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Preface

Following a biannual tradition of organizing joint meetings between classification
societies, the Classification and Data Analysis Group of the Italian Statistical
Society, CLADAG, has organized its international meeting together with the
German Classification Society, GfKl, at Firenze, Italy, September 8–10, 2010. The
Conference was originally conceived as a German-Italian event, but it counted
the participation of researchers from several nations and especially from Austria,
France, Germany, Great Britain, Italy, Korea, the Netherlands, Portugal, Slovenia,
and Spain. The meeting has shown once more the vitality of data analysis and clas-
sification and served as a forum for presentation, discussion, and exchange of ideas
between the most active scientists in the field. It has also shown the strong bonds be-
tween the two classification societies and has greatly helped to deepen relationships.

The conference program included 4 Plenary, 12 Invited, and 31 Contributed
Sessions. This book contains selected and peer-reviewed papers presented at the
meeting in the area of “Classification and Data Mining.” Browsing through the vol-
ume, the reader will see both methodological articles showing new original methods
and articles on applications illustrating how new domain-specific knowledge can be
made available from data by clever use of data analysis methods. According to the
title, the book is divided into three parts:

1. Classification and Data Analysis
2. Data Mining
3. Applications

The methodologically oriented papers on classification and data analysis deal,
among other things, with robustness, analysis of spatial data, and application of
Monte Carlo Markov Chain methods. Variable selection and clustering of variables
play an increasing role in applications where there are substantially more variables
than observations. Support vector machines offer models and methods for the
analysis of complex data structures that go beyond classical ones. Special discussed
topics are association patterns and correspondence analysis.

Automated methods in data mining, producing knowledge discovery in huge data
structures such as those associated with new media (e.g., Internet), digital images,
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or genomes in Genetics, continue to represent, in the near future, a big challenge for
data analysis. Information is readily retrieved in these fields; however, interpreting
it and identifying relevant results is not a straightforward task at all. Especially
data produced by the Internet, genetics studies on genomes, and proteomes have
a particular appeal as objects of analysis and are studied in this book. Furthermore,
there are applications of the Markov chains model, to a new brand of problems such
as the knowledge discovery in the Internet, the analysis of large biomedical data
sets, and in more general sensor data. Moreover, the automatic online processing of
data streams is becoming increasingly important. In sociology and market research,
opinion mining on a large number of expressed preferences plays an important
role. All these data typologies require algorithmic methods in the interface between
statistics and computer science. Other contributions in the book focus on the
application of the singular value decomposition to structural learning in Bayesian
networks and on molecular simulation for drug design.

The last part of the book contains interesting applications to various fields of
research such as sociology, market research, environment, geography, and music:
estimation in demographic data, description of professional profiles, metropolitan
studies such as income in municipalities, labor market research, environmental
energy consumption, geographical data such as seismic time series, auditory models
in speech and music, application of mixture models to multi-state data, and
visualization techniques.

We hope that this short description stimulates the reader to take a closer look at
some of the articles. Our thanks go to Andrea Giommi and his local organizing team
who have done a great job (Bruno Bertaccini, Matilde Bini, Anna Gottard, Leonardo
Grilli, Alessandra Mattei, Alessandra Petrucci, Carla Rampichini, Emilia Rocco).
We gratefully acknowledge the Faculty of Economics and the “Ente Cassa di
Risparmio di Firenze” for financial support, and desire to express our special thanks
to Chiara Bocci for her valuable contribution to the organization of the meeting and
for her assistance in producing this book. Also on behalf of our colleagues we may
say that we have very much enjoyed having been their guests in Firenze. The dinner
with a view to the Dome was excellent and we appreciate it very much.

We wish to express our gratitude to the other members of the Scientific
Programme Committee: Daniel Baier, Reinhold Decker, Filippo Domma, Luigi
Fabbris, Christian Hennig, Carlo Lauro, Berthold Lausen, Hermann Locarek-Junge,
Isabella Morlini, Lars Schmidt-Thieme, Gabriele Soffritti, Alfred Ultsch, Rosanna
Verde, Donatella Vicari, and Claus Weihs.

We also thank the section organizers for having put together such strong sections.
The Italian tradition of discussants and rejoinders has been a new experience for
GfKl. Thanks go to the referees for their important job. Last but not least, we thank
all speakers and all who came to listen and to discuss with them.

Florence, Italy Antonio Giusti
Passau, Germany Gunter Ritter
Rome, Italy Maurizio Vichi
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Robust Random Effects Models: A Diagnostic
Approach Based on the Forward Search

Bruno Bertaccini and Roberta Varriale

Abstract This paper presents a robust procedure for the detection of atypical
observations and for the analysis of their effect on model inference in random
effects models. Given that the observations can be outlying at different levels of
the analysis, we focus on the evaluation of the effect of both first and second level
outliers and, in particular, on their effect on the higher level variance which is
statistically evaluated with the Likelihood-Ratio Test. A cut-off point separating
the outliers from the other observations is identified through a graphical analysis of
the information collected at each step of the Forward Search procedure; the Robust
Forward LRT is the value of the classical LRT statistic at the cut-off point.

1 Introduction

Outliers in a dataset are observations which appear to be inconsistent with the rest
of the data (Hampel et al., 1986; Staudte and Sheather, 1990; Barnett and Lewis,
1993) and can influence the statistical analysis of such a dataset leading to invalid
conclusions. Starting from the work of Bertaccini and Varriale (2007), the purpose
of this work is to implement the Forward Search method proposed by Atkinson and
Riani (2000) in the random effects models, in order to detect and investigate the
effect of outliers on model inference.

While there is an extensive literature on the detection and treatment of single and
multiple outliers for ordinary regression, these topics have been little explored in the
area of random effects models. In this work, we propose a new diagnostic method
based on the Forward Search approach, in order to detect both first and second level
outliers. We focus our attention on the effect of outliers on the Likelihood-Ratio

B. Bertaccini (�) � R. Varriale
Department of Statistics “G. Parenti”, University of Florence, Florence, Italy
e-mail: bertaccini@ds.unifi.it; roberta.varriale@ds.unifi.it

A. Giusti et al. (eds.), Classification and Data Mining, Studies in Classification,
Data Analysis, and Knowledge Organization, DOI 10.1007/978-3-642-28894-4 1,
© Springer-Verlag Berlin Heidelberg 2013
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4 B. Bertaccini and R. Varriale

Test, that is used in the multilevel framework in order to detect the significance of
the second level variance.

The basic idea of this approach is to fit the hypothesis model to an increasing
subset of units, where the order of entrance of observations into the subset is based
on their closeness to the previously fitted model. During the search, parameter esti-
mates, residuals and other informative statistics are collected and these information
are analysed in order to identify a cut-off point separating the outliers from the
other observations. Differently from the other robust approaches, the robustness of
the method does not derive from the choice of a particular estimator with a high
breakdown point, but from the progressive inclusion of units into a subset which,
in the first steps, is intended to be outlier free (Atkinson and Riani, 2000). Our
procedure can detect the presence of more than one outlier; the membership of
almost all the outliers to the same group (factor level) suggests the presence of an
outlying unit at the higher level of the analysis.

2 The Random Effects Model

The simplest random effects model is a two level linear model without covariates,
also known as a random effects ANOVA. Forward Search for fixed effects ANOVA
has already been proposed by the authors Bertaccini and Varriale (2007); in the
following, we will extend this work to the random effects framework.

Let yij be the observed outcome variable of individual i (i D 1; 2; : : : ; nj ) within
group, or factor level, j (j D 1; 2; : : : ; J ) where J is the total number of groups
and N D PJ

jD1 nj is the total number of individuals. The simplest linear model in
this framework is expressed by:

yij D �C uj C eij D �C �ij (1)

where � is the grand mean outcome in the population, uj is the group effect
associated with unit j and eij is the residual error at the lower level of the
analysis. When uj are the effects attributable to a infinite set of levels of a factor
of which only a random sample are deemed to occur in the data, we have a
random effects model (Searle et al., 1992). In this approach, each observed response
yij differs from the grand mean � by a total residual �ij given by the sum of
two random error components, uj and eij , representing, respectively, the residual
error at the higher and lower level of the analysis. Under the usual assumptions
for the random effects model (Searle et al., 1992), it is possible to show that
var .yij / D var.uj / C var.eij / D �2 C �2. Thus, �2 and �2, representing
respectively the variability between and within groups, are components of the total
variance of yij .

In many applications of hierarchical analysis, one common research question is
whether the variability of the random effects at group level is significatively equal
to 0, namely:

H0 W �2 D 0: (2)
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Fig. 1 Boxplot showing the compositions of the described datasets

In the maximum likelihood estimation framework, comparison of nested models
is typically performed by means of the LR Test which under certain regularity
conditions follows a chi-squared distribution. In random effects models, when
there is only one variance being set to zero in the reduced model, the asymptotic
distribution of the LRT statistic is a 50 W 50mixture of a �2k and �2kC1 distributions,
where k is the number of the other restricted parameters in the reduced model that
are unaffected by boundary conditions (Self and Liang, 1987). A rule of thumb in
applied research is to divide by 2 the asymptotic p-value of the Chi-squared LRT
statistic distribution (Skrondal and Rabe-Hesketh, 2004). As the only alternative
strategy to our knowledge, Heritier et al. (2009) suggest to perform the LRT by
computing bootstrapping techniques, but this method can fail when applied to
“classical” robust estimators. In the following, we will use the former strategy to
test the null hypothesis as in Eq. (2). Due to the presence of outliers in the data, the
value of the LRT statistic can erroneously suggest to reject the null hypothesisH0

even when there is no second level residual variability. As an example, consider the
two balanced datasets represented in Fig. 1 with nij D 10 first level units in each
group j and the total number of groups, J , equal to 25. While the bulk of the data
has been generated by the model yij D � C eij in both cases, with � D 0 and
eij � N.0; 1/, the outliers have very different features: in the first case there are
more than one first level outliers, while in the second case there is only one outlier
at the second level of the analysis. In particular, the eight outliers in the first case
have been generated from a Uniform U.10; 11/ distribution, while in the second
case, the first level units belonging to the outlier group have been generated by the
N.0 C �; 1/ distribution where � is an observation from the U.4; 5/ distribution.
In both cases, the LRT statistic for testing H0 has one degree of freedom and its
value – respectively 4.8132 and 94.4937 with halvedp-value of 0.0141 and<0.0001
falls in the rejection region due to the contamination. Obviously, in these datasets
outliers are so different from the bulk of the data that they are easily identifiable by
any approach; these were done only to introduce the problem more clearly.
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Table 1 Classical LR test: approximation of the true type I error probability with
contaminated data

�

J nij 0.05 0.06 0.07 0.08 0.09 0.1

15 10 0.0578 0.0655 0.0747 0.0960 0.1153 0.1513
15 0.0607 0.0767 0.1088 0.1385 0.1754 0.2183
20 0.0781 0.1053 0.1436 0.1931 0.2546 0.3355

20 10 0.0662 0.0814 0.1005 0.1287 0.1680 0.2104
15 0.0795 0.1108 0.1441 0.1889 0.2601 0.3381
20 0.1038 0.1477 0.2067 0.2837 0.3816 0.4809

25 10 0.0678 0.0938 0.1334 0.1668 0.2077 0.2772
15 0.0959 0.1261 0.1895 0.2620 0.3523 0.4627
20 0.1277 0.1872 0.2657 0.3708 0.4896 0.6119

30 10 0.0781 0.1019 0.1313 0.1767 0.2265 0.2902
15 0.0966 0.1433 0.2051 0.2704 0.3557 0.4656
20 0.1278 0.1947 0.2815 0.3823 0.5098 0.6380

The LR Test can often lead to erroneous conclusions also in the presence of
“lighter” contamination. Let us consider some datasets with an increasing number
of balanced groups (J D 15; 20; 25; 30) and an increasing number of observations
for each group (nij D 10; 15; 20). While .1 � �/N observations are generated by
a Standard Normal distribution and are randomly assigned to all groups, the �N
outliers are generated by a Normal N.2; 1/ distribution and are randomly assigned
to the first half of the total number of groups. Table 1 shows the relative frequencies
rf.J;nij ;�/ over 10,000 simulations in which the LRT statistic falls in the rejection
area at the nominal significance level of ˛ D 0:05. For example, for J D 20; nij D
15 and � D 0:08 the classicalLRT rejects the null hypothesis (2) 1,889 times giving
a “real” ˛ value of 0:1889. Obviously, the larger the � is and the stronger the effect
of the contamination on the LRT is.

In the following, we will focus on the effect of outliers on the LRT performed
with halved p-value used to test (2).

3 Forward Search

The Forward Search is a statistical methodology initially proposed by Atkinson and
Riani (2000) useful both to detect and investigate observations that differ from
the bulk of the data and to analyse their effect on the estimation of parameters
and on model inference. The basic idea of this “forward” procedure is to fit the
hypothesized model to an increasing subset of units until all data are fitted. In
particular, the entrance order of the observations into the subset is based on their
closeness to the fitted model that is expressed by the residuals.
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The Forward Search algorithm consists of three steps: the first concerns the
choice of an initial subset, the second refers to the way in which the Forward Search
progresses and the third relates to the monitoring of the statistics during the search.
In this work, the methodology is adapted to the peculiarity of the random effects
model taking into account the presence of groups in the data structure. In particular,
focusing on the inferential issue expressed in Eq. (2), we propose a procedure to
obtain a Robust Forward LR Test (LRTF ), by individuating a cut-off point of all
the classical LRT values computed during the search, cut-off point that divides the
group of outliers from the other observations.

3.1 Step 1: Choice of the Initial Subset

The first step of the forward procedure consists in the choice of an initial subset of
observations supposed to be outliers free, S�. Many robust methods were proposed
to sort the data into a clean and a potentially contaminated part and the Forward
Search is not sensitive to the method used to select the initial subset, provided
unmasked outliers are not included at the start (Atkinson and Riani, 2000). In
the random effects framework, our proposal is to include in the initial subset of
observations the yij which satisfy:

minjyij �medj j 8j D 1; 2; : : : ; J (3)

where medj is the group j sample median. We impose that every group has to be
represented by at least two observations; in this way, every group contributes to
the estimation of the within random effects and the initial subset dimension,m� DPJ

jD1 m�j , is at least 2 � J , where m�j is the number of observations in group j at
the first step of the search.

3.2 Step 2: Adding Observations During the Search

At each step, the Forward Search algorithm adds to the subset the observations
closer to the previously fitted model. Formally, given the subset S.m/ of dimension
m D PJ

jD1 mj , where mj is the number of observations in group j at step

.m�m� C 1/, the Forward Search moves to S.mC1/ in the following way: after the
random effects model is fitted to the S.m/ subset, all the nij observations are ordered

inside each group according to their squared total residuals O�2ij D .yij � Oyij;S.m//2.
Since Oyij;S.m/ D O�S.m/ , the total residuals express the closeness of each unit to
the grand mean estimate, making possible the detection of both first and second
level outliers. For each group j , we choose the first mj ordered observations and
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we add the observation with the smallest squared residual among the remaining.
The random effects model is now fitted to S.mC1/ and the procedure ends when all
theN observations are entered into the model. In moving from S.m/ to S.mC1/, while
most of the time just one new unit joins the previous subset, it may also happen that
two or more new units enter S.mC1/ as one or more leave, given that all the groups
have to be always represented in the subset with at least two observations.

The procedure allows the choice between different parameters’ estimators;
available estimators are ANOVA, ML and REML (default is ML).

3.3 Step 3: Monitoring the Search

At each stage of the search, it is possible to collect information on parameter
estimates, residuals and other relevant statistics, to guide the researcher in the
outliers detection. In order to illustrate the application and the advantages of
the Forward Search approach we show the methodology using the two datasets
described in Fig. 1. In both cases, the LRT computed with the classical approach
“erroneously” falls in the rejection area of the null hypothesis expressed in Eq. (2).

Figure 2 shows how the observations join the subset S.m/ during the search. The
last observations joining S.m/ belong to different second level units (right panel of
Fig. 2), precisely to the groups 3, 6, 10, 11 and 12, and are represented by the bold
lines that lie under the other lines at the end of the search; this suggests the possible
presence of outliers in these groups.

Figure 3a shows the N absolute total residuals O�ij computed at each step of the
Forward Search. Throughout the search, all the residuals are very small except those
related to the last eight entered observations. These units can be considered outliers
in any fitted subset and even when they are included in the algorithm in the last
steps of the search their residuals decrease only slightly. Furthermore, Fig. 3a clearly
highlights the sensitivity of the Forward Search that also recognises the presence of
an additional anomalous observation generated randomly from the Standard Normal
distribution; this observation belongs to the group 23 and join the search at step 242
just before the other eight outlier observations.

Finally, Fig. 3b represents the halvedp-value obtained, at each step of the search,
from the LRT for the null hypothesis: H0 W �2 D 0. During almost all the search
the halved p-value is very high, clearly suggesting that the second level variance is
equal to 0. In the last steps of the search it erroneously moves to the rejection area
and it reaches the value 0:0141 at step 250, as indicated in Sect. 2.

The second example is characterized by the presence of one second level outlier.
In this case, the observations joining S.m/ during the last steps of the search belong
to the same second level unit, 25, suggesting the presence of an anomalous group
of observations.
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Fig. 2 Forward plots of groups dimensions: during the search (a) and zoom of the last 50 steps (b)
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Fig. 3 First dataset: Forward plot of the estimated absolute residuals (a); Forward plot of the
Likelihood-Ratio Test. The horizontal line represents the chosen halved ˛ value (b)

Figure 4a shows the total residuals computed during the search, highlighting the
presence of two opposite patterns of lines. This feature is due to the fact that at least
two observations belonging to the outlier group are in the initial subset S�. For this
reason, the estimated grand mean is relatively high in the first steps of the search;
then it starts to decrease as the number of clean observations joining S.m/ increases
and it increases again at the end of the search when all the other outliers join S.m/.

Finally, Fig. 4b represents a very interesting behaviour of the halved p-value
obtained with the LRT . Contrary to the first example, during the search the p-value
is always very low since the units belonging to the outlier group that are in S.m/ lead
to the wrong conclusion of the presence of second level variability. Then, the LRT
correctly increases as the number of non outlying units entering the subset S.m/

increases, and it obviously sharply decreases when the units of the outlier group
finally enter the search.
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Fig. 4 Second dataset: Forward plot of the estimated absolute residuals (a); Forward plot of the
Likelihood-Ratio Test. The horizontal line represents the chosen halved ˛ value (b)
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Joint Correspondence Analysis Versus Multiple
Correspondence Analysis: A Solution
to an Undetected Problem

Sergio Camiz and Gastão Coelho Gomes

Abstract The problem of the proper dimension of the solution of a Multiple
Correspondence Analysis (MCA) is discussed, based on both the re-evaluation
of the explained inertia sensu Benzécri (Les Cahiers de l’Analyse des Données
4:377–379, 1979) and Greenacre (Multiple correspondence analysis and related
methods, Chapman and Hall (Kluwer), Dordrecht, 2006) and a test proposed by
Ben Ammou and Saporta (Revue de Statistique Appliquée 46:21–35, 1998). This
leads to the consideration of a better reconstruction of the off-diagonal sub-tables of
the Burt’s table crossing the nominal characters taken into account. Thus, Greenacre
(Biometrika 75:457–467, 1988) Joint Correspondence Analysis (JCA) is introduced,
the results obtained on an application are shown, and the quality of reconstruction
of both MCA and JCA solutions are compared to that of a series of Simple
Correspondence Analyses run on the whole set of two-way tables. It results that
JCA’s reduced-dimensional reconstruction is much better than the MCA’s one, that
reveals highly biased and non-monotone, but also than the MCA’s re-evaluation,
as suggested by Greenacre (Multiple correspondence analysis and related methods,
Chapman and Hall (Kluwer), Dordrecht, 2006).

1 Introduction

The identification of the dimension of a data table under study is a crucial issue
in most multidimensional scaling techniques, in particular in the linear methods,
since most of the analyses that follow the scaling depend on this choice. To quote

S. Camiz (�)
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only some, the number of factors to be interpreted, those on which to attempt a
classification, the dimension in which to search for a non-linear solution or for a
factor analysis, etc.

In this paper, we focus on this problem in Multiple Correspondence Analysis
(MCA, Benzécri et al., 1973–1982; Greenacre, 1984), in particular considering its
alternative, the Joint Correspondence Analysis (JCA, Greenacre, 1988), whose solu-
tion depends on an a priori selected dimensionality, and on the partial reconstruction
of the original data that results by the application of reconstruction formulas.

The application of these methods to a small example taken from a recent study
(Camiz and Gomes, 2009) will show unexpected results when comparing the
reconstruction: even if JCA was supposed to perform better, the results of MCA,
in comparison with those of JCA, would seriously get questionable its use, unless
without some adjustments. Indeed, the application to the Burt’s table of the chi-
square metrics, and the following correspondence analysis, biases the results, by
improving the reconstruction of the diagonal blocks while raising the bias of the
off-diagonal ones that contain the most interesting information.

2 Theoretical Framework

In exploratory multidimensional scaling the identification of the proper dimension
of the solution is strictly tied to the crucial distinction between relevant and non-
relevant information, something similar to the identification of errors in classical
statistics, but not the same. For metric scaling, the percentage of explained inertia
is usually taken as a measure of information, also tied to its interpretability. Thus,
taking into account a large share of inertia is the most often used rule of thumb,
but without a good theoretical grounding. Indeed, in literature stopping rules may
be found: for Principal Component Analysis, Jackson (1993) compared some of the
existing ones. For Simple Correspondence Analysis (SCA, Benzécri et al., 1973–
1982; Greenacre, 1984) a classical test for goodness of fit (Kendall and Stuart, 1961)
may be applied as approximated by the Malinvaud (1987) test (see also Saporta and
Tambrea, 1993):

eQ˛ D
X

ij

�
nij �en˛ij

�2

nri cj
D �2 �

X̨

ˇD1
�2ˇ D

min.r;c/�1X

�D˛C1
	� ;

whereen˛ij is the cell value estimated by the ˛-dimensional solution. eQ˛ , asymptoti-
cally chi-square distributed with .r � ˛ � 1/�.c � ˛ � 1/ degrees of freedom, tests
the independence of the residuals in respect to the ˛-dimensional representation.
This is possible because the eigenvalues of SCA sum, up to the grand total, to the
table chi-square, namely

�2 D n

min.r;c/�1X

˛D1
	˛ D

min.r;c/�1X

˛D1
�2˛:
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2.1 Multiple Correspondence Analysis

It is well known that MCA is but a generalization of SCA and it is based on SCA of
either the indicator matrix Z, gathering all characters involved, or the Burt’s table
B D Z0Z, that includes the diagonal tables with the marginals. The eigenvectors
of both Z and B are the same, whereas the B’s eigenvalues are the squares of Z’s
(also called B’s singular values): �2˛ D 
˛ . As SCA, it may be shown that, given a
Burt matrix B , MCA may be defined as the weighted least-squares approximation
of B by another matrixH of lower rank, that minimizes

n�1Q�2trace
�
D�1r .B �H/D�1r .B �H/0

�
:

that is, considering the subtables of B , that minimizes

n�1
QX

iD1

QX

jD1

�
�Nij �Hij

�
�2
ij
: (1)

where the norm
�
�Aij

�
�2
ij

D trace
�
D�1i Aij D�1j A0ij

�
is the usual chi-square.

Indeed, in SCA this is limited to only one table.
In MCA the identification of the dimensionality is particularly difficult: indeed,

for B , crossing Q characters with J D PQ
iD1 li pooled levels (with li the number

of levels of the i -th character) a statistic may again be calculated as if it were a
contingency table

�2B D 2

QX

iD2

i�1X

jD1
�2ij C n.J �Q/; (2)

where �2ij is the chi-squared statistic for the off-diagonal subtableNij D Z0iZj , and
n.J �Q/ is that of the diagonal subtables. As �2B is not chi-square distributed, no
test is possible. Thus, the current users refer to the total inertia ofZ: Iz D J�Q

Q
, and

consider its share explained by the highest level eigenvectors, although it is very low,
due to their high number of pooled levels. In practice, they are satisfied when the
first factors are enough larger than the following, regardless of the figures involved,
as it is generally admitted that the explained inertia is “highly underestimated”. This
underestimation was raised by Benzécri (1979) argumented by the arbitrary number
of levels and by the relation between the eigenvalues issued by either SCA or MCA

of Z applied on a two characters table: the relation �˛ D 1˙p	˛
2

is thus interpreted
to limit attention to the eigenvalues larger than the trivial average 1

2
, the smaller

considered as “artifacts”. This argument is generalized to consider in MCA only the
eigenvalues larger than their mean, that is � � �˛ D 1

Q
. As a consequence, each

factor inertia is re-evaluated as the average deviation from the mean eigenvalue,
according to the formula
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� .�˛/ D
�

Q

Q � 1
�2

.�˛ � �/2 ; �˛ � � D 1

Q
: (3)

and its share of total inertia is based on the inertias sum, thus taking the ratio
�.�˛/P

˛> 1q
�.�˛/

. Greenacre (1988, 2006) too suggests to re-evaluate the inertia according

to (3), but compares each one to the total off-diagonal inertia of the table, that is

Q

Q � 1

 
X

�˛

�2˛ � J �Q
Q2

!

;

a share that results always lower than Benzécri’s one.
Regardless of the re-evaluation, to decide the number of factors to take into

account, the only test currently available is proposed by Ben Ammou and Saporta
(1998), based on the distribution of the average eigenvalue under the null hypothesis
of independence: its expected variance is

�2 D EŒS2	� D 1

n::Q2.J �Q/
X

i¤j
.li � 1/.lj � 1/;

so that one may assume for 1
Q

the confidence interval at 95% level 1
Q

˙ 2� . Indeed,
since the kurtosis is lower than for a normal distribution, the actual proportion is
larger than 95%.

2.2 Joint Correspondence Analysis

In order to remove the bias due to the diagonal submatrices, Greenacre (1988)
proposes the Joint Correspondence Analysis (JCA) as a better generalization of SCA.
JCA fits only the off-diagonal contingency tables by minimizing, instead of (1),

n�1
QX

iD1

i�1X

jD1

�
�Nij �Hij

�
�2
ij
; (4)

and considers as measure of inertia, instead of (2), the sum of the chi-squares of all
off-diagonal tables

�2J D
QX

iD1

i�1X

jD1
�2ij ;

that unfortunately may not be tested for significance. JCA is an alternating
weighed least-squares algorithm that reminds the MINRES method for least-squares



JCA vs. MCA: A Solution to an Undetected Problem 15

Table 1 Burt’s table of the three-characters data set of 2,000 words

L2 L3 L4 WN WV WA TC TR TD TS

L2 1,512 0 0 788 483 241 433 385 399 295
L3 0 375 0 203 23 149 64 82 86 143
L4 0 0 113 62 9 42 3 29 21 60
WN 788 203 62 1,053 0 0 229 284 273 267
WV 483 23 9 0 515 0 174 133 125 83
WA 241 149 42 0 0 432 97 79 108 148
TC 433 64 3 229 174 97 500 0 0 0
TR 385 82 29 284 133 79 0 496 0 0
TD 399 86 21 273 125 108 0 0 506 0
TS 295 143 60 267 83 148 0 0 0 498

L2 L3 L4 WN WV WA TC TR TD TS

Table 2 First one-dimensional layer of the layers by kind of words table, one-dimensional
reconstruction, and corresponding residuals of SCA

Layer Reconstruction Residual

TC TR TD TS TC TR TD TS TC TR TD TS

L2 57 7 17 �80 435 382 400 296 �2 3 �1 �1
L3 �33 �4 �10 47 60 89 85 141 4 �7 1 2
L4 �23 �3 �7 33 5 25 22 61 �2 4 �1 �1

factor analysis, where the off-diagonal elements of a correlation matrix are fitted
(Thomson, 1934). In the special case Q D 2, the solution is exactly the SCA of the
off-diagonal table N D N12.

3 An Application

To show the different behavior of the different correspondence analyses, we refer
to a data set taken from Camiz and Gomes (2009), consisting in 2,000 words
taken from four different kind of periodic reviews (Childish (TC), Review (TR),
Divulgation (TD), and Scientific Summary (TS)), classified according to their
grammatical kind (Verb (WV), Noun (WN), and Adjective (WA)) and the number of
internal layers (Two- (L2), Three- (L3), and Four and more layers (L4)), as a measure
of the word complexity (Table 1). All the computations have been performed with
the ca package (Nenadic and Greenacre, 2006, 2007) contained in the R environment
(R-project, 2009).

We first limit attention to the table crossing Layers by Kind of words, with
a chi-square D 125.262 with six degrees of freedom, thus highly significant (test
value D 10.177). According to Malinvaud (1987) its SCA gives only one significant
eigenvalue (0.061891, test-value D 10.439) summarizing 98.82 of total inertia. The
one-dimensional reconstruction is reported in Table 2, with a reduction of absolute
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Table 3 Results of MCA on the Burt’s table crossing two characters: singular values and
eigenvalues, percentages of inertia, total and off-diagonal residuals of the corresponding recon-
struction, re-evaluated inertia and percentages, total and off-diagonal residuals of the correspond-
ing reconstruction

Singular
value

Eigen
value

Perc.
Inertia

Cumul.
Perc.

Reconstruction Re-evaluation Reconstruction

N. Total Off-diag Inertia Perc. Total Off-diag

0 5,215 328 5,215 328
1 0.389863 0.624390 24.98 24.98 4,357 483 0.061891 98.82 4,125 29
2 0.263783 0.513598 20.54 45.52 3,978 730 0.000740 1.18 4,026 0
3 0.250000 0.500000 20.00 65.52 3,102 730
4 0.236587 0.486402 19.46 84.98 1,946 487
5 0.141083 0.375610 15.02 100.00 0 0

residuals from 328, in respect to independence, to only 29. Indeed, the two-
dimensional solution has no residuals and identical results are found with JCA, as
expected.

The MCA, applied to the corresponding 2 � 2 Burt’s table, gives the results
shown in Table 3. In the table, both singular values and eigenvalues are reported
with their percentage to the trace (D2.5), the absolute residuals of the total and
off-diagonal reconstructions, then the re-evaluated inertias with the corresponding
reconstructions, limited to the two main eigenvalues larger than the mean (0.5).
According to Ben Ammou and Saporta (1998) only the first factor should be taken
into account, since the confidence interval for the mean eigenvalue is 0:47658 <
	 < 0:52342.

In the last two columns of Table 3 the absolute residuals for the re-evaluated
MCA, both total and off-diagonal, are reported according to the dimension, the 0
corresponding to the deviation from independence: the results are identical to those
of SCA. Instead, looking at the columns 6 and 7, we have a surprise: whereas the
total residuals of the reconstruction decrease monotonically to zero, the off-diagonal
ones immediately increase, until the mean eigenvalue, then monotonically decrease,
with a better approximation only at the last step. That is, only the total reconstruction
is better that the independent table in estimating the table itself.

If we apply both MCA and JCA to the three-characters data table from which
the previous table was extracted, we find a similar but worst pattern. Here, only 3
out of 7 MCA eigenvalues are above the mean, with only one significant, as the
confidence interval at 95% level is now .0:30146 < 	 < 0:36521/, and a second
one non-significant but very close to its upper bound. This is in agreement with
the Malinvaud (1987) test applied to the three two-way tables, only one of which
has a significant second factor. In Table 4 total and off-diagonal absolute residuals
for normal MCA, JCA, and re-evaluated MCA inertias are reported according to the
dimension (the 0 corresponds to the independence).

Observing the table one may note the same pattern of the residuals of MCA
as before: a monotone reduction of the total residuals and an increase of the
off-diagonal ones until the average eigenvalue, then a reduction of the latter, so
that only a six-dimensional solution shows off-diagonal residuals lower than the
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Table 4 Total and off-diagonal absolute residuals of normal MCA, JCA, and re-evaluated MCA
on the Burt’s table crossing three characters

MCA JCA Re-evaluated MCA

Dim Total Off-diag. Total Off-diag. Total Off-diag.

0 8,905 954 8,905 954 8,905 954
1 7,557 1,044 6,629 240 6,885 311
2 7,378 1,537 6,206 145 6,581 232
3 7,089 1,813 5,836 18 6,509 214
4 5,949 1,572
5 3,675 977
6 2,335 729
7 0 0

independence. On the opposite, the re-evaluated inertias get a monotone pattern but
far from the quality of adjustment of JCA, that performs quite well. Indeed, the re-
evaluated MCA needs two dimensions to approach the one-dimensional solution of
JCA, but never reaching the two-dimensional one.

4 Conclusion

The results of this experimentation show that the Ben Ammou and Saporta (1998)
test reveals useful for estimating the suitable dimension of an MCA solution. Instead,
the reconstruction of the Burt’s table performed by normal MCA is so biased that it
is not the case to keep on using MCA as it is normally performed. The re-evaluated
inertias avoid the dramatic bias introduced by the diagonal blocks, but its quality of
reconstruction, limited to the factors whose eigenvalue is larger than the mean, is
far from being acceptable. In particular, it is so poor in respect to JCA that one may
wonder why not eventually shift to this method. Indeed, some questions may arise
whether the chi-square metrics would be really suitable for a Burt’s table, but this is
a question that deserves a broader discussion.
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Inference on the CUB Model: An MCMC
Approach

Laura Deldossi and Roberta Paroli

Abstract We consider a special finite mixture model for ordinal data expressing
the preferences of raters with regards to items or services, named CUB (Covariate
Uniform Binomial), recently introduced in statistical literature. The mixture is
made up of two components that belong to different families of distributions: a
shifted Binomial and a discrete Uniform. Bayesian analysis of the CUB model
naturally comes from the elicitation of some priors on its parameters. In this case
the parameters estimation must be performed through the analysis of the posterior
distribution. In the theory of finite mixture models complex posterior distributions
are usually evaluated through computational methods of simulation such as the
Markov Chain Monte Carlo (MCMC) algorithms. Since the mixture type of the
CUB model is non-standard, a suitable MCMC algorithm has been developed and
its performance has been evaluated via a simulation study and an application on
real data.

1 Introduction

Statistical models for ordinal data are an active research area in recent years from
many alternative points of view (see for example Bini et al., 2009, for a general
review). Ordinal data can be obtained by surveys on consumers or users who
express preferences or evaluations on a list of known items or on objects or services.
Applications on the perception of the value or of the quality of objects are common
in various fields: teaching evaluation, health system or public services, risk analysis,
university services performances, measurement system analysis and many others.
One of the innovative tools in the evaluation analysis area assumes that the ordinal
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results can be thought as the final outcome of an unobserved choice mechanism
with two latent components: the feeling with the items or the objects, which is a
latent continuous random variable discretized by the judgment or the rate, and the
uncertainty in the choice of rates, which is related to several individual factors such
as knowledge or ignorance of the problem, personal interests, opinions, time spent in
the decision and so on. From these assumptions, the CUB model has been recently
derived by D’Elia and Piccolo (2005) and Piccolo (2006). Ordinal data are modeled
as a two components mixture distribution whose parameters are connected with the
two latent components of feeling and uncertainty. Classical inference is performed
by the maximum likelihood method. In D’Elia and Piccolo (2005) the maximum
likelihood estimates of parameters are obtained by means of the E-M algorithm.

The innovative contribution of this paper is that inference is performed in a
Bayesian framework and a suitable and new ad hoc MCMC scheme is developed.
Bayesian approach to mixture models has obtained strong interest since the end of
the last century (McLachlan and Peel, 2000), due to the believe that the Bayesian
paradigm is particularly suited to solve the computational difficulties and the non-
standard problems in their inference. This paper is organized as follows: in Sect. 2
we introduce the notations of the model with or without covariates; in Sect. 3
Bayesian inference is performed and our suitable MCMC algorithm is illustrated.
Finally, in Sects. 4 and 5, some simulation results will be used to check the statistical
performances of the algorithm and an application to a real data set will be illustrated.
Some concluding remarks and topics for future work end the paper.

2 The CUB Model

LetR be the ordinal random variable that describes the rate assigned by a respondent
to a given item of a preferences’ test, with r 2 f1; : : : ; mg. R may be modeled as
a mixture of a shifted Binomial(m � 1; 1 � �) and a discrete Uniform(m), whose
probability distribution is therefore defined as:

P.R D r/ D 


�
m � 1
r � 1

�

.1 � �/r�1�m�r C .1 � 
/ 1
m
: (1)

Note that the only unknown parameters are the mixture proportion 
 2 .0; 1�

and the shifted Binomial parameter � 2 Œ0; 1� since the maximum ratem, that has to
be greater than 3 due to the identifiability conditions (Iannario, 2010), is fixed. This
mixture is non-standard because its components belong to two different families of
distributions and the second component is fully known having assigned a value tom.

In the context of the preferences analysis the Uniform component may express
the degree of uncertainty in judging an object on the categorical scale, while the
shifted Binomial component may represent the behavior of the rater with respect
to the liking/disliking feeling for the object under evaluation. For any items we are
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interested in estimating the parameters �, that is a proxy of the rating measure,
and 
 , that is inversely related to the uncertainties in the rating process.

Fitting to observed ordinal data may be improved adding individual information
(covariates) on each respondents i , for i D 1; : : : ; n, to relate both the feeling �i
and the uncertainty 
i to the respondent’s features. The general formulation of a
CUB(p; q) model is then expressed by a stochastic component:

P.Ri D r IYi ;Wi / D 
i

�
m � 1

r � 1
�

.1 � �i /r�1�m�ri C .1 � 
i /
1

m
(2)

where r D 1; 2; : : : ; m, Yi and Wi are the subject’s covariates vectors of dimension
pC1 and qC1 explaining 
i and �i respectively , and a systematic component that
links the covariates to 
i and �i . This component is modeled as a logistic function:


i D exp .Y 0ˇ/
1C exp .Y 0ˇ/

; �i D exp .W 0�/
1C exp .W 0�/

(3)

where the vectors ˇ D .ˇ0; ˇ1; : : : ; ˇp/0 and � D .�0; �1; : : : �q/0 are the parameters
to be estimated. Due to the choice of the logistic function, the parametric space of

i and �i are restricted to �i 2 .0; 1/ and 
i 2 .0; 1/. In an objective Bayesian
perspective we place non-informative independent priors on the parameters: we
assume that each entry of vector ˇ is Normal with known hyperparameters�B and
�2B (ˇj � N .�B; �

2
B/, for any j D 0; : : : ; p); each entry of vector � is Normal

with known �G and �2G (�j � N .�G; �
2
G/, for any j D 0; : : : ; q).

3 Bayesian Inference

Bayesian approach to inference of complex statistical models uses probability to
quantify the beliefs of the observer about the model parameters, given the observed
data. Inference of mixture models is now feasible using posterior simulation via
recently developed MCMC methods (see McLachlan and Peel, 2000, for a fully
comprehensive review). For the CUB model, given a sample of n subjects, the
posterior distribution is


.ˇ;�jRIY;W / / P.Rjˇ;� ; Y;W /p.ˇ/p.�/; (4)

where P.Rjˇ;�; Y;W / is the likelihood function and p.ˇ/ and p.�/ are the prior
distributions. The likelihood function is defined as

P.Rjˇ;� ; Y;W / D
nY

iD1

	


i

�
m � 1
ri � 1

�

.1 � �i /
ri�1�m�rii C .1 � 
i / 1

m




D (5)
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D
nY

iD1

	
exp .Yiˇ/

1C exp .Yiˇ/

�
m � 1
ri � 1

�
exp .Wi�/

m�ri
.1C exp .Wi�//m�1

C 1

1C exp .Yiˇ/
� 1
m




:

(6)
Bayesian inference will be executed by sampling from the posterior density through
a suitable MCMC algorithm. Such methods allow the construction of an ergodic
Markov chain with stationarity distribution equals to the posterior distribution of the
parameters of interest. The simplest method is the Gibbs sampling that simulates and
updates each parameters in turn by sampling from its corresponding full conditional
distribution. However, since the conditional distributions for the CUB parameters
are not generally of standard form (being here in a logit model), it is more convenient
to use the Metropolis-Hastings algorithm.

We now introduce our MCMC algorithm which consists of two Metropolis steps.
Its scheme is briefly the following: given vectors ˇ.k�1/ and �.k�1/ generated at the
.k � 1/-th iteration, the steps of the generic k-th iteration are:

1. The parameters ˇ.k/j , for any j D 0; : : : ; p, are independently generated from

a random walk ˇ.k/j D ˇ
.k�1/
j C EB , where EB � N

�
0I �2EB

�
. The proposed

ˇ.k/ is accepted in block if uB 	 min f1IABg, where uB is a random number
generated from the Uniform distribution U .0I 1/ and the acceptance probability
ratio AB is:

AB D P.Rjˇ.k/;�.k�1/; Yi ;Wi /p
�
ˇ.k/

�

P.Rjˇ.k�1/;�.k�1/; Yi ;Wi /p
�
ˇ.k�1/

� I (7)

2. The parameters �.k/j , for any j D 0; : : : ; q, are independently generated from

a random walk �.k/j D �
.k�1/
j C EG , where EG � N

�
0I �2EG

�
. The proposed

� .k/ is accepted in block if uG 	 min f1IAGg, where uG is a random number
generated from the Uniform distribution U .0I 1/ and the acceptance probability
ratio AG is:

AG D P.Rjˇ.k/;� .k/; Yi ;Wi /p
�
�.k/

�

P.Rjˇ.k/;�.k�1/; Yi ;Wi /p
�
�.k�1/

� : (8)

At the end of a number N (large enough) of iterations we obtain N-dimensional
samples of the parameter’s values that will be used to estimates each ˇj and �j
through the posterior means.

It should be noted that in the case of the CUB models two of the main difficulties
that have to be addressed with the Bayesian approach in the context of mixture
models, are not to be considered. The first hindrance is the estimation of the
number of components of the mixture that here is fixed and equal to two. Another
basic feature of a mixture model is that it is invariant under permutations of the
components of the mixture. In Bayesian framework this feature (exchangeability)
may be very cumbersome since it generally implies that parameters are not
marginally identifiable. In fact if an exchangeable prior is used on the parameters,
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all the posterior marginals on the parameters are identical and then it is not possible
to distinguish between e.g. “first” and “second” component of the mixture. This
identifiability problem is called “label switching” (see e.g. Früwirth-Schnatter,
2006). For the mixture defined by (2) and (3) no label switching question is present
due to the fact that the Uniform parameter m is a known constant. In fact, also
choosing an exchangeable prior on .ˇ; �/ – as in our case – the posterior marginal
of ˇ will be distinguish from that of � , as it can be easily observed looking at
formulas (4)–(6).

4 A Simulation Study

In the first step of our preliminary study, many Monte Carlo simulations are
performed on the simple case of a CUB(0,0) model, i.e. a CUB without covariates,
to check the statistical performances of the algorithm. Following the scheme of
the simulation study reported in D’Elia (2003), we selected some different models
whose parameters values vary over the parametric space. These models show
probability distributions very different in location, variability and skewness aspects.
We use independent Normal priors N .0I 10/ for the parameters ˇ0 and �0. We
ran our MCMC algorithm (implemented in Digital Visual FORTRAN) for 100,000
iterations after 50,000 of burn-in and, for any model, we computed the finite bias of
the posterior means based on 500 replications of the estimation procedure. Table 1
shows the results form D 7 and n D 70, 210, 700.

We can notice that in general the bias decreases as n increases and for n � 210

it is generally limited (around 10�2). The worst performances are mainly associated
with the 
 estimator in correspondence with low values of n and of the parameter
itself (
 < 0:4). Comparing the finite sample bias property of Bayes and ML
estimator (see D’Elia, 2003) we may observe that we find negative bias for
 in most
of the cases, while the bias of ML estimators is always positive. For � parameter the
bias behaviour seems to be not so regular for both the kind of the estimators.

Many diagnostic tools are available to assess the convergence of an MCMC
algorithm. Among them a few informal checks are based on graphical techniques,
such as the plots of simulated values or of the ergodic means. The plot of the ergodic
or running means (the posterior means updated at each iteration) provide a rough
indication of stationary behaviour of the Markov chain after the burn-in iterations.
The plots of the traces (the sequence of values generated at each iteration) are a
valid instrument to check the mixing of the chain. A good mixing induces a fast
convergence of the algorithm. For the sake of example Fig. 1 shows the behaviour
over 32,000 iterations of the traces and the running means (recorded every 320
iterations) for one of the 500 replications of the case .
 D 0:7; � D 0:3/ with
n D 210. They seem to indicate that the convergence of our algorithm is good and
very clear.
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Table 1 Mean and bias of the bayesian estimators based on 500 replications of the MCMC
procedure

nD 70 nD 210 nD 700
True values Mean Bias Mean Bias Mean Bias


 0.1 0.0565 �0:0435 0.0579 �0:0421 0.0802 �0:0198
� 0.1 0.3041 0.2041 0.1922 0.0922 0.0939 �0:0061

 0.1 0.0526 �0:0474 0.0450 �0:0550 0.0556 �0:0444
� 0.4 0.4665 0.0665 0.4637 0.0637 0.4129 0.0129


 0.2 0.0995 �0:1005 0.1307 �0:0693 0.1877 �0:0123
� 0.2 0.2856 0.0856 0.2157 0.0157 0.1955 �0:0045

 0.4 0.3622 �0:0378 0.4191 0.0191 0.3989 �0:0011
� 0.1 0.0854 �0:0146 0.1091 0.0091 0.1005 0.0005


 0.4 0.2561 �0:1439 0.3622 �0:0378 0.3978 �0:0022
� 0.5 0.4971 �0:0029 0.4956 �0:0044 0.5013 0.0013


 0.7 0.6973 �0:0027 0.6983 �0:0017 0.6995 �0:0005
� 0.3 0.2946 �0:0054 0.2985 �0:0015 0.2999 �0:0001

 0.3 0.1980 �0:1020 0.2711 �0:0289 0.2939 �0:0061
� 0.8 0.7702 �0:0298 0.8109 0.0109 0.8002 0.0002


 0.7 0.6990 �0:0010 0.7048 0.0048 0.70120 0.00120
� 0.6 0.5976 �0:0024 0.6005 0.0005 0.60003 0.00003


 0.9 0.9087 0.0087 0.9003 0.0003 0.9009 0.00091
� 0.9 0.9022 0.0022 0.9002 0.0002 0.9000 �0:00001

0

0.2

0.4

0.6

0.8

1

1 5001 10001 15001 20001 25001 30001
0.2

0.3

0.4

0.5

0.6

0.7

0.8

1 11 21 31 41 51 61 71 81 91

a b

Fig. 1 Diagnostic plots for the MCMC convergence of the case 
 D 0:7 and � D 0:3, n D 210:
(a) traces; (b) running means

5 An Application to Real Data

The MCMC algorithm for the CUB model with covariates was applied on a real data
set concerning the students’ opinions on the Orientation services of the University
of Naples Federico II in years 2007 and 2008. By means of a questionnaire various
items have been investigated and each student was asked to give a score for
expressing his/her satisfaction with different aspect of the orientation service. For
each respondents the data set contains the judgments for each item ranging from
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Table 2 Posterior means of different CUB(p; 0)
models for advertisement

Models

CUB(0,0) b
 D 0:7783 b� D 0:3556

CUB(1,0) b̌
0 D 6:1433

log(Age) b̌
1 D �1:5911 b� D 0:3577

CUB(2,0) b̌
0 D 7:6359

log(Age) b̌
1 D �1:9749 b� D 0:3565

Gender b̌
2 D �0:5314

CUB(3,0) b̌
0 D 5:4889

log(Age) b̌
1 D �1:1682

Gender b̌
2 D �0:6921 b� D 0:3563

Change b̌
3 D �0:7623

CUB(4,0) b̌
0 D 5:0778

log(Age) b̌
1 D �1:1539

Gender b̌
2 D �0:4525 b� D 0:3556

Change b̌
3 D �0:4544

FT b̌
4 D 0:0274

Table 3 Comparison of different student’s profiles and corresponding parameters

Profiles Age Gender Change b� b
i P.R < 3/

A 20 Woman Yes 0.3563 0.6306 0.2367
B 20 Woman No 0.3563 0.7854 0.1896
C 20 Man Yes 0.3563 0.7733 0.1933
D 20 Man No 0.3563 0.8797 0.1610
E 30 Woman Yes 0.3563 0.5153 0.2718
F 30 Woman No 0.3563 0.6950 0.2171
G 30 Man Yes 0.3563 0.6799 0.2217
H 30 Man No 0.3563 0.8199 0.1791

1 D completely unsatisfied to 7 D completely satisfied (m D 7) and some students’
personal information such as Age, Gender, Change of original enrollment, Full Time
students (FT). In Corduas et al. (2009) the data set has been extensively analyzed
adopting the classical inferential procedures to estimate CUB(0; q) parameters for
different values of q. In the sequel we focus our attention to the analysis of the item
on advertisement of the service since the lowest value of b
 has been associated to
it (b
 D 0.78 when all the other items have values of b
 greater than 0.87). Our aim
here is to identify which kind of students shows the greater uncertainty answering
to this item. Then, using 2007 data set collecting n D 3,511 students’ answers and
their individual covariates, we exploit CUB(p; 0) model for different values of p
by MCMC algorithm. Using the same covariates adopted in Corduas et al. (2009),
we focus our attention on the CUB(3; 0) model (see Table 2) which is the best one,
since the covariate FT seems not to be relevant in explaining 
 .

Some different profiles corresponding to the 23 combination of two levels for
each covariate are derived from the estimated CUB(3; 0) model and reported in
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Table 3. We can observe that the profile that presents the greater uncertainty, i.e.
the lower value of 
 in evaluating advertisement, is that of 30 years old women who
change their original enrollment. The higher uncertainty implies a higher probability
to give low evaluation (R < 3) as we can see looking at the last column in Table 3.
Notice that b� D 0:3563 is constant for all profiles since no covariates for � are
present in the CUB(3; 0) model.

6 Conclusion

In this paper we adopt the Bayesian approach to the statistical analysis of a special
mixture model for ordinal data. We show how it may be performed via MCMC
simulation. The algorithm here introduced is extremely straightforward and it does
not involve the usual problems of the MCMC methods in the standard mixtures
context, or of the simulation algorithms in the classical maximum likelihood
inference. Finally, through a simulation study we show that our MCMC sampler
provide a good posterior inference. An application of a real data set is also studied.
An advantage of the Bayesian approach is that expert knowledge may also be
embedded into the model; previous studies may provide additional information on
the parameters that may be expressed through the prior distributions. This topic is
not discussed here because, up to now, we have adopted non-informative priors.

Future issues of the Bayesian analysis of the CUB models will regard sensitivity
analysis and the implementation of model choice and variable selection.
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Robustness Versus Consistency in Ill-Posed
Classification and Regression Problems

Robert Hable and Andreas Christmann

Abstract It is well-known from parametric statistics that there can be a goal con-
flict between efficiency and robustness. However, in so-called ill-posed problems,
there is even a goal conflict between consistency and robustness. This particularly
applies to certain nonparametric statistical problems such as nonparametric clas-
sification and regression problems which are often ill-posed. As an example in
statistical machine learning, support vector machines are considered.

1 Introduction

There are a number of properties which should be fulfilled by a statistical procedure.
First of all, it should be consistent, i.e., it should converge in probability to the true
value for increasing sample sizes. Another crucial property is robustness. Though
there are many different notions of robustness, the common idea is that small model
violations (particularly caused by small errors in the data) should not change the
results too much. It is well-known from parametric statistics that there can be a
goal conflict between efficiency and robustness. In this case one has to pay by
a loss of efficiency in order to obtain more reliable results. However, in many
nonparametric statistical problems, there is even a goal conflict between consistency
and robustness. That is, a statistical procedure which is (in a sense) robust cannot
always converge to the true value for increasing sample sizes. This is the case for
so-called ill-posed problems. It is well-known in the machine learning theory that
many nonparametric statistical problems are ill-posed. In particular, this is often
true for nonparametric classification and regression problems. The rest of the paper
is organized as follows: Sect. 2 introduces the setup and recalls a mathematically
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rigorous definition of ill-posedness given by Dey and Ruymgaart (1999). Section 3
investigates the goal conflict between robustness and consistency in ill-posed
problems. In Sect. 4, this is illustrated in case of support vector machines. This
article brings together notions and facts which are common in different fields,
namely robust statistics and machine learning.

2 Ill-Posed Statistical Problems

Many statistical estimation problems can be formalized in the following way: Let
P be a set of probability measures on the Borel-�-algebra of a complete separable
metric space Z and let F be another complete separable metric space.1 It is
assumed that one element P0 2 P is the true probability measure and the task
is to estimate the value T .P0/ of the functional

T W P ! F :

In parametric statistics, we typically have P D fP� j � 2 �g, F D � 
 Rk and
T .P�/ D � for all � 2 � . For a simple example of nonparametric estimation, let
P be the set of all probability measures on R with finite mean and define T .P / DR
x P.dx/ for all P 2 P . Then, the task would be to estimate the mean.
The notion of an ill-posed problem originates from solving (deterministic)

operator equations. Among other things, a problem is ill-posed if the solution is not
stable with respect to small changes. In the above formalized estimation problem,
ill-posedness has been connected with the statistical notion of qualitative robustness
by Dey and Ruymgaart (1999) where the following definition was given:

Definition 1. The problem of estimating T W P ! F is well-posed if T is
continuous in the following sense: limn!1 T .Pn/DT .P0/ for every sequence of
probability measures .Pn/n2N 
 P which converges weakly to some P0 2 P . The
problem of estimating T W P ! F is ill-posed if T is not continuous.

3 Robustness Versus Consistency

A sequence of estimators

Tn W Z ! F ; .z1; : : : ; zn/ 7! Tn.z1; : : : ; zn/; n 2 N; (1)

is consistent in P for the problem of estimating T W P ! F if, for every P 2 P ,

1If nothing else is stated, we always use the Borel-� -algebras.



Robustness Versus Consistency in Ill-Posed Classification and Regression Problems 29

Tn
P���! T .P / for n ! 1: (2)

Let dPro denote the Prokhorov metric on the set of all probability measures on the
metric space Z . That is

dPro.P1;P2/ D inf
˚
" 2 .0;1/

ˇ
ˇ P1.B/ < P2.B"/C " 8B 2 A

�

where B" D fz 2 Z j infz02B d.z; z0/ < "g and d denotes the metric on Z .
According to Hampel (1968, 1971) and Cuevas (1988, Definition 1), a sequence

of estimators .Tn/n2N is called qualitatively robust in P if, for every P 2 P and
every � > 0, there is an " > 0 such that, for everyQ 2 P ,

dPro.Q;P / < " ) sup
n2N

dPro
�
Tn.Q

n/; Tn.P
n/
�
< �:

Accordingly, the interpretation of qualitative robustness is: if the distribution which
generates the data changes slightly, then the distribution of the estimator should
also change only slightly – uniformly in the sample size. By use of the Prokhorov
metric, the notion of qualitative robustness covers two kinds of small errors in the
data: small errors in many data points zi and large errors in a small fraction of the
data set.

Theorem 1 immediately follows from Hampel (1971, Lemma 3) for parametric
statistics and Cuevas (1988, Theorem 1) for the general setting described above:

Theorem 1. If the problem of estimating T is ill-posed, then no sequence of
estimators Tn, n 2 N, can simultaneously be consistent and qualitatively robust
in P .

This is for example also the case in nonparametric density estimation; see Cuevas
(1988, Sect. 2). Though the fact that many problems are ill-posed is well-known
in machine learning theory, the implications concerning robustness have hardly
received any attention: A procedure which is universally consistent (i.e. consistent
for all probability measures) cannot be stable in the sense of qualitative robustness.

In statistical machine learning theory, it is common to consider so-called risk-
consistency instead of the consistency property defined in (2). Let X be an input
space (with a �-algebra A ) and Y 
 R an output space; e.g., Y D f�1;C1g
for binary classification or Y D R for regression purposes. The quality of a
(measurable) predictor f W x 7! f .x/ is measured by the risk

RL;P .f / D
Z

L
�
y; f .x/

�
P
�
d.x; y/

�

where L W Y � R ! Œ0;1/ is a (measurable) loss function. Let L0.X / be the set
of all measurable functions f W X ! R. A learning algorithm

Tn W .X� Y /n ! L0.X /; Dn 7! Tn.Dn/
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maps a sample Dn to a predictor fDn W X ! R. That is, Tn can be seen as
an estimator which takes its values in the function space L0.X / and fDn D
Tn.Dn/ denotes the value of Tn in Dn. Here, we assume that the sample Dn D�
.x1; y1/; : : : ; .xn; yn/

�
stems from i.i.d. random variables .X1; Y1/; : : : ; .Xn; Yn/

with unknown distribution P . The learning algorithm Tn W Dn 7! fDn is called
risk-consistent in P if, for every P 2 P ,

RL;P .fDn/ �! inf
f 2L0.X /

RL;P .f / .n ! 1/

in probability. Accordingly, we call a learning algorithm Tn qualitatively risk-robust
in P if, for every P 2 P and every � > 0, there is an " > 0 such that, for every
Q 2 P ,

dPro.Q;P / < " ) sup
n2N

dPro
�
RL;P ı Tn.Qn/;RL;P ı Tn.P n/

�
< �: (3)

That is, if the distribution P which generates the data changes slightly to Q, then
the distribution of the risk RL;P ı Tn.P n/ only changes slightly to RL;P ı Tn.Qn/–
uniformly in the sample size.2

As risk-consistency and qualitative risk-robustness are weaker properties than
the ones used in Theorem 1, one may hope that there might be a learning algorithm
which enjoys both of these weaker properties. However, at least for regression
problems, this is not the case as the following theorem shows.

Theorem 2. Let X D Œ0; 1�, Y D R andL be a distance-based loss function, i.e.,
there is a measurable function ' W Œ0;1/ ! Œ0;1/ such that, for every .y; t/ 2
Y � R, L.y; t/ D '.jy � t j/. Assume that '.0/ D 0, that ' is non-decreasing,
and that lims!1 '.s/ D 1. Let P be the set of all probability measures P on
X � Y such that inff 2L0.X / RL;P .f / < 1 . Then, no learning algorithm Tn,
n 2 N, defined in (1) can simultaneously be risk-consistent and qualitatively risk-
robust in P .

As it is not possible in many nonparametric problems to have a consistent and
qualitatively robust estimator/learning algorithm, one has to weaken at least one of
the two desired properties. The proof of Theorem 2 shows that the incompatibility
of consistency and qualitative robustness comes from the fact that the usual
definition of qualitative robustness not only requires a continuity property but
even equicontinuity over all possible sample sizes and this conflicts with universal
consistency. However, in applications, one is usually faced with a sample of a fixed
finite size so that robustness for fixed sample sizes may also be satisfactory. The
following definition of “finite sample qualitative robustness” relaxes equicontinuity
to continuity. This offers a possibility to get around the conflict between universal

2Note that it is not appropriate to consider RL;Q instead of RL;P in (3) because we have to evaluate
the risk with respect to the true distribution P and not with respect to the erroneous Q.
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consistency and qualitative robustness. However, it has to be noted that this notion
of robustness is not an asymptotic one so that it is not sufficient if an asymptotic
performance criterion is applied as usual for well-posed parametric problems. It is
only useful for finite sample considerations.

Section 4 presents support vector machines as an example of a learning algorithm
which is simultaneously universally consistent and finite sample qualitatively robust
under some mild conditions.

Definition 2. An estimator Tn is called finite sample qualitatively robust in P if,
for every sample size n, for every P 2 P , and every � > 0, there is an "n > 0 such
that, for everyQ 2 P ,

dPro.Q;P / < "n ) dPro
�
Tn.Q

n/; Tn.P
n/
�
< �:

Similarly, define finite sample qualitative risk-robustness.

4 Example: Support Vector Machines

As an example, we consider nonparametric classification and regression where we
have i.i.d. observations .x1; y2/; : : : ; .xn; yn/ 2 X � Y and we want to predict
the value y of an unobserved output variable Y based on the observed value x of
an input variable X . That is, we want to find a “good” predictor f W x 7! f .x/.
For this purpose, support vector machines attracts attention since a decade; see e.g.
Vapnik (1998), Schölkopf and Smola (2002) and Steinwart and Christmann (2008).

In order to define support vector machines, a convex loss function L W X� Y �
R ! Œ0;1/ is used where L.x; y; f .x// measures the quality of a prediction f .x/
if x is the value of the input variable X and y is the value of the output variable Y .
Next, H is a Hilbert space – more precisely, a reproducing kernel Hilbert space –
which consists of functions f W X ! R. Then, support vector machines are given
by the estimator Tn W .X� Y /n ! H

�
.x1; y1/; : : : ; .xn; yn/

� 7! arg min
f 2H

1

n

nX

iD1
L
�
xi ; yi ; f .xi /

� C 	kf k2H

in order to obtain good approximations of a minimizer of

L0.X / ! R; f 7! RL;P .f / D
Z

L
�
x; y; f .x/

�
P
�
d.x; y/

�
:

The real number 	 2 .0;1/ is a regularization parameter which prevents from
overfitting. Let P be the set of all probability measures on X� Y .

It was shown in Hable and Christmann (2011, Theorem 3.1) that the sequence
of SVM-estimators Tn, n 2 N, is qualitatively robust in P under some mild
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conditions for any fixed regularization parameter 	 2 .0;1/. However, Tn defined
in this way is not consistent in P . In order to obtain consistency, the fixed
regularization parameter 	 has to be replaced by a sequence of regularization
parameters .	n/n2N 
 .0;1/ which converges (not too fast) to 0 for increasing
sample sizes n; see e.g. Steinwart (2002). It is also shown in Hable and Christmann
(2011, Proposition 3.2) that, in the latter case, the resulting estimator using 	n is
not qualitatively robust. As described above, this is not a particular shortcoming of
support vector machines but an unavoidable consequence of the ill-posedness in the
sense of Dey and Ruymgaart (1999) of the underlying statistical problem.

However, Hable and Christmann (2011, Theorem 3.1) shows that, under some
mild conditions onL andH , support vector machines are finite sample qualitatively
(risk-)robust in P for every sequence .	n/n2N 
 .0;1/. Hence, suitable choices of
L,H and .	n/n2N guaranty that support vector machines are simultaneously (risk-)
consistent and finite sample qualitatively (risk-)robust. Furthermore, it is known that
support vector machines have a bounded influence function and a bounded maxbias;
see e.g. Steinwart and Christmann (2008, Sect. 10).

5 Conclusions

There are a number of criteria for robustness (e.g. influence function, maxbias,
breakdown point) in statistics but this article only refers to qualitative robustness.
It is pointed out that there is a goal conflict between consistency and qualitative
robustness in many nonparametric statistical problems such as classification and
regression. This is somewhat contrary to a result from Poggio et al. (2004)
and Mukherjee et al. (2006) which in some sense says that, for the method of
empirical risk minimization, universal consistency is equivalent to their notion of
stability even though empirical risk minimization typically is ill-posed. This shows
that, in case of an ill-posed empirical risk minimization problem, no estimator (or
learning procedure) can be both qualitatively robust and stable. This indicates that
the notion of stability (common in machine learning theory) and the classical notion
of qualitative robustness are quite conflicting even though stability is sometimes
considered as some kind of a robustness property in machine learning theory.

Appendix

Proof (Theorem 2). In order to prove Theorem 2, we assume that Tn, n 2 N, is a
risk-consistent learning algorithm and we show that Tn, n 2 N, is not qualitatively
risk-robust. According to the assumptions on ', for every m 2 N, there is a cm 2
Œ0;1/ such that '.cm/ � m. For every t 2 R, let ıt denote the Dirac-measure at t ;
let UŒ0;1� denote the uniform distribution on X D Œ0; 1�. Define
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P
�
d.x; y/

� WD ı0.dy/UŒ0;1�.dx/ and Qm

�
d.x; y/

� WD ıgm.x/.dy/UŒ0;1�.dx/

for gm W Œ0; 1� ! R; x 7! ��mcmx C 4cm
�
IŒ0;4=m�.x/ for everym 2 N.

Note that, for every Borel-measurable set B 
 X� Y ,

Qm

�	

.x; y/ 2 X � Y
ˇ
ˇ
ˇx >

4

m




\ B

�

D P

�	

.x; y/ 2 X � Y
ˇ
ˇ
ˇx >

4

m




\ B
�

: (4)

Obviously, inff 2L0.X / RL;P .f / D 0 and inff 2L0.X / RL;Qm.f / D 0 for every
m 2 N. Then, risk-consistency implies: for every m 2 N, there is an nm 2 N such
that, for every n � nm,

Qn
m

�	

Dn 2 .X� Y /n
ˇ
ˇ
ˇ RL;Qm.fDn/ <

1

3


�

� 2

3
(5)

Pn

�	

Dn 2 .X� Y /n
ˇ
ˇ
ˇ RL;P .fDn/ <

1

3


�

� 2

3
: (6)

For everym; n 2 N, define B.n/
m WD ˚

Dn 2 .X� Y /n
ˇ
ˇ RL;Qm.fDn/ <

1
3

�
and

Am.Dn/ WD
	

x 2 X
ˇ
ˇ
ˇx 	 2

m
; fDn.x/ 	 cm




8Dn 2 .X� Y /n:

Note that the definitions imply

gm.x/ � fDn.x/ � 2cm � cm D cm � 0 8 x 2 Am.Dn/: (7)

Hence, for everym 2 N, n � nm, and Dn 2 B.n/
m ,

1

3
> RL;Qm.fDn/ �

Z

Am.Dn/

Z

R

'
�ˇ
ˇy � fDn.x/

ˇ
ˇ
�
ıgm.x/.dy/UŒ0;1�.dx/ D

D
Z

Am.Dn/

'
�ˇ
ˇgm.x/ � fDn.x/

ˇ
ˇ
�
UŒ0;1�.dx/

.7/� '.cm/ � UŒ0;1�
�
Am.Dn/

� �

� m � UŒ0;1�
�
Am.Dn/

�
(8)

Next, it follows for everym 2 N, n � nm, and Dn 2 B.n/
m that

UŒ0;1�
�˚
x 2 X

ˇ
ˇ fDn.x/ > cm

�� � UŒ0;1�

�	

x 2 X
ˇ
ˇ
ˇx 	 2

m
; fDn.x/ > cm


�

D UŒ0;1�

�	

x 2 X
ˇ
ˇ
ˇ x 	 2

m


�

� UŒ0;1�
�
Am.Dn/

� .8/� 2

m
� 1

3m
>

1

m
(9)

and, therefore,
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RL;P

�
fDn

� �
Z

fx2X jfDn .x/>cmg

Z

R

'
�ˇ
ˇy � fDn.x/

ˇ
ˇ
�
ı0.dy/UŒ0;1�.dx/ D

D
Z

fx2X jfDn .x/>cmg
'
�ˇ
ˇfDn.x/

ˇ
ˇ
�
UŒ0;1�.dx/ �

� m � UŒ0;1�
�fx 2 X j fDn.x/ > cmg� .9/� 1: (10)

Define C WD Œ1;1/. Then, for everym 2 N and n � nm,

�
RL;P ı Tn.Qn

m/


.C / D Qn

m

�˚
Dn 2 .X� Y /n

ˇ
ˇ RL;P .fDn/ � 1

�� �
.10/� Qn

m

�
B.n/
m

� .5/� 2

3
D 1

3
C 1

3

.6/� Pn

�	

Dn 2 .X � Y /n
ˇ
ˇ
ˇ RL;P .fDn/ � 1

3


�

C 1

3

� �
RL;P ı Tn.P n/



.C

1
3 /C 1

3

where C
1
3 D fz 2 Rj infz02R jz � z0j < 1

3
g as in the definition of dPro. This implies

dPro
�
RL;P ı Tn.Qn

m/;RL;P ı Tn.P n/
� � 1

3
8 n � nm 8m 2 N: (11)

However, for everym 2 N and every measurable B 
 X� Y , we have

Qm.B/ D Qm

 (

.x; y/ 2 X� Y
ˇ
ˇ
ˇx 	 4

m

)

\ B

!

CQm

 (

.x; y/ 2 X� Y
ˇ
ˇ
ˇ x >

4

m

)

\ B

!

	 4

m
CQm

 (

.x; y/ 2 X� Y
ˇ
ˇ
ˇ x >

4

m

)

\ B
!

D

D 4

m
C P

 (

.x; y/ 2 X� Y
ˇ
ˇ
ˇ x >

4

m

)

\ B

!

	 4

m
C P

�
B

4
m

�

and, therefore,

dPro
�
Qm;P

� 	 4

m
8m 2 N: (12)

Inequalities (11) and (12) imply that Tn, n 2 N, is not qualitatively risk-robust.
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Issues on Clustering and Data Gridding

Jukka Heikkonen, Domenico Perrotta, Marco Riani, and Francesca Torti

Abstract This contribution addresses clustering issues in presence of densely
populated data points with high degree of overlapping. In order to avoid the
disturbing effects of high dense areas we suggest a technique that selects a point
in each cell of a grid defined along the Principal Component axes of the data. The
selected sub-sample removes the high density areas while preserving the general
structure of the data. Once the clustering on the gridded data is produced, it is easy
to classify the rest of the data with reliable and stable results. The good performance
of the approach is shown on a complex dataset coming from international trade data.

1 Introduction

In this paper we address clustering issues in presence of data consisting of
an unknown number of groups with high degree of overlapping and presenting
both high and low density regions which invalidate the hypothesis of ellipticity.
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To find the clusters on these data, the model complexity selection issue becomes
difficult. Typically model complexity selection is based on the maximum likelihood
formulation of the model with respect of the data and an additional cost function that
penalises too complex models, i.e. the ones having too many parameters needed
to capture the main characteristics of the data (Schwarz, 1978; Rissanen, 1986;
Bishop, 2006). When the model complexity selection is formulated as a probabilistic
problem, in addition to well known disturbing effects of noise and outliers, the
presence of dense and dispersed groups of points causes additional challenges.
Because of the likelihood formulation, the dense groups dictate the parameter values
of the model and the groups with less points may not be properly detected. This has
some similarity to sampling theory where the goal is to have representative samples
from the population of interest (Cochran, 1977). Often some elements are hard to
get or very costly to be obtained and one has to select the correct sampling strategy
to obtain representative population statistics. For instance, in stratified sampling,
the population is first divided by some meaningful rules into as homogeneous
groups as possible. These groups (strata) should be mutually exclusive meaning that
one element should be assigned only to one and only one group (stratum). When
properly used, stratified sampling reduces sampling error, as is its goal.

In our clustering case we are interested in recognizing also those clusters that
only consist of few data points. In order to achieve this goal, we propose a sampling
approach that tries to avoid the disturbing effects of the dense populated data points
through a data gridding technique based on Principal Component Analysis (PCA).
This technique consists in defining a grid along the Principal Component (PC) axes
of the data and selecting one point in each cell of the grid. Our goal is to have
through the balanced data points correct model complexity for the given data and to
avoid the domination of dense populated data points over the dispersed ones. The
performance of the proposed data gridding technique (Sect. 2) is evaluated with two
versions of Gaussian Mixture Models (GMMs) and the Forward Search (FS) on data
coming from the international trade of the European Union (EU) (Sect. 3). We show
that the gridded data preserve the general structure of the original dataset, which is
then well captured by three clustering methods. We will see that once the clustering
on the gridded data is produced, it is easier to classify the rest of the data with results
which are more reliable and stable than those obtained on the original data.

To illustrate the procedure and the above problems we use the dataset in the left
panel of Fig. 1. The variables are the volume and value of the monthly imports of
a fishery product in the EU in a period of 3 years. One of the 27 EU Members
States is producing trade flows which deviate from the main dense cluster. This
situation, with a concentration of points towards the origin of the axes where the
clusters intersect, is typical of international trade data. Perrotta and Torti (2009)
made an exploratory analysis of this dataset and Riani et al. (2008) treated the
case as regression problem. In this paper the emphasis is on inferring automatically
the number and the shape of the groups. The dataset is included in the MATLAB
FSDA toolbox Riani et al. (2012), which can be downloaded at http://www.riani.it/
MATLAB.htm.

http://www.riani.it/MATLAB.htm
http://www.riani.it/MATLAB.htm
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Fig. 1 Fishery data (left plot, 677 observations) and gridded data with 80 cells along the first
principle component axis (right plot, 95 observations)

2 Gridding Approach

In our gridding approach the original variables are normalized to zero mean and unit
variances to avoid the dominance of the scaling of variables in PCA. After scaling
when the PC axes are defined, the data points are projected to this domain to have
their PCs. Taking the maximum and minimum coordinates of the PCs we can define
a grid of a predefined number of cells along each PC axis. In our case, when we have
2-dimensional data, the grid is also 2-dimensional and defined by the 2 PC axes. The
same approach can be extended to higher dimensions. Note that the grid cells do not
necessarily have equal width in all PC axes directions and a single cell can cover
zero, one or more data points of the original data. Especially where the data are
densely populated, the grid cells corresponding to a dense group of points include
multiple original values. For each cell the goal is to search for one representative
point from the original data. This is done by taking the median of points belonging to
the cell and finding the closest point to the calculated median. As a result we obtain
either none or one point for each cell of the grid. With the new reduced subset we
can perform a desired analysis, for example estimating the Gaussian Mixture Model
and the proper number of clusters over the balanced dataset.

The right panel of Fig. 1 shows the result of the gridding approach when 80 cells
in each PC axis direction is applied to the original data of 677 observations. As
can be observed, the gridded result represents rather well the original data and the
number of points in dense and dispersed groups is better balanced.

3 Example Results

The GMM models used are Model-Based Clustering/Normal Mixture Modeling
(Fraley, 1998) and its robust version Robust Trimmed Clustering (Garcia-Escudero
et al., 2008). For the runs we used their well known R implementations MCLUST
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and TCLUST. Both methods are based on a finite mixture of distributions where
each mixture component corresponds to a different group. A common reference
model for the components is the multivariate Gaussian distribution. In MCLUST
the standard approach for estimating the mixture consists of using the EM algorithm
and the BIC to select the number of components. Each observation is assigned to
the cluster to which it is most likely to belong. The TCLUST approach is defined
through the search of k centersm1; : : : ; mk and k shape matricesU1; : : : ; Uk solving
the double minimization problem:

arg min
Y

min
m1; : : : ; mk

U1; : : : ; Uk

X

jD1;:::;k
.xi �mj /

0U�1j .xi �mj / i D 1; : : : ; n (1)

where Y ranges on the class of subsets of size Œn.1 � ˛/� within the sample
fx1; : : : ; xng. Note that in this approach we allow for a proportion ˛ of observations,
hopefully the most outlying ones, to be left unassigned. In order to chose k,
the authors suggest using the so called Classification trimmed Likelihood curves
(Garcia-Escudero et al., 2011).

The third method that we consider is based on the Forward Search of Atkinson
et al. (2004). This approach was originally introduced for detecting subsets and
masked outliers and for estimating their effect on the models fitted to the data.
This method produces a sequence of subsets of increasing size through a dynamic
process that leaves outliers in the last subsets. By monitoring the trajectory of
the values of the minimum Mahalanobis distance among observations outside the
current subset, it is possible to detect towards the end of the search peaks that
correspond to the presence of outliers. Besides, by monitoring the same statistic
for searches initialised from many different randomly chosen subsets, it is possible
to reveal the presence of multiple populations as separated peaks that can occur at
any position along the search depending on the size and structure of the groups
(Atkinson and Riani, 2007). However, problems may occur in presence of high
density areas. For example, the left panel of Fig. 1 shows that more than 50 % of
the data are concentrated near the origin of the axes and, thus, the random start
trajectories of minimum Mahalanobis distance degenerate into the same search path
in the very first steps of the FS, as shown in Fig. 2. This behaviour, which is caused
by the dense population near the origin of the axes, makes the information produced
by the random start FS difficult or even impossible to interpret. The detection of the
first cluster is shown in the zoom of Fig. 1, where the envelopes based on about 130
size sub-sample are exceeded by the Minimum Mahalanobis distance trajectories
(Riani et al., 2009). The same procedure can be repeated iteratively for the data
not yet assigned to an homogeneous subgroup. However, in this case this procedure
results in an excessive number of subgroups.

In presence of highly dense areas, similar difficulties arise with other classical
statistical clustering methods such as K-means clustering or GMMs which, however,
compared to the FS have less or even no instruments to accurately identify the parts
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Fig. 2 Fishery dataset: 200 FS random starts and zoom on the initial part of the search (with
superimposed envelopes)
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Fig. 3 Fishery dataset: BIC selection of the best MCLUST model (left panel) and ellipses
associated with MCLUST classification (right panel)

of the data that are causing these issues. The left panel of Fig. 3 shows the BIC
trajectories as a function of the number of groups k when using MCLUST. The
highest value of BIC is obtained for k D 8. However, judging from the right-hand
panel of the figure, which shows the ellipses associated to the eight components,
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Fig. 4 Fishery dataset: Classification Trimmed Likelihood Curves for TCLUST (upper left), a
zoom on an area of the classification plot (upper right) and ellipses associated with the TCLUST
classification for k D 4 and a trimming proportion alpha D 0:04 (bottom). The unclassified data
are plotted with circles

this number of clusters seems to be excessive. In fact the four components covering
the dense area seem to be sub-samples of the same group.

Let us now consider the Gallego’s algorithm (Garcia-Escudero et al., 2010),
implemented in the TCLUST function in R-software, which is more sophisticated
than MCLUST due to the possibility of data trimming. Based on the Trimmed
Likelihood Curves shown in the top panels of Fig. 4, one should observe the correct
number of clusters (say k) and the corresponding trimming level (alpha). However,
the interpretation of these panels is not clear, in the sense that it is not obvious how
to choose the smallest value k and alpha such that no big change in the classification
trimmed likelihood curves are found when increasing from k to k C 1. Since here
we wanted to stay on a few number of clusters and a relative small trimming, we
decided in a rather arbitrary way that k D 4 and alpha D 0:04 were somehow
reasonable. The ellipses associated with the four clusters produced by TCLUST
method are drawn in the bottom panel of Fig. 4 together with the 4 % unclassified
units shown with circles.
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Fig. 5 Minimum deletion residual trajectories from 200 FS random starts on the gridded data (left
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Fig. 6 Final classification of the Fishery dataset based on centroids found on the gridded data with
TCLUST (left panel) and MCLUST (right panel)

When we apply the three methods to the gridded data, we obtained a more
meaningful number of components as with the original data. First of all in all cases
the estimated number of clusters was always three. We then classify the rest of the
data based on the smallest Mahalanobis distance computed using the centroids and
the variance-covariance matrices of the groups found on the gridded data. The final
data classification for the three clustering methods is shown in Figs. 5 and 6. The
units which remain unassigned in the FS and TCLUST are represented with the
plus symbol. Compared to the previous clustering without gridding, all these new
clusters are much more meaningful thanks to the data balancing of the gridding
technique.
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4 Conclusions

In this paper we have shown how different model-based-clustering methods are
bad-performing in presence of densely populated data points with high degree of
overlapping. We have therefore proposed to precede each clustering method with
a technique that selects a point in each cell of a grid defined along the Principal
Component axes of the data, in order to identify a sub-sample that preserves the
general structure of the data, on which to apply a clustering technique.
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Dynamic Data Analysis of Evolving Association
Patterns

Alfonso Iodice D’Enza and Francesco Palumbo

Abstract Dealing with large amounts of data or data flows, it can be convenient
or necessary to process them in different ‘pieces’; if the data in question refer to
different occasions or positions in time or space, a comparative analysis of data
stratified in batches can be suitable. The present approach combines clustering
and factorial techniques to study the association structure of binary attributes over
homogeneous subsets of data; moreover, it seeks to update the result as new
statistical units are processed in order to monitor and describe the evolutionary
patterns of association.

1 Introduction

The application framework of the present paper is the analysis of large date sets
described by several binary attributes and stratified in different subsets of statistical
units due to either the amount of data and a time/space reference of the data in
question. Actually, when dealing with large amounts of data or data flows, it can be
convenient or necessary to process them in different ‘pieces’; if the data in question
refer to different occasions or positions in time or space, a comparative analysis of
data stratified in batches can be suitable.

This paper presents an approach that, through the combination of clustering and
factorial techniques, aims to study the evolution of the association structure of
binary attributes over homogeneous subsets of data; moreover, it seeks to update
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the result as new statistical units are processed in order to monitor and describe the
evolutionary patterns of association.

A typical real world example of such data structures is market basket analysis
(MBA) where each statistical unit is a transaction and the binary attributes indicate
whether a product is purchased or not: here the aim is to study and monitor the
attributes association structure over time. Further examples of such a kind of data
structure are available in finance, environmental and social sciences.

The association study of a large number of attributes and the comparison among
the different solutions obtained for each data batch represent a two-fold problem.
Two different but not independent aspects have to be considered in the analysis:
the former can be suitably faced by factorial techniques; the latter, the comparison
among different solutions obtained for each data batch, remains the main issue in the
analysis. A straightforward approach for a one-to-one comparison is to perform a
supplementary projection of a data batch on the factorial structure resulting from
a previous data batch; a slightly more sophisticated approach is to update the
obtained solution progressively when new data batches comes in (Iodice D’Enza
and Greenacre, 2010).

In this contribution the proposal is to introduce a latent categorical variable which
is determined and updated at each incoming batch; in other words this variable is
determined according to the association structure and represents the ‘link’ among
the solutions. The latent categorical variable is endogenously determined by the
procedure. The procedure consistency is assured by the fact that both the factorial
technique and the determination of the latent variable satisfy the same criterion.
To determine the latent categorical variable, a good solution consists in grouping
statistical units into homogeneous groups in order to get a set of profiles that are
representative of similar units.

In the literature different proposals aim to explore the relationship structure char-
acterizing a data set through the combination of clustering procedures and factorial
techniques. Dealing with continuous variables, an example of such a combined
approach is tandem analysis proposed by Arabie and Hubert (1994): following
this approach, a principal component analysis (PCA) is first applied on data and
a clustering procedure is then performed on the statistical unit scores of a reduced
number of components. A sequential application of PCA and clustering may not
reveal the group structure underlying data, or it can even mask it: procedures
suitably combining clustering with factorial analysis (FA) techniques have been
proposed. Vichi and Kiers (2001) propose a combination of principal component
analysis with k-means clustering method. In the framework of categorical data,
another interesting approach combining clustering and multiple correspondence
analysis (MCA) (Greenacre, 2007) is proposed by Hwang et al. (2006). Similarly,
yet dealing with binary data, Palumbo and Iodice D’Enza (2010) propose a suitable
dimension reduction and clustering.

The paper is structured as follows: in Sect. 2 the problem is introduced and
formalized; furthermore the interpretation of the maximization criterion is provided.
In Sect. 3 the whole procedure is described in detail. The last section shows an
example of application on a large and sparse real world data set.
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2 Problem Statement

In this section we provide a description of the proposed approach to study the
structure of associations in binary high-dimensional data.

Let n and p be respectively the number of statistical units and the number of
binary attributes Zj .j D 1; : : : ; p/; let K be the number of groups of homoge-
neous statistical units. Assigning a single statistical unit to one of K groups is
a single occurrence of a multinomial experiment with K possible outcomes. The
group k, k D 1; : : : ; K , is coded via the indicator variable Ik , where Ik D 1 if
the statistical unit is assigned to the kth group, Ik D 0 otherwise. Considering n
trials, the random vector X D .X1;X2; : : : ; XK/ follows a multinomial distribution
with parameters .nI
1; 
2; : : : ; 
K/, with 
k D P r.Ik D 1/: n is the only known
parameter. Assuming the parameters .
1; 
2; : : : ; 
K/ to be known, the optimal
criterion for the allocation of the n statistical units into theK groups is to randomly
assign units to groups proportionally to the corresponding 
k parameters.

In this contribution the aim is to estimate 
k (that is to optimally assign units
to groups) in order to maximize the heterogeneity among groups with respect
to the Zj attributes. Each of the attributes Zj is Bernoulli distributed (with z
indicating success and Nz failure) distributed with parameter 
Z . According to the
same criterion, new statistical units are processed in order to update both the
clustering solution and the binary attribute quantifications.

We illustrate the criterion to maximize in the simple case of one single binary
attribute Z, and its generalization to the p attributes case afterwards. Consider X
as a qualitative variable with k D 1; : : : ; K categories and Z a binary variable with
attributes fz; Nzg.

Let F be the cross-classification table (represented above) with general element
fkh being the co-occurrence number of the categories k and h, with h D 1; 2; the
row margin fkC is the number of occurrences of the category k.k D 1; : : : ; K/ and
the column margin fCh is the number of occurrences of the category h.h D 1; 2/,
with fCC D n being the grand total of the table. The qualitative variance, or
heterogeneity, of X can be defined by the Gini index

G.X/ D 1 �PK
kD1

�
fkC

n

�2 D 1 �PK
kD1

f 2kC

n2
: (1)

Within the category of z (the same occurs for Nz) the variation is

G .X j z/ D 1 �PK
kD1

f 2k1
f 2

C1

: (2)

The variation of X within the categories of the variable Z is obtained by averaging
G .X j z/ and G .X j Nz/ and it is denoted by G .X j Z/, formally

G.X j Z/ D P2
hD1

fCh

n

�

1 �PK
kD1

f 2kh
f 2

Ch

�

D 1 � 1
n

PK
kD1

P2
hD1

f 2kh
fCh

: (3)
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Then the variation of X explained by the categories of Z is

G.X/ �G.X j Z/ D 1 �PK
kD1

f 2kC

n2
�
�
1 � 1

n

PK
kD1

P2
hD1

f 2kh
fCh

�

D 1
n

PK
kD1

P2
hD1

f 2kh
fCh

� 1
n

PK
kD1

f 2
kC

n
: (4)

It is worth noting that the quantity in Eq. (4) can also be expressed in terms of
proportional prediction that refers to the situation when statistical units are ran-
domly assigned to the group k with probability fkC

n
. When additional information

is provided by a variable Z, the proportional prediction becomes fkh
fCh

; h D
1; 2. The average proportion of correct prediction with additional information is
PK

kD1
f 2
kC

n2
and the average proportion of correct prediction without additional

information is
PK

kD1
P2

hD1
f 2kh
fCh

, (Mirkin, 2001).
The groups heterogeneity corresponds to the qualitative variance between the K

levels of theX variable, then with n statistical units described by p binary attributes
Z1;Z2; : : : ; Zj ; : : : ; Zp , the quantity to maximize is

pX

jD1

�
G.X/�G.X j Zj /

�
: (5)

The expression (5) represents the sum of variances explained by each of the
attributes Zj and it is the generalization of expression (4) to the p-attributes case.

3 The Procedure

This section illustrates the procedure to alternatively determine the factorial struc-
ture that better synthesizes the multiple associations among attributes and the latent
variable that is the link of the solutions of each data batch. It is worth to note that
the subsequent batches must be described by the same set of attributes. It keeps the
between groups heterogeneity maximized as new data batches are analysed and it
consists of three phases:

1. Analysis of the starting batch: an iterative factorial clustering procedure is used
to obtain the starting solution as proposed by Palumbo and Iodice D’Enza (2010);

2. Processing of upcoming batches;
3. Update of the solution according to new data.

The latter two phases are repeated for each new data batch to analyse.
The following algebraic notation will be used:

– Z.n � 2p/ disjunctive coded binary data matrix, with two columns per attribute
(presence-absence);
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Table 1 Example of two-variable cross-classification table
Z

z Nz

X

1 f11 f12 f1C
:
:
:

:
:
:

:
:
:

:
:
:

K fK1 fK2 fKC

fC1 fC2 n

– zj .j D 1; : : : ; 2p/ the general column vector of Z;
– X.n�K/ a binary matrix that assigns each statistical unit to one of theK groups;
– F D XTZ D �

F1;F2; : : : ;Fj ; : : : ;Fp



is a block matrix, the j th block
corresponds to the cross-tabulation of the categorical variableX with the attribute
Zj , (as described in Table 1).

A two-step iterative procedure is used to analyse the starting data batch; then new
data are processed and the corresponding data structures are updated.

In algebraic terms, the criterion in expression (5) to maximize corresponds to

tr
�
1
n
F.�/�1FT � p

n2

�
XT11TX

�

(6)

� tr
�
1
n

XTZ.�/�1ZTX � p

n2

�
XT11TX

�


where � D diag.ZTZ/ is the matrix of the diagonal elements of ZTZ and 1 is a
n-dimensional vector of ones.

The solution to the problem lies in maximizing the trace of the above matrix, and
the least square solution consists in the eigen-analysis of

1

n

h
XTZ.�/�1ZTX � p

n

�
XT11TX

�i
U D �U: (7)

A direct solution is not admissible, since both the optimal X and U must be
determined: the orthonormal basis U depends on X, on the other hand, the allocation
matrix X is defined on the sub-space with basis U. The determination of X and
U maximizing the criterion (6) requires an iterative procedure that runs over the
following steps:

• step 0: pseudo-random generation of matrix X;
• step 1: eigenvalue decomposition of the matrix resulting from expression (7),

obtaining the matrix

� D
�

Z.�/�1ZT � p

n
11T

�
XU�

1
2 I (8)

• step 2: update matrix X according to a Euclidean squared distance-based non-
hierarchical clustering algorithm (k-means) on the projected statistical units
(� matrix).
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While the quantity in (6) increases with respect to the previous iteration, steps
1 and 2 are iterated. It is not possible to embed the optimal quantities in a single
target function, then it is not possible to formally demonstrate the convergence of the
iterative procedure. In fact, the convergence is testified by empirical studies on real
and synthetic data sets. Results are not presented here for sake of space. Although
the procedure may reach local maxima, as in K-means-like algorithms, the random
multiple starts strategy can be used to identify global maxima.

From a geometrical point of view, given a clustering solution X, the columns of
matrix U define the orthogonal sub-space that better separates the projection of the
centroids stored in the rows of the matrix F D XTZ.

Let ZC be a .nC � 2p/ matrix of a new data batch consisting of nC statistical
units. The new data are projected on the factorial plan defined by the orthonormal
basis U according to the following formula

�C D
�

ZC.�/�1ZT � p

n
1C1T

�
XU�

1
2 : (9)

The data points in �C are then assigned to the closest of theK centroids defined
by the starting solution: then a .nC � K/ allocation matrix XC for the new data
is obtained. The update process requires the orthonormal basis U to be updated,
too. Thus, all the following quantities are updated according to the new available
information:

– n� D nC nC is the total number of statistical units;
– F

� D F C F
C, with F

C D XCTZC;
– �� D �C C �, where �C D diag.ZCTZC/ is the diagonal matrix of the

attribute occurrences.

The updated orthonormal basis U� is obtained via the eigen-analysis of the
following quantity

1

n�
h
F
�.��/�1F�T � p

n�
�

f�f�T
�i

U� D ��U� (10)

where f� is the row-margin vector of the F
� matrix.

4 Example on Real Data

In this section the proposed procedure is applied to the ‘retail’ data set (Brijs et al.,
1999). The retail market basket data set is supplied by a anonymous Belgian retail
supermarket store. The data are collected over three non-consecutive periods, for
a time range of approximately 5 months. The total amount of receipts (statistical
units) being collected equals n D 88,163, whereas the number of products (binary
attributes) p D 28,549. The data set is very sparse, and the analysis aim is to study
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Fig. 1 Statistical units and cluster activity: starting (top-left) versus the four upcoming data
batches (right, from the top to the bottom)

the association structures: in a pre-processing phase the attributes occurring in less
than 1 % of statistical units are discarded, as well as the receipts with less than three
products. In summary, we analyze 60 attributes observed on 20,000 statistical units.
The data set is then split in five batches of 4,000 statistical units each.

The splitting criterion is due to the fact that the statistical units have been
progressively recorded over time, but since we had no information on the exact date
of each record, we decided to consider five batches of the same size. We consider
the first 4,000 statistical units as the starting batch, then the solution is updated
according to further data batches analyzed. We assume that the number of groups
underlying the statistical units is K D 4. The top-left window in Fig. 1 shows the
statistical units in the starting batch; in the bottom-left side the upcoming batch
statistical units are represented. The top-right window represents the activity of the
clusters: the stacked bars refer to the number of units assigned to each cluster for
each of the subsequent batch. All the displays in Fig. 1 show a substantial stability
in the buying behaviors of the supermarket store customers: in fact, the displays of
the upcoming batches slightly differ from the starting one. This aspect is confirmed
by the clusters activity: the amount of statistical units assigned to each cluster is
almost proportional to the starting size of the cluster.

To appreciate the changes in the attribute associations, refer to Fig. 2. The
factorial representation in Fig. 2 represents a common visualization support of the
attribute associations for each of the subsequent batch. In particular, such common
support is obtained by performing a multi-way multidimensional scaling (Borg and
Groenen, 2005) on the chi-square distances characterizing the attributes. Figure 2
displays the trajectories of the attribute points batch after batch. The longer the
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Fig. 2 Attributes representation: plot of 10 % of the longest trajectories

trajectory, the larger the change in the association structure of the corresponding
attribute. In order to increase the readability of the display we plotted only the 10 %
of the longest trajectories, so that the most changing attributes are highlighted. Each
trajectory is represented by an arrow pointing towards the subsequent position.

The results confirm that, in general, the buying behavior of customers does not
radically change from a month to another. However, some product sales do change
over time and a common graphical display of the attributes (Fig. 2) turns out to be
helpful in quickly identifying which attributes changed more. The proposed strategy
leads to display the multiple association structure of attributes. Results are updated
adaptively as new data batches are processed. Furthermore, the procedure does not
require all the data batches are permanently stored in memory, but the last one.
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Classification of Data Chunks Using Proximal
Vector Machines and Singular Value
Decomposition

Antonio Irpino, Mario Rosario Guarracino, and Rosanna Verde

Abstract Data production grows at an unprecedented increasing rate in every
research and technical field. Furthermore, with the explosion of sensors networks
and proprietary/legacy classifiers, like those used by banks for assessing the credit
approvals, the data production and modeling is done locally, where only the local
classifiers are available. In order to find a global classification rule, the ensemble
classification paradigm proposes several methods of aggregation. In this paper,
starting from a set of classifiers obtained by using a recently developed classification
technique, known as Regularized Generalized Eigenvalues Classifier, we present
a novel way of aggregating linear classification models using the Singular Value
Decomposition. Using artificial datasets, we compare the developed algorithm
with a voting scheme, showing that the proposed strategy allows a reduction in
computational cost with a classification accuracy that well compares with the
original method.

1 Introduction

Classification refers to the capability of a system to learn from examples how to
discriminate cases in two or more given classes. The system learns from a set
of cases, usually referred as the training set. Each case is described by a set of
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variables and a class label. For each new case, the trained system predicts its
class label. If we limit to only two classes, the problem is called binary classifi-
cation; in all other cases it is named n-class or multiclass classification. Support
Vector Machines (SVM) (Vapnik, 1995) are among the most used techniques in
supervised learning. Recently, the Regularized Generalized Eigenvalue Classifier
(ReGEC) extension has been proposed to solve binary and multiclass classification
problems (Irpino et al., 2010).

As data production grows at an unprecedented increasing rate in every tech-
nological and research field, and we witness the explosion of ubiquitous sensors
networks, it becomes impossible to store data for later processing. A plausible
solution for analyzing such data is the use and development of incremental or
distributed algorithms that can handle streams of data. In the case of classification
algorithms, the aforementioned strategies furnish partial models of classification
that subsequently need to be fused (Sinha et al., 2008). Let us consider the
classification problem in a distributed computational paradigm, characterized by
a set of R sensors collecting data that are labeled according to K classes. Each
sensor can only process and communicate a limited amount of data, due to its
memory, computational and energy consumption characteristics. Therefore, only
resulting models are exchanged among sensors, while data are processed locally and
then discarded. The situation is reminiscent of privacy preserving systems, as those
used in banks and other financial institutes, processing data and communicating
only their classification models. An example could be an insurance company and
a bank which exchange their models for identifying good and bad customers,
maintaining privacy on personal data. In such a scenario, to merge the classification
models, we need to set up an ensemble classification system, since it is not possible
to share training sets, but only classification models. When classification models
are based on linear functions, for separating (e.g. SVM) or representing (e.g.
ReGEC) classes, we propose a novel technique for merging such models. Let ˝
be a dataset of N labeled data (i.e. classified into K > 1 classes), partitioned
into R data chunks, each one of cardinality Nr , and described by P explicative
variables. We propose a strategy for merging the classification models for each
class in each chunk using the Singular Value Decomposition. This is actually a
form of classifiers fusion, that, to our knowledge has never been described before
in literature.

In the present work, we detail the computational advantages of such strategy:
it needs less computational resources to reach a classification performance, in
terms of accuracy, comparable with the original algorithms. The paper is orga-
nized as follows. In Sect. 2 we introduce the main classification algorithm based
on vector machines. In Sect. 3 we propose a method, based on Singular Value
Decomposition, for fusing all the local models into a single one. In Sect. 4,
we show the performance and compare the proposed strategy in terms of accuracy
and execution time on artificial datasets.
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2 ReGEC and Vector Machines Based Classification
Methods

SVM are powerful classification and regression techniques, but their computational
and storage requirements rapidly increase with the number of training vectors,
putting many problems of practical interest away from their reach. The core of an
SVM is a quadratic programming problem, separating support vectors from the rest
of the training data.

In case of two linearly separable classes, SVM finds a hyperplane that separates
the elements belonging to two different classes. The separating hyperplane is
usually chosen to maximize the margin between the two classes. The margin can
be defined as the maximum distance between two parallel boundary hyperplanes
x0w � � D ˙1 that leave all cases of the two classes on different sides. The
classification hyperplane x0w � � D 0 is midway from the boundary planes. The
points that are closest to the hyperplane are called support vectors, and are the only
points needed to train the classifier.

In the Proximal Support Vector Machines (PSVM) classification (Fung and
Mangasarian, 2001; Suykens et al., 2002), two parallel planes are generated so that
each plane is the closest to the points of one of the two classes and as far apart as
possible from the points of the other class. The classifying plane is again midway
between the parallel proximal planes. PSVM find two parallel planes x0w�� D ˙1
such that the points of the two classes are clustered around these two planes, and
the reciprocal of the two-norm of the distance of two planes in the .w; �/ space of
<PC1 is minimum.

Mangasarian and Wild (2004) propose to generalize previous technique and to
classify two classes of points using two non parallel planes, each the closest to one
set of points, and the furthest from the other. LetA andB be the matrices containing
on each row a training point, and x0w � � D 0 be a hyperplane in <P . In order
to satisfy the previous condition for all points in A, the plane can be obtained by
solving the following optimization problem:

min
w;�¤0

kAw � e�k2
kBw � e�k2 : (1)

The hyperplane for cases in B can be obtained by minimizing the inverse of the
objective function in (1). Now, let

G D ŒA � e�0ŒA � e�; H D ŒB � e�0ŒB � e�; z D Œw0 ��0; (2)

where ŒA � e� is the matrix obtained from A adding the column vector �e,
composed of �1s, of proper dimension. Using (2), Eq. (1) becomes:

min
z2RP

z0Gz

z0H z
: (3)
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The expression (3) is the Raleigh quotient of the generalized eigenvalue problem
Gx D 	Hx. The stationary points are obtained at, and only at, the eigenvectors
of (3), and the value of the objective function (1) is given by the corresponding
eigenvalues. When H is positive definite, the Raleigh quotient is bounded and it
ranges over the interval determined by minimum and maximum eigenvalues (Parlett,
1998). H is positive definite under the assumption that the columns of ŒB � e� are
linearly independent.

The inverse of the objective function in (3) has the same eigenvectors and
reciprocal eigenvalues. Let zmin D Œw01 �1�

0 and zmax D Œw02 �2�
0 be the

eigenvectors related to the smallest and largest eigenvalues, respectively. Then,
x0w1��1 D 0 is the closest hyperplane to the set of points inA and the furthest from
those in B , and x0w2 � �2 D 0 is the closest hyperplane to the set of points in B and
the furthest from those in A. This method uses a single hyperplane to describe each
class. It is worth noting that the hyperplanes in general are not parallel, as for PSVM.
Since a point is assigned to a class based on its distance from the corresponding
hyperplane, the method can also classify problems that are not linearly separable.

Mangasarian and Wild (2004) propose to use Tikhonov regularization applied
to a two-fold problem. The use of the proposed regularization requires the solution
of two separate generalized eigenvalue problems. Guarracino et al. (2007) propose
a new regularization that only needs the solution of one generalized eigenvalue
problem.

3 ReGEC for Data Chunks: SVD Based Ensemble Classifier

Suppose to have a training set T of N elements labeled by K class identifiers,
described by P explicative variables that is partitioned into R chunks. Each chunk
r contains Nr training units with K unique class labels described by the same
variables. For each chunk r (r D 1; : : : ; R), the local ReGEC computes the zrk
(k D 1; : : : ; K) models. Each model zrk is a hyperplane described by a linear
equation with P C 1 coefficients as follows:

zrk W wrk1x1 C wrk2x2 C : : :C wrkP xP C �rk D 0: (4)

For each class, we have a set of R models. In order to obtain a single classifier zk
we propose to average the R models to obtain a new hyperplane that is closest to
all of them. In other words, we search for a hyperplane that maximizes the sum of
the cosines of the angles among all the local models. Consider the normal vector nrk
with P components associated to each hyperplane:

nrk D Œwrk1 wrk2 : : : wrkP �: (5)

To have a similar contribution from all planes, we normalize all hyperplanes
obtaining the following normalized models Ozrk :

Ozrk W Owrk1x1 C Owrk2x2 C : : :C OwrkP xP C O�rk D 0; r D 1; : : : ; R: (6)
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where
Owrkj D wrkj

knrkk
.j D 1; : : : ; p/; O�rk D �rk

knrkk
:

After the normalization, we set up a matrix bWk where each row contains the
normal vector:

bWk D
2

4
Ow1k1 : : : Ow1kP
: : : : : : : : :

OwRk1 : : : OwRkP

3

5 (7)

The matrix bWk is a set of R unitary row vectors. Finding the vector that max-
imizes the sum of cosines of the angles among all the vectors is equivalent to
determining the vector with maximum correlation. To this extend, we use the
Singular Value Decomposition for factorizing the matrix bWk :

bWk D UkƒkV0k (8)

The left eigenvector u1k D Œu1k1 : : : u
1
kP � associated with the largest eigenvalue 	1k is

the normal vector of a new hyperplane that is closer (in the sense of the cosines sum)
to all the R hyperplanes. Choosing a single average hyperplane is consistent with
the base ReGEC algorithm, in which a single hyperplane describes each class. To
compute the constant term �1�k of the hyperplane, let us consider the column vector
O�h D Œ O�1k : : : O�Rk �0 and the right first eigenvector v1k D Œv1k1 : : : v

1
kR�:

�1�k D 1

	1k
O�kv1k: (9)

Then the average (normalized) hyperplane for the generic class k is the following:

Oz1k W u1k1x1 C u1k2x2 C : : :C u1kP xP C �1�k D 0: (10)

In a similar way, it is possible to compute a plane for each singular value. In such
a case, it is worth noting that the rows of bWk have unitary length, the matrix M D
bWk

bW0k has the same characteristics of a correlation matrix: its trace is invariant and
equals R, thus:

trace .ƒk/
2 D

rank.bWk/X

jD1

�
	
j

k

�2 D R: (11)

If we choose to represent a class a single average hyperplane, the assignment of a
test point x is assigned to the class related to the closest hyperplane as described by
Guarracino et al. (2007). When more than one average model is used to represent
a class, the assignment of a test point x can be obtained computing its weighted
distance from all planes related to the singular values:

d.x;Classk/ D

v
u
u
u
u
t

rank.bWk/P

jD1

�
	
j

k

�2
d 2
�
x; Ozjk

�

R
(12)
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where Ozjk is the average plane associated to 	jk . It is clear that the contribution to the
distance of a plane related to a null eigenvalue is zero.

The computational complexity of the proposed method is lower then the one of
the original method. Indeed, in the original algorithm, building the matrices G and
H costs O.PN2/ and the solution of the generalized eigenvalue problem O.P 3/,
with an asymptotic complexity of O.PN2 C P3/ and P << N . On the other
hand, the training from a chunk of dimension N=R points the overall complexity is
O.PN2=R2 C P3N=R/, with an advantage in execution time, as it will be clarified
in the following numerical examples.

4 Experiments

The algorithm has been implemented with Matlab (R2007a)1. Results are calculated
using an Intel Q9550 CPU 2.83 GHz, 4 GB RAM running Windows Vista. Matlab
function eig for the solution of the generalized eigenvalue problem has been used as
computational kernel of ReGEC.

To validate the strategy, experiments on synthetic data, with different number
of chunks, are considered. The synthetic dataset consists of 300,000 points in <2

classified into three classes (100,000 points for each class). They are generated by
three bivariate normal distributions that moderately overlap, distributed as follows:

Class 1 � N

��
0

2

�

;

�
1 �1

�1 3

��

Class 2 � N

��
1

6

�

;

�
5 1

1 2

��

Class 3 � N

��
5

�1
�

;

�
0:5 0:3

0:3 5:0

��

:

The data for the experiments are represented in Fig. 1.
We set up five experimental conditions with 10, 50, 100, 500 and 1,000 chunks

that are chosen from the dataset. We show the results of classification using a ten-
fold cross validation. The chunking operation is done on the training set. Then,
the global model is computed and the test set is used for classification accuracies.
We have also considered a majority voting (MV) scheme in order to compare the
proposed strategy with a well grounded method of fusion of classifiers: a test point
is assigned to the class with the highest number of votes for all the chunks.

The chunks are chosen according to two schemes. In the first, we consider
a random partition of the training set into R chunks. This partitioning schema
implicitly assumes that the generator distribution of data is the same for each chunk.
The second partition schema uses k-means algorithm to cluster each class of the
training set into R clusters, then using each cluster as a data chunk. This partition
schema assumes data distribution can be different in each chunk. In Table 1 we
report the execution time of the algorithm to build the local classification models

1(www.mathworks.com/products/matlab/)
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Fig. 1 The synthetic dataset

Table 1 Execution times in
milliseconds with increasing
data chunks

# of chunks Mean time Merging time

1 (Base algorithm) – 238.9
10 15.8 0.5
50 4.1 1.3

100 2.1 3.2
500 1.2 37.6

1,000 1.1 111.1

and to average them in a global one. The execution time does not take into account
the time to generate the chunks, and it is the same for both schemes.

The first row of Table 1 represents the execution time of the ReGEC algorithm on
all data, and therefore there is no merging. We note that for an increasing number of
chunks, the mean execution time for building a local mode decreases, as expected,
and the merging operation takes longer, resulting in a lower overall execution time,
with respect to the base ReGEC algorithm applied to the whole training set.

In Table 2 we report the accuracies for the random partitioning and k-means
partitioning schemes used for generating the chunks. Regarding classification
accuracy, when the partitioning schema is random, the accuracy is 96.4 %, and as
expected remains almost constant for all experiments and for the three classification
rules. Indeed, the data distribution in each chunk is the same as in the complete
training set. In this case, for the prediction of new data we can use one average
hyperplane for each class.

In the latter case (the K-means partitioning scheme), the distribution of data in
each chunk is not the same as in the training set. Observing the accuracies, the use
of a single average hyperplane for each class gives lower accuracies with respect
the MV scheme. The strategy of using two average hyperplanes for each class is the
best according to the accuracy and to the involved computational resources. Even if
the accuracy is slightly better than the MV fusion strategy, the system needs to store
only two models for each class and compute only two distances for each class (and
a step for averaging them), while the voting MV the system needs to store all the
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Table 2 Random and K-means partitioning schemes, 1p (one av. plane), 2p (two av. planes) and
MV (Majority Voting). Accuracy of ten-fold cross validation for different number of chunks and
partitioning scheme. In bold the best accuracies for each partitioning scheme and no. of chunks

Random partition K-means partition
Chunks 1p SVD(%) 2p SVD(%) MV(%) 1p SVD(%) 2p SVD(%) MV(%)

1 96.4 – – 96.4 – –
10 96.3 96.3 96.3 90.4 98.5 97.0
50 96.3 96.3 96.3 93.8 98.7 98.3

100 96.3 96.3 96.3 94.6 99.0 98.7
500 96.3 96.4 96.3 94.7 99.0 98.8

1,000 96.3 96.4 96.3 94.8 99.0 98.8

hyperplanes of each chunk and to compute the corresponding distances (and a step
for counting the votes).

5 Conclusions

We have presented a novel technique for merging partial classification models, based
on Proximal Vector Machines. The method is based on the idea of computing a
model that minimizes the distance among the partial models using singular value
decomposition. Results show that, for normal distributions of data in each class,
chunking data provides an accurate solution to the problem, with competitive exe-
cution time. In future, we will investigate the possibility of introducing incremental
techniques to handle distributed data streams with non-stationary distributions.
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Correspondence Analysis in the Case of Outliers

Anna Langovaya, Sonja Kuhnt, and Hamdi Chouikha

Abstract Analysis of categorical data by means of Correspondence Analysis (CA)
has recently become popular. The behavior of CA in the presence of outliers in
the table is not sufficiently explored in the literature, especially in the case of
multidimensional contingency tables. In our research we apply correspondence
analysis to three-way contingency tables with outliers, generated by deviations from
the independence model. Outliers in our work are chosen in such a way that they
break the independence in the table, but still they are not large enough to be easily
spotted without statistical analysis. We study the change in the correspondence
analysis row and column coordinates caused by the outliers and perform numerical
analysis of the outlier coordinates.

1 Introduction

Correspondence Analysis has proven itself to be one of the most popular and
important tools in statistical analysis of data in psychology and social sciences
(Blasius, 2001; Greenacre, 1984). In CA as well as in every statistical analysis,
observations can appear that seem to deviate strongly from the majority of the data.
Such observations are usually called outliers and may contain important information
about unknown irregularities, dependencies and interactions within the data.

As concerns correspondence analysis, outliers are given by specific cell frequen-
cies of the underlying contingency table. Situations can occur where outliers are
present in the table, which are not immediately suspicious, but play a crucial role
for the statistical analysis. In such cases our approach will be useful.
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In our research we apply CA to three-way contingency tables (Blasius and
Greenacre, 2006; Kroonenberg, 2007) with data entries generated by deviations
from the independence model. Specific dependencies are caused by outliers of
moderate size. Moderate means that values of this outliers are not as large to be
recognized in the table because of their size alone but still large enough to cause
some irregularities in the data. In the present work, outliers are rather independence
breakers of considerable size rather than merely unlikely large elements of the table.
We study the change in CA row and column coordinates, caused by moderate
outliers.

In Sect. 2, we introduce the notation and describe the initial steps of our
analysis of three-way tables. In Sect. 3 we propose a model to generate outliers
in contingency tables. Sect. 4 describes our simulation study and contains the main
results of the present paper. We conclude with some final remarks in Sect. 5.

2 Notation

In this paper we will be studying the change in the CA row and column coordinates
caused by outliers. Our focus is on three-dimensional tables. In the literature on
CA the problem of the presence of outliers in contingency tables has not been
explored. In this paper we try to figure out, how the CA behaves under the influence
of moderate outliers.

Let X1, X2, X3 be categorical random variables, and let X D f1; : : : ; I g �
f1; : : : ; J g � f1; : : : ; Kg be the set of their categories. In general, X1, X2 and X3
are not assumed to be independent. Denote as nijk the observed frequencies of the
event .X1 D i; X2 D j;X3 D k/, where i D 1 	 i 	 I , j D 1 	 j 	 J , k D
1 	 k 	 K . Define

ni �� D
X

j

X

k

nijk ; n�j � D
X

i

X

k

nijk ; n��k D
X

i

X

j

nijk : (1)

Therefore, ni ��; n�j �; n��k are marginal sums corresponding to the variables X1,
X2, X3. Let Nijk be the random variable corresponding to cell .i; j; k/ of a three-
dimensional contingency table. Denote the sample size by n D P

i;j;k nijk .
Suppose first that we are interested in testing the null hypothesisH0: X1, X2, X3

are completely independent.
Let 
ijk , for all i D 1 	 i 	 I , j D 1 	 j 	 J , k D 1 	 k 	 K , denote the

joint probability corresponding to the cell .i; j; k/ (and the random variable Nijk).
Then 0 < 
ijk < 1; 8i; j; k, and

X

i

X

j

X

k


ijk D
X

i


i �� D
X

j


�j � D
X

k


��k D 1; (2)

where we denote
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Table 1 Two-dimensional
slice of a three-dimensional
contingency table

X3 Sum

X1 X2 1 2 . . . K
1 n111 n112 n11k n11K n11�

1
:
:
: n1j1 n1j2

: : : n1jK
J n1J1 n1J 2 n1Jk n1JK
1 ni11

:
:
:

:
:
:

: : : nijk nij �

J niJK
1 nI11

I
:
:
:

: : :

J nIJK nIJ �

Sum n��1 � � � n��k n��K n


i �� D
X

j

X

k


ijk ; 
�j � D
X

i

X

k


ijk ; 
��k D
X

i

X

j


ijk : (3)

Clearly, 
i ��; 
�j �; 
��k are the marginal probabilities. With this notation, the null
hypothesisH0 of complete independence is equivalent to


ijk D 
i ��
�j �
��k; 8i; j; k: (4)

There is no canonical way of performing CA for three or more dimensional
tables. Essentially, all the methods in multidimensional CA use transformations of
multidimensional matrices into two-dimensional matrices, which in some cases are
larger than the multidimensional ones. Subsequently, the usual CA (or CA with
some restrictions or/and assumptions) is applied to the transformed matrices.

In this paper, we consider the following transformation of the initial three-
dimensional table as given in Table 1.

For complete analysis of the three-way table, one should consider all combina-
tions of such two-dimensional slices of partial dependencies of these three variables
(X1, X2, X3). To give the main idea, but in order to save space, we consider here
just one type of such two-dimensional slices (shown above).

To apply CA, we construct from the above transformed table a matrix of
standardized residuals S, with dimensions .I � J / �K and elements

s.ij /k D .nijk=n/� r.ij /ckp
r.ij /ck

; (5)

where ck D n��k=n and r.ij / D nij �=n are the weighted marginal sums of
columns and rows respectively. We define additionally two diagonal matrices Dr D
diag.r11; : : : ; rIJ / and Dc D diag.c1; : : : ; cK/.

Suppose that the matrix S is such that the singular value decomposition (SVD)
of this matrix: S D U˙VT is well defined, i.e. there are no rows and columns,
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consisting of zeros only. Then we are provided with all necessary components to
derive the coordinates of rows and columns in CA-plot. The following matrices give
us coordinates for symmetric CA-plots that we consider in the current paper:

• Principal coordinates of rows: F D Dr
� 1
2 U˙

• Principal coordinates of columns: G D Dc
� 12 V˙ .

3 Outliers

A matter of particular interest now is the behavior of CA when the independence
is only violated by individual cell counts. These specific cell frequencies, generated
as deviation from the independence model, can be interpreted as outliers. Outliers
for contingency tables in general have been considered before (Kuhnt, 2004; Shane
and Simonoff, 2001; Barnett and Lewis, 1984) but rarely with constructive outlier
generating model.

3.1 Generation of Outliers

In this paper outliers are understood as specific cell frequencies – “unusual”
observations in the underlying contingency table. Specific – in the sense of deviation
from the assumed null model. The independence model assuming a multinomial
distribution is taken to be the null model. To begin with we consider the partial
independence model corresponding to our transformed two-dimensional table.

The outlier generating model for the case of multinomially distributed entries
could be defined as follows. For the .Nl/l2L � Multinomial.n; .
l /l2L/, the random
variables .Nl/l2L? , with parameters .
l /l2L? , where L? 
 L, are outliers with
respect to the given model class, if for.Nl/l2LnL? with .
l /l2LnL? ; there exists
. Q
l /l2L from the model class, and a normalizing constant c 2 R such, that
c. Q
l /l2LnL? D .
l/l2LnL? , but c. Q
l /l2L? ¤ .
l /l2L? in every component.

In our research we focus on outliers of moderate size, occurring as cell counts
generated from an outlier model as specified above. We explore afterwards the CA-
coordinates.

4 Simulation Study

To investigate the impact that moderate outliers have on coordinates in CA-plots we
have executed the following simulation study.

First, we randomly generate marginal probabilities 
i ��; 
�j �; 
��k , based on which
the probability matrix P for the case of independence is constructed with the
joint probabilities as the product of the respective marginal probabilities: 
ijk D

i ��
�j �
��k: Hence, we don’t consider a single independence model but simulate
from the whole class of independence models.
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Fig. 1 Three CA-plots for the independence case

Fig. 2 Three CA-plots for the case of the outlier in the first cell

After that we simulate a matrix of observations .X.i;j;k// for n D 1;000

observations from Multinomial.n; .
l /lD1;��� ;IJK/ with I D J D K D 4. The CA
(R-Package: ‘ca’, (Nenadić and Greenacre, 2007)) is then applied to X (Fig. 1). To
generate an outlier in the table, one 
ijk is replaced by .1; 2/�max.P/. For example,
for the outlier in the first cell, we replace the probability 
111 of P by the value
mentioned above. Afterwards all joint probabilities of the matrix P will be rescaled
so that

P
i;j;k 
ijk D 1.

Then CA is applied to the observation matrix .X.i;j;k//, based on this new
probability matrix. Since examples (see Figs. 1 and 2)1 already suggest that the CA-
plots differ dramatically in the case of independence compared to the case of the
model with an outlier, it is sensible to analyze the row and column coordinates of
the CA-plot.

In Fig. 2 we can see that the coordinates of the outlier, which is placed in the first
cell (i.e. first row (blue circle 1) and first column (red triangle X1) simultaneously),
are located pretty far from the set of coordinates of other points (rows and columns
of the underlying table). Whereas in the case of independence, all points are
concentrated around the origin. The tables with an outlier (in the first cell of the
table, marked with red), corresponding to the CA-plot on the Fig. 2, show that
although these values (outliers) break the independence in the table, they are not
particularly conspicuous (Fig. 3).

1The printed version of the paper contains only black-white pictures. Coloured versions of this
pictres are available from the authors upon request.
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Fig. 3 Three tables for the
case of the outlier in the first
cell

Table 2 Numerical results for CA-coordinates for independence (left part) and with one outlier
(right part)

Independence Outlier in the first cell

Coord 25-quantil 75-quantil Median 25-quantil 75-quantil Median

xr1 �1.27 0.03 �0.54 �2.94 �1.96 �2.47
yr1 �0.56 0.91 0.21 �0.18 0.22 0.02
xr2 �0.67 0.78 0.07 �0.02 0.62 0.36
yr2 �0.68 0.94 0.19 �0.18 1.19 0.49
xr3 �0.79 0.91 0.06 �0.05 0.63 0.36
yr3 �0.88 0.77 �0.05 �0.91 0.74 �0.03
xc1 �0.86 0.86 0.00 �1.90 �1.15 �1.48
yc1 �0.83 0.90 0.03 �0.07 0.11 0.02
xc2 �0.81 0.94 0.07 0.42 0.84 0.61
yc2 �0.97 0.81 �0.10 �1.13 1.04 �0.05
xc3 �0.92 0.88 �0.01 0.39 0.81 0.60
yc3 �0.87 0.82 0.05 �1.12 1.06 0.04

These generated outliers (in the first cell in each case) are very different from
their neighbors in the same row and column, but they are not the largest values in
the table. Therefore they are called outliers of moderate size or moderate outliers.
The fact that these outliers can be immediately recognized in CA-plots, illustrates
the usefulness of Correspondence Analysis.

4.1 CA-Coordinates

Next we investigate changes in CA-coordinates in the case of outliers. As first step
we execute 1,000 simulations for two cases: (1) independence and (2) with an outlier
in the first cell. We also did up to 106 simulations for each case, but the tendency
remains the same.

In the Table 2 the quartiles of the distribution of CA-plot coordinates (Coord)
for the first four rows and columns of the transformed two-dimensional contingency
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Fig. 4 CA-plots for the case of two outliers

Table 3 Numerical results for CA-coordinates for independence (left part) and with two outliers
(right part)

Independence Two outliers in the first two cells

Coord 25-quantil 75-quantil Median 25-quantil 75-quantil Median

xr1 �1.34 0.02 �0.56 �2.29 �1.80 �2.06
yr1 �0.61 0.93 0.15 �0.15 0.17 0.01
xr2 �0.77 0.77 0.04 0.01 0.64 0.39
yr2 �0.67 0.95 0.17 �0.28 1.41 0.58
xr3 �0.86 0.85 �0.07 0.10 0.70 0.45
yr3 �0.81 0.81 �0.01 �0.86 0.83 �0.05
xc1 �0.81 0.87 0.07 �1.67 �0.38 �0.98
yc1 �0.81 0.89 0.08 �0.43 0.62 0.22
xc2 �0.87 0.87 �0.06 �1.52 �0.10 �0.66
yc2 �0.90 0.89 �0.04 �0.71 0.50 �0.24
xc3 �0.76 0.85 0.01 0.62 1.15 0.84
yc3 �0.93 0.85 �0.09 �1.13 1.22 0.14

table are shown, where xri - CA-coordinates of the i-th row in the first dimension
and yri in the second dimension, i D 1; 2; 3. And xci, yci are analogous but for the
columns.

As we can see from this table, in the case of independence the majority of CA-
coordinates are concentrated in the center for rows, as well as for columns, in both
dimensions. But in the case of outliers in the first cell, that means first row and first
column, CA-coordinates of these first row and first column are shifted far to the left
(into the negative part of the axis). Meanwhile CA-coordinates of other rows and
columns are distributed again around the origin.

We also experimented with placing several outliers in the table. The situation
with two or more outliers is different from the case of one outlier.

For illustration, we describe only the case of two outliers, where both outliers are
placed into the two first cells of the first row (blue circle 1 in Fig. 4) of the table, that
means first (red triangle X1) and second (red triangle X2) columns respectively.

From the Table 3 for the CA-coordinates with two outliers in the table (right part
of the table) we can see, that the results of analysis are now more ambiguous. For
example, for the case of two outliers, rows and columns containing outliers are still
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shifted to the left in the first dimension, whereas other rows and columns are shifted
now to the right, and nothing unusual happens with the coordinates in the second
dimension. This phenomenon is less traceable, and more detailed and theoretically
inferred analysis of CA-coordinates is needed, where a closer combination of CA,
outlier detection methods and log-linear models (Agresti, 2002; Andersen, 1994)
might be useful.

5 Conclusion

It is clearly of importance to explore further distributions of CA-coordinates. This
includes confidence intervals for CA-coordinates under the null hypothesis, as well
as in the case of outliers: to identify particular dependencies in the table and to
suggest possible criteria for identifying hidden outliers in multi-way contingency
tables by means of correspondence analysis coordinates.

However, in statistical data analysis, it is often important not only to spot outliers,
but also to model interactions in the table without the outliers. For this purpose, one
has to complement the CA-method with log-linear analysis.
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Variable Selection in Cluster Analysis:
An Approach Based on a New Index

Isabella Morlini and Sergio Zani

Abstract In cluster analysis, the inclusion of unnecessary variables may mask the
true group structure. For the selection of the best subset of variables, we suggest
the use of two overall indices. The first index is a distance between two hierarchical
clusterings and the second one is a similarity index obtained as the complement to
one of the previous distance. Both criteria can be used for measuring the similarity
between clusterings obtained with different subsets of variables. An application with
a real data set regarding the economic welfare of the Italian Regions shows the
benefits gained with the suggested procedure.

1 Introduction

In cluster analysis, the inclusion of ‘noisy’ variables may mask the recovery of the
true underlying structure. In the literature, various procedures aimed at determining
the best subset of variables have been proposed, both in the context of model-
based and not-model-based clustering (Fowlkes et al., 1988; Gnanadesikan et al.,
1995; Montanari and Lizzani, 2001; Tadesse et al., 2005; Raftery and Dean, 2006;
Fraiman et al., 2008; Steinley and Brusco, 2008). In this paper we propose a
new approach, based on an overall index measuring the distance between two
hierarchical clusterings. This criterion is novel since it is applied directly to the
whole hierarchies and may be thought of as a generalization of the measures used
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for comparing two partitions (Rand, 1971; Fowlkes and Mallows, 1983; Hubert and
Arabie, 1985). The paper is organized as follows: in Sect. 2 we define the index,
we present its properties and its decomposition with reference to each stage of the
hierarchy; in Sect. 3 we consider the similarity index obtained as the complement to
one of the suggested distance and we deal with the adjustment for agreement due
to chance; in Sect. 4 we describe the use of the index for measuring the similarity
between clusterings obtained with different subsets of variables, following a forward
and a backward approach; in Sect. 5 we present results on a real data set.

2 The Index and Its Properties

Suppose we have two hierarchical clusterings of the same number of objects, n. Let
us consider the N D n.n � 1/=2 pairs of objects and let us define, for each non
trivial partition in k groups (k D 2; : : : ; n � 1), a binary variable Xk with values
xik D 1 if objects in pair i.i D 1; : : : ; N / are classified in the same cluster in
partition in k groups and xik D 0 otherwise. A binary .N � .n � 2// matrix Xg for
each clustering g .g D 1; 2/ may be derived, in which the columns are the binary
variablesXk. A global measure of dissimilarity between the two clusterings may be
defined as follows:

Z D k X1 � X2 k
k X1 k C k X2 k ; (1)

where k A kD P
i

P
k k aik k is the L1 norm of the matrix A. In (1) the matrices

involved take only binary values and the L1 norm is equal to the square of the L2
norm. The derivation of Z uses the Rand’s idea of considering the N object pairs.
However,Z is a new index since it is applied to a whole hierarchy and not only to a
single partition. Z has the following properties.

• It is bounded in [0,1]. Z D 0 iff the two hierarchical clusterings are identical
and Z D 1 when the clusterings have the maximum degree of dissimilarity, that
is when for each partition in k groups and for each i , objects in pair i are in the
same group in clustering 1 and in different groups in clustering 2 (or vice versa).

• It is a distance, since it satisfies the conditions of non negativity, identity,
symmetry and triangular inequality (Zani, 1986).

• The complement to 1 ofZ is a similarity measure, since it satisfies the conditions
of non negativity, normalization and symmetry.

• It does not depend on the group labels since it refers to pairs of objects.
• It may be decomposed in .n � 2/ parts related to each pair of partitions in k

groups since:

Z D
X

k

Zk D
X

k

X

i

jx1ik � x2ikj
k X1 k C k X2 k : (2)

The plot of Zk versus k shows the distance between the two clusterings at each
stage of the procedure.
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Table 1 Contingency table of the cluster membership of the N object pairs

Second clustering (g D 2)
First clustering (g D 1) Pairs in the same cluster Pairs in different clusters Sum

Pairs in the same cluster Tk Pk � Tk Pk
Pairs in different clusters Qk � Tk Uk D N C Tk � Pk �Qk N � Pk
Sum Qk N �Qk N D n.n� 1/=2

3 The Complement of the Index

Consider the quantities in the .2 � 2/ contingency table showing the cluster
membership of the object pairs in each of the two partitions (Table 1).

Since k X1 kD P
k Qk and k X2 kD P

k Pk , the complement to 1 of Z is:

S D 1 �Z D 2
P

k TkP
k Qk CP

k Pk
: (3)

Also the similarity index S may be decomposed in .n � 2/ parts Vk related to each
pair of partitions in k groups:

S D
X

k

Vk D
X

k

2Tk
P

k Qk CP
k Pk

: (4)

The componentsVk , however, are not similarity indices for each k since they assume
values < 1 even if the two partitions in k groups are identical. For this reason, we
consider the complement to 1 of eachZk in order to obtain a single similarity index
for each pair of partitions:

Sk D 1�Zk D
Pn�1
jD2 Pj C

Pn�1
jD2 Qj � Pk �Qk C 2Tk

Pn�1
jD2 Pj C

Pn�1
jD2 Qj

D
P
j¤k Pj C

P
j¤k Qj C 2Tk

P
j Pj C

P
j Qj

:

(5)

A similarity index between two partitions may be adjusted for agreement due to
chance (Hubert and Arabie, 1985; Albatineh et al., 2006; Warrens, 2008). With
reference to formula (5) the adjusted similarity index ASk has the form:

ASk D Sk � E.Sk/

max.Sk/�E.Sk/ : (6)

Under the hypothesis of independence of the two partitions, the expectation of Tk
in Table 1 E.Tk/ D PkQk=N . Therefore, the expectation of Sk is given by:

E.Sk/ D
P

j¤k Pj CP
j¤k Qj C 2PkQk=N

P
j Pj CP

j Qj

: (7)

Consideringmax.Sk/ D1 and simplifying terms we obtain:

ASk D 2Tk � 2PkQk=N

Pk CQk � 2PkQk=N
: (8)
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The adjusted Rand index for two partitions in k groups is given by Warrens (2008):

ARk D 2.NTk � PkQk/

N.Pk CQk/� 2PkQk

; (9)

and so ASk is equal to the Adjusted Rand Index.

4 Criteria for Variable Selection

Indexes Z and S can be used for variable selection in cluster analysis (Fowlkes et
al., 1988; Fraiman et al., 2008; Steinley and Brusco, 2008). The inclusion of ‘noisy’
variables can actually degrade the ability of the clustering procedures to recover the
true underlying structure (Friedman and Meulman, 2004). For a set of p variables
and a certain clustering method, we suggest three different approaches, suitable for
data sets with tens of variables. Variable selection in data sets containing hundreds
or thousands of variables (like gene expression data) is not considered in this paper.

First we may obtain the p one dimensional clusterings with reference to each
single variable and then compute the p�p similarity matrix S. The pairs of variables
reflecting the same underlying structure show high similarity. On the contrary, the
noisy variables should present a similarity with the other variables near to the
expected value for chance agreement. We may select a subset of variables that
best explains the classification into homogeneous groups. These variables help us to
better understand the multivariate structure and suggest a dimension reduction that
can be used in a new data set for the same problem (Tadesse et al., 2005).

Next we may find the similarities between clusterings obtained with subsets of
variables (regarding, for example, different features). This approach is helpful in
showing aspects that lead to similar partitions and subsets of variables that, on the
contrary, lead to different clusterings.

A third way to proceed consists in finding the similarities between the ‘master’
clustering obtained by considering all the variables and the clusterings obtained
by eliminating each single variable in turn, in order to highlight the ‘marginal’
contribution of each variable to the master structure.

5 An Application to a Real Data Set

We consider the 20 Italian regions and the following 9 variables measuring different
aspects of the economic wealth: X1 D activity rate, X2 D unemployment rate,
X3 D youth unemployment rate, X4 D family average income, X5 D family median
income, X6 D income Gini concentration index, X7 D % of poor families, X8 D %
of people dissatisfied for their economic conditions, X9 D % of families with
inadequate income. We standardize variables to zero mean and unit variance before



Variable Selection in Cluster Analysis: An Approach Based on a New Index 75

Table 2 Values of S between pair of clusterings of the Italian regions data set

Euclidean distance Manhattan distance

Method Average Complete Single Ward Centroid Average Complete Single Ward Centroid

Average 1 0.80 0.90 0.76 0.96 0.96 0.81 0.88 0.79 0.95
Complete 0.80 1 0.73 0.72 0.78 0.83 0.98 0.72 0.82 0.78
Single 0.90 0.73 1 0.71 0.93 0.87 0.73 0.92 0.72 0.90
Ward 0.76 0.72 0.71 1 0.75 0.78 0.73 0.68 0.79 0.74
Centroid 0.96 0.78 0.93 0.75 1 0.92 0.79 0.88 0.77 0.95

Average 0.96 0.83 0.87 0.78 0.92 1 0.84 0.87 0.83 0.94
Complete 0.81 0.98 0.73 0.73 0.79 0.84 1 0.72 0.82 0.78
Single 0.88 0.72 0.92 0.68 0.88 0.87 0.72 1 0.72 0.93
Ward 0.79 0.82 0.72 0.79 0.77 0.83 0.82 0.72 1 0.78
Centroid 0.95 0.78 0.90 0.74 0.95 0.94 0.78 0.93 0.78 1

applying hierarchical cluster analysis with different distances and different methods.
We compute the S index for each pair of clusterings. Results, reported in Table 2,
show that, in general, clustering remains stable varying distances or methods or
both (all pairwise similarity indexes take values greater than 0.7). The fact that the
clustering does not change appreciably leads to the evidence that the topologies
of the trees are natural and are not simply artifacts of the algorithms. Analyzing the
values of the pairwise similarities, we note that the Ward and the single linkage seem
to behave a little bit differently from the other methods, while the complete linkage,
the average linkage and the centroid method seem to be more similar to each other.
The global measure of similarity S may be decomposed in parts related to each
partition in k D 2; : : : ; 18 groups. As an example, Table 3 presents the values of Sk
and ASk for two pairs of clusterings. This table shows the reason why the second
couple has a slightly less similarity. In these two dendrograms, 12 partitions (among
the 18 ones) are exactly the same while for the first two dendrograms the identical
partitions are 13. In order to determine the ‘true’ number of clusters, we may count
the couples of clusterings in which each partition in k groups is identical. From
counts reported in Table 4 we see that the partition in 2 groups remains identical in
36 clusterings. Only partition in 18 clusters has a larger count. This may be taken
as evidence that partition in two groups comes naturally from data and is not driven
by the algorithm. In this partition, northern and central regions are separated from
southern regions.

Table 5 reports the values of S between the clustering obtained considering all
variables (fXigiD1;:::;9) (in the following we will refer to this tree as the overall
tree) and the clusterings obtained eliminating each variable in turn. In the table,
the column or row header fXigi¤j indicates the subset of variables without Xj .
For example, fXigi¤1 is the subset fX2;X3;X4;X5;X6;X7;X8;X9g. The Euclidean
distance and the average method are used for obtaining partitions.

If we eliminate X9, the clustering remains identical. This means that X9 has
no ‘marginal’ contribution to the overall clusterings, given the other variables. X8
is the variable which seems to have the major marginal influence to the overall



76 I. Morlini and S. Zani

Table 3 Values of Sk and ASk for two pairs of clusterings of the Italian regions data set

Number k of clusters

2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

Similarity between partitions obtained with Euclidean distance and the average method
and partitions obtained with Euclidean distance and the centroid method

Sk 1 1 1 1 0.98 0.98 0.98 1 0.98 1 1 1 1 1 0.98 1 1 1
ASk 1 1 1 1 0.86 0.75 0.86 1 0.81 1 1 1 1 1 0.66 1 1 1

Similarity between partitions obtained with Euclidean distance and the average method
and partitions obtained with Manhattan distance and the centroid method

Sk 1 1 1 1 0.98 0.97 0.98 1 1 1 1 0.98 1 1 0.98 1 1 0.98
ASk 1 1 1 1 0.86 0.73 0.86 1 1 1 1 0.57 1 1 0.66 1 1 0.00

Table 4 Counts of pairs of clusterings in which each partition in k groups is identical

k 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

n. of pairs 36 29 8 8 7 3 1 6 6 8 12 9 17 29 21 16 45 20

Table 5 Values of S for couples of clusterings obtained with different subsets of variables

fXi gi¤1 fXigi¤2 fXi gi¤3 fXi gi¤4 fXigi¤5 fXi gi¤6 fXi gi¤7 fXi gi¤8 fXi gi¤9 fXig
fXi gi¤1 1 0.96 0.83 0.85 0.88 0.86 0.93 0.84 0.89 0.89
fXi gi¤2 0.96 1 0.86 0.88 0.86 0.87 0.95 0.85 0.91 0.91
fXi gi¤3 0.83 0.86 1 0.83 0.82 0.87 0.84 0.81 0.89 0.89
fXi gi¤4 0.85 0.88 0.83 1 0.97 0.86 0.86 0.80 0.89 0.89
fXi gi¤5 0.88 0.86 0.82 0.97 1 0.85 0.85 0.80 0.89 0.89
fXi gi¤6 0.86 0.87 0.87 0.86 0.85 1 0.85 0.84 0.94 0.94
fXi gi¤7 0.93 0.95 0.84 0.86 0.85 0.85 1 0.85 0.88 0.88
fXi gi¤8 0.84 0.85 0.81 0.80 0.80 0.84 0.85 1 0.86 0.86
fXi gi¤9 0.89 0.91 0.89 0.89 0.89 0.94 0.88 0.86 1 1
fXi g 0.89 0.91 0.89 0.89 0.89 0.94 0.88 0.86 1 1

clustering structure. The value of S between fXigi¤4 and fXigi¤5 (S D 0:97) shows
thatX4 andX5, as one would expect, bring the same marginal contribution. We may
also consider the similarities between the clustering recovered by all variables fXig
and the clusterings obtained by using each single variable. The values of S are:

S.fXig; fX1g/ D 0:74; S.fXig; fX2g/ D 0:66; S.fXig; fX3g/ D 0:58;

S.fXig; fX4g/ D 0:55; S.fXig; fX5g/ D 0:76; S.fXig; fX6g/ D 0:69;

S.fXig; fX7g/ D 0:77; S.fXig; fX8g/ D 0:52; S.fXig; fX9g/ D 0:53:

None of the values are particularly high and thus the clustering recovered with all
variables seems to derive from a multivariate effect and not to be dominated by
the univariate effect of a single variable. As shown in Fig. 1, variables X1, X5 and
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Fig. 1 Values of Sk for the partitions obtained with all variables and the partitions obtained with
(a) X1, (b) X2, (c) X3, (d) X4, (e) X5, (f) X6, (g) X7, (h) X8 and (i) X9

X7 have a peak of the similarity values Sk for k D 3. X1 is in perfect agreement
also for k D 2 while X7 for k D 4; 5. Variables X4, X6 and X9 have a different
Sk pattern, but they also have a peak for k D 3. On the contrary, the peak for
X2 and X3 is for k D 2. Thus, in this case, the choice for the ‘correct’ number
of clusters is somehow difficult, since both k D 2 and k D 3 seem to be good
alternative. Figure 1 also shows that variables which have the smaller values in the
similarity S , like X3, X4, X5 andX6, exhibit a less agreement to the overall clusters
for small numbers k of groups. The patterns of Sk for these variables display smaller
values for k < 12. For the other variables, Sk increase less rapidly, with respect to
k. Finally, we study the behavior of three subsets of variables, each one related
to a specific feature of the economic situation. We consider subset fX1;X2;X3g,
related to the demographic structure, subset fX4;X5;X6g related to the income
structure and subset fX7;X8;X9g, related to the relative and the perceived poverty.
The similarities between the cluster trees of each subset and of all variables are:
S.fXig; fX1;2;3g/ D 0:76, S.fXig; fX4;5;6g/ D 0:66, S.fXig; fX7;8;9g/ D 0:78. The
similarities between clusterings of each subsets are: S.fX4;5;6g; fX7;8;9g/ D 0:59,
S.fX1;2;3g; fX4;5;6g/ D 0:61, S.fX1;2;3g; fX7;8;9g/ D 0:62. Here again we note that
none of the three subsets reveals a clustering very similar to the clustering obtained
with all the variables. All the three aspects of the economic health seem equally
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Fig. 2 Plots of Sk (left) and ASk (right) between partitions obtained with all variables fXig
and subset fX1;X2; X3g (dotted line), subset fX4;X5; X6g (solid line), subset fX7;X8; X9g
(dashed line)

to contribute to the overall clustering. Figure 2 reports the plots of Sk and ASk .
The scales in the Y -axis are different. However, the patterns of Sk and ASk are
nearly identical, for k 	 12. It is a desirable property that the correction for the
chance influences the values but not the configuration of the plot for small k. For
large k, as one would expect, the correction for chance do influence the patterns of
the index and Sk tends to one while ASk tends to zero. We note that, for example,
the configuration in two groups is largely dominated by the demographic structure,
while configurations in 3, 4 and 5 clusters are mostly influenced by the perceived
poverty.

References

Albatineh, A. N., Niewiadomska-Bugaj, M., & Mihalko, D. (2006). On similarity indices and
correction for chance agreement. Journal of Classification, 23, 301–313.

Fowlkes, E. B., & Mallows, C. L. (1983). A method for comparing two hierarchical clusterings.
JASA, 78, 553–569.

Fowlkes, E. B., Gnanadesikan, R., & Kettenring, J. R. (1988). Variable selection in clustering.
Journal of Classification, 5, 205–228.

Fraiman, R., Justel, A., & Svarc, M. (2008). Selection of variables for cluster analysis and
classification rules. JASA, 103, 1294–1303.

Friedman, J. H., & Meulman, J. J. (2004). Clustering objects on subset of attributes. Journal of the
Royal Statistical Society B, 66, 815–849.

Gnanadesikan, R., Kettering, J. R., & Tsao, S. L. (1995). Weighting and selection of variables for
cluster analysis. Journal of Classification, 12, 113–136.

Hubert, L. J., & Arabie, P. (1985). Comparing partitions. Journal of Classification, 2, 193–218.
Montanari, A., & Lizzani, L. (2001). A projection pursuit approach to variable selection.

Computational Statistics and Data Analysis, 35, 463–473.
Raftery, A. E., & Dean, N. (2006). Variable selection for model based clustering. JASA, 101,

168–178.



Variable Selection in Cluster Analysis: An Approach Based on a New Index 79

Rand, W. M. (1971). Objective criteria for the evaluation of clustering methods. JASA, 66, 846–850.
Steinley, D., & Brusco, M. J. (2008). Selection of variables in cluster analysis: An empirical

comparison of eight procedures. Psychometrika, 73, 125–144.
Tadesse, M. G., Sha, N., & Vannucci, M. (2005). Bayesian variable selection in clustering high-

dimensional data. JASA, 100, 602–617.
Warrens, M. J. (2008). On the equivalence of Cohen’s Kappa and the Hubert-Arabie adjusted Rand

index. Journal of Classification, 25, 177–183.
Zani, S. (1986). Some measures for the comparison of data matrices. In Proceedings of the XXXIII

Meeting of the Italian Statistical Society (pp. 157–169), Bari, Italy.



A Model for the Clustering of Variables Taking
into Account External Data

Karin Sahmer

Abstract In this paper, a statistical model for the clustering of variables taking
into account external data is proposed. This model is particularly appropriate for
preference data in the presence of external information about the products. The
clustering of variables around latent components (CLV method) is analysed on the
basis of this model. Within the CLV method, there is one option without external
data and one option taking into account external data. The criteria of both options
can be expressed in function of the parameters of the postulated model. It is shown
that the hierarchical algorithm finds the correct partition when the parameters of the
model are known, no matter which option of CLV is used. Furthermore, the two
options of CLV are compared by means of a simulation study. Both options perform
well except for the case of small samples with a very large noise. Moreover, in most
cases the performance of both options is equivalent.

1 Introduction

A method for the clustering of variables (CLV) was proposed by Vigneau and
Qannari (2003). This method is based on a hierarchical clustering followed by a
partitioning algorithm and includes several options. It can be used when variables
with a negative correlation should be grouped together. It is also possible to use
this method when a negative correlation between variables shows disagreement.
In both cases, it is possible to take into account external data in the clustering
procedure. Sahmer (2006) analysed the CLV method in the case where a high
negative correlation shows a proximity of variables. The scope of the present
paper is to state a model that can be used to analyse the CLV method in the
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case of grouping together only variables with positive correlations. An important
application is the segmentation of consumers according to their liking of products,
taking into account sensory data (Vigneau and Qannari, 2002).

In Sect. 2, a model for the clustering of variables taking into account external
data is proposed. The corresponding covariance matrix is specified. The properties
of the CLV method are analysed in Sect. 3. The analysis is based on the stated model
and concerns CLV taking into account external data but also CLV without external
data. Finally, the two options of CLV are compared by means of a simulation study
(Sect. 4).

2 A Model for Preference Data

Vigneau and Qannari (2002) proposed their method for a segmentation of consumers
according to their preferences for products, taking into account external information
about the products. The following model has in mind this application but it fits for
all cases where a linear relationship between external variables and the variables
to be clustered can be assumed. The variables to be clustered will be called the
x variables. In the case of preference data, the liking score of each consumer is
one x variable. The external variables, for example the sensory descriptors, will be
called the z variables.

It is assumed that there exist K groups of consumers. They will be denoted by
G.1/; G.2/; : : : ; G.K/. The number of consumers in group G.k/ is denoted by p.k/.
In each group, a linear relationship between sensory descriptors and liking scores is
assumed. The liking score of the j th consumer in groupG.k/ is given by:

x
.k/
j D z0ˇ.k/ C �

.k/
j (1)

where x.k/j is the random variable representing the liking score of the j th consumer,

z D �
z1; z2; : : : ; zq

�0
is the random vector corresponding to the q sensory descriptors,

ˇ.k/ D
�
ˇ
.k/
1 ; ˇ

.k/
2 ; : : : ; ˇ

.k/
q

�0
is the parameter vector of group G.k/, and �

.k/
j

corresponds to the error term. In this model, all consumers belonging to the same
group have the same parameter vector ˇ. It is assumed that the error terms are
uncorrelated with each other and with the z variables. Furthermore, an equal error

variance is assumed: var
�
�
.k/
j

�
D �2 8k 8j . The covariance matrix of the

z variables will be denoted by ˙ z.
Under this model, the covariance matrix of x.k/ (the random vector of the

x variables belonging to groupG.k/) is given by:

˙ x
.k/ D 1p.k/1p.k/

0ˇ.k/0˙ zˇ
.k/ C �2I (2)
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where 1p.k/ is the vector consisting of p.k/ ones and I is thep.k/-dimensional identity
matrix. The matrix of covariances of x variables belonging to different groupsG.k/

and G.m/ is given by:

˙ x
.k;m/ D 1p.k/1p.m/

0ˇ.k/0˙ zˇ
.m/ (3)

while the matrix of covariances between x.k/ and z is equal to:

˙ xz
.k/ D 1p.k/ˇ

.k/0˙ z (4)

The relationship between the z variables and the x variables is reflected in the
covariance matrix of the x variables. So a clustering of the x variables without
explicitly taking into account the z variables does take them into account implicitly.

3 Properties of CLV

In the following, the two options of CLV (with or without external data) will be
analysed. Vigneau and Qannari (2003) consider the clustering on observed data. In
order to analyse the clustering based on the covariance matrix stated in the model
of Sect. 2, the notation of the clustering criterion has been slightly modified. The
following analysis concerns only the first part of the CLV approach, the hierarchical
clustering. The partitioning algorithm within the CLV method is not considered
here. A distinction has to be made between the real groups G.k/ and the groups
formed by the algorithm. The latter will be called the clusters C1; C2; : : : ; CK�

where K� is the current number of clusters in a given step of the algorithm.
According to the stated model, there exists a linear relationship between the
variables to be clustered and some external variables. So the appropriate clustering
method would be the option of CLV taking into account external data. This option
will first be analysed (Sect. 3.1). Afterwards (Sect. 3.2), it will be analysed what
happens if, in spite of the existence of external data, the option without external
data is used.

3.1 Properties of CLV Taking into Account External Data

When taking into account external data, the criterion QS has to be maximized:

QS D
K�

X

kD1

X

jwith xj2Ck
cov

�
xj ; ck

�
(5)

under the constraints ck D z’ ak and a’kak D 1. The variable ck is called the latent
component of cluster Ck and is constrained to be a linear combination of the
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z variables. Define Qak D �
cov .z1; Nxk/ ; : : : ; cov

�
zq; Nxk

��0
and ak D QakpQa0

k Qak
where

Nxk is the mean of all variables in cluster Ck. In each step, merge the two clusters
resulting in the smallest decrease� QS of criterion QS .

Merging two subgroups of the same real group. Consider a cluster A that is
a subgroup of group G.k/. The mean of the variables belonging to A is given by

NxA D 1
pA

P
j2A

�
z0ˇ.k/ C �

.k/
j

�
D z0ˇ.k/ C N�A where N�A is the average of the error

terms corresponding to the variables in clusterA. The vector of covariances between
NxA and z is given by:

cov . NxA; z/ D cov
�

z0ˇ.k/ C N�A; z
�

D ˙ zˇ
.k/: (6)

This vector is the same for all subgroups of group G.k/. If a subgroup A of group
G.k/ is one of the current clusters, the vector Qa used to calculate the latent component
is equal to ˙ zˇ

.k/, and its latent component is equal to

cA D z0
˙ zˇ

.k/

q

ˇ.k/
0
˙ z˙ zˇ

.k/

: (7)

The covariance of a variable belonging to groupG.k/ with this latent component cA
is equal to:

cov
�
x
.k/
j ; cA

�
D cov

0

B
@z0ˇ.k/ C �

.k/
j ; z0

˙ zˇ
.k/

q

ˇ.k/
0
˙ z˙ zˇ

.k/

1

C
A

D
q

ˇ.k/
0
˙ z˙ zˇ

.k/: (8)

So the part of cluster criterion QS corresponding to cluster A can be written as:

QSA D
X

jwith xj2A
cov

�
x
.k/
j ; cA

�
D pA

q

ˇ.k/
0
˙ z˙ zˇ

.k/ (9)

where pA is the number of variables belonging to cluster A. Finally, when merging
two subgroupsA and B of the same real groupG.k/, the decrease� QS in criterion QS
is equal to

� QS D QSA C QSB � QSA[B
D pA

q

ˇ.k/
0
˙ z˙ zˇ

.k/ C pB

q

ˇ.k/
0
˙ z˙ zˇ

.k/ � .pACpB/
q

ˇ.k/
0
˙ z˙ zˇ

.k/

D 0 (10)
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Merging subgroups of different groups. Let A be a subgroup of the real group
G.k/ and let B be a subgroup of the real group G.m/. Adapting the calculations of
the preceding paragraph we find:

� QS D pA

q

ˇ.k/
0
˙ z˙ zˇ

.k/ C pB

q

ˇ.m/
0
˙ z˙ zˇ

.m/

�
r�

pAˇ.k/ C pBˇ.m/
�0

˙ z˙ z

�
pAˇ.k/ C pBˇ.m/

�
: (11)

Here, � QS D 0 when there is a group with no linear relationship between the
z variables and the x variables, that is when ˇ.k/ D 0 or ˇ.m/ D 0. Criterion � QS
is also zero when the two parameter vectors are collinear and of the same direction
(ˇ.k/ D dˇ.m/ for a positive constant d ). Otherwise,� QS > 0.

If we consider two groups with collinear parameter vectors of the same direction
as only one group, the hierarchical algorithm of CLV taking into account external
data will first merge variables or subgroups belonging to the same real group
before merging variables or subgroups belonging to different groups. So, the correct
partition is found. The only condition is that, in each group, there must be a linear
relationship between z variables and x variables.

3.2 Properties of CLV Without External Data

The hierarchical algorithm of CLV without external data is equivalent to the Ward
algorithm on centered and transposed data. The cluster criterion to be maximized
can be expressed as:

S D
K�

X

kD1
pkvar . Nxk/ (12)

where pk is the number of variables in cluster Ck and Nxk is the average of all
variables in cluster Ck. When merging two clusters A and B , there is a decrease
�S in criterion S . Let ˙A and ˙B be the covariance matrices of clusters A and B ,
and let ˙AB be the matrix of covariances between the variables belonging to cluster
A and the variables belonging to cluster B . It is possible to write �S as a function
of these matrices:

�S D pAvar . NxA/C pBvar . NxB/� .pA C pB/var . NxA[B/

D 1

pA C pB

�
pB

pA
10˙A1 C pA

pB
10˙B1 � 2 � 10˙AB1

�

(13)
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Table 1 A summary of the main results. Value of the clustering criteria in different cases

� QS �S

Merging subgroups of the same real group 0 �2

Merging subgroups of groups with collinear parameter vectors of same direction 0 > �2

Merging subgroups of different groups > 0 > �2

since

var . NxA/ D var

0

@ 1

pA

X

jwith xj2A
xj

1

A D 1

p2A
10˙A1 (14)

and

var . NxA[B/ D 1

.pA C pB/
2

�
10˙A1 C 10˙B1 C 2 � 10˙AB1

�
: (15)

If the postulated model is true, we can express the covariance matrices in
formula (13) using the model parameters (see Sect. 2).

When merging subgroups of the same real group G.k/, we obtain:

�S D 1

pA C pB

�
pB

pA

�
pAˇ.k/

0
˙ zˇ

.k/pA C pA�
2
�

CpA

pB

�
pBˇ.k/

0
˙ zˇ

.k/pB C pB�
2
�

� 2 � pAˇ.k/
0
˙ zˇ

.k/pB

�

D �2 (16)

So when merging two subgroups of a same real group, the criterion �S is equal
to the error variance �2. For the merging of subgroups of two different real groups
G.k/ and G.m/, we obtain:

�S D pApB

pA C pB

�
ˇ.k/ � ˇ.m/

�0
˙ z

�
ˇ.k/ � ˇ.m/

�
C �2 (17)

This expression is equal to �2 when ˇ.k/ D ˇ.m/ (merging two subgroups of the
same real group). It also may be equal to �2 when two z-variables are perfectly
correlated, that is, when ˙ z is positive semi definite but not positive definite. In all
other cases, �S is larger than �2. So the clustering with criterion S will result in
the correct partition.

3.3 Conclusion

The main results of the analysis of the CLV method are summarised in Table 1. Both
options of CLV find the correct partition since the cluster criterion is larger when
merging variables belonging to two different groups than when merging subgroups
of the same real group.
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Table 2 Parameters used for simulation

Parameter Values

Number of observations – Small samples: 8 observations; – Medium samples: 20 observations;
– Large samples: 100 observations

Number of groups Two groups or three groups
Number of x variables For data sets with two groups: 40 variables or 120 variables; for data

sets with three groups: 60 variables or 180 variables
Group membership – Equal group size; – Unequal group size
Parameter vectors ˇ – For each z variable, there is exactly one group with a non-zero ˇ;

– Opposed groups: For each z variable, there is one group with a
positive ˇ and one group with a negative ˇ

Importance of noise – Small noise: 99% of the variance of a x variable is explained by
the model; – Medium noise: 80% of the variance of a x variable
is explained by the model; – Large noise: 50% of the variance of a
x variable is explained by the model

4 Simulation Study

The analysis described above is based on the known covariance matrix. In reality,
this covariance matrix has to be estimated. A simulation study has been performed
in order to compare the two options of CLV when the clustering is based on a
sample covariance matrix. The simulated data correspond to the model stated in
Sect. 2. Each simulated Z data set was simulated with ten uncorrelated variables
of variance 1. Some other details about the simulated data sets are listed in
Table 2. There are 144 possible combinations of simulation parameters. For each
combination, 100 data sets were simulated, resulting in 14,400 simulated data sets.
For each data set, both options of CLV were used. The dendrogram was cut at the
correct number of groups, and the obtained partition was compared to the correct
partition.

Both options of CLV always found the correct partition for data sets with 100
observations. Also in the case of small noise, the two options perform very well.
Only for one data set (out of 1,600 data sets) with small noise and eight observations,
none of the two options of CLV finds the correct partition. For all other data sets with
a small noise, the correct partition is found by both options. Table 3 shows the results
for the other data sets. For both options of CLV, the percentage of data sets for which
the correct partition is found, is indicated. For small data sets (eight observations)
with a medium noise, CLV without taking into account external data found the
correct partition in 76 % of the cases while CLV taking into account external data
found this partition in only 68 % of the cases. When there is a medium noise and 20
observations, both options perform very well (almost 100 % of correct partitions).
In the case of a large noise, none of the options obtains good results (only 16 %
of correct partitions) when there are only eight observations. With 20 observations,
both options attain a percentage of correct partitions above 60 %.
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Table 3 Percentage of correct partitions

Sample size Medium noise Large noise

8 observations CLV with external data: 68.4 CLV with external data: 16.4
CLV without external data: 76.0 CLV without external data: 15.9

20 observations CLV with external data: 99.6 CLV with external data: 63.6
CLV without external data: 99.9 CLV without external data: 62.1

5 Conclusion and Perspectives

A model has been stated for the clustering of variables taking into account external
data. The CLV method for the case of grouping together only variables with positive
correlations has been analysed on the basis of this model. Both options of CLV
(with or without external data) have been considered. It has been shown that
the hierarchical algorithm finds the correct partition when the parameters of the
model are known, no matter which option of CLV is used. A simulation study has
confirmed that the performance of the two options is comparable. CLV without
external data is equivalent to the Ward algorithm (after centering and transposing
the data matrix). So it is not necessary to take into account the external data when
the aim is to find the correct partition. For practical purposes, it can hence be better
to use the clustering without external data. After cutting the dendrogram, a linear
regression can be done in each cluster in order to determine the relationship between
z variables and x variables.

This paper only considers the performance of CLV concerning the detection of
the correct partition. It is possible that the estimation of the parameter vectors ˇ is
better when taking into account the external data in the clustering process. Some
more work has to be done in order to analyse this parameter estimation.
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Calibration with Spatial Data Constraints

Ivan Arcangelo Sciascia

Abstract We describe an approach that combines the calibrated estimation and
the spatial data analysis. In particular we want to describe the possibility of using
calibrated estimators when spatial constraints arise in the estimation process with
respect to some information that were considered available instead. We describe
some possible constraints that could emerge during the estimation procedure and
we develop an example of a constrained situation where the constraints are on
auxiliary information available and on the density of the units in the spatial domain
considered.

1 Introduction

Modern remote sensing systems allow to have a significant amount of data to
estimating processes on land areas. These systems coupled with Geographic Infor-
mation System (GIS) support the design of surveys on spatial domains in disciplines
such as biology and forestry science. In this work remote sensing is coupled to the
calibrated estimation proposed by Deville and Sarndal (1992) and the application
to forest resources is inspired by the work of Opsomer et al. (2007a) where they
face the characteristics of the design-based and model-assisted estimators. The work
of Opsomer et al. (2007a) stimulated the debate among other authors: Christman
(2007), Little (2007) and Ruppert (2007) in the comments to the paper and in the
rejoinder by the same authors (Opsomer et al., 2007b). In particular Little in his
comments describes concerns about the possibility of using together the peculiarities
of design-based and model-assisted estimation paradigms also described in Little
(2004).
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Little and the commentaries makes it possible to bring out the essential aspects
that are the uncertainties of the estimation process that could become constraints.
The present work aims to spread the debate on design-based estimation for spatial
data to develop a note of what are the uncertainties at the beginning of the estimation
process that can become constraints for the estimation process.

2 Constraints

The uncertainties for the estimation process are the following: sample design
and its peculiarities should be taken into account in the estimation process, the
lack of answers that can generate inefficiency estimates, measurement errors and
measures disturbances that can cause inefficiency of the estimates, population
models and their characteristics in the case of choice of linear or nonlinear
models. These uncertainties are budgeted in the design of the survey to lead to
unbiased and consistent estimates of quantities such as averages or totals. Another
condition that the researcher must address is instead one in which the uncertainties
are transformed into constraints during the estimation process. These constraints
include: the limitation of information supply, the Xi vectors which describe the
auxiliary information available through remote sensing, low density units in the
sample, high rate of non-response, high rate of response errors. If you experience
any of these constraints during the estimation process the efficiency of the estimators
utilized could decrease.

We consider a survey for spatial domains using a calibrated estimator and we de-
fine the following notations: a finite population U D f1,2,. . . ,Ng and a partition of U
in d subdomains Ui composed by Ni units, with i D 1; 2; : : : ; d , and

Sd
iD1 Ui DU

and
Pd

iD1 Ni D N .
We use the calibration estimator to estimate the total of a continuous variable y

OYc D P
j2Ui yij :

OYc D
nX

iD1
ciyi (1)

where ci is the calibrated weight of ith observation according to constrained
optimization.

The constrained optimization for the calibrated estimator is:

ci W min
nX

iD1
Gi .ci ;wi / (2)

subject to
nX

iD1
cixi D X: (3)
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Gi.ci ;wi / is the generic distance function among ci and wi ; considering the
Euclidean distance among ci and wi :

Gi.ci ;wi / D .ci � wi /
2=wi (4)

resolving the optimization problem the general regression estimator (GREG) is
obtained:

OYc D
nX

iD1
ciyi D OY C Ǒ

c.X � OX/ (5)

where ˇc is:

Ǒ
c D

nX

iD1
wi xiyi =

nX

iD1
wi x

2
i : (6)

2.1 Constraint on Auxiliary Information

We assume that for calibration estimation with Eq. (5) a matrix XN is known
for every auxiliary variable considered in the survey. The auxiliary information
constraint can reduce the number of the auxiliary variables previous considered and
change calibration estimator performances.

2.2 Constraint on Missing Responses

Another constraint we could face is the missing responses on survey. So we could
not utilize the response of one or more of the observed units i D 1; 2; : : : ; d with
consequent differences in the formula

Pd
iD1 Ni D N and in the calibrated estimator

OYc D Pn
iD1 ciyi D OY C Ǒ

c.X � OX/.

2.3 Constraint on the Density of the Units in the Subset Grid

This constraint concerns the presence of a low number of units in the estimation
subdomain so to assure the reliability of stratum/units’ weights. If during the
estimation process it is not possible to respect the stratum proportion we are in
presence of a density constraint that we can formalize in a condition:

].Ui/ 	 ˛ (7)

where ].Ui/ is the number of units included in the subdomain space unit Ui and ˛
is a threshold.
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Fig. 1 Simulated sampling points

Fig. 2 Ventina sampling points

3 Simulation

Imagine applying two of these three constraints in a survey for spatial domains. We
can apply the following simulation to forest data.

Figure 1 describes a simulated example of sampling point distribution with
constraint as in Eq. (8); the population grid on the left and the coarse grid on the
right with the dimension I. Figure 2 describes a real distribution of sampling points
utilized in the forest study of Garbarino et al. (2009). Imagine to apply a two-phase
systematic design:

• In the first stage a coarse grid is extracted: size l2;
• In the second stage a fine grid is extracted from the previous: size l2

4
.

The sampling design provides: (a) from remote sensing system we get various xi of
auxiliary variables and (b) the forest area has high density of sampling units (threes
or cluster of threes), but the following constraints are arisen: (1) only an auxiliary
variable xi is available, (2) since the area of forest has changed (environment and
anthropogenic disturbances) the forest area has low density actually.
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We measure the second stage grid variables yi , xi on a territorial sample being
known the population total X . We estimate the total calibration estimator OYc given
the defined constraints. If the number of units in the grid at the second level is lower
than stratum proportion of the stratified sampling design we consider the possibility
of developing an algorithm that corrects the calibrated estimator, which, in this
case, would considers only ˛ units. The estimate would therefore be inefficient
and inconsistent with the sampling design. It is possible, however, to carry out the
sampling heuristic going back to the grid of the first level and considering a function
with the neighborhood of units deployed in space.

The adjusted sampling algorithm is as follows:

1. Selection in the first stage of the grid size l2;
2. selection in the second stage of the one of the four grid size l2/4 included in the

first stage grid size:

(a) If the stratum proportion is satisfied we proceed with the calibrated estima-
tion using the measurements of yi , xi on the units that fall in the grid;

(b) If the constraint ].Ui /<˛ is active we develop a correction term that
depends on the location of units that fall within the first stage grid.

Considering the simulated distribution of Fig. 1 we defined a grid of sparse data
where the units meet the following space constraint:

].zi / 	 2 (8)

where ].zi / is the number of units included in the minimum space unit zi . Consider a
finite population ofN units where associated with the ith unit are the study variable
yi and the auxiliary variable xi .

Our correction to OYc involves the distance between the second stage sampled unit
and its nearest neighbour in the first stage sampling unit in the following way:

OYcs D OYc C f .dij / (9)

where OYcs is the adjusted calibration estimator for sparse data, f .dij / is a function

of distance between the sampled unit i and its nearest neighbour j ; i 2 l2

4
grid and

j … l2

4
grid, j 2 l2grid.

Note that, if the distance is approximated by a straight line, then it can be
computed by using the coordinates of the units .xi ; yj /, .xi ; yj /.

dij D
q
.xi � xj /2 C .yi � yj /2 (10)

In this simulation example a sample obtained is composed by two units, the
first sampled, the second chosen according to distance. Further work should focus
on the explanation of the distance function as a correction term, according to the
information available in the constrained situation.
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4 Concluding Remarks

Inspired by research on the sampling of forest resources in this work we used the
design-based estimation procedure in the presence of constraints. The estimated
bound for calibrated spatial data as developed in this argument is applicable to
various natural resource estimation problems. The procedure is apt to estimate
the two-phase systematic sampling where in phase one the information on an
intensive sample grid is extracted and the field visit in the phase two consists in
the measurement of interest and ancillary variables on a subset of the phase one
grid. The phase one can be divided into two stages: in the first stage the sampling
grid is chosen and in the second stage a subset of the sampled grids are chosen.
Once the field measurements have been done in the phase two the estimations
of population totals can be calculated for the overall spatial population according
to the design-based weights. The ancillary information improve the efficiency of
the estimators. Supplying the calibration technique the auxiliary information is
considered for the survey inference through a parametric linear model and remote
sensing and GIS give the availability of a great amount of data to reduce survey
costs and improve the precision of the estimates of the survey on natural resources.

Although there are these advantages some constraints could be considered: con-
straints on auxiliary information, constraints on missing responses and constraints
in the density of the units in the subset grid are faced when they are active during
the estimation procedure. In this work we suggested some initial consideration on
a possible strategy of estimation in the presence of two of the three constraints
previous described and we developed a simulation example. We would like to test
this strategy with further studies on forest resources.
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Clustering Data Streams by On-Line Proximity
Updating

Antonio Balzanella, Yves Lechevallier, and Rosanna Verde

Abstract In this paper, we introduce a new clustering strategy for temporally
ordered data streams, which is able to discover groups of homogeneous streams
performing a single pass on data. It is a two steps approach where an on-line
algorithm computes statistics about the dissimilarities among data and then, an off-
line algorithm computes the final partition of the streams. The effectiveness of the
proposal is evaluated through tests on real data.

1 Introduction

In recent years a wide number of domains is generating temporally ordered, fast
changing, potentially unbounded data streams. Some examples are daily fluctuations
of stock market, fault diagnosis, web data, network traffic monitoring, electricity
consumptions, remote sensors data.

In such cases, due to the arrival of new data at a very high data rate and to the need
of providing fast answers to queries on data, it is needed to move from the analysis
of data bases to the analysis of data streams. The latter is based on satisfying several
constraints which make traditional data mining techniques unusable. In particular:
(1) Data elements are on-line collected, (2) Data are potentially unbounded in
size, (3) Data after processing are discarded or archived and become not easily
available anymore.
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Seconda Universitá degli Studi di Napoli, Via del Setificio 81100, Caserta, Italy
e-mail: antonio.balzanella@gmail.com; rosanna.verde@unina2.it

Y. Lechevallier
INRIA, 78153, Le Chesnay cedex, France
e-mail: Yves.Lechevallier@inria.fr

A. Giusti et al. (eds.), Classification and Data Mining, Studies in Classification,
Data Analysis, and Knowledge Organization, DOI 10.1007/978-3-642-28894-4 12,
© Springer-Verlag Berlin Heidelberg 2013

97



98 A. Balzanella et al.

As a consequence, strategies for data stream analysis should meet the following
design criteria (Ganguly et al., 2009): (1) Time required for processing the incoming
observations should be small and constant, (2) Memory requirements have to be
reduced with reference to the amount of data to process, (3) Algorithms have to
perform only one scan of the data (4) The knowledge about data should be available
at any point in time or on user demand.

In this paper, we focus on the clustering of data streams. In this framework,
clustering is used to deal with two different challenges. The first one is related to
analyze a single univariate or multivariate data stream to discover a partitioning
of the observations it is composed of. The second one is based on processing data
streams generated by a set of sources (let us think about sensor networks) to discover
a partitioning of the sources selves. Our focus is on the second one, which is usually
referred as clustering of streams.

If we consider a data stream as a continuously growing time series, clustering of
streams shares several topics with the clustering of time series.

In most of cases, clustering methods for time series adapt algorithms for static
data to time series, according to two main approaches (Liao, 2005). The first one
is based on introducing a dissimilarity function for time series comparison in a
conventional clustering algorithm; the second kind of approaches is made by a
preliminary step where the raw data are processed by some dimensionality reduction
or modeling technique and by a second step which is the running of a clustering
algorithm on the results of the first step.

However, the development of clustering algorithms in data stream framework
needs further considerations: (1) algorithms should be able to provide suitable data
summaries since observations are discarded after the processing; (2) methods should
keep into account the evolution of the data over time; (3) algorithms should support
the possibility to recover the clustering structure of user defined time periods rather
than providing the partitioning of the whole recording period.

The previous requirements imply that adapting conventional clustering algo-
rithms to data stream processing is not sufficient but it is necessary to develop new
appropriate methods.

With this aim, we introduce a new strategy for clustering temporally ordered data
streams which satisfies the requirements of data stream processing framework and
which supports the adoption of user chosen distance measures and the preliminary
processing of raw data through some dimensionality reduction technique.

Is is based on discovering a global partitioning of the streams starting from
the clustering of local batches of data. The clustering of incoming data batches
provides, as output, a set of locally representative profiles of data and allows to
update a suitable distance matrix which records the proximities among the streams.
The latter, allows to get the partition of the streams by means of an off-line clustering
algorithm that is run on the on-line updated proximity matrix.

The paper is organized as follows. Section 2 describes some of the main existing
proposals for data streams clustering. Section 3, introduces the details of our
strategy. Section 4 presents the evaluation of the algorithm on real data. Finally,
Sect. 5 ends the paper with some conclusions and perspectives.
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2 State of Art

The data stream clustering problem has been widely dealt in recent years. The
most of proposals aim at performing clustering of observations in univariate or
multivariate data streams (a wide review is available in Kavitha and Punithavalli
2010). The clustering of multiple data streams is, instead, a more recent challenge.
Interesting proposals have been introduced in Beringer and Hullermeier (2006), Dai
et al. (2006), Rodriguess and Pedroso (2008) and Balzanella et al. (2011). The
first one is an extension to the data stream framework of the k-means algorithm
performed on time series. Basically, the idea is to split parallel arriving streams into
non overlapping windows and to process the data of each window performing, at
first, a Discrete Fourier Transform to reduce the dimensionality of data, and then, a
k-means algorithm on the coefficients of the transformation. The main drawback of
this strategy is the inability to deal with evolving data streams. This is because the
final data partition only depends on the data of the most recent window.

The second proposal is based on performing a dimensionality reduction of
the incoming streams by means of a wavelet transform or a piecewise linear
regression and, then, on a suitable clustering strategy on the coefficients of the
stream transformation. Although this method is able to deal with evolving data
streams, its main drawback is that the approach used for summarization is only
based on storing compressed streams.

The third mentioned approach is a top-down strategy named Online Divisive-
Agglomerative Clustering (ODAC) where a hierarchy is built according to the
correlation among the streams. The proposed divisive approach incrementally
updates the distance among the streams and executes a procedure for splitting and
aggregating the clusters on the basis of the comparison between the diameter of
each cluster to a threshold obtained using Hoeffding bounds. In order to deal with
evolution in data, ODAC provides a criterion to aggregate the leafs still based on the
clusters diameters and Hoeffding bounds.

Finally, a further proposal deals with the clustering of multiple data streams
through a strategy which includes the on-line updating of a co-association matrix
using the output of the clustering of local batches of data and the off-line clustering
of the co-association matrix by spectral clustering algorithm, for discovering the
final partition of the streams.

3 Clustering Data Streams Through the On-Line Clustering
of Data Batches

Let S D fY1; : : : ; Yi ; : : : ; Yng be a set of n streams Yi D Œ.y1; t1/; : : : ; .yj ; tj /; : : : ;

.y1; t1/� made by real valued ordered observations on a discrete time grid T D˚
t1; : : : ; tj ; : : : t1

� 2 <. A time window wf , with f D 1; : : : ;1, is an ordered
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subset of T having size s. Each time window wf frames a subset Y w
i of Yi called

subsequence where Y w
i D ˚

yj ; : : : ; yjCs
�
.

The objective is to find a partitionP of S intoC clusters such that each stream Yi
belongs to a cluster Ck with k D 1; : : : ; C and

TC
kD1 Ck D �. Streams are allocated

to each cluster Ck with the aim to minimize the dissimilarity within each cluster and
to maximize the dissimilarity between clusters.

In order to get a partition P , the incoming parallel streams are, at first, split into
non overlapping batches ŒY w

1 ; : : : ; Y
w
i ; : : : ; Y

w
n � by means of windows of fixed size s.

On each batch of data we run a Dynamic Clustering Algorithm (DCA) extended to
complex data Diday (1971) and De Carvalho et al. (2004).

The DCA looks for a local partitioning P w D C w
1 [ : : : [ C w

� [ : : : [ C w
K

into K clusters of the current batch of data and an associated set of prototypes
Bw D .bw

1 ; : : : ; b
w
� ; : : : ; b

w
K/ which are the synthesis of the streams behavior in time

localized area.
Given a suitable dissimilarity measure d.�/, DCA optimizes the following

criterion:

�.P w; Bw/ D
KX

kD1

X

Y w
i 2Cw

�

d.Y w
i ; b

w
� / (1)

The partition P w and the related prototypes Bw are obtained by the iteration,
until convergence, of a representation step, where prototypes are computed, and an
allocation step where the subsequences are allocated to the clusters.

3.1 Dissimilarity Updating

The local partition P w of the streams is the basis for the online updating of the
dissimilarities among the streams. In particular, every time a new incoming batch
of data is processed by DCA, we update a matrix Aw D Œaw.i;m/� (with i; m D
1; : : : ; n) in order to record, in each cell, the status of the proximity between a couple
of streams.

In our previous proposal Balzanella et al. (2011), we introduced an updating
approach based on the co-associations of the streams in the clusters so that each
cell aw.i;m/ collects the number of times each couple of streams is allocated to the
same cluster of the local partitionsP w. According to this schema, Aw is a proximity
graph which can be processed through a spectral clustering algorithm in order to
provide the final partition of the streams.

Unlikely to our previously proposal we update the matrix Aw so to consider the
internal homogeneity of the clusters and their separation with the aim to improve
the performance of the method.

Let W w
� D

P
Yw
i 2Cw

�
d.Y w

i Ibw
� /

jCw
� j be the average distance of the subsequences Y w

i in a

cluster C w
� to the correspondent prototype bw

� andDi;� D d.Y w
i I bw

� /with Y w
i … C w

� ,
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be the distance of a subsequence Y w
i to the prototype bw

� of a cluster C w
� to which

Y w
i does not belong.

The cell aw.i;m/ is updated according to the following rule:

(
a.i;m/ D W w

� ; if Y w
i ; Y

w
m 2 C w

�

a.i;m/ D Di;�; if .Y w
i … C w

� /\ .Y w
m 2 C w

� /
(2)

The online updating strategy can be summarized as follows:

for Each window wf do
.P w; Bw/ D DCA.ŒY w

1 ; : : : ; Y
w
i ; : : : ; Y

w
n �; K/

for i D 1 W n do
for m D 1 W n do

if Y w
i ; Y

w
m 2 Cw

� then
a.i; m/ D a.i; m/CW w

�

end if
if Y w

i 2 Cw
� and Y w

m … Cw
� then

a.i; m/ D a.i; m/CDi;�

end if
end for

end for
end for

Such updating strategy allows to get a measure of the distance between each pair
of streams using only the distance of each subsequence to the prototypes. Note that
these are already computed in the DCA clustering, thus no further computation is
needed.

An interesting feature of the distance matrix Aw is that it satisfies the additive
property. Given two time stamp t1; t2 where the distances are available through the
matrices At1 and At2 , it is possible to recover the updates in t2 � t1 by the difference
At2 � At1 .

Since in data stream analysis computational constraints impose that it is not
possible to store the status of the distance matrix Aw at each updating, we can
use the additive property in order to introduce a tilted windows schema for storing
recent information at a fine scale and long-term information at a coarse scale.
Especially we advice a logarithmic time frame where let us suppose that the most
recent matrix stores the proximities until the current time, the remaining slots for
recording the proximity information, are, for example, the last quarter (15 min), the
next two quarters (ago), 4 quarters, 8 quarters, 16 quarters, and so on, growing at an
exponential rate.

This can be realized by the simple deletion of the non required matrices allowing
to keep the computational constraints under control.
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3.2 Off-Line Partitioning

On user demand or according to a suitable temporal calendar, it is possible to get a
partition P of streams of S over a time interval. We can make use of the additive
property of the distance matrix Aw in order to get the proximities updates over the
queried time interval and then, to process the resulting matrix through a proper
clustering algorithm.

We propose to use dynamical clustering algorithm applied to a dissimilarity table
DCLUST proposed in Diday and Noirhomme-Fraiture (2008) since it is consistent
with the criterion optimized for the local clustering by DCA.

The aim of the DCLUST is to partition a set of objects into a fixed number
of homogeneous classes on the basis of the proximities between pairs of objects.
The optimized criterion is based on the sum of the dissimilarities between elements
belonging to the same cluster:

�.P;G/ D
CX

kD1

X

Yi2Ck
d.Yi ; gk/ (3)

where the prototype gk 2 G of the cluster Ck corresponds to the stream Ym� :m� D
argmin.

P
Yi2Ck d.Yi ; Ym// with Ym 2 Ck. Note that the distances in the algorithm

are the values available in the matrix Aw that is, d.Yi ; Ym/ D a.i;m/.
The DCLUST algorithm is as follows:

1. Initialization: The initial vector of prototypes,G contains random elements of S
2. Allocation step: A stream Yi is allocated to the cluster Ck if and only if k D

argmin d.Yi ; gk/ with k D 1; : : : ; C

3. Representation step: For each k D 1; : : : ; C , the prototype gk representing the
class Ck is the stream Ym� 2 Ck

The steps 2 and 3 are repeated until convergence.

4 Main Results

In order to evaluate the performance of the proposed strategy we have performed
several tests on real datasets. Moreover, we have made a comparison with the well
known k-means algorithm applied on stocked data.

We have chosen two datasets in the evaluation process: The first one is made by
76 highly evolving time series, downloaded from Yahoo finance, which represent
the daily closing price of random chosen stocks. Each time series is made by 4,000
observation. The second one is made by 179 highly evolving time series which
collect daily electricity supply at several locations in Australia. Each time series is
made by 3,288 recordings.



Clustering Data Streams by On-Line Proximity Updating 103

We have considered several common indexes to assess the effectiveness of the
proposal (see Maulik and Bandyopadhyay 2002). Calinski-Harabasz Index(CH),
Davies-Bouldin (DB) Index and Silhouette Width Criterion(SW), are used as inter-
nal validity criteria for evaluating the compactness of clusters and their separation.
The Rand index (RI) and the Adjusted Rand index (ARI) are used to measure the
consensus between the partition obtained by our proposal and the partition obtained
using the k-means.

In order to perform the testing, we need to set the following input parameters for
the proposed procedure: (1) the size s of each temporal window, (2) the number of
clusters K of each local partition Pw, (3) the final number of cluster C to get the
partition of S . For the k-means we only need to set the number of clusters C .

The Euclidean distance is used as dissimilarity function in both the procedures
after that the raw data have been standardized in order to account for different scales
which could dominate the clustering. According to this choice, DCA algorithm on
the windows data, becomes a k-means where the prototypes are the average of the
data in a cluster.

The parameter C has been set, for the first and second datasets, running the k-
means algorithm using C D 2; : : : ; 8. For each value of C we have computed the
total within deviance. We have chosen C D 4 for the first dataset and C D 3 for the
second dataset, since these are the values which provide the highest improvement of
the clusters homogeneity.

By evaluating, through the mentioned indexes, the partitioning quality for several
values of s we can state that the choice of the windows size does not impact on the
clusters homogeneity. As a consequence, the choice of the value of such parameter,
can be performed according to the kind of required summarization. For example, if
we need to detect a set of prototypes for each week of data, we choose a value of
the window size which frames the observations in a week.

In our tests, we have used windows made by 30 observations for the first two
datasets and 50 for the third one.

The third required input parameterK does not strongly impact on the clustering
quality. We have tested this by evaluating the behavior of the Calinski-Harabasz
Index and of the Davies-Bouldin Index according to k D 2; : : : ; k D 10.

In Table 1 we show the main results of the evaluated indexes:

Table 1 External and internal validity indices

On-line clustering k-means clustering
Dataset DB CH SW RI ARI DB CH SW

Power supply 2:104 26:353 0:227 0:95 0:88 2:172 26:504 0:229

Financial data 1:793 15:291 0:307 0:91 0:86 1:754 15:594 0:321

Looking at the values of the internal validity indexes, computed for our proposal
and for the k-means on stocked data, it emerges that the homogeneity of the clusters
and their separation, is quite similar.
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Moreover, the value of the Rand Index and of the Adjusted Rand Index,
highlights the strength of the consensus between the obtained partitions.

5 Conclusions

In this paper we have introduced a new strategy for clustering of data streams. It
is able to provide a set of summaries of local behaviors by means of the DCA
of batches of data and it allows to set at query time the temporal interval over
which to provide the partition of the streams. To manage the storage requirements, a
tilted windows schema has still been introduced such that recent information are
stored at a finer level of detail while older information at a lower detail level.
The performance of the algorithm have still compared to a standard algorithm
for stocked data.
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Summarizing and Detecting Structural Drifts
from Multiple Data Streams

Antonio Balzanella and Rosanna Verde

Abstract In recent years the analysis of data streams has received a lot of attention.
This is motivated by the increase of the number of applications which generate huge
amounts of high speed temporal data. Let us think to sensor networks, computer
networks, manufactures. Data streams are usually highly evolving, thus mining
changes in data is a challenging task. In this paper we will deal with the structural
drift detection problem where the aim is to discover and to describe changes in
proximity relations among multiple data streams. We will introduce a new strategy
whose effectiveness is shown through an application on simulated data.

1 Introduction

A growing number of applicative fields is generating huge amount of temporal
data. Some examples are rfids, sensors and web logs across industries including
manufacturing, financial services and utilities.

In such contexts, data are sequences of values or events obtained through
repeated measurements over time. Often these data arrive at a very high frequency
so, the usual data mining tools are not suitable for discovering knowledge in useful
times. For this reason it may be needed to define new knowledge discovery processes
to apply to continuous, high-volume, open-ended data streams.

Usually, algorithms for data streams mining update, in incremental and on-line
way, the knowledge about data by means of proper synopses. These provide suitable
summaries which are substantially smaller than their base dataset and allow to
discard the data just after they have been processed.
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Due to the high frequency of data arrival and to the storage constraints imposed
by the open ended nature of data streams, often, we have a trade off between
accuracy and storage requirements. That is, we generally are willing to settle for
approximate rather than exact answers.

Since data streams are usually generated by monitoring activities, an important
issue is to discover and describe their evolution of over time. Understanding the
evolutions in data, involves to be able to take proper decisions on the monitored
process. Let’s think, for instance, to surveillance systems, to financial markets, to
geology.

In data stream framework, the evolution mining can be seen from two different
points of view: concept drift detection and structural drift detection (Gama and
Gaber, 2007; Ganguly et al., 2009).

The first, concerns to monitor the evolution of the distribution generating the
examples of a single univariate or multivariate data stream. The second deals with
multiple data streams, searching for changes in the proximity relations among the
streams due to changes in single streams.

Concept drift detection has been widely dealt in literature (Aggarwal, 2007;
Sebastiao and Gama, 2007), however, structural drift is a more recent challenge.

Structural drift mining looks at the data evolution from a systematic point of view
where each data stream is seen as part of a set and a change in its data reflects some
structural drift only if impacts on the proximities to the other streams. Thus, at the
opposite, if all the observed streams evolve in the same way no structural drift is
detected.

Structural drift is strongly related to clustering since changes in proximity
relations among streams affect their clustering structure. Thus, it is possible to
analyze the changes in the proximities, monitoring how the partitioning of the
streams evolves over time.

Consistently with such intuition, an interesting proposal is Da Silva et al. (2009).
It is a strategy focused on discovering changes in web usage over time. The basic
idea is to split the incoming parallel data streams into non overlapping batches and
then, to run a clustering algorithm on each batch as soon as it is recorded. The
clustering algorithm provides local partitions of data which represent the proximity
relations over each time period. Finally, a measure of the evolution in such proximity
relations is obtained by computing the adjusted Rand Index and the F-measure
(Maulik and Bandyopadhyay, 2002) between two local partitions.

In this paper, we introduce a new approach which aims both, at measuring, the
evolution in a set of multiple streams and to keep track of such evolution through
on-line discovered summaries. Unlike to the mentioned approach, in addition to a
global change measure between two time periods, we allow to monitor how pairwise
proximities evolve over time. Moreover, we allow to set, at query time, the size of
the compared temporal intervals.

Basically, we propose a new strategy for the updating of the proximity relations
among the streams through a suitable co-association matrix obtained by the
clustering of non overlapping batches of data. Then we introduce two measures
for evaluating the evolutions in data through the analysis of the changes in the
co-association matrix.
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The strategy is based on three steps which are performed with the arrival of new
observations:

• Local clustering of non overlapping batches of data
• Updating of the co-association matrix to records the proximities among the

streams
• Evolution detection by processing the co-association matrix

As we will show in the next sections, this processing schema allows to discover
the evolution at several level of granularity and supports tilted windows for storing
recent information at a finer detail and older information at a courser detail.

The paper is organized as follows. In Sects. 2 and 3 are shown the details
of the proposed strategy. In Sect. 4, an application on simulated data shows the
effectiveness the our proposal. Section 5 presents conclusions and perspectives.

2 Monitoring Proximity Relations Among Data Streams

In order to describe the details of our proposal, we need to introduce the main
definitions used in the rest of the paper.

Let us note with S D fY1; : : : ; Yi ; : : : ; Yng a set of n data streams Yi D
Œ.y1; t1/; : : : ; .yj ; tj /; : : : ; .y1; t1/� made by real valued ordered observations on a
discrete time grid T D ˚

t1; : : : ; tj ; : : : t1
� 2 <.

The on-line processing of incoming parallel data streams is performed on batches
of data detected through temporal windows.

Formally, a time window wf with f D 1; : : : ;1 is an ordered subset of T
having size s with wf \wf 0 D ; 8f ¤ f 0. Each time window wf frames a subset
Y w
i of Yi , called subsequence such that Y w

i D ˚
yj ; : : : ; yjCs�1

�
.

According to the schema in Fig. 1, on each batch of data, a clustering algorithm
is performed in order to provide a local partition of data and a set of suitable
summaries. In particular we advice the use of the Dynamic Clustering Algorithm
(DCA) proposed in Diday (1971) and De Carvalho et al. (2004).

The DCA looks for the best partitioning of data inK clusters and the representa-
tion of each cluster by means of a set of prototypes, optimizing a criterion of internal
clusters homogeneity.

The algorithm performs a step of representation of the clusters and a step
of allocation of the subsequences to the clusters according to the minimum
dissimilarity to the prototypes.

In our case, DCA provides a local partitioningPw D C w
1 [: : :[C w

� [: : :[C w
K into

K clusters of the subsequences framed by wf and the associated set of prototypes
Bw D .bw

1 ; : : : ; b
w
� ; : : : ; b

w
K/. The prototypes allow to summarize the behavior of the

streams in time localized windows.
The output partition Pw of each window wf is used to update a co-association

matrix Af D Œaf .i;m/� (with i; m D 1; : : : ; n) which will record the proximities
among the streams. For each couple of streams Yi ; Ym allocated to the same cluster,
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Fig. 1 Processing schema

the matrixAf is updated such that af .i;m/ D af �1.i;m/C1, while for each couple
of streams allocated to different clusters the set value is af .i;m/ D af �1.i;m/,
where af �1 is the proximity corresponding to the previous time window wf �1.

This involves that the following procedure has to be run on each window:

for each local cluster Cw
� 2 Pw do

Detect all the possible couples of subsequences Y w
i , Y w

m which are allocated to the
cluster Cw

�

for each couple .i; m/ do
add 1 to the cells af .i; m/ and af .m; i/ of Af

end for
end for

For instance, let us assume to have five streams .Y1; Y2; : : : ; Y5/ and a local
partition P1 D .Y w

1 ; Y
w
2 /.Y

w
3 ; Y

w
4 ; Y

w
5 /, the updating of A consists in:

1. Adding 1 to the cells af .1; 2/ and af .2; 1/
2. Adding 1 to the cells af .3; 4/ and af .4; 3/
3. Adding 1 to the cells af .3; 5/ and af .5; 3/
4. Adding 1 to the cells af .4; 5/ and af .5; 4/

The co-association matrix allows to record the status of the proximity relations
among the streams at a time stamp. Especially a high value in a cell highlights a
strong relation between a couple of streams since it is the consequence of an high
number of times in which the couple has been allocated to the same cluster. The
opposite is still true since a low value indicates a weak proximity relation.

3 Evaluating the Evolution of Proximity Relations

Starting from the strategy introduced in the previous section for updating the
co-association matrix, here we introduce the tools for measuring the evolutions in
the proximities.

It is worth of noting that the co-association matrix A satisfies the additive
property. Given two time stamps t1; t2 where the status of proximity relations is
available through the co-association matrices At1 and At2 , it is possible to recover
the updates in t2 � t1 by the difference At2 �At1 .
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Consistently with this statement, we introduce the Structural Change (SD)
measure for evaluating the evolution of the proximity relations between two time
periods�t 0 D Œt1; t2� and�t 00 D Œt3; t4�:

SD�t 0;�t 00 D
�
�
�
�
A�t 0

b�t 0
� A�t 00

b�t 00

�
�
�
�
2

(1)

where: k�k2 is the Frobenius norm;
A�t 0 andA�t 00 are the co-association matrices computed for the time intervals Œt1; t2�
and Œt3; t4�;
b�t 0 and b�t 00 are the number of windows in Œt1; t2� and Œt3; t4�.

The previous is a global change measure which provides the strength of the
change between two user chosen time periods, however we can still explore the
evolutions in pairwise proximities by means of the matrix PC :

PC�t 0;�t 00 D ABS

�
A�t 0

b�t 0
� A�t 00

b�t 00

�

(2)

where ABS is the absolute value.
It returns a matrix storing, in each cell, the strength of the change in pairwise

proximity relations.
The measure SD�t 0;�t 00 and the matrix PC�t 0;�t 00 introduced here, are based on

the availability of a co-association matrix at each time stamp, however, due to
the storage constraints of the data stream analysis framework, we need to select
particular instants of time at which to store a snapshot of the co-association matrix.

We need to advice a strategy which provides an effective trade-of between the
storage requirements and the ability to recall the proximities from different time
horizons.

In stream data analysis, people are usually interested in recent changes at a fine
scale but in long-term changes at a coarse scale. Naturally, we can register time
at different levels of granularity. The most recent time is registered at the finest
granularity; the more distant time is registered at a coarser granularity; and the level
of coarseness depends on the application requirements and on how old the time
point is (from the current time). Such a time dimension model is called a tilted time
frame (Han and Kamber, 2006).

We introduce, for our aims, a logarithmic tilted time frame schema where the
co-association matrix is stored in multiple granularities according to a logarithmic
scale. Suppose that the most recent matrix A stores the proximities until the
current time. The remaining slots for recording the proximity information, are, for
example, the last quarter (15 min), the next two quarters (ago), 4 quarters, 8 quarters,
16 quarters, and so on, growing at an exponential rate.

According to the strategy proposed for updating the co-association matrix and in
particular due to the additive property, the logarithmic time frame schema can be
realized by the simple deletion of the non required matrices as shown in Fig. 2
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Fig. 2 Tilted time frames

4 Main Results

In order to evaluate the effectiveness of the proposed strategy in discovering changes
in proximity relations in data, we have performed several tests on a simulated
dataset. The choice of using a simulated dataset allows, in our context, to evaluate
the results in a controlled environment where comparisons to concurrent methods
can be still performed since the whole set of data is stored on some available media.

We generate four datasets, each one made by n D 100 time series having 6,000
observations. In all the datasets, the streams are generated according to two clusters
however, at the time stamp t D 3,000 (in the middle of the series generation),
there is a change in the proximities obtained modifying the values of the equations
parameters used to generate the data.

The datasets differ in the strength of this proximity change in terms of number of
time series which move from the first cluster to the second one and from the second
to the first one. Especially, the percentages of change are respectively 50, 25, 15,
5%.

Taking the first dataset as example, this involves that the data partition is P 0 D
fY1; : : : ; Y50g fY51; : : : ; Y100g for t 	 3;000 and P 00 D fY1; : : : ; Y25; Y76; : : : ; Y100g
fY26; : : : ; Y75g for t > 3;000 which corresponds to a shifting of one half of the
series.

Our aim is to evaluate if the proposed strategy is able to discover the time point
of the evolution, to measure its strength and to understand which streams have the
strongest evolution.

In order to run our procedure, we need to set the size of each window s, the
number of clusters K for the clustering of data batches and, finally, the two time
intervals over which to compute the SD�t 0;�t 00 measure and PC�t 0;�t 00 matrix.

The choice of the windows size s impacts on the maximum detail at which
the procedure is able to discover changes in the proximities. This is because the
co-association matrix A is updated each time a new batch of data whose size is s
arrives. For our tests we set s D 50.

The numberK of local clusters has been set to 2 since 2 is the number of clusters
existent in data. Since in real applications the true value can be unknown and it can
variate over the flowing of data, we have still performed tests using K D 3; : : : ; 6

in order to evaluate if the procedure is still able to capture the proximity changes.
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Finally,we need to set the two time intervals over which the tests are made. We
have chosen to perform a dynamic monitoring such that the first time interval�t 0 D
Œt1; t2� is made by the most recent 200 observations corresponding to four windows
of data, while the second time interval �t 00 D Œt3; t4� is made by the previous 200
observations not included in �t 0 D Œt1; t2�.

The main results for the SD�t 0;�t 00 measure for the tested datasets, are shown in
the following figure (Fig. 3):

Fig. 3 SD�t 0 ;�t 00 measure over time for the four datasets
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Fig. 4 PC�t 0 ;�t 00 matrix at t D 3;000 for the first dataset
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It is possible to note that the peak in the plot is in correspondence of the middle
of the monitoring activity such as expected. Moreover looking at the Fig. 4, which
illustrates the values of the PC�t 0;�t 00 matrix for the first dataset, it is possible to
discover which pairs of streams highlight strong changes in proximity relations at
the time point t D 3;000

5 Conclusions and Perspectives

In this paper we have introduced a new strategy for discovering changes in proximity
relations among multiple data streams. Such strategy provides both a measure for
evaluating the strength of the change and a representation of the local behaviors by
means of cluster prototypes. Future developments will be the evaluation of several
distance measure to use in the local clustering and how these impact on the change
detection. Moreover other real and simulated datasets will be tested.
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A Model-Based Approach for Qualitative
Assessment in Opinion Mining

Maria Iannario and Domenico Piccolo

Abstract Data mining is an increasing area of interest where the collection of
large amount of data is characterized by heterogeneous information with respect
to origin and content; thus, a high degree of specialization is required for a correct
analysis. In this paper, we limit ourselves to consider opinions that are expressed
as ordered preferences and may be delivered as rating or ranking evaluations. Such
situations are different and deserve careful considerations. In both cases, we discuss
the framework of CUB models introduced to analyse the ordinal responses by which
people express their opinions. Specifically, the approach may be inserted as a useful
routine in data mining area for improving the study of essential features supported
by empirical evidence.

1 Introduction

Data mining has been defined as “the non-trivial extraction of implicit, previously
unknown, and potentially useful information from data” (Frawley et al., 1991).
Specifically, it allows to perform the task of knowledge discovery in databases
“which is the non-trivial process of identifying valid, novel, potentially useful,
and ultimately understandable patterns in data” (Fayyad et al., 1996). A common
characteristic of such environment is the large amount of data which are available in
heterogeneous manner with respect to both origin and content. As a consequence,
data mining theory and methods call for a high degree of specialization where
sophisticated statistical analyses and efficient numerical algorithms are heavily
involved (Nisbet et al., 2009).
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In this context, we limit ourselves to consider opinions that are the result of
explicit questions and are often related to liking, disliking or indifference positions
with regard to a specific “object” (item, sentence, vignette, and so on). We will focus
on ordinal data involving evaluation, comparison or perception: from a statistical
point of view, we model opinions of a large number of subjects when they are
expressed as preferences (via ratings and/or rankings) in a consistent way.

The paper is organized as follows: next Section motivates our approach and
clarifies the relationship among opinions, evaluation/preferences and expressed
scores. Section 3 introduces a class of models (denoted as CUB) able to specify
and fit probability structures to observed patterns in preference data; then, a few
generalizations are discussed in Sect. 4 and some empirical evidence are shown in
Sect. 5. A multivariate model for ranks is proposed in Sect. 6 and checked on a
sample of people expressing ordered opinions about some Italian newspapers. Some
concluding remarks end the paper.

2 Opinions Expressed by Ordinal Data

Ordinal data measuring opinions and preferences may be available as ratings or
rankings, and this information is structurally different. When we collect ratings we
have numbers which convey the level of a “stimulus” as perceived by respondents,
whereas rankings generate grades which represent the preferred position of an item
in a given list. Formally, rating an “object” on a scale Œ1;m� produces a unique
integer, that is the realization of a discrete univariate random variable defined
on the support f1; 2; : : : ; mg. Instead, ranking analysis of m “objects” produces a
permutation of the first m integers, that is the realization of a multivariate random
variable of .m� 1/ dimensions. As a consequence, rating/scoring needs a reference
scale whereas ranking implies comparison with other items.

It is often difficult to summarize and visualize thousands of expressed prefer-
ences on several objects in classical approaches (McCullagh and Nelder, 1989),
since standard plots and functions are not immediately related to the final responses.
Moreover, some explorative measures (such as average, median, range, etc.) do not
capture the relevant components of preferences and evaluations.

To analyse this kind of data, we introduced mixture models of discrete probability
distributions based on the focal motivations that lead people to transform their own
opinions into an expressed preference through a given ordinal sequence of categories
(Piccolo, 2003; D’Elia and Piccolo, 2005; Iannario, 2008). The cornerstone of this
approach is the idea that opinions towards an item (fact, person, concept, political
party, etc.) derive from lived experience (empirical, emotional, educational, and
so on) and logical connections. Opinions are the weighted result of subjective
(internal) and objective (external) factors expressed with some fuzziness. This
assessment (of qualitative nature) is generally performed in more than one step
and may be modified by several circumstances concerning the experiment: thus,
we move towards a stochastic approach. When we ask people to express an opinion
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(preference) on a rating scale, we are collecting the realization of a combination of
personal feeling and intrinsic uncertainty.

In this regard, the awareness of the role of uncertainty in empirical information is
significantly increasing in data mining approach and some statistical tools have been
proposed for detecting specific style of responses: choices at extreme or midpoint
values, misunderstanding of questions, fatigue (Chen, 2001), low involvement in
the topics, willingness to joke and faking (Liu, 2010), and so on. On the other hand,
feeling is a sentiment generated by several causes (and well fitted by a unimodal
distribution) which are more related to the subjective background of the respondent.

These considerations motivate the nature and the shape of the proposed dis-
tribution as a weighted mixture of two discrete random variables generated by
unobservable components. Finally, we relate those components to subjects’ covari-
ates (for instance, by a logistic link) for strengthening the interpretative content of
this framework.

3 Mixture Models for Ordinal Data

Formally, for given m categories, we denote the Uniform and shifted Binomial
random variable distributions defined on the support f1; 2; : : : ; mg as Ur and
br.�/, respectively. Then, we interpret opinions expressed by means of ratings
.r1; r2; : : : ; rn/

0 as realizations of a discrete random variable R whose probability
mass distribution:

Pr .R D r/ D 
br .�/ C .1 � 
/Ur ; r D 1; 2; : : : ; m

is well defined on the parametric space ˝.
; �/ D f.
; �/ W 0 < 
 	 1I 0 	
� 	 1g. Its identifiability has been proved for m > 3 (Iannario, 2010).

Model parameters .
; �/ are related to uncertainty and feeling components,
respectively. This random variable will be denoted as CUB model (the acronym
may be read as a Combination of Uniform and shifted Binomial) and it turns out to
be extremely parsimonious with respect to standard approaches; in fact, it adheres
to latent variables paradigm without estimating cut-points.

A strong assumption of the proposed mixture is that it does not strictly require
the existence of two subgroups, although this circumstance is admissible within the
CUB modelling framework. We are conjecturing that any response is the result of
the joint effect of two random variables with a varying weight (estimable from data).
Thus, we are modelling the behaviour of each respondent.

Indeed, each respondent acts with a propensity to adhere to a thoughtful and to
a completely uncertain opinion, measured by .
/ and .1 � 
/, respectively. As a
consequence, in a rating survey, .1 � 
/ is a measure of uncertainty. In addition,
this parameter is strictly related to heterogeneity of data as shown by a formal
relationship with Gini index (Iannario, 2012).
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Then, .1 � �/ may be interpreted as a measure of adhesion toward a given
opinion: usually, high values of the responses imply high consideration. Then, in
rating studies, the quantity .1��/ increases with agreement towards the item; on the
contrary, in ranking analyses � increases with preference (since a low rank implies
a preferred item).

Since there is a one-to-one correspondence among CUB probability distributions
and parameters, we may represent each CUB model as a point in the unit square, as
successfully exploited in several fields (Iannario, 2008; Piccolo and D’Elia, 2008;
Iannario and Piccolo, 2009, 2010; Corduas et al., 2010). In this manner, CUB model
visualization becomes immediate and it adds value to experimental results based on
ordinal data. For instance, it is immediate to see how the introduction of covariates
and/or the analysis of subgroups modify the behaviour of respondents.

From an operational point of view, we may assess and summarize expressed
preferences as a collection of points and test the possible effect of covariates,
when space, time and circumstances are modified. In this regard, we generalize the
standard assumptions by introducing subjects’ and objects’ covariates, multi-objects
models and shelter choices (Iannario and Piccolo, 2012). Moreover, for a more
accurate discussion of these and related inferential issues we refer to Piccolo (2006)
whereas for computational purposes a program in R is freely available (Iannario and
Piccolo, 2009).

4 A Multistage Ranking Model

It is possible to introduce a multistage model in the same framework since ranking
may be considered as a stepwise procedure: people choose the best in the given
list, then the second best, and so on, until the worst. It generalizes that originally
proposed by Plackett (1975) who assessed a multivariate ranking distribution as
function of the probability of the object as being set in the first position (Marden,
1995; Xu, 2000). Instead, we consider that the simultaneous probability of a given
permutation vector is the product of conditioned probabilities of selecting a rank for
an object given that it cannot be assigned to previously assigned ranks. In addition,
we assume that marginal distributions of ranks are CUB random variables for saving
interpretation and parsimony; indeed, this multivariate model requires 2.m � 1/

parameters to define probabilities of any permutation vector.
For a given m > 3, the discrete distribution of the multivariate random

variable .R1;R2; : : : ; Rm/ with support the set of all permutation vectors
.r1; r2; : : : ; rm�1; rm/ of the first m integers is:

Pr .R1 D r1; R2 D r2; : : : ; Rm�1 D rm�1; Rm D rm/

D Pr .R1 D r1/ Pr .R2 D r2 j R1 D r1/ Pr .R3 D r3 j R1 D r1; R2 D r2/ : : :

D Pr .R1 D r1/
Pr .R2 D r2/

1 � Pr .R2 D r1/

Pr .R3 D r3/

1 � Pr .R3 D r1/� Pr .R3 D r2/
: : :
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Here, we are denoting the marginal CUB distribution of any object as:
P r .Rs D rs/ D P r .Rs D rs j 
s; �s/, for any s D 1; 2; : : : ; m.

From an inferential point of view, given a multivariate random sample R D
.ri;1; ri;2; : : : ; ri;m�1; ri;m/0, for i D 1; 2; : : : ; n, we will apply an optimization routine
to search for a parameter vector � D .
1; �1; 
2; �2; : : : ; 
m�1; �m�1/0 which maxi-
mizes the log-likelikehood function defined as:

`.�I R/ D
nX

iD1
log

h
P r .R1 D r1; R2 D r2; : : : ; Rm�1 D rm�1; Rm D rmI �/

i
:

In order to accelerate the convergence,1 we let the univariate CUB model estimates
as starting values for the multivariate parameters.

By exploiting asymptotic likelihood tests, this model allows to check some hy-
potheses of interest: homogeneous uncertainty in the responses (H0 W 
s D
;8s),
idiosyncratic random behaviour towards some opinion (H0 W 
t D 0, for a given t),
common feeling for subgroups of items (H0 W �s1 D �s2 D � � � D �st , for a given
collection fs1; s2; : : : ; st g of t objects), and so on.

5 A Case Study on Political Opinions

According to some political studies, it is possible to investigate ideologies by
asking to define their own Left/Right political self-placement. During the period
29 March-11 April 2010, a survey has been conducted and sample data consisting
of several socio-economic covariates have been collected and then validated on 707
subjects. In addition, interviewees have been requested to rank their preferences
with respect to mD 7 Italian newspapers (“Corriere della Sera”, “Il Foglio”, “Il
Giornale”, “Il Manifesto”, “La Repubblica”, “Libero”, “L’Unità”). Respondents are
asked to mark their overall political position over a 9-point Likert scale according
to the following wording: 1 D “Extremely Left”; 2 D “Strong Left”; 3 D “Left”,
4 D “Slightly Left”; 5 D “Moderate-Centre”; 6 D “Slightly Right”; 7 D “Right”;
8 D “Strong Right”; 9 D “Extremely Right”. These observational data have been in-
vestigated to experiment the possibility of using the proposed modelling framework
for detecting significant interrelationships among perceived political self-placement
and individual characteristics.

First of all, we model the marginal rank for each newspaper and show in Fig. 1
(left panel) the parametric representation by estimated CUB model. Then, the
ranking position given to newspapers has been related to the expressed political
self-placement of each respondent and the coefficient of the link function (denoted

1Such optimizations have been pursued by the application module CML of GAUSS language
(Aptech, 2002), aimed at constrained maximum likelihood estimation.



118 M. Iannario and D. Piccolo

0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.2

0.4

0.6

0.8

1.0

CUB models for marginal ranking of 7
 newspapers

π

ξ

Corriere

Foglio

Giornale
Manifesto

Repubblica

Libero

Unità

Uncertainty

P
re
fe
re
nc
es

0.55 0.60 0.65 0.70 0.75

−0.6

−0.4

−0.2

0.0

0.2

0.4

Impact of political selfplacement on feeling 
towards 7 newspapers

π

γ1

Corriere
Foglio

Giornale

Manifesto
Repubblica

Libero

Unità

Fig. 1 Representation of estimated CUB models for preferences towards newspapers (left) and
visualization of the impact of political self-placement on the feeling towards newspapers (right)

by �1) has been found always significant; empirical evidence shows that the
value of this parameter is positively related to Right-wing and Moderate self-
placement of respondents. Then, we plot these estimated �1 versus estimated 

(right panel of Fig. 1) in order to investigate the relationship among uncertainty
(generally intermediate) and self-placement for all the newspapers. Thus, we
may observe that “Corriere della Sera” is in opposite direction with respect to
“La Repubblica” whereas, if we consider only the expressed preferences (left
panel of Fig. 1), they have been almost evenly rated. This result shows that both
newspapers are the most preferred at all; Left-wing oriented respondents strongly
prefer “La Repubblica” whereas “Corriere della Sera” has a wider spectrum of
supporters.

This data set enhances that education and opinions towards some sentences are
significant covariates to predict political self-placement as a comprehensive CUB
model (here not reported) would confirm. Briefly, we analyse the predicted profiles
of political self-placement conditioned by some level of education, as in Fig. 2 (left
panel).

Finally, right panel of Fig. 2 shows how the parameters of the marginal univariate
models of the ranks for the seven newspapers are substantially unchanged if
we move to a multivariate setting. Indeed, numerical estimates of the feeling
parameters are quite similar to the univariate one and thus multivariate parameters
interpretation may be easily derived form the marginal random variables. Instead,
uncertainty as measured by the 
 parameter estimates is somehow modified in small
amounts.
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Fig. 2 Estimated profiles of political self-placement as function of education (left) and comparison
of marginal and multivariate parameter estimates of models for ranking (right)

6 Concluding Remarks

Both previous statistical considerations and empirical evidence confirm the useful-
ness to model opinions expressed as ordinal data when either ratings or rankings
about such opinions are available. Indeed, models add qualified and testable
interpretation scattered throughout huge amount of heterogeneous opinion data. A
benefit of this methodology is the possibility to easily detect and visualize patterns,
similarities and anomalies with respect to space, time and circumstances.

Improvements are still necessary in order to produce an automatic classification
and discrimination analysis in such contexts but submitted results seem encouraging
enough for such objectives.
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An Evaluation Measure for Learning from
Imbalanced Data Based on Asymmetric Beta
Distribution

Nguyen Thai-Nghe, Zeno Gantner, and Lars Schmidt-Thieme

Abstract Hand (Mach Learn 77:103–123, 2009) has shown that the AUC has a
serious deficiency since it implicitly uses different misclassification cost distri-
butions for different classifiers. Thus, using the AUC can be compared to using
different metrics to evaluate different classifiers. To overcome this incoherence, the
H measure was proposed, which uses a symmetric Beta distribution to replace the
implicit cost weight distributions in the AUC. When learning from imbalanced data,
misclassifying a minority class example is much more serious than misclassifying
a majority class example. To take different misclassification costs into account,
we propose using an asymmetric distribution (B42) instead of a symmetric one.
Experimental results on 36 imbalanced datasets using SVMs and logistic regression
show that the asymmetric B42 could be a good choice for evaluating in imbalanced
data environments since it puts more weight on the minority class.

1 Introduction

Class imbalance is a phenomenon in which the class distribution is far from the
uniform distribution (in this paper, we consider the problem of binary classification).
It appears in many machine learning applications such as fraud detection, intrusion
detection, and so on (Chawla et al., 2004; He and Garcia, 2009). Most classifiers
are designed to maximize the accuracy of their models. Thus, when learning from
imbalanced data, they are usually overwhelmed by the majority class examples.
This is the main cause for the performance degradation of such classifiers, and is
also considered as one of ten challenging problems in data mining research (Yang
and Wu, 2006). For example, in fraud credit card detection, suppose that the data
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set has 999 legitimate transactions (majority class) and only 1 fraudulent transaction
(minority class – the one we would like to detect). To maximize the accuracy, in this
case, the classifiers optimized for accuracy will classify all transactions as belonging
to the majority class to get 99.9% accuracy. However, this result has no meaning
because the fraudulent transaction is misclassified.

Obviously, to evaluate the classifiers in this case, the accuracy metric becomes
useless, and the area under the ROC curve (AUC) is commonly used instead (Hanley
and McNeil, 1982; Bradley, 1997). The AUC has been widely used to evaluate the
performance of classifiers. However, Hand (2009) has shown that using the AUC
is equivalent to averaging the misclassification loss over cost ratio distributions
which depend on the score distributions. Since the score distributions depend on the
classifier itself, employing the AUC as an evaluation measure actually means mea-
suring different classifiers using different metrics. To overcome this incoherence,
the “H measure” was proposed, which uses a symmetric Beta distribution to replace
the implicit cost weight distributions in the AUC. When learning from imbalanced
data, misclassifying a minority class example (e.g., a fraud credit card transaction)
is much more serious than misclassifying a majority example. Thus, we propose
using an asymmetric Beta distribution such as beta.xI 4; 2/ (called B42) instead of
the symmetric one as in the H measure.

Furthermore, as investigated in He and Garcia (2009), there are two open
problems for the future research in this area: The need for a standardized evaluation
protocol and the need for uniform benchmarks as well as large data sets (Jamain and
Hand, 2009). The contributions of this work are (1) to propose an evaluation metric
for learning from imbalanced data, (2) to introduce large benchmark data sets for
systematic studies on imbalanced data.

2 The H Measure: A Replacement for the AUC

To overcome the incoherence of the AUC, the “H measure” was proposed, which is
determined by

H D 1 �
R
Q.T .c/I b; c/u˛;ˇ.c/dc


0
R 
1
0
cu˛;ˇ.c/dc C 
1

R 1

1
.1 � c/u˛;ˇ.c/dc

: (1)

where 
0 and 
1 are prior probabilities; c0 and c1 are the misclassification costs
for class 0 (majority) and class 1 (minority); b D c0 C c1 and c D c1=.c0 C c1/;
f0.s/ and f1.s/ are the probability density functions; and F0.s/ and F1.s/ are the
cumulative distribution functions for class 0 and class 1, respectively.

Q.t I b; c/ , fc
1.1 � F1.t//C .1 � c/
0F0.t/gb

is the loss for an arbitrary choice of threshold t and
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u˛;ˇ.c/ D beta.cI˛; ˇ/ D c˛�1.1 � c/ˇ�1

B.1I˛; ˇ/
is a symmetric Beta distribution. Please refer to Hand (2009, 2006) for details.

3 B42: A New Evaluation Measure for Learning from
Imbalanced Data

The new metric is based on the Beta distributions which are a popular model for
random variables (Degroot and Schervish, 2002) with values in the interval [0,1].
The Beta function, also known as Euler’s Beta integral (Degroot and Schervish,
2002), is defined as

B.1I˛; ˇ/ D
Z 1

0

c˛�1.1 � c/ˇ�1dc:

It can also be defined by using the Gamma function B.1I˛; ˇ/ D � .˛/ � .ˇ/

� .˛Cˇ/ :
A generalization of the Beta function is the incomplete Beta function:

B.xI˛; ˇ/ D
Z x

0

c˛�1.1 � c/ˇ�1dc:

The probability density function of the Beta distribution has its mode at ˛�1
˛Cˇ�2

and is determined by

f .xI˛; ˇ/ D 1

B.1I˛; ˇ/ x
˛�1.1� x/ˇ�1 D � .˛ C ˇ/

� .˛/ � .ˇ/
x˛�1.1 � x/ˇ�1

As discussed in Hand (2009), the alternative cost distribution, which can replace
the implicit cost weight distribution in the AUC, should be a non-uniform one. Thus,
an asymmetric Beta distribution would be a good choice for this replacement. As we
can see in Fig. 1, for two balanced classes, a symmetric Beta distribution acts as a
cost weight distribution, which places most probabilities at 0.5, is used in the H.

However, when learning from imbalanced data sets, misclassifying a minority
class example (e.g., in terrorist detection system, misclassifying a terrorist who can
carry a bomb on a flight) is much more serious than misclassifying a majority class
example (e.g., misclassifying a normal passenger as a terrorist (Thai-Nghe et al.,
2010)). Thus, the misclassification cost c1 (false negative cost) of the minority is
much higher than the misclassification cost c0 (false positive cost) of the majority,
therefore, the cost ratio c D c1=.c0 C c1/ should be higher than 0.5. For the
aforementioned reason, we use the asymmetric Beta distribution B42 as a cost
weight distribution. The B42 places higher weight on minority class examples and
is a unimodal distribution with mode at 0.75.
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Fig. 1 Symmetric and
asymmetric beta distributions

Please note that one can choose some other values for ˛ (e.g., beta(x,6,2),
beta(x,8,2). . . ). In those cases, the absolute values of the metrics can be higher, but
the relative values are not significantly different. Thus, we decide to use beta(x,4,2).

4 Empirical Evaluation

We compare two classifiers – `2-regularized logistic regression (`2-LR) and `2-loss
SVMs (`2-SVM) – wrt. the AUC, H, and B42 on 36 data sets using five-fold cross-
validation. To test for significance, we perform paired t-tests with significance level
0.05. We use the LIBLINEAR software (Fan et al., 2008) with some small modifi-
cations to get posterior probability outputs. We perform hyperparameter search as
described in (Thai-Nghe et al., 2010) to determine the best hyperparameters for all
methods, e.g. the ratio between CC and C�, since our previous results shown that
this solution was helpful.

4.1 Data Sets

We have experimented on both small and large data sets collected from the
UCI repository (archive.ics.uci.edu/ml) and the Netflix Prize (www.netflixprize.
com). We group them into three groups as in Table 1. Nominal attributes are
converted to binary numeric attributes. For multi-class data sets, many of them (e.g.,
RCV1, News20, etc.) were already transformed to binary-class data sets as in the
LIBSVM data set library (www.csie.ntu.edu.tw/$nsim$cjlin/libsvmtools/datasets).
The remaining multi-class datasets are converted to binary-class using one-versus-
the-rest. We encoded the class which has the smallest number of examples as the
minority (positive) class, and the rest as the majority (negative) one.

The Netflix (nf) data set originally has 100,480,507 ratings from 480,189
customers for 17,770 movies. To create a binary matrix, in which rows represent
users/customers and columns represent items/movies, we assign 1 for each observed
rating, and 0 otherwise. We then sort the columns based on their class distributions

www.netflixprize.com
www.netflixprize.com
www.csie.ntu.edu.tw/$sim $cjlin/libsvmtools/datasets
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Fig. 2 Distribution of columns and %minority examples on Netflix data set

Table 2 Win/tie/lose results aggregated from Table 1 to three groups; `2-SVM
(base) versus `2-LR

Groups (12 data sets/group) %Minority B42 AUC H

Group 1 (highly imbalanced group) 0.02–5 1/8/3 5/7/0 1/10/1
Group 2 5–30 4/7/1 2/10/0 0/12/0
Group 3 (nearly balanced group) 30–49 3/9/0 2/10/0 2/10/0

as in Fig. 2. To create a data set, we choose one column (movie) to be the target,
whereas the other columns represent the input features. This way, we can generate
17,770 different data sets. For example, the data set “nf-05p” means that we choose
a target column which has 0.5 % minority.

Please note that the last five data sets are not imbalanced. We use them to
see how the results are affected when learning from “nearly balanced” to “highly
imbalanced” class distributions.

4.2 B42 Versus AUC and H

Table 1 presents the detailed results of three metrics: B42, AUC, and H. The AUC
evaluates `2-LR outperforming `2-SVM (at least equal) on three groups, while B42
shows that when the imbalance ratio increases, `2-LR shifts from win (3/9/0) to lose
(1/8/3) results, as illustrated in Table 2. For example, 1/8/3 means that the `2-LR
wins one time, ties eight times, and loses three times, compared to the `2-SVM.

Tables 3 and 4 summarize the agreed/disagreed results of B42 vs. AUC and
B42 vs. H on 36 data sets when comparing `2-LR with `2-SVM (base). The
bold number in the diagonal (e.g. 10 and 7) means that B42 evaluates `2-LR
significantly outperforming/degrading `2-SVM ten times, but that AUC disagrees
on those results, while the reverse is seven times the case. These agreed/disagreed
results could be because the B42 places more weight on the minority examples,
thus, it has more statistically significant improvements or degradations compared to
the AUC and the H. However, a deeper analysis needs to be done here. The results
are presented in the next paragraph.

Let us analyze more details for the specific data set “nf-05p” in Fig. 3, which
displays an example of cost weight distribution implicitly used in the AUC (for
“nf-05p”) and explicitly used in B42 and H.
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Table 3 The B42 disagrees with the AUC 17 times out of 36 data sets

Significant difference No significant difference

Significant difference 2 7
No significant difference 10 17

Table 4 The B42 disagrees with the H 8 times out of 36 data sets

Significant difference No significant difference

Significant difference 4 0
No significant difference 8 24
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Fig. 3 Cost weight distribution of the AUC (on nf-05p data set), of B42, and of H
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Fig. 4 Typical results of the AUC, the true positive rate, and the B42

Clearly, the AUC places different cost weight distributions for `2-LR (higher at
1.0) and `2-SVM on the same “nf-05p” data set. This means that the AUC uses
different metrics to evaluate different classifiers (Hand, 2009), while B42 and H use
the same distribution for all data sets and classifiers. This is the reason why the
result of `2-LR significantly outperforms `2-SVM regarding the AUC while it only
ties regarding B42. The same situation happens with other data sets e.g., “nf-005p”,
“nf-1p” and “ann”.

Furthermore, Fig. 4 shows four typical results of the AUC, the true positive rate,
and the B42. We can see that the AUC evaluates the `2-LR outperforming the
`2-SVM, however, the true positive rate and the B42 show the reversed results.

The B42 is consistent with the true positive rate while the AUC is not. Thus,
if we would like to take the minority class into account then the B42 is a better
choice. In addition, the empirical results also show that B42 is not only suitable for
evaluating on imbalanced data but also for evaluating on balanced data sets (in group
3 in Table 2, its results are also consistent with other metrics, e.g. the H measure).
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5 Conclusion

We propose a new evaluation measure (B42) which bases on the asymmetric
Beta distribution to evaluate the classifiers when learning from imbalanced data
sets, instead of using the AUC, which has known shortcomings, and the H
measure, which fixes the AUC’s deficiencies, but is more suitable for balanced class
distribution. The experimental results show that the B42 can take the minority class
into account when evaluating. We will study how to directly optimize the B42 and
H measures as well as study how to apply B42 for multi-class problem.
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Outlier Detection for Geostatistical Functional
Data: An Application to Sensor Data

Elvira Romano and Jorge Mateu

Abstract In this paper we propose an outlier detection method for geostatistical
functional data. Our approach generalizes the functional proposal of Febrero et al.
(Comput 5 Stat 22(3):411–427, 2007; Environmetrics 19(4):331–345, 2008) in the
spatial framework. It is based on the concept of the kernelized functional modal
depth that we have opportunely defined extending the functional modal depth. As
an illustration, the methodology is applied to sensor data corresponding to long-term
daily climatic time series from meteorological stations.

1 Introduction

In the last years many scientific contexts, where complete functions presenting
spatial dependence are the object of the analysis, have given rise to the development
of a new branch of Functional Data Analysis (Ramsay and Silverman, 2005): Spatial
Functional Data Analysis (SFDA).

A common feature of this analysis is to describe and analyze the underlying
mechanism that generates specific structures in space and time. This is performed
by studying mathematical characteristics of temporal functions and their spatial
relations in a continuous setting.

Recent contributions in this framework deal with different topics. Most of them
are extension of methods for spatial data to spatially correlated functional data.
A good review can be found in (Delicado et al., 2010).
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They range from methods to model correlated variables in space and time to
methods that perform spatial prediction of functional data, and passing through
explorative methods. To give an outline of these methods, we find for the first group:
regression models (Yamanishi and Tanaka, 2003), hierarchical models for spa-
tially correlated functional responses, functional multiple regression and functional
analysis of variance for spatially correlated variables (Baladandayuthapani et al.,
2008). Methods for the second purpose are: ordinary kriging for function-valued
data (Giraldo et al., 2011), pointwise functional kriging predictors (Giraldo et al.,
2009b), functional kriging (total model) (Giraldo et al., 2010), a cokriging method
for spatial functional data (Nerini and Monestiez, 2008; Nerini et al., 2010). In the
explorative context, methods for clustering spatially dependent functional data have
been proposed (Giraldo et al., 2009a; Romano et al., 2010).

In this paper we consider the problem of the outlier detection for geostatistical
functional data. This type of problem can be considered a natural extension of
the spatio-temporal outlier detection. It aims to find spatial outliers also, however
instead of just looking for a single snapshot in time, it searches for outliers curves.

In general, an outlier is an observation that deviates so much from other
observations as to arouse suspicion that it was generated by a different mechanism
(Hawkins, 1980).

Their identification plays an important role in the analysis since they adversely
lead to model misspecification, biased parameter estimation and incorrect results.
Recently, in the functional context this problem has led to the development of some
methods. These can be distinguished as follows:

• Robust methods which aim at avoiding unsatisfactory results coming from
the problem inherent to the violation of theoretical assumptions together with
the presence of certain amount of outlying observations. This is the case of the
method using successive likelihood ratio tests and smoothed bootstrapping for
identifying outliers (Febrero et al., 2007, 2008).

• Graphical methods for visualizing and identifying functional outliers. These are
functional versions of the bagplot and boxplot, which make use of the first
two robust principal component scores, apply the bivariate bagplot and map
the features of the bagplot into the functional space (Hyndman and Shang,
2010). These are also be considered a strong analog to the classical boxplot by
using Modified Band Depth to order functional data, visualizing functional data
directly in the functional space (Sun and Genton, 2011).

All of these are generally limited to the assumption of independence between
curves. The only existing approach, taking into account the problem of outliers
detection for spatially correlated temporal data is based on an adjusted functional
boxplot (Sun and Genton, 2012). In particular a constant factor in the functional
boxplot is selected to control the probability of correctly detecting no outliers.

Here we propose an outlier detection strategy for geostatistical functional data
quite different from this last one. It is an extension of the strategy proposed by
Febrero et al. (2007) to the spatial context. Thus a depth measure considering the
spatial correlation in the data is proposed.
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The main idea consists in using the spatial variability among curves in order to
detect the real anomalies in the spatial functional data sets. Specifically we will
consider as outlier a curve which does not belong to the spatial variability structure.

The rest of the paper is organized as follows. Section 2 provides a short
description of geostatistical functional data. In Sect. 3 the proposed method is
presented. A real data application is analyzed in Sect. 4. The paper ends with some
discussion and open questions.

2 Geostatistical Functional Data

In environmental, geochemical, geophysical monitoring research, data are charac-
terized by spatial and temporal variability. In all these cases, due to the development
of real-time monitoring instruments, data are available as functions of the time
spatially located. Typically these data are processed by space-time geostatistical
approaches. However, since data flow continuously and at short inter arrival
time, traditional methods cannot support the computational costs. In addition,
the observations come from a process intrinsically smooth and are affected by
error. This motivates the introduction of functional data analysis techniques within
geostatistical framework.

Geostatistical functional data concern data providing information about curves
(varying over a continuum) located in a fixed subset D of R

d (d -dimensional
Euclidean Space) with positive volume. Let

˚
�s W s 2 D 
 Rd ; t 2 T 
 R

�
be a

stationary isotropic functional random process. We assume to observe a realization
of this random process observed at n locations, �s1 .t/; : : : ; �si .t/; : : : ; �sn .t/ for
si 2 D t 2 T .

The observed data for a fixed site si , follows the model:

�si .tj / D �si .tj /C �si .tj /; j D 1; : : : ;M i D 1; : : : ; n (1)

where �si .tj / are residuals with independent zero mean and �si .�/ is the mean
function which summarizes the main structure of �si .

We assume that the process is a stationary isotropic functional random process,
that formally means that the expected value E .�s.�// and the variance V.�s.�// do
not depend on the spatial location. In particular we assume that:

• E.�s.t// D m.t/, 8 t 2 T; s 2 D.
• V.�s.t// D �2.t/, 8 t 2 T; s 2 D.
• Cov.�si .t/; �sj .t// D C.h; t/ where h D �

�si � sj
�
� 8 si ; sj 2 D.

• 1
2
V.�si .t/ � �sj .t// D �.h; t/ D �si sj .t/ where h D �

�si � sj
�
� 8 si ; sj 2 D.

The function �.h; t/ is called semivariogram of �s.t/ and can be expressed as:

�.h; t/ D �si sj .t/ D 1

2
V.�si .t/ � �sj .t// D 1

2
E
�
�si .t/ � �sj .t/


2
(2)

which by using Fubini’s theorem, becomes �.h/ D R
T
�si sj .t/dt for

�
�si � sj

�
� D h.
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This function, called trace-variogram function can be estimated by the classical
methods of the moments by means of Giraldo et al. (2011):

O�.h/ D 1

j2N.h/j
X

i;j2N.h/

Z

T

�
�si .t/ � �sj .t/

�2
dt (3)

where N.h/ D �
si I sj

� W��si � sj
�
� D h for regular spaced data and jN.h/j is

the number of distinct elements in N.h/. When data are irregularly spaced the
N.h/ becomes N.h/ D ˚�

si I sj
� W��si � sj

�
� 2 .h � �; hC �/

�
with � � 0 being

a small value.
In computing the empirical semivariogram, we consider that the functions are

expanded in terms of some basis functions by:

�si .t/ D
ZX

lD1
ailBl .t/ D ai TB.t/; i D 1; : : : ; n (4)

Thus, the empirical trace-variogram function can be expressed by

�.h/ D 1

2 jN.h/j
X

i;j2N.h/

h�
ai � aj

�T
W
�
ai � aj

�i 8i; j j ��si � sj
�
� D h (5)

where ai ; aj are vectors of the basis coefficients for the �si and �sj curves,

and W D R
T

B .t/B.t/T dt is the Gram matrix that is the identity matrix for any
orthonormal basis while for other basis as B-Spline basis function, W is computed
by numerical integration.

The empirical trace-variogram cannot be computed at every lag distance h and
due to variation in the estimation it is not ensured that it is a valid variogram. As in
applied geostatistics the empirical trace-variograms are approximated (by ordinary
least squares (ols) or weighted least squares (wls) by model function ensuring
validity (Cressie, 1993).

3 Outlier Detection for Geostatistical Functional Data

Intuitively a geostatistical functional data is an outlier if it is in some way
significantly different from its neighbors. Thus the problem becomes to define
the concept of neighborhood and of significantly different. According to these
observations, we pay attention to local differences among spatial neighborhood by
considering the spatial correlation structure among curves. In this sense, outliers are
curves spatially located (geostatistical functional data) which are inconsistent with
their neighbourhoods. Given �s1 .t/; : : : ; �si .t/; : : : ; �sn .t/ belonging to a separable
Hilbert Space, with si 2 D, t 2 T . A georeferenced curve is an outlier if it is
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far in terms of the spatial functional variability, from most and not necessarily all
the other observations, since it may be an isolated outliers or a group of outliers
throughoutD.

In order to quantify the outlygness of a curve we need of an instrument to
compare and measure the behavior of a georeferenced curve with the others.

Thus we extend the notion of a depth function for functional data by considering
the spatial component. Depth measurement for functional data is a concept defined
in order to measure the centrality of a curve with respect to a set of curves. It
provides a center-outward ordering of a sample of curves in the Hilbert Space from
the center (Febrero et al., 2008).

Several depth functions have been proposed in the functional framework (Cuevas
et al., 2006, 2007). Among these, we consider and extend the functional modal depth
to the spatial functional context.

The modal depth is a functional depth based on the concept of mode. It is
defined as the curve most dense to the other curves in the sample. We define the
modal spatial functional depth as the curve most spatially dense to the other curves.
Specifically we replace a spatial functional distance among the curves to a distance
among curves in order to consider their spatial dependence. Then, we define the
spatial functional modal depth as the curve that attains the maximum value of the
following expression:

SMD.�si / D
nX

jD1
K

 �
��si � �sj

�
�

w

b

!

(6)

where K W RC ! RC is a kernel function, k�kw is the distance among the geo-
referenced curves weighted by the spatial variability among the sites, expressed by:

dw.�si ; �sj / D d.�si ; �sj /�ij .h/ (7)

where d.�si ; �sj / D
qR

T
.�si .t/ � �sj .t//2dt is the distance between the curves

without considering the spatial component, and �ij .h/ corresponds to the variogram
calculated for the distance between sites si and sj .

In the definition of this kernelized spatial functional depth function, the kernel
function and the bandwidth b have to be chosen. We chose as in the functional
context the Gaussian kernel function and, define a bandwidth parameter by con-
sidering the spatial location of the georeferenced curves. The bandwidth param-
eter, in the functional context, is chosen as the 15th percentile of the empirical
distribution of the L2; L1 distance among curves. We propose to choice it
following the same procedure, but by evaluating the empirical distribution of
dw.�si ; �sj /; si ; sj D 1; : : : ; n, that is the spatial weighted distance among the
georeferenced curves at different lag h. Based on these notions, coherently with
the functional framework an outlier for a spatial functional sample will have
considerably less depth.
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Thus, we can generalize the definition of functional outlier to the spatial
functional framework as follows:

Definition 1. A georeferenced curve �si is an outlier if SMD.�si / < ˛ with the
cutoff ˛ selected in such a way that the percentage of correct observations poorly
identified as outliers was approximately 1 %. That is, such that:

P r.SMD.�si / < ˛/ D 0:01 (8)

Since we have not the theoretical distribution as reference, we need to consider the
empirical distribution of SMD in order to estimate the value of ˛. We use the method
based on bootstrap of the curves in the original set with a probability proportional
to depth (Febrero et al., 2008), in order to obtain a robust estimate of the percentile
since the sample could be contaminated by outliers. The procedure to detect outliers
is performed at the same way of the functional context as follows:

• Computing the spatial functional depths SMD.�s1 /; : : : ; SMD.�sn/.
• Selecting the set of curves such that SMD.�si / < ˛ for a given cutoff ˛ and

remove them from the dataset since these are considered outliers.
• Finally come back to the first step with the new dataset without the outliers found

in the second step and repeat this last step until no more are found.

In the following section we underline the main characteristics of the proposed
strategy through its application to sensor data.

4 An Application to Sensor Data

The data, available at http://eca.knmi.nl/, refers to long-term daily resolution
climatic time series from meteorological stations throughout Europe and the
Mediterranean provided from over 40 countries. Most series cover at least the period
1946 up to now. We focus on temperature data recorded from 1, January, 2000 to 28,
February, 2010 and perform our test only on 500 stations available over the whole
time period. Such type of data may contain a percentage of data outliers which are
considerably dissimilar to the rest of the data based on some measurement. Outliers
may be noisy observations or alternatively they may indicate abnormal behaviors
that are very important and may lead to significant discoveries. Usually the method
used to discovery such kind of anomalies are spatio-temporal data, that are not time
consuming when there are many time stamp to consider.

The first step before applying the outlier detection strategy is reconstructing a
functional form of the time series coming from the signal sources of interest. The
functional observations spatially located were smoothed using B-splines basis Since
a large number of basis functionsZ could cause over fitting, and a too-smallZ may
lose important aspects of the functions Ramsay and Silverman (2005), the number
of basis functions selected by cross-validation. Then in order to evaluate from an

http://eca.knmi.nl/
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Table 1 Outliers detected by
the proposed procedure

˛ SMD N outliers

Trimming 10.50 10.42 20
Weighting 11.04 10.42 20

explorative point of view, how the spatial dimension influences the results of the
analysis, we apply the outlier detection strategy with the modal depth function for
functional data and our proposal which considers the spatial component.

The aim in this case is only to monitor how much of the presence of the
functional dependence influences the spatial functional variability structure and as
consequence, the stability of the analysis.

From the results, we obtain that seven curves identified as functional outliers are
a subset of the set of 20 georeferenced curves identified as spatial functional outliers.
Looking at the causes of these results we can observe that these data correspond to
curves located in the ocean and curves subject to measurement errors.

A further test was performed in order to evaluate the bootstrap procedures
used for detecting the cutoff ˛. Especially we evaluated two different smoothed
procedures: Trimming and Weighting (Febrero et al., 2007, 2008). The results in
the Table 1 highlight that although the value is different for the two procedures, in
both the cases the number of outliers is 20 confirming a small possibility of detecting
false outliers. As further result, we note that the introduced spatial weighted norm
leads to detect spatial functional outliers different from functional outliers.

5 Conclusion and Perspectives

In this article we have considered the outlier detection problem for spatially
correlated functional data. After defining the concept of spatial functional outlier,
we have extended a functional data analysis method to the spatial framework by
defining the spatial functional kernelized depth function for georeferenced curves.
The performance of the method is shown by an application on a real data set. We
have extended only one possible concept of functional modal depth for functional
data, however it will be interesting to consider other kind of measures. Moreover it
will be interesting to compare our method with the approach proposed by Sun and
Genton (2012).
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Graphical Models for Eliciting Structural
Information

Federico M. Stefanini

Abstract The structure of a Bayesian Network is a priori plausible if the directed
acyclic graph has one or more plausible structural features. Expert beliefs about
the structure of a Bayesian Network may be substantial but limited both to a
subset of nodes or to a set of network features indirectly related to network edges.
Complex elicitation tasks involving dozens of reference features may be cognitively
too difficult for the expert, unless limited subsets of features may be considered
at one time. In this paper chain graph models on descriptors of structural features
are proposed as a tool to elicit the degree of belief associated to the structure of a
Bayesian Network. An algorithm and a parameterization are developed to support
the elicitation.

1 Introduction

Bayesian Networks (BN) are increasingly exploited to represent probabilistic
and causal relationships in biology, for example in the so called ‘omics’ fields
(Wilkinson, 2007). Learning the structure of a BN is still challenging for the
combinatorial explosion of candidate structures with the increase of the number
of nodes.

Bayesian structural learning of BNs depends on the joint distribution function
of data, parameters and structure, or the marginal distribution after integrating
out model parameters. Widely adopted elicitation techniques define the initial
distribution on the space of Directed Acyclic Graphs (DAGs) given a fixed set
of nodes by placing restrictions like: a total ordering of nodes, the presence of
sharp order constraints on some nodes, the marginal independence of unknowns
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or the existence of a prior network which is a good summary of expert prior
beliefs. All these (and others) restrictions aim at making the structural learning
task feasible even in medium-to-large networks. In complex problem domains like
system biology, the elicitation should be based on structural features (Stefanini,
2008) as preeminent building blocks.

Here recent proposals from the literature (Stefanini, 2009a,b) are reconsidered to
provide a general definition of structural features based on propositional logic. The
circumstances under which DAGs, undirected graphs and chain graphs are suited
for the elicitation are established and a parameterization is developed to provide
a bridge between elicited odds and the degree of belief about plausible structural
features.

2 Methods

An approach to the elicitation of a prior distribution on the space of DAGs
is developed by means of graphical models which define the joint plausibility
of several structural features. Background on graphs and Markov properties is
provided, for example, by Whittaker (1990), Studeny and Bouckaert (1998) and
Cowell et al. (1999).

A graph G is a pair .V;E/ where V D fv1; v2; : : : ; vKg is a finite set of nodes
and E 
 V � V is the set of edges. In a Directed Acyclic Graph (DAG) relevant
subsets of V are: children ch.vi / of node vi , parents pa.vi / of node vi , ancestors
an.vi /, descents de.vi / (Cowell et al., 1999). A graph without directed edges is
called undirected graph (UG). An UG with E D V � V is said to be complete.
A clique C is a maximal complete subgraph of an UG. A moralized DAG is an
undirected graph obtained by joining pairs of nodes sharing a children (if not yet
connected) with an undirected edge and by removing the orientations of all edges.
A chain graph (CG) is a DAG of chain components .�1; �2; : : :/ where nodes within
each chain component may be linked only by undirected edges, and only directed
edges may link nodes located in different chain components: the arrow vi ! vj may
be present only if vi belongs to a chain component preceding the chain component
in which vj is located. A moralized chain component is an undirected graph on
�i [ pa.�i / where the subgraph on pa.�i / is complete and where the direction of
arrows to �i is removed.

A random vector of observablesXV D Xv1;:::;vK D .Xv1 ; : : : ; XvK / is indexed by
a fixed set of nodes V . The sample space is indicated as ˝XV . A sub-vector defined
by indexes A 
 V is XA. The random vector of descriptors (see next sections)
R D .R1;R2; : : : ; Rnf / is indexed by a set of integers VR D f1; 2; : : : ; nf g.

Hereafter the set of DAGs defined on the fixed set of nodes V is indexed by the
variableZ defined on a subset of integers˝Z , that is the set of DAGs is one-to-one
with ˝Z . Therefore p.z j �/ indicates the initial distribution to be elicited given the
context information �.
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2.1 Structural Reference Features

Bayesian networks are popular tools to describe causal relationships (Pearl, 2009)
and probabilistic conditional independence (Dawid, 2008).

In the causal semantic, an arrow vi ! vj indicates that Xvi is a direct cause
of Xvj with respect to the considered variables XV . In principle the intervention on
variable xvi may determine a change of xvj . The intervention on a subset of variables
D 
 V indicates the external setting of variables in XD to prescribed values,
therefore the system or process is perturbed, not merely observed. The granularity
of a causal DAG depends on the variables included in the model, thus if Xvi is a
direct cause of Xvj in V then it may became a causal ancestor after enlarging the
original set of variables (and nodes). A key property of a casual DAG G is the
stability under external intervention, that is, changes forced on a variable xv do not
change the relationships described by G .

In the probabilistic semantic the conditional independence of a subvector XA
from a subvector XB given the subvector XS , with A;B; S disjoint subsets of V ,
may be derived by d-separation (Pearl, 2009) or equivalently by checking separation
in the moral graph of the smallest ancestral set containingA[B [S (Cowell et al.,
1999, Proposition 5.13).

Structural features of a DAG are causal or probabilistic statements referred to a
fixed set of nodes V . A candidate structure z is plausible for an expert if it has one
or more elicited structural features.

Definition 1 (Structural Feature in a Reference Set). A structural feature (SF)
Rj .z;w/ in a reference set R for the set of DAGs on V is a predicate describing
a plausible probabilistic or causal characteristic of the unknown Directed Acyclic
Graph z 2 ˝Z . Argument w is in the partition W of a given numeric domain ˝W

of variable W . An Atomic Structural Feature (ASF) Rj .z/ does not depend on any
auxiliary variableW .

A reference set R is a collection R D fRj W j 2 J g of SFs indexed in a set
J , with nf Dj R j. An ASF Rj .z/ takes the value true or false if applied to a
structure z, and Zj D fz W Rj .z/g is the equivalence class of DAGs where Rj .z/ is
true. Examples of SFs include: R1 D ‘The maximum number of arrows reaching a
node in V is 3’, R2 D ‘Variable X4 is an immediate cause of variable X2’, R3 D
‘Variables X1;X8 are conditionally independent from X6 given X5’, R4 D ‘Node
v2 is a hub node of at least out-degree w’. Features from R1 to R3 are atomic,
but R4 is not, because it depends on the auxiliary variable W ‘number of arrows
leaving a node’; for example the numeric domain could be ˝W D f4; 5; 6; 7; 8; 9g
and W D .f4; 5g; f6g; f7; 8; 9g/.

SFs are defined so that the presence of a feature in a candidate structure z
increases its plausibility. Moreover, for all z 2 ˝Z , the proposition R.z;w/ is true
for one element w 2 Wi or none. A simple representation of the configurations that
features in a reference set may take is based on descriptors.
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Definition 2 (Descriptors). A descriptorRi for the SF Ri is a map

Ri W Wi � ffalse; trueg ! f0; 1; : : : ; j Wi jg

so that .w; false/ 7! 0 8w 2 Wi and .w; true/ 7! hw 8w 2 Wi , that is a different
integer is associated to each w if true. The vectorR D .R1;R2; : : : ; Rnf / defined on

the cartesian product ˝R D Nnf
iD1 ˝Ri D Nnf

iD1f0; 1; : : : ; j Wi jg is called vector
of descriptors. The descriptor of an ASF is defined by false 7! 0 and true 7! 1.

A descriptor takes value 0 to indicate the configuration ‘other’, that is an unspec-
ified set not in W , or an integer hw representing the configuration w 2 W . The j th

configuration of descriptors in R is indicated as rj D .r1;j ; r2;j ; : : : ; rnf ;j / 2 ˝R

while a generic configuration is indicated r 2 ˝R. The j th configuration of a sub-
vector of R defined by indexes in A is rA;j 2 ˝R, for example rf1;3g;j D .r1;j ; r3;j /.

Proposition 1 (Partition of DAGs). The vectorR induces the partition Z D fZr W
8r 2 ˝Rg of the fixed set of DAGs ˝Z on V , with Zr the collection of all DAGs
showing configuration r .

The prior distribution p.z j �/ on the space of DAGs on V may be elicited by
‘extending the argument’ (Stefanini, 2008):

Proposition 2 (Elicitation through descriptors). The prior distribution p.z j �/
is elicited as:

p.z j �/ D 1

nrŒz�
P ŒR D rŒz� j �� (1)

with nrŒz� the cardinality of the equivalence class Zr in which z is located, and rŒz�

the configuration of SFs in DAG z.

2.2 The Degree of Belief

The elicitation of subjective beliefs based on Eq. (1) may take several forms. The
cardinality of equivalence classes in Z was estimated in (Stefanini, 2008) by
Markov chain simulation: OnrŒz� D .Nr C 1/NV =NT , where NT is the total number
of DAGs uniformly sampled from the space of all DAGs on V , NV is the size of
such space and Nr 	 NT is number of sampled DAGs showing configuration r .
As regards vector R in Eq. (1), in Stefanini (2008) the elicitation of j ˝R j �1
parameters has been considered for ASFs, and a reduction of elicitation effort
was described under the condition that just the total number of features possessed
by a DAG is relevant. Further saving in parameters and elicitation effort may
be obtained by exploiting conditional independence relationships believed to hold
among SFs, for example through the elicitation of a graphical model on the vector
of descriptors R.
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Definition 3 (Order relation on descriptors). The ordered partition O of
descriptors is defined by the expert to indicate disjoints subsets of SFs to be jointly
considered during the elicitation.

For the sake of brevity, here an outline involving both the order relation and
the chain graph is provided. The first question to be posed is ‘Which is the subset
of descriptors that you would jointly elicit at first, and which C.I. relations would
you consider?’. Answers define the first group of nodes and their relations, that
is an undirected graph which is the first chain component. The following two
steps may be iterated up to the consideration of all descriptors in R: (a) ‘Define
a subset of descriptors not yet selected to be jointly considered in the elicitation
and provide C.I. relations among them’, thus the chain component �i is defined; (b)
‘Is there any dependence on descriptors belonging to previous subsets to be taken
into account?’, so that arrows representing conditioning information are introduced
from some nodes in �i�k to nodes in �i ; k > 0. The above questions are prototypes
for actual questions which should be formulated in a language as close as possible
to the problem domain of interest. The need of control questions is just mentioned
here.

In Stefanini (2009b), the special case of a strict order has been introduced thus
the elicitation takes the form of odds values for the descriptor Ri conditioned to
the configuration of descriptors which precede it in O , and if C.I. relations among
descriptors are elicited then they are exploited by defining a DAG of reference
features. The second special case has been discussed in Stefanini (2009a) as a tool to
revise elicited beliefs and it involves ASFs: the order relation is degenerate thus just
one set of unordered descriptors is obtained, and in this case an undirected graphical
model describes the C.I. relations among SFs.

Here the general case in which the joint probability distribution of descriptors
p.r1; r2; : : : ; rnf j O; �/ is assumed to be Markov with respect to the elicited CG is
introduced. The resulting CG model may support the elicitation if model parameters
are cognitively suited for the elicitation, that is interpretable and easy to assess for
the expert, at least after some training.

The parameterization introduced here for CG models generalizes that one
described in Stefanini (2009a) for UG models of ASFs. For a generic chain
component, p.r�i j rpa.�i /; �/ D D�1t

Q
C2C �C .rC /, with C a collection of graph

cliques in the moralized chain component �i ; �C are non negative and not unique
functions called clique potentials;D�1t ; t 2 ˝pa.�i / are normalization constants, one
for each value of the conditioning sub-vector Rpa.�i /; in the first chain component
�1 just one constant is needed (empty conditioning). Here the log-linear expansion
(Whittaker, 1990) of the distribution p.r�i[pa.�i / j �/ defined on the moralized
chain component �i is considered with usual first-cell (treatment) constraint to
zero ln

�
p.r�i[pa.�i / j �/� D P

a�A ua.ra/ with A D f;g [ �i [ pa.�i /; the
model is graphical if the parameters take arbitrary values but with the constraint
that if a pair of coordinates is not linked by an edge in the UG then all u-terms
containing the selected coordinates are identically null, a constraint indicated as AG .
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Algorithm 1: Elicitation through UGs for chain components

Input: A chain graph.
1.. for each chain component �i 2 .�1; �2; : : :/ do
2.. if �i ¤ �1 then
3.. Augment the UG of current component with a complete graph on parents
4.. end if
5.. Find cliques (model generators)
6.. for each configuration of conditioning variables (empty for �1/ do
7.. for each model generator containing at least one node in �i do
8.. for each subset in the current generator, in a simple-to-complex order, containing

at least one node in �i do
9.. Elicit current parameter f ag if not yet elicited;
10.. end for
11.. end for
12.. Calculate the normalization constant
13.. end for
14.. end for

After exponentiating, the odds of a configuration for R�i against the ‘no-feature’
configuration conditional on a configurationRpa.�i / of parents is:

p.r�i[pa.�i / j �/
 .;; rpa.�i //

D
Y

;¤a�AG

 .r�i ;a; rpa.�i /;a/ (2)

where  .;; rpa.�i /;a/ is the baseline of no features for �i given a conditioning
configuration rpa.�i /;a; .ra; rpa.�i /;a/ are exponentiated u-terms in which coordinate
projection functions are exploited to separate the sub-configuration of a chain
component from that of its parents. After eliciting the above odds the model
parameters are calculated in a straightforward way, with a normalization constant
for each configuration of parents. The revision of elicited values may be performed
by inspection of implied conditional odds and of marginal distributions on reduced
reference sets (Stefanini, 2008, 2009a).

Algorithm 1 summarizes the steps to elicit the degree of belief. From an
operational standpoint, an UG model is defined for each chain component and its
parents, but such model is normalized for each configuration taken by parents. Odds
values are defined for each configuration of parents while the elicitation of terms in
the complete graph made just by parents is skipped because those terms are absorbed
into the normalization constants.

2.3 A Simple Case Study

A recently published case study (Stefanini et al., 2009) deals with classical biomark-
ers in breast cancer studies without exploiting structural prior information. Here a
set of plausible features is defined by a trained expert, who also defines the order O .
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Table 1 A simple case study

Variable Label Reference features Type

Age AGE R1 D‘ER regulates many proteins’ Causal
Oestrogen receptor ER R2 D‘AGE regulates ER’ Causal
Progesterone receptor PR R3 D‘AGE regulates PR’ Causal
Ki/47 protein NEU R4 D‘NEU depends on up to 3 variables’ Probabilistic
Protein P53 P53 R5 D‘ER regulates NEU’ Causal
Proliferation index PROLN R6 D‘ER is informative for PROLN’ Probabilistic

R7 D‘PR is informative for PROLN’ Probabilistic

Fig. 1 A chain graph of features (left) and the working UG for last chain component (right)

In Table 1, first column left, the list of variables is shown, together with a label (sec-
ond column), the elicited reference features (third column) and the kind of SF (forth
column from left). The elicited order is O D .fR4g; fR1;R2;R3g; fR5;R6;R7g/,
thus the first chain component is �1 D f4g, while subsequent chain components
are �2 D f1; 2; 3g and �3 D f5; 6; 7g. In Fig. 1, the elicited CG of all descriptors
is shown on the left, while on the right the last chain component is shown after
moralization into a working UG. The illustration here is limited to a sketch of the
quantities to be elicited for the last component of the above CG model involving five
binary descriptors, without reaching the numerical assessment of p.z j �/ and of the
posterior distribution given a set of collected data. Indexes of two descriptors, R1
and R3, are parents of indexes of R5;R6;R7 thus 4 conditioning configurations
are possible, namely R1;R3 equal to: .0; 0/, .1; 0/, .0; 1/, .1; 1/. The example
involves ASFs, thus a simplification of notation exploiting binary descriptors is
possible and the graphical multiplicative model for the moralized chain component
is p.r5; r6; r7; r1; r3 j �/D ;� r11 � r33 � r1r31;3 � r1r51;5  

r1r6
1;6  

r3r7
3;7  

r5
5 � r66 � r77 � r6r76;7 , with

all ˝Ri D f0; 1g. After absorbing parameters involving only conditioning variables
into the normalization constant, the odds values to be elicited take the following
form: p.r5;r6;r7;r1;r3j�/

 .;;r1;r3/ D  
r1r5
1;5  

r1r6
1;6  

r3r7
3;7  

r5
5 �  r66 �  r77 �  r6r76;7 and values of model

parameters follow by straightforward algebraic manipulation. Similar expressions
may be obtained for chain components �1 and �2.
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3 Discussion

The elicitation of prior beliefs about the structure of a Bayesian network may
benefit from flexibility and parsimony of graphical models with some advantages
over standard practice. First, hard constraint on structures are weakened to soft
constraints, e.g. the belief ‘enzyme A regulates protein B’ may be elicited with
its inherent uncertainty. Second, the typically huge size of the space of structures is
reduced to a smaller but equally informative space of structural features. Third, the
cardinality of equivalence classes is properly taken into account.

A general reference set of SFs may be logically incompatible with DAGs.
A logical analysis of SFs should be always performed to associate a null prior
probability value to configurations of SFs not consistent with DAGs. The auxiliary
Monte Carlo simulation performed to estimate the cardinality of equivalence classes
suggests critical configurations of SFs that deserve further inspection: a null number
of DAGs in large samples may be a sampling zero or a structural zero.

Further work is needed to make the approach suited to daily use, for example
by developing a software targeted towards experts in specific problem domains
to support the elicitation without the help of a statistician. Human cognitive
peculiarities and shortcut strategies involved in this scheme should be characterized
to develop corrections for potential causes of bias. Similarly, the effect of the way
propositions are formulated is open to investigation.
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Adaptive Spectral Clustering in Molecular
Simulation

Marcus Weber

Abstract In this chapter, PCCAC is described as a special spectral clustering
algorithm which is applicable for molecular simulation data. From a mathematical
point of view, only PCCAC is able to correctly identify the physical timescales
of molecular motion. In order to decrease the statistical error of this timescales
analysis, an adaptive clustering algorithm is necessary.

1 Introduction

Molecules are made of atoms. The conformational state x of an N -atoms molecule
can, therefore, be described by 3N cartesian coordinates in a three dimensional
space. The different conformational states are not equally probable. Assuming a
canonical ensemble (i.e. observing molecules at constant temperature), there is a
probability density function 
.x/; x 2 R3N . This function can be approximated (up
to an unknown scaling factor) by computational methods on the basis of molecular
modelling. This probability density function 
 is (never exactly but) approximately
zero for almost all 3N -dimesional vectors x. Only a “few” conformational states
x are physically meaningful. This meaningful set of states is not a convex set in
R3N . It is a rather complicated network. There are some “islands” (clusters) in R3N

connected by “narrow canyons”. A very important task in computational molecular
design is to identify these clusters of conformational states and to characterize
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Fig. 1 MCMC simulation of
a 3-clusters probability
density function (10,000
steps). Starting in the upper
central cluster, the trajectory
crosses a barrier to the left
cluster and is trapped. The
third cluster is not found

the network of these clusters (Bujotzek and Weber, 2009). Usually, a trajectory-
based solution to this problem is applied, which is not intended in this chapter. The
first step of such an approach is given by generating a sample of conformational
states fx1; : : : ; xng 
 R3N which is distributed according to the density function 
 .
This is by far not trivial due to the high-dimensional space R3N and due to the
complicated (and unknown) network of clusters. In Fig. 1, an example for the
difficulties of such a trajectory-based approach is shown. The sampling points in
this figure are generated by a Markov chain Monte-Carlo method MCMC (either
by solving equations of motion or by stochastic methods). The density function 

is symmetric with regard to the y-axis. Three clusters of points should be found,
but only two clusters were identified. The reason is, that the MCMC method hardly
finds the “narrow canyons” between the clusters and is trapped inside the clusters.
In a second step of the trajectory-based approach, a clustering algorithm is applied
to the generated set of samples. In this second step, transitions between the clusters
are counted in order to characterize the transition network. Unfortunately, due to the
rare transitions in MCMC, this information is based on bad statistics. Obviously,
this two-step approach has a lot of disadvantages with regard to statistical errors
and reproducability of the results (Röblitz, 2008; Weber et al., 2007).

In fact, molecular dynamics simulations or MCMC methods are not very suitable
to generate enough statistics for the aimed cluster analysis. These sampling methods
mainly collect data from the “boring” part of the conformational space (the basins
of attraction, the clusters). They only rarely sample transitions between the clusters,
which is the most important information to estimate transition rates. Obviously,
we are looking for something that can be seen as “orthogonal” to conventional
molecular simulation methods.

The characterization of the network of conformational clusters is a very hard
task. Recently it turned out that only adaptive PCCAC, a special spectral clustering
algorithm, is able to characterize the network of clusters in a physically interpretable
and reproducable way and can also be seen as an “orthogonal” approach to
molecular simulation (Kube and Weber, 2007; Weber, 2009).
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L X row vectors

Fig. 2 A block-diagonal
Laplacian L has leading
eigenvectors X with
blockwise constant entries.
For the case of k blocks, the
row vectors of X are the
vertices of a k-simplex

2 Spectral Clustering and PCCAC

The idea of spectral clustering is to make use of eigenvector (spectral) data from an
.m � m/-graph Laplacian L in order to find k � m clusters in a set of m objects.
Usually, the spectral clustering algorithm starts with defining a nonnegative and
symmetric .m �m/-similarity matrix K . The similarity measure for an application
to molecular simulation data will be given in Sect. 3. In many practical cases, the
similarity measure is based on an euclidean distance between the objects. In order
to yield L, a diagonal matrix D is determined such that the row-sums of L WD
K � D are zero. In the case of a huge set m 
 1 of objects, the similarity matrix
K is intended to be sparse for the efficient computation of the eigenvectors and
eigenvalues of L. L is symmetric and negative-semidefinite. The constant vector
e 2 Rm; ei D 1; i D 1; : : : ; m; is an eigenvector corresponding to the leading
eigenvalue 	1 D 0. From the Theorem of Frobenius and Perron, we can assume that
the eigenvalue 	1 is algebraically and geometrically simple, if the matrix L is not
decomposable into block diagonal form.

In order to understand spectral clustering, assume that the Laplacian L

(after proper ordering of the row and column indexes) has block diagonal form with
k blocks on its diagonal. Thus, there are k disconnected clusters of objects (K has
the same block diagonal structure as L). Every block is an indecomposable graph
Laplacian. Thus, the leading eigenvalue 	1 D : : : D 	k D 0 is k-fold (Deuflhard
and Weber, 2005). The corresponding space of eigenvectors is spanned by an
(m � k)-matrix X with blockwise constant elements, see Fig. 2. Thus, there is a
(k � k)-matrix A , such that � WD XA 2 Rm�k is a matrix with f0; 1g-entries.
The k columns of this matrix � can be interpreted as the indicator vectors of the k
clusters of objects, i.e. �ij D 1, if object i corresponds to cluster j and �ij D 0

otherwise. Furthermore, the row-sums of � are 1, so that each object is uniquely
assigned to its cluster. This transformation A can be visualized as follows. The
matrix X has blockwise constant elements. Thus, if we think of the rows of X as
m points in k-dimensional space, there are only k different points. Furthermore, the
constant vector e linearly depends on the columns of X , such that these k points
lie on a plane in k-dimensional space, i.e. they form a k-simplex. The matrix A
linearly maps this simplex to the standard k-simplex, spanned by the k unit vectors.

In practical applications of spectral clustering, the matrix L does not have the
assumed disconnected block diagonal structure. In molecular simulation, e.g. the
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term “narrow canyons between the islands” is an image for an almost disconnected
block diagonal structure of L. Thus, the simplex structure of the row vectors of X
is perturbed. Instead of defining only k different points in the k-dimensional space,
the rows of X “spread” into k clusters of points (Weber, 2006).

Usually, after computation of the row vectors of X , spectral clustering aims
at finding the k clusters of points by standard clustering methods, e.g., by
k-means. Spectral clustering algorithms can be distiguished by the different
similarity measures for the construction of K , by the different formulation of the
eigenvalue problem (sometimes a certain scaling of L is used), and by the different
types of algorithms used to identify the k cluster of points in the set of the row
vectors of X . For an excellent overview see von Luxburg (2007).

PCCAC is a spectral clustering algorithm (Deuflhard and Weber, 2005; Weber,
2006). It is used in the context of molecular simulation. In Sect. 3 it will be shown,
that the definition of the “Laplacian” is motivated physically in this case. Thus, there
is no free choice for defining the similarity measure or for solving the eigenvalue
problem. Like usual spectral clustering algorithms, PCCAC takes the row vectors of
X into account. However, instead of clustering the row vectors of X into k clusters,
PCCAC aims at computing a transformation matrix A such that the columns of
� D XA can be interpreted as membership vectors of the k clusters. Thus, the
result of PCCAC is not given by “crisp” sets but by grades of membership between
0 and 1.

A is determined in such a way, that the elements of � are nonnegative and the
row-sums are 1 (partition of unity). Like in the crisp case, the transformation A
maps the row vectors of X into the simplex spanned by the k unit vectors. There
are different variants of the PCCAC algorithm. These variants can be distinguished
by the way the transformation matrix A is defined (Röblitz, 2008; Weber, 2006,
2009). In all cases, the entries of A are the solution of an optimization problem.
In molecular simulation, every transformation A is allowed which mapsX into the
standard simplex, but for the reason of interpretation of the clustering results one
aims at optimized transformations. E.g., the matrix A (and the number of clusters)
can be optimized in such a way that � is as crisp as possible (Weber et al., 2006;
Röblitz, 2008).

3 Application of PCCAC in Molecular Simulation

After having introduced the PCCAC algorithm, the set of objects to be clustered
is defined. We will not use a set fx1; : : : ; xng 
 R3N of sampling points as an
input for the clustering in molecular simulation due the discussed disadvantages
of MCMC-simulation. The derivation of a graph Laplacian for the application of
PCCAC in molecular simulation is a little bit more complicated (Weber, 2009).
Instead of clustering points xi inR3N , the conformational state space is decomposed
into m subsets. These subsets are the objects of the clustering. In many cases,
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Fig. 3 A decomposition of
the conformational space into
Voronoi cells. One step of an
adaptive discretization for the
example problem of Fig. 1 is
shown

Voronoi cells are suitable for the decomposition of high-dimensional spaces, see
Fig. 3. Assume, we have defined m Voronoi cells. The off-diagonal elements kij of
the symmetric (m � m)-similarity matrix K are defined as the statistical weights
of the intersecting surfaces between Voronoi cell Vi and Voronoi cell Vj . This
statistical weight can be computed by the following surface integral:

kij D
Z

ıVi Vj


.x/ dS;

with ıViVj being the intersecting surface between the Voronoi cells, and dS

denoting a suitable surface measure. The matrix K has a zero diagonal, kii D 0.
This is a definition of a sparse matrix K . I.e., kij 6D 0 if there exists an intersecting
surface between Vi and Vj . Two neighboring Voronoi cells are the less similar the
less molecular states are “observed” in their intersecting surface. For a theoretical
derivation ofK and an algorithmic realization of a numerical quadrature see Weber
(2009).

On the basis of K one can define the symmetric matrix L WD K � D with
vanishing row-sums (see Sect. 2). In contrast to the described spectral clustering
approach, a rescaling of the rows of L is done, i.e. a positive diagonal matrix R
is multiplied, such that Q WD R�1L is the “Laplacian” of PCCAC. Q shares
the important property of vanishing row-sums with the matrix L, and Q is also
negative semi-definite. Thus, it can be used for spectral clustering via PCCAC.
The rescaling of L is needed in order to yield a physical meaningful matrix Q,
see Sect. 4. The diagonal elements of R are the statistical weights of the Voronoi
cells, i.e., if Vi is a Voronoi cell, then ri WD R

Vi

.x/ dx is the corresponding

diagonal element of R. These statistical weights can be computed by direct free
energy estimation algorithms (Klimm et al., 2011; Weber and Andrae, 2010). In
contrast to many other spectral clustering algorithms, the “Laplacian” Q is not
symmetric, but it can be symmetrized in the following way. Instead of computing
the spectral properties of Q, the eigenvalue problem is solved for the symmectric
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matrix Qsym WD R1=2 QR�1=2. The matrix Qsym has the same eigenvalues as Q,
but the .m�k/-eigenvector matrixXsym for the leading k eigenvectors ofQsym has
to be transformed, such that X D R�1=2Xsym are the leading k eigenvectors of Q.

Although, the construction of Q seems to be very difficult because of the
numerical computation of surface and volume integrals, it does not differ too
much from the algorithmic approach of an MCMC method. For the numerical
computation of the high-dimensional integrals Monte-Carlo quadrature (and a
corresponding sampling) is needed. The difference between the convetional MCMC
and the presented approach is mainly based on a different distribution of the
sampling points. Whereas MCMC mainly samples from the “boring” parts of the
conformational space, the sampling of the “Laplacian” Q mainly concentrates on
the intersecting surfaces. As we will see in the next Section, these surfaces are
mainly located in the transition region between the clusters. Thus, the Q-sampling
is an “orthogonal” approach to conventional MCMC sampling.

4 Adaptive Decomposition

What is the physical meaning of Q? Exactly speaking, the matrix Q is a Galerkin
discretization of the infinitesimal generator of the probability flux in R3N . Instead
ofQ, it could be easier to understand a different matrix, namely P.�/. In molecular
simulation there are two important operators, one is the infinitesimal generator
Q and the other one is a lagtime-dependent Markov operator P.�/. The relation
between these two operators, P.�/ D exp.�Q/, means that Q is the infinitesimal
generator of P.�/. So, what is the physical meaning of the operator P.�/?

Given a (normalized) probability density function g W R3N !RC of confor-
mational states in R3N . This function can be written as g D f ı 
 , where
f W R3N ! RC denotes the ratio between g and the stationary density 
 . If f ı 

is the probability density of conformational states at time t0 D 0, then .P.�/ f /ı

is the probalility density of conformational states at time t1 D � . Thus P.�/ denotes
the “movement” of the probability density in conformational state space between
two time steps t1 and t2 D t1 C � . By discretizing the conformational state space
into m Voronoi cells, this Markov operator P.�/ (m � m)-transition matrix P.�/.
The Markov operator P is projected (Galerkin (Galerkin discretization) to a finite
dimensional matrix P . Although P.�/ D exp.�Q/, this equation does not hold
in the finite dimensional case, P.�/ 6D exp.� Q/. The identity P.�/ D exp.� Q/
only is true, if the Galerkin discretization of the operator Q is based on a linear
combination(!) � of the leading eigenvectors of Q (Kube and Weber, 2007; Weber
and Kube, 2008; Weber, 2009). This is the reason, why only PCCAC is a good
clustering approach for the application in molecular simulation, because PCCAC is
the only spectral clustering approach for which the result � is the linear combination
of eigenvectors of Q. The matrices Qc WD .�>R�/�1.�>; RQ�/ and Pc.�/ WD
.�>R�/�1.�>RP.�/ �/ have the desired property Pc.�/ D exp.�Qc/, if the
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Fig. 4 An adaptive spectral clustering and the adaptive box discretization. The same potential
density function as in Fig. 1 is used. For the visualization of the clusters, the Voronoi cells
yield grayscale values between 0 and 1 according to their grade of membership to the three
different clusters (columns of �). This clustering has been generated with about 5,000 Monte-Carlo
quadrature points. In contrast to Fig. 1, all three clusters have been identified

eigenvectorsX based on a Voronoi discretization of R3N are a good approximation
of the eigenfunctions of Q. Thus, the entries of Qc are physically interpretable as
transition rates between the clusters. In order to find a good discretization of R3N ,
one has to refine neighboring Voronoi sets Vi and Vj hierachically and adaptively
(Haack et al., 2010), if the difference between the row i and row j of � is high. Thus,
this kind of hierachical refinement mainly takes place in transition regions between
the clusters, see Fig. 4. In contrast to the bad statistics in Fig. 1, the adaptive spectral
clustering approach finds three clusters and can identify the transition network with
the correct symmetry:

Qc D
0

@
�0:012366 0:006183 0:006183

0:000030 �0:000047 0:000017

0:000030 0:000017 �0:000047

1

A :
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5 Summary

We have shown that Q-sampling and PCCAC are the key methods to compute
physical meaningful data efficiently from molecular simulation. The sampling
approach is “orthogonal” to conventional MCMC methods. PCCAC provides
clusters �, that can be used for a Galerkin discretization of the infinitesimal
generator of the molecular process and preserves the time-scales of the system.
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Spatial Data Mining for Clustering:
An Application to the Florentine Metropolitan
Area Using RedCap

Federico Benassi, Chiara Bocci, and Alessandra Petrucci

Abstract The paper presents an original application of the recently proposed Red-
Cap method of spatial clustering and regionalization on the Florentine Metropolitan
Area (FMA). Demographic indicators are used as the input of a spatial clustering
and regionalization model in order to classify the FMA’s municipalities into a
number of demographically homogeneous as well as spatially contiguous zones.
In the context of a gradual decentralization of governance activities we believe the
FMA is a representative case of study and that the individuation of new spatial areas
built considering both the demographic characteristics of the resident population and
the spatial dimension of the territory where this population insists could become a
useful tool for local governance.

1 Introduction

For several years spatial data mining has been considered as the multi-dimensional
equivalent of temporal data-mining (Roddick and Spiliopoulou, 1999). Today,
however, there is a consensus among researchers to consider spatial data mining as
an independent approach to data analysis and measuring phenomena as confirmed
by recent studies (Angayarkkani and Radhakrishnan, 2009; Behnisch and Ultsch,
2010; Jin and Guo, 2009).

One of the most important assumptions of classical statistical analysis is that
the data samples are independently generated; on the contrary, the spatial approach
removes this assumption and theorizes that the spatial location of the samples is
an item that cannot be ignored (Tobler, 1970). Thus, it follows that data mining
is connected to the concept of patterns while spatial data mining is connected to
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the concept of spatial patterns. Obviously, these theoretical differences between
classic and spatial data mining have important repercussions in operational terms.
To apply a spatial (data mining) approach implies that the dimension of large
databases become larger as spatially referenced objects also carry information
concerning their representation in space by geometrical and topological properties.
This implies: (a) more powerful techniques to manipulate the data and extract
knowledge, (b) a new kind of cartographic knowledge to represent the results
obtained and make them readable to a non-technical stakeholders (policy makers,
local administrators etc.) and (c) a more flexible software to encourage users to
interact with the data (Koperski et al., 1996).

The paper is structured as follows. In Sect. 2 we briefly describe the regionaliza-
tion process and RedCap’s major features. Data description and results presentation
are discussed in Sect. 3. Finally, we conclude with some final remarks.

2 Regionalization Method

According to Guo (2008) we define regionalization as a process that divides a large
set of spatial objects into a number of spatially contiguous regions while optimizing
an objective function, normally a homogeneity (or heterogeneity) measure of the
identified regions. Therefore regionalization is a special kind of spatial clustering
where the condition of spatial contiguity among spatial objects plays a priority role.

RedCap is a method of spatial clustering and regionalization elaborated by Guo
(2008). It is essentially based on a group of six methods for regionalization given
by the combination of three agglomerative clustering methods (Single Linkage
clustering, SLK; Average Linkage clustering, AVG; Complete Linkage clustering,
CLK) and two different spatial constraining strategies (First-Order constraining
and Full-Order constraining). Guo (2008) shows that among the six methods,
the Complete Linkage clustering with Full Order constraining strategy (CLK-Full
Order) achieve the best performance. We refer to the work of Guo et al. (2005)
and Guo (2008) for technical and computational details about these six methods of
regionalization.

RedCap consists of two fundamental steps. In the first step, based on the
iterative algorithms of the Self Organizing Map (SOM) and developed in Guo et al.
(2005), the method finds spatial clusters without imposing any spatial constraining
strategy. The results of this first step are visualized by the SOM unified distance
matrix and by the Parallel Coordinate Plot (PCP), where we can observe the profile
of the clusters and their level of similarity. In the second step, based on a contiguity
matrix and a set of constrained strategies, the method completes the regionalization
process. The results of these two steps are then related and visualized on an
interactive map.
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3 Data and Results

The Florentine Metropolitan Area (FMA) was created by the deliberation of the
regional council of Tuscany n.130 on 13/2/2000. This area is composed of three
provinces (Firenze, Pistoia and Prato) and is divided into 73 municipalities. Due to
its recent definition only few studies on its population structure and dynamic are
available in the literature (Petrucci et al., 2008; Vignoli et al., 2007). In particular,
there are no studies that consider directly the spatial dimension in the analysis.
The FMA is very heterogeneous in terms of demographic structures and dynamics,
settlements models, geo-morphological structures and economic specialization. In
addition the FMA is strongly affected by many phenomena of mobility: residential
migrations, daily migrations (commuting), international migrations. Due to this
strong heterogeneity and in the context of an increasing decentralization of the
governance activities we believe that the FMA represents an interesting case of
study.

We select as input variables five demographic indexes (computed for each
municipality) plus the spatial attributes of each municipality. The five demographic
indexes, computed by using data on the resident population produced by the Italian
National Institute of Statistics (Istat), are: Youth dependency index (IDG), Aging
index (IV), Elderly dependency index (IDA), Population in active age substitution
index (IS), Population in active age replacement index (IR).

Firstly, an explorative analysis based on the results of the SOM algorithms is
carried out. Applying a visual approach we build groups of similar clusters through
the results of clustering process visualized on the unified distance matrix without
taking into account the condition of spatial contiguity among them.

Starting from 73 municipalities we identify 16 clusters that are defined by the
node hexagons on the SOM. Territorial units with the same color belong to the
same cluster and clusters with similar colors present a low level of dissimilarity.

From the results of the explorative analysis, we classify the 16 clusters in three
main groups. The first group, that we define “young”, is composed by 5 clusters and
29 municipalities (Fig. 1). This group has a relatively young age structure and a high
level of inner homogeneity as the colors of the node hexagons and the PCP show.
The five clusters have a low level of the IV, IDA and IS indexes, a high/medium
level of IDG and, finally, a low/medium level of IR index (Fig. 1b).

The second group, that we define “old”, is composed by 4 clusters and 15
municipalities. This second groups of clusters is characterized by a population with
a very old age structure as the PCP shows clearly (Fig. 2c). In fact, the level of IDG
is low while the level of the others indexes (IV, IDA, IS, IR) is medium/high in one
case and very high in the others three cases. This group of clusters presents a great
level of inner homogeneity as the colors of node hexagons in SOM and the profiles
of the PCP show (Fig. 2).

The third group of clusters, that we define “medium”, is composed by 6 clusters
and 26 municipalities. As we can see in the Fig. 3 this third group is composed by
clusters that present a medium level of all indexes. The inner homogeneity of this
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Fig. 1 Group 1 – “Young”. (a) Multivariate mapping. (b) Clustering with SOM. (c) Multivariate
visualization of clusters (parallel coordinate plot)

group is relatively low as we can see by the colors of the node hexagons of the
SOM (Fig. 3b) and in the profile of the clusters represented in the PCP (Fig. 3c).
Actually, looking at the indexes values, this group could be divided in two sub-
groups: “medium high” and “medium low”.

After the explorative analysis we apply the Complete Linkage Clustering method
together with a Full Order constraining strategy (CLK-Full Order) in order to obtain
n areas that minimize the inner heterogeneity of the demographic structure of the
population under the condition of spatial contiguity. We identify six areas (Fig. 4).
Areas A and B are very similar to each other and both are characterized by a high
level of inner homogeneity. In fact, by a visual analysis we can clearly see that the
municipalities that belong to these areas have basically the same colors (Fig. 4a, 4b).
Therefore in areas A and B the resident population has a very old structure as shown
in the PCP of the old group of clusters (Fig. 2c). The similarity between areas A and
B is not only in terms of demographic structure: these areas are in fact mountainous
areas characterized by rural settlements and both are localized on the boundaries
of the FMA. The fact that these areas present a very old demographic structure is
probably connected to their recent demographic history. It is known that these areas
have been interested by a sustained depopulation process – common to the majority
of the Italian mountainous areas – caused by a strong internal rural-urban migration
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a b

c

Fig. 2 Group 2 – “Old”. (a) Multivariate mapping. (b) Clustering with SOM. (c) Multivariate
visualization of clusters (parallel coordinate plot)

flows. The internal migrants were mainly young people and young couples in
search of a more modern and dynamic social environment (typically urban) which
offered higher schooling and employment opportunities. For similar reasons, these
areas have not become destination areas for international migrants (especially for
international labor migrants) that usually are attracted by the dynamic and highly in-
formal labour market typical of FMA’s urban and peri-urban areas. These migration
patterns combine with the aging process that involve the whole Italian population,
have determined the extremely old structure of the population in these two areas.

Area C presents a medium level of inner homogeneity as indicated by the
different shades of colors of the municipalities that belong to this area (Fig. 4c).
The age structure of the population of this area is medium-old: some municipalities
have an old age structure while others have a relatively younger age structure. Area
C is composed by two important urban centers, Firenze and Pistoia, and by a peri-
urban area around these two cities. Therefore, we can say that area C presents a
urban settlement and a medium old demographic structure but with an internal
spatial structure that can be divided in two sub-structures: a more properly urban
area – the core of FMA – with a relatively old demographic structure and a peri-
urban area with a relatively younger structure. These results, especially with regards
to Firenze and Pistoia, are confirmed by the evidences of Petrucci et al. (2008).
From a theoretical point of view these results can be explained by the following
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Fig. 3 Group 3 – “Medium”. (a) Multivariate mapping. (b) Clustering with SOM. (c) Multivariate
visualization of clusters (parallel coordinate plot)

considerations: (a) in recent years Firenze and Pistoia (like the majority of medium
and large size cities of Italy) were involved in the suburbanization process. Typically
this process involves mainly people with a relatively old age structure that decide to
move to less urbanized areas with a higher quality of life (Benassi et al., 2009). In
the case of Pistoia and, especially, Firenze this process probably involves also young
people and young couples that decide to leave their parental home and, owing to the
extremely asymmetric structure of the housing market in these cities, they probably
migrated to less central areas; (b) the high cost of life and housing in Firenze and
Pistoia affects also the residential choice of international migrants; (c) the urban
way of life is typically associated with relatively lower Total Fertility Rates.

According to the core-ring model for the study of urban development (Van den
Berg et al., 1982) areas D and F (Fig. 4d, 4f) can be defined as a ring around
the proper urban area. Area D presents a medium/old demographic structure and
a medium inner homogeneity as the different colors of the municipalities of this
area underline. This area is characterized by a semi-urban and rural settlements.
Some specific sub-areas of area D (the Chianti area for example) are a well-known
destination of many retirees from Northern European countries – particularly from
the UK and Germany – and from the United States (Benassi and Porciani, 2010).
Due to this spatial proximity to the core of the metropolitan system this area is also
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Fig. 4 Regionalization results. (a)–(f) Areas A through F

probably the destination area for internal migrants involved in the suburbanization
process of area C. Area F is the second part of the ring around the core of the
FMA system. The inner homogeneity of this area is relatively low but presents a
younger demographic structure compared to the area D. This is probably due to the
fact that this area is not a retirement destination for foreingers but, on the contrary,
is certainly a destination area for international labor migrants and also for young
people and young couples. Area A is in fact more influenced by the dynamics of
area E, that represents the alter ego of area C. Like area C, area E is in fact a urban
area characterized by urban settlements but, differently from area C, it presents a
very young demographic structure. The reason of this dual situation is that area E
is strongly involved in international migration movements, particularly from China.
On the other hand the suburbanization process mainly driven by young people and
young couples probably makes this area a destination for people migrating from
area C.

4 Concluding Remarks

The RedCap method has some advantages: it is very ductile, user-friendly, free,
allows to interact directly with the data, and takes into account directly the
spatial dimension. The spatial analysis of the demographic structure of the resident
population of the FMA produces results that clearly show how the spatial attributes
influence the demographic structure of the population. The FMA is a complex
demographic spatial system where the following items coexist: (a) mountainous
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areas with a very old demographic structure (areas A and B); (b) dual core
metropolitan areas composed by a relatively young area (E) and a relatively old
area (C); (c) two ring areas that are basically the spatial extension of the FMA core
(areas D and F).

Starting from this empirical evidence we want to underline that ignoring the
spatial dimension can lead to misleading inference. The use of appropriate methods
for the detection of spatial clusters can improve the measurement and interpretation
of urban socio-economic phenomena and provide a useful information to local
authorities and policy makers for regional and urban planning.
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Misspecification Resistant Model Selection
Using Information Complexity
with Applications

Hamparsum Bozdogan, J. Andrew Howe, Suman Katragadda,
and Caterina Liberati

Abstract In this paper, we address two issues that have long plagued researchers
in statistical modeling and data mining. The first is well-known as the “curse of
dimensionality”. Very large datasets are becoming more and more frequent, as
mankind is now measuring everything he can as frequently as he can. Statistical
analysis techniques developed even 50 years ago can founder in all this data. The
second issue we address is that of model misspecification – specifically that of
an incorrect assumed functional form. These issues are addressed in the context
of multivariate regression modeling. To drive dimension reduction and model
selection, we use the newly developed form of Bozdogan’s ICOMP, introduced
in Bozdogan and Howe (Misspecification resistant multivariate regression models
using the genetic algorithm and information complexity as the fitness function,
Technical report 1, (2012)), that penalizes models with a complexity measure of
the “sandwich” model covariance matrix. This information criterion is used by the
genetic algorithm as the objective function in a two-step hybrid dimension reduction
process. First, we use probabilistic principle components analysis to independently
reduce the number of response and predictor variables. Then, we use the genetic
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algorithm with the multivariate Gaussian regression model to identify the best
subset regression model. We apply these methods to identify a substantially reduced
multivariate regression relationship for a dataset regarding Italian high school
students. From 29 response variables, we get 4, and from 46 regressors, we get 1.

1 Introduction

In this paper, we address two issues that have long plagued researchers in statistical
modeling and data mining. The first is well known as the “curse of dimensionality.”
Very large datasets are becoming more and more frequent, as mankind is now
measuring everything he can as frequently as he can. Statistical analysis techniques
developed even 50 years ago can founder in all this data. The second issue we
address is that of model misspecification – specifically that of an incorrect assumed
functional form. These issues are addressed in the context of multivariate regression
modeling, in which we present a novel hybrid dimension reduction technique. We
apply these methods to identify a substantially reduced multivariate regression
relationship for a data set regarding Italian high school students. From 29 response
variables, we get 4, and from 46 regressors, we get 1.

2 Multivariate Regression Modeling with ICOMP

2.1 Multivariate Gaussian Regression

In the usual multivariate regression (MVR) problem, we have a matrix of responses
Y 2 R

n�p; n observations of p measurements on some physical process. The
researcher also has k variables that have some theoretical relationship to Y :
X 2 R

n�q , of course, we usually include a constant term as an intercept for the
hyperplane generated by the relationship, so q D kC 1. The predictive relationship
between X and Y has both a deterministic and a stochastic component, such that
the model is

Y D XB C E; (1)

in which B 2 R
q�p is a matrix of coefficients relating each column of X to each

column of Y , and E 2 R
n�p is a matrix of error terms. The usual assumption

in multivariate regression is that the error terms are uncorrelated, homoskedastic
Gaussian white noise:

Y � Np.XB;˙ ˝ In/, where E .Y / D XB , and Cov.Y / D ˙ ˝ In. (2)

Under the assumption of Gaussianity, the log likelihood of the multivariate
regression model is given by

logL.� j Y / D �np
2

log.2
/�n
2

log j˙ j� 1
2

trŒ.Y � XB/0˙�1 .Y � XB/0�: (3)
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The estimated model covariance matrix, (inverse Fisher information matrix) can
be derived using the results of Magnus and Neudecker (1988, p. 321), and is given by

bCov.vec. OB/; vech. Ȯ // � OF�1 D
" Ȯ ˝ .X 0X/�1 0

00 2
n
DCp . Ȯ ˝ Ȯ /DCp 0

#

: (4)

The IFIM provides the asymptotic variance of the ML estimators when the model
is correctly specified. Its trace and determinant provide scalar measures of the
asymptotic variance, and they play a key role in the construction of information
complexity. It is also very useful, as it provides standard errors for the regression
coefficients on the diagonals.

In most statistical modeling problems, we almost always fit a wrong model to the
observed data. This can introduce bias into the model due to model misspecification.
The most common causes of model misspecification include: multicollinearity,
autocorrelation, heteroskedasticity, and incorrect functional form. This final type
is the type of misspecification we address. The common answer in the literature to
nonnormality has been the utilization of Box-Cox transformations of Box and Cox
(1964), which does not seem to work consistently well, especially in the context of
multivariate regression. Of course, when performing regression analysis, it is not
usually the case that all variables in X have significant predictive power over Y .
Choosing an optimal subset model has long been a vexing problem, and there are
many approaches to this problem. We follow Bozdogan and Howe (2012) and use
the genetic algorithm to select a subset MVR model.

2.2 Robust Misspecification-Resistant Information
Complexity Criteria

Acknowledging the fact that any statistical model is merely an approximate
representation of the true data generating process, information criteria attempt to
guide model selection according to the principle of parsimony. This principle of
parsimony requires that as model complexity increases, the fit of the model must
increase at least as much; otherwise, the additional complexity is not worth the cost.
Virtually all information criteria penalize a poorly fitting model with negative twice
the maximized log likelihood, as an asymptotic estimate of the KL information.
The difference, then, is in the penalty for model complexity. In order to protect the
researcher against model misspecification, Bozdogan and Howe (2012) generalized
ICOMP to the case of a misspecified MVR model and introduce ICOMPMISP, which
can drive effective model selection even when the Gaussian assumption is invalid.
Here we show their results without derivations or proofs.

If we note ��g as the value of the parameters vector which minimizes the
Kullback-Liebler distance (Kullback and Leibler, 1951) for some specified func-
tional model f .��g / to the true functional model g.�/, and we use R to indicate the
outer-product form of the Fisher information matrix, we have
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Theorem 1. Based on an iid sample, y1; : : : ; yn, and assuming regularity condi-
tions of the log likelihood function hold, we have

O� � N.��g ;F�1RF�1/, or
p
n. O� � ��g / � N.0;F�1RF�1/. (5)

Note that this tells us explicitly

Cov.��g /Misspec D F�1RF�1, (6)

which is called the sandwich or robust covariance matrix, since it is a correct
variance matrix whether or not the assumed or fitted model is correct.

Of course, in practice the true model and parameters are unknown, so we estimate
this with

bCov. O�/ D OF�1 OR OF�1. (7)

If the model is correct, we must have OF�1 OR D I , so

bCov. O�/ D OF�1 OR OF�1 D I OF�1 D OF�1.

Thus, in the case of a correctly specified model, bCov. O�/ D OF�1.
For multivariate regression, we have already seen the inner-product form of

estimated IFIM in (4). The outer-product form OR is derived in Magnus (2007), and
we show the result in (8).

OR D
" Ȯ �1 ˝X 0X 1

2
. Ȯ �1=2 ˝X 0/ O�1DCp 0�

1
2
�DCp O� 01 . Ȯ � 1

2 ˝X/ 1
4
�DCp O� �2 DCp 0�

#

. (8)

This matrix takes into consideration the actual sample skewness and kurtosis of the
data. There is an issue of matrix stability to be addressed with the sandwich covari-
ance matrix, however. Numerical issues with estimating the sandwich covariance
matrix prevent it from approximating the FIM when the model is correctly specified.
We employ the Empirical Bayes covariance regularization procedure

bCov. O�/ D bCov. O�/C p � 1
.n/ t r.bCov. O�//Ip, (9)

to ensure bCov. O�/ is of full rank. Thus, the misspecification-resistant form of ICOMP
for multivariate regression is computed as in (10). When the model is correctly
specified, we expect bCov. O�/ D OF�1, we get ICOMP. OF�1/ in (11).

ICOMP.bCov. O�//MISP D np log 2
 C n log j Ȯ j C np C 2C1.bCov. O�// (10)

ICOMP. OF�1/ D np log 2
 C n log j Ȯ j C np C 2C1. OF�1/ (11)



Misspecified Model Selection 169

In both, C1 is the first order maximal entropic complexity of Bozdogan (1988):
a generalization of the model covariance complexity of Van Emden (1971), given by

C1.bCov. O�// D s

2
log

tr.bCov. O�//
s

� 1

2
log jbCov. O�/j, s D rank.bCov. O�//. (12)

3 Dimension Reduction with the Genetic Algorithm
and Probabilistic Principle Components Analysis

3.1 Genetic Algorithm

The genetic algorithm (GA) is a search algorithm that borrows concepts from
biological evolution. Unlike most search algorithms, the GA simulates a large
population of potential solutions, encoded as binary strings. These solutions are
allowed to interact over time; random mutations and natural selection allow the
population to improve, eventually iterating to an optimal solution. The GA was
popularized by Holland (1975), and it is a widely recognized as popular stochastic
search and optimization algorithm. Today, there are many problems in science,
economics, and research and development that are solved using the GA. We
refer the reader to existing books and articles regarding details of the algorithm.
Some excellent books are Goldberg (1989), Haupt and Haupt (2004) and Vose
(1999). Articles specifically combining the GA with subset regression models would
include Bozdogan (2004) in which the GA was implemented for multiple regression
subset selection under the normality assumption. Also, Bozdogan and Howe (2012)
extended this work to the case of misspecified multivariate regression.

3.2 Probabilistic Principle Components Analysis

In this paper, we employ Probabilistic Principle Component Analysis (PPCA) as
a first step to independently reduce the dimensionality of the independent and
dependent matrices. PPCA was developed in the late 1990s and popularized by
Tipping and Bishop (1997). Here, we show some results from Tipping and Bishop
(1997) and Bozdogan and Howe (2009) that are relevant to this research. Let
x 2 R

1�p be a random vector; assume x can be expressed as a linear combination
of latent variables and stochastic noise:

x D �f C �C ", (13)

where f 2 R
m�1 holds the latent variables, � 2 R

p�m is the loading matrix, and
� 2 R

1�p defines the mean of x. Maximizing the PPCA likelihood function, we get
the model covariance matrix in (14)
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bCov.X/ D Ȯ D Up OLU 0p, (14)

where Up contains all the eigenvectors of Ȯ . OL is almost a .p � p/ matrix with
eigenvalues of Ȯ on the diagonals. Positions corresponding to variables not included
in the given subset are replaced with the mean of the left-out eigenvalues. Using this,
the inverse Fisher information matrix is given in (15):

OF�1 D
"
bCov.X/ 0

00 2
n
DCp bCov.X/˝ bCov.X/DC0

p

#

. (15)

The heavy-penalty form of ICOMP we use here is

ICOMPPEU . OF�1/ D �2 logL. O�;�; O�2 j x/C 2.
nm

n�m � 2
/C log.n/C1. OF�1/,

(16)
where m is the number of variables included from the original dataset. As with the
MVR model, we can use the GA to reduce the dimensionality of a data set, with
ICOMP as the objective function.

4 Numerical Results

Our dataset is a random sample of 1; 400 students from the ALMALAUREA
database. ALMALAUREA was started as a service for addressing the faculty
choice of high school students based on interests, skills, and job expectations.
All variables have been normalized to vary between �1 and 1. As response
variables, we have Mat1;Mat2; : : : ;Mat29: students judgements about different
subjects (math, physics, chemistry, engineering, statistics. . . ). Our regressor matrix
is divided into two “sets.” Answers regarding what the students think are im-
portant for ideal future work – collaboration, time flexibility, . . . – are measured
in variables N z1; N z2; : : : ; N z14. Variables Np1;Np2; : : : ; Np32 measure students
personal abilities (concentration, time management, curiosity, . . . ). The predictor
variables are numbered from 1 to 14 for Nz, and 15 through 46 for Np.

For modeling this data, we first used the GA to identify optimal subset MVR
models, driven by both ICOMP. OF�1/ and ICOMP.bCov. O�//MISP. If the Gaussian
regression model was correctly specified, we would expect the criteria to select
very similar models with similar scores. Results shown in the first third of Table 1
do not bear this out. While the substantially lower ICOMP.bCov. O�//MISP score
indicates it has selected a better model, we have not been able to reduce the
dimensionality at all. Mardia’s tests for multivariate normal skewness and kurtosis
(Mardia, 1974), reject the null hypothesis of normality, with results shown in
Table 2, confirming the misspecification identified by ICOMP. Secondly, we used
PPCA as a preliminary step to reduce the dimensionality of the matrix of responses.
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Table 1 ICOMP Scores & Subsets of Predictors

Criteria Score Best set of predictors

No preliminary dimension reduction
ICOMP. OF�1/ 64004 f1; 2; 4; 5; 6; 9; 12; 13; 16; 17; 19–21; 25–27; : : :

29–31; 34; 35; 38; 41; 42g
ICOMP.bCov. O�//MISP 59701 f1–46g
Preliminary dimension reduction of only dependent variables matrix
ICOMP. OF�1/ 9693 f1–46g
ICOMP.bCov. O�//MISP 9483 f1–46g
Preliminary dimension reduction of both responses and regressors
ICOMP. OF�1/ 10825 45

ICOMP.bCov. O�//MISP 10963 45

Table 2 Normality test results for first identified model

Skewness Kurtosis

ˇ1 0 ˇ2 899
Ǒ
1 32:55 Ǒ

2 986:84

�2� 7594:92 Z� 38:75

95 % Region Œ0; 4652:09� 95 % Region Œ�1:96; 1:96�
p-value 0:00000 p-value 0:00000

Conclusion � œ N.�;˙/ Conclusion � œ N.�;˙/

Using ICOMPPEU . OF�1/, the GA selected a model with only 4 dependent variables:
Mat26 � Mat29. We then attempted to identify a subset MVR model using just
these responses. The ICOMP scores indicate that the Gaussian regression model
is misspecified, with ICOMP.bCov. O�//MISP < ICOMP. OF�1/, though both criteria
selected the fully saturated model. These results are shown in the middle third of
Table 1. Mardia’s expected and sample kurtosis values of 24 and 22:6 were very
close; the test statistic for skewness, however, was 214 – much higher than the
critical value of 31. Once again, we verify the misspecification identified by ICOMP.

Finally, we also used PPCA to select a subset of only 4 of the 46 independent
variables. Those selected were Np29 � Np32. We then ran two sets of the GA a
third time, using both ICOMP versions, with results displayed in the bottom third
of Table 1. Note how close the ICOMP scores are (relative to the other pairs),
and that both criteria selected the same substantially reduced subset MVR model,
using only a single predictor for the four responses. Thus, we have gone from an
overly complex misspecified multivariate regression model, to a model that is both
(very nearly) correctly-specified and parsimonious model.

While our end result would suggest the misspecification-resistant ICOMP was
not needed, recall the first MVR subset model identified. If we had only used
ICOMP. OF�1/, we would have had less motivation to use PPCA to reduce the
dimensionality of the model. We would have settled upon an MVR model with 32
responses and 24 regressors.
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5 Concluding Remarks

In this research, we have applied a novel hybrid dimension reduction technique for
multivariate regression. While independently reducing the number of dimensions
in both the matrix of responses and regressors using PPCA and the GA, we used
a new misspecification-resistant form of ICOMP. These methods allowed us to
identify a nearly correctly-specified simple regression relationship with 4 of 29
dependent and 1 of 46 independent variables, rather than a misspecified overly
complex relationship.
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A Clusterwise Regression Method
for the Prediction of the Disposal Income
in Municipalities

Paolo Chirico

Abstract The paper illustrates a clusterwise regression procedure applied to the
prediction of per capita disposal income (PCDI) in Italian municipalities. The
municipal prediction is derived from the provincial PCDI taking into account
the discrepancy between municipality and province in some indicators like per
capita taxable income, per capita bank deposits, employment rate, etc. The relation
between PCDI and indicators is shaped by a regression model. A single regression
model doesn’t fit very well all territorial units, but different regression models do it
in groups of them. The aim of clusterwise regression is just that: detecting clusters
where the correspondent regression models explain the data better than an overall
regression model does. The application of the procedure to a real case shows that a
significative reduction of the regression standard error can be achieved.

1 Introduction

The present work originates from a study of Unioncamere Piemonte (2009)
about the prediction of the per capita disposal income (PCDI) in the Piedmont
municipalities. More specifically Unioncamere Piemonte intended to predict the
PCDI of the Piedmont municipalities by means of a regression model using some
municipal indicators like “per capita taxable income”, “per capita bank deposits”,
etc. Formally:

yij D x0ijˇ C "ij (1)

where yij is the PCDI of the i th municipality in the j th province; x0ij is the vector
of regressors; ˇ is the vector of the correspondent coefficients; "ij is the residual
regression error.
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Unioncamere knew the indicators for every Piedmont municipality but didn’t
know the PCDIs, even for a sample of municipalities, so that the model parameters
couldn’t be estimated on municipal data. On the other hand, all data were known
at provincial level (the provincial PCDIs were provided by an external research
institute). Therefore, the model parameters were estimated using the model (1)
at provincial level; the Ordinary Least Squares estimation method was adopted
considering all provinces on the same level of importance.

This paper proposes an evolution of that model in order to:

• Formalize better the regression errors and have municipal predictions consistent
with the provincial PCDI (Sect. 2);

• Reduce the prediction errors by means of a clusterwise regression procedure
(Sect. 3).

2 The Basic Model

Let’s assume that the municipal PCDIs can be explained by some municipal
indicators with a linear regression model like (1). The regression error "ij can be
viewed as:

"ij D yij � x0ijˇ D
"
X

h

yhij

#

=nij � x0ijˇ

D
X

h

�
yhij � x0ijˇ



=nij D

X

h

"hij =nij (2)

where "hij is the difference between the disposal income of the generic hth resident
and the expected PCDI in its municipality; nij is the municipal population.

According to its definition, "hij is a random error and includes all individual
factors determining the individual disposal income. At first, every "hij is assumed
independent of every other error and regressor, and identically distributed with
E."hij / D 0 and Var."hij / D �2. Such statements are clearly hard, but, at the
moment, let’s view them as a way to formalize better the features of "ij . Since
"ij D P

h "hij =nij and generally nij > 1,000, "ij can be assumed Gaussian. Now
the model (1) can be better specified as:

yij D x0ijˇ C "ij (3)

with "ij � N.0; �2=nij /.
As the provincial PCDI is yj D P

hj yhij =nj , then:

yj D x0jˇ C "j (4)

with "j � N.0; �2=nj /.
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In our case the PCDIs of the municipalities are unknown, even for a sample of
municipalities, so that the model (3) is not useful for the parameters estimation.
Nevertheless the PCDIs of the provinces are known so that the model parameters
can be estimated through provincial data (model 4). Since the provincial regression
errors have different variances, each of them equal to �2=nj , the Weighted Least
Squares (WLS) estimation method should be used:

b̌ D .X0NX/�1X0Ny (5)

where X is the data matrix of provincial regressors; y is the vector of provincial
PCDIs; N is the diagonal matrix of provincial populations.

Now let’s reconsider the assumptions about "hij . If the assumptions about mean
and variance can be acceptable, their independence seems not realistic, in particular
among the individual errors in a same municipality. Nevertheless these assumptions
have only one effect on the modeling: the adoption of the WLS method for the
models estimations. That means the models have to fit better the provinces with
more population, and that seems reasonable.

According with the model (3), the prediction of the municipal PCDI should be
byij D x0ij b̌ since the prediction of the municipal error,b"ij , is generally assumed
equal to zero. Nevertheless the provincial average of the municipal errors, b"j ,
is known before predicting the municipal errors, b"ij ; indeed it is known by the
estimation of the provincial models (4):b"j D yj � x0j b̌.

A way to take into account this information is to predict every municipal errors in
a province equal to their provincial average:b"ij Db"j . Consequently the municipal
PCDI prediction becames:

byij D x0ij b̌C .yj � x0j b̌/ D yj C .x0ij � x0j /b̌ (6)

Therefore the prediction of the municipal PCDI can be viewed as an adjustment of
the provincial PCDI on the basis of the differences between the municipal indicators
and the provincial ones. Moreover, the formula (6) assures that the provincial
average of all municipal predictions is equal to the known provincial PCDI:

X

i

byij
nij

nj
D yj (7)

3 From a Single Model to k Models

The detection of a suitable provincial model (4) (and its estimation) only on the
basis of the data of the eight Piedmont provinces would have led to an overfitting
model. To get over this problem, the model was initially generalized to the Italian
provinces and was therefore estimated using the data of 87 Italian provinces (some
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Table 1 Regressors and
coefficients Regressor Coefficient Sign.

Intercept 5,710.91 ***
Per capita taxable income 0.59 ***
Employment rate 69.38 ***
Per capita banc deposit 0.18 ***
Rate of graduates �266.40 ***
Oldness index 14.94 ***

Table 2 Quality indices Index Value

R2 0.962

R
2

0.959
b� 486,879.5

provinces were excluded from the analysis because not all the requested data were
available). The regression results are reported in Tables 1 and 2.

We can note an unexpected results: the negative contribution of “rate of gradu-
ates”. It doesn’t mean that the relationship between PCDI and “rate of graduates” is
negative, indeed their correlation is positive, although very low (0.152). It means
that the contribution of the “rate of graduates” to the prediction of PCDI with
the others predictors is negative; it concerns the role of the “rate of graduates” in
explaining what it is not explained by the others predictors.

The R2 and the R
2

are very high, and that is understandable since the high
correlation between PCDI and the regressor “per capita taxable income” (0.958).
All regressors are significant at 1% level (***) and each one of them improves
the Akaike’s Information Criterion (AIC) and the Schwarz’ Criterion (SC) if added
after the other regressors. Nevertheless, even if the R2 and the R

2
are very high, we

can’t state that the model fits the data very well. Indeed the value of the standard
regression error, b� , is not realistic (486,879 euros!). According to the assumption
in the Sect. 2, � is the standard deviation of "hij and can be viewed as a measure
of the average difference between the individual disposal income and the expected
PCDI in the correspondent municipality. If the model fits well the data, the value
of b� should be realistic. Therefore, an overall model like (4) is not good for every
Italian province. On the other hand, K groups (clusters) of provinces may be fitted
quite well by K local regression models, like:

yjk D x0jkˇk C "jk (8)

with "jk � N.0; �2k=njk/, k D 1; ::; K .
The detection of such locals model and the corresponding partition concerns the

clusterwise regression.
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3.1 The Clusterwise Regression

The aim of the clusterwise regression, (CR), also named regression clustering by
other authors (Zhang, 2003), is segmenting a number of units in some clusters in
order to detect a good regression model in each cluster. Then clusterwise regression
is suitable when the population is not homogeneous, and a single regression model
doesn’t fit well all the units, but different regression models might fit well partitions
of the data. The origins of CR can be founded in the works of Bock (1969) and
Spaeth (1979), whose original algorithms can be viewed as a special case of k-
means clustering with a criterion based on the minimization of the squared residuals
instead of the classical within-class dispersion (Preda and Saporta, 2005).

More specifically, ifG D fG.1/;G.2/; : : : ; G.n/g identifies a partition of n units
of a population in K clusters, and:

V.K;G;ˇ1; : : : ;ˇK/ D
X

k

X

G.i/Dk
.yi � x0iˇk/2 (9)

is the sum of the squared residuals of the K local regressions, the basic algorithm
of CR consists on iterating the following two steps:

(a) For given G, V.K;G;ˇ1; : : : ;ˇK/ is minimized by the LS-estimators of the
ˇ1; : : : ;ˇK ;

(b) For given ˇ1; : : : ;ˇK , V.K;G;ˇ1; : : : ;ˇK/ is minimized by assigning each
unit to the cluster where the corresponding regression error is minimum; that
identifies a new partition G.

Like in k-means clustering (MacQueen, 1967) the algorithm in converging,
because the sequence of V.K;G;ˇ1; : : : ;ˇK/ is, clearly, monotonically non-
increasing. But, unlike k-means clustering, the algorithm converges to a local
optimal solution, that depends on the initial partitions and not necessarily is
the global optimal solution. Therefore, it would be better to simulate several
initial partitions in order to choose the best final partition! Since its development,
numerous adaptations and extensions of CR have been proposed; DeSarbo et al.
(1989) extended clusterwise regression to the case of multiple response variables
and repeated measures on subjects and proposed a simulated annealing algorithm
for solving the resulting optimization problem. As reported in (Brusco et al.,
2008), mixture-model formulations of CR have been proposed by numerous authors
(DeSarbo and Cron, 1988; Henning, 2000) that assume the response variable
measures are obtained from a mixture of K conditional densities (usually normal)
that arise in unknown proportions. Obviously, the bigger the number of clusters, the
better the fit of data, but that doesn’t mean necessary better partition of data. About
this issue, DeSarbo and Cron (1988) suggest to adopt the Akaike’s Information
Criterion, while Henning (2000) suggest to adopt the Schwarz’ Criterion.

A correlated issue is the problem of overfitting, that has been analyzed recently
by Brusco et al. (2008).



178 P. Chirico

Table 3 Quality indices for each partition

Num.clusters 1 2 3 4 5

AIC 2,531.3 2,440.8 2,373.2 2,314.2 2,299.2
SC 2,546.1 2,472.9 2,422.5 2,380.8 2,383.1
logL �1,259.7 �1,207.4 �1,166.6 �1,130.1 �1,115.6
minb� 486,679 187,114 128,378 104,720 98,436
maxb� 486,679 254,027 181,329 155,416 146,775

Table 4 The four local regressions

Cluster 1 Cluster 2 Cluster 3 Cluster 4 Overall

Intercept 3,488.45 4,662.35 4,543.81 4,113.12 5,710.91
Per capita taxable

income
0.42 0.50 0.40 0.22 0.59

Employment rate 146.23 87.08 106.45 182.05 69.38
Per capita bank

deposit
0.05 0.19 0.25 0.21 0.18

Rate of graduates �144.06 �139.31 �179.61 �183.39 �266.40
Oldness index 16.09 14.51 19.31 21.11 14.94

Provinces 18 31 19 20 88
R2 1.00 1.00 1.00 1.00 0.99

R
2

0.99 1.00 1.00 1.00 0.959
b� 143,368 111,928 104,720 155,416 486,879

3.2 Four Models for PCDI Prediction

To detect the local models (8) for PCDI prediction, the basic algorithm of CR, with
WLS estimation method, was adopted. According with DeSarbo and Cron (1988)
and Henning (2000), partitions in 2, 3, 4, 5 clusters were tried, in order to detect
the most suitable solution. For every partition in K clusters, several random initial
partition were used.

The Table 3 reports some quality indices of the final (optimal) partitions in
different number of clusters.

The partition in four clusters is better according to Schwarz’ Criterion, while the
partition in five clusters is better according to Akaike’s Criterion. In such partition
the local regression standard errors are less than in 4-clusters partition, but the
improvement is not very significant, so the partition in four clusters was preferred.
The Table 4 reports the local regression results of that partition.

Now the standard regression errors of the local regressions are clearly lower,
and consequently more realistic than the standard regression error of the overall

regression. Both theR2s and theR
2
s are very high and could be a sign of overfitting,

but it is not the case. Indeed the same indices of the overall model are high too and
not for the presence of overfitting, as explained in Sect. 2.
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3.3 The Municipal PCDI Prediction

Properly, the clusterwise regression described in the last subsection has concerned
the provincial models, not the municipal ones. Then the extension of the clustering
to the municipal predictions requires the assumption that the PCDIs of all munici-
palities of a province are explained by the model of their province:

yijk D x0ijkˇk C "ijk (10)

with "ijk � N.0; �2k=njk/.
Therefore, the PCDIs of the municipality i th of the province j th belonging to

the cluster kth will be predict by the following formula:

byijk D yjk C .x0ijk � x0jk/b̌k (11)

Obviously some municipal PCDIs might be explained better by models of other
clusters than by their one. Nevertheless there isn’t way to known exactly which
model is the best for every municipality. Then, in absence of further information,
the assumption in (10) can be reasonable at least for middle-big municipalities that
are not too different from the profile of their province.

4 Final Considerations

The paper describe a case where the clusterwise regression can be useful to detect
a number of suitable regression models in a heterogeneous population. All the
methodology can be viewed like a way to predict the municipal PCDIs in case of:
(1) the PCDIs are explainable by some regressors; (2) the PCDIs are not known
at municipal level, but are known for territorial aggregations; (3) the territorial
aggregations are heterogeneous. Obviously the number of territorial aggregations
has to be enough numerous for being segmented in clusters where regression models
are drawn.

The explained methodology joins in a series of proposals about the Italian
municipal disposal incomes, that includes Marbach (1985), Frale (1998) and Bollino
and Pollinori (2005), quoting only some authors. Here, as in Marbach, the municipal
disposal income is derived from the provincial disposal income, but in Marbach the
provincial disposal income is object of prediction; here is exogenous. As in Bollino
and Pollinori, the regressive models are heteroscedastic and the estimated provincial
errors are used for the prediction of the municipal errors. Those proposals illustrate
procedures very articulated, but don’t handle the problem of the heterogeneity by
means of a model-based approach. The present proposal does it by clusterwise
regression.
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Finally the provincial PCDIs are exogenous data in the models as well as all the
regressors. The present paper doesn’t consider how they are calculated. Actually the
most of them are estimated. For example, the Bank of Italy estimates the PCDIs at
regional level by a sample survey; private research institutes provide estimations of
the PCDIs at provincial level, but their methods are not exactly known.

Obviously the quality of the municipal predictions (11) depends on the quality
of exogenous data too!
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A Continuous Time Mover-Stayer Model
for Labor Market in a Northern Italian Area

Fabrizio Cipollini, Camilla Ferretti, Piero Ganugi, and Mario Mezzanzanica

Abstract A new and powerful source of information concerning the Italian Labor
Market is represented by C.OBB datasets, which record the kind of job contract
(with its successive modifications) of all the workers in many Italian Provinces. By
means of this information and focusing on the Province of Cremona, we analyze the
mobility of employees among different kinds of job contracts (and unemployment
also): in particular, from contracts characterized by modest packages of securities
toward more structured working relations, ending with Unlimited Time Duration
Contracts. The statistical tool used for this analysis is Continuous Time Mover-
Stayer Model. Our analysis reveals low mobility from Limited Time Duration to
Unlimited Time Duration contracts.

1 Motivation

Thanks to Law 196/1997 (“Pacchetto Treu”), to Law 276/2003 (“Legge Biagi”)
and to other legislative measures, the Italian Labor Market acquired a degree of
flexibility unknown in the previous decades. Currently, in fact, employments can be
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Table 1 Classification of
states. (Thanks to Pietro
Antonio Varesi and Michele
Bricchi of UCSC, Piacenza)

State Description Group

1 Unlimited duration and full time Unlimited time
duration

2 Unlimited duration and partial
time

3 Expiry job and full time Limited time
duration

4 Expiry job and partial time
5 Apprenticeship
6 Co.co.pro. and Co.co.co

7 Self-employment
8 Unemployment

ruled by 35 different kinds of agreements, among which only two have Unlimited
Time Duration (UTD). One of the most important (and till now unanswered) ques-
tions risen by this new Legislation concerns the degree of mobility of individuals
from Limited Time Duration (LTD), and other precarious job agreements, toward
UTD contracts. Another important issue concerns possible differences between
genders.

Traditionally, the evolution of individuals among states is modelled using a
Markov Chain, which has the drawback to overestimate the mobility (Blumen
et al., 1955; Spilerman, 1972). In this sense, the Mover-Stayer model has the
relevant advantages to overcome this pitfall. Its continuous time version (Fougere
and Kamionka, 2003; Frydman and Kadam, 2004) seems to be a suitable statistical
model because individuals can change state at every instant of time.

2 The C.OBB Data and the Job States

C.OBB data are a new and powerful source of information, fed by the compulsory
communications which Italian firms have to transmit to the Labour Office of
Province for every new or expired engagement.

The dataset employed in the analysis includes all workers having a contract in
the Province of Cremona in any day of January 2007 and of December 2009 (thus,
in the middle of this interval a person can be also unemployed for some time). Once
records lacking of fundamental variables are cleaned from, the dataset includes
45,898 workers. Considering that Labour Forces in the Province of Cremona amount
to 164,000 units, and that C.OBB data includes only a very small fraction of self-
employees, this dataset represents a relevant portion of the whole job market of the
Province.

To simplify the analysis, we grouped the original 35 job contracts into 8 possible
states, sorted according to their package of securities (see Tursi and Varesi, 2010)
as shown in Table 1.
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3 The Continuous Time Mover Stayer Model

The (discrete time) Mover-Stayer Model (MS) has been introduced in Blumen
et al. (1955) as an extension of the classical Markov Chain Model. Further
developments are in Goodman (1961), Frydman (1984) and Spilerman (1972);
interesting empirical applications can be found, among others, in Quah (1993),
Fougere and Kamionka (2003) and Cipollini et al. (2012).

The model can be viewed both as a mixture model and as a latent class model. In
fact, MS is a mixture of two Markov chains because, given a population of units and
a set of mutually exclusive states S D f1 : : : ; kg, the population itself is partitioned
in two groups: the Movers and the Stayers. Every individual starting from a state i
can be a Stayer, with probability si , or a Mover, with probability 1�si . Movers move
across S according to a classical Markov chain with transition matrixM ; Stayers do
not move from their starting state and so follow a degenerate chain with transition
matrix Ik . MS is also a latent class model because, among the observed n.s/i units
never moving from state i , an individual cannot be identified as a genuine Stayer or
“not-yet-moved” Mover.

The parameters of the model are the vector s D .s1; : : : ; sk/ (where each si 2
Œ0; 1�) and the matrix M (where each Mi;j � 0 and

P
j2S Mi;j D 1). The 1-step

global transition matrix P , thus, has elements Pi;j D si I.i D j / C .1 � si /Mi;j

where I.�/ denotes the indicator function.
The MS has been extended also to a continuous time framework (CTMS) by

Singer and Spilerman (1976) and Frydman and Kadam (2004). Continuous time
means that Movers can move across S at each instant of time and that there exists
a generating matrix Q such that the transition matrix on a time interval Œ0; t � can
be expressed as M.0; t/ D etQ (the exponential matrix function, see Golub and
Van Loan 1996). In such a case, the parameters of the model are s and Q. The
main advantage of the CTMS, with respect to the MS, is the time flexibility, since it
makes possible to estimate a transition matrix referred to any time interval Œ0; t �. Its
possible pitfalls are embeddability and aliasing (see Singer and Spilerman 1976 for
details).

4 Bayesian Inference on the CTMS

Inferential methods for the parameters of the CTMS are proposed in Frydman and
Kadam (2004), Fougere and Kamionka (2003) and Inamura (2006). In this work
we follow Fougere and Kamionka (2003) by readapting their Bayesian approach
to our data and estimating the parameters via Gibbs Sampler. We summarize here
its essential points considering a 2-dimensional r.v. The method can however be
extended to more general cases: we refer to Casella and Robert (2009) for a deeper
handling.

Let .X; Y / a r.v. whose conditional p.d.f.’s, fX jY and fY jX , are available.
Given a starting value y0, random draws xj and yj are iteratively sampled from
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Xj jY Dyj�1 and Yj jX Dxj , respectively, according to their p.d.f.’s fY jX and fX jY .
The sequence .Xj ; Yj / is proved to be a Markov Chain converging in distribution
to fXY , so that a suitable sequence f.xj ; yj / W j D m0 C 1; : : : ; m0 C mg can be
taken as an m-dimensional sample from .X; Y /. m0 is the burn-in period needed to
reach convergence, that in practical applications must be properly checked (Casella
and Robert, 2009).

Referring now to the CTMS (Sect. 3), we aim to obtain the posterior distribution
of the parameters s and Q, using the Gibbs Sampler and the whole set of observed
data. In order to do this, we introduce the following notation:

• T is the last time period;
• Zi is the (unknown) actual number of Stayers in state i and Z D fZi W i D 1;

: : : ; kg;
• n

.0/
i is the observed number of individuals in state i at time 0 and n.0/ D fn.0/i W
i D 1; : : : ; kg;

• n
.s/
i is the observed number of individuals never moving from state i and n.s/ D

fn.s/i W i D 1; : : : ; kg;
• Nij is the observed number of transitions from state i to state j and N D fNij W
i; j D 1; : : : ; kg;

• O D fn.s/; N g is the whole set of observed data describing the dynamics.

About the a priori distribution of s, we assume that each si follows a Beta
distribution, namely si jn.0/i � Beta.ai /, where ai is a 2-dimensional vector of
positive elements.

As per the a priori distribution of Q D log.M/, it is convenient to express it by
working on M . Hence, we assume that each row of M is conditionally distributed
as a Dirichlet, namely Mi;:jn.0/i � Dir.bi /, where bi is a k-dimensional vector of
positive elements.

Finally the a priori distribution of Zjn.0/i is Bin.n.0/i ; si /. Note that all distribu-
tions are defined given the starting value n.0/.

By means of standard arguments of Bayesian inference (Berger, 1985), we obtain
the following conditional distributions

si jZi D z; n.0/i ;O � Beta.ai;2 CZi ; ai;2 C n
.0/
i �Zi/; (1)

Mi;:jZi D z; n.0/i ;O � Dir.bi;1 CNi;1; : : : ; bi;i CNi;i � T z; : : : ; bi;k CNi;k/ (2)

Zi js;M; n.0/i O � Bin

 

n
.s/
i ; pi D si

si C .1 � si /MT
i;i

!

(3)

from which we can implement the Gibbs Sampler and eventually draw random
samples from the distribution of .s;Q/ given O (note that the algorithm first
generatesM and then calculatesQ D log.M/).
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Table 2 Relative error e.0; t / for the whole dataset, varying t

t Quarter Half year Year Two years

e.0; t / 0.027 0.073 0.202 0.221

Table 3 Estimated OP.0; 8/ (2-years matrix on the whole data, expressed with percentages)

State 1 2 3 4 5 6 7 8

1 86.66 2.77 5.25 2.02 0.59 0.53 0.05 2.13
2 6.62 88.93 2.30 0.87 0.28 0.37 0.04 0.59
3 23.32 4.16 50.05 11.16 2.05 1.68 0.23 7.34
4 8.41 5.48 10.50 71.51 0.96 0.97 0.19 1.97
5 14.30 2.39 7.12 3.61 68.45 0.70 0.13 3.30
6 19.58 7.45 20.62 12.60 3.00 27.65 0.39 8.71
7 20.90 7.21 15.79 9.47 3.52 4.11 33.14 5.86
8 31.83 9.47 29.31 15.81 4.20 3.00 0.31 6.08

5 Main Results

The estimation procedure illustrated in Sect. 4 has been employed for estimating s
and Q on the whole sample and by gender, considering a time unit corresponding
to a quarter. Once checked the convergence of the algorithm, the point estimate
of each parameter is obtained by taking the average of the corresponding sample
from the posterior distribution. As in Fougere and Kamionka (2003) we choose
hyperparameters ai;j and bi;j equal to two, having tested that estimates are stable
with respect to different choices.

Goodness-of-fit tests based on �2 distribution, as suggested by Cipollini et al.
(2012), are of limited applicability in this case, because of the presence of very small
and null values. Then let Pobs.0; t/ and OP .0; t/ be the observed and the estimated
transition matrix, respectively, after time t . As suggested in Frydman et al. (1985)
we evaluate the model fit by means of the quantity

e.0; t/ D jjPobs.0; t/ � OP .0; t/jj2=jjPobs.0; t/jj2
where jj:jj2 is the 2-norm of matrices. The quantity e.0; t/ represents the relative
error committed considering OP.0; t/ instead of Pobs.0; t/ (see Golub and Van Loan
1996). Table 2 summarizes our results for different spans of time.

Estimated OQ and Os are useful tools for evaluating persistence and transitions
of individuals among states. In this work, however, we simplify the exposition of
results, focusing on the transition probabilities OP.0; t/ estimated from the model.
Table 3 shows OP.0; 8/, the estimated 2-years transition matrix, for the whole
population.

Estimates evidence a low mobility of workers from LTD Contracts (states 3, 4,
5, 6) to the UTD Contracts (states 1 and 2). For example, the probability of Expiry
Full Time Contracts to be changed in UTD is about 28 % within 2 years. Transition
probabilities referred to other LTD Contracts, in the same direction, are even lower.
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Fig. 1 Estimated transition probabilities towards UTD w.r.o. time: from expiry job (upper) and
from co.co. (lower)

In analyzing results, for sake of space, we focus on the transition probabilities
of individuals starting from Co.co.pro and Expiry Job, towards UTD. Let pC .0; t/
and pI .0; t/, respectively, be the probabilities of having a co.co.pro and a expiring
working contract at time 0, and an UTD contract (at full or partial time) at time t .
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Table 4 Estimated unconditional distributions among contracts, expressed as percentages

State

Group t 1 2 3 4 5 6 7 8

Whole set p0 54.94 18.90 9.60 7.69 6.57 1.15 0.07 1.08
p8 53.27 19.50 9.97 8.40 5.23 0.99 0.11 2.52
p20 51.89 20.47 10.64 9.22 4.07 1.00 0.13 2.57
p1 48.34 24.88 10.76 9.77 2.61 1.01 0.13 2.50

Female p0 40.37 29.53 10.05 11.59 5.89 1.41 0.10 1.05
p8 39.70 30.38 9.05 12.54 4.75 1.10 0.14 2.34
p20 38.99 31.61 8.90 13.28 3.75 1.05 0.15 2.28
p1 36.21 36.41 8.51 13.15 2.45 1.00 0.15 2.14

Male p0 70.69 7.30 9.10 3.43 7.30 0.85 0.05 1.27
p8 67.91 7.66 10.96 3.87 5.75 0.89 0.09 2.87
p20 65.98 8.29 12.74 4.42 4.43 0.98 0.11 3.06
p1 63.59 10.48 13.83 4.92 2.88 1.06 0.11 3.13

Figure 1 shows the estimated OpC .0; t/ and OpI .0; t/ as functions of t , comparing
results for genders.

Strong differences among the different groups are evident. According to gender
the difference looks neat: mobility towards UTD contracts is higher for men than
for women.

In Table 4 we report the unconditional distributions pt in the different states,
computed at several times t (p0 is the starting distribution, p1 is the equilibrium
distribution) and estimated from the model. We observe that the weight of full-time
UTD is the highest for every group, but the difference with respect to the other states
is more relevant for males, and weaker for females. Furthemore we note that on one
side the full time UTD tends to decrease, and on the other side the partial time UTD
tends to increase.

6 Conclusion

The strong motivation of this paper is to investigate the mobility of Italian workers
among job agreements based on different packages of securities. With this aim, we
analyze C.OBB data for the Province of Cremona by means of a CTMS. The results
evidence a modest mobility of workers from LTD to UTD contracts. In particular,
females have about half probability of achieving UTD position than males.

Further research will be directed to define an index of mobility for CTMS, using
the axiomatic approach proposed by Shorrocks (1978) and Geweke et al. (1986).
Secondly we aim to extend the same analysis to other Italian Provinces.
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Model-Based Clustering of Multistate Data
with Latent Change: An Application
with DHS Data

José G. Dias

Abstract Finite mixture modeling has been used extensively as a model-based
clustering technique. This research addresses the application of mixture models to
multistate data (sequences of states) under the Markov assumption. By assuming
a latent or hidden Markov process, the model incorporates the estimation of the
misclassification error. The data are from the life history calendar from the Brazilian
Demographic and Health Survey (DHS) 1996 in which contraceptive use dynamics
are surveyed retrospectively. The results show that the dynamics are heterogeneous
with two subpopulations.

1 Introduction

Finite mixture modeling has been a powerful tool for capturing unobserved het-
erogeneity in a wide range of social and behavioral science data (Clogg, 1995).
Nowadays increasing rich data sets with longitudinal structure have created a need
for the development of more advanced statistical models that take into account the
dynamics of social phenomena (e.g. random effect models, latent growth models).
We introduce a specific finite mixture model for modeling multistate data that takes
into account unobserved heterogeneity in line with Dias and Vermunt (2007), but
extends it by allowing for misclassification error.

The paper is organized as follows: Sect. 2 presents the mixture model with
latent change; Sect. 3 reports an application in demography in which the model is
applied in the modeling of contraceptive use dynamics. The paper concludes with a
summary of the main findings.
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2 The Finite Mixture Model with Latent Change

Let us assume that we have n sequences of T observations. Let yit represent the
observed state response for individual i at time point t , where i 2 f1; : : : ; ng, t 2
f1; : : : ; T g, and yit can take M different values (states). In addition to the observed
“response” variable yit , we assume two different latent variables: a time-constant
discrete latent variable and a time-varying discrete latent variable. The former,
which is denoted by w 2 f1; : : : ; Sg, captures the unobserved heterogeneity across
the sample of individuals; that is, individuals are clustered based on differences in
their dynamics. The time-varying latent variable is denoted by zt 2 f1; : : : ; Kg.

Let f .yi I '/ be the probability function associated with observation i , where '

is the vector of parameters in the model. The model is defined as:

f .yi I '/ D
SX

wD1

KX

z1D1
� � �

KX

zTD1
f .w/f .z1jw/

TY

tD2
f .zt jzt�1;w/

TY

tD1
f .yit jzt /: (1)

As in any mixture model, the observed data density f .yi I '/ is obtained by
marginalizing over the latent variables. Because the latent variables are discrete, this
simply involves the computation of a weighted average of class-specific probability
functions, where the (prior) class membership probabilities or mixture proportions
serve as weights (McLachlan and Peel, 2000). We assume that within cluster w the
sequence fz1; : : : ; zT g is in agreement with a first-order Markov chain. Moreover, we
assume that the observed state at a particular time point depends only on the latent
state at this time point; i.e., conditionally on the latent state zt , the response yit
is independent of states at other time points, which is often referred to as the local
independence assumption. As far as the first-order Markov assumption for the latent
state conditional on cluster membership w is concerned, it is important to note
that this assumption is not as restrictive as one may initially think. It does clearly
not imply a first-order Markov structure for the responses yit . The standard hidden
Markov model (HMM) (Baum et al., 1970; Rabiner and Juang, 1986) turns out to be
a special case of this model by eliminating the time-constant latent variable w from
the model, that is, by assuming that there is no unobserved heterogeneity across
respondents.

The characterization of the model is given by:

• f .w/ is the prior probability of belonging to a particular cluster w with
multinomial parameter 
w D P.W D w/;

• f .z1jw/ is the initial latent state probability; that is, the probability of having
a particular initial state conditional on belonging to cluster w with multinomial
parameter 	kw D P.Z1 D kjW D w/;

• f .zt jzt�1;w/ is a latent transition probability; that is, the probability of being in
a particular state at time point t conditional on the state at time point t � 1 and
cluster membership; assuming a time-homogeneous transition process, we have
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pjkw D P.Zt D kjZt�1 D j;W D w/ as the relevant multinomial parameter.
Thus, the model allows that each cluster has its specific transition dynamics;

• f .yit jzt /, the probability density of having a particular observed state in
sequence i at time point t , conditional on the regime occupied at time point
t , is assumed to have a multinomial distribution characterized by parameters
pkm D P.yit D mjZt D k/. Note that these parameters are assumed invariant
across clusters, an assumption that may, however, be relaxed.

Since f .yi I '/, defined by Eq. (1), is a mixture of hidden Markov models, it
defines a flexible model that can accommodate unobserved heterogeneity (mixture
component) and misclassification error (discrete hidden Markov model). The model
has .SCKCM/.K�1/CS �1 parameters to be estimated, including S �1 class
sizes, S.K � 1/ initial state probabilities, K.K � 1/ transition probabilities, and
M.K � 1/ pkm probabilities. As the number of latent states K equals the number of
observed states M , pkm identifies the degree of misclassification.

Maximum likelihood (ML) estimation of the model parameters involves max-
imizing the log-likelihood function: `.'I y/ D Pn

iD1 logf .yi I '/, a problem
that can be solved by means of the Expectation-Maximization (EM) algorithm
(Dempster et al., 1977). The E step computes the joint conditional distribution of
the latent variables given the data and the current provisional estimates of the model
parameters. In the M step, standard complete data ML methods are used to update
the unknown model parameters using an expanded data matrix with the estimated
densities of the latent variables as weights. Since the EM algorithm requires us
to compute and store the S �KT entries in the E step, this makes this algorithm
impractical or even impossible to apply with more than a few time points. However,
for hidden Markov models, a special variant of the EM algorithm has been proposed
that is usually referred to as the forward-backward or Baum-Welch algorithm (Baum
et al., 1970). The Baum-Welch algorithm circumvents the computation of this joint
posterior distribution making use of the conditional independencies implied by the
model. The Baum-Welch algorithm for HMMs can easily be adapted to estime this
model.

An important modeling issue is the setting of S , the number of clusters needed
to capture the unobserved heterogeneity across individuals. The selection of S is
typically based on information statistics such as the Bayesian Information Criterion
(BIC) (Schwarz, 1978). In our application we select S that minimizes the BIC value
defined as:

BICS D �2`S. O'I y/CNS logn; (2)

where NS is the number of free parameters of the model and n is the sample size.

3 Application

Life history calendar (LHC) is a major and relatively new instrument for the
collection of retrospective data (Belli et al., 2001). We illustrate the approach
using data from the Brazilian Demographic and Health Survey (BDHS) conducted



192 J.G. Dias

Table 1 Model selection S `.'I y/ #par BIC �BIC%

1 �13784.51 44 27886.33 –
2 �13211.06 69 26919.73 �3.47%
3 �12845.88 94 26369.66 �2.04%
4 �12699.63 119 26257.44 �0.43%
5 �12599.53 144 26237.51 �0.08%

between March 1996 and June 1996 (BENFAM and Macro International, 1997).
The BDHS includes a calendar of monthly data on contraceptive use and pregnancy
status. The BDHS is a nationally representative, stratified two-stage sample. The
calendar covers the period from January 1991 to the month of interview. We selected
for this analysis the São Paulo region, corresponding to 1,355 women. We aggregate
the original state space into five states, namely: (1) Non-use of contraception, (2)
Sterilization (Female sterilization, Male sterilization), (3) Pregnancy (Pregnancy,
Birth, Terminated pregnancy/non-live birth), (4) Pill, and (5) Other temporary
methods (IUD - Intrauterine device, Injections, Diaphragm/foam/jelly, Condom,
Periodic abstinence/rhythm, Withdrawal, and Other traditional methods).

Women are grouped into clusters on the basis of similarity of their behavior.
We estimate the model with a different number of clusters from 1 to 5, using 200
different starting values to avoid local maxima. We notice that mixture model log-
likelihood surfaces tend to be complex with several local optima (Dias and Wedel,
2004). This is particularly true for latent class models with nominal manifest data
in which the number of parameters to be estimated tends to increase faster with the
number of latent states. Therefore, despite model estimation being time consuming;
a large number of starting values has to be set to provide confidence in the parameter
estimates being reported.

Table 1 provides the values of the log-likelihood, the number of parameters in
the model, the value of BIC, and the variation in BIC. The results suggest that three
clusters should be taken into account, given that the BIC value tends to stabilize from
three to four clusters. However, in the solution with three clusters, the third cluster
size is 0.61%, which suggests the two-cluster solution as the best one. I notice that
from a public policy point of view, clusters or segments must be big enough to be
worth to be targeted. Thus, we selected the two-latent class solution. Cluster sizes
are 52.7% and 47.3% for cluster 1 and 2, respectively.

Table 2 reports the misclassification estimated probabilities for both aggregate
and two-cluster based solutions. Despite potential problems of memory recall
in retrospective studies, we observe that the estimated misclassification error is
small in both cases. The clustering solution improves the classification for all
states, in particular for pregnancy state. There is no measurement error for the
sterilization state.
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Table 2 Misclassification probability estimates

Latent state

Solution Observed state 1 2 3 4 5

Aggregate
Non-use of contraception 0.9998 0.0000 0.0386 0.0034 0.0005
Sterilization 0.0000 1.0000 0.0000 0.0000 0.0000
Pregnancy 0.0000 0.0000 0.9613 0.0000 0.0000
Pill 0.0001 0.0000 0.0000 0.9914 0.0002
Other temporary methods 0.0001 0.0000 0.0001 0.0051 0.9994

Cluster-based
Non-use of contraception 0.9999 0.0000 0.0002 0.0019 0.0002
Sterilization 0.0000 1.0000 0.0000 0.0000 0.0000
Pregnancy 0.0000 0.0000 0.9998 0.0001 0.0000
Pill 0.0001 0.0000 0.0000 0.9931 0.0000
Other temporary methods 0.0001 0.0000 0.0000 0.0049 0.9998

Table 3 Initial probability estimates

Clusters

States 1 2 Aggregate

1 0.072 0.878 0.452
2 0.346 0.002 0.183
3 0.085 0.028 0.060
4 0.315 0.072 0.200
5 0.182 0.021 0.106

Tables 3 and 4 depict the two-cluster dynamics of the latent process. Results for
the homogeneous population (aggregate results) are reported as well. From Table 3
we observe that 45.2% of the women did not use contraception at the beginning
of the LHC. However, the proportion is quite heterogeneous at cluster level.
Indeed, whilst only 7.2% were not using contraception in cluster 1, that pro-
portion increased to 87.8% in cluster 2. Overall, cluster 2 contains women that
were not using contraception at the beginning of the LHC, in opposition to
cluster 1 that contains women in states sterilized, pregnancy, using pill, or other
temporary methods.

Table 4 provides the transition probability estimates at aggregate and
cluster levels. Results assuming homogeneity show a strong persistence of
staying in the same state. Indeed, excluding pregnancy (0.88), the probability
that the process remains in the same state is always above 0.95. Note that
sterilization is an absorbing state (1.00). This description of the dynamics of
contraceptive use is not very informative, because all women are assumed to follow
exactly the same pattern over time.

For the two-cluster analysis we observe that in cluster 1 the probability of
staying in state non-use of contraception is no longer so persistent (0.78) with
higher probabilities of moving to state pregnancy and pill than in cluster 2.
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Table 4 Transition probability estimates

Destination

Origin 1 2 3 4 5

1 0.9807 0.0002 0.0096 0.0060 0.0035
2 0.0000 1.0000 0.0000 0.0000 0.0000

Aggregate 3 0.0535 0.0171 0.8836 0.0239 0.0220
4 0.0125 0.0014 0.0054 0.9746 0.0062
5 0.0071 0.0013 0.0107 0.0063 0.9745
1 0.7808 0.0028 0.1045 0.0767 0.0351
2 0.0000 1.0000 0.0000 0.0000 0.0000

Cluster 1 3 0.0776 0.0196 0.8766 0.0117 0.0145
4 0.0152 0.0019 0.0034 0.9744 0.0050
5 0.0070 0.0016 0.0078 0.0028 0.9809
1 0.9892 0.0001 0.0047 0.0033 0.0027
2 0.0000 1.0000 0.0000 0.0000 0.0000

Cluster 2 3 0.0800 0.0118 0.8805 0.0132 0.0145
4 0.0165 0.0000 0.0036 0.9699 0.0099
5 0.0200 0.0000 0.0132 0.0241 0.9426

On the other hand, for instance, cluster 2 shows more dynamism between states
pill and other temporary methods than cluster 1. This clearly shows that clusters
identify women at different stages of the life course and consequently with different
needs of information in terms of family planning.

Finally, Table 5 provides a description of the clusters based on background
or profiling variables. We perform a binary logistic regression to control simul-
taneously the ability of the profiling variables in discriminating the two cluster.
We confirm that São Paulo region is rather homogenous, as place of residence,
education of respondent, and occupation of respondent are not able to distinguish
the two clusters. Cluster allocation was based on the maximum posterior probability
estimate. For these variables, differences are rather small. Thus, the results show that
place of residence is not an important driver of the unobserved heterogeneity as it
happens in Northeast region of Brazil (Dias and Willekens, 2005).

Regarding cluster 1, only 10.1% of the women have less than 24 years in
opposition to cluster 2 with 59.5%. The same happens with the category never
married with 5.1% and 58.0% in clusters 1 and 2, respectively. We conclude that
the age and current marital status are the best variables to identify the clusters
with different needs and both play a pivotal role in identifying family planning
needs for this population, as they differ at different stages of the life course.
These results have implications for family planning policies and programmes. In
particular, communication and other media supports should be developed taking
into account age groups as they define segments with distinct unmet needs of
information (Wedel and Kamakura, 2000).
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Table 5 Clusters profiling

Clusters
Background characteristics Aggregate 1 2

Age of respondent (in years)�

15–19 0.180 0.015 0.379
20–24 0.145 0.086 0.216
25–29 0.162 0.186 0.132
30–34 0.164 0.241 0.072
35–39 0.136 0.195 0.065
40–44 0.119 0.157 0.073
45–49 0.094 0.120 0.063

Place of residence
Capital, large city 0.444 0.450 0.437
Small city 0.335 0.339 0.330
Town 0.139 0.134 0.145
Countryside 0.082 0.077 0.088

Education of respondent
No education 0.027 0.027 0.026
Primary 0.277 0.335 0.208
Secondary 0.607 0.549 0.678
Higher 0.089 0.089 0.088

Current marital status�

Never married 0.292 0.051 0.580
Married 0.511 0.715 0.267
Living together 0.108 0.136 0.075
Widowed 0.015 0.014 0.018
Divorced 0.018 0.026 0.010
Not living together 0.055 0.058 0.050

Occupation of respondent
Employee 0.699 0.658 0.745
Self-employee 0.279 0.314 0.240
Employer 0.022 0.027 0.015

�p < 0:001

4 Conclusion

We provide a new approach to modeling demographic multistate data incorporating
unobserved heterogeneity and misclassification error. This research extends results
reported in Dias and Willekens (2005), in which contraceptive use dynamics were
modeled as a manifest process rather than a latent one. We applied this model to Life
History Calendar data from the Brazilian Demographic and Health Survey 1996 to
identify groups of women with similar contraceptive use and pregnancy careers. We
found two clusters with differential contraceptive use and dynamics. These results
have important reproductive health implications as they help identify subpopulations
with distinct unmet needs to be addressed using different programmes.
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An Approach to Forecasting Beanplot Time
Series

Carlo Drago and Germana Scepi

Abstract Visualization and Forecasting of time series data is difficult when the
data are very numerous, with complex structures as, for example, in the presence
of high volatility and structural changes. This is the case of high frequency data or,
in general, of financial data, where we cannot clearly visualize the single data and
where the necessity of an aggregation arises. In this paper we deal with the specific
problem of forecasting beanplot time series. We propose an approach based firstly
on a parameterization of the beanplot time series and successively on the chosen
best forecasting method with respect to our data. In particular we experiment with
a strategy to use combination forecast methods in order to improve the forecasting
performance.

1 Introduction

In the analysis of complex time series, such as high frequency data or financial
data with a peculiar data structure, it is not always possible to have effective
visualization and reliable forecasting. This problem was first studied in the Symbolic
Data Analysis literature (Diday and Noirhomme-Fraiture, 2008) where important
results in Symbolic Forecasting were obtained by Maia et al. (2008) on Interval-
data, then by Arroyo et al. (2010) on Histogram data. The problem of the
visualization of complex time series has been explored in a previous paper proposed
by Drago and Scepi (2011). This paper verified the necessity of searching and
analysing an aggregate behaviour for complex data and defined a new peculiar
aggregated time series called beanplot time series. Here we propose an approach
for forecasting beanplot time series. In particular, following a short introduction
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on the definition and main characteristics of beanplot time series (in Sect. 2), we
deal with the problem of searching an appropriate parameterization for defining
an external model with the aim of forecasting beanplot time series. We propose
our forecasting approach in Sect. 4, while we illustrate it using real data in the
application (Sect. 4.1). In the specific case of financial and high frequency data,
we are trying to predict the associated risk or the volatility that can occur over time.
Size and shape can represent either the internal variation over the interval temporal,
so, in this sense there is a specific link between the data collection and quantitative
methods used: we try to forecast the market “instability” or the internal variation in
the data.

2 Beanplot Time Series, Internal and External Modeling

The Beanplot time series fbYt g t D 1 : : : T is an ordered sequence of beanplots
or densities over time. The time series values can be viewed as realizations of an
X beanplot variable in the temporal space T , where t represents the single time
interval. The choice of the length of the single time interval t (day, month, year)
depends on the specific data features and objectives the analyst wants to study.
A beanplot realization at time t is a combination between a 1-d scatterplot and a
density trace. It is defined (Kampstra, 2008) as:

Ofh;t D 1

nh

iD1X

n

K
�x � xi

h

�
(1)

where xi i D 1 : : : n is the single observation in each t , K is a Kernel and a h is
a smoothing parameter defined as a bandwidth. K can be a Gaussian function with
mean zero and variance 1. The Kernel as we know is a non-negative and real-valued
function K.z/ satisfying:

R
K.z/d z D 1;

R
zK.z/d z D 0;

R
z2K.z/ D k2 < 1

with the lower and upper limits of integration being �1 and C1. It is possible to
use various Kernel functions: uniform, triangle, Epanechnikov, quartic (biweight),
tricube (triweight), Gaussian and cosine. The choice of the kernel in the beanplot
time series seems not particularly relevant (Racine, 2008) and our simulations show
the different kernels tend to fit similarly the underlying phenomena. The choice of
the h value is more important than the choice of K (Silverman, 1986). To select the
h is commonly used the MISE, the mean integrated squared error:

MISE.h/ D E

Z

. Ofh.x/ � f .x//2 dx: (2)

With small values of h, the estimate looks “wiggly” and spurious features
are shown. On the contrary, high values of h give a too smooth estimate and it
may not reveal structural features, as for example bimodality, of the underlying
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density. In literature, several methods for choosing the bandwidth were proposed
(Jones et al., 1996). The choice of the bandwidth is relevant (Drago adn Scepi,
2010) also because some observations or internal models can be considered outliers
and they need to be handled or weighted differently. In our approach we choose the
value of h from whose computed with the Sheather Jones method (Sheather and
Jones, 1991) that defines the optimal h in a data-driven approach. In the beanplot
the variability or size is represented by the interval related to the minima aLt and the
maxima aUt . The beanplot interval Œat �, is the ordered pair Œat � D ŒaLt ; aUt � where
aLt ; aUt are the interval bounds such as aLt 	 aUt . Inside the interval ŒaLt ; aUt �
are represented the single primary observations (represented as a 1-dimensional
scatterplot or strip chart) so we are able to understand the location of the single
observations. The measure of size in the beanplot fbYt g is:

aSt D aUt � aLt t D 1 : : : T: (3)

At the same time it is possible to consider the interval composed by the two
consecutive sub-intervals (or half-point) through the beanline (the radii of the
beanplot fbYt g): Œa� D haCt ; aRt i with aCt the centre and aRt the radii. At this
point, we need to define an external model before forecasting our data. Our idea
is to parameterize each beanplot by using specific attributes of each beanplot and
by considering their realization over the time. So we define a Beanplot Attribute
Time Series a realization of a single beanplot fbYt g t D 1 : : : T descriptor over the
time. We decide to consider the coordinates Nx and Ny as descriptors of the beanplot.
We refer to them as descriptor points because we show they measure the beanplot
structure. In particular, the Nx time series show the location and the size of the
beanplot over the time while the Ny represent the shape over the time (see Figs. 1–3).
To specifically parameterize the beanplot we first choose the number n of descriptor
points and then we obtain the coordinates Nx and Ny. If we consider an high number of
points n in the procedure, we obtain a more precise approximation of the beanplot.
In our approach, we consider the values of Nx and Ny corresponding to the 25th, 50th
and 75th percentile. We define this procedure internal modeling. For each descriptor,
we obtain an attribute time series considering all parameters over time.

3 An Approach to Forecasting Beanplot Time Series

The second step is analysing the structure of the external models. Therefore we
have to test the structure of each attribute time series. As we know, they represent
the beanplot dynamics over the time, so we can use a specific method to forecast
the attribute time series to obtain the prediction at time t C 1, t C 2 and so on.
Successively we must decide which model has to be used for the forecasting
approach. We can use univariate methods or multivariate methods. In the first case
we are assuming there is no specific relationship between the attribute time series, in
the second case we are assuming a relationship exists. So it is important first to test
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the stationarity of the attribute time series and successively to define the possible
cointegration between the series. Then, it is important to verify the autocorrelation
of the attribute time series and the possible structural changes. Only at the end of
this analysis do we decide which model can be used for forecasting our attribute
time series. After the identification of the forecasting models, it is necessary to
estimate the different models for obtaining the forecasts and, finally, to evaluate
the reliability of our forecasts. The diagnostic procedure is important because we
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can evaluate the models and eventually to re-specify them. At the same time, it
is very useful to consider the performance of the different forecasting models by
considering some evaluation indexes. Anyway, using more than one forecast may
be necessary to obtain better predictions (Timmermann, 2006). So we have:

Ft D �1.t/F
1
t C �2.t/F

2
t C � � � C �m.t/F

m
t C �t : (4)

In the combination of the forecasts we use F1 : : : Fm forecasts coming from dif-
fering forecasting techniques (i.e. Exponential Smoothing, Splinef, Theta methods).
Various strategies of the weights estimation of the combination model �1 : : : �m are
used. Firstly, there can be some structural changes and it could be necessary to
take into account more than one forecasting model. Secondly, the use of different
models can reduce the risk associated with choosing one single model. The complete
procedure is depicted in Algorithm 1.

4 Forecasting the Beanplot Time Series Related to the Dow
Jones Market

The application is related to the Dow Jones market data set from the years 1928–
2010, and its purpose is to forecast the beanplot time series for the specific period
2009–2010. In particular we consider in the models the data from the 1998–2008.
The specific aim in the forecasting process is to predict the instability in the market
over time. Methods used in the forecasting models are Smoothing Splines and
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Algorithm 1: Forecasting beanplots algorithm
Data: A set of attribute time series for the beanplot series

˚
bYt
�
t D 1 : : : T each one

representing a different model parameter k 2 K
Result: A set of F forecasts of the attribute time series representing the predictions of the

models
begin

Choice of the forecasting horizon considered I
Choice of the number of observations n to consider in the models
Is there a relationship between the attribute time series?
if so, then then

are the series stationary? Model the series using a VAR
Are the series cointegrated? Model the series using a VECM
Obtain F 1 to Fm forecasts for each k

end

for k 2 K do
Model the series using different univariate methods
Obtain F 1 to Fm forecasts for each k

end
Model Diagnostics
if Residuals aren’t white noise then

Re-specify the models
end

Compute accuracy forecast measurements
Forecasts combination
if A combination can improve the forecasts then

Choice the alternative forecast strategy
end

Search Algorithm
Is the set of information (the n observation used) optimal?
if The set of information is not optimal then

Seek for the best interval maximizing the forecasts accuracy
end

end

Automatic Arima (Hyndman and Khandakar, 2008; Hyndman, 2011) primarily,
and also VAR (Vector Autoregressive Models) and VECM (Vector Error Correction
Models) in the case of the Y attribute time series. In a second forecasting model we
use a combination approach, by combining different forecasts obtained by different
methods. Lastly, we compare all the results, using as a benchmark the Naive model
(that is representing the prediction obtained by considering the last observation).
Here we compute the set of X attribute time series (years 1996–2010), by starting
from the parameterization of coordinates. Here we can consider a different temporal
interval than the interval used in the data visualization (for considering the statistical
features of the beanplots). At the end of the parameterization, we obtain 6 attribute
time series (3 for the X and 3 for the Y ) around 60 observations (years 1996–2010
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approximately). The three X attribute time series are related to the 25th, 50th and
the 75th percentile where each Y is associated to the X . We call these intervals as
extreme risk intervals, with minima or lower risk, median risk and maxima or upper
risk. These intervals are directly related to the beanplot structure. The attribute time
series for the X show the long run dynamics of the beanplots and also the impact of
the financial crisis. By considering the Y attribute time series (year 1996–2010), we
need to remind that we are considering a different temporal interval (not the yearly
temporal interval) but only 2 months (around 40 observations in a beanplot data). In
this representation, we can observe the complexity of the initial series, observed in
particular in the changes from time to time in the beanplot shapes (represented by
the Y ). This behaviour is related to the short run dynamics of the series.

4.1 Diagnostic Models an Accuracy of the Forecasts

We start to use as an univariate forecasting model the Smoothing Splines for the
three X attribute time series. Results are compared with the real value, where
the previous observations represent the naive forecasting model. We outperform
the naive model. In particular, we perform a MAPE of 5–6 %. The result seem
to be good, and anyway the lower part of the beanplots (the lower risk interval)
it is more difficult to predict in conditions of high volatility, so we expect in these
cases lower performance in the prediction models. By considering an alternative
and competitive forecasting univariate model (by Automatic Arima) we outperform
the naive forecasting model but also outperform the smoothing splines approach.
In particular the automatic Arima algorithm selects the best Arima model by
minimizing the AIC (Akaike Information Criteria index). We consider the Y

attribute time series associated to the X attribute time series in the stationary
framework as example of the VAR forecasting model. Here as well, we outperform
the naive model, but anyway the results are not as good as in the X case. Here,
for predicting the Y attribute time series we use the Smoothing Splines approach
two times out of three, the models outperform the naive method. In any event,
the performances of the methods for the Y are not as good as the X case (and
that could be expected by understanding the nature of the attribute time series).
The Smoothing Splines approach seems to be the best approach for the Y case in
forecasting of the Y attribute time series. We consider another relevant element: an
original algorithm that optimizes the forecasting model by selecting the relevant
temporal information (by minimizing the MAPE in the validation period of the
model). Therefore, the procedure is divided into distinct parts: running the algorithm
to minimize the MAPE in the validation period and using the temporal interval for
the forecasting. In this way we are explicitly selecting the relevant set of information
(without structural breaks) in our data. The results seems to be good (at least with
respect to the other models used as benchmarks). The decision to use a selection
algorithm of the optimal interval for the Y attribute time series can be explained
because we are dealing explicitly with very volatile attribute time series (the Y ) with
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Table 1 Accuracy of the forecasting models on the attribute time series

Attribute time
series Method 1 2 3

X Smoothing Splines 6.79 7 3.28
X Auto Arima 7.23 0.87 4.22
X Combination forecasts 2.18 2.72 2.12
Y Smoothing splines with search 24.11 34.92 24.54
a The considered forecast accuracy measure in the table is the Mean Absolute Percentage Error

(MAPE)

dynamics with occurrence of frequent structural changes. See Table 1 to compare
the MAPE for the Y as different attribute time series. We use combinations for two
reasons: we can take into account precisely the uncertainty in choosing a specific
model (in fact sometimes the choice of a specification in a single forecasting model
can be very hard) and we can specifically take in account the structural changes that
could be captured (or we try to capture) by considering combinations of forecasts.
Therefore, we consider predictions obtained by using various methods: Smoothing
Splines, Auto-Arima, the mean of the period, the Theta method and the Exponential
Smoothing. See Table 1 to compare the different MAPE for the X . We do not use
any special weighting structure but we consider only the average between results
obtained by the different methods. The forecasting performances outperform the
single other models based on the single forecasting model chosen. Here we are
considering an interval of prediction of five periods ahead (for this reason we do not
apply this method to the Y ).

5 Conclusions

In this paper, we propose a new procedure to forecast beanplot time series. This type
of data seems relevant to taking into account the intra-period variability where the
time series are overwhelming and they need to be aggregated. In particular, the re-
sults are related to obtaining the data from the original time series, to parameterizing
these data (internal model) and applying these methods in forecasting financial
data (the external model) using combination forecasts. Future research will be
devoted to improving the forecasting processes considering different approaches
both in method (for example using methods as the K-Nearest Neighbor), and in
combinations of forecasting by considering other different approaches.
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Shared Components Models in Joint Disease
Mapping: A Comparison

Emanuela Dreassi

Abstract Two models for jointly analysing the spatial variation of incidences of
three (or more) diseases, with common and uncommon risk factors, are compared
via a simulation experiment. In both models, the linear predictor can be decomposed
into shared and disease-specific spatial variability components. The two models
are the shared model on the original formulation that use exchangeable Poisson
distribution as response multivariate variable and shared components model that use
a Multinomial one. The simulation study, performed using three different degree of
spatial unstructured poisson over-dispersion, shows that models behave similarly.
However, they perform differently for the shared clustering terms when a different
level of spatial unstructured over-dispersion is present.

1 Introduction

A great amount of the literature deals with disease mapping, as the statistical
analysis of geographical patterns of disease. Any spatial variation may be explained
by different risk factors, therefore disease mapping allows to state hypotheses
concerning their aetiology. Interest in joint disease mapping increased over recent
years: joint statistical modelling of several diseases on the same spatial location,
with different and common aetiologies. Joint analysis highlights common and
uncommon geographical patterns of risk and obtains more precise and convincing
results.

Various attempts to consider simultaneously more than one disease have been
made: by a multilevel model as Langford et al. (1999) and Leyland et al. (2000),
or by an ecological regression approach where a disease represent a covariate of
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the model as Bernardinelli et al. (1997). However, the joint modelling approach
seems to be more naive, as all diseases enter as response variables with reference
to unobserved latent risk factors. More recently, joint modelling following a
Multivariate Gaussian Markov random field has been proposed; see Gelfand and
Vounatsou (2003) and Jin et al. (2005). Dabney and Wakefield (2005) remade a
proportional mortality model to the joint mapping of two diseases.

In this paper, we focus on a particular class of models: shared component models.
Originally introduced by Knorr-Held and Best (2001), these models have been
extended to more than two diseases by Held et al. (2005) and from exchangeable
Poisson response to a Multinomial one by Dreassi (2007). In Dreassi (2007) a
Multinomial model (PL) is presented and compared with exchangeable Poisson
model (SC) by a real example. In this paper, a simulation study is conducted to
evaluate and compare more deeply the performances of both models.

The paper is organized as follows. Section 2 introduces the joint analysis
with shared components model following exchangeable Poisson model (SC) and
Multinomial models (PL). Section 3 describe the simulation experiment. Results
are showed in Sect. 4 and conclusion in Sect. 5.

2 Shared Components Models

Shared components models highlight common and specific spatial components,
allowing the linear predictor to be decomposed into shared and disease-specific
spatial variability terms.

2.1 Shared Components Exchangeable Poisson Model

Let yik denote the number of death cases for k-th disease (k D 1; : : : ; K) and
i -th area (i D 1, : : : ; I ). Each yik is assumed to follow a Poisson distribution with
parameters Eik�ik, where Eik represent the expected cases in i -th area and k-th
disease and �ik the relative risk. Following the standard model of Besag et al. (1991)
on consider a log link for �ik

log.�ik/ D ˛k C uik C vik (1)

where ˛k represents a cause-specific intercept, such as an overall risk level, uik is a
spatially structured term, and vik a spatially unstructured term.

The prior distribution for the model parameters is as follows. The intercept ˛k
has a flat non-informative distribution. The heterogeneity terms vik are independent,
each vik being Normal .0; 	�1vk / (	vk represents the precision parameter). Using
Gaussian Markov random fields (GMRFs) models in order to cope the spatial
structure, the clustering terms uik are modeled conditionally on ul�ik terms
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(� i indicates adjacent areas to i -th ones, l D 1; : : : ; I and ni their number;
where adjacent means that two areas share an edge or, for islands, that exists a
boat connection), as Normal. Nuik; .	ukni /

�1/ where Nuik D P
l�i

ulk
ni

.
The hyperprior distributions of the precision parameters 	vk and 	uk are assumed

to be Gamma .0:5; 0:0005/.
Following Knorr-Held and Best (2001) and Held et al. (2005), a model on

the shared components formulation is considered: the structured spatial terms
(clustering) uik in (1) are decomposed into a shared and a disease-specific effect.
So, for example, when K D 3 each disease’s clustering term could be

ui1 D us1i � !1 C us2i � ı1 C upi1
ui2 D us1i � !2 C us2i � ı2 C upi2
ui3 D us1i � !3

(2)

where us1i and us2i represent the shared clustering components (the know risk
factors pattern) and upi1 and upi2 the specific ones. The scale parameters!1; : : : ; !3
and ı1; ı2 allow the shared components to vary per cause by a constant factor.

Terms log!1; : : : ; log!3 and log ı1; log ı2, constrained to
P3

kD1 log!k D 0 and
P2

kD1 log ık D 0, are assumed to be multivariate normal distributed with zero mean
and variance covariance matrix respectively

˙! D �2!

0

@
1 �1=2 �1=2

�1=2 1 �1=2
�1=2 �1=2 1

1

A and ˙ı D �2ı

�
1 �1

�1 1

�

(3)

Knorr-Held and Best (2001) consider �2! D �2ı D 0:17. The us1i , us2i , upi1 and
upi2 terms are modelled following a GMRF as described before.

2.2 Shared Components Multinomial Model

In Dreassi (2007), following suggestions by proportional mortality model (Dabney
and Wakefield, 2005) and shared component model (Knorr-Held and Best 2001
and Held et al. 2005) to highlight similarity and dissimilarity on spatial patterns,
an other shared component model is introduced: a Multinomial (or polytomous
logit) (PL) model. In this model, a disease is regarded as reference category, and
for each predictor the shared components model formulae can be adopted. In the
model proportionality is assumed and then a model for death for each disease, area
and age-stratum j is considered without knowledge of the population at risk.

Let yij D .yij1; : : : ; yijk; : : : ; yijK/0 be distributed according to a multinomial
with parametersmij and probability vector 
ij D .
ij1; : : : ; 
ijk ; : : : ; 
ijK/0, where
mij D PK

kD1 yijk and
PK

kD1 
ijk D 1. A polytomous logit model is considered:
each category probability is modeled as
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ijk D �ijk=

KX

rD1
�ijr (4)

where each log odd

log.�ijk/ D ˛k̆ C aj̆k C uĭ k C vĭ k (5)

is decomposed additively into a disease-specific intercept ˛k̆ (representing overall
difference between k-th disease and K-th reference disease), aj̆k a time-structured
term by age and disease representing difference between k-th disease and reference
category, and structured uĭ k and unstructured vĭ k spatial effects (again representing
difference on the spatial structured and unstructured spatial terms between the
disease k considered and the reference disease).

For the aj̆k term a first order random walk with independent Gaussian increments
is assumed. For the other terms prior are equal to SC model.

Representing, for example, the third disease the reference category (when
K D 3), ˛3̆ D 0, aj̆ 3 D 0 (for each age-class j D 1; : : : ; 13), uĭ 3 D 0 and vĭ 3
(for each area i D 1; : : : ; I ) are defined, as constraint for identifiability.

Note that terms uĭ1 and uĭ 2 represent differences between first disease and
reference category disease clustering, and between third disease and reference
category disease clustering, respectively,

uĭ1 D ui1 � ui3 and uĭ 2 D ui2 � ui3 (6)

We consider a model where the difference structured spatial terms (clustering) in
Eq. (5) are decomposed into a shared and a disease-specific effect (Held et al. 2005).
We can represent each clustering term for the first and second disease, respectively,
as

uĭ1 D us2i � ı1 C upi1 and uĭ 2 D us2i � ı2 C upi2 (7)

where us2i is the shared clustering component and upi1 and upi2 is the disease
specific one; both are distributed according GMRF models. Prior distributions are
the same described before for SC model. Note that Eqs. (6) and (7) imply

ui1 D ui3 C uai � ı1 C upi1 and ui2 D ui3 C uai � ı2 C upi2 (8)

which is different from Eq. (2) because we are forcing to be !1 D !2 D !3.

3 Simulation Study

To evaluate the proposed shared components models, considering exchangeable
Poisson (SC) or Multinomial (PL) models, we conducted a simulation study.
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us10 us20 up10 up20

Fig. 1 True clustering terms

The shared components models used for the simulation experiment has been
conceived with reference to a specific application: three diseases, a common risk
factor and another risk factor shared by two diseases only. In the present application,
the incidence of the disease that shared only one risk factor represents the reference
category for the Multinomial model (PL). Then a shared component is considered,
representing the second risk factor common only for the two diseases adjusted for
the first risk factor. Finally, including disease specific terms in the predictors, the
possibility of other different risk factors is investgated.

We used three different disease maps (each map with n D 225 areas) taken
square areas over a 15 � 15 grid. For each i -th area i D 1; : : : ; 225, and for each
k disease k D 1; 2; 3, we generated 100 deaths counts from Poisson .100 �0ik/. We
assumed that each log �0ik for k D 1; 2; 3 is equal to

log �0i1 D us10i C us20i C up10i C vi1

log �0i2 D us10i C us20i C up20i C vi2

log �0i3 D us10i C vi3

(9)

us10 range from �0:20 to 0:22, instead us20, up10 and up20 range from 0 to 0:15.
We fix !1, !2, !3, ı1 and ı2 equal to 1 and ˛ and heterogeneity vik equal to zero.

Figure 1 shows the map of each clustering terms: shared us10 and us20, and
specific up10 and up20 respectively. Figure 2 describes the disease true map �0k for
the latter parameter setting.

Then, we consider different specification for heterogeneity terms vik : a normal
random effect with zero mean and �2 equal to 0.10 or 0.20. The performances of
different models considering no heterogeneity, or heterogeneity at different level
are evaluated with respect to two basic criteria: the Bias (BIAS) and the root mean
squared error (RMSE).

We estimate us1 us2 up1 up2 using (SC) shared poisson model and us2 up1 and
up2 using (PL) multinomial model.

The marginal posterior distributions of the parameters of interest for both models
are approximated by Monte Carlo Markov Chain methods.
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θ01 θ02 θ03

Fig. 2 True map of disease

us1SC us2SC up1SC up2SC

Fig. 3 Estimated clustering terms with SC

The estimates for SC model are obtained using specific MCMC software. It uses
joint updates of the latent spatial fields and it is able to incorporate sum to zero
constraints in spatial fields explicitly in the prior and in the MCMC algorithm.

For PL model we used Brugs library of R software in order to perform the
MCMC analysis. The convergence of the algorithm has been evaluated for a
subset of identifiable parameters (precision hyperparameters) for some simulation
iteration. The algorithm seems to converge after a few thousand iterations. However,
given also the very high number of (non monitored) parameters in the model, we
decided to discard the first 200,000 iterations (burn-in) and to store for estimation
2,000 samples (one each 100) of the following 200,000 iterations.

4 Results

Figures 3 and 4 show the average over the 100 simulated data of clustering terms
estimates by the two different models. Each average map is on a 15 � 15 grid, with
the same levels of gray (from �0:177 to 0:168).

Results about mean BIAS and mean RMSE over areas are set out in Tables 1–3.
They suggest a similar behavior of the models for specific clustering terms up1 and
up2, while PL performs lower than SC for shared clustering term us2. However,
when �2 increases, so spatial unstructured poisson over-dispersion is higher, PL
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us2PL up1PL up2PL

Fig. 4 Estimated clustering
terms with PL

Table 1 Mean BIAS and mean RMSE from shared component Poisson model (SC) and shared
components Polytomous model (PL) for shared and specific clustering components. No hetero-
geneity terms

Mean BIAS Mean RMSE

Clustering SC PL SC PL

us1 �0.017 0.069
us2 �0.012 �0.046 0.038 0.099
up1 �0.012 �0.012 0.016 0.018
up2 �0.012 �0.013 0.017 0.019

Table 2 Mean BIAS and mean RMSE from shared component Poisson model (SC) and shared
components Polytomous model (PL) for shared and specific clustering components. Heterogeneity
terms using �2 D 0:10

Mean BIAS Mean RMSE

Clustering SC PL SC PL

us1 �0.017 0.306
us2 �0.012 �0.050 0.124 0.094
up1 �0.012 �0.013 0.016 0.020
up2 �0.012 �0.013 0.018 0.020

Table 3 Mean BIAS and mean RMSE from shared component Poisson model (SC) and shared
components Polytomous model (PL) for shared and specific clustering components. Heterogeneity
terms using �2 D 0:20

Mean BIAS Mean RMSE

Clustering SC PL SC PL

us1 �0.017 0.439
us2 �0.102 �0.060 0.125 0.090
up1 �0.012 �0.013 0.017 0.020
up2 �0.012 �0.012 0.018 0.020

performs better than SC for shared clustering term us2 in terms of mean RMSE. For
higher level of this over dispersion SC model seem to be more unstable to identify
the two shared clustering terms.
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5 Conclusion

As stated in Dreassi (2007), the SC model for joint disease mapping is perhaps more
‘natural’ and ‘elastic’ than PL model: both risk factors are considered as shared
components of the model, and both common clustering terms are allowed to vary
per cause for a multiplicative constant factor. In turn, the PL model gives some
advantages: it allows to analyse mortality data without knowing the population
at risk and to consider variability on age effect estimates in the model. Using a
particular disease as reference category, we can omit a GMRF for the shared terms
common to all the diseases with some advantages on computational time; moreover
using a Multinomial model instead than exchangeable Poisson for a multivariate
problem seem to be more convenient. Advantages and disadvantages for each model
have been disregarded using an unrealistic, but particular simulation experiment;
accordingly results from simulation give us information about the performances on
estimating clustering terms. The simulation study suggests that both models provide
similar estimates; however, PL model behaves lower for shared clustering term when
spatial unstructured poisson over-dispersion is not present.
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Piano and Guitar Tone Distinction Based
on Extended Feature Analysis

Markus Eichhoff, Igor Vatolkin, and Claus Weihs

Abstract In this work single piano and guitar tones are distinguished by means
of various features of the music time series. In a first study, three different kinds of
high-level features and MFCC are taken into account to classify the piano and guitar
tones. The features are called high-level because they try to reflect the physical
structure of a musical instrument on temporal and spectral levels. In our study, three
spectral features and one temporal feature are used for the classification task. The
spectral features characterize the distribution of overtones, the temporal feature the
energy of a tone. In a second study as many low level and the high level features as
possible proposed in the literature are combined for the classification task.

1 Introduction

What characterizes the sound of a musical instrument? Because single tones
of different instruments may have the same pitch and loudness, it is important
to consider timbre represented by the distribution of overtones in periodograms
to distinguish instruments. This distribution depends on the physical structure
of the musical instrument, see Fletcher (2008). Also the non-harmonic timbre
characteristics play an important role as stated in Livshin and Rodet (2006).
On the other side the energy of every single tone has got a temporal envelope
that differs from one musical instrument to another. Both ideas are used in
this paper to build so-called high-level features for instrument characterization.
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Moreover, MFCC have already shown to be useful for classification tasks in speech
processing (Rabiner and Juang, 1993) as well as in musical instrument recognition
(Krey and Ligges, 2010). One of the first studies with the deeper analysis of audio
feature impact for automatic instrument identification was provided in Brown et al.
(2001). We designed two different studies for identification of piano and guitar
tones. The first one takes four concrete groups of high-level features into account
and provides a classifier hyperparameter tuning for the building of models within
the R software package (Bischl, 2011). Another one considers a very large feature
set from the actual research and implies the feature selection by evolutionary
strategies implemented in AMUSE (Vatolkin et al., 2010). Though the results of
the both studies can not be directly compared because of the different focus points
(less and well-designed features with more classifier tuning against many features
with sophisticated selection but no hyperparameter analysis), they give some
important insights for the handling of the partial steps of the complex instrument
identification task.

2 First Study: Characterization by High Level Features

Each tone consists of an audio signal xŒn�, n 2 f1; : : : 52920g, the first 1.2 s are
used for the calculation of the feature vectors. The signal has a sampling rate sr D
44; 100Hz. Each piano or guitar tone is windowed by half-overlapping segments ws ,
s 2 f1; : : : ; 25g of a size of 4,096 samples. It can be divided into four phases: Attack,
decay, sustain and release (see Fig. 1). In order to distinguish such phases, blocks
of five consecutive time windows each are constructed (see Fig. 2) and so-called
block-features are calculated for each block by taking medians over the window-
wise calculated characteristics.

2.1 Groups of Features

Taking the upper and lower shape of the energy envelope of a tone into account
the absolute values jxŒn�j define the so-called Absolute Amplitude Envelope e 2
IR1�132 as follows by using non-overlapping frames of size 400:

e D
�

max
1	i	400fjxŒi�jg; max

401	i	800fjxŒi�jg; : : : ; max
l�399	i	52800fjxŒi�jg

�

; l D
�
N

400

�

� 400:

In the study, overall 132 Absolute Amplitude Envelope block features are used.
A visualization of the Absolute Amplitude Envelope is given in Fig. 3 for a piano
tone.

The periodogram PX of each window is calculated at fixed Fourier-coefficients
fk1; : : : ; k2048g of a signal X . Additionally for each window the fundamental
frequency (called Of0) is estimated by using tuneR (Ligges 2010) so that overtones
can be calculated as Ofi D .i C 1/ � Of0; i 2 f0; : : : ; 13g:
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Fig. 1 ADSR-curve of a musical signal

Fig. 2 Blocks of a tone

Fig. 3 Musical signal and its envelope
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Fig. 4 Pitchless periodogram

At first the fundamental frequencies Of ws
0 are estimated per window ws , s 2

f1; : : : ; 25g and as described in the beginning of the second section the estimated

block-fundamental-frequencies Of b
d
r
5 e

0 and block-overtones Of b
d
r
5 e

i are calculated as

Of b
d
r
5 e

0 D median
� Of wr

0 ; Of wrC1

0 ; : : : ; Of wrC4

0

�
and Of b

d
r
5 e

i D .iC1/ Of bd
r
5 e

0 for r 2 f1; 6;
11; 16; 21g, i 2 f0; 1; : : : ; 13g.

After calculating the thirteen block-overtones and block-fundamental-frequency
the Pitchless Periodogram (PiP) p 2 IR70 can be calculated. It is defined as

p D
�
p
k0
1 ; p

k1
1 ; : : : ; p

k13
1 ; p

k0
2 ; : : : ; p

k13
2 ; : : : ; p

k0
5 ; : : : ; p

k13
5

�
;

p
ki
d r5 e WD median

�
Pxwr

.ki /; PxwrC1
.ki /; : : : ; PxwrC4

.ki /
�
;

with ki defined by

ˇ
ˇ
ˇ
ˇ

Of b
d
r
5 e

i � ki=4096 � sr
ˇ
ˇ
ˇ
ˇ D min1	j	2048

ˇ
ˇ
ˇ
ˇ

Of b
d
r
5 e

i � j=4096 � sr
ˇ
ˇ
ˇ
ˇ,

i 2 f0; 1 : : : ; 13g, r 2 f1; 6; 11; 16; 21g.
The periodogram is called pitchless because the pitch is ignored, only the

periodogram heights are considered on an equidistant scale i 2 f0; : : : ; 13g. In
the study, overall 70 Pitchless Periodogram block features are used. In Fig. 4 the
Pitchless Periodogram of one piano and one guitar tone (first block) can be seen
for 10 overtones. A log-transformation of the original pitchless periodogram feature
vector is carried out to improve visualization.

The power spectrum is calculated by a Discrete Fourier Transformation (DFT)
using Hamming windows and a subsequent log-transformation. After mapping the
powers of the spectrum onto the mel scale by using triangular filters the discrete
cosine transformation is applied yielding the MFCC coefficients (see Rabiner and
Juang 1993). In the study, overall 80 MFCC block features are used. Figure 5 shows
an example of the MFCC.
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Fig. 5 MFCC

Fig. 6 LPC simplified
spectral envelope

The Linear prediction Coefficients (LPC) Simplified Envelope is a smoother
of the spectral envelope (see Makhoul 1975). In the study, overall 125 LPC block
features are used. Figure 6 shows an example of the LPC Simplified Spectral
Envelope of a piano tone.

2.2 Classification and Evaluation

Classification was carried out using 270 guitar and 275 piano tones to train the
models by means of three randomly chosen tenfold cross-validations and 4,309
guitar and 1,345 piano tones for evaluation. For variable selection in each iteration
of each cross-validation a logistic model is calculated and by stepwise forward
selection those variables are selected that minimize the AIC-criterion (Akaike,
1974). Three vectors v;w; z each containing the frequencies of selection per variable
and per cross-validation are calculated. Only those variables may be selected which
have been chosen at least, e.g., nine of ten times in the median by the criterion
(V � 9). These are those entries of the vector vmed D .median.vi ;wi ; zi //iD1;:::;d ,
d D number of variables, that are equal to nine.



220 M. Eichhoff et al.

Table 1 Evaluation results (mmce) in % with or without variable filtering

Dimensions: 70 276 212 6 6
methods P PLM PLM (Mnw) PLM (V 
 9) PLM (Mnw, V 
 8)

SVM 79.06 59.25 50.05 6.44 3.78
ADABOOST 16.66 3.50 1.72 6.3 4.60
KNN 26.70 16.03 18.63 8.57 6.41
RANDOM FOREST 17.85 4.82 4.15 6.05 5.87
P, PiP; L, LPC (downsampled to 22,050 Hz); M, MFCC; Mnw, MFCC not windowed

Table 2 Classification results by using sequential forward selection

Methods PLM Dim. PLM (Mnw) Dim.

LDA 6.75 7 6.40 6
LOGREG 7.56 7 5.05 7
ADABOOST 7.12 6 3.35 10

The example tones are taken from the McGill University Master DVD set
(McGill University, 2010), from the RWC database (Goto et al., 2003) and the
music instrument samples of Electronic Music Studios, Iowa (University of Iowa,
2010). In Tables 1 and 2 the evaluation results of the classification with the
eight different statistical classification methods linear discriminant analysis (LDA),
logistic regression (LOGREG), decision trees (RPART), support vector machines
(SVM, Gauss-kernel), boosting, k-nearest-neighbour (kNN) and random forests are
shown. The last five methods have hyperparameters. For these methods, in the tables
the mean misclassification error corresponds to that hyperparameter combination
that leads to the lowest mean misclassification error over the three different tenfold
cross-validations. The computational calculation was done with MATLAB (Lartillot
and Toiviainen, 2007) and the R-packages tuneR and mlr, see Ligges (2010) and
Bischl (2011).

From Table 1 one can see that the best result is reached for the non-windowed
version of PLM with the Adaboost method. It can also be seen that variable selection
by a logistic regression pre-step may drastically reduce the error rate, e.g. in case of
SVM and kNN. Table 2 shows that the results by using sequential forward selection
embedded in the classification step itself are similar to the ones carried out by a
variable selection in a pre-step (see Table 1).

2.3 Interpretation of Selected Features

Table 3 shows examples of selected features coded as (name blocknumber feature-
number). Obviously, the first and the fifth block are the most important. The first
block contains the first 0.279 s and corresponds to the attack phase of the tone
that is rather specific for musical instruments. The fifth block starts after 1.117 s
containing, thus, the declining part of the energy (sustain or decay-phase) which
appears to be also useful to discriminate between piano and guitar tones.
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Table 3 Classification results by using different forward selection methods

Methods Detected features

PLM (Mnw, V 
 8) lpc block5 6, lpc block5 8, mfcc 1, mfcc 2,chroma block1 1stOT
PLM (V 
 9) lpc block5 8, mfcc block1 1, mfcc block1 4,mfcc block5 1

mfcc block5 2
PLM (Mnw), mfcc 2, mfcc 1, chroma block1 6thOT,lpc block4 8
ADABOOST (sfs) lpc block5 6, lpc block1 10, lpc block5 11, chroma block2 7thOT

lpc block1 9, lpc block4 3
PLM, LDA (sfs) mfcc block5 2, mfcc block1 1, mfcc block5 1, chroma block4 1stOT

lpc block5 8, lpc block1 6,lpc block4 24

Table 4 Mean values of hold out errors and selected features after 1,500 evaluations

ES parameters Error No. of selected features

p01 � C4.5 Random forest NB SVM C4.5 Random forest NB SVM

0.1 32 16.98 14.97 11.38 07.00 338.2 343.9 258.6 357.6
0.01 32 19.57 13.68 10.89 07.01 335.1 339.1 198.9 344.1
0.001 32 16.76 12.93 12.25 07.27 332.9 332.6 245.8 348.1
0.001 128 16.47 13.42 13.42 08.31 133.5 199.6 37.1 222.0

3 Second Study: Classification with a Large Feature Set

In a second study we started with a rather large feature set and applied feature
selection by means of an evolutionary strategy searching for the best characteristics
for building of classification models. We used a set of audio descriptors introduced
in (Theimer et al, 2008) extended with many MIR Toolbox functions (Lartillot
and Toiviainen, 2007). The extraction was done within the framework AMUSE
(Vatolkin et al., 2010). The initial number of the feature dimensions was equal to
265. Since we distinguished between the features extracted from the middle of the
attack interval, onset frame and the middle of the release interval, the number of the
features to select was finally set to 265 � 3 D 795. Classification was carried out by
decision tree C4.5, random forest, naive Bayes (NB) and SVM (with linear kernel).

Evolutionary Strategies (ES) were applied for feature selection as developed in
Bischl et al. (2010). The solution representation was a binary vector with lengthM
equal to the number of features: f D ff0; : : : ; fM g (fi D 1 if the i -th feature is
selected; otherwise fi D 0). We applied asymmetric mutation in order to reduce
the number of selected features. The asymmetric switch probabilty p01 was set to
f0:1; 0:01; 0:001g. The general mutation probabilty � was set to 32=M , but 128=M
for p01 D 0:001. We carried out 10 statistical runs with 1,500 evaluations for each
classification algorithm and each ES parameter configuration. As the fit criterion we
used the tenfold cross validation training error.

Table 4 illustrates the mean error and the mean number of the remained features
over 10 ES runs on the test set. Figure 7 summarizes the results for the different
classifiers for both training and test errors. It can be clearly seen, that the classifier
choice has a larger impact on the performance than the ES parametrization.
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Fig. 7 Both errors after optimization runs (circles: C4.5; squares: random forest; diamonds:
NB; triangles: SVM)

Fig. 8 Progress of an exemplary optimization run for SVM

SVM achieves the smallest errors on the test set. Random forest outperforms C4.5
in most cases. It is interesting to see, that naive Bayes is slightly better than random
forest on the test set despite of the rather poor performance on the training set.
The drawback of the optimization can be seen in the Fig. 8: though the inner CV
error continuously falls during the optimization, the outer hold out error can not be
predicted and increases during the evaluation progress due to overfitting.
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Another interesting observation is the number of selected features after the
optimization (cf. Table 4): after 1,500 evaluations for SVM runs still more than 200
features are used, whereas naive Bayes optimization decreases the number of the
selected features to less than 40 for ES with � D 128 and p01 D 0:001. It can also
be seen that decreasing p01 is not strongly reducing the feature number. However,
an extended ES parameter analysis is beyond the scope of this work.

4 Conclusions

As the classification of piano and guitar tones show good results – especially in case
of high level features and variable selection – we next would like to consider the
classification of other musical instruments like strings and reed instruments together
with piano and guitar.
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Auralization of Auditory Models

Klaus Friedrichs and Claus Weihs

Abstract Computational auditory models describe the transformation from acous-
tic signals into spike firing rates of the auditory nerves by emulating the signal
transductions of the human auditory periphery.
The inverse approach is called auralization, which can be useful for many tasks,
such as quality measuring of signal transformations or reconstructing the hearing of
impaired listeners. There have been few successful attempts to auditory inversion
each of which deal with relatively simple auditory models.
In recent years more comprehensive auditory models have been developed which
simulate nonlinear effects in the human auditory periphery. Since for this kind of
models an analytical inversion is not possible, we propose an auralization approach
using statistical methods.

1 Introduction

An auditory model is a computer model of the human auditory system. It requires
an acoustic signal as input and outputs the spike firing rates of the auditory nerve
fibers. The human auditory system consists of roughly 30,000 auditory nerve fibers
but in auditory models this is usually simplified by a much smaller quantity. In most
models the auditory system is coded by a multichannel bandpass filter where each
channel represents one specific nerve fiber. As in the human system each channel
has its specific center frequency by which the perceptible frequency range is defined.
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The inversion procedure to resynthesize the original signal from the auditory
model output can be used for quality measurements of signal algorithms. Therefore,
it is not essential to get the original signal but it is sufficient to get a signal which
sounds like the original one. This procedure is called auralization. One exemplary
potential of auralization is reconstructing the hearing of impaired listeners which is
a significant task for improving hearing aids. Jepsen has introduced how cochlear
hearing loss can be modeled in an auditory model (Jepsen et al., 2006). To interpret
the output of such a modified model the output simply has to be auralized through
the original auditory model.

There have already been successful attempts of auralization by analytical
inversion. However, they all deal with relatively simple auditory models. Slaney
et al. used an auditory model which contains of a filter bank, a half-wave rectifier
(HWR) and an automatic gain control. In their model only the HWR stage results in
information loss and can not be inverted directly. Hence, they introduced techniques
to reconstruct this information by using knowledge about each channel’s sig-
nal (Slaney et al., 1994). Hohmann presented an approach to invert the gammatone
filter bank, a filter which is used in many auditory models (Hohmann, 2002).
Feldbauer et al. analyzed the problem from another direction. They developed an
auditory model with the intention that it can be inverted with a relatively low
computational effort. Their model consists of the gammatone filter bank, a HWR,
a power-law compressor and an adaptive subsampling mechanism. While the effect
of the power-law compressor can be inverted directly, the HWR and the adaptive
subsampling mechanism are undone by bandpass filtering. Additionally, they used
two correction steps to compensate energy loss of the pulses (Feldbauer et al., 2005).

In recent years more comprehensive auditory models have been developed. The
most common model is the one of Meddis and Sumner which is based on animal
observations and psychoacoustic phenomena (Sumner et al., 2002). This model
contains of several stages:

1. Response of the middle ear, modeled by a second-order linear bandpass Butter-
worth filter

2. Filtering of the basilar membrane, modeled by a dual-resonance-nonlinear
(DRNL) filter

3. Inner-hair-cell model

(a) Transduction of basilar membrane motion into receptor potential
(b) Calcium controlled transmitter release function
(c) Quantal and probabilistic model of synaptic adaptation

4. Auditory-nerve response

Thereby, cochlear-nonlinearities are modeled which are important with respect to
many perceptual experiments. Unfortunately, the resulting problem is impossible to
invert analytically. Therefore, in this paper an auralization approach using statistical
methods is introduced.
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2 Auralization by Using Statistical Methods

In this study auralization is done for an auditory model of Meddis, which is modeled
by a 30 channels filter bank with center frequencies between 100 and 3,000 Hz.
Figure 1 shows an exemplary output of one channel. To simplify the problem in
this study it is assumed that the input stimulus is a harmonic tone. Harmonic tones
are typical for musical sounds. They consist of a fundamental frequency, the key
tone and integer multiples of this frequency, which are called overtones. The sound
of a harmonic tone is defined by its involved frequencies and the power of each
frequency. Figure 2 shows an exemplary harmonic tone which contains a key tone
of 100 Hz (91 dB) and the overtones of 200 Hz (83 dB) and 300 Hz (89 dB).

To resynthesize a harmonic tone in this paper a two-stage concept is proposed. In
a first step the overtones have to be detected by classification and in a second step
the power of each overtone has to be estimated by regression. A crucial method for
the whole task is to use the phase locking effect which was introduced by Moissl
and Meyer-Base (Moissl et al., 2000). This effect phase-locks the impulse rate of
the channels to the stimulus. In our problem this implies that each frequency, which
is part of the input signal, will also occur in some channels.
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2.1 Frequency Detection

In frequency detection the periodicities of each channel chart have to be analyzed.
Therefore, the discrete fourier transform (DFT) of each channel output is generated.
Because of the phase locking effect in each of these charts peaks should occur
at frequencies which are part of the acoustic stimulus. Such a peak gets stronger
the smaller the difference is between this frequency and the center frequency of
the channel. From this it follows that it is sufficient to detect in each channel
only the frequencies which are between the center frequencies of both surrounding
channels. Furthermore, the restriction on harmonic tones ensures that in each of the
30 channels at most one frequency has to be detected.

Figure 3 shows the DFT of channel 13 for a harmonic tone which includes an
overtone with the frequency of 400 Hz. This frequency is also the maximum peak
of this chart. A first approach is detecting the main peaks of all channels and, in
this way, getting all frequency components. Unfortunately, Fig. 4 shows that the
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maximum peak does not always define a frequency which is part of the acoustic
stimulus. Here the maximum peak is also at 400, but in this example 400 Hz is not
part of the input tone. After having detected the maximum peak of a channel it has to
be classified if this frequency is in fact part of the original signal in order to construct
a classification rule. In this study this is done by classification trees. Therefore, a
training set of harmonic tones is required. Because there are differences between
low and high frequencies each channel needs its own decision tree. For each tree
seven features are used: The suggested frequency itself, the power of the main peak,
the smoothness of this peak, the distance to the neighboring peaks and the power of
these peaks. These features are visualized in Fig. 5.

The main frequency is considered because the distance to the center frequency
of the channel could have an impact and a higher power of this peak should increase
its probability for being part of the input. Additionally, its smoothness as well as the
information about the neighboring peaks could yield essential information about the
relative power compared to the surrounding frequencies. Figure 6 shows the features
of a harmonic tone which consists of the frequencies 200, 400, 600 and 800 Hz. In
this example only the feature vectors of the bold typed channels are used. For all
other channels the main frequency can be neglected directly because it is outside
the particular channel range.

To test the approach a training set of 20,000 tones is used, generated by the
following rules. Each tones consists of up to 8 overtones and has a fundamental
frequency uniformly distributed between 80 and 1,080 Hz. Each overtone (up to
3 kHz) is chosen as a component with probability 0.7. Each component is generated
with a power uniformly distributed between 82 and 92 dB and the tone is built by
summarizing all components. Figure 7 shows an exemplary classification tree. The
error rates of the 30 decision trees are calculated by tenfold cross validation. As
it can be seen in Table 1 these error rates are between 0 and 0.4 %. This result is
even further improved when bringing the results of all channels together since most
frequencies can be detected in two channels.
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Fig. 6 Feature generation of an exemplary harmonic tone. In the first two columns the channel
number and its corresponding center frequency are listed. The third column shows the detected
main frequency of each channel chart. If it is similar to the center frequency the whole row is
marked bold and only in this case it has to be classified if the detected frequency is part of the tone.
The features, which are used for this classification task, are listed in columns 4–9. Finally, the last
column shows the target variable which enables supervised learning
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Fig. 7 Classification tree of channel 13
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Table 1 Error rates of frequency detection

Channel number 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
Error rate in % 0.4 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.2 0.3

Channel number 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30
Error rate in % 0.3 0.3 0.2 0.3 0.3 0.3 0.4 0.2 0.2 0.0 0.0 0.0 0.0 0.0 0.0

Table 2 Error rates of the power estimation of the 1st training set

Channel number 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
Average squared error 1.4 1.1 0.8 0.9 1.8 2.1 2.2 2.3 2.1 2.2 1.9 2.3 2.4 2.2 2.0

Channel number 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30
Average squared error 2.3 2.0 2.2 1.8 2.1 2.3 2.3 2.1 1.7 1.3 1.2 1.0 0.9 0.8 0.7

2.2 Power Estimation of Each Frequency

After having detected all frequencies which are components of the signal, the power
of each frequency has to be estimated. Therefore, a similar approach as for the
frequency detection is applied. The same features are used but here the target
variable is the power in dB of each frequency component. Again, we use decision
trees for this regression problem. This approach is further improved by additional
features: The average firing activity in the analyzed channel as well as the power of
the analyzed frequency in the other 29 channels are considered since it is supposed
that these two features are correlated with the sound volume of the frequency in
the input signal. Furthermore, there are strong interactions between the frequency
components of the input signal. Hence, also the overtone number of the analyzed
frequency and the frequencies of the other over tones are applied as features by
using the results of the frequency detection.

Again, a training set is used which is generated similar to the one used in
Sect. 2.1. In a second experiment a simplified training set is used in which each
harmonic tone consists of up to 4 overtones instead of 8. The error rates are
calculated again by tenfold cross validation. The average squared error of the 30
regression trees are listed in Table 2 for the first training set and in Table 3 for the
second training set. These error rates should be compared to the range of the power
of each frequency which is between 82 and 92 dB. Since the range is uniformly
distributed the naive approach, which estimates always the mean (87 dB), has an
estimated average squared error of 8.3 dB.

For the simplified tones of the second training set these error rates are between
0.2 and 0.7 dB. This is virtually not hearable for humans and ensures almost an
accurate reconstruction of the original signal. Unfortunately, the error rates for the
more complex tones are inferior. Here the error rates are up to 2.4 dB. The reason
is the following. With more possible overtones there are much more combinatorial
possibilities to generate harmonic tones which contain a specific frequency. But all
frequencies influence the firing activities of all channels.
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Table 3 Error rates of the power estimation of the 2nd training set

Channel number 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
Average squared error 0.4 0.2 0.2 0.4 0.3 0.5 0.5 0.4 0.5 0.5 0.6 0.4 0.7 0.5 0.6

Channel number 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30
Average squared error 0.6 0.7 0.5 0.6 0.6 0.4 0.5 0.3 0.3 0.4 0.3 0.2 0.3 0.2 0.2

3 Conclusion

Using classification and regression methods for auralization of auditory models
seems to be a promising approach. While the frequency detection is mostly solved
the power estimation of each frequency component still needs improvement. One
simple improvement could be a larger training set. Some pretests have shown that
smaller training sets than the ones used in the previous chapter lead to inferior
results. Therefore, it can be expected a larger training set will lead to smaller error
rates. Furthermore, other regression methods than decision trees might perform
better in the power estimation task. Another improvement could result from using
additional features and a criteria for variable selection.

Future studies have to show the ability to generalize the proposed auralization
approach to non-harmonic sounds. Finally, in order to reconstruct a series of
acoustic signals a mechanism for detecting temporal changes has to be developed.
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Visualisation and Analysis of Affiliation
Networks as Tools to Describe Professional
Profiles

Cristiana Martini

Abstract The analysis of professional profiles is both a crucial and a challenging
issue: professional profiles evolve over time, especially in the forefront fields. The
interrelations between working activities and professional profiles can be seen as
an affiliation network, where a set of actors (activities) co-participates in a set
of events (professions); the same is true with the relation between competencies
and professions. The techniques developed to analyse and represent affiliation
networks can then be applied to the analysis of professional profiles. This paper
discusses the application of some techniques developed to analyse and represent
affiliation networks to the analysis of professional profiles, with an example on the
professional profiles operating in the Research and Development (R&D) field.

1 The Analysis of Professional Profiles

The labour market is a mutable reality, where professional profiles change, and
new professional roles emerge and/or replace the old ones; the International
Labour Office (ILO) periodically updates the International Standard Classification
of Occupation (ISCO), as far as most of the national statistical agencies. The change
is especially fast when we consider innovative services or developing sectors, and
even more for the highly qualified jobs; in this case, the new profiles are often
unclear also to the agencies that are called to educate people for these professional
roles.

An effective way to depict a job is by means of the work activities that are
performed, analysing an activity-by-job .A� J / matrix A, whose .a; j /-th element
represents the relevance of the a-th activity in the j -th job. As an alternative,
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a job can be described by means of the competencies (knowledge, skills and
attitudes) which are required to cover that position; different mixtures of
competencies give rise to different professional profiles, which can be described
by analysing an analogous competency-by-job .C � J / matrix C, whose .c; j /-th
element represents the importance of the c-th competency for the j -th job.

The importance of each competency and the pertinence of each activity can be
gathered from different informants, e.g. job incumbents, employers, line managers,
experts in charge of personnel hiring within companies or other experts. According
to the kind of information obtained from the respondents, the competency-by-job
matrix C and the activity-by-job matrix A contain the frequency of employees in
the j -th job who possess the c-th competency or perform the a-th activity, or the
average score of the c-th competency or the a-th activity for the j -th job.

Job/task analysis and competency modeling are widely used in human resource
management to get job descriptions, job specifications and further analyses which
could lead to improvement in all aspects of management practice (Schneider and
Konz, 1989; Mirabile, 1997), but affiliation networks have never been applied in
this context. Aim of this contribution is to show that the structure of relationships
among activities, competencies and jobs can effectively be described by affiliation
networks, and the techniques developed to analyse these networks can be applied
to the analysis and visual representation of professional profiles (Sect. 2). Section 3
contains an application to data collected in the Research and Development field,
while in Sect. 4 some final considerations are drawn.

2 Jobs, Competencies and Activities as Affiliation Networks

Affiliation networks are 2-mode networks, consisting of a set of actors and a set
of events (Wasserman and Faust, 1994); a distinctive feature of 2-mode affiliation
networks is duality, i.e. events can be described as collections of individuals
affiliated with them, while actors can be described as collections of events with
which they are affiliated.

The activity-by-job and competency-by-job matrices described above can be
interpreted as affiliation networks, where a set of actors (competencies or activities)
participate in defining a set of events (professional profiles). Affiliation networks are
usually applied to social circles in the traditional sense (individuals’ affiliation with
collectivities or social events), while no applications to the job analysis are found in
the international literature.

Affiliation networks can be straightforwardly represented with the affiliation
network matrix, i.e. a matrix of zeros and ones only, where each row describes
the actor’s affiliation with the events, and each column describes the memberships
of the event; this matrix can be easily derived from the A or the C matrix. If the
cells of the A or the C matrices are pertinence/importance scores, scores indicating
an adequate or high importance will be substituted by 1, while scores indicating
scarce or no importance will be replaced by 0. If the cells of the original matrix are
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frequencies, and the non-zero cells are relatively few, they can all be replaced by 1,
otherwise the lowest frequencies will be set to zero.

Substantive applications of affiliation networks often focus on just one of the
modes; 1-mode analyses use adjacency matrices derived from the affiliation matrix,
where ties between pairs of actors are based on the connections implied by events
and originate co-membership (or co-attendance, or co-affiliation) relations, while
the ties between pairs of events derive from the linkages generated by actors, and
give rise to overlapping (or interlocking) relations; the derived 1-mode networks are
then non-directional and valued.

Different 1-mode networks can be obtained from jobs, activities and competen-
cies, which analyse complementary aspects of the relations among these entities:

• A 1-mode activity network; the corresponding adjacency matrix AP is a square
.A�A/matrix, where the .i; j /-th cell reports the number of professional profiles
where the i -th and j -th activities are jointly performed.

• A 1-mode competency network; the corresponding adjacency matrix CP is
a square .C � C/ matrix, where the .i; j /-th cell indicates the number of
professional profiles where the i -th and j -th competencies are jointly required.

• A 1-mode job network based on activities; the corresponding adjacency matrix
PA is a square .P � P/ matrix, where the .i; j /-th cell indicates the number of
activities shared by the i -th and the j -th jobs.

• A 1-mode job network based on competencies; the corresponding adjacency
matrix PC is a square .P � P/ matrix, where the .i; j /-th cell indicates the
number of competencies shared by the i -th and the j -th jobs.

All these adjacency matrices can be visually represented and described through
network analysis. The density measures computed for the job networks PA and
PC indicate the general overlapping degree among professional profiles in terms of
performed activities and required competencies, while for the activity network AP
and the competency network CP they indicate the general degree of tranverseness of
the considered sets of activities and competencies; density measures are meaningful
mainly to compare different sets of jobs, competencies and activities. However,
scholars do not agree on the procedure to calculate density measures for valued
networks (Scott, 1991). A possible solution is to transform the valued network in
a binary network, by determining a threshold and substituting 1 to the values of
the adjacency matrix above this threshold and 0 to the ones below; obviously, this
transformation implies a loss of information, and the choice of the threshold should
be driven by substantive reasons.

Centrality measures provide overlapping indices for each professional profile
in the job networks PA and PC, or transverseness indices for each activity or
competency in the corresponding networks AP and CP; this is particularly true
for the degree centrality of a node, i.e. the number of edges incident upon
that node, which highlights those professional profiles that share many activities
or competencies with other profiles, while betweennes and closeness centrality
measures have a less illuminating meaning in the present context.
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A further tool of network analysis that gives interesting information for job
analysis is the search for cliques, i.e. the largest subsets of network nodes connected
to all other nodes in the subset. For valued networks, a clique at level c is the
complete sub-graph of maximum size whose ties have weight at least equal to c;
from a substantive point of view, a clique at level c is a set of particularly similar
jobs (i.e. sharing at least c activities or competencies), or, in the analysis of matrices
AP and CP, the set of activities or competencies more transversal to the analysed
jobs.

Simultaneous representation of actors and events is also possible, but these
methods are less developed; the most straightforward approach to give a 2-mode
representation of an affiliation network is a bipartite graph, i.e. a graph in which
the nodes are partitioned into two subsets and the lines connect pairs of nodes
belonging to different subsets. However, this representation can be unwieldy when
used to depict large affiliation networks; Borgatti and Everett (1997) point out the
complexity of a bipartite graph with 18 and 14 points.

Correspondence analysis is another method for representing both rows and
columns of a 2-mode affiliation matrix in a plot where points representing actors
are placed close to each other if they mostly attended the same events, while points
representing events are plotted close together if they were attended by mostly the
same actors (Wasserman et al., 1990); closeness between actor-points and event-
points indicate that those actors attended those events. Correspondence analysis
includes an adjustment for marginal effects, therefore, actors are plotted close to
events which they attended and which were attended by few other people, and events
are plotted close to actors who attended those events and few other events (Borgatti
and Everett, 1997; Wasserman and Faust, 1994).

3 An Application to the R&D Field

This application is focused on the professional profiles operating in the Research
and Development (R&D) field. Jobs, activities and competencies were surveyed by
interviewing the directors of a random sample of 31 (out of 66) R&D companies
with at least three operators in the Veneto Region.1 The face-to-face interviews
focused on the professional profiles employed in the firm (at least at a technical
level); for each profile, directors were asked how many people in such position
were employed in the firm, what activities they had to perform in their working
tasks, and what competencies were needed to cover each position. Answers were
given in open form, and then categorised and coded; this operation gives rise to

1Companies with less than three operators were excluded because clear professional profiles and
roles separation are hard to achieve with only one or two operators; the random sample was
stratified by companies’ size and sub-sector of activity (R&D in natural sciences and engineering
and R&D in social sciences and humanities).
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Fig. 1 Graph representation of the 1-mode network of jobs based on activities. Density = 0.5733
(in brackets the degree centrality of each node)

15 professional profiles (covering the whole range from technical to managerial
positions), 41 activities and 48 technical-specific competencies. The final dataset
contains data on 450 persons who work in the R&D field; the .a; j /-th element
of the matrix A is the frequency of operators in the j -th job who are required to
perform the a-th activity, and given the large number of zero-cells,2 all non-zero
frequencies are replaced by 1 in the affiliation matrix.

The interconnection between jobs and activities is first analysed by means of
a network approach: the 2-mode network is transformed according to a 1-mode
approach, giving rise to separate 1-mode networks for activities, competencies, and
jobs. Since the main interest is on the description of professional profiles, only the
two 1-mode job networks are reported and analysed.

The 1-mode job network based on activities, where connections indicate common
activities across jobs, is a weakly connected network, indicating that different roles
may require the same competencies, but the tasks distribution is quite clear; Fig. 1
shows all the ties valued at least 3, i.e. connections indicate pairs of jobs sharing
at least 3 out of the 41 activities3; ties’ thickness is proportional to weights. The
main overlapping regards managerial and coordinative roles, firstly the scientific
manager, who shares the managerial activities with the director and the operational
ones with the researcher; the similarity between the director and the president is also
remarkable. Conversely, the most separate profiles are computer scientist, educator
and sampler, whose tasks are particularly well defined and unique.

2In the A matrix all the frequencies (about 1,000) are concentrated in only 100 of the 615 cells.
3To improve the readability of the graph, the adjacency matrix has been dichotomised by setting at
zero ties with values 1 and 2.
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Fig. 2 Graph representation of the 1-mode network of jobs based on competencies. Density =
0.8133 (in brackets the degree centrality of each node)

The 1-mode job network based on competencies (where the connections indicate
common required competencies) is much more dense. Figure 2 shows again ties
valued at least 3, highlighting a strong interconnection between the director, the
scientific manager and the researcher, which constitute a clique at level 14; these
profiles are the core of the R&D firm, and share the scientific responsibility of the
research, but from different points of view and with complementary work activities:
while the scientific manager is in charge of the theoretical and programmatic aspects
of the research activity, the researcher has technical tasks, and the director deals
with the managerial aspects. Very strong connections are observed also between
this first group and the technical manager or the laboratory technician; connections
are relevant with samplers, commercial managers, coordinators and executors too,
while the educator and computer scientist are completely set apart.

The higher density of the job-competency network indicates that professional
roles share competencies more than activities, probably because an efficient tasks
distribution implies a limited overlapping of tasks; an example is given by the
sampler, who shares a large number of competencies but performs quite different
activities.

A simultaneous analysis of actors and events is possible through correspondence
analysis, which generates a plot where professional profiles and activities are located
according to two main dimensions: the first separates technical and managerial
profiles and explains 23.2 % of the total inertia, while the second goes from
operative roles to scientific planning, explaining 20.6 % of the total inertia. In order
to guarantee readability, Fig. 3 only reports work activities and Fig. 4 professional
profiles (obviously, analogous representations can be obtained for competencies).
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Fig. 3 Plot of correspondence analysis scores for jobs and activities – Representation of activities

Fig. 4 Plot of correspondence analysis scores for jobs and activities – Representation of jobs

The correspondence analysis underlines the existence of three main professional
areas, centred on the three core profiles highlighted by the network analysis:

• A managerial area, with executive and administrative profiles, characterised by
governing and accounting competencies, and activities related to lead the group;



240 C. Martini

• A scientific area, with scientific managers involved in scientific planning and
personnel coordination; the required competencies are not only scientific, but
also include social endowment and communicativeness;

• A technical-operational area, with different versions of the technical profiles,
whose required competencies reflect the wide range of research applications
performed by the R&D firms.

4 Final Remarks

The affiliation network approach to the study of professional profiles allows to
highlight the mutual relationships within each set of entities (professions, compe-
tencies, activities), or between them. The described approaches of analysis are not
an exhaustive range of all the indices and techniques developed to study affiliation
networks, but a mere example of meaningful applications, with a preference for
the most simple and intuitive approaches (in primis, visual representations). Further
interesting results for the analysis of the relationship between jobs, activities and
competencies can be obtained through the analysis of centrality and structural
similarity of 2-mode networks (Borgatti and Everett, 1997).

In 1-mode networks derived from affiliation matrices cells are frequencies, e.g.
the number of times two jobs require to perform the same activity. Therefore, these
are unnormalised measures of similarity between couples of jobs, and jobs requiring
a higher number of competencies or activities are more likely to be connected.
Co-affiliation matrices can be normalised by dividing each frequency by a maximum
possible score, e.g. the total number of activities, the minimum number of activities
required by the two jobs, the number of activities required by at least one of the
two jobs, etc. . . . Normalised measures are not frequencies of co-occurrences, but a
measure of preference (Borgatti and Halgin, 2011). In the present application data
have not been normalised to avoid the risk of emphasizing the similarity between
couples of jobs summarily described, but the issue deserves further analyses.

The range of activities and, even more, of competencies which should be used
in this kind of analyses is still an open question. The inclusion of soft skills
or cross-occupational competencies can enrich the analysis and emphasise non-
technical analogies between professional profiles, also operating in different fields,
but in a joint analysis of technical and soft skills the risk is to hide the role of
technical competencies, since soft-skills are by definition cross-occupational, and
tend to connect the network much more strongly than technical skills do. This
problem can (at least partly) be solved by normalising the network, but probably
a dual comparative analysis of 1-mode networks of jobs generated by technical
competencies and by soft skills would be more effective in identifying similarities
and differences among jobs.
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Graduation by Adaptive Discrete Beta Kernels

Angelo Mazza and Antonio Punzo

Abstract Various approaches have been proposed in literature for the kernel
graduation of mortality rates. This paper focuses on the discrete beta kernel
estimator, proposed in Mazza and Punzo (New perspectives in statistical modeling
and data analysis, studies in classification, data analysis and knowledge organiza-
tion, Springer, Berlin/Heidelberg, 2011), which is conceived to naturally reduce
boundary bias and in which age is pragmatically considered as a discrete variable.
Here, an attempt to improve its performance is provided by allowing the bandwidth
to vary with age according to the reliability of the data expressed by the amount
of exposure. A formulation suggested in Gavin et al. (Trans Soc Actuaries 47:173–
209, 1995) is used for the local bandwidth. A simulation study is accomplished
to evaluate the gain in performance of the local bandwidth estimator with respect to
the fixed bandwidth one, and an application to mortality data from the Sicily Region
(Italy) for the year 2008 is finally presented.

1 Introduction

Mortality rates are age-specific indicators, commonly used in demography. They are
also widely adopted by actuaries, in the form of mortality tables, to calculate life
insurance premiums, annuities, reserves, and so on. Producing these tables from a
suitable set of crude (or raw) mortality rates is called graduation, and this subject has
been extensively discussed in the actuarial literature (see, e.g., Copas and Haberman,
1983). To be specific, the crude rates Vqx , for each age x, can be seen as arising
from a sample of deaths, of size dx , from a population, initially exposed to the
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risk of death, of size ex, and thus they contain random fluctuations. The situation
is commonly summarized via the model dx � Bin .ex; qx/, where qx represents
the true, but unknown, mortality rate at age x. Because of the dependence structure
characterizing the true rates, a common, prior opinion about their form is that each
true rate of mortality is closely related to its neighbors. This relationship is expressed
by the belief that the true rates progress smoothly from one age to the next. So, the
next step is to graduate the crude rates in order to produce smooth estimates, bqx ,
of the true rates. This is done by systematically revising the crude rates, in order
to remove any random fluctuations. Nonparametric models are the natural choice if
the aim is to reflect this belief. Furthermore, a nonparametric approach can be used
to choose the simplest suitable parametric model, to provide a diagnostic check of a
parametric model, or to simply explore the data (see (Härdle, 1992), for a detailed
discussion on the chief motivations that imply their use, and (Debòn et al., 2006) for
an exhaustive comparison of nonparametric methods in the graduation of mortality
rates).

Kernel smoothing is one of the most popular statistical methods for nonparamet-
ric graduation. Among the various alternatives existing in literature, the attention is
here focused on the discrete beta kernel estimator proposed by Mazza and Punzo
(2011). Roughly speaking, the genesis of this model starts with the consideration
that, although age X is in principle a continuous variable, it is typically truncated
in some way, such as age at last birthday, so that it takes values on the discrete set
X D f0; 1; : : : ; !g, ! being the highest age of interest. Note that the discretization
of age, from a pragmatical and practical point of view, could also come handy to
actuaries that have to produce “discrete” graduated mortality tables starting from
the observed counterparts. In the estimator proposed in Mazza and Punzo (2011),
discrete beta distributions, as defined in Punzo and Zini (2012) and parameterized
according to Punzo (2010), are considered as kernel functions, in order to overcome
the problem of boundary bias commonly arising from the use of symmetric kernels.
The support X of the discrete beta, which can be asymmetric, in fact matches the
age range and this, when smoothing is made near the boundaries, allows avoiding
allocation of weight outside the support (e.g. negative or unrealistically high ages).

In this paper, we attempt to improve the performance of the discrete beta kernel
estimator by allowing the bandwidth to vary with x according to the reliability of the
data expressed by the ex. With this aim, we adopt a formulation suggested in Gavin
et al. (1995) for the local bandwidth.

The paper can be summarized as follows. In Sect. 2 the (fixed) discrete beta
kernel estimator is illustrated and in Sect. 3 an its adaptive version is provided. In
Sect. 4 cross-validation estimation of the local bandwidth is described. In Sect. 5 a
simulation study is performed, with the aim to ascertain the gain in performance of
the local-bandwidth estimator with respect to the fixed-bandwidth one. Finally, in
Sect. 6, we present an application to mortality data from the Sicily Region (Italy)
for the year 2008.
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2 Discrete Beta Kernel Graduation

Given the crude rates Vqy , y 2 X , the Nadaraya-Watson kernel estimator of the true
but unknown mortality rate qx at the evaluation age x is

bqx D
!X

yD0

kh .yIm D x/
!X

jD0
kh .j Im D x/

Vqy D
!X

yD0
Kh .yIm D x/ Vqy; x 2 X ; (1)

where kh .�Im/ is the discrete kernel function (hereafter simply named kernel),
m 2 X is the single mode of the kernel, h > 0 is the so-called (fixed) bandwidth
governing the bias-variance trade-off, and Kh .�Im/ is the normalized kernel.
Since we are treating age as being discrete, with equally spaced values, kernel
graduation by means of (1) is equivalent to moving (or local) weighted average
graduation (Gavin et al., 1995).

As kernels in (1) we adopt

kh .xIm/ D
�

x C 1

2

� mC
1
2

h.!C1/
�

! C 1

2
� x

� !C
1
2�m

h.!C1/

: (2)

The normalized version, Kh .xIm/, corresponds to the discrete beta distribution
defined in Punzo and Zini (2012) and parameterized, as in Punzo (2010), according
to the mode m and another parameter h that is closely related to the distribution
variability. Substituting (2) in (1) we obtain the discrete beta kernel estimator that
was introduced in Mazza and Punzo (2011).

Roughly speaking, discrete beta kernels possess two peculiar characteristics.
Firstly, their shape, fixed h, automatically changes according to the value of m.
Secondly, the support of the kernels matches the age range X so that no weight is
assigned outside the data support; this means that the order of magnitude of the bias
does not increase near the boundaries. Further details are reported in Mazza and
Punzo (2011).

3 An Adaptive Variant

Rather than restricting h to a fixed value, a more flexible approach is to allow the
bandwidth to vary according to the reliability of the data. Thus, for ages in which
the amount of exposure (sample size) ex is relatively larger, a low value for h results
in an estimate that more closely reflects the crude rates. For ages in which the
exposure is smaller, such as at old ages, a higher value allows the estimate of the true
rates of mortality to progress more smoothly; this means that at older ages we are
calculating local averages over a greater number of observations. This technique is



246 A. Mazza and A. Punzo

often referred to as a variable or adaptive kernel estimator because it is characterized
by an adaptive bandwidth hx .s/ which depends on the exposure and is function of
a further sensitive parameter s.

Although our knowledge of the amount of exposure can be built into the basic
model (1) in a number of ways (see Gavin et al., 1995), here we adopt a natural
formulation according to which hx .s/ is simply the global bandwidth h multiplied
by a local factor lx .s/, that is

hx .s/ D hlx .s/ D h

�

f �1x

ı
max
x2X

˚
f �1x

�
�s
; x 2 X ; (3)

where

fx D ex

� !X

yD0
ey; x 2 X ;

is the empirical frequency of exposed to the risk of death at age x, and with s 2
Œ0; 1�. In (3) f �1x is normalized so that lx .s/ 2 .0; 1�. The observed exposures decide
the shape of the local factors lx .s/, while s is necessary to dampen the possible
extreme variations in exposure that can arise between young and old ages. Naturally,
lx .0/ D 1; in this case we are ignoring the variation in exposure, which gives a
fixed-width estimator. Finally note that lower values of ex produce a higher lx .s/;
this allows more smoothing to be applied at those ages.

Summarizing, using (3) we are calculating a different bandwidth for each age
x 2 X at which the curve is to be estimated, leading model (1) to become

bqx D
!X

yD0

khx .yIm D x/
!X

jD0
khx .j Im D x/

Vqy D
!X

yD0
Khx .yIm D x/ Vqy; x 2 X ; (4)

where the notation hx is used to abbreviate hx .s/. Thus, for each evaluation age x,
the ! C 1 discrete beta distributions Khx .�Im D x/ vary for the placement of the
mode as well as for their variability as measured by hx .

4 The Choice of h and s

In (4), two parameters need to be estimated: sensitivity, s, and global bandwidth, h.
Although s could be selected by cross-validation, we prefer to choose this parameter
subjectively, as in Gavin et al. (1995). Once s has been chosen, cross-validation can
be still used to select h.

The cross-validation statistic or score, CV .hjs/, for model (4) is

CV .hjs/ D
X

x2X

�
Vqx �bqt;.�x/x

�2
; (5)
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where

bqt;.�x/x D
X

y2X
y¤x

Khx .yIm D x/
X

j2X
j¤x

Khx .j Im D x/
Vqy

is the estimated value at age x computed by removing the crude rate Vqx at that age.
The values of h that minimizes CV .hjs/ could be referred to as cross-validation
bandwidth,bhCV . Details on cross-validation estimation of h for the fixed discrete
beta kernel estimator are given in Mazza and Punzo (2011).

5 Simulation Results

As previously mentioned, exposure may vary enormously across the age range,
directly influencing the variability of the crude rates. Thus, we expect that a
model that makes explicit allowance for exposure in the definition of the local
bandwidth (3) should perform better.

In order to evaluate the gain in performance of the local-bandwidth discrete beta
kernel estimator in (4) with respect to the fixed-bandwidth one in (1), we have
performed a simulation study based on real data. Data we consider, composed of
the number of exposed to risk ex and the crude mortality rates Vqx, with ! set to 85,
are referred to the male Italian population for the year 2008.1

The scheme of the simulations can be summarized as follows:

1. First of all, we have graduated the Vqx via the well-known parametric model
of Heligman and Pollard (1980). The graduated rates qx will be hereafter referred
to as the “true” mortality rates;

2. For each replication performed and for each age x, the simulated rates are
obtained by dividing the dx generated from a Bin .ex; qx/ by ex;

3. For each replication and for each age x, once fixed a grid of 51 equally-space d
values for s ranging from 0 to 1, the global bandwidth h of the adaptive discrete
beta kernel estimator bqx in (4) is obtained by minimizing the cross-validation
statistic CV .hjs/ in (5).

4. For each replication and for each value of s, the comparison between the
smoothed and the “true” mortality rates is dealt via the sum of the squares of
the proportional difference

S2 D
85X

xD0

�
qx

bqx
� 1

�2
;

1Istat: data available from http://demo.istat.it/

http://demo.istat.it/
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Fig. 1 Bar plot of the % of times in which the corresponding value of s on the x-axis has originated
the minimum S2 value

that is a commonly used divergence measure in the graduation literature, because
since the high differences in mortality rates among ages, we want the mean
relative square error to be low (see Heligman and Pollard, 1980).

Simulation results are summarized in Fig. 1, which displays a bar plot with the
percentage of times (computed over 1,000 replications) in which the corresponding
value of s on the x-axis has originated the minimum S2 value, with respect to the
51 values of s.

The plot shows that the fixed-bandwidth estimator (s D 0) obtains the minimum
S2 in the 5.83 % of the times, while s D 0:28 is the value that the most of the times
(5.96 %) works better. Although this difference may seem tiny, note that s D 0:28

gets a lower S2 than the fixed-bandwidth estimator 82 % of the times and that for
any s < 0:76 the local-bandwidth estimator beats the fixed-bandwidth one.

6 An Application to Italian Mortality Data

In this section, mortality data for the Sicily Region (Italy), for the year 2008, are
graduated via the adaptive discrete beta kernel estimator. Data, always download-
able from http://demo.istat.it/, consist of values for Vqx and average ex and are
classified by age (ranging from 0 to 100 or older) and sex. The attention is here
focused only on the male population. As before, we have chosen to take a range of
ages between 0 and ! D 85; this allows to make the graphical inspection of the next
plots easier.

http://demo.istat.it/
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Fig. 2 Bar plot of the average male exposure for the year 2008 in the Sicily Region
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Fig. 3 Observed (ı) and graduated (�) mortality rates in logarithmic scale for the year 2008 in the
Sicily Region

In the period and age range under study, the distribution of the male population
at risk is displayed by the bar plot in Fig. 2. The great variation in exposure, over the
age range, shows the usefulness of the adaptive approach. Note that one offhanded
change in exposure is visible in the age ranges 60–62, due to the Second World War.

Figure 3 shows, in logarithmic scale, the crude mortality rates and superimposes
them the graduated counterparts obtained via the adaptive discrete beta kernel
estimator in (4). While the sensitivity parameter, according to the results in Sect. 5,
has been fixed to s D 0:28, the bandwidth h has been estimated by minimizing the
cross-validation statistic in (5); the estimated result is:bhCV D 0:00206. It is easy to
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note that the graduated points have a more regular behavior than the observed ones,
above all for the age range between 0 and 15. Moreover, a small but prominent
hump, peaking around 18 years of age, is also visible; this “excess mortality rate”,
known in literature as accidental hump, is typically observed especially in males
and it is probably due to an increase in a variety of risky activities, the most notable
being to obtain a driver’s license.

7 Concluding Remarks

In this paper an adaptive version of the discrete beta kernel estimator introduced
in Mazza and Punzo (2011) has been proposed for the graduation of mortality rates.
This proposal allows for the estimated rates of mortality to include explicitly the
extra information provided by the changing amounts of exposure, in addition to the
information from the crude rates themselves. A further sensitivity parameter s has
been added to allow the user to control the degree of emphasis placed on the relative
changing in exposure. The usual bandwidth h is used to control the absolute level
of smoothness. Simulations have confirmed the gain in performance of this new
approach with respect to the fixed-bandwidth one. Finally, it is important to note
that the resulting adaptive discrete beta kernel graduation is conceptually simple
and so is its implementation.
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Modelling Spatial Variations of Fertility
Rate in Italy

Massimo Mucciardi and Pietro Bertuccelli

Abstract Standard regression model parameters are assumed to apply globally over
the entire territory where measured data have been taken, under the assumption
of spatial stationarity in the relationship between the variables under study. In
most cases this assumption is invalid. Instead, geographically weighted regression
(GWR) explicitly deals with the spatial non-stationarity of empirical relationships.
Considering a georeferenced dataset on provincial total fertility rate (TFR) in
Italy, GWR technique shows a significant improvement in model performance
over ordinary least squares (OLS). We also discuss about the test for spatial non-
stationarity.

1 Introduction

Classical regression techniques are empirical approaches that have been commonly
applied in the field of demography. Model parameters are assumed to apply globally
over the entire territory where measured data have been taken, under the assumption
of spatial stationarity in the relationship between the variables under study. Sadly,
in most cases, this assumption is invalid. If collected data are georeferenced, a
better understanding of underlying spatial relationships can be achieved through
geographically weighted regression (GWR), which explicitly deals with the spatial
variability of empirical relationships (Fotheringham et al., 2002). The technique
provides a weighting of information that is locally associated and allows regression
model parameters to vary in space. This can help to reveal spatial variations in the
empirical relationships between variables that would otherwise be ignored in the
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overall analysis. Although GWR approach is mainly applied in studies which are
related to ecology and earth sciences, where the territorial influence has a big impact
on the interaction between variables (see the works of Foody (2003) and Wang et al.
(2005)), in this paper we attempt to apply GWR in the field of demography. We
should remember that the growing number of applications in spatial demography
addresses space in several ways, ranging from visualization of one or more variables
in a map, to sophisticated spatial statistical models that seek to explain why a
particular spatial pattern is observed (Mucciardi and Bertuccelli, 2011). The paper
is organized as follows: in Sect. 2 we describe the GWR technique; in Sect. 3,
considering a real dataset on provincial total fertility rate (TFR) in Italy, we estimate
a GWR model showing significant improvement in model performance over OLS.

2 The GWR Model

GWR extends the traditional regression model by allowing the estimation of local
parameters, so that the model can be written as:

yi D ˇ0.ui /C
X

k

ˇk.ui /xik C � for i D 1; : : : ; n (1)

where .ui / denotes the i-th point in the space and ˇk.ui / is a realization of a
continuous function ˇk.u/ at point i . In other words, the continuous function ˇk.u/
is a surface of parameters in which we take measurements at certain points to
evidence the spatial variability of the surface. As can be seen, if the parameters
are spatially invariant, the form of Eq. (1) is equivalent to that of the standard OLS:

yi D ˇ0 C
X

k

ˇkxik C � (2)

As matter of fact, GWR provides a way to recognize and to measure spatial
relationships between observations. Although there could be problems in calibrating
equation (1), because the form of function ˇk.u/ is unknown, in statistical literature
models of this kind are quite common, because GWR belongs to the class of
varying coefficient models introduced by Hastie and Tibshirani (1993). A way to
overcome the estimation problem due to the unknown functional form of ˇk.u/ is to
calibrate the model through non parametric techniques. Specifically, Fotheringham
et al. (2002) suggested to calibrate n local models (one for each location point)
introducing a kernel weighting function. The estimation of the models is performed
using a WLS (Weighted Least Square) approach, applying a different weight matrix
for each of the n reference points. The formula for the estimation of the parameter
at a specific spatial location is given by:

Ǒ
k.ui / D .X 0W.ui /X/�1X 0W.ui /y (3)
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where Ǒ.ui / represents an estimate of ˇ.ui / and W.ui / is an n by n matrix whose
diagonal elements are the weights of each of the n observed data for regression point
i and all the other off-diagonal elements are zero. The Ǒ.ui / value can be interpreted
as point-wise estimate of ˇ.ui / in the measuring point ui . Actually, the adoption of a
weighting scheme that keeps in count the distance between observations has a very
specific meaning: we assume that values taken by parameter ˇ in the neighbourhood
of ui are more similar to ˇ.ui / than values related to points away from ui . Under this
assumption, the weights are chosen in order to assign greater importance to nearest
observations by using a kernel function. Two of the most used weighting functions
in the GWR technique are the so called Gaussian or near-Gaussian and bi-square
function. The near-Gaussian weighting function is given by:

wij D e
� 12

�
dij
b

�2

(4)

where dij is the distance between location point ui and location point uj and b is
a bandwidth parameter. If i and j coincide than the weight associated at that point
will be 1. When the distance dij increases, the weighting of the data will decrease
according to a Gaussian curve. The bi-square kernel is instead defined as:

(
wij D Œ1 � �

dij =b
�2
�2 if dij < b

wij D 0 otherwise
(5)

Equation (5) provides a near-gaussian weighting function for all the points whose
distance from i is lower than b and sets to 0 all the other weights. As can be noted
from the (3), if all the weights on the diagonal of W.ui / are 1, then the GWR
estimator is equivalent to the OLS estimator. From this point of view, OLS can
be seen as special case of the GWR estimator. Although an unbiased estimate of
the local parameters is not possible, through a calibration process we can obtain
estimates with a small amount of bias. If coefficients continuously vary across
space, a WLS regression will hardly provide an unbiased estimate of parameter
beta at given point ui . This happens because for each spatial location there will be
a different value of ˇ.ui /, but WLS regression produces a single value Oˇ.ui / that is
the same for all the points. A quite small value of bandwidth parameter b can assure
a small bias of ˇ.ui / because the points falling in the circle with radius b centered
at u are few respect to the entire sample and, allegedly, their theoretical betas will
be similar to ˇ.ui / value. With a small bandwidth standard error will be high due
to the low number of observations that are included in WLS regression (bisquare
kernel) or have a high weight associated. In fact as can be seen from gaussian kernel
formula, the weights quickly go to zero when the distance between observations
is more than b. On the other hand, a wide distance bandwidth will produce a
reverse effect: bias will increase but standard error will be lower. Therefore we must
find an equilibrium between bias and variance (bias-variance trade off), in order to
balance the effects of excessive variability of estimates or of a severe distortion of
the parameters. A solution to this problem is to choose the bandwidth through a
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cross validation approach suggested for local regression by Cleveland (1979) and
for kernel estimation by Bowman (1984). The score of this function:

CV.b/ D
nX

iD1
Œyi � Oy¤i .b/�2 (6)

is used in the calibration process to find the optimal bandwidth, where Oy¤i is the
fitted value of yi with the observation at point i omitted from the computation. The
choice of the optimal bandwidth will be done minimizing (6) with respect to b.
The minimization is carried out through optimisation techniques such as Golden
Section Search (Greig, 1980). As can be seen from (6), the cross-validation formula
is essentially the sum of the estimated predicted square errors. It can be thought
as a measure of the overall performance of a particular bias/variance combination:
b represents the bandwidth value that offers the best compromise between bias
and variance for a given data sample. Another method suggested by Fotheringham
and Brunsdon to choose b concerns the implementation of an “adaptive bandwidth
kernel”. In fact, if the data points are not homogeneously distributed in space (e.g.
the points are concentrated only in certain areas while in other areas are scarce),
a classic kernel method, which uses a fixed bandwidth distance, cannot be able
to adequately capture the possible spatial effects on parameters. In this case, the
weights can be determined by adopting an algorithm of this kind:

(
wij D Œ1 � �

dij =b
�2
�2 if j is one of Nth nearest neighbours of i

wij D 0 otherwise
(7)

This is a k-nn method which determines the optimal number of neighbours, where
N represents the number of points to be included within the local calibration of
the model. The kernel used, as reported in Eq. (7), is a bi-square function. In this
case b is the distance from nearest Nth neighbour to point i and changes along
the chosen reference point for the local model. There are other approaches for the
bandwidth selection of the GWR, such as the generalized cross-validation criterion,
which is described in Loader (1999), or the method based on the minimisation of
the AICc (Akaike Information Criterion, Hurvich et al., 1998).1

3 Performance Comparison on Socio-demographic Data Set

The data employed in the analysis come from a georeferenced provincial data
set (see for more information Mucciardi and Bertuccelli, 2011). To show a
performance comparison between OLS and GWR methods, we decided to carry out

1For GWR is defined as: AICc D 2n ln.O� C n ln.2
/C n
n
nCt r.S/

n�2tr.S/

o
, where n is the sample

size, O� is the estimated standard deviation of he error term and tr(S) is the trace of the hat
matrix (Fotheringham et al., 2002).
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an analysis of the relationships between the TFR of the 103 Italian provinces for the
year 2005 (Fig. 1a) and some well known social and demographic determinants.
The independent variables at the provincial level, which have low values of
multicollinearity, include: share of foreign women (SFW); mean age at childbearing
for mother (MACM); indirect expense for childbearing and maternity per capita
(IECM); internal migration rate (IMR); marriage rate for 1,000 inhabitants (MAR)
and civil marriage rate (CMR). First we model the provincial TFR with OLS
regression. The analysis of the global model indicates that the TFR exhibits a
statistically significant negative relationship with MACM and IMR and statistically
positive one with SFW, IECM and MAR. The global model yields a value of
AIC (�227.28) and a reasonable global fit of 0.61. In this step the variable
CMR is not significant (Table 1). Instead in the distribution of the residuals we
found clear evidence of spatial instability with a value of Moran test (IOLSres) of
0:21.p <0:01/.

In the second step, the variables chosen in the first step were used for the
construction of the local model. For the GWR model we have considered: (a) the
centroids of the provinces for the distance calculation between spatial units; (b)
the adaptive kernel technique for bandwidth selection (Fotheringham et al., 2002);
(c) the AICc and the RSS (Residual Sum of Squares) for models evaluation;
(d) the Leung test to reveal the spatial non-stationarity. This test is used to
verify if local parameters can be considered variable across the space. It uses
estimated parameters sample variance to assess spatial variation by defining two
approximated �2 distributions, both for the parameter variance and the residuals
variance, in order to build an F test (Leung et al., 2000). Among the many estimated
models for the explanation of provincial TFR, we chose a GWR model with an
adaptive kernel (Fotheringham et al., 2002), the number of neighbours estimated
by algorithm was 22. Finally, the full results are shown in Table 1. The analysis
and the interpretation of the GWR estimates is done by keeping in count the global
model (OLS), the tests for spatial non-stationarity and the mapping of the coefficient
(choropleth maps). Now, in the GWR model we analyse how these relations change
from one province to another and find out possible differences that remain hidden
in the global model (Table 1).

The results obtained indicate that local model significantly improved the OLS
results with AIC value dropping from to �227.28 to �245.50 and R2 rising from
0.61 to 0.77 (p < 0:01). The spatial autocorrelation of residuals disappears in the
GWR model (see Fig. 2d). In fact the Moran test is 0.09 (value not significant). It
can also be seen from the BFC99 test (Brunsdon, 1999), an F test which measures
the difference between GWR and OLS residuals, that GWR model has a significant
improvement with respect to OLS. At this point, local relationship between TFR and
individual determinants can be done. Although there exists, at the national level, a
negative highly significant relationship between the MACM and TFR, the GWR
results make it clear that this relationship is highly variable in space. It may be
observed from Fig. 1b that the inverse relationship between MACM and TFR is
stronger in the south of Italy and less elsewhere. So in the southern provinces a
decrease of one age year of MACM can cause an increase of TFR up to 0.136.
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Fig. 1 Distribution of TFR (a) and MACM, SFW, IECM parameters by quartile ranges(b–d)

Despite this fact, even for SFW we can notice a strong difference in the local
parameter values (they range from 0.199 to 0.452, see Table 1 and Fig. 1c). The
IECM variable, employed here as provincial administration capacity to finance,
through conventions, delegations and contracts, services directed to childbearing
and maternity, reveals the existence of positive significant relationship in the global
model with fertility, even if the local model doesn’t provide any significant spatial
non-stationarity (see the small range of the parameter and the Leung test on Table 1
and Fig. 1d). This result confirms the positive effect of the indirect expense on TFR
for all the Italian territory. The situation for IMR is more complex. Despite the OLS
model implies a negative effect on TFR, the GWR shows that this effect is due to
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Table 1 Mean values of OLS and GWR parameters

Spatial non-
Global stationarity
model Min 1stQu. Median 3rdQu. Max Leung test

Variable (OLS) (GWR) (GWR) (GWR) (GWR) (GWR) (sig. level)

Intercept 4.491��� 1.764 2.392 3.632 4.573 4.971 ***
MACM �0.114��� �0.136 �0.120 �0.084 �0.039 �0.013 ***
SFW 0.316��� 0.199 0.294 0.356 0.387 0.452 ***
IECM 0.006��� 0.005 0.006 0.006 0.007 0.010 n.s.
IMR �0.006� �0.014 �0.008 �0.004 �0.002 0.000 **
MAR 0.041� �0.033 �0.010 0.007 0.061 0.089 ***
CMR �0.064 n:s: �0.248 �0.145 �0.058 �0.017 0.035 ***
R2OLS D 0:61 R2GWR D 0:77 AICOLS D �227:28 AICcGWR D �245:50
IOLSres D 0:21�� IGWRres D 0:09 n:s: .RSSOLS � RSSGWR/ D 0:20���(BFC99 test)
� � � D p < 0:001 �� D p < 0:01 � D p < 0:05 n:s:D not significant

Software used for model calibration: R package spgwr. Software used for Moran test: S-Joint
(Mucciardi and Bertuccelli 2011). Software used for choropleth maps: ArcGis 9.1

the central Italian provinces (Fig. 2a). However, more demographic analyses should
be done to explain this phenomenon. The variable MAR is globally correlated with
TFR but this correlation is stronger in the central-southern provinces than in the
north of Italy. In fact the parameter in the local model is higher in magnitude
and significant in the centre and south of Italy, confirming the hypothesis of a
strong cultural and traditional substratum of these territories (Fig. 2b). The last
covariate we considered in the model, CMR, often used by scholars as an indicator
of secularization, exhibits an interesting behaviour. Although the global model does
not evidence any significant effect on the TFR, the GWR model shows a strong
spatial correlation of this variable. As we can see (Fig. 2c), the negative impact of
CMR on TFR is very strong only in the northern provinces. In this case we account
for the highest local variation of the parameter between the covariates.

4 Conclusion

In this study we applied GWR technique to model provincial TFR in Italy. First we
estimated an OLS model and a GWR model and then we compared the outputs of
the models. The results confirm that the advantage of GWR over OLS is mainly
due to the consideration of the true spatial variation of the relationship between
fertility and socio-demographic determinants. So the GWR model performed better
and provided significant improvement over the global regression models. Global
statistical methods like OLS sometimes may ignore the local information and even
present a false relationship. As reported above, the OLS model obtained a non
significant association between CMR and TFR, while GWR model revealed the
existence of a negative relationship in the northern Italian provinces. Our next
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Fig. 2 Distribution of IMR, MAR, CMR parameters (a–c) and GWR residuals by quartile
ranges (d)

objective will be to consider ways in which the technique could be improved.
One option could be to consider a mixed GWR in which some coefficients vary
locally, while others are the same everywhere. Another option could be to use a
multivariate kernel, which seems to be appropriate for GWR model, because spatial
units generally have from two to three spatial dimensions. A research on models of
this kind is currently in progress by authors.
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Visualisation of Cluster Analysis Results

Hans-Joachim Mucha, Hans-Georg Bartel, and Carlos Morales-Merino

Abstract We present some methods for (multivariate) visualisation of cluster
analysis results and cluster validation results. Visualisation is essential for a better
understanding of results because it operates at the interface between statisticians and
researchers. Without loss of generality, we focus on visualisation of clustering based
on pairwise distances. Here, usually one can start with “dimensionless” heatmaps
(fingerprints) of proximity matrices. The Excel “Big Grid” spreadsheet is both a
distinguished depository for data/proximities and a plotting board for multivariate
graphics such as dendrograms, plot-dendrograms, informative dendrograms and
discriminant projection plots. Informative dendrograms are ordered binary trees that
show additional information such as stability values of the clusters. In this way,
graphics can be a very useful and much simpler aid for the reader.

1 Introduction

First, we introduce the problem of finding clusters in a set of objects and the
problem of cluster validation. Using special randomized weights of objects one
can easily perform built-in validations of cluster analysis results via bootstrapping
techniques (Mucha, 2007). The stability of cluster analysis results (e.g., hierarchies,
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partitions, individual clusters and degree of cluster membership) can be assessed
based on measures of correspondence between partitions and/or between clusters.

Secondly, we focus on visualisation of cluster analysis and of cluster validation
results. In general, clusters can be visualised in “dimensionless” heatmaps of
distance matrices (because they are independent on the number of variables) or/and
in fingerprints of data matrices. Here, an appropriate ordering of the objects
is essential (Mucha et al., 2005). Other well-known graphics are (informative)
dendrograms, density plots, principal components analysis plots and discriminant
projection plots (Mucha, 2009; Mucha et al., 2002). Informative dendrograms are
ordered binary trees (Mucha et al., 2005) that show additional information such as
stability values or other descriptive statistics. The programming language is Visual
Basic for Application (VBA). Excel 2010 offers new kinds of built-in visualisations
such as sparklines (small cell-sized graphics). Sparklines can be used, for example,
to visualise statistics of clusters inside informative dendrograms.

2 Cluster Analysis and Graphical Representation

Clustering is a method of unsupervised learning where only unlabeled observations
are given. Generally, cluster analysis methods map a data set on a collection of its
subsets. For example, this mapping can be remarkably visualised in dendrograms,
see Fig. 1.

Our starting point for data clustering is a I � J data matrix X D .xij / with I
observations and J variables. The aim of clustering techniques is to form groups
of objects so that similar objects are grouped in the same cluster and dissimilar
ones come in different clusters. Without loss of generality the focus here is mainly
on (visualisation of) clustering of observations. Two families of methods will be
considered: hierarchical cluster analysis and partitional clustering. Both can often
be formulated as pairwise data clustering where instead of X a distance matrix
D D .dil/ is used (or more generally, pairwise proximities are given). The heatmap
visualisation of such a distance matrix often reveals structure in a high dimensional
data set (see Fig. 2, for further details/examples see also Mucha (2009) and Bartel
(2009)).

For simplicity (also in view of bootstrapping in Sect. 3 below), we would like to
focus on Gaussian model-based cluster analysis in its simplest setting. This results
in the sum of squares (SS) or the logarithmic SS criterion that has to be minimised
by both hierarchical and partitional methods. The starting point is a distance matrix
D D .dil/ with pairwise (weigthed) squared euclidean distances as elements.
The SS criterion based on D has to be minimised with respect to a fixed number
of clustersK:

VK D
KX

kD1

1

Mk

X

i2Ck

mi

X

l2Ck ;l>i

mldQ.xi ; xl / : (1)

Here Mk is the mass of the kth cluster Ck , and mi is the mass of the observation i .
This form comes without an explicit specification of expected value of clusters.
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Fig. 1 The plot-dendrogram shows the unique result of hierarchical clustering by the Ward’s
method. The demographic data behind consists of 227 observations (countries) with the two
variables birth rate and death rate in 1999. These variables are part of the population statistics
published by CIA World Factbook (1999). Here, instead of the original quantitative variables, only
their rank values are used, so that no structure is obviously guaranteed in the univariate case.
This real data gives an extraordinary example of getting a clear cluster structure when going to
multivariate (bivariate) considerations

Different (soft) bootstap techniques are put into effect simply by playing with the
mass mi of the observation i , see Sect. 3 and Fig. 5.

An equivalent formulation of the logarithmic SS based on pairwise distances can
be derived, for details see Mucha et al. (2002). This criterion is more general because
here the volumes of the clusters can have different sizes.

Application to archeometry. In the following example, an application of clus-
tering to archeometry is chosen for visualisation purposes (Morales-Merino et al.,
2010). More than 300 samples of clay sediments were collected within a radius
of about 5 km from the vicinity of the archaeological site of Troia in west Turkey.
The clay deposits in the plain of Troia consist predominantly of alluvial sediments
of two rivers. These sediments provide the possible sources for the ancient pottery
production. The concentrations of the following 26 elements were determined by
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Fig. 2 Heatmap of a distance matrix of Roman bricks and tiles from different findspots in the
Rhine area of Germany. The archaeometric data describes about the objects by the following
19 chemical oxides and elements Fe2O3, MnO, SiO2, CaO, TiO2, MgO, Al2O3, Na2O, K2O,
Cr, Sr, Zr, Zn, Y, Ni, Nb, Rb, V, and Ba. The chemical composition was measured by X-ray
fluorescence analysis. These bricks and tiles are coarse ceramics used for buildings. You can find
a corresponding fingerprint of the data matrix in Bartel (2009). There one can find many other
visualisations concerning this application of clustering to archaeometry

instrumental neutron activation analysis: Na, K, As, Sb, Ba, La, Sm, Yb, Lu, U, Sc,
Cr, Fe, Co, Ni, Zn, Rb, Zr, Cs, Ce, Nd, Eu, Tb, Hf, Ta, and Th. Figure 3 shows the
result of hierarchical clustering based on criterion (1) (Ward’s method). In case of
more than two-dimensional data, projection methods such as principal components
analysis (PCA) can be used to be able to draw such a plot-dendrogram.

3 Validation of Cluster Analysis by Bootstrapping

Cluster analysis results depend on the given data. In hierarchical cluster analysis,
for instance, the question arises: how you chose the number of clusters at which
the dendrograms should be cut in Figs. 1 and 3? Bootstrapping can help to answer
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Fig. 3 Plot-dendrogram of 336 observations from the region around Troia. The dendrogram is
drawn on the plane of the first two principal components. The quality of this projection by principal
components analysis (about 45 % of total variance) is high with respect to 26 variables, see also
the nonparametric density plot in Fig. 10 below. For further details on this application see Morales-
Merino et al. (2010)

this question. It is a very common validation technique in applications of cluster
analysis to life sciences. Here we do not consider special properties like isolation
and compactness (Jain and Dubes, 1988). Finding the appropriate number of clusters
is the main task apart from individual cluster validation. One gets many bootstrap
results instead of an usual unique result of hierarchical cluster analysis. Figure 4
shows the criterion values of merging clusters by the hierarchical Ward’s method
for 250 bootstrap samples.

Stability strongly depends on how homogeneous and how well separated the
clusters are. In the same clustering, however, the stability of individual clusters
may be extremely different. Therefore, our proposed built-in validation technique
evaluates additionally the stability of each cluster and the degree of membership of
each observation to its cluster.

There are several measures of similarity between two clusterings (Hubert and
Arabie, 1985) and between sets (Hennig, 2007). In any case, a confusion matrix N
is the common basis: it crosses two partitions g and f (in matrix notation based on
the corresponding Boolean assignment matrices G and F: N D FT G), see Fig. 5.

Well-known measures of correspondence between two partitions such as the
adjusted Rand index can be expressed by a confusion matrix instead of the original
notation based on counting the four possible combinations of pairs of observations.

Some measures are based on the comparison of pairs of observations concerning
their class membership. Examples are the Rand index and the adjusted Rand index
R, see Hubert and Arabie (1985). Alternatively, these measures can be expressed by
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Fig. 4 Levels of merging clusters (i.e., the increment of within-cluster variance) versus the number
of clusters. These are the values at which the specified number of clusters is reached in the
dendrogram. The criterion values (ordinate) are in logarithmic scale. Obviously, the two cluster
solution has a small variation in comparison to the range of values for a number of clusters greater
than two

Fig. 5 Example of a confusion matrix that results from crossing two partitions of the same data
set. The partition g is the original unique result of Ward’s method (see Fig. 8). Here, the other
one is the result of Ward’s method applied to a (soft) bootstrap sample. The size of a square is
proportional to the count in the corresponding cell of the confusion matrix
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Fig. 6 Cumulative confusion matrix. Here the case of two clusters of hierarchical Ward’s cluster
analysis is investigated. The size of the squares are proportional to the corresponding numerical
values. Without any doubt, the two clusters are very stable because they can be reproduced to a
high degree

using a confusion matrix. Other well-known indexes measure the similarity between
two sets (clusters) E and a cluster F such as

�.E ;F / D jE \ F j
jE [ F j (2)

�.E ;F / D jE \ F j
jE j (3)

�.E ;F / D 2 jE \ F j
jE j C jF j (4)

(E and F are nonempty subsets of some finite set.) Hennig (2007) suggests the
Jaccard coefficient � (2). The latter and the measure of Dice � (4) are symmetric
and they attain their minimum 0 only for disjoint sets and their maximum 1 only for
equal ones. Obviously, we have � 	 �. The asymmetric measure � assesses the rate
of recovery of subset E by the subset F . It attains its minimum 0 only for disjoint
sets and its maximum 1 only if E � F holds.

The latter three measures � , �, and � evaluate the stability of individual clusters.
By repeating resampling techniques, one gets many values of similarity. Figure 6
shows the cumulative confusion matrix after 250 bootstrap runs of the Troia data set.
Here the two-cluster solution is investigated. Figure 7 shows statistics of the adjusted
Rand index R. Figure 8 shows the main results of the bootstrap validation as a
so-called informative dendrogram. It is difficult to fix an appropriate threshold to
consider a cluster as stable. The numerical values at bottom of the Figure can
be used to decide about the number of clusters. They are obtained by averaging
the corresponding cluster-wise stability values of individual clusters of a partition.
For instance, the total Jaccard measure is obtained by averaging the Jaccard-stability
values of individual clusters that are contained in the dendrogram above. Both
measures the adjusted Rand index R and the total Jaccard index give a strong
recommendation to choose the two cluster solution as outstanding stable.
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Fig. 7 Statistics of the adjusted Rand index R versus the number of clusters. For interpretation
and further details see, for example, Mucha (2004, 2007)

Fig. 8 Informative dendrogram of hierarchical cluster analysis of 336 observations (the cardinality
of clusters is given below the symbol #). Here the Jaccard measure � (values are in %) evaluates the
stability of every cluster. The numerical values of similarity at the bottom (also in %), especially
the adjusted Rand index R and the total Jaccard index, can be used to decide about the number
of clusters
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Fig. 9 Informative dendrogram with sparklines that present the centroids of the clusters. Infor-
mative dendrograms are ordered binary trees that show additional information, see also Fig. 8.
Sparklines can be used for visualisation of descriptive statistics of clusters such as mean values

Fig. 10 Bivariate density estimation of principal components projection of archaeometric data
from Troia. The same data as in Fig. 3 is used here

4 The “Big Grid” Spreadsheet Plotting Board of Excel

Excel 2007 and later now supports 1,048,576 rows and 16,384 columns. Moreover,
there are new or improved built-in graphics tools like sparklines (small cell-sized
graphics) for better understanding the data and the clustering results, see Fig. 9.
These “Big Grid” spreadsheets are a distinguished depository for data/proximities
and a convenient plotting board for (multivariate) graphics based on Visual Basics
for Application code (VBA) (Mucha, 2009). For example, Fig. 10 shows a density
plot that also suggests two clusters. Practically, Excel allows boundless possibilities
of visualisation of cluster analysis results. So, the cell-based visualisation of huge
distance matrices is possible.
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The Application of M-Function Analysis
to the Geographical Distribution
of Earthquake Sequence

Eugenia Nissi, Annalina Sarra, Sergio Palermi, and Gaetano De Luca

Abstract Seismicity is a complex phenomenon and its statistical investigation
is mainly concerned with the developing of computational models of earthquake
processes. However, a substantial number of studies have been performed on the dis-
tribution of earthquakes in space and time in order to better understand the
earthquake generation process and improve its prediction. The objective of the
present paper, is to explore the effectiveness of a variant of Ripley’s K-function,
the M-function, as a new means of quantifying the clustering of earthquakes.
In particular we test how the positions of epicentres are clustered in space with
respect to their attributes values, i.e. the magnitude of the earthquakes. The strength
of interaction between events is discussed and results for L’Aquila earthquake
sequence are analysed.

1 Introduction

Statistical seismology originated when many statistical methods and stochastic
models were applied to the seismic investigation. In particular, spatial point
statistical theory has proved to be a crucial statistical tool to summarise seismic
data. Some of early applications of point processes in this context can be found
in the pioneeristic work of Vere-Jones (1970). Many authors also focused on the
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spatial distribution of seismicity using a diverse range of techniques. Anyway, all of
them recognise that an earthquake sequence can be interpreted as a realization of a
stochastic point process in a multidimensional space since each earthquake may be
identified by a point in space (epicentral coordinates), in time and in the magnitude
domain. Statistical studies show that distribution of earthquakes in a region is
usually dominated by significant clusters in both space and time: earthquakes
influence the timing and location of subsequent events. The lack of spatial inde-
pendence in seismic data has been traditionally perceived as a problem obscuring
the ability to separate the background seismicity from clustering patterns (Ogata
et al., 2002), as required in one of the most used seismological point process
model: the Epidemic-Type-After-Shock-Sequence (ETAS) model (Ogata, 1998).
Accordingly, a relevant role in the study and the comprehension of seismic process
and its realisation is played by the second-order properties of point processes, as
the description of seismic events requires the relaxation of any assumption about
statistical independence of earthquakes. The well-known Ripley K-function (Ripley,
1976) may give valuable information about interdependence among events and
is a powerful tool to assess whether or not a point pattern satisfies the Poisson
model, where events are assumed to be statistically independent. Many authors
have considered the use of second-order statistics in space-time processes as a
useful means for the comprehension of point patterns properties. Among others, see
for example, Schoenberg (2004), Adelfio and Schoenberg (2009) and Adelfio and
Chiodi (2009). In some of these works applications to earthquake data are provided.
In particular, Schoenberg (2004) used the second order statistics for testing the
relation between magnitude and space-time location of a spatial temporal marked
point process whereas a weighted version of the second order statistics, defined
for not necessarily stationary Poisson models, has been proposed by Adelfio and
Schoenberg (2009). Hence, over the last decades, methods based on Ripley’s K-
function have been undergone a rapid growth. To account for first-order effects
(spatial heterogeneity) inhomogeneous and space time K- function have been devel-
oped (see Baddeley et al., 2000; Gabriel and Diggle, 2009, respectively). However,
these methods have resulted not easily tractable as they require the estimate of local
density. A more simpler solution is given by Marcon and Puech (2003a,b) who
introduce the so-called M-function which represents a generalisation of Ripley’s
K-function. As far as we know the empirical studies of this function have been
mainly confined to the field of geographical epidemiology and spatial economics
to assess the concentration of childhood leukaemia in the North England and the
geographic concentration of industries in a non-homogeneous spatial framework
respectively. This study puts forward that the M-function is also an appropriate tool
for examining the clustering features of seismic data. The reviewed technique is
employed to explore whether the foreshock and aftershock sequences of L’Aquila
strong earthquake (April 6th 2009 Mw 6.3) exhibit spatial clustering. This paper is
outlined as follows. In Section 2, the definitions of the ordinary K-function and
its reformulation as M-function are provided. The M-function is then employed
in Section 3 to study the sequences of foreshock and aftershock with predefined
magnitude of L’Aquila earthquakes. In that section we also discuss the merits and
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limitations of the method in comparison with the techniques currently available.
Section 4 provides some concluding remarks and directions for future studies.

2 The M-Function: a Variant of Ripley’s K-Function

In this section, we restrict our attention to the second-order properties of a point
process, based on the distribution of distances between pairs of points. According
to Diggle’s definitions, we call event a point of the process and point an arbitrary
spatial location. Moreover, we refer to completely mapped spatial point process
data: i.e. the locations of all events in a defined study area are considered. Informally,
the interpoint interaction can be investigated by the second moment function, better
known as Ripley’s K-function. It is also called second-order analysis to indicate that
the focus is on variance, or second moment, or inter-event distance. The K-function
is typically defined as the expected number of further points in a circle centred at an
arbitrary point (which is not counted) divided by the overall rate (the intensity 	 or
mean number of events for unit area) of the pattern, as formalised in (1):

K.r/ D 	�1EŒ extra events within distance r of randomly chosen events� (1)

Essentially it describes the characteristics of point processes at many distance
scales, taking into consideration the density of points, the borders and the sample
size. For many point processes the expectation in the numerator of K.r/ can be
analytically evaluated. Tractable second order properties exist for a Homogenous
Poisson Process which generates pattern consistent with complete spatial ran-
domness (CSR). For homogenous and isotropic point patterns, the second-order
characteristic depends only on distance r , but not on the direction or the location
of points and it can be expressed as:

K.r/ D 
 � r2 (2)

The classical exploratory approach for univariate point pattern is to compare a
given point pattern to null hypothesis of CSR to test if the point process under
consideration exhibits clustering or inhibitory behaviour. A solution to characterise
non-homogeneous point processes is given by Marcon and Puech (2003a,b), who
introduce the so called M-function. In what follows we summarise the theoretical
framework of this new function. According to Marcon and Puech proposal, the defi-
nition of the M-function, allowing the analysis of non-homogeneous point patterns,
involves the following steps. First of all, it is essential to define a probabilistic
estimator of the K-function, hence its reformulation in a heterogeneous space is
necessary, finally point weights can be attributed to each point by using proper
probability laws. In defining the M-function, we start considering the following edge
correction of Ripley’s K-function estimator:
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OK.r/ D A

N � .N � 1/

NX

iD1


 � r2
Air

NX

jD1i¤j
I.i; j; r/ (3)

Let us denote with N the total number of points. The studied domain area is
A, whereas the mean number of events for unit area, say 	, is estimated by N

A
.

In establishing the Ripley’s K-function estimator we know that some circles can
be partially outside the research area and some adjustments are required for those
circles. We denote with Air the inside area of circle; I.i; j; r/ stands for a dummy:
its value is 1 if the point j is located inside the circle and 0 otherwise. Following the
edge-effect correction method proposed by Getis (1984), the number of neighbours
is multiplied by a correction factor defined as the ratio of the area of circle 
 � r2
and the part of circle inside the area Air . The formulation of Ripley’s K-function
estimator in Eq. (3) can be normalised by the area of the circle of radius r :

OK.r/

 � r2 D

PN
iD1

PN
jD1i¤j

I.i;j;r/

Air
N

N�1
A

(4)

In that way an adimensional, neutral and more intuitive expression of the
K-function is obtained. It is easy to argue that the numerator is the average local
density of neighbours whereas the denominator is the density of neighbours on
the whole domain, used as a benchmark. The Eq. (4) can be viewed as the ratio
of two probability laws, arising from two Bernoulli proofs. The first Bernoulli
proof consists in searching a neighbour around a point i in an elementary area in
the circle of radius r whilst the second one is defined by searching a neighbour
around the point i but this time on the whole domain. The aim is to find a particular
neighbour. In our context that particular neighbour is the epicenter with a predefined
magnitude. We call cases those epicentres with a predefined magnitude and denote
them withmk. In such a way we shall focus on space heterogeneity and the Ripley’s
K-function can be easily adapted for that purpose, as follows:

M
0

mk.r/ D

PNmk
jD1

PNmk
jD1;i¤j

Imk.i;j;r/

PN
jD1;i¤j

Imk.i;j;r/

Nmk
Nmk�1
N�1

(5)

where Imk is the indicator function whose value is equal to 1 if both points i and j
are cases and the distance between them is at most r ; Imk is equal to 0 otherwise.
It is worth noting that the numerator in (5) is the average value (on all cases) of the
ratio of neighbour cases to neighbour points (controls plus cases); the denominator is
estimated in the same way but on the entire territory. In constructing the M-function
we can associate a weight for each dummy obtaining a function written as:
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Mmk.r/ D
NmkX

iD1

PNmk
jD1;i¤j

wmkI.i;j;r/
PN
jD1;i¤j wmkI.i;j;r/
PNmk

jD1
Wmk�wi
W�wi

(6)

where wmk.i; j; r/ denotes a weight,Wmk is the summed weight of points belonging
to mk and W is the total weight of all points. Numerator and denominator in (6)
retain the same meaning of Eq. (5) but expressed in terms of weights. In this paper,
as a preliminary step, we choose the same weight (equal to 1) for each case. Through
the M-function we change the way of evaluating the possible locations: we are able
to compare the number of certain type of events to the total number of events. In the
seismic setting, the Marcon and Puech solution implies to draw a circle with radius
r around each epicentre with a predefined magnitude. In each of those circles the
number of epicentres with a certain magnitude is counted as well as the number of
all epicentres. First we compute the quotient of those two numbers in a circle; next
the quotients are employed to compute the average over all those circles. Finally,
that average is divided by the total number of events on the whole research area. We
exploit the main features of the M-function to test if the positions of epicentres are
clustered in space with respect to their attribute values, that is the magnitude of the
earthquakes.

3 Details of Application

3.1 Data Set

The earthquake sequence investigated belongs to the area of Central Italy (L’Aquila)
bounded in longitude by 13.034ı and 13.749ı East and in latitude by 42.113
and 42.634 North. The library SpatialEpi in the statistical package R are used
to convert the standard WGS84 epicentral coordinates into the Euclidean planar
coordinates. The distance unit in the Euclidean plane is km. The earthquake
catalogue provided by the National Institute of Geophysics and Vulcanology (INGV:
http://bollettinosismico.rm.ingv.it) was the data source of our analysis. A total
number of 17,928 occurrences is taken into account. The events pertain to a time
period spanning from 1st October 2008 to 30th October 2009.

3.2 Results and Discussion

We analyse a posteriori the seismicity before and after the L’Aquila earthquake, with
the aim to detect the spatial scale at which foreshocks and aftershocks sequences
with different magnitudes can interact. The results of this study were obtained by
considering a target area of radius of 60 km around the epicentre of the mainshock

http:// bollettinosismico.rm.ingv.it
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of 6 April 2009. The mainshock splits the database in two parts: the foreshock and
aftershock sequences. Obviously the phenomenon appears clustered: the foreshock
and aftershock sequences are characterised by spatial aggregation as revealed by the
conventional Ripley’s K-function which exhibit spatial clustering under 30 km in
both the earthquake sequences analysed. However the Ripley’s K-function assumes
that epicentres can be located anywhere in the study region. In the analysis of
seismicity of L’Aquila area events are more likely to occur on known faults,
supporting the hypothesis of spatially inhomogeneous patterns. For that reason, the
M-function analysis, described in the previous section, can be a more appropriate
tool to study the density of particular events. In particular, the focus here is on
quantifying the scale at which clustering of epicentres with a certain magnitude
takes place. For both foreshock and aftershock sequences we consider earthquakes
with magnitude 2.5 or larger and earthquakes with magnitude 3.0 or larger. The
choice of the thresholds is essentially driven by the need of ensuring a more
accurate completeness of earthquake catalogue: lower intensity earthquakes seem
to be characterized by a greater uncertainty in the source parameters (latitude,
longitude, depth, time). On the other hand, the increase of 1 unit in magnitude
leads to a drastic reduction in the number of events. In a word, in the paper, we
choose those earthquake intensities as they represent a compromise between the
two aforesaid considerations and guarantee a better reliability of statistical results.
In the weaker foreshock sequence, considering events with magnitude 2.5 or larger,
the spatial concentration, measured by the M-function, is observed at a radius less
than 500 m. When earthquakes with magnitude 3.0 or larger are investigated the
M-function analysis reveals significant concentration of this kind of events up to
3 km. The findings for the foreshock sequences are not displayed. Summarising
the characteristics of aftershocks sequences by means of M-function, we observe a
valuable concentration in a radius of about 30 km for both the aftershocks sequences
analysed. Figures 1 and 2 shows the results for the aftershock sequences and
they can be interpreted as follows. The confidence interval is determined using
Monte Carlo simulations. The simulations are set up by preserving the epicentres
locations and randomly assigning the magnitude to each location. Basically, we
generate a large number of simulations of random data corresponding to the
null hypothesis of homogeneous spatial distributions. Here 100 simulations are
generated and their results sorted at each distance. The 95 % confidence interval
of M-function for each value of r is delimited by the outer 5 % of randomly
generated values (Mmin and Mmax in the legend). In such a way it is possible
to ascertain whether the results differs significantly from the null hypothesis of
homogeneous distribution. The aforementioned results are valuable to explore the
occurrence rules of the L’Aquila strong earthquake. In particular, the empirical
findings allow us to highlight that for the foreshock activities we obtain a dense
concentration of epicentres in a very narrow area and this would indicate well
enough the epicentral area of the forthcoming mainshock. By contrast, we find that
the two investigated aftershock sequences are spatially distributed within the entire
seismogenic area.
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Fig. 1 Estimated M-function of L’Aquila aftershocks sequence of events with magnitude 2.5 or
greater with the envelopes (MMin-MMax). A set of Monte Carlo simulations is performed. The
distance scales r are chosen from 1 to 50 km with step of 1 km
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Fig. 2 Estimated M-function of L’Aquila aftershocks sequence of events with magnitude 3 or
greater with the envelopes (MMin-MMax). A set of Monte Carlo simulations is performed. The
distance scales r are chosen from 1 to 50 km with step of 1 km

4 Concluding Remarks

In this paper we employed the M-function as a new method for the spatial analysis
of earthquakes distribution. The reviewed approach is a generalisation of Ripley’s
K-function and is based on a multiscale study of neighbourhood relationship. It
allows to describe the density of neighbours in comparison to the total events
occurred in the study region and takes into account the heterogeneous distribution
of occurrences. In our setting the neighbours are the epicentres with a predefined
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magnitude. The use of M-function for seismic investigation is expected to contribute
to a better description of characteristics of earthquake events, i.e. foreshock and
aftershock sequences and to explore in further detail the possible determinants of
spatial interaction. Insightful differences among earthquake sequences are detected
thanks to the proposed procedure. In particular, the M-function analysis of the
foreshock sequences of L’Aquila strong earthquake reveals a dense concentration of
events in a very narrow area instead this quantitative measure of aftershock activities
seems to indicate an aggregation of events in the entire seismogenic area. It is worth
noting that the method provides comparability of concentration measurements
across earthquake sequences and remains unbiased concerning different scales.
Further it can be modified depending on desiderated significance level. Anyway, this
paper just performs a preliminary study of L’Aquila earthquake sequence. A topic
for future research regards the possibility to take into account point weights, giving
for example, a different importance to events characterised by some uncertainty in
the measurements values.
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Energy Consumption – Gross Domestic Product
Causal Relationship in the Italian Regions

Antonio Angelo Romano and Giuseppe Scandurra

Abstract Despite of increasing amount of literature available on the relationship
between energy consumption and Gross Domestic Product on a multi-countries
framework, empirical analysis about this relationship in a spatial disaggregate
level remains scarce. In this paper we investigate the relationship between energy
consumption and real income by means of panel dataset of Italian regions using
annual data covering the period 1980–2007. The panel co-integration and panel
vector error correction models are employed to infer the dynamic directions of
the causality between the two variables. Based on the panel co-integration test
by Westerlund (Oxf Bull Econ Stat 69:709–748, 2007) we individuate a long-run
equilibrium relationship between Gross Domestic Product (GDP) and Electricity
Consumption (CE). Furthermore, the results of a panel Vector Error Correction
Model suggest the presence of a bi-directional causality between variables both in
the long-run and in short-run.

1 Introduction and Background

Recently, a new debate has sparked Italy on the need to invest in new energy
sources to increase domestic production and to better respond to the growing
demand comes from sectors of economic activity and from Italian families. Italy,
as is known, is heavily dependent on foreign resources in the supply of energy,
especially oil and gas, but also electricity. The launch of new investments and
increasing domestic production of electricity would reduce imports by decreasing,
therefore, the energetic dependence. The new investments will also provide new
input to increase consumptions and would allow greater economic growth.
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The debate around the relationship between energy consumption and economic
growth has therefore turned on and has become increasingly intense in recent
years. Many studies examine the relationship between economic growth and energy
consumption in order to test if the energy consumption stimulates growth or,
conversely, if economic growth increases the demand for energy.

The search for the causal link between energy consumption and economic
growth leads to the formulation of four hypotheses trying to explain the effect
and cause. The growth hypothesis postulates that energy consumption can directly
impact economic growth. The presence of unidirectional causality from energy con-
sumption to economic growth confirms this hypothesis. Second, the conservation
hypothesis is supported if there is unidirectional causality from economic growth to
energy consumption. Third, if a bi-directional causality relationship exists between
economic growth and energy consumption we confirm a feedback hypothesis.
Fourth, the two variables are not interrelated. We do not find a causality relationship
between energy consumption and economic growth. This is the case of the neutrality
hypothesis.

The literature focuses mainly on analysis by a panel of countries. Al-Iriani
(2006), for example, investigates the causality relationship between Gross Domestic
Product (GDP) and Energy Consumption in six countries of the Gulf Cooperation
Council (GCC). He finds a unidirectional causality running from GDP to energy
consumption. Mahadevan and Asafu-Adjaye (2007) study this relationship in energy
exporting developed and developing countries. They find that in developed countries
there is both short-run and long-run bi-directional causality between economic
growth and energy consumption while for the energy exporting developing coun-
tries, energy consumption causes economic growth only in the short-run. In various
papers, Apergis and Payne (2009a,b, 2010) analyze the relationship between energy
consumption and economic growth. They reveal a causal relationship between
energy and GDP in a different direction depending on the panel of countries that
they investigate. These results suggest that energy conservation may harm economic
growth in the short-run and/or in the long-run. A wide survey of the empirical
literature on the causal relationship between energy consumption and economic
growth could be found in Payne (2010).

While investigating the relationship between energy consumption and economic
growth in a specific country, or in group of countries, is an ongoing research area,
we have not found empirical research about the causal relationship in the various
realities that make up a heterogeneous country. It was therefore decided to study the
causal link between the variables considered in the panel of the Italian regions.

These regions are quite different with respect to the GDP. In this paper we
investigate the direction of the nexus between economic growth and energy
consumption in Italy in a simple bivariate framework. In particular we test if the
two variables have a long-run equilibrium relationship using a panel dataset of the
20 Italian regions. To the best of our knowledge, there is a lack of empirical works
at disaggregate level. Given the economic heterogeneity of the Italian regions, in
which exist a strong economic gap, it would be reasonable to expect the relationship
between energy consumption and economic growth that in some cases support the
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hypothesis of neutrality (Yu and Choi, 1985) that the energy consumption should
not significantly affect the economic growth of one region and other cases in which
energy consumption plays, however, a major role. From the statistical point of view
is whether there is a unidirectional causality of energy consumption on income, or
if that link takes on the characteristic bidirectional as a sign of complementarity
between the two variables. In order to investigate the direction of panel causation
we estimate a panel dynamic Vector Error Correction Model using the Generalized
Methods of Moments (GMM) estimator proposed by Arellano and Bond (1991). The
organization of the paper is as follow. Section 2 describes data and the empirical
approach. In Sect. 3 we analyze the main results. Section 4 closes with some
concluding remarks.

2 Data and Methods

In this paper we investigate the causal relationship between changes in electricity
consumption in Italy and the variation of its GDP. It is well knows, in fact, that there
are different assumptions about the nature of economic growth in relation to energy
consumption in general, and the electricity consumption in particular. The use of
electricity consumption instead of energy consumption is due to the short time series
available for energy. However, electricity consumption is an important percentage of
total energy consumption thanks to the network infrastructure significantly extended
in a country like Italy and, of course, the fact that its measure is characterized by
extreme accuracy, timeliness and spatial granularity.

The data are the annual time series from 1980 to 2007 of Gross Domestic Product
(GDP) in constant 2,000e price and Electricity Consumption (CE) in the 20 Italian
regions. All variables are expressed through natural logarithms. A panel dataset
of Italian regions is used in order to limit the effect of the small time span of
the aggregated data. There are three main issues that we can solve using a panel
dataset. In fact, a panel dataset allows to: (1) solve some problems of non-standard
distributions of test statistics used for the identification of unit roots in the regression
equations, (2) have more informative data and (3) to reduce collinearity between the
variables.

First, we have computed heterogeneity (i.e. variation of the intercept over regions
and time) test by using the Breush-Pagan Lagrange Multiplier test. The presence of
heterogeneity suggests the use of Im, Pesaran e Shin (Im et al., 2003) panel unit
root test to determine the stationarity properties of the variables before testing for
co-integration. The null hypothesis is that each series in the panel contains a unit
root while the alternative hypothesis is that at least one of the individual series in the
panel is stationary. Table 1 reports the Im, Pesaran e Shin (IPS) panel unit root test
statistic for dataset. The panel unit root test reveals that each variable is integrated
of order 1 (I(1)).

In order to test for co-integration between electricity consumption and gross
domestic product we use the test procedure proposed by Westerlund (2007) because



282 A.A. Romano and G. Scandurra

Table 1 Im, Pesaran and
Shin (Im et al., 2003) panel
unit root test

Variables Level First difference Decision

GDP 2.7048 �15.2512a I(1)
CE 1.8897 �14.7230a I(1)
a Significant at 1%

Table 2 Westerlund tests for
the null of no co-integration
between GDP and electricity
consumption in the Italian
regions

Test Test statistics P-value Decision

Gt �2.571 0.000 Cointegrated
Ga �11.836 0.000 Cointegrated
Pt �8.749 0.011 Cointegrated
Pa �8.423 0.000 Cointegrated

Table 3 Fully modified
ordinary least squares
(FMOLS) long-run estimates

Dependent variable

Independent variable GDP CE

GDP – 1.11a

CE 0.58a –
Constant 4.77a �2.44a

a Significant at 1%

it is considered more robust than the Pedroni’s co-integration test (Pedroni 1999,
2004) in the case of small samples. Westerlund proposes four tests of the null
hypothesis of no co-integration that does not impose any common factor restriction
on the data and that uses the available information more efficiently than residual
based tests. The tests proposed by Westerlund are panel extensions of those
proposed in the time series context by Banerjee et al. (1998). As such, they are
designed to test the null hypothesis of no co-integration by inferring whether the
error correction term is a conditional error correction model (ECM) is equal to zero.
If the null hypothesis of no error correction is rejected, than the null hypothesis of
no co-integration is also rejected. Table 2 reports the Westerlund’s test statistics.

The four tests fail to accept the null hypothesis of no co-integration. Thus, the
evidence suggests that in panel dataset there is a long-run equilibrium relationship
between GDP and electricity consumption. Having established a co-integrating
relationship, we estimate the long-run equilibrium relationship by using the Fully
Modified Ordinary Least Squares (FMOLS) proposed by Pedroni (2000).

In Table 3 we report the estimated coefficients of the long-run regression. The
FMOLS estimator is applied to as many single equation as the number of the
variables included in the VECM that are I(1) and co-integrated.

All the coefficients are positive and significant at 1% level. The coefficients can
be interpreted as elasticity estimates. The 1% increase in electricity consumption
increases real GDP by 0.58% while a 1% increase in real GDP increases electricity
consumption by 1.11%. To infer the causal relationship between the variables,
a panel Vector Error Correction Model is estimated. The Error Correction Term
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(ECT) is represented by the residuals of the first stage long-run model that
was previously estimated by FMOLS, following the two-step procedure proposed
by Engle and Granger (1997). The following dynamic error correction model is
estimated:

�GDPi;t D ˛1;j Cˇ1;iECT i;t�1C
qX

kD1
�1;i;k�GDPi;t�k C

qX

kD1
�1;i;k�CEi;t�kC�1;i;t

(1)

�CEi;t D ˛2;j Cˇ2;iECT i;t�1 C
qX

kD1
�2;i;k�GDPi;t�k C

qX

kD1
�2;i;k�CEi;t�k C �2;i;t

(2)

where i D 1; : : : ; N for each regions in the panel and t D 1; : : : ; T refers to the
time period. The parameter ˛i;j allows for the possibility of regions-specific fixed
effects, � is the first-difference operator; k is the lag length; �i;k and �i;k are the
short-run adjustment coefficients; ECT are the lagged residuals derived from the
long-run co-integrating relationship and �i;t are disturbance terms assumed to be
uncorrelated with mean zero.

In order to estimate Eqs. (1) and (2) a widely used estimator is based on the panel
generalized method of moments (GMM) proposed by Arellano and Bond (1991).
Therefore, this panel data model is estimated using instrumental variable to deal
with the correlation between the error term and the lagged dependent variables.

3 Main Results and Discussion

The existence of a co-integrating relationship between GDP and Electricity Con-
sumption suggests that there must be Granger causality in at least one direction,
but it does not indicate the direction of temporal causality between the variables. It
is possible, therefore, highlight the relationships between the variables considered.
Table 4 reports the estimates of the panel VECM.

The error correction terms are significant in both equations. The adjustment
coefficients have the expected negative sign, which implies that they indeed reflect
an error correction mechanism that tends to bring the system closer to its long-
run equilibrium. In the short-run, the GDP depends directly by the present values
of energy consumption. The electricity consumption has a direct relationship, as
expected, with present value of the GDP. Therefore, in the short-run, consumption
of electricity is influenced by the wealth produced in the Italian regions.

The directions of panel causation can be identified by testing for the significance
of the coefficient of each of the dependent variables in Eqs. (1) and (2). In Eq. (1),
short-run causality from energy usage to real GDP is tested based on H0 W � D 0.
In Eq. (2), short-run causality from real GDP to energy consumption is tested based
on H0 W � D 0. Masih and Masih (1996) and Asufu-Adjaye (2000) interpreted the
weak Granger causality as a short-run causality in the sense that the dependent
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Table 4 VECM estimates Independent
variable

Dependent variable
� GDP �CE

�GDP � 0.366a

�GDP�1 0.100b 0.002
�GDP�2 0.006 �0.005
�CE 0.292a �
�CE�1 0.029 �0.341a

�CE�2 � �0.170a

ECT �0.249a �0.432a

Constant 0.006a 0.035a

a Significant at 1%
b Significant at 5%

Table 5 Strong causality test

Dependent variable Direction

�GDP �CE

H0 W ECT ��CED 0a H0 W ECT ��GDPD 0a  !
a Significant at 1%

variable responds only to short term shocks to the stochastic environment. Next,
for long-run effect, we look the significance of the speed of adjustment ˇ which are
the coefficients of the error correction terms in Eqs. (1) and (2). Finally, it is also
desirable to check whether the two sources of causation are jointly significant: we
use the joint test to check for strong causality (Oh and Lee, 2004) (ECT and�GDP;
ECT and �CE) where the variables bear the burden of a short-run adjustment to
re-establish a long-run equilibrium, following a shock to the system. If there is no
causality in either direction, the neutrality hypothesis holds, otherwise, univocal or
bi-directional causality exists. Since all the variables are entered into the model in
stationary form, a Wald test with a chi-squared statistic distribution can be used
to test the null hypothesis of no causality (or weak exogeneity of the dependent
variable) (Table 5).

The results show that Italian regions grow through increasing consumption
of electricity. They do not seem to pursue energy savings policies to support
growth rates. Unless structural changes of the current pattern of consumption, is
expected a growing energy demand needed to sustain growth levels and international
competitiveness.

4 Conclusion and Further Researches

This paper presents some preliminary results of a new empirical insights into the
analysis of causal relationship between economic growth and energy consumption
when considering the Italian regions, in a historical period marked by strong
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willingness to initiate a series of new investments in alternative production energy
sources (like nuclear energy) to ensure a national demand less dependent on foreign
sources. The panel cointegration test indicates there is a long-run equilibrium
relationship between GDP and Electricity Consumption. The long-run elasticities
estimated are positive and statistically significants. Furthermore, the estimation of
panel vector error correction model reveals a bi-directional causality relationship
both in the long-run and in the short-run. Thus, results lend to support feedback
hypothesis. We can conclude that the interdependence between GDP and Electricity
Consumption suggests a country where growth requires more energy available and
it does not invest in policies aimed at reducing energy consumption. In fact, during
the years 1980–2007, we do not observe a significant increase in capital productivity
or Total Factor Productivity (TFP) in Italy. As well known, Italy is among the
last countries in the OECD for investment in research and development aimed at
increasing productivity. The new investments promised by policy makers in new
energy production sources can increase the wealth and reduce the dependence
on imports but they should have a low environmental impact in order to reduce
the greenhouse gas emission and to respect the Kyoto protocol. Also should be
conducive private investments in energy saving capital goods.

There are still some interesting questions to pursue in future research. It is
useful to investigate: (1) the effect that inclusion of new variables could have
in this analysis because of the interaction, for example, of labour and capital on
the economic growth; (2) the environmental impact of new investments and the
relationship with region’s growth prospects; (3) the causal relationship between
energy consumption and GDP considering the different productive structure of
Italian regions. These aspects, not secondary, are objective of further research.
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