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Preface

The monograph is dedicated to a class of models of optimization of trans-
portation networks (urban traffic networks or networks of railroads and
highways) in the given geographic area. One assumes that the data on dis-
tributions of population and of services/workplaces (i.e. sources and sinks of
the network) as well as the costs of movement with and without the help
of the network to be constructed, are known. Further, the models take into
consideration both the cost of everyday movement of the population and the
cost of construction and maintenance of the network, the latter being de-
termined by a given function on the total length of the network. The above
data suffice, if one considers optimization in long-term prospective, while
for the short-term optimization one also needs to know the transport plan
of everyday movements of the population (i.e. the information on “who goes
where”). Similar models can also be adapted for the optimization of networks
of different nature, like telecommunication, pipeline or drainage networks. In
the monograph we study the most general problem settings, namely, when
neither the shape nor even the topology of the network to be constructed is
a priori known.

To be more precise, given a region Ω ⊆ R
N , we will model the transporta-

tion network to be constructed by an a priori generic Borel set Σ ⊆ Ω. We
consider then the mass transportation problem in which the paths inside and
outside the network Σ are charged differently. The aim is to find the best
location for Σ, in order to minimize a suitable cost functional F(Σ), which
is given by the sum of the cost of transportation of the population, and the
penalization term depending on the length of the network, which represents
the cost of construction and maintenance of the network. To study the prob-
lem of existence of optimal solutions, we present first a relaxed version of the
optimization problem, where the network is represented by a Borel measure
rather than a set, and we prove the existence of a relaxed solution. We will
study then the properties of optimal relaxed solutions (measures) and prove
that, under suitable assumptions, the relaxed solution solve the original prob-
lem, i.e. in fact they correspond to rectifiable sets, and therefore can be called

v



vi Preface

classical solutions. However, it will be shown that in general the problem
studied may have no classical solutions. We will also study some topological
properties of optimal networks, like closedness and the number of connected
components. In particular, we find rather sharp conditions on problem data,
which ensure the existence of closed optimal networks and/or optimal net-
works having at most countably many connected components. Finally, we will
prove a general regularity result on optimal networks. Namely, we will show
that an optimal network is covered by a finite number of Lipschitz curves
of uniformly bounded length, although it may have even uncountably many
connected components.
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Chapter 1

Introduction

The present monograph treats one particular class of mathematical models
arising in urban planning, namely, the models of optimization of transporta-
tion networks such as urban traffic networks, networks of tram or metro
lines, railroads or highways. The optimization is performed so as to take into
account the known data of the distributions of the population and of ser-
vices/workplaces (or, more generally, sources and sinks of the network), the
costs of the transportation with and without using the network to be con-
structed, and the budgetary restrictions on construction and maintenance of
the network, as well as, in certain cases, the transportation plan of everyday
movement of the population. As an illustration, see the distribution of pop-
ulation as well as the railroad network in Italy (Figure 1.1). The functional
to be minimized corresponds to the overall cost of everyday transportation
of population from their homes to the services together with the cost of
construction and maintenance of the network. It is important to emphasize
that the shape and even the topology of the network is considered a priori
unknown.

From the most general point of view such models belong to the class of eco-
nomical optimal resource planning problems which were first studied in [44].
In the simplest cases under additional restrictions on the network such prob-
lems reduce to problems of minimization of so called average distance func-
tionals (see [20]), and are similar to the well-known discrete problems of
optimization of service locations (so-called Fermat-Weber, or k-median prob-
lems) studied by many authors (see, e.g. [7, 68, 69, 51]). Similar as well as
slightly different models have been proposed for telecommunication, pipeline
and drainage networks in [11, 41, 47], and are recently subject to extensive
study (see, for instance, [8, 9, 10, 17, 27, 34, 48, 55, 56, 62, 66, 52, 73, 74]. The
common kernel of all such models is the general (i.e. not necessarily discrete)
setting of the Monge-Kantorovich optimal mass transportation problem (see,
e.g. [42, 43, 67, 1, 36, 35, 60, 25, 38]); we give now a short description
of the mass transport problem, a more complete discussion is given in
Appendix A.

G. Buttazzo et al., Optimal Urban Networks via Mass Transportation, 1
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2 1 Introduction

Fig. 1.1 Density of population (left) and railway network (right) in Italy

The mass transportation problem was first proposed by Monge [49]. Using
a modern language, this can be restated as follows: we are given a metric
space (X, d) and two finite Borel measures f+ and f− with the same total
mass ‖f+‖ = ‖f−‖. A Borel map T : X → X is said to be a transport map if it
moves f+ on f−, that is, if T#f+ = f− being T# the push-forward operator
(see Appendix B.2). We are also given the cost function, which is a lower
semicontinuous function c : X ×X → R

+; its meaning is very simple, namely
c(x, y) is the cost to move a unit mass from x to y. In the original setting of
Monge c(x, y) = d(x, y), more generally one is often interested in c(x, y) =
d(x, y)p. The Monge transport problem consists then in determining, among
all the transport maps, the optimal transport maps, that is, those maps which
minimize the total transportation cost given by

∫
X

c
(
x, T (x)

)
df+(x) .

It may easily happen that there are no transport maps at all, namely when the
measure f+ has singular parts; it may also happen that, even thought there
are transport maps, the existence of optimal transport maps fails. Also for
this reason, it reveals of primary importance to consider the relaxed form of
the problem proposed by Kantorovich (see [42, 43]). The idea of Kantorovich
is to define transport plan any positive measure γ on X × X such that the
two marginals of γ are precisely f+ and f−; the meaning is quite intuitive:
such a measure γ is to be interpreted as the strategy of transportation which
moves a mass γ

(
{(x, y)}

)
from x to y; more precisely, it moves a total amount
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γ(C × D) of mass from the set C to the set D. An optimal transport plan,
then, is any transport plan γ minimizing the cost

∫∫
X×X

c(x, y) dγ(x, y) .

It is to be noticed that the transport plans are a generalization of the trans-
port maps: indeed, given a transport map T the measure γT := (Id, T )#f+

is a transport plan, and moreover by definition
∫∫

X×X

c(x, y) dγT (x, y) =
∫

X

c
(
x, T (x)

)
df+(x) ;

so, the search of optimal plans is a generalization of the search of optimal
maps. The power of this new definition is evident: while, as we said, it may
happen that there are no transport maps, or no optimal transport maps,
there are always transport plans, as for instance f+⊗f−. Moreover, there are
always optimal transport plans, since the function c is lower semicontinuous.
A more detailed introduction to mass transportation problems is given in
Appendix A.

In this monograph we consider a problem of urban planning, in which
we take as ambient space a region Ω ⊆ R

N , with N ≥ 2 since the one-
dimensional case is in fact trivial; the measure f+ represents the density of
the population in the urban area Ω and the measure f− represents the density
of the services or workplaces. We also consider a Borel set Σ ⊆ Ω of finite
H 1 length, which represents the urban transportation network that has to
be constructed to minimize the cost of transporting f+ on f− according to
some suitable cost functional.

Once the set Σ is given, the cost dΣ(x, y) to be paid in order to connect
any two points x and y of Ω is defined as the least “price” of moving along
a Lipschitz curve connecting x and y given by the number

δΣ(θ) := A
(
H 1(θ \ Σ)

)
+ B
(
H 1(θ ∩ Σ)

)
.

The functions A and B are two given nondecreasing functions from R
+ to

R
+ with A(0) = B(0) = 0, A being continuous and B lower semicontinuous:

A(s) is the “cost” of covering a distance s by own means, that is a number
including the expenses for the fuel, the fare of the highway, the fatigue of
moving by feet, the time consumption and so on; on the other hand, B(s)
represents the cost of covering the distance s making use of the transportation
network (i.e. the “cost of the ticket”).

In this monograph, we assume the point of view of an “ideal city”, where
the only goal is to minimize the total expenses for the people; therefore, the
number B(s) should be regarded just as a tax that people pay to contribute to
the cost of the network when they use it, and the case B ≡ 0, corresponding
to a situation where everybody can use the public transportation for free, is
the simplest (and most common in the literature) choice in this ideal setting.
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An opposite point of view, where the owner of the network aims to maximize
his total income by choosing a suitable pricing policy B, has been studied
in [18].

Having fixed the set Σ, the population will naturally try to minimize
its expenses, that is, people choose to move following a transport plan γ
minimizing

IΣ(γ) :=
∫∫

X×X

dΣ(x, y) dγ(x, y)

among all admissible transport plans, and we denote by MK(Σ) the respec-
tive minimum (or the infimum if the minimum is not achieved). We want to
find a network Σ minimizing the total cost for the people. However, MK(Σ)
is not the only cost to be considered: otherwise, a network of infinite length
covering the whole Ω would be clearly the optimal choice. We will then con-
sider also a very general cost function H

(
H 1(Σ)

)
for the maintenance of

the network, that will depend on the length H 1(Σ) of Σ and that diverges
if the length goes to ∞. For instance, one can set

H(l) :=
{

0, if l ≤ L ,
+∞, if l > L ,

which corresponds to a situation where one is allowed to build a network of
total length not exceeding L. Our goal is then to find an optimal network
Σopt which minimizes Σ �→ MK(Σ) + H

(
H 1(Σ)

)
among the admissible

sets Σ.
The above problem can be considered as a long-term optimization model.

In fact, in this case while choosing the optimal network Σ one is allowed to
change freely the transportation plan γ (i.e. it is supposed that people may
consider it more convenient to choose different destinations for their every-
day movements, e.g. change the shops they usually use or even change their
workplace, in view of the cost of transportation), which is only reasonable in
a quite long-term prospective. On the contrary, the reasonable model for the
short-term prospective is obtained by considering given the transport plan γ
(i.e. the information on “who goes where” in the everyday movements) and
thus minimizing Σ �→ IΣ(γ)+H

(
H 1(Σ)

)
among the admissible sets Σ. How-

ever, it is easy to notice, similarly to [18], that the short-term optimization
problem is in fact simpler than the long-term one. Hence in this monograph
we concentrate on studying the latter with all the results applying also to
the former.

Plan of the Monograph

In Chapter 2 we define the general problem setting without additional as-
sumptions on admissible networks. The simplest case, when Σ is a priori
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required to be connected, will be considered in Chapter 3, and some known
facts about this problem will be reported. In this case, by a suitable use
of the Hausdorff convergence on connected sets, we show the existence of an
optimal network. A particular situation happens when the goal of the planner
is simply to transport the source mass f+ to a network Σ in the most efficient
way, that is f−, instead of being a priori fixed, is chosen in an optimal way
among the probabilities with support in Σ. This problem then corresponds
to the minimization of the functional

F (Σ) :=
∫

Ω

A
(
dist (x,Σ)

)
df+(x) . (1.1)

We will refer to the minimization problem for the functional F defined
by (1.1) as the irrigation problem in view of the natural interpretation of
the cost (1.1) as the total effort to irrigate the mass distribution f+ us-
ing a network Σ. It is assumed that the effort to irrigate the point x ∈ Ω
depends on its distance t from the network Σ through the function A(t).
Taking A(t) := t we have the minimization problem for the average distance
functional

min
{∫

Ω

dist(x,Σ) df+(x) : Σ ⊆ Ω, Σ connected, H 1(Σ) ≤ L
}

,

that has been studied in several recent papers (see, e.g. [17, 21, 19, 20, 54]).
On Fig. 1.2 below we show the plot of two cases when Ω is the unit bi-
dimensional disc, f+ is the Lebesgue measure over Ω, and Σ varies among
all connected sets of length L, with two different choices of L.

It is immediate to see that dropping the connectedness assumption leaving
the cost functional as in (1.1) would give zero as the minimal value of F , since
the set Σ would have the interest to spread everywhere on Ω. This is why the
particular situation considered by functional (1.1) is meaningful only in the
connected framework.

Fig. 1.2 Optimal irrigation networks for L = 0.5 (left) and L = 1 (right)
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In Chapter 4 we show that without extra assumptions on the functions A,
B and H there may be no optimal networks. Therefore, we introduce a relaxed
version of the problem, where the sets are replaced by Radon measures, and
in particular each set Σ corresponds to the measure H 1 Σ. Then, we show
the existence of optimal “relaxed networks”, and in particular we prove that
optimal measures µ on Ω of the form µ = a(x)H 1

Σ for a one-dimensional
rectifiable set Σ and a Borel function a : Σ → [0, 1] always exist. Roughly
speaking, this means that there is an optimal transportation network concen-
trated on a Borel set Σ, but it has a pointwise density in [0, 1]: the density
1 corresponds to a standard railway, where covering a path of length l has
a cost B

(
l
)
. In general, covering a path of length l on a network of density

0 ≤ p ≤ 1 costs A
(
(1 − p)l

)
+ B
(
pl
)
, as if one covers a length pl on the

network, and the remaining (1 − p)l by own means. Moreover we show that,
under suitable assumptions, there are also “classical solutions”, that is, op-
timal networks which naturally correspond to sets (in other words, relaxed
solutions with the coefficient a(x) above taking only values 0 and 1). However,
we give counterexamples showing that this does not always occur.

In Chapter 5 we consider two questions, namely whether or not there ex-
ists an optimal classical network which is closed, or which has only countably
many connected components. We present counterexamples to show that this
is not always the case, even when classical solutions exist. However, we are
able to find conditions under which one has the existence of an optimal clas-
sical network that is closed or has countably many connected components.

In Chapter 6 we prove that, under suitable hypotheses, there is a classical
optimal network that is covered by a finite number of Lipschitz curves of
uniformly bounded length, even if it may still have infinitely many (even
more than countably many) connected components.

Finally, the monograph is concluded by two appendices, which present
with more details the general mass transportation problem and some tools
from Geometric Measure Theory, among which the Disintegration Theorem
and the Γ−convergence, which are used through the volume.



Chapter 2

Problem Setting

In this chapter we introduce the notation and the preliminaries to rigor-
ously set the problem of optimal networks. The formulation in the sense of
L. Kantorovich, by using transport plans, i.e. measures on the product space
Ω×Ω, will be presented together with a second equivalent formulation where
the main tools are the so-called transport path measures that are measures on
the family of curves in Ω. This seems to be a very natural formulation that
has already been used in previous papers (see for instance [24, 65, 6, 58]) and
that allows to obtain in a rather simple way existence results and necessary
conditions of optimality.

2.1 Notation and Preliminaries

In this monograph the ambient space Ω is assumed to be a bounded, closed,
N−dimensional convex subset of R

N , N ≥ 2, equipped with the Euclidean
distance; the convexity assumption is made here only for simplicity of presen-
tation; in fact, all the results are still valid in the more general case of bounded
Lipschitz domains. For any pair of Lipschitz paths θ1, θ2 : [0, 1] → Ω, we in-
troduce the distance

dΘ(θ1, θ2) := inf
{

max
t∈[0,1]

|θ1(t) − θ2(ϕ(t))| ,

ϕ : [0, 1] → [0, 1] increasing and bijective
}

,

(2.1)

where | · | is the Euclidean norm in R
N . We define then Θ as the set of the

equivalence classes of Lipschitz paths in Ω parametrized over [0, 1], where
two paths θ1 and θ2 are considered equivalent whenever dΘ(θ1, θ2) = 0: it is
easily noticed that Θ is a separable metric space equipped with the distance
dΘ. Moreover, simple examples show that the infimum in (2.1) might not
be attained. It will be often useful to remind that, given any sequence {θn}

G. Buttazzo et al., Optimal Urban Networks via Mass Transportation, 7
Lecture Notes in Mathematics 1961, DOI: 10.1007/978-3-540-85799-0 2,
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8 2 Problem Setting

of paths in Θ with uniformly bounded Euclidean lengths, by Ascoli–Arzelà
Theorem one can find a θ ∈ Θ such that (possibly up to a subsequence)
θn

dΘ−→ θ. This implies, in particular, that the corresponding curves θn([0, 1])
converge in the Hausdorff distance to θ([0, 1]), while the converse implication
is not true. Notice that

θn
dΘ−→ θ =⇒ H 1(

θ([0, 1])
)
≤ lim inf

n→∞
H 1(

θn([0, 1])
)
,

where H 1 denotes the one-dimensional Hausdorff measure.
In the sequel, for the sake of brevity we will abuse the notation calling

θ also the set θ([0, 1]) ⊆ Ω, when not misleading. We call endpoints of the
path θ the points θ(0) and θ(1), and, given two paths θ1, θ2 ∈ Θ such that
θ1(1) = θ2(0), the composition θ1 · θ2 is defined by the formula

θ1 · θ2(t) :=
{

θ1(2t) for 0 ≤ t ≤ 1/2 ,
θ2(2t − 1) for 1/2 ≤ t ≤ 1 .

As already introduced in Chapter 1, we let now A, B : R
+ → R

+ be the costs
of moving by own means and by using the network, i.e. A(s) (resp. B(s)) is
the cost corresponding to a part of the itinerary of length s covered by own
means (resp. with the use of the network). This means that, if the urban
network is a Borel set Σ ⊆ Ω of finite length, the total cost of covering a
path θ ∈ Θ is given by

δΣ(θ) := A
(
H 1(θ \ Σ)

)
+ B
(
H 1(θ ∩ Σ)

)
, (2.2)

since the length H 1(θ\Σ) is covered by own means and the length H 1(θ∩Σ)
is covered by the use of the network. Concerning the functions A and B, we
make from now on the following assumptions:

A is nondecreasing, continuous and A(0) = 0 ; (2.3)
B is nondecreasing, l.s.c. and B(0) = 0 . (2.4)

Note that these hypotheses follow the intuition: the meaning of the assump-
tions A(0) = 0, B(0) = 0 and of the monotonicity are obvious, while the
continuity of the function A means that a slightly longer path cannot have
a much higher cost, and it is a natural assumption once one moves by own
means. On the contrary, a continuity assumption on the function B would
rule out some of the most common pricing policies which occur in many real
life urban transportation networks: for instance, often such a pricing policy
is given by a fixed price (the price of a single ticket) for any positive distance,
or is a piecewise constant function.

We define now a “distance” on Ω which depends on Σ and is given by the
least cost of the paths connecting two points: in short,

dΣ(x, y) := inf {δΣ(θ) : θ ∈ Θ, θ(0) = x, θ(1) = y} . (2.5)
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The infimum in the above definition is not always attained, as we will see in
Example 2.8. Moreover, it has to be pointed out that in general the function
dΣ is not a distance; for instance, with A(s) = B(s) = s2 it is easy to see that
the triangle inequality does not hold. However, when A and B are subadditive
functions, i.e.

A(s1 + s2) ≤ A(s1) + A(s2) for all s1, s2 ∈ R
+ ,

B(s1 + s2) ≤ B(s1) + B(s2) for all s1, s2 ∈ R
+ ,

and they are strictly positive on (0,+∞), then an easy computation shows
that dΣ is in fact a distance (the strict positivity is needed to ensure that
dΣ(x, y) = 0 implies x = y). Nevertheless, with an abuse of notation, we will
call dΣ a distance in any case.

Lemma 2.1. For any θ ∈ Θ and any ε > 0, there is a path θε ∈ Θ such that

θε(0) = θ(0) , θε(1) = θ(1) , dΘ(θ, θε) < ε ,

H 1(θε) < H 1(θ) + ε , H 1(θε ∩ Σ) = 0 .

Proof. Since Ω ⊆ R
N and N ≥ 2, we can take a more than countable family

{θi}i∈I of elements of Θ such that

• θi(0) = θ(0) and θi(1) = θ(1) for each i ∈ I;
• dΘ(θ, θi) < ε and H 1(θε) < H 1(θ) + ε for each i ∈ I;
• for all i, j ∈ I with i �= j, θi ∩ θj consists of finitely many points.

The proof of this assertion is trivial if the curve θ is given by a finite union
of segments, as Figure 2.1 shows. The general case is now easily achieved
approximating any path θ by a finite union of segments as needed.

The thesis can be then proved making use of the paths θi: since
H 1(Σ)<∞, the condition H 1(θi∩Σ) > 0 may occur at most for a countable
set of indices i ∈ I; one then concludes just by taking one of the remaining
paths θi. ��

Corollary 2.2. For any θ ∈ Θ, ε > 0 and l ≤ H 1(θ ∩ Σ), there is a path
θl,ε ∈ Θ such that

θ(1)

θ
θi

θ(0)

Fig. 2.1 The path θ and some paths θi
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θl,ε(0) = θ(0) , θl,ε(1) = θ(1) , dΘ(θ, θl,ε) < ε ,

H 1(θl,ε) < H 1(θ) + ε , H 1(θl,ε ∩ Σ) = l .

Proof. This follows easily by Lemma 2.1: let t ∈ [0, 1] be such that

H 1(θ([0, t])) = l ,

and define θ1 to be the restriction of θ to [0, t] and θ2 to be the restriction of
θ to [t, 1], so that

θ = θ1 · θ2 , H 1(θ1 ∩ Σ) = l .

It suffices then to apply Lemma 2.1 to θ2 and to compose θ1 with the resulting
path. ��

Proposition 2.3. The function dΣ : Ω × Ω → R
+ is continuous.

Proof. This is a consequence of (2.3): take (x, y) ∈ Ω × Ω and a path θ
between x and y with

δΣ(θ) < dΣ(x, y) + ε .

Then, given any pair (x̃, ỹ) ∈ Ω × Ω, we can define a path between x̃ and
ỹ by setting θ̃ := α · θ · β for any choice of paths α and β connecting x̃ to
x and y to ỹ respectively. Thanks to Lemma 2.1, we may choose α and β
having H 1-negligible intersection with Σ and length less than |x − x̃| + ε
and |y − ỹ| + ε respectively. We infer thus

dΣ(x̃, ỹ) ≤ δΣ(θ̃)≤A
(
H 1(θ \ Σ) + |x − x̃| + |y − ỹ| + 2ε

)
+ B
(
H 1(θ ∩ Σ)

)
= δΣ(θ) + A

(
H 1(θ \ Σ) + |x − x̃| + |y − ỹ| + 2ε

)
− A
(
H 1(θ \ Σ)

)
≤ dΣ(x, y) + ε + A

(
H 1(θ \ Σ) + |x − x̃| + |y − ỹ| + 2ε

)
− A
(
H 1(θ \ Σ)

)
,

and the upper semicontinuity of dΣ follows since ε > 0 is arbitrary and A is
continuous.

Concerning the lower semicontinuity of dΣ , suppose that xn → x, yn → y
and that dΣ(xn, yn) → d as n → ∞. This means that there exist paths θn

connecting xn to yn and satisfying δΣ(θn) → d. Composing as before θn

with short paths αn and βn connecting x to xn and yn to y respectively, and
having

H 1(αn ∩ Σ) = H 1(βn ∩ Σ) = 0 ,

we find the paths θ̃n between x and y satisfying

δΣ(θ̃n) = δΣ(θn) + A
(
H 1(θn \Σ) +H 1(αn) +H 1(βn)

)
−A
(
H 1(θn \Σ)

)
.
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Since δΣ(θn) → d and since

H 1(αn) + H 1(βn) → 0 ,

the conclusion follows if H 1(θn\Σ) is uniformly bounded, because A is con-
tinuous hence uniformly continuous on compact sets. At last, if H 1(θn \ Σ)
is not uniformly bounded, then

H 1(θn \ Σ) > |x − y| + 1

for n arbitrarily large; in this case, we could directly take a path θ close to
the segment connecting x to y and having negligible intersection with Σ, so
that

δΣ(θ) = A
(
H 1(θ)

)
≤ A
(
|x − y| + 1

)
≤ A
(
H 1(θn \ Σ)

)
≤ δΣ(θn) ,

and hence, the thesis follows in this case too. ��

The problem we want to study is to find the best transportation network Σ
to move the population from their “homes” to their “workplaces”. To set the
problem, we consider two probability measures f+, f− on Ω describing the
distributions of homes and workplaces respectively. The following notion is
often used in transportation theory; throughout the monograph, πi : Ω×Ω →
Ω, i = 1, 2, stands for the i−th projection, and for a Borel map g : X → Y
the push-forward g# : M+(X) → M+(Y ) is defined by

g#µ(A) := µ
(
g−1(A)

)
for any Borel set A ⊆ Y ,

where M+(Z) is the space of the finite positive measures on a generic space
Z (see Appendix B.1).

Definition 2.4. A transport plan is a positive measure γ ∈ M+(Ω × Ω), the
marginals of which are f+ and f−, i.e.

π1#γ = f+ , π2#γ = f− .

One can intuitively think that γ(x, y) is the number of people moving from
x to y, or, more precisely, that γ(C × D) is the number of people living in
C ⊆ Ω and working in D ⊆ Ω. To each transport plan γ we associate the
total cost of transportation according to the formula

IΣ(γ) :=
∫∫

Ω×Ω

dΣ(x, y) dγ(x, y) . (2.6)

The Monge-Kantorovich optimal transport problem consists in finding a
transport plan γ̄ ∈ M+(Ω × Ω) (which is usually called optimal transport
plan) minimizing IΣ .
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It is important to notice that the transport plan γ gives no precise in-
formation on how the mass is moving (i.e. which trajectories are chosen for
transportation). To be able to recover such an information we will make use of
the following definition, already used in [58] (a quite similar idea was already
used elsewhere, for instance in [24, 65, 6]).

Definition 2.5. A transport path measure (shortly t.p.m. in the sequel) is a
measure η ∈ M+(Θ) with the property that its first and last projections are
f+ and f−, i.e.

p0#η = f+ p1#η = f− , (2.7)

where for t = 0, 1 we denote by pt : Θ → Ω the function pt(θ) := θ(t).

It is important to understand the meaning of the above definition: roughly
speaking, if η is a t.p.m., then η(θ) indicates the amount of mass to be
moved along the path θ; more precisely, η(E) is the mass following the paths
contained in E ⊆ Θ. The meaning of condition (2.7) is then clear, since p0#η
and p1#η are respectively the measure from which η starts and the measure
to which it is transported.

We are now able to define the total cost of transportation associated to
any t.p.m. by the formula

CΣ(η) :=
∫

Θ

δΣ(θ) dη(θ) . (2.8)

Finally, we denote by MK(Σ) the infimum of the above costs, namely,

MK(Σ) := inf {CΣ(η) : η is a t.p.m.} . (2.9)

The purpose of this monograph is to study the problem of finding the best
possible network Σ: in other words, we want to find a set Σ having mini-
mal total cost of usage (defined below). To do that, as already discussed in
Chapter 1, we consider a function H : R

+ → R
+
, where H(l) represents the

maintenance cost of a network Σ of length H 1(Σ) = l. We assume on H the
natural conditions

H is nondecreasing, l.s.c., H(0) = 0 and H(l) → ∞ as l → ∞ . (2.10)

Finally, the total cost of usage of Σ is defined by the formula

F(Σ) := MK(Σ) + H
(
H 1(Σ)

)
. (2.11)

Our goal is to study the problem of minimizing the functional F.
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2.2 Properties of Optimal Paths and Relaxed Costs

In (2.5) we defined a distance in Ω as the infimum of the costs of the paths
connecting two given points. We show now the possibility to choose a Borel
selection of paths which have almost minimal costs in the sense of proposition
below.

Proposition 2.6. For any ε > 0 there is a Borel function qε : Ω × Ω → Θ
such that qε(x, y) is a path connecting x to y with

δΣ

(
qε(x, y)

)
< dΣ(x, y) + ε . (2.12)

Proof. Fix a ρ > 0 and let {xi} be a finite set of points in Ω such that
⋃

B(xi, ρ) ⊇ Ω .

Let then Cij ⊆ Ω × Ω be pairwise disjoint Borel sets covering Ω × Ω, each
contained in B

(
(xi, xj), 2ρ

)
. Now, given i, j, let θij ∈ Θ be a path connecting

xi to xj and having a cost minimal up to an error ρ, that is

δΣ(θij) < dΣ(xi, xj) + ρ .

We claim that the conclusion follows if for every x ∈ Ω there is a Borel map

αx : B(x, 2ρ) → Θ

such that αx(y) is a path between x and y with length less than 4ρ and
having H 1−negligible intersection with Σ. Indeed, defining on each Cij the
function qε by the formula

qε(x, y) := α̂xi
(x) · θij · αxj

(y)

(where θ̂(t) := θ(1− t)), one has that qε is a Borel function; moreover, if ρ is
sufficiently small, one gets (2.12) by the continuity of A. It suffices therefore to
prove the existence of such an αx (observe that Lemma 2.1 already provides a
map satisfying all the required conditions except for the Borel property). For
this purpose, we begin defining αx(y) as the line segment between x and y.
Since Σ is rectifiable, such a segment has H 1-negligible intersection with
Σ unless y is contained in one of countably many radii {Rk}k∈N of the ball
B(x, 2ρ). For each k ∈ N, choose arbitrarily a two-dimensional halfplane Πk

containing Rk on its boundary; then, for y ∈ Rk, define αx(y) as the half
circle joining x to y and lying on Πk. Arguing as before, it is clear that such
a path has H 1-negligible intersection with Σ except for countably many
points y ∈ Rk. Finally, for each of these latter y, by Lemma 2.1 we may
arbitrarily select a path αx(y) connecting x to y which is shorter than 4ρ and
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has H 1−negligible intersection with Σ. The resulting function αx has the
required properties and so the proof is completed. ��

Corollary 2.7. For any ε > 0 there is a Borel function q′ε : Ω × Ω → Θ
such that q′ε(x, y) is a path connecting x with y and satisfying

H 1(q′ε(x, y)) ≤ |y − x| + ε , H 1(q′ε(x, y) ∩ Σ) = 0 .

Proof. Consider the case when

A(s) = s , B(s) = diam Ω + 2ε

for every s > 0. By Lemma 2.1 it is clear that dΣ(x, y) = |y − x| and that
δΣ(θ) = H 1(θ) whenever H 1(θ∩Σ) = 0. Apply now Proposition 2.6 to find
a map q′ε such that

δΣ(q′ε(x, y)) < dΣ(x, y) + ε = |y − x| + ε .

If
H 1(q′ε(x, y) ∩ Σ) > 0 ,

then
δΣ(q′ε(x, y)) ≥ diam Ω + 2ε > |y − x| + ε ,

and this gives a contradiction. Thus,

H 1(q′ε(x, y) ∩ Σ) = 0

and, as a consequence,

H 1(q′ε(x, y)) = δΣ(q′ε(x, y)) < |y − x| + ε ;

hence the thesis follows. ��

We see now an example, showing that the infimum in (2.5) may be not a
minimum, and that δΣ may be not lower semicontinuous.

Example 2.8. Let Ω be the ball in R
2 centered at the origin and with radius

2, let Σ = [0, 1] × {0}, A(t) = t and B(t) = 2t; let moreover θ and θn be the
paths connecting (0, 0) to (1, 0) given by

θ(t) := (t, 0) , θn(t) :=
(

t,
1 − |2t − 1|

n

)
.

Then one has that θn converges to θ in (Θ, dΘ), δΣ(θ) = 2, while δΣ(θn) → 1:
therefore, δΣ is not l.s.c. Moreover, it is clear that

dΣ

(
(0, 0), (1, 0)

)
= 1 ,
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but δΣ(σ) > 1 for each path σ ∈ Θ connecting (0, 0) and (1, 0). Hence, the
infimum in (2.5) is not a minimum.

Since δΣ is not, in general, l.s.c., we compute now its relaxed envelope
with fixed endpoints,

δ̄Σ(θ) := inf
{

lim inf
n→∞

δΣ(θn) : θn(0) = θ(0), θn(1) = θ(1), θn
Θ−→ θ
}

. (2.13)

Notice that δ̄Σ ≤ δΣ , and that the infimum in (2.13) is a minimum. Thanks
to the standard properties of relaxed envelopes (see [16]), we are allowed to
rewrite (2.5) obtaining

dΣ(x, y) = inf
{
δ̄Σ(θ) : θ ∈ Θ, θ(0) = x, θ(1) = y

}
. (2.14)

Proposition 2.9. The function δ̄Σ : Θ → R
+ is l.s.c.

Proof. Let us take θn → θ in Θ: then, without loss of generality, we may
assume

|θn(0) − θ(0)| ≤ 1
n

, |θn(1) − θ(1)| ≤ 1
n

.

Following (2.13), we choose θ̂n having the same endpoints as θn and such
that

dΘ(θn, θ̂n) ≤ 1
n

, δΣ(θ̂n) ≤ δ̄Σ(θn) +
1
n

. (2.15)

Take now, according to Lemma 2.1, two paths αn and βn connecting θ(0)
with θ̂n(0) and θ̂n(1) with θ(1) respectively, with the properties

H 1(αn \ Σ) ≤ 2
n

, H 1(βn \ Σ) ≤ 2
n

,

H 1(αn ∩ Σ) = 0 , H 1(βn ∩ Σ) = 0 .

(2.16)

Define then θn := αn·θ̂n·βn, so that {θn}n∈N is a sequence of paths connecting
θ(0) to θ(1) which still converges to θ. For any n ∈ N, by (2.15) and (2.16)
we have

δΣ(θn) = A
(
H 1(θn \ Σ

))
+ B
(
H 1(θn ∩ Σ

))

= A
(
H 1((θ̂n ∪ αn ∪ βn

)
\ Σ
))

+ B
(
H 1(θ̂n ∩ Σ

))

≤ δΣ(θ̂n) + A
(
H 1(θ̂n \ Σ

)
+ 4/n

)
− A
(
H 1(θ̂n \ Σ

))

≤ δ̄Σ(θn) + 1/n + A
(
H 1(θ̂n \ Σ

)
+ 4/n

)
− A
(
H 1(θ̂n \ Σ

))
.
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Since the paths {θn} have uniformly bounded lengths, by the uniform conti-
nuity of A in the bounded intervals and by (2.13) we infer

δ̄Σ(θ) ≤ lim inf
n→∞

δΣ(θn) ≤ lim inf
n→∞

δ̄Σ(θn) ,

so the proof is completed. ��

Corollary 2.10. The l.s.c. envelope of δΣ in (Θ, dΘ) is δ̄Σ.

Proof. The l.s.c. envelope of δΣ in (Θ, dΘ) is lower than δ̄Σ , as a direct
consequence of the definition (2.13). On the other hand, it is the greatest l.s.c.
function lower than δΣ , thus it is also greater than δ̄Σ by Proposition 2.9. ��

Corollary 2.11. The infimum in (2.14) is actually a minimum.

Proof. Let us choose x and y and take a minimizing sequence θn for (2.14): if
the Euclidean lengths of θn (possibly up to a subsequence) are bounded, then
the result immediately follows from the lower semicontinuity of δ̄Σ and by
Ascoli–Arzelà Theorem. Otherwise, since Σ has finite length, it would follow
that

lim supH 1(θn \ Σ) = ∞ ;

in this case, take a path θ joining x to y with H 1−negligible intersection
with Σ and with finite length: since A is nondecreasing, this path provides
the minimum in (2.14). ��

More precisely, we see that one can somehow “pass to the limit” in Propo-
sition 2.6. Throughout the monograph, we will call geodesics the paths θ such
that

δ̄Σ(θ) = dΣ

(
θ(0), θ(1)

)
.

Corollary 2.12. There is a Borel function q : Ω × Ω → Θ such that q(x, y)
is a path connecting x to y with cost δ̄Σ

(
q(x, y)

)
= dΣ(x, y).

Proof. Using the classical results in [28], it is sufficient to show that the subset
G of Θ given by the geodesics is closed and there is at least one element of
G connecting any couple of points in Ω × Ω. The second fact follows from
Corollary 2.11, while the closedness of G is a direct consequence of the lower
semicontinuity of δ̄Σ and of the continuity of dΣ . ��

Lemma 2.13. For any ε > 0, there is a Borel function αε : Θ → Θ such
that for any θ ∈ Θ one has

(
αε(θ)

)
(0) = θ(0) ,

(
αε(θ)

)
(1) = θ(1) , dΘ(αε(θ), θ) ≤ ε ,

H 1(αε(θ)) ≤ H 1(θ) + ε , δΣ(αε(θ)) ≤ δ̄Σ(θ) + ε .
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Proof. Our argument is quite similar to the one in Proposition 2.6: fixed
L > 0 and fixed arbitrarily a path θ ∈ Θ with H 1(θ) ≤ L, we know by
definition of δ̄Σ the existence of a path θ̃ with

θ̃(0) = θ(0) , θ̃(1) = θ(1) , dΘ(θ̃, θ) ≤ ε

4
,

H 1(θ̃) ≤ H 1(θ) +
ε

4
, δΣ(θ̃) ≤ δ̄Σ(θ) +

ε

4
.

(2.17)

We take now a number δ ≤ ε/8 such that

A(s + 4δ) − A(s) ≤ ε

2

for any 0 ≤ s ≤ L, which is possible by the continuity of A; moreover, since
the Euclidean length and the map δ̄Σ are l.s.c., we can also assume that δ is
so small that⎧⎨

⎩
H 1(σ) ≥ H 1(θ) − ε

4
,

δ̄Σ(σ) ≥ δ̄Σ(θ) − ε

4
,

whenever dΘ(θ, σ) ≤ δ . (2.18)

If we can define a Borel function αε : BΘ(θ, δ) → Θ as in the claim of this
corollary, this will show the thesis: indeed, since the subset ΘL of Θ made by
the paths of Euclidean length bounded by L is compact, it can be covered by
a finite number of balls BΘ(θi, δi), so that we infer the existence of a Borel
function αε : ΘL → Θ as in the claim; finally, it is immediate to conclude
the thesis covering Θ with countably many sets ΘLi

for a sequence Li → ∞.
Summarizing, we can restrict our attention to a ball BΘ(θ, δ).

Define now the Borel function β1 : BΘ(θ, δ) → Θ as

β1(σ) := q′δ
(
σ(0), θ(0)

)
,

where q′δ is as in Corollary 2.7: then β1(σ) is a path connecting σ(0) with
θ(0) such that

H 1(β1(σ) ∩ Σ) = 0 , H 1(β1(σ)) ≤ |σ(0) − θ(0)| + δ ≤ 2δ . (2.19)

Similarly, we let β2 : BΘ(θ, δ) → Θ to be a Borel function such that β2(σ) is
a path connecting θ(1) with σ(1) satisfying

H 1(β2(σ) ∩ Σ) = 0 , H 1(β2(σ)) ≤ 2δ ; (2.20)

We finally define αε(σ) := β1(σ) · θ̃ · β2(σ): by construction, the map

BΘ(θ, δ) � σ �→ αε(σ) ∈ Θ
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is Borel; moreover,

αε(σ(0)) = σ(0) , αε(σ(1)) = σ(1) .

In addition, minding (2.19), (2.20) and (2.17), we get

dΘ(αε(σ), σ) ≤ dΘ(αε(σ), θ̃) + dΘ(θ̃, θ) + dΘ(θ, σ) ≤ 2δ +
ε

4
+ δ < ε .

Again by (2.19), (2.20), (2.17) and (2.18) one has

H 1(αε(σ)) ≤ 4δ + H 1(θ̃) ≤ 4δ +
ε

4
+ H 1(θ) ≤ H 1(σ) + ε .

Finally, by (2.19) and (2.20) we know that

H 1(αε(σ) ∩ Σ) = H 1(θ̃ ∩ Σ)

so that again (2.19) and (2.20), together with (2.17) and (2.18), yield

δΣ(αε(σ)) ≤ A
(
H 1(θ̃ \ Σ) + 4δ

)
+ B
(
H 1(θ̃ ∩ Σ)

)
≤ δΣ(θ̃) + A

(
H 1(θ̃ \ Σ) + 4δ

)
− A
(
H 1(θ̃ \ Σ)

)

≤ δΣ(θ̃) +
ε

2
≤ δ̄Σ(θ) +

3
4

ε ≤ δ̄Σ(σ) + ε :

hence, the proof is complete. ��
Now, generalizing (2.8), set

CΣ(η) :=
∫

Θ

δ̄Σ(θ) dη(θ) . (2.21)

Proposition 2.14. The following equalities hold

inf
{
CΣ(η) : η is a t.p.m.

}
= min {IΣ(γ) : γ is a transport plan}

= min
{
CΣ(η) : η is a t.p.m.

} (
= MK(Σ)

)
.

(2.22)

Before giving the proof, we point out the following remark.

Remark 2.15. The equality (2.22) ensures the existence of at least one optimal
transport plan γopt and one t.p.m. ηopt optimal with respect to CΣ , which
satisfy the equality IΣ(γopt) = CΣ(ηopt). On the other hand, the infimum
in (2.22) needs not to be achieved: for instance, just consider the situation of
Example 2.8 with f+ := δ(0,0) and f− := δ(1,0).

Concerning the equality between the two minima in (2.22), in particu-
lar, if γopt is an optimal transport plan then q#γopt is an optimal t.p.m.,
where q is defined in Corollary 2.12. Conversely, if ηopt is an optimal t.p.m.
then (p0, p1)#ηopt is an optimal transport plan, where p0 and p1 are as in
Definition 2.5.
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Proof (of Proposition 2.14). First of all, note that the set of all transport
plans is a bounded and weakly∗ closed subset of M+(Ω × Ω); hence, it is
weakly∗ compact by tightness (see Appendix B.1). Moreover, IΣ is a contin-
uous function on M(Ω × Ω) with respect to the weak∗ topology thanks to
Proposition 2.3. Therefore, the existence of some optimal transport plan is
straightforward.

Given now a t.p.m. η, one can construct the associated transport plan
γ = (p0, p1)#η, and from (2.5) we get IΣ(γ) ≤ CΣ(η). On the other hand,
given any transport plan γ and ε > 0, we can define η := qε#γ where qε is
as in Proposition 2.6; we obtain CΣ(η) ≤ IΣ(γ) + ε, thus the first equality
in (2.22) is established.

Concerning the second one, using (2.14) in place of (2.5) in the previous
argument one gets

min{IΣ(γ)} ≤ inf{CΣ(η)} .

But since CΣ ≤ CΣ (because δ̄Σ ≤ δΣ), it is also true that

inf{CΣ(η)} ≤ inf{CΣ(η)} .

We derive min{IΣ(γ)} = inf{CΣ(η)}, so to conclude we need only to prove
that the last inf is a minimum. To this aim, it suffices to take an optimal
transport plan γopt and to define η := q#γopt where q is as in Corollary 2.12:
by definition of q, one has CΣ(η) = IΣ(γopt), so η minimizes CΣ and the
proof is achieved. ��

From now on we will often say that a set ∆ ⊆ Θ is bounded in Θ by L
if for any θ ∈ ∆ we have H 1(θ) ≤ L; we will also say that ∆ is a bounded
subset of Θ if it is bounded in Θ by some constant L. Notice that this last
definition does not coincide with the usual boundedness in Θ with respect
to the distance dΘ, which we will never consider; in fact, this last notion of
boundedness would be useless, since the whole set Θ is clearly bounded with
respect to dΘ by the diameter of Ω. We recall that, as already mentioned
at the beginning of Section 2.1, the bounded subsets of Θ are sequentially
compact with respect to dΘ; this becomes particularly helpful once we know
that a t.p.m. is concentrated on a bounded subset of Θ, which is the argument
of Corollary 2.17 below.

Lemma 2.16. If A(s) is not constant for large s (for instance, if A(s) → ∞
as s → ∞), then there is a constant L ∈ R such that the Euclidean length
H 1(θ) of any geodesic θ is bounded by L. Otherwise, if A(s) is constant for
large s, it is still true that for any pair (x, y) of points in Ω there exists some
geodesic of length bounded by L. In both cases, the constant L depends only
on A, Ω and H 1(Σ) (but not on Σ).

Proof. Suppose first that A(s) is not constant for large s, and let L be a
sufficiently large number such that

A
(
L − H 1(Σ)

)
> A
(
diam Ω + 1

)
.
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Take now a path θ ∈ Θ with H 1(θ) > L and let θ̂, according to Lemma 2.1,
be a path with length less than

|θ(1) − θ(0)| + 1 ≤ diam Ω + 1

connecting θ(0) to θ(1) and having H 1−negligible intersection with Σ. Since

H 1(θ \ Σ) ≥ H 1(θ) − H 1(Σ) > L − H 1(Σ) ,

we immediately get δ̄Σ(θ) > δ̄Σ(θ̂), so that θ is not a geodesic and the first
part of the proof is achieved.

Consider now the case when A(s) is constant for large s, and let

L := H 1(Σ) + diam Ω + 1 .

Arguing exactly as in the first part of the proof, we see that for any path θ
there is a path θ̂ with H 1(θ̂) ≤ diam Ω+1 and with δ̄Σ(θ̂) ≤ δ̄Σ(θ) (the only
difference is that this time the strict inequality δ̄Σ(θ̂) < δ̄Σ(θ) in the case
H 1(θ) > L may be false). Hence, it is not true that all the geodesics have
Euclidean length less than L, but that for any pair (x, y) ∈ Ω × Ω there is
at least one geodesic between x and y of Euclidean length less than L. ��

Corollary 2.17. If A(s) is not constant for large s then the support of any
t.p.m. η which is optimal with respect to CΣ is bounded in Θ by L, where
L is as in the previous Lemma. Otherwise, if A(s) is constant for large s, it
is still true that there exists some optimal t.p.m. η the support of which is
bounded in Θ by L.

Proof. Recall that, thanks to (2.22), any t.p.m. optimal with respect to CΣ

is concentrated in the set of all geodesics; this set is closed, as already noticed
in Corollary 2.12, hence the whole support of any optimal t.p.m. is made by
geodesics and the first part of the proof is trivial.

Concerning the second claim, we recall that Corollary 2.12 implies that
the set G of all geodesics is a closed subset of Θ containing at least one path
which connects any given pair of points in Ω × Ω. The same property is true
for the set

GL := G ∩
{
θ ∈ Θ : H 1(θ) ≤ L

}
,

by the above lemma and since the Euclidean length is l.s.c. with respect to
the distance in Θ. Therefore, arguing as in Corollary 2.12, we find a Borel
map q̃ : Ω × Ω → Θ such that q̃(x, y) is a geodesic between x and y of
Euclidean length less than L. This easily gives also the second part of the
thesis: arguing as in Proposition 2.14, taken any optimal transport plan γ,
one has that the t.p.m. q̃#γ is as required. ��

We present now a useful exact formula for δ̄Σ .
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Proposition 2.18. The following equality holds:

δ̄Σ(θ) = J
(
H 1(θ \ Σ),H 1(θ ∩ Σ)

)
, (2.23)

where the function J : R
+ × R

+ → R is given by

J(a, b) := inf
{
A
(
a + l

)
+ B
(
b − l
)

: 0 ≤ l ≤ b
}

. (2.24)

Before giving the proof, we shortly discuss the above formula.

Remark 2.19. The meaning of (2.23), as one can understand comparing
with (2.2), is that, roughly speaking, one can “walk on the railway”: in other
words, the cost δ̄Σ of some path θ is not necessarily given by the cost of mov-
ing by own means out of the network and by train along it, but moving by
own means out of the network and possibly in some part of it, and by train
along the remaining part. The basic idea of the proof is then easily imagined:
instead of walking on the network, one can just walk very close to it, which
is possible since the dimension N is larger than 1.

Proof (of Proposition 2.18). Set a := H 1(θ \ Σ) and b := H 1(θ ∩ Σ), then
take an arbitrary sequence θn of paths having the same endpoints as θ and
converging to θ. It is known that

H 1(θ) ≤ lim inf
n→∞

H 1(θn) , (2.25)

H 1(θ \ Σ) ≤ lim inf
n→∞

H 1(θn \ Σ) ; (2.26)

the first inequality is the classical lower semicontinuity of the length, the sec-
ond is a recent generalization of the Go�la̧b theorem that we state in Theorem
3.6 (see also for instance [14] and [30]).

For a given n ∈ N, assume that

H 1(θn ∩ Σ) ≥ H 1(θ ∩ Σ) :

then, taking l = 0 in (2.24), we obtain

J(a, b) ≤ A
(
H 1(θ \ Σ)

)
+ B
(
H 1(θ ∩ Σ)

)
≤ A
(
H 1(θ \ Σ)

)
+ B
(
H 1(θn ∩ Σ)

)
≤ δΣ(θn) + A

(
H 1(θ \ Σ)

)
− A
(
H 1(θn \ Σ)

)
.

(2.27)

On the other hand, if

H 1(θn ∩ Σ) < H 1(θ ∩ Σ)

then, taking
l := H 1(θ ∩ Σ) − H 1(θn ∩ Σ)
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in (2.24), we obtain

J(a, b) ≤ A
(
H 1(θ) − H 1(θn ∩ Σ)

)
+ B
(
H 1(θn ∩ Σ)

)
≤ δΣ(θn) + A

(
H 1(θ) − H 1(θn ∩ Σ)

)
− A
(
H 1(θn) − H 1(θn ∩ Σ)

)
.

(2.28)

Recalling now that A is nondecreasing and continuous, combining (2.27)
with (2.26) and (2.28) with (2.25) gives J(a, b) ≤ lim inf δΣ(θn), and therefore
J(a, b) ≤ δ̄Σ(θ).

To prove the opposite inequality take 0 ≤ l ≤ H 1(θ ∩ Σ) and let {θn}
be, according to Corollary 2.2, a sequence of paths connecting θ(0) and θ(1)
such that

θn → θ , H 1(θn) → H 1(θ) , H 1(θn ∩ Σ) = H 1(θ ∩ Σ) − l ∀n ∈ N .

Hence, making use of the continuity of A, one gets

δΣ(θn) = A
(
H 1(θn)− (H 1(θ∩Σ)− l)

)
+B
(
b− l
)
−−−→
n→∞

A(a+ l)+B(b− l) .

Thus for every 0 ≤ l ≤ b one has

δ̄Σ(θ) ≤ A(a + l) + B(b − l) ,

so the inequality J(a, b) ≥ δ̄Σ(θ) follows taking the infimum on l. ��

It is also convenient to introduce an auxiliary function, namely

D(a, b) := J(a, b − a) ; (2.29)

indeed, the above proposition tells us that

δ̄Σ(θ) = J
(
H 1(θ \ Σ),H 1(θ ∩ Σ)

)
,

or equivalently that

δ̄Σ(θ) = D
(
H 1(θ \ Σ),H 1(θ)

)
. (2.30)

In other words, we can express δ̄Σ(θ) in terms of the length H 1(θ\Σ) outside
of the network and of the length H 1(θ∩Σ) inside the network if we make use
of J , or in terms of the length H 1(θ \Σ) out of the network and of the total
length H 1(θ) if we make use of D. The advantage of the second possibility,
i.e. the advantage of (2.30) with respect to (2.23), is that the variables H 1(θ\
Σ) and H 1(θ) satisfy the useful lim inf inequalities (2.25)–(2.26), while the
same is not true for H 1(θ ∩Σ); on the contrary, for H 1(θ ∩Σ) the lim sup
inequality is true, as one can immediately deduce by Lemma 4.1. Another
easy interesting property of both D and J is the following one.
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Proposition 2.20. The functions J and D are nondecreasing in each of their
variables.

Proof. Consider first J : take b ≥ 0 and a′ ≥ a ≥ 0; for 0 ≤ l ≤ b one has
A(a + l) ≤ A(a′ + l), so by (2.24) one gets J(a′, b) ≥ J(a, b) and thus J is
nondecreasing in its first variable. Concerning the second one, take a ≥ 0 and
b′ ≥ b ≥ 0: one has

A(a + l) + B(b′ − l) ≥ A(a + l) + B(b − l) ≥ J(a, b) ∀ 0 ≤ l ≤ b ;

on the other hand, one has

A(a + l) + B(b′ − l) ≥ A(a + b) + B(0) ≥ J(a, b) ∀ b ≤ l ≤ b′ .

It follows that J(a, b′) ≥ J(a, b), so J is nondecreasing also in its second
variable.

Consider now D: first of all, we rewrite (2.29) in a more convenient way
as

D(a, b) = inf {A(a + l) + B(b − a − l) : 0 ≤ l ≤ b − a}
= inf {A(l) + B(b − l) : a ≤ l ≤ b} .

(2.31)

Then, take b ≥ 0 and a′ ≥ a ≥ 0: if a′ ≤ l ≤ b then a fortiori a ≤ l ≤ b,
hence one gets D(a, b) ≤ D(a′, b) directly by (2.31), and consequently D is
nondecreasing in its first variable. Finally, concerning the second one, take
a ≥ 0 and b′ ≥ b ≥ 0: if a ≤ l ≤ b then

A(l) + B(b′ − l) ≥ A(l) + B(b − l) ≥ D(a, b) ;

on the other hand, if b ≤ l ≤ b′ then

A(l) + B(b′ − l) ≥ A(b) + B(0) ≥ D(a, b) .

It follows that D(a, b′) ≥ D(a, b), so D is nondecreasing also in its second
variable and the proof is completed. ��



Chapter 3

Optimal Connected Networks

In this chapter we consider the problem of finding an optimal network under
the additional constraint that the admissible networks are assumed con-
nected. This extra connectedness assumption enables us to obtain the nec-
essary compactness to ensure the existence of an optimal network. We recall
that this case has been extensively studied in [13, 14, 17, 21], where sev-
eral necessary conditions of optimality have been found; therefore we limit
ourselves to recall briefly the main known results. In the last section of this
chapter we show some numerical plots of the optimal networks in a slightly
simpler situation, where instead of transporting f+ onto f−, the goal of the
planner is to transport f+ on the network in the most efficient way.

3.1 Optimization Problem

The optimization problem we consider in this chapter is

min{FL(Σ) : Σ ⊆ Ω, Σ connected} , (3.1)

where FL is the cost functional defined in (2.11) with H(s) = 0 for s ≤ L,
H(s) = ∞ otherwise. More generally, one may consider the optimization
problem

min{MK(Σ) : Σ ⊆ Ω, Σ connected} (3.2)

where the function dΣ appearing in (2.5) is now given by

dΣ(x, y) := inf
{

Φ
(
H 1(θ \ Σ),H 1(θ ∩ Σ),H 1(Σ)

)
:

θ ∈ Θ, θ(0) = x, θ(1) = y
}

,
(3.3)
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and Φ : (R+)3 → [0,+∞] is a function satisfying the following conditions:

• Φ is lower semicontinuous;
• Φ is continuous in its first variable;
• Φ is nondecreasing in each of its variables, i.e.

a1 ≤ a2, b1 ≤ b2, c1 ≤ c2 =⇒ Φ(a1, b1, c1) ≤ Φ(a2, b2, c2);

• Φ(a, b, c) ≥ H(c) with H(c) → ∞ as c → ∞ .

For instance, taking

Φ(a, b, c) := A(a) + B(b) + χL(c) ,

where χL(c) is the function which takes the value zero if c ≤ L and ∞
otherwise, gives the problem (3.1).

Under the connectedness requirement, the existence of an optimal network
always occurs, as the below theorem states.

Theorem 3.1. Under the assumptions above on the function Φ, the opti-
mization problem (3.2) admits a solution Σopt.

The proof of the above theorem is given in [14]. Here we will sketch its
main steps. First of all we equip the admissible class

{
Σ ⊆ Ω, Σ connected

}

with the topology induced by the Hausdorff distance

dH(Σ1, Σ2) = sup
{
dist(x1, Σ2) + dist(x2, Σ1) : x1 ∈ Σ1, x2 ∈ Σ2

}

where by dist(x,Σ) we denoted the minimal distance from the point x to
the closed set Σ. It is well-known that the this topology (called Hausdorff
topology) is compact and that the Hausdorff limit of a sequence of connected
sets is still connected. Moreover, the following result, known as Go�la̧b theorem
(see for instance [5, 37]) holds.

Theorem 3.2 (Go�la̧b). If Σn is a sequence of connected closed subsets of
Ω which Hausdorff converges to a set Σ, then

H 1(Σ) ≤ lim inf
n→∞

H 1(Σn) .

Remark 3.3. More generally, the above result on lower semicontinuity of the
one-dimensional Hausdorff measure H 1 still holds, if we assume that the
number of connected components of Σn is a priori bounded by a fixed con-
stant. On the other hand, it is very easy to find counterexamples which show
that the Go�la̧b theorem fails when the connectedness assumption is com-
pletely removed.
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By an approximation argument similar to the one we used in the proof
of Proposition 2.18 we can compute the relaxed form of the distance dΣ

appearing in (3.3). In other words, if convenient, we may approximate a curve
θ passing through the network Σ by a sequence of curves θn converging to
θ uniformly and not passing through Σ. More precisely, the following result
holds.

Proposition 3.4. For every closed connected subset Σ of Ω we have

dΣ(x, y) = inf
{

J
(
H 1(θ \ Σ),H 1(θ ∩ Σ),H 1(Σ)

)
:

θ ∈ Θ, θ(0) = x, θ(1) = y

}
,

(3.4)

where the function J is given by

J(a, b, c) := inf{Φ(a + t, b − t, c) : 0 ≤ t ≤ b} .

It is now convenient to change variables using H 1(θ) instead of H 1(θ∩Σ):
since

H 1(θ ∩ Σ) = H 1(θ) − H 1(θ \ Σ) ,

the function J can be replaced by the new one

D(a, b, c) = J(a, b − a, c) (3.5)

and formula (3.4) becomes

dΣ(x, y) = inf
{

D
(
H 1(θ \ Σ),H 1(θ),H 1(Σ)

)
:

θ ∈ Θ, θ(0) = x, θ(1) = y

}
.

(3.6)

The advantage of using the new function D in (3.5) consists in the following
monotonicity and lower semicontinuity property (the proof of the first part
is very similar to the one of Proposition 2.20).

Proposition 3.5. The function D defined in (3.5) is monotone nondecreas-
ing and lower semicontinuous in each variable.

The proof of the existence Theorem 3.1 uses also the following general-
ization of the Go�la̧b Theorem, the proof of which can be found in [14], also
obtained by Dal Maso and Toader in [30] for different purposes, related to
the study of models in fracture mechanics.

Theorem 3.6. Let X be a metric space, {Γn}n∈N and {Σn}n∈N be two se-
quences of compact subsets such that Γn → Γ and Σn → Σ in the Hausdorff
sense, for some compact subsets Γ and Σ. Let us also suppose that Γn is
connected for all n ∈ N. Then
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H 1(Γ \ Σ) ≤ lim inf
n→∞

H 1(Γn \ Σn) . (3.7)

By using the above extension of the Go�la̧b theorem and the monotonic-
ity result of Proposition 3.5 it is not difficult to obtain the following lower
semicontinuity property for the function dΣ .

Proposition 3.7. Let {xn}n∈N and {yn}n∈N be sequences in Ω such that
xn → x and yn → y. If {Σn}n∈N is a sequence of closed connected sets such
that Σn → Σ in the Hausdorff sense, then

dΣ(x, y) ≤ lim inf
n→∞

dΣn
(xn, yn) . (3.8)

In particular, for every closed connected Σ ⊆ Ω the function dΣ is lower
semicontinuous on Ω × Ω.

The proof of Theorem 3.1 can be now obtained by putting together the
above results. In fact, if {Σn} is a minimizing sequence of the optimization
problem (3.2), by the compactness of the Hausdorff convergence we may
assume, up to a subsequence, that Σn → Σ for a suitable closed connected
Σ ⊆ Ω. The optimality of Σ then follows by the lower semicontinuity of the
functional Σ �→ MK(Σ) in (3.2) with respect to the Hausdorff convergence.
This lower semicontinuity in turn follows by Proposition 3.7 together with
the observation that, if γn are optimal plans with respect to Σn and γn

∗ γ,
then γ is an optimal plan with respect to Σ. All the details of the argument
above can be found in the paper [14], to which we refer the interested reader.

3.2 Properties of the Optimal Networks

In this section we collect the results of [19, 20, 54] regarding the case of
optimization problem (3.1) in the particular case when A(t) = t, B(t) = 0
and Σ is a priori required to be connected. Since the results we present here
are not used elsewhere in this monograph, we give only the outlines of the
proofs of some of the most important results. For the details the reader is
referred to the aforementioned papers.

First, we recall the following basic results regarding topological structure
and regularity of optimal sets.

Theorem 3.8. Let in problem (3.1) A(t) = t and B(t) = 0, and assume that
f+, f− � L N and f+ �= f−. Then every closed connected Σ ⊆ R

N solving
this problem has the following properties.

• H 1(Σ) = L.
• Σ contains no closed curve (a homeomorphic image of S1). In particular,

R
N \ Σ is connected.
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If, moreover, f+, f− ∈ L2(Ω), then the following additional properties hold.

• Σ is Ahlfors regular in the sense that for every x ∈ Σ and r < diam Σ
one has

cr ≤ H 1(Σ ∩ Br(x)
)
≤ Cr

for some constants c > 0 and C > 0 independent both on x and on r > 0.

Remark 3.9. The results of the papers [19, 20, 54] are in fact a bit sharper
than what claimed above. For instance the first two statements are valid
even if the dimension of the measures f+, f− (defined in a suitable way) is
sufficiently high. Further, the Ahlfors regularity of optimal sets is known to
hold when f+, f− ∈ Lp(Ω) where p = 4/3 when N = 2 and p = N/(N − 1)
otherwise (although it is not known whether such assumption is sharp).

We provide here just the general outline of the proof of the first two state-
ments above omitting technical details. The principal technical tool is given
by the proposition below in which a set Σ is modified with the addition of
a piece of small length to obtain a new set such that all points which were
not too close to Σ become closer to the modified set (see Proposition 4.1
from [54]).

Proposition 3.10. Let Σ ⊆ R
N be a compact connected set with H 1(Σ) <

+∞ and r > 0 be some given number. Then for each c > 0 there exists a
compact connected Σ′ ⊆ R

N , Σ′ ⊇ Σ, with H 1(Σ′) ≤ H 1(Σ) + c and such
that for every y ∈ R

N satisfying dist (y,Σ) ≥ r one has

dist (y,Σ ′) ≤ dist (y,Σ) − C,

where C > 0 is some constant depending on Σ, r, c and the space dimension
N but independent of y.

Now, with the help of the above Proposition 3.10, the proof of the first
assertion of Theorem 3.8 becomes quite simple.

Outline of the proof of H 1(Σ) = L. Suppose the contrary, i.e. that
H 1(Σ) = L − c for some c > 0, where Σ is a connected set solving prob-
lem (3.1). Let now Γ ⊆ R

N × R
N be the set of those pairs (x, y) such that

dΣ(x, y) < d∅(x, y), hence the segment [x, y] is not a geodesic between x and
y. If now γ is an optimal transport plan, we set ϕ the measure

ϕ := π1#
(
γ Γ

)
+ π2#

(
γ Γ

)
.

It is easy to show that then Σ minimizes the average distance functional

Σ �→ Fϕ(Σ) :=
∫

Ω

dist (x,Σ) dϕ(x)

over closed connected sets satisfying the length constraint H 1(Σ) ≤ L. We
choose an r > 0 such that
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ϕ(Dr) > 0 , where Dr := {y ∈ R
N : dist (y,Σ) > r}.

Such an r > 0 exists since otherwise ϕ would be concentrated over Σ, which
cannot happen since ϕ ≤ f+ + f− and f+ + f− � L N . Consider now a
set Σ′ provided by Proposition 3.10, so that H 1(Σ′) ≤ L. Besides, for every
y ∈ R

N one has
dist (y,Σ ′) ≤ dist (y,Σ)

since Σ ⊆ Σ′, while

dist (y,Σ ′) ≤ dist (y,Σ) − C

for some C > 0 (independent of y) whenever y ∈ Dr. Hence, minding the
strict monotonicity of A, we get

Fϕ(Σ′) =
∫

RN\Dr

dist (y,Σ ′) dϕ(y) +
∫

Dr

dist (y,Σ ′) dϕ(y)

≤
∫

RN\Dr

dist (y,Σ) dϕ(y) +
∫

Dr

(dist (y,Σ) − C) dϕ(y)

<

∫
RN\Dr

dist (y,Σ) dϕ(y) +
∫

Dr

dist (y,Σ) dϕ(y)

= Fϕ(Σ),

contradicting the optimality of Σ. ��
To outline the proof of the fact that optimal connected sets do not contain

closed curves (homeomorphic images of S1), we recall briefly the following
topological notions which will be used in the sequel.

Definition 3.11. Let Σ be a connected set. Then x ∈ Σ is called noncut
point of Σ, if Σ \ {x} is connected. Otherwise, x is called cut point of Σ.

Let us recall that according to the Moore theorem (Theorem IV.5 from
[46, § 47]), every continuum (i.e. compact connected space) has at least two
noncut points. We also need the following statement from [21].

Lemma 3.12. Let Σ ⊆ R
N be a closed connected set satisfying H 1(Σ) <

+∞ which contains a closed curve S. Then H 1-a.e. point x ∈ S is a noncut
point for Σ.

With the help of the above Lemma 3.12 we are able to prove the following
quantitative result (see Lemma 5.4 from [54]), which says that if Σ contains
a closed curve, one can almost everywhere take away a small piece of it such
that the remaining part is still connected (it is here that Lemma 3.12 is
invoked), while the increase in average distance functional Fϕ is small (with
the quantitative estimate).
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Lemma 3.13. Suppose that Σ ⊆ R
N is a compact connected set satisfying

H 1(Σ) < +∞ and containing a closed curve S. Given β ∈ (0, 1] and r > 0,
for H 1-a.e. x̄ ∈ S there exists a ρ ∈ (0, r) and a closed connected set Σ′ ⊆
R

N such that

• H 1(Σ′) ≤ H 1(Σ) − ρ/2 + C2βρ,

• Σ \ Σ′ ⊆ B(x̄, ρ),
• Σ′ \ Σ ⊆ B(x̄, 32Nρ),

• dist (y,Σ ′) ≤ dist (y,Σ), for all y �∈ B(x̄, 64N
√

Nρ),

• dist (y,Σ′) ≤ dist (y,Σ) + ρ, for all y ∈ B(x̄, 64N
√

Nρ),

where C2 > 0 is a constant depending only on N .

Outline of the proof of absence of loops in optimal sets.
Let again Σ be a solution to (3.1) (hence a closed connected set minimizing

Fϕ). Since ϕ(Σ) = 0, there exists a compact set K, disjoint from Σ and such
that ϕ(K) > 0. Let

R :=
1
2

min
{

dist (y,Σ) : y ∈ K
}

> 0

and let H be the R-neighborhood of Σ.
Suppose by contradiction that there exists a simple closed curve S ⊆ Σ.

Given x ∈ Σ, define

ω(x, ρ) :=
ϕ(B(x, ρ))

ρ
.

Since ϕ(S) = 0, as direct consequence of [2, Theorem 2.56], for H 1-a.e. x ∈ S
one has

lim
ρ→0+

ω(x, ρ) = 0.

Let r > 0 to be chosen later. We apply therefore Lemma 3.13 with β small
enough to find a point x̄ ∈ S with ω(x, t) → 0 as t → 0+, a ρ ∈ (0, r) and a
connected set Σ′ such that

H 1(Σ′) ≤ H 1(Σ) − ρ/2 + C2βρ ≤ H 1(Σ) − ρ/4 , (3.9)

while
Fϕ(Σ′) ≤ Fϕ(Σ) + ρϕ(B(x̄, 64N

√
Nρ))

≤ Fϕ(Σ) + 64N
√

Nρ2ω(x̄, 64N
√

Nρ).
(3.10)

We now need the following geometrical result, see [54, Lemma 3.5].

Lemma 3.14. Let l > 0 be given and let H and K be two Borel subsets of
R

N such that ϕ(K) > 0 and

s := inf{dist (y,H) : y ∈ K} > 0.
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Then given any compact connected set ∆ ⊆ H with H 1(∆) ≤ l, one has for
all ε < s/

√
N the existence of a compact connected set ∆′ ⊇ ∆ such that

H 1(∆′) ≤ H 1(∆) + 2Nε,

Fϕ(∆′) ≤ Fϕ(∆) − C1ε
2 ,

(3.11)

where

C1 :=
ϕ(K)
32Nl

.

Applying Lemma 3.14 with ε := ρ/8N (which is admissible provided r,
and then ρ, is small enough), ∆ = Σ′, s = R and l = L (mind that H 1(Σ′) ≤
H 1(Σ) = L), we find a connected compact set Σ′′ := ∆′ ⊇ Σ′ such that,
by (3.9)

H 1(Σ′′) ≤ H 1(Σ′) + 2Nε ≤ H 1(Σ) − ρ/4 + 2Nε = H 1(Σ),

while, by (3.11) and (3.10),

Fϕ(Σ′′) ≤ Fϕ(Σ′) − C1ε
2

≤ Fϕ(Σ) + 64N
√

Nρ2ω(x̄, 64N
√

Nρ) − C1

64N 2 ρ2

= Fϕ(Σ) − Cρ2 + o(ρ2) ,

(3.12)

where C1 is the constant introduced in Lemma 3.14, and C := C1/64N 2.
Hence, choosing a sufficiently small r > 0 and minding that ρ ≤ r, we get
from (3.12) that Fϕ(Σ′′) < Fϕ(Σ), contradicting the optimality of Σ. ��

To discuss deeper properties of optimal sets, we need to recall some topo-
logical notions from [46].

Definition 3.15. Let Σ be a topological space. We will say that the order of
the point x ∈ Σ does not exceed n, writing ordxΣ ≤ n, where n is a cardinal, if
for every ε > 0 there is an open subset U ⊆ Σ such that x ∈ U , diam (U) < ε
and #∂U ≤ n, # standing for the cardinality of a set.

The order of the point x ∈ Σ is said to be n, written ordxΣ = n, if n is
the least cardinal for which ordxΣ ≤ n.

If ordxΣ = n, with n ≥ 3, then x will be called a branching point of Σ,
while if ordxΣ = 1, then x will be called an endpoint of Σ.

The following results hold (see [19, 63, 66]).

Theorem 3.16. Let in problem (3.1) N = 2, A(t) = t and B(t) = 0, and
assume that f+, f− ∈ L4/3(Ω), with f+ �= f−. Then every closed connected
Σ ⊆ R

N solving the problem has the following properties.

• ordxΣ ≤ 3 for all x ∈ Σ, and, further, the number of endpoints and that
of branching points (which hence are all triple points) is finite.
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• the generalized mean curvature H of Σ, defined to be the vector-valued
distribution

〈H,X〉 :=
∫

Σ

divΣ X dH 0 for all X ∈ C∞
0 (RN , RN ) ,

is a Radon measure and H({x}) = 0 whenever x ∈ Σ is a branching point.
Here divΣ stands for the tangential divergence operator with respect to Σ
(see [2]), i.e. in other words, the projection of the usual divergence on the
approximate tangent space to Σ, the latter defined H 1-a.e. on Σ. This
property may be interpreted as a “weak form” of the assertion that every
branching point is a “regular tripod”, i.e. a triple point where three smooth
branches meet with angles of 120 degrees.

• for any point x ∈ Σ there is a number r0 > 0 such that for any arc θ ⊆ Σ
starting at x we have

#θ ∩ ∂B(x, r) = 1

for any r ∈ (0, r0].
• If f± ∈ L∞(Ω), then for every branching point x ∈ Σ there is δ > 0 such

that the set Σ ∩ Bδ(x) consists of exactly three C1,1-arcs starting at x.
• If f± ∈ L∞(Ω) and x ∈ Σ is not a branching point, then the Hausdorff

dimension of the set k−1(x) is at least 1, where k : R
2 → Σ stands for the

projection map on Σ defined a.e. on R
2.

Since the proof of the above statement is quite involved and is not the
principal subject of this monograph, we only give few of its basic ideas. In
fact, to prove that the number of endpoints (hence that of branching points) is
finite, one shows that for every endpoint z ∈ Σ the mass ψ({z}) transported
to to it is nonzero, and, moreover, ψ({z}) > c for some c > 0 independent
of z. This is achieved by contradiction using an argument vaguely similar
to that of Section 6.1 in the sequel. Once one knows that the number of
branching points is finite, one proves that the latter are, in a certain sense
regular tripods, by means of comparing Σ with Σ′, where Σ′ is obtained
by substituting, in a sufficiently small neighborhood of a branching point,
the part of Σ with the Steiner minimal tree connecting points of Σ on the
boundary of this neighborhood. The rest of the results are obtained by fine
blow-up arguments. For the details the reader is referred to [19, 63, 66].

3.3 Average Distance Problem

We consider in this section a slightly simpler situation which occurs when,
instead of transporting f+ onto f−, the goal of the planner is to transport f+

on Σ in the most efficient way. This corresponds to minimizing the total cost
over all the measures f− concentrated on Σ and with ‖f−‖ = ‖f+‖; thus,



34 3 Optimal Connected Networks

denoting by MK(Σ, f+, f−) the cost of transportation of f+ onto f− with
network Σ, introduced in (2.9), the problem is simply

min
{

MK(Σ, f+, f−) : f− ∈ M+(Ω), ‖f−‖ = ‖f+‖, spt f− ⊆ Σ
}

.

We denote the latter minimum value as M(Σ). We are interested in min-
imizing the quantity M(Σ) over all admissible sets Σ. In particular, when
A(t) = t, this leads to the so called average distance problem, formulated as
follows:

min
{∫

Ω

dist(x,Σ)f+(x) dx : Σ ⊆ Ω, Σ connected, H 1(Σ) ≤ L)
}

,

which corresponds to finding a network Σopt for which the average distance
for a citizen to reach the closest point of Σopt is minimal. Notice that, since
there is no “movement” on Σ, the above problem does not depend on the
choice of the function B. Problems with a similar functional, with a fixed
set Σ also intervene in the study of equilibrium configurations of growing
sandpiles (see for instance [26]).

Although all the results of Section 3.2 cannot be just formally applied to
this problem, the techniques of the proof still work, and hence, the existence
result and the necessary conditions of optimality from Section 3.2 still hold.

We provide some numerical plots of the optimal network Σopt in the aver-
age distance case. In Figures 3.1 and 3.2 the set Ω is the unit square in R

2

and f+ ≡ 1, while in Figures 3.3 and 3.4 the set Ω is the unit ball in R
3 and

again f+ ≡ 1 (the dark dot is the center of the ball). All these plots are taken
from [17] and, since the problem has a great number of local minima, have
been obtained by using an Evolutionary Algorithm (EAs) with an adaptive
penalty method. For more details we refer the reader to [17].

We conclude this section by pointing out the question of studying the
regularity of optimal solutions Σopt under the connectedness assumption.

Fig. 3.1 Plot of Σopt with L = 0.25 (left) and L = 0.5 (right).
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Fig. 3.2 Plot of Σopt with L = 0.75 (left) and L = 1.25 (right).

Fig. 3.3 Plot of Σopt with L = 0.25 (left) and L = 0.5 (right).

Fig. 3.4 Plot of Σopt with L = 0.25 (left) and L = 0.5 (right).

Even if we assume that all the data are extremely smooth, this revealed
to be a rather difficult issue, and very little is known, apart the Ahlfors
regularity of minimizers provided by Theorem 3.8 as well as the rather weak
regularity result given by Theorem 3.16. Nevertheless, one may expect that
every minimizer Σopt is a finite union of (at least) C1 curves; in other words,
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it is meaningful to conjecture that Σopt is (at least) C1 regular outside a finite
number of branching points, any of which, at least in the case N = 2, is a 120
degrees regular tripod. For a more detailed discussion of the problem, as well
as for a list of open problems and conjectures regarding the case of optimal
connected networks, we refer the interested reader to [17, 19, 20].



Chapter 4

Relaxed Problem and Existence
of Solutions

In the general setting that we are considering, the existence of solutions (i.e.
Borel sets Σ minimizing the functional F defined in (2.11)) may fail, as we
will see in the example of Section 4.3; this is why we introduce a relaxed
version of the problem. This relaxation is very convenient for a number of
reasons: first of all it deals, instead of Borel sets, with Radon measures, which
have a considerably better structure and nicer properties; moreover, it easily
admits solutions and, as we will see, it is possible to study these solutions and
to understand whether or not they are classical, i.e. of the form H 1 Σ for
a set Σ. Finally, we will give an interpretation of the meaning of the relaxed
problem, and generalize all the definitions that we presented in Chapter 2
for the classical setting. In Section 4.1 we introduce the relaxed optimization
problem and we show that it always admits a solution. In Section 4.2 we show
some properties of the relaxed solutions, in particular that there is a solution
µ ∈ M+(Ω) such that for some rectifiable set Σ one has µ = a(x)H 1 Σ,
where a : Σ → [0, 1] is some density; the relaxed solution µ is then classical if
and only if a(x) ≡ 1 for µ−a.e. x ∈ Ω and, in this case, µ corresponds to the
rectifiable set {x : a(x) = 1}. In Section 4.3 we present a class of examples in
which all the solutions are not classical. Finally, in Section 4.4 we show that
there are classical solutions if the function D defined in (2.29) is concave in
the first variable, and that all the solutions are classical if this concavity is
strict.

4.1 Relaxed Problem Setting

First of all, we need to recall an easy abstract result.

Lemma 4.1. Let {Cn} be a sequence of closed sets of some metric space X
converging in the Hausdorff distance to C. Let moreover {νn} ⊆ M+(X) be
a sequence of measures weakly∗ converging to ν ∈ M+(X). Then, one has
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ν(C) ≥ lim sup νn(Cn) .

Proof. Since {Cn} converges in the Hausdorff distance to C, having fixed any
ε > 0 one has Cn ⊆ Bε(C) for n large enough, where

Bε(C) = {x ∈ X : dX(x,C) ≤ ε} ;

therefore, since Bε(C) is a closed set, one has

ν
(
Bε(C)

)
≥ lim sup

n→∞
νn

(
Bε(C)

)
≥ lim sup

n→∞
νn(Cn) .

The proof is completed noticing that ν
(
Bε(C)

)
↘ ν(C) for ε ↘ 0. ��

We now notice a couple of properties of dΣ and F: the first one is the lower
semicontinuity of dΣ with respect to the weak∗ convergence of the measures
H 1 Σ; as a consequence, we can also show the lower semicontinuity of
the functional F with respect to the same convergence. Before showing these
properties, we define formally the convergence we are going to use.

Definition 4.2. Given a sequence {Σn} of Borel sets of bounded length, we

say that {Σn} converges in the H 1 sense to Σ, shortly Σn
H

1

−→Σ, if the
measures H 1 Σn weakly∗ converge to the measure H 1 Σ in M+(Ω).

Proposition 4.3. Let {Σn}H
1

−→Σ and θn → θ uniformly: then

δ̄Σ(θ) ≤ lim inf
n→∞

δ̄Σn
(θn) .

Moreover, for each x, y ∈ Ω

dΣ(x, y) ≤ lim inf
n→∞

dΣn
(x, y) .

Proof. Applying Lemma 4.1 with Cn = θn, C = θ, νn = H 1
Σn and

ν = H 1 Σ, one obtains

H 1(θ ∩ Σ) ≥ lim supH 1(θn ∩ Σn) .

Therefore, setting

a := H 1(θ \ Σ) , b := H 1(θ ∩ Σ) , ln := H 1(θ ∩ Σ) − H 1(θn ∩ Σn) ,

one has that ln ≤ b and lim inf ln ≥ 0. Recalling then formulas (2.23)
and (2.24) for δ̄Σ , and the facts that A and B are nondecreasing, we obtain
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lim inf
n→∞

δ̄Σn
(θn) = lim inf

n→∞
A
(
H 1(θn) − H 1(θn ∩ Σn)

)
+ B
(
H 1(θn ∩ Σn)

)

= lim inf
n→∞

A
(
H 1(θn)−H 1(θn ∩ Σn)+ H 1(θ ∩ Σ)+ H 1(θ \ Σ) − H 1(θ)

)

+ B
(
H 1(θ ∩ Σ) −

(
H 1(θ ∩ Σ) − H 1(θn ∩ Σn)

))

= lim inf
n→∞

A
(
a + ln + H 1(θn) − H 1(θ)

)
+ B
(
b − ln

)
≥ lim inf

n→∞
A
(
a + ln

)
+ B
(
b − ln

)
≥ inf

{
A
(
a + l

)
+ B
(
b − l
)

: 0 ≤ l ≤ b
}

= J(a, b) = δ̄Σ(θ) ,

where the first inequality is due to the fact that a+ ln is bounded, and hence
A is uniformly continuous, and to the inequality

H 1(θ) ≤ lim inf H 1(θn) .

Thus the first part of the claim follows. Concerning the second part, we argue
by contradiction: if it were not true that dΣ ≤ lim inf dΣn

, then there would
exist a pair x, y ∈ Ω and ε > 0 such that

dΣn
(x, y) ≤ dΣ(x, y) − ε

for countably many n ∈ N. According to Corollary 2.11 and Lemma 2.16, for
any n we select a path θn with

H 1(θn) ≤ L , δ̄Σn
(θn) = dΣn

(x, y) .

Hence, up to a subsequence we can assume that θn → θ uniformly and that

δ̄Σn
(θn) ≤ dΣ(x, y) − ε

for any n. The first part of the proof ensures that

δ̄Σ(θ) ≤ dΣ(x, y) − ε < dΣ(x, y) ,

which gives the desired contradiction and so also the second part of the claim
follows. ��

The assertion below is a consequence of the previous proposition.

Corollary 4.4. The functional F is l.s.c. with respect the convergence in the
H 1 sense.

Proof. If {Σn}H
1

−→Σ, then

H 1(Σ) = limH 1(Σn) < +∞ .
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Further, by Proposition 4.3 one has

δ̄Σ ≤ Γ − lim inf δ̄Σn
,

and hence, by Lemma B.20 of the Appendix one has

CΣ(η) ≤ lim inf CΣn
(ηn)

whenever ηn
∗ η in the weak∗ sense of measures. According to

Proposition 2.14, we may take ηn such that MK(Σn) = CΣn
(ηn); since

by Corollary 2.17 one may assume that the supports of ηn are bounded in Θ
by some constant L independent of n, minding that

‖ηn‖M+(Θ) = ‖f+‖M+(Ω) < +∞ ,

we get ηn
∗ η for some t.p.m. η up to a subsequence. Hence

MK(Σ) ≤ CΣ(η) ≤ lim inf
n→∞

CΣn
(ηn) = lim inf

n→∞
MK(Σn) ;

moreover, from (2.10) we deduce

H(H 1(Σ)) ≤ lim inf H
(
H 1(Σn)

)

and finally, by the definition (2.11) of the functional F, we deduce

F(Σ) ≤ lim inf F(Σn) .

��
Let us finally introduce the relaxed version of the problem: we consider

as relaxed admissible networks all the nonnegative measures µ ∈ M+(Ω),
identifying any classical network Σ with the measure H 1 Σ. In a standard
way, we define then the relaxed functional (using the same symbol with a
slight abuse of notation) as

F(µ) := inf
{

lim inf
n→∞

F(Σn) : H 1 Σn
∗ µ
}

, (4.1)

so that the relaxed optimization problem now reads

min{F(µ) : µ ∈ M+(Ω)} . (4.2)

It is worth remarking that, thanks to the lower semicontinuity proved in
Corollary 4.4, one has F(Σ) = F(H 1

Σ), which justifies the above abuse
of notations.

We list now some properties of the relaxed functional F.

Proposition 4.5. The following three properties hold:

i) F is coercive, that is, F(µn) → ∞ if ‖µn‖ → ∞;
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ii) F is l.s.c. in M+(Ω) with respect to the weak∗ convergence;

iii) min
{
F(µ) : µ ∈ M+(Ω)

}
=

inf
{
F(Σ) : Σ is a Borel set of finite length

}
.

Proof. This is a standard fact in relaxation theory, which follows for instance
from Proposition 1.3.1 and 1.3.5 of [16]. ��

4.2 Properties of Relaxed Minimizers

In this section we show some properties of an optimal measure µ, which exists
thanks to Proposition 4.5; first of all, we establish the existence of an upper
bound for the length of the paths contained in the support of optimal t.p.m.’s
related to a minimizing sequence of sets Σn.

Lemma 4.6. There is a constant L ≥ 0, depending only on A, Ω and H,
such that the following holds: given any minimizing sequence {Σn} for F, for
any n ∈ N sufficiently large there is a t.p.m. ηn, optimal for the functional
CΣn

, whose support is bounded in Θ by L. It is also possible to find a sequence
of t.p.m. {ηn} with supports bounded in Θ by L, such that

CΣn
(ηn) ≤ MK(Σn) + εn

with εn → 0 (in the following, such a sequence is referred to as “almost
optimal with respect to CΣn

”).

Proof. Keeping in mind Corollary 2.17, to show the first assertion it is enough
to check that, for each sequence {Σn} minimizing F and n large enough, the
length H 1(Σn) is bounded by a constant depending only on A, Ω and H.
To this aim, take l ≥ 0 such that

H(l) − 1 ≥ MK(∅) = F(∅) ,

and notice that l depends only on H,Ω and A but not on B. If H 1(Σ) ≥ l,
one has

F(Σ) ≥ H(H 1(Σ)) ≥ H(l) ≥ F(∅) + 1 ≥ min{F(µ) : µ ∈ M+(Ω)} + 1 .

Therefore, if {Σn} is a sequence minimizing F, then H 1(Σn) < l for n large
enough.

To show the second assertion for a sequence of t.p.m.’s almost optimal
with respect to CΣn

, we apply Lemma 2.13: taking, for each n ∈ N, a t.p.m.
ηn with support bounded in Θ by L and optimal with respect to CΣn

, the
t.p.m.’a αεn #ηn are almost optimal with respect to CΣn

and their supports
are bounded in Θ by L + εn. ��
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Our next aim is to study the properties of the optimal measures µ: in par-
ticular, we want to determine whether or not a relaxed solution µ corresponds
to a classical solution Σ.

Definition 4.7. A measure µ optimal for the relaxed functional F is called
minimal if any measure ν ≤ µ, ν �= µ is not optimal for F.

Remark 4.8. Notice that, thanks to the lower semicontinuity and the coer-
civity of F, proven in Proposition 4.5, the existence of an optimal measure
for F is straightforward. In particular, the set of these optimal measures is
a non-empty, bounded and weakly∗ closed subset of M+(Ω); therefore, since
the map µ �→ ‖µ‖ is weakly∗ l.s.c., among the optimal measures µ there
are those minimizing the norm ‖µ‖. Finally, an immediate application of
Zorn’s Lemma gives us the existence of minimal optimal measures; more pre-
cisely, for any optimal measure µ there exists a minimal optimal measure
µ′ ≤ µ.

A first property that we are now able to show is that any minimal optimal
measure is absolutely continuous with respect to H 1 –in fact, in most of the
cases all the optimal measures are minimal, see Proposition 4.20.

Lemma 4.9. Each minimal optimal measure is absolutely continuous with
respect to H 1.

Proof. We argue by contradiction assuming the existence of a set B such that
H 1(B) = 0 but µ(B) > 0. Take a sequence {Σn} of Borel sets such that

H 1 Σn =: µn
∗ µ

and F(Σn) → F(µ), which is possible in view of the definition (4.1) of F. Fixed
now ε > 0, by definition of the Hausdorff measure we can take countably many
open balls Bi with radii ri, such that Sε := ∪Bi contains B and

∑
ri < ε.

Define then

Σn,ε := Σn \ Sε , µn,ε := H 1 Σn,ε .

Choose now an arbitrary path θ ∈ Θ: we claim the existence of a path
α(θ) having the same endpoints of θ and such that

α(θ) \ Sε ⊆ θ \ Sε , H 1(α(θ) ∩ Sε) ≤ 2ε .

To show this fact, define θ1 := θ if θ ∩ B1 = ∅; otherwise, fixed an arbitrary
parametrization of θ, let t1 and t2 be the first and the last instant such that
θ(t) ∈ B1, and define θ1 to be the path that equals θ in [0, t1] ∪ [t2, 1], and
that is the line segment connecting θ(t1) to θ(t2) in [t1, t2]. In this way,

θ1 \ B1 ⊆ θ \ B1 , H 1(θ1 ∩ B1) ≤ 2r1 .
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Note that the map θ �→ θ1 is Borel since it is continuous on each of the sets

{θ ∈ Θ : θ ∩ B1 �= ∅} , {θ ∈ Θ : θ ∩ B1 = ∅} .

In the same way, replacing θ by θ1 and B1 by B2, we define θ2 so that

θ2 \ B2 ⊆ θ1 \ B2 , H 1(θ2 ∩ B2) ≤ 2r2 .

Analogously, the map θ �→ θ2 is continuous on each of the four sets

{θ ∈ Θ : θ ∩ B1 �= ∅, θ ∩ B2 �= ∅} , {θ ∈ Θ : θ ∩ B1 = ∅, θ ∩ B2 �= ∅} ,

{θ ∈ Θ : θ ∩ B1 = ∅, θ ∩ B2 �= ∅} , {θ ∈ Θ : θ ∩ B1 = ∅, θ ∩ B2 = ∅} ,

and hence is Borel. Iterating this procedure, we find a sequence {θn} of paths
connecting θ(0) and θ(1) and, by construction and recalling that

∑
i∈N

ri ≤ ε,
we deduce that the paths θn uniformly converge to a path α(θ) which equals
θ outside of Sε and with

H 1(α(θ) ∩ Sε) ≤
∑

i
2ri ≤ 2ε ,

so that our claim is proved. Moreover, each map θ �→ θn is Borel and hence
so is their pointwise limit α : Θ → Θ (in fact, Θ is the countable union of
Borel sets on each of which the map α is continuous).

Applying now Lemma 4.6, we find a t.p.m. ηn whose support is bounded
in Θ by L and which is optimal with respect to CΣn

. Since A is uniformly
continuous on [0, L], we denote by ω its modulus of continuity. Then, for
every θ ∈ spt ηn one has by construction

H 1(α(θ) ∩ Σn,ε) ≤ H 1(θ ∩ Σn)

and
H 1(α(θ) \ Σn,ε) ≤ H 1(θ \ Σn) + 2ε ,

so that
δ̄Σn,ε

(α(θ)) ≤ δ̄Σn
(θ) + ω(2ε) ;

as a consequence,

F(µn,ε) ≤ CΣn,ε
(α#ηn) + H(‖µn,ε‖) ≤ CΣn

(ηn) + ω(2ε) + H(‖µn‖)
= F(µn) + ω(2ε) ,

(4.3)

since µn,ε ≤ µn by definition and H is nondecreasing. Since µn
∗ µ and

µn,ε ≤ µn, up to a subsequence we can assume that µn,ε
∗ µε with µε ≤ µ.

In particular,
µε(B) ≤ µε(Sε) = 0 ,

since Sε is open and µn,ε(Sε) = 0 for any n ∈ N.
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We select now a sequence εj ↘ 0, finding the measures µεj
as shown above;

we can choose the balls Bh related to each εj in such a way that Sεi
⊆ Sεj

whenever i ≥ j: as a consequence, we have

µn,εi
≥ µn,εj

whenever i ≥ j .

Hence, passing to a weak∗ limit as n → ∞ (choosing a common subsequence
of indices), we have µεi

≥ µεj
for i ≥ j. Therefore, j �→ µεj

is an increasing
sequence of measures bounded by µ and with the property that µεj

(B) = 0
for any j. We derive that µεj

converge strongly as j → ∞ to a measure µ̄
with

µ̄ ≤ µ , µ̄(B) = 0 , F(µ̄) ≤ F(µ) ;

the latter property immediately follows by (4.3) recalling the lower semicon-
tinuity of F, the fact that F(µn) → F(µ), and passing to the limit in (4.3)
first as n → ∞, and then as ε ↘ 0.

The measure µ̄ is then optimal because so is µ; but

µ̄(B) = 0 < µ(B) ,

hence µ̄ �= µ; this contradicts the fact that µ is a minimal optimal
measure. ��

We are able now to prove a stronger result, namely, that the minimal
optimal measures for F are concentrated on one-dimensional sets.

Lemma 4.10. Every minimal optimal measure µ for F has the form

µ = ϕH 1 Σ

for a suitable Borel set Σ and a Borel function ϕ : Σ → R
+.

Proof. Let µ be a minimal optimal measure, so that thanks to Lemma 4.9
we have µ � H 1. Thanks to Theorem 3.2 in [64], the thesis is achieved if

θ∗1(µ, x) := lim sup
ε→0

µ
(
B(x, ε)

)
ε

> 0 for µ−a.e. x . (4.4)

We prove now (4.4) by contradiction; to this aim, take a sequence

µn := H 1 Σn

such that

µn
∗ µ , F(µ) = lim F(Σn) .
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If (4.4) does not hold, there is a constant C such that µ(X) > C > 0, where

X := {x : θ∗1(µ, x) = 0} .

Fixed now a small δ > 0 (that we will eventually send to 0), we know that
µ
(
Xδ
)

> C, defining
Xδ := {x : θ∗1(µ, x) < δ} .

We deduce that µ
(
Xδ

ε

)
> C for ε small enough (depending on δ), where

Xδ
ε :=

{
x : µ

(
B(x, ε)

)
< δε

}
.

Note also that, since we used closed balls B(x, ε), the set Xδ
ε is open.

Keeping fixed δ and ε, for n large enough we define

Σ̃n := Σn \ Xδ
ε

and µ̃n := H 1 Σ̃n. We aim to show the existence of some K(δ) −−→
δ→0

0 such

that
F(µ̃n) ≤ F(µn) + K(δ) . (4.5)

We claim that (4.5) implies the thesis. Indeed, let µδ be a weak∗ limit of a
subsequence of {µ̃n}: since µ̃n ≤ µn and µn

∗ µ, one has µδ ≤ µ; moreover,
since µ̃n(Xδ

ε ) = 0 and Xδ
ε is open, we obtain µδ(Xδ

ε ) = 0 while µ(Xδ
ε ) > C,

so that
‖µδ‖ ≤ ‖µ‖ − C .

As a consequence, a weak∗ limit µ̄ of a subsequence of {µδ} as δ ↘ 0 sat-
isfies µ̄ ≤ µ and ‖µ̄‖ ≤ ‖µ‖ − C, hence µ̄ �= µ. But if (4.5) is true, as in
Lemma 4.9 F(µ̄) ≤ F(µ) and this contradicts the fact that µ is a minimal
optimal measure.

In order to get (4.5), since H 1(Σ̃n

)
≤ H 1(Σn

)
, recalling (2.11)

and (2.22), it suffices to show that for n large enough (depending on δ) one
has

dΣ̃n
(x, y) ≤ dΣn

(x, y) + K(δ) ∀ (x, y) ∈ Ω × Ω . (4.6)

By Lemma 2.16, we get that the functions dΣ̃n
and dΣn

are equi-uniformly
continuous over Ω × Ω, since their moduli of continuity can be estimated by
means of the modulus of continuity of A in [0, L]. Therefore, by the bound-
edness of Ω, it suffices to verify the inequality (4.6) for a finite number of
pairs (xi, yi), and hence for a given pair (x, y).

Let now (x, y) ∈ Ω × Ω be fixed and choose paths θn almost optimal
between x and y with respect to Σn in the sense that

δΣn
(θn) ≤ dΣn

(x, y) +
1
n

.
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It suffices to show that

δΣ̃n
(θn) ≤ δΣn

(θn) + K(δ) (4.7)

for all n large enough. To show (4.7), we consider θn as parametrized by
constant speed and we recall that by Lemma 2.16 one can assume H 1(θn) ≤
L for n large enough; hence, up to a subsequence, the paths θn uniformly
converge to some path θ. We claim that there exists an n̄ = n̄(δ, x, y) such
that for every t ∈ [0, 1] and n ≥ n̄ one has

µn

(
B(θn(t), ε/2)

)
≤ µ
(
B(θn(t), ε)

)
+ δε . (4.8)

In fact, for each fixed t̄ ∈ [0, 1] we have

µn

(
B
(
θn(t̄),

4
6

ε
))

≤ µ
(
B
(
θn(t̄),

5
6

ε
))

+ δε , (4.9)

whenever n ≥ n̄(t̄, δ, x, y). Since the paths θn are parametrized by constant
speed and have length bounded by L, then

B
(
θn(t),

3
6

ε
)
⊆ B
(
θn(t̄),

4
6

ε
)

, B
(
θn(t̄),

5
6

ε
)
⊆ B
(
θn(t), ε

)
, (4.10)

whenever
|t − t̄| ≤ ε

6L
.

From (4.9) and (4.10) we deduce the validity of (4.8) for all n ≥ n̄(t̄, δ, x, y)
and for all t satisfying

|t − t̄| ≤ ε

6L
.

Hence, by compactness of [0, 1], we get the validity of (4.8) for all n ≥
n̄(δ, x, y) (i.e. with n̄ independent of t).

Take now n ≥ n̄(δ, x, y) and t ∈ [0, 1] such that θn(t) ∈ Xδ
ε : the definition

of Xδ
ε and the above estimate ensure that

µn

(
B(θn(t), ε/2)

)
≤ 2δε .

Setting then
Dt := [t − ε/(2vn), t + ε/(2vn)] ,

where
vn = H 1(θn) = |θ′n(t)|

for every t ∈ [0, 1], one has that H 1(θn(Dt)
)

= ε, while

H 1 Σn

(
θn(Dt)

)
≤ µn

(
B(θn(t), ε/2)

)
≤ 2δε = 2δH 1(θn(Dt)

)
.

Now we can cover θ−1
n

(
Xδ

ε

)
by a finite number of intervals of the form of

Dt in such a way that no instant t ∈ [0, 1] belongs to more than two such
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intervals. As a consequence, we immediately infer

H 1(θn) ≥
H 1 Σn

(
θn ∩ Xδ

ε

)
4δ

(4.11)

so, defining

a := H 1(θn \ Σn) , b := H 1 Σn

(
θn ∩ Xδ

ε

)
, c := H 1 Σ̃n(θn) ,

we may summarize what obtained by the equalities

δΣn
(θn) = A

(
a
)

+ B
(
b + c

)
, δΣ̃n

(θn) = A
(
a + b

)
+ B
(
c
)
; (4.12)

moreover,
a + b + c = vn ≤ L .

Finally, (4.11) and the definition of a, b and c give

a + b + c ≥ b

4δ
.

This implies that b ≤ 4δ L and hence, by (4.12) and by the uniform continuity
of A on the compact set [0, L] ⊆ R, we get

δΣ̃n
(θn) − δΣn

(θn) = A
(
a + b

)
+ B
(
c
)
− A
(
a
)
− B
(
b + c

)
≤ A
(
a + b

)
− A
(
a
)
≤ ωA(4δL) ,

where ωA stands for the modulus of continuity of A over the interval [0, L].
Hence, (4.7) is proved with

K(δ) := ωA(4δL) ,

which therefore concludes the proof. ��

We can go now further, showing that the set Σ in last lemma can be chosen
rectifiable.

Lemma 4.11. Any minimal optimal measure is concentrated on a rectifiable
set Σ.

Proof. Let us take an arbitrary optimal measure β and a minimizing sequence
βn = H 1 Σn for the functional F, i.e. βn

∗ β and F(βn) → F(β). The
strategy to achieve the conclusion will be to construct an optimal measure
µ ≤ β concentrated on a rectifiable set: by Definition 4.7 of minimality of an
optimal measure, this yields the thesis.

If F(β) = F(∅), there is nothing to prove. Otherwise,

K := F(∅) − F(β) > 0 ,
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so that for n sufficiently large one has

F(∅) − F(βn) >
K

2
.

According to Proposition 2.14, for n large enough we take a t.p.m. ηn such
that

CΣn
(ηn) − MK(Σn) < F(∅) − F(βn) − K/2 .

Therefore,
∫

Θ

A
(
H 1(θ)

)
− A
(
H 1(θ \ Σn)

)
dηn ≥

≥
∫

Θ

A
(
H 1(θ)

)
−
(
A
(
H 1(θ \ Σn)

)
+ B
(
H 1(θ ∩ Σn)

))
dηn

= C∅(ηn) − CΣn
(ηn)

≥ F(∅) − CΣn
(ηn) > F(βn) − MK(Σn) + K/2

= F(Σn) − MK(Σn) + K/2 ≥ K/2 .

(4.13)

Recalling that all the t.p.m.’s have unitary total mass, since

‖f+‖ = ‖f−‖ = 1 ,

we deduce the existence of paths θn ∈ spt ηn such that

A
(
H 1(θn)

)
− A
(
H 1(θn \ Σn)

)
≥ K

2
. (4.14)

By Lemma 4.6, since θn ∈ spt ηn and the sequence {ηn} is almost optimal
with respect to CΣn

, we may assume that

H 1(θn) ≤ L ;

thus, thanks to the uniform continuity of A in [0, L], from (4.14) we infer that

βn(θn) = H 1 Σn(θn) = H 1(θn ∩ Σn

)
= H 1(θn) − H 1(θn \ Σn)

≥ ω−1(K/2) ,

where ω stands for the modulus of continuity of A in [0, L], and ω−1(K/2)
stands for the biggest number x > 0 such that ω(x) ≤ K/2 (this is a slight
abuse of notations, since ω may be not strictly increasing). Since {θn} is a
sequence of paths of Euclidean length bounded by L we may assume, up to
a subsequence, that the paths θn uniformly converge to some path θ ∈ Θ,
thus in particular the respective traces θn([0, 1]) converge in the Hausdorff
distance to C1 = θ([0, 1]). Again up to a subsequence, we assume that

βn θn
∗ µ1
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so that, since C1 is closed, we deduce that µ1 is concentrated in C1: in fact,
for every open set U such that dist (U,C1) > 0 one has

µ1(U) ≤ lim inf
n→∞

βn θn(U) = 0 .

Thanks to Lemma 4.1, we have

‖µ1‖ ≥ ω−1(K/2) .

Noticing that µ1 ≤ β, we obtain the estimates

β(C1) ≥ µ1(C1) ≥ ω−1(K/2) > 0 .

We want now to iterate the above argument: to this aim, we call

Σ̃n := Σn \ θn

so that
β̃n = H 1 Σ̃n

∗ β − µ1 .

We use now an argument similar to the previous one: if F(µ1) ≤ F(β), then
µ1 is an optimal measure and we conclude. Otherwise,

K ′ := F(µ1) − F(β) > 0 ,

so that for n sufficiently large

ρn := F(βn θn) − F(βn) − K ′

2
> 0 :

indeed, we know that F(βn) → F(β) and by lower semicontinuity of F one has

lim inf F(βn θn) ≥ F(µ1) .

Arguing as in (4.13), choosing the sequence {ηn} almost optimal for CΣn
(ηn

is possibly different from the ones of the first step), noticing that

βn θn = H 1 (Σn ∩ θn)

and recalling that
H 1(Σn) ≥ H 1(Σn ∩ θn)

for any n, one has the relationship

CΣn∩θn
(ηn) − CΣn

(ηn) ≥ MK(Σn ∩ θn) − MK(Σn) − ρn

= F(Σn ∩ θn) − H(H 1(Σn ∩ θn)) − F(Σn) + H(H 1(Σn)) − ρn

≥ F(Σn ∩ θn) − F(Σn) − ρn = K ′/2 .
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Therefore, for n large enough, one has
∫

Θ

A
(
H 1(θ \ Σn) + H 1(θ ∩ Σn \ θn)

)
− A
(
H 1(θ \ Σn)

)
dηn

≥
∫

Θ

(
A
(
H 1(θ \ Σn) + H 1(θ ∩ Σn \ θn)

)

+ B
(
H 1(θ ∩ Σn) − H 1(θ ∩ Σn \ θn)

))

−
(
A
(
H 1(θ \ Σn)

)
+ B
(
H 1(θ ∩ Σn)

))
dηn

=
∫

Θ

(
A
(
H 1(θ \ (Σn ∩ θn))

)
+ B
(
H 1(θ ∩ (Σn ∩ θn))

))
− δΣn

(θ) dηn

= CΣn∩θn
(ηn) − CΣn

(ηn) ≥ K ′

2
.

As before, we deduce the existence of a sequence of paths {σn} ∈ spt ηn of
lengths bounded by L and with

A
(
H 1(σn \ Σn) + H 1(σn ∩ Σn \ θn)

)
− A
(
H 1(σn \ Σn)

)
≥ K ′

2
,

so that
β̃n(σn) = H 1(σn ∩ Σn \ θn) ≥ ω−1(K ′/2) .

Again, by Lemma 4.1 we find a measure µ2 concentrated in a curve C2 ∈ Θ
of length bounded by L (C2 is the Hausdorff limit of the traces σn([0, 1])),
such that

β̃n σn
∗ µ2 , and ‖µ2‖ ≥ ω−1(K ′/2) .

Recalling that β̃n
∗ β − µ1, we deduce µ1 + µ2 ≤ β.

We iterate this argument, finding measures µi concentrated in curves Ci

and such that
µ̂n := µ1 + µ2 + · · · + µn

is an increasing sequence of positive measures with µ̂n ≤ β; since ‖β‖ < +∞,
we deduce that µ̂n converges strongly to a measure µ∞ with µ∞ ≤ β. Now,
by construction we have that

∥∥µ̂n+1 − µ̂n

∥∥ = ‖µn+1‖ ≥ ω−1
((

F(µ̂n) − F(β)
)
/2
)

;

but since µ̂n → µ∞ strongly, we infer that
∥∥µ̂n+1 − µ̂n

∥∥ −→ 0 ,
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then
ω−1
((

F(µ̂n) − F(β)
)
/2
)
−→ 0 .

Keeping in mind that ω is the modulus of continuity of the function A in
[0, L], we infer that F(µ̂n) → F(β) so that, by lower semicontinuity of F, the
measure µ∞ is an optimal measure less than β, as we were looking for. ��

Summarizing, we know that there exists an optimal measure µ concen-
trated in a 1−rectifiable set Σ, and absolutely continuous with respect to
H 1. It follows that µ = ϕH 1 Σ, so we found a relaxed solution which is,
in a certain sense, similar to the classical one: if ϕ ≡ 1, we have indeed a
classical solution. We will prove in a moment that ϕ ≤ 1: this is quite rea-
sonable, since we can imagine that covering a path with ϕ > 1 has a cost
strictly greater than covering the same path with ϕ ≡ 1: even though this
argument is far from being formal, this is more or less the idea of the proof
of Theorem 4.14. On the other hand, the case ϕ < 1 is not meaningless: in
fact, following a path of length l on a network where ϕ ≡ p ∈ [0, 1] can be
interpreted as covering a length pl by train and the remaining (1 − p)l by
own means, which may be, in some cases, better than covering the whole
length l by train. More precisely, one can imagine that in some situation this
is indeed the best case, which is exactly what we will prove in the exam-
ple of Section 4.3. This intuitive discussion will become clearer in light of
Proposition 4.15.

In the sequel, we will use for simplicity the following notation.

Definition 4.12. We denote by M+
1 (Ω) the set of those measures µ ∈

M+(Ω) which can be represented as

µ = ϕH 1 Σ ,

where Σ is the union of countably many Lipschitz paths of uniformly bounded
length, and

ϕ : Σ → [0, 1]

is a Borel function.

Definition 4.13. Given a path θ ∈ Θ, and given two points of θ, namely
P = θ(s) and Q = θ(t) with t ≥ s, we will denote by P̃Q the path θ [s, t] ∈
Θ; we will use this notation only when the particular path θ containing P
and Q will be clear from the context.

We show now, as anticipated, the existence of an optimal measure µ with
ϕ ≤ 1. In view of Definition 4.12, we can equivalently say that there exists
an optimal measure µ ∈ M+

1 (Ω).

Theorem 4.14. There is an optimal measure µ ∈ M+
1 (Ω); more precisely,

each optimal measure µ which is minimal in the sense of Definition 4.7 be-
longs to M+

1 (Ω).
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Proof. Let µ be a minimal optimal measure, which is concentrated in a rec-
tifiable set

Σ = ∪i∈Nθi

where the paths θi ∈ Θ have lengths bounded by a constant L by Lemmas 4.6
and 4.11. Let {Σn} be a minimizing sequence in the definition of F(µ), that is,

µn := H 1 Σn
∗ µ

and F(µn) → F(µ). We claim that µ ∈ M+
1 (Ω): if it were false, there would

be an index i ∈ N and a Lipschitz path

∆0 = P̃Q ⊆ θi ⊆ Σ

such that µ(∆0) > H 1(∆0).
In order to find a competitor to µ, that will lead to a contradiction, we

fix an ε > 0 (that we will eventually lead to 0) and we let Cε to stand for
the open ε−tubular neighborhood of ∆0, that is the set of those points of Ω
the minimal distance of which from θi is strictly less than ε and is reached at
some point of ∆0. Notice that, up to an arbitrary small movement of P and
Q, ∆0 can be chosen in such a way that, for all ε > 0 except for countably
many,

µ
(
∂Cε

)
= 0 , and ∀n ∈ N , µn

(
∂Cε

)
= 0 . (4.15)

In the rest of the proof, we deal only with numbers ε > 0 for which (4.15)
holds.

We now set, for any n,

Σn,ε :=
(
Σn \ Cε

)
∪ ∆0, µn,ε := H 1 Σn,ε . (4.16)

In short, from every Σn we drop the whole tubular neighborhood Cε, and
then we add the curve ∆0.

We want now to check that F
(
Σn,ε

)
is not much larger than F

(
Σn

)
. To

this aim, we fix a δ < ε2 and we define Dδ ⊆ Cε the δ-tubular neighborhood
of the part of ∆0 having distance more than ε from both P and Q; formally,

Dδ :=
{

x ∈ Ω : ∃ y ∈ ∆0, H 1(P̃ y) > ε,H 1(ỹQ) > ε,

dist(x,∆0) = |y − x| < δ
}

(see Figure 4.1). Notice that, since µ is a finite measure, we have

µ(Cε) = µ(∆0) + K1(ε)

with K1(ε) −−→
ε→0

0 and, exactly as in (4.15), for all but countably many δ one
has
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Cε

Dδ Q

P

Fig. 4.1 Construction of the proof of Theorem 4.14

µ
(
∂Dε

)
= 0, and ∀n ∈ N, µn

(
∂Dε

)
= 0 . (4.17)

Moreover,
Σε := ∩δ>0Dδ

is a Lipschitz path (since it is contained in ∆0), namely the part of ∆0 made
by those points having distance more than ε from both P and Q: therefore,
for any δ > 0 one has µ(Dδ) ≥ µ(Σε). Since

µ(Σε) ↗ µ(∆0) as ε ↘ 0 ,

it follows that

µ
(
Cε \ Dδ

)
≤ µ(Cε) − µ(Σε) = K1(ε) + µ(∆0) − µ(Σε) =: K2(ε) ,

where again K2(ε) −−→
ε→0

0. Recalling that µn
∗ µ, (4.15) and (4.17), we

derive that
µn

(
Cε \ Dδ

)
→ µ
(
Cε \ Dδ

)
as n → ∞, and hence, for n large enough, one has

µn

(
Cε \ Dδ

)
≤ 2K2(ε) . (4.18)

Using the projection map from the tubular neighborhood Cε onto ∆0, which is
defined for all sufficiently small ε, we may define a Lipschitz map αδ : Ω → Ω
such that (recall that δ < ε2)

i) αδ ≡ Id in Ω \ Cε ;
ii) αδ(x) ∈ ∆0 ∀x ∈ Dδ ;

iii) for a.e. x ∈ Ω, |∇αδ(x)| ≤
(
1 + 3ε

)
;

iv) |αδ(x) − x| ≤ ε ∀x ∈ Ω .

We want now to define a Borel map r : Θ → Θ such that r(θ) is a path with
the same endpoints as θ and with the property that, if H 1(θ) ≤ L and n is
large enough,
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δ̄Σn,ε

(
r(θ)
)
≤ δΣn

(θ) + K(ε) (4.19)

for some K(ε) −−→
ε→0

0. To do that, we set

r(θ) := θ1 · (αδ ◦ θ) · θ2 ,

where θ1 and θ2 are the segments connecting θ(0) with αδ(θ(0)) and αδ(θ(1))
with θ(1) respectively. Therefore, by construction and recalling the proper-
ties iii) and iv) above, one has

H 1(r(θ)) ≤ 2ε + H 1(θ) + 3Lε = H 1(θ) + K3(ε) , (4.20)

where again K3(ε) −−→
ε→0

0. Write now θ = θa ∪ θb ∪ θc, where

θa ⊆ Ω \ Cε , θb ⊆ Cε \ Dδ , θc ⊆ Dδ :

we consider now separately θa, θb and θc. Concerning θa, by the property i)
we have αδ(θa) = θa, so that by (4.16)

H 1(αδ(θa) \ Σn,ε

)
= H 1(θa \ Σn

)
. (4.21)

Concerning θb, by (4.18) we know that

H 1(Σn ∩ θb) = µn(θb) ≤ 2K2(ε)

then, also by property iii), one has

H 1(αδ(θb) \ Σn,ε

)
≤ (1 + 3ε)H 1(θb) ≤ H 1(θb) + 3Lε

≤ H 1(
θb \ Σn

)
+ 2K2(ε) + 3Lε .

(4.22)

Finally, concerning θc, we know by ii) that

αδ(θc) ⊆ ∆0 ⊆ Σn,ε

so that
H 1(αδ(θc) \ Σn,ε

)
= 0 . (4.23)

Recalling now that

r(θ) = αδ(θa) ∪ αδ(θb) ∪ αδ(θc) ∪ θ1 ∪ θ2

and putting together (4.21), (4.22) and (4.23), we derive that

H 1(r(θ) \ Σn,ε

)
≤ H 1(θ \ Σn) + K4(ε) ,
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where again K4 −−→
ε→0

0. As a consequence,

0 ≤ l :=
(
H 1(θ \ Σn)− H 1(r(θ) \ Σn,ε

)
+ K3(ε)+ K4(ε)

)
∧H 1(r(θ) ∩ Σn,ε)

≤ H 1(r(θ) ∩ Σn,ε) .

Making use of the formula for δ̄Σ given in Proposition 2.18 and also by (4.20),
we deduce (recall that H 1(θ) ≤ L and denote as usual by ω the modulus of
continuity of A in [0, L])

δ̄Σn,ε

(
r(θ)
)
≤ A
(
H 1(r(θ) \ Σn,ε

)
+ l
)

+ B
(
H 1(r(θ) ∩ Σn,ε) − l

)
≤ A
(
H 1(θ \ Σn) + K3(ε) + K4(ε)

)
+ B
(
0 ∨
(
H 1(r(θ)) − H 1(θ \ Σn) − K3(ε) − K4(ε)

))

≤ A
(
H 1(θ \ Σn)

)
+ ω
(
K3(ε) + K4(ε)

)
+ B
(
0 ∨
(
H 1(θ ∩ Σn) − K4(ε)

))

≤ δΣn
(θ) + ω

(
K3(ε) + K4(ε)

)
:

then we finally proved (4.19) with

K(ε) := ω
(
K3(ε) + K4(ε)

)
.

Take now any t.p.m. η such that H 1(θ) ≤ L for all θ ∈ spt η. By construc-
tion r#η is another t.p.m., so recalling Proposition 2.14 and thanks to (4.19)
we derive

MK(Σn,ε) ≤ CΣn,ε
(r#η) ≤ CΣn

(η) + K(ε) .

As we already noticed in Lemma 4.6, one can take such a t.p.m. η with
CΣn

(η) arbitrarily close to MK(Σn), therefore we deduce

MK(Σn,ε) ≤ MK(Σn) + K(ε) . (4.24)

Due to (4.15),

lim µn(Cε) = µ(Cε) ≥ µ(∆0) > H 1(∆0) .

Hence, at least for n large enough, one has

H 1(Σn,ε) < H 1(Σn)

(recall the definition (4.16) of Σn,ε). Together with (4.24), this ensures that
for n large enough one has

F(Σn,ε) ≤ F(Σn) + K(ε) .
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Up to a subsequence, we may assume µn,ε
∗

n→∞
µε. Thus, minding that

µn,ε ≤ µn ∨ (H 1 ∆0) ,

we get
µε ≤ µ ∨ (H 1

∆0) .

In particular,
µε(Ω \ Cε) ≤ µ(Ω \ Cε) ,

and also µε(∂Cε) = 0. On the other hand, the latter fact implies

µε(Cε) = lim
n→∞

µn,ε(Cε) = H 1(∆0) ,

while µ(Cε) ≥ µ(∆0). Therefore,

‖µε‖ ≤ µε(Ω \ Cε) + H 1(∆0) ≤ ‖µ‖ − µ(Cε) + H 1(∆0)

≤ ‖µ‖ − µ(∆0) + H 1(∆0) .
(4.25)

Finally, by the lower semicontinuity of F and since F(µn) → F(µ), we know
that

F(µε) ≤ lim inf
n→∞

F(µn,ε) ≤ lim inf
n→∞

F(µn) + K(ε) = F(µ) + K(ε) .

Let us call now ν0 a weak∗ limit of some sequence µεj
with εj → 0 for

j → ∞: since K(εj) → 0 we have, again by the lower semicontinuity of F,
that F(ν0) ≤ F(µ), and hence ν0 is optimal. On the other hand, since

µε ≤ µ ∨ (H 1 ∆0) ,

by (4.25) and the lower semicontinuity of the norm one has

ν0 ≤ µ ∨ (H 1
∆0) , ‖ν0‖ ≤ ‖µ‖ − µ(∆0) + H 1(∆0) . (4.26)

Summarizing, starting from a Lipschitz path ∆0 such that µ(∆0) > H 1(∆0),
we constructed a measure ν0 which is optimal for F and verifies (4.26). In
the very same way, the construction above also works if ∆0 is replaced by a
finite union of disjoint Lipschitz paths. We are then going to define a sequence
{∆k}k∈N of finite unions of disjoint Lipschitz paths contained in ∆0: to this
aim, for every integer k, we divide ∆0 = P̃Q in k subpaths ∆k

i , i = 1, . . . , k

of the same length H 1(P̃Q)/k, and we define ∆k as the union of all ∆k
i for

which
µ(∆k

i ) > H 1(∆k
i ) .

As already said, we can repeat the construction above with ∆k in place of
∆0, obtaining a measure νk which is optimal for F and such that
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νk ≤ µ ∨ (H 1 ∆k) ,

‖νk‖ ≤ ‖µ‖ − µ(∆k) + H 1(∆k) ≤ ‖µ‖ − µ(∆0) + H 1(∆0) ,
(4.27)

where the last inequality follows from the fact that

µ(∆0 \ ∆k) ≤ H 1(∆0 \ ∆k) .

Finally, passing to the limit as k → ∞, there is a measure ν such that, up to a
subsequence, νk

∗ ν. By lower semicontinuity the measure ν is optimal for F;
moreover, writing µ = ϕH 1 Σ according to Lemma 4.10, by construction
one has

H 1 ∆k
∗ H 1 {x ∈ P̃Q : ϕ(x) > 1} .

Hence, the limit in (4.27) gives

ν ≤ µ ∨ (H 1 {ϕ(x) > 1}) = µ, ‖ν‖ ≤ ‖µ‖ − µ(∆0) + H 1(∆0) < ‖µ‖ ,

so we found the desired contradiction to the fact that µ is a minimal optimal
measure. ��

We give now a useful representation of F(µ) for a measure µ ∈ M+
1 (Ω).

Proposition 4.15. For any µ ∈ M+
1 (Ω) one has

F(µ) = MK(µ) + H(‖µ‖) , (4.28)

where

MK(µ):=inf
{
Cµ(η) : η is a t.p.m.

}
, (4.29)

Cµ(η):=
∫

Θ

δµ(θ) dη(θ) , (4.30)

δµ(θ):=A
(
H 1(θ) − µ(θ)

)
+ B
(
µ(θ)
)
. (4.31)

Remark 4.16. We point out that equations (4.28), (4.29), (4.30) and (4.31)
are the generalizations of (2.11), (2.9), (2.8) and (2.2) respectively. Note also
that, in order for these equations to make sense, it is necessary that µ ∈
M+

1 (Ω), i.e. µ = ϕH 1 Σ with ϕ ≤ 1. Otherwise, if µ has parts of dimension
lower than one, or with dimension one but density greater than one, then
H 1(θ) − µ(θ) could be negative, which is meaningless. On the other hand,
if µ has parts of dimension greater than one then those parts have no effect
in (4.31), and so we implicitly need to make use of Lemma 4.11. We also
remark that the above result is extremely useful: in fact, it allows to evaluate
the cost F of any measure µ making use of the transport path measures,
exactly as one does for the sets Σ, instead of working with optimal sequences
of sets as we needed to do until now.
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We may now prove Proposition 4.15.

Proof (of Proposition 4.15). Having taken (4.29), (4.30) and (4.31) as defini-
tions, we need to establish (4.28).

First of all, it is useful to compute, exactly as in (2.13) and (2.21), the
relaxed envelope δ̄µ of δµ with fixed endpoints, and the corresponding gener-
alized cost Cµ, as well as to generalize the definition (2.5) of the distance in
Ω and of the cost IΣ in the obvious way:

δ̄µ(θ) := inf
{

lim inf
n→∞

δµ(θn) : θn(0) = θ(0), θn(1) = θ(1), θn
Θ−→ θ
}

;

Cµ(η) :=
∫

Θ

δ̄µ(θ) dη(θ);

dµ(x, y) := inf {δµ(θ) : θ ∈ Θ, θ(0) = x, θ(1) = y} ;

Iµ(γ) :=
∫∫

Ω×Ω

dµ(x, y) dγ(x, y).

(4.32)

Then, as in Proposition 2.14, one shows that

MK(µ) = min {Iµ(γ) : γ is a transport plan}
= inf {Cµ(η) : η is a t.p.m.}
= min

{
Cµ(η) : η is a t.p.m.

}
;

(4.33)

moreover, as in Proposition 2.18 one has

δ̄µ(θ) = inf
{

A
(
H 1(θ) − µ(θ) + l

)
+ B
(
µ(θ) − l

)
: 0 ≤ l ≤ µ(θ)

}

= inf
{

A
(
H 1(θ) − l

)
+ B
(
l
)

: 0 ≤ l ≤ µ(θ)
}

.
(4.34)

Consider now any sequence of closed sets {Σn} such that H 1 Σn
∗ µ:

given any sequence of paths θn → θ, we claim that

δ̄µ(θ) ≤ lim inf
n→∞

δ̄Σn
(θn) . (4.35)

In fact, by Go�la̧b Theorem we know that

H 1(θ) ≤ lim inf H 1(θn) ,

and on the other hand by Lemma 4.1 one has

µ(θ) ≥ lim supH 1 Σn(θn) .

This gives (4.35), since recalling (4.34) we get
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δ̄µ(θ) = inf
{

A
(
H 1(θ) − l

)
+ B
(
l
)

: 0 ≤ l ≤ µ(θ)
}

≤ lim inf
n→∞

inf
{

A
(
H 1(θ) − l

)
+ B
(
l
)

: 0 ≤ l ≤ µ(θ) ∧ H 1(θn)
}

≤ lim inf
n→∞

inf
{

A
(
H 1(θn) − l

)
+ B
(
l
)

: 0 ≤ l ≤ µ(θ) ∧ H 1(θn)
}

≤ lim inf
n→∞

inf
{

A
(
H 1(θn) − l

)
+ B
(
l
)

: 0 ≤ l ≤ µ(θ) ∧ H 1 Σn(θn)
}

= lim inf
n→∞

inf
{

A
(
H 1(θn) − l

)
+ B
(
l
)

: 0 ≤ l ≤ H 1 Σn(θn)
}

= lim inf
n→∞

δ̄Σn
(θ).

Hence, we proved the Γ − lim inf inequality (4.35). Take now any sequence
of t.p.m.’s ηn optimal for CΣn

, and let η be a weak∗ limit (possibly, up to a
subsequence) of {ηn}. By Lemma B.20, we have

MK(µ) ≤ Cµ(η) =
∫

Θ

δ̄µ(θ) dη(θ)

≤
∫

Θ

lim inf
n→∞

δ̄Σn
(θ) dη(θ) ≤ lim inf

n→∞

∫
Θ

δ̄Σn
(θ) dηn(θ)

= lim inf
n→∞

CΣn
(ηn) = lim inf

n→∞
MK(Σn).

Since it is also true that

H(‖µ‖) ≤ lim inf H
(
H 1(Σn)

)

because H is l.s.c. and nondecreasing and since

‖µ‖ ≤ lim inf ‖H 1
Σn‖ = lim inf H 1(Σn) ,

it follows that

MK(µ) + H(‖µ‖) ≤ lim inf
n→∞

MK(Σn) + H(‖Σn‖) = lim inf
n→∞

F(Σn) .

Recalling the definition (4.1) of F for general measures, we get

F(µ) ≥ MK(µ) + H(‖µ‖) ,

so that the first inequality in (4.28) is shown.
We show now the opposite inequality: thanks to Lemma 4.18 below, there

exists an optimal t.p.m. η for µ (that is, a t.p.m. η with Cµ(η) = MK(µ))
with spt η contained in the subset of Θ made by all the paths of length
bounded by L. Then, since µ ∈ M+

1 (Ω), we can write µ = ϕH 1 Σ, and we
can consider Σ to be the countable union ∪iθi where each θi is a Lipschitz
path of length bounded by L. We define then Σn as follows: we take the paths
θi for i = 1, 2, . . . , n, we divide each of them in the union of n subpaths
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θi,1, θi,2, . . . , θi,n of length H 1(θi)/n, and finally we let Σn be the union of
n2 closed connected subpaths, each of which is contained in θi,j for (i, j) ∈
{1, 2, . . . , n}2 and with length µ(θi,j). Note that this is possible thanks to
the hypothesis ϕ ≤ 1, since it implies H 1(θi,j) ≥ µ(θi,j).

One notices that the characteristic functions χΣn
: Σ → R converge to ϕ

weakly∗ in L∞(Σ), thus for any θ ∈ Θ one has

H 1 Σn(θ) =
∫

Σ

χΣn
(s)χθ (s) dH 1(s) →

∫
Σ

ϕ(s)χθ (s) dH 1(s) = µ(θ) ,

and hence
lim sup

n→∞
δ̄Σn

(θ) ≤ δ̄µ(θ) .

We use now the Dominated Convergence Theorem, which is possible since,
on the set of paths of length less than L, δ̄Σn

is bounded by a constant that
does not depend on n (indeed, δ̄Σn

(θ) ≤ A
(
H 1(θ)

)
≤ A(L)); we obtain that

lim inf
n→∞

MK(Σn) ≤ lim inf
n→∞

CΣn
(η)

= lim inf
n→∞

∫
Θ

δ̄Σn
(θ) dη ≤

∫
Θ

lim sup
n→∞

δ̄Σn
(θ) dη

≤
∫

Θ

δ̄µ(θ) dη = Cµ(η) = MK(µ) .

(4.36)

Since by construction

H 1(Σn) = ‖µ‖ ∀n ∈ N

and H 1 Σn
∗ µ, from (4.36) it follows

F(µ) ≤ lim inf
n→∞

F(Σn) = lim inf
n→∞

MK(Σn) + H
(
H 1(Σn)

)
= lim inf

n→∞
MK(Σn) + H(‖µ‖)

≤ MK(µ) + H(‖µ‖) .

The second inequality in (4.28) is then shown, so the proof is complete. ��

We prove now the generalizations to the relaxed functional F of some
properties that we already encountered for the original functional in Propo-
sition 2.3, Lemma 2.16, Corollary 2.17 and Proposition 4.3. All these proper-
ties can be obtained in a very similar way to those of the original functional.
It is convenient to introduce for this purpose the new set of measures

M+
µ,0(Θ) := Arg min{Cµ(η) : η a t.p.m.} .

Lemma 4.17. For any measure µ ∈ M+
1 (Ω), the following properties hold:

i) the distance dµ is continuous;
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ii) there exists an optimal t.p.m., that is a t.p.m. ηopt ∈ M+
µ,0(Θ);

iii) for any ηopt ∈ M+
µ,0(Θ), one has that spt ηopt is contained in the set of

all geodesics with respect to dµ.

Proof. By construction, the function θ �→ δ̄µ(θ) is lower semicontinuous: as
a consequence, for any pair (x, y) ∈ Ω × Ω the distance dµ(x, y), introduced
in (4.32), can be equivalently defined as the minimum of δ̄µ(θ) among the
paths θ ∈ Θ connecting x and y; as in the classical case, we will call geodesics
these minimizers. Recalling again the lower semicontinuity of δ̄µ, it follows
also immediately that the set G of the geodesics is a closed subset of Θ, as
well as the lower semicontinuity of dµ. The proof of the upper semicontinuity
of dµ is identical to the classical case, making use of the continuity of A and
of Lemma 2.1 (which clearly holds also when Σ is a countable union of paths
of uniformly bounded length); hence, i) holds.

Concerning the existence of an optimal t.p.m. , this is also obtained exactly
as in the classical case: the existence of an optimal transport plan γopt, i.e. a
measure γ minimizing Iµ(γ) as defined in (4.32), is again standard. Moreover,
the closedness of G and the existence of geodesics for each pair in Ω × Ω
ensures again the existence of a Borel map

q : Ω × Ω → Θ

associating to any pair of points a geodesics connecting them; finally, the
t.p.m. q#γopt is clearly an optimal t.p.m. thanks to (4.33); therefore, also ii)
is shown.

Finally, the property iii) is proved again as in the classical case: thanks
to (4.33), any optimal t.p.m. is concentrated in the set G of the geodesics;
therefore, since this set is closed as already remarked, the whole support of
any optimal t.p.m. is contained in G. ��

Lemma 4.18. Given any µ ∈ M+
1 (Ω) there exists a constant L depending

only on A, Ω and ‖µ‖ such that for any pair (x, y) ∈ Ω × Ω the Euclidean
length H 1(θ) of some geodesic θ connecting x and y (in particular, of each
geodesic if A is not constant for all values large enough) is bounded by L.
In addition, there exists an optimal t.p.m. η for Cµ (in particular, each op-
timal t.p.m. if A is not constant for all values large enough) such that spt η
is contained in the set of paths θ with Euclidean length bounded by L.

Proof. For the first part, one can simply adapt the proof of Lemma 2.16 to
this case; one only has to notice, as we already did, that Lemma 2.1 is true
also in the case when Σ is the union of countably many paths of equibounded
length.

The proof of the second part, also in light of Lemma 4.17-iii), can be made
exactly as the proof of Corollary 2.17. ��

Proposition 4.19. Given µ ∈ M+
1 (Ω) and a sequence {µn} ∈ M+

1 (Ω) such
that µn

∗ µ, one has that
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δ̄µ ≤ Γ − lim inf δ̄µn
,

that is
δ̄µ(θ) ≤ lim inf δ̄µn

(θn)

whenever θn → θ uniformly. As a consequence, dµ ≤ lim inf dµn
.

Proof. Take any sequence θn of paths uniformly converging to some path θ;
therefore,

µ(θ) ≥ lim sup µn(θn)

by Lemma 4.1, and on the other hand

H 1(θ) ≤ lim inf H 1(θn)

by Go�la̧b Theorem. We can argue exactly as when we showed property (4.35)
in the proof of Proposition 4.15 to obtain

δ̄µ(θ) ≤ lim inf δ̄µn
(θn) ,

so the first part of the proof follows.
Concerning the second one, given any pair (x, y) ∈ Ω × Ω, we can choose

according to Lemma 4.18 paths θn having Euclidean length less than L and
being geodesics with respect to dµn

, that is δ̄µn
(θn) = dµn

(x, y). As usual,
we can assume up to a subsequence that θn → θ uniformly as elements of
C([0, 1], Ω) and in the Hausdorff distance as closed subsets of Ω. Recalling
the Γ−liminf inequality shown above we conclude, since

dµ(x, y) ≤ δ̄µ(θ) ≤ lim inf
n→∞

δ̄µn
(θn) = lim inf

n→∞
dµn

(x, y) .

��

We remark now what follows: in Lemmas 4.9 and 4.11 and Theorem 4.14,
we showed the existence of some optimal measure respectively which is abso-
lutely continuous with respect to H 1, which is concentrated in some count-
able union of curves of uniformly bounded length, and which belongs to
M+

1 (Ω). In fact, we were able to prove that the above properties are satisfied
by any minimal optimal measure. Roughly speaking, if µ is an optimal mea-
sure and µ′ ≤ µ is minimal and optimal, we proved that the part µ−µ′ of the
optimal measure is “useless”; formally, we can say that the part µ−µ′ ≤ µ is
useless if dµ ≡ dµ′ , and then MK(µ) = MK(µ′) and F(µ) ≥ F(µ′). It is now
quite easy to guess that, often, a stronger assertion than the one of the above
lemmas is true, namely that all the optimal measures possess the desired
properties: this holds whenever the presence of a useless part of an optimal
measure is impossible, that is, when each optimal measure is minimal. This
is certainly true, for instance, in the two situations considered in the next
proposition.
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Proposition 4.20. All the optimal measures are minimal in each of the fol-
lowing cases:

• the function H is strictly increasing; (4.37)

• B′(s) < A′(t) for every s ∈ R
+, 0 ≤ t ≤ diam (Ω) and

f+ − f− is not concentrated on a set of finite H 1-measure .
(4.38)

Proof. The first situation is clear: indeed, as noticed before, if there is a
non-minimal optimal measure µ, and so a non-null useless part µ − µ′, then
MK(µ) = MK(µ′); by the strict monotonicity of H, H(µ′) < H(µ), which
leads to the contradiction F(µ′) < F(µ).

Let us then consider the case (4.38), and assume by contradiction the
existence of a non-minimal optimal measure µ, and then the existence of
an optimal measure µ′ strictly less than µ: take then an optimal t.p.m. η
and notice that the conclusion is proved if the set of the paths θ such that
µ′(θ) < H 1(θ) is not η−negligible. Indeed, in this case, we could replace
µ − µ′ by the measure H 1 θ0 − µ θ0, for a suitable θ0 ∈ Θ satisfying

0 < H 1(θ0) − µ(θ0) ≤ ‖µ − µ′‖ .

Hence, thanks to the assumption B′(s) < A′(t), this would provide a strictly
positive gain because an η-nonnegligible set of paths can be changed so as
to strictly decrease their costs (this can be made rigorous arguing as in
Lemma 6.9 below). We can then assume that for η−a.a. paths θ we have
µ′(θ) = H 1(θ) so that, denoting by Σ the set where µ′ has H 1−density
equal to 1, one has H 1(θ) = H 1(θ ∩ Σ); the contradiction with (4.38) will
now follow by proving that f+ − f− is concentrated on a set of finite length.
To this aim, we select paths θn ∈ Θ almost maximizing

H 1
(
θ \ ∪n−1

i=0 θi

)

among all paths for which H 1(θ \ Σ) = 0, i.e.

H 1(θn \ Σ) = 0 ,

H 1
(
θn \ ∪n−1

i=0 θi

)
≥ sup

{
H 1
(
θ \ ∪n−1

i=0 θi

)
, H 1(θ \ Σ) = 0

}
− 1

2n
.

Setting now Σ′ := ∪θn, up to adding to Σ the H 1−negligible set ∪nθn \ Σ,
we can assume that Σ′ ⊆ Σ. Moreover, by construction of Σ′, we have that

H 1(Σ′) ≤ H 1(Σ) ≤ ‖µ′‖ < +∞ ,

H 1(θ \ Σ′) = 0 for η−a.a. θ ∈ Θ .
(4.39)

Notice now that Σ′ is a countable union of pairwise disjoint and pathwise
connected components Σn (each Σn is the union of some of the paths θn).
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Now, we say that the pair (Σi, Σj) is connectible if there is a path θij ∈ Θ
such that

H 1(θij \ Σ′) = 0 , H 1(θij ∩ Σi) > 0 , H 1(θij ∩ Σj) > 0 .

If (Σi, Σj) is connectible, adding to Σ′ the H 1−negligible set θij \ Σ′ we
have that Σi and Σj belong now to the same connected component of Σ′.
Iterating countably many times this procedure, we end up with a set Σ′′

for which (4.39) still holds; but by construction Σ′′ is made by countably
many connected components (since so is Σ′), still denoted by Σi, and no pair
(Σi, Σj) is connectible; again up to adding to Σ′′ a H 1−negligible set, we can
also assume that all Σi are closed. As a consequence of (4.39) and of the fact
that the different connected components of Σ′′ are not connectible, η−a.e.
path θ is entirely contained in a single Σi; hence, recalling the definition of
t.p.m., we deduce that f+ − f− is concentrated on the set

{
θ(0) ∪ θ(1) : ∃i ∈ N, θ ⊆ Σi

}
⊆ Σ′′ ,

of finite length. The desired contradiction to (4.38) then is found, and the
proof is completed. ��

Summarizing, we know now the existence of optimal measures µ ∈ M+
1 (Ω):

any such measure can be written as µ = ϕH 1 Σ with Σ a rectifiable
Borel set and ϕ : Σ → [0, 1] a Borel function. In particular, the measure µ
corresponds to a set if and only if

ϕ(x) = 1 for µ−a.e. x ∈ Ω.

Definition 4.21. The set

M+
2 (Ω) ⊆ M+

1 (Ω) ⊆ M+(Ω)

is defined as the set of all measures H 1 Σ for some set Σ contained in a
countable union of Lipschitz paths of uniformly bounded length. Therefore,
µ = ϕH 1 Σ belongs to M+

2 (Ω), if and only if ϕ(x) = 1 for µ−a.e. x ∈ Ω.

As we discussed before Definition 4.12, one can expect the existence of
optimal measures contained in M+

1 (Ω) \M+
2 (Ω). Indeed, as we anticipated,

there are situations in which some optimal measure (or even all the optimal
measures) are contained in M+

1 (Ω)\M+
2 (Ω): we give such an example in the

next section. In that example, as in many others through the monograph,
the situation is basically one-dimensional; this means that f±, Σ and almost
all the paths θ are contained in the same segment. However, recall that the
ambient space is always at least two-dimensional, as we explained in the be-
ginning of the monograph. We point the reader’s attention to the importance
of this fact: indeed, even in these essentially “one-dimensional” situations, the
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fact that the ambient space has a higher dimension is crucial; otherwise, the
setting of the problem should have been different in order to be meaningful.
Roughly speaking, if the space is one-dimensional then one cannot walk “close
to the railway” because there is no room to do that; thus, however expensive
the train ticket is, the passenger has no choice and is forced to buy it.

4.3 Non-existence of Classical Solutions

In this section we present a situation in which no optimal measure µ corre-
sponds to a set, that is µ �∈ M+

2 (Ω) for any optimal measure µ. More precisely,
it will appear that whenever A and B are strictly convex, one should expect
that no optimal measure corresponds to a set, so that the cases when there
is an optimal measure µ ∈ M+

2 (Ω) will be exceptional.
To do that, we take

Ω = [0, 2]2 ⊆ R
2 ,

we assume that A = B is a strictly convex and C1 function, that H(s) = 0
for all s ∈ [0, 1] and H(s) > 0 for any s > 1, that

f± � H 1 (
[0, 2] × {0}

)
,

and that

f+([0, s] × {0}
)

> f−([0, s] × {0}
)

∀ 0 < s < 2 . (4.40)

We will denote for brevity by f+ and f− also the densities of f+ and f−

with respect to H 1, and we will write for convenience z̄ ≡ (z, 0) ∈ Ω for any
real number z ∈ [0, 2]; finally, we assume that f+ and f− are strictly positive
inside [0, 2] × {0}. It is clear that all optimal measures µ are concentrated
in [0, 2] × {0}: otherwise, projecting µ on [0, 2] × {0} would provide a lower
value in the cost F.

Take now an optimal measure

µ = ϕ(x)H 1 [0, 2] ∈ M+
1 (Ω)

and notice that, for any x ≤ y in [0, 2] one has

dµ(x̄, ȳ) = inf
0≤t≤µ([x̄,ȳ])

A
(
y − x − t

)
+ B
(
t
)

= A
(
y − x − l

)
+ A
(
l
)
, where l =

y − x

2
∧ µ([x̄, ȳ]) .

(4.41)

Since the map
t �→ A

(
y − x − t

)
+ B
(
t
)
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has its absolute minimum at t = (y − x)/2, from (4.41) we get

dµ(x̄, ȳ) ≥ A
(y − x

2

)
+ B
(y − x

2

)
= 2A

(y − x

2

)
. (4.42)

Note that in the above calculations we used the convexity of the function A;
moreover, the inequality (4.42) holds strictly if and only if

µ([x̄, ȳ]) <
y − x

2
,

due to the strict convexity of A.
We present now a well-known property of the transport problems, namely

the cyclical monotonicity, which is introduced and shown, for instance,
in [1, 36, 60]: this property says that, whenever γ is an optimal transport
plan,

dµ(p, q) + dµ(p′, q′) ≤ dµ(p, q′) + dµ(p′, q) ∀(p, q), (p′, q′) ∈ spt γ . (4.43)

The following property is a consequence of the cyclical monotonicity.

Lemma 4.22. In the hypotheses of this section, for any optimal transport
plan γ one has

x1 < x2 =⇒ y1 ≤ y2 whenever (x̄1, ȳ1), (x̄2, ȳ2) ∈ spt γ . (4.44)

Proof. First of all, we underline that since γ is an optimal transport plan
then for any (x, y) ∈ spt γ one has x ≤ y thanks to (4.40): this is a stan-
dard and well-known fact, since otherwise one can easily find a contradiction
with (4.44). Therefore, to show the claim of the lemma it is sufficient to take

0 ≤ x1 < x2 < y ≤ 2

and to show that
∂dµ

∂y
(x1, y′) >

∂dµ

∂y
(x2, y′) , (4.45)

denoting by ∂dµ/∂y the partial derivative of dµ(x̄, ȳ) relative to the vector
(1, 0) in the variable ȳ. To show (4.45), keeping in mind (4.41) we define

l1 :=
y′ − x1

2
∧ µ([x1, y′]) , l̃1 := y′ − x1 − l1 ,

l2 :=
y′ − x2

2
∧ µ([x2, y′]) , l̃2 := y′ − x2 − l2 ,

so that

dµ(x1, y′) = A
(
l̃1
)

+ B
(
l1
)

and dµ(x2, y′) = A
(
l̃2
)

+ B
(
l2
)
. (4.46)

Again using (4.41), recalling that x1 < x2 it is immediate to deduce that
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l̃1 ≥ l1 and l̃2 ≥ l2 ; (4.47)

l1 ≥ l2 , l̃1 ≥ l̃2 and at least one of the inequalities is strict: (4.48)

the last assertion is obvious since

l1 + l̃1 = y′ − x1 > y′ − x2 = l2 + l̃2 .

Up to an error o(ε) we can now write, using (4.41) and (4.48), the following
estimates:

dµ(x1, y′ + ε) − dµ(x1, y′) = ε
(
(1 − c1)A′(l̃1) + c1 A′(l1)

)
+ o(ε) ,

dµ(x2, y′ + ε) − dµ(x2, y′) = ε
(
(1 − c2)A′(l̃2) + c2 A′(l2)

)
+ o(ε) ,

(4.49)

where the constants c1 and c2 are defined by

c1 :=
{

ϕ(x) if l1 < l̃1 ,
ϕ(x) ∧ 1/2 if l1 = l̃1 ,

c2 :=
{

ϕ(x) if l2 < l̃2 ,
ϕ(x) ∧ 1/2 if l2 = l̃2

(notice that 0 ≤ c1, c2 ≤ 1 since µ ∈ M+
1 (Ω)). Finally, we conclude consid-

ering separately the three possibilities:
Case I. c1 = c2 .
In this case, (4.45) follows directly from (4.49) recalling (4.46), (4.48) and
the fact that A′ is strictly increasing since A is strictly convex and C1.
Case II. c1 < c2 .
As in the first case we have

(1 − c2)A′(l̃1) + c2 A′(l1) > (1 − c2)A′(l̃2) + c2 A′(l2) ;

with the hypothesis c1 < c2, by (4.47) we deduce

(1 − c1)A′(l̃1) + c1 A′(l1) ≥ (1 − c2)A′(l̃1) + c2 A′(l1) ,

and therefore (4.45) is proved also in this case.
Case III. c1 > c2 .
Recalling the definition of c1 and c2, this case is possible only if l2 = l̃2; but
then by (4.47) and (4.48) we infer that

l̃1 ≥ l1 ≥ l̃2 = l2 ,

so that (4.45) follows immediately by (4.49) and the fact that A′ is strictly
increasing. ��

We point out now another well-known fact, i.e. that there is a unique
optimal transport plan γ̄ between f+ and f− fulfilling property (4.44), hence
by Lemma 4.22 a unique optimal transport plan. Otherwise, there would be
two optimal transport plans γ1 and γ2, a number x ∈ [0, 2] and two numbers
y1 < y2 ∈ [0, 2] such that
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(x̄, ȳ1) ∈ spt γ1, (x̄, ȳ2) ∈ spt γ2 \ spt γ1 .

By (4.44) and recalling that f+ and f− are assumed strictly positive in [0, 2]×
{0}, it follows the existence of some x′ > x and y1 < y′ < y2 such that
(x̄′, ȳ′) ∈ spt γ1. By the linearity of the cost (2.6) with respect to γ, it follows
that also

γ =
γ1 + γ2

2
is an optimal transport plan; but (x̄, ȳ2) and (x̄′, ȳ′) are two pairs in spt γ
against (4.44); therefore, the uniqueness of the optimal transport plan γ̄ is
established.

Set now t(x) = y for x ∈ [0, 2], where y ∈ [0, 2] is the unique number such
that

f+([0, x] × {0}) = f−([0, y] × {0}) .

This is a well-defined continuous function thanks to the assumption that f−

is strictly positive, and moreover one has t(0) = 0, t(2) = 2 and t(x) > x for
0 < x < 2 by (4.40). The unique optimal transport plan γ̄ is given by

γ̄ := (Id, t̄)#f+ ,

where t̄ : [0, 2] × {0} → Ω denotes the map t̄(x̄) := t(x). Moreover, from the
equality ∫ x

0
f+(s) ds =

∫ t(x)

0
f−(s) ds

and the strict positivity of f−, one has that the derivative t′(x) exists and
is strictly positive for a.e. x ∈ [0, 2]. In words, the transport plan moves the
mass from each point

x̄ ∈ [0, 2] × {0}
to the corresponding point

t̄(x̄) = t(x) ∈ [0, 2] × {0} :

the fact that, in this case, the unique optimal transport plan is γ̄ = (Id, t̄)#f+,
is again well-known (see for instance [1, Theorem 3.1]). Note that we found the
unique optimal transport plan without knowing anything about the measure
µ: in other words, for any measure µ ∈ M+

1 (Ω), the same plan γ̄ is the unique
minimizer of

Iµ(γ) =
∫∫

Ω×Ω

dµ(p, q) dγ(p, q) .

Thanks to (4.42) and the fact that H(1) = 0, the measure

µ̄ :=
1
2
H 1 (

[0, 2] × {0}
)
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is optimal, since

dµ̄(x̄, ȳ) = 2A
(y − x

2

)

for any 0 ≤ x ≤ y ≤ 2. Then, we have found an optimal measure which is
not classical, that is, an optimal measure

µ̄ ∈ M+
1 (Ω) \M+

2 (Ω) ;

we want now to show more, that is, that there is no classical optimal measure
µ ∈ M+

2 (Ω). First of all, we need to establish the next result.

Lemma 4.23. In the assumptions of this chapter, if µ is an optimal measure
then

µ
(
[x̄, t(x)]

)
=

t(x) − x

2
∀x ∈ [0, 2] . (4.50)

Proof. Recalling (4.42) and the fact that µ̄ is optimal, since µ is optimal we
immediately know that the inequality

µ
(
[x̄, t(x)]

)
≥ t(x) − x

2
(4.51)

holds for any 0 ≤ x ≤ 2; we suppose then the existence of a point 0 < x0 < 2
such that the strict inequality

µ
(
[x̄0, t(x0)]

)
− t(x0) − x0

2
=: ρ > 0

holds, and we aim to find a contradiction. Let us define, starting from x0, a
two-sided sequence {xz} with z ∈ Z by induction setting xh+1 = t(xh) (this
defines xz for any z ∈ Z since t is continuous and strictly increasing thus
invertible). Since t is strictly increasing in (0, 2), we have

lim
z→∞

xz = 2, lim
z→−∞

xz = 0 .

By the fact that for any z ∈ Z the inequality (4.51) holds, for any z < 0 < m
we have

µ
(
[x̄z, x̄m]

)
≥ xm − xz

2
+ ρ .

Letting m → ∞ and z → −∞, the preceding inequality ensures

‖µ‖ ≥ 1 + ρ ;

but then
H(‖µ‖) > 0 = H(‖µ̄‖) ,

hence F(µ̄) < F(µ) against the optimality of µ, and we found the desired
contradiction. ��
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We can now prove, as a consequence of (4.50), the claim that we already
stated before, that is, that no optimal measure is classical (i.e. belongs to
M+

2 (Ω)).

Lemma 4.24. In the assumptions of this chapter, there are no optimal mea-
sures µ ∈ M+

2 (Ω).

Proof. Take any optimal measure µ, and let x ∈ (0, 2) be a point such that x̄
is a point of density 1 of µ and the derivative t′(x) exists. By (4.50), one has

µ([x̄, t(x)]) =
t(x) − x

2
, µ([x + ε, t(x + ε)]) =

t(x + ε) − (x + ε)
2

.

This implies

µ
(
[t(x), t(x + ε)]

)
− µ
(
[x̄, x + ε]

)
=

t(x + ε) − t(x) − ε

2
.

But
µ
(
[x̄, x + ε ]

)
= ε + o(ε) ,

because x̄ is a point of density 1; moreover

t(x + ε) = t(x) + εt′(x) + o(ε)

since t′(x) is defined. It follows

µ
(
[t(x), t(x) + εt′(x)]

)
=

t′(x) + 1
2

ε + o(ε) ,

and so the density of µ at t(x) is

t′(x) + 1
2 t′(x)

.

Analogously, if the density of µ at x̄ is 0, then the density at t(x) is given by

t′(x) − 1
2 t′(x)

.

If the measure µ belongs to M+
2 (Ω), then the density of µ at a.e. point

x̄ ∈ [0, 2] × {0} is either 0 or 1; since, as already pointed out, the derivative
t′(x) exists and is strictly positive at almost each x ∈ [0, 2], we deduce that
it should be t′(x) = 1 for a.e. x ∈ [0, 2]. But this would imply t ≡ Id,
hence f+ = f−, which gives a contradiction with (4.40), which concludes the
proof. ��

Summarizing, for any choice of f+ and f− as in the assumptions of this
chapter all the optimal measures do not belong to M+

2 (Ω), while for instance
the measure
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µ̄ =
H 1 (

[0, 2] × {0}
)

2
∈ M+

1 (Ω) \M+
2 (Ω)

is always optimal.

4.4 Existence of Classical Solutions

In the previous section, we noticed that the existence of classical solution
(more precisely, of solutions µ ∈ M+

2 (Ω)) may fail when A and B are con-
vex; on the other hand, we show now that when the latter functions are con-
cave, this existence is guaranteed. Indeed, we will prove Theorem 4.26, which
provides the existence of optimal measures in M+

2 (Ω) when the function D
defined in (2.29) is concave in the first variable. In particular, in Lemma 4.25
below we show that the latter concavity condition holds, for instance, when
both A and B are concave. In the following claim, we denote by g′±(s) the
left and right derivative of any function g : R → R at s, which always exist
when g is concave.

Lemma 4.25. If both A and B are concave, then the function D defined
in (2.29) is concave; moreover, D is strictly concave if, in addition, either A
or B is strictly concave and

B′
+(0) < A′

−(diam Ω) .

Proof. Assume that both A and B are concave. Then so is the function

l �→ A

(
a + ã

2
+ l

)
+ B

(
b − a + ã

2
− l

)
. (4.52)

As a consequence, the infimum of this function in the interval

0 ≤ l ≤ b − a + ã

2

(which equals D
(
(a + ã)/2, b

)
by definition) is a minimum, and it is attained

either at l = 0 or at l = b − (a + ã)/2. In the first case, we have

D

(
a + ã

2
, b

)
= A

(
a + ã

2

)
+ B

(
b − a + ã

2

)

≥ A(a) + A(ã) + B(b − a) + B(b − ã)
2

≥ D(a, b) + D(ã, b)
2

.

(4.53)
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On the other hand, in the second case one has

D

(
a + ã

2
, b

)
= A(b) + B(0) ≥ D(a, b) ∨ D(ã, b) ≥ D(a, b) + D(ã, b)

2
.

(4.54)
Hence, we have proved the concavity of D(·, b), minding that it is a continuous
function.

Concerning the strict concavity, notice that the first inequality in (4.53) is
strict if either A or B is strictly concave; but the inequality (4.54) may fail to
be strict even if both A and B are strictly concave. For instance, if B′(s) >
A′(l) for any s and l, then D(α, b) = A(b) + B(0) for any α, and then the
concavity of D(·, b) is not strict. On the other hand, if B′

+(0) < A′
−(diam Ω),

then the infimum in (4.52) is always attained at l = 0: the meaning of this fact
is that, if the ticket is sufficiently cheap, then for each path it is convenient
to use as much as possible of the public transportation network, or in other
words δµ = δ̄µ for each measure µ. Since the inequality (4.53) is strict if
either A or B is strictly concave (both being concave) then D(·, b) is strictly
concave and the proof is achieved. ��

Theorem 4.26. If the function D(·, b) is concave (resp. strictly concave) for
any b ∈ R

+, then there exists an optimal measure µ in M+
2 (Ω) (resp. any opti-

mal measure µ ∈ M+
1 (Ω) belongs to M+

2 (Ω)). In particular, by Lemma 4.25,
there is an optimal measure µ ∈ M+

2 (Ω) if both A and B are concave; more-
over, each optimal measure µ ∈ M+

1 (Ω) belongs to M+
2 (Ω) if both A and

B are concave, at least one of them is strictly concave and, in addition,
B′

+(0) < A′
−(diam Ω).

Proof. Assume the existence of an optimal measure

aH 1 Σ = µ ∈ M+
1 (Ω) \M+

2 (Ω) ,

where, as usual, Σ is a rectifiable set and a : Σ → [0, 1] a Borel function;
since µ �∈ M+

2 (Ω) we have that 0 < a(x) < 1 in a set of strictly positive
length. As an immediate consequence, we can find ε > 0 and two sets Σ1, Σ2
such that

µ(Σ1) = µ(Σ2) > 0 , Σ1 ∩ Σ2 = ∅ ,

ε < a(x) < 1 − ε for any x ∈ Σ1 ∪ Σ2 .

We define therefore

µs := µ + s
(
µ Σ1 − µ Σ2

)
;

by construction, for any −ε < s < ε one has µs ∈ M+
1 (Ω) and ‖µs‖ = ‖µ‖.

Take now any θ ∈ Θ: since s �→ µs(θ) is a linear map, then

s �→ D
(
H 1(θ) − µs(θ),H

1(θ)
)

is concave or strictly concave if so is D in the first variable. By the defini-
tion (4.32) of δ̄µ, the equality



4.4 Existence of Classical Solutions 73

δ̄µ(θ) = D
(
H 1(θ) − µ(θ),H 1(θ)

)

holds; in particular, it can be obtained in the same way as formula (2.30).
Therefore, for a generic path θ ∈ Θ the map s �→ δ̄µs

(θ) is concave or strictly
concave. Take now an optimal t.p.m. η for the cost Cµ, and observe that

the map s �→ Cµs
(η) is concave (or strictly concave) if so is D(·, b) . (4.55)

We now consider the strictly concave case: by (4.55) and the fact that µs

is defined for s in a neighborhood of zero we derive the existence of some
−ε < s̄ < ε such that Cµs̄

(η) < Cµ(η). Since η is an optimal t.p.m. for Cµ,
it follows

MK(µs̄) ≤ Cµs̄
(η) < Cµ(η) = MK(µ) ,

and since ‖µs̄‖ = ‖µ‖,
H(‖µs̄‖ = H(‖µ‖)

and hence F(µs̄) < F(µ) against the optimality of µ. This contradiction shows
that any optimal measure µ ∈ M+

1 (Ω) belongs to M+
2 (Ω) in the strictly

concave case (in particular, this means that any optimal measure µ belongs
to M+

2 (Ω) under the assumptions of Proposition 4.20).
Let us consider now the concave case: it is still true by (4.55) that s �→

Cµs
(η) is concave for −ε < s < ε; hence, for any given optimal measure µ,

either there exists some s̄ such that Cµs̄
(η) < Cµ(η), and then we conclude

as in the previous case, or one has

Cµs
(η) = Cµ(η) for each −ε < s < ε . (4.56)

We denote by N the set of all the optimal measures belonging to M+
1 (Ω),

and consider the auxiliary problem of minimizing, over N , the functional F̃

corresponding to the choice

Ã(t) :=
√

t , B̃(t) := 0 .

Since F is l.s.c. and coercive by construction, the set N is a bounded and
weakly∗ closed subset of M+(Ω), hence it is also sequentially compact with
respect to the weak∗ convergence. As a consequence, since F̃ is also l.s.c. and
coercive, there is a measure µ minimizing F̃ over N .

As noticed before, since µ minimizes F then (4.56) holds; thus all the
measures µs belong to N for −ε < s < ε. By Lemma 4.25, D̃ is strictly
concave in its first variable; therefore, the above arguments give the analogue
of (4.55), so that the map s �→ F̃(µs) is strictly concave: hence, there is some
−ε < s̄ < ε such that F̃(µs̄) < F̃(µ). Since µs̄ ∈ N , this gives a contradiction
with the fact that µ minimizes F̃ over N . So, we deduce the existence of some
optimal measure µ belonging to M+

2 (Ω). ��



Chapter 5

Topological Properties of Optimal Sets

In Chapter 4 we proved the existence of relaxed solutions to our network
optimization problem, and gave conditions on the existence of classical so-
lutions. Under such conditions, it becomes important to study some quali-
tative properties of an optimal set Σ, and in particular its closedness and
connectedness.

For this purpose we introduce the idea of “transiting mass”, that is the
total mass passing through a single point. Even though the case we will
mainly concentrate our attention on is when A(t) = t and B(t) = 0, for the
sake of generality we first present this definition in a more general framework.

5.1 Transiting Mass Function

In order to define and study the properties of the “transiting mass”, we need
to introduce a suitable set Θµ of paths.

Definition 5.1. For every measure µ ∈ M+
1 (Ω), we define Θµ as the subset

of Θ made by all the paths θ ∈ Θ satisfying

J
(
H 1(θ) − µ(θ), µ(θ)

)
= A
(
H 1(θ) − µ(θ)

)
+ B
(
µ(θ)
)
,

where J is given by (2.24).

In other words, Θµ is the set of those paths for which δµ(θ) = δ̄µ(θ), i.e. the
most convenient choice for a passenger traveling along θ is to use the network
as much as possible. Note that Θµ = Θ if A(t) = t and B(t) = 0, or more
generally if A ≥ B.

Definition 5.2. Assume that A and B are C1 functions and let η be a t.p.m.,
the support of which is made of paths of uniformly bounded lengths, and
minimizing the cost Cµ. We define the generalized transiting mass as the
function αη : Ω → R

+ given by
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αη(x) :=
∫

Θµ

(
A′(H 1(θ) − µ(θ)

)
− B′(µ(θ)

))+

χθ (x) dη(θ) .

In particular, when A(t) = t and B(t) = 0, we have

αη(x) = η{θ ∈ Θ : x ∈ θ} , (5.1)

which justifies the name of transiting mass function.

Remark 5.3. Note that the function

v(θ) := A′(H 1(θ) − µ(θ)
)
− B′(µ(θ)

)

is non-negative for any θ ∈ Θµ such that µ(θ) > 0. Indeed, if µ(θ) > 0
and v(θ) < 0 then the minimum in the definition (2.24) is not achieved at
l = µ(θ), contradicting the assumption θ ∈ Θµ.

We now show the upper semicontinuity of αη and the fact that every
optimal Σ must be an upper level of αη.

Lemma 5.4. The function αη is u.s.c.

Proof. We write

αη(x) =
∫

Θµ

χθ (x)v+(θ) dη(θ) ,

and the thesis follows by Fatou’s Lemma. Indeed,

χθ (x) ≥ lim supχθ (xn)

whenever xn → x, since a path θ containing infinitely many xn must also con-
tain their limit x. Moreover, θ �→ v+(θ) is a positive Borel function uniformly
bounded from above since A and B are of class C1 and H 1(θ) is uniformly
bounded over spt η by assumption. ��

Theorem 5.5. Let µ ∈ M+
1 (Ω) be an optimal measure and let η ∈ M+

µ,0(Θ)
be an optimal t.p.m., the support of which is made of paths of uniformly
bounded lengths. Then µ is an upper level of αη, in the sense that

H 1 {
αη(x) > r

}
≤ µ ≤ H 1 {

αη(x) ≥ r
}

. (5.2)

Proof. We start defining

µε := µ ∨ (H 1 Σε)

for a small number ε, where Σε is a Borel set chosen in such a way that

‖µε − µ‖ = ε .
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In order to evaluate Cµε
(η), we notice that for any θ �∈ Θµ, one has by

definition δ̄µε
(θ) = δ̄µ(θ) for ε ≤ ε̄(θ). Defining then

Θ′
ε := {θ ∈ Θ \ Θµ : ε ≤ ε̄(θ)} , Θ′′

ε :=
(
Θ \ Θµ

)
\ Θ′

ε ,

and recalling that H 1(θ) is bounded for θ ∈ spt η, one finds

δ̄µε
(θ) = δ̄µ(θ) on Θ′

ε , δ̄µε
(θ) = δ̄µ(θ) + O(ε) on Θ′′

ε ,

η
(
Θ′′

ε

)
= o(1) ,

(5.3)

the second equality being true due to the fact that A,B ∈ C1, and the third
equality being true due to the fact that Θ′′

ε ↘ ∅ as ε → 0 (all the infinitesimals
here and below are to be intended for ε → 0, and are always uniform with
respect to θ). On the other hand, we claim that
∫

Θµ

(
δ̄µε

(θ) − δ̄µ(θ)
)
dη(θ) =

∫
Θµ

−v+(θ)
(
µε(θ) − µ(θ)

)
dη(θ) + o(ε) . (5.4)

Indeed, by definition of δ̄µ we easily obtain that

δ̄µ(θ) = A
(
H 1(θ) − µ(θ)

)
+ B
(
µ(θ)
)
,

and that

δ̄µε
(θ) = A

(
H 1(θ) − µ(θ) − λ(θ)

)
+ B
(
µ(θ) + λ(θ)

)

for some
0 ≤ λ(θ) ≤ µε(θ) − µ(θ) ≤ ε .

Thus, recalling that A and B are C1 functions, we get

δ̄µε
(θ) − δ̄µ(θ) = −λ(θ)

(
v(θ) + o(1)

)
(5.5)

as ε → 0+, the infinitesimal in the above formula being uniform with respect
to θ because the function θ �→ H 1(θ) is uniformly bounded over spt η by
Lemma 4.6 and µ(θ) ≤ ‖µ‖. Notice now that if v(θ) > 0 then

λ(θ) = µε(θ) − µ(θ)

for ε sufficiently small depending on θ; analogously, if v(θ) < 0, then λ(θ) = 0
for ε small enough. Hence, the two integrands in formula (5.4) coincide at θ
whenever ε is small enough (depending on θ), and are of order O(ε) uniformly
with respect to θ due to (5.5) and to the fact that v(θ) is bounded. Therefore,
(5.4) follows.
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Making use of (5.3) and (5.4), we can now evaluate

Cµε
(η) − Cµ(η) =

∫
Θ

(
δ̄µε

(θ) − δ̄µ(θ)
)

dη(θ)

=
∫

Θµ

(
δ̄µε

(θ) − δ̄µ(θ)
)

dη(θ) +
∫

Θ\Θµ

(
δ̄µε

(θ) − δ̄µ(θ)
)

dη(θ)

=
∫

Θµ

−v+(θ)
(
µε(θ) − µ(θ)

)
dη(θ) + o(ε) +

∫
Θ′′

ε

(
δ̄µε

(θ) − δ̄µ(θ)
)

dη(θ)

=
∫

Θµ

−v+(θ)
(
µε(θ) − µ(θ)

)
dη(θ) + o(ε)

=
∫

Θµ

−v+(θ)
(∫

Σε

χθ (x) d(µε − µ)(x)
)

dη(θ) + o(ε)

=
∫

Σε

∫
Θµ

−v+(θ)χθ (x) dη(θ) d(µε − µ)(x) + o(ε)

= −
∫

Σε

αη(θ) d(µε − µ)(x) + o(ε) .

Analogously, we define
µ′

ε := µ − (µ Σ′
ε)

for a set Σ′
ε such that µ(Σ′

ε) = ε. A similar computation as above allows to
evaluate

Cµ′
ε
(η) − Cµ(η) =

∫
Σ′

ε

αη(x) d(µ − µ′
ε)(x) + o(ε) . (5.6)

Finally, we set
µ′′

ε = µ ∨ H 1 Σε − µ Σ′
ε ,

where Σε and Σ′
ε are two sets as before and having empty intersection. We

deduce

Cµ′′
ε
(η)−Cµ(η) = −

∫
Σε

αη(x) d(µε − µ)(x) +
∫

Σ′
ε

αη(x) d(µ− µ′
ε)(x) + o(ε) .

where

µε := µ ∨ H 1 Σε , µ′
ε := µ − (µ Σ′

ε) .

We conclude by pointing out that, if Σ does not satisfy (5.2), then there exist
two numbers r > s ≥ 0, and two sets

Σε ⊆ {x : αη(x) ≥ r} , Σ′
ε ⊆ {x : αη(x) ≤ s}

with µ(Σ′
ε) = ε and

µ Σε ≤ H 1
Σε ,

∥∥H 1
Σε − µ Σε

∥∥ = ε
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for ε > 0 small enough. Hence, with the above notation

−
∫

Σε

αη(x) d(µε − µ)(x) +
∫

Σ′
ε

αη(x) d(µ − µ′
ε)(x) ≤ −βε

for
β :=

r − s

2
> 0

and for all ε > 0 small enough. Since ‖µ‖ = ‖µ′′
ε‖ and by the fact that η is

an optimal t.p.m. for µ, this gives F(µ′′
ε) < F(µ) for ε small enough, against

the optimality of µ. ��
Remark 5.6. It is clear that among the numbers r ≥ 0 satisfying (5.2) there
is a maximum one.

Lemma 5.7. Given an optimal measure µ and an optimal t.p.m. η, for any
r ≥ 0 such that µ ≥ H 1 S, where

S :=
{
αη(x) > r

}
,

one has that S is contained in countably many geodesics θ ∈ spt η (up to an
H 1−negligible set).

Proof. Consider first the case r > 0. Take θ1 which “almost maximizes”

H 1(θ ∩ S)

among all paths θ ∈ spt η in the sense that

H 1(θ ∩ S) ≤ 2H 1(θ1 ∩ S) ∀ θ ∈ spt η .

Let us now define, inductively, θh+1 ∈ spt η as a path almost maximizing

H 1
(
θ ∩
(
S \
⋃h

j=1
θj

))

in spt η. We claim that S is H 1−essentially contained in ∪h∈Nθh, that is,

H 1(S \ S0) = 0 , where S0 := S ∩
(
∪h∈N θh

)
.

Indeed, since αη ≥ r > 0 inside S, assuming H 1(S \S0) > 0 one would have

0 <

∫
S\S0

αη(x) dH 1(x) =
∫

S\S0

∫
Θµ

χθ (x)v+(θ) dη(θ) dH 1(x)

=
∫

Θµ

∫
S\S0

χθ (x)v+(θ) dH 1(x) dη(θ) .

Therefore, there exists θ̄ ∈ spt η such that
∫

S\S0

χθ (x)v+(θ̄) dH 1(x) > 0 ,
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and hence
τ := H 1(θ ∩ (S \ S0)) > 0 .

By construction, θh �= θ̄ for all h ∈ N, and consequently for any h ∈ N

H 1
(
θh+1 ∩

(
S \
⋃h

j=1
θj

))
>

τ

2
.

This would give H 1(S) = ∞, which is a contradiction since by hypothesis
H 1(S) ≤ ‖µ‖, thus the proof is achieved for the case r > 0.

If r = 0, note that S := ∪kSk, where

Sk :=
{

αη(x) >
1
k

}

and µ ≥ H 1 S implies µ ≥ H 1 Sk for each k ∈ N. Hence, as proved
above, each Sk is contained in a countable number of geodesics of spt η, and
hence so is S. ��

From now on, we will consider a particular situation, i.e.

A(t) = t , B(t) = 0 . (5.7)

This is the simplest case, and it has been already considered in many works
with the further assumption that Σ is connected (see e.g. [19, 20]). By the
convexity of A and B and by Theorem 4.26, we already know that there exists
an optimal measure µ = H 1 Σ ∈ M+

2 (Ω), even though there may be also
optimal measures not contained in M+

2 (Ω); indeed, one has D(a, b) = a, so
that D(·, b) is concave but not strictly concave. Moreover, one has clearly
δ̄µ = δµ for any measure µ by definition of δ̄µ given in (4.32). Hence by
Lemma 4.17-ii) we infer the existence of optimal t.p.m.’s for Cµ, and not just
for Cµ; more precisely, (5.7) implies that Cµ = Cµ.

We underline that, since A and B are now fixed, the hypotheses of the
following results will be only about H. Notice that until now, we have not
yet given any hypothesis on H. This is due to the fact that, in all the proofs
of the previous chapter, starting from an optimal measure µ we have always
built a “competitor” µ′ having the same total mass: therefore, since

H(‖µ‖) = H(‖µ′‖) ,

the function H played no role. On the other hand, in the rest of the mono-
graph we will often consider competitors having a different total mass, so
that the hypotheses on H will become of primary importance.

Note that the hypothesis B ≡ 0 means that “moving by train is free of
charge”. Then, for people who need to move from/to places not so far from
the network, the most convenient thing should be to reach the network, take
a train until they arrive close to their destination, then reach the latter by
own means.
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We stress that, since we are assuming (5.7), one has Θµ = Θ for any µ,
which makes the Definition 5.2 of the transiting mass more significant; in
particular, as already remarked, αη is given by

αη(x) = η{θ ∈ Θ : x ∈ θ} .

Therefore, we can give the following useful calculation for Cµ(η) = Cµ(η),
which shows that µ �→ Cµ(η) is a constant plus the integral of a given function
in dµ.

Cµ(η) =
∫

Θ

(
H 1(θ) − µ(θ)

)
dη(θ) = C∅(η) −

∫
Θ

µ(θ) dη(θ)

= C∅(η) −
∫

Θ

(∫
Ω

χθ (x)) dµ(x)
)

dη(θ)

= C∅(η) −
∫

Ω

(∫
Θ

χθ (x) dη(θ)
)

dµ(x)

= C∅(η) −
∫

Ω

αη(x) dµ(x) .

(5.8)

We conclude this chapter with a couple of remarks: the first one is a
consequence of Lemma 5.7 and of the above calculation of Cµ(η).

Remark 5.8. Let µ be an optimal measure and η be an optimal t.p.m. As an
immediate consequence of Lemma 5.7, we obtain that the measure

µ′ = µ
{
αη(x) > 0

}

is concentrated on countably many geodesics θ ∈ spt η. By (5.8), we obtain
that

Cµ′(η) = Cµ(η) +
∫

Ω

αη(x) d(µ − µ′)(x) = Cµ(η) .

Hence, minding that µ′ ≤ µ, and thus H(‖µ′‖) ≤ H(‖µ‖), one has that also µ′

is an optimal measure and that η is an optimal t.p.m. also with respect to µ′.
As discussed in Proposition 4.20, we obtain that µ′ = µ whenever either (4.37)
or (4.38) occurs. Summarizing, in either of these cases we have obtained
that any optimal measure µ is concentrated on countably many geodesics
contained in the support of an optimal t.p.m.; otherwise, an optimal measure
µ′ < µ is concentrated on countably many geodesics, and the remaining part
µ − µ′ is completely useless.

Remark 5.9. It is worth noticing that, if one is given a t.p.m. η which is known
to be optimal with respect to some unknown optimal measure, there is an
easy method to determine this measure, or more precisely to determine all
the measures µ which are optimal and with respect to which η is an optimal
t.p.m. Indeed, for any l ≥ 0 define Ml to be the subset of M+

1 (Ω) made by
all those measures which are upper levels in the sense of (5.2) and with total
mass equal to l. An immediate consequence of (5.8) and of the formula
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∫
Ω

αη dµ =
∫ +∞

0
µ
(
{x : αη(x) ≥ t}

)
dt

is that for µ ∈ Ml one has

Cµ(η) = C∅(η) − β(l)

for a function β(l) which depends on l but not on µ: more precisely, β is given
by the following formula (to be intended in the weak sense, or in the classical
sense up to countably many points)

{
β(0) = 0 ,

β′(l) = inf
{

t : H 1({x : αη(x) ≥ t}
)
≤ l
}

.
(5.9)

Arguing as in Theorem 5.5, we know that for any measure µ ∈ M+
1 (Ω) with

‖µ‖ = l one has
Cµ(η) ≥ C∅(η) − β(l) ,

and the inequality is strict if and only if µ �∈ Ml. Notice also that the function
l �→ β(l) is concave thanks to (5.9); more precisely, the left and the right
derivative of β at l coincide respectively with the maximum and minimum
numbers r+(l) and r−(l) such that (5.2) holds for a measure µ ∈ Ml: hence,
r±(l) depend on l but not on the choice of µ ∈ Ml, and r−(l1) ≥ r+(l2)
whenever l1 < l2.

It is now clear that for any µ ∈ Ml one has

F(µ) ≤ C∅(η) − β(l) + H(l) ,

and the inequality is in fact an equality if and only if η is an optimal t.p.m.
with respect to µ. Consider now the function l �→ H(l)−β(l): since H and β
are positive functions, H(0) = β(0) = 0, H(l) → ∞ when l → ∞ while β(l) is
bounded by C∅(η) thanks to (5.8), we deduce that Arg min(H − β) is a non-
empty compact subset L of R

+. Since we know that η is an optimal t.p.m.
for some optimal measure µ, we finally conclude that the optimal measures
for which η is an optimal t.p.m. are precisely the measures belonging to some
Ml with l ∈ L.

5.2 Ordered Transport Path Measures

In this section, we introduce the notion of ordered transport path measures,
which are t.p.m. with additional useful properties. First of all, we select an
optimal measure µ ∈ M+

1 (Ω); then, we notice that by the lower semicontinu-
ity of F the set M+

µ,0(Θ) of optimal t.p.m.’s is a non-empty, weakly∗ closed
and convex subset of M+(Θ). We define then the following two sets.
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Definition 5.10. Let

M+
µ,1(Θ) := Arg min

{∫
Θ

�(θ) dη(θ) : η ∈ M+
µ,0(Θ)

}
, (5.10)

M+
µ,2(Θ) := Arg max

{∫
Σ

αη(x)2 dH 1(x) : η ∈ M+
µ,1(Θ)

}
, (5.11)

where

�(θ) :=
∫ 1

0
|θ′(t)| dt

is the parametric length of θ. The elements of M+
µ,2(Θ) will be called ordered

transport path measures.

Remark 5.11. Notice that, similarly to M+
µ,0(Θ), also M+

µ,1(Θ) and M+
µ,2(Θ)

are non-empty and weakly∗ closed subsets of M+(Θ). In fact, θ �→ �(θ) is
l.s.c., hence the map η �→

∫
Θ �(θ) dη is l.s.c., which implies the claim concern-

ing M+
µ,1(Θ). Moreover, the map η → αη(x) is u.s.c. for any x ∈ Σ by (5.1)

since the set {
θ ∈ Θ : x ∈ θ

}
is closed, while

αη(x) ≤ η(Θ) = ‖f+‖ ,

and hence the fact that M+
µ,2(Θ) is weakly∗ closed and non-empty fol-

lows with the help of Fatou’s lemma. Moreover, clearly both M+
µ,0(Θ) and

M+
µ,1(Θ) (but not M+

µ,2(Θ)) are convex sets.

As we will see in the sequel, the elements of M+
µ,2(Θ) have rather particular

properties among the optimal t.p.m.’s. For this reason, in what follows we
will restrict our attention to the ordered t.p.m.’s.

We notice first an easy consequence of Lemma 4.1.

Corollary 5.12. For any t.p.m. η ∈ M+
µ,0(Θ) there is a path σ maximizing

θ �→ µ(θ) = H 1(θ ∩ Σ)

within spt η.

Proof. Just take a maximizing sequence {θn}, extract a subsequence converg-
ing to a path θ with respect to dΘ (this is possible since all these paths have
uniformly bounded Euclidean lengths), notice that θ ∈ spt η because spt η is
closed by definition, and finally apply Lemma 4.1 with X := Θ, Cn := θn

and ν := µ. ��

We show now the following geometric property of the paths belonging to
spt η with η ∈ M+

µ,0(Θ).
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Lemma 5.13. Let η ∈ M+
µ,0(Θ) and let θ ∈ spt η be a path such that

µ
(
θ([t1, t2])

)
= a > 0

for some 0 ≤ t1 < t2 ≤ 1. Then for any ε > 0 there is ρ > 0 such that
the following holds: given any τ ∈ spt η ∩ BΘ

(
θ, ρ
)

and considering on τ a
parametrization such that |τ(ti) − θ(ti)| ≤ ρ for i = 1, 2, one has

µ
(
τ([t1, t2])

)
> a − ε .

In particular, the above statement with t1 = 0 and t2 = 1 implies the lower
semicontinuity of θ �→ µ(θ) in spt η. Since the upper semicontinuity holds in
the whole Θ by Lemma 4.1, we derive that the quantity of network taken by
the paths, that is θ �→ µ(θ), is a continuous function in spt η.

Proof (of Lemma 5.13). By the lower semicontinuity of the Euclidean length,
we know that

H 1(θ|[t1,t2]) ≤ H 1(τ|[t1,t2]) +
ε

2
, (5.12)

provided that ρ is sufficiently small. We claim that if the assertion is not true,
that is, if

µ
(
τ([t1, t2])

)
≤ a − ε , (5.13)

then τ is not a geodesic between τ(0) and τ(1): since η is an optimal t.p.m.,
this will give a contradiction with Lemma 4.17-iii), hence concluding the
proof.

To show the claim, define τ̃ as the path that equals τ outside of [t1, t2] and
that is defined as follows between t1 and t2: a segment connecting τ(t1) to
θ(t1), then the path θ|[t1,t2] between θ(t1) and θ(t2), then the segment connect-
ing θ(t2) to τ(t2). Figure 5.1 shows the situation, where τ is the upper path,
θ the lower one, and τ̃ the dark shaded one. Then, minding that by (5.13)
one has

δµ(τ̃|[t1,t2]) ≥ H 1(τ|[t1,t2]) − a + ε , (5.14)

θ

θ(t1)

θ(t2)

τ

τ(t1) τ(t2)

τ̃

Fig. 5.1 Situation in Lemma 5.13
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we find

δµ(τ̃) = δµ(τ̃|[0,t1]) + δµ(τ̃|[t1,t2]) + δµ(τ̃|[t2,1])
≤ δµ(τ|[0,t1]) + 2ρ + δµ(θ|[t1,t2]) + δµ(τ|[t2,1])

= δµ(τ|[0,t1]) + 2ρ + H 1(θ|[t1,t2]) − a + δµ(τ|[t2,1])

≤ δµ(τ|[0,t1]) + 2ρ + H 1(τ|[t1,t2]) + ε/2 − a + δµ(τ|[t2,1]) (by (5.12))
≤ δµ(τ|[0,t1]) + 2ρ + δµ(τ|[t1,t2]) + a − ε/2 − a + δµ(τ|[t2,1]) (by (5.14))
= δµ(τ) + 2ρ − ε/2 < δµ(τ),

provided ρ < ε/4, which, recalling that δµ = δ̄µ thanks to (5.7), gives the
desired contradiction. ��

Corollary 5.14. In the hypotheses of Lemma 5.13, for any ε > 0 there is a
ρ > 0 such that for any τ ∈ spt η ∩ BΘ

(
θ, ρ
)

one has

µ
(
τ([t1, t2]) ∩ θ([t1, t2])

)
> a − ε .

Proof. Assume that the thesis is not true, i.e. there exists an ε > 0 such that
for every ρ > 0 there is a τρ ∈ spt η ∩ BΘ(θ, ρ) with

µ
(
τρ([t1, t2]) ∩ θ([t1, t2])

)
≤ a − ε .

Then, by Lemma 5.13 then there exists a ρ1 > 0 such that, taking

τ1 := τρ1 ∈ spt η ,

one has
µ
(
τ1([t1, t2])

)
> a − ε

2
,

so that
µ
(
τ1([t1, t2]) \ θ([t1, t2])

)
>

ε

2
.

Suppose now that for some k ∈ N and for each n ≤ k we constructed a
ρn ≤ ρn−1 and a path

τn := τρn
∈ BΘ(θ, ρn−1) ∩ spt η

such that

µ
(
τn([t1, t2]) \

(⋃n−1

j=1
τj([t1, t2]) ∪ θ([t1, t2])

))
>

ε

n + 1
. (5.15)

Mind that

µ(τρ([t1, t2]) \ θ([t1, t2])) → 0 as ρ → 0
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since
lim sup

ρ→0
µ(τρ([t1, t2])) ≤ µ(θ([t1, t2]))

by Lemma 4.1. Therefore,

µ

(
(τρ([t1, t2]) \ θ([t1, t2])) ∩

(⋃k

j=1
τj([t1, t2])

))
→ 0

as ρ → 0. Then there exists a ρk+1 ≤ ρk such that, taking τk+1 := τρk+1 , one
has

µ

(
(τk+1([t1, t2]) \ θ([t1, t2])) ∩

(⋃k

j=1
τj([t1, t2])

))
≤ ε

2
− ε

k + 2
,

while
µ
(
τk+1([t1, t2])

)
> a − ε

2
by Lemma 5.13, so that

µ
(
τk+1([t1, t2]) \

(⋃k

j=1
τj([t1, t2]) ∪ θ([t1, t2])

))
=

µ(τk+1([t1, t2])) − µ(τk+1([t1, t2]) ∩ θ([t1, t2]))

− µ
(
(τk+1([t1, t2]) \ θ([t1, t2])) ∩

(⋃k

j=1
τj([t1, t2])

))
>

ε

k + 2
.

By induction we have found therefore two sequences ρn → 0 and τn → θ
such that (5.15) holds for all n ∈ N. This leads to a contradiction since the
harmonic series diverges, while ‖µ‖ < ∞. ��

We can now find a stronger consequence of the definition (5.10), namely
that different paths cannot cross in different directions as the following lemma
ensures.

Lemma 5.15. If η ∈ M+
µ,1(Θ), then for no couple of paths θ, τ ∈ spt η one

has (with suitable parameterizations) θ(t1) = τ(t2) and θ(t2) = τ(t1) for two
time instants 0 ≤ t1 < t2 ≤ 1.

Remark 5.16. Notice that this assertion says, in words, that if two different
paths in spt η pass through the same two points, they must do it in the same
order. In particular, taking θ = τ , one gets that each θ ∈ spt η is an arc (an
injective curve), which also implies that �(θ) = H 1(θ); in other words, there
are no paths in spt η with loops.

Note that, as in Lemma 4.17-iii), Lemma 4.18, Lemma 5.13 and Corol-
lary 5.14, the most important part of this assertion is that we can establish
the announced property for any path θ ∈ spt η, and not only for η-almost any.

Proof (of Lemma 5.15). Assume by contradiction that there are θ and τ as
in the assertion being proved. Hence, θ([t1, t2]) and τ([t1, t2]) are contained in
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Σ, since otherwise we would find a contradiction to the cyclical monotonicity
property (4.43) with

x := θ(0) , y := θ(1) , x′ := τ(0) , y′ := τ(1)

and the optimal transport plan γ = (p0, p1)#η associated to η.
By Corollary 5.14 there is a ρ > 0 such that for any

θ̃ ∈ spt η ∩ BΘ

(
θ, ρ
)

and
τ̃ ∈ spt η ∩ BΘ

(
τ, ρ
)

one has, minding that H 1 ≥ µ and that θ([t1, t2]) and τ([t1, t2]) are contained
in Σ, the relationships

H 1(θ̃([t1, t2]) ∩ θ([t1, t2])
)
≥ µ
(
θ̃([t1, t2]) ∩ θ([t1, t2])

)
>

3
4
µ
(
θ([t1, t2])

)

=
3
4
H 1(θ([t1, t2])) ,

H 1(
τ̃([t1, t2]) ∩ τ([t1, t2])

)
≥ µ
(
τ̃([t1, t2]) ∩ τ([t1, t2])

)
>

3
4
µ
(
τ([t1, t2])

)

=
3
4
H 1(τ([t1, t2])) ,

(5.16)

with suitable parameterizations of θ̃ and τ̃ . Let tθ̃1 and tθ̃2 (resp. tτ̃1 and tτ̃2 ) be
the first and the last instants in [t1, t2] when θ (resp. τ) touches θ̃ (resp. τ̃). We
denote then by θ̂1 the shortest arc connecting θ(t1) with θ(tθ̃1) inside θ([t1, t2]),
and by θ̂2 the shortest arc connecting θ(tθ̃2) with θ(t2) inside θ([t1, t2]) (resp.
by τ̂1 the shortest arc connecting τ(t1) with τ(tτ̃1 ) inside τ([t1, t2]), and by τ̂2
the shortest arc connecting τ(tτ̃2 ) with τ(t2) inside τ([t1, t2])): see Figure 5.2.

We now define in the obvious way α(θ̃, τ̃) connecting θ̃(0) with τ̃(1) and
β(θ̃, τ̃) connecting τ̃(0) with θ̃(1): formally,

α(θ̃, τ̃) := θ̃|[0,t1] · θ̂1 · τ̂2 · τ̃|[t2,1] , β(θ̃, τ̃) := τ̃|[0,t1] · τ̂1 · θ̂2 · θ̃|[t2,1] .

θ(t1) ≡ τ(t2)

θ

θ̃

θ(tθ̃1)
θ̂1

τ

θ(t2) ≡ τ(t1)

Fig. 5.2 Situation in Lemma 5.15
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In particular, the couple (α(θ, τ), β(θ, τ)) is given by the formulae

α = θ|[0,t1] · τ|[t2,1] , β = τ|[0,t1] · θ|[t2,1] .

The functions α, β are clearly Borel. Note also that

δµ(θ̃) + δµ(τ̃) = δµ(α(θ̃, τ̃)) + δµ(β(θ̃, τ̃)) , (5.17)

since θ([t1, t2]) and τ([t1, t2]) are contained in Σ. On the other hand,

�(α(θ̃, τ̃)) + �(β(θ̃, τ̃)) < �(θ̃) + �(τ̃) . (5.18)

in view of (5.16). We consider now two measures η1 and η2 concentrated on
sufficiently small balls centered in θ and τ respectively, so that α(θ̃, τ̃) and
β(θ̃, τ̃) are defined for any θ̃ ∈ spt η1, τ̃ ∈ spt η2, and with the property that

‖η1‖ = ‖η2‖ =: ε > 0 , η1 + η2 ≤ η .

Thanks to the classical results on the isomorphism of measure spaces (see
Theorem 2 in [53], or also Theorem 9 [61, Chapter 15]) we can take two Borel
maps ϕi : [0, ε] → Θ, i = 1, 2 so that ϕi#L ε = ηi, where L ε stands for the
Lebesgue measure on [0, ε]. Let us then consider the maps α̂, β̂ : [0, ε] → Θ
given by

α̂(t) := α(ϕ1(t), ϕ2(t)) , β̂(t) := β(ϕ1(t), ϕ2(t)) ,

and finally define

η̃ := η − η1 − η2 + α̂#L ε + β̂#L ε .

By construction η̃ is an admissible t.p.m. and is contained in M+
µ,0(Θ)

by (5.17); moreover
∫

Θ

�(θ) dη̃(θ) <

∫
Θ

�(θ) dη(θ)

due to (5.18), which gives a contradiction with the definition (5.10). ��

Now, we see the importance of the maximization in (5.11), which provides
a sort of “solidarity” between different paths in spt η.

Lemma 5.17. If η ∈ M+
µ,2(Θ), given two points x �= y ∈ Ω such that

η
({

σ ∈ Θ : x, y ∈ σ
})

> 0 ,

then η−a.e. path passing through both x and y contains the same subpath σxy

between x and y.
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Proof. Denote
Θxy :=

{
σ ∈ Θ : x, y ∈ σ

}
⊆ Θ ,

and for each σ ∈ Θxy ∩ spt η let σ̃ be the subpath of σ connecting x and
y. Due to the assumption (5.7), for any σ ∈ Θxy ∩ spt η the subpath σ̃ is
a geodesic between x and y, so that δµ(σ̃) is a constant depending only on
x and y (i.e. independent on σ). We obtain the thesis showing that, by the
maximization in (5.11), one of these geodesics is chosen by η-a.e. path in Θxy.
To this aim we first show that there is a constant c such that H 1(σ̃) = c
for η-a.e. σ ∈ Θxy. In fact, otherwise there would exist two constants c1 < c2
such that

η
({

σ ∈ Θxy : H 1(σ̃) = ci

})
> 0 , i = 1, 2 .

Define the function f : Θ → Θ according to the relationship

f(σ) :=
{

σ1, σ ∈ Θxy ∩ spt η,H 1(σ̃) = c2 ,
σ, otherwise ,

(5.19)

where σ1 ∈ Θxy ∩ spt η is some chosen path with H 1(σ̃) = c1. We have then
that η′ := f#η is still an optimal t.p.m., but clearly

∫
Θ

H 1(θ) dη′ <

∫
Θ

H 1(θ) dη ,

contradicting the assumption η ∈ M+
µ,1(Θ) (recall that H 1(θ) = �(θ) for all

θ ∈ spt η according to Lemma 5.15).
Now, since both δµ(σ̃) and H 1(σ̃) are η-a.e. constant for σ ∈ Θxy, we get

that so is
µ(σ̃) = H 1(σ̃) − δµ(σ̃) .

Choose now an arbitrary
σ′ ∈ Θxy ∩ spt η

and let η̂ be the t.p.m. that leaves all the paths of spt η unchanged, except
those connecting x and y, the latter being forced to follow σ̃ between x and y.
Formally, we define the function g: Θ → Θ by setting g(σ) for σ ∈ Θxy ∩spt η
to be the composition of the arc of σ between σ(0) and x, σ̃′, and the arc
of σ between y and σ(0) (for all the other paths σ we set g(σ) := σ). A
straightforward computation ensures that

η̂ := g#η ∈ M+
µ,1(Θ) ,

while since αη̂ is just a redistribution of αη, one has using the strict convexity
of αη(x)2 that

∫
Σ

αη̂(z)2 dH 1(z) <

∫
Σ

αη(z)2 dH 1(z) ,
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y′x′

y

A

x

Σ

Fig. 5.3 Situation in Example 5.19

unless η-a.e. path connecting x and y already follows a unique path, which
concludes the proof. ��

Remark 5.18. Notice that the path σxy is well-defined only for such pairs
(x, y) that the set Θxy in the above proof is not η-negligible. Moreover, if σxy

is defined and z, w ∈ σxy, then σzw is defined as well and it is the subpath
of σxy connecting z and w.

As the Example 5.19 below shows, the above result is not true for all the
paths in spt η connecting x and y, but only for η-a.e.. This is in contrast with
all the other properties enlisted before, which were true for all the paths in
spt η, and not just for η-almost all.

Example 5.19. Consider the following situation, shown in Figure 5.3: let

f+ = H 1 A + δx + Mδx′ f− = 2δy + Mδy′ ;

here A is a segment of unit length, having x as a right endpoint. The geometry
is chosen so that

|x − y| = |x − x′| + |y − y′| .
If M is large enough, it is easy to define H in such a way that the unique
optimal measure is µ := H 1 Σ, with Σ := [x′, y′] being the line segment
connecting x′ to y′, and that there is a unique optimal t.p.m. η ∈ M+

µ,1(Θ)
(hence η ∈ M+

µ,2(Θ)) which moves the mass as follows:

• Mδx′ goes on Mδy′ along Σ;
• δx goes on δy via the line segment [x, y]: using Σ would have the same cost

but would contradict the fact that η ∈ M+
µ,1(Θ), namely the minimiza-

tion (5.10);
• H 1 A goes on δy moving each point z ∈ A along the line segment [z, x′],

then following the network between x′ and y′, and finally along the line
segment [y′, y].

By construction, the path θ connecting x to y and passing through Σ belongs
to the support of η, since spt η is closed and x ∈ A. On the other hand σxy is
the line segment [x, y]. This shows that the assertion of Lemma 5.17 cannot
be strengthened replacing “η-a.e. path connecting x and y” with “each path
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in spt η connecting x and y”. However, notice that σx′y′ coincides with the
restriction of θ between x′ and y′, according to Lemma 5.20 below.

Nevertheless, we can show that a sort of everywhere solidarity, i.e. that
all the paths in spt η (instead of η−almost all) follow the path σxy between
x and y, is true where there is some railway. In the following, when a path
θ ∈ Θ and two points x, y ∈ θ are given, we will write x̃y to denote the
subpath of θ connecting x to y.

Lemma 5.20. Let η ∈ M+
µ,2(Θ), let θ ∈ spt η be a path such that µ(θ) > 0,

and let x′ and y′ be such points that x̃′y′ is the shortest subpath of θ satisfying
µ
(
x̃′y′
)

= µ(θ). Then, for any two points x, y belonging to the open subpath
x̃′y′, the path σxy introduced in Lemma 5.17 is well-defined and coincides
with x̃y.

Proof. Let us define

B :=
{

z ∈ x̃′y′ : lim inf
n→∞

η
({

σ ∈ BΘ

(
θ, 1/n

)
: z ∈ σ

})
η
(
BΘ

(
θ, 1/n

)) ≤ 1
2

}

the set of “bad” points of x̃′y′, i.e. those points in x̃′y′ such that it happens
that only few paths close to θ pass through them. Thanks to Corollary 5.14
we have µ(B) = 0. Indeed, if µ(B) > 0, then by definition there is a sequence
ρν → 0 and a constant C > 0 such that

µ

({
z ∈ x̃′y′ :

η
({

σ ∈ BΘ

(
θ, ρν

)
: z ∈ σ

})
η
(
BΘ

(
θ, ρν

)) >
1
2

})
≤ µ(θ) − C

for all ν ∈ N, which contradicts Corollary 5.14. Therefore, for H 1−a.e. point
z ∈ x̃′y′ ∩Σ, more than 50% (with respect to η) of the paths which are close
to θ pass through z. Take then two such points x and y: for any ρ > 0 the
measure η of the paths in BΘ

(
θ, ρ
)

passing through both x and y is strictly
positive. Then σxy is well-defined. We prove now σxy = x̃y. Indeed, if it were
not so, then one would have

dΘ

(
x̃y, σxy

)
=: ρ > 0

which leads to a contradiction, since by Lemma 5.17, η-a.e. path passing
through both x and y must follow σxy, which is impossible for the paths
belonging to BΘ

(
θ, ρ/2

)
, that are not η-negligible. Finally, since the points x

and y can be chosen arbitrarily close to x′ and y′ by the definition of x′ and
y′ and by the fact that µ(B) = 0, the thesis follows by Remark 5.18. ��



92 5 Topological Properties of Optimal Sets

5.3 Closedness of Optimal Sets

In this section we derive the closedness of an optimal set Σ by the concavity of
H. More precisely, we show that if H is concave (resp. strictly concave) then
there exists a closed optimal set Σ (resp. any optimal measure corresponds
to an essentially closed set). Moreover, we present an example showing that
the concavity of H is crucial for such results. Recall that we are assuming
that A(t) = t and B(t) = 0 for all t ∈ R

+.

Theorem 5.21. If H is concave, then there exists a closed optimal set Σ.
Moreover, if H is strictly concave then any optimal measure µ corresponds to
an essentially closed optimal set (in particular, every optimal set is essentially
closed).

Proof. Take an optimal measure µ and a t.p.m. η minimizing Cµ, and de-
fine, in accordance with Theorem 5.5, r > 0 to be the maximal constant
satisfying (5.2). By the maximality of r, for any ε > 0 the set

Σε :=
{
αη(x) ≥ r + ε

}

is such that µ − H 1 Σε > 0. Defining then µε := H 1 Σε and recall-
ing (5.8), we immediately deduce

Cµε
(η) ≤ Cµ(η) + ‖µ − µε‖

(
r + ε

)
. (5.20)

On the other hand, since H is concave we can evaluate

H
(
H 1(Σε)

)
= H
(
‖µ‖− (‖µ−µε‖)

)
≤ H(‖µ‖)−H ′

−(‖µ‖)‖µ−µε‖ , (5.21)

where H ′
−(s) is the left derivative of H at s ∈ R

+, which is well-defined
since H is concave. Since MK(µ) = Cµ(η) because η is an optimal t.p.m.,
F(µ) ≤ F(µε) because µ is an optimal measure, and MK(µε) ≤ Cµε

(η), we
deduce by (5.20) and (5.21) that

r + ε ≥ H ′
−
(
‖µ‖
)
.

Since ε is arbitrary, we obtain

H ′
−
(
‖µ‖
)
≤ r . (5.22)

Let us define now
Σ :=

{
αη(x) ≥ r

}
,

which is a closed set by the upper semicontinuity of αη; notice that Σ contains
the support of µ, but it may also be strictly bigger. Let also µ̄ := H 1 Σ; if
‖µ̄ − µ‖ = 0, then Σ is an optimal closed set and hence there is nothing to
prove. Otherwise, again by (5.8) we know that
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Cµ̄(η) = Cµ(η) −
∫

Σ

αη(x) d(µ̄ − µ)(x) .

By definition, αη ≥ r on spt (µ̄ − µ), so that the last estimate becomes

Cµ̄(η) ≤ Cµ(η) − r ‖µ̄ − µ‖ .

On the other hand, again by the concavity of H one has

H
(
H 1(Σ)

)
= H
(
‖µ̄‖
)
≤ H(‖µ‖) + H ′

−(‖µ‖) ‖µ̄ − µ‖ . (5.23)

Summarizing, we obtain

F(µ̄) ≤ Cµ̄(η) + H
(
H 1(Σ)

)
≤ Cµ(η) + H(‖µ‖) + (H ′

−(‖µ‖) − r) ‖µ̄ − µ‖
= F(µ) + (H ′

−(‖µ‖) − r) ‖µ̄ − µ‖ ≤ F(µ) ,

(5.24)

the last inequality being valid in view of (5.22). Since µ is optimal, we have
proved that also µ̄ = H 1 Σ is an optimal measure and then that Σ is a
closed optimal set: thus the existence of some closed optimal set is established.

Concerning the second part of the claim, if H is strictly concave and
‖µ̄−µ‖ > 0 then the first inequality in (5.23) becomes strict; as a consequence,
also the inequality (5.24) is strict and this gives a contradiction with the
optimality of µ. Hence, we may conclude that µ = µ̄ and therefore a generic
optimal measure corresponds to a closed optimal set. ��

Recall that Theorem 4.26 already ensures that all the optimal measures
are represented by sets if D(·, b) is strictly concave. The above Theorem 5.21
says that in the case A(t) = t, B(t) = 0, in which D(a, b) = a is not strictly
concave, it is still true that all the optimal measures are sets whenever H is
strictly concave.

The following example shows that the hypothesis of concavity of H in
Theorem 5.21 is essential.

Example 5.22. Let
Ω := [−2, 2] × [−1, 1] ⊆ R

2 ,

and let an < bn be such that all the open segments (an, bn) are disjoint, and
their union D := ∪j(aj , bj) contains the set of all the rational numbers in
[−1, 1] and has length 1. Define now

f+ :=
∑
n∈N

2−nδ(an,0) , f− :=
∑
n∈N

2−nδ(bn,0) ,

let θn be the line segment connecting (an, 0) to (bn, 0), and let η be any t.p.m.
related to f+ and f−. Since for any n one has
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f+([−2, an]
)

=
∑

{j : aj≤an}
2−j =

∑
{j :aj<bn}

2−j >
∑

{j : bj<an}
2−j

= f−([−2, an]
)
,

there must be some θ ∈ spt η connecting some ai ≤ an to some bj ≥ bn. This
implies that the projection on the first axis of the set

Sη =
⋃

θ∈spt η

θ ⊆ R
2

contains the whole segment [an, bn]. Let now

η̄ :=
∑
n∈N

2−n δθn
,

which is clearly a t.p.m. related to f+ and f−, let Σ := ∪n∈Nθn and define
the function H by the relationship

H(l) :=
{

0, l ≤ 1 ,
∞, l > 1 .

Obviously, H is not concave. Notice that CΣ(η̄) = 0 and that H(H 1(Σ)) = 0,
so that F(Σ) = 0. Consider now any µ ≤ H 1 such that F(µ) = 0. One has
then ‖µ‖ ≤ 1 and Cµ(η) = 0 for some t.p.m. η. This implies µ(θ) ≥ H 1(θ)
for η-a.e. θ ∈ Θ, and hence, minding the semicontinuity of µ and H 1 over
Θ, actually for all θ ∈ spt η. Therefore, one has

µ θ = H 1 θ , for all θ ∈ spt η

(because µ ≤ H 1). Since for any n there is a path θn ∈ spt η connecting
some ai ≤ an with some bj ≥ bn, then calling π the projection on the first
axis one has

1 ≥ ‖µ‖ ≥ µ(∪nθn) = H 1(∪nθn) ≥ H 1(π(∪nθn)
)
≥ H 1( ∪n [an, bn]

)
=
∑

n

|bn − an| = 1 ,

from which we derive that µ = H 1 Σ. Summarizing, F(µ) > 0 for any
µ �= H 1 Σ. This shows that H 1 Σ is the unique optimal measure, so
that Σ is the unique (up to a an H 1-negligible set) optimal set; however,
this set is not essentially closed: indeed, it is an open set of length 1 dense in
[−1, 1].
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5.4 Number of Connected Components of Optimal Sets

As already pointed out, it would be interesting to understand if there is an
optimal set Σ having finitely many, or at least countably many, connected
components. We however can immediately notice that this is not always the
case, according to the following counterexample similar to Example 5.22.

Example 5.23. Let Ω = [−2, 2] × [−1, 1] ⊆ R
2. Consider now the following

construction of a Cantor-type set in [0, 1] having strictly positive length.
Given a sequence {pn}n∈N with 0 < pn < 1/2 for any n, we first divide [0, 1]
in the three segments

[α1,1, β1,1] , [β1,1, α1,2] , [α1,2, β1,2]

having length p1, 1 − 2p1 and p1 respectively, defining

α1,1 := 0 , β1,1 := p1, α1,2 := 1 − p1, β1,2 := 1 .

We continue by induction, defining αn,m and βn,m for any n ∈ N and any
1 ≤ m ≤ 2n in such a way that any segment [αn,m, βn,m] is divided in the
three segments

[αn+1,2m−1, βn+1,2m−1] , [βn+1,2m−1, αn+1,2m] , [αn+1,2m, βn+1,2m] ,

the lengths of which are in the ratio pn+1, 1−2pn+1 and pn+1 respectively. We
define then Kn as the closed set given by the union of the 2n closed segments
[αn,m, βn,m] and K as the intersection of the sets Kn. Notice that the classical
Cantor set corresponds to the choice pn = 1/3 for any n. Similarly to the
Cantor set, K is a closed set containing more than countably many points
and is totally disconnected, that is, all the connected components of K reduce
to a single point. Moreover,

H 1(K) = lim
n→∞

H 1(Kn)

and
H 1(Kn+1) = 2pn+1H

1(Kn) ,

so that a suitable choice of the coefficients pn allows H 1(K) to be any number
in [0, 1). We consider then a sequence {pn} such that H 1(K) = 1/2. Now,
we define f+ and f− as follows:

f+ :=
∑
n∈N

∑
1≤m≤2n

4−nδ(αn,m,0) , f− :=
∑
n∈N

∑
1≤m≤2n

4−nδ(βn,m,0) .

It is easily noticed that f+ and f− are two probability measures and that,
setting θn,m to be the segment [αn,m, βn,m], the measure
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η :=
∑
n∈N

∑
1≤m≤2n

4−nδθn,m

is a t.p.m. related to f+ and f−. We set now

H(s) :=
{

0 for 0 ≤ s ≤ 1/2 ,
∞ for s > 1/2 .

It is immediate to notice that any optimal measure µ must be supported in
[0, 1] × {0}. Moreover, arguing as in Example 5.22, one has that given any
measure µ supported in [0, 1]×{0}, all the paths θn,m ∈ spt η′ for every t.p.m.
η′, and hence, the t.p.m. η defined above is optimal for the cost Cµ. It is also
clear that the function αη achieves its maximum exactly in the set K. Hence,
the measure µ := H 1

K is the unique optimal measure, by Theorem 5.5
and by the choice of H. Therefore, K is an optimal set which has more than
countably many connected components, since it is totally disconnected and
uncountable. The optimal sets are exactly those coinciding with K up to
H 1−negligible sets; it is easily noticed that any such set K ′ is still totally
disconnected.

Remark 5.24. By a more careful construction, replacing Dirac masses in the
above example by smooth functions with “small” supports, it is possible to
obtain a counterexample as before with absolutely continuous measures f±

with densities belonging even to C∞.

We give now conditions for the existence of an optimal set having finite
or countably many connected components: as in Theorem 5.21, a concavity
hypothesis on H will be essential. First, we prove the following a posteriori
result.

Lemma 5.25. Let µ be an optimal measure, η an ordered optimal t.p.m. for
µ, and assume that the constant r satisfying (5.2) is not unique. Then,

µ = H 1 Σ

for some closed set Σ such that Σ∩θ has finitely many connected components
for all θ ∈ spt η.

Proof. First of all we stress that, since the constant r in (5.2) is not unique,
then µ corresponds to a set: indeed, (5.2) is satisfied by all r1 < r < r2, so
that

H 1({αη(x) = r
})

= 0

for any such r and thus µ = H 1 Σ with Σ =
{
αη(x) ≥ r

}
. Notice that Σ

is closed since, by Lemma 5.4, αη is u.s.c. .
Take now a single path θ ∈ spt η: we define σ as the shortest subpath of θ

such that
σ ∩ Σ = θ ∩ Σ .
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We claim first that the function

αη ◦ σ : t ∈ [0, 1] �→ αη(σ(t))

has bounded variation. This amounts to proving that the weak derivative
(αη ◦ σ)′ is a finite measure, where the derivative (αη ◦ σ)′ is intended as the
weak limit of

αη(σ(s + ε)) − αη(σ(s))
ε

as ε → 0. Define for this purpose Θ′ to be the set of all α ∈ spt η such that
µ(α∩σ) > 0. By Lemma 5.20 we deduce that, for η-a.e. α ∈ Θ′, defining p(α)
and q(α) to be the first and the last point of α intersecting σ respectively, the
subpath p̃q of α connecting p(α) and q(α) is entirely contained in σ. In other
words, there are almost no paths entering in σ, then exiting, then entering
again, according to what we called “solidarity” in Section 5.2. As an easy
consequence, for any x and y in σ,

αη(y) − αη(x) = η
({

α ∈ Θ′ : p(α) ∈ x̃y
})

− η
({

α ∈ Θ′ : q(α) ∈ x̃y
})

,

that is,
α′

η = p#η − q#η .

Hence, (αη ◦ σ)′ is a finite (signed) measure and the claim is shown.
Now, take r1 > r2 such that (5.2) is satisfied both for r1 and for r2, and

take a point x ∈ ∂
(
Σ ∩ σ

)
where ∂ stands for the boundary relative to σ.

Since x belongs to the relative boundary of Σ in σ, then for any ε > 0 there
is a point zε ∈ σ ∩ Σ and a point wε ∈ σ \ Σ having distance less than ε
from x. Using (5.2) with the points zε and wε, and the constants r1 and r2
respectively, we notice that αη(zε) ≥ r1 and that αη(wε) ≤ r2. Since ε is
arbitrary, it follows that αη has, at the point x, a jump of at least r1 − r2,
i.e., ∣∣(αη ◦ σ)′({x})

∣∣ ≥ r1 − r2 .

Since, as proved above, αη ◦ σ is a function of bounded variation, we have
that ∂Σ contains only finitely many points. Therefore, Σ∩σ has only a finite
number of connected components and the proof is concluded. ��

Corollary 5.26. If µ is an optimal measure, η is an ordered optimal t.p.m.
for µ, and the constant r satisfying (5.2) is not unique, then µ = H 1 Σ
for some closed set Σ having countably many connected components.

Proof. By the non-uniqueness assumption, (5.2) holds with some r > 0.
Hence, by Lemma 5.7, µ is concentrated in the union of at most countably
many geodesics, which are Lipschitz curves of uniformly bounded length.
Therefore, Σ is contained in the (at most countable) union of θi, where each
θi is contained in spt η and H 1(Σ ∩ θi) > 0 for any i. The conclusion now
follows directly from Lemma 5.25. ��
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Remark 5.27. Arguing as in Corollary 5.26, we can deduce that Σ has a finite
number of connected components, instead of a countable number, whenever
we know that Σ is contained in finitely many geodesics with respect to dΣ .
For instance, this is the case when the conditions of Theorem 6.1 hold: in this
case Σ is contained in finitely many geodesics, and hence the non-uniqueness
of r allows us to obtain that Σ has finitely many connected components.

We prove now a result ensuring the existence of at most countably many
connected components of an optimal set Σ whenever H is concave.

Theorem 5.28. If H is concave, then there exists an optimal set Σ having
at most countably many connected components. Moreover, if H is strictly
concave, then any optimal measure µ corresponds to an optimal set having at
most countably many connected components.

Proof. Consider an optimal measure µ, an ordered optimal t.p.m. η for Cµ

and a constant r satisfying (5.2). We show the first part of the claim consid-
ering separately three possible cases.
Case I. H ′

+(‖µ‖) < r .
Let us write

H ′
+(‖µ‖) = r − ε

with some ε > 0: we claim that the measure

µ̃ := H 1 {x ∈ Ω : r − ε < αη(x)}

coincides with µ. Indeed, clearly µ̃ ≥ µ. Moreover, if

‖µ̃ − µ‖ = δ > 0 ,

then by the concavity of H one has

H(‖µ̃‖) − H(‖µ‖) ≤ (r − ε)δ ,

while on the other hand, by (5.8) we deduce

Cµ̃(η) < Cµ(η) − (r − ε)δ .

Summarizing, we have F(µ̃) < F(µ) which contradicts the optimality of µ.
Therefore, we obtain that µ̃ = µ, but then any constant between r − ε and r
suits for (5.2). Thus Corollary 5.26 ensures that µ corresponds to a set with
countably many connected components.
Case II. H ′

−(‖µ‖) > r .
This case is analogous to the previous one: we write

H ′
−(‖µ‖) = r + ε
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for some ε > 0 and set

µ̃ := H 1 {x ∈ Σ : r + ε < αη(x)} .

This time µ̃ ≤ µ, and exactly as before we find that µ̃ = µ since otherwise
µ̃ would be strictly better than the optimal measure µ. Again, the constant
suitable for (5.2) is not unique and Corollary 5.26 allows to conclude.
Case III. H ′(‖µ‖) = r .
In this last case, we can assume that µ = H 1

Σ for some Borel set Σ thanks
to Theorem 4.26. Noticing that r > 0 since by hypothesis H is concave and
unbounded, we may argue as in Corollary 5.26 and deduce that

Σ ⊆
⋃

i
θi

for countably many geodesics θi ∈ spt η. Denote by σi the smallest subpath
of θi such that

σi ∩ Σ = θi ∩ Σ ,

and write Σ◦
i to denote the interior part of Σ ∩ σi relative to σi. Define then

the “boundary” ∂Σ of Σ to be the union of the boundaries Σ ∩ σi relative
to σi. Take then a point x ∈ ∂Σ with αη(x) �= r: arguing as at the end of
the proof of Lemma 5.25, we deduce that it is a discontinuity point for αη.
But since αη is a function of bounded variation on each σi, we know that it
can have at most countably many discontinuity points, and hence we deduce
that αη(x) = r for H 1−a.e. point of ∂Σ. Considering then Σ◦ := Σ \ ∂Σ

and writing δ := H 1(Σ ∩ ∂Σ), one has

H(H 1(Σ◦)) ≤ H(H 1(Σ)) − rδ

again by the concavity of H. Moreover

CΣ◦(η) = CΣ(η) + rδ ,

and therefore we find F(Σ◦) ≤ F(Σ). Hence, Σ◦ is an optimal set. But for
each i the set Σ◦

i is open relative to θi and, since Σ◦ =
⋃

i Σ◦
i , then Σ◦ is a

countable union of open subpaths of the curves θi. Therefore Σ◦ is an optimal
set having at most countably many connected components.

We have then shown the first part of the Theorem. Consider now what
happens if H is strictly concave: we need to prove that in this case the
generic optimal measure µ corresponds to a set, and that this set has at most
countably many connected components. If one of the two cases I or II above
occurs, we have already shown that µ corresponds to a set with countably
many connected components without any need of the strict concavity of H,
hence there is nothing to prove. We need therefore to consider what happens
in the case III. We affirm what follows:
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If H is strictly concave and the case III above occurs, then

H 1({αη(x) = r}
)

= 0 .

Notice that this claim will give the thesis: indeed, if

H 1(
{
αη(x) = r

}
) = 0

then {
αη(x) ≥ r

}
=
{
αη(x) > r

}

in the H 1−sense, so by (5.2) we deduce that µ = H 1 Σ with

Σ := {αη(x) ≥ r} .

In particular, since we proved above that αη(x) = r for all but countably
many x ∈ ∂Σ, one has

{
αη(x) > r

}
⊆ Σ◦ ⊆

{
αη(x) ≥ r

}
,

where the first inclusion is true up to a countable (hence H 1-negligible) set.
Thus, one has

Σ =
{
αη(x) ≥ r

}
=
{
αη(x) > r

}
= Σ◦

where the equalities are understood up to an H 1-negligible set, and hence
µ = H 1 Σ◦ which gives the thesis.

We are then reduced to prove the above claim. For this purpose, we assume

H 1(
{
αη(x) = r

}
) > 0

and we find a contradiction in the following two cases, at least one of which
has to occur.
Case III.A. ‖H 1 {αη(x) = r} ∧ µ‖ = δ > 0 .
In this case, define

µ̃ := µ −
(
H 1 {αη(x) = r} ∧ µ

)
.

One has that

Cµ̃(η) = Cµ(η) + rδ, and H(‖µ̃‖) < H(‖µ‖) − rδ ,

because H is strictly concave and δ > 0. This implies F(µ̃) < F(µ) which is
a contradiction.
Case III.B. ‖H 1 {αη(x) = r} − µ {αη(x) = r}‖ = δ > 0 .
In this case, define

µ̃ := H 1 {αη(x) ≥ r} .
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One has that

Cµ̃(η) = Cµ(η) − rδ, and H(‖µ̃‖) < H(‖µ‖) + rδ ,

because H is strictly concave and δ > 0. This implies F(µ̃) < F(µ) which is
a contradiction. ��
Remark 5.29. In the case when H is strictly concave, applying to an arbitrary
optimal measure µ both Theorems 5.21 and 5.28 one finds that µ = H 1 Σ
with Σ closed and µ = H 1

Σ′ with Σ′ having countably many connected
components. Clearly, one has then

H 1(Σ∆Σ′) = 0 ,

but Σ and Σ′ could be different. Indeed, consider the classical Cantor “middle
third” set

C := [0, 1] \
∞⋃

i=1

(ai, bi) ⊆ [0, 1] ,

where (ai, bi) are the “middle third” intervals, and set

S :=
∞⋃

i=1

(ai, ai + 8−i) ∪ (bi − 8−i, bi) .

Then

S̄ = S ∪
∞⋃

i=1

{ai + 8−i, bi − 8−i} ∪ C ,

and hence, H 1(S̄) = H 1(S). Further, every singleton {x} with

x ∈ C \
⋃

i
{ai, bi}

is a connected component of S̄, and therefore, S has more than countably
many connected components. Now, in a way similar to Example 5.30 below,
one can find two measures f+ concentrated on the set

∞⋃
i=1

{ai} × {0}

and f− concentrated on the set

∞⋃
i=1

{bi} × {0} ,

and a function H, such that the only optimal measure is given by

µ = H 1 Σ = H 1 Σ̄ ,
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where Σ := S × {0}. On the other hand, Σ has countably many connected
components but is not closed, and its closure Σ̄ = S̄ × {0} has more than
countably many connected components.

The following example similar to Examples 5.22 and 5.23 shows that the
result of the above Theorem 5.28 is optimal in the sense that in some situ-
ations no optimal set has finitely many connected components, even if the
function H is strictly concave.

Example 5.30. Let Ω ⊆ R
2 be a domain containing the segment [0, 1] × {0},

and define f+ and f− as follows:

f+ :=
1
2
δ(0,0) +

∑
n≥1

1
2n+1 δ(2/3n,0) ,

f− :=
1
2
δ(1,0) +

∑
n≥1

1
2n+2

(
δ(1/3n,0) + δ(3/3n,0)

)
.

We will choose later a strictly concave function H such that H ′(s) > 0 for all
s > 0. As in the previous examples it is easy to deduce that all the optimal
measures must be supported in [0, 1]×{0}. Moreover, there is a t.p.m. which
is optimal for all measures supported in [0, 1]×{0}, and hence for all optimal
measures. Such a t.p.m. is given by the formula

η =
1
4

δ[0,1] +
∑
n≥1

1
2n+2

(
δ[2·3−n,3·3−n] + δ[2·3−n,1] + δ[0,3−n]

)
,

where δ[p,q] is the Dirac mass concentrated on the element of Θ given by the
segment connecting (p, 0) to (q, 0) (note that for every measure µ supported in
[0, 1]×{0} there must be an optimal t.p.m. which moves f+ along [0, 1]×{0}
from left to right, and that η is the unique t.p.m. with the latter property).
One can then write down the function αη, which is given by αη(x, y) = 0 for
any y �= 0, and

αη(x, 0) =

⎧⎪⎨
⎪⎩

1
2
− 1

2n+2 for 1/3n ≤ x ≤ 2/3n ,

1
2

+
1

2n+2 for 2/3n ≤ x ≤ 3/3n .
(5.25)

Keeping in mind Remark 5.9, and in particular the formula (5.9) for β, we
deduce that

β′(s) =

⎧⎪⎨
⎪⎩

1
2

+
1

2n+2 for 1−1/3n−1

2 ≤ s ≤ 1−1/3n

2 ,

1
2
− 1

2n+2 for 1+1/3n

2 ≤ s ≤ 1+1/3n−1

2 .
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Notice that β is concave according to Remark 5.9. We can now define H
setting H(0) := 0 and H ′(s) equal to
⎧⎪⎪⎨
⎪⎪⎩

1
2

+
1

2n+2 +
3n

2n+2

(1 − 1/3n

2
− x
)

for 1 − 1/3n−1

2
≤ s ≤ 1 − 1/3n

2
,

1
2
− 1

2n+3 − 3n

2n+3

(
x − 1 + 1/3n

2
)

for 1 + 1/3n

2
≤ s ≤ 1 + 1/3n−1

2
.

According to the definition above, H is a strictly concave function. Moreover,
one has H ′(s) < β′(s) for all 0 ≤ s < 1/2, while H ′(s) > β′(s) for all s > 1/2.
Therefore, the function s �→ H(s) − β(s) has a unique minimum in s = 1/2.
Recalling Remark 5.9 and the fact that η is an optimal t.p.m. with respect
to any optimal measure µ, we derive that the optimal measures are exactly
the elements of M1/2. Finally, formula (5.25) for αη ensures that the unique
element of M1/2 is µ = H 1 Σ, where

Σ :=
(⋃

n∈N

[ 2
3n

,
3
3n

])
× {0} ,

which clearly has countably many connected components. It is worth noting
that Σ := Σ ∪ {0} is still an optimal set having countably many connected
components and is also closed. However, there is no optimal set with only a
finite number of connected components, since for every Borel set

Σ′ ⊆ [0, 1] × {0}

with such property one has H 1(Σ∆Σ′) > 0.



Chapter 6

Optimal Sets and Geodesics
in the Two-Dimensional Case

This chapter is dedicated to the analysis of the two-dimensional case under
the assumptions A ≡ Id, B ≡ 0 and with no extra requirements on the func-
tion H. We will prove that in this case, if f+, f− ∈ L∞(Ω) (i.e. the measures
f+ and f− are absolutely continuous with respect to the Lebesgue measure on
R

2 and their densities, that we still denote by f+ and f−, belong to L∞(Ω)),
then every optimal set Σ is contained in a finite number of geodesics with
respect to dΣ . Note that this result cannot be considered an improvement
of Theorem 5.28, since we will not show Σ to have finitely many connected
components, but only to be contained in a finite union of connected paths.
In fact, in Example 5.23 we have shown a situation in which the optimal set
Σ is contained in the single geodesic [0, 1]× {0}, but is totally disconnected.

Theorem 6.1. If A(t) = t, B(t) = 0, Ω ⊆ R
2 and f± ∈ L∞(Ω), then any

optimal set Σ is contained in a finite number of Lipschitz paths of bounded
lengths, which are geodesics with respect to Σ. More precisely, there exists
an ordered optimal t.p.m. η such that Σ is contained in finitely many paths
θ ∈ spt η.

To prove this result, we first fix an optimal set Σ and denote µ := H 1 Σ.
Then, given any optimal ordered t.p.m. η ∈ M+

µ,2(Θ), we recall that by
Remark 5.6 there is a maximal constant r > 0 satisfying (5.2), so that one
has in particular

{
αη(x) ≥ r

}
⊆ Σ ⊆

{
αη(x) > r

}
.

Our first goal is to show the following result.

Proposition 6.2. With the above definitions one has r > 0.

This is a crucial step to obtain Theorem 6.1. The proof of Proposition 6.2
is quite involved; we dedicate the whole next section to show that the as-
sumption r = 0 leads to a contradiction.

G. Buttazzo et al., Optimal Urban Networks via Mass Transportation, 105
Lecture Notes in Mathematics 1961, DOI: 10.1007/978-3-540-85799-0 6,
c© Springer-Verlag Berlin Heidelberg 2009
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6.1 Preliminary Constructions

In this section we show that the hypothesis r = 0 leads to a contradiction.
To do that, we perform a careful analysis of the consequences of this case.
We stress that all the results of this section strongly use the (contradictory)
assumption r = 0, hence they may not hold true in general. Recall that
throughout this section we assume fixed an optimal t.p.m. η ∈ M+

µ,2(Θ), so
that MK(Σ) = CΣ(η).

Lemma 6.3. Under the (contradictory) assumption r = 0, given a path σ ∈
spt η such that µ(σ) > 0, and defining x′ and y′ as in Lemma 5.20, the whole
open arc x̃′y′ is contained in Σ.

Proof. Recalling the proof of Lemma 5.20, we have that in particular

αη(z) > 0 ∀ z ∈ x̃′y′ .

Indeed, for any such z, an η−positive quantity of paths close to σ passes
through z. By definition of r and since r = 0, it follows that

z ∈ Σ ∀ z ∈ x̃′y′ .

So the claim follows. ��

Remark 6.4. We notice that Σ is contained in countably many paths belong-
ing to spt η: this follows by Remark 5.8 since in the hypotheses of Theorem 6.1
condition (4.38) holds. Therefore, by Lemma 6.3 we infer that Σ is made by
countably many connected components {Σi}i∈N; in particular, any path in
spt η may intersect at most one of the sets Σi.

It is well-known that H 1(Σ) = H 1(Σ) whenever Σ is a connected set.
Hence, denoting by Σi, i = 1, 2, . . . the connected components of Σ, we may
consider each Σi to be closed. Define now

Θi := {θ ∈ spt η : θ ∩ Σi �= ∅}, i = 1, 2, . . . ,

Θ0 := spt η \ ∪iΘi

(observe that all Θi, i �= 0, are closed since so are assumed Σi). We obtain
from Lemma 6.3 that all Θi are pairwise disjoint, so that one can write

η =
∞∑

i=0

ηi, where ηi := η Θi .

Note that each path θ ∈ spt η0 is a line segment connecting θ(0) to θ(1) (since
so is every θ ∈ Θ0, because such a path by definition does not touch Σ and
is a geodesic). On the other hand, every path θ ∈ spt ηi is made by three
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parts: the first one is a line segment connecting θ(0) to the point s(θ) ∈ Σi

where θ touches Σ for the first time, the second part is a path inside Σi,
and the third is a line segment between a point of Σ and θ(1). Notice that
the function s : spt ηi → Σi is well-defined and measurable. It is also worth
observing that s(θ) is one of the points of Σi of least distance from θ(0). We
can then define a sort of “entry measure” by setting

ψ := s#ηi ∈ M+(Σi) .

Note that ψ measures the mass entering inside Σi, and the above definition
makes sense only thanks to the (contradictory) assumption r = 0: in fact, in
the above construction, we used in a crucial way Lemma 6.3 which implies
that each path of spt η may intersect only one of the connected components
Σi of Σ, while this property may be not true if r > 0.

Lemma 6.5. The measure ψ is non-atomic.

Proof. Suppose by contradiction that there exists a z ∈ Σi such that

ψ({z}) > 0 .

Since r = 0, we can take Σ′ ⊆ Σ such that H 1(Σ \ Σ′) = ε and

αη(x) <
ψ({z})

2(2π + 1)
for any x ∈ Σ \ Σ′ (6.1)

(notice that we do not require Σ \ Σ′ to be contained in Σi). We define
now the set ∆, drawn in thick lines in Figure 6.1, as the union of the circle
centered in z of radius ε/(2π + 1) and a radial segment connecting the circle
to z. Then H 1(∆) = ε, so that Σ′′ := Σ′ ∪ ∆ has the same length as Σ.
We introduce now a new t.p.m. η̃ := ρ#η with the following Borel function
ρ : Θ → Θ:

• if θ ∈ spt ηi, s(θ) = z and

|θ(0) − z| ≥ ε

2π + 1
,

∆

z

Σi

Fig. 6.1 Definition of ∆ in Lemma 6.5
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then ρ(θ) is the path following θ until it reaches the circle, then moving
inside ∆ ⊆ Σ′′ to reach the point z, and finally following again θ from z
to θ(1);

• otherwise, ρ(θ) := θ.

Let us compute now CΣ′′(η̃): for any path θ such that ρ(θ) = θ one has

δΣ′′
(
ρ(θ)
)
≤ δΣ′(θ) ,

while if θ belongs to the set

Γ := {θ : ρ(θ) �= θ} ,

then
δΣ′′
(
ρ(θ)
)

= δΣ′(θ) − ε

2π + 1
.

To verify the latter equality, just recall that each θ ∈ Γ between θ(0) and
s(θ) = z is a line segment. We have

CΣ′′(η̃) =
∫

Θ

δΣ′′(θ) dρ#η(θ) =
∫

Θ

δΣ′′
(
ρ(θ)
)
dη(θ)

≤
∫

Θ

δΣ′(θ) dη(θ) − ε

2π + 1
η(Γ )

= CΣ′(η) − ε

2π + 1
η(Γ ) .

(6.2)

Now we compare CΣ(η) and CΣ′(η). By definition of Σ′ and recalling (5.8)
and (6.1), we obtain

CΣ′(η) = C∅(η) −
∫

Σ′
αη(x) dH 1(x)

= C∅(η) −
∫

Σ

αη(x) dH 1(x) +
∫

Σ\Σ′
αη(x) dH 1(x)

< CΣ(η) +
ψ({z})

2(2π + 1)
ε .

(6.3)

Finally, we need to estimate η(Γ ). By definition, we have

η(Γ ) ≥ ψ({z}) − f+
(
B
(
z, ε/(2π + 1)

))
,

and hence, since f+({z}) = 0, we can choose ε small enough in such a way
that

η(Γ ) >
ψ(z)

2
.

This, together with (6.2), (6.3) and the fact that H 1(Σ) = H 1(Σ′′), gives
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F(Σ′′) ≤ CΣ′′(η̃) + H
(
H 1(Σ′′)

)
≤ CΣ′(η) − ε

2π + 1
η(Γ ) + H

(
H 1(Σ)

)

< CΣ(η) +
ψ({z})

2(2π + 1)
ε − ε

2π + 1
η(Γ ) + H

(
H 1(Σ)

)

< CΣ(η) + H
(
H 1(Σ)

)
= F(Σ) ,

which leads to a contradiction since µ = H 1 Σ was supposed to be an
optimal measure. ��

Remark 6.6. Notice that the proof of the above lemma did not use the hy-
pothesis that the measures f+, f− belong to L∞, but only that they be
non-atomic.

We fix now arbitrarily two orthogonal axes ê1 and ê2 in R
2. Let k: R

2 → Σi

stand for the Borel projection map onto Σi (the latter is well-known to be
defined for L 2-a.e., hence for f±-a.e. x ∈ R

2, namely, for all x ∈ R
2, for

which the distance function x �→ dist (x,Σi) is not differentiable). Let x ∈ Σi

be such that the set k−1(x) belongs to some line l and is not reduced to a
point. Let then

ω(x) ∈ [−π/2, π/2)

stand for the angle between l and ê1. We show now the following assertion.

Lemma 6.7. The entry angle ω: Σi → [−π/2, π/2) coincides ψ−a.e. with a
Borel function.

Proof. Consider a point y ∈ Σi: the set K(y) of all the points x ∈ Ω such
that

dist(x,Σi) = |x − y|
is convex, since it is the intersection of the half-planes

{
x ∈ Ω : |x − y| ≤ |x − z|

}

with z ∈ Σi. By construction, for any point x in the interior U(y) of K(y),
the point y is the unique point of Σi where dist(x,Σi) is attained; therefore,
all the sets U(y) are disjoint. Finally, for any y ∈ Σi, we have:

• either K(y) is a segment of nonzero length, and then ω(y) is well-defined;
• or U(y) has a strictly positive Lebesgue measure, which may happen for

at most countably many points y (and hence, on a ψ-negligible set by
Lemma 6.5);

• or K(y) reduces to a point, which happens only for such points y ∈ Σi,
that if there is some θ ∈ spt η, s(θ) = y, then θ(0) = y (recall that θ is a
line segment between θ(0) and s(θ)).
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Therefore, the set ∆ ⊆ Σi of the latter points has

ψ(∆) = f+(∆) ≤ f+(Σi) = 0

since f+ � L 2. The Borel property for ω easily follows by taking a Borel
selection S : Σi → Θi such that

s(S(y)) = y for ψ − a.e. y ∈ Σi

and noticing that

cos ω(y) =
〈y −

(
S(y)
)
(0), e1〉∣∣y −

(
S(y)
)
(0)
∣∣

for ψ−a.e. y. ��

In the sequel we will write ω(θ) instead of ω(s(θ)). By the above lemma,
in this way ω is defined for ηi-a.e. θ ∈ Θ. Summarizing, we know now that
for ψ-a.e. point z of Σi there is a line passing through z and containing
θ(0) for each path θ ∈ spt ηi such that s(θ) = z. The angle between the
oriented segment

−−−−−→
θ(0)s(θ) and the direction ê1, which we further will call

“oriented entry angle”, must be either equal to ω(θ) or to ω(θ) + π. We
will then say that a path θ ∈ spt ηi “enters in Σi from the left” (resp. from
the right), if the oriented entry angle associated to θ belongs to [π/2, 3/2π)
(resp. to [−π/2, π/2)). We will then write ηi = ηl + ηr where η−a.e. path in
the support of ηl (resp. ηr) enters from the left (resp. from the right). As a
consequence, we can write ψ = ψl + ψr, where

ψl := s#ηl , ψr := s#ηr .

We prove now the crucial property that ψl = ψr, that is for ψ−a.e. point of
Σi the mass entering from the left and the mass entering from the right are
equal.

Lemma 6.8. One has ψl = ψr.

Proof. Fix an arbitrary injective path τ ⊆ Σi and any point x ∈ τ . Letting t̄
be the instant such that τ(t̄) = x and considering τ as parametrized at speed
one (that is, |τ ′| ≡ 1, at least in a neighborhood of t̄ ), we denote by xσ the
point τ(t̄ + σ), so that

H 1(x̃xσ

)
= |σ| .

Choose now ε > 0, N = N(ε) ∈ N and δ = δ(ε,N) > 0 and change Σi as
follows. First of all, we cut the subpath x̃−εxε of τ joining x−ε and xε and
shift it leftwards (that is, in the direction of −ê1) by δ. Since in this way τ is
divided in three parts, to keep the connectedness of τ we add two horizontal
segments of length δ. Moreover, we notice that in this way Σi can become
disconnected because the affluents entering in τ between x−ε and xε (a priori,
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Σ Σ′

Fig. 6.2 Construction of Σ′ from Σ in Lemma 6.8

there could be countably many of these affluents) may remain disconnected
after this change. Hence, we choose N − 2 of these affluents, namely those
carrying more mass, and we connect them too with the new path τ , by means
of N − 2 horizontal segments of length δ. In this way, starting from Σ we
have built a new set Σ′ satisfying

H 1(
Σ′) ≤ H 1(

Σ
)

+ Nδ .

Figure 6.2 illustrates the above construction (the N segments added in Σ′ are
drawn darker than the rest of the figure). We want to compare now MK

(
Σ′)

to MK
(
Σ
)
. To do that we use an argument similar to the one of Lemma 6.5,

but a bit more involved: we choose an optimal t.p.m. η ∈ M+
µ,2(Θ), so that

MK(Σ) = CΣ(η)

and we construct the new t.p.m. η′ = ρ#η, where the map ρ: spt η → Θ is
defined as follows. First of all, if θ does not intersect the arc x̃−εxε, then
simply ρ(θ) = θ, and hence

δΣ′
(
ρ(θ)
)
≤ δΣ

(
θ
)
. (6.4)

Otherwise, we decompose θ = θ1 ·θ2 ·θ3, where θ1 is the part of θ between θ(0)
and the first point of contact with the arc x̃−εxε, θ2 is the part of θ between
its first and last point of contact with the arc x̃−εxε, and, finally, θ3 is the
part of θ between its last point of contact with the arc x̃−εxε and θ(1). We
write then ρ(θ) := θ̃1 · θ̃2 · θ̃3, where the paths θ̃i are defined as follows. The
path θ̃2 is the leftwards shift by δ of the part of the arc x̃−εxε between θ2(0)
and θ2(1), so that

δΣ′
(
θ̃2
)

= δΣ

(
θ2
)

= 0 . (6.5)

Concerning θ1, there are four possibilities.



112 6 Optimal Sets and Geodesics in the Two-Dimensional Case

(i) If θ enters in x̃−εxε from x−ε or xε, then θ̃1 is defined as the composition
of θ1 with a horizontal segment of length δ connecting θ̃1 to θ̃2, and
therefore

δΣ′
(
θ̃1
)

= δΣ

(
θ1
)
. (6.6)

(ii) If θ enters in x̃−εxε from one of the biggest N − 2 affluents, then we let
θ̃1 to be again just the composition of θ1 with a horizontal segment of
length δ, and hence by construction of Σ′ one still has

δΣ′
(
θ̃1
)

= δΣ

(
θ1
)
. (6.7)

(iii) If θ enters in x̃−εxε from an affluent which is not among the biggest
N − 2, then we let θ̃1 to be still θ1 composed with a horizontal segment
of length δ connecting θ1 to θ̃2, but this time the segment we added is
not inside Σ′, and therefore

δΣ′
(
θ̃1
)
≤ δΣ

(
θ1
)

+ δ . (6.8)

(iv) If θ enters in Σi directly in the open arc x̃−εxε, then θ1 is a line segment
with endpoints θ(0) and s(θ) = θ2(0). In this case we simply let θ̃1 be the
line segment between θ(0) and θ̃2(0). By a straightforward computation
we can compare the lengths of θ1 and θ̃1 by means of the entry angle ω
(recall that the latter is defined in s(θ) for η-a.e. θ): in fact,

δΣ′
(
θ̃1
)
≤ θ(0)θ̃2(0) = θ(0)θ2(0) ± δ cos ω

(
s(θ)
)

+ δoθ(1)

= δΣ

(
θ1
)
± δ cos ω

(
s(θ)
)

+ δoθ(1) ,
(6.9)

where the sign is “−” if θ enters from the left and “+” if θ enters from
the right, and where for any θ the quantity oθ(1) vanishes as δ → 0 (not
necessarily uniformly in θ) and |oθ(1)| ≤ 1.

The way to define θ̃3 is completely symmetric.
Recalling the definition of ρ(θ) and the estimates (6.4)–(6.9), one can im-

mediately notice that

MK
(
Σ′) ≤ CΣ′(η′)

≤ CΣ(η) + δ
(
MN −

∫
x̃−εxε

cos ω(x)d(ψl − ψr)(x) +
∫

Θiv

oθ(1) dη
)

= MK
(
Σ
)

+ δ
(
MN −

∫
x̃−εxε

cos ω(x)d(ψl − ψr)(x) +
∫

Θiv

oθ(1) dη
)

.

Here MN stands for the mass of the paths entering in x̃−εxε from the “small”
affluents, plus the mass of the paths exiting from them, Θiv is the set of paths
as in (iv), and the last equality is due to the fact that MK(Σ) = CΣ(η) in
view of the optimality of η. We claim that
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λ :=
∫

x̃−εxε

cos ω(x)d(ψl − ψr)(x) ≤ 0 . (6.10)

Indeed, assume by contradiction that λ > 0; by construction, for any fixed ε,
one has MN → 0 as N → ∞, so we may fix an integer N large enough such
that MN < λ/3. Moreover, since by the Dominated Convergence Theorem

∫
Θiv

oθ(1) dη

tends to zero as δ → 0, we may take δ small enough so that∫
Θiv

oθ(1) dη < λ/3 .

Therefore
MK

(
Σ′) ≤ MK

(
Σ
)
− Cδ

for some constant C > 0 which depends only on ε. Summarizing, if (6.10)
is not true then starting from the set Σ we would be able to find, for δ
arbitrarily small a set Σ′ satisfying

H 1(Σ′) ≤ H 1(Σ)+ Nδ , MK
(
Σ′) ≤ MK

(
Σ
)
− Cδ

with suitable constants N, C > 0. But this leads to conclude that r ≥ C/N ,
which is impossible since we are assuming r = 0. In fact, if r < C/N , then
one can find, for δ sufficiently small, a subset

∆ ⊆ Σ′ ∩ {αη < C/N}

of length Nδ, so that by (5.8) for the set Σ′′ := Σ′ \ ∆ one would have
MK(Σ′′) < MK(Σ) while H 1(Σ′′) ≤ H 1(Σ), against the optimality of Σ.
Therefore, (6.10) holds.

In the very similar way, moving the arc x̃−εxε rightwards rather than
leftwards we conclude the opposite inequality, and therefore∫

x̃−εxε

cos ω(x)d(ψl − ψr)(x) = 0 .

Analogously, moving the arc upwards and downwards, we obtain∫
x̃−εxε

sin ω(x)d(ψl − ψr)(x) = 0 .

This concludes the proof since the arc x̃−εxε was arbitrarily chosen in Σ. ��

Lemma 6.9. There exists a constant C such that for all sufficiently small ε
there exists a set ∆ satisfying

H 1(∆) = ε , MK(Σ ∪ ∆) ≤ MK(Σ) − Cε2 .
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∆

R̂ y

Rx
ε/3

l

z

w

Fig. 6.3 Construction in Lemma 6.9

Proof. Since f+(Σ) = 0, there exists a connected component Σi of the op-
timal set Σ and a point x ∈ spt (π0#η) \ Σi, where η is an optimal t.p.m.
associated to Σ. Take a path θ ∈ spt ηi with θ(0) = x, and denote

z := s(θ) ∈ Σi .

Consider now a thin rectangle R̂ with sides l � xz and ε/3 � l having a
corner in x and a long side contained in the segment xz. Divide then R̂ in
two rectangles of sides l/2 and ε/3 and let R be the right one: in Figure 6.3,
the rectangle R̂ is the wide one, while R is its shaded right half. Let now

Σ′ := Σ ∪ ∆,

where ∆ = zw is a segment of length ε contained in the middle of the
segment xz.

Take now
y ∈ R ∩ spt (π0#ηi) ,

a path τ ∈ spt ηi with τ(0) = y, and let w := s(τ). By the optimality of η
and since Σi is connected, we already know that xz ≤ xw as well as yw ≤ yz.
Denote by y′ the projection of y onto xz. Then, whenever l is small enough
with respect to xz, and ε is sufficiently small so that y′ belongs to the segment
xz and does not belong to ∆, one has the series of estimates

dΣ′(y, z) ≤ ε

3
+ |y′ − z| − ε

=
ε

3
+ |x − z| − |x − y′| − ε

= |x − z| − |x − y′| − 2ε

3

≤ |x − w| − |x − y′| − 2ε

3

≤ |x − y| + |y − w| − |x − y′| − 2ε

3

≤ |x − y′| + ε

3
+ |y − w| − |x − y′| − 2ε

3
= |y − w| − ε

3
= dΣ(y, w) − ε

3
.



6.1 Preliminary Constructions 115

To conclude, it suffices now to notice that the area of R is proportional to
ε (since x, θ and l � xz have been fixed), and, moreover, up to a suitable
choice of x, θ and l, we can assume that π0#ηi(R) ≥ KL 2(R) with a small
constant K not depending on ε (here we use the assumption f ∈ L∞). We
define η′ := ρ#η, where ρ(θ) := θ unless θ ∈ spt ηi and θ(0) ∈ R, in which case
ρ(θ) replaces the line segment θ(0)s(θ) by the composition of three segments
θ(0)z, zw and ws(θ). The conclusion now follows because

MK(Σ ∪ ∆) ≤ CΣ∪∆(η′) ≤ CΣ(η) − KL 2(R)
ε

3

= MK(Σ) − Kl

18
ε2 .

(6.11)

��

Remark 6.10. An inspection of the proof of Lemma 6.9 shows that the con-
stant C can be estimated from below as

C ≥ f+(x)dist(x,Σ)
C0

where C0 is a geometric constant depending only on diam Ω and x is any
Lebesgue point of f+.

Finally, we can find a contradiction using Proposition 6.11 below, which
will show that the assumption r = 0 cannot hold true and hence conclude
the proof of Proposition 6.2.

Proposition 6.11. There exists a set Σ̃ such that

H 1(Σ̃) = H 1(Σ) , MK
(
Σ̃
)

< MK
(
Σ
)

(so that F
(
Σ̃
)

< F
(
Σ
)

against the optimality of Σ).

Proof. Thanks to Lemma 5.15, Σi can be endowed with the partial order
generated by the relation given by x ≤ y ∈ Σi whenever there is a path θ ∈
spt ηi passing through x and, afterwards, through y. Therefore, for almost all
ε small enough (almost all is intended with respect to the Lebesgue measure
on R), it is possible to find a point xε such that

H 1(Xε) = ε where Xε :=
{
x ∈ Σi : x ≤ xε

}
, (6.12)

so that {
x ∈ Σi : x ≤ xε

}
is contained in the ball of center xε and radius ε. By Lemma 6.7, again for
almost all ε we know that the entry angle ω(xε) is well-defined. Moreover, as
a consequence of Lemma 6.9, we may prove that at least a mass Cε passes
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through Xε: in other words,

ψ(Xε) = s#ηi(Xε) ≥ Cε , (6.13)

the constant C being that of Lemma 6.9, thus independent of ε. Indeed,
applying Lemma 6.9 find the set ∆, and denote by η′ the t.p.m. built in the
proof of the lemma: by (6.11) we know that

CΣ∪∆(η′) ≤ MK(Σ) − Cε2 .

If we now set
Σ′ :=

(
Σ ∪ ∆

)
\ Xε ,

which satisfies H 1(Σ′) ≤ H 1(Σ), then by construction of η′ one clearly has

CΣ′(η′) ≤ CΣ∪∆(η′) + εψ(Xε) .

Hence, by the optimality of Σ we conclude

MK(Σ) ≤ MK(Σ′) ≤ CΣ′(η′) ≤ CΣ∪∆(η′) + εψ(Xε)

≤ MK(Σ) − Cε2 + εψ(Xε) ,

thus (6.13) is established. Let us now set

K :=

√
C

8π‖f+‖L∞
.

Since f+
(
B(xε,K

√
ε)
)
≤ Cε/8, while by (6.13)

f+({x ∈ Ω : ∃ θ ∈ spt ηi, θ(0) = x, s(θ) ∈ Xε

})
≥ η
({

θ ∈ spt ηi : s(θ) ∈ Xε

})
= ψ(Xε) ≥ Cε ,

recalling also Lemma 6.8 we deduce that ε can be chosen with the addi-
tional property that there are two paths θP and θQ in spt ηi entering in Σi

respectively from the left and from the right in such a way that

s(θP ) = s(θQ) = xε

and both the points P = θP (0) and Q = θQ(0) are outside the ball
B
(
xε,K

√
ε
)
. For simplicity, we assume that xε ≡ (0, 0) and that ω(xε) = 0.

Since each path enters in Σi at a point of least distance from its first
extreme, Σi intersects neither the open ball B(P, Pxε) nor the open ball
B(Q,Qxε). Thus, Xε is constrained in the shaded region of Figure 6.4. We
claim now that the entry angle ω(x) is “small” for most of the points x ∈ Xε;
more precisely one has
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Fig. 6.4 Situation in Proposition 6.11

ψ
({

x ∈ Xε : |ω(x)| > 2
√

ε

K

})
≤ C

8
ε . (6.14)

In fact, take a point x ∈ Xε such that

|ω(x)| > 2
√

ε

K
:

we will say that x ∈ XL if x is above xε and ω(x) > 0 or if x is below xε and
ω(x) < 0 (the figure shows this second possibility), while we will say that
x ∈ XR otherwise. By construction, if x ∈ XL (resp. x ∈ XR) then the line l
passing through x with slope ω(x) intersects the horizontal axis at a point z
in the interior of the ball

B

(
xε,K

√
ε

2

)
,

and z is in the left (resp. right) of xε. Since for any θ ∈ spt ηi, s(θ) is the point
of Σi closest to θ(0), the segment Pxε cannot intersect the segment θ(0)x
whenever θ ∈ spt ηi and θ(0) = x. For any such θ, the point θ(0) belongs to
the line l by definition of the entry angle ω(x), therefore if x ∈ XL (resp.
x ∈ XR) and θ enters at x from the left (resp. from the right), then θ(0)
belongs to the segment zx, thus to the ball B(xε,K

√
ε). We have then

ψl(XL) + ψr(XR) = ηi

({
θ ∈ spt ηl : s(θ) ∈ XL

}
∪
{
θ ∈ spt ηr : s(θ) ∈ XR

})

≤ f+
(

B
(
xε,K

√
ε/2
))

≤ C

16
ε .
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Recalling that ψl = ψr by Lemma 6.8, we deduce

ψ(Xε) = ψl(XL) + ψr(XL) + ψr(XR) + ψl(XR)

≤ 2
(
ψl(XL) + ψr(XR)

)
≤ C

8
ε

and thus (6.14) is proved.
In order to define the competitor Σ̃ to Σ, we divide R

2 in four regions;
since these regions are symmetric with respect to the horizontal axis, we draw
only the bottom half in Figure 6.4 to avoid confusion. The region F is the ball
B(xε,K

√
ε); the region H is made by such points ξ /∈ F below (resp. above)

the horizontal axis, such that the angle between the segment connecting ξ to
the point (0,−ε) (resp. (0, ε)) and the horizontal axis has the absolute value
greater than

√
ε/2K. The regions E and G are the left and the right side of

the remaining part of R
2. For simplicity of notation we denote by m(E) the

value
η
({

θ ∈ ηi : θ(0) ∈ E
})

,

and we adopt the analogous notation for the regions F , G and H. Further,
without loss of generality, we assume m(G) ≥ m(E).

We now define the competitor Σ̃: consider the segment y1y2 (drawn in
bold in the figure), where

y1 ≡
(K

2
√

ε − ε

2
, 0
)

, y2 ≡
(K

2
√

ε +
ε

2
, 0
)

;

we let then
Σ̃ :=

(
Σ \ Xε

)
∪ y1y2 .

By (6.12), we have H 1(Σ̃) ≤ H 1(Σ), so we only need to check that
MK

(
Σ̃
)

< MK
(
Σ
)

to find the desired contradiction.
As in the last lemmas, to show that MK

(
Σ̃
)

< MK
(
Σ
)

we will provide
a suitable t.p.m. η′ := ρ#η with CΣ̃(η′) < CΣ(η). In order to construct the
map ρ : Θ → Θ, we first set ρ(θ) := θ for every

θ /∈ Θε := {θ ∈ spt ηi, s(θ) ∈ Xε} .

For θ /∈ Θε, of course we have δΣ̃

(
ρ(θ)
)
≤ δΣ(θ). Concerning now the case

θ ∈ Θε, if θ(0) ∈ F we again let ρ(θ) := θ, so that

θ(0) ∈ F =⇒ δΣ̃

(
ρ(θ)
)
≤ δΣ(θ) + ε . (6.15)

If θ(0) ∈ H, we still let ρ(θ) := θ and by construction, we have

θ(0) ∈ H =⇒ δΣ̃

(
ρ(θ)
)
≤ δΣ(θ) + ε . (6.16)
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We call now
t̂ = t̂(θ) := max{t : θ(t) ∈ Xε} .

If θ(0) ∈ E, we set ρ(θ) to be the path obtained joining the line segment
θ(0)θ(t̂) to the curve θ [t̂, 1]. By definition of the set E, a simple geometric
estimates ensures

θ(0) ∈ E =⇒ δΣ̃

(
ρ(θ)
)
≤ δΣ(θ) + θ(0)θ(t̂) − θ(0)s(θ)

≤ δΣ(θ) + ε sin
(√

ε/2K
)

+ O(ε3/2)
= δΣ(θ) + o(ε) ,

(6.17)

where o(ε) depends only on ε and not on θ. Finally, if θ(0) ∈ G, we define
ρ(θ) as the path joining the line segments θ(0)y2, y2y1, and y1θ(t̂) to the curve
θ [t̂, 1]. Another easy geometric argument gives

θ(0) ∈ G =⇒ δΣ̃

(
ρ(θ)
)
≤ δΣ(θ) − ε + O(ε3/2) ≤ δΣ(θ) − ε + o(ε) . (6.18)

Now, (6.15)–(6.18) together yield

MK
(
Σ̃
)
≤ MK

(
Σ
)

+ m(F ) ε + m(H) ε

+ m(E) o(ε) − m(G) ε + m(G) o(ε) .
(6.19)

By (6.13), we know that

m(E) + m(F ) + m(G) + m(H) ≥ Cε .

By (6.14), we know that

m(H) ≤ 1
8

Cε ;

by definition, we know that

m(F ) ≤ 1
8

Cε .

Hence, since we are assuming m(G) ≥ m(E), we find

m(G) ≥ 3
8

Cε .

Therefore, (6.19) gives us that

MK
(
Σ̃
)
≤ MK

(
Σ
)

+ ε
( 1

4
C − 3

8
C + Co(1)

)
,

and then, provided ε was chosen sufficiently small, we get MK
(
Σ̃
)

<

MK
(
Σ
)
, hence the required contradiction that completes the proof. ��
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Now, it is immediate to conclude the validity of Proposition 6.2

Proof (of Proposition 6.2). If r = 0, then the claims of Lemmas 6.3, 6.5,
6.7, 6.8, 6.9 and of Proposition 6.11 hold true; hence, there is a set Σ̃ with
F(Σ̃) < F(Σ), against the optimality of Σ. ��

6.2 Proof of the Main Result

We can finally give the proof of Theorem 6.1, which makes use of the technical
results of Section 5.2 and of the fact that r > 0 for any η ∈ M+

µ,2(Θ) which
we have shown in the previous section.

To prove Theorem 6.1 we need to select a special t.p.m. η ∈ M+
2 (Ω). To

this aim, let us first arbitrarily fix a function α : Σ → R
+ such that there

exists some η ∈ M+
µ,2(Θ) for which αη = α. We solve then another auxiliary

maximization problem.

Lemma 6.12. Defining F1(η) := max{µ(θ), θ ∈ spt η}, we have that the set

M+
µ,3,1(Θ) := Arg max

{
F1(η) : η ∈ M+

µ,2(Θ), αη = α
}

(6.20)

is non-empty and convex.

We recall that the functional F1(η) is well-defined for all η ∈ M+
µ,2(Θ) by

Corollary 5.12.

Proof (of Lemma 6.12). Consider a maximizing sequence {ηn} ⊆ M+
µ,2(Θ)

for the functional F1 under the constraint αηn
= α, and define

η :=
∑
n∈N

2−n ηn .

By Corollary 5.12, there is a path θn maximizing the length

θ �→ µ(θ) = H 1(θ ∩ Σ)

within spt ηn. Since the Euclidean length of the paths θn is bounded thanks
to Lemma 4.18 and since Ω is bounded, up to a subsequence we can assume
that θn → θ for some path θ ∈ Θ. Notice that, since spt η is closed and
contains θn by construction, we obtain θ ∈ spt η. Since we already know that
θ �→ µ(θ) is an u.s.c. function, we obtain

lim sup
n→∞

F1(ηn) = lim sup
n→∞

µ(θn) ≤ µ(θ) ≤ F1(η) .

Therefore, η ∈ M+
µ,3,1(Θ) and we have proved that the set M+

µ,3,1(Θ) is
non-empty. The convexity of this set follows immediately by noticing that a
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convex combination of elements of M+
µ,3,1(Θ) is a measure, the support of

which contains all the supports of the elements. ��
Notice that the existence of solutions for the maximization problem (6.20)

cannot be shown in the same way as done for M+
µ,1(Θ) and M+

µ,2(Θ) in
Remark 5.11, where one had to deal with integral functionals and therefore
it was sufficient to check the lower (or upper) semicontinuity of the integrands.
Recall that in those cases, moreover, the standard direct methods of the cal-
culus of variations also gave the weak∗ closedness of M+

µ,1(Θ) and M+
µ,2(Θ).

On the contrary, it is fundamental to notice that (in general) M+
µ,3,1(Θ) is

not weakly∗ closed ; indeed, if ηn
∗ η, θn ∈ spt ηn and θn → θ, then in general

it is not true that θ ∈ spt η. For this reason, to extract a particular t.p.m.
in M+

µ,3,1(Θ) in the sequel we will not take a weak∗ limit of some optimizing
sequence, since it may happen that this limit does not belong to M+

µ,3,1(Θ);
instead, we will repeat the method already used in the proof of Lemma 6.12,
which only needs the convexity of M+

µ,3,1(Θ) in place of the weak∗ closedness.
In the sequel, we will often use a t.p.m. η ∈ M+

µ,3,1(Θ) together with a
path θ1 providing the maximum in F1; therefore, it is useful to set

Π1 :=
{

(η, θ1) : η ∈ M+
µ,3,1(Θ), µ(θ1) = F1(η)}

}
.

Let us now prove a “second-order” version of Corollary 5.12.

Lemma 6.13. For any (η, θ1) ∈ Π1 there exists a τ ∈ Θ maximizing

τ �→ H 1 (
Σ \ θ1

)
(τ)

within spt η.

Proof. Fix (η, θ1) ∈ Π1, take a sequence {τn} maximizing

τ �→ H 1 (
Σ \ θ1

)
(τ)

within spt η, and assume without loss of generality (thanks to Lemma 4.18)
that τn → τ in Θ. As in Corollary 5.12, we conclude applying Lemma 4.1
with X := Θ, Cn := θn and ν = µ̃ := H 1 (

Σ \θ1
)
; indeed, the lemma gives

µ̃(τ) ≥ lim sup
n→∞

µ̃(τn) ,

and this clearly concludes the proof. ��

We define

F2(η, θ1) := max{H 1 (
Σ \ θ1

)
(τ), τ ∈ spt η} ;

M̃+
µ,3,2(Θ) := Arg max

{
F2(η, θ1), (η, θ1) ∈ Π1

}
;

Π̃2 :=
{

(η, θ1, θ̃2) : (η, θ1) ∈ M̃+
µ,3,2(Θ),
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θ̃2 ∈ Arg max{H 1 (
Σ \ θ1

)
(τ), τ ∈ spt η}

}
;

Π2 := Arg max
{

µ(θ2), (η, θ1, θ2) ∈ Π̃2

}
;

M+
µ,3,2(Θ) :=

{
η ∈ M+

µ,3,1(Θ) : ∃ θ1, θ2 ∈ Θ, (η, θ1, θ2) ∈ Π2

}
.

We underline the meaning of the sets we defined. Recall that our aim is
to cover Σ with paths, possibly in an efficient way; therefore, we defined
M+

µ,3,1(Θ) to be the set of the optimal measures η ∈ M+
µ,2(Θ), having αη

fixed, the longest path of which inside Σ has the maximal possible length.
The elements of Π1 are the pairs of such particular optimal measures and
their paths using Σ as much as possible. To proceed covering Σ, we find
now the “second longest path”, namely the path in spt η having the maximal
length inside Σ \ θ1. Hence, M̃+

µ,3,2(Θ) are the pairs (η, θ1) ∈ Π1 maximizing
this new length that is possible to gain by this second longest path, and Π̃2
are the corresponding triples given by the pairs

(η, θ1) ∈ M̃+
µ,3,2(Θ)

together with a second path θ̃2 maximizing the new length. For reasons that
will become clear during the proof of Theorem 6.1, among those triples we
have the convenience to make a further choice: for all the triples

(η, θ1, θ2) ∈ Π̃2

the length
H 1 (

Σ \ θ1
)
(θ2)

is the same, and it is the maximal possible; we then select those triples for
which

µ(θ2) = H 1 Σ(θ2)

is maximal. In words, among the different paths maximizing the new length
that one can gain by θ2, we choose those maximizing also the total length
µ(θ2). Those particular triples are collected in Π2, and finally M+

µ,3,2(Θ)
consists of the optimal measures η which belong to Π2 together with some
pair of paths (θ1, θ2) ∈ spt η.

We now extend Lemma 6.12 to M+
µ,3,2(Θ).

Lemma 6.14. The set M+
µ,3,2(Θ) is non-empty and convex.

Proof. We first show that M̃+
µ,3,2(Θ) is non-empty: let (ηn, θ1,n) be a max-

imizing sequence for the functional F2 in Π1. In particular, according to
Lemma 6.13, one has

F2(ηn, θ1,n) = H 1 (Σ \ θ1,n)(θ̃2,n)
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for some θ̃2,n ∈ spt ηn. Then, as in Lemma 6.12, we define

η :=
∑
n∈N

2−nηn ,

and we let θ1 and θ̃2 be the limits in Θ of θ1,n and θ̃2,n respectively (up to a
subsequence). We claim that

(η, θ1, θ̃2) ∈ Π̃2 , (6.21)

hence in particular M̃+
µ,3,2(Θ) contains (η, θ1), so it is not empty.

To show (6.21), we notice that η ∈ M+
µ,2(Θ) and αη = α as in Lemma 6.12;

moreover,
µ(θ1) ≥ lim sup

n→∞
µ(θ1,n)

by upper semicontinuity (recall Lemma 4.1). Then, since in this case all the
paths θ1,n have the same, maximal, length in Σ, we deduce that the above
inequality is actually an equality, so that (η, θ1) ∈ Π1. To show (6.21), we
only need to prove that

lim sup
n→∞

H 1 (
Σ \ θ1,n

)
(θ̃2,n) ≤ H 1 (

Σ \ θ1
)
(θ̃2) ,

which is equivalent to

lim sup
n→∞

µ
(
θ̃2,n \ θ1,n

)
− µ
(
θ̃2 \ θ1

)
≤ 0 .

In view of the inclusion
(
A \ B

) ∖ (
C \ D

)
⊆
(
A \ C

)
∪
(
D \ B

)
,

one has

µ
(
θ̃2,n \ θ1,n

)
− µ
(
θ̃2 \ θ1

)
≤ µ
((

θ̃2,n \ θ1,n

) ∖ (
θ̃2 \ θ1

))

≤ µ
(
θ̃n,2 \ θ̃2

)
+ µ
(
θ1 \ θn,1

)
,

(6.22)

so that it suffices to show that the lim sup of the right hand-side is zero.
Concerning µ

(
θ̃n,2 \ θ̃2

)
, it is immediately seen that its lim sup is zero thanks

to Lemma 4.1 with ν = H 1 (
Σ \ θ̃2

)
. In fact,

µ
(
θ̃n,2 \ θ̃2

)
= ν(θ̃n,2)

and of course ν(θ̃2) = 0. Concerning µ
(
θ1 \ θn,1

)
, by the equality

∣∣µ(A) − µ(B)
∣∣ = ∣∣µ(A \ B) − µ(B \ A)

∣∣ ,
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valid for any measure µ and sets A and B, one has
∣∣µ(θ1) − µ(θn,1)

∣∣ = ∣∣µ(θ1 \ θn,1) − µ(θn,1 \ θ1)
∣∣ .

As we already noticed,

µ
(
θn,1
)

= µ
(
θ1
)

∀n ∈ N ;

moreover,
µ
(
θn,1 \ θ1

)
→ 0

exactly as previously done for θ̃2 and θ̃n,2. Then, it follows that also

µ
(
θ1 \ θn,1

)
→ 0

so that the lim sup of the right hand-side in (6.22) is zero, thus (6.21) follows:
as noticed before, this gives that M̃+

µ,3,2(Θ) is non-empty.
Moreover, M̃+

µ,3,2(Θ) is also convex, as one can immediately deduce exactly
as done for M+

µ,3,1(Θ) at the end of Lemma 6.12.
Concerning M+

µ,3,2(Θ), the convexity can be deduced again in the very
same way as for M+

µ,3,1(Θ) and M̃+
µ,3,2(Θ). To show that M+

µ,3,2(Θ) is non-
empty, we will check that so is Π2. In fact, it suffices again to take a sequence

{
(ηn, θ1,n, θ2,n)

}
⊆ Π̃2

such that θ2,n is a maximizing sequence for µ. Then define, possibly up to a
subsequence,

η :=
∑
n∈N

2−nηn

and θ1 and θ2 to be the limits in Θ of θ1,n and θ2,n respectively. By the same
arguments as before we have

(η, θ1, θ2) ∈ Π̃2 ,

and moreover
µ(θ2) ≥ lim sup µ(θ2,n)

by upper semicontinuity again. Then Π2 �= ∅ as (η, θ1, θ2) ∈ Π2 and the proof
is concluded. ��

We define now by induction, for any n ∈ N,

Fn(η, θ1, . . . ,θn−1) := max{H 1 (
Σ \ (θ1 ∪ · · · ∪ θn−1)

)
(τ), τ ∈ spt η}

M̃+
µ,3,n(Θ) := Arg max

{
Fn(η, θ1, . . . , θn−1) : (η, θ1, . . . , θn−1) ∈ Πn−1

}
;

Π̃n :=
{

(η, θ1, . . . θn−1, θ̃n) : (η, θ1, . . . , θn−1) ∈ M̃+
µ,3,n(Θ),
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H 1 (
Σ \ (θ1 ∪ · · · ∪ θn−1)

)
(θ̃n) = Fn(η, θ1, . . . , θn−1)

}
;

Πn := Arg max
{

µ(θn) : (η, θ1, . . . , θn) ∈ Π̃n

}
;

M+
µ,3,n(Θ) :=

{
η ∈ M+

µ,3,n−1 : ∃θ1, . . . , θn ∈ Θ : (η, θ1, . . . , θn) ∈ Πn

}
.

Further, set

Π∞ :=
{

(η, θ1, . . . , θn, . . . ) : ∀n ∈ N, (η, θ1, . . . , θn) ∈ M+
µ,3,n

}
;

M+
µ,3,∞(Θ) :=

{
η ∈ M+

µ,2(Θ) : ∃θ1, . . . , θn, · · · ∈ Θ :

(η, θ1, . . . , θn, . . . ) ∈ Π∞
}

.

We have the following result.

Lemma 6.15. All the sets M+
µ,3,n(Θ) are non-empty and convex, as well as

M+
µ,3,∞(Θ).

Proof. The first part of the statement can be obtained exactly as in
Lemma 6.14 via an inductive procedure. Concerning the second part, it can
also be obtained in a similar way: take a sequence {ηn} ∈ M+

µ,2(Θ) with
αηn

= α and paths θm,n ∈ Θ with m ≤ n such that for any n ∈ N one has

(ηn, θ1,n, . . . , θn,n) ∈ Πn .

By a standard diagonal argument, we can assume that for any m ∈ N one
has θm,n → θm as n → ∞, and we define as usual

η :=
∑
n∈N

2−nηn ;

then, arguing as in the above lemmas we derive that

(η, θ1, . . . , θm) ∈ M+
µ,3,m ∀m ∈ N ,

so that
(η, θ1, . . . , θn, . . . ) ∈ Π∞ .

Hence, the fact that M+
µ,3,∞(Θ) is non-empty is established. The convexity

of M+
µ,3,∞(Θ) is straightforward. Indeed, for any

η1, η2 ∈ M+
µ,3,∞(Θ)

and any 0 < t < 1 one has

spt
(
tη1 + (1 − t)η2

)
⊇ spt η1 .
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Thus, if (η, θ1, . . . , θn, . . . ) ∈ Π∞, one has also
(
tη1 + (1 − t)η2, θ1, . . . , θn, . . .

)
∈ Π∞

by definition of Π∞. ��

Proof (of Theorem 6.1). Take an optimal set Σ and a t.p.m. η ∈ M+
µ,3,∞(Θ)

with
(η, θ1, . . . , θn, . . . ) ∈ Π∞

for a suitable sequence {θn} ⊆ spt η. The thesis will be achieved once shown
that

Σ ⊆ θ1 ∪ θ2 ∪ · · · ∪ θn

for some n ∈ N. If this is not true, then one has µ(θi) > 0 for all i ∈ N. We
define now xi and yi those points of θi such that x̃iyi is the shortest subpath
of θi with µ(x̃iyi) = µ(θi). Now, the proof follows in five steps.
Step I. For any i ∈ N, there is at least a mass r > 0 passing through xi (resp.
yi) and following the path θi for a while after xi (resp. before yi).
Fix i ∈ N, and define

Θi :=
{

θ ∈ spt η : ∃ t1 < t2, t′1 < t′2, θ(t1) = xi,

θ(t2) �= xi, θ [t1, t2] = θi [t′1, t
′
2]
}

,

Θ̃i :=
{

θ ∈ spt η : ∃ t1 < t2, t′1 < t′2, θ(t2) = yi,

θ(t1) �= yi, θ [t1, t2] = θi [t′1, t
′
2]
}

,

so that Θi are precisely those paths passing through xi and then following θi

for at least a while, and Θ̃i are the paths passing through yi having followed
θi for a while. The claim of this step is then η(Θi) ≥ r and η(Θ̃i) ≥ r.

By definition of xi and yi, we have a sequence {zn} of points contained
in x̃iyi, converging to xi and belonging to Σ. By (5.2), one has αη(zn) ≥ r,
which can be rewritten as

η
(
Θzn

)
≥ r , (6.23)

where
Θz := {θ ∈ Θ : z ∈ θ}

for any z ∈ Ω. Suppose now by contradiction that

η
(
Θi

)
= r − δ

for some δ > 0; then, by (6.23) one has

η
(
Θzn

\ Θi

)
> δ ∀n ∈ N . (6.24)
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We remark now that, by construction and thanks to Lemma 5.20,

Θi =
⋃

j∈N

⋂
n≥j

Θzn
(6.25)

up to negligible sets. Moreover, again by Lemma 5.20,
{
Θz1 ∩ Θzn

}

is an η−essentially decreasing sequence (more precisely, the sequence of sets
Θz1 ∩ Θzn

∩ spt η is decreasing). Therefore, also the sequence
{
(Θz1 ∩ Θzn

) \ Θi

}

is η−essentially decreasing and its intersection must be η−negligible
by (6.25). This implies the existence of an integer n > 1 such that

η
(
(Θz1 ∩ Θzn

) \ Θi

)
< η
(
Θz1 \ Θi

)
− δ .

So we assume without loss of generality (up to redefining the sequence {zn})
that

η
(
(Θz1 ∩ Θz2 ) \ Θi

)
< η
(
Θz1 \ Θi

)
− δ .

(the right hand-side of the above inequality is a positive number by (6.24).
Applying (6.24) to n = 2 gives

η
(
(Θz1 ∪ Θz2 ) \ Θi

)
= η
(
Θz2 \ Θi

)
+ η
(
Θz1 \ Θi

)
− η
(
(Θz1 ∩ Θz2 ) \ Θi

)
> 2δ .

Arguing in the same way, for any n ∈ N we can obtain

η
(
(Θz1 ∪ Θz2 ∪ · · · ∪ Θzn

) \ Θi

)
> nδ .

Since of course this is not possible for n > ‖η‖/δ, the contradiction shows
that η(Θi) ≥ r; in the very same way, η(Θ̃i) ≥ r).

Step II. If xi �= xj (resp. yi �= yj), one has Θi ∩ Θj = ∅ (resp. Θ̃i ∩ Θ̃j = ∅).
Assume that this is not true, so take θ ∈ Θi∩Θj , with j > i and with xi �= xj .
Suppose that θ passes first through xj , than through xi. Then, since θ ∈ Θi

there is an interval [t1, t2] such that

θ(t1) = θi(t1) = xi

and
θ [t1, t2] ≡ θi [t1, t2] .

Moreover, since θ has passed through xj before passing through xi (and
recalling that θ ∈ Θj) we have

µ
(
θ([0, t1])

)
> 0 = µ

(
θi([0, t1])

)
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by construction. We aim now to find a competitor to η proving that η �∈ Πi,
finding then a contradiction. The idea is to modify θ and θi: more precisely,
we define

θ̃ := θ [0, t1] · θi [t1, 1]

as the path which follows θ from θ(0) to xi, and then follows θi from xi to
θi(1), and analogously we define

θ̃i := θi [0, t1] · θ [t1, 1]

as the path following θi from θi(0) to xi and θ from xi to θ(1). Then, we
may define a modification η̃ of η as follows: we take an η−positive quantity
of mass contained in a neighborhood of θi in Θ and passing through xi (this
is possible thanks to Step I), and an equal mass contained in a neighborhood
of θ in Θ and passing through xi (this is possible by Corollary 5.14 and
Lemma 5.17). As in the proof of Lemma 5.15 we define η̃ swapping the ways
of the paths when they meet at xi, and leaving all the other paths unchanged.
Therefore, θ̃ and θ̃i belong to spt η̃. It is immediately seen that

CΣ(η̃) = CΣ(η) ,

so that η̃ is still an optimal t.p.m. Moreover, θ1, θ2, . . . , θi−1 belong to spt η̃,
provided we have chosen the neighborhoods of θ and θi in the construction
above small enough. Recall also that

Σ ∩ θi � Σ ∩ θ̃ :

therefore, we obtain that

(η̃, θi, θ2, . . . , θi−1, θ̃) ∈ Π̃i :

moreover, since µ(θ̃) > µ(θi), we have a contradiction with the assumption

(η, θi, θ2, . . . , θi−1, θi) ∈ Πi .

Summarizing, we finally found a contradiction assuming that θ passes through
xj before than through xi.

If θ passes through xi before passing through xj , a completely similar
argument gives again a contradiction at the j−th step: in fact, an analogous
change of the t.p.m. allows to assume that spt η contains the path

θ̃ := θ [0, t1] · θj [t1, 1]

which follows θ between θ(0) and xj , and θj between xj and θj(1). Therefore,
at the j−th stage, it would be more convenient to select θ̃ instead of θj , since

Σ ∩ θ̃ � Σ ∩ θj :
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we again found a contradiction, so that the property

Θi ∩ Θj = ∅

is proved. Concerning
Θ̃i ∩ Θ̃j = ∅ ,

the argument is of course exactly the same. Then also this step is concluded.
Step III. If xi = xj (resp. yi = yj), then either Θi∩Θj = ∅ or Θi = Θj (resp.
either Θ̃i ∩ Θ̃j = ∅ or Θ̃i = Θ̃j).
Also for this step, we will only proof the first case, being the second completely
similar. To achieve the step, we will show that if Θi ∩ Θj �= ∅, then θi and
θj coincide for a while after xi; formally, this means that if xi = xj and
Θi ∩ Θj �= ∅ then one has

θi([s, t]) = θj([s′, t′]) � {xi} (6.26)

with
θi(s) = θj(s′) = xi = xj .

This will immediately conclude the step by definition of Θi and Θj , so it is
enough to establish (6.26). To this aim, suppose that it is false: then there
must exist a path θ̄ ∈ Θi ∩ Θj , and θ̄ should pass twice from xi: once in
order to follow θi for a while, and one to follow θj for another while. But this
would mean that the path θ̄ contains a loop, which is impossible thanks to
Remark 5.16. Notice that here it is crucial that the claims of Lemma 5.15
and of Remark 5.16 have been established for all the paths θ ∈ spt η, and not
just for η−almost all.
Step IV. If Θi = Θj and Θ̃i = Θ̃j (and so xi = xj, yi = yj by Step II), then
θi and θj coincide between xi and yi.
By Step III we already know that, for suitable th, t′h, 1 ≤ h ≤ 4, one has

θi [t1, t2] = θj [t′1, t
′
2] , θi [t3, t4] = θj [t′3, t

′
4] ,

θi(t1) = xi, θi(t4) = yi .

On the other hand, applying twice Lemma 5.20 we know that

θi [t2, t3] = σθi(t2)θi(t3) = σθj(t′2)θj(t′3) = θj [t′2, t
′
3] ,

and so θi and θj coincide in the whole part between xi and yi.
Step V. Conclusion.
Since ‖η‖ = 1, Steps I, II and III ensure that there can be at most 1/r different
sets Θi and at most 1/r different sets Θ̃i, hence at most 1/r2 different pairs
(Θi, Θ̃i). Since Σ is trivially contained in the countable union of the arcs
x̃iyi, and since by Step IV these arcs are in fact a finite number, we have
concluded the proof. ��



Appendix

A The Mass Transportation Problem

The mass transportation problem was first proposed by G. Monge in 1781 [49]
as follows: “Étant donnés dans l’espace, deux volumes egaux entr’eux, & ter-
minés chacune par une ou plusieurs surfaces courbes donnés; trouver dans
le second volume le point où doit être transportée chaque molécule du pre-
mier, pour que la somme des produits des molecules multipliées chacune par
l’espace parcouru soit un minimum”. In modern language, we can rewrite his
question as follows: given two sets A, B ⊆ R

3 with the same volume, we look
for a measurable map T : A → B which describes a way to transport the set
A onto B, and so that the cost∫

A

|T (x) − x| dx (A.1)

is minimal. Saying that T “describes a transportation” means that, by mov-
ing the mass on A according to T , we completely cover B, that is, for any
measurable set E ⊆ B one must have

meas
({

x ∈ A : T (x) ∈ E
})

= meas(E) . (A.2)

A first generalization that can be done is to consider a density of the material
which may be non-constant or even singular; then, instead of two sets, we
can consider two positive Borel measures f+ and f− over a Polish space X
which have the same total mass, that is ‖f+‖ = ‖f−‖. Usually, one assumes
this total mass to be unitary for simplicity. A Borel map T : X → X is
then called a transport map if T#f+ = f−, where T# stands for the push-
forward operator defined in Appendix B.2; equivalently, we can say that T is
a transport map if for all Borel sets E ⊆ X one has

f+
({

x ∈ X : T (x) ∈ E
})

= f−(E) ,
which is the exact analogue of (A.2) with f+ = χA and f− = χB .

131
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Another possible generalization is to consider a cost function c : X ×X →
R

+ such that c(x, y) represents the cost to move a unit mass from x to y.
Therefore, the cost associated with the transport map T is simply

∫
X

c(x, T (x)) df+(x) , (A.3)

which again generalizes (A.1) with c(x, y) = |y − x| when X = R
3 and

f+ = χA , f− = χB .
Despite the simplicity of the problem considered, it reveals to be very hard

to attack. The main reasons are two: first of all, the set of the admissible maps
has no good structure; indeed, even in the simplest case considered by Monge,
the admissibility of T relies on the validity of the highly non-linear equation

∣∣Det DT
∣∣ = 1 .

A second reason is that also the cost given by (A.1) or (A.3) depends in a
quite involved way on the map T so again there is no kind of linearity giving
some help.

We can also note that, in general, the problem of finding a minimizer of
the cost has no solution, and it can also easily happen that there are no
admissible transport maps at all. For instance, if f+ = δx is a Dirac mass at
a point x, then for any map T : X → X one has T#f+ = δT (x); therefore,
there are no transport maps at all unless f− is a Dirac mass itself. In fact,
the only obstacle to the existence of tranport maps is the presence of Dirac
masses in f+: indeed, the following theorem is well known (for a proof in the
general case of Polish spaces one can refer to [59]).

Theorem A.1. Let X be a Polish space and f+, f− be two positive Borel
measures on X with the same total mass. If f+ is non-atomic (that is, for
any x ∈ X one has f+

(
{x}
)

= 0) then there exist transport maps from f+

to f−.

Even if the set of transport maps is nonempty, the existence of optimal
transport maps may fail: consider for instance the case when X = R

2, f+

is the Hausdorff one-dimensional measure with density 1 on the segment
{0} × [0, 1], and f− is the Hausdorff one-dimensional measure with density
1/2 on the two segments {±1}× [0, 1]; consider also the easiest cost function
c(x, y) = |y−x|. In this case, it is immediate to understand that the infimum
of the cost of the transport maps cannot be achieved, since otherwise an
optimal transport map should split every point in the support of f+ and move
half of it in the left segment of the support of f− and half in the right one.

The first big step forward in the study of the mass transportation is due to
the work by Kantorovich [42, 43]; to explain it, let us start from the consider-
ation that, in both of the above examples, the obstacle was the impossibility
to split the masses by a map. The idea of Kantorovich, then, was to allow
this possibility; hence, the mass which is initially at x, should not be entirely
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transported to a point T (x), rather it may be distributed on the support of
f−. Formally, this means that a new notion of transportation is introduced.

Definition A.2. A transport plan is a positive measure γ ∈ M+(X×X) such
that the two projections π1#γ and π2#γ coincide with f+ and f− respectively,
where π1 and π2 are the projections of X × X on the first and second factor
respectively.

It is important to notice the meaning of the above definition: the measure
γ corresponds to transporting a mass γ(C×D) from the set C to the set D for
any choice of the sets C, D ⊆ X. Hence, every transport map T correspond
naturally to a transport plan γT , namely

γT =
(
Id, T

)
#f+ .

It is easy to generalize the cost of a transport map to transport plans: indeed,
we will say that the cost of the transport plan γ is

∫∫
X×X

c(x, y) dγ(x, y) .

With this definition, the cost of the transport map T equals the cost of the
transport plan γT , so that the Kantorovich setting of the problem is indeed
a generalization of the one by Monge.

It is immediate to see that both of the above mentioned difficulties for
transport maps are immediately solved for transport plans: indeed, the trans-
port plans form a bounded, convex and weakly∗ closed subset of the measures
on X ×X, so they have a very good and perfectly known structure; in addi-
tion, the cost of the transport plans is linear with respect to γ.

Hence, in this new formulation, the existence of transports and of optimal
transports always occurs. Indeed, the set of transport plans is nonempty,
since the measure f+ ⊗ f− is always an admissible transport plan. Moreover,
also the existence of optimal transport plans (i.e. those minimizing the cost)
becomes very easy: in fact, if ϕ is a lower semicontinuous function on the
Polish space Y and µn

∗ µ are Borel measures on Y then
∫

Y

ϕ(y) dµ(y) ≤ lim inf
∫

Y

ϕ(y) dµn(y) .

Therefore, provided that c is lower semicontinuous, the problem of finding
an optimal transport plan is trivial: it suffices to take any weak∗ limit of any
minimizing sequence of transport plans.

Even if the Kantorovich formulation of the problem always admits optimal
solutions, deducing the existence of transport maps remains a difficult issue.
The main idea to show the existence of transport maps was found in the 70’s
by Sudakov [67]: indeed, in the case c(x, y) = |y − x| with ambient space
X = R

n, it is known that any optimal transport plan moves the mass along
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non-intersecting segments. More precisely, if γ is an optimal transport plan
and (x1, y1), (x2, y2) belong to the support of γ, then the segments x1y1 and
x2y2 cannot cross except in a common endpoint. Then R

n can be filled by
non-intersecting segments (called transport rays) so that all the mass can
be moved by the optimal transport plans only along those rays. Since it is
possible to determine these segments knowing only f+ and f−, the idea of
Sudakov was to consider the transport problem on each of these rays and
then “glue” all the information found. This argument would reduce the mass
transportation to one-dimensional problems, which are easily discussed, so
this provides a possible strategy to show the existence of transport maps.

Nevertheless, two decades passed before the Sudakov argument were rig-
orously completed by means of fine tools of Geometric Measure Theory. One
of the technical difficulties was the following: as we saw, the presence of Dirac
masses can prevent the existence of optimal transport maps; however, even
if f+ is absolutely continuous with respect to the Lebesgue measure in R

n,
in principle it may happen that its “restrictions” to the transport rays have
Dirac masses. By the way, also the definition of this restrictions needs to be
carefully precised by means of measure disintegration. Anyway, Sudakov’s
formal idea has given a powerful strategy to attack the problem in the last
years, and all the different proofs now available concerning the linear cost
(i.e. c(x, y) = |y − x|) rely somehow on this idea.

The first proof of the existence of optimal transport maps was given inde-
pendently by Brenier and Knott–Smith in the ’80s [22, 23, 45], but instead
of the Monge case of the linear cost, the quadratic one was considered.

Theorem A.3. Consider the case X = R
n with the quadratic cost c(x, y) =

|y−x|2, and assume that f+(S) = 0 for any set S such that H n−1(S) < +∞.
Then there is a unique optimal transport plan, which in particular corresponds
to an optimal transport map.

In the following years this result has been widely generalized to other cases
of strictly convex cost functions such as, for instance, c(x, y) = |y − x|p with
p > 1; some references for these results are for instance [60, 40, 71].

The situation in the original Monge case is completely different, mainly due
to the fact that the linear cost c(x, y) = |y−x| is convex but not strictly con-
vex. The first existence result for this case was given by Evans and Gangbo in
1999 in [36], and in the following few years their result was generalized in other
papers [1, 70, 25]. We can summarize all their results in the following one.

Theorem A.4. Assume that X = R
n and that c(x, y) = |y − x|, and let f+

be a measure with compact support and absolutely continuous with respect to
the Lebesgue measure. Then there exists an optimal transport map.

We emphasize the big difference between the results for the linear and the
quadratic costs. First of all, with the quadratic cost (or generally, with many
strictly convex costs) one has the uniqueness of an optimal transport plan,
which is also a map; on the other hand, with the linear cost there are many
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optimal transport plans, and many of them (but not all) are in particular
transport maps. Moreover, while in the strictly convex case the essential as-
sumption is that f+ does not charge (n − 1)−dimensional sets (in the sense
of Theorem A.3), in the linear case it is essential that f+ be absolutely con-
tinuous: the fact that this stronger assumption is indeed necessary is shown
by a counterexample given in [4].

Also for the linear case many subsequent generalizations have been shown:
the case where the ambient space X is a manifold and c(x, y) = d(x, y) is the
distance on the manifold is considered in [39], while the case when X = R

n

and c(x, y) = ‖y − x‖ for a convex norm ‖ · ‖ different from the Euclidean
one is considered in [25, 4, 3].

For the interested reader, there is a large number of books and wide surveys
about the mass transportation problem from many different points of view.
A very short list can be given by [71, 72, 60, 1, 4, 57].

B Some Tools from Geometric Measure Theory

In this chapter we present some well known results about the definition
of measures and their main properties and about some specific tools from
Geometric Measure Theory, such as the Disintegration Theorem or the
Γ−convergence; more precise and detailed results can be found in many com-
plete books on these subjects, for instance in [33, 2].

B.1 Measures as Duals of the Continuous Functions

We start from the following definition.

Definition B.1. A topological space X is called a Polish space if it is sepa-
rable and metrizable with a distance making it complete.

Recall that a space is said to be metrizable if it can endowed by some
distance inducing the same topology; note also that the completeness, but not
the separability, depends on the distance. In this paper, we always consider
each Polish space endowed with its Borel σ−algebra, denoted by B (X).

Given a Polish space X, we consider the space M+(X) of the finite positive
Borel measures on it, which is defined as the set of all countably additive
functions from B (X) to R

+. It is well known that M+(X) is a (strongly)
closed subset of

(
Cb(X)

)′, the dual space of the space Cb(X) of the continuous
and bounded real functions on X, endowed with the norm

‖u‖Cb(X) := sup
{
|u(x)|, x ∈ X

}
.
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We denote by 〈·, ·〉 the duality between Cb(X)′ and Cb(X), and hence, in
particular, the duality between M+(X) and Cb(X). Even though M+(X) is
not a linear space because we deal only with positive measures, we endow it
with the norm induced by the inclusion in Cb(X)′, that is

‖µ‖M+(X) := sup
{
〈µ, u〉, ‖u‖Cb(X) = 1

}
= µ(X).

The subspace of Cb(X)′ made by the increasing functionals, i.e. all those
µ ∈ Cb(X)′ such that 〈µ, u〉 ≥ 0 whenever u ≥ 0, is denoted by Cb(X)′+: of
course, the inclusion M+(X) ⊆ Cb(X)′+ holds.

We can also consider on M+(X) the weak∗ convergence induced by Cb(X):
we say that a sequence µn ∈ M+(X) weakly∗ converge to µ, and we write
µn

∗ µ, if
〈µn, u〉 −→ 〈µ, u〉 for each u ∈ Cb(X).

Definition B.2. Given a positive measure η ∈ M+(X), we define the set
B η(X) of the measurable sets with respect to η to be the smallest σ−algebra
containing both the set B (X) of all Borel sets and the set of all the η-
negligible subsets of X. Moreover, we say that a set B ⊆ X is universally
measurable if B ∈ B η(X) for any positive measure η.

Definition B.3. Given any positive measure µ ∈ M+(X) we define the sup-
port of µ, written sptµ, to be the smallest closed set K ⊆ X such that

µ(X \ K) = 0.

More in general, one says that the measure µ is concentrated on Γ if

µ(X \ Γ ) = 0.

For any measure µ, the support sptµ is a well-defined closed set of full
measure; in particular, it is the smallest closed set of full measure; on the other
hand, there are in general many sets on which µ is concentrated. However,
it is often very useful to select some set of full measure for µ with particular
properties, which may also differ from the support. In particular, a measure
can be concentrated in a set much smaller than its support: if for example
X = R and µ =

∑
i 2−i δqi

where Q = {qi} is the set of the rationals, then µ
is concentrated in the countable set Q but its support is the whole R.

A first result on Polish spaces is given by the following

Theorem B.4 (Ulam). Given a Polish space X and µ ∈ M+(X), there is
a σ−compact set in which µ is concentrated.

This result is of primary importance, and can be found for example in [33];
one can refer to the same book for the proof of the following very important
theorem.
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Theorem B.5 (Prokhorov). A bounded set {µi, i ∈ I} in M+(X) is
weakly∗ sequentially relatively compact if and only if for any ε > 0 there
is a compact set Kε ⊆ X such that

µi(X \ Kε) ≤ ε for any i ∈ I. (B.1)

The property (B.1) is called tightness of the set {µi}; hence, Prokhorov
Theorem says that a bounded set of measures is weakly∗ sequentially rela-
tively compact if and only if the tightness property holds.

As we mentioned before, any measure is an element of Cb(X)′+; however,
it is fundamental to know when the opposite is also true: in fact, it is very
often useful to define a measure µ by specifying the value of 〈µ, u〉 for any u ∈
Cb(X). When doing so, it is sufficient to check that 〈µ, ·〉 is linear, continuous
and increasing to derive that µ belongs to Cb(X)′+, (and this usually follows
trivially from the definition); but on the other hand, to establish that µ is
in fact a measure is often not straightforward since the inclusion M+(X) ⊆
Cb(X)′+ may in general be strict for Polish spaces.

Hence, we collect now some results which give necessary and sufficient
conditions for an element of Cb(X)′+ to be in M+(X). We will notice that
these results cover many important situations, in particular by Corollary B.8
they always apply to transport plans. The most important result to deal with
the question whether an element of Cb(X)′+ is a measure is given by Daniell’s
Theorem.

Theorem B.6 (Daniell). Let µ ∈ Cb(X)′+: then µ ∈ M+(X) if and only
if for every sequence {hn} ⊆ Cb(X) such that hn ↘ 0 (i.e. hn is pointwise
decreasing to 0) one has 〈µ, hn〉 −→ 0.

Note that, in the hypotheses above, 〈µ, hn〉 is a real positive decreasing
sequence, then 〈µ, hn〉 −→ l for some l ≥ 0; the Theorem claims that µ is a
measure if and only if this limit l is never strictly positive. Once again, one
can find the proof of a more general assertion in the book [33]. We remark
now some easy consequences of Daniell’s Theorem.

Proposition B.7. Let µ ∈ Cb(X)′+: then µ ∈ M+(X) if and only if for
each ε > 0 there is a compact set K such that 〈µ, u〉 ≤ ε‖u‖Cb(X) whenever
u ∈ Cb(X), u ≥ 0 on X, u = 0 on K.

Proof. If µ ∈ M+(X) then the stated property immediately follows from
Ulam’s Theorem. On the other hand, assume that the property holds and
take a sequence hn ↘ 0 as in Daniell’s Theorem: to show that µ ∈ M+(X)
it is sufficient to check that 〈µ, hn〉 → 0. Fix then ε > 0 and consider the
corresponding compact set K.

Since K is compact, there is an integer m such that hm ≤ ε on K; let
then U be an open neighborhood of K such that hm < 2ε on U . Notice that
this is possible since hm is continuous, and that the open set U depends on
ε, on K and on m. Take now a partition of the unity {ϕ1, ϕ2} associated to



138 Appendix

the open sets U and X \ K, i.e. ϕi : X → [0, 1] is a continuous function for
i = 1, 2, ϕ1 +ϕ2 ≡ 1, and ϕ1 (resp. ϕ2) is positive only inside the open set U
(resp. X \ K). We recall that this is always possible, since X is metrizable:
for example, if we denote by d1(x) and d2(x) the distance of x from X \ U
and K respectively, it suffices to note that d1 and d2 are continuous, that
d1 + d2 is everywhere strictly positive and finally to define

ϕ1(x) :=
d1(x)

d1(x) + d2(x)
, ϕ2(x) :=

d2(x)
d1(x) + d2(x)

.

Now we write hm = g1 + g2, where gi = ϕihm: then we note that g1 ≤ hm on
U and g1 = 0 outside of U : consequently ‖g1‖Cb(X) ≤ 2ε. On the other hand,
g2 = 0 on K and, of course, ‖g2‖Cb(X) ≤ ‖hm‖ ≤ ‖h1‖, since the sequence
{hn} is decreasing. Then, thanks to the hypothesis, we can evaluate

〈µ, hm〉 = 〈µ, g1〉 + 〈µ, g2〉 ≤ 2ε ‖µ‖Cb(X)′+ + ε‖h1‖Cb(X)′+ ≤ ε
(
2‖µ‖ + ‖h1‖

)
.

Since the sequence {hn} is decreasing and by the generality of ε we deduce
〈µ, hn〉 → 0 and then the thesis follows by Daniell’s Theorem. ��

We can derive the following very useful corollary.

Corollary B.8. Assume that γ ∈ Cb(X × Y )′+ and that π1γ ∈ M+(X) and
π2γ ∈ M+(Y ). Then γ ∈ M+(X × Y ).

Proof. By Proposition B.7, given an ε > 0 there are two compact sets K1 ⊆ X
and K2 ⊆ Y such that 〈π1γ, v〉 ≤ ε‖v‖ (resp. 〈π2γ,w〉 ≤ ε‖w‖) whenever
v ∈ Cb(X), v ≥ 0 on X, v = 0 on K1 (resp. w ∈ Cb(Y ), w ≥ 0 on Y , w = 0
on K2). We consider then the compact set K = K1 ×K2 in X ×Y : given any
u ∈ Cb(X × Y ) such that u ≥ 0 on X and u = 0 on K, and given a δ > 0,
we can find an open neighborhood U1 × U2 of K such that 0 ≤ u ≤ δ in
U1 × U2. Moreover, arguing as in Proposition B.7, we can find two functions
v : X → [0, ‖u‖] and w : Y → [0, ‖u‖] such that v = 0 on K1, w = 0 on
K2, v = ‖u‖ out of U1 and w = ‖u‖ out of U2. Since v(x) + w(y) ≥ u(x, y)
whenever (x, y) /∈ U1 ×U2 and 〈γ, v(x)+w(y)〉 = 〈π1γ, v〉+ 〈π2γ,w〉, arguing
as in Proposition B.7 one derives

〈γ, u〉 ≤ 2 ε‖u‖ + δ‖γ‖;

by the generality of δ, the thesis follows from Proposition B.7. ��

The corollary above is very important in mass transportation problem:
in fact, it implies in particular that any continuous and linear functional on
X × Y with marginals f+ and f− is in fact a measure, and hence it is a
transport plan.

Let us now briefly discuss the problem whether or not the inclusion
M+(X) ⊆ Cb(X)′+ is strict: first of all, we have an immediate result.
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Lemma B.9. If X is compact, then M+(X) = Cb(X)′+.

Proof. This trivially follows from Daniell’s Theorem, since a sequence of con-
tinuous functions pointwise decreasing to 0 in a compact space is easily seen
to be converging uniformly. ��

However, the result above cannot be extended, as the following example
shows.

Example B.10. Take X = R, define u0 ≡ 1 and for any integer n ≥ 1 let
un : R → [0, 1] be a continuous function such that un ≡ 1 on [−n, n] and
un ≡ 0 outside of (−(n + 1), n + 1). Define D to be the span of {un, n ≥ 0},
that is a subspace of Cb(X). Let moreover µ̃ be the linear functional on D
given by 〈µ̃, u0〉 = 1 and 〈µ̃, un〉 = 0 for any n ≥ 1, which is easily checked
to be continuous and to have unit norm. By Hahn-Banach Theorem, there is
an element µ of Cb(X)′+ extending µ̃. Since the functions hn = u0 − un are
as in the claim of Daniell’s Theorem but 〈µ, hn〉 = 1 for any n, µ is not a
measure, then µ ∈ Cb(X)′+ \M+(X).

The example above can be clearly extended to cover all the non-compact
Polish spaces, therefore in Lemma B.9 the opposite implication is valid too,
so that M+(X) = Cb(X)′+ if and only if X is compact.

Remark B.11. Recall that Riesz Theorem claims that M+(R) is exactly the
set of all increasing linear functionals on Cc(R). In general, using Cc(X) in
place of Cb(X) to define a duality on M+(X) has the advantage that Riesz
Theorem, which states that M+(X) = Cc(X)′+, is true in a wide generality:
for example, making use of Daniell’s Theorem, one can quite easily show that
this is true whenever X is a countable union of open sets {Un} with compact
closures {Kn} such that Kn ⊆ Un+1 for any integer n; in particular, Riesz
Theorem is true whenever X is a locally compact Polish space. Notice in
particular that, since Cc(X) ⊆ Cb(X), whenever Riesz Theorem holds for X
one has that for any µ ∈ Cb(X)′+ there is a µ̃ ∈ M+(X) for which one has
〈µ, u〉 = 〈µ̃, u〉 for every u ∈ Cc(X).

However, it is often preferable to use the duality with Cb(X) whenever one
wants to deal with non compactly supported measures. In this book, the two
choices are equivalent since we assume our ambient space to be a compact
subset of R

n.
We conclude this section by stating two other important results about

Polish spaces, which can be found for example in [28] (in a more general
version).

Theorem B.12 (Measurable selection). Let X and Y be two Polish
spaces, and let η be a Borel measure on X. If ∆ ⊆ X×Y is B η(X)⊗B (Y )-
measurable and the projection of ∆ on X is a set of full η−measure, then there
exists a measurable selection of ∆, i.e. an η−measurable function σ : X → Y
such that for η−a.e. x ∈ X one has (x, σ(x)) ∈ ∆.
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Theorem B.13 (Projection). Let X and Y be two Polish spaces, and let
∆ ⊆ X × Y be a Borel set; then the projection of ∆ on X is universally
measurable.

B.2 Push-forward and Tensor Product of Measures

Given a measurable function ϕ : X → Y , we may define a linear and mass-
preserving operator ϕ# : M+(X) → M+(Y ) (by mass-preserving we mean
that ‖µ‖M+(X) = ‖ϕ#µ‖M+(Y )), according to the following formula:

ϕ#µ(B) := µ
(
ϕ−1(B)

)
∀A ∈ B (Y ).

It is easily noticed that ϕ#µ ∈ M+(Y ), and in particular for any α ∈ Cb(Y )

〈ϕ#µ, α〉 =
∫

Y

α(y) dϕ#µ(y) =
∫

X

α
(
ϕ(x)

)
dµ(x).

An immediate but very useful consequence of the definition is that for any
ϕ : X → Y and ψ : Y → Z it is

(ψ ◦ ϕ)#µ = ψ#(ϕ#µ). (B.2)

Given two measures µ ∈ M+(X) and ν ∈ M+(Y ), we define the tensor
product of µ and ν, µ ⊗ ν ∈ M+(X × Y ), as the unique measure on X × Y
satisfying

µ ⊗ ν(A × B) := µ(A) · ν(B) ∀A ∈ B (X), B ∈ B (Y ).

The fact that there is a measure satisfying the above property follows from
Fubini-Tonelli Theorem, while the uniqueness occurs because the smallest
σ−algebra containing all the sets A×B with A ∈ B (X), B ∈ B (Y ) is the
whole B (X × Y ). In particular, the marginals of µ ⊗ ν are

π1#(µ ⊗ ν) = ν(Y )µ, π2#(ν ⊗ µ) = µ(X)ν .

An interesting particular case is when µ and ν are probability measures;
so, the projections of µ⊗ν are precisely µ and ν: this is particularly useful in
the study of the mass transportation, since if ‖f+‖ = ‖f−‖ = 1 then f+ ⊗f−

is always a transport plan between f+ and f−.

B.3 Measure Valued Maps and Disintegration Theorem

Here we briefly introduce a couple of tools concerning the measure-valued
maps and then present the Disintegration Theorem.
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Definition B.14. A map τ : X → M+(Y ) is called Borel measure-valued
map (resp. µ−measurable measure valued map, where µ ∈ M+(X)) if for any
Borel set B ⊆ Y the function x → τ(x)(B) is Borel (resp. µ−measurable).
Equivalently, τ is said to be Borel (resp. µ−measurable) if for any bounded
Borel ϕ : X × Y → R the function

x →
∫

Y

ϕ(x, y) dτ(x)(y)

is Borel (resp. µ−measurable).

Thanks to the notion above, we can generalize the idea of a tensor product
between two measures: consider a measure ν ∈ M+(Y ) and a ν−measurable
measure valued map y �→ γy with γy ∈ M+(X). We define the tensor product
between {γy} and ν to be the measure γ ∈ M+(X) given by the formula

〈γ, ϕ〉 :=
∫

Y

〈γy, ϕ〉 dν(y)

for any ϕ ∈ Cb(X). We always denote this measure by

γ := γx ⊗ ν.

We can now present the Disintegration Theorem: this result allows to
decompose a measure γ over the space X with respect to a Borel function
α : X → Y , where this “decomposition” is intended as a tensor product
between suitable probability measures and the push-forward of γ. The proof
of this Theorem can be found, for instance, in [2] or [33].

Theorem B.15 (Disintegration). Let α : X → Y be a given Borel map
and γ ∈ M+(X) is a given measure, and define µ ∈ M+(Y ) by setting
µ := α#γ. Then there exists a µ−measurable measure valued function y �→ γy

such that γy is a probability measure on X for any y and

(i) γ = γy ⊗ µ;
(ii) γy is concentrated on {x : α(x) = y} for µ−a.e. y ∈ Y .

Moreover, the measures γy are uniquely determined by (i) and (ii) for µ−a.e.
y ∈ Y .

We state and prove now a useful consequence of the above theorem.

Lemma B.16. The operations of disintegration and of composition com-
mute, i.e. if

γ = γy ⊗ α#γ

is the disintegration of γ ∈ M+(X) with respect to some α : X → Y and a
function β : X → Z is given, then

β#γ = β#γy ⊗ α#γ. (B.3)
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In particular, if α = δ ◦ β for some δ : Z → Y and

β#γ = µy ⊗ δ#
(
β#γ
)

(B.4)

is the disintegration of β#γ with respect of δ, for a.e. y ∈ Y it is

µy = β#γy. (B.5)

Proof. The first part is easy: for any ϕ ∈ Cc(Z), recalling the properties of
the push-forward one has

〈β#γ, ϕ〉 =
∫

X

ϕ(β(x)) dγ(x) =
∫

Y

(∫
X

ϕ(β(x)) dγy(x)
)

dν(y)

=
∫

Y

(∫
Z

ϕ(z) dβ#γy(z)
)

dν(y) = 〈β#γy ⊗ ν, ϕ〉,

thus the claim follows.
Concerning the second part, by the properties of disintegration (B.3)

becomes
β#γ = β#γy ⊗

(
δ#β#γ

)
.

Recall now the disintegration (B.4): according to Theorem B.15, for a.e. y ∈ Y
the measure µy is concentrated on the set {z ∈ Z : δ(z) = y}; analogously,
γy is concentrated on the set {x ∈ X : α(x) = y} = {x ∈ X : δ(β(x)) = y}.
But then β#γy is concentrated on

β
({

x ∈ X : δ(β(x)) = y
})

⊆
{
z ∈ Z : δ(z) = y

}
;

moreover, α#γ = δ#(β#γ) by (B.2). Then, by the uniqueness part of
Theorem B.15, we infer the validity of (B.5) and hence also the second claim
is achieved. ��

B.4 Γ −convergence

In this section we briefly recall the definition and the main properties of the
Γ−convergence; for a more complete and precise reference we address the
reader to the books [29, 12].

The notion of Γ−convergence, first proposed by De Giorgi in [31, 32],
is the following: let X be a metric space, and assume that we are given a
sequence of functionals gn : X → R and a functional g : X → R. We say that
gn Γ−converges to g, or gn

Γ−→ g, if the following hold:

(i) ∀x, ∀ {xn} → x, g(x) ≤ lim inf
n→∞

gn(xn) ;

(ii) ∀x, ∃ {xn} → x : g(x) ≥ lim sup
n→∞

gn(xn) .
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The first property is usually called the liminf inequality and the second one
limsup inequality. Note that thanks to (i), one could simply write in (ii)
g(x) = lim gn(xn) instead of g(x) ≥ lim sup gn(xn). Moreover, given an x ∈
X, any sequence {xn} → x for which the property (ii) is fulfilled is called
recovery sequence. The first fundamental property that one can immediately
notice is the following.

Proposition B.17. If gn
Γ−→ g and there exists a compact set K ⊆ X so that

for any n ∈ N one has infX gn = infK gn, then g admits a minimum and
inf gn → min g. Moreover, for any sequence xn such that gn(xn)− inf gn → 0
and that xn → x̄, one has that x̄ is a minimum point for g.

Proof. It suffices to take xn ∈ K so that gn(xn) ≤ inf gn + 1/n; by the
compactness of K we know the existence of a subsequence {ni}i∈N such that
xni

→ x̄ for a certain x̄ ∈ K: moreover, we can also assume that

gni
(xni

) −−−→
i→∞

lim inf
n→∞

inf
X

gn .

By the liminf property we know then that

g(x̄) ≤ lim inf
i→∞

gni
(xni

) = lim inf
n→∞

inf
X

gn . (B.6)

On the other hand, take any x̃ ∈ X: by the limsup property we know the
existence of a sequence xn ∈ X for which xn → x̃ and

g(x̃) ≥ lim sup
n→∞

gn(xn) ≥ lim sup
n→∞

inf
X

gn . (B.7)

From (B.6) and (B.7) we deduce that x̄ is a minimum point for g, as well as
that infX gn converges, for n → ∞, to minX g. The thesis then immediately
follows. ��

We claim now the second property, which is also very important, namely
a compactness result for Γ−convergence.

Theorem B.18. Assume that X is separable. Then, for any sequence of
functions gn : X → R, there exists a subsequence gni

which admits a Γ−limit.

The above result is very strong: indeed, given any sequence of functions,
it allows us to assume, up to a subsequence, that they Γ−converge to some
limit.

We present now the definition of the Γ − lim inf and Γ − lim sup of a
sequence of functions. Given a sequence {gn}, we define

Γ − lim inf
n→∞

gn(x) := inf
{

lim inf
n→∞

gn(xn) : xn → x} ;

Γ − lim sup
n→∞

gn(x) := inf
{

lim sup
n→∞

gn(xn) : xn → x} .
(B.8)
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It is clear from the definitions that one has always

Γ − lim inf gn ≤ Γ − lim sup gn ,

and that the sequence Γ−converges (to a function g) if and only if

Γ − lim inf gn = Γ − lim sup gn (= g) .

Proposition B.19. One has

Γ − lim inf
n→∞

gn = sup
n∈N

(
env
(
infm≥n gm

))
, (B.9)

where env(ϕ) denotes the lower semicontinuous envelope of any function ϕ :
X → R. In particular, Γ − lim inf gn is always lower semicontinuous in X.

Proof. The equivalence (B.9) is verified directly from the definition (B.8).
The lower semicontinuity of the Γ − lim inf follows from (B.9) once one re-
minds that the supremum of lower semicontinuous functions is still lower
semicontinuous. ��

Finally, one can show an important property of the Γ − lim inf of the
sequence gn: it is the infimum of all the possible Γ−limits of subsequences
of {gn}; analagously, the Γ − lim sup is the supremum of all the possible
Γ−limits of subsequences of {gn}.

We conclude this section pointing out an useful consequence of (B.9) in
the setting of the weak∗ convergence of measures.

Lemma B.20. Let X be a Polish space, {νn} ∈ M+(X) a sequence of mea-
sures weakly∗ converging to ν, and {gn} : X → R a sequence of l.s.c. func-
tions. Then ∫

X

Γ − lim inf
n→∞

gn dν ≤ lim inf
n→∞

∫
X

gn dνn .

Proof. Defining for simplicity

τn := env
(
infm≥n gm

)
,

we fix j ∈ N and evaluate

lim inf
n→∞

∫
X

gn dνn ≥ lim inf
n→∞

∫
X

(
infm≥j gm

)
dνn

≥ lim inf
n→∞

∫
X

env
(
infm≥j gm

)
dνn

= lim inf
n→∞

∫
X

τj dνn ≥
∫

X

τj dν.

Since this is true for any j ∈ N, by the Lebesgue monotone convergence
theorem and (B.9) the thesis follows. ��
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41–65.

18. G. Buttazzo, A. Pratelli & E. Stepanov, Optimal pricing policies for public transporta-
tion networks, SIAM J. Optimization, 16 (3) (2006), 826–853.

19. G. Buttazzo & E. Stepanov, On regularity of transport density in the Monge-
Kantorovich problem, SIAM J. Control Optim., 42 (3) (2003), 1044–1055.

20. G. Buttazzo & E. Stepanov, Minimization problems for average distance functionals,
in “Calculus of Variations: topics from the mathematical heritage of E. De Giorgi”,
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22. Y. Brenier, Décomposition polaire et réarrangement monotone des champs de vecteurs,
C. R. Acad. Sci. Paris Sér. I Math., 305 no. 19 (1987), 805–808.

23. Y. Brenier, Polar factorization and monotone rearrangement of vector-valued functions,
Comm. Pure Appl. Math., 44 no. 4 (1991), 375–417.

24. Y. Brenier, The dual least action problem for an ideal, incompressible fluid, Arch.
Rational Mech. Anal., 122 (4) (1993), 323–351.

25. L. Caffarelli, M. Feldman & R.J. McCann, Constructing optimal maps for Monge’s
transport problem as a limit of strictly convex costs, J. Amer. Math. Soc., 15 (2002),
1–26.

26. P. Cannarsa & P. Cardaliaguet, Representation of equilibrium solutions to the table
problem for growing sandpiles, J. Eur. Math. Soc. (JEMS), 6 (4) (2004), 435–464.

27. V. Caselles & J.-M. Morel, Irrigation, in Variational methods for discontinuous
structures, Vol. 51 of Progr. Nonlinear Differential Equations Appl., pages 81–90,
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