[i] + v[i]
mu[i] <- expected[i]*thetal[il

uli] ~ dnorm(0, precu)

}

v[1:N] ~ car.normal(adj[], weights[], num[], precv)

alpha ~ dflat()

beta ~ dnorm(0,1.0E-5)

precu ~ dgamma(0.001, 0.001)
precv ~ dgamma(0.1, 0.1)

sigmau<-1/precu
sigmav<-1/precv

Fig. 10.12 Code of the Besag-York-Mollié model for WinBUGS

The code shown below converts the neighbours of each county as specified
in Cressie and Read (1985) into the format required by WinBUGS. Note that
these are already available in an R object and that they have been matched
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so that the list of neighbours is in the right order. When this is not the case,
proper matching must be done.

idx <- match(attr(ncCR85.nb, "region.id"), nc$CNTY_ID)
nc.nb <- ncCR85
nc.nb <- nc.nb[order(idx)]
nc.nb <- lapply(nc.nb, function(X, idx) {
idx [X]
}, idx = (idx))
class(nc.nb) <- "nb"
nc.nb <- nc.nb[(order(idx))]
nc.nb <- nb2WB(nc.nb)

VVV+ +VVVYyV

Function nb2WB can be used to convert an nb object into a list containing the
three elements (adj, weights and num) required for a CAR specification in
WinBUGS. Similarly, the function 1istw2WB can be used for a 1listw object.
The main difference is that nb2WB sets all the weights to 1 whilst 1istw2WB
keeps the values of the weights as in the 1istw object.

> nc.nb <- nb2WB(ncCR85)

The last step is to compute the proportion of non-white births in each county
and create the R lists with the data and initial values.

> nc$nwprop <- nc$NWBIR74/nc$BIR74

> d <- list(N = N, observed = nc$Observed, expected = nc$Expected,
nonwhite = nc$nwprop, adj = nc.nb$adj, weights = nc.nb$weights,
num = nc.nb$num)

dwoutcov <- list(N = N, observed = nc$0bserved,
expected = nc$Expected, adj = nc.nb$adj, weights = nc.nb$weights,
num = nc.nb$num)

inits <- list(u = rep(0, N), v = rep(0, N), alpha = 0,
beta = 0, precu = 0.001, precv = 0.001)

+V + + VvV o+ +

The procedure to run this model is very similar to the previous one. We
only need to change the file names of the model, data and initial values. Notice
that not all initial values must be provided and that some can be generated
randomly. In this model, we are going to keep the summary statistics for
a wide range of variables. In addition to the relative risks 6;, we want to
summarise the values of the intercept («), the coefficient of the covariate (/3)
and the values of the random (u;) and spatial (v;) effects.

> bymmodelfile <- paste(getwd(), "/BYM-model.txt", sep = "")

> wdir <- paste(getwd(), "/BYM", sep = "")

> if (!file.exists(wdir)) {

+ dir.create(wdir)

+}

> BugsDir <- "/home/asdar2/.wine/dosdevices/c:/Program Files/WinBUGS14"

v

MCMCres <- bugs(data = d, inits = list(inits),
working.directory = wdir, parameters.to.save = c("theta",
+ "alpha", "betall’ "ull, “V“, "Sigmall“, "SigmaV“),

+
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+ n.chains = 1, n.iter = 30000, n.burnin = 20000,
+ n.thin = 10, model.file = bymmodelfile, bugs.directory = BugsDir,
+ WINEPATH = "/usr/bin/winepath")

After running the model, the summary statistics are added to the spatial
object that contains all the information about the North Carolina SIDS data
so that it can be displayed easily.

The data obtained by running WinBUGS can be added to nc:

> nc$BYMmean <- MCMCres$mean$theta
> nc$BYMumean <- MCMCres$mean$u
> nc$BYMvmean <- MCMCres$mean$v

Convergence of the Markov Chain must be assessed before attempting any
valid inference from the results. Cowles and Carlin (1996) provide a summary
of several methods and a useful discussion. They state the difficulty to as-
sess convergence in practice. Some of the criteria discussed in the paper are
implemented in package coda. These criteria can be applied to the deviance
of the model to monitor convergence of the joint posterior. Ideally, several
chains (each one starting at a sufficiently different point) should be run in
parallel so that their traces can be compared (Gelman and Rubin, 1992).

WinBUGS can produce the output in the format required by coda. Basi-
cally, it will produce an index file (codaIndex.txt) plus another file with
the values of the variables (codal.txt) that can be read using function
read.coda. This will create an object of type mcmc that contains the simula-
tions from all the variables saved in WinBUGS. Figure 10.13 shows the trace
and density of the posterior distribution of the deviance and the parameters
a, 8 and the relative risk of Robeson county (area number 94 and cluster
centre in Fig.10.21).

For a single chain, Geweke’s criterion (Geweke, 1992) can be computed to
assess convergence. It is a score test based on comparing the means of the
first and the last part of the Markov Chain (by default, the 10 % initial values
to the 50 % last values). If the chain has converged, both means should be
equal. Given that it is a score test, values of the test statistics between —1.96
and 1.96 indicate convergence, whilst more extreme values point to a lack of
convergence. For the selected parameters, it seems that convergence has been
reached:

> geweke.diag(ncoutput[, c("deviance", "alpha", "beta",
+ "theta[94]")])

Fraction in 1st window = 0.1

Fraction in 2nd window = 0.5

deviance alpha beta theta[94]

1.4639 -0.1123 0.3868 -0.7404

Figure 10.14 shows the SMR and the smoothed estimate of the relative
risks obtained. When the posterior distribution is very skewed, the posterior
median can be a better summary statistic, but it is not the case here.
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10.13 Plots of the posterior distributions of «, 8 and the deviance of the model

According to the posterior density of 8 shown in Fig. 10.13, the coefficient
of the covariate can be considered as significantly positive given that its
posterior mean is greater than 0 and its 95 % credible interval is likely not to
contain the value 0. This means that there is an actual risk increase in those
regions with a high proportion of non-white births. Point posterior estimates
(mean) of the random effects u; and v; are shown in Fig. 10.15. They seem to
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Fig. 10.14 Standardised Mortality Ratio and posterior means of the relative risks
obtained with the BYM model

have a very small variation, specially the former, but this is not so because
they are in the log-scale.

It should be noted that if the spatial pattern is weak or appropriate co-
variates are included in the model, the random effects u; and v; may become
unidentifiable. However, following Besag et al. (1995), valid inference could
still be done for the relative risks but care should be taken to avoid having
an improper posterior. For this reason, we can monitor u; + v; to assess that
these values are stable and that they do not have an erratic behaviour that
could have an impact on the posterior estimates of the relative risks and the
coefficients of the covariates.

The credible intervals of the relative risks have been plotted in Fig.10.16.
The intervals in dashed line show the counties where the relative risk is sig-
nificantly higher than one. All these regions are among the ones that appear
in the two zones of high risk, plus Anson county.

As discussed in Chap. 3, the colours used to produce the maps are based on
the palettes developed by Brewer et al. (2003), which are available in package
RColorBrewer. The research was initiated by Brewer et al. (1997) to produce
an atlas of disease in the United States. Brewer and Pickle (2002) study how
the variable intervals and colours affect how maps are perceived and Olson
and Brewer (1997) developed a useful set of palettes to be used in disease
mapping and that are suitable for colour-blind people.

These spatial models can also be fitted with BayesX, INLA and CAR-
Bayes. In all cases, we will need a convenient way of converting the nb object
with the spatial adjancencies into a suitable object. Both INLA and CAR-
Bayes can handle neighbourhood matrices, so we have used function nb2mat



10.4 Bayesian Hierarchical Models 343

BYMvmean

Fig. 10.15 Posterior means of the non-spatial random effects (u;) and spatial random
effects (v;) estimated with the BYM model
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Fig. 10.16 Ninety-five percent credible intervals of the relatives risks obtained with
the BYM model

for this. Regarding BayesX, function nb2gra will convert from a nb object
into a gra object, which is the one required by function sx to include spatial
adjacency. The following examples show how to fit spatial models with these

packages.



344 10 Disease Mapping

With INLA, we have used the function f twice: £ (FIPS, model="iid") to
include independent Gaussian random effects, and £ (AREAID, model="besag",
graph=nb2mat (ncCR85, style="B")) to include spatial random effects. The
first argument refers to an area index used to link each area to a different
random effect.

> INLA_BYM <- inla(Observed nwprop + f(FIPS, model = "iid") +

+  f(AREAID, model = "besag", graph = nb2mat (ncCR85,

+ style = "B")) + offset(log(Expected)), family = "poisson",

+ data = as(nc, "data.frame"), control.predictor = list(compute = TRUE))

With BayesX we proceeded in a similar way and used function sx twice.
First, we need to mach the neighbourhood object by

> ncgra <- nb2gra(ncCR85)

Independent random effects were included by sx (AREAID, bs="re"), whilst
spatial random effects were included by sx(FIPSNO,bs="spatial",
map=ncgra) . The first argument is an area index used to match each area to a
different random effect. Note how functions f and sx take similar arguments.

> bymbayesx <- bayesx(Observed nwprop + sx(AREAID, bs = "re") +
+ sx(FIPSNO, bs = "spatial", map = ncgra), offset = log(nc$Expected),
+ family = "poisson", data = as(nc, "data.frame"))

Finally, CARBayes requires the use of function poisson.bymCAR to fit
this model. Note how the formula only includes the offset and the fixed
effects. As stated earlier, CARBayes implementes different models in different
functions, which makes it a less flexible model fitting approach.

ncdf <- as(nc, '"data.frame')

attach (ncdf)

obj <- poisson.bymCAR(Observed nwprop + offset(log(Expected)),
W = nb2mat (ncCR85, style = "B"), n.sample = 30000,
burnin = 20000, thin = 10)

detach (ncdf)

vV + + VvV Vv Vv

As with the example derived from the Poisson-Gamma model, the posterior
means of the relative risks can be obtained from the different data objects
returned:

> nc$BAYESX <- bymbayesx$fitted.values[order (bymbayesx$bayesx.setup$order),
+ 2] /nc$Expected

> nc$INLA <- INLA_BYM$summary.fitted.values[, 1]/nc$Expected

> nc$CARBayes <- obj$fitted.values[, 1]/nc$Expected

Posterior means of the relative risks have been displayed in Fig. 10.17. As ex-
pected, the point estimates are very similar. It should be noted that some
of the default values, including priors for the hyperparameters, may differ
accross packages. We will not discuss here how different priors can be used
in the model, but this information is available in the manual pages of these
packages.
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Fig. 10.17 Posterior means of the relative risks obtained with the BYM model using
WinBUGS, BayesX, INLA and CARBayes

Furthermore, we have displayed in Fig.10.18 a summary of results com-
paring all the four packages discussed in this Section. In particular, we have
displayed the posterior marginals of the fixed effects and all packages seem to
provide similar estimates. We have also displayed a summary of the posterior
means of the spatial and non-spatial random effects. All packages seem to
agree on the non-spatial random effects, but we can see some differences in
the estimates of the spatial random effects. These differences may be due to
different default values in the prior specification.

10.5 Geoadditive Models

BayesX places particular emphasis on the use of geoadditive models and
the use of non-linear terms in the linear predictor. As we have already seen,
BayesX can handle spatial and independent Gaussian random effects. In addi-
tion, BayesX allows the specification of different types of smoothing Penalized
splines (Ruppert et al., 2003) in the linear predictor by means of function sx.
P-splines are flexible enough to model non-linear effects and are very popular
in Biostatistics (see, for example, Fahrmeir and Kneib, 2011).

In the following example we have fitted two models using P-splines.
The first one uses a P-spline (with 10 knots) to fit a non-linear term on
a covariate (the proportion of non-white births).

> bayesxps <- bayesx(Observed sx(nwprop, bs = "ps", knots = 10),
+ offset = log(nc$Expected), family = "poisson", data = as(nc,
+ "data.frame"))

Secondly, we show how to fit a two dimensional P-spline to model spatial
variation using the centroid coordinates of each area. Note that now sx takes
two arguments.

> nc$long <- coordinates(nc) [, 1]
> nc$lat <- coordinates(nc)[, 2]
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Fig. 10.18 Comparisson of the estimates obtained with different packages of the
spatial model

> bayesxte <- bayesx(Observed sx(long, lat, bs = "te"),
+ offset = log(nc$Expected), family = "poisson", data = as(mc,
+ "data.frame"))

Figures 10.19 and 10.20 shows the estimated effects for each model. At the
top, the non-linear term on the covariate shows that it is probably a good idea
to use a simple linear term. At the bottom, we can see the spatial variation
in risk modelled by the 2-dimensional P-spline. Note how the areas of high
risk (to the south and north-east) are captured by the spatial spline.

Note that, in general, P-splines can be expressed as a mixed-effects model
(see, for example, Ruppert et al., 2003, for details). Crainiceanu et al.
(2005) describe how to implement P-spline regression with WinBUGS using
this representation and a similar implementation could be done with INLA.
However, developing these approach may be cumbersome and more difficult
than by using BayesX.
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Fig. 10.20 Smoothed effect of a smoothed spatial effect using P-splines with BayesX

10.6 Detection of Clusters of Disease

Disease mapping provides a first insight to the spatial distribution of the
disease but it may be required to locate the presence of zones where the
risk tends to be unusually higher than expected. Besag and Newell (1991)
distinguish between methods for clustering and the assessment of risk around
putative pollution sources. The former tackle the problem of assessing the
presence of clusters, whilst the latter evaluate the risk around a pre-specified
source. A third type of methods is related to the location of the clusters
themselves, which usually involve the examination of small portions of the
whole study area each at a time.

Wakefield et al. (2000) provide a review of some classic methods for the
detection of clusters of disease. Haining (2003, pp.237-264) summarises a
good number of well-known methods. Waller and Gotway (2004) also cover
in detail most of the methods described in this chapter and many others,
providing a discussion on the statistical performance of the tests (pp.259—
263). Lawson et al. (2003, Chap. 7) describe the use of Hierarchical Bayesian
models for the analysis of risk around pollution sources.

Some of these methods have been implemented in package DCluster
(Gémez-Rubio et al., 2005), which uses different models and bootstrap (Davi-
son and Hinkley, 1997) to compute the significance of the observed values.
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This can be done in a general way by resampling the observed number of
cases in each area and re-computing the value of the test statistic for each
of the simulated data sets. Then, a p-value can be computed by ranking
the observed value of the test statistic among the values obtained from the
simulations.

Under the usual assumption that O; is drawn from a Poisson with
mean 6;F; conditioning on the total number of cases, the distribution of
(O1,...,0,) is Multinomial with probabilities (E1/E4,..., E,/Ey). In ad-
dition to the multinomial model, DCluster offers the possibility of sampling
using a non-parametric bootstrap, or from a Poisson (thus, not conditioning
on O4) or Negative Binomial distribution, to account for over-dispersion in
the data. As discussed below, over-dispersion may affect the p-value of the
test and when data are highly over-dispersed it may be worth re-running the
test sampling from a Negative Binomial distribution.

10.6.1 Testing the Homogeneity of the Relative Risks

Before conducting any analysis of the presence of clusters, the heterogeneity
of the relative risks must be assessed. In this way, we can test whether there
are actual differences among the different relative risks. The reasons for this
heterogeneity may be related to many different factors, such as the presence
of a pollution source in the area which may lead to an increase in the risk
around it. Other times the heterogeneity is due to a spatially varying risk
factor, and higher risks are related to a higher exposure to this risk factor.

Given that for each area we have computed its expected and observed
number of cases, a chi-square test can be carried out to test for (global)
significant differences between these two quantities. The statistic is defined
by the following formula:

2 (0i —0E;)?
X _; 0F,

where 6§ is the global SMR = ). O;/>", E; and, asymptotically, it follows
a chi-square distribution with n degrees of freedom. If internal standardisa-
tion has been used to obtain FE;, then 6 is equal to one and the number of

degrees of freedom are reduced to n — 1 because the additional constraint
S, 0; =31 | E; holds (Wakefield et al., 2000).

> chtest <- achisq.test(Observed~offset (log(Expected)),

+ as(nc, "data.frame"), "multinom", 999)
> chtest

Chi-square test for overdispersion

Type of boots.: parametric
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Model used when sampling: Multinomial
Number of simulations: 999

Statistic: 225.5723

p-value : 0.001

Note that in this case we know that the asymptotic distribution of the test
statistic is a chi-square with n — 1 degrees of freedom and that an exact test
can be done instead of re-sampling (however, it may still be useful for small
samples and recall that we may be interested in a Monte Carlo Test using a
Negative Binomial).

> 1 - pchisq(chtest$t0, 100 - 1)

[1] 7.135514e-12

Potthoff and Whittinghill (1966) proposed another test of homogeneity of
the means of different Poisson distributed variables which can be used to test
the homogeneity of the relative risks (Wakefield et al., 2000). The alternative
hypothesis is that the relative risks are drawn from a gamma distribution
with mean A\ and variance o:

H0291=...=6‘n:)\
Hy:0; ~ Ga(\?/o?,\/o?)

The test statistic is given by

0;(0;, - 1)

PW=FE 10.1
Byt 0.

The alternative hypothesis of this test is that the O; are distributed following

a Negative Binomial distribution, as explained before and, therefore, this test

can also be considered as a test of over-dispersion.

> pwtest <- pottwhitt.test(Observed offset(log(Expected)),
+ as(nc, "data.frame"), "multinom", 999)

The asymptotic distribution of this statistic is Normal with mean O (O —
1) and variance 2nO4 (O — 1), so a one-side test can be done as follows:

> Oplus <- sum(nc$Observed)
> 1 - pnorm(pwtest$tO, Oplus * (Oplus - 1), sqrt(2 * 100 *
+ Oplus * (Oplus - 1)))

[1] o

Other tests for over-dispersion included in DCluster are the likelihood ratio
test and some of the score tests proposed in Dean (1992). Although they are
not described here, all these tests agree with the previous results obtained
before and support the fact that the relative risks are not homogeneous and
the observed cases are over-dispersed. Therefore, we have preferred the Neg-
ative Binomial to produce the simulations needed to assess the significance
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of some of the methods described in the remainder of this section. McMillen
(2003) has addressed the importance of choosing the right model in a sta-
tistical analysis, and how autocorrelation can appear as a result of a wrong
specification of the model.

In addition, Loh and Zhou (2007) discuss the effect of not accounting for
extra-Poisson variation and sampling from the wrong distribution when de-
tection of clusters of disease employs the spatial scan statistic (see Sect. 10.6.6
below). Loh and Zhou (2007) propose a correction based on estimating the
distribution of the test statistics by sampling from a distribution that ac-
counts for spatial correlation and other factors (for example, covariates). This
approach produces more reliable p-values than the original test. Cressie and
Read (1989) already mentioned that the Poisson model was not appropri-
ate for the SIDS data due to the presence of over-dispersion and that other
models that take it into account would be more appropriate.

In case of doubt, the reader is advised to assess the significance of a given
test by using the Multinomial distribution. This is the standard procedure to
assess the significance of the test statistic by Monte Carlo in this scenario.
See Waller and Gotway (2004, pp. 202-203) for a discussion on this issue.

A first evaluation of the presence of clusters in the study region can be
obtained by checking the spatial autocorrelation. Note that using the chi-
square test, for example, we can only detect that there are clear differences
among the relative risks but not if there is any spatial structure in these
differences. In other words, if neighbours tend to have similar (and higher)
values. Note that a possible scenario is that of regions having significantly
different (low and high) relative risks but with no spatial structure, in which
the chi-square test will be significant but there will not be any spatial au-
tocorrelation. This can happen if the scale of aggregation of the data is not
taken properly into account or the scale of the risk factors does not exceed
the scale of aggregation.

10.6.2 Moran’s 1 Test of Spatial Autocorrelation

We have already discussed the use of Moran’s I statistic to assess the presence
of spatial autocorrelation. Here we apply Moran’s I statistic to the SMR to
account for the spatial distribution of the population. If we computed Moran’s
statistic for the O; we could find spatial autocorrelation only due to the spatial
distribution of the underlying population, because it is well known that the
higher the population, the higher the number of cases. Binary weights are
used depending on whether two regions share a common boundary or not.
Spatial autocorrelation is still found even after accounting for over-dispersion.

> col.W <- nb2listw(ncCR85, zero.policy = TRUE)
> moranl.test (Observed offset (log(Expected)), as(nc,
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+ "data.frame"), "negbin", 999, listw = col.W, n = length(ncCR85),
+ S0 = Szero(col.W))

Moran's I test of spatial autocorrelation

Type of boots.: parametric

Model used when sampling: Negative Binomial
Number of simulations: 999

Statistic: 0.2385172

p-value : 0.001

10.6.3 Tango’s Test of General Clustering

Tango (1995) proposed a similar test of global clustering by comparing the
observed and expected number of cases in each region. He points out that
different types of interactions between neighbouring regions can be considered
and he proposes a measure of strength based on a decaying function of the
distance between two regions. The statistic proposed by Tango is

T'T = [01/O+, .. ,On/0+]
T=—-p)TAr—p) { p" =[E1/Ey,...,E,/Ey] (10.2)
A = (a;;) closeness matrix

where a;; = exp{—d;;/¢} and d;; is the distance between regions i and j,
measured as the distance between their centroids. ¢ is a (positive) constant
that reflects the strength of the dependence between areas and the scale at
which the interaction occurs.

In our example, we construct the dependence matrix as suggested by Tango
and, in addition, we take ¢ = 100 to simulate a smooth decrease of the rela-
tionship between two areas as their relative distance increases. It is advisable
to try different values of ¢ because this can have an important impact on
the results and the significance of the test. Constructing this matrix in R is
straightforward using some functions from package spdep, as shown in the
following in the code below. In the computations the weights are globally
re-scaled, but this does not affect the significance of the test since they all
have simply been divided by the same constant. Furthermore, we have taken
the approximate location of the county seats from nc.sids (columns x and
y), which are in UTM (zone 18) projection. Note that using the centroids as
the county seats — as obtained by coordinates(nc) — may lead to slightly
different coordinates and this may have an impact on the results of this and
other tests.

> data(nc.sids)

> idx <- match(nc$NAME, rownames(nc.sids))
> nc$x <- nc.sids$x[idx]

> nc$y <- nc.sids$y[idx]

> coords <- cbind(nc$x, nc$y)
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> dlist <- dnearneigh(coords, 0, Inf)

> dlist <- include.self(dlist)

> dlist.d <- nbdists(dlist, coords)

> phi <- 100

> col.W.tango <- nb2listw(dlist, glist = lapply(dlist.d,
+ function(x, phi) {

+ exp (-x/phi)

+ }, phi = phi), style = "C")

After computing the adjacency matrix we are ready to compute Tango’s test
of general clustering, which points out the presence of global clustering:

> tango.test (Observed~offset (log(Expected)), as(nc, "data.frame"),
+ "negbin", 999, listw = col.W.tango, zero.policy = TRUE)

Tango's test of global clustering

Type of boots.: parametric

Model used when sampling: Negative Binomial
Number of simulations: 999

Statistic: 0.000483898

p-value : 0.049

10.6.4 Detection of the Location of a Cluster

So far we have considered methods that only assess the presence of hetero-
geneity of risks in the study area and give a general evaluation of the presence
of clusters. In order to detect the actual location of the clusters present in
the area a different approach must be followed. A useful family of methods
that can help in this purpose are scan statistics (Hjalmars et al., 1996). These
methods are based on a moving window that only covers a few areas each
time and for which a test of clustering is carried out locally. By repeating
this procedure throughout the study area it will be possible to detect the
locations of clusters of disease.

Scan methods usually differ in the way the window is defined, how it is
moved over the area and how the local test of clustering is carried. A recent
review of these methods has appeared in Statistics in Medicine (Lawson, A.,
Gangnon, R. E. and Wartenburg, D., editors, 2006). In this section we will
only refer to Openshaw’s Geographical Analysis Machine (Openshaw et al.,
1987) and Kulldorff’s statistic (Kulldorff and Nagarwalla, 1995) because the
latter is probably the first scan method proposed and the former is a widely
established (and used) methodology.
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10.6.5 Geographical Analysis Machine

Openshaw’s Geographical Analysis Machine considers a regular grid of points
{(z4,y:)}%_, over the study region at which a circular window is placed in
turn. The test only considers the regions whose centroids are inside the win-
dow and it is based on comparing the total number of observed cases in the
window (O ) to the total of expected cases in the window (Fj4) to assess
if the latter is significantly high. Openshaw et al. (1987) define this test as
the (one tailed) p-value of Oy assuming that it follows a Poisson distribu-
tion with mean Fj . This procedure can be generalised and, if we have signs
that the observed number of cases does not follow a Poisson distribution, the
p-value can be obtained by simulation (Gémez-Rubio et al., 2005). Finally,
if the current test is significant, the circle is plotted on the map. Alterna-
tively, only the centre of each significant cluster can be plotted for the sake
of simplicity and visualisation. Note also that we need to project the cluster
centres back to longitude/latitude to be able to plot them on the map of
North Carolina.

> sidsgam <- opgam(data = as(nc, "data.frame"), radius = 30,
+ step = 10, alpha = 0.002)

> gampoints <- SpatialPoints(sidsgam[, c("x", "y")] * 1000,
+ CRS("+proj=utm +zone=18 +datum=NAD27"))

> library(rgdal)

> 11 <- CRS("+proj=longlat +datum=NAD27")

> gampoints <- spTransform(gampoints, 11)

> gam.layout <- list("sp.points", gampoints)

When the complete area has been screened, we will probably have found
several places where many overlapping clusters have been found, as shown in
Fig.10.21, where the centres of the clusters found have been plotted. This is
due to the fact that the tests performed are not independent and, hence, very
similar clusters (i.e., most of their regions are the same) are tested. That is
the reason why Openshaw’s GAM has been highly criticised by the statistical
community and why, in order to maintain global significance, the significance
level of the local tests should be corrected. Despite this, the GAM is still
helpful as an exploratory method and to generate epidemiological hypotheses
(Cromley and McLafferty, 2002).

10.6.6 Kulldorff’s Statistic

To overcome this and other problems, Kulldorff and Nagarwalla (1995)
developed a new test for the detection of clusters based on a window of vari-
able size that only considers the most likely cluster around a given region.
Kulldorf’s statistic works with the regions within a given circular window
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and the overall relative risk in the regions inside the window is compared
to that of the regions outside the window. This scan method is available
in the SatScan™ software (http://www.satscan.org/), which includes en-
hancements to handle covariates, detect space-time clusters and some other
functionalities.

The null hypothesis, of no clustering, is that the two relative risks are
equal, while the alternative hypothesis (clustering) is that the relative risk
inside the window is higher. This is resolved by means of a likelihood ratio
test, which has two main advantages. Firstly, the most likely cluster can be
detected as the window with the highest value of the likelihood ratio and,
secondly, there is no need to correct the p-value because the simulations for
different centres are independent (Waller and Gotway, 2004, p.220). For a
Poisson model, the expression of the test statistic is as follows:

0.\ (04 —0.\?" 7%
v () (5F) e

where z is an element of Z;, the set of all circles centred at region i. These
circles are constructed so that only those that contain up to a fixed proportion
of the total population are considered.

Note that, even though we select the most likely cluster around each region,
it might not be significant. On the other hand, we may have more than
one significant cluster, around two or more different regions, and that some
clusters may overlap each other. When more than one cluster is found, we can
consider the cluster with the lowest p-value as the primary or most prominent
in the study region. Secondary clusters, that do not overlap with the former,
may be considered too.

Loh and Zhou (2007) show that when data are over-dispersed the classi-
cal spatial scan statistic will produce more false positives than the nominal
significance level. To correct for this, they propose sampling from a different
distribution that accounts for spatial correlation. The Negative Binomial can
be used to account for the extra-variability, which may be caused by spa-
tial autocorrelation coming from unmeasured covariates, and estimate the
distribution of the test statistic under over-dispersion.

> mle <- calculate.mle(as(nc, "data.frame"), model = "negbin")
> thegrid <- as(nc, "data.frame")[, c("x", "y")]
> knresults <- opgam(data = as(nc, "data.frame"),

+ thegrid = thegrid, alpha = 0.05, iscluster = kn.iscluster,
+ fractpop = 0.15, R = 99, model = "negbin",
+ mle = mle)

The most likely cluster for the SIDS data set is shown in Fig.10.21. The
p-value is 0.04, which means that the cluster is significant.

The general procedure of application of this method includes testing each
area as the centre of a possible cluster, although it can only be used on a single
point to test whether it is the centre of a cluster. This is specially helpful, for
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Fig. 10.21 Results of Openshaw’s GAM and Kulldorff’s test. The crosses show the
GAM results, and the colour key the most likely Kulldorf cluster

example, to assess the risk around putative pollution sources. Note that no
assumption about the variation of the risk around the source is made. This
is discussed in the next section.

10.6.7 Stone’s Test for Localised Clusters

As an alternative to the detection of clusters of disease, we may have already
identified a putative pollution source and wish to investigate whether there
is an increased risk around it. Stone (1988) developed a test that considers
the alternative hypothesis of a descending trend around the pollution source.
Basically, if we consider 61, ..., 0,), the ordered relative risks of the regions
according to their distances to the source, the test is as follows:

H():o(l): :9)—/\
H1:6‘(1)2 26‘

A is the overall relative risk, which may be one if internal standardisation has
been used. The test statistic proposed by Stone is the maximum accumulated
risk up to a certain region:

22:1 0;
max —————

‘ 23:1 E;

A word of caution must be given here because, as already discussed by
many authors (Hills and Alexander, 1989, for example), focussed tests should
be employed before checking the data, because a bias is introduced when we
try to use these tests on regions where an actual increased risk has been
observed. In those cases, it will be more likely to detect a cluster than usual.

As an example, we will try to assess whether there is an increased risk
around Anson county, which has been spotted as an area of high risk. A call
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to stone.stat will give us the value of the test statistic and the number of
regions for which the maximum accumulated risk is achieved. Later, we can
use stone.test to compute the significance of this value.

> stone.stat(as(nc, "data.frame"), region = which(nc$NAME ==
+ "Anson"))

region
4.726392 1.000000

> st <- stone.test(Observed offset (log(Expected)), as(nc,

+ "data.frame"), model = "negbin", 99, region = which(nc$NAME ==
+ "Anson"))
> st

Stone's Test for raised incidence around locations

Type of boots.: parametric

Model used when sampling: Negative Binomial
Number of simulations: 99

Statistic: 4.726392

p-value : 0.01

As the results show, the size of the cluster is 1 (just Anson county) which
turns out to be highly significant.

10.7 Spatio-Temporal Disease Mapping

10.7.1 Introduction

So far, we have only considered the case of spatial patterns of disease. How-
ever, it is often the case that Public Health data are collected not only over
a different set of areas but also over different time periods. If time trends
are thought not to be present in the data a purely spatial analysis can be
conducted, but considering different time periods in the model may prove
important.

As in the spatial case, we will use a Poisson distribution with mean ;¢
to model the number of ocurrences of a disease, O; 4, in area ¢ at time ¢. For
each area and time period we can compute an expected number of cases F; ¢,
so that p;; is written down as p; ¢ = E; +6; +, where 6, ; is the relative risk in
area ¢ at time t.

Modelling disease rates in space and time is a complex issue. Knorr-Held
(2000) provides a summary of different ways of modelling space-time interac-
tion. Schrédle and Held (2011) make a summary of different models for spatio-
temporal disease mapping and discuss an implementation using INLA. Some
of these models have a large number of parameters and constraints need to
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be imposed in order to make all the effects identifiable, similarly as the sum-
to-zero-constraint used in the intrinsic CAR specification for spatial random
effects.

A simpler approach is to assume that the spatial and temporal effects can
be separated. For example, a parametric trend can be considered for the time
whilst spatial interaction can be modelled using any of the spatial random
effects studied before.

In order to show how to deal with spatio-temporal disease data we will use
an example on cases of brain cancer in the state of New Mexico (U.S.A.) in
the period 1973-1991. The original data set has been downloaded from the
SatScan™ web site (http://www.satscan.org) and it has been completed
with county boundaries obtained from the U.S. Census Burearu web site
(http://www.census.gov/geo/www/cob/cs2000.html).

Counts are available at the county level and the expected number of cases
have been computed using standardisation by age, race and sex. In addition,
the Cibola and Valencia counties has been merged together as data from Ci-
bola county are only available from 1981. Kulldorff et al. (1998) have analysed
this data set using a spatio-temporal scan statistic and have reported a cluster
around Los Alamos National Laboratory (LANL) in the period 1986-1989.
For this reason, we have computed the (inverse) distance to LANL and in-
cluded it as a covariate in the analysis. Note that, unlike the spatio-temporal
scan statistic, including this covariate will assess any increased risk around
LANL for all the years in our study period and not a particular time frame.

These data are provided in file brainNM.RData, which contains a STFDF
object named brainst with the spatio-temporal data and a SpatialPoly-
gonsDataFrame object named nmf that we will use to create the spatial ad-
jacency matrix, and a SpatialPoints object named losalamos holding a
single point with the location of LANL. Figures 10.22 and 10.23 shows the
SMR per county and year and the overall SMR per year.

10.7.2 Spatio- Temporal Modelling of Disease

In order to analyse this data we will consider a separable spatio-temporal
model. Spatial dependence will be modelled using an intrinsic CAR specifi-
cation and temporal dependence will be modelled using a first-order random
walk to provide a flexible estimation of the temporal trend. Finally, we have
included the inverse distance to LANL as a covariate. As this covariate has
large values, it has been re-scaled dividing by its mean value.
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Fig. 10.22 SMR by county and year (top) and time series plot of yearly SMR
(bottom)
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Fig. 10.23 SMR by county and year (top) and time series plot of yearly SMR (bot-
tom)

This model can be summarised as follows:

Oir ~  Po(E;.0;4+)
log(0i:) = a + Bz +v; +wy
Wt ~ RW(I, O'%U)
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Here x; represents the values of the covariate, v; the spatial random effects
and w; the temporal effects. We have not included the prior on the hyper-
parameters o2 and o2, but this are often assigned inverted Gamma distribu-
tions.

We have conducted this analysis using INLA because it provides a fast
way of fitting these models. First of all, we have created an nb object from
the SpatialPolygons object nmf using function poly2nb. This will provide
the adjacencies that we will use when defining the spatial effect in our model.

> library(spdep)
> neib <- poly2nb(nmf, row.names = 1:length(nmf))

Next, we have defined the formula with the different effects that we want
to include ir our model: linear term on the covariate (IDLANLre), first-order
random walk on the variable Year and intrinsic CAR using an adjacency
matrix (which is defined using area index ID). Note also how we can use
brainst directly in the call to inla. Note that here we have used argument
hyper when defining the random effects to tune the priors of the variances of
the random effects. In particular, we have considered inverted Gammas with
parameters 0.001 and 0.001 in both cases to use the same default priors as in
BayesX.

> library(INLA)
> hyperl <- list(prec = list(param = c¢(0.001, 0.001)))
> form <- Observed~1 + IDLANLre + f(Year, model = "rwl",
hyper = list(prec = list(param = c(0.001, 0.001)))) +
f(ID, model = "besag", graph = nb2mat (neib), hyper = hyperl)
inlares <- inla(form, family = "poisson", data = slot (brainst,
"data"), E = Expected, control.predictor = list(compute = TRUE),
control.results = list(return.marginals.predictor = TRUE))

+ 4+ VvV + +

The same model can easily be fitted with BayesX to compare the approx-
imate inference provided by INLA to a full MCMC approach. We have set
the priors of the variances of the random effects to be the same as we have
obtained different results when the default values were used. Note that this
means that, in this particular case, the choice of priors may have an impact
on the results obtained.

> nmgra <- nb2gra(neib)

> nmbayesx <- bayesx(Observed IDLANLre + sx(Year, bs = "rwl") +
+ sx(ID, bs = "spatial", map = nmgra), offset = log(brainst$Expected),
+ family = "poisson", data = as(brainst, "data.frame"))

Figure 10.24 shows the posterior marginals of the coefficients of the fixed
effects. It should be noted how both INLA and BayesX report very similar
marginal distributions. The covariate that we have included in the model
seems to have no influence on the number of cases. The 95 % credible interval
is (—0.0164, 0.0262), which includes zero, meaning that the covariate has no
significant effect on the cases of brain cancer.

In order to display the posterior means of the spatial random these have
been added to the nmf object from the fitted models:
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Fig. 10.24 Posterior marginals of the fixed effects computed with INLA and BayesX

> nmf$SPINLA <- inlares$summary.random$ID$mean
> nmf$SPBAYESX <- nmbayesx$effects[["sx(ID)"]]$Mean

The temporal and spatial trends have been displayed in Figs. 10.25 and 10.26.
Although there seems to be an increasing temporal trend it is not significant
considering that all 95% credible intervals contain zero. However, note how
the temporal effect becomes almost significant in the period 1986-1989. This
is consistent with the findings reported by Kulldorff et al. (1998). Regarding
the spatial variation, we find a high level of agreement between the estimates
provided by INLA and BayesX. However, the posterior means of the spatial
random effects are very small, so we conclude that there is no apparent spatial
variation in the data.

Temporal trend (INLA) Temporal trend (BayesX))

1975 1980 1985 1990 1975 1980 1985 1990

Year Year

Fig. 10.25 Posterior means of the temporal trend, dashed lines mark 95 % credible
intervals



10.8 Other Topics in Disease Mapping 361

Spatial effects

SPINLA SPBAYESX 0.10
Laboratory Laboratory 0.05
0.00

-0.05

-0.10

Fig. 10.26 Posterior means of the spatial effects

10.8 Other Topics in Disease Mapping

Although we have tried to cover a wide range of analyses in this chapter, we
have not been able to include other important topics, such as the detection
of non-circular clusters (see, for example, Tango and Takahashi, 2005) the
joint modelling of several diseases (Held et al., 2005) or the disease mapping
of rare diseases (Gémez-Rubio and Lépez-Quilez, 2010), which requires the
use of zero-inflated models. Gelfand et al. (2010) discuss some of these issues,
as well as many other spatial and spatio-temporal models that could be used
for disease mapping. Cressie and Wikle (2011) also cover a good number of
model that can be used for disease mapping and provide several examples.

Other data sets and models could be used by making the corresponding
modifications to the code shown here. Some examples are available in Lawson
et al. (2003). Furthermore, Banerjee et al. (2004) describe a number of other
possible Bayesian analyses of spatial data and provide data and WinBUGS
code in the associated website which the reader should be able to reproduce
using the guidelines provided in this chapter.



Afterword

Both parts of this book have quite consciously tried not to give authorita-
tive advice on choices of methods or techniques.! The handling and analysis
of spatial data with R continues to evolve — this is implicit in open source
software development. It is also an important component attempting to offer
applied researchers access to accepted and innovative alternatives for data
analysis, and applied statisticians with representations of spatial data that
make it easier to test and develop new analytical tools.

A further goal has been to provide opportunities for bringing together the
various camps and traditions analysing spatial data, to make it somewhat
easier to see that their ways of conducting their work are not so different
from one another in practise. It has always been worrying that fields like
disease mapping or spatial econometrics, with very similar data scenarios,
make different choices with regard to methods, and treatments of the as-
sumptions underlying those methods, in their research practice. Research
practice evolves, and learning from a broader spread of disciplines must offer
the chance to avoid choices that others have found less satisfactory, to follow
choices from which others have benefited and to participate in innovation in
methods.

This makes participation in the R community, posting questions or sug-
gestions, reporting apparent bugs not only a practical activity, but also an
affirmation that science is fostered more by openness than the unwarranted
restriction of findings. In the context of this book, and as we said in the
preface, we would be grateful for messages pointing out errors; errata will be
posted on the book website (http://www.asdar-book.org).

1 An illustration from an email exchange between the authors: “I think we are trying
to enable people to do what they want, even if they shoot themselves in the feet (but
in a reproducible way)!”

R.S. Bivand et al., Applied Spatial Data Analysis with R, Use R! 10, 363
DOI 10.1007/978-1-4614-7618-4,
© Springer Science+Business Media New York 2013
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R and Package Versions Used

R version 3.0.0 (2013-04-03), x86_64-unknown-1linux-gnu

Base packages: base, datasets, graphics, grDevices, grid, methods,
splines, stats, stats4, utils

Other packages: akima 0.5-10, BayesX 0.2-6, BayesXsrc 2.1-1,
bdsmatrix 1.3, bitops 1.0-5, boot 1.3-9, CARBayes 1.3, class 7.3-7,
classInt 0.1-19, coda 0.16-1, colorspace 1.2-1, cubature 1.1-2,

DCluster 0.2-6, deldir 0.0-21, e1071 1.6-1, epitools 0.5-7, evd 2.3-0,
fields 6.7, foreign 0.8-53, Formula 1.1-0, geoR 1.7-4, geosphere 1.2-28,
geplot2 0.9.3.1, graph 1.37.7, gstat 1.0-16, gtools 2.7.0, INLA 0.0,
lattice 0.20-14, latticeExtra 0.6-24, Imtest 0.9-30, locfit 1.5-8, maps 2.3-2,
maptools 0.8-23, MASS 7.3-26, Matrix 1.0-11, MCMCpack 1.2-4,
McSpatial 1.1.1, mgev 1.7-22, nlme 3.1-109, osmar 1.1-5, pgirmess 1.5.6,
pixmap 0.4-11, pkgDepTools 1.25.0, plm 1.3-1, quantreg 4.96,
R2BayesX 0.1-2, R2ZWinBUGS 2.1-18, RandomFields 2.0.66,

RANN 2.2.1, raster 2.1-16, RBGL 1.35.0, RColorBrewer 1.0-5,

RCurl 1.95-4.1, rgdal 0.8-5, rgeos 0.2-13, sandwich 2.2-9, shapefiles 0.7,
sp 1.0-6, spacetime 1.0-4, spam 0.29-2, SparseM 0.96, spatstat 1.31-1,
spdep 0.5-56, spgrass6 0.7-15, sphet 1.2-00, splancs 2.01-32,

truncdist 1.0-1, XML 3.96-0.1, xtable 1.7-1, xts 0.9-3, zoo 1.7-9
Loaded via a namespace (and not attached): BiocGenerics 0.5.6,
dichromat 2.0-0, digest 0.6.3, gtable 0.1.2, intervals 0.14.0, labeling 0.1,
LearnBayes 2.12, munsell 0.4, parallel 3.0.0, plyr 1.8, proto 0.3-10,
reshape2 1.2.2; scales 0.2.3, stringr 0.6.2, tools 3.0.0

Data Sets Used

Auckland 90m Shuttle Radar Topography Mission: downloaded on 26
September 2006 from the US Geological Survey, National Map Seam-
less Server http://seamless.usgs.gov/, now http://earthexplorer.
usgs.gov/, GeoTiff file, 3 arcsec ‘Finished’ (90 m) data; file 70042108.zip
on book website.

Auckland shoreline: downloaded on 7 November 2005 from the National
Geophysical Data Center coastline extractor http://www.ngdc.noaa.
gov/mgg/shorelines/shorelines.html; file auckland_mapgen.dat on
book website.

Biological cell centres: available as data(cells) from spatstat, docu-
mented in Ripley (1977).

Broad Street cholera mortalities: original files provided by Jim Detwiler,
who had collated them for David O’Sullivan for use on the cover of
O’Sullivan and Unwin (2003), based on earlier work by Waldo Tobler
and others; this version is available as a compressed archive of a GRASS
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location in file snow_location.tgz, and a collection of GeoTiff and shape-
files exported from this location in file snow_files.zip on the book
website.

e (alifornia redwood trees: available as data(redwoodfull) from spatstat,
documented in Strauss (1975).

e C(ars: available as data(cars) from datasets.

e CRAN mirrors: locations of CRAN mirrors 1 October 2005; file on book
website CRAN051001a. txt.

e Eurasian Collared Dove, Streptopelia decaocto, for the years 1986-2003,
data used were originally obtained from the North American Breed-
ing Bird Survey, published by Cressie and Wikle (2011); downloaded
from the book web site, ftp://ftp.wiley.com/public/sci_tech_med/
spatio_temporal_data/.

e Japan shoreline: available in the ‘world’ database provided by maps.

e Japanese black pine saplings: available as data(japanesepines) from
spatstat, documented in Numata (1961).

e Lansing Woods maple trees: available as data(lansing) from spatstat,
documented in Gerard (1969).

e Loggerhead turtle: downloaded on 2 November 2005 with permission from
SEAMAP, (Read et al., 2003), data set 105; data described in Nichols et al.
(2000); file seamap105_mod.csv on book website.

e Manitoulin Island: created using Rgshhs in maptools from the GSHHS
high resolution file gshhs_h.b, version 1.5, of 3 April 2007, downloaded
from ftp://ftp.soest.hawaii.edu/pwessel/gshhs.

e Maunga Whau volcano: available as data(volcano) from datasets.

e Meuse bank: available as data(meuse) from sp, supplemented by
data(meuse.grid) and data(meuse.riv), and documented in Rikken and
Van Rijn (1993) and Burrough and McDonnell (1998).

e New Mexico brain cancer: The original data set for 1973-1991 has been
downloaded from the SatScan™ web site (http://www.satscan.org) and
it has been completed with county boundaries obtained from the U.S. Cen-
sus Burearu web site (http://www.census.gov/geo/www/cob/cs2000.
html).

e New York leukemia: used and documented extensively in Waller and Got-
way (2004) and with data made available in Chap.9 of http://www.
sph.emory.edu/"1lwaller/WGindex.htm; the data import process is de-
scribed in the help file of NY_data in spdep; geometries downloaded
from the CIESIN server at ftp.ciesin.columbia.edu, file /pub/census/
usa/tiger/ny/bna_st/t8_36.zip, and extensively edited; a zip archive
NY_data.zip of shapefiles and a GAL format neighbours list is on the
book website.

e North Carolina SIDS: shapefile sids.shp (based on geometries down-
loaded from http://sal.agecon.uiuc.edu/datasets/sids.zip; curr-
ently at http://geodacenter.org/downloads/data-files/sids.zip)
and GAL format neighbour lists ncCC89.gal and ncCR85. gal distributed
with spdep, data from Cressie (1993), neighbour lists from Cressie and
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Chan (1989) and Cressie and Read (1985), documented in the nc.sids
help page.

e North Derbyshire asthma study: the data has been studied by Diggle and
Rowlingson (1994), Singleton et al. (1995), and Diggle (2003); the data
are made available in anonymised form by permission from Peter Diggle as
shapefiles in a zip archive north_derby_asthma.zip on the book website.

e Olinda 2010 population census, enumeration districts and remotely sensed
data: Shapefile, raster files and data modified from downloads from http://
censo2010.ibge.gov.br/en/resultados, http://www.ibge.gov.br/
home/estatistica/populacao/censo2010, http://www.dgi.inpe.br/
CDSR/,http://earthexplorer.usgs.gov/,ftp://geoftp.ibge.gov.br/
malhas_digitais/censo_2010/setores_censitarios/shape/pe_v1.2.
zip and ftp://ftp.ibge.gov.br/Censos/Censo_Demografico_2010/
Sinopse/ Agregados_por_Setores_Censitarios/Base_informacoes_
setores2010_sinopse_PE.zip; the two latter are now: ftp://geoftp.
ibge.gov.br/malhas_digitais/censo_2010/ setores_censitarios/pe.
zip and ftp://ftp.ibge.gov.br/Censos/Censo_Demografico_2010/
Resultados_do_Universo/Agregados_por_Setores_Censitarios/Base_
informacoes_setores2010_universo_PE.zip. These are stored in a zip
archive 0linda_data.zip on the book website.

e Produc data in plm: A panel of 48 observations (one for each US state) from
1970 to 1986; online complement to Baltagi (2001), http://www.wiley.
com/legacy/wileychi/baltagi/, http://www.wiley.com/legacy/
wileychi/baltagi/supp/PRODUC.prn

e Scottish lip cancer: Shapefile and data file downloaded from the book web-
site of Waller and Gotway (2004), http://www.sph.emory.edu/~1lwaller/
WGindex.htm, Chaps. 2 and 9.

e Spearfish: downloaded as GRASS location from http://grass.itc.it/
sampledata/spearfish_grass60data-0.3.tar.gz, now http://grass.
osgeo.org/sampledata/spearfish_grass60data.tar.gz; this data set
has been the standard GRASS location for tutorials and is documented in
Neteler and Mitasova (2004).

e US 1999 SAT scores: state boundaries available in the ‘state’ database
provided by maps, original attribute data downloaded on 2 November
2005 from http://www.biostat.umn.edu/ melanie/Data/ and supple-
mented with variable names and state names; the data set is also avail-
able from the website of Banerjee et al. (2004), http://www.biostat.
umn.edu/ brad/data/state-sat.dat, and the modified version as file
state.sat.data_mod.txt from the book website.

e World volcano locations: downloaded from the National Geophysical Data
Center http://www.ngdc.noaa.gov/hazard/volcano.shtml, available as
file data1964al.xy from book website.
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xts, 156

zoo, 156, 161

crepuscule, see Methods,

crepuscule

CRS, see Class, CRS
CsparseMatrix, see Class,

CsparseMatrix

CSR, see Complete Spatial

Randomness

cubature, see CRAN, cubature

Data formats

GAL, 273

GDAL RData, 105

Geography Markup
Language (GML), 96

GeoTiff, 102, 103, 136

GPS Exchange Format
(GPX), 98, 99
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Keyhole Markup Language
(KML), 96, 99, 110

Mapgen, 41

Portable Network Graphics
(PNG), 110, 111

PostGIS, 93

raster, 100

shapefile, 92-94, 96, 99, 132

vector, 91

Web Feature Service (WFS),
96

Web Map Service (WMS),
106

WKT, 132

data frames, 25, 35
Data set

Auckland 90 m Shuttle Radar
Topography Mission,
364

Auckland 90m Shuttle Radar
Topography Mission,
50-54, 100, 101

Auckland shoreline, 41, 43,
44, 364

Biological cell centres, 176,
180, 181, 191, 192, 364

Broad Street cholera
mortalities, 118-120,
122, 365

California redwood trees,
176, 180, 181, 186, 187,
191, 192, 365

cars, 24-27, 365

CRAN mirrors, 30-37, 365

Eurasian Collared Dove, 156,
365

Japan shoreline, 39, 40, 365

Japanese black pine saplings,
175, 176, 180, 181, 191,
192, 365

Lansing Woods maple trees,
189, 190, 365

Loggerhead turtle, 37

loggerhead turtle, 365

Manitoulin Island, 47-50, 365
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Maunga Whau volcano, 8, 9,
40, 128, 129, 365
Meuse bank, 53, 60-62, 64,
65, 67, 69-73, 7T7-82,
103, 104, 110, 111, 141,
142, 214-217, 219-226,
228-234, 236, 237,
239-244, 248, 250, 251,
253-255, 257, 365
New Mexico brain cancer,
357, 365
New York leukemia, 265,
267275, 277, 279-288,
291, 292, 294296,
299-302, 304-307,
309-315, 365
North Carolina SIDS, 65, 78,
322, 324-329, 332-334,
337-340, 342-344,
349-354, 356, 366
North Derbyshire asthma
study, 177, 195-200,
202-206, 208, 209, 366
Olinda, 132-140, 142-148,
366
Produc panel data, 164, 366
Scottish lip cancer, 93-96,
366
Spearfish, 113-117, 366
US 1999 SAT scores, 45, 46,
366
world volcano locations, 8,
366
data.frame, 25, 35
DCluster, sece CRAN, DCluster
dimensions, 22
2.5D, 23
3D, 22
disease cluster, 347
detection, 347
testing, 348, 352
chi-square test, 348
general clustering, 351
Geographical Analysis
Machine, 353

Subject Index

homogeneity, 348
Kulldorff’s statistic, 353,
354
localised, 355, 356
Moran’s I test, 350
Potthoff-Whittinghill test,
349
scan statistic, 353, 354
spatial autocorrelation, 350
Stone’s test, 355, 356
Tango’s test, 351
disease mapping, 319
DMS, see Class, DMS

EB, see Empirical Bayes
EBImage, see Bioconductor,
EBImage
elide, see Methods, elide
ellipsoid, 30
WGS84, 30
Empirical Bayes
estimation, 324, 326-329
local estimation, 328, 329
log-normal model, 326
Poisson-Gamma model, 324
empirical cumulative distribution
function, 80
ENVI™ 104
epidemiology
spatial, 192
EPSG geodetic parameter data
set, 85, 86
error measurement, 128
error propagation, 129
European Petroleum Survey
Group (EPSG), 85

fields, see CRAN, fields
foreign, see CRAN, foreign

gcDestination, 149
GDALDataset, see Class,
GDALDataset
GDALDriver, see Class,
GDALDriver
gdistance, sece CRAN, gdistance



Subject Index

Geary’s C' test, see spatial
autocorrelation, tests,
Geary’s C'
generalised additive model, 200,
202, 314, 315
generalised linear model, 208,
315
generic functions, see Methods
GeoDa, 273
geographical coordinates, see
coordinates,
geographical
Geographical Information
Systems (GIS), 5-8, 83,
91, 100, 112, 123
Geometry Engine — Open Source,
131
Geometry Engine — Open
Source, 47
geoR, see CRAN, geoR
geoRglm, see CRAN, geoRglm
GEOS, see Geometry Engine —
Open Source
Geospatial Data Abstraction
Library (GDAL), 83,
100, 125
OGR, 92, 96, 98, 110, 138
geosphere, see CRAN, geosphere
geostatistics, 10, 213, 214, 217,
252
anisotropy, 221, 223, 228, 229
conditional simulation, 214,
252
circulant embedding, 252
sequential, 252-255
covariance, 214
isotropy, 218
model diagnostics, 247
cross validation, 247-251
model-based, 214, 256
monitoring networks, 213,
256, 257
multivariable, 214, 229, 230
prediction, 214, 232-234,
236—238
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block kriging, 214, 215,
217, 238, 239
domain stratification, 240
indicator kriging, 214, 243,
255
multivariable, 214, 230,
234, 236
ordinary, 233
ordinary kriging, 233
simple, 233
simple kriging, 214, 233
singular matrix errors,
243-245
universal, 233
universal kriging, 214, 233
semivariance, 214, 217, 218,
221
stationarity, 218, 221
variable transformation, 242,
243
variogram, 214, 217-228
cloud, 220
cross, 229, 230
cutoff, 222, 223
direction, 222, 223, 228
exploratory, 219-221
lag width, 222, 223
model, 224-229, 231, 232,
255
nugget, 226
partial sill, 226
range, 226
residual, 230-232
GeoXp, see CRAN, GeoXp
Getis-Ord G test, see spatial
autocorrelation, tests,
Getis-Ord G
geplot2, see CRAN, ggplot2
GIS
data models, 8, 22, 91, 100
raster, 48
Global Positioning System
(GPS), 22, 84
Global Self-consistent
Hierarchical
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High-resolution
Shoreline Database
(GSHHS), 47, 91
Google Earth™, viii, 6, 21, 110,
111, 164
image overlay, 110, 111
KML, 110
Google Maps™, viii, 21, 108
GRASS
location, 113
Soho, 118
Spearfish, 114
mapset, 113
version 5, 112
version 6, 112, 113, 136
0OSX, 113
Windows, 113
window, 113
GRASS, see CRAN, GRASS
GRASS GIS, 112, 113, 118, 136
Great Circle distance, 88, 149
grid, 9, 48
GridTopology, see Class,
GridTopology
ground control points, 22
gstat, sece CRAN, gstat
gwrr, sece CRAN, gwrr

habitat, 122

ID matching, 34, 44, 46, 322
im, see Class, im
image, see Methods, image
impacts, 308-311
direct and indirect, 308-311
summary measures, 308-310
impacts, see Methods, impacts
INLA, ix, 332, 334, 335, 343, 344,
346, 359-361
INLA, 274
interpolation, 215
geostatistical, see
geostatistics, prediction
inverse distance weighted,
216, 240
linear regression, 217

Subject Index

trend surface, 217
ISO 8601, see spatio-temporal
data

John Snow, 118

join count test, see spatial
autocorrelation, tests,
join count

JTS, see JTS Topology Suite

JTS Topology Suite, 131

kriging, see geostatistics,
prediction

lag
spatial, 275
lattice graphics, 69
LearnBayes, see CRAN,
LearnBayes
levelplot, 70
lIgep, see CRAN, lgep
Line, see Class, Line
line generalisation, 41
linear model, 280, 286, 291, 292,
295, 305, 314
heteroskedasticity, 303, 304
multicollinearity, 292, 305
residuals, 280, 286, 291, 292,
295, 296, 305
weighted, 295, 296
Lines, see Class, Lines
lines, 9, 38
lines, see Methods, lines
listw, see Class, listw
Imtest, see CRAN, Imtest
longlat, 29, 31, 86

mailing list, see R-Sig-Geo
mailing list, see
R-Sig-Geo mailing list

Mantel general cross product test,
see spatial
autocorrelation, tests,
Mantel

map class intervals, 79

map colours, 68, 79, 342
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map grids, 66
map north arrow, 65
map plotting, 59
map scale bar, 65
map symbols, 68
Mapgen, see Data formats,
Mapgen
mapproj, see CRAN, mapproj
maps, see CRAN, maps
maptools, see CRAN, maptools
MASS, see CRAN, MASS
mathematical geography, 21
Matlab™, 274
Matrix, sce CRAN, Matrix
MCMCsamp, see Methods,
MCMCsamp
McSpatial, see CRAN, McSpatial
memory management, 11
Methods, 24
aggregate, 156
aggregate, 142, 159
as, 28, 52, 57, 60, 72, 88, 91,
110, 122, 175, 176, 195,
198, 309
bbox, 31
coordinates, 32
coordinates<-, 36, 60, 61
crepuscule, 149
elide, 149, 176
image, 59, 61, 62, 69, 81, 111
impacts, 309, 310
lines, 59
MCMCsamp, 311
na.approx, 156
na.locf, 156
na.spline, 156
names, 35
over, 156
over, 33, 111, 119, 140-142,
159, 240
plot, 33, 59-62, 68, 81
points, 59
predict, 217
print, 33
proj4string, 32
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proj4string<-, 32
solarnoon, 149
solarpos, 149
spCbind, 95
spplot, 60, 70-72, 78, 82,
214
spsample, 33, 146, 239
spTransform, 66, 88, 95,
110, 132, 353
stplot, 156
stplot, 161, 163
subset, 267, 273
summary, 33
sunriset, 149
mgcev, see CRAN, mgcv
missing values, 273
misspecification, 264, 265, 276,
277, 280, 288, 289,
292
modifiable areal unit problem,
263
Mondrian, 123
Moran’s I test, see spatial
autocorrelation, tests,
Moran’s I
moving objects, see
spatio-temporal data

names, see Methods, names
nb, see Class, nb
neighbours
spatial, 137, 264-269, 273,
276

points, 268, 269

polygons, 268

sets, 264

objects and fields, 10

observation window, 175

Oil & Gas Producers (OGP)
Surveying & Positioning
Committee, 85

Open Source Geospatial
Foundation (OSGeo),
83, 112
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OpenGIS®)
simple features, 43, 48, 92,
131, 132
Web Feature Service (WFS),
96
OpenStreetMap, 106-108
osmar, see CRAN, osmar
over, see Methods, over
overlay, see Methods, over
owin, see Class, owin

P-splines, 345
PBSmapping, sece CRAN,
PBSmapping
pgirmess, sece CRAN, pgirmess
pixmap, see CRAN, pixmap
pkgDepTools, see Bioconductor,
pkgDepTools
plot, see Methods, plot
plotKML, see CRAN, plotKML
plotting maps, 59
axes, 62, 64, 65
point pattern
binary regression estimator,
198, 200
bounding region, 173
case—control, 193—196, 198,
200, 206, 207, 209
clustered, 179, 204
definition, 173
intensity, 182, 184
kernel bandwidth, 185-187,
194, 195, 197, 199
kernel density, 184, 185, 187,
194, 195
kernel density ratio, 194, 195,
197, 199
marked, 176, 193
regular, 179
point pattern analysis, 10, 173
point process
F function, 181
G function, 179, 180
K function, 191, 192, 205

Subject Index

inhomogeneous, 192, 193,
206—209
definition, 173
homogeneous, 183
inhomogeneous, 184
isotropic, 183
K function, 191
likelihood, 188
second-order properties, 190
stationary, 183
point source pollution, 202-204
points, 9, 30, 214
2D, 30
3D, 31
neighbours, 268, 269
k-nearest, 268
distance bands, 269
points, see Methods, points
Poisson-Gamma model, 323, 324,
332-334
Polygon, see Class, Polygon
Polygons, see Class, Polygons
polygons, 9, 42, 263, 264
contiguous neighbours, 268
queen, 268
hole, 42, 46, 47, 132, 263
plot order, 43, 48
ring direction, 42, 46, 47
topology, 47
POSIX1t, see Class, POSIX1t
ppp, see Class, ppp
predict, see Methods, predict
print, see Methods, print
probability map, 325
PROJ.4 Cartographic Projections
library, 83, 85, 86, 125
tags, 86
ellps, 87, 89
init, 87
proj, 87, 89
towgs84, 87
proj4string, see Methods,
proj4string
proj4string<-, see Methods,
proj4string<-
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Python, 125
MGET, 125

quadtree, 238

R-Sig-Geo mailing list, viii, 15
R2BayesX, sece CRAN, R2BayesX
R2WinBUGS, see CRAN,
R2WinBUGS
raised incidence, 203, 204
random fields, 214, 252
RandomFields, see CRAN,
RandomFields
RArcInfo, sece CRAN, RArcInfo
RColorBrewer, sece CRAN,
RColorBrewer
ReadImages, see CRAN,
ReadImages
remote sensing, 21, 48
multi-spectral images, 21
Reproducible research, xi, 4, 5
rgdal, see CRAN, rgdal
rgeos, see CRAN, rgeos, see
CRAN, rgeos
RgoogleMaps, sce CRAN,
RgoogleMaps
row names, 26
RPyGeo, sce CRAN, RPyGeo
RSAGA, sece CRAN, RSAGA
RsparseMatrix, see Class,
RsparseMatrix

sampling
spatial, see spatial sampling
sandwich, see CRAN, sandwich
shapefiles, see CRAN, shapefiles
Shuttle Radar Topography
Mission, 21, 50
simultaneous autoregression,
274
simulation, 274
solar noon, 149
solar position, 149
solarnoon, see Methods,
solarnoon
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solarpos, see Methods,
solarpos
Sort-Tile-Recursive tree, see
computational geometry,
Sort-Tile-Recursive tree
sp.layout, argument to spplot,
73
space-time layout, see
spatio-temporal data
spacetime, see CRAN, spacetime,
see CRAN, spacetime
Spatial, see Class, Spatial
spatial, see CRAN, spatial
spatial autocorrelation, 264, 274,
289, 290
approximate
profile-likelihood
estimator, 292
correlogram, 283, 284
local tests, 284—-288
Moran’s I, 286-288
misspecification, 264, 265,
276, 277, 280, 288, 289,
292
Moran scatterplot, 285
over-dispersion, 286
tests, 265, 276-285, 287, 288,
292, 296
Empirical Bayes Moran’s
1,282, 283
exact, 281, 286
Geary’s C, 278
Getis-Ord G, 278
join count, 278
Lagrange Multiplier,
304-306
Mantel, 278
Monte Carlo, 278, 281, 282
Moran’s I, 276, 277,
279-281, 292, 296, 350
Normality assumption,
278, 280, 286
parametric bootstrap, 278,
282, 287, 288
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permutation bootstrap,
278, 281, 282
Randomisation
assumption, 279, 286
rates, 282, 283, 286-288
Saddlepoint
approximation, 281, 286
Spatial Econometrics Library, 274
spatial epidemiology, 319
spatial lag, see lag, spatial
spatial models, 289-293, 295, 314,
315, 317
Common Factor, 310
conditional autoregressive
(CAR), 290, 298-300,
337-340, 344, 357,
359-361
generalised additive model,
314, 315
generalised estimating
equations, 317
generalised linear
mixed-effect model, 317
generalised linear model, 314,
315
geoadditive model, 314, 345
geographically weighted
regression, 318
Jacobian, 301, 302
eigenvalues, 301
sparse matrix
representation, 301, 302
likelihood ratio test, 295
log likelihood, 302
Moran eigenvector, 317
P-splines, 346
simultaneous autoregressive
(SAR), 290, 292-295,
297, 302
components of fitted
values, 295, 298
simultaneous moving average
(SMA), 302
spatial Durbin, 305, 307-310
spatial Durbin error, 311

Subject Index

spatial econometrics, 303,
304
spatial error, 305, 310, 311
GM estimator, 312, 313
spatial filtering, 317
spatial lag, 305-310
2SLS, 311
spatial quantile, 313
spatial neighbours, see
neighbours, spatial
spatial queries, 140
spatial sampling, 146, 239
Spatial Task View, see CRAN,
Spatial Task View
spatial weights, see weights,
spatial
SpatialGrid, see Class,
SpatialGrid
SpatialGridDataFrame, see
Class,
SpatialGridDataFrame
spatialkernel, sece CRAN,
spatialkernel
Spatiallines, see Class,
SpatiallLines
SpatiallLinesDataFrame, see
Class, SpatialLines-
DataFrame
SpatialPixels, see Class,
SpatialPixels
SpatialPixelsDataFrame, see
Class, SpatialPixels-
DataFrame
SpatialPoints, see Class,
SpatialPoints
SpatialPointsDataFrame, see
Class, SpatialPoints-
DataFrame
SpatialPolygons, see Class,
SpatialPolygons
SpatialPolygonsDataFrame, see
Class, SpatialPoly-
gonsDataFrame
spatio-temporal data, 151
aggregation, 159



Subject Index

construction, 156
interpolation, 261
ISO 8601, 156
moving objects, 153
overlay, 159
replacement, 158
selection, 158
space-time layout, 152
spatio-temporal fields, 152
spatio-temporal point
pattern, 152
support, 152
time instance or interval,
152
trajectories, 153
visualising, 161, 162
spatio-temporal models, 356
spatstat, see CRAN, spatstat, see
CRAN, spatstat
spdep, see CRAN, spdep
spgrass6, see CRAN, spgrass6
spgwr, see CRAN, spgwr
sphet, see CRAN, sphet
splancs, see CRAN, splancs, see
CRAN, splancs
splm, see CRAN, splm
spplot, see Methods, spplot
spsample, see Methods,
spsample
spTransform, see Methods,
spTransform
standardisation
indirect, 321
internal, 321
Standardised Mortality Ratio,
322, 357
Stata™, 123, 274
tmap, 123
StatConnector (D)COM
mechanism, 124
stinepack, see CRAN, stinepack
stpp, see CRAN, stpp
subset, see Methods, subset
summary, see Methods, summary
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sunrise, 149
sunriset, see Methods,
sunriset
sunset, 149
support, 127, 129, 263
change of, 128, 238, 239

temporal models
random walk, 357, 359-361
TerralLib, 123, 124
R interface, 123, 124
testthat, sce CRAN, testthat
thematic maps, 68
trajectories, see spatio-temporal
data
trellis graphics, see lattice
graphics
triangulation, 85

uncertainty, 22, 129, 252

visualisation, 11
visualising spatial data, 59

weights
spatial, 264, 265, 269-271,

273, 274, 276, 339

asymmetric, 301

binary, 269, 270

generalised, 271

no-neighbour areal entities,
271, 272, 279

row standardised, 270

similar to symmetric, 301

sparse matrix
representation, 301

styles, 270

symmetric, 299, 301

unknown, 274

zero policy, 271, 272

WinBUGS, ix, 331-334, 337-340,
346, 361
GeoBUGS polygon import,

123
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GeoBUGS weights import, XML, see CRAN, XML
274
window, 175 zero policy, see weights, spatial,

WKT, see Data formats, WKT zero policy
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achisq.test, DCluster, 349

adaptIntegrate, cubature, 189

aes, ggplot2, 75

aggregate method, sp, 142

anova.sarlm, spdep, 307

aple, spdep, 292

as.geodata, geoR, 227

as.vgm.variomodel, gstat, 227

as_dgRMatrix_listw, spdep,
273, 309

as_sp, osmar, 109

axis, graphics, 62

bayesx, BayesX, 335, 344-346

bbox method, sp, 31

blockSize, raster, 55

boot, boot, 282

boxcox, MASS, 242

bptest, Imtest, 303

bptest.sarlm, spdep, 306

bpy.colors, sp, 79

brewer.pal, RColorBrewer, 79,
80

bugs, R2ZWinBUGS, 332-334, 339

bw.diggle, spatstat, 186

bw.relrisk, spatstat, 199

calculate.mle, DCluster, 354
card, spdep, 266, 269
cellStats, raster, 55
char2dms, sp, 88, 90

classIntervals, classInt, 80
cm.colors, grDevices, 79
coeftest, Imtest, 304
colorRampPalette, grDevices, 79
ContourLines2SLDF, maptools,
40, 72, 198
coord_equal, ggplot2, 75
coordinates method, sp, 32
cor, stats, 230
correlog, pgirmess, 284
cover.design, fields, 257
create2GDAL, rgdal, 103
createSPComment, rgeos, 48
crepuscule method, maptools,
149
CRS, sp, 29, 31, 32, 66, 87-89, 94,
95, 103, 110, 111, 132,
136, 137

dd2dms, sp, 88, 90

default.stringsAsFactors,
base, 94

degAxis, sp, 65

density, spatstat, 187, 195, 197

dnearneigh, spdep, 269, 284, 351

doGRASS, spgrass6, 113

EBest, spdep, 327
EBImoran.mc, spdep, 282
EBlocal, spdep, 328
ecdf, stats, 80
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eigen, base, 301

eigenw, spdep, 301, 302

elide method, maptools, 149, 176

empbaysmooth, DCluster, 95, 324

envelope, spatstat, 180, 181, 191,
205, 209

errorsarlm, spdep, 310, 311

eval.im, spatstat, 197

execGRASS, spgrass6, 113, 116,
136

eyefit, geoR, 227

£, INLA, 335, 344, 359

Fest, spatstat, 181

findColours, classInt, 81

fit.1lmc, gstat, 229, 230

fit.variogram, gstat, 226, 228,
231, 232, 248, 255

fit.variogram.reml, gstat, 228

fitvario, RandomFields, 228

fortify, ggplot2, 75

fv, spatstat, 209

gam, mgev, 200, 202, 314, 315
gArea, rgeos, 133, 135, 140
gBinarySTRtreeQuery, rgeos, 139
gBuffer, rgeos, 120

gBuffer, rgeos, 139
gcDestination, maptools, 149
GDAL.close, rgdal, 101

GDAL. open, rgdal, 101
GDALinfo, rgdal, 101, 103
GE_SpatialGrid, maptools, 111
geary.test, spdep, 278
geom_point, ggplot2, 75

Gest, spatstat, 180

get_osm, osmar, 109
getDriverLongName, rgdal, 101
getinfo.shape, maptools, 99
GetMap, RgoogleMaps, 108
GetMap.0SM, RgoogleMaps, 108
getScale, rgeos, 131, 135
getValues, raster, 55
geweke.diag, coda, 340
ggplot, ggplot2, 75
gIntersection, rgeos, 97

Functions Index

gIntersection, rgeos, 138-140
gLength, rgeos, 137-139
glLineMerge, rgeos, 137
glm, stats, 208, 282, 315
globalG.test, spdep, 278
gmeta2grd, spgrass6, 120
gmeta2grd, spgrass6, 118
gOverlaps, rgeos, 135
grey.colors, grDevices, 79
grid.locator, grid, 78
gridat, sp, 66
gridlines, sp, 66
GridTopology, sp, 48, 49
gstat, gstat, 229-232, 236, 238,
241, 242
gstat.cv, gstat, 250
gTouches, rgeos, 137
gUnaryUnion, rgeos, 135
gzAzimuth, maptools, 88, 149

heat.colors, grDevices, 79
hscat, gstat, 219

I, base, 217

identify, graphics, 77

idw, gstat, 111, 216, 240

image method, sp, 59, 61, 62, 69,
81, 111

include.self, spdep, 351

influence.measures, stats, 285

initGRASS, spgrass6, 113, 136

inla, INLA, 274, 335, 344, 359

inMemory, raster, 55

interp.im, spatstat, 208, 209

invIrW, spdep, 274

joincount.multi, spdep, 278
joincount.test, spdep, 278

Kest, spatstat, 191, 206
Kinhom, spatstat, 208, 209
kmlLine, maptools, 110
kmlOverlay, maptools, 111
kmlPoints, maptools, 110
kmlPolygon, maptools, 110
knearneigh, spdep, 269



Functions Index

knn2nb, spdep, 269

krige, gstat, 217, 233, 238-240,
243-245, 248, 251,
253-255, 257

krige.cv, gstat, 248, 251

lag.listw, spdep, 275, 286, 287
lagsarlm, spdep, 306, 307
layout, graphics, 68
layout.north.arrow, sp, 65
layout.scale.bar, sp, 65
legend, graphics, 69
levelplot, lattice, 70
likfit, geoR, 228, 229
Line, sp, 38
Lines, sp, 38
lines method, sp, 59
listw2mat, spdep, 274
listw2sn, spdep, 274
listw2U, spdep, 273
listw2WB, spdep, 274, 339
1m, stats, 214, 217, 280, 291, 292
295, 305
1m.LMtests, spdep, 305
1lm.morantest, spdep, 276, 280,
292, 296, 315
1lm.morantest.exact, spdep, 281
1lm.morantest.sad, spdep, 281
localmoran, spdep, 286
localmoran.exact, spdep, 286
localmoran.sad, spdep, 286
locator, graphics, 69, 77, 78
lognormalEB, DCluster, 326

make_EPSG, rgdal, 86

map, maps, 39, 45, 66

map2Spatiallines, maptools, 39,
66

map2SpatialPolygons, maptools,
45, 91, 158

MapGen2SL, maptools, 41

marks, spatstat, 209

mat2listw, spdep, 274

MCMCsamp . sarlm, spdep, 311

ME, spdep, 317

moran, spdep, 282
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moran.mc, spdep, 281
moran.plot, spdep, 285
moran.test, spdep, 276, 279,

280, 283, 284
moranI.test, DCluster, 350
mse2d, splancs, 186

n.comp.nb, spdep, 137

nb2gra, BayesX, 274, 343, 344,
359

nb2INLA, spdep, 274

nb2lines, spdep, 274

nb2listw, spdep, 269271, 274,
276, 279-282, 286, 292,
294, 305, 350, 352

nb2mat, spdep, 343

nb2WB, spdep, 274, 339

nbdists, spdep, 269, 271, 351

nblag, spdep, 283

nclass.Sturges, grDevices, 80

neig2nb, aded, 266

npoints, spatstat, 195

ogr, rgdal, 96

ogrDrivers, rgdal, 92, 96

ogrInfo, rgdal, 93, 94

opgam, DCluster, 353, 354

optim, stats, 189

optimize, stats, 300

osmsource_api, osmar, 109

over, sp, 120

over method, sp, 78, 111, 119,
140-142, 240

pal2SpatialPolygons,maptools,
91
panel.identify, lattice, 78
par, graphics, 62, 66, 67
parseGRASS, spgrass6, 113
plot method, sp, 59-62, 68, 81
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