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Preface

The use of computational methods in statistics to face complex problems and highly
dimensional data, as well as the widespread availability of computer technology, is
no news. The range of applications, instead, is unprecedented. As often occurs, new
and complex data types require new strategies, demanding for the development of
novel statistical methods and suggesting stimulating mathematical problems.

This volume presents the revised version of a selection of the papers given at
S.Co. 2011, the 7th Conference on Statistical Computation and Complex Systems,
held in Padua, Italy, September 19–21, 2011. The S.Co. conference is a forum for
the discussion of new developments and applications of statistical methods and
computational techniques for complex and high-dimensional datasets.

Although the topics covered in this volume are diverse, the same themes recur,
as research is mostly fueled by the need to analyse complicated data sets, for
which traditional methods do not provide viable solutions. Among the topics
presented we have estimation of traffic matrices in a communications network,
in the presence of long-range dependence; nonparametric mixed-effects models
for epidemiology; advanced methods for neuroimaging; efficient computations
and inference in environmental studies; hierarchical and nonparametric Bayesian
methods with applications in genomic studies; Markov switching models to explain
regime changes in the evolution of realized volatility for financial returns; joint
modelling of financial returns and multiple daily realized measures; classification of
multivariate linear–circular data, with applications to marine monitoring networks;
forecasting of electricity supply functions, using principal component analysis and
reduced rank regression; clustering based on nonparametric density estimation;
surface estimation and spatial smoothing, with applications to the estimation of the
blood-flow velocity field. Whilst not exhaustive, this list should give a feel of the
range of issues discussed at the conference.

This book is addressed to researchers working at the forefront of the statistical
analysis of complex systems and using computationally intensive statistical
methods.
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vi Preface

We wish to thank all contributors who made this volume possible. Finally, thanks
must go to the reviewers, who responded rapidly when put under pressure and
helped improve the papers with their valuable comments and suggestions.

Padua, Italy Matteo Grigoletto, Francesco Lisi
Milan, Italy Sonia Petrone
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A New Unsupervised Classification Technique
Through Nonlinear Non Parametric
Mixed-Effects Models

Laura Azzimonti, Francesca Ieva, and Anna Maria Paganoni

Abstract In this work we propose a novel unsupervised classification technique
based on the estimation of nonlinear nonparametric mixed-effects models. The
proposed method is an iterative algorithm that alternates a nonparametric EM step
and a nonlinear Maximum Likelihood step. We apply this new procedure to perform
an unsupervised clustering of longitudinal data in two different case studies.

1 Introduction

Unsupervised clustering is one of the main topics in data mining, i.e., the process
of finding useful information from data [4]. We focus our attention on highly
overdispersed longitudinal and repeated data, which are naturally described
through mixed-effects models. Nonlinear mixed-effects models (NLME models)
are mixed-effects models in which at least one of the fixed or random effects
appears nonlinearly in the model function. They are increasingly used in several
biomedical and ecological applications, especially in population pharmacokinetics,
pharmacodynamic, immune cells reconstruction and epidemiological studies
(see [6, 7, 13, 21]). In these fields, statistical modeling based on NLME models
takes advantage of tools that allow to distinguish overall population effects from
drugs effects or unit specific influence. In general, mixed-effects models include
parameters associated with the entire population (fixed effects) and subject/group
specific parameters (random effects). For this reason, mixed-effects models are
able to describe the dynamics of the phenomenon under investigation, even in the
presence of high between subjects variability. When the random effects represent
a deviation from the common dynamics of the population, mixed-effects models
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2 L. Azzimonti et al.

provide estimates both for the entire population’s model and for each subject’s
one. In this work random effects have a different meaning, in fact they describe
the common dynamics of different groups of subjects. In this framework, mixed-
effects models provide only estimates for each group-specific model. Thanks to this
property, it will be possible to consider mixed-effects models as an unsupervised
clustering tool for longitudinal data and repeated measures. For this reason we focus
our attention on the estimation of the distribution of the random effects P�.

A wide literature exists for parametric modeling of random effects distribution
in linear and non linear mixed-effects models. In this framework, Maximum
Likelihood (ML) estimators are generally preferred because of their consistency and
efficiency. However, due to the non linearity of the likelihood, we are not always able
to provide explicitly the parameter estimators. A general and complete overview of
linear multilevel models is given in [12]. An analogous overview for nonlinear case
is given in [10]. In [9] it is shown how R and S-plus tools estimate linear and
generalized linear mixed-effects models with parametric, in particular Gaussian,
random effects. Concerning nonlinear models, in [11] a ML estimation of Gaussian
random effect is provided for peculiar nonlinear forms. A stochastic approximation
of traditional EM algorithm (SAEM) for estimating Gaussian random effects is
suggested in [14], whereas an exact EM algorithm is described in [24]. Finally,
[25] introduces a Laplace approximation for nonlinear random effects marginal
distributions. However, parametric assumptions may sometimes result too restrictive
to describe very heterogeneous or grouped populations. Moreover, when the number
of measurements for unit is small, predictions for random effects are strongly
influenced by the parametric assumptions. For these reasons nonparametric (NP)
framework, which allow P� to live in an infinite dimensional space, is attractive.
Moreover, it provides in a very natural way a clustering tool, as we will highlight
later.

Methods for the estimation of linear nonparametric random effects distribution
in linear and generalized linear mixed-effects models have been proposed in [1, 2],
whereas [3, 6, 15, 23], among others, deal with nonparametric nonlinear models.

In this work we propose a novel estimation method for nonlinear nonparametric
mixed-effects models, aimed at unsupervised clustering. The proposed method is
an iterative algorithm that alternates a nonparametric EM step and a nonlinear
Maximum Likelihood step. The present algorithm is implemented in R program
(version 2.13.0, R Development Core Team [20]) and the R source code is available
upon request. To the best of our knowledge, this is the first example of free software
for the estimation of nonlinear nonparametric mixed-effects models.

In Sect. 2 the general framework of the work is sketched out, and in Sect. 3 the
algorithm for the estimation of nonlinear nonparametric random effect (NLNPEM)
is described. Section 4 contains applications to case studies. Concluding remarks
and further developments of this work are finally discussed in Sect. 5. Technical
details in the estimation algorithm are discussed in Appendix.
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2 Model and Framework

We consider the following NLME model for longitudinal data:

yi D f .ˇ;bi ; t/C �i i D 1; : : : ; N

�i �N.0; �2In/ i.i.d.
(1)

where yi 2 R
n is the response variable evaluated at times t 2 R

n and f is a general,
real-valued and differentiable function with p C q parameters. Each parameter of
f is treated either as fixed or as random. Fixed effects are parameters associated
with the entire population whereas random effects are subject-specific parameters
that allow to identify clusters of subjects. ˇ 2 R

p is a vector that contain all fixed
effects and bi 2 R

q is the vector for the i -th subject random effects.
The function f is nonlinear at least in one component of the fixed or random

effects. The errors �ij are associated with the j -th measurement of the i -th
longitudinal data. They are normally distributed, independent between different
subjects and independent within the same subject. In general, the proposed method
could also take into account of a different number of observations, located at
different times, for different subjects. In (1) we chose not to consider this case in
order to ease the notation, but the generalization is straightforward.

Usually random effects are assumed to be Normal distributed, bi �Nq.0; ˙/,
with unknown parameters that, together with ˇ and � , can be estimated through
methods based on the likelihood function (see [18]). In this parametric framework
the maximum likelihood estimators are generally favored by their statistical proper-
ties, i.e., consistency and efficiency. Nevertheless the parametric assumptions could
be too restrictive to describe highly heterogeneous or grouped data, so it might
be necessary to move to a nonparametric approach. In our case, we assume bi ,
for i D 1; : : : ; N , independent and identically distributed according to a probability
measure P� that belongs to the class of all probability measures on R

q . P� can then
be interpreted as the mixing distribution that generates the density of the stochastic
model in (1). Looking for the ML estimator OP� of P� in the space of all probability
measures on R

q , the discreteness theorem proved in [16] states that OP� is a discrete
measure with at most N support points. Moreover under suitable hypotheses on
the distribution of the response variable, satisfied, for example, by densities in the
exponential family, the ML estimator is also unique as proved in [17]. Therefore the
ML estimator of the random effects distribution can be expressed as a set of points
.c1; : : : ; cM/, whereM � N and cl 2 R

q , and a set of weights .!1; : : : ; !M /, where
!l � 0 and

PM
l D 1 !l D 1.

As mentioned above, in this paper we propose an algorithm for the joint
estimation of ˇ; .c1; : : : ; cM/; .!1; : : : ; !M / and �2 in the nonlinear framework
of model (1). The proposed method maximizes the following likelihood

L.ˇ; �2
ˇ
ˇ y/ D p.yj ˇ; �2/ D

MX

lD1
!l

1

.2��2/.nN/=2
e� 1

2�2

PN
iD1

Pn
jD1.yij�f .ˇ;cl ;tj //2

(2)
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with respect to fixed effects ˇ; error variance �2, and the random effects distribution
.cl ; !l /; l D 1; : : : ;M . Each iteration of the algorithm described in Sect. 3 increases
the likelihood in (2).

Concerning the distribution of random effects, for each l D 1; : : : ;M; cl and
!l represent the group-specific parameters and the corresponding weights in the
mixture (2), respectively. Notice that we do not have to fix a priori the numberM of
support points, but it is computed by the algorithm. Since we don’t have to specify
a priori the number of support points and in consequence the number of groups,
the nonparametric mixed-effects model could be interpreted as an unsupervised
clustering tool for longitudinal data. This tool could be very useful in order to
identify groups of subjects to be used in the analysis and to cluster observations.

3 NLNPEM Algorithm

The algorithm proposed for the estimation of the parameters of model (1) arises
from the framework described in [22], and it increases at each iteration the
likelihood (2). The algorithm alternates two steps: the first one is a nonparamet-
ric EM step whereas the second one is a nonlinear maximum-likelihood step.
The nonparametric EM step estimates the discrete q-dimensional distribution
.cl ; !l /; l D 1; : : : ;M of the random effects bi . The non linear maximum likelihood
step provides an estimation of the fixed effects ˇ and the variance �2, given bi .

The nonparametric EM step consists in an update of the parameters of the
discrete distribution .cl ; !l /; l D 1; : : : ;M that increases the likelihood function (2).
The property of increasing the likelihood was proved in [22]. The update is the
following: 8

ˆ̂
ˆ̂
<

ˆ̂
ˆ̂
:

!
up
l D 1

N

NX

iD1
Wil

cup
l D arg max

c

"
NX

iD1
Wil lnp.yi j ˇ; �2; c/

# (3)

where

Wil D !lp.yi j ˇ; �2; cl /
PM

kD1 !kp.yi j ˇ; �2; ck/

and

p.yi j ˇ; �2; c/ D 1

.2��2/n=2
e� 1

2�2

Pn
jD1.yij�f .ˇ;c;tj //2 :

The coefficients Wil represent the probability of bi being equal to cl conditionally
to the observation yi and given the fixed effects ˇ and the variance �2, that is

Wil D p.bi D cl j yi ;ˇ; �2/
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in fact,

Wil D p.bi D cl /p.yi j ˇ; �2; cl /
p.yi j ˇ; �2/

D p.yi ;bi D cl j ˇ; �2/

p.yi j ˇ; �2/
D p.bi D cl jyi ;ˇ; �2/:

In order to estimate bi for i D 1; : : : ; N; we want to maximize the probability of
bi conditionally to the observations yi and given the fixed effects ˇ and the error
variance �2. For this reason the estimation of the random effects, Obi , is obtained
maximizingWil over l , that is

Obi D cQl if Ql D arg max
l
Wil:

During the nonparametric EM step, we could also reduce the support of the
discrete distribution. The reduction of the support is performed in order to cluster
the random effects. This support reduction consists in both making points very close
to each other collapse and removing points with very low weight and not associated
with any subject. In particular if two points are too close, that is kcl � ckk < D,
where D is a tuning tolerance parameter, then we replace cl and ck with a new
point cminfl;kg D .cl C ck/=2 with weight !minfl;kg D!l C!k . Otherwise, if !l < Q!,

where Q! is another tuning tolerance parameter, and the subset
n
i W Obi D cl

o
is

empty, we remove the point cl . The thresholds D and Q! are two complexity
parameters that affect the estimation of the nonparametric distribution; Q! is linked
to the size of the smallest group that we want to detect, while D represents the
minimum allowed distance between different points of the discrete random effects
distribution; the higher D is set, the lower is the number of groups. For this reason
the two complexity parameters define a trade-off between bias and high number of
groups. In this work we prefer setting D low in order to obtain a higher number of
groups and, in case, cluster them later. A rule of thumb for setting these threshold
parameters is the following: D may be much smaller than the standard deviation
within groups, on the other hand, Q! may be set of the same order of the inverse of
the total number of observations in the dataset.

The nonlinear maximum likelihood step provides the estimation of the fixed
effects ˇ and the errors variance �2, given bi D Obi . In this step we maximize the
nonlinear log-likelihood:

`.ˇ; �2
ˇ
ˇ y; Ob/ D �nN

2
ln.2��2/� 1

2�2

NX

iD1

nX

jD1

�
yij � f .ˇ; Obi ; tj /

�2
(4)

where Obi is the estimation of random effects for the i -th subject provided in the
nonparametric EM step.

The algorithm, given a starting discrete distribution with N support points for
the random effects and a starting estimate for the fixed effects, alternates the non-
parametric EM step and the nonlinear maximum likelihood step until convergence.
More details, together with the sketch of the algorithm, are reported in Appendix.
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In order to validate the proposed estimation algorithm and to compare it with
already existing procedures for the linear framework, an intensive simulation study
has been performed and detailed in [5]. In the first simulation study (see [5],
Sect. 3.2), we compared the results obtained in a linear framework with those
obtained with the algorithm introduced in [1] and implemented in the npmlreg
R-package (see [8]). In the second one (see [5], Sect. 3.3) we considered two classic
nonlinear functions f in (1): the exponential and the logistic growth curves. For
each case a test set of simulated curves has been designed and the algorithm
performance in the estimation of the random effects has been evaluated computing
the Wasserstein distance between the true and the estimated distribution of the
random effects.

In the linear framework NLNPEM method performs very well and its results
are comparable with those obtained with the already existing npmlreg method;
for a large number of groups, npmlreg method doesn’t detect some points of the
nonparametric distribution or even doesn’t reach convergence, whereas NLNPEM
performs well, even ignoring the true number of groups. Both in the linear and
nonlinear framework we obtain a very high level of agreement, measured in term
of Wasserstein distance between the true distribution generating data and the one
estimated by NLNPEM algorithm. The NLNPEM method is also able to capture
correctly outlier groups even in highly unbalanced situations.

4 Application to Case Studies

In this section we apply the proposed method to two different datasets: the first one
contains the carbon dioxide uptake photosynthetic response curves in a sample of 12
different plants. It is a classical dataset for the study of longitudinal curves presented
in [19] in a study of the cold tolerance of a C4 grass species, Echinochloa crus-
galli and analyzed also in [18]. The second one describes the number of Hospital
Discharges of patients affected by Acute Myocardial Infarction (AMI) without
ST-segment Elevation (NON-STEMI) along the time period 2000–2007, grouped
by hospital and relative to the 30 largest clinical institutions of Regione Lombardia.
The explorative analysis of these data is aimed at detecting groups with similar
behaviours.

4.1 Carbon Dioxide Uptake

In the first case we consider the carbon dioxide (C02) uptake Œ�mol �m�2 � s�1� of 12
plants, measured at several levels of ambient C02 concentration Œ�L=L�, see Fig. 1.
In [19] an exponential growth model is proposed to capture the common shape of
the curves. In this case the nonlinear function to be used in the model (1) is:

f .t/ D ˛
�
1 � e��t �



Nonlinear Non Parametric Mixed-Effects Models 7

Fig. 1 Carbon dioxide
uptake photosynthetic curves
for 12 plants. Real data are
colored according to the
NLNPEM clusters and
NLNPEM fitted models are
superimposed

which is nonlinear in �. The two parameters ˛ and � represent, respectively, the
asymptote and the growth rate.

In this analysis we consider only random effects for the asymptote, that means
that the mixed-effects model becomes

yi D ai
�
1 � e��t�C �i

where �i �N.0; �2In/ are i.i.d. errors, ai are the random effects for the asymptote
(bi D ai ), and � is the fixed effect for the growth rate (ˇD�).

The NLNPEM algorithm clusters the plants inM D 3 different groups, according
to the estimated discrete distribution of the random effect for the asymptote
(see Fig. 1). The estimated fixed effect is O�D 0:006, the estimated discrete
measure OP� is concentrated on .Oc1; Oc2; Oc3/D .19:39; 33:71; 42:89/ with weights
. O!1; O!2; O!3/D .0:25; 0:33; 0:42/ and the estimated variance is O�2 D 8:94. This anal-
ysis, performed with DD 5 and Q!D 0:05, backs up the presence of three groups of
plants according to different asymptotes and automatically detects an unsupervised
cluster structure. This result is in total agreement with a k-means clustering of the
random asymptote point estimates computed following the traditional parametric
approach [18] that assumes a Normal model for the random effect. Nevertheless, in
that case, a critical point is the choice of k, the number of groups, which is set equal
to three after maximizing the average silhouette width. On the contrary the number
of groups is automatically computed in the NLNPEM method.

4.2 Acute Myocardial Infarction Without
ST-Segment Elevation

The second example analyzed comes from epidemiological studies carried out
using administrative databanks. In fact, Fig. 2 represents the normalized number
of NON-STEMI diagnoses along the time period 2000–2007 grouped by hospital



8 L. Azzimonti et al.

−3 −2 −1 0 1 2 3

0.05

0.10

0.15

0.20

0.25

Centered Year

N
um

be
r 

of
 c

as
es

Fig. 2 Standardized number of AMI without ST-segment elevation diagnoses in the period 2000–
2007 in the 30 largest clinical institutions of Lombardia Region. The year has been centered and
normalization has been carried out standardizing the yearly number of diagnoses for each hospital
by total number of diagnoses in the time window 2000–2007. Clusters pointed out by NLNPEM
algorithm are highlighted, respectively, by solid and dashed lines. NLNPEM fitted models are
superimposed

and relative to the 30 largest clinical institutions of Regione Lombardia. For each
hospital the yearly number of diagnoses has been standardized by the hospital total
number of diagnoses in the time period 2000–2007. As pointed out in [13] a logistic
growth model with random inflection seems to capture the common “S-shaped”
growing pattern; for this reason we consider a logistic growth model. In this case,
the nonlinear function to be used in model (1) is:

f .t/ D ˛

1C e� t�ı
�

where ˛ represent the asymptote, ı is the inflection point, which correspond to the
time at which the growth curve reaches the half of the asymptote, and � is the
time elapsed between ı and the time at which the growth curve reaches 3/4 of
the asymptotic level. The parameters � and ˛ are treated as fixed effects while the
inflection point is treated as random, as suggested in [13]. The model becomes:

yi D ˛

1C e� t�di
�

C �i

where �i �N.0; �2In/ are i.i.d. errors, di represent the random effects for the
inflection point, while ˛ and � represent the fixed effects. In particular bi Ddi and
ˇ D .˛; �/.

The NLNPEM algorithm clusters the hospitals in M D 2 different groups,
according to the estimated discrete distribution of the random inflection point
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(see Fig. 2). The estimated fixed effects are Ǫ D 0:16 and O� D 1:31, the estimated
discrete measure OP� is concentrated on .Oc1; Oc2/D .�3:76;�2:43/ with weights
. O!1; O!2/D .0:2; 0:8/ and the estimated variance is O�2 D 7:7 � 10�4. This analysis,
performed with DD 0:05 and Q!D 0:05, backs up the presence of two groups of
hospitals according to different inflection points.

Even if clinical best practice maintains that there is no evidence for a greater
incidence of NON-STEMI in this period, it is known that since the early 2000s a
new diagnostic procedure—the troponin exam—has been introduced and this could
have produced an increased number of positive diagnoses by easing NON-STEMI
detection. Hence, the presence of two clusters could be a consequence of the
different hospital timings in the introduction and adoption of this practice. This
hypothesis cannot be validated directly since the timings of adoption of the troponin
exam by the 30 different hospitals included in the analysis are not available.

The good agreement with previous results detailed in [13] together with the great
advantage of a nonparametric approach advocates the real profit in using this new
estimation algorithm.

5 Conclusions

In this work, we proposed a new unsupervised clustering technique based on a new
estimation method for nonlinear nonparametric mixed-effects models. The proposed
method is based on an iterative algorithm (named NLNPEM) that alternates a
nonparametric EM and an optimization step for the maximization of a nonlinear
likelihood function. A simulation study both in linear and nonlinear setting of
exponential and logistic growth has been carried out. Results show that NLNPEM
performs well, even ignoring the real number of groups, in terms of Wasserstein
distance between the true distribution generating data and the one estimated by
NLNPEM algorithm, and that it always reaches convergence, even in those cases
where several groups are present. We use this algorithm as an unsupervised
clustering technique in the context of the explorative data mining. In particular
two applications to real data of carbon dioxide uptake photosynthetic response
curves and NON-STEMI number of diagnoses, respectively, are presented. In these
two case studies the potential of our method in unsupervised clustering analysis is
highlighted.

Appendix: Details on NLNPEM Algorithm

The NLNPEM is the following:

1. Define a starting discrete distribution for random effects with support on
N points .c.0/;!.0//, a starting estimate for the fixed effects ˇ.0/ and for �2.0/

and the tolerance parametersD and Q!.
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2. Given .c.k�1/;!.k�1//, ˇ.k�1/ and �2.k�1/, perform the EM step (without the
support reduction) in order to update the support points c.k/ and the weights !.k/

of the random effect distribution, according to (3).
3. Given .c.k/;!.k//, perform the nonlinear maximum likelihood step in order to

estimate the fixed effects ˇ.k/ and the error variance �2.k/ maximizing (4).
4. Iterate Steps 2 and 3 until convergence.
5. Reduce the support of the discrete distribution, according to the tuning parame-

ters D and Q!.
6. Given .c.k�1/;!.k�1//, ˇ.k�1/, �2.k�1/, D and Q!, perform the EM step with the

support reduction in order to update the support points c.k/ and the weights !.k/

of the random effect distribution, according to (3).
7. Given .c.k/;!.k//, perform the nonlinear maximum likelihood step in order to

estimate the fixed effects ˇ.k/ and the error variance �2.k/ maximizing (4).
8. Iterate Steps 6 and 7 until convergence.

The algorithm reaches convergence when parameters and discrete distribution stop
changing or when there is no variation in the log-likelihood function.
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Estimation Approaches for the Apparent
Diffusion Coefficient in Rice-Distributed
MR Signals

Stefano Baraldo, Francesca Ieva, Luca Mainardi, and Anna Maria Paganoni

Abstract The Apparent Diffusion Coefficient (ADC) is often considered in the
differential diagnosis of tumors, since the analysis of a field of ADCs on a particular
region of the body allows to identify regional necrosis. This quantity can be
estimated from magnitude signals obtained in diffusion Magnetic Resonance (MR),
but in some situations, like total body MRs, it is possible to repeat only few
measurements on the same patient, thus providing a limited amount of data for
the estimation of ADCs. In this work we consider a Rician distributed magnitude
signal with an exponential dependence on the so-called b-value. Different pixelwise
estimators for the ADC, both frequentist and Bayesian, are proposed and compared
by a simulation study, focusing on issues caused by low signal-to-noise ratios and
small sample sizes.

1 Introduction

Diffusion magnetic resonance (MR) is as an important tool in clinical research, as
it allows to characterize some properties of biological tissues. When tumor areas
are analyzed using this technique, it can be observed that the diffusion tensor,
estimated from the magnetic MR magnitude signal, has reduced values in lesions
with respect to surrounding physiological tissues, allowing to identify pathological
areas or necrosis. When the tissue region of interest can be considered as isotropic
the Apparent Diffusion Coefficient (ADC) is sufficient to characterize the diffusion
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properties of the tissue, and it is usually estimated from the exponential decay of the
signal with respect to the b-value, the MR acquisition parameter. The assumption of
isotropy is common and reasonable in various cases, like breast and prostate cancer
(see, for example, [7, 10]).

In many practical situations it may not be possible to collect more than few
measures at different b-values, limiting the accuracy of the estimation. A reduction
in the total number of measures necessary to achieve a certain accuracy is convenient
in term of costs and allows to keep the patient involved in the MR procedure for a
shorter amount of time (the experience may be unpleasant, especially when total
body MR must be performed). The purpose of this work is to compare different
frequentist and Bayesian approaches to the estimation of the ADC, underlining their
statistical properties and computational issues.

2 Rice-Distributed Diffusion MR Signals

2.1 The Rice Distribution

The random variables we deal with derive from the complex signal w D wr C iwi
measured in diffusion MR. It is usual to assume that both wr and wi are affected
by a Gaussian noise with equal, constant variance, i.e. wr � N.	 cos.#/; �2/ and
wi � N.	 sin.#/; �2/, with 	 2 R

C and # 2 Œ0; 2�/. The quantity at hand is the
modulus M of this signal, which has then a Rice (or Rician) distribution, that we
will denote as M � Rice.	; �2/. The density of this random variable has the form

fM.mj	; �2/ D m

�2
e�m2C	2

2�2 I0

�m	

�2

�
I.0;C1/.m/; (1)

where I0 is the zeroth-order modified Bessel function of the first kind (see [1]).
Using the series expression of I0, it is possible to deduce a different, equivalent
definition of a Rician random variable as M D �

p
R, where R is a noncentral 
2

variable that can be expressed as a mixture of 
2.2P C 2/ distributions with P �
Poisson.	2=2�2/. This formulation becomes particularly useful for sampling from
a Rice distribution, as it allows an easy implementation of a Gibbs sampler.

2.2 Rice Exponential Regression

Diffusion MR aims at computing the diffusion tensor field on a portion of tissue,
and this is achieved by analyzing the influence of water diffusion on the measured
signal, under different experimental settings. In particular, the classical model for
relating the magnitude signal to the acquisition parameters and the 3-dimensional
diffusion tensor D is the Stejskal–Tanner equation
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	g D 	0 exp.�gTDgb/; (2)

where 	g is the “real” intensity signal we want to measure, 	0 is the signal at b D 0

and the vector g 2 R
3 is the applied magnetic gradient. The b-value is a function of

other acquisition settings, which we will omit since their description and discussion
is beyond the scope of this article. See, for example, [3] for an overview on MR
techniques, including diffusion MR, and a discussion of various issues and recent
advances in this field.

In general, even in the ideal noiseless case, at least six observations are needed
to determine the components of the symmetric, positive definite diffusion tensor
D, by varying the direction g of the magnetic field gradient. However, if the tissue
under study can be considered as isotropic, the diffusion tensor has the simpler form
D D ˛I , where ˛ is the ADC, a scalar parameter, and I is the identity matrix. This
reduces model (2) to the following

	 D 	0 exp.�˛b/ (3)

for any vector g (in the following, we will omit it for ease of notation).
Equation (3) describes pointwise the phenomenon on the tissue region of interest.

In this study we consider the pixels of a diffusion MR sequence of images as
independent and focus on the estimation problem for a single point in space. We
do not consider a spatial modeling for the ADC field: although it could be a useful
way to filter noise and to capture underlying tissue structures; on the other hand, for
diagnostic purposes it may be preferable to submit to the physician an estimate that
has not been artificially smoothed.

3 Estimation Methods

In this section we present different methods for the estimation of ˛, the unknown
parameter of interest. We consider a sample of signal intensities on a single
pixel Mi � Rice.	0e�˛bi ; �2/, i D 1; : : : ; n, and their respective realizations m D
m1; : : : ; mn at b-values b D b1; : : : ; bn.

The dispersion parameter �2 is usually measured over regions where almost pure
noise is observed, and used as a known parameter in the subsequent estimates. This
estimate of �2 is considered as reliable, since it can be based on a very large number
of pixels, so we will consider the case of known dispersion parameter.

We consider nonlinear least squares, maximum likelihood and three Bayesian
point estimators. In the case of a simple Rice.	; �2/ random variable an iterative
method of moments estimator has been proposed in [2], but this technique has
no straightforward extension to the case of covariate-dependent 	, while moment
equations would be difficult to invert in the considered case. Moreover, under
the model assumptions presented in Sect. 2 a decoupling of noise and signal in
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the fashion of signal detection theory could not be pursued (see [4] for a brief
presentation and a Bayesian implementation of the SDT classical scheme).

The different estimation methods for the couple .	0; ˛/ presented here will be
tested under different signal-to-noise ratios (SNRs) 	=� in Sect. 4.

3.1 Nonlinear Regression

A standard approach for the estimation of 	0 and ˛ is to solve a nonlinear least
squares problem, which is equivalent to approximatingMi D 	0 exp.�˛bi /C"i for
i D 1; : : : ; n, where "i are iid, zero mean, Gaussian noise terms. The estimators O	LS

0

and ǪLS are defined as

. O	LS
0 ; ǪLS/ D argmin

.	0;˛/

nX

iD1
.mi � 	0e�˛bi /2;

for 	0; ˛ > 0, which is equivalent to the solution of the following equations

(
	0
Pn

iD1 e�2˛bi D Pn
iD1 mie�˛bi ;

	0
Pn

iD1 bie�2˛bi D Pn
iD1 mibie�˛bi :

(4)

The approximation to a nonlinear regression model is inconsistent with the phe-
nomenon under study, most evidently for the fact that in this case the noise term is
symmetric and it can assume real values. This inconsistency is negligible for high
SNR values, since a Rice.	; �2/ distribution in this case approaches a N.	0; �

2/,
but becomes important with “intermediate” and low SNRs. In [9], the behavior of
the Rice distribution with fixing � D 1 and varying 	 is examined, observing that
normality can be considered a good approximation at about 	=� > 2:64, but the
sample variance approaches �2 only for SNR values greater than 5:19. Even for
pixels with high SNRs at b D 0, for large b-values the real signal could reach
the same order of magnitude of noise, depending on the unknown value of ˛, and
this could lead to very biased estimates. However, the least squares approach is
computationally simpler and quicker to carry out, since it can be seen from (4)
that 	0 can be expressed as a function of ˛, thus requiring just a one-dimensional
optimization to compute the estimates.

3.2 Maximum Likelihood

The maximum likelihood approach allows to take into account the asymmetry of
the signal distribution, always providing admissible values of the parameters. The
objective function is the log-likelihood
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l.	0; ˛jm;b; �2/ D logL.	0; ˛jm;b; �2/ D
nX

iD1
logfMi .mi j	0e�˛bi ; �2/

/ � 1

2�2

nX

iD1
	20e�2˛bi C

nX

iD1
log

�

I0

�
mi	0e�˛bi

�2

�	

;

where fMi is the Rice density (1), for i D 1; : : : ; n. The ML estimator is then

. O	ML
0 ; ǪML/ D argmax

.	0;˛/

l.	0; ˛jm;b; �2/;

for 	0; ˛ > 0.
Looking for stationary points of l and using the fact that I 0

0.x/D I1.x/, we obtain
the following estimating equations

8
ˆ̂
<̂

ˆ̂
:̂

	0
Pn

iD1 e�2˛bi D Pn
iD1

I1.
mi 	0e�˛bi

�2
/mi

I0.
mi 	0e�˛bi

�2
/

e�˛bi ;

	0
Pn

iD1 bie�2˛bi D Pn
iD1

I1.
mi 	0e�˛bi

�2
/mi

I0.
mi 	0e�˛bi

�2
/

bie�˛bi :

Notice that these score equations differ from (4) only for the Bessel functions ratios
I1.

mi	0e�˛bi

�2
/=I0.

mi 	0e�˛bi

�2
/, which multiplies the observationsmi . In particular, this

factor decreases the values of observations, since 0 < I1.x/=I0.x/ < 1 for x > 0,
and increases asymptotically to 1 for large SNRs, so that the score equations tend
to (4).

As shown in [8], the maximum likelihood estimator for 	 obtained from
an iid sample M1; : : : ;Mn � Rice.	; �2/ and known �2 becomes exactly 0
when the moment estimator for EŒM 2�D 	2C2�2 becomes inadmissible, i.e. whenPn

iD1 M 2
i =n � 2�2 � 0, even if the real value of 	 is larger than 0. The case of

Rice exponential regression suffers from a similar problem in a nontrivial way, and
would require �2 to be estimated with the other parameters to keep parameter values
coherent with the model. Here we will not address this problem, but efforts in this
direction are currently in progress.

3.3 Bayesian Approaches

We consider also three different estimators based on a Bayesian posterior distribu-
tion: its mean, its median, and its mode. To allow an easy implementation using
BUGS code, we introduce a slightly different formulation of the model.

If M � Rice.	; �2/, then R D M2=�2 has noncentral 
2 distribution with 2
degrees of freedom and noncentrality parameter � D 	2=.2�2/. Be nowR1; : : : ; Rn
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the random sample considered, with Ri D M2
i =�

2 and Mi � Rice.	0 e�˛bi ; �2/
for i D 1; : : : ; n, and let r D .r1; : : : ; rn/ be the observations from this sample. Let
�.	0/ and �.˛/ be the prior distributions of the two unknown parameters, while the
density of each Ri will be denoted as fRi .ri /, with parameter �i D 	20e�2˛bi =2�2.
The joint posterior distribution of 	0 and ˛ is then

p.	0; ˛jr;b; �2/ /
nY

iD1
fRi .ri j�i/�.	0/�.˛/:

As anticipated in Sect. 2, a noncentral 
2 distribution of noncentrality � can be
sampled as a mixture of 
2.2P C 2/ with P � P.�/. This allows an easy BUGS
implementation of these estimators.

4 Simulation Study

We compared five estimators for ˛—least squares (LS), maximum likelihood (ML)
and posterior mean (PMe), median (PMd) and mode (PMo)—in terms of mean
and mean square error. For the two frequentist approaches, ranges for the possible
parameter values have been chosen, considering 	0 2 Œ0:1; 10� and ˛ 2 Œ0:1; 5�,
while the fixed parameter �2 has been taken always equal to 1. For the Bayesian
point estimators we chose uninformative, uniform priors, with the same support as
the ranges chosen for LS and ML. The first two estimators have been computed
with R 2.12.2 (see [6]), using built-in optimization functions: optimize for the
one-dimensional minimization required in LS and optim, using the L-BFGS-B
method, for the likelihood maximization, with startup values .	0start; ˛start/ D
.1; 1/. Bayesian posterior distributions have been computed using a Gibbs sampler
implemented in JAGS (see [5]). In particular, the following model code (valid for
any program supporting BUGS-type language) was used:

model f
f o r ( i i n 1 : n ) f

lambda [ i ]<�(nu0�nu0 )� exp (�2� a l p h a�b [ i ] ) / ( 2 � sigma�sigma )
p [ i ] ˜ d p o i s ( lambda [ i ] )
k [ i ]<�2�p [ i ]+2
M[ i ] ˜ d c h i s q r ( k [ i ] )

g
a l p h a ˜ d u n i f ( 0 . 1 , 5 )
nu0 ˜ d u n i f ( 0 . 1 , 1 0 )

g
As it can be seen from the model code, uniform prior distributions have been
chosen, with supports equal to the search ranges for LS and ML. 10,000 Gibbs
sampling iterations have been run for each different sample, with a thinning of 10,
and standard diagnostics revealed a good behavior of the generated chains.
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We chose b-values in a typical range for diffusion MR machine settings, i.e.
from 0 to 1; 000 s=mm2, on equally spaced grids of nD 5, 10, 15, 20, 25, 30
points. Different simulations have been run with parameter values 	0 D 2; 4; 8,
which represent a low, an intermediate and a high SNR, and ˛ D 0:7; 1; 3, typical
low, intermediate, and high physiological values of ADC.

It must be reported that the ML estimator, in cases of low SNR, reached the
boundaries of the optimization region in various simulations. In the combination
nD 5, 	0 D 2, ˛D 3 only 45% of the simulations gave ML estimates that converged
to a value inside the predefined ranges of parameters search, while in the other
cases this number oscillated around 70% when ˛D 1 or 100% when ˛D 0:7. These
degenerate results have been removed for the computation of bias and variance.

Figure 1 displays the decaying exponential curves we aim to estimate in the
nine different combinations of 	0 and ˛, along with a horizontal line at level � ,
to represent the order of magnitude of noise with respect to the signal. The quality
of estimates depends both on the SNR at b D 0 and on the ADC, as will be clear
from simulations.

Figure 2 shows the behavior of bias for the estimators of ˛ with different
sample sizes n. For what concerns the frequentist estimators (LS and ML), there
is no uniform ordering through the considered values of n when the signal decays
slowly (˛D 0:7), but in the other cases, when noise is stronger along the curve, the
maximum likelihood estimate is always less biased than the least squares one; notice
also that the least squares estimates do not seem to have a decreasing bias when n
increases among the considered values. Concerning the three Bayesian estimators,
no striking differences arise among them, while with respect to the frequentist
estimators in many cases they have comparable or higher bias, with the exception
of the “worst case” 	0 D 2, ˛ D 3, where they are uniformly more accurate.

From what concerns variance, analyzed in Fig. 3, the LS estimator shows almost
always the best performance, excepted for low sample sizes when ˛ D 3. The other
estimators have similar performances and behaviors at different sample sizes n, with
ML and PMe having strikingly higher variance in some noisy cases. As expected,
variance notably decreases for all estimators at increasing n in most combinations
of parameters, but with very low SNR (	0 D 2) the only one showing empirical
convergence of variance to 0 is LS.

An overall index of estimator performance can be evaluated by the mean square
error (MSE). Since the MSE is the sum of square bias and variance, the orders of
magnitude of these two characteristics assume an important role. As it can be seen
from Fig. 4, the LS estimator has the lowest MSE when ˛ D 0:7; 1, but exhibits the
worst performances in the critical cases of high ADC, where Bayesian estimators
seem to work better.

Results for 	0 are not detailed here, but it is worth mentioning that, since it is
necessary to estimate the two parameters jointly, the precisions and accuracies of
their estimators are mutually influenced. Anyway, estimators for 	0 show a more
classical behavior: the LS estimator is in all cases less accurate but more precise
(high bias and low variance), and the consistency of all estimators is evident when
increasing n. The summary plots for the MSE of the estimators for 	0 can be seen
in Fig. 5.
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Fig. 1 Stejskal–Tanner model in simulation parameter combinations. b-values are expressed in
1; 000 s/mm2
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Fig. 2 Bias of estimators for ˛. Bold lines: solid D LS, dashed D ML; slim lines: solid D PMe,
dashed D PMd, dotted D PMo
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Fig. 3 Variance of estimators for ˛. Bold lines: solid D LS, dashed D ML; slim lines: solid D
PMe, dashed D PMd, dotted D PMo
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Fig. 4 MSE of estimators for ˛. Bold lines: solid D LS, dashed D ML; slim lines: solid D PMe,
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Fig. 5 MSE of estimators for 	0. Bold lines: solid D LS, dashed D ML; slim lines: solid D PMe,
dashed D PMd, dotted D PMo
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5 Conclusions

In this work, we proposed different methods for estimating pixelwise the ADC
from diffusion MR signals, following the Rice noise model and the Stejskal–Tanner
equation for magnitude decay. The presented estimators exhibit different features
that should be taken into account when approaching real data. The least squares
approach is the fastest and has low variance, but becomes less accurate when the
conditional signal distribution at different b-values is more distant from normality.
The maximum likelihood estimator is slightly slower, requiring a nonlinear maxi-
mization on two variables, and has the lowest bias in many cases, but, as pointed
out before, it may diverge with samples from noisy signals. Bayesian estimators are
the most expensive in terms of computational costs and may require further tuning
for improving their performances; they are the best in terms of mean square error at
the high ADC here tested and offer the advantage of providing the whole posterior
distribution for inferential purposes, while inferential tools regarding LS and ML
should rely, at present time, on normal approximations, which may not be reliable
with low sample sizes and SNRs. Future studies will focus on inferential aspects,
while extending in efficient ways these estimation methods to full MR images. The
simultaneous estimation of the dispersion parameter �2 will also be developed and
tested, requiring some added computational effort to estimation algorithms.
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Longitudinal Patterns of Financial Product
Ownership: A Latent Growth Mixture Approach

Francesca Bassi and José G. Dias

Abstract The main goal of this study is to analyze the dynamic process of financial
product ownership under the assumption of heterogeneous growth by latent growth
mixture models. Using panel data from a survey conducted by the Bank of Italy,
we conclude that the trajectory of Italian households in terms of financial product
ownership in the period 2000–2006 is homogeneous. Moreover, the process allowed
the identification of an outlier trajectory and the obtainment of robust estimates for
the population parameters.

1 Introduction

Latent growth models (LGM) consider both intra-individual change and inter-
individual differences in such change by estimating the amount of variation
across individuals in the latent growth factors (random intercepts and slopes) as
well as the average growth [9]. The assumption of homogeneity in the growth
parameters—same parameters for all individuals—is not always realistic. If
heterogeneity exists and is ignored, statistical results may be seriously biased.

Mixture modeling aims to unmix the population in an unknown number of
latent classes or subpopulations [6]. Thus, latent growth mixture modeling (LGMM)
allows that the population of interest is not homogeneous, but consisting of
subpopulations with varying parameters and within-class variation [11].
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This paper illustrates the enormous potential of this type of longitudinal latent
variable modeling that combines discrete and continuous latent variables. The
application estimates the evolution of financial product ownership at household level
in Italy in the period of 2000–2006. We model the binary indicators of ownership
(e.g., whether a given household owns a certain type of financial asset) as multiple
indicators of a latent process that can differ at segment level. The structure of
the paper is as follows: Sect. 2 presents the methodology, Sect. 3 provides the
application of the latent growth mixture model to the financial product ownership
dataset, and Sect. 4 contains concluding remarks.

2 Latent Growth Mixture Model

Let us define the structure of the data being modeled. Each household (i ) at a given
time (t) may hold or not the financial product j . Thus, yijt is a binary variable,
where 0 is case a household does not own the financial product at that time, and 1
otherwise.

Let Qyijt be a continuous score underlying yijt, i.e., by defining a threshold 	jt it
turns out yijt D 0, for Qyijt � 	jt, and yijt D 1, otherwise. Let hit be the latent variable
or score of household financial ownership at time t . Thus, for each household and
time point it results a factor-item response model for each indicator:

Qyijt D �jthit C �ijt; i D 1; : : : ; nI t D 1; : : : ; T; (1)

where the intercept is omitted (given by the threshold), the factor loadings are �jt,
hit is a latent variable, and �ijt is a specific residual. The growth model requires
measurement invariance of the factors across time, i.e., the thresholds and factor
loadings of the indicators are equal over time—	j and �j—, respectively. Thus, we
assume factorial invariance. Moreover, for scaling identification the first loading
is fixed at one, �1 D 1, and residual variances are fixed at 1, Var.�ijt/D 1, and
all covariances are 0. One can set the disturbances associated with the first order
factors to be equal over time, imposing homogeneity of error variances. When,
as in our case, there is the use of multiple indicators that are abstracted by latent
factors, the model is called multivariate LGM or second order latent growth model.
This extension results especially useful in marketing research where many relevant
phenomena are unobservable and multidimensional (see, as an example, [16]).

The latent process hit defines the trajectory of the household financial ownership
at time t and is given by

hit D hI
i C .t � 1/hS

i C "it; (2)

where hI
i and hS

i are the intercept and slope of the process, respectively, and "it is the
error term of the process. LGMs can be described also in the context of Structural
Equation Modeling, in this case, (1) and (2) represent the measurement and the
structural component, respectively [8].
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53

Fig. 1 LGM path diagram

For the conditional model, the intercept and the slope are function of the observed
variables contained in the vector xi [13]:

hI
i D ˛I

0 C ˛I
1xi C �I

i

hS
i D ˛S

0 C ˛S
1xi C �S

i ; (3)

where hI
i and hS

i are the continuous latent variables (intercept and slope), ˛I
0 and ˛S

0

are the constants (or means in the case of the unconditional model), and ˛I
1 and ˛S

1

contain the coefficients of the covariates in the conditional model.
The disturbances are given by:

� D
�
�I
i

�S
i

	

� N

��
0

0

	

;

�
 II  IS

 IS  SS

	�

:

(4)

Figure 1 contains the path diagram of an unconditional second order LGM for four
time points, in each occasion J indicators (Yijt) of a latent factor are observed on
each unit. The trajectory across latent factors (hit) is described by an intercept (hI

i )
and a slope (hS

i ) [4].
The latent growth mixture model (LGMM) assumes that the population is hetero-

geneous, and different subpopulations are characterized by different trajectories [5].
In this case, the model can be defined as a finite mixture ofK functions with density

f .yi I '/ D
KX

kD1
�kf

.k/.yi I 'k/; (5)



30 F. Bassi and J.G. Dias

where ' is the set of all parameters in the model. This mixture model assumes
a discrete latent variable with K classes (multinomial distribution), where �k is
the prior probability that individual i belongs to latent class k and 'k contains the
parameters of the conditional distribution. The density function in latent class k is
f .k/.yi I 'k/, where the observed data vector yi conditional on the latent class k is
connected to Qyi through the threshold parameters. We assume that the measurement
model is class-invariant. However, different classes can be characterized by different
latent processes, i.e.,

hI
i D ˛I

0k C ˛I
1kxi C �I

ik

hS
i D ˛S

0k C ˛S
1kxi C �S

ik (6)

as described before. Moreover, we have the residuals ".k/ �N.0;� .k// and
�.k/ �N.0;� .k// both assumed to be uncorrelated with other variables and with
each other. The covariance structures are:

� .k/ D COV.".k// D diag..k/1 ; 
.k/
2 ; : : : ; 

.k/
T /

� .k/ D COV.�.k// D
"
 
.k/
II  

.k/

IS

 
.k/
SI  

.k/
SS

#

:

The LGMM approach allows to capture different developmental processes of
group membership that cannot be determined a priori [10] and can be understood
within the context of latent class models [3] in which the total population can
be partitioned into distinct but unobserved sub-populations. Again this extension
results appropriate to marketing research to analyze segmented markets [15].

Parameters are estimated by the maximum likelihood (ML) method using the EM
algorithm. Estimation consists of two parts: estimation of the latent class sub-model
and the estimation of parameters related to the LGM conditional on the latent class
sub-model [12, 14]. The log-likelihood function of observed data for the LGMM is

logL.'I yi / D
nX

iD1
logLi.'I yi / D

nX

iD1
logf .yi I '/; (7)

where ' is the set of all parameters in the model.
Given that the latent variables are continuous and the manifest variables are

binary, we have to integrate out the latent continuous variables in the estimation
process using adaptive quadrature. Model selection is based on information criteria
(Akaike’s information criterion and Bayesian information criterion). In model
estimation, we allow a maximum of 1,500 iterations and relative log-likelihood
change with a convergence tolerance of 10�6. Given the multimodal log-likelihood
function of the mixture model, 20 different random starting values were run in order
to avoid local maxima for the two-latent class model. The syntax of the model was
written in MPlus 5.
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3 The Empirical Study

The Bank of Italy (BI) has been running the Survey of Household Income and
Wealth (SHIW) since 1965. With a few exceptions, the survey was conducted
on a 2-year basis since then. The reference population is the resident non-
institutional population of the country. SHIW provides information on income,
savings, consumption expenditure, and the real wealth of Italian households, as well
as on household composition and on labor force participation. The questionnaire
is divided into several sections. Questions concerning the whole household are
answered by the head of household, questions on individual incomes are answered
by each income recipient. In 1989, BI introduced a longitudinal component in the
survey, adopting a peculiar split panel design: at each survey round (or simply wave,
as it is often called), the sample consists of two sections: a panel sub-sample, made
up of households who participated in the previous waves; and a fresh cross-sectional
sub-sample. Once a household has entered the panel, it stays in the sub-sample till
it leaves it because of attrition [7]. Table 1 contains the size of the various samples
and sub-samples, fresh and panel from 2000 to 2006.

In this paper we consider the sample of the 1951 panel households interviewed
in all the waves from 2000 to 2006. We dispose of information on the ownership
of a series of financial products and on family characteristics. The SHIW contains
a detailed information on the distribution of Italian households financial assets in
18 categories, such as checking accounts, savings accounts, certificates of deposits,
postal deposits, postal bonds, Treasury bills up to 1-year maturity (BOT), floating
rate Treasury certificates indexed to BOTs (CCT), fixed-rate long-term Treasury
bonds (BTP), other government papers, corporate bonds, investment funds, and
equities. Many of these products are hold by a very small percentage of families,
so we aggregate this information considering ownership by the household of at least
one bank or postal deposit account (PDEP), at least one bank or postal savings
account (PLIB), of shares (SHARES), state bonds (SBONDS), and other types of
bonds (BONDS).

Table 2 lists the percentage of households owning the considered financial
products in the 4 years of analysis. Region of the country where living (REGION)
and gender of the head of household (HEAD) are added as time constant covariates
(observed value in 2000), making the modeling of the intercept and slope of the
latent process conditional. In 2000, 46.0% of the sample households were from
the North of Italy, and 21.3% and 32.7% were from the Centre and the South,
respectively. Moreover, in 2000, 29.8% of the panel households were headed by
a woman.

Preliminary analysis by the Bank of Italy [2] showed that financial product
ownership by Italian households varies with income, education, and professional
condition of the head of household, and area of the country where the family lives.
Albareto et al. [1], using data from the SHIW, show that the composition of financial
wealth of Italian households underwent a remarkable change during the period
1998–2008, as it can be inferred also from the data in Table 2. For example, the
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Table 1 Italian survey on household income and wealth survey plan,
2000–2006 and number of interviewed families per year and wave

Year of first Waves

interview 2000 2002 2004 2006

1987 61 44 33 30
1989 343 263 197 159
1991 832 613 464 393
1993 399 270 199 157
1995 245 177 117 101
1998 1,993 1,224 845 636
2000 4,128 1,014 667 475
2002 4,406 1,082 672
2004 4,408 1,334
2006 3,811

Total 8,001 8,011 8,012 7,768
Panel proportion % 48.4 45.0 45.0 50.9

Table 2 Dependent variables—Percentages

2000 2002 2004 2006

Bank and postal deposit accounts (PDEP) 83.6 84.6 84.7 88.6
Bank and postal saving accounts (PLIB) 22.9 22.8 21.8 20.5
Shares (SHARES) 14.9 13.6 12.0 11.1
State Bonds (SBONDS) 15.8 12.7 10.8 11.4
Bonds (BONDS) 10.6 11.1 11.6 11.3

percentage of families owning deposits accounts increased over the period, while
that of those owning saving accounts diminished and the diffusion of state bonds and
shares declined. Our analysis wants to understand more in-depth these dynamics.

To assess heterogeneity in the household panel sample, the first step is to select
the number of latent classes needed to describe the dynamic process, i.e., to check
whether a model with two classes (heterogeneity) performs better than a model with
only one class (homogeneity). Both the Bayesian Information Criterion (BIC) and
the Akaike Information Criterion (AIC) indexes suggest that a model with one latent
class fits better the data than the model with two latent classes. As BIC and AIC are
monotonic functions of the number of latent classes, there is no need to estimate
models with more than two classes as the BIC and AIC will be always worse than
the two-latent class model. Tables 3 and 4 list structural and measurement estimated
model parameters, respectively.

We assume that measurement model parameters—loadings and threshold—are
class and time invariant. We observe that the two-latent class model tends to increase
loadings estimates. This is particularly true for the residual variances estimates that
partially explains the lack of fit of the second model.

The main focus of the analysis is on the structural part of the model, i.e.,
the latent trajectories measured by the indicators and explained by the covariates
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Table 3 Estimated parameters—measurement component—one and two latent classes

One latent class Two latent classes

Estimate S.E. Estimate S.E.

Loadings (�j /
PDEP 1 – 1 –
PLIB �0:07 0.03 �0:11 0.06
SHARES 1.30 0.30 3.98 1.39
BONDS 0.76 0.11 1.47 0.13
SBONDS 0.64 0.09 0.93 <0.01

Thresholds (	j )
PDEP �3:17 0.20 �1:55 0.11
PLIB 1.28 0.04 1.21 0.05
SHARES 3.61 0.28 7.32 1.57
BONDS 2.82 0.23 3.67 0.23
SBONDS 2.45 0.21 2.76 <0.01

Residual variances (�)
1 0.08 0.01 0.24 0.03
2 <0.01 <0.001 0.18 0.04
3 <0.01 <0.01 0.19 0.04
4 0.08 <0.01 0.24 0.04

Table 4 Estimated parameters—structural component—one- and two-latent classes

Two latent classes

One latent class Class 1 Class 2

Estimate S.E. Estimate S.E. Estimate S.E.

Class proportions 1 – 0.95 – 0.05 –
Intercept (˛I)
Constant 0 – 0.64 0.15 0 –
REG N 0.46 0.26 0.22 0.12 2.04 0.02
REG S �1:84 0.20 �0:76 0.13 �25:18 0.06
SEX 0.46 0.20 0.25 0.11 25.30 0.06

Slope (˛S)
Constant �0:15 0.07 �0:14 0.08 301.62 <0.01
REG N 0.09 0.05 0.03 0.04 �301:59 0.01
REG S �0:13 0.08 �0:10 0.08 �292:61 0.02
SEX 0.16 0.05 0.13 0.04 �8:82 0.01

Covariance (� )
 II 3.35 0.63 0.66 0.094 0.66 0.09
 SS 0.11 0.03 0.01 0.008 0.01 <0.01
 IS �0:09 0.04 �0:05 0.04 �0:13 0.03
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within each latent class (Table 4). Looking at estimated class proportions, we may
conclude that the second latent class is a residual one, containing only a 5% of
households and describing an outlier trajectory in financial products ownership.
Therefore, estimated parameters for latent class one, in the two-latent class model,
can be interpreted as a robust estimation of the single trajectory, characterizing the
entire sample of households, obtained removing the impact of outlier observations,
identified by latent class two.

The structural component of the model postulates that covariates REGION (area
of the country where the household lives) and HEAD (gender of head of household)
have an influence on the latent factors—intercept and slope. Looking at estimated
parameters, we conclude that:

• The constant parameter in the trajectory intercept is statistically significant,
indicating that there is a significant level of financial product ownership in year
2000.

• The constant parameter in the trajectory slope is negative but not statistically
significant, showing a constant trend in the ownership of financial products by
Italian households.

• Estimated regression coefficients for the covariate REGION show a significant
effect of the fact that the household lives in the South of Italy in year 2000
(REG S ), being “living in the Centre” the reference category; this effect,
however, is not significantly different from that of living in the North of the
country. Living in the South reduces the financial score of 0.76 at the beginning
of the observational period (year 2000).

• The fact that the head of household is a man has a significant and positive impact
on the intercept of the trajectory.

• For what concerns, the trajectory slope, the impact of living in the South of the
country is no longer significant, while the fact that a man is the head of household
has a positive and significant impact.

We have restricted the covariance matrices � .k/ and � .k/ to be class invariant.
Analyzing the estimates of the elements of matrix � , we may conclude that the
variance of the intercept is significantly different from 0 whilst this is not the case
for the slope. This result indicates the existence of substantial variation among
households in the initial condition in year 2000 that is not taken into account by
the covariates included in the conditional model. The estimated covariance between
the two factors, intercept and slope, is not statistically significant, indicating that
there is no relation between the two, i.e., the level of financial product ownership
in year 2000 is not related to the growth in the following period. This conclusion is
true for the single-latent class model and for latent class one in the two-latent class
model, which contains the robust estimates.

Using posterior estimated probabilities, it is possible to identify the outlier
households. Table 5 contains an example on outlier patterns: with a probability of
0.555, a household with 1 female component living in the South of the country
shows such a pattern of financial product ownership.
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Table 5 Observed financial product ownership with probability 0.555 for a household
with 1 female component living in the South

PDEP PLIB SHARES SBONDS BONDS

2000 0 1 0 0 0
2002 0 1 0 0 0
2004 0 1 0 0 0
2006 0 1 0 0 0

Table 6 Estimated parameters of one latent class model (after removing outliers)

Loadings (�j / Thresholds (�j )
Estimate S.E. Estimate S.E.

PDEP 1 – �3:16 0.20
PLIB �0:07 0.03 1.29 0.04
SHARES 1.40 0.34 3.55 0.28
SBONDS 0.80 0.12 2.77 0.25
BONDS 0.67 0.09 2.40 0.22

Intercept (˛I) Slope (˛S)
Estimate S.E. Estimate S.E.

constant 0 – �0:18 0.07
REG N 0.39 0.26 0.08 0.05
REG S �1:73 0.19 �0:15 0.08
HEAD 0.40 0.19 0.17 0.04

� �

Estimate S.E. Estimate S.E.
1 0.09 0.01  II 2.86 0.56
2 <0.01 <0.01  SS 0.10 0.03
3 <0.01 <0.01  IS �0:04 0.04
4 0.17 0.02

After removing the outlier households, we reestimated the one-class model
obtaining the results listed in Table 6.

4 Conclusions

This paper estimates a second order latent growth mixture model to answer two
important research questions in longitudinal data analysis that cannot be addressed
by the conventional latent growth model. Combining continuous and discrete
latent variables, it identifies unobserved sub-populations with different trajectories
or dynamics. The findings of this study demonstrate the existence of a single
longitudinal change pattern for the Italian households in this period. The model is
able to identify specific household patterns that are classified as outliers. From the
robust results (latent class 1 in the two-latent class model), we identify that gender
of head of household explains both the initial level and the trajectory of the financial
score obtained from the observed ownership patterns of five financial products
available to households whereas living in a specific area of the country (North,
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Centre, South) is important to measure the initial level of the dynamic process.
The results are confirmed after excluding the outlier households and reestimating
a single latent growth model.
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Computationally Efficient Inference
Procedures for Vast Dimensional
Realized Covariance Models

Luc Bauwens and Giuseppe Storti

Abstract This paper illustrates some computationally efficient estimation pro-
cedures for the estimation of vast dimensional realized covariance models. In
particular, we derive a Composite Maximum Likelihood (CML) estimator for the
parameters of a Conditionally Autoregressive Wishart (CAW) model incorporating
scalar system matrices and covariance targeting. The finite sample statistical
properties of this estimator are investigated by means of a Monte Carlo simulation
study in which the data generating process is assumed to be given by a scalar CAW
model. The performance of the CML estimator is satisfactory in all the settings
considered although a relevant finding of our study is that the efficiency of the CML
estimator is critically dependent on the implementation settings chosen by modeller
and, more specifically, on the dimension of the marginal log-likelihoods used to
build the composite likelihood functions.

1 Introduction

Many financial applications, such as portfolio optimization or risk management,
require to work with large dimensional portfolios involving a number of assets in
the order of 100 or even more. In order to obtain parsimonious multivariate volatility
models, whose estimation is feasible in large dimensions, it is necessary to impose
drastic homogeneity restrictions on the dynamic laws determining the evolution of
conditional variances and covariances. However, even for parsimonious models, for
very large dimensions the computation of (quasi) maximum likelihood estimates can
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be computationally challenging and troublesome. Also it is important to note that
for moderately large values of the model’s dimension n (as a rule of the thumb, say
for 50 � n � 100), even if direct maximization of the likelihood or quasi likelihood
function is feasible, the computational time required can be so high to prevent the
use of resampling and simulation techniques and, in general, any application that
implies the need to iteratively estimate the model for a large number of times. The
application of bootstrap to realized covariance models has been recently investigated
by [5] while the application of simulation-based inference procedures is usually
required for long-term prediction of risk measures such as Value at Risk and
Expected Shortfall.

This has stimulated the research on the development of alternative algorithms for
the generation of computationally efficient consistent estimators of the parameters
of vast dimensional multivariate volatility models. These algorithms have been first
developed for the estimation of Multivariate GARCH (MGARCH) models, see
[2] for a review, but they can be modified or adapted, as shown in [3], for their
application to models for realized covariance matrices.

An obvious approach to deal with inference in vast dimensional systems is to
split the multivariate estimation problem into a set of simpler low-dimensional
problems. This is the spirit of the McGyver method proposed by [7]. The algorithm
is illustrated for the case of Dynamic Conditional Correlation (DCC) models
with correlation targeting [6] although it can be readily applied to any scalar
MGARCH model such as a scalar BEKK model [8]1. The basic idea is that, if the
process dynamics are characterized by scalar parameters, these can be consistently
estimated by fitting the model even to an arbitrarily chosen bivariate subsystem. The
estimation can then be repeated over all the possible n.n � 1/=2 different bivariate
subsystems or a subset of them. The final estimate of model parameters is obtained
by calculating the mean or median of the empirical distribution of the estimated
coefficients. This estimate is expected to be more efficient than an estimate obtained
by fitting the model to a single bivariate subsystem since it is implicitly pooling
information from all the assets in the dataset. Evidence in this direction is provided
by [7]. The procedure is in its nature heuristic but it is straightforward to show
that it automatically returns a consistent estimator. However, [7] does not provide
any analytical results on the asymptotic properties of the estimator, including its
asymptotic distribution and efficiency. On the other hand, the finite sample statistical
properties of the McGyver estimator are investigated by Monte Carlo simulation.
One point which is left unexplored by [7] is related to the sensitivity of the
properties of the estimation procedure to the size of the subsystems involved in
its implementation.

An alternative approach to the estimation of vast dimensional conditional
heteroskedastic models is based on Composite Likelihood theory (see [14] for a
recent review). This approach replaces the full log-likelihood with an approximation

1We indicate as scalar any model in which all the conditional covariances or correlations share the
same parameters.
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based on the sum of low-dimensional log-likelihoods of a given dimension
m << n. As for the McGyver method, the researcher can consider the full set of
m-dimensional log-likelihoods or a subset of these. In [9] the CML approach is
applied to the estimation of scalar DCC models with correlation targeting. From a
computational point of view, the calculation of CML estimators is much faster than
that of standard ML estimators. Reference [9] also analyzes different variants of the
Composite Maximum Likelihood (CML) estimator and assesses their finite sample
properties by means of an extensive Monte Carlo study. Their findings show that, in
large systems, the CML estimator can be much more efficient than the Maximum
Likelihood (ML) estimator with correlation targeting. In particular, the simulation
results reveal that this estimator tends to be affected by a systematic bias component
whose size is increasing with n. In the paper this difference is ascribed to the high
number of nuisance parameters involved in the optimization. Also, they show that
the CML estimator favorably compares with the McGyver method being, by far,
more efficient than the latter. In the light of these results, in this paper our attention
will be focused on CML estimation.

Both the CML and the McGyver method reformulate the estimation problem in
terms of simpler lower dimensional problems but while, in the McGyver method,
the final estimate is obtained as a function of the results of several low-dimensional
optimizations, in CML estimation the optimization is performed just once leading
to a substantial reduction of the computing time. Except for the recent contribution
by [3], to our knowledge, so far this inference procedure has not been applied to
the estimation of models for realized covariances. In this paper we will illustrate an
approach to the estimation of large dimensional realized covariance models based
on the maximization of a CL function derived under the assumption of Wishart
marginal log-likelihoods. By means of a Monte Carlo simulation study we will
(1) evaluate the efficiency of the estimator in finite samples (2) investigate the
sensitivity of the estimator’s performance, bias and efficiency, to the size of the
marginal log-likelihoods used to build the CL function and to the number of low-
dimensional subsystems used in the computation.

Among the several different models for realized covariance matrices that have
been proposed in the past years, we will focus on the class of Conditional
Autoregressive Wishart (CAW) models recently introduced by [10]. These models
are based on the assumption that the conditional distribution of the realized covari-
ance matrix is a Wishart distribution with time-varying conditional expectation
proportional to the scale matrix of the Wishart. In the basic version of the model the
time-varying conditional expectation of the realized covariance matrix is assumed
to follow a BEKK [8] type specification. Unless further restrictions on the parameter
space are imposed, this assumption still leaves the number of parameters linear
in n2 where n is the number of assets considered. In [10] the authors present an
application to a dataset including 5 stocks where the estimated model includes 116
parameters. It is so easy to understand how fitting an unconstrained CAW model
to a dataset whose dimension is even moderately large is not feasible. Hence, in
this paper, we will consider a restricted version of the CAW model in which the
parameter matrices of the dynamic equation for the conditional expectation of the
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realized covariance matrix are assumed to be scalar. A covariance targeting approach
will be also used in order to avoid direct estimation of the matrix of intercepts of the
BEKK recursion.

The structure of the paper is as follows. In Sect. 2 we will illustrate the CAW
model and discuss its statistical properties. Maximum likelihood inference for the
CAW model will be discussed in Sect. 3 while, in Sect. 4, we will present the CML
estimator for the parameters of a restricted CAW model. Section 5 will report the
results of a Monte Carlo simulation study and conclude.

2 The Conditional Autoregressive Wishart Model

The CAW model, recently proposed by [10], is based on the assumption that the
conditional distribution of realized covariance matrices, given past information, is
Wishart. In the literature on realized covariance models the Wishart assumption
is not new and has already been used in a number of papers, starting from [11]
who were probably the first to use the idea of a Wishart process for realized
covariance matrices with the WAR(p) (Wishart autoregressive) process, where p
is a lag order parameter. They assume that the conditional distribution of realized
covariance matrices follows a non-central Wishart distribution where the matrix
of non-centrality parameters is modeled as a function of past lagged realized
covariance matrices. Practical application of this model has been limited by the
fact that it is too heavily parameterized since it uses a number of parameters equal
to 3n2=2C n=2C 1 (for the one lag case). In order to obtain a more parsimonious
model structure, [4] proposes a block structured version of the WAR model which
significantly reduces the number of parameters but still keeps it on the order of n2.
A different approach is taken by [12, 13] who propose to jointly model the returns
vector and its realized covariance matrix. In both papers, just as in the CAW model,
the realized covariance part of the model specifies the conditional distribution of
the realized covariance as a Wishart, whose expected value is proportional to the
scale matrix of the Wishart. In [12], that scale matrix is modelled as a function of
a few lags of itself while, in [13], it is assumed to follow a BEKK process. The
CAW model shares with [13] the assumption of conditional Wishart distribution
and BEKK-type dynamics for the realized covariance models.

More specifically, let Ct , for t D 1; : : : ; T , be a time series of positive definite
symmetric (PDS) realized covariance matrices of dimension n. It is assumed that the
conditional distribution of Ct , given past information on the history of the process
It�1, consisting of C� for � � t � 1, and 8t , is given by a n-dimensional central
Wishart distribution

Ct jIt�1 � Wn.	; St=	/; (1)

where 	 .> n � 1/ is the degrees of freedom parameter and St=	 is a PDS scale
matrix of order n. From the properties of the Wishart distribution (see [1], among
the others), it follows that

E.Ct jIt�1/ D St ; (2)
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so that the i; j -th element of St is defined as the conditional covariance between
returns on assets i and j , cov.ri;t ; rj;t jIt�1/, for i; j D 1; : : : ; n, ri;t denoting the
logarithmic return on asset i between the ends of periods t � 1 and t . Equation (1)
defines a generic CAW model as proposed by [10]. The specification of the dynamic
updating equation for St can be chosen within a wide range of options. Namely [10]
uses a BEKK-type formulation mutuated from the MGARCH literature. For a model
of order .p; q/, this corresponds to the following dynamic equation

St D GG0 C
pX

iD1
AiCt�iA

0

i C
qX

jD1
Bj St�jB

0

j (3)

where Ai and Bj are square matrices of order n and G is a lower triangular matrix
such thatGG0 is PDS. This choice also ensures that St is PDS for all t if S0 is itself
PDS. In order to guarantee model identifiability, it is sufficient to assume that the
main diagonal elements of G and the first diagonal element for each of the matrices
Ai , Bj are positive. There are two main differences between the WAR model of
[11] and the CAW model: (1) it is assumed that the conditional distribution of Ct
is a central Wishart distribution rather than a non-central one (2) the CAW model
analyzes the dynamic evolution of the scale matrix St while the WAR model is
focusing on the matrix of non-centrality parameters.

In order to investigate the statistical properties of the CAW.p; q/ model, it is
useful to consider two alternative observationally equivalent representations of the
model.

First, the CAW.p; q/ model in (1–3) can be represented as a state-space model
with observation equation given by

Ct D 1

	
S
1=2
t Ut .S

1=2
t /0 Ut � Wn.	; In/I (4)

where S
1=2
t denotes the lower triangular matrix obtained from the Cholesky

factorization of St such that S1=2t .S
1=2
t /0 D St and Ut is a measurement error

distributed as a standardized Wishart distribution with identity scale matrix and
degrees of freedom equal to 	. St acts as a matrix-variate state variable with
dynamic transition equation given by (3). This representation allows to interpret St
as the “true” latent integrated covariance for a wide class of multivariate continuous
time stochastic volatility models, Ct as a consistent estimator of St and Ut as the
associated matrix of estimation errors. Second, a CAW.p; q/ process admits the
following VARMA representation

ct D g C
max.p;q/X

iD1
.Ai C Bi /ct�i C

qX

jD1
Bj vt�j C vt (5)

where g D vech.GG0/ and ct D vech.Ct/; vt is a martingale difference error term
such that E.vt / D 0 and E.vtv

0

s/ D 0, 8t ¤ s; Ai D Ln�.Ai ˝ Ai/Dn� and
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Bj D Ln�.Bj˝Bj /Dn�, with n� D n.n C 1/=2 (Ai D 0 for i > p, Bj D 0

for j > q). Ln� and Dn� are duplication and elimination matrices such that
vec.X/ D Dn�vech.X/ and vech.X/ D Ln�vec.X/. This representation allows
to derive conditions for the existence of the unconditional mean of the CAW.p; q/
process. In particular, it can be shown that Nc D E.ct / will be finite if and only if all
the eigenvalues of the matrix � D Ai C Bj are less than 1 in modulus. In this case
we will have

Nc D E.ct / D
0

@In� �
max.p;q/X

iD1
.Ai C Bi /

1

A

�1

g: (6)

For large n, the model formulation in (3) renders the estimation unfeasible due to the
high number of parameters. As we are interested in applying the model to situations
in which n is large (say n 	 50), we consider a modified version of (3) in which
the parameter matrices Ai and Bj are replaced by scalars and covariance targeting
is used to avoid simultaneous estimation of the matrix G

St D
0

@1 �
pX

iD1
˛i �

qX

jD1
ˇj

1

A NC C
pX

iD1
˛iCt�i C

qX

jD1
ˇj St�j (7)

with NC D E.Ct /, ˛i D a2i and ˇj D b2j . The particular implementation of
covariance targeting used in this formulation is justified by the fact that applying
equation (6) to model (7) returns

NC D GG0

.1 �Pp
iD1 ˛i �Pq

jD1 ˇj /
:

In practice, covariance targeting is implemented by consistently pre-estimating the

unconditional expectation of Ct by the sample average ONC D T �1PT
tD1 Ct and

substituting this estimator for the corresponding population moment in (7). The
scalar model implies that the conditional variances and covariances all follow the
same dynamic pattern which is indeed a restrictive assumption. However, this
compromise is necessary in order to obtain a parsimonious model whose estimation
is tractable in high dimensions. A generalization of this framework is discussed
by [3].

3 Quasi Maximum Likelihood Estimation of CAW Models

In their paper [10] performs the estimation of model parameters by the method of
maximum likelihood. The conditional density of Ct given past information is

f .Ct jIt�1/ D jSt=	j�	=2jCt j.	�n�1/=2

2	n=2�n.n�1/=4Qn
iD1 � f.	 C 1 � i/=2g exp




�1
2

tr.	S�1
t Ct /

�

:
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It follows that, up to a constant, the log-likelihood contribution of observation t is
given by

`t ./ D �.	/� 	

2
log.jSt j/� 	

2
tr.S�1

t Ct / (8)

where

�.	/ D 	n

2
log.	/C 	 � n � 1

2
log.jCt j/� 	n

2
log.2/�

nX

iD1
logŒ� f.	C1� i/=2g�:

The last two terms on the right-hand side of (8) are proportional to the value of the
Wishart shape parameter 	. It immediately follows that the first order conditions
for the estimation of ai and bj (i D 1; : : : ; p;j D 1; : : : ; q), the parameters of
the dynamic updating equation for Ct , do not depend on 	 since the score for
observation t with respect to c D .a1; : : : ; ap; b1; : : : ; bq/

0 is given by

@`t

@c
D �	

2




tr

�

S�1
t

@St

@c

�

� tr

�

CtS
�1
t

@St

@c
S�1
t

��

: (9)

This implies that the value of 	 is not affecting the estimation of c that can be
consistently estimated independently of the value of this parameter. We also note,
similar to [3], that, under the assumption that the dynamic model for the conditional
expectation of Ct is correctly specified, the score in (9) is a martingale difference
sequence even if the Wishart assumption is not satisfied. Analytically, the derivative
vector in (9) is given by

@`t

@c
D �	

2




tr

�

S�1
t

@St

@c

�

� tr

�

CtS
�1
t

@St

@c
S�1
t

��

: (10)

Taking expectations of both sides of (10), conditional on past information It�1, gives

E

�
@`t

@c
jIt�1

�

D �	
2




tr

�

S�1
t

@St

@c

�

� tr

�

E.Ct jIt�1/S�1
t

@St

@c
S�1
t

��

: (11)

At the true parameter value c D c;0, we have that E.Ct jIt�1/ D St by application
of (2). By substituting this in (11) we obtain

E

�
@`t

@c
jIt�1; c;0

�

D �	
2




tr

�

S�1
t

@St

@c

�

� tr

�

S�1
t

@St

@c

��

D 0:
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Under the usual regularity conditions, this result allows to interpret Oc , the maxi-
mizer, with respect to c , of the log-likelihood obtained from the summation over
time of (8), as a Quasi Maximum Likelihood (QML) estimator. Hence, even if
the Wishart assumption on the conditional distribution of Ct is not satisfied, the
resulting estimator can still be proven to be consistent and asymptotically normal
(see [3] for details).

4 Composite Likelihood Estimation of CAW Models

As already discussed in Sect. 1, practical computation of the ML estimator for
large dimensional models can be highly computational intensive and, for very large
models, even unfeasible. The main reason for this is the necessity of iteratively
inverting the high-dimensional covariance matrix St in the log-likelihood function at
each observation and each iteration of the optimization procedure. Given the values
of the time series (T) and cross-sectional (n) dimensions typically considered in
multivariate volatility modeling, this operation can be very time consuming. CML
estimation offers a practical solution to this problem since the log-likelihood func-
tion is approximated by the sum of many low-dimensional marginal log-likelihood
functions. In order to face a similar issue arising in the estimation of DCC models,
[9] proposes to apply the CML method under the assumption of conditionally
normal returns. Differently, in the setting which is being here considered, we
derive a CL function for the realized covariance matrix under the assumption of
a conditionally Wishart distribution. The derivation of the CL function relies on
two results. Before proceeding with their illustration we first need to define the
following notations. For any square matrix Mt of order n, we denote by MAA;t a
square matrix of order nA extracted fromMt , which has its main diagonal elements
on the main diagonal ofMt . Namely, if A stands for a subset of nA different indices
of 1; 2; : : : ; n, MAA;t is the matrix that consists of the intersection of the rows and
columns of Mt corresponding to the selection of indices denoted by A. The two
results can then be formulated as:

R1: If Ct � Wn.	; St=	/, for any selection of nA indices we have

CAA;t � WnA.	; SAA;t =	/:

R2: If St D .1 �Pp
iD1 ˛i �Pq

jD1 ˇj / NC CPp
iD1 ˛iCt�i CPq

jD1 ˇj St�j ,

SAA;t D
0

@1 �
pX

iD1
˛i �

qX

jD1
ˇj

1

A NCAA C
pX

iD1
˛iCAA;t�i C

qX

jD1
ˇj SAA;t�j :

Result 1 is a well known property of the Wishart distribution. By properties of the
Wishart distribution, the marginal distribution of CAA;t is also Wishart, with the
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same degrees of freedom and with scale matrix obtained by deleting from St the
same rows and columns as in Ct—see [1], Theorem 7.3.4. Applying this result with
nA D 1 corresponds to the result that the margin of a diagonal element of a Wishart
matrix is a Gamma distribution. Result 2 is an obvious algebraic result.

The CML estimator of the parameters ˛ and ˇ is then defined as the maximizer
of the sum of a number of Wishart marginal log-likelihoods for sub-matrices CAA;t
corresponding to different choices of indices A. The simplest choice is to select
all the log-likelihoods corresponding to sub-matrices of order 2, i.e. to all the
n.n � 1/=2 covariances or pairs of assets. Notice that with these bivariate Wishart
log-likelihoods, only matrices of order 2 must be inverted, which can be efficiently
programmed. We will denote any Wishart CL functions based on marginal log-
likelihoods of dimension 2 as CL2. Formally, this leads to the following expression

CL2.	; c;
ONC/ D

nX

hD2

X

k<h

`hk;t .	; c;
ONChk/ (12)

with

`hk;t .:/ D 	

2
log.	/C 	 � 3

2
log.jC .hk/

t j/� 	

2
log.2/�

2X

iD1
logŒ� f.	 C 1 � i/=2g�

�	
2

log.jS.hk/t j/� 	

2
trf.S.hk/t /�1C .hk/

t g; (13)

where for any matrixMt ,M
.hk/
t is the matrix of order 2 extracted at the intersection

of rows h and k ofMt . In principle, one can use less terms than the n.n�1/=2 terms
in (12) without affecting the consistency of the estimator. This can be particularly
useful in particular in cases in which n is large. At the price of a slightly more
complicated notation, the expression in (13) can be easily generalized to the case
in which marginal log-likelihoods of sub-matrices of higher dimension (m � 2) are
used. Under this regard it is important to note that the number of subsystems that
can be created, differing for at least one asset, is rapidly increasing with m, making
the estimation problem soon unfeasible. The problem is illustrated in Table 1 for
different values of m and n. For n D 50 assets we have 1,225 bivariate subsystems
but 19,600 trivariate subsystems which are different for at least one asset. In the case
of n D 100 assets, these numbers increase up to 4,950 for m D 2 and to 161,700
for m D 3. These values further increase for m > 3. It follows that for m > 2

the Composite Likelihood function can be practically built only using a subsample
of all the available marginal likelihoods. Reducing the number of subsystems upon
which the composite likelihood is based is, however, expected to reduce efficiency
as empirically shown by [9]. On the other hand, increasing the value ofm is expected
to increase efficiency. For m D n, we recover the maximum likelihood estimator as
a special case.
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Table 1 Number of m—dimensional subsystems versus cross-sectional dimension n

n n m 2 3 4 5

10 45 120 210 252
25 300 2,300 12,650 53,130
50 1,225 19,600 230,300 2,118,760
75 2,775 67,525 1,215,450 17,259,390
100 4,950 161,700 3,921,225 75,287,520
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Fig. 1 Simulation results for the estimation of the ˛ parameter by CML with bivariate (B) and
trivariate (T ) marginals. Key to graph: 1 D estimator based on contiguous sets; 2 D estimator
based on m1 D ŒNm=3� subsystems; 3 D estimator based on m2 D ŒNm=2� subsystems; 4 D
estimator based on m3 D Nm subsystems where Nm D min(M,5000) and Œ:� indicates rounding to
the closest integer

5 Monte Carlo Simulation

In this section we present the results of a Monte Carlo simulation study aimed
at evaluating and comparing the finite sample efficiencies of the CML estimator
derived under different implementation settings. In particular we will focus on
the analysis of CML estimators based on the use of bivariate (CL2) and trivariate
marginals (CL3), respectively. The data generating process is assumed to be given
by a CAW(1,1) process of dimension n D 50 with covariance targeting, as defined
by (2) and (7) with parameters given by ˛1 
 ˛ D 0:05, ˇ1 
 ˇ D 0:90 and 	 D n.

For estimation, NC is replaced by the sample average ONC . We generate 500 time series
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Fig. 2 Simulation results for the estimation of the ˇ parameter by CML with bivariate (B) and
trivariate (T ) marginals. Key to graph: 1 D estimator based on contiguous sets; 2 D estimator
based on m1 D ŒNm=3� subsystems; 3 D estimator based on m2 D ŒNm=2� subsystems; 4 D
estimator based on m3 D Nm subsystems where Nm D min(M,5000) and Œ:� indicates rounding to
the closest integer

of length T D 2; 000 and T D 3; 500, respectively. In both cases the first 500 data
points are discarded in order to reduce the impact of initial conditions.

In the bivariate case we compare the estimator based on all the potential bivariate
subsystems with three alternatives in which the CL function is built from a subset of
the universe of available bivariate systems. First, we consider a subset of dimension
.n � 1/ composed by the set of contiguous pairs fi; i C 1g, for i D 1; : : : ; n � 1.
The rationale behind this choice is that in this way CML estimates are based on the
minimal set guaranteeing that all assets are equally represented in the estimation
process. Second, we consider two randomly selected subsets of dimension ŒM=3�
and ŒM=2�, respectively, where Œ:� denotes rounding to the closest integer and M
is the overall number of available subsystems. In the trivariate case, considering
the whole set of different trivariate systems is not computationally feasible. Hence,
the maximum number of trivariate systems which has been considered has been set
equal to Nm D 5; 000. Again, as in the bivariate case, we analyze the sensitivity
of the efficiency of the estimator with respect to the number of subsystems used
for estimation by considering alternative estimators based on the set of .n � 2/

contiguous triplets and on random sets of size ŒNm=3� and ŒNm=2�, respectively.
The results have been summarized in Figs. 1, for ˛, and 2, for ˇ. Both CL2 and
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Table 2 Simulated variation coefficient (simulated s.e. ( Ose)/simulated mean ( O�)) of parameter
estimates for CML estimators based on bivariate (Bi) and trivariate (Ti) marginals, respectively

B1 B2 B3 B4 T1 T2 T3 T4

Ose.Oa/= O�.Oa/ 0.0392 0.0388 0.0388 0.0386 0.0257 0.0244 0.0246 0.0246
Ose. Ob/= O�. Ob/ 0.0054 0.0052 0.0052 0.0052 0.0036 0.0033 0.0033 0.0033

CL3 result to be approximately unbiased even for the shorter sample size. As far
as efficiency of the estimators is concerned, in comparative terms, it is evident that
CL3 is remarkably more efficient than CL2 while it appears that, within the range of
values considered for the simulation, the number of lower dimensional subsystems
used to compute the CL function is not dramatically affecting the efficiency of
the CL estimators. In particular, the efficiency gap between CL estimators based
on contiguous systems and more complex estimators considering all the systems
(bivariate case) or a large random sample of these (trivariate case) appears not
substantial. In absolute terms, the efficiency level of both estimators is reasonably
high (Table 2). The variation coefficient of CL estimators for parameter ˛ is slightly
lower than 4%, for CL2, and approximately equal to 2:5% for CL3 while, for
parameter ˇ, the recorded values are approximately equal to 0:5% for CL2 and
to 0:3% for CL3.

In this paper only empirical (simulation based) results have been presented. From
a theoretical point of view, an issue which has not been addressed is the derivation of
the asymptotic distribution of the CL estimators and an estimator of their asymptotic
standard errors. Given the complexity of the CAW model, this is not an easy task
and we plan to investigate this issue in our future research.
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A GPU Software Library for Likelihood-Based
Inference of Environmental Models with Large
Datasets

Michela Cameletti and Francesco Finazzi

Abstract Statistical environmental models are computationally intensive due to
the high dimension of the data, both in space and time, and due to the inferential
techniques required for parameter estimation and spatial prediction. In particular,
the computational complexity of these techniques is related to matrix operations
(inversion, solution of linear systems, factorization) involving large dense matrices.
Recently, much attention has been paid around the possibility of taking advantage
of graphics processing units (GPUs) for mathematical computation. GPUs provide a
high degree of parallelism at a reasonable cost and may represent a viable alternative
compared to the classic computer cluster configurations. In this work, we develop
the shared library GPU4GL implementing ad-hoc linear-algebra functions running
on GPUs and compare them with the standard algorithms for CPU. As an example,
we apply the GPU functions of GPU4GL to make inference on a non-separable
space–time model for air quality data.

1 Introduction

As a consequence of the increasing cultural, social, political and scientific atten-
tion paid to environmental problems, there has been a growing availability of
data concerning hazardous phenomena for the environment and human health.
Environmental phenomena are usually complex and influenced by many factors
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that interact with each others and that are linked to climate and anthropogenic
pressure. Environmental data, with spatial and/or temporal dimensions, come from
heterogeneous sources: monitoring networks, remote sensing, numerical models
and geographic information systems. Hence, statistical models should be developed
taking into account the complexity of environmental phenomena observed in time
and space and characterized by several variability sources. The advantage of the
statistical approach consists in taking into account all the possible sources of data
and errors and in providing a probabilistic evaluation of the estimate and prediction
uncertainty.

In the recent literature on environmental statistical modeling, great emphasis
is given to hierarchical models [3, 13], especially in the Bayesian perspective,
thanks to their flexibility in decomposing a complicated joint spatio-temporal
distribution (which describes the stochastic behavior of the environmental process
at all spatial locations and all times, including all possible interactions) into a
series of simpler conditional distributions. Spatio-temporal hierarchical models,
however, are computationally intensive due to the high dimension of the data in
space and time. This is the so-called big n-problem [1, page 387] that is related to
the computational costs of linear algebra operations (such as matrix factorization,
solution of linear systems, product of matrices) required for model fitting and spatial
interpolation. These operations, in fact, involve dense covariance matrices of size
n (with n given by the number of observations at all spatial locations and time
points) and their computational cost is typically of the order of O.n3/. Besides,
this computational burden gets worse in the Bayesian inference framework where
computationally intensive resampling algorithms, such as Monte Carlo Markov
chain (MCMC) methods, are employed and linear algebra operations with dense
matrices are computed for each iteration of the algorithm.

If we consider that the size of spatio-temporal datasets is generally n 	 104

and that the number of iterations required for the MCMC method convergence is
of the order of 105, the computational complexity of spatio-temporal models and
the need for fast computation methods stand out clear. Parallel computing is a
viable solution for large statistical problems, such as environmental spatio-temporal
hierarchical models with large datasets [8]. In this respect, it is worth noting that
MCMC methods do not allow the so-called coarse-grained parallelization as it is
necessary to perform sequential updates of the model parameters. Consequently, our
interest is focused on fine-grained parallelization of the matrix operations required
for each iteration of the algorithm. To achieve the desired results with an acceptable
computation time, therefore, it is important to maximize the degree of parallelism.
Moreover, since the dense matrices are symmetric and positive definite, efficient
algorithms in terms of memory occupation must be adopted.

The potential of parallel processing in statistical computing is well known and
the implementation of software and libraries for distributed CPU-based computer
clusters is well documented [12, 14]. On the contrary, the graphics processing
unit (GPU) technology for parallel computing is relatively recent and its benefits
have been explored only for a limited number of statistical applications (see, for
example, [9, 11]). The main challenge in using GPU-based algorithms is that they
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are relatively difficult to program and they require specific programming skills.
Hence, we developed the GPU4GL shared library which provides functions for the
execution of some linear algebra operations required when making inference with
Gaussian likelihoods (GL). Our GPU4GL library can be freely downloaded and
loaded in both R and Matlab®, two computing environments widely used in the
statistical community.

The aim of this paper is to illustrate the developed GPU4GL library and
to investigate the computational benefits related to GPU programming for the
implementation of spatio-temporal models for environmental data. In particular,
Sect. 2 describes the main features of GPU computing while Sect. 3 is devoted to the
description of our GPU4GL library. The computational performances of the library
are discussed with reference to a particular matrix operation executed with different
hardware and software settings. In Sect. 4 we introduce the case study regarding a
spatio-temporal model for particulate matter data in the Piemonte region, Italy. The
inference procedures regarding parameter estimation and space–time prediction are
discussed in terms of computing time. Conclusions are reported in Sect. 5.

2 GPU Computing

In the development of computer algorithms, the sequential and the parallel design
paradigms can be distinguished. The former is easier to understand as it mimics the
high-level human reasoning while the latter is often tricky and it usually requires a
more complex design phase. The higher complexity of many algorithms, however,
is rewarded by a lower computational time.

From a technical point of view, parallel algorithms require parallel computer
architectures. For more than two decades, the microprocessor market has been
dominated by single-CPU architectures. During that period, software developers
and scientists benefited from the increase in the computational speed from one
CPU generation to the next. In this sense, the sequential paradigm represented
a convenient solution. The parallel paradigm, on the other hand, was relegated
to the programming of the few and expensive supercomputers around the world,
characterized by hundreds or thousands of CPUs. Around 2003, however, energy
consumption and heat-dissipation problems forced the microprocessor vendors to
move from the single-CPU architecture to multi-CPU and multi-core architectures.
As a consequence, in order to maintain the increasing trend in the computational
speed, the algorithm development must embrace the parallel paradigm.

With respect to the past, the main difference is that, nowadays, parallel architec-
tures are widely spread and affordable. It follows that a larger audience can benefit
from parallel algorithms and that software developers have incentives to develop
parallel code. The multi-CPU/multi-core architecture is more efficient than the old
single-CPU architecture. Since the former is a direct evolution of the latter, however,
it retains most of the sequential paradigm. In order to fully exploit the advantages of
the parallel paradigm, software developers can rely on other parallel architectures.
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In this paper, the Compute Unified Device Architecture (CUDA, [7]) developed by
Nvidia® is considered. By using the development environment for CUDA, software
developers can write parallel code that runs on GPUs of the Nvidia® graphic cards.
The GPU is an electronic circuit designed to manipulate and alter the graphic card
memory in order to accelerate the building of images in a frame buffer. With
respect to a CPU, the GPU is characterized by hundreds of highly-specialized
cores, each one performing a small set of simple arithmetic and logic operations.
As a consequence, parallel architectures based on GPUs are particularly suitable
for sparse and dense matrix algebra operations where few arithmetic operations
must be executed over a large number of matrix elements. Note that, though all the
operations are executed on the graphic card, the result is transferred to the computer
RAM memory rather than being sent to a display.

Dense matrix operations such as matrix multiplication, matrix decomposition
and solution of linear systems can be executed with a speedup on the order of 10
to 100x (depending on the algorithm) when compared to homogeneous multi-core
architectures. Moreover, as stated by Nvidia®, the CUDA architecture is able to
deliver “supercomputing features and performance at 1/10th the cost and 1/20th the
power of traditional CPU-only servers.” For these reasons, the CUDA architecture
is receiving an increasing interest in many scientific fields.

3 The GPU4GL Library

The GPU4GL library is implemented for CUDA and it is based on the MAGMA
library v.1.0 (http://icl.cs.utk.edu/magma/), which represents the counterpart for
GPU of the LAPACK library. The GPU4GL library is available as Linux compiled
shared library at http://code.google.com/p/gpu4gl/ and can be loaded in both R and
Matlab® computing environments.

The library implements a set of linear algebra operations commonly used in
Gaussian likelihood-based inference techniques. It is worth noting that, though the
library is applied here for the analysis of environmental data, its scope is broader.
Indeed, Gaussian likelihoods are common in many statistical fields and applications.
Moreover, the library applicability is not limited to MCMC methods but it can be
extended to other estimation methods such as the EM algorithm when applied to the
estimation of space–time hierarchical models (see [4]).

Although the library works even with small matrices, its best computing
performances are achieved when the Gaussian likelihood inference involves large
matrices. Moreover, the library is a profitable alternative when it is not possible to
rely on expensive statistical software environments able to exploit multi-CPU and
multi-core architectures. The only drawback of the GPU solution is related to the
installed RAM memory on the GPU cards which is often lower than the memory
available on off-the-shelf CPU configurations. Indeed, the maximum square matrix
dimension manageable by a single GPU ranges from 10; 000 to 20; 000. However,
linear algebra algorithms involving dense square matrices larger than 20; 000 are

http://icl.cs.utk.edu/magma/
http://code.google.com/p/gpu4gl/
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usually unfeasible for both the GPU and the CPU solutions and sparse-matrix or
dimension reduction approaches should be considered.

3.1 Library Functions

Let A be a n � n symmetric and positive definite matrix, B a generic n �m matrix
and j:j the symbol for the matrix determinant. The name, the description of the
linear algebra operation and the CCC call1 of the functions included in the GPU4GL
library are the following:

1. The function gpu4gl cld evaluates the Cholesky decomposition C of the
matrix A and computes l D log.jAj/. The CCC function call is

gpu4gl cld(double *A, int *n, double *C, double *l)

2. The function gpu4gl lsld evaluates the matrix operation X D A�1B and
computes l D log.jAj/. The CCC function call is

gpu4gl lsld(double *A, double *B, int *n, int *m, double *X,

double *l)

3. The function gpu4gl like evaluates the matrix operation X D B 0A�1B and
computes l D log.jAj/. The CCC function call is

gpu4gl like(double *A, double *B, int *n, int *m, double *X,

double *l)

4. The function gpu4gl rand randomly generates a n � 1 vector x from the
multivariate Normal distribution Nn.0; A/. The CCC function call is

gpu4gl rand(int *n, double *A, double *x)

When the library is actually used in a statistical computing environment, it is
recommended to implement a wrapper for each function. As an example, the R
wrapper for the function gpu4gl like can be defined as follows:

gpu4gl_like <- function(A,B){
n = nrow(A)
m = ncol(B)
res_gpu=.C("gpu4gl_like",A,B,n,m,

X=as.double(rep(0,n*n)),
l=as.double(0))

output = list()
output$qf = matrix(res_gpu$X,m,m) #quadratic form
output$logdet = res_gpu$l #log determinant

1Please refer to [6] for more details about the CCC syntax.
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return(output)
}

where .C() is the R call of the gpu4gl like library function. The respective R
main script should contain the following calls:

dyn.load("gpu4gl.so") #load the GPU4GL library
gpu4gl_setdevice(0) #choose the first GPU device
output <- gpu4gl_like(A,B) #call the wrapper function

3.2 Computational Performance

In order to compare CPU and GPU performances, the GPU4GL library is tested
with respect to several matrix dimensions and four different hardware and software
settings. The four considered configurations are:

1. Laptop Intel® Core™ i7 720QM 1.60GHz, 8 GB RAM. Software: Matlab®.
2. Server Dual CPU Intel® Xeon® E5440 2.8GHz, 8GB RAM. Software:
Matlab®.

3. Workstation Intel® Xeon® Quad X3430 2.4GHz, 2.5GT/s, 16GB RAM. Soft-
ware: R.

4. Workstation equipped with NVIDIA® Tesla™ C1060 card 4GB RAM. Software:
R and GPU4GL library.

Configuration .1/ refers to a standard laptop computer affordable in terms of
price. Configuration .2/ is related to a more expensive hardware usually available
in the computing laboratories of universities and research centers. Configuration
.3/ is more performant than configuration .1/ in terms of computing power but less
expensive as it does not include Matlab®. Finally, configuration .4/ is based on
the CUDA architecture.

With regard to the software configuration, Matlab® exploits the multi-core
architecture of the CPUs thanks to the Parallel Computing Toolbox™ while R, by
default, uses only one CPU-core.

Table 1 shows the average computing time (in seconds) required for imple-
menting function gpu4gl like with several matrix dimension values nDm. The
speedup of configuration .4/ with respect to the others is reported in Table 2.
Note that 11; 680 is the maximum matrix dimension for which the function
gpu4gl like can be executed on the Tesla™ C1060 card. The other matrix
dimensions are obtained dividing 11; 680 by consecutive powers of 2.

By analyzing the speedup, it can be seen that the GPU configuration is worthy
to be used either when large matrices are involved or when the software (R in this
case) is unable to exploit the multi-core potentiality offered by the CPU. Note that
the speedup decreases when the matrix is large enough to saturate the GPU memory.
The speedup for matrices with dimension 11; 680 is slightly lower than the speedup
for matrices with dimension 5; 120.
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Table 1 Computing time (in seconds) for running function gpu4gl like with respect to the
four considered system configurations and several matrix dimensions n� n

Configuration
1 2 3 4

Costs in e 2,700 3,000 1,900 1,900

D
im

en
si

on
n

320 0.0044 0.0020 0.0056 0.0032
640 0.0290 0.0087 0.0414 0.0082

1,280 0.1702 0.0523 0.3091 0.0381
2,560 1.1230 0.3288 2.4341 0.2284
5,120 8.2205 2.3251 19.2193 1.5137

11,680 100.4612 25.8750 224.7500 19.1460
The cost is the monetary value in e of the hardware and software configuration

Table 2 Speedup for different compared configurations and matrix dimensions n � n

Speedup
Configuration 4 vs 1 4 vs 2 4 vs 3

D
im

en
si

on
n

320 1.38 0.62 1.73
640 3.52 1.06 5.02

1,280 4.47 1.37 8.13
2,560 4.92 1.44 10.66
5,120 5.43 1.54 12.70

11,680 5.25 1.35 11.74

4 Case Study

The case study concerning air quality of [2] is considered here. The application
regards daily data of PM10 concentration (particulate matter concentration with an
aerodynamic diameter of less than 10 �m in �g/m3) collected from October 2005 to
March 2006 (T D 182 days) by a network of d D 24 monitoring stations located in
the Piemonte region, Northern Italy. To model the spatio-temporal dynamics of the
pollutant concentration we adopt model A3-1 of [2]. The model is characterized by
a non-separable covariance function and it includes a large-scale component given
by an intercept and by the following covariates: altitude (alt, in m), coordinates
(utmx and utmy, in km), daily maximum mixing height (hmix, in m), daily total
precipitation (rain, in mm), daily mean wind speed (ws, in m/s), daily mean
temperature (temp, in ıK), and daily emission rates of primary aerosols (emi, in g/s).
The model is characterized by a set of parameters that are estimated in a Bayesian
framework through MCMC methods using the GPU4GL library. Once the model
has been estimated, it is possible, through predictive posterior distributions, to build
daily high-resolution maps of PM10 concentration for the Piemonte region.
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4.1 The Model

Let z .si ; t/ be the scalar spatio-temporal process observed at site si and at time
t where i D 1; : : : ; d and t D 1; : : : ; T . We assume the following measurement
equation

z .si ; t/ D u .si ; t/C " .si ; t/ (1)

where " .si ; t/ � N
�
0; �2"

�
is the measurement error defined by a Gaussian white-

noise process, serially and spatially uncorrelated. The term u .si ; t/ is the so-called
state process given by the sum of a trend and a random process ! .si ; t/:

u .si ; t/ D X .si ; t/ˇ C ! .si ; t/ (2)

where X .si ; t/ D .X1 .si ; t/ ; : : : ; Xk .si ; t// denotes the k-dimensional covariate
vector for site si at time t and ˇ D .ˇ1; : : : ; ˇk/

0 is the coefficient vector. The
zero-mean Gaussian process ! .si ; t/ is the residual process whose spatio-temporal
covariance function depends on the parameter vector  , namely

Cov
�
! .si ; t/ ; !

�
sj ; t

0�� D �2!C .h; l/ 8i ¤ j; t ¤ t 0 (3)

where �2! is the constant in time and space variance of the process and C.�; �/ is the
spatio-temporal correlation function parameterized by  , with h D �

�si � sj
�
� the

Euclidean distance between sites i and j , and l D kt � t 0k the temporal lag between
time points t and t 0. Adopting a non-separable approach as in [5], the space–time
correlation function can be defined as:

C .h; l/ D 1

 .jl j2/ '
�

h2

 .jl j2/
�

(4)

where .x/ D .ax˛ Cb/=.b.ax˛ C1// and '.x/ D exp.�cx� /, with b, ˛ and � in
.0; 1� and with a and c positive. In this work we consider a D 0:058 and c D 0:549

fixed and equal to the values estimated in [2].

4.2 Parameter Estimation and Space–Time Prediction

Let f .:/ be a probability density function. Moreover, let� D �
ˇ; �2" ; �

2
!; ˛; b; �

�
be

the parameter vector and Z the collection of all the data z.si ; t/. Using independent
prior distributions for the parameters, the log-posterior distribution of � given the
data is

log .f .� j Z// / �1
2

log j˙ j� 1

2
.Z � Xˇ/0 ˙�1 .Z � Xˇ/C

dim.�/X

iD1
log.f .�i //

(5)
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whereX D fX1; : : : ; XT g is the .dT � k/ array of covariates2 with the t-th element
given by Xt D .X.s1; t/

0; : : : ; X.sd ; t/0/0. The .i; j /-th element of the .dT � dT /
dense variance–covariance matrix ˙ is defined as

˙ij D �2!C
��
�si � sj

�
� ;
�
�ti � tj

�
�
�C �2" :

In order to implement the Gibbs sampling algorithm we derive the full con-
ditional distributions, and when these are not available in an exact closed-form
we introduce a Metropolis–Hastings (MH) sampling step (this is the so-called
Metropolis-within-Gibbs algorithm, [10]). For more details about the estimation
procedure see [2].

From (5) we can easily obtain that the full conditional distribution for ˇ, when
a Normal prior distribution Nk.0; ˙0/ is assumed, is Gaussian with mean AB 0 and
variance A, where A D �

˙�1
0 CX 0˙�1X

��1
and B D Z0˙�1X . To carry out

these operations, we use the GPU4GL library as follows:

• function gpu4gl lsld for computing˙�1X , where A D ˙ and B D X ;
• function gpu4gl lsld for computing the inverse of

�
˙�1
0 CX 0˙�1X

�
, where

A D ˙�1
0 CX 0˙�1X and B is the identity matrix of size k.

Note that the simulation from Nk.AB
0; B/ can be performed using the standard

R function rnorm as k is usually small and, as discussed in Paragraph 3.2, the
speedup obtained through the GPU is significant only for large matrices.

All the remaining parameters are estimated through the MH algorithm adopting
the function gpu4gl like with A given by the .dT � dT / covariance matrix ˙
and B the .dT � 1/ residual vector .Z � Xˇ/.

The spatial prediction of PM10 concentration at a new location s0 and time t0
(with 1 � t0 � T ) is based on the posterior predictive distribution of z.s0; t0/ which
is given by

z .s0; t0/ j Z;� � N1

�
x.s0; t0/ˇC Q̇ 0˙�1 .Z � Xˇ/ ; .�2!C�2" /� Q̇ 0˙�1 Q̇ � (6)

where the generic element of the .d �1/-dimensional vector Q̇ is defined as follows

Q̇
i D �2!C .ksi � s0k ; kti � t0k/ :

Note that the quadratic forms in (6) are also carried out using function
gpu4gl like. When the spatial prediction is jointly performed on a regular
grid, the gpu4gl rand should be considered. In this case, in fact, Q̇ and ˙ are
large matrices of dimension d �m andmd �md wherem is the grid size.

2Here braces are used for column stacking of the vectors involved.
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Table 3 Posterior estimates (mean and quantities of order 0.025 and 0.975) of the model
parameters

Mean q0:025 q0:975 Mean q0:025 q0:975

�2! 0:168 0:154 0:180 ˇhmix �0:040 �0:061 �0:019
�2" 0:029 0:028 0:030 ˇtemp �0:125 �0:177 �0:075
ˇint 3:952 3:689 4:211 ˇrain �0:060 �0:077 �0:049
ˇalt �0:168 �0:238 �0:099 ˇemi 0:050 0:013 0:088

ˇutmx �0:122 �0:200 �0:044 ˛ 0:740 0:681 0:793

ˇutmy �0:072 �0:130 �0:013 b 0:184 0:159 0:201

ˇws �0:073 �0:088 �0:059 � 0:027 0:023 0:032

4.3 Results

In our air quality case study we have that d D 24, T D 182 and kD 9 and the
size of the covariance matrix ˙ is 4,368. Following the estimation procedure
on the previous paragraph, an MCMC simulation of 16; 000 iterations has been
implemented on R using the GPU4GL library. The first 15; 000 iterations have been
considered as burn-in and the last 1; 000 have been used to compute the posterior
mean and the 95% credible interval of each model parameter. The estimation results
are reported in Table 3. Note that the parameter values are slightly different from
those reported in [2] due to the fact that, in the case of this paper, the parameters
a and c are fixed. The average iteration time has been 19:22 s and it is divided as
follows: 1:32 s for ˇ, 1:58 s for �2� , 1:63 s for �2! , 5:04 s for ˛ and b and 4:61 s for � .
The computing times for ˛, b, and � are higher than the computation time of the
rest of the parameters. This is due to the fact that a change in the value of the former
implies the evaluation of (3) which is implemented by a non-GPU function. When
the model estimation is performed on the machine of configuration .2/ (server), the
average iteration time is 30:94 s, with a speedup equal to 1:61which is in accordance
with the results of Table 2.

As an example, Fig. 1 shows the posterior prediction map for January, 29th 2006
of the PM10 concentration evaluated over a regular grid of 56 � 72 pixels covering
the Piemonte region. The map has been obtained considering the posterior mean of
all the 1; 000 spatial predictions over the grid computed using (6).

5 Conclusions

In this paper, the benefits offered by the GPU technology have been evaluated with
respect to the analysis of spatio-temporal environmental data and in particular with
respect to the estimation of a statistical spatio-temporal model characterized by a
non-separable covariance function. The GPU4GL shared library has been developed
and it represents a useful software tool, supporting the GPU technology, for the
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Fig. 1 Particulate matter prediction map for January, 29th 2006

analysis of environmental data and, more generally, for the implementation of
Gaussian likelihood-based inference techniques.

The speedup with respect to classic CPU architectures has been assessed to be
between around 1:5 and around 12, depending on the number of CPUs and CPU-
cores. In this work, the NVIDIA® Tesla™ C1060 card has been considered. The
newer (but more expensive) cards, like those of the C20xx family, are seven times
faster than the C1060 and they support 6GB memory. Despite the higher price,
they represent a valid alternative to the multi-CPU architecture, especially if it is
considered that the power consumption of a GPU architecture can be 20 times lower
than CPU architectures with the same computational capability. To all the effects,
the GPU technology supports the “green computing” as it has a lower impact on
the environment when data analysis and simulation, which can last days or weeks,
are run.

Acknowledgements This research is part of Project EN17, “Methods for the integration of
different renewable energy sources and impact monitoring with satellite data” Lombardy Region—
Principal investigator Prof. Alessandro Fassò.
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Theoretical Regression Trees: A Tool for
Multiple Structural-Change Models Analysis

Carmela Cappelli and Francesca Di Iorio

Abstract The analysis of structural-change models is nowadays a popular subject
of research both in econometric and statistical literature. The most challenging task
is to identify multiple breaks occurring at unknown dates. In case of multiple shifts
in mean Cappelli and Reale (Provasi, C. (eds.) S.Co. 2005: Modelli Complessi e
Metodi Computazionali Intensivi per la Stima e la Previsione, pp. 479–484. Cleup,
Padova, 2005) have proposed a method called ART that employs regression trees
to estimate the number and location of breaks. In this paper we focus on regime
changes due to breaks in the coefficients of a parametric model and we propose an
extension of ART that addresses this topic in the general framework of the linear
model with multiple structural changes. The proposed approach considers in the
tree growing phase the residuals of parametric models fitted to contiguous subseries
obtained by splitting the original series whereas tree pruning together with model
selection criteria provides the number of breaks. We present simulation results well
as two empirical applications pertaining to the behavior of the proposed approach.

1 Introduction

The detection of regime changes in time series has emerged as an important research
topic over the last two decades as proved by several papers published both in
the econometric and in the statistics literature (see among the others [3, 4, 8, 14,
17–19]) where the issue of detecting regime changes and the consequences of
parameter instability on model specification, inference, and prediction are widely
discussed. Indeed, the detection of structural breaks is relevant from several points
of view. First it can reveal a behavior of the time series that could otherwise be
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misunderstood and modeled inadequately, a well-known example is the confusion
between long memory and occasional breaks in mean that may lead to an erroneous
identification of an integrated or fractionally integrated process (see, e.g., [16, 21]).
Second, in the context of forecasting it is sensible to base the forecasts on a
model estimated on a recent segment of the series instead of using the entire
series especially when we deal with long series covering extended periods of time.
Eventually the identification of breaks might isolate shorter periods between longer
ones, revealing the presence of outliers and thus the need for adjusting the data (see
for example [13]).

Since the seminal paper of [1] that addressed the case of a single break occurring
at an a priori unknown break date, the focus is on detecting multiple breaks
at unknown dates that represents the most challenging task. In this context the
undiscussed contribution is due to Bai and Perron that in various papers [5–7] have
presented a comprehensive discussion of the issue providing estimation methods,
testing procedures and confidence intervals for multiple structural changes in the
framework of the linear model.

In case of level shifts [12] has proposed a computationally efficient procedure
called Atheoretical Regression Trees (ART) to detect multiple breaks in mean
occurring at unknown dates that is based on Least Square Regression Trees (so
forth denoted LSRT) and it mimics Bai and Perron’s estimation method of the break
dates.

Although ART is a completely heuristic procedure and thus it is not possible to
conduct inference on the break dates, extensive simulation studies and comparison
with current methods have provided evidence of its usefulness. The results as well as
applications to various real-time series can be found in [20] whereas in [11] ART is
employed in an empirical procedure that helps to distinguish between long memory
and breaks in the mean whose large memory and computing requirements benefit
from a fast approach such as ART to locate the breaks.

Up to now ART has been used to detect shifts in mean whereas in this paper the
focus is on parameter instability over time, i.e. the case when the coefficients of a
parametric model are subject to change considering the general framework of the
linear model with multiple structural changes.

At this aim we propose a novel version of the ART procedure that we call
Theoretical Regression Trees (TRT) because it extends the principle of recursive
partitioning for dating the breaks to parametric models fitted to contiguous segments
obtained by splitting the data. Then, tree pruning together with model selection
criteria provides the actual number of breaks.

The remainder of the paper is organized as follows. In Sect. 2 we discuss the issue
of estimating multiple breaks from a general point of view and we introduce the
ART method showing how it can be employed to detect multiple changes in mean.
Then we illustrate how ART can be extended giving raise to TRT that accounts for
parameter instability in the linear model. In Sect. 3 we report the results of various
simulation experiments pertaining to the behavior of the procedure whereas in
Sect. 4 we present two empirical applications that illustrate its practical usefulness.
Final remarks follow in Sect. 5.
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2 Estimation of Multiple Structural Changes
with Theoretical Regression Trees

2.1 Background

The issue of estimating multiple structural breaks can be briefly illustrated as
follows. Let yt be a time series characterized bymC1 regimes andm breaks so that
t D Tj�1C1; : : : ; Tj and j D 1; : : : ; mC1 (we adopt the common convention that
T0 D 0 and TmC1 D T where T is the length of the series). A common estimation
method of the set of unknown break dates is that based on the least square principle,
i.e., the estimated break points . OT1; : : : ; OTm/ are such that:

. OT1; : : : ; OTm/ D argmin.T1;:::;Tm/SSR.T1; : : : ; Tm/ (1)

where SSR.T1; : : : ; Tm/ denotes the sum of squared residuals of the partition that in
case of multiple shifts in mean is given by:

SSR.T1; : : : ; Tm/ D
mC1X

jD1

TjX

tDTj�1C1
.yt � �j /

2: (2)

To detect the presence of such structural changes [12] has proposed a procedure
based on LSRT [9] which are piecewise-constant models: a node h is split into its left
and right descendants hl and hr to reduce the deviance of the dependent variable y
fitting to each node the mean of corresponding y’s values. The algorithm selects
the split, i.e. the binary division, that minimizes:

SSR.hl /C SSR.hr/ D
X

g2fl;rg

X

y2hi
.yt � O�.hg//2 (3)

where O�.hg/ is the mean of the y values in node hg (g 2 fl; rg) thus, the
splitting criterion (3) corresponds to the objective function (2) computed for a binary
partition. Figure 1 displays the procedure for a single split in a binary tree diagram.
Once the partition of a node is performed, the splitting process is recursively applied
to each subnode until either the subnodes reach a minimum size or no improvement
of the criterion can be achieved.

As shown by [12] LSRT provide a practical tool for dating multiple shifts in mean
occurring at unknown dates. Indeed, given an observed time series yt whose breaks
in mean we want to identify, by tree regressing yt on a sequence of completely
ordered numbers i D 1; : : : ; T we obtain a partition of the series into contiguous
segments such that O�j ¤ O�jC1; the partition is represented as a binary tree whose
split points identify candidate break dates whereas the terminal nodes of the tree
provide the regimes. The procedure called ART mimics the well-known break dates
estimation method proposed by [5, 6], providing comparable results while being
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h
µ(h)

SS(h) = yt∈h(yt − µ̂(h))2

hl

µ(hl)

SS(hl) = yt∈hl
(yt − µ̂(hl))2

hr

µ(hr)

SS(hr) = yt∈hr
(yt − µ̂(hr))2

Fig. 1 Tree diagram

much faster because it is a local minimizer of the objective function (for discussion
on this issue see [20]).

2.2 Theoretical Regression Trees

Let us consider the following linear regression model with multiple structural-
changes:

yt D x0
t ˇj C �t .t D Tj�1 C 1; : : : ; Tj ; j D 1; : : : ; mC 1/

where yt is the observed dependent variable at time t , xt is a .k � 1/ vector
of regressors, ˇj is the .k � 1/ vector of regression coefficients of the j -th
regime and �t is the disturbance at time t . The goal is to estimate .ˇ1; : : : ; ˇmC1;
T1; : : : ; Tm/, i.e. both the unknown break dates and coefficients.

In order to achieve this goal the binary recursive partitioning approach of ART
can be employed. In this case at each tree node h the best binary split is selected
considering the residuals of proper regression models fitted to contiguous segments,
thus two separate regressions are estimated for each value .minobs � i � T .h/ �
minobs/ where T .h/ is the length of subseries in node h and minobs denotes a
minimum number of observations required to estimate the model. The best split
of node h minimizes the sum of squared residuals

SSR.hl /C SSR.hr / D
X

g2fl;rg

X

yt2hg
.yt � x0

t
Ǒ.hg//2

where Ǒ.hg/ is the estimate of the regression coefficients at subnode hg (g 2 fl; rg).
The selected split point is the estimated break date of the subseries in node h and



Theoretical Regression Trees 67

the splitting process, recursively applied to each subseries obtained by cutting off
at the estimated break date, produces a large binary tree. Then, cost-complexity
pruning [9] is employed to generate a sequence of subtree, i.e. of nested partitions
that are alternative structural-change models of various dimension (number of
breaks and regimes). A common procedure to select the preferable subtree (model)
among the competing ones is to consider an information criterion; in particular we
use the Bayesian Information Criterion (BIC ) defined as:

BIC.m/ D �2loglik C plog.T /

where p D .k C 1/ � .mC 1/ (for the computation of other common information
criteria in regression trees, see [22]).

We call the proposed approach TRT because, opposed to ART that detects level
shifts without modeling the data, in the present case the break points are identified
estimating a parametric model in the segments.

3 Simulation Experiments

In this section we present the results of simulation experiments carried out to
evaluate the performance of TRT in terms of either number of structural changes
detected (nb) or rate of correct identification of the break dates (ci ) considering the
exact identifications as well as short intervals around the true value. In the spirit of
[7] various data generating processes are considered allowing for different types of
changes in intercept and/or in slope as well as serial correlation.

We start with the case where no serial correlation is present, the basic data
generating processes used are:

DGP-1: yt D �t ;

DGP-2:

8
<

:

yt D �1 C ˇ1xt C �t if t � 75I
yt D �2 C ˇ2xt C �t if t > 75I
yt D �3 C ˇ3xt C �t if t > 90:

Throughout f�tg denotes a sequence of i:i:d: N.0; 1/ random variables, fxt g a
sequence of i:i:d: N.1; 1/ random variables uncorrelated with f�t g and 1;000Monte
Carlo replications are generated. Note that DGP-1 exhibits no structural changes and
thus it is the base case to assess the ability of the method to select the correct number
of breaks. For DGP-2 and DGP-3 alternative parameter values are considered that
are reported in Table 1 where the corresponding results are presented.

The results for DGP-1 where the series is white noise show that when no
breaks are present in the data the method occasionally detects spurious breaks
but increasing the sample size reduces such erroneous identifications. For DGP-2,
the case with one break, the BIC computed on the sequence of pruned subtrees,
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Table 1 Simulation results

m D 0; 1

nb ci ci ˙ 1 ci ˙ 2 ci ˙ 4

DGP-1
T D 125 0.05 – – – –
T D 250 0.03 – – – –

DGP-2 (T D 150)
�1 D 1, �2 D 2:0 1.00 0.30 0.45 0.64 0.77
ˇ1 D 1:4, ˇ2 D 1:6

�1 D 1, �2 D 2:5 1.00 0.52 0.74 0.85 0.93
ˇ1 D 1:4, ˇ2 D 1:8

m D 2

Break 1 (T2 D 90) Break 2 (T1 D 45)

nb ci ci ˙ 1 ci ˙ 2 ci ˙ 4 ci ci ˙ 1 ci ˙ 2 ci ˙ 4

DGP-3 (T D 150)
�1 D 1, �2 D 2, �3 D 0:5 1.81 0.39 0.63 0.78 0.89 0.20 0.47 0.59 0.72
ˇ1 D 1, ˇ2 D 1:5, ˇ3 D 0:5

�1 D 1, �2 D 2, �3 D �0:5 1.88 0.60 0.91 0.95 0.98 0.24 0.51 0.66 0.76
ˇ1 D ˇ2 D 0:5, ˇ3 D 1

�1 D 1, �2 D 2:5, �3 D �0:5 2.00 0.81 0.98 1.00 – 0.49 0.67 0.76 0.91
ˇ1 D ˇ3 D 1, ˇ2 D 0:5

chooses a single break 100% of the times for both settings. As to the rate of correct
identifications, it is adequate for the first setting where the shifts, especially in slope,
are quite mild, and it tends to become higher as the size of the break increases, as we
can see from the second setting where a relatively slight increase of the shifts causes
the percentage of correct identifications to reach 52%, 74% within 1 observation,
and 93% within four observations. A similar picture emerges for DGP-3 where two
breaks are present. Here we have considered three alternative settings characterized
by a somewhat increasing break sizes. In all cases the break at time T2 D 90 is the
strongest and the first to be identified (thus denoted break 1 in Table 1). Starting
with the mean number of breaks detected we can see that in the first two cases
the method slightly underestimate the true number whereas for the third setting the
number is correct. Coming to the rate of correct identifications of the break dates,
for the strongest break (T2 D 90) the percentages are in all cases pretty high, but,
as expected, lower for the second break identified (T1 D 45) especially for the first
two settings but it becomes higher in the third setting where the break is larger.

These results show the proposed approach to perform quite well in terms of
right number of breaks detected and the rate of correct identifications of the break
date and also that, although the sample size is relatively small, the precision of the
method improves considerably when adequate sized breaks are considered.
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Fig. 2 An illustrative simulated series

In a further simulation experiment we have considered the case when serial
correlation is present and the breaks are not equally spaced. Also, for the purpose
of making the simulation study more insightful, we have compared TRT with the
estimation method of the break dates proposed by Bai and Perron that is a global
minimizers of the sum of squared residuals.

We generated 1,000 series from the following DGP:

DGP-4:

8
<

:

yt D �11yt�1 C �21yt�2 C �t if t � T1I
yt D �12yt�1 C �22yt�2 C �t if T1 C 1 < t � T2I
yt D �13yt�1 C �23yt�2 C �t if T2 C 1 < t � T I

where �t denotes a sequence of i:i:d: N.0; 1/ random variables. DGP-4 which is
an AR(2) with two breaks is a case where serial correlation is taken into account
parametrically.

We have used sample sizes of T D 120 and T D 240. The break dates are
T1 D 30 and T2 D 90 for sample size T D 120 and T1 D 75 and T2 D 125

for sample size T D 240. The parameter values in the three regimes are: �11 D
0:6 �12 D 1:2 �13 D �0:4 and �21 D �0:6 �22 D �0:6 �23 D �0:2. Note that
in DGP4 no constants are included in the different regimes because, in general,
the presence of changes in the constant tends to favor the identification of breaks
whereas our focus is on the ability of the method to detect breaks in the regressors
coefficients.

For illustrative purposes in Fig. 2 one of the AR.2/ simulated series is depicted.
As it can be seen the graphical inspection of series suggests the presence of a single
break that corresponds to the third regime when both autoregressive parameters turn
to negative. In particular, although the second regime is characterized by a more
marked sinusoidal behavior, it is not distinguishable from the first one. Indeed, we
have set up on purpose a case where the detection of the number and location of
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Table 2 Simulation results for DGP-4

T D 120

Break 1—t D 90 Break 2—t D 30

nb ci ci ˙ 2 ci ˙ 4 ci ˙ 8 ci ci ˙ 2 ci ˙ 4 ci ˙ 8

TRT 1.93 0.18 0.83 0.94 0.99 0.10 0.40 0.61 0.81
BP 1.01 0.16 0.72 0.90 1.00 0.08 0.54 0.69 0.80

T D 240

TRT 2.21 0.19 0.70 0.90 0.97 0.12 0.35 0.58 0.77
BP 1.04 0.03 0.76 0.88 1.00 0.10 0.44 0.57 0.78

breaks is difficult whereas for this reason in Table 2 where the results are presented,
we report the correct identifications also for a larger interval around the true date.

As a general observation both methods show very low rates of exact identification
of the break date even for the strongest break (break 1 at date T2). This finding seems
to be due to the presence of autocorrelation; however, TRT slightly outperforms BP.
Indeed, as a local optimizer, TRT estimates the breaks one at time and it generates
nested partitions thus, once a break has been detected its date cannot be changed.
In our experience this feature makes TRT more stable and less sensitive to the data
with respect to the global optimizers of BP.

Considering the various intervals around the true dates, the rates of correct
identification associated with both methods are high for the larger break at date T2
and adequate for the smaller one occurring at date T1. Occasionally one method
outperforms the other but on the whole the simulation results confirm that our
approach provides comparable results. Another interesting feature is that doubling
the sample size does not lead to more accurate estimates of the break dates,
suggesting that what is important is the size of the break rather than the sample
size.

As to the number of breaks identified, it is worth noticing that, it depends on
the selection criterion but, although both methods employ the BIC, the number of
breaks is well identified by TRT but, surprisingly, it is underestimated by BP. Indeed,
in various simulation studies Bai and Perron report the BIC to choose a number of
breaks much higher than the true value. This issue deserves further investigation as
well as the use of alternative selection criteria.

4 Empirical Applications

In this section we present two empirical applications of TRT. The first analyzes
one of the series considered in the study of [10] on the existence of a long-run
relationship between investment and savings in a panel of 18 OECD countries. The
second reevaluates the findings of [23] related to the detection of changes in the
time series of the car drivers killed or seriously injured in Great Britain in traffic
accidents.
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4.1 Structural Changes in Savings–Investment Relationship:
The Case of Finland

According to the fundamental macroeconomic relationship Gross Domestic Product
(GDP) Y , consumption C , capital formation I and current account B are linked by
the basic relationship Y D C C I C B . Moreover it is well known that in an open
economy capital formation is not constrained by domestic savings. Nevertheless
[15] documented a close correlation between savings and investments ratios to GDP
in 16 OECD economies; a way to model this evidence, called “Feldstein-Horioka
puzzle” (for discussion and details on the topic, see [2]), is given by the FH equation

it D �C ˇst C �t

where i D log.I=GDP/ and s D log.S=GDP/. Since in closed economies
investments are, by definition, equal to savings, the coefficient ˇ, known as “saving-
retention rate,” is constrained to be equal to 1, the constant � to 0, and the residuals,
that reflect errors of measurement, are stationary.

Actually, the existence of a strict relationship between investment and saving
can be assumed when capital movements are strictly regulated but, over the last
few decades the regulations underwent many changes and, in particular, within the
European Union controls were removed in 1990. Hence, a more plausible model
that allows for a change in the coefficients is defined as (see e.g. [10])

it D


�0 C ˇ0st C �t ; t � t�
�1 C ˇ1st C �t ; t > t�:

(4)

We have employed model 4 to analyze the case of savings–investment relation-
ship in Finland treating the break date as unknown because, although the regulation
changes suggest possible break dates, in general, these cannot be assumed as a priori
known due to delay effects. Thus, we have employed TRT to estimate the unknown
break date t�.

Figure 3 plots the dataset that is freely available from the OECD.stat database
(see “National Accounts,” table “Disposable income and net lending—net bor-
rowing”). The series considered are: Investment (as Gross capital formation—
transaction code P5S1) and Savings (obtained as sum of Net savings—transaction
code: B8NS1—and Consumption of Fixed capital—transaction code K1S1) as log-
ratio to GDP (transaction code B1-GS1), in national currency at current prices. The
sample period is 1970–2011.

As we can see, the two variables follow a closely related path up to the early
1990s when the association weakens till the 2007–2008 (when the financial crises
started) but a possible second break so close to the end of the series would be not
trustful.
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Fig. 3 Finland: Savings/GDP (dashed line) and Investment/GDP (solid line), 1970–2011

Table 3 Estimates of the
model on the entire series and
on the regimes identified by
the breaks

ˇ0 ˇ1Entire series
1970–2011 �0:466?? 0:693???

Regimes
1970–1992 �0:392??? 0:651???

1993–2011 �1:051??? 0:397???

Significance codes: ??? D 0:001; ?? D 0:01; ? D
0:05; � D 0:1

Indeed TRT founds evidence of a break in 1993 (note that the same break date is
identified with Bai and Perron procedure). The OLS estimates1 associated with the
two sub-samples are reported in Table 3.

We see that the estimates vary across the regimes confirming the graphical
evidence, in particular the saving-retention rate decreases by 40% shifting from the
first to the second regime.

4.2 The UK Seatbelt Data

The issue of interest is the effect of making compulsory the use of seat belts by
vehicle occupants. The data are monthly and the sample is 1969:1-1984:12 (T D
192). The graphical inspection of the series, depicted in Fig. 4 suggests, the presence
of two breaks.

1Note that estimation methods such as FM-OLS that allow for nonstationarity have not been
considered due to the short sample size in the two sub-regimes.
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Fig. 4 The Seatbelt data

Reference [23] analyzed this series in a least square framework considering the
logarithm of the data and regressing it on its lagged values at lag 1 and 12 using
ordinary least squares. The model is:

log.yt / D �0 C �1log.yt�1/C �2log.yt�12/C �t :

By employing structural change tests the authors found evidence of at least one
break and they favored a model with m D 2 breaks at dates 1973:10 and 1983:1.
The first break can be associated with oil crisis and the second, indeed, with the
introduction of compulsory seatbelt wearing in UK. Bai and Perron estimation
procedure based on global optimizers identifies the same break dates but the BIC
chooses the model with no breaks.

We have performed change point analysis of the series with TRT considering
the same regression model that involves the lagged regressors adding also a trend.
TRT detects the same break dates at 1973:10 and 1983:1 but for our model the
corresponding partition provides the minimum BIC. It is worth noticing that the first
(strongest) break to be detected is 1983:1 and that the values of the BIC computed
form D 1; 2 are very close to each other suggesting that either models are plausible
for the data.

The coefficient estimates computed from the whole series and the three regimes
identified by the break points are reported in Table 4 whereas Fig. 5 depicts the
log-transformed data and the fitted response variable for the model with m D 2

breaks.
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Table 4 Estimates of the model on the entire series and on the regimes identified by the breaks

ˇ0 ˇ1 ˇ2 ˇ3Entire series
1969:1-1984:12 1:06? �0:0004?? 0:37??? 0:49???

Regimes
1969:12-1973:10 1:57� 0:0003 0:11 0:68???

1973:11-1983:1 1:18? 0:0006? 0:21?? 0:62???

1983:2-1984:12 �0:04 0:0167??? 0:08 0:53???

significance codes: ? ? ? D 0:001; ?? D 0:01; ? D 0:05; � D 0:1
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Fig. 5 The log-transformed seatbelt time series, the fitted values, and the break dates

We see that the estimates of the coefficients vary across the three regimes and
that the fitting provided by the model seems quite good.

5 Conclusions

This paper has addressed the issue of detecting multiple structural changes in the
general framework of the liner model presenting a method, TRT, that employs the
recursive partitioning approach of regression trees. The method allows to estimate
the unknown number and location of change points by fitting parametric models to
contiguous segments arising by splitting the data.

For the purpose of evaluating the performance of the proposed approach we have
carried out simulation experiments. According to the results TRT selects the correct
number of breaks accurately and its precision location especially when the break
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size is adequate, and thus the method can be confidently used to analyze structural-
change models.

As a further benchmark we have applied our procedure to the regime change
analysis of real-time series: the UK seat-belt data and the savings–investment data
of Finland. In both cases the results have shown that our procedure is able to reveal
relevant features of the series and thus it represents a useful tool to analyze models
with multiple breaks.

The procedure can be easily implemented in any software that provides the
classification and regression tree methodology and it provides a quick flexible tool,
that, due to its simplicity, is particularly useful for applied time series analysis.

Further research will address the use of alternative criteria to select the actual
number of breaks as well as issues involving nonstationarity and nonlinearity.

Acknowledgments Paper partially supported by MIUR grant (code 2008WKHJPK-PRIN2008-
PUC number E61J10000020001)
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Some Contributions to the Theory
of Conditional Gibbs Partitions

Annalisa Cerquetti

Abstract Conditional Gibbs partitions naturally arise in Bayesian nonparametric
analysis of species sampling problems under almost surely discrete priors inducing
infinite exchangeable partitions with distribution in Gibbs product form. In this
setting interest relies on posterior predictive inference on some characteristics of
a population of species, given an initial sample of observations. Here we focus
on the subclass of Poisson-Kingman partitions driven by the Stable subordinator,
and, relying on the unconditional theory of exchangeable Gibbs partitions, derive
some additional results for the posterior partition, the conditional ˛ diversity and a
Stirling’s approximation of the Gibbs weights.

1 Introduction

Exchangeable Gibbs partitions [13] are a class of infinite exchangeable partitions of
the positive integers characterized by having distribution, expressed by a consistent
sequence of symmetric functions p of compositions of n, called exchangeable
partition probability function (EPPF), in the following Gibbs product form

p.n1; : : : ; nk/ D Vn;k

kY

jD1
.1� ˛/nj�1; (1)

for each n � 1, k � n,
Pk

jD1 nj D n, ˛ 2 .�1; 1/, and the .Vn;k/ weights
satisfying the backward recursive relation Vn;k D .n � k˛/VnC1;k C VnC1;kC1 with
V1;1 D 1. Here .x/y stands for rising factorials: .x/y D .x/.xC 1/ � � � .xC y � 1/ D
� .x C y/=� .x/. The fundamental result in [13] (Theorem 12) states that each
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element in the exchangeable Gibbs class arises as a mixture of corresponding
extreme partitions being, respectively: Fisher’s partitions [11] for ˛ < 0, Ewens’
partitions [6] for ˛ D 0 and conditional Poisson–Kingman partitions driven by the
stable subordinator [26] for ˛ 2 .0; 1/. By Kingman’s correspondence [17]

p.n1; : : : ; nk/ D
X

.j1;:::;jk/

E

"
kY

iD1
P
n1
ji

#

where .j1; : : : ; jk/ ranges over all ordered k-tuples of distinct positive integers,
the Gibbs characterization of Gnedin and Pitman still holds if stated in terms of
the random atoms in the infinite sum representation of the corresponding random
probability measure P.�/ D P1

jD1 Pj ıXj .�/, for Xj iid � H.�/ nonatomic,
independent of the .Pj /j�1 taking values in the infinite dimensional simplex.
See [27] for a comprehensive reference on those topics and related combinatorial
processes.

Here we focus on exchangeable Gibbs partitions induced by sampling from a
random probability measure whose ranked atoms .P #

j / follow a Poisson–Kingman
distribution PK.�˛; �/ driven by the Lévy density of the stable subordinator
�˛.x/ D ˛� .1 � ˛/�1x�˛�1dx, for 0 < ˛ < 1 and x > 0 ([26]). Here � stands for
some mixing density on .0;1/ that, without loss of generality, may be expressed as
h.t/f˛.t/ for f˛.�/ the stable density, so that

PK.�˛; h � f˛/ D
Z 1

0

PK.�˛jt/h.t/f˛.t/dt

where PK.�˛jt/ is the regular conditional distribution of .P #
j / given T D t .

Equivalently, in terms of EPPFs, each PK.�˛; h � f˛/ corresponds to

p˛;h.n1; : : : ; nk/ D
Z 1

0

p˛.n1; : : : ; nkjt/h.t/f˛.t/dt (2)

where (cfr. [26], (66)), for s D t�˛

p˛.n1; : : : ; nkjs�1=˛/ D ˛k

� .n � k˛/
skŒf˛.s

�1=˛/��1

Z 1

0

pn�1�k˛f˛..1 � p/s�1=˛/dp
kY

jD1
.1� ˛/nj�1: (3)

The Poisson–Kingman .�˛; �/ class contains some noteworthy subclasses like the
two-parameter .˛; / Poisson–Dirichlet model [23, 28] which arises for �˛; .t/ D
� .C1/
� .=˛C1/ t

�f˛.t/ for 0 < ˛ < 1 and  > �˛, and the normalized generalized
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Gamma model [26] which arises for �.t/ D expf ˛.�/ � �tgf˛.t/, for  ˛.�/ D
.2�/˛, � > 0, the Laplace exponent of the ˛ Stable density. Notice that those two
PK models correspond, respectively, to a polynomial and an exponential tilting of
the stable density.

Recently exchangeable Gibbs partitions have been exploited in Bayesian non-
parametrics both to identify random probability measure almost surely discrete to be
used as alternative priors to the classical Ferguson–Dirichlet model [10] (see [1,18]),
like to propose a Bayesian nonparametric approach to species richness estimation in
sampling from populations of different species. Here we contribute to those topics
by providing some additional finite sample and asymptotic results for conditional
Gibbs partitions models, which arise when sampling from an almost surely discrete
random probability measure P.�/ starts after a given initial allocation of n elements
in k subgroups.

2 Conditional Gibbs Partitions

Let .n1; : : : ; nk/ be the vector of multiplicities of k different types observed in
an initial sample of n observations from a population of species and assume to
be interested in the random allocation of an additional sample of m observations,
which may belong to the species already observed or to new different species.
Under a general Gibbs model (1) the conditional probability to observe a subset
of m � s integers allocated in the k old blocks in configuration .m1; : : : ; mk/,
and the remaining s new observations partitioned in k� 2 .1;m/ new blocks in
configuration .s1; : : : ; sk�/ may be derived by the theory of sequential construction
of exchangeable Gibbs partitions ([24], see also [3]) and takes the form

p˛;Vn;k .s1; : : : ; sk� ; m1; : : : ; mkjn1; : : : ; nk/

D VnCm;kCk�

Vn;k

kY

jD1
.nj � ˛/mj

k�

Y

jD1
.1 � ˛/sj�1; (4)

for s D Pk�

jD1 sj 2 Œ0;m�, k� 2 Œ0; s� and
Pk

jD1 mj D .m � s/. Notice that (4) is
not invariant to permutations of the arguments, thus conditional Gibbs partitions are
not exchangeable. Nevertheless the restriction to the new blocks,

p˛;Vn;k .s1; : : : ; sk� jn1; : : : ; nk/ D .n � k˛/m�s
VnCm;kCk�

Vn;k

k�

Y

jD1
.1 � ˛/sj �1; (5)

does produce an exchangeable partition of the first s integers. In the next
Proposition we provide the general form of the joint marginal arising from (4) for
.M1; : : : ;Mk; Sm/, for Sm the total number of observations in new blocks, which
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appears to be new in this setting. We state it without proof since it easily arises by
summing over all partitions of [s] elements in k� blocks and over k� 2 Œ0; s�, and
recalling that the number of ways to perform the first operation for the combinatorial
structure .1 � ˛/� is given by generalized Stirling numbers S��1�˛

s;k� . (See [15, 27]).

Proposition 1. Under the general exchangeable Gibbs partition model (1), given
the allocation of n integers in k blocks in configuration .n1; : : : ; nk/, the probability
to observe m � s additional new observations falling in the k old blocks with
multiplicities .m1; : : : ; mk/ and the remaining s observations in new blocks is
given by

P˛;Vn;k .M1 D m1; : : : ;Mk D mk; Sm D sjn1; : : : ; nk/

D mŠ

sŠ
Qk
jD1 mj Š

kY

jD1
.nj � ˛/mj

sX

k�D1

VnCm;kCk�

Vn;k
S�1;�˛
s;k�

(6)

for S�1;�˛
s;k�

generalized Stirling numbers defined as the connection coefficients

.x/s D Ps
k�D0 S

�1;�˛
s;k�

.x/k�"˛, where .a/b"c stands for generalized rising factorials
.a/b"c D a.aC c/.a C 2c/ � � � .a C .b � 1/c/.
Notice that under the two-parameter .˛; / Poisson–Dirichlet model, by the specific
form of the weights Vn;k D . C ˛/k�1"˛=. C 1/n�1, (6) turns out to be a
Multivariate Polya (or compound Dirichlet Multinomial) distribution of parameters
.m; n1 � ˛; : : : ; nk � ˛;  C k˛/, arising by mixing a Multinomial model by a
Dir.n1 �˛; : : : ; nk �˛; Ck˛/ distribution. Further marginalizing (6) with respect
to .M1; : : : ;Mk/ yields a Beta-Binomial distribution .m;  C k˛; n � k˛/ for the
random number Sm of new observations falling in new blocks, as first highlighted
in [4].

The following result arises as a consequence of Proposition 1 from the theory in
Sect. 3.7 in [24] applied to the PK.�˛; h � f˛/ Gibbs class.

Proposition 2. Let .Xn/ be a sample from a random probability measure P.�/ DP1
jD1 Pj ıXj .�/ whose ranked atoms follow a PK.�˛; h � f˛/ distribution, then,

given the partition .n1; : : : ; nk/ induced by the k distinct values in .X1; : : : ; Xn/,
the posterior random probability measure admits the following infinite sum repre-
sentation

P.�/j.n1; : : : ; nk/ D
kX

jD1
QPj;nı QXj .�/C QRkPk.�/;

where (a) . QP1;n; : : : ; QPk;n; QRk/ is the limit in distribution, form ! 1, of the relative
frequencies �

M1

m
; : : : ;

Mk

m
;
Sm

m

�
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for .M1; : : : ;Mk; Sm/ distributed as in (6), (b) Pk is a random probability measure
with ranked atoms having distribution PK.�˛; �k/ for �k.t/ the law of Tk D T QRk ,
T � h � f˛ , and QRk the limit in distribution of .Sm=m/jKn D k for (cfr. [21])

P˛;Vn;k .Sm D sjKn D k/ D
 
m

s

!

.n� k˛/m�s
sX

k�D1

VnCm;kCk�

Vn;k
S

�1;�˛
s;k�

:

Notice that for the two-parameter PK.�˛; �˛; / model Proposition 2 provides the
result in Corollary 20 in [24], Pk.�/ having distribution PD.˛;  C k˛/ in this
case, due to the deletion of classes property of the two-parameter model (cfr.
[26], Proposition 12; [12]) independently of the vector . QP1;n; : : : ; QPk;n; QRk/ having
Dir.n1 � ˛; : : : ; nk � ˛;  C k˛/ distribution. It is also worth to notice that
for normalized generalized Gamma models with �.t/ D Œ ˛.�/ � �.t/�f˛.t/,
Proposition 2 can be seen as a reformulation of a result in [16] on the posterior
distribution of normalized random measures with independent increments. This is
due to a characterization of this model as the unique random probability measure,
arising by normalization, inducing random partitions in Gibbs product form (see
[2,22]). An explicit result for the normalized inverse Gaussian model, corresponding
to the generalized Gamma case for ˛ D 1=2, has been recently obtained in [9] by
deriving the corresponding stick-breaking construction of the size-biased (in order
of appearance) random atoms.

3 Conditional ˛ Diversity Under PK.�˛; �/ Models

The general finite sample distribution of Kn, the number of blocks in an exchange-
able Gibbs partition of the first n positive integers, is given by [13]

P.Kn D k/ D Vn;kS
�1;�˛
n;k :

The concept of ˛-diversity for PK.�˛; h�f˛/ partitions was first introduced in [26]
(cfr. Sect. 6.1 Proposition 13) as the random variable S˛, with 0 < S˛ < 1, such
that, almost surely, for n ! 1,

Kn

n˛
�!S˛:

Pitman shows that S˛
dD T �˛ where T � h � f˛: Now, given Kn D k the number

of blocks induced by a basic sample .X1; : : : ; Xn/, the distribution of Km, the
unknown number of new species induced by an additional sample ofm observations
.XnC1; : : : ; XnCm/, has been first obtained in [20] and is given by

P˛;Vn;k .Km D k�jKn D k/ D VnCm;kCk�

Vn;k
S

�1;�˛;�.n�k˛/
m:k�

: (7)
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Here S�1;�˛;�.n�k˛/
m;k�

are non-central generalized Stirling numbers, defined by the
convolution relation (see, e.g., (16) in [15])

S
�1;�˛;�.n�k˛/
m;k�

D
mX

sDk�

 
m

s

!

.n � k˛/m�sS�1;�˛
s;k�

:

Interest in conditional ˛-diversity emerges in posterior species richness estimation
by the need to obtain asymptotic interval estimation for KmjKn D k. It is defined
as the random variable Sn;k˛ such that, almost surely, for m ! 1

Km

m˛

ˇ
ˇ
ˇ.Kn D k/ ! Sn;k˛ :

A first result for the conditional ˛ diversity under two-parameter Poisson–Dirichlet
priors has been derived in [7], by a technique similar to the one used in the original
proof for the unconditional case in [27] (Theorem 3.8). In [8] an analogous tech-
nique is used to obtain the result under normalized generalized Gamma priors. In
[4] a simpler alternative derivation for the two-parameter Poisson–Dirichlet family
has been obtained by a decomposition approach exploiting the characterization of
those models in terms of the deletion of classes property previously recalled. In the
following Theorem we derive the general distributional result for the entire Poisson–
Kingman PK.�˛; h�f˛/. In Examples 1 and 3 we show how the previous particular
cases arise easily by this general result.

Theorem 1. Let˘ be a PK.�˛; �/ partition of N driven by the stable subordinator
for some 0 < ˛ < 1 and some mixing probability distribution � on .0;1/. Without
loss of generality assume �.t/ D h.t/f˛.t/. Fix n � 1 and a partition .n1; : : : ; nk/
of Œn� with k positive box-sizes, if ˘ has conditional ˛-diversity Sn;k˛;h then

f h;˛
n;k .s/ D h.s�1=˛/ Qg˛n;k.s/

E
˛
n;k Œh.S

�1=˛/�
; (8)

for

Qg˛n;k.s/ D � .n/

� .n � k˛/� .k/
sk�1=˛�1

Z 1

0

pn�1�k˛f˛..1� p/s�1=˛/dp

the density of the product Y˛;k � ŒW �˛ where Y˛;k has density

g˛;k˛.y/ D � .k˛ C 1/

� .k C 1/
ykg˛.y/

for g˛.y/ D ˛�1y�1�1=˛f˛.y�1=˛/, independently ofW � ˇ.k˛; n � k˛/.
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Proof. By the unconditional result in [26], the ˛-diversity for a general �.t/ D
h.t/f˛.t/ mixing density is the r.v. S˛;h with density

�.s�1=˛/ D h.s�1=˛/f˛.s�1=˛/˛�1s�1=˛�1; (9)

hence, by Bayes’ rule,

fS˛;� .sjn1; : : : ; nk/ D p˛;� .n1; : : : ; nk js�1=˛/�.s�1=˛/
R1
0
p˛;� .n1; : : : ; nkjs�1=˛/�.s�1=˛/ds

which by (3) in the Introduction, simplifies to

fS˛;h.sjKn D k/ D h.s�1=˛/sk�1=˛�1 R 1
0
pn�1�k˛f˛..1 � p/s�1=˛/dp

R1
0
h.s�1=˛/sk�1=˛�1Œ

R 1
0
pn�1�k˛f˛..1� p/s�1=˛/dp�ds

:

Notice that, by definition of mixed PK.�˛; h�f˛/model, the general weights Vn;k;h
in the EPPF (1) arise as follows

Vn;k;h D ˛k�1

� .n � k˛/
Z 1

0

h.s�1=˛/sk�1=˛�1
Z 1

0

pn�1�k˛f˛..1 � p/s�1=˛/dpds;

hence the normalizing constant in formula (8) may be obtained through the
following relationship (see also [14])

E
˛
n;kŒh.S

�1=˛/� D Vn;k;h
˛1�k� .n/
� .k/

: (10)

ut
Remark 1. The result in Theorem 1 has been obtained independently by an
analogous result for the conditional distribution of T jKn D k first derived in
an unfinished manuscript by Ho, James, Lau (Explicit Gibbs Chinese Restaurant
Process priors. Personal communication, 2008) that we received by one of those
authors as a personal communication. Their result relies on the r.v.

R˛;.n;k/
dD S˛;k˛

ˇ.k˛; n � k˛/ ;

for S˛;k˛ the polynomially tilted stable random variable with density

fS˛;k˛ .t/ D � .k˛ C 1/

� .k C 1/
t�k˛f˛.t/

independent of the ˇ.k˛; n � k˛/. It is an easy task to show that ŒR˛;.n;k/��˛
dD

ŒY˛;k � ˇ.k˛; n � k˛/˛�.
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Example 1 (Two-parameter Poisson–Dirichlet .˛; / model). To apply the general
result in Theorem 1 recall that the two-parameter Poisson–Dirichlet .˛; / partition
model corresponds to a mixed Poisson–Kingman model with

�˛; .t/ D h.t/ � f˛.t/ D � . C 1/

� .=˛ C 1/
t�f˛.t/;

and that the weights in the Gibbs representation of the EPPF can be written as

V ˛;
n;k D ˛k�1 � .=˛ C k/� . C 1/

� . C n/� .=˛ C 1/
:

Hence, by (10), the denominator in (8) corresponds to

E
˛
n;k.h.Z

�1=˛// D E
˛
n;k.Z

=˛/ D � .=˛ C k/� . C 1/

� . C n/� .=˛ C 1/

� .n/

� .k/
;

and by Theorem 1 the conditional ˛ diversity Z˛;
n;k has density

f
˛;
n;k

.z/ D � . C n/

� .n � k˛/� .=˛ C k/
z=˛Ck�1�1=˛

Z 1

0
f˛Œ.zw�˛/�1=˛�.1 � w/n�k˛�1dw

(11)

which corresponds to the =˛ polynomial tilting of Qg˛n;k . It is an easy task to verify

that this is the density of the product of independent r.v.s Z˛;
n;k D Y˛;=˛Ck �

Œˇ. C k˛; n� k˛�˛ , as already established in [4]. In the following Proposition, for
completeness, we provide an explicit proof that this result agrees with the alternative
scale mixture representation Y˛;.Cn/=˛ � ˇ.=˛ C k; n=˛ � k/ obtained in [7] by
showing the two decompositions have the same characteristic function.

Proposition 3. LetH D Y1 �X for Y1 andX independent r.v.s, Y1 � g˛;.Cn/ and
X � ˇ.=˛Ck; n=˛�k/, then the r.v.Z˛;

n;k with density (11) andH have the same
characteristic function

G
n;k
˛; .t/ D

X

r�0

.it/r

rŠ

�
 C k˛

˛

�

r

1

. C n/r˛
:

Proof. First notice that by Proposition 2 in [4] (see also [7]), form ! 1,

E˛;

�
Kr
m

mr˛

ˇ
ˇ
ˇKn D k

�

�!
�
 C k˛

˛

�

r

� . C n/

� . C nC r˛/
:
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By the change of variable w D .z=s/1=˛ (11) may be written as

f ˛;
n;k .z/ D � . C n/� . C k˛ C 1/

� . C k˛/� .n � k˛/� .. C k˛/=˛ C 1/

1

˛
z=˛Ck�1

�
Z 1

z
˛�1s�1=˛�1f˛.s�1=˛/

�
1 � .z=s/1=˛�n�k˛�1

ds:

Its characteristic function is given by

G
˛;
n;k
.t/ D � . C k˛ C 1/

� .. C k˛/=˛ C 1/

1

˛

Z 1

z
g˛.s/

�
Z 1

0
expfitzg � . C n/

� . C k˛/� .n � k˛/ z=˛Ck�1 �1� .z=s/1=˛
�n�k˛�1

dzds;

and one more change of variable .z=s/1=˛ D y, z D y˛s, dz D s˛y˛�1dy yields

D � . C k˛ C 1/

� .. C k˛/=˛ C 1/

1

˛

Z 1

0

g˛.s/

�
Z s

0

eity˛s � . C n/

� . C k˛/� .n � k˛/
.y˛s/=˛Ck�1 .1 � y/n�k˛�1 s˛y˛�1dyds

that reduces to

D � . C k˛ C 1/

� .. C k˛/=˛ C 1/

Z 1

0

s=˛Ckg˛.s/

�
Z 1

0

eity˛s � . C n/

� . C k˛/� .n � k˛/ .y/
Ck˛�1 .1� y/n�k˛�1 dyds:

Exploiting the known characteristic function of Y ˛ for Y � Beta. C k˛; n � k˛/

we can write

D � . C k˛ C 1/

� .. C k˛/=˛ C 1/

1X

rD0

.it/r

rŠ

. C k˛/r˛

. C n/r˛

Z 1

0

s=˛CkCrg˛.s/ds

and, by g˛; .z/ WD Œ� . C 1/=� .=˛ C 1/�z=˛g˛.z/,

D
1X

rD0

.it/r

rŠ

. C k˛/r˛

. C n/r˛

� . C k˛ C 1/

� .. C k˛/=˛ C 1/

� .. C k˛ C r˛/=˛ C 1/

� . C k˛ C r˛ C 1/
: (12)

By the usual properties of Gamma function the last expression simplifies to

1X

rD0

.it/r

rŠ

�
 C k˛

˛

�

r

1

. C n/r˛
; (13)
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and the conclusion follows by the result in Proposition 2 in [7] that shows (13) is
the characteristic function of H D Y1 �X . ut
Example 2 (Normalized generalized Gamma model). As previously recalled nor-
malized generalized Gamma partitions models belong to the Poisson–Kingman
family for

�˛;�.t/ D expf ˛.�/ � �tgf˛.t/;
where  ˛.�/ D .2�/˛, for � > 0, is the Laplace exponent of f˛.�/. By an
application of (9), after the reparametrization � D ˇ1=˛=2, the unconditional ˛
diversity for this model (see also [1, 19]) is given by

�˛;ˇ.s
�1=˛/ D exp

(

ˇ � 1

2

�
ˇ

s

�1=˛
)

f˛.s
�1=˛/˛�1s�1=˛�1:

To obtain the density of the conditional posterior ˛ diversity it is enough to apply (8)
which provides

f
˛;ˇ

n;k .s/ D
exp




ˇ � 1
2

�
ˇ

s

�1=˛
�

Qg˛n;k.s/

E
˛
n;k

�

exp




ˇ � 1
2

�
ˇ

S

�1=˛
�	 :

The denominator arises by (10) and the known expression for the Vn;k of
PK.�˛; �˛;ˇ/ models as obtained by Corollary (6) in [26],

V
˛;ˇ

n;k D eˇ2n˛k

� .n/

Z 1

0

�n�1 e�.ˇ1=˛C2�/˛

.ˇ1=˛ C 2�/n�k˛ d�;

which rewritten in terms of incomplete Gamma functions by the change of variable
x D .ˇ1=˛ C 2�/˛, d� D .2˛/�1x1=˛�1dx yields

V
˛;ˇ

n;k D eˇ˛k�1

� .n/

n�1X

iD0

 
n � 1

i

!

.�1/i .ˇ/i=˛� .k � i

˛
Iˇ/:

By (10)

E
˛
n;k

"

exp

(

ˇ � 1

2

�
ˇ

S

�1=˛
)#

D eˇ

� .k/

n�1X

iD0

 
n � 1
i

!

.�1/i .ˇ/i=˛� .k � i

˛
Iˇ/

hence by Theorem 1 the conditional ˛ diversity S˛;ˇn;k for the normalized generalized
Gamma model has density



Some Contributions to the Theory of Conditional Gibbs Partitions 87

f
˛;ˇ

n;k .s/ D � .k/ exp.2�1.ˇ=s/1=˛/ Qg˛n;k.s/
Pn�1

iD0
�
n�1
i

�
.�1/i .ˇ/i=˛� .k � i

˛
Iˇ/ :

The result agrees with [8] (Theorem 1) due to the equivalence in distribution
between Y˛;n=˛ � ˇ.k; n=˛ � k/ and Y˛;k � Œˇ.k˛; n � k˛/�˛ which follows as a
particular case ( D 0) of Proposition 3.

4 Stirling’s Approximation of Exchangeable Gibbs Weights

The computation of the Vn;k Gibbs weights in the PK.�˛; �/ class, apart from the
two-parameter .˛; / case, can be particularly demanding for large values of n
and k. Notice that this class contains potentially infinitely many models depending
on the particular choice of the mixing density. See [14] for some additional
explicit classes beyond the generalized Gamma and the two-parameter cases. Hence
it is tempting to investigate if there is any possibility to obtain some sort of
approximation for those weights. Here we obtain a preliminary result by combining
approximation results for generalized Stirling numbers with the asymptotic results
for the law (conditional and unconditional) of the number of blocks treated in the
previous section.

Proposition 4. The following Stirling’s approximation holds for large n for the
weights Vn;k of an exchangeable Gibbs partition with PK.�˛; h � f˛/ distribution

Vn;k 	 ˛k�1� .k/
� .n/

h

"�
k

n˛

��1=˛#
: (14)

Proof. By a result in [25] (eq. (96)) the following asymptotic formula for the
generalized Stirling numbers S�1;�˛

n;k for n ! 1 and 0 < s < 1, with k 	 sn˛

is derived by known local limit approximations by the stable density for the number
of blocks in a partition generated by a PD.˛; ˛/ model

S
�1;�˛
n;k 	 ˛1�k� .n/

� .k/
g˛.s/n

�˛; (15)

where, as before, g˛.s/ D ˛�1f˛.s�1=˛/s�1�1=˛ . Now, by the known local limit
approximation for the distribution of the number of blocks which follows by the
asymptotic distribution of Kn=n

˛ previously recalled

P.Kn D k/ 	 h.s�1=˛/g˛.s/n�˛

for k 	 sn˛ , hence the result follows by substitution. ut
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Example 3. It is an easy task to prove that (14) agrees with the approximation which
can be obtained directly by the simple expression of the PD.˛; / weights,

V
˛;
n;k D ˛k�1.=˛ C 1/k�1

. C 1/n�1
D ˛k�1� .=˛ C k/� . C 1/

� . C n/� .=˛ C 1/
;

multiplying and dividing by � .k/� .n/ and by first order Stirling’s approximation
� .nC a/=� .nC b/ D na�b yields

V
˛;
n;k 	 ˛k�1� .k/

� .n/

�
k

n˛

�=˛
� . C 1/

� .=˛ C 1/
:

By the same technique applied to non-central generalized Stirling numbers an
analogous Stirling’s approximation result holds for conditional Gibbs weights:

Proposition 5 ([5]). The following Stirling’s approximation holds for large m for
the conditional weights VnCm;kCk�=Vn;k of an exchangeable Gibbs partition with
PK.�˛; h � f˛/ distribution

VnCm;kCk�

Vn;k
	 h.s�1=˛/sk˛k�

� .k�/� .n/m�.n�k˛/

En;k;˛.h.S�1=˛//� .m/� .k/

D ˛kCk��1h.s�1=˛/sk� .k�/m�.n�k˛/

Vn;k� .m/
: (16)
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Estimation of Traffic Matrices for LRD Traffic

Pier Luigi Conti, Livia De Giovanni, and Maurizio Naldi

Abstract The estimation of traffic matrices in a communications network on the
basis of a set of traffic measurements on the network links is a well-known problem,
for which a number of solutions have been proposed when the traffic does not show
dependence over time, as in the case of the Poisson process. However, extensive
measurements campaigns conducted on IP networks have shown that the traffic
exhibits long-range dependence (LRD). Here two methods are proposed for the
estimation of traffic matrices in the case of LRD, their asymptotic properties are
studied, and their relative merits are compared.

1 Introduction

Traffic matrices play a fundamental role in network management, because they are
used to describe the amount of bits (packets) transmitted from every Source to every
Destination pair (S–D pair, for short). Their importance comes from a basic property
[1]: they are invariant under changes of either the network topology or routing.

Formally speaking, a telecommunication network can be represented as a graph,
where nodes are transmission devices and arcs are (physical) links connecting
nodes. In a network with n nodes there are typically (at most) N D n.n � 1) S–D

P.L. Conti (�)
Department of Statistical Sciences, Sapienza University of Rome, Rome, Italy
e-mail: pierluigi.conti@uniroma1.it

L. De Giovanni
Department of Political Science, LUISS University, Rome, Italy
e-mail: ldegiovanni@luiss.it

M. Naldi
Department of Computer Science and Civil Engineering, University “Tor Vergata” of Rome,
Rome, Italy
e-mail: naldi@disp.uniroma2.it

M. Grigoletto et al. (eds.), Complex Models and Computational Methods in Statistics,
Contributions to Statistics, DOI 10.1007/978-88-470-2871-5 8,
© Springer-Verlag Italia 2013

91



92 P.L. Conti et al.

pairs, but only M links, with M considerably smaller than N . As a consequence,
traffic on links does not identify S–D traffic. In other words, information produced
by observations on links does not allow one to identify the S–D traffic. This means
we are facing with an incomplete information (or, equivalently, an underconstrained
problem).

Approaches to the estimation of S–D traffic matrices when only traffic flowing
on links is observed, are essentially two. On the one hand, engineering literature has
first considered techniques based on numerical optimization; good reviews are in the
papers [11, 15]. On the other hand, since the seminal paper by [30], the statistical
approach has received an increasing attention. Statistical approach is based either
on the maximum likelihood method [2, 3, 30], or on Bayesian methods [29, 32]. In
[3] a functional mean variance relation of S–D traffic ensuring the identifiability of
the model (under special assumptions on the network topology) is introduced. A
comprehensive account of the statistical literature is in [4].

In the above-mentioned papers, S–D pairs are assumed to behave independently.
Furthermore, S–D traffic counts for each S–D pair are assumed either Poisson or
Gaussian, as well as independent over successive measurements periods. The basic
assumptions considered in the literature are listed below.

(a) S–D pairs are independent.
(b) The traffic produced by a single S–D pair is stationary (either Gaussian or

Poisson).
(c) The traffic produced in different time intervals by an S–D pair is independent.

Assumptions .a/, .b/ are validated in different papers. In detail, independence
of S–D pairs is empirically confirmed in [27], where data coming from the
Finnish university network (Funet) are analyzed. In particular, empirical correlations
between standardized residuals of bits (packets) arrival process (bit/packet network
traffic) for different S–D pairs, at various time aggregation levels, show that the
independence assumption for S–D pairs can be reasonably assumed, even for S–D
pairs sharing the same source node or the same destination node.

As far as the traffic counts probability distribution is concerned, the assumption
of Poisson traffic is hardly ever used, and even in the seminal paper by [30],
a Gaussian approximation is considered. Gaussianity assumption essentially rests
on the central limit theorem: S–D traffic is produced by the superposition of
several independent elementary sources alternating ON and OFF periods (ON–OFF
sources, for short), so that it tends to be Gaussian as the number of ON–OFF sources
increases [24, 28]. The assumption has been considered in [3, 16, 17, 23, 27], and
validated via empirical analysis, again on Funet traffic data.

The assumption of stationarity is studied in [3, 23]. The main conclusion is that
stationarity can be reasonably assumed to hold within a period of 30–90 min. The
empirical studies performed in [16, 17, 27] for Funet data essentially confirm the
stationarity assumption, with a time aggregation from 1 s to 300 s.

The most criticizable assumption is .c/, namely the independence of traffic
generated by a single S–D source in different time intervals. Since the paper by [18],
different empirical analyses have shown that the arrival process of (bits) packets
is self-similar, with increments characterized by a strong time correlation. More
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formally, traffic obtained by aggregating independent ON–OFF sources exhibits
Long Range Dependence (LRD). A deep theoretical analysis is in [28], where a
functional central limit theorem for aggregated traffic is proved. The main results in
that paper can be interpreted as follows.

1. The superposition of independent ON/OFF sources with heavy-tailed ON and/or
OFF periods produces a limiting Gaussian self-similar aggregate cumulative
packets arrival process.

2. The expected traffic level provides the main term of the observed traffic; fluc-
tuations around expected traffic can be approximated by a (rescaled) fractional
Brownian motion.

3. If a finite number of independent heterogeneous sources, possibly with different
values of the Hurst parameter H , are superimposed, then the term with the
highest value ofH tends to be dominant. Hence, the application with the highest
value of the Hurst parameter determines the value of the Hurst parameter for the
whole aggregate traffic. This point is also raised in [10].

Empirical studies to validate the assumption that ON and/or OFF periods in
Local Area Networks have a heavy-tailed distribution are in [25, 34, 35]. Similar
studies have been performed for Wide Area Networks to validate the assumption
that session durations possess a heavy-tailed probability distribution; see [9, 25].

The presence of LRD of aggregate traffic is detected in [16, 27] for Funet
data. See also [26], again with a time aggregation from 10 ms to 60 s, where a
wavelet analysis (as developed in [33]) is performed. In [23] LRD is detected
through a visual analysis. All the above-mentioned papers show that S–D traffic
is characterized by the presence of LRD (with values of the Hurst parameter H
ranging between 0.65 and 0.9).

Motivated by theoretical results .1/–.3/, as well as by the above-mentioned
empirical analyses, Gaussian traffic models explicitly accounting for the presence
of LRD have been considered in [5–7]. In [5, 6] maximum likelihood estimation
based on EM algorithm is studied. In [7] the likelihood function for link traffic data
is considered, and asymptotics for the roots of the likelihood equations are studied.
Comparisons with the main results in [5,6] are performed, and an application to real
data (again showing the presence of LRD) is provided.

In the sequel the model introduced in [7] will be shortly presented, and the main
results will be reviewed. Motivated by computational reasons, a form of pseudo-
likelihood will be further introduced, and the properties of the corresponding
maximum pseudo-likelihood estimators will be studied. Comparisons with maxi-
mum likelihood estimators will be further considered.

2 A Gaussian Model for LRD

Let us denote by Xt
i the amount of traffic for the S–D pair i at time-slot t , and

by Xt D .Xt
1; : : : ; X

t
N / the vector of traffic for all N S–D pairs at time t . The

assumptions on which our model rests are listed below.
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1. The stochastic process .Xt I t � 1/ is a stationary Gaussian process, with:

EŒXt
i � D �X i ; V ŒX

t
i � D �2X i ; i D 1; : : : ; N I t � 1:

2. Different S–D pairs generate independent traffic:

C ŒXt
i ; X

tCk
j � D 0; i ¤ j; i; j D 1; : : : ; N I t � 1; k � 0:

3. The auto-correlation function of lag � for S–D pairs possesses the form:

C ŒXt
i ; X

tC�
i � D �2X i

1

2

˚
.� C 1/2H � 2�2H C .� � 1/2H 

D �2X i �X.�/; i D 1; : : : ; N I � � 0

where 1=2 � H < 1 is the Hurst parameter. When H D 1=2, the correlation
between Xt

i and XtC�
i is zero; this is the Short Range Dependence case. When

H > 1=2, the correlation between Xt
i and XtC�

i is non-null, and slowly decreasing
as � increases. This is the LRD case.

The spectral function for a single S–D pair is equal to:

fXi .!I H/ D �2Xi fX.!I H/

D �2Xi
1

�
sin.�H/� .2H C 1/ .1� cos!/C0.H; !/; i D 1; : : : ; N

(1)

where

Cl.H; !/ D
C1X

kD�1
.log j2�k C !j/l j2�k C !j�.2HC1/; l D 0; ˙1; ˙2; : : :

(2)

When ! is close to zero, the well-known approximation

fXi .!I H/ 	 �2Xi
1

2�
sin.�H/� .2H C 1/ j!j1�2H as ! ! 0; i D 1; : : : ; N

(3)

holds.
For the sake of simplicity, from now on we will use the following notation:

Xt D .Xt
1; : : : ; X

t
N /

�X D .�X1; : : : ; �XN /

i D �2Xi ; i D 1; : : : ; N

 D .�2X1; : : : ; �
2
XN /:
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As a consequence of the independence among S–D pairs, the lag � covariance
matrix of the r.v. Xt is equal to

�X.� I ; H/ D �X.�/

2

6
6
4

1 0 � � � 0
0 2 � � � 0
� � � � � � � � � � � �
0 0 � � � N

3

7
7
5 D �X.�/˙X./:

Assumptions 1–3 imply that traffic over links is characterized by LRD, too. To
see this, let Y tk be the traffic flowing on the link k at time slot t , and let Y t D
.Y t1 ; : : : ; Y

t
M / be the (column) vector containing the traffic for theM links. Denote

further byA D .akl / theM �N matrix where akl equal either to 1 or to 0 according
to whether link k does or does not belong to the directed path of the S–D pair l . Y t

and Xt are related by the relationship

Y t D AXt ; t D 1; 2; : : : (4)

The matrix A is referred to in engineering literature as routing matrix.
Taking into account (4) and assumptions 1–3, it is seen that the (multivariate)

process .Y t I t � 1/ is a stationary Gaussian process, with mean function �Y D
A�X and covariance matrix of lag � equal to

�Y .� I ; H/ D �X.�/G./ (5)

where G./ is the M �M matrix

G./ D A˙X./A
0: (6)

The cross-spectrum matrix of the process .Y t I t � 1/ is equal to

˚Y .!I ; H/ D fX.!I H/G./ (7)

where fX.!I H/ and G./ are given by (1) and (6), respectively. Note that the
cross-spectrum matrix (7) factorizes into the product of two terms: a scalar only
depending on H and a M �M matrix only depending on  .

3 Identifiability Issues

As already said, the main source of trouble is that the sample observations are
not X1; : : : ; XT , but Y 1; : : : ; Y T . Since M (the number of links) is usually
considerably smaller than N (the number of S–D pairs), statistical data do not
generally identify the model. Identifiability issues are dealt with in [7], where results
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by [3] are reworked and extended. We consider here a short summary of the main
results, with a few remarks.

First of all, sinceM is usually smaller thanN , the model introduced so far is not
identifiable whenever the parameters �X ,  are free. The simplest idea consists in
using a mean–variance relationship, such as �Xi D i , o, more generally, �Xi D
const � qi , q > 0. In the sequel, we will assume that

�Xi D h.i /; i D 1; : : : ; N (8)

where h.�/ is a strictly monotone, known function. From now on, the vector notation

h./ D Œh.1/ � � � h.N /� (9)

will be used.
The mean–variance relationships (8) are not enough to make the model identifi-

able. To this purpose, we need to introduce a further restriction on the topology of
the communication network considered.

As already said, a telecommunication network can be seen as a graph, where
transmission devices are nodes, and direct links are arcs. A sequence of consecutive
arcs connecting two nodes is a path. The length of a path is the number of arcs
defining the path.

A sub-path of a given path is a sub-sequence of the arcs of the path. A sub-path is
still a path, connecting two nodes. With a slightly different notation, let us indicate
nodes by letters, and arcs by pairs of letters, those of the two nodes connected by
arcs. Suppose that two nodes a, b are connected through the path composed by the
l arcs .a; a1/, .a1; a2/, : : : , .al�1; b/. Then such a path also contains all paths from
a node ai to a node aj , 0 � i < j � l , with a0 D a, al D b. They are sub-
paths of the path connecting the nodes a and b. Clearly, every sub-path connects
two nodes. In the sequel, we will assume that the paths in the routing matrix possess
the following property.
.G/—For every pair ai , aj , i < j , of nodes, the sub-path .ai ; aiC1/; : : : ; .aj�1;

aj / is also the path connecting the Source-node ai to the Destination-node aj , as it
appears in the routing matrix A.

The simplest algorithm to construct S–D and satisfying .G/ is the minimum
length rule: paths are composed by the smallest number of arcs connecting the
Source-node to the Destination-node.

Proposition 1. Suppose that: .i/ the model satisfy conditions 1–3 of Sect. 2; .i i/
the mean–variance relationships (8) holds; .i i i/ all S–D pairs can be connected
through a path, for which .G/ holds. Then, the model is identifiable if observed data
are Y 1; : : : ; Y T .

Proof. Easy consequence of results in [7]. ut
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4 Approach Based on the (Approximated) Full Likelihood

4.1 Construction of the Approximate Log-Likelihood

The earlier approach to the estimation of �x ,  (see [5, 6]) consists in considering
the (unobserved) S–D traffic vectors X1; : : : ; XT as missing data, and to use the
EM algorithm based on the observed link traffic vectors Y 1; : : : ; Y T .

A more recent and fruitful approach [7] consists in using the full likelihood
function based on the observed data Y 1; : : : ; Y T . Since the exact construction of
the full likelihood is awkward, the main idea is to resort to a multivariate version of
the Whittle approximation [13, 36].

The approximate log-likelihood for the unknown parameters .;H/ is given by

lT .; H/ D �
TX

jD1

˚
log det.fX.!j I H/G.//

C tr..fX.!j I H/G.//�1/bI T .y; !j //
o

(10)

where !j D 2�j=T � � , andbI T .!/ is the empirical periodogram, defined as

bI T .!/ D bwT .!/bwT .!/
�

with

bwT .!/ D 1p
2�T

TX

tD1
Y t eit!:

In order to (locally) maximize (10) w.r.t. H and  , we need to compute the
corresponding partial derivatives. Using the rules in [20], it is immediately seen
that

@

@H

8
<

:

TX

jD1
log det.fX.!j I H/G.//

9
=

;

D M

TX

jD1

1

fX.!j I H/
1 � cos!j

�

˚
.� cos.�H/� .2H C 1/C 2 sin.�H/� 0.2H C 1//

� C0.H; !j / � 2 sin.�H/� .2H C 1/C1.H; !j /


(11)

where � 0.x/ D d� .x/=dx and Cl.H; !/ is given by (2). Similarly, the derivative
w.r.t.  of the log det term appearing in (10) is equal to
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@

@ 

8
<

:

TX

jD1
log det.fX.!j I H/G.//

9
=

;
D T .vec..G./�1/0/0

@G./

@ 
(12)

where the matrix G./ is defined in (6), and @G./

@ 
is a M2 � N matrix having

structure:

��
d vec.G.//

d �2X1

�

: : :

�
d vecG./

d �2XN

�	

:

As far as the computation of the derivatives of the “tr” term in (10) is concerned,
we have

@

@H

8
<

:

TX

jD1
tr..fX.!j I H/G.//�1/bI T .!j //

9
=

;

D �
TX

jD1
tr.G./�1bI T .!j //

1

fX.!j I H/2
1 � cos!j

�
f.� cos.�H/� .2H C 1/

C2 sin.�H/� 0.2H C 1//C0.H; !j /� 2 sin.�H/� .2H C 1/C1.H; !j /


(13)

and

@

@ 

8
<

:

TX

jD1
tr..fX.!j I H/G.//�1/bIT .!j //

9
=

;

D
TX

jD1
fX.!j I H/�1 .vec.bI T .!j ///0

�
@G./�1

@ 

�

(14)

where, as shown in [20] (p. 208, Table 7),

@G./�1

@ 
D �..G./0/�1 ˝G./�1/

@G./

@ 
:

If bH ,b denote the (local) maximizers of lT .; H/ (10), the mean vector �X is
then estimated by inverting the relationship �X D h./, i.e. by taking

b�Xi D h�1.b i /; i D 1; : : : ; N:
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4.2 Properties of the MLE Estimators

The asymptotic properties of the estimators bH ,b are obtained in [7]. Here we give
a short summary. Let H0, 0 be the “true values” of H ,  , respectively, and let
Q1.H; /, Q2.H; /, Q.H; / be the functions:

Q1.H; / D M

Z �

��
log.fX.!; H// d! C 2� log det.G.//; (15)

Q2.H; / D tr.G./�1G.0//
Z �

��
fX.!; H0/

fX.!; H/
d!; (16)

Q.H; / D Q1.H; /CQ2.H; /: (17)

Denote further by W the .N C 1/ � .N C 1/ matrix having elements

wkl .H; / D @2Q.H; /

@k @l
; k; l D 1; : : : ; N (18)

wNC1;l .H; / D wl;NC1.H; / D @2Q.H; /

@H @l
; l D 1; : : : ; N (19)

wNC1;NC1.H; / D @2Q.H; /

@H2
: (20)

If x D .x1; : : : ; xm2/ is a vector of m2 elements, let Ma.x/ be the m �m matrix
whose hth row is composed by xm.j�1/C1; : : : ; xmj , j D 1; : : : ; m. Finally, let
�k.!I H; / be the M �M matrices

�k.!I H; / D fX.!; H/
�1

(

Ma

 
@G./�1
@ k

!)

D �fX.!; H/�1 Ma
�
.G./�1 ˝G./�1/ak

�
; k D 1; : : : ; N

(21)

�NC1.!I H; / D
 

d fX.!; H/�1
dH

!

G./�1 D � f 0
X.!; H/

fX.!; H/2
G./�1 (22)

and let V.H; / be the .N C 1/ � .N C 1/ matrix with elements

vkl .H; /D 4�

Z �

��
fX.!; H0/

2tr .�k.!I H; /G.0/ �l.!I H; /G.0// d!:

(23)
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Proposition 2. If the model satisfies assumptions 1–3, as T increases

p
T

"
b � 0
bH �H0

#
d! NNC1.0;W.H0; 0/V .H0; 0/W.H0; 0/

0/ (24)

Np.�;D/ denoting a p-variate normal distribution with mean vector � and
covariance matrix D.

Proof. See [7]. ut
The matrices V.H0; 0/, W.H0; 0/ can be consistently estimated. It is enough

to define bQ1.H; /, bQ2.H; /, bQ.H; / be defined exactly as (15), (16), (17),
with integrals are replaced by Riemann sums evaluated at Fourier frequencies
!j D 2�j=T � � , j D 1; : : : ; T , and H0, 0 are replaced by bH ,b , respectively.
Similarly, let wkl .H; /,bvkl .H; / be defined as in (20), (23), again with integrals
replaced by Riemann sums at Fourier frequencies, and let bW .H; /, bV .H; / be
the corresponding matrices. In is easy to show that

bW .b; bH/
p! W.H0; 0/; bV .b; bH/

p! V.H0; 0/ as T ! 1 (25)

so that the asymptotic covariance matrix appearing in (2) can be consistently
estimated.

5 Approach Based on Pseudo-Likelihood

5.1 Construction of the Pseudo-Likelihood

The approach based on the full likelihood (although considerably simplified) is
computationally heavy, at least for large networks. As it appears from the previous
section, differentiating the log-likelihood w.r.t.  requires the inversion of the M �
M matrix G./ (and the computation of its determinant, as well). Among the most
well-known inversion algorithms, Gaussian elimination does have a computational
complexityO.M3/, and Strassen’s algorithm possesses a O.M log2 7/ 	 O.M2:807/

complexity. As M gets large (which usually happens for large networks), a super-
quadratic computational complexity could be unaffordable.

A computational simplification can be obtained by using a pseudo-likelihood
based on pairs of links, instead of the full likelihood. Under the assumption of
independence of the traffic produced in different time intervals by an S–D pair, that
form of pseudo-likelihood was first proposed in [19]. We adopt here the same idea,
but when traffic is characterized by the presence of LRD. Let s D .k; h/ be a pair
of link, and define the vector (of dimension 2) Y s

t D ŒY tk ; Y
t
h �

0 of the traffic flowing
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on the links k, h at time t (t D 1; : : : ; T ). Let further As be the 2 � N sub-matrix
of the routing matrix A composed by its k-th and h-th rows.

From the fairly obvious relationship

Y s
t D AsXt

it follows that Y s
t

possesses a bivariate normal distribution, with mean vector

�sy D As�x

and covariance matrix

Gs.x/ D As˙xA
s0 :

Hence, the statistical data restricted to the pair s D .k; h/ of links

Y s D ŒY s
1

Y s
2

: : : Y s
T

�

do have a normal 2T -variate distribution, with mean vector

1T ˝ .As �x/

and covariance matrix

˙s D RT .H/˝ As˙xA
s0

D RT .H/˝Gs./

where RT .H/ is the T � T circulant matrix of elements 1, �x.1/, : : : , �x.T � 1/.
If lsT .x; H/ denotes the log-likelihood corresponding to the “partial data” Y s

corresponding to the pair s D .k; h/ of links, then the pseudo-log-likelihood can be
written as

l
p
T .x; H/ D

X

s

l sT .x; H/ (26)

where
P

s is the sum w.r.t. all

�
M

2

�

pairs of links.

The pseudo-likelihood (26) can be further simplifications by approximating
each term ls.; H/ as made for the full log-likelihood. Consider the “partial
periodogram” for the pair s D .k; h/ of links:

I sT .!j / D wsT .!j /w
s
T .!j /

0
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where

wsT .!j / D 1p
2�T

TX

tD1
Y s

t

eit!j

and !j D .2�j /=T � � , j D 1; : : : ; T .
Then, using the same reasoning as in Sect. 4.1, the approximation

l s.x; H/ 	 l
s

T .; H/

D �
TX

jD1

˚
2 logfx.!j I H/C log det.Gs.//

Cfx.!j I H/�1 tr.Gs.x/
�1I sT .!j //



holds. As a consequence, the pseudo-likelihood (26) can be approximated by

l
p
T .; H/ 	 l

p
T .; H/ D

X

s

l
s

T .; H/: (27)

The use of the pseudo-likelihood (27) instead of the full likelihood (10)
is essentially justified by its computational gain. In fact, each term lsT .; H/

requires the inversion of a 2 � 2 matrix. Hence, the complexity of lp
T .x; H/ is

linear w.r.t. M .
Generally speaking, the pseudo-likelihood (27) is a special form of composite

likelihood (cfr. [31]). A well-known fact (see [31] and references therein) is that
composite likelihood methods do not work in the presence of LRD. However, in
our case the pseudo-likelihood just factorizes w.r.t. pairs of links, but not w.r.t. time.
Hence, it preserves the LRD.

5.2 Properties of the Maximum Pseudo-Likelihood Estimators

The goal of this section is to provide a few asymptotics for the roots of the pseudo-
likelihood equation l

p
T .; H/ D 0, denoted in the sequel bybp, bH p, respectively.

From now on, we will denote by H0, 0 the “true values” of H ,  , respectively.

Proposition 3. Under the assumptions of Sect. 2, for every  , H the following
result holds:

T �1lp
T .; H/

a:s:! �Qp.; H/ (28)
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where

Qp.; H/ D Q
p
1.; H/CQ

p
2.; H/

Q
p
1.; H/ D 2

Z �

��
logfX.!; H/ d! C 2�

�
M

2

�

sX

S

log detGs./

Q
p
2.; H/ D 1

�
M

2

�
X

s

tr
�
Gs./�1Gs.0/

�
Z �

��
fX.!; H0/

fX.!; H/
d!:

Proof. Easy consequence of the law of large numbers for stationary processes. ut
Intuitively speaking, as a consequence of Proposition 3, as T increases the roots

of equation l
p
T .; H/ D 0 tend to the roots of the equation Qp.; H/ D 0. It is

not difficult to see that the only roots of such an equation are the true values 0,H0.
Under the regularity conditions of Sect. 2, this can be shown using exactly the same
arguments as in [7].

Proposition 4. As T increases, we have:

bp a:s:! 0; bH p a:s:! H0

p
T

"
b

p
x � x0
bH p �H0

#
d! NNC1.0;W p.0; H0/ V .0; H0/W

p.0; H0/
0/

where V.0; H0/ is the matrix having elements (23), and W p.0; H0/ is a matrix
defined exactly as W in Sect. 4.2, except that Q1, Q2, Q are replaced by Qp

1, Q
p
2,

Qp, respectively.

Proof. It is sufficient to use the same arguments as in [7]. ut
Now, it is not difficult to see that the maximum pseudo-likelihood estimators

bp, bH p are asymptotically less efficient than the maximum likelihood estimatorsb ,
bH . The loss of asymptotic efficiency is the price to pay to reduce computational
complexity. In the subsequent section we will compare, through a simulation
experiment, the estimatorsbp, bH p andb , bH .

6 Simulation Study

In this section a simulation study is performed, in order to compare maximum
likelihood and pseudo-likelihood estimators (MLE and MPLE, for short) of the S–D
traffic intensities.
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Fig. 1 Network used in the
simulation study

6.1 Simulation Assumptions

The network used in our study is the same already used by Vardi in his seminal
paper [30], as well as in [6, 7]. It is reported in Fig. 1.

The nodes in Fig. 1 are labeled by letters, and the links by numbers. The network
consists of four nodes (hence 12 S–D pairs) and seven unidirectional links.

The assumptions on which our simulation study is based are listed below.

1. The traffic generated satisfies assumptions 1–3 of Sect. 2.
2. All the S–D pairs have the same value of the Hurst parameter.
3. The expected value of traffic follows a Zipf rank-size relationship.
4. The mean–variance relationship for the traffic intensity follows a power law.
5. The coefficient of preference, which determines how the traffic generated by a

given origin node distributes among all the destinations, is proportional to the
traffic generated by the destination node.

As remarked in the Introduction, Assumptions 1–2 are well supported in the
literature. In order to clarify the meaning of Assumption 3, suppose the n nodes
are sorted according to the average traffic generated. Denote by �Oj the expected
traffic generated by j th node, so that�O1 � �O2 � � � � � �On . Assumption 4 means
that �Oj s obey the Zipf law

�Oj / 1

i˛
i D 1; : : : ; n: (29)

This law, originally formulated in the context of linguistics in [37], is supported by
measurement campaigns performed on the telephone network and on Internet users
(see [22]). Assumption 4 is expressed by the relationship

�2Xi D � �cXi i D 1; : : : ; N: (30)

It was put forward in the paper by [3] and is supported by several measurements
campaigns: [12, 21, 27]. Finally, Assumption 5 is common in tele-traffic studies;
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Table 1 Average error over S–D pairs

Estimation method

MLE MPLE

H D 0:5 H D 0:6 H D 0:8 H D 0:5 H D 0:6 H D 0:8

T D 30

c D 1:0 13:7 15:4 15:9 14:2 16:4 16:7

c D 1:5 15:4 15:5 16:1 16:5 16:8 18:2

T D 90

c D 1:0 11:9 12:2 12:8 12:5 12:9 14:7

c D 1:5 12:2 12:6 14:7 13:1 13:5 16:9

T D 120

c D 1:0 11:6 11:3 12:4 12:2 12:4 14:1

c D 1:5 12:1 11:3 14:5 13:0 13:4 16:2

see, e.g., [1]. Consider the i th S–D pair, and denote by Ol its origin node, and
by Om its destination node. The expected traffic intensity for such S–D pair
is then

�Xi D �Ol
�OmPn
kD1 �Ok

i D 1; : : : ; N: (31)

Finally, the long-range-dependent traffic traces are generated by using the Choleski
method; see [8].

In our simulation the following set of parameter values have been used.

• H D 0:5; 0:6; 0:8.
• Zipf parameter ˛ D 1.
• Sample size (traffic traces length) T D 30; 90; 120.
• Parameter of the power-law relationship between mean and variance � D 1 and
c D 1; 1:5.

6.2 Simulation Results

In this section, the performance of MLE and MPLE of the expected S–D traffic
is compared via simulation, for different values of the simulation parameters. For
each combination of estimation method, value of T (sample size), value of H , the
average error over all the S–D pairs (as in [14]) is reported in Table 1.

The estimation method based on the full likelihood clearly outperforms the
estimation method based on the pseudo-likelihood. The loss of efficiency of MPLEs
is about 15–25 %, if compared to MLEs. However, even for the small-scale network
used in the present study, MPLEs do offer a good advantage from a computational
point of view. As discussed in the previous section, from a theoretical point of
view they have a smaller computational complexity (linear w.r.t M instead of
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super-quadratic or oven cubic). From a practical point of view, in our simulation
experiments the computation time for MLEs ranges from twice to four times the
computation time for MPLEs.
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A Newton’s Method for Benchmarking
Time Series

Tommaso Di Fonzo and Marco Marini

Abstract We present a Newton’s method with Hessian modification for bench-
marking a time series according to a growth rates preservation principle. Unlike the
well-known proportionate first differences solution by [7], this technique is based on
a more natural measure of the movement of the preliminary series, whose dynamic
profile is aimed to be preserved as much as possible by the benchmarked series. The
computational issues arising from the nonlinearity of the problem can be dealt with
by a computationally robust and efficient approach, which results in an effective
statistical tool also in a data-production process involving a considerable amount of
series.

1 Introduction

The need for benchmarking monthly and quarterly series to annual series arises
when time series data for the same target variable are measured at different
frequencies with different level of accuracy, and one wishes to remove discrepancies
between the annual benchmarks and the corresponding aggregates (either sums or
averages) of the sub-annual values. The optimal combination of benchmark levels
and short-term movements requires an adjustment which preserves as much as
possible the temporal profile of the preliminary infra-annual figures subject to the
restrictions provided by the less frequent constraints.
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The most widely used benchmarking procedure is the modified Denton Pro-
portionate First Differences (PFD) technique [5, 7]. The PFD procedure looks
for benchmarked estimates aimed at minimizing the sum of squared proportional
differences between the target and the unbenchmarked values, and is characterized
by an explicit benchmarking formula involving simple matrix operations.

The Growth Rates Preservation (GRP ) benchmarking procedure by [4] (see also
[2, 13]) is based on a more explicit movement preservation principle, according to
which the sum of squared differences between the growth rates of the target and
of the preliminary series is minimized. [1] (p. 100) claims that this is an “ideal”
movement preservation principle, “formulated as an explicit preservation of the
period-to-period rate of change” of the preliminary series. The GRP procedure
looks for the solution to a constrained Non Linear Program (NLP ), according to
which f .x/, a smooth, non-convex function of the n unknown items of vector x, is
minimized subject to m linear equality constraints, Ax D b, where A is a known,
full row rank .m � n/ matrix, m < n, and b is a known .m � 1/ vector containing
the benchmarks.

Both the original algorithm by [4] and a recent proposal by [3] are first-order (i.e.,
gradient-based) feasible direction methods, which use the Steepest Descent (SD)
and the nonlinear Conjugate Gradient (CG) algorithms, respectively, to solve the
above NLP problem. However, using only first-derivatives information may result
in poorly efficient procedures, characterized by slow convergence and possible
troubles in finding actual minima of the objective function.

Still remaining at first-order techniques, more performing unconstrained Quasi-
Newton (QN ) optimization procedures may be considered, which exploit approxi-
mate rather than exact second derivatives, provided the original constrained problem
be transformed into an unconstrained one. In addition, improvements in both
efficiency and robustness may be obtained by considering the true Hessian matrix
of the objective function.

In this paper we propose a Newton’s method with Hessian modification (MN ) to
calculate GRP benchmarked estimates and compare the performance of MN with
gradient-based procedures (SD, CG, QN ), in order to show the effectiveness of
the proposed benchmarking procedure in terms of both computational efforts and
quality of the results.

The paper is organized as follows. In Sect. 2 the GRP benchmarking procedure
and the way it takes into account a movement preservation principle are discussed,
as compared to the classical procedure by [7], described in Sect. 3. An algorithm
based on a Newton’s method with Hessian modification is described in Sect. 4.
In order to analyze the distinctive features of the proposed procedure, in Sect. 5
are presented applications to 61 quarterly series from the EU Quarterly Sector
Accounts (EUQSA), and 236 monthly series from the Canadian Monthly Retail
Trade Survey (MRTS).
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2 Growth Rates Preservation and Temporal Benchmarking

Let bT , T D 1; : : : ; m, and pt , t D 1; : : : ; n, be, respectively, the temporal bench-
marks and the high-frequency preliminary values of an unknown target variable xt .
Let s be the aggregation order (e.g., s D 4 for quarterly-to-annual aggrega-
tion, sD 12 for monthly-to-annual aggregation, sD 3 for monthly-to-quarterly
aggregation), and let A be a .m�n/ temporal aggregation matrix, converting n high-
frequency values into m low-frequency ones (we assume n D s � m). If we denote
with x the .n� 1/ vector of high-frequency values, and with b the .m� 1/ vector of
low-frequency values, the aggregation constraints can be expressed as Ax D b.

Depending on the nature of the involved variables (e.g., flows, averages, stocks),
the temporal aggregation matrix A usually can be written as

A D Im ˝ aT; (1)

where the .s � 1/ vector a may assume one of the following forms:

1. Flows: a D 1s D . 1 1 : : : 1 /T.
2. Averages: a D 1

s
1s .

3. Stocks (end-of-the-period): a D . 0 0 : : : 1 /T.

4. Stocks (beginning-of-the-period): a D . 1 0 : : : 0 /T.

Denoting by p the (n � 1) vector of preliminary values (Ap ¤ b), we look for a
vector of benchmarked estimates x� which should be “as close as possible” to the
preliminary values, and such that Ax� D b.

In an economic time series framework, the preservation of the temporal dynamics
(however defined) of the preliminary series is often a major interest of the
practitioner. For flows series, [4] considers a GRP criterion explicitly related to the
growth rate, which is a natural measure of the movement of a time series:

f .x/ D
nX

tD2

�
xt � xt�1
xt�1

� pt � pt�1
pt�1

�2
D

nX

tD2

�
xt

xt�1
� pt

pt�1

�2
; (2)

and look for values x�
t , t D 1; : : : ; n, which minimize the criterion (2) subject

to the aggregation constraints
X

t2T
xt D bT , T D 1; : : : ; m. In other words, the

benchmarked series is estimated in such a way that its temporal dynamics, as

expressed by the growth rates
x�
t � x�

t�1
x�
t�1

, t D 2; : : : ; n, be “as close as possible”

to the temporal dynamics of the preliminary series, where the “distance” from the

preliminary growth rates
pt � pt�1
pt�1

is given by the sum of the squared differences.

In this paper we consider a more general formulation of the GRP benchmarking
problem, valid not only for flows variables linked by a simple summation, that is:

min
x
f .x/ subject to Ax D b: (3)
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3 Modified Denton PFD

Reference [7] proposed a benchmarking procedure grounded on the PFD between
the target and the original series. Reference [5] slightly modified the result of
Denton, in order to correctly deal with the starting conditions of the problem. The
PFD benchmarked estimates are thus obtained as the solution to the constrained
quadratic minimization problem

min
xt

nX

tD2

�
xt � pt
pt

� xt�1 � pt�1
pt�1

�2
subject to Ax D b: (4)

In matrix notation, the PFD benchmarked series is contained in the .n � 1/ vector
xPFD solution to the linear system [8]

�
M AT

A 0

	 �
xPFD

�

	

D
�

0
b

	

; (5)

where � is a .n � 1/ vector of Lagrange multipliers, M D P�1�T
n�nP�1,

P D diag.p), and �n is the ..n� 1/ � n/ first differences matrix:

0

B
B
B
B
B
@

�1 1 0 � � � 0 0

0 �1 1 � � � 0 0
:::

:::
:::
: : :

:::
:::

0 0 0 � � � 1 0

0 0 0 � � � �1 1

1

C
C
C
C
C
A

:

Notice that �T
n�n has rank n � 1, so M is singular. However, given that matrix A

has full row rank, and provided no preliminary value is equal to zero, the coefficient
matrix of system (5) has full rank [8].

Reference [4] use xPFD as starting values of the iterative algorithm developed to
solve the NLP problem (3). This basically depends on two facts:

1. The optimization procedure starts at a feasible point, as xPFD clearly is, and at
each iteration moves to another feasible point.

2. In the literature [1, 5, 6] it is often claimed that the PFD procedure produces
results very close to the GRP benchmarking, and thus xPFD, which is considered
as a “good” approximation to the GRP estimates, is a natural candidate to be
used as starting point.

Reference [8] discuss this latter issue, showing that PFD and GRP benchmarked
estimates are close when the variability of the preliminary series and/or its bias are
low with respect to the target variable. When this is not the case (e.g., preliminary
series with large growth rates and/or bias), the quality of the approximation worsens.
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4 Newton’s Method with Hessian Modification

Since the criterion (2) is a nonlinear and non-convex function [9], the constrained
minimization problem (3) has not linear first-order conditions for a stationary point,
and thus it is not possible to find a closed-form solution. On the other hand, provided
that both pt and xt , t D 1; : : : ; n � 1, be different from zero, f .x/ is a twice
continuously differentiable function, making it possible the use of some iterative
minimization algorithms.

In [9] both the gradient vector and the Hessian matrix of function (2) have been
analytically derived. In addition, it is shown how the constrained problem (3) in x
can be transformed in the equivalent, reduced unconstrained problem in xZ :

min
xZ

Qf .xZ/ ; (6)

where Qf .xZ/ D f .Nx C ZxZ/, Nx being a feasible .n � 1/ vector (i.e., ANx D b). The
..n �m/ � 1/ vector xZ is such that any feasible point x can be written as

x D Nx C ZxZ; (7)

where Z is a .n � .n �m// basis matrix for the null space of A, whose calculation
is numerically efficient and computationally inexpensive (for details, see [9]). A
general algorithm for solving the unconstrained minimization problem (6) involves
the iterates

xZ;kC1 D xZ;k C ˛kdk; k D 0; 1; : : : (8)

where ˛k is a step-length and dk is a direction vector. In its classical form, Newton’s
method basically consists in determining dk in (8) as the solution to the Newton
equations h

r2 Qf .xZ;k/
i

dk D �
h
r Qf .xZ;k/

i
: (9)

Since it can fail or diverge, and even if it does converge, it might not converge
to a minimum, Newton’s method is rarely used in its classical form. A practical
version of Newton’s method, that is guaranteed to converge and does not assume that
r2 Qf .xZ;k/ is positive definite for all values of k, can be summarized as follows.

1. Specify some initial guess of the solution, xZ;0, and specify a convergence
tolerance �.

2. For k D 0; 1; : : :, if kr Qf .xZ;k/ k1 < �, then stop. Otherwise:

(a) Compute a modified factorization of the Hessian:

r2 Qf .xZ;k/C E D LDLT;
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Table 1 Denton series: iterations, function evaluations and final GRP function

n. of n. of function Objective
NLP procedure iterations evaluations function

Steepest descent 36 113 0.04412774
Conjugate gradient 15 57 0.04412700
Quasi-Newton BFGS 39 41 0.04411658
Newton with Hessian modification 4 4 0.04411656

where L and D are lower triangular and diagonal, respectively, .n � m/ �
.n �m/ matrices. Then, solve

�
LDLT�dk D �

h
r Qf .xZ;k/

i

for the search direction dk . Notice that E will be zero if r2 Qf .xZ;k/ is positive
definite.

(b) Perform a line search to determine the new estimate of the solution.

A principal advantage of the Newton’s method with Hessian modification is
that it converges rapidly when the current estimate of the variables is close to the
solution. Its main disadvantage is represented by possible high computational costs,
since it requires the derivation, computation, and storage of the Hessian matrix, and
the solution of a system of linear equations. This last task could give rise to high
computational costs if the dimension of the problem (n�m) is not small and/or the
problem is not sparse.

However, for the problem in hand, [9] shows the analytical expressions and the
patterns of gradient and Hessian matrix of the problem, so we can take advantage of
sparsity, and greatly reduce the computational costs of Newton’s method, making it
an effective tool in practice.

For example, in the GRP benchmarking of the artificial series of [7], the Newton’s
method need very few iterations and function evaluations (in both cases, 4) to
converge (Table 1), whereas after four iterations three well-known gradient-based
algorithms are rather far from the minimum (Fig. 1). However, all the procedures
succeed in finding the minimum of the objective function and, according to the
quality ranking defined in the next section, all solvers yield “very accurate”
solutions, the “best” being given by quasi-Newton and modified Newton’s methods.

5 Applications to Quarterly and Monthly Series

In this section we present numerical results about the performance of the
Newton’s method, as compared to three gradient-based nonlinear minimization
methods, in benchmarking 61 quarterly series and 236 monthly series to their
annual counterparts. The GRP -benchmarked series are computed by applying
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Fig. 1 Denton (1971) series: GRP objective function in the first 14 iterations steps

the following unconstrained nonlinear optimization algorithms to the reduced
problem (6):

• Steepest Descent (SD);
• Conjugate Gradient (CG);
• Quasi-Newton Broyden-Fletcher-Goldfarb-Shanno (QN -BFGS );
• Newton’s method with Hessian modification (MN ).

The first dataset consists of 61 raw (not seasonally adjusted) quarterly series from
the European Quarterly Sector Accounts (EUQSA), which are not in line with their
known annual counterpart. The preliminary series span the period from 1999-Q1 to
2005-Q4 (28 quarters), and annual benchmarks are available for each variable. We
consider also 236 monthly seasonally adjusted (SA) series of the Canadian Monthly
Retail Trade Survey (MRTS). For 226 out of 236 series, the dataset covers the
period from January 1991 to December 2003, while the remaining 10 series start
on January 1999. Discrepancies between annually-aggregated SA series and annual
benchmarks are usually generated from the application of seasonal adjustment
procedures, and benchmarking is often required to restore consistency.

In order to assess the ability of the GRP benchmarked estimates in preserving
the dynamics of the preliminary series, as compared to the Denton’s PFD solution,
we use the two indices [8]:
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rq D
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B
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ˇ
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ˇ
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ˇ
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ˇ
ˇ
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ˇ

q

1

C
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C
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A

1
q

; q D 1; 2; (10)

where the series xGRP have been calculated using the algorithms outlined above.
Index r1 can be seen as the ratio between two mean absolute differences between

the growth rates of the benchmarked (GRP and PFD, respectively) and the
preliminary series. Sometimes this index can be larger than 1, thus indicating that,
according to this metric, the movement is better preserved by Denton PFD. When
q D 2, the index (10) is simply the square root of the ratio between the Causey and
Trager movement preservation criteria (2), computed for the GRP and the PFD
benchmarked estimates, respectively. Obviously, we expect the GRP technique
always reaches a lower (or at least equal) value of the chosen criterion than PFD,
and thus the index r2 should be never larger than 1.

We have used the function minFunc [11] installed on Matlab version 7.7
R2008b [12]. A valuable feature of minFunc is that the scripts of the function
are free and available to the user, who can change them according to her/his needs
(for details, see [9]).

Convergence is achieved when the norm of the reduced gradient of the objective
function is negligible. More precisely, a GRP benchmarked series x� D Nx C Zx�

Z

is obtained when

kr Qf �x�
Z

� k1 

n�mX

iD1

ˇ
ˇ Qgi
�
x�
Z

�ˇ
ˇ � 10�7; (11)

where Qgi
�
x�
Z

�
, i D 1; : : : ; n � m, is the generic element of the reduced gradient

vector r Qf �x�
Z

�
. If condition (11) is not satisfied after 5,000 iterations, the algorithm

ends and returns the most recent (feasible) solution.
For comparisons’ completeness, we consider also the GRP benchmarked series

produced by the DOS-executable programme BMK1.exe, based on the projected
steepest descent algorithm by [4], which has been used for a long time by the U.S.
Bureau of the Census. We denote this solution with SD-BMK1.

The convergence condition of BMK1 is
f .xk�1/
f .xk/

< 1:00001; which must be

fulfilled within 200 iterations. No information on the number of function evaluations
is given, and the xPFD series is returned as the final solution if the algorithm has a
breakdown (this never happened for the series we consider in the paper). Due to the
limited possibilities of “tuning” the optimization options of BMK1, we used it as a
sort of “black-box.” The comparisons could thus seem rather unfair. Indeed, in our
view such comparisons should only serve to give an idea of the improvements (if
any) we can obtain by using the procedures we present in this paper, as compared to
the only (as far as we know) currently available public tool forGRP benchmarking.
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According to the specialized literature [10], in order to compare different solvers/
algorithms forNLP problems we should consider (1) efficiency, (2) robustness, and
(3) quality of solution of the solvers.

Efficiency, which refers to the amount of computation resources needed to find
the solution, is generally measured in terms of solver resource time (runtime).
Robustness refers to the ability of the solver to succeed in finding one solution
and is generally measured by the number of problems for which a feasible solution
is produced (the labelling of a solution as either “successfull” or not, is usually
summarized by a solve status return code). While considering these two aspects
is sufficient when dealing with convex minimization problems (such as in linear
programs or for certain quadratic programs), where the found minimum is generally
the global one, for non-convex models, which may admit several local minima, other
factors involving solution quality play an important role as well. For example, one
solver may indeed be more efficient (i.e., faster), but the solution may be worse than
that of a solver which is slower in terms of elapsed time.

For the problem in hand, however, robustness is not a concern, since all the
techniques we consider are “feasible point methods”—i.e. at each iterate they
produce series in line with the temporal aggregation constraints—designed in such
a way as they always give solutions “not worse” than xPFD. In other words, in any
case a feasible solution, say Qx, is obtained, such that AQx D b, and f .Qx/ � f

�
xPFD

�
.

Therefore, if we were only interested in the efficiency in finding a local
minimum, we would simply look for the fastest solver. Instead, if we wish that
the comparison takes into account also the quality of the solution, it seems sensible
to consider the best solution within the available ones,

Ox D arg min
Qx
f .Qx/ ;

and to refer to the relative objective value error between Qx and Ox. More precisely,
given a positive small tolerance ı, the expression

f .Qx/ � f .Ox/
f .Ox/ � ı (12)

can be used to define a simple quality ranking between the solutions provided by
different solvers, which turns out to be effective when a large number of problems
have to be considered. Clearly, the “true” best objective value corresponds to a
choice of ı D 0, but actually a tolerance close to 0 is used (e.g., ı D 0:0001). The
threshold values for ı are chosen to discriminate as much as possible the distance
between the different solutions. Thus we say that the solution Qx is:

1. the best, if expression (12) holds for ı D 0:0001;
2. very accurate, if expression (12) holds for ı D 0:001;
3. accurate, if expression (12) holds for ı D 0:01;
4. acceptable, if expression (12) holds for ı D 0:1.
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Table 2 EUQSA and MRTS series: quality of the solutions with different benchmarking
procedures

Quality of Denton SD QN
solution (tol.%) PFD BMK1 SD CG BFGS Newton

EUQSA (61 series)
Bad (>10%) 26 1 4 3 1 0
Acceptable (10%) 35 60 57 58 60 61
Accurate (1%) 15 60 49 51 54 61
Very accurate (0.1%) 3 60 30 34 44 61
Best (0.01%) 0 51 21 25 38 61

MRTS (236 series)
Bad (>10%) 33 7 6 1 0 0
Acceptable (10%) 203 229 230 235 236 236
Accurate (1%) 96 227 207 216 218 236
Very accurate (0.1%) 3 212 102 125 162 236
Best (0.01%) 0 94 46 74 153 235

TOTAL (297 series)
Bad (>10%) 59 8 10 4 1 0
Acceptable (10%) 238 289 287 293 296 297
Accurate (1%) 111 287 256 267 272 297
Very accurate (0.1%) 6 272 132 159 206 297
Best (0.01%) 0 145 67 99 191 296

TOTAL (%)
Bad (>10%) 19.87 2.69 3.37 1.35 0.34 0
Acceptable (10%) 80.13 97.31 96.63 98.65 99.66 100
Accurate (1%) 37.37 96.63 86.20 89.90 91.58 100
Very accurate (0.1%) 2.02 91.58 44.44 53.54 69.36 100
Best (0.01%) 0.00 48.82 22.56 33.33 64.31 99.66

In other words, we consider very accurate a solution whose objective function is
within 0.1% of the best possible solution, accurate within 1%, and acceptable within
10%. A solution for which the objective value is 10% larger than the best one is
considered of bad quality.

Table 2 reports on the quality, according to the metric defined so far, of the
solutions found for the 61 EUQSA series and the 236 MRTS series.

The first column refers to the series benchmarked according to the PFD

procedure by [7], which is used as starting point by all the NLP solvers considered
in this work. Clearly, Denton PFD is not a trueGRP benchmarking procedure, but
it is generally considered a good approximation of it. In this comparison it is used as
a sort of “baseline”: for the whole set of 297 series, and with reference to the GRP
objective function (2), Denton PFD yields solutions which are acceptable in about
80% of cases, accurate in about 37% and very accurate in about 2%, thus confirming
the good approximation property generally claimed in literature. Anyway, in about
20% of cases this does not hold true, as the solutions by DentonPFD attain aGRP
criterion which is more than 10% larger than the best one.
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Fig. 2 EUQSA and MRTS series: performance profiles for acceptable solutions

Passing now to consider the “true” NLP solvers, the a priori expectation of a
predominance of the Newton’s method with Hessian modification is fully confirmed
by the results: the Hessian-based procedure never results in solutions of bad quality,
and produces by far the best results for almost all series, the unique exception being
one of the MRTS series, for which the solution is very accurate, but cannot be
considered as the best.

All the gradient-based procedures produce some solutions of bad quality (1 series
out of 296 for QN -BFGS , 4 for CG, 8 for SD-BMK1 and 10 for SD).
Furthermore, we note that the SD-BMK1 algorithm is uniformly better than the
SD solver and produces very accurate solutions in over 91% of cases, a very good
performance as compared to more sophisticated optimization algorithms, as CG
andQN -BFGS are.

Figures 2 and 3 show the performance profiles of the considered algorithms (for
details, see [9]). The profiles refer to all 297 series and show the performance, as
measured by the resource time, when either acceptable solutions or very accurate
solutions are considered. The former case gives us information about the efficiency
of the solvers, while the latter shows their quality.

The best performance of the Newton’s method, in terms of both efficiency
and quality, is now confirmed also visually. It is worth noting the performance
of SD-BMK1 as compared to the other first-order techniques: for very accurate
solutions and large � on theX -axis, its curve is higher than the other gradient-based
methods, due to the capability of producing solutions of better quality.
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Fig. 3 EUQSA and MRTS series: performance profiles for very accurate solutions
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Spatial Smoothing for Data Distributed
over Non-planar Domains

Bree Ettinger, Tiziano Passerini, Simona Perotto, and Laura M. Sangalli

Abstract We consider the problem of surface estimation and spatial smoothing
over non-planar domains. In particular, we deal with the case where the data or
signals occur on a domain that is a surface in a three-dimensional space. The
application driving our research is the modeling of hemodynamic data, such as the
shear stress and the pressure exerted by the blood flow on the wall of a carotid artery.
The regression model we propose consists of two key phases. First, we conformally
map the surface domain to a region in the plane. Then, we apply existing regression
methods for planar domains, suitably modified to take into account the geometry of
the original surface domain.

1 Introduction

In this paper, we deal with data that are observed over non-planar bi-dimensional
domains. The motivating application is modeling the shear stress generated by the
blood flow over the wall of an internal carotid artery affected by an aneurysm. For
instance, Fig. 1 shows the geometry of a possible surface domain of interest: the
observed values of the wall shear stress are shown by a color map over the domain
itself. This type of data structure, where the quantity of interest is referred to a non-
planar domain, occurs in a number of different applications. Another fascinating
application in the medical field is, e.g., the study of hemodynamic signals over
the cortical surface. Environmental and geostatistical sciences also offer several
applications with these types of data structures.
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Fig. 1 Wall shear stress
modulus at the systolic peak
on a real internal carotid
artery geometry affected by
an aneurysm (data from the
AneuRisk project, http://mox.
polimi.it/it/progetti/aneurisk/)

Unfortunately, few methods are available for smoothing data over non-planar
domains (specifically, over bi-dimensional Riemannian manifolds): we recall the
nearest neighbor averaging method (see, e.g., [7]) and the sophisticated heat kernel
smoothing method proposed in [4]. Here, we adopt a Functional Data Analysis
approach and propose a regression method that efficiently handles these data
structures. The proposed method consists of two steps: first we map the original
surface domain to a flat domain, and then, we properly modify existing spatial
regression methods suited to deal with data on planar domains. In particular, to
flatten the original surface domain we use a conformal map. The main advantage
of using of a conformal map, with respect to any other map, is that it preserves the
angles of the original surface domain in the planar domain. The spatial regression
method we use is the penalized least square estimation technique proposed in [17]
and later generalized in [19]. In our proposed method, the penalty is modified with
a contribution from the conformal flattening map, describing the corresponding
deformation of the domain.

The paper is organized as follows. Section 2 describes the motivating applied
problem in more detail. In Sect. 3, we first recall the spatial regression methods
defined in [17] and then introduce the new approach. Section 4.1 provides a simple
simulation study. In Sect. 4.2 we apply the proposed method to the study of
hemodynamic data. Finally, in Sect. 5 we discuss possible extensions and future
directions for the proposed approach.

2 Motivating Applied Problem

The research described in this paper is motivated by the analysis of data within the
AneuRisk Project, a scientific endeavor that investigates the pathogenesis of cerebral
aneurysms, in an interdisciplinary effort combining the experience of practitioners
from neurosurgery and neuroradiology with that of researchers from statistics,
numerical analysis, and bio-engineering. For a description of the AneuRisk Project,
we refer the interested reader to the website http://mox.polimi.it/it/progetti/aneurisk
and references therein.

Cerebral aneurysms are deformations of cerebral vessels characterized by a bulge
of the vessel wall. Figure 1 shows an example of an internal carotid artery, one of
the main arteries bringing blood to the brain, affected by an aneurysm. The origin

http://mox.polimi.it/it/progetti/aneurisk/
http://mox.polimi.it/it/progetti/aneurisk/
http://mox.polimi.it/it/progetti/aneurisk
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of aneurysms is considered to be the result of a complex interplay among systemic
effects, biomechanical properties of the vessel wall and the continuous effect of the
forces exerted by the blood flow on the vessels. These hemodynamic forces depend
on the vessel morphology itself. The study of these interactions and their role on
the pathogenesis of aneurysms has been the main goal of the AneuRisk Project.
The first studies available in literature on the pathology of aneurysms restrict their
attention to the aneurysm sac. In contrast, the AneuRisk Project has investigated the
morphological and hemodynamic features of the parent vasculature, i.e., the vessel
hosting the aneurysm and the upstream vasculature, with the goal of highlighting
possible causes of aneurysm onset, development, and rupture (see [10, 20]).

In this paper, we analyze hemodynamic data on the real anatomy of internal
carotid arteries. The internal carotid artery geometry is reconstructed from three-
dimensional angiographic images, belonging to the AneuRisk data warehouse; for
details on vessel geometry reconstruction see, e.g., [11]. The hemodynamic quan-
tities, wall shear stress and pressure, have been simulated in [9] via Computational
Fluid Dynamics. As detailed in [9,10], the blood has been modeled as a Newtonian
fluid, and its dynamics has been described by means of the incompressible Navier–
Stokes equations. The geometry of the carotid artery has been assumed to be fixed in
time, since compliance effects are expected to be negligible in this vascular district.
Proper boundary conditions have been devised to ensure that the flow regime is
comparable among all the simulated cases. For each case, blood velocity and blood
pressure have been simulated over three heart beats, and the wall shear stress
has been computed in a post-processing step. Figure 1 shows the simulated wall
shear stress modulus at the systolic peak on a real three-dimensional geometry.
The hemodynamic data are referred to points .x1; x2; x3/ on the artery wall, a
bi-dimensional non-planar domain. In [3, 19] some first analyses of these data were
performed, by flattening a simplified version of the carotid domain. In particular, a
new coordinate system is defined by .s; r; /, where s is the curvilinear abscissa
along the artery centerline, r the artery radius, and  the angle of the surface
point with respect to the artery centerline. The domain is then reduced to the plane
.s;  � Nr/, where Nr is the average carotid radius on the carotid tract considered.
This planar rectangular domain is essentially obtained by cutting the artery wall
along the axial direction given by s and then opening and flattening the artery wall.
This planar domain is equivalent to a simplified three-dimensional artery geometry,
where the radius is kept fixed to a constant value and the curvature of the artery is
not taken into account. The map just described will be referred to in the following
as the angular map. Existing spatial regression methods for the planar setting have
been applied to the flattened simplified carotid geometry; in particular [19] employs
Spatial Spline Regression (SSR) models. Notice that, by flattening the domain with
the angular map and then applying a spatial regression method for planar domains,
any information related to the vessel radius and curvature is lost; even though these
two geometrical quantities greatly influence the hemodynamics in the artery and
statistically discriminate aneurysm presence and location (see, e.g., [20]). Moreover,
to have a bijective angular map, it is necessary to exclude the aneurysmal sac
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(otherwise, different points on the carotid wall would be mapped to the same point
on the plane).

In the next section, we recall the SSR model for planar domains used in [19]
and then introduce the SSR model for non-planar domains. This model allows us to
consider the carotid geometry in its actual complexity, including the varying radius
and curvature, and without any need to remove of the aneurysmal sac.

3 Spatial Spline Regression Models

3.1 Spatial Spline Regression Model for Planar Domains

In this section, we present the SSR models for planar domains introduced in [17]
and the generalized version provided in [19] (see also [15, 16]).

Let fui D .ui ; vi /I i D 1; : : : ; ng be a set of n fixed data locations on a bounded
regular domain ˝ � R

2. Let zi be the real-valued variable of interest observed at
point ui . Assume the model

zi D f .ui /C �i i D 1; : : : ; n (1)

where �i are independent observational errors with zero mean and constant variance,
and f is a twice continuously differentiable real-valued function to be estimated.
According to the SSR model, the estimate of f is found by minimizing the
following functional

nX

iD1
.zi � f .ui //2 C �

Z

˝

.�f /2d˝; (2)

i.e., a sum of squared errors regularized via the L2-norm of the Laplacian of f

�f D @2f

@u2
C @2f

@v2
:

The Laplacian of f measures the local curvature of f . Hence in (2) via the penalty
we are essentially controlling the roughness of the solution. Moreover, the Laplacian
is invariant with respect to Euclidean transformations of the domain and this ensures
that the smoothness of the estimate does not depend on the arbitrarily chosen
coordinate system.

The estimation problem (2) cannot be solved analytically. An approximate
solution is found by resorting to a finite element approach. The finite element
method is largely employed to approximate partial differential equations and it is
widely used in engineering applications (for an introduction to the finite element
framework, see, e.g., [13]). The strategy is very similar to univariate splines. The
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Fig. 2 Three-dimensional
triangular mesh
approximating a non-planar
test domain

top

bottom

cut

cut

Fig. 3 The planar
triangulation obtained by
conformally flattening the
domain in Fig. 2

top

bottom

cut

cut

Fig. 4 The planar
triangulated domain obtained
by the angular flattening of
the domain in Fig. 2

finite element approach subdivides the domain into small disjoint elements and
then it yields a local polynomial function on each of these elements, in such a
way that the union of all these functions is continuous and closely approximates
the solution. This simplified problem becomes computationally tractable thanks to
the suitable choice of the basis functions for the space of piecewise polynomials.
Convenient domain partitions are provided by triangular meshes (see Figs. 2–4
for some examples). A basis of piecewise polynomials is thus considered over
a triangulation of the domain, the simplest being the one spanning the space of
all the continuous functions which are linear when restricted to any triangle of



128 B. Ettinger et al.

the mesh. Thanks to the intrinsic construction of the finite element space, solving
the estimation problem (2) reduces to solving a linear system. In particular, the
estimator of f turns out to be linear with respect to the observed data values, so that
classical inferential tools may be readily derived (see [19]).

3.2 Spatial Spline Regression Model for Non-planar Domains

Now, we consider the problem where the n fixed data locations fxi D
.x1i ; x2i ; x3i /I i D 1; : : : ; ng lie over a non-planar domain ˙ , where ˙ is a surface
embedded in R

3. For each location xi , a real-valued random variable of interest, zi ,
is observed. As in the planar case, we assume the model

zi D f .xi /C �i i D 1; : : : ; n (3)

where �i are independent observational errors with zero mean and constant variance,
and f is a twice continuously differentiable real-valued function defined on the
surface domain˙ ; our aim is to estimate this function. We highlight that our purpose
here is far from the one proposed, for instance in [2, 12] and references therein,
where statistical tools for data belonging to manifolds are developed. In our case the
manifold is just the support of data, in the sense that the data are referred to locations
lying on the manifold. We do not have any interest in analyzing the properties of the
manifold itself, but rather use its geometrical properties when dealing with data
occurring over it.

Following (2), we propose to estimate f in (3) by minimizing the following
penalized sum of squared error functional

J�.f .x// D
nX

iD1
.zi � f .xi //

2 C �

Z

˙

.�˙f .x//
2 d˙; (4)

where �˙ is the Laplace–Beltrami operator for functions defined over the surface
˙ . The Laplace–Beltrami operator is indeed the generalization of the common
Laplacian: it can be used to operate on functions defined on surfaces in Euclidean
spaces (see, e.g., [5]). Note that we use the convention that�˙ denotes the Laplace–
Beltrami operator on the surface ˙ , while � denotes the standard Laplacian on a
planar domain.

In [6], we show that it is possible to solve the estimation problem (4) by exploit-
ing existing techniques for planar domains. In particular, we propose reducing (4) to
a problem over a planar domain. To do this, we flatten ˙ by means of a conformal
map. Specifically, for the surface domain˙ we define a map X such that

X W˝ ! ˙

u D .u; v/ 7! x D .x1; x2; x3/
(5)
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where ˝ is an open, convex, and bounded set in R
2. Denote by Xu.u/ and Xv.u/

the column vectors of first order partial derivatives of X with respect to u and v,
respectively. For the map X to be conformal, we require kXu.u/k D kXv.u/k and
hXu.u/; Xv.u/i D 0, for any u 2 ˝ , where h�; �i denotes the standard Euclidean
scalar product and k � k is the corresponding norm. Let us also define the (space-
dependent) metric tensor as the following symmetric positive definite matrix

G.u/ WD
� kXu.u/k2 hXu.u/; Xv.u/i

hXv.u/; Xu.u/i kXv.u/k2
�

D
�
g11.u/ g12.u/
g21.u/ g22.u/

�

:

Set W.u/ WD p
det.G.u//, and denote by G�1.u/ D fgij .u/gi;jD1;2 the inverse of

the matrix G.u/. Using this notation, for a function f ı X 2 C2.˝/, the Laplace–
Beltrami operator associated with the surface ˙ can be expressed as

�˙f .x/ D 1

W.u/

2X

i;jD1
@i .g

ij .u/W.u/@j f .X.u//

where u D X�1.x/. In [6], we show that (4) can be equivalently expressed as the
following problem over the planar domain˝:

J�.f .X.u/// (6)

D
nX

iD1
.zi � f .X.ui ///2 C �

Z

˝

"
1

W.u/

2X

i;jD1
@i .g

ij .u/W.u/@j f .X.u//

#2

W.u/d˝

where X.ui / D xi . Moreover, for conformal coordinates, the functional J�
reduces to

J�.f .X.u/// D
nX

iD1

�
zi � f .X.ui //

�2 C �

Z

˝

"
1

p
W.u/

�f .X.u//

#2

d˝ (7)

where �f is the standard Laplacian over the planar domain ˝ . Therefore, this
problem turns out to be a modification of the estimation problem presented in
Sect. 3.1.

From a computational viewpoint, the conformal map in (5) may be approximated
via finite elements. The planar finite elements mentioned in Sect. 3.1 can be adapted
to a three-dimensional triangular mesh. In [8] a technique based on finite elements is
specifically developed for flattening tubular surfaces (in particular, a portion of the
colon). We resort to a similar approach since the wall of the carotid artery is indeed
a tubular surface. This approach to estimating the conformal map uses a three-
dimensional triangular mesh that approximates the original surface domain ˙ . The
three-dimensional mesh is flattened into a planar triangular mesh that discretizes
˝ via the finite element approximation to the conformal map. One benefit of
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using a conformal map is that it preserves angles and thus shapes, i.e., the original
triangulation.

Figures 2–4 illustrate the flattening of a test surface domain. Figure 2 shows
an original non-planar domain approximated by a three-dimensional triangular
mesh. Figure 3 displays the conformally equivalent planar triangulated domain. In
contrast, Fig. 4 shows the planar domain obtained with the angular map described in
Sect. 2. The sides of the planar triangulations are labeled to have a correspondence
with respect to the surface in Fig. 2. In particular, the sides of the planar triangulation
labeled with “bottom” and “top” correspond to the bottom and to the top open
boundaries of the original three-dimensional domain. The two sides indicated by
“cut” correspond to a cut along the three-dimensional domain, connecting the two
open boundaries of the surface, that is introduced when calculating the flattening
map (see [8]).

After the conformal flattening, we are ready to apply the estimation method
in Sect. 3.1 and described in detail in [19], with the variant provided in (7), to
accommodate for the domain deformation implied by the flattening phase. Note
also that the estimates along the two “cut” sides have to coincide; this is in fact an
artificial cut. To prevent a seam, we have to take care to maintain the periodicity
of the estimate along the “cut” edges (see [3, 6, 19]). Similar to SSR over planar
domains, the estimator of f is linear with respect to the observed data values, so
that classical inferential tools may be derived. In fact, many of the properties of
SSR over planar domains hold for SSR over non-planar domains as we demonstrate
in [6].

4 Simulations and Applications to Real Data

4.1 Simulations Studies

In this section, we provide the results of a first simulation study, illustrating the
performance of the proposed smoothing technique over non-planar domains. In
particular, we compare the results obtained via the proposed SSR model for non-
planar domains with those yielded by the SSR model for planar domains combined
with a simple angular flattening (see Sect. 2). Notice that the methods differ in two
ways. The first is the flattening map. For the SSR model over non-planar domains,
we have a triangulation which preserves the shapes of the triangles in the original
mesh since it is generated by a conformal map. Instead, the triangulation generated
by the angular map does not preserve the shape of the triangles in the original mesh.
The second difference is the penalty. SSR models over non-planar domains use
information from the conformal flattening map to adjust for the domain deformation
implied by the map, hence considering the full three-dimensional domain. SSR
models over planar domain does not utilize any information from the flatting and
thus has no memory of the geometry in the original three-dimensional domain.
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Fig. 5 Three test surface domains. On each surface, the color map indicates one of the selected test
functions f .x1; x2; x3/ D a1 sin.2�x1/C a2 sin.2�x2/C a3 sin.2�x3/C 1, with coefficients a1,
a2, and a3 randomly generated from independent normal distributions with mean one and standard
deviation one

Fig. 6 On each test surface, at each of the data location xi , coinciding with the nodes of the three-
dimensional meshes approximating the surface domains, independent normally distributed errors
with mean zero and a standard deviation 0:5 are added to the test function; the color maps are
obtained by linear interpolation of the resulting noisy observations

For these simulations, three domains, approximated by three-dimensional trian-
gular meshes, are considered (see Fig. 5). Each geometry is topologically equivalent
to a cylinder. Over each of these non-planar domains, we consider 50 test functions,
having the form f .x1; x2; x3/ D a1 sin.2�x1/C a2 sin.2�x2/C a3 sin.2�x3/C 1

with coefficients ai , for i D 1; 2; 3, randomly generated from independent normal
distributions with mean one and standard deviation one. The data locations xi
coincide with the nodes of the three-dimensional meshes. The noisy observations
zi in correspondence with the locations xi , for i D 1; : : : ; n, are obtained by adding
independent normally distributed errors, with mean zero and a standard deviation
0:5, to the test function, in accordance with the model (3). An example of a test
function and the corresponding level of noise is illustrated on each geometry in
Figs. 5 and 6, respectively.

For each simulation replicate, optimal values of the smoothing parameter � in (2)
and (4) are selected by generalized cross validation for both the models on planar
and non-planar domains, as described in [6, 19], respectively.

Table 1 shows the median and inter-quantile ranges of the Mean Square
Errors (MSE) of f estimators over the 50 simulations. The table also reports the
results of pairwise Wilcoxon tests verifying if the distribution of MSE for the
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Table 1 Median (inter-quantile ranges) of MSE of f estimators over the 50 simulations; p-values
of pairwise Wilcoxon tests verifying if the distribution of MSE for the estimates provided by SSR
over non-planar domains is stochastically lower than the distribution of the MSE for the estimates
provided by SSR method over planar domains

MSE Geometry 1 Geometry 2 Geometry 3

angular map C SSR over planar domains 0.027 (0.018) 0.127 (0.130) 0.111 (0.153)
SSR over non-planar domains 0.025 (0.017) 0.104 (0.095) 0.068 (0.055)
SSR over non-planar vs. SSR over planar 0.016 5:3e�10 3:7e�9

Fig. 7 The estimates provided by SSR over non-planar domains, with values of � selected by
generalized cross-validation

cut

cut
Inflow

O
utflow

Fig. 8 Planar triangulation generated via the conformal flattening of the mesh approximating the
wall of the internal carotid artery in Fig. 9. The sides of the planar triangulation are labeled to
correspond with Fig. 9. In particular, the sides of the planar triangulation labeled with “Inflow”
and “Outflow” correspond to the open ends of the carotid artery. The sides indicated by “cut”
correspond to a longitudinal cut along the artery wall, connecting the open boundaries of the artery

estimates provided by SSR over non-planar domains is stochastically lower than
the distribution of the MSE for the estimates provided by SSR method over planar
domains. The p-values of these tests show that the MSE of SSR over non-planar
domains estimates are significantly lower than the ones of SSR over planar domains,
uniformly over the three surface domains considered. Figure 7 displays the estimates
provided by SSR over non-planar domains for the three test functions with added
noise shown in Fig. 6.

4.2 Application to Hemodynamic Data

This section applies the proposed smoothing technique over non-planar domains to
the modeling of the hemodynamic data described in Sect. 2. Figure 8 displays the
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Inflow

Outflow

Fig. 9 Estimate of wall shear
stress modulus at the systolic
peak obtained with SSR over
non-planar domains with
smoothing parameter � D 0:1

planar triangulated domain obtained from the three-dimensional triangulated artery
wall, via the computation of the conformal map. Notice the area close to the “Out-
flow” side where the flattened mesh is very fine; this corresponds to the aneurysmal
sac. Recall that the aneurysmal sac has to be removed from the domain when using
the simpler angular map. Figure 9 shows the estimate of wall shear stress modulus
obtained with SSR over non-planar domains with smoothing parameter � D 0:1.

The obtained patient-specific estimates will be used for statistical analyses across
patients. These analyses aim to detect recurrent hemodynamic patterns, common
across patients, and relate them to presence and location of the pathology, and
to rupture risk; furthering the investigation of the origin and pathogenesis of
aneurysms. Notice that these analyses also requires appropriate registration of the
patient-specific internal carotid artery geometries (see, e.g., [3]).

5 Conclusions and Future Developments

The goal pursued in this paper is to check the capabilities of SSR over non-planar
domains. The simple simulation study reported here provides the first evidence of
the good properties of the proposed model. In effect, showing that SSR model over
non-planar domains provides better estimates than those obtained first by flattening
the domain via an angular map and then applying SSR models for planar domains
over the flattened domain without accounting for the domain deformation.

Within the framework of the proposed SSR model over non-planar domains, it is
also possible to include spatially distributed covariates, as in [19]. In the application
to hemodynamics data, this, for instance, would allow the inclusion of the values
of blood pressure observed over the artery wall; the pressure could thus be used
as a control variable, studying also the relationship between pressure and wall-
shear stress, and evaluating how this affects aneurysm pathogenesis. The proposed
model can also be extended to data in higher dimensions. In particular, we plan
to generalize the model to the case of functional response variables instead of the
scalar responses considered in this paper.

Another challenging application for the proposed model is, e.g., the identification
of areas of activation for hemodynamics signals over a cortical surface. The cortical
surface is a sophisticated geometry that serves as the domain of the signal. A finite
element method for conformally flattening the cortical surface in shown in [1];
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the proposed SSR model for non-planar domains could thus be used also for this
application.

The proposed models have been implemented in R [14] and Matlab. Both code
versions, fully integrated with the fda packages in R [18] and Matlab, shall be
released shortly.
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Volatility Swings in the US Financial Markets

Giampiero M. Gallo and Edoardo Otranto

Abstract Empirical evidence shows that the dynamics of high frequency-based
measures of volatility exhibit persistence and occasional abrupt changes in the
average level. By looking at volatility measures for major indices, we notice similar
patterns (including jumps at about the same time), with stronger similarities, the
higher the degree of company capitalization represented in the indices. We adopt
the recent Markov Switching asymmetric multiplicative error model to model the
dynamics of the conditional expectation of realized volatility. This allows us to
address the issues of a slow moving average level of volatility and of different
dynamics across regimes. An extension sees a more flexible model combining the
characteristics of Markov Switching and smooth transition dynamics.

1 Introduction

Direct measures of financial volatility were made possible by the availability of
ultra high frequency data: several estimators were developed (for a review, see [1])
under a number of assumptions on the underlying continuous time process driving
prices. In what follows, we will use the version called realized kernel volatility,
proposed by [2], shown to filter out the presence of market microstructure noise and
jumps.
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When put next to one another, financial market volatilities generally exhibit sim-
ilar behavior, being also subject to sudden, seemingly common, changes. Whether
patterns of spillover can be detected from one market to another is the object of
a large debate in the literature (see, for example, [6, 7], and references therein)
which extends to the consequences of capital markets integration for portfolio
diversification. In this paper we want to model volatilities in a univariate context
with the aim to identify which indices present common features in the dynamics,
given that each of them represents a different degree of market capitalization. The
econometric approach is an extension of the multiplicative error model pioneered
by [4] in the direction of identifying regimes of volatility with a Markov Switching
behavior. Sudden changes typically occur when large shocks hit the markets and
possibly showing up in the series as common to several indices. This impression
is confirmed by the graphs in Fig. 1 where volatilities of six US indices are plotted
in the period between January 3, 1996 and February 27, 2009: Standard & Poor’s
500 (S&P500, 3263 obs.), Dow Jones 30 (DJ30, 3261 obs.), the S&P400 Midcap
(S&P400, 3258 obs.), Russell1000 (RU1, 3262 obs.), Russell2000 (RU2, 3264 obs.)
and Russell3000 (RU3, 3262 obs.).1

The visual inspection of these time series reveals a high degree of persistence and
several abrupt changes, particularly clear in the most recent period, with turbulence
leading to the burst of the tech bubble, the 2001 recession, the low level of volatility
in the mid-decade and then the explosion of uncertainty following the subprime
mortgage crisis. On the other hand, these peaks seem less marked, especially in
the first part of the series, for S&P400 and RU2, which are indices representing
companies with a lower degree of capitalization.

Recently, [8] has conjectured the presence of changing levels of the prevailing
average volatility by subperiods: the series show in fact alternating regimes which
visually involve changes in the level but may also correspond to differences in
the dynamics in the series. They propose to extend the class of Multiplicative
Error Models (MEMs), developed by [4] and expanded by [5], including a Markov
Switching dynamics in the parameters to capture the presence of regimes. Being
a MEM, this class of models applies to nonnegative-valued processes, therefore
capturing dynamics without resorting to logs and producing forecasts of volatility
(and not of log-volatility); moreover, considering the presence of regimes, these
models capture the different phases of volatility, characterized by quiet periods,
turmoil phases and accommodating brief abnormal peaks, leading to more realistic
interpretations. In particular, applying their model to the same S&P500 volatility
series analyzed here, [8] shows that it is possible to obtain a better fit relative to the
standard MEM, to avoid the high persistence in the estimated series (which contrasts
with the empirical evidence) and to eliminate the residual autocorrelation which
affect many realized volatility models. In this paper we propose a further extension

1Data are expressed as percentage annualized volatility, i.e. the square root of the realized variance
series taken from the Oxford-Man Institute’s realised library version 0.1 [10], and multiplied byp
252 � 100.
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Fig. 1 Realized kernel volatility of six US indices

of this class of models, allowing also for the possibility that the parameters relative
to the error distribution can follow a different change in regime than the parameters
of the conditional expected volatility. This is achieved by considering, as in [11],
smooth transition dynamics for the error coefficients, along the lines of [3]; for some
series this extension improves the model performance. We select the best model in
this class judging upon its statistical properties and drawing some considerations
about the similarities in the changes in regimes across the six series.
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The paper is organized as follows: in the next section we introduce the new class
of Markov Switching models within the MEM framework. In Sect. 3 we show the
empirical results, keeping the standard MEM model as a benchmark.

2 A Class of Markov Switching AMEM

The basic MEM idea is introduced in [4] and successively developed in [5]: for what
is of interest here, the volatility xt of a certain financial time series is modeled as the
product of a time-varying scale factor�t (the conditional mean of xt ) which follows
a GARCH-type dynamics, and a nonnegative-valued error "t :

xt D �t"t ; "t j�t�1 � Gamma.a; 1=a/ 8t

�t D ! C ˛xt�1 C ˇ�t�1 C �Dt�1xt�1; whereDt D


1 if rt < 0
0 if rt � 0

(1)

where �t represents the information available at time t . This base specification
takes the presence of asymmetric responses of volatility to the sign of the returns
[5], where the coefficient � captures a stronger reaction to past volatility when
accompanied by negative returns. We call this model Asymmetric MEM (AMEM);
setting � to zero gives us the standard MEM. Constraints can be imposed to
ensure the positiveness of �t (! > 0, ˛ � 0, ˇ � 0, � � 0) and the stationarity of
the process (persistence .˛ C ˇ C �=2/ less than 1). The Gamma distribution
depends only on a single parameter a, providing a mean and a variance of the
conditional error equal to 1 and 1=a, respectively. Correspondingly, the conditional
mean and variance of xt are �t and �2t =a, respectively. Further lags could be
added.

In order to extend the capabilities of the model to capture extreme events which
change market characteristics, such as sudden and persistent changes in the level of
the series, [8] introduces the Markov-Switching AMEM (MS–AMEM):

xt D �t;st "t ; "t j�t�1 � Gamma.ast ; 1=ast / 8t
�t;st D ! CPn

iD1 ki Ist C ˛st xt�1 C ˇst �t�1;st�1 C �stDt�1xt�1
(2)

where st is a discrete latent variable which ranges in Œ1; : : : ; n�, representing the
regime at time t . Ist is an indicator equal to 1 when st � i and 0 otherwise; ki � 0

and k1 D 0. Accordingly, the constant in regime j is given by .! CPj
iD1 ki /. The

changes in regime are driven by a Markov chain, such that:

P r.st D j jst�1 D i; st�2; : : :/ D P r.st D j jst�1 D i/ D pij : (3)
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Also in (2) the positiveness and stationary constraints given for (1) hold within
each regime. Reference [8] identifies three regimes for the S&P500 realized kernel
volatility that can be interpreted as the low, medium-high, and very high volatility
states. Dealing with the same S&P500 series and in order to compare the changes
in regimes of this series with other five series with similar dynamics, we also fix
n D 3. When �st D 0, no asymmetric effects are present (MS–MEM).2

Accordingly, the unconditional mean of the volatility within each regime is:

mst D ! CPn
iD1 ki Ist

1 � ˛st � ˇst � �st =2
: (4)

The hypothesis that all the coefficients follow the same Markovian dynamics could
be quite restrictive; for example, it would be plausible to think that the coefficient
of the Gamma distribution follows its own dynamics not subject to the same regime
changes as the coefficients of the conditional mean �t . We propose an alternative
model to be used when the MS–AMEM does not fit the data adequately: we add
another equation to (2) for the time-varying parameter of the Gamma distribution
which changes more or less abruptly, depending on the value of the returns:

at D b0 C b1f1C expŒ�ı.rt�1 � c/�g�1 (5)

where b0 > 0, b1 � 0, ı > 0 and c are unknown parameters. In practice, we
are adding a time-varying smooth transition variance (see [13]), not dependent
on regimes, but with a suitable dynamic behavior. We call the model (2)–(3)–
(5), the MS–AMEM with Smooth Transition Variance (MS–AMEM–STV). This
specification would provide more flexibility to the Markov Switching model, in
particular to capture the sizeable jumps, such as the highest peaks in 2008 (see
Fig. 1). When ı approaches 1, (5) is equivalent to a threshold model [14], and (5)
is substituted by:

at D


b0 if rt�1 � c

b0 C b1 if rt�1 > 0
: (6)

In this case we obtain different regimes for the conditional mean equation and for
the Gamma coefficient, which will follow proper dynamics with two regimes. We
call the model represented by (2)–(3)–(6), the MS–AMEM with Threshold Variance
(MS–AMEM–TV).

2Details about the reparameterization of ˇst to guarantee a certain coherence between the regime
and the level of volatility, and about the solution of possible estimation problems, are in [8]. In
the same work another specification of the MS–AMEM is given, in which the asymmetry deriving
from the sign of the returns may affect also the transition probabilities (the so-called Asymmetry in
Probability MS–AMEM).
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3 Empirical Results

As a complement to the profile of the six volatility series shown in Fig. 1 above,
we have calculated the usual descriptive statistics (not shown here to save space).
They confirm the compatibility with the presence of regimes, especially a very large
range with a thick right tail (high kurtosis). Time dependence is reflected in the
autocorrelation functions, which are characterized by slowly declining high values,
a fact typically seen as evidence of the presence of regimes.

We estimate the MS–AMEMs for all the series and verify if they have a good
performance in terms of fitting and statistical tests; in particular we adopt the
autocorrelation pattern of the residuals as a guideline, in the sense that, if they are
correlated, we estimate the alternative MS–AMEM–STV (the MS–AMEM–TV if ı
diverges) choosing the one with better properties in terms of results of the Ljung-
Box statistics. This procedure selects the MS-AMEM only for the S&P500 volatility
(as shown in detail in [8]), the MS–MEM for the DJ30 series, the MS–AMEM–STV
for the S&P400 volatility, and the MS–AMEM–TV for the three Russell indices.

We have also estimated the original AMEM, shown in (1), for all the series and
compared its statistical performance with respect to the selected MS models. For
this purpose we calculated the AIC3 and some loss functions of interest, namely, the
Root Mean Squared Error (RMSE), the Mean Absolute Error (MAE) and Theil’s
U (the latter calculated using the first differences of observed and forecasted data
to detect the capability of the model to capture the turning points). On all accounts
Markov Switching behavior is detected (see Table 1), with a strong improvement in
the residual diagnostics.

One of the motivations to adopt an MS volatility model is the presence of
autocorrelated residuals in the AMEM. In the same Table 1 we show the p-values of
the Ljung-Box test statistics, in correspondence of lags 1, 5, and 10, for the AMEM
and the selected MS models to check how uncorrelated the residuals are.4 What we
observe is that the models with three regimes are able to capture a large portion of
the strong residual dependence structure still present in the AMEM.

The estimation results for the MS models are reported in Table 2. We notice a
strong difference in model dynamics when the assumption of common dependence
of the coefficients on the regimes is relaxed. Starting from the intercepts, the MS
models show a significant increase in these coefficients when regimes change, with

3Tests based on the likelihood function cannot be used to compare the AMEM with respect to
the corresponding MS models because of the presence of nuisance parameters present only under
the alternative hypothesis; in this case, with the proper caution, a classical information criterion
could provide some information (see [12]); in particular the AIC seems to choose the correct state
dimension more successfully than the BIC, provided that the parameter changes are not too small
and the hidden Markov chain is fairly persistent.
4For MS models we have used the generalized residuals, introduced by [9] for latent variable
models, defined as E.O"t j�t�1/ D P3

iD1 O"st ;t tP r.st D i j�t�1/, where O"st ;t are the residuals at
time t derived from the parameters of the model in state st .
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Table 1 Likelihood-based criteria, in-sample forecasting performance and autocorrelation testsa

for AMEM and MS models

Log-lik AIC RMSE MAE Theil U p.Q1/ p.Q5/ p.Q10/

S&P500
AMEM �8389:66 5.145 4.490 2.811 0.381 0.002 0.000 0.002
MS–AMEM �8328:77 5.118 4.428 2.632 0.367 0.140 0.027 0.103

DJ30
AMEM �8056:77 4.944 4.059 2.478 0.370 0.002 0.000 0.000
MS–MEM �8025:82 4.933 4.074 2.330 0.361 0.809 0.008 0.091

S&P400
AMEM �7516:42 4.617 3.528 2.197 0.339 0.001 0.000 0.005
MS–AMEM–STV �7467:62 4.598 3.312 1.929 0.295 0.140 0.014 0.011

RU1
AMEM �8158:18 5.005 4.194 2.620 0.378 0.002 0.000 0.002
MS–AMEM–TV �8100:88 4.980 3.716 2.303 0.334 0.270 0.017 0.023

RU2
AMEM �7462:25 4.576 3.717 2.245 0.376 0.003 0.000 0.003
MS–AMEM–TV �7423:91 4.562 3.515 1.970 0.325 0.169 0.005 0.001

RU3
AMEM �8054:88 4.942 4.081 2.542 0.376 0.001 0.000 0.001
MS–AMEM–TV �8013:71 4.927 3.668 2.260 0.335 0.146 0.036 0.052

Sample: January 3, 1996 to February 27, 2009
aIn the table, p.Qj / .j D 1; 5; 10/ indicates the p-values of the Ljung-Box test statistics at lag j

an increase of more than 5 points in the high volatility third regime; the models with
MS and STV or TV do not show similar differences in the intercepts. In this case the
more flexible variance is able to capture also abrupt jumps in the series maintaining
small intercepts. As a consequence, volatility dynamics is represented by different
coefficient behavior; in the case of models type (2), the ˛ and � coefficients increase
with the regime whereas the ˇ coefficients show an opposite behavior; this involves
a strong dependence on the most recent observation and on the sign of returns for the
regimes of high volatility and a lower persistence. The models containing (6) show
that the third regime depends only on the values corresponding to negative returns
and an increasing persistence in the third regime. It is interesting to note also that
the estimated coefficients of the RU1 and RU3 volatility are very similar (pointing
to a common DGP), whereas they differ from the one of RU2. We can argue that
the companies with larger capitalization present in both RU1 and RU3 dominate the
behavior of the volatility, while the smaller caps in RU2 behave differently.

In terms of transition probabilities, it is evident that there is a strong permanence
in the same regime for all the indices, in particular in regime 1 and 2. Regime 3 is
less persistent for all Russell’s and for S&P400. Some further insights are gained by
looking at the off-diagonal elements of the transition probability matrix, with similar
considerations for all the indices. Being in regime 1 there is a very low probability to
switch to either of the other two regimes. From the regime of intermediate volatility
there is a higher probability to move to the high volatility regime than to revert to
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Table 2 Coefficient estimates for Markov Switching AMEM specifications with three regimes
(standard errors in parentheses). Sample: January 3, 1996 to February 27, 2009a

S&P500 DJ30 S&P400 RU1 RU2 RU3

! 1.872 2.367 0.911 1.652 0.843 1.637
(0.229) (0.927) (0.018) (0.166) (0.121) (0.151)

k2 0.685 1.048 0.000 0.001 0.000 0.000
(0.228) (0.242) (0.001) (0.006) (0.005) (0.001)

k3 5.188 5.990 0.989 0.827 0.901 0.717
(1.326) (2.775) (0.002) (0.117) (0.082) (0.334)

˛1 0.199 0.311 0.160 0.180 0.206 0.182
(0.028) (0.112) (0.007) (0.022) (0.021) (0.021)

˛2 0.161 0.270 0.073 0.098 0.055 0.101
(0.029) (0.096) (0.003) (0.011) (0.010) (0.012)

˛3 0.257 0.385 0.000 0.000 0.000 0.000
(0.058) (0.086) (0.000) (0.000) (0.000) (0.000)

ˇ1 0.525 0.377 0.637 0.563 0.554 0.559
(0.056) (0.224) (0.008) (0.043) (0.051) (0.041)

ˇ2 0.594 0.460 0.789 0.714 0.807 0.707
(0.058) (0.191) (0.004) (0.024) (0.020) (0.023)

ˇ3 0.343 0.230 0.932 0.896 0.928 0.876
(0.108) (0.171) (0.009) (0.063) (0.013) (0.031)

�1 0.076 0.042 0.077 0.035 0.077
(0.007) (0.010) (0.010) (0.023) (0.010)

�2 0.083 0.067 0.091 0.083 0.091
(0.010) (0.014) (0.008) (0.006) (0.009)

�3 0.143 0.068 0.104 0.072 0.124
(0.018) (0.009) (0.062) (0.013) (0.031)

a1 15.808 21.062 b0 4.314 5.226 3.945 5.012
(0.632) (1.249) (1.554) (1.947) (1.259) (2.247)

a2 18.742 20.677 b1 14.537 11.249 11.568 11.256
(1.452) (1.675) (1.557) (2.068) (1.518) (2.280)

a3 10.946 11.127 ı 0.936
(0.751) (1.194) (0.021)

c �3.531 �3.636 �4.310 �3.630
(0.734) (0.022) (0.021) (0.008)

p11 0.989 0.977 0.994 0.992 0.985 0.993
(0.002) (0.009) (0.002) (0.001) (0.004) (0.001)

p12 0.007 0.018 0.000 0.004 0.010 0.004
(0.001) (0.004) (0.000) (0.001) (0.006) (0.001)

p13 0.004 0.005 0.006 0.004 0.005 0.003
p21 0.007 0.013 0.000 0.003 0.003 0.004

(0.001) (0.005) (0.000) (0.002) (0.002) (0.001)
p22 0.977 0.975 0.951 0.945 0.948 0.950

(0.002) (0.003) (0.002) (0.016) (0.009) (0.009)
p23 0.016 0.012 0.049 0.052 0.049 0.046
p31 0.006 0.007 0.007 0.014 0.013 0.011

(0.002) (0.012) (0.001) (0.009) (0.008) (0.004)
p32 0.042 0.049 0.247 0.210 0.203 0.170

(0.001) (0.008) (0.013) (0.097) (0.019) (0.042)
p33 0.952 0.944 0.746 0.776 0.784 0.819

aThe model selected are: an MS–AMEM for S&P500, an MS–MEM for DJ30, an MS–AMEM–
STV for S&P400, an MS–AMEM–TV for RU1, RU2 and RU3. The coefficients pi3 (i D 1; 2; 3)
are not directly estimated, but are obtained as pi3 D 1� pi1 � pi2
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Table 3 Unconditional mean of the volatility within each regime of US financial indices in the
period from January 3, 1996 to February 27, 2009

S&P500 DJ30 S&P400 RU1 RU2 RU3

m1 7:891 7:599 5:011 7:561 3:780 7:424

m2 12:609 12:648 8:551 11:557 8:719 11:184

m3 23:570 24:442 55:937 47:675 48:513 37:986

a low volatility regime. By the same token, we note that the downward transition
from the high volatility states occurs preferably with a move to the intermediate
state: joint with the considerations above, there seems to be a strong interaction
between regimes 2 and 3 while the period of low volatility is a sort of self-standing
regime.

The different behavior of the previous coefficients could be misleading in the
interpretation of regimes; the level of the volatility within each regime is represented
by the unconditional mean (4) by regime, which is shown in Table 3 for each
series and signals the interpretability of regimes as increasing volatility. Moreover,
S&P500, DJ30, RU1, and RU3 present similar levels of volatility in regime 1
and 2, which are higher with respect to the corresponding levels of S&P400
and RU2. The third regime is the one presenting the main differences among
the six series; S&P500 and DJ30 are again similar, whereas S&P400, RU1 and
RU2 show very high levels of average volatility, with RU3 in an intermediate
position. Using smoothed probabilities, we can superimpose the average volatility
levels to the observed series as in Fig. 2. Bursts of volatilities, as well as sudden
reductions in their values, correspond to a discrete change in the average value
around which volatility follows its dynamics. More erratic behavior is apparent in
the less frequently inspected indices. It is clear that the MS–AMEM with STV or
TV consider the third regime as a state which absorbs the highest peaks, whereas
the MS–AMEM corresponds to a higher duration in the regime.

In practice, it seems that there is a certain consistency in the behavior of the
high capitalization indices, whereas S&P400 and RU2 show a sort of definitive
permanent level shift at the end of 1998, with consistently higher levels of volatility
from there on. The coherence among the indices can be evaluated in Table 4, where
we show the percentage of cases in which the indices fall in the same regime. The
high capitalization indices are in the same regime in more than 82% of cases, with a
maximum in correspondence of RU1 and RU3 (96%). The coherence between high
and low capitalization indices is low (between 44% and 65%), whereas there is a
high coherence between S&P400 and RU2 (88.5%).

Figure 3 addresses the issue of whether regimes are coherent across indices or
whether the non-homogeneity is relative to a specific state: we build a bar graph
where the frequency in each regime for one index is broken down by the frequency
across its own regimes for another index. The S&P500 is the reference index in
five panels while the last one reports results between S&P400 and RU2. If regimes
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Fig. 2 Original series (dotted lines) with regime-specific average volatilities (bold lines) in the
sample period January 3, 1996 to February 27, 2009

agreed perfectly, we would have each side bar of the color of the same regime.
Variety signals different regime partition. The most striking result is the large
coherence between S&P500 and DJ30 at one hand (top left panel) and between
S&P400 and RU2 on the other (bottom right panel). The most striking contrast is
between the latter two each with the S&P500 (right column, top and middle). This
suggests that the small cap companies have a more similar behavior as the mid
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Table 4 Percentage of
common regimes between
pairs of realized volatilities in
the period from January 3,
1996 to February 27, 2009

DJ30 S&P400 RU1 RU2 RU3

S&P500 89.26 52.71 86.45 44.47 85.74
DJ30 52.30 83.15 45.23 82.20
S&P400 62.54 88.49 64.68
RU1 54.23 95.92
RU2 56.74
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Fig. 3 Distribution of the regimes between pairs of financial US indices in the sample period
January 3, 1996 to February 27, 2009. A vs B indicates that the frequency in each regime for index
A is broken down by the frequency across its own regimes for index B

caps, while the largest of the large caps (well represented by the S&P500) dominate
volatility behavior when inserted within an index.

4 Conclusions

With direct volatility measurement, many interesting questions can be addressed
about its dynamics. We have investigated the possibility that abrupt changes seen
in the time series of realized kernel volatility may signal the presence of regimes
corresponding to different average levels of turbulence. With our Markov Switching
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specification of a multiplicative error model we have allowed for the possibility that
the shape parameter of the Gamma distribution ruling the tails of the error term
may be made dependent on the value of the lagged returns. This significantly adds
to the catalog of available volatility models for forecasting. While run on individual
series, the analysis allows to compare results and establish commonalities. Company
size shows up in different behavior in the volatility of indices for large caps on
the one side and for mid and small caps on the other, an issue which is seldom
investigated.
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Semicontinuous Regression Models with Skew
Distributions

Anna Gottard, Elena Stanghellini, and Rosa Capobianco

Abstract In applied studies, researchers are often confronted with semicontinuous
response models. These are models with a semicontinuous response variable, i.e.
a continuous variable that has a lower bound, that we here consider to be zero,
and such that a sizable fraction of the observations takes value on this boundary.
Semicontinuous response models are common in pharmacovigilance, pharmacoepi-
demiological and pharmacoeconomic studies, where it can be sometimes useful to
evaluate and monitor the doses of a certain drug substance consumed by the general
population. The preponderant number of observations taking value zero corresponds
to the part of the population which is not actually consuming the medicine, either
because they do not need it or because, even if they need it, they are not taking it in
a given interval of time. Another interesting field of application concerns goods or
drugs consumption to be studied for economic or social purposes. We here explore
the use of several asymmetric distributions to address the fact that the continuous
part of the data distribution shows skewness in most cases. As an illustration, the
proposal is applied to model alcohol expenditure in Italian households.

A. Gottard
Department of Statistics “G. Parenti”, University of Florence, Florence, Italy
e-mail: gottard@ds.unifi.it

E. Stanghellini (�)
Department of Economics, Finance and Statistics, University of Perugia, Perugia, Italy
e-mail: elena.stanghellini@stat.unipg.it

R. Capobianco
Studies on Intercultural, Cultural and Training Processes in Contemporary Society, Roma Tre
University, Rome, Italy
e-mail: rcapobianco@uniroma3.it

M. Grigoletto et al. (eds.), Complex Models and Computational Methods in Statistics,
Contributions to Statistics, DOI 10.1007/978-88-470-2871-5 12,
© Springer-Verlag Italia 2013

149



150 A. Gottard et al.

1 Introduction

In many situations it can be of interest to model a response variable having an
unexpected, with respect to a given distribution, number of zero values. For count
responses, a situation of excess of zeroes with respect to a standard distributional
assumption, such as Poisson or Negative Binomial distribution, is usually handled
in the literature by adopting a so-called zero-inflated model [13] or a hurdle
model [16]. An ordinary Poisson or Negative Binomial regression model would
be inadequate to study these kinds of data. See [14] for a survey on these classes of
models.

Continuous positive value data with a preponderance of zero observations can
occur in a variety of applications. These kinds of variables are sometimes called
semicontinuous [17] to allow a probability mass on a specific value. Semicontinuous
data are common in many fields. For example, in pharmacovigilance, pharma-
coepidemiological and pharmacoeconomic studies, it can be sometimes useful to
evaluate and monitor the doses of a certain drug consumed in the general population,
outside of a clinical trial. Also, in many therapeutic fields, as nonsteroidal anti-
inflammatory drugs, oral contraceptives, antihypertensive drugs, antidepressants,
and so on, the actual drug consumption is an important item of the total public
expenditure. The preponderant presence of zeroes observed in these frameworks
corresponds to the part of the population which is not actually consuming the
medicine, either because they do not need it or because they are not taking it in
the interval time of monitoring, even if needed. Similarly, in meteorological studies,
the daily quantity of rainfall or snowfall distribution can present a clump at zero, due
to not rainy/snowy days. However, due to some measurement errors, small quantity
of rain in rainy days may not be detected. A further, interesting field of application
is measuring goods, food or drug consumption or expenditure. In this paper, the
case of alcohol expenditure in Italian households is considered. The distribution of
alcohol consumption presents a clump at zero, due to both teetotalers and occasional
drinkers having no alcohol during the monitoring period.

The first model for semicontinuous data is the so-called Tobit model, due to
[21]. The Tobit model assumes an underlying normally distributed latent variable
determining when the outcome of interest is positive or zero. Since the assumption
of normality of the underlying latent variable is too restrictive in many applications,
several extensions of the Tobit model have been proposed in the literature, especially
in the direction of distribution-free methods. See [18] for a summary. Also, as noted
in several applied studies, the continuous part of the data distribution may present
a rather substantial skewness. To address this issue, [11] assumes a Skew-Normal
model [3] for the latent variable that governs the outcome of interest, for the case of
clumping due to right censoring in bounded health scores.

The two-part model [8, 9] extends the Tobit model to the case when the
probability of zero and positive values depends on different sets of parameters and
explanatory variables. The likelihood function of this class of models factorizes into
two parts that can be maximized separately. According to [14], the two-part model
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is sometimes preferable as it addresses the data in their original form, it is simple to
fit and to interpret. It can be seen as the continuous counterpart of the hurdle model.

A different generalization of the Tobit model, used in microeconometric studies,
is called Double-Hurdle model (see, for example, [4, 8, 12]). This kind of model
has been used to study individual behavior on commodity consumptions as two
subsequent decisions. Therefore, two separate hurdles have to be cleared in order
to obtain a positive level of consumption. The Double-Hurdle model allows a
dependence between the two components.

The two-part model has been extended in several ways (see, for example, [6,
15, 20]). As for the Tobit model, the continuous part of the data can be skewed,
as shown in several studies. This issue is generally addressed by taking the log
of the response variable. However, this can lead to a normalization of only lightly
skewed situations. In particular, [6] proposes a probit/log-skew-normal distribution
to analyze continuous data with a discrete component at zero.

In this paper, we are considering a two-part model combining several models
for both the discrete component and the continuous component with skew distri-
butions. This kind of model is able to account for several forms of asymmetry. In
particular, the Skew-Normal and the Skew t distributions for the continuous part
can accommodate asymmetry in a very flexible way. The first model reduces to the
normal model when a particular parameter, denoted by ˛, equals zero. For this case,
the score functions have been derived and it is shown that, when ˛D 0, the score
functions are linearly dependent so that the information matrix is singular.

The paper is organized as follows. The proposed two-part model is presented in
Sect. 2. Some properties of the proposed class of models are given in Sect. 3. The
analysis of alcohol consumption data is in Sect. 4. Section 5 concludes with some
remarks. The information matrix of a particular class of models here proposed is
derived in the Appendix.

2 Semicontinuous Response Models Using Skew
Distributions

Let Y1 and Y2 be two independent latent random variables. Assume Y1 follows a
Bernoulli distribution, with

P.Y1 D 1/ D �1 and P.Y1 D 0/ D �0 D 1 � �1:

Let Y �
2 be a further latent random variable with support on IR. Define Y2 to have

a left censored at zero distribution with support on Œ0;C1/. We suppose that the
probability distribution of Y2 is linked to that of Y �

2 as

P.Y2 D 0/ D P.Y �
2 � 0/ while P.Y2/ D P.Y �

2 / when Y �
2 > 0:
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Finally, define Y as the observable random variable with the clump at zero and a
continuous positive part. We assume:

Y D


0 if Y1 D 0

Y2 if Y1 D 1 with Y2 � 0:
(1)

Therefore,

P.Y D 0/DP.Y1 D 0/CP.Y1 D 1; Y2 D 0/DP.Y1 D 0/CP.Y1 D 1/P.Y �
2 � 0/

as Y1 and Y2 are assumed independent and P.Y2 D 0/DP.Y �
2 � 0/. It follows that

the density function of the random variable Y , say fY , can be written as

fY .y/ D Œ�0 C �1 P.Y
�
2 � 0/� I.y D 0/ C �1 fY2.y/ I.y > 0/: (2)

Note that two different mechanisms may give rise to Y D 0. One is driven by the
latent variable Y1, while the other is driven by the truncation of the latent variable
Y2. In the pharmacoeconomic studies the Y1 variable describes the need or not to
take a given drug, while Y2 drives the actual consumption for those in need to take
the drug. In an actual study, Y �

2 may be zero, especially if the monitoring time is
short.

Moreover, notice that, if �0 D 0, the model is a left-censored-at-zero model.
Whenever �0 > 0, the proposed model assumes an extra source of zero values due
to the discrete component Y1. Furthermore, if P.Y �

2 � 0/D 0, and consequently
Y2 has a strictly positive support, then the resulting model is a two-part model.
Otherwise, the model can be viewed as a zero-inflated truncated continuous model.
See for alternative proposals [1, 7]. For Gaussian specification of the continuous
part of the model, our proposal coincides with the Double-Hurdle model with
independent components.

As already mentioned, we may want the distribution of the continuous part of
the data to allow for skewness. Several possible choices are available. Here we shall
consider two possible choices: (a) the Skew-Normal distribution and (b) the Skew t

distribution.

3 The Specification of the Model

As illustrated by Lemma 1 of [2], a skew distribution may be generated by
perturbation of a symmetric distribution, as follows:

g.z/ D 2f0.z/G0.wz/ (3)

where f0 is a one-dimensional density function, being symmetric about 0, and G0
is a one-dimensional distribution function such that G0 exists and has a density
symmetric about 0, while w.�/ is an odd function.
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Under choice (a), when f0 D �.z/ and G0 D ˚.˛z/, where �.�/ and ˚.�/ are,
respectively, the density and the distribution function of a standard univariate normal
distribution, (3) is the density function of a Skew-Normal random variable, with
skewness parameter ˛, Z � SN.˛/.

In the model in (2) under choice (a), we shall impose Y �
2 D �C�Z. In this case,

Y �
2 � SN.�; �2; ˛/. Notice that for ˛ D 0 the model reduces to Y �

2 � N.�; �2/.
The effect of covariates on the parameter � can also be investigated. A possible
choice is to assume for the i -th generic observation:

�i D ˇ0
2X2i (4)

where X2i denotes a set of explanatory variables for Y �
2 and ˇ2 is a vector of

regression coefficients.
Choice (a) parallels what done by [6] in which a log transformation is assumed

instead, so that the continuous part has strictly positive support. As shown in the
Appendix, a test for ˛ D 0, which corresponds to testing for the absence of skewness
in the data, may be problematic. This is also true for right censored data (see [5]).

Under choice (b) of a continuous component with Skew t distribution, we let
f0 D t.zI 	/ and

G0 D T

"

˛��1.y � �/

�
	 C 1

Q C 	

�1=2
I 	 C 1

#

whereQ D Œ.y ��/=��2, t and T are, respectively, the density and the distribution
function of a Student t distribution with 	 and 	C1 degrees of freedom. In a similar
manner as in (4), we shall impose that Y �

2 D � C �Z to account for the effect of
covariates on �.

Focusing now on assumptions on Y1, we may consider the effect of covariates
also on �1, by the insertion of a suitable link function. Classical choices of link
function include logit or Probit model.

To exemplify, under choice (a) of a Skew-Normal distribution for Y �
2 , and a logit

link for Y1, the contribution to the likelihood function of a generic observation i is

LL:SN
i D

"
1

1C expˇ0
1x1i

C expˇ0
1x1i

1C expˇ0
1x1i

FSN
�
0Iˇ0

2x2i ; �
2; ˛

�
#I ŒyiD0�

�
"

fSN
�
yi Iˇ0

2x2i ; �
2; ˛

�
#I ŒyiD1�

where fSN.�/ and FSN.�/ are the density and the distribution function of the Skew-
Normal variable. Assuming a probit link, under choice (a), the contribution to the
likelihood function of a generic observation i is instead
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Fig. 1 Simulated data for variable Y , under choice (a) and (b) with a Probit link

LP:SN
i D

"
�
1 � ˚.ˇ0

1x1i /
�C˚.ˇ0

1x1i /FSN
�
0Iˇ0

2x2i ; �
2; ˛

�
#I ŒyiD0�

�
"

fSN
�
yi Iˇ0

2x2i ; �
2; ˛

�
#I ŒyiD1�

:

As an example, we report in Fig. 1 the histogram of two data sets randomly
generated by model (2) under choice (a) and (b) with the probit link. The data are
generated assuming for both the distributions �1 D 0:6 and the location, scale and
skewness parameters equal to 6, 3 and 0.5, respectively. For the Skew t distribution
the number of degrees of freedom was settled at 3. It can be seen that the Skew t

choice yields to a heavier right tail, giving the possibility of adequately model the
presence of kurtosis in the data. Notice that, even if the parameter �1 is the same,
the amount of zero values in the Skew t case is lightly higher, due to truncation
of the left tail, heavier than that of the Skew-Normal distribution. However, the
distribution under choice (b) tends to that under choice (a) as the number of degrees
of freedom tends to infinity.
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4 Analysis of the Alcohol Consumption Data

As an illustration, we analyze here a set of data on alcohol consumption coming
from the 2002 Italian Household Budget Survey (IHBS) conducted by Istat. The
sample consists of 27,499 Italian households. Expenditure on a wide range on
nondurable goods and services over 1 week period is recorded and subsequently
expressed on a monthly basis. Expenditure variables are deflated via regional price
indices produced by Istat. Data refer to the households rather than individuals,
therefore a per-equivalent adult measure is obtained by adjusting for family size
using the modified OECD equivalence scale, which assigns weight 1 to the first
adult, 0.5 to each subsequent adult, and 0.3 to each child under 14 years of age.

Here the interest is in the determinants of monthly expenditure for alcohol.
Explanatory variables to take into account for socioeconomic factors of the house-
hold are recorded. Also the amount of expenditure in tobacco is recorded, a variable
that emerges as significant in our analysis. In order to amplify the differences
between the continuous and the discrete part of the distribution, the response
variable has been transformed using Y D log.1 C X/. This is usually done in
studies on semicontinuous response models (see, e.g., [6]). The histogram of the
so transformed response variable, in Fig. 2, shows that there is a moderate evidence
of skewness in the positive data.

The probit link has been chosen for the discrete component. For the continuous
part, we adopted the Skew-Normal distribution (choice (a) in the previous sections).
The model has been selected starting from a large model. Included covariates are:
age (age), with a linear and quadratic effect, percentage of adult male members of
the household (perc males), income proxied by per-equivalent adult household
total expenditure scaled by 100 (income), per-equivalent tobacco consumption
categorized in tertiles (ftab), a binary variable taking value 1 if there is at least
one child aged 0–14 years (Child014) and list of binary variables taking value 1
if the household’s head: is male (MaleH), has a higher education (HighEdu), has a
white collar job position (Whitecollar), owns the house (OwnerOcc), is single
without children (Single).

The first model included all variables both in the Probit link and in the continuous
part of the model (with the exception that the variable income has been catego-
rized in four levels (fincome), using quartiles as cut-points, for the continuous
component to avoid instability of estimates and allow for nonlinear effects).
Using a backward selection procedure, we proceeded by removing variables with
nonsignificant effect. The estimates of the final model are in Table 1. The likelihood
ratio test between the extended and the reduced model was 11.13 with 10 degrees
of freedom.

Variables have an effect in the expected direction. Tobacco consumption plays a
role both in the decision model (Probit equation) and in the level model (Skew-
Normal equation). If household’s head has a white collar job the probability of
drinking alcohol (binary component) reduces, while it increases if the household’s
head is male. These binary covariates, however, do not affect the continuous
component. The main negative effect on the level of alcohol expenditure is the
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Fig. 2 Observed values for variable Y , monthly expenditure for alcohol

Table 1 Parameter estimates for the selected model

Variables Estimate s:e: Confidence intervals (95%)

Model for the binary component
Intercept �1:3686 0.1118 �1:5878 �1:1494
eta 0.0168 0.0021 0.0128 0.0209
eta2 �0:0005 0.0002 �0:0008 �0:0002
perc admales 0.7036 0.1017 0.5042 0.9029
income 0.0104 0.0019 0.0066 0.0141
MaleHH 0.3176 0.0658 0.1887 0.4466
whitecollar �0:1323 0.0409 �0:2124 �0:0523
ftab(0.1,20] 0.4700 0.0530 0.3661 0.5739
ftab(20,160] 0.3610 0.0516 0.2599 0.4622
Model for the continuous component
Intercept 1.8089 0.0582 1.6949 1.9229
perc admales 0.2618 0.0762 0.1125 0.4112
fincome(6.2,9.08] 0.3198 0.0500 0.2217 0.4179
fincome(9.08,13.3] 0.4741 0.0499 0.3762 0.5720
fincome(13.3,167] 0.6797 0.0509 0.5799 0.7794
single 0.3400 0.0539 0.2343 0.4458
child014 �0:1197 0.0360 �0:1903 �0:0491
ftab(20,160] 0.1466 0.0410 0.0663 0.2270
s.d. 0.8120 0.0122 0.7881 0.8358
skewness 0.1766 0.0587 0.0614 0.2917

presence in the family of children aged less than fourteen. Finally, income positively
affects alcohol expenditure in both components.

Notice that the derivation in the Appendix implies that asymptotic distribution of
the likelihood ratio test to compare normal and skew Normal models is nonstandard.
However, the skewness parameter is significant, even if small. Parameter estimates
and Hessian matrix have been obtained by a numerical algorithm in the optim
function implemented in R [19]. Attempts to use the Skew t distribution have been
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Fig. 3 Healy’s plot of the residuals of the nonzero values correctly identified against (left panel)
the normal distribution and (right panel) the Skew-Normal distribution

made; however, the algorithms for the maximization of the log likelihood did not
converge. As far as it concerns the algorithm for likelihood maximization in the
Skew-Normal case, the more stable results have been obtained using simulated
annealing. This algorithm is a global optimization method. It is quite inefficient
compared to the classical Newton–Raphson-like methods but it is able to distinguish
among several local optima. This characteristic makes it quite convenient in case of
difficult log-likelihood functions.

To evaluate the model fitting, it is interesting to first compare fitted and observed
values in terms of the binary component Y1. For this purpose, for each unit i we
set Oy1.i/ D 0 when O�1.i/ < O�0.i/. (The notation, used here and in the Appendix,
�k.i/; k D 0; 1 instead of �k is due to the presence of explanatory variables in the
binary component.) The percentage of zero and nonzero values correctly identified
is 59.38 (58.36 for the normal model). In particular, the model underestimates
the number of zero values in the data (as only 35.1% of the zeroes are correctly
identified). This can be due mainly to the absence among the measured covariates
of variables describing personal and psychological factors that can influence the
decision to consume alcohol. Limiting our investigation to the 79.1% of nonzero
values correctly identified, Fig. 3 reports the Healy’s plot [10] of the residuals
against either the normal (left panel) or the Skew-Normal (right panel) distribution.
The figure exhibits a moderate improvement of the second model.

5 Conclusions

In this paper, the possibility of adopting skew distributions for modeling semicontin-
uous data is analyzed. In particular, the Skew-Normal and the Skew t distributions
are contemplated. The resulting classes of models are useful whenever a nonnegative
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continuous variable shows an anomalous clump in the zero value and asymmetry
and/or kurtosis on positive values. This situation is quite common in many fields of
application and can be easily carried out visually through a careful analysis of data
histogram. For this particular type of data, the proposed models avoid the use of
Box-Cox transformation that, when the clump at zero is too high, does not lead to
acceptable results.

The semicontinuous regression models presented here can also be viewed as
nonstandard mixture models, being a mixture of two components, one binary and
the other with positive support. Moreover, the clump at zero is supposed to have
two possible sources: one is due to a binary latent component, and the other to
a continuous latent component, whereby this takes negative values. This twofold
source of zero values is appealing, for instance, in the study of alcohol expenditure
from the IHBS, as presented in the paper. In fact, it allows to account for people
having by chance no alcohol expenditure in the short period of observation. For this
data set we adopted a probit/Skew-Normal model, which showed to fit better than
the probit/normal model.

The results obtained show some evidence that the use of alcohol is related to
that of tobacco, both in terms of drinking/not drinking (binary component) and
in terms of levels (continuous component). Moreover, a white collar job position
seems to reduce the probability of drinking alcohol (binary component), but does
not affect the continuous component. The main negative effect on the level of
alcohol expenditure seems to be the presence in the family of children aged less than
fourteen. Finally, income positively affects alcohol expenditure in both components.
In terms of model fitting, the proposed model seems to underestimate the number
of zero values, probably due to some missing explanatory variables on the binary
part.

Estimates are here obtained by maximum likelihood, via simulated annealing.
As these models are in fact nonstandard mixture models, estimates could be
alternatively obtained using the EM algorithm. The R functions for the likelihood
function of the proposal are available upon request from the authors.

Appendix

Under the assumption that Y �
2 is Skew-Normal, the likelihood function for unit i is:

Li D �
�0.i/C �1.i/P.Y

�
2 .i/ � 0/

�I ŒyiD0� � Œ�1.i/fSN.yi I�i ; �; ˛/�I Œyi>0�

D Œ�0.i/C �1.i/FSN.0I�i ; �; ˛/�I ŒyiD0� � Œ�1.i/fSN.yi I�i ; �; ˛/�I Œyi >0�

D �
�0.i/C �1.i/

�
1 � 2˚2.0;

��i
�

I ��/��I ŒyiD0� �

� ��1.i/ 2� �.yi��i�
/˚
�
˛
�
.yi � �i /

��I Œyi>0�
:
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Here ˚2.�I ��/ denotes the distribution function of a standard bivariate normal
random variable with �� as correlation coefficient, where � D ˛p

1C˛2 . The log

likelihood for unit i is then

`i D I Œyi D 0� � log Œ�0.i/C �1.i/FSN.0I�i ; �; ˛/�

CI Œyi > 0� log Œ�1.i/fSN.yi I�i ; �; ˛/� :

Let us denote:
zi D yi��i

�

ui D ��i
�

w.˛zi / D �.˛zi /
˚.˛zi /

Ai D 1
�0C�1FSN.0;�i ;�;˛/

:

Then, the score functions for unit i with respect to (some of) the parameters of the
Skew-Normal distribution are:

S.�i / D I Œyi D 0� � Ai � @
@�i
FSN.0; �i ; �; ˛/C I Œyi > 0� � 1

fSN.yi ;�i ;�;˛/
� @
@�i
fSN.yi ; �i ; �; ˛/

S.˛i / D I Œyi D 0� � Ai � @
@˛i
FSN.0; �i ; �; ˛/C I Œyi > 0� � 1

fSN.yi ;�i ;�;˛/
� @
@˛i
fSN.yi ; �i ; �; ˛/

where

@
@�i
FSN.0; �i ; �; ˛/ D �.ui /˚.˛ui /

�˚2.0;ui /
@
@�i
fSN.yi ; �i ; �; ˛/ D zi

�
� ˛

�
w.˛zi /

@
@˛
FSN.0; �i ; �; ˛/ D �.

p
1C˛2ui /

.1C˛2/p2�˚2.0;ui /
@
@˛
fSN.yi ; �i ; �; ˛/ D ziw.˛zi /:

We can verify that when ˛ D 0, then

S.˛/j˛D0 D �

r
2

�
S.�/j˛D0:

In fact, when ˛ D 0, then Ai D 1=.�0 C �1˚.yi // D Ai j˛D0 and

S.�/j˛D0 D I Œyi D 0� Ai j˛D0 � �.ui /
�˚.ui /

C I Œyi > 0� � zi
�.yi /

S.˛/j˛D0 D I Œyi D 0� Ai j˛D0 � �.ui /
�˚.ui /

�

q
2
�

C I Œyi > 0� � zi
�.zi /

�

q
2
�
:
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Classification of Multivariate Linear-Circular
Data with Nonignorable Missing Values

Francesco Lagona and Marco Picone

Abstract A latent-class mixture model is proposed for the unsupervised
classification of incomplete multivariate data with mixed linear and circular
components. The model allows for nonignorable missing values and integrates
circular and normal densities to capture the association between toroidal clusters
of circular observations and elliptical clusters of linear observations. Maximum
likelihood estimation of the model is facilitated by an EM algorithm that treats
unknown class membership and missing values as different sources of incomplete
information. The model is exploited on incomplete time series of wind speed and
direction and wave height and direction to identify a number of sea regimes.

1 Introduction

Mixture models [16] provide a general approach to classification in multivariate
analysis. The joint distribution of the data is approximated by a mixture of
tractable multivariate distributions, which represent cluster locations and shapes.
The classification problem is solved as a missing value problem, by treating the
unknown cluster membership of each observation as a missing value, to be estimated
from the data.

Sea conditions are often monitored by taking circular and linear measurements
such as wave and wind direction, wind speed, and wave height. Mixture-based
clustering of these data is helpful to identify relevant sea regimes, i.e. specific
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shapes that the distribution of wind and wave data takes under latent environmental
conditions.

Mixture-based clustering of marine data is, however, complicated by the con-
currence of different supports on which the data are observed. While a pair
of wind speed and wave height is a point in the plane, profiles of wind and wave
directions are points in a torus, i.e. a surface generated by revolving a circle in
three-dimensional space.

Most of the literature on mixture-based classification methods is associated with
the analysis of multivariate data whose components share the same support. Linear
observations are typically clustered by mixtures of multivariate normal distributions
[2]. Multivariate categorical observations are instead typically clustered by using
latent-class models that involve mixtures of multinomial distributions [6]. In
directional statistics, while mixtures of Kent distributions are popular in the analysis
of spherical data [16], toroidal data have been recently modeled by mixtures of
bivariate circular densities in bioinformatics [14] and environmetrics [11, 12]. The
literature on the unsupervised classification of multivariate data of mixed type is
instead limited and relies either on the availability of complete data information or
on the assumption of ignorable missing values [7, 11].

In the case of incomplete data information, the mechanism that generates the
missing values should be taken in account, in order to obtain efficient MLEs [17].
If the data are ignorably missing, i.e. the probability of not observing a value
does not depend on the unobserved value, then efficient MLEs can be found by
maximizing the marginal likelihood, obtained by integrating the likelihood function
of the complete data with respect to the missing values. Marine databases are
often incomplete because of device malfunctioning and ignorability can be assumed
if malfunctioning does not depend on the conditions of the sea. If, otherwise,
the data are non-ignorably missing, then a missing value is informative of the
unobserved value and a more complex likelihood function must be maximized,
obtained by specifying the joint distribution of the complete data and the missing
pattern. Such joint models can be classified into either “pattern mixture models”
or “selection models.” A pattern mixture model factors the joint distribution into
the conditional distribution of the response given the missingness pattern, and the
marginal distribution of missing indicators. A selection model factors the joint
distribution into the marginal distribution of the response and the conditional
distribution of missing indicators given the response. Because both specifications
have advantages and disadvantages, the choice of a specific approach relies on
the purpose of the analysis [13]. In classification studies the interest lies in the
identification of clusters according to the marginal distribution of the response,
and the selection model has the advantage of directly parameterizing the marginal
distribution of the response. A number of different selection models have been
proposed in the literature, depending on the assumptions on the process that
generates the missing values. Shared random effect models [1] are parsimonious
selection models where the missingness is dependent on an unobserved latent
class, underlying the observed and unobserved response variables. In this paper we
propose a discrete shared random effect model for the unsupervised classification of
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mixed linear and circular data, affected by nonignorable missing values. A suitable
E-M algorithm is exploited for maximum-likelihood estimation, by extending the
algorithm developed by Hunt and Jorgensen [7] to handle nonignorable missing
values.

2 Data

Relevant wind events in the Adriatic Sea are typically generated by the sirocco
wind that blows from SE along the major basin axis, and by the bora flow that
creates fine-structured jets within the Dinaric Alps on the eastern Adriatic coast.
Wind-wave data are traditionally examined by exploiting numerical wind-wave
models. These models, well suited for the analysis of ocean waves, are not flexible
enough to account for the complex orography of semi-enclosed basins and, as
a result, give biased results in Adriatic studies [3]. When numerical wind-wave
models are problematic, sea conditions can be alternatively described in terms of
representative wave regimes in specific areas, characterized by the probability of
occurrence and corresponding to dominant environmental conditions (e.g., wind
conditions), acting in the area and during a period of interest [10]. The data normally
exploited for this purpose are environmental observations taken by buoys and tide
gauges, located within the study area.

The data that motivated this paper are hourly, quadrivariate profiles with two
linear and two circular components: wind speed and wave height, wind direction
and wave direction. Hourly wave height and direction were taken in the period
01/18/2011–03/09/2011 by a new-generation buoy, located in the Adriatic sea at
about 30 km from the coast. Hourly wind speed and direction were obtained from
the nearest tide gauge, located at Ancona.

These data were part of a calibration campaign of the GPS device, used by the
buoy and the tide gauge for data transmission. Almost one third of the dataset
included profiles with at least a missing value. It was empirically noticed that
missing data occurred more often during episodes of bad weather conditions than
under good conditions. This could indicate a violation of the missing-at-random
assumption, because the conditional probability of device malfunctioning, given
the observed data, may depend on the value that the device has not transmitted.
For example, high-speed wind and high waves might increase the probability of a
buoy transmission error. In this paper we accordingly assume that missing values of
wave height and wind speed are nonignorable, and, as a result, the contribution of
missing patterns to the likelihood may not be ignored, complicating the model-based
classification of the data.

Figure 1 displays the scatterplots of the circular and the linear observations,
after discarding the incomplete profiles. For simplicity, bivariate circular data are
plotted on the plane, although data points are actually in a torus. In particular, points
coordinates in the left-hand side plot of the figure indicate hourly directions from
which the wind blows and the wave travels, respectively. Points coordinates on the
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Fig. 1 Hourly observations of wave and wind direction (left) and wave log-height and wind log-
speed during winter in the Ancona area

right-hand side of the figure indicates the distribution of the log-transformed values
of wind speed and wave height. The interpretation of these data is complicated by
the complex orography of the Adriatic sea. What we observe, however, could be
the result of the mixing of a number of latent regimes of the sea, conditionally
to which the distribution of the data takes a shape that is easier to interpret than
the shape taken by the marginal distribution. By taking a latent-class approach, we
try to identify these latent regimes by associating toroidal and planar clusters that
provide an intuitively appealing partitioning of the two scatterplots of Fig. 1, and,
when mixed together, adequately approximate the marginal distribution of the data.

3 Model-Based Classification of Linear and Circular Data

The data described in Sect. 2 are gathered in the form of n profiles zi D .xi ;y i ; r i /,
i D 1; : : : ; n, which include two circular components, say xi D .xi1; xi2/ 2
.��; ��2, two linear components, say y i D .yi1; yi2/ 2 R

2 and a pattern of missing
indicators, say r i D .ri1; ri2/, where ri1 D 1 if yi1 is observed and ri1 D 0 otherwise,
while ri2 D 1 if yi2 is observed and ri2 D 0 otherwise. We model these data by
exploiting the mixture

f .zj	;ˇ;�;
; �/ D
KX

kD1
�kfc.xjˇk/fl .yj�k/p.r1jy1;
k/p.r2jy2; �k/; (1)

where 	 D .�1; : : : ; �K/ are unknown mixing weights, �1 C � � � C �K D 1,
while fc.xjˇk/ and fl .yj�k/ are bivariate densities, respectively, defined on the
torus and on the plane, and known up two independent vectors of parameters,
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ˇ D .ˇ1; : : : ;ˇK/ and � D .�1; : : : ;�K/. Finally,

p.r1jy1;
k/ Dpr11k.1 � p1k/
1�r1

p.r2jy2; �k/ Dpr22k.1 � p2k/
1�r2

are two Bernoulli distributions, with parameters linked to the response through a
logistic transformation, namely

p1k D exp.�0k C �1ky1/

1C exp.�0k C �1ky1/

p2k D exp.�0k C �1ky2/

1C exp.�0k C �1ky2/
: (2)

Equations (2) are exploited as simple models for the mechanism that generate
missing values of wind speed and wave height, within each latent class. In particular,
parameters �1k and �1k indicate the influence of a value on the probability of
not observing that value. When these parameters are equal to zero, the missing
mechanism does not depend on the unobserved value and the missing value is
ignorable.

In mixture-based classification studies, mixing weights can be conveniently
interpreted as the cell probabilities of a latent multinomial vector w D .w1; : : : ;wK/.
As a result, the mixture above can be described as a two-level hierarchical model.
At the upper level of the hierarchy, directions (e.g., wind and wave directions)
and intensities (e.g., wind speed and wave height) and missing patterns are
separately modeled by parametric distributions. These distributions are then non-
parametrically associated into K latent classes, at the lower level of the hierarchy.
This hierarchy allows to transform the data clustering problem into a missing value
problem, where missing class membership wi of each profile can be predicted by its
expectation E.wi jzi /, whose kth component is given by

�ik D E.wikjzi / D �kfc.xi jˇk/fl .y i j�k/p.ri1jyi1;
k/p.ri2jyi1; �k/
PK

kD1 �kfc.xi jˇk/fl .y i j�k/p.ri1jyi1;
k/p.ri2jyi1; �k/
: (3)

The distribution fc.xjˇ/ of bivariate circular data can be specified in a number of
different ways [14]. The sine model is a parametric distribution on the torus which
embeds naturally the bivariate normal distribution when the range of observations
is small. Its density is given by

fc.xI ˇ/ D exp .ˇ11 cos.x1 � ˇ1/C ˇ22 cos.x2 � ˇ2/C ˇ12 sin.x1 � ˇ1/ sin.x2 � ˇ2//
C.ˇ/

;

(4)
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with normalizing constant

C.ˇ/ D 4�2
1X

mD0

 
2m

m

!�
ˇ212

4ˇ11ˇ22

�m

Im.ˇ11/Im.ˇ22/;

where

Im.x/ D 1

�

Z �

0

ex cos t cos.mt/dt

is the modified Bessel function of orderm.
The sine model can be viewed as a bivariate generalization of the von Mises

distribution, where ˇ12 accounts for the statistical dependence between x1 and x2.
The two univariate marginal densities

fc.xi I ˇ/ D
Z �

��
fc.xI ˇ/dxj D 2�

C.ˇ/
I0.a.xi // exp.ˇii cos.xi � ˇi // i D 1; 2

(5)

depend on the marginal mean angles ˇi ; i D 1; 2 and on the shape parameters

a.xi / D �
ˇ2jj C ˇ212 sin2.xi � ˇi /

�1=2
i D 1; 2: (6)

If ˇ12 D 0, then a.xi /Dˇjj, i D 1; 2 and, as a result, x1 and x2 are independent and
each of them assumes the von Mises distribution with marginal mean angles ˇi and
marginal concentrations ˇii . The conditional distributions

fc.xi jxj I ˇ/ D fc.xI ˇ/

fc.xj I ˇ/
D exp.a.xi / cos.xi � ˇi � b.xj ///

2�I0.a.xi //
(7)

are von Mises with conditional mean angles ˇi C b.xj / and conditional concentra-
tions a.xi /, where

b.xj / D arctan

�
ˇ12

ˇjj
sin.xj � ˇj /

�

: (8)

In model (1), we use a family of K sine models fc.xjˇk/, indexed by the five
parameters ˇk D .ˇ1k; ˇ2k; ˇ11k; ˇ22k; ˇ12k/, to define K toroidal clusters centered
at .ˇ1k; ˇ2k/ and shaped by the parameters .ˇ11k; ˇ22k; ˇ12k/.

To model the joint distribution of (log-transformed) wind speed and wave height,
we use a family of K bivariate normal densities

fl.y I �k/ D N

��
�1k

�2k

�

;

�
�11k �12k

�12k �22k

��

: (9)
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4 Maximum Likelihood Estimation with Non Ignorable
Missing Values

Because our data are in the form of incomplete profiles, we, respectively, refer to
xi;mis and xi;obs as the missing and observed circular components of profile i and,
analogously, to y i;mis and y i;obs as the missing and observed linear components.

If the missing values are nonignorable, the maximum likelihood estimate of the
parameter � D .	;ˇ;�;
; �/ is the maximum point of the marginal log-likelihood
function

logL.�/D
nX

iD1
log

Z KX

kD1
�kfc.xi jˇk/fl .y i j�k/p.ri1jyi1;
k/p.ri2jyi2; �k/dxi;misdy i;mis

D
nX

iD1
logLi .�/

D
nX

iD1
log

KX

kD1
�kLic.ˇk/Li l.�k/Lir1.
k/Lir2.�k// (10)

where Li.�/ is the likelihood contribution of the i th profile, Lic.ˇk/ and Li l.�k/
are, respectively, the conditional likelihood contributions of the circular and linear
components of the i th profile, given the latent class k, and finally Lir1.
k/ and
Lir2.�k/ are the conditional likelihood contributions of the missing patterns, given
the latent class k.

Because direct maximization of (10) can be computationally problematic, we
exploit an EM algorithm that generates a sequence . O� t ; t D 1; 2; : : :/ of estimates
such that L. O� t / � L. O� t�1/. The algorithm is based on the iterative maximization
of the expected value of a complete-data log-likelihood function, computed with
respect to the conditional distribution of the unobserved quantities given the
observed data. More precisely, we treat the unknown class membership wi and
the unobserved data .xi;mis;y i;mis/ as missing values and define the complete log-
likelihood function as a sum of five terms, as follows

logLcomp.�/ D
nX

iD1
logLi;comp.�/;

where

Li;comp.�/ D
KX

kD1
wik

n
log�k C logfc.xi I ˇk/C logfl .y i I �k/

C logp.ri1jyi1I 
k/C logp.ri2jyi2I �k/
o
:
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Given the estimate O� t , provided by the algorithm at step t , a new point O� tC1 is
computed within step t C 1, as follows. We first compute (E step) the expected
value of logLi;comp.�/ with respect to the conditional distribution of the missing
values .wi ;xi;mis;y i;mis/ given the observed data y i;obs, evaluated at � D O� t , say

.E step/ Qi.�j O� t / D Et

�
logLi;comp.�/jzi;obs

�
i D 1; : : : ; n: (11)

We then (M step) maximize Q.�j O� t /D Pn
i D 1 Qi .�j O� t / by finding the roots O� tC1

of the expected complete data score equations

(M step)
@

@�
Q.�j O� t / D

nX

iD1

@

@�
Qi.�j O� t / D

nX

iD1
si .�j O� t / D 0; (12)

where si .�j O� t / is the i -th score vector, obtained by deriving the i th contribution to
the expected complete log-likelihood with respect to the parameters.

Variances of the estimates can be found on the diagonal of the inverse of the
information matrix I.�/, which can be consistently estimated by the empirical
information matrix

OI D
nX

iD1
si . O�T /sT

i .
O�T /;

where O�T is the last parameter update, as provided by the algorithm upon conver-
gence.

The practical implementation of both the E- and the M-step of the algorithm is
facilitated by the conditional independence assumption between circular and linear
data and missing patterns, which holds under (1). As a result, the expected value of
the complete log-likelihood function with respect to the conditional distribution of
the missing values given the observed data is (at the .tC1/-th step of the algorithm)
given by

Q.�j O� t / D
nX

iD1

KX

kD1
O�tik log�k

C
nX

iD1

KX

kD1
O�tikEt .logfc.xi I ˇk/jxi;obs;wik D 1/

C
nX

iD1

KX

kD1
O�tikEt

�
logfl .y i I �k/jy i;obs;wik D 1

�
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C
nX

iD1

KX

kD1
O�tikEt

�
logp.ri1jyi1/jy i;obs;wik D 1

�

C
nX

iD1

KX

kD1
O�tikEt

�
logp.ri2jyi2/jy i;obs;wik D 1

�

DQ1.	j O� t /CQ2.ˇj O� t /CQ3.�j O� t /CQ4.
j O� t /CQ5.�j O� t /: (13)

Therefore, the E step of the algorithm essentially reduces to the evaluation of
five updating functions. Functions Q2 and Q3 can be evaluated by replacing the
sufficient statistics by their expected values (see, for example, [12, 18] for the
computation of the expected sufficient statistics under bivariate von Mises and
normal densities). The expectations in Q4 and Q5 can be instead evaluated by
computing a Monte Carlo average, obtained by sampling from the conditional
distribution of the missing values y i;mis given the observed values .y i;obs; r i /.
A traditional sampling strategy relies on a Gibbs sampler along with the adaptive
rejection algorithm of Gilks and Wild [5], as described in [8]. The M step of
the algorithm is carried out by maximizing separately the five updating equations.
The first updating function,Q1, is maximized by

O�tC1;k D
Pn

iD1 O�tik

n
; k D 1; : : : ; K:

Function Q2 can be maximized by following the iterative procedure suggested in
[12], whileQ3 can be maximized by using the well-known updating formulas of the
EM algorithm for mixtures of bivariate normal distributions. Finally, maximization
of Q4 and Q5 reduces to the estimation of a battery of two weighted logistic
regressions, each estimated on a augmented dataset, with each y i;mis filled by a set
of mi samples drawn from the conditional distribution of the missing values given
the observed values, each contributing a weight 1=mi .

Upon convergence of the algorithm the probabilities O�ik can be exploited to
cluster incomplete profiles into K groups by modal allocation, i.e. assigning each
profile i to the latent class with the highest probability O�ik .

The EM algorithm can get stuck in local maxima of the log-likelihood function or
can be attracted by singularities at the edge of the parameter space, where the log-
likelihood is unbounded. The presence of multiple local and spurious maxima is
well documented in the case of mixtures of heteroschedastic normal distributions
[16] and less widely known in the case of bivariate circular distributions [14].
A number of strategies have been proposed to select a local maximizer and detect a
spurious maximizer. To avoid local maxima we follow a short-runs strategy (known
as the emEM algorithm [4]), by running the EM algorithm from a number of random
initializations, stopping at iteration t as soon as
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logL. O� t / � logL. O� t�1/
logL. O� t /� logL. O�0/

� �:

We have observed that convergence to spurious maxima is fast (a phenomenon that
is well known in the case of mixtures of multivariate normal densities [9]) and can
be detected within short EM runs, by monitoring both the class proportions O�tk and
the eigenvalues of the covariance matrices

 Ǒ
t11k

Ǒ
t12k

Ǒ
t12k

Ǒ
t22k

!�1 � O�t11k O�t12k
O�t12k O�t22k

�

:

After excluding spurious solutions, we select the output of the EM short run that
maximizes the log-likelihood, which is then used to initialize a long-run of the EM
algorithm.

5 Results

We have estimated a number of mixture models from the data illustrated in Sect. 2,
by varying the number of components from 2 to 5. EM short runs were stopped
by using a threshold �D 10�3, typically reached between 10 and 20 iterations,
depending on the dimensionK of the model. The subsequent long EM run typically
required between 100 and 200 iterations to reach convergence (we stopped the
algorithm when the log-likelihood difference between successive iterations was
less than 10�6). EM short runs were initialized as in [7]. We randomly split the
observations into K groups. The first M step is then performed on the basis of
these initial groupings. Circular parameters are estimated from the available data
by the method of moments, as suggested in [15]. Means and covariance matrices
of the normal components are estimated by their empirical counterparts, using the
available data, by following [18]. To select the number of components, we computed
the Bayesian Information Criterion (BIC) which suggested a model with KD 2

components. The model estimates, displayed in Table 1, indicate locations and
shapes of three pairs of toroidal and planar clusters, depicted in Fig. 2 through
contour lines of bivariate densities.

The first component of the model includes about half of the sample ( O�1 D 0:46)
and is associated with periods of either calm sea or sirocco episodes. Under this
regime, wave and wind directions are weakly correlated. As expected, wind and
wave directions are poorly synchronized under good sea conditions, because if wind
episodes are weak then wave direction is more influenced by marine currents than
by wind direction.

The second component is instead associated with bora episodes. Under the
second component, bora jets blowing from north drive high waves that travel along
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Table 1 Parameter estimates (standard errors within brackets) of a two-
component discrete shared random effect model

Component
Parameter 1 2

ˇ1k 1.29 0.19
(wave mean direction) (0.07) (0.03)
ˇ2k 1.34 0.06
(wind mean direction) (0.05) (0.06)
ˇ11k 0.77 6.79
(wave directional concentration) (0.11) (0.51)
ˇ22k 0.07 4.89
(wind directional concentration) (0.16) (0.09)
ˇ12k 0.85 7.65
(wind/wave directional inverse correlation) (0.23) (0.28)
�1k �0:83 0.33
(wave mean height) (0.05) (1.69)
�2k 1.12 2.00
(wind mean speed) (0.22) (0.38)
�11k 0.64 0.25
(wave height variance) (0.01) (0.29)
�22k 0.41 0.12
(wind speed variance) (0.29) (0.64)
�12k 0.29 0.13
(wind/wave covariance) (0.03) (0.10)
�0k 2.85 �3:05
(wind missing mechanism) (0.00) (0.02)
�1k 0.01 0.98
(wind missing mechanism) (0.05) (0.01)
�0k 3.91 �2:1
(wave missing mechanism) (0.01) (0.07)
�1k �0:03 1.97
(wave missing mechanism) (0.01) (0.01)
� 0.46 0.54
(component weight) (0.02) (0.01)

the major axis of the basin. Compared to episodes of calm sea, wind and wave
directions appear now strongly synchronized.

This classification is carried out by accounting for possible nonignorable missing
values of wave height and wind speed. Interestingly, the estimated coefficients of
the two missing mechanisms, �12 and �12, are significant at a 95% confidence level,
indicating that missing values are nonignorable under bora episodes (component 2),
which are associated with bad weather conditions. Under good environmental
conditions (component 1), such significance vanishes (�11 and �11 are not significant
at a 95% confidence level) and the probability to observe a missing value of wind
speed and wave height does not depend significantly on the unobserved values of
wind speed and wave height.
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Fig. 2 Contour plots of the conditional circular and normal bivariate densities, as estimated by
fitting a 2-component mixture model (first component: top; second component: bottom) and the
classification output obtained by modal allocation

Overall, the model indicates that the influence of coastal wind on offshore waves
changes under different environmental regimes. The (marginal) weak correlation
between wind speed and wave height can be then explained by the presence of a
regime under which coastal winds do not generate waves of significant height.
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Multidimensional Connected Set Detection
in Clustering Based on Nonparametric
Density Estimation

Giovanna Menardi

Abstract Clustering methods based on nonparametric density estimation hinge on
the idea of identifying groups with the level sets of the probability distribution
underlying data. Any section of such distribution, at a given threshold, identifies
a level set, being the region with density greater than the threshold. The aim is to
find the maximum connected components of this region, as the threshold varies.
In this way, a hierarchical structure of the number of groups for each threshold is
created.

In multidimensional spaces, identification of the connected sets is nontrivial. The
use of spatial tessellation such as the Delaunay triangulation has been success-
fully adopted to this aim but its computational complexity is too high for large
dimensions. We discuss the use of an alternative procedure for identifying the
connected regions associated with the level sets of a density function. The proposed
procedure claims a computational complexity which depends only mildly on the
data dimension, thus overcoming the main limitations of the spatial tessellation.
The main idea behind this contribution is to emulate the unidimensional procedure
to identify connected sets. The method is illustrated with some numerical examples.

1 Introduction

Cluster analysis refers to a general class of methods to explore data with the aim
of finding groups of similar observations. The goal is, usually, pursued on the basis
of some criterion based on the distance between observations, or alternatively by
evaluating the density underlying data. The latter approach, having an explicitly
probabilistic motivation, goes back to [8], who defined groups as “regions of high
density separated from other such regions by regions of low density.” Data are
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supposed to be a sample of i.i.d. realizations from an unknown probability density
function. The estimation of such function allows for detection of the high density
regions, which approximate the population clusters.

The actual formalization of this approach may follow either a parametric or a
nonparametric route: model-based clustering (e.g. [7]) rests on the idea that each
cluster corresponds to a subpopulation, typically belonging to some parametric
family. The overall population is then modeled as a mixture of these subpopulations.
Alternatively, density estimation is performed by nonparametric methods. The two
classes of methods differ not only for the approach adopted to estimate the density
function, but there is also a conceptual difference. The nonparametric approach
links the clusters directly to the modes of the density underlying the data: any
section of the density function identifies a density level set, being the region
with density above the threshold level. Clusters are associated with the maximum
connected regions of the level set. As the threshold varies, so the cluster structure
varies and may be represented according to a hierarchical structure in the form of
a tree, where each leave corresponds to a mode of the density function. Clustering
procedures based on this latter approach claim some potentialities, compared to the
distance-based competitors. The correspondence between groups and high density
regions makes possible both the detection of clusters having arbitrary shape and the
conceptual definition of the number of groups, which is then operatively estimable.
Some examples of procedures which follow this approach are [2, 10–12].

A further nonparametric density-based clustering technique has been proposed
by [1] and it is referred to as pdfCluster. It claims some main original
contributions: an automatic procedure for recognizing the number of groups is
provided, by enlightening a connection between the number of the modes of f
and the number of connected sets associated with different sections of the density
function. Moreover, detection of the high-density connected regions is performed
by a suitable manipulation of the Delaunay triangulation. The observations with
low density are, then, allocated to the detected clusters by following a logic typical
of supervised classification. Beyond the mentioned methodological advantages, the
application of the procedure has resulted very effective in several real domains. See,
for instance, [3].

The convenience of using a clustering approach based on nonparametric density
estimation is limited by a main weakness which this work is meant to focus on.
While in the univariate setting detection of the connected components is trivial, in
multidimensional spaces these are not explicitly defined, and operatively difficult to
identify. In particular, the strategy proposed by [1] has a computational complexity
which depends only mildly on the sample size, but it grows exponentially with the
dimensionality of data, thus making the application of the procedure unfeasible for
large dimensions.

In this work an alternative to the Delaunay triangulation is proposed, and
illustrated by real data examples. In Sect. 2 the use of the Delaunay triangulation
in the context of density-based clustering methods is described. Section 3 presents
an alternative idea to tackle the issue of detecting high density connected sets. Some
applications to real data are illustrated in Sect. 4.
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2 The Use of Delaunay Triangulation to Detect Connected
Sets

Let X D .x1; : : : ; xn/
0, xi 2 R

d be the observations to be clustered, supposed as a
sample of n independent and identically distributed realizations of a d -dimensional
random vector x with unknown probability density function f .

For each constant k; 0 � k � max f; the level set R.k/ may be defined as

R.k/ D fx 2 R
d W f .x/ � kg:

When f is unimodal, R.k/ is a connected region, i.e. it cannot be described as
the union of two or more nonempty separated sets. Otherwise, it may be connected
or not. If it is disconnected, it is formed by two or more connected components,
corresponding to the regions around the modes of f which are encountered by the
section at the k level. See Fig. 1 for a simple bidimensional illustration.

The number of connected components of R.k/ varies with the threshold k, thus
generating a hierarchical structure which may be represented in the form of a tree,
which associates the number of connected components of R.k/ with each possible
choice of k [8]. See the right panel of Fig. 1 for an illustration. The empirical
analogue of R.k/ can be naturally defined as OR.k/ D fx 2 R

d W Of .x/ � kg;
with Of a nonparametric estimate of f:

The definitions of R.k/ and its connected components remain conceptually
unaltered in any dimension, but the feasibility of their detection decreases when
d increases. In the univariate setting, the existence of a total order relation allows
for an easy detection of connected sets because of their direct correspondence to
intervals. In multidimensional spaces, instead, there is no obvious representation of
connected regions, and their detection is, then, nontrivial. A first artifice to simplify
the problem is to restrict the attention to the set

S.k/ D fxi 2 X W Of .xi / � kg

and to the identification of its connected components. The search is thus moved
from a continuous multidimensional space to a finite and discrete set. Next, notions
from graph theory may be exploited to convert detection of connected components
of S.k/ into detection of connected components of a graph G built on it. Clearly,
a key matter becomes to suitably set the edges of a graph whose vertices are the
elements of S.k/.

In pdfCluster, the issue is faced by means of geometric procedures such as
the Delaunay graph, being the dual of the Voronoi tessellation. Given a set of data
X D .x1; : : : ; xn/

0; the Voronoi diagram of X is a partition of R
d in n regions

V.1/; : : : ; V .n/ such those each region V.i/ is the set of all the points closer to
xi than to any other point of X; i D 1; : : : ; n. From the Voronoi tessellation, the
Delaunay triangulation can be formed by connecting through an edge the pairs
of points (xi ; xj ), when the associated regions of the Voronoi tessellation share
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Fig. 1 A sample of size 50 simulated from three subpopulations (left plot). A section at the level
k cuts the trimodal density function (middle plot) and identifies two connected components of the
level set. The level sets are indicated on the left panel with a dashed line. The right plot illustrates
the cluster tree which associates the number of connected components of R.k/ with each choice
of k

a portion of their boundary facets. These edges partition the space into a set of
new polyhedra. Since, in R

2, these polyhedra are triangles this tessellation is often
referred to as Delaunay triangulation. From a computational point of view the
Delaunay triangulation may be obtained directly, without building the Voronoi
diagram.

After building the Delaunay graph, the sample points belonging to S.k/; and
the edges connecting these points only are considered, for each section k of the
density estimate Of . The connected components of the subgraphs associated with
the S.k/’s are then identified as the sets of path-connected observations, namely
observations which are pair-wise connected through an edge of the subgraph. This
task is straightforward and several algorithms have been designed. See, for example,
the depth-first search and the breadth-first search algorithms (see, e.g., [4]). An
illustration of the use of the Delaunay triangulation to find high-density connected
set is given in Fig. 2 and the main step of the whole pdfCluster procedure is
summarized in Table 1.

The use of the Delaunay triangulation is proven to be very suitable to the
aim of finding connected sets in multidimensional space: first, the edges of the
Delaunay triangulation are the facets of polyhedra in R

d , which are convex sets
and, then, connected by definition. Thus, for large n, each polyhedron approximates
a corresponding connected component of the unobserved set R.k/. Second, the
Delaunay triangulation may be considered as a natural generalization of the univari-
ate procedure for detecting the connected components, because spatial tessellation
defines a contiguity relationship in the space: sample points are connected by
an edge of the Delaunay triangulation when the associated Voronoi regions are
contiguous.

The computational complexity to compute the Delaunay triangulation is very
competitive with standard methods based on distance measures when d D 2 because
at most O.n logn/ operations are required. However, the number of required

operations has orderO.n
b

d
2 c

b d2 cŠ / for larger d; thus making the triangulation unfeasible

for large dimensions.
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Fig. 2 Left panel: Delaunay triangulation of the data in Fig. 1. Right panel: polyhedra resulting by
removing the vertexes not belonging to S.k/ and the edges connecting them from the triangulation,
for a given k

Table 1 Main steps of the pdfCluster procedure

compute Of ;
find the Delaunay triangulationD of X
while 0 � k � max Of do

identify S.k/ D fxi W Of .xi / � kg;
extract from D the subgraph Dk; formed by vertices and edges in S.k/;
find the graph connected components of Dk (e.g. by depth-first-search);
next k;

end while
build the cluster tree and form the high-density clusters;
allocate remaining points to the high-density cluster for which the log-likelihood ratio

between the two highest densities, conditional to the group, is maximum.

3 Generalizing the Detection of Univariate Connected Sets

In this section, a procedure to approximate the connected components of S.k/,
alternative to the Delaunay triangulation and computationally feasible even in large
dimensions, is presented. The main idea behind this contribution is to emulate the
unidimensional procedure to identify connected sets. Subsets of the real line are
connected if and only if they are intervals. Hence, an incremental scheme may be
adopted to operationally detect connected sets, so that the high-density observations
are aggregated in succession, if they result path-connected. As R is totally ordered,
the path between observations is somehow forced, being the segment joining pairs
of contiguous observations. Thus, when the path connecting two high-density data
points is broken by a low density observation, a new connected set arises.

This way of proceeding is clearly not directly applicable in R
d ; because

the probability that a (low density) data point lies on the path connecting two



180 G. Menardi

Fig. 3 An illustration of the proposed procedure. On the left, the pair formed by the points with
larger distance is not connected because there exist low density points in the path joining them;
the other considered pair is path-connected. On the right, the derived subgraph associated with the
dashed level set

(high density) observations is zero. However, the unidimensional scheme may be
generalized to R

d by relaxing, in some way, the idea of connecting path between
the observations and allowing that such path is d -dimensional itself. Operationally,
given a threshold k of the density estimate Of ; the level set S.k/ is identified.
Then, for each pair .xi ; xj / 2 S.k/; the two points are said to be connected if the
hypercylinder of radius � and the two basis centered at xi ; xj does not contain any
lower density observation. Equivalently, xi and xj belong to two distinct connected
components of S.k/ if at least one lower density point has distance less than � from
the line segment joining xi and xj . The procedure allows to find the path-connected
points of the elements in S.k/: The connected components of S.k/ may be then
easily identified as union of the connected pairs which share at least an observation.
An illustration for d D 2 is given in Fig. 3.

Except for the procedure to detect high-density connected components, clus-
tering then proceeds by faithfully following the pdfCluster approach, as
summarized in Table 2.

Clearly, a critical step of the procedure is the choice of the radius of the
hypercylinders. Too small values for � would lead to connect observations belonging
to distinct connected sets, while too large values would result in the identification of
spurious groups. While a choice of � targeted to the specific problem would be
desirable, this is a project by itself and is not tackled here. For the time being,
intuition, also endorsed by some preliminary simulations, suggests to select the
radius of each cylinder as proportional to the distance between the observations
it links, with constant less than 1. When groups do not overlap, this choice turns out
to be robust to a wide range of choices for the constant of proportionality.
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Table 2 Main steps of the method for detecting high-density connected sets

compute Of ;
while 0 � k � max Of do

identify S.k/ D fxi W Of .xi / � kg;
initialize the graph Gk with vertices S.k/ and no edges;

for all .xi ; xj / 2 S.k/ do
find the hypercylinder H.i; j / of radius � and basis centered at xi ; xj
if À xk 2 XnS.k/ such that xk 2 H.i; j / then

add edge .xi ; xj / in Gk ;
end if

end for
find the graph connected components of Gk (e.g. by depth-first-search);
next k;

end while
build the cluster tree and form the high-density clusters;
allocate remaining points to the high-density cluster for which the log-likelihood ratio

between the two highest densities, conditional to the group, is maximum.

From a computational point of view,O.n/ comparisons are performed to evaluate
the path-connected elements of each data point. Moreover, O.n/ operations are
required by the “depth-first search” algorithm to identify the connected components
of S.k/: These operations are executed for a grid of considered values of k:
Although strongly dependent on the sample size, the advantage of the procedure
is that it is independent of d:

4 Numerical Examples

An application of the proposed procedure to several data sets has been performed
with the twofold aim of comparing the detected partitions with the clusters found
by running alternative methods, and testing the ability of the proposed method
in reconstructing an existent clustering structure (this reason explains the use of
data with a known label class). As competing methods, the original pdfCluster
method and a hierarchical distance-based method with complete linkage have been
considered.

For the actual implementation of the proposed procedure, a kernel density
estimator with Gaussian kernel and diagonal smoothing matrix has been selected.
The smoothing parameters have been set to the asymptotically optimal value under
the assumption of multivariate normality. While this choice may appear naive in a
context where the presence of groups is expected and the assumption of normality
is then likely not to hold, it produces sensible results in most of the applications.
Concerning the radius of the hypercylinders, the following examples refer to setting
the parameter as proportional to the distance between the observations it links,
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with constant equal to 1=5. The number of groups is automatically selected when
pdfCluster and the proposed procedure are run. Instead, for the distance-based
method the number of clusters has been set to the actual number of groups in data.

In order to allow for comparison with pdfCluster, we consider here data with
moderate dimension only or we operate a dimension reduction pre-processing step
by means of principal components analysis. It is worth to remind, however, that the
computational complexity of the proposed procedure to find the connected high-
density regions does not change with the data dimension.

The first considered example is known as the Flea-beetles data set [9] and it
includes 74 measures of 6 body characteristics from three species of beetles: Ch.
concinna, Ch. heptapotamica, and Ch. heikertingeri, corresponding to the groups
we aim at identifying.

As a second example, we cluster the Wine data [6], including 13 chemical char-
acteristics of 178 wines derived from three different cultivars (Barolo, Grignolino,
Barbera), which we aim at reconstructing. Clustering has been performed on the
first three principal components of the data.

The third considered data set, referred to as the Olive oil data [5], represents
8 chemical measurements on nD 572 specimens of olive oil produced in three
macro-areas of Italy: South, Sardinia island, Centre-North. These macro-areas
result from the aggregation of 9 sub-regions of Italy: Apulia North and South,
Calabria, Sicily, Sardinia, coast and inland, Umbria, Liguria East and West. The
clustering algorithms have been applied to reconstruct the geographical origin of
the specimens. Since the raw data are of compositional nature, totalling 10,000, an
additive log-ratio transform has been adopted, following [1]. Clustering has been
performed on the first five principal components of the data.

Clusters found on the Flea-beetles data (see Table 3) by means of the proposed
procedure perfectly overlap the actual partition of data in the three species. The
same partition is obtained by running the original pdfCluster method while the
hierarchical procedure misclassifies a few units.

Concerning the wine data (Table 4), the procedure is able to reconstruct the actual
clustering structure with an accuracy greater than 95%. Notably, it again produces
the same partition as the one obtained by applying the original pdfCluster
method with the Delaunay triangulation. Groups obtained with the distance-based
method, instead, do not match well the actual cultivars of origins of the wines.

Clustering the olive oil data (Table 5) turns out to be more challenging than
the other applications because groups present a high degree of overlapping. The
distance-based method produces a partition which does not even closely match the
actual groups. The proposed strategy identifies four groups, instead of the three
geographical macro-area of origin of the oils, because the observations originated
from the Centre-North macro-area, are splitted into two groups. Except for the
additional cluster, allocation of the observations closely corresponds to the one
produced by using the Delaunay triangulation. However, the forth detected group
is still very homogeneous, gathering observations which come exclusively from the
Northern regions. Moreover, a suitable setting of the � parameter entails a greater
agreement with the partition produced by the original pdfCluster method. At
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Table 3 Flea beetles data: cross-classification frequencies of the actual groups and of the results
of different clustering methods

New procedure PdfCluster Complete linkage

1 2 3 1 2 3 1 2 3

Ch. concinna 21 0 0 21 0 0 16 5 0

Ch. heptapotamica 0 22 0 0 22 0 0 22 0

Ch. heikertingeri 0 0 31 0 0 31 0 0 31

Table 4 Wine data: cross-classification frequencies of the actual groups and of the results of
different clustering methods

New procedure PdfCluster Complete linkage

1 2 3 1 2 3 1 2 3

Barolo 58 0 1 58 0 1 59 0 0

Grignolino 2 5 64 2 5 64 47 21 3

Barbera 0 48 0 0 48 0 0 1 47

Table 5 Olive oil data: cross-classification frequencies of the actual groups and of the results of
different clustering methods

New procedure PdfCluster Complete linkage

1 2 3 4 1 2 3 1 2 3

Apulia.north 25 0 0 0 2 0 0 25 0 0

Apulia.south 206 0 0 0 206 0 0 3 203 0

Calabria 56 0 0 0 56 0 0 53 3 0

Sicily 36 0 0 0 30 0 6 26 10 0

Sardinia.inland 0 65 0 0 0 65 0 65 0 0

Sardinia.coast 0 33 0 0 0 33 0 33 0 0

Liguria.east 0 0 49 1 0 1 49 37 0 13

Liguria.west 0 8 9 33 0 41 9 0 0 50

Umbria 0 0 51 0 0 0 51 51 0 0

this regard, Fig. 4 shows the number of clusters detected by the proposed procedure
as a function of the radius �: it is reassuring to note that the clustering solutions
showing the greatest stability to different values of � are also the ones with three
and four groups.

5 Further Remarks

The nonparametric approach to the clustering problem, in a density-based frame-
work, relies on a common definition of groups as the maximum connected com-
ponents associated with the level sets of the density underlying data. Assumed this
model as a basis of the clustering procedures, these are characterized by different
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ways of approximating the unknown involved features, namely (1) the level sets of
the density function and (2) their associated connected components. While leaving
unchanged the estimation of the former, with respect to the method of [1], in this
work a procedure alternative to the Delaunay triangulation has been presented,
pursuing the same task of approximating the latter unknown component.

In addition to pursuing the same task, the proposed procedure and the Delaunay
tessellation share a further conceptual analogy, being both interpretable as a
possible generalization of the univariate procedure: consider, in one dimension,
two observations which belong to the same level set and are contiguous. This
is equivalent to say that there are no lower density points in the path (segment)
connecting the two observations. Then, the two observations belong to the same
connected set. The Delaunay triangulation translates this idea by extending the
concept of contiguity in d dimensions. The proposed procedure, instead, extends
the concept of path connecting the observations.

Beyond these analogies, the two procedures cannot, in general, guarantee the
same results. However, when the number of connected components is estimated
to be the same by the two procedures, also the composition of the high-density
clusters is likely to mostly overlap, since the two procedures are based on the same
estimate of the level sets; in that case, also the (posterior) probabilities of cluster
membership will be comparable in the two procedures, because proportional to the
estimated density conditional to the groups. Since the number of detected connected
components depends on �, different setting of this parameter may determine a larger
or smaller agreement between the partitions produced by using the two procedures.
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Then, the proposed procedure turns out to be a valid alternative to the Delaunay
triangulation to approximate the connected components of the density level sets.
Unlike the Delaunay triangulation, requiring a number of operations which grows
exponentially with the data dimensions and depends only mildly on the sample size,
the proposed procedure has computational complexity which grows quadratically
with the sample size and depends on mildly on the data dimensions. These
considerations help us to choose when the use of one procedure is preferable to the
other: while large samples having low dimensionality may be efficiently handled
by the original pdfCluster procedure, higher dimensional data are better to be
treated by using the proposed procedure. A rule of thumb would suggest to use the
Delaunay triangulation for dimensionality not greater than 6.

The application of the proposed procedure to simulated and real data has shown
satisfactory performance because it provides a fair approximation of the original
pdfCluster method it aims at extending and, in general, produces meaningful
partitions of data. While an automatic criterion to select the tuning parameter �
would be certainly desirable, it should be borne in mind that some degree of
subjectiveness is unavoidable in clustering real data. However, the empirical
analysis has shown that sensible results are quite robust to wide ranges of choices of
the parameter. As a consequence, the user is suggested to compare results obtained
by varying � and to choose the partition which shows the greatest stability. There
is room for improvement and looking for an optimality criterion to choose the
parameter � as well as alternative and computationally more efficient routes to
identify the connected components will be the focus of future research.
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Abstract In this work we propose different spatial models to study hospital
recruitment, including some potentially explanatory variables, using data from
the hospital of Mulhouse a town located in the north-east of France. Interest is
on the distribution over geographical units of the number of patients living in
this geographical unit. Models considered are within the framework of Bayesian
latent Gaussian models. Our response variable is assumed to follow a binomial
distribution, with logit link, whose parameters are the population in the geographical
unit and the corresponding risk. The structured additive predictor accounts for
effects of various covariates in an additive way, including smoothing functions of the
covariates (for example a spatial effect). To approximate posterior marginals, which
are not available in closed form, we use integrated nested Laplace approximations
(INLA), recently proposed for approximate Bayesian inference in latent Gaussian
models. INLA has the advantage of giving very accurate approximations and being
faster than MCMC methods when the number of hyperparameters does not exceed 6
(as in our case). Model comparison is performed using the Deviance Information
Criterion.
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1 Introduction

Analysis of spatial hospital utilization patterns is a fundamental requirement
for effective health services planning and hospital management. Moreover,
understanding the factors that influence hospital utilization is helpful for identifying
reasons for differences in utilization and for formulating policies and programs that
promote cost-effective care. Our aim is to examine spatial recruitment in Haute
Alsace, a region in the north-east of France, using data from the public hospital of
Mulhouse, the biggest town of the region. Several alternative explanatory variables
are included in the study. Our analysis focused on global recruitment and not on
specific pathologies. Indeed the recruitment is different according to the pathologies
and according to elective vs urgent in-patients. Furthermore, the difference between
urgent and elective patients is not simply whether they are admitted to an emergency
ward or not. There are also urgent in-patients in “classical” wards. In France, there
is no routine gathering of this kind of information.

The study of the recruitment requires that we have a geographic reference
of patient residence. The address of each patient is reported at the level of a
geographical unit (the finest level is the municipality), in which a population at risk
can be determined. Our interest is on the distribution over geographical units of the
number of patients living in this geographical unit i , say yi , where the population
Ni in the same unit can be considered as the number of persons “at risk” to visit a
healthcare provider. We assume that the response variable yi independently follows
a binomial distribution whose parameters are the populationNi and a particular risk
per unit pi . If logit.pi /D �i , we then have pi D e�i

1Ce�i : The effects of covariates
of different type are modelled through a geoadditive or structured additive predictor
[6, 10], extending the usual linear predictor by adding nonparametric functions for
possibly nonlinear effects of continuous covariates and spatial effects. We model the
predictor for the geographical unit i in the following way:

�i D �C f1.u1i /C f2.u2i /C � � � C fp.upi /C f
.S/
i C z

0

ˇ C �i :

Here f1; : : : ; fp are possibly nonlinear functions of the continuous covariates u D
.u1; : : : ; up/

0

and f .S/ is a structured spatial effect. The term z
0

ˇ corresponds to
linear effects of (usually categorical) covariates z and � denotes a spatially unstruc-
tured random term. This class of models can be complex and hierarchical, involving
fixed and random effects and is particularly suited to Bayesian inference [2, 8].

In a Bayesian framework, spatial models for areal data f .S/, based on aggregated
disease counts in municipalities, commonly employ Gaussian Markov random field
models, in particular the conditional specification known as the intrinsic conditional
autoregressive (ICAR) model [4, 15], which assumes that, conditionally on the
spatial effects in adjacent geographic units, the effect in a unit follows a normal
distribution. The mean of this distribution is the average of the spatial effects in the
surrounding units and its precision is proportional to the number of neighbors of this
unit. If f .S/

i is the effect in the unit i and f.S/�i the effects in units other than i in the
study area, then the ICAR can be written:
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f
.S/
i jf.S/�i ; �

.S/ � N

0

@ 1

ni

X

j2@i
f
.S/
j ; ni �

.S/

1

A :

In this formula, ni denotes the number of units adjacent to each i , @i indicates the set
of all of these adjacent units. As common in Bayesian modelling, we specify prior
distributions with the precision (�.S/), the inverse of variance

�
�.S/ D 1

�2

�
. As is

often found in disease mapping literature [3,11,15], we have chosen Gaussian priors
for x D .�; f .�/;ˇ; �/, while hyperparameters involved in prior elicitations are not
necessarily Gaussian. Our general model is then a latent Gaussian model [15]. To
approximate posterior marginals, we use integrated nested Laplace approximations
(INLA) [16, 17], recently proposed for approximate Bayesian inference in latent
Gaussian models, as an alternative to the Markov Chain Monte Carlo (MCMC)
sampling. INLA has the advantage of giving very accurate approximations and
being faster than MCMC methods if the number of hyperparameters is not high
(the suggested number is less or equal to 6). Implementation of space and space-
time models with INLA is presented and explained in detail in [19, 20] and
comparisons between INLA and MCMC methods are discussed in an extended form
in [7, 9, 17, 22].

The structure of the paper is as follows: in Sect. 2 we describe the data in detail.
In Sect. 3 we introduce and justify the model used including details on assumptions
on the priors. Results obtained and comparisons of different models are shown in
Sect. 4. Concluding discussion is stated in Sect. 5. In the Appendix we describe
the basics of the INLA approach and present some pieces of the R code used to
implement the models.

2 Data Description and Explanatory Analysis

Data are from the public hospital of Mulhouse (its location is shown on Fig. 1 as
“HCP1”), the biggest town of the Haute Alsace region in north-east of France.
This region, adjacent to Germany and Switzerland, is 3,525 km2 and has 756,974
inhabitants (01/01/2010) in a very dense irregular lattice of 377 municipalities
(“communes”) which are the geographical units we use. The largest distance
between the centroids of two geographical units is about 95 km.

In 2009, the hospital of Mulhouse recorded 49,341 sojourns (about 30% of
the whole region). Among the patients of these visits, we considered only 33,572
different patients in full-time hospitalization, excluding accesses to the provider
for iterative treatment (e.g., dialysis). We have different potential explanatory
variables affecting recruitment. More precisely we have to deal with the following
requirements:
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Z4: Saint-Louis, Z5: Sélestat, Z6: Thann, Z7: Mulhouse). The studied healthcare provider is HCP1
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(a) Age and gender play a main role on recruitment, highlighted by Fig. 2. The
age is categorized in 18 categories from [0,5) up to [80,85) and more than
85 years. Among the 33,572 different patients, 19,109 (56.9%) are female
and half of the patients are over 50. In Fig. 2 the high initial points of the
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curves are explained by births. A peak occurs in young women at the time of
deliveries, then gradually as age increases utilization of healthcare becomes
more important, especially for men. The obvious role of age, gender, and their
interaction is strong enough to justify including these effects in all the models
we tested.

(b) Practitioners send their patients preferentially (except for some particular
pathologies) to a given healthcare provider. These practitioners recruit patients
from several nearby geographical units. This means that the recruitment in
a given geographical unit is more “similar” to that in a nearby unit than to
that in another random unit in the region. This is the definition of spatial
autocorrelation and we can assume that the use of statistical models taking into
account the autocorrelation greatly improves the explanation of the recruitment.

(c) The distance or the access time between a healthcare provider and the geo-
graphical unit of residence reflects the ease of access to this healthcare provider.
The access time may have a greater influence on recruitment in the context of
an emergency. Specifically, interest is focused on measuring the attenuation
of recruitment with distance (or time), for example by a smoothed function
of distance (or time).

(d) A recent French healthcare policy introduced the notion of “proximity zones.”
The region is divided into several of these zones, shown in Fig. 1 (left side)
(“Z1” up to “Z7”), each centered on a healthcare provider to which its patients
are recruited. But there are differences between providers according to their
technical capacities and competencies. A larger provider also has to recruit
patients (for various specific pathologies) from several of these subregions.

(e) Some other covariates can also influence recruitment, such as geographical
characteristics or economic status of the geographical units ([1] provides a list
of potential covariates that can be included in the study). Herein, we test only
two of them:

1. The distance (or the access time) between each geographical unit and a
second important healthcare provider (“HCP2” on Fig. 1) assuming that
patients living nearer this second provider will prefer to go there rather than
to the first.

2. The density of practitioners in each geographical unit (per 1,000 inhabitants).

These considerations lead us to consider Bayesian structured additive regression
models [6]. We present the adopted model in detail in the following section.

3 Statistical Model

We assume that the response variable yias, the number of observed cases living in
the i th geographical unit (i D 1; : : : ; 377), at age category a (a D 1; : : : ; 18) and
of sex s (s 2 f1; 2g/, follows a binomial distribution with parameters Nias and pias
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where Nias indicates the corresponding population and pias is the risk. Thus yias �
Bin.Nias; pias/. We consider the logit link and the following additive structure for
the linear predictor:

logit.pias/ D �ias D �C
nfX

jD1
f .j /.uias/C

nˇX

kD1
ˇkzkias C f

.S/
i C �i : (1)

Here, the f .j /.�/s are unknown smoothing functions of the covariates in u, the ˇks
represent the vector parameters for the linear effect of covariates in z, f .S/ is a
spatially structured component, and � is a spatially unstructured component. This
specification can be considered as a “full” model, including all potential covariates.
We assume the following prior distributions:

1. Smoothing functions f .j /s are first- or second-order random walk models
with precisions �.j /. A second-order random walk model is commonly used
for smoothing data. It is quite flexible due to its invariance to addition of a
quadratic trend and it is computationally efficient due to the Markov properties
of the joint Gaussian density [5, 12, 15]. Suppose first that u is a time scale or
continuous covariate with K equally spaced ordered observations u.1/; : : : ; u.K/.
Then, if we write �k D f .u.k//, a conditional specification of a first-order
random walk for a � D .�1; : : : ; �K/

T is �kj�k�1; � � N.�k�1; �/ where � is
the precision parameter of the random walk. Furthermore p.�1/ / const (e.g.,
a uniform prior is assumed). This prior can be written in a joint specification as

p.� j�/ / �
N�1
2 exp

�
� �
2

PN
2 .�k � �k�1/2

�
. Similarly, a second-order random

walk is specified by �kj�k�1; �k�2; � � N.2�k�1 � �k�2; �/ with additional
flat priors for �1 and �2. This improper prior can be written as p.� j�/ /
�
N�2
2 exp

�
� �
2

PN
3 .�k � 2�k�1 C �k�2/2

�
. To complete the models, gamma

priors are generally assigned to the precision � . In case of non-equally spaced
observations, slight modifications are needed to adjust the error variances (for
details, we refer to [5, 12]).

2. The model for the spatial structured component f .S/ is an ICAR process, using
a first-order neighborhood matrix. With this simple spatial model, one may
wonder whether all the spatial effect of the data is taken into account. A way
to deal with this question is then to add an unstructured spatial effect, �, for
heterogeneity using independent zero-mean Gaussian prior with precision �.�/

[4, 13]. The combination of these effects is called “convolution prior” in the
disease mapping literature. The unstructured spatial component can be viewed
as a proxy for important environmental covariates not gathered and not included
in the analysis.

We will assign a N.0; �.�// for �i , independent � .0:01; 0:01/ priors to the hyper-
parameters �.1/; : : : ; � .nf /; � .s/; � .�/, and a N.0; 0:01/ prior to �, ˇk . We treat these
as latent variables. Our models are thus latent Gaussian models, which are a subset
of Bayesian additive models with a structured additive predictor, in which Gaussian
priors are assigned to �, all f .�/s, ˇks and �s. If we denote by x D .�; f .�/;ˇ; �/
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the vector of all n Gaussian variables and by � D .�.1/; : : : ; � .nf /; � .s/; � .�//

the vector of all hyperparameters, which are not necessarily Gaussian, the posterior
marginals of interests can be written as

�.xj jy/ D
Z

�.xj j�; y/�.�jy/d�:

In this work we use the integrated nested Laplace approximations to approximate
these posteriors. It is a new approach for inference on latent Gaussian models.
It substitutes MCMC sampling with a series of numerical approximations, providing
very accurate estimates for the posterior marginals in only a fraction of the time
needed by MCMC algorithms. In contrast with MCMC, the INLA method does
not sample from the posterior. It approximates the posterior with a closed form
expression. The approximate posterior marginals can be used to compute summary
statistics of interest, such as posterior means, posterior medians, variances or
quantiles. Theoretical aspects of the INLA approach are reported in the Appendix.
For selecting models, we follow a method in several steps:

1. We first estimate a descriptive model which takes into account age–gender and a
spatial effect. The age–gender effect is modelled using a random-walk prior on
age for each sex and the spatial effect is estimated using ICAR prior. This model,
according to (1), can be written as

logit.pias/ D �C I.s D 1/f .1/.ua/C I.s D 2/f .2/.ua/C f
.S/
i

where I denotes the indicator variable for sex. This model plays the role of a
“reference” model.

2. We then add as part of f .j / different potential effects in as many explicative
models: distance or access time to the healthcare provider, distance or access
time between geographical unit of residence and the second healthcare provider
and medical density of the geographical unit. In both cases, the distance is
the Euclidian distance between the centroids of two geographical units and
the access time is a mean necessary time for reaching destination by road
(expressed in minutes). The proximity zones are added using indicator variables
(the zone of the healthcare provider under study is used as the reference zone):P6

kD1 ˇkI.i 2 Zk/ where I.i 2 Zk/ D 1 only if the geographical unit i belongs
to the proximity zone Zk .

3. A multivariate best model is then estimated using previous “significant” effects
and the following rules: we consider as significant an effect which yields a better
model if it is included than if it is not. The second rule is that only distance
or access time is included if both are significant and the most significant is
preferred. The goodness of fit of each model is assessed using the Deviance
Information Criterion (DIC) [21], a generalization of the Akaike score, which
can be computed using INLA [17]. The DIC is defined as DIC D ND C pD ,
decomposed like penalized likelihood measures into two terms: ND measuring the
fit to data and pD , the effective number of parameters, measuring the complexity
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of the models. We also use DIC for comparing models. In [21], the authors
suggest that models with DIC values within 1 or 2 of a “best” model are also
strongly supported, those with values between 3 and 7 of the “best” are only
weakly supported and models with a DIC more than 7 higher than the “best” are
substantially inferior.

4. We also check the fit of the best model according to two different processes.
The first one involves taking into account the spatial information contained
in the data, by comparing the previous best multivariate model with the same
model without the ICAR. Moreover, we add an unstructured spatial effect to this
best model and search for remaining spatial structure such as autocorrelation or
clusters. Secondly, for the covariates whose effects are estimated with a random-
walk prior we compared an alternative using linear or quadratic trends.

5. Finally, a sensitivity analysis is carried out to test the robustness of this best
model. As stated in [14], a crucial problem in the formulation of Bayesian
generalized linear mixed model is the specification of the prior distribution for
the random effects precision parameters. For this reason the sensitivity analysis
is focused on the precision priors. From the previous best model we have tested
different combinations for the parameters of the gamma: 0.01 and 0.01 (mean 1
and precision 0.01), 0.1 and 0.01 (mean 10 and precision 0.001), and finally 1
and 0.01 (mean 100 and precision 0.0001).

The INLA R package is used for implementing models.

4 Results

4.1 Reference Model

Using a first-order random walk prior on age for males and a second-order random
walk for females recovers the exact form of these effects on recruitment as shown
in Fig. 2. The DIC for the model including these two effects and spatial effect using
ICAR is 28,041.10 with an effective number of parameters of 256.48. These values
will be used as reference for assessing other models. Figure 1 (right side) displays
the exponential of the posterior median of the ICAR spatial effect. This plot has
a similar pattern to the observed recruitment ratio (not shown). It shows that there
is a low risk of recruitment in the north half-part of the region and a high risk of
recruitment in the east and especially around the geographical unit of the healthcare
provider.

4.2 Univariate Explicative Models

The first part of Table 1 summarizes the DICs of different models.
The DIC indicates that in addition to age, gender, and a spatial effect, taking into

account the practitioner density or the access time to the second provider does not
improve the model. Indeed the DIC of these models is less than 2 higher or lower
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Table 1 DIC of the different univariate and multivariate explicative models (the best among tested
models is emphasized)

Model pD DIC

Reference: age, gender and ICAR 256.48 28,041.10
C distance to provider 248.97 28,036.25
C access time to provider 250.49 28,028.58
C distance to the second provider 224.73 28,030.89
C access time to the second provider 252.91 28,040.96
C proximity zone (as factor) 214.51 28,019.32
C medical density 258.29 28,041.54
C access time to provider C dist to 2nd provider 201.63 28,010.59
C access time to provider C prox zone 212.60 28,018.32
C dist to 2nd provider C prox zone 198.97 28,016.04
C dist to 2nd providerC access time to provider C prox zone 197.69 28,007.01
C dist to 2nd provider C access time to provider C
prox zone C unstructured spatial effect 198.59 28,007.21

than the DIC of the reference model. On the other hand, taking into account the
access time between the geographical unit of patient residence and the healthcare
provider greatly improves the model (DIC increases by 12.5). The distance to
provider also improves the model but less so than the access time. The distance
to the second provider also improves the reference model. This improvement is
smaller than that brought by the inclusion of the access time to the first provider
and even better than the improvement due to the distance to this provider. Table 1
shows, furthermore, that the proximity zone is the covariate that, among those we
tested, improves the initial model the most. We use fixed effects (independent zero-
mean Gaussian priors with fixed precisions) and random effects (i.i.d zero-mean
Gaussian priors with precision � , where each � has a gamma prior with 0.01 and
0.01 parameters) but as the results are similar, only the results with fixed effects are
shown.

4.3 Multivariate Explicative Models

Considering that distance and access time to the provider, distance to the second
provider and proximity zone improve the DIC with respect to the reference model,
these covariates are candidates for selection into the best model in the multivariate
step. Due to the strong correlation between the distance and the access time to the
provider (Pearson correlation coefficient is 0.86) and due to the fact that the distance
improves a little less the DIC, only the access time to the provider is included as
potential covariate. The second part of Table 1 shows the DIC of the models adding
to the reference model two or three of the tested effects. According to the DIC,
the best model among those tested is the model adding the three covariates to the
reference model. Its DIC is 28,007 (compared with 28,041 for the reference model).
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Fig. 3 The access time effect (on the left), and of the distance to second healthcare provider effect
(on the right), both on the logit scale

Table 2 Odds-ratios: odds of
hospital recruitment in
Mulhouse (Z7) divided by
odds of hospital recruitment
in the other proximity zones
with 95% confidence limits

Odds ratio 95% Confidence interval

Z1: Altkirch 1.145 0.901 1.455
Z2: Colmar 3.021 1.725 5.279
Z3: Guebwiller 1.360 0.931 1.987
Z4: Saint-Louis 1.089 0.831 1.425
Z5: Selestat 12.082 3.245 53.178
Z6: Thann 0.908 0.717 1.146

With the same notation as (1), this model can be written as:

logit.pias/ D �C I.s D 1/f .1/.ua/C I.s D 2/f .2/.ua/C f .3/.u2i /

Cf .4/.u3i /CP6
kD1 ˇkzki C f

.S/
i

where ua denotes the covariate “age group”, while u2 and u3 stand, respectively, for
“access time to the first provider” and “distance to the second provider.”

We now consider the plots of the estimated effects from this best model. Figure 3
(left side) displays the estimated effect of access time to provider plotted against
the time. This effect is close to a linear effect on the log odds scale with a slightly
decreasing slope for increasing time. Figure 3 (right side) shows the major effect of
the second provider when patients live less than 20 km away from it. Finally, using
the posterior medians for the proximity zones we calculated odds ratios with 95%
confidence intervals. The odds of the recruitment are reported in Table 2. You can
see that the odds of recruitment in Mulhouse is about 3 times higher than in Colmar
and 12 times higher than in Selestat. Then, even adjusted for the other covariates, a
significant under-recruitment persists in the two northern proximity zones (including
that of the second healthcare provider).
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In this best among tested models, the ICAR process contributes strongly to the fit
improvement. Indeed the similar model without ICAR yields a significantly higher
DIC: 28,379.86 (compared with 28,007.01) for an effective number of parameters
of 101.76 (compared with 197.69). Since the DIC is higher whereas the pD is lower,
the fit to the data is much worse. This implies that covariates alone (access time and
distance) do not adequately explain all the spatial correlation in the data. A check for
remaining spatial effect has been carried out by a visual inspection of the plot of an
unstructured spatial effect added to this best model. The last part of Table 1 allows us
to conclude that according to the DIC this new model does not fit the data better than
the previous one, since the DIC remains unchanged (28,007) whereas the number of
effective parameters increases by 1 (198.59 against 197.69). Furthermore, the plot
of the unstructured spatial effect (not shown) reveals no remaining spatial structure
but only a seemingly random variation across the region of the different colored
categories. In addition, to check the accuracy of the best model on the data we
replaced the random-walk by linear or quadratic trend for given covariates and then
confirmed that the DICs are worse. From Fig. 3, a linear trend could be a good model
for access time to the provider. The estimated slope is decreasing, with median (and
mean) �0:0256 and with 95% confidence interval Œ�0:0366I �0:01491�. The DIC of
this model is 28,013.96, higher than the DIC for the best model. Also from Fig. 3,
a quadratic trend could be a good model for the distance to the second provider.
The DIC is then 28,013.36, again worse than that of the best model. These two
considerations reinforce the initial option to use smoothing for retrieving accurate
estimates of the effects of both these covariates. Finally, sensitivity analysis was
performed to check the robustness of the best model to changes of the prior of the
precision hyperparameters. All alternative specifications considered yielded very
similar results in terms of DIC (not reported) suggesting the robustness of our
choices.

5 Discussion

The analysis of healthcare provider recruitment is a fundamental requirement for
health services planning. For this we need to select explanatory covariates from
potential variables such as distance or access time between providers and the
geographical unit of residence of consumers, healthcare organization subregions
(like “proximity zones” in France), geographical characteristics or economic status
of the geographical units, also taking into account spatial autocorrelation and
potential spatial nonstructured effect. Several covariates, such as age and gender, are
known to play a role. In this framework of intensive search for a best model or a few
relevant models among several complex models, accurate, flexible, and fast methods
are needed. Due to the complexity of the situation, Bayesian inference is inescapable
and integrated nested Laplace approximations instead of MCMC techniques allow
saving time without damaging the results. The application of INLA technique to
healthcare provider recruitment seems to be very useful and accurate. Indeed the
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models are robust to modifications in prior assumptions and their results are globally
coherent. The best model among those we tested explains the recruitment in a
provider by a spatial autocorrelation, age and gender effects (modelled with two
random-walks for age, one for each sex), access time to the provider, distance
to a second and concurrent provider and proximity zone. On the other hand, the
density of practitioners in each geographical unit does not explain the amount of
recruitment. The plot of the ICAR (Fig. 3) shows that autocorrelation is stronger in
south part of the region, in proximity zones 1, 4, 6, and mainly 7. This highlights
the strong homogeneity of the communes in the zone where the provider stands
and a lesser homogeneity in the other ones where the influence of this provider
is questioned by the influence of other providers or even of other type of medical
care. We have found that access time to the provider and that distance to the second
provider play different roles in recruitment, notably because of the highway between
the two towns which providers belong to. For example, “communes” located to the
south of the provider are not so far in distance but are difficult to reach by roads
whereas “communes” to the north, near the second provider, could be far from the
provider of interest but are near the highway. This is linked to the presence of a
motorway that crosses the region from north to south and links both the cities where
hospitals are located. To the north and south of the first healthcare provider, some
cities are located relatively far from this provider but are on the motorway. The
access time is then a better proxy for recruitment than the distance, which draws
a circle around the provider. In contrast, to the north of the first provider, some
cities are on the motorway and close enough to this provider but people prefer to
go to the second one. In this case, the distance to the second one best explains the
recruitment in the first one. We consider here that the number of people at risk is the
population of a geographical unit. However, we could also apply to this population
a factor representing the proportion of the population that can be recruited, but this
“hospitalizability” is different according to the pathology concerned: e.g. 20% of the
total population or 30% of men over 75 years, based on the prevalence of diabetes. In
[17] are described two useful methods for approximating �.xi j�; y/ in equation (2)
(see Appendix). In this paper we have used one of them, the simplified Laplace
approximation.

Appendix

In this section we give an overview of the integrated nested Laplace approximations
(INLA). INLA is a method recently proposed for approximating Bayesian inference
in structured additive models with latent Gaussian field. It provides a fast alternative
to MCMC which is the standard tool for inference in such models. In the following
we explain briefly how INLA computes posterior marginal distributions of param-
eters of interest, for details see Rue et al. [17]. For the sake of discussion, consider
the posterior distribution �.x;�jy/ of a generic Bayesian model, with observation y,
latent variable x, and hyperparameters � .
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The INLA approach approximates the posterior marginals of the latent Gaussian
field:

�.xj jy/ D
Z

�.xj j�; y/�.�jy/d�: (2)

This approximation is computed in three steps.
The first step approximates the marginal posterior density �.� jy/ of the hyperpa-

rameters � , Q�.�jy/, which will be used to integrate out the uncertainty with respect
to � when approximating the posterior marginal of xj in the third step. To perform
numerical integration it is important to select good evaluation points �k obtained
defining a grid of points covering the area of high density for log Q�.�jy/.

The second step computes the Laplace approximation or the simplified Laplace
approximation of �.xj j�; y/, for selected values of � on the grid.
The third step combines the previous two steps by using numerical integration to
obtain the marginal of the latent variables:

Q�.xj jy/ D
X

k

Q�SLA.xj j�k; y/ Q�.�kjy/�k;

where�k is the area weight assigned to each �k , selected in the first step.
A software program, inla, implements the INLA techniques. In addition, an interface
for the R programming language, which makes the use of the software easier, has
been produced and can be downloaded from the web site http://www.r-inla.org. The
inla program is a useful tool which can solve a wide class of models, including time
series models, generalized additive models for longitudinal data, geoadditive models
and anova type interaction models. Details and examples for the inla program and
the INLA library can be found in [18]. The commands for running our “best selected
model” are:

formula1 = f(time,model="rw2",param=c(0.01,0.01))
+ f(distance,model="rw2",param=c(0.01,0.01))
+ as.factor(zone)
+ f(GU,model="besag",graph=graph,param=c(0,0.01))
+ f(age.male,model="rw1",param=c(0.01,0.01))
+ f(age.female,model="rw2",param=c(0.01,0.01))
model = inla(formula=formula1, family="binomial",
Ntrials=pop, data= dataset, quantiles=c(0.025,0.50,0.975),
control.compute=list(dic=TRUE,mlik=TRUE),
control.predictor=list(compute=TRUE))

In the formula command, the f() function is used to specify nonlinear effects
in the model. Random walk models of order 1 and 2 are specified inside as
model="rw1" and model="rw2", respectively. The ICAR model for spatial
effects is defined inside the f() function as model="besag"; this model needs
a graph file where the neighborhood structure is specified. In all f() function,
param will give values for hyperpriors. The inla() function computes the
model marked out in formula. The binomial model is specified by adding
family="binomial" in the option list while pop allows to specify the number

http://www.r-inla.org
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of trials. The DIC is computed using the command dic=TRUE. The command
mlik=TRUE in control.compute gives the marginal likelihood of the model.
Using the command control.predictor it is possible to compute marginal
distributions for each value of the linear predictor. Finally, the retrieved quantiles of
posterior distributions are specified by quantiles().
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22. Vanhatalo, J., Pietiläinen, V., Vehtari, A.: Approximate inference for disease mapping with
sparse Gaussian processes. Stat. Med. 29, 1580–1607 (2010)

http://dx.doi.org/10.1007/s00180-010-0208-2
http://dx.doi.org/10.1002/env.1065


Supply Function Prediction in Electricity
Auctions

Matteo Pelagatti

Abstract In the fast growing literature that addresses the problem of the optimal
bidding behaviour of power generation companies that sell energy in electricity
auctions, it is always assumed that every firm knows the aggregate supply function
of its competitors. Since this information is generally not available, real data have to
be substituted by predictions. In this paper we propose two alternative approaches
to the problem and apply them to the hourly prediction of the aggregate supply
function of the competitors of the main Italian generation company.

1 Introduction

The last 20 years have witnessed in most European and many non-European
countries a radical reorganisation of the electricity supply industry. Government-
owned monopolies have been replaced by regulated (generally pool) competitive
markets, where the match between demand and supply takes place in hourly (in
some cases semi-hourly) auctions. The auction mechanism is generally based on a
uniform price rule, i.e. once the equilibrium price is determined, all the dispatched
producers receive the same price per MWh.

The issue of determining the profit-maximising behaviour of a power company
bidding in electricity auctions has been addressed by economists from the both
normative (profit optimisation) and positive (market equilibrium) point of views (cf.
[1, 5, 13]) and it is faced every hour by the generation companies. Regardless of the
bidding strategy a firm pursues, it is necessary to predict the bidding behaviour of
its competitors. In particular, each firm has to predict the aggregate quantity offered
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by its competitors for all possible prices before submitting its supply schedule to the
market.

In this paper we propose two techniques for forecasting supply functions
based on principal component analysis and reduced rank regression (RRR). The
techniques are applied to the prediction of the hourly supply functions of the
competitors of Enel, the main Italian generation company, as observed in two years
of Italian electricity auctions.

Functional time series analysis1 is a relatively new discipline in the statistical
literature, even though the wider-ranging functional data analysis field has a longer
history, dating back to the paper of [10] and the works of B.W. Silverman on density
function estimation and nonparametric regression. A general framework for the
problem of functional time series prediction can be found in [6,7], and the first of the
two algorithms proposed in this paper (the one based on principal components) is a
special case of the proposal in [7]. Our second algorithm (the one based on RRR),
instead, cannot be found in the cited papers and, to the best of our knowledge, has
never been explored in the statistical literature.

The paper is organised as follows: Sect. 2 introduces the problem of optimal
bidding, Sect. 3 describes the Italian auction rules and the data produced by the
market maker, Sect. 4 illustrates the two functional prediction techniques, Sect. 5
applies them to the Italian data and Sect. 6 concludes.

2 Optimal Bidding Behaviour

This sections introduces the problem a generation operator faces in every auction
as developed in the economic literature [1, 5, 13]. In order to have interpretable
closed-form solutions, economists make a series of simplifying assumptions and
approximations that do not seem to reveal significant drawbacks when applied to
real data (cf. the applications in the cited papers). However, the functional prediction
techniques proposed in this paper can be used also in more involved optimisation
problems in which transmission constraints and multi-period profits are taken into
account.

If we assume that each firm wishes to maximise its profit in each auction
independently from the other auctions (as customary in the literature), then we
can summarise the optimisation problem as follows. Suppose that D is the
(price-inelastic) demand for electricity, S�i .p/ is the aggregate supply function of
firm i ’s competitors for any given price p, Ci.q/ is the production cost function
of firm i for any given quantity of energy q, then for those values of the residual
demand D � S�i .p/ that the production capacity of firm i can fulfill, the profit
function of firm i is given by

1Functional time series analysis is the statistical analysis and prediction of sequences of functions.
For a rigourous theoretic treatment of the subject, the reader should refer to the book of [2], while
the excellent articles of [6, 7] are more operational.
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�i .p/ D p � �D � S�i .p/
� � Ci

�
D � S�i .p/

�
: (1)

This profit function can be extended to include financial contracts as in [5] or vertical
integration (i.e. the situation in which the producer is also a retailer and plays in both
sides of the auction) as in [1]. By assuming the continuous differentiability of S�i
and Ci , and the concavity of �i , first order conditions indicate that firm i maximises
its profit when he/she offers the quantityD � S�i .p�/ at the price p� that solves

p� D C 0
i

�
D � S�i .p�/

�C D � S�i .p�/
S 0�i .p�/

: (2)

Now, the quantity D and the supply function S�i are generally unknown, but
while D can be predicted using standard time series techniques (e.g. [3, 4, 9] and
many articles in the IEEE Transactions on Power Systems), the prediction of the
function S�i is more involved. The next sections illustrate two techniques for the
prediction of such supply functions as observable in auction data.

Notice that the assumption that firms build their optimal bidding strategy by
considering each single auction as independent from the other auctions is only
an approximation economists need to derive a closed-form solution to the profit
maximisation problem. If firms optimise their profit by considering a time-span
longer than a single future auction, then the objective function is the actualised sum
of many copies of (1), and instead of forecasting a single supply function a sequence
of S�i .�/ has to be predicted. Even though we do not explicitly consider the case of
multiple prediction periods here, the techniques discussed in this paper can be easily
extended to that set-up.

3 Auction Rules and Data

According to the rules of the Italian electricity day-ahead market, each production
unit can submit up to four “packages” of price-quantity pairs. Each pair contains
the information on the quantity (in MWh) a production unit is willing to sell and
the relative unitary price (in Euro per MWh). Of course one company usually
owns many production units and can, therefore, well approximate its (possibly
continuous) optimal supply function using a step function with many steps. All the
submitted pairs are sorted by price and the corresponding quantities are cumulated.
When the cumulated offered quantity matches the total demand, the system marginal
price (SMP) is determined and all the units offering energy up to that price are
dispatched. If congestions in the transmission network occur, the national market
is split into up to seven (recently reduced to six) zonal markets and the same bids
are used to determine new local equilibrium prices. In this case the optimisation
problem is more involved than the one discussed in Sect. 2 and the solution has to
be found numerically, but predictions of the competitors’ zonal supply functions are
still necessary.
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Table 1 Relevant fields in the Italian electricity auctions database

Producer (seller) Retailer (buyer)

Operator name Operator name
Plant name Unit name
Quantity (MWh) of each offer Quantity (MWh) of each bid
Price (Euro/MWh) of each offer Price (Euro/MWh) of each bid
Awarded quantity (MWh) for each offer Awarded quantity (MWh) for each bid
Awarded price (Euro/MWh) for each offer Awarded price (Euro/MWh) for each bid
Zone of each offer (plant) Zone of each bid (unit)
Status of the offer: accepted vs. rejected Status of the bid: accepted vs. rejected

0 50 100 150 200 250

16000

20000

24000
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M
W

h
Fig. 1 Supply function of
Enel’s competitors on
3.12.2008 at 10 a.m. and
kernel approximation

Each record of the Italian auction results database2 (cf. Table 1) contains the
price-quantity pair, the name of the offering production unit and the name of the
owner of that unit. This allows the construction of the supply function of any firm
bidding in the auctions or aggregations thereof (e.g. step function in Fig. 1).

From the above reasoning it is clear that real supply schedules are step functions
and, thus, the optimal bidding theory discussed in the previous section is not directly
applicable. This issue is generally dealt with by approximating the step functions
with continuously differentiable functions obtained though kernel smoothing.3

Smoothing is also necessary for regularising functions before applying canonical
correlation techniques such as RRR (c.f. Sec. 11.5 of [11]). Since supply functions

2It can be downloaded (on a daily basis) from the market operator web site www.mercatoelettrico.
org.
3Reference [8] solves the problem of optimal bidding when supply functions are step functions
with a given number of steps. However, even in this case the optimal predictions of these step
functions need not be step functions, as the prices at which the steps take place may be absolutely
continuous random variables and this condition makes the expectation of any random step function
a continuous function.

www.mercatoelettrico.org
www.mercatoelettrico.org
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are nondecreasing in price, we use the kernel

S.p/ D
KX

kD1
qk˚

�p � pk

h

�
;

where ˚ is the standard normal cumulative probability function, h is the bandwidth
parameter and .qk; pk/ are the observed quantity-price pairs. Notice that the total
number of offers K may change in each auction. The derivative of the smoothed
function needed in (2) is given by

S 0.p/ D
KX

kD1
qk
1

h
�
�p � pk

h

�
;

with � standard normal density. Figure 1 depicts the actual supply function of Enel’s
competitors on 3 December 2008 at 10 a.m. and the kernel approximation thereof
(hD 3 Euro).

4 Supply Functions Prediction

Both prediction techniques proposed in this paper entail some common steps.
The first step consists in sampling the kernel-smoothed function on a grid of

abscissa points. This is necessary as the price set on which the function can
be evaluated changes in every auction. Since the function can be approximated
more accurately where bid pairs are more dense, we sample more frequently in these
intervals by using quantiles. In particular, we used 50-iles of unique prices submitted
over the entire sample (2007–2008). The forty-nine 50-iles are supplemented with
the minimum (0) and the theoretical maximum (500) due to the price capping rule of
the Italian market, obtaining 51 time series of ordinate points (quantities). Figure 2
displays one week of Enel’s competitors aggregate supply functions sampled at
50-iles. The within-day periodicity and the lower level and slightly different shape
of the curve in the weekend are evident from the plot.

The second common step consists in transforming the original ordinate points in
a way that preserves the two features of positivity and non-decreasing monotonicity
of the original functions also in their predictions. If we denote with fp0; p1; : : : ; p50g
the points in the price grid and with St.pi / the smoothed supply function at time t
for price pi , then we transform the time series as

qi;t WD



logSt.pi /; for i D 0I
log

�
St.pi / � St .pi�1/C c

�
; for i D 1; : : : ; 50;

where c is a small positive constant that guarantees the existence of the logarithm
also in constant tracts of St.p/ (in our application we set cD 1). If we assume that
the prediction of qi;t , say Oqi;t , is unbiased, and the prediction error is approximately
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Fig. 2 The supply function sampled at 50-iles over 1 week

normal with standard error si;t , unbiased forecasts of the original function can be
recovered as

OSt .pi / D
(

exp
� Oqi;t C s2i;t =2

�
; for i D 0I

exp
� Oqi;t C s2i;t =2

�C OSt .pi�1/� c; for i D 1; : : : ; 50:
(3)

Now, since we expect the 51 time series to share some information, it is
natural to seek some form of dimension reduction. The two alternative algorithms
we propose are based on principal component (PC) analysis and reduced rank
regression (RRR). We base the choice of dimension reduction on one month of k-
steps-ahead out-of-sample predictions, where kD 1 for one-hour-ahead predictions
and kD 24 for one-day-ahead predictions. In particular, the model is fit to the hourly
observations of the years 2007–2008, while the dimension reduction assessment is
based on Jan-2009 prediction mean square errors (MSE).

In describing the two algorithms we collect the 51 transformed time series in
the vector qt and the original supply function ordinate-points in the vector St. The
predictions are based on lagged responses and deterministic regressors.

Algorithm 1 (Principal component analysis based). For r D f51; 50; : : : ; 1g iter-
ate through the following steps.

1. Take the first r PCs of qt (supply function log increments) based on its in-sample
covariance matrix, and name the scores yt .

2. Regress each score yi;t on its lags xi;t and deterministic regressors zt and
compute predictions Oyt .

3. Regress the vector qt on the predicted scores Oyt and a constant.
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4. Compute the out-of-sample predictions of the supply function St as in (3) and the
relative MSE.

Pick the rank r that minimises the out-of-sample MSE.

In the PC approach, the time series are first reduced in number by taking the best
linear approximation to the original data, and then these are predicted using standard
time series models. The main advantage of this approach is the freedom left to the
analyst to choose the time series model to predict the PC scores. The main drawback
is that rank-reduction is not obtained directly for the prediction of future values.

The second approach is based on RRR. Since this technique is less popular than
the principal component analysis, we briefly survey its main features. Consider the
linear model

yt
n�1

D C xt
m�1

C D zt
p�1

C "t
n�1

where xt and zt are regressors, D is a full-rank n � p coefficient matrix, C is a
n � m reduced-rank coefficient matrix and "t is a sequence of zero-mean random
errors uncorrelated with all the regressors. The fact that C is reduced-rank means
that few linear combinations of the regressors xt are sufficient to take account of all
the variability of yt due to xt . Now suppose that the rank of C is r < min.m; n/, then
C can be factorised as C D AB>, with A n�r and Bm�r matrices. The matrices A
and B are not uniquely identified, but if one restricts the r column vectors forming
B to be orthonormal, then a least squares solution for B is found by solving the
following eigenvalue problem:

SxxjzV� D SxyjzS�1
yyjxSyxjzV;

where Sabjc indicates the partial product-moment matrix of a and b given c, V
is an orthonormal matrix and � is a diagonal matrix. The first r columns of V
provide least square estimates of B. Least squares estimates of A and D are found
by regressing yt simultaneously on wt WD B>xt and zt . For details on RRR, refer to
the excellent monograph [12].

Algorithm 2 (Reduce rank regression based). For r D f51; 50; : : : ; 1g iterate
through the following steps.

1. Regress the vector yt D qt on its lags xt , imposing rank r to the reduced-rank
coefficient matrix C, and on the deterministic regressors zt without any rank
restrictions on D.

2. Compute the out-of-sample predictions OSt of the supply function St as in (3) and
the relative MSE.

Pick the rank r that minimises the out-of-sample MSE.

The main advantage of the RRR-based algorithm is that rank-reduction is
obtained though the minimisation of the prediction MSE. The drawback is that only
(vector) autoregressive models with exogenous variables are allowed.
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5 Application to the Italian Electricity Auctions

The two algorithms are applied to the hourly Italian electricity auction results for the
years 2007–2008 (17544 auctions); Jan-2009 (744 auctions) is used for determining
the rank r as explained in the previous section.

We build models for predicting one-hour-ahead and models for forecasting
one-day-ahead. As for the deterministic regressors (zt ) we implement the following
three increasing set of variables.

1. Linear trend, cos.!j t/, sin.!j t/, with !j D 2�j=.24 � 365/ and j D 1; : : : ; 20.
2. Regressors at point 1. plus dummies for Saturday, Sunday and Monday.
3. Regressors at point 2. plus cos.�i t/, sin.�i t/, with �i D 2�i=24 and i D 1; : : : ; 6.

Notice that the sinusoids at point 1. take care of the within-year seasonality, while
those at point 3. model the within-day seasonality. These latter sinusoids are also
supplemented with 24h-lagged prices (see below) that also help modelling the
within-day seasonality.

Both vector autoregressive models and error correction mechanisms are explored.
In particular, we regress:

Level 1-step: yt on yt�1; yt�24; yt�168; zt ;
Diff 1-step: �yt on yt�1;�yt�1;�yt�24;�yt�168;�zt ;
Level 24-step: yt on yt�24; yt�168; zt ;
Diff 24-step: �24yt on yt�24;�24yt�24;�24yt�168;�24zt .

The chosen rank and the actual root MSE (RMSE) are summarized in Table 2.
Three features appear evident from these figures: (i) the optimal rank of both

PC and RRR models is very close to the full rank (51), indicating that almost
all the information that the time series carry is relevant for forecasting; (ii) there
is no clear indication about the choice of the algorithm, as the best algorithm for
one-hour-ahead predictions is RRR while that for one-day-ahead predictions is PC;
(iii) a large number of deterministic regressors is better than a small one.

Of course these regressors could have been supplemented with variables such as
(lagged) oil prices, weather forecasts, and holidays dummies, that would certainly
improve the in- and out-of-sample fit, but the main objective of this paper is
proposing feasible techniques for forecasting this type of functional time series and
testing them on real electricity auction data. The main features of the data are well
captured by these regressors and lagged supply functions, and at this stage the fine-
tuning of the models is not necessarily interesting.

As already mentioned, the above model selection was based on the out-of-
sample RMSE of quantity increments, but since the mean absolute percentage error
(MAPE) of the predicted function is easier to interpret and probably more eloquent
the following discussion will be based on the latter loss measure.

Figure 3 depicts the out-of-sample MAPE as a function of time (first panel)
and of price (second panel). It appears clear that the precision of the predictions
vary significantly over time, but only slightly over price. In particular, the first half
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Table 2 Out-of-sample root mean square error for the two algorithms and 12 models

One-hour-ahead One-day-ahead

Reg. 1. Reg. 2. Reg. 3. Reg. 1. Reg. 2. Reg. 3.

Rank RMSE Rank RMSE Rank RMSE Rank RMSE Rank RMSE Rank RMSE

RRR-Level 50 76.5 50 76.5 50 67.1 44 216.1 44 216.1 44 215.5
RRR-Diff 51 73.7 51 73.7 51 73.7 51 198.7 51 198.7 51 198.7
PC-level 50 80.9 50 80.9 50 72.7 41 191.1 41 191.1 41 188.8
PC-Diff 37 73.7 47 73.7 37 73.7 51 198.8 51 198.8 51 198.8
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Fig. 3 Mean absolute percentage error of prediction as functions of time and price

of Jan-2009 seems to be harder to predict than the following part of that month.
Indeed, those days are characterised by holidays and school vacations that were
not explicitly modelled. As for the precision of the prediction at different points of
the supply function, the quantities corresponding to the price interval Œ100; 200� are
slightly more difficult to predict. Most observed SMPs are in the range Œ50; 100�,
and so this interval is the most interesting to predict. The MAPE in that interval is
not particularly large: it is around 2% for one-hour-ahead predictions and some 8%
for one-day-ahead predictions.

Figure 4 depicts the one-hour- and one-day-ahead functional prediction for an
arbitrary auction chosen in the out-of-sample period, just to give a visual idea of the
outcomes of the proposed algorithms.

Table 3 reports the MAPE computed for each day of the week. It reveals that
supply functions are easiest to predict on Sundays and hardest to forecast on
Mondays. The same table shows also that for one-hour-ahead predictions the RRR
model on levels tend to be the best choice, while for one-day-ahead forecasts one
should change the model according to the day of interest.
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Fig. 4 Predicted and actual supply functions of Enel’s competitors on Wed 14.01.2009 at 10am

Table 3 Out-of-sample mean absolute percentage error computed for each day of the week

Pred. Method Mon Tue Wed Thu Fri Sat Su Ave.

1-step RRR-Level 2.8 2:1 2.5 2:5 2.3 2.4 2:1 2.4
RRR-Diff 2:9 2.1 2.8 2:3 2.3 2:8 2:0 2.5

PC-Level 4:5 3:7 2.9 3:1 2.6 3:0 2:2 3.1
PC-Diff 2:9 2.1 2.8 2.3 2.3 2:8 2.0 2.5

24-step RRR-Level 11:3 9:6 7.2 7.3 6.6 8:2 9:1 8.5
RRR-Diff 15:1 8:7 9.7 8:7 4.1 13:9 15:1 10.8

PC-Level 11.1 11:6 7.2 11:6 9.3 7.8 6.2 9.2
PC-Diff 15:1 8.7 9.7 8:7 4.2 13:9 15:1 10.8

6 Conclusions

We have introduced two different approaches to forecasting supply functions
in electricity auctions. Accurate approximations of actual competitors’ supply
functions are indeed needed by all the generation companies bidding in the
hourly (or semi-hourly) uniform-price auctions that characterise most electricity
markets around the world. The two techniques are easy to implement and assure
that the predictions share the same characteristics as the actual supply functions
(i.e. positivity and non-decreasing monotonicity).

The application of the two techniques to the aggregate supply functions bid in
the Italian day-ahead-market by Enel’s competitors reveals that the predictions turn
out to be accurate, but probably the optimal strategy should be adjusted to take
into account the uncertainty about future supply functions. The proposed prediction
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algorithms, possibly supplemented with other relevant regressors, seem to represent
a valuable tool for helping generation companies to design their bidding strategies
in a more profitable way.
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A Hierarchical Bayesian Model
for RNA-Seq Data

Davide Risso, Gabriele Sales, Chiara Romualdi, and Monica Chiogna

Abstract In the last few years, RNA-Seq has become a popular choice for
high-throughput studies of gene expression, revealing its potential to overcome
microarrays and become the new standard for transcriptional profiling. At a gene-
level, RNA-Seq yields counts rather than continuous measures of expression,
leading to the need for novel methods to deal with count data in high-dimensional
problems.

We present a hierarchical Bayesian approach to the modeling of RNA-Seq data.
The model accounts for the difference in the total number of counts in the different
samples (sequencing depth), as well as for overdispersion, with no need to transform
the data prior to the analysis. Using an MCMC algorithm, we identify differentially
expressed genes, showing promising results both on simulated and on real data,
compared to those of edgeR and DESeq (state-of-the-art algorithms for RNA-Seq
data analysis).

1 Introduction

Next generation sequencing technologies have become widely used for measuring
genome-wide transcription level, in what is called RNA-Seq. This technology
produces short sequences, called “reads,” consisting in a small number of DNA
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bases (usually 25–100), that are mapped back to a reference genome. Subsequently,
one counts the number of reads that fall within some pre-defined regions of interest
(e.g., genes), leading to a discrete measure of expression (i.e., counts [27]).

For this reason, the Poisson model has been proposed to find differentially
expressed (DE) genes, as it is the simplest model to deal with count data [5, 14,
26]. However, several authors have observed overdispersion when the experiment
involves biological replicates (i.e., different individuals for each condition [1, 19]).

Robinson et al. [19] and Anders and Huber [1] propose a negative binomial (NB)
distribution to model RNA-Seq data in a frequentist setting and they implement the
approach in the Bioconductor packages edgeR and DESeq, respectively. Although
the NB is a flexible distribution that allows the modeling of overdispersion, it is
known that for small sample sizes the usual maximum likelihood estimator tends
to underestimate the dispersion parameter [21]. For this reason, Robinson et al.
[19] use a weighted conditional log-likelihood approach to shrink the estimates of
the dispersion parameter towards a common value, mimicking an empirical Bayes
solution [20]. They also propose to pull together the expression of all the genes and
estimate a common dispersion parameter when the sample size is too small [21].

In a similar way, Anders and Huber [1] assume that the per-gene raw variance is
a smooth function of the mean and pool the data from genes with similar expression
strength to estimate the variance, using a local regression approach.

By virtue of the assay, the counts are not directly comparable between samples,
since the total number of reads produced by the sequencer (known as sequencing
depth) can vary between different runs. To deal with the difference in sequencing
depth, both [1, 19] incorporate in the model a “size factor,” which can be viewed as
an offset in the model, that accounts for the difference in the library sizes. Finally,
they consider an exact test for the comparison between two groups, as well as a
likelihood ratio test for more general designs.

Hardcastle et al. [7] present an empirical Bayesian approach to differential
expression in two-class and multi-class comparisons. By assuming an NB dis-
tribution, they enumerate all the possible patterns of differential expression and
retain the pattern which is more likely to generate the data. In a nonparametric
setting, Tarazona et al. [25] propose a test for differential expression in two-
class comparisons based on the combination of log ratios and absolute differences
between the mean expression of the two classes.

Hierarchical Bayesian models are a good alternative in this setting, since they can
take advantage of the structure of the problem, allowing to borrow strength from the
ensemble of the expression values [8]. This class of models has been successfully
applied to microarray data both from an empirical [9, 13, 24] and a full Bayesian
perspective [4]. Moreover, the negative binomial distribution arises as a Gamma–
Poisson mixture model [11]; hence, one can model overdispersion in a hierarchical
Bayes framework, using either a Gamma or a log-normal distribution as a prior for
the mean parameter.

The article is organized as follows: in Sect. 2 we formulate the problem within the
framework of generalized linear models (GLM) and we specify our proposed model;
in Sect. 3 we perform a simulation study to assess the behavior of our proposed
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model; in Sect. 4 we show the results on a real dataset; finally, after a discussion in
Sect. 5, we provide conclusions and future directions in Sect. 6.

2 Modeling Strategy

Most gene expression studies are designed to identify genes that are DE between
two (or more) conditions, i.e., whose expression is different between the conditions
of interest. GLM are a natural class of models to deal with these problems. They
consider the gene expression level as the response and an ANOVA type design
matrix that allows multiple class comparisons. Note that the GLM approach is able
to model other types of studies, in which continuous covariates are involved. Hence,
our model is not limited to class comparisons.

For each gene j; j D 1; : : : ; p; we model the expression values as realizations
of a Poisson distribution. The expected values are specified in the following way:

log.EŒYj jX; ˛; ˇj �/ D Xˇj C ˛; (1)

where Yj is the gene expression vector for gene j , X is the design matrix, ˇj is a
vector of parameters capturing the differences in mean among the classes, and ˛ is a
n-size vector of parameters used to capture the global difference among the samples
due to the sequencing depth.

For the sake of clarity, consider a two-class comparison. The ˇj parameter in
(1) has two components: the first component, namely ˇ0;j , can be interpreted as
the log-mean expression of gene j for the first class, while the second component,
namely ˇ1;j , can be interpreted as the log-difference between the mean expression
of gene j in the two classes. In this case, the design matrix will have two columns:
an intercept and an indicator of the class membership for each sample. Note that
more complex designs (e.g., multi-class comparison, matched samples, continuous
response, . . . ) can be easily modeled by considering the proper design matrix.

Denoting with i; i D 1; : : : ; n; the samples, we consider the following prior
distributions for the parameters:

˛i � N.�˛; �˛/I
ˇ0;j � N.�ˇ0; �ˇ0 /I
1=�ˇ0 � Ga. 0; �0/I

where �˛ D �ˇ0 D 0, �˛ D 1, 0 D �0 D 10�2. As for ˇ1;j , we consider a mixture
distribution, which allows us to model a situation in which most of the genes are not
DE (i.e., ˇ1;j D 0),

ˇ1;j D .1 � wj / Vj C wj Zj ;
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where

wj � Bi.1; �/I
Zj � N.�Zj ; �Z/I
Vj 
 0I
�Zj � N.0; �0Z/I

where � D 0:5 and �Z D �0Z D 1.
To compute the posterior distribution of the parameter, we consider a Gibbs

sampling algorithm, implemented using the JAGS software [17].

2.1 Differential Expression

In order for the model to be useful to researchers, there is the need for a way to
declare a gene DE. One can use, in an empirical Bayes setting, a frequentist test
statistic using the posterior distribution of ˇ to estimate the variance in a way similar
to [24].

Depending on the biological problem and on the sensitivity of the technology, all
genes could be considered DE to some extent. In fact, as the technology improves,
there is more sensitivity to capture even very small differences in gene expression.
For this reason, some authors have argued that using a threshold on the fold-change
while controlling for statistical variability is to be preferred to methods based solely
on statistical significance [15, 28].

Here, we declare the gene j as DE based on the posterior probability of ˇ1;j .
Given a predefined threshold t , we say that j is up-regulated if

Pr.ˇ1;j > t jY / � 0:9I (2)

analogously, we say that j is down-regulated if

Pr.ˇ1;j < �t jY / � 0:9: (3)

The choice of t has clearly a strong impact on the results; however, often
researchers are interested in the “most DE” genes, and they use the DE statistic
to rank the genes and to select the first ones as a base for subsequent analyses such
as pathway analysis or gene set enrichment.

For this reason, if one has in mind a reasonable proportion of genes to expect as
DE, one can use an appropriate quantile of the distribution of the posterior means
of the ˇ1;j ’s to choose t . For instance, in the simulation study, we use the 95th
percentile when considering a scenario in which the 5% of the genes are simulated
as DE.
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3 Simulation Study

We simulate the data from our proposed model varying the values of the parameters
to mimic different scenarios. We evaluate our model by considering the true and
false positive rates (TPR and FPR, respectively), defining a gene as DE according
to the rules in (2) and (3), choosing t as the quantile corresponding to the true
proportion of DE genes (e.g., when simulating � D 0:05 in a balanced setting we
will choose t as the 0.975 percentile in both (2) and (3)). We consider p D 1;000

genes and n D 10 samples in a two-class comparison in which the first five samples
belong to class “1” and the others to class “2.” We simulate according to the model
in (1), with the following specifications: �˛ D 5, �˛ D f0:2; 1g, �ˇ0 D 0, �ˇ0 D 1.
As for ˇ1, we fix the values to consider that a subset of genes is DE between
the two conditions, with a log-fold-change of 2, either balanced (i.e., 50% up-
and 50% down-regulated), moderately imbalanced (i.e., 75% up- and 25% down-
regulated), or strongly imbalanced (i.e., 100% up-regulated). We let the proportion
of DE genes vary in size, by simulating the hyperparameter � D f0:05; 0:1; 0:3g.
The combination of these choices leads to a total of 18 possible scenarios. For each
scenario, we simulated B D 100 datasets.

We compare our approach to two widely used state-of-the-art algorithms for
differential expression of RNA-Seq data, namely edgeR [19] and DESeq [1].

For both algorithms, we followed the recommended pipeline, consisting in:
(1) estimation of the “size factor” (analogous to our ˛ parameter, or to a between-
lane normalization), (2) estimation of the dispersion parameter, (3) testing for
differential expression via an exact test based on the NB. For details, see the
package vignettes at http://bioconductor.org. We define the true/false positives by
considering a threshold of 0.05 on the (unadjusted) p-values.

Table 1 reports the results of the simulations for our proposed model. In general,
the performance of our model is satisfying. In particular, the small number of false
positives (FPR) means that the model is able to control for the type I error. The
power of the test (TPR) is not extremely high; this can be due to the small sample
size (five samples per class) or to the nature of our DE statistic, and other strategies
to call for DE genes can be explored to find an optimal solution.

As expected, as �˛ increases, the model finds it more difficult to fit the data. In
fact, when ˛ is more variable, the true expression is more likely to be confounded
with the differences in sequencing depth. For instance, the scenario in which �˛ D 1

and � D 0:3, corresponding to a large proportion of DE genes in a highly variable
experiment in terms of sequencing depth, is the only case which leads to an FPR
greater than 0:05 (last three rows of Table 1).

Surprisingly, the test has more power for the imbalanced scenarios with respect
to the balanced ones. This is an artifact due to the fact that the posterior distribution
of ˇ1;j tends to be shifted to the right.

Table 2 reports the results for edgeR. In all scenarios the test is anti-conservative,
failing to control for the type I error.

http://bioconductor.org
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Table 1 True positive rate (TPR) and false positive rate (FPR) of our proposed DE test in the 18
scenarios described in the main text

�˛ � d TPR s.e. FPR s.e.

0.2 0.05 0.5 0.548 0.067 0.010 0.004
0.2 0.05 0.25 0.581 0.067 0.010 0.003
0.2 0.05 0 0.648 0.069 0.009 0.003
0.2 0.1 0.5 0.608 0.057 0.015 0.005
0.2 0.1 0.25 0.641 0.051 0.017 0.005
0.2 0.1 0 0.714 0.048 0.015 0.004
0.2 0.3 0.5 0.729 0.039 0.033 0.010
0.2 0.3 0.25 0.746 0.035 0.034 0.009
0.2 0.3 0 0.811 0.034 0.031 0.007
1 0.05 0.5 0.429 0.083 0.013 0.004
1 0.05 0.25 0.464 0.083 0.013 0.004
1 0.05 0 0.541 0.080 0.012 0.004
1 0.1 0.5 0.520 0.066 0.022 0.008
1 0.1 0.25 0.541 0.070 0.023 0.007
1 0.1 0 0.621 0.069 0.020 0.006
1 0.3 0.5 0.689 0.039 0.061 0.017
1 0.3 0.25 0.698 0.042 0.057 0.014
1 0.3 0 0.760 0.043 0.046 0.011
The d parameter is the proportion of down-regulated genes among the DE

Table 2 True positive rate (TPR) and false positive rate (FPR) of edgeR DE test in the 18 scenarios
described in the main text

�˛ � d TPR s.e. FPR s.e.

0.2 0.05 0.5 0.842 0.055 0.106 0.011
0.2 0.05 0.25 0.839 0.053 0.107 0.011
0.2 0.05 0 0.819 0.052 0.109 0.011
0.2 0.1 0.5 0.851 0.036 0.107 0.012
0.2 0.1 0.25 0.839 0.035 0.109 0.011
0.2 0.1 0 0.794 0.042 0.116 0.011
0.2 0.3 0.5 0.873 0.022 0.110 0.013
0.2 0.3 0.25 0.808 0.025 0.141 0.013
0.2 0.3 0 0.642 0.031 0.219 0.018
1 0.05 0.5 0.840 0.055 0.105 0.011
1 0.05 0.25 0.841 0.053 0.106 0.011
1 0.05 0 0.820 0.052 0.107 0.011
1 0.1 0.5 0.849 0.036 0.106 0.012
1 0.1 0.25 0.836 0.035 0.108 0.011
1 0.1 0 0.792 0.042 0.116 0.011
1 0.3 0.5 0.872 0.023 0.110 0.013
1 0.3 0.25 0.807 0.027 0.139 0.014
1 0.3 0 0.636 0.033 0.221 0.021
The d parameter is the proportion of down-regulated genes among the DE
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Table 3 True positive rate (TPR) and false positive rate (FPR) of DESeq DE test in the 18
scenarios described in the main text

�˛ � d TPR s.e. FPR s.e.

0.2 0.05 0.5 0.319 0.114 0.020 0.005
0.2 0.05 0.25 0.315 0.105 0.020 0.005
0.2 0.05 0 0.284 0.100 0.021 0.005
0.2 0.1 0.5 0.405 0.072 0.020 0.005
0.2 0.1 0.25 0.381 0.081 0.021 0.005
0.2 0.1 0 0.313 0.072 0.024 0.006
0.2 0.3 0.5 0.524 0.039 0.022 0.007
0.2 0.3 0.25 0.433 0.038 0.031 0.007
0.2 0.3 0 0.202 0.032 0.058 0.010
1 0.05 0.5 0.080 0.080 0.008 0.005
1 0.05 0.25 0.081 0.076 0.008 0.005
1 0.05 0 0.071 0.077 0.008 0.005
1 0.1 0.5 0.118 0.083 0.008 0.005
1 0.1 0.25 0.108 0.081 0.008 0.005
1 0.1 0 0.080 0.070 0.009 0.006
1 0.3 0.5 0.208 0.099 0.008 0.005
1 0.3 0.25 0.166 0.084 0.013 0.009
1 0.3 0 0.063 0.049 0.027 0.016
The d parameter is the proportion of down-regulated genes among the DE

This algorithm is not sensitive to the higher variability in sequencing depth,
being FPR and TPR similar independently of �˛ . However, a strong imbalance
between up- and down-regulated DE genes increases the FPR and decreases the
TPR, especially when the number of DE genes is large (i.e., � D 0:3 and d D 0).

Table 3 shows the results for DESeq. Strikingly, things are very different from
edgeR: DESeq is able to control the type I error at the cost of a very low power.

In particular, DESeq is very sensitive to the high differences in sequencing depth
and this leads to a TPR of less than 0:1 when �˛ D 1 and � D 0:05.

Moreover, independently of the other parameters, when the DE genes are
imbalanced the power decreases.

It is somewhat surprising that edgeR and DESeq lead to such different results.
Indeed, they are both based on an NB model and they differ only by the way they
estimate the size factor and the dispersion parameter.

Our feeling is that the difference depends on the way of estimating the disper-
sion: edgeR uses a likelihood-based approach [19], while DESeq exploits a local
regression on the mean-variance scatterplot to estimate the dispersion [1]. It could
be that this solution is more robust to the misspecification of the model (in terms of
type I error) at the cost of less power.

To rule out the size factor estimation as the reason for the difference in the
performance of edgeR and DESeq, we repeated the analyses on the simulated
datasets after upper-quartile between-lane normalization (see [5]). For both models,
the results are very similar to those of Tables 2 and 3 (data not shown), suggesting
that the dispersion estimation is responsible for the difference in the performance of
the two approaches.
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4 Real Data

Bullard et al. [5] analyzed RNA-Seq data for two types of biological samples from
the MicroArray Quality Control (MAQC) Project [23]: Ambion’s human brain
reference RNA (Brain), pooled from multiple donors and several brain regions,
and Stratagene’s universal human reference RNA (UHR), a mixture of total RNA
extracted from ten different human cell lines. RNA-Seq was performed using
Illumina’s Genome Analyzer II high-throughput sequencing system. The data are
summarized below: additional details about experimental design, pre-processing,
and the associated qRT-PCR and microarray datasets can be found in [5].

We make use of the dataset “MAQC-2,” where Brain and UHR RNA were
sequenced each using a single library preparation and seven lanes distributed across
two flow-cells (i.e., technical replicates). There are no biological replicates and
library preparation effects are confounded with the extreme differential expression
that one expects when comparing such different samples as Brain and UHR.
Nonetheless, the availability of qRT-PCR measures for a subset of about 1;000 genes
makes this a valuable benchmarking dataset.

Reads were mapped to the genome (GRCh37 assembly) using Bowtie [10], with
unique mapping and up to two mismatches. Gene-level counts were obtained using
the union-intersection (UI) gene model of [5]. Genes with an average read count
below 10 were filtered out, retaining 12;340 out of 39;359 genes.

In the original MAQC paper [23], 997 genes were assayed by qRT-PCR, with
four measures (i.e., technical replicates) for each of the Brain and UHR samples.
This technology is known to yield accurate estimates of expression levels and it is
used here as a gold standard for comparing the models. Following [5], we consider
only the genes matching a unique UI gene, called present in at least three out of
the four Brain and UHR runs, and having standard errors across the eight runs
not exceeding 0.25. We found 638 genes in common with the RNA-Seq filtered
genes and use this subset to compare expression measures between the technologies.
The UHR/Brain expression log-fold-change of a gene is estimated by the log-ratio
between the average of the four UHR measures and the average of the four Brain
measures.

Table 4 shows the number of up- and down-regulated genes obtained after
applying our proposed model to the real data. We found 764 up-regulated and
964 down-regulated genes (out of 12;340) in the Brain/UHR comparison. These
numbers are much smaller than the DE genes identified by edgeR and DESeq and
this could mean either lack of power of our test or the failure in the control of the
type I error for the NB tests, or, more likely, a combination of these two effects.

We compute FPR and TPR, using the estimate of the UHR/Brain fold-change
from qRT-PCR as the true value, considering only the subset of genes for which
qRT-PCR data are available. Following the strategy described in [5], we consider
three possible sets of genes: “non-DE,” “DE,” and “no-call,” based on whether their
qRT-PCR absolute log-fold-change is less than 0:2, greater than 2, or falls within
the interval Œ0:2; 2�, respectively. We obtain 208 “DE” and 81 “non-DE” genes.
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Table 4 MAQC dataset: DE
genes

HB edgeR DESeq

Up 764 4,027 4,480
Down 964 4,011 4,501

Number of up- and down-regulated genes for our proposed
model (HB), edgeR and DESeq

Table 5 MAQC dataset: true
and false positive rates for the
UHR/Brain comparison

HB edgeR DESeq

TPR 0.856 1 0.995
FPR 0.000 0.741 0.716

True positive rates (TPR) and false positive rates (FPR) for the
UHR/Brain comparison using our proposed model (HB), edgeR
and DESeq

Table 5 shows that, at least for the subset of genes assayed by qRT-PCR, our
model has less power but is able to control for the type I error, while the other two
approaches lead to anti-conservative tests.

The results of our model and of edgeR in the real data are similar to those
obtained in the simulations. Surprisingly, DESeq behaves very differently in the
real data with respect to the simulations.

This is probably due to the library size estimation step that, as shown in Fig. 1, is
biased for both edgeR and DESeq. In fact, for the MAQC dataset, the difference in
sequencing depth is confounded with the biological difference between Brain and
UHR, in which many more genes are expressed, being a pool of different tissues.
Both edgeR and DESeq under-estimate the sequencing depth for the Brain samples
and over-estimate it for UHR. Our model, simultaneously estimating ˛ and ˇ, is
able to account for the limited differences in sequencing depth, while capturing the
biological difference of interest between the two samples.

5 Discussion

A good alternative to frequentist approaches in the modeling of RNA-Seq is
represented by hierarchical Bayesian models. Taking advantage of the structure of
the problem, they borrow strength from the ensemble of the expression values and
more effectively estimate the dispersion parameter. The log-normal prior allows to
model experiments in which there is substantial overdispersion and outliers in the
form of extremely high counts, having heavier tails than the Gamma distribution [3].

In the last few years, several authors have proposed methods for the identification
of differentially expressed genes in RNA-Seq data. An exhaustive comparison of all
the methods is beyond the scope of this article. However, we decided to compare
our model to two popular approaches, namely edgeR and DESeq, as they are, to the
best of our knowledge, the most widely used.
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Fig. 1 MAQC dataset: sequencing depth estimation. Gene-level counts per lane for the MAQC
dataset. The points represent the library sizes (scaled to scatter around the median) as estimated
by: square: edgeR ; circle: DESeq ; triangle: our proposed model (˛ parameter)

Overall, our proposed model outperforms both edgeR and DESeq in the simula-
tions. In fact, the high TPR of edgeR comes at the cost of the high FPR, meaning
that the test fails to control for the type I error (recall that we used a threshold of 0.05
in the p-values distribution). On the other hand, DESeq controls for the type I error
but has a very low power. Note that we are simulating from our proposed model,
namely a Poisson-log-normal model, while both edgeR and DESeq are based on
an NB. Therefore, we expect that our model will outperform these approaches in
this setting, since edgeR and DESeq assume the overdispersion to be quadratic and
we are simulating data with an exponential variance function [6, 11]. However, this
simulation study was meant to be a confirmation of the goodness of the model when
all the assumptions hold.

Moreover, in the simulation study we declare a gene DE according to equa-
tions (2) and (3), choosing t as the appropriate quantile, knowing the proportion
of simulated DE genes. In real applications, this is clearly not possible and one has
to choose a reasonable value for it, e.g., by fixing an appropriate threshold on the
log-fold-change or by assuming a priori an expected proportion of DE genes.
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Finally, one has to be careful in interpreting the results obtained in the real
dataset, for two reasons: (1) the MAQC dataset is rather artificial, since it involves
commercially available RNA and only technical replicates (with no biological
variability); (2) the way we defined true and false positives is based on qRT-PCR
and even if this is widely considered a gold standard for gene expression, one has
to expect noise and measurement errors also in this technology. In other words, if
RNA-Seq is more sensitive than qRT-PCR in the detection of DE genes, some of the
genes that we declared “false positives” could be true positives failed to be detected
by the qRT-PCR.

One important feature of the proposed model is that it can simultaneously
estimate both biological effects (i.e., differential expression) and technical biases
(e.g., difference in sequencing depth). The ˛ parameter captures the difference in
sequencing depth with no need of an a priori step of library size estimation, which
is needed in both edgeR and DESeq. This step is essentially equivalent to a between-
lane normalization and can be tricky, as discussed in [1, 5]. In particular using the
sum of the counts to estimate the library size, as in Reads Per Kilobase of exon
model per Million mapped reads (RPKM) of [16], can strongly bias differential
expression [5].

Recently, Lee et al. [12] proposed a hierarchical Bayesian model for RNA-Seq.
Their model works with “position-level” data, meaning that they model the read
counts at each genomic position instead of considering gene-level summaries.

In this work, we consider gene-level data mainly for two reasons: (1) ease
of interpretation and (2) computational convenience. In particular, considering
position-level rather than gene-level data will add three orders of magnitude to the
number of variables considered by the model. In fact, the human genome contains
around 23;000 protein coding genes, with an approximate mean length of 2;000
DNA bases.

Here we refer to “genes” for the sake of clarity, but it is worth noting that one
could use other “regions of interest” as count units. By considering, for instance,
exon-level summaries, we are able in principle to identify differential usage of
exons, evidence of differential isoform expression (see the discussion in [2]).

6 Conclusions

We have presented a hierarchical Bayesian GLM to model RNA-Seq data. Through
a Gibbs sampler, we estimated the posterior distribution of the parameters and used
them for inference on differential expression.

The model has the advantage of being very general and suitable for a wide range
of studies, e.g., multi-class comparisons and designs with continuous covariate of
interest.

It shows promising results when compared to existing approaches, both in
simulations and in real data when using qRT-PCR as a gold standard.



226 D. Risso et al.

The Gibbs sampling algorithm is computationally expensive, and this is a major
concern in high-throughput studies, when several thousands of genes are analyzed
at once. We will therefore take into consideration the possibility of exploiting
the potential offered by the integrated nested Laplace approximations approach to
overcome this limitation [22]. Moreover, future effort could be made on formal
specification of the posterior probability of a differential expression statistic, in an
empirical Bayes setting.

All the statistical analyses and simulations have been performed with R [18].
The Gibbs sampler was implemented in JAGS, version 3.1.0 [17], freely available
at http://mcmc-jags.sourceforge.net/.
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