
Use R !

Radhakrishnan Nagarajan
Marco Scutari
Sophie Lèbre

Bayesian
Networks
in R
with Applications in Systems Biology

Use R!

Series Editors:
Robert Gentleman Kurt Hornik Giovanni Parmigiani

For further volumes:
http://www.springer.com/series/6991

http://www.springer.com/series/6991

Use R!

Albert: Bayesian Computation with R
Bivand/Pebesma/Gómez-Rubio: Applied Spatial Data Analysis with R
Cook/Swayne: Interactive and Dynamic Graphics for Data Analysis:

With R and GGobi
Hahne/Huber/Gentleman/Falcon: Bioconductor Case Studies
Paradis: Analysis of Phylogenetics and Evolution with R
Pfaff: Analysis of Integrated and Cointegrated Time Series with R
Sarkar: Lattice: Multivariate Data Visualization with R
Spector: Data Manipulation with R

Radhakrishnan Nagarajan • Marco Scutari
Sophie Lèbre

Bayesian Networks in R

with Applications in Systems Biology

123

Radhakrishnan Nagarajan
Division of Biomedical Informatics
Department of Biostatistics
University of Kentucky
Lexington, Kentucky, USA

Sophie Lèbre
ICube
Université de Strasbourg
France

Marco Scutari
Genetics Institute
University College London
London, United Kingdom

ISBN 978-1-4614-6445-7 ISBN 978-1-4614-6446-4 (eBook)
DOI 10.1007/978-1-4614-6446-4
Springer New York Heidelberg Dordrecht London

Library of Congress Control Number: 2013935127

© Springer Science+Business Media New York 2013
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of
the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology
now known or hereafter developed. Exempted from this legal reservation are brief excerpts in connection
with reviews or scholarly analysis or material supplied specifically for the purpose of being entered
and executed on a computer system, for exclusive use by the purchaser of the work. Duplication of
this publication or parts thereof is permitted only under the provisions of the Copyright Law of the
Publisher’s location, in its current version, and permission for use must always be obtained from Springer.
Permissions for use may be obtained through RightsLink at the Copyright Clearance Center. Violations
are liable to prosecution under the respective Copyright Law.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
While the advice and information in this book are believed to be true and accurate at the date of pub-
lication, neither the authors nor the editors nor the publisher can accept any legal responsibility for any
errors or omissions that may be made. The publisher makes no warranty, express or implied, with respect
to the material contained herein.

Printed on acid-free paper

Springer is part of Springer Science+Business Media (www.springer.com)

www.springer.com

To Adriana Brogini and Fortunato Pesarin,
who showed me what an academic should be.

Preface

Real world entities work in concert as a system and
not in isolation. Understanding the associations be-
tween these entities from their digital signatures can
provide novel system-level insights and is an important
step prior to developing meaningful interventions.

While there have been significant advances in capturing data from the entities
across complex real-world systems, their associations and relationships are largely
unknown. Associations between the entities may reveal interesting system-level
properties that may not be apparent otherwise. Often these associations are hypoth-
esized by superimposing knowledge across distinct reductionist representations of
these entities obtained from disparate sources. Such representations, while useful,
may provide only an incomplete picture of the associations. This can be attributed
to their dependence on prior knowledge and failure of the principle of superposition
in general. Such representations may also be unhelpful in discovering novel undoc-
umented associations. A more rigorous approach would be to identify associations
from data measured simultaneously across the entities of interest from a given sys-
tem. These data sets or digital signatures are quantized in time and amplitude and
in turn may (dynamic) or may not (static) contain explicit temporal information.
Symmetric measures such as correlation have been helpful in modeling direct as-
sociations as undirected graphs. However, it is well appreciated that the association
between a given pair of entities may be indirect and often mediated through others.
Symmetric measures are also immune to the direction of association by their very
definition. Graphical models such as Bayesian networks have especially proven to
be useful in this regard. The vertices (nodes) represent the entities of interest, the
arcs (edges) represent their associations, and the entire Bayesian network represents
the joint probability distribution between the entities of interest. Bayesian networks

vii

viii Preface

may also reveal possible causal relationships between these entities under certain
implicit assumptions. More specifically, their ability to model associations from ob-
servational data sets where no active perturbation is possible has drawn attention
across a wide spectrum of disciplines including biology, medicine, and health care.

There have been several noteworthy contributions to Bayesian network model-
ing and inference along with open-source implementations of the related algorithms.
However, many of these prior contributions are extremely involved and demand a
high level of sophistication from the reader. This book is unique as it introduces the
reader to the essential concepts in conjunction with examples in the open-source
statistical environment R. The level of sophistication is gradually increased across
the chapters. Each chapter is accompanied by examples and exercises with solu-
tions for enhanced understanding and experimentation. Thus this book may appeal
to multidisciplinary audience and can potentially assist in teaching graduate-level
courses in Bayesian networks and inference that permit hands-on experimentation
of the concepts and approaches. The data sets considered essentially consist of pub-
licly available molecular expression profiles. The emphasis on molecular data can
be attributed to the growing need in life sciences for discovering novel associations
across biological paradigms with minimal precedence and increasing emphasis on
data-driven approaches. Classical studies in life sciences have focused on under-
standing the changes in the expression of a given set of molecules, such as genes
and proteins, across distinct phenotypes and disease states. However, with recent
advances in high-throughput assays that enable simultaneous screening of a large
number of genes, there has been growing interest in understanding the associations
between these molecules that may provide system-level insights. Such system-level
insights have been argued to be critical prior to developing meaningful interven-
tions. These efforts together fall under the emerging discipline called systems bi-
ology. Bayesian networks have especially proven to be useful abstractions of the
underlying biological pathways and signaling mechanisms. Their usefulness is also
exemplified by their ability to discover new associations in addition to validating
known associations between the entities of interest.

While a list of popular open-source R packages pertinent to Bayesian networks
is listed under Table 2.1 (Chap. 2), the discussion focuses on the packages bnlearn,
G1DBN, and ARTIVA.

http://cran.r-project.org/web/packages/bnlearn
http://cran.r-project.org/web/packages/G1DBN
http://cran.r-project.org/web/packages/ARTIVA

We believe that these packages are comprehensive and accommodate the neces-
sary functionalities required across the chapters. We also believe that concentrating
on these packages keeps the book more focused with minimal demand on the audi-
ence time in learning the functionalities across the various open-source R packages.

This book is organized as follows. Chapter 1 introduces the reader to the essen-
tials of graph theory and R programming. Chapter 2 discusses the essential defi-
nitions and properties of Bayesian networks with an emphasis on static Bayesian

http://cran.r-project.org/web/packages/bnlearn
http://cran.r-project.org/web/packages/G1DBN
http://cran.r-project.org/web/packages/ARTIVA

Preface ix

networks. It introduces the reader to structure and parameter learning from multiple
independent realizations of data sets without explicit temporal information. Such
data sets are quite common and represent a snapshot of the process. The impact
of discretization on the network inference with application to molecular expression
data is also discussed. The lack of temporal information implicitly excludes the pres-
ence of feedback or cycles, resulting in a directed acyclic graphical representation
of the associations between the entities. These limitations are overcome by learning
networks from data sets with explicit temporal signatures. In Chap. 3, we discuss the
usefulness of dynamic Bayesian networks for learning the network structure in the
presence of explicit temporal information such as multivariate time series. Homoge-
neous and nonhomogeneous dynamic Bayesian networks are discussed. In Chap. 4,
static and dynamic Bayesian network inference methods are discussed. Some of the
network learning algorithms discussed in the earlier chapters are computationally
intensive limiting their usefulness across large and high-dimensional data sets. Par-
allelization options for some of the algorithms discussed in the earlier chapters are
discussed in Chap. 5 to overcome some of these limitations.

Lexington, KY Radhakrishnan Nagarajan
London, UK Marco Scutari
Strasbourg, France Sophie Lèbre

Contents

1 Introduction . 1
1.1 A Brief Introduction to Graph Theory . 1

1.1.1 Graphs, Nodes, and Arcs . 1
1.1.2 The Structure of a Graph . 2
1.1.3 Further Reading . 4

1.2 The R Environment for Statistical Computing 4
1.2.1 Base Distribution and Contributed Packages 4
1.2.2 A Quick Introduction to R . 5
1.2.3 Further Reading . 10

Exercises . 11

2 Bayesian Networks in the Absence of Temporal Information 13
2.1 Bayesian Networks: Essential Definitions and Properties 13

2.1.1 Graph Structure and Probability Factorization 13
2.1.2 Fundamental Connections . 15
2.1.3 Equivalent Structures . 15
2.1.4 Markov Blankets . 16

2.2 Static Bayesian Networks Modeling . 17
2.2.1 Constraint-Based Structure Learning Algorithms 17
2.2.2 Score-Based Structure Learning Algorithms 19
2.2.3 Hybrid Structure Learning Algorithms 20
2.2.4 Choosing Distributions, Conditional Independence

Tests, and Network Scores . 20
2.2.5 Parameter Learning . 23
2.2.6 Discretization . 23

2.3 Static Bayesian Networks Modeling with R . 24
2.3.1 Popular R Packages for Bayesian Network Modeling 24
2.3.2 Creating and Manipulating Network Structures 26
2.3.3 Plotting Network Structures . 34
2.3.4 Structure Learning . 35

xi

xii Contents

2.3.5 Parameter Learning . 40
2.3.6 Discretization . 42

2.4 Pearl’s Causality . 44
2.5 Applications to Gene Expression Profiles . 46

2.5.1 Model Averaging . 47
2.5.2 Choosing the Significance Threshold . 51
2.5.3 Handling Interventional Data . 53

Exercises . 56

3 Bayesian Networks in the Presence of Temporal Information 59
3.1 Time Series and Vector Auto-Regressive Processes 59

3.1.1 Univariate Time Series . 59
3.1.2 Multivariate Time Series . 60

3.2 Dynamic Bayesian Networks: Essential Definitions and Properties . 63
3.2.1 Definitions . 63
3.2.2 Dynamic Bayesian Network Representation

of a VAR Process . 66
3.3 Dynamic Bayesian Network Learning Algorithms 67

3.3.1 Least Absolute Shrinkage and Selection Operator 67
3.3.2 James–Stein Shrinkage . 68
3.3.3 First-Order Conditional Dependencies Approximation 68
3.3.4 Modular Networks . 69

3.4 Non-homogeneous Dynamic Bayesian Network Learning 69
3.5 Dynamic Bayesian Network Learning with R 72

3.5.1 Multivariate Time Series Analysis . 72
3.5.2 LASSO Learning: lars and simone . 74
3.5.3 Other Shrinkage Approaches: GeneNet, G1DBN 78
3.5.4 Non-homogeneous Dynamic Bayesian Network

Learning: ARTIVA . 80
Exercises . 81

4 Bayesian Network Inference Algorithms . 85
4.1 Reasoning Under Uncertainty . 85

4.1.1 Probabilistic Reasoning and Evidence 85
4.1.2 Algorithms for Belief Updating: Exact and Approximate

Inference . 87
4.1.3 Causal Inference . 90

4.2 Inference in Static Bayesian Networks . 91
4.2.1 Exact Inference . 91
4.2.2 Approximate Inference . 93

4.3 Inference in Dynamic Bayesian Networks . 94
Exercises . 100

Contents xiii

5 Parallel Computing for Bayesian Networks . 103
5.1 Foundations of Parallel Computing . 103
5.2 Parallel Programming in R . 105
5.3 Applications to Structure and Parameter Learning 108

5.3.1 Constraint-Based Structure Learning Algorithms 109
5.3.2 Score-Based Structure Learning Algorithms 112
5.3.3 Hybrid Structure Learning Algorithms 114
5.3.4 Parameter Learning . 115

5.4 Applications to Inference Procedures . 115
5.4.1 Bootstrap . 115
5.4.2 Cross-Validation . 117
5.4.3 Conditional Probability Queries . 120

Exercises . 123

Solutions . 125

References . 149

Index . 155

Chapter 1
Introduction

Abstract Bayesian networks and their applications to real-world problems lie at the
intersection of several fields such as probability and graph theory. In this chapter a
brief introduction to the terminology and the basic properties of graphs, with partic-
ular attention to directed graphs, is provided. As with other Use R!-series books, a
brief introduction to the R environment and basic R programming is also provided.
Some background in probability theory and programming is assumed. However, the
necessary references are included under the respective sections for a more complete
treatment.

1.1 A Brief Introduction to Graph Theory

1.1.1 Graphs, Nodes, and Arcs

A graph G = (V,A) consists of a nonempty set V of nodes or vertices and a finite
(but possibly empty) set A of pairs of vertices called arcs, links, or edges.

Each arc a = (u,v) can be defined either as an ordered or an unordered pair of
nodes, which are said to be connected by and incident on the arc and to be adjacent
to each other. Since they are adjacent, u and v are also said to be neighbors. If (u,v)
is an ordered pair, u is said to be the tail of the arc and v the head; then the arc is
said to be directed from u to v and is usually represented with an arrowhead in v
(u→ v). It is also said that the arc leaves or is outgoing for u and that it enters or
is incoming for v. If (u,v) is unordered, u and v are simply said to be incident on
the arc without any further distinction. In this case, they are commonly referred to
as undirected arcs or edges, denoted with e ∈ E and represented with a simple line
(u− v).

The characterization of arcs as directed or undirected induces an equivalent char-
acterization of the graphs themselves, which are said to be directed graphs (de-
noted with G = (V,A)) if all arcs are directed, undirected graphs (denoted with

R. Nagarajan et al., Bayesian Networks in R: with Applications in Systems Biology,
Use R! 48, DOI 10.1007/978-1-4614-6446-4 1,
© Springer Science+Business Media New York 2013

1

2 1 Introduction

Fig. 1.1 An undirected graph (left), a directed graph (center) and a partially directed graph (right)

G = (V,E)) if all arcs are undirected, and partially directed or mixed graphs
(denoted with G = (V,A,E)) if they contain both directed and undirected arcs.

Examples of directed, undirected, and mixed partially directed graphs are shown
in Fig. 1.1 in that order. For the undirected graph, Fig. 1.1:

• The node set is V = {A,B,C,D,E} and the edge set is E = { (A − B), (A − C),
(A − D), (B − D), (C − E), (D − E) }.

• Arcs are undirected, so, i.e., A − B and B − A are equivalent and identify the
same edge.

• Likewise, A is connected to B, B is connected to A, and A and B are adjacent.

For the directed graph, Fig 1.1:

• The node set is V = {A,B,C,D,E} and the graph is characterized by an arc
set A = {(A→ B), (C→ A), (D→ B), (C→ D), (C→ E)} instead of an edge
set E .

• Arcs are directed, so, i.e., A→ B and B→ A identify different arcs. For instance,
A→ B ∈ A while B→ A �∈ A. Under the additional constraint of acyclicity, it is
not possible for both arcs to be present in the graph because there can be at most
one arc between each pair of nodes.

• Also, A and B are adjacent, as there is an arc (A→ B) from A to B. A→ B is an
outgoing arc for A (the tail), an incoming arc for B (the head), and an incident
arc for both A and B.

On the other hand, the partially directed graph, Fig. 1.1, is characterized by the
combination of an edge set E = {(A − C), (A − D), (C − D)} and an arc set A =
{(D→ E), (E→ B)}.

An undirected graph can always be constructed from a directed or partially
directed one by substituting all the directed arcs with undirected ones; such a graph
is called the skeleton or the underlying undirected graph of the original graph.

1.1.2 The Structure of a Graph

The pattern with which the arcs appear in a graph is referred to as either the structure
of the graph or the configuration of the arcs. In the context of this book it is assumed

1.1 A Brief Introduction to Graph Theory 3

Fig. 1.2 Parents, children, ancestors, descendants, and neighbors of node A in a directed graph

that the vertices u and v incident on each arc are distinct and that there is at most
one arc between them so that (u,v) uniquely identifies an arc. This definition also
implicitly excludes presence of a loop that can occur when u = v.

The simplest structure is an empty graph, i.e., a graph with no arcs. On the
other end of the spectrum are saturated graphs, in which each node is connected
to every other node. Real-world graphical abstractions usually fall between these
two extremes and can be either sparse or dense. While the distinction between
these two classes of graphs is rather vague, a graph is usually considered sparse
if O(|E|+ |A|) = O(|V|).

The structure of a graph can reveal interesting statistical properties. Some of the
most important ones deal with paths. Paths are essentially sequences of arcs or edges
connecting two nodes, called end-vertices or end-nodes. Paths are denoted with the
sequence of vertices (v1,v2, . . . ,vn) incident on those arcs. The arcs connecting the
vertices v1,v2, . . . ,vn are assumed to be unique, so that a path passes through each
arc only once. In directed graphs it is also assumed that all the arcs in a path follow
the same direction, and we say that a path leads from v1 (i.e., the tail of the first arc
in the path) to vn (i.e., the head of the last arc in the path). In undirected and mixed
graphs (and in general when referring to a graph regardless which class it belongs
to), arcs in a path can point in either direction or be undirected. Paths in which
v1 = vn are called cycles and are treated with particular care in Bayesian network
theory.

The structure of a directed graph defines a partial ordering of the nodes if the
graph is acyclic, that is, if it does not contain any cycle or loop. This ordering is
called an acyclic or topological ordering and is induced by the direction of the
arcs. It is defined as follows: if a node vi precedes v j, there can be no arc from
v j to vi. According to this definition the first nodes are the root nodes, which have
no incoming arcs, and the last ones are the leaf nodes, which have at least one
incoming arc but no outgoing ones. Furthermore, if there is a path leading from vi

to v j, vi precedes v j in the sequence of the ordered nodes. In this case vi is called
an ancestor of v j and v j is called a descendant of vi. If the path is composed by a
single arc, by analogy xi is a parent of v j and v j is a child of vi.

Consider, for instance, node A in the directed acyclic graph shown in Fig. 1.2. Its
neighborhood is the union of the parents and children; adjacent nodes necessarily
fall into one of these two categories. Its parents are also ancestors, as they necessar-
ily precede A in the topological ordering. Likewise, children are also descendants.

4 1 Introduction

The topological ordering induced by the graph structure is

({F,G,H},{C,B},{A},{D,E},{L,K}). (1.1)

The nodes are only partially ordered; for example, no ordering can be established
among root nodes or leaf nodes. As a result, in practice the topological ordering of a
directed acyclic graph is defined over a set of unordered sets of nodes, denoted with
Vi = {vi1 , . . . ,vik}, defining a partition of V.

1.1.3 Further Reading

For a broader coverage of the properties of directed and mixed graphs, we refer the
reader to the monograph by Bang-Jensen and Gutin (2009), which at the time of
this writing is the most complete reference on the subject. For undirected graphs,
we refer to the classic book of Diestel (2005).

1.2 The R Environment for Statistical Computing

R (R Development Core Team, 2012) is a programming language and an environ-
ment targeted at statistical computing, released as an open-source software under the
GNU General Public License (GPL). The main Web site of the R Project is http://
www.r-project.org.
R supports all common operating systems (Windows, MacOS X and Linux) in

addition to several Unix variants and has been constantly updated and improved
over the years to become a standard choice for data analysis and the development of
new statistical techniques.

1.2.1 Base Distribution and Contributed Packages

The R environment consists of a base distribution, maintained and developed by
the R Core Team, and a constantly growing set of contributed packages. Both are
distributed through a network of servers called “The Comprehensive R Archive Net-
work” (CRAN), which provides up-to-date mirrors of the main site, located at http://
cran.r-project.org.

The base distribution provides a set of standard packages implementing the basic
functionality of R, including the following:

• Probability, density, distribution, and quantile functions for commonly used prob-
ability distributions

http://www.r-project.org
http://www.r-project.org
http://cran.r-project.org
http://cran.r-project.org

1.2 The R Environment for Statistical Computing 5

• Functions to produce nicely formatted plots such as boxplots, histograms, and
scatterplots

• Statistical models such as linear and generalized linear models as well as func-
tions for statistical hypothesis testing

• Several reference data sets from literature
• Utilities to import and export data in various formats (e.g., space- and tab-

separated text; comma-separated values (CSV); files saves from other statistical
software such as STATA, SPSS, and Octave; and many more).

Contributed packages are implemented by independent developers and then sub-
mitted to CRAN, which provides a unified distribution network and basic quality
checking. In recent years it has become increasingly common to provide reference
implementations of new methodologies as R packages. This trend has improved the
reproducibility of scientific results presented in literature and, at the same time, has
increased dramatically the number of fields in which R is a valuable data analysis
tool.

1.2.2 A Quick Introduction to R

We will now illustrate some basic R commands for importing, exploring, summariz-
ing, and plotting data. For this purpose, we will use the lizards data set included
in the bnlearn package because of its simple structure. This data set was origi-
nally published in Schoener (1968) and has been used by Fienberg (1980) and more
recently by Edwards (2000) as an example in the respective books.

First of all, we need to install the bnlearn package from one of the mirrors of the
CRAN network. After launching R, we can type the following command after the
“>” prompt:

> install.packages("bnlearn")

An up-to-date list of mirrors to choose from will be displayed as either a pop-up
window or a text prompt. Once bnlearn has been installed, it can be loaded with

> library(bnlearn)

Clearly, install.package needs to be called only once for any given package,
while loading the package with library is required at every new R session even
when the workspace of the last session has been restored at start-up.

The lizards data set can then be loaded from bnlearn with

> data(lizards)

since the package is now loaded in the R session. If the data were stored in a text file,
we could have imported them into R using the read.table function as follows:

> lizards = read.table("lizards.txt", header = TRUE)

6 1 Introduction

Setting the header argument to TRUE tells read.table that the first line of the
file lizards.txt contains the variable names. Each observation must be writ-
ten in a single line, and the values assumed by the variables for that observation
correspond to the fields (separated by spaces or tabulations) present in that line.

In both cases, the data is stored in a data frame called lizards, whose structure
can be examined with the str function.

> str(lizards)
’data.frame’: 409 obs. of 3 variables:
$ Species : Factor w/ 2 levels "Sagrei","Distichus":
1 ...
$ Diameter: Factor w/ 2 levels "narrow","wide": 1 ...
$ Height : Factor w/ 2 levels "high","low": 2 2 ...

Like most programming languages, R defines a large set of classes of objects, which
represent and provide an interface to different types of variables. Some of these
classes correspond to various kinds of variables used in statistical modeling:

• Logical: indicator variables, e.g., either TRUE or FALSE
• Integer: natural numbers, e.g., 1,2, . . . ,n ∈ N

• Numeric: real numbers, such as 1.2,π ,
√

2
• Character: character strings, such as "a", "b", "c"
• Factor: categorical variables, defined over a finite set of levels identified by char-

acter strings
• Ordered: ordered categorical variables, similar to factors but with an explicit

ordering of the levels, e.g., "LOW" < "AVERAGE" < "HIGH".

Other classes correspond to more complex data types, such as multidimensional or
heterogeneous data:

• List: a collection of arbitrary objects, often belonging to different classes
• Vector: a mathematical vector of elements belonging to the same class (i.e.,

all integers, all factors with the same levels, etc.) with an arbitrary number of
dimensions

• Matrix: a matrix (i.e., a 2-dimensional vector) of elements belonging to the same
class

• Data frame: a list of objects with the same length but possibly different classes.
It is usually displayed and manipulated in the same way as a matrix.

As we can see from the output of str, read.table saves the data read from
lizards.txt in a data frame to allow each variable to be stored as an object
of the appropriate class. The labels of the possible values of each variable, which
are character strings in lizards.txt, are automatically used as levels and the
variables converted to factors.

1.2 The R Environment for Statistical Computing 7

We can further investigate the characteristics of the lizards data frame with
the summary and dim functions.

> summary(lizards)
Species Diameter Height

Sagrei :164 narrow:252 high:264
Distichus:245 wide :157 low :145

> dim(lizards)
[1] 409 3

From the output of str, summary, and dim, we can see that the data frame
contains 409 observations and 3 variables named Species, Diameter, and
Height. Each observation refers to a single lizard and describes its species (ei-
ther sagrei or distichus) and the height and width of the branch it was perched on
when sighted. All the variables are categorical and therefore are stored as factors;
the values they can assume can be listed with the levels function.

> levels(lizards[, "Species"])
[1] "Sagrei" "Distichus"
> levels(lizards[, "Height"])
[1] "high" "low"
> levels(lizards[, "Diameter"])
[1] "narrow" "wide"

An alternative, useful way of displaying these data is a contingency table, which
can be built using the table function.

> table(lizards[, c(3, 2, 1)])
, , Species = Sagrei

Diameter
Height narrow wide

high 86 35
low 32 11

, , Species = Distichus

Diameter
Height narrow wide

high 73 70
low 61 41

The order in which the two-dimensional contingency tables are listed depends on
the order of the variables in the data frame; in this case it is useful to have them split
by specie first, so the columns of lizards were rearranged appropriately.

Exploratory data analysis often includes some form of graphical data visualiza-
tion, especially when dealing with low-dimensional data sets such as the one we

8 1 Introduction

high low high low

Perch Height (Sagrei)

0

20

40

60

80

100

120

Perch Height (Distichus)

Perch Diameter (Sagrei)

0

20

40

60

80

100

0

20

40

60

80

100

140

0

20

40

60

80

100

120

narrow widenarrow wide

Perch Diameter (Distichus)

Fig. 1.3 Barplots for the perch height and diameter of sagrei and distichus lizards

are considering. A simple way to plot the frequencies associated with Height and
Diameter for each species is to use a barplot.

> Sagrei.lizards =
+ lizards[lizards$Species == "Sagrei",]
> Distichus.lizards =
+ lizards[lizards$Species == "Distichus",]
> par(mfrow = c(2, 2))
> plot(Sagrei.lizards[, "Height"],
+ main = "Perch Height (Sagrei)")
> plot(Distichus.lizards[, "Height"],
+ main = "Perch Height (Distichus)")
> plot(Sagrei.lizards[, "Diameter"],
+ main = "Perch Diameter (Sagrei)")
> plot(Distichus.lizards[, "Diameter"],
+ main = "Perch Diameter (Distichus)")

Figure 1.3 shows the plot generated be the commands above. The first two com-
mands extract from the data set the subsets of observations corresponding to each
species. par is then used to split the plot area into four quadrants, arranged in a lay-
out with 2 rows and 2 columns. Each quadrant holds one of the barplots, which are

1.2 The R Environment for Statistical Computing 9

generated by the plot function. plot is a generic function for data visualization
that chooses a suitable plot depending on the data, in this case, barplots for factors.
The main argument specifies the title of each plot, while xlab and ylab specify
the labels to the horizontal and vertical axes, respectively.

Exploring numeric data requires many of the R functions illustrated above for
categorical data. According to the description of the lizards data provided in
Schoener (1968), a branch is classified as narrow if its diameter is lesser or equal
than 4 inches and wide otherwise. For the sake of the example, we can generate
some random values according to these specifications and associate them with the
Species.

> diam = numeric(length = nrow(lizards))
> narrow = (lizards$Diameter == "narrow")
> wide = (lizards$Diameter == "wide")
> diam[narrow] = runif(n = 252, min = 2, max = 4)
> diam[wide] = runif(n = 157, min = 4, max = 6)
> new.data = data.frame(
+ Species = lizards[, "Species"],
+ Sim.Diameter = diam)

First, we create a new vector called diam with one entry for each observation (the
number of rows (nrow) of lizards). Then we create two logical vectors with
indicator variables identifying which branches are narrow and which are wide
and use it to correctly assign the generated random diameters. The runif function
generates independent random values from a uniform distribution in the range (2,4)
for narrow branches and in (4,6) for wide branches. The (now populated) vector
diam is then stored as Sim.Diameter in a new data frame called new.data
along with the Species variable from the original data.

The behavior of Sim.Diameter can again be examined using summary,
which in this case reports the mean and the quantiles of the new variable.

> summary(new.data[, "Sim.Diameter"])
Min. 1st Qu. Median Mean 3rd Qu. Max.

2.000 2.855 3.641 3.759 4.640 5.982

It is also interesting to investigate how the diameter differs between the two
Species, both in location (with summary again) and variability (with var).

> is.sagrei = (new.data[, "Species"] == "Sagrei")
> summary(new.data[is.sagrei, "Sim.Diameter"])

Min. 1st Qu. Median Mean 3rd Qu. Max.
2.000 2.777 3.467 3.566 4.190 5.965

> summary(new.data[!is.sagrei, "Sim.Diameter"])
Min. 1st Qu. Median Mean 3rd Qu. Max.

2.035 2.903 3.807 3.888 4.838 5.982
> var(new.data[is.sagrei, "Sim.Diameter"])
[1] 1.038415

10 1 Introduction

Sagrei Distichus

2

3

4

5

6

D
ia

m
et

er
 (

in
ch

es
)

Fig. 1.4 Boxplots for the simulated branch diameters for sagrei and distichus lizards

> var(new.data[!is.sagrei, "Sim.Diameter"])
[1] 1.333333

The same comparison can be performed graphically by plotting the boxplots cor-
responding to the diameters of the branches for each specie next to each other; the
resulting plot is displayed in Fig. 1.4.

> boxplot(Sim.Diameter ˜ Species, data = new.data,
+ ylab = "Diameter (inches)")
> abline(h = 4, lty = "dashed")

The call to abline adds a reference line separating narrow branches from wide
ones, which helps relating the behavior of the new data to the original ones. The
lty parameter specifies the line type, which in this case is dashed.

1.2.3 Further Reading

Providing a complete introduction to the R language in these few pages is clearly
impossible, and it is outside the scope of this book. R and CRAN provide a com-
prehensive documentation in the form of several manuals available from CRAN and
help pages distributed with the base and contributed packages describing the char-
acteristics of each function and data set. Help pages can be accessed from within R
using the help, help.search functions and the ? operator (e.g., ?runif).

We refer the reader to the excellent “Modern Applied Statistics with S” by
Venables and Ripley (2002) and to “Data Manipulation with R” by Spector (2009)
for an in-depth coverage of R’s capabilities. Readers interested in understanding the

1.2 The R Environment for Statistical Computing 11

finer points of R programming, such as performance tuning and integrating com-
piled code, should also check “S Programming” by Venables and Ripley (2000).

Exercises

1.1. Consider a directed acyclic graph with n nodes.

(a) Show that at least one node must not have any incoming arc, i.e., the graph must
contain at least one root node.

(b) Show that such a graph can have at most 1
2 n(n− 1) arcs.

(c) Show that a path can span at most n− 1 arcs.
(d) Describe an algorithm to determine the topological ordering of the graph.

1.2. Consider the graphs shown in Fig. 1.1.

(a) Obtain the skeleton of the partially directed and directed graphs.
(b) Enumerate the acyclic graphs that can be obtained by orienting the undirected

arcs of the partially directed graph.
(c) List the arcs that can be reversed (i.e., turned in the opposite direction), one at a

time, without introducing cycles in the directed graph.

1.3. The (famous) iris data set reports the measurements in centimeters of the
sepal length and width and the petal length and width for 50 flowers from each of 3
species of iris (“setosa,” “versicolor,” and “virginica”).

(a) Load the iris data set (it is included in the datasets package, which is part of
the base R distribution and does not need to be loaded explicitly) and read its
manual page.

(b) Investigate the structure of the data set.
(c) Compare the sepal length among the three species by plotting histograms side

by side.
(d) Repeat the previous point using boxplots.

1.4. Consider again the iris data set from Exercise 1.3.

(a) Write the data frame holding iris data frame into a space-separated text file
named “iris.txt,” and read it back into a second data frame called iris2.

(b) Check that iris and iris2 are identical.
(c) Repeat the previous two steps with a file compressed with bzip2 named

“iris.txt.bz2.”
(d) Save iris directly (e.g., without converting it to a text table) into a file called

“iris.rda,” and read it back.
(e) List all R objects in the global environment and remove all of them apart from

iris.
(f) Exit the R saving the contents of the current session.

1.5. Consider the gaussian.test data set included in bnlearn.

12 1 Introduction

(a) Print the column names.
(b) Print the range and the quartiles of each variable.
(c) Print all the observations for which A falls in the interval [3,4] and B in

(−∞,−5]∪ [10,∞).
(d) Sample 50 rows without replacement.
(e) Draw a bootstrap sample (e.g., sample 5,000 observations with replacement)

and compute the mean of each variable.
(f) Standardize each variable.

1.6. Generate a data frame with 100 observations for the following variables:

(a) A categorical variable with two levels, low and high. The first 50 observations
should be set to low, the others to high.

(b) A categorical variable with two levels, good and bad, nested within the first
variable, i.e., the first 25 observations should be set to good, the second 25 to
bad, and so on.

(c) A continuous, numerical variable following a Gaussian distribution with mean
2 and variance 4 when the first variable is equal to low and with mean 4 and
variance 1 if the first variable is equal to high.

In addition, compute the standard deviation of the last variable for each configura-
tion of the first two variables.

Chapter 2
Bayesian Networks in the Absence of Temporal
Information

Abstract Data recorded across multiple variables of interest for a given
phenomenon often do not contain any explicit temporal information. In the absence
of such information, the data essentially represent a static snapshot of the underly-
ing phenomenon at a particular moment in time. For this reason, they are sometimes
referred to as static data.

Static Bayesian networks, commonly known simply as Bayesian networks, pro-
vide an intuitive and comprehensive framework to model the dependencies between
the variables in static data. In this chapter, we will introduce the essential defini-
tions and properties of static Bayesian networks. Subsequently, we will discuss ex-
isting Bayesian network learning algorithms and illustrate their applications with
real-world examples and different R packages.

2.1 Bayesian Networks: Essential Definitions and Properties

Bayesian networks are a class of graphical models that allow a concise represen-
tation of the probabilistic dependencies between a given set of random variables
X = {X1,X2, . . . ,Xp} as a directed acyclic graph (DAG) G = (V,A). Each node
vi ∈ V corresponds to a random variable Xi.

2.1.1 Graph Structure and Probability Factorization

The correspondence between the graphical separation (⊥⊥G) induced by the absence
of a particular arc and probabilistic independence (⊥⊥P) provides a convenient way
to represent the dependencies between the variables. Such a correspondence is for-
mally known as an independency map (Pearl, 1988) and is defined as follows.

Definition 2.1 (Maps). A graph G is an independency map (I-map) of the proba-
bilistic dependence structure P of X if there is a one-to-one correspondence between

R. Nagarajan et al., Bayesian Networks in R: with Applications in Systems Biology,
Use R! 48, DOI 10.1007/978-1-4614-6446-4 2,
© Springer Science+Business Media New York 2013

13

14 2 Bayesian Networks in the Absence of Temporal Information

the random variables in X and the nodes V of G, such that for all disjoint subsets A,
B, C of

A⊥⊥P B |C⇐= A⊥⊥G B |C. (2.1)

Similarly, G is a dependency map (D-map) of P if X we have

A⊥⊥P B |C =⇒A⊥⊥G B |C. (2.2)

G is said to be a perfect map of P if it is both a D-map and an I-map,

A⊥⊥P B |C⇐⇒A⊥⊥G B |C, (2.3)

and in this case, P is said to be isomorphic or faithful to G.

The correspondence between the structure of the DAG G and the conditional
independence relationships it represents is elucidated by the directed separation
criterion (Pearl, 1988), or d-separation, as discussed below.

Definition 2.2 (D-separation). If A, B, and C are three disjoint subsets of nodes in
a DAG G, then C is said to d-separate A from B, denoted A⊥⊥G B |C, if along every
sequence of arcs1 between a node in A and a node in B there is a node v satisfying
one of the following two conditions:

1. v has converging arcs (i.e., there are two arcs pointing to v from the adjacent
nodes in the path) and none of v or its descendants (i.e., the nodes that can be
reached from v) are in C.

2. v is in C and does not have converging arcs.

The Markov property of Bayesian networks, which follows directly from d-
separation, enables the representation of the joint probability distribution of the
random variables in X (the global distribution) as a product of conditional prob-
ability distributions (the local distributions associated with each variable Xi). This
is a direct application of the chain rule (Korb and Nicholson, 2010). In the case of
discrete random variables, the factorization of the joint probability distribution PX
is given by

PX (X) =
p

∏
i=1

PXi (Xi |ΠXi) , (2.4)

where ΠXi is the set of the parents of Xi; in the case of continuous random variables,
the factorization of the joint density function fX is given by

fX (X) =
p

∏
i=1

fXi (Xi |ΠXi) . (2.5)

Similar results hold for mixed probability distributions (i.e., probability distributions
including both discrete and continuous random variables).

1 They are often referred to as paths, using the more general definition that disregards arc
directions.

2.1 Bayesian Networks: Essential Definitions and Properties 15

Fig. 2.1 Graphical separation, conditional independence, and probability decomposition for the
three fundamental connections (from top to bottom): converging connection, serial connection,
and diverging connection

2.1.2 Fundamental Connections

Consider the fundamental connections (Jensen, 2001) shown in Fig. 2.1, the three
possible configurations of three nodes and two arcs. In the convergent connection or
v-structure, node C has incoming arcs from A and B, thus violating both conditions
in Definition 2.2. Therefore, we conclude that C does not d-separate A and B. This
in turn implies that A and B are not independent given C, and since ΠA = {∅},
ΠB = {∅}, and ΠC = {A,B}, we have

P (A,B,C) = P(C |A,B)P(A)P(B) (2.6)

from the Markov property introduced in Eq. 2.4. From the above expression, it is
evident that C depends on the joint distributions of A and B. Therefore, A and B are
not conditionally independent given C. On the other hand, A and B are independent
given C in the serial and diverging connections since the conditions in Definition 2.2
are satisfied in these cases. For the serial connection, we have ΠA = {∅}, ΠB = {C},
and ΠC = {A}; therefore,

P(A,B,C) = P(B |C)P(C |A)P (A) . (2.7)

For the diverging connection, we have ΠA = {C}, ΠB = {C}, and ΠC = {∅};
therefore,

P (A,B,C) = P(A |C)P(B |C)P(C) . (2.8)

2.1.3 Equivalent Structures

From Fig. 2.1, it should also be noted that the serial and diverging connections
result in equivalent factorizations; each can be obtained from the other with re-
peated applications of Bayes’ theorem. Such probabilistically equivalent structures
are known as Markov equivalent structures. Since equivalence is symmetric, re-
flexive, and transitive, each set of equivalent structures forms an equivalence class.

16 2 Bayesian Networks in the Absence of Temporal Information

Generalizing this simple example, it can be shown that the only arcs whose di-
rection is needed to identify an equivalence class are those belonging to at least
one v-structure (Chickering, 1995).2 Equivalence classes are usually represented by
completed partially directed acyclic graphs (CPDAGs), where only arcs belonging
to v-structures and those that would introduce additional v-structures or cycles are
directed. Such arcs are called compelled, since their direction is determined by the
equivalence class even though they are not part of any v-structure. Changing the
direction of any other, non-compelled arc results in another network in the same
equivalence class as long as it does not introduce any new v-structure or in any
cycle.

2.1.4 Markov Blankets

Another fundamental quantity that is closely related to Definitions 2.1 and 2.2 is the
Markov blanket (Pearl, 1988). It essentially represents the set of nodes that com-
pletely d-separates a given node from the rest of the graph.

Definition 2.3 (Markov blanket). The Markov blanket of a node A ∈V is the min-
imal subset S of V such that

A⊥⊥P V−S−A |S. (2.9)

In any Bayesian network, the Markov blanket of a node A is the set of the parents of
A, the children of A, and all the other nodes sharing a child with A.

Markov blankets facilitate the comparison of Bayesian networks with graphi-
cal models based on undirected graphs, which are known as Markov networks or
Markov random fields (Whittaker, 1990; Edwards, 2000). On a related note, a DAG
can be transformed in the undirected graph of the corresponding Markov networks
by following the steps below.

1. Connect the nonadjacent nodes in each v-structure with an undirected arc. This is
equivalent to adding an undirected arc between any node in the Markov blanket
and the node the Markov blanket is centered on.

2. Ignore the direction of the other arcs. This effectively replaces the arcs with
edges.

The above transformation is called moralization since it “marries” nonadja-
cent parents sharing a common child. The resulting graph is called a moral graph
(Castillo et al., 1997).

2 Note that the two parents in a v-structure (A and B in Fig. 2.1) cannot be connected by an arc,
while this is not necessarily the case in a convergent connection.

2.2 Static Bayesian Networks Modeling 17

Algorithm 2.1 Inductive Causation Algorithm

1. For each pair of variables A and B in V search for set SAB ⊂V (including S =∅)
such that A and B are independent given SAB and A,B /∈ SAB. If there is no such a
set, place an undirected arc between A and B.

2. For each pair of non-adjacent variables A and B with a common neighbor C,
check whether C ∈ SAB. If this is not true, set the direction of the arcs A−C and
C−B to A→C and C← B.

3. Set the direction of arcs which are still undirected by applying recursively the
following two rules:

a. if A is adjacent to B and there is a strictly directed path from A to B (a path
leading from A to B containing no undirected arcs) then set the direction of
A−B to A→ B;

b. if A and B are not adjacent but A→ C and C−B, then change the latter to
C→ B.

4. Return the resulting (completed partially) directed acyclic graph.

2.2 Static Bayesian Networks Modeling

The task of fitting a Bayesian network is usually called learning, a term borrowed
from expert systems theory and artificial intelligence (Koller and Friedman, 2009).
It is performed in two different steps, which correspond to model selection and
parameter estimation techniques in classic statistical models.

The first step is called structure learning and consists in identifying the graph
structure of the Bayesian network. Ideally, it should be the minimal I-map of the
dependence structure of the data or, failing that, it should at least result in a dis-
tribution as close as possible to the correct one in the probability space. Several
algorithms have been proposed in the literature for structure learning. Despite the
variety of theoretical backgrounds and terminology, they fall under three broad cate-
gories: constraint-based, score-based, and hybrid algorithms. As an alternative, the
network structure can be built manually from the domain knowledge of a human
expert and prior information available on the data.

The second step is called parameter learning. As the name suggests, it imple-
ments the estimation of the parameters of the global distribution. This task can be
performed efficiently by estimating the parameters of the local distributions implied
by the structure obtained in the previous step.

2.2.1 Constraint-Based Structure Learning Algorithms

Constraint-based structure learning algorithms are based on the seminal work of
Pearl on maps and its application to causal graphical models. His inductive

18 2 Bayesian Networks in the Absence of Temporal Information

causation (IC) algorithm (Verma and Pearl, 1991) provides a framework for learning
the structure of Bayesian networks using conditional independence tests.

The details of the IC algorithm are described in Algorithm 2.1. The first step
identifies which pairs of variables are connected by an arc, regardless of its direc-
tion. These variables cannot be independent given any other subset of variables,
because they cannot be d-separated. This step can also be seen as a backward selec-
tion procedure starting from the saturated model with a complete graph and pruning
it based on statistical tests for conditional independence.

The second step deals with the identification of the v-structures among all the
pairs of nonadjacent nodes A and B with a common neighbor C. By definition,
v-structures are the only fundamental connection in which the two nonadjacent
nodes are not independent conditional on the third one. Therefore, if there is a sub-
set of nodes that contains C and d-separates A and B, the three nodes are part of
a v-structure centered on C. This condition can be verified by performing a condi-
tional independence test for A and B against every possible subset of their common
neighbors that includes C. At the end of the second step, both the skeleton and the
v-structures of the network are known, so the equivalence class the Bayesian net-
work belongs to is uniquely identified.

The third and last step of the IC algorithm identifies compelled arcs and orients
them recursively to obtain the completed partially DAG (CPDAG) describing the
equivalence class identified by the previous steps.

A major problem of the IC algorithm is that the first two steps cannot be applied
in the form described in Algorithm 2.1 to any real-world problem due to the expo-
nential number of possible conditional independence relationship. This has led to
the development of improved algorithms such as the following:

• PC: the first practical application of the IC algorithm (Spirtes et al., 2001), a
backward selection procedure from the saturated graph

• Grow-Shrink (GS): based on the Grow-Shrink Markov blanket algorithm
(Margaritis, 2003), a simple forward selection Markov blanket detection ap-
proach

• Incremental Association (IAMB): based on the Incremental Association Markov
blanket algorithm (Tsamardinos et al., 2003), a two-phase selection scheme
based on a forward selection followed by a backward one

• Fast Incremental Association (Fast-IAMB): a variant of IAMB which uses spec-
ulative stepwise forward selection to reduce the number of conditional indepen-
dence tests (Yaramakala and Margaritis, 2005)

• Interleaved Incremental Association (Inter-IAMB): another variant of IAMB
which uses forward stepwise selection (Tsamardinos et al., 2003) to avoid false
positives in the Markov blanket detection phase

All these algorithms, with the exception of PC, first learn the Markov blanket of
each node in the network. This preliminary step greatly simplifies the identifica-
tion of neighbors of each node, as the search can be limited to its Markov blanket.
As a result, the number of conditional independence tests performed by the learning
algorithm and its overall computational complexity are significantly reduced.

2.2 Static Bayesian Networks Modeling 19

Algorithm 2.2 Hill-Climbing Algorithm

1. Choose a network structure G over V, usually (but not necessarily) empty.
2. Compute the score of G, denoted as ScoreG = Score(G).
3. Set maxscore = ScoreG.
4. Repeat the following steps as long as maxscore increases:

a. for every possible arc addition, deletion or reversal not resulting in a cyclic
network:
i. compute the score of the modified network G∗, ScoreG∗ = Score(G∗):

ii. if ScoreG∗ > ScoreG, set G = G∗ and ScoreG = ScoreG∗ .
b. update maxscore with the new value of ScoreG.

5. Return the directed acyclic graph G.

Further improvements are possible by leveraging the symmetry of Markov blankets
implied in Definition 2.3 and shown in Sect. 2.3.

2.2.2 Score-Based Structure Learning Algorithms

Score-based structure learning algorithms (also known a search-and-score algo-
rithms) represent the application of general heuristic optimization techniques to the
problem of learning the structure of a Bayesian network. Each candidate network
is assigned a network score reflecting its goodness of fit, which the algorithm then
attempts to maximize. Some examples from this class of algorithms are the follow-
ing:

• Greedy search algorithms such as hill-climbing with random restarts or tabu
search (Bouckaert, 1995). These algorithms explore the search space start-
ing from a network structure (usually the empty graph) and adding, delet-
ing, or reversing one arc at a time until the score can no longer be improved
(see Algorithm 2.2).

• Genetic algorithms, which mimic natural evolution through the iterative selection
of the “fittest” models and the hybridization of their characteristics (Larrañaga
et al., 1997). In this case the search space is explored through the crossover
(which combines the structure of two networks) and mutation (which introduces
random alterations) stochastic operators.

• Simulated annealing (Bouckaert, 1995). This algorithm performs a stochastic
local search by accepting changes that increase the network score and, at the same
time, allowing changes that decrease it with a probability inversely proportional
to the score decrease.

A comprehensive review of these heuristics, as well as related approaches from the
field of artificial intelligence, is provided in Russell and Norvig (2009).

20 2 Bayesian Networks in the Absence of Temporal Information

Algorithm 2.3 Sparse Candidate Algorithm

1. Choose a network structure G over V, usually (but not necessarily) empty.
2. Repeat the following steps until convergence:

a. restrict: select a set Ci of candidate parents for each node Xi ∈V, which must
include the parents of Xi in G;

b. maximize: find the network structure G∗ that maximizes Score(G∗) among
the networks in which the parents of each node Xi are included in the corre-
sponding set Ci;

c. set G = G∗.

3. Return the directed acyclic graph G.

2.2.3 Hybrid Structure Learning Algorithms

Hybrid structure learning algorithms combine constraint-based and score-based
algorithms to offset their weaknesses and produce reliable network structures in
a wide variety of situations. The two best-known members of this family are the
Sparse Candidate algorithm (SC) by Friedman et al. (1999b) and the Max-Min
Hill-Climbing (MMHC) algorithm by Tsamardinos et al. (2006). The former is
illustrated in Algorithm 2.3.

Both these algorithms are based on two steps called restrict and maximize. In
the first one, the candidate set for the parents of each node Xi is reduced from the
whole node set V to a smaller set Ci ⊂ V of nodes whose behavior has been shown
to be related in some way to that of Xi. This in turn results in a smaller and more
regular search space. The second step seeks the network that maximizes a given
score function, subject to the constraints imposed by the Ci sets.

In the Sparse Candidate algorithm these two steps are applied iteratively until
there is no change in the network or no network improves the network score; the
choice of the heuristics used to perform them is left to the implementation. On the
other hand, in the MMHC algorithm, restrict and maximize are performed only once;
the Max-Min Parents and Children (MMPC) heuristic is used to learn the candidate
sets Ci and a hill-climbing greedy search to find the optimal network.

2.2.4 Choosing Distributions, Conditional Independence
Tests, and Network Scores

In principle, there are many possible choices for both the global and the local distri-
bution functions, depending on the nature of the data and the aims of the analysis.
However, literature has focused mostly on two cases:

2.2 Static Bayesian Networks Modeling 21

• Multinomial variables: used for discrete/categorical data sets and often referred
to as the discrete case. Both the global and the local distributions are multinomial,
and the latter are represented as conditional probability tables (CPTs). This is by
far the most common assumption in literature, and the corresponding Bayesian
networks are referred to as discrete Bayesian networks.

• Multivariate normal variables: this representation is used for continuous data
sets and is therefore referred to as the continuous case. The global distribution is
multivariate normal, whereas the local distributions are univariate normal random
variables linked by linear constraints. Local distributions are in fact linear mod-
els in which the parents play the role of explanatory variables. These Bayesian
networks are called Gaussian Bayesian networks (Geiger and Heckerman, 1994;
Neapolitan, 2003).

Other distributional assumptions require ad hoc learning algorithms or present
various limitations due to the difficulty of specifying the distribution functions in
closed form. For example, models for mixed data, such as the one presented in
Bøttcher and Dethlefsen (2003), impose constraints on the choice of the parents for
the nodes.

On a related note, the choice of a particular set of global and local distributions
also determines which conditional independence tests and which network scores can
be used to learn the structure of the Bayesian network.

Conditional independence tests and network scores for discrete data are functions
of the CPTs implied by the graphical structure of the network through the observed
frequencies {ni jk, i = 1, . . . ,R, j = 1, . . . ,C,k = 1, . . . ,L} for the random variables
X and Y and all the configurations of the conditioning variables Z. Two common
conditional independence tests are the following:

• Mutual information (Cover and Thomas, 2006), an information-theoretic dis-
tance measure defined as

MI(X ,Y |Z) =
R

∑
i=1

C

∑
j=1

L

∑
k=1

ni jk

n
log

ni jkn++k

ni+kn+ jk
. (2.10)

It is proportional to the log-likelihood ratio test G2 (they differ by a 2n factor,
where n is the sample size), and it is related to the deviance of the tested models.

• The classic Pearson’s X2 test for contingency tables,

X2(X ,Y |Z) =
R

∑
i=1

C

∑
j=1

L

∑
k=1

(
ni jk−mi jk

)2

mi jk
, where mi jk =

ni+kn+ jk

n++k
. (2.11)

In both cases the null hypothesis of independence can be tested using either the
asymptotic χ2

(R−1)(C−1)L distribution or the Monte Carlo permutation approach
described in Edwards (2000). Other possible choices are Fisher’s exact test and the
shrinkage estimator for the mutual information defined by Hausser and Strimmer
(2009) and studied in Scutari and Brogini (2012).

22 2 Bayesian Networks in the Absence of Temporal Information

Network scores commonly found in literature are the following:

• The Bayesian Dirichlet equivalent (BDe) score, the posterior density associated
with a uniform prior over both the space of the network structures and of the
parameters of each local distribution (Heckerman et al., 1995).

• The Bayesian information criterion (BIC), a penalized likelihood score defined
as

BIC =
n

∑
i=1

logPXi (Xi |ΠXi)−
d
2

logn, (2.12)

where d is the number of parameters of the global distribution. It is numerically
equivalent to the information-theoretic minimum description length (MDL) mea-
sure by Rissanen (2007), even though it has a completely different derivation.
BIC converges asymptotically to the posterior density BDe.

These score functions are said to be score equivalent, since they assign the same
score to networks belonging to the same equivalence class. They are also decom-
posable into the components associated with each node, which is a significant com-
putational advantage when learning the structure of the network (the only parts of
the score that need to be computed are those that differ between the networks being
compared).

In the continuous case, conditional independence tests and network scores are
functions of the partial correlation coefficients ρXY |Z of X and Y given Z. Two
common conditional independence tests are the following:

• The exact t test for Pearson’s correlation coefficient, defined as

t(X ,Y |Z) = ρXY |Z

√
n− 2

1−ρ2
XY |Z

(2.13)

and distributed as a Student’s t with n−|Z|− 2 degrees of freedom.
• Fisher’s Z test, a transformation of the linear correlation coefficient with an

asymptotic normal distribution and defined as

Z(X ,Y |Z) =
√

n−|Z|− 3
2

log
1+ρXY |Z
1−ρXY |Z

. (2.14)

Both tests can also be performed using Monte Carlo permutation approaches such
as the ones described in Legendre (2000). Other possible choices are the mu-
tual information test defined in Kullback (1968), which is proportional to the
corresponding log-likelihood ratio test, or the shrinkage estimators developed by
Shäfer and Strimmer (2005).

Commonly used network scores are again BIC, this time defined as

BIC =
n

∑
i=1

log fXi (Xi |ΠXi)−
d
2

logn (2.15)

2.2 Static Bayesian Networks Modeling 23

and the Bayesian Gaussian equivalent (BGe) score, the Wishart posterior density
of the network associated with a uniform prior over both the space of the network
structures and of the parameters of the local distributions (Geiger and Heckerman,
1994).

2.2.5 Parameter Learning

Once the structure of the network has been learned from the data, the task of esti-
mating and updating the parameters of the global distribution is greatly simplified
by the application of the Markov property.

Local distributions in practice involve only a small number of variables. Fur-
thermore, their dimension usually does not scale with the size of X and is often
assumed to be bounded by a constant when computing the computational com-
plexity of algorithms. This in turn alleviates the curse of dimensionality, because
each local distribution has a comparatively small number of parameters to estimate
from the sample and because estimates are more accurate due to the better ratio
between the size of parameter space and the sample size. There are two main ap-
proaches to the estimation of those parameters in literature: one based on maximum
likelihood estimation and the other based on Bayesian estimation.

The number of parameters needed to uniquely identify the global distribution,
which is the sum of the number of parameters of the local distributions, is also re-
duced because the conditional independence relationships encoded in the network
structure fix large parts of the parameter space. For example, in Gaussian Bayesian
networks, partial correlation coefficients involving (conditionally) independent vari-
ables are equal to zero by definition, and joint frequencies factorize into marginal
ones in multinomial distributions.

However, parameter estimation is still problematic in many situations. For exam-
ple, it is increasingly common to have sample sizes much smaller than the number
of variables included in the model. This is typical of high-throughput biological data
sets, such as microarrays, that have a few ten or hundred observations and thousands
of genes. In this setting, which is called “small n, large p,” estimates have a high
variability unless particular care is taken in both structure and parameter learnings
(Castelo and Roverato, 2006; Shäfer and Strimmer, 2005; Hastie et al., 2009).

2.2.6 Discretization

A simple way to learn Bayesian networks from mixed data is to convert all continu-
ous variables to discrete ones and then to apply the techniques described in the pre-
vious sections. This approach, which is called discretization or binning, completely
sidesteps the problem of defining a probabilistic model for the data. Discretization

24 2 Bayesian Networks in the Absence of Temporal Information

may also be applied to deal with continuous data when one or more variables present
severe departures from normality (skewness, heavy tails, etc.).

The intervals the variables will be discretized into can be chosen in one of the
following ways:

• Using prior knowledge on the data. The boundaries of the intervals are defined,
for each variable, to correspond to significantly different real-world scenarios,
such as the concentration of a particular pollutant (absent, dangerous, lethal) or
age classes (child, adult, elderly).

• Using heuristics before learning the structure of the network. Some examples are
Sturges, Freedman-Diaconis, or Scott rules (Venables and Ripley, 2002).

• Choosing the number of intervals and their boundaries to balance accuracy and
information loss (Kohavi and Sahami, 1996), again one variable at a time and
before the network structure has been learned. A similar approach considering
pairs of variables is presented in Hartemink (2001).

• Performing learning and discretization iteratively until no improvement is made
(Friedman and Goldszmidt, 1996).

These strategies represent different trade-offs between the accuracy of the discrete
representation of the original data and the computational efficiency of the transfor-
mation.

2.3 Static Bayesian Networks Modeling with R

In this section, we demonstrate structure learning, parameter learning, and manip-
ulation of a static Bayesian network in the R environment. Several of the packages
introduced in Sect. 2.3.1 will be covered to provide an overview of the possibilities
offered by the R environment. All code will be illustrated using a very simple data
set and explained step by step to develop a throughout understanding of Bayesian
network learning.

2.3.1 Popular R Packages for Bayesian Network Modeling

There are several packages on CRAN dealing with Bayesian networks. They can
be divided in two categories: those that deal with structure learning and those that
focus only on parameter learning and inference (Table 2.1).

Packages bnlearn (Scutari, 2010, 2012), deal (Bøttcher and Dethlefsen, 2003),
pcalg (Kalisch et al., 2012), and catnet (Balov and Salzman, 2012) fall into the
first category. bnlearn offers a wide variety of structure learning algorithms (span-
ning all the three classes covered in this chapter, with the tests and scores covered
in Sect. 2.2.4), parameter learning approaches (maximum likelihood for discrete
and continuous data, Bayesian estimation for discrete data), and inference tech-

2.3 Static Bayesian Networks Modeling with R 25

Table 2.1 Feature matrix for the R packages covered in Sect. 2.3.1

bnlearn catnet deal pcalg gRbase gRain

Discrete data Yes Yes Yes Yes Yes Yes

Continuous data Yes No Yes Yes Yes No

Mixed data No No Yes No No No

Constraint-based learning Yes No No Yes No No

Score-based learning Yes Yes Yes No No No

Hybrid learning Yes No No No No No

Structure manipulation Yes Yes No No Yes No

Parameter estimation Yes Yes Yes Yes No No

Prediction Yes Yes No No No Yes

Approximate inference Yes No No No No Yes

niques (cross-validation, bootstrap, conditional probability queries, and prediction).
It is also the only package that keeps a clear separation between the structure of a
network and the associated probability distribution, which are implemented as two
different classes of R objects.

deal implements structure and parameter learning using a Bayesian approach
and handles discrete, continuous, and mixed data (assuming a conditional Gaussian
distribution). The network structure is learned with a hill-climbing greedy search
such as the one described in Algorithm 2.2, with the posterior density of the network
as a score function and random restarts to avoid local maxima.

pcalg provides a free software implementation of the PC algorithm and is specif-
ically designed to estimate and measure causal effects. It handles both discrete and
continuous data and can account for the effects of latent variables on the network.
The latter is achieved through a modified PC algorithm known as Fast Causal Infer-
ence (FCI), first proposed by Spirtes et al. (2001).

catnet focuses on discrete, static Bayesian networks from a frequentist point
of view. Structure learning is performed in two steps. First, the node ordering of
the graph is learned from the data using simulated annealing; alternatively, a cus-
tom node ordering can be specified by the user. An exhaustive search is performed
among the network structures with the given node ordering, and the exact max-
imum likelihood solution is returned. Parameter learning and prediction are also
implemented. Furthermore, an extension of this approach for mixed data (assuming
a Gaussian mixture distribution) has been recently made available from CRAN in
package mugnet (Balov, 2011).

Packages gRbase (Højsgaard et al., 2010) and gRain (Højsgaard, 2010) fall into
the second category. They focus on manipulating the parameters of the network, on
prediction and on inference, under the assumption that all variables are discrete. Nei-
ther gRbase nor gRain implement any structure or parameter learning algorithm, so
the Bayesian network must be completely specified by the user.

26 2 Bayesian Networks in the Absence of Temporal Information

2.3.2 Creating and Manipulating Network Structures

Consider a data set consisting of the exam scores of 88 students across five different
topics, namely, mechanics, vectors, algebra, analysis, and statistics. The scores
are bounded in the interval [0,100]. This data set was originally investigated by
Mardia et al. (1979) and subsequently in classic books on graphical models such as
Whittaker (1990) and Edwards (2000). A copy of the data is included in bnlearn
under the name marks.

> library(bnlearn)
> data(marks)
> str(marks)
’data.frame’: 88 obs. of 5 variables:
$ MECH: num 77 63 75 55 63 53 51 59 62 64 ...
$ VECT: num 82 78 73 72 63 61 67 70 60 72 ...
$ ALG : num 67 80 71 63 65 72 65 68 58 60 ...
$ ANL : num 67 70 66 70 70 64 65 62 62 62 ...
$ STAT: num 81 81 81 68 63 73 68 56 70 45 ...

Upon loading the data, we can create an empty network with the nodes correspond-
ing to the variables in marks using the empty.graph function.

> ug = empty.graph(names(marks))

We can then add the arcs present in the original network from Whittaker (1990)
by assigning a two-column matrix containing the labels of their end-nodes. Undi-
rected arcs are represented as their two possible orientations. For instance, the arc
MECH − VECT is represented by the pair {MECH→ VECT,VECT→ MECH}.
> arcs(ug, ignore.cycles = TRUE) = matrix(
+ c("MECH", "VECT", "MECH", "ALG", "VECT", "MECH",
+ "VECT", "ALG", "ALG", "MECH", "ALG", "VECT",
+ "ALG", "ANL", "ALG", "STAT", "ANL", "ALG",
+ "ANL", "STAT", "STAT", "ALG", "STAT", "ANL"),
+ ncol = 2, byrow = TRUE,
+ dimnames = list(c(), c("from", "to")))

The resulting ug object belongs to the class bn, which is the S3 class used by the
bnlearn package to manage network structures. It contains the following informa-
tion (the element name is reported in parenthesis):

• learning: a list containing some information about the results of the structure
learning algorithm and its tuning parameters, including the conditional indepen-
dence tests and network scores used in the analysis. It has never changed after
the object is created.

• nodes: a list containing one element per node. Each element contains the
Markov blanket, the neighborhood, the parents, and the children of that particular
node.

2.3 Static Bayesian Networks Modeling with R 27

• arcs: the arcs present in the network, in the same two-column format used in
the call to arcs above.

All these information can be accessed through ad hoc accessor functions, some of
which will be illustrated in this section. Furthermore, a synthetic view of the network
is provided by the print method for this class.

> ug

Random/Generated Bayesian network

model:
[undirected graph]

nodes: 5
arcs: 6

undirected arcs: 6
directed arcs: 0

average markov blanket size: 2.40
average neighbourhood size: 2.40
average branching factor: 0.00

generation algorithm: Empty

The structure of ug is shown in Fig. 2.2, along with one of the Bayesian networks
that will be learned from marks in Sect. 2.3.4 and the corresponding equivalence
class. As before, we can create a bn object for that Bayesian network with:

> dag = empty.graph(names(marks))
> arcs(dag) = matrix(
+ c("VECT", "MECH", "ALG", "MECH", "ALG", "VECT",
+ "ANL", "ALG", "STAT", "ALG", "STAT", "ANL"),
+ ncol = 2, byrow = TRUE,
+ dimnames = list(c(), c("from", "to")))

> dag

Random/Generated Bayesian network

model:
[STAT][ANL|STAT][ALG|ANL:STAT][VECT|ALG]
[MECH|VECT:ALG]

nodes: 5
arcs: 6

undirected arcs: 0
directed arcs: 6

average markov blanket size: 2.40
average neighbourhood size: 2.40

28 2 Bayesian Networks in the Absence of Temporal Information

Original Graphical Model (UG)

MECH

VECT

ALG

ANL
STAT

Bayesian Network (DAG)

MECH

VECT

ALG

ANL
STAT

Equivalence Class (CPDAG)

MECH

VECT

ALG

ANL
STAT

Fig. 2.2 The undirected graphical model for the marks data set from Edwards (2000) and Whit-
taker (1990) (left), the Bayesian network learned from the same data (center), and the CPDAG of
its equivalence class (right)

average branching factor: 1.20

generation algorithm: Empty

Rather than typing the arcs of the network in a two-column format, we can also
create ug starting from an adjacency matrix as follows:

> mat = matrix(c(0, 1, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0,
+ 0, 1, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0),
+ nrow = 5,
+ dimnames = list(nodes(dag), nodes(dag)))

> mat
MECH VECT ALG ANL STAT

MECH 0 0 0 0 0
VECT 1 0 0 0 0
ALG 1 1 0 0 0
ANL 0 0 1 0 0
STAT 0 0 1 1 0
> dag2 = empty.graph(nodes(dag))
> amat(dag2) = mat
> all.equal(dag, dag2)
[1] TRUE

On the other hand, sometimes we may just want to create a new bn object by modi-
fying an existing one. The most straightforward way to accomplish this is by adding
(set.arc), dropping (drop.arc), or reversing (rev.arc) arcs in the original
network.

2.3 Static Bayesian Networks Modeling with R 29

> dag3 = empty.graph(nodes(dag))
> dag3 = set.arc(dag3, "VECT", "MECH")
> dag3 = set.arc(dag3, "ALG", "MECH")
> dag3 = set.arc(dag3, "ALG", "VECT")
> dag3 = set.arc(dag3, "ANL", "ALG")
> dag3 = set.arc(dag3, "STAT", "ALG")
> dag3 = set.arc(dag3, "STAT", "ANL")
> all.equal(dag, dag3)
[1] TRUE

The approaches discussed above are guaranteed to result in directed or partially
DAGs unless check.cycles is explicitly set to FALSE. A quick check reveals
that the moral graph of dag and the graphical model from Whittaker (1990) express
the same dependence relationships, as expected.

> all.equal(ug, moral(dag))
[1] TRUE

Upon creating a bn object, we are in a position to investigate those properties of
the corresponding graph that have a probabilistic interpretation in a Bayesian net-
work. For this purpose, the bn class provides a complete description of the network
structure (which is uniquely specified by its arc set), and the use of the information
stored for each node results in significant performance improvements for common
operations.

For instance, when treating the network as a causal model we are often interested
in the topological ordering of the nodes. The relative position of two nodes in the
topological ordering is indicative of the direction of any possible causal relationship
between them, because it implies the direction of any possible path linking the nodes
(a more detailed explanation can be found in Sect. 2.4).

> node.ordering(dag)
[1] "STAT" "ANL" "ALG" "VECT" "MECH"

The neighborhood (nbr) and the Markov blanket (mb) of a node provide a syn-
thetic description of the local dependence structure around that node. These can be
obtained as follows:

> nbr(dag, "ANL")
[1] "ALG" "STAT"
> mb(dag, "ANL")
[1] "ALG" "STAT"

We can also use the commands above to show that both sets describe symmetric
relationships, i.e., if ALG is in the Markov blanket of ANL, ANL is in the Markov
blanket of ALG.

> "ANL" %in% mb(dag, "ALG")
[1] TRUE
> "ALG" %in% mb(dag, "ANL")
[1] TRUE

30 2 Bayesian Networks in the Absence of Temporal Information

Furthermore, we can check that the Markov blanket of a given node (VECT in this
example) is indeed composed by its children (chld), its parents (par), and its
children’s other parents (o.par), as stated in Definition 2.3.

> chld = children(dag, "VECT")
> par = parents(dag, "VECT")
> o.par = sapply(chld, parents, x = dag)
> unique(c(chld, par, o.par[o.par != "VECT"]))
[1] "MECH" "ALG"
> mb(dag, "VECT")
[1] "MECH" "ALG"

Several scoring criteria have been proposed in the context of structure learning.
The example below demonstrates the log-likelihood score of a Bayesian network
and how it changes in response to changes in the graph structure. More importantly,
it demonstrates the invariance of the log-likelihood for networks in the same equiv-
alence class as expected.

> score(dag, data = marks, type = "loglik-g")
[1] -1695.525
> dag.eq = reverse.arc(dag, "STAT", "ANL")
> score(dag.eq, data = marks, type = "loglik-g")
[1] -1695.525

As can be seen from Fig. 2.2, the arc STAT → ANL does not belong to any
v-structure nor does ANL→ STAT. This is easy to check using the vstructs
function, which shows that in fact neither dag nor dag.eq contains any v-structure
(denoted in the output a X→ Z← Y).

> vstructs(dag)
X Z Y

> vstructs(dag.eq)
X Z Y

In all convergent connections present in dag and dag.eq, the two parent nodes
are connected by an arc; therefore, they are not v-structures. Koller and Friedman
(2009) call them moral v-structures, because the parents are “married” as in a moral
graph.

> vstructs(dag, moral = TRUE)
X Z Y

[1,] "VECT" "MECH" "ALG"
[2,] "ANL" "ALG" "STAT"
> vstructs(dag.eq, moral = TRUE)

X Z Y
[1,] "VECT" "MECH" "ALG"
[2,] "ANL" "ALG" "STAT"

2.3 Static Bayesian Networks Modeling with R 31

Score equivalence can be systematically checked by comparing the CPDAGs of
the equivalence classes of dag and dag.eq, which can be derived using the cpdag
function as shown below.

> all.equal(cpdag(dag), cpdag(dag.eq))
[1] TRUE

Similarly, we can derive the moral graphs of dag and dag.eq with moral and
show them to be equal.

> all.equal(moral(dag), moral(dag.eq))
[1] TRUE

Of interest is to note that networks belonging to different equivalence classes may
have the same moral graph but not vice versa. Consider, for instance, the networks
shown in Fig. 2.3, obtained from dag by dropping, respectively, STAT→ ANL and
ALG→ VECT.

> dag2 = drop.arc(dag, from = "STAT", to = "ANL")
> dag3 = drop.arc(dag, from = "ALG", to = "VECT")

dag2 and dag3 cannot belong to the same equivalence class because they contain
different sets of v-structures, as shown below.

> vstructs(dag2)
X Z Y

[1,] "ANL" "ALG" "STAT"
> vstructs(dag3)

X Z Y
[1,] "VECT" "MECH" "ALG"

Equivalently, we can derive their CPDAGs and show them to be different as well.

> all.equal(cpdag(dag2), cpdag(dag3))
[1] "Different number of directed/undirected arcs"

However, dag2 and dag3 have identical moral graphs, and those moral graphs
are identical to the moral graph of dag as well.

> all.equal(moral(dag2), moral(dag3))
[1] TRUE
> all.equal(moral(dag2), moral(dag))
[1] TRUE
> all.equal(moral(dag3), moral(dag))
[1] TRUE

All the examples covered above can be similarly implemented using the other
packages described in Sect. 2.3.1. However, the lack of a clear separation be-
tween the handling of the network structure and the corresponding local distribu-
tions makes the analysis of the former more cumbersome. For example, both deal
and catnet implement only a single object class (called network in deal and

32 2 Bayesian Networks in the Absence of Temporal Information

dag2

MECH VECT

ALG

STATANL

dag3

MECH
VECT

ALG

ANL

STAT

cpdag(dag2)

MECH VECT

ALG

STATANL

cpdag(dag3)

MECH
VECT

ALG

ANL

STAT

Fig. 2.3 Two networks (dag2 and dag3) derived from dag, with different sets of v-structures
and therefore belonging to different equivalence classes (cpdag(dag2) and cpdag(dag3)).
Both these networks have the same moral graph as dag, shown in the right panel of Fig. 2.2.
V-structures are highlighted with a thicker line width

catNetwork in catnet), describing a Bayesian network as a whole. This design
choice makes network structures not as easy to modify as in bnlearn, because the
parameters of the local distributions must be modified at the same time to preserve
the coherence of the R object. Furthermore, in some cases the lack of accessor func-
tions forces the user to work directly on the internals of the class, which increases
the complexity of even simple tasks. On the other hand, class pcAlgo from pcalg
stores the network structure in an object of class graphNEL, making it possible to
use all the functions provided by the graph package (Gentleman et al., 2012).

Consider, for instance, the undirected graph and the DAG shown in Fig. 2.2. With
the deal package we can again create an empty network, which in this case is an
object of class network.

> library(deal)
> deal.net = network(marks)
> deal.net
5 (0 discrete+ 5) nodes;score= ;relscore=
1 MECH continuous()
2 VECT continuous()

2.3 Static Bayesian Networks Modeling with R 33

3 ALG continuous()
4 ANL continuous()
5 STAT continuous()

However, not only it is not possible to recreate the undirected graph from Whittaker
(1990), but the only way to specify the DAG from Fig. 2.2 is through the same model
string representation used in bnlearn.

> m = paste("[MECH][VECT|MECH][ALG|MECH:VECT]",
+ "[ANL|ALG][STAT|ALG:ANL]", sep = "")
> deal.net = as.network(m, deal.net)
> deal.net
5 (0 discrete+ 5) nodes;score= NA ;relscore=
1 MECH continuous()
2 VECT continuous() 1
3 ALG continuous() 1 2
4 ANL continuous() 3
5 STAT continuous() 3 4

Package catnet on the other hand is able to import a network structure from any
graphNEL object, making interoperation with pcalg easy, or through a list con-
taining the parents of each node, as shown in the code below.

> library(catnet)
> cat.net = cnCatnetFromEdges(names(marks),
+ list(MECH = NULL, VECT = "MECH",
+ ALG = c("MECH", "VECT"), ANL = "ALG",
+ STAT = c("ALG", "ANL")))
> cat.net
A catNetwork object with 5 nodes, 2 parents,
2 categories, Likelihood = 0 , Complexity = 13 .

For both packages, other quantities of interest have to be derived manually from
the information stored in the respective classes. For example, the Markov blanket of
VECT can be constructed in catnet using the functions cnEdges and cnParents
as follows:

> chld = cnEdges(cat.net)$VECT
> par = cnParents(cat.net)$VECT
> o.par = sapply(chld,
+ function(node) { cnEdges(cat.net)[[node]] })
> unique(unlist(c(chld, par, o.par[o.par != "VECT"])))
[1] "MECH" "ALG"

34 2 Bayesian Networks in the Absence of Temporal Information

Furthermore,cnMatEdges produces exactly the same output as the functionarcs
from bnlearn, making it easy to export models from the former to the latter.

> em = empty.graph(names(marks))
> arcs(em) = cnMatEdges(cat.net)

modelstring can be used in deal to the same effect.

> em = model2network(deal::modelstring(deal.net))

2.3.3 Plotting Network Structures

Visual examination of the graph structure may also provide useful insights into the
properties of a Bayesian network, especially in the case of small- and medium-
sized graphs. bnlearn, like many other packages dealing with graph structures, pro-
vides a set of plotting functions based on the interface provided by the graph and
Rgraphviz (Gentry et al., 2012) packages. The options needed to reproduce the
plots commonly found in literature are available through the graphviz.plot
function, which takes a bn object as an argument and returns the corresponding
graph object for further customizations. For example, the plots shown in Fig. 2.3
are produced with the following commands:

> hl2 = list(arcs = vstructs(dag2, arcs = TRUE),
+ lwd = 4, col = "black")
> hl3 = list(arcs = vstructs(dag3, arcs = TRUE),
+ lwd = 4, col = "black")
> graphviz.plot(dag2, highlight = hl2, layout = "fdp",
+ main = "dag2")
> graphviz.plot(dag3, highlight = hl3, layout = "fdp",
+ main = "dag3")
> graphviz.plot(cpdag(dag2), highlight = hl2,
+ layout = "fdp", main = "cpdag(dag2)")
> graphviz.plot(cpdag(dag3), highlight = hl3,
+ layout = "fdp", main = "cpdag(dag3)")

bnlearn also provides a plot method for bn objects, which is very similar to the
one implemented in deal for network objects. Both methods are limited by their
simple layout algorithms, which are not able to produce clear plots for large net-
works, and by the limited number of graphical parameters.

pcalg and catnet do not implement any native plotting function, relying in-
stead on the functionality provided by packages graph and Rgraphviz and package
igraph (Csardi and Nepusz, 2006), respectively. pcalg provides a wrapper in the
form of a plot method for pcAlgo objects, while catnet calls it cnPlot. Both
these approaches allow a fine control on the layout and the formatting of the plot
through the options provided by the supporting packages mentioned above.

2.3 Static Bayesian Networks Modeling with R 35

2.3.4 Structure Learning

So far, we have analyzed the marks data set using pre-specified network structures.
While this approach may be feasible in some settings, such as when expert
knowledge is available, it is far more common for the network structure to be learned
from the data. For this reason, we will now focus on the various options available in
R for structure learning.

Consider, for instance, the network structure learned for the marks data with the
Grow-Shrink implementation from bnlearn (Fig. 2.4).

> bn.gs = gs(marks)
> bn.gs

Bayesian network learned via Constraint-based
methods

model:
[STAT][ANL|STAT][ALG|ANL:STAT][VECT|ALG]
[MECH|VECT:ALG]

nodes: 5
arcs: 6

undirected arcs: 0
directed arcs: 6

average markov blanket size: 2.40
average neighbourhood size: 2.40
average branching factor: 1.20

learning algorithm: Grow-Shrink
conditional independence test:

Pearson’s Linear Correlation
alpha threshold: 0.05
tests used in the learning procedure: 32
optimized: TRUE

The default conditional independence test is the Student’s t test introduced in
Eq. 2.13, because of its exact distribution, with a threshold of α = 0.05 for the type I
error. Note that constraint-based algorithms are largely self-correcting for multiplic-
ity (Aliferis et al., 2010a,b); no explicit multiplicity correction such as family-wise
error rate (FWER) or false discovery rate (FDR) is needed to choose a suitable
threshold. Small values of α , e.g. α ∈ [0.01,0.05] work well for networks with up
to hundreds of variables.

All the IAMB algorithms return the same network structure as gs, which in turn
is identical to the DAG in Fig. 2.2. Even changing the conditional independence test
to Fisher’s Z or performing a permutation test (by setting the test argument to zf
or mc-cor, respectively) does not make any difference.

36 2 Bayesian Networks in the Absence of Temporal Information

Markov Blanket of MECH

MECH

VECT

ALG

ANL STAT

Neighborhood of MECH

MECH

VECT

ALG

ANL STAT

Markov Blanket of VECT

MECH

VECT

ALG

ANL STAT

Neighborhood of VECT

MECH

VECT

ALG

ANL STAT

Markov Blanket of ALG

MECH

VECT

ALG

ANL STAT

Neighborhood of ALG

MECH

VECT

ALG

ANL STAT

Markov Blanket of ANL

MECH

VECT

ALG

ANL STAT

Neighborhood of ANL

MECH

VECT

ALG

ANL STAT

Markov Blanket of STAT

MECH

VECT

ALG

ANL STAT

Neighborhood of STAT

MECH

VECT

ALG

ANL STAT

Fig. 2.4 Markov blanket (on the left) and neighborhood (on the right) learned by the Grow-Shrink
algorithm for each node (shaded)

2.3 Static Bayesian Networks Modeling with R 37

> all.equal(bn.gs, iamb(marks))
[1] TRUE
> all.equal(bn.gs, inter.iamb(marks))
[1] TRUE
> all.equal(bn.gs, iamb(marks, test = "mc-cor"))
[1] TRUE

The implementation of the PC algorithm provided by the pcalg package, which
is invoked through the pc function, produces the following output:

> suff.stat = list(C = cor(marks), n = nrow(marks))
> pc.fit = pc(suff.stat, indepTest = gaussCItest,
+ p = ncol(marks), alpha = 0.05)
> pc.fit
Object of class ’pcAlgo’, from Call:
skeleton(suffStat = suffStat, indepTest = indepTest,

p = p, alpha = alpha, verbose = verbose,
fixedGaps = fixedGaps, fixedEdges = fixedEdges,
NAdelete = NAdelete, m.max = m.max)

A graphNEL graph with directed edges
Number of Nodes = 5
Number of Edges = 7

The default options are very similar to the ones used above with bnlearn; the
gaussCItest function (which is provided by pcalg) implements Fisher’s Z test,
and again α = 0.05. We can also supply a function implementing a custom condi-
tional independence test via the indepTest argument. Such a function must take
the labels of two nodes, the set of d-separating nodes, and the suff.stat object
as arguments, and return the p-value of the test.

The easiest way to compare pc.fit with bn.graph is to use the classes
provided by the graph package, which pcalg uses in the pcAlgo class, and the
compareGraphs function provided by pcalg itself.

> gs.graph = as.graphAM(bn.gs)
> compareGraphs(pc.fit@graph, gs.graph)
tpr fpr tdr

1 0 1

As we can see, the true positive rate (TPR) and the true discovery rate (TDR) of the
arcs in pc.fit are both equal to one. In other words, the proportion of arcs that
are correctly identified in pc.fit with respect to gs.graph is 1, which implies
that the two network structures are identical.

Considering again the algorithms implemented in bnlearn, we can see that
hill-climbing and MMHC learn a different network structure from constraint-based
algorithms. The network learned with the hill-climbing algorithm is shown below,
and the steps performed by the algorithm are shown in Fig. 2.5.

> bn.hc = hc(marks)

38 2 Bayesian Networks in the Absence of Temporal Information

Initial BIC score: −1807.528

MECH

VECT

ALG

ANL STAT

Current BIC score: −1778.804

MECH

VECT

ALG

ANL STAT

Current BIC score: −1755.383

MECH

VECT

ALG

ANL STAT

Current BIC score: −1737.176

MECH

VECT

ALG

ANL STAT

Current BIC score: −1723.325

MECH

VECT

ALG

ANL STAT

Current BIC score: −1720.901

MECH

VECT

ALG

ANL STAT

Current BIC score: −1720.150

MECH

VECT

ALG

ANL STAT

Final BIC score: −1720.150

MECH

VECT

ALG

ANL STAT

Fig. 2.5 Operations performed by the hill-climbing algorithm (as implemented in bnlearn) for
learning of the structure of the marks data set. The arc added in each step is highlighted with a
thicker line width

2.3 Static Bayesian Networks Modeling with R 39

> bn.hc

Bayesian network learned via Score-based methods

model:
[MECH][VECT|MECH][ALG|MECH:VECT][ANL|ALG]
[STAT|ALG:ANL]

nodes: 5
arcs: 6

undirected arcs: 0
directed arcs: 6

average markov blanket size: 2.40
average neighbourhood size: 2.40
average branching factor: 1.20

learning algorithm:
Hill-Climbing

score:
Bayesian Information Criterion (Gaussian)

penalization coefficient: 2.238668
tests used in the learning procedure: 34
optimized: TRUE

This new network fits the marks data as well as the previous one, as they have the
same BIC score.

> score(bn.gs, data = marks, type = "bic-g")
[1] -1720.15
> score(bn.hc, data = marks, type = "bic-g")
[1] -1720.15

Even though the directions of the arcs are different, the arcs themselves are the same
in all the Bayesian networks we learned from the data. Furthermore, they are also the
same (again modulo their direction) as the ones present in the original model from
Whittaker (1990), which seems to indicate that the network structure we learned is
reliable.

Learning the structure of a network with deal requires a different workflow due
to the Bayesian approach to model selection adopted by the package, even though
it leads to the same result. First, we must define an empty network structure for
the data and fit the prior distribution, which has the form described in Bøttcher and
Dethlefsen (2003).

> net = network(marks)
> prior = jointprior(net, N = 5)

The argument N passed to jointprior is the imaginary or equivalent sample
size, which expresses the weight assigned to the prior distribution as the size of
an imaginary sample size supporting it. According to the experiments performed

40 2 Bayesian Networks in the Absence of Temporal Information

by Koller and Friedman (2009), low values result in a good balance between the
smoothing effect of the uniform prior distribution and the accuracy of the model, so
we set N = 5.

Once the prior distribution has been set up, we can fit the posterior distribution
for net and use it as the starting point of a hill-climbing search for the network
structure with the highest posterior density.

> net = learn(net, marks, prior)$nw
> best = autosearch(net, marks, prior)
> mstring = deal::modelstring(best$nw)
> mstring
[1] "[MECH|ALG][VECT|MECH:ALG][ALG|ANL][ANL]
[STAT|ALG:ANL]"

As we can see from the model string, the network returned by the heuristic search
is very similar but not identical to the one returned by the implementation of
hill-climbing present in bnlearn. This could be the result of using different pa-
rameters for the search (i.e., the BIC score instead of the posterior density, different
default values for the imaginary sample size, etc.). However, we can show that the
two networks have the same score and are therefore both optimal.

> bn.deal = model2network(mstring)
> bnlearn::score(bn.deal, marks, type = "bge",

iss = 5)
[1] -1725.729
> bn.hc = hc(marks)
> bnlearn::score(bn.hc, marks, type = "bge", iss = 5)
[1] -1725.729

Note that the double-colon syntax (deal:: and bnlearn::) is required to ex-
ecute the correct function, because both bnlearn and deal provide functions called
modelstring.

The stability of this network structure can be confirmed by the use of a second
search with random restarts, which are also implemented in bnlearn for hc (and
controlled with the restart and perturb arguments).

> heuristic = heuristic(best$nw, marks, prior,
+ restart = 2, trylist = best$trylist)

2.3.5 Parameter Learning

Once we have learned the network structure, we can estimate the parameters of the
local distributions. For every package with the exception of bnlearn this step is
executed by the same functions that learn the structure of the network. In addition,
only one estimator is implemented: either a maximum likelihood estimator or a
Bayesian one.

2.3 Static Bayesian Networks Modeling with R 41

When using bnlearn, parameter learning is performed by the bn.fit function,
which takes the network structure and the data as parameters. Since marks is a con-
tinuous data set, the parameters take the form of regression coefficients as indicated
in Sect. 2.2.4. Their maximum likelihood estimates can be computed as follows.
Only a single node is shown for brevity:

> fitted = bn.fit(bn.gs, data = marks)
> fitted$ALG

Parameters of node ALG (Gaussian distribution)

Conditional density: ALG | ANL + STAT
Coefficients:
(Intercept) ANL STAT
24.7254768 0.3482454 0.2273881

Standard deviation of the residuals: 6.791987

In general, we can specify which estimator will be used via the method argu-
ment, which can be set either to “mle” (for the maximum likelihood estimator) or
“bayes” (for the posterior Bayesian estimator arising from a flat, non-informative
prior). Only the former is available for continuous data.

Once we have a bn.fit object, we can modify any local distribution with the
usual replacement operators. In the case of Gaussian Bayesian networks, the new
parameters should be specified in a list containing at least a complete set of regres-
sion coefficients (coef) and the standard deviation of the residuals (sd).

> fitted$ALG = list(coef = c("(Intercept)" = 25,
+ "ANL" = 0.5, "STAT" = 0.25), sd = 6.5)
> fitted$ALG

Parameters of node ALG (Gaussian distribution)

Conditional density: ALG | ANL + STAT
Coefficients:
(Intercept) ANL STAT

25.00 0.50 0.25
Standard deviation of the residuals: 6.5

New sets of fitted values (fitted) and residuals (resid) can also be included in
the assignment.

In addition, we can create abn.fit object from scratch using the custom.fit
function and specifying the parameters with same syntax used above.

> MECH.par = list(coef = c("(Intercept)" = -10,
+ "VECT" = 0.5, "ALG" = 0.6), sd = 13)
> VECT.par = list(coef = c("(Intercept)" = 10,

42 2 Bayesian Networks in the Absence of Temporal Information

+ "ALG" = 1), sd = 10)
> ALG.par = list(coef = c("(Intercept)" = 25,
+ "ANL" = 0.5, "STAT" = 0.25), sd = 6.5)
> ANL.par = list(coef = c("(Intercept)" = 25,
+ "STAT" = 0.5), sd = 12)
> STAT.par = list(coef = c("(Intercept)" = 43),
+ sd = 17)
> dist = list(MECH = MECH.par, VECT = VECT.par,
+ ALG = ALG.par, ANL = ANL.par,
+ STAT = STAT.par)
> fitted2 = custom.fit(bn.gs, dist = dist)

Note that the network structure stored in the object of class bn passed to bn.fit
and custom.fitmust be a DAG; any undirected arc must be either dropped (with
the drop.arc function) or replaced with a directed one (with the set.arc func-
tion). As an alternative, if the network structure is a completed partially acyclic
graph representing an equivalence class, we can also use the cextend function to
consistently extend it to a DAG (Dor and Tarsi, 1992).

2.3.6 Discretization

We consider now how to discretize the marks data set while at the same time pre-
serving the dependence structure of the data and how this transformation changes
the results of Bayesian network learning. For instance, we can discretize each vari-
able in the marks data into a dichotomic one by a median split transform (so that
students with marks above the median are in one category and students below the
median are in the other one). If we learn the network structure of this new data set,
using the Grow-Shrink and hill-climbing algorithms as we did in Sect. 2.3.4, we get
the networks shown in Fig. 2.6.

> dmarks = discretize(marks, breaks = 2,
+ method = "interval")
> bn.dgs = gs(dmarks)
> bn.dhc = hc(dmarks)
> all.equal(cpdag(bn.dgs), cpdag(bn.dhc))
[1] TRUE

Both networks belong again to the same equivalence class, and we can see that
part of the dependence structure of the original network is still present: ALG still
d-separates ANL and STAT from MECH and VECT, but the arc between ANL and
STAT and the one between ALG and MECH are missing.

Since all the variables are now discrete, the parameters of the Bayesian net-
work are the elements of the CPTs, as discussed in Sect. 2.2.4. For example, for
the bn.dhc network, they can be learned and displayed as follows:

2.3 Static Bayesian Networks Modeling with R 43

Grow−Shrink

MECH
VECT

ALG

ANL

STAT

Hill−climbing

MECH
VECT

ALG

ANL

STAT

Fig. 2.6 Bayesian networks learned from the discretized marks data using Grow-Shrink (on the
left) and hill-climbing (on the right). Both belong to the same equivalence class and thus share the
same CPDAG representation

> fitted = bn.fit(bn.dhc, data = dmarks)
> fitted$ALG

Parameters of node ALG (multinomial distribution)

Conditional probability table:

VECT
ALG [8.93,45.5] (45.5,82.1]

[14.9,47.5] 0.5806452 0.2280702
(47.5,80.1] 0.4193548 0.7719298

Now that all the variables are discrete, we can also use package catnet, which
does not handle continuous data. Since we do not know the correct topologi-
cal ordering of the nodes, we will need to call both the cnSearchSA and the
cnFindBIC functions. The former performs a simulated annealing search in the
space of orderings, returning the networks with the highest likelihood given their
respective node orderings; the latter then returns the network with the highest BIC
score among them.

> netlist = cnSearchSA(dmarks)
> best = cnFindBIC(netlist, nrow(dmarks))
> cnMatEdges(best)

[,1] [,2]
[1,] "MECH" "VECT"
[2,] "VECT" "ALG"
[3,] "ALG" "ANL"
[4,] "ALG" "STAT"

44 2 Bayesian Networks in the Absence of Temporal Information

As we can see from the output of cnMatEdges, this learning strategy returns a
network similar to bn.dgs and bn.dhc. However, if we run this example multiple
times, occasionally we will get a network in which the arc between MECH and VECT
is missing. This is the result of the natural sensitivity of simulated annealing to the
values of its parameters, which are known to be difficult to set correctly (Bouckaert,
1995). If we use the cnSearchOrder function instead of cnSearchSA, thus
limiting the search of the optimal network to the ones with the same node ordering
as bn.dhc, this instability disappears completely.

2.4 Pearl’s Causality

In Sect. 2.1, Bayesian networks have been defined in terms of conditional in-
dependence statements and probabilistic properties, without any implication that
arcs should represent cause-and-effect relationships. The existence of equivalence
classes of networks indistinguishable from a probabilistic point of view provides a
simple proof that arc directions are not indicative of causal effects.

However, from an intuitive point of view, it can be argued that a “good” Bayesian
network should represent the causal structure of the data it is describing. Such net-
works are usually fairly sparse, and their interpretation is at the same time clear and
meaningful, as explained by Pearl (2009) in his book on causality:

It seems that if conditional independence judgments are byproducts of stored causal rela-
tionships, then tapping and representing those relationships directly would be a more natu-
ral and more reliable way of expressing what we know or believe about the world. This is
indeed the philosophy behind causal Bayesian networks.

Learning causal models, especially from observational data, presents significant
challenges. In particular, three additional assumptions are needed compared to non-
causal Bayesian network learning:

• Each variable Xi ∈ X is conditionally independent of its non-effects, both direct
and indirect, given its direct causes. This assumption is called the causal Markov
assumption and represents the causal interpretation of the Markov property
introduced in Sect. 2.1.

• There must exist a network structure which is faithful to the dependence structure
of X.

• There must be no latent variables (unobserved variables influencing the variables
in the network) acting as confounding factors. Such variables may induce spu-
rious correlations between the observed variables, thus introducing bias in the
causal network. Even though this is often listed as a separate assumption, it is re-
ally a corollary of the first two: the presence of unobserved variables violates the
faithfulness assumption (because the network structure does not include them)
and possibly the causal Markov property (if an arc is wrongly added between the
observed variables due to the influence of the latent one).

2.4 Pearl’s Causality 45

Group A

bn.A

MECH
VECT

ALG

ANL
STAT

Group B

bn.B

MECH
VECT

ALG
ANL

STAT

With Latent Grouping

bn.LAT

MECH

VECT

ALG

ANL

STAT

LAT

Fig. 2.7 Bayesian networks learned from each group of students (left and center) and the network
learned from the whole discretized data set after the inclusion of the latent variable LAT

These assumptions are difficult to verify in real-world settings, as the set of the
potential confounding factors is not usually known. At best we can address this
issue, along with selection bias, by implementing a carefully planned experimental
design.

Furthermore, even when dealing with interventional data collected from a
controlled experiment (where we can set the value of at least some variables and
observe the resulting changes), there are usually multiple equivalent network struc-
tures that represent reasonable causal models. Many arcs may not have a definite
direction, resulting in substantially different networks. When the sample size is
small, there may also be several non-equivalent networks fitting the data equally
well. Therefore, in general we are not able to identify a single, “best,” causal net-
work but rather a small set of likely causal networks that fit our knowledge of the
data.

An example of the bias introduced by the presence of a latent variable was illus-
trated by Edwards (2000) using the marks data. He noted that if we assume that
the students belong to two different groups (which we will call A and B) and assign
each student to one of them using the EM algorithm (MacLachlan and Krishnan,
2008), each group identifies a different set of relationships between the five topics.

> latent = factor(c(rep("A", 44), "B",
+ rep("A", 7), rep("B", 36)))
> bn.A = hc(marks[latent == "A",])
> bn.B = hc(marks[latent == "B",])
> modelstring(bn.A)
[1] "[MECH][ALG|MECH][VECT|ALG][ANL|ALG]
[STAT|ALG:ANL]"
> modelstring(bn.B)
[1] "[MECH][ALG][ANL][STAT][VECT|MECH]"

46 2 Bayesian Networks in the Absence of Temporal Information

The EM algorithm assigned the first 52 students (with the exception of number
45) to belong to group A and the remainder to group B. If we consider once more
the discretized marks dmarks we created in Sect. 2.2.6 and include the latent
variable when learning the structure of the network, we obtain a network structure
completely different from the ones in Fig. 2.6.

> bn.LAT = hc(cbind(dmarks, LAT = latent))
> bn.LAT

Bayesian network learned via Score-based methods

model:
[MECH][ANL][LAT|MECH:ANL][VECT|LAT][ALG|LAT]
[STAT|LAT]

nodes: 6
arcs: 5

undirected arcs: 0
directed arcs: 5

average markov blanket size: 2.00
average neighbourhood size: 1.67
average branching factor: 0.83

learning algorithm:
Hill-Climbing

score:
Bayesian Information Criterion

penalization coefficient: 2.238668
tests used in the learning procedure: 40
optimized: TRUE

The three network structures learned above are shown in Fig. 2.7; the one
including the latent variable, bn.LAT, agrees with the network structure reported in
Edwards (2000). We can clearly see that any causal relationship we could infer with-
out taking LAT into account would be potentially spurious. In fact, we could even
question the assumption that the data are a random sample from a single population
and have not been manipulated in some way beforehand.

2.5 Applications to Gene Expression Profiles

Static Bayesian networks provide a versatile tool for the analysis of many kinds
of biological data, including (but not limited to) single-nucleotide polymorphism
(SNP) data and gene expression profiles. Following the work of Friedman et al.
(2000), the expression level or the allele frequency of each gene is associated with
one node. In addition, we can include in the network additional nodes denoting other

2.5 Applications to Gene Expression Profiles 47

attributes that affect the system, such as experimental conditions, temporal indica-
tors, and exogenous cellular conditions. As a result, we can model simultaneously
the biological mechanisms we are interested in and the external conditions influenc-
ing them in a single, comprehensive network.

2.5.1 Model Averaging

Consider, for example, the protein signaling data studied in Sachs et al. (2005). The
data consist in the simultaneous measurements of 11 phosphorylated proteins and
phospholypids derived from thousands of individual primary immune system cells,
subjected to both general and specific molecular interventions. The former ensure
that the relevant signaling pathways are active, while the latter make causal infer-
ence possible by elucidating arc directions through stimolatory cues and inhibitory
interventions.

The analysis performed in Sachs et al. (2005) can be summarized as follows:

1. Outliers were removed and the data were discretized using the approach de-
scribed in Hartemink (2001), because the distributional assumptions required by
Gaussian Bayesian networks were unlikely to hold.

2. Structure learning was repeated several times. In this way, a larger number of net-
work structures were explored in an effort to reduce the impact of locally optimal
(but globally suboptimal) networks on learning and subsequent inference.

3. The networks learned in the previous step were averaged to produce a more
robust model. This practice, known as model averaging (Claeskens and Hjort,
2008), is known to result in a better predictive performance than choosing a sin-
gle, high-scoring network. The averaged network structure was created using
the arcs present in at least 85% of the networks. This proportion measures the
strength of each arc and provides the means to establish its significance given a
threshold (85% in this case).

4. The validity of the averaged network was evaluated using connections well-
established in literature as a reference.

All these steps can be performed using the bnlearn package, and some of the other
packages covered in Sect. 2.3.1 can also be used by integrating missing function-
ality. For the moment, we will consider only the data manipulated with general
interventions (i.e., the observational data); we will investigate the complete data set
(i.e., both the observational and the interventional data) in Sect. 2.5.3.

First of all, we will discretize the data with the discretize function, which
implements some common discretization methods including Hartemink’s.

> library(bnlearn)
> sachs = read.table("sachs.data.txt", header = TRUE)
> dsachs = discretize(sachs, method = "hartemink",
+ breaks = 3, ibreaks = 60,
+ idisc = "quantile")

48 2 Bayesian Networks in the Absence of Temporal Information

The relevant arguments are idisc and ibreaks, which control how the data are
initially discretized, and breaks, which specifies the number of levels of each dis-
cretized variable. Choosing good values for these arguments is a trade-off between
quality and speed; high values of idisc preserve the characteristics of the origi-
nal data to a greater extent, whereas smaller values result in much smaller memory
usage and shorter running times.

Each variable in the dsachs data frame is a factor with three levels, correspond-
ing roughly to low, average, and high expression. Now that the data are ready for
the analysis, we can apply bootstrap resampling to dsachs to learn a set of 500
network structures to use for model averaging.

> boot = boot.strength(data = dsachs, R = 500,
+ algorithm = "hc",
+ algorithm.args = list(score = "bde",
+ iss = 10))
> boot[(boot$strength > 0.85) &
+ (boot$direction >= 0.5),]

from to strength direction
1 praf pmek 1.000 0.573
23 plcg PIP2 1.000 0.624
24 plcg PIP3 1.000 0.994
34 PIP2 PIP3 1.000 0.997
56 p44.42 pakts473 1.000 0.616
57 p44.42 PKA 0.998 1.000
67 pakts473 PKA 1.000 0.995
89 PKC P38 1.000 0.530
90 PKC pjnk 1.000 0.982
100 P38 pjnk 0.962 1.000

Sachs et al. Network

praf
pmek

plcg PIP2

PIP3

p44.42
pakts473

PKA

PKC P38

pjnk

Bootstrapped Network

praf
pmek

plcg PIP2

PIP3

p44.42
pakts473

PKA

PKC P38

pjnk

Fig. 2.8 Averaged network learned from the observational data studied in Sachs et al. (2005) (on
the left) and the network learned with bootstrap resampling from the same data (on the right)

2.5 Applications to Gene Expression Profiles 49

The code above implements a setup similar to Sachs et al. (2005). We learn a net-
work structure from each bootstrap sample with a hill-climbing search and a BDe
posterior density with a very low imaginary sample size. Arcs are considered signif-
icant if they appear in at least 85% of the networks and in the direction that appears
most frequently. Interestingly, lowering the threshold to 50% does not change the
results of the analysis, which seems to indicate that its value is not critical in this
case.

Having computed the significance for all possible arcs, we can now build the
averaged network structure as follows:

> avg.boot = averaged.network(boot, threshold = 0.85)

As shown in Fig. 2.8, the averaged network contains the same arcs as the network
learned from the observational data in Sachs et al. (2005). The only difference is that
since the probability of the presence of each arc and of its possible directions are
computed separately in boot.strength, we can also determine which direction
has better support from the discretized data.

As an alternative, we can average the results of several hill-climbing searches,
each starting from a different network. Such networks can be generated randomly
from a uniform distribution over the space of connected graphs with the algorithm
proposed by Ide and Cozman (2002) and implemented in random.graph. This
ensures both that no systematic bias is introduced in the learned networks and that
the search space is covered more thoroughly.

> nodes = names(dsachs)
> start = random.graph(nodes = nodes,
+ method = "ic-dag", num = 500)
> netlist = lapply(start, function(net) {
+ hc(dsachs, score = "bde", iss = 10, start = net)
+ })
> rnd = custom.strength(netlist, nodes = nodes)

> rnd[(rnd$strength > 0.85) &
+ (rnd$direction >= 0.5),]

from to strength direction
11 pmek praf 1 0.518
23 plcg PIP2 1 0.748
43 PIP3 plcg 1 0.542
44 PIP3 PIP2 1 0.790
56 p44.42 pakts473 1 0.682
57 p44.42 PKA 1 0.704
67 pakts473 PKA 1 0.522
89 PKC P38 1 0.540
90 PKC pjnk 1 0.945
100 P38 pjnk 1 0.905
> avg.start = averaged.network(rnd, threshold = 0.85)

50 2 Bayesian Networks in the Absence of Temporal Information

The arcs identified as significant with this approach are the same as in avg.boot
(even though some of them are reversed), thus confirming the stability of the av-
eraged network obtained from bootstrap resampling. A comparison of the equiva-
lence classes of avg.boot and avg.start suggests that the two networks are
equivalent.

> all.equal(cpdag(avg.boot), cpdag(avg.start))
[1] TRUE

Furthermore, note that averaged networks, like the networks they are computed
from, are not necessarily completely directed. In that case, it is not possible to com-
pute their score directly. However, we can identify the equivalence class the aver-
aged network belongs to (with cpdag) and then select a DAG within that equiva-
lence class (with cextend).

> score(cextend(cpdag(avg.start)), dsachs,
+ type = "bde", iss = 10)
[1] -8498.877

Since all networks in the same equivalence class have the same score (for score
equivalent functions), the value returned by score is a correct estimate for the
original, partially directed network.

We can also compute such averaged network structures from bootstrap samples
using the algorithms implemented in catnet, deal, and pcalg. For this purpose, bn-
learn provides a custom.strength function that requires only a list of arc sets
as argument, thus facilitating interoperability.

For example, we can replace the hill-climbing search used above with the simu-
lated annealing search implemented in catnet as follows:

> library(catnet)
> netlist = vector(500, mode = "list")
> ndata = nrow(dsachs)

> netlist = lapply(netlist, function(net) {
+ boot = dsachs[sample(ndata, replace = TRUE),]
+ nets = cnSearchOrder(boot)
+ best = cnFindBIC(nets, ndata)
+ cnMatEdges(best)
+ })
> sa = custom.strength(netlist, nodes = nodes)
> sa[(sa$strength > 0.85) &
+ (sa$direction >= 0.5),]

from to strength direction
1 praf pmek 1.00 0.5
11 pmek praf 1.00 0.5
23 plcg PIP2 0.99 0.5
33 PIP2 plcg 0.99 0.5
34 PIP2 PIP3 1.00 0.5

2.5 Applications to Gene Expression Profiles 51

44 PIP3 PIP2 1.00 0.5
56 p44.42 pakts473 1.00 0.5
66 pakts473 p44.42 1.00 0.5
67 pakts473 PKA 1.00 0.5
77 PKA pakts473 1.00 0.5
89 PKC P38 1.00 0.5
90 PKC pjnk 1.00 0.5
99 P38 PKC 1.00 0.5
109 pjnk PKC 1.00 0.5
> avg.catnet = averaged.network(sa, threshold = 0.85)

Again, avg.catnet presents some small differences from both avg.boot
and avg.start. Such differences can be attributed to the different scores and
structure learning algorithms used to build the sets of high-scoring networks. In
particular, it is very common for arc directions to change between different learning
algorithms as a result of score equivalence.

2.5.2 Choosing the Significance Threshold

The value of the threshold beyond which an arc is considered significant, which is
often called the significance threshold, does not seem to have a huge influence on
the analysis of the data analyzed in Sachs et al. (2005). In fact, any value between
0.5 and 0.85 yields exactly the same results. So, for instance,

> all.equal(averaged.network(boot, threshold = 0.50),
+ averaged.network(boot, threshold = 0.70))
[1] TRUE

The same holds for avg.catnet and avg.start. However, this is often not
the case. Therefore, it is important to use a statistically motivated algorithm for
choosing a suitable threshold instead of relying on ad hoc values.

A solution to this problem is presented in Scutari and Nagarajan (2012) and
implemented in bnlearn as the default value for the threshold argument in
averaged.network.

> averaged.network(boot)

Random/Generated Bayesian network

model:
[praf][plcg][p44.42][PKC][pmek|praf][PIP2|plcg]
[pakts473|p44.42][P38|PKC][PIP3|plcg:PIP2]
[PKA|p44.42:pakts473][pjnk|PKC:P38]

nodes: 11

52 2 Bayesian Networks in the Absence of Temporal Information

arcs: 10
undirected arcs: 0
directed arcs: 10

average markov blanket size: 1.82
average neighbourhood size: 1.82
average branching factor: 0.91

generation algorithm:
Model Averaging

significance threshold: 0.374

The value of the threshold is computed as follows. If we denote the arc strengths
stored in boot as p̂ = { p̂i, i = 1, . . . ,k} and p̂(·) is

p̂(·) = {0 � p̂(1) � p̂(2) � . . .� p̂(k) � 1}, (2.16)

then we can define the corresponding arc strengths in the (unknown) averaged net-
work G = (V,A0) as

p̃(i) =

{
1 if a(i) ∈ A0

0 otherwise
, (2.17)

that is, the set of strengths that characterizes any arc as either significant or non-
significant without any uncertainty. In other words,

p̃(·) = {0, . . . ,0,1, . . . ,1}. (2.18)

The proportion t of elements of p̃(·) that are equal to 1 determines the number of
arcs in the averaged network and is a function of the significance threshold we want
to estimate. One way to do that is to find the value t̂ that minimizes the L1 norm

L1
(
t; p̂(·)

)
=

∫ ∣
∣
∣Fp̂(·) (x)−Fp̃(·)(x; t)

∣
∣
∣dx (2.19)

between the cumulative distribution functions of p̃(·) and p̂(·) and then to include
every arc that satisfies

a(i) ∈ A0⇐⇒ p̂(i) > F−1
p̂(·)

(t̂) (2.20)

in the average network. This amounts to finding the averaged network whose arc set
is “closest” to the arc strength computed from the data, with F−1

p̂(·)
(t̂) acting as the

significance threshold.
For the dsachs data, the estimated value for the threshold is 0.374; so, any arc

with a strength value strictly greater than that is considered significant. Again,
the resulting averaged network is the same as the one obtained with the original
threshold in Sachs et al. (2005).

> all.equal(avg.boot, averaged.network(boot))
[1] TRUE

2.5 Applications to Gene Expression Profiles 53

0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.2

0.4

0.6

0.8

1.0

arc strengths

cu
m

ul
at

iv
e

di
st

rib
ut

io
n

fu
nc

tio
n

significant arcs

es
tim

at
ed

 th
re

sh
ol

d

S
ac

hs
’ t

hr
es

ho
ld

Fig. 2.9 Cumulative distribution function of the arc strength values computed with bootstrap re-
sampling from dsachs. The vertical dashed lines correspond to the estimated (black) and ad hoc
(grey) significance thresholds

The reason for the insensitivity of the averaged network to the value of the thresh-
old is apparent from the plot of Fp̂(·) in Fig. 2.9: arcs which are well supported by
the data are clearly separated from the ones that are not. Since the lowest strength
coefficient in the first set is 0.962 and the highest one in the second set is 0.347 (i.e.,
the estimated threshold), any threshold that falls between those two values results in
the same averaged network.

2.5.3 Handling Interventional Data

Usually, all the observations in a sample are collected under the same general con-
ditions. This is true both for observational data, in which treatment allocation is out-
side the control of the investigator, and for experimental data, which are collected
from randomized controlled trials. As a result, the sample can be modeled with a
single Bayesian network, because all the observations follow the same probability
distribution.

However, this is not the case when several samples resulting from different exper-
iments are analyzed together with a single, encompassing model. Such an approach
is called meta-analysis (see Kulinskaya et al., 2008, for a gentle introduction). First,
environmental conditions and other exogenous factors may differ between those
experiments. Furthermore, the experiments may be different in themselves; for ex-
ample, they may explore different treatment regimes or target different populations.

This is the case with the protein signaling data analyzed in Sachs et al. (2005). In
addition to the data set we have analyzed so far, which is subject only to a general

54 2 Bayesian Networks in the Absence of Temporal Information

stimulus meant to activate the desired paths, nine other data sets subject to different
stimulatory cues and inhibitory interventions are used to elucidate the direction of
the causal relationships in the network. Such data are often called interventional, be-
cause the values of specific variables in the model are set by an external intervention
of the investigator.

Overall, the ten data sets contain 5,400 observations; in addition to the 11
signaling levels analyzed above, the protein which is activated or inhibited (INT)
is recorded for each sample.

> isachs = read.table("sachs.interventional.txt",
+ header = TRUE, colClasses = "factor")

One intuitive way to model these data sets with a single, encompassing model is to
include the intervention INT in the network and to make all variables depend on it.
This can be achieved with a whitelist containing all possible arcs from INT to
the other nodes, thus forcing such arcs to be present in the learned network structure.

> wh = matrix(c(rep("INT", 11), names(isachs)[1:11]),
+ ncol = 2)
> bn.wh = tabu(isachs, whitelist = wh, score = "bde",
+ iss = 10, tabu = 50)

Using tabu search instead of hill-climbing improves the stability of the score-based
search; once a locally optimum network is found, tabu search performs an addi-
tional 50 iterations (as specified by the tabu argument) to ensure that no other (and
potentially better) local optimum is found.

We can also let the structure learning algorithm decide which arcs connecting
INT to the other nodes should be included in the network. To this end, we can
use the tiers2blacklist function to blacklist all arcs toward INT, thus en-
suring that only outgoing arcs will be included in the network. In the general case,
tiers2blacklist builds a blacklist such that all arcs going from a node in a
particular element of the nodes argument to a node in one of the previous ele-
ments are blacklisted.

> tiers = list("INT", names(isachs)[1:11])
> bl = tiers2blacklist(nodes = tiers)
> bn.tiers = tabu(isachs, blacklist = bl,
+ score = "bde", iss = 10, tabu = 50)

The networks learned with these two approaches are shown in Fig. 2.10. Some
of the structural features detected in Sachs et al. (2005) are present in both bn.wh
and bn.tiers. For example, the interplay between plcg, PIP2, and PIP3 and
between PKC, P38, and pjnk are both correctly modeled. The lack of any direct
intervention on PIP2 is also correctly modeled in bn.tiers. The most notice-
able feature missing from both networks is the pathway linking praf to pakt473
through pmek and p44.42.

2.5 Applications to Gene Expression Profiles 55

Whitelisted Interventions

bn.wh
Modified BDe

praf

pmek

plcg

PIP2

PIP3

p44.42

pakts473

PKA

PKC

P38

pjnk

INT

Learned Interventions

bn.tiers
Sachs et al. Validated Network

praf

pmek

plcg

PIP2

PIP3

p44.42

pakts473

PKA

PKC

P38

pjnk

INT

bn.mbde

P38

p44.42

pakts473

PIP2

PIP3

pjnk

PKA

PKC plcg

pmek

praf
P38

p44.42

pakts473

PIP2

PIP3

pjnk

PKA

PKC plcg

pmek

praf

Fig. 2.10 Bayesian networks learned from isachs. The first two networks (bn.wh on the top
left, bn.tiers on the top right) have been learned by including INT and adding arcs to model
stimulatory cues and inhibitory interventions. The third network (bn.mbde, on the bottom left)
has been learned with model averaging and the mbde score; arcs highlighted with a thicker line
width make up the validated Bayesian network (bottom right) from Sachs et al. (2005)

The approach used in Sachs et al. (2005) yields much better results. Instead of
including the interventions in the network as an additional node, Sachs et al. (2005)
used a modified BDe score (labeled “mbde” in bnlearn) incorporating the effects
of the interventions into the score components associated with each node (Cooper
and Yoo, 1995).

Since the value of INT identifies which node is subject to either a stimulatory cue
or an inhibitory intervention for each observation, we can easily construct a named
list of which observations are manipulated for each node.

56 2 Bayesian Networks in the Absence of Temporal Information

> INT = sapply(1:11, function(x) {
+ which(isachs$INT == x) })
> nodes = names(isachs)[1:11]
> names(INT) = nodes

Given such a list, we can then pass it to tabu as an additional argument for mbde.
In addition, we can combine the use of mbde with model averaging and random
starting points as discussed in Sect. 2.5.1. To improve the stability of the averaged
network, we generate the set of the starting networks for the tabu searches using the
algorithm from Melançon et al. (2001), which is not limited to connected networks
as the one from Ide and Cozman (2002). In addition, we actually use only one
generated network every 100 to obtain a more diverse set.

> start = random.graph(nodes = nodes,
+ method = "melancon", num = 500, burn.in = 10ˆ5,
+ every = 100)
> netlist = lapply(start, function(net) {
+ tabu(isachs[, 1:11], score = "mbde", exp = INT,
+ iss = 10, start = net, tabu = 50) })
> arcs = custom.strength(netlist, nodes = nodes)
> bn.mbde = averaged.network(arcs, threshold = 0.85)

As we can see from Fig. 2.10, bn.mbde is much closer to the validated network
from Sachs et al. (2005) than any of the other networks learned in this section. All
the arcs from the validated network are correctly learned, even though a few are
reversed. The arcs from bn.mbde that are not present in the validated networks
were identified in the original paper and discarded due to their comparatively low
strength; this may imply that the simulated annealing algorithm used in Sachs et al.
(2005) performs better on this data set than tabu search.

Exercises

2.1. Consider the asia synthetic data set from Lauritzen and Spiegelhalter (1988),
which describes the diagnosis of a patient at a chest clinic who has just come back
from a trip to Asia and is showing dyspnea.

(a) Load the data set from the bnlearn package and investigate its characteristics
using the exploratory analysis techniques covered in Chap. 1.

(b) Create a bn object with the network structure described in the manual page of
asia.

(c) Derive the skeleton, the moral graph, and the CPDAG representing the equiva-
lence class of the network. Plot them using graphviz.plot.

(d) Identify the parents, the children, the neighbors, and the Markov blanket of each
node.

2.5 Applications to Gene Expression Profiles 57

2.2. Using the network structures created in Exercise 2.1 for the asia data set,
produce the following plots with graphviz.plot:

(a) A plot of the CPDAG of the equivalence class in which the arcs belonging to a
v-structure are highlighted (either with a different color or using a thicker line
width).

(b) Fill the nodes with different colors according to their role in the diagnostic pro-
cess: causes (“visit to Asia” and “smoking”), effects (“Tuberculosis,” “lung can-
cer,” and “bronchitis”) and the diagnosis proper (“chest X-ray,” “dyspnea,” and
“either tuberculosis or lung cancer/bronchitis”).

(c) Explore different layouts by changing the layout and shape arguments.

2.3. Consider the marks data set analyzed in Sect. 2.3.

(a) Discretize the data using a quantile transform and different numbers of intervals
(say, from 2 to 5). How does the network structure learned from the resulting
data sets change as the number of intervals increases?

(b) Repeat the discretization using interval discretization using up to five intervals,
and compare the resulting networks with the ones obtained previously with
quantile discretization.

(c) Does Hartemink’s discretization algorithm perform better than either quantile or
interval discretization? How does its behavior depend on the number of initial
breaks?

2.4. The ALARM network (Beinlich et al., 1989) is a Bayesian network designed
to provide an alarm message system for patients hospitalized in intensive care units
(ICU). Since ALARM is commonly used as a benchmark in literature, a synthetic
data set of 5,000 observations generated from this network is available from bnlearn
as alarm.

(a) Create a bn object for the “true” structure of the network using the model string
provided in its manual page.

(b) Compare the networks learned with different constraint-based algorithms with
the true one, both in terms of structural differences and using either BIC or BDe.

(c) The overall performance of constraint-based algorithms suggests that the asymp-
totic χ2 conditional independence tests may not be appropriate for analyzing
alarm. Are permutation or shrinkage tests better choices?

(d) How are the above learning strategies affected by changes to alpha?

2.5. Consider again the alarm network used in Exercise 2.4.

(a) Learn its structure with hill-climbing and tabu search, using the posterior den-
sity BDe as a score function. How does the network structure change with the
imaginary sample size iss?

(b) Does the length of the tabu list have a significant impact on the network struc-
tures learned with tabu?

(c) How does the BIC score compare with BDe at different sample sizes in terms of
structure and score of the learned network?

58 2 Bayesian Networks in the Absence of Temporal Information

2.6. Consider the observational data set from Sachs et al. (2005) used in Sect. 2.5.1
(the original data set, not the discretized one).

(a) Evaluate the networks learned by hill-climbing with BIC and BGe using cross-
validation and the log-likelihood loss function.

(b) Use bootstrap resampling to evaluate the distribution of the number of arcs
present in each of the networks learned in the previous point. Do they differ
significantly?

(c) Compute the averaged network structure for sachs using hill-climbing with
BGe and different imaginary sample sizes. How does the value of the signifi-
cance threshold change as iss increases?

Chapter 3
Bayesian Networks in the Presence of Temporal
Information

Abstract Real-world entities comprising a complex system evolve as a function
of time and respond to external perturbations. Dynamic Bayesian networks ex-
tend the fundamental ideas behind static Bayesian networks to model associations
arising from the temporal dynamics between the entities of interest. This has to
be contrasted with static Bayesian networks, which model the network structure
from multiple independent realizations of the entities of a snapshot of the pro-
cess. More importantly, incorporating the temporal signatures is useful in capturing
possible feedback loops that are implicitly disregarded in the case of static Bayesian
networks. Since feedback loops are ubiquitous in biological pathways, dynamic
Bayesian network modeling is expected to result in better representations of such
pathways.

In this chapter, we will introduce basic definitions and models for modeling asso-
ciations from multivariate linear time series using dynamic Bayesian networks. Ap-
plications include modeling gene networks from expression data. Two broad classes
of multivariate time series are considered: those whose statistical properties are in-
variant as a function of time and those whose properties do show change of time.

3.1 Time Series and Vector Auto-Regressive Processes

3.1.1 Univariate Time Series

A univariate time series is a sequence of random variables

{X(t)}= {. . . ,X(t− 1),X(t),X(t+ 1), . . .} (3.1)

measured at successive time points, usually spaced at uniform time intervals. A
univariate time series {X(t)} is said to be second order or covariance stationary

R. Nagarajan et al., Bayesian Networks in R: with Applications in Systems Biology,
Use R! 48, DOI 10.1007/978-1-4614-6446-4 3,
© Springer Science+Business Media New York 2013

59

60 3 Bayesian Networks in the Presence of Temporal Information

if the first two moments, i.e., the mean E(X(t)) and covariance COV(X(t)), are
invariant as a function of time:

∀t, E(X(t)) = μ , (3.2)

∀t, i, COV (X(t),X(t− i)) = E((X(t)− μ)(X(t− i)− μ)) = γi. (3.3)

In other words, the first two moments of covariance-stationary time series are invari-
ant over time. In this section, stationary time series implicitly refer to covariance-
stationary time series.

Stationary univariate time series X(t) are often modeled as auto-regressive pro-
cesses, where the value at a given time t is given as a linear combination of those at
earlier time points, X(t− i), i = 1, . . . , p:

∀t � p, X(t) = a1X(t− 1)+ · · ·+ aiX(t− i)+ · · ·+ apX(t− p)+ b+ ε(t) (3.4)

where

• X(t) is the random variable observed at time t;
• p is the lag or order of the time series;
• ai ∈ R, i = 1, . . . , p, are the coefficients associated with the random variables

observed at the previous p time points, i.e., t− 1, t− 2, . . . , t− p;
• b ∈ R is the baseline measurement, i.e., the intercept;
• ε(t) is a Gaussian white noise, i.e., ε(t)∼ N(0,σ2).

3.1.2 Multivariate Time Series

Multivariate time series (MTS) are sequences of multivariate random variables mea-
sured at successive time points. MTS data are commonly encountered in real-world
settings where the objective is to understand the associations between multiple en-
tities from their temporal signatures. An example of MTS from Smith et al. (2004),
representing the expression profiles of a set of genes, is shown in Fig. 3.1.

Multivariate time series are commonly modeled as vector auto-regressive (VAR)
process. A VAR process is essentially a multivariate extension of an auto-regressive
process. A vector auto-regressive process VAR(p) of order p, the variables observed
at any time t � p are assumed to satisfy

X(t) = A1X(t− 1)+ · · ·+AiX(t− i)+ · · ·+ApX(t− p)+B+ ε(t) (3.5)

where

• X(t) = (Xi(t)), i = 1, . . . ,k, is the vector of k variables observed at time t;
• Ai, i = 1, . . . , p are matrices of coefficients of size k× k;
• B is a vector of size k representing the baseline measurement for each variable;

3.1 Time Series and Vector Auto-Regressive Processes 61

Time

lo
g 2

−
tr

an
sf

or
m

ed
 e

xp
re

ss
io

n
le

ve
ls

4

6

8

10

12

5 10 15 20

Fig. 3.1 Arabidopsis thaliana gene expression time series from Smith et al. (2004)

• ε(t) is a white noise vector of size k, with zero mean (E(ε(t)) = 0) and time-
invariant positive definite covariance matrix (COV(ε(t)) = Σ).

Similar to an auto-regressive process, a VAR(p) of order p assumes a linear corre-
lation structure between the k variables observed at time points t and the k variables
observed at the p previous time points.

3.1.2.1 Covariance Stationarity of a VAR Process

A VAR(p) process can be written as a VAR(1) process via its companion form,

Y (t) = AY (t− 1)+υ(t), (3.6)

with

Y (t) =

⎡

⎢
⎢⎢
⎢
⎣

Y (t)
.
.
.

Y (t− p+ 1)

⎤

⎥
⎥⎥
⎥
⎦
, A =

⎡

⎢
⎢
⎢⎢
⎢
⎣

A1 A2 . . . Ap−1 Ap

I 0 . . . 0 0
0 I . . . 0 0
...

...
. . .

...
...

0 0 . . . I 0

⎤

⎥
⎥
⎥⎥
⎥
⎦
, υ(t) =

⎡

⎢
⎢⎢
⎣

ε(t)
0
...
0

⎤

⎥
⎥⎥
⎦
. (3.7)

62 3 Bayesian Networks in the Presence of Temporal Information

In the above, Y (t) and υ(t) are (kp× 1) vectors, A is a (kp× kp) companion ma-
trix, and I is a (p× p) identity matrix. The VAR(p) process is said to be stationary
(covariance-stationary) if the absolute values of the eigenvalues of the companion
matrix A are lesser than 1.

3.1.2.2 Lag Order of a VAR Process

The literature contains numerous discussions on how to select a suitable lag or-
der for a covariance stationary VAR process. Among classic procedures, there are
information criterion such as AIC and BIC, also known as the Schwarz criterion
(Lütkepohl 2005).

Information criteria are statistics that measure the distance between observations
and model classes. If the value of the information criterion is small, the distance is
small and the model class contains a model that fits the data well. Typical criteria,
such as AIC or BIC, consist of two additive parts. The first is a naı̈ve goodness-of-fit
measure, and the second is a penalty term that increases with the model’s complex-
ity. The most popular information criteria is the AIC due to Akaike:

AIC(m) = log|Σ̂(m)|+ 2
n

m, (3.8)

where m denotes the number of free parameters in the model and Σ̂ (m) denotes
the maximum likelihood estimate of the error covariance matrix. In principle, a
VAR(p) has m = k2 p+ k+ k(k+1)/2 free parameters. Since we are only interested
in finding the optimal p, we can assume k (the number of variables at each time
point) is constant, discard the intercept, and not impose any constraint on the error
covariance matrix. Therefore, for a VAR(p) process, AIC is defined as

AIC(p) = log|Σ̂(p)|+ 2pk2

n
. (3.9)

An important property of AIC is its ability to select models with strong predictive
power. Some authors also suggest that AIC can select good models even for small
samples, possibly through the use of a second-order correction called AICc.

BIC is also commonly used because it is consistent, that is, the selected p̂ will
be the true p with probability one as n tends toward infinity. For a VAR(p) process,
BIC is defined as

BIC(p) = log|Σ̂(p)|+ pk2log(n)
n

. (3.10)

3.1.2.3 Tests for Multivariate Normality in VARs

When using a statistical model on real-world data, it is important to check that the
assumptions of the model are satisfied. In the case of VAR processes, one of those

3.2 Dynamic Bayesian Networks: Essential Definitions and Properties 63

assumptions is the normality of the residuals, which can be assessed with many dif-
ferent tests for univariate and multivariate time series. Some examples are presented
in Jarque and Bera (1980), Bera and Jarque (1981), Jarque and Bera (1987), and
Lütkepohl (2005).

One such test is the Jarque–Bera normality test, a goodness-of-fit test on whether
sample data have skewness and kurtosis of a normal distribution (which are both
equal to zero). The test statistic is defined as

JB =
n
6

[
S2 +

1
4
(K− 3)2

]
, (3.11)

where

S =
μ̂3

σ̂3 and K =
μ̂4

σ̂4 (3.12)

are the sample skewness and kurtosis; μ̂3 and μ̂4 are the estimates of third and
fourth central moments; and σ̂ is the estimate of the standard deviation. If the data
come from a normal distribution, the Jarque–Bera statistic has an asymptotic χ2

distribution with 2k degrees of freedom.

3.1.2.4 Test for Serial Correlation (Portmanteau Test)

Other diagnostic tests may be useful in analyzing multivariate time series, for
instance, testing for the absence of autocorrelation, heteroscedasticity, or non-
normality in ε(t). The Portmanteau test and the Breusch–Godfrey serial correlation
Lagrange multiplier test allow to analyze the lack of serial correlation in the residu-
als of a VAR(p). Heteroscedasticity can be studied via the univariate and multivari-
ate auto-regressive conditionally heteroscedastic Lagrange multiplier (ARCH-LM)
tests for a VAR(p) process (see Engle 1982; Hamilton 1994; Lütkepohl 2005).

These tests are implemented in the vars package, which will be introduced in
Sect. 3.5.1.

3.2 Dynamic Bayesian Networks: Essential Definitions
and Properties

3.2.1 Definitions

Unlike static Bayesian networks, each variable in a dynamic Bayesian network is
represented by several nodes across time points. In essence, a dynamic Bayesian
network (Fig. 3.2c) is obtained by unfolding in time an interaction graph (Fig. 3.2a).
This aspect is especially useful in accommodating possible loops and feedback in
the network topology. Setting the arc directions across time also guarantees the

64 3 Bayesian Networks in the Presence of Temporal Information

acyclicity of the graph, which is required by definition for a Bayesian network. In the
resulting directed acyclic graph, an arc is drawn between two variables at successive
time points, for example, from X1(t− 1) to X2(t) in Fig. 3.2c, whenever these two
variables are conditionally dependent given the remaining variables in the past time
points. This condition provides an extension of the properties introduced in Sect. 2.1
for static Bayesian networks and, more in general, of the graphical modeling theory
from Lauritzen (1996) to temporal data.

In the last decade, various network representations based on different probabilis-
tic models have been proposed in literature: discrete models (Ong et al. 2002; Zou
and Conzen 2005), VAR processes (Opgen-Rhein and Strimmer 2007), state-space
or hidden Markov models (Perrin et al. 2003; Wu et al. 2004; Rangel et al. 2004;
Beal et al. 2005), and nonparametric additive regression models (Imoto et al. 2002;
Imoto et al. 2003; Kim et al. 2004; Sugimoto and Iba 2004). We refer the reader to
Kim et al. (2003) for a comprehensive review of these models. To summarize, we
present in the following a set of sufficient conditions for a model to be represented
as a dynamic Bayesian network; a detailed treatment of these results is provided in
Lèbre (2009).

Consider a dynamic Bayesian network with a directed acyclic graph G (e.g.,
Fig. 3.2c) which describes a discrete-time stochastic process X= {Xi(t); i= 1, . . . ,k;
t = 1, . . . , t} taking values in R

k with k variables at n time points. We will show
in Theorem 3.1 that the arc set of this network describes exactly the conditional
dependencies between variables observed at successive time points (e.g., t−1 and t)
given all other variables observed at the earliest time point (e.g., t− 1). This result
rests on the three assumptions below.

Assumption 1 The stochastic process X is first-order Markovian.

Assumption 2 For all t > 0, the random variables X(t) = (X1(t), . . . ,Xi(t), . . . ,Xk

(t)) observed at time t are conditionally independent given the random variables
X(t− 1) at the previous time t− 1.

Assumption 3 The temporal profile (Xi(1), . . . ,Xi(n)) of any variable Xi cannot be
written as a linear combination of the other profiles (Xj(1), . . . ,Xj(n)) , j �= i.

Assumption 1 guarantees that any variable at time t is dependent on the past
variables only through the variables observed at time (t − 1). On the other hand,
Assumption 2 guarantees the variables observed simultaneously at any time point
to be conditionally independent given their immediate past. In other words, time
points are assumed to be close enough that a variable Xi at time t is better explained
by X(t−1) than by other variables Xj at the same time t. Therefore, Assumptions 1
and 2 allow the existence of a dynamic Bayesian network with graph G that only
contains arcs pointing out from a variable observed at time (t−1) toward a variable
observed at time t, with no arcs between simultaneously observed variables. In order
to restrict the number of parameters of the network, we assume a constant time delay
for all interactions, called the time point sampling, defined by the interval between
successive time points. It is certainly possible to add simultaneous interactions, or

3.2 Dynamic Bayesian Networks: Essential Definitions and Properties 65

a b

c

X1
X3X2X1

X3X2X1

X3X2

X1(1)

X2(t) X2(n)

X1(n)

X3(n)X3(t)

X1(t)

X2(1)

X3(1) X3(2)

X2(2)

X1(2)

Fig. 3.2 Graphical representation of a static Bayesian network, a dynamic Bayesian network, and
a time-varying dynamic Bayesian network. (a) An example of an interaction network between
three variables X1, X2, X3 modeling a genetic regulatory motif between genes. Arcs ending with
an arrow correspond to gene activations, and arcs ending with a line correspond to gene inhibi-
tions. (b) Because Bayesian networks are constrained to be acyclic, they cannot contain loops
or cycles. Therefore, the motif in (a) cannot be correctly modeled by a conventional (static)
Bayesian network which does not take temporal ordering into account. If X3 is conditionally
independent from X1 given X2, we have that both P(X1,X2,X3) = P(X3 |X2)P(X2 |X1)P(X1) and
P(X1,X2,X3) = P(X3 |X2)P(X1 |X2)P(X2) are valid sets of local distributions. (c) If time-course
expression measurements are available, it is possible to unravel the feedback cycles and the loops
over time points. Such time-homogeneous dynamic Bayesian network assumes that at each given
time t , all the parents of each node are measured at the previous time point t−1

a longer time delay, by allowing the existence of arcs between variables observed
either at the same time t or with a longer time delay (i.e., from t− 2 to t). However,
the number of parameters of the model increases exponentially with the number
of time delays, which can be challenging given the number of time points in most
data sets.

Finally, Assumption 3 guarantees the uniqueness of G when the k variables are
linearly independent, i.e., none of the profiles can be written as a linear combination
of the others. When these three assumptions are satisfied, the probability distribution
of the process X can be represented by a dynamic Bayesian network as described
by the following theorem.

Theorem 3.1. Whenever Assumptions 1, 2, and 3 are satisfied, the probability dis-
tribution of X can be represented as a dynamic Bayesian network with a directed
acyclic graph G whose arcs describe exactly the conditional dependencies between
any pair of variables (Xj(t−1),Xi(t)) at successive time points given the past vari-
ables X(t− 1)\ {Xj(t− 1)}.

As expected, dynamic Bayesian network models are dependent on the sampling
time and the choice of the time delay. Interactions that occur at a time scale shorter
than the sampling time may not necessarily be detected from the given data and
can lead to spurious conclusions on the network structure. Thus, a prudent choice

66 3 Bayesian Networks in the Presence of Temporal Information

of the sampling time may be critical for meaningful results. It might be interesting,
for example, to infer a network with a time delay from t − 1 to t and another one
from t− 2 to t. If the time delay between two successive time points is too large,
considering a static Bayesian network might be a better choice for the data.

In order to carry out model estimation, it is often assumed that the process is
homogeneous over time (Assumption 4). In other words, we assume that the phe-
nomenon we are modeling is governed by the same set of rules during the whole
experiment. Therefore, (n− 1) repeated measurements are observed for each vari-
able at two successive time points.

Assumption 4 The process is homogeneous over time: all arcs in the network and
their directions are invariant over time.

This allows a good representation of a MTS with a limited number of param-
eters. Each additional time delay would require a specific k× k coefficient matrix;
therefore, a large number of repeated measurements for each variable at a given time
point would be needed for estimation. However, such data is rarely available. For
instance, most gene expression time series contain no or very few repeated measure-
ments for each gene at a given time point.

While time homogeneity is a strong assumption and not always satisfied for real-
world data, it is often used as a simplifying assumption when the number of obser-
vations is small compared to the number of variables. For completeness, we also dis-
cuss in Sect. 3.4 a recent approach for learning nonhomogeneous dynamic Bayesian
network inference that does not impose homogeneity assumptions.

3.2.2 Dynamic Bayesian Network Representation
of a VAR Process

In dynamic Bayesian networks, it is commonly assumed that dependence relation-
ships are represented by a vector auto-regressive process as defined in Eq. 3.5. A
similar assumption characterized static Gaussian Bayesian networks in Sect. 2.2.4.
If we assume a VAR process of order 1,

X(t) = AX(t− 1)+B+ ε(t) with ε(t)∼ N(0,Σ), (3.13)

then all the arcs are defined between two successive time points. The arc set is
defined by the set of nonzero coefficients in A; if the element ai j, i �= j is different
from zero, then the network includes an arc from Xi(t−1) to Xj(t). Furthermore, we
assume that the error term for each variable Xi is independent from both the other
variables and the respective error terms, so that off-diagonal elements in Σ can be
set to 0. Of interest is to note that for a VAR(1) process, Assumption 4 is automati-
cally satisfied. The k× k coefficient matrix A = (ai j)—which has the same nonzero
elements as the adjacency matrix of the interaction network from Fig. 3.2a—and
the k× 1 column vector B = (bi)—representing the baseline measurement for each
variable—are invariant as a function of time. Moreover, Assumption 1 is satisfied
since the random vector X(t) depends only on the random vector at time (t − 1).

3.3 Dynamic Bayesian Network Learning Algorithms 67

Assumption 2 is also satisfied by construction provided the error covariance ma-
trix Σ is diagonal (see Lèbre 2009). Assuming uncorrelated errors between different
variables may not necessarily hold in real-world scenarios. Nevertheless, it is not
unreasonable. Assumption 3 is difficult to verify, but it is not too restrictive if the
variables included in the data set are distinct. Then from Theorem 3.1, a VAR(1)
process whose error covariance matrix Σ is diagonal can be represented by a dy-
namic Bayesian network whose arcs are identified by the nonzero elements of A.

For an illustration, any VAR(1) process with diagonal Σ where matrix A has the
following form (where the elements ai j refer to nonzero coefficients),

A =

⎛

⎝
a11 a12 0
a21 0 0
0 a32 0

⎞

⎠ , (3.14)

can be represented by the dynamic network in Fig. 3.2c. For instance, the non-zero
coefficient a12 implies the arc from X2 to X1 in Fig. 3.2a.

3.3 Dynamic Bayesian Network Learning Algorithms

Several approaches have been covered in Chap. 2 for static Bayesian networks.
Learning a dynamic Bayesian network defining a VAR model from the given data
is a very different process and amounts to identifying the nonzero coefficients of
the auto-regressive matrix A. Under the homogeneity assumption (Assumption 4 in
Sect. 3.2.1), repeated time measurements can be used to perform linear regression.
Let k be the number of variables under study. Then each variable Xi, i = 1, . . . ,k in
a VAR(1) process satisfies

Xi(t) =
k

∑
j=1

ai jXj(t− 1)+ bi+ εi(t) where εi(t)∼ N(0,σi(t)). (3.15)

However, the classic ordinary least square estimates of the regression coefficients ai j

and bi can be computed only when n� k, thus ensuring that the sample covariance
matrix has full rank. For real-world data, regularized estimators are required in most
cases.

3.3.1 Least Absolute Shrinkage and Selection Operator

The Least Absolute Shrinkage and Selection Operator or LASSO (Tibshirani 1996)
is a standard procedure, first applied to network inference by Meinshausen and
Bühlman (2006). This constrained estimation procedure tends to produce some
coefficients that are exactly zero by applying an L1 norm penalty to their sum.
Variable selection is then straightforward: only nonzero coefficients define

68 3 Bayesian Networks in the Presence of Temporal Information

significant dependence relationships. Selecting which arcs to include in the network
can be done via cross-validation or by minimizing the fraction of the final L1 norm
or the mean square error.

3.3.2 James–Stein Shrinkage

An efficient estimator of the covariance matrix can be obtained by “shrinking” the
empirical correlations coefficients towards zero and the empirical variances to their
median. The shrinkage coefficient can be computed in closed form using the ex-
pression provided in Ledoit and Wolf (2003), making this approach extremely fast.
The resulting correlation matrix has been shown to dominate the empirical one, fol-
lowing classic results on shrinkage from Stein (1956) and James and Stein (1961).
Its mean square error is never worse than the mean square error of the empirical
correlation matrix.

An application of the James–Stein shrinkage approach to VAR process has been
proposed by Opgen-Rhein and Strimmer (2007) and shown to outperform many
classic approaches. This can be attributed to improved estimates of the regression
coefficients, which are essentially a function of the covariance matrix of X. The
network structure is then determined by including the arcs in order of decreasing
coefficients. Multiple testing correction to control for false discovery rate (FDR)
can also be used with the local FDR approach introduced by Shäfer and Strimmer
(2005).

In the context of static Bayesian networks, James–Stein shrinking is used to com-
pute regularized partial correlations and conditional probabilities to use in condi-
tional independence tests. Several such tests are implemented in bnlearn for use
in constraint-based structure learning algorithms and for independent use via the
ci.test function.

3.3.3 First-Order Conditional Dependencies Approximation

Another powerful approach to learn dynamic Bayesian networks called G1DBN and
proposed by Lèbre (2009) is based on first-order conditional dependencies.

The cornerstone of this approach is the concept of low-order conditional de-
pendence graph, which originated in the context of the theory of graphical model-
ing with directed acyclic graphs. The directed acyclic graph defining the dynamic
Bayesian network is approximated by the first-order conditional dependencies. Un-
der acceptable conditions, the first-order conditional dependencies graph contains
the directed acyclic graph defining the dynamic Bayesian network to be inferred.

By using this approximation, G1DBN implements dynamic Bayesian network
learning as a two-step procedure. First, it learns a directed acyclic graph encoding
first-order partial dependence relationships. Subsequently, it infers the real network
structure of the dynamic Bayesian network using the graph from the previous step.
The former is a subgraph of the latter for linear models.

3.4 Non-homogeneous Dynamic Bayesian Network Learning 69

3.3.4 Modular Networks

The Statistical Inference for MOdular NEtworks (SIMoNe) by Chiquet et al. (2009)
implements various learning algorithms based on the LASSO, with an additional
grouping effect for multiple data.

SIMoNe follows a score-based approach; it searches for a latent clustering of
the network to drive the selection of arcs through an adaptive L1 penalization of the
model likelihood, in particular for VAR(1) processes. The penalization of individual
arcs may be weighted according to a predefined latent clustering of the network,
thus adapting the inference of the network to a particular topology. The optimal L1

penalty level can be chosen by minimizing the BIC criterion.
Note that this procedure can deal with samples collected in different experimental

conditions and therefore not identically distributed.

3.4 Non-homogeneous Dynamic Bayesian Network Learning

Homogeneity (Assumption 4 in Sect. 2) is a strong assumption which may not be
satisfied for real-world data. For example, the coordination of molecular and bio-
chemical processes inside a cell requires highly dynamic gene regulation networks.
Different interactions between cellular components can occur across time depend-
ing, for instance, on the developmental program of the cell or on physiological and
environmental changes. In order to model such data, the ARTIVA approach from
Lèbre et al. (2010) uses an Auto-Regressive TIme VArying model and the associated
learning and inference procedures.

ARTIVA performs an analysis of time-course measurements to identify poten-
tial interactions between two sets of variables referred to as targets and parents, re-
spectively. When considering gene regulation networks, parents are variables whose
functions agree with regulatory controls of other genes. Typically these are genes
coding for transcription factors. In ARTIVA, each target variable is analyzed inde-
pendently while searching for dependencies with the parents. As a result, ARTIVA
identifies temporal segments in the time-course measurements (Fig. 3.3, dashed
lines) for which different interaction models occur between parent and target vari-
ables. The time points that delimit the different temporal segments are referred to
as changepoints (CPs) and define homogeneous phases, i.e., sets of time points for
which the local network topology (interactions between parent and target genes)
remains unchanged.

ARTIVA’s probabilistic model is a particular case of a VAR process. Within a
temporal phase h, each random variable Xi(t) is assumed to depend on its p putative
parents, through an auto-regressive model which takes into account a time delay d
between the expression values of parent and target genes. The model is defined as

X(t) = Ah X(t− 1)+Bh + εh(t), (3.16)

70 3 Bayesian Networks in the Presence of Temporal Information

Fig. 3.3 Time-varying structures of some gene regulation networks learned with ARTIVA. 50
targets (dark grey) and 5 transcription factors (parents, light grey) are modeled in each network.
From an exploratory analysis of the gene expression profiles of the parents and the targets (bottom
left panel), three temporal phases are identified and delimited by the changepoints CP1 and CP2
(dashed lines). The regulatory models for the different temporal phases are represented clockwise
in the top left, top right, and bottom right panels. The plots of the networks around each parent
were obtained using the IGRAPH library (Csardi and Nepusz 2006). Note that a variable can be
simultaneously parent and target, thus allowing the identification of auto-regulation mechanisms
as shown here for TF3 (regulatory model 2)

where

• ε(t) represents the experimental noise and is assumed to follow a p-dimensional
Gaussian distribution with zero mean and covariance matrix Σ = diag

(
(σh

i)
2
)
,

εi(t)∼ N(0,(σh
i)

2);
• Bh represents the baseline value of the variables X1(t), . . . ,Xp(t) in phase h and

does not depend on the parents activities;
• Ah = (ah

i j) is a p× p matrix such that the coefficient ah
i j represents the regulatory

interaction between the target Xi and the parent Xj in phase h.

3.4 Non-homogeneous Dynamic Bayesian Network Learning 71

Initial Model

Phase Update

CP
Birth

CP
Death

CP
Shift

Edge
Birth

Edge
Death

Parameter
Update

RJ-
MCMC

RJ-
MCMC

RJ-
MCMC

RJ-
MCMC MH sample

χ ζ ρ

wdb v

Markov Chain Update

Fig. 3.4 The ARTIVA algorithm for learning Auto-Regressive TIme VArying networks. The birth,
the death, and the shift of a changepoint (CP) are proposed with probabilities b, d, and v, respec-
tively. Updating the regression model describing interactions for a gene within a phase is proposed
with probability w. Varying the number of CPs or the number of arcs changes the dimension of
the state-space and requires RJ-MCMC. Proposed shifts in changepoint positions are accepted ac-
cording to a standard Metropolis–Hastings step. The probabilities of choosing each modification
satisfy b+d+ v+w = 1 and χ +ζ +ρ = 1

Each nonzero value in Ah indicates a relationship between the expression levels of
two variables Xi and Xj and is therefore a good indicator of a putative biological
interaction between those variables. Each of these interactions will be represented
with an arc going from a parent Xj at time t− 1 to a target Xi at time point t, for
all t in phase h. Note that the regulation coefficients are specific to each temporal
phase. Finally, for each target Xi, the vector of CPs delimiting homogeneous phases
is denoted by ξ i = (ξ i

0, . . . ,ξ
i
k+1), where ξ i

0 = 1+ d and ξ i
k+1 = n+ 1.

In order to learn the auto-regressive time-varying network models, ARTIVA uses
the Reversible Jump Markov chain Monte Carlo (RJ-MCMC) approach from Green
(1995). RJ-MCMC starts with a randomly generated initial model. At each iteration
of the algorithm, a modification of the model is proposed (Fig. 3.4) and can be ac-
cepted or rejected with a specific probability, which is computed from the data. The
resulting reversible Markov chain sampler can jump between parameter spaces of
different dimensions and converges to its stationary distribution after a sufficiently
large number of burn-in iterations. After the burn-in, RJ-MCMC provides a good
approximation of the probability of each time-varying network model.

72 3 Bayesian Networks in the Presence of Temporal Information

The most interesting characteristic of ARTIVA is that it considers simultane-
ously all possible combinations of CPs and all possible network topologies within
the different phases. Furthermore, ARTIVA allows network structures associated
with different nodes to change with time in different ways, and at the same time it
allows each variable to be simultaneously parent and target. This flexibility proves
problematic for time series with a low number of measurements, such as the ones
typically available in systems biology, leading to overfitting or inflated inference
uncertainty. This limitation can be overcome with the semiflexible model proposed
in Dondelinger et al. (2013), which is based on a piecewise homogeneous dynamic
Bayesian network regularized by gene-specific intersegment information sharing.
This approach is implemented in the R package EDISON (Dondelinger et al. 2012).

3.5 Dynamic Bayesian Network Learning with R

In this section, we discuss popular R packages for investigating multivariate time
series including several diagnostic tests to assess the goodness of fit and justifying
the inherent assumptions in VAR models. Subsequently, we present examples using
R packages for dynamic Bayesian network modeling. In this regard, we discuss
examples from time-homogeneous (Sects. 3.5.2 and 3.3.2) as well as time-varying
multivariate time series (Sect. 3.5.4).

3.5.1 Multivariate Time Series Analysis

A useful R package for analyzing time series as a VAR processes is vars. Consider
an example below using the data set Canada with 4 macroeconomic indicators
(prod, labor productivity; e, employment; U, unemployment rate; and rw, real
wages).

> library(vars)
> data(Canada)

A vector auto-regressive process VAR(p) can be fitted from these data with the VAR
function.

> VAR(Canada, p = 2)

The object of class varest returned by VAR contains information on several as-
pects of the VAR process and its parameters. A summary of the results of VAR can
be obtained using the function summary as follows.

> summary(VAR(Canada, p = 2))

Function VAR has an argument called type which allows the use of different
types of deterministic regressors. It defaults to const, which adds the intercept

3.5 Dynamic Bayesian Network Learning with R 73

(i.e., the baseline value) to the model. Other possible values are none for a model
without the intercept,

> VAR(Canada, p = 2, type = "none")

trend for a model with a linear trend term,

> VAR(Canada, p = 2, type = "trend")

and both to add both the intercept and a linear trend to the model.

> VAR(Canada, p = 2, type = "both")

The p argument specifies the order of the vector auto-regressive process.
The optimal lag order for the VAR process can be estimated using information

criteria such as the Akaike Information Criterion (ic = "AIC", the default) or
the Schwarz Criterion (ic = "SC"). An upper bound must be specified with the
lag.max argument, i.e., lag.max = 4.

> VAR(Canada, lag.max = 4, ic = "AIC")
> VAR(Canada, lag.max = 4, ic = "SC")

Several approaches to verify the covariance stationarity of a VAR process are
implemented in the stability function; the default one computes the cumula-
tive sums of the residuals (OLS-CUSUM) of the process, which can be used for an
exploratory analysis.

> var.2c = VAR(Canada, p = 2, type = "const")
> stab = stability(var.2c, type = "OLS-CUSUM")
> plot(stab)

The Jarque–Bera normality tests for univariate and multivariate series are imple-
mented in the normality.test function and are applied to the residuals of the
VAR(p). Skewness and kurtosis tests are computed at the same time.

> normality.test(var.2c)

By default, normality.test computes the multivariate Jarque–Bera test on the
standardized residuals. It is important to note that the results of this test depend
on the ordering of the variables. The univariate Jarque–Bera tests for the variables
in the VAR process can also be computed by setting multivariate.only to
FALSE.

> normality.test(var.2c, multivariate.only = FALSE)

Other diagnostic tests from Sect. 3.1.2, such as testing for the absence of auto-
correlation, heteroscedasticity, or non-normality in the errors, are also available in
vars. For example, the function serial.test implements the Portmanteau test
and the Breusch–Godfrey serial correlation Lagrange multiplier test for the serial
correlation.

> serial.test(var.2c, lags.pt = 16,
+ type = "PT.adjusted")

Portmanteau Test (adjusted)
data: Residuals of VAR object var.2c
Chi-squared = 231.5907, df = 224, p-value = 0.3497

74 3 Bayesian Networks in the Presence of Temporal Information

If the type argument is set to "PT.adjusted", the Portmanteau test is com-
puted; the Breusch–Godfrey test is computed if type is set to "BG".

In addition, the univariate and multivariate ARCH-LM tests for heteroscedastic-
ity are implemented in arch.test.

> arch.test(var.2c)

ARCH (multivariate)

data: Residuals of VAR object var.2c
Chi-squared = 538.8897, df = 500, p-value = 0.1112

As was the case for normality.test, by default only the multivariate test is
computed. We can set multivariate.only to FALSE to compute the univariate
tests as well.

> arch.test(var.2c, multivariate.only = FALSE)

For a complete overview of the functionality implemented in vars, we refer the
reader to Pfaff (2008a,b).

3.5.2 LASSO Learning: lars and simone

Several implementations of LASSO are available in R; in the following, we will use
the lars package developed by Hastie and Efron (2012). Other possible choices are
glmnet by Friedman et al. (2010) and penalized by Goeman (2012).

> library(lars)

Consider the arth800 MTS data set from the GeneNet package. arth800 de-
scribes the temporal expression of 800 genes of the Arabidopsis thaliana during the
diurnal cycle. In the following example, we will consider a subset arth12 of 12
genes.

> library(GeneNet)
> data(arth800)
> subset = c(60, 141, 260, 333, 365, 424, 441, 512,
+ 521, 578, 789, 799)
> arth12 = arth800.expr[, subset]

Model estimation is performed using the lars function for a target variable
specified by a vector (y) and a set of possible parents specified by a matrix of pre-
dictors (x). The arth800 data set is composed of 2 time series of 11 time points
each: there are two repeated measurements for each time point. Suppose we want to
estimate a VAR(1) process. Consequently, we removed the two repeated measure-
ments for the first time point from y and the two repeated measurements for the
last time point from x; they cannot be used for the LASSO due to the lack of the
corresponding time points in x and y, respectively.

3.5 Dynamic Bayesian Network Learning with R 75

** *
*

*
*

*

**
** * *

0.0 0.2 0.4 0.6 0.8 1.0

−4

−3

−2

−1

0

1

2

|beta|/max|beta|

S
ta

nd
ar

di
ze

d
C

oe
ffi

ci
en

ts

** ** ** ** *
** * *

** ** ** ** ** * * *
** ** * * *

** ** * *

** ** ** * ** ** * *** *
*

*
*

*
** ** * *

** ** ** ** ** * * *
** ** **

*

**
** * *

** ** ** ** *
** * *

** ** * * * **
** * *

** ** ** ** ** ** **

** * * * * ** ** * *

LASSO

12

10

5

2

8

0 1 4 6 7 9 12

0.0 0.2 0.4 0.6 0.8 1.0

0.2

0.4

0.6

0.8

1.0

Fraction of final L1 norm

C
ro

ss
−

V
al

id
at

ed
 M

S
E

Cross−Validation

Fig. 3.5 Graphical output from package lars. Left: learning process for lasso.fit. Arcs are
included one at a time, and each inclusion is marked with a vertical line. Right: cross-validation
estimates of the mean square error as a function of the fraction of the final value of the L1 norm

> x = arth12[1:(nrow(arth12) - 2),]
> y = arth12[-(1:2), "265768_at"]
> lasso.fit = lars(y = y, x = x, type = "lasso")

Similarly, we can fit one LASSO model each target variable as follows.

> fit.all = lapply(colnames(arth12),
+ function(gene) {
+ y = arth12[-(1:2), gene]
+ lars(y = y, x = x, type = "lasso")
+ })

The order in which the coefficients for the parents are included in lasso.fit,
which is the order in which the corresponding arcs are included in the gene expres-
sion network around the gene 265768 at, is shown in the left panel of Fig. 3.5 and
is produced with the plot method for lars objects.

> plot(lasso.fit)

In addition, the list of the coefficients fitted at each step of LASSO is given by
the coef function.

> coef(object)

Structure learning, which amounts to selecting which arcs should be included in
the regulatory network, can be performed via cross-validation with the cv.lars
function.

> lasso.cv = cv.lars(y = y, x = x, mode = "fraction")

76 3 Bayesian Networks in the Presence of Temporal Information

The graphical output of cv.lars is shown in the right panel of Fig. 3.5. The opti-
mal set of arcs to include in the network is chosen by minimizing the mean square
error as a function of the fraction of the final value of the L1 norm (e.g., when all
arcs are included).

> frac = lasso.cv$index[which.min(lasso.cv$cv)]
> predict(lasso.fit, s = frac, type = "coef",
+ mode = "fraction")
$s
[1] 0.2323232

$fraction
[1] 0.2323232

$mode
[1] "fraction"

$coefficients
265768_at 263426_at 260676_at 258736_at

-0.04137319 0.00000000 0.00000000 0.00000000
257710_at 255764_at 255070_at 253425_at

0.00000000 0.02891478 0.00000000 0.00000000
253174_at 251324_at 245319_at 245094_at

0.00000000 0.00000000 0.00000000 -0.72815587

The nonzero coefficients in the output of predict indicate which arcs are inci-
dent on the gene 265768 at for the optimal fraction s = frac computed by
cv.lars.

Structure learning can also be performed by stopping the LASSO estimation af-
ter a certain number s of steps (i.e., s = 3) by setting the mode argument of
predict to step.

> predict(lasso.fit, s = 3, type = "coef",
+ mode = "step")$coefficients

265768_at 263426_at 260676_at 258736_at
-0.02152962 0.00000000 0.00000000 0.00000000

257710_at 255764_at 255070_at 253425_at
0.00000000 0.00000000 0.00000000 0.00000000
253174_at 251324_at 245319_at 245094_at

0.00000000 0.00000000 0.00000000 -0.72966658

Finally, we can specify the L1 penalty itself, i.e., s= 0.2, with mode = "lambda".

> predict(lasso.fit, s = 0.2, type = "coef",
+ mode = "lambda")$coefficients
265768_at 263426_at 260676_at 258736_at
0.0000000 0.0000000 0.0000000 0.0000000

3.5 Dynamic Bayesian Network Learning with R 77

0 1 2 3 4 5

−100

−50

0

50

Bayesian Information Criterion

Penalty level

B
IC

Fig. 3.6 Graphical output of the simone package for dynamic Bayesian network learning via BIC
criterion minimization

257710_at 255764_at 255070_at 253425_at
0.0000000 0.0000000 0.0000000 0.0000000
253174_at 251324_at 245319_at 245094_at
0.0000000 0.0000000 0.0000000 -0.6961228

In addition to the LASSO, the lars package implements Least Angle Regression
(LAR) from Efron et al. (2004) and stepwise regression. Both can be fitted with the
same functions used for the LASSO by setting the type arguments of lars and
cv.lars to either "lar" or "stepwise", as shown below.

> lar.fit = lars(y = y, x = x, type = "lar")
> plot(lar.fit)
> lar.cv = cv.lars(y = y, x = x, type = "lar")
> step.fit = lars(y = y, x = x, type = "stepwise")
> plot(step.fit)
> step.cv = cv.lars(y = y, x = x, type = "stepwise")

The simone package for Statistical Inference for MOdular NEtworks by
Chiquet et al. (2009) provides an implementation of the LASSO specifically tar-
geted to dynamic Bayesian network learning. Model estimation is performed using
the simone function with clustering = FALSE.

> library(simone)
> simone(arth12, type = "time-course")

The simone function allows clustering assumption, i.e., modular network. Model
estimation is now performed using the simone function with clustering.

> ctrl = setOptions(clusters.crit = "BIC")
> simone(arth12, type = "time-course",
+ clustering = TRUE, control = ctrl)

The optimal value of the L1 penalty can be chosen by minimizing the BIC cri-
terion, which is computed by simone when the model is fitted with output =
"BIC".

78 3 Bayesian Networks in the Presence of Temporal Information

> plot(simone(arth12, type = "time-course",
+ clustering = TRUE, control = ctrl),
+ output = "BIC")

The plot produced by the R code above is shown in Fig. 3.6.
Other output options include, among others, output = "AIC" for the AIC

criterion and output = "sequence" for stepwise selection. If no output is
specified, plot generates a comprehensive set diagnostic plots including a BIC
plot, an AIC plot, the regularization paths of the regression coefficients, and the
order of inclusion of the arcs.

> plot(simone(arth12, type = "time-course",
+ clustering = TRUE, control = ctrl))

It is important to note that the simone package can learn dynamic Bayesian net-
works from sets of samples collected under different experimental conditions and
therefore not identically distributed. This achieved by adding a grouping effect to the
LASSO model and learning multiple related networks in a single call to simone.
In that case, approaches such as Group LASSO or Cooperative LASSO are used for
learning instead of the original LASSO.

3.5.3 Other Shrinkage Approaches: GeneNet, G1DBN

The James–Stein shrinkage estimators proposed by Opgen-Rhein and Strimmer
(2007) are implemented in the GeneNet package. The VAR coefficients (i.e., the
elements of the matrix A in Eq. 3.13) can be robustly estimated by the ggm.
estimate.pcor function when the method argument is set to "dynamic".

> library(GeneNet)
> dyn = ggm.estimate.pcor(arth, method = "dynamic")

Structure learning is carried out by ordering the arcs according to magnitude
of their coefficients and performing multiple testing correction with the local FDR
approach introduced by Shäfer and Strimmer (2005). Both these tasks can be per-
formed with the network.test.edges function.

> arth.arcs = network.test.edges(dyn)

We can then identify which arcs are significant with extract.network and
include them in the network. Several criteria for the significance threshold are
available via the method.ggm argument. For instance, we can just select the top
cutoff.ggm arcs with method.ggm = "number".

> arth.net = extract.network(arth.edges,
+ method.ggm = "number", cutoff.ggm = 10)

We can also select all the arcs below a chosen threshold (cutoff.ggm) with
method.ggm = "prob".

3.5 Dynamic Bayesian Network Learning with R 79

> arth.net = extract.network(arth.edges,
+ method.ggm = "prob", cutoff.ggm = 0.05)

Another approach for dynamic Bayesian network learning is implemented in
the G1DBN package (Lèbre, 2008). To illustrate it, we will use the copy of the
arth800 data set included in G1DBN under the name arth800line. We choose
a subset of this data set to obtain arth12.

> library(G1DBN)
> data(arth800line)
> subset = c(60, 141, 260, 333, 365, 424, 441, 512,
+ 521, 578, 789, 799)
> arth12 = as.matrix(arth800line[, subset])

Learning is performed in two steps as described in Sect. 3.3.3. First, we learn the
graph G(1) encoding the first-order partial dependencies with the DBNScoreStep1
function.

> step1 = DBNScoreStep1(arth12, method = "ls")

The object returned by DBNScoreStep1 is a list that contains, among other quan-
tities of interest, the matrix of the scores for the first-order dependencies. Part of
that matrix is shown below; as can be seen even from these few entries, it is not
symmetric in general.

> round(step1$S1ls, 2)[1:6, 1:6]
[,1] [,2] [,3] [,4] [,5] [,6]

[1,] 0.96 0.99 0.95 0.98 0.95 0.95
[2,] 0.60 0.97 0.92 0.79 0.92 0.08
[3,] 0.82 0.91 0.87 0.97 0.83 0.97
[4,] 0.86 0.93 0.98 0.91 0.77 0.44
[5,] 0.99 0.99 0.97 0.69 0.93 0.57
[6,] 0.97 0.97 0.98 0.97 0.92 0.38

Starting from the step1 object, we can identify which arcs are significant for a
given threshold with the BuildEdges function.

> edgesG1 = BuildEdges(score = step1$S1ls,
+ threshold = 0.50, prec = 6)
> nrow(edgesG1)
[1] 27

In the second step, we learn with DBNScoreStep2 the real structure G of
the dynamic Bayesian network, that is, the one encoding the full-order conditional
dependencies of the data.

> step2 = DBNScoreStep2(step1$S1ls, data = arth12,
+ method = "ls", alpha1 = 0.50)

Subsequently, we can identify which arcs are significant in this new network with
BuildEdges and a more stringent threshold than the one we used in the first
step.

80 3 Bayesian Networks in the Presence of Temporal Information

G1

60

141 260

333

365

424

441
512

521

578

789

799

G

60

141 260

333

365

424

441
512

521

578

789

799

Fig. 3.7 Network structures learned by G1DBN in the first step (G(1), on the left) and in the second
step (G, on the right)

> edgesG = BuildEdges(score = step2,
+ threshold = 0.05, prec = 6)

The output of the second step is the matrix of the coefficients associated with the arcs
of the dynamic Bayesian network; the elements corresponding to arcs not present in
the graph are set to NA. The network structures learned in the first and second step
of G1DBN are shown in Fig. 3.7. Essentially, the first step (left, Fig. 3.7) performs
dimension reduction, while the second step (right, Fig. 3.7) gives the set of arcs
defining the network.

3.5.4 Non-homogeneous Dynamic Bayesian Network
Learning: ARTIVA

The ARTIVA package provides several functions for structure learning, parameter
learning, and inference in order to facilitate the application of the ARTIVA approach
to dynamic Bayesian network learning and the interpretation of the its results.

An example of ARTIVA network learning is given below using a synthetic data
set called simulatedProfiles, which contains 55 genes and 30 time points
from the ARTIVA package.

> library(ARTIVA)
> data(simulatedProfiles)

Unlike the case of homogeneous dynamic Bayesian network, it is important to iden-
tify the target and parent genes prior to learning using simulatedProfiles.

> targets = c("1", "10", "20", "TF3", "45", "50")
> parents = c("TF1", "TF2", "TF3", "TF4", "TF5")

3.5 Dynamic Bayesian Network Learning with R 81

Then we can call the ARTIVAnet function, specifying the target variables with the
targetData argument and parent variables with the parentData argument.

> DBN = ARTIVAnet(
+ targetData = simulatedProfiles[targets,],
+ parentData = simulatedProfiles[parents,],
+ targetNames = targets,
+ parentNames = parents,
+ niter = 50000,
+ savePictures = FALSE)

The number of iterations performed by the algorithm is set with the niter argu-
ment.

The return value of ARTIVAnet is a data frame containing, for each pair of
parent and target variables and for each phase, the estimated regression coefficient
and its posterior probability.

> head(ARTIVAtest1[, -7])
Parent Target CPstart CPend PostProb CoeffMean

1 TF1 1 2 10 0.0469 0.00000
2 TF2 1 2 10 0.0157 0.00000
3 TF3 1 2 10 0.0349 0.00000
4 TF4 1 2 10 0.0317 0.00000
5 TF5 1 2 10 0.0206 0.00000
6 TF1 1 11 30 0.9996 -1.52802

When savePictures = FALSE, ARTIVAnet produces several sets of plots
detailing the progress of the (RJ-)MCMC simulation. An example is shown in
Fig. 3.8. If, on the other hand, savePictures is set to FALSE, the same plots
are saved in an output file (by default, a PDF file in an ad hoc subdirectory named
ARTIVAnet).

Exercises

3.1. Consider the Canada data set from the vars package, which we analyzed in
Sect. 3.5.1.

(a) Load the data set from the vars package and investigate its properties using the
exploratory analysis techniques covered in Chap. 1.

(b) Estimate a VAR(1) process for this data set.
(c) Build the auto-regressive matrix A and the constant matrix B defining the

VAR(1) model.
(d) Compare the results with the LASSO matrix when estimating the L1-penalty

with cross-validation.
(e) What can you conclude?

82 3 Bayesian Networks in the Presence of Temporal Information

T
ar

g
et

 g
en

e
ex

p
re

ss
io

n
 p

ro
fi

le

T
im

e
po

in
t

T
im

e
po

in
t

Expression value

Expression value

0
5

10
15

20
25

30

−
10−
505

P
ar

en
t

g
en

e
ex

p
re

ss
io

n
 p

ro
fi

le
s

0
5

10
15

20
25

30

−
10−
505

0
1

2
3

4
5

N
u

m
b

er
 o

f
ch

an
g

ep
o

in
t

−
ta

rg
et

 g
en

e:
 1

 −

C
ha

ng
ep

oi
nt

 n
um

be
r

(
m

ax
. v

al
ue

 =
 1

)

Estimated posterior probability

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

0
5

10
15

20
25

30

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

C
h

an
g

ep
o

in
t

p
o

si
ti

o
n

−
ta

rg
et

 g
en

e:
 1

 −

T
im

e
po

in
t

(

of
 s

el
ec

te
d

ch
an

ge
po

in
t(

s)
 =

 1
)

Estimated posterior probability

T
F

1
T

F
2

T
F

3
T

F
4

T
F

5

R
eg

u
la

to
ry

 m
o

d
el

 f
o

r
ta

rg
et

 g
en

e:
 1

T
em

p
o

ra
l s

eg
m

en
t

1

:
 [

 2
 ,

10
]

Estimated posterior probability

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

P
ar

en
t

g
en

es

o
f

se
le

ct
ed

 e
d

g
e(

s)
:

0

T
F

1
T

F
2

T
F

3
T

F
4

T
F

5

P
ar

en
t

g
en

es

o
f

se
le

ct
ed

 e
d

g
e(

s)
:

1

R
eg

u
la

to
ry

 m
o

d
el

 f
o

r
ta

rg
et

 g
en

e:
 1

T
em

p
o

ra
l s

eg
m

en
t

2

:
 [

 1
1

, 3
0

]
Estimated posterior probability

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

S
u

b
−n

et
w

o
rk

 #
 1

(
ti

m
e

p
o

in
t

2
to

 1
0

)

T
F

1

1

T
F

2

T
F

3

T
F

4

T
F

5

P
os

iti
ve

 in
te

ra
ct

io
n

N
eg

at
iv

e
in

te
ra

ct
io

n

S
u

b
−n

et
w

o
rk

 #
 2

(
ti

m
e

p
o

in
t

11
 t

o
 3

0
) T

F
1

1

T
F

2

T
F

3

T
F

4

T
F

5

P
os

iti
ve

 in
te

ra
ct

io
n

N
eg

at
iv

e
in

te
ra

ct
io

n

F
ig

.
3.

8
G

ra
ph

ic
al

ou
tp

ut
s

ob
ta

in
ed

fr
om

th
e

A
R

T
IV

A
pa

ck
ag

e.
R

es
ul

ts
pr

es
en

te
d

he
re

w
er

e
ob

ta
in

ed
an

al
yz

in
g

th
e

si
m

ul
at

ed
da

ta
se

ts
d
a
t
a
(
s
i
m
u
l
a
t
e
d
D
a
t
a
)

av
ai

la
bl

e
in

th
e

A
R

T
IV

A
pa

ck
ag

e,
ap

pl
yi

ng
fu

nc
ti

on
A
R
T
I
V
A
s
u
b
n
e
t

.
T

he
T

F3
w

as
co

ns
id

er
ed

si
m

ul
ta

ne
ou

sl
y

as
pa

re
nt

an
d

ta
rg

et
,t

hu
s

al
lo

w
in

g
th

e
id

en
ti

fic
at

io
n

of
an

au
to

-r
eg

ul
at

io
n

m
ec

ha
ni

sm

3.5 Dynamic Bayesian Network Learning with R 83

3.2. Consider the arth800 data set from the GeneNet package, which we analyzed
in Sects. 3.5.2 and 3.5.3.

(a) Load the data set from the GeneNet package. The time series expression of
the 800 genes is included in a data set called arth800.expr. Investigate its
properties using the exploratory analysis techniques covered in Chap. 1.

(b) For this practical exercise, we will work on a subset of variables (one for each
gene) having a large variance. Compute the variance of each of the 800 variables,
plot the various variance values in decreasing order, and create a data set with
the variables greater than 2.

(c) Can you fit a VAR process with usual approach from this data set?
(d) Which alternative approaches can be used to fit a VAR process from this data

set?
(e) Estimate a dynamic Bayesian network with each of the alternative approaches

presented in this chapter.

3.3. Consider the dimension reduction approaches used in the previous exercise and
the arth800 data set from the GeneNet package.

(a) For a comparative analysis of the different approaches, select the top 50 edges
for each approach (function BuildEdges from the G1DBN package can be
used to that end).

(b) Plot the four inferred networks with the function plot from package G1DBN.
(c) How many edges are common to the four inferred networks?
(d) Are the top 50 edges of each inferred network similar? What can you conclude?

Chapter 4
Bayesian Network Inference Algorithms

Abstract Chapters 2 and 3 discussed the importance of learning the structure and
the parameters of Bayesian networks from observational and interventional data
sets. Bayesian inference on the other hand is often a follow-up to Bayesian net-
work learning and deals with inferring the state of a set of variables given the state
of others as evidence. Such an approach eliminates the need for additional experi-
ments and is therefore extremely helpful. In this chapter, we will introduce inferen-
tial techniques for static and dynamic Bayesian networks and their applications to
gene expression profiles.

4.1 Reasoning Under Uncertainty

Bayesian networks, like other statistical models, can be used to answer questions
about the nature of the data that go beyond the mere description of the observed
sample. Techniques used to obtain those answers based on new evidence are known
in general as inference. For Bayesian networks, the process of answering these
questions is also known as probabilistic reasoning or belief updating, while the
questions themselves are called queries. Both names were introduced by Pearl
(1988) and borrowed from expert systems theory (e.g., you would submit a query
to an expert to get an opinion and update your beliefs accordingly) and have com-
pletely replaced traditional statistical terminology in recent works such as Koller
and Friedman (2009).

4.1.1 Probabilistic Reasoning and Evidence

In practice, probabilistic reasoning on Bayesian networks has its roots embedded
in Bayesian statistics and focuses on the computation of posterior probabilities
or densities. For example, suppose we have learned a Bayesian network B with

R. Nagarajan et al., Bayesian Networks in R: with Applications in Systems Biology,
Use R! 48, DOI 10.1007/978-1-4614-6446-4 4,
© Springer Science+Business Media New York 2013

85

86 4 Bayesian Network Inference Algorithms

structure G and parameters Θ , under one of the distributional assumptions detailed
in Sect. 2.2.4. Subsequently, we want to investigate the effects of a new piece of
evidence E on the distribution of X using the knowledge encoded in B, that is, to
investigate the posterior distribution P(X |E,B) = P(X |E,G,Θ).

The approaches used for this kind of analysis vary depending on the nature of E
and on the nature of information we are interested in. The two most common kinds
of evidence are as follows:

• Hard evidence, an instantiation of one or more variables in the network. In other
words,

E =
{

Xi1 = e1, Xi2 = e2, . . . , Xik = ek
}
, i1, . . . , ik ∈ {1, . . .n}, (4.1)

which ranges from the value of a single variable Xi to a complete specification for
X. Such an instantiation may come, for instance, from a new (partial or complete)
observation recorded after the Bayesian network was learned.

• Soft evidence, a new distribution for one or more variables in the network. Since
both the network structure and the distributional assumptions are treated as fixed,
soft evidence is usually specified as a new set of parameters,

E =
{

Xi1 ∼ (ΘXi1
), Xi2 ∼ (ΘXi2

), . . . , Xik ∼ (ΘXik
)
}
. (4.2)

This new distribution may be, for instance, the null distribution in a hypothesis
testing problem.

As far as queries are concerned, we will focus on conditional probability queries
(CPQ) and maximum a posteriori (MAP) queries, also known as most probable
explanation (MPE) queries. Both apply mainly to hard evidence, even though they
can be used in combination with soft evidence.

Conditional probability queries are concerned with the distribution of a subset of
variables Q = {Xj1 , . . . ,Xjl} given some hard evidence E on another set Xi1 , . . . ,Xik
of variables in X. The two sets of variables are usually assumed to be disjoint. In
discrete Bayesian networks, this distribution is computed as the posterior probability

CPQ(Q |E,B) = P(Q |E,G,Θ) = P(Xj1 , . . . ,Xjl |E,G,Θ), (4.3)

which is the marginal posterior probability distribution of Q, i.e.,

P(Q |E,G,Θ) =

∫
P(X |E,G,Θ)d(X\Q). (4.4)

In Gaussian Bayesian networks, likewise,

CPQ(Q |E,B) = f (Q |E,G,Θ) =

∫
f (X |E,G,Θ)d(X\Q). (4.5)

This class of queries has many useful applications due to their versatility. For in-
stance, conditional probability queries can be used to assess the interplay between

4.1 Reasoning Under Uncertainty 87

two sets of experimental design factors for a given trait of interest. While the latter
(i.e., the trait) would be considered as the hard evidence E , the former would play
the role of the set of query variables Q. Another common example would be assess-
ing the odds of an unfavorable outcome Q for different sets of hard evidence E1,
E2, . . . , Em.

Maximum a posteriori queries are concerned with finding the configuration q∗ of
the variables in Q that has the highest posterior probability,

MAP(Q |E,B) = q∗ = argmax
q

P(Q = q |E,G,Θ) (4.6)

or the maximum posterior density

MAP(Q |E,B) = q∗ = argmax
q

f (Q = q |E,G,Θ) (4.7)

in Gaussian Bayesian networks. Applications of this kind of query fall into two cat-
egories: imputing missing data from partially observed hard evidence, where the
variables in Q are not observed and are to be imputed from the ones in E, or com-
paring q∗ with the observed values for the variables in Q for completely observed
hard evidence.

Both conditional probability queries and maximum a posteriori queries can also
be used with soft evidence, albeit with different interpretations. For instance, when
E encodes hard evidence it is not stochastic but an observed value. In this case,
P(Q = q |E,G,Θ) is not stochastic. However, when E encodes soft evidence it is
still a random variable, and in turn P(Q = q |E,G,Θ) is also stochastic. Therefore,
the results from the queries described in this section must be evaluated according to
the nature of the evidence they are based on.

4.1.2 Algorithms for Belief Updating: Exact and Approximate
Inference

The estimation of the posterior probabilities and densities shown in the previous
section is a fundamental problem in the evaluation of queries. Queries involving
very small probabilities or large networks are particularly problematic even with
the best algorithms in literature due to computational and probabilistic challenges.
In the worst case, their computational complexity is exponential in the number of
variables.

Algorithms for belief updating can be characterized either as exact or approxi-
mate. Both build upon the fundamental properties of Bayesian networks introduced
in Sect. 2.1 to avoid the curse of dimensionality through the use of local computa-
tions, that is, by only using local distributions.

88 4 Bayesian Network Inference Algorithms

Algorithm 4.1 Junction Tree Clustering Algorithm

1. Moralize: create the moral graph of the Bayesian network B as illustrated in
Sect. 2.1.4.

2. Triangulate: break every cycle spanning 4 or more nodes into subcycles of ex-
actly 3 nodes by adding arcs to the moral graph, thus obtaining a triangulated
graph.

3. Cliques: identify the cliques of the triangulated graph, i.e., maximal subsets of
nodes in which each element is adjacent to all the others.

4. Junction Tree: create a tree in which each clique is a node, and adjacent cliques
are linked by arcs.

5. Reparameterize: use the parameters of the local distributions of B to compute
the parameter sets of the compound nodes of the junction tree.

For instance, the marginalization in Eq. 4.4 can be rewritten as

P(Q |E,G,Θ) =

∫
P(X |E,G,Θ)d(X\Q) =

=
∫ [

p

∏
i=1

P(Xi |E,ΠXi ,ΘXi)

]

d(X\Q) = ∏
i:Xi∈Q

∫
P(Xi |E,ΠXi ,ΘXi)dXi. (4.8)

The correspondence between d-separation and conditional independence can also
be used to further reduce the dimension of the problem. From Definition 2.2, vari-
ables that are d-separated from Q by E cannot influence the outcome of the query.
Therefore, they may be completely disregarded in computing the posterior proba-
bilities.

Exact inference algorithms combine repeated applications of Bayes’ theorem
with local computations to obtain exact values P(Q |E,G,Θ) or f (Q |E,G,Θ).
However, their feasibility is restricted to small or very simple networks such as
trees and polytrees.

The two best-known exact inference algorithms are variable elimination and be-
lief updates based on junction trees. Both were originally derived for discrete net-
works and have been later extended to the continuous and mixed networks. Variable
elimination uses the structure of the Bayesian network directly, specifying the opti-
mal sequence of operations on the local distributions and how to cache intermediate
results to avoid unnecessary computations. On the other hand, belief updates can
also be performed by transforming the Bayesian network into a junction tree first.
As illustrated in Algorithm 4.1, a junction tree is a transformation of the moral
graph of B in which the original nodes are clustered to reduce any network structure
into a tree. Subsequently, belief updates can be performed efficiently using Kim and
Pearl’s Message-Passing algorithm. The derivation and the details of the major steps

4.1 Reasoning Under Uncertainty 89

Algorithm 4.2 Logic Sampling Algorithm

1. Order the variables in X according to the topological ordering implied by G, say
X(1) ≺ X(2) ≺ . . .≺ X(p).

2. For a suitably large number of samples x∗ = (x∗1, . . . ,x
∗
p):

a. for i = 1, . . . , p, generate x∗(i) from X(i) |ΠX(i)
;

b. if x includes E, set nE = nE + 1;
c. if x includes both Q = q and E, set nE,q = nE,q + 1.

3. Estimate P(Q |E,G,Θ) with nE,q/nE.

of this algorithm are beyond the scope of this book. A detailed explanation along
with step-by-step examples can be found in Korb and Nicholson (2010) and Koller
and Friedman (2009).

Approximate inference algorithms use Monte Carlo simulations to sample from
the local distributions and thus estimate P(Q |E,G,Θ) or f (Q |E,G,Θ). In partic-
ular, they generate a large number of samples from B and estimate the relevant
conditional probabilities by weighting the samples that include both E and Q = q
against those that include only E. In computer science, these random samples are of-
ten called particles, and the algorithms that make use of them are known as particle
filters or particle-based methods.

Many approaches have been developed for both random sampling, weighting,
and their combination. This has resulted in several approximate algorithms. Ran-
dom sampling ranges from the generation of independent samples to more com-
plex Markov chain Monte Carlo (MCMC) schemes. For a gentle introduction to
the subject, we refer the reader to Robert and Casella (2009). Common choices are
either rejection sampling or importance sampling. Furthermore, weight functions
range from the uniform distribution to likelihood functions to various estimates
of posterior probability. The simplest combination of these sampling and weight-
ing approaches is known as either forward or logic sampling. It is described in
Algorithm 4.2 and illustrated in detail in both Korb and Nicholson (2010) and Koller
and Friedman (2009). Logic sampling combines rejection sampling and uniform
weights, essentially counting the proportion of generated samples including E that
also include Q = q. Clearly, such an algorithm can be very inefficient if P(E) is
small, because most particles will be discarded without contributing to the esti-
mation of P(Q |E,G,Θ). However, its simplicity makes it easy to implement and
very general in its application; it allows for very complex specifications of E and Q
for both MAP(Q |E,B) and CPQ(Q |E,B). At the other end of the spectrum, com-
plex approximate algorithms such as the adaptive importance sampling scheme by
Cheng and Druzdel (2000) can estimate conditional probabilities as small as 10−41.
They also perform better on large networks. However, their assumptions often re-
strict them to discrete data and may require the specification of nontrivial tuning
parameters.

90 4 Bayesian Network Inference Algorithms

4.1.3 Causal Inference

When a Bayesian network is given a causal interpretation, the interpretation of
queries and evidence changes as well. Just as the arcs in the network describe causal
relationships instead of probabilistic dependencies, queries evaluate the probability
of known causes given their effects or vice versa.

In this setting, posterior probabilities are not interpreted in terms of beliefs chang-
ing according to some observed evidence but rather as measures of the effects of
interventions on the causal structure. To distinguish the latter from the former, we
will denote interventions with I while keeping the same general notation for both.
Interventions play the same role that evidence had in Sect. 4.1.1, and like evidence,
they can be classified either as ideal (perfect) interventions or stochastic (imperfect)
interventions (Korb et al., 2004).

Ideal interventions represent the causal analogous of hard evidence; they describe
an action whose only effect is to fix the values of the variables in I to particular set
of values

I =
{

Xi1 = x1,Xi2 = x2, . . . ,Xik = xk
}
. (4.9)

Conditional probability queries of the form

P(Q |I,G,Θ) = P(Xj1 , . . . ,Xjl |I,G,Θ), (4.10)

involving ideal interventions are called intervention queries. They evaluate the con-
sequences of the intervention I on Q through its posterior distribution. If some hard
evidence on a third set of variables is included in the query as well, so that

P(Q | I,E,G,Θ) = P(Xj1 , . . . ,Xjl |I,E,G,Θ), (4.11)

the query is called a counterfactual query, and it evaluates the consequences of
intervention I in a particular scenario defined by the hard evidence E. In other words,
it evaluates the consequences of I in an alternate world in which E happened instead
of the values actually observed for the sample; hence the name.

Stochastic interventions are very difficult to handle in their most general form.
Unlike soft evidence, not only the variables in I are not fixed, but the set of variables
that are included in I is a random variable. For this reason, they are rarely used
in practice even under the simplifying assumption that the set I is not random. In
most cases, assuming that interventions are ideal results in significant computational
savings without noticeably degrading the quality of the query. This is the case, for
example, in the protein-signaling data from Sachs et al. (2005) studied in Sect. 2.5.
Even though the stimulatory cues and the inhibitory interventions applied to the
various parts of the data set are hardly ideal, they are assumed to be so to include
their effects in the structure learning process. The conclusions of the original paper
indicate how this assumption did not invalidate the results of structure learning, but
improved its ability to correctly identify causal relationships instead.

4.2 Inference in Static Bayesian Networks 91

4.2 Inference in Static Bayesian Networks

Consider again the protein-signaling network and the data set from Sachs et al.
(2005) we analyzed in Sect. 2.5.

> isachs = read.table("sachs.interventional.txt",
+ header = TRUE, colClasses = "factor")

Before we can use either bnlearn or gRain to apply the approaches illustrated in
Sect. 4.1, we need to create a bn object for the validated network structure from
Sachs et al. (2005) and perform parameter learning.

> library(gRain)
> library(bnlearn)
> val.str = paste("[PKC][PKA|PKC][praf|PKC:PKA]",
+ "[pmek|PKC:PKA:praf][p44.42|pmek:PKA]",
+ "[pakts473|p44.42:PKA][P38|PKC:PKA]",
+ "[pjnk|PKC:PKA][plcg][PIP3|plcg]",
+ "[PIP2|plcg:PIP3]")
> val = model2network(val.str)
> isachs = isachs[, 1:11]
> for (i in names(isachs))
+ levels(isachs[, i]) = c("LOW", "AVG", "HIGH")
> fitted = bn.fit(val, isachs, method = "bayes")

The INT variable, which codifies the intervention applied to each observation, is
not needed for inference and is therefore dropped from the data set. Furthermore,
we rename the expression levels of each protein to make both the subsequent R code
and its output more readable.

The reason for setting method to "bayes" in bn.fit is twofold. First,
Bayesian estimates for the parameters of the network are smoother than the maxi-
mum likelihood ones, making inference both easier and more robust. Furthermore,
Koller and Friedman (2009) showed that such estimates produce Bayesian networks
that are close to the “true” networks for small imaginary sample sizes. On a related
note, using Bayesian parameter estimates also guarantees that conditional proba-
bility tables are always completely specified (i.e., without missing values) even for
small data sets.

4.2.1 Exact Inference

In their paper, Sachs et al. (2005) performed two conditional probability queries
using the validated Bayesian network val:

1. A direct perturbation of p44.42 should influence pakts473.
2. A direct perturbation of p44.42 should not influence PKA.

92 4 Bayesian Network Inference Algorithms

The resulting posterior distributions were then compared with the results of two
ad hoc experiments to confirm the validity and the direction of the inferred causal
influences.

Given the size of the network, we can perform both queries using any of the
exact and approximate inference algorithms introduced in Sect. 4.1.2. First, we will
start with the implementation of the junction tree algorithm provided by the gRain
package.

> jtree = compile(as.grain(fitted))

The compile function performs all the steps shown in Algorithm 4.1 and takes the
grain object returned by as.grain as an argument. The latter function, along
with as.bn.fit, provides an easy way to export Bayesian networks from bnlearn
to gRain and vice versa, thus integrating the functionality of these two packages.

We can then introduce the direct perturbation of p44.42 required by both
queries by calling setFinding as follows (Fig. 4.1). In causal terms, this would
be an ideal intervention.

> jprop = setFinding(jtree, nodes = "p44.42",
+ states = "LOW")

As we can see from the code below, the marginal distribution of pakts473 is
similar whether or not we take the evidence (intervention) into account.

> querygrain(jtree, nodes = "pakts473")$pakts473
pakts473

LOW AVG HIGH
0.60893407 0.31041282 0.08065311
> querygrain(jprop, nodes = "pakts473")$pakts473
pakts473

LOW AVG HIGH
0.665161776 0.333333333 0.001504891

The slight inhibition of packts473 resulting from the inhibition of p44.42
agrees with both the direction of the arc linking the two nodes and the additional
experiments performed by Sachs et al. (2005). In causal terms, the fact that changes
in p44.42 affect packts473 supports the existence of a causal link from the
former to the latter.

As far as PKA is concerned, both the validated network and the additional ex-
perimental evidence support the existence of a causal link from PKA to p44.42.
Therefore, interventions to p44.42 cannot affect PKA. However, knowledge of the
expression level of p44.42 may still alter our expectations on PKA if we treat it as
evidence instead of an ideal intervention.

> querygrain(jtree, nodes = "PKA")$PKA
PKA

LOW AVG HIGH
0.1943315 0.6956254 0.1100431

4.2 Inference in Static Bayesian Networks 93

P(pakts473)

probability

pa
kt

s4
73

LOW

AVG

HIGH

0.0 0.2 0.4 0.6

without evidence
with evidence

P(PKA)

probability

P
K

A

LOW

AVG

HIGH

0.2 0.4 0.6

without evidence
with evidence

Fig. 4.1 Probability distributions of pakts473 and PKA before and after inhibiting p44.42

> querygrain(jprop, nodes = "PKA")$PKA
PKA

LOW AVG HIGH
0.48908954 0.45116629 0.05974417

All the queries illustrated above can be easily changed to maximum a posteriori
queries by finding the largest element in the distribution of the target node.

> names(which.max(querygrain(jprop,
+ nodes = c("PKA"))$PKA))
[1] "LOW"

4.2.2 Approximate Inference

The conditional probability queries from the previous section produce similar
results when they are performed with the logic sampling algorithm, illustrated
in Algorithm 4.2 and implemented in bnlearn in the cpdist and cpquery
functions.

> particles = cpdist(fitted, nodes = "pakts473",
+ evidence = (p44.42 == "LOW"))
> prop.table(table(particles))
particles

LOW AVG HIGH
0.665622103 0.332827458 0.001550438
> particles = cpdist(fitted, nodes = "PKA",
+ evidence = (p44.42 == "LOW"))

> prop.table(table(particles))
particles

LOW AVG HIGH
0.48865276 0.45108553 0.06026171

94 4 Bayesian Network Inference Algorithms

cpdist takes as arguments a bn.fit object describing the Bayesian network,
the labels of one or more query nodes, and a logical expression describing the
evidence. The latter works in the same way as the analogous argument for the
subset function in package base. cpdist returns a data frame containing the
particles generated by logic sampling that include evidence.

On the other hand, cpquery returns the probability of a specific event, de-
scribed by another logical expression. So, for example,

> cpquery(fitted,
+ event = (pakts473 == "LOW") & (PKA != "HIGH"),
+ evidence = (p44.42 == "LOW") | (praf == "LOW"))
[1] 0.5594823

The combination of events and evidence on different variables through the use of
vectorized operators such as !=, ==, &, |, %in% provides a versatile interface
for specifying conditional probability queries. This is particularly important when
performing inference on Gaussian Bayesian networks, because in this setting both
event and evidence are regions in a real space. Therefore, complex combina-
tions of <, <=, >=, and > are required to describe them.

4.3 Inference in Dynamic Bayesian Networks

Techniques for learning dynamic Bayesian networks are based on the same funda-
mental ideas as the ones for learning static networks, as we have seen in Chap. 3 for
the dynamic Bayesian networks based on VAR models. The same is true for infer-
ence. The most common type of query for such models is to compute the marginal
distribution of a node Xi at a time t conditional on other nodes at times 1, . . . ,T :

• If T = t, the query is called filtering and consists in querying the state of the
network at the current time given all the available information.

• If T > t, the query is called smoothing and consists in reducing or removing noise
from past time points using the information we have collected in the mean time.

• If T < t, the query is a prediction.

Several exact and approximate inference algorithms specific to dynamic Bayesian
networks have been presented in literature. Popular ones include the forward–
backward algorithm, the frontier algorithm, the interface algorithm, the Boyen–
Koller (BK) algorithm, the Factored Frontier (FF) algorithm, and the Loopy Be-
lief Propagation (LBP) algorithm. For an overview of such approaches, we refer
the reader to Murphy’s PhD thesis (Murphy 2002). However, the techniques we
have been using in the previous section can also be applied to dynamic Bayesian
networks.

Most probable explanation queries can be performed for all of filtering, smooth-
ing, and predictions, as shown in Fig. 4.2 for the LASSO model fitted from the
arth12 data set with lars in Sect. 3.5.2.

4.3 Inference in Dynamic Bayesian Networks 95

265768_at, 1st time series

1 2 3 4 5 6 7 8 9 10 11

smoothing

filtering

predictionobserved
estimated

6.5

7.0

7.5

8.0

8.5

9.0

6.5

7.0

7.5

8.0

8.5

9.0

265768_at, 2nd time series

1 2 3 4 5 6 7 8 9 10 11

smoothing

filtering

predictionobserved
estimated

Fig. 4.2 Observed and estimated expression levels for two time series available for gene
265768 at in the LASSO model from Sect. 3.5.2

> x = arth12[1:(nrow(arth12) - 2),]
> y = arth12[-(1:2), "265768_at"]
> lasso.fit = lars(y = y, x = x, type = "lasso")

If we tune the model to find the optimal value for the L1 penalty, we can then es-
timate the expression levels of the gene 265768 at for all past and present time
points.

> lasso.cv = cv.lars(y = y, x = x, mode = "fraction")
> frac = lasso.cv$index[which.min(lasso.cv$cv)]

96 4 Bayesian Network Inference Algorithms

> lasso.est = predict(lasso.fit, type = "fit",
+ newx = x, s = frac,
+ mode = "fraction")$fit
> lasso.est

0-1 0-2 1-1 1-2 2-1
7.099782 6.894064 7.166249 7.157744 7.592092

2-2 4-1 4-2 8-1 8-2
7.379432 7.990548 8.078921 8.353137 8.333108

12-1 12-2 13-1 13-2 14-1
8.940241 8.780302 8.816387 8.758480 8.542374

14-2 16-1 16-2 20-1 20-2
8.417818 7.446577 7.329513 6.717392 6.747178

The expression levels for times 20-1 and 20-2 result from filtering the values for
the current time point (e.g., t); all the other expression levels are smoothed estimates
of past time points (e.g., 1, . . . , t− 1).

Furthermore, the expression level for gene 265768 at at time t +1 can be pre-
dicted using the data points we discarded when performing structure learning in
Sect. 3.5.2.

> lasso.pred = predict(lasso.fit, type = "fit",
+ newx = arth12[c("24-1", "24-2"),],
+ s = frac, mode = "fraction")$fit
> lasso.pred

24-1 24-2
6.822643 6.882054

We can also use cpquery and cpdist to perform complex conditional prob-
ability queries; in this case, we will use the penalized package to fit the LASSO
models because of its integration with bnlearn.

> library(penalized)

Consider again the expression level of gene 265768 at at the current time point
t. First, we estimate the optimal value of the L1 penalty λ and we fit the LASSO
model one more time.

> lambda = optL1(response = y, penalized = x)$lambda
> lasso.t = penalized(response = y, penalized = x,
+ lambda1 = lambda)
> coef(lasso.t)
(Intercept) 245094_at
14.0402894 -0.7059011

As we can see from the output, the only parent of gene 265768 at is gene
245094 at. The latter seems to inhibit the expression of the former.

Subsequently, we can create the network structure with modelstring and pro-
vide the parameters via the custom.fit function. The parameter sets of the nodes
are specified by the dist argument, which is a list with one element for each node.

4.3 Inference in Dynamic Bayesian Networks 97

> dbn1 =
+ model2network("[245094_at][265768_at|245094_at]")
> xp.mean = mean(x[, "245094_at"])
> xp.sd = sd(x[, "245094_at"])
> dbn1.fit =
+ custom.fit(dbn1,
+ dist = list("245094_at" = list(coef = xp.mean,
+ sd = xp.sd), "265768_at" = lasso.t))

Since we are modeling continuous data, we create a Gaussian Bayesian network. For
the distribution of gene 245094 at, we only need to specify the mean (xp.mean)
and the standard deviation (xp.sd) since the corresponding node has no parents
in dbn1. For gene 265768 at, we reuse the parameters we estimated for the
lasso.t model.

As expected from the regression coefficient in lasso.t, high expression levels
of gene 245094 at at time t−1 make high expression levels of gene 265768 at
at time t much less likely than lower expression levels of gene 245094 at at time
t− 1.

> cpquery(dbn1.fit, event = (‘265768_at‘ > 8),
+ evidence = (‘245094_at‘ > 8))
[1] 0.2448749
> cpquery(dbn1.fit, event = (‘265768_at‘ > 8),
+ evidence = (‘245094_at‘ < 8))
[1] 0.9827778

It is important to note that bothevent and evidencemust specify interval events,
because any single point in R has probability zero. Therefore, any conditional prob-
ability query based on such an event will always return to zero.

For a graphical comparison, we can use cpdist to generate two sets of random
observations under the different conditioning events and compare their densities.
The resulting plot is shown in Fig. 4.3.

> dist.low = cpdist(dbn1.fit, node = "265768_at",
+ evidence = (‘245094_at‘ < 8))
> dist.high = cpdist(dbn1.fit, node = "265768_at",
+ evidence = (‘245094_at‘ > 8))

Performing conditional probability queries using time points that are farther
apart, i.e., s = t− 2 and t, is also possible. Consider one more time the expression
of gene 265768 at at time t; the variables at time t− 2 that are most relevant for
our queries are the parents of gene 245094 at as identified by the LASSO model
having 245094 at as a response variable. To avoid name clashes, the expression
level of gene 245094 at at time t− 2 will be called 245094 at1.

> y = arth12[-(1:2), "245094_at"]
> colnames(x)[12] = "245094_at1"
> lambda = optL1(response = y, penalized = x)$lambda

98 4 Bayesian Network Inference Algorithms

expression level

de
ns

ity

0.0

0.2

0.4

0.6

1086

low
high

Fig. 4.3 Density plot of the expression levels of gene 265768 at at time t for expression levels
of gene 245094 at above 8 (solid line) and below 8 (dashed line) at time t−1

> lasso.s = penalized(response = y, penalized = x,
+ lambda1 = lambda)
> coef(lasso.s)
(Intercept) 258736_at 257710_at 255070_at

-2.659077706 -0.009220815 0.273648262 -0.444106451
245319_at 245094_at1

-0.134050990 1.589716443

Here we are assuming that the dynamic Bayesian network is time-homogeneous,
since we are using the same data to fit both the variables at time t against the ones
at time t− 1 and the variables at time t− 1 against the ones at time t− 2.

Subsequently, we create the network structure for the dynamic Bayesian network
as we did in the previous example; the result is shown in Fig. 4.4.

> dbn2 = empty.graph(c("265768_at", "245094_at",
+ "258736_at", "257710_at", "255070_at",
+ "245319_at", "245094_at1"))
> dbn2 = set.arc(dbn2, "245094_at", "265768_at")
> for (node in names(coef(lasso.s))[-c(1, 6)])
+ dbn2 = set.arc(dbn2, node, "245094_at")
> dbn2 = set.arc(dbn2, "245094_at1", "245094_at")

The easiest way to fit the parameters of dbn2 is to estimate all of them via maximum
likelihood and then to substitute the parameters of 265768 at and 245094 at
with the ones from the LASSO models lasso.t and lasso.s.

> dbn2.data = as.data.frame(x[, nodes(dbn2)[1:6]])
> dbn2.data[, "245094_at"] = y
> dbn2.data[, "245094_at1"] = x[, "245094_at"]
> dbn2.fit = bn.fit(dbn2, dbn2.data)

4.3 Inference in Dynamic Bayesian Networks 99

> dbn2.fit[["265768_at"]] = lasso.t
> dbn2.fit[["245094_at"]] = lasso.s

Using the fitted network dbn2.fit, we can now call both cpquery and cpdist
to perform smoothing, filtering, and prediction. We may be interested, for example,
in the inhibitory effects of prolonged high levels of expression of gene 245094 at
(at times t− 2 and t− 1) on gene 265768 at.

> cpquery(dbn2.fit, event = (‘265768_at‘ > 8),
+ evidence = (‘245094_at‘ > 8) & (‘245094_at1‘ > 8))
[1] 0.1554545

This probability is much lower than the corresponding probability computed con-
ditioning only over time t − 1 (0.2448749), supporting the hypothesis that the
inhibitory effects of 245094 at are protracted over time.

This hypothesis is also supported by the fact that, regardless of the expression lev-
els of gene 245094 at at time t−1, conditioning on high expression levels at time
t−2 results in a much lower probability of high expression of gene 265768 at at
time t (compared to the unconditional probability, computed by setting evidence
= TRUE).

> cpquery(dbn2.fit, event = (‘265768_at‘ > 8),
+ evidence = (‘245094_at1‘ > 7) & (‘245094_at1‘ < 8))
[1] 0.9555499
> cpquery(dbn2.fit, event = (‘265768_at‘ > 8),
+ evidence = TRUE)
[1] 0.4507846

Finally, given our knowledge on gene 265768 at and gene 245094 at at
times t− 2 and t, we can investigate the distribution of 245094 at at time t− 1.

265768_at

245094_at

258736_at 257710_at 255070_at 245319_at 245094_at1

Fig. 4.4 Dynamic Bayesian network for the expression levels of gene 265768 at going back
from time t to time t−2

100 4 Bayesian Network Inference Algorithms

> cpd =
+ cpdist(dbn2.fit, node = "245094_at", evidence =
+ (‘245094_at1‘ > 6.5) & (‘245094_at1‘ < 7.5) &
+ (‘265768_at‘ > 7) & (‘265768_at‘ < 8))
> summary(cpd)

245094_at
Min. :7.874
1st Qu.:8.209
Median :8.419
Mean :8.428
3rd Qu.:8.612
Max. :9.046

If the expression level of 245094 at at time t − 1 has been observed, we are
smoothing it; if it were missing, we would be imputing it with the mean of its con-
ditional distribution (8.428), that is, its most probable explanation.

Exercises

4.1. Apply the junction tree algorithm to the validated network structure from Sachs
et al. (2005), and draw the resulting undirected triangulated graph.

4.2. Consider the Sachs et al. (2005) data used in Sect. 4.2.

(a) Perform parameter learning with the bn.fit function from bnlearn and the
validated network structure. How do the maximum likelihood estimates differ
from the Bayesian ones, and how do the latter vary as the imaginary sample size
increases?

(b) Node PKA is parent of all the nodes in the praf → pmek → p44.42 →
pakts473 chain. Use the junction tree algorithm to explore how our beliefs
on those nodes change when we have evidence that PKA is “LOW,” and when
PKA is “HIGH.”

(c) Similarly, explore the effects on pjnk of evidence on PIP2, PIP3, and plcg.

4.3. Consider the marks data set analyzed in Sect. 2.3.

(a) Learn both the network structure and the parameters with likelihood-based ap-
proaches, i.e., BIC or AIC, for structure learning and maximum likelihood esti-
mates for the parameters.

(b) Query the network learned in the previous point for the probability to have the
marks for both STAT and MECH above 60, given evidence that the mark for ALG
is at most 60. Are the two variables independent given the evidence on ALG?

4.3 Inference in Dynamic Bayesian Networks 101

(c) What is the (conditional) probability of having an average vote (in the [60,70]
range) in both VECT and MECH while having an outstanding vote in ALG (at
least 90)?

4.4. Using the dynamic Bayesian network dbn2 from Sect. 4.3, investigate the
effects of genes 257710 at and 255070 at observed at time t − 2 on gene
265768 at at time t.

Chapter 5
Parallel Computing for Bayesian Networks

Abstract Most problems in Bayesian network theory have a computational
complexity that, in the worst case, scales exponentially with the number of vari-
ables. It is polynomial even for sparse networks. Even though newer algorithms
are designed to improve scalability, it is unfeasible to analyze data containing more
than a few hundreds of variables. Parallel computing provides a way to address this
problem by making better use of modern hardware.

In this chapter we will provide a brief overview of the history and the funda-
mental concepts of parallel computing, and we will examine their applications to
Bayesian network learning and inference using the bnlearn package.

5.1 Foundations of Parallel Computing

A simple yet effective way to evaluate the performance of a computer program
implementing an algorithm is to measure its execution time and the resources it
requires to execute successfully. In this respect, performance is influenced by several
factors, both hardware and software.

The hardware a program runs on obviously has a profound influence on the
program’s execution time. Its performance is usually referred to as the raw
performance of the hardware and is measured by the number of operations it can
execute in a given amount of time. Two measures of this kind are the Input/Output
Operations Per Second (IOPS) for the speed of nonvolatile storage and the Floating
Point Operations Per Second (FLOPS) for the speed of operations on real numbers.
Raw performance is limited by the constraints imposed by the hardware produc-
tion process, such as the resolution of the lithography techniques used for printing
processors on silicon, and increasingly by fundamental physical laws, such as the
speed of light and the physics of heat dissipation.

The performance of the software implementation of an algorithm depends both
on the computational complexity of the algorithm and on the software architec-
ture of the implementation itself. Computational complexity classifies algorithms

R. Nagarajan et al., Bayesian Networks in R: with Applications in Systems Biology,
Use R! 48, DOI 10.1007/978-1-4614-6446-4 5,
© Springer Science+Business Media New York 2013

103

104 5 Parallel Computing for Bayesian Networks

according to their inherent difficulty, with particular attention to their behavior as the
size of the input grows (scalability). Therefore, the only way to improve scalability
is to develop a better algorithm for the problem at hand. This is often not possible,
either because we are already using an optimal algorithm or because the problem
at hand cannot be solved in an efficient way (i.e., its computational complexity is
more than polynomial in the size of the input in the worst case). Such problems are
known as NP-hard and are common in the theory of Bayesian networks, both for
structure learning (Chickering 1996) and inference (Cooper 1990).

On the other hand, the software architecture can make a significant difference
in the overall performance of the program. For instance, choosing the right data
structures for the problem can significantly improve or degrade the computational
complexity of an algorithm. Tailoring the implementation to the specific hardware
it will run on can also result in noticeable speedups.

Parallel computing, defined as the execution of several calculations
simultaneously, is an application of this last idea. It was originally introduced to
overcome hardware limitations in terms of computational power; large problems
were divided into smaller ones, which were then solved concurrently on multipro-
cessor supercomputers. Special-purpose hardware architectures were then devel-
oped to take advantage of such software, thus maximizing the impact of the raw
performance of the hardware for properly implemented programs. A classification
of these hardware architectures was proposed by Flynn (1972), according to the
nature of the data and the operations they support:

• Single-Instruction, Single-Data (SISD): a single processing unit performing a
single operations on the same data

• Multiple-Instruction, Single-Data (MISD): multiple processing units performing
different operations (independently and asynchronously) on the same data

• Single-Instruction, Multiple-Data (SIMD): multiple processing units performing
the same operation on multiple data

• Multiple-Instruction, Multiple-Data (MIMD): multiple processing units perform-
ing different operations on multiple data

Nearly all general-purpose modern computers are based on the MIMD model; a
notable exception are those that offload part of their workload to graphical process-
ing units (GPU), as the latter are based on a SIMD model. All modern processors
have more than one core, and each core supports multiple concurrent execution
threads. Furthermore, in the last few years the speed of processors has peaked be-
cause some of the physical constraints mentioned above are preventing further fre-
quency scaling. At the same time, the number of cores present in each processor
is still increasing, and the same holds for the number of threads supported by each
core. As a result, modern computers are remarkably similar to the MIMD parallel
architectures from the 1970s and the 1980s described by Flynn, albeit with vastly
different capabilities.

This evolution has sparked a renewed interest in parallel computing. Recent re-
search efforts focused on two major areas: the parallelization of existing algorithms
and the development of new algorithms and software libraries explicitly designed

5.2 Parallel Programming in R 105

to take advantage of parallel computing. However, it is important to note that the
degree to which an algorithm can leverage parallel processing depends on the nature
of the problem it is trying to address. Some problems are embarrassingly parallel,
that is, they can be split in such a way that each part rarely or never has to communi-
cate with the other parts. Other problems cannot be fully parallelized, because their
parts have to communicate periodically with each other to synchronize their state.
If frequent synchronizations are required we speak of fine-grained parallelism, and
of coarse-grained parallelism if synchronizations are only needed a few times over
a long period of time. Finally, some problems are inherently sequential and cannot
be parallelized at all.

5.2 Parallel Programming in R

The R interpreter can only execute one command at a time. The only functions that
can take advantage of multiple processors are the linear algebra routines provided
by the Basic Linear Algebra Subprograms (BLAS) library. To this end, R must be
compiled against a third-party, multi-threaded implementation of the BLAS library
such as the one provided by Intel. However, performance improvements are limited
to algorithms making heavy use of these routines.

This situation has led to the development of several contributed packages dealing
with parallel computing; an overview of these efforts is provided in Schmidberger
et al. (2009). bnlearn is designed to work with:

• The snow package (Tierney et al., 2008),1 which provides support for simple
parallel computing using the master-slave model. snow spawns a configurable
number of R processes in background (the slave processes). The user can then
copy data back and forth and send them commands from the R console he is
working on (the master process). The communication between those processes
is managed using either standard TCP sockets or the mechanisms provided by
the Rmpi and rpvm packages. These processes are said to form a cluster and
can run on different computers.

• The Rmpi package (Yu, 2010), which is an R interface to the C libraries im-
plementing the de facto Message-Passing Interface (MPI) standard, a language-
independent communications protocol designed to program parallel computers.

• The rpvm package (Li and Rossini, 2010), which is an R interface to the Parallel
Virtual Machine (PVM) software. PVM is designed to allow a network of hetero-
geneous Unix and Windows machines to be used as a single distributed parallel
processor.

• The rsprng package (Li, 2010), which provides independent random number
generators to the slaves spawned by snow.

1 Since version 2.14, the R base distribution includes a revised copy of snow in the parallel
package.

106 5 Parallel Computing for Bayesian Networks

We will now illustrate the use of this set of packages, which will then be
used throughout this chapter to show how parallel computing applies to Bayesian
networks.

The first step is to load the snow and the rsprng packages.

> library(snow)
> library(rsprng)

The Rmpi and rpvm packages are loaded by snow as needed. Subsequently, we
need to spawn the slave processes and initialize the cluster with the makeCluster
function.

> cl = makeCluster(2, type = "MPI")
Loading required package: Rmpi

The first argument of makeCluster specifies the number of slave processes which
will be spawned, which is usually between 2 and the number of processes that can
run concurrently without overcommitting any hardware resource. The second ar-
gument specifies the communication mechanism used between the master and the
slave processes; possible values are "SOCK" to use sockets (the default), "MPI" to
use Rmpi, and "PVM" to use rpvm.

Once the slave processes have been spawned, we can initialize their random num-
ber generators.

> clusterSetupSPRNG(cl)

The setup of the cluster is now completed, and we can start using it to speed up our
computations. For example, we can compute simultaneously the means of all the
variables of the marks data we used in Chap. 2,

> parApply(cl, X = marks, MARGIN = 2, FUN = mean)
MECH VECT ALG ANL STAT

38.95455 50.59091 50.60227 46.68182 42.30682

getting the same result as the call to mean we would have used to compute them in
a sequential way.

> mean(marks)
MECH VECT ALG ANL STAT

38.95455 50.59091 50.60227 46.68182 42.30682

The parApply function, along with parLapply and parSapply, represents
the most user-friendly way to set up embarrassingly parallel computations. These
functions are the parallel versions of apply, lapply, and sapply and work in
exactly the same way from the user’s point of view.

Problems which are not embarrassingly parallel, or which cannot be divided in
identical parts, can be tackled using a combination of clusterExport (to copy
the data to the slave R processes) and clusterEvalQ (to make the slave processes
execute arbitrary R commands). For instance, we may be interested in comparing
Pearson’s and Spearman’s correlation matrices for the marks data, and we may
want to estimate these matrices in parallel. To achieve that, we can first export the
marks data to the slave processes,

> clusterExport(cl, list("marks"))

5.2 Parallel Programming in R 107

check that the data is now present in their global environment,

> unlist(clusterEvalQ(cl, ls()))
[1] "marks" "marks"

and then call the cor with the method argument set to "pearson" in the first
slave process and to "spearman" in the second one.

> parLapply(cl, c("pearson", "spearman"),
+ function(m) { cor(marks, method = m) })
[[1]]

MECH VECT ALG ANL STAT
MECH 1.000000 0.553405 0.546751 0.409392 0.389099
VECT 0.553405 1.000000 0.609645 0.485081 0.436449
ALG 0.546751 0.609645 1.000000 0.710806 0.664736
ANL 0.409392 0.485081 0.710806 1.000000 0.607174
STAT 0.389099 0.436449 0.664736 0.607174 1.000000

[[2]]
MECH VECT ALG ANL STAT

MECH 1.000000 0.497611 0.477201 0.415145 0.376006
VECT 0.497611 1.000000 0.609878 0.548262 0.434648
ALG 0.477201 0.609878 1.000000 0.741972 0.620780
ANL 0.415145 0.548262 0.741972 1.000000 0.628004
STAT 0.376006 0.434648 0.620780 0.628004 1.000000

It is also possible, even if tricky, to have each slave process execute completely
different R commands. First, we need to store a unique identifier in the global envi-
ronment of each slave process.

> slave.id = function(id) {
+ assign("id", value = id, envir = .GlobalEnv)
+ }
> parSapply(cl, 1:2, slave.id)
[1] 1 2
> clusterEvalQ(cl, id)
[[1]]
[1] 1

[[2]]
[1] 2

Then we can create a list, here named calls, containing the functions we want to
call in each slave process. In this example, we consider the mean (mean) for the
first slave and the standard deviation (sd) for the second one.

> calls = list(mean, sd)

108 5 Parallel Computing for Bayesian Networks

It is important to note that calls must not have more elements than the number of
slave processes referenced by the cl object. Otherwise, some commands will not
be executed because there are more commands than slaves.

Now we can copy calls to the slave processes and make them execute the
command stored in the element of the list that matches the identifier we stored in
the id variable.

> clusterExport(cl, list("calls"))
> clusterEvalQ(cl, calls[[id]](marks))
[[1]]

MECH VECT ALG ANL STAT
38.95455 50.59091 50.60227 46.68182 42.30682

[[2]]
MECH VECT ALG ANL STAT

17.48622 13.14695 10.62478 14.84521 17.25559

The unique identifier id can be used in a similar way to define a list of argument
sets to match the functions in calls, thus increasing the flexibility of the approach
shown in this last example.

The synchronization of the slave processes must be managed in the master pro-
cess, because slave processes cannot communicate directly with each other. There-
fore, two slaves can exchange data only when the current call to clusterEvalQ
(or parApply, parSapply, etc.) executing on the master returns, and that ex-
change must be taken care of by the user from the master process. This may be
problematic when dealing with fine-grained parallel problems, but in most cases the
performance penalty introduced by this kind of synchronization is far outweighed
by the gains in performance due to the efficient use of multiple processors.

Finally, once the parallel computations are completed, we can call
stopCluster to shut down the slave processes and update their status in the cl
object.

> stopCluster(cl)

5.3 Applications to Structure and Parameter Learning

It is well known from literature that the problem of learning the structure of
Bayesian networks is very hard to tackle. Its computational complexity, measured
with the required number of conditional independence tests or network scores, is
super-exponential in the number of nodes in the worst case and polynomial in most
real-world situations. For instance, the Grow–Shrink algorithm performs a number
of conditional independence test that is O(p2) for a network with p nodes, under
the assumption that the dimension of the Markov blanket of each node is bound by
a constant. For extremely dense graphs, the number of conditional tests increases to
O(p32p).

5.3 Applications to Structure and Parameter Learning 109

Furthermore, the computational complexity of the conditional independence tests
and of the network scores themselves must be taken into account; in most cases it
is linear in the sample size. In R, computing conditional probabilities requires one
pass over the data, while computing partial correlations requires two.

As a result, in practice most structure learning algorithms can be applied to data
sets with a few hundred variables at most. Parallel implementations of learning algo-
rithms provide a significant performance boost, thus improving our ability to handle
large networks. However, it is important to note that execution time reduces at most
linearly with the number of slave processes. For this reason, parallelization can-
not be considered a universal solution, even though it may prove useful in many
situations.

5.3.1 Constraint-Based Structure Learning Algorithms

Constraint-based algorithms display a coarse-grained parallelism, because they only
need to synchronize their parts a couple of times. If we examine again Algo-
rithm 2.1, we can see that:

1. The first step is embarrassingly parallel, because each d-separating set can be
learned independently from the others. Another solution is to split this step in
one part for each node, which will learn all the d-separating sets involving that
particular node. The former approach can take advantage of a greater number of
processors, while the latter has less overhead due to the smaller number of parts
running in parallel.

2. The same holds for the second step. Once all the d-separating sets are known, it
is embarrassingly parallel and can be split in the same way as the first step.

3. The third step is sequential, because each iteration requires the status of the
previous one.

Therefore, the information available to the slave processes has to be synchronized
only collected is between the first and the second step and between the second and
the third step.

Most modern constraint-based algorithms, which learn the Markov blankets of
the nodes as an intermediate step, require one additional synchronization.
For example, if we consider the Grow–Shrink algorithm as shown in Fig. 5.1, we
can see that:

1. Each Markov blanket can be computed independently from the others.
2. Each neighborhood is a subset of the corresponding Markov blanket and, there-

fore, can be learned independently from the others. However, the consistency
of the Markov blankets must be checked before learning neighborhoods; due to
errors in the conditional independence tests, they may not be symmetric (see
Sect. 2.3). A solution to this problem is to examine all pairs of nodes and remove
them from each other’s Markov blanket if they do not appear in both of them.

110 5 Parallel Computing for Bayesian Networks

Fig. 5.1 Parallel implementation of the Grow–Shrink algorithm present in bnlearn

3. Given the Markov blankets and the neighborhoods, the v-structures centered on
a particular node (i.e., the one with the converging arcs) can again be identified
in parallel. As in the previous step, the consistency of the neighborhoods must be
checked and any departure from symmetry must be fixed beforehand.

Furthermore, the final step of the Grow–Shrink algorithm, in which the directions
of compelled arcs are learned, also displays a fine-grained parallelism. The order
in which arcs are considered in that step depends on the topology of the graph;
undirected arcs whose orientations would result in the greatest number of cycles are
considered first. That number can be computed in parallel for each arc, at the cost
of introducing some overhead.

We will now examine the practical implications of parallelizing a constraint-
based learning algorithm. To that end, we will use the hailfinder data set in-
cluded in bnlearn, which is generated from the reference network of the same name.
Hailfinder is a Bayesian network designed by Abramson et al. (1996) to forecast
severe summer hail in northeastern Colorado. It contains 56 variables and 20,000
observations and is large enough to properly highlight the advantages and the limi-
tations of parallel computing.

Consider a simple cluster with two slave processes.

> data(hailfinder)
> cl = makeCluster(2, type = "MPI")
2 slaves are spawned successfully. 0 failed.
> res = gs(hailfinder, cluster = cl)

> unlist(clusterEvalQ(cl, .test.counter))
[1] 2698 3765
> .test.counter
[1] 4
> stopCluster(cl)

5.3 Applications to Structure and Parameter Learning 111

number of slaves

se
co

nd
s

6

8

10

12

14

1 2 3 4 5 6

Fig. 5.2 Performance of the Grow–Shrink algorithm for different numbers of slave processes,
measured by its execution time (in seconds)

As we can see from the output of clusterEvalQ, the first slave process per-
formed 2,698 (41.71%) conditional tests, and the second one 3,765 (58.21%). Only
4 tests were performed by the master process. The difference in the number of tests
between the two slaves is due to the topology of the network; different nodes have
Markov blankets and neighborhoods of different sizes, which require different num-
bers of tests to learn.

Increasing the number of slave processes reduces the number of tests performed
by each slave, further increasing the overall performance of the algorithm.

> cl = makeCluster(3, type = "MPI")
3 slaves are spawned successfully. 0 failed.
> res = gs(hailfinder, cluster = cl)
> unlist(clusterEvalQ(cl, .test.counter))
[1] 1667 2198 2598
> stopCluster(cl)
> cl = makeCluster(4, type = "MPI")
4 slaves are spawned successfully. 0 failed.
> res = gs(hailfinder, cluster = cl)
> unlist(clusterEvalQ(cl, .test.counter))
[1] 1116 1582 1860 1905
> stopCluster(cl)

The execution times of the Grow–Shrink algorithm for clusters of 2, 3, 4, 5, and
6 slaves are reported in Fig. 5.2. It is clear from the figure that the gains in execu-
tion time follow the law of diminishing returns—i.e., adding more slave processes
produces smaller and smaller improvements, up to the point where the increased
overhead of the communications between the master and the slave processes starts
actually degrading performance.

Another important consideration is whether the data set we are learning the
network from actually contains enough observations and variables to make the
use of the parallel implementation of a learning algorithm worthwhile. In fact,
for hailfinder the sequential implementation of the Grow–Shrink algorithm is
faster than the parallel one.

112 5 Parallel Computing for Bayesian Networks

> system.time(gs(hailfinder))
user system elapsed

4.000 0.004 4.004

There are three reasons for this disparity. First, the parallel implementation cannot
take advantage of the symmetry of the Markov blankets and the neighborhoods to
reduce the number of tests. All Markov blankets are learned simultaneously, so the
same conditional independence test will likely be performed multiple times. The
same holds for the neighborhoods. As a result, gs performs more than twice as
many tests overall:

> ntests(gs(hailfinder, optimized = TRUE))
[1] 2670
> ntests(gs(hailfinder, optimized = FALSE))
[1] 6467

Second, tests are almost never split in an optimal way among the slave processes.
This can be seen quite clearly from the examples illustrated in this section: with 4
slaves, the number of tests assigned to each of them ranges from 1,116 (17.25%
of the total) to 1,905 (29.45% of the total). This variability introduces additional
overhead in the algorithm, because slaves that have fewer tests to perform must wait
for other slaves each time the status of the cluster is synchronized.

Third, passing data back and forth between the master and the slaves also takes
some time. The efficiency of such an operation depends on the operating system
and the hardware the cluster is running on, so it must be evaluated on a case-by-case
basis.

5.3.2 Score-Based Structure Learning Algorithms

Score-based learning algorithms benefit from several decades of research efforts
aimed at taking advantage of parallel computing in optimization heuristics.

Most score-based algorithms are inherently sequential in nature. Consider for
example hill-climbing. At each iteration, the state of the previous iteration is used
as the starting point for the search of a new, better network structure. This is also
true for tabu search and genetic algorithms and makes the parallel implementation
of these algorithms a challenging problem.

A possible solution is to provide a parallel implementation of the computations
performed within a single iteration and to let the master process execute the it-
erations in a sequential way, synchronizing the status of the slaves each time.
This would reduce a sequential problem to a fine-grained parallel one; it is known
as the move acceleration model if each slave computes part of the score of each
candidate network, or the parallel moves model if each slave manages some of the
candidate networks. However, the resulting performance gain is likely to be out-
weighed by the overhead of the communications between the master and the slave
processes.

5.3 Applications to Structure and Parameter Learning 113

Fig. 5.3 Parallel multistart implementation of a score-based learning algorithm

Another solution, called the parallel multistart model, is illustrated in Fig. 5.3 and
consists in initializing several instances of a score-based algorithm with different
starting networks. The use of significantly different starting points for the search
improves the algorithm’s ability to cover the search space and results in better and
more robust solutions. For example, even if one of the instances gets stuck on a
local maximum, another one may still find the global maximum. In this case, the
suboptimal solution is simply discarded.

We can easily implement parallel multistart by altering the R code for model av-
eraging used in Sect. 2.5.1. Instead of using lapply, we distribute the hill-climbing
searches among the slave processes using parLapply.

> cl = makeCluster(4, type = "MPI")
> clusterEvalQ(cl, library(bnlearn))

> start = random.graph(names(hailfinder), num = 4, 382
+ method = "melancon")
> parallel.multistart = function(net) {
+ hc(hailfinder, start = net)
+ }
> netlist = parLapply(cl, start, parallel.multistart)

Once all the slave processes have completed their searches, we can evaluate the
network structures they return.

> unlist(lapply(netlist, score, data = hailfinder))
[1] -992833.1 -993954.7 -990474.8 -1011764

The network with the highest score is the third one (−990474.8); the others are
therefore local maxima.

Tabu search can be easily modified in the same way and with similar results.

114 5 Parallel Computing for Bayesian Networks

> parallel.multistart = function(net) {
+ tabu(hailfinder, start = net)
+ }
> netlist = parLapply(cl, start, parallel.multistart)
> unlist(lapply(netlist, score, data = hailfinder))
[1] -990474.8 -997597.7 -991934 -993547.3

It is important to note that execution time is not reduced by the parallel multistart,
because each of the instances executed by the slave processes takes on average as
much time as the original score-based algorithm.

> s0 = random.graph(names(hailfinder),
+ method = "melancon")
> system.time(tabu(hailfinder, start = s0))

user system elapsed
414.130 0.000 414.137
> system.time(parLapply(cl, netlist,
+ parallel.multistart))

user system elapsed
0.020 0.010 432.221

More advanced approaches and applications are available in literature, each tai-
lored to particular problems and with specific advantages and limitations. For an
extensive coverage of such approaches, we refer the reader to Rauber and Rünger
(2010).

5.3.3 Hybrid Structure Learning Algorithms

Applications of parallel computing to hybrid algorithms depend on the exact imple-
mentation of the restrict and maximize phases.

The restrict phase is usually implemented using the first two steps of a constraint-
based algorithm or using another local search algorithm. Some examples of the
latter are proposed in Friedman et al. (1999b) for the Sparse Candidate algorithm.
More complex ones, such as ARACNE (Margolin et al., 2006), are investigated in
Meloni et al. (2009). Therefore, all the considerations we made in Sect. 5.3.1 apply.

The maximize phase is usually implemented using a score-based learning algo-
rithm. The computational cost of this phase is reduced by the constraints learned
in the restrict phase, which enforce the sparseness of the network structure. This
in turn guarantees a reasonable performance for most real-world data sets. All the
considerations we made in Sect. 5.3.2 still apply; for example, we can still imple-
ment the multistart model if we take care to select starting networks that satisfy the
constraints.

5.4 Applications to Inference Procedures 115

5.3.4 Parameter Learning

Parameter learning is another embarrassingly parallel problem. Once the structure
of the network is known, the decomposition of the global distribution into the local
distributions provides a natural way to split the estimation of the parameters among
the slaves. The distribution of each node depends only the values of its parents and
has a limited number of parameters; therefore, the amount of data copied to and
from the slave processes is very small. Furthermore, assigning one variable at a
time to a slave process allows an efficient use of a large number of processors.

Despite all these desirable properties, the parallel estimation of the parameters
does not provide real practical advantages. First, in many “small n, large p” settings,
the variables outnumber the observations. In these cases, the overhead of copying
the data to the slaves is greater than the speed boost provided by parallel estimation.
Second, the number of parameters is not homogeneous among the nodes. In many
networks learned from biological data a small number of nodes have a large number
of incoming arcs; typically they correspond to key factors in the experimental set-
ting. Such nodes account for a large number of the parameters of the network; for
example, in discrete data the number of configurations increases rapidly with the
number of parents. This disparity introduces additional inefficiencies in the parallel
execution, because some slaves will require much more time to complete their part
of the estimation.

It is also important to note that parameter estimation is efficient in terms of
computational complexity compared to most other problems concerning Bayesian
networks, both in structure learning and inference. Both discrete and Gaussian
Bayesian networks have closed-form estimators that can be computed in linear time
(in the sample size) for the respective parameters. For this reason, the reduction in
the execution time resulting from a parallel implementation is likely to be negligible
over the whole analysis.

5.4 Applications to Inference Procedures

Inference on Bayesian networks can be performed using a variety of techniques,
some specific to Bayesian networks (see Chap. 4), some defined in more general
settings. Exploring applications of parallel computing to such a wide range of tech-
niques would be impossible in the space of this chapter. For this reason, we will con-
centrate only on three common inference techniques: bootstrap, cross-validation,
and conditional probability queries.

5.4.1 Bootstrap

Bootstrap is a very general tool for investigating probability distributions. It is
also embarrassingly parallel, because bootstrap samples are mutually independent.

116 5 Parallel Computing for Bayesian Networks

Fig. 5.4 Nonparametric bootstrap estimate for a feature f of a Bayesian network

An introduction to the relevant theory, applications, and related techniques (such as
the jackknife) is provided in the classic monograph by Efron and Tibshirani (1993).

In Bayesian networks, bootstrap is used to investigate the properties of the pa-
rameters of the network, such as in Koller and Friedman (2009), or of its structure,
such as in Friedman et al. (1999a). An illustration of the parallel implementation of
such an approach is provided in Fig. 5.4. In both cases, the aspects being investi-
gated are usually the expected value or the variance of some aspect of the Bayesian
network. For example, in Friedman et al. (1999a) the statistics of interest were the
probabilities associated with particular structural features of the network, such as
Markov blankets or different topological orderings of the nodes. In the analysis of
the Sachs et al. (2005) data covered in Sect. 2.5, the statistics of interest were the
probabilities associated with each arc and its directions.

There are many other features that have a practical significance in a Bayesian
network. We may be interested, for example, in the sparseness of the network we
learned from the hailfinder data set using the hill-climbing algorithm. Sparse
networks are particularly useful in analyzing real-world data: they are easier to inter-
pret and inference is computationally tractable. We can use bn.boot and narcs
to derive a point estimate and a confidence interval for the number of arcs as follows.

> sparse = bn.boot(hailfinder, algorithm = "hc",
+ R = 200, statistic = narcs)
> summary(unlist(sparse))

Min. 1st Qu. Median Mean 3rd Qu. Max.
63.00 64.00 65.00 64.69 65.00 67.00

> quantile(unlist(sparse), c(0.05, 0.95))
5% 95%
64 66

hailfinder has 56 nodes, so with 65 arcs it can be considered sparse. Further-
more, we can see that the bootstrap estimate has a very low variance; the boundaries

5.4 Applications to Inference Procedures 117

number of slaves

se
co

nd
s

400

600

800

1000

1 2 3 4 5 6

Fig. 5.5 Performance of bootstrap resampling for different numbers of slave processes, measured
by its execution time (in seconds)

of the 95% confidence interval are very close to the mean value. This is a conse-
quence of the large sample size of hailfinder (20,000 observations) compared
to the number of parameters of the network (1,768) learned by hc.

It is easy to show that the embarrassingly parallel nature of bootstrap resampling
results in substantial performance improvements:

> system.time(bn.boot(hailfinder, algorithm = "hc",
+ R = 200, statistic = narcs))

user system elapsed
1103.585 1.216 1104.848
> cl = makeCluster(2, type = "MPI")
> system.time(bn.boot(hailfinder, algorithm = "hc",
+ R = 200, statistic = narcs, cluster = cl))

user system elapsed
0.292 0.040 586.009

> stopCluster(cl)

Adding more slaves further reduces the execution time, at least up to a cluster of 6
processes (see Fig. 5.5). Using a larger number of slave processes does not result in
additional speedups, at least for this number of bootstrap samples.

5.4.2 Cross-Validation

Cross-validation is probably the simplest and most widely used method to validate
statistical models and to select suitable values for their tuning parameters. It has
also been applied to many classes of models, from regression to classification, to
estimate loss functions (such as classification error or likelihood loss) for model
selection. Several examples of such applications are covered in Hastie et al. (2009).

Similarly to the bootstrap, cross-validation is embarrassingly parallel. Once the
data have been partitioned in k parts and the k cross-validation samples X∗−1, . . . ,X

∗
−k

118 5 Parallel Computing for Bayesian Networks

have been created, a Bayesian network is learned in parallel, independently, from
each split. The corresponding losses can also be computed in parallel and then av-
eraged to produce a cross-validated loss estimate (see Fig. 5.6).

Most Bayesian network structure learning algorithms are not explicitly targeted
at classification problems; they seek to minimize the discrepancy between the es-
timated and the true dependence structure rather than classification error. Further-
more, the very concept of a target variable is central in classification but alien to
Bayesian networks, which treat all the variables in the same way. However, there
are some situations in which the classification error, estimated with the prediction
error, may be of interest. For example, the Hailfinder network was designed to fore-
cast severe summer hail in northeastern Colorado. In fact, the nodes whose names
end in Fcst represent the weather conditions in different parts of the region, and
the prediction of their values was the main goal of the original work by Abramson
et al. (1996).

If we focus on CompPlFcst (Complete Plains Forecast), we can see that
Max-Min Hill-Climbing is not able to learn a good classifier.

> bn.cv(hailfinder, ’mmhc’, loss = "pred",
+ loss.args = list(target = "CompPlFcst"))

k-fold cross-validation for Bayesian networks

target learning algorithm:
Max-Min Hill-Climbing

number of subsets: 10
loss function:

Classification Error
expected loss: 0.5433

Fig. 5.6 K-fold cross-validation estimation of a loss function for a Bayesian network learning
algorithm

5.4 Applications to Inference Procedures 119

number of slaves

se
co

nd
s

15

20

25

30

35

1 2 3 4 5 6

Fig. 5.7 Performance of cross-validation for different numbers of slave processes, measured by its
execution time (in seconds)

Hill-climbing and tabu search have comparable error rates (50.67% and 50.4%,
respectively). As was the case for the bootstrap, using two slave processes halves
the execution time.

> system.time(bn.cv(hailfinder, ’mmhc’, loss = "pred",
+ loss.args = list(target = "CompPlFcst")))

user system elapsed
37.782 0.056 37.836

> cl = makeCluster(2, type = "MPI")

> system.time(bn.cv(hailfinder, ’mmhc’, loss = "pred",
+ loss.args = list(target = "CompPlFcst"),
+ cluster = cl))

user system elapsed
0.196 0.032 19.202

> stopCluster(cl)

Adding more slaves to the cluster improves the performance of the cross-validation
further, at least up to cluster of size 6 (see Fig. 5.7).

> cl = makeCluster(3, type = "MPI")
> system.time(bn.cv(hailfinder, ’mmhc’, loss = "pred",
+ loss.args = list(target = "CompPlFcst"),
+ cluster = cl))

user system elapsed
0.320 0.016 15.726

> stopCluster(cl)
> cl = makeCluster(4, type = "MPI")
> system.time(bn.cv(hailfinder, ’mmhc’, loss = "pred",
+ loss.args = list(target = "CompPlFcst"),
+ cluster = cl))

120 5 Parallel Computing for Bayesian Networks

user system elapsed
0.440 0.036 13.007

> stopCluster(cl)

In fact, cross-validation can be used to evaluate any combination of structure
learning algorithms, parameter learning methods, and the respective tuning param-
eters. It can also be used to evaluate a predetermined network structure; in this case,
X∗−1, . . . ,X

∗
−k are used only for parameter learning. Consider, for instance, the naive

Bayes classifier (Borgelt et al., 2009), which is equivalent to a star-shaped network
with the training variable at the center and all the arcs pointing to the training vari-
able.

> naive = naive.bayes(training = "CompPlFcst",
+ data = hailfinder)
> bn.cv(hailfinder, naive, loss = "pred")

k-fold cross-validation for Bayesian networks

target network structure:
[Naive Bayes Classifier]

number of subsets: 10
loss function:

Classification Error
training node: CompPlFcst
expected loss: 0

As expected, the classification error is considerably lower than with hc or tabu.
Naive Bayes is, despite its simple structure and strong assumptions, one of the most
efficient and effective algorithms in data mining and classification (Zhang, 2004).

The performance gain from the use of a snow cluster is not as marked as in the
previous example (the execution time halves with two slaves, but does not improve
beyond that). This difference in behavior suggests that most of the execution time
in the previous example was spent learning the structure of the network and that, as
anticipated in Sect. 5.3.4, parameter learning is relatively fast in comparison.

5.4.3 Conditional Probability Queries

Conditional probability queries are the most common form of Bayesian network
inference; as a result, parallel implementations of the exact and approximate algo-
rithms covered in Sect. 4.1.2 have been investigated in literature. Particle filters algo-
rithms, in particular, exhibit coarse-grained parallelism if particles are generated us-
ing Markov chain Monte Carlo approaches or are embarrassingly parallel if particles
are independent. Logic sampling, illustrated in Algorithm 4.2, falls in the second
category.

Consider, for example, how the knowledge that there is a weather instability in
the mountains (i.e., InsInMt == "Strong") and that there is a marked cloud

5.4 Applications to Inference Procedures 121

shading (i.e., CldShadeConv == "Marked") influences Hailfinder’s forecasts
for the plains. To investigate this influence, we use logic sampling to generate 107

observations from the Bayesian network learned by mmhc(hailfinder).

> fitted = bn.fit(mmhc(hailfinder), hailfinder)
> n = nrow(hailfinder)

> summary(hailfinder[, "CompPlFcst"]) / n
DecCapIncIns IncCapDecIns LittleChange

0.22810 0.41205 0.35985
> cp = cpdist(fitted, nodes = "CompPlFcst",
+ (InsInMt == "Strong") & (CldShadeConv == "Marked"),
+ n = 10ˆ7)
> n = nrow(cp)
> summary(cp[, CompPlFcst]) / n
DecCapIncIns IncCapDecIns LittleChange

0.1888219 0.4812025 0.3299755

The three levels of CompPlFcst stand for decreased instability (DecCap
IncIns), increased instability (IncCapDecIns), and little change (Little
Change). The conditional distribution shows an increased probability of the
weather worsening (+6.9%) compared to the marginal one, which suggests that bad
weather tends to spill from the mountains into the plains. This trend is confirmed
by the decreased probability of DecCapIncIns (−3.9%) and LittleChange
(−2.9%).

The embarrassingly parallel nature of logic sampling results in very noticeable
performance gains even with only 2 slave processes; execution times for up to 6
slaves are shown in Fig. 5.8.

> system.time(cpdist(fitted, nodes = "CompPlFcst",
+ (InsInMt == "Strong") & (CldShadeConv == "Marked"),
+ n = 10ˆ7, batch = 10ˆ6))

number of slaves

se
co

nd
s

150

200

250

300

350

400

1 2 3 4 5 6

Fig. 5.8 Performance of conditional probability queries for different numbers of slave processes,
measured by its execution time (in seconds)

122 5 Parallel Computing for Bayesian Networks

user system elapsed
385.632 26.798 412.549
> cl = makeCluster(2, type = "MPI")
> system.time(cpdist(fitted, nodes = "CompPlFcst",
+ (InsInMt == "Strong") & (CldShadeConv == "Marked"),
+ n = 10ˆ7, cluster = cl))

user system elapsed
8.713 0.244 191.079

> stopCluster(cl)

The application of logic sampling to the estimation of conditional probabilities,
instead of whole distributions, shows similar performance improvements. Consider,
for example, the probability that the wind is blowing toward the west in the moun-
tains (i.e., WindFieldMt == "Westerly") conditional to the fact that it is
blowing from east/northeast in the plains (i.e., WindFieldPln == "E NE").

> cpquery(fitted, (WindFieldMt == "Westerly"),
+ (WindFieldPln == "E_NE"), n = 10ˆ7)
[1] 0.4136172
> n = nrow(hailfinder)

> summary(hailfinder[, "WindFieldMt"]) / n
LVorOther Westerly

0.47615 0.52385

The conditional probability is lower than the marginal one because the plains and
the mountains are adjacent and winds cannot completely change in direction so
suddenly.

Using two slave processes again halves the execution time.

> system.time(cpquery(fitted,
+ (WindFieldMt == "Westerly"),
+ (WindFieldPln == "E_NE"), n = 10ˆ7, batch = 10ˆ6))

user system elapsed
291.439 14.889 306.328
> cl = makeCluster(2, type = "MPI")
> system.time(cpquery(fitted,
+ (WindFieldMt == "Westerly"),
+ (WindFieldPln == "E_NE"), n = 10ˆ7, cluster = cl))

user system elapsed
0.004 0.004 178.921

> stopCluster(cl)

Adding more slave processes to the cluster improves the execution time of cpquery
even further, as was the case for cpdist in the previous example.

5.4 Applications to Inference Procedures 123

Exercises

5.1. Using the hailfinder data set included in bnlearn and a snow cluster with
at least 2 slave processes:

(a) Compute the number of levels and the most common level for each node.
(b) Split the samples among the slaves and identify which nodes have at least one

level with less than 5 observations in that particular subsample.
(c) Compute the entropy of each variable in hailfinder, defined as

H(p) = ∑−p log p,

where p is the relative frequency of each level of the variable.

5.2. Consider the alarm data set included in bnlearn.

(a) Learn the structure of the network using Inter-IAMB and a shrinkage test with
alpha = 0.01 and measure the execution time of the algorithm.

(b) Does a 2-node cluster provide a greater performance improvement than just
switching from optimized = FALSE to optimized = TRUE?

(c) Is that still true when a Monte Carlo permutation test is used?

5.3. Consider again the alarm data set from Exercise 5.2, and a snow cluster with
at least 2 nodes.

(a) Use nonparametric bootstrap to determine the distribution of the number of arcs
present in a network structure learned with hc.

(b) How does that distribution change when bootstrap samples have size m = 100?
(c) Compare the distribution of the number of score comparisons for m = 100 and

m = 5000.

5.4. Implement a parallel version of the model averaging performed using hc with
random starting networks in Sect. 2.5.1.

Solutions

Exercises of Chap. 1

1.1 Consider a directed acyclic graph with n nodes.

(a) Show that at least one node must not have any incoming arc, i.e., the graph
must contain at least one root node.

(b) Show that such a graph can have at most 1
2 n(n− 1) arcs.

(c) Show that a path can span at most n− 1 arcs.
(d) Describe an algorithm to determine the topological ordering of the graph.

(a) Let G = (V,A) be a directed graph in which each node has at least one outgoing
arc. This is equivalent to saying that each node has at least one incoming arc;
therefore, G does not have any root node. Choose a vertex v1 ∈ V. Since v1

has an outgoing arc, there is a vertex v2 such that v1→ v2. Proceeding in this
manner, we obtain a path v1→ . . .→ vn spanning all the nodes in G. But vn also
has an outgoing arc; therefore, the graph is not acyclic.

(b) Choose a vertex v1 ∈V. v1 can have at most n−1 outgoing arcs. Consider now
a second node v2 �= v1. v2 can have at most n−2 outgoing arcs; the arc v2→ v1

would create a cycle and is therefore disregarded. By induction, we have that

|A|� (n− 1)+ (n− 2)+ . . .+(1) =

(
n
2

)
=

n(n− 1)
2

.

(c) Suppose, by contradiction, that there exists a path spanning n arcs. A path can
(by definition) pass at most once through each node, and the path is spanning
n+ 1 nodes. Therefore, the path is passing twice through at least one node,
implying that the path is in fact a cycle. This contradicts the assumption that the
graph is acyclic.

(d) Two simple ways of determining the topological ordering of a directed acyclic
graph are the breadth-first search and the depth-first search algorithms, de-
scribed in Bang-Jensen and Gutin (2009) and Russell and Norvig (2009).

R. Nagarajan et al., Bayesian Networks in R: with Applications in Systems Biology,
Use R! 48, DOI 10.1007/978-1-4614-6446-4,
© Springer Science+Business Media New York 2013

125

126 Solutions

1.2 Consider the graphs shown in Fig. 1.1.

(a) Obtain the skeleton of the partially directed and directed graphs.
(b) Enumerate the acyclic graphs that can be obtained by orienting the undi-

rected arcs of the partially directed graph.
(c) List the arcs that can be reversed (i.e., turned in the opposite direction),

one at a time, without introducing cycles in the directed graph.

(a) The skeletons of the partially directed and directed graphs are, respectively:

A
a

B C

D E

A

B
C

D E

(b) Only six acyclic orientations of the partially directed graph are possible:

b

c

A

B
C

D E

A

B
C

D E

A

B
C

D E

A

B
C

D E

A

B
C

D E

A

B
C

D E

(c) All arcs of the directed graph can be reversed without introducing cycles.

1.3 The (famous) iris data set reports the measurements in centimeters of
the sepal length and width and the petal length and width for 50 flowers from
each of 3 species of iris (“setosa,” “versicolor,” and “virginica”).

(a) Load the iris data set (it is included in the data set package, which is
part of the base R distribution and does not need to be loaded explicitly)
and read its manual page.

(b) Investigate the structure of the data set.
(c) Compare the sepal length among the three species by plotting histograms

side by side.
(d) Repeat the previous point using boxplots.

(a) > data(iris)
> ?iris

Solutions 127

(b) > summary(iris)
> dim(iris)

(c) > par(mfrow = c(1, 3))
> hist(iris[iris[, "Species"] == "setosa",
+ "Sepal.Length"],
+ xlab = "length", main = "Setosa Sepal Length")
> hist(iris[iris[, "Species"] == "versicolor",
+ "Sepal.Length"],
+ xlab = "length",
+ main = "Versicolor Sepal Length")
> hist(iris[iris[, "Species"] == "virginica",
+ "Sepal.Length"],
+ xlab = "length",
+ main = "Virginica Sepal Length")

(d) > boxplot(Sepal.Length ˜ Species, data = iris)

1.4 Consider again the iris data set from Exercise 1.3.

(a) Write the data frame holding iris data frame into a space-separated
text file named “iris.txt”, and read it back into a second data frame called
iris2.

(b) Check that iris and iris2 are identical.
(c) Repeat the previous two steps with a file compressed with bzip2 named

“iris.txt.bz2”.
(d) Save iris directly (e.g., without converting it to a text table) into a file

called “iris.rda”, and read it back.
(e) List all R objects in the global environment, and remove all of them apart

from iris.
(f) Exit the R saving the contents of the current session.

(a) > write.table(iris, file = "iris.txt",
+ row.names = FALSE)
> iris2 = read.table("iris.txt", header = TRUE)

(b) > identical(iris, iris2)
(c) > bzfd = bzfile("iris.txt.bz2", open = "w")

> write.table(iris, file = bzfd, row.names = FALSE)
> close(bzfd)
> bzfd = bzfile("iris.txt.bz2", open = "r")
> iris2 = read.table(bzfd, header = TRUE)
> close(bzfd)
> identical(iris, iris2)

(d) > save(iris, file = "iris.rda")
> load("iris.rda")

(e) > ls()
> l = ls()
> rm(list = l[l != "iris"])

128 Solutions

(f) > quit(save = "yes")

1.5 Consider the gaussian.test data set included in bnlearn.

(a) Print the column names.
(b) Print the range and the quartiles of each variable.
(c) Print all the observations for which A falls in the interval [3,4] and B in

(−∞,−5]∪ [10,∞).
(d) Sample 50 rows without replacement.
(e) Draw a bootstrap sample (e.g., sample 5000 observations with replacement)

and compute the mean of each variable.
(f) Standardize each variable.

(a) > colnames(gaussian.test)
> names(gaussian.test)

(b) > for (var in names(gaussian.test))
+ print(range(gaussian.test[, var]))
> for (var in names(gaussian.test))
+ print(quantile(gaussian.test[, var],
+ probs = (1:3)/4))

(c) > condA = (gaussian.test[, "A"] >= 3) &
+ (gaussian.test[, "A"] <= 4)
> condB = (gaussian.test[, "B"] <= -4) |
+ (gaussian.test[, "B"] >= 4)
> gaussian.test[condA & condB,]

(d) > gaussian.test[sample(50, replace = FALSE),]
(e) > colMeans(gaussian.test[

+ sample(5000, replace = TRUE),])
(f) > scale(gaussian.test)

1.6 Generate a data frame with 100 observations for the following variables:

(a) A categorical variable with two levels, low and high. The first 50 obser-
vations should be set to low, the others to high.

(b) A categorical variable with two levels, good and bad, nested within the
first variable, i.e., the first 25 observations should be set to good, the second
25 to bad, and so on.

(c) A continuous, numerical variable following a Gaussian distribution with
mean 2 and variance 4 when the first variable is equal to low and with
mean 4 and variance 1 if the first variable is equal to high.

In addition, compute the standard deviation of the last variable for each con-
figuration of the first two variables. The variables can be generated as follows:

(a) > A = factor(c(rep("low", 50), rep("high", 50)),
+ levels = c("low", "high"))

(b) > nesting = c(rep("good", 25), rep("bad", 25))
> B = factor(rep(nesting, 2),
+ levels = c("good", "bad"))

Solutions 129

(c) > C = c(rnorm(50, mean = 2, sd = 2),
+ rnorm(50, mean = 4, sd = 1))

and the data frame can then be created with

> data = data.frame(A = A, B = B, C = C)

Then, the standard deviations can be computes as

> by(data[, "C"], INDICES = data[, c("A", "B")],
+ FUN = sd)

Exercises of Chap. 2

2.1 Consider the asia synthetic data set from Lauritzen and Spiegelhalter
(1988), which describes the diagnosis of a patient at a chest clinic who has just
come back from a trip to Asia and is showing dyspnea.

(a) Load the data set from the bnlearn package and investigate its character-
istics using the exploratory analysis techniques covered in Chap. 1.

(b) Create a bn object with the network structure described in the manual
page of asia.

(c) Derive the skeleton, the moral graph, and the CPDAG representing the
equivalence class of the network. Plot them using graphviz.plot.

(d) Identify the parents, the children, the neighbors, and the Markov blanket
of each node.

(a) > summary(asia)
> dim(asia)

(b) > spec = "[A][S][T|A][L|S][B|S][D|B:E][E|T:L][X|E]"
> bn = model2network(spec)

(c) > bn.skel = skeleton(bn)
> graphviz.plot(bn.skel)
> bn.moral = moral(bn)
> graphviz.plot(bn.moral)
> bn.eq = cpdag(bn)
> graphviz.plot(bn.eq)

(d) > sapply(nodes(bn), parents, x = bn)
> sapply(nodes(bn), children, x = bn)
> sapply(nodes(bn), nbr, x = bn)
> sapply(nodes(bn), mb, x = bn)

2.2 Using the network structures created in Exercise 2.1 for the asia data set,
produce the following plots with graphviz.plot:

(a) A plot of the CPDAG of the equivalence class in which the arcs belonging
to a v-structure are highlighted (either with a different color or using a
thicker line width).

130 Solutions

(b) Fill the nodes with different colors according to their role in the diagnos-
tic process: causes (“visit to Asia” and “smoking”), effects (“tuberculosis,”
“lung cancer,” and “bronchitis”), and the diagnosis proper (“chest X-ray,”
“dyspnea,” and “either tuberculosis or lung cancer/bronchitis”).

(c) Explore different layouts by changing the layout and shape arguments.

(a) > vs = vstructs(bn.eq, arcs = TRUE)
> graphviz.plot(bn.eq, highlight =
+ list(arcs = vs, lwd = 2, col = "grey"))

(b) > graphviz.plot(bn.eq,
+ highlight = list(nodes = nodes(bn),
+ fill = c("blue", "red", "green", "green", "red",
+ "blue", "red", "green"), col = "black"))

(c) > par(mfrow = c(2, 5))
> layout = c("dot", "neato", "twopi", "circo",

"fdp")
> shape = c("ellipse", "circle")
> for (l in layout) {
+ for (s in shape) {
+ main = paste(l, s)
+ graphviz.plot(bn.eq, shape = s, layout = l,
+ main = main)
+ }
+ }

2.3 Consider the marks data set analyzed in Sect. 2.3.

(a) Discretize the data using a quantile transform and different numbers of
intervals (say, from 2 to 5). How does the network structure learned from
the resulting data sets change as the number of intervals increases?

(b) Repeat the discretization using interval discretization using up to 5 inter-
vals, and compare the resulting networks with the ones obtained previously
with quantile discretization.

(c) Does Hartemink’s discretization algorithm perform better than either
quantile or interval discretization? How does its behavior depend on the
number of initial breaks?

(a) As the number of intervals increases, fewer and fewer arcs are included in the
network. This is a consequence of the loss of information resulting from dis-
cretizing variables one at a time, without considering their joint distribution.

> intervals = 2:5
> par(mfrow = c(1, length(intervals)))
> for (int in intervals) {
+ dmarks = discretize(marks, breaks = int,
+ method = "quantile")
+ main = paste("dmarks,", int, "intervals")

Solutions 131

+ graphviz.plot(hc(dmarks), main = main)
+ }

(b) Interval discretization’s performance is comparable with the one of quantile
discretization. Again, as the number of intervals increases, the dependence re-
lationships linking the variables are lost, and fewer and fewer arcs are picked
up by the structure learning algorithm.

> intervals = 2:5
> par(mfrow = c(1, length(intervals)))
> for (int in intervals) {
+ dmarks = discretize(marks, breaks = int,
+ method = "interval")
+ main = paste("dmarks,", int, "intervals")
+ graphviz.plot(hc(dmarks), main = main)
+ }

(c) Hartemink’s discretization performs better than both interval and quantile dis-
cretization if we start with a suitably high number of breaks (ibreaks = 50)
and perform the initial discretization with a quantile transform (idisch =
"interval"). Even when each variable is discretized into 4 intervals, a sub-
stantial part of the network structure is still learned correctly.

> intervals = 2:5
> par(mfrow = c(1, length(intervals)))
> for (int in intervals) {
+ dmarks = discretize(marks, breaks = int,
+ method = "hartemink", ibreaks = 50,
+ idisc = "interval")
+ main = paste("dmarks,", int, "intervals")
+ graphviz.plot(hc(dmarks), main = main)
+ }

2.4 The ALARM network (Beinlich et al. 1989) is a Bayesian network designed
to provide an alarm message system for patients hospitalized in intensive care
units (ICU). Since ALARM is commonly used as a benchmark in literature, a
synthetic data set of 5000 observations generated from this network is available
from bnlearn as alarm.

(a) Create a bn object for the “true” structure of the network using the model
string provided in its manual page.

(b) Compare the networks learned with different constraint-based algorithms
with the true one, both in terms of structural differences and using either
BIC or BDe.

(c) The overall performance of constraint-based algorithms suggests that the
asymptotic χ2 conditional independence tests may not be appropriate for
analyzing alarm. Are permutation or shrinkage tests better choices?

(d) How are the above learning strategies affected by changes to alpha?

132 Solutions

(a) The model string reported in the manual page is the following:

> true = empty.graph(names(alarm))
> modelstring(true) = paste("[HIST|LVF][CVP|LVV]",
+ "[PCWP|LVV][HYP][LVV|HYP:LVF][LVF]",
+ "[STKV|HYP:LVF][ERLO][HRBP|ERLO:HR]",
+ "[HREK|ERCA:HR][ERCA][HRSA|ERCA:HR][ANES]",
+ "[APL][TPR|APL][ECO2|ACO2:VLNG][KINK]",
+ "[MINV|INT:VLNG][FIO2][PVS|FIO2:VALV]",
+ "[SAO2|PVS:SHNT][PAP|PMB][PMB][SHNT|INT:PMB]",
+ "[INT][PRSS|INT:KINK:VTUB][DISC][MVS]",
+ "[VMCH|MVS][VTUB|DISC:VMCH]",
+ "[VLNG|INT:KINK:VTUB][VALV|INT:VLNG]",
+ "[ACO2|VALV][CCHL|ACO2:ANES:SAO2:TPR]",
+ "[HR|CCHL][CO|HR:STKV][BP|CO:TPR]", sep = "")

(b) The performance of constraint learning algorithms for the alarm data set im-
proves in newer algorithms, which is not unexpected because this network is
used so often as a benchmark in publications. However, note how with the de-
fault parameters the network structures that are learned from the data differ from
true. The overall number of arcs in each network is similar to the number of
arcs in true, but many false positives and false negatives are present. As a re-
sult, network scores for the learned networks are much lower than the one for
the true network.

> bn.gs = gs(alarm)
> bn.iamb = iamb(alarm)
> bn.inter = inter.iamb(alarm)
> par(mfrow = c(2, 2))
> graphviz.plot(true, main = "True Structure")
> graphviz.plot(bn.gs, main = "Grow-Shrink")
> graphviz.plot(bn.iamb, main = "IAMB")
> graphviz.plot(bn.inter, main = "Inter-IAMB")
> unlist(compare(true, bn.gs))
> unlist(compare(true, bn.iamb))
> unlist(compare(true, bn.inter))
> score(cextend(bn.gs), alarm, type = "bde")
> score(cextend(bn.iamb), alarm, type = "bde")
> score(cextend(bn.inter), alarm, type = "bde")

(c) Permutation tests significantly improve the performance of both IAMB and
Inter-IAMB: true positives (i.e., arcs correctly included in the network) increase
for all learning algorithms. False positives (i.e., arcs incorrectly included in
the network) and false negatives (i.e., arcs incorrectly absent from the network)
are also fewer, though by a smaller amount.

Solutions 133

> bn.gs2 = gs(alarm, test = "smc-x2")
> bn.iamb2 = iamb(alarm, test = "smc-x2")
> bn.inter2 = inter.iamb(alarm, test = "smc-x2")
> unlist(compare(true, bn.gs2))
> unlist(compare(true, bn.iamb2))
> unlist(compare(true, bn.inter2))

(d) Shrinkage tests improve the results of structure learning much like permutation
tests, but with a much smaller execution time.

> bn.gs3 = gs(alarm, test = "smc-x2", B = 10000,
> alpha = 0.01)
> bn.iamb3 = iamb(alarm, test = "smc-x2",
> B = 10000, alpha = 0.01)
> bn.inter3 = inter.iamb(alarm, test = "smc-x2",
> B = 10000, alpha = 0.01)
> unlist(compare(true, bn.gs3))
> unlist(compare(true, bn.iamb3))
> unlist(compare(true, bn.inter3))

2.5 Consider again the alarm network used in Exercise 2.4.

(a) Learn its structure with hill-climbing and tabu search, using the posterior
density BDe as a score function. How does the network structure change
with the imaginary sample size iss?

(b) Does the length of the tabu list have a significant impact on the network
structures learned with tabu?

(c) How does the BIC score compare with BDe at different sample sizes in
terms of structure and score of the learned network?

(a) In both hill-climbing and tabu search the number of arcs increases with the
value of iss. Since the imaginary sample size determines how much weight
is assigned to the prior distribution compared to the sample, it also controls the
amount of smoothing applied to the posterior density. For this reason, (compar-
atively) large values of iss oversmooth the data and result in widely different
network having similar scores and, in turn, allow too many arcs to be included
in the network.

> par(mfrow = c(2, 5))
> for (iss in c(1, 5, 10, 20, 50)) {
+ bn = hc(alarm, score = "bde", iss = iss)
+ main = paste("hc(..., iss = ", iss, ")",
+ sep = "")
+ sub = paste(narcs(bn), "arcs")
+ graphviz.plot(bn, main = main, sub = sub)
+ }
> for (iss in c(1, 5, 10, 20, 50)) {
+ bn = tabu(alarm, score = "bde", iss = iss)

134 Solutions

+ main = paste("tabu(..., iss = ", iss, ")",
+ sep = "")
+ sub = paste(narcs(bn), "arcs")
+ graphviz.plot(bn, main = main, sub = sub)
+ }

(b) The length of the tabu list does have a significant impact on structure learning,
for two reasons. First of all, it does increase the number of network structures
that are by tabu, and therefore structure learning requires more time. This is
especially relevant for score functions that are expensive to compute, such as
BGe. Furthermore, the score of network structure consistently increases with
the length of the tabu list; getting stuck into a local maximum becomes more
and more unlikely as the tabu list grows.

> par(mfrow = c(1, 5))
> for (n in c(10, 15, 20, 50, 100)) {
+ bn = tabu(alarm, score = "bde", tabu = n)
+ bde = score(bn, alarm, type = "bde")
+ main = paste("tabu(..., tabu = ", n, ")",
+ sep = "")
+ sub = paste(ntests(bn), "steps, score", bde)
+ graphviz.plot(bn, main = main, sub = sub)
+ }

(c) The BIC score is asymptotically equivalent to BDe, so the networks learned
using these two scores become more similar as sample size increases. At small
sample sizes, BIC penalizes dense networks more heavily than BDe and there-
fore results in much fewer arcs being included and in much lower execution
time.

> par(mfrow = c(2, 6))
> for (n in c(100, 200, 500, 1000, 2000, 5000)) {
+ bn.bde = hc(alarm[1:n,], score = "bde")
+ bn.bic = hc(alarm[1:n,], score = "bic")
+ bde = score(bn.bde, alarm, type = "bde")
+ bic = score(bn.bic, alarm, type = "bic")
+ main = paste("BDe, sample size", n)
+ sub = paste(ntests(bn.bde), "steps, score", bde)
+ graphviz.plot(bn.bde, main = main, sub = sub)
+ main = paste("BIC, sample size", n)
+ sub = paste(ntests(bn.bic), "steps, score", bic)
+ graphviz.plot(bn.bic, main = main, sub = sub)
+ }

2.6 Consider the observational data set from Sachs et al. (2005) used in
Sect. 2.5.1 (the original data set, not the discretized one).

(a) Evaluate the networks learned by hill-climbing with BIC and BGe using
cross-validation and the log-likelihood loss function.

Solutions 135

(b) Use bootstrap resampling to evaluate the distribution of the number of arcs
present in each of the networks learned in the previous point. Do they differ
significantly?

(c) Compute the averaged network structure for sachs using hill-climbing
with BGe and different imaginary sample sizes. How does the value of the
significance threshold change as iss increases?

(a) The network learned with BGe appears to fit the data better than the one
fitted with BIC, but not by a wide margin. Therefore, we need to repeat
cross-validation for a suitable number of times to conclude the difference is
significant.

> sachs = read.table("sachs.data.txt",
+ header = TRUE)
> bn.bic = hc(sachs, score = "bic-g")
> bn.cv(bn.bic, data = sachs)
> bn.bge = hc(sachs, score = "bge")
> bn.cv(bn.bge, data = sachs)

(b) The distributions of the number of arcs for BIC and BGe present important
differences. First, the latter is bell-shaped, while the former is markedly asym-
metric. Second, the mean and the standard deviations of the two distributions
are different (the exact values depend on the bootstrap samples, so they change
at each new simulation).

> narcs.bic =
+ bn.boot(sachs, algorithm = "hc",
+ algorithm.args = list(score = "bic-g"),
+ statistic = narcs)
> narcs.bge =
+ bn.boot(sachs, algorithm = "hc",
+ algorithm.args = list(score = "bge"),
+ statistic = narcs)
> narcs.bic = unlist(narcs.bic)
> narcs.bge = unlist(narcs.bge)
> par(mfrow = c(1, 2))
> hist(narcs.bic, main = "BIC", freq = FALSE)
> curve(dnorm(x, mean = mean(narcs.bic),
+ sd = sd(narcs.bic)), add = TRUE, col = 2)
> hist(narcs.bge, main = "BGe", freq = FALSE)
> curve(dnorm(x, mean = mean(narcs.bge),
+ sd = sd(narcs.bge)), add = TRUE, col = 2)

(c) > t = numeric(5)
> iss = c(5, 10, 20, 50, 100)
> for (i in seq_along(iss)) {
+ s = boot.strength(sachs, algorithm = "hc",
+ algorithm.args = list(score = "bge",

136 Solutions

+ iss = iss[i]))
+ t[i] = attr(s, "threshold")
+ }

Exercises of Chap. 3

3.1 Consider the Canada data set from the vars package, which we analyzed
in Sect. 3.5.1.

(a) Load the data set from the vars package and investigate its properties using
the exploratory analysis techniques covered in Chap. 1.

(b) Estimate a VAR(1) process for this data set.
(c) Build the auto-regressive matrix A and the constant matrix B defining the

VAR(1) model.
(d) Compare the results with the LASSO matrix when estimating the L1-

penalty with cross-validation.
(e) What can you conclude ?

(a) > data(Canada)
> summary(Canada)

(b) > var.1c = VAR(Canada, p = 1, type = "const")
(c) > coefficients = coef(var.1c)

> mat = matrix(0, 4, 5)
> pvalue = 0.05
> pos = which(coefficients$e[, "Pr(>|t|)"] < pvalue)
> mat[1, pos] = coefficients$e[pos, "Estimate"]
> pos =
+ which(coefficients$prod[, "Pr(>|t|)"] < pvalue)
> mat[2, pos] = coefficients$prod[pos, "Estimate"]
> pos =
+ which(coefficients$rw[, "Pr(>|t|)"] < pvalue)
> mat[3, pos] = coefficients$rw[pos, "Estimate"]
> pos = which(coefficients$U[, "Pr(>|t|)"] < pvalue)
> mat[4, pos] = coefficients$U[pos, "Estimate"]
> A = mat[, 1:4]
> B = matrix(mat[, 5], 4, 1)

(d) > library(lars)
> data = Canada
> x = data[-c(dim(data)[1]),]
> fit.all = lapply(colnames(data),
+ function(gene) {
+ y = data[-c(1), gene]
+ lars(y = y, x = x, type = "lasso")
+ })

Solutions 137

> cv.pred.all = lapply(1:dim(data)[2],
+ function(gene) {
+ y = data[-c(1), gene]
+ lasso.cv = cv.lars(y = y, x = x,
+ mode = "fraction")
+ frac = lasso.cv$index[which.min(lasso.cv$cv)]
+ predict(fit.all[[gene]], s = frac,
+ type = "coef", mode = "fraction")
+ })
> cv.pred.all[[1]]$coefficients
> cv.pred.all[[2]]$coefficients
> cv.pred.all[[3]]$coefficients
> cv.pred.all[[4]]$coefficients

(e) We can conclude that the LASSO is not selective enough when there are too few
variables. In this case (4 variables and 18 time points), the classic VAR process
inference procedure provided by the vars package is more appropriate.

3.2 Consider the arth800 data set from the GeneNet package, which we
analyzed in Sects. 3.5.2 and 3.5.3.

(a) Load the data set from the GeneNet package. The time series expression of
the 800 genes is included in a data set called arth800.expr. Investigate
its properties using the exploratory analysis techniques covered in Chap. 1.

(b) For this practical exercise, we will work on a subset of variables (one for
each gene) having a large variance. Compute the variance of each of the 800
variables, plot the various variance values in decreasing order, and create
a data set with the variables greater than 2.

(c) Can you fit a VAR process with a usual approach from this data set?
(d) Which alternative approaches can be used to fit a VAR process from this

data set?
(e) Estimate a dynamic Bayesian network with each of the alternative ap-

proaches presented in this chapter.

(a) > library(GeneNet)
> data(arth800)
> summary(arth800.expr)
> dim(arth800.expr)

The data contains 2 sets of 11 time points.
(b) > variance = diag(var(arth800.expr))

> plot(sort(variance, decreasing = TRUE),
+ type = "l", ylab = "Variance")
> abline(h = 2, lty = 2)
> posVar2 = which(variance > 2)
> dataVar2 = arth800.expr[, posVar2]
> dim(dataVar2)

138 Solutions

(c) It is not possible to fit a VAR process with the default approach proposed in the
package vars as the number of variable is greater (49 genes) than the number
of measurements (22 time points).
If we try to do that,

> dataVar2inline = dataVar2[c(seq(1, 22, by = 2),
+ seq(2, 22, by = 2)),]
> library(vars)
> var.1c = VAR(data, p = 1, type = "const")

The estimated coefficient contains many missing values (NA); therefore, ap-
proaches allowing for dimension reduction are required to analyze these data.

(d) We consider the following dimension reduction approaches:

• L1 norm penalty (LASSO)
• James-Stein shrinkage
• Low-order conditional dependencies approximation

(e) Various approaches for reduction dimension

• LASSO with lars:

> library(lars)
> data = dataVar2inline
> x = data[-c(21:22),]
> fit.all = lapply(colnames(data),
+ function(gene) {
+ y = data[-(1:2), gene]
+ lars(y = y, x = x, type = "lasso")
+ })
> cv.pred.all = lapply(1:dim(data)[2],
+ function(gene) {
+ y = data[-(1:2), gene]
+ lasso.cv = cv.lars(y = y, x = x,
+ mode = "fraction")
+ frac = lasso.cv$index[
+ which.min(lasso.cv$cv)]
+ predict(fit.all[[gene]], s = frac,
+ type = "coef", mode = "fraction")
+ })
> DBNlasso = matrix(0, dim(data)[2], dim(data)[2])
> for (i in 1:dim(DBNlasso)[1]) {
+ DBNlasso[i,] =
+ cv.pred.all[i][[1]]$coefficients
+ }
> # percentage of arcs
> sum(DBNlasso != 0)
[1] 421

Solutions 139

> sum(DBNlasso != 0)/prod(dim(DBNlasso))
[1] 0.1753436
> plot(sort(abs(DBNlasso), decr = TRUE)[1:500],
+ type = "l",
+ ylab = "Absolute coefficients")

• James-Stein shrinkage with GeneNet:

> DBNGeneNet = ggm.estimate.pcor(dataVar2,
+ method = "dynamic")
> # p-values, q-values and posterior probabilities
> # for each potential arc
> DBNGeneNet.edges =
+ network.test.edges(DBNGeneNet)
> # plot the arcs probability by decreasing order
> plot(DBNGeneNet.edges[, "prob"], type = "l")
> # number of arcs with prob > 0.9
> # (i.e. local fdr < 0.1)
> sum(DBNGeneNet.edges$prob > 0.9)

• First-order conditional dependencies approximation with G1DBN:

> library(G1DBN)
> data = dataVar2inline
> # next step is a bit long but is less than
> # 3 minutes with a regular PC
> DBNG1DBNstep1 =
+ DBNScoreStep1(data, method = "ls")
> DBNG1DBN = DBNScoreStep2(DBNG1DBNstep1$S1ls,
+ data, method = "ls", alpha1 = 0.5)
> plot(sort(DBNG1DBN), type = "l",
+ ylab = "Arcs’ p-values")

• LASSO and network modularity with SIMoNe:

> library(simone)
> data = dataVar2inline
> ctrl = setOptions(clusters.crit = "BIC")
> DBNsimone.BIC =
+ simone(data, type = "time-course",
+ clustering = TRUE, control = ctrl)
> DBNsimone.BIC.net = getNetwork(DBNsimone.BIC)
> # number of arcs:
> sum(DBNsimone.BIC.net$A == 1)

3.3 Consider the dimension reduction approaches used in the previous exercise
and the arth800 data set from the GeneNet package.

140 Solutions

(a) For a comparative analysis of the different approaches, select the top 50
arcs for each approach (function BuildEdges from the G1DBN package
can be used to that end).

(b) Plot the four inferred networks with the function plot from package
G1DBN.

(c) How many arcs are common to the four inferred networks?
(d) Are the top 50 arcs of each inferred network similar? What can you con-

clude?

Using the results of the previous exercise.

(a) Top 50 arcs computation.

• With the LASSO:

> lasso.thres.top50 = mean(sort(abs(DBNlasso),
+ decreasing = TRUE)[50:51])
> DBNlasso.50edges =
+ BuildEdges(score = -abs(DBNlasso),
+ threshold = -lasso.thres.top50)

• With GeneNet:

> DBNGeneNet.50edges =
+ cbind(DBNGeneNet.edges[1:50, "node1"],
+ DBNGeneNet.edges[1:50, "node2"])

• With SIMoNe:

> nbArcs = 50
> ctrl = setOptions(clusters.crit = nbArcs)
> DBNsimone.50 = simone(data,type = "time-course",
+ clustering = TRUE,control = ctrl)
> DBNsimone.50.net = getNetwork(DBNsimone.50,
+ selection = nbArcs)
> DBNsimone.edges =
+ BuildEdges(score = -DBNsimone.50.net$A,
+ threshold = 0)

• With G1DBN:

> G1DBN.thres.top50 = mean(sort(DBNG1DBN)[50:51])
> DBNG1DBN.edges =
+ BuildEdges(score = DBNG1DBN,
+ threshold = G1DBN.thres.top50, prec = 3)

(b) Plots of the top 50 arcs identified by each approach.

• With the LASSO:

> par(mfrow = c(2, 2))
> DBNlasso.top50 =

Solutions 141

+ graph.edgelist(cbind(DBNlasso.50edges[, 1],
+ DBNlasso.50edges[, 2]))
> DBNlasso.nodeCoord =
+ layout.fruchterman.reingold(DBNlasso.top50)
> plot(DBNlasso.top50,
+ layout = DBNlasso.nodeCoord,
+ edge.arrow.size = 0.5, vertex.size = 10,
+ main = "Network inferred with LASSO"")

• With GeneNet:

> DBNGeneNet.top50 =
+ graph.edgelist(DBNGeneNet.50edges)
> DBNGeneNet.nodeCoord =
+ layout.fruchterman.reingold(DBNGeneNet.50edges)
> plot(DBNGeneNet.top50,
+ layout = DBNGeneNet.nodeCoord,
+ edge.arrow.size = 0.5, vertex.size = 10,
+ main = "Network inferred with GeneNet")

• With SIMoNe:

> DBNsimone.top50 =
+ graph.edgelist(cbind(DBNsimone.50edges[, 1],
+ DBNsimone.50edges[, 2]))
> DBNsimone.nodeCoord =
+ layout.fruchterman.reingold(DBNsimone.top50)
> plot(DBNsimone.top50,
+ layout = DBNsimone.nodeCoord,
+ edge.arrow.size = 0.5, vertex.size = 10,
+ main = "Network inferred with SIMoNe")

• With G1DBN:

> DBNG1DBN.top50 =
+ graph.edgelist(cbind(DBNG1DBN.50edges[, 1],
+ DBNG1DBN.50edges[, 2]))
> DBNG1DBN.nodeCoord =
+ layout.fruchterman.reingold(DBNG1DBN.top50)
> plot(DBNG1DBN.top50, layout=DBNG1DBN.nodeCoord,
+ edge.arrow.size = 0.5, vertex.size = 10,
+ main = "Network inferred with G1DBN")

(c) Arcs common to all 4 inferred networks:

> DBNlasso.50edges.mat =
+ as.numeric(abs(DBNlasso) > lasso.thres.top50)
> DBNGeneNet.50edges.mat = matrix(0, 49, 49)

142 Solutions

> for (i in 1:50){
> DBNGeneNet.50edges.mat[DBNGeneNet.edges$

node2[i],
+ DBNGeneNet.edges$node1[i]] = 1
> }#FOR
> DBNsimone.50edges.mat = DBNsimone.50edges.net$A
> DBNG1DBN.50edges.mat =
+ as.numeric(DBNG1DBN < G1DBN.thres.top50)
> sum(DBNG1DBN.50edges.mat, na.rm = TRUE)
> sum(which(DBNlasso.50edges.mat == 1) %in%
+ which(DBNGeneNet.50edges.mat == 1))
> sum(which(DBNlasso.50edges.mat == 1) %in%
+ which(DBNG1DBN.50edges.mat == 1))
> sum(which(DBNlasso.50edges.mat == 1) %in%
+ which(DBNsimone.50edges.mat == 1))

(d) Different dimension reduction procedures select significantly different sets of
arcs. It is likely that the various approaches have different power in identifying
the dependencies present in the data and therefore complement each other.

Exercises of Chap. 4

4.1 Apply the junction tree algorithm to the validated network structure from
Sachs et al. (2005), and draw the resulting undirected triangulated graph.

P38

p44.42

pakts
473

PIP2

PIP3

pjnk

PKA

PKC plcg

pmek

praf

P38

PKA

PKCp44.42

pmek
pakts
473

PIP2

PIP3

plcg

pjnk

praf

4.2 Consider the Sachs et al. (2005) data used in Sect. 4.2.

(a) Perform parameter learning with the bn.fit function from bnlearn and
the validated network structure. How do the maximum likelihood estimates

Solutions 143

differ from the Bayesian ones, and how do the latter vary as the imaginary
sample size increases?

(b) Node PKA is parent of all the nodes in the praf → pmek → p44.42 →
pakts473 chain. Use the junction tree algorithm to explore how our be-
liefs on those nodes change when we have evidence that PKA is “LOW,” and
when PKA is “HIGH.”

(c) Similarly, explore the effects on pjnk of evidence on PIP2, PIP3, and
plcg.

(a) Parameter fitting can be carried out as follows:

> library(bnlearn)
> val.spec = paste("[PKC][PKA|PKC][praf|PKC:PKA]",
+ "[pmek|PKC:PKA:praf][p44.42|pmek:PKA]",
+ "[pakts473|p44.42:PKA][P38|PKC:PKA]",
+ "[pjnk|PKC:PKA][plcg][PIP3|plcg]",
+ "[PIP2|plcg:PIP3]")
> val = model2network(val.spec)
> isachs = isachs[, 1:11]
> for (i in names(isachs))
+ levels(isachs[, i]) = c("LOW", "AVG", "HIGH")
> fitted = bn.fit(val, isachs, method = "mle")
> fitted2 = bn.fit(val, isachs, method = "bayes",
+ iss = 5)
> fitted3 = bn.fit(val, isachs, method = "bayes",
+ iss = 10)
> fitted4 = bn.fit(val, isachs, method = "bayes",
+ iss = 20)

The main difference between maximum likelihood and Bayesian estimates is
that the former can contain NaNs, while the latter are always completely spec-
ified. This happens when, for a particular node, some of the parents’ configu-
rations are not observed; therefore, the distribution of the node conditional on
that configuration cannot be estimated from the data. In Bayesian estimates,
such unknown conditional distributions result in the posterior being equal to
the prior, that is, uniform.
As for the effects of the imaginary sample size, larger values result in smoother
estimates because of the increasing weight given to the uniform prior compared
to the sample. Posterior parameter estimates move away from 0 and 1, and there-
fore inference is affected by fewer numerical problems.

(b) Continuing from the previous point,

> library(gRain)
> jtree = compile(as.grain(fitted))
> jprop = setFinding(jtree, nodes = "PKA",
+ states = "LOW")
> query = c("praf", "pmek", "p44.42", "pakts473")

144 Solutions

> querygrain(jtree, nodes = query)
> querygrain(jprop, nodes = query)
> jprop = setFinding(jtree, nodes = "PKA",
+ states = "HIGH")
> querygrain(jtree, nodes = query)
> querygrain(jprop, nodes = query)

When PKA is HIGH, the activity of all the proteins corresponding to the query
nodes is inhibited (the LOW probability increases and the HIGH decreases).
When PKA is LOW, the opposite is true (the LOW probability decreases and the
HIGH increases).

(c) Continuing from the previous two points,

> jprop = setFinding(jtree,
+ nodes = c("PIP2", "PIP3", "plcg"),
+ states = rep("LOW", 3))
> a = querygrain(jtree, nodes = "pjnk")
> b = querygrain(jprop, nodes = "pjnk")
> identical(a, b)

Our belief on the pjnk node is completely unaffected by any evidence on either
PIP2, PIP3, or plcg, because there is no path from the former to the any of
the latter. Therefore, changes in belief due to new evidence cannot propagate
from PIP2, PIP3, and plcg to pjnk.

4.3 Consider the marks data set analyzed in Sect. 2.3.

(a) Learn both the network structure and the parameters with likelihood-
based approaches, i.e., BIC or AIC, for structure learning and maximum
likelihood estimates for the parameters.

(b) Query the network learned in the previous point for the probability to have
the marks for both STAT and MECH above 60, given evidence that the mark
for ALG is at most 60. Are the two variables independent given the evidence
on ALG?

(c) What is the (conditional) probability of having an average vote (in the
[60,70] range) in both VECT and MECH while having an outstanding vote
in ALG (at least 90)?

(a) > bn = hc(marks, score = "bic-g")
> fitted = bn.fit(bn, marks)

(b) > cpquery(fitted,
+ event = (STAT > 60) & (MECH > 60),
+ evidence = (ALG <= 60), n = 5 * 10ˆ6)
> cpquery(fitted, event = (STAT > 60),
+ evidence = (ALG <= 60), n = 5 * 10ˆ6)
> cpquery(fitted, event = (MECH > 60),
+ evidence = (ALG <= 60), n = 5 * 10ˆ6)

Solutions 145

The conditional probability of the two events is not equal to the product of the
corresponding marginal probabilities; therefore, STAT and MECH are not inde-
pendent given the evidence on ALG. Note that the fact that ALG d-separatesSTAT
and MECH is not relevant in this case, because the evidence on ALG is soft evi-
dence (i.e., ALG is still a random variable, just with a different distribution).

(c) > cpquery(fitted,
+ event = ((MECH >= 60) & (MECH <= 70)) |
+ ((VECT >= 60) & (VECT <= 70)),
+ evidence = (ALG >= 90), n = 5 * 10ˆ6)

4.4 Using the dynamic Bayesian network dbn2 from Sect. 4.3, investigate the
effects of genes 257710 at and 255070 at observed at time t − 2 on gene
265768 at at time t.

> cpquery(dbn2.fit, event = (‘265768_at‘ > 8),
+ evidence = (‘257710_at‘ > 8))
[1] 0.3571429
> cpquery(dbn2.fit, event = (‘265768_at‘ > 8),
+ evidence = (‘255070_at‘ > 8))
[1] 0.5903756
> cpquery(dbn2.fit, event = (‘265768_at‘ > 8),
+ evidence = TRUE)
[1] 0.4427231

High expression levels of gene 257710 at at time t− 2 reduce the probability of
high expression levels of gene 265768 at at time t; the opposite is true for gene
255070 at.

Exercises of Chap. 5

5.1 Using the hailfinder data set included in bnlearn and a snow cluster
with at least 2 slave processes:

(a) Compute the number of levels and the most common level for each node.
(b) Split the samples among the slaves, and identify which nodes have at least

one level with less than 5 observations in that particular subsample.
(c) Compute the entropy of each variable in hailfinder, defined as

H(p) = ∑−p log p

where p is the relative frequency of each level of the variable.

(a) > library(bnlearn)
> library(snow)
> clusterSetupSPRNG(cl)
> cl = makeCluster(2, type = "SOCK")

146 Solutions

> parSapply(hailfinder, cl = cl, FUN = nlevels)
> most.common = function(x) {
+ names(which.max(table(x)))
+ }#MOST.COMMON
> parSapply(cl, hailfinder, most.common)

(b) > folds = split(sample(nrow(hailfinder)),
+ seq_len(length(cl)))
> small.counts = function(x, data) {
+ sapply(data[x,],function(y) any(table(y) <= 5))
+ }
> parSapply(cl, folds, small.counts,
+ data = hailfinder)

(c) > h = function(x){
+ p = prop.table(table(x))
+ return(sum(-p*log(p)))
> }#H
> parSapply(cl, hailfinder, h)
> stopCluster(cl)

5.2 Consider the alarm data set included in bnlearn.

(a) Learn the structure of the network using Inter-IAMB and a shrinkage test
with alpha = 0.01, and measure the execution time of the algorithm.

(b) Does a 2-node cluster provide a greater performance improvement than
just switching from optimized = FALSE to optimized = TRUE?

(c) Is that still true when a Monte Carlo permutation test is used?

(a) > library(snow)
> cl = makeCluster(2, type = "SOCK")
> clusterSetupSPRNG(cl)
> system.time(inter.iamb(alarm, test = "mi-sh",
+ alpha = 0.01))

(b) > system.time(inter.iamb(alarm, test = "mi-sh",
+ alpha = 0.01, optimized = FALSE))
> system.time(inter.iamb(alarm, test = "mi-sh",
+ alpha = 0.01, cluster = cl))

The nonparallelized, optimized algorithm is about twice as fast as the non-
optimized one. It is also faster than using a 2-node cluster by about 30%.

(c) > system.time(inter.iamb(alarm, test = "mc-mi",
+ alpha = 0.01, B = 1000))
> system.time(inter.iamb(alarm, test = "mc-mi",
+ alpha = 0.01, B = 1000, optimized = FALSE))
> system.time(inter.iamb(alarm, test = "mc-mi",
+ alpha = 0.01, B = 1000, cluster = cl))
> stopCluster(cl)

Solutions 147

In this case, the difference in execution time between the parallel and the
optimized versions of Inter-IAMB is much smaller, because the extra time
required by permutation tests (compared to shrinkage ones) makes the overhead
of the snow cluster much less noticeable.

5.3 Consider again the alarm data set from Exercise 5.2, and a snow cluster
with at least 2 nodes.

(a) Use nonparametric bootstrap to determine the distribution of the number
of arcs present in a network structure learned with hc.

(b) How does that distribution change when bootstrap samples have size m =
100?

(c) Compare the distribution of the number of score comparisons for m =
100 and m = 5000.

(a) > library(snow)
> cl = makeCluster(2, type = "SOCK")
> clusterSetupSPRNG(cl)
> n = bn.boot(alarm, narcs, R = 50,
+ algorithm = "hc", cluster = cl)
> hist(unlist(n))

The distribution of the number of arcs is very tight around 55. It is skewed to
the left and varies in the range [53,58]. This suggests that the sample size of
alarm is large enough to reliably learn the structure of the network.

(b) > n = bn.boot(alarm, narcs, R = 50, m = 1000
+ algorithm = "hc", cluster = cl)
> hist(unlist(n))

The distribution of the number of arcs has a much greater spread the one studied
in the previous point; it varies in the range [24,36]. Its expectation is also much
smaller than before. Furthermore, the distribution is not as skewed as before.

(c) > n1 = bn.boot(alarm, ntests, R = 50, m = 100,
> algorithm = "hc", cluster = cl)
> n2 = bn.boot(alarm, ntests, R = 50, m = 5000,
> algorithm = "hc", cluster = cl)
> par(mfrow = c(1, 2))
> hist(unlist(n1), main = "m = 100")
> hist(unlist(n2), main = "m = 5000")
> stopCluster(cl)

The number of network scores computed for m = 5000 is greater than the cor-
responding number for m = 100; the former varies in the range [2466,2610],
while the latter in [1602,1854]. Both distributions are skewed on the left and
have similar spreads.

5.4 Implement a parallel version of the model averaging performed using hc
with random starting networks in Sect. 2.5.1.

148 Solutions

> library(snow)
> cl = makeCluster(2, type = "SOCK")
> clusterSetupSPRNG(cl)
> clusterEvalQ(cl, library(bnlearn))
> sachs = read.table("code/sachs.data.txt",
+ header = TRUE)
> dsachs = discretize(sachs, method = "hartemink",
+ breaks = 3, ibreaks = 60)
> clusterExport(cl, list("dsachs"))
> nodes = names(dsachs)
> start = random.graph(nodes = nodes,
+ method = "melancon", num = 50)
> netlist = parLapply(cl, start, function(net) {
+ hc(dsachs, score = "bde", iss = 10, start = net)})
> rnd = custom.strength(netlist, nodes = nodes)
> rnd[(rnd$strength > 0.85) & (rnd$direction >= 0.5),]
> avg.start = averaged.network(rnd, threshold = 0.85)
> stopCluster(cl)

References

Abramson B, Brown J, Edwards W, Murphy A, Winkler RL (1996) Hailfinder: a Bayesian system
for forecasting severe weather. Int J Forecast 12(1):57–71

Aliferis CF, Statnikov A, Tsamardinos I, Mani S, Xenofon XD (2010a) Local causal and Markov
blanket induction for causal discovery and feature selection for classification part I: algorithms
and empirical evaluation. J Mach Learn Res 11:171–234

Aliferis CF, Statnikov A, Tsamardinos I, Mani S, Xenofon XD (2010b) Local causal and Markov
blanket induction for causal discovery and feature selection for classification part II: analysis
and extensions. J Mach Learn Res 11:235–284

Balov N (2011) mugnet: mixture of Gaussian Bayesian network model. R package version 0.13.5
Balov N, Salzman P (2012) catnet: categorical Bayesian Network inference. R package version

1.13.4
Bang-Jensen J, Gutin G (2009) Digraphs: theory, algorithms and applications, 2nd edn. Springer,

Heidelberg
Beal M, Falciani F, Ghahramani Z, Rangel C, Wild D (2005) A Bayesian approach to reconstruct-

ing genetic regulatory networks with hidden factors. Bioinformatics 21:349–356
Beinlich IA, Suermondt HJ, Chavez RM, Cooper GF (1989) The ALARM monitoring system: a

case study with two probabilistic inference techniques for belief networks. In: Proceedings of
the 2nd European conference on artificial intelligence in medicine, Springer, pp 247–256

Bera AK, Jarque CM (1981) Efficient tests for normality, homoscedasticity and serial indepen-
dence of regression residuals: Monte Carlo evidence. Econ Lett 7(4):313–318

Borgelt C, Steinbrecher M, Krus R (2009) Graphical models: representations for learning, reason-
ing and data mining, 2nd edn. Wiley, New York

Bøttcher SG, Dethlefsen C (2003) deal: a package for learning Bayesian networks. J Stat Softw
8(20):1–40

Bouckaert RR (1995) Bayesian belief networks: from construction to inference. PhD thesis,
Utrecht University, The Netherlands

Castelo R, Roverato A (2006) A robust procedure for Gaussian graphical model search from
microarray data with p larger than n. J Mach Learn Res 7:2621–2650

Castillo E, Gutiérrez JM, Hadi AS (1997) Expert systems and probabilistic network models.
Springer, New York

Cheng J, Druzdel MJ (2000) AIS-BN: an adaptive importance sampling algorithm for evidential
reasoning in large Bayesian networks. J Artif Intell Res 13:155–188

Chickering DM (1995) A transformational characterization of equivalent Bayesian network struc-
tures. In: Proceedings of the 11th conference on uncertainty in artificial intelligence (UAI95),
pp 87–98

Chickering DM (1996) Learning Bayesian networks is NP-complete. In: Fisher D, Lenz H (eds)
Learning from data: artificial intelligence and statistics V. Springer, New York, pp 121–130

R. Nagarajan et al., Bayesian Networks in R: with Applications in Systems Biology,
Use R! 48, DOI 10.1007/978-1-4614-6446-4,
© Springer Science+Business Media New York 2013

149

150 References

Chiquet J, Smith A, Grasseau G, Matias C, Ambroise C (2009) SIMoNe: statistical inference for
modular networks. Bioinformatics 25(3):417–418

Claeskens G, Hjort NL (2008) Model selection and model averaging. Cambridge University Press,
Cambridge

Cooper GF (1990) The computational complexity of probabilistic inference using Bayesian belief
networks. Artif Intell 42(2–3):393–405

Cooper GF, Yoo C (1995) Causal discovery from a mixture of experimental and observational data.
In: UAI ’99: Proceedings of the 15th annual conference on uncertainty in artificial intelligence,
Morgan Kaufmann, pp 116–125

Cover TM, Thomas JA (2006) Elements of information theory, 2nd edn. Wiley, Hoboken
Csardi G, Nepusz T (2006) The igraph software package for complex network research. Int J Comp

Syst:1695, pp 1–38
Diestel R (2005) Graph theory, 3rd edn. Springer, Heidelberg
Dor D, Tarsi M (1992) A simple algorithm to construct a consistent extension of a partially oriented

graph. Technical Report, UCLA, Cognitive Systems Laboratory, available as Technical Report
R-185

Dondelinger F, Lèbre S, Husmeier D (2012) EDISON: Software for network reconstruction and
changepoint detection. R package version 1.0

Dondelinger F, Lèbre S, Husmeier D (2013) Non-homogeneous dynamic Bayesian networks with
Bayesian regularization for inferring gene regulatory networks with gradually time-varying
structure. Machine Learning 90(2):191–230

Edwards DI (2000) Introduction to graphical modelling, 2nd edn. Springer, New York
Efron B, Tibshirani R (1993) An introduction to the bootstrap. Chapman & Hall, New York
Efron B, Hastie T, Johnstone I, Tibshirani R (2004) Least angle regression. Ann Stat 32(2):407–499
Engle RF (1982) Autoregressive conditional heteroscedasticity with estimates of the variance of

United Kingdom inflation. Econometrica 50(4):987–1007
Fienberg SE (1980) The analysis of cross-classified categorical data, 2nd edn. Springer, New York
Flynn MJ (1972) Some computer organizations and their effectiveness. IEEE Trans Comput

21(9):948–960
Friedman N, Goldszmidt M (1996) Discretizing continuous attributes while learning Bayesian

networks. In: Proceedings of the 13th international conference on machine learning (ICML96),
Morgan Kaufmann

Friedman N, Goldszmidt M, Wyner A (1999a) Data analysis with Bayesian networks: a boot-
strap approach. In: Proceedings of the 15th conference on uncertainty in artificial intelligence,
pp 196–205

Friedman J, Hastie T, Tibshirani R (2010) Regularization paths for generalized linear models via
coordinate descent. J Stat Softw 33(1):1–22

Friedman N, Linial M, Nachman I, Pe’er D (2000) Using Bayesian network to analyze expression
data. J Comput Biol 7:601–620

Friedman N, Pe’er D, Nachman I (1999b) Learning Bayesian network structure from massive
datasets: the “Sparse Candidate” algorithm. In: Proceedings of 15th conference on uncertainty
in artificial intelligence (UAI), Morgan Kaufmann, pp 206–215

Geiger D, Heckerman D (1994) Learning Gaussian networks. Technical Report, Microsoft Re-
search, Redmond, Washington, available as Technical Report MSR-TR-94-10

Gentleman R, Whalen E, Huber W, Falcon S (2012) graph: a package to handle graph data
structures. R package version 1.32.0

Gentry J, Long L, Gentleman R, Seth, Hahne F, Sarkar D, Hansen K (2012) Rgraphviz: provides
plotting capabilities for R graph objects. R package version 1.32.0

Goeman JJ (2012) penalized R package. R package version 0.9-41
Green PJ (1995) Reversible jump Markov chain Monte Carlo computation and Bayesian model

determination. Biometrika 82(4):711–732
Hamilton JD (1994) Time-series analysis. Princeton University Press, Princeton

References 151

Hartemink AJ (2001) Principled computational methods for the validation and discovery of genetic
regulatory networks. PhD thesis, School of Electrical Engineering and Computer Science, Mas-
sachusetts Institute of Technology

Hastie T, Efron B (2012) lars: least angle regression, lasso and forward stagewise. R package
version 1.1

Hastie T, Tibshirani R, Friedman J (2009) The elements of statistical learning: data mining, infer-
ence, and prediction, 2nd edn. Springer, New York

Hausser J, Strimmer K (2009) Entropy inference and the James-Stein estimator, with application
to nonlinear gene association networks. J Mach Learn Res 10:1469–1484

Heckerman D, Geiger D, Chickering DM (1995) Learning Bayesian networks: the combination
of knowledge and statistical data. Mach Learn, 20(3):197–243. Available as Technical Report
MSR-TR-94-09.

Højsgaard S (2010) gRain: graphical independence networks. R package version 0.8.5
Højsgaard S, Dethlefsen C, Bowsher C (2010) gRbase: a package for graphical modelling in R. R

package version 1.3.4
Ide JS, Cozman FG (2002) Random generation of Bayesian networks. In: SBIA ’02: Proceedings

of the 16th Brazilian symposium on artificial intelligence, Springer, pp 366–375
Imoto S, Goto T, Miyano S (2002) Estimation of genetic networks and functional structures be-

tween genes by using Bayesian networks and nonparametric regression. In: Proceedings of the
7th Pacific symposium on biocomputing, pp 175–186

Imoto S, Kim S, Goto T, Aburatani S, Tashiro K, Kuhara S, Miyano S (2003) Bayesian net-
work and nonparametric heteroscedastic regression for nonlinear modeling of genetic network.
J Bioinforma Comput Biol 2:231–252

James W, Stein C (1961) Estimation with quadratic loss. In: Neyman J (ed) Proceedings of the 4th
Berkeley symposium on mathematical statistics and probability, pp 361–379

Jarque CM, Bera AK (1980) Efficient tests for normality, homoscedasticity and serial indepen-
dence of regression residuals. Econ Lett 6(3):255–259

Jarque CM, Bera AK (1987) A test for normality of observations and regression residuals. Int Stat
Rev 55(2):163–172

Jensen FV (2001) Bayesian networks and decision graphs. Springer, New York
Kalisch M, Mächler M, Colombo D, Maathuis MH, Bühlmann P (2012) Causal inference using

graphical models with the R package pcalg. J Stat Softw 47(11):1–26
Kim S, Imoto S, Miyano S (2003) Inferring gene networks from time series microarray data using

dynamic Bayesian networks. Brief Bioinform 4(3):228
Kim S, Imoto S, Miyano S (2004) Dynamic Bayesian network and nonparametric regression

for nonlinear modeling of gene networks from time series gene expression data. Biosystems
75(1–3):57–65

Kohavi R, Sahami M (1996) Error-based and entropy-based discretization of continuous features.
In: Proceedings of the 2nd international conference on knowledge discovery and data mining
(KDD ’96), AAAI Press, pp 114–119

Koller D, Friedman N (2009) Probabilistic graphical models: principles and techniques. MIT Press,
Cambridge

Korb KB, Hope LR, Nicholson AE, Axnick K (2004) Varieties of causal intervention. In: Zhang C,
Guesgen HW, Yeap W (eds) Proceedings of 8th Pacific rim international conference on artificial
intelligence (PRICAI 2004), Springer, pp 322–331

Korb KB, Nicholson AE (2010) Bayesian artificial intelligence 2nd edn. Chapman and Hall, Boca
Raton

Kullback S (1968) Information theory and statistic. Dover Publications, New York
Kulinskaya E, Morgenthaler S, Staudte RG (2008) Meta analysis: a guide to calibrating and com-

bining statistical evidence. Wiley, Hoboken
Larrañaga P, Sierra B, Gallego MJ, Michelena MJ, Picaza JM (1997) Learning Bayesian net-

works by genetic algorithms: a case study in the prediction of survival in malignant skin
melanoma. In: Proceedings of the 6th conference on artificial intelligence in medicine in Europe
(AIME ’97), Springer, pp 261–272

152 References

Lauritzen SL (1996) Graphical models. Oxford University Press, Oxford
Lauritzen SL, Spiegelhalter DJ (1988) Local computation with probabilities on graphical structures

and their application to expert systems (with discussion). J R Stat Soc Series B Stat Methodol
50(2):157–224

Lèbre S (2008) G1DBN: a package performing dynamic Bayesian network inference. R package
version 3.1

Lèbre S (2009) Inferring dynamic genetic networks with low order independencies. Stat Appl
Genet Mol Biol 8(1):9

Lèbre S, Becq J, Devaux F, Lelandais G, Stumpf M (2010) Statistical inference of the time-varying
structure of gene-regulation networks. BMC Syst Biol 4(130):1–16

Ledoit O, Wolf M (2003) Improved estimation of the covariance matrix of stock returns with an
application to portfolio selection. J Empir Financ 10:603–621

Legendre P (2000) Comparison of permutation methods for the partial correlation and partial man-
tel tests. J Stat Comput Simul 67:37–73

Li NM (2010) rsprng: R interface to SPRNG (Scalable Parallel Random Number Generators).
R package version 1.0

Li NM, Rossini AJ (2010) rpvm: R interface to PVM (Parallel Virtual Machine). R package version
1.0-4

Lütkepohl H (2005) New introduction to multiple time series analysis. Springer, New York
MacLachlan GJ, Krishnan T (2008) The EM algorithm and extensions, 2nd edn. Wiley, Hoboken
Mardia KV, Kent JT, Bibby JM (1979) Multivariate analysis. Academic, London
Margaritis D (2003) Learning Bayesian network model structure from data. PhD thesis, School of

Computer Science, Carnegie-Mellon University, Pittsburgh, PA, available as Technical Report
CMU-CS-03-153

Margolin A, Nemenman I, Basso K, Wiggins C, Stolovitzky G, Favera R, Califano A (2006)
ARACNE: an algorithm for the reconstruction of gene regulatory networks in a mammalian
cellular context. BMC Bioinformatics 7(Suppl 1):S7

Meinshausen N, Bühlman P (2006) High dimensional graphs and variable selection with the
LASSO. Ann Stat 34(3):1436–1462

Melançon G, Dutour I, Bousquet-Mélou M (2001) Random generation of directed acyclic graphs.
Electronic Notes Discrete Math 10:202–207

Meloni A, Ripoli A, Positano V, Landini L (2009) Improved learning of Bayesian networks in
biomedicine. In: Proceedings of the 9th international conference on intelligent systems design
and applications, IEEE Computer Society, pp 624–628

Murphy KP (2002) Dynamic Bayesian networks: representation, inference and learning. PhD the-
sis, Computer Science Division, UC Berkeley

Neapolitan RE (2003) Learning Bayesian networks. Prentice Hall, Englewood Cliffs
Ong IM, Glasner JD, Page D (2002) Modelling regulatory pathways in E. Coli from time series

expression profiles. Bioinformatics 18(Suppl 1):S241–S248
Opgen-Rhein R, Strimmer K (2007) Learning causal networks from systems biology time course

data: an effective model selection procedure for the vector autoregressive process. BMC Bioin-
formatics 8(Suppl. 2):S3

Pearl J (1988) Probabilistic reasoning in intelligent systems: networks of plausible inference.
Morgan Kaufmann, Los Altos

Pearl J (2009) Causality: models, reasoning and inference, 2nd edn. Cambridge University Press,
Cambridge

Perrin BE, Ralaivola L, Mazurie A, Bottani S, Mallet J, d’Alché Buc F (2003) Gene networks
inference using dynamic Bayesian networks. Bioinformatics 19(Suppl 2):S138–S148

Pfaff B (2008a) Analysis of integrated and cointegrated time series with R, 2nd edn. Springer,
New York

Pfaff B (2008b) VAR, SVAR and SVEC models: implementation within R package vars. J Stat
Softw 27(4):1–32

References 153

R Development Core Team (2012) R: a language and environment for statistical computing.
R Foundation for Statistical Computing, Vienna, Austria, URL http://www.R-project.org, ISBN
3-900051-07-0

Rangel C, Angus J, Ghahramani Z, Lioumi M, Sotheran E, Gaiba A, Wild DL, Falciani F (2004)
Modeling T-cell activation using gene expression profiling and state-space models. Bioinfor-
matics 20(9):1361–1372

Rauber T, Rünger G (2010) Parallel programming for multicore and cluster systems. Springer,
Berlin

Rissanen J (2007) Information and complexity in statistical models. Springer, New York
Robert CP, Casella G (2009) Introducing Monte Carlo methods with R. Springer, New York
Russell SJ, Norvig P (2009) Artificial intelligence: a modern approach, 3rd edn. Prentice Hall,

Englewood Cliffs
Sachs K, Perez O, Pe’er D, Lauffenburger DA, Nolan GP (2005) Causal protein-signaling networks

derived from multiparameter single-cell data. Science 308(5721):523–529
Schoener TW (1968) The anolis lizards of Bimini: resource partitioning in a complex fauna. Ecol-

ogy 49(4):704–726
Schmidberger M, Morgan M, Eddelbuettel D, Yu H, Tierney L, Mansmann U (2009) State of the

art in parallel computing with R. J Stat Softw 31(1):1–27
Scutari M (2010) Learning Bayesian networks with the bnlearn R package. J Stat Softw 35(3):1–22
Scutari M (2012) bnlearn: Bayesian network structure learning, parameter learning and inference.

R package version 3.2
Scutari M, Brogini A (2012) Bayesian network structure learning with permutation tests. Commun

Stat Theory Methods 41(16–17):3233–3243 (special Issue “Statistics for Complex Problems:
Permutation Testing Methods and Related Topics”. Proceedings of the Conference “Statistics
for Complex Problems: the Multivariate Permutation Approach and Related Topics”, Padova,
June 14–15, 2010)

Scutari M, Nagarajan R (2012) On identifying significant edges in graphical models. Artificial
intelligence in medicine special issue containing the proceedings of the workshop “Probabilis-
tic problem solving in biomedicine” of the 13th Artificial Intelligence in Medicine (AIME)
conference, Bled (Slovenia), July 2 (in print)

Shäfer J, Strimmer K (2005) A shrinkage approach to large-scale covariance matrix estimation and
implications for functional genomics. Stat Appl Genet Mol Biol 4:32

Smith SM, Fulton DC, Chia T, Thorneycroft D, Chapple A, Dunstan H, Hylton C, Zeeman
SC, Smith AM (2004) Diurnal changes in the transcriptome encoding enzymes of starch
metabolism provide evidence for both transcriptional and posttranscriptional regulation of
starch metabolism in Arabidopsis leaves. Plant Physiol 136(1):2687–2699

Spector P (2009) Data manipulation with R. Springer, New York
Spirtes P, Glymour C, Scheines R (2001) Causation, prediction, and search, 2nd edn. MIT Press,

Cambridge
Stein C (1956) Inadmissibility of the usual estimator for the mean of a multivariate distribution.

In: Neyman J (ed) Proceedings of the 3rd Berkeley symposium on mathematical statistics and
probability, pp 197–206

Sugimoto N, Iba H (2004) Inference of gene regulatory networks by means of dynamic differential
Bayesian networks and nonparametric regression. Genome Inform 15(2):121–130

Tibshirani R (1996) Regression shrinkage and selection via the Lasso. J R Stat Soc B 58(1):
267–288

Tierney L, Rossini AJ, Li NM, Sevcikova H (2008) snow: simple network of workstations. R
package version 0.3-3

Tsamardinos I, Aliferis CF, Statnikov A (2003) Algorithms for large scale Markov blanket dis-
covery. In: Proceedings of the 16th international Florida artificial intelligence research society
conference, AAAI Press, pp 376–381

Tsamardinos I, Brown LE, Aliferis CF (2006) The max-min hill-climbing Bayesian network struc-
ture learning algorithm. Machine Learn 65(1):31–78

Venables WN, Ripley BD (2000) S programming. Springer

http://www.R-project.org

154 References

Venables WN, Ripley BD (2002) Modern applied statistics with S, 4th edn. Springer
Verma TS, Pearl J (1991) Equivalence and synthesis of causal models. Uncertain Artif Intell

6: 255–268
Whittaker J (1990) Graphical models in applied multivariate statistics. Wiley
Wu FX, Zhang WJ, Kusalik AJ (2004) Modeling gene expression from microarray expression data

with state-space equations. In: Proceedings of the 9th Pacific Symposium on Biocomputing,
pp 581–592

Yaramakala S, Margaritis D (2005) Speculative Markov blanket discovery for optimal feature se-
lection. In: ICDM ’05: Proceedings of the 5th IEEE international conference on data mining,
IEEE Computer Society, pp 809–812

Yu H (2010) Rmpi: Interface (Wrapper) to MPI (Message-Passing Interface). R package version
0.5-8

Zhang H (2004) The optimality of naive bayes. In: Proceedings of the 17th International Florida
Artificial Intelligence Research Society Conference, AAAI Press, pp 562–567

Zou M, Conzen SD (2005) A new dynamic Bayesian network (DBN) approach for identifying
gene regulatory networks from time course microarray data. Bioinformatics 21(1):71–79

Index

A
arc, 1

directed, 1
undirected, 1

B
Bayesian network

causal, 44–46
completed partially directed acyclic

(CPDAG), 15
continuous, see Gaussian
discrete, 20–22, 42–43
dynamic, 63–67

homogeneous, 66
non-homogeneous, 69
VAR, 66–67

equivalence class, 15
Gaussian, 20–23, 40–42
model averaging, 48
moral graph, 16
skeleton, 2, 18
static, 13

boostrap, 48–51, 115–117

C
conditional independence test

Fisher’s exact test, 21
Fisher’s Z, 22
log-likelihood ratio G2, see mutual

information
mutual information, 21
Pearson’s correlation, 22
Pearson X2, 21
permutation, 21, 22
shrinkage, 21, 22

cross-validation, 117–120
cycle, 3

D
d-separation, 14–15
data
hailfinder, 110–114, 116–122
isachs, 53–56, 91–94
lizards, 5–10
marks, 26–46, 106–108
sachs, 47–53

discretization, 23–24, 42–44, 47–48

E
edge, see arc, undirected
equivalence class, 30–31
evidence, 86

hard, 86
soft, 86

F
fundamental connections

convergent, 15
divergent, 15
serial, 15

G
graph, 1

acyclic, 3
directed, 1
ordering, 3
partially directed, 1
undirected, 1

R. Nagarajan et al., Bayesian Networks in R: with Applications in Systems Biology,
Use R! 48, DOI 10.1007/978-1-4614-6446-4,
© Springer Science+Business Media New York 2013

155

156 Index

I
inference, 85–87

approximate, 89, 93–94, 120–122
belief updating, 85
causal, 90
exact, 87–89, 91–93

intervention
inference, 90
structure learning, 53–56

L
learning, 17

parameter, 17, 23
Bayesian posterior, 23, 91
maximum likelihood, 23, 40, 42

structure, 17–23
constraint-based, 17
hybrid, 20
score-based, 19
search-and-score, see score-based

M
map

dependence, 13
faithful, 13
independence, 13
isomorphic, 13
perfect, 13

Markov blanket, 16

N
network scores

Bayesian Dirichlet equivalent (BDe), 22
Bayesian Gaussian equivalent (BGe), 23
Bayesian Information Criterion (BIC), 22
Minimum Description Length (MDL), 22

node, 1
ancestor, 3
child, 3
descendant, 3
neighbor, 3
parent, 3

node ordering, see graph, ordering

P
path, 3

Q
query, 86–87

conditional probability (CPQ), 86–87,
92–94, 120–122

maximum a posteriori (MAP), 87, 93
most probable explanation, see maximum a

posteriori (MAP)

R
R, 4

base distribution, 4
contributed packages, 4
CRAN, 4

R packages, 24
ARTIVA, 80–81
bnlearn, 24, 26–31, 34–43, 45–56, 91,

93–94, 96–100, 110–114, 116–122
catnet, 25, 33–34, 43–44, 50–51
deal, 25, 32–34, 39–40
G1DBN, 79–80
GeneNet, 78–79
glmnet, 74
gRain, 25, 91–93
lars, 74–77
pcalg, 25, 34, 37
penalized, 74, 96–100
Rgraphviz, 34
simone, 77–78
snow, 105–108
vars, 72–74

S
structure learning algorithm, see also learning

structure
Inductive Causation (IC), 17
Auto-Regressive TIme VArying (ARTIVA),

69–72, 80–81
Fast Incremental Association (Fast-IAMB),

18
G1DBN, 68, 79–80
Grow Shrink (GS), 18, 35, 42
hill-climbing, 19, 37–40, 42, 45–46, 48–50
Incremental Association (IAMB), 18, 35
Interleaved Incremental Association

(Inter-IAMB), 18
James-Stein shrinkage, see also conditional

independence test, shrinkage, 68, 78–79
LASSO, 67–68, 74–77
Max-Min hill-climbing (MMHC), 20
PC, 18, 37
simulated annealing, 19, 43–44, 50–51
Sparse Candidate (SC), 20
Statistical Inference for MOdular NEtworks

(SiMONe), 69, 77–78
tabu search, 19, 54–56

Index 157

T
time series

lag, 60
multivariate, 60–61
order, see lag
stationary, 60
univariate, 59–60
vector autoregressive (VAR), 60–63

lag, 62, 73

normality, 62–63, 73
serial correlation, 63, 73–74
stationary, 61–62, 73

topological ordering, see graph, ordering

V
v-structure, 15, 16, 30–31
vertex, see node

	Preface
	Contents
	Chapter
1 Introduction
	1.1 A Brief Introduction to Graph Theory
	1.1.1 Graphs, Nodes, and Arcs
	1.1.2 The Structure of a Graph
	1.1.3 Further Reading

	1.2 The R Environment for Statistical Computing
	1.2.1 Base Distribution and Contributed Packages
	1.2.2 A Quick Introduction to R
	1.2.3 Further Reading

	Exercises

	Chapter
2 Bayesian Networks in the Absence of Temporal Information
	2.1 Bayesian Networks: Essential Definitions and Properties
	2.1.1 Graph Structure and Probability Factorization
	2.1.2 Fundamental Connections
	2.1.3 Equivalent Structures
	2.1.4 Markov Blankets

	2.2 Static Bayesian Networks Modeling
	2.2.1 Constraint-Based Structure Learning Algorithms
	2.2.2 Score-Based Structure Learning Algorithms
	2.2.3 Hybrid Structure Learning Algorithms
	2.2.4 Choosing Distributions, Conditional Independence Tests, and Network Scores
	2.2.5 Parameter Learning
	2.2.6 Discretization

	2.3 Static Bayesian Networks Modeling with R
	2.3.1 Popular R Packages for Bayesian Network Modeling
	2.3.2 Creating and Manipulating Network Structures
	2.3.3 Plotting Network Structures
	2.3.4 Structure Learning
	2.3.5 Parameter Learning
	2.3.6 Discretization

	2.4 Pearl's Causality
	2.5 Applications to Gene Expression Profiles
	2.5.1 Model Averaging
	2.5.2 Choosing the Significance Threshold
	2.5.3 Handling Interventional Data

	Exercises

	Chapter
3 Bayesian Networks in the Presence of Temporal Information
	3.1 Time Series and Vector Auto-Regressive Processes
	3.1.1 Univariate Time Series
	3.1.2 Multivariate Time Series
	3.1.2.1 Covariance Stationarity of a VAR Process
	3.1.2.2 Lag Order of a VAR Process
	3.1.2.3 Tests for Multivariate Normality in VARs
	3.1.2.4 Test for Serial Correlation (Portmanteau Test)

	3.2 Dynamic Bayesian Networks: Essential Definitions and Properties
	3.2.1 Definitions
	3.2.2 Dynamic Bayesian Network Representationof a VAR Process

	3.3 Dynamic Bayesian Network Learning Algorithms
	3.3.1 Least Absolute Shrinkage and Selection Operator
	3.3.2 James–Stein Shrinkage
	3.3.3 First-Order Conditional Dependencies Approximation
	3.3.4 Modular Networks

	3.4 Non-homogeneous Dynamic Bayesian Network Learning
	3.5 Dynamic Bayesian Network Learning with R
	3.5.1 Multivariate Time Series Analysis
	3.5.2 LASSO Learning: lars and simone
	3.5.3 Other Shrinkage Approaches: GeneNet, G1DBN
	3.5.4 Non-homogeneous Dynamic Bayesian Network Learning: ARTIVA

	Exercises

	Chapter
4 Bayesian Network Inference Algorithms
	4.1 Reasoning Under Uncertainty
	4.1.1 Probabilistic Reasoning and Evidence
	4.1.2 Algorithms for Belief Updating: Exact and Approximate Inference
	4.1.3 Causal Inference

	4.2 Inference in Static Bayesian Networks
	4.2.1 Exact Inference
	4.2.2 Approximate Inference

	4.3 Inference in Dynamic Bayesian Networks
	Exercises

	Chapter
5 Parallel Computing for Bayesian Networks
	5.1 Foundations of Parallel Computing
	5.2 Parallel Programming in R
	5.3 Applications to Structure and Parameter Learning
	5.3.1 Constraint-Based Structure Learning Algorithms
	5.3.2 Score-Based Structure Learning Algorithms
	5.3.3 Hybrid Structure Learning Algorithms
	5.3.4 Parameter Learning

	5.4 Applications to Inference Procedures
	5.4.1 Bootstrap
	5.4.2 Cross-Validation
	5.4.3 Conditional Probability Queries

	Exercises

	Solutions
	References
	Index

