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FOREWORD

“What is Calculus?” is a classic deep question. Calculus is the most powerful branch of
mathematics, which revolves around calculations involving varying quantities. It provides a
system of rules to calculate quantities which cannot be calculated by applying any other branch
of mathematics. Schools or colleges find it difficult to motivate students to learn this subject,
while those who do take the course find it very mechanical. Many a times, it has been observed
that students incorrectly solve real-life problems by applying Calculus. They may not be
capable to understand or admit their shortcomings in terms of basic understanding of
fundamental concepts! The study of Calculus is one of the most powerful intellectual
achievements of the human brain. One important goal of this manuscript is to give begin-
ner-level students an appreciation of the beauty of Calculus. Whether taught in a traditional
lecture format or in the lab with individual or group learning, Calculus needs focusing on
numerical and graphical experimentation. This means that the ideas and techniques have to be
presented clearly and accurately in an articulated manner.

The ideas related with the development of Calculus appear throughout mathematical history,
spanning over more than 2000 years. However, the credit of its invention goes to the
mathematicians of the seventeenth century (in particular, to Newton and Leibniz) and continues
up to the nineteenth century, when French mathematician Augustin-Louis Cauchy (1789-1857)
gave the definition of the limit, a concept which removed doubts about the soundness of
Calculus, and made it free from all confusion. The history of controversy about Calculus is most
illuminating as to the growth of mathematics. The soundness of Calculus was doubted by the
greatest mathematicians of the eighteenth century, yet, it was not only applied freely but great
developments like differential equations, differential geometry, and so on were achieved.
Calculus, which is the outcome of an intellectual struggle for such a long period of time, has
proved to be the most beautiful intellectual achievement of the human mind.

There are certain problems in mathematics, mechanics, physics, and many other branches of
science, which cannot be solved by ordinary methods of geometry or algebra alone. To solve
these problems, we have to use a new branch of mathematics, known as Calculus. It uses not
only the ideas and methods from arithmetic, geometry, algebra, coordinate geometry, trigo-
nometry, and so on, but also the notion of limit, which is a new idea which lies at the foundation
of Calculus. Using this notion as a tool, the derivative of a function (which is a variable quantity)
is defined as the limit of a particular kind. In general, Differential Calculus provides a method
for calculating “the rate of change” of the value of the variable quantity. On the other hand,
Integral Calculus provides methods for calculating the total effect of such changes, under the
given conditions. The phrase rate of change mentioned above stands for the actual rate of
change of a variable, and not its average rate of change. The phrase “rate of change” might look
like a foreign language to beginners, but concepts like rate of change, stationary point, and root,
and so on, have precise mathematical meaning, agreed-upon all over the world. Understanding
such words helps a lot in understanding the mathematics they convey. At this stage, it must also

ix
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be made clear that whereas algebra, geometry, and trigonometry are the tools which are used in
the study of Calculus, they should not be confused with the subject of Calculus.

This manuscript is the result of joint efforts by Prof. Ulrich L. Rohde, Mr. G. C. Jain, Dr. Ajay
K. Poddar, and myself. All of us are aware of the practical difficulties of the students face while
learning Calculus. I am of the opinion that with the availability of these notes, students should be
able to learn the subject easily and enjoy its beauty and power. In fact, for want of such simple
and systematic work, most students are learning the subject as a set of rules and formulas, which
is really unfortunate. I wish to discourage this trend.

Professor Ulrich L. Rohde, Faculty of Mechanical, Electrical and Industrial Engineering
(RF and Microwave Circuit Design & Techniques) Brandenburg University of Technology,
Cottbus, Germany has optimized this book by expanding it, adding useful applications, and
adapting it for today’s needs. Parts of the mathematical approach from the Rohde, Poddar, and
Boeck textbook on wireless oscillators (The Design of Modern Microwave Oscillators for
Wireless Applications: Theory and Optimization, John Wiley & Sons, ISBN 0-471-72342-8,
2005) were used as they combine differentiation and integration to calculate the damped and
starting oscillation condition using simple differential equations. This is a good transition for
more challenging tasks for scientific studies with engineering applications for beginners who
find difficulties in understanding the problem-solving power of Calculus.

Mr. Jain is not a teacher by profession, but his curiosity to go to the roots of the subject to
prepare the so-called concept-oriented notes for systematic studies in Calculus is his
contribution toward creating interest among students for learning mathematics in general,
and Calculus in particular. This book started with these concept-oriented notes prepared for
teaching students to face real-life engineering problems. Most of the material pertaining to this
manuscript on calculus was prepared by Mr. G. C. Jain in the process of teaching his kids and
helping other students who needed help in learning the subject. Later on, his friends (including
me) realized the beauty of his compilation and we wanted to see his useful work published.

Tam also aware that Mr. Jain got his notes examined from some professors at the Department
of Mathematics, Pune University, India. I know Mr. Jain right from his scientific career at
Armament Research and Development Establishment (ARDE) at Pashan, Pune, India, where I
was a Senior Scientist (1982-1998) and headed the Aerodynamic Group ARDE, Pune in DRDO
(Defense Research and Development Organization), India. Coincidently, Dr. Ajay K. Poddar,
Chief Scientist at Synergy Microwave Corp., NJ 07504, USA was also a Senior Scientist
(1990-2001) in a very responsible position in the Fuze Division of ARDE and was aware of the
aptitude of Mr. Jain.

Dr. Ajay K. Poddar has been the main driving force towards the realization of the
conceptualized notes prepared by Mr. Jain in manuscript form and his sincere efforts made
timely publication possible. Dr. Poddar has made tireless effort by extending all possible help to
ensure that Mr. Jain’s notes are published for the benefit of the students. His contributions
include (but are not limited to) valuable inputs and suggestions throughout the preparation of
this manuscript for its improvement, as well as many relevant literature acquisitions. I am sure,
as a leading scientist, Dr. Poddar will have realized how important it is for the younger
generation to avoid shortcomings in terms of basic understanding of the fundamental concepts
of Calculus.

I have had a long time association with Mr. Jain and Dr. Poddar at ARDE, Pune. My
objective has been to proofread the manuscript and highlight its salient features. However, only
a personal examination of the book will convey to the reader the broad scope of its coverage and
its contribution in addressing the proper way of learning Calculus. I hope this book will prove to
be very useful to the students of Junior Colleges and to those in higher classes (of science and
engineering streams) who might need it to get rid of confusions, if any.
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My special thanks goes to Dr. Poddar, who is not only a gifted scientist but has also been a
mentor. It was his suggestion to publish the manuscript in two parts (Part I: Introduction to
Differential Calculus: Systematic Studies with Engineering Applications for Beginners and
Part II: Introduction to Integral Calculus: Systematic Studies with Engineering Applications for
Beginners) so that beginners could digest the concepts of Differential and Integral Calculus
without confusion and misunderstanding. It is the purpose of this book to provide a clear
understanding of the concepts needed by beginners and engineers who are interested in the
application of Calculus of their field of study. This book has been designed as a supplement to all
current standard textbooks on Calculus and each chapter begins with a clear statement of
pertinent definitions, principles, and theorems together with illustrative and other descriptive
material. Considerably more material has been included here than can be covered in most high
schools and undergraduate study courses. This has been done to make the book more flexible; to
provide concept-oriented notes and stimulate interest in the relevant topics. I believe that
students learn best when procedural techniques are laid out as clearly and simply as possible.
Consistent with the reader’s needs and for completeness, there are a large number of examples
for self-practice.

The authors are to be commended for their efforts in this endeavor and I am sure that both
Part I and Part I will be an asset to the beginner’s handbook on the bookshelf. I hope that after
reading this book, the students will begin to share the enthusiasm of the authors in under-
standing and applying the principles of Calculus and its usefulness. With all these changes, the
authors have not compromised our belief that the fundamental goal of Calculus is to help
prepare beginners enter the world of mathematics, science, and engineering.

Finally, I would like to thank Susanne Steitz-Filler, Editor (Mathematics and Statistics)
at John Wiley & Sons, Inc., Danielle Lacourciere, Senior Production Editor at John Wiley &
Sons, Inc., and Sanchari S. at Thomosn Digital for her patience and splendid cooperation
throughout the journey of this publication.

AJjoy Kanti GHOSH

PRrROFESSOR & FacuLty INCHARGE (FLIGHT LABORATORY)
DEPARTMENT OF AEROSPACE ENGINEERING

IIT KANPUR, INDIA



PREFACE

In general, there is a perception that Calculus is an extremely difficult subject, probably because
the required number of good teachers and good books are not available. We know that books
cannot replace teachers, but we are of the opinion that, good books can definitely reduce
dependence on teachers, and students can gain more confidence by learning most of the
concepts on their own. In the process of helping students to learn Calculus, we have gone
through many books on the subject, and realized that whereas a large number of good books are
available at the graduate level, there is hardly any book available for introducing the subject to
beginners. The reason for such a situation can be easily understood by anyone who knows the
subject of Calculus and hence the practical difficulties associated with the process of learning
the subject. In the market hundreds of books are available on Calculus. All these books contain a
large number of important solved problems. Besides, the rules for solving the problems and the
list of necessary formulae are given in the books, without discussing anything about the basic
concepts involved. Of course, such books are useful for passing the examination(s), but
Calculus is hardly learnt from these books. Initially, the coauthors had compiled concept-
oriented notes for systematic studies in differential and integral Calculus, intended for
beginners. These notes were used by students, in school- and undergraduate-level courses.
The response and the appreciation experienced from the students and their parents encouraged
us to make these notes available to the beginners. It is due to the efforts of our friends and well-
wishers that our dream has now materialized in the form of two independent books: Part I for
Differential Calculus and Part II for Integral Calculus. Of course there are some world class
authors who have written useful books on the subject at introductory level, presuming that the
reader has the necessary knowledge of prerequisites. Some such books are What is Calculus
About? (By Professor W.W. Sawyer), Teach Yourself Calculus (By P. Abbott, B.A), Calculus
Made Easy (By S.P. Thomson), and Calculus Explained (By W.J. Reichmann). Any person
with some knowledge of Calculus will definitely appreciate the contents and the approach of the
authors. However, a reader will be easily convinced that most of the beginners may not be able to
get (from these books) the desired benefit, for various reasons. From this point of view, both
parts (Part I and Part II) of our book would prove to be unique since it provides a comprehensive
material on Calculus, for the beginners. First six chapters of Part I would help the beginner to
come up to the level, so that one can easily learn the concept of limit, which is in the foundation
of calculus. The purpose of these works is to provide the basic (but solid) foundation of
Calculus to beginners. The books aim to show them the enjoyment in the beauty and power
of Calculus and develop the ability to select proper material needed for their studies in any
technical and scientific field, involving Calculus.

One reason for such a high dropout rate is that at beginner levels, Calculus is so poorly
taught. Classes tend to be so boring that students sometimes fall asleep. Calculus textbooks get
fatter and fatter every year, with more multicolor overlays, computer graphics, and photographs
of eminent mathematicians (starting with Newton and Leibniz), yet they never seem easier to
comprehend. We look through them in vain for simple, clear exposition, and for problems that

xiii
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will hook a student’s interest. Recent years have seen a great hue and cry in mathematical circles
over ways to improve teaching Calculus to beginner and high-school students. Endless
conferences have been held, many funded by the federal government, dozens of experimental
programs are here and there. Some leaders of reform argue that a traditional textbook gets
weightier but lacks the step-by-step approach to generate sufficient interest to learn Calculus in
beginner, high school, and undergraduate students. Students see no reason why they should
master tenuous ways of differentiating and integrating by hand when a calculator or computer
will do the job. Leaders of Calculus reform are not suggesting that calculators and computers
should no longer be used; what they observe is that without basic understanding about the
subject, solving differentiation and integration problems will be a futile exercise. Although
suggestions are plentiful for ways to improve Calculus understanding among students and
professionals, a general consensus is yet to emerge.

The word “Calculus” is taken from Latin and it simply means a “stone” or “pebble”, which
was employed by the Romans to assist the process of counting. By extending the meaning of the
word “Calculus”, it is now applied to wider fields (of calculation) which involve processes
other than mere counting. In the context of this book (with the discussion to follow), the word
“Calculus” is an abbreviation for Infinitesimal Calculus or to one of its two separate but
complimentary branches—Differential Calculus and Integral Calculus. Tt is natural that the
above terminology may not convey anything useful to the beginner(s) until they are acquainted
with the processes of differentiation and integration. This book is a true textbook with
examples, it should find a good place in the market and shall compare favorably to those
with more complicated approaches.

The author’s aim throughout has been to provide a tour of Calculus for a beginner as
well as strong fundamental basics to undergraduate students on the basis of the following
questions, which frequently came to our minds, and for which we wanted satisfactory and
correct answers.

(i) What is Calculus?
(ii) What does it calculate?
(iii) Why do teachers of physics and mathematics frequently advise us to learn Calculus
seriously?
(iv) How is Calculus more important and more useful than algebra and trigonometry or
any other branch of mathematics?
(v) Why is Calculus more difficult to absorb than algebra or trigonometry?
(vi) Are there any problems faced in our day-to-day life that can be solved more easily by
Calculus than by arithmetic or algebra?
(vii) Are there any problems which cannot be solved without Calculus?
(viii) Why study Calculus at all?
(ix) Is Calculus different from other branches of mathematics?
(x) What type(s) of problems are handled by Calculus?

Atthis stage, we can answer these questions only partly. However, as we proceed, the associated
discussions will make the answers clear and complete. To answer one or all of the above
questions, it was necessary to know: How does the subject of Calculus begin?; How can we
learn Calculus? and What can Calculus do for us? The answers to these questions are hinted at
in the books: What is Calculus about? and Mathematician’s Delight, both by W.W. Sawyer.
However, it will depend on the curiosity and the interest of the reader to study, understand, and
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absorb the subject. The author use very simple and nontechnical language to convey the ideas
involved. However, if the reader is interested to learn the operations of Calculus faster, then he
may feel disappointed. This is so, because the nature of Calculus and the methods of learning it
are very different from those applicable in arithmetic or algebra. Besides, one must have a real
interest to learn the subject, patience to read many books, and obtain proper guidance from
teachers or the right books.

Calculus is a higher branch of mathematics, which enters into the process of calculating
changing quantities (and certain properties), in the field of mathematics and various branches of
science, including social science. It is called Mathematics of Change. We cannot begin to
answer any question related with change unless we know: What is that change and how it
changes? This statement takes us closer to the concept of function y =f(x), wherein “y” is
related to “x” through a rule “f’. We say that “y” is a function of x, by which we mean that “‘y
depends on “x”. (We say that “y” is a dependent variable, depending on the value of x, an
independent varlable ) From th1§ statement, it is clear that as the value of “x” changes, there
results a corresponding change in the value of ““y”, depending on the nature of the function “f”
or the formula defining “f”.

The immense practical power of Calculus is due to its ability to describe and predict the
behavior of the changing quantities “y” and “x”. In case of linear functions [which are of the
formy=mx + b], an amount of change in the value of “x” causes a proportionate change in the
value of “y”. However, in the case of other functions (like y = X — 5,y= x3, y= X+ 3,
y=sin x, y=3e" + Xx, etc.) which are not linear, no such proportionality exists. Our interest
lies in studying the behavior of the dependent variable “y”[=f(x)] with respect to the change in
(the value of) the 1ndependent variable “x”. In other words, we wish to find the rate at which “y”
changes with respect to “

We know that every rate is the ratio of change that may occur in quantities which are related
to one another through a rule. It is easy to compute the average rate at which the value of y
changes when x is changed from x| to x,. It can be easily checked that (for the nonlinear
Jfunctions) these average rate(s) are different between different values of x. [Thus, if |x, — x|
=|x3—X|=|x4—x3]=...... , (for all xy, x5, X3, X4,. . .) then we have f(x,) — flx;) # f(xz) —
SO) A f(xg) —fxz)#£ ..o .. ]. Thus, we get that the rate of change of y is different in between
different values of x.

Our interest lies in computing the rate of change of ““y” at every value of “x”. It is known
as the instantaneous rate of change of “y” with respect to “x”, and we call it the “rate function”
of “y” with respect to “x”. It is also called the derlvedfunctlon of “y” with respect to “x”
and denoted by the symbol y'[=f"(x)]. The derived function f’(x) is also called the derivative of
y[=f(x)] with respect to x. The equation y' = f’(x) tells that the derived function f(x) is also a
function of x, derived (or obtained) from the original function y = f(x). There is another (useful)
symbol for the derived function, denoted by dy/dx. This symbol appears like a ratio, but it must
be treated as a single unit, as we will learn later. The equation y' =f'(x) gives us the
instantaneous rate of change of y with respect to x, for every value of “x”, for which f’(x)
is defined.

To define the derivative formally and to compute it symbolically is the subject of Differential
Calculus. In the process of defining the derivative, various subtleties and puzzles will inevitably
arise. Nevertheless, it will not be difficult to grasp the concept (of derivatives) with our
systematic approach. The relationship between f{x) and f’(x) is the main theme. We will study
what it means for f'(x) to be “the rate function” of f(x), and what each function says about
the other. It is important to understand clearly the meaning of the instantaneous rate of change
of f(x) with respect to x. These matters are systematically discussed in this book. Note that we
have answered the first two questions and now proceed to answer the third one.

[TARL]

“x (1)
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There are certain problems in mathematics and other branches of science, which cannot be
solved by ordinary methods known to us in arithmetic, geometry, and algebra alone. In
Calculus, we can study the properties of a function without drawing its graph. However, it is
important to be aware of the underlying presence of the curve of the given function. Recall that
this is due to the introduction of coordinate geometry by Decartes and Fermat. Now, consider
the curve defined by the function y = x® — x* — x. We know that, the slope of this curve changes
from point to point. If it is desired to find its slope at x = 2, then Calculus alone can help us give
the answer, which is 7. No other branch of mathematics would be useful.

Calculus uses not only the ideas and methods from arithmetic, geometry, algebra, coordinate
geometry, trigonometry, and so on but also the notion of limit, which is a new idea that lies at
the foundation of Calculus. Using the notion of limit as a tool, the derivative of a function is
defined as the limit of a particular kind. (It will be seen later that the derivative of a function is
generally a new function.) Thus, Calculus provides a system of rules for calculating changing
quantities which cannot be calculated otherwise. Here it may be mentioned that the concept
of limit is equally important and applicable in Integral Calculus, which will be clear
when we study the concept of the definite integral in Chapter 5 of Part II. Calculus is the most
beautiful and powerful achievement of the human brain. It has been developed over a period
of more than 2000 years. The idea of derivative of a function is among the most important
concepts in all of mathematics and it alone distinguishes Calculus from the other branches of
mathematics.

The derivative and an integral have found many diverse uses. The listis very long and can be
seen in any book on the subject. Differential calculus is a subject which can be applied to
anything which moves, or changes or has a shape. It is useful for the study of machinery of all
kinds - for electric lighting and wireless, optics and thermodynamics. It also helps us to answer
questions about the greatest and smallest values a function can take. Professor W.W. Sawyer, in
his famous book Mathematician’s Delight, writes: Once the basic ideas of differential calculus
have been grasped, a whole world of problems can be tackled without great difficulty. It is a
subject well worth learning.

On the other hand, integral calculus considers the problem of determining a function from
the information about its rate of change. Given a formula for the velocity of a body, as a
function of time, we can use integral calculus to produce a formula that tells us how far the body
has traveled from its starting point, at any instant. It provides methods for the calculation of
quantities such as areas and volumes of curvilinear shapes. It is also useful for the measurement
of dimensions of mathematical curves.

The concepts basic to Calculus can be traced, in uncrystallized form, to the time of the
ancient Greeks (around 287-212 BC). However, it was only in the sixteenth and the early
seventeenth centuries that mathematicians developed refined techniques for determining
tangents to curves and areas of plane regions. These mathematicians and their ingenious
techniques set the stage for Isaac Newton (1642-1727) and Gottfried Leibniz (1646-1716),
who are usually credited with the “invention” of Calculus.

Later on, the concept of the definite integral was also developed. Newton and Leibniz
recognized the importance of the fact that finding derivatives and finding integrals (i.e.,
antiderivatives) are inverse processes, thus making possible the rule for evaluating definite
integrals. All these matters are systematically introduced in Part IT of the book. (There were
many difficulties in the foundation of the subject of Calculus. Some problems reflecting
conflicts and doubts on the soundness of the subject are reflected in the “Historical Notes™ given
at the end of Chapter 9 of PartI.) During the last 150 years, Calculus has matured bit by bit. In the
middle of the nineteenth century, French Mathematician Augustin-Louis Cauchy (1789-1857)
gave the definition of limit, which removed all doubts about the soundness of Calculus and
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made it free from all confusion. It was then that Calculus had become, mathematically, much as
we know it today.

To obtain the derivative of a given function (and to apply it for studying the properties of the
function) is the subject of the ‘differential calculus’. On the other hand, computing a function
whose derivative is the given function is the subject of integral calculus. [The function so
obtained is called an anti-derivative of the given function.] In the operation of computing the
antiderivative, the concept of limit is involved indirectly. On the other hand, in defining the
definite integral of a function, the concept of limit enters the process directly. Thus, the concept
of limit is involved in both, differential and integral calculus. In fact, we might define calculus
as the study of limits. Tt is therefore important that we have a deep understanding of this
concept. Although, the topic of /imit is rather theoretical in nature, it has been presented and
discussed in a very simple way, in the Chapters 7(a) and 7(b) of Part-I (i.e. Differential Calculus)
and in Chapter 5 of Part-II (i.e. Integral Calculus). Around the year 1930, the increasing use of
Calculus in engineering and sciences, created a necessary requirement to encourage students of
engineering and science to learn Calculus. During those days, Calculus was considered an
extremely difficult subject. Many authors came up with introductory books on Calculus, but
most students could not enjoy the subject, because the basic concepts of the Calculus and its
interrelations with the other subjects were probably not conveyed or understood properly. The
result was that most of the students learnt Calculus only as a set of rules and formulas. Even
today, many students (at the elementary level) “learn” Calculus in the same way. For them, it is
easy to remember formulae and apply them without bothering to know: How the formulae have
come and why do they work?

The best answer to the question “Why study Calculus at all?” is available in the book:
Calculus from Graphical, Numerical and Symbolic Points of View by Arnold Ostebee and Paul
Zorn. There are plenty of good practical and “educational” reasons, which emphasize that one
must study Calculus:

¢ Because it is good for applications;

¢ Because higher mathematics requires it;
¢ Because its good mental training;

¢ Because other majors require it; and

¢ Because jobs require it.

Also, another reason to study Calculus (according to the authors) is that Calculus is among our
deepest, richest, farthest-reaching, and most beautiful intellectual achievements. This manu-
script differs in certain respects, from the conventional books on Calculus for the beginners.

Organization

The work is divided into two independent books: Book I—Differential Calculus (Introduction
to Differential Calculus: Systematic Studies with Engineering Applications for Beginners)
and Book II-Integral Calculus (Introduction to Integral Calculus: Systematic Studies with
Engineering Applications for Beginners).

Part I consists of 23 chapters in which certain chapters are divided into two sub-units such as
7aand 7b, 11a and 11b, 13a and 13b, 15a and 15b, 19a and 19b. Basically, these sub-units are
different from each other in one way, but they are interrelated through concepts.

Part I consists of nine chapters in which certain chapters are divided into two sub-units such
as 3a and 3b, 4a and 4b, 6a and 6b, 7a and 7b, 8a and 8b, and finally 9a and 9b. The division of
chapters is based on the same principle as in the case of Part I. Each chapter (or unit) in both the
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parts begins with an introduction, clear statements of pertinent definitions, principles and
theorems. Meaning(s) of different theorems and their consequences are discussed at length,
before they are proved. The solved examples serve to illustrate and amplify the theory, thus
bringing into sharp focus many fine points, to make the reader comfortable.

The contents of each chapter are accompanied by all the necessary details. However, some
useful information about certain chapters is furnished below. Also, illustrative and other
descriptive material (along with notes and remarks) is given to help the beginner understand the
ideas involved easily.

Book II (Introduction to Integral Calculus: Systematic Studies with Engineering Applica-
tions for Beginners):

Chapter 1 deals with the operation of antidifferentiation (also called integration) as the
inverse process of differentiation. Meanings of different terms are discussed at length. The
comparison between the operations of differentiation and integration are discussed.

Chapter(s) 2, 3a, 3b, 4a, and 4b deal with different methods for converting the given
integrals to the standard form, so that the antiderivatives (or integrals) of the given
functions can be easily written using the standard results.

Chapter 5 deals with the discussion of the concept of area, leading to the concept of the
definite integral and certain methods of evaluating definite integrals.

Chapter 6a deals with the first and second fundamental theorems of Calculus and their
applications in computing definite integrals.

Chapter 6b deals with the process of defining the natural logarithmic function using
Calculus.

Chapter 7a deals with the methods of evaluating definite integrals using the second
fundamental theorem of Calculus.

Chapter 7b deals with the important properties of definite integrals established using the
second fundamental theorem of Calculus and applying them to evaluate definite integrals.

Chapter 8a deals with the computation of plane areas bounded by curves.

Chapter 8b deals with the application of the definite integral in computing the lengths of
curves, the volumes of solids of revolution, and the curved surface areas of the solids of
revolution.

Chapter 9a deals with basic concepts related to differential equations and the methods of
forming them and the types of their solutions.

Chapter 9b deals with certain methods of solving ordinary differential equations of the
first order and first degree.

An important advice for using both the parts of this book:

e The CONTENTS clearly indicate how important it is to go through the prerequisites.
Certain concepts [like (—1) - (—1) = 1, and why division by zero is not permitted in
mathematics, etc] which are generally accepted as rules, are discussed logically. The
concept of infinity and its algebra are very important for learning calculus. The ideas
and definitions of functions introduced in Chapter-2, and extended in Chapter-6, are
very useful.

¢ The role of co-ordinate geometry in defining trigonometric functions and in the devel-
opment of calculus should be carefully learnt.
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e The theorems, in both the Parts are proved in a very simple and convincing way. The
solved examples will be found very useful by the students of plus-two standard and the
first year college. Difficult problems have been purposely not included in solved examples
and the exercise, to maintain the interest and enthusiasm of the beginners. The readers may
pickup difficult problems from other books, once they have developed interest in the
subject.

Concepts of limit, continuity and derivative are discussed at length in chapters 7(a) & 7(b),
8 and 9, respectively. The one who goes through from chapters-1 to 9 has practically learnt
more than 60% of differential calculus. The readers will find that remaining chapters of
differential calculus are easy to understand. Subsequently, readers should not find any
difficulties in learning the concepts of integral calculus and the process of integration
including the methods of computing definite integrals and their applications in fining areas
and volumes, etc.

The differential equations right from their formation and the methods of solving certain
differential equations of first order and first degree will be easily learnt.

Students of High Schools and Junior College level may treat this book as a text book for
the purpose of solving the problems and may study desired concepts from the book
treating it as a reference book. Also the students of higher classes will find this book very
useful for understanding the concepts and treating the book as a reference book for this
purpose. Thus, the usefulness of this book is not limited to any particular standard. The
reference books are included in the bibliography.

I hope, above discussion will be found very useful to all those who wish to learn the basics of
calculus (or wish to revise them) for their higher studies in any technical field involving
calculus.

Suggestions from the readers for typos/errors/improvements will be highly appreciated.

Finally, efforts have been made to the ensure that the interest of the beginner is maintained all
through. It is a fact that reading mathematics is very different from reading a novel. However,
we hope that the readers will enjoy this book like a novel and learn Calculus. We are very sure
that if beginners go through the first six chapters of Part I (i.e., prerequisites), then they may not
only learn Calculus, but will start loving mathematics.

DR. -ING. Ajay KUMAR PODDAR

CHIEF SCIENTIST

SYNERGY MICROWAVE CORPORATION

NJ 07504, USA

FormER SENIOR ScientisT (DRDO, InDIA)

Spring 2011
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INTRODUCTION

In less than 15min, let us realize that calculus is capable of computing many quantities
accurately, which cannot be calculated using any other branch of mathematics.

To be able to appreciate this fact, we consider a “nonvertical line” that makes an angle “6”
with the positive direction of x-axis, and that § # 0. We say that the given line is “inclined” at an
angle “6” (or that the inclination of the given line is “0”).

The important idea of our interest is the “slope of the given line,” which is expressed by the
trigonometric ratio “tan 6.” Technically the slope of the line tells us that if we travel by “one
unit,” in the positive direction along the x-axis, then the number of units by which the height of
the line rises (or falls) is the measure of its slope.

Also, it is important to remember that the “slope of a line” is a constant for that line. On the
other hand “the slope of any curve” changes from point to point and it is defined in terms of the
slope of the “tangent line” existing there. To find the slope of a curve y = f(xx) at any value of x,
the “differential calculus” is the only branch of Mathematics, which can be used even if we are
unable to imagine the shape of the curve.

At this stage, it is very important to remember (in advance) and understand clearly that
whereas, the subject of Calculus demands the knowledge of algebra, geometry, coordinate
geometry and trigonometry, and so on (as a prerequisite), but they do know from the subject of
Calculus. Hence, calculus should not be confused as a combination of these branches.

Calculus is a different subject. The backbone of Calculus is the “concept of limit,” which is
introduced and discussed at length in Part I of the book. The first eight chapters in Part I simply
offer the necessary material, under the head: What must you know to learn Calculus? We learn
the concept of “derivative” in Chapter 9. In fact, it is the technical term for the “slope.”

The ideas developed in Part I are used to define an inverse operation of computing
antiderivative. (In a sense, this operation is opposite to that of computing the derivative of
a given function.)

Most of the developments in the field of various sciences and technologies are due to
the ideas developed in computing derivatives and antiderivatives (also called integrals). The
matters related with integrals are discussed in “Integral Calculus.”

The two branches are in fact complimentary, since the process of integral calculus is
regarded as the inverse process of the differential calculus. As an application of integral
calculus, the area under a curve y =f(x) from x =a to x = b, and the x-axis can be computed
only by applying the integral calculus. No other branch of mathematics is helpful in computing
such areas with curved boundaries.

Pror. ULricH L. ROHDE
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1 Antiderivative(s) [or Indefinite
Integral(s)]

1.1 INTRODUCTION

In mathematics, we are familiar with many pairs of inverse operations: addition and subtraction,
multiplication and division, raising to powers and extracting roots, taking logarithms and finding
antilogarithms, and so on. In this chapter, we discuss the inverse operation of differentiation,
which we call antidifferentiation.

Definition (1): A function ¢(x) is called an antiderivative of the given function f(x) on the
interval [a, b], if at all points of the interval [a, b],

¢ (x) = ()"

Of course, it is logical to use the terms differentiation and antidifferentiation to mean the
operations, which must be inverse of each other. However, the term integration is frequently
used to stand for the process of antidifferentiation, and the term an integral (or an indefinite
integral) is generally used to mean an antiderivative of a function.

The reason behind using the terminology “an integral” (or an indefinite integral) will be clear
only after we have studied the concept of “the definite integral” in Chapter 5. The relation
between “the definite integral” and “an antiderivative” or an indefinite integral of a function is
established through first and second fundamental theorems of Calculus, discussed in Chapter 6a.

For the time being, we agree to use these terms freely, with an understanding that the terms:
“an antiderivative” and “an indefinite integral”” have the same meaning for all practical purposes
and that the logic behind using these terms will be clear later on. If a function fis differentiable
in an interval Z, [i.e., if its derivative f” exists at each point in /] then a natural question arises:
Given f'(x) which exists at each point of I, can we determine the function f(x)? In this chapter,
we shall consider this reverse problem, and study some methods of finding f(x) from f'(x).

Note: We know that the derivative of a function f(x), if it exits, is @ unique function. Let f'(x) =
g(x) and that f(x) and g(x) [where g(x) =f"(x)] both exist for each x € I, then we say that an
antiderivative (or an integral) of the function g(x) is f(x).?

1-Anti-differentiation (or integration) as the inverse process of differentiation.

M Note that if x is an end point of the interval [a, b], then ¢'(x) will stand for the one-sided derivative at x.

@ Shortly, it will be shown that an integral of the function g(x)[ =J’(x)] can be expressed in the form f(x) + ¢, where ¢ is
any constant. Thus, any two integrals of g(x) can differ only by some constant. We say that an integral (or an antiderivative)
of a function is “unique up to a constant.”

Introduction to Integral Calculus: Systematic Studies with Engineering Applications for Beginners, First Edition.
Ulrich L. Rohde, G. C. Jain, Ajay K. Poddar, and A. K. Ghosh.
© 2012 John Wiley & Sons, Inc. Published 2012 by John Wiley & Sons, Inc.



2 ANTIDERIVATIVE(S) [OR INDEFINITE INTEGRAL(S)]

To understand the concept of an antiderivative (or an indefinite integral) more clearly, consider
the following example.

Example: Find an antiderivative of the function f(x) = x°.

Solution: From the definition of the derivative of a function, and its relation with the given
function, it is natural to guess that an integral of x® must have the term x”. Therefore, we
consider the derivative of x*. Thus, we have

d
ax“ = 45>,

Now, from the definition of antiderivative (or indefinite integral) we can write that antiderivative
of 4x> is x*. Therefore, antiderivative of x> must be x* /4. In other words, the function
$(x) = x*/4 is an antiderivative of x°.

1.1.1 The Constant of Integration

When a function ¢(x) containing a constant term is differentiated, the constant term does not
appear in the derivative, since its derivative is zero. For instance, we have,

d
(x* +6) = 4x + 0 = 4x7;
dx
4 3
= 4x%; and
dxx X7; an
d 4

xt—5) =4x> —0=4x°.

=9

Thus, by the definition of antiderivative, we can say that the functions x* 4+ 6, x*, x* — 5, and in
general, x* + ¢ (where c € R), all are antiderivatives of 453,

Remark: From the above examples, it follows that a given function f(x) can have infinite
number of antiderivatives. Suppose the antiderivative of f(x) is ¢(x), then not only ¢(x) but also
functions like ¢(x) + 3, ¢(x) — 2, and so on all are called antiderivatives of f(x). Since, the
constant term involved with an antiderivative can be any real number, an antiderivative is called
an indefinite integral, the indefiniteness being due to the constant term.

In the process of antidifferentiation, we cannot determine the constant term, associated with
the (original) function ¢(x). Hence, from this point of view, an antiderivative ¢(x) of the given
function f(x) will always be incomplete up to a constant. Therefore, to get a complete
antiderivative of a function, an arbitrary constant (which may be denoted by “c” or “k” or any
other symbol) must be added to the result. This arbitrary constant represents the undetermined
constant term of the function, and is called the constant of integration.

1.1.2 The Symbol for Integration (or Antidifferentiation)

The symbol chosen for expressing the operation of integration is “[”; it is the old fashioned
elongated “S”, and it is selected as being the first letter of the word “Sum”, which is another
aspect of integration, as will be seen later.®

) The symbol [ is also looked upon as a modification of the summation sign 3.
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Thus, if an integral of a function f(x) is ¢(x), we write

Jf(x)dx = ¢(x) + ¢, where c s the constant of integration.

Remark: The differential “dx” [written by the side of the function f(x) to be integrated]
separately does not have a meaning. However, “dx” indicates the independent variable “x”,
with respect to which the original differentiation was made. It also suggests that the reverse
process of integration has to be performed with respect to x.

Note: The concept of differentials “dy” and “dx” is discussed at length, in Chapter 16. There, we
have discussed how the derivative of a function y = f(x) can be looked upon as the ratio dy/dx of
differentials. Besides, it is also explained that the equation dy/dx = f’(x) can be expressed
in the form

dy = f'(x)dx,
which defines the differential of the dependent variable [i.e., the differential of the function
y=f(x)].
Accordingly, [f(x)dx stands to mean that f(x) is to be integrated with respect to x. In

other words, we have to find (or identify) a function ¢(x) such that ¢’(x) = f(x). Once this is
done, we can write

Jf(x)dx =¢(x)+¢, (c€eR).

Now, we are in a position to clarify the distinction between an antiderivative and an indefinite
integral.

Definition: If the function ¢(x) is an antiderivative of f(x), then the expression ¢(x)+ ¢
is called the indefinite integral of f(x) and it is denoted by the symbol [ f(x)dx.
Thus, by definition,

Jf(x)dx = ¢(x) + ¢, (c € R), provided ¢'(x) = f(x).

Remark: Note that the function in the form ¢(x) + ¢ exhausts all the antiderivatives of the
function f(x). On the other hand, the function ¢(x) with a constant [for instance, ¢(x) + 3, or
o(x) =17, or ¢(x)+0, etc.] is called an antiderivative or an indefinite integral (or simply,
an integral) of f(x).

1.1.3 Geometrical Interpretation of the Indefinite Integral

From the geometrical point of view, the indefinite integral of a function is a collection (or
family) of curves, each of which is obtained by translating any one curve [representing ¢(x) + c]
parallel to itself, upwards or downwards along the y-axis. A natural question arises: Do
antiderivatives exist for every function f(x)? The answer is NO.

Let us note, however, without proof, that if a function f(x) is continuous on an interval [a, b],
then the function has an antiderivative.

Now, let us integrate the function y = f f(x)=2x. We have,

Jf(x)dxzjbcdx:xz-i—c (1)



4 ANTIDERIVATIVE(S) [OR INDEFINITE INTEGRAL(S)]

y
y=x2+3
y=x2+2
y=x2+1
y=x2
y=x2-1
y=x2-2

x

FIGURE 1.1 Shows some curves of f(x)=2x family.

For different values of ¢, we get different antiderivatives of f(x). But, these antiderivatives (or
indefinite integrals) are very similar geometrically. By assigning different values to ¢, we get
different members of the family. All these members considered together constitute the
indefinite integral of f(x)=2x. In this case, each antiderivative represents a parabola with
its axis along the y-axis.”

Note that for each positive value of ¢, there is a parabola of the family which has its vertex on
the positive side of the y-axis, and for each negative value of c, there is a parabola which has its
vertex on the negative side of the y-axis.

Let us consider the intersection of all these parabolas by a line x = a. In Figure 1.1, we have
taken a >0 (the same is true for a <0). If the line x =a intersects the parabolas y=x?

) For ¢ =0, we obtain y = x?, a parabola with its vertex on the origin. The curve y = x> + 1 for ¢ = 1, is obtained by shifting
the parabola y = x* one unit along y-axis in positive direction. Similarly, for ¢ = —1, the curve y = x> — 1 is obtained by
shifting the parabola y = x? one unit along y-axis in the negative direction. Similarly, all other curves can be obtained.
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y= X241, y= X242, y =x?— 1,y =x2— 2, at Py, P1,P>,P_1,P_5, and so on, respectively,
then dy/dx (i.e., the slope of each curve) at x =a is 2a. This indicates that the tangents to
the curves ¢(x) = x>+ ¢ at x = a are parallel. This is the geometrical interpretation of the
indefinite integral.

Now, suppose we want to find the curve that passes through the point (3, 6). These values of
x and y can be substituted in the equation of the curve. Thus, on substitution in the equation
y= x>+ ¢,

We get,6 =324 ¢

c=-3

Thus, y= x> — 3 is the equation of the particular curve which passes through the point (3, 6).

Similarly, we can find the equation of any curve which passes through any given point («, b). In
the relation,

.f(x)dx =¢(x) +¢,(c €R).

e The function f(x) is called the integrand.

o The expression under the integral sign, thatis, “f(x)dx” is called the element of integration.
Remark: By the definition of an integral, we have,
[ =[x+ =¢'(x).

Thus, we can write,
Jf(x)dx = ‘.qﬁ/(x)dx
— [aroco)

Observe that the last expression [ d[¢(x)] does not have “dx” attached to it (Why?). Recall that
d[¢(x)] stands for the differential of the function ¢(x), which is denoted by ¢'(x)dx, as
discussed in Chapter 16 of Part I. Thus, we write,

[irar = orax = [atoo) = o) + e )

Equation(2) tells us that when we integrate f(x) [or antidifferentiate the differential of a
function ¢(x)] we obtain the function “¢(x) + ¢”, where “c” is an arbitrary constant. Thus, on
the differential level, we have a useful interpretation of antiderivative of “f”.

Since we have [f(x)dx = ¢(x), we can say that an antiderivative of “f” is a function “¢”,
whose differential ¢'(x)dx equals f(x)dx. Thus, we can say that in the symbol [ f(x)dx, the
expression “f (x)dx is the differential of some function ¢(x).

Remark: Equation (2) suggests that differentiation and antidifferentiation (or integration) are
inverse processes of each other. (We shall come back to this discussion again in Chapter 6a).
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Leibniz introduced the convention of writing the differential of a function after the integral
symbol “j”. The advantage of using the differential in this manner will be apparent to the
reader later when we compute antiderivatives by the method of substitution—to be studied later
in Chapters 3a and 3b. Whenever we are asked to evaluate the integral [f(x)dx, we are
required to find a function ¢(x), satisfying the condition ¢'(x) =f(x). But how can we find the
function ¢(x)?

Because of certain practical difficulties, it is not possible to formulate a set of rules by which
any function may be integrated. However, certain methods have been devised for integrating
certain types of functions.

e The knowledge of these methods,
e good grasp of differentiation formulas, and

¢ necessary practice, should help the students to integrate most of the commonly occurring
functions.

The methods of integration, in general, consist of certain mathematical operations
applied to the integrand so that it assumes some known form(s) of which the integrals
are known. Whenever it is possible to express the integrand in any of the known forms
(which we call standard forms), the final solution becomes a matter of recognition and
inspection.

Remark: Itisimportant toremember that in the integral [ f(x)dx, the variable in the integrand

< It

f(x)” and in the differential “dx”” must be same (Here itis “x” in both). Thus, fcos y dx cannot
be evaluated as it stands. It would be necessary, if possible, to express cos y as a function of x.
Any other letter may be used to represent the independent variable besides x. Thus, ftzdt
indicates that 7* is to be integrated (wherein  is the independent variable), and we need to
integrate it with respect to ¢ (which appears in dz).

Note: Integration has one advantage that the result can always be checked by differen-

tiation. If the function obtained by integration is differentiated, we should get back the
original function.

1.2 USEFUL SYMBOLS, TERMS, AND PHRASES FREQUENTLY NEEDED

TABLE 1.1 Useful Symbols, Terms, and Phrases Frequently Needed

Symbols/Terms/Phrases Meaning

f(x) in [f(x)dx Integrand

The expression f(x)dx in [f(x)dx The element of integration

Jf(x)dx Integral of f(x) with respect to x. Here, x in “dx” is the
variable of integration

Integrate Find the indefinite integral (i.e., find an antiderivative and add
an arbitrary constant to it)*

An integral of f(x) A function ¢(x), such that ¢'(x) =f(x)

Integration The process of finding the integral

Constant of integration An arbitrary real number denoted by “c” (or any other

symbol) and considered as a constant.

“The term integration also stands for the process of computing the definite integral of f{x), to be studied in Chapter 5.
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1.3 TABLE(S) OF DERIVATIVES AND THEIR CORRESPONDING
INTEGRALS

TABLE 1.2a Table of Derivatives and Corresponding Integrals

Differentiation Formulas Already Corresponding Formulas for Integrals
Ao [F (x)dx = F(x) + ¢
S. No. Known to us dx fI=F () (Antiderivative with Arbitrary Constants)
d
1. —(x"):nx”’l,neR [nx"’ldx:x"+c,n€R
dx .
d Xn+l xn+l
2. — =x", -1 x'dx = , —1,neR.
dx{n-‘rl} n# [ X n+1+pn7é ne
This form is more useful
3 4 (e) =¢" [e“‘dx =e" +c
’ dx .
d . N .
4. a(“ )=a"-log,a(a>0) Ja’ -log,adx =a*+c¢(a>0)
d ax X . J. X ax
— =a(a>0 co et dx = +c
" dx <logga> @ (a>0) log,a
5 i(10 \‘)*l(x>0) ldX*lo x|+ ¢, x#0*
’ dx VOB =3 x & T 08D T

*This formula is discussed at length in Remark (2), which follows.

From the formulas of derivatives of functions, we can write down directly the corresponding
formulas for integrals. The formulas for integrals of the important functions given on the right-
hand side of the Table 1.2a are referred to as standard formulas which will be used to find
integrals of other (similar) functions.

Remark (1): We make two comments about formula (2) mentioned in Table 1.2a.
(1) It is meant to include the case when n =0, that is,
Jxodx: Jldx:x+c

(i1) Since no interval is specified, the conclusion is understood to be valid for any interval
on which x" is defined. In particular, if n < 0, we must exclude any interval containing
the origin. (Thus, [ x3dx = (x~2/ — 2) = —(1/2x?), whichis valid in any interval not
containing zero.)

Remark (2): Refer to formula (5) mentioned in Table 1.2a. We have to be careful when
considering functions whose domain is not the whole real line. For instance, when we say
d/dx(log,x) = 1/x, it is obvious that in this equality x#0. However, it is important to
remember that, log,x is defined only for positive x.>

® Recall that y =" < log.y = x. Note that e* (=y) is always a positive number. It follows that log,y is defined only for
positive numbers. In fact, in any equality involving the function log,.x (to any base), it is assumed that log x is defined only
for positive values of x.
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In view of the above, the derivative of log.x must also be considered only for positive values
of x. Further, when we write j 1/x(dx) = log,x, one must remember that in this equality the
function 1/x is to be considered only for positive values of x.

Note: Observe that, though the integrand 1/x is defined for negative values of x, it will be wrong
to say that, since 1/x is defined for all nonzero values of x, the integral of 1/x (which is log.x)
may be defined for negative values of x. To overcome this situation, we write

1
J;dx = log,|x|, x # 0. Let us prove this.

For x >0, we have,

d |
—(log,x) = —,
dx(ogLX) <

and, forx < 0,

d
llog(—x)) =—(-1) =

[Note that for x <0, (—x) > 0]. Combining these two results, we get,

d 1 1
(1oge|x\):;, x#0 J;dx:10g8|x\+c, x #0.

dx
From this point of view, it is not appropriate to write
1
—dx =log,x, x#0. (Why?)
x
The correct statement is:

1
J;dx =log,x, x>0. (A)

1
or deleoge\x|, x#0 (B)
X

Note that both the equalities at (A) and (B) above clearly indicate that log,x is defined only for
positive values of x.

In solving problems involving log functions, generally the base “e” is assumed. It is
convenient and saves time and effort, both (To avoid confusion, one may like to indicate the base
of logarithm, if necessary). Some important formulas for integrals that are directly obtained
from the derivatives of certain functions, are listed in Tables 1.2b and 1.2c.

Besides, there are certain results (formulas) for integration, which are not obtained directly
from the formulas for derivatives but obtained indirectly by applying other methods of
integration. (These methods will be discussed and developed in subsequent chapters).

Many important formulas for integration (whether obtained directly or indirectly) are
treated as standard formulas for integration, which means that we can use these results to write
the integrals of (other) similar looking functions.
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TABLE 1.2b Table of Derivatives and Corresponding Integrals

Differentiation Fi 1
HHierentiation tormuias Corresponding Formulas for Indefinite

d .
S. No. Already Known to us o [f(x)] =Ff(x) Integrals [f'(x)dx = f(x) + ¢
d . . .
6. o (sin x) = cos x Jeosxdx =sinx +¢
) J(—sinx)dx = cos x + ¢
7.4 (cosx) = —sinx .
dx o [sinxdx = —cosx+¢
d ) R
8. a(tanx):secx [sec? xdx =tanx + ¢
(—cosec? x)dx = cot x + ¢
94 (cot x) = —cosec?x I ) ) +
: dx . Jeosec? xdx = —cotx + ¢
10. dY(secx):secx-tanx Jsecx-tanxdx =secx +c
d J(—cosec x - cot x)dx = cosec x + ¢
114 — (cosec x) = —cosec x - cot x
dx . Jeosec x - cotxdx = —cosec x + ¢

“Observe that derivatives of trigonometric functions starting with “co,” (i.e., cos x, cot x, and cosec x) are with
negative sign. Accordingly, the corresponding integrals are also with negative sign.

Important Note: The main problem in evaluating an integral lies in expressing the integrand
in the standard form. For this purpose, we may have to use algebraic operations and/or
trigonometric identities. For certain integrals, we may have to change the variable of integration
by using the method of substitution, to be studied later, in Chapters 3a and 3b. In such cases, the
element of integration is changed to a new element of integration, in which the integrand (in a
new variable) may be in the standard form. Once the integrand is expressed in the standard

TABLE 1.2¢ Derivatives of Inverse Trigonometric Functions and Corresponding Formulas for
Indefinite Integrals

Differentiation Formulas

d Corresponding Formulas for

S. No. Already Known to us e [f(x)] =Ff(x) Indefinite Integrals [f’(x)dx = f(x) + ¢

d 1
12. o (sin”' x) = N Ca sin”! x + ¢

d -1 -1 Vi—x o

ax (cos™x) = " —cos ' x+e¢

d 1 _
13. -1 — 1 .

i (tan x) = W [ dx tan”" x + ¢

=4 or

d, - -1 J1+x2

a(cot ]X):l+x2 —cot ' x+¢
14. d (sec™' x) = . sec ' x+c

dx 2 -1 dx -

d -1 —1 Va2 —1 or

ax (cosec™! x) = Ve o1 —cosec™ x + ¢
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form, evaluating the integral depends only on recognizing the form and remembering the table
of integrals.

Remark: Thus, integration as such is not at all difficult. The real difficulty lies in applying the
necessary algebraic operations and using trigonometric identities needed for converting the
integrand to standard form(s).

1.3.1 Table of Integrals of tan x, cot x, sec x, and cosec x

Now consider Table 1.2b.

Note: Table 1.2b does not include the integrals of tan x, cot x, sec x, and cosec x. The integrals
of these functions will be established by using the method of substitution (to be studied later in
Chapter 3a). However, we list below these results for convenience.

1.3.2 Results for the Integrals of tan x, cot x, sec x, and cosec x

(i) [tanxdx = log,|sec x| + ¢ = log(sec x) + ¢

(i) [cotxdx = log,[sin x| 4+ ¢ = log(sin x) + ¢
(iii) [sec x dx = log(sec x + tan x) + ¢ = log(tan(3 + %)) + ¢
(iv) [cosecxdx = log(cosec x — cot x) + ¢ = log(tan §) + ¢

These four integrals are also treated as standard integrals.
Now, we consider Table 1.2c.

Remark: Derivatives of inverse circular functions are certain algebraic functions. In
fact, there are only three types of algebraic functions whose integrals are inverse circular
functions.

1.4 INTEGRATION OF CERTAIN COMBINATIONS OF FUNCTIONS

There are some theorems of differentiation that have their counterparts in integration. These
theorems state the properties of “indefinite integrals” and can be easily proved using the
definition of antiderivative. Almost every theorem is proved with the help of differentiation,
thus stressing the concept of antidifferentiation. To integrate a given function, we shall need
these theorems of integration, in addition to the above standard formulas. We give below these
results without proof.

@ [1(x) + g(x))dx = [F(x)dx + [ g(x)dx
In words, “an integral of the sum of two functions, is equal to the sum of integrals of
these two functions”. The above rule can be extended to the sum of a finite number of
functions. The result also holds good, if the sum is replaced by the difference. Hence,
integration can be extended to the sum or difference of a finite number of functions.
(®) [c-f(x)dx = ¢ [f(x)dx, where c is a real number.
Note that result (b) follows from result (a).
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Thus, a constant can be taken out of the integral sign. The theorem can also be
extended as follows:

Corollary:

J[k (x) + kpg(x))dx = ky Jf(x)dx + ky J~g(x)dx7 where k; and k, are real numbers

(c) If Jf(x)dx =F(x)+c¢

then Jf(x+b)dx =F(x+b)+c.

Example:
Jcos(x +3)dx =sin(x +3) +¢

@ If Jf(x)dx =F(x) +¢,
then Jf(ax—i— b)dx = éF(ax +b)+ec.

This result is easily proved, by differentiating both the sides.

Proof: It is given that [f(x)dx = F(x) +¢
F'(x) = f(x) (By definition)
To prove the desired result, we will show that the derivatives of both the sides give the same

function.
Now consider,

LHS: % Uf(ax + b)dx} = f(ax+b)®
RHS: % EF(ax +b)+ c} = %F/(ax +b)-a
= F'(ax+b)
= f(ax +b)
L.H.S. =R.H.S.

Note: This result is very useful since it offers a new set of “standard forms of integrals”,

wherein “x” is replaced by a linear function (ax + b). Later on, we will show that this result is
more conveniently proved by the method of substitution, to be studied in Chapter 3a.

Let us now evaluate the integrals of some functions using the above theorems, and the standard
Sformulas given in Tables 1.2a—1.2c¢.

(© We know that the process of differentiation is the inverse of integration (and vice versa). Hence, differentiation nullifies
the integration, and we get the integrand as the result. (Detailed explanation on this is given in Chapter 6a).
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Examples: We can write,
(1) Jsin (5x + 7)dx = fécos 5x+7)+c
{ Jsin xdx = —cosx + c}
Similarly,

(i) Je“’zdx = %63“2 +c
. x—2
(iii) J{sm 2x+1)+ —~ 4X} dx

1 ’
= Jsin(Zx + 1)dx + Jldx - ZJ;dx — J4" dx

X

1 4
= 75005(2x+ 1) + x —2log,x f@+ ¢ Ans.

(&

(iv) [[X(«‘C +3) — 5sec?x — 3¢5

—

x2dx + 3Jx dx — SJsec2 xdx — 3Je6x*'dx
; 2 o651

+3i—5tanx—
2

+c

w|H, wH,

3 1 ..
+§x2 —5tanx —Eeé’“l +c¢ Ans.

V) dele (say)

Jx
1= J'(x‘/2 247X dx

3/2 1/2

b X
== +2x+7—=
3/2+ X+ 1/2+C

2
= §x3/2 +2x+ 14x"2 + ¢ Ans.

Here, the integrand is in the form of a ratio, which can be easily reduced to a sum
of functions in the standard form and hence their antiderivatives can be written, using

the tables.

(i) J3x+1dx:J3x—9+9+ldx

x—3 x—3

3(x —

:J (x 3)+10dx

x—3
:3de+J 10 dx

x—3

=3x+10log,(x —3) + ¢ Ans.
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Here again, the integrand is in the form of a ratio, which can be easily reduced to the
standard form. If the degree of numerator and denominator is same, then creating
the same factor as the denominator (as shown above) is a quicker method than
actual division.

(vii) J(2x +3)Vx—4dx=1 (say)

J2x 8+ 11)vx —4 dx

J x—4)+11]-vx —4 dx

ZJ(x 4)¥2dx + 11[( —4)"24x

:2,M+11.M
5/2 3/2
:%(x—4)5/2+23—2(x—4)3/2+c Ans.

Here, the integrand is in the form of a product, which can be easily reduced to the
standard forms, as indicated above.

In solving the above problems, it has been possible to evaluate the integrals in the form of
quotients and products of functions, simply because the integrands can be converted to
standard forms, by applying certain algebraic operations. In fact, there are different methods
for handling integrals involving quotients and products and so on. For example, consider the
following integrals.

(a)

(b)

©

(@)

(e)

(3x> —5)""xdx

sin® x cos x dx

sin x
1 +sinx
1 —cos2x

1+ cos2x

x%sin x dx

(f)J 23X—4 dx
X2 —

3x+4+2

The above integrals are not in the standard form(s), but they can be reduced to the standard
forms, by using algebraic operations, trigonometric identities, and some special methods to be
studied later.

Note: We emphasize that the main problem in evaluating integrals lies in converting the given
integrals into standard forms. Some integrands can be reduced to standard forms by using



14 ANTIDERIVATIVE(S) [OR INDEFINITE INTEGRAL(S)]

algebraic operations and trigonometric identities. For instance, consider fsin2 x dx. Here,
the integrand sin®x is not in the standard form. But, we know the trigonometric identity
cos 2x=1—2 sin?x. . sin’x = (1 — cos 2x)/2.

Thus, [sin*xdx = [((1 — cos 2x)/2)dx = 1/2 [dx — (1/2) [ cos 2x dx, where the inte-
grands are in the standard form and so their (indefinite) integrals can be written easily. Note that,
here we could express the integrand in a standard form by using a trigonometric identity.
Similarly, we can show that

J&dx = J(secx~tanx —sec® x + 1)dx
1 +sinx

and Jﬂ x= J(seczx — 1)dx

1 +cos2x
wherein, the integrands on the right-hand side are in the standard form(s). A good number of
such integrals, involving trigonometric functions, are evaluated in Chapter 2, using trigono-
metric identities and algebraic operations. Naturally, the variable of integration remains
unchanged in these operations.

Now, consider the integral [f(x)dx = [ sin’x cos x dx. Here, again the integrand is not in
the standard form. Moreover, it is not possible to convert it to a standard form by using
algebraic operations and/or trigonometric identities. However, it is possible to convert it into a
standard form as follows:

We put sin x =t and differentiate both sides of this equation with respect to ¢ to obtain
cos x dx =dr. Now, by using these relations in the expression for the element of integration,
we get ['sin’x cos x dx = [ £dt, which can be easily evaluated. We have

* sin* x
3
J 4+C n +c

Note that, in the process of converting the above integrand into a standard form, we had to
change the variable of integration from x to t. This method is known as the method of
substitution which is to be studied later.

The method of substitution is a very useful method for integration, associated with the
change of variable of integration. Besides these there are other methods of integration. In this
book, our interest is restricted to study the following methods of integration.

(a) Integration of certain trigonometric functions by using algebraic operations and/or
trigonometric identities.

(b) Method of substitution. This method involves the change of variable.

(c) Integration by parts. This method is applicable for integrating product(s) of two
different functions. It is also used for evaluating integrals of powers of trigonometric
functions (reduction formula). Finer details of this method will be appreciated only
while solving problems in Chapters 4a and 4b

(d) Method of integration by partial fractions. For integrating rational functions like
J(3x —4)/(x* = 3x +2)dx.

The purpose of each method is to reduce the integrad into the standard form.
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Before going for discussions about the above methods of integration, it is useful to realize
and appreciate the following points related to the processes of differentiation and integration, in

connection with the similarities and differences in these operations.

1.5 COMPARISON BETWEEN THE OPERATIONS OF DIFFERENTIATION
AND INTEGRATION

(1) Both operate on functions.

(2) Both satisfy the property of linearity, that is,
4
dx
(ii) J [k1fi(x) + kafa(x)]dx = kljfl (x)dx + kzjfz (x)dx, where k| and k, are constants.

(i) [kifi(x) + kafa(x)] = Ky %fl (x) + k2 dixfg (x), where k; and k, are constants.

(3) We have seen that all functions are not differentiable. Similarly, all functions are not
integrable. We will learn about this later in Chapter 5.

(4) The derivative of a function (when it exists) is a unique function. The integral of a
function is not so. However, integrals are unique up to an additive constant, that is, any
two integrals of a function differ by a constant.

(5) When a polynomial function P is differentiated, the result is a polynomial whose
degree is one less than the degree of P. When a polynomial function P is integrated, the
result is a polynomial whose degree is one more than that of P.

(6) We can speak of the derivative at a point. We do not speak of an integral at a point. We
speak of an integral over an interval on which the integral is defined. (This will be seen
in the Chapter 5).

(7) The derivative of a function has a geometrical meaning, namely the slope of the
tangent to the corresponding curve at a point. Similarly, the indefinite integral of a
function represents geometrically, a family of curves placed parallel to each other
having parallel tangents at the points of intersection of the curve by the family of lines
perpendicular to the axis representing the variable of integration. (Definite integral has
a geometrical meaning as an area under a curve).

(8) The derivative is used to find some physical quantities such as the velocity of a moving
particle, when the distance traversed at any time 7 is known. Similarly, the integral is
used in calculating the distance traversed, when the velocity at time t is known.

(9) Differentiation is the process involving limits. So is the process of integration, as
will be seen in Chapter 5. Both processes deal with situations where the quantities
vary.

(10) The process of differentiation and integration are inverses of each other as will be clear
in Chapter 6a.



2 Integration Using Trigonometric
Identities

2.1 INTRODUCTION

The main problem in evaluating integrals lies in converting the integrand to some standard form.
When the integrand involves trigonometric functions, it is sometimes possible to convert the
integrand into a standard form, by applying algebraic operations and/or trigonometric
identities. Obviously, in such cases, the integrand can be changed to a standard form, without
changing the variable of integration. Once this is done, we can easily write the final result, using
the standard formulas.

2.1.1 Illustrative Examples

Example (1): To evaluate [v/1 + sin 2x dx

Solution: Let / = [+/1 + sin 2x dx

Here, the integrand is not in the standard form.
We consider,

1 + sin 2x = sin” x + cos? x + 2 sin x - cos x

= (sin x + cos x)*
1= [ (sin x + cos x)*dx = J(Sin X + cos x) dx
Now, the constituent functions in the integrand are in the standard form (since, we have

formulas for the integrals of sin x and cos x). Therefore, by applying the theorem on the integral
of a sum and the standard formulas for the integrals of sin x and cos x, we have,

1= J(sinx + cos x) dx = —cos x +sinx + ¢
=sinx —cosx+c¢ Ans.
2-Integration of certain trig tric functions using trig tric identities and applying algebraic manipulations,

to express them in some standard form(s).

Introduction to Integral Calculus: Systematic Studies with Engineering Applications for Beginners, First Edition.
Ulrich L. Rohde, G. C. Jain, Ajay K. Poddar, and A. K. Ghosh.
© 2012 John Wiley & Sons, Inc. Published 2012 by John Wiley & Sons, Inc.
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. 1
Example (2): To evaluate | T dx
Solution: We have seen in Example (1), that 1 + sin2x = sin x + cos x.

i S 1 1
Now, sinx -+ cosx = ﬁ(M) = \/i{sinx—Jrcos x—}

V2 V2 V2
1

:\/i[sinxcos%—o—cosxsinﬂ, <',‘cos%:singzﬁ)
T

- il

smx+4

1 1
dex: Jﬂsin(er (/4))

:%Jcosec(x—o—%)dx = %bg {tan(g—kg)} +c

{ Jcosecxdx = log(tan(%) + c)} M Ans.

Example (3): To evaluate [S1X_dx

I4sin x

dx

Solution: Let I = | Ty dx

Observe that the integrand (sin x)/(1 + sin x) is not in the standard form.
Now consider,

sin x sin x 1 —sinx sinx —sin® x

l+sinx:1+sinx 1—sinx  1—sin®x

. )

sin x — sin? x ,
= ('.'lfsmzx:coszx)

cos? x

- -2

sinx  sin®x 5
=——————=secx-tanx —tan’ x

cos?x  cos? x
=secx-tanx — (sec>x — 1), [ tan® x =sec? x — 1]

=secx-tanx —sec? x + 1
1:Jsecx-tanxdx—Jseczxdx+de
I =secx—tanx+x+c¢ Ans.

Note that here we had to use the identity tan® x + 1 =sec?x, to express tan® x in the standard
form.

) We have already listed this formula in Chapter 1, to meet such requirements. However, its proof is given only in
Chapter 3a.
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Example (4): To evaluate |33 dx

cos? x

Solution: Let / = [31x dx

cos? x

Consider

sin x 1 sin x
5= . =sec x-tan x
COsZX COSX COSX

1= Jsecx-tanxdx
=secx+c Ans.
Example (5): To evaluate fsin2 nx dx

Solution: We know that
cos? x — sin® x
cos2x = { 2cos?x — 1

1 —2sin’ x

Therefore, using the identity (3), we get

gin? x — 1 —cos2x
T 2
1- 2
Jsin2 nxdx:Jﬂdx
2
1 1
zijdxfijcosbzxdx

+c

o
—2X 5 2nSlI'l nx

1 1
:Ex—@sinan—s—c Ans.

Similarly, using the identity (2), we can write

[ 1
‘ cos® x dx = EJ(COS 2x + 1)dx

1

2JcosZ}cdx—Q— de
*lin2 —0—l + An
745 X 2x c S.

Next consider, J(cos X + sin x)(cos x — sin x)d (cos? x — sin? x) dx

J cos 2x dx
1
=2

sin 2x + ¢ Ans.

19
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Now, we give below some examples of trigonometric functions and show how easily they can
be converted into standard form(s) by using simple algebraic operations and trigonometric
identities.®

The basic idea behind these operations is to simplify the given integrand (to the extent it is
possible) and then express it in some standard form. Once this is done, the only requirement
is to make use of the standard formulas for integration.

While simplifying the expressions, it will be observed that depending on some (type of)
similarity in expressions, certain steps are naturally repeated. Besides, the simplified expres-
sions so obtained are not only useful for integration but also equally important for computing
their derivatives. This will be pointed out wherever necessary.

Given Trigonometric Operations Involved in Converting the
S. No. Function(s) Function(s) to the Standard Form
sin x 1 sin X
1. 5 = . = sec x -tan x
cos? x COSX COSX
cos x 1 cosx
2. -2 =-——+ ——— = Ccosec x-cotx
sin® x sinx sinx
1 1 1—sinx 1—sinx
3. 1+ sinx " l4sinx l—sinx  cos2x
= sec? x —sec x-tan x
1 1+ sinx >
4. —_— =—— _—=sec’x+secx-tanx
1 —sinx CcOs* X
1 1 1—cosx 1 —cosx
3. 1 +cos x I+cosx 1—cosx sin x
= cosec? x — cosec X - cot X
1 1 + cos x 2
6. —_— =———>5 — =cosec” x -+ cosec x - cot X
1 —cosx sin? x
sin x sin x 1 —sinx
1 +sinx 14+sinx 1—sinx
sinx —sin®x  sinx 2
= 3 = v tan” x
cos? x cos? x
=secx-tanx — (sec® x — 1)
= sec x-tan x — sec? x + 1
8. cos x cos x(1 —cosx) cosx —cos® x
1 +cos x 1 —cos? x sin® x

= cosec x - cot x — cot? X
= cosec x - cot x — (cosec? x — 1)

= cosec x-cotx — COSGC2 x+1

Note: We have already shown at S. Nos. (5) and (6) respectively, that (1/(1 + cos x)) = cosec? x — cosec ¢ - cot x and
(1/(1 = cos x)) = cosec? x + cosec ¢ - cot x.

@ In general, the trigonometric identities listed in Chapter 5 of Part I are sufficient to meet our requirements.
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These expressions can also be put in a simpler “standard form” as follows:

1 1

1 ,x

= —S€C” —

1+cosx:1+(2c052(x/2)—1) 2 2

d 1 1 1 2 X
an = = —cosec” —
I—cosx 1—(1-2sin*(x/2)) 2 2
1 1 X 1 [tan(x/2)]
——dx == 20y = = L
Jl-i—cosx x zjsec 2Ty T e
=tanx/2 + ¢
1 1 1 cot(x/2
Similarly, dex = EJCOSGCZ gdx = - 5%
= —cot(x/2)

Note: Whenever expressions like 1 &+ cos x, 1 £ cos 2x, 1 & cos 3x, and so on, occur in any
function, we generally replace cosx, cos2x, and so on, using one of the identities,
cos 2x = 2 cos? x — lorcos 2x = 1 — 2 sin® x, keeping in mind that the number 1 (in 1 & cos x,
1 & cos 2x,. . ., etc.) must be removed by using the correct identity. Besides, for any constant “a”,
we write a = a(sin® x + cos? x) = a(sin®(x/2) + cos?(x/2)), and so on. Also, we write
sin x = 2 sin(x/2) - cos(x/2), sin 2x = 2 sin x - cos x, and so on, as per the requirement. Other
useful relations to be remembered are sin x = cos((n/2) — x) and cos x = sin((n/2) — x).
Now, we consider some more functions and express them in the standard forms.

Given Trigonometric

Operations Involved in Converting the Function(s)

S. No. Function(s) to the Standard Form
sin x 2sin(x/2) - cos(x/2)
_— =L — 2
9. 1 +cos x 1+ 2cos?(x/2) — 1 an(x/2)
cos x sin((1/2) — x)
10. T oo =" - 7 Imp. st
1+ sinx 1+ cos((m/2) — x) [fmp. step]
— tan(1/2)((1/2) — x) = tan((n/4) - (x/2))
1 1+sinx - 1 sin x
' 1+ cos x " 14cosx  14cosx
_ 1 2 sin(x/2) - cos(x/2)
"~ 2cos2(x/2) 2 cos?(x/2)
= lseczEJr tanE
272 2
1+ cosx _l+cosx 1 cos x
12. 1+sinx " 14sinx 1+sinx 1 +sinx

(1 —sinx) sin((m/2) — x)

1+ cos((m/2) — x)

1 —sin® x

2 T X
= sec” X + sec x - tan X + tan Z—E

(continued)
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(Continued)
Given Trigonometric Operations Involved in Converting the Function(s)
S. No. Function(s) to the Standard Form
1 +si 1+si 1+si
13. ﬂ = ﬂm [Note this step]
1 —sinx 1 —sinx 14sinx
¢! + sin x)? _ sin® x + 2sin x + 1
T 1-—sin®x cos? x (A)
= tan? x + 2secx-tanx + sec? x
= (seczxf 1) + 2 sec x - tan x + sec? x
=2sec’ x +2secx-tanx — 1
L. 1 —sinx 1—sinx 1-—sinx .
14. Similarly, ———— =——— - ———— [Note this step]
14 sinx l+sinx 1 —sinx

sin? x — 2sinx + 1
n cos? x (B)
= tan? x — 2sec x - tan x + sec? x

=2sec’x —2secx-tanx — |

Observe that each term in the expressions (A) and (B) is in the standard form. Now, we shall
express (13) and (14) in other new forms, which are frequently useful for both integration and
differentiation. They might appear complicated, but in reality they pose no difficulty, once we
learn the operations involved in expressing them in desired forms.

Given Trigonometric Operations Involved in Converting the Function(s)
S. No. Function(s) to the Standard Form
13a 1 +sinx _sin?(x/2) + cos?(x/2) + 2 sin(x/2) - cos(x/2)
1 —sinx * sin?(x/2) 4 cos?(x/2) — 2sin(x/2) - cos(x/2) ©
_ [cos(x/2) + sin(x/2) 2
~ |cos(x/2) — sin(x/2)

Dividing N" and D" by cos(x/2), we get

1 + tan(x/2)]?
- {1 - tan(x/2)} (D)
[ tan(n/4) +tan(x/2) 1> /. m
- L ftan(n/4)-tan(x/2)] - (g =1) -

= [tan(E—&-E)r *tanz(g—i-i)

N 4'2/1 — 42
o 2

= {tan(z+x)] , and so on

1+ sin2x

Similarly, T—sin2x
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On similar lines as above, it is easy to express the following function in the standard form.

Given Trigonometric Operations Involved in Converting the Function(s)
S. No. Function(s) to the Standard Form
l4a 1 —sinx _ [eos(x/2) — sin(x/2)]? 1 —tan(x/2)]?
. 1 +sinx " |cos(x/2) + sin(x/2) 1 + tan(x/2)
= [ (3-3)] = (E )
- 4 2 4 2
= tan? (g — x), and so on
1 —sin2x
and —————
1 + sin2x

Now, let us consider the following examples wherein the integrands can be easily expressed in
the standard form(s) using the steps shown above in achieving the results at (C), (D), and (E).

Applications Integration

/1+sin6xdﬁ -
1—sinéx

1 —tan 2x T
Aty = [t <772)d
,[1+tan2x * Jan 4 *)x
1
:_—zlog[sec(gfbc)] +c
[cosx-&-sinxd’C _[1+tanx
Jcosx —sinx “J1—tanx
= tan(EJr vc)dX*lo {sec(gqt v)} +c
I VI A e VIR
(1 4 sin2x [ T i
I T—sin2x 2xdx = tan <Z+X)d'\

= J [sec? (g +x) = 1]dx

—tan(E-i-‘c) —Xx+c
= 7T )

j.%dx = Jtan2 (g - 3x) dx
-
1

—77tan<573>7 +c
=3 7 3x) —xte

“These results should not be used as formulas. They must be properly derived before use.



24 INTEGRATION USING TRIGONOMETRIC IDENTITIES

Given Trigonometric Operations Involved in Converting the Function(s)
S. No. Function(s) to the Standard Form
15 I +cosx +(20052(x/2)71)72cosz(x/2)
1 —cosx — (1 —2sin*(x/2)) T 2sin?(x/2)
o) e )
( 2 cosec” |5
1 —cos2x 2sin? x
16. [ _ASI X 2 a2 v
1+ cos 2x _ZCOSZX_tdn x=secx—1
17 1 +sin2x _ 1 +2sinx-cosx
' 1 + cos2x 1+ (2cos2x— 1)
1 n 2sin x-cos x sec® x + tan
= =— X X
2 cos? x 2 cos? x 2
1+cosx 1 cos X
18. —_— - 4+
1+ sinx 1+4sinx 1+4sinx

1 —sinx sin((m/2) — x)
1 sinZx 1 + cos((m/2) — x)

_1—sinx N 2sin((n/4) — (x/2)) - cos((n/4) — (x/2))

[Imp. step]

cos? x 2 cos?((n/4) — (x/2))
2 T_Xx
sec” x secxtanx+tan<4 2)

We give below some more examples of different types of trigonometric functions, which can be
easily converted to the standard form(s).®

Given Trigonometric Operations Involved in Converting the Function(s)
S. No. Function(s) to the Standard Form
19. 1-+sinx = Jeos? X 4 sin®E + 2sin2 -cos
2 2 2 2,
( X +i x>2 X +si X
cos=+sin=) =cos=+sin=
27N 27
A 2 J X
20. V1 —sinx = (cosg — sin g) = cosg - sin% or sin% — cos %}”
Note:
XX cos(x/2) — sin(x/2)
cos 3 smz = \/5[7\/i
. X T X T L - E
7ﬁ[51n2c03570031-smﬂ ( . sm47\/§7cos4)

251n(175) = \/Ecos(ng;) ( Sinﬁzcos(gfﬁ)

“These expressions are in the standard form(s) for integration.

() At this stage, the reader’s attention is drawn to the following functions:

I+sinx | v 1—sin x | ¥ 1+sin 2x AeZ.\‘
I+cos x ? I—cos x ’ I+cos 2x ?

and

X X
Trsinx TFcos x *
Note that these functions are different than from those listed at S. Nos. (11) and (12). These functions can be converted to
certain products of functions, which can be easily integrated using the method of Integration by Parts (to be studied later
in Chapters 4a and 4b).
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Given Trigonometric

Operations Involved in Converting the Function(s)

S. No. Function(s) to the Standard Form
)1 1 - 1
' V1 +sinx "~ cos(x/2) + sin(x/2)
= ! = Lcosec<5+5> a
Vasin((x/2) + (m/A) V22T
L ee(2-2)
V242
Similarly,
22 I N _ cosec (x + n> 1 sec <7t v) “
: V1 +sin2x V2 4 2 \4
23 .t = Lcosec (E - x) or
' V1 —sin2x V2 4 ’ a
1 T
=—=sec|—+ x)
7<(3
24. v/ 2 2
1+ cosx :1/1+<200s2%—1):\/§cos%“
25. J1 = "
I —cosx = 17(172sin2f>:ﬁsinfu
2 2
26 1 1 a
—_— ——sec X
: V1 + cos 2x V2
27 ! ! cosec x“
’ V1 — cos 2x V2 .

“These expressions are in the standard form for integration.

The next four functions are in the standard form with regard to integration, but if they appear in
their reciprocal form, they have to be converted to a standard form for integration.

Given Trigonometric

Operations Involved in Converting the Function(s)

S. No. Function(s) to the Standard Form
28. sec x +tanx :L ﬁ:ﬂ
COSX  COSX cos x .
_ sin?(x/2) + cos?(x/2) + 2 sin(x/2) - cos(x/2)
B cos2(x/2) — sin?(x/2)
_cos(x/2) +sin(x/2) 1+tan(x/2) T X
© cos(x/2) —sin(x/2) 1 —tan(x/2) tan<z + 5)
1
secx+tanx tan((n/4)1+ (x/2)) = cot((r/4) + (x/2)) = tan((r/4) = (x/2))"
_l—sinx _cos(x/2) —sin(x/2) 1 —tan(x/2) T X
2 seex — tanx ~ cosx  cos(x/2) —sin(x/2) 1+tan(x/2) tan (Z _5)
-~ 1 _ T X
“tan((n/4) — (x/2)) C°‘<Z‘ 5)
€ A V)
secx —tanx tdn(ZJrE)

(continued)
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(Continued)
Given Trigonometric Operations Involved in Converting the Function(s)
S. No. Function(s) to the Standard Form
. 2
30. cosec x + cot x _l—cosx 2 cos™(x/2) = cot™
sin x 2 sin(x/2) - cos(x/2) 2
1 1 ¢ X,
= =tan=
cosec x + cot x cot(x/2) 2
31 cosec x — cot x _ 1 —cosx _ 2sin?(x/2) — ™
sin x 2 sin(x/2) - cos(x/2) 2
! = ! *cotfftan(g E>b
cosecx —cotx  tan(x/2) 2 2 2

“These forms frequently appear in problems for differentiation and integration. For example,
Lltan~! (sec x + tan x)] = Ltan~' [tan(F+ )| = & (F+5) =3 Also, [LE0xdx = [tan(} + )dx. Similarly,

1
[ sec x+tan x
" These are in the standard forms convenient for integration.

cos X

-dx = [tan(} — )dx and so on. These expressions are in the standard form.

Integration of trigonometric functions involving cerfain higher powers and those involving

certain products:

Given Trigonometric

Operations Involved in Converting the Function(s)

S. No. Function(s) to the Standard Form
sin? x Consider the identities
32. R cos2x=2cos’x — 1=1 — 2sin’x
cosx . o 1 —cos 2x
sin“ x=——
2 a
1+ cos2x
and cos?x = ———
2
sin® x sin3x=3sinx — 4sin’x
. 3 3sin x — sin 3x,,.
si" x=————
33. 2
3 cos3x =4 cos’ X — 3 cos x
cosTx 3 cos3x + 3 cosx,
o’ x=—-——
4
tan® x sin® x +cos? x =1
34. ) sotan® x4 1 =sec’ x
cor o tan’x=sec’x — 1¢
and 1+ cot® x = cosec? x
.. cot®> x =cosec’ x — 1¢
2 X L ,X XX
(cosf =+ sin E) = cos? > +sin’Z=+2 SmECOSE
2 2 . a
35. o - incost — i
Similarly, =142 51n2cos 7= 1 +sinx
(cos 3x + sin 3x)° =1+£sin6x
(sec x + tan x)? = sec? x + tan® x & 2 sec x - tan x
=2sec’x+2secx-tanx—1 ¢
36. (- tan® x = sec? x — 1)

(cosec x = cot x)*

= cosec? x -+ cot? x &+ 2 cosec x - cot x a
= 2cosec? x + 2 cosec x-cot x — 1
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(Continued)
Given Trigonometric Operations Involved in Converting the Function(s)
S. No. Function(s) to the Standard Form
sin” x - cos? x . N 1. 2
= (sinx-cos x)” = 5sin 2x| ¢
. 1 —cos 4x
=—sin’2x = ————
4 4
1
5 o 4 25,4
sin” x - cos? x = ——5—— = 4cosec” 2x
37. sin” 2x
Also — ) sin? x + cos? x 1 1
sin” x - cos? x == — +—
sinx-cos?2x  cos?x  sin®x
— el x 2 a
sec? x - cosec? x = sec” X + cosec” X'

= sec? x + cosec? x = 4 cosec? 2x*

“These are in standard form for integration.

Given Trigonometric

Operations Involved in Converting the Function(s)

S. No. Function(s) to the Standard Form
sinA-cos B 1. .
38 . sin5x-cosx 2 [sin(4 + B) + sin(4 — B)]

and sin x - cos 5x

cosA -sin B
39. (=sinB-cosA)
cos 7x - sin 3x

40, cosA-cosB
cos 5x - cos 3x
[: sin (g — Sx) - CcoS 3x}
41. sinA - sin B

sin 3x - sin 5x

[: sin 3x - cos (g - SX)}

= % [sin 6x + sin 4x]
L. . L. . a
=3 [sin 6x + sin(—4x)] = 3 [sin 6x — sin 4x]
[ sin(—6) = —sin 6
1
=3 [sin(A + B) — sin(A — B)]
1
=3 [sin 10x — sin 4x]
= % [cos(A + B) + cos(A — B)]

= % [cos 8x + cos 2x]
Ir. /m (T
=5 [sm <E - 2x> + sm(i - SX)}
1
=3 [cos 2x + cos 8x]“
1
= —|cos(A —B) —cos(A+B ote this formula
3 A A Note this f 1
1 a
=3 [cos(—2x) — cos(8x)]
1
=5 [cos 2x — cos 8x]
Ir. /m . T
=5 [sm (E — 2x> + sin (Sx — E)]

= % [cos 2x — sin (g - 8x>]

1
= —[cos 2x — cos 8x]*
2

“These are in the standard form. Note that identities at S. Nos. (38-41) can be easily remembered, if we carefully

remember the formula at (38).
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Sometimes, trigonometric identities can be directly used for expressing the given trigonometric
function in the standard form.

. . 2 tan x
42. s1n2x:231nx~c0sx:L;,
1+ tan® x
2 tan x
we havejizdx = J sin 2x dx
1 + tan® x
43, 0 cos2x =2cos?x — 1
=1-2sin’x
_ 2 )
= C0s“ X — sin” x
1 —tan® x
=_————, we have
1+ tan® x
1 — tan?
ﬂdx: cos 2x dx
1+ tan? x ]
2 tan x 2 tan x
44 . tan2x:mjmd)¢:1tan 2x dx

2.1.2 TIllustrative Examples

tan x

Example (6): To evaluate /] = [—————
sec X + tan x
. . tan x sin x/cos x
Solution: Consider = / -
secx +tanx 1/cosx + sinx/cos x

_sinx sinx(l —sinx) _sinx—sinzx
1+sinx  (1+sinx)(1 —sinx) 1 —sin®x

sinx  sin®x 5
= 3 fizzsecxwanxftan X
COS“ X COS“ X

= sec x - tan x(sec? x — 1)

~
Il

Jsecx~tanxdxfjseczxdx+ [dx

=secx —tanx+x+c¢ Ans.
Example (7): To evaluate / = [(tan x + cot x)%dx
Solution: Consider (tan x + cot x)*

. 2 .2 2 2
<smx cos x) {sm X + cos x}

cosX  sinx sinx - cotx
1 sin® x + cos? x )
=— =— , ( sm2x+coszx:1)
sin“ x-cos2x  sin” x-cos? x
1 1 2 2
= ——— 4 —5— =sec” x 4 cosec” x

cos?x  sin® x
1= Jsec2 xdx + J.cosec2 xdx

=tanx —cotx + ¢ Ans.
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Also, note that

(tan x + cot x)* = tan? x + cot® x + 2
=(sec?x — 1) + (cosec® x — 1) +2

2

= sec? x + cosec? x

Example (8): To evaluate I = fcos 3x-cos2x-cos xdx

Solution: Consider cos 3x - cos 2x - cos x'¥

1
=3 [cos 5x + cos x]cos x

= % [cos 5x-cos X + cos’ x}

1 1
=7 [cos 6x + cos 4x] + Ecos2 X

1 1 1(
1 :chos6xdx+ZJcos4xdx+E" cos? x dx

1 1 1 2 1
—sin 6x + —sin4x + = dex}

T 24 16 2 2
_ 1 in6 +l - +l sin2x+1 n
D N T I B R

1 1 1 1
:ﬂsin6x+ﬁsin4x+§sin2x+1x+c Ans.

Example (9): To evaluate I = jsin 3x-sinx dx

. . . . . s
Solution: Consider sin 3x - sin x = sin 3x - cos <5 — x) ®

[sin(2x + ) +sin (4x = ) |
[sin (g +2x) —sin (g ~4x)]

1
cos2x — —cos4x

— N= N~ N =

1
1 ZEJCOSZxdxfEJcos%cdx

1 1
:Zsin 2x—§sin4x+c Ans.

@ cos A -cos B = 1[cos(A + B) + cos(A — B)]
© sinA - cos B = L[sin(A + B) + sin(4 — B)]

29
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5 cos’x+7 sin® x
2 sin’ x - cos? x

Example (10): To evaluate I =

. . 5cosdx + 7sin’x
Solution: Consider TG IR S
2sin“x - cos?x

5 cosx 7 sinx

2 sinfx 2 cos?x

5 7
:7cotx~cosecx+§tanx~secx
5 7
125 cotx-cosecxdxqti tan x - sec x dx
7 5
== secx~tanxdx+§ cosec x cot x dx

! > + A
= —secx ——Cosec X + ¢ ns.
2 2

Example (11): To evaluate [ = jsecz x cosec? x dx
Solution: Consider sec” x - cosec? x

1 1 sin® x + cos? x
cos?x sin’x  sin?
1 1

=+ —
cos2 x  sin? x

X-cos? x

=sec’ x + cosec? x

1= Jsecz xdx + Jcosec2 xdx

=tanx —cotx +c¢ Ans.

Example (12): To evaluate / = [tan™! ( sin x )dx

14cos x

Solution: Consider _smx
1 4+ cosx
_ 2sin(x/2)-cos(x/2)  sin(x/2)-cos(x/2) an™
T 14 (2cos2(x/2) — 1) cos?(x/2) T2
1= Jtan’1 (tang)dx = Jgdx, [+ tan'(tan7) = 1]
1
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Example (13): To evaluate I = ftan*1 ( LO8.y ) dx

14sin x

Solution: Consider &
1+ sin x

sin((n/2) — x) 1 /7 .
= 1= cos((n/2) — x) = tang (5 - x> [As in Example (7)]

)
1= o o= [ o

:Zx—Z—O—c Ans.

Example (14): To evaluate / = [ /150 2x g

. 1 4 sin 2x
Solution: T snox [tan( )] [see: S. No. (13)]

Jtan —+x dx—log{sec<4+x>} +c Ans.

1 +sinx 1 T X
N N e o)
ote: J 1—smxdv tan 4 2)dx 2 og 9ec(4+2) +c
and J \/1 — $in6x dx = Jtan_l[tan<gf3x)]dx
1 + sin 6x B 4

A i 3,
—J<173x>dx—zxf§x +c¢ Ans.

Example (15): To evaluate / = [tan™' [1HE04x] 4 x

1—tan 4x.

Solution: = Jtan’1 {tan (g + 4x>} dx

:J(E+4x)dng x+2x24+¢ Ans.
4 4
Example (16): To evaluate I = fsm (cos x)dx

Solution: [ = Jsin’1 [sin (g - x)] dx

:J(g_x>dngjdx—1xdx

T X2

=5x77+c Ans.

31
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Similarly,
(a) Jcos_1 (cos® x — sin? x)dx
= Jcos’1 (cos2x)dx = J2x dx

2
:2-%+c:x2+c

2t
(b) Jtanf1 (%) dx = Jtan’1 (tan 2x)dx

2t
= [2xdx=x>+¢. |Recall tan2x= _cHnx
1 —tan? x

2tan2
© Jsin’l (%) dx = J~sin*1 (sin 4x)dx
an® 2x

2t
- j4x dx =22 +¢. |Recall: sin2x — ——0%
1 + tan? x

1 — tan?
(d) Jcos’1 (I—H%) dx = Jcos’1 (cos 2x)dx

1 — tan?
— [2xdx=x>+¢  |Recall: cos2x = — 0 X
1 + tan? x

1 — tan?
(e) Jsinfl (ﬁ) dx = Jsin’1 (cos 2x)dx
ot (T .. —an(T_ ]
7" sin [sm(2 2x>}dx7 [ cos fsm(z 6')
n s
Z_9 - x—x2
J(Z x)dx 2x X" +c

Example (17): To evaluate / = [cos mx cos nx dx, where m and n are positive integers and
m # n. What will happen if m=n?

Solution: We have the identity
COS 11X - COS X = 5 [cos(m + n)x + cos(m — n)x]

I= % U cos(m + n)x dx + Jcos(m —n)x dx}

1 [si si —
=_ {sm(m +n)x + sin(m n)x} +c¢. (sincem # n, as given)
m+n m-—n

2

When m =n, cos(m — n)x =cos0 =1, and therefore, its integral is x.

Also, cos(m + n)x = cos 2mx;, and its integral is (sin 2mx)/(2m). Thus, we get

1_1 sin2mx+x te
T2 2m



Also, note that when m =n,

JCOS mx cos nxdx = JCOSZ

2 Y72

1 2 1
:J +cosmxd _

1

2

Exercise
Integrate the following with respect to x:
3 —2sinx

ey

cos? x

Ans. 3tanx —2secx + ¢

1 —cos2x

2) tan~ 'y [ ———
(2) tan 1+ cos2x

x2

Ans. 74— c

3)v1 +sin2x

Ans. sinx —cosx+c¢

(4) V1 + cos2x
Ans. \/§ sin x + ¢

1

V1 + cos2x
%log[tan(i—i-g)] +c

)]
Ans.

(6) tan-"! {cos 2x — sin Zx}

cos 2x + sin 2x

T
Ans. —x — x?
ns 4x x“+c

1 — tan? 3x
1 + tan? 3x

@)
1.

Ans. gsm 6x
[Hint: (1 — tan? 3x)/(1 + tan? 3x) = cos 6]
®) 1 — tan3x\ 2

1 + tan3x

1 T

Ans. fgtan(z — 3x> —x+c

INTRODUCTION
mx dx
U(l + cos me)dx]
in 2
{x N sin mx} Ans.
2m

[Hint: ((1 — tan 3x)/(1 + tan 3x))* = tan?((n/4) — 3x) = sec?((n/4) — 3x) — 1]
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(9) sin x - sin 2x - sin 3x
cos 6x _cos 2x _cos 4x
24 8 6

Ans.

[Hint:
sinA -sin B = (1/2)[cos(A — B) — cos(A + B)]
orsin3x - sin x = sin 3x - cos((n/2) — x) = (1/2)[sin(2x + (%/2)) + sin(4x — (%/2))]]

true for identities like, sinmx-sin nx, where m and n are distinct positive integers.

and sin mx-cos nx, where m and n are distinct positive integers.

Remark: In this chapter, we have been able to integrate functions such as sin~! (sin x),
cos ! (cosx), tan"! (tanx), and so on, because they can be reduced to simple algebraic
functions in the standard form.

On the other hand, by using the methods learnt so far, it is not possible to integrate inverse

trigonometric functions (i.e., sin"' x, cos ™! x, tan"' x, etc.). Integration of these functions is
discussed later under the method of integration by parts in Chapters 4a and 4b.

2.2 SOME IMPORTANT INTEGRALS INVOLVING sinx AND cosx

Certain trigonometric and algebraic manipulations are required to convert the following types
of integrals into standard forms.

2.2.1 Integrals of the Form

sin x

O o™
o 2
o [
) | G = a)lcos(x —py e
) ) costx ¥ a)lcos(x Ty andsoon

Example (18): Evaluate [ Sl dx =1 (say)

sin(x+a)

Method: We express the variable x (in the numerator) in terms of the variable (x + a), which is
in the denominator.



SOME IMPORTANT INTEGRALS INVOLVING sinx AND cos x

Thus, x = (x +a) — a®

I:Jsinngra fa)dx
sin(x + a)

dx

_ Jsin(x +a)-cosa—cos(x +a)-sina
N sin(x + @)

= cos ade — sin aJcot(x +a)dx

= xcosa — (sina)log[sin(x + a)] + ¢ Ans.

(Note that cos a and sin a are constants.)

Example (19): Evaluate jfgf&:{g dx=1 (say)

Note: x —a=(x+a) — 2a

_Jsin(x—b—a—Za) .

cos(x + a)

Jsin(x +a)-cos2a — cos(x + a) - sin Zad
= X
cos(x + a)

I=cos ZaJtan(x + a)dx — sin 2a de
= cos 2a-log[sec(x + a)] —sin2a-x + ¢ Ans.

Now, show that J sin(x —a) »

sin(x + a)

= (cos 2a)x — (sin 2a)log[sin(x + a)] + ¢

Example (20): Evaluate JZEECZ; dx=1 (say)

Note: X —a=(x—b)+b—ua

=(x—-b)+(b—a)
_([sin[(x = b) + (b — a)]
= [ sin(x — b) dx
_([sin(x — b) -cos(b — a) + cos(x — b) -sin(b — a) d
B J sin(x — b) ~

=cos(b — a) de + sin(b — a) Jcot(x —b)dx

=cos(b—a)-x+sin(b — a) -log[sin(x — )]+ ¢ Ans.

cos(xa)
x

s(xE .
S0t g, or [<2024) gx, no such adjustments are needed.

© Note that for evaluating [ 200 gy |
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cos(x — a)

Now, show that J dx

cos(x — b)
= xcos(b — a) — sin(b — a)log[sec(x — b)] + ¢
= xcos(b — a) + sin(b — a)log[cos(x — b)] + ¢

Example (21): Evaluate [ r—rloopmdx =1 (say)

sin(x—a) - cos(x—b

Note: In such cases, we observe that (x — @) — (x — b)=(b — a), which is a constant.

1

sin(x — a) - cos(x — b) @
1 cos(b —

sin(x — a) -cos(x —b) cos(b —

Now consider

1 . cos(b — a)
cos(b—a) sin(x —a)-cos(x — b)

B 1 [cos[(x —a) — (x — b)]
= cos(b — a) ‘ sin(x — a) - cos(x — b) dx
B 1 cos(x — a)cos(x — b) + sin(x — a)sin(x — b) d
" cos(b —a) J sin(x — a) - cos(x — b) Y
= Wl_a)ﬁcot(x —a) + tan(x — b)]dx
1
= cosb—a) [log[sin(x — a)] 4 log[sec(x — b)]] + ¢
= Wl—a) [log sin(x — a) — log cos(x — b)] + ¢
=sec(b—a) {log %} +c Ans.
Example (22): Evaluate ([mdx
Note: (x+a) — (x+b)=(a — b)
1 sin(a — b)

Consider cos(x £ a)cos(x 1 B) ’ sin(a — b)

™ In this case, we multiply the integrand by the number (cos(bh — a)/cos(b —a))(= 1) and then expand the N" by
expressing it suitably. Here, we should not multiply the integrand by (sin(b — a)/sin(b — a))(= 1). However, if the
integrand contains the product sin(x—a)-sin(x — b) or cos(x—a)-cos(x — b), we must choose the quantity
(sin(b — a)/sin(b — a))(= 1) for multiplying with the integrand. These choices are important for converting the integrand
into standard form. Check this.



INTEGRALS OF THE FORM | (dx/(a sin x + b cos x)), WHERE a, b € r

1 [sinlx4a) — (x+B)]
I= sin(a — b) Jcos(x +a)-cos(x + b) dx

dx

B 1 Jsin(x + a) -cos(x + b) — cos(x + a)sin(x + b)
" sin(a — b) cos(x + a) - cos(x + b)

= cosec(a — b) J [tan(x + a) — tan(x + b)]dx
= cosec(a — b)[log sec(x + a) — log sec(x + b)] + ¢

= cosec(a — b) {log %} +c Ans.

Now, evaluate the following integrals:

1
M Jcos(x — a)sin(x — b) dx

Ans. [sec(b — a)]log {%} +c
1
@ jcos(x —a)cos(x — b) dx

R

Ans. [cosec(b — a)]log

1
® Jsin(x —a)sin(x — b) dx

Ans. [cosec(b — a)]log

2.3 INTEGRALS OF THE FORM [(dx/(asinx + b cosx)), WHERE a, b € r

Method: Consider the expression: asin x + b cos x.
This can be converted into a single trigonometric quantity.

Puta =rcosaandb = rsina.
Then, 1 = a* + b . r =+a*+ b and a =tan"!(b/a)

asin x + b cos x = rsin x cos a + r cos x sin «

= r(sin x cos & + cos x sin «)

= rsin(x 4+ «), where r and « are defined above.

37



38 INTEGRATION USING TRIGONOMETRIC IDENTITIES

dx 1 dx
asinx+bcosx r]sin(x+a)

1
= ;Jcosec(x + a)dx®
1 xX+a
p og tan( ) ) +c
1 x 1
=] Sy
p og{tan(z—o—z(a))} +c

1 x 1 b
Wlog |:tan (5 + Etan a):| +c Ans.

Now, let us consider some expressions of the form a sin x + b cos x, and convert them into a
single trigonometric quantity.

asinx+bcosx7E (say)
Ve

Put a=rcosa and b=rsina

®

Pod+B - VTP

and
b
a =tan " —
a
rsin(x
E:ﬂ: sin(x + «)
r
where
b
o =tan " —
a

acos x + bsinx

(i) = s = (say)

Put a=rsina and b=rcos

1 =d® + b oo r=+vVa*+b?

® We know that
Jcosec x dx =log(cosec x — cotx) + ¢ (i)
X s
=log (tan E) +c (ii)
It is always better to use form (ii) of the integral, since it is convenient to write. Also, it is easier to compute. Recall that in
evaluating fcosec x dx, we have to use the method of substitution.
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and
tan~! a
a = —
b
rsin(a + x .
= rsin(a + x) = sin(x + «)
’
where
a .
o =tan"! 5 (Note this)
(ili) xcosa+V1—x?sina=E (say)
Putx =sint .. V1—x%2=cost
andtan ¢t = s . t=tan"! s
Vi—-x2 1 —x2
E =sintcosa + costsina
= sin(t + «a)
where
t=tan"!
1 —x2

(IV) sin xj&:osx —E (say)

T 1 T
We know that sin~ = —= = cos~
€ Know that sin Cos

V2
. T o
E= sinx- o8 7+ cos X - sin
=sin (x + %)

To evaluate integrals of the type, [——®&—— =7 (say)

J a sin x+b cos x

Example (23): [; %

x+3 sin x

Consider the expression 2 cos x + 3 sin x.

Let2 =rsinaand3 = rcosa

P=24+3 . r=v4+9=+13
2 2
and tan « :§ S.ooa= tan’lg

dx
I= - -
7SN & COS X + 7 COS & SIn X

1 b 1
= ,JL) = ;Jcosec(x + a)dx

r ) sin(a + x

1
:flog[tanx+a] +c

”
— L togltan(Z 4 tan 1 2) | + A
—\/ﬁog an( > +5tan” 5 ¢ ns.
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Example (24):
1

dx
Jcostr sinx J\/Z((l/\/i)cosx—i- (1/v/2)sin x)

dx

7LJ 1 J dx
T2 )sin(r/4+x) /2 ) sin((x + n/4)

1
= —Jcosec(x + n/4)dx [ Jcosec xdx = log (tan%)]

V2
1
:ﬁlog [tan(g—kg)} +c Ans.
1
Example (25): dex =1 (Say)

Method (I): Let 5=r sin & and 12 =r cos «
P=5 4127 - r=v25+144=1169=13

and tana = S o =tan™! El
12 12
I= 1 [,;dx = lJcosec(oz — x)dx
r ) sin(a — x) r
= 110g {tan (o = x)} +c= 1log {tan(g — E)] +c
r 2 r 2 2

1 | N ] X
= Elog {tan(itan (E) —E)} +c Ans.
Method (IT): Let 5=r cos « and 12 =7 sin «
PF=5+122 - r=+v169=13

and tan a=12/5 . a=tan"'12/5'®

1 1 9)
1:7J dx

COS X COs & — sin x sin «

IJ 1
= dx
r ) cos(x + a)

1
= ;Jsec(x + a)dx

1 X+a =©
= tozlun (5= 3)]
rog an > —|—4 +c

—Llo tan E+ltan712 +E + ¢ Ans
13 272 5) 7% '
©® cosA-cos B — sinA-sin B =cos(A + B)

fsec xdx = log[tan(¥ +2)] +¢
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1
Example (26). dex =1 (Say)

Consider the expression 2 cos x + 3 sin x

Method (I): Let 2=r sin « and 3 =7 cos «

P=2243=13 - r=VI13
andtana=2/3 . atan '2/3
1 d 1 da 1
]:7J — zfj = szcosec(x—l—a)dx
r)sinf@+x) r)sin(x+a) r

1
=—log {tan (x+ a)} +c
r 2

—Llo tan {+ltan_lg +c¢ Ans
IV R R VR I '

Method (II): Let 2=7 cos @ and 3 =r sin «

P=224+32=13 - r=V13
and tan « =32 . a=tan '3/2
I dx
n COS & COS X + sin « sin x
dx

1

-

1

7 ) cos x cos a + sin x sin &
1 dx

r)cos(x —a)

1

v

1

v

sec(x — a)dx

L5 ] e

—Llo tan Efltan_l§+g +c Ans
V3 Mz 2™ 2Ty '

Remark: Observe that the integral is in simpler form, if the expression (a sin x + b cos x) in
question is expressed in the form sin(a £ x) instead of cos(a £ x).

2.3.1 Converting the Non-Standard Formats to the Standard form of the Integral
(dx/(a sin x + b cos x))

Certain integrals can be expressed in the form [(dx/a sin x + b cos x). By identifying such
integrals, we can easily integrate them as done in the above solved examples. Such examples
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are important. One such example is given below, which may be evaluated.

J sec x xf[ dx
V3 + tan x V3 cos x + sin x

1
3 log [tan (g + g)} +c¢ Ans.

The following integrals involving trigonometric functions, sinx and cos.x, appear to be
simple, but they cannot be converted to the standard form(s) by trigonometric and algebraic
manipulations

J dx J dx J dx
a+bsinx’ a+bcosx’ asinx +bcosx +c¢

where a, b, and ¢ are integers. (These integrals should not be confused with those discussed in
Section 2.3).

We shall introduce a very simple substitution, which can be uniformly used in evaluating all
such integrals. But, as a prerequisite, it is necessary to first establish the following standard
integrals, since the above integrals are reduced to quadratic algebraic functions, due to
substitution:

(1) J ! dx:ltan’l<g> +c

X2+ a? a
1 1 xX—a
(2) deX—ﬂlOg(x+a) +c, x>a
1 1 a+x
(3) deX—%log<a_x> +c¢, x<a

Using these standard integrals, we can also evaluate integrals of the form
[(dx/(ax* + bx + ¢)).
Details are discussed in Chapter 3b.
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Change of Variable of Integration

3a.1 INTRODUCTION

So far we have evaluated integrals of functions, which are of standard forms and those, which
can be reduced to standard forms by simple algebraic operations or trigonometric simplifi-
cation methods including the use of trigonometric identities. Many integrals cannot be reduced
to standard forms by these methods. We must, therefore, learn other techniques of integration.

In this chapter, we shall discuss the method of substitution, which is applicable in reducing to
standard forms, the integrals involving composite functions. It will be observed that this method
involves change of variable of integration as against the earlier methods, wherein the variable of
integration remains unchanged. Before introducing the theorem which governs the rule of
integration by substitution, let us recall the chain rule for differentiation, as applied to a power
of a function. If u=f(x) is a differentiable function and r is a rational number, then

d [o]  (r+ 1w du
dx

d
T g u’.a(u),(r is rational, r # —1)

r+1

dx

oo <[f o ) = WF 7o)

From the above result, we obtain the following important rule for indefinite integrals.

3a.2 GENERALIZED POWER RULE

Let f be a differentiable function and “r” be a rational number other than “—1”. Then

[f ()]

P + c,(rrational, ¥ # —1)

[y 7 eoas =
Note that, in the above statement, we have simply used the definition of an antiderivative (or an
integral).
Let us apply the above rule for evaluating the following integrals.

3a-Integration by substitution (Change of variable of integration)

e ntl
It follows that [ [f(x)]" f"(x)dx = V’()i]l + ¢, (r rational, r# —1). In particular, [ x"dx = :+ [ren #-1.

Introduction to Integral Calculus: Systematic Studies with Engineering Applications for Beginners, First Edition.
Ulrich L. Rohde, G. C. Jain, Ajay K. Poddar, and A. K. Ghosh.
© 2012 John Wiley & Sons, Inc. Published 2012 by John Wiley & Sons, Inc.
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Example (1): Find

(@ [(x*+ 2x)7 (3x2 4 2)dx
(b) [sin'? xcosxdx

Solution:

(@) To evaluate [ (x* + 2x)7 (3x + 2)dx,
d s _2.2
we observe that I (X" +2x)=3x"+2.
X

Let fix) = x>+ 2x,
) =3x+2.
Thus, by the above theorem,

[0 2053+ 2)ax = [l s

s
= T +c

B (x> + 2x)26 e
- 26

(b) To evaluate J"sin12 x cos x dx, we observe that (d/dx)(sin x)=cos x.
Let f{x) =sin x, then f/(x) = cos x. Thus,

[sin12 xcosxdx = J[f(x)}lzf’(x)dx

_re®
13
_ sin!®x
13
Now, we can see why Leibniz used the differential dx in his notation | . .. dx.If we putu=f(x),
then du=f’(x)dx. Therefore, the conclusion of result (1) is that

+c

r+1
Jurdu = u+ 1 +¢, r # —1, whichisthe ordinary power rule, with “u” as the variable.
r

Thus, the generalized power rule is just the ordinary power rule applied to functions. But in
applying the power rule to functions, we must make sure that we have du to go with u".

In the integral of Example 1(a), the function f(x):(x3 +2x) and its differential f/(x)
dx = (3x> 4 2)dx, both appear in the element of integration. Similarly, in Example 1(b) the
function sin x and its differential cos xdx both appear in the element of integration.
Such integrals are easily expressed in the standard form(s) by substituting f(x)=u and
replacing f'(x)dx by du.

The following examples will make this point clearer.

Example (2): Evaluate the following integrals:
(@ [(3 +6x > (6x2 + 12)dx
) [(x? +4 % dx
© J(5+ ) 2 dy

(d) [(2x + 3)cos(x? + 3x)dx



GENERALIZED POWER RULE

(a) To evaluate [ (x* 4 6x)°(6x% + 12)dx
Let x>+ 6x=u
(3x% + 6)dx =du
(6x% 4+ 12)dx = 2(3x% + 6)dx = 2du.

J(xS + 6)()5(6x2 + 12)dx = Ju5 - 2du

u u®
=2|Pdu=2|=— =—42
Ju u |:6+C} 3—|—c

L{6

.
3+

Here, two things must be noted about our solution.

45

(i) Note that (6x> + 12)dx = 2du (instead of “du”). The factor 2 could be moved in

front of the integral sign as shown above.

(i) The constant “2¢” obtained above is still an arbitrary constant and we may

call it k.
(b) To evaluate [ (x? + 4)%xdx
Let x> +4=u
2x dx=du
x dx =2du. Thus,

2
(c) To evaluate | <‘72 + 3) x2dx

Let%+3:u7 cx-dx=du

Here, the method illustrated in (a) and (b) fails because x* dx = x(x dx) = x du, and x
cannot be passed in front of the integral sign (that can be done only with a constant

factor). However, by ordinary algebra, we can express the given integral, as

2 2 4

J x—+3 xzdx:J x—+3x2+9 x%dx
2 4
6

= J<Z+ 3x* +9x2>dx

_x + £ +3x7 +¢
285 '
(d) To evaluate [ (2x + 3)cos(x? 4 3x)dx
If we put x* +3x = u, then we get (2x + 3)dx = du.

By using these relations, the given integral transforms to [ cos u du. Note that this

integral is not a power function. However, formally we get

J(Zx + 3)cos(x? + 3x)dx = Jcos udu

=sinu+c
= sin(x* + 3x) +c.



46 INTEGRATION BY SUBSTITUTION: CHANGE OF VARIABLE OF INTEGRATION

Remark: We observe that the method of substitution, introduced above for power functions,
extends for beyond that use. Now, we introduce the theorem, which governs the rule of
integration by substitution.

3a.3 THEOREM

If x = ¢() is a differentiable function of ¢ and f[¢(?)] exists, then

. dx
[reax = [r00 - G - 0= [ow1o 0ar.
Proof: It is given that
x = ¢(2) is a differentiable function of z.
dx ,
R t
== d(0
Let Jf(x)dx = F(x) (1)
L . d
.. By definition of an integral. 3 [F(x)] =f(x), (2)
X
Now, by chain rule, we have
d d dx
—[F ——F Rints
o PO = Fx) -
d
= f(x) - 5 lusing(2)]
*. By the definition of integration,
dx
F(x) = =
() = [ - ar

or If(x)dx = ‘f(x)i—); - dr
:pwmmez;gg

Note (1): We have seen that if x = ¢(¢) is a differentiable function of ¢ and f[¢()] exists then,

[renar = [ - ar
:pwmwwwL

From this statement, we see that if in [ f(x)dx, we substitute x = ¢(7), then “dx” gets replaced
by ¢'(1)dz. Thus, if x = ¢(¢), then dx = ¢/ (r)dr.?

@ In the case of any composite function y = f{x) = f[¢(#)] the role of independent variable is played by the function ¢(7)
and we have seen that its differential [i.e., ¢/(£)d/] replaces the differential dx.
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Note (2): Again consider the result (3). We have
[rone@ar = [seoas. where o) =«

Now, interchanging the roles of x and t, we get,

[rioes = [rioar,

or t=¢(x), .. ¢(x)dx=dz

3a.3.1 Corollaries from the Rule of Integration by Substitution

Observe that the integrand on left-hand side of Equation (4) is complicated. In this integrand, we
have f[¢(x)] (as a part of the integrand), which is a function of a function. If we substitute
@(x) = t, then ¢/ (x)dx gets replaced by dz. Thus, the substitution ¢(x) = ¢ simplifies the integrand.

The new integral with changed variable may be in the standard form. In using this method, it
is important to recognize the form f[¢(x)]-¢’(x) in the integrand. (In other words, it is helpful to
decide the most convenient substitution, if we can identify a function and its derivative in the
integrand). Only then can we find a suitable substitution, viz. ¢(x) = t. Essentially, this method
of integration reduces to finding out what kind of substitution has to be performed for the
given integrand.

Also, remember that the differential ¢’(x)dx may at times be expressed in the form k-dz,
where k is a constant. Using the rule of integration by substitution, given by (4), we can easily
prove the following results.

n+1
Corollary (1): | [f(x)]" - f/(x)dx = M+ c, n# -1
n+1
Corollary (2): Fx) dx = ! —+c¢ n#F1

Corollary (3): \];]_E(f).)dx =2/f(x)+¢
X

f'()
f(x)

[More correctly = log, | f(x)| + (]

Corollary (4): dx =log,[f(x)]+¢, f(x)>0

Corollary (5): Jeﬂx) f(x)dx =™ 4 ¢

Corollary (6): Jaf @) . f(x)dx
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Jdx = ¢(ax + b)

Corollary (7): If Jf(x)dx = ¢(x), then Jf(ax +b +c

Note: These corollaries should be treated as individual problems and not as formulas. When
solving problems we must use only the standard formulas, which are necessary for writing the
integral(s), in the new variable “#” (say). Later on 7 must be replaced by f(x) while writing the
final result(s).

To get a feel, how simple it is to establish these corollaries, we prove Corollaries (2), (4), (6),
and (7).

D[S -1 B
Corollary (2): J[f(x)]" dx = n— 1)[f(x)]"_l +ec¢, n# -1
Proof: Let I = J [?((:))}n dx

Putfix)=¢t .. f'(x)dx=dt

I = Jﬂ = Jr‘”dt
tn

o+l t—(nfl)

T a1l —(n-1)

I
= Zoperte "7l

-1

DI R

)
f(x)

Corollary (4): J dx = log,|f(x)| + ¢

Here, it is convenient to put f{x) = ¢, so that, f/(x)dx =dt,

f(x)dx [dl
= | —=log,|?| =1log,|f(x)| + ¢ Ans.
[ = [ = tom = tog.l )
2f®
Corollary (6): Jaﬂx) f(x)dx = , a>0
log,a

Proof: Let/ = [d/™) . f/(x)dx
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Putfix)=r .. f/(x)dx=dz

a’ A
I:Ja’dr: +c= +c¢ Ans.
log,a log,a
Corollary (7): If Jf(x)dx = ¢(x), then Jf(ax +b)dx = M +c

Proof: It is given that

Let [f(ax+b)dx =1

Putax+b=t
a dx=dr.
dx = (1/a)dt
1 1 1
1= Jr)ar = froae = 0.6y 9

=lg¢(ax+b)+c  Ans.

3a.3.2 Importance of Corollary (7)
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The result of Corollary (7) tells us that corresponding to every standard integral of the
type[ f(x)dx,we can at once write one more standard result for[f(ax + b)dx. In fact,

flax+ b) is an extended form of f(x). Here, we must remember two important things:

(1) If xinfix)isreplaced by a linear expression (ax + b), then the corresponding integral is
expressed by writing the linear expression in place of x in the standard formula divided
by the coefficient of x. Note that if x in f{xx) is replaced by any expression other than the
linear one, then we do not get any standard result. Check this.

(ii) The integrals of such extended forms are also treated as standard results and hence
they can be used as formulas.

Now, we give a list of some standard results, for extended forms.

3a.3.2.1 Standard Results for Extended Forms

(1) [sin(ax + b)dx = —Lcos(ax +b) + ¢

(2) [cos(ax + b)dx = Lsin(ax +b) + ¢

(3) [sec*(ax + b)dx = Ltan(ax + b) + ¢

(4) [cosec*(ax + b)dx = —Lcot(ax +b) +¢

(5) [sec(ax + b)tan(ax + b)dx = Lsec(ax +b) + ¢

(6) [cosec(ax + b)cot(ax + b)dx = —Lcosec(ax + b) + ¢

(7) je(zx+bdx — %ea,\urb T

ax+b _ 1 mex+b
®) fm dx = a  log,m

+¢, m>0 [see Corollary (6)]
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n+l

) J'(ax—b—b)”dx:1 : M—i—c, n# —1
| | a n+1
(10) Jax+bdx:210ge(ax+b), (ax+b) >0

3a.3.3 Importance of Corollary (4)
Corollary (4) helps in finding the integrals of tan x, cot x, sec x, and cosec Xx.

sin x

(1) ftanxdx:J dx=1 (say)

COS X

Method (1): Put cos x =1¢
—sin x dx =dt
or sin x dx = —d¢

dr
I = _JT = —log,t = log 1!

= log,(cos x) ' = log,(sec x) + ¢, secx >0

’ [ tan x dx = log,|sec x| + ¢©® ‘ Ans.

cos x

(2) [cotxdx = J sinxdx =1 (say)

Put sin x =¢
cos x dx=dt

dr
I= J? =log,t = log,(sinx) +¢, sinx >0

’ J cot x = log, |sin x| + c‘ Ans.

. 1
(3) [cosec xdx = Jﬁdx =1 (say)

1
= JZsin(x/Z) - cos(x/2) dx

sec?(x/2)

Dividing N and D' by cos? g we get [ = JW

_ J<1/2> se?(x/2) | o
tan(x/2)

3)
Method (2) [lan vdx — J’ secs:ctz‘lcnxd)C

_ “(d/dx)(sec x)d

Sec x

X

= log,(sec x) +¢, secx >0
= log,[sec x| + ¢ Ans.

) Here, we have expressed “cosec x” in the form (sec?(x/2))/(2 tan(x/2)), which is convenient for integration by the
method of substitution. (It can also be expressed in other useful forms.)
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X
tan—-=1¢

Method (1): Put v
2
co—sec” —dx = dr
2eec 5 be

1= [ = toelo)

=1 (t x)+ t x>0
= n— n—
og,(ta 5 ¢, ta >

. [cosec xdx = log, tang‘ +c® 1 Ans.

“4) Jsec xdx = J dx=1 (say)

COS X

1
= Jcosz(x/Z) — sin?(x/2) dx

Dividing N" and D" by cos?(x/2), we get

[ sec?(x/2)
I= J 1 — tan?(x/2)

51

Method (1): Put tan(x/2) = ¢ oo 3sec?(x/2) -dx=dr
2dt
I =
Jl — 12
1 1 Note that—— 4 1 (=0 (0+0_ 2
= m"‘ﬁd, 14+t 1—1¢ 1—7 1—2
We shall learn about this technique, later.
=log,(1+1¢) —log,(l —1)+¢
141t
= logeﬁ +c
1 + tan(x/2) tan(x/2) + tan(n/4)
=lo e = log,
1 — tan(x/2) 1 —tan(x/2) - tan(m/4)

— log[tan((x/2) + (n/4)] + ¢ [--tan(n/4) = 1]

© Method (2): Jcosec e dog = Jcosec x(cosec x — cot x) dx

(cosec x — cot x)
[ cosec?x — cosec x cot X
= |/ T Ty
cosec x — cot x
[ (d/dx)(cosec x — cot x
= de\ = log,(cosec x — cot x) + ¢
cosec x — cotx

‘ [ cosec x dx = log,|cosec x — cot x| + c‘

Further note that
1 cosx 1—cosx

cosec x — cotx =

sinx sinx  sinx
1-[1-2sin?(x/2)] 2 sin?(x/2)
~ 2sin(x/2) - cos(x/2)  2sin(x/2) - cos(x/2)
x
= tan—.

2
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Jsec xdx = log, |tan (g + g) ’ +¢©  Ans.

Note: The four integrals obtained above are treated as standard integrals. Hence, we add the
following results to our list of standard formulae.

(1) [tanxdx = log,|sec x| + ¢ = log(sec x) + ¢
(2) [cotxdx = log,[sin x| + ¢ = log(sin x) + (7
3) Jcosec x dx = log(cosec x — cotx) + ¢

X
= log (tan7> +c
4) Jsec x dx = log(sec x + tan x) + ¢

X w
= log(tan<§+z>) +c
Further, in view of the Corollary (7)

1
{i.e., Jf(x)dx = ¢(x) => Jf(ax +b)dx = ;¢>(ax +b)
We also have the following standard results:
(1A) [ tan(ax + b)dx = Llog(sec(ax + b)) + ¢

(1B) [ cot(ax + b)dx = Llog(sin(ax + b)) + ¢

10 Jcosec(ax + b)dx = llog (tan <ax2+ b)) e
a

= glog(cosec(ax +b) — cot(ax + b)) + ¢

(1D) Jsec(ax +b)dx = 1log {tan(axzJr b + %)} +c
a

= élog[sec(ax +b) + tan(ax + b)] + ¢

' Method (2): [ sec xdx — [ sec x(sec x + tan x)
. (sec x + tan x)

_ [sec? x+secxtanx [ (d/dx)(sec x + tan x)
- secx+tanx (sec x + tan x)
=log,[sec x + tan x| + ¢
1 sinx 1+sinx
Ccos X Cos X - COos X

Further, note that sec x + tan x =

_ sin?(x/2) + cos?(x/2) + 2sin(x/2) - cos(x/2)  (cos(x/2) + sin(x/2))>

cos2(x/2) — sin®(x/2) cos?(x/2) — sin(x/2)

_cos(x/2) +sin(x/2) 1 +tan(x/2) tan(f+ E)
" cos(x/2) —sin(x/2) 1 —tan(x/2) 2 4

@ Important Note: Here onwards, we agree to use the notation log[¢(x)] to mean log.l¢(x)l. This is done for saving time
and effort. However, the importance of the base “e”” and that of the symbol for absolute value must always be remembered.
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3a.3.4 Some Solved Examples

In using the method of substitution, it is important to see carefully the form of the element of
integration. Usually, we make a substitution for a function whose derivative also occurs in the
integrand. This will be clear from the following examples.

Example (3): Find / = [ x*sin x* dx
Put x*=1
4x* dx=dr X dx="Y, dt

1

1 1
= Z(—cos t+c= —Zcosx4 +c¢ Ans.

Example (4): Find I = J&
1+ cosx
Put 1 +cos x=1¢
—sin x dx=dt c.sin x dx = —d¢

dt
I=— 7:—logt+c
= —log(1 +cosx)+c¢ Ans.
log x)

Emmﬂﬂ&:ﬁM!:‘gﬂ——f
] X

dx

Putlog x=¢ .. (1/x)dx=dt
I= Jcostdlz sint+ ¢
=sin(logx) + ¢ Ans.
1
—d
x log x[log(log x)] Y

1 1
- —dx =dr
logx x

Example (6): Find I = J

Put log (log x) =1

ie. dx =d¢

"xlog x

dr
[= J7 =logt+ ¢ = log[log(log x)] + ¢ Ans.

Example (7): Find I = [xa* dx

Put x> =1 oo 2x dx=dr
. xdyx='hdt
1 1 !
I==|ddt=~="
ZJa 2 loga+c
1 a
=— . > Ans.
2 loga+c s
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2 si .
Example (8): Evaluate I = J SInX 1 oS Y X

sin* x + cos?* x

Method (1) Dividing N" and D" by cos*x, we get

2sin X - COS X

" 5 cos* x
an x - sec’ x
Izjid

. sin x 1
tan* x + 1 x =2

cosx cos?x

=2tanx - sec’ x

Now, put tan’x=¢ . 2tan x sec’x dx=d¢

dr
1= =tan"'t+c¢=tan'(tan’ x) + ¢ Ans.
1+2

Method (2)
2 sin X cos X 2 sin X cos X
I= - 4 = .2 \2 ) zdx
sin® x + cos* x (sin” x)” + (1 — sin” x)
Put sinfx=¢ .-.2sin x cos x dx=d¢

’_J dr _J dr
e+ Je+1-2+2

Consider 27> — 2t + 1
=2(2 —t+(1/2))

_I d _lj d Now 2 g ]
I PN T Y P Ty B L
N1 11

— 2 _ _ JE
ORI

-4 dt
S 2) (- (1/2)) + (1/2)

1 t—(1/2 1
zitan_l%+c:§tan_l(2t— )+¢

1
= Etan’l(Z sin?x— 1) +c¢ Ans.

Example (9): Evaluate I = dex
x¢ +e¥
Put x°+e*=¢
(e x* ' +e¥) dx=dr
e(x* 14+e¥ Hdx=dr [Note this step]

1(dr 1 1 ;
1:7[—:7logt+c:710g(x‘°+e*)+c
el]t e e
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4 X

Example (10): Evaluate ] = Jiedx

7—3e"
Put(7 —3e¥) =¢

I:J 4et x s —3e¥dx=dr
7—3e* 1

dy = —~dr
e’ dx 3

4 ;
- Elog(7 —3e")+c¢ Ans.

Next, observe that the integral I = fﬁdx can also be expressed in a form that is
convenient for substitution.
: : 1 e™+1

We have, e* +e ¥ =¢e* 4+ —= + .

ex e)»

1 e’ e’

I:J dx:J dx:Jizdx
e¥ e e2¥ 41 1+ (e¥)

Now, pute*=¢ . e*dx=d¢

dr .
I:JI o tan"'t+c=tan"!(e*) + ¢ Ans.

Similarly, [5——=dx = [ 555 dx, which is of the same form as in the Example (8).

Now, look at the following integral which appears to be of similar type, but it cannot be
integrated so easily.

1
Example (11): dex

1
Ji_ dx [Here, N"is a constant and D" is of the form(ae™ + b)]
3+4er

(Note that here no substitution is possible without changing the integrand, as shown below.)
In such cases, we divide N" and D" by e”, so that we get

1= jﬁdx, which is now of the type at Example (8).

Now put 3e " +4=¢
—3e “dx=dt
e “dx=-1/3dst

1 (dt 1
S = ffJT = 7§10g1+c

1
= —glog(3e’“‘ +4)+c Ans.

Remark: Note that, it is comparatively simpler to evaluate the integral fﬁdx, than to
evaluate the integral jﬁdx.
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e — 1

peran dx

Example (12): Evaluate I = J
Method (1): In such cases, we may break up the integral into two parts: one of the type at
Example (10) and the other of the type at Example (11), or else divide N and D by half the
power given to “e”.

Dividing N" and D" by e¥, we get

e¥ —e ¥
I= Jidx
et +e™"

Put (e*+e M=t .. (e"—e )dx=dt

dr
s = [7 =logt + ¢ =loge" —e™) + ¢ Ans.

2x_1

Method (2): [ — Je dx

e +1

2x 1
= [de_J dx
Jer +1 e +1

=1, — I, (say).

Consider I,

Pute®+1=¢..2e*dx=dr .. e** dx="hdr

1(de 1 1 ’
I :5J7:§10gt+c1 :Elog(ez* +1)+¢
) 1 e—2x
Consider I, = JeZX m 1d)c = Jl mape=T: dx

Putl+e 2=t —2¢ X dx=ds

e Xdy=-1hds
1 1

dr 1
L= _§J7 = —Elogt = _ilog(l +e )+

1 .
s =1 = b= [log(e™ + 1) +log(1 +e )] + ¢
1
= —1 2x 2 —2x
> ogle™+2+e ¥ +¢
1 :
= Elog[ex +e P+
= log(e* +e*)+c¢ Ans.

Let us solve one more example of the above type.

et —1
e’ + 1

dx

Example (13): Evaluate I = J

Dividing N" and D" by e, we get

I J*ex/Z _ e—x/Z

ex/2 + e—x/2 dx
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Now, put e* +e =1 @ —e ) dx=2d¢
dt
I:2J7:210gt+c
=2log(e"? +e/?)+ ¢ Ans.
Y+ b
To evaluate Jae + X.
ce¥+d

Note: Examples (12) and (13) are special cases of f ‘C’:\ig dx. Of course, this type of integral can
be easily evaluated by breaking it into two parts as explained in Example (12), Method (2).
However, there is a simpler method (which is more general and applicable to many other

integrals) as explained in Example 14.

3e¥+5
X
2e* +7

Example (14): Evaluate I = J

We express,

NG
N' = A(D") + B(~— D
() + (dx )

ie.,3e"+5 = A(2e* +7) + B(2eY)
= (A + B)2e* +7A.

d
a(Zex +7)=2e"

Now, comparing terms and their coefficients, on both sides we get A = 5/7 and hence B=11/14.

dx+— [ =2
20 17 T 2 17

I*5J26X+7 11J 2e*
7

5 11 [ (d/dx)(2e* +7)
_7de+14[ o7 W

5 11
=z +ﬁ10g(26" +7)+c Ans.

Example (15): Find / = Jsmﬁ dx®
VX
1 dx

Put =t ——dx=dr ... —=2dt

ut v 24/x o VX

1= ZJsintdt: —2cost+c¢

= —2cosy/X+c¢ Ans.

® N* = numerator and D" = denominator.

© Remark: It is because of the function /X, that these integrals are easily evaluated. If we replace /X by x, then the new
functions cannot be integrated by substitution. Even the integrals J sin /X dx and fcos V/X dx, and so on, cannot be
evaluated by this method. Later on, it will be shown that the integrals [ sin y/x dx and | cos y/X dx can be evaluated by the
method of “integration by parts”, to be studied later.
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Now, evaluate the following integrals:

M [
X
Vx
Ans. 26\/';+C
(i) [cos xd
NG X

Ans. 2sin/x+c¢
(i) [tan’v/x
VX

Ans. 2[tany/x — \/X] + ¢
(iv) J sec?y/x |

VX

Ans. 2tan+/X+c¢

) Jsec \/)wcdx
VX
Ans.  2log[secy/x + tany/X] + ¢

Exercise
Integrate the following with respect to x:

~ [(sin”! x)?
RN

s o1 3
Ans. %4’6

,_Jid
@ i= 1+ x* o

Ans. tan"!'x’+¢

@) 1= d

Jx sin?(log x)

Ans. —cot (log x) +¢
4 I= Je"‘ cos(e")d
Ans. sin(e®) +c¢

(5) 1= J(log 9 4

X

log x)
Ans. @—i—c



Q)

Ans.

)

Ans.

®)

Ans.

©))

Ans.

10)

Ans.

an

Ans.

(12)

Ans.

13)

Ans.

14)

Ans.

I= Je‘a“x sec? x dx
etan X+C
2x—5
I:indx
Vx2—-5x+13

24/ x2 —5x+13+¢

2% etan"x2
I=|——Fdx
[ 1+ x*

etan’]xz + c

in 2
I:J - 2sm X dx
3sin” x + 5cos? x

1
- Elog(S —2sin’*x) + ¢

cos 2x
I=|-——= - dx
sin® x + cos? x + 2 sin x cos x

1
Elog(l +sin2x) + ¢

sin 2x
I=J ——dx
a? cos? x + b2 sin” x

1
ﬂlog [@® + (b* — a®)sin® x] + ¢

1
I=J, dx
e¥ + 1

—log(1+e™)+¢ orlog( c )+c

e’ + 1

1
I=|—d
J3+4e2f‘ o

1
- glog(3e’2x +4)+c¢

I_J2e~*+3 .
) dex +5

3 1
—x ——1 4X
SX loog(e +5)—|—C

THEOREM

Note: Solutions to the above problems are available at the end of this chapter.

59
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3a.4 TOEVALUATE INTEGRALS OF THE FORM fm% dx, WHEREA, B,
C, AND D ARE CONSTANT

These integrals are handled as the integrals of the form [((ae* + b)/(ce* + d))dx.

[ sinx +2cos x
Example (16): To find /= |———~ "~
xample (16): To fin J3sinx+4cosx

we express N' = A(D") + B4 (D)

d

d
a(D’) =—[3sinx+4cosx] =3cosx —4sinx

dx
Now, sin x+2cos x =A(3 sin x +4cos x) + B(3cos x — 4sin x)
= (BA—4B) sin x + (4A + 3B) cos x.

Equating coefficients on both sides, we get
3A—4B=1 ()
4A 4+ 3B =2 (ii)

(i) x 3: 94 — 12B=3
(i) x 4: 16A+ 12B=8

Now (i) x 3: 124+ 9B =6
and (i) x 4: 124 — 16B=4

- 4 B
258=2 - B=2/2517
s 1= Hde +3J (d/dx).@ sin x + 4 cos x)
25 25 3sin x + 4 cos x)
_ 11x+ 2 log(3 sinx +4cosx) +c¢ Ans
Tt Ts % c _
Example (17): Find I J Loy
X : Findl=|—dx
P 1 +tanx
1 COS X

Consider = - = .
l4+tanx 14 (sinx/cosx) cosx+sinx
We express N' = A(D") + B d/dx (D)

d

d
a(Dr) = —(cos x + sin x) = —sin x + cos x

dx
= CcosX —sinXx

Let cos x =A(cos x + sin x) + B(cos x—sin x) =(A + B) cos x+ (A — B) sin x

19 Note: Value of B could also be found by putting the value of A in any of the Equations (i) or (ii).
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Equating coefficients, on both sides, we get

A+B=1 (6) ) _ ) _ _ ) _
A—B=0 (7)} s 2A=1 . A=1/2 and 2B=1 .. B=1/)2
I_J’(1/2)(cosx+sinx)+(1/2)(cosx—sinx)dx
N cos X + sin x
Put cos x+sin x=¢ .. (cos x —sin x) dx=d¢

1d—|—gf—|—llot—|—c
2 2] 77272

=3 Ty Elog(cos X +sinx)+c¢ Ans.

Now evaluate the following integrals:

1
i) |——d
® J1+cotx *

1 1
Ans. X~ Elog(sin X+ cosx)+c¢

1
. d
(i) J3+2tanx x

3 2
Ans. —x+ —log(3cosx+2sinx) + ¢
13 13
(i) J3 Sil.lx +4cosxdx
2sin X + cos x

Ans. 2x+log(2sinx + cos x) + ¢

Information in Advance: We can also handle the integrals of the form
J((@+bcosx+ csinx)/(e+ Bcosx + ysinx))dx. Here, we shall express the N' (i.e.,
a+bcosx+ csinx)as /(D) + m((d/dx)of D") + n, where /, m, n will be found by comparing
the coefficients of corresponding terms (i.e., cos X, sin x, and constant terms). By this method, the
given integral reduces to the sum of three integrals. The first two integrals can be easily evaluated,
whereas the third integral is of the form [(n/(a + B cos x + vy sin x))dx. We shall learn about
this integral in the next chapter. Obviously, evaluation of such integrals is time consuming.

Solutions to the Problems of the Exercise

. (sin! x)?
.(1): Find I = | ——=dx
Q. () —
1
Putsin 'x=¢ . ———dx=d¢
CoVi—e

13 .1 3
I:Jtzdt:§+c:w+c Ans.
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2x

Q. (2): F1nd1:Jl+x4dx
2
- [
1+ (x?)
Put x> =¢ . 2xdx=dr

dt 0
I = =tan f+c¢
1+

=tan"'x2+c¢ Ans.

Q.(3): Find I = J

x sin?(log x)

Putlog x=¢ .. (I/x)dx=d¢

dr 2
I = |———=|cosec” tdf = —cott+¢
sin” ¢

= —cot(logx) + ¢ Ans.

Q. (4): Find I = [e* cos(e*)dx
Put Q=t .. Qdx=ds

1= Jcoszdt: sinf+c¢
= sin(e*) + ¢ Ans.

Now evaluate the following integrals:

1
(i) | ——dx
V1—x% sin"'x

Ans. log(sin"!x) + ¢

2x
(i) | ——=dx
V1—x*
Ans. sin"!'x?+¢
1+ sin2x
X + sin® x
Ans. 2vVx+sin?x+c¢

(iii)

. (log x)?
Q. (5): Find I = de
Putlog x=¢ .. (1/x)dx=d¢

I:Jtzdt:iJrc
3

1 3
(oix) +c¢ Ans.
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Now evaluate the following integrals:

.. [log(x+1) —logx
@ J x(x+1) d

2
[log(x—i—zl) log x| te

[Hint: Putlog(x + 1) —log x = ]

Ans.

o [Urlorrn)
2x

(log x + x)?

Ans.
ns n

+e

[Hint: Put log x + x =]

(i) Jsm(a + blog x) d

X

—1
Ans. Tcos(a +blogx)+c

[Hint: Put (¢ + b log x)=1]

Q. (6): Find I = Je“‘“ *sec?x dx
Puttanx=¢ .. sec’>xdx =d¢

oI = Je[ di=el+c=e" ¢ Ans.

2x —5
.(7):Find] = | ————dx
M J\/x2—5x+13

Put x> —5x+13=¢t . (2x—35dx=d¢

1 Jdt o2 2 25 13 Al
= |l—=—=—4c= x-—=3x+13+c¢ ns.
Vi 12
' zxelan" X2
Q.(8): Find I = Jﬁdx
1
Puttan™'x* =¢ . ————2xdx=ds
1+ (x?)
2x dx
ie., =dr
e 1+ x4

I:Je[dt:e’+c’

an—! 21
:eldn X ¢ Ans.
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sin 2x
.9):Fnd/=|—F——"——
Q-® 3 sin?x + 5 cos?x
I = 2s8in x - COS X
) 3sin’x + 5(1 — sin’x)
2sin X - cOs X
= |——F—7—dx
5 —2sin“x
Method (1): Put 5 — 2sin’x =1
—4 sin x - cos x dx = dr
1
2sinx-cosxdx:—§dt
1 I ll r+
=—=|—=—-=lo c
2] 7T T2k

Method (2): Put 3 sin’x + 5 cos’x = ¢

[6sin x cos x — 10 cos x sin x]dx =d¢

or —4 sin x cos x dx =dt

or —2sin 2x dx =

Note: We have seen above that 3 sin’x + 5 cos?x = 5—2 sin’x.

Q. (10): Find I =

df or sin 2x dx=—14 d¢
1

I =
2

g*—llo t+c
1 2%

1
—Elog(S —2sin’x) + ¢ Ans.

1
= - Elog(3 sin’x + 5 cos’x) + ¢ Ans.

2
cos 2x dx

sin?x + cos2x + 2 sin x cos x

cos 2x

— - dx

sin“x + cos2x + 2 sin X cos X
cos 2x

P dx

1 + sin2x

2

cos 2x cos

-

X — sin

sin®x + cos?x = 1 and

2 sin X cos X = sin 2x

X

log[cos x +sinx] + ¢ Ans.

1 +tan x

(sin x + cos x) J (cos x + sin x)

— si d/d i
008 x — sin x dx:J( / x)(cosxfsmx)dx
COS X + sin X COS X + sin X

Also I = Jﬂ: Jtan(%—x)dx = —log[sece—x)} +c¢ Ans.
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Put 1 +sin 2x=¢ . 2cos 2x dx=dt ;. cos 2x dx:%dz
1(dr 1 1 .
I= EJ? = Elog t+c= Elog(l +sin2x) +c¢ Ans.

sin 2x
2 coc2 SR
a? cos?x + b? sin“x

. 2 2 2.2
Consider a” cos“x + b* sin“x

Q. (11): Find I = J

= a¢® (1 — sin?x) + b* sin’x

= d®+ (b*—d®) sin’x

J 2sinx - cos x dx
@ + (b — a?)sin’x

Put &> + (b* — @®) sin’x =1

(b*—a* 2 sin x cos x - dx =d¢

Zsinxcosxdx:mdl
I = ! dr_ ! logt+c
T AT T ) 8

1
= ﬂlog[[a2 + (b — d®)sin®x] + | Ans.

Note:  We may also put, a* cos’x + b* sin’x =1
Then [—2(12 cos x - sin x + 2b2 sin x - cos x] dx=dr
(2sin x cos x) - (b*—d?) dx=d¢

1

or sin 2x dx:mdt

Q. (12): Evaluate I = fﬁdx

Dividing N" and D by ¢, we get

Putl14+e “=¢
—e “dx=dt
det
I =— 7:—logt+c

= —log(l+e ™)+ ¢ Ans.

65



66 INTEGRATION BY SUBSTITUTION: CHANGE OF VARIABLE OF INTEGRATION

Further simplification

1
1 = —10g<1+5) +c

) e*+1 n ) e* n
= —lo ¢ = 10, Cc
S\ e et

dx

Q. (13): Evaluate I = |5

Dividing N" and D" by e*

e—2~(
- ‘ 3o 44
Put 3e ¥ 44=¢
—6e 2 dx=dt
e X dx=—1/6 dt
Lfde_ 1

=—-1
6] 6ogl+c

I=—

1
= —glog(3e’2x +4)+c Ans.

Q. (14): Evaluate ] = [ 2 +2dx

d
We express N' = A(D") + Bd

(D)

d

dx
Let 20 +3=A(40+5)+ B(40)
= (4A+4B)Q+5A
Equating coefficients on both sides, we get
5A=3
A=3/5

3
4(z)+4B=2
5

(D) = % (de" +5) = de*

5-6_ 1
10 10

(3/5)(4e* +5) — (1/10)(4e”)
de5+5 dx

|
gjdx LJ (d/dx)(4e* +5)
3
5

I =

10 dex +5

1 :
X — Elog(4e* +5)+c Ans.



3b Further Integration by
Substitution: Additional
Standard Integrals

3b.1 INTRODUCTION

We know that the method of integration by substitution aims at reducing an integral to a
standard form (as in the case of other methods). In fact, there is no definite rule for choosing a
substitution that should convert the given integral to a standard form. However, as we have
seen in the previous Chapter 3a, if the integrand is a function of a function [i.e., f[p(x)]] and
the derivative of ¢(x) also appears in the integrand, so that the element of integration is in the
form f[p(x)] ¢'(x) dx, then it is convenient to choose the substitution ¢(x) = .

With this substitution, we get ¢'(x) dx = dt, and the variable of integration is changed from x
to ¢. The new integral in ¢ is expected to be easier for integration. Also, it is sometimes
convenient to choose a change of variable (from x to ¢) by the substitution x =f{(¢), where f(7)
must be some suitable, trigonometric, algebraic, or hyperbolic function. This statement will be
clear from the following trigonometric (and algebraic) substitutions.

[Here, we shall not be considering the hyperbolic substitutions though they are equally
convenient for this purpose. We have discussed the hyperbolic functions at length in Chapter 23
of differential Calculus (i.e. Part I)].

3b.1.1 Trigonometric Substitutions

The following integrals can be easily evaluated by trigonometric substitutions as indicated
below:

(i) If the integrand involves v a2—x2, then put x =a sin ¢ or x =a cos .
(i) If the integrand involves v/a? + x2 or a* 4+ x°, then put x =« tan .
(iii) If the integrand involves v x2—a?2, then put x =a sec 1.

The idea behind these substitutions is to get rid of the square root sign by using trigonometric
identities: 1 — cos®t =sin’t, tan ¢ + 1 =sec’t and sec’s — 1 = tan’z, as required.

3b-Further integration by substitution

Introduction to Integral Calculus: Systematic Studies with Engineering Applications for Beginners, First Edition.
Ulrich L. Rohde, G. C. Jain, Ajay K. Poddar, and A. K. Ghosh.
© 2012 John Wiley & Sons, Inc. Published 2012 by John Wiley & Sons, Inc.
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3b.2 SPECIAL CASES OF INTEGRALS AND PROOF FOR STANDARD
INTEGRALS

There are many other function(s) that can be reduced to the standard forms by substitutions. For
example, consider the following functions listed in three batches:

1 1
xX24+a?’ xX2—a?’ a?—x2
1 1 1
9 b b
VX2 a2 Vx2—a? Var—x2 xvVx2—a?

Batch (IIN) /2 +a?,Vx>—a?, and Va?—x2

Batch (I)

Batch (II)

It is useful to consider the integrals involving the above functions in the batches as listed
above. (It will be found helpful in remembering the standard formulae conveniently, in the
order they are developed.) Now, we proceed to obtain the formulas for the integrals of
Batch (I).

1
Integral (1) dex = ;tan*1 <g> + ¢

Method (1): Let/ = | ——dx

)
Consider x> +a*> = a*|= + 1]

|
Put Yoy o —dx =dr o dx=adt
a a
I_iJadt _1J de
T R)1+2 a)1+ 2

| I _,/x
—tan 74 ¢ = —tan <7) +c
a a a

1 1
dex = ;tanfl (g) +c¢ Ans.

™ Note that, this result is more general than the result: J(1/(1+x?))dx = tan~! x + ¢, which follows the form
(d/dx)(tan™" x) = 1/(1 + x?). Both these integrals are treated as standard formulas.
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Method (2): Letl = dex

Put x=at .. dx=adt Also t=§
a

1 adt
l= |—=o——adt= |5
’ Ja2t2+a2 “ Jaz(tz—i-l)
1 dt IJ dt

- Ejthrl:& 1+

1
Method (3): Let [ = dex

Let x =atant . dx = asec?tdt

X
Also, tant = —
a

X
t=tan " —
a

g 7J asec’tdt 7J asec?t dr
T Ja@ttankt+a® | @ (tan2t + 1)

1 [sec?t 1 1
- fjgdt:fjdt:fwrc
sec“t a a

69

Note: To obtain the above result, we expressed the given integral in the standard form
[(1/(1+#)) dt by using the method of substitution. In the Methods (1) and (2), we used the
same substitution in two different ways, but in Method (3) we used a different substitution which

converted the given integral into another standard form.

1 1 —
Integral (2) dex =5 log (:Jraa) +c,x>a

xX2—a?

. 1 1 1 1 1
Consider = =—|—-
x2—a®> (x—a)(x+a) 2al|x—a x+a

1
Let = Jidx
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1 1 1
== |—- dx
2a ) |x—a x+a

1
= 5 [log (x—a)—log (x+a)] +¢

= i10 ra +c
T 2a J xX+a

J 1 d 1 | X— n
or ———dx=—log|——|+¢
x2—a? 2a % x+a

1 1 a+ x
Integral (3) Jr—xz dx = o lo, <a7 ) +e¢, x<a

1 1
S I=|——dx=|—
HPPOSE; Jaz—xz x J(a—x)(a—O—x)

1 A B
Let — =2 4 2
(a—x)(a+x) a—x a+x

1 =A(a+x)+B(a—x)

This is an identity, and hence true for any value of x. To find the numbers A and B:

Putx=a,weget 1=2a-A .. A= (1/2a)
Now, put x=—a, we get 1=2a-B .. B=(1/2a)

o 1 [,
“a2—x2 (a—x)(a+x) 2ala—x a+x

1 1 1
== |—+ dx
2a ) la—x a+x

= 1 [log (a—x) - (—1)+log(a+x)]+¢

2a
1
=3, [log (a+ x)—log (a—x)] + ¢
1 a+x
de -— log ‘ +c

Note: Integral (3) can be deduced from Integral (2) by observing that f

10g |‘jl+:| - 10g }X+a|

a—+x
a—x

CRRE T =

{Note that —log e
X+ a+x a+x

= log’

]

(3)

_ dx
7o =—[ 3%z and
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Remark: We are now in a position to evaluate integrals of the form,

I J dx
T Jax®+bx+c
To express this integral in the standard form, we express the quadratic expression ax” + bx + ¢
in the form of sum or difference of two squares and then apply one of the above three formulas,
as applicable. For this purpose, we consider the following three cases.

Case (1): When the coefficient of x? is plus one.

Example (i): x2+6x+10 = x> +2(3)-x+9+1
= (x+3)°+12

J dx 7J dx ~ tan"! x+3 te
X+6x+10  J(x+3)7+12 1

Example (ii):  x?> +4x—5 = x> +2(2) - x+4-9
= (x+2°-(3)°

J dx J dx 1 (x+2)-3

= = Jog — "~
x2+4x-5 (x+2)*-(3)* 3 08 (x+2)+3

1 -1
7810g(x—>+c, x>1 Ans.

X+5

Similarly, x2—4x +8 = x2—2(2)x + 4 + 4 = (x—2)* + (2)*
2 4 4

2

) vBy
2 2

Now consider x2—12 = x>—(2v/3)*

1 1 1
And, x2+x3=x2+2<>x+ —--3

dx [ dx 1 x—23
= =——=log| ——= +c,x>2\/§
sz—lz JXZ—(zﬂ)Z 4V3 g(x+2\/§>

”J"idx —ilo Xa +c,x>a
) e—2 T 2% X+a ’

Case (2): When the coefficient of X2 is minus one.
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Example (i): 1—-x—x? = —[x> +x—1]
= —[x2+2<%>x+ i—G +1>}
ey @ ey

" dx J dx
Jlmx—a? (V53/2)" =(x+(1/2))?

_ 1/2) log (\/5/2+(x+(1/z))> »

2(V5 V5/2—(x+(1/2))
R N N R Ea))
IVl BV ST

L V5+1+42x
Nt IV

+c¢ Ans.

Example (ii): 15+4x—x? = —[x’>—4x—15]
= —[x¥*—2(2) x +4—4—15]
= (=27 - (V19| = (VIO (x-2)’

(Note that negative sign of x* is absorbed in the final expression.)

) dx _ dx
“Jls+4x—x2 - J(\/E)L(xfz)z

_ 1 o V19 + (x—2)
210 8| V19— (x—2)
1 \/E—Z—i-x}
= -lo +c¢ Ans.
2V19 g[m T 2x

Case (3): When the coefficient of x? is some constant “a” (other than +1).

Method: After making the coefficient of x* unity, we express the quadratic expression as sum
or difference of two squares.

. 2 7
Example (i): 3x>+2x4+7=3 (x2 + gx + §)

234+
3G+ 47+ 8] =3 (e 7+ ()|
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] = [ dx 71‘[ dx
’ . 3x24+2x+7 3 (X—I—(l/3))2+(2\/§/3)2
13 o x+(1/3)
=—-.——=tan ——+¢
3 2/5 2V5/3
1 1 (3x+1
= —=tan +c¢ Ans.
2V/5 < 25 )
imi 2 2,3
Similarly, 4-3x-2x" = -2|x"+ Ex—z

3 9 9
— _ 2__ = Z 7
afea(Dar 52

3\ 41

=2

[Note that the negative sign (of —2x?) is absorbed in the final expression. Finally, 2 is kept
outside the bracket and not —2.]

Remark: In the quadratic expression, if the coefficient of x? is a positive number then, it
reduces to the forms v + k? and if the coefficient of x” is a negative number, then it reduces to
the form k> — v, where v is in the form (ax + b) and k is a constant.

Note: We have seen that

! ¢lax+D).

a

[f(x)dx — )= j Flax+ b)dx =

Thus, it is possible to write the corresponding integrals directly, without reducing the
integrand to the standard form. Accordingly, one may write the following:

: J.#dx: J;dx:l Ftan“(z—xﬂ +c
D )4x2+9 (2x)* + (3)? 23 3
:ltan_l (z—x) +c
6 3
, Jde:J;dle{Llo (ﬂ)}ﬂ
i) Jov—a G 3@ B2

_110 3x-2 L
T12%\3xy2) "¢




74 FURTHER INTEGRATION BY SUBSTITUTION

(iii) 1 B 1 B 34+2x
[ 9 g = [ G T2 &2) () (Hxﬂ e
7i] 342x
128\ 3y ) T

[Hint 1: We will shortly show that when the final answer obtained by the above method, there is a
possibility of committing mistake, unknowingly.]

[Hint 2: Besides, it will be seen from the integrals at (b) and (c) below that the student may
commit an even more serious mistake, if he is not careful about the standard integrals in
question. Now we will show, how the mistakes can creep in.]

Consider,

1 1 1 yx
(a) J4+x2dX—J(2)2+x2dx—§tan (§>+c

With this result, one may be tempted to write,

1
(b) Ji.zdx # tan~!(sin x) 4 ¢, (why?)
1+sin“x

Similarly, it will be wrong to write

(©) J;dx #+ ?tan_1 (ﬁcosx> +c

4+5cos? x 2

It is easy to see why the results of (b) and (c) above are wrong.

Recall that the standard form is [(1/(a*+ x*))dx = (1/a)tan"!(x/a) + ¢, wherein the
function x> appears (without any coefficient). Naturally x> cannot be replaced by any other
function in this formula. (A similar statement is applicable for other standard results.)

This suggests that the given integral be first converted to standard form, before writing the
final answer.

Now, we consider some special cases of the integrals of Batch I, and those that can
be expressed in these forms. We classify such integrals in three types: Type (a), Type (b), and
Type(c).(z)

Type (a): Integrals of the form(s) jﬁ or J% and those that can be reduced to these
forms.

For this purpose consider the following exercise.

Exercise (1)

(i) J dx
3x2-7
Ans ! o) <\/§x_\/7)+c
C v P\ BT

@ There are number of integrals involving algebraic, exponential, or trigonometric functions, which can be reduced to one
of the three standard integrals of Batch (I). This will be clear from the problems listed in the given exercise.
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(11) J dx
9—4x?
1 3+2x
Ans. —1
T Og(3—2x) Te
(iif) J dx
9x2 425
1

We emphasize that for computing such integrals, it is always necessary to make the
coefficient of x> as 1 or (—1), so that the given integral can be expressed in the standard

form, that is,:
dx dx
2xiee O Jieoe

Now we consider exercise (iii),

d
Let us evaluate Jﬁ
dx dx
Let I = =
¢ J 9x2—25 J (3x—(5)°

Note that the integral on the right-hand side is not in standard form, but the reader is tempted to
write the integral as m log (—Z) + ¢, which is wrong.

3x—.

X+
This mistake can be avoided if we substitute 3x =1¢, so that 3dx=d¢, and we get [ = 1/3
[dt/(#—5%). Now, this is in the standard form, and its value is 1/30 log ((3x—5)/(3x +5)) +c.

Note that, {I = %de_itsz :% {(2)1% log <;;—55)H

Such mistake(s) can also be easily avoided by making the coefficient of x> as unity, as
mentioned above.

2 2
Consider  9x2—25 = 9{x2_ﬂ — {xz_(i) }

= éJ xzfg/z)z =5 L é/a) tog (j 1(<55//33)>)} e

1 3x-5
-1 Ans.
30 0g<3x+5) te  Ans

(Observe that method of substitution indicated above is more convenient.)
Now we consider the following problems of the Exercise (1) from (iv).
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(iV) J dx
e¥+2e

1 e’
Ans. — tan"' [ —
V2 (ﬂ)

(V) J COoS X dx

9—sin’x
1 34sinx
Ans. glog (m) +c

(Vi)J cos X d
9—cos? x x

Ans L tan~! (sin x) +c
VA V8

[Hint : cos® x = 1—sin? x.]
(vii)J ¥ dx
143

1 ’
Ans. Etanf1 3% +c

2
(viii) X
J—l s dx

1 1+x2
Ans. flog( R ) +c

6 1—x2

(ix) J sec? x .
25—16tan? x

1 544t
Ans. —log(ﬂ>+c

40 5—4tan x
(X) J dx

a2 sin® x + b2 cos? x

1 atan x
L (25
ns o an 5 +c
(xi) Jdix

1 +sin® x

1
Ans. ——tan”! {\@tan x] +c

V2
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(xii) J dx
4+5co0s? x

1 2t
Ans. gtan’l{ a;]x}—kc

It is easy to show that the integrals at (ix)—(xii) are of the same type and can be evaluated in the
same way. To understand this, it is proposed to evaluate the last integral.

dx

Let/]=|——+—
¢ J4+500s2x

Write 4 =4(sin’x + cos?x) = 4sin’x + 4cos>x.

s (A)

4sin®> x +9 cos? x

Dividing N" and D" by cosx, we get

_J sec? x dx _J‘ sec? x dx (B)
dtan’ x+9 | (2tan x)* + (3)°
We put 2tan x = ¢ o 2sec’xdx = dt
I IJ dr 1 ltan’lt n
=|— = = |= - c
2)e+(3)?* 23 3
1 2t
zgtan’1< an)qtc Ans.

Note: Looking at the integrals at (A) and (B), and comparing their forms with those at (ix)—(xii)
of Exercise (1), it is easy to note that all these integrals are of the same type and hence, they can
be evaluated by the same method.

Type (b): Integrals of the form [ -4
substitution. [It is useful to be clear that all such integrals are finally reduced to the Type (a).]

and those which can be reduced to this form by

Example: Let us evaluate the following integral:
d
1= Jix
8—6x—9x2

I 2 8
Consider 8—6x—9x% = —9 x>+ Zx— f]




78

FURTHER INTEGRATION BY SUBSTITUTION

Exercise (2)

Evaluate the following integrals:

®

Ans.

(i)

Ans.

(iii)

(iv)

Ans.

)

Ans.

(vi)

J’ dx
3x24+2x+7

—1 tan™! (3x+ l) +
c

V20 V20
J dx

3—10 x—25 x2

1 34+ 5x

%log( 1—5x> te

J e’ dx

eXr fe¥+1

! tan™"! (Zex * 1) +c
V3 V3

J cos x dx
9sin® x4+ 12sinx+5

1 can-"! 3tan x te
3 2

J dx
143(x—5)°

%tan’1 {\/g(x—S)] +c

J sec? x dx
2tan® x +6tanx +5

tan!(2tan x +3) + ¢

{1+(x+(1/3))

1-(x+(1/3))

b e
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(vii) J sec? x dx fTmp]

secZ x—3tan x + 1

tan x—2
Ans. log (tzii 1) +c

(viii) J dx

2 cos? X + 2 sin x - cos x + sin” x

Ans. tan"!(tan x4 1) +c

(iX) J dx

4 sin® x +9 cos? x

1 2tan x
Ans. —tan !
ns 6an ( 3 )—i—c

(X) J dx
8sin® x4+ 12sinx+ 1

1
Ans. gtan_l(3 sinx+2)+c¢

Let us evaluate the integral at (viii).

dx
2 cos? x + 2 sin x cos x + sin” x

Let I:J

Dividing N and D" by cosx, we get

7[ sec? x dx 7[ sec? x dx
T J242tanx+tan®?x  Jtan? x+2tanx +2
Puttanx = ¢ -~ sec? xdx = dr
J dr
I =|——7——
24242
d 1
= | ——— =tan'(t+ 1) +¢
J(z+1)2+12 (e+1)

=tan !(tanx+1)+c  Ans.

It is useful to remember that an integral of the form, / = [dx/(a + b sin 2x + ¢ cos 2x), where
a, b, and c are integers, which can always be reduced to a standard form, by the method of
substitution. Depending on the integers a, b, and ¢, the standard form of the integral are obtained
and accordingly the final answer. As an example, consider the following integral:

= j & (P)

3sin2x+2cos2x+3
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Put sin 2x = 2 sin x cos x
cos 2x = cos®x—sin’x
and, 3 = 3(sin’x 4 cos?x)
We get,
dx

I =
JG sin x - cos x 4 2(cos? x—sin? x) + 3 cos? x 4 3 sin” x

J dx
sin? x + 6 sin x - cos x + 5 cos? x

Dividing N" and D" by cos’x, we get

sec? x
=]
Jtan2x+6tanx+5 Q

Now, puttanx = ¢ .. sec? xdx = dt
We get,

I :J dr :I dr
2+6t+5 ) 2+2(3)t+9-4
dr

J(l+3)2—(2)2

1 (t+3)-2 1 t+1
= Jog|—2 = = Zlog| =
2.2°g{(r+3)+2]” 4°g<z+5)+c
1 tan x 4 1
= log ([———— Ans.
48 (tanx+5)+c s

Note: We have shown above that an integral [ ——& —

always be reduced to the form as listed in Batch 1.

With a view to express any given integral of the form (P), to the standard form, we shall
always use the same trigonometric identities (as shown above). Also, we shall use the
substitution tan x =t to maintain uniformity in our approach.

where a, b, and ¢ are integers, can

Type (c): Now we will show that the integrals of the form f dx and J can also

a+bcos x
be reduced to the forms of Batch (I).

dx
a+bsin x

Method: For integrating these functions of sin x and cos x, we make use of the following
identities:

. . X X
sinx = 2sin— -cos—
2 2

", _n

2 X .
—, and for constant “a’ we write
2’ ’

2 X
cos X = cos’ = —sin

a = af cos? 4sin?2
- 2 2

to express the denominator in the desired form.
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Finally, by dividing N" and D" by cos® (x/2), we express the given integral in the form (See
chapter 3a example on pg. 51) [ f(tan(x/2))sec?(x/2)dx, and then put tan(x/2) = ¢, to convert
it to the form [(dr)/(A#* + Bt + ¢), as in the solved examples above.

Remark: This method is also applicable for evaluating integrals of the form
J(dx)/(asinx + b cos x) in which there is no separate constant term. However, there is an
alternate simpler method available, in which the expression a sin x + b cos x is converted into a
single trigonometric quantity 7 sin (x + «), where r = va? + b>anda = tan~'(b/a). We
have introduced this alternate method in Chapter 2. Recall that, (in Chapter 2) we did not use the
method of substitution for evaluating such integrals. Besides, that method is simpler than
the method of substitution discussed here. Now, it is proposed to evaluate the integral
[[dx/(4sinx+ 3 cos x)] by both the methods for comparison.

dx

Solution: Let / = Ji
4 sin x 4+ 3 cos x

Method (I): Put sinx =2 sin% ~c0s§, and

2 X L 5X
€Os X = COs” = —sin”
2 2

dx
I=
,[8 sin (x/2) cos (x/2) + 3 cos?(x/2)—3 sin” (x/2)
Dividing N" and D', by cos? %, we get

/ _J sec?(x/2)dx
) 8tan(x/2) +3-3tan?(x/2)

_ sec?(x/2)dx
B J3 + 8 tan(x/2)—3 tan(x/2)

X 1 X
P X C Zgec? Tdx =
ut tan2 ro. 2sec 2d~c dr
I*J 2dt
T J3+8t-32
Consider 34+8t—3=-3 {tzfgtf.’)}
4 16 16
3|22 )t+ ———-3
2 (5)er 95
_3 [_i 2_ @ ’
3 3
VZE N
=3l—) —(t—=
N 3 3
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[ gJ‘ dr
3 (Va3/3) ~(1-(4/3))

2t 3 (V43/3) + (1—(4/3))

=3 [2 N ((\/13'/3)—0—(4/3))) e
1 \/AT?;—4+31 i

= \/f lOg (m) +c¢  Ans.

dx

Method (II): T luate | ————
ethod (IT) Oevauaej4sinx+3cosx

Consider 4 sin x + 3 cos x=F (say)

Let 4=rcosa and 3 =rsina

E = rsin x cos a4 rcos x sin

=rsin (x+a), wherer = /4> +32 =5

= JL— chosec (x+a)
~Jrsin(x+a) )7

1
= 5 tog [n (5)] ¢
1 p 1 3
=3 log {tan (% + 3 tan ! Z)} +c¢ Ans.

Observe that Method (II) is simpler than Method (I), and less time consuming.
Now, let us solve some problems of Type (c).

dx
1+2sinx+3cosx

Example (1): Evaluate [ = J

Solution: Consider 1 + 2 sin x + 3 cos x

. X . .X
We write 1= coszi + smzi7

. .X X
2sin = x4sin = -cos—,
2 2

X X
d 3 =3cos’>—3sin’ =
an COs X Cos 5 sin >

I dx
B J4 cos?(x/2) +4sin (x/2) - cos(x/2)—2 sin®(x/2)

X

Dividing N" and D' by cos’ 5 we get
B J sec?(x/2)dx
)4 +4tan (x/2)—2 tan?(x/2)
1
Put tan g: t, 3 sec? gdx =dt

I_J 2dr _J dr
S JA+4r2e2 242112
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Now consider,

242112 = —[*-2t+1-3]

~[=1=(37] = [(v3)'-(-1)’]

B dr 1 V3+1-1
- [ (V3) —(-1 23 log (\/§—t+1)

1 (\/571+t)
=—©=log|—(=——]+c
2V3 V3+1-t

1 (v3-1) +tan(x/2) ‘
BV R ((\/?+ 1)—tan(x/2)> e Ans

Example (2): Evaluate [ —L_——dx =1 (say)

COs & + cos X

For convenience, let us put cos a =a,

y I:J dx
a+cos x

X ., X
22 _gin? =
2

2

We write cos x = cos

X L, X
and a:acoszi +asin® =

2
dx
J(l +a) cos?(x/2)—(1—a) sin*(x/2)

Dividing N" and D" by cos” §, we get

/ 7J sec?(x/2)dx
~ J (1 +a)—(1—a) tan?(x/2)

Put tanle 1seczfdx=dt so that seczfdx:Zdl
2 2 2
_J 2dt 2 J dr
- (1+a)—(1—a)12_(1—a) (14+a)/(1—a))—1?

2 J dr
=0l (vita)/(vV1=a) -

2 gx/ﬁlo (V1+a)/(V1=a+1)
T Wiza) [2Vita P\ (VT (T
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L e (WIHEQ/VTZat ) | o
Via S\ (VTTa)/(Vi—a)

V1—cos2a log c
2) (x/2)

CcO
1 cot(a/
log { /2)—tan(x/2)

sin o cot(a

1 t(a/2) +tan(x/2)
ot(oz/Z)—tan(x/Z)} te
-+ tan
—tan

} +c¢ Ans.

(1
Example (3): Evaluate I = ‘de
J cosa-+cosx

Here, we write 1 =sin® a + cos® & [Imp. step]

dx

/ sina + cos? a + cos a cos X
CoS & +CoS X

dx

sin® a 4 cos a(cos a + cos x)
COs & + COS X

sinfa | ——————dx+ |cosadx
COS & + Ccos X

sinfa | ————dx+xcosa
COS & + Ccos X

Note that we have already evaluated the first integral in the previous Example (2).

I — sin? { irllal()g (cot(a/2) + tan(a/2)

sin® « cot(a/2)—tan(a/2)

) + (cos a)x} +c

— sinalog (cot(a/2) +tan(a/2)

cot(a/2)—tan(a/2) ) +(cosa)-x+c Ans.

3b.3 SOME NEW INTEGRALS

(i) Now we are in a position to consider for evaluation, the integrals of the form [((px +¢q)/
(ax?® + bx + ¢))dx. Here, the N'is a linear polynomial and D'is a quadratic polynomial. In
this case, we express the numerator in the form [A((d/dx) of denominator) + B], where A
and B are constants. In other words, we express

px+gq dy — 2ax+b 1B dx
ax>+bx+c = Jax2+bx+ec ax?+bx+c’

3) T T+ 1+ (2 cos? (@/2)-1) 12 > )\ /2
— a cos a — Cos” a — a
Since a = cos @, we get /75 = \/ T e (125 (a/2)) = (Sinza) =cot §
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The first integral on the right-hand side is of the form [((f'(x))/(f(x)))dx =log | f(x)] +
= log}ax2 +bx + c‘ + ¢1 and we know how to integrate the second integral.

(ii) We can also evaluate the integrals of the form [((f(x))/(ax* + bx + ¢))dx, where f(x) is
a polynomial of degree 2.

In this case, we divide the numerator by denominator, separate out the quotient and reduce the

remaining to the following form
1
K J px+tq

——dx
ax?+bx+c

—— 1 dx or K
ax? +bx+x J

For example, fxst_é‘fzsijj;”dx = [x +1+ \zzfsitie} dx, which can be easily integrated, as

we know.

Remark: In the integral of the form [((px + ¢)/(ax? + bx + x))dx, if the quadratic polyno-
mial in the denominator (i.e., ax®> + bx + ¢) has two distinct linear factors, then we can
evaluate the integral by the method of partial fractions. For example, it can be shown that
(x+7)/(x*+8x4+15) = (2/(x+3))—=(1/(x +5))®

3b4 FOUR MORE STANDARD INTEGRALS

(i) 2dx:log(x—|— x2+az>+c

1
Vxt+a

1
(i) ﬁdx = 10g(x+ VXZ—(IZ) +c
X2—a

(iii) [ dx = sin™" () +e
Vai—a2 a

. 1 1 x

(IV) mdx = 5 sec a +c

Now, we shall prove the above standard integrals, using the method of substitution.

(i) To prove that J = log [x+ X2+ az] +c

dx
VX2 +a?

dx
Solution: Let Ji =1
NeEw
Put x = atant . dx=asec?tdt

_J asec? tdt _J sec? t
Va2 tan? t + a2 Vian?t+ 1

) We shall restrict ourselves to the cases where the denominator is a quadratic polynomial, irrespective of whether it has
linear factors or not.

) The (two) terms on the right-hand side are called the partial fractions of the given rational function. In algebra book,
methods are discussed for finding the partial fractions provided they exist. [We have already used the method of partial
fractions (earlier in this chapter) for evaluating the integrals [(1/(x*—a?))dx and [(1/(a*—x?))dx.]
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2

S t

I:J%c dt:Jsectdt['.' tanzt+1:seczt}
sect

= log[tan 7 +sec f] + k

X
X=atant . tant=-— and
) x+\/x2+a2 Tk a
= log |— -
& a a ‘/X2+Clz
sect=——
a
JIZ L2
= log xrvxra +k =log[x+ Vx> +a?|-loga+k
a

= log [x+ Vx> +a?| + ¢, where cis an arbitrary constant.

[Here (—log a) and k both are absorbed in arbitrary constant c.]
Thus,

d
J%zlog[x+ x2+a2]+c Ans.
xX2+a

d
(ii) To prove that Jix = log [x +V xzfaz] +c

Vl—a?
dx
Solution: Let Jizl
Ny
Put x = asect . dx=asect-tant-dt

asecttanf
1 :J dr

Va2 sec? t—a? --tan’x 4+ 1 = sec’x

asect-tant o2y 1 — tan2
:J dt:[seczdt c.secx—1 = tan“x
Va? tan? ¢t
I =log[sec ¢+ tant] + ¢
sx=asect .. sect=(x/a)and
x  Vx2-a? (x/a)
=log|= + ——r| +¢ N
a a tant = —
a

=log|——| +¢

x+ \/xz—a2:| N

a

=log [H\/F—?] —loga+c
=10g[x+@] +c
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(Here again the constant “~log a” is absorbed in the arbitrary constant c.)

Thus, J = log [x + \/xz—az] +c¢ Ans.

dx
A /x2_a2

Remark: The above result can also be obtained from the result (i) by replacing a* by —a°.

dx L1 X
(iii) To prove that J\/ﬁ = sin 2 +c
dx
Solution: Let Ji =1
Va2—x2
Put x = asint o, dx=acostdt
acos tdt acost X
I= = dt=|dt=t4+c=sin"'=+¢
Va2—a?sin’ t acost a
[ dx X
Thus, ——— —=sin ' =+ ©
‘ Va2 —x2 a

This result can also be obtained by using the substitution x =a-t. We get dx =a dr.

J dx 7J adt 7J di
Va2—x2 Va—a? 2 V1=

.1 <1 X =1 X
=Ssm (+c=s8sm —+c|t=sm —
a a

[The reader may convince himself to note that the substitution x = a-¢is not applicable in
cases (i) and (ii).]

1 1 X
i) [ = [ ———dx=—sec!Z 4+ ¢
) Jxvﬂ—az a a *
Put x =asect . dx=uasect -tantdrt

asect-tant
/= J dr
asec tvVa? sec? t—a?

IJ tant IJ.dt 1 . osect=x/a
= | ———dt=— =—. c
a)/sec? t—1 a a t =sec”!(x/a)

1 _/x
= —sec <f)+c
a a

1 I /x
L in mdx —;Sec (5) +c

© Note that, this formula is the more general form of the result [(1/(xv/x2—1))dx = sec™! x + ¢, which follows from
(d/dx)(sec™! x) = (1/xvVx2—1).
@ Note that, this formula is the more general form of the result [(1/(xv/x2—1))dx = sec! x + ¢, which follows from

(d/dx)(sec™ x) = (1/xvV/x2—1).
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Solved Examples
Evaluate the following:

Example (1): [ dx _
V5 +4x—x2

Consider 5+4x—x? = —(x2—4x-75)
_[2—2(2)x +4-9]
—[(¥=2)* -3 = 3"~ (x—2)’]

I = J’dix = sin”! (x3;2> +c¢ Ans.
32— (x—2)?

Example (2): J 2cos x dx

4—sin’ x

Putsinx = ¢ . cosxdx =dt

24t dr
I = =2
[ 2)* - J 2)* -2

2[sm <2)] +c¢=2-sin"! (s1r21x> +c¢ Ans.

Ex: le (3
ample (3): ‘m I
Consider 2x—x? = [x —2x]
= —[=2x+1-1] = —[(x—1)*—(1)’]
= [(1)*~(x—1)%]
dx .1 x—1
= | ———=si — | tc
J 12*(X71)2 0 ( 1 )

=sin"!(x—1)+c Ans.

Example (4): [ Vex dr —
We have, [ - J Ver dx — e’
Ve¥4+4e—~ e*+4e ‘

e 4e
[ {-e:ﬂ;g

ex
= [—=—=dx
J Vver 44 /

(It is clear how the numerator becomes free from square root.)
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Now put e* = ¢ oooetdx =dr

dt

I = Jizlog[t-i- t2+22] +c
2 +(2)?

logle* +ve>™ +4] +¢  Ans.

Example (5): J sin x dy 1

Vcos 2x
sin x Note that
We have, [ = Jidx cos2x = 2cos? x—1
V2cos?x—1 — (VZcosx)*—1
[:J sin x dx
(V2 cos x)*—12
Put V2cosx =1t .. —v2sinxdx=ds
1 J dr
R [ S [r+x/r2 ]
V2)vei T f y
1
1 :—ﬁlog[\/ﬁcosx—o—vZCOSzx—l] +c

\/_log[ 2 cos x + 4/ cos(2x) } +c Ans.

[ dx
Example (6): |————=
ple (6) ‘ V2x24+3x+4

3
Consider 2x>+3x+4=2 {xz + §x+2}
3 3\* /3)\°
_ 2 2 2y (2
—Z[x +2<4>x+(4) <4> +2
N2 V23
-2 2) (M2
(-]

1 dx
Al Vot G- (VB2

- %log{(}ﬂr %) e+ (3/4))27(\@/4)2} o

3 / 3
— 2 Z
(.X+ >+ X+ -x+2

1
log +c¢ Ans.

Y
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(Recall that after making the coefficient of x° unity, we express the quadratic expression as the

sum or difference of two squares and then apply the required standard result.)

Exercise (3)

Evaluate the following integrals:

@ J CcOoS X e
V1—4sin? x

1
Ans. Esin’1 (2sinx) +c¢

[Hint: Put 2sin x = ¢, so that 2 cos x dx = df]

(ii) Jidx
V2ax—x?
Ans. sin”! (ﬂ> +c
a
2
(iii) indx
VX0 4+2x3+2
1
Ans. glog {(xg + 1)+ VX0 +2x3 + 2] +c
2
X
(iv) Jidx
Vb —x6
1 3
Ans gsin ! )% +c
Solved Examples
Example (7) [édx =
P J xv3x2-2

1 1 1 X
[=—|———  dx=——sec | —— | +
\/§JX X2— ( 2/3)2 i 3 . ( 2/3> ‘

= %sec’1 (%) +c¢ Ans.
Example (8) Jidx [Imp.]

Ve

1
x*—9

J 1
w2 =)

Let 1 dx
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Here, if we put x> = 1, we get 2x dx = dz. But 2x is not there in the N". Therefore, we multiply N*
and D' by 2x and get.

2l Joey-oy
Now putx? = ¢ 2x dx=dt
= IJ d ! quc_lf] +c
2 e 2373

Exercise (4)

Evaluate the following integrals:
dx
(@ —
x-V16x2-9

1 4
Ans. Zsec’1 (?X) +c

Ans.

[Hint: Put x = sec ¢]

1
¢) |[———dx
© Jx3- x2—1

1 1vx2—1
Ans. —sec x4 -2 4o
2 2 X2

Now we shall consider integrals of the type [ ((px + ¢)/vax? +bx +c)dx.

Method: We find two constants A and B, such that
d 2
px+q = Aa(ax +bx+c)+B
ie, px+q = AQQax+b)+B

Now, by equating coefficients of x and the constants on both sides, we find the values of A and B.
We then express the given integral as follows:

J&MZAJMMMJ;M
Vax?+bx+c vax*+bx+c vax*+bx+c
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The first integral on the right-hand side is of the form|(f'(x)/+/f(x))dx, which is easily
integrated by putting f{x) =, so that f(x) dx =d¢, and we get

f'(x) J /2 —1)2 12

S dx = [[f(x)] P (x)dx = | Pdt = — +c=2Vi+¢
J f(x) 1/2

and the second can be evaluated by expressing (ax?+bx+c)= a[x2 + %x + ﬂ

as a sum or difference of twoas a sum or difference of two squares and applying the relevant

standard formula applicable.

Illustrative Examples

4x+1
Example (9): Evaluate Jidx =1 sa
P VX2 +3x+2 (say)

d
Solution: Let 4x 4+ 1=A {& (x* 4+ 3x+ 2)} +B

Then 4x+1=A(2x+3)+B
=2Ax+ (3A+B)

Equating the coefficients of x on both the sides of (4), we get
2A=4 .. A=2
Again, equating the constant terms on both sides of (4), we have

3A+B=1 or 6+B=1
B=-5

Substituting the values of A and B in (4), we get
(4x+1)=2(2x+3)-5

4 1 2
J’ X+ dx — J X—+3 d J dx

—dx =2 ————dx—5 | ————
VX2 4+3x+2 VX2 +3x+2 VX2 +3x+2
d/d 243 2 2 3
Now, I :2J( /A +3x + )dx: Jde
Vx24+3x+2 VX2 43x+2
Put x*+3x+2=¢ .. (2x+3)dx=ds
dr /2
L=2|—=2|"dr =2|—
1 J\/; J 12 +c
S l\/z+01
X2 +3x+24+¢
Now, consider x> +3x+2
3 9 9
— (2 x+ 2242
X7+ (2)x+4 4+

(3G
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dx

_ dx _
I 51¢<x+(3/2>>2—<1/2>2

(33 -0)

3
:SIOg{x—O—E—F x2+3x+2} +o

=5log +6,®

3
1:4\/x2+3x+2—510g{x+§+ x2+3x+2}+c Ans.

3\ /1\?
Note that (x+ 5) _(i) =x>+3x+2|.
2 5
Example (10): Evaluate Jde =17 (say)
V2x2+2x+5

d
Solution: Let2x+5 = A {a (25 +2x+ 5)} +B

=A@4x+2)+B
— 4Ax+ (2A +B)
A=2 - A=')h
and 2A+B=5 .. 2(1/2)+B=5 . B=4
I:J(l/z)(4x+2)+4dx
V2x2+2x+5
1 4x 42
,J.deﬁ_g;‘[dix
2)V2x2+2x+5 V2x242x+45
Consider I; Put 2x> +2x+5=1 co(Ax+2)dx =dr
I *1Jdlilj’71/2dzf] s
"T2)vi 2 T2012)

:\/?—i-c’]: 2X2+2X+5+Cl

[ dx
—————=1log [x+\/x2 iaz] +c
VX2 +a?
®)
dx

and [7: log {(Xia)-‘r (xfa)+ (/3)2] +c
T (x+ta)? £8°

93
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5
Now 2x2+42x+5 =2|x*+x+ 5]

e ()
() ()]

4 dx 4 2 dx

vl Jor a2 nE V2 d ot 1727+ /27
(x+ %) +1/x2+x+%
X+ % +\/x2+x+%

Note that (x+ (1/2))* + (3/2)> = x>+ x+(5/2) (and not 2x* 4+ 2x+5).
Now we give below some integrals which can be expressed in the following form

[(px +q)/Vax? + bx + cdx.

I
Y

\S)

L =

= 2/2log

+ ¢

I = V232 +2x+54+2v2log +c  Ans.

1
Example (11): Evaluate J %dx =1 (say)

x+1 x+1 x+1®
Consider .
x+3 x+1

x+1 _ x+1
\/(x+3)(x+1) Va2 +4x+3

’*J x+1 dflJ 2x+2

—dx = | ——dx
Vxr4+4x+3 2)Vx2+4x+3

d
But (¥ +4x+3) =2x+4

B IJ (2x+4)-2
Vx24+4x+3

2x+4 2
dx— dx
VX2 +4x+3 VX2 +4x+4—1

Sl
1J xzzici-:j—i- ij ( dxz_(l)z
3

x+2)

2\/x2+4x+3>—log[(x+2)+ x2+4x+3]+c
= Vx2+4x+3— [x+2 )+ Vx2+4x+3|+c¢ Ans.

1

©) The basis behind the method is to release the numerator from the square-root sign.
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Example (12): Evaluate J a+x dx =1 (say)

X
. a—x a—x a—x
Consider = - —
a—+x a+x a—x
a—x
N )

- 1
a—x P

a —2x
I zjidxzji Jidx
Nz Nz 2 ) VaiZ_x2
1
= a~sin’1§ + 3 2Vat—x2+c¢

X
=a-sin"'Z +Va2—x24c¢ Ans.
a

Now evaluate the following integrals:

() J 2x

X
Ans. Vx2-2x-—log <x71 + \/x272x> +c
=5

(i) [ x
x—7

Ans. /x2—12x+35+log {(x—6)+ x2—12x+35}+c

95

Observation: Evaluation of an integral of the type [((px +¢q)/(Vax*+bx + ¢))dx, is more

time consuming.

Note: With regards to the integrals of the functions v/x2 + a2,v/x2—a2, and va2—x2 [of Batch
(II)], we can use the method of substitution, but as mentioned earlier, there is a simpler method
(known as integration by parts introduced in Chapter 4b). We shall obtain the integrals of these

functions, by both the methods in Chapter 4b.



4a Integration by Parts

4a.1 INTRODUCTION

Asyet, we have no technique for evaluating integrals like [ x cos x dx, which involve products of
two functions. In this chapter, we give a method of integration that is useful in integrating certain
products of two functions."

We give below some more examples of the integrals (involving products of functions) to give
an idea of the type of functions that we propose to handle in this chapter.

Jx e¥dx, sz cos x dx, [ sin~! x dx, Jcos’1 xdx, [log x dx,
J(log x)2 dx, J sec’ x dx, J (sin’l x)zdx, J siny/x dx, etc.

The technique that we are going to discuss is one of the most widely used techniques of
integration, known as Integration by Parts. It is obtained from the formula for derivative of the
product of two functions just as the sum rule of integration is derived from the sum rule for
differentiation. In fact, the operations of differentiation and antidifferentiation are closely
related. Hence, it is natural that certain rules of integral Calculus follow from their counterparts
in differential Calculus.

A most surprising and interesting fact comes to light when we study (the first and the
second) fundamental theorems of Calculus, to be introduced later in Chapter 6a. The concept
of the Definite Integral (discussed later in Chapter 5) clearly tells that in the development of
the idea of the definite integral, the concept of derivatives does not come into play. On the
other hand, the fundamental theorems of Calculus prove that computation of Definite
Integral(s) can be done very easily using antiderivative(s). [The method of computing
definite integrals is otherwise a very complicated process and it cannot be applied to many
functions.] It is for this reason that the term ‘integral’, (picked up from the definite integral) is
also used to stand for antiderivative. Accordingly, the process of computing both antide-
rivative(s) and definite integral(s) is called integration.

4a-Method of integration by parts (When the integrand is in the form of product of two functions)
) Generally, such integrals arise in practical applications of integration, namely computation of areas, volumes, and other
quantities, using the concept of definite integral.

Introduction to Integral Calculus: Systematic Studies with Engineering Applications for Beginners, First Edition.
Ulrich L. Rohde, G. C. Jain, Ajay K. Poddar, and A. K. Ghosh.
© 2012 John Wiley & Sons, Inc. Published 2012 by John Wiley & Sons, Inc.
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4a.2 OBTAINING THE RULE FOR INTEGRATION BY PARTS

Let u and v be functions of x possessing continuous derivatives. Then, we have

d dv du
W=y — L 1
dx(u v)=u dx—i_v dx (1)

Also, we can restate (1) in the language of indefinite integrals as

du

dv
u~v—Ju~a~dx+ v~dx~dx (2)
or by rearranging, we get
dv du
Ju~a~dx—u~vf v~a~dx (3(A))
Or
Ju~dv:u-v— v-du (3(B))

For computational purposes, a more convenient way of writing this formula is obtained, if we
put, u=f(x) and v=g(x). Then, du=f'(x)dx and dv= g'(x)dx. [These relations may also
be visualized in (3(A)), in view of the definition of differential(s) discussed in Chapter 16
of Part 1.]

Using the above expressions for u, v, du, and dv, we can write equation (3(B)) in the form

j () ¢(x) -dx = £(x) - g(x) jg(x) F/(x) dx (3(0)@

The formula (3(C)) expresses the integral [ f(x)-g'(x)-dx [=[u-dv] in terms of another
integral [ g(x)-f"(x)-dx [=[v-du].

4a.2.1 Important Notes for Proper Choice of First and Second Functions Needed for
Applying the Rule of Integration by Parts

Now, suppose we wish to evaluate [ h(x) - dx, but cannot readily do so. If h(x) can be rewritten
as the product of f(x) - g'(x), then (3(C)) tells us that,

Jh(x) -dx = Jf(x) -g'(x)-dx
4)
—f(x) - g(x) — jgoc) F(x)dx

In addition, if [ g(x) - f/(x) - dx can be readily evaluated, then [ h(x) - dx can be evaluated by
means of (4).

It is useful to state the formula (3(C)) in words. For this purpose, we shall call the function
f(x) as the first function and the function g'(x)dx as the second function.

@ The formula (3(C)) is the most convenient statement of the rule for our purpose. It defines the intergral of the product of
two functions namely f{x) and g(x). Note that the function g(x) [on the right-hand side of (3(C))] stands for J g'(x)-dxand
it occurs twice.
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Then, the rule defined by equation (3(C)) can be remembered in words, as follows:

(Integral of the product of two functions) = (first function) x (integral of the

second function) — J[(derivative of first function) x (integral of the second

function)]dx(3 )

The important point to note is to select from the product f(x)-g’(x) [in the integrand
h(x)], the first and the second function, and the correct substitutions for the functions f(x)
and g'(x) dx.

The selection of the functions has to be such that the integral [ g(x)-f’(x)dx appearing
on the right-hand side is no more difficult and preferably less difficult to integrate then the
integral [ f(x)-g(x)-dx.

The above discussion suggests that f{x) should be a function that is easy to differentiate
and g’(x)dx should be chosen so that g(x) can be readily found by integration [or g(x) may be
some standard integral, available in the table]. The method will be clearer once we see how it
works in specific examples.”

Note (1): The method of integration by parts, is applicable only if one of the two functions in
the given integral [ A(x) - dx [=[f(x) - g (x) - dx] can be easily integrated. In fact, our ability
to select such a function (i.e., the second function) correctly, will depend upon the integrand,
and our experience. [This is so because in some problems, both the functions may be easily
integrable whereas, in some others there may be only one function, and not a product of two].
These situations will become clearer shortly, as we proceed to solve problems. First, we list
the standard indefinite integration formulas that will be needed frequently.

Standard Indefinite Integration Formulas

L. [k-dx=kx+c

2. [x-dx=1x*+¢

3. fx”dx:fﬁl' +¢, n#-1,neR

4. [efdx=e"+¢

5. Jatdx = +c (a>0) [+ [a*logadx=a"+c (a>0)]

6. [ sinxdx = —cosx+ ¢ (Chapter 1)

7. [cosxdx =sinx+ ¢ (Chapter 1)

8. [tanxdx = log,|sec x| + ¢ = log|sec x| + ¢ (Chapter 3a)

9. [cotxdx = log,|sec x| + ¢ = log|sec x| + ¢ (Chapter 3a)
10. [sec xdx = log,[sec x + tan x| + ¢ = log|tan(3 + %) | + ¢ (Chapter 3a)
11. [cosec x dx = log,|cosec x — cot x| + ¢ = log|(tan%) | + ¢ (Chapter 3a)
12. [sec?xdx =tanx + ¢ (Chapter 1)

) This method of evaluating /(x), by “splitting” the integrand /(x) into two parts f{x) and g'(x), is known as “integration
by parts”.

) Remember that in the formula (3(C)), selection of the second function g'(x) is very important since its integral [i.e., g
(x)] appears twice on the right-hand side of the formula.
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13.
14.
15.

16.
17.
18.

19.
20.

21.
22.
23.
24.
25.

26.

217.

Now, we give some important notes and supporting illustrative examples.

INTEGRATION BY PARTS

[ cosec? xdx = —cotx + ¢
[secx-tanxdx =secx+ ¢

JCOSGC X -cotxdx = —cosec x + ¢

j\/lix—i:sin’lx—i-c or —cos 'x+c¢
—X

dx
14x2

‘[x- dj:Z—l

anzlxz dy = itan71 (i) +c (LZ 75 0)

A —tan'x+c¢c or —cotlx+c

=sec'x+c or —cosec‘lx—l—c)

J7dx=Flog(¢2) +¢, x<a
=L 10g|a+¥’ +o

x ol
J"\/j‘z'——‘_;—sm Xte, (@a>0)

1= J’x\/é:l;dx =lsec!'2+¢, (a>0)

J A= =log[x + Va2 +a?] +c

e .

JVx2+a2dx =3 \/x2+a2+”log[x+ X2 +a?]+c¢

[VX2—a?dx=3Vx2 —a? —%log[x—k VX2 —az] +c

[Va? —x?dx =3Va*> — x? —sm Txy ¢

a

(Chapter 1)
(Chapter 1)
(Chapter 1)
(Chapter 1)
(Chapter 1)

(Chapter 1)

(Chapter 3b)

(Chapter 3b)

(Chapter 3b)
(Chapter 3b)
(Chapter 3b)
(Chapter 3b)
(Chapter 4b)

(Chapter 4b)

(Chapter 4b)

Note (2): Of the two functions in the integrand, if one function is a power function (i.e., x, X2,

3
X,

..) and the other function is easy to integrate, then we choose the other one as the second

function. If power function is chosen as second function, then its index will keep on increasing
when the rule of integration by parts is applied. As a result, the resulting integral so obtained
will be more difficult to evaluate, than the given integral.

Example (1): Evaluate I = [e¥-x? dx

Solution: Observe that the above integral cannot be solved by any of our previous
methods. Further, the integrals of both the functions (i.e., x* and e¥) are equally easy.
However, since X% is a power function, in view of the Note (2) above, we choose e” as the
second function.
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Integrating by parts, we get

I:xz-eX—J(2x)~exdx

Jetdx =e*

:xz-ex—ZJmexdx d
—(x)=1
dx

:x2~ex—2{xex—J1~e'”dx}
=x*-e"—2xe"4+2e" +¢ Ans.

Now let us see what happens if we choose x’as the second function.

3
sz dx = %
Consider [ = J(ex) - (x%) dx, |
T dx=¢"

Integrating by parts, we get

P P
I =e" —— [e¥-=d
e 3 Je 7 dx

1 1
1 =§exlx3 ng.eX~x3 dx

Observe that the resulting integral on right-hand side is more complicated than the given
integral. This is due to our wrong choice of the second function.

Example (2): Evaluate / = [ x sec? x dx

d

a(x) =1

Solution:
ofution I:JxAseczxdx

Jsec2 xdx = tan x

Integrating by parts, we get

I :x-tanx—J(l)-tanxdx:x-tanx—Jtanxdx

=x-tanx — log(secx) +¢  Ans.

Example (3): Evaluate [x°e” dx

Solution: Let / = [x*-e* dx
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Integrating by parts, we get

I =x3%* — J3 xX2e¥dx = x3e¥ — 3szex dx
=x%" -3 [x2 e¥ — ZJxeX dx}

=x%" —3x%* +6 [x e’ — J(l)e*’ dx}

= x3e¥ —3x%* + 6xe¥ —6e¥ + ¢

=e’[x* —=3x2+6x—6]+c  Ans.
Note (3): In many cases, the formula for integrating by parts has to be applied more than
once. Of course, the given integral is reduced to a simpler form but the new integral is such
that it has to be evaluated by applying the rule repeatedly. Remember, that the rule of
integration by parts will be useful only when the resulting integral (after applying the rule) is
simpler than the integral being evaluated. This suggests that we make a proper choice of the

second function every time. A wrong choice of the second function will complicate the
situation [see Example (1)].

Example (4): Evaluate ] = [ x? cos x dx

Solution: Observe that

(1) The given integral cannot be evaluated by any of our previous methods.

(ii) The integrals of both the parts (i.e., x> and cos x) are equally simple. But we should not
choose x” as a second function. (Why?)

Therefore, we choose

X2 as first function, and

cos x as second function.

d
— =2
_ dx(x) X
I= J(x2)~cosxdx

cos xdx = sinx
Now, integrating by parts, we get

I =x%-sinx — J(Zx)(sin x) dx

:x2-sinx—2jxsinxdx

J sin x dx = —cos x
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Again, integrating by parts, the resulting integral, we get
I =x?-sinx —2 {x~ (—cosx) — J(l)(—cos x)dx]

:x2~sinx+2xcosx—2jcosxdx
=x%-sinx + 2xcos x — 2 (sinx) + ¢

=x2sinx +2xcosx —2sinx + ¢ Ans.

Example (5): Evaluate / = [x? e 2* dx

di 2:2x
J—Zxdx:e

d
X

X
—2x
¢ i)

Solution: | — sze*l\‘ dx

Integrating by parts, we get

Now consider

d 1
—x=
—2x dx
xe “Ydx oy
Je_zx dx = ¢
-2
Integrating by parts, we get
—2x —2x
gy =x() - |1-5—d
Jxe X v( _2) J — dx
1 [
= —Exe’zx +3 ‘e’zx dx
1 1 1 .
I:—Exze’zx—ixe’zx—ze’z"—i-c Ans.
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Note (4): To evaluate integrals like [x-tan™' xdx, fxz log x dx, wherein the integrals of
tan~'x and log x, and so on, are not known, and the other function is a power function, then
we choose the power function as the second function. This choice (of the second function)
helps in evaluating such integrals, which otherwise cannot be evaluated by any other

method.
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Example (6): Evaluate I = fx log x dx

Solution: Observe that

(i) The given integral cannot be evaluated by any of our previous methods.

(ii) The integral of the function x is known (i.e., = x2/2) but integral of the other part, that is,
log x is not known. Hence, we choose

log x as first function, and

x as second function.

1= J(log X) - (x)dx ddx (log x) =

Now, integrating by parts, we get

2 1 2 2 1
I :(logx)-x2 —Jf-x—dx:x—logx— dex

le 1/x% n le x2+ A
=—10g X — - C=—10g X — — C ns.
2 Y752 g

Example (7): Evaluate I = [x?sin~' xdx

Solution: Observe that

(1) The given integral cannot be evaluated by any of our previous methods.

(ii) The integral of the function sin~' x is not known but integral of the other function x? is
known (i.e., = x3/3). Hence, we choose,

sin~! x as first function, and
X2 as second function.

1
1
X) = ———
) V1—x?

d, .
a(sln
1= J(sin’1 x) - (x%) dx

3
X
X2dx ==

) For applying the rule of Integration by Parts it is useful to remember the rule in words. It adds to our further convenience
if we write down d/dx of first function and the integral of the second function. This will be clearer when we solve problems.
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Now, integrating by parts, we get
3 3
X 1 X
I =Gin'y) (%) - [—= (5 )dx
( ) ( 3 ) J V1—x? < 3 )
Putl — x? = £

xi sin*lx_lezi'xdx o2 =1-£
3 3 m 2xdx = —2¢rdt
xdx = —rdt
3 1((1—=2)(—rdt) »
x?-sin*‘x—gjwz%'smilwrj(l_tz)dt
3 1 I
:% .sin~! x+§ <t*§> +c¢, wherer = (1 7x2)1/2

1 1
:—-sin’]ergvlfxzfg(lfx2)3/2+c Ans.

Example (8): Evaluate [ xtan™' xdx

Solution: I = Jx tan~! x dx

[xdx = %
1= J(tanf1 x)(x) dx

Integrating by parts, we get

x? 1 x?
1 = (tanil.x) . ?7 J(l +x2> . de

2 2 2 2
X 1 1 X 1 IJ (I+x%)—1
=2 = dx =2t = d
2 2J1+x2 RS T N | R
2
X 4 1 1
:?tan x—EJ{I 1+xz}dx

2 1
= %tan’lx — 5 [x — tan’lx] +c

2 1
:%tan_lengEtan_lirc Ans.
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Note (5): To evaluate the integrals flog xdx, fsin’1 xdx, ftarf1 x dx, and so on, whose
integrals are not known as standard results and that cannot be evaluated by any other
method, we choose “1” (unity) as the second function. [Also, there are functions
VX2 + a2, Vx2 — a2, and Va® — x2, which are easily integrated by parts, taking “1” as the
second function, but we will not be considering these functions in this chapter. Integrals of
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these functions are discussed in Chapter 4b, by two methods: by parts and by trigonometric
substitutions].

Example (9): Evaluate [sin™' xdx

Solution:
Method (I):

Let = Jsin’1 xdx

1
-1
— (sin =—
I= J(Sin_1 x)(1)dx
J ldx =x
Integrating by parts, we get
1
I=(sin"'x)(x) — | —= -xdx
1 —x2
Consider J#dx
1—x2
Put 1—-x*=7 - —2xdx=2dt . xdx=-—tds
xdx J—tdr J
= | === | —di=—1=—V1- 2+
J\/l — X2 !

I=x-sin'x+V1—-x2+c Ans.

Method (ID): [sin~'xdx =1 (say)

Put sin'x=¢ . x=sint and dx=coszds
d
d—(z):l
I:Jt~costdt t

[costdt = sint

I=l-sinlfJ.(l)Asintdt:t~sintf(fcost)+c

=t-sint+cost = (sin"'x)x + V1 -2+
=xsin"'x+VI—x2+c Ans.
Example (10): Evaluate [log x dx
Solution: Let 1= Jlog xdx

d
dx

J1~dx:x

(log ) =
= Jlogx~ ()dx
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On integrating by parts, we get

I :(logx)~(x)—J(%) ~(x)dx:x-10gx—Jl -dx

=x-logx —x+c¢ Ans.
Example (11): Evaluate [tan~! x dx
Solution:

Method (I): Let 7= [tan~'xdx = [ (tan~'x)(1)dx
Integrating by parts, we get

I = (tan™! x)(x) — J% (tan~'x) - (x)dx = x-tan~'x — J dx

1+ x2

Consider J d dx
1+ x2
1
Put 14+x*=¢ .. 2xdx=dr .. xdx:idt

de,l gfllo t+c

T+ T 2) T2
=logy/i+ ¢ =logV/1+x% + ¢

I=x-tan"' x —logy/1 +x2+¢  Ans.

Method (II): [tan~' xdx =1 (say)

Put tan"'x=¢ . tant=x
1
mdx:dz sody= (14 x?)dr = (1 4 tan’s)ds

I= Jz- (1 + tan?¢)dt = Jz(l + sec’t — 1)dt = Jz-seczzdt

Integrating by parts, we get

(=1

[ sec?tdt = tan ¢

I=t-tant — J(l)-tantdt: t-tant —log (sect) + ¢

= (tan"'x)-x —log(V1+x?) + ¢
= xtan~'x — log(V1 + x2) + ¢ Ans.
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Note (6): Sometimes a simple substitution reduces the given integral into a form that can be

easily integrated by parts.
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Example (12): Evaluate [ (sin™' x)zdx =1 (say)

Solution:

1

sin_'x=¢ . x=sint .. dx=cosrdt

d
i (P) =2
1= le -cos tdt

cos tdt = sin ¢
=1 .sint— J(Zt)sin tdt

Consider JZI sin rd¢
d
— () =1
= 2[1 -sint dt dt( )
[sintdt = —cos ¢

=2 {l- (—cost) — J(l)(—cos t)dt}

= —2tcost + 2Jcos tdt
= —2tcost+2sint+c¢

I =1*-sint+ 2tcost — 2sint + ¢

= (sin_lx)2 -x+2sin_1x<\/1 fx2> —2x+c

=x- (sin_lx)2+2\/l —xX2sin'x—2x+¢ Ans.

V1 - x2
Example (13): Evaluate [siny/xdx =1 (say)
Solution: Put x =7 . dx=2tdt . Jx=t1

1= J(sin 1)(2tdt) = ZJI -sin ¢ dt
d
:2{t~(7cos 1) fJ(l)(fcos Z)dt} &(’) =1

[sintdr = —cos ¢

= —2tcost+ 2Jcos tdt = —2tcost + 2 sint + ¢

= —2/xcosy/X +2siny/X + ¢ Ans.
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Example (14): Evaluate [tan~'\/xdx =1 (say)

Solution: Put x =7 . dx=2dt .. x=t

I = J(tan"t)(tht) = ZJ(tan"I)(t)dt

1
—(tan"'7) =
[—2 N L\ (tan™ 1) =172
=2|(tan"')( =} — —dt
[(an )(2) J(“‘Zz)Z } 2
tdt ==
frar="
e 1+2—-1
=7 tanlr — dt = -tan" 't — ;dz
1+ 1+2

1
= tz-tanfltfdeJrJ.mdt: Ztan 't —t+tanlr+ ¢

=@+ Dant—t+c=(x+ Dtan"'y/x—/x+c  Ans.

Miscellaneous Solved Examples

Example (15): Evaluate [ x?tan~!(x*)dx
Solution: 7= [x*tan~!(x%)dx

Put X*=r¢ .. 3x%dx=ds

1
I= Jtan’l(x3) xPdx = g}tan’ltdt

Now, in order to integrate tan~' 7, we take “1” as the second function, and proceed as
follows:

d tan~!zr = !
dt T1422

Jl-dt:t

I= %‘ (tan~'7)(1)ds

Integrating by parts, we get

1 1 1 1 t
I==|(tan ') (0) = [[——= |edt] ==¢-tan 't —= | ——d¢
3[(2‘“ ) J(Hﬂ) } 30 3Jl+z2

1

1
Now, id = |——dt
ow, consider 3 J] e
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1
Put 1+#2=u .. 2tdt=du .. tdt:Edu
1 t 1(du 1 1
= dt=-|—=-1 =—log(1+#
3.[1+[2 6Ju 6ogu—i-c 6og( +)+c¢

1 1
Izgt-tan’lt—glog(l + ) +c wheret=x1

1 1
I= §x3 tan”!' (x%) — 6log(l +x% +¢  Ans.

Example (16): Evaluate J"esm -sin 2x dx

Solution: Let 1= Jes“‘x -sin 2x dx

=2|es"™ . sin x - cos x dx

Put sinx=1¢ .. cosxdx=ds
I=2Jef-tdz:2Jz-e’dt
= 2|:[~€’ — J(l)e’dl} =2t-e' —2e'"+¢
= 2sin x-efinY — 28 4 ¢ = 2e8™(sinx — 1)+ ¢ Ans.

X
Example (17): Evaluate dex =1 (say)

_ X 1 —sinx
1+sinx 14sinx 1—sinx

Solution: Consider

X—xsinx Xx—Xxsinx

1 —sin’x cos2x

= xsec’x — xsec x - tan X

1 = steczx dx — Jx sec x - tan x dx

d

Consider [} = Jx sec? x dx dx

[sec’xdx = tan x

(x)=1

I:x-tanx—Jtanxdx

= x-tan x — log(sec x) + ¢;
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Now consider I, = Jx sec x - tan x dx

L, =x-secx — J(l)-secxdx, {'.'Jsecxtanxdx =secx

= x-secx — log(sec x + tan x) + ¢,
I=L+1L
[x-tan x — log(sec x)] — [x - sec x — log(sec x + tan x)] + ¢

= x(tan x — sec x) + log(sec x + tan x) — log(sec x) + ¢
sec x + tan x
[7} +c
sec x
= x(tan x — sec x) + log(1 +sinx) + ¢ Ans.

)
= x(tan x — sec x) +
)
Example (18): Evaluate [ (log x)* dx

Solution:

Method (I):

Let J(log x) dx=1= J(log x)% - (1)dx

Put logx =1t %dx =dr
x=¢e dx=x-dr=e'dt
I= Jtz-e’dt: 12~e’—JZI~e[dt: 12~e’—2{t-e’—J1~e’dt}
=2 —21e' + 2" +c=(logx)”- (x) — 2log x(x) + 2x + ¢
= x(log x)* — 2xlog x + 2x + ¢ Ans.

Method (II):

d 1
— (log x)* —210gx -

o
o p

1= J(logx) -(1)dx
= (log x) x)?
x(log x)? Jlog xdx = x(log x)* — 2 U(log X)- (l)dx}

= x(logx)* =2 {log x(x) — J.é ~xdx}

= x(log x)* — 2xlog x + Zde

= x(logx)* — 2xlogx + 2x + ¢ Ans.
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Example (19): Evaluate [x* ¥ dx

Solution: Let /= [x* e¥dx = [x*- e xdx

Put x*=¢ . 2xdx=dt

1 1
= |[t-e -di == |r-elds
et Sar=3 e

1
=_—lt-ef = |(1)-e'dt| =
o= fo-ead
] 2 xZ xZ
:f[x - fe’]Jrc Ans.
2
Remark: We should not forget about basic integration forms. For example, to evaluate the

integral J')ma"Z dx, the method of integration by parts is not needed. (Why).®

[t-e' —e]+c

| =

Example (20): Evaluate [x"logxdx =1 (say)

d 1
— __
o logx) =~

Solution: I = [(log x) (x")dx o
X" =
[ n+1
xn+1 1 xn+1
1= . —|=.
(log x) n+1 Jx n+1 x
n+1 1
= -logxfijx”dx
n+1 n+1
Xn+1 ) 1 xn+1
S 0gx*n+l -n+1+c
n+1 n+1
= ~10gx—x72—|—c Ans.
n+1 (n+1)

Example (21): Evaluate f2x sin4x - cos-2x dx
Solution: [et 1= J2x sin 4x - cos 2x dx
L. .
= [2x- 3 [sin 6x + sin2x]dx
1 = [x sin 6x dx + Jx sin 2x dx

Now, we can apply the method of Integration by Parts to each integral on right-hand side.

© Check if this integral can be evaluated by simple substitution.
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Remark: If the integrand were 2x-sin 2x-cos 2x, then it could be written as x[2 sin 2x-
cos 2x] = x-sin 4x, which can be easily integrated by parts.
Example (22): Evaluate [xcos’xdx =1 (say)

Here again we must use trigonometric identities to convert the integrand into some convenient
form.

We have cos 2x =2 cos’>x — 1

2 1+cos2x I:JX{1+cos2x}dx:x2

1
_ — 2
cos“x ) 2 + [xcos x dx

4 2,

Note (7): Integrals like jsin’l x -log x dx (where in both the functions cannot be integrated
easily) cannot be evaluated by the method of integration by parts.

4a.3 HELPFUL PICTURES CONNECTING INVERSE TRIGONOMETRIC
FUNCTIONS WITH ORDINARY TRIGONOMETRIC FUNCTIONS

In practice, inverse trigonometric functions are often combined with ordinary functions.
Trigonometric substitutions, if successful, help in converting a troublesome integral in x
to a simpler integral in ¢t. However, the problem of translating back to an expression in x
always remains. Such difficulties are easily overcome by drawing a suitable triangle
based on the equation like x =sin¢. In this case we can write sin  =(x/1), and draw the
required picture as done above. Similarly, the following pictures will be useful in other
situations.

Trigonometric substitutions: pictorial aids

a ) X
Na? + x
X X Vx2 — a2
t t t
a a

NaZ— 2

x=asint x=atant xX=asect

Note (8): In Chapter 4b, we shall evaluate a class of integrals (involving a product of two
functions) in which the given integral repeats itself on right-hand side. A repetition is also
observed in the following example.
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Example (23): Evaluate fsec3 xdx
Solution: Let 7 = [sec’ xdx

d
— (sec x) = sec x tan x

1= Jsec x-sec? xdx dx

['sec’x dx = tan x

d
I =secx- Jseczx dx — J {a (sec x) - (Jseczx dx)} dx

= secx-tan x — |(sec x tan x) - tan xdx

=secx-tan x — [sec x -tan?x dx = sec x - tan x — Jsec x(sec?x — 1)dx

=secx-tanx — |sec3xdx + Jsec xdx

= sec x - tan x — I + log(sec x + tan x)

2[ = sec x - tan x + log(sec x + tan x)

1 1
I= haaa tan x + Elog(sec X+tanx)+c¢ Ans.
Example (24): Evaluate [x? a*dx

Solution: Let 7= [x*a*dx

Integrating by parts, we get

a® x2a* 2

X
[ =22 JZX dx -
loga loga loga loga

Pat 2 [x a J.(l) @ dx}

Jxax dx

:logailogu .logai .loga
x*a*  2x-a” 2 N

= - 5+ 5 @ dx
loga (loga)® (loga)
xX2a*  2x-a* 2 a*

= - 5+ 2 +c
loga (loga)” (loga)” |loga

xX2a*  2x-a* 2a*

= - 7+ 7t+¢ Ans.
loga  (loga)® (loga)
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4a.4 RULE FOR PROPER CHOICE OF FIRST FUNCTION

‘We know that the method of Integration By Parts is necessary when the integrand consists of
a product of two different types of functions. If the integrand cannot be reduced to standard
form by using method of substitution, trigonometric identities, or by algebraic/trigonometric
simplification methods, then the simplest approach for integrating such a function is to
select the second function (as discussed all throughout the chapter) and apply the method
of integration by parts.

However, there is another way for selecting the first and second function, which some authors
suggest to be convenient for the students. If we denote Logarithmic, Inverse trigonometric,
Algebraic, Trigonometric, and Exponential functions by their first alphabet respectively, then the
first function is selected according to the letters of the group LIATE.

Exercise

Evaluate the following integrals:
(1) Jeﬁ dx

Ans. Ze‘ﬁ[\/)_cf 1] +c

) Jcos x -log(sin x)dx

Ans. sin x[log(sinx) — 1] + ¢

X
3 —d
3 Jl—i—cost x

1
Ans. 3 [x tan x — log(sec x)] + ¢

4) Jx sin x cos 2x dx

Ans 1 x| cos x cos 3x + sin 3x sin x| + ¢
2 3 9
) stin3xdx
Ans xcos3x sin3x 3xcosx n §§in x4
h 12 36 4 4"

(6) [log(x2 + 1)dx

Ans. xlog(x*+1)—2x+2tan 'x +¢
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@ JIngdx

2
! 1

Ans. _ﬂ_,_._c
X X

®) 4[005’l xdx
Ans. xcos”'x—V1—x2+¢
) Jcos\/)_cdx
Ans. 2[\/)_( siny/x + cos \/)_c] +c
(10) sz sin x dx
Ans. —x%cosx 4+ 2xsinx+2cosx+ ¢
(11) stinxcosxdx
Ans. 1/4[—xcos2x* + (1/2)sin2x] + ¢
(12) sz tan~! x3 dx

Ans.  (x*/3)tan"! x® — (1/6)log(1 + x°) + ¢



4b Further Integration by Parts:
Where the Given Integral
Reappears on the Right-Hand Side

4b.1 INTRODUCTION

There are certain integrals, which are slightly special in the sense that they reappear on
the right-hand side (along with other terms) when the formula of Integration by Parts is
applied. Some such examples are as follows: [e™ sinbxdx, [e™ cosbx, [a*sinbxdx,
[a¥cosbxdx, VX2 +a%dx, f\/x2 — a?dx, f\/az — x2 dx, and many more.

For the purpose of applying the formula of Integration by Parts, these functions are similar to
those considered in the previous Chapter 4a.

Note: For evaluating [ e** sin bx dx or [ e® cos bx dx (by parts), observe that, the functions e®*
and sin bx (or cos bx) both, can be easily integrated, and so any of them can be chosen as the
second function. However, experience suggests that the computation becomes somewhat simpler,
if the trigonometric function [i.e., sin bx or cos bx] in the integrand, is chosen as the second
function. This suggestion proves to be more useful when the numbers “a” and “b” appear as they
are, and not given particular integral values. Now consider the following solved examples.

Hlustrative Examples

Example (1): Evaluate [e** - cos2x dx

ielx =3 e3x
Solution: Let/ = [e* - cos 2x dx, dx sin 2
Jcos2xdx = -
[ o sin2x J3 o3 sin22x dac
1 3 [ 2
:§e3x~sin2x—5Je3"‘sin2xdx {‘sinZ)cdx:—COS2 ad
IR 3[ 4/ cos2x 3y (—c0s 2x)
—Ee sin2x E{e > 3e #dx

4b-Further integration by parts [Cases in which the given integral reappears as a resulting integral on the right-hand
side (along with other terms), when the rule of integration by parts is applied]

Introduction to Integral Calculus: Systematic Studies with Engineering Applications for Beginners, First Edition.
Ulrich L. Rohde, G. C. Jain, Ajay K. Poddar, and A. K. Ghosh.
© 2012 John Wiley & Sons, Inc. Published 2012 by John Wiley & Sons, Inc.

117



118 FURTHER INTEGRATION BY PARTS

1 3 5. 9
[ = —¢e¥ sin2x+zes*~c0s2x—ZJe3x~c082xdx

1 3 9
I :§e3x~sin2x+ze3x cos 2x —ZI—O—c

9 72 3X o 3 3x .
I+Z I—4e sm2x+4e cos2x + ¢
13 1 spn

7T I:Ze'*[25m2x+30052x]+c

1
I :BCSX[Z sin 2x + 3 cos 2x] + ¢ Ans.

Example (2): Evaluate [2*-sin 6x dx

d_.

i 2¥=2"-log2

Solution: Let [ = [2*-sin6xdx,
cos 6x

6

[=2v. (_ “’Séﬁx) - sz log 2 (— C°S66x) dx

X

2 log2 (.. in 6
:—gcos6x+ o8 J2*~cos6xdx7 {Jcos6xdxzsm6x

‘sin6dx: -

6
2* log2[_.. sin6 in 6
I =——cosb6x+ 982 |px S0 foleogZ-SIH Y dx
6 6 6
A log2 . (log 2)?
=2 Ccosbx+—== 2% sinbx — ~—=2 |
6coe X + 6 sin 6x P
I+(10g2) If%szin@c 12“‘0036)(
6> 6 6
6% + (log2)?

| - 1
I= ?2“ log 2 sin 6x —62“‘ cos 6x

X
I =———— [log2sin6x — 6 cos 6x| + ¢ Ans.
62—|—(10g2)2[ £ )

Example (3): Evaluate [ @ -cos bx dx

X: X.l
7 =@ loga

Solution: Let I = [a*-cosbxdx
Jcos bxdx =

sin bx

b

dx

I— o Sinbxfjaxloga- sin bx

cos bx
b

:%ax sinbx—lolgjajax-sinbxdx, {Jsinbxdx =—



INTRODUCTION 119

IR logal| . cos bx . (—cos bx)
=34 sin bx — b {a -(— b )—Ja 1oga~de

1. 1 loga)*
I = Eak sin bx + Obgzaax oS 6x — ( oiza) Jax cos bx dx

2
loga . b (log a) I

—laXSil‘lbx+ a” CoS bx —
= E2 b2
log a 2 1 1 2
I ( g2 ) 1 =—a"sinbx + Tax cos bx

b* + (log a)? 1. loga
— I:Ea sin bx + B

X

a* cos bx

I =——————[bsinbx +logacosbx] + ¢ Ans.
b? + (log a)

Example (4): Evaluate [e? cos® xdx
Solution: Let I = [e** cos® x dx

Note: Here we must use the identity

1 2
cos2x=2cos?x — 1 cos2x:7+czOS ad
1 2 1 1 ’
1 :Jez'*~ {y}dx=ijezxdx+ijeh cos 2x dx
1 er 1 2x 1 2x 1 2x
—5-7+5Je cos 2x dx c. I—Ze +§J cos 2x dx

Now, it is quite easy to find the integral (1/2) [e®* cos 2x dx, as in Example (1).

1
I :gezx[Z—i— sin2x +cos2x]+ ¢ Ans.

Example (5): Evaluate [sin(logx)dx =1 (say)
Solution: Put log x = so that x =e’

1
;dx:dt or dx=xdr=c¢e'dt

1 :J(sinl)~e’dl: Je’-sintdl
Jsinldl = —cost

I = ¢ (—cost)— ‘e’ - (—cos t) dt

=fe’-cost+Je’-costdt {Jcostdl:sinl
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=—¢'-cost+ {e’~sint—Je’~sintdt} =—¢'-cost+e -sint—1

t
. e .
21 = e'sint—e‘cost .. I:E[smt—cosz]—i-c

~
|

= g[sin(log x) —cos(log x)]+¢  Ans.

Example (6): Evaluate Je’x cos x dx
S = e

Solution: Let [ = Je’“" -cos x dx,

cos xdx = sin x

I=e " sinx — J(fef‘*)sinxdx

=e ¥ sinx + Je"‘ -sin x dx {Jsinxdx = —cos x
I=e"-sinx+e ™ (—cosx)— J(—e’x) - (—cos x)dx

=e -sinxfe_xcosxfje_xcosxdx
=e *.sinx—e “cosx —1

)
2] = e *(sin x — cos x) Izief*(sinxfcosx)+c
Example (7): Evaluate fezx sin x cos x dx

Solution: Let [ = Jezx sin x cos x dx
1 2x :
=51 (2 sin x - cos x)dx

1 .
:fjezx -sin 2x dx
2
Now, it is very simple to evaluate the above integral.
2x (

1
3¢ sin 2x — cos 2x) + ¢ Ans.

4b.2 AN IMPORTANT RESULT: A COROLLARY TO
INTEGRATION BY PARTS

Statement: If f(x) is a differentiable function of x, then
J e [f(x) +f (x)]dx =" -f(x) + ¢

This result is treated as a standard formula.

Ans.
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Remark: The above result suggests that in an integral of the form [e* F(x)dx, if the
function F(x) can be expressed in the form [f(x) + f'(x)], then we can directly write its
integral using (1).

Therefore, if we have to evaluate integrals of the form [e¥ F(x)dx [where F(x) is a

combination of functions], then we must try to express F(x) in the form [f(x) + f'(x)], (if
possible), and that is all.

Now we shall prove the above result.
To prove

[t 47 (olar = e p +-
where f(x) is a differentiable function of x.

Proof: Consider left-hand side of the Equation (1)

We have, LHS = Je’“[f(x) +f(x)] dx
= [exf(x) dx + Jexf'(x) dx

:Jf(x) e* dx—Q—Jf/(x) -e¥dx

Applying the rule of Integrating by Parts to the integral f f(x)-e*dx.
We get,

d ,
I = f(X) ~eX _ Jf’(x) 'CX dx + Jfl(x)e,x dx T+ a(f(x)) :f (x)dx
= f(x)-¢* + ¢ =RHS Jexdx:e"'

Method (2): The above result can also be proved by differentiating right-hand side of
Equation (1).
We have RHS =¢e*-f(x) + c.

e S0+ = () () e
=7/ (3) +(0)] = () + /()] = LHS

Now

Thus, we have proved the results,
[t 4 (olax = () + ¢

Now we shall evaluate some integrals of this type.

. 1 si
Example (8): Evaluate [e* (ﬂ
1 +cosx

)dx =1 (say)
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1 .
Solution: Consider 1 sinx
1 + cosx

_1+2 sin(x/2) - cos(x/2) _ 1 N sin(x/2)
1+42cos?(x/2) — 1 2cos?(x/2) = cos(x/2)

1 2x+t x_, x+1 2 X
=_sec” —~+tan- = tan~ + ~sec” —
2 2 2 22 2

1
Let f(x):tang. Then f'(x) =5sec’s

. 1
I :Je" {tang+55eczﬂdx

Z'JSXUKX)+fKXde

=e* tang +c Ans.
=eYf(x)+c

Example (9): Evaluate J%dx =1 (say)
(x+1)

X _x+1-1
()c—i—l)2 (x—O—l)2
1 1

X+l (x41)

Solution: Consider

1 L1
Let f(x):m. Then f(x)f—(x_i_l)2
. -1
I:Je x+l+m dx
:xi1+c Ans. { J‘ex[f(x) +f(x)]dx = €e* - f(x) + ¢

Example (10): Evaluate J (5+tanx +sec’ x)e*dx =1 (say)
Solution: / = Jex [(5 + tan x) + sec” x]dx
Let f(x)=5+tanx . f'(x)=sec’x

1= [l 41 e

=e-f(x)+c=e"(5+tanx)+c  Ans.

x> 41
x+ 1)

Example (11): Evaluate J( e*dx =1 (say)
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X2 +1

Solution: Consider 5
(x+1)

(*-1)+2 x271+ 2 _xfl_‘_ 2
(x+1)7* (x4+1)* (x+1)7 x+1 (x4+1)7

Cx—1 o D) (=11 2
Let f(x)forl . f(x)* (x+1)2 (X+1)2
X x—1 2
’:je (x+1) MEE
= [+ iex
:e‘*f(x)Jrc:eX(;:_T_D +c¢  Ans.

Example (12): Je““ *(sinx-cosx+cosx)dx =1 (say)
Solution: /= Je““ ¥ cos x(sin 4 1)dx
= J "™ ¥(sin x + 1)cos x dx

Put sinx=t¢ . cosxdx =dt

Let f(t)=t s ) =1
1= [0+ =e 70 + ¢
=el-t+c=e""-sint+c¢  Ans.
Example (13): Jex[cotx—i-log(sinx)]dx:l (say)
Solution: / — Jex llog(sin x) + cot xJdx

Let f(x) =log(sinx)

1
(x) = -COS X = cot X
f'(x) sin x

1= J [F() + £ (x)]dx

=e"f(x)+ c=-e"log(sinx) + ¢ Ans.

123
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Remark: The result: [e¥[f(x) 4+ f/(x)]dx = e f(x) + ¢ where f(x) is any derivable func-
tion of x, is very important. In this form of integral, the part [ f'(x)e* dx cancels out when
the part [ f(x)e*dx is integrated by parts. In all the examples given above, the same thing
happens.

4b.3 APPLICATION OF THE COROLLARY TO INTEGRATION BY PARTS
TO INTEGRALS THAT CANNOT BE SOLVED OTHERWISE

Now, we give below, some integrals of a different form, where also the same phenomenon
occurs.

Example (14): Evaluate Jw X
1 +cosx

X + sin x

Solution: Let / = J X
14 cosx

1

[x + 2sin(x/2) - cos(x/2) dx
2 cos?(x/2)

X X
=|z——=d tan—d
JZcosz(x/Z) X+J any e
*ljxseczfdx—i-Jtan{dx (2)
2 2 2

Now, we may integrate x sec*(x/2), taking sec’(x/2) as the second function or integrate tan
(x/2) taking 1 as the second function.

Substituting this value of

Jlangdx in Equation (2), we get [ =x tan% +c Ans.

1 -1
Example (15): Evaluate J&Z
log x)
. logx—1
Solution: Let 7 = ———dx
(log x)
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[ 1
Putting this value of Jl—dx in Equation (4), we get
ogx

X 1

I = + J dx — J +c
logx ) (log x)* (log x)*

= +c Ans.
log x

Now, we shall evaluate this integral by the method of substitution.

Method of Substitution:

1 -1
Solution: Let / = J&zdx
(log x)
Put logx—1=t¢ oo o logx=1t+1
x=e¢tl +1=c¢-¢ . dx=e-e'dt, [. eisaconstan{|
t t+1-1
I:eJ 2e’dz:ej+72e’dt
(t+1) (t+1)

J 1 L
=e —_—
t+1 (r+1)?

1 1

Let f(1) = f/(f):—m>

Tl
I=e- Je’[f(t) +f(D]dt=e-e"-f(t) +¢

t

1 1
I=e{e’~—Z ]+c:e’“ —+c

+1 I+ 1
1
=eur. — e [vor4l=1
e log€x+c [ + og, X|
+c Ans.

B log, x
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log x

————dx =1 (sa
[1+log x] (say)

Example (16): Evaluate J

1+1 -1
+log x d

Solution: / = J 5
[1+ log x]

1 1
IZJ[IJrlogx]dx_J[l+10gx]2dx ®)

1

Consid —d
onsider J[l Flog ] by

= [(1 +logx) " (1)dx

d
= (1+logx)'(x) - Ja[l +1logx] " xdx

X ) 1
=———[q-1-(1+1 c—p-xd
1 +logx J{ (1+logx) x} e

b 1
= + 5 dx
1 +log x (1 + log x)

Putting this value in Equation (5), we get

1
I=—2 +J defj Sdx
L+logx ) (1 +1logx) 1+ log x]

X

I=—+c¢ Ans.
1 +logx

4b.4 SIMPLER METHOD(S) FOR EVALUATING STANDARD INTEGRALS

Now, we shall prove the following three standard results, by using the rule of integration by
parts

. 2
Identity (1) \/x2+a2dx:§ x2+a2+%log[x+ x2+a2]+c

2
Identity (2) | VX2 — a? dx :g\/x2 —a? —%log[x—i— VX2 —az] +c

2
Identity (3) | Va? — x2dx = gvgﬂ — X2+ %sin_1 X +c
a
In the process of computing the above integrals, the following integrals are used.

d
i) o 2dx:log[x+ x2+a2]+c

Vxt+a
d
(ii) \/%dleog[x—k\/x? —a2] Yo
Xc —da
dx
,/aZ _x2

(iii) dx = sin™! (g) te
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Recall that these results were obtained in Chapter 3b and that they are also treated as standard
results. Now we proceed to prove Identity (1), Identity (2), and Identity (3) by two methods: (a)
by parts and(b) by substitution to compare and show that the method of integration by parts is
comparatively simpler and less time consuming.

Example (17): J\/xz—i-azdx—f x2+a2+210g{x+ x2+az]+c

Solution:
Let I:J\/xz—l—azdx

d
7‘/)62 +a2
:J\/xz +a2(1)dx dx 1 x
- =
2V x? + a2 VX2 +a?

Integrating by parts, we get

2
Y ov: s, N g . v/ 22 i
I =vVx*+a*-x Jm xdx=x-vVx*+a \/mdx
(x> +a*) —a?
:x~\/x2+a2—J7dx
VXt +a?

1
I=xVX2+d®— J\/x2+a2dx+aj dx
VX2 +a?

=x VXX + @ —1+d log[x+Vx2+d?] + ¢
—x~\/x2+a2+azllog[x+\/x2+a2 + ¢

X a?
I=§- x2+a2+7log[x+ x2+a2] +c

Now, let us evaluate J\/ X2 + @? dx, using trigonometric substitution.

Solution: Put x=atant . dx = asec?tdt

VX2 +a®=vValtan? 1+ a®> = Vatsec’ t = asect

I= J\/x2+a2dx: Jasecﬁasecztdt
=d Jsec3 tdt (6)

To find [ sec® ¢ de, we resort to integration by parts, taking sec ¢ as the first function and sec’ t
as the second function.
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d

T (sect) =sect-tant
Now, Jsec3 tdt = Jsec t-sec? tdt
sec? tdf = tan ¢

=sect-tant— |(sect-tan?)-tan¢dt

=sect-tant —

=sect-tant — Jsect tan® ¢ d¢
Jsectsec t—1)dt

=sect-tant — Jsec3 tdr + Jsec tdt
Shifting the term jsec3 t dt to left-hand side, we get
2 [sec3 tdt =sect-tant + log(sec 4 tant) + ¢

1
JSeCS 1di =3 [sect-tan t +log(sec  +tan )] + ¢,

2
a? Jsec3 tdt = % [sect-tant+ log(sec t + tan t)] + ¢;

X
where, tanz ==, [ x=atan{]
a

and @* Jsec3 tdt = J X2+ a%dx (7A)

[see Equation (6) above]

NaZ + x2

a
X=atant

Now, consider the right-hand side of Equation (7), we get

VX2 +a> x  xvxr+a?

sect-tant = c—= 7B
a a a? (78)
/2% )
and log[sec 7 + tan 7] = log X7M+E
a a

X+ VX2 + a?
a

= log =log[x+ Vx> +a*| —loga  (7C)
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Using (7A), (7B), and (7C) in Equation (7), we get

2
J\/x2 +a?dx :% [%\/xz +a? +log(x—|— x2 +a2) —loga] + ¢
a
X a? a*
== x2—|—a2+—log[x+ x2+a2]——1oga+c1
2 2 2
X a?
=3 x2+a2+310g[x+ x2+a2]+c
Note that for evaluating f VX2 + a? dx, by the above method (of substitution) is quite lengthy

and time consuming. The simplest approach to integrate the above function is to use the rule of
integration by parts, taking unity as the second function.

2
Example (18): J\/)cz—azdx:gvﬁ—az—%log x+Vxt—a?| +c¢

Solution:

Let I:J.\/xzfa2dx
d
J S ez

x2 —a%(1)dx dx 1 ) X
= x - —_—
2Vx? —a? VX2 —a?

Integrating by parts, we get

2
~xdx:x-\/x2—a2—Jx72dx

X2 —a

,:rz_az,x_[%

X2 —a

2 _ 0 2
:x-\/x2fa27J7(x @) ta dx

X2 — g2

1
I:x~\/x2—az—J\/xz—azdx—azjidx
N

1
x- xz—az—l—azjidx

Vx2 — a2

1
2l = x-Vx2 —d? fazjidx
VE_&

2
I:g~\/x2—a2—%10g[x+\/x2—a2] +c

Now, let us evaluate [v/x? — a? dx, using trigonometric substitution.

2
J\/xz—azdx:gxmz—az—%log[x—i—\/xz—az] +c



130 FURTHER INTEGRATION BY PARTS
Solution: Let [v/X2 —a?dx =1
Put x=uasect ..dx=asecttant-dt
1= | Vased =@ asec -wnar
:J a*(sec?t—1)-asect-tantdt
:Jatant~asect~tanzdt
:astecz‘tan2 tdt = azjsect~ (sec’ t — 1)dt
:aZJsec3tdt—a2Jsecldt (8)

Now, tofind [ sec? 1 df we resort to integration by parts, taking sec 7 as the first function and sec’
as the second function.

d
py (sect) = sect-tant
Jsec3 tdt = Jsec t-sec? tde

sec? 1df = tan ¢
=sect-tant — |secftan¢-tan¢d¢
=sect-tant — | sec ¢tan? 7-dt

—sect-tant — |sect (sec’ t — 1)dt

=sect-tant — sec%dH—[sectdz

ZJsec3tdz:secttant+Jsectdl

1 1
Jsec3tdtzisect~tan+§Jsectdl
2 2

a a
azjsec3 tdt :?sect~tant+?Jsectdt

Using this result in Equation (8), we get
2 2
1 =%sect~tant+%]see tdr — o Jsectdl

@ t-tant « [ tdt
=-——sect-tant — — | sec
2 2,

a* a?
:?secrtanz—?log(sect—q—tan N +c 9)
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Now, consider x =asec ¢

22— a2
t
a
XxX=asect
X
sect=—
a
@ et OV
2 T2 a a
RN 9A
2 X’ —a (9A)
2 2 )
and %log[sec t+tani?] = %log z—Q—xaa}
2 x2 — 2 2
:‘Llog X+ VX —a =a—[log<x+*/x27a2> —loga}
2 a 2
a® a®
=?log[x+\/x27a2] leoga (9B)
Using (9A) and (9B) in (9), we get
2
I:%\/)cz—az—%log[x—i-vﬁ—az} +c Ans.
2
Example (19): To prove [\/a2 —x2dx = §\/a2 —x2 +%Sin" g—i— ¢
Solution:
Let I:J\/az—xzdx
d
S VeE_ e
I:J a? — x2(1)dx dx 1 X
= (-2x) =
2vVa? — x? (=2%) a? — x?
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Integrating by parts, we get

FURTHER INTEGRATION BY PARTS

X
I=Va—x2-x— —— - (x)dx
v =)
—x? (@ —x?) —a®
=x-vVa®—-x2— 7dx:x-\/a2—x2—[7dx
) _ )
1
= x- Va2 — x2 _ 2 _ 2 2
=x-Va* —x Va xdx+ajmdx

=x-Va* —x? 71+azsin’l(i> + 0
a
2 = x-Va? — X2+ a*-sin”! <{> + ¢
a
2
I :g.\/a2 — x2 +%sin_l(5> +c
a

X

2
or Jvaz7X2d)€:§‘\/az*x2+%sin7]<§> +c

Observation

Here, it may be mentioned that this particular integral can also be easily evaluated by the
method of substitution, without resorting to the method of integration by parts as will be clear
from the following proof.

Method of Substitution:
2
Jvaz —x2dx = %\/dz — x2 —i—%sin’1 S
a
Solution: Let [ = J\/a2 — x2dx

Put dx = acos tdt

I:J\/aZ—azsinztacostdt: Jacost~acostdt

xX=asint

cos2t =2cos*t— 1
:aZJ.cos2 tdt 1
cos’t = 3 [cos 2t + 1]

2t +1 2 2
= azj%dz‘:%Jcoshdl—l—%Jdt
_ a: sin 2¢ +£t+c——2 2sint-cost +£l+c
2 2 2 2 2 2
2 2
:%[sinﬁcosth—a—H—C (10)

2
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22
x=asint
. . X . X
Now x =asint c.oosint=— .o t=sinT =
a a
7 _ 2
cost =
a
@ |x Va-x2| & . _,/x
I=—|-- +—sin" (=) +c¢
2 |a a 2 a

4b.5 TO EVALUATE [ Vax? + bx + cdx

Now, we are in a position to evaluate integrals of the form [ v/ax? + bx + ¢ dx. For this purpose
we express the quadratic expression ax® 4+ bx + ¢ as the sum or difference of two squares.
Besides, we can also evaluate those integrals that can be reduced to this form.

Hlustrative Examples
Example (20): Evaluate ‘ V16 —9x2 dx

Solution: Let/ = J\/ 16 — 9x2 dx

1 4\ 2
Consider 16 — 9x2 = 9( 96 — x2> =32 {(3) - xz}

=3|5/@p7 -2+ (:)2““1 (&)

=3 {71679xz—i—ﬁqin’1 37x
T2 3 18 4

8 3
:§v16—9x2+§sin71<f +c Ans.

D[V =X dx=3Va? — 2 +Csin ' (2) + ¢

a
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Example (21): Evaluate fxz Va® — x6dx

Solution: Let 1= szva6 —x0dx = JXZ (a3)2 _ (x3)2 dx

Put x° = oo 3x%dx=dr xzdx:%

L [ 2 1]t 2 @) .t
2 N2 _p2dr=— S/ (B3P—ppa =
If3 (@) — 2 dt 3 |:2 (@) =1+ 5 -sin (a3>

L[t a
== EVaﬁ—tz—i-?sm (—) +c

+c

a3

3

1[x3 a® x
= 7\/aﬁ—x6+5sin’1—3} +c¢  Ans.
a

Example (22): Evaluate jcos xV4sin? x +9dx

Solution: Let 7 = fcos xV4sin? x +9dx

Put sinx =1¢ . cosxdt

1= J\/412 +9dr = 2J\/z2 + (3/2)%dt
=2 [émz +(3/2)° +% (2)210g (r +y/ 2+ (3/2)2)

Vaz 1 472
_z[tf+9+2(9)10g<,+f+9>

+

27 2 4 2 “

V42 +9 9 2t + V472 +9
= 5 +Zlog 5 +a

inxv4sin®x+9 9
:w—kzlog(ZSinx—k\/4sin2x+9>+c Ans.

2

where ¢ = ¢; —log 2

Example (23): Evaluate [ v/2x2 + 2x + 5dx

Solution: Let / = [ v2x2 +2x + 5dx
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Consider 2x% 4+ 2x + 5

cafsrend) <ol a(De
RG]

1 2 3 2
- : 2\ 4@
I1=v2 (x + 2) + (2> dx

=2

=V2 +c

(@) oed (v D) [ (s+2) + B

135

Note: This expression can be further simplified as given below. However, it can be left at this

stage also, thus avoiding possible mistakes in the process of simplification.

(2x+1) V2x2+2x+5 9 1 / 5
. 21 - 2 =
1 NG +80g x+2 +14/x +x+2

2x 4+ 1)vV2x% + 2 2
(2x+1) ;c+x+5+9\8flog

+c

I=V2

Example (24): To evaluate [(px + ¢)Vax? + bx+cdx =1 (say)
Method: We find two constants A and B such that
d
px+q:Aa(ax2+bx+c) +B

ie., px+q=(2aAx+Ab)+B
px +q =2aAx + (Ab + B) (11)

x+l —H/xz—kx—k§ +c¢  Ans
5 5 & .

Equating coefficients of x and constants on both sides, we find A and B. Then, we use

Equation (11) to substitute for (px + ¢) in the given integral, and get

I:AJ(Zax+b)\/ax2+bx+cdx+BJ\/ax2+bx+cdx

The second integral on right-hand side is of the type, already considered above. The firstintegral

is of the type [ f’(x)+/f(x)dx that can be easily computed by substitution.

2
(2>[\/x2+a2dx:% x2+02+%log(x+ xz+a2)c
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We put f(x) = ¢ s f(x)dx =de

Jf’(x)\/mdx = J\/?dz = Jrl/z dr
32

= _4ec=2 32 Ans.
327 73 PRI +e s

Exercise

Evaluate the following integrals:
(1) Je“ sin4x dx

1 5,
Ans. (3 sin4x — 4 cos 4x) + ¢

25

() JSX cos 3x dx

X

5
Ans. ————log5cos3x 4 3sin3x] +¢
9+ (log5)

3) Jezx sin” 3x dx

1, 1
Ans. Zez*{l—%(2c056x+6sin6x) +c

4 J2—sin2xex
@) 1 —cos2x

Ans. —e“cotx+c

I+x4+x2 . .
5 tan X
(5 J71+x2 e

a1
Ans. xe™ Y 4¢

©6) Je“‘

x+2
(x+3)°

@) J.esin’] x

x+v1—x2 dx
V1—x2

Ans. x-e™ Y +o¢
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8) [\/3x2+4x+ldx
3 2
Ans. < x6+ >\/ 32 +4x+1— ﬁlog

18

+c

x+z+ x2+47x+1
3 3 °3

) J\/8+2xfx2dx

x—1 9 x—1
Ans. 8 — 2 + —sin”! >
ns < 5 ) + 2x x+2sm ( 3 )+c

(10) J(x—O— 3)V5 —4x — x2dx

1 2 9 2
Ans. 75(574x7x2)3/2+%v574x7x2+§sin_' (X: ) +c



5 Preparation for the Definite
Integral: The Concept of Area

5.1 INTRODUCTION

‘We have an intuitive idea of area. It is a measure that tells us about the size of a region which is
“the part of a plane” enclosed by a closed curve. Since the time of the ancient Greeks,
mathematicians have attempted to calculate areas of plane regions. The most basic plane region
is the rectangle whose area is the product: base x height (Figure 5.1a).

The ancient Greeks used Euclidean geometry to compute the areas of parallelograms and
triangles. They also knew how to compute the area of any polygon by partitioning it into
triangles (Figure 5.1b). We know that area of a triangle is given by A = '4bh." In this section,
we define the area of a region in a plane, if the region is bounded by a curve. For this purpose, it
must be realized that the area of a polygon can be defined as the sum of the areas of triangles
into which it is decomposed, and it can be proved that the area thus obtained is independent of
how the polygon is decomposed into triangles.®

When we consider a region with a curved boundary, the problem of assigning the area is
more difficult. It was Archimedes (about 287-212 BC), who provided the key to a solution by
ingenious use of the “method of exhaustion”. With this method, he found the area of certain
complex regions by inscribing larger and larger polygons of known area in such a region so that
it would eventually be “exhausted.”

Archimedes went further, considering circumscribed polygons as well. He showed that you
get the same value for the area of the circle of radius 1 (~3.14159), whether you use inscribed or
circumscribed polygons. The fact that the modern definition of area stems from Archimedes’
method of exhaustion is a tribute to his genius.

In this chapter, we will use the problem of computing area to motivate the definition of what
we will call the definite integral of a continuous function. Then, we will use the definite integral
to define the area of a region. Finally, the fundamental theorem of integral Calculus will
provide a simple method of computing many definite integrals, in terms of numbers that may
represent various quantities (Figure 5.2).

5-The definite integral (The concept of area, definite integral as an area, definite integral as limit of a sum, Riemann
sums, and analytical definition of definite integral)

M Now, we also know that if a, b, ¢ are the lengths of sides of a triangle, then its area A is given by
A= /s(s—a)(s—b)(s — c), where s = (a + b + ¢) /2, the semiperimeter.

@ These considerations are useful since we are laying the foundation that is necessary to motivate geometrically the
definition of the definite integral.

Introduction to Integral Calculus: Systematic Studies with Engineering Applications for Beginners, First Edition.
Ulrich L. Rohde, G. C. Jain, Ajay K. Poddar, and A. K. Ghosh.
© 2012 John Wiley & Sons, Inc. Published 2012 by John Wiley & Sons, Inc.
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b
A=bxh h
(a) (b)
FIGURE 5.1
Inscribed polygons

Circumscribed polygons

FIGURE 5.2

Note: Before discussing the area of a plane region, we indicate why we use the terminology
“measure of the area”. The word measure refers to a number (no units are included). For
example, if the area of a triangle is 20 cm?, we say that the square-centimeter measure of the
area of the triangle is 20. When the word measurement is applied, the units are included. Thus,
the measurement of the area of the triangle is 20 cm®.

5.2 PREPARATION FOR THE DEFINITE INTEGRAL

Consider now aregion R in the plane as shown in Figure 5.3. Itis bounded by the x-axis, the lines
x=aand x = b, and the curve having the equation y = f{x), where fis a function continuous on
the closed interval [a, b].
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\y=f(X)

FIGURE 5.3

For simplicity, assume that all values taken by the function f are non-negative, so that the
graph of the function is a curve above the x-axis.

We wish to assign a number A to the measure of the area of R, and we use a limiting process
similar to the one used in defining the area of a circle. The area of a circle is defined as the limit of
the areas of inscribed regular polygons as the number of sides increases without bound.>

Now, let us consider the region R bounded by parabolaf(x) = x the x-axis and the line x =2
(Figure 5.4). (Since R and Ry together comprise a triangle whose area is 4, finding the area
of R is equivalent to finding the area of Ry.)

AY
4 —+
L =2
Ry
R

X

0 2 "

FIGURE 5.4

) We realize intuitively that, whatever number is chosen to represent A, that number must be at least as great as the
measure of area of any polygonal region contained in R, and it must be no greater than the measure of the area of any
polygonal region containing R.



142 PREPARATION FOR THE DEFINITE INTEGRAL: THE CONCEPT OF AREA

A Y Ay
4+ frg = f(x) =22
4 —4
N
0 2 0 2
(a) (b)
FIGURE 5.5

We can define a polygonal region contained in R. For this purpose, we inscribe rectangles in
the region R, as shown in Figure 5.5a and b. Then the sum of the areas of the rectangles is less
than the area of R.

Similarly, if we circumscribe rectangles about R, as in Figure 5.6a and b, then the sum of the
areas of the rectangles is greater than the area of R. Of course, we can find the area of each
rectangle as the product of its base and height.

A Y AY

— 42
fo) = 22 ) =x

A

(a) (b)
FIGURE 5.6
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A crucial observation to make about this process is that as the bases of the rectangles
become smaller and smaller, the sum of the areas of the rectangles appears to approach the
area of R. This suggests that the area of R should be defined as the limit (in a sense to be clarified
later) of the sum of the areas of inscribed or circumscribed rectangles. Our definition of area
will be based on this idea.

Our assertion thus far about the area of R has rested on the following three basic properties
we expect area to possess:

(1) The Rectangle Properties: The area of a rectangle is the product of its base and height.
(This property is treated as the definition of area of a rectangle.)

(2) The Addition Properties: The area of a region composed of several smaller regions
that overlap in at most a line segment is the sum of the areas of the smaller
regions.”

(3) The Comparison Property: The area of a region that contains a second region is at least
as large as the area of the second region.>

It is important to understand where each of these properties was employed in the preceding
discussion. They will play a major role in the definition of area to be discussed.

5.3 THE DEFINITE INTEGRAL AS AN AREA

Consider a function y = f(x) which is continuous and positive in a closed interval [a, b]. We
think of the function as represented by a curve, and consider the area of the region which is
bounded above by the curve, at the sides by the straight lines x = a and x = b, and below by the
portion of the x-axis between the points a and b (Figure 5.7).

y =)
y e
b
F
a
X
0 a b
FIGURE 5.7

“ This is so because a line has only one dimension namely “length”, and it has no width. Thus, a line has no area.
©) In other words, if two regions “A” and “B” are such that A contains B, then area of A is at least as large as the area of B.
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f) =2x

FIGURE 5.8

That there is a definite meaning in speaking of the area of this region is an assumption
inspired by intuition. We denote the area of this region by F’ Z and call it the definite integral of
the function f{x) between the limits a and b. When we actually seek to assign a numerical value
to this area, we find that we are, in general, unable to measure areas of such regions with curved
boundaries.

However, there is a way out. We adopt a method (based on Archimedes’ method of
exhaustion), which as you will see applies to more complex regions. The method involves the
summation of the areas of rectangles.

The whole process is explained below through a very simple example. Consider a right
triangle formed by the lines y =f(x) =2x, y=0 (the x-axis), and x =1, as shown in the
Figure 5.8.

Let b =length of the base and / = length of the height, then, from geometry, the area A of
the triangle is

1 1
A:§><b><h:5><(1)X(Z):lsquareunit

Next, we can also determine the area of this region by another method, as suggested in the
discussion above. [We have chosen a simple function f(x) = 2x, to explain the method easily
and simplify calculations for checking the results.]

Let us divide the interval [0,1] on the x-axis into four subintervals of equal length Ax. This is
done by equally spaced points xo=0, x;=1/4, x, =2/4, x3=3/4, and x,=4/4=1 (see
Figure 5.9). Each subinterval has length Ax = 1/4.

These subintervals determine four subregions: Ry, R,, R3, and R4. With each subregion,
we can associate a circumscribed rectangle (Figure 5.10); that is, a rectangle whose base
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Sf(x)=2x
Ry
Ry
R,

Xo Rlnxl X, (X3 |X, X
of I 2 3 4 i
I I 1 3

FIGURE 5.9

is the corresponding subinterval and whose height is the maximum value of f on that
subinterval.

In this case, since f'is an increasing function, the maximum value of f on each subinterval
will occur when x is the right-hand end point of the subinterval.

The areas of the circumscribed rectangles (Figure 5.10) associated with regions Ry, Ry, R3,
and R, are 1/4 f (1/4), 1/4 f (2/4), 1/4 f (3/4), and 1/4 f (4/4), respectively. The area of each
rectangle is an approximation to the area of its corresponding subregion.

Thus, the sum of the areas of the circumscribed rectangles, denoted by F4 (upper sum), is an
approximation to the area A of the triangle.

o)) ) )
) 22D +2l)] ¢ -
:1{1 2.3 4}:10:5

Using sigma notation, we can write
4
F,= Zf(xf)Ax
i=1

Obviously, Fy4 is greater than the actual area of the triangle, since it includes areas of shaded
regions that are not in the triangle (Figure 5.10).
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AY
4
G a e
fl)=2x
G
&
&
X
0 1 2 3 4
4 T T 4

FIGURE 5.10

Similarly, the areas of the four inscribed rectangles (Figure 5.11) associated with Ry, R», R3,
and R, are % f (O),i f (i),% f (%), and i f (%), respectively. Their sum, denoted by F4 (lower
sum), is also an approximation to the area A of the triangle.®

s Q)4 6) )
:%{2(0)%@ +2 %) +2G)}, (o f(x)=2x)

4 8 4

Using sigma notation, we can write

© Since fis an increasing function, the minimum value of fon each subinterval will occur when x is the left-hand end point.
In general, maximum or minimum values of a function, on each subinterval, may occur at any point in the subinterval.
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AY
ér
f)=2x
&
&=
fHr
£(0) x
LI S S D
FIGURE 5.11

Clearly, F, is less than the area of the triangle because the rectangles do not account for that
portion of the triangle, which is not shaded. Note that

We say that F, is an approximation to A from below and F, is an approximation to A
from above.

If[0,1]is divided into more subintervals, better approximations to A will occur. For example,
let us use six subintervals of equal length Ax = 1/6. Then, the total area of six circumscribed
rectangles (i.e., the upper sum) is given by

b)) 00 )
§) 1600020

1F 2 3 4.5 ﬂ7m77

(e}

537373737373

T18 6
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and, the total area of six inscribed rectangles (i.e., the lower sum) is given by
1 1 ./1 1 ./2 1 /3 1 /4 1./5
E::af“”‘*af(a)'*6f(g)‘*af(a)'*af(a)'+af(6)

=é[2(0)+2(é) +2(%> +2<%) +2(%) +2(%)}

lo+1+2+3+4+5 155
333 3 3/ 18 6

6

Note that F; < A < Fg and, with appropriate labeling, both Fe and F¢ will be of the form
S f(x)ax?

More generally, if we divide [0,1] into n subintervals of equal length Ax, then Ax = 1/n and
the end points of the subintervals are x =0, 1/n, 2/n, . . ., (n — 1)/nand n/n = 1 (see Figure 5.12).

y

G+ 7

foo) = 2x
&+
&)

X
o) £ 2 0
n-1
FIGURE 5.12

D Fq= é.f(m)Ax, Fo— éf(x/)AX-
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The total area of n circumscribed rectangles is
— 1 /1 1 /2 1 /3 1 /n
F, :—f(f) +—f(—) +—f(—) )
n \n n’ \n n \n n’ \n
1 1 2 3 n
—- {2(;) +2(;> +2(;) + .‘.+2(£)}, [of(x) = 2x]

2

=—[l+2+3+...+n], (by taking out2/nfrom each term)

_(2 n(n—i—l)’ since1+2+...+n:n(n+l) _ntl
n? 2 2 n

S

And for n inscribed rectangles, the total area determined by the subintervals is (see Figure 5.13)
1 1,/1 1./2 1, /n—1
EF,=—fO0)+—-fl-)+...+=f|-)...+=
By 435 (3) 43 (G) ot ()

=i oea(3) +2(3) 2]

2 (2)
:ﬁ[0+1+2+3+...+(n71)}
:%w:n;17 {since1+z+...+(n_1):(”*721)(”)}

From equations (1) and (2), we observe that both F, and F,, are sums of the form >_ f(x)Ax.
From the nature of F, and F,, it is reasonable and indeed true to write F 2 SAL F, Asn
becomes larger, F, and F,, become better approximations to A from below and from above,

respectively. If we take the limitof £, and F, asn — , oo through positive integral values, we get

lim F, = lim "~ — lim (1—%) =1, and

n— 00 n—oo N n— 00
o . n+1 . 1
lim F, = lim = lim <1+f =
n— 00 n— oo n n— oo n

Since F,, and F,, both have the same common limit, we write

lim F,= lim F,=1 (3)
n— o0 n— o0

andsince F,, < A < F,, we take this common limit to be the area of the triangle. Thus we get,

the area A = 1 square unit. This also agrees with our earlier finding.

Mathematically, the sums F, and F ,,, as well as their common limit have a meaning, which
is independent of area. For the function f{x) = 2x, over the interval [0, 1], we define the common
limit of F, and F,, to be the definite integral of f{x) = 2x, from x=0 to x = 1. Symbolically
we write this as

Jlf(x)dx = Jl 2xdx =1 4)

0 0
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Ay
fesh - Z
f)=2x
f+
X
o L2 T
n-l
n
FIGURE 5.13

The numbers 0 and 1 appearing with the integral sign [ in equation (4) are called the limits of
integration; 0 is the lower limit and 1 is the upper limit.
Two points must be mentioned about the definite integral:

(i) Aside from any geometrical interpretation (such as area) it is nothing more than a real
number.

(ii) The definite integral is the limit of a sum of the form _ f(x)Ax.

The definite integral of a function f(x) over an interval from x = a to x = b, where a <b, is the
common limit of the upper sum (i.e., F, ) and the lower sum (i.e., F,, ), if it exists, and is written
as J;f f(x) dx. Interms of the limiting process, we have Y f(x) Ax — JZ’ F(x) d(x). We take this
limiting value as the definition of the definite integral. In particular, the definite integral also
stands for the area under a curve, as discussed above. From a subdivision of the interval [a, b]
into finite portions of the form Ax, the process of passage to the limit (as Ax — 0) is suggested
by the use of the letter d in place of A.

Note: It will be wrong to think that dx is an infinitely small quantity or an infinitesimal (i.e., a
variable whose limit is 0) or that the definite integral f: f(x) dx is the sum of an infinite number
of infinitely small quantities. This type of thinking is quite misleading and it is a sign of being in
the state of confusion. Hence, care must be taken to protect and preserve what we have carried
out with precision. We now formally define the area in terms of the definite integral.
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5.4 DEFINITION OF AREA IN TERMS OF THE DEFINITE INTEGRAL

Definition: Let fbe continuous and non-negative on [a, b], and let R be the region bounded
above by the graph of f, below by the x-axis and on the left and right by the lines x = @ and x = b.
Then, we call R the region between the graph of f and the x-axis on [a, b], and the area of R is
defined by f: F(x)dx.

We emphasize that in the notation for the definite integral j: f(x)dx, dx has no independent
meaning. It arose originally in connection with the concept of the differential (see Chapter 16
of Part I). This expression will play a role later, when we develop special methods for
computing definite integrals. The symbol [ is an integral sign. The integral sign resembles
the capital S, which is appropriate because the definite integral is the limit of a sum. Note that,
it is the same symbol we have been using to indicate the operation of antidifferentiation. The
reason for the common symbol is that a theorem called the second fundamental theorem of
the Calculus enables us to evaluate a definite integral by finding an antiderivative (which is
also called an indefinite integral).
We have seen in equation (3), that lim F, = lim F.

n— oo n— oo

For an arbitrary function, this is not always true. The statement “the function f is inte-
grable on the closed interval [, b]” is synonymous with the statement “the definite integral of f
from a to b exists”. The functions for which this is true are called integrable functions.

We now go for more refined considerations, which permit us to separate the notion of
definite integral from the simple intuitive idea of area. This is done in the analytical definition of
the definite integral. It expresses the definite integral analytically in terms of the notion of a
number only. We shall find that this definition is of great significance not only because it alone
enables us to attain complete clarity in our concepts but also because its applications extend far
beyond the calculation of areas.

5.5 RIEMANN SUMS AND THE ANALYTICAL DEFINITION OF THE
DEFINITE INTEGRAL

Both Newton and Leibniz introduced early versions of this concept. However, it was Riemann
who gave us the modern definition. In formulating this definition, we are guided by the ideas that
we have discussed earlier in this section. First, we describe certain terms that will be used in the
analytical definition of definite integral.

(1) Partition: Let [a, b] be a closed interval. Let xq, x{, X5, X3, . . ., X,, be any (n + 1) points
such that a =xg < X; <X < Xx3<...<X,_1 <X,=b.

Then, the set P = {xo, X1, X2, X3, ..., X,,} is called a partition of [a, b].

Remarks:
(a) Any partition P of [a, b] must contain the end points a and b so that it is a nonempty set.
(b) A partition P of [a, b] containing (n + 1) points @ = xg, X;, X2, ..., X, such that

a=x9<x; <Xy, ..., <X,=>b divides the interval [a, b] into n parts or subintervals,
[x0, X11, [X1, X2, [X2, X31, - - -, [Xp_1, X5, and X1—X0, Xo—X |, X3—X2, . . ., X,—X,,_1, are called
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AY

/ y=£x)

FIGURE 5.14

the lengths of the respective subintervals, given in order. Obviously, these lengths of
subintervals need not be equal.

(c) The simplest partition of [, b] is {a, b}. If we go on adding more and more points to this
partition then the lengths of the subintervals will go on decreasing.

(ii) Norm of a Partition: Let P = {xg, X, X2, . . ., X, | a=Xo < X < X5 ... < X,=b} be a
partition of [a, b]. The greatest of the lengths x1—Xg, Xo=X1, - - ., X3=X2, - - ., X=Xp_1, Of
the subintervals formed by the partitions, is called the norm of the partition and is
denoted by ||P|| (read as the norm of the partition P). Now, we describe the notion of a

Riemann sum.

5.5.1 Riemann Sums

Consider a function fdefined on a closed interval [a, b]. It may have both positive and negative
values on the interval and it does not even need to be continuous. Its graph might look something
like the one in Figure 5.14.

Consider a partition P of the interval [a, b] into n subintervals (not necessarily of equal length)
by means of points a=xp < X; < X5 < ... < X, < X, =b, and let Ax;=x; — x| (i € N).

On each subinterval [x;_;, x;1, choose a perfectly arbitrary point X; (which could even be an
end point of the subinterval). We call it a sample point for the ith subinterval. An example of
this construction is shown in Figure 5.15, for n==6.

6
Now, form the sum R, = Y f(X;)Ax;.

i=1

Ax; Ax, Axy Axy Axs Axg
A A A A . A A
Partition ) | | | I I L1 L 1 1
points X X Xy X3 X4 X5 Xg=b
Sample points T T T T T T

A partition of [a, b] with sample points X;
FIGURE 5.15
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A Riemann sum interpreted as an algebraic sum of areas

6
g‘lf(x,) Ax;=A| + (<A + (-A3) + (-Ay) + A5 + Ag

y

y=f(x)

Ag
As
Ay X, Xy XXy Xy / x
a=xy X N\ A A, Xy X5 X5 Xg Xg=Db
X A
FIGURE 5.16

We call R, a Riemann sum for f, corresponding to the partition P. Its geometric interpretation
is shown in Figure 5.16.

Note that, the contributions from the rectangles below the x-axis are the negatives of their
areas. Thus, a Riemann sum is interpreted as an algebraic sum of areas.®

6
D FE)Ax = Ay + (—A2) + (=As) + (—As) + As + Ag

i=1

Riemann sums corresponding to various choices of X, X>, ..., X, can be different from one
another. However, all Riemann sums must lie between the lower sum and the upper sum. An
1rnp0rtant feature of a Riemann sum ) 7, f(X;)Ax; is that it approximates the definite integral
[fx

Therefore we wntef f(x)dx ~ Y0 f(X)Ax.

Suppose now that P, Ax; and X, have the meanings discussed above. Also, let ||P|| be the
norm (i.e., the length of the longest subinterval of the partition P). Then, we give the following
definition.

5.5.2 Definition: The Definite Integral

Let f be a function that is defined on the closed interval [a, b] If Limyp o S f(X)Ax;
exists, then we say that f is integrable on [a, b]. Moreover, f f(x)dx, [called the definite
integral (or Riemann integral) of f from a to b], is then given by (]0)

® Riemann sums are named after the nineteenth century mathematician Georg Bernhard Riemann (1826-1866), who
clarified the concept of the integral while employing such sums. The first formal definition of the integral is attributed to
him.

©) For detailed discussion, see Calculus with Analytic Geometry (Alternate Edition) by Robert Ellis and Denny Gulick,
Chapter 5.

O Caleulus with Analytic Geometry (Fifth Edition) by Edwin J. Purcell and Dale Varberg (pp. 234-235), Prentice-Hall,
Inc, New Jersey.
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y Y

y=f(x) y =sinx

FIGURE 5.17

b
[pr0s = g 37 e

a

The heart of the definition is the above line.

5.5.3 Concept of the Definite Integral

The concept captured in the above equation grows out of our area of discussion. However, we
have considerably modified the notion presented here. For example,

(i) We now allow f to be negative on part or all of [a, b],
(i1) We use partitions with subintervals that may be of unequal lengths, and
(iii) We allow X; to be any point on the ith subinterval.

Since we have made these changes, it is important o state precisely how the definite integral
relates to area.

Note (1): In general, ff Sf(x)dx gives the signed area of the region trapped between the curve
y=f(x) and the x-axis, on the interval [a, b], meaning that a plus sign is attached to areas of
parts above the x-axis and a minus sign is attached to areas of parts below the x-axis. In symbols,
J: f(x)dx = Ay, — Adown, Where Ay, and Agown are the areas corresponding to the + and —
regions as shown in Figure 5.17.

Note (2): The meaning of limit in the definition of the definite integral is more general than in
earlier usage, and should be explained.

The equality lim, Pl —0 Z?:l f(Xi;)Ax; = L means that, corresponding to each & > 0, there is
ad>0,suchthat | 37, f(%:)Ax; — L| < &, forall Riemann sums y_;_, f(X;)Ax; for fon [a, b],
for which the norm ||P|| of the associated partition is less than 8. In this case, we say that the
indicated limit exists and has the value L.

Note (3): In the symbol f: f(x)dx, most authors use the terminology “a”, as the lower limit of
integration and “b”, as the upper limit of integration, which is fine provided we realize that this
usage of the word /imit has nothing to do with its more technical meaning.

5.5.4 Further Modification in the Notion of Definite Integral:
Removal of One More Restriction

In our definition of f: f(x)dx, since f{x) is defined on the interval [a, b], we implicitly assumed
that a < b. If we omit the condition a < b, and assume that a > b, we can still retain our
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y
i ¥ =fx)

FIGURE 5.18

arithmetical definition of definite integral; the only change is that when we traverse the interval
from a to b, the differences Ax, are negative. Thus, we get the following relation

[ = - jf(X)dx m
b

Jf (x)dx =0 (I1)

This must be treated as a definition. Our definition (of the definite integral) immediately gives
the basic relation

if(x)dx + j[f(x)dx = Jf(x)dx (1)
a b

for a < b < ¢ (see Figure 5.18).

Remark: By means of the preceding relations, we at once find that the equation (III) is also
true for any position of the point @, b, and c relative to one another. Also, we obtain a simple but
important fundamental rule by considering the function ¢ f(x), where ¢ is a constant. From the
definition of the definite integral, we immediately obtain,

b

jcf(x)dx = cjf(x)dx (Iv)

a

Further, we assert the following addition rule:

If  f(x) = ¢(x)+ ¢(x) then,

This can be easily proved from the definition of definite integral using Riemann sums.
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FIGURE 5.19

5.5.5 An Important Remark About the Variable of Integration

We have written the definite integral in the form j: f(x)dx. For evaluating the integral, it does
not matter whether we use the letter x or any other letter to denote the independent variable. The
p[e?uticular symbol we use for the variable of integration is therefore not important; instead of
[, f(x)dx, we could as well write J": f(ndtor f: f(u)du or any other expression. The importance
of this remark will be realized shortly in applications, when we prove the second fundamental
theorem of Calculus, in the next chapter.

5.5.6 What Functions Are Integrable?

1/x> ifx#0

For example, the unbounded function f(x) = .
1 ifx=0

integrable on [—2, 2].

Not every function is integrable.
{ in Figure 5.19, is not

1/x2 ifx£0
y—f(X)—{ fro
1 ifx=0

This is because the contribution of any Riemann sum for the subinterval containing x = 0 can
be made arbitrarily large by choosing the corresponding sample point X;, sufficiently close to
zero. In fact, this reasoning shows that “any function that is integrable on [a, b], must be
bounded in the interval [a, b]”. In other words, there must exist a constant M such that
|fix)| <M for all x in [a, b].

Remark: FEven some bounded functions can fail to be integrable. For example, the function

1 if xis rational
flx) = L
0 if xis irrational

is not integrable on [0,17.49

(D This is so because between any two real numbers, there are infinite number of rationals and also infinite number of
irrationals. Hence, no matter how small the norm of partition (i.e., ||P||), the Riemann sum Y _;_, f(¥;)Ax; cannot have a
unique value. Of course, it can have the value either 0 or 1.
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By all odds, the theorem given in Section 5.5.7 is the most important theorem about integrability
of a function.

5.5.7 Integrability Theorem

If fis bounded on [a, b] and if it is continuous there, except at a finite number of points, then
fis integrable on [a, b]. We do not prove it here.
In particular, if f is continuous on the whole interval [a, b), it is integrable on [a, b].1"?
As a consequence of this theorem, the following functions are integrable on every closed
interval [a, b]

(1) Polynomial functions.
(2) Sine and cosine functions.

(3) Rational functions (provided the interval [«, b] contains no points where denominator
is 0).

From the definition of the definite integral, f: f(x)dx, as the limit of a sum, we have

b

Jf(x)dx = lim if(fi)Axi A"
=1

[1Pl|—0

We know that, if fis integrable on [a, b], then the limit on the right-hand side of equation (A)
must exist. For the functions that we shall consider here, this limit will always exist. We now
suggest the following so that the method for evaluating a definite integral, as the limit of a sum,
is simplified to some extent.

(i) We shall consider a convenient partition of [a, b], that is, choose X, X, X3, - . . , X, in the
subintervals suitably as explained below, so that the limit of the sum on the right-hand side of
equation (A) can be evaluated easily. The most convenient partition is that which divides [a, b]
into subintervals of equal length, say h. Such a partition is called as a regular partition.

If a = x¢, X1, X2, X3, ..., X, = b are the points of division such that a =xy < x; < X, < X3
<. <X <xp,=bthen x| —xo=(X1—a@)=h, xo—x1=h,Xx3—-X2=h, ..., X, — X,_1 =h.

Hence, the points of subdivision are, a, a + h, a + 2h, a + 3h, ..., a + nh.

There are n subintervals in [a, b] each of length h.

.. The sum of the lengths of these subintervals must be b — a.

b—a

nh=b-—a s h= = ||P||

Now, as n — 00, h — 0 (i.e., the length of each subinterval tends to zero, so that ||P|| — 0).
(ii) We choose the points X1, X2, X3, . . . , X, as the right-hand end point of each subinterval,
in computing a sum.'*
Thus, X1 =a+h=x1,X, =a+2h=x3,X3=a+3h=x3,...,.X, =a+nh=x,.

(12) Unfortunately, the proof of this theorem is not simple. We, therefore, accept the theorem without proof. For the proof of
this theorem, advanced texts on Calculus may be referred to.

(3 The meanings of P, ||P||, Ax;, and X; have already been explained earlier, in the text.

(9 By choosing each subinterval Ax; of equal length, and the points X, X5, X3, . . . , X,, as the right-hand end point of each
subinterval, helps in computing the sum Y7, f(X;)Ax;, easily.
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Then, we have

||P]|—0

b
J f(x)dx = lim > f(%,)Ax,
r=1

lim > " f(x,) - h
n— 00 o

lim Zf(a +rh)-h, whereh= b-
n— 00 £—

—d

n

jf (x)dx = lim (b ; a) ;f (a + r(b ; “)) (B)"Y

By using the formula (B), we can compute the definite integral Jf f(x)dx, as the limit of
a sum.

For solving problems on “integral as the limit of a sum”, we shall require the following
results, studied in earlier classes.

= lim Zh-f(aJrrh)7 whereh:b
naoor=1

(1) Zn:(a:tb,): a,ifjb,
r=1

1M

r=1

n n
(2) Y. ka, =k a,, where k is a constant, independent of r.
r=1

3) 2: k = nk, where k is a constant.
@ ; = nrst)

5) ’:Zn:l 2= w

© £ e

(7) If S, denotes the sum of first # terms of a G.P. whose first term is “a”” and common ratio is
r, then

1=
Sn:a(—r),ifml
1—r

"1
and S,,:a<r ),ifr>1.

r—1

At this stage, we state the second fundamental theorem of Calculus, which links definite
integral [ f(x)dx to the antiderivative of f(x).

U9 1f we choose the left-hand endpoint of each subinterval, then we will have the equation f: f(x)dx =

b— b—
lim ( a) Zn (a +(r—1) (J> ) , which is comparatively not so convenient. Of course, the result remains
n

n—oo \ n i=1

the same in both the cases.
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It states that fabf(x)dx = ¢(b) — ¢(a), where [f(x)dx = ¢(x) (which means ¢ is the
antiderivative of f).

The proof is not given here. It is introduced in Chapter 6a, and its applications are discussed
in Chapter 7a of Part II.

Remarks:

(i) It is convenient to introduce a special symbol for ¢(b) — ¢(a). We write

Thus, we have [ f(x)dx = [¢(x)]" = ¢(b) — ¢(a).

(i) The concepts of the slope of the tangent line (derivative) and the area of the curved
region (definite integral) were known long back. Historically, the basic concepts of the
definite integral were used by the ancient Greeks, principally Archimedes’ (287-212
BC), more than 2000 years ago. That was many years before differential Calculus was
discovered in the seventeenth century by Newton and Leibniz. The fact being that the
concepts of derivatives and definite integral were known prior to the period of Newton
and Leibniz, and that a number of mathematicians had contributed toward the
development of the subject, the question is: Why then do Newton and Leibniz figure
so prominently in the history of Calculus?

They do so because they understood and exploited the intimate relationship that exists
between antiderivatives and definite integrals. It is this relationship that enables us to
compute easily the exact values of many definite integrals without ever using Riemann
sums. This connection is so important that it is called the second fundamental theorem
of Calculus."'®

Now, we proceed to evaluate some definite integrals by two methods: first as the limit of a sum
and second by applying the second fundamental theorem of Calculus, which provides a very
simple method to calculate definite integrals.

Ilustrative Examples
Example (1): Express J"; x dx as the limit of a sum and hence evaluate.

Solution: Divide the interval [2,3] into n equal parts. The length of each subinterval so obtained
is ((3 —2)/n) = (1/n), and the partition formed by the points is givenby P = {2, (2 + (1/n)),
2+@2/m),..., 2+ ((n—1)/n)),3}.

Method (I): Let the sample points X, = x, = (2 + (r/n)) (r=1,2,3, ..., n) (i.e., we choose
the right-hand endpoint of each subinterval as the sample point X, for computing the sum).

{9 1 fact, based on the definition of area function A(x) (to be introduced in the next chapter), there are two basic
fundamental theorems to be discussed later. To understand the (second) fundamental theorem we have to go through the
(first) fundamental theorem of Calculus.
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Then, we have,

a

n n

b n
. r b—a
J f(x)dx = nhﬂrr;o ;f(x,) -h, where x, =2 +ﬁ and h =

.. Recall the Formula (B). We have

[ o= tim (54 r(w (7))
3 (

Method (IT): Now, using the second fundamental theorem of integral Calculus:

b
jf(x)dx = [6(x)]" = 6(b) — 6(a)

a

where Jf(x)dx = ¢(x), we get

Example (2) Express foz (3x + 5)dx as the limit of a sum and hence evaluate.

Solution: Divide the interval [0,2] into n equal parts. The length of each subinterval = 2=0

n n
The partition so formed by the points, is given by

{00025 (1)) o)
() (o)

LetX, =x,=0+7r- % = %, [r=1,2,3,...,n] (ie., we choose the right-hand endpoint of
each subinterval as the sample point X,, for computing the sum).

Method (I): Now, we have by definition (i.e., the result “B”):

[ reme= i () Sor(eeo(25))

n
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where =0 and b=2 so that ((b —a)/n) =2/n.
'Jz(3x+5)dx* lim zzn:f 0+r 2
“Jo _nﬂoonr:l n

2 2r

= lim = =

tm 2> (%)

:nllnio%i:{3(%) +5} { f(x)=3x+5

r=1

2 2 [ n n
J (3x +5)dx = lim = 92r+521
| =1

Il
5
|

6
n—oon |n 2
3,0 1 1
=-n°(1+-)+5n| Notethat(n+1)=n(1+-
n n n

1
= lim {6(14—;) +10} =6+10=16 Ans.

n— 0o

Method (II): Using the fundamental theorem of integral Calculus:

2 2 2 2
J (3x + 5)dx = {3 % + SX} . where (3 % + Sx) is antiderivative of (3x + 5)
0 0

2
=6+10—0=16 Ans.

_ (3 2 5(2)) ~ (3.0 +5.0)

Example (3): Find foz (x? + 1)dx as the limit of a sum.

Solution: Divide the interval [0,2] into n equal parts. The length of each subinterval =
((2 = 0)/n) = 2/n. The partition so formed by the points, is given by

(o002 ) (o)) o)
o () (o)

Letx, = x, =0+ r(%) = 2,{, (i.e., we choose the right-hand endpoint of each subinterval as the

sample point X, for computing the sum).
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Method (I): We have by definition (i.e., the result (B)):

[ () S0+ (45)

b — 2—-0 2
Herea:O,b:Z,f(x):x2+1,h:Ta: =

Lo+ nax=1m (2)3 (04 (2
s C)3r(0+(0))
2r
ﬁ&nb3(>
= lim %i 2r)2+1
771_‘{)0”)':1 n
_nlirréon { +1} _HW[ZZ +Zl

- lim [’% (n+1)(2n+1) n}

{0 f) =241

n— oo

(8 . 1 I 4 14
_ﬂlLIrOlO {@n <1+E) (2+E) +2} = {§(1+0)(2+0)+2} =3 Ans.

Method (II): Using the second fundamental theorem of integral Calculus.

2 3 3
J {? + x} where( 3 + x) is the antiderivative of (x* 4 1)
0
_(@
[\ 3
8
=+2
=3 +
14 A
— Ans.
3

Example (4): Evaluate foz e*dx, using the definition of a definite integral as the limit of
a sum.

Solution: Divide the interval [0,2] into n equal parts so that we get each subinterval of the
length ((2 — 0)/n) = 2/n. Then, the partition formed by the points is given by P = {0, (2/n),
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Method (I): Let X, = x, =0+ r(3) =%

n

We have by definition (i.e., the result “B”)

[ reome= pm () s (wr ()

Here a=0, b=2, fix)=¢*, ((b—a)/n) =2/n

'Jzexdxf lim Zzn:f 0+r 2

; 0 _nHMnr:l n
2 2r
:nIL‘%o;;f(Z)

= lim g[ez/"—i—e“/”—kew”—k +e2"/"}

163

The sum in the square bracket is a geometric series with the first term = e and the common

ratio (1) = & = el/"=2/" = 2/,

. This sum (S,) = 2/ {ﬂ}

1-r
= e2/n - (62/”)’1
1 —e2n
B eZ/n(l _ 62)
sEn 1 — e2/n
2 2\ . p2/n
2 (1
...Joexdx :nlij;oﬁ {%} =L (say)

Put (2/n) =t on right-hand side and note that as n — 0o, — 0

We get
e ( _62)et . ( _32)31
L —}er(l)t{ T o _}L()(l oy [Imp step]
_ 271 t
— fim & e
1—0|—(et — 1)/t
lim —— = log, a
(e? — 1)e° ) x—0 X &
= =" —-1)-1
log.e r_
lin}) =log,e=1
t—
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Method (II): Using the fundamental theorem of integral Calculus:

2
2 . .
J e*dx = [e"];, where e* is the antiderivative of e*
0

G

=(e*—1) Ans.

The four examples are meant to illustrate the theory behind the concept of definite integrals, as
the limit of a sum. Also we have seen that by applying the second fundamental theorem of
Calculus, we can compute, very easily, the exact values of these definite integrals without using
Riemann sums. Hence, we now dispense with the terminology of antiderivatives and antidiffer-
entiation and begin to call the expression [ f(x)dx an indefinite integral—the term derived from
the definite integral. Accordingly, the process of evaluating both an indefinite integral or the
definite integralis called integration. This is what we had pointed out in Chapter 1 of this volume.

In terms of the symbol for indefinite integrals, we may write the conclusion of the

b
second fundamental theorem as: [f(x)dx = [[f (x)dx}z.
a

Note that, for applying the second fundamental theorem, an important requirement is to find
the indefinite integral J f(x)dx, by using any suitable technique that we have learnt in previous
chapters.

Note: The distinction between an indefinite integral and the definite integral should be
emphasized. The indefinite integral [ f (x)dx represents (jointly) all functions whose derivative

b
is f{x). However, the definite integral f f(x)dx is anumber whose value depends on the function
a

f and the numbers a and b, and is defined as the limit of a Riemann sum.
Remark: Note that the definition of the definite integral makes no reference to differentiation.

Important Note: Integral Calculus (like the differential Calculus) has important applications
in situations where the quantities involved vary. We know that the area of the rectangular region
changes if one or both of its dimensions are changed. If we consider the shaded region of
Figure 5.3, wherein the height [of the curve y = f(x)] varies as we travel across the region from
left to right, then the area of the region R changes continuously. This is the type of situation
where integral Calculus comes into play. More complicated situations are considered in Chapter
8a of this book.



63 The Fundamental Theorems
of Calculus

6a.1 INTRODUCTION

Until now, the limiting processes of the derivative and definite integral have been considered
as distinct concepts. We shall now bring these fundamental ideas together and establish
the relationship that exists between them. As a result, definite integrals can be evaluated
more efficiently.

We have defined the definite integral j f(x)dx, as the limit of a sum and have had some
practice in estimating the integral. Calculating definite integrals this way is always tedious,
usually difficult, and sometimes impossible. "

Since evaluation of the definite integral J f(x)dx has a great Variety of important
applications, it is highly desirable to have an easy way to compute f flx

The purpose of this section is to develop a general method for evaluatlng f f(x)dx that
does not necessitate computing various sums. The method will allow us to evaluate many
(but not all) of the definite integrals that arise in applications. It turns out that the exact value
of f f(x)dx can be easily found if we can compute [f(x)dx [i.e., if we can find the
antlderzvazive of f(x)].

6a.2 DEFINITE INTEGRALS

In the previous chapter, we evaluated certain definite integrals using two methods: first- as the
limit of a sum (which is based on the definition of definite integral) and second- by applying the
second fundamental theorem of Calculus, for which it is oan necessary (as we will see shortly)
that one should be able to compute [ f(x)dx to evaluate [, f(x

Having experienced the convenience in estimating exact Values of definite integrals
by the second method, one should appreciate the elegance and beauty of such easy
computations.®

The definite integral 6a-The fundamental theorems of the Calculus and their applications (Differentiation and
integration as inverse processes and the MVT for integrals)

M 1n fact, we have been able to evaluate a few definite integrals directly from the definition (as the limit of a sum) only

because we have nice formulas for 1 +2 +3 + --- + n, 12 + 2% 4+ 32 + -+ nz, and so on.

@ This method is of great practical importance, since it enables us to calculate not only areas, but also volumes,

lengt[hs of curves, centers of mass, moments of inertia, and so on, which are capable of being expressed in the form
T f(x)Ax.

x=a

Introduction to Integral Calculus: Systematic Studies with Engineering Applications for Beginners, First Edition.
Ulrich L. Rohde, G. C. Jain, Ajay K. Poddar, and A. K. Ghosh.
© 2012 John Wiley & Sons, Inc. Published 2012 by John Wiley & Sons, Inc.
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A Y

y=f(x)

b b
S de=[ ey dr, etc.
a a

FIGURE 6a.1

Now, we shall show why antidifferentiation enables us to find the area under the
graph of the function f(x). The trick is to consider the integral function J; f(x)dx (to be
discussed shortly). Let [ f(x)dx = A(x), then we shall show that A’(x)=f(x), and this
will remove the mystery. If the derivative of the integral function f; f(x)dx is f(x), then
surely to find A(x), we should find an antiderivative of f(x) [i.e., we must evaluate
Jf(x)dx].

To understand the approach of Newton and Leibniz in developing the two theorems we use
the Integrability Theorem, which states that if f is continuous on [a, b], then f S (x)dx exists.
We begin our development of these theorems by discussing definite integrals havmg avariable
upper limit.

Let the function f be continuous on the closed interval [a, b]. Then, the value of the definite
integral j f(x)dx depends only on fand the numbers “a” and “b”, and not on the symbol X, used
here as the Varlable of integration. In other words, the definite integrals j f(x)dx, f f(1)
and f f(u)du, and so on, represent the same (closed) area from a to b (Figure 6a 1). For the
present, we will assume that a < b.

Let us now use the symbol x to represent a number in the closed interval [a, b]. Then,
because f is continuous on [a, bl, it is continuous on [a, x] and f; f(x)dx exists. It represents
the area enclosed by the graph of f and the x-axis, from « to x (Figure 6a.2).

Furthermore, this definite integral is a unique number whose value depends on x, that is the
upper limit of the integral. It is a new function of x (in the form of a definite integral, with a
variable upper limit). We call it the area function and denote it by A(x).

In order to use x as a variable in our discussion, we write it as an upper limit (of a definite
integral) and replace the expression f(x)dx by the expression f(#)dz. Thus, we get the definite
integral [ f(¢)ds [in place of [ f(x)dx] that clearly indicates the upper limit x, avoiding
the confusion with the variable of integration, which is now z.
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y=fx) A(x)

a X b

X
Aw) = [f) ar
a

FIGURE 6a.2

6a.3 THE AREA OF FUNCTION A(x)

We have defined Lff (x)dx as the area of the region bounded by the curve y=f(x), the
ordinates x = a and x = b, and the x-axis (Figure 6a.1). Since x is a point in [a, b], f;f(x)dx
represents the area of the shaded region in Figure 6a.2. Here, it is assumed that f(x) > 0 for
x € [a, b].

Thus, A(x) defines a function of x which is the variable upper limit of the integral function
L’f f(x)dx, whose domain is all numbers in [@, b] and whose function value at any number x
in [a, b] is given by

Am:pmm (1)

Note that, f is continuous on the interval [a, b] and since f(x) >0, its graph does not fall
below the x-axis.

6a.3.1 First Fundamental Theorem of Calculus

From the definition of the area function A(x), we state its two properties immediately:

(i) A(a) = [/ f(x)dx = 0, since there is no area from a to a.
(ii) A(b) = J": f(x)dx, represents the area from a to b.
If x is increased by / units, then the area of the shaded region=A(x + /), as shown in

Figure 6a.3. Hence, the difference of areas in Figures 6a.3 and 6a.2 will be A(x + h) — A(x), as
shown by the area of the shaded region in Figure 6a.4.
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A

FIGURE 6a.3

The area of the shaded region in Figure 6a.4 is the same as the area of a rectangle in
Figure 6a.5, whose base is h and height is some value y between f(x) and f(x + h).
Thus, the area of this rectangle is, on the one hand, A(x + h) — A(x), and on the other
hand it is h-y.

Therefore, we have A(x + h) —A(x)=h-y or (A(x + h) — A(x))/(h) = 3.

As h — 0, then y approaches the number f(x) [as clear from Figure 6a.5], and so,

A(x+h) —A(x)

lim i =f(x) (2)

h—0

But the left-hand side of (2) is merely the derivative of A(x). Thus, equation (2) becomes
A'(x) =f(x).

Y

F O

x+h

FIGURE 6a.4
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FIGURE 6a.5
Note that equation (2) can also be expressed as
Mndﬁmwﬂw 0
- =

a

This result is a crucial equation and it is so important that it is called the first fundamental
theorem of Calculus.

We conclude that the area function A(x) has the additional property of having its derivative
A’(x) as f{x). In other words, A(x) is an antiderivative of f(x).

6a.3.2 The Background for the Second Fundamental Theorem

Now, using the first fundamental theorem of Calculus, we try to understand the second
fundamental theorem that is useful in evaluating definite integrals. Suppose ¢(x) is any
antiderivative of f(x), then we have ¢'(x) =f(x).

Since both A(x) and ¢(x) are antiderivatives of the same function, we conclude that they
must differ by a constant c.

LA(Y) — $(x) =
(x) = (x) = ¢ )
or A(x)=¢(x)+c¢

Let us apply the property (i) of A(x) to equation (3).*)
Since A(a) =0, evaluating both sides of equation (3), when x =a, we get

0=¢(a)+C
¢ = —o(a)

® This equation supports our observation that we made, as property (i) of the area function A(x), defined on [a, b], that

Ala) = [F(x)dx = 0



170 THE FUNDAMENTAL THEOREMS OF CALCULUS

AY
y =fx)
A(b)

X

0 a b "
FIGURE 6a.6
Thus, equation (3) becomes
A(x) = ¢(x) — ¢(a) (4)

Note that, equation (4) defines the area function A(x), in terms of an antiderivative ¢(x), of
the given function f(x).
If x = b, then from equation (4), we get

A(b) = 6(b) — ¢(a) (5W

But recall that A(b) is the area from a to b (Figure 6a.6).
Slnce the area of this region can also be obtained as the limit of a sum, we can also refer to it
by f f(x)dx. Hence,

!hQMx:mm—¢w> (7)

Equation (7) expresses the relationship between a definite integral f f(x)dx and the difference
o(b) — ¢(a), where ¢ is an antiderivative of f (x). It implies that, to find [ f x)dx itis sufficient
to find an antiderivative of f(x) [say ¢(x)], and subtract its value at the lower 11m1t “a” from its
value at the upper limit “b”.

Our result can be stated more generally as follows.

® Recall that A(b) is the area under f from a to b [property (ii) of A(x)], that is A(b) = J':f(x)dx = ¢(b) — ¢(a),
where ¢(x) = [f(x
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6a.3.3 Second Fundamental Theorem of Integral Calculus

If f is continuous on the interval [a, b] and ¢(x) is any antiderivative of f(x) there, then

f(x)dx = ¢(b) — ¢(a) m®

a

Remark: It is crucial that we understand the distinction between a definite integral and an
indefinite integral. The definite integral f: f(x)dx is a number defined to be the limit of a sum.
The fundamental theorem says that an antiderivative of f(x) [i.e., j f(x)dx], which is related
to the differentiation process, and can be used to determine the limit _f“ f(x)dx.

Note: The above discussion is very useful for understanding the meaning of the second

fundamental theorem of integral Calculus. However, it is not the proof of the theorem. We
shall now prove this theorem, using the definition of a definite integral, as the limit of a sum.

6a.4 STATEMENT AND PROOF OF THE SECOND FUNDAMENTAL
THEOREM OF CALCULUS

Let f be continuous on [a, b] and let ¢ be any antiderivative of f there. Then,

a
Proof: Let P be an arbitrary partition of [a, b] given by
P={a=xp<x1<x< - <Xy <X, =b}

[Note that ¢(a) = ¢(xo) and ¢(b) = ¢(x,,).]
Then, by using the standard “subtract and add” trick, we get

¢(b) — p(a) = ¢

—

Xn) = @(Xn-1) + @(Xn-1) + -+ + d(x1) — d(x0)
[¢(xi) - ¢(Xi—l)}

I
.MS

i=1

By the mean value theorem for first derivatives applied to ¢, on the interval [x;_,, x;1,©
d(xi) — d(xis1) = ¢’ (%) (xi — xi_1) = ¢/ (%:)Ax; for some choice of X; in the open
interval (x;_;, X;).

) Using this theorem, it is easy to prove that vf:f(x)dx =— [, f(x)dx. If .fff(x)dx is looked upon as an area under the
curve y =f(x) from a to b J;' f(x)dx, then must be considered as the area with the same magnitude, but opposite in sign.
© Note: We give below, for convenience, the statement of the MVT for first derivatives: If f is continuous on a closed

interval [a, b] and differentiable on its interior (@, b), then there is at least one point ¢ in (a, b) where fB)-fa)

Fe) o f(b)—fl@) =f(c)- (b - a). e
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Thus,

n

$(b) — pla) =D _f(x:)Ax;

i=1

On the left-hand side we have a constant; and on the right-hand side we have a Riemann sum for
the function f on [a, b].
When we take limits of both sides as IIPll — 0, we obtain

o) — dla)= Tim 3 f(x)Ax;
i=1

[|P]|—0
b

= J f(x)dx By definition of the definite integral

a

(Proved)

Note (1): The first fundamental theorem of the Calculus says that, if a function f is
continuous on [a, b] and x is an arbitrary point in [a, b], then the definite integral f; f()de
is a function of the variable upper limit x, and its derivation is given by

o || =rt0 (1)

a

In other words, the derivative of a definite integral ]:f S (¢)dz, with respect to its variable upper
limit x, is the integrand evaluated at the upper limit. (Note our use of ¢ rather then x as the
dummy variable to avoid confusion with the upper limit.)

One theoretical consequence of this theorem is that every continuous function f has an
antiderivative ¢, given by

o(x) = jf(r)dz

In other words, for any continuous function f we can always write its antiderivative as
L f (I)Qt. Howsver, this fact is not helpful in getting a nice formula for any particular
antiderivative.”

6a.5 DIFFERENTIATING A DEFINITE INTEGRAL WITH RESPECT TO A
VARIABLE UPPER LIMIT

Now as an application of result (III), we give below a variety of problems involving
differentiation of a definite integral function, with respect to a variable upper limit. The result
(II) implies that to compute (d/dx) [ f(¢)dz, we do not require to compute [ f(x)dx. (Why?)

@ Shortly in Chapter 6b, we will show that the special integral functionj'lx%dt, (x> 0), defines the function In x
(i.e., log, x), and this further indicates the power of Calculus.
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. Find 4 [(*2
Example (1): Find L [[[" #* di]
Solution: We can find this derivative in two ways.

(a) Hard Way: that is, by evaluating the integral and then taking the derivative.

X X
& X1
£fdi=|=| ==-=
[ 3 33
1 1
a | d ¥ 1
2 X 2
— | |Fdt| =— |=——=| =
de dx |3 3 x

(b) Easy Way: By the result (I)

d xz 2

— t-de| =

dx J *
1

. . d X 32
Example (2): Find & [ Y /4" di]
Solution: Note that in this example, it is not possible to find the indefinite integral of
(2 /\/£2 +17) (why?). Therefore, we cannot solve this problem by first evaluating the
integral. However, by using the result (I), it is a trivial problem.

a1t pr 32
— J dr| = Ans.
dx [JVE2 117 Vx2+17

2

Example (3): Find & Uf tan® ¢ cos tdt}

Solution: Observe that in this problem x is the lower limit, rather than the upper limit. We
handle this difficulty as follows:

4 X

d d

— | [tan® tcos rdt| =— | —|tan® 7 cos ¢ dr
dx dx

x 4

d

tan? 7 cos ¢ dz
dx

B—

= —tan® x - cos X Ans.

Example (4): Find & ng (3t — l)dl‘]
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Solution: Now, we have a new complication; the upper limit is x*rather than x. In order to
apply the result (I), we need x there. This problem is handled by the Chain Rule. We may think of
the expression in brackets as

u
J(3t —1)dt, whereu = x°
0
By Chain Rule, the derivative of this composite function, with respect to x is

d | d
— 3t—1)dt| - — =Bu—-1)2
an J( ) dx(u) (Bu—1)2x
0
=(3x>-1)(2x) =6x> —2x  Ans.

Example (5): Find & [}, v+ 21 di]

Solution: Here, we first interchange limits and then use the result (I) in conjunction with the
Chain Rule.

5 2x
d d
— J 2 42dt| =— —J\/t2+2dz
dx dx

2x 5

:—,/(2x)2+2-%(2x)

=—VA4x2+2-(2) = —2v4x2 +2 Ans.

6a.5.1 Differentiation and Integration as Inverse Processes

The first fundamental theorem of Calculus tells that

Jf(l)dt = 7(x) (1v)

where [f(¢)dt = ¢(t).¥

This formula tells us that if we start with a continuous function f, integrate it to
obtaian f(2)dz, and then differentiate, the result is the original function f. Thus, the differ-
entiation has nullified the integration. On the other hand, if we start with a function F (having
a continuous derivative), first differentiate F to get F, and then integrate F’(x) (from a to x),
we obtain [ F'(1)d1.

@ Note that & [[; £(1di] = & [6(x) — ¢(a)] = & (x) = f(x)
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But, by the second fundamental theorem of Calculus,
fF’(t)dt =F(x) — F(a) (V)

So we obtain the original function F altered by at most a constant [F(a)].

This time the integration has essentially nullified the differentiation.

Thus, the two basic processes of Calculus, differentiation and integration, are inverses
of each other. Furthermore, whenever we know the derivative F' of a function F, (1) gives an
integration formula.

For example, we know already that

—sin X = cos x
dx

Therefore, (V) tells us that

- =

costdt=sinx — sin%
1[./4
. 1 .
=sinx ——==sinx ——
V2 2
Similarly, we have

d 2
—tan x = sec” x
dx

X
2 T
sec” tdt =tan x — tanzz tanx — 1
/4

In physics, the velocity of a particle moving along a straight line is the derivative of the position
function. If we use

t for the independent variable representing time,
f for the position function,

v for velocity, and

s for variable of integration

Then we can write
t

0~ f(to) = jv<s>ds L)

to

In (L) the number ¢, is arbitrary, and it plays the same role as “a” in (V) above. In applications,
tois usually a special instant of time. When t, is the moment at which motion begins, it is called
the initial time.
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The acceleration “a” of a particle is the derivative of the velocity. Hence, we obtain

W(t) — v(to) = J.a(s)ds (M)

fo

6a.5.2 The Mean Value Theorem for Definite Integrals (or Simply Integrals)

We have already studied the mean value theorem (MVT) for derivatives in Chapter 20 of Part I,
and observed that it plays an important role in Calculus. There is a theorem by the same name for
integrals. Although, the MVT for definite integrals is not as attractive as the MVT for
derivatives (due to its fewer applications), it is still worth knowing. Geometrically, it says
that (in Figure 6a.7), the area under the curve is equal to the area of the shaded rectangle, where

[TPRL]

¢” is some number, in [a, b].

6a.5.2.1 Theorem: (Mean Value Theorem for Integrals) If f is continuous on [a, b], there
is a number between a and b, such that

Proof: Let

F(x) = Jf(z)dz a<x<b (A)
.y y=fx)
—
c
E BN F
B r o
D
A ) B x
0 a c b ”

FIGURE 6a.7
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Then, we can say that F is differentiable at each x € [a, b], and that
F'(x) =f(x) (B)

(From the first fundamental theorem of Calculus.)
By the mean value theorem for derivatives, applied to F, there is a point ¢ in (a, b) such
that

F(b) = F(a) = F'(¢)(b - a) (©)

that is,

But by (A), we have F'(¢) =f(c).
Using this relation in (D), we get

b

Jf(t)dl —0=f(c)(b—a) (Proved) (E)

a

Note that, if we solve (E) for f(c), we get

The number (f:f(t)dz)/(b — a) is called the mean value (or average value) of fon [a, b]. To see
why it has this name, consider a regular partition

P:xp<x1<Xp< -+ <Xx,=b

with Ax = (b — a)/n.
The average of the n values f(x;)f(x2) ...f(x,) is

UGHRRICOREE T CAN oY
n
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The sum in the last expression is a Riemann Sum for f on [a, b], and therefore approaches
Jff(x)dx as n — oo.

Thus, (];f f(x)dx)/(b — a) appears as the natural extension of the familiar notion of
average value. (It is also called the arithmetic mean value of a function.) We now define the
arithmetic mean value of a function.

6a.5.2.2 The Arithmetic Mean Value of a Function

Definition: The arithmetic mean value (or simply, the mean) y,, of a continuous function
y=f(x) on the interval [, b] is the ratio of the definite integral of this function (from a to b) to
the length of the interval:

J": f(x)dx

Ym = b—_a

(Justification to this definition is already given in the MVT for integral in Section 6a.5.2.1.)
Now, we shall prove the following theorem using the mean value theorem for integrals.

6a.5.2.3 Theorem: An Integral with Variable Upper Limit is an Antiderivative of its
Integrand Note that this is the statement of the first fundamental theorem of Calculus.®

Proof: Given an integral function I(x) = f;f(x)dx, with variable upper limit x.

X /

To prove Jf(x)dx =f(x) (V1)

a

Let us give an increment Ax to x. Then, the new value of the function /(x) is given by
x+AX
I(x+ Ax) = J f(x)dx
a
Let,
Al =1(x + Ax) — I(x)
x+Ax x
= J f(x)dx — Jf(x)dx
a a
Now, expressing the first integral on the right-hand side by breaking the integral, we get
x+Ax

Al = Tf(x)dx + J Sfx)dx — Tf(x)dx

X

=

©) We have already proved the theorem, using the definition of area function A(x) = Ja\f(t)dt Now, we shall prove it,
simply by using the definition of the definite integral and the mean value theorem for integrals.
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According to the mean value theorem for integrals, the above integral is presentable as

Al = F(€)(x A% - x) = f()Ax (VD)

where ¢ is a point lying between x and (x + Ax)
By the definition of the derivative, by using (VII) we have

. Al f(&)Ax
AETO?X o T Ax
= [lim f(£)

But if Ax— 0, the x + Ax tends to x, and therefore £ — x, which implies, since f(x) is a
continuous function, that

lim £(£) = lim f(€) = £(x) (vim)

Ax—0 £—x

since fis a continuous function. This is what we wanted to prove.

6a.5.3 Geometrical Interpretation of MVT
From the theorem (d/dx) [ f(£)dt = f(x), it follows that

Now, we can give the geometrical interpretations of the above statements of the theorem.
[The geometrical interpretation of the theorem (d/dx) f: f(t)dt = f(x) was discussed in
Section 6a.3.1.] Here we explain it once more.

X

Let(x) = J Flo)de

a

The function I(x) expresses the variable area of the curvilinear trapezoid with variable base
[a, x] bounded by the curve y =f (x).10

The assertion of the theorem implies that the derivative of the area of the trapezoid with
respect to the abscissa x is equal to the ordinate of the line segment AB [=f(x)] bounding
the trapezoid, which represents the height of the graph at x. In other words, the differential
of the area of the trapezoid is equal to the area of the rectangle ABDE with sides equal,
respectively, to the base of the trapezoid and to the ordinate of the line y = f (x) at the point x
(Figure 6a.8).

Note (2): The practical importance of the integral Calculus as well as of differential Calculus,
lies in its ability to handle situations in which quantities are varying continuously.

(9 Note that as x varies in [a, x], the area I(x) varies.
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Y
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y=fx)
I(x)

A dx E X

0 a X g
FIGURE 6a.8

This can easily be visualized by considering the graph of a continuous function y =f(x),
with f(x) > 0, on a closed interval [, b]. The graph of any such function obviously lies above
the x-axis. If it is different from a straight line, then the slope of the tangent line to the curve
(which is the derivative of /) varies continuously with x € [a, b], and for any value of x (say x),
it can be easily computed using differential Calculus (Figure 6a.9).

Also, the area of the curved region below the graph of y = f(x) and above the x-axis (i.e., the
definite integral of f) from a to x (a < x <b), varies continuously with x € [a, b] and is given
by A(x) = [ f(x)dx, and for any value x (say x,), it can be easily computed using integral
Calculus (Figure 6a.10).

Remark: Because of the connection between definite integrals and antiderivatives, it is
logical to use the integral sign “[ ” in the notation [ f(x)dx for an antiderivative. Now it must
also be clear that we may dispense with the terminology of derivatives and antidifferentiation,
and begin to call the expression [f(x)dx as an indefinite integral (which is the term derived
from the concept of the definite integral). Once this idea is clear, the process of evaluating an

y=f®

FIGURE 6a.9
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Y

A®)

y=f)

FIGURE 6a.10

indefinite integral [ f(x)dx and the definite integral f: f(x)dx are identical from computation
point of view. Of course, the two concepts are entirely different. It is for this reason that the
process of evaluating an indefinite integral U f (x)dx] or the definite integral [f:f (x)dx} is
called integration.

The distinction between an indefinite integral and a definite integral should be emphasized.

(i) The indefinite integral [f(x)dx represents all functions whose derivative is f(x).

However, the definite integral [f: f(x)dx] is a number whose value depends on the
function f and the numbers a and b, and it is defined as the limit of a Riemann Sum.

Remark: We emphasize that the definition of the definite integral makes no reference
to differentiation.

Thus, we can differentiate both an indefinite integral and the definite integral in the form
J;¥ f(£)dt. Of course, (d/dx) f:f(t)dt = 0, always [Why?].
(ii) The indefinite integral involves an arbitrary constant c.

For instance | x* dx = % +c
The arbitrary constant ¢, as we know, is called constant of integration.

In applying the second fundamental theorem of Calculus to evaluate a definite
integral, we do not need to include the arbitrary constant c in the expression g(x),
because the theorem permits us to select any antiderivative, including the one for
which ¢=0.

Note (3): The second fundamental theorem of Calculus provides a key method to find the
definite integral with the aid of antiderivatives. It links the process of integration with that of
differentiation. For this reason, some authors call this theorem the fundamental theorem of
integral Calculus. Some authors also call it the Newton—Leibniz Theorem, because they were
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the first to establish a relationship between integration and differentiation, thus making
possible the rule for evaluating definite integrals, avoiding summation.

It is only after this theorem was established, that the definite integral acquired its
present significance. It greatly expanded the field of the applications of the definite integral,
because mathematics obtained a general method for solving various problems of a
particular type, and so could considerably extend the range of applications of the definite
integrals to technology, mechanics, astronomy, and so on. This is better appreciated when
the theorem is applied to compute not only areas, but also quantities like volumes, length of
curves, centers of mass, moments of inertia, and so on, which are capable of being
expressed in the form

x=b

Zf(x) Ax (1)

Archimedes (287-212 BC) must be regarded as one of the greatest mathematicians of recorded
history, for this work alone, which was nearly 2000 years ahead of his time. [Refer to Chapter 5,
Section 5.1.1.]

When Newton (1642-1727) and Leibniz (1616-1716) appeared on the scene, it was the
natural time for Calculus to be developed, as evidenced by their simultaneous, but independent
achievements in the field.

Newton and Leibniz had the analytic geometry of Fermat (1601-1665) and Descartes
(1596-1650) on which to build Calculus. This was not available to Archimedes.

(1 Differentiation and integration arose from apparently unrelated problems of geometry. The problem of the tangent line
led us to derivatives and the problem of area to integration. It was only after mathematicians had worked for centuries with
derivatives and integrals separately, that Isaac Barrow (1630-1677), who was Newton’s teacher, discovered and proved the
Fundamental Theorem of Calculus. His proof was completely geometric, and his terminology far different from ours.
Beginning with the work of Newton and Leibniz, the theorem grew in importance, eventually becoming the cornerstone for
the study of integration.Calculus with Analytic Geometry (Alternate Edition) by Robert Ellis and Denny Gulick (p. 263),
HBIJ Publishes, USA, 1988.



6b The Integral Function
flx % dt, (x > 0)
Identified as Inx or log, x

6b.1 INTRODUCTION

The definition of the logarithmic function that we encountered in algebra was based on
exponents, and the properties of logarithms were then proved from corresponding properties
of exponents. It is useful to review these properties and revise how we learned them in our
algebra course.

One property of exponents is

ax . ay — ax+y (])
Let us discuss the following cases:

(i) If the exponents x and y are positive integers and if a is any real number, then (1)
follows from the definition of positive integer exponent and mathematical induction.

(i1) If the exponents are allowed to be any integer, either positive, negative, or zero, and
a# 0, then (1) will hold if zero exponent and negative integer exponent are defined by

and
a"=—, n>0 (2)

(iii) If the exponents are rational numbers and a > 0, then (1) holds when ™" is defined by

am/n _ W (3)

(iv) It is not quite so simple to define a* when x is an irrational number.

For example, what is meant by aY?? Stated simply, we use an approximation method.

V2

First, aV? is approximately a'# = a’/5 = v/a’, which is defined.

6b-The logarithm defined using Calculus. The integral function [lx %dt, (x > 0) identified as natural logarithm In x
or log,x and the definition of natural exponential function exp(x) or ¢* as inverse of In x.

Introduction to Integral Calculus: Systematic Studies with Engineering Applications for Beginners, First Edition.
Ulrich L. Rohde, G. C. Jain, Ajay K. Poddar, and A. K. Ghosh.
© 2012 John Wiley & Sons, Inc. Published 2012 by John Wiley & Sons, Inc.
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Better approximations are a'4! = '¥/a#T and a'*'*. In this way, the meaning of a*?
becomes clear.

Based on the assumption that a*exists if a is any positive number and x is any real number, we
agreed to write the equation

a* =N (4)

where a is any positive number except 1 and N is any positive number. The definition of the
logarithmic function was then based on the above equation, which can be solved for x, and x is
uniquely determined by

x =log, N (5)

From this definition (of the logarithmic function) and properties of exponents, the following
properties of logarithms were proved

log, 1 =0 (1)
log, m-n =log, m + log,n (1)
loga% = log, m —log, n (1)
log, m" = nlog, m (Iv)
log,a=1 (V)

The power of Calculus, both that of derivatives and integrals has been amply demonstrated.
Shortly, we shall be defining the logarithmic function as an integral, indicating one more
application of Calculus.

We begin by observing a peculiar gap in our knowledge of derivatives.

d /X3 ) d /x? . d 0 d
— (=) = — (=) = —(x)=1= —(777) = x!
dx(3) ol dx(2> oW o U =x

Aoy Ao
dx(x)ix’ dx( 2)7x

Here we ask the question: Is there no function whose derivative is (1/x)? Alternatively, is there
no function that equals [(1/x)dx? We will most certainly reach this conclusion if we restrict
our attention to the functions studied so far. However, we are about to launch the process of
defining a new function to fill the gap noticed above.

For the time being, we just accept the fact that we are going to define a new function and
study its properties.

Recall the formula [ x" dx = ((x"*1)/(n+ 1)) + ¢, n # —1. This formula does not hold
when n= —1. To evaluate jx”dx for n=—1, we need a function whose derivative is 1/x.

In other words, to evaluate [(1/x)dx, we must obtain a function ¢(x) such that
(d/dx)¢(x) = (1/x). Then, obviously, we can say that [(1/x)dx = ¢(x). However, we are
neither aware of any such function nor are we able to guess it. Of course, in Chapter 13a of Part I,
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FIGURE 6b.1

we have indicated that (d/dx)log, x = (1/x). Now the question is: Can we obtain this function
by any other method and establish that “log, x” is the only function whose derivative is 1/x? In
this chapter, we shall prove this.
The first fundamental theorem of Calculus (discussed in Chapter 6a) gives us one such
method. It is (the definite integral)
X
1
J—dz
t
a

where “a” can be any real number having the same sign as x
To interpret such a function, we consider the special case of this function denoted by

(1

X
1
lnxj;dt (1)
1

Let R, be the region bounded by the curve y = 1/, by the t-axis, on the left by the line t = 1, and
on the right by the line t = x, where x > 1. This region R; is shown in Figure 6b.1.

The measure of the area of R, is a function of x; call it A(x) and define it as a definite integral
as given by

t

A(x) Ildt
1

Now, consider this integral if 0 < x < 1. It can be easily shown (using the second fundamental
theorem of Calculus) that

@ Now, what remains is to assign a name to this function.
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FIGURE 6b.2

From the above, it follows that the integral [(1/¢)d represents the measure of the area of
region R,, bounded by the curve y = 1/t, and the t-axis, on the left by line = x, and on the right
by the line r=1.?

Thus, the integral L (1/1)dt is the negative of the measure of the area of the region R, shown
in Figure 6b.2. If x = 1, the integral L (1/1)dt becomes L (1/t)dt, which equals zero. (By
definition, see Chapter 5, Section 5.5.4.)

In this case, the left and right boundaries of the region are the same and so the measure of the
area is 0. (This fact can also be proved using the second fundamental theorem of Calculus.)

Thus, the integral Jl 1/t)dt, for x >0 can be interpreted in terms of the measure of the
area of a region. The value of this integral depends on (the upper limit x) and is used to
define the natural logarithmic function, denoted by In x. We write,

X

1
lnx:J;dz, x>0

1

(Though, we have given the name natural logarithmic function to In x, we have to justify this
name. For this purpose, we must check whether In x satisfies all the properties of logarithms, as
listed in Section 6b.1.1.)

6b.2 DEFINITION OF NATURAL LOGARITHMIC FUNCTION
The natural logarithmic function is defined by

X
1
lnx:J;dz‘, x>0
1

The domain of the natural logarithmic function is the set of all positive numbers. We read “In x”
as “the natural logarithm of x”.

@ Note that, here x varies in the interval (0, x), from 1 to 0. The area to the left of the ordinate # = 1 is taken as negative
(so that, it is represented by a negative number) and that to the right of line 7= 1, is taken as positive.
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6b.3 THE CALCULUS OF Inx

From the first fundamental theorem of Calculus, we have

d d|[1 1
— (1 =—||-dt| =—
dx (Inx) dx J t X
1
Thus, In x is a differentiable function with
d 1
—(Inx) =— (ii)

dx X

Since (1/x) >0 for x > 0, we also conclude that In x is strictly increasing.
We know that corresponding to each differentiation formula, there is an integration
formula. Thus from (ii), we can write

1
J;dx:lnx—i-C (iii)

which is the indefinite integral form of (ii).
[It must be clearly understood that, whereas the function In x is defined by the definite
integral [;'(1/t)dz, x > 0, the indefinite integral form of Inx is given by equation (iii).]
From the result (ii) and the chain rule, we have the following theorem

Theorem (A): If u is a differentiable function of x and u(x) > 0, then

d 1d
=0 __--
dx(nu) udx

(u)
Example (1): Find f'(x) if fix) = 1n(5x2 —2x+7)

Solution: From Theorem (A),

1

"(x) = ——————(10x — 2
F(x) 5x2—2x—0—7( x=2)
10x —2
= Ans.
5x2—2x+7 s

Example (2): Find f'(x) if f{x) =In(sin x), sinx >0

Solution: Using Theorem (A), we get

d 1 d
o [In(sin x)] = nr o (sin x)
= c?s Y cotx, sinx>0 Ans.
sin x

d 1
Example (3): Show that aln|x| =2 ¥ #0
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Solution: Here we have to consider two cases.

(@ Ifx>0, |x]=x, andso

d d 1
~a = (Inx)=-
o k) = 7= (Inx) =

(b) fx <0, |x|]=-x, andso

d d 1 d
—(Infx)) = (In(~x)) =

St aw

1
J;dx =lIn|x|+¢, x#0

(—x) [Note that forx <0, —x > 0]

Example (3) tells that

This result fills the long-standing gap in the power rule for integration. If r is any rational
number then, we can now write

ur+l )
wa: prp e iAol
Infu| +¢, ifr=-1

Example (4): Find d% [In(x* — x — 2)]

Solution: This problem makes sense, provided x* — x —2> 0.

Now x%— x —2=(x+ 1)(x —2), which is positive provided both the factors are either
negative or positive. This condition is satisfied provided x < — 1 or x > 2. Thus, the domain of
In(x* — x —2) is (—oo, —1) U(2, 00). On this domain,

d 2x —1
In(x2-x-2)]=——— Ans.
dx[n(x X )] e R— ns

Now we show that the natural logarithmic function obeys the properties of logarithms that we
learnt in algebra, and listed in Section 6b.1. [This will also justify the name given to the function
[ (1/0de, (x> 0).]

Now, itis proposed to prove the following theorem, which gives the properties of In x (except
the property log,a=1).

Theorem (B): If ¢ and b are positive numbers and r is any rational number, then

MInl=0

(I In(a-b) =Ina+1Inb
) In(4) =Ina—1Inb
V) In(d") = r(lna)

These relationships make In x a very important function. These properties of In x support our
use of the name “logarithm” for the function In x.®
Let us prove these properties.

© Of course, we have not yet talked about the base of the natural logarithm.
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Proof: (I) To prove: In1=0

X

From the definition of In x, we have In x = J ;dz
1

1

1n1:[

1

dr=0

~] -

‘We now prove that the natural logarithm of the product of two positive numbers is the sum of
their natural logarithms.
(II) If @ and b are two positive numbers then

In(a-b) =Ina+1Inb

Proof: Consider the function f{x) =In(ax)
For x >0 (and a > 0, given), we have

d 1 d
a(ln ax) = e a(ax), [By Theorem (A)]
1 1 d 1
=— .a=-— d —(lnx)=-
ax T ™ dx( nx) x

The derivatives of In(ax) and Inx are therefore equal. Thus, their values differ only by a
constant, that is, Inax=Inx+ C

To evaluate C, we put x =1, which gives Ina=C (since In1=0).

Thus, Inax=Inx+Ina

Now, put x=>b, we get In(a-b)=Ina+1Inb. (Proved)

(III) If @ and b are two positive numbers then
ln(g> =Ina—1Inb
Proof: We have, shown above that
In(a-b) =Ina+1nb
Replacing a by 1/b, we get on the right-hand side
1 1
lng-}—lnbzln(gla)7 [ Ina+Inb=In(a-b)
1
=Inl1=0 Thus we get lnz =—Inb
N nsider 1n<g>*ln l =1In —i—lnl
ow consider, ) = a 5= a b
=Ina—Inb (Proved)
(V) If a and b are two positive numbers and r is any rational number, then
In(a") = r(Ina)
Proof: For x >0, we have

|
G
><~
N

!

[By Theorem (A)]
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and
~ (v)

Thus, derivatives of In(a”) and r(In x) are equal. It follows that, In(a") and r(In x) must differ
only by a constant C.

Inx"=rlnx+C (vi)
To find C, we put x=1 and get
Inl"=rlnl+C

But In 1 =0; hence C=0.
Replacing C by 0, we get from (vi) above

Inx"=rlnx (Proved)

The properties of the natural logarithmic function can be used to simplify the work involved in
differentiating complicated expressions involving products, quotients, and powers as can be
seen from the following solved examples.

Example (5): Let us differentiate ln( (¥ +1)2x+ 3)>
d
fon: 2
Solution: ix [ln( ¥+ 1D)(2x+ 3))}

= % B {In(>x* + 1) + In(2x + 3)}}

1 1 1
:EKxZ_;_l .2x>+2x+3 .2}

_L_‘_# > § AIN
T+l 3 Y772 s

[Note that the denominator in the second term will not be zero if x > (—(3/2)).]

d
Example (6): Findd—)yc ify=Iny/(x— 1)/x2, x>1

Solution: Our problem becomes easier if we first use the properties of natural logarithm to

simplify y.
x—1\'"* 1 —1
y=1In ud =—In o
x2 3 x2

1
=3 [In(x — 1) — Inx?]

:%[ln(x— 1) —21nx]

b _ 11 2 _1j2-x}
dx 3|x—-1 x| 3|x2—x ’




THE CALCULUS OF Inx 191

FIGURE 6b.3

Note (1): The process illustrated in Examples (5) and (6) is called logarithmic differentiation. In
this process, the expressions involving quotients or powers are reduced to simple sums and
products of functions. The procedure involves taking the natural logarithm of each side of the
given function and then using the properties of logarithms.(4)

The following procedure is useful in understanding the inequality 0.5 <In2 < 1.

Solution: Here, we can write
2
1
In2 = det.
t
1

The above definite integral can be interpreted as the measure of the area of the shaded region
appearing in Figure 6b.3.

From this figure, we observe that In 2 is between the measures of the areas of the rectangles,
each having base of length 1 unit and the altitudes of lengths 1/2 and 1 unit, which tells that,
0.5<In2<1.?

Note (2): The number 0.5 is a lower bound of In 2 and 1 is an upper bound. In a similar manner,
we can obtain a lower and upper bound for the natural logarithm of any positive real number.
(Later on, it will be convenient to compute the natural logarithm of any positive real number to
any number of decimal places (to achieve the desired accuracy), by expanding the function In x
into an infinite series, as discussed in Chapter 22 of Part 1.)

Remark: We have not yet established the property of logarithms, which states that log,a =1,
because so far we do not have a base for natural logarithm. To obtain the base for the natural

logarithm we now show that In4 > 1. [Once any base “a” is obtained for the (natural)
logarithmic function “In x” we must check that ¢ >0, a # 1.]

) This process was developed in 1697 by Johann Bernoulli (1667-1748). We have discussed this method and solved a
good number of problems in Chapter 15a of Part I.
©) This inequality can also be obtained analytically, using the mean value theorem for integrals introduced in Chapter 6a.
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FIGURE 6b.4

Solution: By definition of the natural logarithm and the comparison property, we have

4 2 3 4
1 1 1 1 1 1 1
1n4:J;dr:J?dt+J;dz+J?dt:§(2— l)+5(3—2)+§(4—3)
1 1 2 3
Sloonilaogyiluoy
-2 3 4
11 1
25+§+Z(* 13/12)
> 1.

Thus, we have shown that In4>1. We have seen that In1=0, In2<1 and In4>1
(Figure 6b.4). Intuitively, we can guess that there exists a number between 1 and 4 (let us
call it “e”), such that Ine = 1. It remains to show that such a number is in the domain of In x,
and it is unique.®

Now note that, In x is differentiable and hence continuous. Therefore, from the intermediate
value theorem, it follows that there exists a number between 1 and 4 (denoted by “e”), such that

Ine=1

Also, since the function /n x is strictly increasing, e is unique. It is the value of x for which the
area of the shaded region in Figure 6b.5 is 1.
Further, the equality In e = 1, suggests that the base of natural logarithmic function “In x”
must be the number “¢”.”
In Chapter 13a of Part I, we have discussed at length about the number e, its origin, its value,
and its properties. There, we have also seen that log, x is a new function such that
d ) 1
a 08, X = ;
This is consistent with what we have seen in the case of “In x”. Thus, we identify the function
Inx with log,x. The number “e”, as we know, is an irrational number that has the non-
terminating decimal expansion

e =2.71828182845904523536

The symbol e was first adopted for this number by the great Swiss mathematician Leohard
Euler. It has come to occupy a special place both, in mathematics and in its applications.

© Once this is shown, it will be justified to identify In x as the logarithmic function to the base “e”.
@ From the properties of exponents and definition of logarithms, we know that for a >0, @' = a, which also means that

@ 5 @ 9

logarithm of “a” to the same base “a” is 1 [i.e., log,a=1].
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FIGURE 6b.5

Now let us consider the following examples.
Example (7): Evaluate fz() idx in terms of logarithms
Solution: [f 1dx =[Inx]S =16 —In2=1In8=1n3.

Example (8): Express j:; idx in terms of logarithms

7

. 1

Solution: J ;dx = [In x}:g
_g

=1In| — 7| — In| — §|

= ln7 Ans
=Ing .

Example (9): Find the exact value of joz ‘;jlz dx

X242

193

Solution: Because %75 is an improper fraction, we divide the numerator by the denominator

and obtain
X242 3
=x—14+—-
x+1 x+1

Therefore,

2 2

242 3
Jx+ dx:Jx—l—i- dx
x+1 x+1

0 0

1, 2
=5 —x+3In|x+ 1]
=2-2-3In3-3In1
=3In3-3.0
=3In3=1In3*=1In27 Ans.
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Example (10): Evaluate [2xdx

Solution: Let Inx =1.

We get
1
—dx =dr
X

Therefore,

1 P2
Jﬂdx = jtdl =—4+c®
X 2

(Inx)*+c¢ Ans.

N =

Remark: Here we have evaluated the integral [(Inx/x)dx by the method of substitution
discussed in Chapter 3a. To obtain the formulas of indefinite integral of trigonometric functions
tan x, cot x, sec X, and cosec x, we had assumed the result [(1/x)dx = log e|x| + ¢, and applied
itto [(f'(x)/f(x))dx to obtain the result log |f(x)| + c. If this had not been done, we would have
had to wait till this point for obtaining the above-mentioned formulas, because they involve the
natural logarithmic function.

Also, we have seen in Chapter 13a of Part I, that the common logarithm is a multiple of the
natural logarithm and vice versa, given by the following relations:

log,q x = logg e-log, x = 0.4343 -log, x
and
log, x = log, 10 -log;q x = 2.3026 - log;, x

Thus, we can always convert back and forth between the natural and the common logarithm of
the same number.

6b.4 THE GRAPH OF THE NATURAL LOGARITHMIC FUNCTION Inx

Now, we analyze the graph of the natural logarithm function In x and try to sketch it. First note
that, In1 =0 ( Jll (dt/t) = 0). Next, Inlx| is a differentiable function with

d 1

1 I

dx nj X
since (1/x)>0 for x>0, Inx is strictly increasing, also it is clear from (1/x)>0 that

1
2 /442 —
(d*/dx*)lnx = f;<0.

® Remember that, whereas evaluation of J(In x/x)dx has been very simple, the integral [ In x dx cannot be evaluated by
the method of substitution. Recall that, [In x dx was evaluated by the method of integration by parts [Chapter 4a).

© To remember the above relationship, it is useful to keep in mind the algebraic identity x/10 = (x/e) - (¢/10).Ithelps in
writing log;o x =log;o e-log, x and so on.
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slope = jT

FIGURE 6b.6

Therefore (as we have noted earlier in Chapter 19a), the graph of In x is concave downward
on (0, 00). It can also be proved that
lim Inx=4oco and lim Inx= —oo0!?
X — +00 x—0"
With this information, and by plotting a few points with segments of tangent lines at the points,
we can sketch the graph of the natural logarithmic function by hand, as shown in Figure 6b.6,
where we have plotted the points having abscissas %,%, 1,2, 4.

The slope of the tangent line is found from the formula
d 1
— In|x| =-
dx Al X

From the property lim_, 4+ In x = —o0, we conclude that the graph of In x is asymptotic to the
negative part of the y-axis through the fourth quadrant.

In summary, the natural logarithmic function “In x”, satisfies the following properties, as can
be seen from its graph, and discussed earlier.

(a) The domain is the set of all positive numbers.
(b) The range is the set of all real numbers (since In x — + 0o, as x — + 00).

(c) The function is increasing on its entire domain [since(d/dx)(Inx) = (1/x) >0
for all x > 0].

(d) The function is continuous at all numbers in its domain (since In x is differentiable
for all x > 0).

(e) The graph of the function is concave downward at all points (since In x < 0, forall x > 0.
See Chapter 19a for second derivative test).

(f) The graph of the function is asymptotic to the negative part of the y-axis through the
fourth quadrant (since lim, _, ¢+ In x = —00).

0 The Calculus 7 of a Single Variable by Louis Leithold (pp. 445-447), Harper Collins College Publishers.
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6b.5 THE NATURAL EXPONENTIAL FUNCTION [exp(x) OR €*]

We know that the natural logarithmic function is increasing on its entire domain, therefore by
the definition of an inverse function, it has an inverse that is also an increasing function.

The inverse of In(x) is called the natural exponential function, denoted by exp(x) (or "),
which we now formally define.

6b.10.1 Definition of the Exponential Function exp(x) or e*

The natural exponential function is the inverse of the natural logarithmic function.
It is therefore defined by e* =y, if and only if x=1Iny.

Note: We agree that the expressions exp(x) and e stand for the same functions, as also the
expressions Inx and log x mean the same function at “x”. It is also clear that for x=1, the
exponential function e* has the value “e” [or we say that the number “¢” is the value of the (natural)
exponential function at 1]. We can also write that e = exp(1). Note that, the exponential function "
is defined for all values of x and that its range is the set of all positive numbers.

We have studied the properties of the natural exponential function in Chapter 13a of Part I.
All the properties of exponential function studied there can be established using the definition of
the logarithmic function, discussed in this chapter. It will be seen that these properties are
consistent with the properties of exponents learnt in algebra.



7 Methods for Evaluating
Definite Integrals

7a.1 INTRODUCTION

In Chapter 5, we have introduced the following concepts/ideas:

e the concept of area,
o the meaning of the definite integral as an area,
o the idea of the definite integral as the limit of a sum,

o the concept of Riemann sums and the analytical definition of definite integral as the limit
of Riemann sums.

the symbol f: f(x)dx for the definite integral of a (continuous) function f{x) defined on a
closed interval [a, b],

the statement of the integrability theorem, and

the statement of the second fundamental theorem of Calculus, which links the definite
integral [”f(x)dx with the antiderivative [f(x)dx.

Historically, methods of computing areas of certain regions were developed by the ancient
Greeks. Such an area was called the integral. The symbol “ [ [with positive numbers a and b
(a < b)] was used to indicate the measure of the area in question. Thus, the term “integral”
and the symbol “[” were in use prior to the discovery of differential Calculus.

The concept of derivatives was discovered in the seventeenth century and the methods for
finding the derivatives of various functions, were developed then. Simultaneously, mathema-
ticians developed the concept of the antiderivative of a function and the methods for finding
antiderivatives. The methods for computing derivatives of functions, together with those for
computing antiderivatives constituted the subject of Calculus.

Of course, a number of mathematicians have contributed through the centuries, towards the
development of Calculus. However, Newton and Leibniz understood and exploited the intimate
relationship that exists between antiderivatives and definite integrals. This relationship, which
is known as the second fundamental theorem of Calculus, was introduced in Chapter 5. Also,
some examples were solved to show how the theorem provides a very simple method for
computing definite integrals.

7a-Methods for evaluating definite integrals using antiderivatives (Application of the second fundamental theorem of
Calculus)

Introduction to Integral Calculus: Systematic Studies with Engineering Applications for Beginners, First Edition.
Ulrich L. Rohde, G. C. Jain, Ajay K. Poddar, and A. K. Ghosh.
© 2012 John Wiley & Sons, Inc. Published 2012 by John Wiley & Sons, Inc.
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The second fundamental theorem of Calculus says that, to evaluate the definite integral
Jf f(x)dx, we should compute the antiderivative of the function f{x) (which is the integrand
in the definite integral). The dependence of the definite integral on the evaluation of the
antiderivative suggested that we identify the term antiderivative by the name “indefinite
integral”. Accordingly, the old term “integral” (which was in use prior to the discovery of
derivative) was renamed “the definite integral”.

The above discussion is a repetition of the contents discussed in previous chapters. However,
such a repetition is expected to help us easily understand the methods and the material to be
discussed in this chapter.

The underlying approach (for finding areas, as discussed in Chapter 5) is largely based on
geometrical considerations and partly on our intuition. The procedure involved is lengthy and to
some people it may appear dull. However, it is interesting to see how ideas are introduced for
computing areas bounded by known curves.

The idea of the area function A(x) introduced in Chapter 6a, helps in understanding the
first fundamental theorem of Calculus, and in establishing the second fundamental theorem
of Calculus. Both these theorems are then applied to show that differentiation and integration
are inverse processes. Also, these theorems are very useful in proving many other important
results in Calculus. We again come back to our discussion on the second fundamental theorem
of Calculus.

If f(x) is a continuous function and f(x) > 0 on [a, b], such that the graph of the function is a
continuous curve above the x-axis, then the area of the region bounded by the curve y =f(x),
the ordinates x =« and x = b, and the portion of x-axis from the point a to the point b is
denoted by A= Jf f(x)dx. This is the simplest plane region and the symbol f: f(x)dx
measures the shaded area.

y

y=f(x)

b
A=[ fix) dx
a

The symbol Lb f(x)dx is read as the definite integral of fix) from a to b. It is a fixed number for
the given interval [, b] and it can change only if the interval is changed. In this notation, f(x)
is the integrand, “a” is the lower limit of integration and “b” is the upper limit. The symbol j is
an integral sign. It resembles a capital S, which is appropriate because the definite integral is the
limit of a sum. (We have already discussed about the acceptance of the same symbol | for the
definite and indefinite integrals.)

7a.2 THE RULE FOR EVALUATING DEFINITE INTEGRALS

If f(x) is a continuous function defined on some closed interval [a, b], then the rule is as follows.
Find the antiderivative of f(x), by any method.
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Suppose, [f(x)dx = ¢(x). Then, by applying the fundamental theorem of Calculus, we
obtain,

We know that the definite integral j:f(x)dx of the function f(x) is a fixed number for the
given interval [a, b] and it can change only if the interval is changed. On the other hand, the
ii})deﬁnite integral of a function f(x) is (in general) a new function. Thus, the definite integral
[, f(x)dx, is quite different from the indefinite integral [ f(x)dx, although both look alike
due to the symbol |. It is when we wish to evaluate definite integrals that we make use of
indefinite integrals.

By using the second fundamental theorem of integral Calculus we, in effect, get a powerful
tool for computing the limit of a sum in question, which is the same as the value of the definite
integral in question.

We now give the following definition of the definite integral of f(x).

Definition: Let f{x) be a function, continuous on a closed interval [a, b], and let ¢(x) be
the antiderivative of f(x), such that

Then, we write Jf f(x)dx to mean [¢(x)}z = ¢(b) — ¢(a) where a and b are real constants.
The symbol u[:f (x)dx is called the definite integral of f(x) from a to b.

Note (1): The second fundamental theorem of integral Calculus defines the definite integral
f:f(x)dx, forb>a.

[Later on, we will show that if b < a, then f:f(x)dx =— [, f(x)dx.]

In other words, the fundamental theorem can be applied for evaluating the definite integral even
when the upper limit is smaller than the lower limit.

Note (2): Let Jf(x)dx =¢(x) +c @

b
g J F)dx = [¢(x) + el = [6(b) + ] = [B(a) + ] = $(b) — $(a) (In)

M Consider [f(x)dx = ¢(x) + ¢, where ¢ is an arbitrary constant, including zero. If we choose ¢ =0, then ¢(x) is called
(the) antiderivative of f{x), since ¢/ (x) = f(x). Note that, ¢(x) + cis called (an) antiderivative of f{x). It is due to the arbitrary
constant ¢ [added to the antiderivative ¢(x)] that we call “¢(x) + ¢”, an antiderivative (or an indefinite integral), the
indefiniteness being due to “c”. For all practical purposes, we do not make a distinction between the antiderivative [¢(x)]
and an antiderivative [¢(x)-+c]. However, for computing the definite integral J“b f(x)dx, we shall always write the indefinite
integral ¢(x) without an arbitrary constant.
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Observe that, the value of the definite integral does not depend on the constant of
integration. This justifies the adjective “definite”. Therefore, while evaluating the definite
integral, we do not write the constant of integration with ¢(x),which is the antiderivative

of f(x).

Remark: Use of the sign [ for an indefinite integral and for the definite integral does not help
the beginner to keep the two ideas distinct from each other. From this point of view, it is perhaps
not the best notation to use. However, once the distinction between the terms an “indefinite
integral” and the “definite integral” is clearly understood, the integral sign is accepted
conveniently and logically.

7a.3 SOME RULES (THEOREMS) FOR EVALUATION
OF DEFINITE INTEGRALS

As in the case of indefinite integrals, we can easily prove the following corresponding results for
definite integrals.

(1) If fand g are integrable functions® then

J: [f(x) £ g(x)]dx = rf(x)dx + r g(x)dx

a a

(2) If fis an integrable function® and k is a constant then

b

E kf (x)dx = kJ f(x)dx

a

Corollary: If f and g are integrable functions® and k,, k, are constants then

b b b
J [k1f (x) £ kag(x)]dx = ky J f(x)dx £ ky ‘ g(x)dx

a a

The above results can be extended to more than two functions involved in the sums and
differences.

To prove these results, we use the definition of the definite integral based on the fundamental
theorem of integral Calculus. For example, let us prove that,

b

b b
J F(x) + g()ldx = j F)dx + j ¢(x)dx

a a

@ We have defined an “integrable function” in Chapter 5. (A function is said to be integrable on [«, b] if it is bounded on [a,
b] and continuous there, except at a finite number of points.)



SOME RULES (THEOREMS) FOR EVALUATION OF DEFINITE INTEGRALS 201

Proof: Let [f(x)dx = ¢(x)
b b
Then, [ ear =60 = o(b) - o(a) 1)
Again, let [ g(x)Fx = F(x)
b
Then, J ¢(x)dx = F(b) — F(a) 2)
Adding Equation (1) and Equation (2) we get

b b
[/ rar+ | o0 = [0(b) - 0@+ [F(8) ~ Fla)] 5

= [0(b) + F(b)] — [¢(a) + F(a)]

But for an indefinite integral, we know that,
[ 00+ gtolar = [0+ [etxiax = o)+ P + ¢

b
jvm+gwm:wm+nm+%

= [0(b) + F(b)] — [¢(a) + F(a)]

)

Observe that the right-hand sides of Equation (3) and that of Equation (4) are identical.
Therefore, equating their left-hand sides, we get

b b

f(x)dx + J g(x)dx

a

fvm+amm:j

a a

On similar lines, we can prove the other results.

7a.3.1 Solved Examples
Example (1): Evaluate [} (5x° + x2 — 4x)dx

Solution:

2 564 3 2 2
3 2 _ 2 A
.‘l[Sx + x* — x4 3]dx {4 —0—3 2—0—3)(}1
16 8 4 5 1 1
7[5'(I)+§—§+6:|—|:Z+§—5+3:|
8 15+4—6+4
=20+2-2 S P S
[0+3 +4 { i }

80 17 320-17 303 101
=== —=— Ans.
312 12 12 4
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1.2
-3 2
Example (2): Evaluate J wdx
0o VX
1.2 1
-3 2
Solution: J ﬁdx = (x3/2 —3x12 4 2x‘1/2>dx(3)
0 VX 0
r.5/2 3/2 17271
G S ZL]
15/2 3/2 1/2],
- 1
_ 125030 +4)61/2}
15 0
2 12
:-§—2+4:|—0:? Ans.
/2

Example (3): Evaluate | sin® x dx

Solution:
cos2x =1 —2sin? x

/2 /2 1— 2
[ sin? xdx = J ﬂdx,

Jo 0 D) 2 1 —cos2x

sin” x =
2

/2 1 (/2 (/2
[ [1 —cos2x]dx == J ldx — ‘ cos 2x dx
Jo 2 Jo

- { B — [Si“;"} :/2} - [(g ~0) 3 (sin7 —sin 0)}

b b
_Z_O_Z Ans.

N =

All the methods studied for evaluating indefinite integrals (such as integration by substitution,
integration by parts, and integration by partial fractions) can be applied for computing definite
integrals.

7a.3.2 Application of the Fundamental Theorem of Calculus

Evaluating definite integrals is generally a two-step process. First, we find the indefinite
integral, then we apply the fundamental theorem of Calculus. If the indefinite integration is
easy, we can combine the two steps as in Examples (1) and (2). However, if the computation is
complicated enough to require a substitution, we typically separate the two steps. Thus, to
calculate J"S XV x2 + 9 dx we first write (using x2+9=¢and 2x dx=dr).

1 1
Jx\/xz +9dx = EJ\M +9(2xdx) = 5le/zdr

1 2 1
=—-2F =

] 32
573 3(x +9)" +c

) Observe that the integrand has been converted to the standard form. This is needed to write down an indefinite integral,
before evaluating the definite integral.
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Then, by the fundamental theorem, we write
I 1
Jx xX24+9dx = {5 (x* + 9)3/2}
0

4

0

42 4+9°2 (0% +9)Y?

3 3
B (25)3/2 (9)?/2
3 3
12 2
TS - ?7 = ? Ans

7a.3.2.1 Simpler Way of Using Substitution Directly: From Two-Step Procedure to
One-Step Procedure

Instead of going through a two-step process, there is a simpler way of using substitution directly
in a definite integral, as explained through the following example.

/2
Example (4): Evaluate [ x sin®(x?) cos(x?)dx
0

Solution: First we will evaluate this using the two-step procedure and then evaluate it directly.
Method (I): Two-step procedure.
Put sin(x?) =1¢, so 2xcos(x?)dx = dt

1
Jx sin(x2) cos(x?)dx = ijsin3 (x?) - 2x cos(x?)dx

71 ZSdZ*l t4+.—1s‘1'l4( 2)+)
=2 Ty e gi)Te

Then, by the second fundamental theorem of Calculus,

V)2 VE/2
J x sin’(x2) cos(x?)dx = {g sin4(x2)]

0 0

Note: In the two-step procedure illustrated above, it is necessary to express the indefinite
integral in terms of the original variable x, before we apply the fundamental theorem. This is
because the limits 0 and \/7/2 apply to x, not to t. But, in making the substitution sin(x?) =1, if
we also make the corresponding changes in the limits of integration, to the new variable 7, then
we can complete the integration with ¢ as variable. This is indicated in Method (II).
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Method (II): Observe that for x=0, r=sin(x?)=sin(0%)=0, and for x = \/7/2, t =
. 2 .
sm[(ﬁ/Z) ] =sin(}) = 5= 2

x sin® (x2) cos(x?)dx = = Adt

V)2 1 (V22
l 5|

0

LMY a1
=z = =|s-—| =2  Ans.
274, 8 16| 32

7a.3.2.2 Change of Limits in Definite Integrals During Substitution

Let us recall the method of substitution for the indefinite integral. There, we have seen that, by
substituting x = ¢(7) in the given integral [f(x)dx, we get, [f(x)dx = [f[p()]¢ (¢)dz.
To evaluate a definite integral L f(x)dx, where x = ¢(¢), we have the following form,

b 1
j Fx)dx = j FO0)8 (0dt

a 1

where 1, and , are numbers such that (a) a=¢(t;) or t; =¢ ' and (b) b= (1) or t, =¢) .
Thus, t; and t, are the limits of integration for the variable t, corresponding to the limits of
integration a and b for the variable x.

In practice, it is very simple to find ¢, and #, corresponding to the limits “a” and “b”,
respectively, as will be clearer from the solved examples given below. Thus, while changing the
variable in a definite integral, we should change the limits of integration to reduce our work.
Once this is done, we need not come back to the original variable x, for evaluating the definite
integral.

3

Example (5): Evaluate jol = dx

1
Put 14+x*=¢ o 4Ax3dx =dr, S Xdx = Zdz

forx=0,t=14+0*=1, andforx=1,r=14+1*=2

. . 1 3 2 2
Solution: ind 7[ (1/4)dt71J ~124;

oVite LV Al
e R R

Example (6): Evaluate fol B(1 = x2)>2dx@

) Note how the substitution converts the integrand to the standard form.
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Solution: Put1 — x> =¢ . x*=1—¢ .. 2xdx=—dt

xdx = —1dr when x
=0,7=1-0=1and when x=1,r=1-12=0

1 1
J 31— xz)s/zdx :J X2(1 = x2)*% . xdx
0 0

0 5/2 1
:Jl(l—z)t -(—E)dt
1 0 1 0
= —EJ (1 —0)2de = —5} (15/2 - t7/2)dt
1

1
5/ 2 7/ 2 [see Remark in Section 7a.2]

1 {17/2 tg/z} 1{2 an _%9/2}1
9

M\'—‘

217/2 9/2 217 0
1 9-7 2
_ s_z Ans.
( ) (0- 0)} G e Al
Example (7): Evaluate Jlt Il71xdx
P ) 0 1 + x2
Solution: 1
Put tan~'x =1t s ——dx=dt

1+ x?
Whenx =0, t=tan"!0=0(- tan0 = 0)

andwhenle,t:tan”l:g ( tanE:1>

4
1o, o1 n/4
t t

J an X dx = l dt = E:|

01+x2
_1 n/4 1 5 _i .
=517 5{(1) *0}_32 Ans.

Example (8): Evaluate fo sin®x cos x dx

Solution:
Put sinx=1¢ . cosxdx=dzr

Whenx =0, t =sin0 =0

m A
d wh =—,t=sin-=1
and when x =, sin >

/2 t3
J sin®x cos x dx = J 2dt = { }
0 0 3]0

_7[?}0 25[13 —03] :% Ans.
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3

S5xdx
Example (9): Evaluate J —_
P v xX2+4
Solution:
Put x> +4=17 2xdx = 2tdt

Whenx = —1, 2 = (—1)*+4=5

and whenx =3, 2 = (3)* +4 =13

3

- 55
J S
VXt +4

K

dx
E le (10): Evaluate | —————
xample (10) vauaeJ5+4cosx
0
Solution: Let Jdix =1 (say)(s)
5+ 4cosx

Consider 5+ 4 cos x

=5 [sin2 % + cos?

o, X X
=sin’Z 4 9cos’=

2

E] + 4[00525 —sin” —

METHODS FOR EVALUATING DEFINITE INTEGRALS

xdx = tdr¢

r=+/5

t=+13

Sl‘mtdt Jm
Jsot T

= 5[ = 5[V13 - V5]

2 X
2 2

dx
= Jsinz(x/Z) + 9cos?(x/2)

Dividing N* and D" by cos? g, we get

[ sec(x/2)
= Jtanz(x/Z) +9

Put tan—=1¢

dx

1 ,x
= ~dx =dr
Ssec S

2%

dx = 2dr
sec” S dx

dt
1=2 =2
Jt2+9

J dr
2+ (3)?

) The principal step in the evaluation of a definite integral is to find the related indefinite integral.
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When x =0, ¢ = tan(0) = 0 and when x = 7, ¢ tends to co ( tang = oo>.

Thus, as x varies from O to 7, ¢ varies from 0 to oo.

K

dx ©  dr I b
- =2 ——— =2|-tan" ' =
5+ 4cosx 0 2+ (3)° 3 3],

0

[tan~" o0 — tan~'0]

E—O =z Ans.
G-9)-3

Wi Wl

n/2

sin 26 dd
Example (11): Evaluate | ———
ple (11) J sin*0 + cos*d
0

sin 26
Solution: Let JWLdG =1
sin*0 4 cos*0

Put sin’f=1¢ .. 2sind cosfdf = ds
or sin 20 df = dt
Now, sin*f4cos*0=2+(1—-1) =2 +1-2+7¢
2 2 1
=20 =24+ 1=2|7 145

20+ (0 6)

1
! :iju— 27+ (/27 2

dt 1 { 1 (t=(1/2) L

—t
2 1/2

=tan'(2r—1)+c

When =0, t=sin> 0=0

and when 0 =7, ¢ = sin? I=1

207
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. T .
Thus, when 6 varies from 0 to > t varies from O to 1.

n/2

[ sin26 df B | ) )

‘ sin*0 + cos*0 [tan™" (21 - )]y =tan™'(1) —tan~'(—1)
0

4 4) ~2
sin 26 df 2sin - cos @
Note: Consider = =1 (sa
Jsin“& + cos*f Jsin“@ + cos*d (say)
Dividing N" and D" by cos*d, we get
2 tanf - sec?d
I=|—F——df
J tant6 + 1
Now, by puttingtan®0 = ¢ .. 2tan sec’d df = d¢
It can also be easily shown that
J“/z sin20df r e fran-11) = =
o sin*0tcostd  Jo 1+12 02

n? /4
Example (12): Evaluate | %}dx
752/9
Solution: Let /x=¢ .. x=£7 . dx=2ds
t
Jcosﬁdx - Jﬂ 2tdt = 2Jcos tdt
VX t
T
Now, for x = n2/9, t = /% =3
and forx = n%/4, t=/x :g
/4 /2
J COS\/;C: ZJ cos t dt
n2/9 ﬁ n/3

= [2sin7)3 =2(1) - 2(?)

=2-43 Ans.

/2 cos x dx

E le (13): Evaluat d
xample (13) vauaeJ0 (T sinx)(2 4 sinx) x
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Solution: Put sin x =1¢ . cos x dx=dt
. b LT
When x=0, t=sin 0=0, and when x:§, t=sm§:1
J"/z cos x dx 7J1 de
o (1+sinx)2+sinx) ~ Jo(I+)Q2+10)

Now resolving into partial fractions, we get

1
(I1+02+1)
1 1 1

(I+n2+1n (A+1 (240

1 1
Given integral = | |[—— — ———|d¢
ven e H(m) <2+z>}
0

1+41° 2 1
= [log(1 + ) — log(2 + 1)]y = {log (Z—H)} 1 = logg - logi
2/3 4

= logl—/2 = logg Ans.

7a.4 METHOD OF INTEGRATION BY PARTS IN DEFINITE INTEGRALS

We have proved the following result in connection with the evaluation of (certain) indefinite
integrals, which involve product of two functions u(x) and v(x).

[t s [0 [oa]as

(Obviously, it is clear that u represents the first function and v the second.)
In case of definite integrals this result is used in the following form

i s - 10

The following solved examples illustrate how this result is applied to evaluate definite integrals.
n/4

Example (14): Evaluate | xcosxdx
0

/4
Solution: | xcosxdx

0 n/4 /4
= {x~Jcosxdx} —[ (1)-sinxdx
0 0

=[x sinx]g/4 — [—cos x]g/4
1 n
= (gﬁ_ 0) + [cosx]o/4
T 1
=——+—-1 Ans.
42 V2
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/2

Example (15): Evaluate j x sin x dx
0

Solution: )2
J xsinxdx = {x Jsin b dx}

n/2

- J (1).(—cos x)dx
0

0
/2
=[x (—cos x)]g + [sin 7
= [—xcos x]g/2 + [sin x]g/z

T T N
= [75 (cos 5) — 0(cos 0)] + |:S11’1§ — sin 0]
==(0-0)+(1-0)=1 Ans.

1
Example (16): Evaluate [xe?* dx
0

Solution: ] ]

3
Example (17): Evaluate [xlogxdx
2

3 3
Solution: [ xlogxdx = [(log x) - xdx
2 2

3
I *?)’ 1 X2
logx)-xdx = [logx- 2| — [(= -2 )a>
J(ogx) xdx og x ZL J<x 2> X
2 2
3

3
—_x—z lox3 1de)c—leox3 lx—z
I i P Rt [ M PO PN

- 2

(9 4 9 4 9 5
= |=1 —=log2| — |-—=| ==1 —2log2 —— Ans.
B og3 2og } {4 4} > og3 og 1 ns

We emphasize that the principal step in the evaluation of a definite integral is to find the related
indefinite integral. At times, finding the indefinite integral is lengthy. In such cases, we must first
compute an indefinite integral and then apply the fundamental theorem to compute the definite
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integral in question, as clear from the following examples. Using certain indefinite integrals
obtained earlier, we evaluate their definite integrals.

Example (18): Jx sec’xdx = xtanx — log(sec x) + ¢

/4
J xsec? xdx = [x.tan x — log(sec X)}(T;M
0

= Etan% - log<secg>} — [0 — log(sec0)]

— 2 _logv2-0
4
—log 212 = Z—flog2 Ans.
2 x 2xa* 2a*
Example (19): szaxdx il S+ LS
loga  (loga)® (loga)

1

1
- x*a®  2xa® 2a*
x“a‘dx = — 5+ —=
0 loga (loga)” (loga) 0

a 2a 2a 2
—— >+ 5| — 3 Ans.
loga (loga)® (loga) (loga)
2
Example (20): [xsexdx — [e"(x® - 3 + 63 — 6)]
0

=[*8—-12+12-6)] — (-6)
=2¢2+6 Ans.

1
2

: 1
Example (21): Jx tan"'xdx = [x—tan X —= —|— tan’]x}

2 2 2 )
0
17 1 1= 1
—[ 32 51} {0 0*20}
T 1 -2
,4 57 ) Ans

Example (22): Jlog xdx = [x-log, x — x]°
1

= [elog, e —e] — [llog,1]
=—e]—-[0-1]=1 Ans.



7b Some Important Properties
of Definite Integrals

7b.1 INTRODUCTION

In Chapter 7a, we have learnt to evaluate definite integrals, by first computing their antider-
ivatives and then applying the second fundamental theorem of Calculus. Also, we have
discussed how this two-step procedure can be reduced to a one-step procedure, whenever
substitution is involved in the process of integration.

But, there are many definite integrals involving certain complicated functions (integrands)
whose antiderivatives cannot be obtained. In many such cases, it is possible to evaluate the
definite integrals by applying certain properties of definite integrals. They are very useful in
easily many integrals. Besides, they help us in evaluating (certain) definite integrals whose
antiderivatives cannot be evaluated."

We state and prove these special properties of definite integrals.

7b.2  SOME IMPORTANT PROPERTIES OF DEFINITE INTEGRALS

b

Py: th(x)dx = J f()de

a a

Py: be(x)dx =- rf(x)dx

a b

(In particular, J f(x)dx =0)

a

b

f(x)dx + J fx)dx

c

c

P;: be(x)dx = J

a a

7b-Methods for evaluating definite integrals (continued) (Some important properties of definite integrals and their
applications)

M This might seem a little strange, but it is true. The reason being, for certain functions, it is basically simpler to find the
difference between two particular values of the antiderivative ¢(x) [i.e., ¢(b)-¢(a)], than it is to find ¢(x) itself. Further
Calculus by F.L. Westwater (Teach Yourself Books) p. 104.

Introduction to Integral Calculus: Systematic Studies with Engineering Applications for Beginners, First Edition.
Ulrich L. Rohde, G. C. Jain, Ajay K. Poddar, and A. K. Ghosh.
© 2012 John Wiley & Sons, Inc. Published 2012 by John Wiley & Sons, Inc.
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b b
P3:Jf(x)dx: ‘ fla+b—x)dx

a

Py: Jaf(x)dx = rf(a — x)dx

0

[Note that (P,) is a particular case of (P3)]

2a a
Ps: J f(x)dx = J [f(x) +f(2a — x)]dx that is,

0 0

a

raf(x)dx = J:f(x)dx + J f(2a — x)dx

0 0

Pg: [Deductions from property (Ps)]
) If fQa—x)=f(x),

then, raf(x) = rf(x)dx + rf(x)dx = ZJ Sf(x)dx

@) If f(2a — x) = —=f (x),

then, raf(x)dx = rf(x)dx - J.af(x)dx =0

Pri| o= [ 1700 +(-ax

@) Ja f(x)dx = 2J f(x)dx, if f is an even function, that is, f(—x) =f(x).
—a 0

(ii) Ja f(x)dx = 0, if fis an odd function, that is, f(—x) = —f(x).

—a

7b.3 PROOF OF PROPERTY (P,)

Now, we shall discuss the proofs of the properties (Py) to (Py).

Proof of Property (Pg)
b b
Method (I): To prove [ f(x)dx = [ f(#)dt

Consider the left-hand side, | f(x)dx

Making the substitution, x = ¢, we get dx =dr.
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Also, for x=a, t=a, and for x=05b, t =b.
b
Jf(x)dx = Jf(t)dt (Proved)

Method (II):

Proof: Let Jf(x)dx = ¢(x) )

Again from (1), we have,

From (2) and (3), we get
b b

Jf(x)dx = Jf(t)dl (Proved)

a a

This property implies that the value of a definite integral does not depend on the variable of
integration as long as “the element of integration” is same.

Proof of Property (P,)

To provef:f(x)dx =- fff(x)dx

Proof: Let Jf(x)dx = ¢(x) 4)
b
|| iax = o = 0(6) - o1a) 5
b
Now, —J Feodx = ~[6(x)]e = ~[ @) — $(b)] = $(b) — ¥(a) (6)
From Equation (5) and Equation (6), we get .". f: f(x)dx = — [} f(x)dx (Proved)

Note (1): This property implies that if the limits of a definite integral are mutually interchanged,
then its sign changes. In practice, this property is used for absorbing the negative sign while
solving problems and establishing other results.
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Note (2): We know that, J'b f(x)dx is defined only when a <b. But, in practice, there are
occasions to consider fb f(x)dx when a > b. In such situations, we consider f x)dx to mean
— jb x)dx, where b is less than a. This permits us to evaluate the definite mtegral using the
fundamental theorem of Calculus.

Such situations may arise when we make substltu]tlons to compute j f(x)dx. Suppose,
we substitute x = ¢(7), the given mtegral becomes Lb ((b)) flo(0))e¢ (r)de.

Now, there is no guarantee that ¢~ '(a) < ¢~ (b). (Refer to Chapter 7a, for the method
of substitution in definite integrals.)

Proof of Property (P,)

b

To prove be(x)dx = J‘Af(x)dx + J Sf(x)dx

a a c

This property is known as Interval Additive Property.®

Proof: Let Jf(x)dx = ¢(x)

b
= ¢(b) — d(a) = [¢p(x)]; = J f(x)dx (Proved)

b

. be(x)dx = J.Cf(x)dx + J f(x)dx

a a c

Extension: J": F(x)dx = [{f(x)dx + f S(x)dx + fd x)dx, where f(x) is integrable on [a, b]
and a, b, ¢, d € [a, b].

Proof of Property (P3)

b b
To prove J fx)dx = J fla+b—x)dx

@ The property reads as follows: If fis integrable on an interval containing the three points a, b, and ¢, then J f(x)dx =
J¢£(x)dx + [ £(x)dx, no matter what the order of , b, and ¢. For example, |7 x2dx = fj x2dx + [} x2dx, which most
people readily believe. But, it is also true that '[“ X2dx = [O x2dx + .]"3 x2dx, which appears to be surprising. Note that, the
function x? is integrable on any closed interval [0, x]. One may actually evaluate the above integrals to check that the

equality holds. The reader will appreciate this property better after understanding the relation between a definite integral
and the area under a curve [y =f(x)], where f(x) is integrable on an interval containing the points a, b, and c.
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Proof: Consider right-hand side

b
Let] :J fla+b—x)dx
b

Puta+b—x=t .. —dx=dt .. dx=-—dt

Whenx =a,t=a+b—a=b, Whenx=bt=a+b—b=a

b
I= f(a—i—b—c)dx:J

a b

a i

F(0)(~dr) = —j Fod

b
b

= f(t)dz,[ rf(t)dt:—ﬁjf(t)dt}

a b
b

= uf(x)dx, { "jf(z)dt = ij(x)dx]
f(x)dx = rf(a +b—x)dx (Proved)

a

b

a

Proof of Property (P,)

To prove Jaf(x)dx = rf(a — x)dx

217

Observe that this property involves only the change of argument x into (¢ — x) and it does not
involve a change in the limits of integration. From this point of view, this property is really

an exceptional one. Let us prove Py.

Proof: Consider [ f(a — x)dx

Let a—x=1t .. —dx=dr . .dx=—dr
When x=0,t=a—-0=a

When x=a,t=a—a=0

[ v = [ rocan

0 a
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Remark: Note that, the property P, is a particular case of P; (i.e., property P3 is more general
than property P,). However, this observation does not help in any way in solving problems.
In fact, for solving problems, it is important to remember the following.

If both the limits are of the form a to b (i.e., 3 to 4 or 7/6 to 7/3, etc.), but different from the
limits of the form —a to a, then we must apply the property (P3). On the other hand, if the limits
are of the form 0 to a (i.e., 0 to /2 or 0 to 4, etc.), where the lower limit is always zero and the
upper limit is a positive number, then we must apply the property (P,4). (The definite integrals
involving limits of integration of the form —a to a are discussed under property P-.)

The following illustrative examples [(1)—(9)] will make the situation clear.

Illustrative Examples

4

V4 5
Example (1): Evaluate J Xt

VX+54+V9 - x

vV 5
Solution: Let [ = I ( Xt )

VX+5+v9—x

(4—x)+5
VE=—X)+54+/9-(4-x)

dx, jf(x)dx = Jf(a — x)dx
0

V9 —x
VI9—x++V5+x

V9 —x
O\/x+5+\/9—x

Adding Equation (7) and Equation (8), we get

ZI_JW+\/Tx
VX+5+V9—x

l-dx=[x]g=(4-0)=4

I
e 5 ©

5
Example (2): Evaluate J ad

——F——dx
4\/x—4—0—\/5—x
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5

5—x
Solution: Let [ = J—dx 9
4\/x—4—i-\/5—x ®)
; S5—(@+5-x)
I:J dx,

IVETS —x—d+5-@5-x)

x—4
= |[—————=dx
Jm+m

(10)

Adding Equation (9) and Equation (10), we get

_— J\/S—SH\/—
V5i—x+Vx—4

5
:J1~dx:[x}2:5—4:1
4

I=- Ans.
3 ns
4 \ z
VX +
Example (3): Evaluate J—dx
P J VAT eI —x
Solution:
4 . <
X+
Let 1= dx 11
i[\/x+6+f/11x (1)

b b
We know that [ f(x)dx = [ f(a+ b — x)dx
b b

Applying this property, we get

1] V(T4 -x)+6 "
LT3 =) + 64311 = (T4 - x)

4
[ v11 —x dx
JV1I1 —x+vVx+6

1

1
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Adding Equation (11) and Equation (12), we get

4 4
2] — J—ML fll—xdx7 J] dx
) V1L — x+vx+6
A=[x]}=4—-1=3 - 1=3/2  Ans.
I v/ 5
X+
Example (4): EvaluateJ =1 (say 13
e e dx =1 (say) (13)

Solution: We know that [ f(x)dx = [ f(a — x)dx
0 0

Applying this property, we get

4
[ o/ (4 — 5
I= J G-x+ dx
I/ (@ =) +5+79 - (4-x)
(14)
4
- J _Wex
) V9 —x+vV/x+5
Adding Equation (13) and Equation (14), we get
4
o= [VEEIHVE — X
! VO—x+Vx+5
4
A= [l-dx=[x]j=4-0=4 - I=2 Ans.
5
15 o
X
Example (5): Evaluate . S—
P ) V25 — x++/x
15 o5
VX
Solution: Let [ = Jidx 15
P V25 — x+yx (15)

® Look carefully at the integrand and also the limits of integration. Obviously, property (Ps) is applicable here. Observe
that the number 25 which appears in the denominator of the integrand, equals the sum of the limits of integration.
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15

. J VIO+ 15— x "
/25— (10415 =) +V/10+ 15 —x

15
B J VB —x
) x5~ x

Adding Equation (15) and Equation (16), we get

2 — J\/_+\/25—x
VX+V25 —x

15
= ledx—[ Al =15-10=5
10

5
I == Ans.
2 ns

/3
. 1 —
Example (6): Evaluate n/je Tsdx =1 (say)

Solution:
n/3 n/3
_ J dx — J /cos X _ veosx o
1+ ysin x V/cos x++/sin x

\;COS X

I= J dx
w%os<’;+rx>+w <§ )

/3 cos (n
- J
/6 \/ cos \/
/3
V/sin x
I= | 5/———=dx
) V/sin x++/cos x
n/6

221

(16)



222 SOME IMPORTANT PROPERTIES OF DEFINITE INTEGRALS

Adding Equation (17) and Equation (18), we get

v/cos x+\/ sin x
21 =
\/sm x—h/cosx
n/3
— |rax=(xRr=_2_° . ;,_T
= .[1 d)cf[x]ﬂ/éf3 e - 1I=p Ans.
n/6
K 32
Example (7): Evaluate [ x*(a — x)*/*dx
0
Solution: Let I = [ x*(a — x)*2dx®
0
1= (a—x)z[a—(a—x)}yzdx [f(x)dx: Jf(a—x)dx
0 0 0

a
= |(a—x)*x*?dx = [(a2 — 2ax 4 x?)x**dx
0

a

= (a2x3/2 2ax>? 4 x7/*)dx

.y X2 9214
:[ 5/2 B 7/2*%}0

2 2
[§a2 & a2+ 9a9/2} —0

2 4 2

= ga9/2 _ 7a9/2 +§a9/2
126 — 180 + 70 16

_ (126 180 +70) o/ _ 16 op

Ans.
315 315 ns

1
Example (8): Evaluate [x(1 — x)*/?dx®)
0

) Look carefully at the integrand and also the limits of integration. Obviously, the property (P,) has to be applied here.
) Look carefully at the integrand and also the limits of integration. As in the earlier example, the property (P,) has to be
applied here.
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i
Solution: Let 7 = [ x(1 — x)*?dx
0

1= J(l —x)*[1 = (1 = x)]%dx
0

If(x)dx = If(a — x)dx
0 0

= J(l —x)*x*2dx = J(l — 2ax 4 x?)x*dx
0 0
1

= J(xs/2 —2x7? 4 X°?)dx
0

[en e

772 792 11)2),

290 _4op 2 up 1 2 4.2
=5 -3 — =|z—st—|-0
{7x 9x +11x +

_ 198 —308 + 126 16

=— Ans
7x9x11 693
4
. X
Example (9): Evaluate JH ==
Td
X
Let 1= Ji
Ox+\/a2—x2
Let x=uasint . dx=uacostdt
Whenx =0,asint =0 s t=0
When x = a,asint =a soosint=1 coot=m/2
/2
I J acos tdt
J asint+ Va2 —a?sin’t
/2
t
= J 4L g [ 1 —sin® 1 = cos” ] (19)
asint+ acost

n/2

_ cos ¢ .
"~ ) sint+cost
0
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n/2
B cos(n/2 — t)
= J sin(x/2 — 1) + cos(r/2 = 1)
e (20)

_ sin ¢
B cost+sint
0

Adding Equation (19) and Equation (20), we get

n/2 /2
t in¢
2 = IMCM: Jl~dt:[t}3/2
Cos 't +sint
0 0
b
20=n/2-0=m/2 .. 1:1 Ans

Note that the properties P; and P, are very powerful, whenever they can be applied.

7b.3.1 Some More Definite Integrals Involving Complicated Integrands

Suppose it is convenient to evaluate the definite integral jé’f(x)dx, whereas we have to
evaluate fé’ xf(x)dx. Here, the presence of the factor x is undesirable. It is sometimes
possible to remove the factor x, if the condition f(x)=f(a—x) is satisfied. In particular,
if f(x) involves trigonometric functions and the limits of integration are 0 to =, then by

applying the property
| e = [ rta - xja,
0 0

we can remove the factor x, and evaluate the integral, as will be clear from the following
illustrative examples:©®

Ilustrative Examples

n

Example (10): Evaluate J%dx =1 (say) (21)
0

Solution: Here f(x) = sin x/(1 + cos?x) and the upper limit a= . Now,

sin(m — x) sin x

flm—x) rASY

:l—i—cosz(n—x):l—i-coszx_

© The definite integral Jg X cos’ xdx cannot be evaluated by this method since the condition f(x) = f(r-x) is not satisfied.

Accordingly, x cannot be removed. [Observe that f(r — x) = [cos(n — x)]° = (—cosx)® = —cos’x # cos?x].
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Note that cos?(m — x) = [cos(n — x)]* = (—cos x)? = cos? x

n

J(n — x)sin(m — x) I(n — x)sin x
[=|———M— ‘dx= | ——F—
1 + cos?(m — x) 1 + cos?x
0
a a (22)
s Jf(x)dx = Jf(a — x)dx
0 0
[ 7 sin x [ xsinx
I= [|[——F—dx— | ————dx
[ 1 + cos?x [ 1 + cos?x
0 0

n

Adding Equation (21) and Equation (22), t2] =1 | ———
ing Equation (21) and Equation (22), we ge i Jl o X
0

sin x

Put cos x=1¢, .. —sin xdx=dr . sin x dx=—d¢

When x=0, t=cos 0=1 and when x=m=, f=cos 1= —1
T 1

- -1
sin x —dt —drt dr
g | Y g | 2 _
nJl—I—costx 7TJl—i—tz njl—i—tz nJl—Q—ﬂ
0 1 1

= aftan'7]" | = #ftan"1 — tan~' (= 1)] = nE— (—E)] = n(ﬁ> -

IS}

1 =2 n?
1—57—? Ans.

Example (11): Evaluate dx

m
l‘ X

J 1+sin x
0

dx

We know how to integrate | 75—,

but we do not know how to evaluate the integral | e dx-

s

Solution: Let] = dx (23)

J‘ X
1+sin x
0

We note that sin (7—x) =sin x

I= IH(;-;IO;C)X)dx, Tf(x)dx = jf(a — x)dx

(24)

n n n

J n—.x dx = J n. dx — J x. dx
1 +sinx 1+ sinx 1 +sinx
0 0 0

1
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Adding Equation (23) and Equation (24), we get

T T
1 1
21:71J7.dx I:EJ%dx
1 +sinx 2)14sinx
0 0
Consider
1 1 l—sinx 1—sinx 1-sinx 2

= sec” X —sec x-tan x

l+sinx 14sinx 1—sinx 1—sin?x  cos?x

n

2 [tan x — sec x|,

kg

T

I= 5 J(sec X —sec x-tan x)dx =
0

N

T[

[STIERN N

l+1]=m=n Ans.

T
Example (12): Evaluate j X sin x cos2x dx
0

Solution: Let [ = Jx sin x cos?x dx
0

Observe that sin x cos>x = sin (m—x). [cos(n—x)]2 [i.e., f(x) =f(a—x)]

n a

Now, I= |(n— x)sin(n — x)-cos?*(x — x)dx | " Jf(x)dx = Jf(a — x)dx
0 0 0

s
I= |(n = x)sin(n — x) - cos?(n — x)dx = J(n — X)sin x - cos?xdx
0

¥
= |sin xcos?xdx — stin x - cosZxdx
0 0

Adding Equation (25) and Equation (26), we get

k]

21 = 7 |sin x - cos®xdx

0
n

I — cosx(—sin x)dx = —g
0

n
J — cos?x(—sin x)dx
0

Put cos x=1¢ .. —sin x dx=dr

{0—(-1)} —{0—1}], [tanm=0, secm=—1, tan0=0, secO=1]

(25)

(26)
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When x=0, f=cos 0=1
and when x ==, t=cos 1= —1

2
|
a[A1Y 2l (1)
23], 2|3 3
n 2 n
=222 Ans
2373 nS
Example (13): Evaluate ]Edexdx—l (say) (27)
P ) a? cos2x + b? sin? - Y

This problem is of the type j(;' x - f(x)dx, where f(x) does not change when x is replaced by

(a—x). Hence the factor x can be removed by using the property Io x)dx = fo — x)dx.
T T—X

I=| ———dx 28

Jo a® cos2x + b2 sin’x (28)

Adding Equation (27) and Equation (28), we get

n
J dx [x is removed]
052x + b2 sin’x

™

T

-3 J

2 )a? coszx + b2 sin®x
0

n/2
) dx
’ a2 @ cos?x + b2 sin’x
n/2
- J
a? coszx + b2 sin’x
0
Dividing N" and D" by cosx, we get
n/2

/ sec?xdx
=7 | ———— dx
a? + b? tanx

™ Recall that, Jzu f(x)dx =2 Jo x)dx if f(2a x) =f(x). Here, the upper limit 7 =2 X n/2 (=2a), and f(2a - x) =
cos’(n-x) + b? sin’(n-x) = a® cos>x + b sin x*f(‘c)
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Put tan x=1 .. sec’x dx =d¢

When x=0, t=tan 0=0, and when x=n/2, t=tan 7©/2 =00 (Thus, when x — /2,
t — Q)

n/2 00 )

) I*nJ sec”xdx 77{J dr 77[] dr
T @+ btan2x - J @+ T b2+ (a2/b?) + 2
0 0

0

nT E{ 1 tan”—t ro
o (a/b)* + 2 b* [(a/b) (a/b)]y
nfb > -1 -1
=1 {Etan - } = [tan'oo — tan™'0]
T [n

% |:§ i| Ans.

Exercise

Evaluate the following integrals:

(1) [ xlogsin xdx
0

Ans. 7I%log%

T
2) [x- cos?x dx
0

Ans.

s
4

(3) J”‘mec X tan Xsecxtan.x g,

2-+tan?x

Ans. —

iy

(4) J“ X sin x

I4-sin x

Ans. n(g — 1)

7b.4 PROOF OF PROPERTY (Ps)

Toproveff dx—ff dx+jzf (2a — x)dx

(Observe that the 11m1ts of i 1ntegrat10n on the left-hand side are O to 2a, whereas those on the
right-hand side are O to a.)



PROOF OF PROPERTY (Ps) 229

Proof:
2a a 2a
We have, Jf(x)dx = Jf(x)dx + Jf(x)dx (Using Py) (29)
0 0 a

2a a

[Now, we must show that, [ f(x)dx = [ f(2a — x)dx]
a 0

2a
Put x = (2a—1), in the integral | f(x)dx [Imp. Substitution]
t =2a— x, anddt = —dx

when x =a, t =a, and when x =2a, t=0.
2a 0

. J Fodx = [£2a— 0)(—dr) = — J 72— 1)t

= |f(2a —t)dt (using Py)

= |f(2a—x)dx  (using Py)
0

.. Substituting in Equation (29), we get,
a

J f(x)dx = If(x)dx + Jf(Za —x)dx (Proved)
0

0 0

Property (Ps) is particularly important in evaluating definite integrals of the form
Jo sin"xdx, [; cos"xdx, and [ cos™x-sin"xdx, where m, n€N. In Section 7b.3.1, we
have already evaluated some definite integrals of the form fg xf(x)dx, by removing the
undesirable factor x.

[Note that, in all these integrals, the lower limit is O and the upper limit is 7, which is looked
upon as 2 - (n/2)].

Observe that, under the property Ps, the given integral fg f(x)dxisexpressed as a sum of two
integrals in which the upper limit 2 - (7/2) is halved to (7/2). Besides, there is a change in the
argument of one integral from x to (m—x). The integrals on the right-hand side of the property
(Ps) suggest two deductions from this property. These deductions are taken as the statement of
property (Ps).

7b.4.1 Property (Ps) [Deductions from the Property (Ps)]

From the property (Ps) [i.e., fozaf(x)dx = [y f(x)dx + [§ f(2a — x)dx], we note that
If f2a—x)=f(x), then
2a

flx)dx = 2jf(x>dx (m

=
Ra¥
o
=
Il
O ——
=
a3
[=N
=
+
O ——
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If f2a—x) = —f(x), then

‘ f(x)dx = i Sf(x)dx — ‘f(x)dx =0 (1)
0

0
Note: Let us examine, how the statements (I) and (II) are useful.

We know that, sin(r—x) = sin x. .".sin"(r—x) = sin"x
Thus, the condition f(2a—x) =f(x) is satisfied.

/2

T
Jsin”xdx =2 J sin"xdx (A)
0 0
Further, we know that, cos(n—x) = —cos x. Therefore, if the power of cos x is even, then we
have,
cos? (1 — x) = (—cos x)*" = cos?'x,

which means that the condition f(2a—x) =f(x) is satisfied.
s /2
Jcosznxdx =2 J cos?xdx (B)
0

On the other hand, if the power of cos x is odd, we have,
[cosz”+1 (m — x) = (—cos x)"! = —cosz”“x}
which means that, the condition [ f(2a—x) = —f(x)] is satisfied.

Jcos”’“ (r—x)dx=0 (0
0

The statements (I) and (II) (defining property Pg), can also be applied to evaluate integrals of the
form

s
Jcosmx -sin"xdx, [m,n € N]
0

s
If the power of cos x is an odd number, then we can immediately write [ cos”x - sin”xdx = 0,
irrespective of whether power of sin x, is odd or even. 0
This is simple. On the other hand, if the power of cos x is an even number, then we
have

n /2
Jcosz"’x -sin"xdx = 2 J cos?x -sin"xdx, [m, n € N|

0
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Thus, our problem is reduced to evaluating integrals of the form.
n/2 n/2 n/2
J cos?xdx, J sin”xdx, J cos?x -sin"xdx, [m,n € N].
0 0 0

Of course, these integrals can be evaluated by using the reduction formulae, which are
obtained by applying the method of integration by parts. Here, we shall not discuss the
methods involving reduction formulae. On the other hand, we shall be interested to check
whether the given integral can be evaluated by the method of substitution. Let us consider the
following examples:

Example (14): To evaluate fg /2 sin’x dx (note that the power of sin x is odd).

/2 /2
Solution: Let/ = sin’x dx = J sin*x - sin x dx
0 0

/2

= (sin?x)? - sin x dx

0

/2

= (1 — cos?x)” - sin x dx
0

Now we make the substitution, cos x =t

—sinxdx = dz
sin x dx = —dt

whenx =0, £ =cos0 = 1and whenx = /2, t = cos(n/2) =0

/2
1 :J (1 — cosx)? - sin x dx
0

Similarly, we can compute j(;[ /2 cos”x dx (the power of cos x being odd) by substitution.
fg /2 §inx - cos x dx can also be computed by substitution.

Of course, to compute integrals of the type given below, it will be convenient to use the
reduction formulae.
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n/2 n/2 n/2
f sin'%x dx, j cos®x dx, j sin?x - cos*x dx. (These integrals cannot be evaluated by
0 0 0

substitution.)

/2 /2
Note that, f sin®x - cosSx dx, f sin’x - cos®x dx and other similar integrals can be
0 0

evaluated by substitution.

7b.5 DEFINITE INTEGRALS: TYPES OF FUNCTIONS

The next property of definite integrals is restricted to the types of functions called even and odd
functions. Hence, before stating this property, it is necessary to understand clearly the even and
odd functions.

This terminology is based on certain properties of even and odd integers, but even and odd
functions do not have many properties of even and odd integers. For instance, whereas every
integer is either even or odd, this is not true in the case of functions.

From the definitions of even and odd functions (being given below), it will also be observed
that we can define certain functions that are neither even nor odd.

7b.5.1 Even Function

A function f(x) defined on an interval I is called an even function if f(—x) =f(x) for all x € L.

Examples:

(1) Any polynomial function p(x) =agy + a, x>+ a, X+ . +a n x> in which there
are only even powers of x, is an even function.
(2) A constant function f(x) =a, is an even function. Check this.

(3) We have seen that cos(—x)=cos x, for all x. Thus cosine function is an even
function.

7b.5.2 (Odd Function

A function f(x) defined on an interval I is called an odd function if f(—x) = —f (x) for all x € I.

Examples:

(1) Any polynomial function in which there are only odd powers of x is an odd function.
Thus, f(x) =x, f(x)=x" and f(x) = x> + 4x> + x, are odd functions.

(2) We have seen that sin(—x) = —sin x, and tan(—x) = —tan x, for a/l x. Thus, sine and
tangent functions are odd functions.

Remark (1): Some functions may be neither even nor odd. For example, sum or difference of
one odd and one even function is neither even nor odd.

Consider f(x)=x"+x
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Also, we havef(—x) = (—x)* + (—x) = x> — x.
Note that, f(—x) #f(x), hence f(x) is not even. Also, f(—x) # —f(x), hence f(x) is not
odd. Similarly, g(x)=sin x + cos x, and /(x) =x? + sin x, are neither even nor odd.

Remark (2): By definition, the sign of an odd function changes when the sign of its argument
is changed.

The following are a few rules, which decide whether a combination of even and odd functions
will be even, odd or neither even nor odd.

(i) (Even function) & (Even function) = Even function

(i) (Even function) x (Even function) = Even function

;) Even function
(111) Even function

(iv) (Odd function) 4= (Odd function) = Odd function

(v) (Odd function) x (Odd function) = Even function

+\ Odd function
(V) Bad function

(vii) (Even function) x (Odd function) = Odd function

Even function __ :
"Odd function — Odd function
(viii)

= Even function
= Even function

Odd function __ ;
Even function 0Odd function

(ix) (Even function) & (Odd function) = Neither even nor odd function

Remark: Observe that in the rules (i) to (viii), an odd function behaves like a negative
number. This observation is useful in deciding whether a given function is even or odd. If
we simply remember that for an odd function f(—x) = —f(x), then it is easy to remember all
these rules.

It is easy to prove the above rules. For example, let us prove (i).
Let h(x) = £(x) £ g(x)

where f(x) and g(x) both are even functions.

Consider h(—x) = f(—x) £ g(—x)
(

= f(x) £ g(x), by definition of an even function

I
=

(x)
h(—x) = h(x)

Therefore, /(x) is an even function. The rest of the rules can also be proved similarly. In solving
problems, the above rules may be directly used.
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We now prove the next property of definite integrals.

a

Property P;: J f(x)dx = J[f(x) +f(—x)]dx = Jf(x)dx + Jf(—x)dx
—a 0 0

0

a 0 a
Proof: We have J f(x)dx = J f(x)dx + Jf(x)dx ...[ByP2]
—a 0

—a
0
Let/= [ f(x)dx
—a
0 a
[We will show that [ f(x)dx = [ f(—x)dx.]
—a 0
Put x=—¢ . dx=-dr
When x=—a, —t=—a ..t=a

and when x=0, —t=0 . =0

— |f(=ndar, By using P

T f(x)dx = If(x)dx + If(x)dx
“a 0 0

[f(x) 4+ f(—x)]dx (Proved)

Le—>s
~
=

=
Na¥
=%
=
Il
O

Deductions

(i) Let f(x) be an even function.

(31
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*. Substituting in Equation (31), we get

Il
o
(=
~
=
=
Na¥
=%
=
-
=X
~
=
=
Na¥
—.
w
s
<
a
=

(ii) Let f(x) be odd

a a
Jf(x)dx = J —f(x)dx + Jf(x)dx
—a 0 0

0, iff(x)is odd.
Note (1): It is important to remember the statements of properties Pg and P, and the limits of
integration involved.

If the limits of integration are of the form —atoa [i.e.,(—nto m) or (—n/2to w/2) or (—5t05),
etc.], then we have to use property P for evaluation of the integral, but if the limits of integration
are of the form (0 to @) or (0 to 7) [i.e., (@ to b)], then we must use a suitable property which may
be P3, P4, Ps, or Pg.

Note (2): We emphasize that for deciding whether a given function is even or odd, it is sufficient
to use the rules stated above. (In other words, it is not necessary to go step-by-step to find out
whether the given function is even or odd.)

If the given function is odd, then its definite integral (from —a to a) is zero, by the above
property. On the other hand, if the given function f(x) is even, then we have J"f J(x)dx =
2 fg f(x)dx, which can be evaluated by applying the available methods and the properties of
definite integrals.

Hlustrative Examples

Example (15): Evaluate | cos(¥)dx =/ (say)

—T
Solution: We know that cos(—?) =cos ¢

f(x) =cos (g) is an even function.

1= ]E cos (g) dx =2 Icos <§) dx, [Property (8)]
“n 0
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Now, put x/4=1¢ .. dx=4dt
Also, for x=0, t=0 and for x=mr, t =n/4

/4 /4
I1=2 Jcos t(4-dr) =8 Jcostdt
0
—8sindy/* =8 {g - o} =4v2 Ans.

3
Example (16): Evaluate | fjﬁ; dx
3

Solution: Here the integrand f(x) = ;;*f; Now, the N (i.e., x> + 5x) is an odd function and

the D* (i.e., 2x% + 7) is an even function. .-, f(x) is an odd function.
3

X3+ 5x
——dx = Ans.
J W7 x=0 ns
53
/2
Example (17): Evaluate [ sin’ xdx
—n/2
Solution: Here f(x) = sin’x = (sin x)°
f(=x) = [sin(—=x)]> = [~sinx]’ = —sin’x = —f(x)
f(x) is an odd function.
n/2
J si®xdx =0 Ans.
—n/2

2
Example (18): Evaluate [ [xsin*x + x* — x*]dx
2

Solution: Here, the first two terms are odd functions and the last term is an even. Thus, we may
write the integral as
2 2
J (xsin*x + x*)dx — Jx“dx
0

-2

2 2
, 2 64
:0—2}x4dx:[—2—] _2m_0) == Ans,
y 5 5
0

/2 )
Example (19): Evaluate [ —30° _dx =] (say)
—n/2

sin® x+cos?x
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Here, the integrand f(x) = ooy 1 an even function (since the N =sinx is even and the

D' =sin*x + cos*x is an even function).

/2 4 n/2 4
sin*x sin®x
I= —————dx= | —/——dx 32
J sin*x + cos*x J sin*x + cos*x (32)

—n/2

i in((/2) — i i

sin*((m/2) — x
1=2 dx, x)dx = a—x)dx

J sin*((1/2) — x) + cos*((n/2) — x) Jf( ) Jf( )

0 0 0

/2

=2 j cos'x 4y (33)
N cos*x + sin*x
0
Adding Equation (32) and Equation (33), we get
/2 n/2
sin*x cos*x
2=2 | ———dx —
sin*x + cos*x sin*x + cos*x

0

/2 /2

-4 4

- J SN XFCOS X v =2 J dx
sin*x + cos*x

)

:2[x}g/2 :2<g—0> =7

1= z Ans.
2

Exercise

Evaluate the following integrals:

(1) ] e

2 2 —
1+x3 1 3
{Hint: ) i— ; =i e + ) f 2 (odd function)
n/4
@ | tan%xsec x dx
—n/4

Ans. 0
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Miscellaneous Solved Examples: An Important Definite Integral

Example (20): Prove that

/2
(i) [ log,(sinx)dx — Z.log2 =% -log, (%)
0

n/2 n/2

() [ log,(sinx)dx = [ log,(cosx)dx
0 0

n/2
Solution: Let/ = [ log,(sinx)dx (34)
0

n/2

1= J log, <sin (g — x))dx, sin ce Tf(x)dx = ff(a — x)dx
0

0
n/2

= J log,(cosx)dx (35)
0

[Thus, the result (ii) is proved.]

n/2
To evaluate, f log, (sin x)dx, we add Equation (34) and Equation (35) and get
0

n/2 n/2
2 = J log, (sin x)dx + J log,(cos x)dx
0 0
n(Z n42
= | [log,(sin x) + log,(cos x)]dx = J log,(sin x - cos x)dx
0 0
/2 n/2
in2 1
= | log, (sz x) dx = J [log,(sin 2x) — log,2]dx " osinx - cosx = Esin 2x
0 0
/2 /2
= | log,(sin2 x)dx — log, 2 [ dx
0 0
n/2
= | log,(sin2 x)dx — log, 2[x}8/2

0

/2

21 = J log, (sin 2x)dx —g -log,2 (36)
0
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/2
[Now we will show that | log,(sin 2x)dx = I.]
0

n/2
Consider | log,(sin 2x)dx
0
Put2x=¢ . 2dx=dr .. dx=1ds

Limits, when x=0, r=0

and when x=73 t:2(§) =7

n/2

J log,(sin 2x)dx = Jloge(sin hE %
0 0

1 n
== Jlogg(sin 1)dt
2
0
/2 2a a
-2 J llog, (sin 7) + log,sin(x — £)]dr |- j Flx)dx = J[ F(x) +F(2a — x))dx
0 0 0
n/2
== J 2log,(sin#)dt [ sin(m — t) = sin ]
0
n/2
= J log, (sin ¢)dt
0
/2 b b
= J log, (sin x)dx, Jf(t)dt = Jf(x)dx
0 a a
=1
Therefore, from Equation (36), we get
21:17310&,2 o= fglogPZ
/2

" J log,(sin 7)dt = —glog‘, Ans.
0
n/2

Cor. J log, cos xdx = —n/2log,2
0

Remark: It is important to note that [ & log,(sin x)dx = [ & log,(sin 2x)dx.
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/2
Example (21): Prove that J log,(tan x)dx = 0
0

/2
Solution: Let / = [ log,(tan x)dx
0

/2 n/2
1= J log, [tan(% - x>]dx = J log,(cot x)dx
0 0

Adding Equation (37) and Equation (38), we get

log,(tan x - cot x)dx

n/2

(‘)

n/2 n/2
Jlog‘,(l)dx: J0~dx [ log,1=0]
0 0

=0 Ans.

n/4
Example (22): Evaluate [ log,(1 + tanx)dx
0

n/4
Solution: Let /= [ log,(1 + tanx)dx
0
n/4
Also I = J log,[1 + tan((m/4) — x)]dx

0
n/4

tan(n/4) — tan x
= |log, |1 4 — T~ 27X
J Oge[ R + tan(w/4) - tan x} dx
0
/4 n/4

1+ tanx
0

- loge[lﬁ‘ﬂ] [ tan(n/4) = 1] = Jlog,_,(
0

37)®

(38)

2
i)dx
1 + tan x

® Here, the lower limit is “0” and the upper limit is a positive number. Hence, the property Py [i.e., J'(;/f(x)dx =

o f(a — x)dx] is applicable.
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n/4
1= J [log,2 — log, (1 + tanx)]dx
0
/4 /4
= log,2 J dx — J log, (1 + tan x)dx
0 0

I=log2[x]i/* —1 - 2I=log2 E - 0] - g “log,2
Y
I= glogL,Z Ans.

1
. log, (1+x
Example (23): Evaluate J%dx

1

PO _ log.(1+x)
Solution: Let [ = g%dx

Put x=tan¢ .. dx=sec’tds . t=tan 'x

When x=0, r=tan ' 0=0and when x=1, r=tan" ! 1 =7/4

/4 )
. J log, (1 + tan?) - sec*rdt
1+ tan? ¢
0
/4

I= J log,(1 + tant)dz, [ 1+ tan’t = sec’(]
0

1= glogel [As already proved in Example (22)] Ans.

n/2
Example (24): Evaluate [ sin’x-dx
—n/2

Solution: Let f(x)=sin’x
Consider f(—x) = [sin(—x)]"x = —sin"x = —f(x)

Thus, fis an odd function.
/2
sin’x-dx =0

/2

241

Note: Whenever the limits of integration are of the form —a to a [i.e., (—% to %) or (—3to 3),
etc.] then we must always check whether the integrand is an even or odd function, and proceed

further.
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Example (25): Prove that J ﬁdr =a

2a
- _ f(x)
Solution: Let / = Jf(x) T Fa=) dx (39)

= f(za_X) "a . —u a — .
a lf(Za—x) +TRa— a—] { Jf(X) dx = Jf( x) dx}

B f(2a —x) .
I_lf@a—X)+fUﬂd 40)

Adding Equation (39) and Equation (40), we get

2a 2a

= [xJg" = 2a

I =a (Proved)

Example (26): Prove that [ Hialb) dx = b4

Solution: Let/ = Jf(x) —0—]{((;1 b= dx (41)

flat+b—x)

f(a+b—x)+f[(a+b)—(a+b_x)]dx by P3]

fla+b—x)

fatb—n /@ (“42)

N S N S

Adding Equation (41) and Equation (42), we get

(@ farb-x)
ZI_Jf(x)—kf(a—i-b—x)dx_l i

21:[x]Z=bfa

—a
2

o= b Ans.
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2
Example (27): Evaluate [ |x* — x|dx
-1

Solution: Here the limits of integration are —1 to 2. By the definition of the absolute value of
a number, we know that:

3 3
whenever x> — x>0, Ix® — xI = x> — x, and whenever x> — x <0, Ix*> — xI= —(x3 —X)=
3
x—x".

To find the zeros of the function Ix®> — xI, we solve the following equation

X —x=0

x(x*-1)=0=x=0, x ==+1

Thus, the function (x> — x) has three zero, namely —1, 0, and 1. It follows that, the sign of this
function must change in the intervals [—1, 0], [0, 1], and [1, 2]. Let us check how the sign
changes.

() In[—1,0], X —x=x(x>— 1) =(—ve) (—ve) >0

() In [0, 1], X* = x=x(x*>— D =(+ve) (—ve) <0
(iii) In [1, 2], x> = x=x(x*> = )= (+ve) (+ve) >0

2
Now, J I} — x

—1

0 1 2
dx = J|X3 — x|dx + J\x3 — x|dx + J\x3 — x|dx
1

-1 0
0 1 2

_ 3 3 3

= Jx —xdx—i—Jx—xdx—FJx — xdx
21 0

I
| — |
INEN
|
0| %,
—_
| =
J’_
| — |
NI
|
NN
—_
pr———
| — |
INNR-%
|
0| %,
—_

_ 1+1+1 1_’_2 1+173 3+2
4 2 2 4 4 2 2 4
6-3+8 11

7 =7 Ans

Example (28): Prove that
1
(i) [sin'xdx=2-1
0
1
(i) [cosT!xdx =1
0

1
(i) [tan~'xdx =% —1log,2
0
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f |
3 in_ — T
(i) To prove 6[sm xdx=%-1

1
Let /= [sin~'xdx
0

Put x=sin¢ .. t=sin"'x

= dx = cost dt

When x=0, sin f=0=7=0 and when x=1, sin t=1= =73,
n/2 /2
1= J sin”!(sin 7) = cos tdt = J tcostdt
0
Integrating by parts, we get

n/2

1= [lsint]gﬁf Jl-sintdl

0

= E ~sing— 0] — [—cos 7/
=[E. 72 T oo ="C
= [2 1} + [cos 7], 5+ 0-1] 3 1 (Proved)

Similarly, Examples (ii) and (iii) can be solved.
3
Example (29): Evaluate [ |x|dx
-3
3
Solution: Let /= [ |x|dx
-3

By definition of the absolute value, we know that

For x>0, Ix|=x, and for x <0, Ixl=—x

(This suggests that we must break the interval of integration from —3 to 0 and from O to 3.)
0 3 b ¢ b

Thus,7 = | |x|dx + J|x|dx Jf(x)dx + Jf(x)dx + Jf(x)dx

3 0 a b c

0

3 3
= | (=x)dx + dex: - jxdx—l— dex
0 0

I
—
| %,
—_

&
J’_
L — |
TR
| S
(=] w

Il
| — |

T

W
(S

|
=

(3)° — o}
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Remark: Let f(x)=Ixl|. By definition of IxI, we have,
for x >0, Ixl=x, and for x <0, Ixl=—x=—(—x)=x
Thus, f(x) =Ixl is an even function.

3 3
J |x|dx =2 Jx dx [By Property (P7)]
3 0

3
X2’ (3)? 9
0

T
Example (30): Prove that [ |cos x|dx =2
0
n
Solution: Let /= [|cos x|dx = 2
0

Note: We know that —1 <cos x <1

By definition of absolute value, we have,

Icos xI=cos x, if cos x >0 and Icos x| = —cos X, if cos x < 0. Also, we know that

e cos x >0, when x varies from 0 to 7.

e cos x <0, when x varies from 5 to .

(This suggests the way we should break the interval of integration.)

dx

/2 n
A= J |cos x|dx + J |cos x
0 /2

s

s

n/2 n
= J cos xdx + J (—cos x)dx
0 /2

[sin x]g/z — [sinx]7

[ sne] - e
= |sin 5 —sin sinz — sin
=(1-0—-(0—-1)=1+1=2 Ans.

Miscellaneous Exercise

/2 )
(1) J" xsinx_ gy

X3tsin’x

—T
Ans. 0

/2
(2) Show that [ (xcotx)dx =Zlog,2
0

245
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/2
(3) [ log,(secx)dx
0
Ans. (n/2)log2
n
4 [log,(1 + cosx)dx
0

Ans. —mlog?2

n/2 n/2

(5) Show that [ f(sinx)dx= [ f(cosx)dx
0 0
n/2

(6) Show that [ log,(tanx)dx =0
0
n/2

(7) Show that [ log,(cotx)dx =0
0

|
(8) Show that [cos™!xdx =1
0

I
(9) Show that [tan~'xdx =% —1llog,2
0

n/2
(10) Show that 6{ =12
/4
(11) Show that j/ sin®xdx =% —1
—n/4
3/2

(12) Show that | |xsin(mx)|dx =2 +
-1

K

Note: So far, we have defined Lb f(x)dx only for f continuous on [a, b]. It follows from the
maximum—minimum theorem that such a function is bounded on [a, b], in the sense that for
some number M, |f (x)l <M for all x in [a, b].

More generally, if I is any interval (finite or infinite), then we say that fis bounded on I, if
there is a constant M such that |f(x)| <M for all x in 1.

A function which is not bounded on a given interval “I”, inside its domain is said to be
unbounded on I.

We can extend the definition of definite integrals to include integrals of the form

j’° f(x)dx f F(x)dx - JOO F(x)dx®

©) We encounter such integrals while computing the potential of gravitational or electrostatic forces.
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Such integrals (with infinite limits) are called improper integrals. By solving such integrals, we
answer two questions:

(i) The geometric question: Whether an area can be defined for the region under the graph
of a non-negative function which is unbounded on a bounded interval?

(i1)) Whether it is possible to define the area of a region under the graph of a non-negative
function on an unbounded interval?

The answer to (i) above is “NO”, whereas the answer to (ii) is “YES”. For necessary details,
the reader may go thorough the detailed topic on improper integrals.



83 Applying the Definite Integral
to Compute the Area of
a Plane Figure

8a.1 INTRODUCTION

In elementary geometry, we have learnt to calculate areas of various geometrical figures
like rectangles, triangles, trapezia, and so on. These figures are enclosed by straight lines.
The formulae for calculating the areas of these figures are fundamental in the applications of
mathematics to many real life problems. However, these formulae are inadequate for
calculating the areas enclosed by curves.”

In Chapter 5, we have discussed the concept of area of a plane region and introduced
a procedure to find the area bounded by the curve y = f(x), the ordinates x = a, x = b, and the
x-axis. There, we obtained the formula for the area in question and denoted it by

b b
A= J Ff(x)dx = [¢(x)], = ¢(b) — ¢(a), where Jf(x)dx = ¢(x)

a

8a.1.1 Some Applications of Integral Calculus

Many applications of integral Calculus involve measuring something, like
e the area of a plane region,
e the volume of a solid object,
* the net distance a moving object travels over an interval,
o the work done against gravity in raising a satellite into orbit,
e the length of a curve from one point to another, and so on.

Note: In a few simple cases, for example,
e measuring the area of a rectangular region,
o the length of a straight line segment, or
« the distance covered by an object moving at a constant speed, and so on,

Applications of the definite integral 8a-Applying the definite integral to find the area bounded by simple curves. Steps for
constructing a rough sketch of the graph of a function to identify the region in question for computing its area.

@ In elementary geometry, the formula for calculating the area of a circle is denoted by the formula A = nr?, where “r” is
the radius of the circle and = stands for the real number, represented by the ratio of circumference to the diameter of the
circle. The approximate value of 7 is 3.14. In this chapter, we shall obtain this value with precision using definite integrals.

Introduction to Integral Calculus: Systematic Studies with Engineering Applications for Beginners, First Edition.
Ulrich L. Rohde, G. C. Jain, Ajay K. Poddar, and A. K. Ghosh.
© 2012 John Wiley & Sons, Inc. Published 2012 by John Wiley & Sons, Inc.
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The quantities in question can be found by common sense alone, and no big machinery from
Calculus is needed.

However, we know that, in practice, most regions are not rectangular, most curves are not
straight, and most speeds are not constant. In these more common and more interesting
situations, Calculus tools, in particular—the definite integral, are indispensable.

8a.1.2 To Get a Better Grip of the Subject, We Make the Following Simplifying
Assumptions, and Revise Certain Technical Facts Related to Definite Integrals

8a.1.2.1 Assuming Good Behavior Throughout this section, we assume that all the

integrals f: f(x)dx, that we meet, make good mathematical sense. To guarantee this, it is
enough fo assume that every integrand “f(x)” is continuous on [a, b], as we do from now on.

(In fact, discontinuous integrands do sometimes arise in practical applications. Even in such
cases, the basic ideas of this section often apply, although perhaps in slightly different forms.)

8a.1.2.2 Definite Integrals and Area: Revision It is assumed that the reader has understood
the concept of the definite integral geometrically in terms of area as discussed in Chapter 5.
Thus, for any continuous function “f(x)” on [a, b],

b
J f(x)dx = Signed area bounded by f-graph fora < x < b
a

In this connection, it must be remembered, that any area below the x-axis counts as negative
whereas that above the x-axis counts as positive. To keep a track of positive and negative areas
demands a little care, but the basic link between (definite) integrals and areas (as discussed in
Chapter 5) is known to us and that they represent real numbers. The following easy example will
make the issue clear to mind.

Example (1): Consider the following two integrals.®

) Il:J sinxdx =2
0
and
2n
(1) L= J sinxdx =0
0
Solution:  (I) /; = [ sin x dx = [—cos x|g
= —[cos x|y = —[cosm —cos 0] = —[(—1) — (1)] = —[-2] =2
() I, = fozn sin x dx = [—cos x]g" = —[cos x]"

=—[cos2n —cos0] = —[1—1] =0

The graph of sin x (Figure 8a.1) shows that on [0, 7], sin x > 0. Thus, /; measures ordinary area:
2 square units under one arch of the sine curve. The value of I, means that the “net”, or “signed
area” on the interval [0, 27] is zero.

@ As stated at the end of Chapter 5, we use the term integral to stand for both the definite integral and an indefinite integral.
In fact, the context makes the meaning clear.
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FIGURE 8a.1

(This makes good geometric sense: sin x < 0 on the interval [, 2] and the symmetry of the
graph guarantees that area above and below the x-axis exactly cancel each other out.)

8a.1.2.3 Interpretation of Definite Integral in a Broader Sense [Not Just as Area] Every
definite integral j: f(x)dx can be interpreted as a signed area. In fact, definite integrals can be
used to measure (or model) many quantities, other than areas.

Volume, arc length, distance, work, mass, fluid pressure, and so on, can all be calculated as
definite integrals. Choosing the right integral and interpreting the result appropriately depends
on the problem at hand.

Remark: If definite integrals measured only areas, they would not deserve the fuss we make
over them and the amount of attention we pay to study and interpret them.

Two Views of Definite Integrals
As mentioned above, definite integrals can be used to measure many disparate quantities.
Usually, the key considerations are

¢ which function to integrate, and

e over what interval.

In applying the (definite) integral in varied settings, it is useful to remember two interpretations
of the definite integral Jf f(x)dx, both being different but closely related as discussed below.

(1) A Limit of Approximating Sums: The integral is defined formally as a limit of
approximating sums. In Chapter 5, we have discussed and compared several kinds
of approximating sums (by choosing each subinterval Ax; of equal length, and the
points X, Xz, ...,X,, at the left-hand and the right-hand end points). Recall that by
using the right sums, we can write

b n

L fx)dx = lim ; flxi)-Ax
where the inputs x; are the right end points of n equal-length subintervals of [a, b]. From
this point of view, the (definite) integral “adds up” small contributions, each of the form
S(x)AX.

(ii) Accumulated Change in an Antiderivative: The second fundamental theorem of
Calculus states that

b
j F)dx = B = 6(b) — 6(a)
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where the function ¢ (on the right-hand side) can be any antiderivative of “f(x)” on [a,
b). The difference, ¢(b) — ¢(a), represents, in a natural way, the accumulated change
(or net change) in ¢ over the interval [a, b]. Thus, to find the accumulated change in ¢
over [a, b], we integrate the rate function “f(x)”.(3)

Mathematically speaking, these two approaches to the integral [at (i) and (ii) above] are
equivalent, as the second fundamental theorem of Calculus states. It guarantees that both
the methods give the same answer. Having two different ways to think about the (definite)
integral makes it more versatile in applications. Which viewpoint is better depends on
the situation.””

8a.2 COMPUTING THE AREA OF A PLANE REGION

Recall that in Chapter 5 we have discussed how to find the area of a right angled triangle
formed by the lines: y = f(x) = 2x, the x-axis and the ordinate x = 1. Even though the area of
any such triangle can be easily found using geometry and algebra, we introduced Archimedes’
method of exhaustion for computing the area in question as the /imit of a sum of areas of
rectangles. We have seen that this method applies to more complex regions, and leads to the
definition of the definite integral j: f(x)dx. We also observed that the computation of definite
integrals is very much simplified with the application of the second fundamental theorem of
Calculus. We are now in a position to give an easy, convenient, and intuitive method of
computing area(s) bounded by the curve y = f(x), the x-axis and the ordinates x =« and x = b,
where f(x) > 0.

We may consider the area under the curve y = f(x), as composed of large number of very thin
vertical strips (each of which is a curvilinear trapezoid) (see Figure 8a.2a).

8a.2.1 Area of an Elementary Strip

Consider an arbitrary strip of height y and width dx. Then (approximately), the area of the
elementary strip denoted by dA is given by

dA =~ ydx = f(x)dx [ y=f(x)]

This area is called the elementary area, located at an arbitrary position within the region from
x=atox=h.

We can think of the total area A of the region as the result of adding up the elementary areas
of thin strips across the region in question.

Symbolically, we express

b

b b
A:JdA:Jydx:Jf(x)dx (1)

a

® We know that to integrate the function “f(x)”, means to find a function ¢(x), which should satisfy the equation ¢’ (x) =
f(x). Recall that, we have studied various methods in Chapters 1, 2, 3a, 3b, 4a, and 4b, for finding an antiderivative ¢(x) of
the integrand f(x).

) When an integral presents itself in simple symbolic form, antidifferentiation is the obvious next step. But, for the data
given graphically (or in tabular form), using approximating sums is a natural strategy. Here, we shall consider only the
cases where antidifferentiation is sufficient for the purpose.
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FIGURE 8a.2

Thus, a definite integral can be regarded as a sum, or, more correctly the limit of a sum of the
areas of an infinite number of rectangles, one side of each of which (dx in the above) is
infinitesimally small.>

At this stage, it is useful to clarify the meaning of the term “infinitesimally small”.

8a.2.1.1 The Concept of Infinitesimal(s) Infinitesimals are functions that approach zero, as
the argument (say “x”) varies in a certain manner.

Definition: A function a(x) tending to zero,as x — a(orasx — oo)is called an infinitesimal

as x — a.(())

) Now, the use of the term “integral” will be clear. The word “integrate” means “to give the total sum”. The first letter of
the word sum appears in the symbol [, which is the old fashioned elongated “s”. It is also evident why the infinitesimal,
dx, must necessarily appear as a factor in an integral (see Chapter 1, Section 1.2).

© From the definition of a limit, it follows that (if lim, _, , a(x) = 0, then) for any preassigned, arbitrarily small positive
(number) &, there will be positive (number) 8, such that for all x satisfying the condition Ix —al <8, the condition
la(x)l < &, will be satisfied.
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Examples of infinitesimal(s)

i) y=x? for x — 0,
(i) y=x—1 forx—1,
(iii) yzi for x — oo,
(iv) y=2" for x — — oo, and so on.

Note (1): We know that the limit of a constant is equal to that constant. Accordingly, the
number zero is the only constant (number) that can be interpreted as an infinitesimal. [We call it
the “constant function zero” expressed by fix)=0.]

Remark: A concrete nonzero constant number, however small, must not be confused with an
infinitesimal.

Note (2): Every infinitesimal (say, for x — a) is bounded as x — a.

Note (3): Infinitely large magnitudes and infinitesimals play a very important role in
mathematical analysis. The functions that can assume infinitely large values have no limits,
while infinitesimals have zero limits. However, there is a simple relationship between them
expressed by the following theorem.

Theorem: If a function f(x) tends to infinity as x — a, then 1/f(x) is an infinitesimal. If a(x) is
an infinitesimal as x — a, which does not take a zero value for x # a, then 1/(a(x)) is an
infinitely large magnitude."”

Here, our interest has been to get a clear idea of the term infinitesimal. We shall not give the
proof of this (simple) theorem. Also, we are not interested in other theorems that define the
properties of infinitesimals.

Note (4): The word “Calculus” is an abbreviation for “infinitesimal Calculus”, which implies a
calculation, with numbers that are infinitesimally small. For example, consider the growth of a
small plant. In the ordinary way, we know that it grows gradually and continuously. If it is
examined after an interval of a few days, the growth will be obvious and readily measured.

On the other hand, if it is observed after an interval of a few minutes, although some growth
has taken place, the amount is too small to be distinguished. If an observation takes place after a
still smaller interval of time, say a few seconds, although no change can be detected, we know
that there has been growth.

To express such a (small) growth, we use a mathematical term: we call it an infinitesimally
small growth or an infinitesimal growth.®

Note (5): The process of gradual and continuous growth may be observed in innumerable
instances. What is of real importance in most cases is not necessarily the actual amount of growth,
but the rate of growth [i.e., the rate at which a quantity “f{x)” increases or decreases with the
infinitesimal increases in x]. This is the subject of that part of infinitesimal Calculus that we call
differential Calculus. (The meaning of the term “differential” is discussed in Chapter 16 of Part I.)

8a.2.1.2 Area Under a Curve In considering the total area under a curve [as the limit of a
sum of an infinite number of products of the form “f(x) - Ax”], one must keep in mind that the
narrower the rectangles, the closer will be the approximation to the true area under the curve.
The process of narrowing the rectangles may be continued indefinitely (i.e., to any extent). This

™ Note that the infinitesimal a(x) is not allowed to assume the value zero, for any x # a.
® Teach Yourself Calculus by P Abbott, B.A, ELBS Publication by Hodder and Stoughton Ltd, London.
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is our infinite process to which the limit concept may be applied. In the (sum of an) infinite
number of algebraic products of the form f{x)- Ax, one factor (namely Ax), in the limit,
becomes infinitely small. As Ax approaches zero, the sum of rectangular areas approaches the

true total area under the curve. Thus, the expression, limay — o Z:isf (x) - Ax is identified with

f: f(x)dx. We know that the latter expression represents the definite integral of the function f{x).

Further, we know that the differential “dx” stands for an arbitrary increment in the
independent variable “x”, and so “dx” can be as small as we wish. Thus, in the above (definite)
integral, “dx” does not have any independent meaning; it refers to the values of independent

variable “x”. For this reason, we say that “x” in “dx” stands for the variable of integration in the
interval [a, b] (see Chapter 1, Table 1.1).

Note: In fact, the definite integral is used as a device, for illustrating the process that can be
applied to the summation of any such series, subject to the conditions necessary for the
integration of “f(x)”, as discussed in Chapter 5. This is of great practical importance, since it
enables us to calculate not only areas but also volumes, lengths of curves, moments of inertia,
and so on, which are capable of being expressebd in the form limay _ Eii f(x) - Ax. They can
then be represented by the definite integral [ f(x)dx.

Since the concept of the definite integral is developed in connection with the computation of
the area under a curve, we shall first consider different situations under which we may have to
compute the area(s) under a curve, and then consider some examples for computation of areas.

Sometimes, the area can be easily determined by integrating with respect to y, rather than x.
This situation arises when the curve is given in the form x = g(y), where g(y) >0and ¢ <y <d.
In this case, it is more convenient to consider the elementary strip(s) that are adjoining the
y-axis. Then, the area A bounded by the curve x = g(y), the y-axis and the linesy=cand y=d
is given by

d d
A =J xdy:J g)dy [ x=g)] (2)

c c

Note: In both the cases as shown in Figure 8a.2a and b, we have considered the situations,
wherein the curves are above the x-axis. Now we shall consider the cases in which the given
curve is below the x-axis.

If the position of the curve under consideration is below the x-axis, then we have f{x) <0
from x = a to x = b (Figure 8a.2¢c). The area bounded by the curve y = f{x), the x-axis and the
straight lines x =a and x = b, comes out to be negative.

But, it is only the numerical value of the area that is taken into consideration. Thus, if the
area is negative we take its absolute value and write

b
A= jf(x)dx (3)

a

Generally, it may happen that some portion of the curve is above the x-axis and some is below x-
axis. Then, the figure bounded by the curve y =f(x), the x-axis and the straight lines x =@ and
x =b is situated on both sides of the x-axis (Figure 8a.2d), and its area “S” is given by

C

SZS]'i-Sz:[f(X)dX-F

a

b
j Fx)dx (4)

c
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Note carefully, the limits of integrals on the right-hand side, and the expression of the last
integral in equation (4) given above.

8a.2.1 Area Between Two Curves

Now, we are in a position to compute the area bounded by two curves y = ¢(x) and y =f(x)
where ¢(x) > f(x) in [a, b]. In this situation, as shown in Figure 8a.3a, we have

b b
J(p(x)dx > Jf(x)dx

If the length of the ordinate of the upper curve is denoted by ypper and the ordinate of the lower
curve is denoted by yjower, then we can express the area (between the two curves) by

b b b b b
= o) = [ tmer)t = [l = [ = [fotx) s olax

Thus, the positive difference [¢(x) — f(x)] can be treated as a single function for computing the
area “S”. Accordingly, we write

b
5= [leto) — e (5)
y Ys y
)] & y=f(
-B, dy | _y=f)-g k)
Q
37 y <
A - B,
xX=a y=g(x)
x=b
X X
0 a b 0
(a) (b)

(c)
FIGURE 8a.3
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If the two curves in question intersect at one or more points, then the Equation (5) can be
suitably modified and applied. In fact, the point(s) of intersection indicate the limits for the
definite integrals in question.

If the equations of the curves are in the form y=f(x) and y = g(x), then the points of
intersection (of the curves) are given by x=a and x =5, (a < b) at which the curves have
common values of y.*

In such cases, it is convenient to take an elementary area in the form of vertical strip(s) and
the (correct) intervals of integration (see Figure 8a.3b and c).

In Figure 8a.3b, the area of an arbitrary elementary strip is given by dA = [f(xx) — g(x)]dx, so
that the total area can be taken as

b

A=) - gteax

Further, in view of the earlier discussion, the area of the shaded region in Figure 8a.3c is given by
¢ b

Azjwww«umu+ﬁan—ﬂwa

Irrespective of whether we take elementary area in the form of vertical or horizontal strips, the
measure of the area in question (i.e., the value of the definite integral) will be same. In fact,
wherever possible, vertical strips are preferred for practical convenience.

The cases discussed above (with Figures 8a.2a—d and 8a.3a—c) suggest that to compute the
desired area(s), we should have a rough sketch of the region in question. Obviously, this will
help us in identifying the limits of the (definite) integrals involved.

The importance of a rough sketch [of the curve y = f{x)] will be realized when the graph of
the curve encloses any region below the x-axis (for using vertical strips) or to the left of y-axis
(for using horizontal strips). This requirement is easily met if we remember certain properties of
curves using coordinate geometry and differential Calculus."'”

We give below some important points that should be useful in constructing a rough sketch of
the curve(s).

8a.3 CONSTRUCTING THE ROUGH SKETCH [CARTESIAN CURVES]
For the purpose of graphing a curve, we consider the equation of the given curve and check:
(I) Whether the Curve Passes Through the Origin

Example (2): In the equation of the curve, y* = 4ax, if we put x =0, we get y = 0. Thus, the
point (0, 0), lies on the curve. In other words, the curve passes through the origin. Similarly, the
curves y> =4x, y? = —x, y=x% x>=—y, y=x>, and y= —x° all pass through the origin.

©) If the equations of the curves are in the form x = f(y) and x = g(y), then the points of intersection (of the curves) are given
by y=a and y=b (a < b), at which the curves have common values of x.

(0 In fact, differential Calculus offers a general scheme for constructing graphs of functions. However, for drawing a
“rough sketch of the region”, we do not require many of the concepts like finding the asymptotes to the graph, intervals of
monotonicity and its extremum, intervals of convexity of the graph and the points of inflection, and so on. This reduces our
work, since we need only a “rough sketch” of the curve to visualize the region under consideration.
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FIGURE 8a.4

Note: The best way to decide whether the origin lies on the curve is to see that the equation does
not contain any constant term.

Remark: Note that, the circle x> +y*=a? and the ellipse ((x>/a*) + (y*/b*)) = 1, do not
pass through the origin.

1) Symmetry

The most important point for tracing the curves is to judge its symmetry, which we do as
follows:

(a) Symmetry About y-Axis [Even Functions]: If the equation of the curve involves even
and only even powers of x, then there is symmetry about y-axis.

Note: For a curve to have symmetry about y-axis, its equation should not have any odd power
term of x.

2

Example (3): The parabolas x?>=4ay and x*= —9y, the circle x> +y*=4d°, and ellipse

((x2/a*) + (y*/b*)) = 1 all are symmetrical about y-axis.

Definition: A function whose graph is symmetric with respect to y-axis is called an even
function.

An even function f(x) has the property:  f(x) =f(—x). Thus, f(x) = cos x is another example of
an even function (see Figure 8a.4).
(b) Symmetry About x-Axis If the equation of the curve involves even and only even powers
of v, then there is symmetry about x-axis. '

Example (4): The parabolas y* =4ax, y*=—x, the circle x*+y*=a? and the ellipse
((x*/a®) + (y2/b?)) = 1, all are symmetrical about x-axis.

(c) Symmetrical about Both the Axes: 1If the equation of the curve involves even and only
even powers of both x and y, then there is symmetry about both the axes.

Example (5): The circle x*+y*=a” and the ellipse ((x>/a?) + (y*/b*)) = 1, both are
symmetrical about both the axes.

(d) Symmetry With Respect to the Origin [Odd Functions]: Inthe given equation y = f(x),
if replacing x by (—x) and y by (—y) gives an equivalent equation, then the graph of such
a function is symmetric with respect to the origin.

In other words, the graph of a function is symmetric with respect to the origin, if the point

(—x, —y) is on the graph whenever a point (x, y) is. It follows that each point on the graph is

(D A function symmetric about the x-axis does not have any qualifying name. The definition of an odd function will follow
shortly.
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FIGURE 8a.5

matched by another point on the graph, which is on the other side of the origin, such that the
values f{—x) and [—f(x)] are same.

Thus, for a function f(x) to be odd, (—x) must be in the domain of “f”” whenever x is, and the
relation f{—x) = —f(x) must hold.

An example of an odd function is f{x) = sin X, since sin(—x) = —sin x (see Figure 8a.5).

A good example of an odd function is y = x>. Its graph is symmetrical with respect to the
origin. Note that from f(x) = X3, we get fl—x) = (=x)*=—x>.

Thus, f{—x) = —f(x). Similarly, the graph of y=—x> is symmetrical with respect to the
origin. Graphs of both these functions are given below (Figure 8a.6a and b).

Definition: A function whose graph is symmetrical with respect to the origin is called an odd
function.

(We have discussed at length about even and odd functions, in Chapter 7b of this volume.)

Important Note: If a curve has symmetry about the coordinate axis and about the origin then it
is helpful in tracing the “rough sketch” of the curve. Further, it becomes easier to find
symmetrical parts of the curve that enclose equal areas.

In particular, the idea of symmetry is found very useful in computing areas enclosed by
parabolas, circles, ellipses, and trigonometric functions, namely, y = sin x and y = cos x. This
will become clearer when we solve the problems which follow.

(II) Points of Intersection [With the Axes and Between Two Given Curves]

We can find the points where the given curve intersects the axes. For this purpose, we proceed
as follows: Put y =0, in the equation of the given curve and solve it for x. Thus, we get the

f)=x°

fo ==

(a) (b)
FIGURE 8a.6
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x coordinate(s) of the point(s) where the curve cuts the x-axis. Similarly, if we put x =0, in
the equation of the curve, and solve it y, we get the y-coordinate(s) of the point(s) where the
curve cuts the y-axis.

Thus, it is easy to see that the ellipse ((x2/a?) + (y*/b?)) = 1, cuts the x-axis at the
points (a, 0) and (—a, 0), and the y-axis at the points (0, b) and (0, —b). Also, the circle
X% +y* =9 cuts the x-axis at the points (3, 0) and (—3, 0), and the y-axis at the points (0, 3)
and (0, —3).

To find the points of intersection between the given two curves, we solve the system of
equations representing the curves. (It means we may use any of the given equations in the
other one to obtain an equation in a single variable and then solve it.) Further, using these
values (in the given equations), we obtain the points of intersection between the two curves.

Note: In this chapter, we shall be computing the areas enclosed by simple curves when

¢ The region is bounded by a curve, the x-axis (or the y-axis) and two lines perpendicular to
the coordinate axis meeting the curve, as shown in Figure 8a.2a and b.

¢ The region is bounded by the circles and the ellipses (standard forms only). These curves
are symmetric to both the axes.

o Theregion is bounded between two curves both of which may be arcs of simple curves like
circles, parabolas, and ellipses (standard forms) or one of them may be an straight line
intersecting the given curve. Now we start with simple examples.

Illustrative Examples

Example (6): Compute the area of the figure bounded by the parabola y = x?, the x-axis, and
the lines x=2 and x =3

Solutions: The given curve is y =x It passes through the origin and is symmetrical with
respect to the y-axis. Also, the curve is above the x-axis (Figure 8a.7).'%
The area in question is given by

3 3
_[#_8
13 03

[ 1
= 65} square units Ans.

(2 From the equation y = x?, we note that for any value of x, the value of y is positive. Thus, the given curve is above the
x-axis. This is a matter of observation and the student is supposed to know this simple fact. To save time such details need
not be included in the solution.
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V =

0 x=2x=3

FIGURE 8a.7

Example (7): Find the area of the region bounded by the curve y = x*+2x +2, the lines
x=—2and x=1, and the x-axis

Solution: The given curve is
y=x>+2x+2 (6)

Note that equation (6) does not have real roots. (It means that the curve does not intersect the x-
axis.) The rough sketch of the curve is given on right side (Figure 8a.8). '¥
The area of the region in question is given by

1
S = J(x2+2x+2)dx

X3 !
S = {—+—+ ZV}
3 )
1 —
(beren) (Feas)
0 8
? 3 = 6 square units Ans.

(13 We have, forx = —2, y=2,andforx = 1,y = 5. From these values of y, and the fact that the curve does not intersect x-axis, it
follows that the curve from Equation (6) lies above the x-axis. Again, these details need not be given in the solution, to save time.
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y=x>+2x+2

FIGURE 8a.8

Example (8): Find the area between the curve y =¢” and the x-axis from x=1 to x =2.

Solution: Rough sketch of the region in question is given below (Figure 8a.9). (The upper
part of the vertical strip lies on the curve y =¢” and the lower part on the line y =0, which is
the x-axis.)

FIGURE 8a.9
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T X
0 ‘ N
y=sinx
FIGURE 8a.10
The area of the region in question is given by
2.
S = ‘e"‘ dx
1
= [}
=l —e
= e(e — 1) square units Ans.

Example (9): Compute the area of the figure bounded by the curve y =sin x and the x-axis
fromx=0tox=n

Solution: For x =0, we have sin x =0=-y =0, and for x =, we have sin t =0 = y =0. Thus,
the desired area is bounded by a half-wave of the sine curve, and the x-axis, fromx =0tox=mn
(Figure 8a.10). The area in question is given by
n
S = Jsin xdx = [—cos x];
0
= —[cos T — cos 0]
= —cosm+cos0
=—(-D)+1=1+1
= 2 square units Ans.

Remark: In evaluating definite integrals, if the antiderivative involved has a negative sign,
then it is useful to take the negative sign outside the bracket, before evaluating the integral. This
helps us in avoiding possible mistakes in computation.

Note: In this chapter, we have previously shown that
2n
J sin x dx = 0 (Section 8a.1.2, Figure 8a.1)
0

We interpreted this result as follows:

On the interval [0, 27t] the sine curve makes two half waves, the first of which lies above the x-axis
and the other lies below it. The areas bounded by them are equal and the corresponding terms that
appear in the geometric representation of the definite integral, cancel each other. If we consider this
integral in terms of area of the region enclosed, then its value must equal 4 square units.
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FIGURE 8a.11

Example (10): Compute the area bounded by parabola y*=x, y>0, x=1, and x=4

Solution: The parabola y* = x passes through the origin (0, 0), and it is symmetrical to the
X-axis.

(The given condition y > 0 suggests that the area in question is bounded by the upper part of the
parabola y* = x, the x-axis, and the straight lines x =1 and x =4.)"¥

A rough sketch of the region in question is given above (Figure 8a.11).

In this case, we can write y = /X, a=1, and b =4. (Note that the function y = \/x is
defined only for nonnegative values of x.) The desired area is given by

4

S:J\/J_cdx:

1

X2 dx

4
|
- Bt
2
"3

1

14
8-1)= = Square units Ans.

Note: Conditions of symmetry should be made use of where they exist, to shorten computa-
tions. If the area in question is symmetric with respect to the x-axis (or the y-axis), [as may
happen in case of parabola(s), circles, ellipses, and trigonometric functions like sin x and
cos x], then we must choose one symmetrical part of the region (preferably the one which is
above the x-axis or to the right of the y-axis) and then multiply the result suitably.

Example (11): Compute the area bounded by the curve y = —x*+4 and y=0 (i.e., x-axis).

(9 These details are reflected here for better understanding of the problem. However, they need not be reflected in the
proof. This will save time.
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FIGURE 8a.12

Solution: The given curve is y = —x>+ 4, which is symmetrical with respect to the y-axis. For
y=0, we get x* =4 = x = =+ 2, which are the points at which the curve intersects the x-axis. This
observation is helpful in drawing a rough sketch of the region in question as shown below. We have to
compute the area of the shaded region that is symmetrical with respect to the y-axis (Figure 8a.12).

We shall compute the area of the region situated in the first quadrant, that is, half of the total
area in question. If the total area is denoted by “S” then, we have

2
1 ) —-x3 ? 8 16
0

S = % = 10% square units Ans.

Note: In this example, we have chosen to compute half of the area in question (which is above
the x-axis) taking a vertical strip as the elementary area. This approach is definitely convenient.
However, we may as well choose the elementary horizontal strip to compute the area of the
region, which is on the right-hand 51de of the y-axis. With this approach, the area in question will
be given by the definite integral f x dy, (where X is to be replaced in terms of y and the limits a
and b, must be found out).

The given curve is y = —x>+4.

X2=4-y
x=@4-y"

To find the limits of the integral, we have, for x=0, y=4, and for x=2, y=0. (Now we
integrate from lower value of y to upper value of y.) Thus, half of the area A is given by

A= ](4 )2 dy= - J4 gy o[0T
J y) Y y) Yy == 3/2 .

ns.

N =

|—|O
w\l\)

w‘w
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FIGURE 8a.13

Example (12): Find the area of a curvilinear triangle bounded by the x-axis, the parabola
y=x? and the straight line x =a

Solution: The given curve (parabola) is

y=x (7)
It is symmetrical to the y-axis.'>
The required area is given by
a
] 31 B &
§=|x*dx = |=| == —0=— square units Ans.
o= [3], 505w
0

Remark: Note that the area of the curvilinear triangle OKM, shown above is one-third of the
area of the rectangle OKML, as explained below (Figure 8a.13).

A |
Ob that — = =
serve that = = 3

1
(a)-(a*) = 3 (base) - (height)
Example (13): Find the area bounded by the curve y =cos x between x =0 and x =2n

Solution: A rough sketch of the curve y = cos x from x =0 to x = 2x is shown in Figure 8a.14.
(Note that a part of the region that is below the x-axis will have a “negative area”.)

The given curve is y =cos x

For x € [O,g}, cosx >0

X € E3—n cosx <0
2727 —

5 Note that for any nonzero value of x, the value of y is always positive, we consider the line x =a, for a > 0.
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B D 2r X

S

C
FIGURE 8a.14

and
3
X € [77[,24, cosx >0,

.. Required area of the shaded region

n/2 3r/2 2n
= Jcosxdxf J cos xdx + J cos x dx>°(19)
0 n/2 3n/2

[sin x]g/z — [sin ‘c}i%z + [sin x]gﬁ/z,

[sinﬁfsinO} — sinﬁfsing + sin2n7sin3—n
2 2 2 2

[(1-0)—(=1=1)+(0—(-1))] =1+2+ 1 =4square units Ans.

=i

Example (14): Find the area enclosed by the circle of radius “a” units
Solution: Consider the circle represented by the equation
¥4y =d (8)

which has the center at the origin and the radius “a” units as indicated in the rough sketch. As
the circle is symmetrical about both the coordinate axes, we choose to compute the area of the
region AOBA, which is in the first quadrant and above the x-axis (Figure 8a.15). (This area is
one fourth of the area “S” of the circle.)

From Equation (8), we get

y=+Va* - x*dx

(9 Tt is important to remember that area of the regions below the x-axis is always a negative number. (This can be seen only
from the sketch of the function.) In such cases, we must express the area of the region by the expression [7 J:f(x)d)b] ,or
by the expression If [f (x)|dx to count it positive.
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AY
B (0 a) B[, a)
dy
A(a, O) X A(a,0) x
| / | |
(a) ()

FIGURE 8a.15

Since, the portion of the curve from Equation (8) is considered in the first quadrant, we have

a

a
= | Va* — x%dx

Ap—
[
Il
—_—
=
o
=
ST S

S=4|Va? — x2dx (Taking vertical strips)

2 a
=4 f\/a2 2 LY
12 2 aly
2 2
—4 (a ) %sin’l 1} :4{%-%]
= na® square units  Ans.

Remark: In the above example, we have considered a vertical strip to represent an
elementary area. If we consider horizontal strips, the area of the circle will still be the same.
This is quite natural. In that case, we write [using Equation (8)],

a

S =4|v/a? —y*dy
:4)’ / + 71)’}
0

r 2
—4((%. 4 in ! T ra? i
=4 _(2 0) + > sin 1] 4{2 2} T @~ square units Ans.

2y
Similarly, it can be shown that the area enclosed by the elhpse — + — = lis & ab square units.

b2

Remark: Inthe above example, we have used the integration formula obtained in Chapter 4b.
There, we never had an idea that this formula will be useful in computing the area enclosed by a
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FIGURE 8a.16

circle. In fact, this is a difficult integral. However, there are other simpler techniques of
representing the area of a circle. We shall discuss these techniques shortly. First we consider
the following thought provoking examples.

1
Example (15): Compute the area of the region bounded by the curve y = §x3 ,y=0,x=-1,
and x=2

1
Solution: A rough sketch of the curve y = §x3 is shown in Figure 8a.16 and the region in

question is shaded.
(Observe that the region in question is situated on both sides of the x-axis.)
Let S is the area of the region below the x-axis and S is the area of the region above the x-axis.

Thus, the desired area is given by

0 2
1 1
S = _Sl +S2 = —J (gxg)dx—l— J(gxz)dx
1 0

¥41° ¥? 1 16
=—|= Zl=—lo——=|+|=-0
[l e U e
1 n 16 17 | 5 it A
= —+— =—=1-— square units ns.
2 2 12 M
Here, the area of the region, below the x-axis is given by the expression “— LO L((1/3)x%)dx” or
it may be given by ﬁ , [(1/3)x?|dx, both being same. The important point to be noted is that in
the expression f?l |(1/3)x3|dx, we do not put the negative sign outside the integral symbol. The
definition of absolute value takes care that the area in question adds in a positive manner.
However, the expression — ﬁ ,((1/3)x*)dx is more convenient from practical point of view.
Example (16): Find the total area computed between the x-axis and the curve y=

x(x+1)(x—2)
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FIGURE 8a.17

Solution: By solving the equation, x(x + 1)(x — 2) =0, we get that the curve crosses the x-axis
atx=—1,x=0,and x =2, as shown in the rough sketch of Figure 8a.17. Note that a part of the
region below the x-axis has “negative area.” The desired area of the shaded region is given by

0 2
J(ngx —2x)d fox — 2x)dx
0

i

A

=
IS
=
W
I—l
4;

- i + § 37 square units Ans
T2l T3 T '

Example (17): Find the area of the region bounded by the curve y=x*>—x—2 and y=0
(the x-axis) from x =—2to x=2

Solution: The given curve is
=2 = x =2 = f(x)

Let us find the zeros of this function, by solving the equation.
x> —x—-2=0
X —2x4+x—-2=0
X(x=2)+1(x-2)=0
or (x=2)(x+1)=0

x = —1 and x = 2 are the zeros of f(x).
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y=x*-x-2

FIGURE 8a.18

It follows that the given curve crosses the x-axis at x = —1 and x = 2. We have to find the area of
the region from x = —2 to x =2. The rough sketch is given above.

Note that, a part of the curve (from —2 to —1) is above the x-axis and the other part (from —1
to 2) is below the x-axis.

This situation points out the importance of sketching the region (Figure 8a.18).

On [—2, —1], the area of the region is given by

S = J(xzffo)dx

*_2_3_‘—16 115 are units
= 6 6 qu u

Again, on [—1, 2] the (positive) area of the region is given by

i ) X X2 ?
=— Cx—dx=—|>—-2 2
S2 J(x x —2)dx [3 : x]il

R R

16+2+3_48 g+§—2—7—4fs uare units
T 6 | 66 6 2M
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Total area

11 27 38 19
S:S1+S2=Z+€:Z:?squareunits Ans.
Note: In such problems it is always better to evaluate S; and S, separately, as done above, thus
avoiding possible mistakes in calculations.

8a.4 COMPUTING THE AREA OF A CIRCLE (DEVELOPING SIMPLER
TECHNIQUES)

In a circular measure of an angle, the unit angle is called the radian. One radian is the angle
subtended at the center of a circle by “an arc of the circle”, whose length is equal to the radius of
the circle.

In fact, no part of a curve however small can be superimposed on any portion of a straight
line, so that it coincides with it. In other words, the length of a curve cannot be found by
comparison with a straight line of a known length. However, under the application of definite
integrals we have a method of determining the lengths of arcs of plane curves whose equations
are known. Though it is not possible to measure the length of an arc of a circle, this difficulty is
(initially) overcome by the assumption that the length of an arc of a semicircle equals 7 radians,
where 7 is a constant. Accordingly, the length of the circumference of a circle is 2z radians.

Since, the (entire) length of the circumference of a circle is consumed in measuring the
(total) angle subtended by the circle at the center, we can write

circumference(of the circle)

€90

radius(“r” of the circle)

= 2z radians

Therefore, the circumference = 27r units of length. Even at this stage, the difficulty faced by the
student remains unchanged, since he does not have any method of finding the value of ©. Of
course, the ancient Greeks estimated the value of n (through practical methods to be approx-
imately 3.14159. . . or some less accurate approximation), but otherwise it is undetermined.!”

The method involved in measuring the length of an arc, is similar to that used for computing
areas. An expression is found for “an element of length” of the curve, and the sum of all such
elements is obtained by computing its definite integral. (Of course, we shall be discussing these
matters in the next chapter.) For the time being, we agree that the length of the circumference of
a circle is 2nr, where “r” is the radius of the circle, and 1 is approximately equal to
3.1415...Thus, we have a practical method of computing the length of circumference of a
circle. The following method will be found very useful in applications.

8a.4.1 Area of a Circle: A Detailed Discussion Involving the Ideas of Limits

The area of a circle can be thought of as the area of a plane figure that is traced out by a finite straight
line OA (= r units) as it rotates around one of its ends (say, “O”), and makes a complete rotation. In the
figure below, the line OP (= r units) starting from the fixed position OA (on OX) makes a complete
rotation around a fixed point “O”. Thus, the point “P” describes the circumference of a circle.

U7 The determination of the value of 7 occupied mathematicians through the centuries. Various devices (with which
we are not concerned here) were applied and approximate values of = were found. Fortunately, modern mathematics,
with the help of Calculus, has solved the problem. It can now be proved that the above ratio (representing 7) is
incommensurable, and that its value to any required degree of accuracy can be calculated with accuracy. Now, it is
also known that “7” is not restricted to the circle, and that it appears in many other contexts. Teach Yourself Calculus by
P. Abbott.
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FIGURE 8a.19

Our interest is to find the area marked out by OA in one rotation (i.e., area of the circle of
radius “r”). Suppose the point P, has rotated from OA, such that it has described an angle “6”.
Then, AOP is a sector of a circle of radius “r”. Now, suppose OP is rotated further through an
infinitesimally small angle d6. The infinitely small sector so described would be an element of
area and the sum of all such sectors when OP makes a complete rotation from OX back again to
its original position, will be the area of the circle (Figure 8a.19).

Note that the limit concept is applicable in this case. Hence, the infinitely small arc
subtending an infinitely small angle d at the center of the circle, “in the limit”, can be regarded
as a “straight line” and the infinitely small sector as a “triangle”. Further, the altitude of the
triangle can be regarded, “in the limit”, as the radius “r” of the circle.

Thus, the triangle in question (which is a sector of the circle, in this case) can be regarded “in
the limit” as a “right triangle”. Using the formula for the area of a triangle, we have

Element of area (of the triangular sector under consideration)

1
=3 (base) - (altitude)

[Now, we explain below (in the footnote) that the base of the triangular sector (i.e., arc length),
in the limit equals rd6.]"®
1 1
=_(r-dg)-(r)==r*-do
3(7-d0) (1) = 37
Now, the angle corresponding to a complete rotation is 2x radians.

2n 2n
1 1 1 i
Area = J§r2~d0: (Erz) : Jd@ = (Erz) (0]
0 0

1
= (5 r2) -[2n — 0] = 12 square units

(%) The result: Base of the triangular sector of a circle = - df), follows from the trigonometric limit limg _ o (sin /6) = 1 (where
0 is expressed in radians). Now, we may write, limgg _. o (sin d8/d6) = 1, where the small angle d6 is expressed in radians.

Once it is accepted that the (small) arc in question (in the limit) can be treated as a line segment, we can define the ratio
sin df = (length of the arc/r) = d@ (since the angle d6 is expressed in radians). .". Length of the arc = r - d@ (we emphasize
that this statement is valid “in the limit”).
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(a) (b)
FIGURE 8a.20

Now, we give below two simple techniques for computing the area of a circle. In both the
methods, we identify an element of (variable) area, which can generate the circle in a simple
process. Let us discuss.

Method (1): Consider a circle of a variable radius “x”. Suppose the area of the circle is A(x).
When x increases by an infinitely small increment dx, let the corresponding small increment in
the area of the circle be denoted by dA(x). This increment in the area is equal to the area of a
narrow strip (in the form of a ring) between the circle of radius x and that of radius x + dx
(Figure 8a.20). (In this process, the independent variable is the radius “x” and the dependent
variable is the “area” of the circular ring that can grow to a circle.)

The width of the strip is dx and we can take 27X as its length. (Here again the important role is
played by the length of the circumference of a circle that we have assumed to be 27x.)
Thus,

dA(x) = 2nxdx

[This expression represents an element of (variable) area, which can grow to the area of the
given circle.]
It follows that area of a circle of radius “r” is

217 2
A= Jan dx = 2n|=| = 2n— = m? square units
21, 2
0
Method (2): Now, consider a sector of the circle with a variable angle “¢”. The increment to

the area A(¢) of the sector, is the area of the triangle with base r de, and altitude “r”. It is
denoted by

1 1
dA(p) = Erdqar = irzdcp
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de

FIGURE 8a.21

[

Therefore, the area of the circle of radius “r” is given by

2n

1
EJVZ dQD

0
A== 1r2[2n -0
2
=nr? square units Ans.

Note: In this process, the independent variable is the angle ¢ and the dependent variable is the
area of the sector. Here again, the final product is the area of the circle, but the basic concept
involved is that the circular base of the sector is treated in the limit as a line segment. This
permits us to define (an element of) the variable area of a circle (Figure 8a.21).

Remark: Both the methods discussed above are traditional elementary methods that are found
to be more efficient than the method of calculating areas by using the standard result(s) of
integral(s).

8a.4.2 Area Between Two Curves

Geometrically, the concept of the definite integral in terms of area implies (roughly speaking)
that the area of any region is calculated by considering the region in the form of large number of
thin strips, [whose width must be indefinitely small (i.e., as small as we wish)] and then adding
up these elementary strips.

In the process of computing a definite integral, the most important role is played by the
concept of limit, which permits us to obtain the actual area of the region, even bounded by curves.
This is considered as the greatest achievement in the field of mathematics, as we know it, today.

Having obtained formulae for computing areas of such regions, we now proceed to give
some solved examples.

Example (18): Compute the area of the region bounded by the parabola y = x* and the straight
line y =2x
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Y
y=2x

/0 x=2

FIGURE 8a.22

Solution: The parabola y = x? passes through the origin and it is symmetrical to the y-axis. Its
rough sketch is given below (Figure 8a.22).

To find the points of intersection, we solve the system of equations y = x> and y = 2x, we get
x> =2x, sothat x> — 2x =0 or x(x — 2) = 0. Thus, the points of intersection are x =0 and x = 2.
Now, it is important to note carefully that the upper portion of the shaded region is bounded by
the straight line y = 2x and that its lower portion is bounded by the arc of the parabola y = x*.
Hence, the desired area of the shaded region is given by

2

§ = (yupper 7ylower)dx

372
. 8 4
= [x? - x—} = { - 7} —-0= 3 square units  Ans.
] 0

Example (19): Find the area enclosed between the parabola y2 =4ax (a>0) and the line
y=mx (m>0)

Solution: The two curves are
¥ = dax 9)

y =mx (10)



COMPUTING THE AREA OF A CIRCLE (DEVELOPING SIMPLER TECHNIQUES) 277

Y

V =

(0,0)

<

FIGURE 8a.23

To find the points of intersection, we solve the system of above equations, and get

m*x? = dax

=x(m?’x —4a) =0
4
o.x=0 and x:—i
m
Note that the parabola using Equation (9) is symmetrical to the x-axis.
[Taking the slope of the line having Equation (10), as positive, the rough sketch of the shaded
region in question, is indicated in Figure 8a.23.]"'?
The desired area is given by

dafm? 4dafm?
S J (Vupper — Yiower)dx6 = J (V4ax — mx)dx
0 0
da/m?
= J [Zﬁxl/z — mx] dx
0

2 2

- x3/2 ) 4a/m 4\/5 2 4a/m

— |2v/a— —m=— VR332
Vazg—m 2] [ 30 T

B _4\/5 4a\*?  m (4a\* 0
T3 \m? 2 \m?
[4y/a 84’ ml6d’
| 3 m 2 mt
324> 84> 8d?

= — — = —— square units Ans.
3md  md 3md

0 0

(9 1f the slope of the line y = mx is taken as negative, then the enclosed region will be below the x-axis. Of course, its area
will remain unchanged.
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Y

FIGURE 8a.24

Example (20): Compute the area bounded by the curves y = /x and y = X2

Solution: The given curves are

or
yY=x, x>0 (11)
and
y=x (12)
Note that, the curve Equation (11) is a parabola that is symmetrical to the x-axis and we have to
consider only the upper half for x > 0.

The curve y = x is the parabola, which is symmetrical to the y-axis.
The points of intersection of the curves are given by (x> =x.

xX*—x=0 or x(x*-1)=0

x=0 and x=129
Note carefully that the upper curve of the shaded region is y = 1/x and the lower curve is y = x*
(Figure 8a.24).

1
Area in question = J(ﬁ — x%)dx
0

1 .
=3 square units Ans.

@9 Observe that for x=0, y=0 and for x=1, y=1. It follows the region in question is above the x-axis.
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ON (0,0 M

FIGURE 8a.25

Remark: If we are required to find the area bounded by the parabolas y = x%and x =y?, then
the answer will remain the same but there will be a slight change in the rough sketch, as will be
clear from the sketch (Figure 8a.25). (In solving this problem, the figures do not make any
difference. However, the correct understanding of the problem is important.)

Example (21): Compute the area of the region bounded between the curves (parabolas) given
by 7x> —9y+9=0 and 5x*> — 9y +27=0

Solution: Let us rewrite the equations of the parabolas in the form

y=gx +1 (13)
5
y:§ﬁ+3 (14)

Both the curves represent parabolas that are symmetric to the y-axis. To find the points of
intersection, we solve the system of these equations.
Thus, we get

7x* +9=5x*+27  (Note that each side equals 9y)
2x? =18 or x*=9
so that we get
x1=-3, x=3

It is easy to draw a rough sketch of the curves having Equation (13) and Equation (14)
(Figure 8a.26).

Note: Observe that for x =0, Equation (13) gives y =1 and Equation (14) gives y =3. From
these values of y, it follows that the upper curve is given by Equation (14) and the lower curve is
given by Equation (13).

Further, observe that the shaded area is symmetric with respect to the y-axis.
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A Y

241 y=3524+3

FIGURE 8a.26

Hence, we compute one half of the area in question, taking the limits of integration from

0 to 3, by
3
%S: H@xz +3> - (g;& + 1)}@(
0

S = 8 square units Ans.

Example (22): Find the area common to the curves 2(y — 1)’ =x and (y — 1)*=x — 1

Solution: The equations of the curves are
20y — 1) =x (15)
-1 =x—1 (16)"
Let us find the points of intersection of the above curves.
@D Consider Equation (15) in the form 27> = x, where ¢ = (y — 1). This equation represents a parabola that is symmetric to

the x-axis. [In our case the curve is symmetric to the line y = 1, which is parallel to the x-axis.] Similarly, the parabola having
Equation (16) is symmetric to the line y = 1. This observation is useful in drawing a rough sketch of the area in question.
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Y
y=2 A
y= 0 X
~—
FIGURE 8a.27
Using Equation (16) in Equation (15), we have
2(x—1)=x Soox=2
Putting this value of x in Equation (16), we get
y—17%=1 cooy—1=41

y=2 or O

Thus, the curves having Equations (15) and (16) intersect in the points (2, 0) and (2, 2)
(Figure 8a.27).
The area in question is given by
2

2
a=[[(1+0-1)]ar- o= 17
0

0

= D*@*Uﬂ@
0

5266

=2- 3= 3 § square units Ans.

Example (23): Compute the area of the figure bounded by the inclined lines x — 2y +4 =0,
x+y—5=0,and y=0

Solution: The given lines are

x—2y+4=0 (17)
and

X+y—-5=0 (18)
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From the Equation (7)
x—=2y+4=0

we get, for y=0, x = —4. Thus, we get the point A (—4, 0), at which the line of Equation (17)
intersects the x-axis.
From the Equation (18)

x+y—-5=0

we get, for y=0, x=35. Thus, we get the point C (5, 0) at which the line of Equation (18)
intersect the x-axis.
Solving the system of Equations (17) and (18), we get the point of intersection of these
straight lines.

From Equation (17), we have x = (2y — 4). Putting this value of x in Equation (18), we get

2y—4)+y-5=0
3y =9, sothaty =3

Therefore, by putting this value of y in Equation (18), we get x = 2. Thus, we get the point M (2,
3) at which the lines having Equations (17) and (18) intersect. Now, we are in a position to
construct the figure as given below (Figure 8a.28).

To compute the desired area, it is necessary to partition the triangle AMC into two
triangles AMN and NMC. Because, as x changes from A to N, the area is bounded by the
straight line having Equation (17) and when x varies from N to C the area is bounded by the
straight line having Equation (18).

For the triangle AMN, the role of the line x — 2y + 4 = 0 (bounding the area) is expressed by
the equation

1
y= Ex +2, with the limits a=—-4 and b=2

For the triangle NMC, the role of the line x +y — 5 = 0 (bounding the area) is expressed by the
equation y = — x + 5 with the limits =2 and b =5.

>
<

x+y-5=0

A4, 0) o] NE 0) \ -

FIGURE 8a.28
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Computing the area of each of the triangles and adding together the results so obtained, we get

[(er2)or-B(5) 2]

o )
=|-x*+ 2x]
4 -4

SaamN

=[(1 +4) — (4 — 8)] = 9 square units
5

2 5
SANMC: (—x+5)dx = |:— (xz) +5X:|
2

2

[(F)- (o)

= [15 — 10.5] = 4.5 square units

Total area in question =9 + 4.5 = 13.5 square units Ans.

Remark: From the above figure, it is easy to check the area of the triangle AMC. We have

—

Saamc = 3 (length AC) - (length NM)
1

—5[5 - (-4)-(3-0) =

27
9)3) = 5= 13.5 square units.

NS

Let us recall some useful definitions pertaining to the standard equation of parabola

y? = 4ax, a>0 (19)

and the related important points.
[In the equation of parabola having Equation (19), the coordinates of the focus “S” are («, 0).]%»

Definition: Axis—The line through the focus and perpendicular to the directrix of a parabola is
called the axis of the parabola. [The axis of the parabola having Equation (19) is the x-axis itself.]

Definition: Vertex—The point of intersection of a parabola with its axis is called vertex of the
parabola. [The vertex of the parabola from Equation (19) is the origin O (0, 0).]

o The parabola having Equation (19) is symmetrical to the x-axis. As y* is always positive,
therefore for a > 0 (as given above), x cannot be negative. Therefore, the curve entirely
lies in the first and the fourth quadrant.

It is useful to remember the following figures pertaining to various forms of parabola
(Figure 8a.29).

o As x takes larger values, y becomes larger. Hence, the curve extends to infinity. For the
standard form of Equation (19), we say that the parabola opens out in the positive direction
of x-axis.

@2 For the parabola y* = —4ax = 4(—ax), a >0 the coordinates of the focus are (—a, 0). Similarly, for the parabola
X2 =4ay (a > 0), the focus is at (0, @), and for the parabola X = —4ay = X= 4(—a)y (a > 0), the focus is (0, —a).
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FIGURE 8a.29

Definition: Focal-Chord—A chord passing through the focus “S” is called the focal-chord
of the parabola.

Definition: Latus-Rectum—The focal-chord of the parabola perpendicular to the axis is
called the latus-rectum of the parabola.
For the parabola y2 =4ax, a >0, the equation of the latus-rectum is x =a.

Note: For the parabola y*> = 24x, the equation of the latus-rectum is x = 6.
Example (24): Find the area bounded between the parabola y* = 4ax and its latus-rectum

Solution: The given curve (parabola) is

y? = dax (20)

It is symmetrical about the x-axis and passes through the origin O (0, 0) (Figure 8a.30).
The latus-rectum is the line perpendicular to the x-axis, which passes through the focus S (a, 0)
(Figure 8a.31).
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AY L

/

(a,0) x

S~

I

FIGURE 8a.30
The required area of the region is given by
2 (area of the shaded region OLSO)
a
ZJy dx = J\/ 4ax dx

0

= 4\/5J\/)'c dx

02 8 8
= 4\/L_Z§ [x3/2]0 = g\/z_z~a3/2 = §a2 square units

Y
— 2
Jx)
0 dx A@G,0)
/

FIGURE 8a.31

Ans.

285
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Example (25): Calculate the area bounded by the curve y? 4+4x —12=0 and the y-axis

Solution: The given equation is

2= —4(x - 3)
a6y 1)

It represents the parabola that is symmetrical to the x-axis. Also, its vertex is A (3, 0). (The
rough sketch of the curve is given below.)
By symmetry, the required area is given by

S = 2(area of the region BOA)

[Note that, the region BOA is bounded by the curve y = /4(3 — x), the x-axis and the
ordinates x =0 and x =3.]

3

3
Hence, S = 2Jx/4(3 —x)dx =2|2Vv3 —xdx

0

o

:4[@@ =4 {(3_”3/2(1)}

0

e}

w| | ua"
|

(6-97 =220 - 6]

3
S= [0 — \/ﬁ} = %8 [—3\/§] =8V3 square units Ans.

Example (26): Find the area enclosed between the curve x*> =4y and the line x =4y — 2

Solution: The given equations are
x* =4y (22)
x+2=4y (23)

The parabola having Equation (22) is symmetrical to the y-axis and passes through the origin
(Figure 8a.32).

The points of intersection between the two curves are obtained by solving the system of
Equations (22) and (23). We get

x? =x+2 [using Equation(23) in Equation(22)]
or xX2—x—-2=0
X —=2x+x—-2=0
x(x=2)+1(x—-2)=0
(x=2)(x+1)=0

x=2 and x=1
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y
AR,

D
X
(0, 0) M@2,00

FIGURE 8a.32

The area of the shaded region is given by

2
A= J (yupper - ylower)dx

2

1
zfj(x+2fx2)dx

4

|

1[x? ?

il I, PN

27 JA

1[/4 4 8 1 2 1
_ -t === =4=

41\2 1 3 2 1 3
_1 >20+7 —27—9s uare units Ans
416 6] 24 3™ '

Example (27): Find the area of the region enclosed between the circle x>+ y? = 2ax and
parabola y* = ax (a >0)

Solution: The given curves are

x? +y? = 2ax (24)
and

Y =ax (25)
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FIGURE 8a.33

Note that both the curves are symmetrical to the x-axis. Also, both the curves pass through the
origin.

To find the points of intersection of the above curves, we solve the system of Equations (24)
and (25). We get

X%+ ax = 2ax [using Equation(25) in Equation(24)]
xX!—ax=0 or x(x—a)=0
x=0 or x=a. Now, forx=0,y=0and forx =a, y==+a

Points of intersection are (a, a) and (a, —a). It follows that the center of the circle is at (a, 0) and
the radius “a” units. The rough sketch of the intersecting curves is given below (Figure 8a.33).
‘We have to find the area of the region enclosed between the curves on both the sides of the x-axis
(For convenience, we shall consider the shaded area above the x-axis, and then multiply it
by two.)

Let the shaded area above the x-axis be S square units.

a

§= J[yupper - ylower} dx

Jy upper Jy lower dx

o ;
J\/Z —x2dx—J\/c§dx
0

o (26)

2

Now consider, 2ax — x* = —[x? — 2ax]

—[x? = 2ax + @* — &
— [~ )

=d® - (x—a)
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Using this expression in (26), we get

a

S = J\/az —(x—a)*dx — \/EJXI/Z dx
0

0

:% [(H,)mwz Sin_lx;arﬁmzz]:

0

@ n 2,
= .2 _Z4
2 2 3
_ 22
=73

The total area between the curves having Equations (27) and (28) is given by

28 = a* E — ﬂ Ans.

Example (28): Find the area lying above the x-axis and inclined between the circle
x? +y*=8x and inside the parabola y* =4x

Solution: The given curve are

2 2

X* 4y =8x (27)

¥ = dx (28)
Note that both the curves are symmetrical to the x-axis, and both of them pass through the
origin.
To find the points of intersection between Equations (27) and (28), we write

X2 +4x = 8x [using Equation(28) in Equation(27)]
x2—4x=0
X2(x—4)=0
x=0 or x=4
Now, for x=0, y=0 and for x =4, y=+4.

It follows that the point (4, 0) is the center of the circle.
The shaded area indicated in the sketch has to be computed (Figure 8a.34).

(23)

@3 The coordinates of the center of the circle can also be obtained from Equation (27). We express Equation (27) as xX>=2
@x+16—16+y>=0.
o(x —4)2 +y2 = 16. This is the equation of the circle with the center (4, 0) and radius 4 units.



290 APPLYING THE DEFINITE INTEGRAL TO COMPUTE THE AREA OF A PLANE FIGURE

P4,4)

0 Cc@4,0) 0(8,0)

FIGURE 8a.34

The shaded area enclosed by the parabola above the x-axis is

4

S 1 = J \/)-C dx
0
and the shaded area enclosed by the circle above the x-axis is

8 8
szzjmdx:J £ (x— 4 dx
4 4

4

3217 28 16
Now, S = Tl =222 square units
3/2], 3 3

The value of S, is computed by substitution.

Put x—4=¢t .. dx=dt
Also, when x =4, t=0, and when x =38, t=4.

S, =[0+8-(sin"'1 —sin"'0)]
n
:8~(5—0) —4n

% Recall that [Va? — x? dx = (1/2)xVa? — x2 + (1/2)a® -sin~ (x/a) + c.
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The required area is given by

16 4
S1+S2:?+4TE:§(4+375) Ans.

Example (29): Find the area of the loop of the curve y2 =x}(1-x)

Solution: The given curve is
Y =x(1-x)

Obviously, the given curve is symmetrical about x-axis.
To find the point(s) of intersection of the curve with the x-axis, we put y =0, we get

0=x*(1-x) . x=0 or x=1

The rough sketch of the curve is given below (Figure 8a.35).
Observe that the curve has a loop between x =0 and x=1.
.. Area “A”, of the loop

1

2jydx2j\/mwc

1
A:Jx\/l — xdx

0

Now, using the property

f(x)dx = | f(a— x)dx

O —

/O\J .

FIGURE 8a.35
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We get

A=2[1-x)y/1-(1—-x)dx

=2|(1-x)Vxdx= 2[<\/>_c—x3/2)dx

0 0

2 2 501" [2 2] 8
A =2 _§x3/2 _ ng/zh = 2[§ - g} = 13 Square units  Ans.

Miscellaneous Exercise

Q(1) Calculate the area bounded by the curve y? —4x —12=0 and the y-axis.
Ans. 4+/3 square units.

Q(2) Find the area of the region enclosed between the line y = x and the parabola y = x>

Ans. 1/3 square units.

2 2

Q(3) Find the area of the ellipse % + Y

=1

Ans. mab square units.

Q(4) Find the area of the region in the first quadrant enclosed by the line y = x and the circle
X2 4+y*=32.

Ans. 4m square units.

Q(5) Find the area of the region bounded by the triangle with vertices (1, 0), (2, 2), and (3, 1),
using integration.

Ans. 3/2 square units.

Q(6) Find the area of the region bounded by the line y = 3x + 2, the x-axis and the ordinates
x=—land x=1.

Ans. 13/3 square units.

Q(7) Find the area bounded by the curve y =cos x between x =0 and x = 7.

Ans. 2 square units.

Q(8) Find the area bounded by the curve y = sin x between x =0 and x =2x.

Ans. 4 square units.

Q(9) Find the area of the region bounded between the parabolas y* = 4ax and x> = 4ay, where
a>0.

Ans. 16a%/3 square units.

[Hint: The points of intersection of the curves are (0, 0) and (44, 4a).]
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Q(10) Prove that the curves y* =4x and x*> =4y divide the area of the square bounded by
x=0, x=4, y=4 and y =0 into three equal parts.
[Hint: Refer to Example (8).]

Q(11) Find the area of the region enclosed between the two circles X2+ y2:4 and
(x—2)+y*=4.

8
Ans. ?n_ 2V/3.

Q(12) Find the area contained between the curve y= x> and the straight line y =2x.

Ans. 1 square unit.

Q(13) Using the method of integration find the area of the triangle ABC bounded by the lines
2x+y=4,3x —2y=6,and x —3y+5=0.

7
Ans. 3 square units.

Q(14) Find the area of the region enclosed by the parabola x> =y and the line y = x + 2.

9
Ans. 3 square units.



8b To Find Length(s) of Arc(s)
of Curve(s), the Volume(s) of
Solid(s) of Revolution, and the
Area(s) of Surface(s) of Solid(s)
of Revolution

8b.1 INTRODUCTION

In the previous chapter, Chapter 8a, we have seen how the methods of integration enabled us o
find areas of plane figures by applying the definite integral. Now we shall consider certain fields
of mathematics and those of engineering in which the ideas of definite integrals are applied for
obtaining useful formulas and results, which cannot be obtained otherwise.

8b.2 METHODS OF INTEGRATION
The methods of integration may be applied to compute

o the lengths of arcs of plane curves (whose equations are known),

o the volume(s) of the solid(s) of revolution (which are marked out in space, when a plane
area is rotated about an axis),

o the surface areas of solids of revolution and many other quantities (like center of gravity,
moment(s) of inertia, etc., to be studied later in higher classes).

In fact, the convenient approach to learn these applications is to study them in the sequence they
are mentioned above. The lengths of arcs of regular curves will be required in calculating the
surface area of the solids of revolution. Let us discuss.

8b.2.1 The Measurement of the Length of a Curve

As already mentioned in the previous chapter, no part of a curve, however small, can be
superimposed on any portion of a straight line. It means that the length of any arc of a curve
(whether a circle or any other curve) cannot be found by comparison with a straight line of a

Applications of the definite integral 8b-Applying the definite integral to find the length(s) of arc(s) of curve(s), the
volume(s) of solid(s) of revolution, and the area(s) of surface(s) of solid(s) of revolution.

Introduction to Integral Calculus: Systematic Studies with Engineering Applications for Beginners, First Edition.
Ulrich L. Rohde, G. C. Jain, Ajay K. Poddar, and A. K. Ghosh.
© 2012 John Wiley & Sons, Inc. Published 2012 by John Wiley & Sons, Inc.
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known length. However, with the applications of definite integral(s), it is possible to determine
the length(s) of arc(s) of plane curve(s) whose equations are given in the Cartesian, parametric
Cartesian, or polar form. The method involved is similar to that used for computing areas. An
expression is found for “an element of length” of the curve, and the sum of all such elements is
obtained by integration (i.e., by the application of definite integral). The process of finding the
length (of an arc) of a curve is called rectification of the curve.

To understand the process (and the approach), it is important to be very clear about the
concept of limit (discussed in Chapters 7a and 7b of Part I), and the concept of infinitesimall(s)
(discussed in Chapter 8a). The student is advised that with any vague ideas of these concepts,
they should not proceed to learn the applications in question. Also, one should not compromise
with these ideas for any purpose (like getting marks in the examination). These ideas are very
simple, interesting, and paying in the long run.

In this connection, the reader may go through Section 8a.5.1, wherein we have discussed the
process of computing area of a circle involving these ideas. (The relevant footnote is very
important.) There, we have treated (and accepted) a small sector of the circle, in the limit, as a
“right triangle” . Finally, using the formula for the area of a triangle, we obtained the element of
area of the triangular sector as (1/2)r? df, where the small angle d0 is expressed in radians.
This expression, for the elementary area (of the sector), was then used in computing the area of
the circle. If the reader feels that, in obtaining the above expression (for the element of area of
the triangular sector), he had to compromise at any stage, then it is advisable to revise the basic
concept of limit, or even better, approach a good teacher for guidance.

Again, it is useful to go through Section 8a.5.2, wherein we have discussed another method
of computing the area of a circle, with a variable radius “x”. In this case, the independent
variable is the radius “x”, and the dependent variable is “an element of area”, in the form of a
circular ring, which can grow into a circle. The width of the ring is taken as “dx” and we take its
length as 2mx. Here again, the important role is played by the small width “dx” of the ring,
which is taken to be infinitesimally thin.

From the definition of the radian measure of an angle, the circumference is regarded as
consisting of 2w arcs, each of which is equal in length to the radius. It follows that
(circumference /radius(r)) = 2n radians or the circumference =27r. Thus, the length of the
circumference (which is a curve) is expressed in terms of the length of the radius (which is aline
segment). However, there is still a difficulty because we do not have an exact value of 7.
Of course, we have the approximate value of m as 3.1415. . ., obtained by practical methods.
This permits us to express the elementary area of the ring to be 27mx dx."

Now, we shall establish the formula for computing the length of an arc of a curve whose
equation is known.

8b.2.1.1 General Formula for the Length of a Curve in Cartesian Coordinates
Let AB represent a portion of the plane curve of a function y = f{x), between the points A and B
(Figure 8b.1).

E and F are two points on the curve and they have been joined by a straight line EF, which is
the chord of the arc between them. In the usual notation, EG = Ax and FG = Ay. Similarly, the
part of the curve between E and F is equal to AS, where S measures length of curve.

The triangle EGF is a right-angled triangle, and therefore,

(Av)* + (Ax)* = (EF)’

™ Note carefully, how the concept of limit is involved in the above discussion.
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AY
B
F/_
Ay
E G
Ax
A
X
0
FIGURE 8b.1

If the point F is moved very close to E, then the length of chord EF will be very nearly equal to
the length of the arc EF. As F is made indefinitely close to E, (i.e., as close to E as we wish) then,
as Ax approaches zero, the length of the chord approaches the length of the arc. Then, the

equation,

(Ay)* 4 (Ax)* = (arc EF)* is approximately true

or

(Ay)2 + (Ax)2 = (As)2 is approximately true

and from this, we obtain the equivalent of As in two forms:

= +1
(Ax)*  (Ax)?
Ay 2
As=4/1 — A
S + ( Ax) X

and similarly,

Ax\ 2
As=4/1+ (=) -A
? * (Ay) Y

Note that Equations (1) and (2) are approximately true.
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Now, it must also be clear (and it is easy to show) that

dy\’ dx\’
ds=/1+ (é) -dx or ds=4/1+ (d—y) -dy (exactly)

This follows because as Ax approaches zero, the ratio between c/hord EF and arc EF approaches
1. The length of the curve is s, and this value may be found by integrating either of the
equivalents of ds. In practice, it will be found that depending on the equation of the curve
[i.e., y=f(x) or x =g(y)], one form usually gives an easier calculation than the other.

Let us consider the first form of the integrand.

Then, if we have to find the length of the arc from x =a to x = b, we write,

b 2
s:} 1+<§—)yc) -dx (3)

This is an important result.

Note (1): The purpose of introducing this section is to demonstrate the usefulness of definite
integrals and the power of Calculus. Here, we shall be dealing with very simple problems only,
without going into the complicated situations. Let us demonstrate its application in calculating
the length of circumference of a circle.

Example (1): Find the length of the circumference of a circle x> + y*=r?

Solution: The equation of the circle is x* + y* =77, Differentiating the given equation with
respect to x, we get

d
2x+2y£:0

b__x
dx y
Using Equation (3) above, we compute the arc length of one-fourth of the circle, taking the limit
from O to r (Figure 8b.2):
‘We have,
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(=]
~

FIGURE 8b.2

Example (2): Find the length of the arc of the parabola x> = 4y from vertex to the point where
x=2

Solution: The equation of the parabola is x> = 4y.
We can write the above equation in the form:

X o dy x
T4 a2
The sketch of the curve is shown in Figure 8b.3, where OQ represents the part of the curve of
which the length is required.
The limits of x are from O to 2.

b
2
Using, S = [ 1/1+ (&) dx, on substitution,
a

2 2
2 1
S:J 1+<x—)dx=§J\/x2+4dx
0

4
0

FIGURE 8b.3
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Using the formula,

1 2
J x2+a2dx:§x x2+a2+%1oge(x+ X2 +a*)+c (see Chapter 4b)

We get

S =

N | =

jx\/xz +(2)% dx
0

1
2

-2-V8+2{log, (2 + \/g)—logEZ}}

| — N =

5 [2\/5 +2{log, (2 + 2\/5)—10g82}]

[ (227

= V2 +1log,(1++/2) = 2.295 (approx) Ans.

(Here, the log table to the base “e” has to be used.)

Remark: The formula giving the length of an arc of a curve can be applied to any other curve,
whose equation is given in Cartesian coordinates.

Note (2): The calculation of the length of an ellipse reduces to the calculation of an integral
that cannot be expressed in terms of elementary functions. This integral can be computed
only by approximate methods (by Simpson’s rule, for example). We will not discuss such
methods here.®

The same situation occurs in the calculation of length of the arc of the hyperbola y :i,
and the length of the arc of a sine curve. The length of an arc of a parabola can be reduced to an
integral that is rather complicated, although it can be expressed in terms of elementary functions.

8b.3 EQUATIONFOR THE LENGTH OF A CURVE INPOLAR COORDINATES

(The method, in general, is similar to that in the rectangular coordinates.)

In Figure 8b.4, let AB represent a part of the curve whose polar equation is r = f(#), where r
is the radius vector and 6 is the vectorial (polar) angle. Let the angles made by OA and OB with
(the polar axis) OX be 6 and 6. Let “s” be the length of the part AB (of the curve). Let P be any
point (7, ) on the curve and Q be a neighboring point (r 4+ ér, § + 66), such that /QOM is the
increase in 6 (say 60) and PM is the increase in “r”’(denoted by 6r). Let PQ be the chord joining
P to Q. Then, QM = r 80 and the arc PQ represents 8s.)

@ For details, refer to Differential and Integral Calculus (Vol. T) by N. Piskunov (pp. 446-447), Mir Publishers, Moscow.
© The reader must be convinced about the equality QM = r 6. In the previous Chapter 8a (Section 8a.5.1) we have
discussed at length that a (small) sector of a circle, can be regarded, “in the limit”, as a right triangle. The same thing
happens here when we treat the arc PQ, in the limit as a line segment. [In the entire approach, the concept of limit plays the
most important role.]
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A

FIGURE 8b.4

Then PQ*=QM? + PM?
or PQ* = (r 80)*> + (6r)* (with the construction, PM = 7).
When Q is taken indefinitely close to P (i.e., 860 — 0), then, in the limit

(ds)* = (rd6)* + (dr)?

Therefore ds=/r2(df)* + (dr)*

=/ 4+ (g;)z-de (E)

(Note that s is a function of two variables, namely 7 and 6.)
For now, we regard “s” as a function of “0”. Then, to find the length of the curve fromAto B,
we must integrate both sides of (E) from 6, to 6,.

Thus, on integrating, we get
0>
dr\?2
s = 2 — | df I
o= |y ( da) m
0,

We may also write Equation (E), in the form

/ 2
ds = 4/1+12 (d—0> dr
dr

Now, we regard “s” as a function of “r”. Hence, (to find the length of the curve from A to B) the
limits of integration will be from r; to r,.
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We write,

d\
— 2
s = J L+7 (dr) dr ()

r

Note: We do not consider any solved examples here. However, as an exercise, we give below
one problem, which is given as a solved example in many books.

Q. Find the complete length of the cardioid, whose equation is r = a(l — cos 6).
Ans. s=28a.

Further, if the equation of the curve is given in the parametric form, x = f(t),y = g(¢), then it can

be shown that
dx\? dy 2
ds = — — ] -dt
(@) + (@)

Accordingly, the length ““s” of the curve can be computed by integrating both sides, with respect
to “¢” (the parameter), from #; to #,. (We will not discuss anything more about the length of
curves, since it is not needed for beginners.)

8b.4 SOLIDS OF REVOLUTION

The solids with which we shall be concerned are those that are marked out in space, when a
continuous curve or an area is rotated about some axis. These are termed solids of revolution.
For example,

(a) If a semicircle is rotated about its diameter, the solid of revolution so obtained is a
sphere.

(b) If a rectangle is rotated about one of its sides, we get a right circular cylinder in a
complete rotation.

(¢) Ifaright-angled triangle rotates completely about one of the sides containing the right
angle as an axis, it will generate a right circular cone.

“Solid of revolution™ is a mathematical term, whose meaning is clearly reflected in the “solids
of revolution”, marked out in space by the rotation of a curve, about an axis. A circle represents
the cross section of a sphere, and we may be interested to calculate its volume.

If we rotate a quadrant (of the circle) about the x-axis, it will sweep out the volume of half the
sphere. If we can calculate this volume, then we must double it to calculate the volume of the
whole sphere. This again suggests to us that we should concentrate our knowledge (of
Mathematics) on just one quadrant. Once a solid of revolution is generated, as mentioned
above, one may like to calculate its volume or the surface area generated in the process.

Remark: When we revolve a curve about an axis, it implies that the area under the curve is
revolved about the axis.

Now, we start finding the formula for volume of solid(s) of revolution.
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8b.5 FORMULA FOR THE VOLUME OF A “SOLID OF REVOLUTION”

(a) Rotation about the x-Axis: Let the area under a curve y = f(x), namely, ff Sf(x)dx, be
revolved about the x-axis, thus generating a volume. The area of a cross section of this
solid by a plane perpendicular to the x-axis is 7y?. The volume of a thin slice, “dx” thick
would be my? dx.®

The total volume of solid of revolution between the two parallel planes x =a and
x = b would therefore be the sum of all such slices

b b
or V=7'5Jy2 dx=nJV'(x)]2 dx

a

Now, it must be clear that to obtain the formula for computing volume of a solid of
revolution is quite simple. (Let us see how the concept of limit is deeply involved in the
process of obtaining the above formula.)

Let y=f(x) be a continuous nonnegative function defined on the interval [a, b].
Imagine a solid resulting from the rotation of a curvilinear trapezoid about the x-axis,
bounded by the function y=f(x), the x-axis and the straight lines x=a and x=»5
(Figure 8b.5a).

The volume of this solid [say V(x)] is a function of x. For an infinitesimal increment
dx (i.e., dx can be though of to be as small as we please) (or we may call it infinitely
decreasing increment), the volume V(x) increases by the volume of an infinitely thin
layer of width dx, with the base area 7[f(x)]>. Thus, the element of increase in the
volume is given by the expression,

(a) (b)
FIGURE 8b.5

) The disc of volume swept out by the element of area under the curve will always be circular whatever the shape of the
curve. This may at first seem a little odd, yet it is implied in the rotation of the curve about its axis. [To rotate the curve
means to turn it about its axis so that the whole curve describes a lateral circular motion.]
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(To calculate the volume of this solid, we shall consider a similar solid with a variable
right side, which cuts the x-axis at the point x.)

We then get, V = V(x) = [: my* dx = ]Z’ lf (x))* dx

(b) Rotation about the y-Axis: Let AB be a potion of the curve y = f{x) that is rotated about

QY, so that A and B describe circles as indicated with centers M and N, on the y-axis
(Figure 8b.5b).

Let OM=a, ON=5.

Let P(x, y) be any point on the curve and Q be another near by point on the curve with
coordinates (x + 6x, y + y).

Then, the volume of the slab generated by PQ becomes, in the limit, x’ dy.

.". The volume of the whole solid is the sum of all such slabs between the limits y = a
to y=n.

b
V=n sz dy

a

[Note that, here the variable of integration is “y”. Therefore, from the given equation
y=f(x), we must replace “x” in terms of y.]

Solved Examples
Example (3): Calculate the volume of a sphere of radius r

[

Solution: The equation of a circle with the center at the origin and radius “r” is given by
Py =r @)
If the quadrant AOB is rotated about OX the volume described will be that of a hemisphere.

Observe that, the volume of the slab (generated by PQ on rotation about x-axis) becomes, in
the limit, 7y* dx (Figure 8b.6).

FIGURE 8b.6
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.. The volume of the hemisphere can be obtained by using the formula

1 .
EV:n. y* dx

a

b b
o V=2n [y*dx=2n[(r*—x?)dx [where y is replaced by x from y =f{x)]
a a

.
or V=2n [(r?—x?)dx (Note the lower limit of the integral)
0

37" 3
=2n {rzxf Y—} =2n [ﬂ, r—} =2n- gr3 = i‘m’3 Ans.
31, 3 3

[

We can also obtain the same result when a semicircle of radius “r” is rotated about a diameter.
Assuming the diameter to be the x-axis, we find that the semicircle intersects the x-axis at
x=—r and x =r. Thus, we have

r r

V= J my?tdx = [n(rz—x2) dx [where y is replaced by x, using Equation (4)]

37" 3 3
=7 [rzxf x—} = {rzxf X—} -7 {rzxf x—}
3 —r 3 xX=r 3 X=-r
3
=7 r3—ﬁ -7 —r‘—(ir)
3 3

2 3 2 2
= gnr3—n {—rr + %} = gnr3— {—gmﬁ]

2 2 4
= gnr3 + gnr3 = gTCVS cubic units Ans.

Note: Now, we are in a position to find the volume of part of the sphere, between two parallel
(vertical) planes. Consider two parallel planes at distances from (the origin) O, given by
OA =a, OB = b (Figure 8b.7). Then, the volume V of the part of the sphere is given by the
integral,

b b
V= Jnyz dx = Jn(,ﬂ,xZ) dx
a a

)

Here, as usual, “y” has been replaced by “x”, since the variable of integration is x. For this

purpose, we use the given equation x> +y> = 2.

Example (4): Find the volume of the solid of revolution bounded by the circle X2+ y* =36,
and the lines x =0, x =4, about the x-axis
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0
g x
K | EB |
Q/
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FIGURE 8b.7

Solution: We have to compute the volume of the part of sphere when the part of the circle (i.e.,
x* +y*=36) from x=0 to x=4 is revolved about the x-axis. Obviously, the limits of
integration in this case are from x =0 to x =4 (Figure 8b.8).

From the equation of the circle, we have y* =36 — x>

.. Required volume
4 4
V= Jny2 dx = Jn(36—x2) dx
0 0

=

cubic units Ans.

374
=n{36x7 ] :n{1447%} _ 368m
. 3 3

w]

/{,
N

x=0
FIGURE 8b.8
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FIGURE 8b.9

Example (5): Volume of an ellipsoid of revolution
This is the solid formed by the rotation of an ellipse

(1) about its major axis,

(i1) about its minor axis.

(1) Rotation about the Major Axis
Let the equation of the ellipse be

XY PR 4 dy = B

Note that, 2a=AA’ and 2b=BB' Then, the center of the ellipse coincides with the
origin. Thus, the rotation (of the curve) is to be about OX (i.e., x-axis).

From the above equation, we have

Py = PP b = (P —?)
2 0,
¥ =% (@) (5)

Let V be the volume of the ellipsoid. Consider the volume marked out by the rotation of
the quadrant OAB. Clearly, the limits are from O to a (Figure 8b.9).

(Note that, this rotation will generate half the volume of the ellipsoid.)

2

Ot—— =

a
my*dx or V= ZEJyz dx
0

a

b2
= ZnJa—z(az—xz)dx [using Equation (5)]

a

2mb* [, , 5 2 [ 5, X3¢ 2ab? (2 ,
T~z J(" X )dx = {“‘?L— e [5"]

0

4
V= gnab2 cubic units
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B
FIGURE 8b.10

Remark: Observe thatif b = a, the ellipsoid becomes a sphere. (In Equation (5) “a”, stands for
the semi-major axis, and “b” for the semi minor axis, i.e., 2a= AA' and 2b=BB'.)

(ii) Rotation about the Minor Axis
Now, it can be shown that if the rotation is considered about the minor axis “b”, then the
volume of the ellipsoid will be given by (see Figure 8b.10)

4 . .
V = —7a®b cubic units

(Prove this result as an exercise.)

Note: The student should not try to memorize the formulae obtained so far, and many others
similar to them—that will follow later, in this connection. The important point is that one should
master the technique of setting them up.

Example (6): Paraboloid of revolution

This is the solid generated by the rotation of a part of parabola, about its axis.
(Since the parabola is not a closed curve, we shall consider only the solid generatedby a part of
the curve, so that the volume generated is a finite quantity.) There are two cases.

Case (i) When the axis of the parabola coincides with the x-axis (i.e., OX)
In this case, the general form of the equation is

V> =4ax (6)

In Figure 8b.11, OP represents a part of the curve, where P(x, y) is a point on the curve. PA is the
ordinate of P (i.e., PA=y), and let, OA =c.

OP rotates around OX, generating a solid, with a circular base PQR.

Now, it must be clear, that the element of volume is nyz dx, and that the limits of x are O to c.
Let V be the volume
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X li X
Pool A
o 0
N
FIGURE 8b.11
C
V*J 2
= |my“ dx

0
=7 [; 4axdx [Here, yis replaced by x, using Equation (6)]

F 27¢ 2
= 4naJX dx = 4na Sl 4ra C——O
2, 2

= 2nac? cubic units Ans.

Note: Now consider the cylinder indicated by the dotted lines in the above figure. This is the
circumscribing cylinder of the paraboloid.

The volume of this cylinder = 4my* - OA, (yatx = 0)
= n(4ax)-OA (sincey? =4dax atx = c)
= n(4ac)-c¢ (since OA = ¢)

= 4mac? cubic units Ans.

Remark: The volume of the paraboloid (i.e., 2na - ¢*) equals half that of the circumscrib-
ing cylinder.

Case (ii) When the axis of the parabola coincides with the y-axis (i.e., OY)
In Figure 8b.12, we consider a part of a parabola, whose axis is the y-axis.
The general equation of such a parabola is

y=ax’ (7)
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’

y
FIGURE 8b.12

Let P(x, y) be any point on the curve. Let PB be its abscissa (i.e., x coordinate), such that PB = x,
and let OB = b. (The length OB suggests the height of the part of parabola that generates the
paraboloid.)

Obviously, the element of volume, in this case is,

nx* dy

The limits of y are 0 to b. Therefore, the desired volume V is given by
b
V= jnxz dy

[Tt

= nJ%dy [where, x is replaced by “y”, using Equation (7)]

:*ﬁ®
0
n [y? b 1 nb?
= —|—| =—|=—-0| ==<— cubic units Ans.
a2, al2 2 a

”»

Example (7): Calculate the volume of a paraboloid of revolution, when a “parabolic triangle
bounded by the upper half of a parabola

y? =cx

is rotated about the x-axis, and bounded up to the straight line x =a.
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FIGURE 8b.13

Solution: The equation of the parabola is
Y= ex (8)

When the upper half of this parabola is revolved about the x-axis, the paraboloid is generated.
We have to find the volume of the solid (in question) bounded up to the straight line x =a
(Figure 8b.13).

Let the volume in question is denoted by V.

Thus we write, V = |my dx

n(ex) dx [* ¥* = exby Equation (8)]

x21¢ a* nca? . .
=nc|—| =mnc|—-0| = > cubic units Ans.

Example (8): Find the volume of a solid resulting from the rotation about the x-axis, of a figure
bounded by the x-axis and half-wave of the sine curve y=sin x (Figure 8b.14)

Solution: The equation of the curve is

y=sinx 9)
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y .
y=sinx
‘3 x
1 |
0 T ™
2
FIGURE 8b.14
.. The desired volume is given by
s n
V= Jny2 dx = 7szin2 xdx [.. y=sinx, by Equation (9)]
0 0

[T1=cos2
:n[ cosx}dx

X sin2x {x sin Zx}
X=m x=0

2 4 2 4
T sin2w
=7|-— —[0-0
25~ o0
i 2
=7 [5 —0} = > cubic units Ans.

Example (9): Volume of a cone

A cone is generated by the rotation of right-angled triangle, whose axis of rotation is one of the
sides containing the right angle.

Solution: As shown in Figure 8b.15, let the radius of the base of the cone be r (= AM) and the
height of the cone be h (= OM).
Let OA be the straight line y =mx, A being any point on the line.

(Our interest lies in computing the volume of a cone when the line segment OA is rotated
around OX.)

Let 6 be the angle made by the line OA, with OX (i.e., x-axis).
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FIGURE 8b.15

Then, tan 0 =m =54 =+

Let V be the volume of the cone of which “O” is the vertex, the circle ABA, the base, and
the height “/4” (= OM). (The small element PQ on rotating, describes a small slice of the cone,
of which the ends are the circles, described by P and Q.)

Thus, the element of volume is my? dx.

h h
V= J?‘cy2 dx = 7rJ~(mx)2 dx (wherey = mx)
0 0

; 213
X m L
= nmzsz dx = nm® [ 3 } =3 cubic units Ans.
0

In the above equation (V = (1/3)nm?h*), “m” is not defined in terms of known quantities.
Hence, we replace it by the ratio r//, in which both r and / are known.

Therefore, v = 17> h* = 1 7r2h. Note that the quantity “7r>” represents the area of the base
(of cone). Hence, we can write, V (i.e., volume of the cone) = 1/3 (area of base)-(height).

Remark: Volume of a right circular cone is one-third that of a cylinder whose base area and
height are same.

Itis important that we have a method for calculating the length(s) of arc(s) of regular curve(s). ®

©® Recall that, earlier, we did not have any method for calculating the length of (even) a circular arc. However, based on the
fact that the circumference of a circle is proportional to its radius “7”, the radian measure of an angle suggests that the ratio
of the length of circumference to its radius is a constant, denoted by 2. This idea permits us to say that the length of the
circumference of a circle is 27nr. Of course, the exact value of 7 is not known but its approximate value (based on practical
methods) is found to be 3.14159. . ., and used for finding the length of the circumference of a circle.

In other words, the length of circular arcs could be defined in terms of the length of a straight line segment (i.e., radius “r”").
In principle, no part of a curve, however small, can be superimposed on any portion of a straight line. On the other hand,
integration supplies a method of determining the length of any regular curve. In the entire process, the most important role is
played by the concept of limit. Thus, it is important to learn this useful concept thoroughly.
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Now we may proceed to calculate the areas of curved surfaces of regular solids. Let us
discuss.

8b.6 AREA(S) OF SURFACE(S) OF REVOLUTION

When the curve y =f(x) is revolved about the x-axis, a surface is generated (Figure 8b.16).
To find the area of this surface, we consider the area generated by an element of the arc “ds”.
This area is roughly that of a cylinder of radius y, and we write

dS =2nyds

where “dS” stands for the small element of surface area generated by rotation of small element
“ds” of the curve about the x-axis.

Note: The important point to be remembered is that we can compute the surface area of
revolution of a curve of finite length only.
Summing all such elements of surface area, we get

b b
S = J 2wy ds or S=2n Jy ds©

a

Thus, the surface area in question is given by

FIGURE 8b.16

) Recall that we have already shown earlier that an element of arc length of a curve in cartesian coordinates is given by

ds=1/1+ (%)zdx.
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Note: Appropriate modifications of this formula will be necessary, if the curve is revolved about
some other line or if polar coordinates are used, and so on.

Notation: We denote the (finite) length of a curve by “s”, whereas the surface area generated by
a revolving the curve (of finite length) is denoted by “S”.

Example (10): Find the surface area of a sphere of radius “r”
Solution: This area can be generated by revolving the upper half of the circle x* +y? = r?,
about the x-axis. Here, y=+vr?2—x2%, a= —r, b =r (Figure 8b.17).

Here, we have dS=2nyds

Therefore, the surface area (of the sphere) in question is given by

b b 5
dy
S = JZnyds= JZny 1+ (—) dx
dx
a a

r d P
y
S=2 1 —]d 10
w1+ () o (10)
—r
Differentiating the equation x? 4 y> = 2, we get
dy dy X
2x+4+2y-—=0 —_—=——
Xy dx o dx y

FIGURE 8b.17
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Using the result in Equation (10), we get

" 2 ! 2 2
S = szy-,/l +%dx:2njy,/%x

—r —r
r

=2n J rdx (Note that “r”” is a constant)
—r

S = 272?}’de = 2mr[x]", = 2mr[r—(—r)]

= 4nrsquare units Ans.

Example (11): Surface area of a cone
The surface area of a right circular cone can be obtained by two methods:

(a) By using geometry, and the concept of radian measure of an angle.
(b) By using Calculus.

Method (a): Using geometry

Consider a right circular cone with vertex “A”, the slant height ¢ and the radius of the circular
base “r”. If the vertex “A” is regarded as remaining at a fixed point on the table, and the base of
the cone is rolled across the table so that the base completes one full turn. Then, the base will
trace out the sector of a circle with radius ¢ (= AB), as shown in Figure 8b.18. The length of the

FIGURE 8b.18
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arc BB (traced out by the base of the cone) = 2nr. Obviously, the surface area of the cone is the
circular triangle A BB, where BB is the arc of the circle, whose center is at “A” and radius .
Thus, the calculation of the (curved) surface area of the cone is reduced to the calculation of the
area of a sector of a circle, whose radius is £ (= AB). We can calculate the area of the sector
described by the rolling of the cone, as follows. We know that the length of the arc BB =2nr
(where “r” is radius of the base of the cone).

Let the angle BAB, be 6 radians. Then by the rules of circular measure, we have,

Area of the circular sector ABB; Angle subtended by the arc BB, (at the center)

Area of the (whole) circle with radius# ~ Angle subtended by the whole circle (at the center)

(curved) surface area of the cone ¢

B nl? 2n
on? 1
(curved) surface area of the cone = ;7 = EZZO

In the above equation, the angle “6” can be replaced in terms of known quantities.
Note that, by the rules of circular measure, we can write

0— length of the arc BB; (generated by rolling one full turn of the cone, about A)

radius “¢” of the circle (whose center is A)

_2m

14

Therefore, (curved) surface area of the cone =12 (%) = nr(

Thus, the formula for the (curved) surface of the cone is s = nr/.

Note that, the above method does not use Calculus at all. The same result can however be
obtained by Calculus as follows.

0

Method (b): Using Calculus

In Figure 8b.18, PQ is a small part of the circumference of the base of a cone. Since PQ is a very
small part of the circumference, it will be very nearly straight. As PQ is made smaller, the
sector APQ approaches the form of a triangle.”

This line of thinking (in terms of limit concept) suggests to us that we obtain the
approximate area of the sector by computing the area of the triangle, using the formula

Area of the triangle = 1(height)-(base)

Now, the height of the triangle can be obtained by drawing a perpendicular from A to the
small (arc) segment PQ. We may denote it by AS (not shown in the diagram), and obviously
AS~ /.

The area of the triangle is therefore %f x PQ

™ Note carefully that we are applying the concept of limit. Though a sector will never become a triangle, yet, by reducing
the length of PQ, we can bring its area “in the limit”, closer and closer to that of a triangle.
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Taking the above expression, A is the limiting value of “the element of area”, we may
compute the area of surface of the cone by summing up all the small areas like this.

surface area of cone

= %K x sum of all arcs like PQ

1
= 56 x circumference of base

= %é X 2ntr = mrd.

Exercise

Q. (1) Find the length of the arc of the parabola y2 =4x from x=0to x =4.
Ans. 2v/541og(2+/5).

Q. (2) Find the length of the arc of the curve y2 = from x=0to x=35.

335 .
Ans. fumts.

Q. (3) Find the length of the arc of the circumference of the circle whose equation is r = 2a cos 6.
Ans. 2ma.

Q. (4) Find the volume of solid generated by rotating the area bounded by x> + y> =36 and the
lines x =0, x =3, about the x-axis.

Ans. 997 cubic units.

Q. (5) Find the volume of the sphere with radius 3 units.

Ans. 367 cubic units.

Q. (6) If the region enclosed between the parabola y=x> 4+ 1 and the line y=2x + 1 is
revolved about the x-axis, find the volume of the solid of revolution.
104n

Ans.
ns 5

cubic units.

Q. (7) The region bounded by y2 =4x, y=0, and x =4 is rotated about the x-axis. Find the
volume generated.

Ans. 32 cubic units.
Q. (8) The region bounded by the lines x —2y + 6 =0, y=0, and x =2 is rotated about the
x-axis. Find the volume generated.

2
Ans. 42 3 7 cubic units.
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Q. (9) Find the area of the surface of the solid generated by the rotation of the straight line
y :%x, around the x-axis, between the values x =0 and x =3.
135 .
Ans. ——m square units.
16
Q. (10) The part of the curve of x> = 4y that is intercepted between the origin and the line y =8

is rotated around y-axis. Find the area of the surface of the solid that is generated.

208 .
Ans. —3 T square units.

Q. (11) Find the area of the zone cut off a sphere of radius “r” by two parallel planes, the
distance between which is /.

Ans. 2mrh square units.



9a Differential Equations: Related
Concepts and Terminology

Nature’s voice is mathematics; its language is differential equations.

9a.1 INTRODUCTION

Algebraic equations describe relations among varying quantities. Differential equations go
one step further. They describe, in addition to relations among changing quantities, the rates at
which they change.

Definition: An equation involving derivatives or differentials is called a differential equation.
In other words, a differential equation is an equation connecting the independent variable x, the

[T3RL]

unknown function “y”, and its derivatives or differentials.

The topic of differential equations is so vast that it is identified as a separate subject.

9a.1.1 Ordinary and Partial Differential Equations

A differential equation is said to be ordinary if the unknown function y depends solely on one
independent variable. Such a function may be expressed in the form y = f{x). Some examples of
ordinary differential equations are:

dy
o3 1
Ix x (1)
dy 7
— 45y =12e™ 2
oy Ty =12 2)
AL PR, (3)
dx? dx V=
d2
d—x);—i-siny:O 4)
dy = cos x dx (5)

Differential equations and their solutions 9a-Basic concepts and terminology. Formation of differential equation by
eliminating the arbitrary constant(s) from the given equation(s). Solution of differential equations and the types of
solutions. The simplest type of differential equation and the method of solving it.

Introduction to Integral Calculus: Systematic Studies with Engineering Applications for Beginners, First Edition.
Ulrich L. Rohde, G. C. Jain, Ajay K. Poddar, and A. K. Ghosh.
© 2012 John Wiley & Sons, Inc. Published 2012 by John Wiley & Sons, Inc.
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d?y
- (6)
Ey LA
a2 (5) 7
d? d
ek VAR (8)
dy a
Y= 0 T @) ®
B [1+(dy/dx)2]%
T 1o

Later on, it will be seen that an ordinary differential equation can describe many phenomena in
physics and other sciences. For instance,

¢ the motion of a falling body, as in Equation (1),
¢ change in the size of population, as in Equation (2).
o flow of current in an electric circuit, as in Equation (3), and

o the motion of a pendulum, as in Equation (4), and so on.

A partial differential equation is one in which the unknown function y depends on more than
one independent variable, such that the derivatives occurring in it are partial derivatives.
For example, if z=f(x,y) is a function of x and y, then the equation

, 0z

Y %

Similarly, if w =f(x,y,z,t) is a function of time “t” and the rectangular coordinates (x,y, z) of a
point in space, then the equation:

0z
+ xy@ = nxzis apartial differential equation.

w w0 ow
a- <7w + 67;2‘} + a—;;) = av; is a partial differential equation.

ox?

In general, partial differential equations arise in the physics of continuous media—in problems
involving electric fields, fluid dynamics, diffusion, and wave motion. Their theory is very different
from that of ordinary differential equations, and is much more difficult in almost every respect.

In this book, we shall confine our attention exclusively to very simple ordinary differential
equations. Accordingly, the term differential equation will always stand for an ordinary
differential equation.

9a.1.2 The Basic Concepts, Ideas, and Terminology

(a) The order of a differential equation is the order of the highest derivative appearing in the
equation.

In Equations (1), (2), (5), and (9) the order is one; in Equations (3), (4), (6), (8), and (10) the
order is two, and in Equation (7) the order is three.
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Note: There are situations of academic interest which demand extra care while identifying the
order of a differential equation.
A situation which might create confusion in identifying the order of a differential equation:

Example: Consider a differential equation

2

d? d
y+8—y+Jydx:%

dx? dx

One may be tempted to say that the order of the above equation is “2”, as it appears. However, this
is not correct. To find its order, we have to eliminate the term [ ydxx. In this case, it is quite simple
to eliminate [ ydx, since y is a function of x. By differentiating both sides of the given equation,
we get g;?{ + 8% +y = 5. Obviously, the order of the given differential equation is “3”.
Recall from Chapter 6a, wherein, we have seen that the operations of differentiation and
integration are the inverse processes of each other. Using this fact, we have been able to remove
the term [ ydx and obtained the (new) differential equation, free from the term [ ydx.

Thus, if there is any term of the form [ ydx in the given differential equation, then it must be
made free from such a term before deciding the order of the differential equation.

(Of course, we shall not be dealing with such differential equations in our study.)

9a.2 IMPORTANT FORMAL APPLICATIONS OF
DIFFERENTIALS (dy AND dx)

Note that, the differential Equation (5) involves differentials dy and dx. We have discussed at
length (in Chapter 16 of Part I) that Equation (5) can also be expressed in the form dy/dx = cos x,
which is a differential equation of order one. Here, the symbol dy/dx represents a limit (which is
a single symbol) and we call it the derivative of y with respect to x. However, it can also be
looked upon as a ratio of the differential dy to the differential dx (where dy is the differential of
the dependent variable “y”, and dx stands for the differential of the independent variable “x”). In
fact, such a ratio (of differentials) can be denoted conveniently in the form dy/dx. However,
since both the forms mean the same thing, there is no confusion in expressing the differential
equation dy = cos x dx in the form dy/dx = cos x. However, the question is: Can we interpret the
equation dy = cos x dx in the same way as we have interpreted the other form of the equation.
First, it must be emphasized that this flexibility in expressing dy/dx (in two ways) is very useful
in many formal transformations. In fact, we have already seen such transformations in
computing antiderivatives (or indefinite integrals), involving the method of substitution.

For a given differential equation, in the form of dy =f(x) dx, our interest will always be to
find the “unknown” function y, which must satisfy the given differential equation. This process
is known as finding a solution of the given differential equation. To see how the formal
transformation(s) play their role, let us consider the differential equation

dy
= (1

The above equation says that y is a function of x, whose derivative is f{x).
Hence, our problem reduces to finding an antiderivative of f{x). The method of substitution
helps in converting many complicated functions to some standard form.
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In an integral y = [ f(x)dx if the substitution is x = ¢(¢) then, dx = (dx/d1)dz, and fo find y,
we have to simplify the function f [¢(1)](dx/dt), and express it in a standard form, so that its
integral can be written. (The expression f [¢(£)](dx/df) appears to be a complicated function of
“1,” but the process of expressing it in the standard form is quite simple, as we have seen in the
method of integration by substitution). Now, suppose we have to obtain a solution of the
differential equation dy = f (x)dx, then, instead of writing it in the form of Equation (11), we can
also express it in the following form:

dy _
adx = f(x)dx (12)

(Here, the differential dx on the left-hand side is treated like an algebraic quantity.)

Now, the above Equation (12) clearly says that f (x) represents the derivative of some
function “y”. (How?) Hence, to find the function y [= F(x), say], we have to evaluate [ f(x)dx.
If the concept of differential is clearly understood by the student, then there should not be
any confusion in writing the equation dy=f(x)dx in the form ‘%dx = f(x)dx. (With this
manipulation, the student should be able to appreciate better, the beauty of the subject.)

(b) The degree of a differential equation is the (algebraic) degree of the highest derivative
(appearing in the differential equation) when the differential coefficients are free from radicals
and fractions.

(In other words, to determine the degree of a differential equation, the derivative should not
be in denominator or under radical sign.)

In the (differential) Equations (1)—(7), the degree is one. In the differential Equation (8),
the derivative is under the radical sign, which can be removed by squaring both sides of

Equation (8). This gives us,
&y\’ d
) =1+ 2
dx? dx

Thus, the degree of differential Equation (8) is two. Similarly, the degree of the Equation (9)
which is,
dy a

YEXee T ay/ax

is obtained by making the equation free from fraction.

d dy\’
We get y—y =X & + a. Thus, the degree of Equation (9) is two.
dx dx
Note: To find the degree of a differential equation, the important requirement is that, it must be
expressed in the form of a polynomial equation in derivatives. Once this is done, the highest
positive integral index of the highest order derivative involvedin the given differential equation

represents the degree of the differential equation.

Example: Consider the differential Equation (10), i.e.,

3

[1 + (dy/dx)z] ’

dzy
C (dy/dx?)

or —=(1/r)

dx2

(@]
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Though we have freed the above equation from the fraction, a fractional index (called radical)
still remains on the right-hand side. Hence, squaring both sides of the above equation, we get

2.\ 2 213
. d—z = |1+ &
dx dx

Thus, the degree of the above equation is two.

9a.2.1 A Situation When the Degree of a Differential Equation is not Defined

If a differential equation cannot be expressed in the form of a polynomial equation in
derivatives, then the degree of such a differential equation cannot be defined.

Example (1): Consider the differential equation

dy . (dy
&—Fsm(a)fo

Note that this equation is not a polynomial in dy/dx. Hence, itis not possible to define the degree
of this differential equation.

Remark: The order of a differential equation and its degree (if it is defined) both are always
positive integers.

9a.2.2 Formation of a Differential Equation

[Tt

Consider a relation in x and y involving “n” arbitrary constants. Thus, we consider a relation of
the type,

f(-xvyvchCZw“Cn):O (13)

We can obtain a differential equation from Equation (13), as follows:

Differentiate Equation (13) with respect to x, successively “n” times, to get “n” more
equations as follows:
fl(x’yvy/7clacZ7' ..Cn) =0
fZ(X-,y’y,,y'C Cl,C2y. .. Cn) =0
fS(X,%)’/J”JW, C1,C2y. .. Cn) =0
fn(x7y7y,ay”7ym7 . .y(n), Cl,C2y. . cn) =0

Thus, we have in all, (n + 1) equations, as clear from Equations (13) and (14) given above.

[Tl

Eliminating “n” arbitrary constants from these (n + 1) equations, we get

F(x,3,9,5",y",...y™) =0
dy &2y & a (15)
or F( y d7y d’y y) —0

Xy, — —= ——
Vi A A dxm
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Equation (15) is the desired differential equation obtained from the Equation (13). We also say
that Equation (13), containing 7 arbitrary constants, is the general solution of the differential
equation (15). (We shall have a detailed discussion on these matters shortly.)

Now, we propose to discuss, through solved examples, the method of obtaining differential
equation(s), by eliminating arbitrary constants involved in the given equation. However, it is
useful to first get a feel of the solution of a differential equation and the types of solutions.

Definition (1): A solution (or an integral) of a differential equation is a relation between the
variables, by means of which the derivatives obtained therefrom, the given differential equation
is satisfied.

Definition (2): Any relation which reduces a differential equation to an identity, when
substituted for the dependent variable (and its derivatives), is called a solution (or an integral)
of the given differential equation.

Remark: Solution of a differential equation is a relation between variables, not a number, that
satisfy the differential equation.

9a.2.3 Types of Solutions

(I) The general solution (or the general integral) of a differential equation is a solution in
which the number of arbitrary constants is equal to the order of the differential equation.
Thus, the general solution of the first-order differential equation contains only one
arbitrary constant, a second-order differential equation contains only two arbitrary
constants, and so on.

(D) A particular solution of a differential equation, is that obtained from the general
solution by giving particular values to the arbitrary constant(s).
The values of arbitrary constants are obtained from the given initial conditions (of the
argument and the function). The above definitions and related concepts will become
clearer with the following examples.

Example (2): Consider the differential equation

dy 3

— =4x 16
T (16)
(This is a differential equation of order one and degree one.) It is easy to see that y=x*
is a solution of Equation (16). Further, by actual substitution, we see that y = x* + ¢ is also a
solution of Equation (16), where c is an arbitrary constant.

o The solution y = x* + ¢, involving an arbitrary constant is called a general solution of
Equation (16).

o The solution y = x* which does not involve any arbitrary constant is called a particular
solution of the above differential equation. (Here, we have chosen ¢ = 0, but we can also
give any other value to c.)
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Note: Any solution that does not involve an arbitrary constant is called a particular solution.

Remark: A particular solution of a differential equation is just one solution, whereas, the
general solution of a differential equation is a set of infinite number of solutions corresponding

[TPR1}

to the infinite number of arbitrary values which can be assigned to “c”.

Example (3): Consider the differential equation

d?y
@ +y =0 (17)
(It is of order two and degree one.)
We can easily show that the relation
y =cos X (18)
is a solution of differential equation 7).
From Equation (18), we get
dy %y
Fh —sinx, and ol —CoS X
d2y
il -0
dx? +y
Note that the substitution y=cosx implies that % = —cos X, as indicated above. Thus,

Equation (18), together with the derivatives obtained from it, satisfy the differential equation
(17). In other words, the substitution y = cos x in Equation (17) turns the equation to an identity
0=0. Therefore, Equation (18) is a solution (or an integral) of the differential equation (17).
Similarly, it can be verified that the relation,

y = sinx (19)
is also a solution of the differential equation (17). [Note that both Equations (18) and (19) do not

contain any arbitrary constants.]
Again, by considering the relation y = a cos x, we get

dy . d?y
a: —asinx and @: —acos x
d2y

',@—O—y: (—acos x)+ (acosx) = 0.

1 Here, one should not bother about how the solution y = cos x was reached at. We shall be learning the method(s) of
solving differential equations in the chapters to follow. Here, we make use of the available information, for our discussion.
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It follows, that the relation
Yy =acosx (20)

where a is an arbitrary constant is a solution of the differential equation (17). Also, note that the
solution y = a cos x includes the solution y = cos x. (This becomes clear by assigning “a”, the
particular value of unity.) Similarly, it can be verified that

y=bsinx, (21)

is a solution of the differential equation (17) and that it includes the solution y = sin x.

In fact, “a” and “b” can be assigned any real values. From this point of view, it is logical to
say that the solutions at Equations (20) and (21) are more general than the solutions at
Equations (18) and (19). Further, it can be shown that the relation

y =acosx+bsinx (22)

where « and b are arbitrary constants is also a solution of the differential equation (17).
It is useful to prove this.
From the Equation (22), we get, on differentiation,

dy

— = —qsi b cos ) 23
Ix asinx+bcos x (23)
d2
dx); = —acosx —bsinx (24)
Adding Equations (24) and (22), we get,
gi{ +y = 0, which is the differential equation (17). Thus, Equation (22) is a yet “more general

solution”, from which all the preceding solutions of Equation (17) are obtained by giving
particular values to “a” and “b”.

Observations:

(i) The solutions at Equations (18) and (19) do not contain arbitrary constant(s).
(i1) The solutions at Equations (20) and (21), contain one arbitrary constant each. These
solutions are more general than those at Equations (18) and (19).
(iii) The solution at Equation (22) is a yet more general solution of the differential equation,
than those at Equation (20) and (21).

From the above observations, one is tempted to ask the question: How many arbitrary constants
must the most general solution of a differential equation contain?

The answer to this question is obtained from the consideration of the formation of a
differential equation, from a relation of the type.

f(-X?y?Claczvcn) =0 (25)

€99

by eliminating the “n” arbitrary constants. Using the procedure discussed earlier in
Section 9a.2, we know that when all the arbitrary constants (c; to ¢,) are eliminated from
Equation (25), we get a differential equation of order “n”.
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The concepts developed in the above examples are expressed in the following two
definitions.

Definition (1): The solution of a differential equation of order “x”, which contains exactly

n” arbitrary constants is said to be the most general solution of the given differential
equation.

(Shortly, we will show that all such arbitrary constants must be independent, which will mean
that their number cannot be reduced.)

Definition (2): A solution of a differential equation that can be obtained from its general

solution, by giving particular values to the arbitrary constants in it, is called a particular
solution.

Note (1): A differential equation can have a solution, which is neither the general solution nor a
particular solution. Such solutions are called singular solutions. In this book, we will not
discuss differential equation having singular solutions.

Note (2): Our interest will be to find either the most general solution or a particular solution of
the given differential equation.

Note (3): To avoid confusion in terminology, we shall use the term general solution to mean
the most general solution of the differential equation. First, let us consider some more

examples.

Example (4): Consider the differential equation

o e (26)

(It is of order one or degree one)
Integrating both the sides of Equation (26) with respect to x, we get

de = J sec2xdx

or J (%) dx = J(sec2x)dx +c (27)

[TPRL]

where “c” is the constant of integration.
We can write the solution Equation (27) in the (simplified) form,

y=tanx+c (28)

which is the (most) general solution of the differential equation (26), in the sense discussed
above.
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Remarks:

o In writing Equation (28) [from Equation (27)], we have made use of the antiderivative
(i.e., indefinite integral) of the function involved. Thus, any solution of the given
differential equation is also called an integral of the differential equation.

¢ Observe that, the differential Equation (26) is of order one and its solution Equation (28)

contains one arbitrary constant. Hence, the Equation (28) is the general solution of the

differential Equation (26).

The general solution Equation (28) includes all solutions of the differential equation (26),

which can be obtained by assigning particular values to “c”. Accordingly, for ¢ =0, 5, and

(—m), we can write the particular solutions of Equation (26) as, y=tan x, y=tanx + 5,

and y =tan x — 7, respectively.

In Example (3), we have seen that the general solution of the differential equation
dzy
dx?

+y=0,is y=acosx + bsinx, where a and b are two arbitrary constants.

Accordingly, all other relations obtained by assigning particular values to a and b, (e.g.,
y=2cos x — 5sin x, etc.) are called the particular solution(s) of the above differential equation.
It is useful to verify this fact. This is really very simple.

9a.2.4 An Initial Condition and a Particular Solution

Any differential equation has an infinite number of solutions. A particular solution becomes
important, whenever we are interested in not all the solutions, but in one of the solutions, which
satisfies a particular condition.

Example (5): Consider the differential equation

dy
—=3 29
ax (29)
Now, suppose we wish to find the particular solution satisfying the condition y = 1 when x =4.
Here, the general solution is given by

J‘ (:—z) dx = J(3)dx+ ¢

or y=3x+c¢ (30)

where c is an arbitrary constant.
Note that, the Equation (30) represents a family of parallel lines corresponding to different
values of ¢, each having the same slope 3. To find the particular solution satisfying the given

condition, we must choose “c” suitably, as follows.
Put x=4 and y =1 in the general solution given by Equation (30), we get,
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Hence, the required particular solution is

y=3x—11 Ans.

9a.3 INDEPENDENT ARBITRARY CONSTANTS (OR ESSENTIAL
ARBITRARY CONSTANTS)

(This concept is useful with reference to the solution of a differential equation.)
Example (6): Consider the relation

y=mx+a+b (31)
where m, a, and b are arbitrary constants.

By assigning particular values to m, a, and b, we get an equation in x and y that defines y as a
function of x.
Now, if we write a + b= c in Equation (31), we get the relation

y=mx+c (32)

Observe that every function which can be obtainedby assigning particular values to the arbitrary
constants in Equation (31), can also be obtained from Equation (32) by assigning particular
values to the arbitrary constants in it, and vice versa.

Note that, the number of arbitrary constants in Equation (31) appear to be three whereas in
Equation (32) the number of arbitrary constants is reduced by one so that there are only two.
Observe that, both the relations s¢ill include the same functions. In other words, there is no loss
of generality, even when the number of arbitrary constants is reduced. Therefore, we say, that
arbitrary constants m, a, and b [in Equation (31)] are dependent, not independent.

Now the question is: Can we reduce the number of arbitrary constants in Equation (32),
without loss of generality? Let us discuss.

One may be tempted to write ¢ =0 in the Equation (32), Then, we get the relation,

y =mx (33)

which contains only one arbitrary constant.

Now observe that Equation (32) includes the function y=2x + 3, but Equation (33) does
not include it. Thus, Equation (32) is more general than the Equation (33). In other words, there
is a loss of generality when the number of arbitrary constants is reduced in Equation (32). The
conclusion is that in Equation (32) we cannot reduce the number of arbitrary constants without
loss of generality. Hence, the arbitrary constants 7 and ¢ in Equation (32) are said to be
independent.

Example (7): Consider the relations, defined by the equation

cy =acosx+bsinx (34)
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where a, b, and ¢ are arbitrary constants. [Note that Equation (34) is meaningful only when
¢ #0]. Now, since ¢ # 0, dividing throughout by ¢, Equation (34) can be written as:

a b .
y=—COSX+ —sinXx
c

or y =Acos x+ Bsinx, (35)

where A = (a/c), and B = (b/c).

Further, observe that every function obtained from Equation (34), by giving particular values
to a, b, and ¢, can also be obtained from Equation (35) by giving particular values to A and B.
Thus, we can obtain Equation (35) from Equation (34), by reducing the number of arbitrary
constants, without loss of generality. Hence, the arbitrary constants a, b, ¢ in Equation (34) are
said to be dependant. On the other hand, the arbitrary constants in Equation (35) cannot be
reduced without loss of generality. Hence, the arbitrary constants A and B in Equation (35) are
said to be independent. (The terms independent arbitrary constants and essential arbitrary
constants have the same meaning. Besides, the word parameter(s) will be frequently used to
stand for these terms.)

9a.4 DEFINITION: INTEGRAL CURVE

The graph of particular solution of a differential equation is called an integral curve of the
differential equation.

To the general solution of a differential equation, there corresponds a family of (integral)
curves.

9a.4.1 Family of Curves

Let an equation of a curve be represented by a relation,
f(x,y,¢)=0 (36)

where ¢ has some fixed value.
Then, by assigning different values to ¢, we get different curves of a similar nature. Thus, the
Equation (36) represents a family of curves with one parameter. Similarly, the relation

f(x,y,a,b) =0 (37)

represents a family of curves with two parameters, a and b.
Now we can give a more refined definition of the general solution of a differential equation.

Definition: The general solution (or the general integral) of a differential equation is a solution
in which the number of essential arbitrary constants is equal to the order of the differential
equation.
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9a.5 FORMATION OF A DIFFERENTIAL EQUATION FROM A GIVEN
RELATION, INVOLVING VARIABLES AND THE ESSENTIAL ARBITRARY
CONSTANTS (OR PARAMETERS)

Now we shall discuss through solved examples, the methods of obtaining differential equations,
by eliminating the independent arbitrary constants [or parameter(s)], involved in the given
relation.®

Example (8): Consider the equation
y =mx (38)

Here, m is a parameter and for each value of m, we get a straight line with slope “m”, with each
line passing through the origin.

Here the slope of each line is different, but all the lines satisfy a common property that they
pass through the origin (see Figure 9a.1).

Differentiating both the sides of Equation (38), w.r.t. x, we get

o_,
dx

by substituting the values of m in Equation (38), we get

dy
y=--X
dx (39)
dy
or x——y=0
dx

which is free from the parameter “m”. This is the required differential equation. Note that
Equation (38) which contains one arbitrary constant “m”, is the general solution of differential
Equation (39), which is of order one.

Example (9): Consider the equation
y=mx+c (40)

Here m and ¢ are two parameters (i.e., arbitrary constants).
By giving different values to the parameters 2 and ¢, we get different members of the family, for
example,

@ The purpose of examples to be discussed here is to get acquainted with the types of situations, which may be faced in the
process of obtaining differential equations. This will also make one understand: What is a differential equation about? In
the next chapter, we shall introduce some methods of solving differential equations of order one and degree one. However,
the reader will be able to appreciate the difficulties that may be faced in solving differential equations. Later on (in higher
classes), it will be discovered that only certain types of differential equations can be solved, and not all.
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FIGURE 9a.1
y=x+1 (m=1,c=1)
y=—x+1 (m=-1,c=1)

Thus, Equation (40) represents a family of straight lines, where m and ¢ are parameters. The
slope of each line is given by the value of m and the number “c” gives the y-coordinate of the
point at which the line intersects the y-axis. Now, our interest is to form a differential equation,
which should be satisfied by each member of the family having Equation (40). Besides, the
differential equation must be free from both the parameters. (Because they are different for
different members of the family.) To obtain the desired differential equation, we differentiate

Equation (40) with respect to x twice, successively. We get
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dy
a—m
&y _
dx?

(41)
and

The Equation (41), is the desired differential equation. Again, remember that the general
solution of the Equation (41), is represented by the Equation (40).

Note: We may also say that the differential equation (41) represents the family of straight lines,
given by Equation (40).

Remark: In Example (8), the Equation (38) contained only one parameter, namely, “m”. To
eliminate the (single) parameter, one differentiation was found sufficient. In Example (9), we
considered Equation (40), containing two parameters namely “m” and “c”. To eliminate these
parameters, it was necessary to apply the process of differentiation twice successively, and we
obtained the differential Equation (41), which is of the order two.Also, recall that the general
solution of the differential equation,

()

d2y

a0

was found to be y=acosx + bsinx, where a and b are two arbitrary constants.

Example (10): Consider the relation
y=2x+c¢ (42)

This relation obviously represents a family of lines. The common property of all the lines in the
family is that they are mutually parallel to each other, with slope 2. Again, corresponding to
each value of the parameter “c”, there is a line that intersects the y-axis at the point (0, ¢). The
desired differential equation is obviously, dy/dx = 2, which represents the slope of each straight
line given by Equation (42).

Remark: It will be seen that, whereas in some cases the equations may represent a known
family of curves, in others, the family of curves may not be known. The difficulties involved
in eliminating the parameter(s) from the given equations will generally depend on the nature of
the relations.

Example (11): Obtain the differential equation by eliminating the arbitrary constants a and b
from the relation,

y =ae* +be™”

Solution: The given relation is

y=ae* +be™” (43)
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It contains two arbitrary constants. (This suggests that we have to differentiate the given
relation fwice.)
Differentiating both sides of Equation (43) w.r.t. x, we get

Again differentiating both sides of the above equation, we get

d2y

dx?

=ae* +be™™ (44)

Using Equation (43) in Equation (44), we get

d2y dzy
o2 =Y

o Y=0 (45)

This is the required differential equation of order two. Ans.

Example (12): Find the differential equation of the family of curves,
y = Ae* + BeS*

where A and B are parameters.

Solution: The given equation is

y = Ae¥ 4 Be* (46)

Differentiating w.r.t. x, both sides, we get

d ,
d% = 34> 4 5B (47)

Again, differentiating w.r.t. x, we get

dzy 3x Sx
i 9Ae™ 4 25Be” (48)
Multiplying Equation (47) by 5, we get
dy 3x Sx
S—dx = 15Ae™ +25Be™ (49)

But from Equation (48)
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The difference, Equation (49) - Equation (48) gives us,

dy d2y 3

52 -2 = 6Ae™

dx dx? ¢

L5 dy 1 dy .
A= T a2 (50"

Now, multiplying Equation (47) by 3, we get
3D _gpct 4 15865 (51)
dx

Again, the difference of Equation (48) - Equation (51) gives us the result as,

d’y _dy
— 32 =10Be*
dx? dx ¢

1 &y 3 dy
B = — .2 .2 52
770 a2 10 dx (52)

Using Equations (50) and (52) in Equation (46), we get

S5 dy 1 ody 1 &y 3 dy

Y76 dx 6 dx 10 dx? 10 dx

8 dy 1 dy

YT dx 15 d?

—2 8= 115y =0

¢y dy
dx2 dx

which is the required differential equation. Ans.

Note: In the Examples (11) and (12) above, we have applied the “the method of elimination”,
which is fairly simple and straight-forward. It is frequently used for solving simultaneous linear
equations in two or three unknowns. However, if the number of unknowns exceeds three, the
process (of elimination) becomes extremely tedious and time consuming.

In this book, we shall consider the relations involving at most two parameters, and obtain
differential equations from them, by applying the usual method of elimination (of parameters)
or by applying the more general procedure, using determinants, discussed below.

® Similarly, we can obtain the value of Be™. Finally, using these values in Equation (46), we can obtain the desired
differential equation.

@ Fortunately, it is possible to solve simultaneous equations with more number of unknowns by a systematic general
procedure, which involves the concept of a determinant and Cramer’s Rule for evaluating it. Here, we shall apply this
general procedure, just to get a feel that the general procedure is really simpler, in handling certain complicated relations as
the one given in Example (12).
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9a.6 GENERAL PROCEDURE FOR ELIMINATING “TWO” INDEPENDENT
ARBITRARY CONSTANTS (USING THE CONCEPT OF DETERMINANT)

In Class XI, we have studied about determinants, their properties, and the method of computing
their value(s). Here, we shall recall some important points, pertaining to determinants, which

will be useful in the process of obtaining the desired differential equation using the concep

®

(i)

(iii)

(i)

.

Suppose we are given three equations in the form:

ap+big+c =0 (53)
wp+bg+c =0 (54)
ap+big+c; =0 (55)

in which p and g are independent arbitrary constants (i.e., parameters). Then, finding the
values of p and ¢ by solving these equations, we can substitute their values in any of the
equations, and obtain a relation, which will be free from these parameters (p and g).

Something like this has to be done in the process of forming a differential equation by
eliminating parameters. For this purpose, we shall differentiate the given relation
involving two parameters and then form three equations. (Of course, two of these
equations will contain derivatives.) Finally, we will eliminate the two parameters using
the properties of determinants.

The symbol,
ai b ¢
as bz C (56)
as b3 C3

where ab;c;. .. and so on may be real numbers or functions (including derivatives) is
called a determinant of order 3. Note that the determinant in Equation (56) is free from

the parameters p and q.
ar b

by
for the number or the quantity [a;b, — a,b,] and it is called the value (or the result) of
the determinant. The diagonal from the upper left to the lower right is called the
principal diagonal.®

The arrangement or the symbol, is called a determinant of order 2. It stands

The determinant in Equation (56) consists of three rows and three columns. To find the
value (or the result) of a determinant of order three, the determinant must be expanded
along the elements of first row or the first column.”

The determinant in Equation (56) (repeated below for convenience)

© This is just for understanding the general procedure. Of course, in simple problems [as in the case of Example (11)], the
usual method of elimination may be found more convenient.

© A determinant whose elements are real numbers and ultimately gets reduced to real numbers.

) In fact, a determinant can be expanded along the elements of any row or any column. Also, any row (or column) can be
shifted to the first position. However, in any such shift, the sign of the determinant changes. Further, any number (or
function) common in any row (or column) can be taken out as a common factor of a determinant, without making any
change in the sign of the determinant. (All three facts are covered under the properties of determinants.)
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ay b1 C1
a b o
as b3 C3

when expanded along the first row, will appear as follows:

[75) b2
"as bs

bz C2
by ¢

ay — b Zi zi +c (57)

Note: It is important to remember that we attach a positive sign to the first term, a negative sign
to the second term, and, finally a positive sign to the third term. The sum of all the three terms
gives the expansion of the above determinant, as indicated in Equation (57).

(v) The rule for expansion of a determinant is as follows: Starting from a,, delete the

row and column passing through ay, thus getting the 2 x 2 determinant 22 22 .
33
Then, the product a; 22 21 s the first term in the expansion in Equation (57).
3

Similarly, we obtain the second and the third terms, with b; and ¢, respectively.

Remark: Irrespective of whether we expand a determinant along a row (or a column), we get
the same value (or result) of the determinant. In other words, a determinant represents a definite
value (or result).

Now, we proceed to obtain the required differential equation from the given relation, involving
two parameters.

Example (13): Find the differential equation of the family of the curves

y = ae®* 4 be* (58)

Differentiating Equation (56) twice successively w.r.t. x, we get

d
é = 3ae®* 4 2be™ (59)
d? !

and d—xﬁ = 9ae® + 4be™ (60)

Eliminating a and b from the above, the above three equations, we get

—y e3x er
—dy ’ .
— 3% 2%
=0
2 9e3% 4%
b'e

ey

® Now if we transfer the dependent variable “y” and its derivatives, respectively in the following Equations (58), (59) and
(60) to the right-hand side of the corresponding equation, then each equation equals zero. Also, the transferred terms will
have negative sign.
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y 11
d
763);-6‘23)( ﬁ 3 2 =0
&y
dx?

[Here we have taken out (— 1) from first column, e** from second column, and >~ from the third
column.]

Again, note that —e (i.e., —e™) #0. It follows that the determinant=0.

Now, it is convenient to expand the above determinant along the first row, since it will involve
simpler calculations. We have,

dy &% dy d%
12-18)— ()42 _2 o _38Y
3 8= ( )( dx dxz) + (9dx 3dx2

3x, 2\

dy _d> dy _d¥
ey -4 128 oD 38)
o e VT 7ae
¢y dy
or @—Sa +6y =0,

which is the required differential equation. Ans.

=0

Note: Observe that the above procedure for obtaining the differential equation is comparatively
simpler than the method of elimination used in Example (12).

Example (14): Obtain the differential equation whose general solution Ax*> 4+ By = 1, where
A and B are parameters.

Solution: Given relation (or the solution) is

Ax*+By* =1

61
or AX?4+ By’ —1=0 (61)

Differentiating both the sides of Equation (61) w.r.t. x, we get
dy
2Ax+23ya +0=0 (62)

Again, differentiating both the sides of Equation (62) w.r.t. x, we get,

d’y  [dy\ [dy
avh i+ (2)(5)] -
&y | [(dy)?
ya*(a)

A+B +0=0 (63)
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Eliminating A and B from Equations (61), (62) and (63), we get

x2 y? -1
dy
— 0
~ J dx =0

(@) o

Now, we expand the above determinant along the elements of the third column. We get

] o)

Since, the number (—1) # 0, hence the required differential equation is,

d’y dy\*> dy
xy<@) +x<a> fyazo Ans.

Example (15): Find the differential equation whose general solution is
c
y=¢+-
X

where c is an arbitrary constant.

Solution: The given solution is

c
y:c2+f
X

341

(64)

which contains only one arbitrary constant. (This suggests that we will have to differentiate

only once.)
Differentiating both sides of Equation (64), w.r.t. x, we get

dy c
dx x2
d
c= -2
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Using Equation (65) in Equation (64), we get

dyl* 1 dy
I LN
y—{ xdx] +x[ Yy

2
or y = x* d—y fxd—y
dx dx

This is the required differential equation. Ans.

Remark: Observe that whereas the order of the differential Equation (66) is one, its degree is
two. Thus, depending on the nature of the given equation, we get the required differential
equation.

Example (16): Obtain the differential equation whose solution is

xy = ae* +be™*
Solution: The given relation is

xy = ae* +be™ (67)
Differentiating both sides of Equation (67) w.r.t. x, we get

x% +y=ae" —be™" (68)

Again, differentiating Equation (68) w.r.t. x, we get

dry dy\  dy
A I be™>
(xdx2 + dx) + ax +he

= Xy [using Equation (67)]

dy _d
X—= +2—=
dez + dx Xy

which is the required differential equation. Ans.

Observation: Compare the Equation (67) in this example, with Equation (43) given in the
earlier Example (11). What useful conclusion can be drawn from this observation?

Example (17): Obtain the differential equation by eliminating the arbitrary constants, from
the relation

y = asin(wt+c)
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GENERAL PROCEDURE FOR ELIMINATING “TWO" INDEPENDENT ARBITRARY CONSTANTS
Solution: The given relation is
y =asin(wt+c¢)

that contains two arbitrary constants, a and c.
Differentiating Equation (69) w.r.t. x, we get

d,); = afcos(wt+¢c)]-w

dy
— —=q-w-cos(wt
or o a-w-cos(wt+c)

Again, differentiating Equation (70) w.r.t. x, we get

d2y
dx?
dzy _
dx2

=a-w-[-sin(wt+c)]-w

—a-w?sin(wt +¢)

= —w[asin(wt + ¢)]

=-w?.y  [using Equation (69)]
d?y
dx?

+wry=0,

which is the required differential equation. Ans.
Example (18): Prove that the relation

y=x4+ax*+bx+c
Yy
is a solution of the differential equation Frh 6
x

Solution: Given,

y=x4+ax®+bx+c

343

(71)

This relation contains three arbitrary constants a, b, and ¢, hence it will be differentiated thrice.

Differentiating Equation (71) w.r.t. x, we get

d
—y:3x2+2ax+b
dx

Differentiating again, w.r.t. x, we get

d?y
@ = 6X+2(l
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Differentiating again w.r.t. x, we get

d3y

Fc (74)

It follows, that Equation (71) is the solution of the differential Equation (74). It must also be
clear that it is the (most) general solution. (Why?) Ans.

Example (19): Obtain the differential equation whose general solution is,
y=acosx-+bsinx

where a and b are arbitrary constants.

Solution: The given relation is,
y = acosx + bsinx (75)

Note that the given relation contains two arbitrary constants. Hence, we have to differentiate it
twice.

Differentiating Equation (75) w.r.t. x, we get

d
%: —asinx+bcosx (76)

Now, differentiating Equation (76) w.r.t. x, we get

&y = —acosx — bsinx
dx? a
= —(acosx+bsinx)
= —y[using (1)]
d?y
@ +y=0.

This is the required differential equation. Ans.

Note: In this example, the arbitrary constants are easily eliminated. Similarly, the next
example is very simple. However, it is important to remember that in a particular case, a special
method is more convenient, as we have seen in Examples (13) and (14). Also, it will be observed
that some extra care is needed in Example (21), to follow.

Example (20): Find the differential equation of the family of curves:

y = e“(acos x + b sin x)
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Solution: The given differential equation is,
y=¢*(a cos x+b sin x) (77)

[In this case, we will have to differentiate twice. (Why?)]
Differentiating Equation (77) w.r.t. x, we get

d
é = e"[—a sin x+ b cos x| + [a cos x + b sin x]e*

= e*[bcosx —asinx]+y, [using Equation (77)]

d :
;_%—y:e"[bcosx—asinx] (78)

Now, differentiating Equation (78) w.r.t. x, we get
¢’y d
d—xzfﬁ = e*[—bsinx — acos x|+ [b cos x — a sin x]e*

d
= —e*[bsinx+acos x] + {% - y] [using Equation (78)]

= —e*acos x+ b sin x|

¢y dy d

Té - % - % +y = —y[using Equation (77)]
d’y _dy
A R A S
dx?2  Tdx =5

which is the required differential equation.  Ans.
Note: The above example gives a complicated look due to the presence of ¢”, but elimination of
the arbitrary constants (« and b) is quite simple. However, the above solution suggests that one
has to be more careful, for obtaining the required differential equation.
Example (21): Form the differential equation from the relation,

(x—a)+(y—b>=16
©)

where a, b are constants

Solution: The given relation is,

(x—a)P +(y—b?=16 (79)

©) The given relation represents a family of circles having a radius of 4 units. Also, any point (a, b) in the xy-plane, can be
the center of the circle with Equation (79). The only requirement is that its radius must be of 4 units. Obviously, a, b are
arbitrary constants in the given relation.
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Differentiating Equation (79) w.r.t. x, we get

d
2(x—a)+2(y—b)£:0

(v—a)+ (=) =0 (50)

Again, differentiating Equation (80) w.r.t. x, we get

oty 22

dx?2  dx \dx
&y | (dy)?
2 2
)
y—b) = - (2)

&y &y
dx? dx?
Using Equation (82) in Equation (80), we get
dy 2
= 1
(&) * dy

d? y ' dx
dx?

(x—a)— 0

Using Equations (82) and (83) in Equation (79), we get

2 2

d 2 2
(d—y) +1 <:—y> +1
B A R ~ 16

dzy " dx dzy
dx? dx?
2 2
dy 2 dy 2 d2y
== 1 — 1| =16—
. [(dx) * (dx) * 6 dx?
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Note: The above solution appears to be lengthy, but it is quite simple. Moreover, it is not con-
venient to obtain the desired differential equation using the method of determinant. Check this.

Example (22): Find the differential equation of the family of curves whose equation is
y = (¢1 + c2x)e*, where ¢; and ¢, are two parameters.

Solution: The given relation is,
y=(c1 4+ c2x)e* (84)
[Since, there are two parameters, hence, we must differentiate Equation (84) twice.]
Differentiating Equation (84) w.r.t. x, we get

dy _ 2 X
G (c1 +eax)e” +e*(0+¢2)
% =y+oe
dy/dx) —
(G ;) y) (85)

Again differentiating Equation (85) w.r.t. to x, we get

oo 4 (dy N4y [Ey b (dy
dr \dx Y dx ) dx _ldx? dx ax 2

0=
(e)? e
d’y dy dy
o2 dx ax Y
dy _d
or o 2d)yc =0 Ans

Exercise

Q. (1) Determine the order and degree (if defined) of differential equations given below:

@ y=y(2) +2x2

o (5) () o
© &= \/m

D y=x5x+ @im

© (&)° +3s(d,z)2:0
® (—>) +sin () =0
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ANSWERS:
(a) Order one, degree two.

(b) Order two, degree not defined.
(c) Order two, degree two.

(d) Order one, degree two.

(e) Order two, degree two.

(f) Order three, degree not defined.
(g) Order two, degree not defined.
(h) Order three, degree two.

Q. (2) Find the order and degree of the differential equations

() 24+ & 42 =0

X

i (32) = [1+ @

& d
(iii) edr + = —
dx

(iv) /1+ s /’dxy = (3*}) "

ANSWERS:
(1) Order two, degree one.

3/2

(i1) Order four, degree two.
(iii) Order one, degree not defined.
(iv) Order two, degree three.

/ 3
[Hint: R.H.S. = (%) . On squaring both sides, the result follows.]

Q. (3) Obtain the differential equation by eliminating @ and b from the relation

y =acos4x+ bsindx

2

d
(Ans. d—xz +16y =0)

Q. (4) Obtain the differential equation by eliminating ¢ from the relation

e +ce-e=1

dy dy
Ans. =(-=2—-1)¢

Q. (5) Obtain the differential equation whose general solution is

y = ax® +b- x (Try both the methods)

d?y d
(Ans. XZ@—Z)V o +2y=0)
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Q. (6) Obtain the differential equation by eliminating m from the relation
=mx+ i
Y= m

dy dy 2
Ans. y—=x(-— 4
0 Y= <dx> *

Q. (7) Form the differential equation for

y=Ae™ +Be* +C

dy &y  dy
Ans. —-—-3—+4+2—=0
(Ans dx3 dx2 + dx )

Q. (8) Obtain the differential equation of the family of curves, whose equation is
y = (c1 + cxx)e>, where ¢ and ¢, are parameters.

_6d

y
Ans. Zioy=0
(Ans oY )

&y
dx?
Q.(9) If y = Ce®i "' x then form the corresponding differential equation.

d
(Ans. \/l—xzd%;—y:())

Q. (10) Choose the correct answer

(i) The degree of the differential equation

N\ rdy)? d
(é) —0—(%) + cos (é)ﬂ:o, is

(a) 4.
(b) 2
© 1
(d) Not defined.

(ii) The order of the differential equation

2 3
(%) = cos 4x + sin4xis,
(@) 2
(b) 3
(c) 4

(d) Not defined.
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(iii) The order of the differential equation

2
dy dzy .

(iv) The order of the differential equation

d d?
(di) +2a d—z =0is and its degreeis __ .

(v) The number of arbitrary constants in the general solution of a differential equation of
order three must be
(@) 1
(b) 2
) 3
(d) Arbitrary.

(vi) The number of arbitrary constants in the particular solution of a differential equation of
order three must be

(a) 3

(b) 2

© 1

@@ o.
(vii) The number of arbitrary constants in the equationy = a+loghxis .
(viii) The number of arbitrary constants in the equation y = ae” bx is .
(ix) Which of the following differential equations has y = c;e* + c,e™*x as the general

solution.

(@) d,cz +y=0
(b) ( JEr—y=0
(c) d S+1=0

(d 4 W‘ 1=0

[Hint: The desired equation should not have any constant term. Further, it is easily seen
from the given relation that ¢ dvz =cie¥+ce ¥ =yl]

(x) Which of the following differential equation has y = x as the particular solution

& d
(a) dx‘z ¥E+xy=x

(b) de +x +xy=x

© ;‘Q 29 +xy=0

@ P +xE+xy=0

[Hint: The differential equation should be satisfied by the condition dy/dx = 1.]

ANSWERS:

(1) (d), (i1) (a), (iii) order is two, degree is two, (iv) order is two, degree is one, (v) (c), (vi) (d),
(vii) one, (viii) one [Hint: y=a + logb + logx=(a + logb) + log x], (ix) (b), (x) (c).
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9a.6.1 Forming the Differential Equation Representing a Family of Curves

Sometimes, equations of the family of the curves (i.e., an equation with arbitrary constants) are
not given directly. From the given conditions, the equation representing the family of curves,
has to be formed first, and then it is to be differentiated in order to get the required differential
equation. Given below are some examples.

Example (23): Find the differential equation of the family of concentric circles with the origin
at (0,0), and radius r units.

[

Solution: Equation of the circle with center at the origin and radius “r” is given by
Xty =r (86)

By giving different values to r, we get different members of the family, e.g., x*> + y>=1,
X2+ y*=4, x* + y*=9, and so on (see Figure 9a.2).

In Equation (86), “r” is an arbitrary constant.

Differentiating Equation (86) w.r.t. x, we get

P
dx
dy
- = =0 87
Xty (87)

which represents the family of concentric circles, given by Equation (86). Ans.

Note: Generally, from a given differential equation, it is not possible to say what the differential
equation represents, till we solve it. Here, the differential equation (87) is obtained from
Equation (86), which represents the family of concentric circles with center at (0, 0). Hence we

make the same statement for the differential equation (87).

Example (24): Find the differential equation of the family of circles of a fixed radius “7”’, with
center on the x-axis.

T
&

)c2+y2 =1

FIGURE 9a.2
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BV

FIGURE 9a.3

Solution: We know that if the center of the circle lies on the x-axis, then its coordinates are given
by ordered pair of the form (a, 0), where a € (—oo, 00). Also, it is given that the radius “r” is
fixed.

.. The equation of family of such circles is given by,

(x— a)2 +y* =7 (88)

[TPRIN

where “a” is arbitrary constant. For different values of “a,” we get different circles, which have
the same radius “r.”
Differentiating Equation (88) w.r.t. x, we get

d d
2(x—a)+2y£: 0 .(x— a)+y£: 0
dy
S(x—a)= V3 (89)

Using Equation (89) in Equation (88), we get (see Figure 9a.3)

dv1?
e
dx

d 2
=~y (l) +yt =1
dx

which is the desired differential equation. Ans.

Example (25): Find the differential equation of the family of circles whose centers are on the
x-axis and which touches the y-axis.

Solution: Since the centers are on the x-axis, the coordinates of the center may be taken as (a, 0).
Further, since the circles touch the y-axis, it follows that the circles pass through the origin.
(Why?)

(This family of circles can touch the y-axis, only if they pass through the origin.)
Accordingly, the radius must be “a” units, which is variable (see Figure 9a.4).
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FIGURE 9a.4

The equation of the family of circles may be written as
(x—a) +y* =d (90)

Note: In this problem, the first important requirement was to find the equation of the given
family, which is given by Equation (90). Since, there is only one parameter, only one
differentiation is needed to eliminate “a”. Also, it is easy to guess that the desired differential
equation will be of order one.

Equation (90) can be written in the form

X4+ —2ax+y =d*

X34yt =2ax (91)

Differentiating Equation (91) w.r.t. x, we get

d d
2x+2y—y =2a or x+y—y =a
dx dx
Using this value of “a” in Equation (91), we get
d
X2y = 2{x+y—y}x
dx
d
or X4y =2x2+ 2xy—y
4 dx
or xX2—y*+ 2xy—y =0
dx

which is the desired differential equation. Ans.

Example (26): Find the differential equation of parabolas with vertex at the origin and foci on
X-axis.
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FIGURE 9a.5
Solution: The equation of the family of parabolas with vertex at the origin andfoci on x-axis is

y? = dax (92)

[Tp=i)

where “a” is a parameter (Figure 9a.5).
Differentiating Equation (92) w.r.t. x, we get

dy
2y—=4
Ydx “
Substituting in Equation (92), we get
dy
2
= 2y =2
e
dy
2
—2xy—=0 93
i (93)

which is the required differential equation. Ans.

Remark: Even if we consider the parabolas only to the positive direction of x-axis, the
differential Equation (93) will remain unchanged.

Example (27): Form the differential equation of the family of ellipses having foci on the x-
axis and center at the origin.

Solution: The equation of the family of ellipses, in question is,
X
-+ ==1 (94)

where @ and b are parameters (see Figure 9a.6).
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RN
~_| ~

FIGURE 9a.6

For convenience, Equation (94) may be written as
B2+ a2y = b
Differentiating both sides w.r.t. x, we get

d
2Wx+ 242y =0
dx

d
or Pxt+ayY =0
dx
dy b?
o ‘T2
y dy b?
or JE_ 7
xdx a?

Now, differentiating both sides of Equation (95) w.r.t. x, we get

y& dyd 2 —o

xdx? " dxdx Lx

dy
2 x-———y(1)
ydy+g dx -0

or =
xdx? = dx x2

Multiplying both sides by x?, we get

dy | dy[ dy
b A P A
Vi * dx {x ax
X dzy +Xx dy dy
Y dx? dx dx

This is the required differential equation. Ans.

355
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Note: The differential equation (96) is of order two and degree one. This differential equation
has variable coefficients, and it is not easy to solve, till we learn the methods needed for solving
such differential equations. Definitely, in higher classes, we will learn such methods for solving
different types of differential equations, but still the fact remains that we can solve only certain
types of differential equations, not all.

Example (28): Form the differential equation that will represent the pair of lines.
y=2x+3 and y=4x+35.
Solution: The equation of the given lines, are
y=2x+3 (97)

and y=4x+5 (98)

Differentiating Equations (97) and (98) w.r.t. x, we get respectively

dy dy _
i 2 or dx 2=0 (99)
dy dy _

and i 4 or i 4=0 (100)

.. The differential equation which will represent the lines having Equations (97) and (98) is

given by the product,
dy dy
~Z_2).(ZX—-4)=0 101
(dx ) (dx ) (101)

Equation (101) is the required differential equation. Ans.

Exercise

Q. (1) Obtain the differential equation of the family of circles touching the x-axis at the

dy 2xy
Ans. =
(Ans dx x?-— y2)

Q. (2) Obtain the differential equation of all circles having their centers on y-axis and passing
through the origin.

d
Ans. (¥? — yz)d—i —2xy=0

10 Note that the centers of all such circles must lie on the y-axis.
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Q. (3) Obtain the differential equation of the family of rectangular hyperbolas.' "

() x*—y*=d?
(i) xy=c?
. dy
A —y2=
m () vy

9a.7 THE SIMPLEST TYPE OF DIFFERENTIAL EQUATIONS

We know that a differential equation is an equation connecting the unknown function “y”, its
derivatives (or differentials) and the independent variable “x”. [To be clearer, a differential
equation connects the values of a (unknown) function, its derivatives (or differentials), and its
argument (i.e., the independent variable).]

Remark: In differential equations, the “part of the unknown” is played by a function that
satisfies the (given) differential equation. We ask the question: Why is solving the differential
equation more difficult than solving any other equation? The reason is as follows:

We can regard the problem of integration of the function f(x) as a problem of solving a
differential equation(dy/dx) = f(x), where “y” is the required function.

Note that, the above equation is the simplest differential equation. It is an ordinary differential
equation of the order one and degree one.

In the simplest case, the solution of a differential equation reduces to integration. However,
this is not always possible, since differential equations of higher orders and higher degrees
cannot be reduced to the above form by applying basic algebraic operations. Therefore, solving
a differential equation proves to be more complicated than integration.

The most general form of an ordinary differential equation of the first order and first
degree is,

dy
—= 102
et ACIE) (102)
or M(x,y)dx+N(x,y)dx =0
(103)
where M and N are functions of x and y

We have seen that a differential equation of the Equation form (102) can be represented by
geometric means. [t means that the slope of the graph of the required function “y” (i.e., the integral
curve), which passes through the point P(xy, yo) is known beforehand, and that it is f (xq, yo)-

Thus, the Equation (102) defines the so-called direction field, i.e., the direction of the
integral curves. In other words, Equation (102) tells the direction of the tangent lines to the
integral curves, at all points of the domain of the function f(x, y). In the next chapter, we shall
discuss different methods of solving differential equations of the first order and of first degree.

(D Note that in this problem the equations of the curves are given. Thus, the name of the curve should not confuse the
student.
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Extending the Definition of Definite Integrals: Improper Integrals—Integrals with
Infinite Limits

Up till now, when speaking of definite integrals we assumed that the interval of integration
was finite and closed and that the integrand was continuous.

However, it often becomes necessary to extend the definition of definite integrals of
functions defined over unbounded domains. These are the infinite semi-intervals of the forms
[a, + oc] or infinite intervals of the form (—oo, 00).

Definition: When one (or both) of the limits of integration is infinite or the integrand itself
becomes infinite at (or between) the limits of integration, the integral is called an improper
integral (see Figure 9a.1).

First, we consider the case of infinite limits of integration.
The question arises as to what meaning is to be attached to a definite integral of the form:

j”f(x)d)g J”f(x)dx, Joof(x)dx?(lz)

Let function f(x) be defined for all x > a and continuous on every finite closed interval
a < x < b, where a is a given number and b (b > a) is any arbitrary number. Then, f(x) is
integrable on [a, b], and other similar interval. ¥

To make the notion of the definite integral applicable to unbounded intervals of integration,
we consider the function,

b
1(b) = Jf(x)dx of the variable b(b > a).

a

The integral varies with b is continuous function of b. Let us consider the behavior of the integral
when b — + o0.

Definition: If there exists a finite limit as » — + oo, then this limit is called the improper
integral of the function f(x) on the interval [a, 4+ c0) and is denoted by the symbol

| rexjax
Thus, by definition, we have, ¢
b b
Jf(x)dx = lim Jf(x)dx

In this case, we say that the improper integral ‘f; *f(x)dx converges (or exists). [if
i b . . I . .
YILma J, f(x)dx is not a finite number, one says that Ll+°c_f (x)dx does not exist (or that it)

U2) We encounter such integrals when computing the potential of gravitational or electrostatic forces.

U3 This is true due to the existence of theorem for the definite integral, which we restate here for convenience. If the
function f(x) is continuous in the finite-closed interval [a, b], its integral sum tends to a definite limit as the length of the
greatest subinterval tends to be zero (see Chapter 5).
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diverges. In this case no numerical value is assigned to this interval]. We similarly define the
improper integral of other infinite intervals:

b b

J f(x)dx = Ahina Jf(x)dx (104)
+00 c +o0
Jf(x)dx= Jf(x)der Jf(x)dx (105)

Equation (105) should be understood as follows: if each of the improper integrals on the right
exists, then by definition the integral on the left also exists (or converges).

+ o0

Example (29): Evaluate the integral J
0

+ 00 b
dx  lim dx
l+x2717*>+00 1+x2
0 0

lim
b— +

blirfoc [tan~'h — tan~10)

= limoc [tan~1D]

b— +
V4
2

dx
1+ x2

[tan~!x]}

Ans.



9b Methods of Solving Ordinary
Differential Equations of the First
Order and of the First Degree

9b.1 INTRODUCTION

A differential equation is said to be ordinary if the unknown function depends solely on one
independent variable.

The simplest type of differential equation is an ordinary differential equation of the first
order and of the first degree. [A differential equation of the first order is an equation containing
derivatives (or differentials) of not higher than the first order.]

The most general form of an ordinary differential equation of the first order and of first
degree is

& f(x, v) orM(x, y)dx + N(x, y)dy =0 (1)

where M and N are functions of x and y.

9b.1.1 Solving a Differential Equation

Solving a differential equation means finding the general solution of the given differential
equation.

Note: One might expect that solving differential equations of the form (1), should be quite
simple. Of course, in some cases, it is so. However, all differential equations of the first order
and first degree cannot be solved.

There is no single method of solving a differential equation of any order and any degree.
Differential equations are classified into certain standard forms, and methods of solving them
(in such standard forms) have been evolved.

Only those differential equations that belong to (or which can be reduced to) these standard
forms can be solved by standard methods.

Differential equations and their solutions 9b-Ordinary differential equations of the first order and of first degree.
(Methods of solving them and their applications)

Introduction to Integral Calculus: Systematic Studies with Engineering Applications for Beginners, First Edition.
Ulrich L. Rohde, G. C. Jain, Ajay K. Poddar, and A. K. Ghosh.
© 2012 John Wiley & Sons, Inc. Published 2012 by John Wiley & Sons, Inc.
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9b.2 METHODS OF SOLVING DIFFERENTIAL EQUATIONS
The various methods of solving differential equations of the form (1) are classified as

(1) Type (I): Variable separable or reducible to variable separable by substitution.
(2) Type (Il): Linear or reducible to the linear form.

(3) Type(Ill): Exact (differential) equation or equations reducible to the exact formby an
integrating factor (IF).

9b.2.1 Type (I): Variable Separable Form

In a differential equation of the form dy/dx = f{x, y), if the function f(x, y) can be expressed as a
product g(x) - h(y), where, g(x) is a function of x, and A(y) is a function of y, then the given
differential equation is said to be of variable separable type. Accordingly, we can write the
given differential equation in the form:

dy
=h(y)- 2
=) g(v) @)
To solve this equation, it is first necessary to separate the variables. Accordingly, rearranging

terms, we express Equation (2) in the form

1
o) -dy = g(x) -dx 3)

At this stage, it is important to check that the function /(y) does not assume the value zero [so
that(1/A(y))dy is defined]. Then, integrating both sides of Equation (3), we get

j@ dy = [t 4)

Thus, we get the solutions of the given differential equation in the form H(y) = G(x) + ¢, where
H(y) and G(x) are the antiderivatives of (1/h(y)) and g(x), respectively, and c is an arbitrary
constant.

Further, note that if the differential Equation (1) is in the form

M(x, y)dx + N(x, y)dy =0
Then, we have N(x, y)dy = —M(x, y)dx, therefore (neglecting the sign) we may write

dy _ M(x,y)
dx  N(x,y)

For the above equation, to be variable separable type, it is necessary that both the functions
M(x, y) and N(x, y) be capable of being expressed in the form of products g;(x) - /;(y) and
22(x) - hy(y), respectively, where g;(x), g>(x) are the functions of x only, and /,(y), h,(y) are the
functions of y only.

In other words, if the given differential equation can be put in the form such that dx and all
the terms containing x are at one place, and dy along with all the terms containing y are on the
other place, then the variables are said to be separable. Once the given equation is expressed in
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the form fix)dx + g(y)dy =0, we can always write its solution by integrating the above
equation. We write

.[f (x)dx + I[g(y)dy =c

[Note that, the problem now reduces to finding antiderivatives of f{x) and g(y).]
This is the general solution of the given differential equation, wherein c is an arbitrary
constant.

Note: We know that the equation, (% = f(x) can always be expressed in the form dy = f(x) dx,
and vice versa.

The fact, that we can deal with the symbols dy and dx like separate entities (exactly as if they
were ordinary numbers) permits us to use them in many calculations and formal transforma-
tions, involving Calculus.

For instance, to solve the (differential) equation (dy/dx) = f(x), we have to find a function
y[= F(x)] whose derivative is f(x). This is equivalent to saying that we have to find an
antiderivative of f(x).

Recall that, if we consider the above equation in the form dy = f{xx)dx, then the definition of
differential dy also suggests the same thing (Chapter 16 of Part I).

Further, this fact can also be visualized if we express the equation, dy =f(x)dx, in the
form of

dyd—x =f(x)dx or g—idx =f(x)dx or

d
" — ()

o
dx
(by canceling “dx” from both sides).

Now, let us solve some examples of variable separable form.

d 1+y?
Example (1): Find the general solution of the differential equation, _ Y
dx 1+x2

Solution: Note that 1 4+ y*#0, and 1 4+ x? # 0, therefore, separating the variables, we have

dy dx
= 5
1+y2 142 )
Integrating both sides of Equation (5), we get
[ dy J dx
J14+y2 )14+ 22
or tanfly =tan 'x + ¢ Ans.
This is the general solution of the Equation (5).
. . . . .ody x+1
Example (2): Find the general solution of the differential equation, oo 5’ y #2)
Solution: We have
dy x+1
= (6)

dx 22—y
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Separating the variables, we get
(2 =y)dy = (x+ 1)dx (7)

Integrating both sides of Equation (7), we get

J(Z—y)dy:J(x—H)dx

2 2 22
or 2yfy?=%+x+k or %+%+x72y+k=0

or x*4+y 4+2x—4y+2k=0
or ¥ +y’+2x—4y+c¢=0, where2k=c

This is the general solution of Equation (6) Ans.

!
Note: Recall that fx)

examples. VI (x)

Example (3): Find the general solution of the equation x(1 + y*)dx = y dy

dx = 24/f(x). We shall make use of this result in the following solved

Solution: We have

x(1+y*)dx = ydy (8)
separating the variables, we get
d
xdx = Y yz )
1+y

Integrating both sides of Equation (9), we get

d
dex:J y
1+y?

X2 1
or 71510ge(]+y2)+6’1

where ¢, is an arbitrary constant
2

1
or % = Eloge(l +5?) +§10g(,c Ans.

d
Example (4): Solve R V14 x2 42+ x2y?
X

dx

Solution: We have

d
X.l:1/1+x2+y2+x2y2 (10)

x dx

(In such problems, one may try to simplify the expression like the one on the right-hand side as
done below.)
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Consider the expression 1 + x? 4y + x2y?
=(1+x)+y(1+57) = 1+ [1+]
Equation (10) can be written in the form
Y _ e v e
x dx Y

Separating the variables, we get

y
———dy=xV1+x%-dx
V14?2 '

Integrating, we get

1J 2y IJ 1
| —==—=dy == |2xV1 + 2 dx 4
2)\/1+y2 2

1 12
3 [2\/1 +y2] =3 [g(l +x2)3/2} +c
1
/1+y2:§ (1+x2)3/2+c
This is the general solution. Ans.

Note: Since the arbitrary constant ¢, can take any numerical value, we have preferred to
choose it as (1/2)log, ¢, instead of ¢y, for convenience of further transformation. Now, we can

[TPR1}

write the general solution of the given equation, in the form x> = log,[¢(1 + y?)], where “c” is
an arbitrary constant.

d 21 1
Example (5): Solve Y_ w
dx siny+ycosy

d 21 1
Solution: The given equation is & w
dx siny+ycosy
Separating the variables, we get
(siny + ycosy)dy = x(2log, x + 1)dx (11)

Integrating both sides of Equation (11), we get
J(siny +ycosy)dy = Jx(210ge x+Ddx+c¢

(' At this stage, we may use the result indicated in the note above. It must also be clear that the above result is obtained by
applying the method of substitution, which could also be applied directly in solving such problems.
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2 1 2 2
—cosy+ysiny+cosy:2{(logex)'%—J*~% ~dx} +I 4@

x2 2
2 2
siny = x° log x—x——&-f—i-c
y e ) )
or ysiny = x*log, x + ¢

This is the general solution. Ans.

Example (6): Find the particular solution of the equation stan ¢d¢ + ds =0 satisfying the

initial conditions s =4 for t =—

Solution: The given differential equation is stanzd¢ + ds=0
Separating the variables, we get

tan ¢ a’t+%:0 (12)

Integrating both sides of Equation (12), we get

d
Jtantdt—',— J—s =log,c or —log,cost?+log,s=log,c
s

or log,s=log,cost+log, c =log,ccost
or s = ccos t (by taking antilog)
where c is an arbitrary constant.
This is the general solution of the given equation. In order that, the above solution should

satisfy the given condition, we substitute the values ¢ = (n/3) and s=4 into the general
solution.We get

4:6003(2) or 4=c-=- . ¢=8
Consequently, the desired particular solution satisfying the given conditions has the form

s =8cost Ans.

9b.2.2 Equations Reducible to Variable Separable Form

9b.2.2.1 Method of Substitution Some equations that are not in a variable separable form
can be reduced to that form by using proper substitution. We consider some simple examples of
such differential equations. The important point is to be able to identify easily, the differential
equations that can be reduced to variable separable form.

@ To achieve this result, we have applied the method of integration by parts. In practice, it is useful to remember the rule of
integration by parts, and be able to apply it for the simple products of functions.
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d
Example (7): Solve % = cos(x +y)
Solution: The given differential equation is

dy

—— = COs 13

2 = cos(x ) (13)
Note that the differential Equation (13) is not in variable separable form. Also, observe that in
the term cos(x + y), the expression (x + y) is linear. In such cases, we put the linear
expression,

X+y=v (14)
dy dv
1+—=—=—
+ dx dx
dy dv
AN | 15
dx (dx ) (15)
Using Equations (14) and (15) in the given Equation (13),
We get
ﬂ 1= : Q = v+1
ix =cosv .. dxfcos

(Now, this equation is in the variable separable form.)
We can simplify it further. We write,

d
é=(20052£71)+1=20052%
dv 1 v
——=d —sec’~-dv=d
2002 (v)2) x or 2sec2 v b
Integrating, [~sec® Y -dv = [d
ntegrating, [ =sec” = -dv = [dx
g &[5 5
tan% = X + ¢, where c is an arbitrary constant.

This is the required general solution. Ans.

Note: It is sufficient to put the constant of integration, at the end.

Example (8): Solve 2x —2y + 3)dx — (x —y + 1)dy =0, given that y=1 where x =0
Solution: The given equation is 2x —2y + 3)dx —(x —y + 1)dy=0
(Observe that this equation cannot be expressed in variable separable form.)

For convenience, we write this equation in the form,

(x—y+1)dy = (2x — 2y +3)dx
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dy 2x—-2y+3 2(x—y)+3
dx  x—y+1  (x—y)+1

(16)

[Observe that the expression (x — y) in both, the numerator and the denominator, is a linear
expression.]

We put
X—y=v (17)
Ly
dx  dx
dy dv
A 1
dx dx (18)

Using Equations (17) and (18), in Equation (16), we get

1_ﬂ72v+3
dx  v+1

dv_1 2v+3 v+1-2v—3 —v-2

dx v+1 v+1 Cov+1
ﬂi_v—i-Z
dx~ v+1

(This is in the variable separable form)

1
v+d

=—d
V+2v x

Integrating, both sides, we get

1
JV+ dv:—de
v+ 2

1
1- dv=—|d
{ Hz}v jx

v—log,(v+2)=—-x+c

x—y—log,(x—y+2)+x=c¢
or S 2x—y—log,(x—y+2)=c

This is the general solution of Equation (16). We have to find the particular solution that
satisfies the given condition. Thus, to determine the particular solution, we puty=1and x =0
in the general solution. We get

—1-log,(0—-1+2)=¢c .. —-1l=c¢
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Therefore, the required particular solution is
2x—y—log,(x—y+2)+1=0 Ans.
(Once the method of solving a differential equation is learnt, we can easily drop many steps from
the above solution.)
dy

Example (9): Solve (4x + y) =2

Solution: The given equation is

dy 2
—=(4 19
= (4x+y) (19)
The given Equation (19) cannot be expressed in variable separable form.

Also, observe that the term on the right-hand side involves an expression (4x + y), which is
linear. We put

4x+y=v (20)
dy dv
4 =—
+ dx dx
dy dv
2 _"_ 4 21
dx dx 1)

Using Equations (20) and (21) in Equation (19), we get

4 =2

dx v
or

v,

il 4

i Ve +

(Now, this equation is in the variable separable form.) We write,

dv dv
——=dx or dx=—=
V2 422 2 422
On integrating, we get
1 4
x:itan*@) +k or . 2x:tan’1< xz—l—y) =g,

where c¢ is an arbitrary constant.

Note: In Example (8) above, we have solved the differential equation of the form

dy _ aix+biy+a by s COEY : : .
o = axibyiar where ¢! = 7! using substitution. A natural question arises: Can we solve

similar looking differential equations of the form:

gialx—kbly—kcl

_ h,
dx ax+by+ao -

in which 2L
ap b
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The answer is yes. (We shall discuss the method of solving such equations shortly, under the
heading: Equations reducible to homogenous form. Again, such equations are finally reduced to
the variable separable form as we will see.)

9b.2.2.2 Homogeneous Differential Equations in x andy First, it is useful to understand

[t

clearly the meaning of a homogeneous function of degree “n” in x and y.

[Tt

Definition: A function f(x, y) is called a homogeneous function of degree “n” in x, y, if each

[ToRt)

term in f(x, y) is of the same degree “n”.

Definition: A differential equation of the form % :é E:; ;, where f(x, y) and g(x, y) are

homogeneous functions of the same degree, is called a homogeneous differential equation in x

and y. Remember that the degree of a homogeneous function is a whole number “n” (i.e.,n =0,
1,2,3,...).

Note: In a homogeneous function F(x, y) of degree “n”, if we replace x by kx, and y by ky,
where k is a nonzero constant, then we get

F(kx, ky) = k"F(x, y) foranynew

This observation suggests a method of defining a homogeneous function of degree “n”. Let
us discuss.
Consider the following functions in x and y, and let us find their degree.
(1) Filx,y) =X +2xy* +x%
Fy(kx, ky) = I3x3 + 2(kx) (k*y?) + (K*x?) (ky)
= I3 + I3 (2xy%) 4+ K (x%y)
= I3[ 4+ 2xy7 + x%y] = KPFi(x,y)
Thus, the degree of F(x, y) is 3.

2)  Fax,y) = sin<§)

Fa(kx, ky) = sin(%) = sin(g) =1 sin(%) = kK'Fy(x,y)

Thus, the degree of F,(x, y) is “0”.

(3)  Fi(x,y) = x> +3xy
F3(kx, ky) = k?x* + 3kx - ky
= k2x% +3k*x -y
= k*[x% + 3xy)]
= K°F3(x,y)
Therefore, the degree of Fi(x, y) is 2.
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(4)  Fs(x,y) = sinx+cosx
Fy(kx,ky) = sin(kx) + cos(ky)
# k"F4(x,y), foranyne W

Note that here, it is not possible to define the degree of Fu(x, y).

Accordingly, we say that F4(x, y) is not a homogeneous function.

[Compare F4(x, y) with F,(x, y), and get convinced why the degree of F4(x, y) cannot be
defined.]

Definition: A function F(x, y) is said to be homogeneous function of degree “n”, if
F(kx, ky)=Kk"F(x, y), where k is a nonzero constant.

Note (1): A differential equation that involves a homogeneous function (of any degree) is said to
be a homogeneous differential equation.

A differential equation in the form % = g(’;) involves a homogeneous function of degree “0”,

Hence, it is a homogeneous differential equation of degree zero. Now, it must be clear that the
function,

4
X

F(x, y) = 2x% — 5xy* + 3x%y + X sin2
y X

is a homogeneous function of degree 3. [Note that in the expression on right-hand side, the
degree of the component functionsin(y/x) is zero].

Tt will be observed that the method of solving a homogeneous differential equation does not
depend on the degree of the homogeneous function involved. In other words, the method of
solving all homogeneous differential equations (of order 1 and degree 1) is the same.

To Illustrate the Method for Solving Homogeneous Differential Equation of Order 1 in
x and y: A homogeneous differential equation (in x and y) can be written in the form:

dy _f(x,y)
dx  g(x,y)

1y

where f(x, y) and g(x, y) are homogeneous expressions of the same degree, (say “r’)

Then, fix, y)=X"fi <§> and f» <§> =Xx'f <§>, hence the equation (I) becomes

dl _hb/x) Yy
dx  fHy/x) h(x) (I

[The homogeneous functions fi (y/x) and f>(y/x), each being of degree zero, can be combined
and jointly viewed in the form /(y/x) that is a function of degree zero.]

In fact, a homogeneous differential equation of the form (I) can be always expressed in the
form (11).*

y b 2 y
® Consider the differential equation 9 =2 + y- Let fi(x, y) =x + 2y and f>(x, y) = x — y. Then, right-hand side of the
x x-—y
Y 2 x(1+2(y 1+ 2(y/> y
above equation is M Thus, we can write d—y: Xty X(1+20/x)) :< +20/%) = g(l) which is a
A%y) & x—y x(i-20/x) (-0

homogeneous function of degree zero.
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Now, if we substitute ¥ = v [i.e., y = vx]in equation (II), we get the right-hand side as 28,
and the left-hand side is obtained by differentiating y = vx.

We get % =v+ x% (since v is a function of x and y)

Thus, equation (II) becomes

dv 7fl(V)

T VA

(1)

Note that right-hand side of (III) is only a function v[sayF(v)], so that

v—o—xﬁfF(v)
dx

Now, it is clear that we can easily separate the variables. We get

N (Iv)
fvy—v x
On integrating, we will get the solution in terms of v and x. Finally, by substituting (back) v =
(y/x), we get the required solution.

Thus, we conclude that a homogeneous differential equation, of order 1, can be convertedto
the variable separable form, which can be solved by integration (i.e., by finding the
antiderivatives) of the functions involved.

Note: To convert a given homogeneous differential equation of order 1 to the variable separable
form, a convenient substitution is chosen as follows:

o If the given equation is in the form(dy/dx) = F(x,y), where F(x, y) is a homogeneous
function of any nonzero degree “n” (n=1, 2, 3, ...), then we make the substitution
(y/x) = v, that is, y=vx. Similarly, if the differential equation is in the form
(dy/dx) = F(x,y), then we make the substitution (x/y) = v, that is, x = vy.

o If the equation is in the form (dy/dx) = F(x,y) or f(x,y)dx + g(x,y)dy = 0, wherein a
term involving y/x appears, then we choose the substitution (y/x) = v, thatis, y = vx. On
the other hand, if the term x/y occurs then we make the substitution (x/y) = v, that is,
x =vy. These substitutions make finding the solution convenient.

Now consider the following examples:

Example (10): Solve the differential equation
xy*dy — (0 —2x¥)dx =0
Solution: From the given equation, we write
xy?dy = (y® —2x%)dx

dy_ 0 -2x)

or
dx xy?

(22)
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(This is a homogeneous differential equation.)
PutX:v or y=vx
by
Using Equation (23) in Equation (22), we get

dv
LHS =v+x—
dx

and
RHS — X3 —2x3 _ X3 —2)
xv2x? x3(v?)
.. Equation (22) changes to
Y2
dx 2
xd—V—VS_Z—v—V3_2_V3—_—2
dx N V2 T2
d -2
or xd—; = (Now variables are separable)
d
Py =22
X
Integrating, we get
d
J Vdy = -2 J’7x
X
W2
3= —2log,|x| + ¢
2
or §+210g(,|x| =c

where “c” is an arbitrary constant. This is the required general solution.

Example (11): Solve the differential equation (x + y)dx — (x —y)dy=0

Also find the particular solution when y(1) =0.
Solution: The given differential equation is

(x+y)dx —(x—y)dy=0

dy _x+y

or =
dx x-—y

373

(23)



374 METHODS OF SOLVING ORDINARY DIFFERENTIAL EQUATIONS

(This is a homogeneous differential equation.)

Put%:v or y=vx (25)

From Equation (25), we get
dy dv

ET T

Using Equations (25) and (26) in Equation (24), we get

dv  x+w_ x(1+v)

1
v dx x—wx  x(1—v)

dv  (1+v)
V—Ffo(l V)

dv (I+v)
Yax (lfv)_

142

71+v7v+v27
o T l—v

1—v

dv 1—0—v2

dx 1—v
1—v dx
v =—
1+12 X

1 v dx

e ey

(Now variables are separable)

Integrating both sides, we get

dv vdy _ dx
142 1+v ) x

1
tan~!y 7510g8|1 +v?| =log,|x| + ¢

=log,|x| + ¢

or oo tan log,|x|] = log,|x| + ¢

(27)

or . tan

(
(
or o
(

)
)
) - 3to 2 - -
)-
)-

X

log,\/x? +y* +log,|x| =

log,

log,\/x*+y* =c¢
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This is the required general solution. To obtain the particular solution, we use y(1) =0 [i.e.,
x =1, y=0] in the Equation (27), we get

tan~! (%) =log,V1+0+c¢

0=1log,(1)+¢

c=0

Putting this value of “c” in Equation (27), we get the particular solution as

tan~! <§> = logy/x2 + y? Ans.

d
Example (12): Solve o_ J

dx x— /Xy

Solution: The given differential equation is

d
o _ y (28)(4)
dx x— /Xy
Yy _ ; _
Put T=v de,y=wx (29)
dy dv
2 — il 30
S5 =" + X ix (30)

Using Equations (29) and (30) in Equation (28), we get

v+xﬂ* VX _ VX _ v
dx  x—+vx-vx x(1—+v) (1 —")
xﬂ_ v V_v—v+ Ve
dr  (I—vv) 1=
d
P W (This is variable separable form)
& (=)
1—
ﬁdv:d—x
TG
d
or y 32 dy —yldy =28
X

@ The student must convince himself that Equation (28) is a homogeneous differential equation.
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Integrating, we get

y1/2
g lonvl = log ¢
or —2y/v =log,|x| +log,|v| + ¢

log,|[vx| +2y/v+¢=0

log, |y| +2\/E+c = O{ v :X}
X X

This is the general solution. Ans.

Example (13):<x + ycot E) dy—ydx=0
y

Solution: Presence of < indicates that we use the substitution =, that is, x = vy. The given
equation can be written in the form, )

X dx
x+ycot——y—=0 31
5 V% (31)
Put x = vy (32)
dx dv
- huid 33
TR (33)

Using Equations (32) and (33) in Equation (31), we get

dv
vy +ycotv—y v+y@ =0

vy —vy+ycoty—y*—=0
dy
d
or ycotvfyz—vzo
dy
dv L .
or cotv = % (This is variable separable form)
Y
d
Do P anvdy
y cotv

Integrating both sides, we get

log,|y| = log,|sec v| + log|c| = log,|sec v + ¢|
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y = csec v (Taking antilogarithms on both sides)
or.;. y=c¢c secf, where ¢ is an arbitrary constant.

This is the general solution. Ans.

Example (14): Solve the differential equation
(1 n ev*/y) dx + (1 - f) e dy = 0 (34)
y
Solution: The given equation is
x/y X x/y —
1+e)dx+(1——]e"Ydy=0
y

Presence of the expression x/y suggests that the proper substitution will be, x/y =,
that is, x = vy, and that we must write the Equation (34) in the form,

dr (1= (x/y)e™ _
ot Trer O )

To obtain the expression for dx/dy, we differentiate the relation, x = vy.
We get

Using the above result, and the substitution ((x/y) = v)in Equation (35), we get

dv (1 —v)e"

bl S A
v+ydy+ T+e

dv (1 —v)e"

or yd—y TTo

+v=0

dv e —ve'+v+ve

= 0
o T Ire

or

or

ngeV-i-v_O
ydy 1+e
e’ +v dv
1+e"7_y@

d 1 v
y_ _1te dv

or

y et
dy 1+¢"

y e’ +v

dv=20
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Integrating both sides, we get

1+e’ _f’(v)}
v+e f(v)

g + log.Je' + ] = g, -
where ¢ is an arbitrary constant.
log,[y(e" + v)| = log,|c|
Taking antilog both sides, we get
e+ =c
This is the general solution of the given differential equation. Ans.
Example (15): Solve (1 +2e"")dx + 2 e/ (1 - ;> dy=0

Solution: The given differential equation is
(1+2e)dx +2e"° (1 - f) dy =0 (36)
y

This equation is homogenous differential equation of the degree zero.
The presence of x/y suggests that we use the substitution x/y = v, that is,

Differentiating w.r.t. y, we get

The given differential equation can be written in the form,

o d "
(1426 e (1-2) =0
dy y

dx  2e%” —1
& M (Negative sign is absorbed in the numerator)

dy 1+2e%
- dv _2e'(v—1)
ydy_ 14+2e¥
dv 2e'(v—1)
ydyi 142e’

_ 2ve’ —2e"—v—2ve’
- 1+2e
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dv —(2e"+v)

y@ "o il (This is variable separable form)

e+ dy
2er+1)

[Now observe that {-[2e" +v] = (2¢" + 1)]
Therefore, on integrating, we get

log|2 €’ +v| = —log|v| + log ¢
or log|2 e’ + v| + log|v| = log ¢
or log|y(2e" +v)| =logc

Taking antilog, we get

y2e'+v)=c¢
or y(Ze"/»"Jrf) =c
y
or 2y eV 4+ x=c

which is the required general solution. Ans.

Note: The above problem can also be solved using the same substitution (i.e., x = vy), but
differentiating it with respect to x, rather than by v.

Example (16): Solve (1 +2e*/)dx + 2 ¢ (1 - «5) dx =0

Solution: Given differential equation is
(14267 )dx+2e% (1 - f)dx =0
y

This equation is homogeneous equation of degree zero. (Presence of an expression x/y in the
equation suggests that we use the substitution x/y =v).

ie, x=vy (39)

The important point is that we still differentiate Equation (39) w.r.t. x, and obtain from
Equation (39),

dy dv dy dv

l=y2dy— - yp2=l—y—

de+ydx o vdx Ydx
Note that . dx =vdy+ydy (40)

(We have treated the differentials like algebraic quantities.)
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Using Equations (39) and (40), we get

(I4+2e")(vdy+ydv) +2e"(l —v)dy=0
(14+2e")vdy+ (1 +2¢")ydv+2e"(l —v)dy=0
[(1+2e")v+2e"(1—v)dy+ (1+2¢e")ydv=0
[1+2ve’+2e" —2ve'ldy+ (1+2¢")ydv=0

by 1+2e
y  v42e

On integrating, we get
loge‘y| = —lOge|V +2 ev‘ +
where c; is the constant of integration.

(We may choose c¢; = log, ¢, where c is a constant.)
But, we have used the substitution v = (x/y). Hence, substituting it back for v, we get

Toeh
y

log, |y[ + log, = log, ¢

or log,

y(;Jr Zex/y)’ =log, c

or logE,!x + 2y ex/-v| =log, ¢
Taking antilog, we get
x42ye =¢

where c is an arbitrary constant.
This is the required general solution. Ans.

9b.2.2.3 Nonhomogeneous Differential Equations (of Order 1 and Degree 1) Reducible to
Homogeneous Form A nonhomogeneous linear equation (in question) in x and y can be
written in the form

dy aix+biy+c
dx  mx+by+o

Two cases exist:

. _ b
Case (1): When % =5

We have already solved such an equation earlier [see Example (11) in Section 9b.2.2.1]. We
have seen that the method of solving such differential equations (using substitution) is quite
simple.
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. a by
Case (2): When - #* >

In this case, we can convert the given differential equation to the homogeneous differential
equation, by the following transformation equations:

Putx=X+h and y=Y+k
where h and k are constants.
dx=dX and dy=4dY
Accordingly, the given equation

dy a|x+b1y+01 dY al(X+h)+b](Y+k)+C1
i.e.,~——=———"—— changes to — =
dx ax+by+ao dX @aX+h)+b(Y+k)+ca

or £7a1X+b1Y+(a1h+b1k+cl) (41)
ax X + bY + (azl’l + bok + 62)

If, we now choose constants / and k so that
(alh + blk + Cl) =0 and (azh + bzk + 62) =0
Then, the given equation changes to,

dY7a1X+b1Y

®)
dx o a2X + sz (42)

Observe that, the above equation is a homogeneous differential equation, and hence, it can be
solved by the substitution

=y, ie., Y=vX

I~

If the solution of the Equation (42) be
fX,Y)=c¢

then the solution of the original equation is fix —h, y — k) =c.
Now, let us solve some examples.

® In practice, finding the value(s) of A and k is very simple. However, one may also use the results
J b]Cz - sz] ciay —
h = =

k= , where (a1b, — a;b) # 0. These expressions for the values of /1 and k follow from
aiby — axb, ayby — ayby

the method of solving a pair of linear equations (in two variables), simultaneously.
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Example (17): Solve 3x + 2x + 4)dx — (4x + 6y + 5)dy=0
Solution: The equation is
(4x + 6y + 5)dy = (3x + 2x + 4)dx

dy 2x+3y+4  (2x+3y) +4 43)
dx  4x+6y+5 22x+3y)+5

Here ”‘ =75 L hence the method for solving this equation is very simple.

Let 2x + 3y=u
Differentiating both sides w.r.t. x, we get

dy du
24+3—=—
+ dx ~ dx

dy 1 /du )
dx 3 \dx
.. The given Equation (43) becomes
1/du ) u+4
3 \dx T 2u+5

du 2_314—1—12

dx T 2u+5
du  3u+12 _Bu+12+4u+10
dx  2u+5 B 2u+5
d 7 22
djlc = 2uu++ 5 (This is in variable separable form)
2u+5
du=d
Tur 2=
2u+5
Consider, ———
onsider Tt

1 [14u+35]  1[14u+44-9
ST Tu+22] 7 (Tu+22)

1 {2(7u +22) )— 9}

7 (Gu+22

2 9 1 . .

TTTT gy (This is variable separable form)
2 9 1

< _ 7. du—d

{7 7 Tu+ 22} U=
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Integrating both sides, we get

2 9 1
J?d”_7 'J7u+22d” - de

2 91
Zu—2-|Zlog,|Tu+22|| =
U [7oge|u+ @ x

Now substitute the value of u (= 2x + 3y), we get

%(ZX +3y) — % -log,|[7(2x 4+ 3y) + 22| = x

~ N

9
(2x + 3y) T -log,|14x + 21y + 22| = x

Multiplying both sides by 49, we get

28x 442y —9-log,|14x + 21y + 22| —7x =0
or 2lx+42y —9-log,|14x + 21y +22| =0
or 21(x+2y)—9-log,|14x+21y+22| =0

Dividing both sides by 3, we get
7(x —2y) —3-log,|14x + 21y + 22| = ¢

This is the required general solution where c is an arbitrary constant. Ans.

Example (18): Solve 3y —7x + 7)dx + (7y —3x— +3)dy=0
Solution: The given equation is

(7y =3x —+3)dy = —(3y — 7x + 7)dx

or Q_, 3y —Tx+7
dx  Ty—3x—+43
dy Ix—3y—17
or =
dx —3x+T7y+3

Here ¢ % since & # =
Put x=X + hand y=Y + k, where & and k are constants to be determined.

From the above transformation equations, we get

dx=dX and dy=dY

dy dY
% = (Recall that, this is the property of differentials of order 1)

383
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Equation (44) becomes

dY  T(X+h) —3(Y +k)—7

dX  -3X+h)+7(Y+k)+3

~ IX—3Y+ (Th—3k—17)
- =3X+ 7Y+ (=3h+ Tk +3)

We choose /4 and k such that
Th—3k—-7=0
-3h+7k+3=0

Solving these equations simultaneously, we have

h=1,k=00©
The given equation reduces to

dy 77X -3Y

dX -3X+7Y

This is a homogeneous differential equation in X and Y.
We put

Y i Y X
—=v, 1le,Y=v-
X

Equation (45) changes to

v+de* 7X -3vX  X(7-3v)
dX  -3X+TvX X(-3+7v)

dv 73y v_773va(f3+7v)
X =3+7v —3+7v
S T=3v43v =T 7(1—?)

317 =3 (This is in variable separable form)

Separating the variables,

Tv -3 dx
[ X

Ty —
Vo3 g g%
(I—=v)(1+v) X

© The procedure for obtaining these values is explained in detail at the end of this problem.
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By partial fractions, we have

2 5
_ dv:7g
1—v 1+v X

Integrating both sides, we get

—2log(1 —v) —5log(1 +v) =7logX +log, c

—2log(l —v) —5log(1+v) —7logX =log, ¢
or 2log(l —v) + 5log(1 +v) + 7log X =log, c
log(1 —v)2-(1+v)°-X7 =log, ¢
Taking antilog, we get
1= 1+ X" =¢
Now substituting for v (: g) we get
1= (1+v X" =¢

x-v? x+v)°

T _ .
e X X' =c

X-Y?X+Y) =c

But, x=X+h=X+1 .. X=x-1
andy=Y+ k=Y+0 .. Y=y (since k=0)
Therefore, the Equation (46) changes to
(x=1-y*(x—1+y)]’=c
or (x—y—17 (x+y—17=c¢

This is the solution of the given differential equation. Ans.

Exercise

Q. (1) Solve the following differential equations:
(@) VI+x2dy++/1—-y2dx=0

Ans. sin"'y +sin"'x=¢

(b) (sin x 4 cos x)dy + (cos x —sin x)dx=0

Ans. y+log|sinx +cos x| =¢

(c) % = \/ll:fé Also find the particular solution if x =0 when y=1.

S i1 P sy e P
Ans. (i) sin” y—sin x=c (i) sin" y—sin= x=7

385

(46)
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dy x.3 1
(d) £=2¢"y", given that y(0) =5
. v 1 .. 1
Ans. ()4e' +5=c (i)de" +5=38
y y

(e) Find the particular solution of the differential equation

%—xzzxzy, if x=0 when y=2
3
Ans. log ‘¥| =3

Q. (2) Solve the following differential equation using suitable substitution:

(a) 2% + cos?(x — 2y)=1

Ans. tan(x —2y)=x + ¢

(b) £=©Ox+y+2)]

Ans. 9x + y 4+ 2=2tan(3x + ¢)
© x+yE=x"+)

Ans. x? 4+ y*=ce*

Q. (3) Solve the following differential equations using proper substitution:

(@) xdy—ydx=+/x2+y?dx
Ans. y 4+ /X2 +y% = cx?

(b) dy X2 —2xy+5y*
dx T X2+2xy+)?

+ 2+

Ans. loglx —y| = 7 ties

252
—X

O
(©) xy2 dy — (y3 —2x})dx=0

Ans. % +2log|x| + ¢

Q. (4) Show that the following differential equations are homogeneous:
(i) x cos (%)%:y cos (i) + x
Gi) (1+2e%)dx + 2 ex/»"(l - ’;‘f)dyzO
(iii) 2y e*Y dx + (y —2xe*?)dy=0
Q. (5) Solve the differential equation 2y e*/? dx + (y — 2x e*/” ) dy =0 and find its particular

solution given that x =0 when y =0

Ans. 2e"7+logly| =2
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Q. (6) Solve the differential equation x cos(:%)%: ycos(t) + x

Ans. sin(2) =log|cx]

Q. (7) (xtanZ — ysec? ¥)dx + xsec?2 dy=0

Ans. xtani=c

Q. (8) 2x —y)e M dx + (y + xe/)dy = 0
Ans. y* +2xX% + e =¢

Q.(9) Solve the following differential equations:

(i) (6x—4y + DE=3x—2y + 1

Ans. 4x—8y + log(12x—8y + 1)
sy ody  x2y+1 |a s by

(i) 2 =525t [ 4 4]

Ans. (x—yP’=c(x +y—2)

(iii) (3x —2y + Ddx + Bx—2y + 4)dy:0[‘;—;75%]
Ans. (x—y+ 1) (x +y-3)°=c¢

iv) Cx +y + Ddx + (4x + 2y —1)dy=0
Ans. x =2y +logx +y—1)=c¢

The procedure for obtaining the values of / and k from a pair of linear equations involved in the
above problem is explained below for convenience.
It can be shown (and therefore important to remember) that the system of equations

alh + blk = (]

arh + bk = C2(62 #* O)

has exactly one solution (i.e., one value for x and one value for y), if [ #* 2—;], and it is

ai
ay
given by

X y —1

bicy —byey el — a1 ayhy — axby
Now, proceed as follows:
(i) Write down the given linear equations, one below the other in the form

Th—3k=17

3h—Tk =3

so that the constants on the right-hand side in both the equations are positive integers.
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(i) We write the coefficients in the pattern

=3 () (7 =3

> > X<

=N (3) 3) =N

(iii) The arrows between two numbers indicate that they are to be multiplied and the second
product is to be subtracted from the first.

(iv) We now write down the solution as follows:

h ko -1
(—9)—(—49) 21-21 (—49)—(-9)

—1(40) (=D(0)
h= =1 d k= =1=0
(—a0) " (—40)
9b.3 LINEAR DIFFERENTIAL EQUATIONS
A differential equation of the form
dy
—+Py= 47
o= (47)

where P and Q are constants or functions of “x” only, is known as a first-order linear
differential equation.
Another form of the first-order linear differential equation is

dx
4 py= 48
dy+ 1y =01 (48)

where Py and Q; are constants or functions of “y” only.
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Note: Equations (47) and (48) both are standard form(s) of linear differential equation of
order 1.7
Observe that,

o In both the standard forms, the coefficients P and Q (or P; and Q,) are functions of the
independent variable, or constants.®

o Degree of the dependent variable and its derivative is one.

o The coefficient of the derivative (dy/dx) in the form (47) and that of (dx/dy) in the
form (48) is one.

(These observations help us in identifying whether the differential equations are linear
differential equations.)

d
Note: An equation of the type R d—y + Sy = T, where R, S, T are functions of x or constants, can
b

be written in the standard form (47). We write

y,5,.I

x RTR

Thus, the given equation represents a linear differential equation.

9b.3.1 The Method of Solving First-Order Linear Differential Equation
Consider the differential equation,

dy )
L py = 49
B ) (49)

Multiply both sides of the Equation (49), by a function of “x” [say g(x)]. Thus, we obtain from
Equation (49), the equation

4T+ P lgl)] v = 0 ¢() (50)"”

Now, consider the left-hand side of Equation (50), as if it is a derivative of some product
of functions. The first term on left-hand side of Equation (50) [i.e., g(x)(dy/dx)] suggests
that the left-hand side can be looked at as a derivative of the product g(x)y. Thus, we
choose to equate the left-hand side of (2) with the derivative of g(x)y. We write,
g(x) % +P-g(x)y=2g(x) % +y-g'(x) [where the right-hand side is a derivative of g(x)y]

@ A differential equation is said to be “linear” when the “dependent variable” and its “derivatives” appear only in the first
degree.

In view of the above definition, the equation &y + P% + Qy = X is called a linear differential equation of the second order.

dx?
ds dy dx

® Remember that in an expression of a derivative [i.e., % or gt or i or @, etc.], we always mean the derivative of

“the dependent variable” with respect to “the independent variable”. Thus, in the form (47), the dependent variable is y and

the independent variable is x.

© In fact, we are going to develop a method for solving the first-order linear differential equation given at Equation (49).
(19 We have obtained Equation (50) by multiplying both sides of Equation (49) by some function of x. [Note that in the
differential Equation (49), the independent variable is x.] Here, we have not assumed (or mentioned) any thing about the
nature of g(x). Accordingly, we are free to choose any suitable function g(x), whenever needed.
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On simplification, we get

Pg(x) = ¢'(x) (51)

The above relation indicates the nature of the function g(x).
From Equation (51), we obtain

Integrating both sides w.r.t. x, we get

Jde = J%dx or Jde = log,|g(x)|

or g(x) = o) Px (52)
Equation (52) suggests that g(x) must be equal to ej Py
Now, it is clear that if we multiply the Equation (49) by g(x) = ejP 9 then the left-hand side

becomes the derivative of the producty - g(x). Therefore, after multiplying by eJ P and
thenintegrating both sides, the integral of the left-hand side will obviously be y - g(x). (Infact, we
can write this product without any formality.) The problem then reduces to finding the integral

of Q- el? 4 on the right-hand side.
The function g(x) = eT Paxis called the integrating factor of the given differential
equation, for obvious reason.
Substituting the value of g(x) [: el de] in Equation (50), we get

pax d i d i P
eJPdA.£+P.eJ‘Pde:Q'eJPdX or a(y_eJde>:Q.eJPd.x
Integrating both sides w.r.t. x, we get

y_ej.vdx _ J (Q~eJ‘“X>dx+ O

which is the general solution of the differential Equation (49), ¢ being an arbitrary constant.
Now, we list below the steps to solve first-order linear differential equations.

9b.3.2 Steps Involved to Solve First-Order Linear Differential Equations

(I) Write the given differential equation in the (standard) form

% + Py = Q, where P and Q are constants or functions of x only.

(II) Find the integrating factor = eJ Pdx

D Gott fried Wilhelm Leibniz (1646-1716) appears to have been the first who obtained this solution. Recall that Leibniz
is known to have invented differential Calculus independently of Newton. [Introductory Course in Differential Equations
by Danial A. Murray, Longmans Green and Co.]
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(III) Write the solution of the given differential equation as
y-IF = J(Q x IF)dx

Note: In case, the first-order linear differential equation is in the form ‘(‘1—'5 + Pix = Qy, where P,

Q, are constants, or functions of y only, then IF = e-[ Pr &y and the solution of the differential
equation is given by

- (IF) = J(Q « TF)dy + cx

Remark: A linear differential equation in the standard form
—+P-y=0 (53)
X

where P and Q are functions of “X”, is (in fact) an equation in the form

dy _
L)y =H() 0

so that F(x) = P and H(x) = Q, provided the coefficient of the derivative dy/dx is unity. Then,

we evaluate [ F(x) dx[= [P dx] and obtain the integrating factor ef FEax [The important
point to be remembered is that F(x) is the coefficient of the dependent variable “y” in (I)].
Similarly, the second standard form of a linear differential equation

dx

Pix= 54
dy+ 1x =0 (54)

13

where P, and Q; are functions of “y” is an equation in the form

dx

@ +f()x = h(y) (II)

so that f(y) (= P,) and h(y) (= Q)), provided the coefficient of the derivative is unity.
Then, to find the integrating factor, we evaluate [ f(y)dy[= P; dy] and obtain the integrating

factor ej FO)y, [Again, it must be remembered that f{(y) is the coefficient of the dependent
variable “x” in (II).]

Now, we are in a position to write down the important steps for solving problems on linear
differential equations.

(A) Make the coefficient of % or (g—)‘) as unity.

(B) Find P (or P;) and hence the integrating factor (IF).
(C) Write the general solution according to the formula.

The following solved examples will make the situation clear.
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Example (19): Find the general solution of the differential equation

d

dx—l—Zy:x2 (x £ 0)

X
Solution: The given differential equation is

d
x—y +2y = x7.
dx

Dividing both sides of Equation (55) by x, we get

This is the linear differential equation of the (standard) form: % +py=0
where p =2and Q= x.
Therefore, IF = ef wdx
Now [2dx = 2log, x = log x?

IF = elos " = 2 [ ele /) = f(x)

Therefore, solution of the given equation is given by

y~x2 = Jx‘x2 dx = st dx +c¢
or y-x'T=—+c¢
This is the general solution of the given differential equation. Ans.
Note: The above solution may also be written as
4y x> =x*+4c =x*+ ¢

or we may write it (by dividing both sided by x?) as

x2+ B
=—+cx
YTy

2

Example (20): Find the general solution of the differential equation

dy
a—yfcosx
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Solution: The given differential equation is

dy
= _y= 57
oy Y =cosx (57)
It is of the (standard) form % + Py = Q, where P=—1 and Q =cos x.
IF = o/ (-1
But [—dx=—x
IF=¢~

Multiplying both sides of Equation (57) by IF, we get

d
e e *y=e"cosx
dx

—X

(¢

or —(e™y) = e *cos x
A CIE)

Integrating both sides w.r.t. x, we get
ey = Je’x cosxdx+c (58)

(Now we have to evaluate the integral fe_" cos x dx, by the method of parts.)
Let I=[e ™ cosxdx

Ue*x — <‘:> — e, %(cos X) = (=sin x)]

7X) - J(—sin x) - (—e™¥)dx

or 1= [(cos x)(e™¥)dx = cos x(e_l

=—cosx-e ¥ — [(sin x) - (e™")dx

=—cosx-e ¥ —[sinx-(—e¥) — Jcos x(—e™)dx]

I =—cosx-e ™ +sinx-e* — J.cosx-e*x dx
or I =—cosx-e*+sinx-e* —1
or 2] = e ¥(sin x — cos x)

/- (smx—cosx)eﬂ
2

Substituting the value of / in Equation (58), we get

. (sinx—cosx) Cx
yee = (5 e "+
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(sinx—cosx> .
or y=|——F——)+ce

where c is an arbitrary constant. This is the general solution of the given differential equation.
Example (21): Solve the equation cos x% + ysin x=1

Solution: The given equation is
d
cosx—y—i-ysinx =1
dx
Dividing by cos x, we get

dy
——+ytanx = secx
dx

This is a linear differential equation of the type

dy

a‘f‘Py:Q

P=tan x
JP dx = Jtan x dx = log|sec x|
TF— e P _ gloglsee x| — goc
The solution is given by
y-secx = J(sec x)(sec x)dx

:Jseczxdxztanx+c

The solution is
ysecx =tanx + ¢

or y=tan X cos X + ¢ cos X, where c is an arbitrary constant

Example (22): Solve % + 2y cot x =3x? cosec’x
Solution: Here the coefficient of y is 2 cot x. Hence the integrating factor is

e‘rZ cotxdx _ e2 logsin x| _ elog(sin x)? _ elog sin? x — sin2 X- [elogf(x) :f(x)]
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Solution of the given differential equation is

y-sin2x = J(3x2 cosec? x)sin® x dx + ¢

:J(szdx—i-c

3
:3~%+c
=x’+c¢  Ans.

d
Example (23): Solve (1 4 x?) é +6x%y =1+ x?
Solution: The given differential equation is
dy
1 3\ 2 6 2, — 1 2
(I+x°) o Ty +x

To make the coefficient of % unity, we divide both sides by (1 + x*). We get

dy | 6x° 1+ 2

+ y=—=

dx 14+x3 1+x3
6x2
Here P=———
ere e
Letl + x* =t

3x2dx = dt

6x> dx = 2d¢

2dt
1= JT: 2logt = 2log(l + x?)
Integrating factor is
eJ.P dx _ e2 log(14+x?) _ e10g(]+)(3)z — (1 + x3)2

The solution is given by
(14 x%) J x3)2dx:J(l +x%) (1 +x*)dx
(14 x%) J xXdx+ ¢

J +xF 4+ +x)dx + e

x> Xt x®
—x+3+4+€+c Ans.

This is the general solution.

395
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Example (24): Solve y ¢’ dx = (y° + 2x &)dy

Solution: The given equation can be written as

dx dx
—=—+Pix=
O dy+ 1 0
dx: Zef.vzix

dy y

dx 2 5
———x=)ye—y
dy 'y

This is a linear differential equation of the type

d
ZiPx=0
dy

where P, = —% and Q;=y* e

-2 1
JPl dy = J—dy = —2logy =log—
y y

Integrating factor is e'°&(!/ ") =
The solution is

% =

1 _

1 ! Y
X 2:Jyzefy—zdy+c:ef’dy+c:e—+c:—e—y+c
y y -1

or x=—ye + ¢ Ans.

This is the general solution of the given differential equation.

Exercise
Solve the following differential equations:
Q) (P+1 L +dx (P +1)y=1

Ans. y(x2 + D?=tan!

X+ c
QXL =3x2=y+1
Ans. y=x%+x+£

Q.(3) ye’ dx=y* + (2x e’)dy
Ans. x=—y’ e + ¢y?

Q. () xE+2y=x%(x # 0)

Ans. y:% +ex?
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Q. (5) ydx—(x + 2yHdy=0
Ans. x = 2y + ¢y

9b.4 TYPE III: EXACT DIFFERENTIAL EQUATIONS

Definition: An exact differential equation of the first order is that equation which is obtained
from its general solution by mere differentiation and without any additional process of
elimination or reduction.

Example (25): Consider the equation,
Xyt=c¢ (59)
which is the general solution of some differential equation.

On differentiating Equation (59), both sides, we get
3x%y*dx +4x3y3dy =0 (60)

Equation (60) in this form is an exact differential equation whose solution is at Equation (59).
There is another way in which we can understand an exact differential equation.
From Equation (59), we may writex’y* — ¢ = 0. Obviously, the left-hand side is a function
of two variables x and y. Let us denote this function by u. Then, we have

Xy —c=u
Differentiating the above equation (w.r.t. to x and y), we get

3x%y* dx + 4x%y® = du (61)

The expression 3x2y* dx 4 4x3y* dy is called an exact differential of x*y*'?

Comparing the expressions on left-hand side of Equations (60) and (61) we note that an
equation in the form,

Mdx+Ndy=0

(where M and N are functions of x and y) will be an exact differential equation if there be some
function u (of x and y), such that

Mdx + Ndy =du

(2 Recall that, if y=£(x), then dy =f’(x)dx. Similarly, if #=f(x, y), then du=F"(x, y)dx + f’(x, y)dy. The expression

f(x, y)dx is called the partial differential of # with respect to x, and similarly f'(x, y)dy is called the partial differential of u

with respect to y. [Symbolically, we write f/(x, y)dx as %’dx and f’(x, y)dy as %dy.]

s
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Note: The differential Equation (60) can be simplified to
3ydx +4ydy =0 (62)

However, Equation (62) is not an exact differential equation, by definition. Methods of finding
solution(s) of exact differential equations are quite interesting. The first requirement is to check
whether the given equation is an exact differential equation or whether it can be converted to that
form. It can be shown that the condition of exactness for an equation, in the form

Mdx+Ndy=0

%u
Ox - 0y”
At this point, we put to an end, the discussion about exact differential equations and the methods
of their solution(s). At most, it may be mentioned that depending on the given equation, there
are Rules for finding the integrating factor(s) that help in finding the solution(s) of exact
differential equations.

is that 2 must be equal to &, that is, each should be equal to
dy q ox q

9b.5 APPLICATIONS OF DIFFERENTIAL EQUATIONS

Differential equations find many applications in Engineering (particularly in mechanics) and
other sciences. We have already discussed some important applications of differential equations
of first order and first degree in Chapter 13a of Part I.
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Antidifferentiation, 1, 2, 5, 10, 97, 151, 164, 166,
180, 252
Approximation method, 183
Arbitrary constant, 2, 343, 344, 351, 352
Arbitrary function, 151
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Area of function, 167-171
first fundamental theorem of calculus, 167-169
integral calculus, second fundamental
theorem, 171
second fundamental theorem, background
for, 169, 170
Area(s) of surface(s) of revolution, 314-318
surface area of a cone, 316-317
using calculus, 317-318
using geometry, 316-317
surface area of a sphere of radius “r,” 315-316
Arithmetic mean value
of function, 178
Avoiding summation, 182
Axis, definition of, 283

Bounded functions, integrable, 156, 191, 198

Cartesian curves, 257
Chain rule, 46, 174, 187
for differentiation, 43
Closed interval, 153
Computing the area of a circle, 272
area between two curves, 275-292
area of a circle, 272-275
Computing the area of a plane region, 252
area between two curves, 256257

area of an elementary strip, 252-253
area under a curve, 254-256
concept of infinitesimal(s), 253-254
Constant of integration, 2, 181
Constructing rough sketch, 257
curve passes through origin, 257-258
illustrative examples, 260-272
points of intersection, 259-260
symmetry, 258-259
Continuous function, 174, 180, 198
Curvilinear trapezoid, 179

Definite integrals, 1, 149, 164, 172, 181, 198, 199,
211, 224
and area, 143-151, 250-251
concept of, 154
definition of, 153-155
evaluation methods, 159, 165, 197, 204
method of integration by parts, 209-211
rule for, 198-200
theorems, 200-209
examples, 234-247
functions, 156-157
important properties, 213-214
integrability theorem, 157-164
interpretation of, 251-252
modification in notion, 154-156
preparation for, 139-143
proof of property, 214-232
deductions from, 229-232
involving complicated integrands,
224-228
properties of, 213-214
proof of, 214-224
Riemann sums, 152-153
types of, 172, 232-247
even function, 232-247, 234
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variable of, 156
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Dependent variable, 3, 274, 275, 296, 323, 326,
339, 389, 391
Derivatives
and corresponding integrals, 7, 9
of inverse circular functions, 10
of inverse trigonometric functions, 9
and formulas for indefinite integrals, 9
Determinant, concept of, 338-347
Differentiable function, 120, 187, 194
Differential equations
applications of, 398
arbitrary constant, 362, 363
exact differential, type III, 397-398
first order, 397
general solution, 363, 390
from a given relation, 333-337
integrating factor, 390
representing a family of curves, 351-357
simplest type of, 357-359
solving methods, 361, 362
homogeneous differential
equations, 370-380
nonhomogeneous linear equation, 380-388
variable separable form, 362-366
standard form, 391
transformation, 365
variable separable, 362
method of substitution, 366-370
Differentials (dy and dx)
degree of differential equation, 325
formation of a differential equation, 325-326
important formal applications, 323-325
initial condition, 330-331
particular solution, 330-331
solutions, types of, 326-330
Differentiation process, 171
Differentiation vs. integration, operations, 15

Equation. See also Differential equations
for length of a curve in polar
coordinates, 300-302
Exponential function, 115, 183, 196
Exponents, 183, 184, 192, 196

Fixed number, 198, 199
Focal-chord, 284

Geometrical interpretation
of indefinite integral, 3-6
of MVT, 179

Homogeneous differential equations, 370, 371,
372, 375, 381, 384

Hyperbola
length of the arc, 300

IF. See Integrating factor (IF)
Improper integrals, 358
Indefinite integral(s), 1, 2, 3, 43, 164, 180, 199,
201, 211
generalized power rule, 43-46
geometrical interpretation of, 3—-6
theorem, 4647
corollaries from rule of integration by, 47-52
solved examples, 53-59
Independent arbitrary constants, 331-333
elemination, 333, 338-347
Independent variable, 3, 275
Infinite limits, of integration, 358
Infinitesimal(s), concept of, 253-254
Initial time, 175
Integrability theorem, 166
Integrable functions, 200
Integral calculus
applications of, 249-250
arithmetic mean value of function, 178
definite integrals, mean value theorem for, 176
differentiating, definite integral with variable
upper limit, 172-182
fundamental theorems, 161, 164, 165
area of function, 167-171
definite integrals, 165-167
inverse processes, differentiation and
integration, 174-176
mean value theorem for, 176-178
geometrical interpretation of, 179-182
second fundamental theorem
statement and proof of, 171-172
theorem, 178-179
Integral curve, 332
family of curves, 332
Integral function, 3, 167, 178, 183
calculus of In x, 187-194
exponential function, definition of, 196
natural exponential function, 196
natural logarithmic function
definition of, 186
In x, graph of, 194-195
Integrals of tan X, cot X, sec X, and cosec x, 10
Integrals of the form [((ae* + b)/(ce* + d))dx,
60-66
Integrating factor (IF), 362, 390-391,
394-396, 398
Integration
of certain combinations of functions, 10-15
constant of, 2, 181



indefinite and definite, 181
integrals involving sin x and cos x, 34-37
integrals of form [(dx/(a sin x + b cos x)),
37-41
non-standard formats to standard form, 41-42
by parts (see Integration by parts)
power rule for, 188
symbol for, 2
using trigonometric identities, 17-34
Integration by parts, 97
first and second functions needed for, 98-99
illustrative examples, 100-113
integral reappears on the right-hand
side, 117-120
cannot be solved otherwise, 124-126
corollary, 120-124
evaluating standard integrals, simpler method
(s) for, 126-136
obtaining the rule for, 98
standard indefinite integration formulas, 99-100
Inverse processes, 5, 165, 198, 323
differentiation and integration, 174-176
Inverse trigonometric functions, 113
with ordinary trigonometric functions, 113-114
Irrational number, 183, 192

Latus-rectum, 284
Limiting process, 141, 150
Limit of approximating sums, 251
Limits of integration, 150,203,204, 218,222,224,
228, 235, 241, 243, 280, 301, 306, 358
Linear differential equations, 388, 391, 394, 396
first-order, 388390
method of solving, 390-396
standard form(s), 389, 392
Linear expression, 367, 368
Logarithmic differentiation, 191

Mean value theorem
for definite integrals, 176—178
for derivatives, 177
geometrical interpretation of, 179-182
for integrals, 179
Methods, of integration, 295
general formula for length of a curve, 296-300
measurement of length of a curve, 295-296
Minor axis, rotation, 308
Moments of inertia, 182

Natural exponential function, 183, 196
Natural logarithmic function, 186, 188, 190, 191,
192, 194, 195, 196
definition of, 186
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graph of, 194-195

properties, 190
New integrals, 84-85
Newton-Leibniz theorem, 181
Nonhomogeneous differential equations, 380
Nonhomogeneous linear equation, 380
Nonzero constant, 371

Odd function, 259

Order of a differential equation, 322, 323

Ordinary differential equation, 322, 361
first order and of first degree, 361

Original differentiation, 3

Parabola, 276, 283

equation of, 309

focal-chord of, 284
Paraboloid

circumscribing cylinder of, 309
Partial differential equation, 322
Polygons, 139-142

circumscribed, 140

inscribed, 140
Positive difference, 256
Proof, for standard integrals, 68—84
Proper choice of first function, rule for, 115-116

Rational number, 43, 183, 188, 189

Real number, 2, 10, 184, 195, 250, 338

Regular partition, 157

Riemann sums, 152-153, 156, 164, 172, 178,
181, 197

Sigma notation, 145

Simpson’s rule, 300

Solids of revolution, 302

Special cases, of integrals, 68—84

Standard forms, 6, 13, 21, 43, 260, 361, 389
types of integrals into, 34

Standard integrals, 85-95
expressing quadratic expression, §9-92
integrals of the type [((px+ ¢)/

(vax* +bx +c ))dx, 91-95

prove using method of substitution, 85-87
solved examples, 88—89

Substitution, 43, 47-59, 67
method of, 125, 132, 194, 231

Symbols, for integration, 2, 6

Trigonometric functions, 17
Trigonometric substitutions, 67

Undetermined constant term, 2
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Variable of integration, change of, 43
Variable separable form, 372, 376, 382
Vertex, 283
Volume of a “solid of revolution,” formula
for, 303-314
of a cone, 312-314

of ellipsoid of revolution, 307-308
paraboloid of revolution, 308-312
rotation

about the x-axis, 303-304

about the y-axis, 304
of a sphere of radius r, 304-306
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